alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print (seq_in, '->', seq_out)
ABC -> D
BCD -> E
CDE -> F
DEF -> G
EFG -> H
FGH -> I
GHI -> J
HIJ -> K
IJK -> L
JKL -> M
KLM -> N
LMN -> O
MNO -> P
NOP -> Q
OPQ -> R
PQR -> S
QRS -> T
RST -> U
STU -> V
TUV -> W
UVW -> X
VWX -> Y
WXY -> Z
# dataX is just a reindexing of the alphabets in consecutive triplets of numbers
dataX
Out[2]: [[0, 1, 2],
[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6],
[5, 6, 7],
[6, 7, 8],
[7, 8, 9],
[8, 9, 10],
[9, 10, 11],
[10, 11, 12],
[11, 12, 13],
[12, 13, 14],
[13, 14, 15],
[14, 15, 16],
[15, 16, 17],
[16, 17, 18],
[17, 18, 19],
[18, 19, 20],
[19, 20, 21],
[20, 21, 22],
[21, 22, 23],
[22, 23, 24]]
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM # <- this is the Long-Short-term memory layer
from keras.utils import np_utils
# begin data generation ------------------------------------------
# this is just a repeat of what we did above
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print (seq_in, '->', seq_out)
# end data generation ---------------------------------------------
X = numpy.reshape(dataX, (len(dataX), seq_length))
X = X / float(len(alphabet)) # normalize the mapping of alphabets from integers into [0, 1]
y = np_utils.to_categorical(dataY) # make the output we want to predict to be categorical
# keras architecturing of a feed forward dense or fully connected Neural Network
model = Sequential()
# draw the architecture of the network given by next two lines, hint: X.shape[1] = 3, y.shape[1] = 26
model.add(Dense(30, input_dim=X.shape[1], kernel_initializer='normal', activation='relu'))
model.add(Dense(y.shape[1], activation='softmax'))
# keras compiling and fitting
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=1000, batch_size=5, verbose=2)
scores = model.evaluate(X, y)
print("Model Accuracy: %.2f " % scores[1])
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern)))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0) # get prediction from fitted model
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print (seq_in, "->", result) # print the predicted outputs
Using TensorFlow backend.
ABC -> D
BCD -> E
CDE -> F
DEF -> G
EFG -> H
FGH -> I
GHI -> J
HIJ -> K
IJK -> L
JKL -> M
KLM -> N
LMN -> O
MNO -> P
NOP -> Q
OPQ -> R
PQR -> S
QRS -> T
RST -> U
STU -> V
TUV -> W
UVW -> X
VWX -> Y
WXY -> Z
WARNING:tensorflow:From /databricks/python/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /databricks/python/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/1000
- 1s - loss: 3.2612 - acc: 0.0435
Epoch 2/1000
- 0s - loss: 3.2585 - acc: 0.0435
Epoch 3/1000
- 0s - loss: 3.2564 - acc: 0.0435
Epoch 4/1000
- 0s - loss: 3.2543 - acc: 0.0435
Epoch 5/1000
- 0s - loss: 3.2529 - acc: 0.0435
Epoch 6/1000
- 0s - loss: 3.2507 - acc: 0.0435
Epoch 7/1000
- 0s - loss: 3.2491 - acc: 0.0435
Epoch 8/1000
- 0s - loss: 3.2473 - acc: 0.0435
Epoch 9/1000
- 0s - loss: 3.2455 - acc: 0.0435
Epoch 10/1000
- 0s - loss: 3.2438 - acc: 0.0435
Epoch 11/1000
- 0s - loss: 3.2415 - acc: 0.0435
Epoch 12/1000
- 0s - loss: 3.2398 - acc: 0.0435
Epoch 13/1000
- 0s - loss: 3.2378 - acc: 0.0435
Epoch 14/1000
- 0s - loss: 3.2354 - acc: 0.0435
Epoch 15/1000
- 0s - loss: 3.2336 - acc: 0.0435
Epoch 16/1000
- 0s - loss: 3.2313 - acc: 0.0435
Epoch 17/1000
- 0s - loss: 3.2293 - acc: 0.0435
Epoch 18/1000
- 0s - loss: 3.2268 - acc: 0.0435
Epoch 19/1000
- 0s - loss: 3.2248 - acc: 0.0435
Epoch 20/1000
- 0s - loss: 3.2220 - acc: 0.0435
Epoch 21/1000
- 0s - loss: 3.2196 - acc: 0.0435
Epoch 22/1000
- 0s - loss: 3.2168 - acc: 0.0435
Epoch 23/1000
- 0s - loss: 3.2137 - acc: 0.0435
Epoch 24/1000
- 0s - loss: 3.2111 - acc: 0.0435
Epoch 25/1000
- 0s - loss: 3.2082 - acc: 0.0435
Epoch 26/1000
- 0s - loss: 3.2047 - acc: 0.0435
Epoch 27/1000
- 0s - loss: 3.2018 - acc: 0.0435
Epoch 28/1000
- 0s - loss: 3.1984 - acc: 0.0435
Epoch 29/1000
- 0s - loss: 3.1950 - acc: 0.0435
Epoch 30/1000
- 0s - loss: 3.1918 - acc: 0.0435
Epoch 31/1000
- 0s - loss: 3.1883 - acc: 0.0435
Epoch 32/1000
- 0s - loss: 3.1849 - acc: 0.0435
Epoch 33/1000
- 0s - loss: 3.1808 - acc: 0.0435
Epoch 34/1000
- 0s - loss: 3.1776 - acc: 0.0435
Epoch 35/1000
- 0s - loss: 3.1736 - acc: 0.0435
Epoch 36/1000
- 0s - loss: 3.1700 - acc: 0.0435
Epoch 37/1000
- 0s - loss: 3.1655 - acc: 0.0435
Epoch 38/1000
- 0s - loss: 3.1618 - acc: 0.0870
Epoch 39/1000
- 0s - loss: 3.1580 - acc: 0.0435
Epoch 40/1000
- 0s - loss: 3.1533 - acc: 0.0870
Epoch 41/1000
- 0s - loss: 3.1487 - acc: 0.0870
Epoch 42/1000
- 0s - loss: 3.1447 - acc: 0.0870
Epoch 43/1000
- 0s - loss: 3.1408 - acc: 0.0870
Epoch 44/1000
- 0s - loss: 3.1361 - acc: 0.0870
Epoch 45/1000
- 0s - loss: 3.1317 - acc: 0.0870
Epoch 46/1000
- 0s - loss: 3.1275 - acc: 0.0870
Epoch 47/1000
- 0s - loss: 3.1233 - acc: 0.0870
Epoch 48/1000
- 0s - loss: 3.1188 - acc: 0.0870
Epoch 49/1000
- 0s - loss: 3.1142 - acc: 0.0870
Epoch 50/1000
- 0s - loss: 3.1099 - acc: 0.0870
Epoch 51/1000
- 0s - loss: 3.1051 - acc: 0.0870
Epoch 52/1000
- 0s - loss: 3.1007 - acc: 0.0870
Epoch 53/1000
- 0s - loss: 3.0963 - acc: 0.0870
Epoch 54/1000
- 0s - loss: 3.0913 - acc: 0.0870
Epoch 55/1000
- 0s - loss: 3.0875 - acc: 0.0870
Epoch 56/1000
- 0s - loss: 3.0825 - acc: 0.0870
Epoch 57/1000
- 0s - loss: 3.0783 - acc: 0.0870
Epoch 58/1000
- 0s - loss: 3.0732 - acc: 0.0870
Epoch 59/1000
- 0s - loss: 3.0685 - acc: 0.0870
Epoch 60/1000
- 0s - loss: 3.0644 - acc: 0.0870
Epoch 61/1000
- 0s - loss: 3.0596 - acc: 0.0870
Epoch 62/1000
- 0s - loss: 3.0550 - acc: 0.1304
Epoch 63/1000
- 0s - loss: 3.0505 - acc: 0.0870
Epoch 64/1000
- 0s - loss: 3.0458 - acc: 0.0870
Epoch 65/1000
- 0s - loss: 3.0419 - acc: 0.0870
Epoch 66/1000
- 0s - loss: 3.0368 - acc: 0.0870
Epoch 67/1000
- 0s - loss: 3.0327 - acc: 0.0870
Epoch 68/1000
- 0s - loss: 3.0282 - acc: 0.0870
Epoch 69/1000
- 0s - loss: 3.0232 - acc: 0.0870
Epoch 70/1000
- 0s - loss: 3.0189 - acc: 0.0870
Epoch 71/1000
- 0s - loss: 3.0139 - acc: 0.0870
Epoch 72/1000
- 0s - loss: 3.0093 - acc: 0.0870
Epoch 73/1000
- 0s - loss: 3.0049 - acc: 0.0870
Epoch 74/1000
- 0s - loss: 3.0006 - acc: 0.0870
Epoch 75/1000
- 0s - loss: 2.9953 - acc: 0.0870
Epoch 76/1000
- 0s - loss: 2.9910 - acc: 0.0870
Epoch 77/1000
- 0s - loss: 2.9868 - acc: 0.0870
Epoch 78/1000
- 0s - loss: 2.9826 - acc: 0.0870
Epoch 79/1000
- 0s - loss: 2.9773 - acc: 0.0870
Epoch 80/1000
- 0s - loss: 2.9728 - acc: 0.0870
Epoch 81/1000
- 0s - loss: 2.9683 - acc: 0.0870
Epoch 82/1000
- 0s - loss: 2.9640 - acc: 0.0870
Epoch 83/1000
- 0s - loss: 2.9594 - acc: 0.0870
Epoch 84/1000
- 0s - loss: 2.9550 - acc: 0.0870
Epoch 85/1000
- 0s - loss: 2.9508 - acc: 0.0870
Epoch 86/1000
- 0s - loss: 2.9461 - acc: 0.0870
Epoch 87/1000
- 0s - loss: 2.9415 - acc: 0.0870
Epoch 88/1000
- 0s - loss: 2.9372 - acc: 0.0870
Epoch 89/1000
- 0s - loss: 2.9331 - acc: 0.1304
Epoch 90/1000
- 0s - loss: 2.9284 - acc: 0.1304
Epoch 91/1000
- 0s - loss: 2.9239 - acc: 0.1304
Epoch 92/1000
- 0s - loss: 2.9192 - acc: 0.1304
Epoch 93/1000
- 0s - loss: 2.9148 - acc: 0.1304
Epoch 94/1000
- 0s - loss: 2.9105 - acc: 0.1304
Epoch 95/1000
- 0s - loss: 2.9061 - acc: 0.1304
Epoch 96/1000
- 0s - loss: 2.9018 - acc: 0.1304
Epoch 97/1000
- 0s - loss: 2.8975 - acc: 0.1304
Epoch 98/1000
- 0s - loss: 2.8932 - acc: 0.1304
Epoch 99/1000
- 0s - loss: 2.8889 - acc: 0.1304
Epoch 100/1000
- 0s - loss: 2.8844 - acc: 0.1304
Epoch 101/1000
- 0s - loss: 2.8803 - acc: 0.1304
Epoch 102/1000
- 0s - loss: 2.8758 - acc: 0.1304
Epoch 103/1000
- 0s - loss: 2.8717 - acc: 0.1304
Epoch 104/1000
- 0s - loss: 2.8674 - acc: 0.0870
Epoch 105/1000
- 0s - loss: 2.8634 - acc: 0.0870
Epoch 106/1000
- 0s - loss: 2.8586 - acc: 0.0870
Epoch 107/1000
- 0s - loss: 2.8547 - acc: 0.0870
Epoch 108/1000
- 0s - loss: 2.8505 - acc: 0.0870
Epoch 109/1000
- 0s - loss: 2.8462 - acc: 0.0870
Epoch 110/1000
- 0s - loss: 2.8421 - acc: 0.0870
Epoch 111/1000
- 0s - loss: 2.8383 - acc: 0.0870
Epoch 112/1000
- 0s - loss: 2.8337 - acc: 0.0870
Epoch 113/1000
- 0s - loss: 2.8299 - acc: 0.0870
Epoch 114/1000
- 0s - loss: 2.8257 - acc: 0.0870
Epoch 115/1000
- 0s - loss: 2.8216 - acc: 0.0870
Epoch 116/1000
- 0s - loss: 2.8173 - acc: 0.0870
Epoch 117/1000
- 0s - loss: 2.8134 - acc: 0.0870
Epoch 118/1000
- 0s - loss: 2.8094 - acc: 0.0870
Epoch 119/1000
- 0s - loss: 2.8058 - acc: 0.0870
Epoch 120/1000
- 0s - loss: 2.8016 - acc: 0.0870
Epoch 121/1000
- 0s - loss: 2.7975 - acc: 0.1304
Epoch 122/1000
- 0s - loss: 2.7934 - acc: 0.1304
Epoch 123/1000
- 0s - loss: 2.7895 - acc: 0.1304
Epoch 124/1000
- 0s - loss: 2.7858 - acc: 0.1304
Epoch 125/1000
- 0s - loss: 2.7820 - acc: 0.1304
Epoch 126/1000
- 0s - loss: 2.7782 - acc: 0.1304
Epoch 127/1000
- 0s - loss: 2.7738 - acc: 0.1304
Epoch 128/1000
- 0s - loss: 2.7696 - acc: 0.1304
Epoch 129/1000
- 0s - loss: 2.7661 - acc: 0.1304
Epoch 130/1000
- 0s - loss: 2.7625 - acc: 0.1304
Epoch 131/1000
- 0s - loss: 2.7587 - acc: 0.1304
Epoch 132/1000
- 0s - loss: 2.7547 - acc: 0.1304
Epoch 133/1000
- 0s - loss: 2.7513 - acc: 0.1304
Epoch 134/1000
- 0s - loss: 2.7476 - acc: 0.1304
Epoch 135/1000
- 0s - loss: 2.7436 - acc: 0.1304
Epoch 136/1000
- 0s - loss: 2.7398 - acc: 0.1304
Epoch 137/1000
- 0s - loss: 2.7365 - acc: 0.0870
Epoch 138/1000
- 0s - loss: 2.7326 - acc: 0.0870
Epoch 139/1000
- 0s - loss: 2.7288 - acc: 0.1304
Epoch 140/1000
- 0s - loss: 2.7250 - acc: 0.1304
Epoch 141/1000
- 0s - loss: 2.7215 - acc: 0.1304
Epoch 142/1000
- 0s - loss: 2.7182 - acc: 0.1304
Epoch 143/1000
- 0s - loss: 2.7148 - acc: 0.1304
Epoch 144/1000
- 0s - loss: 2.7112 - acc: 0.1304
Epoch 145/1000
- 0s - loss: 2.7077 - acc: 0.1304
Epoch 146/1000
- 0s - loss: 2.7041 - acc: 0.1304
Epoch 147/1000
- 0s - loss: 2.7010 - acc: 0.1304
Epoch 148/1000
- 0s - loss: 2.6973 - acc: 0.1304
Epoch 149/1000
- 0s - loss: 2.6939 - acc: 0.0870
Epoch 150/1000
- 0s - loss: 2.6910 - acc: 0.0870
Epoch 151/1000
- 0s - loss: 2.6873 - acc: 0.0870
Epoch 152/1000
- 0s - loss: 2.6839 - acc: 0.0870
Epoch 153/1000
- 0s - loss: 2.6805 - acc: 0.1304
Epoch 154/1000
- 0s - loss: 2.6773 - acc: 0.1304
Epoch 155/1000
- 0s - loss: 2.6739 - acc: 0.1304
Epoch 156/1000
- 0s - loss: 2.6707 - acc: 0.1739
Epoch 157/1000
- 0s - loss: 2.6676 - acc: 0.1739
Epoch 158/1000
- 0s - loss: 2.6639 - acc: 0.1739
Epoch 159/1000
- 0s - loss: 2.6608 - acc: 0.1739
Epoch 160/1000
- 0s - loss: 2.6577 - acc: 0.1739
Epoch 161/1000
- 0s - loss: 2.6542 - acc: 0.1739
Epoch 162/1000
- 0s - loss: 2.6513 - acc: 0.1739
Epoch 163/1000
- 0s - loss: 2.6479 - acc: 0.1739
Epoch 164/1000
- 0s - loss: 2.6447 - acc: 0.1739
Epoch 165/1000
- 0s - loss: 2.6420 - acc: 0.1739
Epoch 166/1000
- 0s - loss: 2.6386 - acc: 0.1739
Epoch 167/1000
- 0s - loss: 2.6355 - acc: 0.1739
Epoch 168/1000
- 0s - loss: 2.6327 - acc: 0.1739
Epoch 169/1000
- 0s - loss: 2.6296 - acc: 0.1739
Epoch 170/1000
- 0s - loss: 2.6268 - acc: 0.1739
Epoch 171/1000
- 0s - loss: 2.6235 - acc: 0.1739
Epoch 172/1000
- 0s - loss: 2.6203 - acc: 0.1739
Epoch 173/1000
- 0s - loss: 2.6179 - acc: 0.1739
Epoch 174/1000
- 0s - loss: 2.6147 - acc: 0.1739
Epoch 175/1000
- 0s - loss: 2.6121 - acc: 0.1739
Epoch 176/1000
- 0s - loss: 2.6088 - acc: 0.1739
Epoch 177/1000
- 0s - loss: 2.6058 - acc: 0.1739
Epoch 178/1000
- 0s - loss: 2.6034 - acc: 0.1739
Epoch 179/1000
- 0s - loss: 2.6001 - acc: 0.1739
Epoch 180/1000
- 0s - loss: 2.5969 - acc: 0.1739
Epoch 181/1000
- 0s - loss: 2.5945 - acc: 0.1739
Epoch 182/1000
- 0s - loss: 2.5921 - acc: 0.1739
Epoch 183/1000
- 0s - loss: 2.5886 - acc: 0.1739
Epoch 184/1000
- 0s - loss: 2.5862 - acc: 0.1739
Epoch 185/1000
- 0s - loss: 2.5837 - acc: 0.1304
Epoch 186/1000
- 0s - loss: 2.5805 - acc: 0.1739
Epoch 187/1000
- 0s - loss: 2.5778 - acc: 0.1739
Epoch 188/1000
- 0s - loss: 2.5753 - acc: 0.1739
Epoch 189/1000
- 0s - loss: 2.5727 - acc: 0.1739
Epoch 190/1000
- 0s - loss: 2.5695 - acc: 0.1739
Epoch 191/1000
- 0s - loss: 2.5669 - acc: 0.1739
Epoch 192/1000
- 0s - loss: 2.5643 - acc: 0.1739
Epoch 193/1000
- 0s - loss: 2.5614 - acc: 0.1739
Epoch 194/1000
- 0s - loss: 2.5591 - acc: 0.1739
Epoch 195/1000
- 0s - loss: 2.5566 - acc: 0.1739
Epoch 196/1000
- 0s - loss: 2.5535 - acc: 0.1739
Epoch 197/1000
- 0s - loss: 2.5511 - acc: 0.1739
Epoch 198/1000
- 0s - loss: 2.5484 - acc: 0.1739
Epoch 199/1000
- 0s - loss: 2.5458 - acc: 0.1739
Epoch 200/1000
- 0s - loss: 2.5433 - acc: 0.1739
Epoch 201/1000
- 0s - loss: 2.5411 - acc: 0.1739
Epoch 202/1000
- 0s - loss: 2.5383 - acc: 0.1739
Epoch 203/1000
- 0s - loss: 2.5357 - acc: 0.1739
Epoch 204/1000
- 0s - loss: 2.5328 - acc: 0.1739
Epoch 205/1000
- 0s - loss: 2.5308 - acc: 0.1739
Epoch 206/1000
- 0s - loss: 2.5281 - acc: 0.1739
Epoch 207/1000
- 0s - loss: 2.5261 - acc: 0.1739
Epoch 208/1000
- 0s - loss: 2.5237 - acc: 0.1739
Epoch 209/1000
- 0s - loss: 2.5208 - acc: 0.1739
Epoch 210/1000
- 0s - loss: 2.5189 - acc: 0.1739
Epoch 211/1000
- 0s - loss: 2.5162 - acc: 0.1739
Epoch 212/1000
- 0s - loss: 2.5136 - acc: 0.1739
Epoch 213/1000
- 0s - loss: 2.5111 - acc: 0.1739
Epoch 214/1000
- 0s - loss: 2.5088 - acc: 0.1739
Epoch 215/1000
- 0s - loss: 2.5066 - acc: 0.1739
Epoch 216/1000
- 0s - loss: 2.5041 - acc: 0.1739
Epoch 217/1000
- 0s - loss: 2.5018 - acc: 0.1739
Epoch 218/1000
- 0s - loss: 2.4993 - acc: 0.1739
Epoch 219/1000
- 0s - loss: 2.4968 - acc: 0.1739
Epoch 220/1000
- 0s - loss: 2.4947 - acc: 0.1739
Epoch 221/1000
- 0s - loss: 2.4922 - acc: 0.1739
Epoch 222/1000
- 0s - loss: 2.4898 - acc: 0.1739
Epoch 223/1000
- 0s - loss: 2.4878 - acc: 0.1739
Epoch 224/1000
- 0s - loss: 2.4856 - acc: 0.1739
Epoch 225/1000
- 0s - loss: 2.4833 - acc: 0.1739
Epoch 226/1000
- 0s - loss: 2.4808 - acc: 0.1739
Epoch 227/1000
- 0s - loss: 2.4786 - acc: 0.1739
Epoch 228/1000
- 0s - loss: 2.4763 - acc: 0.1739
Epoch 229/1000
- 0s - loss: 2.4739 - acc: 0.1739
Epoch 230/1000
- 0s - loss: 2.4722 - acc: 0.1739
Epoch 231/1000
- 0s - loss: 2.4699 - acc: 0.1739
Epoch 232/1000
- 0s - loss: 2.4681 - acc: 0.1739
Epoch 233/1000
- 0s - loss: 2.4658 - acc: 0.1739
Epoch 234/1000
- 0s - loss: 2.4633 - acc: 0.1739
Epoch 235/1000
- 0s - loss: 2.4612 - acc: 0.1739
Epoch 236/1000
- 0s - loss: 2.4589 - acc: 0.1739
Epoch 237/1000
- 0s - loss: 2.4569 - acc: 0.1739
Epoch 238/1000
- 0s - loss: 2.4543 - acc: 0.1739
Epoch 239/1000
- 0s - loss: 2.4524 - acc: 0.1739
Epoch 240/1000
- 0s - loss: 2.4505 - acc: 0.1739
Epoch 241/1000
- 0s - loss: 2.4487 - acc: 0.1739
Epoch 242/1000
- 0s - loss: 2.4464 - acc: 0.1739
Epoch 243/1000
- 0s - loss: 2.4440 - acc: 0.1739
Epoch 244/1000
- 0s - loss: 2.4420 - acc: 0.1739
Epoch 245/1000
- 0s - loss: 2.4405 - acc: 0.1739
Epoch 246/1000
- 0s - loss: 2.4380 - acc: 0.2174
Epoch 247/1000
- 0s - loss: 2.4362 - acc: 0.2174
Epoch 248/1000
- 0s - loss: 2.4340 - acc: 0.2174
Epoch 249/1000
- 0s - loss: 2.4324 - acc: 0.2174
Epoch 250/1000
- 0s - loss: 2.4301 - acc: 0.2174
Epoch 251/1000
- 0s - loss: 2.4284 - acc: 0.2174
Epoch 252/1000
- 0s - loss: 2.4260 - acc: 0.2174
Epoch 253/1000
- 0s - loss: 2.4239 - acc: 0.2174
Epoch 254/1000
- 0s - loss: 2.4217 - acc: 0.2174
Epoch 255/1000
- 0s - loss: 2.4200 - acc: 0.2174
Epoch 256/1000
- 0s - loss: 2.4182 - acc: 0.2174
Epoch 257/1000
- 0s - loss: 2.4160 - acc: 0.2174
Epoch 258/1000
- 0s - loss: 2.4142 - acc: 0.2174
Epoch 259/1000
- 0s - loss: 2.4125 - acc: 0.2174
Epoch 260/1000
- 0s - loss: 2.4102 - acc: 0.1739
Epoch 261/1000
- 0s - loss: 2.4084 - acc: 0.1739
Epoch 262/1000
- 0s - loss: 2.4060 - acc: 0.1739
Epoch 263/1000
- 0s - loss: 2.4044 - acc: 0.1739
Epoch 264/1000
- 0s - loss: 2.4028 - acc: 0.2174
Epoch 265/1000
- 0s - loss: 2.4008 - acc: 0.2174
Epoch 266/1000
- 0s - loss: 2.3985 - acc: 0.2174
Epoch 267/1000
- 0s - loss: 2.3964 - acc: 0.2174
Epoch 268/1000
- 0s - loss: 2.3951 - acc: 0.1739
Epoch 269/1000
- 0s - loss: 2.3931 - acc: 0.2174
Epoch 270/1000
- 0s - loss: 2.3910 - acc: 0.2174
Epoch 271/1000
- 0s - loss: 2.3892 - acc: 0.2174
Epoch 272/1000
- 0s - loss: 2.3876 - acc: 0.2174
Epoch 273/1000
- 0s - loss: 2.3856 - acc: 0.2174
Epoch 274/1000
- 0s - loss: 2.3837 - acc: 0.2174
Epoch 275/1000
- 0s - loss: 2.3823 - acc: 0.2174
Epoch 276/1000
- 0s - loss: 2.3807 - acc: 0.2174
Epoch 277/1000
- 0s - loss: 2.3786 - acc: 0.2609
Epoch 278/1000
- 0s - loss: 2.3770 - acc: 0.2609
Epoch 279/1000
- 0s - loss: 2.3749 - acc: 0.2609
Epoch 280/1000
- 0s - loss: 2.3735 - acc: 0.2609
Epoch 281/1000
- 0s - loss: 2.3718 - acc: 0.2609
Epoch 282/1000
- 0s - loss: 2.3697 - acc: 0.2609
Epoch 283/1000
- 0s - loss: 2.3677 - acc: 0.2609
Epoch 284/1000
- 0s - loss: 2.3665 - acc: 0.2174
Epoch 285/1000
- 0s - loss: 2.3643 - acc: 0.2174
Epoch 286/1000
- 0s - loss: 2.3627 - acc: 0.2174
Epoch 287/1000
- 0s - loss: 2.3609 - acc: 0.1739
Epoch 288/1000
- 0s - loss: 2.3592 - acc: 0.1739
Epoch 289/1000
- 0s - loss: 2.3575 - acc: 0.1739
Epoch 290/1000
- 0s - loss: 2.3560 - acc: 0.1739
Epoch 291/1000
- 0s - loss: 2.3540 - acc: 0.1739
Epoch 292/1000
- 0s - loss: 2.3523 - acc: 0.2174
Epoch 293/1000
- 0s - loss: 2.3506 - acc: 0.2174
Epoch 294/1000
- 0s - loss: 2.3486 - acc: 0.2174
Epoch 295/1000
- 0s - loss: 2.3471 - acc: 0.2174
Epoch 296/1000
- 0s - loss: 2.3451 - acc: 0.2609
Epoch 297/1000
- 0s - loss: 2.3438 - acc: 0.2609
Epoch 298/1000
- 0s - loss: 2.3421 - acc: 0.2609
Epoch 299/1000
- 0s - loss: 2.3398 - acc: 0.2609
Epoch 300/1000
- 0s - loss: 2.3389 - acc: 0.2174
Epoch 301/1000
- 0s - loss: 2.3374 - acc: 0.2174
Epoch 302/1000
- 0s - loss: 2.3356 - acc: 0.2174
Epoch 303/1000
- 0s - loss: 2.3336 - acc: 0.2174
Epoch 304/1000
- 0s - loss: 2.3325 - acc: 0.2174
Epoch 305/1000
- 0s - loss: 2.3305 - acc: 0.2609
Epoch 306/1000
- 0s - loss: 2.3290 - acc: 0.2609
Epoch 307/1000
- 0s - loss: 2.3271 - acc: 0.2609
Epoch 308/1000
- 0s - loss: 2.3256 - acc: 0.2609
Epoch 309/1000
- 0s - loss: 2.3240 - acc: 0.2174
Epoch 310/1000
- 0s - loss: 2.3222 - acc: 0.2174
Epoch 311/1000
- 0s - loss: 2.3204 - acc: 0.2609
Epoch 312/1000
- 0s - loss: 2.3190 - acc: 0.2609
Epoch 313/1000
- 0s - loss: 2.3176 - acc: 0.2609
Epoch 314/1000
- 0s - loss: 2.3155 - acc: 0.2609
Epoch 315/1000
- 0s - loss: 2.3141 - acc: 0.2609
Epoch 316/1000
- 0s - loss: 2.3124 - acc: 0.2609
Epoch 317/1000
- 0s - loss: 2.3112 - acc: 0.2609
Epoch 318/1000
- 0s - loss: 2.3095 - acc: 0.2609
Epoch 319/1000
- 0s - loss: 2.3077 - acc: 0.2609
Epoch 320/1000
- 0s - loss: 2.3061 - acc: 0.2609
Epoch 321/1000
- 0s - loss: 2.3048 - acc: 0.2609
Epoch 322/1000
- 0s - loss: 2.3030 - acc: 0.2609
Epoch 323/1000
- 0s - loss: 2.3016 - acc: 0.2609
Epoch 324/1000
- 0s - loss: 2.3000 - acc: 0.2609
Epoch 325/1000
- 0s - loss: 2.2985 - acc: 0.3043
Epoch 326/1000
- 0s - loss: 2.2965 - acc: 0.3043
Epoch 327/1000
- 0s - loss: 2.2953 - acc: 0.3043
Epoch 328/1000
- 0s - loss: 2.2942 - acc: 0.3043
Epoch 329/1000
- 0s - loss: 2.2920 - acc: 0.3043
Epoch 330/1000
- 0s - loss: 2.2911 - acc: 0.3043
Epoch 331/1000
- 0s - loss: 2.2897 - acc: 0.3043
Epoch 332/1000
- 0s - loss: 2.2880 - acc: 0.3478
Epoch 333/1000
- 0s - loss: 2.2864 - acc: 0.3478
Epoch 334/1000
- 0s - loss: 2.2851 - acc: 0.3043
Epoch 335/1000
- 0s - loss: 2.2839 - acc: 0.3043
Epoch 336/1000
- 0s - loss: 2.2823 - acc: 0.3043
Epoch 337/1000
- 0s - loss: 2.2806 - acc: 0.3043
Epoch 338/1000
- 0s - loss: 2.2795 - acc: 0.3043
Epoch 339/1000
- 0s - loss: 2.2782 - acc: 0.3043
Epoch 340/1000
- 0s - loss: 2.2764 - acc: 0.3043
Epoch 341/1000
- 0s - loss: 2.2749 - acc: 0.3043
Epoch 342/1000
- 0s - loss: 2.2737 - acc: 0.3043
Epoch 343/1000
- 0s - loss: 2.2719 - acc: 0.3043
Epoch 344/1000
- 0s - loss: 2.2707 - acc: 0.3043
Epoch 345/1000
- 0s - loss: 2.2693 - acc: 0.3043
Epoch 346/1000
- 0s - loss: 2.2677 - acc: 0.3043
Epoch 347/1000
- 0s - loss: 2.2663 - acc: 0.3043
Epoch 348/1000
- 0s - loss: 2.2648 - acc: 0.3043
Epoch 349/1000
- 0s - loss: 2.2634 - acc: 0.3043
Epoch 350/1000
- 0s - loss: 2.2622 - acc: 0.3043
Epoch 351/1000
- 0s - loss: 2.2605 - acc: 0.3043
Epoch 352/1000
- 0s - loss: 2.2590 - acc: 0.3043
Epoch 353/1000
- 0s - loss: 2.2574 - acc: 0.3043
Epoch 354/1000
- 0s - loss: 2.2558 - acc: 0.2609
Epoch 355/1000
- 0s - loss: 2.2551 - acc: 0.3043
Epoch 356/1000
- 0s - loss: 2.2536 - acc: 0.3043
Epoch 357/1000
- 0s - loss: 2.2519 - acc: 0.2609
Epoch 358/1000
- 0s - loss: 2.2510 - acc: 0.3043
Epoch 359/1000
- 0s - loss: 2.2496 - acc: 0.3478
Epoch 360/1000
- 0s - loss: 2.2484 - acc: 0.3043
Epoch 361/1000
- 0s - loss: 2.2469 - acc: 0.3043
Epoch 362/1000
- 0s - loss: 2.2451 - acc: 0.3043
Epoch 363/1000
- 0s - loss: 2.2441 - acc: 0.3043
Epoch 364/1000
- 0s - loss: 2.2432 - acc: 0.3478
Epoch 365/1000
- 0s - loss: 2.2409 - acc: 0.3478
Epoch 366/1000
- 0s - loss: 2.2398 - acc: 0.3478
Epoch 367/1000
- 0s - loss: 2.2387 - acc: 0.3478
Epoch 368/1000
- 0s - loss: 2.2372 - acc: 0.3478
Epoch 369/1000
- 0s - loss: 2.2360 - acc: 0.3478
Epoch 370/1000
- 0s - loss: 2.2341 - acc: 0.3043
Epoch 371/1000
- 0s - loss: 2.2331 - acc: 0.3043
Epoch 372/1000
- 0s - loss: 2.2317 - acc: 0.3043
Epoch 373/1000
- 0s - loss: 2.2306 - acc: 0.3043
Epoch 374/1000
- 0s - loss: 2.2293 - acc: 0.3043
Epoch 375/1000
- 0s - loss: 2.2276 - acc: 0.3043
Epoch 376/1000
- 0s - loss: 2.2269 - acc: 0.3043
Epoch 377/1000
- 0s - loss: 2.2250 - acc: 0.2609
Epoch 378/1000
- 0s - loss: 2.2243 - acc: 0.2609
Epoch 379/1000
- 0s - loss: 2.2222 - acc: 0.3043
Epoch 380/1000
- 0s - loss: 2.2212 - acc: 0.3043
Epoch 381/1000
- 0s - loss: 2.2201 - acc: 0.3043
Epoch 382/1000
- 0s - loss: 2.2192 - acc: 0.3043
Epoch 383/1000
- 0s - loss: 2.2177 - acc: 0.3043
Epoch 384/1000
- 0s - loss: 2.2157 - acc: 0.3043
Epoch 385/1000
- 0s - loss: 2.2140 - acc: 0.3043
Epoch 386/1000
- 0s - loss: 2.2137 - acc: 0.3043
Epoch 387/1000
- 0s - loss: 2.2126 - acc: 0.3043
Epoch 388/1000
- 0s - loss: 2.2108 - acc: 0.3043
Epoch 389/1000
- 0s - loss: 2.2098 - acc: 0.2609
Epoch 390/1000
- 0s - loss: 2.2087 - acc: 0.2609
Epoch 391/1000
- 0s - loss: 2.2071 - acc: 0.2609
Epoch 392/1000
- 0s - loss: 2.2063 - acc: 0.2609
Epoch 393/1000
- 0s - loss: 2.2051 - acc: 0.2609
Epoch 394/1000
- 0s - loss: 2.2039 - acc: 0.2609
Epoch 395/1000
- 0s - loss: 2.2025 - acc: 0.3043
Epoch 396/1000
- 0s - loss: 2.2014 - acc: 0.3043
Epoch 397/1000
- 0s - loss: 2.2003 - acc: 0.3043
Epoch 398/1000
- 0s - loss: 2.1987 - acc: 0.3043
Epoch 399/1000
- 0s - loss: 2.1975 - acc: 0.3043
Epoch 400/1000
- 0s - loss: 2.1964 - acc: 0.3043
Epoch 401/1000
- 0s - loss: 2.1952 - acc: 0.2609
Epoch 402/1000
- 0s - loss: 2.1939 - acc: 0.3478
Epoch 403/1000
- 0s - loss: 2.1931 - acc: 0.3478
Epoch 404/1000
- 0s - loss: 2.1917 - acc: 0.3478
Epoch 405/1000
- 0s - loss: 2.1909 - acc: 0.3478
Epoch 406/1000
- 0s - loss: 2.1889 - acc: 0.3913
Epoch 407/1000
- 0s - loss: 2.1872 - acc: 0.3913
Epoch 408/1000
- 0s - loss: 2.1864 - acc: 0.3913
Epoch 409/1000
- 0s - loss: 2.1855 - acc: 0.3478
Epoch 410/1000
- 0s - loss: 2.1845 - acc: 0.3478
Epoch 411/1000
- 0s - loss: 2.1833 - acc: 0.3043
Epoch 412/1000
- 0s - loss: 2.1818 - acc: 0.3043
Epoch 413/1000
- 0s - loss: 2.1809 - acc: 0.3913
Epoch 414/1000
- 0s - loss: 2.1793 - acc: 0.3913
Epoch 415/1000
- 0s - loss: 2.1783 - acc: 0.3913
Epoch 416/1000
- 0s - loss: 2.1774 - acc: 0.3913
Epoch 417/1000
- 0s - loss: 2.1760 - acc: 0.3478
Epoch 418/1000
- 0s - loss: 2.1748 - acc: 0.3478
Epoch 419/1000
- 0s - loss: 2.1728 - acc: 0.3913
Epoch 420/1000
- 0s - loss: 2.1720 - acc: 0.3913
Epoch 421/1000
- 0s - loss: 2.1710 - acc: 0.3913
Epoch 422/1000
- 0s - loss: 2.1697 - acc: 0.3478
Epoch 423/1000
- 0s - loss: 2.1691 - acc: 0.3043
Epoch 424/1000
- 0s - loss: 2.1683 - acc: 0.3043
Epoch 425/1000
- 0s - loss: 2.1665 - acc: 0.3043
Epoch 426/1000
- 0s - loss: 2.1649 - acc: 0.3043
Epoch 427/1000
- 0s - loss: 2.1638 - acc: 0.3043
Epoch 428/1000
- 0s - loss: 2.1636 - acc: 0.3043
Epoch 429/1000
- 0s - loss: 2.1616 - acc: 0.2609
Epoch 430/1000
- 0s - loss: 2.1613 - acc: 0.2609
Epoch 431/1000
- 0s - loss: 2.1594 - acc: 0.3043
Epoch 432/1000
- 0s - loss: 2.1583 - acc: 0.2609
Epoch 433/1000
- 0s - loss: 2.1577 - acc: 0.2609
Epoch 434/1000
- 0s - loss: 2.1565 - acc: 0.2609
Epoch 435/1000
- 0s - loss: 2.1548 - acc: 0.3478
Epoch 436/1000
- 0s - loss: 2.1540 - acc: 0.3478
Epoch 437/1000
- 0s - loss: 2.1530 - acc: 0.3043
Epoch 438/1000
- 0s - loss: 2.1516 - acc: 0.3043
Epoch 439/1000
- 0s - loss: 2.1507 - acc: 0.3043
Epoch 440/1000
- 0s - loss: 2.1492 - acc: 0.3043
Epoch 441/1000
- 0s - loss: 2.1482 - acc: 0.3478
Epoch 442/1000
- 0s - loss: 2.1472 - acc: 0.3043
Epoch 443/1000
- 0s - loss: 2.1463 - acc: 0.2609
Epoch 444/1000
- 0s - loss: 2.1451 - acc: 0.2609
Epoch 445/1000
- 0s - loss: 2.1442 - acc: 0.2609
Epoch 446/1000
- 0s - loss: 2.1427 - acc: 0.2609
Epoch 447/1000
- 0s - loss: 2.1419 - acc: 0.2609
Epoch 448/1000
- 0s - loss: 2.1408 - acc: 0.2609
Epoch 449/1000
- 0s - loss: 2.1398 - acc: 0.3043
Epoch 450/1000
- 0s - loss: 2.1390 - acc: 0.3043
Epoch 451/1000
- 0s - loss: 2.1379 - acc: 0.3043
Epoch 452/1000
- 0s - loss: 2.1373 - acc: 0.3478
Epoch 453/1000
- 0s - loss: 2.1356 - acc: 0.3478
Epoch 454/1000
- 0s - loss: 2.1344 - acc: 0.3478
Epoch 455/1000
- 0s - loss: 2.1334 - acc: 0.3478
Epoch 456/1000
- 0s - loss: 2.1323 - acc: 0.3478
Epoch 457/1000
- 0s - loss: 2.1311 - acc: 0.3478
Epoch 458/1000
- 0s - loss: 2.1303 - acc: 0.3478
Epoch 459/1000
- 0s - loss: 2.1290 - acc: 0.3913
Epoch 460/1000
- 0s - loss: 2.1290 - acc: 0.3913
Epoch 461/1000
- 0s - loss: 2.1275 - acc: 0.3913
Epoch 462/1000
- 0s - loss: 2.1268 - acc: 0.3913
Epoch 463/1000
- 0s - loss: 2.1254 - acc: 0.3913
Epoch 464/1000
- 0s - loss: 2.1248 - acc: 0.3478
Epoch 465/1000
- 0s - loss: 2.1233 - acc: 0.3478
Epoch 466/1000
- 0s - loss: 2.1217 - acc: 0.3478
Epoch 467/1000
- 0s - loss: 2.1209 - acc: 0.3478
Epoch 468/1000
- 0s - loss: 2.1197 - acc: 0.3478
Epoch 469/1000
- 0s - loss: 2.1190 - acc: 0.3478
Epoch 470/1000
- 0s - loss: 2.1176 - acc: 0.3478
Epoch 471/1000
- 0s - loss: 2.1166 - acc: 0.3478
Epoch 472/1000
- 0s - loss: 2.1158 - acc: 0.3913
Epoch 473/1000
- 0s - loss: 2.1149 - acc: 0.3913
Epoch 474/1000
- 0s - loss: 2.1135 - acc: 0.4348
Epoch 475/1000
- 0s - loss: 2.1131 - acc: 0.3913
Epoch 476/1000
- 0s - loss: 2.1111 - acc: 0.3478
Epoch 477/1000
- 0s - loss: 2.1099 - acc: 0.3478
Epoch 478/1000
- 0s - loss: 2.1093 - acc: 0.3478
Epoch 479/1000
- 0s - loss: 2.1085 - acc: 0.3478
Epoch 480/1000
- 0s - loss: 2.1074 - acc: 0.3478
Epoch 481/1000
- 0s - loss: 2.1064 - acc: 0.3478
Epoch 482/1000
- 0s - loss: 2.1057 - acc: 0.3478
Epoch 483/1000
- 0s - loss: 2.1044 - acc: 0.3478
Epoch 484/1000
- 0s - loss: 2.1031 - acc: 0.3478
Epoch 485/1000
- 0s - loss: 2.1026 - acc: 0.3478
Epoch 486/1000
- 0s - loss: 2.1018 - acc: 0.3478
Epoch 487/1000
*** WARNING: skipped 1250 bytes of output ***
- 0s - loss: 2.0758 - acc: 0.3478
Epoch 513/1000
- 0s - loss: 2.0741 - acc: 0.3478
Epoch 514/1000
- 0s - loss: 2.0739 - acc: 0.3478
Epoch 515/1000
- 0s - loss: 2.0735 - acc: 0.4348
Epoch 516/1000
- 0s - loss: 2.0723 - acc: 0.3478
Epoch 517/1000
- 0s - loss: 2.0711 - acc: 0.3913
Epoch 518/1000
- 0s - loss: 2.0699 - acc: 0.3478
Epoch 519/1000
- 0s - loss: 2.0691 - acc: 0.3913
Epoch 520/1000
- 0s - loss: 2.0681 - acc: 0.3913
Epoch 521/1000
- 0s - loss: 2.0679 - acc: 0.3913
Epoch 522/1000
- 0s - loss: 2.0664 - acc: 0.3913
Epoch 523/1000
- 0s - loss: 2.0655 - acc: 0.3913
Epoch 524/1000
- 0s - loss: 2.0643 - acc: 0.3913
Epoch 525/1000
- 0s - loss: 2.0632 - acc: 0.3478
Epoch 526/1000
- 0s - loss: 2.0621 - acc: 0.3913
Epoch 527/1000
- 0s - loss: 2.0618 - acc: 0.3478
Epoch 528/1000
- 0s - loss: 2.0610 - acc: 0.3478
Epoch 529/1000
- 0s - loss: 2.0601 - acc: 0.3478
Epoch 530/1000
- 0s - loss: 2.0585 - acc: 0.3478
Epoch 531/1000
- 0s - loss: 2.0578 - acc: 0.3913
Epoch 532/1000
- 0s - loss: 2.0568 - acc: 0.3913
Epoch 533/1000
- 0s - loss: 2.0561 - acc: 0.4348
Epoch 534/1000
- 0s - loss: 2.0554 - acc: 0.4783
Epoch 535/1000
- 0s - loss: 2.0546 - acc: 0.3913
Epoch 536/1000
- 0s - loss: 2.0535 - acc: 0.3913
Epoch 537/1000
- 0s - loss: 2.0527 - acc: 0.3913
Epoch 538/1000
- 0s - loss: 2.0520 - acc: 0.3913
Epoch 539/1000
- 0s - loss: 2.0507 - acc: 0.3913
Epoch 540/1000
- 0s - loss: 2.0493 - acc: 0.3913
Epoch 541/1000
- 0s - loss: 2.0489 - acc: 0.4783
Epoch 542/1000
- 0s - loss: 2.0478 - acc: 0.4783
Epoch 543/1000
- 0s - loss: 2.0464 - acc: 0.4783
Epoch 544/1000
- 0s - loss: 2.0468 - acc: 0.4783
Epoch 545/1000
- 0s - loss: 2.0455 - acc: 0.5217
Epoch 546/1000
- 0s - loss: 2.0441 - acc: 0.5652
Epoch 547/1000
- 0s - loss: 2.0431 - acc: 0.5652
Epoch 548/1000
- 0s - loss: 2.0423 - acc: 0.5652
Epoch 549/1000
- 0s - loss: 2.0412 - acc: 0.5652
Epoch 550/1000
- 0s - loss: 2.0405 - acc: 0.5652
Epoch 551/1000
- 0s - loss: 2.0399 - acc: 0.5217
Epoch 552/1000
- 0s - loss: 2.0390 - acc: 0.5217
Epoch 553/1000
- 0s - loss: 2.0379 - acc: 0.5217
Epoch 554/1000
- 0s - loss: 2.0372 - acc: 0.5217
Epoch 555/1000
- 0s - loss: 2.0367 - acc: 0.5217
Epoch 556/1000
- 0s - loss: 2.0357 - acc: 0.5217
Epoch 557/1000
- 0s - loss: 2.0351 - acc: 0.4783
Epoch 558/1000
- 0s - loss: 2.0340 - acc: 0.4783
Epoch 559/1000
- 0s - loss: 2.0329 - acc: 0.5652
Epoch 560/1000
- 0s - loss: 2.0324 - acc: 0.5652
Epoch 561/1000
- 0s - loss: 2.0316 - acc: 0.5217
Epoch 562/1000
- 0s - loss: 2.0308 - acc: 0.5217
Epoch 563/1000
- 0s - loss: 2.0296 - acc: 0.5217
Epoch 564/1000
- 0s - loss: 2.0288 - acc: 0.5217
Epoch 565/1000
- 0s - loss: 2.0272 - acc: 0.5217
Epoch 566/1000
- 0s - loss: 2.0271 - acc: 0.4783
Epoch 567/1000
- 0s - loss: 2.0262 - acc: 0.4348
Epoch 568/1000
- 0s - loss: 2.0248 - acc: 0.4348
Epoch 569/1000
- 0s - loss: 2.0243 - acc: 0.4783
Epoch 570/1000
- 0s - loss: 2.0235 - acc: 0.5217
Epoch 571/1000
- 0s - loss: 2.0224 - acc: 0.5217
Epoch 572/1000
- 0s - loss: 2.0214 - acc: 0.5217
Epoch 573/1000
- 0s - loss: 2.0212 - acc: 0.4783
Epoch 574/1000
- 0s - loss: 2.0197 - acc: 0.4783
Epoch 575/1000
- 0s - loss: 2.0192 - acc: 0.5217
Epoch 576/1000
- 0s - loss: 2.0186 - acc: 0.5217
Epoch 577/1000
- 0s - loss: 2.0175 - acc: 0.4783
Epoch 578/1000
- 0s - loss: 2.0164 - acc: 0.4783
Epoch 579/1000
- 0s - loss: 2.0155 - acc: 0.4348
Epoch 580/1000
- 0s - loss: 2.0142 - acc: 0.4348
Epoch 581/1000
- 0s - loss: 2.0139 - acc: 0.4783
Epoch 582/1000
- 0s - loss: 2.0128 - acc: 0.4783
Epoch 583/1000
- 0s - loss: 2.0121 - acc: 0.4783
Epoch 584/1000
- 0s - loss: 2.0109 - acc: 0.5217
Epoch 585/1000
- 0s - loss: 2.0109 - acc: 0.4783
Epoch 586/1000
- 0s - loss: 2.0092 - acc: 0.4783
Epoch 587/1000
- 0s - loss: 2.0086 - acc: 0.4348
Epoch 588/1000
- 0s - loss: 2.0086 - acc: 0.5217
Epoch 589/1000
- 0s - loss: 2.0069 - acc: 0.5217
Epoch 590/1000
- 0s - loss: 2.0059 - acc: 0.4783
Epoch 591/1000
- 0s - loss: 2.0048 - acc: 0.4783
Epoch 592/1000
- 0s - loss: 2.0052 - acc: 0.4348
Epoch 593/1000
- 0s - loss: 2.0037 - acc: 0.3913
Epoch 594/1000
- 0s - loss: 2.0030 - acc: 0.4348
Epoch 595/1000
- 0s - loss: 2.0018 - acc: 0.4348
Epoch 596/1000
- 0s - loss: 2.0010 - acc: 0.4348
Epoch 597/1000
- 0s - loss: 2.0008 - acc: 0.5217
Epoch 598/1000
- 0s - loss: 1.9992 - acc: 0.5217
Epoch 599/1000
- 0s - loss: 1.9989 - acc: 0.4783
Epoch 600/1000
- 0s - loss: 1.9977 - acc: 0.4348
Epoch 601/1000
- 0s - loss: 1.9977 - acc: 0.4783
Epoch 602/1000
- 0s - loss: 1.9965 - acc: 0.4783
Epoch 603/1000
- 0s - loss: 1.9963 - acc: 0.5217
Epoch 604/1000
- 0s - loss: 1.9944 - acc: 0.5217
Epoch 605/1000
- 0s - loss: 1.9944 - acc: 0.5217
Epoch 606/1000
- 0s - loss: 1.9932 - acc: 0.5217
Epoch 607/1000
- 0s - loss: 1.9923 - acc: 0.5652
Epoch 608/1000
- 0s - loss: 1.9916 - acc: 0.5652
Epoch 609/1000
- 0s - loss: 1.9903 - acc: 0.5217
Epoch 610/1000
- 0s - loss: 1.9894 - acc: 0.5652
Epoch 611/1000
- 0s - loss: 1.9904 - acc: 0.5652
Epoch 612/1000
- 0s - loss: 1.9887 - acc: 0.5217
Epoch 613/1000
- 0s - loss: 1.9882 - acc: 0.5217
Epoch 614/1000
- 0s - loss: 1.9866 - acc: 0.5652
Epoch 615/1000
- 0s - loss: 1.9864 - acc: 0.5652
Epoch 616/1000
- 0s - loss: 1.9860 - acc: 0.5652
Epoch 617/1000
- 0s - loss: 1.9850 - acc: 0.5652
Epoch 618/1000
- 0s - loss: 1.9840 - acc: 0.5652
Epoch 619/1000
- 0s - loss: 1.9833 - acc: 0.5652
Epoch 620/1000
- 0s - loss: 1.9828 - acc: 0.5652
Epoch 621/1000
- 0s - loss: 1.9816 - acc: 0.5652
Epoch 622/1000
- 0s - loss: 1.9811 - acc: 0.5217
Epoch 623/1000
- 0s - loss: 1.9803 - acc: 0.5652
Epoch 624/1000
- 0s - loss: 1.9790 - acc: 0.5217
Epoch 625/1000
- 0s - loss: 1.9780 - acc: 0.5217
Epoch 626/1000
- 0s - loss: 1.9784 - acc: 0.5217
Epoch 627/1000
- 0s - loss: 1.9765 - acc: 0.5217
Epoch 628/1000
- 0s - loss: 1.9759 - acc: 0.5217
Epoch 629/1000
- 0s - loss: 1.9754 - acc: 0.4783
Epoch 630/1000
- 0s - loss: 1.9745 - acc: 0.4783
Epoch 631/1000
- 0s - loss: 1.9744 - acc: 0.5217
Epoch 632/1000
- 0s - loss: 1.9726 - acc: 0.5217
Epoch 633/1000
- 0s - loss: 1.9718 - acc: 0.5217
Epoch 634/1000
- 0s - loss: 1.9712 - acc: 0.5217
Epoch 635/1000
- 0s - loss: 1.9702 - acc: 0.5217
Epoch 636/1000
- 0s - loss: 1.9701 - acc: 0.5217
Epoch 637/1000
- 0s - loss: 1.9690 - acc: 0.5217
Epoch 638/1000
- 0s - loss: 1.9686 - acc: 0.5217
Epoch 639/1000
- 0s - loss: 1.9680 - acc: 0.5652
Epoch 640/1000
- 0s - loss: 1.9667 - acc: 0.5217
Epoch 641/1000
- 0s - loss: 1.9663 - acc: 0.5217
Epoch 642/1000
- 0s - loss: 1.9652 - acc: 0.5652
Epoch 643/1000
- 0s - loss: 1.9646 - acc: 0.5652
Epoch 644/1000
- 0s - loss: 1.9638 - acc: 0.5217
Epoch 645/1000
- 0s - loss: 1.9632 - acc: 0.5652
Epoch 646/1000
- 0s - loss: 1.9622 - acc: 0.5652
Epoch 647/1000
- 0s - loss: 1.9619 - acc: 0.5652
Epoch 648/1000
- 0s - loss: 1.9605 - acc: 0.5652
Epoch 649/1000
- 0s - loss: 1.9607 - acc: 0.5217
Epoch 650/1000
- 0s - loss: 1.9586 - acc: 0.4783
Epoch 651/1000
- 0s - loss: 1.9589 - acc: 0.4783
Epoch 652/1000
- 0s - loss: 1.9573 - acc: 0.4348
Epoch 653/1000
- 0s - loss: 1.9573 - acc: 0.5217
Epoch 654/1000
- 0s - loss: 1.9571 - acc: 0.5217
Epoch 655/1000
- 0s - loss: 1.9556 - acc: 0.5652
Epoch 656/1000
- 0s - loss: 1.9545 - acc: 0.5217
Epoch 657/1000
- 0s - loss: 1.9543 - acc: 0.5217
Epoch 658/1000
- 0s - loss: 1.9543 - acc: 0.4783
Epoch 659/1000
- 0s - loss: 1.9529 - acc: 0.5652
Epoch 660/1000
- 0s - loss: 1.9521 - acc: 0.5652
Epoch 661/1000
- 0s - loss: 1.9511 - acc: 0.5217
Epoch 662/1000
- 0s - loss: 1.9504 - acc: 0.6087
Epoch 663/1000
- 0s - loss: 1.9493 - acc: 0.6087
Epoch 664/1000
- 0s - loss: 1.9492 - acc: 0.6087
Epoch 665/1000
- 0s - loss: 1.9488 - acc: 0.5652
Epoch 666/1000
- 0s - loss: 1.9474 - acc: 0.5217
Epoch 667/1000
- 0s - loss: 1.9467 - acc: 0.4783
Epoch 668/1000
- 0s - loss: 1.9457 - acc: 0.4783
Epoch 669/1000
- 0s - loss: 1.9451 - acc: 0.4783
Epoch 670/1000
- 0s - loss: 1.9440 - acc: 0.4783
Epoch 671/1000
- 0s - loss: 1.9443 - acc: 0.3913
Epoch 672/1000
- 0s - loss: 1.9431 - acc: 0.5217
Epoch 673/1000
- 0s - loss: 1.9421 - acc: 0.5217
Epoch 674/1000
- 0s - loss: 1.9412 - acc: 0.5217
Epoch 675/1000
- 0s - loss: 1.9410 - acc: 0.5217
Epoch 676/1000
- 0s - loss: 1.9401 - acc: 0.4783
Epoch 677/1000
- 0s - loss: 1.9392 - acc: 0.5217
Epoch 678/1000
- 0s - loss: 1.9390 - acc: 0.5652
Epoch 679/1000
- 0s - loss: 1.9385 - acc: 0.4783
Epoch 680/1000
- 0s - loss: 1.9369 - acc: 0.4783
Epoch 681/1000
- 0s - loss: 1.9367 - acc: 0.5217
Epoch 682/1000
- 0s - loss: 1.9356 - acc: 0.4783
Epoch 683/1000
- 0s - loss: 1.9348 - acc: 0.4348
Epoch 684/1000
- 0s - loss: 1.9347 - acc: 0.4783
Epoch 685/1000
- 0s - loss: 1.9337 - acc: 0.4783
Epoch 686/1000
- 0s - loss: 1.9332 - acc: 0.5217
Epoch 687/1000
- 0s - loss: 1.9322 - acc: 0.5217
Epoch 688/1000
- 0s - loss: 1.9316 - acc: 0.5217
Epoch 689/1000
- 0s - loss: 1.9304 - acc: 0.6087
Epoch 690/1000
- 0s - loss: 1.9302 - acc: 0.5652
Epoch 691/1000
- 0s - loss: 1.9303 - acc: 0.5652
Epoch 692/1000
- 0s - loss: 1.9289 - acc: 0.5217
Epoch 693/1000
- 0s - loss: 1.9283 - acc: 0.5217
Epoch 694/1000
- 0s - loss: 1.9279 - acc: 0.4783
Epoch 695/1000
- 0s - loss: 1.9264 - acc: 0.4783
Epoch 696/1000
- 0s - loss: 1.9262 - acc: 0.5217
Epoch 697/1000
- 0s - loss: 1.9251 - acc: 0.5217
Epoch 698/1000
- 0s - loss: 1.9245 - acc: 0.4783
Epoch 699/1000
- 0s - loss: 1.9236 - acc: 0.4783
Epoch 700/1000
- 0s - loss: 1.9231 - acc: 0.4783
Epoch 701/1000
- 0s - loss: 1.9227 - acc: 0.5217
Epoch 702/1000
- 0s - loss: 1.9214 - acc: 0.5217
Epoch 703/1000
- 0s - loss: 1.9203 - acc: 0.5217
Epoch 704/1000
- 0s - loss: 1.9208 - acc: 0.5217
Epoch 705/1000
- 0s - loss: 1.9194 - acc: 0.5217
Epoch 706/1000
- 0s - loss: 1.9194 - acc: 0.5217
Epoch 707/1000
- 0s - loss: 1.9185 - acc: 0.5217
Epoch 708/1000
- 0s - loss: 1.9172 - acc: 0.4783
Epoch 709/1000
- 0s - loss: 1.9171 - acc: 0.5217
Epoch 710/1000
- 0s - loss: 1.9154 - acc: 0.5652
Epoch 711/1000
- 0s - loss: 1.9153 - acc: 0.5652
Epoch 712/1000
- 0s - loss: 1.9151 - acc: 0.5652
Epoch 713/1000
- 0s - loss: 1.9141 - acc: 0.5652
Epoch 714/1000
- 0s - loss: 1.9139 - acc: 0.5652
Epoch 715/1000
- 0s - loss: 1.9134 - acc: 0.6087
Epoch 716/1000
- 0s - loss: 1.9132 - acc: 0.6087
Epoch 717/1000
- 0s - loss: 1.9114 - acc: 0.5652
Epoch 718/1000
- 0s - loss: 1.9112 - acc: 0.5652
Epoch 719/1000
- 0s - loss: 1.9106 - acc: 0.5652
Epoch 720/1000
- 0s - loss: 1.9098 - acc: 0.5217
Epoch 721/1000
- 0s - loss: 1.9093 - acc: 0.6087
Epoch 722/1000
- 0s - loss: 1.9093 - acc: 0.5217
Epoch 723/1000
- 0s - loss: 1.9075 - acc: 0.5217
Epoch 724/1000
- 0s - loss: 1.9066 - acc: 0.6087
Epoch 725/1000
- 0s - loss: 1.9064 - acc: 0.6087
Epoch 726/1000
- 0s - loss: 1.9062 - acc: 0.6087
Epoch 727/1000
- 0s - loss: 1.9051 - acc: 0.6522
Epoch 728/1000
- 0s - loss: 1.9043 - acc: 0.6522
Epoch 729/1000
- 0s - loss: 1.9032 - acc: 0.6522
Epoch 730/1000
- 0s - loss: 1.9031 - acc: 0.6522
Epoch 731/1000
- 0s - loss: 1.9023 - acc: 0.6522
Epoch 732/1000
- 0s - loss: 1.9012 - acc: 0.6522
Epoch 733/1000
- 0s - loss: 1.9008 - acc: 0.6087
Epoch 734/1000
- 0s - loss: 1.9000 - acc: 0.6087
Epoch 735/1000
- 0s - loss: 1.8994 - acc: 0.6522
Epoch 736/1000
- 0s - loss: 1.8992 - acc: 0.6522
Epoch 737/1000
- 0s - loss: 1.8985 - acc: 0.6522
Epoch 738/1000
- 0s - loss: 1.8976 - acc: 0.6522
Epoch 739/1000
- 0s - loss: 1.8973 - acc: 0.6087
Epoch 740/1000
- 0s - loss: 1.8952 - acc: 0.6087
Epoch 741/1000
- 0s - loss: 1.8955 - acc: 0.5652
Epoch 742/1000
- 0s - loss: 1.8949 - acc: 0.5217
Epoch 743/1000
- 0s - loss: 1.8940 - acc: 0.5217
Epoch 744/1000
- 0s - loss: 1.8938 - acc: 0.5217
Epoch 745/1000
- 0s - loss: 1.8930 - acc: 0.5217
Epoch 746/1000
- 0s - loss: 1.8921 - acc: 0.4783
Epoch 747/1000
- 0s - loss: 1.8921 - acc: 0.4783
Epoch 748/1000
- 0s - loss: 1.8911 - acc: 0.4783
Epoch 749/1000
- 0s - loss: 1.8902 - acc: 0.5217
Epoch 750/1000
- 0s - loss: 1.8893 - acc: 0.5652
Epoch 751/1000
- 0s - loss: 1.8895 - acc: 0.5652
Epoch 752/1000
- 0s - loss: 1.8886 - acc: 0.5652
Epoch 753/1000
- 0s - loss: 1.8882 - acc: 0.5652
Epoch 754/1000
- 0s - loss: 1.8871 - acc: 0.5652
Epoch 755/1000
- 0s - loss: 1.8872 - acc: 0.5652
Epoch 756/1000
- 0s - loss: 1.8865 - acc: 0.5652
Epoch 757/1000
- 0s - loss: 1.8859 - acc: 0.6087
Epoch 758/1000
- 0s - loss: 1.8841 - acc: 0.5652
Epoch 759/1000
- 0s - loss: 1.8840 - acc: 0.5217
Epoch 760/1000
- 0s - loss: 1.8832 - acc: 0.5217
Epoch 761/1000
- 0s - loss: 1.8830 - acc: 0.5217
Epoch 762/1000
- 0s - loss: 1.8814 - acc: 0.5217
Epoch 763/1000
- 0s - loss: 1.8818 - acc: 0.5217
Epoch 764/1000
- 0s - loss: 1.8811 - acc: 0.4783
Epoch 765/1000
- 0s - loss: 1.8808 - acc: 0.4783
Epoch 766/1000
- 0s - loss: 1.8803 - acc: 0.4783
Epoch 767/1000
- 0s - loss: 1.8791 - acc: 0.4783
Epoch 768/1000
- 0s - loss: 1.8785 - acc: 0.4783
Epoch 769/1000
- 0s - loss: 1.8778 - acc: 0.4783
Epoch 770/1000
- 0s - loss: 1.8767 - acc: 0.4783
Epoch 771/1000
- 0s - loss: 1.8768 - acc: 0.5217
Epoch 772/1000
- 0s - loss: 1.8763 - acc: 0.5217
Epoch 773/1000
- 0s - loss: 1.8758 - acc: 0.5652
Epoch 774/1000
- 0s - loss: 1.8746 - acc: 0.6087
Epoch 775/1000
- 0s - loss: 1.8738 - acc: 0.6087
Epoch 776/1000
- 0s - loss: 1.8737 - acc: 0.5652
Epoch 777/1000
- 0s - loss: 1.8731 - acc: 0.6087
Epoch 778/1000
- 0s - loss: 1.8720 - acc: 0.6087
Epoch 779/1000
- 0s - loss: 1.8718 - acc: 0.6087
Epoch 780/1000
- 0s - loss: 1.8712 - acc: 0.6522
Epoch 781/1000
- 0s - loss: 1.8703 - acc: 0.6087
Epoch 782/1000
- 0s - loss: 1.8698 - acc: 0.6522
Epoch 783/1000
- 0s - loss: 1.8688 - acc: 0.6522
Epoch 784/1000
- 0s - loss: 1.8681 - acc: 0.6522
Epoch 785/1000
- 0s - loss: 1.8677 - acc: 0.6522
Epoch 786/1000
- 0s - loss: 1.8668 - acc: 0.6522
Epoch 787/1000
- 0s - loss: 1.8661 - acc: 0.6522
Epoch 788/1000
- 0s - loss: 1.8653 - acc: 0.6522
Epoch 789/1000
- 0s - loss: 1.8651 - acc: 0.6522
Epoch 790/1000
- 0s - loss: 1.8649 - acc: 0.6087
Epoch 791/1000
- 0s - loss: 1.8644 - acc: 0.6087
Epoch 792/1000
- 0s - loss: 1.8628 - acc: 0.6522
Epoch 793/1000
- 0s - loss: 1.8625 - acc: 0.6522
Epoch 794/1000
- 0s - loss: 1.8624 - acc: 0.6087
Epoch 795/1000
- 0s - loss: 1.8621 - acc: 0.5652
Epoch 796/1000
- 0s - loss: 1.8610 - acc: 0.5217
Epoch 797/1000
- 0s - loss: 1.8601 - acc: 0.5652
Epoch 798/1000
- 0s - loss: 1.8592 - acc: 0.5217
Epoch 799/1000
- 0s - loss: 1.8583 - acc: 0.5652
Epoch 800/1000
- 0s - loss: 1.8575 - acc: 0.5652
Epoch 801/1000
- 0s - loss: 1.8568 - acc: 0.6087
Epoch 802/1000
- 0s - loss: 1.8575 - acc: 0.6087
Epoch 803/1000
- 0s - loss: 1.8568 - acc: 0.5652
Epoch 804/1000
- 0s - loss: 1.8560 - acc: 0.5652
Epoch 805/1000
- 0s - loss: 1.8554 - acc: 0.5652
Epoch 806/1000
- 0s - loss: 1.8547 - acc: 0.5652
Epoch 807/1000
- 0s - loss: 1.8549 - acc: 0.5217
Epoch 808/1000
- 0s - loss: 1.8532 - acc: 0.5217
Epoch 809/1000
- 0s - loss: 1.8533 - acc: 0.5652
Epoch 810/1000
- 0s - loss: 1.8526 - acc: 0.5217
Epoch 811/1000
- 0s - loss: 1.8517 - acc: 0.5217
Epoch 812/1000
- 0s - loss: 1.8509 - acc: 0.6087
Epoch 813/1000
- 0s - loss: 1.8508 - acc: 0.6087
Epoch 814/1000
- 0s - loss: 1.8507 - acc: 0.6087
Epoch 815/1000
- 0s - loss: 1.8493 - acc: 0.6522
Epoch 816/1000
- 0s - loss: 1.8486 - acc: 0.6087
Epoch 817/1000
- 0s - loss: 1.8482 - acc: 0.6087
Epoch 818/1000
- 0s - loss: 1.8471 - acc: 0.6087
Epoch 819/1000
- 0s - loss: 1.8472 - acc: 0.6522
Epoch 820/1000
- 0s - loss: 1.8463 - acc: 0.6522
Epoch 821/1000
- 0s - loss: 1.8453 - acc: 0.6957
Epoch 822/1000
- 0s - loss: 1.8462 - acc: 0.6957
Epoch 823/1000
- 0s - loss: 1.8444 - acc: 0.6957
Epoch 824/1000
- 0s - loss: 1.8432 - acc: 0.6522
Epoch 825/1000
- 0s - loss: 1.8428 - acc: 0.6522
Epoch 826/1000
- 0s - loss: 1.8431 - acc: 0.5217
Epoch 827/1000
- 0s - loss: 1.8427 - acc: 0.5217
Epoch 828/1000
- 0s - loss: 1.8416 - acc: 0.5652
Epoch 829/1000
- 0s - loss: 1.8404 - acc: 0.6087
Epoch 830/1000
- 0s - loss: 1.8397 - acc: 0.6087
Epoch 831/1000
- 0s - loss: 1.8404 - acc: 0.6087
Epoch 832/1000
- 0s - loss: 1.8392 - acc: 0.6087
Epoch 833/1000
- 0s - loss: 1.8382 - acc: 0.6522
Epoch 834/1000
- 0s - loss: 1.8382 - acc: 0.6087
Epoch 835/1000
- 0s - loss: 1.8373 - acc: 0.6522
Epoch 836/1000
- 0s - loss: 1.8370 - acc: 0.6087
Epoch 837/1000
- 0s - loss: 1.8364 - acc: 0.6087
Epoch 838/1000
- 0s - loss: 1.8356 - acc: 0.5652
Epoch 839/1000
- 0s - loss: 1.8356 - acc: 0.6087
Epoch 840/1000
- 0s - loss: 1.8341 - acc: 0.6522
Epoch 841/1000
- 0s - loss: 1.8336 - acc: 0.6522
Epoch 842/1000
- 0s - loss: 1.8339 - acc: 0.5652
Epoch 843/1000
- 0s - loss: 1.8329 - acc: 0.5652
Epoch 844/1000
- 0s - loss: 1.8320 - acc: 0.5652
Epoch 845/1000
- 0s - loss: 1.8314 - acc: 0.6087
Epoch 846/1000
- 0s - loss: 1.8317 - acc: 0.5652
Epoch 847/1000
- 0s - loss: 1.8308 - acc: 0.6087
Epoch 848/1000
- 0s - loss: 1.8296 - acc: 0.5652
Epoch 849/1000
- 0s - loss: 1.8292 - acc: 0.5652
Epoch 850/1000
- 0s - loss: 1.8291 - acc: 0.5217
Epoch 851/1000
- 0s - loss: 1.8282 - acc: 0.5652
Epoch 852/1000
- 0s - loss: 1.8274 - acc: 0.5652
Epoch 853/1000
- 0s - loss: 1.8273 - acc: 0.5217
Epoch 854/1000
- 0s - loss: 1.8261 - acc: 0.5217
Epoch 855/1000
- 0s - loss: 1.8251 - acc: 0.5217
Epoch 856/1000
- 0s - loss: 1.8253 - acc: 0.5652
Epoch 857/1000
- 0s - loss: 1.8255 - acc: 0.5652
Epoch 858/1000
- 0s - loss: 1.8241 - acc: 0.5217
Epoch 859/1000
- 0s - loss: 1.8241 - acc: 0.5652
Epoch 860/1000
- 0s - loss: 1.8235 - acc: 0.5217
Epoch 861/1000
- 0s - loss: 1.8231 - acc: 0.5652
Epoch 862/1000
- 0s - loss: 1.8218 - acc: 0.6522
Epoch 863/1000
- 0s - loss: 1.8218 - acc: 0.6087
Epoch 864/1000
- 0s - loss: 1.8212 - acc: 0.5652
Epoch 865/1000
- 0s - loss: 1.8201 - acc: 0.6522
Epoch 866/1000
- 0s - loss: 1.8199 - acc: 0.6522
Epoch 867/1000
- 0s - loss: 1.8194 - acc: 0.6087
Epoch 868/1000
- 0s - loss: 1.8191 - acc: 0.6087
Epoch 869/1000
- 0s - loss: 1.8187 - acc: 0.6087
Epoch 870/1000
- 0s - loss: 1.8175 - acc: 0.5652
Epoch 871/1000
- 0s - loss: 1.8171 - acc: 0.5217
Epoch 872/1000
- 0s - loss: 1.8171 - acc: 0.5217
Epoch 873/1000
- 0s - loss: 1.8157 - acc: 0.4783
Epoch 874/1000
- 0s - loss: 1.8148 - acc: 0.5652
Epoch 875/1000
- 0s - loss: 1.8137 - acc: 0.5652
Epoch 876/1000
- 0s - loss: 1.8136 - acc: 0.6522
Epoch 877/1000
- 0s - loss: 1.8134 - acc: 0.6522
Epoch 878/1000
- 0s - loss: 1.8133 - acc: 0.7391
Epoch 879/1000
- 0s - loss: 1.8125 - acc: 0.6957
Epoch 880/1000
- 0s - loss: 1.8116 - acc: 0.6522
Epoch 881/1000
- 0s - loss: 1.8112 - acc: 0.6522
Epoch 882/1000
- 0s - loss: 1.8099 - acc: 0.6957
Epoch 883/1000
- 0s - loss: 1.8102 - acc: 0.6522
Epoch 884/1000
- 0s - loss: 1.8099 - acc: 0.6522
Epoch 885/1000
- 0s - loss: 1.8087 - acc: 0.6522
Epoch 886/1000
- 0s - loss: 1.8087 - acc: 0.5652
Epoch 887/1000
- 0s - loss: 1.8071 - acc: 0.5652
Epoch 888/1000
- 0s - loss: 1.8074 - acc: 0.5652
Epoch 889/1000
- 0s - loss: 1.8069 - acc: 0.5652
Epoch 890/1000
- 0s - loss: 1.8064 - acc: 0.6087
Epoch 891/1000
- 0s - loss: 1.8054 - acc: 0.6087
Epoch 892/1000
- 0s - loss: 1.8052 - acc: 0.6087
Epoch 893/1000
- 0s - loss: 1.8042 - acc: 0.6522
Epoch 894/1000
- 0s - loss: 1.8048 - acc: 0.6087
Epoch 895/1000
- 0s - loss: 1.8033 - acc: 0.6087
Epoch 896/1000
- 0s - loss: 1.8028 - acc: 0.5652
Epoch 897/1000
- 0s - loss: 1.8021 - acc: 0.6087
Epoch 898/1000
- 0s - loss: 1.8022 - acc: 0.5652
Epoch 899/1000
- 0s - loss: 1.8022 - acc: 0.5652
Epoch 900/1000
- 0s - loss: 1.8014 - acc: 0.5652
Epoch 901/1000
- 0s - loss: 1.8007 - acc: 0.5652
Epoch 902/1000
- 0s - loss: 1.7994 - acc: 0.5652
Epoch 903/1000
- 0s - loss: 1.7994 - acc: 0.5652
Epoch 904/1000
- 0s - loss: 1.7984 - acc: 0.6087
Epoch 905/1000
- 0s - loss: 1.7982 - acc: 0.6522
Epoch 906/1000
- 0s - loss: 1.7973 - acc: 0.6087
Epoch 907/1000
- 0s - loss: 1.7978 - acc: 0.6087
Epoch 908/1000
- 0s - loss: 1.7968 - acc: 0.6087
Epoch 909/1000
- 0s - loss: 1.7964 - acc: 0.6087
Epoch 910/1000
- 0s - loss: 1.7956 - acc: 0.5652
Epoch 911/1000
- 0s - loss: 1.7947 - acc: 0.5652
Epoch 912/1000
- 0s - loss: 1.7943 - acc: 0.6087
Epoch 913/1000
- 0s - loss: 1.7944 - acc: 0.6087
Epoch 914/1000
- 0s - loss: 1.7934 - acc: 0.5652
Epoch 915/1000
- 0s - loss: 1.7927 - acc: 0.6087
Epoch 916/1000
- 0s - loss: 1.7922 - acc: 0.6087
Epoch 917/1000
- 0s - loss: 1.7919 - acc: 0.6087
Epoch 918/1000
- 0s - loss: 1.7909 - acc: 0.6087
Epoch 919/1000
- 0s - loss: 1.7913 - acc: 0.5217
Epoch 920/1000
- 0s - loss: 1.7903 - acc: 0.6087
Epoch 921/1000
- 0s - loss: 1.7897 - acc: 0.6087
Epoch 922/1000
- 0s - loss: 1.7886 - acc: 0.6087
Epoch 923/1000
- 0s - loss: 1.7891 - acc: 0.6087
Epoch 924/1000
- 0s - loss: 1.7870 - acc: 0.6522
Epoch 925/1000
- 0s - loss: 1.7870 - acc: 0.6522
Epoch 926/1000
- 0s - loss: 1.7861 - acc: 0.6522
Epoch 927/1000
- 0s - loss: 1.7861 - acc: 0.6957
Epoch 928/1000
- 0s - loss: 1.7856 - acc: 0.6957
Epoch 929/1000
- 0s - loss: 1.7852 - acc: 0.6522
Epoch 930/1000
- 0s - loss: 1.7856 - acc: 0.6522
Epoch 931/1000
- 0s - loss: 1.7840 - acc: 0.6522
Epoch 932/1000
- 0s - loss: 1.7840 - acc: 0.6957
Epoch 933/1000
- 0s - loss: 1.7834 - acc: 0.6957
Epoch 934/1000
- 0s - loss: 1.7832 - acc: 0.6522
Epoch 935/1000
- 0s - loss: 1.7822 - acc: 0.6957
Epoch 936/1000
- 0s - loss: 1.7821 - acc: 0.6522
Epoch 937/1000
- 0s - loss: 1.7808 - acc: 0.6522
Epoch 938/1000
- 0s - loss: 1.7805 - acc: 0.6522
Epoch 939/1000
- 0s - loss: 1.7796 - acc: 0.7391
Epoch 940/1000
- 0s - loss: 1.7790 - acc: 0.7391
Epoch 941/1000
- 0s - loss: 1.7787 - acc: 0.6522
Epoch 942/1000
- 0s - loss: 1.7784 - acc: 0.7391
Epoch 943/1000
- 0s - loss: 1.7779 - acc: 0.6957
Epoch 944/1000
- 0s - loss: 1.7772 - acc: 0.6957
Epoch 945/1000
- 0s - loss: 1.7769 - acc: 0.6957
Epoch 946/1000
- 0s - loss: 1.7760 - acc: 0.6522
Epoch 947/1000
- 0s - loss: 1.7766 - acc: 0.6957
Epoch 948/1000
- 0s - loss: 1.7749 - acc: 0.6522
Epoch 949/1000
- 0s - loss: 1.7745 - acc: 0.6522
Epoch 950/1000
- 0s - loss: 1.7748 - acc: 0.6957
Epoch 951/1000
- 0s - loss: 1.7730 - acc: 0.6522
Epoch 952/1000
- 0s - loss: 1.7734 - acc: 0.5652
Epoch 953/1000
- 0s - loss: 1.7725 - acc: 0.6087
Epoch 954/1000
- 0s - loss: 1.7718 - acc: 0.6087
Epoch 955/1000
- 0s - loss: 1.7728 - acc: 0.6087
Epoch 956/1000
- 0s - loss: 1.7713 - acc: 0.6087
Epoch 957/1000
- 0s - loss: 1.7707 - acc: 0.5652
Epoch 958/1000
- 0s - loss: 1.7706 - acc: 0.6087
Epoch 959/1000
- 0s - loss: 1.7696 - acc: 0.6522
Epoch 960/1000
- 0s - loss: 1.7690 - acc: 0.6087
Epoch 961/1000
- 0s - loss: 1.7688 - acc: 0.5652
Epoch 962/1000
- 0s - loss: 1.7673 - acc: 0.6522
Epoch 963/1000
- 0s - loss: 1.7678 - acc: 0.6087
Epoch 964/1000
- 0s - loss: 1.7671 - acc: 0.6087
Epoch 965/1000
- 0s - loss: 1.7667 - acc: 0.5652
Epoch 966/1000
- 0s - loss: 1.7664 - acc: 0.5217
Epoch 967/1000
- 0s - loss: 1.7659 - acc: 0.5652
Epoch 968/1000
- 0s - loss: 1.7644 - acc: 0.6087
Epoch 969/1000
- 0s - loss: 1.7646 - acc: 0.6087
Epoch 970/1000
- 0s - loss: 1.7644 - acc: 0.6087
Epoch 971/1000
- 0s - loss: 1.7636 - acc: 0.6522
Epoch 972/1000
- 0s - loss: 1.7639 - acc: 0.6522
Epoch 973/1000
- 0s - loss: 1.7617 - acc: 0.6957
Epoch 974/1000
- 0s - loss: 1.7617 - acc: 0.6522
Epoch 975/1000
- 0s - loss: 1.7611 - acc: 0.6087
Epoch 976/1000
- 0s - loss: 1.7614 - acc: 0.6087
Epoch 977/1000
- 0s - loss: 1.7602 - acc: 0.6957
Epoch 978/1000
- 0s - loss: 1.7605 - acc: 0.6957
Epoch 979/1000
- 0s - loss: 1.7598 - acc: 0.6522
Epoch 980/1000
- 0s - loss: 1.7588 - acc: 0.6522
Epoch 981/1000
- 0s - loss: 1.7583 - acc: 0.6522
Epoch 982/1000
- 0s - loss: 1.7577 - acc: 0.6522
Epoch 983/1000
- 0s - loss: 1.7579 - acc: 0.6087
Epoch 984/1000
- 0s - loss: 1.7574 - acc: 0.6087
Epoch 985/1000
- 0s - loss: 1.7561 - acc: 0.6522
Epoch 986/1000
- 0s - loss: 1.7561 - acc: 0.6522
Epoch 987/1000
- 0s - loss: 1.7550 - acc: 0.6087
Epoch 988/1000
- 0s - loss: 1.7547 - acc: 0.5652
Epoch 989/1000
- 0s - loss: 1.7539 - acc: 0.6087
Epoch 990/1000
- 0s - loss: 1.7542 - acc: 0.6087
Epoch 991/1000
- 0s - loss: 1.7530 - acc: 0.6522
Epoch 992/1000
- 0s - loss: 1.7538 - acc: 0.6087
Epoch 993/1000
- 0s - loss: 1.7528 - acc: 0.6087
Epoch 994/1000
- 0s - loss: 1.7521 - acc: 0.6087
Epoch 995/1000
- 0s - loss: 1.7516 - acc: 0.6522
Epoch 996/1000
- 0s - loss: 1.7516 - acc: 0.6522
Epoch 997/1000
- 0s - loss: 1.7500 - acc: 0.6957
Epoch 998/1000
- 0s - loss: 1.7493 - acc: 0.6522
Epoch 999/1000
- 0s - loss: 1.7490 - acc: 0.6957
Epoch 1000/1000
- 0s - loss: 1.7488 - acc: 0.6522
23/23 [==============================] - 0s 9ms/step
Model Accuracy: 0.70
['A', 'B', 'C'] -> D
['B', 'C', 'D'] -> E
['C', 'D', 'E'] -> F
['D', 'E', 'F'] -> G
['E', 'F', 'G'] -> H
['F', 'G', 'H'] -> I
['G', 'H', 'I'] -> J
['H', 'I', 'J'] -> K
['I', 'J', 'K'] -> L
['J', 'K', 'L'] -> L
['K', 'L', 'M'] -> N
['L', 'M', 'N'] -> O
['M', 'N', 'O'] -> Q
['N', 'O', 'P'] -> Q
['O', 'P', 'Q'] -> R
['P', 'Q', 'R'] -> T
['Q', 'R', 'S'] -> T
['R', 'S', 'T'] -> V
['S', 'T', 'U'] -> V
['T', 'U', 'V'] -> X
['U', 'V', 'W'] -> Z
['V', 'W', 'X'] -> Z
['W', 'X', 'Y'] -> Z
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print (seq_in, '->', seq_out)
# reshape X to be .......[samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
X = X / float(len(alphabet))
y = np_utils.to_categorical(dataY)
# Let’s define an LSTM network with 32 units and an output layer with a softmax activation function for making predictions.
# a naive implementation of LSTM
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2]))) # <- LSTM layer...
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=400, batch_size=1, verbose=2)
scores = model.evaluate(X, y)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print (seq_in, "->", result)
ABC -> D
BCD -> E
CDE -> F
DEF -> G
EFG -> H
FGH -> I
GHI -> J
HIJ -> K
IJK -> L
JKL -> M
KLM -> N
LMN -> O
MNO -> P
NOP -> Q
OPQ -> R
PQR -> S
QRS -> T
RST -> U
STU -> V
TUV -> W
UVW -> X
VWX -> Y
WXY -> Z
Epoch 1/400
- 4s - loss: 3.2653 - acc: 0.0000e+00
Epoch 2/400
- 0s - loss: 3.2498 - acc: 0.0000e+00
Epoch 3/400
- 0s - loss: 3.2411 - acc: 0.0000e+00
Epoch 4/400
- 0s - loss: 3.2330 - acc: 0.0435
Epoch 5/400
- 0s - loss: 3.2242 - acc: 0.0435
Epoch 6/400
- 0s - loss: 3.2152 - acc: 0.0435
Epoch 7/400
- 0s - loss: 3.2046 - acc: 0.0435
Epoch 8/400
- 0s - loss: 3.1946 - acc: 0.0435
Epoch 9/400
- 0s - loss: 3.1835 - acc: 0.0435
Epoch 10/400
- 0s - loss: 3.1720 - acc: 0.0435
Epoch 11/400
- 0s - loss: 3.1583 - acc: 0.0435
Epoch 12/400
- 0s - loss: 3.1464 - acc: 0.0435
Epoch 13/400
- 0s - loss: 3.1316 - acc: 0.0435
Epoch 14/400
- 0s - loss: 3.1176 - acc: 0.0435
Epoch 15/400
- 0s - loss: 3.1036 - acc: 0.0435
Epoch 16/400
- 0s - loss: 3.0906 - acc: 0.0435
Epoch 17/400
- 0s - loss: 3.0775 - acc: 0.0435
Epoch 18/400
- 0s - loss: 3.0652 - acc: 0.0435
Epoch 19/400
- 0s - loss: 3.0515 - acc: 0.0435
Epoch 20/400
- 0s - loss: 3.0388 - acc: 0.0435
Epoch 21/400
- 0s - loss: 3.0213 - acc: 0.0435
Epoch 22/400
- 0s - loss: 3.0044 - acc: 0.0435
Epoch 23/400
- 0s - loss: 2.9900 - acc: 0.1304
Epoch 24/400
- 0s - loss: 2.9682 - acc: 0.0870
Epoch 25/400
- 0s - loss: 2.9448 - acc: 0.0870
Epoch 26/400
- 0s - loss: 2.9237 - acc: 0.0870
Epoch 27/400
- 0s - loss: 2.8948 - acc: 0.0870
Epoch 28/400
- 0s - loss: 2.8681 - acc: 0.0870
Epoch 29/400
- 0s - loss: 2.8377 - acc: 0.0435
Epoch 30/400
- 0s - loss: 2.8008 - acc: 0.0870
Epoch 31/400
- 0s - loss: 2.7691 - acc: 0.0435
Epoch 32/400
- 0s - loss: 2.7268 - acc: 0.0870
Epoch 33/400
- 0s - loss: 2.6963 - acc: 0.0870
Epoch 34/400
- 0s - loss: 2.6602 - acc: 0.0870
Epoch 35/400
- 0s - loss: 2.6285 - acc: 0.1304
Epoch 36/400
- 0s - loss: 2.5979 - acc: 0.0870
Epoch 37/400
- 0s - loss: 2.5701 - acc: 0.1304
Epoch 38/400
- 0s - loss: 2.5443 - acc: 0.0870
Epoch 39/400
- 0s - loss: 2.5176 - acc: 0.0870
Epoch 40/400
- 0s - loss: 2.4962 - acc: 0.0870
Epoch 41/400
- 0s - loss: 2.4737 - acc: 0.0870
Epoch 42/400
- 0s - loss: 2.4496 - acc: 0.1739
Epoch 43/400
- 0s - loss: 2.4295 - acc: 0.1304
Epoch 44/400
- 0s - loss: 2.4045 - acc: 0.1739
Epoch 45/400
- 0s - loss: 2.3876 - acc: 0.1739
Epoch 46/400
- 0s - loss: 2.3671 - acc: 0.1739
Epoch 47/400
- 0s - loss: 2.3512 - acc: 0.1739
Epoch 48/400
- 0s - loss: 2.3301 - acc: 0.1739
Epoch 49/400
- 0s - loss: 2.3083 - acc: 0.1739
Epoch 50/400
- 0s - loss: 2.2833 - acc: 0.1739
Epoch 51/400
- 0s - loss: 2.2715 - acc: 0.1739
Epoch 52/400
- 0s - loss: 2.2451 - acc: 0.2174
Epoch 53/400
- 0s - loss: 2.2219 - acc: 0.2174
Epoch 54/400
- 0s - loss: 2.2025 - acc: 0.1304
Epoch 55/400
- 0s - loss: 2.1868 - acc: 0.2174
Epoch 56/400
- 0s - loss: 2.1606 - acc: 0.2174
Epoch 57/400
- 0s - loss: 2.1392 - acc: 0.2609
Epoch 58/400
- 0s - loss: 2.1255 - acc: 0.1739
Epoch 59/400
- 0s - loss: 2.1084 - acc: 0.2609
Epoch 60/400
- 0s - loss: 2.0835 - acc: 0.2609
Epoch 61/400
- 0s - loss: 2.0728 - acc: 0.2609
Epoch 62/400
- 0s - loss: 2.0531 - acc: 0.2174
Epoch 63/400
- 0s - loss: 2.0257 - acc: 0.2174
Epoch 64/400
- 0s - loss: 2.0192 - acc: 0.2174
Epoch 65/400
- 0s - loss: 1.9978 - acc: 0.2609
Epoch 66/400
- 0s - loss: 1.9792 - acc: 0.1304
Epoch 67/400
- 0s - loss: 1.9655 - acc: 0.3478
Epoch 68/400
- 0s - loss: 1.9523 - acc: 0.2609
Epoch 69/400
- 0s - loss: 1.9402 - acc: 0.2609
Epoch 70/400
- 0s - loss: 1.9220 - acc: 0.3043
Epoch 71/400
- 0s - loss: 1.9075 - acc: 0.2609
Epoch 72/400
- 0s - loss: 1.8899 - acc: 0.3913
Epoch 73/400
- 0s - loss: 1.8829 - acc: 0.3043
Epoch 74/400
- 0s - loss: 1.8569 - acc: 0.2174
Epoch 75/400
- 0s - loss: 1.8435 - acc: 0.3043
Epoch 76/400
- 0s - loss: 1.8361 - acc: 0.3043
Epoch 77/400
- 0s - loss: 1.8228 - acc: 0.3478
Epoch 78/400
- 0s - loss: 1.8145 - acc: 0.3043
Epoch 79/400
- 0s - loss: 1.7982 - acc: 0.3913
Epoch 80/400
- 0s - loss: 1.7836 - acc: 0.3913
Epoch 81/400
- 0s - loss: 1.7795 - acc: 0.4348
Epoch 82/400
- 0s - loss: 1.7646 - acc: 0.4783
Epoch 83/400
- 0s - loss: 1.7487 - acc: 0.4348
Epoch 84/400
- 0s - loss: 1.7348 - acc: 0.4348
Epoch 85/400
- 0s - loss: 1.7249 - acc: 0.5217
Epoch 86/400
- 0s - loss: 1.7153 - acc: 0.4348
Epoch 87/400
- 0s - loss: 1.7095 - acc: 0.4348
Epoch 88/400
- 0s - loss: 1.6938 - acc: 0.4348
Epoch 89/400
- 0s - loss: 1.6849 - acc: 0.5217
Epoch 90/400
- 0s - loss: 1.6712 - acc: 0.4348
Epoch 91/400
- 0s - loss: 1.6617 - acc: 0.5652
Epoch 92/400
- 0s - loss: 1.6531 - acc: 0.4348
Epoch 93/400
- 0s - loss: 1.6459 - acc: 0.5217
Epoch 94/400
- 0s - loss: 1.6341 - acc: 0.4783
Epoch 95/400
- 0s - loss: 1.6289 - acc: 0.5652
Epoch 96/400
- 0s - loss: 1.6138 - acc: 0.4783
Epoch 97/400
- 0s - loss: 1.6042 - acc: 0.4348
Epoch 98/400
- 0s - loss: 1.5907 - acc: 0.5652
Epoch 99/400
- 0s - loss: 1.5868 - acc: 0.4783
Epoch 100/400
- 0s - loss: 1.5756 - acc: 0.5217
Epoch 101/400
- 0s - loss: 1.5681 - acc: 0.5652
Epoch 102/400
- 0s - loss: 1.5582 - acc: 0.5652
Epoch 103/400
- 0s - loss: 1.5478 - acc: 0.6087
Epoch 104/400
- 0s - loss: 1.5375 - acc: 0.6087
Epoch 105/400
- 0s - loss: 1.5340 - acc: 0.6522
Epoch 106/400
- 0s - loss: 1.5175 - acc: 0.6522
Epoch 107/400
- 0s - loss: 1.5127 - acc: 0.5652
Epoch 108/400
- 0s - loss: 1.5207 - acc: 0.5652
Epoch 109/400
- 0s - loss: 1.5064 - acc: 0.5652
Epoch 110/400
- 0s - loss: 1.4968 - acc: 0.5652
Epoch 111/400
- 0s - loss: 1.4843 - acc: 0.6522
Epoch 112/400
- 0s - loss: 1.4806 - acc: 0.5217
Epoch 113/400
- 0s - loss: 1.4702 - acc: 0.7826
Epoch 114/400
- 0s - loss: 1.4555 - acc: 0.6957
Epoch 115/400
- 0s - loss: 1.4459 - acc: 0.6087
Epoch 116/400
- 0s - loss: 1.4542 - acc: 0.6522
Epoch 117/400
- 0s - loss: 1.4375 - acc: 0.7391
Epoch 118/400
- 0s - loss: 1.4328 - acc: 0.7391
Epoch 119/400
- 0s - loss: 1.4338 - acc: 0.7826
Epoch 120/400
- 0s - loss: 1.4155 - acc: 0.6087
Epoch 121/400
- 0s - loss: 1.4043 - acc: 0.6957
Epoch 122/400
- 0s - loss: 1.4009 - acc: 0.7391
Epoch 123/400
- 0s - loss: 1.3980 - acc: 0.7391
Epoch 124/400
- 0s - loss: 1.3869 - acc: 0.6957
Epoch 125/400
- 0s - loss: 1.3837 - acc: 0.6522
Epoch 126/400
- 0s - loss: 1.3753 - acc: 0.7826
Epoch 127/400
- 0s - loss: 1.3670 - acc: 0.7391
Epoch 128/400
- 0s - loss: 1.3586 - acc: 0.7826
Epoch 129/400
- 0s - loss: 1.3564 - acc: 0.6957
Epoch 130/400
- 0s - loss: 1.3448 - acc: 0.6957
Epoch 131/400
- 0s - loss: 1.3371 - acc: 0.8261
Epoch 132/400
- 0s - loss: 1.3330 - acc: 0.6957
Epoch 133/400
- 0s - loss: 1.3353 - acc: 0.6957
Epoch 134/400
- 0s - loss: 1.3239 - acc: 0.7391
Epoch 135/400
- 0s - loss: 1.3152 - acc: 0.8696
Epoch 136/400
- 0s - loss: 1.3186 - acc: 0.7391
Epoch 137/400
- 0s - loss: 1.3026 - acc: 0.8261
Epoch 138/400
- 0s - loss: 1.2946 - acc: 0.8696
Epoch 139/400
- 0s - loss: 1.2903 - acc: 0.7826
Epoch 140/400
- 0s - loss: 1.2894 - acc: 0.7391
Epoch 141/400
- 0s - loss: 1.2887 - acc: 0.7826
Epoch 142/400
- 0s - loss: 1.2733 - acc: 0.7826
Epoch 143/400
- 0s - loss: 1.2709 - acc: 0.7826
Epoch 144/400
- 0s - loss: 1.2638 - acc: 0.7826
Epoch 145/400
- 0s - loss: 1.2636 - acc: 0.8261
Epoch 146/400
- 0s - loss: 1.2513 - acc: 0.8261
Epoch 147/400
- 0s - loss: 1.2459 - acc: 0.7826
Epoch 148/400
- 0s - loss: 1.2422 - acc: 0.8696
Epoch 149/400
- 0s - loss: 1.2354 - acc: 0.8696
Epoch 150/400
- 0s - loss: 1.2265 - acc: 0.7826
Epoch 151/400
- 0s - loss: 1.2295 - acc: 0.8696
Epoch 152/400
- 0s - loss: 1.2192 - acc: 0.8696
Epoch 153/400
- 0s - loss: 1.2146 - acc: 0.8261
Epoch 154/400
- 0s - loss: 1.2152 - acc: 0.7826
Epoch 155/400
- 0s - loss: 1.2052 - acc: 0.7826
Epoch 156/400
- 0s - loss: 1.1943 - acc: 0.9565
Epoch 157/400
- 0s - loss: 1.1902 - acc: 0.8696
Epoch 158/400
- 0s - loss: 1.1877 - acc: 0.8696
Epoch 159/400
- 0s - loss: 1.1822 - acc: 0.8696
Epoch 160/400
- 0s - loss: 1.1718 - acc: 0.8261
Epoch 161/400
- 0s - loss: 1.1740 - acc: 0.8696
Epoch 162/400
- 0s - loss: 1.1696 - acc: 0.8696
Epoch 163/400
- 0s - loss: 1.1593 - acc: 0.8261
Epoch 164/400
- 0s - loss: 1.1580 - acc: 0.8696
Epoch 165/400
- 0s - loss: 1.1519 - acc: 0.9130
Epoch 166/400
- 0s - loss: 1.1453 - acc: 0.8696
Epoch 167/400
- 0s - loss: 1.1479 - acc: 0.7826
Epoch 168/400
- 0s - loss: 1.1391 - acc: 0.7826
Epoch 169/400
- 0s - loss: 1.1348 - acc: 0.8261
Epoch 170/400
- 0s - loss: 1.1261 - acc: 0.8696
Epoch 171/400
- 0s - loss: 1.1268 - acc: 0.8261
Epoch 172/400
- 0s - loss: 1.1216 - acc: 0.7826
Epoch 173/400
- 0s - loss: 1.1119 - acc: 0.9130
Epoch 174/400
- 0s - loss: 1.1071 - acc: 0.9130
Epoch 175/400
- 0s - loss: 1.0984 - acc: 0.9130
Epoch 176/400
- 0s - loss: 1.0921 - acc: 0.9565
Epoch 177/400
- 0s - loss: 1.0938 - acc: 0.8696
Epoch 178/400
- 0s - loss: 1.0904 - acc: 0.8261
Epoch 179/400
- 0s - loss: 1.0905 - acc: 0.8696
Epoch 180/400
- 0s - loss: 1.0749 - acc: 0.9565
Epoch 181/400
- 0s - loss: 1.0749 - acc: 0.8261
Epoch 182/400
- 0s - loss: 1.0705 - acc: 0.9130
Epoch 183/400
- 0s - loss: 1.0686 - acc: 0.8696
Epoch 184/400
- 0s - loss: 1.0553 - acc: 0.9130
Epoch 185/400
- 0s - loss: 1.0552 - acc: 0.8696
Epoch 186/400
- 0s - loss: 1.0593 - acc: 0.9130
Epoch 187/400
- 0s - loss: 1.0508 - acc: 0.8261
Epoch 188/400
- 0s - loss: 1.0453 - acc: 0.8696
Epoch 189/400
- 0s - loss: 1.0394 - acc: 0.9565
Epoch 190/400
- 0s - loss: 1.0272 - acc: 0.9130
Epoch 191/400
- 0s - loss: 1.0385 - acc: 0.9130
Epoch 192/400
- 0s - loss: 1.0257 - acc: 0.8696
Epoch 193/400
- 0s - loss: 1.0218 - acc: 0.8696
Epoch 194/400
- 0s - loss: 1.0193 - acc: 0.9565
Epoch 195/400
- 0s - loss: 1.0195 - acc: 0.9130
Epoch 196/400
- 0s - loss: 1.0137 - acc: 0.9130
Epoch 197/400
- 0s - loss: 1.0050 - acc: 0.8696
Epoch 198/400
- 0s - loss: 0.9985 - acc: 0.9130
Epoch 199/400
- 0s - loss: 1.0016 - acc: 0.9565
Epoch 200/400
- 0s - loss: 0.9917 - acc: 0.8696
Epoch 201/400
- 0s - loss: 0.9952 - acc: 0.9130
Epoch 202/400
- 0s - loss: 0.9823 - acc: 0.9130
Epoch 203/400
- 0s - loss: 0.9765 - acc: 0.9565
Epoch 204/400
- 0s - loss: 0.9722 - acc: 0.9565
Epoch 205/400
- 0s - loss: 0.9756 - acc: 0.9130
Epoch 206/400
- 0s - loss: 0.9733 - acc: 0.9130
Epoch 207/400
- 0s - loss: 0.9768 - acc: 0.8261
Epoch 208/400
- 0s - loss: 0.9611 - acc: 0.9565
Epoch 209/400
- 0s - loss: 0.9548 - acc: 0.9565
Epoch 210/400
- 0s - loss: 0.9530 - acc: 0.8696
Epoch 211/400
- 0s - loss: 0.9481 - acc: 0.8696
Epoch 212/400
- 0s - loss: 0.9436 - acc: 0.9130
Epoch 213/400
- 0s - loss: 0.9435 - acc: 0.8696
Epoch 214/400
- 0s - loss: 0.9430 - acc: 0.9130
Epoch 215/400
- 0s - loss: 0.9281 - acc: 0.9130
Epoch 216/400
- 0s - loss: 0.9267 - acc: 0.9565
Epoch 217/400
- 0s - loss: 0.9263 - acc: 0.9130
Epoch 218/400
- 0s - loss: 0.9180 - acc: 0.9565
Epoch 219/400
- 0s - loss: 0.9151 - acc: 0.9565
Epoch 220/400
- 0s - loss: 0.9125 - acc: 0.9130
Epoch 221/400
- 0s - loss: 0.9090 - acc: 0.8696
Epoch 222/400
- 0s - loss: 0.9039 - acc: 0.9565
Epoch 223/400
- 0s - loss: 0.9032 - acc: 0.9565
Epoch 224/400
- 0s - loss: 0.8966 - acc: 0.9130
Epoch 225/400
- 0s - loss: 0.8935 - acc: 0.9130
Epoch 226/400
- 0s - loss: 0.8946 - acc: 0.9130
Epoch 227/400
- 0s - loss: 0.8875 - acc: 0.9130
Epoch 228/400
- 0s - loss: 0.8872 - acc: 0.9565
Epoch 229/400
- 0s - loss: 0.8758 - acc: 0.9130
Epoch 230/400
- 0s - loss: 0.8746 - acc: 0.9565
Epoch 231/400
- 0s - loss: 0.8720 - acc: 0.9565
Epoch 232/400
- 0s - loss: 0.8724 - acc: 0.9130
Epoch 233/400
- 0s - loss: 0.8626 - acc: 0.9130
Epoch 234/400
- 0s - loss: 0.8615 - acc: 0.9130
Epoch 235/400
- 0s - loss: 0.8623 - acc: 0.9130
Epoch 236/400
- 0s - loss: 0.8575 - acc: 0.9565
Epoch 237/400
- 0s - loss: 0.8543 - acc: 0.9565
Epoch 238/400
- 0s - loss: 0.8498 - acc: 0.9565
Epoch 239/400
- 0s - loss: 0.8391 - acc: 0.9565
Epoch 240/400
- 0s - loss: 0.8426 - acc: 0.9130
Epoch 241/400
- 0s - loss: 0.8361 - acc: 0.8696
Epoch 242/400
- 0s - loss: 0.8354 - acc: 0.9130
Epoch 243/400
- 0s - loss: 0.8280 - acc: 0.9565
Epoch 244/400
- 0s - loss: 0.8233 - acc: 0.9130
Epoch 245/400
- 0s - loss: 0.8176 - acc: 0.9130
Epoch 246/400
- 0s - loss: 0.8149 - acc: 0.9565
Epoch 247/400
- 0s - loss: 0.8064 - acc: 0.9565
Epoch 248/400
- 0s - loss: 0.8156 - acc: 0.9565
Epoch 249/400
- 0s - loss: 0.8049 - acc: 0.9565
Epoch 250/400
- 0s - loss: 0.8014 - acc: 0.9565
Epoch 251/400
- 0s - loss: 0.7945 - acc: 0.9565
Epoch 252/400
- 0s - loss: 0.7918 - acc: 0.9565
Epoch 253/400
- 0s - loss: 0.7897 - acc: 0.9565
Epoch 254/400
- 0s - loss: 0.7859 - acc: 0.9565
Epoch 255/400
- 0s - loss: 0.7810 - acc: 0.9565
Epoch 256/400
- 0s - loss: 0.7760 - acc: 0.9565
Epoch 257/400
- 0s - loss: 0.7822 - acc: 0.9130
Epoch 258/400
- 0s - loss: 0.7783 - acc: 0.9565
Epoch 259/400
- 0s - loss: 0.7672 - acc: 0.9565
Epoch 260/400
- 0s - loss: 0.7705 - acc: 0.9565
Epoch 261/400
- 0s - loss: 0.7659 - acc: 0.9565
Epoch 262/400
- 0s - loss: 0.7604 - acc: 0.9565
Epoch 263/400
- 0s - loss: 0.7585 - acc: 0.9565
Epoch 264/400
- 0s - loss: 0.7564 - acc: 0.9565
Epoch 265/400
- 0s - loss: 0.7527 - acc: 0.9565
Epoch 266/400
- 0s - loss: 0.7418 - acc: 0.9565
Epoch 267/400
- 0s - loss: 0.7425 - acc: 0.9565
Epoch 268/400
- 0s - loss: 0.7351 - acc: 0.9565
Epoch 269/400
- 0s - loss: 0.7425 - acc: 0.9565
Epoch 270/400
- 0s - loss: 0.7334 - acc: 0.9565
Epoch 271/400
- 0s - loss: 0.7315 - acc: 0.9565
Epoch 272/400
- 0s - loss: 0.7305 - acc: 0.9565
Epoch 273/400
- 0s - loss: 0.7183 - acc: 0.9565
Epoch 274/400
- 0s - loss: 0.7198 - acc: 0.9565
Epoch 275/400
- 0s - loss: 0.7197 - acc: 1.0000
Epoch 276/400
- 0s - loss: 0.7125 - acc: 0.9565
Epoch 277/400
- 0s - loss: 0.7105 - acc: 1.0000
Epoch 278/400
- 0s - loss: 0.7074 - acc: 0.9565
Epoch 279/400
- 0s - loss: 0.7033 - acc: 0.9565
Epoch 280/400
- 0s - loss: 0.6993 - acc: 0.9565
Epoch 281/400
- 0s - loss: 0.6954 - acc: 0.9565
Epoch 282/400
- 0s - loss: 0.6952 - acc: 0.9565
Epoch 283/400
- 0s - loss: 0.6964 - acc: 0.9565
Epoch 284/400
- 0s - loss: 0.6862 - acc: 0.9565
Epoch 285/400
- 0s - loss: 0.6928 - acc: 0.9565
Epoch 286/400
- 0s - loss: 0.6861 - acc: 0.9565
Epoch 287/400
- 0s - loss: 0.6760 - acc: 0.9565
Epoch 288/400
- 0s - loss: 0.6756 - acc: 0.9565
Epoch 289/400
- 0s - loss: 0.6821 - acc: 0.9565
Epoch 290/400
- 0s - loss: 0.6716 - acc: 0.9565
Epoch 291/400
- 0s - loss: 0.6671 - acc: 0.9565
Epoch 292/400
- 0s - loss: 0.6652 - acc: 0.9565
Epoch 293/400
- 0s - loss: 0.6594 - acc: 1.0000
Epoch 294/400
- 0s - loss: 0.6568 - acc: 1.0000
Epoch 295/400
- 0s - loss: 0.6503 - acc: 1.0000
Epoch 296/400
- 0s - loss: 0.6498 - acc: 1.0000
Epoch 297/400
- 0s - loss: 0.6441 - acc: 0.9565
Epoch 298/400
- 0s - loss: 0.6420 - acc: 0.9565
Epoch 299/400
- 0s - loss: 0.6418 - acc: 0.9565
Epoch 300/400
- 0s - loss: 0.6375 - acc: 0.9565
Epoch 301/400
- 0s - loss: 0.6368 - acc: 0.9565
Epoch 302/400
- 0s - loss: 0.6328 - acc: 0.9565
Epoch 303/400
- 0s - loss: 0.6341 - acc: 0.9565
Epoch 304/400
- 0s - loss: 0.6246 - acc: 0.9565
Epoch 305/400
- 0s - loss: 0.6265 - acc: 0.9565
Epoch 306/400
- 0s - loss: 0.6285 - acc: 0.9565
Epoch 307/400
- 0s - loss: 0.6145 - acc: 0.9565
Epoch 308/400
- 0s - loss: 0.6174 - acc: 0.9565
Epoch 309/400
- 0s - loss: 0.6137 - acc: 0.9565
Epoch 310/400
- 0s - loss: 0.6069 - acc: 0.9565
Epoch 311/400
- 0s - loss: 0.6028 - acc: 0.9565
Epoch 312/400
- 0s - loss: 0.6075 - acc: 0.9565
Epoch 313/400
- 0s - loss: 0.6018 - acc: 0.9565
Epoch 314/400
- 0s - loss: 0.5959 - acc: 1.0000
Epoch 315/400
- 0s - loss: 0.6004 - acc: 1.0000
Epoch 316/400
- 0s - loss: 0.6125 - acc: 0.9565
Epoch 317/400
- 0s - loss: 0.5984 - acc: 0.9565
Epoch 318/400
- 0s - loss: 0.5873 - acc: 1.0000
Epoch 319/400
- 0s - loss: 0.5860 - acc: 0.9565
Epoch 320/400
- 0s - loss: 0.5847 - acc: 1.0000
Epoch 321/400
- 0s - loss: 0.5752 - acc: 1.0000
Epoch 322/400
- 0s - loss: 0.5766 - acc: 0.9565
Epoch 323/400
- 0s - loss: 0.5750 - acc: 0.9565
Epoch 324/400
- 0s - loss: 0.5716 - acc: 0.9565
Epoch 325/400
- 0s - loss: 0.5647 - acc: 0.9565
Epoch 326/400
- 0s - loss: 0.5655 - acc: 1.0000
Epoch 327/400
- 0s - loss: 0.5665 - acc: 0.9565
Epoch 328/400
- 0s - loss: 0.5564 - acc: 0.9565
Epoch 329/400
- 0s - loss: 0.5576 - acc: 0.9565
Epoch 330/400
- 0s - loss: 0.5532 - acc: 0.9565
Epoch 331/400
- 0s - loss: 0.5512 - acc: 1.0000
Epoch 332/400
- 0s - loss: 0.5471 - acc: 1.0000
Epoch 333/400
- 0s - loss: 0.5410 - acc: 0.9565
Epoch 334/400
- 0s - loss: 0.5383 - acc: 0.9565
Epoch 335/400
- 0s - loss: 0.5384 - acc: 0.9565
Epoch 336/400
- 0s - loss: 0.5364 - acc: 1.0000
Epoch 337/400
- 0s - loss: 0.5335 - acc: 1.0000
Epoch 338/400
- 0s - loss: 0.5356 - acc: 1.0000
Epoch 339/400
- 0s - loss: 0.5265 - acc: 0.9565
Epoch 340/400
- 0s - loss: 0.5293 - acc: 1.0000
Epoch 341/400
- 0s - loss: 0.5185 - acc: 1.0000
Epoch 342/400
- 0s - loss: 0.5173 - acc: 1.0000
Epoch 343/400
- 0s - loss: 0.5162 - acc: 0.9565
Epoch 344/400
- 0s - loss: 0.5161 - acc: 0.9565
Epoch 345/400
- 0s - loss: 0.5190 - acc: 0.9565
Epoch 346/400
- 0s - loss: 0.5180 - acc: 1.0000
Epoch 347/400
- 0s - loss: 0.5265 - acc: 0.9565
Epoch 348/400
- 0s - loss: 0.5096 - acc: 1.0000
Epoch 349/400
- 0s - loss: 0.5038 - acc: 1.0000
Epoch 350/400
- 0s - loss: 0.4985 - acc: 0.9565
Epoch 351/400
- 0s - loss: 0.5008 - acc: 1.0000
Epoch 352/400
- 0s - loss: 0.4996 - acc: 1.0000
Epoch 353/400
- 0s - loss: 0.4922 - acc: 1.0000
Epoch 354/400
- 0s - loss: 0.4895 - acc: 0.9565
Epoch 355/400
- 0s - loss: 0.4833 - acc: 0.9565
Epoch 356/400
- 0s - loss: 0.4889 - acc: 1.0000
Epoch 357/400
- 0s - loss: 0.4822 - acc: 0.9565
Epoch 358/400
- 0s - loss: 0.4850 - acc: 0.9565
Epoch 359/400
- 0s - loss: 0.4770 - acc: 1.0000
Epoch 360/400
- 0s - loss: 0.4741 - acc: 1.0000
Epoch 361/400
- 0s - loss: 0.4734 - acc: 0.9565
Epoch 362/400
- 0s - loss: 0.4705 - acc: 0.9565
Epoch 363/400
- 0s - loss: 0.4677 - acc: 0.9565
Epoch 364/400
- 0s - loss: 0.4648 - acc: 1.0000
Epoch 365/400
- 0s - loss: 0.4643 - acc: 1.0000
Epoch 366/400
- 0s - loss: 0.4612 - acc: 0.9565
Epoch 367/400
- 0s - loss: 0.4572 - acc: 1.0000
Epoch 368/400
- 0s - loss: 0.4559 - acc: 1.0000
Epoch 369/400
- 0s - loss: 0.4512 - acc: 1.0000
Epoch 370/400
- 0s - loss: 0.4534 - acc: 1.0000
Epoch 371/400
- 0s - loss: 0.4496 - acc: 1.0000
Epoch 372/400
- 0s - loss: 0.4516 - acc: 0.9565
Epoch 373/400
- 0s - loss: 0.4449 - acc: 1.0000
Epoch 374/400
- 0s - loss: 0.4391 - acc: 1.0000
Epoch 375/400
- 0s - loss: 0.4428 - acc: 0.9565
Epoch 376/400
- 0s - loss: 0.4387 - acc: 0.9565
Epoch 377/400
- 0s - loss: 0.4451 - acc: 1.0000
Epoch 378/400
- 0s - loss: 0.4336 - acc: 1.0000
Epoch 379/400
- 0s - loss: 0.4297 - acc: 1.0000
Epoch 380/400
- 0s - loss: 0.4264 - acc: 0.9565
Epoch 381/400
- 0s - loss: 0.4266 - acc: 1.0000
Epoch 382/400
- 0s - loss: 0.4333 - acc: 0.9565
Epoch 383/400
- 0s - loss: 0.4325 - acc: 1.0000
Epoch 384/400
- 0s - loss: 0.4246 - acc: 1.0000
Epoch 385/400
- 0s - loss: 0.4169 - acc: 1.0000
Epoch 386/400
- 0s - loss: 0.4133 - acc: 1.0000
Epoch 387/400
- 0s - loss: 0.4156 - acc: 1.0000
Epoch 388/400
- 0s - loss: 0.4162 - acc: 1.0000
Epoch 389/400
- 0s - loss: 0.4086 - acc: 1.0000
Epoch 390/400
- 0s - loss: 0.4061 - acc: 1.0000
Epoch 391/400
- 0s - loss: 0.4045 - acc: 1.0000
Epoch 392/400
- 0s - loss: 0.4058 - acc: 0.9565
Epoch 393/400
- 0s - loss: 0.3974 - acc: 1.0000
Epoch 394/400
- 0s - loss: 0.3964 - acc: 1.0000
Epoch 395/400
- 0s - loss: 0.3930 - acc: 1.0000
Epoch 396/400
- 0s - loss: 0.3981 - acc: 1.0000
Epoch 397/400
- 0s - loss: 0.3871 - acc: 1.0000
Epoch 398/400
- 0s - loss: 0.3853 - acc: 1.0000
Epoch 399/400
- 0s - loss: 0.3805 - acc: 1.0000
Epoch 400/400
- 0s - loss: 0.3810 - acc: 1.0000
23/23 [==============================] - 1s 33ms/step
Model Accuracy: 100.00%
['A', 'B', 'C'] -> D
['B', 'C', 'D'] -> E
['C', 'D', 'E'] -> F
['D', 'E', 'F'] -> G
['E', 'F', 'G'] -> H
['F', 'G', 'H'] -> I
['G', 'H', 'I'] -> J
['H', 'I', 'J'] -> K
['I', 'J', 'K'] -> L
['J', 'K', 'L'] -> M
['K', 'L', 'M'] -> N
['L', 'M', 'N'] -> O
['M', 'N', 'O'] -> P
['N', 'O', 'P'] -> Q
['O', 'P', 'Q'] -> R
['P', 'Q', 'R'] -> S
['Q', 'R', 'S'] -> T
['R', 'S', 'T'] -> U
['S', 'T', 'U'] -> V
['T', 'U', 'V'] -> W
['U', 'V', 'W'] -> X
['V', 'W', 'X'] -> Y
['W', 'X', 'Y'] -> Z
ScaDaMaLe Course site and book
This is a 2019-2021 augmentation and update of Adam Breindel's initial notebooks.
Thanks to Christian von Koch and William Anzén for their contributions towards making these materials Spark 3.0.1 and Python 3+ compliant.
Please feel free to refer to basic concepts here: