import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # reshape X to be [samples, time steps, features] X = numpy.reshape(dataX, (len(dataX), seq_length, 1)) X = X / float(len(alphabet)) y = np_utils.to_categorical(dataY) model = Sequential() model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2]))) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=400, batch_size=1, verbose=2) scores = model.evaluate(X, y) print("Model Accuracy: %.2f%%" % (scores[1]*100)) for pattern in ['WBC', 'WKL', 'WTU', 'DWF', 'MWO', 'VWW', 'GHW', 'JKW', 'PQW']: pattern = [char_to_int[c] for c in pattern] x = numpy.reshape(pattern, (1, len(pattern), 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print (seq_in, "->", result)
Using TensorFlow backend.
('ABC', '->', 'D')
('BCD', '->', 'E')
('CDE', '->', 'F')
('DEF', '->', 'G')
('EFG', '->', 'H')
('FGH', '->', 'I')
('GHI', '->', 'J')
('HIJ', '->', 'K')
('IJK', '->', 'L')
('JKL', '->', 'M')
('KLM', '->', 'N')
('LMN', '->', 'O')
('MNO', '->', 'P')
('NOP', '->', 'Q')
('OPQ', '->', 'R')
('PQR', '->', 'S')
('QRS', '->', 'T')
('RST', '->', 'U')
('STU', '->', 'V')
('TUV', '->', 'W')
('UVW', '->', 'X')
('VWX', '->', 'Y')
('WXY', '->', 'Z')
WARNING:tensorflow:From /databricks/python/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /databricks/python/local/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/400
- 1s - loss: 3.2690 - acc: 0.0435
Epoch 2/400
- 0s - loss: 3.2556 - acc: 0.0435
Epoch 3/400
- 0s - loss: 3.2484 - acc: 0.0435
Epoch 4/400
- 0s - loss: 3.2408 - acc: 0.0435
Epoch 5/400
- 0s - loss: 3.2343 - acc: 0.0435
Epoch 6/400
- 0s - loss: 3.2264 - acc: 0.0000e+00
Epoch 7/400
- 0s - loss: 3.2199 - acc: 0.0435
Epoch 8/400
- 0s - loss: 3.2111 - acc: 0.0435
Epoch 9/400
- 0s - loss: 3.2011 - acc: 0.0435
Epoch 10/400
- 0s - loss: 3.1920 - acc: 0.0435
Epoch 11/400
- 0s - loss: 3.1799 - acc: 0.0435
Epoch 12/400
- 0s - loss: 3.1682 - acc: 0.0435
Epoch 13/400
- 0s - loss: 3.1547 - acc: 0.0435
Epoch 14/400
- 0s - loss: 3.1399 - acc: 0.0435
Epoch 15/400
- 0s - loss: 3.1221 - acc: 0.0435
Epoch 16/400
- 0s - loss: 3.1061 - acc: 0.0000e+00
Epoch 17/400
- 0s - loss: 3.0915 - acc: 0.0435
Epoch 18/400
- 0s - loss: 3.0754 - acc: 0.0435
Epoch 19/400
- 0s - loss: 3.0608 - acc: 0.0435
Epoch 20/400
- 0s - loss: 3.0425 - acc: 0.0000e+00
Epoch 21/400
- 0s - loss: 3.0284 - acc: 0.0435
Epoch 22/400
- 0s - loss: 3.0114 - acc: 0.0435
Epoch 23/400
- 0s - loss: 2.9918 - acc: 0.0435
Epoch 24/400
- 0s - loss: 2.9741 - acc: 0.0435
Epoch 25/400
- 0s - loss: 2.9550 - acc: 0.0870
Epoch 26/400
- 0s - loss: 2.9347 - acc: 0.0870
Epoch 27/400
- 0s - loss: 2.9117 - acc: 0.0435
Epoch 28/400
- 0s - loss: 2.8860 - acc: 0.0870
Epoch 29/400
- 0s - loss: 2.8619 - acc: 0.0870
Epoch 30/400
- 0s - loss: 2.8401 - acc: 0.0435
Epoch 31/400
- 0s - loss: 2.8106 - acc: 0.0435
Epoch 32/400
- 0s - loss: 2.7845 - acc: 0.0870
Epoch 33/400
- 0s - loss: 2.7582 - acc: 0.0870
Epoch 34/400
- 0s - loss: 2.7321 - acc: 0.0435
Epoch 35/400
- 0s - loss: 2.7022 - acc: 0.0435
Epoch 36/400
- 0s - loss: 2.6739 - acc: 0.0435
Epoch 37/400
- 0s - loss: 2.6530 - acc: 0.0870
Epoch 38/400
- 0s - loss: 2.6206 - acc: 0.0435
Epoch 39/400
- 0s - loss: 2.5994 - acc: 0.0435
Epoch 40/400
- 0s - loss: 2.5723 - acc: 0.0435
Epoch 41/400
- 0s - loss: 2.5488 - acc: 0.0870
Epoch 42/400
- 0s - loss: 2.5248 - acc: 0.0435
Epoch 43/400
- 0s - loss: 2.4974 - acc: 0.0870
Epoch 44/400
- 0s - loss: 2.4767 - acc: 0.0435
Epoch 45/400
- 0s - loss: 2.4526 - acc: 0.0870
Epoch 46/400
- 0s - loss: 2.4275 - acc: 0.0870
Epoch 47/400
- 0s - loss: 2.4043 - acc: 0.1304
Epoch 48/400
- 0s - loss: 2.3879 - acc: 0.0870
Epoch 49/400
- 0s - loss: 2.3658 - acc: 0.0870
Epoch 50/400
- 0s - loss: 2.3482 - acc: 0.0870
Epoch 51/400
- 0s - loss: 2.3165 - acc: 0.1304
Epoch 52/400
- 0s - loss: 2.2990 - acc: 0.1304
Epoch 53/400
- 0s - loss: 2.2788 - acc: 0.1739
Epoch 54/400
- 0s - loss: 2.2525 - acc: 0.1739
Epoch 55/400
- 0s - loss: 2.2376 - acc: 0.2174
Epoch 56/400
- 0s - loss: 2.2082 - acc: 0.1739
Epoch 57/400
- 0s - loss: 2.1894 - acc: 0.2174
Epoch 58/400
- 0s - loss: 2.1786 - acc: 0.2609
Epoch 59/400
- 0s - loss: 2.1488 - acc: 0.2174
Epoch 60/400
- 0s - loss: 2.1198 - acc: 0.2609
Epoch 61/400
- 0s - loss: 2.1081 - acc: 0.2609
Epoch 62/400
- 0s - loss: 2.0866 - acc: 0.2174
Epoch 63/400
- 0s - loss: 2.0798 - acc: 0.1739
Epoch 64/400
- 0s - loss: 2.0465 - acc: 0.3043
Epoch 65/400
- 0s - loss: 2.0324 - acc: 0.2609
Epoch 66/400
- 0s - loss: 2.0159 - acc: 0.3043
Epoch 67/400
- 0s - loss: 1.9990 - acc: 0.3478
Epoch 68/400
- 0s - loss: 1.9715 - acc: 0.3043
Epoch 69/400
- 0s - loss: 1.9537 - acc: 0.2609
Epoch 70/400
- 0s - loss: 1.9392 - acc: 0.3043
Epoch 71/400
- 0s - loss: 1.9213 - acc: 0.1739
Epoch 72/400
- 0s - loss: 1.9012 - acc: 0.2609
Epoch 73/400
- 0s - loss: 1.8872 - acc: 0.3913
Epoch 74/400
- 0s - loss: 1.8692 - acc: 0.3913
Epoch 75/400
- 0s - loss: 1.8457 - acc: 0.3478
Epoch 76/400
- 0s - loss: 1.8309 - acc: 0.3913
Epoch 77/400
- 0s - loss: 1.8122 - acc: 0.3478
Epoch 78/400
- 0s - loss: 1.7916 - acc: 0.3043
Epoch 79/400
- 0s - loss: 1.7775 - acc: 0.4783
Epoch 80/400
- 0s - loss: 1.7559 - acc: 0.3478
Epoch 81/400
- 0s - loss: 1.7413 - acc: 0.3913
Epoch 82/400
- 0s - loss: 1.7297 - acc: 0.4348
Epoch 83/400
- 0s - loss: 1.7156 - acc: 0.3913
Epoch 84/400
- 0s - loss: 1.7019 - acc: 0.5217
Epoch 85/400
- 0s - loss: 1.6815 - acc: 0.5217
Epoch 86/400
- 0s - loss: 1.6756 - acc: 0.3913
Epoch 87/400
- 0s - loss: 1.6552 - acc: 0.5652
Epoch 88/400
- 0s - loss: 1.6423 - acc: 0.6087
Epoch 89/400
- 0s - loss: 1.6323 - acc: 0.4783
Epoch 90/400
- 0s - loss: 1.6215 - acc: 0.4348
Epoch 91/400
- 0s - loss: 1.6126 - acc: 0.5217
Epoch 92/400
- 0s - loss: 1.5968 - acc: 0.5217
Epoch 93/400
- 0s - loss: 1.5852 - acc: 0.5217
Epoch 94/400
- 0s - loss: 1.5742 - acc: 0.6087
Epoch 95/400
- 0s - loss: 1.5635 - acc: 0.5652
Epoch 96/400
- 0s - loss: 1.5514 - acc: 0.5652
Epoch 97/400
- 0s - loss: 1.5405 - acc: 0.5652
Epoch 98/400
- 0s - loss: 1.5270 - acc: 0.5217
Epoch 99/400
- 0s - loss: 1.5209 - acc: 0.5217
Epoch 100/400
- 0s - loss: 1.5163 - acc: 0.6957
Epoch 101/400
- 0s - loss: 1.5093 - acc: 0.6087
Epoch 102/400
- 0s - loss: 1.4896 - acc: 0.6957
Epoch 103/400
- 0s - loss: 1.4776 - acc: 0.7826
Epoch 104/400
- 0s - loss: 1.4710 - acc: 0.7391
Epoch 105/400
- 0s - loss: 1.4617 - acc: 0.7826
Epoch 106/400
- 0s - loss: 1.4568 - acc: 0.6522
Epoch 107/400
- 0s - loss: 1.4442 - acc: 0.6522
Epoch 108/400
- 0s - loss: 1.4396 - acc: 0.7391
Epoch 109/400
- 0s - loss: 1.4283 - acc: 0.7391
Epoch 110/400
- 0s - loss: 1.4145 - acc: 0.7391
Epoch 111/400
- 0s - loss: 1.4169 - acc: 0.7391
Epoch 112/400
- 0s - loss: 1.4035 - acc: 0.7391
Epoch 113/400
- 0s - loss: 1.3908 - acc: 0.7391
Epoch 114/400
- 0s - loss: 1.3863 - acc: 0.7826
Epoch 115/400
- 0s - loss: 1.3814 - acc: 0.7391
Epoch 116/400
- 0s - loss: 1.3707 - acc: 0.7391
Epoch 117/400
- 0s - loss: 1.3603 - acc: 0.6957
Epoch 118/400
- 0s - loss: 1.3497 - acc: 0.7826
Epoch 119/400
- 0s - loss: 1.3419 - acc: 0.8261
Epoch 120/400
- 0s - loss: 1.3315 - acc: 0.8261
Epoch 121/400
- 0s - loss: 1.3303 - acc: 0.8261
Epoch 122/400
- 0s - loss: 1.3214 - acc: 0.7826
Epoch 123/400
- 0s - loss: 1.3204 - acc: 0.7826
Epoch 124/400
- 0s - loss: 1.3095 - acc: 0.8261
Epoch 125/400
- 0s - loss: 1.2959 - acc: 0.8261
Epoch 126/400
- 0s - loss: 1.2962 - acc: 0.8261
Epoch 127/400
- 0s - loss: 1.2906 - acc: 0.8261
Epoch 128/400
- 0s - loss: 1.2773 - acc: 0.8261
Epoch 129/400
- 0s - loss: 1.2805 - acc: 0.7826
Epoch 130/400
- 0s - loss: 1.2671 - acc: 0.8261
Epoch 131/400
- 0s - loss: 1.2572 - acc: 0.8261
Epoch 132/400
- 0s - loss: 1.2569 - acc: 0.7391
Epoch 133/400
- 0s - loss: 1.2490 - acc: 0.8261
Epoch 134/400
- 0s - loss: 1.2431 - acc: 0.8261
Epoch 135/400
- 0s - loss: 1.2451 - acc: 0.7826
Epoch 136/400
- 0s - loss: 1.2360 - acc: 0.8261
Epoch 137/400
- 0s - loss: 1.2243 - acc: 0.7826
Epoch 138/400
- 0s - loss: 1.2185 - acc: 0.8261
Epoch 139/400
- 0s - loss: 1.2070 - acc: 0.8261
Epoch 140/400
- 0s - loss: 1.2030 - acc: 0.8261
Epoch 141/400
- 0s - loss: 1.2106 - acc: 0.7826
Epoch 142/400
- 0s - loss: 1.1976 - acc: 0.8261
Epoch 143/400
- 0s - loss: 1.1942 - acc: 0.8261
Epoch 144/400
- 0s - loss: 1.1801 - acc: 0.8261
Epoch 145/400
- 0s - loss: 1.1859 - acc: 0.7826
Epoch 146/400
- 0s - loss: 1.1736 - acc: 0.8261
Epoch 147/400
- 0s - loss: 1.1644 - acc: 0.8261
Epoch 148/400
- 0s - loss: 1.1569 - acc: 0.8696
Epoch 149/400
- 0s - loss: 1.1588 - acc: 0.7826
Epoch 150/400
- 0s - loss: 1.1498 - acc: 0.8696
Epoch 151/400
- 0s - loss: 1.1504 - acc: 0.7826
Epoch 152/400
- 0s - loss: 1.1447 - acc: 0.8261
Epoch 153/400
- 0s - loss: 1.1347 - acc: 0.8696
Epoch 154/400
- 0s - loss: 1.1288 - acc: 0.8696
Epoch 155/400
- 0s - loss: 1.1235 - acc: 0.8261
Epoch 156/400
- 0s - loss: 1.1091 - acc: 0.8696
Epoch 157/400
- 0s - loss: 1.1155 - acc: 0.8261
Epoch 158/400
- 0s - loss: 1.1097 - acc: 0.8261
Epoch 159/400
- 0s - loss: 1.0992 - acc: 0.8261
Epoch 160/400
- 0s - loss: 1.0899 - acc: 0.8261
Epoch 161/400
- 0s - loss: 1.0895 - acc: 0.8696
Epoch 162/400
- 0s - loss: 1.0875 - acc: 0.8261
Epoch 163/400
- 0s - loss: 1.0772 - acc: 0.8696
Epoch 164/400
- 0s - loss: 1.0677 - acc: 0.8261
Epoch 165/400
- 0s - loss: 1.0644 - acc: 0.9130
Epoch 166/400
- 0s - loss: 1.0645 - acc: 0.8261
Epoch 167/400
- 0s - loss: 1.0617 - acc: 0.8261
Epoch 168/400
- 0s - loss: 1.0484 - acc: 0.8261
Epoch 169/400
- 0s - loss: 1.0502 - acc: 0.8261
Epoch 170/400
- 0s - loss: 1.0411 - acc: 0.8696
Epoch 171/400
- 0s - loss: 1.0306 - acc: 0.8696
Epoch 172/400
- 0s - loss: 1.0271 - acc: 0.8261
Epoch 173/400
- 0s - loss: 1.0294 - acc: 0.8696
Epoch 174/400
- 0s - loss: 1.0222 - acc: 0.8261
Epoch 175/400
- 0s - loss: 1.0206 - acc: 0.9130
Epoch 176/400
- 0s - loss: 1.0145 - acc: 0.8696
Epoch 177/400
- 0s - loss: 1.0090 - acc: 0.8696
Epoch 178/400
- 0s - loss: 1.0061 - acc: 0.8696
Epoch 179/400
- 0s - loss: 0.9959 - acc: 0.8696
Epoch 180/400
- 0s - loss: 0.9953 - acc: 0.9130
Epoch 181/400
- 0s - loss: 0.9877 - acc: 0.9565
Epoch 182/400
- 0s - loss: 0.9771 - acc: 0.8696
Epoch 183/400
- 0s - loss: 0.9885 - acc: 0.8261
Epoch 184/400
- 0s - loss: 0.9736 - acc: 0.9130
Epoch 185/400
- 0s - loss: 0.9706 - acc: 0.8696
Epoch 186/400
- 0s - loss: 0.9676 - acc: 0.8261
Epoch 187/400
- 0s - loss: 0.9690 - acc: 0.9130
Epoch 188/400
- 0s - loss: 0.9636 - acc: 0.8696
Epoch 189/400
- 0s - loss: 0.9533 - acc: 0.8696
Epoch 190/400
- 0s - loss: 0.9408 - acc: 0.9130
Epoch 191/400
- 0s - loss: 0.9456 - acc: 0.9130
Epoch 192/400
- 0s - loss: 0.9384 - acc: 0.9130
Epoch 193/400
- 0s - loss: 0.9329 - acc: 0.9130
Epoch 194/400
- 0s - loss: 0.9313 - acc: 0.8261
Epoch 195/400
- 0s - loss: 0.9268 - acc: 0.9130
Epoch 196/400
- 0s - loss: 0.9243 - acc: 0.9130
Epoch 197/400
- 0s - loss: 0.9144 - acc: 0.9130
Epoch 198/400
- 0s - loss: 0.9066 - acc: 0.8696
Epoch 199/400
- 0s - loss: 0.9105 - acc: 0.9130
Epoch 200/400
- 0s - loss: 0.9049 - acc: 0.9130
Epoch 201/400
- 0s - loss: 0.8925 - acc: 0.9130
Epoch 202/400
- 0s - loss: 0.8928 - acc: 0.8696
Epoch 203/400
- 0s - loss: 0.8884 - acc: 0.9130
Epoch 204/400
- 0s - loss: 0.8841 - acc: 0.9130
Epoch 205/400
- 0s - loss: 0.8752 - acc: 0.9565
Epoch 206/400
- 0s - loss: 0.8936 - acc: 0.9130
Epoch 207/400
- 0s - loss: 0.8916 - acc: 0.8696
Epoch 208/400
- 0s - loss: 0.8705 - acc: 0.9130
Epoch 209/400
- 0s - loss: 0.8640 - acc: 0.8696
Epoch 210/400
- 0s - loss: 0.8658 - acc: 0.9130
Epoch 211/400
- 0s - loss: 0.8539 - acc: 0.9565
Epoch 212/400
- 0s - loss: 0.8498 - acc: 0.9130
Epoch 213/400
- 0s - loss: 0.8496 - acc: 0.8696
Epoch 214/400
- 0s - loss: 0.8467 - acc: 0.9130
Epoch 215/400
- 0s - loss: 0.8355 - acc: 0.9130
Epoch 216/400
- 0s - loss: 0.8331 - acc: 0.9130
Epoch 217/400
- 0s - loss: 0.8294 - acc: 0.8696
Epoch 218/400
- 0s - loss: 0.8259 - acc: 0.9565
Epoch 219/400
- 0s - loss: 0.8223 - acc: 0.9130
Epoch 220/400
- 0s - loss: 0.8151 - acc: 0.9130
Epoch 221/400
- 0s - loss: 0.8083 - acc: 0.9565
Epoch 222/400
- 0s - loss: 0.8009 - acc: 0.9565
Epoch 223/400
- 0s - loss: 0.8015 - acc: 0.9565
Epoch 224/400
- 0s - loss: 0.7964 - acc: 0.9565
Epoch 225/400
- 0s - loss: 0.7943 - acc: 0.9565
Epoch 226/400
- 0s - loss: 0.7917 - acc: 0.9565
Epoch 227/400
- 0s - loss: 0.7865 - acc: 0.9130
Epoch 228/400
- 0s - loss: 0.7819 - acc: 0.9130
Epoch 229/400
- 0s - loss: 0.7771 - acc: 0.9565
Epoch 230/400
- 0s - loss: 0.7750 - acc: 0.9565
Epoch 231/400
- 0s - loss: 0.7719 - acc: 0.9565
Epoch 232/400
- 0s - loss: 0.7717 - acc: 0.9130
Epoch 233/400
- 0s - loss: 0.7640 - acc: 0.9130
Epoch 234/400
- 0s - loss: 0.7645 - acc: 0.9565
Epoch 235/400
- 0s - loss: 0.7587 - acc: 0.9130
Epoch 236/400
- 0s - loss: 0.7560 - acc: 0.9130
Epoch 237/400
- 0s - loss: 0.7551 - acc: 0.9130
Epoch 238/400
- 0s - loss: 0.7517 - acc: 0.9565
Epoch 239/400
- 0s - loss: 0.7430 - acc: 0.9130
Epoch 240/400
- 0s - loss: 0.7325 - acc: 0.9130
Epoch 241/400
- 0s - loss: 0.7375 - acc: 0.9565
Epoch 242/400
- 0s - loss: 0.7300 - acc: 0.9130
Epoch 243/400
- 0s - loss: 0.7286 - acc: 0.9565
Epoch 244/400
- 0s - loss: 0.7351 - acc: 0.9565
Epoch 245/400
- 0s - loss: 0.7270 - acc: 0.9130
Epoch 246/400
- 0s - loss: 0.7139 - acc: 0.9130
Epoch 247/400
- 0s - loss: 0.7131 - acc: 0.9565
Epoch 248/400
- 0s - loss: 0.7085 - acc: 1.0000
Epoch 249/400
- 0s - loss: 0.7122 - acc: 0.9565
Epoch 250/400
- 0s - loss: 0.7044 - acc: 0.9565
Epoch 251/400
- 0s - loss: 0.6953 - acc: 0.9130
Epoch 252/400
- 0s - loss: 0.6932 - acc: 0.9130
Epoch 253/400
- 0s - loss: 0.6996 - acc: 0.9565
Epoch 254/400
- 0s - loss: 0.6862 - acc: 0.9565
Epoch 255/400
- 0s - loss: 0.6840 - acc: 0.9130
Epoch 256/400
- 0s - loss: 0.6803 - acc: 0.9565
Epoch 257/400
- 0s - loss: 0.6814 - acc: 0.9130
Epoch 258/400
- 0s - loss: 0.6769 - acc: 0.9565
Epoch 259/400
- 0s - loss: 0.6675 - acc: 0.9565
Epoch 260/400
- 0s - loss: 0.6684 - acc: 0.9130
Epoch 261/400
- 0s - loss: 0.6612 - acc: 0.9130
Epoch 262/400
- 0s - loss: 0.6633 - acc: 0.9130
Epoch 263/400
- 0s - loss: 0.6706 - acc: 0.9130
Epoch 264/400
- 0s - loss: 0.6574 - acc: 0.9130
Epoch 265/400
- 0s - loss: 0.6457 - acc: 0.9565
Epoch 266/400
- 0s - loss: 0.6468 - acc: 0.9130
Epoch 267/400
- 0s - loss: 0.6385 - acc: 0.9565
Epoch 268/400
- 0s - loss: 0.6369 - acc: 0.9130
Epoch 269/400
- 0s - loss: 0.6356 - acc: 0.9565
Epoch 270/400
- 0s - loss: 0.6371 - acc: 0.9130
Epoch 271/400
- 0s - loss: 0.6307 - acc: 0.9565
Epoch 272/400
- 0s - loss: 0.6243 - acc: 0.9565
Epoch 273/400
- 0s - loss: 0.6200 - acc: 0.9565
Epoch 274/400
- 0s - loss: 0.6197 - acc: 0.9565
Epoch 275/400
- 0s - loss: 0.6136 - acc: 0.9130
Epoch 276/400
- 0s - loss: 0.6122 - acc: 0.9565
Epoch 277/400
- 0s - loss: 0.6116 - acc: 0.9565
Epoch 278/400
- 0s - loss: 0.6041 - acc: 0.9130
Epoch 279/400
- 0s - loss: 0.6046 - acc: 0.9565
Epoch 280/400
- 0s - loss: 0.6050 - acc: 0.9565
Epoch 281/400
- 0s - loss: 0.5963 - acc: 0.9130
Epoch 282/400
- 0s - loss: 0.5968 - acc: 0.9565
Epoch 283/400
- 0s - loss: 0.5985 - acc: 0.9565
Epoch 284/400
- 0s - loss: 0.5922 - acc: 1.0000
Epoch 285/400
- 0s - loss: 0.5830 - acc: 0.9565
Epoch 286/400
- 0s - loss: 0.5825 - acc: 0.9130
Epoch 287/400
- 0s - loss: 0.5790 - acc: 0.9565
Epoch 288/400
- 0s - loss: 0.5804 - acc: 0.9565
Epoch 289/400
- 0s - loss: 0.5810 - acc: 0.9565
Epoch 290/400
- 0s - loss: 0.5758 - acc: 1.0000
Epoch 291/400
- 0s - loss: 0.5696 - acc: 1.0000
Epoch 292/400
- 0s - loss: 0.5714 - acc: 0.9565
Epoch 293/400
- 0s - loss: 0.5624 - acc: 0.9565
Epoch 294/400
- 0s - loss: 0.5566 - acc: 0.9565
Epoch 295/400
- 0s - loss: 0.5622 - acc: 0.9565
Epoch 296/400
- 0s - loss: 0.5514 - acc: 0.9565
Epoch 297/400
- 0s - loss: 0.5519 - acc: 0.9565
Epoch 298/400
- 0s - loss: 0.5484 - acc: 1.0000
Epoch 299/400
- 0s - loss: 0.5452 - acc: 0.9565
Epoch 300/400
- 0s - loss: 0.5409 - acc: 0.9565
Epoch 301/400
- 0s - loss: 0.5519 - acc: 0.9565
Epoch 302/400
- 0s - loss: 0.5420 - acc: 1.0000
Epoch 303/400
- 0s - loss: 0.5346 - acc: 0.9565
Epoch 304/400
- 0s - loss: 0.5326 - acc: 0.9565
Epoch 305/400
- 0s - loss: 0.5259 - acc: 0.9565
Epoch 306/400
- 0s - loss: 0.5248 - acc: 0.9565
Epoch 307/400
- 0s - loss: 0.5199 - acc: 0.9565
Epoch 308/400
- 0s - loss: 0.5245 - acc: 0.9130
Epoch 309/400
- 0s - loss: 0.5192 - acc: 1.0000
Epoch 310/400
- 0s - loss: 0.5156 - acc: 1.0000
Epoch 311/400
- 0s - loss: 0.5136 - acc: 0.9565
Epoch 312/400
- 0s - loss: 0.5186 - acc: 0.9565
Epoch 313/400
- 0s - loss: 0.5206 - acc: 0.9565
Epoch 314/400
- 0s - loss: 0.5092 - acc: 1.0000
Epoch 315/400
- 0s - loss: 0.5059 - acc: 0.9565
Epoch 316/400
- 0s - loss: 0.4982 - acc: 0.9565
Epoch 317/400
- 0s - loss: 0.4977 - acc: 0.9565
Epoch 318/400
- 0s - loss: 0.4960 - acc: 0.9565
Epoch 319/400
- 0s - loss: 0.4910 - acc: 1.0000
Epoch 320/400
- 0s - loss: 0.4931 - acc: 1.0000
Epoch 321/400
- 0s - loss: 0.4863 - acc: 0.9130
Epoch 322/400
- 0s - loss: 0.4866 - acc: 1.0000
Epoch 323/400
- 0s - loss: 0.4959 - acc: 0.9565
Epoch 324/400
- 0s - loss: 0.4806 - acc: 0.9565
Epoch 325/400
- 0s - loss: 0.4809 - acc: 0.9565
Epoch 326/400
- 0s - loss: 0.4782 - acc: 0.9565
Epoch 327/400
- 0s - loss: 0.4692 - acc: 1.0000
Epoch 328/400
- 0s - loss: 0.5000 - acc: 0.9565
Epoch 329/400
- 0s - loss: 0.4832 - acc: 0.9565
Epoch 330/400
- 0s - loss: 0.4721 - acc: 0.9130
Epoch 331/400
- 0s - loss: 0.4649 - acc: 0.9565
Epoch 332/400
- 0s - loss: 0.4592 - acc: 1.0000
Epoch 333/400
- 0s - loss: 0.4728 - acc: 0.9565
Epoch 334/400
- 0s - loss: 0.4618 - acc: 0.9130
Epoch 335/400
- 0s - loss: 0.4516 - acc: 0.9565
Epoch 336/400
- 0s - loss: 0.4550 - acc: 1.0000
Epoch 337/400
- 0s - loss: 0.4524 - acc: 0.9565
Epoch 338/400
- 0s - loss: 0.4431 - acc: 0.9565
Epoch 339/400
- 0s - loss: 0.4492 - acc: 0.9565
Epoch 340/400
- 0s - loss: 0.4527 - acc: 1.0000
Epoch 341/400
- 0s - loss: 0.4513 - acc: 1.0000
Epoch 342/400
- 0s - loss: 0.4388 - acc: 0.9565
Epoch 343/400
- 0s - loss: 0.4437 - acc: 1.0000
Epoch 344/400
- 0s - loss: 0.4433 - acc: 0.9565
Epoch 345/400
- 0s - loss: 0.4333 - acc: 0.9565
Epoch 346/400
- 0s - loss: 0.4239 - acc: 0.9565
Epoch 347/400
- 0s - loss: 0.4238 - acc: 0.9565
Epoch 348/400
- 0s - loss: 0.4242 - acc: 0.9565
Epoch 349/400
- 0s - loss: 0.4193 - acc: 0.9565
Epoch 350/400
- 0s - loss: 0.4190 - acc: 0.9565
Epoch 351/400
- 0s - loss: 0.4221 - acc: 1.0000
Epoch 352/400
- 0s - loss: 0.4175 - acc: 0.9565
Epoch 353/400
- 0s - loss: 0.4113 - acc: 1.0000
Epoch 354/400
- 0s - loss: 0.4133 - acc: 1.0000
Epoch 355/400
- 0s - loss: 0.4122 - acc: 0.9565
Epoch 356/400
- 0s - loss: 0.4116 - acc: 0.9565
Epoch 357/400
- 0s - loss: 0.4007 - acc: 1.0000
Epoch 358/400
- 0s - loss: 0.4061 - acc: 1.0000
Epoch 359/400
- 0s - loss: 0.4104 - acc: 1.0000
Epoch 360/400
- 0s - loss: 0.4053 - acc: 0.9565
Epoch 361/400
- 0s - loss: 0.4006 - acc: 1.0000
Epoch 362/400
- 0s - loss: 0.4021 - acc: 0.9565
Epoch 363/400
- 0s - loss: 0.4053 - acc: 1.0000
Epoch 364/400
- 0s - loss: 0.4031 - acc: 0.9565
Epoch 365/400
- 0s - loss: 0.3926 - acc: 0.9565
Epoch 366/400
- 0s - loss: 0.3862 - acc: 1.0000
Epoch 367/400
- 0s - loss: 0.3870 - acc: 0.9565
Epoch 368/400
- 0s - loss: 0.3828 - acc: 1.0000
Epoch 369/400
- 0s - loss: 0.3823 - acc: 1.0000
Epoch 370/400
- 0s - loss: 0.3815 - acc: 0.9565
Epoch 371/400
- 0s - loss: 0.3824 - acc: 0.9565
Epoch 372/400
- 0s - loss: 0.3774 - acc: 1.0000
Epoch 373/400
- 0s - loss: 0.3785 - acc: 1.0000
Epoch 374/400
- 0s - loss: 0.3750 - acc: 1.0000
Epoch 375/400
- 0s - loss: 0.3708 - acc: 0.9565
Epoch 376/400
- 0s - loss: 0.3704 - acc: 1.0000
Epoch 377/400
- 0s - loss: 0.3674 - acc: 1.0000
Epoch 378/400
- 0s - loss: 0.3694 - acc: 1.0000
Epoch 379/400
- 0s - loss: 0.3659 - acc: 0.9130
Epoch 380/400
- 0s - loss: 0.3635 - acc: 0.9565
Epoch 381/400
- 0s - loss: 0.3618 - acc: 1.0000
Epoch 382/400
- 0s - loss: 0.3626 - acc: 1.0000
Epoch 383/400
- 0s - loss: 0.3640 - acc: 1.0000
Epoch 384/400
- 0s - loss: 0.3574 - acc: 1.0000
Epoch 385/400
- 0s - loss: 0.3545 - acc: 0.9565
Epoch 386/400
- 0s - loss: 0.3528 - acc: 1.0000
Epoch 387/400
- 0s - loss: 0.3523 - acc: 1.0000
Epoch 388/400
- 0s - loss: 0.3637 - acc: 1.0000
Epoch 389/400
- 0s - loss: 0.3558 - acc: 1.0000
Epoch 390/400
- 0s - loss: 0.3469 - acc: 1.0000
Epoch 391/400
- 0s - loss: 0.3511 - acc: 1.0000
Epoch 392/400
- 0s - loss: 0.3505 - acc: 0.9565
Epoch 393/400
- 0s - loss: 0.3482 - acc: 0.9565
Epoch 394/400
- 0s - loss: 0.3388 - acc: 0.9565
Epoch 395/400
- 0s - loss: 0.3394 - acc: 1.0000
Epoch 396/400
- 0s - loss: 0.3366 - acc: 1.0000
Epoch 397/400
- 0s - loss: 0.3406 - acc: 1.0000
Epoch 398/400
- 0s - loss: 0.3355 - acc: 1.0000
Epoch 399/400
- 0s - loss: 0.3355 - acc: 0.9565
Epoch 400/400
- 0s - loss: 0.3351 - acc: 0.9565
23/23 [==============================] - 0s 4ms/step
Model Accuracy: 95.65%
(['W', 'B', 'C'], '->', 'Z')
(['W', 'K', 'L'], '->', 'Z')
(['W', 'T', 'U'], '->', 'Z')
(['D', 'W', 'F'], '->', 'I')
(['M', 'W', 'O'], '->', 'Q')
(['V', 'W', 'W'], '->', 'Z')
(['G', 'H', 'W'], '->', 'J')
(['J', 'K', 'W'], '->', 'M')
(['P', 'Q', 'W'], '->', 'S')
SDS-2.x, Scalable Data Engineering Science
This is a 2019 augmentation and update of Adam Breindel's initial notebooks.
Last refresh: Never