alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out)
('ABC', '->', 'D')
('BCD', '->', 'E')
('CDE', '->', 'F')
('DEF', '->', 'G')
('EFG', '->', 'H')
('FGH', '->', 'I')
('GHI', '->', 'J')
('HIJ', '->', 'K')
('IJK', '->', 'L')
('JKL', '->', 'M')
('KLM', '->', 'N')
('LMN', '->', 'O')
('MNO', '->', 'P')
('NOP', '->', 'Q')
('OPQ', '->', 'R')
('PQR', '->', 'S')
('QRS', '->', 'T')
('RST', '->', 'U')
('STU', '->', 'V')
('TUV', '->', 'W')
('UVW', '->', 'X')
('VWX', '->', 'Y')
('WXY', '->', 'Z')
# dataX is just a reindexing of the alphabets in consecutive triplets of numbers dataX
Out[2]:
[[0, 1, 2],
[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6],
[5, 6, 7],
[6, 7, 8],
[7, 8, 9],
[8, 9, 10],
[9, 10, 11],
[10, 11, 12],
[11, 12, 13],
[12, 13, 14],
[13, 14, 15],
[14, 15, 16],
[15, 16, 17],
[16, 17, 18],
[17, 18, 19],
[18, 19, 20],
[19, 20, 21],
[20, 21, 22],
[21, 22, 23],
[22, 23, 24]]
import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM # <- this is the Long-Short-term memory layer from keras.utils import np_utils # begin data generation ------------------------------------------ # this is just a repeat of what we did above alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # end data generation --------------------------------------------- X = numpy.reshape(dataX, (len(dataX), seq_length)) X = X / float(len(alphabet)) # normalize the mapping of alphabets from integers into [0, 1] y = np_utils.to_categorical(dataY) # make the output we want to predict to be categorical # keras architecturing of a feed forward dense or fully connected Neural Network model = Sequential() # draw the architecture of the network given by next two lines, hint: X.shape[1] = 3, y.shape[1] = 26 model.add(Dense(30, input_dim=X.shape[1], kernel_initializer='normal', activation='relu')) model.add(Dense(y.shape[1], activation='softmax')) # keras compiling and fitting model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=1000, batch_size=5, verbose=2) scores = model.evaluate(X, y) print("Model Accuracy: %.2f " % scores[1]) for pattern in dataX: x = numpy.reshape(pattern, (1, len(pattern))) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) # get prediction from fitted model index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print (seq_in, "->", result) # print the predicted outputs
Using TensorFlow backend.
('ABC', '->', 'D')
('BCD', '->', 'E')
('CDE', '->', 'F')
('DEF', '->', 'G')
('EFG', '->', 'H')
('FGH', '->', 'I')
('GHI', '->', 'J')
('HIJ', '->', 'K')
('IJK', '->', 'L')
('JKL', '->', 'M')
('KLM', '->', 'N')
('LMN', '->', 'O')
('MNO', '->', 'P')
('NOP', '->', 'Q')
('OPQ', '->', 'R')
('PQR', '->', 'S')
('QRS', '->', 'T')
('RST', '->', 'U')
('STU', '->', 'V')
('TUV', '->', 'W')
('UVW', '->', 'X')
('VWX', '->', 'Y')
('WXY', '->', 'Z')
WARNING:tensorflow:From /databricks/python/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /databricks/python/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/1000
- 0s - loss: 3.2628 - acc: 0.0000e+00
Epoch 2/1000
- 0s - loss: 3.2587 - acc: 0.0000e+00
Epoch 3/1000
- 0s - loss: 3.2565 - acc: 0.0000e+00
Epoch 4/1000
- 0s - loss: 3.2544 - acc: 0.0000e+00
Epoch 5/1000
- 0s - loss: 3.2526 - acc: 0.0435
Epoch 6/1000
- 0s - loss: 3.2507 - acc: 0.0435
Epoch 7/1000
- 0s - loss: 3.2488 - acc: 0.0435
Epoch 8/1000
- 0s - loss: 3.2473 - acc: 0.0435
Epoch 9/1000
- 0s - loss: 3.2454 - acc: 0.0435
Epoch 10/1000
- 0s - loss: 3.2437 - acc: 0.0435
Epoch 11/1000
- 0s - loss: 3.2418 - acc: 0.0435
Epoch 12/1000
- 0s - loss: 3.2400 - acc: 0.0435
Epoch 13/1000
- 0s - loss: 3.2380 - acc: 0.0435
Epoch 14/1000
- 0s - loss: 3.2363 - acc: 0.0435
Epoch 15/1000
- 0s - loss: 3.2341 - acc: 0.0435
Epoch 16/1000
- 0s - loss: 3.2319 - acc: 0.0435
Epoch 17/1000
- 0s - loss: 3.2297 - acc: 0.0435
Epoch 18/1000
- 0s - loss: 3.2274 - acc: 0.0435
Epoch 19/1000
- 0s - loss: 3.2252 - acc: 0.0435
Epoch 20/1000
- 0s - loss: 3.2230 - acc: 0.0435
Epoch 21/1000
- 0s - loss: 3.2206 - acc: 0.0435
Epoch 22/1000
- 0s - loss: 3.2178 - acc: 0.0435
Epoch 23/1000
- 0s - loss: 3.2154 - acc: 0.0435
Epoch 24/1000
- 0s - loss: 3.2126 - acc: 0.0435
Epoch 25/1000
- 0s - loss: 3.2101 - acc: 0.0435
Epoch 26/1000
- 0s - loss: 3.2069 - acc: 0.0435
Epoch 27/1000
- 0s - loss: 3.2041 - acc: 0.0435
Epoch 28/1000
- 0s - loss: 3.2014 - acc: 0.0435
Epoch 29/1000
- 0s - loss: 3.1978 - acc: 0.0435
Epoch 30/1000
- 0s - loss: 3.1946 - acc: 0.0435
Epoch 31/1000
- 0s - loss: 3.1916 - acc: 0.0435
Epoch 32/1000
- 0s - loss: 3.1880 - acc: 0.0435
Epoch 33/1000
- 0s - loss: 3.1845 - acc: 0.0435
Epoch 34/1000
- 0s - loss: 3.1814 - acc: 0.0435
Epoch 35/1000
- 0s - loss: 3.1781 - acc: 0.0435
Epoch 36/1000
- 0s - loss: 3.1740 - acc: 0.0435
Epoch 37/1000
- 0s - loss: 3.1705 - acc: 0.0435
Epoch 38/1000
- 0s - loss: 3.1669 - acc: 0.0435
Epoch 39/1000
- 0s - loss: 3.1628 - acc: 0.0435
Epoch 40/1000
- 0s - loss: 3.1591 - acc: 0.0435
Epoch 41/1000
- 0s - loss: 3.1550 - acc: 0.0435
Epoch 42/1000
- 0s - loss: 3.1515 - acc: 0.0435
Epoch 43/1000
- 0s - loss: 3.1470 - acc: 0.0435
Epoch 44/1000
- 0s - loss: 3.1434 - acc: 0.0435
Epoch 45/1000
- 0s - loss: 3.1394 - acc: 0.0435
Epoch 46/1000
- 0s - loss: 3.1357 - acc: 0.0435
Epoch 47/1000
- 0s - loss: 3.1316 - acc: 0.0435
Epoch 48/1000
- 0s - loss: 3.1285 - acc: 0.0435
Epoch 49/1000
- 0s - loss: 3.1240 - acc: 0.0435
Epoch 50/1000
- 0s - loss: 3.1205 - acc: 0.0435
Epoch 51/1000
- 0s - loss: 3.1163 - acc: 0.0435
Epoch 52/1000
- 0s - loss: 3.1125 - acc: 0.0435
Epoch 53/1000
- 0s - loss: 3.1091 - acc: 0.0435
Epoch 54/1000
- 0s - loss: 3.1048 - acc: 0.0435
Epoch 55/1000
- 0s - loss: 3.1010 - acc: 0.0435
Epoch 56/1000
- 0s - loss: 3.0974 - acc: 0.0435
Epoch 57/1000
- 0s - loss: 3.0939 - acc: 0.0435
Epoch 58/1000
- 0s - loss: 3.0899 - acc: 0.0435
Epoch 59/1000
- 0s - loss: 3.0864 - acc: 0.0435
Epoch 60/1000
- 0s - loss: 3.0824 - acc: 0.0435
Epoch 61/1000
- 0s - loss: 3.0785 - acc: 0.0435
Epoch 62/1000
- 0s - loss: 3.0750 - acc: 0.0435
Epoch 63/1000
- 0s - loss: 3.0710 - acc: 0.0435
Epoch 64/1000
- 0s - loss: 3.0674 - acc: 0.0435
Epoch 65/1000
- 0s - loss: 3.0641 - acc: 0.0435
Epoch 66/1000
- 0s - loss: 3.0603 - acc: 0.0435
Epoch 67/1000
- 0s - loss: 3.0566 - acc: 0.0435
Epoch 68/1000
- 0s - loss: 3.0533 - acc: 0.0435
Epoch 69/1000
- 0s - loss: 3.0496 - acc: 0.0435
Epoch 70/1000
- 0s - loss: 3.0461 - acc: 0.0435
Epoch 71/1000
- 0s - loss: 3.0424 - acc: 0.0435
Epoch 72/1000
- 0s - loss: 3.0392 - acc: 0.0435
Epoch 73/1000
- 0s - loss: 3.0355 - acc: 0.0435
Epoch 74/1000
- 0s - loss: 3.0316 - acc: 0.0435
Epoch 75/1000
- 0s - loss: 3.0282 - acc: 0.0435
Epoch 76/1000
- 0s - loss: 3.0249 - acc: 0.0435
Epoch 77/1000
- 0s - loss: 3.0215 - acc: 0.0435
Epoch 78/1000
- 0s - loss: 3.0177 - acc: 0.0870
Epoch 79/1000
- 0s - loss: 3.0145 - acc: 0.0870
Epoch 80/1000
- 0s - loss: 3.0107 - acc: 0.0870
Epoch 81/1000
- 0s - loss: 3.0073 - acc: 0.0870
Epoch 82/1000
- 0s - loss: 3.0040 - acc: 0.0870
Epoch 83/1000
- 0s - loss: 3.0003 - acc: 0.0870
Epoch 84/1000
- 0s - loss: 2.9964 - acc: 0.0870
Epoch 85/1000
- 0s - loss: 2.9931 - acc: 0.0870
Epoch 86/1000
- 0s - loss: 2.9894 - acc: 0.1304
Epoch 87/1000
- 0s - loss: 2.9858 - acc: 0.1304
Epoch 88/1000
- 0s - loss: 2.9821 - acc: 0.1304
Epoch 89/1000
- 0s - loss: 2.9786 - acc: 0.1304
Epoch 90/1000
- 0s - loss: 2.9749 - acc: 0.1304
Epoch 91/1000
- 0s - loss: 2.9710 - acc: 0.1304
Epoch 92/1000
- 0s - loss: 2.9675 - acc: 0.1304
Epoch 93/1000
- 0s - loss: 2.9644 - acc: 0.1304
Epoch 94/1000
- 0s - loss: 2.9601 - acc: 0.1304
Epoch 95/1000
- 0s - loss: 2.9569 - acc: 0.1304
Epoch 96/1000
- 0s - loss: 2.9528 - acc: 0.1304
Epoch 97/1000
- 0s - loss: 2.9492 - acc: 0.1304
Epoch 98/1000
- 0s - loss: 2.9457 - acc: 0.1304
Epoch 99/1000
- 0s - loss: 2.9418 - acc: 0.0870
Epoch 100/1000
- 0s - loss: 2.9379 - acc: 0.1304
Epoch 101/1000
- 0s - loss: 2.9341 - acc: 0.0870
Epoch 102/1000
- 0s - loss: 2.9309 - acc: 0.0870
Epoch 103/1000
- 0s - loss: 2.9268 - acc: 0.0870
Epoch 104/1000
- 0s - loss: 2.9230 - acc: 0.0870
Epoch 105/1000
- 0s - loss: 2.9198 - acc: 0.0870
Epoch 106/1000
- 0s - loss: 2.9159 - acc: 0.0870
Epoch 107/1000
- 0s - loss: 2.9121 - acc: 0.0870
Epoch 108/1000
- 0s - loss: 2.9084 - acc: 0.0870
Epoch 109/1000
- 0s - loss: 2.9046 - acc: 0.0870
Epoch 110/1000
- 0s - loss: 2.9012 - acc: 0.0870
Epoch 111/1000
- 0s - loss: 2.8974 - acc: 0.0870
Epoch 112/1000
- 0s - loss: 2.8935 - acc: 0.0870
Epoch 113/1000
- 0s - loss: 2.8905 - acc: 0.0870
Epoch 114/1000
- 0s - loss: 2.8865 - acc: 0.0870
Epoch 115/1000
- 0s - loss: 2.8829 - acc: 0.0870
Epoch 116/1000
- 0s - loss: 2.8792 - acc: 0.0870
Epoch 117/1000
- 0s - loss: 2.8760 - acc: 0.0870
Epoch 118/1000
- 0s - loss: 2.8719 - acc: 0.0870
Epoch 119/1000
- 0s - loss: 2.8682 - acc: 0.0870
Epoch 120/1000
- 0s - loss: 2.8640 - acc: 0.0870
Epoch 121/1000
- 0s - loss: 2.8605 - acc: 0.0870
Epoch 122/1000
- 0s - loss: 2.8569 - acc: 0.0870
Epoch 123/1000
- 0s - loss: 2.8531 - acc: 0.0870
Epoch 124/1000
- 0s - loss: 2.8494 - acc: 0.0870
Epoch 125/1000
- 0s - loss: 2.8456 - acc: 0.0870
Epoch 126/1000
- 0s - loss: 2.8418 - acc: 0.0870
Epoch 127/1000
- 0s - loss: 2.8380 - acc: 0.0870
Epoch 128/1000
- 0s - loss: 2.8342 - acc: 0.0870
Epoch 129/1000
- 0s - loss: 2.8307 - acc: 0.0870
Epoch 130/1000
- 0s - loss: 2.8266 - acc: 0.0870
Epoch 131/1000
- 0s - loss: 2.8228 - acc: 0.0870
Epoch 132/1000
- 0s - loss: 2.8192 - acc: 0.0870
Epoch 133/1000
- 0s - loss: 2.8160 - acc: 0.0870
Epoch 134/1000
- 0s - loss: 2.8123 - acc: 0.0870
Epoch 135/1000
- 0s - loss: 2.8085 - acc: 0.0870
Epoch 136/1000
- 0s - loss: 2.8049 - acc: 0.0870
Epoch 137/1000
- 0s - loss: 2.8012 - acc: 0.0870
Epoch 138/1000
- 0s - loss: 2.7981 - acc: 0.0870
Epoch 139/1000
- 0s - loss: 2.7947 - acc: 0.0870
Epoch 140/1000
- 0s - loss: 2.7907 - acc: 0.0870
Epoch 141/1000
- 0s - loss: 2.7872 - acc: 0.0870
Epoch 142/1000
- 0s - loss: 2.7837 - acc: 0.0870
Epoch 143/1000
- 0s - loss: 2.7804 - acc: 0.0870
Epoch 144/1000
- 0s - loss: 2.7769 - acc: 0.0870
Epoch 145/1000
- 0s - loss: 2.7734 - acc: 0.0870
Epoch 146/1000
- 0s - loss: 2.7700 - acc: 0.0870
Epoch 147/1000
- 0s - loss: 2.7667 - acc: 0.0870
Epoch 148/1000
- 0s - loss: 2.7630 - acc: 0.0870
Epoch 149/1000
- 0s - loss: 2.7596 - acc: 0.0870
Epoch 150/1000
- 0s - loss: 2.7562 - acc: 0.0870
Epoch 151/1000
- 0s - loss: 2.7524 - acc: 0.0870
Epoch 152/1000
- 0s - loss: 2.7495 - acc: 0.0870
Epoch 153/1000
- 0s - loss: 2.7459 - acc: 0.0870
Epoch 154/1000
- 0s - loss: 2.7425 - acc: 0.0870
Epoch 155/1000
- 0s - loss: 2.7389 - acc: 0.0870
Epoch 156/1000
- 0s - loss: 2.7353 - acc: 0.1304
Epoch 157/1000
- 0s - loss: 2.7322 - acc: 0.0870
Epoch 158/1000
- 0s - loss: 2.7291 - acc: 0.0870
Epoch 159/1000
- 0s - loss: 2.7256 - acc: 0.0870
Epoch 160/1000
- 0s - loss: 2.7222 - acc: 0.0870
Epoch 161/1000
- 0s - loss: 2.7189 - acc: 0.1304
Epoch 162/1000
- 0s - loss: 2.7160 - acc: 0.1304
Epoch 163/1000
- 0s - loss: 2.7125 - acc: 0.1304
Epoch 164/1000
- 0s - loss: 2.7092 - acc: 0.1304
Epoch 165/1000
- 0s - loss: 2.7054 - acc: 0.1304
Epoch 166/1000
- 0s - loss: 2.7028 - acc: 0.1304
Epoch 167/1000
- 0s - loss: 2.6996 - acc: 0.1304
Epoch 168/1000
- 0s - loss: 2.6963 - acc: 0.1304
Epoch 169/1000
- 0s - loss: 2.6933 - acc: 0.1304
Epoch 170/1000
- 0s - loss: 2.6899 - acc: 0.1304
Epoch 171/1000
- 0s - loss: 2.6869 - acc: 0.1304
Epoch 172/1000
- 0s - loss: 2.6837 - acc: 0.0870
Epoch 173/1000
- 0s - loss: 2.6806 - acc: 0.0870
Epoch 174/1000
- 0s - loss: 2.6777 - acc: 0.0870
Epoch 175/1000
- 0s - loss: 2.6743 - acc: 0.0870
Epoch 176/1000
- 0s - loss: 2.6714 - acc: 0.1304
Epoch 177/1000
- 0s - loss: 2.6683 - acc: 0.1304
Epoch 178/1000
- 0s - loss: 2.6649 - acc: 0.1304
Epoch 179/1000
- 0s - loss: 2.6624 - acc: 0.1304
Epoch 180/1000
- 0s - loss: 2.6592 - acc: 0.1304
Epoch 181/1000
- 0s - loss: 2.6560 - acc: 0.1304
Epoch 182/1000
- 0s - loss: 2.6531 - acc: 0.1304
Epoch 183/1000
- 0s - loss: 2.6502 - acc: 0.1304
Epoch 184/1000
- 0s - loss: 2.6478 - acc: 0.1304
Epoch 185/1000
- 0s - loss: 2.6441 - acc: 0.1304
Epoch 186/1000
- 0s - loss: 2.6412 - acc: 0.1304
Epoch 187/1000
- 0s - loss: 2.6383 - acc: 0.1304
Epoch 188/1000
- 0s - loss: 2.6356 - acc: 0.1304
Epoch 189/1000
- 0s - loss: 2.6324 - acc: 0.1304
Epoch 190/1000
- 0s - loss: 2.6293 - acc: 0.1304
Epoch 191/1000
- 0s - loss: 2.6266 - acc: 0.1304
Epoch 192/1000
- 0s - loss: 2.6237 - acc: 0.1304
Epoch 193/1000
- 0s - loss: 2.6209 - acc: 0.1304
Epoch 194/1000
- 0s - loss: 2.6180 - acc: 0.1304
Epoch 195/1000
- 0s - loss: 2.6155 - acc: 0.1304
Epoch 196/1000
- 0s - loss: 2.6122 - acc: 0.1304
Epoch 197/1000
- 0s - loss: 2.6101 - acc: 0.1304
Epoch 198/1000
- 0s - loss: 2.6073 - acc: 0.1304
Epoch 199/1000
- 0s - loss: 2.6049 - acc: 0.1304
Epoch 200/1000
- 0s - loss: 2.6021 - acc: 0.1304
Epoch 201/1000
- 0s - loss: 2.5995 - acc: 0.1304
Epoch 202/1000
- 0s - loss: 2.5965 - acc: 0.1304
Epoch 203/1000
- 0s - loss: 2.5942 - acc: 0.1304
Epoch 204/1000
- 0s - loss: 2.5909 - acc: 0.1304
Epoch 205/1000
- 0s - loss: 2.5887 - acc: 0.1304
Epoch 206/1000
- 0s - loss: 2.5860 - acc: 0.1304
Epoch 207/1000
- 0s - loss: 2.5837 - acc: 0.1304
Epoch 208/1000
- 0s - loss: 2.5808 - acc: 0.1304
Epoch 209/1000
- 0s - loss: 2.5780 - acc: 0.1304
Epoch 210/1000
- 0s - loss: 2.5757 - acc: 0.1304
Epoch 211/1000
- 0s - loss: 2.5731 - acc: 0.1304
Epoch 212/1000
- 0s - loss: 2.5707 - acc: 0.1304
Epoch 213/1000
- 0s - loss: 2.5680 - acc: 0.1304
Epoch 214/1000
- 0s - loss: 2.5651 - acc: 0.0870
Epoch 215/1000
- 0s - loss: 2.5628 - acc: 0.0870
Epoch 216/1000
- 0s - loss: 2.5600 - acc: 0.1304
Epoch 217/1000
- 0s - loss: 2.5577 - acc: 0.1304
Epoch 218/1000
- 0s - loss: 2.5552 - acc: 0.1304
Epoch 219/1000
- 0s - loss: 2.5525 - acc: 0.1739
Epoch 220/1000
- 0s - loss: 2.5501 - acc: 0.1739
Epoch 221/1000
- 0s - loss: 2.5472 - acc: 0.1739
Epoch 222/1000
- 0s - loss: 2.5453 - acc: 0.1739
Epoch 223/1000
- 0s - loss: 2.5422 - acc: 0.1739
Epoch 224/1000
- 0s - loss: 2.5397 - acc: 0.2174
Epoch 225/1000
- 0s - loss: 2.5380 - acc: 0.2174
Epoch 226/1000
- 0s - loss: 2.5353 - acc: 0.1739
Epoch 227/1000
- 0s - loss: 2.5330 - acc: 0.1739
Epoch 228/1000
- 0s - loss: 2.5306 - acc: 0.1739
Epoch 229/1000
- 0s - loss: 2.5280 - acc: 0.1739
Epoch 230/1000
- 0s - loss: 2.5257 - acc: 0.1739
Epoch 231/1000
- 0s - loss: 2.5234 - acc: 0.1739
Epoch 232/1000
- 0s - loss: 2.5211 - acc: 0.1739
Epoch 233/1000
- 0s - loss: 2.5184 - acc: 0.1739
Epoch 234/1000
- 0s - loss: 2.5163 - acc: 0.1739
Epoch 235/1000
- 0s - loss: 2.5145 - acc: 0.1304
Epoch 236/1000
- 0s - loss: 2.5121 - acc: 0.1304
Epoch 237/1000
- 0s - loss: 2.5097 - acc: 0.1304
Epoch 238/1000
- 0s - loss: 2.5077 - acc: 0.1304
Epoch 239/1000
- 0s - loss: 2.5053 - acc: 0.1739
Epoch 240/1000
- 0s - loss: 2.5029 - acc: 0.1739
Epoch 241/1000
- 0s - loss: 2.5007 - acc: 0.1739
Epoch 242/1000
- 0s - loss: 2.4980 - acc: 0.1739
Epoch 243/1000
- 0s - loss: 2.4954 - acc: 0.1739
Epoch 244/1000
- 0s - loss: 2.4939 - acc: 0.1739
Epoch 245/1000
- 0s - loss: 2.4914 - acc: 0.1739
Epoch 246/1000
- 0s - loss: 2.4893 - acc: 0.1739
Epoch 247/1000
- 0s - loss: 2.4870 - acc: 0.1739
Epoch 248/1000
- 0s - loss: 2.4852 - acc: 0.1739
Epoch 249/1000
- 0s - loss: 2.4829 - acc: 0.1739
Epoch 250/1000
- 0s - loss: 2.4804 - acc: 0.1739
Epoch 251/1000
- 0s - loss: 2.4785 - acc: 0.1739
Epoch 252/1000
- 0s - loss: 2.4760 - acc: 0.2174
Epoch 253/1000
- 0s - loss: 2.4737 - acc: 0.2174
Epoch 254/1000
- 0s - loss: 2.4716 - acc: 0.1739
Epoch 255/1000
- 0s - loss: 2.4693 - acc: 0.1739
Epoch 256/1000
- 0s - loss: 2.4678 - acc: 0.2174
Epoch 257/1000
- 0s - loss: 2.4656 - acc: 0.2174
Epoch 258/1000
- 0s - loss: 2.4632 - acc: 0.2609
Epoch 259/1000
- 0s - loss: 2.4616 - acc: 0.2174
Epoch 260/1000
- 0s - loss: 2.4592 - acc: 0.2174
Epoch 261/1000
- 0s - loss: 2.4571 - acc: 0.2174
Epoch 262/1000
- 0s - loss: 2.4548 - acc: 0.2174
Epoch 263/1000
- 0s - loss: 2.4533 - acc: 0.2174
Epoch 264/1000
- 0s - loss: 2.4511 - acc: 0.2174
Epoch 265/1000
- 0s - loss: 2.4490 - acc: 0.2174
Epoch 266/1000
- 0s - loss: 2.4473 - acc: 0.2609
Epoch 267/1000
- 0s - loss: 2.4451 - acc: 0.2174
Epoch 268/1000
- 0s - loss: 2.4433 - acc: 0.2174
Epoch 269/1000
- 0s - loss: 2.4411 - acc: 0.2174
Epoch 270/1000
- 0s - loss: 2.4391 - acc: 0.2174
Epoch 271/1000
- 0s - loss: 2.4370 - acc: 0.2174
Epoch 272/1000
- 0s - loss: 2.4351 - acc: 0.2174
Epoch 273/1000
- 0s - loss: 2.4331 - acc: 0.2174
Epoch 274/1000
- 0s - loss: 2.4311 - acc: 0.2609
Epoch 275/1000
- 0s - loss: 2.4291 - acc: 0.2609
Epoch 276/1000
- 0s - loss: 2.4276 - acc: 0.2174
Epoch 277/1000
- 0s - loss: 2.4254 - acc: 0.2174
Epoch 278/1000
- 0s - loss: 2.4232 - acc: 0.2609
Epoch 279/1000
- 0s - loss: 2.4215 - acc: 0.2174
Epoch 280/1000
- 0s - loss: 2.4195 - acc: 0.2174
Epoch 281/1000
- 0s - loss: 2.4178 - acc: 0.2174
Epoch 282/1000
- 0s - loss: 2.4156 - acc: 0.2174
Epoch 283/1000
- 0s - loss: 2.4145 - acc: 0.2174
Epoch 284/1000
- 0s - loss: 2.4124 - acc: 0.2174
Epoch 285/1000
- 0s - loss: 2.4099 - acc: 0.2174
Epoch 286/1000
- 0s - loss: 2.4082 - acc: 0.2174
Epoch 287/1000
- 0s - loss: 2.4064 - acc: 0.2174
Epoch 288/1000
- 0s - loss: 2.4042 - acc: 0.2174
Epoch 289/1000
- 0s - loss: 2.4028 - acc: 0.2174
Epoch 290/1000
- 0s - loss: 2.4008 - acc: 0.2174
Epoch 291/1000
- 0s - loss: 2.3989 - acc: 0.2174
Epoch 292/1000
- 0s - loss: 2.3968 - acc: 0.2174
Epoch 293/1000
- 0s - loss: 2.3954 - acc: 0.2174
Epoch 294/1000
- 0s - loss: 2.3938 - acc: 0.2174
Epoch 295/1000
- 0s - loss: 2.3916 - acc: 0.2609
Epoch 296/1000
- 0s - loss: 2.3901 - acc: 0.2609
Epoch 297/1000
- 0s - loss: 2.3880 - acc: 0.2609
Epoch 298/1000
- 0s - loss: 2.3867 - acc: 0.2174
Epoch 299/1000
- 0s - loss: 2.3849 - acc: 0.2174
Epoch 300/1000
- 0s - loss: 2.3831 - acc: 0.2174
Epoch 301/1000
- 0s - loss: 2.3812 - acc: 0.2174
Epoch 302/1000
- 0s - loss: 2.3798 - acc: 0.2609
Epoch 303/1000
- 0s - loss: 2.3779 - acc: 0.2609
Epoch 304/1000
- 0s - loss: 2.3760 - acc: 0.2609
Epoch 305/1000
- 0s - loss: 2.3740 - acc: 0.2609
Epoch 306/1000
- 0s - loss: 2.3725 - acc: 0.2174
Epoch 307/1000
- 0s - loss: 2.3707 - acc: 0.2174
Epoch 308/1000
- 0s - loss: 2.3692 - acc: 0.2174
Epoch 309/1000
- 0s - loss: 2.3670 - acc: 0.2174
Epoch 310/1000
- 0s - loss: 2.3656 - acc: 0.2609
Epoch 311/1000
- 0s - loss: 2.3639 - acc: 0.2609
Epoch 312/1000
- 0s - loss: 2.3620 - acc: 0.2609
Epoch 313/1000
- 0s - loss: 2.3603 - acc: 0.2609
Epoch 314/1000
- 0s - loss: 2.3591 - acc: 0.2609
Epoch 315/1000
- 0s - loss: 2.3568 - acc: 0.2609
Epoch 316/1000
- 0s - loss: 2.3559 - acc: 0.2609
Epoch 317/1000
- 0s - loss: 2.3536 - acc: 0.2609
Epoch 318/1000
- 0s - loss: 2.3518 - acc: 0.2609
Epoch 319/1000
- 0s - loss: 2.3507 - acc: 0.2609
Epoch 320/1000
- 0s - loss: 2.3489 - acc: 0.2609
Epoch 321/1000
- 0s - loss: 2.3471 - acc: 0.2609
Epoch 322/1000
- 0s - loss: 2.3460 - acc: 0.2609
Epoch 323/1000
- 0s - loss: 2.3437 - acc: 0.2609
Epoch 324/1000
- 0s - loss: 2.3420 - acc: 0.2609
Epoch 325/1000
- 0s - loss: 2.3401 - acc: 0.3043
Epoch 326/1000
- 0s - loss: 2.3385 - acc: 0.2609
Epoch 327/1000
- 0s - loss: 2.3369 - acc: 0.3043
Epoch 328/1000
- 0s - loss: 2.3356 - acc: 0.3043
Epoch 329/1000
- 0s - loss: 2.3338 - acc: 0.3043
Epoch 330/1000
- 0s - loss: 2.3326 - acc: 0.3043
Epoch 331/1000
- 0s - loss: 2.3313 - acc: 0.2609
Epoch 332/1000
- 0s - loss: 2.3295 - acc: 0.2609
Epoch 333/1000
- 0s - loss: 2.3281 - acc: 0.3043
Epoch 334/1000
- 0s - loss: 2.3259 - acc: 0.2609
Epoch 335/1000
- 0s - loss: 2.3243 - acc: 0.2609
Epoch 336/1000
- 0s - loss: 2.3226 - acc: 0.2609
Epoch 337/1000
- 0s - loss: 2.3215 - acc: 0.2609
Epoch 338/1000
- 0s - loss: 2.3198 - acc: 0.2609
Epoch 339/1000
- 0s - loss: 2.3184 - acc: 0.2174
Epoch 340/1000
- 0s - loss: 2.3169 - acc: 0.2609
Epoch 341/1000
- 0s - loss: 2.3154 - acc: 0.3043
Epoch 342/1000
- 0s - loss: 2.3141 - acc: 0.3043
Epoch 343/1000
- 0s - loss: 2.3127 - acc: 0.2609
Epoch 344/1000
- 0s - loss: 2.3106 - acc: 0.2609
Epoch 345/1000
- 0s - loss: 2.3090 - acc: 0.2609
Epoch 346/1000
- 0s - loss: 2.3078 - acc: 0.2609
Epoch 347/1000
- 0s - loss: 2.3060 - acc: 0.2609
Epoch 348/1000
- 0s - loss: 2.3048 - acc: 0.2609
Epoch 349/1000
- 0s - loss: 2.3037 - acc: 0.2609
Epoch 350/1000
- 0s - loss: 2.3019 - acc: 0.2609
Epoch 351/1000
- 0s - loss: 2.3004 - acc: 0.2609
Epoch 352/1000
- 0s - loss: 2.2986 - acc: 0.2609
Epoch 353/1000
- 0s - loss: 2.2971 - acc: 0.3043
Epoch 354/1000
- 0s - loss: 2.2959 - acc: 0.2609
Epoch 355/1000
- 0s - loss: 2.2938 - acc: 0.2609
Epoch 356/1000
- 0s - loss: 2.2930 - acc: 0.2609
Epoch 357/1000
- 0s - loss: 2.2910 - acc: 0.2609
Epoch 358/1000
- 0s - loss: 2.2892 - acc: 0.2609
Epoch 359/1000
- 0s - loss: 2.2886 - acc: 0.2609
Epoch 360/1000
- 0s - loss: 2.2870 - acc: 0.2609
Epoch 361/1000
- 0s - loss: 2.2854 - acc: 0.2609
Epoch 362/1000
- 0s - loss: 2.2841 - acc: 0.3043
Epoch 363/1000
- 0s - loss: 2.2827 - acc: 0.3043
Epoch 364/1000
- 0s - loss: 2.2809 - acc: 0.3043
Epoch 365/1000
- 0s - loss: 2.2794 - acc: 0.3043
Epoch 366/1000
- 0s - loss: 2.2780 - acc: 0.3043
Epoch 367/1000
- 0s - loss: 2.2763 - acc: 0.3043
Epoch 368/1000
- 0s - loss: 2.2752 - acc: 0.3478
Epoch 369/1000
- 0s - loss: 2.2735 - acc: 0.3478
Epoch 370/1000
- 0s - loss: 2.2722 - acc: 0.3478
Epoch 371/1000
- 0s - loss: 2.2711 - acc: 0.3478
Epoch 372/1000
- 0s - loss: 2.2693 - acc: 0.2609
Epoch 373/1000
- 0s - loss: 2.2682 - acc: 0.2609
Epoch 374/1000
- 0s - loss: 2.2666 - acc: 0.2609
Epoch 375/1000
- 0s - loss: 2.2651 - acc: 0.3043
Epoch 376/1000
- 0s - loss: 2.2643 - acc: 0.3043
Epoch 377/1000
- 0s - loss: 2.2627 - acc: 0.2609
Epoch 378/1000
- 0s - loss: 2.2611 - acc: 0.3043
Epoch 379/1000
- 0s - loss: 2.2598 - acc: 0.3043
Epoch 380/1000
- 0s - loss: 2.2582 - acc: 0.3043
Epoch 381/1000
- 0s - loss: 2.2573 - acc: 0.2609
Epoch 382/1000
- 0s - loss: 2.2560 - acc: 0.2609
Epoch 383/1000
- 0s - loss: 2.2547 - acc: 0.3043
Epoch 384/1000
- 0s - loss: 2.2526 - acc: 0.3043
Epoch 385/1000
- 0s - loss: 2.2516 - acc: 0.3043
Epoch 386/1000
- 0s - loss: 2.2500 - acc: 0.3043
Epoch 387/1000
- 0s - loss: 2.2487 - acc: 0.3043
Epoch 388/1000
- 0s - loss: 2.2475 - acc: 0.3043
Epoch 389/1000
- 0s - loss: 2.2459 - acc: 0.2609
Epoch 390/1000
- 0s - loss: 2.2444 - acc: 0.3043
Epoch 391/1000
- 0s - loss: 2.2430 - acc: 0.3043
Epoch 392/1000
- 0s - loss: 2.2417 - acc: 0.3043
Epoch 393/1000
- 0s - loss: 2.2405 - acc: 0.3043
Epoch 394/1000
- 0s - loss: 2.2391 - acc: 0.2609
Epoch 395/1000
- 0s - loss: 2.2380 - acc: 0.2174
Epoch 396/1000
- 0s - loss: 2.2363 - acc: 0.2174
Epoch 397/1000
- 0s - loss: 2.2348 - acc: 0.2609
Epoch 398/1000
- 0s - loss: 2.2336 - acc: 0.2609
Epoch 399/1000
- 0s - loss: 2.2327 - acc: 0.2609
Epoch 400/1000
- 0s - loss: 2.2315 - acc: 0.2609
Epoch 401/1000
- 0s - loss: 2.2297 - acc: 0.2174
Epoch 402/1000
- 0s - loss: 2.2285 - acc: 0.2609
Epoch 403/1000
- 0s - loss: 2.2272 - acc: 0.2174
Epoch 404/1000
- 0s - loss: 2.2260 - acc: 0.2174
Epoch 405/1000
- 0s - loss: 2.2248 - acc: 0.3043
Epoch 406/1000
- 0s - loss: 2.2233 - acc: 0.2609
Epoch 407/1000
- 0s - loss: 2.2221 - acc: 0.2609
Epoch 408/1000
- 0s - loss: 2.2213 - acc: 0.2609
Epoch 409/1000
- 0s - loss: 2.2195 - acc: 0.2609
Epoch 410/1000
- 0s - loss: 2.2185 - acc: 0.2609
Epoch 411/1000
- 0s - loss: 2.2173 - acc: 0.2609
Epoch 412/1000
- 0s - loss: 2.2157 - acc: 0.3043
Epoch 413/1000
- 0s - loss: 2.2147 - acc: 0.2609
Epoch 414/1000
- 0s - loss: 2.2135 - acc: 0.2609
Epoch 415/1000
- 0s - loss: 2.2121 - acc: 0.2609
Epoch 416/1000
- 0s - loss: 2.2110 - acc: 0.2609
Epoch 417/1000
- 0s - loss: 2.2098 - acc: 0.2609
Epoch 418/1000
- 0s - loss: 2.2081 - acc: 0.3043
Epoch 419/1000
- 0s - loss: 2.2071 - acc: 0.3043
Epoch 420/1000
- 0s - loss: 2.2057 - acc: 0.3043
Epoch 421/1000
- 0s - loss: 2.2051 - acc: 0.2609
Epoch 422/1000
- 0s - loss: 2.2040 - acc: 0.3043
Epoch 423/1000
- 0s - loss: 2.2020 - acc: 0.2609
Epoch 424/1000
- 0s - loss: 2.2011 - acc: 0.2609
Epoch 425/1000
- 0s - loss: 2.1999 - acc: 0.2609
Epoch 426/1000
- 0s - loss: 2.1985 - acc: 0.2609
Epoch 427/1000
- 0s - loss: 2.1977 - acc: 0.2609
Epoch 428/1000
- 0s - loss: 2.1958 - acc: 0.2609
Epoch 429/1000
- 0s - loss: 2.1947 - acc: 0.2609
Epoch 430/1000
- 0s - loss: 2.1935 - acc: 0.2609
Epoch 431/1000
- 0s - loss: 2.1925 - acc: 0.2609
Epoch 432/1000
- 0s - loss: 2.1909 - acc: 0.2609
Epoch 433/1000
- 0s - loss: 2.1900 - acc: 0.2609
Epoch 434/1000
- 0s - loss: 2.1887 - acc: 0.3043
Epoch 435/1000
- 0s - loss: 2.1877 - acc: 0.3043
Epoch 436/1000
- 0s - loss: 2.1862 - acc: 0.3043
Epoch 437/1000
- 0s - loss: 2.1851 - acc: 0.3043
Epoch 438/1000
- 0s - loss: 2.1836 - acc: 0.3043
Epoch 439/1000
- 0s - loss: 2.1828 - acc: 0.3043
Epoch 440/1000
- 0s - loss: 2.1810 - acc: 0.2609
Epoch 441/1000
- 0s - loss: 2.1803 - acc: 0.2609
Epoch 442/1000
- 0s - loss: 2.1789 - acc: 0.2609
Epoch 443/1000
- 0s - loss: 2.1785 - acc: 0.2609
Epoch 444/1000
- 0s - loss: 2.1768 - acc: 0.2609
Epoch 445/1000
- 0s - loss: 2.1759 - acc: 0.3043
Epoch 446/1000
- 0s - loss: 2.1752 - acc: 0.2609
Epoch 447/1000
- 0s - loss: 2.1736 - acc: 0.2609
Epoch 448/1000
- 0s - loss: 2.1731 - acc: 0.2174
Epoch 449/1000
- 0s - loss: 2.1717 - acc: 0.2174
Epoch 450/1000
- 0s - loss: 2.1705 - acc: 0.2609
Epoch 451/1000
- 0s - loss: 2.1692 - acc: 0.2609
Epoch 452/1000
- 0s - loss: 2.1675 - acc: 0.2609
Epoch 453/1000
- 0s - loss: 2.1667 - acc: 0.2609
Epoch 454/1000
- 0s - loss: 2.1654 - acc: 0.2609
Epoch 455/1000
- 0s - loss: 2.1646 - acc: 0.2609
Epoch 456/1000
- 0s - loss: 2.1631 - acc: 0.3478
Epoch 457/1000
- 0s - loss: 2.1623 - acc: 0.3478
Epoch 458/1000
- 0s - loss: 2.1607 - acc: 0.3478
Epoch 459/1000
- 0s - loss: 2.1596 - acc: 0.3913
Epoch 460/1000
- 0s - loss: 2.1586 - acc: 0.3913
Epoch 461/1000
- 0s - loss: 2.1578 - acc: 0.3478
Epoch 462/1000
- 0s - loss: 2.1565 - acc: 0.3478
Epoch 463/1000
- 0s - loss: 2.1553 - acc: 0.3478
Epoch 464/1000
- 0s - loss: 2.1543 - acc: 0.3478
Epoch 465/1000
- 0s - loss: 2.1524 - acc: 0.4348
Epoch 466/1000
- 0s - loss: 2.1519 - acc: 0.4348
Epoch 467/1000
- 0s - loss: 2.1502 - acc: 0.3478
Epoch 468/1000
- 0s - loss: 2.1501 - acc: 0.3913
Epoch 469/1000
- 0s - loss: 2.1484 - acc: 0.3913
Epoch 470/1000
- 0s - loss: 2.1477 - acc: 0.3478
Epoch 471/1000
- 0s - loss: 2.1462 - acc: 0.3478
Epoch 472/1000
- 0s - loss: 2.1453 - acc: 0.3478
Epoch 473/1000
- 0s - loss: 2.1445 - acc: 0.4348
Epoch 474/1000
- 0s - loss: 2.1430 - acc: 0.4783
Epoch 475/1000
- 0s - loss: 2.1421 - acc: 0.4348
Epoch 476/1000
- 0s - loss: 2.1407 - acc: 0.4348
Epoch 477/1000
- 0s - loss: 2.1401 - acc: 0.4348
Epoch 478/1000
- 0s - loss: 2.1380 - acc: 0.3913
Epoch 479/1000
- 0s - loss: 2.1372 - acc: 0.3913
Epoch 480/1000
- 0s - loss: 2.1370 - acc: 0.3913
Epoch 481/1000
- 0s - loss: 2.1355 - acc: 0.3913
Epoch 482/1000
*** WARNING: skipped 1685 bytes of output ***
Epoch 516/1000
- 0s - loss: 2.0988 - acc: 0.4348
Epoch 517/1000
- 0s - loss: 2.0985 - acc: 0.3913
Epoch 518/1000
- 0s - loss: 2.0971 - acc: 0.3913
Epoch 519/1000
- 0s - loss: 2.0963 - acc: 0.3913
Epoch 520/1000
- 0s - loss: 2.0953 - acc: 0.3913
Epoch 521/1000
- 0s - loss: 2.0939 - acc: 0.4348
Epoch 522/1000
- 0s - loss: 2.0928 - acc: 0.4348
Epoch 523/1000
- 0s - loss: 2.0920 - acc: 0.4348
Epoch 524/1000
- 0s - loss: 2.0911 - acc: 0.4348
Epoch 525/1000
- 0s - loss: 2.0904 - acc: 0.4348
Epoch 526/1000
- 0s - loss: 2.0888 - acc: 0.4348
Epoch 527/1000
- 0s - loss: 2.0883 - acc: 0.4348
Epoch 528/1000
- 0s - loss: 2.0867 - acc: 0.3913
Epoch 529/1000
- 0s - loss: 2.0861 - acc: 0.3913
Epoch 530/1000
- 0s - loss: 2.0850 - acc: 0.3913
Epoch 531/1000
- 0s - loss: 2.0842 - acc: 0.3913
Epoch 532/1000
- 0s - loss: 2.0826 - acc: 0.4348
Epoch 533/1000
- 0s - loss: 2.0820 - acc: 0.3913
Epoch 534/1000
- 0s - loss: 2.0820 - acc: 0.4348
Epoch 535/1000
- 0s - loss: 2.0803 - acc: 0.4348
Epoch 536/1000
- 0s - loss: 2.0798 - acc: 0.4348
Epoch 537/1000
- 0s - loss: 2.0786 - acc: 0.4348
Epoch 538/1000
- 0s - loss: 2.0782 - acc: 0.4348
Epoch 539/1000
- 0s - loss: 2.0760 - acc: 0.4348
Epoch 540/1000
- 0s - loss: 2.0762 - acc: 0.4348
Epoch 541/1000
- 0s - loss: 2.0743 - acc: 0.4348
Epoch 542/1000
- 0s - loss: 2.0733 - acc: 0.4348
Epoch 543/1000
- 0s - loss: 2.0724 - acc: 0.4348
Epoch 544/1000
- 0s - loss: 2.0718 - acc: 0.4348
Epoch 545/1000
- 0s - loss: 2.0704 - acc: 0.3913
Epoch 546/1000
- 0s - loss: 2.0704 - acc: 0.3913
Epoch 547/1000
- 0s - loss: 2.0698 - acc: 0.3913
Epoch 548/1000
- 0s - loss: 2.0680 - acc: 0.4783
Epoch 549/1000
- 0s - loss: 2.0675 - acc: 0.4348
Epoch 550/1000
- 0s - loss: 2.0662 - acc: 0.4348
Epoch 551/1000
- 0s - loss: 2.0659 - acc: 0.4348
Epoch 552/1000
- 0s - loss: 2.0641 - acc: 0.4348
Epoch 553/1000
- 0s - loss: 2.0636 - acc: 0.4348
Epoch 554/1000
- 0s - loss: 2.0625 - acc: 0.4348
Epoch 555/1000
- 0s - loss: 2.0613 - acc: 0.4348
Epoch 556/1000
- 0s - loss: 2.0601 - acc: 0.4348
Epoch 557/1000
- 0s - loss: 2.0599 - acc: 0.3913
Epoch 558/1000
- 0s - loss: 2.0581 - acc: 0.3913
Epoch 559/1000
- 0s - loss: 2.0576 - acc: 0.4348
Epoch 560/1000
- 0s - loss: 2.0574 - acc: 0.4783
Epoch 561/1000
- 0s - loss: 2.0553 - acc: 0.4783
Epoch 562/1000
- 0s - loss: 2.0550 - acc: 0.4348
Epoch 563/1000
- 0s - loss: 2.0542 - acc: 0.4348
Epoch 564/1000
- 0s - loss: 2.0529 - acc: 0.4348
Epoch 565/1000
- 0s - loss: 2.0527 - acc: 0.3913
Epoch 566/1000
- 0s - loss: 2.0513 - acc: 0.4348
Epoch 567/1000
- 0s - loss: 2.0504 - acc: 0.3913
Epoch 568/1000
- 0s - loss: 2.0494 - acc: 0.4348
Epoch 569/1000
- 0s - loss: 2.0483 - acc: 0.4783
Epoch 570/1000
- 0s - loss: 2.0475 - acc: 0.4348
Epoch 571/1000
- 0s - loss: 2.0472 - acc: 0.3478
Epoch 572/1000
- 0s - loss: 2.0463 - acc: 0.3478
Epoch 573/1000
- 0s - loss: 2.0450 - acc: 0.3478
Epoch 574/1000
- 0s - loss: 2.0442 - acc: 0.3913
Epoch 575/1000
- 0s - loss: 2.0433 - acc: 0.3913
Epoch 576/1000
- 0s - loss: 2.0427 - acc: 0.4348
Epoch 577/1000
- 0s - loss: 2.0418 - acc: 0.4348
Epoch 578/1000
- 0s - loss: 2.0407 - acc: 0.3913
Epoch 579/1000
- 0s - loss: 2.0396 - acc: 0.4783
Epoch 580/1000
- 0s - loss: 2.0393 - acc: 0.4348
Epoch 581/1000
- 0s - loss: 2.0381 - acc: 0.4348
Epoch 582/1000
- 0s - loss: 2.0374 - acc: 0.4348
Epoch 583/1000
- 0s - loss: 2.0364 - acc: 0.4348
Epoch 584/1000
- 0s - loss: 2.0354 - acc: 0.4348
Epoch 585/1000
- 0s - loss: 2.0346 - acc: 0.4348
Epoch 586/1000
- 0s - loss: 2.0340 - acc: 0.4348
Epoch 587/1000
- 0s - loss: 2.0325 - acc: 0.4348
Epoch 588/1000
- 0s - loss: 2.0318 - acc: 0.3913
Epoch 589/1000
- 0s - loss: 2.0309 - acc: 0.3913
Epoch 590/1000
- 0s - loss: 2.0308 - acc: 0.4783
Epoch 591/1000
- 0s - loss: 2.0297 - acc: 0.4783
Epoch 592/1000
- 0s - loss: 2.0284 - acc: 0.4783
Epoch 593/1000
- 0s - loss: 2.0277 - acc: 0.4783
Epoch 594/1000
- 0s - loss: 2.0268 - acc: 0.4783
Epoch 595/1000
- 0s - loss: 2.0259 - acc: 0.4783
Epoch 596/1000
- 0s - loss: 2.0249 - acc: 0.4783
Epoch 597/1000
- 0s - loss: 2.0241 - acc: 0.4783
Epoch 598/1000
- 0s - loss: 2.0228 - acc: 0.4783
Epoch 599/1000
- 0s - loss: 2.0230 - acc: 0.4783
Epoch 600/1000
- 0s - loss: 2.0211 - acc: 0.4783
Epoch 601/1000
- 0s - loss: 2.0207 - acc: 0.4783
Epoch 602/1000
- 0s - loss: 2.0196 - acc: 0.4783
Epoch 603/1000
- 0s - loss: 2.0189 - acc: 0.4348
Epoch 604/1000
- 0s - loss: 2.0177 - acc: 0.4783
Epoch 605/1000
- 0s - loss: 2.0167 - acc: 0.4348
Epoch 606/1000
- 0s - loss: 2.0164 - acc: 0.4348
Epoch 607/1000
- 0s - loss: 2.0155 - acc: 0.4348
Epoch 608/1000
- 0s - loss: 2.0147 - acc: 0.4348
Epoch 609/1000
- 0s - loss: 2.0144 - acc: 0.4348
Epoch 610/1000
- 0s - loss: 2.0138 - acc: 0.4348
Epoch 611/1000
- 0s - loss: 2.0120 - acc: 0.4783
Epoch 612/1000
- 0s - loss: 2.0117 - acc: 0.4783
Epoch 613/1000
- 0s - loss: 2.0108 - acc: 0.4783
Epoch 614/1000
- 0s - loss: 2.0098 - acc: 0.4783
Epoch 615/1000
- 0s - loss: 2.0090 - acc: 0.4783
Epoch 616/1000
- 0s - loss: 2.0085 - acc: 0.4783
Epoch 617/1000
- 0s - loss: 2.0076 - acc: 0.4783
Epoch 618/1000
- 0s - loss: 2.0069 - acc: 0.4348
Epoch 619/1000
- 0s - loss: 2.0057 - acc: 0.4348
Epoch 620/1000
- 0s - loss: 2.0042 - acc: 0.5217
Epoch 621/1000
- 0s - loss: 2.0047 - acc: 0.4783
Epoch 622/1000
- 0s - loss: 2.0039 - acc: 0.5217
Epoch 623/1000
- 0s - loss: 2.0030 - acc: 0.5217
Epoch 624/1000
- 0s - loss: 2.0012 - acc: 0.5217
Epoch 625/1000
- 0s - loss: 2.0010 - acc: 0.5217
Epoch 626/1000
- 0s - loss: 1.9998 - acc: 0.5217
Epoch 627/1000
- 0s - loss: 1.9994 - acc: 0.4783
Epoch 628/1000
- 0s - loss: 1.9984 - acc: 0.4783
Epoch 629/1000
- 0s - loss: 1.9979 - acc: 0.4783
Epoch 630/1000
- 0s - loss: 1.9972 - acc: 0.4783
Epoch 631/1000
- 0s - loss: 1.9963 - acc: 0.4348
Epoch 632/1000
- 0s - loss: 1.9954 - acc: 0.3913
Epoch 633/1000
- 0s - loss: 1.9949 - acc: 0.3913
Epoch 634/1000
- 0s - loss: 1.9931 - acc: 0.4348
Epoch 635/1000
- 0s - loss: 1.9926 - acc: 0.5217
Epoch 636/1000
- 0s - loss: 1.9917 - acc: 0.5217
Epoch 637/1000
- 0s - loss: 1.9914 - acc: 0.5217
Epoch 638/1000
- 0s - loss: 1.9902 - acc: 0.4348
Epoch 639/1000
- 0s - loss: 1.9892 - acc: 0.4783
Epoch 640/1000
- 0s - loss: 1.9885 - acc: 0.4783
Epoch 641/1000
- 0s - loss: 1.9875 - acc: 0.4783
Epoch 642/1000
- 0s - loss: 1.9871 - acc: 0.4783
Epoch 643/1000
- 0s - loss: 1.9859 - acc: 0.4783
Epoch 644/1000
- 0s - loss: 1.9857 - acc: 0.4783
Epoch 645/1000
- 0s - loss: 1.9849 - acc: 0.4783
Epoch 646/1000
- 0s - loss: 1.9841 - acc: 0.4348
Epoch 647/1000
- 0s - loss: 1.9830 - acc: 0.4783
Epoch 648/1000
- 0s - loss: 1.9825 - acc: 0.4348
Epoch 649/1000
- 0s - loss: 1.9822 - acc: 0.4348
Epoch 650/1000
- 0s - loss: 1.9808 - acc: 0.4348
Epoch 651/1000
- 0s - loss: 1.9803 - acc: 0.4783
Epoch 652/1000
- 0s - loss: 1.9788 - acc: 0.4783
Epoch 653/1000
- 0s - loss: 1.9782 - acc: 0.4783
Epoch 654/1000
- 0s - loss: 1.9777 - acc: 0.4783
Epoch 655/1000
- 0s - loss: 1.9761 - acc: 0.4783
Epoch 656/1000
- 0s - loss: 1.9760 - acc: 0.4783
Epoch 657/1000
- 0s - loss: 1.9753 - acc: 0.4783
Epoch 658/1000
- 0s - loss: 1.9745 - acc: 0.5217
Epoch 659/1000
- 0s - loss: 1.9734 - acc: 0.5217
Epoch 660/1000
- 0s - loss: 1.9730 - acc: 0.5217
Epoch 661/1000
- 0s - loss: 1.9725 - acc: 0.5217
Epoch 662/1000
- 0s - loss: 1.9713 - acc: 0.5217
Epoch 663/1000
- 0s - loss: 1.9705 - acc: 0.5217
Epoch 664/1000
- 0s - loss: 1.9697 - acc: 0.5217
Epoch 665/1000
- 0s - loss: 1.9690 - acc: 0.5217
Epoch 666/1000
- 0s - loss: 1.9683 - acc: 0.5217
Epoch 667/1000
- 0s - loss: 1.9673 - acc: 0.5652
Epoch 668/1000
- 0s - loss: 1.9667 - acc: 0.5652
Epoch 669/1000
- 0s - loss: 1.9664 - acc: 0.5652
Epoch 670/1000
- 0s - loss: 1.9650 - acc: 0.5652
Epoch 671/1000
- 0s - loss: 1.9646 - acc: 0.6087
Epoch 672/1000
- 0s - loss: 1.9639 - acc: 0.5217
Epoch 673/1000
- 0s - loss: 1.9628 - acc: 0.4783
Epoch 674/1000
- 0s - loss: 1.9619 - acc: 0.4783
Epoch 675/1000
- 0s - loss: 1.9611 - acc: 0.4783
Epoch 676/1000
- 0s - loss: 1.9609 - acc: 0.5652
Epoch 677/1000
- 0s - loss: 1.9596 - acc: 0.5217
Epoch 678/1000
- 0s - loss: 1.9590 - acc: 0.5217
Epoch 679/1000
- 0s - loss: 1.9587 - acc: 0.5217
Epoch 680/1000
- 0s - loss: 1.9577 - acc: 0.5217
Epoch 681/1000
- 0s - loss: 1.9567 - acc: 0.4783
Epoch 682/1000
- 0s - loss: 1.9558 - acc: 0.4783
Epoch 683/1000
- 0s - loss: 1.9558 - acc: 0.4783
Epoch 684/1000
- 0s - loss: 1.9550 - acc: 0.5217
Epoch 685/1000
- 0s - loss: 1.9531 - acc: 0.5217
Epoch 686/1000
- 0s - loss: 1.9529 - acc: 0.5217
Epoch 687/1000
- 0s - loss: 1.9520 - acc: 0.5652
Epoch 688/1000
- 0s - loss: 1.9513 - acc: 0.5217
Epoch 689/1000
- 0s - loss: 1.9501 - acc: 0.5217
Epoch 690/1000
- 0s - loss: 1.9505 - acc: 0.5217
Epoch 691/1000
- 0s - loss: 1.9492 - acc: 0.5652
Epoch 692/1000
- 0s - loss: 1.9481 - acc: 0.5217
Epoch 693/1000
- 0s - loss: 1.9476 - acc: 0.5217
Epoch 694/1000
- 0s - loss: 1.9476 - acc: 0.5217
Epoch 695/1000
- 0s - loss: 1.9463 - acc: 0.5217
Epoch 696/1000
- 0s - loss: 1.9457 - acc: 0.4783
Epoch 697/1000
- 0s - loss: 1.9448 - acc: 0.4348
Epoch 698/1000
- 0s - loss: 1.9445 - acc: 0.4348
Epoch 699/1000
- 0s - loss: 1.9435 - acc: 0.4348
Epoch 700/1000
- 0s - loss: 1.9426 - acc: 0.4348
Epoch 701/1000
- 0s - loss: 1.9421 - acc: 0.4348
Epoch 702/1000
- 0s - loss: 1.9417 - acc: 0.4348
Epoch 703/1000
- 0s - loss: 1.9402 - acc: 0.4348
Epoch 704/1000
- 0s - loss: 1.9405 - acc: 0.3913
Epoch 705/1000
- 0s - loss: 1.9395 - acc: 0.4348
Epoch 706/1000
- 0s - loss: 1.9390 - acc: 0.4348
Epoch 707/1000
- 0s - loss: 1.9383 - acc: 0.4348
Epoch 708/1000
- 0s - loss: 1.9369 - acc: 0.4348
Epoch 709/1000
- 0s - loss: 1.9363 - acc: 0.3913
Epoch 710/1000
- 0s - loss: 1.9356 - acc: 0.4348
Epoch 711/1000
- 0s - loss: 1.9351 - acc: 0.3478
Epoch 712/1000
- 0s - loss: 1.9340 - acc: 0.3913
Epoch 713/1000
- 0s - loss: 1.9337 - acc: 0.3913
Epoch 714/1000
- 0s - loss: 1.9326 - acc: 0.3913
Epoch 715/1000
- 0s - loss: 1.9318 - acc: 0.3913
Epoch 716/1000
- 0s - loss: 1.9306 - acc: 0.4348
Epoch 717/1000
- 0s - loss: 1.9306 - acc: 0.5217
Epoch 718/1000
- 0s - loss: 1.9296 - acc: 0.4783
Epoch 719/1000
- 0s - loss: 1.9294 - acc: 0.5217
Epoch 720/1000
- 0s - loss: 1.9283 - acc: 0.4783
Epoch 721/1000
- 0s - loss: 1.9276 - acc: 0.4783
Epoch 722/1000
- 0s - loss: 1.9265 - acc: 0.5217
Epoch 723/1000
- 0s - loss: 1.9267 - acc: 0.5217
Epoch 724/1000
- 0s - loss: 1.9256 - acc: 0.4783
Epoch 725/1000
- 0s - loss: 1.9250 - acc: 0.4783
Epoch 726/1000
- 0s - loss: 1.9243 - acc: 0.4348
Epoch 727/1000
- 0s - loss: 1.9233 - acc: 0.4348
Epoch 728/1000
- 0s - loss: 1.9222 - acc: 0.4783
Epoch 729/1000
- 0s - loss: 1.9217 - acc: 0.4348
Epoch 730/1000
- 0s - loss: 1.9207 - acc: 0.4783
Epoch 731/1000
- 0s - loss: 1.9204 - acc: 0.4348
Epoch 732/1000
- 0s - loss: 1.9195 - acc: 0.4348
Epoch 733/1000
- 0s - loss: 1.9189 - acc: 0.5217
Epoch 734/1000
- 0s - loss: 1.9183 - acc: 0.5217
Epoch 735/1000
- 0s - loss: 1.9173 - acc: 0.6087
Epoch 736/1000
- 0s - loss: 1.9172 - acc: 0.6087
Epoch 737/1000
- 0s - loss: 1.9158 - acc: 0.6087
Epoch 738/1000
- 0s - loss: 1.9151 - acc: 0.5217
Epoch 739/1000
- 0s - loss: 1.9147 - acc: 0.5217
Epoch 740/1000
- 0s - loss: 1.9137 - acc: 0.6087
Epoch 741/1000
- 0s - loss: 1.9133 - acc: 0.4783
Epoch 742/1000
- 0s - loss: 1.9128 - acc: 0.5217
Epoch 743/1000
- 0s - loss: 1.9120 - acc: 0.6087
Epoch 744/1000
- 0s - loss: 1.9115 - acc: 0.5652
Epoch 745/1000
- 0s - loss: 1.9105 - acc: 0.5652
Epoch 746/1000
- 0s - loss: 1.9092 - acc: 0.6087
Epoch 747/1000
- 0s - loss: 1.9091 - acc: 0.5217
Epoch 748/1000
- 0s - loss: 1.9088 - acc: 0.5217
Epoch 749/1000
- 0s - loss: 1.9086 - acc: 0.5217
Epoch 750/1000
- 0s - loss: 1.9077 - acc: 0.5217
Epoch 751/1000
- 0s - loss: 1.9064 - acc: 0.4783
Epoch 752/1000
- 0s - loss: 1.9065 - acc: 0.4783
Epoch 753/1000
- 0s - loss: 1.9053 - acc: 0.4783
Epoch 754/1000
- 0s - loss: 1.9045 - acc: 0.5217
Epoch 755/1000
- 0s - loss: 1.9035 - acc: 0.4783
Epoch 756/1000
- 0s - loss: 1.9031 - acc: 0.5217
Epoch 757/1000
- 0s - loss: 1.9022 - acc: 0.4783
Epoch 758/1000
- 0s - loss: 1.9018 - acc: 0.4783
Epoch 759/1000
- 0s - loss: 1.9012 - acc: 0.4348
Epoch 760/1000
- 0s - loss: 1.9004 - acc: 0.5217
Epoch 761/1000
- 0s - loss: 1.9001 - acc: 0.4783
Epoch 762/1000
- 0s - loss: 1.8990 - acc: 0.5652
Epoch 763/1000
- 0s - loss: 1.8986 - acc: 0.5652
Epoch 764/1000
- 0s - loss: 1.8981 - acc: 0.5217
Epoch 765/1000
- 0s - loss: 1.8973 - acc: 0.5217
Epoch 766/1000
- 0s - loss: 1.8967 - acc: 0.5217
Epoch 767/1000
- 0s - loss: 1.8954 - acc: 0.5652
Epoch 768/1000
- 0s - loss: 1.8950 - acc: 0.5652
Epoch 769/1000
- 0s - loss: 1.8942 - acc: 0.5217
Epoch 770/1000
- 0s - loss: 1.8940 - acc: 0.4783
Epoch 771/1000
- 0s - loss: 1.8928 - acc: 0.4348
Epoch 772/1000
- 0s - loss: 1.8922 - acc: 0.5217
Epoch 773/1000
- 0s - loss: 1.8918 - acc: 0.4783
Epoch 774/1000
- 0s - loss: 1.8914 - acc: 0.5217
Epoch 775/1000
- 0s - loss: 1.8898 - acc: 0.5217
Epoch 776/1000
- 0s - loss: 1.8897 - acc: 0.4783
Epoch 777/1000
- 0s - loss: 1.8886 - acc: 0.4783
Epoch 778/1000
- 0s - loss: 1.8881 - acc: 0.4348
Epoch 779/1000
- 0s - loss: 1.8875 - acc: 0.4783
Epoch 780/1000
- 0s - loss: 1.8882 - acc: 0.5217
Epoch 781/1000
- 0s - loss: 1.8864 - acc: 0.4783
Epoch 782/1000
- 0s - loss: 1.8855 - acc: 0.3913
Epoch 783/1000
- 0s - loss: 1.8851 - acc: 0.4783
Epoch 784/1000
- 0s - loss: 1.8840 - acc: 0.4783
Epoch 785/1000
- 0s - loss: 1.8838 - acc: 0.3478
Epoch 786/1000
- 0s - loss: 1.8833 - acc: 0.4783
Epoch 787/1000
- 0s - loss: 1.8824 - acc: 0.4348
Epoch 788/1000
- 0s - loss: 1.8813 - acc: 0.4348
Epoch 789/1000
- 0s - loss: 1.8806 - acc: 0.4783
Epoch 790/1000
- 0s - loss: 1.8798 - acc: 0.6087
Epoch 791/1000
- 0s - loss: 1.8793 - acc: 0.5652
Epoch 792/1000
- 0s - loss: 1.8792 - acc: 0.6087
Epoch 793/1000
- 0s - loss: 1.8783 - acc: 0.5652
Epoch 794/1000
- 0s - loss: 1.8775 - acc: 0.6087
Epoch 795/1000
- 0s - loss: 1.8771 - acc: 0.6087
Epoch 796/1000
- 0s - loss: 1.8757 - acc: 0.6522
Epoch 797/1000
- 0s - loss: 1.8760 - acc: 0.5652
Epoch 798/1000
- 0s - loss: 1.8759 - acc: 0.5652
Epoch 799/1000
- 0s - loss: 1.8745 - acc: 0.6087
Epoch 800/1000
- 0s - loss: 1.8740 - acc: 0.5652
Epoch 801/1000
- 0s - loss: 1.8734 - acc: 0.5652
Epoch 802/1000
- 0s - loss: 1.8724 - acc: 0.5217
Epoch 803/1000
- 0s - loss: 1.8728 - acc: 0.5652
Epoch 804/1000
- 0s - loss: 1.8717 - acc: 0.5652
Epoch 805/1000
- 0s - loss: 1.8707 - acc: 0.5652
Epoch 806/1000
- 0s - loss: 1.8701 - acc: 0.5652
Epoch 807/1000
- 0s - loss: 1.8698 - acc: 0.5217
Epoch 808/1000
- 0s - loss: 1.8686 - acc: 0.4783
Epoch 809/1000
- 0s - loss: 1.8686 - acc: 0.4783
Epoch 810/1000
- 0s - loss: 1.8673 - acc: 0.4783
Epoch 811/1000
- 0s - loss: 1.8664 - acc: 0.4783
Epoch 812/1000
- 0s - loss: 1.8663 - acc: 0.4783
Epoch 813/1000
- 0s - loss: 1.8651 - acc: 0.5217
Epoch 814/1000
- 0s - loss: 1.8647 - acc: 0.5217
Epoch 815/1000
- 0s - loss: 1.8651 - acc: 0.5217
Epoch 816/1000
- 0s - loss: 1.8633 - acc: 0.5652
Epoch 817/1000
- 0s - loss: 1.8630 - acc: 0.5652
Epoch 818/1000
- 0s - loss: 1.8626 - acc: 0.5217
Epoch 819/1000
- 0s - loss: 1.8622 - acc: 0.5217
Epoch 820/1000
- 0s - loss: 1.8613 - acc: 0.5217
Epoch 821/1000
- 0s - loss: 1.8599 - acc: 0.5217
Epoch 822/1000
- 0s - loss: 1.8599 - acc: 0.5652
Epoch 823/1000
- 0s - loss: 1.8598 - acc: 0.5652
Epoch 824/1000
- 0s - loss: 1.8583 - acc: 0.6087
Epoch 825/1000
- 0s - loss: 1.8580 - acc: 0.5217
Epoch 826/1000
- 0s - loss: 1.8569 - acc: 0.5652
Epoch 827/1000
- 0s - loss: 1.8561 - acc: 0.5652
Epoch 828/1000
- 0s - loss: 1.8562 - acc: 0.6087
Epoch 829/1000
- 0s - loss: 1.8558 - acc: 0.5217
Epoch 830/1000
- 0s - loss: 1.8550 - acc: 0.5217
Epoch 831/1000
- 0s - loss: 1.8536 - acc: 0.5652
Epoch 832/1000
- 0s - loss: 1.8540 - acc: 0.5652
Epoch 833/1000
- 0s - loss: 1.8531 - acc: 0.6087
Epoch 834/1000
- 0s - loss: 1.8529 - acc: 0.6087
Epoch 835/1000
- 0s - loss: 1.8518 - acc: 0.5652
Epoch 836/1000
- 0s - loss: 1.8513 - acc: 0.5652
Epoch 837/1000
- 0s - loss: 1.8507 - acc: 0.5652
Epoch 838/1000
- 0s - loss: 1.8501 - acc: 0.5652
Epoch 839/1000
- 0s - loss: 1.8495 - acc: 0.5217
Epoch 840/1000
- 0s - loss: 1.8490 - acc: 0.5652
Epoch 841/1000
- 0s - loss: 1.8482 - acc: 0.5652
Epoch 842/1000
- 0s - loss: 1.8474 - acc: 0.5652
Epoch 843/1000
- 0s - loss: 1.8474 - acc: 0.5217
Epoch 844/1000
- 0s - loss: 1.8463 - acc: 0.5217
Epoch 845/1000
- 0s - loss: 1.8460 - acc: 0.5217
Epoch 846/1000
- 0s - loss: 1.8452 - acc: 0.5652
Epoch 847/1000
- 0s - loss: 1.8441 - acc: 0.5652
Epoch 848/1000
- 0s - loss: 1.8429 - acc: 0.6087
Epoch 849/1000
- 0s - loss: 1.8430 - acc: 0.6087
Epoch 850/1000
- 0s - loss: 1.8424 - acc: 0.6087
Epoch 851/1000
- 0s - loss: 1.8416 - acc: 0.6957
Epoch 852/1000
- 0s - loss: 1.8412 - acc: 0.6522
Epoch 853/1000
- 0s - loss: 1.8410 - acc: 0.6522
Epoch 854/1000
- 0s - loss: 1.8402 - acc: 0.6957
Epoch 855/1000
- 0s - loss: 1.8395 - acc: 0.6087
Epoch 856/1000
- 0s - loss: 1.8393 - acc: 0.6087
Epoch 857/1000
- 0s - loss: 1.8386 - acc: 0.6522
Epoch 858/1000
- 0s - loss: 1.8380 - acc: 0.5652
Epoch 859/1000
- 0s - loss: 1.8377 - acc: 0.5217
Epoch 860/1000
- 0s - loss: 1.8357 - acc: 0.5652
Epoch 861/1000
- 0s - loss: 1.8354 - acc: 0.6522
Epoch 862/1000
- 0s - loss: 1.8349 - acc: 0.6957
Epoch 863/1000
- 0s - loss: 1.8347 - acc: 0.6522
Epoch 864/1000
- 0s - loss: 1.8337 - acc: 0.7391
Epoch 865/1000
- 0s - loss: 1.8332 - acc: 0.6957
Epoch 866/1000
- 0s - loss: 1.8325 - acc: 0.6957
Epoch 867/1000
- 0s - loss: 1.8321 - acc: 0.6957
Epoch 868/1000
- 0s - loss: 1.8321 - acc: 0.6087
Epoch 869/1000
- 0s - loss: 1.8309 - acc: 0.6087
Epoch 870/1000
- 0s - loss: 1.8302 - acc: 0.6087
Epoch 871/1000
- 0s - loss: 1.8296 - acc: 0.6522
Epoch 872/1000
- 0s - loss: 1.8290 - acc: 0.6957
Epoch 873/1000
- 0s - loss: 1.8284 - acc: 0.6522
Epoch 874/1000
- 0s - loss: 1.8276 - acc: 0.6087
Epoch 875/1000
- 0s - loss: 1.8273 - acc: 0.6522
Epoch 876/1000
- 0s - loss: 1.8266 - acc: 0.6957
Epoch 877/1000
- 0s - loss: 1.8259 - acc: 0.6522
Epoch 878/1000
- 0s - loss: 1.8256 - acc: 0.6087
Epoch 879/1000
- 0s - loss: 1.8252 - acc: 0.6087
Epoch 880/1000
- 0s - loss: 1.8243 - acc: 0.6522
Epoch 881/1000
- 0s - loss: 1.8243 - acc: 0.6522
Epoch 882/1000
- 0s - loss: 1.8230 - acc: 0.6957
Epoch 883/1000
- 0s - loss: 1.8234 - acc: 0.6957
Epoch 884/1000
- 0s - loss: 1.8223 - acc: 0.6957
Epoch 885/1000
- 0s - loss: 1.8220 - acc: 0.6522
Epoch 886/1000
- 0s - loss: 1.8208 - acc: 0.6522
Epoch 887/1000
- 0s - loss: 1.8201 - acc: 0.6087
Epoch 888/1000
- 0s - loss: 1.8204 - acc: 0.5652
Epoch 889/1000
- 0s - loss: 1.8187 - acc: 0.6087
Epoch 890/1000
- 0s - loss: 1.8190 - acc: 0.6522
Epoch 891/1000
- 0s - loss: 1.8181 - acc: 0.6087
Epoch 892/1000
- 0s - loss: 1.8178 - acc: 0.5652
Epoch 893/1000
- 0s - loss: 1.8172 - acc: 0.5652
Epoch 894/1000
- 0s - loss: 1.8164 - acc: 0.5217
Epoch 895/1000
- 0s - loss: 1.8159 - acc: 0.5652
Epoch 896/1000
- 0s - loss: 1.8149 - acc: 0.6087
Epoch 897/1000
- 0s - loss: 1.8150 - acc: 0.6087
Epoch 898/1000
- 0s - loss: 1.8136 - acc: 0.5652
Epoch 899/1000
- 0s - loss: 1.8132 - acc: 0.6087
Epoch 900/1000
- 0s - loss: 1.8131 - acc: 0.6087
Epoch 901/1000
- 0s - loss: 1.8123 - acc: 0.6087
Epoch 902/1000
- 0s - loss: 1.8118 - acc: 0.6522
Epoch 903/1000
- 0s - loss: 1.8118 - acc: 0.6087
Epoch 904/1000
- 0s - loss: 1.8107 - acc: 0.6522
Epoch 905/1000
- 0s - loss: 1.8109 - acc: 0.6522
Epoch 906/1000
- 0s - loss: 1.8097 - acc: 0.6957
Epoch 907/1000
- 0s - loss: 1.8092 - acc: 0.6957
Epoch 908/1000
- 0s - loss: 1.8087 - acc: 0.6522
Epoch 909/1000
- 0s - loss: 1.8071 - acc: 0.6522
Epoch 910/1000
- 0s - loss: 1.8075 - acc: 0.6087
Epoch 911/1000
- 0s - loss: 1.8068 - acc: 0.5652
Epoch 912/1000
- 0s - loss: 1.8063 - acc: 0.5652
Epoch 913/1000
- 0s - loss: 1.8052 - acc: 0.5652
Epoch 914/1000
- 0s - loss: 1.8053 - acc: 0.5652
Epoch 915/1000
- 0s - loss: 1.8045 - acc: 0.5652
Epoch 916/1000
- 0s - loss: 1.8036 - acc: 0.5652
Epoch 917/1000
- 0s - loss: 1.8025 - acc: 0.5652
Epoch 918/1000
- 0s - loss: 1.8024 - acc: 0.5217
Epoch 919/1000
- 0s - loss: 1.8025 - acc: 0.4348
Epoch 920/1000
- 0s - loss: 1.8020 - acc: 0.3913
Epoch 921/1000
- 0s - loss: 1.8003 - acc: 0.4348
Epoch 922/1000
- 0s - loss: 1.8005 - acc: 0.3913
Epoch 923/1000
- 0s - loss: 1.8000 - acc: 0.3913
Epoch 924/1000
- 0s - loss: 1.7998 - acc: 0.4348
Epoch 925/1000
- 0s - loss: 1.7986 - acc: 0.5217
Epoch 926/1000
- 0s - loss: 1.7978 - acc: 0.4783
Epoch 927/1000
- 0s - loss: 1.7973 - acc: 0.5217
Epoch 928/1000
- 0s - loss: 1.7968 - acc: 0.5217
Epoch 929/1000
- 0s - loss: 1.7969 - acc: 0.4783
Epoch 930/1000
- 0s - loss: 1.7951 - acc: 0.4783
Epoch 931/1000
- 0s - loss: 1.7947 - acc: 0.4783
Epoch 932/1000
- 0s - loss: 1.7942 - acc: 0.5217
Epoch 933/1000
- 0s - loss: 1.7948 - acc: 0.5652
Epoch 934/1000
- 0s - loss: 1.7934 - acc: 0.5652
Epoch 935/1000
- 0s - loss: 1.7924 - acc: 0.5652
Epoch 936/1000
- 0s - loss: 1.7929 - acc: 0.5652
Epoch 937/1000
- 0s - loss: 1.7917 - acc: 0.6087
Epoch 938/1000
- 0s - loss: 1.7914 - acc: 0.6522
Epoch 939/1000
- 0s - loss: 1.7910 - acc: 0.6522
Epoch 940/1000
- 0s - loss: 1.7908 - acc: 0.6957
Epoch 941/1000
- 0s - loss: 1.7896 - acc: 0.6957
Epoch 942/1000
- 0s - loss: 1.7902 - acc: 0.6087
Epoch 943/1000
- 0s - loss: 1.7884 - acc: 0.6522
Epoch 944/1000
- 0s - loss: 1.7884 - acc: 0.6087
Epoch 945/1000
- 0s - loss: 1.7875 - acc: 0.6522
Epoch 946/1000
- 0s - loss: 1.7867 - acc: 0.6522
Epoch 947/1000
- 0s - loss: 1.7862 - acc: 0.6522
Epoch 948/1000
- 0s - loss: 1.7868 - acc: 0.6087
Epoch 949/1000
- 0s - loss: 1.7849 - acc: 0.6087
Epoch 950/1000
- 0s - loss: 1.7846 - acc: 0.6522
Epoch 951/1000
- 0s - loss: 1.7840 - acc: 0.5652
Epoch 952/1000
- 0s - loss: 1.7836 - acc: 0.5217
Epoch 953/1000
- 0s - loss: 1.7830 - acc: 0.4783
Epoch 954/1000
- 0s - loss: 1.7826 - acc: 0.3913
Epoch 955/1000
- 0s - loss: 1.7815 - acc: 0.4783
Epoch 956/1000
- 0s - loss: 1.7819 - acc: 0.5652
Epoch 957/1000
- 0s - loss: 1.7810 - acc: 0.6522
Epoch 958/1000
- 0s - loss: 1.7806 - acc: 0.6522
Epoch 959/1000
- 0s - loss: 1.7798 - acc: 0.6087
Epoch 960/1000
- 0s - loss: 1.7791 - acc: 0.6087
Epoch 961/1000
- 0s - loss: 1.7787 - acc: 0.6087
Epoch 962/1000
- 0s - loss: 1.7789 - acc: 0.6522
Epoch 963/1000
- 0s - loss: 1.7782 - acc: 0.5652
Epoch 964/1000
- 0s - loss: 1.7786 - acc: 0.5652
Epoch 965/1000
- 0s - loss: 1.7771 - acc: 0.5652
Epoch 966/1000
- 0s - loss: 1.7768 - acc: 0.5217
Epoch 967/1000
- 0s - loss: 1.7758 - acc: 0.4783
Epoch 968/1000
- 0s - loss: 1.7753 - acc: 0.4783
Epoch 969/1000
- 0s - loss: 1.7744 - acc: 0.5217
Epoch 970/1000
- 0s - loss: 1.7744 - acc: 0.5217
Epoch 971/1000
- 0s - loss: 1.7737 - acc: 0.4348
Epoch 972/1000
- 0s - loss: 1.7730 - acc: 0.5652
Epoch 973/1000
- 0s - loss: 1.7723 - acc: 0.6522
Epoch 974/1000
- 0s - loss: 1.7725 - acc: 0.6087
Epoch 975/1000
- 0s - loss: 1.7717 - acc: 0.6957
Epoch 976/1000
- 0s - loss: 1.7709 - acc: 0.7391
Epoch 977/1000
- 0s - loss: 1.7703 - acc: 0.6957
Epoch 978/1000
- 0s - loss: 1.7701 - acc: 0.6522
Epoch 979/1000
- 0s - loss: 1.7696 - acc: 0.5652
Epoch 980/1000
- 0s - loss: 1.7685 - acc: 0.5217
Epoch 981/1000
- 0s - loss: 1.7681 - acc: 0.6087
Epoch 982/1000
- 0s - loss: 1.7676 - acc: 0.6522
Epoch 983/1000
- 0s - loss: 1.7686 - acc: 0.7391
Epoch 984/1000
- 0s - loss: 1.7673 - acc: 0.6522
Epoch 985/1000
- 0s - loss: 1.7663 - acc: 0.6522
Epoch 986/1000
- 0s - loss: 1.7659 - acc: 0.6522
Epoch 987/1000
- 0s - loss: 1.7659 - acc: 0.6522
Epoch 988/1000
- 0s - loss: 1.7652 - acc: 0.6087
Epoch 989/1000
- 0s - loss: 1.7649 - acc: 0.6087
Epoch 990/1000
- 0s - loss: 1.7644 - acc: 0.6087
Epoch 991/1000
- 0s - loss: 1.7631 - acc: 0.6087
Epoch 992/1000
- 0s - loss: 1.7624 - acc: 0.6522
Epoch 993/1000
- 0s - loss: 1.7617 - acc: 0.6522
Epoch 994/1000
- 0s - loss: 1.7621 - acc: 0.6522
Epoch 995/1000
- 0s - loss: 1.7617 - acc: 0.6087
Epoch 996/1000
- 0s - loss: 1.7604 - acc: 0.5652
Epoch 997/1000
- 0s - loss: 1.7606 - acc: 0.6087
Epoch 998/1000
- 0s - loss: 1.7603 - acc: 0.6522
Epoch 999/1000
- 0s - loss: 1.7594 - acc: 0.6522
Epoch 1000/1000
- 0s - loss: 1.7587 - acc: 0.6522
23/23 [==============================] - 0s 1ms/step
Model Accuracy: 0.70
(['A', 'B', 'C'], '->', 'D')
(['B', 'C', 'D'], '->', 'D')
(['C', 'D', 'E'], '->', 'F')
(['D', 'E', 'F'], '->', 'G')
(['E', 'F', 'G'], '->', 'H')
(['F', 'G', 'H'], '->', 'I')
(['G', 'H', 'I'], '->', 'J')
(['H', 'I', 'J'], '->', 'K')
(['I', 'J', 'K'], '->', 'L')
(['J', 'K', 'L'], '->', 'L')
(['K', 'L', 'M'], '->', 'N')
(['L', 'M', 'N'], '->', 'O')
(['M', 'N', 'O'], '->', 'P')
(['N', 'O', 'P'], '->', 'R')
(['O', 'P', 'Q'], '->', 'R')
(['P', 'Q', 'R'], '->', 'T')
(['Q', 'R', 'S'], '->', 'T')
(['R', 'S', 'T'], '->', 'U')
(['S', 'T', 'U'], '->', 'W')
(['T', 'U', 'V'], '->', 'W')
(['U', 'V', 'W'], '->', 'Z')
(['V', 'W', 'X'], '->', 'Z')
(['W', 'X', 'Y'], '->', 'Z')
import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # reshape X to be .......[samples, time steps, features] X = numpy.reshape(dataX, (len(dataX), seq_length, 1)) X = X / float(len(alphabet)) y = np_utils.to_categorical(dataY) # Let’s define an LSTM network with 32 units and an output layer with a softmax activation function for making predictions. # a naive implementation of LSTM model = Sequential() model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2]))) # <- LSTM layer... model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=400, batch_size=1, verbose=2) scores = model.evaluate(X, y) print("Model Accuracy: %.2f%%" % (scores[1]*100)) for pattern in dataX: x = numpy.reshape(pattern, (1, len(pattern), 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print (seq_in, "->", result)
('ABC', '->', 'D')
('BCD', '->', 'E')
('CDE', '->', 'F')
('DEF', '->', 'G')
('EFG', '->', 'H')
('FGH', '->', 'I')
('GHI', '->', 'J')
('HIJ', '->', 'K')
('IJK', '->', 'L')
('JKL', '->', 'M')
('KLM', '->', 'N')
('LMN', '->', 'O')
('MNO', '->', 'P')
('NOP', '->', 'Q')
('OPQ', '->', 'R')
('PQR', '->', 'S')
('QRS', '->', 'T')
('RST', '->', 'U')
('STU', '->', 'V')
('TUV', '->', 'W')
('UVW', '->', 'X')
('VWX', '->', 'Y')
('WXY', '->', 'Z')
Epoch 1/400
- 1s - loss: 3.2700 - acc: 0.0435
Epoch 2/400
- 0s - loss: 3.2571 - acc: 0.0435
Epoch 3/400
- 0s - loss: 3.2487 - acc: 0.0435
Epoch 4/400
- 0s - loss: 3.2421 - acc: 0.0000e+00
Epoch 5/400
- 0s - loss: 3.2351 - acc: 0.0000e+00
Epoch 6/400
- 0s - loss: 3.2264 - acc: 0.0435
Epoch 7/400
- 0s - loss: 3.2183 - acc: 0.0435
Epoch 8/400
- 0s - loss: 3.2088 - acc: 0.0435
Epoch 9/400
- 0s - loss: 3.1985 - acc: 0.0435
Epoch 10/400
- 0s - loss: 3.1886 - acc: 0.0435
Epoch 11/400
- 0s - loss: 3.1747 - acc: 0.0000e+00
Epoch 12/400
- 0s - loss: 3.1634 - acc: 0.0000e+00
Epoch 13/400
- 0s - loss: 3.1470 - acc: 0.0435
Epoch 14/400
- 0s - loss: 3.1335 - acc: 0.0000e+00
Epoch 15/400
- 0s - loss: 3.1170 - acc: 0.0435
Epoch 16/400
- 0s - loss: 3.1059 - acc: 0.0435
Epoch 17/400
- 0s - loss: 3.0910 - acc: 0.0435
Epoch 18/400
- 0s - loss: 3.0745 - acc: 0.0435
Epoch 19/400
- 0s - loss: 3.0629 - acc: 0.0435
Epoch 20/400
- 0s - loss: 3.0464 - acc: 0.0435
Epoch 21/400
- 0s - loss: 3.0348 - acc: 0.0435
Epoch 22/400
- 0s - loss: 3.0188 - acc: 0.0435
Epoch 23/400
- 0s - loss: 2.9978 - acc: 0.0870
Epoch 24/400
- 0s - loss: 2.9811 - acc: 0.0870
Epoch 25/400
- 0s - loss: 2.9580 - acc: 0.1304
Epoch 26/400
- 0s - loss: 2.9354 - acc: 0.1304
Epoch 27/400
- 0s - loss: 2.9085 - acc: 0.1304
Epoch 28/400
- 0s - loss: 2.8796 - acc: 0.0870
Epoch 29/400
- 0s - loss: 2.8474 - acc: 0.0870
Epoch 30/400
- 0s - loss: 2.8132 - acc: 0.0870
Epoch 31/400
- 0s - loss: 2.7738 - acc: 0.0870
Epoch 32/400
- 0s - loss: 2.7349 - acc: 0.0870
Epoch 33/400
- 0s - loss: 2.6934 - acc: 0.0870
Epoch 34/400
- 0s - loss: 2.6521 - acc: 0.1304
Epoch 35/400
- 0s - loss: 2.6122 - acc: 0.1304
Epoch 36/400
- 0s - loss: 2.5801 - acc: 0.1304
Epoch 37/400
- 0s - loss: 2.5397 - acc: 0.1304
Epoch 38/400
- 0s - loss: 2.5086 - acc: 0.1304
Epoch 39/400
- 0s - loss: 2.4795 - acc: 0.1304
Epoch 40/400
- 0s - loss: 2.4550 - acc: 0.1304
Epoch 41/400
- 0s - loss: 2.4292 - acc: 0.1304
Epoch 42/400
- 0s - loss: 2.4077 - acc: 0.1304
Epoch 43/400
- 0s - loss: 2.3840 - acc: 0.1304
Epoch 44/400
- 0s - loss: 2.3469 - acc: 0.0870
Epoch 45/400
- 0s - loss: 2.3263 - acc: 0.1304
Epoch 46/400
- 0s - loss: 2.3055 - acc: 0.1739
Epoch 47/400
- 0s - loss: 2.2763 - acc: 0.2174
Epoch 48/400
- 0s - loss: 2.2538 - acc: 0.1739
Epoch 49/400
- 0s - loss: 2.2317 - acc: 0.2174
Epoch 50/400
- 0s - loss: 2.2094 - acc: 0.2174
Epoch 51/400
- 0s - loss: 2.1879 - acc: 0.3043
Epoch 52/400
- 0s - loss: 2.1696 - acc: 0.1739
Epoch 53/400
- 0s - loss: 2.1457 - acc: 0.2174
Epoch 54/400
- 0s - loss: 2.1258 - acc: 0.3043
Epoch 55/400
- 0s - loss: 2.1104 - acc: 0.2174
Epoch 56/400
- 0s - loss: 2.0886 - acc: 0.2609
Epoch 57/400
- 0s - loss: 2.0668 - acc: 0.3043
Epoch 58/400
- 0s - loss: 2.0455 - acc: 0.1739
Epoch 59/400
- 0s - loss: 2.0293 - acc: 0.2609
Epoch 60/400
- 0s - loss: 2.0047 - acc: 0.3043
Epoch 61/400
- 0s - loss: 1.9879 - acc: 0.2609
Epoch 62/400
- 0s - loss: 1.9686 - acc: 0.3478
Epoch 63/400
- 0s - loss: 1.9593 - acc: 0.3043
Epoch 64/400
- 0s - loss: 1.9303 - acc: 0.3043
Epoch 65/400
- 0s - loss: 1.9121 - acc: 0.3043
Epoch 66/400
- 0s - loss: 1.9020 - acc: 0.3913
Epoch 67/400
- 0s - loss: 1.8824 - acc: 0.4348
Epoch 68/400
- 0s - loss: 1.8558 - acc: 0.3913
Epoch 69/400
- 0s - loss: 1.8411 - acc: 0.3478
Epoch 70/400
- 0s - loss: 1.8279 - acc: 0.3043
Epoch 71/400
- 0s - loss: 1.8132 - acc: 0.3913
Epoch 72/400
- 0s - loss: 1.8013 - acc: 0.2174
Epoch 73/400
- 0s - loss: 1.7770 - acc: 0.4783
Epoch 74/400
- 0s - loss: 1.7667 - acc: 0.5217
Epoch 75/400
- 0s - loss: 1.7527 - acc: 0.3913
Epoch 76/400
- 0s - loss: 1.7348 - acc: 0.4348
Epoch 77/400
- 0s - loss: 1.7280 - acc: 0.4348
Epoch 78/400
- 0s - loss: 1.7210 - acc: 0.4348
Epoch 79/400
- 0s - loss: 1.7112 - acc: 0.3478
Epoch 80/400
- 0s - loss: 1.6950 - acc: 0.5217
Epoch 81/400
- 0s - loss: 1.6850 - acc: 0.4348
Epoch 82/400
- 0s - loss: 1.6693 - acc: 0.6522
Epoch 83/400
- 0s - loss: 1.6653 - acc: 0.5217
Epoch 84/400
- 0s - loss: 1.6577 - acc: 0.4783
Epoch 85/400
- 0s - loss: 1.6542 - acc: 0.4348
Epoch 86/400
- 0s - loss: 1.6342 - acc: 0.6087
Epoch 87/400
- 0s - loss: 1.6243 - acc: 0.6087
Epoch 88/400
- 0s - loss: 1.6082 - acc: 0.5652
Epoch 89/400
- 0s - loss: 1.6039 - acc: 0.5652
Epoch 90/400
- 0s - loss: 1.5904 - acc: 0.6087
Epoch 91/400
- 0s - loss: 1.5900 - acc: 0.6087
Epoch 92/400
- 0s - loss: 1.5783 - acc: 0.6522
Epoch 93/400
- 0s - loss: 1.5709 - acc: 0.5652
Epoch 94/400
- 0s - loss: 1.5657 - acc: 0.6087
Epoch 95/400
- 0s - loss: 1.5536 - acc: 0.6957
Epoch 96/400
- 0s - loss: 1.5404 - acc: 0.6087
Epoch 97/400
- 0s - loss: 1.5343 - acc: 0.6522
Epoch 98/400
- 0s - loss: 1.5350 - acc: 0.6957
Epoch 99/400
- 0s - loss: 1.5248 - acc: 0.6522
Epoch 100/400
- 0s - loss: 1.5107 - acc: 0.6522
Epoch 101/400
- 0s - loss: 1.5164 - acc: 0.6522
Epoch 102/400
- 0s - loss: 1.5022 - acc: 0.7391
Epoch 103/400
- 0s - loss: 1.4993 - acc: 0.6522
Epoch 104/400
- 0s - loss: 1.4899 - acc: 0.6957
Epoch 105/400
- 0s - loss: 1.4783 - acc: 0.6087
Epoch 106/400
- 0s - loss: 1.4775 - acc: 0.6957
Epoch 107/400
- 0s - loss: 1.4671 - acc: 0.6957
Epoch 108/400
- 0s - loss: 1.4592 - acc: 0.6522
Epoch 109/400
- 0s - loss: 1.4471 - acc: 0.7391
Epoch 110/400
- 0s - loss: 1.4504 - acc: 0.6522
Epoch 111/400
- 0s - loss: 1.4382 - acc: 0.6957
Epoch 112/400
- 0s - loss: 1.4293 - acc: 0.6957
Epoch 113/400
- 0s - loss: 1.4247 - acc: 0.6522
Epoch 114/400
- 0s - loss: 1.4213 - acc: 0.7391
Epoch 115/400
- 0s - loss: 1.4119 - acc: 0.7826
Epoch 116/400
- 0s - loss: 1.4104 - acc: 0.7391
Epoch 117/400
- 0s - loss: 1.4021 - acc: 0.7826
Epoch 118/400
- 0s - loss: 1.3972 - acc: 0.6957
Epoch 119/400
- 0s - loss: 1.3958 - acc: 0.7826
Epoch 120/400
- 0s - loss: 1.3845 - acc: 0.6957
Epoch 121/400
- 0s - loss: 1.3750 - acc: 0.7826
Epoch 122/400
- 0s - loss: 1.3739 - acc: 0.7391
Epoch 123/400
- 0s - loss: 1.3685 - acc: 0.6957
Epoch 124/400
- 0s - loss: 1.3669 - acc: 0.8261
Epoch 125/400
- 0s - loss: 1.3516 - acc: 0.7826
Epoch 126/400
- 0s - loss: 1.3492 - acc: 0.7826
Epoch 127/400
- 0s - loss: 1.3475 - acc: 0.7391
Epoch 128/400
- 0s - loss: 1.3382 - acc: 0.7826
Epoch 129/400
- 0s - loss: 1.3325 - acc: 0.7391
Epoch 130/400
- 0s - loss: 1.3248 - acc: 0.7826
Epoch 131/400
- 0s - loss: 1.3221 - acc: 0.7391
Epoch 132/400
- 0s - loss: 1.3160 - acc: 0.7391
Epoch 133/400
- 0s - loss: 1.3084 - acc: 0.8261
Epoch 134/400
- 0s - loss: 1.3038 - acc: 0.7826
Epoch 135/400
- 0s - loss: 1.2940 - acc: 0.8261
Epoch 136/400
- 0s - loss: 1.2957 - acc: 0.8261
Epoch 137/400
- 0s - loss: 1.2829 - acc: 0.8696
Epoch 138/400
- 0s - loss: 1.2848 - acc: 0.8696
Epoch 139/400
- 0s - loss: 1.2740 - acc: 0.7826
Epoch 140/400
- 0s - loss: 1.2734 - acc: 0.8696
Epoch 141/400
- 0s - loss: 1.2665 - acc: 0.8261
Epoch 142/400
- 0s - loss: 1.2666 - acc: 0.7391
Epoch 143/400
- 0s - loss: 1.2513 - acc: 0.8696
Epoch 144/400
- 0s - loss: 1.2467 - acc: 0.8261
Epoch 145/400
- 0s - loss: 1.2423 - acc: 0.7826
Epoch 146/400
- 0s - loss: 1.2397 - acc: 0.8261
Epoch 147/400
- 0s - loss: 1.2355 - acc: 0.7391
Epoch 148/400
- 0s - loss: 1.2315 - acc: 0.7826
Epoch 149/400
- 0s - loss: 1.2264 - acc: 0.8261
Epoch 150/400
- 0s - loss: 1.2203 - acc: 0.8261
Epoch 151/400
- 0s - loss: 1.2151 - acc: 0.7826
Epoch 152/400
- 0s - loss: 1.2093 - acc: 0.7826
Epoch 153/400
- 0s - loss: 1.2016 - acc: 0.7826
Epoch 154/400
- 0s - loss: 1.1963 - acc: 0.7826
Epoch 155/400
- 0s - loss: 1.1937 - acc: 0.7826
Epoch 156/400
- 0s - loss: 1.1903 - acc: 0.7826
Epoch 157/400
- 0s - loss: 1.1800 - acc: 0.8261
Epoch 158/400
- 0s - loss: 1.1790 - acc: 0.8261
Epoch 159/400
- 0s - loss: 1.1705 - acc: 0.8696
Epoch 160/400
- 0s - loss: 1.1732 - acc: 0.8261
Epoch 161/400
- 0s - loss: 1.1691 - acc: 0.7826
Epoch 162/400
- 0s - loss: 1.1570 - acc: 0.8696
Epoch 163/400
- 0s - loss: 1.1520 - acc: 0.8261
Epoch 164/400
- 0s - loss: 1.1521 - acc: 0.7826
Epoch 165/400
- 0s - loss: 1.1386 - acc: 0.8261
Epoch 166/400
- 0s - loss: 1.1367 - acc: 0.8261
Epoch 167/400
- 0s - loss: 1.1301 - acc: 0.8696
Epoch 168/400
- 0s - loss: 1.1222 - acc: 0.8696
Epoch 169/400
- 0s - loss: 1.1183 - acc: 0.8696
Epoch 170/400
- 0s - loss: 1.1136 - acc: 0.8696
Epoch 171/400
- 0s - loss: 1.1142 - acc: 0.8696
Epoch 172/400
- 0s - loss: 1.1108 - acc: 0.8696
Epoch 173/400
- 0s - loss: 1.1035 - acc: 0.8261
Epoch 174/400
- 0s - loss: 1.0969 - acc: 0.8261
Epoch 175/400
- 0s - loss: 1.0952 - acc: 0.8696
Epoch 176/400
- 0s - loss: 1.0889 - acc: 0.8261
Epoch 177/400
- 0s - loss: 1.0837 - acc: 0.8696
Epoch 178/400
- 0s - loss: 1.0764 - acc: 0.9130
Epoch 179/400
- 0s - loss: 1.0694 - acc: 0.7826
Epoch 180/400
- 0s - loss: 1.0641 - acc: 0.8261
Epoch 181/400
- 0s - loss: 1.0591 - acc: 0.8696
Epoch 182/400
- 0s - loss: 1.0514 - acc: 0.8261
Epoch 183/400
- 0s - loss: 1.0475 - acc: 0.8696
Epoch 184/400
- 0s - loss: 1.0517 - acc: 0.8696
Epoch 185/400
- 0s - loss: 1.0406 - acc: 0.8261
Epoch 186/400
- 0s - loss: 1.0358 - acc: 0.8696
Epoch 187/400
- 0s - loss: 1.0309 - acc: 0.9130
Epoch 188/400
- 0s - loss: 1.0216 - acc: 0.9130
Epoch 189/400
- 0s - loss: 1.0152 - acc: 0.8696
Epoch 190/400
- 0s - loss: 1.0104 - acc: 0.8696
Epoch 191/400
- 0s - loss: 1.0106 - acc: 0.9130
Epoch 192/400
- 0s - loss: 1.0142 - acc: 0.9130
Epoch 193/400
- 0s - loss: 0.9995 - acc: 0.8696
Epoch 194/400
- 0s - loss: 0.9959 - acc: 0.9130
Epoch 195/400
- 0s - loss: 0.9976 - acc: 0.8696
Epoch 196/400
- 0s - loss: 0.9885 - acc: 0.8696
Epoch 197/400
- 0s - loss: 0.9796 - acc: 0.9130
Epoch 198/400
- 0s - loss: 0.9734 - acc: 0.9130
Epoch 199/400
- 0s - loss: 0.9726 - acc: 0.9130
Epoch 200/400
- 0s - loss: 0.9674 - acc: 0.9130
Epoch 201/400
- 0s - loss: 0.9665 - acc: 0.9565
Epoch 202/400
- 0s - loss: 0.9579 - acc: 0.9565
Epoch 203/400
- 0s - loss: 0.9562 - acc: 0.8696
Epoch 204/400
- 0s - loss: 0.9499 - acc: 0.8696
Epoch 205/400
- 0s - loss: 0.9439 - acc: 0.9130
Epoch 206/400
- 0s - loss: 0.9406 - acc: 0.9565
Epoch 207/400
- 0s - loss: 0.9371 - acc: 0.8696
Epoch 208/400
- 0s - loss: 0.9254 - acc: 0.9130
Epoch 209/400
- 0s - loss: 0.9280 - acc: 0.8696
Epoch 210/400
- 0s - loss: 0.9228 - acc: 0.9565
Epoch 211/400
- 0s - loss: 0.9183 - acc: 0.9130
Epoch 212/400
- 0s - loss: 0.9142 - acc: 0.9565
Epoch 213/400
- 0s - loss: 0.9087 - acc: 0.9130
Epoch 214/400
- 0s - loss: 0.9067 - acc: 0.9565
Epoch 215/400
- 0s - loss: 0.8983 - acc: 0.8696
Epoch 216/400
- 0s - loss: 0.8991 - acc: 0.9130
Epoch 217/400
- 0s - loss: 0.8967 - acc: 0.8696
Epoch 218/400
- 0s - loss: 0.8863 - acc: 0.9130
Epoch 219/400
- 0s - loss: 0.8871 - acc: 0.9130
Epoch 220/400
- 0s - loss: 0.8801 - acc: 0.9130
Epoch 221/400
- 0s - loss: 0.8789 - acc: 0.9565
Epoch 222/400
- 0s - loss: 0.8688 - acc: 0.9130
Epoch 223/400
- 0s - loss: 0.8718 - acc: 0.8696
Epoch 224/400
- 0s - loss: 0.8636 - acc: 0.8696
Epoch 225/400
- 0s - loss: 0.8575 - acc: 0.9565
Epoch 226/400
- 0s - loss: 0.8586 - acc: 0.8261
Epoch 227/400
- 0s - loss: 0.8493 - acc: 0.9565
Epoch 228/400
- 0s - loss: 0.8572 - acc: 0.8261
Epoch 229/400
- 0s - loss: 0.8467 - acc: 0.9130
Epoch 230/400
- 0s - loss: 0.8415 - acc: 0.8696
Epoch 231/400
- 0s - loss: 0.8364 - acc: 0.9130
Epoch 232/400
- 0s - loss: 0.8325 - acc: 0.9565
Epoch 233/400
- 0s - loss: 0.8268 - acc: 0.9130
Epoch 234/400
- 0s - loss: 0.8224 - acc: 0.9565
Epoch 235/400
- 0s - loss: 0.8160 - acc: 0.9565
Epoch 236/400
- 0s - loss: 0.8142 - acc: 0.9565
Epoch 237/400
- 0s - loss: 0.8138 - acc: 0.9130
Epoch 238/400
- 0s - loss: 0.8108 - acc: 0.9130
Epoch 239/400
- 0s - loss: 0.8038 - acc: 0.9565
Epoch 240/400
- 0s - loss: 0.7985 - acc: 0.9565
Epoch 241/400
- 0s - loss: 0.7971 - acc: 0.9565
Epoch 242/400
- 0s - loss: 0.7888 - acc: 0.9130
Epoch 243/400
- 0s - loss: 0.7871 - acc: 0.9130
Epoch 244/400
- 0s - loss: 0.7815 - acc: 0.9130
Epoch 245/400
- 0s - loss: 0.7786 - acc: 0.8696
Epoch 246/400
- 0s - loss: 0.7797 - acc: 0.9565
Epoch 247/400
- 0s - loss: 0.7680 - acc: 0.9565
Epoch 248/400
- 0s - loss: 0.7774 - acc: 0.9130
Epoch 249/400
- 0s - loss: 0.7747 - acc: 0.9565
Epoch 250/400
- 0s - loss: 0.7618 - acc: 0.9565
Epoch 251/400
- 0s - loss: 0.7521 - acc: 0.9565
Epoch 252/400
- 0s - loss: 0.7583 - acc: 0.9565
Epoch 253/400
- 0s - loss: 0.7483 - acc: 0.9565
Epoch 254/400
- 0s - loss: 0.7431 - acc: 0.9565
Epoch 255/400
- 0s - loss: 0.7441 - acc: 0.9565
Epoch 256/400
- 0s - loss: 0.7441 - acc: 0.9565
Epoch 257/400
- 0s - loss: 0.7327 - acc: 0.9130
Epoch 258/400
- 0s - loss: 0.7317 - acc: 0.9565
Epoch 259/400
- 0s - loss: 0.7294 - acc: 1.0000
Epoch 260/400
- 0s - loss: 0.7250 - acc: 0.9565
Epoch 261/400
- 0s - loss: 0.7238 - acc: 0.9565
Epoch 262/400
- 0s - loss: 0.7167 - acc: 0.9565
Epoch 263/400
- 0s - loss: 0.7123 - acc: 0.9565
Epoch 264/400
- 0s - loss: 0.7117 - acc: 0.9565
Epoch 265/400
- 0s - loss: 0.7076 - acc: 0.9565
Epoch 266/400
- 0s - loss: 0.7069 - acc: 0.9565
Epoch 267/400
- 0s - loss: 0.6952 - acc: 0.9565
Epoch 268/400
- 0s - loss: 0.6963 - acc: 1.0000
Epoch 269/400
- 0s - loss: 0.7027 - acc: 0.9565
Epoch 270/400
- 0s - loss: 0.6940 - acc: 0.9565
Epoch 271/400
- 0s - loss: 0.6958 - acc: 0.9565
Epoch 272/400
- 0s - loss: 0.6858 - acc: 0.9565
Epoch 273/400
- 0s - loss: 0.6802 - acc: 0.9565
Epoch 274/400
- 0s - loss: 0.6743 - acc: 0.9130
Epoch 275/400
- 0s - loss: 0.6768 - acc: 0.9565
Epoch 276/400
- 0s - loss: 0.6646 - acc: 0.9565
Epoch 277/400
- 0s - loss: 0.6719 - acc: 0.9565
Epoch 278/400
- 0s - loss: 0.6626 - acc: 1.0000
Epoch 279/400
- 0s - loss: 0.6562 - acc: 1.0000
Epoch 280/400
- 0s - loss: 0.6583 - acc: 0.9565
Epoch 281/400
- 0s - loss: 0.6497 - acc: 0.9565
Epoch 282/400
- 0s - loss: 0.6453 - acc: 0.9565
Epoch 283/400
- 0s - loss: 0.6444 - acc: 0.9565
Epoch 284/400
- 0s - loss: 0.6446 - acc: 0.9565
Epoch 285/400
- 0s - loss: 0.6357 - acc: 0.9130
Epoch 286/400
- 0s - loss: 0.6336 - acc: 0.9565
Epoch 287/400
- 0s - loss: 0.6308 - acc: 1.0000
Epoch 288/400
- 0s - loss: 0.6266 - acc: 1.0000
Epoch 289/400
- 0s - loss: 0.6326 - acc: 0.9565
Epoch 290/400
- 0s - loss: 0.6296 - acc: 1.0000
Epoch 291/400
- 0s - loss: 0.6194 - acc: 0.9565
Epoch 292/400
- 0s - loss: 0.6223 - acc: 1.0000
Epoch 293/400
- 0s - loss: 0.6140 - acc: 0.9565
Epoch 294/400
- 0s - loss: 0.6106 - acc: 0.9565
Epoch 295/400
- 0s - loss: 0.6033 - acc: 0.9565
Epoch 296/400
- 0s - loss: 0.6008 - acc: 0.9565
Epoch 297/400
- 0s - loss: 0.6024 - acc: 0.9565
Epoch 298/400
- 0s - loss: 0.5991 - acc: 0.9565
Epoch 299/400
- 0s - loss: 0.5921 - acc: 0.9565
Epoch 300/400
- 0s - loss: 0.5929 - acc: 0.9565
Epoch 301/400
- 0s - loss: 0.5957 - acc: 1.0000
Epoch 302/400
- 0s - loss: 0.5845 - acc: 0.9565
Epoch 303/400
- 0s - loss: 0.5856 - acc: 0.9565
Epoch 304/400
- 0s - loss: 0.5790 - acc: 1.0000
Epoch 305/400
- 0s - loss: 0.5757 - acc: 0.9565
Epoch 306/400
- 0s - loss: 0.5758 - acc: 1.0000
Epoch 307/400
- 0s - loss: 0.5734 - acc: 1.0000
Epoch 308/400
- 0s - loss: 0.5695 - acc: 0.9565
Epoch 309/400
- 0s - loss: 0.5619 - acc: 0.9565
Epoch 310/400
- 0s - loss: 0.5639 - acc: 0.9565
Epoch 311/400
- 0s - loss: 0.5621 - acc: 1.0000
Epoch 312/400
- 0s - loss: 0.5492 - acc: 1.0000
Epoch 313/400
- 0s - loss: 0.5541 - acc: 0.9565
Epoch 314/400
- 0s - loss: 0.5514 - acc: 0.9565
Epoch 315/400
- 0s - loss: 0.5455 - acc: 0.9565
Epoch 316/400
- 0s - loss: 0.5474 - acc: 0.9565
Epoch 317/400
- 0s - loss: 0.5455 - acc: 0.9565
Epoch 318/400
- 0s - loss: 0.5395 - acc: 0.9565
Epoch 319/400
- 0s - loss: 0.5363 - acc: 1.0000
Epoch 320/400
- 0s - loss: 0.5324 - acc: 1.0000
Epoch 321/400
- 0s - loss: 0.5350 - acc: 1.0000
Epoch 322/400
- 0s - loss: 0.5297 - acc: 1.0000
Epoch 323/400
- 0s - loss: 0.5286 - acc: 0.9565
Epoch 324/400
- 0s - loss: 0.5233 - acc: 0.9565
Epoch 325/400
- 0s - loss: 0.5220 - acc: 1.0000
Epoch 326/400
- 0s - loss: 0.5171 - acc: 1.0000
Epoch 327/400
- 0s - loss: 0.5108 - acc: 0.9565
Epoch 328/400
- 0s - loss: 0.5162 - acc: 0.9565
Epoch 329/400
- 0s - loss: 0.5093 - acc: 0.9565
Epoch 330/400
- 0s - loss: 0.5037 - acc: 0.9565
Epoch 331/400
- 0s - loss: 0.5028 - acc: 1.0000
Epoch 332/400
- 0s - loss: 0.4975 - acc: 1.0000
Epoch 333/400
- 0s - loss: 0.5036 - acc: 1.0000
Epoch 334/400
- 0s - loss: 0.4997 - acc: 0.9565
Epoch 335/400
- 0s - loss: 0.4905 - acc: 1.0000
Epoch 336/400
- 0s - loss: 0.4904 - acc: 0.9565
Epoch 337/400
- 0s - loss: 0.4901 - acc: 0.9565
Epoch 338/400
- 0s - loss: 0.4896 - acc: 0.9565
Epoch 339/400
- 0s - loss: 0.4858 - acc: 1.0000
Epoch 340/400
- 0s - loss: 0.4835 - acc: 0.9565
Epoch 341/400
- 0s - loss: 0.4769 - acc: 0.9565
Epoch 342/400
- 0s - loss: 0.4696 - acc: 1.0000
Epoch 343/400
- 0s - loss: 0.4733 - acc: 0.9565
Epoch 344/400
- 0s - loss: 0.4685 - acc: 1.0000
Epoch 345/400
- 0s - loss: 0.4689 - acc: 1.0000
Epoch 346/400
- 0s - loss: 0.4637 - acc: 1.0000
Epoch 347/400
- 0s - loss: 0.4647 - acc: 0.9565
Epoch 348/400
- 0s - loss: 0.4635 - acc: 1.0000
Epoch 349/400
- 0s - loss: 0.4734 - acc: 0.9565
Epoch 350/400
- 0s - loss: 0.4602 - acc: 1.0000
Epoch 351/400
- 0s - loss: 0.4538 - acc: 0.9565
Epoch 352/400
- 0s - loss: 0.4492 - acc: 1.0000
Epoch 353/400
- 0s - loss: 0.4602 - acc: 1.0000
Epoch 354/400
- 0s - loss: 0.4488 - acc: 0.9565
Epoch 355/400
- 0s - loss: 0.4531 - acc: 0.9565
Epoch 356/400
- 0s - loss: 0.4456 - acc: 0.9565
Epoch 357/400
- 0s - loss: 0.4390 - acc: 0.9565
Epoch 358/400
- 0s - loss: 0.4345 - acc: 1.0000
Epoch 359/400
- 0s - loss: 0.4323 - acc: 1.0000
Epoch 360/400
- 0s - loss: 0.4319 - acc: 1.0000
Epoch 361/400
- 0s - loss: 0.4265 - acc: 1.0000
Epoch 362/400
- 0s - loss: 0.4321 - acc: 1.0000
Epoch 363/400
- 0s - loss: 0.4188 - acc: 1.0000
Epoch 364/400
- 0s - loss: 0.4216 - acc: 1.0000
Epoch 365/400
- 0s - loss: 0.4186 - acc: 1.0000
Epoch 366/400
- 0s - loss: 0.4185 - acc: 0.9565
Epoch 367/400
- 0s - loss: 0.4188 - acc: 1.0000
Epoch 368/400
- 0s - loss: 0.4101 - acc: 1.0000
Epoch 369/400
- 0s - loss: 0.4110 - acc: 0.9565
Epoch 370/400
- 0s - loss: 0.4090 - acc: 1.0000
Epoch 371/400
- 0s - loss: 0.4106 - acc: 1.0000
Epoch 372/400
- 0s - loss: 0.4070 - acc: 0.9565
Epoch 373/400
- 0s - loss: 0.4003 - acc: 1.0000
Epoch 374/400
- 0s - loss: 0.4008 - acc: 1.0000
Epoch 375/400
- 0s - loss: 0.4029 - acc: 0.9565
Epoch 376/400
- 0s - loss: 0.3933 - acc: 0.9565
Epoch 377/400
- 0s - loss: 0.3899 - acc: 1.0000
Epoch 378/400
- 0s - loss: 0.3917 - acc: 1.0000
Epoch 379/400
- 0s - loss: 0.3895 - acc: 1.0000
Epoch 380/400
- 0s - loss: 0.3878 - acc: 0.9565
Epoch 381/400
- 0s - loss: 0.3828 - acc: 1.0000
Epoch 382/400
- 0s - loss: 0.3869 - acc: 0.9565
Epoch 383/400
- 0s - loss: 0.3790 - acc: 0.9565
Epoch 384/400
- 0s - loss: 0.3786 - acc: 1.0000
Epoch 385/400
- 0s - loss: 0.3750 - acc: 1.0000
Epoch 386/400
- 0s - loss: 0.3719 - acc: 1.0000
Epoch 387/400
- 0s - loss: 0.3727 - acc: 1.0000
Epoch 388/400
- 0s - loss: 0.3758 - acc: 1.0000
Epoch 389/400
- 0s - loss: 0.3808 - acc: 1.0000
Epoch 390/400
- 0s - loss: 0.3746 - acc: 1.0000
Epoch 391/400
- 0s - loss: 0.3701 - acc: 1.0000
Epoch 392/400
- 0s - loss: 0.3620 - acc: 0.9565
Epoch 393/400
- 0s - loss: 0.3633 - acc: 1.0000
Epoch 394/400
- 0s - loss: 0.3570 - acc: 1.0000
Epoch 395/400
- 0s - loss: 0.3582 - acc: 0.9565
Epoch 396/400
- 0s - loss: 0.3537 - acc: 1.0000
Epoch 397/400
- 0s - loss: 0.3527 - acc: 1.0000
Epoch 398/400
- 0s - loss: 0.3507 - acc: 1.0000
Epoch 399/400
- 0s - loss: 0.3470 - acc: 1.0000
Epoch 400/400
- 0s - loss: 0.3487 - acc: 0.9565
23/23 [==============================] - 0s 5ms/step
Model Accuracy: 100.00%
(['A', 'B', 'C'], '->', 'D')
(['B', 'C', 'D'], '->', 'E')
(['C', 'D', 'E'], '->', 'F')
(['D', 'E', 'F'], '->', 'G')
(['E', 'F', 'G'], '->', 'H')
(['F', 'G', 'H'], '->', 'I')
(['G', 'H', 'I'], '->', 'J')
(['H', 'I', 'J'], '->', 'K')
(['I', 'J', 'K'], '->', 'L')
(['J', 'K', 'L'], '->', 'M')
(['K', 'L', 'M'], '->', 'N')
(['L', 'M', 'N'], '->', 'O')
(['M', 'N', 'O'], '->', 'P')
(['N', 'O', 'P'], '->', 'Q')
(['O', 'P', 'Q'], '->', 'R')
(['P', 'Q', 'R'], '->', 'S')
(['Q', 'R', 'S'], '->', 'T')
(['R', 'S', 'T'], '->', 'U')
(['S', 'T', 'U'], '->', 'V')
(['T', 'U', 'V'], '->', 'W')
(['U', 'V', 'W'], '->', 'X')
(['V', 'W', 'X'], '->', 'Y')
(['W', 'X', 'Y'], '->', 'Z')
import sys sys.exit(0) #just to keep from accidentally running this code (that is already in 061_DLByABr_05b-LSTM-Language) HERE '''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np import random import sys path = "../data/nietzsche.txt" text = open(path).read().lower() print('corpus length:', len(text)) chars = sorted(list(set(text))) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 40 step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(128, input_shape=(maxlen, len(chars)))) model.add(Dense(len(chars))) model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) # train the model, output generated text after each iteration for iteration in range(1, 60): print() print('-' * 50) print('Iteration', iteration) model.fit(X, y, batch_size=128, epochs=1) start_index = random.randint(0, len(text) - maxlen - 1) for diversity in [0.2, 0.5, 1.0, 1.2]: print() print('----- diversity:', diversity) generated = '' sentence = text[start_index: start_index + maxlen] generated += sentence print('----- Generating with seed: "' + sentence + '"') sys.stdout.write(generated) for i in range(400): x = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sentence): x[0, t, char_indices[char]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char sys.stdout.write(next_char) sys.stdout.flush() print()
'''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' from __future__ import print_function from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np import random import sys path = get_file('nietzsche.txt', origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt') text = open(path).read().lower() print('corpus length:', len(text)) chars = sorted(list(set(text))) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 40 step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1
Downloading data from https://s3.amazonaws.com/text-datasets/nietzsche.txt
16384/600901 [..............................] - ETA: 0s
24576/600901 [>.............................] - ETA: 1s
57344/600901 [=>............................] - ETA: 1s
122880/600901 [=====>........................] - ETA: 0s
303104/600901 [==============>...............] - ETA: 0s
606208/600901 [==============================] - 0s 0us/step
614400/600901 [==============================] - 0s 0us/step
corpus length: 600901
total chars: 59
nb sequences: 200287
Vectorization...
X
Out[14]:
array([[[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]],
[[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]],
[[False, False, False, ..., False, False, False],
[ True, False, False, ..., False, False, False],
[ True, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]],
...,
[[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, True, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]],
[[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]],
[[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]]])
SDS-2.x, Scalable Data Engineering Science
This is a 2019 augmentation and update of Adam Breindel's initial notebooks.
Please feel free to refer to basic concepts here:
Last refresh: Never