Introduction to Spark SQL
- This notebook explains the motivation behind Spark SQL, one of Spark's main libraries built on top of Spark Core.
- It introduces interactive SparkSQL queries and visualizations
- This notebook uses content from Databricks SparkSQL notebook and SparkSQL programming guide
Some core resources on Spark SQL
- READ: https://people.csail.mit.edu/matei/papers/2015/sigmodsparksql.pdf
- Bookmark: https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql.html
Some other resources on SQL and Spark SQL
- https://en.wikipedia.org/wiki/SQL
- https://en.wikipedia.org/wiki/Apache_Hive
- http://www.infoq.com/articles/apache-spark-sql
- https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
- https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
Some of them are embedded below in-place for your convenience.
displayHTML(frameIt("https://en.wikipedia.org/wiki/Apache_Hive#HiveQL",175))
This is an elaboration of the Apache Spark latest sql-progamming-guide.
Overview
Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally, Spark SQL uses this extra information to perform extra optimizations. There are several ways to interact with Spark SQL including SQL and the Dataset API. When computing a result the same execution engine is used, independent of which API/language you are using to express the computation. This unification means that developers can easily switch back and forth between different APIs based on which provides the most natural way to express a given transformation.
All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell, pyspark shell, or sparkR shell.
Datasets and DataFrames
A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map, flatMap, filter, etc.). The Dataset API is available in Scala and Java. Python does not have the support for the Dataset API. But due to Python’s dynamic nature, many of the benefits of the Dataset API are already available (i.e. you can access the field of a row by name naturally row.columnName
). The case for R is similar.
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of Rows. In the Scala API, DataFrame is simply a type alias of Dataset[Row]. While, in Java API, users need to use Dataset<Row>
to represent a DataFrame.
Throughout this document, we will often refer to Scala/Java Datasets of Rows
as DataFrames.
Getting Started in Spark
Starting Point: SparkSession
The entry point into all functionality in Spark is the SparkSession. To create a basic SparkSession in your scala Spark code, just use SparkSession.builder()
:
import org.apache.spark.sql.SparkSession
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
Conveniently, in Databricks notebook (similar to spark-shell
) SparkSession
is already created for you and is available as spark
.
spark // ready-made Spark-Session
res2: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@cc46118
Creating DataFrames
With a SparkSession
or SQLContext
, applications can create DataFrame
- from an existing
RDD
, - from a Hive table, or
- from various other data sources.
Just to recap:
- A DataFrame is a distributed collection of data organized into named columns (it is not strogly typed).
- You can think of it as being organized into table RDD of case class
Row
(which is not exactly true). - DataFrames, in comparison to RDDs, are backed by rich optimizations, including:
- tracking their own schema,
- adaptive query execution,
- code generation including whole stage codegen,
- extensible Catalyst optimizer, and
- project Tungsten for optimized storage.
Note that performance for DataFrames is the same across languages Scala, Java, Python, and R. This is due to the fact that the only planning phase is language-specific (logical + physical SQL plan), not the actual execution of the SQL plan.
DataFrame Basics
1. An empty DataFrame
2. DataFrame from a range
3. DataFrame from an RDD
4. DataFrame Operations (aka Untyped Dataset Operations)
5. Running SQL Queries Programmatically
6. Creating Datasets
1. Making an empty DataFrame
Spark has some of the pre-built methods to create simple DataFrames
- let us make an Empty DataFrame
val emptyDF = spark.emptyDataFrame // Ctrl+Enter to make an empty DataFrame
emptyDF: org.apache.spark.sql.DataFrame = []
Not really interesting, or is it?
You Try!
Uncomment the following cell, put your cursor after emptyDF.
below and hit Tab to see what can be done with emptyDF
.
//emptyDF.
2. Making a DataFrame from a range
Let us make a DataFrame next
- from a range of numbers, as follows:
val rangeDF = spark.range(0, 3).toDF() // Ctrl+Enter to make DataFrame with 0,1,2
// sc.parallelize(1 to 3).toDF()
rangeDF: org.apache.spark.sql.DataFrame = [id: bigint]
Note that Spark automatically names column as id
and casts integers to type bigint
for big integer or Long.
In order to get a preview of data in DataFrame use show()
as follows:
rangeDF.show() // Ctrl+Enter
+---+
| id|
+---+
| 0|
| 1|
| 2|
+---+
3. Making a DataFrame from an RDD
- Make an RDD
- Conver the RDD into a DataFrame using the defualt
.toDF()
method - Conver the RDD into a DataFrame using the non-default
.toDF(...)
method - Do it all in one line
Let's first make an RDD using the sc.parallelize
method, transform it by a map
and perform the collect
action to display it, as follows:
val rdd1 = sc.parallelize(1 to 5).map(i => (i, i*2))
rdd1.collect() // Ctrl+Enter
rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[171] at map at command-2971213210277924:1
res7: Array[(Int, Int)] = Array((1,2), (2,4), (3,6), (4,8), (5,10))
Next, let us convert the RDD into DataFrame using the .toDF()
method, as follows:
val df1 = rdd1.toDF() // Ctrl+Enter
df1: org.apache.spark.sql.DataFrame = [_1: int, _2: int]
As it is clear, the DataFrame has columns named _1
and _2
, each of type int
. Let us see its content using the .show()
method next.
df1.show() // Ctrl+Enter
+---+---+
| _1| _2|
+---+---+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+---+---+
Note that by default, i.e. without specifying any options as in toDF()
, the column names are given by _1
and _2
.
We can easily specify column names as follows:
val df1 = rdd1.toDF("once", "twice") // Ctrl+Enter
df1.show()
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
df1: org.apache.spark.sql.DataFrame = [once: int, twice: int]
Of course, we can do all of the above steps to make the DataFrame df1
in one line and then show it, as follows:
val df1 = sc.parallelize(1 to 5)
.map(i => (i, i*2))
.toDF("once", "twice") //Ctrl+enter
df1.show()
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
df1: org.apache.spark.sql.DataFrame = [once: int, twice: int]
4. DataFrame Operations (aka Untyped Dataset Operations)
DataFrames provide a domain-specific language for structured data manipulation in Scala, Java, Python and R.
As mentioned above, in Spark 2.0, DataFrames are just Dataset of Rows in Scala and Java API. These operations are also referred as “untyped transformations” in contrast to “typed transformations” come with strongly typed Scala/Java Datasets.
Here we include some basic examples of structured data processing using Datasets:
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df1.printSchema()
root
|-- once: integer (nullable = false)
|-- twice: integer (nullable = false)
import spark.implicits._
// Select only the "name" column
df1.select("once").show()
+----+
|once|
+----+
| 1|
| 2|
| 3|
| 4|
| 5|
+----+
// Select both columns, but increment the double column by 1
df1.select($"once", $"once" + 1).show()
+----+----------+
|once|(once + 1)|
+----+----------+
| 1| 2|
| 2| 3|
| 3| 4|
| 4| 5|
| 5| 6|
+----+----------+
// Select both columns, but increment the double column by 1 and rename it as "oncemore"
df1.select($"once", ($"once" * 1).as("oncemore")).show()
+----+--------+
|once|oncemore|
+----+--------+
| 1| 1|
| 2| 2|
| 3| 3|
| 4| 4|
| 5| 5|
+----+--------+
df1.filter($"once" > 2).show()
+----+-----+
|once|twice|
+----+-----+
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
// Count the number of distinct singles - a bit boring
df1.groupBy("once").count().show()
+----+-----+
|once|count|
+----+-----+
| 1| 1|
| 2| 1|
| 3| 1|
| 5| 1|
| 4| 1|
+----+-----+
Let's make a more interesting DataFrame for groupBy
with repeated elements so that the count
will be more than 1
.
df1.show()
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
val df11 = sc.parallelize(3 to 5).map(i => (i, i*2)).toDF("once", "twice") // just make a small one
df11.show()
+----+-----+
|once|twice|
+----+-----+
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
df11: org.apache.spark.sql.DataFrame = [once: int, twice: int]
val df111 = df1.union(df11) // let's take the unionAll of df1 and df11 into df111
df111.show() // df111 is obtained by simply appending the rows of df11 to df1
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
df111: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [once: int, twice: int]
// Count the number of distinct singles - a bit less boring
df111.groupBy("once").count().show()
+----+-----+
|once|count|
+----+-----+
| 1| 1|
| 2| 1|
| 3| 2|
| 5| 2|
| 4| 2|
+----+-----+
For a complete list of the types of operations that can be performed on a Dataset refer to the API Documentation.
In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
You Try!
Uncomment the two lines in the next cell, and then fill in the ???
below to get a DataFrame df2
whose first two columns are the same as df1
and whose third column named triple has values that are three times the values in the first column.
//val df2 = sc.parallelize(1 to 5).map(i => (i, i*2, i????)).toDF("single", "double", "triple") // Ctrl+enter after editing ???
//df2.show()
5. Running SQL Queries Programmatically
The sql
function on a SparkSession
enables applications to run SQL queries programmatically and returns the result as a DataFrame
.
df1
res27: org.apache.spark.sql.DataFrame = [once: int, twice: int]
// Register the DataFrame as a SQL temporary view
df1.createOrReplaceTempView("sdtable")
val sqlDF = spark.sql("SELECT * FROM sdtable")
sqlDF.show()
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
sqlDF: org.apache.spark.sql.DataFrame = [once: int, twice: int]
spark.sql("SELECT * FROM SDTable WHERE once>2").show()
+----+-----+
|once|twice|
+----+-----+
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
SELECT * FROM SDTable WHERE once>2
once | twice |
---|---|
3.0 | 6.0 |
4.0 | 8.0 |
5.0 | 10.0 |
5. Using SQL for interactively querying a table is very powerful!
Note -- comments
are how you add comments
in SQL cells beginning with %sql
.
- You can run SQL
select *
statement to see all columns of the table, as follows:- This is equivalent to the above `display(diamondsDF)' with the DataFrame
-- Ctrl+Enter to select all columns of the table
select * from SDTable
once | twice |
---|---|
1.0 | 2.0 |
2.0 | 4.0 |
3.0 | 6.0 |
4.0 | 8.0 |
5.0 | 10.0 |
-- Ctrl+Enter to select all columns of the table
-- note table names of registered tables are case-insensitive
select * from sdtable
once | twice |
---|---|
1.0 | 2.0 |
2.0 | 4.0 |
3.0 | 6.0 |
4.0 | 8.0 |
5.0 | 10.0 |
Global Temporary View
Temporary views in Spark SQL are session-scoped and will disappear if the session that creates it terminates. If you want to have a temporary view that is shared among all sessions and keep alive until the Spark application terminates, you can create a global temporary view. Global temporary view is tied to a system preserved database global_temp
, and we must use the qualified name to refer it, e.g. SELECT * FROM global_temp.view1
. See http://spark.apache.org/docs/latest/sql-programming-guide.html#global-temporary-view for details.
- Creating Datasets
Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized Encoder to serialize the objects for processing or transmitting over the network. While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object.
val rangeDS = spark.range(0, 3) // Ctrl+Enter to make DataSet with 0,1,2; Note we added '.toDF()' to this to create a DataFrame
rangeDS: org.apache.spark.sql.Dataset[Long] = [id: bigint]
rangeDS.show() // the column name 'id' is made by default here
+---+
| id|
+---+
| 0|
| 1|
| 2|
+---+
We can have more complicated objects in a DataSet
too.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)
// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32), Person("Erik",44), Person("Anna", 15)).toDS()
caseClassDS.show()
+----+---+
|name|age|
+----+---+
|Andy| 32|
|Erik| 44|
|Anna| 15|
+----+---+
defined class Person
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)
primitiveDS: org.apache.spark.sql.Dataset[Int] = [value: int]
res36: Array[Int] = Array(2, 3, 4)
df1
res38: org.apache.spark.sql.DataFrame = [once: int, twice: int]
df1.show
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
// let's make a case class for our DF so we can convert it to Dataset
case class singleAndDoubleIntegers(once: Integer, twice: Integer)
defined class singleAndDoubleIntegers
val ds1 = df1.as[singleAndDoubleIntegers]
ds1: org.apache.spark.sql.Dataset[singleAndDoubleIntegers] = [once: int, twice: int]
ds1.show()
+----+-----+
|once|twice|
+----+-----+
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
| 5| 10|
+----+-----+
Recommended Homework
This week's recommended homework is a deep dive into the SparkSQL programming guide.
This and the next sequence of notebooks are an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Spark Sql Programming Guide
- Overview
- SQL
- DataFrames
- Datasets
- Getting Started
- Starting Point: SQLContext
- Creating DataFrames
- DataFrame Operations
- Running SQL Queries Programmatically
- Creating Datasets
- Interoperating with RDDs
- Inferring the Schema Using Reflection
- Programmatically Specifying the Schema
- Data Sources
- Generic Load/Save Functions
- Manually Specifying Options
- Run SQL on files directly
- Save Modes
- Saving to Persistent Tables
- Parquet Files
- Loading Data Programmatically
- Partition Discovery
- Schema Merging
- Hive metastore Parquet table conversion
- Hive/Parquet Schema Reconciliation
- Metadata Refreshing
- Configuration
- JSON Datasets
- Hive Tables
- Interacting with Different Versions of Hive Metastore
- JDBC To Other Databases
- Troubleshooting
- Generic Load/Save Functions
- Performance Tuning
- Caching Data In Memory
- Other Configuration Options
- Distributed SQL Engine
- Running the Thrift JDBC/ODBC server
- Running the Spark SQL CLI
- SQL Reference
What could one do with these notebooks?
One could read the Spark SQL Programming Guide that is embedded below and also linked above while going through the cells and doing the YouTrys in the following notebooks.
Why might one do it?
This homework/self-study will help you solve the assigned lab and theory exercises in the sequel, much faster by introducing you to some basic knowledge you need about Spark SQL.
NOTE on intra-iframe html navigation within a notebook:
- When navigating in the html-page embedded as an iframe, as in the cell below, you can:
- click on a link in the displayed html page to see the content of the clicked link and
- then right-click on the page and click on the arrow keys
<-
and->
to go back or forward.
Let's go through the programming guide in databricks now
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Spark SQL, DataFrames and Datasets Guide
Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally, Spark SQL uses this extra information to perform extra optimizations. There are several ways to interact with Spark SQL including SQL and the Dataset API. When computing a result, the same execution engine is used, independent of which API/language you are using to express the computation. This unification means that developers can easily switch back and forth between different APIs based on which provides the most natural way to express a given transformation.
All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell
, pyspark
shell, or sparkR
shell.
SQL
One use of Spark SQL is to execute SQL queries. Spark SQL can also be used to read data from an existing Hive installation. For more on how to configure this feature, please refer to the Hive Tables section. When running SQL from within another programming language the results will be returned as a Dataset/DataFrame. You can also interact with the SQL interface using the command-line or over JDBC/ODBC.
Datasets and DataFrames
A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map
, flatMap
, filter
, etc.). The Dataset API is available in Scala and Java. Python does not have the support for the Dataset API. But due to Python’s dynamic nature, many of the benefits of the Dataset API are already available (i.e. you can access the field of a row by name naturally row.columnName
). The case for R is similar.
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of Row
s. In the Scala API, DataFrame
is simply a type alias of Dataset[Row]
. While, in Java API, users need to use Dataset<Row>
to represent a DataFrame
.
Throughout this document, we will often refer to Scala/Java Datasets of Row
s as DataFrames.
Background and Preparation
- If you are unfamiliar with SQL please brush-up from the basic links below.
- SQL allows one to systematically explore any structured data (i.e., tables) using queries. This is necessary part of the data science process.
One can use the SQL Reference at https://spark.apache.org/docs/latest/sql-ref.html to learn SQL quickly.
displayHTML(frameIt("https://en.wikipedia.org/wiki/SQL",500))
displayHTML(frameIt("https://en.wikipedia.org/wiki/Apache_Hive#HiveQL",175))
displayHTML(frameIt("https://spark.apache.org/docs/latest/sql-ref.html",700))
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Getting Started
Spark Sql Programming Guide
- Starting Point: SparkSession
- Creating DataFrames
- Untyped Dataset Operations (aka DataFrame Operations)
- Running SQL Queries Programmatically
- Global Temporary View
- Creating Datasets
- Interoperating with RDDs
- Inferring the Schema Using Reflection
- Programmatically Specifying the Schema
- Scalar Functions
- Aggregate Functions
Getting Started
Starting Point: SparkSession
The entry point into all functionality in Spark is the SparkSession
class and/or SQLContext
/HiveContext
. SparkSession
is created for you as spark
when you start spark-shell on command-line REPL or through a notebook server (databricks, zeppelin, jupyter, etc.). You will need to create SparkSession
usually when building an application for submission to a Spark cluster. To create a basic SparkSession
, just use SparkSession.builder()
:
import org.apache.spark.sql.SparkSession
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
Find full example code in the Spark repo at:
SparkSession
in Spark 2.0 provides builtin support for Hive features including the ability to write queries using HiveQL, access to Hive UDFs, and the ability to read data from Hive tables. To use these features, you do not need to have an existing Hive setup.
// You could get SparkContext and SQLContext from SparkSession
val sc = spark.sparkContext
val sqlContext = spark.sqlContext
But in Databricks notebook (similar to spark-shell
) SparkSession
is already created for you and is available as spark
(similarly, sc
and sqlContext
are also available).
// Evaluation of the cell by Ctrl+Enter will print spark session available in notebook
spark
res0: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@7f57ef36
After evaluation you should see something like this, i.e., a reference to the SparkSession
you just created:
res0: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@5a289bf5
Creating DataFrames
With a SparkSessions
, applications can create Dataset or DataFrame
from an existing RDD
, from a Hive table, or from various datasources.
Just to recap, a DataFrame is a distributed collection of data organized into named columns. You can think of it as an organized into table RDD of case class Row
(which is not exactly true). DataFrames, in comparison to RDDs, are backed by rich optimizations, including tracking their own schema, adaptive query execution, code generation including whole stage codegen, extensible Catalyst optimizer, and project Tungsten.
Dataset provides type-safety when working with SQL, since Row
is mapped to a case class, so that each column can be referenced by property of that class.
Note that performance for Dataset/DataFrames is the same across languages Scala, Java, Python, and R. This is due to the fact that the planning phase is just language-specific, only logical plan is constructed in Python, and all the physical execution is compiled and executed as JVM bytecode.
As an example, the following creates a DataFrame based on the content of a JSON file:
val df = spark.read.json("examples/src/main/resources/people.json")
// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
To be able to try this example in databricks we need to load the people.json
file into dbfs
. Let us do this programmatically next.
// you should not have to uncomment the block below as we already loaded data from 002_02_dbcCEdataLoader notebook
/*
// the following lines merely fetch the file from the URL and load it into the dbfs for us to try in databricks
// getLines from the file at the URL
val peopleJsonLinesFromURL = scala.io.Source.fromURL("https://raw.githubusercontent.com/apache/spark/master/examples/src/main/resources/people.json").getLines
// remove any pre-existing file at the dbfs location
dbutils.fs.rm("/datasets/sds/spark-examples/people.json",recurse=true)
// convert the lines fetched from the URL to a Seq, then make it a RDD of String and finally save it as textfile to dbfs
sc.parallelize(peopleJsonLinesFromURL.toSeq).saveAsTextFile("/datasets/sds/spark-examples/people.json")
*/
// read the text file we just saved or already loaded and see what it has
sc.textFile("/datasets/sds/spark-examples/people.json").collect.mkString("\n")
res1: String =
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
val df = spark.read.json("/datasets/sds/spark-examples/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
// you can also read into df like this - makes the same dataframe as the above call
val df = spark.read.format("json").load("/datasets/sds/spark-examples/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
df.show()
+----+-------+
| age| name|
+----+-------+
| 30| Andy|
| 19| Justin|
|null|Michael|
+----+-------+
Untyped Dataset Operations (aka DataFrame Operations)
DataFrames provide a domain-specific language for structured data manipulation in Scala, Java, Python and R.
As mentioned above, in Spark 2.0 or higher, DataFrames are just Dataset of Row
s in Scala and Java API. These operations are also referred as “untyped transformations” in contrast to “typed transformations” come with strongly typed Scala/Java Datasets.
Here we include some basic examples of structured data processing using Datasets:
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df.printSchema()
root
|-- age: long (nullable = true)
|-- name: string (nullable = true)
import spark.implicits._
// Select only the "name" column
df.select("name").show()
+-------+
| name|
+-------+
| Andy|
| Justin|
|Michael|
+-------+
// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
+-------+---------+
| name|(age + 1)|
+-------+---------+
| Andy| 31|
| Justin| 20|
|Michael| null|
+-------+---------+
// Select people older than 21
df.filter($"age" > 21).show()
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+
// Count people by age
df.groupBy("age").count().show()
+----+-----+
| age|count|
+----+-----+
| 19| 1|
| 30| 1|
|null| 1|
+----+-----+
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
For a complete list of the types of operations that can be performed on a Dataset, refer to the API Documentation.
In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
Running SQL Queries Programmatically
The sql
function on a SparkSession
enables applications to run SQL queries programmatically and returns the result as a DataFrame
.
// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
+----+-------+
| age| name|
+----+-------+
| 30| Andy|
| 19| Justin|
|null|Michael|
+----+-------+
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
Global Temporary View
Temporary views in Spark SQL are session-scoped and will disappear if the session that creates it terminates. If you want to have a temporary view that is shared among all sessions and keep alive until the Spark application terminates, you can create a global temporary view. Global temporary view is tied to a system preserved database global_temp
, and we must use the qualified name to refer it, e.g. SELECT * FROM global_temp.view1
.
// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")
// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age| name|
+----+-------+
| 30| Andy|
| 19| Justin|
|null|Michael|
+----+-------+
// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age| name|
+----+-------+
| 30| Andy|
| 19| Justin|
|null|Michael|
+----+-------+
Creating Datasets
See https://spark.apache.org/docs/latest/sql-getting-started.html#creating-datasets
Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized Encoder to serialize the objects for processing or transmitting over the network. While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object.
case class Person(name: String, age: Long)
// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
+----+---+
|name|age|
+----+---+
|Andy| 32|
+----+---+
defined class Person
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)
primitiveDS: org.apache.spark.sql.Dataset[Int] = [value: int]
res18: Array[Int] = Array(2, 3, 4)
// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "/datasets/sds/spark-examples/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
+----+-------+
| age| name|
+----+-------+
| 30| Andy|
| 19| Justin|
|null|Michael|
+----+-------+
path: String = /datasets/sds/spark-examples/people.json
peopleDS: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]
Dataset is not available directly in PySpark or SparkR.
Interoperating with RDDs
Spark SQL supports two different methods for converting existing RDDs into Datasets. The first method uses reflection to infer the schema of an RDD that contains specific types of objects. This reflection-based approach leads to more concise code and works well when you already know the schema while writing your Spark application.
The second method for creating Datasets is through a programmatic interface that allows you to construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows you to construct Datasets when the columns and their types are not known until runtime.
Inferring the Schema Using Reflection
The Scala interface for Spark SQL supports automatically converting an RDD containing case classes to a DataFrame. The case class defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Seq
s or Array
s. This RDD can be implicitly converted to a DataFrame and then be registered as a table. Tables can be used in subsequent SQL statements.
sc.textFile("/datasets/sds/spark-examples/people.txt").collect.mkString("\n")
res22: String =
Michael, 29
Andy, 30
Justin, 19
// For implicit conversions from RDDs to DataFrames
import spark.implicits._
// make a case class
case class Person(name: String, age: Long)
// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
.textFile("/datasets/sds/spark-examples/people.txt")
.map(_.split(","))
.map(attributes => Person(attributes(0), attributes(1).trim.toLong))
.toDF()
import spark.implicits._
defined class Person
peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
peopleDF.show
+-------+---+
| name|age|
+-------+---+
|Michael| 29|
| Andy| 30|
| Justin| 19|
+-------+---+
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")
// SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")
teenagersDF: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
teenagersDF.show()
+------+---+
| name|age|
+------+---+
|Justin| 19|
+------+---+
// The columns of a row in the result can be accessed by field index
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
+------------+
| value|
+------------+
|Name: Justin|
+------------+
// or by field name
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
+------------+
| value|
+------------+
|Name: Justin|
+------------+
// advanced ...
// No pre-defined encoders for Dataset[Map[K,V]], define explicitly
//implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
// Primitive types and case classes can be also be defined as follows
// import more classes here...
//implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
//teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
Programmatically Specifying the Schema
When case classes cannot be defined ahead of time (for example, the structure of records is encoded in a string, or a text dataset will be parsed and fields will be projected differently for different users), a DataFrame
can be created programmatically with three steps.
- Create an RDD of
Row
s from the original RDD; - Create the schema represented by a
StructType
matching the structure ofRow
s in the RDD created in Step 1. - Apply the schema to the RDD of
Row
s viacreateDataFrame
method provided bySparkSession
.
For example:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// Create an RDD
val peopleRDD = spark.sparkContext.textFile("/datasets/sds/spark-examples/people.txt")
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
peopleRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/spark-examples/people.txt MapPartitionsRDD[236] at textFile at command-2971213210278122:6
// The schema is encoded in a string
val schemaString = "name age"
schemaString: String = name age
// Generate the schema based on the string of schema
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldName, StringType, nullable = true))
fields: Array[org.apache.spark.sql.types.StructField] = Array(StructField(name,StringType,true), StructField(age,StringType,true))
val schema = StructType(fields)
schema: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true),StructField(age,StringType,true))
// Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
.map(_.split(","))
.map(attributes => Row(attributes(0), attributes(1).trim))
rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[238] at map at command-2971213210278126:4
// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: string]
peopleDF.show
+-------+---+
| name|age|
+-------+---+
|Michael| 29|
| Andy| 30|
| Justin| 19|
+-------+---+
// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")
// SQL can be run over a temporary view created using DataFrames
val results = spark.sql("SELECT name FROM people")
results: org.apache.spark.sql.DataFrame = [name: string]
results.show
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+
// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => "Name: " + attributes(0)).show()
+-------------+
| value|
+-------------+
|Name: Michael|
| Name: Andy|
| Name: Justin|
+-------------+
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
Scalar Functions
Scalar functions are functions that return a single value per row, as opposed to aggregation functions, which return a value for a group of rows. Spark SQL supports a variety of Built-in Scalar Functions. It also supports User Defined Scalar Functions.
Aggregate Functions
Aggregate functions are functions that return a single value on a group of rows. The Built-in Aggregation Functions provide common aggregations such as count()
, countDistinct()
, avg()
, max()
, min()
, etc. Users are not limited to the predefined aggregate functions and can create their own. For more details about user defined aggregate functions, please refer to the documentation of User Defined Aggregate Functions.
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Getting Started - Exercise
After having gone through the simple example dataset in the programming guide, let's try a slightly larger dataset next.
Let us first create a table of social media usage from NYC
See the Load Data section to create this
social_media_usage
table from raw data.
First let's make sure this table is available for us. If you don't see social_media_usage
as a name
d table in the output of the next cell then we first need to ingest this dataset. Let's do it using the databricks' GUI for creating Data
as done next.
// Let's find out what tables are already available for loading
spark.catalog.listTables.show(20,false) // only showing first 20 tables, if any
+----------------------------+--------+-----------+---------+-----------+
|name |database|description|tableType|isTemporary|
+----------------------------+--------+-----------+---------+-----------+
|all_prices |default |null |MANAGED |false |
|bitcoin_normed_window |default |null |MANAGED |false |
|bitcoin_reversals_window |default |null |MANAGED |false |
|countrycodes |default |null |EXTERNAL |false |
|gold_normed_window |default |null |MANAGED |false |
|gold_reversals_window |default |null |MANAGED |false |
|ltcar_locations_2_csv |default |null |MANAGED |false |
|magellan |default |null |MANAGED |false |
|mobile_sample |default |null |EXTERNAL |false |
|oil_normed_window |default |null |MANAGED |false |
|oil_reversals_window |default |null |MANAGED |false |
|oil_reversals_window2 |default |null |MANAGED |false |
|over300all_2_txt |default |null |MANAGED |false |
|person |default |null |MANAGED |false |
|personer |default |null |MANAGED |false |
|persons |default |null |MANAGED |false |
|simple_range |default |null |MANAGED |false |
|social_media_usage |default |null |MANAGED |false |
|social_media_usage_csv_gui |default |null |MANAGED |false |
|voronoi20191213uppsla1st_txt|default |null |MANAGED |false |
+----------------------------+--------+-----------+---------+-----------+
only showing top 20 rows
NYC Social Media Usage Data
This dataset is from https://datahub.io/JohnSnowLabs/nyc-social-media-usage#readme
The Demographic Reports are produced by the Economic, Demographic and Statistical Research unit within the Countywide Service Integration and Planning Management (CSIPM) Division of the Fairfax County Department of Neighborhood and Community Services. Information produced by the Economic, Demographic and Statistical Research unit is used by every county department, board, authority and the Fairfax County Public Schools. In addition to the small area estimates and forecasts, state and federal data on Fairfax County are collected and summarized, and special studies and Quantitative research are conducted by the unit.
We could fetch this data, with slightly simplified column names, from the following URL:
- http://lamastex.org/datasets/public/NYCUSA/social-media-usage.csv
Overview
Below we will show you how to create and query a table or DataFrame that you uploaded to DBFS. DBFS is a Databricks File System (their distributed file system) that allows you to store data for querying inside of Databricks.
In other setups, you can have the data in s3 (say in AWS) or in hdfs in your hadoop cluster, etc.
Alternatively, you can use curl
or wget
to download it to the local file system in /databricks/driver
and then load it into dbfs
, after this you can use read it via spark
session into a dataframe and register it as a hive table.
You can also get the data directly from here (but in this case you need to change the column names in the databricks Data upload GUI or programmatically to follow this notebook):
- http://datahub.io/JohnSnowLabs/nyc-social-media-usage
Load Data
How to load csv file from URL and make a table in databricks
Okay, so how did we actually make table social_media_usage
? Databricks allows us to upload/link external data and make it available as registerd SQL table. It involves several steps:
- load this
social-media-usage.csv
file from the following URL to databricks directly:- http://lamastex.org/datasets/public/NYCUSA/social-media-usage.csv
- Then load it into dbfs using the GUI and/or manipulate as follows programmatically.
// File location from URL is loaded
val socialMediaUsageFromURL = scala.io.Source.fromURL("http://lamastex.org/datasets/public/NYCUSA/social-media-usage.csv").getLines
// First line is the header - let's save it
val header = socialMediaUsageFromURL.next.split(",")
// remove any pre-existing file at the dbfs location
dbutils.fs.rm("/datasets/sds/social_media_usage.csv",recurse=true)
// convert the lines fetched from the URL to a Seq, then make it a RDD of String and finally save it as textfile to dbfs
sc.parallelize(socialMediaUsageFromURL.toSeq).saveAsTextFile("/datasets/sds/social_media_usage.csv")
// read the text file we just saved or already loaded and see what it has
sc.textFile("/datasets/sds/social_media_usage.csv").take(10).mkString("\n")
socialMediaUsageFromURL: Iterator[String] = <iterator>
header: Array[String] = Array(agency, platform, url, date, visits)
res1: String =
OEM,SMS,,2012-02-17,61652
OEM,SMS,,2012-11-09,44547
EDC,Flickr,http://www.flickr.com/nycedc,2012-05-09,
NYCHA,Newsletter,,2012-05-09,
DHS,Twitter,www.twitter.com/nycdhs,2012-06-13,389
DHS,Twitter,www.twitter.com/nycdhs,2012-08-02,431
DOH,Android,Condom Finder,2011-08-08,5026
DOT,Android,You The Man,2011-08-08,
MOME,Android,MiNY Venor app,2011-08-08,313
DOT,Broadcastr,,2011-08-08,
header
res2: Array[String] = Array(agency, platform, url, date, visits)
val socialMediaDF = spark
.read
.options(Map("infer_schema" -> "true"))
.csv("/datasets/sds/social_media_usage.csv")
.toDF(header:_*)
socialMediaDF: org.apache.spark.sql.DataFrame = [agency: string, platform: string ... 3 more fields]
socialMediaDF.count
res4: Long = 5898
// Let's create a view or table
val temp_table_name = "social_media_usage_temp"
socialMediaDF.createOrReplaceTempView(temp_table_name)
temp_table_name: String = social_media_usage_temp
// Let's find out what tables are already available for loading
spark.catalog.listTables.where($"name" startsWith "soc" ).show(5,false)
+--------------------------+--------+-----------+---------+-----------+
|name |database|description|tableType|isTemporary|
+--------------------------+--------+-----------+---------+-----------+
|social_media_usage |default |null |MANAGED |false |
|social_media_usage_csv_gui|default |null |MANAGED |false |
|social_media_usage_temp |null |null |TEMPORARY|true |
+--------------------------+--------+-----------+---------+-----------+
With this registered as a temporary view, social_media_usage_temp
will only be available to this particular notebook.
If you'd like other users to be able to query this table (in the databricks professional shard - not the free community edition; or in a managed on-premise cluster), you can also create a table from the DataFrame.
Once saved, this table will persist across cluster restarts as well as allow various users across different notebooks to query this data. To do so, choose your table name and use saveAsTable
as done in the next cell.
val permanent_table_name = "social_media_usage"
socialMediaDF.write.mode("overwrite").format("parquet").saveAsTable(permanent_table_name)
permanent_table_name: String = social_media_usage
// Let's find out what tables starting with "soc" in their name are already available for loading
spark.catalog.listTables.where($"name" startsWith "soc" ).show(5,false)
+--------------------------+--------+-----------+---------+-----------+
|name |database|description|tableType|isTemporary|
+--------------------------+--------+-----------+---------+-----------+
|social_media_usage |default |null |MANAGED |false |
|social_media_usage_csv_gui|default |null |MANAGED |false |
|social_media_usage_temp |null |null |TEMPORARY|true |
+--------------------------+--------+-----------+---------+-----------+
It looks like the table social_media_usage
is available as a permanent table (isTemporary
set as false
), if you have not uncommented the last line in the previous cell (otherwise it will be available from a parquet file as a permanent table - we will see more about parquet in the sequel).
Next let us do the following:
- load this table as a DataFrame (yes, the dataframe already exists as
socialMediaDF
, but we want to make a new DataFrame directly from the table) - print its schema and
- show the first 20 rows.
-- Ctrl+Enter to achieve the same result using standard SQL syntax!
SELECT * FROM social_media_usage
agency | platform | url | date | visits |
---|---|---|---|---|
MOAE | YouTube | http://www.youtube.com/YouCanTooNYC | 2012-03-14 | 5 |
NYC Gov | YouTube | http://www.youtube.com/nycgov | 2012-03-14 | 7 |
NYC Water | Youtube | http://www.youtube.com/nycwater | 2012-03-14 | null |
Veteran's Affairs | Youtube | http://www.youtube.com/channel/UCi6IvOszIb3hHPMUsaNKyXA | 2012-03-14 | null |
DRIS | YouTube | http://www.youtube.com/nycdeptofrecords | 2012-03-14 | null |
TLC | http://www.facebook.com/pages/NYC-Taxi-and-Limousine-Commission/101679939900978?v=wall | 2012-03-14 | 585 | |
nycgov | Google+ | https://plus.google.com/u/0/b/104030911277642419611/104030911277642419611/posts/p/pub | 2012-03-14 | null |
TOTAL | TOTAL | TOTAL | 2012-03-14 | 1688764 |
DOH | Android | Condom Finder | 2012-04-09 | null |
DOT | Android | You The Man | 2012-04-09 | null |
MOME | Android | MiNY Venor app | 2012-04-09 | 343 |
DOT | Broadcastr | null | 2012-04-09 | null |
DPR | Broadcastr | http://beta.broadcastr.com/Echo.html?audioId=670026-4001 | 2012-04-09 | null |
ENDHT | http://www.facebook.com/pages/NYC-Lets-End-Human-Trafficking/125730490795659?sk=wall | 2012-04-09 | 9 | |
VAC | https://www.facebook.com/pages/NYC-Voter-Assistance-Commission/110226709012110 | 2012-04-09 | 55 | |
PlaNYC | http://www.facebook.com/pages/New-York-NY/PlaNYC/160454173971169?ref=ts | 2012-04-09 | 92 | |
DFTA | http://www.facebook.com/pages/NYC-Department-for-the-Aging/109028655823590 | 2012-04-09 | 178 | |
DOT | Broadcastr | null | 2012-10-24 | null |
energyNYC | http://www.facebook.com/EnergyNYC?sk=wall | 2012-04-09 | 181 | |
MOIA | http://www.facebook.com/ihwnyc | 2012-04-09 | 171 | |
City Store | http://www.facebook.com/citystorenyc | 2012-04-09 | 214 | |
OCDV | http://www.facebook.com/pages/NYC-Healthy-Relationship-Training-Academy/134637829901065 | 2012-04-09 | 313 | |
HIA | http://www.facebook.com/pages/New-York-City-Health-Insurance-Link/145920551598 | 2012-04-09 | 228 | |
MOPD | http://www.facebook.com/pages/New-York-City-Mayors-Office-for-People-with-Disabilities/145237285504681?sk=wall | 2012-04-09 | 309 | |
DOB: UrbanCanvas | http://www.facebook.com/NYCurbancanvas | 2012-04-09 | 247 | |
DOT | http://www.facebook.com/JanetteSadikKhan | 2012-04-09 | 354 | |
HRA | http://www.facebook.com/#!/pages/New-York-NY/NYC-DADS/111504588886342 | 2012-04-09 | 276 | |
MOPD | http://www.facebook.com/profile.php?id=1570569347 | 2012-04-09 | 267 | |
DFTA | http://www.facebook.com/timebanksnyc | 2012-04-09 | 291 | |
DOB: Cool Roofs | http://www.facebook.com/coolroofs?sk=wall | 2012-04-09 | 323 | |
NYC & Co | http://www.facebook.com/nycgo.nl | 2012-04-09 | 353 | |
MOIA | http://www.facebook.com/pages/NYC-Mayors-Office-of-Immigrant-Affairs/118622031512497 | 2012-04-09 | 362 | |
CAU | http://www.facebook.com/NYCMayorsCAU | 2012-04-09 | 350 | |
DOITT | http://www.facebook.com/pages/New-York-NY/NYC-INFORMATION-TECHNOLOGY-TELECOMMUNICATIONS/104786059565184 | 2012-04-09 | 347 | |
City Charter | http://www.facebook.com/pages/New-York-NY/NYC-Charter-Revision-Commission/110528715643388 | 2012-04-09 | 287 | |
Vets | http://www.facebook.com/pages/NYC-Mayors-Office-of-Veterans-Affairs/128003537214726 | 2012-04-09 | 363 | |
DHS | http://www.facebook.com/pages/New-York-NY/HOPE-2011/157690657606772 | 2012-04-09 | 302 | |
NYC & Co | http://www.facebook.com/nycgo.de | 2012-04-09 | 483 | |
NYC & Co | http://www.facebook.com/nycgo.fr | 2012-04-09 | 602 | |
SICB1 | https://www.facebook.com/CB1SI | 2012-04-09 | 356 | |
ACS | http://www.facebook.com/FamilyConnectionsNYC | 2012-04-09 | 425 | |
DCA | http://www.facebook.com/NYCDCA | 2012-04-09 | 458 | |
NYC & Co | http://www.facebook.com/nycgo.au | 2012-04-09 | 471 | |
NYC & Co | http://www.facebook.com/nycgo.ca | 2012-04-09 | 470 | |
NYCHA | http://www.facebook.com/NYCHA | 2012-04-09 | 880 | |
NYC & Co | http://www.facebook.com/nycgo.uk | 2012-04-09 | 977 | |
NYC & Co | http://www.facebook.com/nycgo.it | 2012-04-09 | 1328 | |
Culture | https://www.facebook.com/piypnyc | 2012-04-09 | 816 | |
SBS | http://www.facebook.com/NYCBusiness | 2012-04-09 | 1051 | |
FUND | http://www.facebook.com/mayorsfundtoadvancenyc | 2012-04-09 | 887 | |
DOT | http://www.facebook.com/YouTheManNYC | 2012-04-09 | 1031 | |
NYC & Co | http://www.facebook.com/nycgo.es | 2012-04-09 | 1955 | |
HHC | http://www.facebook.com/nychhc | 2012-04-09 | 1115 | |
MOME | http://www.facebook.com/nycmedia.jobhunt | 2012-04-09 | 1164 | |
GreeNYC | https://www.facebook.com/birdienyc | 2012-04-09 | 1401 | |
311 | http://www.facebook.com/pages/New-York-City-311/84372567650 | 2012-04-09 | 1451 | |
DOH | http://www.facebook.com/NYCKnows | 2012-04-09 | 1712 | |
DOE | http://www.facebook.com/nycgrads | 2012-04-09 | 1830 | |
DEP | http://www.facebook.com/nycwater | 2012-04-09 | 2423 | |
MOME | https://www.facebook.com/NYCMedia | 2012-04-09 | 2862 | |
EDC | http://www.facebook.com/NYCEDC | 2012-04-09 | 3180 | |
SBS - Workforce1 | http://www.facebook.com/nycworkforce1 | 2012-04-09 | 4570 | |
DOT | http://www.facebook.com/NYCDOT | 2012-04-09 | 3696 | |
EDC | http://www.facebook.com/AppSciNYC | 2012-04-09 | 3769 | |
DYCD | http://www.facebook.com/nycyouth | 2012-04-09 | 4618 | |
DOH | http://www.facebook.com/EatingHealthyNYC | 2012-04-09 | 24618 | |
NYC & Co | http://www.facebook.com/nycgo.br | 2012-04-09 | 4985 | |
DOE | http://www.facebook.com/NYCTeachingFellows | 2012-04-09 | 5277 | |
NYCService | http://www.facebook.com/nycservice | 2012-04-09 | 5470 | |
NYC Mayors Cup | https://www.facebook.com/nycmayorscup | 2012-04-09 | 9598 | |
DOH | http://www.facebook.com/nycquits | 2012-04-09 | 8753 | |
DOE | http://www.facebook.com/pages/I-TEACH-NYC/11409913191 | 2012-04-09 | 7662 | |
DOE | http://www.facebook.com/fundforpublicschools | 2012-04-09 | 8316 | |
DPR | http://www.facebook.com/nycparks | 2012-04-09 | 13339 | |
OEM | http://www.facebook.com/nycemergencymanagement | 2012-04-09 | 13966 | |
DOE | http://www.facebook.com/NYCschools | 2012-04-09 | 20101 | |
DOH | http://www.facebook.com/NYCcondom | 2012-04-09 | 18517 | |
NYC & Co | http://www.facebook.com/nycgo | 2012-04-09 | 41163 | |
FDNY | http://www.facebook.com/FDNYhome | 2012-04-09 | 78265 | |
DSNY | Flickr | http://www.flickr.com/photos/86722064@N03/ | 2012-04-09 | null |
CCRB | https://www.facebook.com/home.php#!/pages/NYC-Civilian-Complaint-Review-Board/152765208087880 | 2012-04-09 | 14 | |
Commission on Human Rights | http://www.facebook.com/NYCCommissionOnHumanRights | 2012-04-09 | 47 | |
DOB | http://www.facebook.com/NYCBuildings | 2012-04-09 | 1038 | |
DSNY | http://www.facebook.com/pages/NYC-Recycle-More-Waste-Less/152173854860863 | 2012-04-09 | 99 | |
HDP | http://www.facebook.com/pages/NYC-HPD-POE/128962093860639 | 2012-04-09 | 187 | |
HPD/Commission on Human Rights | http://www.facebook.com/FairHousingNyc | 2012-04-09 | null | |
LPC | http://www.facebook.com/pages/NYC-Landmarks-Preservation-Commission/133261836703216 | 2012-04-09 | 95 | |
Materials for the Arts | https://www.facebook.com/mftanyc | 2012-04-09 | 2745 | |
MOAE | http://www.facebook.com/pages/You-Can-Too/203525729692056 | 2012-04-09 | 58 | |
MOIA | http://www.facebook.com/pages/WE-ARE-NEW-YORK/174438697072 | 2012-04-09 | 1881 | |
MOME | http://www.facebook.com/NYCMINY | 2012-04-09 | 492 | |
NYC Gov | http://www.facebook.com/nycgov | 2012-04-09 | 7391 | |
NYCCFB | http://www.facebook.com/nycvotes | 2012-04-09 | 83 | |
NYPD | https://www.facebook.com/NYPD | 2012-04-09 | null | |
DRIS | http://www.facebook.com/NycDeptOfRecords | 2012-04-09 | null | |
DRIS | http://www.facebook.com/MayorEdKochNYCRecords | 2012-04-09 | null | |
DRIS | http://www.facebook.com/MayorJohnLindsayNYCRecords | 2012-04-09 | null | |
DRIS | http://www.facebook.com/MayorFiorelloLaGuardiaNYCRecords | 2012-04-09 | null | |
MOME | Android | MiNY Venor app | 2012-11-02 | 343 |
LMEC | Flickr | http://www.facebook.com/pages/New-York-NY/Latin-Media-and-Entertainment-Week/122259604487271 | 2012-04-09 | 261 |
DEP | Flickr | http://www.flickr.com/photos/nycep | 2012-04-09 | null |
DOB | Flickr | http://www.flickr.com/photos/nyc_buildings/ | 2012-04-09 | null |
DOE | Flickr | http://www.flickr.com/photos/nycschools | 2012-04-09 | null |
DOITT | Flickr | http://www.flickr.com/photos/nyc_doitt | 2012-04-09 | null |
DOT | Flickr | http://www.flickr.com/photos/nycstreets | 2012-04-09 | null |
DPR | Flickr | http://www.flickr.com/photos/nycparks/ | 2012-04-09 | null |
DSNY | Flickr | http://flickr.com/nycrecyclemore | 2012-04-09 | null |
EDC | Flickr | http://www.flickr.com/nycedc | 2012-04-09 | null |
FDNY | Flickr | http://www.flickr.com/groups/fdny-ems | 2012-04-09 | null |
HHC | Flickr | http://www.flickr.com/hhcnyc | 2012-04-09 | null |
LMEC | Flickr | http://www.flickr.com/photos/nyclatinmedia/ | 2012-04-09 | null |
LPC | Flickr | http://www.flickr.com/photos/nyclandmarks | 2012-04-09 | null |
Materials for the Arts | Flickr | http://www.flickr.com/photos/materialsforthearts | 2012-04-09 | null |
Mayor's Office | Flickr | http://www.flickr.com/photos/nycmayorsoffice/ | 2012-04-09 | null |
NYC Digital | Flickr | http://www.flickr.com/photos/nycdigital/ | 2012-04-09 | null |
NYCHA | Flickr | http://www.flickr.com/photos/nychapics | 2012-04-09 | null |
PlaNYC | Flickr | http://www.flickr.com/photos/planyc/ | 2012-04-09 | null |
Prob | Flickr | http://www.flickr.com/photos/nycprobation/ | 2012-04-09 | null |
SnowUpdate | Flickr | http://www.flickr.com/groups/1604085@N23/ | 2012-04-09 | null |
HRA | Flickr | http://www.flickr.com/people/nychra/ | 2012-04-09 | null |
GreeNYC | Foursquare | http://foursquare.com/birdie_nyc | 2012-04-09 | 79 |
DOH | Foursquare | https://foursquare.com/nychealthy | 2012-04-09 | 84 |
DOT | Foursquare | http://foursquare.com/user/7474166 | 2012-04-09 | 4 |
DPR | Foursquare | https://foursquare.com/nycparks | 2012-04-09 | 10619 |
EDC | Foursquare | https://foursquare.com/user/3045331 | 2012-04-09 | 19 |
FDNY | Foursquare | https://foursquare.com/fdny | 2012-04-09 | null |
Materials for the Arts | Foursquare | https://foursquare.com/mftanyc | 2012-04-09 | 11 |
NYC Gov | Foursquare | http://foursquare.com/nycgov | 2012-04-09 | 16975 |
NYC Gov | Foursquare (Badge Unlock) | https://foursquare.com/nycgov | 2012-04-09 | 10076 |
NYCHA | Foursquare | https://foursquare.com/nycha | 2012-04-09 | 32 |
Mayor's Office | http://web.stagram.com/n/nycmayorsoffice | 2012-04-09 | null | |
DOT | http://web.stagram.com/n/nyc_dot | 2012-04-09 | null | |
DOH | iPhone | http://itunes.apple.com/us/app/abceats/id502867547?mt=8 | 2012-04-09 | null |
311 | iPhone App | http://itunes.apple.com/us/app/nyc-311/id324897619?mt=8 | 2012-04-09 | 16879 |
DOH | iPhone app | http://itunes.apple.com/app/nyc-condom-finder-by-nyc-health/id418902795 | 2012-04-09 | 8041 |
DSNY | iPhone App | http://itunes.apple.com/us/app/nycrecycles/id445457149?ls=1&mt=8 | 2012-04-09 | 171 |
DSNY | iPhone App | http://itunes.apple.com/us/app/stuff-ex/id445438603?ls=1&mt=8 | 2012-04-09 | 142 |
DOT | iPhone app | You The Man | 2012-04-09 | 2635 |
Mayor's Office | iPhone App | http://itunes.apple.com/us/app/nyc-city-hall/id375398827?mt=8 | 2012-04-09 | 3186 |
DOITT | Tumblr | http://nycdoitt.tumblr.com/ | 2012-04-09 | null |
MOME | iPhone App | http://itunes.apple.com/us/app/nyc-media-app/id433177943?mt=8 | 2012-04-09 | 944 |
MOME | iPhone App | http://itunes.apple.com/us/app/miny-discount-vendors/id372448233?mt=8 | 2012-04-09 | 350 |
DOE | Linked-In | http://www.linkedin.com/groups?gid=1545057&home= | 2012-04-09 | 287 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-teaching-fellows | 2012-04-09 | 1913 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-department-of-education | 2012-04-09 | 18745 |
ACS | Linked-In | http://www.linkedin.com/companies/260392/City+of+New+York%2C+Administration+for+Children%27s+Services?trk=ncsrch_hits&goback=%2Efcs_GLHD_city+of+new+york_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2 | 2012-04-09 | null |
All | Linked-In | http://www.linkedin.com/company/2904?trk=tyah | 2012-04-09 | null |
Dept of Consumer Affairs | Linked-In | http://www.linkedin.com/company/831694?trk=tyah | 2012-04-09 | null |
DOF | Linked-In | http://www.linkedin.com/company/298308?trk=tyah | 2012-04-09 | null |
DOHMH | Linked-In | http://www.linkedin.com/company/245926?trk=tyah | 2012-04-09 | null |
SBS | Linked-In | http://www.linkedin.com/company/workforce1 | 2012-04-09 | 322 |
SBS | Linked-In | http://www.linkedin.com/company/small-business-services | 2012-04-09 | 137 |
DOE | Newsletter | null | 2012-04-09 | 187180 |
DOT | Newsletter | null | 2012-04-09 | 72614 |
NYC Digital: external newsletter | Newsletter | null | 2012-04-09 | null |
NYC Gov | Newsletter | 0 | 2012-04-09 | 543533 |
NYCHA | Newsletter | null | 2012-04-09 | null |
OEM | Newsletter | null | 2012-04-09 | null |
null | nyc.gov | 2800000 | 2012-04-09 | null |
nycgov | http://pinterest.com/nycgov | 2012-04-09 | null | |
DOH | http://pinterest.com/nychealth | 2012-04-09 | null | |
FDNY | http://pinterest.com/fdnyhome/ | 2012-04-09 | null | |
DRIS | http://pinterest.com/recordsnyc | 2012-04-09 | null | |
DOE | SMS | 877877 | 2012-04-09 | 382 |
NYCHA | SMS | null | 2012-04-09 | null |
OEM | SMS | null | 2012-04-09 | 61652 |
NYC Digital | Tumblr | http://nycdigital.tumblr.com | 2012-04-09 | 2279 |
Change By Us | Tumblr | http://nycchangebyus.tumblr.com/ | 2012-04-09 | null |
DOB | Tumblr | http://nycbuildings.tumblr.com | 2012-04-09 | null |
DOH | Tumblr | http://nychealth.tumblr.com/ | 2012-04-09 | null |
DOH | Tumblr | http://mygooddognyc.tumblr.com/ | 2012-04-09 | null |
DOT | Tumblr | http://thedailypothole.tumblr.com | 2012-04-09 | 406 |
EDC | Tumblr | http://nycedc.tumblr.com/ | 2012-04-09 | 819 |
HRA | Tumblr | http://nycdads.tumblr.com | 2012-04-09 | null |
NYC & Co | Tumblr | nycgo.tumblr.com | 2012-04-09 | null |
NYC Digital | Tumblr | madeinny.tumblr.com | 2012-04-09 | null |
NYC Digital | Tumblr | http://nycopendata.tumblr.com | 2012-04-09 | 323 |
NYC Gov | Tumblr | nycgov.tumblr.com | 2012-04-09 | 2610 |
OEM | Tumblr | http://nyccert.tumblr.com/ | 2012-04-09 | null |
OEM | Tumblr | http://nyccitizencorpscouncil.tumblr.com/ | 2012-04-09 | null |
OMB | Tumblr | http://nycarra.tumblr.com | 2012-04-09 | null |
TLC | Tumblr | http://nyctlc.tumblr.com/ | 2012-04-09 | null |
OEM | Tumblr | http://oempublicprivate.tumblr.com/ | 2012-04-09 | null |
Young Mens Initiative | Tumblr | http://nycyoungmen.tumblr.com | 2012-04-09 | null |
FDNY | Tumblr | http://fdny.tumblr.com/ | 2012-04-09 | null |
SBS | Tumblr | http://nycheighborhoods.tumblr.com | 2012-04-09 | null |
NYCDCAS | http://twitter.com/NYCDCAS | 2012-04-09 | 17 | |
SBS | https://twitter.com/NYCWorkforce1 | 2012-04-09 | 356 | |
City Store | http://twitter.com/citystorenyc | 2012-04-09 | 193 | |
LPC | https://twitter.com/NYCLPC | 2012-04-09 | 448 | |
DOE | http://twitter.com/alumny | 2012-04-09 | 153 | |
OEM | http://twitter.com/NYCOEM | 2012-04-09 | 141 | |
NYC & Co | http://twitter.com/nycgoshop | 2012-04-09 | 337 | |
LMEC | http://twitter.com/nyclmew | 2012-04-09 | 338 | |
DPR | http://www.twitter.com/Pearl_Squirrel | 2012-04-09 | 241 | |
HRA | http://twitter.com/nychra | 2012-04-09 | 555 | |
NYC Digital | http://twitter.com/nycdigital | 2012-04-09 | 1470 | |
energyNYC | http://twitter.com/energy_nyc | 2012-04-09 | 509 | |
DFTA | http://twitter.com/NYCaging | 2012-04-09 | 587 | |
DOE | http://twitter.com/TheFundforPS | 2012-04-09 | 367 | |
MOPD | http://twitter.com/nyc_mopd | 2012-04-09 | 609 | |
NYCCFB | http://twitter.com/NYCCFB | 2012-04-09 | 616 | |
EDC | http://twitter.com/AppSciNYC | 2012-04-09 | 1153 | |
NYCHA | Newsletter | null | 2012-07-05 | 44983 |
DOB: Cool Roofs | http://twitter.com/nycCoolRoofs | 2012-04-09 | 746 | |
DOE | http://twitter.com/nyctf | 2012-04-09 | 694 | |
DOT | http://www.Twitter.com/YouTheManNYC | 2012-04-09 | 956 | |
City Charter | http://twitter.com/CityCharterNYC | 2012-04-09 | 715 | |
DFTA | http://www.twitter.com/timebanksnyc | 2012-04-09 | 805 | |
SBS | http://www.twitter.com/NYCBusSolutions | 2012-04-09 | 1292 | |
MOME | http://www.twitter.com/madeinny | 2012-04-09 | 1731 | |
GreeNYC | http://www.twitter.com/Birdie_NYC | 2012-04-09 | 1511 | |
DOI | http://twitter.com/DOINews | 2012-04-09 | 1689 | |
DCA | http://twitter.com/nycdca | 2012-04-09 | 1965 | |
DOE | http://twitter.com/iteachnyc | 2012-04-09 | 1479 | |
CAU | www.twitter.com/mayorscau | 2012-04-09 | 1821 | |
HHC | http://twitter.com/HHCnyc | 2012-04-09 | 2447 | |
MOIA | https://twitter.com/NYCimmigrants | 2012-04-09 | 1984 | |
SBS | http://www.twitter.com/NYCBusinessExp | 2012-04-09 | 2656 | |
DEP | http://twitter.com/nycwater | 2012-04-09 | 3046 | |
DOITT | http://twitter.com/nycdoitt | 2012-04-09 | 3011 | |
PlaNYC | http://twitter.com/PlaNYC | 2012-04-09 | 3190 | |
DYCD | http://twitter.com/nycyouth | 2012-04-09 | 2784 | |
NYCService | http://twitter.com/nycservice | 2012-04-09 | 3113 | |
TLC | http://twitter.com/NYCTaxi | 2012-04-09 | 3168 | |
DOB | http://twitter.com/nyc_buildings | 2012-04-09 | 3703 | |
NYCHA | http://twitter.com/NYCHA | 2012-04-09 | 3880 | |
MOME | http://www.twitter.com/nyc_media | 2012-04-09 | 7035 | |
EDC | http://twitter.com/nycedc | 2012-04-09 | 7525 | |
DOH | http://twitter.com/nycHealthy | 2012-04-09 | 8313 | |
NYC Digital | http://twitter.com/nycgov | 2012-04-09 | 18652 | |
311 | http://www.twitter.com/NYCASP | 2012-04-09 | 10391 | |
DOT | http://twitter.com/NYC_DOT | 2012-04-09 | 14789 | |
FDNY | http://www.twitter.com/FDNY | 2012-04-09 | 26002 | |
DOE | http://twitter.com/NYCSchools | 2012-04-09 | 22240 | |
DPR | http://twitter.com/NYCParks | 2012-04-09 | 23027 | |
NYPD | http://twitter.com/NYPDnews | 2012-04-09 | 32239 | |
311 | http://www.twitter.com/311NYC | 2012-04-09 | 26934 | |
OEM | http://twitter.com/NotifyNYC | 2012-04-09 | 38391 | |
NYC & Co | http://twitter.com/nycgo | 2012-04-09 | 53462 | |
Mayor's Office | http://www.twitter.com/nycmayorsoffice | 2012-04-09 | 64299 | |
Change by Us | www.twitter.com/ChangebyUs_NYC | 2012-04-09 | 1058 | |
DHS | www.twitter.com/nycdhs | 2012-04-09 | 294 | |
DOF | https://twitter.com/nycfinance | 2012-04-09 | null | |
DOHMH | https://twitter.com/DrFarleyDOHMH | 2012-04-09 | null | |
DSNY | www.twitter.com/nycrecycles | 2012-04-09 | 35 | |
FDNY | https://twitter.com/joinFDNY | 2012-04-09 | 1413 | |
Materials for the Arts | https://twitter.com/mftanyc | 2012-04-09 | 1878 | |
MOAE | http://twitter.com/youcantoonyc | 2012-04-09 | 27 | |
NYC Digital | https://twitter.com/nycgob | 2012-04-09 | null | |
NYC Waterfront | http://twitter.com/nycwaterfront | 2012-04-09 | 99 | |
NYCCFB | http://twitter.com/NYCVotes | 2012-04-09 | 160 | |
NYCGLOBAL | www.twitter.com/nycglobal | 2012-04-09 | 147 | |
Prob | www.twitter.com/nycprobation | 2012-04-09 | 121 | |
Vets | http://twitter.com/NYCVeterans | 2012-04-09 | 257 | |
DRIS | https://twitter.com/NYCRecords | 2012-04-09 | null | |
YMI | http://www.twitter.com/nycyoungmen | 2012-04-09 | null | |
DOE | Vimeo | http://vimeo.com/nycschools | 2012-04-09 | null |
NYCSevereWeather | WordPress | http://nycsevereweather.wordpress.com/ | 2012-04-09 | null |
311 | WordPress | http://311nyc.wordpress.com/ | 2012-04-09 | null |
DOITT | WordPress | http://nycitymap.wordpress.com/ | 2012-04-09 | null |
DOITT | WordPress | http://nycitt.wordpress.com/ | 2012-04-09 | null |
HHS | WordPress | http://hsdatanyc.wordpress.com/ | 2012-04-09 | null |
HHS | WordPress | http://hsdata-nyc.org | 2012-04-09 | null |
LMEC | WordPress | http://lmew.wordpress.com/ | 2012-04-09 | null |
Materials for the Arts | WordPress | http://mfta.wordpress.com/ | 2012-04-09 | null |
MOIA | WordPress | http://ihwnyc.wordpress.com | 2012-04-09 | null |
SBS | WordPress | http://nycworkforce1partners.wordpress.com/ | 2012-04-09 | null |
SBS | WordPress | http://workforce1.org | 2012-04-09 | null |
SimpliCity | WordPress | http://nycsimplicity.wordpress.com/ | 2012-04-09 | null |
DOT | iPhone app | You The Man | 2012-04-30 | 2598 |
DOE | YouTube | http://www.youtube.com/thefundforps | 2012-04-09 | 1 |
DOH | YouTube | http://www.youtube.com/user/NYCcondoms | 2012-04-09 | null |
LMEC | YouTube | http://www.youtube.com/user/NYCLMEW | 2012-04-09 | 6 |
Probation | YouTube | http://www.youtube.com/NYCProbation | 2012-04-09 | 8 |
DOITT | YouTube | http://www.youtube.com/doittnews | 2012-04-09 | 29 |
GreeNYC | YouTube | http://www.youtube.com/BirdieNYCity | 2012-04-09 | 15 |
HRA | YouTube | http://www.youtube.com/user/HRANYC | 2012-04-09 | 25 |
NYCHA | YouTube | http://www.youtube.com/NYCHAHousing | 2012-04-09 | 30 |
HHC | YouTube | http://www.youtube.com/HHCnyc | 2012-04-09 | 36 |
DOE | YouTube | http://www.youtube.com/nycschools | 2012-04-09 | 44 |
DYCD | YouTube | http://www.youtube.com/dycdnyc | 2012-04-09 | 53 |
OEM | YouTube | http://www.youtube.com/nycoem | 2012-04-09 | 67 |
DOB | YouTube | http://www.youtube.com/NYCBUILDINGS | 2012-04-09 | 84 |
EDC | YouTube | http://www.youtube.com/NYCEDC | 2012-04-09 | 117 |
MOME | YouTube | http://www.youtube.com/nycmedia25 | 2012-04-09 | 153 |
DPR | YouTube | http://www.youtube.com/user/NYCParksDepartment | 2012-04-09 | 237 |
DOT | YouTube | http://www.youtube.com/NYCDOT | 2012-04-09 | 328 |
Mayor's Office | YouTube | http://www.youtube.com/mayorbloomberg | 2012-04-09 | 663 |
NYPD | YouTube | http://www.youtube.com/nypd | 2012-04-09 | 3066 |
DOH | YouTube | http://www.youtube.com/NYCHealth | 2012-04-09 | 125 |
FDNY | YouTube | http://www.youtube.com/user/yourFDNY | 2012-04-09 | 1082 |
Child Services | Youtube | http://www.youtube.com/user/childservices | 2012-04-09 | null |
DCA | YouTube | http://www.youtube.com/nycdca | 2012-04-09 | 17 |
DOC | YouTube | http://www.youtube.com/user/OFFICIALNYCDOC | 2012-04-09 | null |
DOH | Youtube | http://www.youtube.com/user/drinkingsugar | 2012-04-09 | 176 |
DSNY | YouTube | http://www.youtube.com/nycrecyclemore | 2012-04-09 | 4 |
Materials for the Arts | YouTube | http://www.youtube.com/user/MaterialsForTheArts | 2012-04-09 | 1 |
Mayor's Fund | Youtube | http://www.youtube.com/mayorsfundnyc | 2012-04-09 | null |
MOAE | YouTube | http://www.youtube.com/YouCanTooNYC | 2012-04-09 | 6 |
NYC Gov | YouTube | http://www.youtube.com/nycgov | 2012-04-09 | 6 |
NYC Water | Youtube | http://www.youtube.com/nycwater | 2012-04-09 | null |
Veteran's Affairs | Youtube | http://www.youtube.com/channel/UCi6IvOszIb3hHPMUsaNKyXA | 2012-04-09 | null |
DRIS | YouTube | http://www.youtube.com/nycdeptofrecords | 2012-04-09 | null |
TLC | http://www.facebook.com/pages/NYC-Taxi-and-Limousine-Commission/101679939900978?v=wall | 2012-04-09 | 622 | |
nycgov | Google+ | https://plus.google.com/u/0/b/104030911277642419611/104030911277642419611/posts/p/pub | 2012-04-09 | null |
TOTAL | TOTAL | TOTAL | 2012-04-09 | 1752711 |
DOH | Android | Condom Finder | 2012-04-30 | null |
DOT | Android | You The Man | 2012-04-30 | 38 |
MOME | Android | MiNY Venor app | 2012-04-30 | 343 |
DOT | Broadcastr | null | 2012-04-30 | null |
DPR | Broadcastr | http://beta.broadcastr.com/Echo.html?audioId=670026-4001 | 2012-04-30 | null |
ENDHT | http://www.facebook.com/pages/NYC-Lets-End-Human-Trafficking/125730490795659?sk=wall | 2012-04-30 | 11 | |
VAC | https://www.facebook.com/pages/NYC-Voter-Assistance-Commission/110226709012110 | 2012-04-30 | 59 | |
PlaNYC | http://www.facebook.com/pages/New-York-NY/PlaNYC/160454173971169?ref=ts | 2012-04-30 | 107 | |
DFTA | http://www.facebook.com/pages/NYC-Department-for-the-Aging/109028655823590 | 2012-04-30 | 186 | |
energyNYC | http://www.facebook.com/EnergyNYC?sk=wall | 2012-04-30 | 192 | |
MOIA | http://www.facebook.com/ihwnyc | 2012-04-30 | 220 | |
City Store | http://www.facebook.com/citystorenyc | 2012-04-30 | 222 | |
OCDV | http://www.facebook.com/pages/NYC-Healthy-Relationship-Training-Academy/134637829901065 | 2012-04-30 | 318 | |
HIA | http://www.facebook.com/pages/New-York-City-Health-Insurance-Link/145920551598 | 2012-04-30 | 241 | |
MOPD | http://www.facebook.com/pages/New-York-City-Mayors-Office-for-People-with-Disabilities/145237285504681?sk=wall | 2012-04-30 | 319 | |
DOB: UrbanCanvas | http://www.facebook.com/NYCurbancanvas | 2012-04-30 | 255 | |
DOT | http://www.facebook.com/JanetteSadikKhan | 2012-04-30 | 360 | |
HRA | http://www.facebook.com/#!/pages/New-York-NY/NYC-DADS/111504588886342 | 2012-04-30 | 296 | |
MOPD | http://www.facebook.com/profile.php?id=1570569347 | 2012-04-30 | 268 | |
DFTA | http://www.facebook.com/timebanksnyc | 2012-04-30 | 305 | |
DOB: Cool Roofs | http://www.facebook.com/coolroofs?sk=wall | 2012-04-30 | 343 | |
NYC & Co | http://www.facebook.com/nycgo.nl | 2012-04-30 | 356 | |
MOIA | http://www.facebook.com/pages/NYC-Mayors-Office-of-Immigrant-Affairs/118622031512497 | 2012-04-30 | 387 | |
CAU | http://www.facebook.com/NYCMayorsCAU | 2012-04-30 | 363 | |
DOITT | http://www.facebook.com/pages/New-York-NY/NYC-INFORMATION-TECHNOLOGY-TELECOMMUNICATIONS/104786059565184 | 2012-04-30 | 363 | |
City Charter | http://www.facebook.com/pages/New-York-NY/NYC-Charter-Revision-Commission/110528715643388 | 2012-04-30 | 289 | |
Vets | http://www.facebook.com/pages/NYC-Mayors-Office-of-Veterans-Affairs/128003537214726 | 2012-04-30 | 372 | |
DHS | http://www.facebook.com/pages/New-York-NY/HOPE-2011/157690657606772 | 2012-04-30 | 303 | |
NYC & Co | http://www.facebook.com/nycgo.de | 2012-04-30 | 505 | |
NYC & Co | http://www.facebook.com/nycgo.fr | 2012-04-30 | 657 | |
SICB1 | https://www.facebook.com/CB1SI | 2012-04-30 | 359 | |
ACS | http://www.facebook.com/FamilyConnectionsNYC | 2012-04-30 | 434 | |
DCA | http://www.facebook.com/NYCDCA | 2012-04-30 | 482 | |
NYC & Co | http://www.facebook.com/nycgo.au | 2012-04-30 | 490 | |
NYC & Co | http://www.facebook.com/nycgo.ca | 2012-04-30 | 478 | |
NYCHA | http://www.facebook.com/NYCHA | 2012-04-30 | 922 | |
NYC & Co | http://www.facebook.com/nycgo.uk | 2012-04-30 | 1018 | |
NYC & Co | http://www.facebook.com/nycgo.it | 2012-04-30 | 1440 | |
Culture | https://www.facebook.com/piypnyc | 2012-04-30 | null | |
SBS | http://www.facebook.com/NYCBusiness | 2012-04-30 | 1084 | |
FUND | http://www.facebook.com/mayorsfundtoadvancenyc | 2012-04-30 | 909 | |
DOT | http://www.facebook.com/YouTheManNYC | 2012-04-30 | 1037 | |
NYC & Co | http://www.facebook.com/nycgo.es | 2012-04-30 | 2073 | |
HHC | http://www.facebook.com/nychhc | 2012-04-30 | 1133 | |
MOME | http://www.facebook.com/nycmedia.jobhunt | 2012-04-30 | 1171 | |
GreeNYC | https://www.facebook.com/birdienyc | 2012-04-30 | 1434 | |
311 | http://www.facebook.com/pages/New-York-City-311/84372567650 | 2012-04-30 | 1484 | |
DOH | http://www.facebook.com/NYCKnows | 2012-04-30 | 1731 | |
DOE | http://www.facebook.com/nycgrads | 2012-04-30 | 1831 | |
DEP | http://www.facebook.com/nycwater | 2012-04-30 | 2481 | |
MOME | https://www.facebook.com/NYCMedia | 2012-04-30 | 2925 | |
EDC | http://www.facebook.com/NYCEDC | 2012-04-30 | 3251 | |
SBS - Workforce1 | http://www.facebook.com/nycworkforce1 | 2012-04-30 | 4738 | |
DOT | http://www.facebook.com/NYCDOT | 2012-04-30 | 3758 | |
EDC | http://www.facebook.com/AppSciNYC | 2012-04-30 | 3815 | |
DYCD | http://www.facebook.com/nycyouth | 2012-04-30 | 4735 | |
DOH | http://www.facebook.com/EatingHealthyNYC | 2012-04-30 | 33861 | |
NYC & Co | http://www.facebook.com/nycgo.br | 2012-04-30 | 5109 | |
DOE | http://www.facebook.com/NYCTeachingFellows | 2012-04-30 | 5354 | |
NYCService | http://www.facebook.com/nycservice | 2012-04-30 | 5524 | |
NYC Mayors Cup | https://www.facebook.com/nycmayorscup | 2012-04-30 | 10383 | |
DOH | http://www.facebook.com/nycquits | 2012-04-30 | 8798 | |
DOE | http://www.facebook.com/pages/I-TEACH-NYC/11409913191 | 2012-04-30 | 7708 | |
DOE | http://www.facebook.com/fundforpublicschools | 2012-04-30 | 8326 | |
DPR | http://www.facebook.com/nycparks | 2012-04-30 | 13803 | |
OEM | http://www.facebook.com/nycemergencymanagement | 2012-04-30 | 14073 | |
DOE | http://www.facebook.com/NYCschools | 2012-04-30 | 20447 | |
DOH | http://www.facebook.com/NYCcondom | 2012-04-30 | 18808 | |
NYC & Co | http://www.facebook.com/nycgo | 2012-04-30 | 42590 | |
FDNY | http://www.facebook.com/FDNYhome | 2012-04-30 | 81588 | |
CCRB | https://www.facebook.com/home.php#!/pages/NYC-Civilian-Complaint-Review-Board/152765208087880 | 2012-04-30 | 14 | |
Commission on Human Rights | http://www.facebook.com/NYCCommissionOnHumanRights | 2012-04-30 | 58 | |
DOB | http://www.facebook.com/NYCBuildings | 2012-04-30 | 1070 | |
DSNY | http://www.facebook.com/pages/NYC-Recycle-More-Waste-Less/152173854860863 | 2012-04-30 | 107 | |
HDP | http://www.facebook.com/pages/NYC-HPD-POE/128962093860639 | 2012-04-30 | 225 | |
HPD/Commission on Human Rights | http://www.facebook.com/FairHousingNyc | 2012-04-30 | 20 | |
LPC | http://www.facebook.com/pages/NYC-Landmarks-Preservation-Commission/133261836703216 | 2012-04-30 | 111 | |
Materials for the Arts | https://www.facebook.com/mftanyc | 2012-04-30 | 2829 | |
MOAE | http://www.facebook.com/pages/You-Can-Too/203525729692056 | 2012-04-30 | 68 | |
MOIA | http://www.facebook.com/pages/WE-ARE-NEW-YORK/174438697072 | 2012-04-30 | 1914 | |
MOME | http://www.facebook.com/NYCMINY | 2012-04-30 | 539 | |
NYC Gov | http://www.facebook.com/nycgov | 2012-04-30 | 11085 | |
NYCCFB | http://www.facebook.com/nycvotes | 2012-04-30 | 94 | |
NYPD | https://www.facebook.com/NYPD | 2012-04-30 | null | |
DRIS | http://www.facebook.com/NycDeptOfRecords | 2012-04-30 | null | |
DRIS | http://www.facebook.com/MayorEdKochNYCRecords | 2012-04-30 | null | |
DRIS | http://www.facebook.com/MayorJohnLindsayNYCRecords | 2012-04-30 | null | |
DRIS | http://www.facebook.com/MayorFiorelloLaGuardiaNYCRecords | 2012-04-30 | null | |
LMEC | Flickr | http://www.facebook.com/pages/New-York-NY/Latin-Media-and-Entertainment-Week/122259604487271 | 2012-04-30 | 284 |
DEP | Flickr | http://www.flickr.com/photos/nycep | 2012-04-30 | null |
DOB | Flickr | http://www.flickr.com/photos/nyc_buildings/ | 2012-04-30 | null |
DOE | Flickr | http://www.flickr.com/photos/nycschools | 2012-04-30 | null |
DOITT | Flickr | http://www.flickr.com/photos/nyc_doitt | 2012-04-30 | null |
DOT | Flickr | http://www.flickr.com/photos/nycstreets | 2012-04-30 | null |
DPR | Flickr | http://www.flickr.com/photos/nycparks/ | 2012-04-30 | null |
DSNY | Flickr | http://flickr.com/nycrecyclemore | 2012-04-30 | null |
EDC | Flickr | http://www.flickr.com/nycedc | 2012-04-30 | null |
FDNY | Flickr | http://www.flickr.com/groups/fdny-ems | 2012-04-30 | null |
HHC | Flickr | http://www.flickr.com/hhcnyc | 2012-04-30 | null |
LMEC | Flickr | http://www.flickr.com/photos/nyclatinmedia/ | 2012-04-30 | null |
LPC | Flickr | http://www.flickr.com/photos/nyclandmarks | 2012-04-30 | null |
Materials for the Arts | Flickr | http://www.flickr.com/photos/materialsforthearts | 2012-04-30 | null |
Mayor's Office | Flickr | http://www.flickr.com/photos/nycmayorsoffice/ | 2012-04-30 | null |
NYC Digital | Flickr | http://www.flickr.com/photos/nycdigital/ | 2012-04-30 | null |
NYCHA | Flickr | http://www.flickr.com/photos/nychapics | 2012-04-30 | null |
PlaNYC | Flickr | http://www.flickr.com/photos/planyc/ | 2012-04-30 | null |
Prob | Flickr | http://www.flickr.com/photos/nycprobation/ | 2012-04-30 | null |
SnowUpdate | Flickr | http://www.flickr.com/groups/1604085@N23/ | 2012-04-30 | null |
HRA | Flickr | http://www.flickr.com/people/nychra/ | 2012-04-30 | null |
DSNY | Flickr | http://www.flickr.com/photos/86722064@N03/ | 2012-04-30 | null |
GreeNYC | Foursquare | http://foursquare.com/birdie_nyc | 2012-04-30 | 88 |
DOH | Foursquare | https://foursquare.com/nychealthy | 2012-04-30 | 83 |
DOT | Foursquare | http://foursquare.com/user/7474166 | 2012-04-30 | 4 |
DPR | Foursquare | https://foursquare.com/nycparks | 2012-04-30 | 10943 |
EDC | Foursquare | https://foursquare.com/user/3045331 | 2012-04-30 | 19 |
FDNY | Foursquare | https://foursquare.com/fdny | 2012-04-30 | 115 |
Materials for the Arts | Foursquare | https://foursquare.com/mftanyc | 2012-04-30 | 11 |
NYC Gov | Foursquare | http://foursquare.com/nycgov | 2012-04-30 | 18211 |
NYC Gov | Foursquare (Badge Unlock) | https://foursquare.com/nycgov | 2012-04-30 | 10076 |
NYCHA | Foursquare | https://foursquare.com/nycha | 2012-04-30 | 40 |
Mayor's Office | http://web.stagram.com/n/nycmayorsoffice | 2012-04-30 | 3404 | |
DOT | http://web.stagram.com/n/nyc_dot | 2012-04-30 | null | |
DOH | iPhone | http://itunes.apple.com/us/app/abceats/id502867547?mt=8 | 2012-04-30 | 8203 |
311 | iPhone App | http://itunes.apple.com/us/app/nyc-311/id324897619?mt=8 | 2012-04-30 | 24806 |
DOH | iPhone app | http://itunes.apple.com/app/nyc-condom-finder-by-nyc-health/id418902795 | 2012-04-30 | 28000 |
DSNY | iPhone App | http://itunes.apple.com/us/app/nycrecycles/id445457149?ls=1&mt=8 | 2012-04-30 | 772 |
DSNY | iPhone App | http://itunes.apple.com/us/app/stuff-ex/id445438603?ls=1&mt=8 | 2012-04-30 | 709 |
Mayor's Office | iPhone App | http://itunes.apple.com/us/app/nyc-city-hall/id375398827?mt=8 | 2012-04-30 | 5383 |
MOME | iPhone App | http://itunes.apple.com/us/app/nyc-media-app/id433177943?mt=8 | 2012-04-30 | 2268 |
MOME | iPhone App | http://itunes.apple.com/us/app/miny-discount-vendors/id372448233?mt=8 | 2012-04-30 | 350 |
DOE | Linked-In | http://www.linkedin.com/groups?gid=1545057&home= | 2012-04-30 | 284 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-teaching-fellows | 2012-04-30 | 1975 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-department-of-education | 2012-04-30 | 19418 |
ACS | Linked-In | http://www.linkedin.com/companies/260392/City+of+New+York%2C+Administration+for+Children%27s+Services?trk=ncsrch_hits&goback=%2Efcs_GLHD_city+of+new+york_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2 | 2012-04-30 | null |
All | Linked-In | http://www.linkedin.com/company/2904?trk=tyah | 2012-04-30 | null |
Dept of Consumer Affairs | Linked-In | http://www.linkedin.com/company/831694?trk=tyah | 2012-04-30 | null |
DOF | Linked-In | http://www.linkedin.com/company/298308?trk=tyah | 2012-04-30 | null |
DOHMH | Linked-In | http://www.linkedin.com/company/245926?trk=tyah | 2012-04-30 | null |
SBS | Linked-In | http://www.linkedin.com/company/workforce1 | 2012-04-30 | 364 |
SBS | Linked-In | http://www.linkedin.com/company/small-business-services | 2012-04-30 | 137 |
DOE | Newsletter | null | 2012-04-30 | 187180 |
DOT | Newsletter | null | 2012-04-30 | 72614 |
NYC Digital: external newsletter | Newsletter | null | 2012-04-30 | null |
NYC Gov | Newsletter | 0 | 2012-04-30 | 543533 |
NYCHA | Newsletter | null | 2012-04-30 | null |
OEM | Newsletter | null | 2012-04-30 | null |
null | nyc.gov | 2800000 | 2012-04-30 | null |
nycgov | http://pinterest.com/nycgov | 2012-04-30 | null | |
DOH | http://pinterest.com/nychealth | 2012-04-30 | null | |
FDNY | http://pinterest.com/fdnyhome/ | 2012-04-30 | null | |
DRIS | http://pinterest.com/recordsnyc | 2012-04-30 | null | |
DOE | SMS | 877877 | 2012-04-30 | 382 |
NYCHA | SMS | null | 2012-04-30 | null |
OEM | SMS | null | 2012-04-30 | 61652 |
NYC Digital | Tumblr | http://nycdigital.tumblr.com | 2012-04-30 | 3700 |
Change By Us | Tumblr | http://nycchangebyus.tumblr.com/ | 2012-04-30 | null |
DOB | Tumblr | http://nycbuildings.tumblr.com | 2012-04-30 | null |
DOH | Tumblr | http://nychealth.tumblr.com/ | 2012-04-30 | null |
DOH | Tumblr | http://mygooddognyc.tumblr.com/ | 2012-04-30 | null |
DOT | Tumblr | http://thedailypothole.tumblr.com | 2012-04-30 | 406 |
EDC | Tumblr | http://nycedc.tumblr.com/ | 2012-04-30 | 14607 |
HRA | Tumblr | http://nycdads.tumblr.com | 2012-04-30 | null |
NYC & Co | Tumblr | nycgo.tumblr.com | 2012-04-30 | 134 |
NYC Digital | Tumblr | madeinny.tumblr.com | 2012-04-30 | null |
NYC Digital | Tumblr | http://nycopendata.tumblr.com | 2012-04-30 | 324 |
NYC Gov | Tumblr | nycgov.tumblr.com | 2012-04-30 | 4313 |
OEM | Tumblr | http://nyccert.tumblr.com/ | 2012-04-30 | null |
OEM | Tumblr | http://nyccitizencorpscouncil.tumblr.com/ | 2012-04-30 | null |
OMB | Tumblr | http://nycarra.tumblr.com | 2012-04-30 | 1326 |
TLC | Tumblr | http://nyctlc.tumblr.com/ | 2012-04-30 | null |
OEM | Tumblr | http://oempublicprivate.tumblr.com/ | 2012-04-30 | null |
DOITT | Tumblr | http://nycdoitt.tumblr.com/ | 2012-04-30 | null |
Young Mens Initiative | Tumblr | http://nycyoungmen.tumblr.com | 2012-04-30 | null |
FDNY | Tumblr | http://fdny.tumblr.com/ | 2012-04-30 | null |
SBS | Tumblr | http://nycheighborhoods.tumblr.com | 2012-04-30 | null |
NYCDCAS | http://twitter.com/NYCDCAS | 2012-04-30 | 22 | |
SBS | https://twitter.com/NYCWorkforce1 | 2012-04-30 | 393 | |
City Store | http://twitter.com/citystorenyc | 2012-04-30 | 222 | |
LPC | https://twitter.com/NYCLPC | 2012-04-30 | 495 | |
DOE | http://twitter.com/alumny | 2012-04-30 | 157 | |
OEM | http://twitter.com/NYCOEM | 2012-04-30 | 142 | |
NYC & Co | http://twitter.com/nycgoshop | 2012-04-30 | 346 | |
LMEC | http://twitter.com/nyclmew | 2012-04-30 | 354 | |
DPR | http://www.twitter.com/Pearl_Squirrel | 2012-04-30 | 253 | |
HRA | http://twitter.com/nychra | 2012-04-30 | 585 | |
NYC Digital | http://twitter.com/nycdigital | 2012-04-30 | 1618 | |
energyNYC | http://twitter.com/energy_nyc | 2012-04-30 | 567 | |
DFTA | http://twitter.com/NYCaging | 2012-04-30 | 628 | |
DOE | http://twitter.com/TheFundforPS | 2012-04-30 | 375 | |
MOPD | http://twitter.com/nyc_mopd | 2012-04-30 | 624 | |
NYCCFB | http://twitter.com/NYCCFB | 2012-04-30 | 663 | |
EDC | http://twitter.com/AppSciNYC | 2012-04-30 | 1225 | |
DOB: Cool Roofs | http://twitter.com/nycCoolRoofs | 2012-04-30 | 803 | |
DOE | http://twitter.com/nyctf | 2012-04-30 | 727 | |
DOT | http://www.Twitter.com/YouTheManNYC | 2012-04-30 | 948 | |
City Charter | http://twitter.com/CityCharterNYC | 2012-04-30 | 739 | |
DFTA | http://www.twitter.com/timebanksnyc | 2012-04-30 | 820 | |
SBS | http://www.twitter.com/NYCBusSolutions | 2012-04-30 | 1373 | |
MOME | http://www.twitter.com/madeinny | 2012-04-30 | 1903 | |
GreeNYC | http://www.twitter.com/Birdie_NYC | 2012-04-30 | 1566 | |
DOI | http://twitter.com/DOINews | 2012-04-30 | 1759 | |
DCA | http://twitter.com/nycdca | 2012-04-30 | 2051 | |
DOE | http://twitter.com/iteachnyc | 2012-04-30 | 1495 | |
CAU | www.twitter.com/mayorscau | 2012-04-30 | 1872 | |
HHC | http://twitter.com/HHCnyc | 2012-04-30 | 2579 | |
MOIA | https://twitter.com/NYCimmigrants | 2012-04-30 | 2060 | |
SBS | http://www.twitter.com/NYCBusinessExp | 2012-04-30 | 2740 | |
DEP | http://twitter.com/nycwater | 2012-04-30 | 3178 | |
DOITT | http://twitter.com/nycdoitt | 2012-04-30 | 3170 | |
PlaNYC | http://twitter.com/PlaNYC | 2012-04-30 | 3327 | |
DYCD | http://twitter.com/nycyouth | 2012-04-30 | 2896 | |
NYCService | http://twitter.com/nycservice | 2012-04-30 | 3243 | |
TLC | http://twitter.com/NYCTaxi | 2012-04-30 | 3323 | |
DOB | http://twitter.com/nyc_buildings | 2012-04-30 | 3864 | |
NYCHA | http://twitter.com/NYCHA | 2012-04-30 | 3994 | |
MOME | http://www.twitter.com/nyc_media | 2012-04-30 | 7299 | |
EDC | http://twitter.com/nycedc | 2012-04-30 | 7767 | |
DOH | http://twitter.com/nycHealthy | 2012-04-30 | 8661 | |
NYC Digital | http://twitter.com/nycgov | 2012-04-30 | 21346 | |
311 | http://www.twitter.com/NYCASP | 2012-04-30 | 10562 | |
DOT | http://twitter.com/NYC_DOT | 2012-04-30 | 15170 | |
FDNY | http://www.twitter.com/FDNY | 2012-04-30 | 27399 | |
DOE | http://twitter.com/NYCSchools | 2012-04-30 | 22751 | |
DPR | http://twitter.com/NYCParks | 2012-04-30 | 23721 | |
NYPD | http://twitter.com/NYPDnews | 2012-04-30 | 33469 | |
311 | http://www.twitter.com/311NYC | 2012-04-30 | 27616 | |
OEM | http://twitter.com/NotifyNYC | 2012-04-30 | 38883 | |
NYC & Co | http://twitter.com/nycgo | 2012-04-30 | 54671 | |
Mayor's Office | http://www.twitter.com/nycmayorsoffice | 2012-04-30 | 65021 | |
Change by Us | www.twitter.com/ChangebyUs_NYC | 2012-04-30 | 1128 | |
DHS | www.twitter.com/nycdhs | 2012-04-30 | 315 | |
DOF | https://twitter.com/nycfinance | 2012-04-30 | null | |
DOHMH | https://twitter.com/DrFarleyDOHMH | 2012-04-30 | 147 | |
DSNY | www.twitter.com/nycrecycles | 2012-04-30 | 36 | |
FDNY | https://twitter.com/joinFDNY | 2012-04-30 | 1497 | |
Materials for the Arts | https://twitter.com/mftanyc | 2012-04-30 | 1948 | |
MOAE | http://twitter.com/youcantoonyc | 2012-04-30 | 39 | |
NYC Digital | https://twitter.com/nycgob | 2012-04-30 | null | |
NYC Waterfront | http://twitter.com/nycwaterfront | 2012-04-30 | 146 | |
NYCCFB | http://twitter.com/NYCVotes | 2012-04-30 | 199 | |
NYCGLOBAL | www.twitter.com/nycglobal | 2012-04-30 | 150 | |
Prob | www.twitter.com/nycprobation | 2012-04-30 | 139 | |
Vets | http://twitter.com/NYCVeterans | 2012-04-30 | 275 | |
DRIS | https://twitter.com/NYCRecords | 2012-04-30 | null | |
YMI | http://www.twitter.com/nycyoungmen | 2012-04-30 | null | |
DOE | Vimeo | http://vimeo.com/nycschools | 2012-04-30 | null |
NYCSevereWeather | WordPress | http://nycsevereweather.wordpress.com/ | 2012-04-30 | null |
311 | WordPress | http://311nyc.wordpress.com/ | 2012-04-30 | null |
DOITT | WordPress | http://nycitymap.wordpress.com/ | 2012-04-30 | null |
DOITT | WordPress | http://nycitt.wordpress.com/ | 2012-04-30 | null |
HHS | WordPress | http://hsdatanyc.wordpress.com/ | 2012-04-30 | null |
HHS | WordPress | http://hsdata-nyc.org | 2012-04-30 | null |
LMEC | WordPress | http://lmew.wordpress.com/ | 2012-04-30 | null |
Materials for the Arts | WordPress | http://mfta.wordpress.com/ | 2012-04-30 | null |
MOIA | WordPress | http://ihwnyc.wordpress.com | 2012-04-30 | null |
SBS | WordPress | http://nycworkforce1partners.wordpress.com/ | 2012-04-30 | null |
DOT | Android | You The Man | 2012-07-05 | 102 |
SBS | WordPress | http://workforce1.org | 2012-04-30 | null |
SimpliCity | WordPress | http://nycsimplicity.wordpress.com/ | 2012-04-30 | null |
DOE | YouTube | http://www.youtube.com/thefundforps | 2012-04-30 | 1 |
DOH | YouTube | http://www.youtube.com/user/NYCcondoms | 2012-04-30 | null |
LMEC | YouTube | http://www.youtube.com/user/NYCLMEW | 2012-04-30 | 6 |
Probation | YouTube | http://www.youtube.com/NYCProbation | 2012-04-30 | 8 |
DOITT | YouTube | http://www.youtube.com/doittnews | 2012-04-30 | 29 |
GreeNYC | YouTube | http://www.youtube.com/BirdieNYCity | 2012-04-30 | 15 |
HRA | YouTube | http://www.youtube.com/user/HRANYC | 2012-04-30 | 27 |
NYCHA | YouTube | http://www.youtube.com/NYCHAHousing | 2012-04-30 | 30 |
HHC | YouTube | http://www.youtube.com/HHCnyc | 2012-04-30 | 37 |
DOE | YouTube | http://www.youtube.com/nycschools | 2012-04-30 | 44 |
DYCD | YouTube | http://www.youtube.com/dycdnyc | 2012-04-30 | 52 |
OEM | YouTube | http://www.youtube.com/nycoem | 2012-04-30 | 67 |
DOB | YouTube | http://www.youtube.com/NYCBUILDINGS | 2012-04-30 | 85 |
EDC | YouTube | http://www.youtube.com/NYCEDC | 2012-04-30 | 123 |
MOME | YouTube | http://www.youtube.com/nycmedia25 | 2012-04-30 | 159 |
DPR | YouTube | http://www.youtube.com/user/NYCParksDepartment | 2012-04-30 | 240 |
DOT | YouTube | http://www.youtube.com/NYCDOT | 2012-04-30 | 330 |
Mayor's Office | YouTube | http://www.youtube.com/mayorbloomberg | 2012-04-30 | 670 |
NYPD | YouTube | http://www.youtube.com/nypd | 2012-04-30 | 3090 |
DOH | YouTube | http://www.youtube.com/NYCHealth | 2012-04-30 | 129 |
FDNY | YouTube | http://www.youtube.com/user/yourFDNY | 2012-04-30 | 1159 |
Child Services | Youtube | http://www.youtube.com/user/childservices | 2012-04-30 | null |
DCA | YouTube | http://www.youtube.com/nycdca | 2012-04-30 | 17 |
DOC | YouTube | http://www.youtube.com/user/OFFICIALNYCDOC | 2012-04-30 | null |
DOH | Youtube | http://www.youtube.com/user/drinkingsugar | 2012-04-30 | 191 |
DSNY | YouTube | http://www.youtube.com/nycrecyclemore | 2012-04-30 | 4 |
Materials for the Arts | YouTube | http://www.youtube.com/user/MaterialsForTheArts | 2012-04-30 | 1 |
Mayor's Fund | Youtube | http://www.youtube.com/mayorsfundnyc | 2012-04-30 | null |
MOAE | YouTube | http://www.youtube.com/YouCanTooNYC | 2012-04-30 | 8 |
NYC Gov | YouTube | http://www.youtube.com/nycgov | 2012-04-30 | 8 |
NYC Water | Youtube | http://www.youtube.com/nycwater | 2012-04-30 | null |
Veteran's Affairs | Youtube | http://www.youtube.com/channel/UCi6IvOszIb3hHPMUsaNKyXA | 2012-04-30 | null |
DRIS | YouTube | http://www.youtube.com/nycdeptofrecords | 2012-04-30 | null |
TLC | http://www.facebook.com/pages/NYC-Taxi-and-Limousine-Commission/101679939900978?v=wall | 2012-04-30 | 652 | |
nycgov | Google+ | https://plus.google.com/u/0/b/104030911277642419611/104030911277642419611/posts/p/pub | 2012-04-30 | null |
TOTAL | TOTAL | TOTAL | 2012-04-30 | 1853118 |
DOH | Android | Condom Finder | 2012-05-09 | null |
DOT | Android | You The Man | 2012-05-09 | 38 |
MOME | Android | MiNY Venor app | 2012-05-09 | 343 |
DOT | Broadcastr | null | 2012-05-09 | null |
MOME | Android | MiNY Venor app | 2012-07-05 | 343 |
DPR | Broadcastr | http://beta.broadcastr.com/Echo.html?audioId=670026-4001 | 2012-05-09 | null |
NYC & Co | http://www.facebook.com/nycgo.es | 2012-05-09 | 2107 | |
ENDHT | http://www.facebook.com/pages/NYC-Lets-End-Human-Trafficking/125730490795659?sk=wall | 2012-05-09 | 11 | |
VAC | https://www.facebook.com/pages/NYC-Voter-Assistance-Commission/110226709012110 | 2012-05-09 | 60 | |
PlaNYC | http://www.facebook.com/pages/New-York-NY/PlaNYC/160454173971169?ref=ts | 2012-05-09 | 112 | |
DFTA | http://www.facebook.com/pages/NYC-Department-for-the-Aging/109028655823590 | 2012-05-09 | 187 | |
energyNYC | http://www.facebook.com/EnergyNYC?sk=wall | 2012-05-09 | 197 | |
MOIA | http://www.facebook.com/ihwnyc | 2012-05-09 | 225 | |
OEM | Newsletter | null | 2012-07-05 | 47473 |
City Store | http://www.facebook.com/citystorenyc | 2012-05-09 | 224 | |
OCDV | http://www.facebook.com/pages/NYC-Healthy-Relationship-Training-Academy/134637829901065 | 2012-05-09 | 320 | |
HIA | http://www.facebook.com/pages/New-York-City-Health-Insurance-Link/145920551598 | 2012-05-09 | 240 | |
MOPD | http://www.facebook.com/pages/New-York-City-Mayors-Office-for-People-with-Disabilities/145237285504681?sk=wall | 2012-05-09 | 320 | |
DOB: UrbanCanvas | http://www.facebook.com/NYCurbancanvas | 2012-05-09 | 257 | |
DOT | http://www.facebook.com/JanetteSadikKhan | 2012-05-09 | 361 | |
HRA | http://www.facebook.com/#!/pages/New-York-NY/NYC-DADS/111504588886342 | 2012-05-09 | 304 | |
MOPD | http://www.facebook.com/profile.php?id=1570569347 | 2012-05-09 | 272 | |
DFTA | http://www.facebook.com/timebanksnyc | 2012-05-09 | 305 | |
DOB: Cool Roofs | http://www.facebook.com/coolroofs?sk=wall | 2012-05-09 | 350 | |
NYC & Co | http://www.facebook.com/nycgo.nl | 2012-05-09 | 360 | |
MOIA | http://www.facebook.com/pages/NYC-Mayors-Office-of-Immigrant-Affairs/118622031512497 | 2012-05-09 | 396 | |
CAU | http://www.facebook.com/NYCMayorsCAU | 2012-05-09 | 371 | |
DOITT | http://www.facebook.com/pages/New-York-NY/NYC-INFORMATION-TECHNOLOGY-TELECOMMUNICATIONS/104786059565184 | 2012-05-09 | 371 | |
City Charter | http://www.facebook.com/pages/New-York-NY/NYC-Charter-Revision-Commission/110528715643388 | 2012-05-09 | 289 | |
Vets | http://www.facebook.com/pages/NYC-Mayors-Office-of-Veterans-Affairs/128003537214726 | 2012-05-09 | 381 | |
DHS | http://www.facebook.com/pages/New-York-NY/HOPE-2011/157690657606772 | 2012-05-09 | 303 | |
NYC & Co | http://www.facebook.com/nycgo.de | 2012-05-09 | 510 | |
NYC & Co | http://www.facebook.com/nycgo.fr | 2012-05-09 | 675 | |
SICB1 | https://www.facebook.com/CB1SI | 2012-05-09 | 360 | |
ACS | http://www.facebook.com/FamilyConnectionsNYC | 2012-05-09 | 442 | |
DCA | http://www.facebook.com/NYCDCA | 2012-05-09 | 491 | |
NYC & Co | http://www.facebook.com/nycgo.au | 2012-05-09 | 496 | |
NYC & Co | http://www.facebook.com/nycgo.ca | 2012-05-09 | 481 | |
NYCHA | http://www.facebook.com/NYCHA | 2012-05-09 | 942 | |
NYC & Co | http://www.facebook.com/nycgo.uk | 2012-05-09 | 1029 | |
NYC & Co | http://www.facebook.com/nycgo.it | 2012-05-09 | 1475 | |
Culture | https://www.facebook.com/piypnyc | 2012-05-09 | 964 | |
SBS | http://www.facebook.com/NYCBusiness | 2012-05-09 | 1101 | |
FUND | http://www.facebook.com/mayorsfundtoadvancenyc | 2012-05-09 | 917 | |
DOT | http://www.facebook.com/YouTheManNYC | 2012-05-09 | 1051 | |
HHC | http://www.facebook.com/nychhc | 2012-05-09 | 1148 | |
MOME | http://www.facebook.com/nycmedia.jobhunt | 2012-05-09 | 1173 | |
GreeNYC | https://www.facebook.com/birdienyc | 2012-05-09 | 1451 | |
311 | http://www.facebook.com/pages/New-York-City-311/84372567650 | 2012-05-09 | 1495 | |
DOH | http://www.facebook.com/NYCKnows | 2012-05-09 | 1728 | |
DOE | http://www.facebook.com/nycgrads | 2012-05-09 | 1828 | |
null | nyc.gov | 2800000 | 2012-07-05 | null |
DEP | http://www.facebook.com/nycwater | 2012-05-09 | 2505 | |
MOME | https://www.facebook.com/NYCMedia | 2012-05-09 | 2953 | |
EDC | http://www.facebook.com/NYCEDC | 2012-05-09 | 3293 | |
SBS - Workforce1 | http://www.facebook.com/nycworkforce1 | 2012-05-09 | 4815 | |
DOT | http://www.facebook.com/NYCDOT | 2012-05-09 | 3880 | |
EDC | http://www.facebook.com/AppSciNYC | 2012-05-09 | 3829 | |
DYCD | http://www.facebook.com/nycyouth | 2012-05-09 | 4758 | |
DOH | http://www.facebook.com/EatingHealthyNYC | 2012-05-09 | 34087 | |
NYC & Co | http://www.facebook.com/nycgo.br | 2012-05-09 | 5148 | |
DOE | http://www.facebook.com/NYCTeachingFellows | 2012-05-09 | 5382 | |
NYCService | http://www.facebook.com/nycservice | 2012-05-09 | 5541 | |
NYC Mayors Cup | https://www.facebook.com/nycmayorscup | 2012-05-09 | 10750 | |
DOH | http://www.facebook.com/nycquits | 2012-05-09 | 8793 | |
DOE | http://www.facebook.com/pages/I-TEACH-NYC/11409913191 | 2012-05-09 | 7726 | |
DOE | http://www.facebook.com/fundforpublicschools | 2012-05-09 | 8327 | |
DPR | http://www.facebook.com/nycparks | 2012-05-09 | 13992 | |
OEM | http://www.facebook.com/nycemergencymanagement | 2012-05-09 | 14066 | |
DOE | http://www.facebook.com/NYCschools | 2012-05-09 | 20583 | |
DOH | http://www.facebook.com/NYCcondom | 2012-05-09 | 18804 | |
NYC & Co | http://www.facebook.com/nycgo | 2012-05-09 | 42898 | |
FDNY | http://www.facebook.com/FDNYhome | 2012-05-09 | 82259 | |
CCRB | https://www.facebook.com/home.php#!/pages/NYC-Civilian-Complaint-Review-Board/152765208087880 | 2012-05-09 | 15 | |
Commission on Human Rights | http://www.facebook.com/NYCCommissionOnHumanRights | 2012-05-09 | 62 | |
DOB | http://www.facebook.com/NYCBuildings | 2012-05-09 | 1068 | |
DSNY | http://www.facebook.com/pages/NYC-Recycle-More-Waste-Less/152173854860863 | 2012-05-09 | null | |
HDP | http://www.facebook.com/pages/NYC-HPD-POE/128962093860639 | 2012-05-09 | 241 | |
HPD/Commission on Human Rights | http://www.facebook.com/FairHousingNyc | 2012-05-09 | 23 | |
LPC | http://www.facebook.com/pages/NYC-Landmarks-Preservation-Commission/133261836703216 | 2012-05-09 | 114 | |
Materials for the Arts | https://www.facebook.com/mftanyc | 2012-05-09 | 2842 | |
MOAE | http://www.facebook.com/pages/You-Can-Too/203525729692056 | 2012-05-09 | 70 | |
MOIA | http://www.facebook.com/pages/WE-ARE-NEW-YORK/174438697072 | 2012-05-09 | 1924 | |
MOME | http://www.facebook.com/NYCMINY | 2012-05-09 | 563 | |
NYC Gov | http://www.facebook.com/nycgov | 2012-05-09 | 11452 | |
NYCCFB | http://www.facebook.com/nycvotes | 2012-05-09 | 96 | |
NYPD | https://www.facebook.com/NYPD | 2012-05-09 | null | |
DRIS | http://www.facebook.com/NycDeptOfRecords | 2012-05-09 | null | |
DRIS | http://www.facebook.com/MayorEdKochNYCRecords | 2012-05-09 | null | |
DRIS | http://www.facebook.com/MayorJohnLindsayNYCRecords | 2012-05-09 | null | |
DRIS | http://www.facebook.com/MayorFiorelloLaGuardiaNYCRecords | 2012-05-09 | null | |
LMEC | Flickr | http://www.facebook.com/pages/New-York-NY/Latin-Media-and-Entertainment-Week/122259604487271 | 2012-05-09 | 287 |
DEP | Flickr | http://www.flickr.com/photos/nycep | 2012-05-09 | null |
DOB | Flickr | http://www.flickr.com/photos/nyc_buildings/ | 2012-05-09 | null |
DOE | Flickr | http://www.flickr.com/photos/nycschools | 2012-05-09 | null |
DOITT | Flickr | http://www.flickr.com/photos/nyc_doitt | 2012-05-09 | null |
DOT | Flickr | http://www.flickr.com/photos/nycstreets | 2012-05-09 | null |
DPR | Flickr | http://www.flickr.com/photos/nycparks/ | 2012-05-09 | null |
DSNY | Flickr | http://flickr.com/nycrecyclemore | 2012-05-09 | null |
FDNY | Flickr | http://www.flickr.com/groups/fdny-ems | 2012-05-09 | null |
HHC | Flickr | http://www.flickr.com/hhcnyc | 2012-05-09 | null |
LMEC | Flickr | http://www.flickr.com/photos/nyclatinmedia/ | 2012-05-09 | null |
LPC | Flickr | http://www.flickr.com/photos/nyclandmarks | 2012-05-09 | null |
Materials for the Arts | Flickr | http://www.flickr.com/photos/materialsforthearts | 2012-05-09 | null |
Mayor's Office | Flickr | http://www.flickr.com/photos/nycmayorsoffice/ | 2012-05-09 | null |
NYC Digital | Flickr | http://www.flickr.com/photos/nycdigital/ | 2012-05-09 | null |
NYCHA | Flickr | http://www.flickr.com/photos/nychapics | 2012-05-09 | null |
PlaNYC | Flickr | http://www.flickr.com/photos/planyc/ | 2012-05-09 | null |
Prob | Flickr | http://www.flickr.com/photos/nycprobation/ | 2012-05-09 | null |
SnowUpdate | Flickr | http://www.flickr.com/groups/1604085@N23/ | 2012-05-09 | null |
HRA | Flickr | http://www.flickr.com/people/nychra/ | 2012-05-09 | null |
DSNY | Flickr | http://www.flickr.com/photos/86722064@N03/ | 2012-05-09 | null |
GreeNYC | Foursquare | http://foursquare.com/birdie_nyc | 2012-05-09 | 88 |
DOH | Foursquare | https://foursquare.com/nychealthy | 2012-05-09 | 83 |
DOT | Foursquare | http://foursquare.com/user/7474166 | 2012-05-09 | 4 |
DPR | Foursquare | https://foursquare.com/nycparks | 2012-05-09 | 11054 |
EDC | Foursquare | https://foursquare.com/user/3045331 | 2012-05-09 | 19 |
FDNY | Foursquare | https://foursquare.com/fdny | 2012-05-09 | 136 |
Materials for the Arts | Foursquare | https://foursquare.com/mftanyc | 2012-05-09 | 11 |
NYC Gov | Foursquare | http://foursquare.com/nycgov | 2012-05-09 | 18556 |
NYC Gov | Foursquare (Badge Unlock) | https://foursquare.com/nycgov | 2012-05-09 | null |
NYCHA | Foursquare | https://foursquare.com/nycha | 2012-05-09 | 40 |
Mayor's Office | http://web.stagram.com/n/nycmayorsoffice | 2012-05-09 | null | |
DOT | http://web.stagram.com/n/nyc_dot | 2012-05-09 | null | |
DOH | iPhone | http://itunes.apple.com/us/app/abceats/id502867547?mt=8 | 2012-05-09 | 8203 |
311 | iPhone App | http://itunes.apple.com/us/app/nyc-311/id324897619?mt=8 | 2012-05-09 | 24806 |
DOH | iPhone app | http://itunes.apple.com/app/nyc-condom-finder-by-nyc-health/id418902795 | 2012-05-09 | 28000 |
DSNY | iPhone App | http://itunes.apple.com/us/app/nycrecycles/id445457149?ls=1&mt=8 | 2012-05-09 | 772 |
DSNY | iPhone App | http://itunes.apple.com/us/app/stuff-ex/id445438603?ls=1&mt=8 | 2012-05-09 | 709 |
DOT | iPhone app | You The Man | 2012-05-09 | 2598 |
Mayor's Office | iPhone App | http://itunes.apple.com/us/app/nyc-city-hall/id375398827?mt=8 | 2012-05-09 | 5383 |
MOME | iPhone App | http://itunes.apple.com/us/app/nyc-media-app/id433177943?mt=8 | 2012-05-09 | 2268 |
MOME | iPhone App | http://itunes.apple.com/us/app/miny-discount-vendors/id372448233?mt=8 | 2012-05-09 | 350 |
DOE | Linked-In | http://www.linkedin.com/groups?gid=1545057&home= | 2012-05-09 | 283 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-teaching-fellows | 2012-05-09 | 1999 |
DOE | Linked-In | http://www.linkedin.com/company/nyc-department-of-education | 2012-05-09 | 19658 |
ACS | Linked-In | http://www.linkedin.com/companies/260392/City+of+New+York%2C+Administration+for+Children%27s+Services?trk=ncsrch_hits&goback=%2Efcs_GLHD_city+of+new+york_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2 | 2012-05-09 | 917 |
All | Linked-In | http://www.linkedin.com/company/2904?trk=tyah | 2012-05-09 | 4266 |
Dept of Consumer Affairs | Linked-In | http://www.linkedin.com/company/831694?trk=tyah | 2012-05-09 | 87 |
DOF | Linked-In | http://www.linkedin.com/company/298308?trk=tyah | 2012-05-09 | 144 |
DOHMH | Linked-In | http://www.linkedin.com/company/245926?trk=tyah | 2012-05-09 | 1927 |
SBS | Linked-In | http://www.linkedin.com/company/workforce1 | 2012-05-09 | 390 |
SBS | Linked-In | http://www.linkedin.com/company/small-business-services | 2012-05-09 | 137 |
DOE | Newsletter | null | 2012-05-09 | 187180 |
DOT | Newsletter | null | 2012-05-09 | 72614 |
NYC Digital: external newsletter | Newsletter | null | 2012-05-09 | 174 |
NYC Gov | Newsletter | 0 | 2012-05-09 | 587845 |
OEM | Newsletter | null | 2012-05-09 | null |
null | nyc.gov | 2800000 | 2012-05-09 | null |
nycgov | http://pinterest.com/nycgov | 2012-05-09 | null | |
DOH | http://pinterest.com/nychealth | 2012-05-09 | null | |
FDNY | http://pinterest.com/fdnyhome/ | 2012-05-09 | null | |
DRIS | http://pinterest.com/recordsnyc | 2012-05-09 | null | |
DOE | SMS | 877877 | 2012-05-09 | null |
NYCHA | SMS | null | 2012-05-09 | null |
OEM | SMS | null | 2012-05-09 | null |
NYC Digital | Tumblr | http://nycdigital.tumblr.com | 2012-05-09 | 4237 |
Change By Us | Tumblr | http://nycchangebyus.tumblr.com/ | 2012-05-09 | null |
DOB | Tumblr | http://nycbuildings.tumblr.com | 2012-05-09 | null |
DOH | Tumblr | http://nychealth.tumblr.com/ | 2012-05-09 | null |
DOH | Tumblr | http://mygooddognyc.tumblr.com/ | 2012-05-09 | null |
DOT | Tumblr | http://thedailypothole.tumblr.com | 2012-05-09 | 406 |
EDC | Tumblr | http://nycedc.tumblr.com/ | 2012-05-09 | 14607 |
HRA | Tumblr | http://nycdads.tumblr.com | 2012-05-09 | null |
NYC & Co | Tumblr | nycgo.tumblr.com | 2012-05-09 | 134 |
NYC Digital | Tumblr | madeinny.tumblr.com | 2012-05-09 | null |
NYC Digital | Tumblr | http://nycopendata.tumblr.com | 2012-05-09 | 326 |
NYC Gov | Tumblr | nycgov.tumblr.com | 2012-05-09 | 5507 |
OEM | Tumblr | http://nyccert.tumblr.com/ | 2012-05-09 | null |
OEM | Tumblr | http://nyccitizencorpscouncil.tumblr.com/ | 2012-05-09 | null |
OMB | Tumblr | http://nycarra.tumblr.com | 2012-05-09 | 1715 |
TLC | Tumblr | http://nyctlc.tumblr.com/ | 2012-05-09 | null |
OEM | Tumblr | http://oempublicprivate.tumblr.com/ | 2012-05-09 | null |
DOITT | Tumblr | http://nycdoitt.tumblr.com/ | 2012-05-09 | null |
Young Mens Initiative | Tumblr | http://nycyoungmen.tumblr.com | 2012-05-09 | null |
FDNY | Tumblr | http://fdny.tumblr.com/ | 2012-05-09 | null |
SBS | Tumblr | http://nycheighborhoods.tumblr.com | 2012-05-09 | null |
NYCDCAS | http://twitter.com/NYCDCAS | 2012-05-09 | 4032 | |
SBS | https://twitter.com/NYCWorkforce1 | 2012-05-09 | 3364 | |
City Store | http://twitter.com/citystorenyc | 2012-05-09 | 236 | |
LPC | https://twitter.com/NYCLPC | 2012-05-09 | 65351 | |
DOE | http://twitter.com/alumny | 2012-05-09 | 160 | |
OEM | http://twitter.com/NYCOEM | 2012-05-09 | 39028 | |
NYC & Co | http://twitter.com/nycgoshop | 2012-05-09 | 23 | |
LMEC | http://twitter.com/nyclmew | 2012-05-09 | 512 | |
DPR | http://www.twitter.com/Pearl_Squirrel | 2012-05-09 | 36 | |
HRA | http://twitter.com/nychra | 2012-05-09 | 359 | |
NYC Digital | http://twitter.com/nycdigital | 2012-05-09 | 39 | |
energyNYC | http://twitter.com/energy_nyc | 2012-05-09 | 27974 | |
DFTA | http://twitter.com/NYCaging | 2012-05-09 | 3928 | |
DOE | http://twitter.com/TheFundforPS | 2012-05-09 | 379 | |
MOPD | http://twitter.com/nyc_mopd | 2012-05-09 | 153 | |
NYCCFB | http://twitter.com/NYCCFB | 2012-05-09 | 673 | |
EDC | http://twitter.com/AppSciNYC | 2012-05-09 | 580 | |
DOB: Cool Roofs | http://twitter.com/nycCoolRoofs | 2012-05-09 | 22909 | |
DOE | http://twitter.com/nyctf | 2012-05-09 | 737 | |
DOT | http://www.Twitter.com/YouTheManNYC | 2012-05-09 | 23969 | |
City Charter | http://twitter.com/CityCharterNYC | 2012-05-09 | 751 | |
DFTA | http://www.twitter.com/timebanksnyc | 2012-05-09 | 831 | |
SBS | http://www.twitter.com/NYCBusSolutions | 2012-05-09 | 411 | |
MOME | http://www.twitter.com/madeinny | 2012-05-09 | 639 | |
GreeNYC | http://www.twitter.com/Birdie_NYC | 2012-05-09 | 2629 | |
DOI | http://twitter.com/DOINews | 2012-05-09 | 3214 | |
DCA | http://twitter.com/nycdca | 2012-05-09 | 2086 | |
DOE | http://twitter.com/iteachnyc | 2012-05-09 | 1500 | |
CAU | www.twitter.com/mayorscau | 2012-05-09 | 1889 | |
HHC | http://twitter.com/HHCnyc | 2012-05-09 | 603 | |
MOIA | https://twitter.com/NYCimmigrants | 2012-05-09 | 7404 | |
SBS | http://www.twitter.com/NYCBusinessExp | 2012-05-09 | 1400 | |
DEP | http://twitter.com/nycwater | 2012-05-09 | 3203 | |
DOITT | http://twitter.com/nycdoitt | 2012-05-09 | 15375 | |
PlaNYC | http://twitter.com/PlaNYC | 2012-05-09 | 2769 | |
DYCD | http://twitter.com/nycyouth | 2012-05-09 | 7860 | |
NYCService | http://twitter.com/nycservice | 2012-05-09 | 141 | |
TLC | http://twitter.com/NYCTaxi | 2012-05-09 | 287 | |
DOB | http://twitter.com/nyc_buildings | 2012-05-09 | 830 | |
NYCHA | http://twitter.com/NYCHA | 2012-05-09 | 34071 | |
MOME | http://www.twitter.com/nyc_media | 2012-05-09 | 1973 | |
EDC | http://twitter.com/nycedc | 2012-05-09 | 1249 | |
DOH | http://twitter.com/nycHealthy | 2012-05-09 | 1785 | |
NYC Digital | http://twitter.com/nycgov | 2012-05-09 | 1677 | |
311 | http://www.twitter.com/NYCASP | 2012-05-09 | 10622 | |
DOT | http://twitter.com/NYC_DOT | 2012-05-09 | 944 | |
FDNY | http://www.twitter.com/FDNY | 2012-05-09 | 1507 | |
DOE | http://twitter.com/NYCSchools | 2012-05-09 | 8770 | |
DPR | http://twitter.com/NYCParks | 2012-05-09 | 257 | |
NYPD | http://twitter.com/NYPDnews | 2012-05-09 | 3279 | |
311 | http://www.twitter.com/311NYC | 2012-05-09 | 27847 | |
OEM | http://twitter.com/NotifyNYC | 2012-05-09 | 147 | |
NYC & Co | http://twitter.com/nycgo | 2012-05-09 | 345 | |
Mayor's Office | http://www.twitter.com/nycmayorsoffice | 2012-05-09 | 2079 | |
Change by Us | www.twitter.com/ChangebyUs_NYC | 2012-05-09 | 1145 | |
DHS | www.twitter.com/nycdhs | 2012-05-09 | 646 | |
DOF | https://twitter.com/nycfinance | 2012-05-09 | 776 | |
DOHMH | https://twitter.com/DrFarleyDOHMH | 2012-05-09 | null | |
DSNY | www.twitter.com/nycrecycles | 2012-05-09 | 2935 | |
FDNY | https://twitter.com/joinFDNY | 2012-05-09 | 1590 | |
Materials for the Arts | https://twitter.com/mftanyc | 2012-05-09 | 154 | |
MOAE | http://twitter.com/youcantoonyc | 2012-05-09 | 1966 | |
NYC Digital | https://twitter.com/nycgob | 2012-05-09 | null | |
NYC Waterfront | http://twitter.com/nycwaterfront | 2012-05-09 | 180 | |
NYCCFB | http://twitter.com/NYCVotes | 2012-05-09 | 212 | |
NYCGLOBAL | www.twitter.com/nycglobal | 2012-05-09 | 55138 | |
Prob | www.twitter.com/nycprobation | 2012-05-09 | 3397 | |
Vets | http://twitter.com/NYCVeterans | 2012-05-09 | 22193 | |
DRIS | https://twitter.com/NYCRecords | 2012-05-09 | null | |
YMI | http://www.twitter.com/nycyoungmen | 2012-05-09 | null | |
DOE | Vimeo | http://vimeo.com/nycschools | 2012-05-09 | null |
NYCSevereWeather | WordPress | http://nycsevereweather.wordpress.com/ | 2012-05-09 | null |
311 | WordPress | http://311nyc.wordpress.com/ | 2012-05-09 | null |
DOITT | WordPress | http://nycitymap.wordpress.com/ | 2012-05-09 | null |
DOITT | WordPress | http://nycitt.wordpress.com/ | 2012-05-09 | null |
HHS | WordPress | http://hsdatanyc.wordpress.com/ | 2012-05-09 | null |
HHS | WordPress | http://hsdata-nyc.org | 2012-05-09 | null |
LMEC | WordPress | http://lmew.wordpress.com/ | 2012-05-09 | null |
Materials for the Arts | WordPress | http://mfta.wordpress.com/ | 2012-05-09 | null |
MOIA | WordPress | http://ihwnyc.wordpress.com | 2012-05-09 | null |
SBS | WordPress | http://nycworkforce1partners.wordpress.com/ | 2012-05-09 | null |
SBS | WordPress | http://workforce1.org | 2012-05-09 | null |
SimpliCity | WordPress | http://nycsimplicity.wordpress.com/ | 2012-05-09 | null |
DOE | YouTube | http://www.youtube.com/thefundforps | 2012-05-09 | null |
DOH | YouTube | http://www.youtube.com/user/NYCcondoms | 2012-05-09 | null |
LMEC | YouTube | http://www.youtube.com/user/NYCLMEW | 2012-05-09 | null |
Probation | YouTube | http://www.youtube.com/NYCProbation | 2012-05-09 | null |
DOITT | YouTube | http://www.youtube.com/doittnews | 2012-05-09 | null |
GreeNYC | YouTube | http://www.youtube.com/BirdieNYCity | 2012-05-09 | null |
HRA | YouTube | http://www.youtube.com/user/HRANYC | 2012-05-09 | null |
NYCHA | YouTube | http://www.youtube.com/NYCHAHousing | 2012-05-09 | null |
HHC | YouTube | http://www.youtube.com/HHCnyc | 2012-05-09 | null |
DOE | YouTube | http://www.youtube.com/nycschools | 2012-05-09 | null |
DYCD | YouTube | http://www.youtube.com/dycdnyc | 2012-05-09 | null |
OEM | YouTube | http://www.youtube.com/nycoem | 2012-05-09 | null |
DOB | YouTube | http://www.youtube.com/NYCBUILDINGS | 2012-05-09 | null |
EDC | YouTube | http://www.youtube.com/NYCEDC | 2012-05-09 | null |
MOME | YouTube | http://www.youtube.com/nycmedia25 | 2012-05-09 | null |
DPR | YouTube | http://www.youtube.com/user/NYCParksDepartment | 2012-05-09 | null |
DOT | YouTube | http://www.youtube.com/NYCDOT | 2012-05-09 | null |
Mayor's Office | YouTube | http://www.youtube.com/mayorbloomberg | 2012-05-09 | null |
NYPD | YouTube | http://www.youtube.com/nypd | 2012-05-09 | null |
DOH | YouTube | http://www.youtube.com/NYCHealth | 2012-05-09 | null |
FDNY | YouTube | http://www.youtube.com/user/yourFDNY | 2012-05-09 | null |
Child Services | Youtube | http://www.youtube.com/user/childservices | 2012-05-09 | null |
DCA | YouTube | http://www.youtube.com/nycdca | 2012-05-09 | null |
DOC | YouTube | http://www.youtube.com/user/OFFICIALNYCDOC | 2012-05-09 | null |
DOH | Youtube | http://www.youtube.com/user/drinkingsugar | 2012-05-09 | null |
DSNY | YouTube | http://www.youtube.com/nycrecyclemore | 2012-05-09 | null |
Materials for the Arts | YouTube | http://www.youtube.com/user/MaterialsForTheArts | 2012-05-09 | null |
Mayor's Fund | Youtube | http://www.youtube.com/mayorsfundnyc | 2012-05-09 | null |
MOAE | YouTube | http://www.youtube.com/YouCanTooNYC | 2012-05-09 | null |
NYC Gov | YouTube | http://www.youtube.com/nycgov | 2012-05-09 | null |
NYC Water | Youtube | http://www.youtube.com/nycwater | 2012-05-09 | null |
Veteran's Affairs | Youtube | http://www.youtube.com/channel/UCi6IvOszIb3hHPMUsaNKyXA | 2012-05-09 | null |
DRIS | YouTube | http://www.youtube.com/nycdeptofrecords | 2012-05-09 | null |
TLC | http://www.facebook.com/pages/NYC-Taxi-and-Limousine-Commission/101679939900978?v=wall | 2012-05-09 | 662 | |
nycgov | Google+ | https://plus.google.com/u/0/b/104030911277642419611/104030911277642419611/posts/p/pub | 2012-05-09 | null |
TOTAL | TOTAL | TOTAL | 2012-05-09 | 1835426 |
DOH | Android | Condom Finder | 2012-06-13 | null |
DOT | Android | You The Man | 2012-06-13 | 102 |
MOME | Android | MiNY Venor app | 2012-06-13 | null |
DOT | Broadcastr | null | 2012-06-13 | null |
DPR | Broadcastr | http://beta.broadcastr.com/Echo.html?audioId=670026-4001 | 2012-06-13 | null |
ENDHT | http://www.facebook.com/pages/NYC-Lets-End-Human-Trafficking/125730490795659?sk=wall | 2012-06-13 | 11 | |
VAC | https://www.facebook.com/pages/NYC-Voter-Assistance-Commission/110226709012110 | 2012-06-13 | 86 | |
PlaNYC | http://www.facebook.com/pages/New-York-NY/PlaNYC/160454173971169?ref=ts | 2012-06-13 | 157 | |
DFTA | http://www.facebook.com/pages/NYC-Department-for-the-Aging/109028655823590 | 2012-06-13 | 200 | |
energyNYC | http://www.facebook.com/EnergyNYC?sk=wall | 2012-06-13 | 221 | |
MOIA | http://www.facebook.com/ihwnyc | 2012-06-13 | 287 | |
City Store | http://www.facebook.com/citystorenyc | 2012-06-13 | 254 | |
OCDV | http://www.facebook.com/pages/NYC-Healthy-Relationship-Training-Academy/134637829901065 | 2012-06-13 | 329 | |
HIA | http://www.facebook.com/pages/New-York-City-Health-Insurance-Link/145920551598 | 2012-06-13 | 251 | |
MOPD | http://www.facebook.com/pages/New-York-City-Mayors-Office-for-People-with-Disabilities/145237285504681?sk=wall | 2012-06-13 | 356 | |
DOB: UrbanCanvas | http://www.facebook.com/NYCurbancanvas | 2012-06-13 | 272 | |
DOT | http://www.facebook.com/JanetteSadikKhan | 2012-06-13 | 371 | |
HRA | http://www.facebook.com/#!/pages/New-York-NY/NYC-DADS/111504588886342 | 2012-06-13 | 338 | |
MOPD | http://www.facebook.com/profile.php?id=1570569347 | 2012-06-13 | 285 | |
DFTA | http://www.facebook.com/timebanksnyc | 2012-06-13 | 318 | |
DOB: Cool Roofs | http://www.facebook.com/coolroofs?sk=wall | 2012-06-13 | 418 | |
NYC & Co | http://www.facebook.com/nycgo.nl | 2012-06-13 | 373 | |
MOIA | http://www.facebook.com/pages/NYC-Mayors-Office-of-Immigrant-Affairs/118622031512497 | 2012-06-13 | 420 | |
CAU | http://www.facebook.com/NYCMayorsCAU | 2012-06-13 | 416 | |
DOITT | http://www.facebook.com/pages/New-York-NY/NYC-INFORMATION-TECHNOLOGY-TELECOMMUNICATIONS/104786059565184 | 2012-06-13 | 402 | |
City Charter | http://www.facebook.com/pages/New-York-NY/NYC-Charter-Revision-Commission/110528715643388 | 2012-06-13 | 289 | |
Vets | http://www.facebook.com/pages/NYC-Mayors-Office-of-Veterans-Affairs/128003537214726 | 2012-06-13 | 419 | |
DHS | http://www.facebook.com/pages/New-York-NY/HOPE-2011/157690657606772 | 2012-06-13 | 304 | |
NYC & Co | http://www.facebook.com/nycgo.de | 2012-06-13 | 565 | |
NYC & Co | http://www.facebook.com/nycgo.fr | 2012-06-13 | 770 | |
SICB1 | https://www.facebook.com/CB1SI | 2012-06-13 | 365 | |
ACS | http://www.facebook.com/FamilyConnectionsNYC | 2012-06-13 | 462 | |
DCA | http://www.facebook.com/NYCDCA | 2012-06-13 | 566 | |
NYC & Co | http://www.facebook.com/nycgo.au | 2012-06-13 | 531 | |
NYC & Co | http://www.facebook.com/nycgo.ca | 2012-06-13 | 504 | |
NYCHA | http://www.facebook.com/NYCHA | 2012-06-13 | 1039 | |
NYC & Co | http://www.facebook.com/nycgo.uk | 2012-06-13 | 1067 | |
NYC & Co | http://www.facebook.com/nycgo.it | 2012-06-13 | 1584 | |
Culture | https://www.facebook.com/piypnyc | 2012-06-13 | 994 | |
SBS | http://www.facebook.com/NYCBusiness | 2012-06-13 | 1176 | |
FUND | http://www.facebook.com/mayorsfundtoadvancenyc | 2012-06-13 | 965 | |
DOT | http://www.facebook.com/YouTheManNYC | 2012-06-13 | 1071 | |
NYC & Co | http://www.facebook.com/nycgo.es | 2012-06-13 | 2300 | |
HHC | http://www.facebook.com/nychhc | 2012-06-13 | 1192 | |
MOME | http://www.facebook.com/nycmedia.jobhunt | 2012-06-13 | 1205 | |
GreeNYC | https://www.facebook.com/birdienyc | 2012-06-13 | 1508 | |
311 | http://www.facebook.com/pages/New-York-City-311/84372567650 | 2012-06-13 | 1540 | |
DOH | http://www.facebook.com/NYCKnows | 2012-06-13 | 1760 | |
DOE | http://www.facebook.com/nycgrads | 2012-06-13 | 1822 | |
DEP | http://www.facebook.com/nycwater | 2012-06-13 | 2618 | |
MOME | https://www.facebook.com/NYCMedia | 2012-06-13 | 3091 | |
EDC | http://www.facebook.com/NYCEDC | 2012-06-13 | 3519 | |
SBS - Workforce1 | http://www.facebook.com/nycworkforce1 | 2012-06-13 | 5048 | |
DOT | http://www.facebook.com/NYCDOT | 2012-06-13 | 4059 | |
EDC | http://www.facebook.com/AppSciNYC | 2012-06-13 | 3894 | |
DYCD | http://www.facebook.com/nycyouth | 2012-06-13 | 4867 | |
DOH | http://www.facebook.com/EatingHealthyNYC | 2012-06-13 | 34771 | |
NYC & Co | http://www.facebook.com/nycgo.br | 2012-06-13 | 5404 | |
DOE | http://www.facebook.com/NYCTeachingFellows | 2012-06-13 | 5491 | |
NYCService | http://www.facebook.com/nycservice | 2012-06-13 | 5669 | |
NYC Mayors Cup | https://www.facebook.com/nycmayorscup | 2012-06-13 | 11915 | |
DOH | http://www.facebook.com/nycquits | 2012-06-13 | 9687 | |
DOE | http://www.facebook.com/pages/I-TEACH-NYC/11409913191 | 2012-06-13 | 7789 | |
DOE | http://www.facebook.com/fundforpublicschools | 2012-06-13 | 8337 | |
DPR | http://www.facebook.com/nycparks | 2012-06-13 | 15375 | |
OEM | http://www.facebook.com/nycemergencymanagement | 2012-06-13 | 14286 | |
DOE | http://www.facebook.com/NYCschools | 2012-06-13 | 21228 | |
DOH | http://www.facebook.com/NYCcondom | 2012-06-13 | 18814 | |
NYC & Co | http://www.facebook.com/nycgo | 2012-06-13 | 44625 | |
FDNY | http://www.facebook.com/FDNYhome | 2012-06-13 | 85205 | |
CCRB | https://www.facebook.com/home.php#!/pages/NYC-Civilian-Complaint-Review-Board/152765208087880 | 2012-06-13 | 18 | |
Commission on Human Rights | http://www.facebook.com/NYCCommissionOnHumanRights | 2012-06-13 | 76 | |
DOB | http://www.facebook.com/NYCBuildings | 2012-06-13 | 1133 | |
DSNY | http://www.facebook.com/pages/NYC-Recycle-More-Waste-Less/152173854860863 | 2012-06-13 | 110 | |
HDP | http://www.facebook.com/pages/NYC-HPD-POE/128962093860639 | 2012-06-13 | 664 | |
HPD/Commission on Human Rights | http://www.facebook.com/FairHousingNyc | 2012-06-13 | 50 | |
LPC | http://www.facebook.com/pages/NYC-Landmarks-Preservation-Commission/133261836703216 | 2012-06-13 | 164 | |
Materials for the Arts | https://www.facebook.com/mftanyc | 2012-06-13 | 2934 | |
MOAE | http://www.facebook.com/pages/You-Can-Too/203525729692056 | 2012-06-13 | 91 | |
MOIA | http://www.facebook.com/pages/WE-ARE-NEW-YORK/174438697072 | 2012-06-13 | 1961 | |
MOME | http://www.facebook.com/NYCMINY | 2012-06-13 | 42 | |
NYC Gov | http://www.facebook.com/nycgov | 2012-06-13 | 18855 | |
NYCCFB | http://www.facebook.com/nycvotes | 2012-06-13 | 112 | |
NYPD | https://www.facebook.com/NYPD | 2012-06-13 | 26933 | |
DRIS | http://www.facebook.com/NycDeptOfRecords | 2012-06-13 | null | |
DRIS | http://www.facebook.com/MayorEdKochNYCRecords | 2012-06-13 | null | |
DRIS | http://www.facebook.com/MayorJohnLindsayNYCRecords | 2012-06-13 | null | |
DRIS | http://www.facebook.com/MayorFiorelloLaGuardiaNYCRecords | 2012-06-13 | null | |
LMEC | Flickr | http://www.facebook.com/pages/New-York-NY/Latin-Media-and-Entertainment-Week/122259604487271 | 2012-06-13 | 332 |
DEP | Flickr | http://www.flickr.com/photos/nycep | 2012-06-13 | null |
DOB | Flickr | http://www.flickr.com/photos/nyc_buildings/ | 2012-06-13 | null |
DOE | Flickr | http://www.flickr.com/photos/nycschools | 2012-06-13 | null |
DOITT | Flickr | http://www.flickr.com/photos/nyc_doitt | 2012-06-13 | null |
DOT | Flickr | http://www.flickr.com/photos/nycstreets | 2012-06-13 | null |
DPR | Flickr | http://www.flickr.com/photos/nycparks/ | 2012-06-13 | null |
DSNY | Flickr | http://flickr.com/nycrecyclemore | 2012-06-13 | null |
EDC | Flickr | http://www.flickr.com/nycedc | 2012-06-13 | null |
FDNY | Flickr | http://www.flickr.com/groups/fdny-ems | 2012-06-13 | null |
HHC | Flickr | http://www.flickr.com/hhcnyc | 2012-06-13 | null |
LMEC | Flickr | http://www.flickr.com/photos/nyclatinmedia/ | 2012-06-13 | null |
LPC | Flickr | http://www.flickr.com/photos/nyclandmarks | 2012-06-13 | null |
Materials for the Arts | Flickr | http://www.flickr.com/photos/materialsforthearts | 2012-06-13 | null |
val df = spark.table("social_media_usage") // Ctrl+Enter
df: org.apache.spark.sql.DataFrame = [agency: string, platform: string ... 3 more fields]
As you can see the immutable value df
is a DataFrame and more specifically it is:
org.apache.spark.sql.DataFrame = [agency: string, platform: string, url: string, date: timestamp, visits: integer]
.
Now let us print schema of the DataFrame df
and have a look at the actual data:
// Ctrl+Enter
df.printSchema() // prints schema of the DataFrame
df.show() // shows first n (default is 20) rows
root
|-- agency: string (nullable = true)
|-- platform: string (nullable = true)
|-- url: string (nullable = true)
|-- date: string (nullable = true)
|-- visits: string (nullable = true)
+-----------------+----------+--------------------+----------+-------+
| agency| platform| url| date| visits|
+-----------------+----------+--------------------+----------+-------+
| MOAE| YouTube|http://www.youtub...|2012-03-14| 5|
| NYC Gov| YouTube|http://www.youtub...|2012-03-14| 7|
| NYC Water| Youtube|http://www.youtub...|2012-03-14| null|
|Veteran's Affairs| Youtube|http://www.youtub...|2012-03-14| null|
| DRIS| YouTube|http://www.youtub...|2012-03-14| null|
| TLC| Facebook|http://www.facebo...|2012-03-14| 585|
| nycgov| Google+|https://plus.goog...|2012-03-14| null|
| TOTAL| TOTAL| TOTAL|2012-03-14|1688764|
| DOH| Android| Condom Finder|2012-04-09| null|
| DOT| Android| You The Man|2012-04-09| null|
| MOME| Android| MiNY Venor app|2012-04-09| 343|
| DOT|Broadcastr| null|2012-04-09| null|
| DPR|Broadcastr|http://beta.broad...|2012-04-09| null|
| ENDHT| Facebook|http://www.facebo...|2012-04-09| 9|
| VAC| Facebook|https://www.faceb...|2012-04-09| 55|
| PlaNYC| Facebook|http://www.facebo...|2012-04-09| 92|
| DFTA| Facebook|http://www.facebo...|2012-04-09| 178|
| DOT|Broadcastr| null|2012-10-24| null|
| energyNYC| Facebook|http://www.facebo...|2012-04-09| 181|
| MOIA| Facebook|http://www.facebo...|2012-04-09| 171|
+-----------------+----------+--------------------+----------+-------+
only showing top 20 rows
Note that
(nullable = true)
simply means if the value is allowed to benull
.
Let us count the number of rows in df
.
df.count() // Ctrl+Enter to get 5898
res11: Long = 5898
So there are 5899 records or rows in the DataFrame df
. Pretty good! You can also select individual columns using so-called DataFrame API, as follows:
val platforms = df.select("platform") // Shift+Enter
platforms: org.apache.spark.sql.DataFrame = [platform: string]
platforms.count() // Shift+Enter to count the number of rows
res13: Long = 5898
platforms.show(5) // Ctrl+Enter to show top 5 rows
+--------+
|platform|
+--------+
| YouTube|
| YouTube|
| Youtube|
| Youtube|
| YouTube|
+--------+
only showing top 5 rows
platforms.rdd.getNumPartitions
res15: Int = 2
You can also apply .distinct()
to extract only unique entries as follows:
val uniquePlatforms = df.select("platform").distinct() // Shift+Enter
uniquePlatforms: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [platform: string]
uniquePlatforms.count() // Ctrl+Enter to count the number of distinct platforms
res17: Long = 23
Let's see all the rows of the DataFrame uniquePlatforms
.
Note that
display(uniquePlatforms)
unlikeuniquePlatforms.show()
displays all rows of the DataFrame + gives you ability to select different view, e.g. charts.
uniquePlatforms.show(25,false)
+-------------------------+
|platform |
+-------------------------+
|nyc.gov |
|Flickr |
|Vimeo |
|iPhone |
|YouTube |
|WordPress |
|SMS |
|iPhone App |
|Youtube |
|Instagram |
|iPhone app |
|Linked-In |
|Twitter |
|TOTAL |
|Tumblr |
|Newsletter |
|Pinterest |
|Broadcastr |
|Android |
|Foursquare |
|Google+ |
|Foursquare (Badge Unlock)|
|Facebook |
+-------------------------+
//display(uniquePlatforms) // Ctrl+Enter to show all rows; use the scroll-bar on the right of the display to see all platforms
Spark SQL and DataFrame API
Spark SQL provides DataFrame API that can perform relational operations on both external data sources and internal collections, which is similar to widely used data frame concept in R, but evaluates operations support lazily (remember RDDs?), so that it can perform relational optimizations. This API is also available in Java, Python and R, but some functionality may not be available, although with every release of Spark people minimize this gap.
So we give some examples how to query data in Python and R, but continue with Scala. You can do all DataFrame operations in this notebook using Python or R.
# Ctrl+Enter to evaluate this python cell, recall '#' is the pre-comment character in python
# Using Python to query our "social_media_usage" table
pythonDF = spark.table("social_media_usage").select("platform").distinct()
pythonDF.show(3)
-- Ctrl+Enter to achieve the same result using standard SQL syntax!
select distinct platform from social_media_usage
platform |
---|
nyc.gov |
Flickr |
Vimeo |
iPhone |
YouTube |
WordPress |
SMS |
iPhone App |
Youtube |
iPhone app |
Linked-In |
TOTAL |
Tumblr |
Newsletter |
Broadcastr |
Android |
Foursquare |
Google+ |
Foursquare (Badge Unlock) |
Now it is time for some tips around how you use select
and what the difference is between $"a"
, col("a")
, df("a")
.
As you probably have noticed by now, you can specify individual columns to select by providing String values in select statement. But sometimes you need to: - distinguish between columns with the same name - use it to filter (actually you can still filter using full String expression) - do some "magic" with joins and user-defined functions (this will be shown later)
So Spark gives you ability to actually specify columns when you select. Now the difference between all those three notations is ... none, those things are just aliases for a Column
in Spark SQL, which means following expressions yield the same result:
// Using string expressions
df.select("agency", "visits")
// Using "$" alias for column
df.select($"agency", $"visits")
import org.apache.spark.sql.functions.col
// Using "col" alias for column
df.select(col("agency"), col("visits"))
// Using DataFrame name for column
df.select(df("agency"), df("visits"))
import org.apache.spark.sql.functions.col
res20: org.apache.spark.sql.DataFrame = [agency: string, visits: string]
This "same-difference" applies to filtering, i.e. you can either use full expression to filter, or column as shown in the following example:
// Using column to filter
df.select("visits").filter($"visits" > 100)
// Or you can use full expression as string
df.select("visits").filter("visits > 100")
res22: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [visits: string]
df.select("visits").filter('visits > 100).count // same as df.select("visits").filter($"visits" > 100)
res24: Long = 3279
df.select("visits").filter(col("visits") > 100).count// df.select("visits").filter($"visits" > 100)
res25: Long = 3279
Note that
$"visits" > 100
expression looks amazing, but under the hood it is just another column, and it equals todf("visits").>(100)
, where, thanks to Scala paradigm>
is just another function that you can define.
val sms = df.select($"agency", $"platform", $"visits").filter($"platform" === "SMS")
sms.show() // Ctrl+Enter
+------+--------+------+
|agency|platform|visits|
+------+--------+------+
| DOE| SMS| 382|
| NYCHA| SMS| null|
| OEM| SMS| 61652|
| DOE| SMS| 382|
| NYCHA| SMS| null|
| OEM| SMS| 61652|
| DOE| SMS| null|
| NYCHA| SMS| null|
| OEM| SMS| null|
| DOE| SMS| 1253|
| NYCHA| SMS| 8300|
| OEM| SMS| 44547|
| DOE| SMS| 1253|
| NYCHA| SMS| 8300|
| OEM| SMS| 44547|
| DOE| SMS| 1253|
| NYCHA| SMS| 8300|
| OEM| SMS| 44547|
| DOE| SMS| 1253|
| NYCHA| SMS| 8300|
+------+--------+------+
only showing top 20 rows
sms: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [agency: string, platform: string ... 1 more field]
Again you could have written the query above using any column aliases or String names or even writing the query directly.
For example, we can do it using String names, as follows:
// Ctrl+Enter Note that we are using "platform = 'SMS'" since it will be evaluated as actual SQL
val sms = df.select(df("agency"), df("platform"), df("visits")).filter("platform = 'SMS'")
sms.show(5)
+------+--------+------+
|agency|platform|visits|
+------+--------+------+
| DOE| SMS| 382|
| NYCHA| SMS| null|
| OEM| SMS| 61652|
| DOE| SMS| 382|
| NYCHA| SMS| null|
+------+--------+------+
only showing top 5 rows
sms: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [agency: string, platform: string ... 1 more field]
Refer to the DataFrame API for more detailed API. In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
Let's next explore some of the functionality that is available by transforming this DataFrame df
into a new DataFrame called fixedDF
.
- First, note that some columns are not exactly what we want them to be.
- visits should not contain null values, but
0
s instead.
- visits should not contain null values, but
- Let us fix it using some code that is briefly explained here (don't worry if you don't get it completely now, you will get the hang of it by playing more)
- The
coalesce
function is similar toif-else
statement, i.e., if first column in expression isnull
, then the value of the second column is used and so on. lit
just means column of constant value (lit
erally speaking!).- we also remove
TOTAL
value fromplatform
column.
- The
// Ctrl+Enter to make fixedDF
// import the needed sql functions
import org.apache.spark.sql.functions.{coalesce, lit}
// make the fixedDF DataFrame
val fixedDF = df.
select(
$"agency",
$"platform",
$"url",
$"date",
coalesce($"visits", lit(0)).as("visits"))
.filter($"platform" =!= "TOTAL")
fixedDF.printSchema() // print its schema
// and show the top 20 records fully
fixedDF.show(false) // the false argument does not truncate the rows, so you will not see something like this "anot..."
root
|-- agency: string (nullable = true)
|-- platform: string (nullable = true)
|-- url: string (nullable = true)
|-- date: string (nullable = true)
|-- visits: string (nullable = false)
+-----------------+----------+--------------------------------------------------------------------------------------+----------+------+
|agency |platform |url |date |visits|
+-----------------+----------+--------------------------------------------------------------------------------------+----------+------+
|MOAE |YouTube |http://www.youtube.com/YouCanTooNYC |2012-03-14|5 |
|NYC Gov |YouTube |http://www.youtube.com/nycgov |2012-03-14|7 |
|NYC Water |Youtube |http://www.youtube.com/nycwater |2012-03-14|0 |
|Veteran's Affairs|Youtube |http://www.youtube.com/channel/UCi6IvOszIb3hHPMUsaNKyXA |2012-03-14|0 |
|DRIS |YouTube |http://www.youtube.com/nycdeptofrecords |2012-03-14|0 |
|TLC |Facebook |http://www.facebook.com/pages/NYC-Taxi-and-Limousine-Commission/101679939900978?v=wall|2012-03-14|585 |
|nycgov |Google+ |https://plus.google.com/u/0/b/104030911277642419611/104030911277642419611/posts/p/pub |2012-03-14|0 |
|DOH |Android |Condom Finder |2012-04-09|0 |
|DOT |Android |You The Man |2012-04-09|0 |
|MOME |Android |MiNY Venor app |2012-04-09|343 |
|DOT |Broadcastr|null |2012-04-09|0 |
|DPR |Broadcastr|http://beta.broadcastr.com/Echo.html?audioId=670026-4001 |2012-04-09|0 |
|ENDHT |Facebook |http://www.facebook.com/pages/NYC-Lets-End-Human-Trafficking/125730490795659?sk=wall |2012-04-09|9 |
|VAC |Facebook |https://www.facebook.com/pages/NYC-Voter-Assistance-Commission/110226709012110 |2012-04-09|55 |
|PlaNYC |Facebook |http://www.facebook.com/pages/New-York-NY/PlaNYC/160454173971169?ref=ts |2012-04-09|92 |
|DFTA |Facebook |http://www.facebook.com/pages/NYC-Department-for-the-Aging/109028655823590 |2012-04-09|178 |
|DOT |Broadcastr|null |2012-10-24|0 |
|energyNYC |Facebook |http://www.facebook.com/EnergyNYC?sk=wall |2012-04-09|181 |
|MOIA |Facebook |http://www.facebook.com/ihwnyc |2012-04-09|171 |
|City Store |Facebook |http://www.facebook.com/citystorenyc |2012-04-09|214 |
+-----------------+----------+--------------------------------------------------------------------------------------+----------+------+
only showing top 20 rows
import org.apache.spark.sql.functions.{coalesce, lit}
fixedDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [agency: string, platform: string ... 3 more fields]
Okay, this is better, but url
s are still inconsistent.
Let's fix this by writing our own UDF (user-defined function) to deal with special cases.
Note that if you CAN USE Spark functions library, do it. But for the sake of the example, custom UDF is shown below.
We take value of a column as String type and return the same String type, but ignore values that do not start with http
.
// Ctrl+Enter to evaluate this UDF which takes a input String called "value"
// and converts it into lower-case if it begins with http and otherwise leaves it as null, so we sort of remove non valid web-urls
val cleanUrl = udf((value: String) => if (value != null && value.startsWith("http")) value.toLowerCase() else null)
cleanUrl: org.apache.spark.sql.expressions.UserDefinedFunction = SparkUserDefinedFunction($Lambda$9812/558964277@3b5bdfcc,StringType,List(Some(class[value[0]: string])),Some(class[value[0]: string]),None,true,true)
Let us apply our UDF on fixedDF
to create a new DataFrame called cleanedDF
as follows:
// Ctrl+Enter
val cleanedDF = fixedDF.select($"agency", $"platform", cleanUrl($"url").as("url"), $"date", $"visits")
cleanedDF: org.apache.spark.sql.DataFrame = [agency: string, platform: string ... 3 more fields]
Now, let's check that it actually worked by seeing the first 5 rows of the cleanedDF
whose url
isNull
and isNotNull
, as follows:
// Shift+Enter
cleanedDF.filter($"url".isNull).show(5)
+------+----------+----+----------+------+
|agency| platform| url| date|visits|
+------+----------+----+----------+------+
| DOH| Android|null|2012-04-09| 0|
| DOT| Android|null|2012-04-09| 0|
| MOME| Android|null|2012-04-09| 343|
| DOT|Broadcastr|null|2012-04-09| 0|
| DOT|Broadcastr|null|2012-10-24| 0|
+------+----------+----+----------+------+
only showing top 5 rows
// Ctrl+Enter
cleanedDF.filter($"url".isNotNull).show(5, false) // false in .show(5, false) shows rows untruncated
+-----------------+--------+-------------------------------------------------------+----------+------+
|agency |platform|url |date |visits|
+-----------------+--------+-------------------------------------------------------+----------+------+
|MOAE |YouTube |http://www.youtube.com/youcantoonyc |2012-03-14|5 |
|NYC Gov |YouTube |http://www.youtube.com/nycgov |2012-03-14|7 |
|NYC Water |Youtube |http://www.youtube.com/nycwater |2012-03-14|0 |
|Veteran's Affairs|Youtube |http://www.youtube.com/channel/uci6ivoszib3hhpmusankyxa|2012-03-14|0 |
|DRIS |YouTube |http://www.youtube.com/nycdeptofrecords |2012-03-14|0 |
+-----------------+--------+-------------------------------------------------------+----------+------+
only showing top 5 rows
Now there is a suggestion from you manager's manager's manager that due to some perceived privacy concerns we want to replace agency
with some unique identifier.
So we need to do the following:
- create unique list of agencies with ids and
- join them with main DataFrame.
Sounds easy, right? Let's do it.
// Crtl+Enter
// Import Spark SQL function that will give us unique id across all the records in this DataFrame
import org.apache.spark.sql.functions.monotonically_increasing_id
// We append column as SQL function that creates unique ids across all records in DataFrames
val agencies = cleanedDF.select(cleanedDF("agency"))
.distinct()
.withColumn("id", monotonically_increasing_id())
agencies.show(5)
+--------------------+---+
| agency| id|
+--------------------+---+
| PlaNYC| 0|
| HIA| 1|
|NYC Digital: exte...| 2|
| NYCGLOBAL| 3|
| nycgov| 4|
+--------------------+---+
only showing top 5 rows
import org.apache.spark.sql.functions.monotonically_increasing_id
agencies: org.apache.spark.sql.DataFrame = [agency: string, id: bigint]
// Ctrl+Enter
// And join with the rest of the data, note how join condition is specified
val anonym = cleanedDF.join(agencies, cleanedDF("agency") === agencies("agency"), "inner").select("id", "platform", "url", "date", "visits")
// We also cache DataFrame since it can be quite expensive to recompute join
anonym.cache()
// Display result
anonym.show(5)
+-------------+--------+--------------------+----------+------+
| id|platform| url| date|visits|
+-------------+--------+--------------------+----------+------+
| 841813590016| YouTube|http://www.youtub...|2012-03-14| 5|
| 901943132160| YouTube|http://www.youtub...|2012-03-14| 7|
| 575525617664| Youtube|http://www.youtub...|2012-03-14| 0|
|1657857376256| Youtube|http://www.youtub...|2012-03-14| 0|
| 171798691840| YouTube|http://www.youtub...|2012-03-14| 0|
+-------------+--------+--------------------+----------+------+
only showing top 5 rows
anonym: org.apache.spark.sql.DataFrame = [id: bigint, platform: string ... 3 more fields]
spark.catalog.listTables().show() // look at the available tables
+--------------------+--------+-----------+---------+-----------+
| name|database|description|tableType|isTemporary|
+--------------------+--------+-----------+---------+-----------+
| all_prices| default| null| MANAGED| false|
|bitcoin_normed_wi...| default| null| MANAGED| false|
|bitcoin_reversals...| default| null| MANAGED| false|
| countrycodes| default| null| EXTERNAL| false|
| gold_normed_window| default| null| MANAGED| false|
|gold_reversals_wi...| default| null| MANAGED| false|
|ltcar_locations_2...| default| null| MANAGED| false|
| magellan| default| null| MANAGED| false|
| mobile_sample| default| null| EXTERNAL| false|
| oil_normed_window| default| null| MANAGED| false|
|oil_reversals_window| default| null| MANAGED| false|
|oil_reversals_win...| default| null| MANAGED| false|
| over300all_2_txt| default| null| MANAGED| false|
| person| default| null| MANAGED| false|
| personer| default| null| MANAGED| false|
| persons| default| null| MANAGED| false|
| simple_range| default| null| MANAGED| false|
| social_media_usage| default| null| MANAGED| false|
|social_media_usag...| default| null| MANAGED| false|
|voronoi20191213up...| default| null| MANAGED| false|
+--------------------+--------+-----------+---------+-----------+
only showing top 20 rows
-- to remove a TempTable if it exists already
drop table if exists anonym
// Register table for Spark SQL, we also import "month" function
import org.apache.spark.sql.functions.month
anonym.createOrReplaceTempView("anonym")
import org.apache.spark.sql.functions.month
-- Interesting. Now let's do some aggregation. Display platform, month, visits
-- Date column allows us to extract month directly
select platform, month(date) as month, sum(visits) as visits from anonym group by platform, month(date)
platform | month | visits |
---|---|---|
Foursquare (Badge Unlock) | 6.0 | 0.0 |
9.0 | 27891.0 | |
Linked-In | 10.0 | 60156.0 |
iPhone | 8.0 | 10336.0 |
9.0 | 819290.0 | |
Vimeo | 11.0 | 0.0 |
iPhone app | 9.0 | 33348.0 |
SMS | 10.0 | 54100.0 |
YouTube | 3.0 | 6066.0 |
11.0 | 58968.0 | |
Android | 4.0 | 724.0 |
Newsletter | 11.0 | 3079091.0 |
Android | 11.0 | 11259.0 |
Youtube | 10.0 | 429.0 |
iPhone App | 4.0 | 55960.0 |
3.0 | 291971.0 | |
Google+ | 5.0 | 0.0 |
Newsletter | 5.0 | 847813.0 |
10.0 | 28145.0 | |
Linked-In | 7.0 | 31758.0 |
Tumblr | 5.0 | 26932.0 |
Linked-In | 6.0 | 30867.0 |
YouTube | 11.0 | 22820.0 |
SMS | 11.0 | 170234.0 |
Foursquare (Badge Unlock) | 11.0 | 22512.0 |
Youtube | 11.0 | 770.0 |
Foursquare (Badge Unlock) | 4.0 | 20152.0 |
5.0 | 351601.0 | |
Foursquare | 8.0 | 42230.0 |
6.0 | 399330.0 | |
Linked-In | 8.0 | 45346.0 |
Google+ | 10.0 | 8.0 |
YouTube | 4.0 | 12542.0 |
Newsletter | 6.0 | 1137677.0 |
YouTube | 7.0 | 6748.0 |
Google+ | 4.0 | 0.0 |
Youtube | 6.0 | 229.0 |
Youtube | 5.0 | 0.0 |
Linked-In | 11.0 | 75747.0 |
Vimeo | 10.0 | 0.0 |
Android | 5.0 | 381.0 |
Flickr | 8.0 | 493.0 |
iPhone app | 8.0 | 41389.0 |
10.0 | 1010914.0 | |
Foursquare (Badge Unlock) | 10.0 | 11256.0 |
8.0 | 5995.0 | |
Android | 6.0 | 102.0 |
Tumblr | 7.0 | 47121.0 |
Android | 10.0 | 5473.0 |
iPhone app | 10.0 | 30713.0 |
Youtube | 3.0 | 163.0 |
WordPress | 6.0 | 4641.0 |
iPhone | 11.0 | 25848.0 |
Youtube | 7.0 | 240.0 |
4.0 | 674303.0 | |
iPhone App | 11.0 | 96342.0 |
iPhone | 5.0 | 8203.0 |
iPhone app | 5.0 | 30598.0 |
Tumblr | 8.0 | 54224.0 |
Vimeo | 6.0 | 0.0 |
10.0 | 859354.0 | |
Vimeo | 8.0 | 0.0 |
iPhone App | 6.0 | 34966.0 |
iPhone | 6.0 | 9643.0 |
SMS | 5.0 | 0.0 |
Vimeo | 7.0 | 0.0 |
iPhone app | 6.0 | 2713.0 |
Newsletter | 10.0 | 2359712.0 |
11.0 | 312.0 | |
Broadcastr | 6.0 | 0.0 |
6.0 | 0.0 | |
Android | 8.0 | 5784.0 |
Newsletter | 4.0 | 1606654.0 |
Newsletter | 9.0 | 1941202.0 |
WordPress | 10.0 | 66299.0 |
SMS | 8.0 | 116134.0 |
7.0 | 470477.0 | |
iPhone | 4.0 | 8203.0 |
iPhone app | 11.0 | 72102.0 |
4.0 | 3404.0 | |
Flickr | 10.0 | 153231.0 |
iPhone app | 4.0 | 41274.0 |
WordPress | 8.0 | 5017.0 |
YouTube | 9.0 | 12107.0 |
Linked-In | 4.0 | 43582.0 |
YouTube | 8.0 | 10974.0 |
Broadcastr | 9.0 | 0.0 |
Flickr | 5.0 | 287.0 |
Tumblr | 10.0 | 97401.0 |
Broadcastr | 8.0 | 0.0 |
iPhone App | 9.0 | 42128.0 |
4.0 | 844718.0 | |
Broadcastr | 10.0 | 0.0 |
Tumblr | 6.0 | 41248.0 |
WordPress | 4.0 | 0.0 |
11.0 | 1660542.0 | |
Linked-In | 9.0 | 49299.0 |
Android | 9.0 | 445.0 |
iPhone | 9.0 | 12924.0 |
WordPress | 9.0 | 4897.0 |
Foursquare | 10.0 | 69598.0 |
10.0 | 141.0 | |
9.0 | 754875.0 | |
YouTube | 10.0 | 9100.0 |
Broadcastr | 11.0 | 0.0 |
8.0 | 38.0 | |
6.0 | 461261.0 | |
Google+ | 3.0 | 0.0 |
Linked-In | 5.0 | 29808.0 |
Foursquare | 5.0 | 29991.0 |
Foursquare | 7.0 | 38590.0 |
iPhone app | 7.0 | 30713.0 |
Broadcastr | 4.0 | 0.0 |
5.0 | 0.0 | |
8.0 | 704438.0 | |
Android | 7.0 | 445.0 |
Flickr | 9.0 | 549.0 |
WordPress | 11.0 | 9294.0 |
4.0 | 0.0 | |
Flickr | 11.0 | 1007.0 |
iPhone | 10.0 | 12924.0 |
Flickr | 4.0 | 545.0 |
7.0 | 451076.0 | |
Google+ | 8.0 | 0.0 |
Tumblr | 9.0 | 62742.0 |
Foursquare | 4.0 | 57337.0 |
Tumblr | 4.0 | 31247.0 |
Broadcastr | 5.0 | 0.0 |
YouTube | 5.0 | 0.0 |
9.0 | 74.0 | |
iPhone App | 5.0 | 34288.0 |
8.0 | 657312.0 | |
Vimeo | 5.0 | 0.0 |
SMS | 9.0 | 116134.0 |
Google+ | 7.0 | 0.0 |
SMS | 6.0 | 54100.0 |
Vimeo | 9.0 | 0.0 |
7.0 | 0.0 | |
Google+ | 11.0 | 26.0 |
7.0 | 5450.0 | |
Foursquare (Badge Unlock) | 9.0 | 11256.0 |
6.0 | 4764.0 | |
iPhone App | 10.0 | 64589.0 |
Foursquare (Badge Unlock) | 7.0 | 0.0 |
Flickr | 6.0 | 332.0 |
SMS | 7.0 | 54100.0 |
5.0 | 435148.0 | |
Youtube | 9.0 | 281.0 |
iPhone App | 8.0 | 57513.0 |
Google+ | 9.0 | 0.0 |
5.0 | 0.0 | |
Foursquare (Badge Unlock) | 8.0 | 11256.0 |
11.0 | 1408965.0 | |
iPhone App | 7.0 | 35841.0 |
SMS | 4.0 | 124068.0 |
WordPress | 7.0 | 4647.0 |
Youtube | 4.0 | 367.0 |
Foursquare (Badge Unlock) | 5.0 | 0.0 |
Foursquare | 6.0 | 34193.0 |
Google+ | 6.0 | 0.0 |
Youtube | 8.0 | 258.0 |
Newsletter | 7.0 | 1137868.0 |
Flickr | 7.0 | 342.0 |
Foursquare | 9.0 | 50489.0 |
Foursquare | 11.0 | 118323.0 |
Newsletter | 8.0 | 1941197.0 |
Tumblr | 11.0 | 195881.0 |
Broadcastr | 7.0 | 0.0 |
WordPress | 5.0 | 0.0 |
YouTube | 6.0 | 6509.0 |
Vimeo | 4.0 | 0.0 |
iPhone | 7.0 | 10336.0 |
1.0 | 0.0 | |
Linked-In | 1.0 | 19007.0 |
YouTube | 2.0 | 4937.0 |
iPhone | 2.0 | 0.0 |
Google+ | 2.0 | 0.0 |
2.0 | 0.0 | |
Android | 3.0 | 343.0 |
Newsletter | 12.0 | 1606654.0 |
iPhone app | 12.0 | 21352.0 |
SMS | 2.0 | 62034.0 |
Foursquare | 3.0 | 25786.0 |
iPhone App | 2.0 | 21672.0 |
YouTube | 12.0 | 9505.0 |
Tumblr | 3.0 | 5098.0 |
Foursquare | 1.0 | 10126.0 |
1.0 | 259797.0 | |
iPhone App | 1.0 | 21672.0 |
Vimeo | 12.0 | 0.0 |
Flickr | 1.0 | 217.0 |
WordPress | 2.0 | 0.0 |
Youtube | 2.0 | 155.0 |
1.0 | 0.0 | |
Linked-In | 3.0 | 20761.0 |
Broadcastr | 3.0 | 0.0 |
SMS | 12.0 | 124068.0 |
Youtube | 12.0 | 291.0 |
1.0 | 364376.0 | |
Newsletter | 3.0 | 803327.0 |
iPhone App | 12.0 | 43344.0 |
WordPress | 1.0 | 0.0 |
iPhone app | 3.0 | 10676.0 |
Flickr | 12.0 | 432.0 |
Android | 12.0 | 686.0 |
Android | 1.0 | 343.0 |
WordPress | 12.0 | 0.0 |
Google+ | 1.0 | 0.0 |
iPhone | 1.0 | 0.0 |
Foursquare (Badge Unlock) | 12.0 | 0.0 |
Linked-In | 12.0 | 35231.0 |
Foursquare (Badge Unlock) | 1.0 | 0.0 |
Flickr | 3.0 | 227.0 |
YouTube | 1.0 | 4904.0 |
Broadcastr | 12.0 | 0.0 |
iPhone | 12.0 | 0.0 |
Newsletter | 1.0 | 803327.0 |
Broadcastr | 2.0 | 0.0 |
Linked-In | 2.0 | 19920.0 |
2.0 | 0.0 | |
Foursquare | 12.0 | 19110.0 |
Vimeo | 2.0 | 0.0 |
12.0 | 690189.0 | |
Tumblr | 1.0 | 2645.0 |
Foursquare | 2.0 | 21181.0 |
Broadcastr | 1.0 | 0.0 |
3.0 | 400250.0 | |
Foursquare (Badge Unlock) | 2.0 | 8878.0 |
Google+ | 12.0 | 0.0 |
Vimeo | 1.0 | 0.0 |
Newsletter | 2.0 | 803327.0 |
2.0 | 107993.0 | |
12.0 | 0.0 | |
Android | 2.0 | 343.0 |
SMS | 1.0 | 62034.0 |
WordPress | 3.0 | 0.0 |
3.0 | 0.0 | |
iPhone App | 3.0 | 21672.0 |
Youtube | 1.0 | 150.0 |
iPhone | 3.0 | 0.0 |
SMS | 3.0 | 62034.0 |
12.0 | 0.0 | |
Flickr | 2.0 | 219.0 |
Tumblr | 12.0 | 5005.0 |
2.0 | 385091.0 | |
iPhone app | 1.0 | 10676.0 |
Vimeo | 3.0 | 0.0 |
3.0 | 0.0 | |
iPhone app | 2.0 | 10676.0 |
Foursquare (Badge Unlock) | 3.0 | 0.0 |
12.0 | 502687.0 | |
Tumblr | 2.0 | 4406.0 |
Note, that we could have done aggregation using DataFrame API instead of Spark SQL.
Alright, now let's see some cool operations with window functions.
Our next task is to compute (daily visits / monthly average)
for all platforms.
import org.apache.spark.sql.functions.{dayofmonth, month, row_number, sum}
import org.apache.spark.sql.expressions.Window
val coolDF = anonym.select($"id", $"platform", dayofmonth($"date").as("day"), month($"date").as("month"), $"visits").
groupBy($"id", $"platform", $"day", $"month").agg(sum("visits").as("visits"))
// Run window aggregation on visits per month and platform
val window = coolDF.select($"id", $"day", $"visits", sum($"visits").over(Window.partitionBy("platform", "month")).as("monthly_visits"))
// Create and register percent table
val percent = window.select($"id", $"day", ($"visits" / $"monthly_visits").as("percent"))
percent.createOrReplaceTempView("percent")
import org.apache.spark.sql.functions.{dayofmonth, month, row_number, sum}
import org.apache.spark.sql.expressions.Window
coolDF: org.apache.spark.sql.DataFrame = [id: bigint, platform: string ... 3 more fields]
window: org.apache.spark.sql.DataFrame = [id: bigint, day: int ... 2 more fields]
percent: org.apache.spark.sql.DataFrame = [id: bigint, day: int ... 1 more field]
-- A little bit of visualization as result of our efforts
select id, day, `percent` from percent where `percent` > 0.3 and day = 2
id | day | percent |
---|---|---|
6.52835028992e11 | 2.0 | 0.446576072475353 |
1.408749273089e12 | 2.0 | 0.6937119675456389 |
1.408749273089e12 | 2.0 | 0.394240317775571 |
9.0194313216e11 | 2.0 | 0.6180914042150131 |
2.147483648e11 | 2.0 | 0.3663035756571158 |
9.0194313216e11 | 2.0 | 1.0 |
9.0194313216e11 | 2.0 | 0.5 |
6.8719476736e10 | 2.0 | 0.38461538461538464 |
5.06806140929e11 | 2.0 | 1.0 |
5.06806140929e11 | 2.0 | 0.4993894993894994 |
1.322849927168e12 | 2.0 | 0.5265514047545539 |
1.322849927168e12 | 2.0 | 0.3109034021149352 |
9.0194313216e11 | 2.0 | 0.3060168545490231 |
1.666447310848e12 | 2.0 | 0.9473684210526315 |
1.580547964928e12 | 2.0 | 0.383582757848692 |
4.12316860416e11 | 2.0 | 0.3408084980820301 |
2.06158430208e11 | 2.0 | 0.9262507474586407 |
2.06158430208e11 | 2.0 | 0.5 |
6.52835028992e11 | 2.0 | 0.8449612403100775 |
6.52835028992e11 | 2.0 | 0.3181818181818182 |
6.52835028992e11 | 2.0 | 1.0 |
6.52835028992e11 | 2.0 | 0.5 |
1.640677507072e12 | 2.0 | 0.44748143897901344 |
6.52835028992e11 | 2.0 | 0.6765082509845611 |
6.52835028992e11 | 2.0 | 0.38833874233724447 |
-- You also could just use plain SQL to write query above, note that you might need to group by id and day as well.
with aggr as (
select id, dayofmonth(date) as day, visits / sum(visits) over (partition by (platform, month(date))) as percent
from anonym
)
select * from aggr where day = 2 and percent > 0.3
id | day | percent |
---|---|---|
6.52835028992e11 | 2.0 | 0.446576072475353 |
1.408749273089e12 | 2.0 | 0.6937119675456389 |
1.408749273089e12 | 2.0 | 0.394240317775571 |
2.147483648e11 | 2.0 | 0.3663035756571158 |
9.0194313216e11 | 2.0 | 0.6180914042150131 |
9.0194313216e11 | 2.0 | 1.0 |
9.0194313216e11 | 2.0 | 0.5 |
6.8719476736e10 | 2.0 | 0.38461538461538464 |
5.06806140929e11 | 2.0 | 1.0 |
5.06806140929e11 | 2.0 | 0.4993894993894994 |
1.322849927168e12 | 2.0 | 0.4718608035989944 |
9.0194313216e11 | 2.0 | 0.3060168545490231 |
1.666447310848e12 | 2.0 | 0.9473684210526315 |
1.580547964928e12 | 2.0 | 0.383582757848692 |
4.12316860416e11 | 2.0 | 0.3408084980820301 |
2.06158430208e11 | 2.0 | 0.9262507474586407 |
2.06158430208e11 | 2.0 | 0.5 |
6.52835028992e11 | 2.0 | 0.8449612403100775 |
6.52835028992e11 | 2.0 | 0.3181818181818182 |
6.52835028992e11 | 2.0 | 1.0 |
6.52835028992e11 | 2.0 | 0.5 |
1.640677507072e12 | 2.0 | 0.44748143897901344 |
6.52835028992e11 | 2.0 | 0.6765082509845611 |
6.52835028992e11 | 2.0 | 0.38833874233724447 |
Interoperating with RDDs
Spark SQL supports two different methods for converting existing RDDs into DataFrames. The first method uses reflection to infer the schema of an RDD that contains specific types of objects. This reflection based approach leads to more concise code and works well when you already know the schema.
The second method for creating DataFrames is through a programmatic interface that allows you to construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows you to construct DataFrames when the columns and their types are not known until runtime.
Inferring the Schema Using Reflection
The Scala interface for Spark SQL supports automatically converting an RDD containing case classes to a DataFrame. The case class defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Sequences or Arrays. This RDD can be implicitly converted to a DataFrame and then be registered as a table.
// Define case class that will be our schema for DataFrame
case class Hubot(name: String, year: Int, manufacturer: String, version: Array[Int], details: Map[String, String])
// You can process a text file, for example, to convert every row to our Hubot, but we will create RDD manually
val rdd = sc.parallelize(
Array(
Hubot("Jerry", 2015, "LCorp", Array(1, 2, 3), Map("eat" -> "yes", "sleep" -> "yes", "drink" -> "yes")),
Hubot("Mozart", 2010, "LCorp", Array(1, 2), Map("eat" -> "no", "sleep" -> "no", "drink" -> "no")),
Hubot("Einstein", 2012, "LCorp", Array(1, 2, 3), Map("eat" -> "yes", "sleep" -> "yes", "drink" -> "no"))
)
)
defined class Hubot
rdd: org.apache.spark.rdd.RDD[Hubot] = ParallelCollectionRDD[376] at parallelize at command-2971213210278329:5
// In order to convert RDD into DataFrame you need to do this:
val hubots = rdd.toDF()
// Display DataFrame, note how array and map fields are displayed
hubots.printSchema()
hubots.show()
root
|-- name: string (nullable = true)
|-- year: integer (nullable = false)
|-- manufacturer: string (nullable = true)
|-- version: array (nullable = true)
| |-- element: integer (containsNull = false)
|-- details: map (nullable = true)
| |-- key: string
| |-- value: string (valueContainsNull = true)
+--------+----+------------+---------+--------------------+
| name|year|manufacturer| version| details|
+--------+----+------------+---------+--------------------+
| Jerry|2015| LCorp|[1, 2, 3]|{eat -> yes, slee...|
| Mozart|2010| LCorp| [1, 2]|{eat -> no, sleep...|
|Einstein|2012| LCorp|[1, 2, 3]|{eat -> yes, slee...|
+--------+----+------------+---------+--------------------+
hubots: org.apache.spark.sql.DataFrame = [name: string, year: int ... 3 more fields]
// You can query complex type the same as you query any other column
// By the way you can use `sql` function to invoke Spark SQL to create DataFrame
hubots.createOrReplaceTempView("hubots")
val onesThatEat = sqlContext.sql("select name, details.eat from hubots where details.eat = 'yes'")
onesThatEat.show()
+--------+---+
| name|eat|
+--------+---+
| Jerry|yes|
|Einstein|yes|
+--------+---+
onesThatEat: org.apache.spark.sql.DataFrame = [name: string, eat: string]
Programmatically Specifying the Schema
When case classes cannot be defined ahead of time (for example, the structure of records is encoded in a string, or a text dataset will be parsed and fields will be projected differently for different users), a DataFrame
can be created programmatically with three steps.
- Create an RDD of
Row
s from the original RDD - Create the schema represented by a StructType and StructField classes matching the structure of
Row
s in the RDD created in Step 1. - Apply the schema to the RDD of
Row
s viacreateDataFrame
method provided bySQLContext
.
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
// Let's say we have an RDD of String and we need to convert it into a DataFrame with schema "name", "year", and "manufacturer"
// As you can see every record is space-separated.
val rdd = sc.parallelize(
Array(
"Jerry 2015 LCorp",
"Mozart 2010 LCorp",
"Einstein 2012 LCorp"
)
)
// Create schema as StructType //
val schema = StructType(
StructField("name", StringType, false) ::
StructField("year", IntegerType, false) ::
StructField("manufacturer", StringType, false) ::
Nil
)
// Prepare RDD[Row]
val rows = rdd.map { entry =>
val arr = entry.split("\\s+")
val name = arr(0)
val year = arr(1).toInt
val manufacturer = arr(2)
Row(name, year, manufacturer)
}
// Create DataFrame
val bots = sqlContext.createDataFrame(rows, schema)
bots.printSchema()
bots.show()
root
|-- name: string (nullable = false)
|-- year: integer (nullable = false)
|-- manufacturer: string (nullable = false)
+--------+----+------------+
| name|year|manufacturer|
+--------+----+------------+
| Jerry|2015| LCorp|
| Mozart|2010| LCorp|
|Einstein|2012| LCorp|
+--------+----+------------+
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[381] at parallelize at command-2971213210278333:6
schema: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,false),StructField(year,IntegerType,false),StructField(manufacturer,StringType,false))
rows: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[382] at map at command-2971213210278333:23
bots: org.apache.spark.sql.DataFrame = [name: string, year: int ... 1 more field]
Creating Datasets
A Dataset is a strongly-typed, immutable collection of objects that are mapped to a relational schema. At the core of the Dataset API is a new concept called an encoder, which is responsible for converting between JVM objects and tabular representation. The tabular representation is stored using Spark’s internal Tungsten binary format, allowing for operations on serialized data and improved memory utilization. Spark 2.2 comes with support for automatically generating encoders for a wide variety of types, including primitive types (e.g. String, Integer, Long), and Scala case classes.
Simply put, you will get all the benefits of DataFrames with fair amount of flexibility of RDD API.
// We can start working with Datasets by using our "hubots" table
// To create Dataset from DataFrame do this (assuming that case class Hubot exists):
val ds = hubots.as[Hubot]
ds.show(false)
+--------+----+------------+---------+----------------------------------------+
|name |year|manufacturer|version |details |
+--------+----+------------+---------+----------------------------------------+
|Jerry |2015|LCorp |[1, 2, 3]|{eat -> yes, sleep -> yes, drink -> yes}|
|Mozart |2010|LCorp |[1, 2] |{eat -> no, sleep -> no, drink -> no} |
|Einstein|2012|LCorp |[1, 2, 3]|{eat -> yes, sleep -> yes, drink -> no} |
+--------+----+------------+---------+----------------------------------------+
ds: org.apache.spark.sql.Dataset[Hubot] = [name: string, year: int ... 3 more fields]
Side-note: Dataset API is first-class citizen in Spark, and DataFrame is an alias for Dataset[Row]. Note that Python and R use DataFrames (since they are dynamically typed), but it is essentially a Dataset.
Finally
DataFrames and Datasets can simplify and improve most of the applications pipelines by bringing concise syntax and performance optimizations. We would highly recommend you to check out the official API documentation, specifically around
Unfortunately, this is just a getting started quickly course, and we skip features like custom aggregations, types, pivoting, etc., but if you are keen to know then start from the links above and this notebook and others in this directory. You may need them in a real-world project.
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Data Sources
Spark Sql Programming Guide
- Data Sources
- Generic Load/Save Functions
- Manually Specifying Options
- Run SQL on files directly
- Save Modes
- Saving to Persistent Tables
- Parquet Files
- Loading Data Programmatically
- Partition Discovery
- Schema Merging
- Hive metastore Parquet table conversion
- Hive/Parquet Schema Reconciliation
- Metadata Refreshing
- Configuration
- JSON Datasets
- Hive Tables
- Interacting with Different Versions of Hive Metastore
- JDBC To Other Databases
- Troubleshooting
- Generic Load/Save Functions
Data Sources
Spark SQL supports operating on a variety of data sources through the DataFrame
or DataFrame
interfaces. A Dataset can be operated on as normal RDDs and can also be registered as a temporary table. Registering a Dataset as a table allows you to run SQL queries over its data. But from time to time you would need to either load or save Dataset. Spark SQL provides built-in data sources as well as Data Source API to define your own data source and use it read / write data into Spark.
Overview
Spark provides some built-in datasources that you can use straight out of the box, such as Parquet, JSON, JDBC, ORC (available with enabled Hive Support, but this is changing, and ORC will not require Hive support and will work with default Spark session starting from next release), and Text (since Spark 1.6) and CSV (since Spark 2.0, before that it is accessible as a package).
Third-party datasource packages
Community also have built quite a few datasource packages to provide easy access to the data from other formats. You can find list of those packages on http://spark-packages.org/, e.g. Avro, CSV, Amazon Redshit (for Spark < 2.0), XML, NetFlow and many others.
Generic Load/Save functions
In order to load or save DataFrame you have to call either read
or write
. This will return DataFrameReader or DataFrameWriter depending on what you are trying to achieve. Essentially these classes are entry points to the reading / writing actions. They allow you to specify writing mode or provide additional options to read data source.
// This will return DataFrameReader to read data source
println(spark.read)
val df = spark.range(0, 10)
// This will return DataFrameWriter to save DataFrame
println(df.write)
org.apache.spark.sql.DataFrameReader@52275b1e
org.apache.spark.sql.DataFrameWriter@3bdaf3ae
df: org.apache.spark.sql.Dataset[Long] = [id: bigint]
// Saving Parquet table in Scala
// DataFrames and tables can be saved as Parquet files, maintaining the schema information
val df_save = spark.table("social_media_usage").select("platform", "visits") // assuming you made the social_media_usage table permanent in previous notebook
df_save.write.mode("overwrite").parquet("/datasets/sds/tmp/platforms.parquet")
// Read in the parquet file created above
// Parquet files are self-describing so the schema is preserved
// The result of loading a Parquet file is also a DataFrame
val df = spark.read.parquet("/datasets/sds/tmp//platforms.parquet")
df.show(5)
ls /datasets/sds/tmp/platforms.parquet
Note /datasets/sds/tmp/platforms.parquet/
is a directory with many files in it... and files beginning with part have content in possibly many partitions.
We will take a brief look at Parquet very soon below.
# Loading Parquet table in Python
dfPy = spark.read.parquet("/datasets/sds/tmp/platforms.parquet")
dfPy.show(5)
// Saving JSON dataset in Scala
val df_save = spark.table("social_media_usage").select("platform", "visits")
df_save.write.mode("overwrite").json("/datasets/sds/tmp/platforms.json")
// Loading JSON dataset in Scala
val df = spark.read.json("/datasets/sds/tmp/platforms.json")
df.show(5)
# Loading JSON dataset in Python
dfPy = spark.read.json("/datasets/sds/tmp/platforms.json")
dfPy.show(5)
Manually Specifying Options
You can also manually specify the data source that will be used along with any extra options that you would like to pass to the data source. Data sources are specified by their fully qualified name (i.e., org.apache.spark.sql.parquet
), but for built-in sources you can also use their short names (json
, parquet
, jdbc
). DataFrames of any type can be converted into other types using this syntax.
val json = sqlContext.read.format("json").load("/datasets/sds/tmp/platforms.json")
json.select("platform").show(10)
val parquet = sqlContext.read.format("parquet").load("/datasets/sds/tmp/platforms.parquet")
parquet.select("platform").show(10)
Run SQL on files directly
Instead of using read API to load a file into DataFrame and query it, you can also query that file directly with SQL.
val df = sqlContext.sql("SELECT * FROM parquet.`/datasets/sds/tmp/platforms.parquet`")
df.printSchema()
Save Modes
Save operations can optionally take a SaveMode
, that specifies how to handle existing data if present. It is important to realize that these save modes do not utilize any locking and are not atomic. Additionally, when performing a Overwrite
, the data will be deleted before writing out the new data.
Scala/Java | Any language | Meaning |
---|---|---|
SaveMode.ErrorIfExists (default) | "error" (default) | When saving a DataFrame to a data source, if data already exists, an exception is expected to be thrown. |
SaveMode.Append | "append" | When saving a DataFrame to a data source, if data/table already exists, contents of the DataFrame are expected to be appended to existing data. |
SaveMode.Overwrite | "overwrite" | Overwrite mode means that when saving a DataFrame to a data source, if data/table already exists, existing data is expected to be overwritten by the contents of the DataFrame. |
SaveMode.Ignore | "ignore" | Ignore mode means that when saving a DataFrame to a data source, if data already exists, the save operation is expected to not save the contents of the DataFrame and to not change the existing data. This is similar to a CREATE TABLE IF NOT EXISTS in SQL. |
Saving to Persistent Tables
DataFrame
and Dataset
can also be saved as persistent tables using the saveAsTable
command. Unlike the createOrReplaceTempView
command, saveAsTable
will materialize the contents of the dataframe and create a pointer to the data in the metastore. Persistent tables will still exist even after your Spark program has restarted, as long as you maintain your connection to the same metastore. A DataFrame for a persistent table can be created by calling the table
method on a SparkSession
with the name of the table.
By default saveAsTable
will create a “managed table”, meaning that the location of the data will be controlled by the metastore. Managed tables will also have their data deleted automatically when a table is dropped.
// First of all list tables to see that table we are about to create does not exist
spark.catalog.listTables.where($"name" startsWith "social").show(false)
drop table if exists simple_range
val df = spark.range(0, 100)
df.write.mode(SaveMode.Overwrite).saveAsTable("simple_range")
// Verify that table is saved and it is marked as persistent ("isTemporary" value should be "false")
spark.catalog.listTables.where($"name" startsWith "s").show(false)
Parquet Files
Parquet is a columnar format that is supported by many other data processing systems. Spark SQL provides support for both reading and writing Parquet files that automatically preserves the schema of the original data. When writing Parquet files, all columns are automatically converted to be nullable for compatibility reasons.
More on Parquet
Apache Parquet is a columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language. It is a more efficient way to store data frames.
- To understand the ideas read Dremel: Interactive Analysis of Web-Scale Datasets, Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton and Theo Vassilakis,Proc. of the 36th Int'l Conf on Very Large Data Bases (2010), pp. 330-339, whose Abstract is as follows:
- Dremel is a scalable, interactive ad-hoc query system for analysis of read-only nested data. By combining multi-level execution trees and columnar data layouts it is capable of running aggregation queries over trillion-row tables in seconds. The system scales to thousands of CPUs and petabytes of data, and has thousands of users at Google. In this paper, we describe the architecture and implementation of Dremel, and explain how it complements MapReduce-based computing. We present a novel columnar storage representation for nested records and discuss experiments on few-thousand node instances of the system.
// Read in the parquet file created above. Parquet files are self-describing so the schema is preserved.
// The result of loading a Parquet file is also a DataFrame.
val parquetFile = sqlContext.read.parquet("/datasets/sds/tmp/platforms.parquet")
// Parquet files can also be registered as tables and then used in SQL statements.
parquetFile.createOrReplaceTempView("parquetFile")
val platforms = sqlContext.sql("SELECT platform FROM parquetFile WHERE visits > 0")
platforms.distinct.map(t => "Name: " + t(0)).collect().foreach(println)
Bucketing, Sorting and Partitioning
For file-based data source, it is also possible to bucket and sort or partition the output. Bucketing and sorting are applicable only to persistent tables:
val social_media_usage_DF = spark.table("social_media_usage") // DF from table
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala in the Spark repo.
Note that partitioning can be used with both save and saveAsTable when using the Dataset APIs.
partitionBy
creates a directory structure as described in the Partition Discovery section. Thus, it has limited applicability to columns with high cardinality. In contrast bucketBy
distributes data across a fixed number of buckets and can be used when the number of unique values is unbounded. One can use partitionBy
by itself or along with `bucketBy.
social_media_usage_DF.write.mode("overwrite").parquet("/datasets/sds/tmp/social_media_usage.parquet") // write to parquet
ls /datasets/sds/tmp/social_media_usage.parquet
val social_media_usage_readFromParquet_DF = spark.read.parquet("/datasets/sds/tmp/social_media_usage.parquet") // read it back as DF
social_media_usage_readFromParquet_DF.count
social_media_usage_readFromParquet_DF.rdd.getNumPartitions
social_media_usage_readFromParquet_DF.printSchema
social_media_usage_readFromParquet_DF.select("platform").distinct.count
social_media_usage_readFromParquet_DF
.write
.partitionBy("platform") // now we are partitioning by "platform"
.mode("overwrite").parquet("/datasets/sds/tmp/social_media_usage_partitionedByPlatform.parquet")
Understand the directory structure of the parquet files we wrote.
There are many /platform=*/
folders inside the parquet folder.
In zeppelin use hdfs or local fs to view the same.
ls /datasets/sds/tmp/social_media_usage_partitionedByPlatform.parquet
There are part-0000*-
files with contents inside each platform=*
folder in the parquet folder.
ls /datasets/sds/tmp/social_media_usage_partitionedByPlatform.parquet/platform=Android
spark.read.parquet("/datasets/sds/tmp/social_media_usage_partitionedByPlatform.parquet").rdd.getNumPartitions
- Why does partitioning by a column name matter?
- This is a standard way to distribute the dataset into partitions according to the ideal column
- want to make sure that all partitions are roughly of the same size, otherwise we have to wait for the largest partition to be processed before moving to the next stage (this is called partition skew)
Advanced Topics
We can also use a fixed number of buckets and sort by a column within each partition. Such finer control of the dataframe written as a parquet file can help with optimizing downstream operations on the dataframe.
- https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-bucketing.html
- https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
Partition Discovery
Table partitioning is a common optimization approach used in systems like Hive. In a partitioned table, data are usually stored in different directories, with partitioning column values encoded in the path of each partition directory. The Parquet data source is now able to discover and infer partitioning information automatically. For example, we can store all our previously used population data (from the programming guide example!) into a partitioned table using the following directory structure, with two extra columns, gender
and country
as partitioning columns:
path
└── to
└── table
├── gender=male
│ ├── ...
│ │
│ ├── country=US
│ │ └── data.parquet
│ ├── country=CN
│ │ └── data.parquet
│ └── ...
└── gender=female
├── ...
│
├── country=US
│ └── data.parquet
├── country=CN
│ └── data.parquet
└── ...
By passing path/to/table
to either SparkSession.read.parquet
or SparkSession.read.load
, Spark SQL will automatically extract the partitioning information from the paths. Now the schema of the returned DataFrame becomes:
root
|-- name: string (nullable = true)
|-- age: long (nullable = true)
|-- gender: string (nullable = true)
|-- country: string (nullable = true)
Notice that the data types of the partitioning columns are automatically inferred. Currently, numeric data types and string type are supported. Sometimes users may not want to automatically infer the data types of the partitioning columns. For these use cases, the automatic type inference can be configured by spark.sql.sources.partitionColumnTypeInference.enabled
, which is default to true
. When type inference is disabled, string type will be used for the partitioning columns.
Starting from Spark 1.6.0, partition discovery only finds partitions under the given paths by default. For the above example, if users pass path/to/table/gender=male
to either SparkSession.read.parquet
or SparkSession.read.load
, gender
will not be considered as a partitioning column. If users need to specify the base path that partition discovery should start with, they can set basePath
in the data source options. For example, when path/to/table/gender=male
is the path of the data and users set basePath
to path/to/table/
, gender
will be a partitioning column.
Schema Merging
Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.
Since schema merging is a relatively expensive operation, and is not a necessity in most cases, we turned it off by default starting from 1.5.0. You may enable it by:
- setting data source option
mergeSchema
totrue
when reading Parquet files (as shown in the examples below), or - setting the global SQL option
spark.sql.parquet.mergeSchema
totrue
.
// Create a simple DataFrame, stored into a partition directory
val df1 = sc.parallelize(1 to 5).map(i => (i, i * 2)).toDF("single", "double")
df1.write.mode("overwrite").parquet("/datasets/sds/tmp/data/test_table/key=1")
// Create another DataFrame in a new partition directory, adding a new column and dropping an existing column
val df2 = sc.parallelize(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")
df2.write.mode("overwrite").parquet("/datasets/sds/tmp/data/test_table/key=2")
// Read the partitioned table
val df3 = spark.read.option("mergeSchema", "true").parquet("/datasets/sds/tmp/data/test_table")
df3.printSchema()
// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths.
// root
// |-- single: integer (nullable = true)
// |-- double: integer (nullable = true)
// |-- triple: integer (nullable = true)
// |-- key: integer (nullable = true))
df3.show
Hive metastore Parquet table conversion
When reading from and writing to Hive metastore Parquet tables, Spark SQL will try to use its own Parquet support instead of Hive SerDe for better performance. This behavior is controlled by the spark.sql.hive.convertMetastoreParquet
configuration, and is turned on by default.
Hive/Parquet Schema Reconciliation
There are two key differences between Hive and Parquet from the perspective of table schema processing.
- Hive is case insensitive, while Parquet is not
- Hive considers all columns nullable, while nullability in Parquet is significant
Due to this reason, we must reconcile Hive metastore schema with Parquet schema when converting a Hive metastore Parquet table to a Spark SQL Parquet table. The reconciliation rules are:
- Fields that have the same name in both schema must have the same data type regardless of nullability. The reconciled field should have the data type of the Parquet side, so that nullability is respected.
- The reconciled schema contains exactly those fields defined in Hive metastore schema.
- Any fields that only appear in the Parquet schema are dropped in the reconciled schema.
- Any fileds that only appear in the Hive metastore schema are added as nullable field in the reconciled schema.
Metadata Refreshing
Spark SQL caches Parquet metadata for better performance. When Hive metastore Parquet table conversion is enabled, metadata of those converted tables are also cached. If these tables are updated by Hive or other external tools, you need to refresh them manually to ensure consistent metadata.
// should refresh table metadata
spark.catalog.refreshTable("simple_range")
-- Or you can use SQL to refresh table
REFRESH TABLE simple_range;
Configuration
Configuration of Parquet can be done using the setConf
method on SQLContext
or by running SET key=value
commands using SQL.
Property Name | Default | Meaning |
---|---|---|
spark.sql.parquet.binaryAsString | false | Some other Parquet-producing systems, in particular Impala, Hive, and older versions of Spark SQL, do not differentiate between binary data and strings when writing out the Parquet schema. This flag tells Spark SQL to interpret binary data as a string to provide compatibility with these systems. |
spark.sql.parquet.int96AsTimestamp | true | Some Parquet-producing systems, in particular Impala and Hive, store Timestamp into INT96. This flag tells Spark SQL to interpret INT96 data as a timestamp to provide compatibility with these systems. |
spark.sql.parquet.cacheMetadata | true | Turns on caching of Parquet schema metadata. Can speed up querying of static data. |
spark.sql.parquet.compression.codec | gzip | Sets the compression codec use when writing Parquet files. Acceptable values include: uncompressed, snappy, gzip, lzo. |
spark.sql.parquet.filterPushdown | true | Enables Parquet filter push-down optimization when set to true. |
spark.sql.hive.convertMetastoreParquet | true | When set to false, Spark SQL will use the Hive SerDe for parquet tables instead of the built in support. |
spark.sql.parquet.output.committer.class | org.apache.parquet.hadoop.ParquetOutputCommitter | The output committer class used by Parquet. The specified class needs to be a subclass of org.apache.hadoop.mapreduce.OutputCommitter . Typically, it's also a subclass of org.apache.parquet.hadoop.ParquetOutputCommitter . Spark SQL comes with a builtin org.apache.spark.sql.parquet.DirectParquetOutputCommitter , which can be more efficient then the default Parquet output committer when writing data to S3. |
spark.sql.parquet.mergeSchema | false | When true, the Parquet data source merges schemas collected from all data files, otherwise the schema is picked from the summary file or a random data file if no summary file is available. |
JSON Datasets
Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. This conversion can be done using SparkSession.read.json()
on either an RDD of String, or a JSON file.
Note that the file that is offered as a json file is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will most often fail.
// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files.
val path = "/datasets/sds/tmp/platforms.json"
val platforms = spark.read.json(path)
// The inferred schema can be visualized using the printSchema() method.
platforms.printSchema()
// root
// |-- platform: string (nullable = true)
// |-- visits: long (nullable = true)
// Register this DataFrame as a table.
platforms.createOrReplaceTempView("platforms")
// SQL statements can be run by using the sql methods provided by sqlContext.
val facebook = spark.sql("SELECT platform, visits FROM platforms WHERE platform like 'Face%k'")
facebook.show()
// Alternatively, a DataFrame can be created for a JSON dataset represented by
// an RDD[String] storing one JSON object per string.
val rdd = sc.parallelize("""{"name":"IWyn","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val anotherPlatforms = spark.read.json(rdd)
anotherPlatforms.show()
Hive Tables
Spark SQL also supports reading and writing data stored in Apache Hive. However, since Hive has a large number of dependencies, it is not included in the default Spark assembly. Hive support is enabled by adding the -Phive
and -Phive-thriftserver
flags to Spark’s build. This command builds a new assembly jar that includes Hive. Note that this Hive assembly jar must also be present on all of the worker nodes, as they will need access to the Hive serialization and deserialization libraries (SerDes) in order to access data stored in Hive.
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
(for security configuration), hdfs-site.xml
(for HDFS configuration) file in conf/
. Please note when running the query on a YARN cluster (cluster
mode), the datanucleus
jars under the lib_managed/jars
directory and hive-site.xml
under conf/
directory need to be available on the driver and all executors launched by the YARN cluster. The convenient way to do this is adding them through the --jars
option and --file
option of the spark-submit
command.
When working with Hive one must construct a HiveContext
, which inherits from SQLContext
, and adds support for finding tables in the MetaStore and writing queries using HiveQL. Users who do not have an existing Hive deployment can still create a HiveContext
. When not configured by the hive-site.xml, the context automatically creates metastore_db
in the current directory and creates warehouse
directory indicated by HiveConf, which defaults to /user/hive/warehouse
. Note that you may need to grant write privilege on /user/hive/warehouse
to the user who starts the spark application.
val spark = SparkSession.builder.enableHiveSupport().getOrCreate()
spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")
// Queries are expressed in HiveQL
spark.sql("FROM src SELECT key, value").collect().foreach(println)
Interacting with Different Versions of Hive Metastore
One of the most important pieces of Spark SQL’s Hive support is interaction with Hive metastore, which enables Spark SQL to access metadata of Hive tables. Starting from Spark 1.4.0, a single binary build of Spark SQL can be used to query different versions of Hive metastores, using the configuration described below. Note that independent of the version of Hive that is being used to talk to the metastore, internally Spark SQL will compile against Hive 1.2.1 and use those classes for internal execution (serdes, UDFs, UDAFs, etc).
The following options can be used to configure the version of Hive that is used to retrieve metadata:
Property Name | Default | Meaning |
---|---|---|
spark.sql.hive.metastore.version | 1.2.1 | Version of the Hive metastore. Available options are 0.12.0 through 1.2.1 . |
spark.sql.hive.metastore.jars | builtin | Location of the jars that should be used to instantiate the HiveMetastoreClient. This property can be one of three options: builtin , maven , a classpath in the standard format for the JVM. This classpath must include all of Hive and its dependencies, including the correct version of Hadoop. These jars only need to be present on the driver, but if you are running in yarn cluster mode then you must ensure they are packaged with you application. |
spark.sql.hive.metastore.sharedPrefixes | com.mysql.jdbc,org.postgresql,com.microsoft.sqlserver,oracle.jdbc | A comma separated list of class prefixes that should be loaded using the classloader that is shared between Spark SQL and a specific version of Hive. An example of classes that should be shared is JDBC drivers that are needed to talk to the metastore. Other classes that need to be shared are those that interact with classes that are already shared. For example, custom appenders that are used by log4j. |
spark.sql.hive.metastore.barrierPrefixes | (empty) | A comma separated list of class prefixes that should explicitly be reloaded for each version of Hive that Spark SQL is communicating with. For example, Hive UDFs that are declared in a prefix that typically would be shared (i.e. org.apache.spark.* ). |
JDBC To Other Databases
Spark SQL also includes a data source that can read data from other databases using JDBC. This functionality should be preferred over using JdbcRDD. This is because the results are returned as a DataFrame and they can easily be processed in Spark SQL or joined with other data sources. The JDBC data source is also easier to use from Java or Python as it does not require the user to provide a ClassTag. (Note that this is different than the Spark SQL JDBC server, which allows other applications to run queries using Spark SQL).
To get started you will need to include the JDBC driver for you particular database on the spark classpath. For example, to connect to postgres from the Spark Shell you would run the following command:
SPARK_CLASSPATH=postgresql-9.3-1102-jdbc41.jar bin/spark-shell
Tables from the remote database can be loaded as a DataFrame or Spark SQL Temporary table using the Data Sources API. The following options are supported:
Property Name | Meaning | |
---|---|---|
url | The JDBC URL to connect to. | |
dbtable | The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses. | |
driver | The class name of the JDBC driver needed to connect to this URL. This class will be loaded on the master and workers before running an JDBC commands to allow the driver to register itself with the JDBC subsystem. | |
partitionColumn, lowerBound, upperBound, numPartitions | These options must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from multiple workers. partitionColumn must be a numeric column from the table in question. Notice that lowerBound and upperBound are just used to decide the partition stride, not for filtering the rows in table. So all rows in the table will be partitioned and returned. | |
fetchSize | The JDBC fetch size, which determines how many rows to fetch per round trip. This can help performance on JDBC drivers which default to low fetch size (eg. Oracle with 10 rows). |
// Example of using JDBC datasource
val jdbcDF = spark.read.format("jdbc").options(Map("url" -> "jdbc:postgresql:dbserver", "dbtable" -> "schema.tablename")).load()
-- Or using JDBC datasource in SQL
CREATE TEMPORARY TABLE jdbcTable
USING org.apache.spark.sql.jdbc
OPTIONS (
url "jdbc:postgresql:dbserver",
dbtable "schema.tablename"
)
Troubleshooting
- The JDBC driver class must be visible to the primordial class loader on the client session and on all executors. This is because Java’s DriverManager class does a security check that results in it ignoring all drivers not visible to the primordial class loader when one goes to open a connection. One convenient way to do this is to modify compute_classpath.sh on all worker nodes to include your driver JARs.
- Some databases, such as H2, convert all names to upper case. You’ll need to use upper case to refer to those names in Spark SQL.
Performance Tuning
Spark Sql Programming Guide
If you have read the spark-SQL paper and have some idea of how distributed sorting and joining work then you will need to know the following part of the programming guide to tune the performance of Spark SQL queries:
Normally, you only need to get into the internals of optimizing Spark when Spark's automatic optimizations fail, which can happen from time to time.
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Distributed SQL Engine
Spark Sql Programming Guide
- Distributed SQL Engine
- Running the Thrift JDBC/ODBC server
- Running the Spark SQL CLI
Distributed SQL Engine
Spark SQL can also act as a distributed query engine using its JDBC/ODBC or command-line interface. In this mode, end-users or applications can interact with Spark SQL directly to run SQL queries, without the need to write any code.
Running the Thrift JDBC/ODBC server
The Thrift JDBC/ODBC server implemented here corresponds to the HiveServer2
in Hive 1.2.1 You can test the JDBC server with the beeline script that comes with either Spark or Hive 1.2.1.
To start the JDBC/ODBC server, run the following in the Spark directory:
./sbin/start-thriftserver.sh
This script accepts all bin/spark-submit
command line options, plus a --hiveconf
option to specify Hive properties. You may run ./sbin/start-thriftserver.sh --help
for a complete list of all available options. By default, the server listens on localhost:10000. You may override this behaviour via either environment variables, i.e.:
export HIVE_SERVER2_THRIFT_PORT=<listening-port>
export HIVE_SERVER2_THRIFT_BIND_HOST=<listening-host>
./sbin/start-thriftserver.sh \
--master <master-uri> \
...
or system properties:
./sbin/start-thriftserver.sh \
--hiveconf hive.server2.thrift.port=<listening-port> \
--hiveconf hive.server2.thrift.bind.host=<listening-host> \
--master <master-uri>
...
Now you can use beeline to test the Thrift JDBC/ODBC server:
./bin/beeline
Connect to the JDBC/ODBC server in beeline with:
beeline> !connect jdbc:hive2://localhost:10000
Beeline will ask you for a username and password. In non-secure mode, simply enter the username on your machine and a blank password. For secure mode, please follow the instructions given in the beeline documentation.
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
and hdfs-site.xml
files in conf/
.
You may also use the beeline script that comes with Hive.
Thrift JDBC server also supports sending thrift RPC messages over HTTP transport. Use the following setting to enable HTTP mode as system property or in hive-site.xml
file in conf/
:
hive.server2.transport.mode - Set this to value: http
hive.server2.thrift.http.port - HTTP port number fo listen on; default is 10001
hive.server2.http.endpoint - HTTP endpoint; default is cliservice
To test, use beeline to connect to the JDBC/ODBC server in http mode with:
beeline> !connect jdbc:hive2://<host>:<port>/<database>?hive.server2.transport.mode=http;hive.server2.thrift.http.path=<http_endpoint>
Running the Spark SQL CLI
The Spark SQL CLI is a convenient tool to run the Hive metastore service in local mode and execute queries input from the command line. Note that the Spark SQL CLI cannot talk to the Thrift JDBC server.
To start the Spark SQL CLI, run the following in the Spark directory:
./bin/spark-sql
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
and hdfs-site.xml
files in conf/
. You may run ./bin/spark-sql --help
for a complete list of all available options.
SQL Pivoting since Spark 2.4
SQL Pivot: Converting Rows to Columns
This is from the following blogpost: - https://databricks.com/blog/2018/11/01/sql-pivot-converting-rows-to-columns.html
This is a useful trick to know when having to do ETL before exploring datasets that need row to column conversions.
Load Data
Create tables and load temperature data
CREATE OR REPLACE TEMPORARY VIEW high_temps
USING csv
OPTIONS (path "/datasets/sds/weather/high_temps", header "true", mode "FAILFAST")
SELECT * FROM high_temps
date | temp |
---|---|
2015-01-01 | 42 |
2015-01-02 | 42 |
2015-01-03 | 41 |
2015-01-04 | 51 |
2015-01-05 | 54 |
2015-01-06 | 54 |
2015-01-07 | 46 |
2015-01-08 | 46 |
2015-01-09 | 50 |
2015-01-10 | 46 |
2015-01-11 | 49 |
2015-01-12 | 52 |
2015-01-13 | 49 |
2015-01-14 | 43 |
2015-01-15 | 46 |
2015-01-16 | 53 |
2015-01-17 | 56 |
2015-01-18 | 57 |
2015-01-19 | 50 |
2015-01-20 | 50 |
2015-01-21 | 45 |
2015-01-22 | 49 |
2015-01-23 | 54 |
2015-01-24 | 58 |
2015-01-25 | 63 |
2015-01-26 | 61 |
2015-01-27 | 52 |
2015-01-28 | 54 |
2015-01-29 | 54 |
2015-01-30 | 47 |
2015-01-31 | 45 |
2015-02-01 | 49 |
2015-02-02 | 52 |
2015-02-03 | 50 |
2015-02-04 | 51 |
2015-02-05 | 56 |
2015-02-06 | 58 |
2015-02-07 | 54 |
2015-02-08 | 59 |
2015-02-09 | 56 |
2015-02-10 | 55 |
2015-02-11 | 55 |
2015-02-12 | 62 |
2015-02-13 | 60 |
2015-02-14 | 58 |
2015-02-15 | 54 |
2015-02-16 | 59 |
2015-02-17 | 61 |
2015-02-18 | 54 |
2015-02-19 | 51 |
2015-02-20 | 52 |
2015-02-21 | 54 |
2015-02-22 | 53 |
2015-02-23 | 55 |
2015-02-24 | 52 |
2015-02-25 | 50 |
2015-02-26 | 53 |
2015-02-27 | 50 |
2015-02-28 | 54 |
2015-03-01 | 52 |
2015-03-02 | 52 |
2015-03-03 | 51 |
2015-03-04 | 55 |
2015-03-05 | 56 |
2015-03-06 | 59 |
2015-03-07 | 62 |
2015-03-08 | 63 |
2015-03-09 | 58 |
2015-03-10 | 56 |
2015-03-11 | 58 |
2015-03-12 | 64 |
2015-03-13 | 63 |
2015-03-14 | 57 |
2015-03-15 | 51 |
2015-03-16 | 57 |
2015-03-17 | 56 |
2015-03-18 | 60 |
2015-03-19 | 60 |
2015-03-20 | 57 |
2015-03-21 | 56 |
2015-03-22 | 53 |
2015-03-23 | 52 |
2015-03-24 | 55 |
2015-03-25 | 58 |
2015-03-26 | 69 |
2015-03-27 | 65 |
2015-03-28 | 60 |
2015-03-29 | 60 |
2015-03-30 | 64 |
2015-03-31 | 55 |
2015-04-01 | 55 |
2015-04-02 | 56 |
2015-04-03 | 52 |
2015-04-04 | 55 |
2015-04-05 | 62 |
2015-04-06 | 57 |
2015-04-07 | 58 |
2015-04-08 | 63 |
2015-04-09 | 63 |
2015-04-10 | 57 |
2015-04-11 | 53 |
2015-04-12 | 56 |
2015-04-13 | 53 |
2015-04-14 | 53 |
2015-04-15 | 57 |
2015-04-16 | 64 |
2015-04-17 | 66 |
2015-04-18 | 66 |
2015-04-19 | 70 |
2015-04-20 | 73 |
2015-04-21 | 63 |
2015-04-22 | 60 |
2015-04-23 | 54 |
2015-04-24 | 54 |
2015-04-25 | 56 |
2015-04-26 | 60 |
2015-04-27 | 77 |
2015-04-28 | 60 |
2015-04-29 | 61 |
2015-04-30 | 63 |
2015-05-01 | 65 |
2015-05-02 | 65 |
2015-05-03 | 69 |
2015-05-04 | 63 |
2015-05-05 | 58 |
2015-05-06 | 62 |
2015-05-07 | 69 |
2015-05-08 | 75 |
2015-05-09 | 80 |
2015-05-10 | 67 |
2015-05-11 | 57 |
2015-05-12 | 60 |
2015-05-13 | 54 |
2015-05-14 | 64 |
2015-05-15 | 68 |
2015-05-16 | 60 |
2015-05-17 | 67 |
2015-05-18 | 78 |
2015-05-19 | 71 |
2015-05-20 | 74 |
2015-05-21 | 78 |
2015-05-22 | 62 |
2015-05-23 | 61 |
2015-05-24 | 64 |
2015-05-25 | 60 |
2015-05-26 | 71 |
2015-05-27 | 76 |
2015-05-28 | 82 |
2015-05-29 | 79 |
2015-05-30 | 73 |
2015-05-31 | 77 |
2015-06-01 | 61 |
2015-06-02 | 64 |
2015-06-03 | 68 |
2015-06-04 | 73 |
2015-06-05 | 80 |
2015-06-06 | 85 |
2015-06-07 | 88 |
2015-06-08 | 87 |
2015-06-09 | 84 |
2015-06-10 | 78 |
2015-06-11 | 76 |
2015-06-12 | 68 |
2015-06-13 | 75 |
2015-06-14 | 82 |
2015-06-15 | 86 |
2015-06-16 | 73 |
2015-06-17 | 77 |
2015-06-18 | 76 |
2015-06-19 | 75 |
2015-06-20 | 77 |
2015-06-21 | 78 |
2015-06-22 | 77 |
2015-06-23 | 79 |
2015-06-24 | 78 |
2015-06-25 | 87 |
2015-06-26 | 89 |
2015-06-27 | 92 |
2015-06-28 | 83 |
2015-06-29 | 84 |
2015-06-30 | 87 |
2015-07-01 | 90 |
2015-07-02 | 93 |
2015-07-03 | 92 |
2015-07-04 | 92 |
2015-07-05 | 91 |
2015-07-06 | 85 |
2015-07-07 | 81 |
2015-07-08 | 86 |
2015-07-09 | 84 |
2015-07-10 | 70 |
2015-07-11 | 72 |
2015-07-12 | 79 |
2015-07-13 | 78 |
2015-07-14 | 82 |
2015-07-15 | 79 |
2015-07-16 | 79 |
2015-07-17 | 82 |
2015-07-18 | 92 |
2015-07-19 | 95 |
2015-07-20 | 80 |
2015-07-21 | 75 |
2015-07-22 | 75 |
2015-07-23 | 79 |
2015-07-24 | 73 |
2015-07-25 | 70 |
2015-07-26 | 72 |
2015-07-27 | 74 |
2015-07-28 | 82 |
2015-07-29 | 90 |
2015-07-30 | 94 |
2015-07-31 | 94 |
2015-08-01 | 92 |
2015-08-02 | 87 |
2015-08-03 | 83 |
2015-08-04 | 79 |
2015-08-05 | 74 |
2015-08-06 | 77 |
2015-08-07 | 83 |
2015-08-08 | 77 |
2015-08-09 | 83 |
2015-08-10 | 84 |
2015-08-11 | 86 |
2015-08-12 | 83 |
2015-08-13 | 83 |
2015-08-14 | 65 |
2015-08-15 | 71 |
2015-08-16 | 77 |
2015-08-17 | 81 |
2015-08-18 | 86 |
2015-08-19 | 89 |
2015-08-20 | 73 |
2015-08-21 | 72 |
2015-08-22 | 80 |
2015-08-23 | 82 |
2015-08-24 | 75 |
2015-08-25 | 78 |
2015-08-26 | 83 |
2015-08-27 | 85 |
2015-08-28 | 74 |
2015-08-29 | 72 |
2015-08-30 | 68 |
2015-08-31 | 66 |
2015-09-01 | 67 |
2015-09-02 | 67 |
2015-09-03 | 65 |
2015-09-04 | 65 |
2015-09-05 | 69 |
2015-09-06 | 61 |
2015-09-07 | 70 |
2015-09-08 | 73 |
2015-09-09 | 76 |
2015-09-10 | 77 |
2015-09-11 | 81 |
2015-09-12 | 80 |
2015-09-13 | 69 |
2015-09-14 | 62 |
2015-09-15 | 64 |
2015-09-16 | 68 |
2015-09-17 | 65 |
2015-09-18 | 67 |
2015-09-19 | 70 |
2015-09-20 | 73 |
2015-09-21 | 65 |
2015-09-22 | 66 |
2015-09-23 | 69 |
2015-09-24 | 72 |
2015-09-25 | 60 |
2015-09-26 | 65 |
2015-09-27 | 64 |
2015-09-28 | 70 |
2015-09-29 | 71 |
2015-09-30 | 65 |
2015-10-01 | 70 |
2015-10-02 | 60 |
2015-10-03 | 67 |
2015-10-04 | 73 |
2015-10-05 | 74 |
2015-10-06 | 65 |
2015-10-07 | 61 |
2015-10-08 | 66 |
2015-10-09 | 67 |
2015-10-10 | 70 |
2015-10-11 | 64 |
2015-10-12 | 65 |
2015-10-13 | 62 |
2015-10-14 | 59 |
2015-10-15 | 70 |
2015-10-16 | 68 |
2015-10-17 | 67 |
2015-10-18 | 59 |
2015-10-19 | 63 |
2015-10-20 | 64 |
2015-10-21 | 61 |
2015-10-22 | 61 |
2015-10-23 | 55 |
2015-10-24 | 59 |
2015-10-25 | 67 |
2015-10-26 | 54 |
2015-10-27 | 61 |
2015-10-28 | 57 |
2015-10-29 | 59 |
2015-10-30 | 63 |
2015-10-31 | 60 |
2015-11-01 | 54 |
2015-11-02 | 52 |
2015-11-03 | 51 |
2015-11-04 | 50 |
2015-11-05 | 53 |
2015-11-06 | 60 |
2015-11-07 | 54 |
2015-11-08 | 52 |
2015-11-09 | 50 |
2015-11-10 | 52 |
2015-11-11 | 52 |
2015-11-12 | 52 |
2015-11-13 | 56 |
2015-11-14 | 49 |
2015-11-15 | 48 |
2015-11-16 | 48 |
2015-11-17 | 56 |
2015-11-18 | 48 |
2015-11-19 | 48 |
2015-11-20 | 47 |
2015-11-21 | 48 |
2015-11-22 | 50 |
2015-11-23 | 44 |
2015-11-24 | 44 |
2015-11-25 | 45 |
2015-11-26 | 49 |
2015-11-27 | 49 |
2015-11-28 | 45 |
2015-11-29 | 35 |
2015-11-30 | 42 |
2015-12-01 | 50 |
2015-12-02 | 51 |
2015-12-03 | 60 |
2015-12-04 | 51 |
2015-12-05 | 50 |
2015-12-06 | 55 |
2015-12-07 | 52 |
2015-12-08 | 60 |
2015-12-09 | 54 |
2015-12-10 | 53 |
2015-12-11 | 49 |
2015-12-12 | 48 |
2015-12-13 | 46 |
2015-12-14 | 46 |
2015-12-15 | 44 |
2015-12-16 | 43 |
2015-12-17 | 44 |
2015-12-18 | 48 |
2015-12-19 | 47 |
2015-12-20 | 46 |
2015-12-21 | 42 |
2015-12-22 | 46 |
2015-12-23 | 41 |
2015-12-24 | 42 |
2015-12-25 | 41 |
2015-12-26 | 40 |
2015-12-27 | 40 |
2015-12-28 | 41 |
2015-12-29 | 45 |
2015-12-30 | 42 |
2015-12-31 | 42 |
2016-01-01 | 46 |
2016-01-02 | 42 |
2016-01-03 | 40 |
2016-01-04 | 38 |
2016-01-05 | 46 |
2016-01-06 | 53 |
2016-01-07 | 44 |
2016-01-08 | 48 |
2016-01-09 | 49 |
2016-01-10 | 52 |
2016-01-11 | 47 |
2016-01-12 | 48 |
2016-01-13 | 54 |
2016-01-14 | 48 |
2016-01-15 | 47 |
2016-01-16 | 52 |
2016-01-17 | 49 |
2016-01-18 | 52 |
2016-01-19 | 47 |
2016-01-20 | 50 |
2016-01-21 | 53 |
2016-01-22 | 55 |
2016-01-23 | 46 |
2016-01-24 | 50 |
2016-01-25 | 55 |
2016-01-26 | 56 |
2016-01-27 | 58 |
2016-01-28 | 56 |
2016-01-29 | 49 |
2016-01-30 | 46 |
2016-01-31 | 45 |
2016-02-01 | 45 |
2016-02-02 | 50 |
2016-02-03 | 47 |
2016-02-04 | 49 |
2016-02-05 | 52 |
2016-02-06 | 48 |
2016-02-07 | 52 |
2016-02-08 | 59 |
2016-02-09 | 63 |
2016-02-10 | 56 |
2016-02-11 | 55 |
2016-02-12 | 57 |
2016-02-13 | 50 |
2016-02-14 | 53 |
2016-02-15 | 54 |
2016-02-16 | 54 |
2016-02-17 | 63 |
2016-02-18 | 51 |
2016-02-19 | 50 |
2016-02-20 | 51 |
2016-02-21 | 50 |
2016-02-22 | 51 |
2016-02-23 | 58 |
2016-02-24 | 57 |
2016-02-25 | 62 |
2016-02-26 | 57 |
2016-02-27 | 56 |
2016-02-28 | 50 |
2016-02-29 | 53 |
2016-03-01 | 57 |
2016-03-02 | 54 |
2016-03-03 | 58 |
2016-03-04 | 55 |
2016-03-05 | 64 |
2016-03-06 | 59 |
2016-03-07 | 51 |
2016-03-08 | 53 |
2016-03-09 | 55 |
2016-03-10 | 55 |
2016-03-11 | 60 |
2016-03-12 | 50 |
2016-03-13 | 54 |
2016-03-14 | 47 |
2016-03-15 | 50 |
2016-03-16 | 53 |
2016-03-17 | 57 |
2016-03-18 | 63 |
2016-03-19 | 61 |
2016-03-20 | 54 |
2016-03-21 | 55 |
2016-03-22 | 55 |
2016-03-23 | 51 |
2016-03-24 | 52 |
2016-03-25 | 56 |
2016-03-26 | 58 |
2016-03-27 | 55 |
2016-03-28 | 55 |
2016-03-29 | 63 |
2016-03-30 | 68 |
2016-03-31 | 71 |
2016-04-01 | 71 |
2016-04-02 | 62 |
2016-04-03 | 68 |
2016-04-04 | 58 |
2016-04-05 | 56 |
2016-04-06 | 69 |
2016-04-07 | 78 |
2016-04-08 | 76 |
2016-04-09 | 64 |
2016-04-10 | 58 |
2016-04-11 | 58 |
2016-04-12 | 57 |
2016-04-13 | 58 |
2016-04-14 | 59 |
2016-04-15 | 59 |
2016-04-16 | 67 |
2016-04-17 | 80 |
2016-04-18 | 89 |
2016-04-19 | 84 |
2016-04-20 | 81 |
2016-04-21 | 72 |
2016-04-22 | 62 |
2016-04-23 | 64 |
2016-04-24 | 55 |
2016-04-25 | 59 |
2016-04-26 | 59 |
2016-04-27 | 63 |
2016-04-28 | 63 |
2016-04-29 | 61 |
2016-04-30 | 67 |
2016-05-01 | 79 |
2016-05-02 | 87 |
2016-05-03 | 72 |
2016-05-04 | 60 |
2016-05-05 | 68 |
2016-05-06 | 77 |
2016-05-07 | 82 |
2016-05-08 | 66 |
2016-05-09 | 67 |
2016-05-10 | 75 |
2016-05-11 | 80 |
2016-05-12 | 76 |
2016-05-13 | 84 |
2016-05-14 | 58 |
2016-05-15 | 56 |
2016-05-16 | 59 |
2016-05-17 | 69 |
2016-05-18 | 65 |
2016-05-19 | 63 |
2016-05-20 | 66 |
2016-05-21 | 58 |
2016-05-22 | 66 |
2016-05-23 | 66 |
2016-05-24 | 66 |
2016-05-25 | 65 |
2016-05-26 | 62 |
2016-05-27 | 64 |
2016-05-28 | 62 |
2016-05-29 | 64 |
2016-05-30 | 72 |
2016-05-31 | 80 |
2016-06-01 | 74 |
2016-06-02 | 70 |
2016-06-03 | 82 |
2016-06-04 | 85 |
2016-06-05 | 93 |
2016-06-06 | 88 |
2016-06-07 | 84 |
2016-06-08 | 67 |
2016-06-09 | 64 |
2016-06-10 | 65 |
2016-06-11 | 67 |
2016-06-12 | 70 |
2016-06-13 | 65 |
2016-06-14 | 60 |
2016-06-15 | 66 |
2016-06-16 | 70 |
2016-06-17 | 69 |
2016-06-18 | 66 |
2016-06-19 | 72 |
2016-06-20 | 75 |
2016-06-21 | 71 |
2016-06-22 | 75 |
2016-06-23 | 68 |
2016-06-24 | 69 |
2016-06-25 | 72 |
2016-06-26 | 80 |
2016-06-27 | 85 |
2016-06-28 | 76 |
2016-06-29 | 72 |
2016-06-30 | 73 |
2016-07-01 | 75 |
2016-07-02 | 75 |
2016-07-03 | 71 |
2016-07-04 | 69 |
2016-07-05 | 67 |
2016-07-06 | 76 |
2016-07-07 | 68 |
2016-07-08 | 72 |
2016-07-09 | 71 |
2016-07-10 | 73 |
2016-07-11 | 73 |
2016-07-12 | 76 |
2016-07-13 | 74 |
2016-07-14 | 76 |
2016-07-15 | 76 |
2016-07-16 | 73 |
2016-07-17 | 79 |
2016-07-18 | 71 |
2016-07-19 | 77 |
2016-07-20 | 80 |
2016-07-21 | 84 |
2016-07-22 | 73 |
2016-07-23 | 73 |
2016-07-24 | 81 |
2016-07-25 | 86 |
2016-07-26 | 78 |
2016-07-27 | 84 |
2016-07-28 | 88 |
2016-07-29 | 89 |
2016-07-30 | 75 |
2016-07-31 | 72 |
2016-08-01 | 77 |
2016-08-02 | 71 |
2016-08-03 | 76 |
2016-08-04 | 82 |
2016-08-05 | 79 |
2016-08-06 | 71 |
2016-08-07 | 69 |
2016-08-08 | 73 |
2016-08-09 | 71 |
2016-08-10 | 76 |
2016-08-11 | 81 |
2016-08-12 | 90 |
2016-08-13 | 91 |
2016-08-14 | 85 |
2016-08-15 | 83 |
2016-08-16 | 83 |
2016-08-17 | 80 |
2016-08-18 | 87 |
2016-08-19 | 95 |
2016-08-20 | 91 |
2016-08-21 | 73 |
2016-08-22 | 72 |
2016-08-23 | 80 |
2016-08-24 | 85 |
2016-08-25 | 91 |
2016-08-26 | 92 |
2016-08-27 | 73 |
2016-08-28 | 70 |
2016-08-29 | 79 |
2016-08-30 | 71 |
2016-08-31 | 69 |
2016-09-01 | 66 |
2016-09-02 | 69 |
2016-09-03 | 69 |
2016-09-04 | 70 |
2016-09-05 | 64 |
2016-09-06 | 65 |
2016-09-07 | 66 |
2016-09-08 | 70 |
2016-09-09 | 73 |
2016-09-10 | 77 |
2016-09-11 | 70 |
2016-09-12 | 75 |
2016-09-13 | 77 |
2016-09-14 | 78 |
2016-09-15 | 72 |
2016-09-16 | 74 |
2016-09-17 | 67 |
2016-09-18 | 68 |
2016-09-19 | 68 |
2016-09-20 | 67 |
2016-09-21 | 68 |
2016-09-22 | 65 |
2016-09-23 | 63 |
2016-09-24 | 66 |
2016-09-25 | 76 |
2016-09-26 | 77 |
2016-09-27 | 69 |
2016-09-28 | 67 |
2016-09-29 | 66 |
2016-09-30 | 65 |
2016-10-01 | 63 |
2016-10-02 | 63 |
2016-10-03 | 60 |
2016-10-04 | 60 |
2016-10-05 | 65 |
2016-10-06 | 62 |
2016-10-07 | 63 |
2016-10-08 | 65 |
2016-10-09 | 56 |
2016-10-10 | 60 |
2016-10-11 | 62 |
2016-10-12 | 66 |
2016-10-13 | 59 |
2016-10-14 | 57 |
2016-10-15 | 62 |
2016-10-16 | 60 |
2016-10-17 | 59 |
2016-10-18 | 58 |
2016-10-19 | 58 |
2016-10-20 | 60 |
2016-10-21 | 57 |
2016-10-22 | 62 |
2016-10-23 | 62 |
2016-10-24 | 63 |
2016-10-25 | 63 |
2016-10-26 | 58 |
2016-10-27 | 58 |
2016-10-28 | 67 |
2016-10-29 | 60 |
2016-10-30 | 52 |
2016-10-31 | 57 |
2016-11-01 | 56 |
2016-11-02 | 56 |
2016-11-03 | 65 |
2016-11-04 | 63 |
2016-11-05 | 60 |
2016-11-06 | 60 |
2016-11-07 | 66 |
2016-11-08 | 70 |
2016-11-09 | 64 |
2016-11-10 | 62 |
2016-11-11 | 61 |
2016-11-12 | 58 |
2016-11-13 | 54 |
2016-11-14 | 57 |
2016-11-15 | 54 |
2016-11-16 | 50 |
2016-11-17 | 51 |
2016-11-18 | 54 |
2016-11-19 | 57 |
2016-11-20 | 57 |
2016-11-21 | 53 |
2016-11-22 | 53 |
2016-11-23 | 48 |
2016-11-24 | 51 |
2016-11-25 | 52 |
2016-11-26 | 51 |
2016-11-27 | 47 |
2016-11-28 | 50 |
2016-11-29 | 51 |
2016-11-30 | 50 |
2016-12-01 | 46 |
2016-12-02 | 49 |
2016-12-03 | 48 |
2016-12-04 | 45 |
2016-12-05 | 39 |
2016-12-06 | 40 |
2016-12-07 | 38 |
2016-12-08 | 38 |
2016-12-09 | 36 |
2016-12-10 | 44 |
2016-12-11 | 42 |
2016-12-12 | 42 |
2016-12-13 | 38 |
2016-12-14 | 39 |
2016-12-15 | 38 |
2016-12-16 | 34 |
2016-12-17 | 33 |
2016-12-18 | 39 |
2016-12-19 | 45 |
2016-12-20 | 50 |
2016-12-21 | 47 |
2016-12-22 | 44 |
2016-12-23 | 39 |
2016-12-24 | 40 |
2016-12-25 | 42 |
2016-12-26 | 42 |
2016-12-27 | 44 |
2016-12-28 | 47 |
2016-12-29 | 48 |
2016-12-30 | 45 |
2016-12-31 | 38 |
2017-01-01 | 37 |
2017-01-02 | 34 |
2017-01-03 | 33 |
2017-01-04 | 36 |
2017-01-05 | 35 |
2017-01-06 | 40 |
2017-01-07 | 37 |
2017-01-08 | 45 |
2017-01-09 | 42 |
2017-01-10 | 40 |
2017-01-11 | 34 |
2017-01-12 | 40 |
2017-01-13 | 37 |
2017-01-14 | 44 |
2017-01-15 | 43 |
2017-01-16 | 45 |
2017-01-17 | 49 |
2017-01-18 | 53 |
2017-01-19 | 50 |
2017-01-20 | 52 |
2017-01-21 | 54 |
2017-01-22 | 49 |
2017-01-23 | 48 |
2017-01-24 | 43 |
2017-01-25 | 44 |
2017-01-26 | 47 |
2017-01-27 | 54 |
2017-01-28 | 52 |
2017-01-29 | 48 |
2017-01-30 | 45 |
2017-01-31 | 44 |
2017-02-01 | 43 |
2017-02-02 | 44 |
2017-02-03 | 40 |
2017-02-04 | 46 |
2017-02-05 | 41 |
2017-02-06 | 37 |
2017-02-07 | 38 |
2017-02-08 | 40 |
2017-02-09 | 56 |
2017-02-10 | 48 |
2017-02-11 | 49 |
2017-02-12 | 51 |
2017-02-13 | 57 |
2017-02-14 | 58 |
2017-02-15 | 54 |
2017-02-16 | 53 |
2017-02-17 | 56 |
2017-02-18 | 45 |
2017-02-19 | 47 |
2017-02-20 | 45 |
2017-02-21 | 48 |
2017-02-22 | 46 |
2017-02-23 | 44 |
2017-02-24 | 47 |
2017-02-25 | 44 |
2017-02-26 | 41 |
2017-02-27 | 41 |
2017-02-28 | 47 |
2017-03-01 | 49 |
2017-03-02 | 47 |
2017-03-03 | 51 |
2017-03-04 | 46 |
2017-03-05 | 45 |
2017-03-06 | 43 |
2017-03-07 | 42 |
2017-03-08 | 43 |
2017-03-09 | 49 |
2017-03-10 | 52 |
2017-03-11 | 53 |
2017-03-12 | 53 |
2017-03-13 | 53 |
2017-03-14 | 57 |
2017-03-15 | 50 |
2017-03-16 | 52 |
2017-03-17 | 53 |
2017-03-18 | 57 |
2017-03-19 | 53 |
2017-03-20 | 54 |
2017-03-21 | 56 |
2017-03-22 | 56 |
2017-03-23 | 58 |
2017-03-24 | 54 |
2017-03-25 | 52 |
2017-03-26 | 49 |
2017-03-27 | 53 |
2017-03-28 | 53 |
2017-03-29 | 55 |
2017-03-30 | 54 |
2017-03-31 | 56 |
2017-04-01 | 56 |
2017-04-02 | 55 |
2017-04-03 | 53 |
2017-04-04 | 61 |
2017-04-05 | 54 |
2017-04-06 | 60 |
2017-04-07 | 59 |
2017-04-08 | 52 |
2017-04-09 | 56 |
2017-04-10 | 53 |
2017-04-11 | 57 |
2017-04-12 | 59 |
2017-04-13 | 54 |
2017-04-14 | 52 |
2017-04-15 | 57 |
2017-04-16 | 66 |
2017-04-17 | 60 |
2017-04-18 | 60 |
2017-04-19 | 56 |
2017-04-20 | 58 |
2017-04-21 | 66 |
2017-04-22 | 63 |
2017-04-23 | 53 |
2017-04-24 | 57 |
2017-04-25 | 56 |
2017-04-26 | 58 |
2017-04-27 | 56 |
2017-04-28 | 59 |
2017-04-29 | 57 |
2017-04-30 | 56 |
2017-05-01 | 50 |
2017-05-02 | 61 |
2017-05-03 | 74 |
2017-05-04 | 76 |
2017-05-05 | 59 |
2017-05-06 | 60 |
2017-05-07 | 62 |
2017-05-08 | 64 |
2017-05-09 | 70 |
2017-05-10 | 71 |
2017-05-11 | 60 |
2017-05-12 | 54 |
2017-05-13 | 57 |
2017-05-14 | 59 |
2017-05-15 | 52 |
2017-05-16 | 54 |
2017-05-17 | 60 |
2017-05-18 | 64 |
2017-05-19 | 71 |
2017-05-20 | 72 |
2017-05-21 | 76 |
2017-05-22 | 83 |
2017-05-23 | 78 |
2017-05-24 | 63 |
2017-05-25 | 70 |
2017-05-26 | 81 |
2017-05-27 | 86 |
2017-05-28 | 86 |
2017-05-29 | 74 |
2017-05-30 | 58 |
2017-05-31 | 72 |
2017-06-01 | 67 |
2017-06-02 | 73 |
2017-06-03 | 67 |
2017-06-04 | 67 |
2017-06-05 | 74 |
2017-06-06 | 84 |
2017-06-07 | 79 |
2017-06-08 | 63 |
2017-06-09 | 63 |
2017-06-10 | 67 |
2017-06-11 | 70 |
2017-06-12 | 64 |
2017-06-13 | 65 |
2017-06-14 | 65 |
2017-06-15 | 61 |
2017-06-16 | 68 |
2017-06-17 | 63 |
2017-06-18 | 71 |
2017-06-19 | 74 |
2017-06-20 | 73 |
2017-06-21 | 69 |
2017-06-22 | 75 |
2017-06-23 | 81 |
2017-06-24 | 89 |
2017-06-25 | 96 |
2017-06-26 | 72 |
2017-06-27 | 71 |
2017-06-28 | 68 |
2017-06-29 | 78 |
2017-06-30 | 86 |
2017-07-01 | 72 |
2017-07-02 | 77 |
2017-07-03 | 70 |
2017-07-04 | 78 |
2017-07-05 | 85 |
2017-07-06 | 85 |
2017-07-07 | 72 |
2017-07-08 | 81 |
2017-07-09 | 80 |
2017-07-10 | 73 |
2017-07-11 | 75 |
2017-07-12 | 78 |
2017-07-13 | 75 |
2017-07-14 | 79 |
2017-07-15 | 77 |
2017-07-16 | 72 |
2017-07-17 | 78 |
2017-07-18 | 82 |
2017-07-19 | 78 |
2017-07-20 | 74 |
2017-07-21 | 78 |
2017-07-22 | 85 |
2017-07-23 | 76 |
2017-07-24 | 82 |
2017-07-25 | 87 |
2017-07-26 | 84 |
2017-07-27 | 70 |
2017-07-28 | 79 |
2017-07-29 | 81 |
2017-07-30 | 80 |
2017-07-31 | 85 |
2017-08-01 | 87 |
2017-08-02 | 91 |
2017-08-03 | 94 |
2017-08-04 | 91 |
2017-08-05 | 82 |
2017-08-06 | 82 |
2017-08-07 | 84 |
2017-08-08 | 89 |
2017-08-09 | 91 |
2017-08-10 | 90 |
2017-08-11 | 77 |
2017-08-12 | 76 |
2017-08-13 | 74 |
2017-08-14 | 73 |
2017-08-15 | 78 |
2017-08-16 | 79 |
2017-08-17 | 75 |
2017-08-18 | 73 |
2017-08-19 | 76 |
2017-08-20 | 77 |
2017-08-21 | 83 |
2017-08-22 | 86 |
2017-08-23 | 75 |
2017-08-24 | 72 |
2017-08-25 | 76 |
2017-08-26 | 84 |
2017-08-27 | 87 |
2017-08-28 | 88 |
2017-08-29 | 85 |
2017-08-30 | 77 |
2017-08-31 | 75 |
2017-09-01 | 85 |
2017-09-02 | 90 |
2017-09-03 | 90 |
2017-09-04 | 88 |
2017-09-05 | 85 |
2017-09-06 | 81 |
2017-09-07 | 75 |
2017-09-08 | 71 |
2017-09-09 | 68 |
2017-09-10 | 73 |
2017-09-11 | 80 |
2017-09-12 | 77 |
2017-09-13 | 70 |
2017-09-14 | 74 |
2017-09-15 | 76 |
2017-09-16 | 76 |
2017-09-17 | 64 |
2017-09-18 | 62 |
2017-09-19 | 64 |
2017-09-20 | 57 |
2017-09-21 | 64 |
2017-09-22 | 68 |
2017-09-23 | 68 |
2017-09-24 | 72 |
2017-09-25 | 65 |
2017-09-26 | 74 |
CREATE OR REPLACE TEMPORARY VIEW low_temps
USING csv
OPTIONS (path "/datasets/sds/weather/low_temps", header "true", mode "FAILFAST")
SELECT * FROM low_temps
date | temp |
---|---|
2015-01-01 | 26 |
2015-01-02 | 32 |
2015-01-03 | 35 |
2015-01-04 | 38 |
2015-01-05 | 49 |
2015-01-06 | 43 |
2015-01-07 | 42 |
2015-01-08 | 35 |
2015-01-09 | 38 |
2015-01-10 | 43 |
2015-01-11 | 45 |
2015-01-12 | 40 |
2015-01-13 | 37 |
2015-01-14 | 33 |
2015-01-15 | 34 |
2015-01-16 | 42 |
2015-01-17 | 38 |
2015-01-18 | 45 |
2015-01-19 | 43 |
2015-01-20 | 38 |
2015-01-21 | 31 |
2015-01-22 | 43 |
2015-01-23 | 47 |
2015-01-24 | 52 |
2015-01-25 | 45 |
2015-01-26 | 43 |
2015-01-27 | 47 |
2015-01-28 | 41 |
2015-01-29 | 38 |
2015-01-30 | 34 |
2015-01-31 | 38 |
2015-02-01 | 40 |
2015-02-02 | 41 |
2015-02-03 | 42 |
2015-02-04 | 40 |
2015-02-05 | 47 |
2015-02-06 | 50 |
2015-02-07 | 49 |
2015-02-08 | 47 |
2015-02-09 | 47 |
2015-02-10 | 47 |
2015-02-11 | 42 |
2015-02-12 | 49 |
2015-02-13 | 44 |
2015-02-14 | 44 |
2015-02-15 | 39 |
2015-02-16 | 42 |
2015-02-17 | 40 |
2015-02-18 | 40 |
2015-02-19 | 47 |
2015-02-20 | 45 |
2015-02-21 | 42 |
2015-02-22 | 38 |
2015-02-23 | 33 |
2015-02-24 | 36 |
2015-02-25 | 44 |
2015-02-26 | 46 |
2015-02-27 | 44 |
2015-02-28 | 38 |
2015-03-01 | 34 |
2015-03-02 | 40 |
2015-03-03 | 32 |
2015-03-04 | 31 |
2015-03-05 | 37 |
2015-03-06 | 38 |
2015-03-07 | 39 |
2015-03-08 | 39 |
2015-03-09 | 40 |
2015-03-10 | 41 |
2015-03-11 | 48 |
2015-03-12 | 49 |
2015-03-13 | 46 |
2015-03-14 | 49 |
2015-03-15 | 43 |
2015-03-16 | 43 |
2015-03-17 | 40 |
2015-03-18 | 45 |
2015-03-19 | 47 |
2015-03-20 | 48 |
2015-03-21 | 47 |
2015-03-22 | 43 |
2015-03-23 | 42 |
2015-03-24 | 43 |
2015-03-25 | 45 |
2015-03-26 | 50 |
2015-03-27 | 48 |
2015-03-28 | 49 |
2015-03-29 | 48 |
2015-03-30 | 51 |
2015-03-31 | 43 |
2015-04-01 | 42 |
2015-04-02 | 42 |
2015-04-03 | 41 |
2015-04-04 | 39 |
2015-04-05 | 37 |
2015-04-06 | 44 |
2015-04-07 | 44 |
2015-04-08 | 43 |
2015-04-09 | 43 |
2015-04-10 | 46 |
2015-04-11 | 42 |
2015-04-12 | 42 |
2015-04-13 | 39 |
2015-04-14 | 37 |
2015-04-15 | 38 |
2015-04-16 | 39 |
2015-04-17 | 43 |
2015-04-18 | 47 |
2015-04-19 | 47 |
2015-04-20 | 46 |
2015-04-21 | 44 |
2015-04-22 | 41 |
2015-04-23 | 44 |
2015-04-24 | 43 |
2015-04-25 | 42 |
2015-04-26 | 40 |
2015-04-27 | 51 |
2015-04-28 | 48 |
2015-04-29 | 45 |
2015-04-30 | 46 |
2015-05-01 | 48 |
2015-05-02 | 46 |
2015-05-03 | 46 |
2015-05-04 | 45 |
2015-05-05 | 45 |
2015-05-06 | 45 |
2015-05-07 | 43 |
2015-05-08 | 47 |
2015-05-09 | 49 |
2015-05-10 | 52 |
2015-05-11 | 50 |
2015-05-12 | 51 |
2015-05-13 | 50 |
2015-05-14 | 49 |
2015-05-15 | 49 |
2015-05-16 | 52 |
2015-05-17 | 51 |
2015-05-18 | 54 |
2015-05-19 | 53 |
2015-05-20 | 51 |
2015-05-21 | 53 |
2015-05-22 | 53 |
2015-05-23 | 53 |
2015-05-24 | 52 |
2015-05-25 | 52 |
2015-05-26 | 53 |
2015-05-27 | 53 |
2015-05-28 | 54 |
2015-05-29 | 55 |
2015-05-30 | 50 |
2015-05-31 | 53 |
2015-06-01 | 53 |
2015-06-02 | 55 |
2015-06-03 | 53 |
2015-06-04 | 53 |
2015-06-05 | 55 |
2015-06-06 | 56 |
2015-06-07 | 60 |
2015-06-08 | 58 |
2015-06-09 | 58 |
2015-06-10 | 52 |
2015-06-11 | 52 |
2015-06-12 | 53 |
2015-06-13 | 49 |
2015-06-14 | 53 |
2015-06-15 | 61 |
2015-06-16 | 52 |
2015-06-17 | 52 |
2015-06-18 | 57 |
2015-06-19 | 56 |
2015-06-20 | 55 |
2015-06-21 | 57 |
2015-06-22 | 55 |
2015-06-23 | 53 |
2015-06-24 | 61 |
2015-06-25 | 60 |
2015-06-26 | 64 |
2015-06-27 | 63 |
2015-06-28 | 65 |
2015-06-29 | 63 |
2015-06-30 | 59 |
2015-07-01 | 63 |
2015-07-02 | 64 |
2015-07-03 | 64 |
2015-07-04 | 59 |
2015-07-05 | 62 |
2015-07-06 | 60 |
2015-07-07 | 57 |
2015-07-08 | 58 |
2015-07-09 | 58 |
2015-07-10 | 62 |
2015-07-11 | 62 |
2015-07-12 | 62 |
2015-07-13 | 61 |
2015-07-14 | 61 |
2015-07-15 | 58 |
2015-07-16 | 59 |
2015-07-17 | 57 |
2015-07-18 | 64 |
2015-07-19 | 63 |
2015-07-20 | 62 |
2015-07-21 | 59 |
2015-07-22 | 57 |
2015-07-23 | 58 |
2015-07-24 | 56 |
2015-07-25 | 58 |
2015-07-26 | 57 |
2015-07-27 | 54 |
2015-07-28 | 57 |
2015-07-29 | 58 |
2015-07-30 | 63 |
2015-07-31 | 64 |
2015-08-01 | 60 |
2015-08-02 | 61 |
2015-08-03 | 63 |
2015-08-04 | 58 |
2015-08-05 | 54 |
2015-08-06 | 59 |
2015-08-07 | 60 |
2015-08-08 | 60 |
2015-08-09 | 59 |
2015-08-10 | 61 |
2015-08-11 | 62 |
2015-08-12 | 62 |
2015-08-13 | 60 |
2015-08-14 | 59 |
2015-08-15 | 57 |
2015-08-16 | 58 |
2015-08-17 | 57 |
2015-08-18 | 59 |
2015-08-19 | 61 |
2015-08-20 | 58 |
2015-08-21 | 58 |
2015-08-22 | 54 |
2015-08-23 | 57 |
2015-08-24 | 54 |
2015-08-25 | 54 |
2015-08-26 | 57 |
2015-08-27 | 58 |
2015-08-28 | 60 |
2015-08-29 | 56 |
2015-08-30 | 55 |
2015-08-31 | 61 |
2015-09-01 | 57 |
2015-09-02 | 52 |
2015-09-03 | 51 |
2015-09-04 | 50 |
2015-09-05 | 48 |
2015-09-06 | 53 |
2015-09-07 | 56 |
2015-09-08 | 56 |
2015-09-09 | 57 |
2015-09-10 | 58 |
2015-09-11 | 59 |
2015-09-12 | 58 |
2015-09-13 | 55 |
2015-09-14 | 51 |
2015-09-15 | 50 |
2015-09-16 | 50 |
2015-09-17 | 55 |
2015-09-18 | 55 |
2015-09-19 | 58 |
2015-09-20 | 54 |
2015-09-21 | 49 |
2015-09-22 | 46 |
2015-09-23 | 47 |
2015-09-24 | 52 |
2015-09-25 | 55 |
2015-09-26 | 50 |
2015-09-27 | 45 |
2015-09-28 | 49 |
2015-09-29 | 48 |
2015-09-30 | 50 |
2015-10-01 | 49 |
2015-10-02 | 50 |
2015-10-03 | 52 |
2015-10-04 | 50 |
2015-10-05 | 49 |
2015-10-06 | 50 |
2015-10-07 | 57 |
2015-10-08 | 56 |
2015-10-09 | 54 |
2015-10-10 | 56 |
2015-10-11 | 51 |
2015-10-12 | 51 |
2015-10-13 | 49 |
2015-10-14 | 50 |
2015-10-15 | 49 |
2015-10-16 | 48 |
2015-10-17 | 53 |
2015-10-18 | 55 |
2015-10-19 | 54 |
2015-10-20 | 51 |
2015-10-21 | 47 |
2015-10-22 | 48 |
2015-10-23 | 45 |
2015-10-24 | 48 |
2015-10-25 | 48 |
2015-10-26 | 50 |
2015-10-27 | 46 |
2015-10-28 | 52 |
2015-10-29 | 54 |
2015-10-30 | 53 |
2015-10-31 | 53 |
2015-11-01 | 48 |
2015-11-02 | 45 |
2015-11-03 | 41 |
2015-11-04 | 38 |
2015-11-05 | 46 |
2015-11-06 | 47 |
2015-11-07 | 49 |
2015-11-08 | 46 |
2015-11-09 | 41 |
2015-11-10 | 39 |
2015-11-11 | 43 |
2015-11-12 | 41 |
2015-11-13 | 49 |
2015-11-14 | 43 |
2015-11-15 | 36 |
2015-11-16 | 35 |
2015-11-17 | 44 |
2015-11-18 | 38 |
2015-11-19 | 37 |
2015-11-20 | 33 |
2015-11-21 | 33 |
2015-11-22 | 35 |
2015-11-23 | 32 |
2015-11-24 | 37 |
2015-11-25 | 32 |
2015-11-26 | 30 |
2015-11-27 | 29 |
2015-11-28 | 27 |
2015-11-29 | 28 |
2015-11-30 | 25 |
2015-12-01 | 39 |
2015-12-02 | 40 |
2015-12-03 | 46 |
2015-12-04 | 43 |
2015-12-05 | 43 |
2015-12-06 | 45 |
2015-12-07 | 47 |
2015-12-08 | 50 |
2015-12-09 | 46 |
2015-12-10 | 43 |
2015-12-11 | 40 |
2015-12-12 | 42 |
2015-12-13 | 43 |
2015-12-14 | 35 |
2015-12-15 | 34 |
2015-12-16 | 37 |
2015-12-17 | 39 |
2015-12-18 | 40 |
2015-12-19 | 37 |
2015-12-20 | 40 |
2015-12-21 | 37 |
2015-12-22 | 37 |
2015-12-23 | 37 |
2015-12-24 | 36 |
2015-12-25 | 36 |
2015-12-26 | 32 |
2015-12-27 | 35 |
2015-12-28 | 35 |
2015-12-29 | 33 |
2015-12-30 | 30 |
2015-12-31 | 28 |
2016-01-01 | 28 |
2016-01-02 | 25 |
2016-01-03 | 31 |
2016-01-04 | 35 |
2016-01-05 | 36 |
2016-01-06 | 37 |
2016-01-07 | 34 |
2016-01-08 | 36 |
2016-01-09 | 30 |
2016-01-10 | 38 |
2016-01-11 | 35 |
2016-01-12 | 40 |
2016-01-13 | 41 |
2016-01-14 | 36 |
2016-01-15 | 33 |
2016-01-16 | 42 |
2016-01-17 | 43 |
2016-01-18 | 43 |
2016-01-19 | 42 |
2016-01-20 | 40 |
2016-01-21 | 45 |
2016-01-22 | 44 |
2016-01-23 | 43 |
2016-01-24 | 37 |
2016-01-25 | 38 |
2016-01-26 | 46 |
2016-01-27 | 49 |
2016-01-28 | 46 |
2016-01-29 | 41 |
2016-01-30 | 38 |
2016-01-31 | 37 |
2016-02-01 | 38 |
2016-02-02 | 35 |
2016-02-03 | 39 |
2016-02-04 | 42 |
2016-02-05 | 39 |
2016-02-06 | 39 |
2016-02-07 | 34 |
2016-02-08 | 39 |
2016-02-09 | 38 |
2016-02-10 | 46 |
2016-02-11 | 45 |
2016-02-12 | 47 |
2016-02-13 | 43 |
2016-02-14 | 47 |
2016-02-15 | 49 |
2016-02-16 | 48 |
2016-02-17 | 47 |
2016-02-18 | 44 |
2016-02-19 | 39 |
2016-02-20 | 38 |
2016-02-21 | 35 |
2016-02-22 | 36 |
2016-02-23 | 34 |
2016-02-24 | 43 |
2016-02-25 | 39 |
2016-02-26 | 44 |
2016-02-27 | 47 |
2016-02-28 | 40 |
2016-02-29 | 42 |
2016-03-01 | 43 |
2016-03-02 | 45 |
2016-03-03 | 48 |
2016-03-04 | 42 |
2016-03-05 | 47 |
2016-03-06 | 43 |
2016-03-07 | 40 |
2016-03-08 | 39 |
2016-03-09 | 42 |
2016-03-10 | 42 |
2016-03-11 | 36 |
2016-03-12 | 40 |
2016-03-13 | 39 |
2016-03-14 | 39 |
2016-03-15 | 38 |
2016-03-16 | 39 |
2016-03-17 | 34 |
2016-03-18 | 47 |
2016-03-19 | 50 |
2016-03-20 | 48 |
2016-03-21 | 46 |
2016-03-22 | 44 |
2016-03-23 | 45 |
2016-03-24 | 43 |
2016-03-25 | 43 |
2016-03-26 | 42 |
2016-03-27 | 40 |
2016-03-28 | 38 |
2016-03-29 | 40 |
2016-03-30 | 42 |
2016-03-31 | 47 |
2016-04-01 | 48 |
2016-04-02 | 46 |
2016-04-03 | 45 |
2016-04-04 | 45 |
2016-04-05 | 44 |
2016-04-06 | 44 |
2016-04-07 | 50 |
2016-04-08 | 50 |
2016-04-09 | 47 |
2016-04-10 | 46 |
2016-04-11 | 48 |
2016-04-12 | 44 |
2016-04-13 | 44 |
2016-04-14 | 44 |
2016-04-15 | 47 |
2016-04-16 | 44 |
2016-04-17 | 48 |
2016-04-18 | 54 |
2016-04-19 | 56 |
2016-04-20 | 53 |
2016-04-21 | 51 |
2016-04-22 | 52 |
2016-04-23 | 51 |
2016-04-24 | 46 |
2016-04-25 | 44 |
2016-04-26 | 43 |
2016-04-27 | 48 |
2016-04-28 | 50 |
2016-04-29 | 48 |
2016-04-30 | 45 |
2016-05-01 | 50 |
2016-05-02 | 54 |
2016-05-03 | 56 |
2016-05-04 | 52 |
2016-05-05 | 48 |
2016-05-06 | 50 |
2016-05-07 | 52 |
2016-05-08 | 48 |
2016-05-09 | 46 |
2016-05-10 | 47 |
2016-05-11 | 52 |
2016-05-12 | 49 |
2016-05-13 | 50 |
2016-05-14 | 53 |
2016-05-15 | 52 |
2016-05-16 | 50 |
2016-05-17 | 51 |
2016-05-18 | 51 |
2016-05-19 | 48 |
2016-05-20 | 49 |
2016-05-21 | 50 |
2016-05-22 | 52 |
2016-05-23 | 53 |
2016-05-24 | 55 |
2016-05-25 | 53 |
2016-05-26 | 51 |
2016-05-27 | 49 |
2016-05-28 | 49 |
2016-05-29 | 52 |
2016-05-30 | 48 |
2016-05-31 | 52 |
2016-06-01 | 55 |
2016-06-02 | 58 |
2016-06-03 | 56 |
2016-06-04 | 62 |
2016-06-05 | 64 |
2016-06-06 | 62 |
2016-06-07 | 59 |
2016-06-08 | 55 |
2016-06-09 | 51 |
2016-06-10 | 49 |
2016-06-11 | 50 |
2016-06-12 | 53 |
2016-06-13 | 49 |
2016-06-14 | 47 |
2016-06-15 | 44 |
2016-06-16 | 51 |
2016-06-17 | 50 |
2016-06-18 | 52 |
2016-06-19 | 48 |
2016-06-20 | 55 |
2016-06-21 | 54 |
2016-06-22 | 55 |
2016-06-23 | 53 |
2016-06-24 | 52 |
2016-06-25 | 56 |
2016-06-26 | 56 |
2016-06-27 | 58 |
2016-06-28 | 54 |
2016-06-29 | 55 |
2016-06-30 | 55 |
2016-07-01 | 55 |
2016-07-02 | 57 |
2016-07-03 | 56 |
2016-07-04 | 56 |
2016-07-05 | 55 |
2016-07-06 | 56 |
2016-07-07 | 58 |
2016-07-08 | 58 |
2016-07-09 | 56 |
2016-07-10 | 56 |
2016-07-11 | 57 |
2016-07-12 | 59 |
2016-07-13 | 57 |
2016-07-14 | 57 |
2016-07-15 | 56 |
2016-07-16 | 57 |
2016-07-17 | 58 |
2016-07-18 | 60 |
2016-07-19 | 60 |
2016-07-20 | 60 |
2016-07-21 | 58 |
2016-07-22 | 59 |
2016-07-23 | 58 |
2016-07-24 | 58 |
2016-07-25 | 59 |
2016-07-26 | 59 |
2016-07-27 | 56 |
2016-07-28 | 61 |
2016-07-29 | 62 |
2016-07-30 | 57 |
2016-07-31 | 56 |
2016-08-01 | 53 |
2016-08-02 | 57 |
2016-08-03 | 58 |
2016-08-04 | 56 |
2016-08-05 | 57 |
2016-08-06 | 54 |
2016-08-07 | 57 |
2016-08-08 | 56 |
2016-08-09 | 58 |
2016-08-10 | 58 |
2016-08-11 | 58 |
2016-08-12 | 63 |
2016-08-13 | 64 |
2016-08-14 | 57 |
2016-08-15 | 57 |
2016-08-16 | 56 |
2016-08-17 | 56 |
2016-08-18 | 60 |
2016-08-19 | 69 |
2016-08-20 | 62 |
2016-08-21 | 57 |
2016-08-22 | 55 |
2016-08-23 | 54 |
2016-08-24 | 58 |
2016-08-25 | 61 |
2016-08-26 | 64 |
2016-08-27 | 58 |
2016-08-28 | 55 |
2016-08-29 | 53 |
2016-08-30 | 56 |
2016-08-31 | 58 |
2016-09-01 | 56 |
2016-09-02 | 55 |
2016-09-03 | 54 |
2016-09-04 | 51 |
2016-09-05 | 54 |
2016-09-06 | 55 |
2016-09-07 | 57 |
2016-09-08 | 55 |
2016-09-09 | 50 |
2016-09-10 | 54 |
2016-09-11 | 55 |
2016-09-12 | 54 |
2016-09-13 | 51 |
2016-09-14 | 51 |
2016-09-15 | 52 |
2016-09-16 | 52 |
2016-09-17 | 57 |
2016-09-18 | 54 |
2016-09-19 | 53 |
2016-09-20 | 49 |
2016-09-21 | 52 |
2016-09-22 | 49 |
2016-09-23 | 53 |
2016-09-24 | 53 |
2016-09-25 | 58 |
2016-09-26 | 53 |
2016-09-27 | 54 |
2016-09-28 | 52 |
2016-09-29 | 47 |
2016-09-30 | 46 |
2016-10-01 | 50 |
2016-10-02 | 50 |
2016-10-03 | 49 |
2016-10-04 | 52 |
2016-10-05 | 52 |
2016-10-06 | 53 |
2016-10-07 | 53 |
2016-10-08 | 52 |
2016-10-09 | 48 |
2016-10-10 | 45 |
2016-10-11 | 43 |
2016-10-12 | 43 |
2016-10-13 | 51 |
2016-10-14 | 50 |
2016-10-15 | 50 |
2016-10-16 | 50 |
2016-10-17 | 50 |
2016-10-18 | 49 |
2016-10-19 | 45 |
2016-10-20 | 50 |
2016-10-21 | 48 |
2016-10-22 | 44 |
2016-10-23 | 49 |
2016-10-24 | 51 |
2016-10-25 | 50 |
2016-10-26 | 52 |
2016-10-27 | 52 |
2016-10-28 | 50 |
2016-10-29 | 48 |
2016-10-30 | 44 |
2016-10-31 | 50 |
2016-11-01 | 50 |
2016-11-02 | 51 |
2016-11-03 | 48 |
2016-11-04 | 42 |
2016-11-05 | 51 |
2016-11-06 | 48 |
2016-11-07 | 50 |
2016-11-08 | 49 |
2016-11-09 | 51 |
2016-11-10 | 45 |
2016-11-11 | 52 |
2016-11-12 | 48 |
2016-11-13 | 47 |
2016-11-14 | 50 |
2016-11-15 | 46 |
2016-11-16 | 43 |
2016-11-17 | 41 |
2016-11-18 | 39 |
2016-11-19 | 48 |
2016-11-20 | 47 |
2016-11-21 | 44 |
2016-11-22 | 43 |
2016-11-23 | 42 |
2016-11-24 | 46 |
2016-11-25 | 41 |
2016-11-26 | 43 |
2016-11-27 | 42 |
2016-11-28 | 40 |
2016-11-29 | 41 |
2016-11-30 | 43 |
2016-12-01 | 40 |
2016-12-02 | 44 |
2016-12-03 | 44 |
2016-12-04 | 35 |
2016-12-05 | 33 |
2016-12-06 | 31 |
2016-12-07 | 28 |
2016-12-08 | 30 |
2016-12-09 | 31 |
2016-12-10 | 35 |
2016-12-11 | 39 |
2016-12-12 | 37 |
2016-12-13 | 31 |
2016-12-14 | 30 |
2016-12-15 | 32 |
2016-12-16 | 25 |
2016-12-17 | 23 |
2016-12-18 | 27 |
2016-12-19 | 35 |
2016-12-20 | 40 |
2016-12-21 | 34 |
2016-12-22 | 33 |
2016-12-23 | 35 |
2016-12-24 | 35 |
2016-12-25 | 33 |
2016-12-26 | 33 |
2016-12-27 | 40 |
2016-12-28 | 38 |
2016-12-29 | 40 |
2016-12-30 | 34 |
2016-12-31 | 29 |
2017-01-01 | 28 |
2017-01-02 | 26 |
2017-01-03 | 21 |
2017-01-04 | 22 |
2017-01-05 | 21 |
2017-01-06 | 20 |
2017-01-07 | 29 |
2017-01-08 | 35 |
2017-01-09 | 34 |
2017-01-10 | 32 |
2017-01-11 | 28 |
2017-01-12 | 25 |
2017-01-13 | 25 |
2017-01-14 | 26 |
2017-01-15 | 27 |
2017-01-16 | 30 |
2017-01-17 | 39 |
2017-01-18 | 44 |
2017-01-19 | 41 |
2017-01-20 | 37 |
2017-01-21 | 40 |
2017-01-22 | 37 |
2017-01-23 | 34 |
2017-01-24 | 31 |
2017-01-25 | 35 |
2017-01-26 | 41 |
2017-01-27 | 37 |
2017-01-28 | 37 |
2017-01-29 | 37 |
2017-01-30 | 40 |
2017-01-31 | 34 |
2017-02-01 | 29 |
2017-02-02 | 32 |
2017-02-03 | 34 |
2017-02-04 | 37 |
2017-02-05 | 33 |
2017-02-06 | 30 |
2017-02-07 | 30 |
2017-02-08 | 34 |
2017-02-09 | 39 |
2017-02-10 | 39 |
2017-02-11 | 38 |
2017-02-12 | 34 |
2017-02-13 | 35 |
2017-02-14 | 36 |
2017-02-15 | 45 |
2017-02-16 | 46 |
2017-02-17 | 42 |
2017-02-18 | 42 |
2017-02-19 | 40 |
2017-02-20 | 40 |
2017-02-21 | 39 |
2017-02-22 | 35 |
2017-02-23 | 34 |
2017-02-24 | 32 |
2017-02-25 | 32 |
2017-02-26 | 35 |
2017-02-27 | 33 |
2017-02-28 | 33 |
2017-03-01 | 41 |
2017-03-02 | 41 |
2017-03-03 | 39 |
2017-03-04 | 34 |
2017-03-05 | 34 |
2017-03-06 | 35 |
2017-03-07 | 35 |
2017-03-08 | 37 |
2017-03-09 | 39 |
2017-03-10 | 44 |
2017-03-11 | 40 |
2017-03-12 | 45 |
2017-03-13 | 47 |
2017-03-14 | 48 |
2017-03-15 | 44 |
2017-03-16 | 39 |
2017-03-17 | 37 |
2017-03-18 | 35 |
2017-03-19 | 34 |
2017-03-20 | 38 |
2017-03-21 | 46 |
2017-03-22 | 43 |
2017-03-23 | 39 |
2017-03-24 | 44 |
2017-03-25 | 43 |
2017-03-26 | 43 |
2017-03-27 | 44 |
2017-03-28 | 44 |
2017-03-29 | 45 |
2017-03-30 | 43 |
2017-03-31 | 39 |
2017-04-01 | 45 |
2017-04-02 | 41 |
2017-04-03 | 40 |
2017-04-04 | 43 |
2017-04-05 | 48 |
2017-04-06 | 47 |
2017-04-07 | 46 |
2017-04-08 | 41 |
2017-04-09 | 39 |
2017-04-10 | 41 |
2017-04-11 | 38 |
2017-04-12 | 45 |
2017-04-13 | 43 |
2017-04-14 | 42 |
2017-04-15 | 41 |
2017-04-16 | 42 |
2017-04-17 | 50 |
2017-04-18 | 48 |
2017-04-19 | 46 |
2017-04-20 | 44 |
2017-04-21 | 43 |
2017-04-22 | 48 |
2017-04-23 | 45 |
2017-04-24 | 45 |
2017-04-25 | 47 |
2017-04-26 | 45 |
2017-04-27 | 44 |
2017-04-28 | 43 |
2017-04-29 | 42 |
2017-04-30 | 47 |
2017-05-01 | 45 |
2017-05-02 | 43 |
2017-05-03 | 55 |
2017-05-04 | 53 |
2017-05-05 | 46 |
2017-05-06 | 43 |
2017-05-07 | 45 |
2017-05-08 | 46 |
2017-05-09 | 47 |
2017-05-10 | 51 |
2017-05-11 | 46 |
2017-05-12 | 43 |
2017-05-13 | 45 |
2017-05-14 | 47 |
2017-05-15 | 46 |
2017-05-16 | 45 |
2017-05-17 | 45 |
2017-05-18 | 48 |
2017-05-19 | 50 |
2017-05-20 | 53 |
2017-05-21 | 52 |
2017-05-22 | 56 |
2017-05-23 | 53 |
2017-05-24 | 46 |
2017-05-25 | 47 |
2017-05-26 | 51 |
2017-05-27 | 55 |
2017-05-28 | 56 |
2017-05-29 | 52 |
2017-05-30 | 52 |
2017-05-31 | 52 |
2017-06-01 | 56 |
2017-06-02 | 53 |
2017-06-03 | 53 |
2017-06-04 | 52 |
2017-06-05 | 50 |
2017-06-06 | 53 |
2017-06-07 | 56 |
2017-06-08 | 54 |
2017-06-09 | 50 |
2017-06-10 | 48 |
2017-06-11 | 52 |
2017-06-12 | 52 |
2017-06-13 | 52 |
2017-06-14 | 51 |
2017-06-15 | 53 |
2017-06-16 | 53 |
2017-06-17 | 51 |
2017-06-18 | 55 |
2017-06-19 | 56 |
2017-06-20 | 56 |
2017-06-21 | 53 |
2017-06-22 | 50 |
2017-06-23 | 55 |
2017-06-24 | 61 |
2017-06-25 | 64 |
2017-06-26 | 55 |
2017-06-27 | 53 |
2017-06-28 | 54 |
2017-06-29 | 53 |
2017-06-30 | 57 |
2017-07-01 | 55 |
2017-07-02 | 54 |
2017-07-03 | 56 |
2017-07-04 | 53 |
2017-07-05 | 57 |
2017-07-06 | 55 |
2017-07-07 | 55 |
2017-07-08 | 58 |
2017-07-09 | 56 |
2017-07-10 | 58 |
2017-07-11 | 54 |
2017-07-12 | 54 |
2017-07-13 | 57 |
2017-07-14 | 57 |
2017-07-15 | 54 |
2017-07-16 | 55 |
2017-07-17 | 55 |
2017-07-18 | 56 |
2017-07-19 | 53 |
2017-07-20 | 59 |
2017-07-21 | 55 |
2017-07-22 | 63 |
2017-07-23 | 62 |
2017-07-24 | 56 |
2017-07-25 | 58 |
2017-07-26 | 56 |
2017-07-27 | 57 |
2017-07-28 | 56 |
2017-07-29 | 54 |
2017-07-30 | 58 |
2017-07-31 | 60 |
2017-08-01 | 60 |
2017-08-02 | 69 |
2017-08-03 | 68 |
2017-08-04 | 62 |
2017-08-05 | 58 |
2017-08-06 | 58 |
2017-08-07 | 57 |
2017-08-08 | 59 |
2017-08-09 | 61 |
2017-08-10 | 60 |
2017-08-11 | 57 |
2017-08-12 | 58 |
2017-08-13 | 60 |
2017-08-14 | 56 |
2017-08-15 | 55 |
2017-08-16 | 57 |
2017-08-17 | 59 |
2017-08-18 | 55 |
2017-08-19 | 58 |
2017-08-20 | 56 |
2017-08-21 | 57 |
2017-08-22 | 60 |
2017-08-23 | 59 |
2017-08-24 | 58 |
2017-08-25 | 54 |
2017-08-26 | 54 |
2017-08-27 | 61 |
2017-08-28 | 62 |
2017-08-29 | 60 |
2017-08-30 | 60 |
2017-08-31 | 61 |
2017-09-01 | 57 |
2017-09-02 | 62 |
2017-09-03 | 65 |
2017-09-04 | 65 |
2017-09-05 | 66 |
2017-09-06 | 63 |
2017-09-07 | 61 |
2017-09-08 | 60 |
2017-09-09 | 59 |
2017-09-10 | 55 |
2017-09-11 | 52 |
2017-09-12 | 57 |
2017-09-13 | 53 |
2017-09-14 | 54 |
2017-09-15 | 50 |
2017-09-16 | 53 |
2017-09-17 | 54 |
2017-09-18 | 50 |
2017-09-19 | 50 |
2017-09-20 | 50 |
2017-09-21 | 50 |
2017-09-22 | 51 |
2017-09-23 | 54 |
2017-09-24 | 50 |
2017-09-25 | 56 |
2017-09-26 | 55 |
Pivoting in SQL
Getting the monthly average high temperatures with month as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp
FROM high_temps
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
year | month | temp |
---|---|---|
2015.0 | 1.0 | 42 |
2015.0 | 1.0 | 42 |
2015.0 | 1.0 | 41 |
2015.0 | 1.0 | 51 |
2015.0 | 1.0 | 54 |
2015.0 | 1.0 | 54 |
2015.0 | 1.0 | 46 |
2015.0 | 1.0 | 46 |
2015.0 | 1.0 | 50 |
2015.0 | 1.0 | 46 |
2015.0 | 1.0 | 49 |
2015.0 | 1.0 | 52 |
2015.0 | 1.0 | 49 |
2015.0 | 1.0 | 43 |
2015.0 | 1.0 | 46 |
2015.0 | 1.0 | 53 |
2015.0 | 1.0 | 56 |
2015.0 | 1.0 | 57 |
2015.0 | 1.0 | 50 |
2015.0 | 1.0 | 50 |
2015.0 | 1.0 | 45 |
2015.0 | 1.0 | 49 |
2015.0 | 1.0 | 54 |
2015.0 | 1.0 | 58 |
2015.0 | 1.0 | 63 |
2015.0 | 1.0 | 61 |
2015.0 | 1.0 | 52 |
2015.0 | 1.0 | 54 |
2015.0 | 1.0 | 54 |
2015.0 | 1.0 | 47 |
2015.0 | 1.0 | 45 |
2015.0 | 2.0 | 49 |
2015.0 | 2.0 | 52 |
2015.0 | 2.0 | 50 |
2015.0 | 2.0 | 51 |
2015.0 | 2.0 | 56 |
2015.0 | 2.0 | 58 |
2015.0 | 2.0 | 54 |
2015.0 | 2.0 | 59 |
2015.0 | 2.0 | 56 |
2015.0 | 2.0 | 55 |
2015.0 | 2.0 | 55 |
2015.0 | 2.0 | 62 |
2015.0 | 2.0 | 60 |
2015.0 | 2.0 | 58 |
2015.0 | 2.0 | 54 |
2015.0 | 2.0 | 59 |
2015.0 | 2.0 | 61 |
2015.0 | 2.0 | 54 |
2015.0 | 2.0 | 51 |
2015.0 | 2.0 | 52 |
2015.0 | 2.0 | 54 |
2015.0 | 2.0 | 53 |
2015.0 | 2.0 | 55 |
2015.0 | 2.0 | 52 |
2015.0 | 2.0 | 50 |
2015.0 | 2.0 | 53 |
2015.0 | 2.0 | 50 |
2015.0 | 2.0 | 54 |
2015.0 | 3.0 | 52 |
2015.0 | 3.0 | 52 |
2015.0 | 3.0 | 51 |
2015.0 | 3.0 | 55 |
2015.0 | 3.0 | 56 |
2015.0 | 3.0 | 59 |
2015.0 | 3.0 | 62 |
2015.0 | 3.0 | 63 |
2015.0 | 3.0 | 58 |
2015.0 | 3.0 | 56 |
2015.0 | 3.0 | 58 |
2015.0 | 3.0 | 64 |
2015.0 | 3.0 | 63 |
2015.0 | 3.0 | 57 |
2015.0 | 3.0 | 51 |
2015.0 | 3.0 | 57 |
2015.0 | 3.0 | 56 |
2015.0 | 3.0 | 60 |
2015.0 | 3.0 | 60 |
2015.0 | 3.0 | 57 |
2015.0 | 3.0 | 56 |
2015.0 | 3.0 | 53 |
2015.0 | 3.0 | 52 |
2015.0 | 3.0 | 55 |
2015.0 | 3.0 | 58 |
2015.0 | 3.0 | 69 |
2015.0 | 3.0 | 65 |
2015.0 | 3.0 | 60 |
2015.0 | 3.0 | 60 |
2015.0 | 3.0 | 64 |
2015.0 | 3.0 | 55 |
2015.0 | 4.0 | 55 |
2015.0 | 4.0 | 56 |
2015.0 | 4.0 | 52 |
2015.0 | 4.0 | 55 |
2015.0 | 4.0 | 62 |
2015.0 | 4.0 | 57 |
2015.0 | 4.0 | 58 |
2015.0 | 4.0 | 63 |
2015.0 | 4.0 | 63 |
2015.0 | 4.0 | 57 |
2015.0 | 4.0 | 53 |
2015.0 | 4.0 | 56 |
2015.0 | 4.0 | 53 |
2015.0 | 4.0 | 53 |
2015.0 | 4.0 | 57 |
2015.0 | 4.0 | 64 |
2015.0 | 4.0 | 66 |
2015.0 | 4.0 | 66 |
2015.0 | 4.0 | 70 |
2015.0 | 4.0 | 73 |
2015.0 | 4.0 | 63 |
2015.0 | 4.0 | 60 |
2015.0 | 4.0 | 54 |
2015.0 | 4.0 | 54 |
2015.0 | 4.0 | 56 |
2015.0 | 4.0 | 60 |
2015.0 | 4.0 | 77 |
2015.0 | 4.0 | 60 |
2015.0 | 4.0 | 61 |
2015.0 | 4.0 | 63 |
2015.0 | 5.0 | 65 |
2015.0 | 5.0 | 65 |
2015.0 | 5.0 | 69 |
2015.0 | 5.0 | 63 |
2015.0 | 5.0 | 58 |
2015.0 | 5.0 | 62 |
2015.0 | 5.0 | 69 |
2015.0 | 5.0 | 75 |
2015.0 | 5.0 | 80 |
2015.0 | 5.0 | 67 |
2015.0 | 5.0 | 57 |
2015.0 | 5.0 | 60 |
2015.0 | 5.0 | 54 |
2015.0 | 5.0 | 64 |
2015.0 | 5.0 | 68 |
2015.0 | 5.0 | 60 |
2015.0 | 5.0 | 67 |
2015.0 | 5.0 | 78 |
2015.0 | 5.0 | 71 |
2015.0 | 5.0 | 74 |
2015.0 | 5.0 | 78 |
2015.0 | 5.0 | 62 |
2015.0 | 5.0 | 61 |
2015.0 | 5.0 | 64 |
2015.0 | 5.0 | 60 |
2015.0 | 5.0 | 71 |
2015.0 | 5.0 | 76 |
2015.0 | 5.0 | 82 |
2015.0 | 5.0 | 79 |
2015.0 | 5.0 | 73 |
2015.0 | 5.0 | 77 |
2015.0 | 6.0 | 61 |
2015.0 | 6.0 | 64 |
2015.0 | 6.0 | 68 |
2015.0 | 6.0 | 73 |
2015.0 | 6.0 | 80 |
2015.0 | 6.0 | 85 |
2015.0 | 6.0 | 88 |
2015.0 | 6.0 | 87 |
2015.0 | 6.0 | 84 |
2015.0 | 6.0 | 78 |
2015.0 | 6.0 | 76 |
2015.0 | 6.0 | 68 |
2015.0 | 6.0 | 75 |
2015.0 | 6.0 | 82 |
2015.0 | 6.0 | 86 |
2015.0 | 6.0 | 73 |
2015.0 | 6.0 | 77 |
2015.0 | 6.0 | 76 |
2015.0 | 6.0 | 75 |
2015.0 | 6.0 | 77 |
2015.0 | 6.0 | 78 |
2015.0 | 6.0 | 77 |
2015.0 | 6.0 | 79 |
2015.0 | 6.0 | 78 |
2015.0 | 6.0 | 87 |
2015.0 | 6.0 | 89 |
2015.0 | 6.0 | 92 |
2015.0 | 6.0 | 83 |
2015.0 | 6.0 | 84 |
2015.0 | 6.0 | 87 |
2015.0 | 7.0 | 90 |
2015.0 | 7.0 | 93 |
2015.0 | 7.0 | 92 |
2015.0 | 7.0 | 92 |
2015.0 | 7.0 | 91 |
2015.0 | 7.0 | 85 |
2015.0 | 7.0 | 81 |
2015.0 | 7.0 | 86 |
2015.0 | 7.0 | 84 |
2015.0 | 7.0 | 70 |
2015.0 | 7.0 | 72 |
2015.0 | 7.0 | 79 |
2015.0 | 7.0 | 78 |
2015.0 | 7.0 | 82 |
2015.0 | 7.0 | 79 |
2015.0 | 7.0 | 79 |
2015.0 | 7.0 | 82 |
2015.0 | 7.0 | 92 |
2015.0 | 7.0 | 95 |
2015.0 | 7.0 | 80 |
2015.0 | 7.0 | 75 |
2015.0 | 7.0 | 75 |
2015.0 | 7.0 | 79 |
2015.0 | 7.0 | 73 |
2015.0 | 7.0 | 70 |
2015.0 | 7.0 | 72 |
2015.0 | 7.0 | 74 |
2015.0 | 7.0 | 82 |
2015.0 | 7.0 | 90 |
2015.0 | 7.0 | 94 |
2015.0 | 7.0 | 94 |
2015.0 | 8.0 | 92 |
2015.0 | 8.0 | 87 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 79 |
2015.0 | 8.0 | 74 |
2015.0 | 8.0 | 77 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 77 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 84 |
2015.0 | 8.0 | 86 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 65 |
2015.0 | 8.0 | 71 |
2015.0 | 8.0 | 77 |
2015.0 | 8.0 | 81 |
2015.0 | 8.0 | 86 |
2015.0 | 8.0 | 89 |
2015.0 | 8.0 | 73 |
2015.0 | 8.0 | 72 |
2015.0 | 8.0 | 80 |
2015.0 | 8.0 | 82 |
2015.0 | 8.0 | 75 |
2015.0 | 8.0 | 78 |
2015.0 | 8.0 | 83 |
2015.0 | 8.0 | 85 |
2015.0 | 8.0 | 74 |
2015.0 | 8.0 | 72 |
2015.0 | 8.0 | 68 |
2015.0 | 8.0 | 66 |
2015.0 | 9.0 | 67 |
2015.0 | 9.0 | 67 |
2015.0 | 9.0 | 65 |
2015.0 | 9.0 | 65 |
2015.0 | 9.0 | 69 |
2015.0 | 9.0 | 61 |
2015.0 | 9.0 | 70 |
2015.0 | 9.0 | 73 |
2015.0 | 9.0 | 76 |
2015.0 | 9.0 | 77 |
2015.0 | 9.0 | 81 |
2015.0 | 9.0 | 80 |
2015.0 | 9.0 | 69 |
2015.0 | 9.0 | 62 |
2015.0 | 9.0 | 64 |
2015.0 | 9.0 | 68 |
2015.0 | 9.0 | 65 |
2015.0 | 9.0 | 67 |
2015.0 | 9.0 | 70 |
2015.0 | 9.0 | 73 |
2015.0 | 9.0 | 65 |
2015.0 | 9.0 | 66 |
2015.0 | 9.0 | 69 |
2015.0 | 9.0 | 72 |
2015.0 | 9.0 | 60 |
2015.0 | 9.0 | 65 |
2015.0 | 9.0 | 64 |
2015.0 | 9.0 | 70 |
2015.0 | 9.0 | 71 |
2015.0 | 9.0 | 65 |
2015.0 | 10.0 | 70 |
2015.0 | 10.0 | 60 |
2015.0 | 10.0 | 67 |
2015.0 | 10.0 | 73 |
2015.0 | 10.0 | 74 |
2015.0 | 10.0 | 65 |
2015.0 | 10.0 | 61 |
2015.0 | 10.0 | 66 |
2015.0 | 10.0 | 67 |
2015.0 | 10.0 | 70 |
2015.0 | 10.0 | 64 |
2015.0 | 10.0 | 65 |
2015.0 | 10.0 | 62 |
2015.0 | 10.0 | 59 |
2015.0 | 10.0 | 70 |
2015.0 | 10.0 | 68 |
2015.0 | 10.0 | 67 |
2015.0 | 10.0 | 59 |
2015.0 | 10.0 | 63 |
2015.0 | 10.0 | 64 |
2015.0 | 10.0 | 61 |
2015.0 | 10.0 | 61 |
2015.0 | 10.0 | 55 |
2015.0 | 10.0 | 59 |
2015.0 | 10.0 | 67 |
2015.0 | 10.0 | 54 |
2015.0 | 10.0 | 61 |
2015.0 | 10.0 | 57 |
2015.0 | 10.0 | 59 |
2015.0 | 10.0 | 63 |
2015.0 | 10.0 | 60 |
2015.0 | 11.0 | 54 |
2015.0 | 11.0 | 52 |
2015.0 | 11.0 | 51 |
2015.0 | 11.0 | 50 |
2015.0 | 11.0 | 53 |
2015.0 | 11.0 | 60 |
2015.0 | 11.0 | 54 |
2015.0 | 11.0 | 52 |
2015.0 | 11.0 | 50 |
2015.0 | 11.0 | 52 |
2015.0 | 11.0 | 52 |
2015.0 | 11.0 | 52 |
2015.0 | 11.0 | 56 |
2015.0 | 11.0 | 49 |
2015.0 | 11.0 | 48 |
2015.0 | 11.0 | 48 |
2015.0 | 11.0 | 56 |
2015.0 | 11.0 | 48 |
2015.0 | 11.0 | 48 |
2015.0 | 11.0 | 47 |
2015.0 | 11.0 | 48 |
2015.0 | 11.0 | 50 |
2015.0 | 11.0 | 44 |
2015.0 | 11.0 | 44 |
2015.0 | 11.0 | 45 |
2015.0 | 11.0 | 49 |
2015.0 | 11.0 | 49 |
2015.0 | 11.0 | 45 |
2015.0 | 11.0 | 35 |
2015.0 | 11.0 | 42 |
2015.0 | 12.0 | 50 |
2015.0 | 12.0 | 51 |
2015.0 | 12.0 | 60 |
2015.0 | 12.0 | 51 |
2015.0 | 12.0 | 50 |
2015.0 | 12.0 | 55 |
2015.0 | 12.0 | 52 |
2015.0 | 12.0 | 60 |
2015.0 | 12.0 | 54 |
2015.0 | 12.0 | 53 |
2015.0 | 12.0 | 49 |
2015.0 | 12.0 | 48 |
2015.0 | 12.0 | 46 |
2015.0 | 12.0 | 46 |
2015.0 | 12.0 | 44 |
2015.0 | 12.0 | 43 |
2015.0 | 12.0 | 44 |
2015.0 | 12.0 | 48 |
2015.0 | 12.0 | 47 |
2015.0 | 12.0 | 46 |
2015.0 | 12.0 | 42 |
2015.0 | 12.0 | 46 |
2015.0 | 12.0 | 41 |
2015.0 | 12.0 | 42 |
2015.0 | 12.0 | 41 |
2015.0 | 12.0 | 40 |
2015.0 | 12.0 | 40 |
2015.0 | 12.0 | 41 |
2015.0 | 12.0 | 45 |
2015.0 | 12.0 | 42 |
2015.0 | 12.0 | 42 |
2016.0 | 1.0 | 46 |
2016.0 | 1.0 | 42 |
2016.0 | 1.0 | 40 |
2016.0 | 1.0 | 38 |
2016.0 | 1.0 | 46 |
2016.0 | 1.0 | 53 |
2016.0 | 1.0 | 44 |
2016.0 | 1.0 | 48 |
2016.0 | 1.0 | 49 |
2016.0 | 1.0 | 52 |
2016.0 | 1.0 | 47 |
2016.0 | 1.0 | 48 |
2016.0 | 1.0 | 54 |
2016.0 | 1.0 | 48 |
2016.0 | 1.0 | 47 |
2016.0 | 1.0 | 52 |
2016.0 | 1.0 | 49 |
2016.0 | 1.0 | 52 |
2016.0 | 1.0 | 47 |
2016.0 | 1.0 | 50 |
2016.0 | 1.0 | 53 |
2016.0 | 1.0 | 55 |
2016.0 | 1.0 | 46 |
2016.0 | 1.0 | 50 |
2016.0 | 1.0 | 55 |
2016.0 | 1.0 | 56 |
2016.0 | 1.0 | 58 |
2016.0 | 1.0 | 56 |
2016.0 | 1.0 | 49 |
2016.0 | 1.0 | 46 |
2016.0 | 1.0 | 45 |
2016.0 | 2.0 | 45 |
2016.0 | 2.0 | 50 |
2016.0 | 2.0 | 47 |
2016.0 | 2.0 | 49 |
2016.0 | 2.0 | 52 |
2016.0 | 2.0 | 48 |
2016.0 | 2.0 | 52 |
2016.0 | 2.0 | 59 |
2016.0 | 2.0 | 63 |
2016.0 | 2.0 | 56 |
2016.0 | 2.0 | 55 |
2016.0 | 2.0 | 57 |
2016.0 | 2.0 | 50 |
2016.0 | 2.0 | 53 |
2016.0 | 2.0 | 54 |
2016.0 | 2.0 | 54 |
2016.0 | 2.0 | 63 |
2016.0 | 2.0 | 51 |
2016.0 | 2.0 | 50 |
2016.0 | 2.0 | 51 |
2016.0 | 2.0 | 50 |
2016.0 | 2.0 | 51 |
2016.0 | 2.0 | 58 |
2016.0 | 2.0 | 57 |
2016.0 | 2.0 | 62 |
2016.0 | 2.0 | 57 |
2016.0 | 2.0 | 56 |
2016.0 | 2.0 | 50 |
2016.0 | 2.0 | 53 |
2016.0 | 3.0 | 57 |
2016.0 | 3.0 | 54 |
2016.0 | 3.0 | 58 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 64 |
2016.0 | 3.0 | 59 |
2016.0 | 3.0 | 51 |
2016.0 | 3.0 | 53 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 60 |
2016.0 | 3.0 | 50 |
2016.0 | 3.0 | 54 |
2016.0 | 3.0 | 47 |
2016.0 | 3.0 | 50 |
2016.0 | 3.0 | 53 |
2016.0 | 3.0 | 57 |
2016.0 | 3.0 | 63 |
2016.0 | 3.0 | 61 |
2016.0 | 3.0 | 54 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 51 |
2016.0 | 3.0 | 52 |
2016.0 | 3.0 | 56 |
2016.0 | 3.0 | 58 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 55 |
2016.0 | 3.0 | 63 |
2016.0 | 3.0 | 68 |
2016.0 | 3.0 | 71 |
2016.0 | 4.0 | 71 |
2016.0 | 4.0 | 62 |
2016.0 | 4.0 | 68 |
2016.0 | 4.0 | 58 |
2016.0 | 4.0 | 56 |
2016.0 | 4.0 | 69 |
2016.0 | 4.0 | 78 |
2016.0 | 4.0 | 76 |
2016.0 | 4.0 | 64 |
2016.0 | 4.0 | 58 |
2016.0 | 4.0 | 58 |
2016.0 | 4.0 | 57 |
2016.0 | 4.0 | 58 |
2016.0 | 4.0 | 59 |
2016.0 | 4.0 | 59 |
2016.0 | 4.0 | 67 |
2016.0 | 4.0 | 80 |
2016.0 | 4.0 | 89 |
2016.0 | 4.0 | 84 |
2016.0 | 4.0 | 81 |
2016.0 | 4.0 | 72 |
2016.0 | 4.0 | 62 |
2016.0 | 4.0 | 64 |
2016.0 | 4.0 | 55 |
2016.0 | 4.0 | 59 |
2016.0 | 4.0 | 59 |
2016.0 | 4.0 | 63 |
2016.0 | 4.0 | 63 |
2016.0 | 4.0 | 61 |
2016.0 | 4.0 | 67 |
2016.0 | 5.0 | 79 |
2016.0 | 5.0 | 87 |
2016.0 | 5.0 | 72 |
2016.0 | 5.0 | 60 |
2016.0 | 5.0 | 68 |
2016.0 | 5.0 | 77 |
2016.0 | 5.0 | 82 |
2016.0 | 5.0 | 66 |
2016.0 | 5.0 | 67 |
2016.0 | 5.0 | 75 |
2016.0 | 5.0 | 80 |
2016.0 | 5.0 | 76 |
2016.0 | 5.0 | 84 |
2016.0 | 5.0 | 58 |
2016.0 | 5.0 | 56 |
2016.0 | 5.0 | 59 |
2016.0 | 5.0 | 69 |
2016.0 | 5.0 | 65 |
2016.0 | 5.0 | 63 |
2016.0 | 5.0 | 66 |
2016.0 | 5.0 | 58 |
2016.0 | 5.0 | 66 |
2016.0 | 5.0 | 66 |
2016.0 | 5.0 | 66 |
2016.0 | 5.0 | 65 |
2016.0 | 5.0 | 62 |
2016.0 | 5.0 | 64 |
2016.0 | 5.0 | 62 |
2016.0 | 5.0 | 64 |
2016.0 | 5.0 | 72 |
2016.0 | 5.0 | 80 |
2016.0 | 6.0 | 74 |
2016.0 | 6.0 | 70 |
2016.0 | 6.0 | 82 |
2016.0 | 6.0 | 85 |
2016.0 | 6.0 | 93 |
2016.0 | 6.0 | 88 |
2016.0 | 6.0 | 84 |
2016.0 | 6.0 | 67 |
2016.0 | 6.0 | 64 |
2016.0 | 6.0 | 65 |
2016.0 | 6.0 | 67 |
2016.0 | 6.0 | 70 |
2016.0 | 6.0 | 65 |
2016.0 | 6.0 | 60 |
2016.0 | 6.0 | 66 |
2016.0 | 6.0 | 70 |
2016.0 | 6.0 | 69 |
2016.0 | 6.0 | 66 |
2016.0 | 6.0 | 72 |
2016.0 | 6.0 | 75 |
2016.0 | 6.0 | 71 |
2016.0 | 6.0 | 75 |
2016.0 | 6.0 | 68 |
2016.0 | 6.0 | 69 |
2016.0 | 6.0 | 72 |
2016.0 | 6.0 | 80 |
2016.0 | 6.0 | 85 |
2016.0 | 6.0 | 76 |
2016.0 | 6.0 | 72 |
2016.0 | 6.0 | 73 |
2016.0 | 7.0 | 75 |
2016.0 | 7.0 | 75 |
2016.0 | 7.0 | 71 |
2016.0 | 7.0 | 69 |
2016.0 | 7.0 | 67 |
2016.0 | 7.0 | 76 |
2016.0 | 7.0 | 68 |
2016.0 | 7.0 | 72 |
2016.0 | 7.0 | 71 |
2016.0 | 7.0 | 73 |
2016.0 | 7.0 | 73 |
2016.0 | 7.0 | 76 |
2016.0 | 7.0 | 74 |
2016.0 | 7.0 | 76 |
2016.0 | 7.0 | 76 |
2016.0 | 7.0 | 73 |
2016.0 | 7.0 | 79 |
2016.0 | 7.0 | 71 |
2016.0 | 7.0 | 77 |
2016.0 | 7.0 | 80 |
2016.0 | 7.0 | 84 |
2016.0 | 7.0 | 73 |
2016.0 | 7.0 | 73 |
2016.0 | 7.0 | 81 |
2016.0 | 7.0 | 86 |
2016.0 | 7.0 | 78 |
2016.0 | 7.0 | 84 |
2016.0 | 7.0 | 88 |
2016.0 | 7.0 | 89 |
2016.0 | 7.0 | 75 |
2016.0 | 7.0 | 72 |
2016.0 | 8.0 | 77 |
2016.0 | 8.0 | 71 |
2016.0 | 8.0 | 76 |
2016.0 | 8.0 | 82 |
2016.0 | 8.0 | 79 |
2016.0 | 8.0 | 71 |
2016.0 | 8.0 | 69 |
2016.0 | 8.0 | 73 |
2016.0 | 8.0 | 71 |
2016.0 | 8.0 | 76 |
2016.0 | 8.0 | 81 |
2016.0 | 8.0 | 90 |
2016.0 | 8.0 | 91 |
2016.0 | 8.0 | 85 |
2016.0 | 8.0 | 83 |
2016.0 | 8.0 | 83 |
2016.0 | 8.0 | 80 |
2016.0 | 8.0 | 87 |
2016.0 | 8.0 | 95 |
2016.0 | 8.0 | 91 |
2016.0 | 8.0 | 73 |
2016.0 | 8.0 | 72 |
2016.0 | 8.0 | 80 |
2016.0 | 8.0 | 85 |
2016.0 | 8.0 | 91 |
2016.0 | 8.0 | 92 |
2016.0 | 8.0 | 73 |
2016.0 | 8.0 | 70 |
2016.0 | 8.0 | 79 |
2016.0 | 8.0 | 71 |
2016.0 | 8.0 | 69 |
2016.0 | 9.0 | 66 |
2016.0 | 9.0 | 69 |
2016.0 | 9.0 | 69 |
2016.0 | 9.0 | 70 |
2016.0 | 9.0 | 64 |
2016.0 | 9.0 | 65 |
2016.0 | 9.0 | 66 |
2016.0 | 9.0 | 70 |
2016.0 | 9.0 | 73 |
2016.0 | 9.0 | 77 |
2016.0 | 9.0 | 70 |
2016.0 | 9.0 | 75 |
2016.0 | 9.0 | 77 |
2016.0 | 9.0 | 78 |
2016.0 | 9.0 | 72 |
2016.0 | 9.0 | 74 |
2016.0 | 9.0 | 67 |
2016.0 | 9.0 | 68 |
2016.0 | 9.0 | 68 |
2016.0 | 9.0 | 67 |
2016.0 | 9.0 | 68 |
2016.0 | 9.0 | 65 |
2016.0 | 9.0 | 63 |
2016.0 | 9.0 | 66 |
2016.0 | 9.0 | 76 |
2016.0 | 9.0 | 77 |
2016.0 | 9.0 | 69 |
2016.0 | 9.0 | 67 |
2016.0 | 9.0 | 66 |
2016.0 | 9.0 | 65 |
2016.0 | 10.0 | 63 |
2016.0 | 10.0 | 63 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 65 |
2016.0 | 10.0 | 62 |
2016.0 | 10.0 | 63 |
2016.0 | 10.0 | 65 |
2016.0 | 10.0 | 56 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 62 |
2016.0 | 10.0 | 66 |
2016.0 | 10.0 | 59 |
2016.0 | 10.0 | 57 |
2016.0 | 10.0 | 62 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 59 |
2016.0 | 10.0 | 58 |
2016.0 | 10.0 | 58 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 57 |
2016.0 | 10.0 | 62 |
2016.0 | 10.0 | 62 |
2016.0 | 10.0 | 63 |
2016.0 | 10.0 | 63 |
2016.0 | 10.0 | 58 |
2016.0 | 10.0 | 58 |
2016.0 | 10.0 | 67 |
2016.0 | 10.0 | 60 |
2016.0 | 10.0 | 52 |
2016.0 | 10.0 | 57 |
2016.0 | 11.0 | 56 |
2016.0 | 11.0 | 56 |
2016.0 | 11.0 | 65 |
2016.0 | 11.0 | 63 |
2016.0 | 11.0 | 60 |
2016.0 | 11.0 | 60 |
2016.0 | 11.0 | 66 |
2016.0 | 11.0 | 70 |
2016.0 | 11.0 | 64 |
2016.0 | 11.0 | 62 |
2016.0 | 11.0 | 61 |
2016.0 | 11.0 | 58 |
2016.0 | 11.0 | 54 |
2016.0 | 11.0 | 57 |
2016.0 | 11.0 | 54 |
2016.0 | 11.0 | 50 |
2016.0 | 11.0 | 51 |
2016.0 | 11.0 | 54 |
2016.0 | 11.0 | 57 |
2016.0 | 11.0 | 57 |
2016.0 | 11.0 | 53 |
2016.0 | 11.0 | 53 |
2016.0 | 11.0 | 48 |
2016.0 | 11.0 | 51 |
2016.0 | 11.0 | 52 |
2016.0 | 11.0 | 51 |
2016.0 | 11.0 | 47 |
2016.0 | 11.0 | 50 |
2016.0 | 11.0 | 51 |
2016.0 | 11.0 | 50 |
2016.0 | 12.0 | 46 |
2016.0 | 12.0 | 49 |
2016.0 | 12.0 | 48 |
2016.0 | 12.0 | 45 |
2016.0 | 12.0 | 39 |
2016.0 | 12.0 | 40 |
2016.0 | 12.0 | 38 |
2016.0 | 12.0 | 38 |
2016.0 | 12.0 | 36 |
2016.0 | 12.0 | 44 |
2016.0 | 12.0 | 42 |
2016.0 | 12.0 | 42 |
2016.0 | 12.0 | 38 |
2016.0 | 12.0 | 39 |
2016.0 | 12.0 | 38 |
2016.0 | 12.0 | 34 |
2016.0 | 12.0 | 33 |
2016.0 | 12.0 | 39 |
2016.0 | 12.0 | 45 |
2016.0 | 12.0 | 50 |
2016.0 | 12.0 | 47 |
2016.0 | 12.0 | 44 |
2016.0 | 12.0 | 39 |
2016.0 | 12.0 | 40 |
2016.0 | 12.0 | 42 |
2016.0 | 12.0 | 42 |
2016.0 | 12.0 | 44 |
2016.0 | 12.0 | 47 |
2016.0 | 12.0 | 48 |
2016.0 | 12.0 | 45 |
2016.0 | 12.0 | 38 |
2017.0 | 1.0 | 37 |
2017.0 | 1.0 | 34 |
2017.0 | 1.0 | 33 |
2017.0 | 1.0 | 36 |
2017.0 | 1.0 | 35 |
2017.0 | 1.0 | 40 |
2017.0 | 1.0 | 37 |
2017.0 | 1.0 | 45 |
2017.0 | 1.0 | 42 |
2017.0 | 1.0 | 40 |
2017.0 | 1.0 | 34 |
2017.0 | 1.0 | 40 |
2017.0 | 1.0 | 37 |
2017.0 | 1.0 | 44 |
2017.0 | 1.0 | 43 |
2017.0 | 1.0 | 45 |
2017.0 | 1.0 | 49 |
2017.0 | 1.0 | 53 |
2017.0 | 1.0 | 50 |
2017.0 | 1.0 | 52 |
2017.0 | 1.0 | 54 |
2017.0 | 1.0 | 49 |
2017.0 | 1.0 | 48 |
2017.0 | 1.0 | 43 |
2017.0 | 1.0 | 44 |
2017.0 | 1.0 | 47 |
2017.0 | 1.0 | 54 |
2017.0 | 1.0 | 52 |
2017.0 | 1.0 | 48 |
2017.0 | 1.0 | 45 |
2017.0 | 1.0 | 44 |
2017.0 | 2.0 | 43 |
2017.0 | 2.0 | 44 |
2017.0 | 2.0 | 40 |
2017.0 | 2.0 | 46 |
2017.0 | 2.0 | 41 |
2017.0 | 2.0 | 37 |
2017.0 | 2.0 | 38 |
2017.0 | 2.0 | 40 |
2017.0 | 2.0 | 56 |
2017.0 | 2.0 | 48 |
2017.0 | 2.0 | 49 |
2017.0 | 2.0 | 51 |
2017.0 | 2.0 | 57 |
2017.0 | 2.0 | 58 |
2017.0 | 2.0 | 54 |
2017.0 | 2.0 | 53 |
2017.0 | 2.0 | 56 |
2017.0 | 2.0 | 45 |
2017.0 | 2.0 | 47 |
2017.0 | 2.0 | 45 |
2017.0 | 2.0 | 48 |
2017.0 | 2.0 | 46 |
2017.0 | 2.0 | 44 |
2017.0 | 2.0 | 47 |
2017.0 | 2.0 | 44 |
2017.0 | 2.0 | 41 |
2017.0 | 2.0 | 41 |
2017.0 | 2.0 | 47 |
2017.0 | 3.0 | 49 |
2017.0 | 3.0 | 47 |
2017.0 | 3.0 | 51 |
2017.0 | 3.0 | 46 |
2017.0 | 3.0 | 45 |
2017.0 | 3.0 | 43 |
2017.0 | 3.0 | 42 |
2017.0 | 3.0 | 43 |
2017.0 | 3.0 | 49 |
2017.0 | 3.0 | 52 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 57 |
2017.0 | 3.0 | 50 |
2017.0 | 3.0 | 52 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 57 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 54 |
2017.0 | 3.0 | 56 |
2017.0 | 3.0 | 56 |
2017.0 | 3.0 | 58 |
2017.0 | 3.0 | 54 |
2017.0 | 3.0 | 52 |
2017.0 | 3.0 | 49 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 53 |
2017.0 | 3.0 | 55 |
2017.0 | 3.0 | 54 |
2017.0 | 3.0 | 56 |
2017.0 | 4.0 | 56 |
2017.0 | 4.0 | 55 |
2017.0 | 4.0 | 53 |
2017.0 | 4.0 | 61 |
2017.0 | 4.0 | 54 |
2017.0 | 4.0 | 60 |
2017.0 | 4.0 | 59 |
2017.0 | 4.0 | 52 |
2017.0 | 4.0 | 56 |
2017.0 | 4.0 | 53 |
2017.0 | 4.0 | 57 |
2017.0 | 4.0 | 59 |
2017.0 | 4.0 | 54 |
2017.0 | 4.0 | 52 |
2017.0 | 4.0 | 57 |
2017.0 | 4.0 | 66 |
2017.0 | 4.0 | 60 |
2017.0 | 4.0 | 60 |
2017.0 | 4.0 | 56 |
2017.0 | 4.0 | 58 |
2017.0 | 4.0 | 66 |
2017.0 | 4.0 | 63 |
2017.0 | 4.0 | 53 |
2017.0 | 4.0 | 57 |
2017.0 | 4.0 | 56 |
2017.0 | 4.0 | 58 |
2017.0 | 4.0 | 56 |
2017.0 | 4.0 | 59 |
2017.0 | 4.0 | 57 |
2017.0 | 4.0 | 56 |
2017.0 | 5.0 | 50 |
2017.0 | 5.0 | 61 |
2017.0 | 5.0 | 74 |
2017.0 | 5.0 | 76 |
2017.0 | 5.0 | 59 |
2017.0 | 5.0 | 60 |
2017.0 | 5.0 | 62 |
2017.0 | 5.0 | 64 |
2017.0 | 5.0 | 70 |
2017.0 | 5.0 | 71 |
2017.0 | 5.0 | 60 |
2017.0 | 5.0 | 54 |
2017.0 | 5.0 | 57 |
2017.0 | 5.0 | 59 |
2017.0 | 5.0 | 52 |
2017.0 | 5.0 | 54 |
2017.0 | 5.0 | 60 |
2017.0 | 5.0 | 64 |
2017.0 | 5.0 | 71 |
2017.0 | 5.0 | 72 |
2017.0 | 5.0 | 76 |
2017.0 | 5.0 | 83 |
2017.0 | 5.0 | 78 |
2017.0 | 5.0 | 63 |
2017.0 | 5.0 | 70 |
2017.0 | 5.0 | 81 |
2017.0 | 5.0 | 86 |
2017.0 | 5.0 | 86 |
2017.0 | 5.0 | 74 |
2017.0 | 5.0 | 58 |
2017.0 | 5.0 | 72 |
2017.0 | 6.0 | 67 |
2017.0 | 6.0 | 73 |
2017.0 | 6.0 | 67 |
2017.0 | 6.0 | 67 |
2017.0 | 6.0 | 74 |
2017.0 | 6.0 | 84 |
2017.0 | 6.0 | 79 |
2017.0 | 6.0 | 63 |
2017.0 | 6.0 | 63 |
2017.0 | 6.0 | 67 |
2017.0 | 6.0 | 70 |
2017.0 | 6.0 | 64 |
2017.0 | 6.0 | 65 |
2017.0 | 6.0 | 65 |
2017.0 | 6.0 | 61 |
2017.0 | 6.0 | 68 |
2017.0 | 6.0 | 63 |
2017.0 | 6.0 | 71 |
2017.0 | 6.0 | 74 |
2017.0 | 6.0 | 73 |
2017.0 | 6.0 | 69 |
2017.0 | 6.0 | 75 |
2017.0 | 6.0 | 81 |
2017.0 | 6.0 | 89 |
2017.0 | 6.0 | 96 |
2017.0 | 6.0 | 72 |
2017.0 | 6.0 | 71 |
2017.0 | 6.0 | 68 |
2017.0 | 6.0 | 78 |
2017.0 | 6.0 | 86 |
2017.0 | 7.0 | 72 |
2017.0 | 7.0 | 77 |
2017.0 | 7.0 | 70 |
2017.0 | 7.0 | 78 |
2017.0 | 7.0 | 85 |
2017.0 | 7.0 | 85 |
2017.0 | 7.0 | 72 |
2017.0 | 7.0 | 81 |
2017.0 | 7.0 | 80 |
2017.0 | 7.0 | 73 |
2017.0 | 7.0 | 75 |
2017.0 | 7.0 | 78 |
2017.0 | 7.0 | 75 |
2017.0 | 7.0 | 79 |
2017.0 | 7.0 | 77 |
2017.0 | 7.0 | 72 |
2017.0 | 7.0 | 78 |
2017.0 | 7.0 | 82 |
2017.0 | 7.0 | 78 |
2017.0 | 7.0 | 74 |
2017.0 | 7.0 | 78 |
2017.0 | 7.0 | 85 |
2017.0 | 7.0 | 76 |
2017.0 | 7.0 | 82 |
2017.0 | 7.0 | 87 |
2017.0 | 7.0 | 84 |
2017.0 | 7.0 | 70 |
2017.0 | 7.0 | 79 |
2017.0 | 7.0 | 81 |
2017.0 | 7.0 | 80 |
2017.0 | 7.0 | 85 |
2017.0 | 8.0 | 87 |
2017.0 | 8.0 | 91 |
2017.0 | 8.0 | 94 |
2017.0 | 8.0 | 91 |
2017.0 | 8.0 | 82 |
2017.0 | 8.0 | 82 |
2017.0 | 8.0 | 84 |
2017.0 | 8.0 | 89 |
2017.0 | 8.0 | 91 |
2017.0 | 8.0 | 90 |
2017.0 | 8.0 | 77 |
2017.0 | 8.0 | 76 |
2017.0 | 8.0 | 74 |
2017.0 | 8.0 | 73 |
2017.0 | 8.0 | 78 |
2017.0 | 8.0 | 79 |
2017.0 | 8.0 | 75 |
2017.0 | 8.0 | 73 |
2017.0 | 8.0 | 76 |
2017.0 | 8.0 | 77 |
2017.0 | 8.0 | 83 |
2017.0 | 8.0 | 86 |
2017.0 | 8.0 | 75 |
2017.0 | 8.0 | 72 |
2017.0 | 8.0 | 76 |
2017.0 | 8.0 | 84 |
2017.0 | 8.0 | 87 |
2017.0 | 8.0 | 88 |
2017.0 | 8.0 | 85 |
2017.0 | 8.0 | 77 |
2017.0 | 8.0 | 75 |
2017.0 | 9.0 | 85 |
2017.0 | 9.0 | 90 |
2017.0 | 9.0 | 90 |
2017.0 | 9.0 | 88 |
2017.0 | 9.0 | 85 |
2017.0 | 9.0 | 81 |
2017.0 | 9.0 | 75 |
2017.0 | 9.0 | 71 |
2017.0 | 9.0 | 68 |
2017.0 | 9.0 | 73 |
2017.0 | 9.0 | 80 |
2017.0 | 9.0 | 77 |
2017.0 | 9.0 | 70 |
2017.0 | 9.0 | 74 |
2017.0 | 9.0 | 76 |
2017.0 | 9.0 | 76 |
2017.0 | 9.0 | 64 |
2017.0 | 9.0 | 62 |
2017.0 | 9.0 | 64 |
2017.0 | 9.0 | 57 |
2017.0 | 9.0 | 64 |
2017.0 | 9.0 | 68 |
2017.0 | 9.0 | 68 |
2017.0 | 9.0 | 72 |
2017.0 | 9.0 | 65 |
2017.0 | 9.0 | 74 |
SELECT * FROM (
SELECT year(date) year, month(date) month, temp
FROM high_temps
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR month in (
1 JAN, 2 FEB, 3 MAR, 4 APR, 5 MAY, 6 JUN,
7 JUL, 8 AUG, 9 SEP, 10 OCT, 11 NOV, 12 DEC
)
)
ORDER BY year DESC
year | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018.0 | 49.7 | 45.8 | 54.0 | 58.6 | 70.8 | 71.9 | 82.8 | 79.1 | null | null | null | null |
2017.0 | 43.7 | 46.6 | 51.5 | 57.3 | 67.0 | 72.1 | 78.3 | 81.5 | 73.8 | 61.1 | 51.3 | 45.5 |
2016.0 | 49.1 | 53.6 | 56.4 | 65.9 | 68.8 | 73.1 | 76.0 | 79.5 | 69.6 | 60.5 | 56.0 | 41.9 |
2015.0 | 50.3 | 54.5 | 57.9 | 59.9 | 68.0 | 78.9 | 82.6 | 79.0 | 68.5 | 63.6 | 49.4 | 47.1 |
Pivoting with Multiple Aggregate Expressions
Getting monthly average and maximum high temperatures with month as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp
FROM high_temps
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1)) avg, max(temp) max
FOR month in (6 JUN, 7 JUL, 8 AUG, 9 SEP)
)
ORDER BY year DESC
year | JUN_avg | JUN_max | JUL_avg | JUL_max | AUG_avg | AUG_max | SEP_avg | SEP_max |
---|---|---|---|---|---|---|---|---|
2018.0 | 71.9 | 88 | 82.8 | 94 | 79.1 | 94 | null | null |
2017.0 | 72.1 | 96 | 78.3 | 87 | 81.5 | 94 | 73.8 | 90 |
2016.0 | 73.1 | 93 | 76.0 | 89 | 79.5 | 95 | 69.6 | 78 |
2015.0 | 78.9 | 92 | 82.6 | 95 | 79.0 | 92 | 68.5 | 81 |
Pivoting with Multiple Grouping Columns
Getting monthly average high and average low temperatures with month as columns and (year, hi/lo) as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp, flag `H/L`
FROM (
SELECT date, temp, 'H' as flag
FROM high_temps
UNION ALL
SELECT date, temp, 'L' as flag
FROM low_temps
)
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR month in (6 JUN, 7 JUL, 8 AUG, 9 SEP)
)
ORDER BY year DESC, `H/L` ASC
year | H/L | JUN | JUL | AUG | SEP |
---|---|---|---|---|---|
2018.0 | H | 71.9 | 82.8 | 79.1 | null |
2018.0 | L | 53.4 | 58.5 | 58.5 | null |
2017.0 | H | 72.1 | 78.3 | 81.5 | 73.8 |
2017.0 | L | 53.7 | 56.3 | 59.0 | 55.6 |
2016.0 | H | 73.1 | 76.0 | 79.5 | 69.6 |
2016.0 | L | 53.9 | 57.6 | 57.9 | 52.9 |
2015.0 | H | 78.9 | 82.6 | 79.0 | 68.5 |
2015.0 | L | 56.4 | 59.9 | 58.5 | 52.5 |
Pivoting with Multiple Pivot Columns
Getting monthly average high and average low temperatures with (month, hi/lo) as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp, flag
FROM (
SELECT date, temp, 'H' as flag
FROM high_temps
UNION ALL
SELECT date, temp, 'L' as flag
FROM low_temps
)
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR (month, flag) in (
(6, 'H') JUN_hi, (6, 'L') JUN_lo,
(7, 'H') JUL_hi, (7, 'L') JUL_lo,
(8, 'H') AUG_hi, (8, 'L') AUG_lo,
(9, 'H') SEP_hi, (9, 'L') SEP_lo
)
)
ORDER BY year DESC
year | JUN_hi | JUN_lo | JUL_hi | JUL_lo | AUG_hi | AUG_lo | SEP_hi | SEP_lo |
---|---|---|---|---|---|---|---|---|
2018.0 | 71.9 | 53.4 | 82.8 | 58.5 | 79.1 | 58.5 | null | null |
2017.0 | 72.1 | 53.7 | 78.3 | 56.3 | 81.5 | 59.0 | 73.8 | 55.6 |
2016.0 | 73.1 | 53.9 | 76.0 | 57.6 | 79.5 | 57.9 | 69.6 | 52.9 |
2015.0 | 78.9 | 56.4 | 82.6 | 59.9 | 79.0 | 58.5 | 68.5 | 52.5 |
Diamonds ML Pipeline Workflow - DataFrame ETL and EDA Part
This is the Spark SQL parts that are focussed on extract-transform-Load (ETL) and exploratory-data-analysis (EDA) parts of an end-to-end example of a Machine Learning (ML) workflow.
Why are we using DataFrames? This is because of the Announcement in the Spark MLlib Main Guide for Spark 2.2 https://spark.apache.org/docs/latest/ml-guide.html that "DataFrame-based API is primary API".
This notebook is a scalarific break-down of the pythonic 'Diamonds ML Pipeline Workflow' from the Databricks Guide.
We will see this example again in the sequel
For this example, we analyze the Diamonds dataset from the R Datasets hosted on DBC.
Later on, we will use the DecisionTree algorithm to predict the price of a diamond from its characteristics.
Here is an outline of our pipeline:
- Step 1. Load data: Load data as DataFrame
- Step 2. Understand the data: Compute statistics and create visualizations to get a better understanding of the data.
- Step 3. Hold out data: Split the data randomly into training and test sets. We will not look at the test data until after learning.
- Step 4. On the training dataset:
- Extract features: We will index categorical (String-valued) features so that DecisionTree can handle them.
- Learn a model: Run DecisionTree to learn how to predict a diamond's price from a description of the diamond.
- Tune the model: Tune the tree depth (complexity) using the training data. (This process is also called model selection.)
- Step 5. Evaluate the model: Now look at the test dataset. Compare the initial model with the tuned model to see the benefit of tuning parameters.
- Step 6. Understand the model: We will examine the learned model and results to gain further insight.
In this notebook, we will only cover Step 1 and Step 2. above. The other Steps will be revisited in the sequel.
Step 1. Load data as DataFrame
This section loads a dataset as a DataFrame and examines a few rows of it to understand the schema.
For more info, see the DB guide on importing data.
// We'll use the Diamonds dataset from the R datasets hosted on DBC.
val diamondsFilePath = "/datasets/sds/Rdatasets/data-001/csv/ggplot2/diamonds.csv"
diamondsFilePath: String = /datasets/sds/Rdatasets/data-001/csv/ggplot2/diamonds.csv
sc.textFile(diamondsFilePath).take(2) // looks like a csv file as it should
res0: Array[String] = Array("","carat","cut","color","clarity","depth","table","price","x","y","z", "1",0.23,"Ideal","E","SI2",61.5,55,326,3.95,3.98,2.43)
val diamondsRawDF = sqlContext.read // we can use sqlContext instead of SparkSession for backwards compatibility to 1.x
.format("csv") // use csv reader
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
//.option("delimiter", ",") // Specify the delimiter as comma or ',' DEFAULT
.load(diamondsFilePath)
diamondsRawDF: org.apache.spark.sql.DataFrame = [_c0: int, carat: double ... 9 more fields]
//There are 10 columns. We will try to predict the price of diamonds, treating the other 9 columns as features.
diamondsRawDF.printSchema()
root
|-- _c0: integer (nullable = true)
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: integer (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
Note: (nullable = true)
simply means if the value is allowed to be null
.
Let us count the number of rows in diamondsDF
.
diamondsRawDF.count() // Ctrl+Enter
res3: Long = 53940
So there are 53940 records or rows in the DataFrame.
Use the show(n)
method to see the first n
(default is 20) rows of the DataFrame, as folows:
diamondsRawDF.show(10)
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|_c0|carat| cut|color|clarity|depth|table|price| x| y| z|
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
| 1| 0.23| Ideal| E| SI2| 61.5| 55.0| 326|3.95|3.98|2.43|
| 2| 0.21| Premium| E| SI1| 59.8| 61.0| 326|3.89|3.84|2.31|
| 3| 0.23| Good| E| VS1| 56.9| 65.0| 327|4.05|4.07|2.31|
| 4| 0.29| Premium| I| VS2| 62.4| 58.0| 334| 4.2|4.23|2.63|
| 5| 0.31| Good| J| SI2| 63.3| 58.0| 335|4.34|4.35|2.75|
| 6| 0.24|Very Good| J| VVS2| 62.8| 57.0| 336|3.94|3.96|2.48|
| 7| 0.24|Very Good| I| VVS1| 62.3| 57.0| 336|3.95|3.98|2.47|
| 8| 0.26|Very Good| H| SI1| 61.9| 55.0| 337|4.07|4.11|2.53|
| 9| 0.22| Fair| E| VS2| 65.1| 61.0| 337|3.87|3.78|2.49|
| 10| 0.23|Very Good| H| VS1| 59.4| 61.0| 338| 4.0|4.05|2.39|
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
only showing top 10 rows
If you notice the schema of diamondsRawDF
you will see that the automatic schema inference of SqlContext.read
method has cast the values in the column price
as integer
.
To cleanup:
- let's recast the column
price
asdouble
for downstream ML tasks later and - let's also get rid of the first column of row indices.
import org.apache.spark.sql.types.DoubleType
//we will convert price column from int to double for being able to model, fit and predict in downstream ML task
val diamondsDF = diamondsRawDF
.select($"carat", $"cut", $"color", $"clarity", $"depth", $"table",$"price".cast(DoubleType).as("price"), $"x", $"y", $"z")
diamondsDF.cache() // let's cache it for reuse
diamondsDF.printSchema // print schema
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
import org.apache.spark.sql.types.DoubleType
diamondsDF: org.apache.spark.sql.DataFrame = [carat: double, cut: string ... 8 more fields]
diamondsDF.show(10,false) // notice that price column has Double values that end in '.0' now
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|carat|cut |color|clarity|depth|table|price|x |y |z |
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|0.23 |Ideal |E |SI2 |61.5 |55.0 |326.0|3.95|3.98|2.43|
|0.21 |Premium |E |SI1 |59.8 |61.0 |326.0|3.89|3.84|2.31|
|0.23 |Good |E |VS1 |56.9 |65.0 |327.0|4.05|4.07|2.31|
|0.29 |Premium |I |VS2 |62.4 |58.0 |334.0|4.2 |4.23|2.63|
|0.31 |Good |J |SI2 |63.3 |58.0 |335.0|4.34|4.35|2.75|
|0.24 |Very Good|J |VVS2 |62.8 |57.0 |336.0|3.94|3.96|2.48|
|0.24 |Very Good|I |VVS1 |62.3 |57.0 |336.0|3.95|3.98|2.47|
|0.26 |Very Good|H |SI1 |61.9 |55.0 |337.0|4.07|4.11|2.53|
|0.22 |Fair |E |VS2 |65.1 |61.0 |337.0|3.87|3.78|2.49|
|0.23 |Very Good|H |VS1 |59.4 |61.0 |338.0|4.0 |4.05|2.39|
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
only showing top 10 rows
//View DataFrame in databricks
// note this 'display' is a databricks notebook specific command that is quite powerful for visual interaction with the data
// other notebooks like zeppelin have similar commands for interactive visualisation
display(diamondsDF)
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Step 2. Understand the data
Let's examine the data to get a better understanding of what is there. We only examine a couple of features (columns), but it gives an idea of the type of exploration you might do to understand a new dataset.
For more examples of using Databricks's visualization (even across languages) see https://docs.databricks.com/user-guide/visualizations/index.html NOW.
We can see that we have a mix of
- categorical features (
cut
,color
,clarity
) and - continuous features (
depth
,x
,y
,z
).
Let's first look at the categorical features.
You can also select one or more individual columns using so-called DataFrame API.
Let us select
the column cut
from diamondsDF
and create a new DataFrame called cutsDF
and then display it as follows:
val cutsDF = diamondsDF.select("cut") // Shift+Enter
cutsDF: org.apache.spark.sql.DataFrame = [cut: string]
cutsDF.show(10) // Ctrl+Enter
+---------+
| cut|
+---------+
| Ideal|
| Premium|
| Good|
| Premium|
| Good|
|Very Good|
|Very Good|
|Very Good|
| Fair|
|Very Good|
+---------+
only showing top 10 rows
Let us use distinct
to find the distinct types of cut
's in the dataset.
// View distinct diamond cuts in dataset
val cutsDistinctDF = diamondsDF.select("cut").distinct()
cutsDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [cut: string]
cutsDistinctDF.show()
+---------+
| cut|
+---------+
| Premium|
| Ideal|
| Good|
| Fair|
|Very Good|
+---------+
Clearly, there are just 5 kinds of cuts.
// View distinct diamond colors in dataset
val colorsDistinctDF = diamondsDF.select("color").distinct() //.collect()
colorsDistinctDF.show()
+-----+
|color|
+-----+
| F|
| E|
| D|
| J|
| G|
| I|
| H|
+-----+
colorsDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [color: string]
// View distinct diamond clarities in dataset
val claritiesDistinctDF = diamondsDF.select("clarity").distinct() // .collect()
claritiesDistinctDF.show()
+-------+
|clarity|
+-------+
| VVS2|
| SI1|
| IF|
| I1|
| VVS1|
| VS2|
| SI2|
| VS1|
+-------+
claritiesDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [clarity: string]
We can examine the distribution of a particular feature by using display(),
You Try!
- Click on the chart icon and Plot Options, and setting:
- Value=
<id>
- Series groupings='cut'
- and Aggregation=
COUNT
.
- You can also try this using columns "color" and "clarity"
display(diamondsDF.select("cut"))
cut |
---|
Ideal |
Premium |
Good |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Fair |
Very Good |
Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Ideal |
Good |
Good |
Very Good |
Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Premium |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Good |
Good |
Good |
Very Good |
Ideal |
Ideal |
Ideal |
Good |
Good |
Good |
Premium |
Very Good |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Good |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Premium |
Premium |
Very Good |
Very Good |
Premium |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Fair |
Ideal |
Very Good |
Very Good |
Good |
Good |
Fair |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Fair |
Fair |
Premium |
Premium |
Very Good |
Fair |
Fair |
Ideal |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Good |
Very Good |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Good |
Ideal |
Very Good |
Premium |
Very Good |
Good |
Good |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Premium |
Premium |
Good |
Fair |
Premium |
Very Good |
Ideal |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Fair |
Premium |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Good |
Ideal |
Fair |
Premium |
Good |
Good |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Fair |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Very Good |
Very Good |
Good |
Ideal |
Ideal |
Very Good |
Very Good |
Premium |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Good |
Very Good |
Very Good |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Premium |
Fair |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Very Good |
Good |
Premium |
Very Good |
Ideal |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Fair |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Good |
Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Premium |
Premium |
Ideal |
Fair |
Premium |
Ideal |
Fair |
Good |
Very Good |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Very Good |
Very Good |
Fair |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Fair |
Very Good |
Very Good |
Ideal |
Good |
Good |
Very Good |
Very Good |
Fair |
Fair |
Very Good |
Very Good |
Good |
Very Good |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Good |
Ideal |
Very Good |
Good |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Fair |
Premium |
Ideal |
Premium |
Very Good |
Good |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Fair |
Premium |
Premium |
Fair |
Premium |
Very Good |
Ideal |
Good |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Fair |
Very Good |
Ideal |
Good |
Good |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Good |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Good |
Ideal |
Premium |
Premium |
Ideal |
Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Very Good |
Good |
Premium |
Ideal |
Fair |
Ideal |
Premium |
Ideal |
Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Fair |
Premium |
Good |
Premium |
Premium |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Good |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Ideal |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Ideal |
Ideal |
Very Good |
Fair |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Very Good |
Fair |
Premium |
Premium |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Ideal |
Premium |
Fair |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Ideal |
Very Good |
Very Good |
Good |
Premium |
Ideal |
Very Good |
Ideal |
Fair |
Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Very Good |
Ideal |
Fair |
Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Premium |
Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Premium |
Premium |
Fair |
Fair |
Good |
Fair |
Premium |
Premium |
Very Good |
Good |
Premium |
Fair |
Fair |
Fair |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Ideal |
Ideal |
Ideal |
Good |
Good |
Good |
Good |
Very Good |
Ideal |
Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Good |
Premium |
Fair |
Premium |
Premium |
Good |
Very Good |
Ideal |
Premium |
Premium |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Premium |
Good |
Fair |
Fair |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Fair |
Premium |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Fair |
Premium |
Premium |
Very Good |
Very Good |
Very Good |
Premium |
Very Good |
Ideal |
Very Good |
Premium |
Premium |
Premium |
Fair |
Premium |
Good |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Fair |
Ideal |
Ideal |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Good |
Very Good |
Ideal |
Very Good |
Ideal |
Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Very Good |
Very Good |
Ideal |
Ideal |
Fair |
Fair |
Premium |
Good |
Fair |
Fair |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Fair |
Ideal |
Fair |
Fair |
Fair |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Good |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Fair |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Premium |
Very Good |
Ideal |
Premium |
Fair |
Premium |
Ideal |
Good |
Fair |
Fair |
Very Good |
Premium |
Ideal |
Fair |
Fair |
Ideal |
Ideal |
Very Good |
Premium |
Ideal |
Very Good |
Very Good |
Very Good |
Good |
Very Good |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Ideal |
Premium |
Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Good |
Ideal |
Fair |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Ideal |
Good |
Very Good |
Premium |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Good |
Premium |
Premium |
// come on do the same for color NOW!
// and clarity too...
You Try!
Now play around with display of the entire DF and choosing what you want in the GUI as opposed to a .select(...)
statement earlier.
For instance, the following display(diamondsDF)
shows the counts of the colors by choosing in the Plot Options
a bar-chart
that is grouped
with Series Grouping
as color
, values
as <id>
and Aggregation
as COUNT
. You can click on Plot Options
to see these settings and can change them as you wish by dragging and dropping.
display(diamondsDF)
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Now let's examine one of the continuous features as an example.
//Select: "Plot Options..." --> "Display type" --> "histogram plot" and choose to "Plot over all results" OTHERWISE you get the image from first 1000 rows only
display(diamondsDF.select("carat"))
carat |
---|
0.23 |
0.21 |
0.23 |
0.29 |
0.31 |
0.24 |
0.24 |
0.26 |
0.22 |
0.23 |
0.3 |
0.23 |
0.22 |
0.31 |
0.2 |
0.32 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.23 |
0.23 |
0.31 |
0.31 |
0.23 |
0.24 |
0.3 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.31 |
0.26 |
0.33 |
0.33 |
0.33 |
0.26 |
0.26 |
0.32 |
0.29 |
0.32 |
0.32 |
0.25 |
0.29 |
0.24 |
0.23 |
0.32 |
0.22 |
0.22 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.35 |
0.3 |
0.3 |
0.3 |
0.42 |
0.28 |
0.32 |
0.31 |
0.31 |
0.24 |
0.24 |
0.3 |
0.3 |
0.3 |
0.3 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.38 |
0.26 |
0.24 |
0.24 |
0.24 |
0.24 |
0.32 |
0.7 |
0.86 |
0.7 |
0.71 |
0.78 |
0.7 |
0.7 |
0.96 |
0.73 |
0.8 |
0.75 |
0.75 |
0.74 |
0.75 |
0.8 |
0.75 |
0.8 |
0.74 |
0.81 |
0.59 |
0.8 |
0.74 |
0.9 |
0.74 |
0.73 |
0.73 |
0.8 |
0.71 |
0.7 |
0.8 |
0.71 |
0.74 |
0.7 |
0.7 |
0.7 |
0.7 |
0.91 |
0.61 |
0.91 |
0.91 |
0.77 |
0.71 |
0.71 |
0.7 |
0.77 |
0.63 |
0.71 |
0.71 |
0.76 |
0.64 |
0.71 |
0.71 |
0.7 |
0.7 |
0.71 |
0.7 |
0.71 |
0.73 |
0.7 |
0.7 |
0.71 |
0.74 |
0.71 |
0.73 |
0.76 |
0.76 |
0.71 |
0.73 |
0.73 |
0.73 |
0.73 |
0.72 |
0.73 |
0.71 |
0.79 |
0.73 |
0.8 |
0.58 |
0.58 |
0.71 |
0.75 |
0.7 |
1.17 |
0.6 |
0.7 |
0.83 |
0.74 |
0.72 |
0.71 |
0.71 |
0.54 |
0.54 |
0.72 |
0.72 |
0.72 |
0.71 |
0.7 |
0.71 |
0.71 |
0.71 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.72 |
0.7 |
0.7 |
0.7 |
0.7 |
0.98 |
0.78 |
0.7 |
0.52 |
0.73 |
0.74 |
0.7 |
0.77 |
0.71 |
0.74 |
0.7 |
1.01 |
0.77 |
0.78 |
0.72 |
0.53 |
0.76 |
0.7 |
0.7 |
0.75 |
0.72 |
0.72 |
0.7 |
0.84 |
0.75 |
0.52 |
0.72 |
0.79 |
0.72 |
0.51 |
0.64 |
0.7 |
0.83 |
0.76 |
0.71 |
0.77 |
0.71 |
1.01 |
1.01 |
0.77 |
0.76 |
0.76 |
0.76 |
1.05 |
0.81 |
0.7 |
0.55 |
0.81 |
0.63 |
0.63 |
0.77 |
1.05 |
0.64 |
0.76 |
0.83 |
0.71 |
0.71 |
0.87 |
0.73 |
0.71 |
0.71 |
0.71 |
0.7 |
0.7 |
0.76 |
0.7 |
0.79 |
0.7 |
0.7 |
0.76 |
0.73 |
0.79 |
0.71 |
0.81 |
0.81 |
0.72 |
0.72 |
0.72 |
0.81 |
0.72 |
1.0 |
0.73 |
0.81 |
0.81 |
0.71 |
0.71 |
0.71 |
0.57 |
0.51 |
0.72 |
0.74 |
0.74 |
0.7 |
0.8 |
1.01 |
0.8 |
0.77 |
0.83 |
0.82 |
0.78 |
0.6 |
0.9 |
0.7 |
0.9 |
0.83 |
0.83 |
0.83 |
0.74 |
0.79 |
0.61 |
0.76 |
0.96 |
0.73 |
0.73 |
0.75 |
0.71 |
0.71 |
0.71 |
0.71 |
1.04 |
1.0 |
0.87 |
0.53 |
0.72 |
0.72 |
0.7 |
0.74 |
0.71 |
0.73 |
0.7 |
0.71 |
0.71 |
0.71 |
0.77 |
0.71 |
0.78 |
0.71 |
0.91 |
0.71 |
0.71 |
0.8 |
0.7 |
0.72 |
0.72 |
0.82 |
0.7 |
0.72 |
0.72 |
0.9 |
0.74 |
0.74 |
0.73 |
0.57 |
0.73 |
0.72 |
0.74 |
0.82 |
0.81 |
0.75 |
0.7 |
0.71 |
0.71 |
0.93 |
0.8 |
0.7 |
1.0 |
0.75 |
0.58 |
0.73 |
0.81 |
0.81 |
0.71 |
1.2 |
0.7 |
0.7 |
0.74 |
0.7 |
0.8 |
0.75 |
0.83 |
1.0 |
0.99 |
0.7 |
0.7 |
0.7 |
0.7 |
0.32 |
0.32 |
0.32 |
0.32 |
0.32 |
0.32 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.32 |
0.33 |
0.29 |
0.29 |
0.31 |
0.34 |
0.34 |
0.34 |
0.34 |
0.3 |
0.29 |
0.35 |
0.43 |
0.32 |
0.36 |
0.3 |
0.26 |
0.7 |
0.7 |
0.71 |
0.99 |
0.73 |
0.51 |
0.91 |
0.84 |
0.91 |
0.76 |
0.76 |
0.75 |
0.55 |
0.76 |
0.74 |
0.7 |
0.7 |
0.7 |
0.7 |
0.9 |
0.95 |
0.89 |
0.72 |
0.96 |
1.02 |
0.78 |
0.61 |
0.71 |
0.78 |
0.87 |
0.83 |
0.71 |
0.71 |
0.71 |
0.71 |
0.63 |
0.71 |
0.71 |
0.71 |
0.71 |
0.9 |
0.71 |
0.7 |
0.7 |
0.7 |
1.0 |
0.86 |
0.8 |
0.7 |
0.7 |
0.7 |
0.7 |
1.0 |
0.72 |
0.72 |
0.7 |
0.86 |
0.71 |
0.75 |
0.73 |
0.53 |
0.73 |
0.73 |
0.73 |
0.73 |
0.73 |
0.73 |
0.7 |
0.72 |
0.72 |
0.72 |
0.7 |
0.6 |
0.74 |
0.73 |
0.71 |
0.71 |
0.7 |
0.7 |
0.9 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.79 |
0.9 |
0.71 |
0.61 |
0.9 |
0.71 |
0.71 |
0.77 |
0.74 |
0.82 |
0.82 |
0.71 |
0.83 |
0.73 |
0.83 |
1.17 |
0.91 |
0.73 |
0.7 |
0.9 |
0.7 |
0.7 |
0.7 |
0.9 |
0.78 |
0.96 |
0.7 |
0.72 |
0.79 |
0.7 |
0.7 |
0.7 |
1.01 |
0.72 |
0.8 |
0.59 |
0.72 |
0.75 |
0.8 |
0.71 |
0.77 |
0.97 |
0.53 |
0.53 |
0.8 |
0.9 |
0.76 |
0.72 |
0.75 |
0.72 |
0.79 |
0.72 |
0.91 |
0.71 |
0.81 |
0.82 |
0.71 |
0.9 |
0.8 |
0.56 |
0.7 |
0.7 |
0.61 |
0.85 |
0.7 |
0.8 |
0.8 |
0.51 |
0.53 |
0.78 |
0.9 |
0.9 |
0.77 |
0.73 |
0.63 |
0.7 |
0.72 |
0.72 |
0.75 |
0.82 |
0.71 |
0.7 |
0.7 |
0.71 |
0.76 |
0.82 |
0.72 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.74 |
0.71 |
0.7 |
0.71 |
0.71 |
0.71 |
0.71 |
0.7 |
0.73 |
0.7 |
0.7 |
0.71 |
0.71 |
0.79 |
0.71 |
0.77 |
0.75 |
0.7 |
0.71 |
0.92 |
0.83 |
0.7 |
0.73 |
0.71 |
0.73 |
0.82 |
0.82 |
0.82 |
0.52 |
1.0 |
0.95 |
0.73 |
0.73 |
0.73 |
0.8 |
0.7 |
0.7 |
0.7 |
0.71 |
0.81 |
0.71 |
0.73 |
0.73 |
0.72 |
0.81 |
0.71 |
0.73 |
0.7 |
1.01 |
1.01 |
0.79 |
0.7 |
0.7 |
0.8 |
1.27 |
0.79 |
0.72 |
0.73 |
1.01 |
1.01 |
0.73 |
0.7 |
0.7 |
0.77 |
0.77 |
0.77 |
0.84 |
0.72 |
0.76 |
0.7 |
0.54 |
0.75 |
0.79 |
0.74 |
0.7 |
0.7 |
0.75 |
1.2 |
0.8 |
0.66 |
0.87 |
0.86 |
0.74 |
0.58 |
0.78 |
0.74 |
0.73 |
0.91 |
0.71 |
0.71 |
0.79 |
0.79 |
0.71 |
0.82 |
0.78 |
0.7 |
1.12 |
0.73 |
0.91 |
0.91 |
0.91 |
0.91 |
0.7 |
0.68 |
0.73 |
1.03 |
0.74 |
0.98 |
1.02 |
1.0 |
1.02 |
0.6 |
0.8 |
0.97 |
1.0 |
0.26 |
0.26 |
0.36 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.32 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
1.0 |
0.77 |
0.77 |
0.7 |
0.9 |
0.72 |
0.9 |
0.72 |
0.7 |
0.81 |
0.81 |
0.71 |
0.7 |
0.71 |
0.71 |
0.92 |
0.76 |
0.73 |
0.71 |
0.7 |
0.9 |
0.71 |
0.7 |
0.7 |
0.77 |
0.71 |
0.7 |
0.75 |
0.83 |
0.71 |
0.9 |
0.6 |
0.71 |
0.53 |
0.71 |
0.62 |
0.62 |
0.9 |
0.62 |
0.82 |
0.66 |
0.7 |
0.8 |
0.8 |
0.79 |
0.71 |
0.7 |
0.7 |
0.79 |
0.7 |
1.22 |
1.01 |
0.73 |
0.91 |
0.71 |
0.83 |
0.84 |
0.71 |
0.71 |
0.71 |
0.71 |
0.71 |
0.71 |
0.91 |
0.9 |
0.71 |
0.71 |
0.72 |
0.72 |
0.71 |
0.81 |
0.83 |
0.73 |
0.56 |
0.56 |
0.71 |
0.7 |
0.96 |
0.71 |
0.7 |
0.71 |
0.8 |
0.95 |
0.82 |
0.52 |
0.82 |
0.82 |
0.82 |
0.8 |
0.96 |
0.72 |
0.62 |
0.79 |
0.75 |
1.08 |
0.72 |
0.62 |
0.73 |
0.72 |
0.52 |
0.83 |
0.64 |
0.8 |
0.74 |
0.72 |
0.82 |
0.73 |
1.04 |
0.73 |
0.73 |
0.9 |
0.75 |
0.79 |
0.7 |
0.75 |
1.02 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.72 |
0.74 |
0.84 |
0.76 |
0.77 |
0.76 |
1.0 |
1.0 |
0.9 |
0.9 |
0.9 |
0.9 |
0.9 |
0.9 |
0.78 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
1.0 |
0.77 |
1.0 |
1.0 |
1.0 |
0.73 |
0.79 |
0.72 |
0.71 |
0.74 |
0.7 |
0.7 |
0.79 |
0.79 |
0.79 |
0.71 |
0.79 |
0.73 |
0.63 |
0.7 |
0.71 |
0.84 |
0.84 |
1.02 |
0.72 |
0.72 |
0.92 |
0.74 |
0.7 |
0.71 |
1.05 |
0.7 |
0.54 |
0.73 |
0.88 |
0.73 |
0.72 |
0.9 |
0.9 |
1.03 |
0.84 |
1.01 |
0.77 |
0.8 |
0.9 |
0.73 |
0.72 |
0.71 |
0.7 |
0.79 |
0.72 |
0.7 |
0.7 |
0.9 |
0.71 |
0.5 |
0.5 |
0.74 |
0.77 |
0.77 |
0.8 |
0.8 |
0.8 |
0.8 |
0.66 |
0.71 |
0.71 |
0.71 |
0.71 |
0.72 |
0.71 |
0.86 |
1.19 |
0.71 |
0.82 |
0.71 |
0.75 |
0.7 |
0.8 |
0.82 |
0.82 |
0.82 |
0.81 |
0.81 |
0.76 |
0.71 |
0.7 |
0.7 |
0.74 |
0.77 |
0.77 |
0.53 |
0.79 |
0.73 |
0.77 |
0.77 |
1.01 |
1.01 |
0.6 |
0.76 |
0.54 |
0.72 |
0.72 |
0.74 |
1.12 |
The above histogram of the diamonds' carat ratings shows that carats have a skewed distribution: Many diamonds are small, but there are a number of diamonds in the dataset which are much larger.
- Extremely skewed distributions can cause problems for some algorithms (e.g., Linear Regression).
- However, Decision Trees handle skewed distributions very naturally.
Note: When you call display
to create a histogram like that above, it will plot using a subsample from the dataset (for efficiency), but you can plot using the full dataset by selecting "Plot over all results". For our dataset, the two plots can actually look very different due to the long-tailed distribution.
We will not examine the label distribution for now. It can be helpful to examine the label distribution, but it is best to do so only on the training set, not on the test set which we will hold out for evaluation. These will be seen in the sequel
You Try! Of course knock youself out visually exploring the dataset more...
display(diamondsDF.select("cut","carat"))
cut | carat |
---|---|
Ideal | 0.23 |
Premium | 0.21 |
Good | 0.23 |
Premium | 0.29 |
Good | 0.31 |
Very Good | 0.24 |
Very Good | 0.24 |
Very Good | 0.26 |
Fair | 0.22 |
Very Good | 0.23 |
Good | 0.3 |
Ideal | 0.23 |
Premium | 0.22 |
Ideal | 0.31 |
Premium | 0.2 |
Premium | 0.32 |
Ideal | 0.3 |
Good | 0.3 |
Good | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.31 |
Very Good | 0.31 |
Very Good | 0.23 |
Premium | 0.24 |
Very Good | 0.3 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Good | 0.23 |
Good | 0.23 |
Good | 0.31 |
Very Good | 0.26 |
Ideal | 0.33 |
Ideal | 0.33 |
Ideal | 0.33 |
Good | 0.26 |
Good | 0.26 |
Good | 0.32 |
Premium | 0.29 |
Very Good | 0.32 |
Good | 0.32 |
Very Good | 0.25 |
Very Good | 0.29 |
Very Good | 0.24 |
Ideal | 0.23 |
Ideal | 0.32 |
Premium | 0.22 |
Premium | 0.22 |
Ideal | 0.3 |
Premium | 0.3 |
Very Good | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Ideal | 0.35 |
Premium | 0.3 |
Ideal | 0.3 |
Ideal | 0.3 |
Premium | 0.42 |
Ideal | 0.28 |
Ideal | 0.32 |
Very Good | 0.31 |
Premium | 0.31 |
Premium | 0.24 |
Very Good | 0.24 |
Very Good | 0.3 |
Premium | 0.3 |
Premium | 0.3 |
Good | 0.3 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Ideal | 0.26 |
Ideal | 0.38 |
Good | 0.26 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.32 |
Ideal | 0.7 |
Fair | 0.86 |
Ideal | 0.7 |
Very Good | 0.71 |
Very Good | 0.78 |
Good | 0.7 |
Good | 0.7 |
Fair | 0.96 |
Very Good | 0.73 |
Premium | 0.8 |
Very Good | 0.75 |
Premium | 0.75 |
Ideal | 0.74 |
Premium | 0.75 |
Ideal | 0.8 |
Ideal | 0.75 |
Premium | 0.8 |
Ideal | 0.74 |
Ideal | 0.81 |
Ideal | 0.59 |
Ideal | 0.8 |
Ideal | 0.74 |
Premium | 0.9 |
Very Good | 0.74 |
Ideal | 0.73 |
Ideal | 0.73 |
Premium | 0.8 |
Ideal | 0.71 |
Ideal | 0.7 |
Ideal | 0.8 |
Ideal | 0.71 |
Ideal | 0.74 |
Very Good | 0.7 |
Fair | 0.7 |
Fair | 0.7 |
Premium | 0.7 |
Premium | 0.91 |
Very Good | 0.61 |
Fair | 0.91 |
Fair | 0.91 |
Ideal | 0.77 |
Very Good | 0.71 |
Ideal | 0.71 |
Very Good | 0.7 |
Very Good | 0.77 |
Premium | 0.63 |
Very Good | 0.71 |
Premium | 0.71 |
Ideal | 0.76 |
Ideal | 0.64 |
Premium | 0.71 |
Premium | 0.71 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.71 |
Good | 0.7 |
Very Good | 0.71 |
Very Good | 0.73 |
Very Good | 0.7 |
Ideal | 0.7 |
Premium | 0.71 |
Ideal | 0.74 |
Premium | 0.71 |
Premium | 0.73 |
Very Good | 0.76 |
Ideal | 0.76 |
Ideal | 0.71 |
Premium | 0.73 |
Premium | 0.73 |
Ideal | 0.73 |
Premium | 0.73 |
Very Good | 0.72 |
Very Good | 0.73 |
Ideal | 0.71 |
Ideal | 0.79 |
Very Good | 0.73 |
Very Good | 0.8 |
Ideal | 0.58 |
Ideal | 0.58 |
Good | 0.71 |
Ideal | 0.75 |
Premium | 0.7 |
Very Good | 1.17 |
Ideal | 0.6 |
Ideal | 0.7 |
Good | 0.83 |
Very Good | 0.74 |
Very Good | 0.72 |
Premium | 0.71 |
Ideal | 0.71 |
Ideal | 0.54 |
Ideal | 0.54 |
Ideal | 0.72 |
Ideal | 0.72 |
Good | 0.72 |
Ideal | 0.71 |
Very Good | 0.7 |
Premium | 0.71 |
Very Good | 0.71 |
Good | 0.71 |
Good | 0.71 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Premium | 0.72 |
Very Good | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Good | 0.7 |
Fair | 0.98 |
Premium | 0.78 |
Very Good | 0.7 |
Ideal | 0.52 |
Very Good | 0.73 |
Ideal | 0.74 |
Very Good | 0.7 |
Premium | 0.77 |
Ideal | 0.71 |
Ideal | 0.74 |
Ideal | 0.7 |
Premium | 1.01 |
Ideal | 0.77 |
Ideal | 0.78 |
Very Good | 0.72 |
Very Good | 0.53 |
Ideal | 0.76 |
Good | 0.7 |
Premium | 0.7 |
Very Good | 0.75 |
Ideal | 0.72 |
Premium | 0.72 |
Premium | 0.7 |
Fair | 0.84 |
Premium | 0.75 |
Ideal | 0.52 |
Very Good | 0.72 |
Very Good | 0.79 |
Very Good | 0.72 |
Ideal | 0.51 |
Ideal | 0.64 |
Very Good | 0.7 |
Very Good | 0.83 |
Ideal | 0.76 |
Good | 0.71 |
Good | 0.77 |
Ideal | 0.71 |
Fair | 1.01 |
Premium | 1.01 |
Good | 0.77 |
Good | 0.76 |
Premium | 0.76 |
Premium | 0.76 |
Very Good | 1.05 |
Ideal | 0.81 |
Ideal | 0.7 |
Ideal | 0.55 |
Good | 0.81 |
Premium | 0.63 |
Premium | 0.63 |
Premium | 0.77 |
Fair | 1.05 |
Ideal | 0.64 |
Premium | 0.76 |
Ideal | 0.83 |
Premium | 0.71 |
Premium | 0.71 |
Very Good | 0.87 |
Ideal | 0.73 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.76 |
Ideal | 0.7 |
Very Good | 0.79 |
Very Good | 0.7 |
Good | 0.7 |
Ideal | 0.76 |
Ideal | 0.73 |
Very Good | 0.79 |
Very Good | 0.71 |
Premium | 0.81 |
Ideal | 0.81 |
Good | 0.72 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.81 |
Premium | 0.72 |
Premium | 1.0 |
Good | 0.73 |
Very Good | 0.81 |
Very Good | 0.81 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.57 |
Ideal | 0.51 |
Ideal | 0.72 |
Ideal | 0.74 |
Ideal | 0.74 |
Fair | 0.7 |
Premium | 0.8 |
Fair | 1.01 |
Very Good | 0.8 |
Ideal | 0.77 |
Very Good | 0.83 |
Ideal | 0.82 |
Ideal | 0.78 |
Very Good | 0.6 |
Good | 0.9 |
Premium | 0.7 |
Very Good | 0.9 |
Ideal | 0.83 |
Ideal | 0.83 |
Very Good | 0.83 |
Premium | 0.74 |
Ideal | 0.79 |
Ideal | 0.61 |
Fair | 0.76 |
Ideal | 0.96 |
Ideal | 0.73 |
Premium | 0.73 |
Ideal | 0.75 |
Premium | 0.71 |
Good | 0.71 |
Good | 0.71 |
Premium | 0.71 |
Premium | 1.04 |
Premium | 1.0 |
Very Good | 0.87 |
Ideal | 0.53 |
Premium | 0.72 |
Premium | 0.72 |
Very Good | 0.7 |
Very Good | 0.74 |
Ideal | 0.71 |
Ideal | 0.73 |
Good | 0.7 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.77 |
Premium | 0.71 |
Premium | 0.78 |
Very Good | 0.71 |
Ideal | 0.91 |
Very Good | 0.71 |
Very Good | 0.71 |
Very Good | 0.8 |
Very Good | 0.7 |
Ideal | 0.72 |
Very Good | 0.72 |
Ideal | 0.82 |
Ideal | 0.7 |
Ideal | 0.72 |
Ideal | 0.72 |
Fair | 0.9 |
Premium | 0.74 |
Premium | 0.74 |
Ideal | 0.73 |
Fair | 0.57 |
Premium | 0.73 |
Ideal | 0.72 |
Fair | 0.74 |
Good | 0.82 |
Very Good | 0.81 |
Very Good | 0.75 |
Ideal | 0.7 |
Very Good | 0.71 |
Very Good | 0.71 |
Premium | 0.93 |
Very Good | 0.8 |
Very Good | 0.7 |
Fair | 1.0 |
Very Good | 0.75 |
Ideal | 0.58 |
Very Good | 0.73 |
Very Good | 0.81 |
Premium | 0.81 |
Premium | 0.71 |
Fair | 1.2 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.74 |
Good | 0.7 |
Good | 0.8 |
Very Good | 0.75 |
Very Good | 0.83 |
Fair | 1.0 |
Fair | 0.99 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.7 |
Very Good | 0.7 |
Premium | 0.32 |
Premium | 0.32 |
Ideal | 0.32 |
Premium | 0.32 |
Very Good | 0.32 |
Ideal | 0.32 |
Premium | 0.3 |
Premium | 0.3 |
Premium | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Ideal | 0.3 |
Very Good | 0.3 |
Good | 0.32 |
Ideal | 0.33 |
Very Good | 0.29 |
Very Good | 0.29 |
Very Good | 0.31 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.3 |
Ideal | 0.29 |
Ideal | 0.35 |
Very Good | 0.43 |
Very Good | 0.32 |
Ideal | 0.36 |
Ideal | 0.3 |
Ideal | 0.26 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.71 |
Fair | 0.99 |
Premium | 0.73 |
Ideal | 0.51 |
Premium | 0.91 |
Very Good | 0.84 |
Good | 0.91 |
Premium | 0.76 |
Ideal | 0.76 |
Premium | 0.75 |
Very Good | 0.55 |
Very Good | 0.76 |
Premium | 0.74 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Fair | 0.9 |
Fair | 0.95 |
Premium | 0.89 |
Premium | 0.72 |
Fair | 0.96 |
Premium | 1.02 |
Very Good | 0.78 |
Ideal | 0.61 |
Good | 0.71 |
Premium | 0.78 |
Ideal | 0.87 |
Ideal | 0.83 |
Premium | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.63 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.9 |
Good | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 1.0 |
Premium | 0.86 |
Ideal | 0.8 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Fair | 1.0 |
Very Good | 0.72 |
Ideal | 0.72 |
Good | 0.7 |
Good | 0.86 |
Ideal | 0.71 |
Ideal | 0.75 |
Premium | 0.73 |
Ideal | 0.53 |
Premium | 0.73 |
Good | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Very Good | 0.73 |
Premium | 0.7 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.7 |
Ideal | 0.6 |
Ideal | 0.74 |
Ideal | 0.73 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.7 |
Ideal | 0.7 |
Good | 0.9 |
Ideal | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Very Good | 0.79 |
Good | 0.9 |
Premium | 0.71 |
Ideal | 0.61 |
Fair | 0.9 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.77 |
Good | 0.74 |
Ideal | 0.82 |
Premium | 0.82 |
Premium | 0.71 |
Premium | 0.83 |
Very Good | 0.73 |
Premium | 0.83 |
Premium | 1.17 |
Fair | 0.91 |
Premium | 0.73 |
Good | 0.7 |
Premium | 0.9 |
Premium | 0.7 |
Very Good | 0.7 |
Premium | 0.7 |
Very Good | 0.9 |
Premium | 0.78 |
Ideal | 0.96 |
Very Good | 0.7 |
Good | 0.72 |
Premium | 0.79 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 1.01 |
Premium | 0.72 |
Good | 0.8 |
Ideal | 0.59 |
Ideal | 0.72 |
Premium | 0.75 |
Premium | 0.8 |
Very Good | 0.71 |
Very Good | 0.77 |
Ideal | 0.97 |
Ideal | 0.53 |
Ideal | 0.53 |
Ideal | 0.8 |
Premium | 0.9 |
Very Good | 0.76 |
Ideal | 0.72 |
Ideal | 0.75 |
Premium | 0.72 |
Ideal | 0.79 |
Very Good | 0.72 |
Very Good | 0.91 |
Premium | 0.71 |
Premium | 0.81 |
Ideal | 0.82 |
Premium | 0.71 |
Good | 0.9 |
Very Good | 0.8 |
Very Good | 0.56 |
Very Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.61 |
Ideal | 0.85 |
Ideal | 0.7 |
Ideal | 0.8 |
Ideal | 0.8 |
Very Good | 0.51 |
Ideal | 0.53 |
Ideal | 0.78 |
Very Good | 0.9 |
Fair | 0.9 |
Ideal | 0.77 |
Ideal | 0.73 |
Ideal | 0.63 |
Ideal | 0.7 |
Ideal | 0.72 |
Ideal | 0.72 |
Premium | 0.75 |
Very Good | 0.82 |
Good | 0.71 |
Premium | 0.7 |
Ideal | 0.7 |
Ideal | 0.71 |
Very Good | 0.76 |
Fair | 0.82 |
Premium | 0.72 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Very Good | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Very Good | 0.74 |
Ideal | 0.71 |
Ideal | 0.7 |
Ideal | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.7 |
Ideal | 0.73 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.79 |
Premium | 0.71 |
Very Good | 0.77 |
Very Good | 0.75 |
Ideal | 0.7 |
Premium | 0.71 |
Ideal | 0.92 |
Premium | 0.83 |
Premium | 0.7 |
Premium | 0.73 |
Very Good | 0.71 |
Very Good | 0.73 |
Ideal | 0.82 |
Ideal | 0.82 |
Very Good | 0.82 |
Ideal | 0.52 |
Premium | 1.0 |
Fair | 0.95 |
Ideal | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Ideal | 0.8 |
Premium | 0.7 |
Very Good | 0.7 |
Very Good | 0.7 |
Very Good | 0.71 |
Very Good | 0.81 |
Very Good | 0.71 |
Ideal | 0.73 |
Very Good | 0.73 |
Ideal | 0.72 |
Ideal | 0.81 |
Ideal | 0.71 |
Very Good | 0.73 |
Very Good | 0.7 |
Ideal | 1.01 |
Good | 1.01 |
Ideal | 0.79 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.8 |
Premium | 1.27 |
Ideal | 0.79 |
Very Good | 0.72 |
Ideal | 0.73 |
Fair | 1.01 |
Good | 1.01 |
Ideal | 0.73 |
Ideal | 0.7 |
Good | 0.7 |
Premium | 0.77 |
Premium | 0.77 |
Premium | 0.77 |
Very Good | 0.84 |
Ideal | 0.72 |
Premium | 0.76 |
Very Good | 0.7 |
Ideal | 0.54 |
Fair | 0.75 |
Good | 0.79 |
Very Good | 0.74 |
Very Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.75 |
Very Good | 1.2 |
Very Good | 0.8 |
Ideal | 0.66 |
Very Good | 0.87 |
Premium | 0.86 |
Ideal | 0.74 |
Very Good | 0.58 |
Ideal | 0.78 |
Ideal | 0.74 |
Ideal | 0.73 |
Very Good | 0.91 |
Premium | 0.71 |
Good | 0.71 |
Ideal | 0.79 |
Premium | 0.79 |
Premium | 0.71 |
Premium | 0.82 |
Very Good | 0.78 |
Very Good | 0.7 |
Premium | 1.12 |
Premium | 0.73 |
Fair | 0.91 |
Fair | 0.91 |
Good | 0.91 |
Fair | 0.91 |
Premium | 0.7 |
Premium | 0.68 |
Very Good | 0.73 |
Good | 1.03 |
Premium | 0.74 |
Fair | 0.98 |
Fair | 1.02 |
Fair | 1.0 |
Ideal | 1.02 |
Ideal | 0.6 |
Ideal | 0.8 |
Ideal | 0.97 |
Fair | 1.0 |
Ideal | 0.26 |
Ideal | 0.26 |
Ideal | 0.36 |
Good | 0.34 |
Good | 0.34 |
Good | 0.34 |
Good | 0.34 |
Very Good | 0.34 |
Ideal | 0.34 |
Good | 0.32 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Premium | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Ideal | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Ideal | 0.33 |
Ideal | 0.33 |
Good | 0.33 |
Premium | 0.33 |
Fair | 1.0 |
Premium | 0.77 |
Premium | 0.77 |
Good | 0.7 |
Very Good | 0.9 |
Ideal | 0.72 |
Premium | 0.9 |
Premium | 0.72 |
Ideal | 0.7 |
Very Good | 0.81 |
Very Good | 0.81 |
Premium | 0.71 |
Premium | 0.7 |
Premium | 0.71 |
Very Good | 0.71 |
Premium | 0.92 |
Ideal | 0.76 |
Ideal | 0.73 |
Premium | 0.71 |
Good | 0.7 |
Fair | 0.9 |
Fair | 0.71 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.77 |
Ideal | 0.71 |
Premium | 0.7 |
Fair | 0.75 |
Premium | 0.83 |
Very Good | 0.71 |
Very Good | 0.9 |
Ideal | 0.6 |
Premium | 0.71 |
Ideal | 0.53 |
Premium | 0.71 |
Ideal | 0.62 |
Ideal | 0.62 |
Premium | 0.9 |
Fair | 0.62 |
Premium | 0.82 |
Premium | 0.66 |
Very Good | 0.7 |
Very Good | 0.8 |
Very Good | 0.8 |
Premium | 0.79 |
Very Good | 0.71 |
Ideal | 0.7 |
Very Good | 0.7 |
Premium | 0.79 |
Premium | 0.7 |
Premium | 1.22 |
Fair | 1.01 |
Premium | 0.73 |
Good | 0.91 |
Ideal | 0.71 |
Premium | 0.83 |
Premium | 0.84 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.91 |
Premium | 0.9 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.72 |
Premium | 0.72 |
Ideal | 0.71 |
Ideal | 0.81 |
Very Good | 0.83 |
Premium | 0.73 |
Very Good | 0.56 |
Very Good | 0.56 |
Ideal | 0.71 |
Ideal | 0.7 |
Premium | 0.96 |
Very Good | 0.71 |
Ideal | 0.7 |
Ideal | 0.71 |
Premium | 0.8 |
Premium | 0.95 |
Ideal | 0.82 |
Ideal | 0.52 |
Ideal | 0.82 |
Ideal | 0.82 |
Premium | 0.82 |
Ideal | 0.8 |
Fair | 0.96 |
Ideal | 0.72 |
Ideal | 0.62 |
Premium | 0.79 |
Very Good | 0.75 |
Premium | 1.08 |
Ideal | 0.72 |
Ideal | 0.62 |
Ideal | 0.73 |
Ideal | 0.72 |
Premium | 0.52 |
Ideal | 0.83 |
Premium | 0.64 |
Ideal | 0.8 |
Ideal | 0.74 |
Ideal | 0.72 |
Ideal | 0.82 |
Premium | 0.73 |
Premium | 1.04 |
Very Good | 0.73 |
Good | 0.73 |
Premium | 0.9 |
Ideal | 0.75 |
Ideal | 0.79 |
Good | 0.7 |
Very Good | 0.75 |
Ideal | 1.02 |
Very Good | 0.7 |
Ideal | 0.7 |
Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Very Good | 0.7 |
Very Good | 0.72 |
Ideal | 0.74 |
Good | 0.84 |
Very Good | 0.76 |
Very Good | 0.77 |
Ideal | 0.76 |
Ideal | 1.0 |
Fair | 1.0 |
Fair | 0.9 |
Premium | 0.9 |
Good | 0.9 |
Fair | 0.9 |
Fair | 0.9 |
Premium | 0.9 |
Premium | 0.78 |
Premium | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.7 |
Fair | 1.0 |
Ideal | 0.77 |
Fair | 1.0 |
Fair | 1.0 |
Fair | 1.0 |
Premium | 0.73 |
Premium | 0.79 |
Very Good | 0.72 |
Ideal | 0.71 |
Ideal | 0.74 |
Good | 0.7 |
Good | 0.7 |
Very Good | 0.79 |
Very Good | 0.79 |
Very Good | 0.79 |
Ideal | 0.71 |
Ideal | 0.79 |
Very Good | 0.73 |
Premium | 0.63 |
Premium | 0.7 |
Premium | 0.71 |
Ideal | 0.84 |
Ideal | 0.84 |
Ideal | 1.02 |
Fair | 0.72 |
Ideal | 0.72 |
Very Good | 0.92 |
Very Good | 0.74 |
Ideal | 0.7 |
Very Good | 0.71 |
Premium | 1.05 |
Very Good | 0.7 |
Ideal | 0.54 |
Premium | 0.73 |
Fair | 0.88 |
Premium | 0.73 |
Ideal | 0.72 |
Good | 0.9 |
Fair | 0.9 |
Fair | 1.03 |
Very Good | 0.84 |
Premium | 1.01 |
Ideal | 0.77 |
Fair | 0.8 |
Fair | 0.9 |
Ideal | 0.73 |
Ideal | 0.72 |
Very Good | 0.71 |
Premium | 0.7 |
Ideal | 0.79 |
Very Good | 0.72 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.9 |
Very Good | 0.71 |
Ideal | 0.5 |
Ideal | 0.5 |
Ideal | 0.74 |
Premium | 0.77 |
Premium | 0.77 |
Ideal | 0.8 |
Ideal | 0.8 |
Premium | 0.8 |
Good | 0.8 |
Ideal | 0.66 |
Very Good | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Ideal | 0.72 |
Good | 0.71 |
Ideal | 0.86 |
Fair | 1.19 |
Very Good | 0.71 |
Very Good | 0.82 |
Ideal | 0.71 |
Ideal | 0.75 |
Very Good | 0.7 |
Ideal | 0.8 |
Good | 0.82 |
Very Good | 0.82 |
Premium | 0.82 |
Very Good | 0.81 |
Ideal | 0.81 |
Ideal | 0.76 |
Very Good | 0.71 |
Very Good | 0.7 |
Ideal | 0.7 |
Very Good | 0.74 |
Very Good | 0.77 |
Very Good | 0.77 |
Ideal | 0.53 |
Ideal | 0.79 |
Ideal | 0.73 |
Ideal | 0.77 |
Premium | 0.77 |
Very Good | 1.01 |
Ideal | 1.01 |
Very Good | 0.6 |
Premium | 0.76 |
Ideal | 0.54 |
Ideal | 0.72 |
Good | 0.72 |
Premium | 0.74 |
Premium | 1.12 |
Try scatter plot to see pairwise scatter plots of continuous features.
display(diamondsDF) //Ctrl+Enter
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Note that columns of type string are not in the scatter plot!
diamondsDF.printSchema // Ctrl+Enter
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
Let us run through some basic inteactive SQL queries next
- HiveQL supports =, <, >, <=, >= and != operators. It also supports LIKE operator for fuzzy matching of Strings
- Enclose Strings in single quotes
- Multiple conditions can be combined using
and
andor
- Enclose conditions in
()
for precedence - ...
- ...
Why do I need to learn interactive SQL queries?
Such queries in the widely known declarative SQL language can help us explore the data and thereby inform the modeling process!!!
Using DataFrame API, we can apply a filter
after select
to transform the DataFrame diamondsDF
to the new DataFrame diamondsDColoredDF
.
Below, $
is an alias for column.
Let as select the columns named carat
, colour
, price
where color
value is equal to D
.
val diamondsDColoredDF = diamondsDF.select("carat", "color", "price").filter($"color" === "D") // Shift+Enter
diamondsDColoredDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [carat: double, color: string ... 1 more field]
diamondsDColoredDF.show(10) // Ctrl+Enter
+-----+-----+-----+
|carat|color|price|
+-----+-----+-----+
| 0.23| D|357.0|
| 0.23| D|402.0|
| 0.26| D|403.0|
| 0.26| D|403.0|
| 0.26| D|403.0|
| 0.22| D|404.0|
| 0.3| D|552.0|
| 0.3| D|552.0|
| 0.3| D|552.0|
| 0.24| D|553.0|
+-----+-----+-----+
only showing top 10 rows
As you can see all the colors are now 'D'. But to really confirm this we can do the following for fun:
diamondsDColoredDF.select("color").distinct().show
+-----+
|color|
+-----+
| D|
+-----+
Let's try to do the same in SQL for those who know SQL from before.
First we need to see if the table is registerd (not just the DataFrame), and if not we ened to register our DataFrame as a temporary table.
sqlContext.tables.show() // Ctrl+Enter to see available tables
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default| all_prices| false|
| default|bitcoin_normed_wi...| false|
| default|bitcoin_reversals...| false|
| default| countrycodes| false|
| default| gold_normed_window| false|
| default|gold_reversals_wi...| false|
| default|ltcar_locations_2...| false|
| default| magellan| false|
| default| mobile_sample| false|
| default| oil_normed_window| false|
| default|oil_reversals_window| false|
| default|oil_reversals_win...| false|
| default| over300all_2_txt| false|
| default| person| false|
| default| personer| false|
| default| persons| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
| default|voronoi20191213up...| false|
+--------+--------------------+-----------+
only showing top 20 rows
Looks like diamonds is already there (if not just execute the following cell).
diamondsDF.createOrReplaceTempView("diamonds")
sqlContext.tables.show() // Ctrl+Enter to see available tables
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default| all_prices| false|
| default|bitcoin_normed_wi...| false|
| default|bitcoin_reversals...| false|
| default| countrycodes| false|
| default| gold_normed_window| false|
| default|gold_reversals_wi...| false|
| default|ltcar_locations_2...| false|
| default| magellan| false|
| default| mobile_sample| false|
| default| oil_normed_window| false|
| default|oil_reversals_window| false|
| default|oil_reversals_win...| false|
| default| over300all_2_txt| false|
| default| person| false|
| default| personer| false|
| default| persons| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
| default|voronoi20191213up...| false|
+--------+--------------------+-----------+
only showing top 20 rows
-- Shift+Enter to do the same in SQL
select carat, color, price from diamonds where color='D'
carat | color | price |
---|---|---|
0.23 | D | 357.0 |
0.23 | D | 402.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.22 | D | 404.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.24 | D | 553.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.75 | D | 2760.0 |
0.71 | D | 2762.0 |
0.61 | D | 2763.0 |
0.71 | D | 2764.0 |
0.71 | D | 2764.0 |
0.7 | D | 2767.0 |
0.71 | D | 2767.0 |
0.73 | D | 2768.0 |
0.7 | D | 2768.0 |
0.71 | D | 2768.0 |
0.71 | D | 2770.0 |
0.76 | D | 2770.0 |
0.73 | D | 2770.0 |
0.75 | D | 2773.0 |
0.7 | D | 2773.0 |
0.7 | D | 2777.0 |
0.53 | D | 2782.0 |
0.75 | D | 2782.0 |
0.72 | D | 2782.0 |
0.72 | D | 2782.0 |
0.7 | D | 2782.0 |
0.64 | D | 2787.0 |
0.71 | D | 2788.0 |
0.72 | D | 2795.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.51 | D | 2797.0 |
0.78 | D | 2799.0 |
0.91 | D | 2803.0 |
0.7 | D | 2804.0 |
0.7 | D | 2804.0 |
0.72 | D | 2804.0 |
0.72 | D | 2804.0 |
0.73 | D | 2808.0 |
0.81 | D | 2809.0 |
0.74 | D | 2810.0 |
0.83 | D | 2811.0 |
0.71 | D | 2812.0 |
0.55 | D | 2815.0 |
0.71 | D | 2816.0 |
0.73 | D | 2821.0 |
0.71 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.79 | D | 2823.0 |
0.71 | D | 2824.0 |
0.7 | D | 2826.0 |
0.7 | D | 2827.0 |
0.72 | D | 2827.0 |
0.7 | D | 2828.0 |
0.7 | D | 2833.0 |
0.7 | D | 2833.0 |
0.51 | D | 2834.0 |
0.92 | D | 2840.0 |
0.71 | D | 2841.0 |
0.73 | D | 2841.0 |
0.73 | D | 2841.0 |
0.71 | D | 2843.0 |
0.79 | D | 2846.0 |
0.76 | D | 2847.0 |
0.54 | D | 2848.0 |
0.75 | D | 2848.0 |
0.66 | D | 2851.0 |
0.79 | D | 2853.0 |
0.79 | D | 2853.0 |
0.74 | D | 2855.0 |
0.73 | D | 2858.0 |
0.71 | D | 2858.0 |
0.71 | D | 2858.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.71 | D | 2860.0 |
0.71 | D | 2861.0 |
0.66 | D | 2861.0 |
0.7 | D | 2862.0 |
0.8 | D | 2862.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.73 | D | 2865.0 |
0.56 | D | 2866.0 |
0.56 | D | 2866.0 |
0.7 | D | 2867.0 |
1.08 | D | 2869.0 |
0.7 | D | 2872.0 |
0.75 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.71 | D | 2874.0 |
0.79 | D | 2878.0 |
0.74 | D | 2880.0 |
0.72 | D | 2883.0 |
0.77 | D | 2885.0 |
0.9 | D | 2885.0 |
0.71 | D | 2887.0 |
0.72 | D | 2891.0 |
0.71 | D | 2891.0 |
0.79 | D | 2896.0 |
0.77 | D | 2896.0 |
0.6 | D | 2897.0 |
0.54 | D | 2897.0 |
0.74 | D | 2897.0 |
0.75 | D | 2898.0 |
0.77 | D | 2898.0 |
0.72 | D | 2900.0 |
0.75 | D | 2903.0 |
0.75 | D | 2903.0 |
0.72 | D | 2903.0 |
0.72 | D | 2903.0 |
0.79 | D | 2904.0 |
0.53 | D | 2905.0 |
0.74 | D | 2906.0 |
0.32 | D | 558.0 |
0.7 | D | 2909.0 |
0.7 | D | 2909.0 |
0.71 | D | 2910.0 |
0.7 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.83 | D | 2918.0 |
0.71 | D | 2921.0 |
0.77 | D | 2922.0 |
0.77 | D | 2923.0 |
0.8 | D | 2925.0 |
0.81 | D | 2926.0 |
0.7 | D | 2928.0 |
0.59 | D | 2933.0 |
0.75 | D | 2933.0 |
0.71 | D | 2934.0 |
0.7 | D | 2936.0 |
0.77 | D | 2939.0 |
0.76 | D | 2942.0 |
0.73 | D | 2943.0 |
0.57 | D | 2945.0 |
0.78 | D | 2945.0 |
0.73 | D | 2947.0 |
0.73 | D | 2947.0 |
0.77 | D | 2949.0 |
0.71 | D | 2950.0 |
0.72 | D | 2951.0 |
0.72 | D | 2954.0 |
0.72 | D | 2954.0 |
0.75 | D | 2954.0 |
0.82 | D | 2954.0 |
0.7 | D | 2956.0 |
0.56 | D | 2959.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.63 | D | 2962.0 |
0.71 | D | 2964.0 |
0.71 | D | 2968.0 |
0.77 | D | 2973.0 |
1.0 | D | 2974.0 |
0.76 | D | 2977.0 |
0.7 | D | 2980.0 |
0.7 | D | 2985.0 |
0.74 | D | 2987.0 |
0.83 | D | 2990.0 |
0.7 | D | 2991.0 |
0.72 | D | 2993.0 |
0.81 | D | 2994.0 |
0.73 | D | 2995.0 |
0.77 | D | 2996.0 |
0.7 | D | 2998.0 |
0.7 | D | 2999.0 |
0.72 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.71 | D | 3002.0 |
1.01 | D | 3003.0 |
0.65 | D | 3003.0 |
0.92 | D | 3004.0 |
0.55 | D | 3006.0 |
0.76 | D | 3007.0 |
0.7 | D | 3008.0 |
0.8 | D | 3011.0 |
0.77 | D | 3011.0 |
0.9 | D | 3013.0 |
0.73 | D | 3014.0 |
0.72 | D | 3016.0 |
0.5 | D | 3017.0 |
0.78 | D | 3019.0 |
0.71 | D | 3020.0 |
0.75 | D | 3024.0 |
0.75 | D | 3024.0 |
0.65 | D | 3025.0 |
0.71 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.78 | D | 3035.0 |
0.71 | D | 3035.0 |
0.74 | D | 3036.0 |
0.61 | D | 3036.0 |
0.77 | D | 3040.0 |
0.71 | D | 3045.0 |
0.72 | D | 3045.0 |
0.75 | D | 3046.0 |
0.73 | D | 3047.0 |
0.75 | D | 3048.0 |
0.72 | D | 3048.0 |
0.72 | D | 3048.0 |
0.66 | D | 3049.0 |
0.62 | D | 3050.0 |
0.7 | D | 3052.0 |
0.7 | D | 3053.0 |
0.7 | D | 3054.0 |
0.65 | D | 3056.0 |
0.92 | D | 3057.0 |
0.79 | D | 3058.0 |
0.72 | D | 3062.0 |
0.85 | D | 3066.0 |
0.7 | D | 3073.0 |
0.72 | D | 3075.0 |
0.72 | D | 3075.0 |
0.7 | D | 3075.0 |
0.76 | D | 3075.0 |
0.71 | D | 3077.0 |
0.71 | D | 3077.0 |
0.75 | D | 3078.0 |
0.83 | D | 3078.0 |
0.91 | D | 3079.0 |
0.79 | D | 3081.0 |
0.7 | D | 3082.0 |
0.8 | D | 3082.0 |
0.71 | D | 3084.0 |
0.75 | D | 3085.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.74 | D | 3087.0 |
0.71 | D | 3090.0 |
0.71 | D | 3090.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3093.0 |
0.71 | D | 3096.0 |
0.71 | D | 3096.0 |
0.53 | D | 3097.0 |
0.72 | D | 3099.0 |
0.72 | D | 3102.0 |
0.66 | D | 3103.0 |
0.78 | D | 3103.0 |
0.75 | D | 3105.0 |
0.7 | D | 3107.0 |
0.79 | D | 3112.0 |
0.94 | D | 3125.0 |
0.57 | D | 3126.0 |
0.57 | D | 3126.0 |
0.7 | D | 3129.0 |
0.7 | D | 3131.0 |
0.71 | D | 3131.0 |
0.71 | D | 3135.0 |
0.71 | D | 3135.0 |
0.8 | D | 3135.0 |
0.81 | D | 3135.0 |
0.71 | D | 3136.0 |
0.71 | D | 3137.0 |
0.74 | D | 3138.0 |
0.72 | D | 3139.0 |
0.54 | D | 3139.0 |
0.73 | D | 3140.0 |
0.71 | D | 3145.0 |
0.84 | D | 3145.0 |
0.78 | D | 3145.0 |
0.75 | D | 3152.0 |
0.9 | D | 3153.0 |
0.71 | D | 3153.0 |
0.58 | D | 3154.0 |
0.8 | D | 3154.0 |
0.77 | D | 3158.0 |
0.82 | D | 3159.0 |
0.77 | D | 3160.0 |
0.81 | D | 3160.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.77 | D | 3166.0 |
0.8 | D | 3173.0 |
0.72 | D | 3176.0 |
0.74 | D | 3177.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.81 | D | 3179.0 |
0.73 | D | 3182.0 |
0.73 | D | 3182.0 |
0.7 | D | 3183.0 |
0.79 | D | 3185.0 |
0.73 | D | 3189.0 |
0.73 | D | 3189.0 |
0.71 | D | 3192.0 |
0.7 | D | 3193.0 |
0.54 | D | 3194.0 |
0.73 | D | 3195.0 |
0.8 | D | 3195.0 |
0.7 | D | 3199.0 |
0.71 | D | 3203.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.72 | D | 3205.0 |
0.58 | D | 3206.0 |
0.83 | D | 3207.0 |
0.7 | D | 3208.0 |
0.79 | D | 3209.0 |
0.8 | D | 3210.0 |
0.7 | D | 3210.0 |
0.71 | D | 3212.0 |
0.78 | D | 3214.0 |
0.7 | D | 3214.0 |
0.95 | D | 3214.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.52 | D | 3218.0 |
0.72 | D | 3219.0 |
0.72 | D | 3219.0 |
0.71 | D | 3222.0 |
0.71 | D | 3222.0 |
0.51 | D | 3223.0 |
0.8 | D | 3226.0 |
0.65 | D | 3228.0 |
0.7 | D | 3229.0 |
0.7 | D | 3229.0 |
0.7 | D | 3231.0 |
0.59 | D | 3234.0 |
0.71 | D | 3234.0 |
0.72 | D | 3236.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.77 | D | 3241.0 |
0.79 | D | 3242.0 |
0.71 | D | 3245.0 |
0.84 | D | 3246.0 |
0.25 | D | 563.0 |
0.26 | D | 564.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.7 | D | 3247.0 |
0.52 | D | 3247.0 |
0.76 | D | 3248.0 |
0.73 | D | 3250.0 |
0.77 | D | 3251.0 |
0.71 | D | 3252.0 |
0.78 | D | 3253.0 |
0.73 | D | 3255.0 |
0.78 | D | 3258.0 |
0.9 | D | 3262.0 |
0.71 | D | 3262.0 |
0.84 | D | 3265.0 |
0.81 | D | 3266.0 |
0.7 | D | 3267.0 |
0.56 | D | 3270.0 |
0.79 | D | 3270.0 |
0.72 | D | 3275.0 |
0.92 | D | 3277.0 |
0.7 | D | 3278.0 |
0.52 | D | 3284.0 |
0.86 | D | 3284.0 |
0.7 | D | 3287.0 |
0.7 | D | 3287.0 |
0.77 | D | 3291.0 |
0.76 | D | 3293.0 |
0.74 | D | 3294.0 |
0.7 | D | 3296.0 |
0.91 | D | 3298.0 |
0.78 | D | 3298.0 |
0.78 | D | 3298.0 |
0.71 | D | 3299.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
0.76 | D | 3306.0 |
0.76 | D | 3306.0 |
0.53 | D | 3307.0 |
0.73 | D | 3308.0 |
0.77 | D | 3309.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.8 | D | 3312.0 |
0.7 | D | 3312.0 |
0.8 | D | 3312.0 |
0.9 | D | 3312.0 |
0.9 | D | 3312.0 |
0.7 | D | 3312.0 |
0.9 | D | 3312.0 |
0.71 | D | 3316.0 |
0.73 | D | 3319.0 |
0.52 | D | 3321.0 |
0.71 | D | 3321.0 |
0.71 | D | 3321.0 |
0.72 | D | 3322.0 |
0.81 | D | 3324.0 |
0.78 | D | 3326.0 |
0.79 | D | 3328.0 |
0.71 | D | 3332.0 |
0.71 | D | 3333.0 |
0.92 | D | 3335.0 |
0.7 | D | 3335.0 |
0.61 | D | 3336.0 |
1.01 | D | 3337.0 |
0.77 | D | 3345.0 |
0.53 | D | 3346.0 |
0.73 | D | 3346.0 |
0.83 | D | 3347.0 |
0.91 | D | 3349.0 |
0.77 | D | 3351.0 |
0.76 | D | 3352.0 |
0.74 | D | 3353.0 |
0.76 | D | 3353.0 |
0.81 | D | 3353.0 |
0.82 | D | 3357.0 |
0.91 | D | 3357.0 |
0.7 | D | 3360.0 |
0.7 | D | 3361.0 |
0.7 | D | 3365.0 |
0.74 | D | 3365.0 |
0.71 | D | 3366.0 |
0.69 | D | 3369.0 |
0.9 | D | 3371.0 |
0.9 | D | 3371.0 |
0.71 | D | 3372.0 |
0.52 | D | 3373.0 |
0.7 | D | 3375.0 |
0.72 | D | 3375.0 |
0.5 | D | 3378.0 |
0.5 | D | 3378.0 |
0.6 | D | 3382.0 |
0.27 | D | 567.0 |
0.31 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.3 | D | 568.0 |
0.9 | D | 3382.0 |
0.95 | D | 3384.0 |
0.76 | D | 3384.0 |
0.78 | D | 3389.0 |
0.88 | D | 3390.0 |
0.61 | D | 3397.0 |
0.85 | D | 3398.0 |
0.76 | D | 3401.0 |
0.91 | D | 3403.0 |
0.71 | D | 3406.0 |
0.71 | D | 3406.0 |
0.91 | D | 3408.0 |
0.7 | D | 3410.0 |
0.73 | D | 3411.0 |
0.73 | D | 3412.0 |
0.8 | D | 3419.0 |
0.7 | D | 3419.0 |
0.96 | D | 3419.0 |
0.96 | D | 3419.0 |
0.71 | D | 3420.0 |
0.9 | D | 3425.0 |
0.7 | D | 3425.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.79 | D | 3432.0 |
0.73 | D | 3440.0 |
0.8 | D | 3441.0 |
0.53 | D | 3442.0 |
0.77 | D | 3442.0 |
0.76 | D | 3443.0 |
0.76 | D | 3443.0 |
0.51 | D | 3446.0 |
0.51 | D | 3446.0 |
0.7 | D | 3448.0 |
0.72 | D | 3450.0 |
0.3 | D | 568.0 |
0.74 | D | 3454.0 |
0.78 | D | 3454.0 |
0.7 | D | 3454.0 |
0.75 | D | 3456.0 |
0.72 | D | 3459.0 |
0.74 | D | 3461.0 |
0.81 | D | 3462.0 |
0.91 | D | 3463.0 |
0.7 | D | 3463.0 |
0.73 | D | 3464.0 |
0.56 | D | 3465.0 |
0.71 | D | 3465.0 |
0.73 | D | 3467.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.78 | D | 3473.0 |
0.74 | D | 3476.0 |
0.7 | D | 3477.0 |
0.71 | D | 3479.0 |
0.96 | D | 3480.0 |
0.74 | D | 3487.0 |
0.77 | D | 3489.0 |
0.77 | D | 3489.0 |
0.72 | D | 3493.0 |
0.54 | D | 3494.0 |
0.72 | D | 3495.0 |
0.56 | D | 3496.0 |
0.74 | D | 3498.0 |
0.7 | D | 3501.0 |
0.8 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.9 | D | 3505.0 |
0.55 | D | 3509.0 |
0.73 | D | 3509.0 |
0.91 | D | 3511.0 |
0.74 | D | 3517.0 |
0.53 | D | 3517.0 |
0.71 | D | 3518.0 |
0.72 | D | 3522.0 |
0.71 | D | 3524.0 |
0.73 | D | 3528.0 |
0.7 | D | 3529.0 |
0.32 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.78 | D | 3534.0 |
0.7 | D | 3535.0 |
0.93 | D | 3540.0 |
0.71 | D | 3540.0 |
0.72 | D | 3543.0 |
0.72 | D | 3550.0 |
0.92 | D | 3550.0 |
0.72 | D | 3554.0 |
0.83 | D | 3556.0 |
0.83 | D | 3556.0 |
0.73 | D | 3557.0 |
0.7 | D | 3561.0 |
0.75 | D | 3562.0 |
0.8 | D | 3564.0 |
0.9 | D | 3567.0 |
0.7 | D | 3567.0 |
0.9 | D | 3568.0 |
0.72 | D | 3568.0 |
1.0 | D | 3569.0 |
0.72 | D | 3570.0 |
0.6 | D | 3570.0 |
0.91 | D | 3573.0 |
0.71 | D | 3576.0 |
0.9 | D | 3578.0 |
0.9 | D | 3579.0 |
0.76 | D | 3581.0 |
0.71 | D | 3582.0 |
0.97 | D | 3585.0 |
1.11 | D | 3589.0 |
0.82 | D | 3593.0 |
0.78 | D | 3595.0 |
0.8 | D | 3597.0 |
0.72 | D | 3601.0 |
1.01 | D | 3604.0 |
0.9 | D | 3604.0 |
1.01 | D | 3605.0 |
0.79 | D | 3605.0 |
1.03 | D | 3607.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.92 | D | 3613.0 |
0.73 | D | 3615.0 |
0.7 | D | 3618.0 |
0.7 | D | 3618.0 |
0.71 | D | 3618.0 |
0.72 | D | 3619.0 |
0.73 | D | 3620.0 |
0.7 | D | 3622.0 |
0.7 | D | 3622.0 |
0.72 | D | 3622.0 |
0.72 | D | 3622.0 |
0.75 | D | 3625.0 |
0.61 | D | 3625.0 |
0.72 | D | 3629.0 |
0.9 | D | 3632.0 |
0.94 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
0.9 | D | 3643.0 |
0.77 | D | 3643.0 |
1.16 | D | 3644.0 |
0.77 | D | 3644.0 |
1.11 | D | 3655.0 |
0.91 | D | 3660.0 |
0.87 | D | 3664.0 |
0.7 | D | 3668.0 |
0.78 | D | 3668.0 |
0.74 | D | 3668.0 |
0.85 | D | 3669.0 |
0.71 | D | 3670.0 |
1.01 | D | 3671.0 |
1.01 | D | 3671.0 |
0.78 | D | 3672.0 |
0.73 | D | 3673.0 |
0.71 | D | 3674.0 |
0.71 | D | 3674.0 |
1.03 | D | 3675.0 |
0.75 | D | 3679.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.8 | D | 3682.0 |
0.84 | D | 3685.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.71 | D | 3690.0 |
0.94 | D | 3691.0 |
0.75 | D | 3696.0 |
0.9 | D | 3706.0 |
0.92 | D | 3707.0 |
0.86 | D | 3709.0 |
1.16 | D | 3711.0 |
0.75 | D | 3712.0 |
0.71 | D | 3716.0 |
0.71 | D | 3718.0 |
0.77 | D | 3721.0 |
0.72 | D | 3722.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.58 | D | 3732.0 |
0.76 | D | 3732.0 |
0.73 | D | 3735.0 |
0.78 | D | 3736.0 |
0.7 | D | 3737.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.58 | D | 3741.0 |
0.87 | D | 3742.0 |
1.09 | D | 3742.0 |
1.03 | D | 3743.0 |
1.03 | D | 3743.0 |
0.93 | D | 3744.0 |
0.74 | D | 3746.0 |
0.3 | D | 574.0 |
0.9 | D | 3751.0 |
0.7 | D | 3752.0 |
0.9 | D | 3755.0 |
0.9 | D | 3755.0 |
0.77 | D | 3755.0 |
0.61 | D | 3758.0 |
0.78 | D | 3763.0 |
0.91 | D | 3763.0 |
1.0 | D | 3767.0 |
1.02 | D | 3769.0 |
1.02 | D | 3773.0 |
0.83 | D | 3774.0 |
1.04 | D | 3780.0 |
1.04 | D | 3780.0 |
0.9 | D | 3780.0 |
1.04 | D | 3780.0 |
1.5 | D | 3780.0 |
0.91 | D | 3781.0 |
0.91 | D | 3781.0 |
0.77 | D | 3787.0 |
0.7 | D | 3788.0 |
0.9 | D | 3789.0 |
0.59 | D | 3791.0 |
0.91 | D | 3796.0 |
0.79 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.71 | D | 3799.0 |
0.78 | D | 3800.0 |
0.71 | D | 3801.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.84 | D | 3809.0 |
0.78 | D | 3811.0 |
0.74 | D | 3812.0 |
0.53 | D | 3812.0 |
0.93 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.93 | D | 3812.0 |
0.74 | D | 3813.0 |
1.18 | D | 3816.0 |
0.84 | D | 3816.0 |
1.05 | D | 3816.0 |
0.79 | D | 3818.0 |
0.9 | D | 3818.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.85 | D | 3821.0 |
0.92 | D | 3823.0 |
0.53 | D | 3827.0 |
0.91 | D | 3828.0 |
0.63 | D | 3832.0 |
0.91 | D | 3837.0 |
0.77 | D | 3837.0 |
0.71 | D | 3838.0 |
1.02 | D | 3838.0 |
1.02 | D | 3839.0 |
0.93 | D | 3839.0 |
0.7 | D | 3840.0 |
1.02 | D | 3842.0 |
0.92 | D | 3843.0 |
0.9 | D | 3847.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.6 | D | 3850.0 |
0.81 | D | 3852.0 |
0.91 | D | 3855.0 |
0.73 | D | 3856.0 |
0.71 | D | 3856.0 |
0.74 | D | 3858.0 |
0.94 | D | 3862.0 |
0.78 | D | 3864.0 |
1.17 | D | 3866.0 |
0.9 | D | 3871.0 |
1.01 | D | 3871.0 |
0.87 | D | 3873.0 |
0.92 | D | 3877.0 |
0.71 | D | 3877.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.93 | D | 3880.0 |
1.13 | D | 3883.0 |
1.18 | D | 3886.0 |
0.91 | D | 3889.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.25 | D | 575.0 |
0.27 | D | 575.0 |
0.25 | D | 575.0 |
1.09 | D | 3890.0 |
0.92 | D | 3891.0 |
1.0 | D | 3894.0 |
0.76 | D | 3894.0 |
0.72 | D | 3896.0 |
1.18 | D | 3899.0 |
1.02 | D | 3909.0 |
1.02 | D | 3909.0 |
0.91 | D | 3910.0 |
0.91 | D | 3911.0 |
0.66 | D | 3915.0 |
0.92 | D | 3916.0 |
0.9 | D | 3918.0 |
0.7 | D | 3920.0 |
0.78 | D | 3923.0 |
0.9 | D | 3931.0 |
1.01 | D | 3932.0 |
0.83 | D | 3933.0 |
0.92 | D | 3936.0 |
0.73 | D | 3937.0 |
0.91 | D | 3943.0 |
0.9 | D | 3945.0 |
0.91 | D | 3949.0 |
1.14 | D | 3950.0 |
0.76 | D | 3950.0 |
0.71 | D | 3952.0 |
0.91 | D | 3958.0 |
1.01 | D | 3959.0 |
0.75 | D | 3961.0 |
1.09 | D | 3961.0 |
0.88 | D | 3962.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
0.33 | D | 575.0 |
1.0 | D | 3965.0 |
0.77 | D | 3966.0 |
0.62 | D | 3968.0 |
1.02 | D | 3971.0 |
0.9 | D | 3975.0 |
0.9 | D | 3975.0 |
1.23 | D | 3977.0 |
0.77 | D | 3980.0 |
0.73 | D | 3980.0 |
0.83 | D | 3984.0 |
0.9 | D | 3989.0 |
0.96 | D | 3989.0 |
0.9 | D | 3990.0 |
0.93 | D | 3990.0 |
0.83 | D | 3990.0 |
0.92 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.7 | D | 4003.0 |
1.01 | D | 4004.0 |
0.75 | D | 4007.0 |
0.9 | D | 4007.0 |
0.9 | D | 4007.0 |
0.87 | D | 4012.0 |
0.71 | D | 4014.0 |
0.7 | D | 4022.0 |
0.65 | D | 4022.0 |
1.14 | D | 4022.0 |
0.56 | D | 4025.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.57 | D | 4032.0 |
0.77 | D | 4037.0 |
0.77 | D | 4039.0 |
0.74 | D | 4040.0 |
0.91 | D | 4041.0 |
0.54 | D | 4042.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
0.72 | D | 4047.0 |
1.23 | D | 4050.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.96 | D | 4060.0 |
1.01 | D | 4064.0 |
1.0 | D | 4065.0 |
0.91 | D | 4067.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
1.12 | D | 4071.0 |
1.01 | D | 4072.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.72 | D | 4082.0 |
0.72 | D | 4082.0 |
0.64 | D | 4084.0 |
0.92 | D | 4086.0 |
0.81 | D | 4087.0 |
0.7 | D | 4095.0 |
0.92 | D | 4096.0 |
0.92 | D | 4096.0 |
0.25 | D | 410.0 |
0.23 | D | 411.0 |
0.27 | D | 413.0 |
0.3 | D | 413.0 |
0.3 | D | 413.0 |
0.23 | D | 577.0 |
0.91 | D | 4107.0 |
0.91 | D | 4107.0 |
0.87 | D | 4108.0 |
0.91 | D | 4113.0 |
0.82 | D | 4113.0 |
0.9 | D | 4114.0 |
0.73 | D | 4116.0 |
0.9 | D | 4117.0 |
1.01 | D | 4118.0 |
0.9 | D | 4120.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
1.04 | D | 4123.0 |
0.9 | D | 4128.0 |
0.9 | D | 4130.0 |
0.9 | D | 4133.0 |
0.73 | D | 4134.0 |
0.73 | D | 4134.0 |
0.82 | D | 4135.0 |
0.82 | D | 4135.0 |
1.12 | D | 4139.0 |
0.93 | D | 4140.0 |
0.93 | D | 4140.0 |
0.92 | D | 4150.0 |
0.76 | D | 4150.0 |
1.0 | D | 4155.0 |
1.06 | D | 4155.0 |
0.92 | D | 4158.0 |
0.92 | D | 4158.0 |
0.83 | D | 4159.0 |
0.59 | D | 4161.0 |
0.93 | D | 4165.0 |
0.91 | D | 4165.0 |
0.9 | D | 4167.0 |
0.92 | D | 4168.0 |
0.92 | D | 4168.0 |
1.19 | D | 4168.0 |
0.8 | D | 4170.0 |
0.6 | D | 4172.0 |
1.03 | D | 4177.0 |
0.9 | D | 4178.0 |
Alternatively, one could just write the SQL statement in scala to create a new DataFrame diamondsDColoredDF_FromTable
from the table diamonds
and display it, as follows:
val diamondsDColoredDF_FromTable = sqlContext.sql("select carat, color, price from diamonds where color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
// or if you like use upper case for SQL then this is equivalent
val diamondsDColoredDF_FromTable = sqlContext.sql("SELECT carat, color, price FROM diamonds WHERE color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
// from version 2.x onwards you can call from SparkSession, the pre-made spark in spark-shell or databricks notebook
val diamondsDColoredDF_FromTable = spark.sql("SELECT carat, color, price FROM diamonds WHERE color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
display(diamondsDColoredDF_FromTable) // Ctrl+Enter to see the same DF!
carat | color | price |
---|---|---|
0.23 | D | 357.0 |
0.23 | D | 402.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.22 | D | 404.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.24 | D | 553.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.75 | D | 2760.0 |
0.71 | D | 2762.0 |
0.61 | D | 2763.0 |
0.71 | D | 2764.0 |
0.71 | D | 2764.0 |
0.7 | D | 2767.0 |
0.71 | D | 2767.0 |
0.73 | D | 2768.0 |
0.7 | D | 2768.0 |
0.71 | D | 2768.0 |
0.71 | D | 2770.0 |
0.76 | D | 2770.0 |
0.73 | D | 2770.0 |
0.75 | D | 2773.0 |
0.7 | D | 2773.0 |
0.7 | D | 2777.0 |
0.53 | D | 2782.0 |
0.75 | D | 2782.0 |
0.72 | D | 2782.0 |
0.72 | D | 2782.0 |
0.7 | D | 2782.0 |
0.64 | D | 2787.0 |
0.71 | D | 2788.0 |
0.72 | D | 2795.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.51 | D | 2797.0 |
0.78 | D | 2799.0 |
0.91 | D | 2803.0 |
0.7 | D | 2804.0 |
0.7 | D | 2804.0 |
0.72 | D | 2804.0 |
0.72 | D | 2804.0 |
0.73 | D | 2808.0 |
0.81 | D | 2809.0 |
0.74 | D | 2810.0 |
0.83 | D | 2811.0 |
0.71 | D | 2812.0 |
0.55 | D | 2815.0 |
0.71 | D | 2816.0 |
0.73 | D | 2821.0 |
0.71 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.79 | D | 2823.0 |
0.71 | D | 2824.0 |
0.7 | D | 2826.0 |
0.7 | D | 2827.0 |
0.72 | D | 2827.0 |
0.7 | D | 2828.0 |
0.7 | D | 2833.0 |
0.7 | D | 2833.0 |
0.51 | D | 2834.0 |
0.92 | D | 2840.0 |
0.71 | D | 2841.0 |
0.73 | D | 2841.0 |
0.73 | D | 2841.0 |
0.71 | D | 2843.0 |
0.79 | D | 2846.0 |
0.76 | D | 2847.0 |
0.54 | D | 2848.0 |
0.75 | D | 2848.0 |
0.66 | D | 2851.0 |
0.79 | D | 2853.0 |
0.79 | D | 2853.0 |
0.74 | D | 2855.0 |
0.73 | D | 2858.0 |
0.71 | D | 2858.0 |
0.71 | D | 2858.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.71 | D | 2860.0 |
0.71 | D | 2861.0 |
0.66 | D | 2861.0 |
0.7 | D | 2862.0 |
0.8 | D | 2862.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.73 | D | 2865.0 |
0.56 | D | 2866.0 |
0.56 | D | 2866.0 |
0.7 | D | 2867.0 |
1.08 | D | 2869.0 |
0.7 | D | 2872.0 |
0.75 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.71 | D | 2874.0 |
0.79 | D | 2878.0 |
0.74 | D | 2880.0 |
0.72 | D | 2883.0 |
0.77 | D | 2885.0 |
0.9 | D | 2885.0 |
0.71 | D | 2887.0 |
0.72 | D | 2891.0 |
0.71 | D | 2891.0 |
0.79 | D | 2896.0 |
0.77 | D | 2896.0 |
0.6 | D | 2897.0 |
0.54 | D | 2897.0 |
0.74 | D | 2897.0 |
0.75 | D | 2898.0 |
0.77 | D | 2898.0 |
0.72 | D | 2900.0 |
0.75 | D | 2903.0 |
0.75 | D | 2903.0 |
0.72 | D | 2903.0 |
0.72 | D | 2903.0 |
0.79 | D | 2904.0 |
0.53 | D | 2905.0 |
0.74 | D | 2906.0 |
0.32 | D | 558.0 |
0.7 | D | 2909.0 |
0.7 | D | 2909.0 |
0.71 | D | 2910.0 |
0.7 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.83 | D | 2918.0 |
0.71 | D | 2921.0 |
0.77 | D | 2922.0 |
0.77 | D | 2923.0 |
0.8 | D | 2925.0 |
0.81 | D | 2926.0 |
0.7 | D | 2928.0 |
0.59 | D | 2933.0 |
0.75 | D | 2933.0 |
0.71 | D | 2934.0 |
0.7 | D | 2936.0 |
0.77 | D | 2939.0 |
0.76 | D | 2942.0 |
0.73 | D | 2943.0 |
0.57 | D | 2945.0 |
0.78 | D | 2945.0 |
0.73 | D | 2947.0 |
0.73 | D | 2947.0 |
0.77 | D | 2949.0 |
0.71 | D | 2950.0 |
0.72 | D | 2951.0 |
0.72 | D | 2954.0 |
0.72 | D | 2954.0 |
0.75 | D | 2954.0 |
0.82 | D | 2954.0 |
0.7 | D | 2956.0 |
0.56 | D | 2959.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.63 | D | 2962.0 |
0.71 | D | 2964.0 |
0.71 | D | 2968.0 |
0.77 | D | 2973.0 |
1.0 | D | 2974.0 |
0.76 | D | 2977.0 |
0.7 | D | 2980.0 |
0.7 | D | 2985.0 |
0.74 | D | 2987.0 |
0.83 | D | 2990.0 |
0.7 | D | 2991.0 |
0.72 | D | 2993.0 |
0.81 | D | 2994.0 |
0.73 | D | 2995.0 |
0.77 | D | 2996.0 |
0.7 | D | 2998.0 |
0.7 | D | 2999.0 |
0.72 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.71 | D | 3002.0 |
1.01 | D | 3003.0 |
0.65 | D | 3003.0 |
0.92 | D | 3004.0 |
0.55 | D | 3006.0 |
0.76 | D | 3007.0 |
0.7 | D | 3008.0 |
0.8 | D | 3011.0 |
0.77 | D | 3011.0 |
0.9 | D | 3013.0 |
0.73 | D | 3014.0 |
0.72 | D | 3016.0 |
0.5 | D | 3017.0 |
0.78 | D | 3019.0 |
0.71 | D | 3020.0 |
0.75 | D | 3024.0 |
0.75 | D | 3024.0 |
0.65 | D | 3025.0 |
0.71 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.78 | D | 3035.0 |
0.71 | D | 3035.0 |
0.74 | D | 3036.0 |
0.61 | D | 3036.0 |
0.77 | D | 3040.0 |
0.71 | D | 3045.0 |
0.72 | D | 3045.0 |
0.75 | D | 3046.0 |
0.73 | D | 3047.0 |
0.75 | D | 3048.0 |
0.72 | D | 3048.0 |
0.72 | D | 3048.0 |
0.66 | D | 3049.0 |
0.62 | D | 3050.0 |
0.7 | D | 3052.0 |
0.7 | D | 3053.0 |
0.7 | D | 3054.0 |
0.65 | D | 3056.0 |
0.92 | D | 3057.0 |
0.79 | D | 3058.0 |
0.72 | D | 3062.0 |
0.85 | D | 3066.0 |
0.7 | D | 3073.0 |
0.72 | D | 3075.0 |
0.72 | D | 3075.0 |
0.7 | D | 3075.0 |
0.76 | D | 3075.0 |
0.71 | D | 3077.0 |
0.71 | D | 3077.0 |
0.75 | D | 3078.0 |
0.83 | D | 3078.0 |
0.91 | D | 3079.0 |
0.79 | D | 3081.0 |
0.7 | D | 3082.0 |
0.8 | D | 3082.0 |
0.71 | D | 3084.0 |
0.75 | D | 3085.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.74 | D | 3087.0 |
0.71 | D | 3090.0 |
0.71 | D | 3090.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3093.0 |
0.71 | D | 3096.0 |
0.71 | D | 3096.0 |
0.53 | D | 3097.0 |
0.72 | D | 3099.0 |
0.72 | D | 3102.0 |
0.66 | D | 3103.0 |
0.78 | D | 3103.0 |
0.75 | D | 3105.0 |
0.7 | D | 3107.0 |
0.79 | D | 3112.0 |
0.94 | D | 3125.0 |
0.57 | D | 3126.0 |
0.57 | D | 3126.0 |
0.7 | D | 3129.0 |
0.7 | D | 3131.0 |
0.71 | D | 3131.0 |
0.71 | D | 3135.0 |
0.71 | D | 3135.0 |
0.8 | D | 3135.0 |
0.81 | D | 3135.0 |
0.71 | D | 3136.0 |
0.71 | D | 3137.0 |
0.74 | D | 3138.0 |
0.72 | D | 3139.0 |
0.54 | D | 3139.0 |
0.73 | D | 3140.0 |
0.71 | D | 3145.0 |
0.84 | D | 3145.0 |
0.78 | D | 3145.0 |
0.75 | D | 3152.0 |
0.9 | D | 3153.0 |
0.71 | D | 3153.0 |
0.58 | D | 3154.0 |
0.8 | D | 3154.0 |
0.77 | D | 3158.0 |
0.82 | D | 3159.0 |
0.77 | D | 3160.0 |
0.81 | D | 3160.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.77 | D | 3166.0 |
0.8 | D | 3173.0 |
0.72 | D | 3176.0 |
0.74 | D | 3177.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.81 | D | 3179.0 |
0.73 | D | 3182.0 |
0.73 | D | 3182.0 |
0.7 | D | 3183.0 |
0.79 | D | 3185.0 |
0.73 | D | 3189.0 |
0.73 | D | 3189.0 |
0.71 | D | 3192.0 |
0.7 | D | 3193.0 |
0.54 | D | 3194.0 |
0.73 | D | 3195.0 |
0.8 | D | 3195.0 |
0.7 | D | 3199.0 |
0.71 | D | 3203.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.72 | D | 3205.0 |
0.58 | D | 3206.0 |
0.83 | D | 3207.0 |
0.7 | D | 3208.0 |
0.79 | D | 3209.0 |
0.8 | D | 3210.0 |
0.7 | D | 3210.0 |
0.71 | D | 3212.0 |
0.78 | D | 3214.0 |
0.7 | D | 3214.0 |
0.95 | D | 3214.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.52 | D | 3218.0 |
0.72 | D | 3219.0 |
0.72 | D | 3219.0 |
0.71 | D | 3222.0 |
0.71 | D | 3222.0 |
0.51 | D | 3223.0 |
0.8 | D | 3226.0 |
0.65 | D | 3228.0 |
0.7 | D | 3229.0 |
0.7 | D | 3229.0 |
0.7 | D | 3231.0 |
0.59 | D | 3234.0 |
0.71 | D | 3234.0 |
0.72 | D | 3236.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.77 | D | 3241.0 |
0.79 | D | 3242.0 |
0.71 | D | 3245.0 |
0.84 | D | 3246.0 |
0.25 | D | 563.0 |
0.26 | D | 564.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.7 | D | 3247.0 |
0.52 | D | 3247.0 |
0.76 | D | 3248.0 |
0.73 | D | 3250.0 |
0.77 | D | 3251.0 |
0.71 | D | 3252.0 |
0.78 | D | 3253.0 |
0.73 | D | 3255.0 |
0.78 | D | 3258.0 |
0.9 | D | 3262.0 |
0.71 | D | 3262.0 |
0.84 | D | 3265.0 |
0.81 | D | 3266.0 |
0.7 | D | 3267.0 |
0.56 | D | 3270.0 |
0.79 | D | 3270.0 |
0.72 | D | 3275.0 |
0.92 | D | 3277.0 |
0.7 | D | 3278.0 |
0.52 | D | 3284.0 |
0.86 | D | 3284.0 |
0.7 | D | 3287.0 |
0.7 | D | 3287.0 |
0.77 | D | 3291.0 |
0.76 | D | 3293.0 |
0.74 | D | 3294.0 |
0.7 | D | 3296.0 |
0.91 | D | 3298.0 |
0.78 | D | 3298.0 |
0.78 | D | 3298.0 |
0.71 | D | 3299.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
0.76 | D | 3306.0 |
0.76 | D | 3306.0 |
0.53 | D | 3307.0 |
0.73 | D | 3308.0 |
0.77 | D | 3309.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.8 | D | 3312.0 |
0.7 | D | 3312.0 |
0.8 | D | 3312.0 |
0.9 | D | 3312.0 |
0.9 | D | 3312.0 |
0.7 | D | 3312.0 |
0.9 | D | 3312.0 |
0.71 | D | 3316.0 |
0.73 | D | 3319.0 |
0.52 | D | 3321.0 |
0.71 | D | 3321.0 |
0.71 | D | 3321.0 |
0.72 | D | 3322.0 |
0.81 | D | 3324.0 |
0.78 | D | 3326.0 |
0.79 | D | 3328.0 |
0.71 | D | 3332.0 |
0.71 | D | 3333.0 |
0.92 | D | 3335.0 |
0.7 | D | 3335.0 |
0.61 | D | 3336.0 |
1.01 | D | 3337.0 |
0.77 | D | 3345.0 |
0.53 | D | 3346.0 |
0.73 | D | 3346.0 |
0.83 | D | 3347.0 |
0.91 | D | 3349.0 |
0.77 | D | 3351.0 |
0.76 | D | 3352.0 |
0.74 | D | 3353.0 |
0.76 | D | 3353.0 |
0.81 | D | 3353.0 |
0.82 | D | 3357.0 |
0.91 | D | 3357.0 |
0.7 | D | 3360.0 |
0.7 | D | 3361.0 |
0.7 | D | 3365.0 |
0.74 | D | 3365.0 |
0.71 | D | 3366.0 |
0.69 | D | 3369.0 |
0.9 | D | 3371.0 |
0.9 | D | 3371.0 |
0.71 | D | 3372.0 |
0.52 | D | 3373.0 |
0.7 | D | 3375.0 |
0.72 | D | 3375.0 |
0.5 | D | 3378.0 |
0.5 | D | 3378.0 |
0.6 | D | 3382.0 |
0.27 | D | 567.0 |
0.31 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.3 | D | 568.0 |
0.9 | D | 3382.0 |
0.95 | D | 3384.0 |
0.76 | D | 3384.0 |
0.78 | D | 3389.0 |
0.88 | D | 3390.0 |
0.61 | D | 3397.0 |
0.85 | D | 3398.0 |
0.76 | D | 3401.0 |
0.91 | D | 3403.0 |
0.71 | D | 3406.0 |
0.71 | D | 3406.0 |
0.91 | D | 3408.0 |
0.7 | D | 3410.0 |
0.73 | D | 3411.0 |
0.73 | D | 3412.0 |
0.8 | D | 3419.0 |
0.7 | D | 3419.0 |
0.96 | D | 3419.0 |
0.96 | D | 3419.0 |
0.71 | D | 3420.0 |
0.9 | D | 3425.0 |
0.7 | D | 3425.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.79 | D | 3432.0 |
0.73 | D | 3440.0 |
0.8 | D | 3441.0 |
0.53 | D | 3442.0 |
0.77 | D | 3442.0 |
0.76 | D | 3443.0 |
0.76 | D | 3443.0 |
0.51 | D | 3446.0 |
0.51 | D | 3446.0 |
0.7 | D | 3448.0 |
0.72 | D | 3450.0 |
0.3 | D | 568.0 |
0.74 | D | 3454.0 |
0.78 | D | 3454.0 |
0.7 | D | 3454.0 |
0.75 | D | 3456.0 |
0.72 | D | 3459.0 |
0.74 | D | 3461.0 |
0.81 | D | 3462.0 |
0.91 | D | 3463.0 |
0.7 | D | 3463.0 |
0.73 | D | 3464.0 |
0.56 | D | 3465.0 |
0.71 | D | 3465.0 |
0.73 | D | 3467.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.78 | D | 3473.0 |
0.74 | D | 3476.0 |
0.7 | D | 3477.0 |
0.71 | D | 3479.0 |
0.96 | D | 3480.0 |
0.74 | D | 3487.0 |
0.77 | D | 3489.0 |
0.77 | D | 3489.0 |
0.72 | D | 3493.0 |
0.54 | D | 3494.0 |
0.72 | D | 3495.0 |
0.56 | D | 3496.0 |
0.74 | D | 3498.0 |
0.7 | D | 3501.0 |
0.8 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.9 | D | 3505.0 |
0.55 | D | 3509.0 |
0.73 | D | 3509.0 |
0.91 | D | 3511.0 |
0.74 | D | 3517.0 |
0.53 | D | 3517.0 |
0.71 | D | 3518.0 |
0.72 | D | 3522.0 |
0.71 | D | 3524.0 |
0.73 | D | 3528.0 |
0.7 | D | 3529.0 |
0.32 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.78 | D | 3534.0 |
0.7 | D | 3535.0 |
0.93 | D | 3540.0 |
0.71 | D | 3540.0 |
0.72 | D | 3543.0 |
0.72 | D | 3550.0 |
0.92 | D | 3550.0 |
0.72 | D | 3554.0 |
0.83 | D | 3556.0 |
0.83 | D | 3556.0 |
0.73 | D | 3557.0 |
0.7 | D | 3561.0 |
0.75 | D | 3562.0 |
0.8 | D | 3564.0 |
0.9 | D | 3567.0 |
0.7 | D | 3567.0 |
0.9 | D | 3568.0 |
0.72 | D | 3568.0 |
1.0 | D | 3569.0 |
0.72 | D | 3570.0 |
0.6 | D | 3570.0 |
0.91 | D | 3573.0 |
0.71 | D | 3576.0 |
0.9 | D | 3578.0 |
0.9 | D | 3579.0 |
0.76 | D | 3581.0 |
0.71 | D | 3582.0 |
0.97 | D | 3585.0 |
1.11 | D | 3589.0 |
0.82 | D | 3593.0 |
0.78 | D | 3595.0 |
0.8 | D | 3597.0 |
0.72 | D | 3601.0 |
1.01 | D | 3604.0 |
0.9 | D | 3604.0 |
1.01 | D | 3605.0 |
0.79 | D | 3605.0 |
1.03 | D | 3607.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.92 | D | 3613.0 |
0.73 | D | 3615.0 |
0.7 | D | 3618.0 |
0.7 | D | 3618.0 |
0.71 | D | 3618.0 |
0.72 | D | 3619.0 |
0.73 | D | 3620.0 |
0.7 | D | 3622.0 |
0.7 | D | 3622.0 |
0.72 | D | 3622.0 |
0.72 | D | 3622.0 |
0.75 | D | 3625.0 |
0.61 | D | 3625.0 |
0.72 | D | 3629.0 |
0.9 | D | 3632.0 |
0.94 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
0.9 | D | 3643.0 |
0.77 | D | 3643.0 |
1.16 | D | 3644.0 |
0.77 | D | 3644.0 |
1.11 | D | 3655.0 |
0.91 | D | 3660.0 |
0.87 | D | 3664.0 |
0.7 | D | 3668.0 |
0.78 | D | 3668.0 |
0.74 | D | 3668.0 |
0.85 | D | 3669.0 |
0.71 | D | 3670.0 |
1.01 | D | 3671.0 |
1.01 | D | 3671.0 |
0.78 | D | 3672.0 |
0.73 | D | 3673.0 |
0.71 | D | 3674.0 |
0.71 | D | 3674.0 |
1.03 | D | 3675.0 |
0.75 | D | 3679.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.8 | D | 3682.0 |
0.84 | D | 3685.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.71 | D | 3690.0 |
0.94 | D | 3691.0 |
0.75 | D | 3696.0 |
0.9 | D | 3706.0 |
0.92 | D | 3707.0 |
0.86 | D | 3709.0 |
1.16 | D | 3711.0 |
0.75 | D | 3712.0 |
0.71 | D | 3716.0 |
0.71 | D | 3718.0 |
0.77 | D | 3721.0 |
0.72 | D | 3722.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.58 | D | 3732.0 |
0.76 | D | 3732.0 |
0.73 | D | 3735.0 |
0.78 | D | 3736.0 |
0.7 | D | 3737.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.58 | D | 3741.0 |
0.87 | D | 3742.0 |
1.09 | D | 3742.0 |
1.03 | D | 3743.0 |
1.03 | D | 3743.0 |
0.93 | D | 3744.0 |
0.74 | D | 3746.0 |
0.3 | D | 574.0 |
0.9 | D | 3751.0 |
0.7 | D | 3752.0 |
0.9 | D | 3755.0 |
0.9 | D | 3755.0 |
0.77 | D | 3755.0 |
0.61 | D | 3758.0 |
0.78 | D | 3763.0 |
0.91 | D | 3763.0 |
1.0 | D | 3767.0 |
1.02 | D | 3769.0 |
1.02 | D | 3773.0 |
0.83 | D | 3774.0 |
1.04 | D | 3780.0 |
1.04 | D | 3780.0 |
0.9 | D | 3780.0 |
1.04 | D | 3780.0 |
1.5 | D | 3780.0 |
0.91 | D | 3781.0 |
0.91 | D | 3781.0 |
0.77 | D | 3787.0 |
0.7 | D | 3788.0 |
0.9 | D | 3789.0 |
0.59 | D | 3791.0 |
0.91 | D | 3796.0 |
0.79 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.71 | D | 3799.0 |
0.78 | D | 3800.0 |
0.71 | D | 3801.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.84 | D | 3809.0 |
0.78 | D | 3811.0 |
0.74 | D | 3812.0 |
0.53 | D | 3812.0 |
0.93 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.93 | D | 3812.0 |
0.74 | D | 3813.0 |
1.18 | D | 3816.0 |
0.84 | D | 3816.0 |
1.05 | D | 3816.0 |
0.79 | D | 3818.0 |
0.9 | D | 3818.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.85 | D | 3821.0 |
0.92 | D | 3823.0 |
0.53 | D | 3827.0 |
0.91 | D | 3828.0 |
0.63 | D | 3832.0 |
0.91 | D | 3837.0 |
0.77 | D | 3837.0 |
0.71 | D | 3838.0 |
1.02 | D | 3838.0 |
1.02 | D | 3839.0 |
0.93 | D | 3839.0 |
0.7 | D | 3840.0 |
1.02 | D | 3842.0 |
0.92 | D | 3843.0 |
0.9 | D | 3847.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.6 | D | 3850.0 |
0.81 | D | 3852.0 |
0.91 | D | 3855.0 |
0.73 | D | 3856.0 |
0.71 | D | 3856.0 |
0.74 | D | 3858.0 |
0.94 | D | 3862.0 |
0.78 | D | 3864.0 |
1.17 | D | 3866.0 |
0.9 | D | 3871.0 |
1.01 | D | 3871.0 |
0.87 | D | 3873.0 |
0.92 | D | 3877.0 |
0.71 | D | 3877.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.93 | D | 3880.0 |
1.13 | D | 3883.0 |
1.18 | D | 3886.0 |
0.91 | D | 3889.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.25 | D | 575.0 |
0.27 | D | 575.0 |
0.25 | D | 575.0 |
1.09 | D | 3890.0 |
0.92 | D | 3891.0 |
1.0 | D | 3894.0 |
0.76 | D | 3894.0 |
0.72 | D | 3896.0 |
1.18 | D | 3899.0 |
1.02 | D | 3909.0 |
1.02 | D | 3909.0 |
0.91 | D | 3910.0 |
0.91 | D | 3911.0 |
0.66 | D | 3915.0 |
0.92 | D | 3916.0 |
0.9 | D | 3918.0 |
0.7 | D | 3920.0 |
0.78 | D | 3923.0 |
0.9 | D | 3931.0 |
1.01 | D | 3932.0 |
0.83 | D | 3933.0 |
0.92 | D | 3936.0 |
0.73 | D | 3937.0 |
0.91 | D | 3943.0 |
0.9 | D | 3945.0 |
0.91 | D | 3949.0 |
1.14 | D | 3950.0 |
0.76 | D | 3950.0 |
0.71 | D | 3952.0 |
0.91 | D | 3958.0 |
1.01 | D | 3959.0 |
0.75 | D | 3961.0 |
1.09 | D | 3961.0 |
0.88 | D | 3962.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
0.33 | D | 575.0 |
1.0 | D | 3965.0 |
0.77 | D | 3966.0 |
0.62 | D | 3968.0 |
1.02 | D | 3971.0 |
0.9 | D | 3975.0 |
0.9 | D | 3975.0 |
1.23 | D | 3977.0 |
0.77 | D | 3980.0 |
0.73 | D | 3980.0 |
0.83 | D | 3984.0 |
0.9 | D | 3989.0 |
0.96 | D | 3989.0 |
0.9 | D | 3990.0 |
0.93 | D | 3990.0 |
0.83 | D | 3990.0 |
0.92 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.7 | D | 4003.0 |
1.01 | D | 4004.0 |
0.75 | D | 4007.0 |
0.9 | D | 4007.0 |
0.9 | D | 4007.0 |
0.87 | D | 4012.0 |
0.71 | D | 4014.0 |
0.7 | D | 4022.0 |
0.65 | D | 4022.0 |
1.14 | D | 4022.0 |
0.56 | D | 4025.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.57 | D | 4032.0 |
0.77 | D | 4037.0 |
0.77 | D | 4039.0 |
0.74 | D | 4040.0 |
0.91 | D | 4041.0 |
0.54 | D | 4042.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
0.72 | D | 4047.0 |
1.23 | D | 4050.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.96 | D | 4060.0 |
1.01 | D | 4064.0 |
1.0 | D | 4065.0 |
0.91 | D | 4067.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
1.12 | D | 4071.0 |
1.01 | D | 4072.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.72 | D | 4082.0 |
0.72 | D | 4082.0 |
0.64 | D | 4084.0 |
0.92 | D | 4086.0 |
0.81 | D | 4087.0 |
0.7 | D | 4095.0 |
0.92 | D | 4096.0 |
0.92 | D | 4096.0 |
0.25 | D | 410.0 |
0.23 | D | 411.0 |
0.27 | D | 413.0 |
0.3 | D | 413.0 |
0.3 | D | 413.0 |
0.23 | D | 577.0 |
0.91 | D | 4107.0 |
0.91 | D | 4107.0 |
0.87 | D | 4108.0 |
0.91 | D | 4113.0 |
0.82 | D | 4113.0 |
0.9 | D | 4114.0 |
0.73 | D | 4116.0 |
0.9 | D | 4117.0 |
1.01 | D | 4118.0 |
0.9 | D | 4120.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
1.04 | D | 4123.0 |
0.9 | D | 4128.0 |
0.9 | D | 4130.0 |
0.9 | D | 4133.0 |
0.73 | D | 4134.0 |
0.73 | D | 4134.0 |
0.82 | D | 4135.0 |
0.82 | D | 4135.0 |
1.12 | D | 4139.0 |
0.93 | D | 4140.0 |
0.93 | D | 4140.0 |
0.92 | D | 4150.0 |
0.76 | D | 4150.0 |
1.0 | D | 4155.0 |
1.06 | D | 4155.0 |
0.92 | D | 4158.0 |
0.92 | D | 4158.0 |
0.83 | D | 4159.0 |
0.59 | D | 4161.0 |
0.93 | D | 4165.0 |
0.91 | D | 4165.0 |
0.9 | D | 4167.0 |
0.92 | D | 4168.0 |
0.92 | D | 4168.0 |
1.19 | D | 4168.0 |
0.8 | D | 4170.0 |
0.6 | D | 4172.0 |
1.03 | D | 4177.0 |
0.9 | D | 4178.0 |
// You can also use the familiar wildchard character '%' when matching Strings
display(spark.sql("SELECT * FROM diamonds WHERE clarity LIKE 'V%'"))
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
0.7 | Good | G | VVS1 | 59.9 | 61.0 | 2899.0 | 5.75 | 5.81 | 3.46 |
0.72 | Premium | D | VS1 | 62.7 | 58.0 | 2900.0 | 5.68 | 5.65 | 3.55 |
0.74 | Ideal | E | VS2 | 61.9 | 57.0 | 2901.0 | 5.81 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 62.0 | 60.0 | 2902.0 | 5.76 | 5.73 | 3.56 |
0.73 | Ideal | E | VS2 | 61.4 | 55.0 | 2902.0 | 5.82 | 5.8 | 3.57 |
0.71 | Fair | E | VS2 | 64.6 | 59.0 | 2902.0 | 5.62 | 5.59 | 3.62 |
0.71 | Premium | E | VS2 | 59.6 | 60.0 | 2902.0 | 5.85 | 5.8 | 3.47 |
0.72 | Premium | E | VS2 | 61.1 | 59.0 | 2903.0 | 5.8 | 5.75 | 3.53 |
0.7 | Very Good | E | VS1 | 58.4 | 59.0 | 2904.0 | 5.83 | 5.91 | 3.43 |
0.62 | Ideal | E | VVS2 | 62.0 | 56.0 | 2904.0 | 5.48 | 5.52 | 3.41 |
0.7 | Very Good | G | VVS2 | 59.3 | 62.0 | 2905.0 | 5.78 | 5.82 | 3.44 |
0.7 | Very Good | G | VVS2 | 63.4 | 59.0 | 2905.0 | 5.62 | 5.64 | 3.57 |
0.7 | Very Good | G | VVS2 | 63.3 | 59.0 | 2905.0 | 5.59 | 5.62 | 3.55 |
0.71 | Very Good | G | VS2 | 62.1 | 58.0 | 2905.0 | 5.65 | 5.71 | 3.53 |
0.86 | Very Good | I | VS1 | 61.2 | 58.0 | 2905.0 | 6.1 | 6.16 | 3.75 |
0.53 | Ideal | D | VVS1 | 62.5 | 54.0 | 2905.0 | 5.16 | 5.21 | 3.24 |
0.74 | Very Good | D | VS2 | 62.4 | 57.0 | 2906.0 | 5.74 | 5.8 | 3.6 |
0.8 | Ideal | I | VS1 | 62.2 | 58.0 | 2906.0 | 5.92 | 5.95 | 3.69 |
0.61 | Ideal | E | VVS2 | 62.4 | 53.9 | 2907.0 | 5.42 | 5.43 | 3.38 |
0.61 | Ideal | E | VVS2 | 62.4 | 53.6 | 2907.0 | 5.42 | 5.45 | 3.39 |
0.61 | Ideal | E | VVS2 | 62.1 | 54.2 | 2907.0 | 5.43 | 5.45 | 3.38 |
0.72 | Ideal | H | VVS1 | 62.8 | 57.0 | 2907.0 | 5.68 | 5.72 | 3.58 |
0.7 | Ideal | F | VS2 | 62.3 | 53.0 | 2907.0 | 5.69 | 5.73 | 3.56 |
0.71 | Ideal | F | VS1 | 61.9 | 56.0 | 2907.0 | 5.7 | 5.74 | 3.54 |
0.25 | Premium | F | VS1 | 61.2 | 59.0 | 558.0 | 4.05 | 4.02 | 2.47 |
0.25 | Good | F | VS1 | 63.6 | 57.0 | 558.0 | 4.04 | 4.01 | 2.56 |
0.25 | Premium | E | VS1 | 60.7 | 59.0 | 558.0 | 4.13 | 4.11 | 2.5 |
0.25 | Premium | E | VS1 | 61.5 | 60.0 | 558.0 | 4.04 | 4.02 | 2.48 |
0.31 | Premium | I | VS2 | 60.8 | 58.0 | 558.0 | 4.37 | 4.34 | 2.65 |
0.31 | Premium | I | VS2 | 59.8 | 60.0 | 558.0 | 4.42 | 4.38 | 2.63 |
0.31 | Very Good | I | VS2 | 63.2 | 55.0 | 558.0 | 4.4 | 4.3 | 2.75 |
0.31 | Premium | I | VS2 | 62.3 | 57.0 | 558.0 | 4.35 | 4.32 | 2.7 |
0.31 | Premium | I | VS2 | 60.8 | 60.0 | 558.0 | 4.42 | 4.37 | 2.67 |
0.31 | Ideal | I | VS2 | 59.9 | 57.0 | 558.0 | 4.4 | 4.38 | 2.63 |
0.31 | Premium | I | VS2 | 59.9 | 60.0 | 558.0 | 4.44 | 4.41 | 2.65 |
0.31 | Premium | I | VS2 | 61.1 | 58.0 | 558.0 | 4.38 | 4.36 | 2.67 |
0.31 | Premium | I | VS2 | 60.7 | 61.0 | 558.0 | 4.34 | 4.32 | 2.63 |
0.31 | Very Good | I | VS2 | 63.1 | 54.0 | 558.0 | 4.34 | 4.31 | 2.73 |
0.31 | Premium | I | VS2 | 62.3 | 60.0 | 558.0 | 4.32 | 4.31 | 2.69 |
0.73 | Ideal | I | VS1 | 61.5 | 55.0 | 2908.0 | 5.8 | 5.84 | 3.58 |
0.7 | Premium | D | VS2 | 61.0 | 60.0 | 2909.0 | 5.75 | 5.7 | 3.49 |
0.7 | Premium | D | VS2 | 60.9 | 57.0 | 2909.0 | 5.71 | 5.69 | 3.47 |
0.71 | Ideal | H | VS1 | 61.2 | 56.0 | 2909.0 | 5.76 | 5.81 | 3.54 |
0.71 | Ideal | H | VS1 | 61.9 | 56.0 | 2909.0 | 5.7 | 5.74 | 3.54 |
0.71 | Very Good | D | VS1 | 62.9 | 57.0 | 2910.0 | 5.6 | 5.66 | 3.54 |
0.59 | Ideal | E | VVS2 | 61.1 | 57.0 | 2911.0 | 5.39 | 5.41 | 3.3 |
0.71 | Ideal | G | VS2 | 60.6 | 56.0 | 2911.0 | 5.76 | 5.8 | 3.5 |
0.77 | Good | F | VS2 | 60.3 | 61.0 | 2911.0 | 5.89 | 5.96 | 3.57 |
0.73 | Good | E | VS2 | 64.2 | 54.0 | 2912.0 | 5.68 | 5.72 | 3.66 |
0.7 | Good | E | VS2 | 58.7 | 63.0 | 2912.0 | 5.69 | 5.73 | 3.35 |
0.73 | Good | E | VS2 | 63.2 | 56.0 | 2912.0 | 5.75 | 5.76 | 3.64 |
0.7 | Very Good | D | VS2 | 60.7 | 60.0 | 2913.0 | 5.72 | 5.74 | 3.48 |
0.83 | Very Good | I | VS2 | 62.0 | 55.0 | 2915.0 | 6.03 | 6.06 | 3.74 |
0.71 | Ideal | F | VS2 | 62.2 | 56.0 | 2915.0 | 5.74 | 5.71 | 3.56 |
0.73 | Very Good | H | VS1 | 60.8 | 57.0 | 2916.0 | 5.8 | 5.83 | 3.54 |
0.74 | Premium | F | VS1 | 62.5 | 60.0 | 2917.0 | 5.78 | 5.74 | 3.6 |
0.7 | Ideal | E | VS2 | 62.5 | 58.0 | 2917.0 | 5.63 | 5.67 | 3.53 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2917.0 | 5.77 | 5.73 | 3.52 |
0.71 | Very Good | F | VS2 | 59.5 | 58.0 | 2918.0 | 5.82 | 5.87 | 3.48 |
0.8 | Very Good | H | VS2 | 61.2 | 53.0 | 2918.0 | 5.98 | 6.05 | 3.68 |
0.71 | Ideal | H | VVS1 | 62.1 | 54.0 | 2918.0 | 5.7 | 5.76 | 3.56 |
0.72 | Ideal | I | VS2 | 61.8 | 55.0 | 2918.0 | 5.75 | 5.79 | 3.56 |
0.72 | Very Good | G | VS1 | 60.5 | 57.0 | 2919.0 | 5.8 | 5.83 | 3.52 |
0.73 | Premium | G | VVS2 | 62.2 | 56.0 | 2919.0 | 5.79 | 5.75 | 3.59 |
0.7 | Good | F | VS1 | 63.8 | 58.0 | 2919.0 | 5.61 | 5.58 | 3.57 |
0.73 | Ideal | H | VS1 | 61.9 | 55.0 | 2919.0 | 5.79 | 5.76 | 3.58 |
0.73 | Ideal | G | VVS2 | 61.9 | 55.0 | 2919.0 | 5.83 | 5.77 | 3.59 |
0.71 | Premium | E | VS1 | 59.7 | 57.0 | 2920.0 | 5.87 | 5.78 | 3.48 |
0.71 | Premium | F | VS1 | 59.1 | 59.0 | 2920.0 | 5.88 | 5.83 | 3.46 |
0.71 | Ideal | F | VS1 | 62.6 | 55.0 | 2920.0 | 5.71 | 5.67 | 3.56 |
0.74 | Very Good | H | VVS2 | 60.5 | 60.0 | 2921.0 | 5.79 | 5.81 | 3.51 |
0.71 | Very Good | E | VS2 | 59.9 | 59.0 | 2921.0 | 5.77 | 5.81 | 3.47 |
0.71 | Very Good | E | VS2 | 60.7 | 60.0 | 2921.0 | 5.75 | 5.78 | 3.5 |
0.65 | Ideal | F | VVS2 | 61.3 | 56.0 | 2921.0 | 5.58 | 5.61 | 3.43 |
0.9 | Fair | I | VS2 | 64.1 | 66.0 | 2921.0 | 6.04 | 5.98 | 3.85 |
0.71 | Very Good | E | VS2 | 63.7 | 58.0 | 2922.0 | 5.6 | 5.64 | 3.58 |
0.71 | Very Good | E | VS2 | 63.3 | 59.0 | 2922.0 | 5.62 | 5.66 | 3.57 |
0.68 | Very Good | F | VS1 | 59.7 | 57.0 | 2922.0 | 5.79 | 5.76 | 3.45 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2922.0 | 5.24 | 5.18 | 3.21 |
0.72 | Very Good | E | VS2 | 63.0 | 57.0 | 2923.0 | 5.69 | 5.73 | 3.6 |
0.72 | Very Good | E | VS2 | 63.2 | 58.0 | 2923.0 | 5.67 | 5.72 | 3.6 |
0.71 | Ideal | E | VS1 | 62.4 | 54.0 | 2923.0 | 5.71 | 5.74 | 3.57 |
0.9 | Premium | I | VS2 | 58.7 | 60.0 | 2923.0 | 6.35 | 6.28 | 3.7 |
0.7 | Ideal | I | VS1 | 61.5 | 56.0 | 2924.0 | 5.71 | 5.75 | 3.52 |
0.7 | Very Good | F | VS1 | 64.5 | 58.0 | 2925.0 | 5.55 | 5.59 | 3.59 |
0.77 | Very Good | H | VS1 | 63.3 | 57.0 | 2927.0 | 5.79 | 5.83 | 3.68 |
0.7 | Very Good | F | VS2 | 61.3 | 54.0 | 2928.0 | 5.72 | 5.76 | 3.52 |
0.7 | Very Good | D | VS2 | 60.8 | 59.0 | 2928.0 | 5.67 | 5.71 | 3.46 |
0.8 | Very Good | G | VS2 | 61.1 | 57.0 | 2929.0 | 6.01 | 6.07 | 3.69 |
0.7 | Ideal | G | VS2 | 61.8 | 57.0 | 2929.0 | 5.68 | 5.71 | 3.52 |
0.71 | Very Good | E | VS2 | 61.3 | 60.0 | 2930.0 | 5.74 | 5.71 | 3.51 |
0.7 | Premium | E | VS1 | 60.3 | 58.0 | 2930.0 | 5.7 | 5.74 | 3.45 |
0.7 | Ideal | E | VS1 | 62.3 | 54.0 | 2930.0 | 5.67 | 5.72 | 3.55 |
0.71 | Ideal | F | VS2 | 62.3 | 57.0 | 2930.0 | 5.69 | 5.74 | 3.56 |
0.71 | Ideal | G | VS1 | 62.7 | 57.0 | 2930.0 | 5.69 | 5.73 | 3.58 |
0.71 | Ideal | G | VS1 | 62.6 | 57.0 | 2930.0 | 5.67 | 5.7 | 3.56 |
0.71 | Ideal | G | VVS1 | 61.7 | 57.0 | 2930.0 | 5.75 | 5.7 | 3.53 |
0.7 | Very Good | G | VVS2 | 60.8 | 57.0 | 2931.0 | 5.72 | 5.76 | 3.49 |
0.72 | Very Good | F | VS2 | 63.3 | 57.0 | 2931.0 | 5.69 | 5.72 | 3.61 |
0.72 | Ideal | F | VS2 | 61.8 | 59.0 | 2931.0 | 5.71 | 5.74 | 3.54 |
0.7 | Premium | G | VVS1 | 62.0 | 61.0 | 2932.0 | 5.71 | 5.62 | 3.51 |
0.7 | Premium | F | VVS2 | 61.0 | 57.0 | 2932.0 | 5.8 | 5.71 | 3.51 |
0.7 | Very Good | F | VVS2 | 63.2 | 58.0 | 2932.0 | 5.66 | 5.6 | 3.56 |
0.72 | Very Good | G | VVS2 | 62.2 | 57.0 | 2933.0 | 5.67 | 5.72 | 3.54 |
0.59 | Very Good | D | VVS2 | 60.6 | 59.0 | 2933.0 | 5.44 | 5.49 | 3.31 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2933.0 | 5.84 | 5.87 | 3.51 |
0.75 | Ideal | F | VS2 | 62.3 | 57.0 | 2933.0 | 5.81 | 5.87 | 3.64 |
0.8 | Premium | H | VS1 | 62.0 | 60.0 | 2935.0 | 5.92 | 5.86 | 3.65 |
0.7 | Very Good | G | VVS2 | 61.8 | 60.0 | 2936.0 | 5.63 | 5.69 | 3.5 |
0.74 | Ideal | F | VS2 | 60.5 | 59.0 | 2936.0 | 5.81 | 5.86 | 3.53 |
0.76 | Premium | G | VS1 | 59.6 | 57.0 | 2937.0 | 6.01 | 5.91 | 3.55 |
0.71 | Very Good | H | VVS1 | 62.7 | 57.0 | 2938.0 | 5.66 | 5.72 | 3.57 |
0.71 | Very Good | H | VVS1 | 62.7 | 59.0 | 2938.0 | 5.65 | 5.67 | 3.55 |
0.73 | Very Good | F | VS2 | 62.7 | 58.0 | 2939.0 | 5.73 | 5.75 | 3.6 |
0.73 | Very Good | G | VS1 | 60.7 | 57.0 | 2939.0 | 5.76 | 5.83 | 3.52 |
0.73 | Ideal | F | VS2 | 62.7 | 58.0 | 2939.0 | 5.72 | 5.77 | 3.6 |
0.75 | Ideal | G | VS2 | 60.6 | 55.0 | 2939.0 | 5.93 | 5.91 | 3.59 |
0.81 | Ideal | I | VS2 | 61.8 | 56.0 | 2939.0 | 6.02 | 5.99 | 3.71 |
0.82 | Premium | H | VS2 | 62.6 | 59.0 | 2939.0 | 5.99 | 5.93 | 3.73 |
0.7 | Good | F | VVS2 | 63.1 | 57.0 | 2940.0 | 5.59 | 5.66 | 3.55 |
0.7 | Very Good | F | VVS2 | 62.6 | 59.0 | 2940.0 | 5.6 | 5.64 | 3.52 |
0.7 | Ideal | F | VS1 | 61.2 | 54.0 | 2940.0 | 5.92 | 5.64 | 3.54 |
0.75 | Fair | E | VS2 | 56.0 | 67.0 | 2940.0 | 6.18 | 6.08 | 3.43 |
0.75 | Ideal | E | VS2 | 61.6 | 57.0 | 2940.0 | 5.84 | 5.81 | 3.59 |
0.7 | Ideal | E | VS2 | 61.5 | 56.0 | 2940.0 | 5.73 | 5.68 | 3.51 |
0.71 | Premium | F | VS1 | 61.1 | 58.0 | 2942.0 | 5.76 | 5.72 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 56.0 | 2942.0 | 5.78 | 5.79 | 3.52 |
0.72 | Ideal | F | VS2 | 62.0 | 56.0 | 2943.0 | 5.77 | 5.75 | 3.57 |
0.74 | Very Good | H | VVS2 | 61.3 | 58.0 | 2944.0 | 5.8 | 5.85 | 3.57 |
0.57 | Very Good | D | VVS1 | 60.4 | 57.0 | 2945.0 | 5.39 | 5.44 | 3.27 |
0.79 | Very Good | H | VS2 | 61.5 | 55.0 | 2945.0 | 5.89 | 5.94 | 3.64 |
0.71 | Very Good | E | VS1 | 63.3 | 59.0 | 2946.0 | 5.64 | 5.67 | 3.58 |
0.71 | Very Good | E | VS1 | 62.7 | 57.0 | 2946.0 | 5.69 | 5.73 | 3.58 |
0.72 | Ideal | H | VVS1 | 62.2 | 56.0 | 2946.0 | 5.72 | 5.75 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.5 | 57.0 | 2946.0 | 5.7 | 5.73 | 3.57 |
0.78 | Very Good | H | VS1 | 61.7 | 56.0 | 2947.0 | 5.92 | 5.94 | 3.66 |
0.76 | Ideal | E | VS1 | 62.1 | 57.0 | 2947.0 | 5.82 | 5.87 | 3.63 |
0.73 | Premium | D | VS2 | 60.9 | 59.0 | 2947.0 | 5.82 | 5.77 | 3.53 |
0.7 | Ideal | H | VVS1 | 61.2 | 57.0 | 2947.0 | 5.69 | 5.72 | 3.49 |
0.7 | Ideal | H | VVS1 | 60.5 | 58.0 | 2947.0 | 5.76 | 5.81 | 3.5 |
0.74 | Ideal | I | VS1 | 62.0 | 56.0 | 2947.0 | 5.79 | 5.82 | 3.6 |
0.74 | Ideal | I | VS1 | 61.1 | 57.0 | 2947.0 | 5.83 | 5.86 | 3.57 |
0.82 | Good | H | VS2 | 62.4 | 54.0 | 2947.0 | 5.97 | 6.04 | 3.75 |
0.73 | Ideal | G | VS1 | 61.7 | 55.0 | 2948.0 | 5.8 | 5.84 | 3.59 |
0.72 | Very Good | E | VS2 | 63.0 | 56.0 | 2949.0 | 5.66 | 5.73 | 3.59 |
0.72 | Ideal | H | VS1 | 62.3 | 55.0 | 2949.0 | 5.72 | 5.74 | 3.57 |
0.81 | Very Good | I | VS1 | 62.7 | 58.0 | 2950.0 | 5.9 | 5.96 | 3.72 |
0.71 | Ideal | G | VS1 | 62.4 | 57.0 | 2950.0 | 5.68 | 5.73 | 3.56 |
0.71 | Premium | D | VS2 | 62.1 | 60.0 | 2950.0 | 5.72 | 5.68 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.6 | 55.0 | 2951.0 | 5.27 | 5.28 | 3.25 |
0.72 | Very Good | D | VS1 | 62.7 | 58.0 | 2951.0 | 5.65 | 5.68 | 3.55 |
0.7 | Very Good | E | VS2 | 62.4 | 58.0 | 2952.0 | 5.66 | 5.68 | 3.54 |
0.7 | Very Good | E | VS2 | 63.4 | 59.0 | 2952.0 | 5.63 | 5.67 | 3.58 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2952.0 | 5.63 | 5.67 | 3.49 |
0.7 | Very Good | E | VS1 | 61.3 | 60.0 | 2952.0 | 5.68 | 5.7 | 3.49 |
0.72 | Ideal | G | VS2 | 61.5 | 55.0 | 2952.0 | 5.76 | 5.79 | 3.55 |
0.72 | Ideal | G | VS2 | 61.4 | 55.0 | 2952.0 | 5.76 | 5.8 | 3.55 |
0.7 | Ideal | E | VS2 | 61.9 | 58.0 | 2952.0 | 5.7 | 5.73 | 3.54 |
0.7 | Ideal | E | VS2 | 62.6 | 57.0 | 2952.0 | 5.63 | 5.68 | 3.54 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2952.0 | 5.71 | 5.75 | 3.56 |
0.7 | Good | E | VS1 | 61.0 | 61.0 | 2952.0 | 5.69 | 5.72 | 3.48 |
0.8 | Very Good | H | VS2 | 59.1 | 59.0 | 2953.0 | 6.02 | 6.07 | 3.57 |
0.79 | Premium | F | VS2 | 63.0 | 59.0 | 2953.0 | 5.84 | 5.8 | 3.66 |
0.75 | Good | F | VS1 | 64.4 | 59.0 | 2953.0 | 5.67 | 5.72 | 3.66 |
0.71 | Very Good | E | VS2 | 59.6 | 60.0 | 2954.0 | 5.8 | 5.85 | 3.47 |
0.72 | Premium | E | VS2 | 61.1 | 59.0 | 2954.0 | 5.75 | 5.8 | 3.53 |
0.76 | Ideal | G | VS2 | 61.7 | 54.0 | 2954.0 | 5.88 | 5.92 | 3.64 |
0.89 | Premium | I | VS1 | 62.2 | 62.0 | 2955.0 | 6.14 | 6.02 | 3.78 |
0.7 | Very Good | F | VS2 | 62.4 | 57.0 | 2956.0 | 5.67 | 5.71 | 3.55 |
0.74 | Very Good | H | VS1 | 61.4 | 56.0 | 2956.0 | 5.81 | 5.84 | 3.57 |
0.74 | Very Good | H | VS1 | 62.3 | 56.0 | 2956.0 | 5.75 | 5.78 | 3.59 |
0.7 | Ideal | F | VS2 | 60.8 | 57.0 | 2956.0 | 5.75 | 5.77 | 3.5 |
0.71 | Good | F | VVS2 | 58.2 | 60.0 | 2956.0 | 5.89 | 5.94 | 3.44 |
0.7 | Premium | D | VS1 | 60.4 | 58.0 | 2956.0 | 5.78 | 5.71 | 3.47 |
0.72 | Ideal | F | VS2 | 62.6 | 56.0 | 2956.0 | 5.75 | 5.72 | 3.59 |
0.72 | Ideal | F | VS2 | 62.2 | 56.0 | 2956.0 | 5.75 | 5.73 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.0 | 55.0 | 2958.0 | 5.74 | 5.77 | 3.57 |
0.79 | Ideal | I | VS1 | 62.2 | 57.0 | 2958.0 | 5.89 | 5.94 | 3.68 |
0.72 | Good | G | VS1 | 58.0 | 57.8 | 2958.0 | 5.85 | 5.87 | 3.4 |
0.56 | Very Good | D | VVS1 | 60.1 | 58.0 | 2959.0 | 5.36 | 5.42 | 3.24 |
0.7 | Very Good | F | VS1 | 60.1 | 58.0 | 2959.0 | 5.73 | 5.79 | 3.46 |
0.79 | Premium | G | VS2 | 62.3 | 58.0 | 2959.0 | 5.92 | 5.89 | 3.68 |
0.74 | Fair | G | VVS2 | 65.2 | 58.0 | 2959.0 | 5.7 | 5.6 | 3.69 |
0.71 | Very Good | H | VVS2 | 61.8 | 56.0 | 2960.0 | 5.7 | 5.73 | 3.53 |
0.7 | Very Good | D | VS2 | 63.0 | 56.0 | 2960.0 | 5.61 | 5.69 | 3.56 |
0.7 | Good | D | VS2 | 63.4 | 57.0 | 2960.0 | 5.6 | 5.67 | 3.57 |
0.7 | Ideal | D | VS2 | 61.3 | 57.0 | 2960.0 | 5.72 | 5.76 | 3.52 |
0.76 | Ideal | F | VS2 | 62.6 | 56.0 | 2960.0 | 5.82 | 5.78 | 3.63 |
0.72 | Ideal | G | VS2 | 61.3 | 56.0 | 2960.0 | 5.77 | 5.81 | 3.55 |
0.71 | Good | F | VVS2 | 58.9 | 61.0 | 2960.0 | 5.8 | 5.9 | 3.44 |
0.74 | Ideal | G | VS1 | 61.8 | 55.0 | 2960.0 | 5.85 | 5.8 | 3.6 |
0.77 | Very Good | H | VS1 | 62.8 | 58.0 | 2961.0 | 5.75 | 5.78 | 3.62 |
0.74 | Ideal | H | VVS2 | 61.2 | 57.0 | 2961.0 | 5.79 | 5.85 | 3.56 |
0.72 | Premium | E | VS1 | 61.5 | 60.0 | 2961.0 | 5.79 | 5.75 | 3.55 |
0.73 | Premium | F | VS1 | 61.9 | 56.0 | 2961.0 | 5.81 | 5.76 | 3.58 |
0.73 | Premium | F | VS1 | 62.7 | 56.0 | 2961.0 | 5.75 | 5.73 | 3.6 |
0.63 | Ideal | F | VVS2 | 62.3 | 56.0 | 2961.0 | 5.48 | 5.5 | 3.42 |
0.72 | Ideal | H | VS1 | 61.1 | 57.0 | 2961.0 | 5.8 | 5.82 | 3.55 |
0.71 | Premium | F | VS1 | 62.1 | 53.0 | 2961.0 | 5.77 | 5.7 | 3.56 |
0.75 | Premium | H | VS1 | 61.9 | 61.0 | 2961.0 | 5.85 | 5.82 | 3.61 |
0.63 | Ideal | D | VVS2 | 62.6 | 56.0 | 2962.0 | 5.47 | 5.49 | 3.43 |
0.72 | Ideal | E | VS2 | 62.0 | 56.0 | 2962.0 | 5.73 | 5.76 | 3.56 |
0.71 | Ideal | G | VS1 | 62.2 | 56.0 | 2962.0 | 5.69 | 5.72 | 3.55 |
0.71 | Ideal | E | VS1 | 62.1 | 53.0 | 2963.0 | 5.76 | 5.73 | 3.57 |
0.71 | Very Good | E | VS2 | 62.9 | 57.0 | 2964.0 | 5.68 | 5.7 | 3.58 |
0.7 | Good | E | VS1 | 63.6 | 58.0 | 2964.0 | 5.61 | 5.56 | 3.55 |
0.7 | Fair | E | VS1 | 64.5 | 57.0 | 2964.0 | 5.59 | 5.55 | 3.59 |
0.9 | Fair | J | VS1 | 65.4 | 60.0 | 2964.0 | 6.02 | 5.93 | 3.91 |
0.9 | Premium | J | VS1 | 62.1 | 62.0 | 2964.0 | 6.12 | 6.05 | 3.78 |
0.9 | Fair | J | VS1 | 64.6 | 58.0 | 2964.0 | 6.12 | 6.06 | 3.93 |
0.71 | Ideal | I | VS1 | 61.8 | 56.0 | 2965.0 | 5.68 | 5.72 | 3.52 |
0.71 | Ideal | I | VS1 | 61.6 | 56.0 | 2965.0 | 5.71 | 5.75 | 3.53 |
0.71 | Ideal | I | VS1 | 61.3 | 57.0 | 2965.0 | 5.73 | 5.76 | 3.52 |
0.71 | Ideal | I | VS1 | 61.5 | 56.0 | 2965.0 | 5.72 | 5.76 | 3.52 |
0.73 | Very Good | G | VS2 | 62.1 | 59.0 | 2966.0 | 5.68 | 5.73 | 3.54 |
0.7 | Ideal | I | VVS1 | 61.8 | 56.0 | 2966.0 | 5.69 | 5.73 | 3.53 |
0.7 | Very Good | E | VS1 | 61.3 | 56.0 | 2967.0 | 5.68 | 5.71 | 3.49 |
0.7 | Very Good | E | VS1 | 61.5 | 56.0 | 2967.0 | 5.69 | 5.75 | 3.52 |
0.79 | Ideal | H | VS2 | 62.0 | 56.0 | 2967.0 | 5.91 | 5.93 | 3.67 |
0.3 | Very Good | H | VVS2 | 62.0 | 56.0 | 559.0 | 4.28 | 4.3 | 2.66 |
0.31 | Very Good | G | VS2 | 62.6 | 56.0 | 559.0 | 4.33 | 4.37 | 2.72 |
0.31 | Very Good | G | VS2 | 61.4 | 55.0 | 559.0 | 4.38 | 4.41 | 2.69 |
0.31 | Very Good | G | VS2 | 60.9 | 57.0 | 559.0 | 4.37 | 4.39 | 2.67 |
0.24 | Ideal | G | VVS1 | 62.4 | 56.0 | 559.0 | 3.97 | 3.99 | 2.48 |
0.24 | Ideal | G | VVS1 | 62.1 | 56.0 | 559.0 | 3.97 | 4.0 | 2.47 |
0.24 | Ideal | G | VVS1 | 62.2 | 56.0 | 559.0 | 4.0 | 4.04 | 2.5 |
0.24 | Ideal | G | VVS1 | 62.0 | 55.0 | 559.0 | 4.01 | 4.03 | 2.49 |
0.24 | Ideal | G | VVS1 | 62.0 | 56.0 | 559.0 | 3.97 | 4.01 | 2.47 |
0.32 | Ideal | G | VS1 | 62.3 | 55.0 | 559.0 | 4.39 | 4.41 | 2.74 |
0.32 | Ideal | G | VS1 | 61.8 | 55.0 | 559.0 | 4.42 | 4.45 | 2.74 |
0.25 | Very Good | E | VVS2 | 62.0 | 56.0 | 560.0 | 4.05 | 4.08 | 2.52 |
0.25 | Very Good | E | VVS1 | 61.5 | 56.0 | 560.0 | 4.06 | 4.08 | 2.5 |
0.32 | Ideal | G | VS2 | 61.6 | 54.0 | 560.0 | 4.4 | 4.43 | 2.72 |
0.32 | Premium | H | VS1 | 60.2 | 58.0 | 561.0 | 4.43 | 4.47 | 2.68 |
0.32 | Ideal | H | VS1 | 61.5 | 57.0 | 561.0 | 4.4 | 4.42 | 2.71 |
0.71 | Premium | D | VS2 | 58.7 | 61.0 | 2968.0 | 5.88 | 5.85 | 3.44 |
0.8 | Ideal | G | VS2 | 61.2 | 57.0 | 2969.0 | 6.02 | 6.07 | 3.7 |
0.52 | Premium | E | VVS2 | 60.1 | 58.0 | 2970.0 | 5.23 | 5.18 | 3.13 |
0.72 | Very Good | G | VS1 | 60.6 | 56.0 | 2970.0 | 5.84 | 5.87 | 3.55 |
0.7 | Good | F | VS1 | 63.8 | 58.0 | 2970.0 | 5.58 | 5.61 | 3.57 |
0.78 | Premium | E | VS2 | 62.6 | 57.0 | 2970.0 | 5.91 | 5.85 | 3.68 |
0.78 | Ideal | H | VS2 | 61.6 | 56.0 | 2970.0 | 5.94 | 5.91 | 3.64 |
0.76 | Ideal | G | VS1 | 59.4 | 57.0 | 2972.0 | 5.99 | 6.03 | 3.57 |
0.7 | Ideal | G | VS1 | 61.7 | 56.0 | 2972.0 | 5.64 | 5.71 | 3.5 |
0.81 | Premium | H | VS1 | 62.6 | 58.0 | 2972.0 | 5.96 | 5.9 | 3.71 |
0.75 | Ideal | G | VS1 | 62.3 | 57.0 | 2973.0 | 5.83 | 5.86 | 3.64 |
0.7 | Ideal | E | VS1 | 60.5 | 56.0 | 2973.0 | 5.74 | 5.79 | 3.49 |
0.7 | Good | E | VS1 | 59.8 | 62.0 | 2973.0 | 5.74 | 5.8 | 3.45 |
0.71 | Ideal | G | VS2 | 59.5 | 57.0 | 2974.0 | 5.81 | 5.8 | 3.46 |
0.7 | Very Good | F | VS1 | 62.1 | 57.0 | 2975.0 | 5.69 | 5.72 | 3.54 |
0.7 | Premium | F | VVS2 | 62.2 | 58.0 | 2975.0 | 5.72 | 5.66 | 3.54 |
0.83 | Ideal | H | VS2 | 61.3 | 54.0 | 2975.0 | 6.1 | 6.06 | 3.73 |
0.71 | Very Good | G | VVS2 | 60.8 | 58.0 | 2977.0 | 5.75 | 5.77 | 3.5 |
0.76 | Premium | D | VS2 | 60.9 | 58.0 | 2977.0 | 5.9 | 5.85 | 3.58 |
0.54 | Ideal | F | VVS1 | 61.6 | 55.0 | 2977.0 | 5.28 | 5.27 | 3.25 |
0.71 | Ideal | G | VVS2 | 62.5 | 58.0 | 2978.0 | 5.7 | 5.73 | 3.57 |
0.7 | Ideal | E | VS1 | 61.3 | 54.0 | 2978.0 | 5.77 | 5.83 | 3.54 |
0.72 | Ideal | H | VVS1 | 59.9 | 59.0 | 2979.0 | 5.76 | 5.82 | 3.47 |
0.7 | Ideal | E | VS2 | 61.7 | 56.0 | 2979.0 | 5.74 | 5.71 | 3.53 |
0.7 | Ideal | E | VS2 | 61.5 | 57.0 | 2980.0 | 5.67 | 5.78 | 3.52 |
0.7 | Ideal | E | VS2 | 62.2 | 55.0 | 2981.0 | 5.67 | 5.71 | 3.54 |
0.71 | Ideal | G | VVS1 | 61.7 | 57.0 | 2982.0 | 5.7 | 5.75 | 3.53 |
0.71 | Ideal | E | VS2 | 59.5 | 57.0 | 2982.0 | 5.86 | 5.83 | 3.48 |
0.71 | Very Good | G | VS1 | 60.8 | 63.0 | 2982.0 | 5.76 | 5.68 | 3.48 |
0.71 | Premium | E | VS2 | 62.6 | 58.0 | 2982.0 | 5.72 | 5.68 | 3.57 |
0.74 | Ideal | E | VS2 | 62.7 | 54.0 | 2984.0 | 5.8 | 5.77 | 3.63 |
0.9 | Very Good | J | VS2 | 63.1 | 57.0 | 2984.0 | 6.12 | 6.06 | 3.84 |
0.7 | Very Good | D | VS2 | 63.1 | 56.0 | 2985.0 | 5.62 | 5.69 | 3.57 |
0.82 | Premium | H | VS1 | 62.3 | 60.0 | 2985.0 | 5.97 | 5.94 | 3.71 |
0.77 | Very Good | G | VS1 | 62.8 | 58.0 | 2986.0 | 5.78 | 5.84 | 3.65 |
0.8 | Ideal | I | VS1 | 61.9 | 54.1 | 2986.0 | 5.92 | 5.98 | 3.69 |
0.82 | Ideal | I | VS1 | 61.6 | 57.0 | 2986.0 | 6.0 | 6.05 | 3.71 |
0.7 | Ideal | G | VS1 | 61.3 | 59.0 | 2987.0 | 5.68 | 5.7 | 3.49 |
0.72 | Ideal | F | VS2 | 62.1 | 54.0 | 2989.0 | 5.76 | 5.8 | 3.59 |
0.76 | Very Good | G | VS2 | 62.1 | 54.0 | 2990.0 | 5.88 | 5.94 | 3.67 |
0.72 | Very Good | E | VS2 | 62.9 | 57.0 | 2990.0 | 5.68 | 5.73 | 3.59 |
0.57 | Good | E | VVS1 | 59.1 | 65.0 | 2990.0 | 5.34 | 5.43 | 3.18 |
0.75 | Ideal | G | VS2 | 60.6 | 55.0 | 2991.0 | 5.91 | 5.93 | 3.59 |
0.7 | Ideal | D | VS2 | 60.3 | 60.0 | 2991.0 | 5.71 | 5.76 | 3.46 |
0.7 | Very Good | E | VS2 | 62.8 | 56.0 | 2992.0 | 5.66 | 5.68 | 3.56 |
0.75 | Ideal | H | VVS2 | 62.0 | 55.1 | 2992.0 | 5.83 | 5.85 | 3.62 |
0.69 | Very Good | F | VVS2 | 61.5 | 60.0 | 2993.0 | 5.64 | 5.67 | 3.48 |
0.7 | Ideal | G | VVS2 | 63.0 | 55.0 | 2993.0 | 5.65 | 5.69 | 3.57 |
0.7 | Ideal | F | VS1 | 62.4 | 55.0 | 2993.0 | 5.65 | 5.7 | 3.54 |
0.71 | Very Good | F | VS2 | 59.6 | 56.0 | 2994.0 | 5.84 | 5.88 | 3.49 |
0.71 | Very Good | G | VS1 | 59.3 | 55.0 | 2994.0 | 5.88 | 5.95 | 3.51 |
0.81 | Very Good | G | VS2 | 63.1 | 58.0 | 2994.0 | 5.88 | 5.84 | 3.7 |
0.81 | Premium | G | VS2 | 62.0 | 58.0 | 2994.0 | 5.95 | 5.92 | 3.68 |
0.7 | Ideal | G | VS1 | 60.9 | 56.0 | 2995.0 | 5.76 | 5.8 | 3.52 |
0.88 | Very Good | I | VS1 | 63.3 | 55.0 | 2996.0 | 6.11 | 6.06 | 3.85 |
0.74 | Ideal | I | VS2 | 61.9 | 55.0 | 2997.0 | 5.8 | 5.83 | 3.6 |
0.7 | Ideal | D | VS2 | 62.8 | 57.0 | 2998.0 | 5.69 | 5.75 | 3.59 |
0.72 | Ideal | H | VS1 | 61.4 | 56.0 | 2998.0 | 5.79 | 5.81 | 3.56 |
0.7 | Ideal | F | VS1 | 61.6 | 57.0 | 2998.0 | 5.7 | 5.73 | 3.52 |
1.01 | Fair | J | VVS2 | 66.0 | 56.0 | 2998.0 | 6.29 | 6.22 | 4.13 |
0.85 | Fair | G | VS1 | 57.7 | 67.0 | 2998.0 | 6.26 | 6.19 | 3.59 |
0.7 | Very Good | D | VS2 | 59.7 | 59.0 | 2999.0 | 5.82 | 5.78 | 3.46 |
0.73 | Very Good | G | VS1 | 62.4 | 58.1 | 2999.0 | 5.71 | 5.75 | 3.58 |
0.7 | Premium | G | VVS2 | 60.6 | 60.0 | 2999.0 | 5.77 | 5.69 | 3.47 |
0.74 | Premium | E | VS1 | 62.7 | 58.0 | 2999.0 | 5.83 | 5.74 | 3.63 |
0.74 | Premium | E | VS1 | 60.9 | 62.0 | 2999.0 | 5.83 | 5.8 | 3.54 |
0.7 | Premium | G | VVS2 | 60.2 | 61.0 | 2999.0 | 5.74 | 5.66 | 3.43 |
0.93 | Good | J | VS2 | 63.6 | 61.0 | 3000.0 | 6.16 | 6.08 | 3.89 |
0.7 | Premium | D | VS1 | 61.6 | 61.0 | 3001.0 | 5.66 | 5.61 | 3.47 |
0.7 | Good | D | VS1 | 63.6 | 60.0 | 3001.0 | 5.61 | 5.52 | 3.54 |
0.7 | Very Good | D | VS1 | 63.4 | 59.0 | 3001.0 | 5.58 | 5.55 | 3.53 |
0.6 | Ideal | G | VVS1 | 62.1 | 56.0 | 3001.0 | 5.42 | 5.43 | 3.37 |
0.75 | Very Good | H | VVS2 | 60.6 | 57.0 | 3002.0 | 5.86 | 5.89 | 3.56 |
0.71 | Premium | D | VS2 | 62.1 | 60.0 | 3002.0 | 5.68 | 5.72 | 3.54 |
0.72 | Good | F | VS1 | 63.8 | 58.0 | 3002.0 | 5.68 | 5.63 | 3.61 |
0.72 | Ideal | G | VVS2 | 61.6 | 55.0 | 3002.0 | 5.78 | 5.77 | 3.56 |
0.8 | Premium | G | VS2 | 60.6 | 59.0 | 3002.0 | 6.02 | 5.97 | 3.63 |
0.73 | Fair | F | VS1 | 58.6 | 66.0 | 3002.0 | 5.92 | 5.88 | 3.46 |
0.65 | Premium | D | VVS2 | 59.9 | 58.0 | 3003.0 | 5.69 | 5.63 | 3.39 |
0.7 | Ideal | H | VS1 | 61.7 | 55.0 | 3004.0 | 5.69 | 5.72 | 3.52 |
0.61 | Ideal | E | VS1 | 61.3 | 54.0 | 3004.0 | 5.53 | 5.5 | 3.38 |
0.55 | Ideal | F | VVS1 | 61.2 | 54.0 | 3005.0 | 5.3 | 5.35 | 3.26 |
0.72 | Ideal | I | VS1 | 60.4 | 56.0 | 3005.0 | 5.8 | 5.86 | 3.52 |
0.73 | Ideal | H | VVS1 | 61.6 | 57.0 | 3005.0 | 5.81 | 5.78 | 3.57 |
0.71 | Premium | E | VS1 | 61.1 | 58.0 | 3006.0 | 5.8 | 5.76 | 3.53 |
0.71 | Very Good | E | VS1 | 63.2 | 60.0 | 3006.0 | 5.63 | 5.6 | 3.55 |
0.55 | Premium | D | VVS1 | 60.3 | 59.0 | 3006.0 | 5.34 | 5.3 | 3.21 |
0.71 | Ideal | I | VVS2 | 60.7 | 57.0 | 3007.0 | 5.76 | 5.8 | 3.51 |
0.71 | Ideal | I | VVS2 | 60.4 | 57.0 | 3007.0 | 5.78 | 5.81 | 3.5 |
0.7 | Premium | E | VVS2 | 62.7 | 53.0 | 3007.0 | 5.65 | 5.61 | 3.53 |
0.7 | Very Good | D | VS1 | 60.4 | 58.0 | 3008.0 | 5.71 | 5.78 | 3.47 |
0.61 | Ideal | G | VVS1 | 61.2 | 56.0 | 3008.0 | 5.46 | 5.48 | 3.35 |
0.7 | Ideal | F | VS2 | 61.3 | 57.0 | 3008.0 | 5.7 | 5.76 | 3.51 |
0.82 | Premium | H | VS1 | 62.5 | 59.0 | 3008.0 | 5.96 | 5.94 | 3.72 |
0.71 | Very Good | E | VS1 | 63.7 | 58.0 | 3009.0 | 5.63 | 5.68 | 3.6 |
0.71 | Very Good | E | VS1 | 62.1 | 57.0 | 3009.0 | 5.67 | 5.69 | 3.53 |
0.71 | Very Good | E | VS1 | 63.4 | 58.0 | 3009.0 | 5.64 | 5.68 | 3.59 |
0.8 | Ideal | I | VS1 | 60.7 | 59.0 | 3010.0 | 5.98 | 6.02 | 3.64 |
0.73 | Very Good | G | VS1 | 60.7 | 55.0 | 3011.0 | 5.87 | 5.89 | 3.57 |
0.61 | Ideal | E | VVS2 | 62.0 | 54.0 | 3011.0 | 5.43 | 5.47 | 3.38 |
0.7 | Ideal | F | VS2 | 61.9 | 55.0 | 3011.0 | 5.7 | 5.74 | 3.54 |
0.7 | Ideal | F | VS2 | 61.8 | 57.0 | 3011.0 | 5.67 | 5.75 | 3.53 |
0.7 | Ideal | F | VS2 | 62.7 | 55.0 | 3011.0 | 5.66 | 5.69 | 3.56 |
0.7 | Ideal | F | VS2 | 61.4 | 58.0 | 3011.0 | 5.7 | 5.73 | 3.51 |
0.78 | Very Good | G | VS2 | 61.3 | 60.0 | 3012.0 | 5.89 | 5.96 | 3.63 |
0.72 | Ideal | G | VS2 | 61.7 | 56.0 | 3012.0 | 5.74 | 5.78 | 3.55 |
0.75 | Premium | F | VS2 | 61.6 | 58.0 | 3013.0 | 5.84 | 5.89 | 3.61 |
0.71 | Very Good | F | VS1 | 62.1 | 53.0 | 3013.0 | 5.7 | 5.77 | 3.56 |
0.71 | Ideal | F | VS1 | 61.1 | 57.0 | 3013.0 | 5.76 | 5.82 | 3.54 |
0.71 | Ideal | H | VVS1 | 61.8 | 56.0 | 3014.0 | 5.7 | 5.75 | 3.54 |
0.78 | Ideal | H | VVS2 | 61.7 | 55.0 | 3015.0 | 5.9 | 5.94 | 3.65 |
0.72 | Very Good | D | VS2 | 62.1 | 59.0 | 3016.0 | 5.7 | 5.73 | 3.55 |
0.7 | Premium | E | VS1 | 61.8 | 58.0 | 3016.0 | 5.71 | 5.75 | 3.54 |
0.7 | Ideal | E | VS1 | 62.7 | 57.0 | 3016.0 | 5.65 | 5.7 | 3.56 |
0.76 | Ideal | H | VS2 | 61.9 | 55.0 | 3016.0 | 5.85 | 5.88 | 3.64 |
0.7 | Very Good | G | VS1 | 60.1 | 60.0 | 3017.0 | 5.73 | 5.76 | 3.45 |
0.71 | Very Good | F | VS1 | 61.8 | 60.0 | 3017.0 | 5.66 | 5.7 | 3.51 |
0.7 | Ideal | G | VS1 | 61.1 | 56.0 | 3017.0 | 5.72 | 5.74 | 3.5 |
0.5 | Good | D | VVS2 | 62.4 | 64.0 | 3017.0 | 5.03 | 5.06 | 3.14 |
0.7 | Good | F | VVS1 | 63.2 | 58.0 | 3018.0 | 5.58 | 5.62 | 3.54 |
0.7 | Premium | F | VVS2 | 62.5 | 59.0 | 3018.0 | 5.68 | 5.61 | 3.53 |
0.71 | Ideal | F | VVS2 | 62.6 | 56.0 | 3018.0 | 5.7 | 5.65 | 3.55 |
0.72 | Ideal | H | VS2 | 61.2 | 57.0 | 3018.0 | 5.79 | 5.77 | 3.54 |
0.7 | Good | E | VS1 | 60.2 | 61.0 | 3018.0 | 5.71 | 5.75 | 3.45 |
0.77 | Premium | F | VS2 | 62.4 | 59.0 | 3018.0 | 5.85 | 5.81 | 3.64 |
0.7 | Premium | F | VVS2 | 62.2 | 56.0 | 3018.0 | 5.72 | 5.63 | 3.53 |
0.71 | Ideal | D | VS2 | 60.4 | 53.0 | 3020.0 | 5.81 | 5.85 | 3.52 |
0.65 | Ideal | E | VVS2 | 62.1 | 57.0 | 3023.0 | 5.55 | 5.6 | 3.46 |
0.75 | Premium | E | VS2 | 62.1 | 57.0 | 3024.0 | 5.9 | 5.79 | 3.63 |
0.9 | Very Good | J | VS2 | 63.1 | 59.0 | 3024.0 | 6.09 | 6.05 | 3.83 |
0.9 | Good | J | VS2 | 63.9 | 58.0 | 3024.0 | 6.15 | 6.08 | 3.91 |
0.72 | Premium | E | VS2 | 60.4 | 61.0 | 3024.0 | 5.79 | 5.76 | 3.49 |
0.72 | Premium | E | VS2 | 62.5 | 59.0 | 3024.0 | 5.73 | 5.7 | 3.57 |
0.72 | Very Good | G | VS1 | 60.1 | 63.0 | 3024.0 | 5.86 | 5.82 | 3.51 |
0.65 | Very Good | D | VVS2 | 57.7 | 60.0 | 3025.0 | 5.69 | 5.74 | 3.3 |
0.7 | Very Good | G | VS2 | 61.8 | 55.0 | 3026.0 | 5.69 | 5.74 | 3.53 |
0.59 | Ideal | E | VVS2 | 61.8 | 57.0 | 3026.0 | 5.35 | 5.4 | 3.32 |
0.71 | Ideal | E | VS2 | 62.3 | 56.0 | 3026.0 | 5.7 | 5.73 | 3.56 |
0.83 | Ideal | H | VS2 | 61.3 | 54.0 | 3027.0 | 6.06 | 6.1 | 3.73 |
0.77 | Good | H | VVS2 | 57.9 | 61.0 | 3027.0 | 6.07 | 6.01 | 3.5 |
0.7 | Very Good | F | VVS2 | 58.5 | 60.0 | 3028.0 | 5.82 | 5.94 | 3.44 |
0.8 | Ideal | H | VS2 | 62.1 | 54.0 | 3030.0 | 5.96 | 5.99 | 3.71 |
0.74 | Ideal | H | VS1 | 61.6 | 55.0 | 3030.0 | 5.79 | 5.83 | 3.58 |
0.77 | Fair | F | VS1 | 66.8 | 57.0 | 3031.0 | 5.66 | 5.76 | 3.82 |
0.72 | Premium | G | VS1 | 58.9 | 58.0 | 3032.0 | 5.93 | 5.85 | 3.47 |
0.55 | Ideal | F | VVS1 | 61.2 | 54.0 | 3032.0 | 5.35 | 5.3 | 3.26 |
0.71 | Very Good | D | VS2 | 63.0 | 57.0 | 3033.0 | 5.67 | 5.7 | 3.58 |
0.73 | Ideal | G | VS1 | 61.6 | 57.0 | 3033.0 | 5.76 | 5.79 | 3.56 |
0.7 | Good | D | VS2 | 64.1 | 59.0 | 3033.0 | 5.56 | 5.49 | 3.54 |
0.7 | Very Good | D | VS2 | 63.2 | 60.0 | 3033.0 | 5.61 | 5.56 | 3.53 |
0.7 | Good | D | VS2 | 63.9 | 58.0 | 3033.0 | 5.62 | 5.58 | 3.58 |
0.92 | Fair | I | VS2 | 64.4 | 58.0 | 3033.0 | 6.13 | 6.1 | 3.94 |
0.7 | Ideal | G | VS1 | 61.4 | 57.0 | 3034.0 | 5.7 | 5.73 | 3.51 |
0.72 | Very Good | E | VS2 | 63.8 | 57.0 | 3035.0 | 5.66 | 5.69 | 3.62 |
0.71 | Ideal | E | VS2 | 59.5 | 57.0 | 3035.0 | 5.83 | 5.86 | 3.48 |
0.72 | Ideal | G | VS1 | 62.4 | 59.0 | 3035.0 | 5.71 | 5.74 | 3.57 |
0.8 | Very Good | H | VVS2 | 62.9 | 56.0 | 3036.0 | 5.9 | 5.96 | 3.73 |
0.74 | Ideal | E | VS2 | 62.6 | 56.0 | 3036.0 | 5.73 | 5.81 | 3.61 |
0.61 | Ideal | D | VVS2 | 62.4 | 58.0 | 3036.0 | 5.38 | 5.42 | 3.37 |
0.7 | Very Good | G | VVS1 | 63.3 | 57.0 | 3037.0 | 5.59 | 5.63 | 3.55 |
0.32 | Premium | G | VS2 | 60.5 | 58.0 | 561.0 | 4.41 | 4.42 | 2.67 |
0.32 | Premium | G | VS2 | 62.5 | 60.0 | 561.0 | 4.32 | 4.38 | 2.72 |
0.32 | Ideal | G | VS2 | 61.4 | 56.0 | 561.0 | 4.37 | 4.39 | 2.69 |
0.32 | Premium | G | VS2 | 59.8 | 59.0 | 561.0 | 4.48 | 4.52 | 2.69 |
0.32 | Premium | I | VVS2 | 60.7 | 59.0 | 561.0 | 4.4 | 4.43 | 2.68 |
0.32 | Very Good | G | VS2 | 60.2 | 57.0 | 561.0 | 4.42 | 4.45 | 2.67 |
0.32 | Good | G | VS2 | 63.3 | 54.0 | 561.0 | 4.36 | 4.39 | 2.77 |
0.32 | Good | H | VS1 | 63.1 | 57.0 | 561.0 | 4.34 | 4.37 | 2.75 |
0.32 | Ideal | G | VS2 | 61.4 | 55.0 | 561.0 | 4.4 | 4.46 | 2.72 |
0.32 | Ideal | G | VS2 | 59.8 | 57.0 | 561.0 | 4.43 | 4.46 | 2.66 |
0.32 | Ideal | G | VS2 | 61.7 | 57.0 | 561.0 | 4.38 | 4.4 | 2.71 |
0.32 | Premium | H | VS1 | 62.3 | 58.0 | 561.0 | 4.34 | 4.39 | 2.72 |
0.32 | Very Good | H | VS1 | 63.0 | 57.0 | 561.0 | 4.32 | 4.35 | 2.73 |
0.32 | Premium | G | VS2 | 61.9 | 58.0 | 561.0 | 4.36 | 4.43 | 2.72 |
0.32 | Good | G | VS2 | 63.1 | 57.0 | 561.0 | 4.3 | 4.35 | 2.73 |
0.32 | Very Good | H | VS1 | 63.0 | 57.0 | 561.0 | 4.37 | 4.39 | 2.76 |
0.32 | Ideal | G | VS2 | 61.8 | 57.0 | 561.0 | 4.37 | 4.4 | 2.71 |
0.32 | Very Good | H | VS1 | 61.7 | 58.0 | 561.0 | 4.37 | 4.41 | 2.71 |
0.32 | Premium | H | VS1 | 61.7 | 58.0 | 561.0 | 4.38 | 4.44 | 2.72 |
0.32 | Ideal | G | VS2 | 61.8 | 55.0 | 561.0 | 4.41 | 4.42 | 2.73 |
0.32 | Premium | G | VS2 | 61.7 | 60.0 | 561.0 | 4.32 | 4.4 | 2.69 |
0.32 | Very Good | G | VS2 | 62.6 | 58.0 | 561.0 | 4.37 | 4.39 | 2.74 |
0.32 | Premium | G | VS2 | 62.3 | 58.0 | 561.0 | 4.36 | 4.41 | 2.73 |
0.32 | Ideal | G | VS2 | 61.6 | 57.0 | 561.0 | 4.39 | 4.41 | 2.71 |
0.32 | Ideal | H | VS1 | 61.9 | 55.0 | 561.0 | 4.4 | 4.42 | 2.73 |
0.32 | Ideal | H | VS1 | 60.2 | 56.0 | 561.0 | 4.44 | 4.49 | 2.69 |
0.76 | Ideal | H | VS2 | 61.4 | 57.0 | 3038.0 | 5.85 | 5.88 | 3.6 |
0.7 | Ideal | H | VS2 | 61.5 | 56.0 | 3038.0 | 5.71 | 5.73 | 3.52 |
0.7 | Very Good | G | VVS2 | 61.0 | 59.0 | 3039.0 | 5.67 | 5.7 | 3.47 |
0.7 | Fair | F | VS1 | 64.9 | 59.0 | 3039.0 | 5.56 | 5.59 | 3.62 |
0.73 | Ideal | G | VS1 | 61.8 | 57.0 | 3041.0 | 5.78 | 5.81 | 3.58 |
0.71 | Ideal | F | VS1 | 62.7 | 57.0 | 3041.0 | 5.66 | 5.7 | 3.56 |
0.71 | Ideal | F | VS1 | 61.7 | 55.0 | 3041.0 | 5.73 | 5.77 | 3.55 |
0.81 | Good | I | VS1 | 59.4 | 56.0 | 3042.0 | 5.97 | 6.11 | 3.59 |
0.71 | Ideal | G | VVS2 | 62.5 | 57.0 | 3042.0 | 5.73 | 5.7 | 3.57 |
0.72 | Very Good | G | VVS2 | 60.4 | 58.0 | 3043.0 | 5.77 | 5.82 | 3.5 |
0.71 | Very Good | F | VS1 | 62.2 | 55.0 | 3045.0 | 5.68 | 5.74 | 3.56 |
0.71 | Very Good | F | VS1 | 61.2 | 57.0 | 3045.0 | 5.73 | 5.77 | 3.52 |
0.71 | Very Good | D | VS2 | 62.8 | 56.0 | 3045.0 | 5.67 | 5.7 | 3.57 |
0.72 | Premium | D | VS2 | 60.2 | 60.0 | 3045.0 | 5.76 | 5.81 | 3.48 |
0.7 | Good | G | VVS2 | 61.1 | 61.0 | 3046.0 | 5.67 | 5.69 | 3.47 |
0.73 | Fair | D | VS1 | 66.0 | 54.0 | 3047.0 | 5.56 | 5.66 | 3.7 |
0.72 | Good | E | VS1 | 57.9 | 60.0 | 3048.0 | 5.97 | 5.91 | 3.44 |
0.72 | Very Good | E | VS1 | 63.1 | 56.0 | 3048.0 | 5.7 | 5.65 | 3.58 |
0.9 | Ideal | J | VS1 | 62.6 | 55.0 | 3048.0 | 6.13 | 6.11 | 3.83 |
0.66 | Ideal | D | VVS2 | 61.6 | 57.0 | 3049.0 | 5.64 | 5.57 | 3.45 |
0.62 | Very Good | D | VVS2 | 58.1 | 63.0 | 3050.0 | 5.59 | 5.66 | 3.27 |
0.7 | Very Good | D | VS2 | 62.5 | 55.0 | 3052.0 | 5.65 | 5.71 | 3.55 |
0.77 | Ideal | F | VS2 | 61.2 | 57.0 | 3052.0 | 5.93 | 5.97 | 3.64 |
0.7 | Very Good | G | VVS2 | 60.2 | 61.0 | 3052.0 | 5.66 | 5.74 | 3.43 |
0.7 | Very Good | D | VS2 | 62.6 | 58.0 | 3053.0 | 5.67 | 5.7 | 3.56 |
0.71 | Very Good | E | VS2 | 59.9 | 59.0 | 3053.0 | 5.79 | 5.83 | 3.48 |
0.7 | Very Good | F | VS1 | 62.8 | 59.0 | 3053.0 | 5.65 | 5.69 | 3.56 |
0.71 | Ideal | E | VS2 | 60.9 | 56.0 | 3053.0 | 5.77 | 5.83 | 3.53 |
0.79 | Premium | G | VS1 | 62.3 | 56.0 | 3053.0 | 5.94 | 5.87 | 3.68 |
0.79 | Premium | G | VS1 | 61.3 | 59.0 | 3053.0 | 5.97 | 5.91 | 3.64 |
0.7 | Very Good | D | VS1 | 62.9 | 60.0 | 3054.0 | 5.62 | 5.67 | 3.55 |
0.65 | Very Good | D | VVS2 | 59.9 | 58.0 | 3056.0 | 5.63 | 5.69 | 3.39 |
0.61 | Ideal | E | VVS2 | 60.8 | 56.0 | 3056.0 | 5.5 | 5.47 | 3.34 |
0.57 | Ideal | F | VVS1 | 61.1 | 55.0 | 3057.0 | 5.36 | 5.44 | 3.3 |
0.76 | Good | F | VS1 | 59.9 | 61.0 | 3057.0 | 5.89 | 5.98 | 3.56 |
0.91 | Premium | J | VS2 | 61.6 | 58.0 | 3058.0 | 6.28 | 6.23 | 3.85 |
0.72 | Very Good | F | VS1 | 62.1 | 59.0 | 3059.0 | 5.69 | 5.74 | 3.55 |
0.71 | Very Good | E | VS1 | 61.8 | 56.0 | 3059.0 | 5.74 | 5.78 | 3.56 |
0.74 | Very Good | H | VVS1 | 62.4 | 57.0 | 3061.0 | 5.76 | 5.81 | 3.61 |
0.7 | Very Good | E | VS1 | 61.1 | 55.0 | 3061.0 | 5.72 | 5.77 | 3.51 |
0.71 | Very Good | E | VS1 | 63.3 | 56.0 | 3061.0 | 5.64 | 5.68 | 3.58 |
0.71 | Fair | G | VVS1 | 62.8 | 57.0 | 3062.0 | 5.67 | 5.57 | 3.53 |
0.7 | Premium | F | VVS2 | 58.7 | 60.0 | 3062.0 | 5.8 | 5.75 | 3.39 |
0.71 | Premium | E | VS2 | 62.2 | 59.0 | 3062.0 | 5.71 | 5.61 | 3.52 |
0.71 | Premium | E | VS2 | 62.0 | 61.0 | 3062.0 | 5.71 | 5.65 | 3.52 |
0.93 | Premium | J | VS1 | 60.3 | 58.0 | 3062.0 | 6.37 | 6.31 | 3.82 |
0.7 | Very Good | E | VS1 | 62.2 | 57.0 | 3063.0 | 5.63 | 5.68 | 3.52 |
0.7 | Very Good | E | VS1 | 62.5 | 56.0 | 3063.0 | 5.64 | 5.68 | 3.54 |
0.7 | Good | E | VS1 | 59.4 | 61.0 | 3063.0 | 5.79 | 5.83 | 3.45 |
0.71 | Very Good | E | VS1 | 63.3 | 59.0 | 3064.0 | 5.64 | 5.68 | 3.58 |
0.76 | Premium | E | VS2 | 61.7 | 62.0 | 3064.0 | 5.85 | 5.82 | 3.6 |
0.7 | Ideal | F | VS2 | 61.4 | 56.0 | 3064.0 | 5.72 | 5.75 | 3.52 |
0.7 | Ideal | F | VS2 | 61.6 | 55.0 | 3064.0 | 5.72 | 5.75 | 3.53 |
0.72 | Very Good | E | VS2 | 63.0 | 58.0 | 3065.0 | 5.69 | 5.73 | 3.6 |
0.7 | Ideal | G | VS1 | 61.5 | 56.0 | 3065.0 | 5.7 | 5.75 | 3.52 |
0.77 | Ideal | I | VS1 | 61.4 | 56.0 | 3066.0 | 5.9 | 5.93 | 3.63 |
0.71 | Ideal | F | VS1 | 62.0 | 57.0 | 3066.0 | 5.7 | 5.75 | 3.55 |
0.71 | Ideal | F | VS1 | 62.1 | 57.0 | 3066.0 | 5.73 | 5.76 | 3.57 |
0.73 | Very Good | E | VS2 | 63.1 | 55.0 | 3066.0 | 5.77 | 5.71 | 3.62 |
0.7 | Very Good | E | VS1 | 63.4 | 60.0 | 3068.0 | 5.63 | 5.66 | 3.58 |
0.7 | Ideal | E | VS2 | 62.6 | 56.0 | 3068.0 | 5.65 | 5.69 | 3.55 |
0.85 | Very Good | I | VS2 | 60.0 | 57.0 | 3070.0 | 6.1 | 6.16 | 3.68 |
0.82 | Ideal | I | VS1 | 61.6 | 56.0 | 3071.0 | 6.05 | 6.01 | 3.72 |
0.71 | Good | G | VVS1 | 62.7 | 61.0 | 3072.0 | 5.64 | 5.68 | 3.55 |
0.7 | Very Good | G | VVS1 | 63.1 | 56.0 | 3073.0 | 5.64 | 5.67 | 3.57 |
0.7 | Ideal | G | VVS1 | 61.6 | 55.0 | 3073.0 | 5.72 | 5.75 | 3.53 |
0.75 | Ideal | G | VS2 | 61.6 | 55.0 | 3073.0 | 5.86 | 5.89 | 3.62 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 3073.0 | 5.69 | 5.73 | 3.55 |
0.62 | Premium | E | VVS1 | 61.9 | 59.0 | 3073.0 | 5.62 | 5.5 | 3.44 |
0.7 | Good | D | VS2 | 58.0 | 65.0 | 3073.0 | 5.81 | 5.73 | 3.39 |
0.78 | Very Good | G | VS2 | 61.7 | 58.0 | 3074.0 | 5.87 | 5.92 | 3.64 |
0.9 | Fair | I | VVS2 | 67.0 | 56.0 | 3074.0 | 5.91 | 5.83 | 3.93 |
0.77 | Ideal | H | VS1 | 61.4 | 55.0 | 3074.0 | 5.89 | 5.93 | 3.63 |
0.72 | Very Good | D | VS2 | 61.8 | 58.0 | 3075.0 | 5.73 | 5.76 | 3.55 |
0.72 | Very Good | D | VS2 | 62.6 | 59.0 | 3075.0 | 5.69 | 5.72 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.2 | 57.0 | 3075.0 | 5.72 | 5.75 | 3.57 |
0.76 | Ideal | I | VS2 | 61.7 | 56.0 | 3075.0 | 5.87 | 5.9 | 3.63 |
0.73 | Ideal | E | VS2 | 62.7 | 56.0 | 3077.0 | 5.75 | 5.8 | 3.62 |
0.71 | Fair | D | VS2 | 64.7 | 58.0 | 3077.0 | 5.61 | 5.58 | 3.62 |
0.71 | Premium | D | VS2 | 60.3 | 62.0 | 3077.0 | 5.76 | 5.69 | 3.45 |
0.72 | Premium | E | VS2 | 62.5 | 59.0 | 3078.0 | 5.7 | 5.73 | 3.57 |
0.76 | Ideal | E | VS2 | 61.3 | 56.0 | 3079.0 | 5.79 | 5.83 | 3.56 |
// Combining conditions
display(spark.sql("SELECT * FROM diamonds WHERE clarity LIKE 'V%' AND price > 10000"))
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
1.7 | Ideal | J | VS2 | 60.5 | 58.0 | 10002.0 | 7.73 | 7.74 | 4.68 |
1.03 | Ideal | E | VVS2 | 60.6 | 59.0 | 10003.0 | 6.5 | 6.53 | 3.95 |
1.23 | Very Good | G | VVS2 | 60.6 | 55.0 | 10004.0 | 6.93 | 7.02 | 4.23 |
1.25 | Ideal | F | VS2 | 61.6 | 55.0 | 10006.0 | 6.93 | 6.96 | 4.28 |
1.21 | Very Good | F | VS1 | 62.3 | 58.0 | 10009.0 | 6.76 | 6.85 | 4.24 |
1.51 | Premium | I | VS2 | 59.9 | 60.0 | 10010.0 | 7.42 | 7.36 | 4.43 |
1.05 | Ideal | F | VVS2 | 60.5 | 55.0 | 10011.0 | 6.67 | 6.58 | 4.01 |
1.6 | Ideal | J | VS1 | 62.0 | 53.0 | 10011.0 | 7.57 | 7.56 | 4.69 |
1.35 | Premium | G | VS1 | 62.1 | 59.0 | 10012.0 | 7.06 | 7.02 | 4.37 |
1.53 | Premium | I | VS2 | 62.0 | 58.0 | 10013.0 | 7.36 | 7.41 | 4.58 |
1.13 | Ideal | F | VS1 | 60.9 | 57.0 | 10016.0 | 6.73 | 6.76 | 4.11 |
1.21 | Premium | F | VS1 | 62.6 | 59.0 | 10018.0 | 6.81 | 6.76 | 4.25 |
1.01 | Very Good | F | VVS1 | 62.9 | 57.0 | 10019.0 | 6.35 | 6.41 | 4.01 |
1.04 | Ideal | E | VVS2 | 62.9 | 55.0 | 10019.0 | 6.47 | 6.51 | 4.08 |
1.26 | Very Good | G | VVS2 | 60.9 | 56.0 | 10020.0 | 6.95 | 7.01 | 4.25 |
1.5 | Very Good | H | VS2 | 60.9 | 59.0 | 10023.0 | 7.37 | 7.43 | 4.51 |
1.12 | Premium | F | VVS2 | 62.4 | 59.0 | 10028.0 | 6.58 | 6.66 | 4.13 |
1.27 | Premium | F | VS1 | 60.3 | 58.0 | 10028.0 | 7.06 | 7.04 | 4.25 |
1.52 | Very Good | I | VS1 | 62.9 | 59.9 | 10032.0 | 7.27 | 7.31 | 4.59 |
1.24 | Premium | F | VS1 | 62.5 | 58.0 | 10033.0 | 6.87 | 6.83 | 4.28 |
1.23 | Very Good | F | VS1 | 62.0 | 59.0 | 10035.0 | 6.84 | 6.87 | 4.25 |
1.5 | Good | G | VS1 | 63.6 | 57.0 | 10036.0 | 7.23 | 7.14 | 4.57 |
1.22 | Ideal | G | VVS2 | 62.3 | 56.0 | 10038.0 | 6.81 | 6.84 | 4.25 |
1.3 | Ideal | G | VS1 | 62.0 | 55.0 | 10038.0 | 6.98 | 7.02 | 4.34 |
1.59 | Premium | I | VS2 | 60.2 | 60.0 | 10039.0 | 7.58 | 7.61 | 4.57 |
1.83 | Premium | I | VS2 | 60.5 | 60.0 | 10043.0 | 7.93 | 7.86 | 4.78 |
1.07 | Ideal | E | VVS2 | 61.4 | 56.0 | 10043.0 | 6.65 | 6.55 | 4.05 |
1.51 | Very Good | H | VS1 | 61.5 | 54.0 | 10045.0 | 7.34 | 7.42 | 4.54 |
1.08 | Ideal | F | VVS2 | 61.6 | 57.0 | 10046.0 | 6.57 | 6.6 | 4.06 |
1.0 | Premium | D | VVS2 | 61.6 | 60.0 | 10046.0 | 6.41 | 6.36 | 3.93 |
1.03 | Ideal | F | VVS2 | 61.1 | 57.0 | 10049.0 | 6.51 | 6.54 | 3.99 |
1.52 | Very Good | I | VS2 | 62.3 | 58.0 | 10051.0 | 7.32 | 7.28 | 4.55 |
1.08 | Ideal | F | VVS2 | 62.1 | 55.0 | 10052.0 | 6.57 | 6.6 | 4.09 |
1.2 | Premium | G | VVS2 | 62.8 | 59.0 | 10053.0 | 6.72 | 6.65 | 4.2 |
1.2 | Premium | E | VS1 | 60.7 | 57.0 | 10053.0 | 6.89 | 6.81 | 4.16 |
1.2 | Premium | G | VVS2 | 61.2 | 58.0 | 10053.0 | 6.88 | 6.84 | 4.2 |
1.71 | Premium | I | VS1 | 60.3 | 62.0 | 10055.0 | 7.76 | 7.7 | 4.66 |
1.0 | Ideal | F | VVS1 | 62.3 | 53.0 | 10058.0 | 6.37 | 6.43 | 3.99 |
1.07 | Ideal | F | VVS2 | 62.3 | 57.0 | 10061.0 | 6.56 | 6.58 | 4.09 |
1.66 | Premium | J | VVS2 | 62.6 | 59.0 | 10062.0 | 7.58 | 7.54 | 4.73 |
1.2 | Premium | F | VVS2 | 60.5 | 60.0 | 10064.0 | 6.98 | 6.87 | 4.19 |
1.11 | Very Good | F | VVS1 | 62.5 | 59.0 | 10069.0 | 6.59 | 6.63 | 4.13 |
1.34 | Ideal | G | VS1 | 62.7 | 57.0 | 10070.0 | 7.1 | 7.04 | 4.43 |
1.31 | Premium | G | VS1 | 61.5 | 59.0 | 10071.0 | 7.06 | 7.0 | 4.32 |
1.31 | Ideal | G | VS1 | 62.2 | 56.0 | 10071.0 | 7.05 | 7.01 | 4.37 |
1.31 | Ideal | G | VS1 | 61.5 | 57.0 | 10071.0 | 7.06 | 7.02 | 4.33 |
1.53 | Very Good | H | VS1 | 59.5 | 63.0 | 10076.0 | 7.51 | 7.44 | 4.45 |
1.26 | Premium | F | VS1 | 62.7 | 58.0 | 10076.0 | 6.93 | 6.86 | 4.32 |
1.73 | Ideal | J | VS2 | 63.0 | 57.0 | 10076.0 | 7.64 | 7.6 | 4.8 |
1.19 | Ideal | D | VS1 | 61.1 | 57.0 | 10079.0 | 6.84 | 6.87 | 4.19 |
1.5 | Ideal | I | VS1 | 61.3 | 57.0 | 10080.0 | 7.35 | 7.32 | 4.5 |
1.5 | Premium | I | VS1 | 62.7 | 59.0 | 10080.0 | 7.3 | 7.25 | 4.56 |
1.5 | Ideal | H | VS1 | 61.3 | 55.0 | 10080.0 | 7.37 | 7.34 | 4.51 |
1.21 | Premium | D | VS1 | 60.2 | 59.0 | 10083.0 | 6.89 | 6.86 | 4.14 |
1.71 | Premium | H | VS2 | 59.2 | 61.0 | 10084.0 | 7.83 | 7.77 | 4.62 |
1.82 | Very Good | J | VS1 | 62.2 | 56.0 | 10090.0 | 7.83 | 7.96 | 4.91 |
1.51 | Very Good | H | VS2 | 61.9 | 57.0 | 10090.0 | 7.32 | 7.36 | 4.54 |
1.3 | Ideal | F | VS2 | 62.2 | 56.0 | 10090.0 | 6.98 | 6.94 | 4.33 |
1.3 | Premium | F | VS2 | 60.4 | 59.0 | 10090.0 | 7.12 | 7.06 | 4.28 |
1.5 | Very Good | I | VVS2 | 63.3 | 58.0 | 10090.0 | 7.27 | 7.24 | 4.59 |
1.57 | Ideal | I | VS2 | 61.5 | 56.0 | 10093.0 | 7.56 | 7.49 | 4.63 |
1.07 | Ideal | F | VVS2 | 60.3 | 55.0 | 10093.0 | 6.65 | 6.68 | 4.02 |
1.31 | Very Good | E | VS2 | 63.1 | 56.0 | 10094.0 | 6.95 | 6.9 | 4.37 |
1.33 | Good | G | VS1 | 62.8 | 60.0 | 10096.0 | 6.87 | 6.92 | 4.33 |
1.53 | Premium | I | VS1 | 61.2 | 59.0 | 10098.0 | 7.39 | 7.41 | 4.53 |
1.61 | Ideal | I | VS2 | 62.5 | 57.0 | 10098.0 | 7.49 | 7.43 | 4.66 |
1.31 | Ideal | G | VS1 | 61.9 | 56.0 | 10099.0 | 7.03 | 7.13 | 4.38 |
1.22 | Ideal | F | VS1 | 62.3 | 57.0 | 10100.0 | 6.83 | 6.79 | 4.24 |
1.07 | Ideal | E | VVS2 | 61.7 | 57.0 | 10104.0 | 6.55 | 6.61 | 4.06 |
1.59 | Very Good | I | VS2 | 60.5 | 63.0 | 10106.0 | 7.52 | 7.45 | 4.53 |
1.22 | Premium | G | VVS2 | 62.0 | 58.0 | 10111.0 | 6.9 | 6.85 | 4.26 |
1.09 | Premium | E | VVS2 | 59.9 | 59.0 | 10111.0 | 6.73 | 6.7 | 4.02 |
1.58 | Very Good | I | VS1 | 61.8 | 57.0 | 10112.0 | 7.5 | 7.56 | 4.64 |
1.0 | Very Good | D | VVS2 | 61.7 | 58.0 | 10113.0 | 6.37 | 6.41 | 3.94 |
1.23 | Ideal | G | VVS1 | 63.2 | 56.0 | 10113.0 | 6.78 | 6.83 | 4.3 |
1.25 | Ideal | D | VS2 | 62.6 | 56.0 | 10114.0 | 6.87 | 6.84 | 4.29 |
1.17 | Premium | D | VS1 | 61.7 | 59.0 | 10115.0 | 6.77 | 6.72 | 4.16 |
1.28 | Ideal | G | VS1 | 62.1 | 57.0 | 10126.0 | 6.91 | 6.94 | 4.3 |
1.43 | Ideal | H | VVS2 | 61.6 | 54.0 | 10129.0 | 7.25 | 7.29 | 4.48 |
1.51 | Good | H | VS1 | 59.9 | 61.0 | 10129.0 | 7.34 | 7.39 | 4.41 |
1.52 | Very Good | I | VS2 | 61.7 | 55.0 | 10130.0 | 7.39 | 7.32 | 4.54 |
1.04 | Very Good | D | VVS2 | 60.8 | 58.0 | 10130.0 | 6.49 | 6.53 | 3.96 |
1.07 | Ideal | E | VVS2 | 62.3 | 56.0 | 10133.0 | 6.51 | 6.61 | 4.09 |
1.5 | Good | F | VS2 | 64.0 | 56.0 | 10134.0 | 7.18 | 7.13 | 4.64 |
1.0 | Premium | E | VVS1 | 60.3 | 54.0 | 10134.0 | 6.59 | 6.47 | 3.94 |
1.21 | Premium | E | VS1 | 60.3 | 58.0 | 10137.0 | 6.95 | 6.91 | 4.18 |
1.24 | Ideal | F | VS1 | 61.5 | 54.0 | 10138.0 | 6.93 | 6.89 | 4.25 |
1.24 | Ideal | F | VS1 | 60.9 | 54.0 | 10138.0 | 6.98 | 6.95 | 4.24 |
1.11 | Very Good | F | VVS1 | 59.7 | 55.0 | 10141.0 | 6.77 | 6.82 | 4.06 |
1.1 | Ideal | D | VS1 | 61.9 | 56.0 | 10144.0 | 6.58 | 6.61 | 4.09 |
1.01 | Premium | D | VVS2 | 60.2 | 58.0 | 10147.0 | 6.57 | 6.51 | 3.94 |
1.31 | Ideal | G | VS1 | 60.5 | 57.0 | 10155.0 | 7.1 | 7.14 | 4.31 |
1.2 | Premium | D | VS2 | 61.1 | 58.0 | 10161.0 | 6.85 | 6.83 | 4.18 |
1.5 | Very Good | I | VS1 | 62.2 | 59.0 | 10164.0 | 7.27 | 7.3 | 4.53 |
1.54 | Premium | I | VS1 | 61.6 | 58.0 | 10164.0 | 7.39 | 7.42 | 4.56 |
1.54 | Good | I | VS1 | 63.6 | 60.0 | 10164.0 | 7.3 | 7.33 | 4.65 |
1.5 | Ideal | I | VS1 | 62.0 | 54.0 | 10164.0 | 7.32 | 7.38 | 4.56 |
1.67 | Very Good | I | VS2 | 60.7 | 60.0 | 10165.0 | 7.61 | 7.68 | 4.64 |
1.7 | Very Good | J | VS1 | 62.9 | 58.0 | 10165.0 | 7.54 | 7.67 | 4.79 |
1.53 | Ideal | I | VS1 | 60.2 | 60.0 | 10171.0 | 7.51 | 7.48 | 4.51 |
1.2 | Very Good | F | VVS2 | 63.8 | 58.0 | 10173.0 | 6.67 | 6.69 | 4.26 |
1.21 | Ideal | F | VS2 | 61.5 | 54.0 | 10177.0 | 6.88 | 6.89 | 4.24 |
1.01 | Good | G | VS2 | 63.6 | 56.0 | 10181.0 | 6.31 | 6.24 | 3.99 |
1.24 | Very Good | E | VS1 | 62.0 | 58.0 | 10185.0 | 6.9 | 6.96 | 4.3 |
1.51 | Ideal | H | VS1 | 61.2 | 58.0 | 10186.0 | 7.36 | 7.42 | 4.52 |
1.35 | Ideal | G | VS1 | 61.5 | 56.0 | 10193.0 | 7.12 | 7.15 | 4.39 |
1.53 | Premium | I | VS2 | 62.0 | 58.0 | 10196.0 | 7.41 | 7.36 | 4.58 |
1.09 | Ideal | F | VVS2 | 62.0 | 56.0 | 10196.0 | 6.63 | 6.6 | 4.1 |
1.01 | Ideal | F | VVS1 | 60.5 | 60.0 | 10197.0 | 6.45 | 6.47 | 3.91 |
1.58 | Ideal | I | VS2 | 61.4 | 55.0 | 10197.0 | 7.49 | 7.55 | 4.62 |
1.24 | Premium | G | VVS2 | 59.9 | 60.0 | 10202.0 | 6.98 | 7.0 | 4.19 |
1.24 | Very Good | E | VS1 | 59.9 | 61.0 | 10202.0 | 6.96 | 6.99 | 4.18 |
1.27 | Premium | G | VVS2 | 61.0 | 58.0 | 10203.0 | 6.96 | 7.01 | 4.26 |
1.08 | Very Good | F | VVS1 | 61.0 | 58.0 | 10204.0 | 6.64 | 6.61 | 4.04 |
1.5 | Very Good | H | VS2 | 63.4 | 57.0 | 10206.0 | 7.27 | 7.2 | 4.59 |
1.5 | Fair | H | VS2 | 65.2 | 58.0 | 10206.0 | 7.12 | 7.06 | 4.62 |
1.57 | Ideal | I | VS1 | 62.3 | 57.0 | 10209.0 | 7.44 | 7.48 | 4.65 |
1.12 | Premium | F | VVS2 | 62.4 | 59.0 | 10211.0 | 6.66 | 6.58 | 4.13 |
1.52 | Ideal | I | VS1 | 62.9 | 60.0 | 10214.0 | 7.31 | 7.27 | 4.59 |
1.2 | Ideal | E | VS2 | 61.3 | 56.0 | 10214.0 | 6.89 | 6.84 | 4.21 |
1.51 | Very Good | I | VS1 | 61.1 | 61.0 | 10215.0 | 7.32 | 7.37 | 4.49 |
1.01 | Premium | D | VVS2 | 62.4 | 60.0 | 10221.0 | 6.31 | 6.36 | 3.95 |
1.3 | Ideal | G | VS1 | 62.0 | 55.0 | 10221.0 | 7.02 | 6.98 | 4.34 |
1.22 | Ideal | G | VVS2 | 62.3 | 56.0 | 10221.0 | 6.84 | 6.81 | 4.25 |
1.07 | Ideal | E | VVS2 | 61.3 | 56.0 | 10222.0 | 6.53 | 6.6 | 4.02 |
1.59 | Premium | I | VS2 | 60.2 | 60.0 | 10222.0 | 7.61 | 7.58 | 4.57 |
1.53 | Premium | H | VS2 | 59.3 | 59.0 | 10224.0 | 7.53 | 7.59 | 4.48 |
1.53 | Premium | H | VS2 | 59.8 | 58.0 | 10224.0 | 7.49 | 7.52 | 4.49 |
1.51 | Very Good | H | VS2 | 62.8 | 58.0 | 10225.0 | 7.21 | 7.28 | 4.55 |
1.37 | Very Good | G | VS1 | 58.3 | 60.0 | 10226.0 | 7.3 | 7.35 | 4.27 |
1.21 | Ideal | G | VVS1 | 60.2 | 57.0 | 10232.0 | 7.02 | 6.94 | 4.2 |
1.12 | Ideal | F | VVS2 | 60.4 | 56.0 | 10236.0 | 6.82 | 6.78 | 4.11 |
1.6 | Very Good | I | VS1 | 62.3 | 59.0 | 10238.0 | 7.46 | 7.51 | 4.66 |
1.16 | Ideal | D | VS1 | 61.2 | 58.0 | 10241.0 | 6.73 | 6.76 | 4.13 |
1.31 | Ideal | F | VS2 | 59.6 | 60.0 | 10243.0 | 7.06 | 7.16 | 4.24 |
1.35 | Ideal | G | VS1 | 62.2 | 57.0 | 10244.0 | 7.09 | 7.05 | 4.4 |
1.21 | Premium | F | VS1 | 61.9 | 58.0 | 10245.0 | 6.82 | 6.76 | 4.2 |
1.09 | Ideal | F | VVS2 | 62.1 | 56.0 | 10246.0 | 6.55 | 6.59 | 4.08 |
1.34 | Ideal | H | VVS1 | 62.1 | 56.0 | 10255.0 | 7.05 | 7.11 | 4.4 |
1.5 | Good | H | VS1 | 63.4 | 59.0 | 10256.0 | 7.2 | 7.29 | 4.59 |
1.21 | Ideal | G | VVS2 | 60.6 | 56.0 | 10256.0 | 6.9 | 6.89 | 4.18 |
1.14 | Premium | E | VVS2 | 59.7 | 58.0 | 10258.0 | 6.83 | 6.91 | 4.1 |
1.07 | Ideal | D | VVS2 | 61.3 | 58.0 | 10266.0 | 6.55 | 6.64 | 4.04 |
1.23 | Very Good | F | VS1 | 60.8 | 58.0 | 10276.0 | 6.9 | 6.94 | 4.21 |
1.57 | Ideal | I | VS2 | 62.7 | 56.0 | 10278.0 | 7.36 | 7.4 | 4.63 |
1.53 | Premium | I | VS1 | 61.2 | 59.0 | 10282.0 | 7.41 | 7.39 | 4.53 |
1.21 | Very Good | F | VS2 | 60.1 | 58.0 | 10283.0 | 6.85 | 6.92 | 4.14 |
1.01 | Ideal | E | VVS2 | 61.4 | 56.0 | 10283.0 | 6.49 | 6.45 | 3.97 |
1.26 | Very Good | F | VS1 | 62.5 | 58.0 | 10284.0 | 6.83 | 6.94 | 4.3 |
1.25 | Very Good | E | VS1 | 61.5 | 59.0 | 10285.0 | 6.91 | 6.95 | 4.26 |
1.55 | Ideal | I | VS1 | 61.2 | 55.0 | 10286.0 | 7.49 | 7.47 | 4.58 |
1.07 | Ideal | E | VVS2 | 61.7 | 57.0 | 10288.0 | 6.61 | 6.55 | 4.06 |
1.5 | Good | H | VS2 | 63.6 | 58.0 | 10291.0 | 7.22 | 7.27 | 4.61 |
1.5 | Good | H | VS2 | 61.2 | 61.0 | 10291.0 | 7.25 | 7.32 | 4.46 |
1.5 | Premium | H | VS2 | 62.2 | 58.0 | 10291.0 | 7.27 | 7.36 | 4.55 |
1.5 | Premium | H | VS2 | 60.8 | 59.0 | 10291.0 | 7.34 | 7.36 | 4.47 |
1.08 | Ideal | E | VS1 | 61.7 | 55.0 | 10292.0 | 6.58 | 6.61 | 4.07 |
1.21 | Ideal | G | VVS1 | 61.0 | 57.0 | 10295.0 | 6.87 | 6.93 | 4.21 |
1.08 | Ideal | E | VVS2 | 62.5 | 57.0 | 10300.0 | 6.52 | 6.57 | 4.09 |
1.52 | Premium | I | VS1 | 60.6 | 57.0 | 10300.0 | 7.51 | 7.44 | 4.53 |
1.46 | Ideal | G | VS2 | 62.3 | 56.0 | 10302.0 | 7.28 | 7.2 | 4.51 |
1.26 | Premium | G | VVS2 | 62.7 | 58.0 | 10302.0 | 6.95 | 6.86 | 4.33 |
1.23 | Ideal | G | VVS2 | 60.3 | 57.0 | 10304.0 | 6.98 | 6.97 | 4.21 |
1.23 | Ideal | G | VVS2 | 61.0 | 57.0 | 10304.0 | 6.93 | 6.9 | 4.22 |
1.12 | Ideal | G | VVS2 | 61.5 | 57.0 | 10305.0 | 6.65 | 6.67 | 4.1 |
1.18 | Ideal | G | VVS2 | 61.3 | 55.0 | 10308.0 | 6.86 | 6.81 | 4.19 |
1.59 | Very Good | I | VS2 | 61.1 | 58.6 | 10309.0 | 7.49 | 7.53 | 4.59 |
1.71 | Ideal | J | VS1 | 62.4 | 56.0 | 10309.0 | 7.59 | 7.63 | 4.75 |
1.4 | Ideal | G | VS2 | 61.7 | 56.0 | 10311.0 | 7.2 | 7.25 | 4.46 |
1.86 | Ideal | J | VS2 | 62.6 | 56.0 | 10312.0 | 7.95 | 7.87 | 4.95 |
1.08 | Ideal | E | VVS2 | 61.8 | 56.0 | 10313.0 | 6.55 | 6.59 | 4.06 |
1.09 | Ideal | E | VVS2 | 61.6 | 56.0 | 10314.0 | 6.6 | 6.64 | 4.08 |
1.04 | Premium | D | VVS2 | 60.8 | 58.0 | 10314.0 | 6.53 | 6.49 | 3.96 |
1.15 | Ideal | F | VS1 | 61.1 | 55.0 | 10316.0 | 6.76 | 6.82 | 4.15 |
1.23 | Ideal | G | VVS2 | 62.2 | 55.0 | 10317.0 | 6.86 | 6.9 | 4.28 |
1.23 | Ideal | G | VVS2 | 62.7 | 56.0 | 10317.0 | 6.81 | 6.84 | 4.28 |
1.51 | Very Good | H | VS2 | 63.0 | 57.0 | 10319.0 | 7.25 | 7.3 | 4.58 |
1.27 | Very Good | G | VVS2 | 61.5 | 58.0 | 10321.0 | 6.9 | 6.96 | 4.26 |
1.13 | Ideal | F | VVS2 | 61.4 | 56.0 | 10327.0 | 6.77 | 6.72 | 4.14 |
1.1 | Very Good | F | VVS1 | 62.2 | 59.0 | 10329.0 | 6.56 | 6.69 | 4.12 |
1.56 | Premium | H | VS2 | 62.4 | 58.0 | 10331.0 | 7.44 | 7.39 | 4.63 |
1.09 | Ideal | E | VVS2 | 60.9 | 56.0 | 10333.0 | 6.66 | 6.7 | 4.07 |
1.56 | Ideal | I | VS2 | 61.8 | 56.0 | 10333.0 | 7.41 | 7.45 | 4.59 |
1.7 | Premium | H | VS2 | 60.6 | 58.0 | 10333.0 | 7.72 | 7.65 | 4.66 |
1.7 | Ideal | H | VS2 | 62.8 | 55.0 | 10333.0 | 7.61 | 7.54 | 4.76 |
1.7 | Premium | H | VS2 | 59.0 | 58.0 | 10333.0 | 7.77 | 7.72 | 4.57 |
1.21 | Ideal | D | VS1 | 61.0 | 57.0 | 10335.0 | 6.88 | 6.85 | 4.19 |
1.57 | Very Good | I | VS1 | 59.7 | 61.0 | 10336.0 | 7.51 | 7.62 | 4.52 |
1.7 | Premium | H | VVS2 | 61.4 | 58.0 | 10337.0 | 7.66 | 7.62 | 4.69 |
1.58 | Ideal | I | VS2 | 61.1 | 55.0 | 10338.0 | 7.48 | 7.53 | 4.59 |
1.42 | Premium | F | VS1 | 58.4 | 59.0 | 10338.0 | 7.36 | 7.32 | 4.29 |
1.29 | Premium | F | VS1 | 60.9 | 58.0 | 10341.0 | 6.97 | 7.01 | 4.26 |
1.01 | Premium | F | VVS1 | 60.8 | 58.0 | 10341.0 | 6.55 | 6.48 | 3.96 |
1.27 | Ideal | G | VVS2 | 62.4 | 53.3 | 10342.0 | 6.94 | 6.95 | 4.33 |
1.17 | Ideal | G | VVS1 | 61.7 | 57.0 | 10342.0 | 6.84 | 6.9 | 4.13 |
1.23 | Ideal | F | VS2 | 62.4 | 54.0 | 10342.0 | 6.84 | 6.87 | 4.28 |
1.6 | Very Good | I | VS2 | 60.0 | 58.0 | 10346.0 | 7.61 | 7.68 | 4.59 |
1.54 | Premium | I | VS1 | 61.6 | 58.0 | 10349.0 | 7.42 | 7.39 | 4.56 |
1.54 | Very Good | I | VS1 | 61.1 | 63.0 | 10349.0 | 7.43 | 7.36 | 4.52 |
1.54 | Good | I | VS1 | 63.6 | 60.0 | 10349.0 | 7.33 | 7.3 | 4.65 |
1.04 | Premium | E | VVS1 | 62.5 | 59.0 | 10350.0 | 6.41 | 6.46 | 4.02 |
1.1 | Ideal | D | VS2 | 61.7 | 56.0 | 10350.0 | 6.63 | 6.67 | 4.1 |
1.4 | Very Good | G | VS2 | 60.1 | 62.0 | 10351.0 | 7.16 | 7.25 | 4.33 |
1.17 | Ideal | F | VVS2 | 61.9 | 54.0 | 10351.0 | 6.76 | 6.82 | 4.2 |
1.21 | Ideal | E | VS1 | 62.4 | 57.0 | 10351.0 | 6.75 | 6.83 | 4.24 |
1.21 | Ideal | D | VS2 | 60.9 | 60.0 | 10353.0 | 6.91 | 6.86 | 4.19 |
1.58 | Ideal | J | VVS1 | 61.5 | 56.0 | 10357.0 | 7.48 | 7.5 | 4.61 |
1.31 | Ideal | G | VS1 | 62.0 | 58.0 | 10359.0 | 6.97 | 7.02 | 4.34 |
1.62 | Premium | I | VS1 | 61.7 | 59.0 | 10362.0 | 7.55 | 7.47 | 4.63 |
1.26 | Premium | E | VS1 | 60.7 | 58.0 | 10367.0 | 7.02 | 7.04 | 4.27 |
1.26 | Ideal | G | VVS2 | 60.7 | 56.0 | 10367.0 | 7.03 | 7.05 | 4.27 |
1.2 | Ideal | F | VS1 | 62.1 | 58.0 | 10367.0 | 6.78 | 6.84 | 4.23 |
1.26 | Ideal | G | VS1 | 62.2 | 54.0 | 10371.0 | 6.89 | 6.98 | 4.31 |
1.4 | Very Good | G | VS2 | 62.2 | 61.0 | 10378.0 | 7.09 | 7.13 | 4.42 |
1.21 | Ideal | G | VVS2 | 62.0 | 56.0 | 10378.0 | 6.8 | 6.84 | 4.23 |
1.35 | Ideal | G | VS1 | 61.5 | 56.0 | 10378.0 | 7.15 | 7.12 | 4.39 |
1.55 | Ideal | I | VS1 | 61.5 | 54.0 | 10384.0 | 7.42 | 7.58 | 4.61 |
1.02 | Ideal | E | VVS2 | 61.5 | 57.0 | 10384.0 | 6.55 | 6.5 | 4.01 |
1.1 | Premium | E | VVS2 | 60.1 | 58.0 | 10387.0 | 6.69 | 6.76 | 4.04 |
1.24 | Premium | E | VS1 | 59.9 | 61.0 | 10388.0 | 6.99 | 6.96 | 4.18 |
1.24 | Premium | G | VVS2 | 59.9 | 60.0 | 10388.0 | 7.0 | 6.98 | 4.19 |
1.27 | Premium | G | VVS2 | 61.0 | 58.0 | 10389.0 | 7.01 | 6.96 | 4.26 |
1.52 | Ideal | I | VS1 | 60.7 | 60.0 | 10392.0 | 7.4 | 7.42 | 4.5 |
1.24 | Ideal | G | VVS2 | 61.4 | 58.0 | 10395.0 | 6.88 | 6.92 | 4.24 |
1.13 | Ideal | G | VVS2 | 61.6 | 57.0 | 10396.0 | 6.66 | 6.75 | 4.13 |
1.7 | Premium | I | VS2 | 61.9 | 56.0 | 10396.0 | 7.55 | 7.5 | 4.66 |
1.56 | Ideal | I | VS1 | 61.2 | 59.0 | 10399.0 | 7.43 | 7.5 | 4.57 |
2.01 | Premium | J | VS2 | 58.6 | 61.0 | 10401.0 | 8.18 | 8.14 | 4.78 |
1.51 | Premium | I | VS1 | 61.1 | 61.0 | 10401.0 | 7.37 | 7.32 | 4.49 |
1.5 | Ideal | I | VS1 | 62.2 | 54.0 | 10406.0 | 7.33 | 7.4 | 4.57 |
1.01 | Premium | D | VVS2 | 62.4 | 60.0 | 10407.0 | 6.36 | 6.31 | 3.95 |
1.31 | Very Good | D | VS2 | 59.5 | 61.0 | 10409.0 | 7.16 | 7.19 | 4.27 |
1.1 | Ideal | D | VVS2 | 61.0 | 56.0 | 10410.0 | 6.67 | 6.73 | 4.09 |
1.51 | Premium | H | VS2 | 60.6 | 58.0 | 10411.0 | 7.42 | 7.36 | 4.48 |
1.11 | Ideal | F | VVS1 | 61.9 | 57.0 | 10412.0 | 6.62 | 6.66 | 4.11 |
1.37 | Premium | G | VS1 | 58.3 | 60.0 | 10412.0 | 7.35 | 7.3 | 4.27 |
1.35 | Premium | G | VS1 | 61.0 | 59.0 | 10415.0 | 7.15 | 7.09 | 4.34 |
1.55 | Premium | I | VS1 | 58.2 | 60.0 | 10416.0 | 7.69 | 7.59 | 4.45 |
1.43 | Very Good | G | VS2 | 62.2 | 58.0 | 10419.0 | 7.15 | 7.18 | 4.46 |
1.32 | Premium | F | VS2 | 60.9 | 59.0 | 10423.0 | 7.12 | 7.06 | 4.32 |
1.56 | Premium | H | VS2 | 62.2 | 58.0 | 10424.0 | 7.41 | 7.44 | 4.62 |
1.5 | Very Good | H | VS2 | 58.9 | 59.0 | 10424.0 | 7.34 | 7.43 | 4.35 |
1.4 | Ideal | G | VS2 | 62.1 | 55.0 | 10427.0 | 7.12 | 7.05 | 4.4 |
1.58 | Premium | I | VS1 | 61.1 | 59.0 | 10428.0 | 7.44 | 7.52 | 4.57 |
1.52 | Good | H | VS2 | 63.3 | 57.0 | 10428.0 | 7.32 | 7.33 | 4.64 |
1.71 | Very Good | J | VS1 | 61.9 | 59.0 | 10428.0 | 7.6 | 7.69 | 4.73 |
1.75 | Premium | J | VS1 | 62.2 | 59.0 | 10429.0 | 7.7 | 7.74 | 4.8 |
1.21 | Very Good | E | VS1 | 60.0 | 58.0 | 10430.0 | 6.89 | 6.97 | 4.16 |
1.34 | Premium | F | VS2 | 61.1 | 58.0 | 10431.0 | 7.12 | 7.05 | 4.33 |
1.23 | Very Good | G | VVS1 | 61.3 | 57.0 | 10435.0 | 6.88 | 6.96 | 4.24 |
1.19 | Ideal | F | VVS2 | 61.7 | 56.0 | 10436.0 | 6.82 | 6.85 | 4.22 |
1.29 | Premium | F | VS1 | 59.3 | 60.0 | 10437.0 | 7.14 | 7.1 | 4.22 |
1.16 | Ideal | F | VVS2 | 61.8 | 56.7 | 10439.0 | 6.7 | 6.78 | 4.16 |
1.25 | Ideal | D | VS1 | 61.7 | 56.0 | 10441.0 | 6.92 | 7.01 | 4.3 |
1.11 | Ideal | D | VS2 | 61.2 | 57.0 | 10443.0 | 6.69 | 6.71 | 4.1 |
1.23 | Ideal | G | VVS2 | 61.3 | 56.0 | 10445.0 | 6.89 | 6.91 | 4.23 |
1.14 | Premium | E | VVS2 | 59.7 | 58.0 | 10446.0 | 6.91 | 6.83 | 4.1 |
1.57 | Very Good | I | VS2 | 60.3 | 58.0 | 10447.0 | 7.58 | 7.55 | 4.56 |
1.19 | Ideal | F | VS1 | 60.5 | 57.0 | 10449.0 | 6.82 | 6.88 | 4.15 |
1.01 | Very Good | D | VVS2 | 62.5 | 59.0 | 10453.0 | 6.34 | 6.4 | 3.98 |
1.07 | Ideal | E | VVS2 | 61.8 | 54.0 | 10453.0 | 6.56 | 6.61 | 4.07 |
1.2 | Ideal | G | VVS2 | 61.1 | 56.0 | 10454.0 | 6.88 | 6.91 | 4.21 |
1.36 | Ideal | G | VS1 | 61.0 | 56.0 | 10455.0 | 7.13 | 7.11 | 4.34 |
1.71 | Premium | H | VS1 | 62.1 | 59.0 | 10457.0 | 7.63 | 7.55 | 4.71 |
1.57 | Ideal | I | VS2 | 62.8 | 57.0 | 10462.0 | 7.46 | 7.37 | 4.66 |
1.09 | Very Good | F | VVS1 | 61.4 | 58.0 | 10463.0 | 6.6 | 6.65 | 4.07 |
1.0 | Very Good | E | VVS1 | 62.7 | 54.0 | 10463.0 | 6.36 | 6.39 | 4.0 |
1.2 | Ideal | G | VVS2 | 62.2 | 53.0 | 10463.0 | 6.8 | 6.84 | 4.24 |
1.59 | Premium | I | VS2 | 62.9 | 56.0 | 10471.0 | 7.48 | 7.43 | 4.69 |
1.35 | Ideal | G | VS1 | 60.9 | 54.0 | 10471.0 | 7.18 | 7.15 | 4.36 |
1.39 | Very Good | G | VS2 | 62.6 | 56.0 | 10476.0 | 7.08 | 7.11 | 4.44 |
1.72 | Very Good | J | VS2 | 60.9 | 61.0 | 10477.0 | 7.77 | 7.79 | 4.74 |
1.5 | Good | H | VS2 | 63.6 | 58.0 | 10478.0 | 7.27 | 7.22 | 4.61 |
1.5 | Premium | H | VS2 | 61.2 | 61.0 | 10478.0 | 7.32 | 7.25 | 4.46 |
1.63 | Premium | I | VS2 | 61.0 | 60.0 | 10479.0 | 7.62 | 7.59 | 4.64 |
1.56 | Ideal | I | VVS2 | 62.0 | 56.0 | 10481.0 | 7.39 | 7.42 | 4.6 |
1.21 | Ideal | G | VVS1 | 61.0 | 57.0 | 10482.0 | 6.93 | 6.87 | 4.21 |
1.5 | Premium | I | VVS2 | 60.2 | 58.0 | 10483.0 | 7.5 | 7.34 | 4.47 |
1.21 | Ideal | G | VVS1 | 61.4 | 58.0 | 10483.0 | 6.85 | 6.89 | 4.22 |
1.24 | Premium | G | VVS1 | 60.4 | 59.0 | 10485.0 | 7.02 | 7.01 | 4.24 |
1.1 | Ideal | F | VVS2 | 61.2 | 56.0 | 10487.0 | 6.66 | 6.74 | 4.1 |
1.22 | Premium | F | VVS2 | 63.0 | 56.0 | 10494.0 | 6.88 | 6.76 | 4.3 |
1.6 | Very Good | I | VS2 | 60.0 | 60.0 | 10497.0 | 7.55 | 7.59 | 4.54 |
1.52 | Very Good | H | VS1 | 59.8 | 57.0 | 10497.0 | 7.47 | 7.55 | 4.49 |
1.01 | Very Good | E | VVS1 | 63.2 | 54.0 | 10498.0 | 6.41 | 6.31 | 4.02 |
1.01 | Very Good | D | VVS2 | 59.8 | 57.0 | 10499.0 | 6.49 | 6.58 | 3.91 |
1.55 | Premium | G | VS2 | 60.5 | 60.0 | 10499.0 | 7.49 | 7.46 | 4.52 |
1.62 | Ideal | I | VS2 | 62.1 | 55.0 | 10501.0 | 7.53 | 7.58 | 4.69 |
1.21 | Ideal | F | VS1 | 61.8 | 56.0 | 10504.0 | 6.84 | 6.86 | 4.23 |
1.19 | Ideal | G | VVS1 | 61.6 | 59.0 | 10508.0 | 6.78 | 6.79 | 4.18 |
1.14 | Ideal | E | VVS2 | 62.3 | 55.0 | 10512.0 | 6.68 | 6.71 | 4.17 |
1.54 | Very Good | I | VVS2 | 62.7 | 57.0 | 10518.0 | 7.35 | 7.43 | 4.63 |
1.56 | Very Good | I | VS1 | 58.2 | 59.0 | 10523.0 | 7.65 | 7.7 | 4.47 |
1.29 | Premium | F | VS1 | 60.9 | 58.0 | 10530.0 | 7.01 | 6.97 | 4.26 |
1.71 | Ideal | H | VS2 | 63.0 | 57.0 | 10534.0 | 7.57 | 7.53 | 4.76 |
1.28 | Ideal | G | VS1 | 62.1 | 56.0 | 10537.0 | 6.97 | 6.94 | 4.32 |
1.22 | Ideal | D | VS2 | 61.7 | 56.0 | 10538.0 | 6.89 | 6.86 | 4.24 |
1.04 | Premium | E | VVS1 | 62.5 | 59.0 | 10539.0 | 6.46 | 6.41 | 4.02 |
1.33 | Ideal | G | VS1 | 62.0 | 55.0 | 10539.0 | 7.12 | 7.07 | 4.4 |
1.15 | Ideal | D | VS2 | 61.0 | 57.0 | 10546.0 | 6.76 | 6.78 | 4.13 |
1.03 | Premium | F | VVS1 | 59.7 | 60.0 | 10546.0 | 6.63 | 6.57 | 3.94 |
1.55 | Very Good | H | VS2 | 63.3 | 56.0 | 10546.0 | 7.38 | 7.32 | 4.65 |
1.51 | Premium | H | VS2 | 61.5 | 58.0 | 10548.0 | 7.45 | 7.32 | 4.45 |
1.51 | Premium | H | VS2 | 63.0 | 58.0 | 10548.0 | 7.34 | 7.27 | 4.6 |
1.5 | Very Good | I | VVS2 | 59.7 | 60.0 | 10551.0 | 7.46 | 7.62 | 4.5 |
1.51 | Ideal | G | VS2 | 62.8 | 57.0 | 10553.0 | 7.33 | 7.26 | 4.58 |
1.51 | Fair | G | VS2 | 58.1 | 67.0 | 10553.0 | 7.59 | 7.49 | 4.38 |
1.21 | Ideal | E | VS2 | 61.8 | 53.0 | 10556.0 | 6.86 | 6.9 | 4.25 |
1.31 | Ideal | G | VS1 | 62.0 | 53.0 | 10556.0 | 7.06 | 7.07 | 4.37 |
1.26 | Ideal | G | VVS2 | 60.7 | 56.0 | 10556.0 | 7.05 | 7.03 | 4.27 |
1.5 | Very Good | H | VS2 | 61.6 | 55.0 | 10558.0 | 7.37 | 7.43 | 4.56 |
1.53 | Ideal | I | VS1 | 61.5 | 55.0 | 10560.0 | 7.4 | 7.42 | 4.56 |
1.64 | Ideal | I | VS2 | 62.5 | 56.0 | 10562.0 | 7.58 | 7.52 | 4.72 |
1.0 | Fair | D | VVS2 | 61.1 | 57.0 | 10562.0 | 6.37 | 6.3 | 3.87 |
1.01 | Good | E | VVS1 | 63.1 | 59.0 | 10567.0 | 6.31 | 6.34 | 3.99 |
1.21 | Ideal | G | VVS2 | 61.3 | 57.0 | 10568.0 | 6.83 | 6.85 | 4.19 |
1.23 | Ideal | G | VVS1 | 61.8 | 56.0 | 10572.0 | 6.8 | 6.89 | 4.24 |
1.32 | Very Good | F | VS1 | 60.3 | 57.0 | 10575.0 | 7.08 | 7.12 | 4.28 |
1.51 | Ideal | I | VS1 | 61.6 | 56.0 | 10576.0 | 7.37 | 7.43 | 4.56 |
1.1 | Premium | E | VVS2 | 60.1 | 58.0 | 10577.0 | 6.76 | 6.69 | 4.04 |
1.0 | Ideal | F | VVS2 | 61.3 | 53.0 | 10577.0 | 6.44 | 6.48 | 3.96 |
1.02 | Premium | D | VVS2 | 61.4 | 58.0 | 10580.0 | 6.43 | 6.46 | 3.96 |
1.2 | Premium | F | VVS2 | 62.8 | 60.0 | 10580.0 | 6.79 | 6.74 | 4.25 |
1.23 | Ideal | F | VVS2 | 63.0 | 55.0 | 10580.0 | 6.89 | 6.79 | 4.31 |
1.79 | Premium | J | VS2 | 62.5 | 60.0 | 10581.0 | 7.76 | 7.69 | 4.83 |
1.41 | Ideal | G | VS2 | 60.8 | 55.0 | 10581.0 | 7.27 | 7.2 | 4.4 |
1.5 | Premium | H | VS1 | 59.3 | 61.0 | 10584.0 | 7.53 | 7.47 | 4.45 |
1.5 | Very Good | H | VS1 | 63.4 | 56.0 | 10584.0 | 7.29 | 7.25 | 4.61 |
1.7 | Ideal | J | VS1 | 60.9 | 58.0 | 10589.0 | 7.73 | 7.68 | 4.69 |
1.69 | Premium | I | VS2 | 62.4 | 58.0 | 10600.0 | 7.66 | 7.53 | 4.74 |
1.53 | Very Good | I | VS1 | 62.8 | 55.0 | 10602.0 | 7.35 | 7.4 | 4.63 |
1.35 | Ideal | D | VS2 | 61.3 | 57.0 | 10602.0 | 7.09 | 7.13 | 4.36 |
1.11 | Ideal | F | VVS1 | 61.9 | 57.0 | 10602.0 | 6.66 | 6.62 | 4.11 |
1.03 | Ideal | D | VS1 | 61.7 | 57.0 | 10607.0 | 6.45 | 6.48 | 3.99 |
1.58 | Very Good | H | VS2 | 61.4 | 60.0 | 10608.0 | 7.49 | 7.44 | 4.58 |
1.43 | Premium | G | VS2 | 62.2 | 58.0 | 10609.0 | 7.18 | 7.15 | 4.46 |
1.23 | Very Good | F | VS1 | 59.3 | 59.0 | 10609.0 | 6.98 | 7.01 | 4.15 |
1.29 | Ideal | G | VVS2 | 62.4 | 57.0 | 10614.0 | 6.94 | 6.97 | 4.34 |
1.52 | Very Good | H | VS2 | 63.3 | 57.0 | 10618.0 | 7.33 | 7.32 | 4.64 |
1.58 | Premium | I | VS1 | 61.1 | 59.0 | 10618.0 | 7.52 | 7.44 | 4.57 |
1.03 | Ideal | F | VVS1 | 62.1 | 56.3 | 10619.0 | 6.43 | 6.5 | 4.02 |
1.75 | Premium | J | VS1 | 62.2 | 59.0 | 10619.0 | 7.74 | 7.7 | 4.8 |
1.22 | Ideal | E | VS1 | 62.4 | 54.0 | 10622.0 | 6.77 | 6.88 | 4.26 |
1.52 | Fair | G | VS2 | 55.2 | 66.0 | 10623.0 | 7.72 | 7.67 | 4.26 |
1.51 | Premium | I | VVS2 | 61.1 | 60.0 | 10623.0 | 7.33 | 7.36 | 4.49 |
1.4 | Premium | F | VS2 | 61.5 | 60.0 | 10625.0 | 7.25 | 7.18 | 4.44 |
1.51 | Good | H | VS2 | 63.5 | 60.0 | 10628.0 | 7.24 | 7.27 | 4.61 |
1.32 | Ideal | G | VS1 | 62.4 | 53.0 | 10631.0 | 7.03 | 7.08 | 4.4 |
1.25 | Ideal | G | VVS2 | 61.5 | 55.0 | 10636.0 | 6.92 | 6.94 | 4.26 |
1.25 | Ideal | G | VVS2 | 62.5 | 54.0 | 10636.0 | 6.88 | 6.93 | 4.31 |
1.35 | Ideal | H | VVS1 | 61.9 | 57.0 | 10639.0 | 7.06 | 7.09 | 4.38 |
2.0 | Good | I | VS2 | 64.0 | 60.0 | 10640.0 | 7.9 | 7.83 | 5.04 |
1.25 | Premium | E | VS2 | 61.5 | 58.0 | 10640.0 | 6.98 | 6.91 | 4.27 |
1.52 | Premium | G | VS1 | 58.8 | 61.0 | 10640.0 | 7.54 | 7.45 | 4.41 |
1.02 | Very Good | E | VVS1 | 60.2 | 60.0 | 10641.0 | 6.39 | 6.54 | 3.89 |
1.52 | Ideal | I | VS1 | 62.4 | 57.0 | 10641.0 | 7.32 | 7.36 | 4.58 |
1.15 | Ideal | G | VVS1 | 62.7 | 56.0 | 10644.0 | 6.69 | 6.67 | 4.19 |
1.5 | Fair | G | VS2 | 66.2 | 53.0 | 10644.0 | 7.12 | 7.08 | 4.7 |
1.5 | Ideal | I | VVS2 | 61.7 | 55.0 | 10646.0 | 7.32 | 7.39 | 4.54 |
1.23 | Ideal | G | VVS2 | 60.8 | 57.0 | 10646.0 | 6.89 | 6.92 | 4.2 |
1.23 | Very Good | F | VVS2 | 58.5 | 59.0 | 10650.0 | 6.98 | 7.07 | 4.11 |
1.5 | Very Good | H | VS1 | 63.4 | 59.0 | 10652.0 | 7.13 | 7.2 | 4.54 |
1.3 | Very Good | G | VS1 | 62.5 | 58.0 | 10654.0 | 6.9 | 6.95 | 4.33 |
1.51 | Premium | H | VS1 | 59.6 | 60.0 | 10655.0 | 7.5 | 7.41 | 4.44 |
1.51 | Ideal | I | VS1 | 63.2 | 57.0 | 10655.0 | 7.4 | 7.28 | 4.62 |
1.35 | Ideal | G | VS1 | 62.7 | 57.0 | 10656.0 | 7.02 | 7.07 | 4.42 |
1.27 | Ideal | F | VS2 | 61.0 | 54.0 | 10656.0 | 7.0 | 7.02 | 4.28 |
1.79 | Ideal | J | VS2 | 61.8 | 56.0 | 10658.0 | 7.74 | 7.85 | 4.82 |
1.7 | Ideal | I | VS2 | 61.1 | 57.0 | 10662.0 | 7.7 | 7.66 | 4.69 |
1.7 | Premium | I | VS2 | 62.7 | 58.0 | 10662.0 | 7.57 | 7.52 | 4.73 |
1.5 | Premium | H | VS2 | 60.6 | 61.0 | 10668.0 | 7.34 | 7.31 | 4.44 |
1.62 | Premium | I | VS2 | 60.1 | 59.0 | 10669.0 | 7.63 | 7.6 | 4.58 |
1.26 | Premium | F | VS1 | 62.0 | 58.0 | 10669.0 | 6.95 | 6.88 | 4.29 |
1.5 | Good | G | VS2 | 63.7 | 57.0 | 10669.0 | 7.29 | 7.25 | 4.63 |
1.02 | Very Good | E | VVS1 | 62.2 | 57.0 | 10672.0 | 6.4 | 6.59 | 4.04 |
1.5 | Very Good | H | VS1 | 60.7 | 58.0 | 10681.0 | 7.35 | 7.42 | 4.48 |
1.75 | Very Good | J | VS1 | 61.5 | 59.0 | 10681.0 | 7.75 | 7.83 | 4.79 |
1.17 | Very Good | D | VS1 | 60.5 | 57.0 | 10681.0 | 6.79 | 6.86 | 4.13 |
1.68 | Ideal | J | VS1 | 61.1 | 57.0 | 10681.0 | 7.64 | 7.7 | 4.69 |
1.57 | Very Good | I | VS1 | 62.7 | 58.0 | 10682.0 | 7.41 | 7.43 | 4.65 |
1.21 | Ideal | G | VS1 | 61.3 | 57.0 | 10685.0 | 6.82 | 6.87 | 4.2 |
1.21 | Ideal | G | VS1 | 61.6 | 57.0 | 10685.0 | 6.85 | 6.87 | 4.22 |
1.21 | Ideal | G | VS1 | 61.8 | 57.0 | 10685.0 | 6.81 | 6.86 | 4.23 |
1.51 | Premium | H | VS2 | 60.7 | 58.0 | 10685.0 | 7.45 | 7.4 | 4.51 |
1.51 | Ideal | H | VS2 | 62.6 | 57.0 | 10685.0 | 7.37 | 7.33 | 4.6 |
1.66 | Ideal | I | VS1 | 61.0 | 55.0 | 10691.0 | 7.67 | 7.64 | 4.67 |
1.5 | Good | H | VS2 | 63.9 | 60.0 | 10692.0 | 7.17 | 7.22 | 4.6 |
1.5 | Ideal | H | VS2 | 62.2 | 57.0 | 10692.0 | 7.27 | 7.33 | 4.54 |
1.01 | Very Good | E | VVS1 | 61.6 | 58.0 | 10693.0 | 6.45 | 6.57 | 4.01 |
1.01 | Good | E | VVS1 | 63.1 | 57.0 | 10696.0 | 6.36 | 6.39 | 4.02 |
1.1 | Very Good | F | VVS1 | 59.8 | 54.0 | 10701.0 | 6.74 | 6.77 | 4.04 |
1.56 | Premium | H | VS2 | 62.5 | 59.0 | 10702.0 | 7.3 | 7.33 | 4.57 |
1.54 | Premium | H | VS2 | 61.8 | 59.0 | 10702.0 | 7.35 | 7.4 | 4.56 |
1.14 | Ideal | E | VVS2 | 62.3 | 55.0 | 10703.0 | 6.71 | 6.68 | 4.17 |
1.01 | Very Good | E | VVS1 | 62.3 | 56.0 | 10704.0 | 6.41 | 6.47 | 4.01 |
1.21 | Premium | D | VS1 | 62.6 | 56.0 | 10706.0 | 6.83 | 6.74 | 4.25 |
1.26 | Ideal | F | VS2 | 61.5 | 56.0 | 10709.0 | 6.97 | 7.01 | 4.3 |
1.04 | Ideal | D | VS1 | 61.6 | 57.0 | 10709.0 | 6.52 | 6.56 | 4.03 |
1.55 | Very Good | I | VS1 | 59.0 | 58.0 | 10711.0 | 7.56 | 7.63 | 4.48 |
1.31 | Ideal | E | VS1 | 61.7 | 55.0 | 10711.0 | 7.11 | 7.05 | 4.37 |
1.28 | Premium | G | VVS2 | 62.1 | 58.0 | 10716.0 | 6.96 | 6.91 | 4.31 |
1.22 | Very Good | F | VVS2 | 60.7 | 62.0 | 10719.0 | 6.81 | 6.84 | 4.14 |
1.26 | Ideal | G | VVS1 | 62.1 | 57.0 | 10720.0 | 6.91 | 7.01 | 4.32 |
1.24 | Ideal | G | VVS1 | 62.3 | 56.0 | 10724.0 | 6.86 | 6.89 | 4.28 |
1.29 | Ideal | F | VS1 | 62.3 | 54.4 | 10727.0 | 6.93 | 7.0 | 4.34 |
1.53 | Premium | I | VS1 | 62.4 | 59.0 | 10729.0 | 7.3 | 7.34 | 4.57 |
1.23 | Very Good | E | VS1 | 61.5 | 58.0 | 10730.0 | 6.88 | 6.93 | 4.25 |
1.01 | Premium | D | VVS2 | 62.4 | 58.0 | 10732.0 | 6.39 | 6.44 | 4.0 |
1.33 | Ideal | G | VS1 | 59.9 | 57.3 | 10732.0 | 7.16 | 7.21 | 4.3 |
1.42 | Ideal | G | VS2 | 62.6 | 57.0 | 10735.0 | 7.19 | 7.15 | 4.49 |
1.67 | Premium | I | VS2 | 61.9 | 56.0 | 10736.0 | 7.64 | 7.6 | 4.72 |
1.13 | Ideal | F | VVS2 | 62.1 | 54.0 | 10742.0 | 6.67 | 6.71 | 4.16 |
1.51 | Premium | H | VS1 | 62.4 | 60.0 | 10743.0 | 7.27 | 7.34 | 4.56 |
1.5 | Premium | I | VVS2 | 59.7 | 60.0 | 10744.0 | 7.62 | 7.46 | 4.5 |
1.19 | Ideal | F | VVS2 | 60.8 | 57.0 | 10748.0 | 6.85 | 6.83 | 4.16 |
1.5 | Premium | H | VS2 | 61.6 | 55.0 | 10750.0 | 7.43 | 7.37 | 4.56 |
1.0 | Fair | D | VVS1 | 56.7 | 68.0 | 10752.0 | 6.66 | 6.64 | 3.77 |
1.0 | Premium | D | VVS1 | 62.9 | 58.0 | 10752.0 | 6.34 | 6.28 | 3.97 |
1.59 | Ideal | I | VS2 | 61.7 | 57.0 | 10752.0 | 7.47 | 7.52 | 4.62 |
1.15 | Ideal | F | VVS2 | 62.7 | 57.0 | 10757.0 | 6.69 | 6.65 | 4.18 |
1.54 | Premium | H | VS2 | 61.9 | 61.0 | 10758.0 | 7.41 | 7.33 | 4.56 |
1.01 | Very Good | E | VVS1 | 63.1 | 59.0 | 10760.0 | 6.34 | 6.31 | 3.99 |
1.01 | Ideal | D | VVS2 | 61.7 | 57.0 | 10761.0 | 6.43 | 6.47 | 3.98 |
1.51 | Ideal | H | VS2 | 62.5 | 55.0 | 10763.0 | 7.29 | 7.34 | 4.57 |
1.51 | Good | H | VS2 | 64.2 | 58.5 | 10763.0 | 7.16 | 7.22 | 4.62 |
1.3 | Premium | G | VVS2 | 60.2 | 58.0 | 10763.0 | 7.17 | 7.08 | 4.29 |
1.12 | Ideal | F | VVS2 | 61.3 | 57.0 | 10764.0 | 6.67 | 6.7 | 4.1 |
1.54 | Good | H | VS1 | 63.1 | 57.0 | 10769.0 | 7.34 | 7.4 | 4.65 |
1.12 | Ideal | E | VVS2 | 60.6 | 57.0 | 10769.0 | 6.77 | 6.66 | 4.07 |
1.34 | Very Good | F | VS1 | 59.7 | 60.0 | 10771.0 | 7.17 | 7.2 | 4.29 |
1.02 | Premium | D | VVS2 | 61.4 | 58.0 | 10773.0 | 6.46 | 6.43 | 3.96 |
1.51 | Premium | H | VS1 | 62.1 | 58.0 | 10775.0 | 7.32 | 7.26 | 4.53 |
1.71 | Ideal | J | VS1 | 62.4 | 56.0 | 10778.0 | 7.63 | 7.59 | 4.75 |
1.29 | Very Good | E | VS1 | 61.8 | 57.0 | 10780.0 | 6.99 | 6.93 | 4.3 |
1.14 | Ideal | F | VVS2 | 61.9 | 57.0 | 10786.0 | 6.73 | 6.68 | 4.15 |
1.2 | Ideal | G | VVS1 | 63.1 | 56.0 | 10786.0 | 6.74 | 6.7 | 4.24 |
1.26 | Ideal | G | VVS1 | 61.1 | 57.0 | 10787.0 | 7.02 | 6.98 | 4.28 |
1.01 | Ideal | E | VVS1 | 61.8 | 54.0 | 10789.0 | 6.43 | 6.49 | 3.99 |
1.4 | Very Good | F | VS2 | 60.0 | 58.0 | 10790.0 | 7.24 | 7.29 | 4.36 |
1.53 | Ideal | I | VS1 | 62.8 | 55.0 | 10796.0 | 7.4 | 7.35 | 4.63 |
1.35 | Ideal | D | VS2 | 61.3 | 57.0 | 10796.0 | 7.13 | 7.09 | 4.36 |
1.01 | Ideal | D | VVS2 | 60.6 | 56.0 | 10797.0 | 6.53 | 6.48 | 3.94 |
1.01 | Premium | D | VVS2 | 61.6 | 58.0 | 10797.0 | 6.44 | 6.39 | 3.95 |
1.86 | Very Good | J | VS2 | 62.5 | 55.0 | 10798.0 | 7.81 | 7.9 | 4.91 |
1.01 | Very Good | D | VVS2 | 63.0 | 56.0 | 10800.0 | 6.35 | 6.41 | 4.02 |
1.68 | Ideal | I | VS2 | 62.1 | 57.0 | 10800.0 | 7.6 | 7.54 | 4.7 |
1.29 | Premium | F | VS1 | 61.3 | 61.0 | 10801.0 | 7.05 | 6.95 | 4.29 |
1.67 | Ideal | I | VS1 | 61.2 | 57.0 | 10802.0 | 7.69 | 7.66 | 4.7 |
1.04 | Ideal | F | VVS2 | 61.6 | 57.0 | 10804.0 | 6.47 | 6.51 | 4.0 |
1.27 | Ideal | G | VVS1 | 61.7 | 56.0 | 10805.0 | 6.9 | 7.03 | 4.3 |
1.29 | Ideal | G | VVS2 | 62.4 | 57.0 | 10807.0 | 6.97 | 6.94 | 4.34 |
1.7 | Very Good | J | VVS1 | 62.9 | 60.0 | 10808.0 | 7.56 | 7.61 | 4.77 |
1.16 | Premium | F | VVS1 | 60.4 | 60.0 | 10809.0 | 6.9 | 6.77 | 4.13 |
1.2 | Ideal | G | VVS2 | 62.3 | 54.0 | 10812.0 | 6.82 | 6.86 | 4.26 |
1.32 | Premium | F | VS2 | 62.2 | 58.0 | 10814.0 | 7.03 | 6.95 | 4.35 |
1.51 | Premium | I | VVS2 | 61.1 | 60.0 | 10817.0 | 7.36 | 7.33 | 4.49 |
1.51 | Good | H | VS1 | 58.2 | 58.0 | 10819.0 | 7.49 | 7.56 | 4.38 |
1.51 | Ideal | I | VVS2 | 61.6 | 58.0 | 10821.0 | 7.35 | 7.4 | 4.54 |
1.71 | Ideal | J | VS1 | 61.6 | 57.0 | 10821.0 | 7.67 | 7.62 | 4.71 |
1.51 | Very Good | H | VS2 | 63.5 | 60.0 | 10822.0 | 7.27 | 7.24 | 4.61 |
1.22 | Ideal | E | VS1 | 61.8 | 56.0 | 10823.0 | 6.84 | 6.88 | 4.24 |
1.6 | Very Good | I | VS1 | 58.6 | 58.0 | 10824.0 | 7.66 | 7.72 | 4.51 |
1.52 | Premium | I | VVS2 | 61.6 | 58.0 | 10824.0 | 7.37 | 7.41 | 4.55 |
1.51 | Premium | I | VVS1 | 61.0 | 61.0 | 10824.0 | 7.47 | 7.34 | 4.52 |
1.04 | Ideal | F | VVS1 | 61.6 | 55.0 | 10825.0 | 6.5 | 6.53 | 4.02 |
1.55 | Premium | H | VS2 | 62.7 | 57.0 | 10827.0 | 7.42 | 7.36 | 4.63 |
1.53 | Premium | H | VS2 | 59.9 | 60.0 | 10827.0 | 7.5 | 7.46 | 4.48 |
1.23 | Very Good | F | VVS2 | 62.4 | 58.0 | 10835.0 | 6.74 | 6.89 | 4.26 |
1.68 | Ideal | G | VS2 | 62.1 | 55.0 | 10838.0 | 7.64 | 7.59 | 4.73 |
1.28 | Ideal | G | VVS2 | 61.2 | 54.0 | 10839.0 | 7.03 | 7.06 | 4.31 |
1.23 | Premium | F | VVS2 | 58.5 | 59.0 | 10844.0 | 7.07 | 6.98 | 4.11 |
1.2 | Ideal | G | VVS2 | 61.2 | 56.0 | 10846.0 | 6.92 | 6.89 | 4.23 |
1.35 | Ideal | G | VS1 | 62.7 | 57.0 | 10850.0 | 7.07 | 7.02 | 4.42 |
1.16 | Ideal | F | VVS2 | 60.5 | 58.0 | 10850.0 | 6.77 | 6.85 | 4.12 |
1.38 | Premium | G | VS1 | 62.4 | 58.0 | 10850.0 | 7.14 | 7.09 | 4.44 |
1.52 | Ideal | I | VS1 | 61.8 | 55.0 | 10851.0 | 7.38 | 7.41 | 4.57 |
1.01 | Ideal | E | VVS2 | 61.7 | 55.0 | 10852.0 | 6.44 | 6.49 | 3.99 |
1.23 | Ideal | G | VS1 | 61.6 | 57.0 | 10859.0 | 6.84 | 6.9 | 4.23 |
1.01 | Ideal | D | VVS2 | 61.1 | 57.0 | 10860.0 | 6.47 | 6.49 | 3.96 |
1.1 | Ideal | F | VVS1 | 62.7 | 57.0 | 10861.0 | 6.57 | 6.63 | 4.14 |
1.51 | Ideal | H | VS2 | 61.4 | 58.0 | 10861.0 | 7.36 | 7.42 | 4.54 |
1.02 | Premium | E | VVS1 | 62.2 | 57.0 | 10867.0 | 6.59 | 6.4 | 4.04 |
1.55 | Ideal | I | VS1 | 61.9 | 55.0 | 10869.0 | 7.43 | 7.46 | 4.61 |
1.05 | Ideal | F | VVS1 | 61.6 | 55.0 | 10872.0 | 6.57 | 6.53 | 4.04 |
1.5 | Very Good | I | VVS2 | 62.0 | 53.0 | 10873.0 | 7.3 | 7.34 | 4.54 |
1.05 | Ideal | F | VVS2 | 62.1 | 55.0 | 10874.0 | 6.54 | 6.56 | 4.07 |
1.14 | Premium | F | VVS1 | 60.8 | 58.0 | 10878.0 | 6.79 | 6.74 | 4.11 |
1.57 | Premium | H | VS1 | 61.7 | 58.0 | 10880.0 | 7.47 | 7.56 | 4.64 |
1.26 | Ideal | G | VVS2 | 60.9 | 57.0 | 10886.0 | 6.98 | 7.01 | 4.26 |
1.5 | Good | H | VS2 | 63.9 | 60.0 | 10886.0 | 7.22 | 7.17 | 4.6 |
1.5 | Ideal | H | VS2 | 62.2 | 57.0 | 10886.0 | 7.33 | 7.27 | 4.54 |
1.01 | Ideal | E | VVS1 | 62.2 | 57.0 | 10887.0 | 6.38 | 6.44 | 3.99 |
1.22 | Ideal | G | VVS1 | 61.1 | 56.0 | 10888.0 | 6.91 | 6.94 | 4.23 |
1.01 | Premium | E | VVS1 | 61.6 | 58.0 | 10888.0 | 6.57 | 6.45 | 4.01 |
1.53 | Premium | H | VS2 | 60.1 | 58.0 | 10889.0 | 7.57 | 7.6 | 4.71 |
1.2 | Very Good | F | VVS2 | 62.9 | 59.0 | 10891.0 | 6.72 | 6.76 | 4.24 |
1.01 | Very Good | E | VVS1 | 63.1 | 57.0 | 10891.0 | 6.39 | 6.36 | 4.02 |
1.54 | Premium | H | VS2 | 61.8 | 59.0 | 10897.0 | 7.4 | 7.35 | 4.56 |
1.5 | Ideal | I | VVS2 | 60.3 | 57.0 | 10907.0 | 7.43 | 7.47 | 4.49 |
1.16 | Ideal | D | VS2 | 61.8 | 55.0 | 10907.0 | 6.72 | 6.75 | 4.16 |
1.7 | Premium | I | VS2 | 62.4 | 58.0 | 10910.0 | 7.61 | 7.56 | 4.73 |
1.62 | Very Good | H | VS2 | 62.6 | 58.0 | 10912.0 | 7.57 | 7.45 | 4.7 |
1.05 | Very Good | E | VVS1 | 59.5 | 60.0 | 10915.0 | 6.56 | 6.66 | 3.93 |
1.26 | Ideal | G | VVS1 | 62.1 | 57.0 | 10916.0 | 7.01 | 6.91 | 4.32 |
1.32 | Ideal | E | VS2 | 62.0 | 56.0 | 10919.0 | 7.02 | 7.07 | 4.37 |
1.5 | Ideal | H | VS2 | 62.3 | 56.0 | 10920.0 | 7.34 | 7.29 | 4.56 |
1.58 | Ideal | I | VS1 | 62.4 | 54.0 | 10920.0 | 7.43 | 7.46 | 4.64 |
1.26 | Very Good | G | VVS1 | 60.2 | 59.0 | 10922.0 | 6.98 | 7.07 | 4.23 |
1.29 | Ideal | F | VS1 | 62.3 | 54.0 | 10923.0 | 7.0 | 6.93 | 4.34 |
1.53 | Premium | I | VS1 | 62.4 | 59.0 | 10924.0 | 7.34 | 7.3 | 4.57 |
1.37 | Ideal | G | VS1 | 62.2 | 55.0 | 10927.0 | 7.09 | 7.12 | 4.42 |
1.01 | Premium | D | VVS2 | 62.4 | 58.0 | 10927.0 | 6.44 | 6.39 | 4.0 |
1.36 | Premium | F | VS2 | 59.3 | 60.0 | 10929.0 | 7.23 | 7.2 | 4.28 |
1.7 | Premium | I | VS2 | 62.0 | 59.0 | 10929.0 | 7.6 | 7.55 | 4.7 |
1.3 | Premium | F | VS1 | 61.0 | 59.0 | 10930.0 | 7.05 | 7.08 | 4.31 |
1.57 | Premium | H | VS1 | 60.5 | 61.0 | 10930.0 | 7.6 | 7.51 | 4.57 |
1.2 | Very Good | F | VVS2 | 61.4 | 60.0 | 10931.0 | 6.79 | 6.83 | 4.18 |
1.5 | Ideal | I | VVS2 | 60.7 | 60.0 | 10931.0 | 7.35 | 7.4 | 4.48 |
1.14 | Ideal | G | VVS1 | 61.1 | 58.0 | 10933.0 | 6.74 | 6.77 | 4.13 |
1.7 | Very Good | I | VS2 | 63.0 | 58.0 | 10935.0 | 7.52 | 7.65 | 4.78 |
1.51 | Premium | H | VS1 | 62.4 | 60.0 | 10939.0 | 7.34 | 7.27 | 4.56 |
1.71 | Ideal | J | VVS2 | 61.6 | 59.0 | 10945.0 | 7.65 | 7.68 | 4.72 |
1.24 | Ideal | G | VS1 | 61.8 | 55.0 | 10946.0 | 6.85 | 6.89 | 4.25 |
1.12 | Ideal | F | VVS2 | 62.2 | 55.0 | 10949.0 | 6.64 | 6.68 | 4.14 |
1.51 | Very Good | H | VS2 | 63.2 | 57.0 | 10950.0 | 7.18 | 7.32 | 4.58 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 10951.0 | 7.5 | 7.38 | 4.48 |
1.01 | Ideal | E | VVS1 | 62.0 | 57.0 | 10954.0 | 6.39 | 6.45 | 3.98 |
1.5 | Premium | I | VVS1 | 62.4 | 60.0 | 10956.0 | 7.29 | 7.32 | 4.56 |
1.31 | Ideal | F | VS1 | 61.9 | 54.0 | 10957.0 | 7.03 | 7.06 | 4.35 |
1.5 | Very Good | H | VS2 | 62.8 | 57.0 | 10959.0 | 7.25 | 7.3 | 4.57 |
1.51 | Ideal | H | VS2 | 64.2 | 59.0 | 10959.0 | 7.22 | 7.16 | 4.62 |
1.51 | Ideal | H | VS2 | 62.5 | 55.0 | 10959.0 | 7.34 | 7.29 | 4.57 |
1.25 | Very Good | G | VVS1 | 60.6 | 60.0 | 10962.0 | 6.92 | 6.95 | 4.2 |
1.35 | Premium | F | VS2 | 61.9 | 58.0 | 10962.0 | 7.06 | 7.02 | 4.36 |
1.57 | Ideal | I | VS2 | 60.4 | 58.0 | 10964.0 | 7.55 | 7.59 | 4.57 |
1.02 | Ideal | D | VVS2 | 62.0 | 56.0 | 10967.0 | 6.43 | 6.48 | 4.0 |
1.44 | Very Good | D | VS2 | 63.1 | 56.0 | 10967.0 | 7.15 | 7.12 | 4.5 |
1.52 | Ideal | I | VVS1 | 61.9 | 56.0 | 10968.0 | 7.34 | 7.37 | 4.55 |
1.32 | Premium | F | VS1 | 61.7 | 59.0 | 10977.0 | 6.95 | 6.99 | 4.3 |
1.54 | Premium | H | VS2 | 61.0 | 60.0 | 10977.0 | 7.42 | 7.46 | 4.54 |
1.2 | Good | F | VVS1 | 63.6 | 57.0 | 10982.0 | 6.71 | 6.74 | 4.28 |
1.25 | Ideal | G | VVS2 | 62.2 | 55.0 | 10983.0 | 6.87 | 6.93 | 4.29 |
1.04 | Premium | D | VVS2 | 61.1 | 60.0 | 10984.0 | 6.54 | 6.51 | 3.99 |
1.01 | Very Good | E | VVS1 | 63.6 | 55.0 | 10993.0 | 6.35 | 6.39 | 4.05 |
1.66 | Premium | H | VS2 | 62.3 | 58.0 | 10993.0 | 7.62 | 7.57 | 4.73 |
1.5 | Good | F | VS2 | 63.6 | 59.0 | 10995.0 | 7.13 | 7.22 | 4.56 |
1.25 | Ideal | G | VVS1 | 61.3 | 56.0 | 10996.0 | 6.95 | 6.98 | 4.28 |
1.27 | Ideal | G | VVS1 | 61.7 | 56.0 | 11002.0 | 7.03 | 6.9 | 4.3 |
1.22 | Ideal | G | VVS2 | 60.0 | 58.0 | 11003.0 | 6.95 | 6.99 | 4.18 |
1.7 | Premium | J | VVS1 | 62.9 | 60.0 | 11005.0 | 7.61 | 7.56 | 4.77 |
1.5 | Premium | I | VVS2 | 61.4 | 58.0 | 11007.0 | 7.38 | 7.32 | 4.51 |
1.5 | Fair | H | VS1 | 61.7 | 60.0 | 11007.0 | 7.37 | 7.27 | 4.52 |
1.5 | Premium | H | VS1 | 61.1 | 58.0 | 11007.0 | 7.46 | 7.37 | 4.53 |
1.41 | Ideal | G | VS1 | 60.4 | 57.0 | 11009.0 | 7.22 | 7.31 | 4.39 |
1.37 | Ideal | G | VS1 | 61.1 | 55.0 | 11009.0 | 7.2 | 7.16 | 4.39 |
1.41 | Very Good | F | VS1 | 63.4 | 63.0 | 11010.0 | 7.13 | 6.97 | 4.47 |
1.01 | Ideal | D | VVS2 | 61.5 | 57.0 | 11015.0 | 6.43 | 6.48 | 3.97 |
1.59 | Very Good | I | VS1 | 61.2 | 57.8 | 11018.0 | 7.5 | 7.52 | 4.6 |
1.63 | Ideal | I | VS2 | 61.9 | 54.3 | 11019.0 | 7.54 | 7.58 | 4.68 |
1.21 | Ideal | D | VS1 | 60.1 | 60.0 | 11019.0 | 6.92 | 6.99 | 4.18 |
1.2 | Premium | F | VVS2 | 62.2 | 58.0 | 11021.0 | 6.83 | 6.78 | 4.23 |
1.52 | Premium | I | VVS2 | 61.6 | 58.0 | 11021.0 | 7.41 | 7.37 | 4.55 |
1.6 | Premium | I | VS1 | 58.6 | 58.0 | 11021.0 | 7.72 | 7.66 | 4.51 |
1.33 | Good | D | VS2 | 63.6 | 58.0 | 11023.0 | 7.02 | 6.91 | 4.43 |
1.5 | Very Good | H | VS2 | 60.7 | 61.0 | 11025.0 | 7.34 | 7.41 | 4.48 |
1.02 | Ideal | E | VVS1 | 61.4 | 57.0 | 11028.0 | 6.39 | 6.47 | 3.95 |
1.44 | Premium | G | VS2 | 59.5 | 61.0 | 11032.0 | 7.38 | 7.3 | 4.37 |
1.71 | Premium | G | VS2 | 61.3 | 58.0 | 11032.0 | 7.64 | 7.6 | 4.67 |
1.52 | Ideal | I | VVS1 | 62.3 | 55.0 | 11033.0 | 7.32 | 7.37 | 4.58 |
1.56 | Very Good | H | VS2 | 63.1 | 60.0 | 11039.0 | 7.43 | 7.34 | 4.66 |
1.23 | Ideal | F | VVS2 | 61.8 | 56.0 | 11040.0 | 6.84 | 6.89 | 4.24 |
1.61 | Ideal | H | VS2 | 61.4 | 57.0 | 11045.0 | 7.52 | 7.57 | 4.63 |
1.55 | Premium | H | VS2 | 60.4 | 60.0 | 11048.0 | 7.39 | 7.44 | 4.48 |
1.74 | Premium | J | VS1 | 62.5 | 58.0 | 11050.0 | 7.67 | 7.65 | 4.79 |
1.13 | Ideal | F | VVS1 | 61.7 | 56.0 | 11051.0 | 6.68 | 6.75 | 4.14 |
1.2 | Ideal | D | VS1 | 61.0 | 59.0 | 11053.0 | 6.79 | 6.85 | 4.16 |
1.01 | Ideal | D | VVS2 | 61.1 | 57.0 | 11057.0 | 6.49 | 6.47 | 3.96 |
2.02 | Premium | I | VS2 | 61.2 | 60.0 | 11059.0 | 8.22 | 8.13 | 5.0 |
1.47 | Very Good | G | VS2 | 62.7 | 56.0 | 11060.0 | 7.15 | 7.18 | 4.49 |
1.3 | Premium | G | VVS1 | 60.5 | 60.0 | 11061.0 | 7.01 | 7.05 | 4.25 |
1.02 | Premium | E | VVS1 | 61.5 | 59.0 | 11062.0 | 6.41 | 6.46 | 3.96 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11062.0 | 7.63 | 7.57 | 4.69 |
1.52 | Premium | H | VS2 | 61.1 | 59.0 | 11066.0 | 7.45 | 7.38 | 4.53 |
1.55 | Ideal | I | VS1 | 61.9 | 55.0 | 11067.0 | 7.46 | 7.43 | 4.61 |
1.51 | Very Good | H | VS2 | 60.9 | 57.0 | 11068.0 | 7.39 | 7.43 | 4.51 |
1.3 | Ideal | G | VVS2 | 62.0 | 57.0 | 11073.0 | 6.96 | 7.03 | 4.34 |
1.11 | Ideal | E | VVS2 | 62.9 | 55.0 | 11074.0 | 6.56 | 6.62 | 4.14 |
1.51 | Very Good | H | VS2 | 60.9 | 54.0 | 11077.0 | 7.38 | 7.41 | 4.5 |
1.32 | Ideal | G | VS1 | 61.7 | 56.0 | 11079.0 | 7.03 | 7.11 | 4.36 |
1.23 | Very Good | G | VVS1 | 61.2 | 55.8 | 11081.0 | 6.9 | 6.94 | 4.23 |
1.01 | Ideal | D | VVS2 | 62.3 | 53.0 | 11082.0 | 6.4 | 6.47 | 4.02 |
1.69 | Ideal | I | VS2 | 61.7 | 56.0 | 11086.0 | 7.65 | 7.71 | 4.74 |
1.53 | Premium | H | VS2 | 60.1 | 58.0 | 11087.0 | 7.6 | 7.57 | 4.71 |
1.51 | Very Good | I | VVS1 | 63.0 | 59.0 | 11088.0 | 7.24 | 7.3 | 4.58 |
1.5 | Premium | H | VS1 | 62.1 | 59.0 | 11088.0 | 7.27 | 7.31 | 4.53 |
1.5 | Premium | H | VS1 | 59.9 | 60.0 | 11088.0 | 7.39 | 7.44 | 4.44 |
1.25 | Premium | E | VS1 | 61.5 | 59.0 | 11088.0 | 6.95 | 6.91 | 4.26 |
1.25 | Ideal | G | VVS2 | 62.0 | 59.0 | 11089.0 | 6.88 | 6.96 | 4.29 |
1.5 | Premium | H | VS2 | 62.4 | 59.0 | 11092.0 | 7.29 | 7.32 | 4.56 |
1.52 | Very Good | G | VS2 | 62.4 | 56.0 | 11093.0 | 7.26 | 7.36 | 4.56 |
1.18 | Ideal | E | VS1 | 61.4 | 57.0 | 11104.0 | 6.77 | 6.81 | 4.17 |
1.53 | Premium | H | VS2 | 62.7 | 56.0 | 11104.0 | 7.39 | 7.31 | 4.61 |
1.52 | Premium | H | VS2 | 59.4 | 59.0 | 11105.0 | 7.45 | 7.49 | 4.44 |
1.31 | Very Good | G | VVS2 | 62.2 | 59.0 | 11108.0 | 6.91 | 6.98 | 4.32 |
1.41 | Ideal | G | VS1 | 60.4 | 57.0 | 11109.0 | 7.31 | 7.22 | 4.39 |
1.47 | Premium | G | VS2 | 62.8 | 57.0 | 11113.0 | 7.27 | 7.22 | 4.55 |
1.62 | Ideal | H | VS2 | 62.4 | 57.0 | 11114.0 | 7.48 | 7.53 | 4.68 |
1.13 | Ideal | E | VVS2 | 61.4 | 57.0 | 11115.0 | 6.69 | 6.74 | 4.12 |
1.13 | Ideal | E | VVS2 | 61.6 | 56.0 | 11115.0 | 6.69 | 6.71 | 4.13 |
2.01 | Good | I | VS2 | 59.0 | 64.0 | 11115.0 | 8.25 | 8.19 | 4.85 |
1.34 | Premium | G | VVS2 | 61.3 | 58.0 | 11118.0 | 7.16 | 7.1 | 4.37 |
1.59 | Ideal | I | VS1 | 61.2 | 58.0 | 11119.0 | 7.52 | 7.5 | 4.6 |
1.16 | Ideal | F | VVS2 | 60.5 | 57.0 | 11120.0 | 6.8 | 6.86 | 4.13 |
1.53 | Premium | H | VS1 | 59.4 | 59.0 | 11127.0 | 7.58 | 7.51 | 4.48 |
1.02 | Ideal | E | VVS1 | 61.3 | 57.0 | 11128.0 | 6.47 | 6.54 | 3.99 |
1.24 | Very Good | F | VVS2 | 62.0 | 55.0 | 11130.0 | 6.88 | 6.95 | 4.29 |
1.3 | Premium | F | VS1 | 62.0 | 58.0 | 11130.0 | 6.94 | 6.9 | 4.29 |
1.1 | Ideal | D | VVS2 | 62.0 | 57.0 | 11132.0 | 6.57 | 6.62 | 4.09 |
1.1 | Very Good | D | VVS2 | 61.7 | 56.0 | 11132.0 | 6.64 | 6.65 | 4.1 |
1.36 | Ideal | F | VS1 | 61.4 | 57.0 | 11132.0 | 7.25 | 7.09 | 4.4 |
1.51 | Ideal | H | VS2 | 62.5 | 56.0 | 11133.0 | 7.37 | 7.33 | 4.57 |
1.7 | Very Good | H | VVS2 | 63.2 | 56.0 | 11133.0 | 7.59 | 7.56 | 4.79 |
1.31 | Ideal | F | VS1 | 61.7 | 56.0 | 11136.0 | 7.02 | 7.04 | 4.34 |
1.23 | Ideal | F | VVS2 | 61.8 | 56.0 | 11141.0 | 6.89 | 6.84 | 4.24 |
1.31 | Ideal | G | VVS1 | 61.1 | 57.0 | 11146.0 | 7.01 | 7.06 | 4.3 |
1.57 | Premium | I | VVS2 | 60.7 | 58.0 | 11146.0 | 7.54 | 7.51 | 4.57 |
1.28 | Ideal | G | VVS1 | 62.1 | 56.0 | 11147.0 | 6.93 | 6.96 | 4.31 |
1.55 | Premium | H | VS2 | 60.4 | 60.0 | 11149.0 | 7.44 | 7.39 | 4.48 |
1.77 | Ideal | J | VS1 | 62.2 | 56.0 | 11150.0 | 7.77 | 7.73 | 4.82 |
1.62 | Ideal | I | VS1 | 60.8 | 56.0 | 11152.0 | 7.56 | 7.61 | 4.62 |
1.52 | Ideal | H | VS1 | 62.3 | 55.0 | 11154.0 | 7.36 | 7.32 | 4.57 |
1.01 | Ideal | E | VVS1 | 62.0 | 57.0 | 11154.0 | 6.45 | 6.39 | 3.98 |
1.5 | Premium | I | VVS1 | 62.4 | 60.0 | 11155.0 | 7.32 | 7.29 | 4.56 |
1.66 | Ideal | I | VS2 | 62.3 | 54.0 | 11156.0 | 7.58 | 7.61 | 4.73 |
1.5 | Ideal | H | VS2 | 62.8 | 57.0 | 11159.0 | 7.3 | 7.25 | 4.57 |
1.51 | Very Good | G | VS2 | 59.3 | 58.0 | 11161.0 | 7.32 | 7.49 | 4.39 |
1.51 | Very Good | H | VS1 | 61.8 | 59.0 | 11161.0 | 7.27 | 7.32 | 4.51 |
1.51 | Premium | H | VS1 | 61.0 | 60.0 | 11161.0 | 7.29 | 7.34 | 4.46 |
1.71 | Premium | H | VS1 | 58.1 | 62.0 | 11161.0 | 8.02 | 7.84 | 4.61 |
1.3 | Premium | G | VVS1 | 60.5 | 60.0 | 11162.0 | 7.05 | 7.01 | 4.25 |
1.02 | Premium | E | VVS1 | 61.5 | 59.0 | 11163.0 | 6.46 | 6.41 | 3.96 |
1.51 | Very Good | H | VS2 | 62.8 | 60.0 | 11166.0 | 7.25 | 7.28 | 4.56 |
1.08 | Ideal | E | VVS2 | 61.0 | 56.0 | 11166.0 | 6.64 | 6.67 | 4.06 |
1.02 | Ideal | D | VVS2 | 62.0 | 56.0 | 11167.0 | 6.48 | 6.43 | 4.0 |
1.52 | Ideal | I | VVS1 | 61.9 | 56.0 | 11168.0 | 7.37 | 7.34 | 4.55 |
1.6 | Very Good | I | VVS1 | 59.8 | 56.0 | 11170.0 | 7.6 | 7.68 | 4.57 |
1.23 | Very Good | E | VVS2 | 60.4 | 62.0 | 11175.0 | 6.88 | 6.93 | 4.17 |
1.21 | Premium | F | VVS1 | 63.0 | 59.0 | 11175.0 | 6.75 | 6.7 | 4.24 |
1.3 | Ideal | G | VVS2 | 62.0 | 57.0 | 11175.0 | 7.03 | 6.96 | 4.34 |
1.76 | Premium | J | VS1 | 62.0 | 58.0 | 11177.0 | 7.74 | 7.7 | 4.79 |
1.54 | Premium | H | VS2 | 61.0 | 60.0 | 11177.0 | 7.46 | 7.42 | 4.54 |
1.32 | Premium | F | VS1 | 61.7 | 59.0 | 11177.0 | 6.99 | 6.95 | 4.3 |
1.53 | Very Good | H | VS2 | 62.2 | 58.0 | 11178.0 | 7.3 | 7.34 | 4.55 |
1.2 | Good | F | VVS1 | 63.6 | 57.0 | 11182.0 | 6.74 | 6.71 | 4.28 |
1.23 | Ideal | G | VVS1 | 61.2 | 56.0 | 11182.0 | 6.94 | 6.9 | 4.23 |
1.18 | Ideal | E | VVS2 | 61.6 | 58.0 | 11184.0 | 6.78 | 6.82 | 4.19 |
1.51 | Premium | H | VS2 | 61.2 | 58.0 | 11188.0 | 7.4 | 7.36 | 4.52 |
1.5 | Premium | G | VS2 | 59.9 | 58.0 | 11189.0 | 7.38 | 7.34 | 4.41 |
1.5 | Premium | H | VS1 | 62.1 | 59.0 | 11189.0 | 7.31 | 7.27 | 4.53 |
1.5 | Premium | G | VS2 | 58.4 | 58.0 | 11189.0 | 7.54 | 7.5 | 4.39 |
1.5 | Premium | H | VS1 | 59.9 | 60.0 | 11189.0 | 7.44 | 7.39 | 4.44 |
1.7 | Very Good | I | VS2 | 58.5 | 59.0 | 11190.0 | 7.81 | 7.89 | 4.59 |
1.5 | Premium | H | VS2 | 62.4 | 59.0 | 11194.0 | 7.32 | 7.29 | 4.56 |
1.74 | Ideal | J | VS1 | 61.1 | 56.0 | 11194.0 | 7.85 | 7.79 | 4.78 |
1.05 | Ideal | D | VVS2 | 61.9 | 54.0 | 11196.0 | 6.53 | 6.55 | 4.05 |
1.29 | Ideal | F | VS1 | 60.7 | 57.0 | 11197.0 | 7.08 | 7.05 | 4.29 |
1.38 | Ideal | F | VS2 | 61.9 | 55.0 | 11205.0 | 7.16 | 7.12 | 4.42 |
1.52 | Premium | H | VS2 | 59.4 | 59.0 | 11206.0 | 7.49 | 7.45 | 4.44 |
1.52 | Ideal | H | VS2 | 60.7 | 56.0 | 11206.0 | 7.49 | 7.41 | 4.52 |
1.14 | Ideal | E | VVS2 | 61.6 | 57.0 | 11206.0 | 6.68 | 6.73 | 4.13 |
1.27 | Ideal | G | VS1 | 61.2 | 57.0 | 11206.0 | 6.97 | 6.98 | 4.27 |
2.04 | Premium | J | VS2 | 60.9 | 59.0 | 11209.0 | 8.25 | 8.21 | 5.01 |
1.06 | Ideal | D | VVS2 | 61.1 | 56.0 | 11209.0 | 6.58 | 6.59 | 4.02 |
1.28 | Very Good | G | VVS1 | 60.3 | 59.0 | 11214.0 | 6.99 | 7.03 | 4.23 |
1.5 | Very Good | G | VS1 | 59.1 | 62.0 | 11216.0 | 7.38 | 7.42 | 4.37 |
1.62 | Ideal | I | VS2 | 61.8 | 55.0 | 11217.0 | 7.56 | 7.59 | 4.68 |
1.26 | Ideal | G | VVS1 | 61.7 | 56.0 | 11218.0 | 6.96 | 6.98 | 4.3 |
1.5 | Very Good | H | VS2 | 60.0 | 62.0 | 11220.0 | 7.38 | 7.41 | 4.44 |
1.72 | Ideal | I | VS2 | 62.8 | 57.0 | 11226.0 | 7.69 | 7.63 | 4.81 |
1.14 | Ideal | F | VVS1 | 60.1 | 60.0 | 11226.0 | 6.79 | 6.83 | 4.09 |
1.24 | Premium | F | VVS2 | 62.0 | 55.0 | 11231.0 | 6.95 | 6.88 | 4.29 |
1.1 | Ideal | D | VVS2 | 62.0 | 57.0 | 11233.0 | 6.62 | 6.57 | 4.09 |
1.1 | Premium | D | VVS2 | 61.7 | 56.0 | 11233.0 | 6.65 | 6.64 | 4.1 |
1.24 | Very Good | F | VVS2 | 59.0 | 58.0 | 11234.0 | 6.98 | 7.03 | 4.13 |
1.52 | Good | G | VS2 | 63.3 | 57.0 | 11235.0 | 7.27 | 7.32 | 4.62 |
1.31 | Ideal | F | VS1 | 61.7 | 56.0 | 11237.0 | 7.04 | 7.02 | 4.34 |
1.71 | Premium | I | VS1 | 60.6 | 57.0 | 11246.0 | 7.82 | 7.73 | 4.71 |
1.31 | Ideal | G | VVS1 | 61.1 | 57.0 | 11247.0 | 7.06 | 7.01 | 4.3 |
1.28 | Ideal | G | VVS1 | 62.1 | 56.0 | 11248.0 | 6.96 | 6.93 | 4.31 |
1.39 | Premium | E | VS2 | 61.7 | 59.0 | 11248.0 | 7.13 | 7.09 | 4.39 |
1.71 | Good | I | VS2 | 58.0 | 60.0 | 11250.0 | 7.85 | 7.9 | 4.57 |
1.5 | Premium | F | VS2 | 61.1 | 59.0 | 11255.0 | 7.37 | 7.35 | 4.5 |
1.31 | Premium | G | VVS2 | 59.6 | 61.0 | 11255.0 | 7.23 | 7.14 | 4.28 |
1.7 | Ideal | I | VS2 | 61.7 | 56.0 | 11257.0 | 7.64 | 7.72 | 4.74 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11257.0 | 7.63 | 7.68 | 4.72 |
1.7 | Premium | I | VS2 | 61.2 | 59.0 | 11257.0 | 7.55 | 7.62 | 4.64 |
1.58 | Ideal | H | VS2 | 62.7 | 56.0 | 11262.0 | 7.39 | 7.44 | 4.65 |
1.4 | Very Good | G | VS1 | 62.6 | 58.0 | 11262.0 | 7.03 | 7.07 | 4.41 |
1.51 | Premium | H | VS1 | 61.8 | 59.0 | 11263.0 | 7.32 | 7.27 | 4.51 |
1.51 | Very Good | H | VS1 | 63.2 | 60.0 | 11263.0 | 7.23 | 7.17 | 4.55 |
1.51 | Premium | H | VS1 | 61.0 | 60.0 | 11263.0 | 7.34 | 7.29 | 4.46 |
1.51 | Fair | H | VS1 | 58.0 | 67.0 | 11263.0 | 7.63 | 7.57 | 4.41 |
1.24 | Very Good | F | VVS2 | 63.6 | 56.0 | 11268.0 | 6.75 | 6.8 | 4.31 |
1.51 | Premium | H | VS2 | 62.9 | 59.0 | 11268.0 | 7.31 | 7.25 | 4.58 |
1.51 | Premium | H | VS2 | 62.8 | 60.0 | 11268.0 | 7.28 | 7.25 | 4.56 |
1.41 | Premium | E | VS2 | 61.3 | 58.0 | 11269.0 | 7.29 | 7.25 | 4.46 |
1.57 | Premium | H | VS1 | 59.8 | 60.0 | 11272.0 | 7.63 | 7.56 | 4.54 |
1.52 | Ideal | H | VS2 | 62.4 | 58.0 | 11272.0 | 7.3 | 7.37 | 4.58 |
1.04 | Premium | E | VVS1 | 60.9 | 58.0 | 11279.0 | 6.53 | 6.61 | 4.0 |
1.53 | Premium | H | VS2 | 62.2 | 58.0 | 11280.0 | 7.34 | 7.3 | 4.55 |
1.38 | Very Good | F | VS1 | 61.4 | 61.0 | 11286.0 | 7.1 | 7.14 | 4.37 |
1.5 | Good | G | VS2 | 59.0 | 58.0 | 11294.0 | 7.41 | 7.45 | 4.38 |
1.5 | Ideal | H | VS1 | 62.3 | 54.7 | 11296.0 | 7.29 | 7.33 | 4.55 |
1.2 | Premium | E | VVS2 | 62.1 | 58.0 | 11301.0 | 6.76 | 6.7 | 4.18 |
1.43 | Ideal | G | VS1 | 59.9 | 57.0 | 11302.0 | 7.35 | 7.3 | 4.39 |
1.5 | Very Good | H | VVS2 | 62.7 | 58.0 | 11303.0 | 7.21 | 7.24 | 4.53 |
1.64 | Ideal | I | VS1 | 60.5 | 57.0 | 11305.0 | 7.68 | 7.62 | 4.64 |
1.37 | Ideal | E | VS2 | 60.3 | 54.0 | 11314.0 | 7.26 | 7.2 | 4.36 |
2.0 | Fair | I | VS1 | 58.5 | 68.0 | 11322.0 | 8.26 | 8.15 | 4.8 |
1.5 | Premium | H | VS2 | 60.0 | 62.0 | 11322.0 | 7.41 | 7.38 | 4.44 |
1.26 | Ideal | E | VS1 | 61.2 | 56.0 | 11323.0 | 6.97 | 6.93 | 4.25 |
1.8 | Premium | J | VS1 | 58.2 | 61.0 | 11329.0 | 8.07 | 7.95 | 4.66 |
1.11 | Very Good | E | VVS1 | 60.2 | 59.0 | 11330.0 | 6.67 | 6.79 | 4.05 |
1.59 | Very Good | H | VS2 | 60.7 | 61.1 | 11333.0 | 7.5 | 7.56 | 4.57 |
1.59 | Premium | H | VS2 | 62.1 | 58.0 | 11333.0 | 7.42 | 7.48 | 4.63 |
1.52 | Ideal | H | VS2 | 61.8 | 55.1 | 11333.0 | 7.38 | 7.42 | 4.58 |
1.03 | Premium | D | VVS2 | 60.1 | 58.0 | 11335.0 | 6.55 | 6.6 | 3.95 |
1.52 | Very Good | G | VS2 | 63.3 | 57.0 | 11338.0 | 7.32 | 7.27 | 4.62 |
1.56 | Premium | H | VS1 | 62.0 | 57.0 | 11345.0 | 7.48 | 7.43 | 4.62 |
1.41 | Premium | G | VS1 | 62.1 | 59.0 | 11347.0 | 7.1 | 7.06 | 4.4 |
1.5 | Premium | H | VS2 | 61.8 | 59.0 | 11360.0 | 7.3 | 7.35 | 4.53 |
1.7 | Premium | I | VS2 | 61.2 | 59.0 | 11360.0 | 7.62 | 7.55 | 4.64 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11360.0 | 7.68 | 7.63 | 4.72 |
1.7 | Ideal | I | VS2 | 61.7 | 56.0 | 11360.0 | 7.72 | 7.64 | 4.74 |
1.72 | Premium | I | VS2 | 58.3 | 61.0 | 11360.0 | 7.91 | 7.87 | 4.6 |
1.55 | Good | H | VS2 | 61.0 | 61.0 | 11364.0 | 7.42 | 7.47 | 4.54 |
1.58 | Ideal | H | VS2 | 62.7 | 56.0 | 11365.0 | 7.44 | 7.39 | 4.65 |
1.4 | Premium | F | VS2 | 60.7 | 58.0 | 11368.0 | 7.26 | 7.17 | 4.38 |
1.7 | Premium | I | VS2 | 60.5 | 61.0 | 11369.0 | 7.68 | 7.65 | 4.64 |
1.52 | Ideal | H | VS2 | 61.8 | 54.0 | 11379.0 | 7.42 | 7.43 | 4.59 |
1.52 | Ideal | H | VS2 | 61.9 | 55.0 | 11379.0 | 7.38 | 7.43 | 4.58 |
1.53 | Very Good | F | VS1 | 63.2 | 58.0 | 11379.0 | 7.33 | 7.3 | 4.62 |
1.58 | Premium | G | VS1 | 60.8 | 58.0 | 11380.0 | 7.58 | 7.52 | 4.59 |
1.04 | Premium | E | VVS1 | 60.9 | 58.0 | 11382.0 | 6.61 | 6.53 | 4.0 |
1.23 | Very Good | F | VVS2 | 62.2 | 58.0 | 11382.0 | 6.81 | 6.86 | 4.25 |
1.13 | Ideal | E | VVS2 | 60.1 | 59.0 | 11387.0 | 6.77 | 6.81 | 4.08 |
1.31 | Premium | G | VVS2 | 62.7 | 59.0 | 11389.0 | 6.96 | 6.92 | 4.35 |
1.71 | Very Good | I | VS2 | 63.4 | 59.0 | 11389.0 | 7.53 | 7.45 | 4.75 |
1.52 | Very Good | J | VVS2 | 62.1 | 60.0 | 11392.0 | 7.33 | 7.36 | 4.56 |
1.3 | Premium | F | VS1 | 62.5 | 58.0 | 11392.0 | 6.97 | 6.94 | 4.35 |
1.21 | Premium | E | VVS2 | 61.9 | 58.0 | 11395.0 | 6.84 | 6.79 | 4.22 |
1.01 | Ideal | E | VVS2 | 61.7 | 57.0 | 11400.0 | 6.42 | 6.44 | 3.97 |
1.67 | Premium | I | VS1 | 61.1 | 58.0 | 11400.0 | 7.69 | 7.6 | 4.67 |
1.12 | Ideal | F | VVS1 | 61.0 | 56.0 | 11403.0 | 6.71 | 6.74 | 4.1 |
1.52 | Ideal | F | VS2 | 62.3 | 55.0 | 11405.0 | 7.37 | 7.33 | 4.58 |
1.83 | Ideal | J | VS2 | 62.0 | 56.0 | 11406.0 | 7.84 | 7.9 | 4.88 |
1.33 | Ideal | D | VS2 | 62.8 | 56.0 | 11409.0 | 7.08 | 7.03 | 4.43 |
1.53 | Premium | H | VS1 | 60.8 | 59.0 | 11413.0 | 7.41 | 7.36 | 4.49 |
1.57 | Premium | H | VS2 | 62.2 | 58.0 | 11415.0 | 7.45 | 7.4 | 4.62 |
1.18 | Ideal | F | VVS2 | 60.6 | 55.0 | 11415.0 | 6.84 | 6.88 | 4.16 |
1.23 | Ideal | G | VVS1 | 61.4 | 55.0 | 11417.0 | 6.89 | 6.93 | 4.24 |
1.32 | Ideal | G | VVS2 | 62.3 | 57.0 | 11419.0 | 6.96 | 7.04 | 4.36 |
1.58 | Ideal | H | VS2 | 63.0 | 56.0 | 11419.0 | 7.39 | 7.46 | 4.68 |
1.28 | Ideal | E | VS1 | 61.7 | 57.0 | 11419.0 | 6.93 | 6.97 | 4.29 |
1.25 | Ideal | E | VS2 | 60.7 | 56.0 | 11422.0 | 6.97 | 6.99 | 4.24 |
1.62 | Very Good | H | VS2 | 59.6 | 59.0 | 11427.0 | 7.59 | 7.67 | 4.55 |
1.55 | Premium | H | VS2 | 61.7 | 59.0 | 11428.0 | 7.44 | 7.4 | 4.58 |
1.18 | Very Good | F | VVS2 | 60.1 | 58.0 | 11430.0 | 6.88 | 6.92 | 4.15 |
1.23 | Premium | F | VVS2 | 61.6 | 59.0 | 11430.0 | 6.8 | 6.9 | 4.22 |
1.55 | Ideal | I | VVS2 | 61.3 | 59.0 | 11430.0 | 7.41 | 7.46 | 4.56 |
1.53 | Ideal | I | VS2 | 61.5 | 56.0 | 11434.0 | 7.39 | 7.44 | 4.55 |
1.42 | Premium | G | VS1 | 62.1 | 56.0 | 11434.0 | 7.27 | 7.22 | 4.5 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 11435.0 | 7.33 | 7.35 | 4.42 |
1.51 | Premium | H | VS2 | 62.3 | 59.0 | 11435.0 | 7.28 | 7.32 | 4.55 |
1.51 | Ideal | H | VS2 | 62.2 | 57.0 | 11435.0 | 7.29 | 7.33 | 4.55 |
1.58 | Ideal | I | VVS1 | 61.9 | 55.0 | 11435.0 | 7.47 | 7.51 | 4.64 |
1.2 | Premium | E | VVS2 | 61.4 | 56.0 | 11435.0 | 6.94 | 6.83 | 4.23 |
1.59 | Premium | H | VS2 | 62.1 | 58.0 | 11437.0 | 7.48 | 7.42 | 4.63 |
1.59 | Ideal | H | VS2 | 60.7 | 61.0 | 11437.0 | 7.56 | 7.5 | 4.57 |
1.01 | Ideal | D | VVS2 | 61.9 | 56.0 | 11442.0 | 6.41 | 6.45 | 3.98 |
1.42 | Very Good | G | VS1 | 62.7 | 55.0 | 11452.0 | 7.11 | 7.17 | 4.48 |
1.53 | Very Good | H | VS2 | 60.9 | 63.0 | 11452.0 | 7.37 | 7.41 | 4.5 |
1.21 | Very Good | F | VVS2 | 61.0 | 58.0 | 11455.0 | 6.89 | 6.92 | 4.21 |
1.71 | Ideal | I | VS2 | 60.5 | 56.0 | 11455.0 | 7.71 | 7.73 | 4.67 |
1.2 | Ideal | F | VVS1 | 62.0 | 56.0 | 11455.0 | 6.76 | 6.82 | 4.21 |
1.72 | Premium | H | VS2 | 59.5 | 60.0 | 11455.0 | 7.79 | 7.75 | 4.62 |
1.2 | Very Good | E | VVS2 | 63.2 | 56.0 | 11456.0 | 6.73 | 6.78 | 4.27 |
1.31 | Ideal | G | VVS2 | 59.2 | 59.0 | 11459.0 | 7.12 | 7.18 | 4.23 |
1.5 | Premium | H | VS2 | 61.8 | 59.0 | 11464.0 | 7.35 | 7.3 | 4.53 |
1.23 | Ideal | G | VVS1 | 59.5 | 57.0 | 11469.0 | 7.0 | 6.98 | 4.16 |
1.57 | Premium | H | VS2 | 61.0 | 59.0 | 11470.0 | 7.5 | 7.54 | 4.59 |
1.13 | Ideal | D | VS1 | 61.2 | 57.0 | 11477.0 | 6.7 | 6.72 | 4.1 |
1.28 | Very Good | G | VVS2 | 59.5 | 56.0 | 11478.0 | 7.12 | 7.16 | 4.25 |
1.01 | Premium | D | VVS1 | 59.3 | 59.0 | 11480.0 | 6.56 | 6.53 | 3.88 |
1.51 | Premium | G | VS2 | 60.4 | 58.0 | 11480.0 | 7.38 | 7.43 | 4.47 |
1.7 | Premium | I | VVS2 | 61.8 | 61.0 | 11481.0 | 7.57 | 7.5 | 4.66 |
1.54 | Ideal | G | VS2 | 61.5 | 57.0 | 11487.0 | 7.44 | 7.41 | 4.57 |
1.6 | Premium | G | VS2 | 62.2 | 59.0 | 11489.0 | 7.45 | 7.48 | 4.64 |
1.58 | Premium | H | VS1 | 61.7 | 59.0 | 11491.0 | 7.48 | 7.42 | 4.6 |
1.43 | Ideal | H | VS1 | 62.0 | 55.0 | 11498.0 | 7.21 | 7.28 | 4.49 |
2.07 | Ideal | J | VS2 | 62.2 | 56.0 | 11500.0 | 8.2 | 8.16 | 5.09 |
1.24 | Ideal | G | VVS1 | 62.1 | 56.0 | 11503.0 | 6.86 | 6.91 | 4.28 |
1.5 | Good | G | VS2 | 58.8 | 64.0 | 11508.0 | 7.43 | 7.4 | 4.36 |
1.5 | Good | G | VS2 | 63.8 | 56.0 | 11508.0 | 7.2 | 7.15 | 4.58 |
1.6 | Premium | H | VS2 | 62.6 | 58.0 | 11508.0 | 7.5 | 7.45 | 4.68 |
1.04 | Ideal | D | VVS2 | 60.9 | 57.0 | 11511.0 | 6.54 | 6.6 | 4.0 |
1.51 | Very Good | I | VVS1 | 62.0 | 58.0 | 11512.0 | 7.27 | 7.31 | 4.52 |
1.51 | Good | H | VS1 | 59.1 | 58.0 | 11512.0 | 7.48 | 7.52 | 4.43 |
1.7 | Very Good | I | VS1 | 60.6 | 59.0 | 11514.0 | 7.64 | 7.67 | 4.64 |
1.52 | Premium | H | VS1 | 61.4 | 58.0 | 11516.0 | 7.3 | 7.44 | 4.55 |
1.7 | Premium | I | VS2 | 61.4 | 59.0 | 11519.0 | 7.6 | 7.68 | 4.69 |
1.7 | Premium | I | VS2 | 60.7 | 59.0 | 11519.0 | 7.63 | 7.7 | 4.65 |
1.4 | Good | G | VVS2 | 63.4 | 59.0 | 11519.0 | 7.04 | 7.12 | 4.49 |
1.5 | Good | G | VS1 | 63.8 | 59.0 | 11524.0 | 7.16 | 7.22 | 4.59 |
2.01 | Good | J | VS1 | 63.7 | 59.0 | 11526.0 | 7.93 | 7.86 | 5.03 |
1.58 | Ideal | I | VVS1 | 61.7 | 53.0 | 11526.0 | 7.52 | 7.53 | 4.65 |
1.54 | Very Good | H | VS2 | 62.1 | 62.0 | 11527.0 | 7.31 | 7.38 | 4.56 |
1.38 | Ideal | G | VS1 | 62.2 | 54.0 | 11527.0 | 7.18 | 7.14 | 4.45 |
1.2 | Ideal | G | VVS2 | 60.9 | 56.0 | 11530.0 | 6.86 | 6.91 | 4.19 |
1.2 | Ideal | G | VVS2 | 61.0 | 56.0 | 11530.0 | 6.86 | 6.88 | 4.19 |
1.56 | Ideal | H | VS2 | 61.5 | 56.0 | 11531.0 | 7.46 | 7.5 | 4.6 |
1.31 | Ideal | G | VVS2 | 60.9 | 56.0 | 11531.0 | 7.17 | 7.07 | 4.32 |
1.51 | Very Good | G | VS2 | 62.1 | 57.0 | 11532.0 | 7.37 | 7.32 | 4.5 |
1.23 | Premium | F | VVS2 | 61.6 | 59.0 | 11534.0 | 6.9 | 6.8 | 4.22 |
1.63 | Premium | I | VS1 | 61.1 | 57.0 | 11534.0 | 7.7 | 7.58 | 4.67 |
1.03 | Premium | E | VVS1 | 58.8 | 59.0 | 11538.0 | 6.63 | 6.6 | 3.89 |
1.51 | Ideal | H | VS2 | 62.2 | 57.0 | 11540.0 | 7.33 | 7.29 | 4.55 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 11540.0 | 7.35 | 7.33 | 4.42 |
1.51 | Premium | H | VS2 | 62.3 | 59.0 | 11540.0 | 7.32 | 7.28 | 4.55 |
1.51 | Ideal | H | VS2 | 60.6 | 57.0 | 11540.0 | 7.46 | 7.45 | 4.52 |
1.14 | Premium | F | VVS1 | 59.4 | 59.0 | 11549.0 | 6.87 | 6.8 | 4.06 |
1.1 | Ideal | D | VVS2 | 62.2 | 57.0 | 11550.0 | 6.58 | 6.54 | 4.08 |
1.5 | Ideal | H | VS1 | 61.0 | 56.8 | 11557.0 | 7.36 | 7.4 | 4.5 |
1.53 | Very Good | H | VS2 | 60.9 | 63.0 | 11557.0 | 7.41 | 7.37 | 4.5 |
1.71 | Ideal | I | VS2 | 60.5 | 56.0 | 11559.0 | 7.73 | 7.71 | 4.67 |
1.55 | Premium | H | VS1 | 62.6 | 58.0 | 11562.0 | 7.4 | 7.34 | 4.61 |
1.55 | Premium | H | VS2 | 60.7 | 58.0 | 11567.0 | 7.51 | 7.47 | 4.55 |
1.21 | Ideal | G | VVS1 | 61.5 | 56.0 | 11572.0 | 6.83 | 6.89 | 4.22 |
1.02 | Ideal | D | VVS2 | 62.2 | 59.0 | 11573.0 | 6.41 | 6.46 | 4.0 |
1.55 | Ideal | I | VS2 | 61.8 | 55.0 | 11574.0 | 7.4 | 7.44 | 4.58 |
1.57 | Premium | H | VS2 | 61.0 | 59.0 | 11575.0 | 7.54 | 7.5 | 4.59 |
2.09 | Good | J | VS2 | 57.2 | 64.0 | 11576.0 | 8.51 | 8.46 | 4.85 |
1.5 | Good | G | VS2 | 63.3 | 62.0 | 11577.0 | 7.08 | 7.2 | 4.52 |
1.51 | Ideal | H | VS1 | 62.6 | 56.0 | 11580.0 | 7.28 | 7.32 | 4.57 |
1.28 | Ideal | F | VS1 | 61.7 | 55.0 | 11580.0 | 7.01 | 6.98 | 4.32 |
1.4 | Very Good | G | VS1 | 59.9 | 56.0 | 11584.0 | 7.31 | 7.34 | 4.39 |
1.32 | Ideal | G | VS1 | 61.7 | 56.0 | 11584.0 | 7.04 | 7.07 | 4.35 |
1.62 | Ideal | I | VVS2 | 62.7 | 54.0 | 11587.0 | 7.47 | 7.52 | 4.7 |
1.44 | Premium | G | VS1 | 61.8 | 57.0 | 11588.0 | 7.21 | 7.09 | 4.42 |
1.25 | Very Good | G | VVS1 | 60.2 | 58.0 | 11589.0 | 6.97 | 7.04 | 4.22 |
1.24 | Ideal | G | VVS2 | 61.1 | 56.0 | 11601.0 | 6.94 | 6.97 | 4.25 |
1.28 | Very Good | F | VVS2 | 62.0 | 57.0 | 11602.0 | 6.92 | 7.01 | 4.32 |
1.55 | Very Good | H | VS2 | 61.3 | 61.0 | 11602.0 | 7.39 | 7.46 | 4.55 |
1.57 | Very Good | H | VS1 | 62.8 | 60.0 | 11605.0 | 7.36 | 7.44 | 4.65 |
1.7 | Ideal | H | VS2 | 62.3 | 57.0 | 11605.0 | 7.68 | 7.65 | 4.78 |
1.75 | Ideal | J | VVS2 | 62.0 | 55.0 | 11609.0 | 7.7 | 7.73 | 4.78 |
1.03 | Ideal | E | VVS2 | 61.7 | 56.0 | 11611.0 | 6.49 | 6.51 | 4.01 |
1.76 | Ideal | I | VS1 | 62.0 | 57.0 | 11616.0 | 7.71 | 7.74 | 4.79 |
1.52 | Premium | H | VS1 | 61.4 | 58.0 | 11621.0 | 7.44 | 7.3 | 4.55 |
1.4 | Very Good | G | VVS2 | 63.4 | 59.0 | 11624.0 | 7.12 | 7.04 | 4.49 |
1.61 | Very Good | H | VS2 | 59.4 | 58.0 | 11627.0 | 7.64 | 7.74 | 4.57 |
1.54 | Premium | H | VS2 | 62.1 | 62.0 | 11632.0 | 7.38 | 7.31 | 4.56 |
1.3 | Ideal | G | VVS2 | 62.4 | 56.1 | 11633.0 | 6.97 | 7.02 | 4.36 |
1.56 | Ideal | H | VS2 | 61.5 | 56.0 | 11636.0 | 7.5 | 7.46 | 4.6 |
1.51 | Very Good | G | VS2 | 61.5 | 59.0 | 11640.0 | 7.34 | 7.38 | 4.53 |
1.51 | Good | G | VS2 | 64.2 | 54.0 | 11640.0 | 7.18 | 7.27 | 4.64 |
1.34 | Ideal | G | VVS1 | 62.2 | 56.0 | 11640.0 | 7.11 | 7.04 | 4.4 |
1.13 | Ideal | E | VVS1 | 61.5 | 56.0 | 11641.0 | 6.68 | 6.71 | 4.12 |
1.41 | Premium | E | VS2 | 62.7 | 56.0 | 11644.0 | 7.18 | 7.1 | 4.48 |
1.37 | Ideal | F | VS1 | 59.6 | 57.0 | 11649.0 | 7.28 | 7.22 | 4.32 |
1.11 | Very Good | F | VVS2 | 59.4 | 58.0 | 11650.0 | 6.74 | 6.79 | 4.02 |
1.45 | Premium | F | VS2 | 61.1 | 58.0 | 11650.0 | 7.31 | 7.23 | 4.44 |
1.54 | Ideal | I | VS1 | 61.5 | 56.0 | 11651.0 | 7.42 | 7.47 | 4.58 |
1.5 | Very Good | H | VVS1 | 63.8 | 57.0 | 11654.0 | 7.17 | 7.21 | 4.59 |
1.14 | Premium | F | VVS1 | 59.4 | 59.0 | 11654.0 | 6.87 | 6.8 | 4.06 |
1.1 | Ideal | D | VVS2 | 62.2 | 57.0 | 11654.0 | 6.58 | 6.54 | 4.08 |
1.5 | Premium | I | VS2 | 61.4 | 58.0 | 11655.0 | 7.28 | 7.24 | 4.46 |
1.01 | Ideal | D | VVS1 | 62.5 | 55.0 | 11661.0 | 6.39 | 6.44 | 4.01 |
1.54 | Premium | H | VS2 | 61.9 | 59.0 | 11663.0 | 7.31 | 7.33 | 4.53 |
1.45 | Very Good | F | VS2 | 62.6 | 58.0 | 11667.0 | 7.12 | 7.2 | 4.48 |
1.03 | Very Good | D | VVS2 | 62.7 | 58.0 | 11677.0 | 6.39 | 6.43 | 4.02 |
1.52 | Very Good | H | VS2 | 59.7 | 55.0 | 11681.0 | 7.45 | 7.42 | 4.44 |
1.51 | Ideal | H | VS1 | 62.6 | 56.0 | 11686.0 | 7.32 | 7.28 | 4.57 |
1.5 | Very Good | H | VVS1 | 60.9 | 61.0 | 11688.0 | 7.36 | 7.39 | 4.49 |
1.51 | Ideal | H | VS2 | 61.9 | 59.0 | 11696.0 | 7.29 | 7.34 | 4.53 |
1.52 | Good | F | VS2 | 64.2 | 59.0 | 11696.0 | 7.16 | 7.2 | 4.61 |
1.55 | Very Good | G | VS2 | 63.1 | 57.0 | 11703.0 | 7.36 | 7.31 | 4.63 |
1.54 | Very Good | G | VS2 | 63.0 | 59.0 | 11708.0 | 7.3 | 7.36 | 4.62 |
1.55 | Premium | H | VS2 | 61.3 | 61.0 | 11708.0 | 7.46 | 7.39 | 4.55 |
1.71 | Ideal | J | VS1 | 62.1 | 55.0 | 11711.0 | 7.73 | 7.65 | 4.78 |
1.57 | Premium | G | VS2 | 62.7 | 60.0 | 11711.0 | 7.46 | 7.38 | 4.65 |
1.57 | Premium | H | VS1 | 62.8 | 60.0 | 11711.0 | 7.44 | 7.36 | 4.65 |
1.24 | Very Good | F | VVS1 | 62.7 | 61.0 | 11716.0 | 6.75 | 6.84 | 4.26 |
1.16 | Premium | G | VVS1 | 61.6 | 55.0 | 11717.0 | 6.85 | 6.72 | 4.18 |
1.53 | Very Good | H | VS2 | 62.5 | 61.0 | 11722.0 | 7.28 | 7.38 | 4.58 |
1.76 | Ideal | I | VS1 | 62.0 | 57.0 | 11722.0 | 7.74 | 7.71 | 4.79 |
1.22 | Premium | F | VVS1 | 61.9 | 58.0 | 11723.0 | 6.81 | 6.85 | 4.23 |
1.39 | Ideal | E | VS2 | 60.8 | 57.0 | 11726.0 | 7.24 | 7.21 | 4.39 |
1.22 | Ideal | F | VVS2 | 61.9 | 53.0 | 11730.0 | 6.9 | 6.92 | 4.28 |
1.14 | Very Good | F | VVS1 | 62.2 | 55.9 | 11737.0 | 6.67 | 6.69 | 4.16 |
1.55 | Premium | H | VS2 | 60.7 | 59.0 | 11738.0 | 7.46 | 7.5 | 4.54 |
1.51 | Fair | G | VS1 | 64.9 | 55.0 | 11739.0 | 7.25 | 7.14 | 4.67 |
1.51 | Good | G | VS2 | 64.2 | 54.0 | 11746.0 | 7.27 | 7.18 | 4.64 |
1.51 | Premium | G | VS2 | 58.1 | 61.0 | 11746.0 | 7.57 | 7.54 | 4.39 |
1.5 | Very Good | H | VVS2 | 62.9 | 59.0 | 11748.0 | 7.26 | 7.31 | 4.58 |
1.02 | Ideal | D | VVS2 | 61.0 | 56.0 | 11765.0 | 6.52 | 6.55 | 3.99 |
1.01 | Ideal | D | VVS1 | 62.5 | 55.0 | 11767.0 | 6.44 | 6.39 | 4.01 |
1.54 | Premium | H | VS2 | 61.9 | 59.0 | 11769.0 | 7.33 | 7.31 | 4.53 |
1.36 | Very Good | G | VVS2 | 60.8 | 60.0 | 11774.0 | 7.12 | 7.16 | 4.34 |
1.7 | Premium | I | VVS2 | 62.1 | 59.0 | 11775.0 | 7.6 | 7.53 | 4.7 |
1.7 | Premium | I | VS2 | 62.2 | 58.0 | 11781.0 | 7.6 | 7.65 | 4.74 |
1.58 | Premium | G | VS2 | 58.2 | 58.0 | 11786.0 | 7.68 | 7.64 | 4.46 |
2.0 | Premium | J | VS1 | 62.0 | 62.0 | 11793.0 | 8.02 | 7.91 | 4.94 |
1.36 | Ideal | D | VS2 | 62.1 | 55.0 | 11793.0 | 7.18 | 7.13 | 4.44 |
1.54 | Premium | D | VS2 | 59.4 | 59.0 | 11795.0 | 7.61 | 7.55 | 4.5 |
1.6 | Premium | H | VS2 | 62.1 | 60.0 | 11796.0 | 7.51 | 7.44 | 4.64 |
1.27 | Premium | F | VVS2 | 61.3 | 60.0 | 11797.0 | 6.9 | 6.99 | 4.26 |
1.56 | Very Good | H | VS1 | 63.9 | 57.0 | 11804.0 | 7.3 | 7.37 | 4.69 |
1.52 | Good | H | VS1 | 63.5 | 60.0 | 11804.0 | 7.24 | 7.28 | 4.61 |
1.54 | Premium | G | VS2 | 63.0 | 59.0 | 11815.0 | 7.36 | 7.3 | 4.62 |
1.06 | Very Good | D | VVS1 | 61.8 | 57.0 | 11815.0 | 6.49 | 6.52 | 4.03 |
1.41 | Ideal | G | VS1 | 62.6 | 56.0 | 11817.0 | 7.15 | 7.2 | 4.49 |
1.65 | Very Good | H | VS1 | 62.0 | 56.0 | 11823.0 | 7.53 | 7.59 | 4.68 |
1.51 | Good | H | VVS2 | 63.1 | 59.0 | 11826.0 | 7.26 | 7.28 | 4.59 |
1.61 | Ideal | I | VS2 | 61.7 | 56.0 | 11826.0 | 7.52 | 7.62 | 4.67 |
1.22 | Premium | F | VVS1 | 61.9 | 58.0 | 11830.0 | 6.85 | 6.81 | 4.23 |
1.06 | Ideal | D | VVS2 | 62.0 | 57.0 | 11837.0 | 6.52 | 6.54 | 4.05 |
1.2 | Ideal | E | VVS2 | 62.2 | 57.0 | 11839.0 | 6.81 | 6.77 | 4.22 |
1.27 | Ideal | E | VS1 | 61.8 | 57.0 | 11840.0 | 6.94 | 6.98 | 4.3 |
1.73 | Very Good | I | VS1 | 63.4 | 58.0 | 11843.0 | 7.57 | 7.6 | 4.81 |
1.14 | Ideal | F | VVS1 | 62.2 | 56.0 | 11844.0 | 6.69 | 6.67 | 4.16 |
1.55 | Premium | H | VS2 | 60.7 | 59.0 | 11846.0 | 7.5 | 7.46 | 4.54 |
1.36 | Ideal | G | VVS2 | 61.1 | 57.0 | 11848.0 | 7.14 | 7.2 | 4.38 |
1.71 | Very Good | I | VS2 | 62.8 | 59.0 | 11850.0 | 7.52 | 7.58 | 4.74 |
1.46 | Good | E | VS2 | 63.9 | 57.0 | 11851.0 | 7.06 | 7.12 | 4.53 |
1.3 | Ideal | G | VVS2 | 60.9 | 57.0 | 11853.0 | 7.04 | 7.11 | 4.31 |
1.52 | Premium | H | VS1 | 58.4 | 59.0 | 11853.0 | 7.55 | 7.52 | 4.4 |
1.5 | Premium | H | VVS2 | 62.9 | 59.0 | 11855.0 | 7.31 | 7.26 | 4.58 |
1.51 | Ideal | H | VS1 | 60.8 | 57.0 | 11856.0 | 7.43 | 7.46 | 4.53 |
1.42 | Premium | G | VS1 | 61.7 | 55.0 | 11861.0 | 7.29 | 7.24 | 4.48 |
1.67 | Very Good | I | VS1 | 61.6 | 59.1 | 11867.0 | 7.61 | 7.64 | 4.7 |
1.73 | Premium | G | VS1 | 61.6 | 60.0 | 11867.0 | 7.67 | 7.62 | 4.71 |
1.35 | Premium | G | VVS2 | 60.2 | 59.0 | 11868.0 | 7.2 | 7.16 | 4.32 |
1.55 | Ideal | I | VVS1 | 62.1 | 56.0 | 11869.0 | 7.36 | 7.43 | 4.59 |
1.22 | Ideal | F | VVS2 | 62.2 | 54.0 | 11870.0 | 6.83 | 6.87 | 4.26 |
1.5 | Very Good | I | VS1 | 63.3 | 54.0 | 11879.0 | 7.26 | 7.33 | 4.62 |
1.22 | Ideal | F | VVS2 | 62.7 | 54.0 | 11880.0 | 6.79 | 6.84 | 4.27 |
1.2 | Ideal | E | VVS2 | 61.5 | 57.0 | 11883.0 | 6.79 | 6.89 | 4.21 |
1.17 | Ideal | F | VVS1 | 62.1 | 57.0 | 11886.0 | 6.82 | 6.73 | 4.21 |
1.7 | Premium | I | VS2 | 62.2 | 58.0 | 11888.0 | 7.65 | 7.6 | 4.74 |
1.52 | Very Good | H | VVS2 | 63.0 | 60.0 | 11904.0 | 7.25 | 7.3 | 4.58 |
1.27 | Premium | F | VVS2 | 61.3 | 60.0 | 11905.0 | 6.99 | 6.9 | 4.26 |
1.18 | Ideal | E | VVS2 | 61.5 | 57.0 | 11906.0 | 6.8 | 6.75 | 4.17 |
1.52 | Very Good | H | VS1 | 63.5 | 60.0 | 11912.0 | 7.28 | 7.24 | 4.61 |
1.2 | Very Good | F | VVS1 | 59.8 | 63.0 | 11913.0 | 6.82 | 6.8 | 4.07 |
1.7 | Good | I | VS1 | 58.0 | 60.0 | 11921.0 | 7.84 | 7.88 | 4.56 |
1.56 | Ideal | H | VS2 | 61.6 | 57.0 | 11922.0 | 7.51 | 7.45 | 4.61 |
1.01 | Very Good | D | VVS1 | 63.9 | 56.0 | 11923.0 | 6.32 | 6.36 | 4.05 |
1.51 | Very Good | G | VS2 | 62.8 | 57.0 | 11923.0 | 7.25 | 7.3 | 4.57 |
1.23 | Ideal | F | VVS2 | 61.9 | 55.0 | 11927.0 | 6.92 | 6.89 | 4.27 |
1.51 | Very Good | H | VVS2 | 63.1 | 59.0 | 11934.0 | 7.28 | 7.26 | 4.59 |
1.5 | Very Good | E | VS2 | 61.9 | 57.0 | 11939.0 | 7.31 | 7.38 | 4.55 |
1.36 | Very Good | F | VS1 | 62.7 | 60.0 | 11946.0 | 7.05 | 7.02 | 4.41 |
1.52 | Ideal | H | VS1 | 60.1 | 60.0 | 11946.0 | 7.54 | 7.51 | 4.52 |
2.01 | Good | I | VS2 | 64.3 | 60.0 | 11954.0 | 7.91 | 7.86 | 5.07 |
1.34 | Ideal | G | VVS2 | 62.0 | 55.0 | 11955.0 | 7.02 | 7.08 | 4.37 |
1.36 | Ideal | G | VVS2 | 61.1 | 57.0 | 11956.0 | 7.2 | 7.14 | 4.38 |
1.71 | Premium | I | VS2 | 62.8 | 59.0 | 11958.0 | 7.58 | 7.52 | 4.74 |
1.63 | Ideal | I | VS2 | 61.8 | 56.0 | 11963.0 | 7.56 | 7.59 | 4.68 |
2.0 | Fair | J | VS2 | 65.4 | 58.0 | 11966.0 | 7.96 | 7.75 | 5.14 |
2.0 | Premium | J | VS2 | 62.9 | 60.0 | 11966.0 | 7.99 | 7.95 | 5.01 |
1.51 | Ideal | H | VS1 | 62.3 | 57.0 | 11967.0 | 7.34 | 7.29 | 4.55 |
2.24 | Premium | J | VS1 | 60.9 | 58.0 | 11970.0 | 8.46 | 8.41 | 5.14 |
1.27 | Ideal | F | VS1 | 61.6 | 55.0 | 11973.0 | 6.97 | 7.03 | 4.31 |
1.31 | Ideal | G | VVS2 | 61.3 | 58.0 | 11975.0 | 7.03 | 7.07 | 4.32 |
1.67 | Ideal | I | VS1 | 61.6 | 59.0 | 11975.0 | 7.64 | 7.61 | 4.7 |
1.52 | Premium | H | VVS2 | 61.2 | 58.0 | 11979.0 | 7.48 | 7.41 | 4.56 |
1.53 | Premium | H | VVS2 | 60.4 | 60.0 | 11982.0 | 7.41 | 7.46 | 4.49 |
1.52 | Very Good | G | VS2 | 63.4 | 58.0 | 11986.0 | 7.31 | 7.24 | 4.61 |
1.57 | Ideal | H | VS2 | 61.8 | 55.0 | 12004.0 | 7.45 | 7.49 | 4.62 |
1.5 | Very Good | G | VS1 | 63.4 | 59.0 | 12005.0 | 7.25 | 7.19 | 4.58 |
1.31 | Ideal | G | VS1 | 61.6 | 57.0 | 12008.0 | 6.99 | 7.04 | 4.32 |
1.52 | Premium | H | VVS2 | 63.0 | 60.0 | 12013.0 | 7.3 | 7.25 | 4.58 |
1.5 | Very Good | G | VS2 | 60.5 | 57.0 | 12014.0 | 7.39 | 7.43 | 4.48 |
1.11 | Ideal | D | VVS2 | 63.0 | 57.0 | 12016.0 | 6.58 | 6.65 | 4.17 |
1.7 | Ideal | I | VS1 | 63.0 | 55.0 | 12030.0 | 7.75 | 7.54 | 4.76 |
1.7 | Premium | I | VS1 | 58.0 | 60.0 | 12030.0 | 7.88 | 7.84 | 4.56 |
1.07 | Ideal | E | VVS2 | 61.3 | 56.0 | 12031.0 | 6.57 | 6.62 | 4.04 |
1.02 | Ideal | E | VVS1 | 62.2 | 58.0 | 12035.0 | 6.42 | 6.44 | 4.0 |
1.22 | Ideal | E | VVS2 | 63.0 | 55.0 | 12036.0 | 6.83 | 6.78 | 4.29 |
1.52 | Very Good | G | VS2 | 62.9 | 60.0 | 12038.0 | 7.28 | 7.31 | 4.59 |
1.52 | Premium | H | VS1 | 60.6 | 58.0 | 12047.0 | 7.46 | 7.39 | 4.5 |
1.59 | Ideal | H | VS1 | 61.8 | 57.0 | 12047.0 | 7.42 | 7.49 | 4.61 |
1.06 | Ideal | D | VVS2 | 62.0 | 56.0 | 12053.0 | 6.53 | 6.57 | 4.06 |
1.5 | Ideal | H | VS1 | 61.2 | 56.0 | 12055.0 | 7.39 | 7.4 | 4.52 |
1.24 | Ideal | F | VVS2 | 62.0 | 57.0 | 12059.0 | 6.86 | 6.91 | 4.27 |
1.54 | Ideal | H | VVS2 | 62.6 | 56.0 | 12061.0 | 7.35 | 7.42 | 4.62 |
1.28 | Ideal | F | VS1 | 61.5 | 55.0 | 12061.0 | 6.98 | 7.01 | 4.3 |
1.26 | Ideal | G | VVS2 | 61.4 | 55.0 | 12066.0 | 6.96 | 6.99 | 4.29 |
1.51 | Premium | G | VS2 | 61.4 | 58.0 | 12068.0 | 7.4 | 7.3 | 4.51 |
// selecting a subset of fields
display(spark.sql("SELECT carat, clarity, price FROM diamonds WHERE color = 'D'"))
carat | clarity | price |
---|---|---|
0.23 | VS2 | 357.0 |
0.23 | VS1 | 402.0 |
0.26 | VS2 | 403.0 |
0.26 | VS2 | 403.0 |
0.26 | VS1 | 403.0 |
0.22 | VS2 | 404.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.24 | VVS1 | 553.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.75 | SI1 | 2760.0 |
0.71 | SI2 | 2762.0 |
0.61 | VVS2 | 2763.0 |
0.71 | SI1 | 2764.0 |
0.71 | SI1 | 2764.0 |
0.7 | VS2 | 2767.0 |
0.71 | SI2 | 2767.0 |
0.73 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.71 | SI2 | 2768.0 |
0.71 | VS2 | 2770.0 |
0.76 | SI2 | 2770.0 |
0.73 | SI2 | 2770.0 |
0.75 | SI2 | 2773.0 |
0.7 | VS2 | 2773.0 |
0.7 | VS1 | 2777.0 |
0.53 | VVS2 | 2782.0 |
0.75 | SI2 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.7 | SI1 | 2782.0 |
0.64 | VS1 | 2787.0 |
0.71 | VS2 | 2788.0 |
0.72 | SI2 | 2795.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.51 | VVS1 | 2797.0 |
0.78 | SI1 | 2799.0 |
0.91 | SI2 | 2803.0 |
0.7 | SI1 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.73 | SI1 | 2808.0 |
0.81 | SI2 | 2809.0 |
0.74 | SI2 | 2810.0 |
0.83 | SI1 | 2811.0 |
0.71 | SI1 | 2812.0 |
0.55 | VVS1 | 2815.0 |
0.71 | VS1 | 2816.0 |
0.73 | SI1 | 2821.0 |
0.71 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.79 | SI2 | 2823.0 |
0.71 | VS2 | 2824.0 |
0.7 | VS2 | 2826.0 |
0.7 | SI1 | 2827.0 |
0.72 | VS2 | 2827.0 |
0.7 | SI2 | 2828.0 |
0.7 | VS2 | 2833.0 |
0.7 | VS2 | 2833.0 |
0.51 | VVS1 | 2834.0 |
0.92 | SI2 | 2840.0 |
0.71 | VS1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.71 | SI1 | 2843.0 |
0.79 | SI1 | 2846.0 |
0.76 | SI1 | 2847.0 |
0.54 | VVS2 | 2848.0 |
0.75 | SI2 | 2848.0 |
0.66 | VS1 | 2851.0 |
0.79 | SI2 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.74 | VS2 | 2855.0 |
0.73 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.71 | VS1 | 2860.0 |
0.71 | SI1 | 2861.0 |
0.66 | VS1 | 2861.0 |
0.7 | SI1 | 2862.0 |
0.8 | SI2 | 2862.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.73 | SI1 | 2865.0 |
0.56 | VVS1 | 2866.0 |
0.56 | VVS1 | 2866.0 |
0.7 | VS2 | 2867.0 |
1.08 | I1 | 2869.0 |
0.7 | SI1 | 2872.0 |
0.75 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.71 | VS2 | 2874.0 |
0.79 | SI2 | 2878.0 |
0.74 | SI1 | 2880.0 |
0.72 | SI1 | 2883.0 |
0.77 | SI2 | 2885.0 |
0.9 | SI2 | 2885.0 |
0.71 | SI1 | 2887.0 |
0.72 | SI1 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.79 | SI1 | 2896.0 |
0.77 | SI2 | 2896.0 |
0.6 | VVS2 | 2897.0 |
0.54 | VVS2 | 2897.0 |
0.74 | VS2 | 2897.0 |
0.75 | SI1 | 2898.0 |
0.77 | SI1 | 2898.0 |
0.72 | VS1 | 2900.0 |
0.75 | SI1 | 2903.0 |
0.75 | SI1 | 2903.0 |
0.72 | SI1 | 2903.0 |
0.72 | SI1 | 2903.0 |
0.79 | SI2 | 2904.0 |
0.53 | VVS1 | 2905.0 |
0.74 | VS2 | 2906.0 |
0.32 | SI1 | 558.0 |
0.7 | VS2 | 2909.0 |
0.7 | VS2 | 2909.0 |
0.71 | VS1 | 2910.0 |
0.7 | VS2 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.83 | SI2 | 2918.0 |
0.71 | SI1 | 2921.0 |
0.77 | SI2 | 2922.0 |
0.77 | SI2 | 2923.0 |
0.8 | SI1 | 2925.0 |
0.81 | SI2 | 2926.0 |
0.7 | VS2 | 2928.0 |
0.59 | VVS2 | 2933.0 |
0.75 | SI2 | 2933.0 |
0.71 | SI2 | 2934.0 |
0.7 | SI2 | 2936.0 |
0.77 | SI1 | 2939.0 |
0.76 | SI1 | 2942.0 |
0.73 | SI1 | 2943.0 |
0.57 | VVS1 | 2945.0 |
0.78 | SI1 | 2945.0 |
0.73 | VS2 | 2947.0 |
0.73 | SI1 | 2947.0 |
0.77 | SI1 | 2949.0 |
0.71 | VS2 | 2950.0 |
0.72 | VS1 | 2951.0 |
0.72 | SI1 | 2954.0 |
0.72 | SI1 | 2954.0 |
0.75 | SI1 | 2954.0 |
0.82 | SI1 | 2954.0 |
0.7 | VS1 | 2956.0 |
0.56 | VVS1 | 2959.0 |
0.7 | VS2 | 2960.0 |
0.7 | VS2 | 2960.0 |
0.7 | VS2 | 2960.0 |
0.63 | VVS2 | 2962.0 |
0.71 | SI1 | 2964.0 |
0.71 | VS2 | 2968.0 |
0.77 | SI2 | 2973.0 |
1.0 | SI2 | 2974.0 |
0.76 | VS2 | 2977.0 |
0.7 | SI1 | 2980.0 |
0.7 | VS2 | 2985.0 |
0.74 | SI1 | 2987.0 |
0.83 | SI1 | 2990.0 |
0.7 | VS2 | 2991.0 |
0.72 | SI1 | 2993.0 |
0.81 | SI2 | 2994.0 |
0.73 | SI1 | 2995.0 |
0.77 | SI1 | 2996.0 |
0.7 | VS2 | 2998.0 |
0.7 | VS2 | 2999.0 |
0.72 | SI1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.71 | VS2 | 3002.0 |
1.01 | SI2 | 3003.0 |
0.65 | VVS2 | 3003.0 |
0.92 | SI2 | 3004.0 |
0.55 | VVS1 | 3006.0 |
0.76 | SI1 | 3007.0 |
0.7 | VS1 | 3008.0 |
0.8 | SI1 | 3011.0 |
0.77 | SI2 | 3011.0 |
0.9 | SI1 | 3013.0 |
0.73 | SI1 | 3014.0 |
0.72 | VS2 | 3016.0 |
0.5 | VVS2 | 3017.0 |
0.78 | SI1 | 3019.0 |
0.71 | VS2 | 3020.0 |
0.75 | SI1 | 3024.0 |
0.75 | SI1 | 3024.0 |
0.65 | VVS2 | 3025.0 |
0.71 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.78 | SI1 | 3035.0 |
0.71 | SI1 | 3035.0 |
0.74 | SI1 | 3036.0 |
0.61 | VVS2 | 3036.0 |
0.77 | SI1 | 3040.0 |
0.71 | VS2 | 3045.0 |
0.72 | VS2 | 3045.0 |
0.75 | SI1 | 3046.0 |
0.73 | VS1 | 3047.0 |
0.75 | SI1 | 3048.0 |
0.72 | SI1 | 3048.0 |
0.72 | SI1 | 3048.0 |
0.66 | VVS2 | 3049.0 |
0.62 | VVS2 | 3050.0 |
0.7 | VS2 | 3052.0 |
0.7 | VS2 | 3053.0 |
0.7 | VS1 | 3054.0 |
0.65 | VVS2 | 3056.0 |
0.92 | SI2 | 3057.0 |
0.79 | SI1 | 3058.0 |
0.72 | SI1 | 3062.0 |
0.85 | SI2 | 3066.0 |
0.7 | VS2 | 3073.0 |
0.72 | VS2 | 3075.0 |
0.72 | VS2 | 3075.0 |
0.7 | SI1 | 3075.0 |
0.76 | SI1 | 3075.0 |
0.71 | VS2 | 3077.0 |
0.71 | VS2 | 3077.0 |
0.75 | SI1 | 3078.0 |
0.83 | SI2 | 3078.0 |
0.91 | SI2 | 3079.0 |
0.79 | SI2 | 3081.0 |
0.7 | VS2 | 3082.0 |
0.8 | SI2 | 3082.0 |
0.71 | VS2 | 3084.0 |
0.75 | SI1 | 3085.0 |
0.7 | VS2 | 3087.0 |
0.7 | VS2 | 3087.0 |
0.7 | VS2 | 3087.0 |
0.74 | VS2 | 3087.0 |
0.71 | VS1 | 3090.0 |
0.71 | VS1 | 3090.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS1 | 3093.0 |
0.71 | VS2 | 3096.0 |
0.71 | VS2 | 3096.0 |
0.53 | VVS1 | 3097.0 |
0.72 | VS2 | 3099.0 |
0.72 | SI1 | 3102.0 |
0.66 | VVS2 | 3103.0 |
0.78 | SI1 | 3103.0 |
0.75 | SI1 | 3105.0 |
0.7 | VS1 | 3107.0 |
0.79 | SI1 | 3112.0 |
0.94 | SI2 | 3125.0 |
0.57 | VVS1 | 3126.0 |
0.57 | VVS1 | 3126.0 |
0.7 | VS2 | 3129.0 |
0.7 | VS2 | 3131.0 |
0.71 | VS2 | 3131.0 |
0.71 | VS2 | 3135.0 |
0.71 | VS2 | 3135.0 |
0.8 | VS2 | 3135.0 |
0.81 | SI1 | 3135.0 |
0.71 | VS1 | 3136.0 |
0.71 | VS2 | 3137.0 |
0.74 | SI1 | 3138.0 |
0.72 | VS2 | 3139.0 |
0.54 | VVS1 | 3139.0 |
0.73 | SI1 | 3140.0 |
0.71 | VS1 | 3145.0 |
0.84 | SI2 | 3145.0 |
0.78 | SI1 | 3145.0 |
0.75 | SI1 | 3152.0 |
0.9 | SI2 | 3153.0 |
0.71 | VS2 | 3153.0 |
0.58 | VVS1 | 3154.0 |
0.8 | SI2 | 3154.0 |
0.77 | SI1 | 3158.0 |
0.82 | SI2 | 3159.0 |
0.77 | SI1 | 3160.0 |
0.81 | SI2 | 3160.0 |
0.71 | VS2 | 3161.0 |
0.71 | VS2 | 3161.0 |
0.71 | VS2 | 3161.0 |
0.77 | SI1 | 3166.0 |
0.8 | SI2 | 3173.0 |
0.72 | SI2 | 3176.0 |
0.74 | VS2 | 3177.0 |
0.72 | VS2 | 3179.0 |
0.72 | VS2 | 3179.0 |
0.72 | VS2 | 3179.0 |
0.81 | SI1 | 3179.0 |
0.73 | VS2 | 3182.0 |
0.73 | VS2 | 3182.0 |
0.7 | VS1 | 3183.0 |
0.79 | SI1 | 3185.0 |
0.73 | SI1 | 3189.0 |
0.73 | SI1 | 3189.0 |
0.71 | VS1 | 3192.0 |
0.7 | VS1 | 3193.0 |
0.54 | VVS1 | 3194.0 |
0.73 | SI1 | 3195.0 |
0.8 | SI1 | 3195.0 |
0.7 | SI1 | 3199.0 |
0.71 | VS2 | 3203.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.72 | VS2 | 3205.0 |
0.58 | VVS1 | 3206.0 |
0.83 | SI2 | 3207.0 |
0.7 | VS1 | 3208.0 |
0.79 | SI1 | 3209.0 |
0.8 | SI2 | 3210.0 |
0.7 | VVS2 | 3210.0 |
0.71 | VS2 | 3212.0 |
0.78 | SI1 | 3214.0 |
0.7 | VS1 | 3214.0 |
0.95 | SI2 | 3214.0 |
0.71 | VS2 | 3217.0 |
0.71 | VS2 | 3217.0 |
0.71 | VS2 | 3217.0 |
0.52 | VVS1 | 3218.0 |
0.72 | VS2 | 3219.0 |
0.72 | VS2 | 3219.0 |
0.71 | VS2 | 3222.0 |
0.71 | VS2 | 3222.0 |
0.51 | VVS2 | 3223.0 |
0.8 | SI1 | 3226.0 |
0.65 | VVS2 | 3228.0 |
0.7 | VS1 | 3229.0 |
0.7 | VS1 | 3229.0 |
0.7 | VS1 | 3231.0 |
0.59 | VVS1 | 3234.0 |
0.71 | VS2 | 3234.0 |
0.72 | VS2 | 3236.0 |
0.7 | VS1 | 3239.0 |
0.7 | VS1 | 3239.0 |
0.7 | VS1 | 3239.0 |
0.77 | SI1 | 3241.0 |
0.79 | SI1 | 3242.0 |
0.71 | VS2 | 3245.0 |
0.84 | SI2 | 3246.0 |
0.25 | VS1 | 563.0 |
0.26 | VVS2 | 564.0 |
0.31 | SI1 | 565.0 |
0.31 | SI1 | 565.0 |
0.7 | VS1 | 3247.0 |
0.52 | VVS1 | 3247.0 |
0.76 | VS2 | 3248.0 |
0.73 | VS2 | 3250.0 |
0.77 | SI1 | 3251.0 |
0.71 | SI1 | 3252.0 |
0.78 | SI1 | 3253.0 |
0.73 | VS2 | 3255.0 |
0.78 | SI1 | 3258.0 |
0.9 | SI2 | 3262.0 |
0.71 | SI1 | 3262.0 |
0.84 | SI1 | 3265.0 |
0.81 | SI1 | 3266.0 |
0.7 | VVS2 | 3267.0 |
0.56 | VVS1 | 3270.0 |
0.79 | SI1 | 3270.0 |
0.72 | VS2 | 3275.0 |
0.92 | SI2 | 3277.0 |
0.7 | VS1 | 3278.0 |
0.52 | VVS2 | 3284.0 |
0.86 | SI2 | 3284.0 |
0.7 | VS1 | 3287.0 |
0.7 | VS1 | 3287.0 |
0.77 | VS2 | 3291.0 |
0.76 | VS2 | 3293.0 |
0.74 | VS2 | 3294.0 |
0.7 | VVS2 | 3296.0 |
0.91 | SI2 | 3298.0 |
0.78 | VS2 | 3298.0 |
0.78 | VS2 | 3298.0 |
0.71 | VS2 | 3299.0 |
1.0 | SI2 | 3304.0 |
1.0 | SI2 | 3304.0 |
1.0 | SI2 | 3304.0 |
0.76 | VS2 | 3306.0 |
0.76 | SI1 | 3306.0 |
0.53 | VVS1 | 3307.0 |
0.73 | VS2 | 3308.0 |
0.77 | SI1 | 3309.0 |
0.31 | SI1 | 565.0 |
0.31 | SI1 | 565.0 |
0.8 | SI1 | 3312.0 |
0.7 | VVS2 | 3312.0 |
0.8 | SI1 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.7 | VVS2 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.71 | SI1 | 3316.0 |
0.73 | VS2 | 3319.0 |
0.52 | VVS1 | 3321.0 |
0.71 | VS2 | 3321.0 |
0.71 | VS2 | 3321.0 |
0.72 | SI1 | 3322.0 |
0.81 | SI1 | 3324.0 |
0.78 | SI1 | 3326.0 |
0.79 | SI1 | 3328.0 |
0.71 | VS1 | 3332.0 |
0.71 | VS1 | 3333.0 |
0.92 | SI2 | 3335.0 |
0.7 | VS1 | 3335.0 |
0.61 | VVS2 | 3336.0 |
1.01 | SI2 | 3337.0 |
0.77 | SI1 | 3345.0 |
0.53 | VVS2 | 3346.0 |
0.73 | VS2 | 3346.0 |
0.83 | SI1 | 3347.0 |
0.91 | SI2 | 3349.0 |
0.77 | VS2 | 3351.0 |
0.76 | VS2 | 3352.0 |
0.74 | VS2 | 3353.0 |
0.76 | VS1 | 3353.0 |
0.81 | SI1 | 3353.0 |
0.82 | SI2 | 3357.0 |
0.91 | SI1 | 3357.0 |
0.7 | VS2 | 3360.0 |
0.7 | VS1 | 3361.0 |
0.7 | VS1 | 3365.0 |
0.74 | VS1 | 3365.0 |
0.71 | VS2 | 3366.0 |
0.69 | VVS2 | 3369.0 |
0.9 | SI2 | 3371.0 |
0.9 | SI2 | 3371.0 |
0.71 | VS2 | 3372.0 |
0.52 | VVS1 | 3373.0 |
0.7 | VS1 | 3375.0 |
0.72 | VS1 | 3375.0 |
0.5 | IF | 3378.0 |
0.5 | IF | 3378.0 |
0.6 | VVS2 | 3382.0 |
0.27 | VS2 | 567.0 |
0.31 | VS2 | 567.0 |
0.33 | SI1 | 567.0 |
0.33 | SI1 | 567.0 |
0.33 | SI1 | 567.0 |
0.3 | VS2 | 568.0 |
0.9 | SI1 | 3382.0 |
0.95 | SI2 | 3384.0 |
0.76 | VS2 | 3384.0 |
0.78 | SI1 | 3389.0 |
0.88 | SI2 | 3390.0 |
0.61 | VVS2 | 3397.0 |
0.85 | SI2 | 3398.0 |
0.76 | VS2 | 3401.0 |
0.91 | SI2 | 3403.0 |
0.71 | VS1 | 3406.0 |
0.71 | VS1 | 3406.0 |
0.91 | SI2 | 3408.0 |
0.7 | VS1 | 3410.0 |
0.73 | VS2 | 3411.0 |
0.73 | VS2 | 3412.0 |
0.8 | VS2 | 3419.0 |
0.7 | VS1 | 3419.0 |
0.96 | SI2 | 3419.0 |
0.96 | SI2 | 3419.0 |
0.71 | VS1 | 3420.0 |
0.9 | SI2 | 3425.0 |
0.7 | VS1 | 3425.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.79 | SI1 | 3432.0 |
0.73 | VS2 | 3440.0 |
0.8 | SI1 | 3441.0 |
0.53 | VVS1 | 3442.0 |
0.77 | VS2 | 3442.0 |
0.76 | VS2 | 3443.0 |
0.76 | VS2 | 3443.0 |
0.51 | IF | 3446.0 |
0.51 | IF | 3446.0 |
0.7 | VS2 | 3448.0 |
0.72 | VS2 | 3450.0 |
0.3 | VS2 | 568.0 |
0.74 | VS2 | 3454.0 |
0.78 | SI2 | 3454.0 |
0.7 | SI1 | 3454.0 |
0.75 | VS2 | 3456.0 |
0.72 | VVS2 | 3459.0 |
0.74 | VS1 | 3461.0 |
0.81 | SI1 | 3462.0 |
0.91 | SI2 | 3463.0 |
0.7 | VS1 | 3463.0 |
0.73 | VS2 | 3464.0 |
0.56 | VVS1 | 3465.0 |
0.71 | VS1 | 3465.0 |
0.73 | VS2 | 3467.0 |
0.55 | VVS2 | 3468.0 |
0.55 | VVS2 | 3468.0 |
0.55 | VVS2 | 3468.0 |
0.7 | VS1 | 3471.0 |
0.7 | SI1 | 3471.0 |
0.7 | SI1 | 3471.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.78 | VS2 | 3473.0 |
0.74 | VS2 | 3476.0 |
0.7 | VS1 | 3477.0 |
0.71 | VS1 | 3479.0 |
0.96 | SI2 | 3480.0 |
0.74 | VS2 | 3487.0 |
0.77 | VS2 | 3489.0 |
0.77 | VS2 | 3489.0 |
0.72 | VS2 | 3493.0 |
0.54 | VVS1 | 3494.0 |
0.72 | VS2 | 3495.0 |
0.56 | VVS1 | 3496.0 |
0.74 | VS2 | 3498.0 |
0.7 | VS1 | 3501.0 |
0.8 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.9 | SI1 | 3505.0 |
0.55 | IF | 3509.0 |
0.73 | VS1 | 3509.0 |
0.91 | SI2 | 3511.0 |
0.74 | SI1 | 3517.0 |
0.53 | IF | 3517.0 |
0.71 | VS1 | 3518.0 |
0.72 | VS1 | 3522.0 |
0.71 | VS1 | 3524.0 |
0.73 | VS2 | 3528.0 |
0.7 | VS1 | 3529.0 |
0.32 | SI2 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.78 | VS2 | 3534.0 |
0.7 | VS1 | 3535.0 |
0.93 | SI2 | 3540.0 |
0.71 | VS2 | 3540.0 |
0.72 | VS2 | 3543.0 |
0.72 | SI1 | 3550.0 |
0.92 | SI2 | 3550.0 |
0.72 | VS1 | 3554.0 |
0.83 | SI1 | 3556.0 |
0.83 | SI1 | 3556.0 |
0.73 | VS1 | 3557.0 |
0.7 | VS2 | 3561.0 |
0.75 | VS2 | 3562.0 |
0.8 | SI1 | 3564.0 |
0.9 | SI1 | 3567.0 |
0.7 | VS1 | 3567.0 |
0.9 | SI1 | 3568.0 |
0.72 | SI1 | 3568.0 |
1.0 | SI2 | 3569.0 |
0.72 | VS1 | 3570.0 |
0.6 | VVS1 | 3570.0 |
0.91 | SI2 | 3573.0 |
0.71 | VS1 | 3576.0 |
0.9 | SI2 | 3578.0 |
0.9 | SI2 | 3579.0 |
0.76 | VS2 | 3581.0 |
0.71 | VS1 | 3582.0 |
0.97 | SI2 | 3585.0 |
1.11 | I1 | 3589.0 |
0.82 | SI1 | 3593.0 |
0.78 | VS2 | 3595.0 |
0.8 | SI1 | 3597.0 |
0.72 | VS1 | 3601.0 |
1.01 | SI2 | 3604.0 |
0.9 | VS2 | 3604.0 |
1.01 | SI2 | 3605.0 |
0.79 | SI1 | 3605.0 |
1.03 | SI2 | 3607.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.92 | SI2 | 3613.0 |
0.73 | SI1 | 3615.0 |
0.7 | VS1 | 3618.0 |
0.7 | VS1 | 3618.0 |
0.71 | VVS2 | 3618.0 |
0.72 | VS1 | 3619.0 |
0.73 | VS1 | 3620.0 |
0.7 | VVS2 | 3622.0 |
0.7 | VVS2 | 3622.0 |
0.72 | VS1 | 3622.0 |
0.72 | VS1 | 3622.0 |
0.75 | VS2 | 3625.0 |
0.61 | VVS1 | 3625.0 |
0.72 | VS1 | 3629.0 |
0.9 | SI2 | 3632.0 |
0.94 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
0.9 | SI2 | 3643.0 |
0.77 | VS1 | 3643.0 |
1.16 | I1 | 3644.0 |
0.77 | VS1 | 3644.0 |
1.11 | I1 | 3655.0 |
0.91 | SI2 | 3660.0 |
0.87 | SI1 | 3664.0 |
0.7 | VS2 | 3668.0 |
0.78 | VS2 | 3668.0 |
0.74 | VS2 | 3668.0 |
0.85 | SI1 | 3669.0 |
0.71 | VVS2 | 3670.0 |
1.01 | SI2 | 3671.0 |
1.01 | SI2 | 3671.0 |
0.78 | VS2 | 3672.0 |
0.73 | VS2 | 3673.0 |
0.71 | SI1 | 3674.0 |
0.71 | SI1 | 3674.0 |
1.03 | SI2 | 3675.0 |
0.75 | VS2 | 3679.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.8 | SI2 | 3682.0 |
0.84 | SI1 | 3685.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.71 | VS1 | 3690.0 |
0.94 | SI2 | 3691.0 |
0.75 | VS1 | 3696.0 |
0.9 | SI2 | 3706.0 |
0.92 | SI2 | 3707.0 |
0.86 | SI1 | 3709.0 |
1.16 | I1 | 3711.0 |
0.75 | SI1 | 3712.0 |
0.71 | VS1 | 3716.0 |
0.71 | VS1 | 3718.0 |
0.77 | VS2 | 3721.0 |
0.72 | SI1 | 3722.0 |
0.91 | SI1 | 3730.0 |
0.91 | SI1 | 3730.0 |
0.91 | SI1 | 3730.0 |
0.58 | VVS1 | 3732.0 |
0.76 | SI1 | 3732.0 |
0.73 | VS2 | 3735.0 |
0.78 | VS2 | 3736.0 |
0.7 | VVS2 | 3737.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.58 | VVS1 | 3741.0 |
0.87 | SI1 | 3742.0 |
1.09 | SI2 | 3742.0 |
1.03 | SI2 | 3743.0 |
1.03 | SI2 | 3743.0 |
0.93 | SI2 | 3744.0 |
0.74 | VS1 | 3746.0 |
0.3 | SI2 | 574.0 |
0.9 | SI1 | 3751.0 |
0.7 | VS1 | 3752.0 |
0.9 | SI1 | 3755.0 |
0.9 | SI1 | 3755.0 |
0.77 | VS2 | 3755.0 |
0.61 | VVS2 | 3758.0 |
0.78 | VS2 | 3763.0 |
0.91 | SI2 | 3763.0 |
1.0 | SI2 | 3767.0 |
1.02 | I1 | 3769.0 |
1.02 | SI2 | 3773.0 |
0.83 | SI2 | 3774.0 |
1.04 | SI2 | 3780.0 |
1.04 | SI2 | 3780.0 |
0.9 | SI2 | 3780.0 |
1.04 | SI2 | 3780.0 |
1.5 | I1 | 3780.0 |
0.91 | SI2 | 3781.0 |
0.91 | SI2 | 3781.0 |
0.77 | VS2 | 3787.0 |
0.7 | VS2 | 3788.0 |
0.9 | SI2 | 3789.0 |
0.59 | VVS1 | 3791.0 |
0.91 | SI1 | 3796.0 |
0.79 | VS1 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.71 | VVS2 | 3799.0 |
0.78 | VS1 | 3800.0 |
0.71 | VS1 | 3801.0 |
0.9 | SI2 | 3806.0 |
0.9 | SI2 | 3806.0 |
0.9 | SI2 | 3806.0 |
0.84 | SI1 | 3809.0 |
0.78 | VS2 | 3811.0 |
0.74 | VS1 | 3812.0 |
0.53 | IF | 3812.0 |
0.93 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.93 | SI1 | 3812.0 |
0.74 | VS1 | 3813.0 |
1.18 | I1 | 3816.0 |
0.84 | SI1 | 3816.0 |
1.05 | SI2 | 3816.0 |
0.79 | VS2 | 3818.0 |
0.9 | SI2 | 3818.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.85 | VS2 | 3821.0 |
0.92 | SI2 | 3823.0 |
0.53 | IF | 3827.0 |
0.91 | SI2 | 3828.0 |
0.63 | IF | 3832.0 |
0.91 | SI2 | 3837.0 |
0.77 | VS2 | 3837.0 |
0.71 | VS2 | 3838.0 |
1.02 | I1 | 3838.0 |
1.02 | SI2 | 3839.0 |
0.93 | SI2 | 3839.0 |
0.7 | VS1 | 3840.0 |
1.02 | SI2 | 3842.0 |
0.92 | SI2 | 3843.0 |
0.9 | SI2 | 3847.0 |
0.91 | SI2 | 3848.0 |
0.91 | SI2 | 3848.0 |
0.91 | SI2 | 3848.0 |
0.6 | VVS1 | 3850.0 |
0.81 | SI1 | 3852.0 |
0.91 | SI1 | 3855.0 |
0.73 | VS1 | 3856.0 |
0.71 | VVS2 | 3856.0 |
0.74 | VS2 | 3858.0 |
0.94 | SI2 | 3862.0 |
0.78 | VS2 | 3864.0 |
1.17 | SI2 | 3866.0 |
0.9 | SI2 | 3871.0 |
1.01 | SI2 | 3871.0 |
0.87 | VS2 | 3873.0 |
0.92 | SI2 | 3877.0 |
0.71 | VVS2 | 3877.0 |
0.9 | SI1 | 3880.0 |
0.9 | SI1 | 3880.0 |
0.9 | SI1 | 3880.0 |
0.93 | SI1 | 3880.0 |
1.13 | SI2 | 3883.0 |
1.18 | I1 | 3886.0 |
0.91 | SI2 | 3889.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.25 | VVS2 | 575.0 |
0.27 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
1.09 | SI2 | 3890.0 |
0.92 | SI2 | 3891.0 |
1.0 | SI2 | 3894.0 |
0.76 | VS1 | 3894.0 |
0.72 | VS1 | 3896.0 |
1.18 | SI2 | 3899.0 |
1.02 | SI2 | 3909.0 |
1.02 | SI2 | 3909.0 |
0.91 | SI2 | 3910.0 |
0.91 | SI2 | 3911.0 |
0.66 | VVS2 | 3915.0 |
0.92 | SI2 | 3916.0 |
0.9 | SI2 | 3918.0 |
0.7 | VVS1 | 3920.0 |
0.78 | VS1 | 3923.0 |
0.9 | VS2 | 3931.0 |
1.01 | SI2 | 3932.0 |
0.83 | SI1 | 3933.0 |
0.92 | SI2 | 3936.0 |
0.73 | VS1 | 3937.0 |
0.91 | SI2 | 3943.0 |
0.9 | SI1 | 3945.0 |
0.91 | SI2 | 3949.0 |
1.14 | I1 | 3950.0 |
0.76 | VS1 | 3950.0 |
0.71 | VVS1 | 3952.0 |
0.91 | SI2 | 3958.0 |
1.01 | SI2 | 3959.0 |
0.75 | VS1 | 3961.0 |
1.09 | SI2 | 3961.0 |
0.88 | SI2 | 3962.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
0.33 | SI1 | 575.0 |
1.0 | SI2 | 3965.0 |
0.77 | VS1 | 3966.0 |
0.62 | VVS1 | 3968.0 |
1.02 | SI2 | 3971.0 |
0.9 | SI2 | 3975.0 |
0.9 | SI2 | 3975.0 |
1.23 | I1 | 3977.0 |
0.77 | VS2 | 3980.0 |
0.73 | VS2 | 3980.0 |
0.83 | VS1 | 3984.0 |
0.9 | SI2 | 3989.0 |
0.96 | SI2 | 3989.0 |
0.9 | SI2 | 3990.0 |
0.93 | SI2 | 3990.0 |
0.83 | SI1 | 3990.0 |
0.92 | SI2 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.7 | VS1 | 4003.0 |
1.01 | SI2 | 4004.0 |
0.75 | VS1 | 4007.0 |
0.9 | SI2 | 4007.0 |
0.9 | SI2 | 4007.0 |
0.87 | SI2 | 4012.0 |
0.71 | VVS2 | 4014.0 |
0.7 | VVS2 | 4022.0 |
0.65 | VVS1 | 4022.0 |
1.14 | I1 | 4022.0 |
0.56 | IF | 4025.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.57 | IF | 4032.0 |
0.77 | VS1 | 4037.0 |
0.77 | VS1 | 4039.0 |
0.74 | VVS2 | 4040.0 |
0.91 | SI1 | 4041.0 |
0.54 | VVS1 | 4042.0 |
1.02 | SI2 | 4044.0 |
1.02 | SI2 | 4044.0 |
1.02 | SI2 | 4044.0 |
0.72 | VS1 | 4047.0 |
1.23 | I1 | 4050.0 |
0.91 | SI2 | 4051.0 |
0.91 | SI2 | 4051.0 |
0.91 | SI2 | 4051.0 |
0.96 | SI2 | 4060.0 |
1.01 | SI2 | 4064.0 |
1.0 | SI2 | 4065.0 |
0.91 | SI2 | 4067.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
1.12 | SI2 | 4071.0 |
1.01 | SI2 | 4072.0 |
0.9 | SI2 | 4078.0 |
0.9 | SI2 | 4078.0 |
0.9 | SI2 | 4078.0 |
0.72 | VS2 | 4082.0 |
0.72 | VS2 | 4082.0 |
0.64 | VVS1 | 4084.0 |
0.92 | SI1 | 4086.0 |
0.81 | VS2 | 4087.0 |
0.7 | VS1 | 4095.0 |
0.92 | SI2 | 4096.0 |
0.92 | SI2 | 4096.0 |
0.25 | VS1 | 410.0 |
0.23 | VS2 | 411.0 |
0.27 | VS1 | 413.0 |
0.3 | SI2 | 413.0 |
0.3 | SI2 | 413.0 |
0.23 | VS2 | 577.0 |
0.91 | VS2 | 4107.0 |
0.91 | VS2 | 4107.0 |
0.87 | SI1 | 4108.0 |
0.91 | SI1 | 4113.0 |
0.82 | SI1 | 4113.0 |
0.9 | SI2 | 4114.0 |
0.73 | VS1 | 4116.0 |
0.9 | SI1 | 4117.0 |
1.01 | SI1 | 4118.0 |
0.9 | SI1 | 4120.0 |
0.91 | SI2 | 4123.0 |
0.91 | SI2 | 4123.0 |
0.91 | SI2 | 4123.0 |
1.04 | SI2 | 4123.0 |
0.9 | VS2 | 4128.0 |
0.9 | SI1 | 4130.0 |
0.9 | SI2 | 4133.0 |
0.73 | VS2 | 4134.0 |
0.73 | VS2 | 4134.0 |
0.82 | SI1 | 4135.0 |
0.82 | SI1 | 4135.0 |
1.12 | I1 | 4139.0 |
0.93 | SI2 | 4140.0 |
0.93 | SI2 | 4140.0 |
0.92 | SI2 | 4150.0 |
0.76 | VVS2 | 4150.0 |
1.0 | SI1 | 4155.0 |
1.06 | SI2 | 4155.0 |
0.92 | SI1 | 4158.0 |
0.92 | SI1 | 4158.0 |
0.83 | SI1 | 4159.0 |
0.59 | IF | 4161.0 |
0.93 | SI2 | 4165.0 |
0.91 | SI1 | 4165.0 |
0.9 | SI2 | 4167.0 |
0.92 | SI2 | 4168.0 |
0.92 | SI2 | 4168.0 |
1.19 | SI2 | 4168.0 |
0.8 | VS2 | 4170.0 |
0.6 | VVS1 | 4172.0 |
1.03 | SI2 | 4177.0 |
0.9 | SI1 | 4178.0 |
//renaming a field using as
display(spark.sql("SELECT carat AS carrot, clarity, price FROM diamonds"))
carrot | clarity | price |
---|---|---|
0.23 | SI2 | 326.0 |
0.21 | SI1 | 326.0 |
0.23 | VS1 | 327.0 |
0.29 | VS2 | 334.0 |
0.31 | SI2 | 335.0 |
0.24 | VVS2 | 336.0 |
0.24 | VVS1 | 336.0 |
0.26 | SI1 | 337.0 |
0.22 | VS2 | 337.0 |
0.23 | VS1 | 338.0 |
0.3 | SI1 | 339.0 |
0.23 | VS1 | 340.0 |
0.22 | SI1 | 342.0 |
0.31 | SI2 | 344.0 |
0.2 | SI2 | 345.0 |
0.32 | I1 | 345.0 |
0.3 | SI2 | 348.0 |
0.3 | SI1 | 351.0 |
0.3 | SI1 | 351.0 |
0.3 | SI1 | 351.0 |
0.3 | SI2 | 351.0 |
0.23 | VS2 | 352.0 |
0.23 | VS1 | 353.0 |
0.31 | SI1 | 353.0 |
0.31 | SI1 | 353.0 |
0.23 | VVS2 | 354.0 |
0.24 | VS1 | 355.0 |
0.3 | VS2 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.31 | SI1 | 402.0 |
0.26 | VS2 | 403.0 |
0.33 | SI2 | 403.0 |
0.33 | SI2 | 403.0 |
0.33 | SI1 | 403.0 |
0.26 | VS2 | 403.0 |
0.26 | VS1 | 403.0 |
0.32 | SI2 | 403.0 |
0.29 | SI1 | 403.0 |
0.32 | SI2 | 403.0 |
0.32 | SI2 | 403.0 |
0.25 | VS2 | 404.0 |
0.29 | SI2 | 404.0 |
0.24 | SI1 | 404.0 |
0.23 | VS1 | 404.0 |
0.32 | SI1 | 404.0 |
0.22 | VS2 | 404.0 |
0.22 | VS2 | 404.0 |
0.3 | SI2 | 405.0 |
0.3 | SI2 | 405.0 |
0.3 | SI1 | 405.0 |
0.3 | SI1 | 405.0 |
0.3 | SI1 | 405.0 |
0.35 | VS1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.42 | SI2 | 552.0 |
0.28 | VVS2 | 553.0 |
0.32 | VVS1 | 553.0 |
0.31 | SI1 | 553.0 |
0.31 | SI1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.38 | SI2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS2 | 554.0 |
0.32 | SI1 | 554.0 |
0.7 | SI1 | 2757.0 |
0.86 | SI2 | 2757.0 |
0.7 | VS2 | 2757.0 |
0.71 | VS2 | 2759.0 |
0.78 | SI2 | 2759.0 |
0.7 | VS2 | 2759.0 |
0.7 | VS1 | 2759.0 |
0.96 | SI2 | 2759.0 |
0.73 | SI1 | 2760.0 |
0.8 | SI1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.74 | SI1 | 2760.0 |
0.75 | VS2 | 2760.0 |
0.8 | VS1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.8 | SI1 | 2760.0 |
0.74 | VVS2 | 2761.0 |
0.81 | SI2 | 2761.0 |
0.59 | VVS2 | 2761.0 |
0.8 | SI2 | 2761.0 |
0.74 | SI2 | 2761.0 |
0.9 | VS2 | 2761.0 |
0.74 | SI1 | 2762.0 |
0.73 | VS2 | 2762.0 |
0.73 | VS2 | 2762.0 |
0.8 | SI2 | 2762.0 |
0.71 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.8 | SI2 | 2762.0 |
0.71 | SI2 | 2762.0 |
0.74 | SI1 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.91 | SI1 | 2763.0 |
0.61 | VVS2 | 2763.0 |
0.91 | SI2 | 2763.0 |
0.91 | SI2 | 2763.0 |
0.77 | VS2 | 2763.0 |
0.71 | SI1 | 2764.0 |
0.71 | SI1 | 2764.0 |
0.7 | VS2 | 2765.0 |
0.77 | VS1 | 2765.0 |
0.63 | VVS1 | 2765.0 |
0.71 | VS1 | 2765.0 |
0.71 | VS1 | 2765.0 |
0.76 | SI1 | 2765.0 |
0.64 | VVS1 | 2766.0 |
0.71 | VS2 | 2766.0 |
0.71 | VS2 | 2766.0 |
0.7 | VS2 | 2767.0 |
0.7 | VS1 | 2767.0 |
0.71 | SI2 | 2767.0 |
0.7 | VVS2 | 2767.0 |
0.71 | VS1 | 2768.0 |
0.73 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.71 | SI2 | 2768.0 |
0.74 | SI1 | 2769.0 |
0.71 | VS2 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.76 | SI1 | 2770.0 |
0.76 | SI2 | 2770.0 |
0.71 | SI1 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.73 | VS1 | 2770.0 |
0.73 | SI2 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.72 | VVS2 | 2771.0 |
0.73 | SI1 | 2771.0 |
0.71 | VS2 | 2771.0 |
0.79 | SI2 | 2771.0 |
0.73 | VVS1 | 2772.0 |
0.8 | SI2 | 2772.0 |
0.58 | VVS1 | 2772.0 |
0.58 | VVS1 | 2772.0 |
0.71 | VS2 | 2772.0 |
0.75 | SI2 | 2773.0 |
0.7 | VS2 | 2773.0 |
1.17 | I1 | 2774.0 |
0.6 | VS1 | 2774.0 |
0.7 | SI1 | 2774.0 |
0.83 | VS2 | 2774.0 |
0.74 | VS2 | 2775.0 |
0.72 | VS2 | 2776.0 |
0.71 | VS2 | 2776.0 |
0.71 | VS2 | 2776.0 |
0.54 | VVS2 | 2776.0 |
0.54 | VVS2 | 2776.0 |
0.72 | SI1 | 2776.0 |
0.72 | SI1 | 2776.0 |
0.72 | VS2 | 2776.0 |
0.71 | SI1 | 2776.0 |
0.7 | VS1 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.72 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.98 | SI2 | 2777.0 |
0.78 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.52 | VVS1 | 2778.0 |
0.73 | VS2 | 2779.0 |
0.74 | SI1 | 2779.0 |
0.7 | VS2 | 2780.0 |
0.77 | VS2 | 2780.0 |
0.71 | VS2 | 2780.0 |
0.74 | VS1 | 2780.0 |
0.7 | VS1 | 2780.0 |
1.01 | I1 | 2781.0 |
0.77 | SI1 | 2781.0 |
0.78 | SI1 | 2781.0 |
0.72 | VS1 | 2782.0 |
0.53 | VVS2 | 2782.0 |
0.76 | VS2 | 2782.0 |
0.7 | VS1 | 2782.0 |
0.7 | VS1 | 2782.0 |
0.75 | SI2 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.7 | SI1 | 2782.0 |
0.84 | SI1 | 2782.0 |
0.75 | SI1 | 2782.0 |
0.52 | IF | 2783.0 |
0.72 | VS2 | 2784.0 |
0.79 | VS1 | 2784.0 |
0.72 | VS2 | 2787.0 |
0.51 | VVS1 | 2787.0 |
0.64 | VS1 | 2787.0 |
0.7 | VVS1 | 2788.0 |
0.83 | VS1 | 2788.0 |
0.76 | VVS2 | 2788.0 |
0.71 | VS2 | 2788.0 |
0.77 | VS1 | 2788.0 |
0.71 | SI1 | 2788.0 |
1.01 | I1 | 2788.0 |
1.01 | SI2 | 2788.0 |
0.77 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
1.05 | SI2 | 2789.0 |
0.81 | SI2 | 2789.0 |
0.7 | SI1 | 2789.0 |
0.55 | IF | 2789.0 |
0.81 | SI2 | 2789.0 |
0.63 | VVS2 | 2789.0 |
0.63 | VVS1 | 2789.0 |
0.77 | VS1 | 2789.0 |
1.05 | SI2 | 2789.0 |
0.64 | IF | 2790.0 |
0.76 | VVS1 | 2790.0 |
0.83 | SI2 | 2790.0 |
0.71 | VS1 | 2790.0 |
0.71 | VS1 | 2790.0 |
0.87 | SI1 | 2791.0 |
0.73 | SI1 | 2791.0 |
0.71 | SI1 | 2792.0 |
0.71 | SI1 | 2792.0 |
0.71 | SI1 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.76 | VVS2 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.79 | SI1 | 2793.0 |
0.7 | VS2 | 2793.0 |
0.7 | VS2 | 2793.0 |
0.76 | VS2 | 2793.0 |
0.73 | VS2 | 2793.0 |
0.79 | SI1 | 2794.0 |
0.71 | VS2 | 2795.0 |
0.81 | VVS2 | 2795.0 |
0.81 | SI2 | 2795.0 |
0.72 | VS1 | 2795.0 |
0.72 | SI2 | 2795.0 |
0.72 | IF | 2795.0 |
0.81 | VS2 | 2795.0 |
0.72 | VS2 | 2795.0 |
1.0 | SI2 | 2795.0 |
0.73 | SI1 | 2796.0 |
0.81 | SI2 | 2797.0 |
0.81 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.57 | VVS2 | 2797.0 |
0.51 | VVS1 | 2797.0 |
0.72 | VS2 | 2797.0 |
0.74 | VS1 | 2797.0 |
0.74 | VS1 | 2797.0 |
0.7 | VVS1 | 2797.0 |
0.8 | SI2 | 2797.0 |
1.01 | SI2 | 2797.0 |
0.8 | VS2 | 2797.0 |
0.77 | VS1 | 2798.0 |
0.83 | SI2 | 2799.0 |
0.82 | SI2 | 2799.0 |
0.78 | SI1 | 2799.0 |
0.6 | IF | 2800.0 |
0.9 | SI2 | 2800.0 |
0.7 | VS1 | 2800.0 |
0.9 | SI2 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.74 | VS1 | 2800.0 |
0.79 | VS1 | 2800.0 |
0.61 | IF | 2800.0 |
0.76 | VS1 | 2800.0 |
0.96 | I1 | 2801.0 |
0.73 | VS2 | 2801.0 |
0.73 | VS2 | 2801.0 |
0.75 | SI1 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
1.04 | I1 | 2801.0 |
1.0 | SI2 | 2801.0 |
0.87 | SI2 | 2802.0 |
0.53 | IF | 2802.0 |
0.72 | VS2 | 2802.0 |
0.72 | VS1 | 2802.0 |
0.7 | VS2 | 2803.0 |
0.74 | SI1 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.73 | SI1 | 2803.0 |
0.7 | VS1 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.71 | VS1 | 2803.0 |
0.77 | VS2 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.78 | VS2 | 2803.0 |
0.71 | VS1 | 2803.0 |
0.91 | SI2 | 2803.0 |
0.71 | VS2 | 2804.0 |
0.71 | VS2 | 2804.0 |
0.8 | SI2 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | VS1 | 2804.0 |
0.72 | VS1 | 2804.0 |
0.82 | VS2 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.9 | SI1 | 2804.0 |
0.74 | VS2 | 2805.0 |
0.74 | VS2 | 2805.0 |
0.73 | SI2 | 2805.0 |
0.57 | VVS1 | 2805.0 |
0.73 | VS2 | 2805.0 |
0.72 | VS2 | 2805.0 |
0.74 | VS2 | 2805.0 |
0.82 | VS2 | 2805.0 |
0.81 | SI1 | 2806.0 |
0.75 | VVS1 | 2806.0 |
0.7 | SI1 | 2806.0 |
0.71 | VS1 | 2807.0 |
0.71 | VS1 | 2807.0 |
0.93 | SI2 | 2807.0 |
0.8 | VS2 | 2808.0 |
0.7 | VS1 | 2808.0 |
1.0 | I1 | 2808.0 |
0.75 | VS2 | 2808.0 |
0.58 | VVS2 | 2808.0 |
0.73 | SI1 | 2808.0 |
0.81 | SI1 | 2809.0 |
0.81 | SI2 | 2809.0 |
0.71 | SI1 | 2809.0 |
1.2 | I1 | 2809.0 |
0.7 | VS1 | 2810.0 |
0.7 | VS1 | 2810.0 |
0.74 | SI2 | 2810.0 |
0.7 | VS1 | 2810.0 |
0.8 | SI1 | 2810.0 |
0.75 | SI1 | 2811.0 |
0.83 | SI1 | 2811.0 |
1.0 | VS2 | 2811.0 |
0.99 | SI2 | 2811.0 |
0.7 | VS1 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.7 | SI1 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.33 | SI2 | 554.0 |
0.29 | VS1 | 555.0 |
0.29 | VS1 | 555.0 |
0.31 | SI1 | 555.0 |
0.34 | VS2 | 555.0 |
0.34 | VS2 | 555.0 |
0.34 | VS1 | 555.0 |
0.34 | VS1 | 555.0 |
0.3 | VS1 | 555.0 |
0.29 | VS1 | 555.0 |
0.35 | SI1 | 555.0 |
0.43 | I1 | 555.0 |
0.32 | VS2 | 556.0 |
0.36 | VS2 | 556.0 |
0.3 | VS2 | 556.0 |
0.26 | VS1 | 556.0 |
0.7 | VS2 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.71 | SI1 | 2812.0 |
0.99 | SI1 | 2812.0 |
0.73 | VS2 | 2812.0 |
0.51 | VVS1 | 2812.0 |
0.91 | SI2 | 2813.0 |
0.84 | SI1 | 2813.0 |
0.91 | VS2 | 2813.0 |
0.76 | SI1 | 2814.0 |
0.76 | SI1 | 2814.0 |
0.75 | SI1 | 2814.0 |
0.55 | VVS1 | 2815.0 |
0.76 | SI2 | 2815.0 |
0.74 | VS1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.9 | VS2 | 2815.0 |
0.95 | SI2 | 2815.0 |
0.89 | SI2 | 2815.0 |
0.72 | VS2 | 2815.0 |
0.96 | SI2 | 2815.0 |
1.02 | I1 | 2815.0 |
0.78 | VVS2 | 2816.0 |
0.61 | VVS2 | 2816.0 |
0.71 | VS1 | 2816.0 |
0.78 | SI1 | 2816.0 |
0.87 | SI2 | 2816.0 |
0.83 | SI1 | 2816.0 |
0.71 | SI1 | 2817.0 |
0.71 | VVS2 | 2817.0 |
0.71 | VS2 | 2817.0 |
0.71 | VS2 | 2817.0 |
0.63 | VVS2 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.9 | VS2 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS2 | 2818.0 |
1.0 | I1 | 2818.0 |
0.86 | SI2 | 2818.0 |
0.8 | SI1 | 2818.0 |
0.7 | VS1 | 2818.0 |
0.7 | VS1 | 2818.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS1 | 2818.0 |
1.0 | SI2 | 2818.0 |
0.72 | VS1 | 2819.0 |
0.72 | VS1 | 2819.0 |
0.7 | VS1 | 2819.0 |
0.86 | SI2 | 2819.0 |
0.71 | VS1 | 2820.0 |
0.75 | SI1 | 2821.0 |
0.73 | VS2 | 2821.0 |
0.53 | VVS1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.7 | VS1 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.6 | VVS2 | 2822.0 |
0.74 | VVS1 | 2822.0 |
0.73 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.9 | VS2 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.79 | SI2 | 2823.0 |
0.9 | SI1 | 2823.0 |
0.71 | VS2 | 2823.0 |
0.61 | VVS2 | 2823.0 |
0.9 | SI2 | 2823.0 |
0.71 | SI1 | 2823.0 |
0.71 | VS2 | 2824.0 |
0.77 | VVS2 | 2824.0 |
0.74 | VS1 | 2824.0 |
0.82 | SI2 | 2824.0 |
0.82 | SI2 | 2824.0 |
0.71 | VS1 | 2825.0 |
0.83 | SI1 | 2825.0 |
0.73 | VS1 | 2825.0 |
0.83 | SI1 | 2825.0 |
1.17 | I1 | 2825.0 |
0.91 | SI2 | 2825.0 |
0.73 | VS1 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.9 | SI2 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.7 | VS2 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.9 | SI2 | 2826.0 |
0.78 | SI1 | 2826.0 |
0.96 | I1 | 2826.0 |
0.7 | SI1 | 2827.0 |
0.72 | VS2 | 2827.0 |
0.79 | VVS2 | 2827.0 |
0.7 | VVS1 | 2827.0 |
0.7 | VVS1 | 2827.0 |
0.7 | SI2 | 2828.0 |
1.01 | SI2 | 2828.0 |
0.72 | VS1 | 2829.0 |
0.8 | SI2 | 2829.0 |
0.59 | VVS1 | 2829.0 |
0.72 | VS1 | 2829.0 |
0.75 | SI2 | 2829.0 |
0.8 | SI2 | 2829.0 |
0.71 | VS2 | 2830.0 |
0.77 | SI1 | 2830.0 |
0.97 | I1 | 2830.0 |
0.53 | VVS1 | 2830.0 |
0.53 | VVS1 | 2830.0 |
0.8 | VS2 | 2830.0 |
0.9 | SI1 | 2830.0 |
0.76 | SI2 | 2831.0 |
0.72 | SI1 | 2831.0 |
0.75 | SI1 | 2831.0 |
0.72 | SI1 | 2831.0 |
0.79 | SI1 | 2831.0 |
0.72 | VS2 | 2832.0 |
0.91 | SI2 | 2832.0 |
0.71 | VVS2 | 2832.0 |
0.81 | SI1 | 2832.0 |
0.82 | SI1 | 2832.0 |
0.71 | VS1 | 2832.0 |
0.9 | SI1 | 2832.0 |
0.8 | VS2 | 2833.0 |
0.56 | IF | 2833.0 |
0.7 | VS2 | 2833.0 |
0.7 | VS2 | 2833.0 |
0.61 | VVS2 | 2833.0 |
0.85 | SI2 | 2833.0 |
0.7 | SI1 | 2833.0 |
0.8 | VS2 | 2834.0 |
0.8 | VS2 | 2834.0 |
0.51 | VVS1 | 2834.0 |
0.53 | VVS1 | 2834.0 |
0.78 | VS2 | 2834.0 |
0.9 | SI1 | 2834.0 |
0.9 | SI2 | 2834.0 |
0.77 | SI2 | 2834.0 |
0.73 | VS1 | 2835.0 |
0.63 | VVS2 | 2835.0 |
0.7 | VS2 | 2835.0 |
0.72 | VS2 | 2835.0 |
0.72 | SI1 | 2835.0 |
0.75 | VS2 | 2835.0 |
0.82 | SI1 | 2836.0 |
0.71 | VS2 | 2836.0 |
0.7 | VS1 | 2837.0 |
0.7 | VS1 | 2837.0 |
0.71 | SI1 | 2838.0 |
0.76 | SI1 | 2838.0 |
0.82 | SI1 | 2838.0 |
0.72 | VS1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | SI1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS1 | 2838.0 |
0.74 | SI1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.73 | VS2 | 2839.0 |
0.7 | VS2 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.71 | VVS2 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.79 | VS2 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.77 | VS1 | 2840.0 |
0.75 | SI2 | 2840.0 |
0.7 | SI1 | 2840.0 |
0.71 | VS2 | 2840.0 |
0.92 | SI2 | 2840.0 |
0.83 | SI2 | 2840.0 |
0.7 | VVS1 | 2840.0 |
0.73 | VS2 | 2841.0 |
0.71 | VS1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.52 | VVS1 | 2841.0 |
1.0 | I1 | 2841.0 |
0.95 | SI1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.73 | VS2 | 2841.0 |
0.73 | VS1 | 2841.0 |
0.8 | VS1 | 2842.0 |
0.7 | VS2 | 2842.0 |
0.7 | VS2 | 2843.0 |
0.7 | VS2 | 2843.0 |
0.71 | VS2 | 2843.0 |
0.81 | SI2 | 2843.0 |
0.71 | SI1 | 2843.0 |
0.73 | VVS2 | 2843.0 |
0.73 | VS1 | 2843.0 |
0.72 | VS2 | 2843.0 |
0.81 | SI2 | 2843.0 |
0.71 | VVS2 | 2843.0 |
0.73 | SI1 | 2844.0 |
0.7 | VS1 | 2844.0 |
1.01 | I1 | 2844.0 |
1.01 | I1 | 2844.0 |
0.79 | VS2 | 2844.0 |
0.7 | VS2 | 2845.0 |
0.7 | VS2 | 2845.0 |
0.8 | VS2 | 2845.0 |
1.27 | SI2 | 2845.0 |
0.79 | SI1 | 2846.0 |
0.72 | VS1 | 2846.0 |
0.73 | VVS2 | 2846.0 |
1.01 | SI2 | 2846.0 |
1.01 | I1 | 2846.0 |
0.73 | SI1 | 2846.0 |
0.7 | SI1 | 2846.0 |
0.7 | VS2 | 2846.0 |
0.77 | SI1 | 2846.0 |
0.77 | VS2 | 2846.0 |
0.77 | VS1 | 2846.0 |
0.84 | SI1 | 2847.0 |
0.72 | SI1 | 2847.0 |
0.76 | SI1 | 2847.0 |
0.7 | VVS2 | 2848.0 |
0.54 | VVS2 | 2848.0 |
0.75 | SI2 | 2848.0 |
0.79 | SI1 | 2849.0 |
0.74 | VS1 | 2849.0 |
0.7 | VS2 | 2850.0 |
0.7 | VS2 | 2850.0 |
0.75 | SI1 | 2850.0 |
1.2 | I1 | 2850.0 |
0.8 | SI1 | 2851.0 |
0.66 | VS1 | 2851.0 |
0.87 | SI2 | 2851.0 |
0.86 | SI1 | 2851.0 |
0.74 | SI1 | 2851.0 |
0.58 | IF | 2852.0 |
0.78 | VS1 | 2852.0 |
0.74 | SI1 | 2852.0 |
0.73 | SI1 | 2852.0 |
0.91 | SI1 | 2852.0 |
0.71 | VS2 | 2853.0 |
0.71 | VS1 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.71 | SI1 | 2853.0 |
0.82 | VS1 | 2853.0 |
0.78 | VS1 | 2854.0 |
0.7 | VS1 | 2854.0 |
1.12 | I1 | 2854.0 |
0.73 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | SI1 | 2854.0 |
0.7 | VS1 | 2854.0 |
0.68 | VVS2 | 2854.0 |
0.73 | VS2 | 2855.0 |
1.03 | SI1 | 2855.0 |
0.74 | VS2 | 2855.0 |
0.98 | SI2 | 2855.0 |
1.02 | SI1 | 2856.0 |
1.0 | SI2 | 2856.0 |
1.02 | SI2 | 2856.0 |
0.6 | VVS2 | 2856.0 |
0.8 | SI2 | 2856.0 |
0.97 | I1 | 2856.0 |
1.0 | SI1 | 2856.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.36 | SI1 | 556.0 |
0.34 | VS2 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | VS2 | 556.0 |
0.34 | SI1 | 556.0 |
0.32 | VS2 | 556.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VS2 | 557.0 |
0.31 | VS1 | 557.0 |
0.31 | VS1 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | SI1 | 557.0 |
0.33 | SI1 | 557.0 |
0.33 | SI1 | 557.0 |
1.0 | SI2 | 2856.0 |
0.77 | SI1 | 2856.0 |
0.77 | SI1 | 2856.0 |
0.7 | VVS2 | 2857.0 |
0.9 | SI2 | 2857.0 |
0.72 | SI1 | 2857.0 |
0.9 | VS2 | 2857.0 |
0.72 | SI1 | 2857.0 |
0.7 | VVS2 | 2858.0 |
0.81 | SI1 | 2858.0 |
0.81 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.92 | SI1 | 2858.0 |
0.76 | SI1 | 2858.0 |
0.73 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VVS2 | 2858.0 |
0.9 | SI2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.77 | VS1 | 2859.0 |
0.71 | VS1 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.75 | VS1 | 2859.0 |
0.83 | SI2 | 2859.0 |
0.71 | VS2 | 2860.0 |
0.9 | SI2 | 2860.0 |
0.6 | VVS2 | 2860.0 |
0.71 | VS1 | 2860.0 |
0.53 | VVS1 | 2860.0 |
0.71 | SI1 | 2861.0 |
0.62 | VVS2 | 2861.0 |
0.62 | VVS2 | 2861.0 |
0.9 | SI1 | 2861.0 |
0.62 | IF | 2861.0 |
0.82 | SI2 | 2861.0 |
0.66 | VS1 | 2861.0 |
0.7 | SI1 | 2862.0 |
0.8 | SI1 | 2862.0 |
0.8 | SI2 | 2862.0 |
0.79 | SI1 | 2862.0 |
0.71 | VVS1 | 2862.0 |
0.7 | VS2 | 2862.0 |
0.7 | VS2 | 2862.0 |
0.79 | VS1 | 2862.0 |
0.7 | VS2 | 2862.0 |
1.22 | I1 | 2862.0 |
1.01 | SI2 | 2862.0 |
0.73 | VS2 | 2862.0 |
0.91 | VS2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.83 | SI1 | 2863.0 |
0.84 | SI2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.91 | SI1 | 2863.0 |
0.9 | VS2 | 2863.0 |
0.71 | VVS2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.72 | VS2 | 2863.0 |
0.72 | SI1 | 2863.0 |
0.71 | VS2 | 2863.0 |
0.81 | SI2 | 2864.0 |
0.83 | VS2 | 2865.0 |
0.73 | SI1 | 2865.0 |
0.56 | VVS1 | 2866.0 |
0.56 | VVS1 | 2866.0 |
0.71 | VS1 | 2866.0 |
0.7 | VVS1 | 2866.0 |
0.96 | SI1 | 2866.0 |
0.71 | VVS1 | 2867.0 |
0.7 | VS2 | 2867.0 |
0.71 | VVS1 | 2867.0 |
0.8 | VS2 | 2867.0 |
0.95 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.52 | VVS1 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.8 | SI1 | 2867.0 |
0.96 | SI2 | 2867.0 |
0.72 | VS1 | 2868.0 |
0.62 | IF | 2868.0 |
0.79 | SI2 | 2868.0 |
0.75 | SI1 | 2868.0 |
1.08 | I1 | 2869.0 |
0.72 | SI1 | 2869.0 |
0.62 | IF | 2869.0 |
0.73 | VVS2 | 2869.0 |
0.72 | VVS2 | 2869.0 |
0.52 | VVS2 | 2870.0 |
0.83 | SI2 | 2870.0 |
0.64 | VVS2 | 2870.0 |
0.8 | SI1 | 2870.0 |
0.74 | SI1 | 2870.0 |
0.72 | SI1 | 2870.0 |
0.82 | VS2 | 2870.0 |
0.73 | VS1 | 2870.0 |
1.04 | I1 | 2870.0 |
0.73 | SI1 | 2871.0 |
0.73 | SI1 | 2871.0 |
0.9 | SI1 | 2871.0 |
0.75 | SI1 | 2871.0 |
0.79 | SI1 | 2871.0 |
0.7 | SI1 | 2872.0 |
0.75 | SI1 | 2872.0 |
1.02 | I1 | 2872.0 |
0.7 | SI2 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.72 | VS2 | 2872.0 |
0.74 | SI1 | 2872.0 |
0.84 | SI1 | 2872.0 |
0.76 | VS2 | 2873.0 |
0.77 | SI1 | 2873.0 |
0.76 | SI2 | 2873.0 |
1.0 | SI2 | 2873.0 |
1.0 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.78 | VS2 | 2874.0 |
0.71 | VS2 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VVS2 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VVS2 | 2874.0 |
1.0 | SI2 | 2875.0 |
0.77 | SI1 | 2875.0 |
1.0 | VS1 | 2875.0 |
1.0 | SI1 | 2875.0 |
1.0 | SI2 | 2875.0 |
0.73 | VS1 | 2876.0 |
0.79 | VS2 | 2876.0 |
0.72 | VS1 | 2877.0 |
0.71 | VS1 | 2877.0 |
0.74 | VS2 | 2877.0 |
0.7 | VVS1 | 2877.0 |
0.7 | VS1 | 2877.0 |
0.79 | SI1 | 2878.0 |
0.79 | SI1 | 2878.0 |
0.79 | SI2 | 2878.0 |
0.71 | VS2 | 2878.0 |
0.79 | SI1 | 2878.0 |
0.73 | SI1 | 2879.0 |
0.63 | IF | 2879.0 |
0.7 | VS1 | 2879.0 |
0.71 | VS1 | 2879.0 |
0.84 | SI2 | 2879.0 |
0.84 | SI2 | 2879.0 |
1.02 | SI2 | 2879.0 |
0.72 | VS1 | 2879.0 |
0.72 | VS1 | 2879.0 |
0.92 | SI2 | 2880.0 |
0.74 | SI1 | 2880.0 |
0.7 | VVS1 | 2881.0 |
0.71 | VS2 | 2881.0 |
1.05 | I1 | 2881.0 |
0.7 | IF | 2882.0 |
0.54 | VVS1 | 2882.0 |
0.73 | VS2 | 2882.0 |
0.88 | SI1 | 2882.0 |
0.73 | VS2 | 2882.0 |
0.72 | SI1 | 2883.0 |
0.9 | SI2 | 2883.0 |
0.9 | SI2 | 2883.0 |
1.03 | SI2 | 2884.0 |
0.84 | SI1 | 2885.0 |
1.01 | SI1 | 2885.0 |
0.77 | SI2 | 2885.0 |
0.8 | SI1 | 2885.0 |
0.9 | SI2 | 2885.0 |
0.73 | SI1 | 2886.0 |
0.72 | SI1 | 2886.0 |
0.71 | SI1 | 2887.0 |
0.7 | VS1 | 2887.0 |
0.79 | VS1 | 2888.0 |
0.72 | VVS2 | 2889.0 |
0.7 | VS2 | 2889.0 |
0.7 | VS1 | 2889.0 |
0.9 | SI2 | 2889.0 |
0.71 | VS1 | 2889.0 |
0.5 | VVS2 | 2889.0 |
0.5 | VVS2 | 2889.0 |
0.74 | SI1 | 2889.0 |
0.77 | VS2 | 2889.0 |
0.77 | SI1 | 2889.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.66 | VVS1 | 2890.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.72 | SI1 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.86 | SI2 | 2892.0 |
1.19 | I1 | 2892.0 |
0.71 | VS1 | 2893.0 |
0.82 | SI2 | 2893.0 |
0.71 | VVS2 | 2893.0 |
0.75 | VS2 | 2893.0 |
0.7 | VVS1 | 2893.0 |
0.8 | SI2 | 2893.0 |
0.82 | SI2 | 2893.0 |
0.82 | SI1 | 2893.0 |
0.82 | SI1 | 2893.0 |
0.81 | SI2 | 2894.0 |
0.81 | SI2 | 2894.0 |
0.76 | SI1 | 2894.0 |
0.71 | VS2 | 2895.0 |
0.7 | VS1 | 2895.0 |
0.7 | VVS2 | 2895.0 |
0.74 | VS1 | 2896.0 |
0.77 | VS2 | 2896.0 |
0.77 | VS2 | 2896.0 |
0.53 | VVS1 | 2896.0 |
0.79 | SI1 | 2896.0 |
0.73 | SI2 | 2896.0 |
0.77 | SI2 | 2896.0 |
0.77 | SI1 | 2896.0 |
1.01 | I1 | 2896.0 |
1.01 | I1 | 2896.0 |
0.6 | VVS2 | 2897.0 |
0.76 | SI1 | 2897.0 |
0.54 | VVS2 | 2897.0 |
0.72 | SI1 | 2897.0 |
0.72 | VS1 | 2897.0 |
0.74 | VS2 | 2897.0 |
1.12 | SI2 | 2898.0 |
//sorting
display(spark.sql("SELECT carat, clarity, price FROM diamonds ORDER BY price DESC"))
carat | clarity | price |
---|---|---|
2.29 | VS2 | 18823.0 |
2.0 | SI1 | 18818.0 |
1.51 | IF | 18806.0 |
2.07 | SI2 | 18804.0 |
2.0 | SI1 | 18803.0 |
2.29 | SI1 | 18797.0 |
2.0 | VS1 | 18795.0 |
2.04 | SI1 | 18795.0 |
1.71 | VS2 | 18791.0 |
2.15 | SI2 | 18791.0 |
2.8 | SI2 | 18788.0 |
2.05 | SI1 | 18787.0 |
2.05 | SI2 | 18784.0 |
2.03 | SI1 | 18781.0 |
1.6 | VS1 | 18780.0 |
2.06 | VS2 | 18779.0 |
1.51 | VVS1 | 18777.0 |
1.71 | VVS2 | 18768.0 |
2.55 | VS1 | 18766.0 |
2.08 | SI1 | 18760.0 |
2.0 | SI1 | 18759.0 |
2.03 | SI1 | 18757.0 |
2.61 | SI2 | 18756.0 |
2.36 | SI2 | 18745.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18736.0 |
1.94 | SI1 | 18735.0 |
2.02 | SI1 | 18731.0 |
1.72 | VVS2 | 18730.0 |
1.51 | VS1 | 18729.0 |
1.7 | VVS2 | 18718.0 |
2.18 | SI1 | 18717.0 |
3.01 | SI2 | 18710.0 |
3.01 | SI2 | 18710.0 |
2.0 | SI1 | 18709.0 |
2.07 | VS2 | 18707.0 |
2.22 | VS1 | 18706.0 |
2.01 | SI2 | 18705.0 |
3.51 | VS2 | 18701.0 |
1.28 | IF | 18700.0 |
2.02 | VS2 | 18700.0 |
2.19 | SI2 | 18693.0 |
2.43 | VS2 | 18692.0 |
2.48 | SI2 | 18692.0 |
1.5 | VS2 | 18691.0 |
2.67 | SI2 | 18686.0 |
1.42 | VVS1 | 18682.0 |
2.03 | VS2 | 18680.0 |
2.02 | SI2 | 18678.0 |
2.16 | SI2 | 18678.0 |
2.01 | SI2 | 18674.0 |
2.04 | SI1 | 18663.0 |
2.05 | VS2 | 18659.0 |
2.12 | SI1 | 18656.0 |
2.29 | VS2 | 18653.0 |
2.1 | SI1 | 18648.0 |
2.01 | VS2 | 18640.0 |
2.09 | SI2 | 18640.0 |
2.03 | SI1 | 18630.0 |
2.01 | SI1 | 18625.0 |
2.42 | VS2 | 18615.0 |
1.49 | VVS2 | 18614.0 |
2.07 | SI2 | 18611.0 |
2.01 | VS2 | 18607.0 |
2.0 | SI1 | 18604.0 |
1.71 | VVS2 | 18599.0 |
1.7 | VS1 | 18598.0 |
2.29 | IF | 18594.0 |
3.01 | SI2 | 18593.0 |
2.03 | SI2 | 18578.0 |
2.11 | SI2 | 18575.0 |
2.01 | SI1 | 18574.0 |
2.01 | SI1 | 18572.0 |
1.6 | VS1 | 18571.0 |
2.02 | VS2 | 18565.0 |
2.01 | VS2 | 18561.0 |
2.01 | VS2 | 18561.0 |
2.09 | SI1 | 18559.0 |
3.04 | SI2 | 18559.0 |
2.38 | VS2 | 18559.0 |
1.72 | VS2 | 18557.0 |
1.5 | IF | 18552.0 |
1.04 | IF | 18542.0 |
2.4 | SI1 | 18541.0 |
2.4 | SI2 | 18541.0 |
2.03 | SI2 | 18535.0 |
2.32 | SI2 | 18532.0 |
2.22 | VS2 | 18531.0 |
4.5 | I1 | 18531.0 |
2.14 | SI1 | 18528.0 |
2.14 | SI2 | 18526.0 |
1.83 | VS2 | 18525.0 |
2.0 | SI1 | 18524.0 |
2.38 | VS1 | 18522.0 |
2.0 | VS2 | 18515.0 |
2.09 | SI2 | 18509.0 |
2.32 | SI2 | 18508.0 |
2.37 | SI1 | 18508.0 |
2.01 | VS2 | 18507.0 |
2.03 | SI1 | 18507.0 |
2.01 | VS1 | 18500.0 |
2.66 | SI2 | 18495.0 |
2.0 | SI1 | 18493.0 |
2.07 | SI1 | 18489.0 |
2.02 | SI2 | 18487.0 |
2.57 | SI1 | 18485.0 |
2.21 | SI2 | 18483.0 |
2.16 | VS2 | 18481.0 |
2.1 | SI1 | 18480.0 |
2.03 | SI2 | 18477.0 |
2.19 | SI1 | 18475.0 |
2.01 | VS2 | 18474.0 |
2.09 | SI2 | 18472.0 |
2.15 | SI1 | 18470.0 |
2.04 | SI1 | 18468.0 |
2.1 | SI2 | 18462.0 |
2.16 | VS1 | 18462.0 |
2.03 | SI2 | 18458.0 |
2.5 | SI2 | 18447.0 |
2.08 | VS2 | 18447.0 |
1.7 | VVS1 | 18445.0 |
2.09 | VS2 | 18443.0 |
2.13 | SI1 | 18442.0 |
2.0 | SI1 | 18440.0 |
2.0 | SI1 | 18440.0 |
2.06 | SI1 | 18439.0 |
1.33 | IF | 18435.0 |
2.22 | SI1 | 18432.0 |
1.72 | VVS2 | 18431.0 |
2.44 | VS2 | 18430.0 |
1.74 | VS2 | 18430.0 |
1.7 | VS1 | 18430.0 |
1.79 | VS2 | 18429.0 |
2.26 | SI1 | 18426.0 |
2.29 | IF | 18426.0 |
2.0 | SI2 | 18426.0 |
2.03 | SI1 | 18423.0 |
1.6 | VS2 | 18421.0 |
1.79 | VS1 | 18419.0 |
1.54 | VS1 | 18416.0 |
2.11 | SI2 | 18407.0 |
2.08 | SI2 | 18405.0 |
2.01 | SI1 | 18398.0 |
2.02 | VS2 | 18398.0 |
1.7 | VS1 | 18398.0 |
2.01 | SI2 | 18395.0 |
2.01 | SI2 | 18394.0 |
2.09 | SI1 | 18392.0 |
1.73 | VVS2 | 18377.0 |
2.0 | SI1 | 18376.0 |
2.4 | SI2 | 18374.0 |
2.01 | SI1 | 18374.0 |
2.32 | SI1 | 18371.0 |
2.0 | SI1 | 18371.0 |
2.0 | SI1 | 18371.0 |
2.06 | SI2 | 18371.0 |
2.6 | SI2 | 18369.0 |
2.2 | VS2 | 18364.0 |
2.22 | VS2 | 18363.0 |
2.07 | VS2 | 18359.0 |
1.83 | VS2 | 18358.0 |
2.07 | SI2 | 18344.0 |
2.27 | SI1 | 18343.0 |
1.7 | VS2 | 18342.0 |
2.16 | VS1 | 18342.0 |
2.01 | VS1 | 18340.0 |
2.5 | VS2 | 18325.0 |
2.49 | SI2 | 18325.0 |
2.02 | VS1 | 18324.0 |
2.02 | SI2 | 18320.0 |
2.05 | VS2 | 18318.0 |
1.61 | VS2 | 18318.0 |
2.1 | SI2 | 18312.0 |
2.03 | SI2 | 18310.0 |
2.51 | SI2 | 18308.0 |
1.93 | SI1 | 18306.0 |
2.3 | SI2 | 18304.0 |
2.24 | SI1 | 18299.0 |
2.02 | SI2 | 18296.0 |
2.01 | SI1 | 18295.0 |
2.01 | SI1 | 18295.0 |
1.54 | VVS1 | 18294.0 |
2.06 | SI2 | 18293.0 |
2.14 | SI2 | 18291.0 |
2.03 | SI2 | 18286.0 |
2.08 | VS2 | 18281.0 |
1.62 | VS2 | 18281.0 |
1.07 | IF | 18279.0 |
1.7 | VVS1 | 18279.0 |
2.21 | SI2 | 18276.0 |
2.13 | SI1 | 18275.0 |
2.02 | SI2 | 18274.0 |
2.01 | SI2 | 18259.0 |
2.03 | SI1 | 18257.0 |
2.51 | SI2 | 18255.0 |
2.53 | SI1 | 18254.0 |
2.52 | SI1 | 18252.0 |
2.01 | SI1 | 18252.0 |
1.7 | VS2 | 18251.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
2.3 | VS2 | 18239.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI2 | 18236.0 |
2.19 | SI2 | 18232.0 |
2.04 | SI2 | 18231.0 |
1.09 | IF | 18231.0 |
2.09 | VS1 | 18215.0 |
1.73 | VVS2 | 18211.0 |
2.02 | VS2 | 18207.0 |
2.02 | VS2 | 18207.0 |
2.01 | VS1 | 18206.0 |
2.07 | SI2 | 18198.0 |
2.2 | SI1 | 18193.0 |
2.05 | SI1 | 18193.0 |
2.07 | VS2 | 18193.0 |
2.3 | VS2 | 18190.0 |
2.01 | SI1 | 18188.0 |
1.55 | VVS2 | 18188.0 |
2.01 | SI1 | 18186.0 |
2.0 | SI1 | 18186.0 |
2.01 | SI2 | 18183.0 |
2.05 | SI2 | 18181.0 |
2.52 | SI2 | 18179.0 |
1.63 | VS1 | 18179.0 |
1.76 | VS1 | 18178.0 |
1.7 | VS2 | 18176.0 |
2.0 | SI2 | 18172.0 |
2.01 | VS2 | 18172.0 |
2.2 | SI2 | 18168.0 |
2.03 | VS2 | 18166.0 |
2.12 | SI2 | 18164.0 |
1.5 | VVS2 | 18159.0 |
2.04 | SI1 | 18153.0 |
2.05 | VS2 | 18152.0 |
2.23 | VS2 | 18149.0 |
2.01 | SI1 | 18149.0 |
2.03 | VS2 | 18139.0 |
2.03 | VS2 | 18139.0 |
2.08 | SI2 | 18128.0 |
2.08 | SI2 | 18128.0 |
1.78 | VS2 | 18128.0 |
2.21 | SI2 | 18128.0 |
2.04 | VS1 | 18127.0 |
2.14 | SI2 | 18125.0 |
2.08 | SI2 | 18124.0 |
2.1 | SI2 | 18124.0 |
2.03 | SI2 | 18120.0 |
2.12 | SI2 | 18120.0 |
2.33 | SI1 | 18119.0 |
2.12 | SI1 | 18118.0 |
2.02 | SI2 | 18117.0 |
2.04 | SI1 | 18115.0 |
2.04 | SI1 | 18115.0 |
2.03 | SI2 | 18115.0 |
1.07 | IF | 18114.0 |
2.45 | VS2 | 18113.0 |
1.14 | IF | 18112.0 |
2.3 | SI2 | 18108.0 |
1.7 | VS2 | 18107.0 |
1.7 | VS2 | 18107.0 |
2.04 | VS1 | 18104.0 |
1.51 | IF | 18102.0 |
2.51 | SI2 | 18090.0 |
2.32 | SI1 | 18080.0 |
2.02 | VS2 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.11 | SI2 | 18071.0 |
2.0 | SI1 | 18069.0 |
2.29 | SI1 | 18068.0 |
2.19 | SI2 | 18067.0 |
2.04 | SI2 | 18066.0 |
2.21 | SI1 | 18062.0 |
2.0 | SI1 | 18062.0 |
2.2 | SI1 | 18059.0 |
1.58 | VS1 | 18057.0 |
1.7 | VS2 | 18055.0 |
2.28 | SI2 | 18055.0 |
2.02 | VS2 | 18050.0 |
2.01 | VS1 | 18041.0 |
2.51 | SI2 | 18037.0 |
2.11 | SI2 | 18034.0 |
2.25 | SI1 | 18034.0 |
2.25 | SI2 | 18034.0 |
2.16 | SI1 | 18029.0 |
2.51 | SI2 | 18029.0 |
2.26 | SI2 | 18028.0 |
2.01 | SI1 | 18027.0 |
2.01 | SI1 | 18027.0 |
2.32 | SI1 | 18026.0 |
2.03 | SI1 | 18026.0 |
2.32 | SI1 | 18026.0 |
2.04 | SI1 | 18026.0 |
2.0 | VS2 | 18023.0 |
2.51 | VS2 | 18020.0 |
5.01 | I1 | 18018.0 |
2.05 | SI2 | 18017.0 |
1.76 | VS1 | 18014.0 |
2.25 | SI2 | 18007.0 |
2.06 | SI2 | 18005.0 |
2.18 | SI2 | 18003.0 |
2.09 | SI2 | 18002.0 |
2.16 | SI2 | 18001.0 |
2.35 | SI1 | 17999.0 |
2.09 | VS2 | 17999.0 |
2.54 | SI2 | 17996.0 |
1.93 | VS1 | 17995.0 |
2.24 | SI2 | 17989.0 |
2.05 | SI2 | 17988.0 |
2.01 | VS2 | 17987.0 |
2.08 | IF | 17986.0 |
2.01 | VS1 | 17983.0 |
2.03 | VS2 | 17975.0 |
2.05 | SI2 | 17957.0 |
2.4 | SI2 | 17955.0 |
2.39 | VS2 | 17955.0 |
2.0 | SI2 | 17953.0 |
2.04 | SI1 | 17952.0 |
2.04 | SI1 | 17952.0 |
1.54 | VS1 | 17949.0 |
2.02 | SI2 | 17938.0 |
1.51 | VS1 | 17936.0 |
2.02 | VS1 | 17936.0 |
2.16 | SI1 | 17934.0 |
1.29 | VVS1 | 17932.0 |
2.0 | SI1 | 17930.0 |
2.57 | SI2 | 17924.0 |
2.41 | SI2 | 17923.0 |
2.39 | VS1 | 17920.0 |
2.01 | VS2 | 17917.0 |
2.08 | VS2 | 17916.0 |
1.07 | IF | 17909.0 |
2.2 | VS2 | 17905.0 |
1.74 | VS1 | 17904.0 |
1.74 | VS1 | 17904.0 |
2.0 | SI1 | 17902.0 |
2.0 | VS2 | 17898.0 |
2.2 | SI1 | 17895.0 |
1.58 | VS1 | 17894.0 |
2.07 | SI1 | 17893.0 |
2.48 | SI1 | 17893.0 |
2.02 | VS2 | 17893.0 |
1.7 | VS2 | 17892.0 |
2.28 | SI2 | 17892.0 |
2.01 | SI1 | 17892.0 |
2.32 | VS1 | 17891.0 |
2.16 | VVS1 | 17891.0 |
2.0 | VS1 | 17889.0 |
1.76 | VVS2 | 17888.0 |
2.02 | VS2 | 17887.0 |
2.02 | SI1 | 17882.0 |
2.01 | VS1 | 17877.0 |
2.11 | SI2 | 17871.0 |
2.0 | SI2 | 17871.0 |
2.0 | SI1 | 17869.0 |
2.03 | SI1 | 17864.0 |
2.43 | SI2 | 17856.0 |
2.01 | SI2 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.18 | SI2 | 17841.0 |
2.09 | SI2 | 17840.0 |
2.01 | VS1 | 17838.0 |
2.1 | VS2 | 17837.0 |
2.0 | SI2 | 17835.0 |
2.36 | VS1 | 17829.0 |
2.01 | VS2 | 17826.0 |
1.63 | VS2 | 17825.0 |
2.02 | SI2 | 17825.0 |
2.16 | SI1 | 17820.0 |
2.11 | SI1 | 17816.0 |
2.05 | SI1 | 17811.0 |
2.09 | SI2 | 17805.0 |
2.17 | SI2 | 17805.0 |
2.01 | SI1 | 17804.0 |
2.03 | SI1 | 17803.0 |
1.69 | VS2 | 17803.0 |
2.72 | SI2 | 17801.0 |
2.01 | SI2 | 17798.0 |
2.21 | SI1 | 17784.0 |
2.08 | SI1 | 17778.0 |
2.05 | SI1 | 17776.0 |
1.55 | VS1 | 17773.0 |
2.16 | SI1 | 17772.0 |
1.71 | VS2 | 17766.0 |
1.72 | VS1 | 17765.0 |
1.87 | VS1 | 17761.0 |
2.0 | SI2 | 17760.0 |
2.0 | SI1 | 17760.0 |
2.0 | SI1 | 17760.0 |
2.0 | VS2 | 17760.0 |
2.0 | VS2 | 17760.0 |
2.0 | SI2 | 17760.0 |
2.01 | SI2 | 17759.0 |
2.01 | SI1 | 17759.0 |
2.56 | SI1 | 17753.0 |
2.03 | SI2 | 17752.0 |
2.01 | VS1 | 17751.0 |
2.17 | SI1 | 17747.0 |
2.01 | SI2 | 17746.0 |
2.14 | SI2 | 17742.0 |
2.0 | SI1 | 17740.0 |
2.12 | SI2 | 17730.0 |
1.65 | IF | 17729.0 |
2.0 | SI1 | 17724.0 |
1.52 | VS1 | 17723.0 |
2.0 | VS2 | 17716.0 |
2.31 | SI1 | 17715.0 |
2.21 | SI1 | 17714.0 |
1.99 | VS2 | 17713.0 |
2.11 | VS2 | 17712.0 |
2.0 | SI2 | 17710.0 |
2.12 | SI2 | 17694.0 |
2.02 | SI1 | 17692.0 |
2.52 | SI2 | 17689.0 |
1.51 | VVS2 | 17689.0 |
2.01 | SI1 | 17688.0 |
2.01 | SI2 | 17688.0 |
1.71 | VS1 | 17685.0 |
2.32 | SI2 | 17676.0 |
2.01 | SI1 | 17676.0 |
2.0 | SI2 | 17674.0 |
2.14 | SI2 | 17673.0 |
2.28 | SI1 | 17673.0 |
2.02 | SI1 | 17672.0 |
1.5 | VVS2 | 17667.0 |
2.29 | SI2 | 17666.0 |
1.34 | IF | 17663.0 |
1.7 | VS2 | 17662.0 |
1.52 | VS1 | 17659.0 |
2.02 | SI1 | 17658.0 |
2.06 | SI2 | 17650.0 |
1.51 | VS1 | 17649.0 |
2.39 | VS1 | 17642.0 |
2.05 | VS1 | 17640.0 |
2.2 | SI2 | 17634.0 |
2.08 | SI1 | 17617.0 |
1.74 | VS2 | 17614.0 |
2.07 | SI2 | 17614.0 |
2.01 | SI2 | 17609.0 |
2.52 | SI2 | 17608.0 |
2.0 | VS1 | 17607.0 |
2.48 | SI2 | 17607.0 |
2.1 | VVS1 | 17606.0 |
1.72 | VS1 | 17605.0 |
1.64 | VVS2 | 17604.0 |
2.0 | SI1 | 17600.0 |
1.38 | IF | 17598.0 |
1.7 | VS2 | 17597.0 |
1.7 | VS2 | 17597.0 |
1.71 | VS1 | 17595.0 |
2.01 | VS2 | 17592.0 |
2.53 | SI2 | 17591.0 |
1.03 | IF | 17590.0 |
2.14 | SI2 | 17582.0 |
2.02 | VS2 | 17581.0 |
2.02 | SI1 | 17579.0 |
2.0 | VS2 | 17574.0 |
2.01 | VS2 | 17570.0 |
2.36 | SI2 | 17569.0 |
1.65 | IF | 17569.0 |
2.01 | SI2 | 17555.0 |
2.19 | SI2 | 17554.0 |
1.89 | VS1 | 17553.0 |
1.59 | VS1 | 17552.0 |
1.57 | VS2 | 17548.0 |
1.45 | VVS2 | 17545.0 |
2.29 | VS2 | 17539.0 |
1.97 | VS2 | 17535.0 |
2.36 | VS2 | 17534.0 |
2.0 | SI2 | 17534.0 |
2.02 | VS1 | 17533.0 |
2.02 | SI1 | 17530.0 |
2.21 | SI2 | 17525.0 |
2.01 | VS1 | 17523.0 |
2.52 | SI2 | 17522.0 |
2.05 | SI1 | 17521.0 |
2.32 | SI2 | 17516.0 |
1.51 | VS1 | 17515.0 |
2.01 | SI2 | 17514.0 |
2.14 | SI2 | 17513.0 |
1.91 | SI1 | 17509.0 |
2.33 | VS2 | 17504.0 |
1.14 | IF | 17499.0 |
2.01 | VS2 | 17497.0 |
1.31 | VVS1 | 17496.0 |
2.01 | SI1 | 17492.0 |
1.7 | VS1 | 17492.0 |
2.02 | SI1 | 17489.0 |
1.7 | VS2 | 17485.0 |
2.01 | SI1 | 17476.0 |
2.18 | SI2 | 17475.0 |
2.01 | SI1 | 17474.0 |
2.18 | SI2 | 17473.0 |
2.44 | SI1 | 17472.0 |
2.08 | SI1 | 17469.0 |
2.08 | SI1 | 17469.0 |
2.2 | VS2 | 17460.0 |
2.01 | SI1 | 17458.0 |
1.56 | VS1 | 17455.0 |
2.51 | SI1 | 17452.0 |
2.31 | VS1 | 17451.0 |
1.5 | VVS2 | 17449.0 |
2.48 | SI2 | 17448.0 |
2.0 | SI1 | 17447.0 |
1.76 | VS2 | 17442.0 |
1.55 | VS2 | 17441.0 |
2.0 | VS1 | 17436.0 |
2.01 | SI1 | 17434.0 |
2.01 | VS2 | 17433.0 |
2.19 | SI2 | 17433.0 |
1.65 | VS1 | 17425.0 |
2.01 | VS2 | 17422.0 |
2.14 | VS2 | 17416.0 |
1.61 | VS1 | 17414.0 |
2.05 | VS1 | 17408.0 |
2.64 | SI2 | 17407.0 |
2.5 | SI2 | 17405.0 |
2.0 | SI1 | 17405.0 |
2.01 | SI2 | 17403.0 |
2.01 | SI1 | 17403.0 |
2.01 | SI1 | 17403.0 |
2.01 | SI1 | 17403.0 |
1.69 | VS1 | 17400.0 |
1.59 | VS1 | 17393.0 |
2.03 | SI2 | 17393.0 |
2.02 | SI1 | 17392.0 |
2.01 | SI1 | 17383.0 |
2.17 | SI1 | 17381.0 |
2.04 | SI2 | 17379.0 |
1.97 | VS2 | 17377.0 |
1.95 | VS2 | 17374.0 |
1.59 | VS1 | 17366.0 |
2.01 | VS1 | 17365.0 |
2.39 | VS1 | 17365.0 |
1.6 | VVS1 | 17360.0 |
1.7 | VS2 | 17360.0 |
1.79 | VS2 | 17358.0 |
2.02 | SI1 | 17357.0 |
1.21 | IF | 17353.0 |
1.93 | VS2 | 17353.0 |
1.67 | VS2 | 17351.0 |
2.01 | SI1 | 17347.0 |
1.75 | VS2 | 17343.0 |
2.54 | SI2 | 17339.0 |
1.69 | VS1 | 17338.0 |
2.01 | SI1 | 17334.0 |
1.7 | VS1 | 17330.0 |
4.13 | I1 | 17329.0 |
1.58 | IF | 17329.0 |
2.04 | IF | 17327.0 |
2.04 | SI1 | 17323.0 |
1.7 | VS2 | 17323.0 |
1.51 | VVS2 | 17317.0 |
2.04 | VS2 | 17315.0 |
2.16 | SI1 | 17313.0 |
2.01 | SI2 | 17313.0 |
2.26 | SI2 | 17312.0 |
2.03 | VS2 | 17297.0 |
2.35 | SI2 | 17294.0 |
2.35 | SI2 | 17294.0 |
2.05 | SI1 | 17294.0 |
2.05 | SI2 | 17294.0 |
1.5 | VVS1 | 17279.0 |
2.0 | VS1 | 17278.0 |
1.8 | SI1 | 17273.0 |
1.86 | VVS2 | 17267.0 |
2.02 | SI2 | 17265.0 |
2.02 | SI1 | 17265.0 |
2.2 | SI1 | 17265.0 |
2.16 | SI2 | 17263.0 |
2.02 | SI2 | 17263.0 |
2.42 | VS1 | 17262.0 |
2.08 | VS2 | 17258.0 |
1.61 | VS1 | 17256.0 |
2.12 | VS2 | 17254.0 |
2.1 | SI1 | 17250.0 |
2.0 | SI1 | 17247.0 |
2.02 | SI1 | 17245.0 |
2.01 | SI2 | 17244.0 |
1.54 | VS2 | 17240.0 |
2.05 | SI2 | 17237.0 |
2.01 | SI1 | 17235.0 |
2.01 | SI2 | 17235.0 |
2.25 | SI1 | 17233.0 |
2.52 | SI1 | 17231.0 |
1.7 | VVS2 | 17228.0 |
2.01 | VS1 | 17227.0 |
2.17 | SI1 | 17224.0 |
1.53 | VS2 | 17223.0 |
2.15 | SI2 | 17221.0 |
2.01 | SI2 | 17220.0 |
2.15 | SI2 | 17219.0 |
1.7 | VS1 | 17219.0 |
2.31 | SI2 | 17218.0 |
1.41 | VVS2 | 17216.0 |
2.05 | VVS2 | 17214.0 |
2.14 | SI1 | 17213.0 |
2.61 | SI2 | 17209.0 |
2.6 | SI2 | 17209.0 |
1.71 | VS1 | 17206.0 |
1.71 | VS1 | 17204.0 |
1.6 | VVS1 | 17204.0 |
1.51 | VVS2 | 17203.0 |
1.5 | VVS2 | 17203.0 |
2.01 | VS2 | 17197.0 |
1.71 | VS1 | 17197.0 |
1.67 | VS2 | 17194.0 |
2.3 | SI1 | 17193.0 |
2.14 | VS2 | 17193.0 |
1.21 | VVS1 | 17192.0 |
2.01 | VS2 | 17191.0 |
1.75 | VS1 | 17191.0 |
2.56 | SI1 | 17186.0 |
2.74 | SI2 | 17184.0 |
2.03 | SI2 | 17182.0 |
2.01 | SI2 | 17179.0 |
2.01 | SI2 | 17179.0 |
1.5 | VVS2 | 17176.0 |
1.57 | VS1 | 17175.0 |
1.75 | VS2 | 17172.0 |
2.0 | SI1 | 17172.0 |
2.42 | VS2 | 17168.0 |
2.42 | VS2 | 17168.0 |
2.02 | SI2 | 17166.0 |
2.74 | SI2 | 17164.0 |
2.51 | SI2 | 17162.0 |
2.22 | SI1 | 17160.0 |
2.09 | SI2 | 17156.0 |
1.5 | VS2 | 17153.0 |
2.02 | VS1 | 17153.0 |
2.22 | SI1 | 17151.0 |
2.27 | VS1 | 17149.0 |
2.71 | SI2 | 17146.0 |
1.5 | VS1 | 17143.0 |
2.25 | SI2 | 17143.0 |
2.02 | SI1 | 17141.0 |
2.05 | SI2 | 17138.0 |
2.0 | SI2 | 17136.0 |
2.14 | SI2 | 17127.0 |
2.01 | SI1 | 17126.0 |
1.72 | VS2 | 17125.0 |
2.22 | SI2 | 17123.0 |
2.01 | SI2 | 17118.0 |
2.57 | SI2 | 17116.0 |
2.01 | SI2 | 17115.0 |
2.09 | SI1 | 17114.0 |
1.7 | VS2 | 17114.0 |
1.51 | VS1 | 17111.0 |
1.56 | VS2 | 17108.0 |
2.53 | SI2 | 17103.0 |
1.02 | IF | 17100.0 |
2.02 | SI2 | 17099.0 |
1.93 | VS1 | 17096.0 |
2.07 | SI2 | 17095.0 |
2.01 | SI1 | 17095.0 |
2.0 | SI2 | 17094.0 |
2.0 | VS2 | 17084.0 |
2.05 | SI2 | 17081.0 |
2.01 | SI2 | 17079.0 |
2.01 | SI2 | 17078.0 |
1.61 | VS1 | 17076.0 |
2.13 | SI2 | 17073.0 |
1.7 | VVS2 | 17073.0 |
2.01 | VS1 | 17068.0 |
2.01 | VS2 | 17068.0 |
2.01 | VS1 | 17068.0 |
2.12 | VS2 | 17068.0 |
2.01 | VS1 | 17068.0 |
2.05 | SI2 | 17066.0 |
2.15 | SI2 | 17065.0 |
2.15 | SI2 | 17063.0 |
2.31 | SI2 | 17062.0 |
2.01 | VS2 | 17057.0 |
1.53 | VVS2 | 17057.0 |
2.32 | VS2 | 17053.0 |
1.71 | VS2 | 17052.0 |
2.27 | VS1 | 17051.0 |
2.09 | VS2 | 17051.0 |
1.6 | VS1 | 17050.0 |
1.71 | VS1 | 17049.0 |
2.04 | SI2 | 17049.0 |
2.07 | VS2 | 17045.0 |
2.13 | SI2 | 17045.0 |
1.07 | IF | 17042.0 |
1.71 | VS1 | 17041.0 |
2.4 | SI2 | 17039.0 |
2.14 | VS2 | 17038.0 |
1.75 | VS1 | 17036.0 |
1.54 | VS2 | 17029.0 |
2.04 | VS2 | 17028.0 |
1.67 | VVS2 | 17028.0 |
2.5 | SI1 | 17028.0 |
2.6 | SI2 | 17027.0 |
2.01 | SI2 | 17024.0 |
2.01 | SI2 | 17024.0 |
2.07 | SI1 | 17019.0 |
1.75 | VS2 | 17017.0 |
2.19 | SI1 | 17016.0 |
2.01 | SI2 | 17014.0 |
2.06 | SI2 | 17012.0 |
2.26 | VS2 | 17010.0 |
1.71 | VS1 | 17009.0 |
2.05 | SI1 | 17006.0 |
2.01 | SI2 | 17005.0 |
2.01 | SI1 | 17003.0 |
2.09 | SI2 | 17001.0 |
2.31 | SI2 | 17000.0 |
2.2 | SI2 | 16996.0 |
2.27 | VS1 | 16994.0 |
2.12 | SI2 | 16992.0 |
1.5 | VS1 | 16988.0 |
2.41 | SI2 | 16987.0 |
1.68 | VS1 | 16985.0 |
2.02 | SI1 | 16985.0 |
1.73 | VS2 | 16975.0 |
3.0 | SI2 | 16970.0 |
3.0 | SI2 | 16970.0 |
2.28 | SI2 | 16969.0 |
1.73 | VS2 | 16960.0 |
2.06 | SI1 | 16960.0 |
1.73 | VS2 | 16960.0 |
2.07 | SI1 | 16957.0 |
2.01 | SI1 | 16956.0 |
2.01 | SI1 | 16956.0 |
1.7 | VS1 | 16955.0 |
2.5 | VS2 | 16955.0 |
2.28 | SI2 | 16954.0 |
1.5 | VVS2 | 16948.0 |
2.03 | VS2 | 16945.0 |
2.02 | SI2 | 16944.0 |
2.04 | SI1 | 16942.0 |
1.93 | VS1 | 16941.0 |
2.37 | SI2 | 16937.0 |
2.53 | SI2 | 16934.0 |
2.13 | SI2 | 16931.0 |
2.02 | SI2 | 16929.0 |
2.01 | SI2 | 16922.0 |
1.54 | VS2 | 16921.0 |
1.52 | VS1 | 16916.0 |
2.49 | SI1 | 16915.0 |
2.01 | VS1 | 16914.0 |
2.63 | SI2 | 16914.0 |
2.14 | VS2 | 16914.0 |
2.01 | VS1 | 16914.0 |
2.26 | SI1 | 16904.0 |
2.01 | SI1 | 16901.0 |
2.03 | SI1 | 16900.0 |
2.03 | SI1 | 16900.0 |
2.03 | SI1 | 16900.0 |
2.05 | VS2 | 16896.0 |
1.54 | VS2 | 16889.0 |
2.01 | SI2 | 16881.0 |
2.01 | SI2 | 16881.0 |
1.76 | VS2 | 16879.0 |
2.18 | SI2 | 16878.0 |
2.04 | VS2 | 16874.0 |
2.04 | SI2 | 16872.0 |
2.0 | SI1 | 16872.0 |
2.02 | VS2 | 16861.0 |
2.06 | SI2 | 16857.0 |
2.08 | VS2 | 16854.0 |
2.18 | SI2 | 16842.0 |
2.51 | SI1 | 16842.0 |
2.42 | SI2 | 16826.0 |
2.09 | SI2 | 16824.0 |
1.25 | IF | 16823.0 |
2.48 | VS2 | 16820.0 |
2.05 | SI2 | 16819.0 |
1.71 | VS2 | 16817.0 |
1.71 | VS1 | 16813.0 |
2.01 | VS1 | 16811.0 |
1.4 | VVS1 | 16808.0 |
1.73 | VS2 | 16807.0 |
2.23 | SI2 | 16805.0 |
2.21 | SI1 | 16804.0 |
1.75 | VS2 | 16803.0 |
2.31 | SI1 | 16801.0 |
2.04 | SI2 | 16800.0 |
2.4 | SI2 | 16797.0 |
1.5 | VS1 | 16793.0 |
2.05 | VS1 | 16793.0 |
2.03 | VS2 | 16792.0 |
2.39 | VS2 | 16791.0 |
1.62 | VS1 | 16790.0 |
2.37 | VS2 | 16789.0 |
2.02 | VS2 | 16789.0 |
1.69 | VS2 | 16789.0 |
2.03 | SI1 | 16787.0 |
1.52 | VVS2 | 16786.0 |
1.75 | VS2 | 16783.0 |
2.1 | SI2 | 16783.0 |
1.75 | VS2 | 16783.0 |
1.5 | VS1 | 16783.0 |
1.71 | VS2 | 16779.0 |
1.52 | VS1 | 16779.0 |
1.52 | VS1 | 16779.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.13 | SI2 | 16778.0 |
2.01 | SI2 | 16776.0 |
2.01 | SI2 | 16776.0 |
2.07 | VVS2 | 16769.0 |
2.04 | VS2 | 16768.0 |
1.51 | VVS2 | 16754.0 |
1.54 | VS1 | 16750.0 |
2.03 | SI1 | 16747.0 |
2.01 | SI1 | 16742.0 |
2.01 | SI1 | 16737.0 |
1.54 | VS2 | 16736.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI2 | 16733.0 |
2.01 | SI2 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16731.0 |
2.01 | SI2 | 16728.0 |
2.11 | VS1 | 16723.0 |
2.14 | SI2 | 16723.0 |
2.04 | SI1 | 16718.0 |
2.04 | SI1 | 16718.0 |
2.51 | SI2 | 16717.0 |
1.51 | VVS2 | 16716.0 |
1.51 | VVS2 | 16716.0 |
2.17 | SI1 | 16716.0 |
2.48 | SI1 | 16715.0 |
2.53 | SI1 | 16709.0 |
2.02 | VS2 | 16709.0 |
2.24 | SI2 | 16709.0 |
2.36 | SI2 | 16707.0 |
2.09 | SI1 | 16704.0 |
2.02 | SI1 | 16704.0 |
2.09 | SI2 | 16703.0 |
2.01 | VS2 | 16700.0 |
2.0 | VS2 | 16694.0 |
2.0 | VS2 | 16694.0 |
2.03 | SI1 | 16693.0 |
2.18 | SI2 | 16690.0 |
2.22 | VS1 | 16689.0 |
1.51 | VS1 | 16688.0 |
2.39 | SI1 | 16687.0 |
2.4 | SI1 | 16687.0 |
1.8 | VS1 | 16683.0 |
2.01 | VS2 | 16677.0 |
1.52 | VS1 | 16670.0 |
1.51 | VS1 | 16669.0 |
2.02 | SI1 | 16665.0 |
2.21 | SI2 | 16657.0 |
2.24 | SI2 | 16656.0 |
2.0 | SI2 | 16650.0 |
2.0 | SI1 | 16650.0 |
2.0 | SI1 | 16650.0 |
2.38 | SI1 | 16643.0 |
1.67 | VS1 | 16643.0 |
2.03 | SI2 | 16642.0 |
2.05 | VS1 | 16641.0 |
1.52 | VS1 | 16636.0 |
1.75 | VS2 | 16632.0 |
2.03 | SI1 | 16629.0 |
2.1 | SI2 | 16629.0 |
2.1 | SI2 | 16629.0 |
1.52 | VS1 | 16628.0 |
1.52 | VS1 | 16628.0 |
2.01 | VS2 | 16626.0 |
2.01 | VS2 | 16626.0 |
2.06 | SI1 | 16626.0 |
2.01 | VS2 | 16626.0 |
2.01 | SI2 | 16624.0 |
1.71 | VS1 | 16618.0 |
2.07 | VVS2 | 16617.0 |
2.04 | VS2 | 16616.0 |
1.51 | VVS2 | 16613.0 |
2.05 | SI1 | 16611.0 |
2.06 | SI2 | 16603.0 |
1.53 | VVS1 | 16601.0 |
1.59 | VVS1 | 16599.0 |
2.02 | VS2 | 16593.0 |
2.28 | VS1 | 16592.0 |
2.45 | SI2 | 16589.0 |
2.06 | SI2 | 16587.0 |
1.69 | VS2 | 16583.0 |
2.01 | SI2 | 16582.0 |
2.01 | SI1 | 16582.0 |
2.0 | SI1 | 16580.0 |
1.71 | SI1 | 16575.0 |
2.25 | SI2 | 16575.0 |
1.57 | VS2 | 16570.0 |
2.02 | SI2 | 16565.0 |
2.28 | VS2 | 16564.0 |
2.01 | SI1 | 16562.0 |
2.02 | SI1 | 16560.0 |
2.21 | SI2 | 16558.0 |
1.5 | VS1 | 16558.0 |
2.24 | SI2 | 16558.0 |
1.51 | VS1 | 16551.0 |
1.6 | IF | 16547.0 |
2.22 | SI2 | 16547.0 |
1.41 | VVS1 | 16545.0 |
2.0 | VS2 | 16544.0 |
2.0 | VS2 | 16544.0 |
3.01 | I1 | 16538.0 |
2.44 | VS2 | 16533.0 |
2.47 | SI2 | 16532.0 |
2.2 | SI2 | 16530.0 |
1.7 | VS1 | 16521.0 |
1.51 | VS1 | 16520.0 |
1.52 | VS1 | 16519.0 |
1.51 | VS1 | 16518.0 |
1.8 | SI1 | 16513.0 |
2.11 | VS2 | 16512.0 |
2.06 | SI2 | 16512.0 |
1.62 | VS2 | 16507.0 |
2.05 | SI2 | 16506.0 |
2.1 | SI2 | 16506.0 |
2.03 | SI2 | 16505.0 |
2.01 | SI1 | 16499.0 |
2.01 | SI2 | 16499.0 |
1.52 | VVS1 | 16492.0 |
1.52 | VS1 | 16485.0 |
2.0 | SI2 | 16484.0 |
2.03 | VS2 | 16483.0 |
2.1 | SI2 | 16479.0 |
2.1 | SI2 | 16479.0 |
2.17 | SI2 | 16472.0 |
1.0 | IF | 16469.0 |
2.46 | SI2 | 16466.0 |
2.12 | SI2 | 16466.0 |
2.59 | VS1 | 16465.0 |
2.13 | SI2 | 16462.0 |
2.0 | SI2 | 16462.0 |
2.0 | VS2 | 16459.0 |
1.53 | VVS1 | 16451.0 |
2.28 | VS2 | 16450.0 |
2.05 | SI2 | 16446.0 |
2.03 | SI2 | 16442.0 |
2.0 | VS2 | 16439.0 |
2.06 | SI2 | 16437.0 |
2.05 | SI2 | 16431.0 |
2.51 | SI2 | 16427.0 |
2.18 | VS2 | 16427.0 |
2.18 | VS2 | 16427.0 |
2.04 | SI2 | 16426.0 |
2.0 | SI2 | 16425.0 |
2.03 | VS2 | 16422.0 |
2.04 | SI1 | 16420.0 |
2.03 | SI2 | 16412.0 |
2.01 | SI2 | 16410.0 |
1.5 | VS1 | 16409.0 |
2.0 | SI1 | 16407.0 |
1.5 | VS1 | 16407.0 |
1.09 | IF | 16406.0 |
2.11 | SI2 | 16404.0 |
1.51 | VS1 | 16402.0 |
2.16 | SI2 | 16400.0 |
2.22 | SI2 | 16398.0 |
2.19 | SI1 | 16397.0 |
2.02 | VS1 | 16397.0 |
2.11 | VS2 | 16395.0 |
2.03 | SI1 | 16392.0 |
2.07 | SI1 | 16392.0 |
2.14 | VS2 | 16390.0 |
2.04 | SI2 | 16389.0 |
2.02 | SI1 | 16386.0 |
1.71 | VS2 | 16384.0 |
2.01 | VS2 | 16383.0 |
2.0 | SI2 | 16380.0 |
2.07 | VS2 | 16378.0 |
1.51 | VS1 | 16370.0 |
2.28 | VS2 | 16369.0 |
2.02 | SI1 | 16368.0 |
1.5 | VVS2 | 16364.0 |
1.8 | SI1 | 16364.0 |
2.11 | VS2 | 16363.0 |
1.62 | VS2 | 16358.0 |
2.1 | SI2 | 16357.0 |
2.05 | SI2 | 16357.0 |
2.54 | SI2 | 16353.0 |
2.54 | SI2 | 16353.0 |
1.52 | VVS1 | 16343.0 |
2.35 | SI2 | 16340.0 |
1.8 | SI1 | 16340.0 |
1.6 | VVS1 | 16339.0 |
2.07 | SI2 | 16337.0 |
2.11 | SI2 | 16336.0 |
2.3 | SI2 | 16329.0 |
diamondsDF.printSchema // since price is double in the DF that was turned into table we can rely on the descenting sort on doubles
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
// sort by multiple fields
display(spark.sql("SELECT carat, clarity, price FROM diamonds ORDER BY carat ASC, price DESC"))
carat | clarity | price |
---|---|---|
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | SI2 | 345.0 |
0.21 | SI2 | 394.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | SI1 | 326.0 |
0.22 | SI1 | 470.0 |
0.22 | VS2 | 404.0 |
0.22 | VS2 | 404.0 |
0.22 | SI1 | 342.0 |
0.22 | VS2 | 337.0 |
0.23 | VVS2 | 688.0 |
0.23 | VVS1 | 682.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 650.0 |
0.23 | VVS2 | 640.0 |
0.23 | VVS1 | 640.0 |
0.23 | VS1 | 611.0 |
0.23 | VVS2 | 600.0 |
0.23 | VS1 | 586.0 |
0.23 | VS1 | 586.0 |
0.23 | VVS2 | 583.0 |
0.23 | VVS2 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS2 | 583.0 |
0.23 | VS2 | 577.0 |
0.23 | VVS2 | 571.0 |
0.23 | VVS2 | 550.0 |
0.23 | VVS2 | 549.0 |
0.23 | VS2 | 548.0 |
0.23 | VS1 | 548.0 |
0.23 | VS1 | 548.0 |
0.23 | VS2 | 548.0 |
0.23 | VS2 | 543.0 |
0.23 | VVS2 | 538.0 |
0.23 | VVS2 | 537.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | VVS1 | 531.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | IF | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 525.0 |
0.23 | VVS1 | 518.0 |
0.23 | VS2 | 513.0 |
0.23 | VS1 | 513.0 |
0.23 | VS2 | 512.0 |
0.23 | VVS2 | 511.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS1 | 505.0 |
0.23 | VVS1 | 505.0 |
0.23 | VVS2 | 500.0 |
0.23 | VVS1 | 499.0 |
0.23 | VVS2 | 499.0 |
0.23 | VVS2 | 498.0 |
0.23 | VVS2 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VVS1 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VVS2 | 498.0 |
0.23 | VS1 | 493.0 |
0.23 | VS2 | 493.0 |
0.23 | VVS2 | 492.0 |
0.23 | VVS1 | 492.0 |
0.23 | VVS1 | 492.0 |
0.23 | IF | 492.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | IF | 485.0 |
0.23 | VVS1 | 484.0 |
0.23 | VVS1 | 484.0 |
0.23 | VVS1 | 484.0 |
0.23 | VS1 | 483.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS2 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VS1 | 468.0 |
0.23 | VVS2 | 468.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS1 | 465.0 |
0.23 | VVS1 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 462.0 |
0.23 | VVS1 | 462.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS2 | 458.0 |
0.23 | VVS2 | 458.0 |
0.23 | VVS2 | 452.0 |
0.23 | SI2 | 449.0 |
0.23 | VS2 | 447.0 |
0.23 | VVS2 | 445.0 |
0.23 | VS1 | 442.0 |
0.23 | VS2 | 442.0 |
0.23 | VVS1 | 439.0 |
0.23 | VVS2 | 438.0 |
0.23 | VS1 | 434.0 |
0.23 | VVS1 | 434.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 428.0 |
0.23 | VVS2 | 425.0 |
0.23 | VVS2 | 425.0 |
0.23 | VVS1 | 425.0 |
0.23 | VS1 | 423.0 |
0.23 | VS2 | 423.0 |
0.23 | VVS1 | 415.0 |
0.23 | VVS1 | 414.0 |
0.23 | VVS1 | 414.0 |
0.23 | VVS1 | 414.0 |
0.23 | VS2 | 411.0 |
0.23 | VS1 | 404.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 400.0 |
0.23 | VS2 | 400.0 |
0.23 | VVS1 | 395.0 |
0.23 | VS1 | 391.0 |
0.23 | VS1 | 391.0 |
0.23 | VVS2 | 389.0 |
0.23 | VS1 | 384.0 |
0.23 | VS1 | 378.0 |
0.23 | VS1 | 378.0 |
0.23 | VVS2 | 378.0 |
0.23 | VS1 | 376.0 |
0.23 | SI1 | 375.0 |
0.23 | VS1 | 373.0 |
0.23 | VS2 | 373.0 |
0.23 | VS1 | 373.0 |
0.23 | VS1 | 373.0 |
0.23 | VVS2 | 369.0 |
0.23 | VS2 | 369.0 |
0.23 | IF | 369.0 |
0.23 | SI1 | 364.0 |
0.23 | SI1 | 364.0 |
0.23 | VS2 | 362.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VVS2 | 354.0 |
0.23 | VS1 | 353.0 |
0.23 | VS2 | 352.0 |
0.23 | VS1 | 340.0 |
0.23 | VS1 | 338.0 |
0.23 | VS1 | 327.0 |
0.23 | SI2 | 326.0 |
0.24 | VVS1 | 963.0 |
0.24 | VVS1 | 752.0 |
0.24 | VVS1 | 710.0 |
0.24 | VVS1 | 710.0 |
0.24 | VS1 | 687.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | IF | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS2 | 668.0 |
0.24 | VVS2 | 668.0 |
0.24 | VVS1 | 668.0 |
0.24 | VVS1 | 668.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VS1 | 572.0 |
0.24 | VS1 | 572.0 |
0.24 | SI1 | 571.0 |
0.24 | VVS1 | 559.0 |
0.24 | IF | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS2 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | IF | 552.0 |
0.24 | IF | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 547.0 |
0.24 | VVS2 | 540.0 |
0.24 | VVS2 | 540.0 |
0.24 | VVS2 | 538.0 |
0.24 | VVS2 | 538.0 |
0.24 | VS2 | 536.0 |
0.24 | VS2 | 536.0 |
0.24 | VS1 | 536.0 |
0.24 | VVS2 | 533.0 |
0.24 | VVS1 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS1 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 523.0 |
0.24 | VVS2 | 521.0 |
0.24 | VVS2 | 521.0 |
0.24 | VVS1 | 521.0 |
0.24 | VVS1 | 521.0 |
0.24 | IF | 504.0 |
0.24 | VVS2 | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | IF | 504.0 |
0.24 | IF | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | VVS2 | 499.0 |
0.24 | VVS1 | 499.0 |
0.24 | VVS2 | 498.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | IF | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VS1 | 490.0 |
0.24 | SI1 | 486.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | SI1 | 475.0 |
0.24 | VVS2 | 471.0 |
0.24 | VVS2 | 471.0 |
0.24 | VS2 | 461.0 |
0.24 | VS1 | 461.0 |
0.24 | VS2 | 461.0 |
0.24 | VS1 | 461.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | IF | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VS1 | 442.0 |
0.24 | VVS2 | 442.0 |
0.24 | VS1 | 436.0 |
0.24 | VVS2 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS2 | 432.0 |
0.24 | VS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VS1 | 430.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 417.0 |
0.24 | VS2 | 417.0 |
0.24 | VS1 | 417.0 |
0.24 | VS1 | 412.0 |
0.24 | VS2 | 408.0 |
0.24 | SI1 | 404.0 |
0.24 | VS1 | 399.0 |
0.24 | VS1 | 397.0 |
0.24 | VS1 | 393.0 |
0.24 | VS1 | 393.0 |
0.24 | VS2 | 391.0 |
0.24 | VS1 | 391.0 |
0.24 | VS1 | 391.0 |
0.24 | VS1 | 383.0 |
0.24 | VS1 | 378.0 |
0.24 | VS2 | 378.0 |
0.24 | VS1 | 373.0 |
0.24 | VS1 | 373.0 |
0.24 | VS2 | 373.0 |
0.24 | VS1 | 373.0 |
0.24 | SI1 | 370.0 |
0.24 | VS1 | 367.0 |
0.24 | VS2 | 367.0 |
0.24 | SI1 | 364.0 |
0.24 | VS2 | 362.0 |
0.24 | VS2 | 362.0 |
0.24 | VS1 | 357.0 |
0.24 | VS1 | 355.0 |
0.24 | VVS1 | 336.0 |
0.24 | VVS2 | 336.0 |
0.25 | SI2 | 1186.0 |
0.25 | SI2 | 1186.0 |
0.25 | SI2 | 1013.0 |
0.25 | VVS1 | 817.0 |
0.25 | VVS1 | 783.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | IF | 740.0 |
0.25 | IF | 739.0 |
0.25 | VVS2 | 705.0 |
0.25 | VVS1 | 705.0 |
0.25 | VVS2 | 705.0 |
0.25 | VVS1 | 705.0 |
0.25 | VVS2 | 696.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | IF | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | IF | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | IF | 624.0 |
0.25 | VS1 | 595.0 |
0.25 | VS1 | 595.0 |
0.25 | VS1 | 595.0 |
0.25 | VVS2 | 583.0 |
0.25 | VVS1 | 582.0 |
0.25 | IF | 582.0 |
0.25 | VVS1 | 582.0 |
0.25 | VVS1 | 582.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | IF | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VS1 | 563.0 |
0.25 | VVS1 | 560.0 |
0.25 | IF | 560.0 |
0.25 | VVS2 | 560.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | IF | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VVS2 | 533.0 |
0.25 | VVS1 | 533.0 |
0.25 | VVS2 | 526.0 |
0.25 | VVS1 | 526.0 |
0.25 | IF | 526.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | IF | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | IF | 512.0 |
0.25 | VVS2 | 512.0 |
0.25 | VVS2 | 512.0 |
0.25 | VVS2 | 505.0 |
0.25 | VVS2 | 500.0 |
0.25 | VVS1 | 498.0 |
0.25 | VVS1 | 490.0 |
0.25 | VS2 | 480.0 |
0.25 | VS1 | 480.0 |
0.25 | VVS2 | 476.0 |
0.25 | VVS2 | 476.0 |
0.25 | VS2 | 472.0 |
0.25 | VVS2 | 467.0 |
0.25 | VVS1 | 467.0 |
0.25 | VVS2 | 462.0 |
0.25 | VS1 | 460.0 |
0.25 | VS2 | 460.0 |
0.25 | VS2 | 459.0 |
0.25 | VS2 | 459.0 |
0.25 | VVS1 | 457.0 |
0.25 | VVS2 | 455.0 |
0.25 | VS1 | 454.0 |
0.25 | VS1 | 454.0 |
0.25 | SI1 | 452.0 |
0.25 | VVS1 | 451.0 |
0.25 | VS2 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VS1 | 445.0 |
0.25 | VS1 | 445.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 436.0 |
0.25 | VS2 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS2 | 436.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 431.0 |
0.25 | SI1 | 430.0 |
0.25 | SI1 | 430.0 |
0.25 | VS1 | 426.0 |
0.25 | VVS1 | 421.0 |
0.25 | VS1 | 410.0 |
0.25 | VS2 | 409.0 |
0.25 | VS2 | 407.0 |
0.25 | VS2 | 407.0 |
0.25 | SI1 | 407.0 |
0.25 | VS2 | 404.0 |
0.25 | VVS1 | 401.0 |
0.25 | VS2 | 399.0 |
0.25 | VS1 | 399.0 |
0.25 | SI1 | 395.0 |
0.25 | VS1 | 388.0 |
0.25 | VS1 | 388.0 |
0.25 | VS1 | 388.0 |
0.25 | VS2 | 367.0 |
0.25 | SI1 | 363.0 |
0.25 | VS1 | 361.0 |
0.25 | VS1 | 361.0 |
0.25 | SI1 | 357.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS2 | 777.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | IF | 768.0 |
0.26 | VVS2 | 733.0 |
0.26 | VVS1 | 733.0 |
0.26 | IF | 733.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS1 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS1 | 679.0 |
0.26 | VVS1 | 679.0 |
0.26 | SI1 | 658.0 |
0.26 | VVS2 | 657.0 |
0.26 | VVS2 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | IF | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | IF | 648.0 |
0.26 | IF | 648.0 |
0.26 | VVS1 | 635.0 |
0.26 | VVS1 | 635.0 |
0.26 | VVS1 | 635.0 |
0.26 | VS1 | 618.0 |
0.26 | VS1 | 618.0 |
0.26 | VVS2 | 614.0 |
0.26 | IF | 605.0 |
0.26 | IF | 605.0 |
0.26 | VVS1 | 605.0 |
0.26 | VVS1 | 605.0 |
0.26 | VS2 | 601.0 |
0.26 | IF | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS2 | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS2 | 600.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | IF | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 591.0 |
0.26 | SI1 | 590.0 |
0.26 | VVS2 | 584.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS2 | 580.0 |
0.26 | VS2 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 578.0 |
0.26 | VVS2 | 569.0 |
0.26 | VVS2 | 565.0 |
0.26 | VVS2 | 565.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS1 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS1 | 562.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 547.0 |
0.26 | IF | 547.0 |
0.26 | VVS1 | 547.0 |
0.26 | VVS1 | 547.0 |
0.26 | VS1 | 546.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | IF | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | IF | 545.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 539.0 |
0.26 | VVS1 | 532.0 |
0.26 | VVS1 | 532.0 |
0.26 | VVS1 | 524.0 |
0.26 | VVS2 | 517.0 |
0.26 | VVS2 | 514.0 |
0.26 | VS1 | 508.0 |
0.26 | VVS2 | 508.0 |
0.26 | VVS2 | 506.0 |
0.26 | VS2 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 491.0 |
0.26 | VS1 | 491.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VVS2 | 478.0 |
0.26 | VS1 | 478.0 |
0.26 | SI1 | 474.0 |
0.26 | VVS2 | 468.0 |
0.26 | VVS2 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | IF | 468.0 |
0.26 | VS1 | 462.0 |
0.26 | VS2 | 456.0 |
0.26 | VS1 | 456.0 |
0.26 | VS1 | 456.0 |
0.26 | VS2 | 456.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS2 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS2 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | SI1 | 447.0 |
0.26 | SI1 | 445.0 |
0.26 | VVS2 | 440.0 |
// use this to type cast strings into Int when the table is loaded with string-valued columns
//display(spark.sql("select cast(carat as Int) as carat, clarity, cast(price as Int) as price from diamond order by carat asc, price desc"))
// sort by multiple fields and limit to first 5
// I prefer lowercase for SQL - and you can use either in this course - but in the field do what your Boss or your colleagues prefer :)
display(spark.sql("select carat, clarity, price from diamonds order by carat desc, price desc limit 5"))
carat | clarity | price |
---|---|---|
5.01 | I1 | 18018.0 |
4.5 | I1 | 18531.0 |
4.13 | I1 | 17329.0 |
4.01 | I1 | 15223.0 |
4.01 | I1 | 15223.0 |
//aggregate functions
display(spark.sql("select avg(price) as avgprice from diamonds"))
avgprice |
---|
3932.799721913237 |
//average operator is doing an auto-type conversion from int to double
display(spark.sql("select avg(cast(price as Integer)) as avgprice from diamonds"))
avgprice |
---|
3932.799721913237 |
//aggregate function and grouping
display(spark.sql("select color, avg(price) as avgprice from diamonds group by color"))
color | avgprice |
---|---|
F | 3724.886396981765 |
E | 3076.7524752475247 |
D | 3169.9540959409596 |
J | 5323.81801994302 |
G | 3999.135671271697 |
I | 5091.874953891553 |
H | 4486.669195568401 |
Why do we need to know these interactive SQL queries?
Such queries can help us explore the data and thereby inform the modeling process!!!
Of course, if you don't know SQL then don't worry, we will be doing these things in scala using DataFrames.
Finally, those who are planning to take the Spark Developer Exams online, then you can't escape from SQL questions there...
Power Plant ML Pipeline Application - DataFrame Part
This is the Spark SQL parts of an end-to-end example of using a number of different machine learning algorithms to solve a supervised regression problem.
This is a break-down of Power Plant ML Pipeline Application from databricks.
This will be a recurring example in the sequel
Table of Contents
- Step 1: Business Understanding
- Step 2: Load Your Data
- Step 3: Explore Your Data
- Step 4: Visualize Your Data
- Step 5: Data Preparation
- Step 6: Data Modeling
- Step 7: Tuning and Evaluation
- Step 8: Deployment
We are trying to predict power output given a set of readings from various sensors in a gas-fired power generation plant. Power generation is a complex process, and understanding and predicting power output is an important element in managing a plant and its connection to the power grid.
- Given this business problem, we need to translate it to a Machine Learning task (actually a Statistical Machine Learning task).
- The ML task here is regression since the label (or target) we will be trying to predict takes a continuous numeric value
- Note: if the labels took values from a finite discrete set, such as,
Spam
/Not-Spam
orGood
/Bad
/Ugly
, then the ML task would be classification.
- Note: if the labels took values from a finite discrete set, such as,
Today, we will only cover Steps 1, 2, 3 and 4 above. You need introductions to linear algebra, stochastic gradient descent and decision trees before we can accomplish the applied ML task with some intuitive understanding. If you can't wait for ML then check out Spark MLLib Programming Guide for comming attractions!
The example data is provided by UCI at UCI Machine Learning Repository Combined Cycle Power Plant Data Set
You can read the background on the UCI page, but in summary:
- we have collected a number of readings from sensors at a Gas Fired Power Plant (also called a Peaker Plant) and
- want to use those sensor readings to predict how much power the plant will generate in a couple weeks from now.
- Again, today we will just focus on Steps 1-4 above that pertain to DataFrames.
More information about Peaker or Peaking Power Plants can be found on Wikipedia https://en.wikipedia.org/wiki/Peakingpowerplant.
sc.version.replace(".", "").toInt
res24: Int = 321
// a good habit to ensure the code is being run on the appropriate version of Spark - we are using Spark 3.+ actually...
require(sc.version.replace(".", "").toInt >= 140, "Spark 1.4.0+ is required to run this notebook. Please attach it to a Spark 1.4.0+ cluster.")
Step 1: Business Understanding
The first step in any machine learning task is to understand the business need.
As described in the overview we are trying to predict power output given a set of readings from various sensors in a gas-fired power generation plant.
The problem is a regression problem since the label (or target) we are trying to predict is numeric
Step 2: Load Your Data
Now that we understand what we are trying to do, we need to load our data and describe it, explore it and verify it.
Data was downloaded already as these five Tab-separated-variable or tsv files.
ls /datasets/sds/power-plant/data
path | name | size | modificationTime |
---|---|---|---|
dbfs:/datasets/sds/power-plant/data/Sheet1.tsv | Sheet1.tsv | 308693.0 | 1.664295999e12 |
dbfs:/datasets/sds/power-plant/data/Sheet2.tsv | Sheet2.tsv | 308693.0 | 1.664295998e12 |
dbfs:/datasets/sds/power-plant/data/Sheet3.tsv | Sheet3.tsv | 308693.0 | 1.664295999e12 |
dbfs:/datasets/sds/power-plant/data/Sheet4.tsv | Sheet4.tsv | 308693.0 | 1.664295998e12 |
dbfs:/datasets/sds/power-plant/data/Sheet5.tsv | Sheet5.tsv | 308693.0 | 1.664295998e12 |
Now let us load the data from the Tab-separated-variable or tsv text file into an RDD[String]
using the familiar textFile
method.
val powerPlantRDD = sc.textFile("/datasets/sds/power-plant/data/Sheet1.tsv") // Ctrl+Enter
powerPlantRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/power-plant/data/Sheet1.tsv MapPartitionsRDD[778] at textFile at command-2971213210277530:1
powerPlantRDD.take(5).foreach(println) // Ctrl+Enter to print first 5 lines
AT V AP RH PE
14.96 41.76 1024.07 73.17 463.26
25.18 62.96 1020.04 59.08 444.37
5.11 39.4 1012.16 92.14 488.56
20.86 57.32 1010.24 76.64 446.48
// let us make sure we are using Spark version greater than 2.2 - we need a version closer to 2.0 if we want to use SparkSession and SQLContext
require(sc.version.replace(".", "").toInt >= 220, "Spark 2.2.0+ is required to run this notebook. Please attach it to a Spark 2.2.0+ cluster.")
// this reads the tsv file and turns it into a dataframe
val powerPlantDF = spark.read // use 'sqlContext.read' instead if you want to use older Spark version > 1.3 see 008_ notebook
.format("csv") // use spark.csv package
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
.option("delimiter", "\t") // Specify the delimiter as Tab or '\t'
.load("/datasets/sds/power-plant/data/Sheet1.tsv")
powerPlantDF: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 3 more fields]
powerPlantDF.printSchema // print the schema of the DataFrame that was inferred
root
|-- AT: double (nullable = true)
|-- V: double (nullable = true)
|-- AP: double (nullable = true)
|-- RH: double (nullable = true)
|-- PE: double (nullable = true)
powerPlantDF.count
res31: Long = 9568
2.1. Alternatively, load data via the upload GUI feature in databricks
USE THIS FOR OTHER SMALLish DataSets you want to import to your CE
Since the dataset is relatively small, we can also use the upload feature in Databricks to upload the data as a table.
First download the Data Folder from UCI Machine Learning Repository Combined Cycle Power Plant Data Set
The file is a multi-tab Excel document so you will need to save each tab as a Text file export.
I prefer exporting as a Tab-Separated-Values (TSV) since it is more consistent than CSV.
Call each file Folds5x2_pp<Sheet 1..5>.tsv and save to your machine.
Refer to https://docs.databricks.com/user-guide/importing-data.html for latest methods to import data.
Now that your data is loaded let's explore it.
Step 3: Explore Your Data
Now that we understand what we are trying to do, we need to load our data and describe it, explore it and verify it.
Viewing the table as text
By uisng .show
method we can see some of the contents of the table in plain text.
This works in pure Apache Spark, say in Spark-Shell
without any notebook layer on top of Spark like databricks, zeppelin or jupyter.
It is a good idea to use this method when possible.
powerPlantDF.show(10) // try putting 1000 here instead of 10
+-----+-----+-------+-----+------+
| AT| V| AP| RH| PE|
+-----+-----+-------+-----+------+
|14.96|41.76|1024.07|73.17|463.26|
|25.18|62.96|1020.04|59.08|444.37|
| 5.11| 39.4|1012.16|92.14|488.56|
|20.86|57.32|1010.24|76.64|446.48|
|10.82| 37.5|1009.23|96.62| 473.9|
|26.27|59.44|1012.23|58.77|443.67|
|15.89|43.96|1014.02|75.24|467.35|
| 9.48|44.71|1019.12|66.43|478.42|
|14.64| 45.0|1021.78|41.25|475.98|
|11.74|43.56|1015.14|70.72| 477.5|
+-----+-----+-------+-----+------+
only showing top 10 rows
Viewing as DataFrame
This is almost necessary for a data scientist to gain visual insights into all pair-wise relationships between the several (3 to 6 or so) variables in question.
display(powerPlantDF)
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
powerPlantDF.count() // count the number of rows in DF
res34: Long = 9568
We need to create a temporary view of the DataFrame as a table before being able to access it via SQL.
powerPlantDF.createOrReplaceTempView("power_plant_table") // Shift+Enter
spark.catalog.listTables.where($"name" startsWith "power").show()
+-----------------+--------+-----------+---------+-----------+
| name|database|description|tableType|isTemporary|
+-----------------+--------+-----------+---------+-----------+
|power_plant_table| null| null|TEMPORARY| true|
+-----------------+--------+-----------+---------+-----------+
Note that table names are in lower-case only!
You Try!
//sqlContext // uncomment and put . after sqlContext and hit Tab to see what methods are available
//sqlContext.dropTempTable("power_plant_table") // uncomment and Ctrl+Enter if you want to remove the table!
The following SQL statement simply selects all the columns (due to *
) from powerPlantTable
.
-- Ctrl+Enter to query the rows via SQL
SELECT * FROM power_plant_table
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
Note that the output of the above command is the same as display(powerPlantDF)
we did earlier.
We can use the SQL desc
command to describe the schema. This is the SQL equivalent of powerPlantDF.printSchema
we saw earlier.
desc power_plant_table
col_name | data_type | comment |
---|---|---|
AT | double | null |
V | double | null |
AP | double | null |
RH | double | null |
PE | double | null |
Schema Definition
Our schema definition from UCI appears below:
- AT = Atmospheric Temperature in C
- V = Exhaust Vaccum Speed
- AP = Atmospheric Pressure
- RH = Relative Humidity
- PE = Power Output
PE is our label or target. This is the value we are trying to predict given the measurements.
Reference UCI Machine Learning Repository Combined Cycle Power Plant Data Set
Let's do some basic statistical analysis of all the columns.
We can use the describe function with no parameters to get some basic stats for each column like count, mean, max, min and standard deviation. More information can be found in the Spark API docs
display(powerPlantDF.describe())
summary | AT | V | AP | RH | PE |
---|---|---|---|---|---|
count | 9568 | 9568 | 9568 | 9568 | 9568 |
mean | 19.65123118729102 | 54.30580372073601 | 1013.2590781772603 | 73.30897784280926 | 454.3650094063554 |
stddev | 7.4524732296110825 | 12.707892998326784 | 5.938783705811581 | 14.600268756728964 | 17.066994999803402 |
min | 1.81 | 25.36 | 992.89 | 25.56 | 420.26 |
max | 37.11 | 81.56 | 1033.3 | 100.16 | 495.76 |
Step 4: Visualize Your Data
To understand our data, we will look for correlations between features and the label. This can be important when choosing a model. E.g., if features and a label are linearly correlated, a linear model like Linear Regression can do well; if the relationship is very non-linear, more complex models such as Decision Trees or neural networks can be better. We use the Databricks built in visualization to view each of our predictors in relation to the label column as a scatter plot to see the correlation between the predictors and the label.
select AT as Temperature, PE as Power from power_plant_table
Temperature | Power |
---|---|
14.96 | 463.26 |
25.18 | 444.37 |
5.11 | 488.56 |
20.86 | 446.48 |
10.82 | 473.9 |
26.27 | 443.67 |
15.89 | 467.35 |
9.48 | 478.42 |
14.64 | 475.98 |
11.74 | 477.5 |
17.99 | 453.02 |
20.14 | 453.99 |
24.34 | 440.29 |
25.71 | 451.28 |
26.19 | 433.99 |
21.42 | 462.19 |
18.21 | 467.54 |
11.04 | 477.2 |
14.45 | 459.85 |
13.97 | 464.3 |
17.76 | 468.27 |
5.41 | 495.24 |
7.76 | 483.8 |
27.23 | 443.61 |
27.36 | 436.06 |
27.47 | 443.25 |
14.6 | 464.16 |
7.91 | 475.52 |
5.81 | 484.41 |
30.53 | 437.89 |
23.87 | 445.11 |
26.09 | 438.86 |
29.27 | 440.98 |
27.38 | 436.65 |
24.81 | 444.26 |
12.75 | 465.86 |
24.66 | 444.37 |
16.38 | 450.69 |
13.91 | 469.02 |
23.18 | 448.86 |
22.47 | 447.14 |
13.39 | 469.18 |
9.28 | 482.8 |
11.82 | 476.7 |
10.27 | 474.99 |
22.92 | 444.22 |
16.0 | 461.33 |
21.22 | 448.06 |
13.46 | 474.6 |
9.39 | 473.05 |
31.07 | 432.06 |
12.82 | 467.41 |
32.57 | 430.12 |
8.11 | 473.62 |
13.92 | 471.81 |
23.04 | 442.99 |
27.31 | 442.77 |
5.91 | 491.49 |
25.26 | 447.46 |
27.97 | 446.11 |
26.08 | 442.44 |
29.01 | 446.22 |
12.18 | 471.49 |
13.76 | 463.5 |
25.5 | 440.01 |
28.26 | 441.03 |
21.39 | 452.68 |
7.26 | 474.91 |
10.54 | 478.77 |
27.71 | 434.2 |
23.11 | 437.91 |
7.51 | 477.61 |
26.46 | 431.65 |
29.34 | 430.57 |
10.32 | 481.09 |
22.74 | 445.56 |
13.48 | 475.74 |
25.52 | 435.12 |
21.58 | 446.15 |
27.66 | 436.64 |
26.96 | 436.69 |
12.29 | 468.75 |
15.86 | 466.6 |
13.87 | 465.48 |
24.09 | 441.34 |
20.45 | 441.83 |
15.07 | 464.7 |
32.72 | 437.99 |
18.23 | 459.12 |
35.56 | 429.69 |
18.36 | 459.8 |
26.35 | 433.63 |
25.92 | 442.84 |
8.01 | 485.13 |
19.63 | 459.12 |
20.02 | 445.31 |
10.08 | 480.8 |
27.23 | 432.55 |
23.37 | 443.86 |
18.74 | 449.77 |
14.81 | 470.71 |
23.1 | 452.17 |
10.72 | 478.29 |
29.46 | 428.54 |
8.1 | 478.27 |
27.29 | 439.58 |
17.1 | 457.32 |
11.49 | 475.51 |
23.69 | 439.66 |
13.51 | 471.99 |
9.64 | 479.81 |
25.65 | 434.78 |
21.59 | 446.58 |
27.98 | 437.76 |
18.8 | 459.36 |
18.28 | 462.28 |
13.55 | 464.33 |
22.99 | 444.36 |
23.94 | 438.64 |
13.74 | 470.49 |
21.3 | 455.13 |
27.54 | 450.22 |
24.81 | 440.43 |
4.97 | 482.98 |
15.22 | 460.44 |
23.88 | 444.97 |
33.01 | 433.94 |
25.98 | 439.73 |
28.18 | 434.48 |
21.67 | 442.33 |
17.67 | 457.67 |
21.37 | 454.66 |
28.69 | 432.21 |
16.61 | 457.66 |
27.91 | 435.21 |
20.97 | 448.22 |
10.8 | 475.51 |
20.61 | 446.53 |
25.45 | 441.3 |
30.16 | 433.54 |
4.99 | 472.52 |
10.51 | 474.77 |
33.79 | 435.1 |
21.34 | 450.74 |
23.4 | 442.7 |
32.21 | 426.56 |
14.26 | 463.71 |
27.71 | 447.06 |
21.95 | 452.27 |
25.76 | 445.78 |
23.68 | 438.65 |
8.28 | 480.15 |
23.44 | 447.19 |
25.32 | 443.04 |
3.94 | 488.81 |
17.3 | 455.75 |
18.2 | 455.86 |
21.43 | 457.68 |
11.16 | 479.11 |
30.38 | 432.84 |
23.36 | 448.37 |
21.69 | 447.06 |
23.62 | 443.53 |
21.87 | 445.21 |
29.25 | 441.7 |
20.03 | 450.93 |
18.14 | 451.44 |
24.23 | 441.29 |
18.11 | 458.85 |
6.57 | 481.46 |
12.56 | 467.19 |
13.4 | 461.54 |
27.1 | 439.08 |
14.28 | 467.22 |
16.29 | 468.8 |
31.24 | 426.93 |
10.57 | 474.65 |
13.8 | 468.97 |
25.3 | 433.97 |
18.06 | 450.53 |
25.42 | 444.51 |
15.07 | 469.03 |
11.75 | 466.56 |
20.23 | 457.57 |
27.31 | 440.13 |
28.57 | 433.24 |
17.9 | 452.55 |
23.83 | 443.29 |
27.92 | 431.76 |
17.34 | 454.97 |
17.94 | 456.7 |
6.4 | 486.03 |
11.78 | 472.79 |
20.28 | 452.03 |
21.04 | 443.41 |
25.11 | 441.93 |
30.28 | 432.64 |
8.14 | 480.25 |
16.86 | 466.68 |
6.25 | 494.39 |
22.35 | 454.72 |
17.98 | 448.71 |
21.19 | 469.76 |
20.94 | 450.71 |
24.23 | 444.01 |
19.18 | 453.2 |
20.88 | 450.87 |
23.67 | 441.73 |
14.12 | 465.09 |
25.23 | 447.28 |
6.54 | 491.16 |
20.08 | 450.98 |
24.67 | 446.3 |
27.82 | 436.48 |
15.55 | 460.84 |
24.26 | 442.56 |
13.45 | 467.3 |
11.06 | 479.13 |
24.91 | 441.15 |
22.39 | 445.52 |
11.95 | 475.4 |
14.85 | 469.3 |
10.11 | 463.57 |
23.67 | 445.32 |
16.14 | 461.03 |
15.11 | 466.74 |
24.14 | 444.04 |
30.08 | 434.01 |
14.77 | 465.23 |
27.6 | 440.6 |
13.89 | 466.74 |
26.85 | 433.48 |
12.41 | 473.59 |
13.08 | 474.81 |
18.93 | 454.75 |
20.5 | 452.94 |
30.72 | 435.83 |
7.55 | 482.19 |
13.49 | 466.66 |
15.62 | 462.59 |
24.8 | 447.82 |
10.03 | 462.73 |
22.43 | 447.98 |
14.95 | 462.72 |
24.78 | 442.42 |
23.2 | 444.69 |
14.01 | 466.7 |
19.4 | 453.84 |
30.15 | 436.92 |
6.91 | 486.37 |
29.04 | 440.43 |
26.02 | 446.82 |
5.89 | 484.91 |
26.52 | 437.76 |
28.53 | 438.91 |
16.59 | 464.19 |
22.95 | 442.19 |
23.96 | 446.86 |
17.48 | 457.15 |
6.69 | 482.57 |
10.25 | 476.03 |
28.87 | 428.89 |
12.04 | 472.7 |
22.58 | 445.6 |
15.12 | 464.78 |
25.48 | 440.42 |
27.87 | 428.41 |
23.72 | 438.5 |
25.0 | 438.28 |
8.42 | 476.29 |
22.46 | 448.46 |
29.92 | 438.99 |
11.68 | 471.8 |
14.04 | 471.81 |
19.86 | 449.82 |
25.99 | 442.14 |
23.42 | 441.46 |
10.6 | 477.62 |
20.97 | 446.76 |
14.14 | 472.52 |
8.56 | 471.58 |
24.86 | 440.85 |
29.0 | 431.37 |
27.59 | 437.33 |
10.45 | 469.22 |
8.51 | 471.11 |
29.82 | 439.17 |
22.56 | 445.33 |
11.38 | 473.71 |
20.25 | 452.66 |
22.42 | 440.99 |
14.85 | 467.42 |
25.62 | 444.14 |
19.85 | 457.17 |
13.67 | 467.87 |
24.39 | 442.04 |
16.07 | 471.36 |
11.6 | 460.7 |
31.38 | 431.33 |
29.91 | 432.6 |
19.67 | 447.61 |
27.18 | 443.87 |
21.39 | 446.87 |
10.45 | 465.74 |
19.46 | 447.86 |
23.55 | 447.65 |
23.35 | 437.87 |
9.26 | 483.51 |
10.3 | 479.65 |
20.94 | 455.16 |
23.13 | 431.91 |
12.77 | 470.68 |
28.29 | 429.28 |
19.13 | 450.81 |
24.44 | 437.73 |
20.32 | 460.21 |
20.54 | 442.86 |
12.16 | 482.99 |
28.09 | 440.0 |
9.25 | 478.48 |
21.75 | 455.28 |
23.7 | 436.94 |
16.22 | 461.06 |
24.75 | 438.28 |
10.48 | 472.61 |
29.53 | 426.85 |
12.59 | 470.18 |
23.5 | 455.38 |
29.01 | 428.32 |
9.75 | 480.35 |
19.55 | 455.56 |
21.05 | 447.66 |
24.72 | 443.06 |
21.19 | 452.43 |
10.77 | 477.81 |
28.68 | 431.66 |
29.87 | 431.8 |
22.99 | 446.67 |
24.66 | 445.26 |
32.63 | 425.72 |
31.38 | 430.58 |
23.87 | 439.86 |
25.6 | 441.11 |
27.62 | 434.72 |
30.1 | 434.01 |
12.19 | 475.64 |
13.11 | 460.44 |
28.29 | 436.4 |
13.45 | 461.03 |
10.98 | 479.08 |
26.48 | 435.76 |
13.07 | 460.14 |
25.56 | 442.2 |
22.68 | 447.69 |
28.86 | 431.15 |
22.7 | 445.0 |
27.89 | 431.59 |
13.78 | 467.22 |
28.14 | 445.33 |
11.8 | 470.57 |
10.71 | 473.77 |
24.54 | 447.67 |
11.54 | 474.29 |
29.47 | 437.14 |
29.24 | 432.56 |
14.51 | 459.14 |
22.91 | 446.19 |
27.02 | 428.1 |
13.49 | 468.46 |
30.24 | 435.02 |
23.19 | 445.52 |
17.73 | 462.69 |
18.62 | 455.75 |
12.85 | 463.74 |
32.33 | 439.79 |
25.09 | 443.26 |
29.45 | 432.04 |
16.91 | 465.86 |
14.09 | 465.6 |
10.73 | 469.43 |
23.2 | 440.75 |
8.21 | 481.32 |
9.3 | 479.87 |
16.97 | 458.59 |
23.69 | 438.62 |
25.13 | 445.59 |
9.86 | 481.87 |
11.33 | 475.01 |
26.95 | 436.54 |
15.0 | 456.63 |
20.76 | 451.69 |
14.29 | 463.04 |
19.74 | 446.1 |
26.68 | 438.67 |
14.24 | 466.88 |
21.98 | 444.6 |
22.75 | 440.26 |
8.34 | 483.92 |
11.8 | 475.19 |
8.81 | 479.24 |
30.05 | 434.92 |
16.01 | 454.16 |
21.75 | 447.58 |
13.94 | 467.9 |
29.25 | 426.29 |
22.33 | 447.02 |
16.43 | 455.85 |
11.5 | 476.46 |
23.53 | 437.48 |
21.86 | 452.77 |
6.17 | 491.54 |
30.19 | 438.41 |
11.67 | 476.1 |
15.34 | 464.58 |
11.5 | 467.74 |
25.53 | 442.12 |
21.27 | 453.34 |
28.37 | 425.29 |
28.39 | 449.63 |
13.78 | 462.88 |
14.6 | 464.67 |
5.1 | 489.96 |
7.0 | 482.38 |
26.3 | 437.95 |
30.56 | 429.2 |
21.09 | 453.34 |
28.21 | 442.47 |
15.84 | 462.6 |
10.03 | 478.79 |
20.37 | 456.11 |
21.19 | 450.33 |
33.73 | 434.83 |
29.87 | 433.43 |
19.62 | 456.02 |
9.93 | 485.23 |
9.43 | 473.57 |
14.24 | 469.94 |
12.97 | 452.07 |
7.6 | 475.32 |
8.39 | 480.69 |
25.41 | 444.01 |
18.43 | 465.17 |
10.31 | 480.61 |
11.29 | 476.04 |
22.61 | 441.76 |
29.34 | 428.24 |
18.87 | 444.77 |
13.21 | 463.1 |
11.3 | 470.5 |
29.23 | 431.0 |
27.76 | 430.68 |
29.26 | 436.42 |
25.72 | 452.33 |
23.43 | 440.16 |
25.6 | 435.75 |
22.3 | 449.74 |
27.91 | 430.73 |
30.35 | 432.75 |
21.78 | 446.79 |
7.19 | 486.35 |
20.88 | 453.18 |
24.19 | 458.31 |
9.98 | 480.26 |
23.47 | 448.65 |
26.35 | 458.41 |
29.89 | 435.39 |
19.29 | 450.21 |
17.48 | 459.59 |
25.21 | 445.84 |
23.3 | 441.08 |
15.42 | 467.33 |
21.44 | 444.19 |
29.45 | 432.96 |
29.69 | 438.09 |
15.52 | 467.9 |
11.47 | 475.72 |
9.77 | 477.51 |
22.6 | 435.13 |
8.24 | 477.9 |
17.01 | 457.26 |
19.64 | 467.53 |
10.61 | 465.15 |
12.04 | 474.28 |
29.19 | 444.49 |
21.75 | 452.84 |
23.66 | 435.38 |
27.05 | 433.57 |
29.63 | 435.27 |
18.2 | 468.49 |
32.22 | 433.07 |
26.88 | 430.63 |
29.05 | 440.74 |
8.9 | 474.49 |
18.93 | 449.74 |
27.49 | 436.73 |
23.1 | 434.58 |
11.22 | 473.93 |
31.97 | 435.99 |
13.32 | 466.83 |
31.68 | 427.22 |
23.69 | 444.07 |
13.83 | 469.57 |
18.32 | 459.89 |
11.05 | 479.59 |
22.03 | 440.92 |
10.23 | 480.87 |
23.92 | 441.9 |
29.38 | 430.2 |
17.35 | 465.16 |
9.81 | 471.32 |
4.97 | 485.43 |
5.15 | 495.35 |
21.54 | 449.12 |
7.94 | 480.53 |
18.77 | 457.07 |
21.69 | 443.67 |
10.07 | 477.52 |
13.83 | 472.95 |
10.45 | 472.54 |
11.56 | 469.17 |
23.64 | 435.21 |
10.48 | 477.78 |
13.09 | 475.89 |
10.67 | 483.9 |
12.57 | 476.2 |
14.45 | 462.16 |
14.22 | 471.05 |
6.97 | 484.71 |
20.61 | 446.34 |
14.67 | 469.02 |
29.06 | 432.12 |
14.38 | 467.28 |
32.51 | 429.66 |
11.79 | 469.49 |
8.65 | 485.87 |
9.75 | 481.95 |
9.11 | 479.03 |
23.39 | 434.5 |
14.3 | 464.9 |
17.49 | 452.71 |
31.1 | 429.74 |
19.77 | 457.09 |
28.61 | 446.77 |
13.52 | 460.76 |
13.52 | 471.95 |
17.57 | 453.29 |
28.18 | 441.61 |
14.29 | 464.73 |
18.12 | 464.68 |
31.27 | 430.59 |
26.24 | 438.01 |
7.44 | 479.08 |
29.78 | 436.39 |
23.37 | 447.07 |
10.62 | 479.91 |
5.84 | 489.05 |
14.51 | 463.17 |
11.31 | 471.26 |
11.25 | 480.49 |
9.18 | 473.78 |
19.82 | 455.5 |
24.77 | 446.27 |
9.66 | 482.2 |
21.96 | 452.48 |
18.59 | 464.48 |
24.75 | 438.1 |
24.37 | 445.6 |
29.6 | 442.43 |
25.32 | 436.67 |
16.15 | 466.56 |
15.74 | 457.29 |
5.97 | 487.03 |
15.84 | 464.93 |
14.84 | 466.0 |
12.25 | 469.52 |
27.38 | 428.88 |
8.76 | 474.3 |
15.54 | 461.06 |
18.71 | 465.57 |
13.06 | 467.67 |
12.72 | 466.99 |
19.83 | 463.72 |
27.23 | 443.78 |
24.27 | 445.23 |
11.8 | 464.43 |
6.76 | 484.36 |
25.99 | 442.16 |
16.3 | 464.11 |
16.5 | 462.48 |
10.59 | 477.49 |
26.05 | 437.04 |
19.5 | 457.09 |
22.21 | 450.6 |
17.86 | 465.78 |
29.96 | 427.1 |
19.08 | 459.81 |
23.59 | 447.36 |
3.38 | 488.92 |
26.39 | 433.36 |
8.99 | 483.35 |
10.91 | 469.53 |
13.08 | 476.96 |
23.95 | 440.75 |
15.64 | 462.55 |
18.78 | 448.04 |
20.65 | 455.24 |
4.96 | 494.75 |
23.51 | 444.58 |
5.99 | 484.82 |
23.65 | 442.9 |
5.17 | 485.46 |
26.38 | 457.81 |
6.02 | 481.92 |
23.2 | 443.23 |
8.57 | 474.29 |
30.72 | 430.46 |
21.52 | 455.71 |
22.93 | 438.34 |
5.71 | 485.83 |
18.62 | 452.82 |
27.88 | 435.04 |
22.32 | 451.21 |
14.55 | 465.81 |
17.83 | 458.42 |
9.68 | 470.22 |
19.41 | 449.24 |
13.22 | 471.43 |
12.24 | 473.26 |
19.21 | 452.82 |
29.74 | 432.69 |
23.28 | 444.13 |
8.02 | 467.21 |
22.47 | 445.98 |
27.51 | 436.91 |
17.51 | 455.01 |
23.22 | 437.11 |
11.73 | 477.06 |
21.19 | 441.71 |
5.48 | 495.76 |
24.26 | 445.63 |
12.32 | 464.72 |
31.26 | 438.03 |
32.09 | 434.78 |
24.98 | 444.67 |
27.48 | 452.24 |
21.04 | 450.92 |
27.75 | 436.53 |
22.79 | 435.53 |
24.22 | 440.01 |
27.06 | 443.1 |
29.25 | 427.49 |
26.86 | 436.25 |
29.64 | 440.74 |
19.92 | 443.54 |
18.5 | 459.42 |
23.71 | 439.66 |
14.39 | 464.15 |
19.3 | 459.1 |
24.65 | 455.68 |
13.5 | 469.08 |
9.82 | 478.02 |
18.4 | 456.8 |
28.12 | 441.13 |
17.15 | 463.88 |
30.69 | 430.45 |
28.82 | 449.18 |
21.3 | 447.89 |
30.58 | 431.59 |
21.17 | 447.5 |
9.87 | 475.58 |
22.18 | 453.24 |
24.39 | 446.4 |
10.73 | 476.81 |
9.38 | 474.1 |
20.27 | 450.71 |
24.82 | 433.62 |
16.55 | 465.14 |
20.73 | 445.18 |
9.51 | 474.12 |
8.63 | 483.91 |
6.48 | 486.68 |
14.95 | 464.98 |
5.76 | 481.4 |
10.94 | 479.2 |
15.87 | 463.86 |
12.42 | 472.3 |
29.12 | 446.51 |
29.12 | 437.71 |
19.08 | 458.94 |
31.06 | 437.91 |
5.72 | 490.76 |
26.52 | 439.66 |
13.84 | 463.27 |
13.03 | 473.99 |
25.94 | 433.38 |
16.64 | 459.01 |
14.13 | 471.44 |
13.65 | 471.91 |
14.5 | 465.15 |
19.8 | 446.66 |
25.2 | 438.15 |
20.66 | 447.14 |
12.07 | 472.32 |
25.64 | 441.68 |
23.33 | 440.04 |
29.41 | 444.82 |
16.6 | 457.26 |
27.53 | 428.83 |
20.62 | 449.07 |
26.02 | 435.21 |
12.75 | 471.03 |
12.87 | 465.56 |
25.77 | 442.83 |
14.84 | 460.3 |
7.41 | 474.25 |
8.87 | 477.97 |
9.69 | 472.16 |
16.17 | 456.08 |
26.24 | 452.41 |
13.78 | 463.71 |
26.3 | 433.72 |
17.37 | 456.4 |
23.6 | 448.43 |
8.3 | 481.6 |
18.86 | 457.07 |
22.12 | 451.0 |
28.41 | 440.28 |
29.42 | 437.47 |
18.61 | 443.57 |
27.57 | 426.6 |
12.83 | 470.87 |
9.64 | 478.37 |
19.13 | 453.92 |
15.92 | 470.22 |
24.64 | 434.54 |
27.62 | 442.89 |
8.9 | 479.03 |
9.55 | 476.06 |
10.57 | 473.88 |
19.8 | 451.75 |
25.63 | 439.2 |
24.7 | 439.7 |
15.26 | 463.6 |
20.06 | 447.47 |
19.84 | 447.92 |
11.49 | 471.08 |
23.74 | 437.55 |
22.62 | 448.27 |
29.53 | 431.69 |
21.32 | 449.09 |
20.3 | 448.79 |
16.97 | 460.21 |
12.07 | 479.28 |
7.46 | 483.11 |
19.2 | 450.75 |
28.64 | 437.97 |
13.56 | 459.76 |
17.4 | 457.75 |
14.08 | 469.33 |
27.11 | 433.28 |
20.92 | 444.64 |
16.18 | 463.1 |
15.57 | 460.91 |
10.37 | 479.35 |
19.6 | 449.23 |
9.22 | 474.51 |
27.76 | 435.02 |
28.68 | 435.45 |
20.95 | 452.38 |
9.06 | 480.41 |
9.21 | 478.96 |
13.65 | 468.87 |
31.79 | 434.01 |
14.32 | 466.36 |
26.28 | 435.28 |
7.69 | 486.46 |
14.44 | 468.19 |
9.19 | 468.37 |
13.35 | 474.19 |
23.04 | 440.32 |
4.83 | 485.32 |
17.29 | 464.27 |
8.73 | 479.25 |
26.21 | 430.4 |
23.72 | 447.49 |
29.27 | 438.23 |
10.4 | 492.09 |
12.19 | 475.36 |
20.4 | 452.56 |
34.3 | 427.84 |
27.56 | 433.95 |
30.9 | 435.27 |
14.85 | 454.62 |
16.42 | 472.17 |
16.45 | 452.42 |
10.14 | 472.17 |
9.53 | 481.83 |
17.01 | 458.78 |
23.94 | 447.5 |
15.95 | 463.4 |
11.15 | 473.57 |
25.56 | 433.72 |
27.16 | 431.85 |
26.71 | 433.47 |
29.56 | 432.84 |
31.19 | 436.6 |
6.86 | 490.23 |
12.36 | 477.16 |
32.82 | 441.06 |
25.3 | 440.86 |
8.71 | 477.94 |
13.34 | 474.47 |
14.2 | 470.67 |
23.74 | 447.31 |
16.9 | 466.8 |
28.54 | 430.91 |
30.15 | 434.75 |
14.33 | 469.52 |
25.57 | 438.9 |
30.55 | 429.56 |
28.04 | 432.92 |
26.39 | 442.87 |
15.3 | 466.59 |
6.03 | 479.61 |
13.49 | 471.08 |
27.67 | 433.37 |
24.19 | 443.92 |
24.44 | 443.5 |
29.86 | 439.89 |
30.2 | 434.66 |
7.99 | 487.57 |
9.93 | 464.64 |
11.03 | 470.92 |
22.34 | 444.39 |
25.33 | 442.48 |
18.87 | 449.61 |
25.97 | 435.02 |
16.58 | 458.67 |
14.35 | 461.74 |
25.06 | 438.31 |
13.85 | 462.38 |
16.09 | 460.56 |
26.34 | 439.22 |
23.01 | 444.64 |
26.39 | 430.34 |
31.32 | 430.46 |
16.64 | 456.79 |
13.42 | 468.82 |
20.06 | 448.51 |
14.8 | 470.77 |
12.59 | 465.74 |
26.7 | 430.21 |
19.78 | 449.23 |
15.17 | 461.89 |
21.71 | 445.72 |
19.09 | 466.13 |
19.76 | 448.71 |
14.68 | 469.25 |
21.3 | 450.56 |
16.73 | 464.46 |
12.26 | 471.13 |
14.77 | 461.52 |
18.26 | 451.09 |
27.1 | 431.51 |
14.72 | 469.8 |
26.3 | 442.28 |
16.48 | 458.67 |
17.99 | 462.4 |
20.34 | 453.54 |
25.53 | 444.38 |
31.59 | 440.52 |
30.8 | 433.62 |
10.75 | 481.96 |
19.3 | 452.75 |
4.71 | 481.28 |
23.1 | 439.03 |
32.63 | 435.75 |
26.63 | 436.03 |
24.35 | 445.6 |
15.11 | 462.65 |
29.1 | 438.66 |
21.24 | 447.32 |
6.16 | 484.55 |
7.36 | 476.8 |
10.44 | 480.34 |
26.76 | 440.63 |
16.79 | 459.48 |
10.76 | 490.78 |
6.07 | 483.56 |
27.33 | 429.38 |
27.15 | 440.27 |
22.35 | 445.34 |
21.82 | 447.43 |
21.11 | 439.91 |
19.95 | 459.27 |
7.45 | 478.89 |
15.36 | 466.7 |
15.65 | 463.5 |
25.31 | 436.21 |
25.88 | 443.94 |
24.6 | 439.63 |
22.58 | 460.95 |
19.69 | 448.69 |
25.85 | 444.63 |
10.06 | 473.51 |
18.59 | 462.56 |
18.27 | 451.76 |
8.85 | 491.81 |
30.04 | 429.52 |
26.06 | 437.9 |
14.8 | 467.54 |
23.93 | 449.97 |
23.72 | 436.62 |
11.44 | 477.68 |
20.28 | 447.26 |
27.9 | 439.76 |
24.74 | 437.49 |
14.8 | 455.14 |
8.22 | 485.5 |
27.56 | 444.1 |
32.07 | 432.33 |
9.53 | 471.23 |
13.61 | 463.89 |
22.2 | 445.54 |
21.36 | 446.09 |
23.25 | 445.12 |
23.5 | 443.31 |
8.46 | 484.16 |
8.19 | 477.76 |
30.67 | 430.28 |
32.48 | 446.48 |
8.99 | 481.03 |
13.77 | 466.07 |
19.05 | 447.47 |
21.19 | 455.93 |
10.12 | 479.62 |
24.93 | 455.06 |
8.47 | 475.06 |
24.52 | 438.89 |
28.55 | 432.7 |
20.58 | 452.6 |
18.31 | 451.75 |
27.18 | 430.66 |
4.43 | 491.9 |
26.02 | 439.82 |
15.75 | 460.73 |
22.99 | 449.7 |
25.52 | 439.42 |
27.04 | 439.84 |
6.42 | 485.86 |
17.04 | 458.1 |
10.79 | 479.92 |
20.41 | 458.29 |
7.36 | 489.45 |
28.08 | 434.0 |
24.74 | 431.24 |
28.32 | 439.5 |
16.71 | 467.46 |
30.7 | 429.27 |
18.42 | 452.1 |
10.62 | 472.41 |
22.18 | 442.14 |
22.38 | 441.0 |
13.94 | 463.07 |
21.24 | 445.71 |
6.76 | 483.16 |
26.73 | 440.45 |
7.24 | 481.83 |
10.84 | 467.6 |
19.32 | 450.88 |
29.0 | 425.5 |
23.38 | 451.87 |
31.17 | 428.94 |
26.17 | 439.86 |
30.9 | 433.44 |
24.92 | 438.23 |
32.77 | 436.95 |
14.37 | 470.19 |
8.36 | 484.66 |
31.45 | 430.81 |
31.6 | 433.37 |
17.9 | 453.02 |
20.35 | 453.5 |
16.21 | 463.09 |
19.36 | 464.56 |
21.04 | 452.12 |
14.05 | 470.9 |
23.48 | 450.89 |
21.91 | 445.04 |
24.42 | 444.72 |
14.26 | 460.38 |
21.38 | 446.8 |
15.71 | 465.05 |
5.78 | 484.13 |
6.77 | 488.27 |
23.84 | 447.09 |
21.17 | 452.02 |
19.94 | 455.55 |
8.73 | 480.99 |
16.39 | 467.68 |
From the above plot, it looks like there is strong linear correlation between temperature and Power Output!
select V as ExhaustVaccum, PE as Power from power_plant_table;
ExhaustVaccum | Power |
---|---|
41.76 | 463.26 |
62.96 | 444.37 |
39.4 | 488.56 |
57.32 | 446.48 |
37.5 | 473.9 |
59.44 | 443.67 |
43.96 | 467.35 |
44.71 | 478.42 |
45.0 | 475.98 |
43.56 | 477.5 |
43.72 | 453.02 |
46.93 | 453.99 |
73.5 | 440.29 |
58.59 | 451.28 |
69.34 | 433.99 |
43.79 | 462.19 |
45.0 | 467.54 |
41.74 | 477.2 |
52.75 | 459.85 |
38.47 | 464.3 |
42.42 | 468.27 |
40.07 | 495.24 |
42.28 | 483.8 |
63.9 | 443.61 |
48.6 | 436.06 |
70.72 | 443.25 |
39.31 | 464.16 |
39.96 | 475.52 |
35.79 | 484.41 |
65.18 | 437.89 |
63.94 | 445.11 |
58.41 | 438.86 |
66.85 | 440.98 |
74.16 | 436.65 |
63.94 | 444.26 |
44.03 | 465.86 |
63.73 | 444.37 |
47.45 | 450.69 |
39.35 | 469.02 |
51.3 | 448.86 |
47.45 | 447.14 |
44.85 | 469.18 |
41.54 | 482.8 |
42.86 | 476.7 |
40.64 | 474.99 |
63.94 | 444.22 |
37.87 | 461.33 |
43.43 | 448.06 |
44.71 | 474.6 |
40.11 | 473.05 |
73.5 | 432.06 |
38.62 | 467.41 |
78.92 | 430.12 |
42.18 | 473.62 |
39.39 | 471.81 |
59.43 | 442.99 |
64.44 | 442.77 |
39.33 | 491.49 |
61.08 | 447.46 |
58.84 | 446.11 |
52.3 | 442.44 |
65.71 | 446.22 |
40.1 | 471.49 |
45.87 | 463.5 |
58.79 | 440.01 |
65.34 | 441.03 |
62.96 | 452.68 |
40.69 | 474.91 |
34.03 | 478.77 |
74.34 | 434.2 |
68.3 | 437.91 |
41.01 | 477.61 |
74.67 | 431.65 |
74.34 | 430.57 |
42.28 | 481.09 |
61.02 | 445.56 |
39.85 | 475.74 |
69.75 | 435.12 |
67.25 | 446.15 |
76.86 | 436.64 |
69.45 | 436.69 |
42.18 | 468.75 |
43.02 | 466.6 |
45.08 | 465.48 |
73.68 | 441.34 |
69.45 | 441.83 |
39.3 | 464.7 |
69.75 | 437.99 |
58.96 | 459.12 |
68.94 | 429.69 |
51.43 | 459.8 |
64.05 | 433.63 |
60.95 | 442.84 |
41.66 | 485.13 |
52.72 | 459.12 |
67.32 | 445.31 |
40.72 | 480.8 |
66.48 | 432.55 |
63.77 | 443.86 |
59.21 | 449.77 |
43.69 | 470.71 |
51.3 | 452.17 |
41.38 | 478.29 |
71.94 | 428.54 |
40.64 | 478.27 |
62.66 | 439.58 |
49.69 | 457.32 |
44.2 | 475.51 |
65.59 | 439.66 |
40.89 | 471.99 |
39.35 | 479.81 |
78.92 | 434.78 |
61.87 | 446.58 |
58.33 | 437.76 |
39.72 | 459.36 |
44.71 | 462.28 |
43.48 | 464.33 |
46.21 | 444.36 |
59.39 | 438.64 |
34.03 | 470.49 |
41.1 | 455.13 |
66.93 | 450.22 |
63.73 | 440.43 |
42.85 | 482.98 |
50.88 | 460.44 |
54.2 | 444.97 |
68.67 | 433.94 |
73.18 | 439.73 |
73.88 | 434.48 |
60.84 | 442.33 |
45.09 | 457.67 |
57.76 | 454.66 |
67.25 | 432.21 |
43.77 | 457.66 |
63.76 | 435.21 |
47.43 | 448.22 |
41.66 | 475.51 |
62.91 | 446.53 |
57.32 | 441.3 |
69.34 | 433.54 |
39.04 | 472.52 |
44.78 | 474.77 |
69.05 | 435.1 |
59.8 | 450.74 |
65.06 | 442.7 |
68.14 | 426.56 |
42.32 | 463.71 |
66.93 | 447.06 |
57.76 | 452.27 |
63.94 | 445.78 |
68.3 | 438.65 |
40.77 | 480.15 |
62.52 | 447.19 |
48.41 | 443.04 |
39.9 | 488.81 |
57.76 | 455.75 |
49.39 | 455.86 |
46.97 | 457.68 |
40.05 | 479.11 |
74.16 | 432.84 |
62.52 | 448.37 |
47.45 | 447.06 |
49.21 | 443.53 |
61.45 | 445.21 |
66.51 | 441.7 |
66.86 | 450.93 |
49.78 | 451.44 |
56.89 | 441.29 |
44.85 | 458.85 |
43.65 | 481.46 |
43.41 | 467.19 |
41.58 | 461.54 |
52.84 | 439.08 |
42.74 | 467.22 |
44.34 | 468.8 |
71.98 | 426.93 |
37.73 | 474.65 |
44.21 | 468.97 |
71.58 | 433.97 |
50.16 | 450.53 |
59.04 | 444.51 |
40.69 | 469.03 |
71.14 | 466.56 |
52.05 | 457.57 |
59.54 | 440.13 |
69.84 | 433.24 |
43.72 | 452.55 |
71.37 | 443.29 |
74.99 | 431.76 |
44.78 | 454.97 |
63.07 | 456.7 |
39.9 | 486.03 |
39.96 | 472.79 |
57.25 | 452.03 |
54.2 | 443.41 |
67.32 | 441.93 |
70.98 | 432.64 |
36.24 | 480.25 |
39.63 | 466.68 |
40.07 | 494.39 |
54.42 | 454.72 |
56.85 | 448.71 |
42.48 | 469.76 |
44.89 | 450.71 |
58.79 | 444.01 |
58.2 | 453.2 |
57.85 | 450.87 |
63.86 | 441.73 |
39.52 | 465.09 |
64.63 | 447.28 |
39.33 | 491.16 |
62.52 | 450.98 |
63.56 | 446.3 |
79.74 | 436.48 |
42.03 | 460.84 |
69.51 | 442.56 |
41.49 | 467.3 |
40.64 | 479.13 |
52.3 | 441.15 |
59.04 | 445.52 |
40.69 | 475.4 |
40.69 | 469.3 |
41.62 | 463.57 |
68.67 | 445.32 |
44.21 | 461.03 |
43.13 | 466.74 |
59.87 | 444.04 |
67.25 | 434.01 |
44.9 | 465.23 |
69.34 | 440.6 |
44.84 | 466.74 |
75.6 | 433.48 |
40.96 | 473.59 |
41.74 | 474.81 |
44.06 | 454.75 |
49.69 | 452.94 |
69.13 | 435.83 |
39.22 | 482.19 |
44.47 | 466.66 |
40.12 | 462.59 |
64.63 | 447.82 |
41.62 | 462.73 |
63.21 | 447.98 |
39.31 | 462.72 |
58.46 | 442.42 |
48.41 | 444.69 |
39.0 | 466.7 |
64.63 | 453.84 |
67.32 | 436.92 |
36.08 | 486.37 |
60.07 | 440.43 |
63.07 | 446.82 |
39.48 | 484.91 |
71.64 | 437.76 |
68.08 | 438.91 |
39.54 | 464.19 |
67.79 | 442.19 |
47.43 | 446.86 |
44.2 | 457.15 |
43.65 | 482.57 |
41.26 | 476.03 |
72.58 | 428.89 |
40.23 | 472.7 |
52.3 | 445.6 |
52.05 | 464.78 |
58.95 | 440.42 |
70.79 | 428.41 |
70.47 | 438.5 |
59.43 | 438.28 |
40.64 | 476.29 |
58.49 | 448.46 |
57.19 | 438.99 |
39.22 | 471.8 |
42.44 | 471.81 |
59.14 | 449.82 |
68.08 | 442.14 |
58.79 | 441.46 |
40.22 | 477.62 |
61.87 | 446.76 |
39.82 | 472.52 |
40.71 | 471.58 |
72.39 | 440.85 |
77.54 | 431.37 |
71.97 | 437.33 |
40.71 | 469.22 |
40.78 | 471.11 |
66.51 | 439.17 |
62.26 | 445.33 |
39.22 | 473.71 |
57.76 | 452.66 |
59.43 | 440.99 |
38.91 | 467.42 |
58.82 | 444.14 |
56.53 | 457.17 |
54.3 | 467.87 |
70.72 | 442.04 |
44.58 | 471.36 |
39.1 | 460.7 |
70.83 | 431.33 |
76.86 | 432.6 |
59.39 | 447.61 |
64.79 | 443.87 |
52.3 | 446.87 |
41.01 | 465.74 |
56.89 | 447.86 |
62.96 | 447.65 |
63.47 | 437.87 |
41.66 | 483.51 |
41.46 | 479.65 |
58.16 | 455.16 |
71.25 | 431.91 |
41.5 | 470.68 |
69.13 | 429.28 |
59.21 | 450.81 |
73.5 | 437.73 |
44.6 | 460.21 |
69.05 | 442.86 |
45.0 | 482.99 |
65.27 | 440.0 |
41.82 | 478.48 |
49.82 | 455.28 |
66.56 | 436.94 |
37.87 | 461.06 |
69.45 | 438.28 |
39.58 | 472.61 |
70.79 | 426.85 |
39.72 | 470.18 |
54.42 | 455.38 |
66.56 | 428.32 |
42.49 | 480.35 |
56.53 | 455.56 |
58.33 | 447.66 |
68.67 | 443.06 |
58.86 | 452.43 |
41.54 | 477.81 |
73.77 | 431.66 |
73.91 | 431.8 |
68.67 | 446.67 |
60.29 | 445.26 |
69.89 | 425.72 |
72.29 | 430.58 |
60.27 | 439.86 |
59.15 | 441.11 |
71.14 | 434.72 |
67.45 | 434.01 |
41.17 | 475.64 |
41.58 | 460.44 |
68.67 | 436.4 |
40.73 | 461.03 |
41.54 | 479.08 |
69.14 | 435.76 |
45.51 | 460.14 |
75.6 | 442.2 |
50.78 | 447.69 |
73.67 | 431.15 |
63.56 | 445.0 |
73.21 | 431.59 |
44.47 | 467.22 |
51.43 | 445.33 |
45.09 | 470.57 |
39.61 | 473.77 |
60.29 | 447.67 |
40.05 | 474.29 |
71.32 | 437.14 |
69.05 | 432.56 |
41.79 | 459.14 |
60.07 | 446.19 |
71.77 | 428.1 |
44.47 | 468.46 |
66.75 | 435.02 |
48.6 | 445.52 |
40.55 | 462.69 |
61.27 | 455.75 |
40.0 | 463.74 |
69.68 | 439.79 |
58.95 | 443.26 |
69.13 | 432.04 |
43.96 | 465.86 |
45.87 | 465.6 |
25.36 | 469.43 |
49.3 | 440.75 |
38.91 | 481.32 |
40.56 | 479.87 |
39.16 | 458.59 |
71.97 | 438.62 |
59.44 | 445.59 |
43.56 | 481.87 |
41.5 | 475.01 |
48.41 | 436.54 |
40.66 | 456.63 |
62.52 | 451.69 |
39.59 | 463.04 |
67.71 | 446.1 |
59.92 | 438.67 |
41.4 | 466.88 |
48.41 | 444.6 |
59.39 | 440.26 |
40.96 | 483.92 |
41.2 | 475.19 |
44.68 | 479.24 |
73.68 | 434.92 |
65.46 | 454.16 |
58.79 | 447.58 |
41.26 | 467.9 |
69.13 | 426.29 |
45.87 | 447.02 |
41.79 | 455.85 |
40.22 | 476.46 |
68.94 | 437.48 |
49.21 | 452.77 |
39.33 | 491.54 |
64.79 | 438.41 |
41.93 | 476.1 |
36.99 | 464.58 |
40.78 | 467.74 |
57.17 | 442.12 |
57.5 | 453.34 |
69.13 | 425.29 |
51.43 | 449.63 |
45.78 | 462.88 |
42.32 | 464.67 |
35.57 | 489.96 |
38.08 | 482.38 |
77.95 | 437.95 |
71.98 | 429.2 |
46.63 | 453.34 |
70.02 | 442.47 |
49.69 | 462.6 |
40.96 | 478.79 |
52.05 | 456.11 |
50.16 | 450.33 |
69.88 | 434.83 |
73.68 | 433.43 |
62.96 | 456.02 |
40.67 | 485.23 |
37.14 | 473.57 |
39.58 | 469.94 |
49.83 | 452.07 |
41.04 | 475.32 |
36.24 | 480.69 |
48.06 | 444.01 |
56.03 | 465.17 |
39.82 | 480.61 |
41.5 | 476.04 |
49.3 | 441.76 |
71.98 | 428.24 |
67.71 | 444.77 |
45.87 | 463.1 |
44.6 | 470.5 |
72.99 | 431.0 |
69.4 | 430.68 |
67.17 | 436.42 |
49.82 | 452.33 |
63.94 | 440.16 |
63.76 | 435.75 |
44.57 | 449.74 |
72.24 | 430.73 |
77.17 | 432.75 |
47.43 | 446.79 |
41.39 | 486.35 |
59.8 | 453.18 |
50.23 | 458.31 |
41.54 | 480.26 |
51.3 | 448.65 |
49.5 | 458.41 |
64.69 | 435.39 |
50.16 | 450.21 |
43.14 | 459.59 |
75.6 | 445.84 |
48.78 | 441.08 |
37.85 | 467.33 |
63.09 | 444.19 |
68.27 | 432.96 |
47.93 | 438.09 |
36.99 | 467.9 |
43.67 | 475.72 |
34.69 | 477.51 |
69.84 | 435.13 |
39.61 | 477.9 |
44.2 | 457.26 |
44.6 | 467.53 |
41.58 | 465.15 |
40.1 | 474.28 |
65.71 | 444.49 |
45.09 | 452.84 |
77.54 | 435.38 |
75.33 | 433.57 |
69.71 | 435.27 |
39.63 | 468.49 |
70.8 | 433.07 |
73.56 | 430.63 |
65.74 | 440.74 |
39.96 | 474.49 |
48.6 | 449.74 |
63.76 | 436.73 |
70.79 | 434.58 |
43.13 | 473.93 |
79.74 | 435.99 |
43.22 | 466.83 |
68.24 | 427.22 |
63.77 | 444.07 |
41.49 | 469.57 |
66.51 | 459.89 |
40.71 | 479.59 |
64.69 | 440.92 |
41.46 | 480.87 |
66.54 | 441.9 |
69.68 | 430.2 |
42.86 | 465.16 |
44.45 | 471.32 |
40.64 | 485.43 |
40.07 | 495.35 |
58.49 | 449.12 |
42.02 | 480.53 |
50.66 | 457.07 |
69.94 | 443.67 |
44.68 | 477.52 |
39.64 | 472.95 |
39.69 | 472.54 |
40.71 | 469.17 |
70.04 | 435.21 |
40.22 | 477.78 |
39.85 | 475.89 |
40.23 | 483.9 |
39.16 | 476.2 |
43.34 | 462.16 |
37.85 | 471.05 |
41.26 | 484.71 |
63.86 | 446.34 |
42.28 | 469.02 |
72.86 | 432.12 |
40.1 | 467.28 |
69.98 | 429.66 |
45.09 | 469.49 |
40.56 | 485.87 |
40.81 | 481.95 |
40.02 | 479.03 |
69.13 | 434.5 |
54.3 | 464.9 |
63.94 | 452.71 |
69.51 | 429.74 |
56.65 | 457.09 |
72.29 | 446.77 |
41.48 | 460.76 |
40.83 | 471.95 |
46.21 | 453.29 |
60.07 | 441.61 |
46.18 | 464.73 |
43.69 | 464.68 |
73.91 | 430.59 |
77.95 | 438.01 |
41.04 | 479.08 |
74.78 | 436.39 |
65.46 | 447.07 |
39.58 | 479.91 |
43.02 | 489.05 |
53.82 | 463.17 |
42.02 | 471.26 |
40.67 | 480.49 |
39.42 | 473.78 |
58.16 | 455.5 |
58.41 | 446.27 |
41.06 | 482.2 |
59.8 | 452.48 |
43.14 | 464.48 |
69.89 | 438.1 |
63.47 | 445.6 |
67.79 | 442.43 |
61.25 | 436.67 |
41.85 | 466.56 |
71.14 | 457.29 |
36.25 | 487.03 |
52.72 | 464.93 |
44.63 | 466.0 |
48.79 | 469.52 |
70.04 | 428.88 |
41.48 | 474.3 |
39.31 | 461.06 |
39.39 | 465.57 |
41.78 | 467.67 |
40.71 | 466.99 |
39.39 | 463.72 |
49.16 | 443.78 |
68.28 | 445.23 |
40.66 | 464.43 |
36.25 | 484.36 |
63.07 | 442.16 |
39.63 | 464.11 |
49.39 | 462.48 |
42.49 | 477.49 |
65.59 | 437.04 |
40.79 | 457.09 |
45.01 | 450.6 |
45.0 | 465.78 |
70.04 | 427.1 |
44.63 | 459.81 |
47.43 | 447.36 |
39.64 | 488.92 |
66.49 | 433.36 |
39.04 | 483.35 |
41.04 | 469.53 |
39.82 | 476.96 |
58.46 | 440.75 |
43.71 | 462.55 |
54.2 | 448.04 |
50.59 | 455.24 |
40.07 | 494.75 |
57.32 | 444.58 |
35.79 | 484.82 |
66.05 | 442.9 |
39.33 | 485.46 |
49.5 | 457.81 |
43.65 | 481.92 |
61.02 | 443.23 |
39.69 | 474.29 |
71.58 | 430.46 |
50.66 | 455.71 |
62.26 | 438.34 |
41.31 | 485.83 |
44.06 | 452.82 |
68.94 | 435.04 |
59.8 | 451.21 |
42.74 | 465.81 |
44.92 | 458.42 |
39.96 | 470.22 |
49.39 | 449.24 |
44.92 | 471.43 |
44.92 | 473.26 |
58.49 | 452.82 |
70.32 | 432.69 |
60.84 | 444.13 |
41.92 | 467.21 |
48.6 | 445.98 |
73.77 | 436.91 |
44.9 | 455.01 |
66.56 | 437.11 |
40.64 | 477.06 |
67.71 | 441.71 |
40.07 | 495.76 |
66.44 | 445.63 |
41.62 | 464.72 |
68.94 | 438.03 |
72.86 | 434.78 |
60.32 | 444.67 |
61.41 | 452.24 |
45.09 | 450.92 |
70.4 | 436.53 |
71.77 | 435.53 |
68.51 | 440.01 |
64.45 | 443.1 |
71.94 | 427.49 |
68.08 | 436.25 |
67.79 | 440.74 |
63.31 | 443.54 |
51.43 | 459.42 |
60.23 | 439.66 |
44.84 | 464.15 |
56.65 | 459.1 |
52.36 | 455.68 |
45.51 | 469.08 |
41.26 | 478.02 |
44.06 | 456.8 |
44.89 | 441.13 |
43.69 | 463.88 |
73.67 | 430.45 |
65.71 | 449.18 |
48.92 | 447.89 |
70.04 | 431.59 |
52.3 | 447.5 |
41.82 | 475.58 |
59.8 | 453.24 |
63.21 | 446.4 |
44.92 | 476.81 |
40.46 | 474.1 |
57.76 | 450.71 |
66.48 | 433.62 |
41.66 | 465.14 |
59.87 | 445.18 |
39.22 | 474.12 |
43.79 | 483.91 |
40.27 | 486.68 |
43.52 | 464.98 |
45.87 | 481.4 |
39.04 | 479.2 |
41.16 | 463.86 |
38.25 | 472.3 |
58.84 | 446.51 |
51.43 | 437.71 |
41.1 | 458.94 |
67.17 | 437.91 |
39.33 | 490.76 |
65.06 | 439.66 |
44.9 | 463.27 |
39.52 | 473.99 |
66.49 | 433.38 |
53.82 | 459.01 |
40.75 | 471.44 |
39.28 | 471.91 |
44.47 | 465.15 |
51.19 | 446.66 |
63.76 | 438.15 |
51.19 | 447.14 |
43.71 | 472.32 |
70.72 | 441.68 |
72.99 | 440.04 |
64.05 | 444.82 |
53.16 | 457.26 |
72.58 | 428.83 |
43.43 | 449.07 |
71.94 | 435.21 |
44.2 | 471.03 |
48.04 | 465.56 |
62.96 | 442.83 |
41.48 | 460.3 |
40.71 | 474.25 |
41.82 | 477.97 |
40.46 | 472.16 |
46.97 | 456.08 |
49.82 | 452.41 |
43.22 | 463.71 |
67.07 | 433.72 |
57.76 | 456.4 |
48.98 | 448.43 |
36.08 | 481.6 |
42.18 | 457.07 |
49.39 | 451.0 |
75.6 | 440.28 |
71.32 | 437.47 |
67.71 | 443.57 |
69.84 | 426.6 |
41.5 | 470.87 |
39.85 | 478.37 |
58.66 | 453.92 |
40.56 | 470.22 |
72.24 | 434.54 |
63.9 | 442.89 |
36.24 | 479.03 |
43.99 | 476.06 |
36.71 | 473.88 |
57.25 | 451.75 |
56.85 | 439.2 |
58.46 | 439.7 |
46.18 | 463.6 |
52.84 | 447.47 |
56.89 | 447.92 |
44.63 | 471.08 |
72.43 | 437.55 |
51.3 | 448.27 |
72.39 | 431.69 |
48.14 | 449.09 |
58.46 | 448.79 |
44.92 | 460.21 |
41.17 | 479.28 |
41.82 | 483.11 |
54.2 | 450.75 |
66.54 | 437.97 |
41.48 | 459.76 |
44.9 | 457.75 |
40.1 | 469.33 |
69.75 | 433.28 |
70.02 | 444.64 |
44.9 | 463.1 |
44.68 | 460.91 |
39.04 | 479.35 |
59.21 | 449.23 |
40.92 | 474.51 |
72.99 | 435.02 |
70.72 | 435.45 |
48.14 | 452.38 |
39.3 | 480.41 |
39.72 | 478.96 |
42.74 | 468.87 |
76.2 | 434.01 |
44.6 | 466.36 |
75.23 | 435.28 |
43.02 | 486.46 |
40.1 | 468.19 |
41.01 | 468.37 |
41.39 | 474.19 |
74.22 | 440.32 |
38.44 | 485.32 |
42.86 | 464.27 |
36.18 | 479.25 |
70.32 | 430.4 |
58.62 | 447.49 |
64.69 | 438.23 |
40.43 | 492.09 |
40.75 | 475.36 |
54.9 | 452.56 |
74.67 | 427.84 |
68.08 | 433.95 |
70.8 | 435.27 |
58.59 | 454.62 |
40.56 | 472.17 |
63.31 | 452.42 |
42.02 | 472.17 |
41.44 | 481.83 |
49.15 | 458.78 |
62.08 | 447.5 |
49.25 | 463.4 |
41.26 | 473.57 |
70.32 | 433.72 |
66.44 | 431.85 |
77.95 | 433.47 |
74.22 | 432.84 |
70.94 | 436.6 |
41.17 | 490.23 |
41.74 | 477.16 |
68.31 | 441.06 |
70.98 | 440.86 |
41.82 | 477.94 |
40.8 | 474.47 |
43.02 | 470.67 |
65.34 | 447.31 |
44.88 | 466.8 |
71.94 | 430.91 |
69.88 | 434.75 |
42.86 | 469.52 |
59.43 | 438.9 |
70.04 | 429.56 |
74.33 | 432.92 |
49.16 | 442.87 |
41.76 | 466.59 |
41.14 | 479.61 |
44.63 | 471.08 |
59.14 | 433.37 |
65.48 | 443.92 |
59.14 | 443.5 |
64.79 | 439.89 |
69.59 | 434.66 |
41.38 | 487.57 |
41.62 | 464.64 |
42.32 | 470.92 |
63.73 | 444.39 |
48.6 | 442.48 |
52.08 | 449.61 |
69.34 | 435.02 |
43.99 | 458.67 |
46.18 | 461.74 |
62.39 | 438.31 |
48.92 | 462.38 |
44.2 | 460.56 |
59.21 | 439.22 |
58.79 | 444.64 |
71.25 | 430.34 |
71.29 | 430.46 |
45.87 | 456.79 |
41.23 | 468.82 |
44.9 | 448.51 |
44.71 | 470.77 |
41.14 | 465.74 |
66.56 | 430.21 |
50.32 | 449.23 |
49.15 | 461.89 |
61.45 | 445.72 |
39.39 | 466.13 |
51.19 | 448.71 |
41.23 | 469.25 |
66.86 | 450.56 |
39.64 | 464.46 |
41.5 | 471.13 |
48.06 | 461.52 |
59.15 | 451.09 |
79.74 | 431.51 |
40.83 | 469.8 |
51.43 | 442.28 |
48.92 | 458.67 |
43.79 | 462.4 |
59.8 | 453.54 |
62.96 | 444.38 |
58.9 | 440.52 |
69.14 | 433.62 |
45.0 | 481.96 |
44.9 | 452.75 |
39.42 | 481.28 |
66.05 | 439.03 |
73.88 | 435.75 |
74.16 | 436.03 |
58.49 | 445.6 |
56.03 | 462.65 |
50.05 | 438.66 |
50.32 | 447.32 |
39.48 | 484.55 |
41.01 | 476.8 |
39.04 | 480.34 |
48.41 | 440.63 |
44.6 | 459.48 |
40.43 | 490.78 |
38.91 | 483.56 |
73.18 | 429.38 |
59.21 | 440.27 |
51.43 | 445.34 |
65.27 | 447.43 |
69.94 | 439.91 |
50.59 | 459.27 |
39.61 | 478.89 |
41.66 | 466.7 |
43.5 | 463.5 |
74.33 | 436.21 |
63.47 | 443.94 |
63.94 | 439.63 |
41.54 | 460.95 |
59.14 | 448.69 |
75.08 | 444.63 |
37.83 | 473.51 |
39.54 | 462.56 |
50.16 | 451.76 |
40.43 | 491.81 |
68.08 | 429.52 |
49.02 | 437.9 |
38.73 | 467.54 |
64.45 | 449.97 |
66.48 | 436.62 |
40.55 | 477.68 |
63.86 | 447.26 |
63.13 | 439.76 |
59.39 | 437.49 |
58.2 | 455.14 |
41.03 | 485.5 |
66.93 | 444.1 |
70.94 | 432.33 |
44.03 | 471.23 |
42.34 | 463.89 |
51.19 | 445.54 |
59.54 | 446.09 |
63.86 | 445.12 |
59.21 | 443.31 |
39.66 | 484.16 |
40.69 | 477.76 |
71.29 | 430.28 |
62.04 | 446.48 |
36.66 | 481.03 |
47.83 | 466.07 |
67.32 | 447.47 |
55.5 | 455.93 |
40.0 | 479.62 |
47.01 | 455.06 |
40.46 | 475.06 |
56.85 | 438.89 |
69.84 | 432.7 |
50.9 | 452.6 |
46.21 | 451.75 |
71.06 | 430.66 |
38.91 | 491.9 |
74.78 | 439.82 |
39.0 | 460.73 |
60.95 | 449.7 |
59.15 | 439.42 |
65.06 | 439.84 |
35.57 | 485.86 |
40.12 | 458.1 |
39.82 | 479.92 |
56.03 | 458.29 |
40.07 | 489.45 |
73.42 | 434.0 |
69.13 | 431.24 |
47.93 | 439.5 |
40.56 | 467.46 |
71.58 | 429.27 |
58.95 | 452.1 |
42.02 | 472.41 |
69.05 | 442.14 |
49.3 | 441.0 |
41.58 | 463.07 |
60.84 | 445.71 |
39.81 | 483.16 |
68.84 | 440.45 |
38.06 | 481.83 |
40.62 | 467.6 |
52.84 | 450.88 |
69.13 | 425.5 |
54.42 | 451.87 |
69.51 | 428.94 |
48.6 | 439.86 |
73.42 | 433.44 |
73.68 | 438.23 |
71.32 | 436.95 |
40.56 | 470.19 |
40.22 | 484.66 |
68.27 | 430.81 |
73.17 | 433.37 |
48.98 | 453.02 |
50.9 | 453.5 |
41.23 | 463.09 |
44.6 | 464.56 |
65.46 | 452.12 |
40.69 | 470.9 |
64.15 | 450.89 |
63.76 | 445.04 |
63.07 | 444.72 |
40.92 | 460.38 |
58.33 | 446.8 |
44.06 | 465.05 |
40.62 | 484.13 |
39.81 | 488.27 |
49.21 | 447.09 |
58.16 | 452.02 |
58.96 | 455.55 |
41.92 | 480.99 |
41.67 | 467.68 |
The linear correlation is not as strong between Exhaust Vacuum Speed and Power Output but there is some semblance of a pattern.
select AP as Pressure, PE as Power from power_plant_table;
Pressure | Power |
---|---|
1024.07 | 463.26 |
1020.04 | 444.37 |
1012.16 | 488.56 |
1010.24 | 446.48 |
1009.23 | 473.9 |
1012.23 | 443.67 |
1014.02 | 467.35 |
1019.12 | 478.42 |
1021.78 | 475.98 |
1015.14 | 477.5 |
1008.64 | 453.02 |
1014.66 | 453.99 |
1011.31 | 440.29 |
1012.77 | 451.28 |
1009.48 | 433.99 |
1015.76 | 462.19 |
1022.86 | 467.54 |
1022.6 | 477.2 |
1023.97 | 459.85 |
1015.15 | 464.3 |
1009.09 | 468.27 |
1019.16 | 495.24 |
1008.52 | 483.8 |
1014.3 | 443.61 |
1003.18 | 436.06 |
1009.97 | 443.25 |
1011.11 | 464.16 |
1023.57 | 475.52 |
1012.14 | 484.41 |
1012.69 | 437.89 |
1019.02 | 445.11 |
1013.64 | 438.86 |
1011.11 | 440.98 |
1010.08 | 436.65 |
1018.76 | 444.26 |
1007.29 | 465.86 |
1011.4 | 444.37 |
1010.08 | 450.69 |
1014.69 | 469.02 |
1012.04 | 448.86 |
1007.62 | 447.14 |
1017.24 | 469.18 |
1018.33 | 482.8 |
1014.12 | 476.7 |
1020.63 | 474.99 |
1019.28 | 444.22 |
1020.24 | 461.33 |
1010.96 | 448.06 |
1014.51 | 474.6 |
1029.14 | 473.05 |
1010.58 | 432.06 |
1018.71 | 467.41 |
1011.6 | 430.12 |
1014.82 | 473.62 |
1012.94 | 471.81 |
1010.23 | 442.99 |
1014.65 | 442.77 |
1010.18 | 491.49 |
1013.68 | 447.46 |
1002.25 | 446.11 |
1007.03 | 442.44 |
1013.61 | 446.22 |
1016.67 | 471.49 |
1008.89 | 463.5 |
1016.02 | 440.01 |
1014.56 | 441.03 |
1019.49 | 452.68 |
1020.43 | 474.91 |
1018.71 | 478.77 |
998.14 | 434.2 |
1017.83 | 437.91 |
1024.61 | 477.61 |
1016.65 | 431.65 |
998.58 | 430.57 |
1008.82 | 481.09 |
1009.56 | 445.56 |
1012.71 | 475.74 |
1010.36 | 435.12 |
1017.39 | 446.15 |
1001.31 | 436.64 |
1013.89 | 436.69 |
1016.53 | 468.75 |
1012.18 | 466.6 |
1024.42 | 465.48 |
1014.93 | 441.34 |
1012.53 | 441.83 |
1019.0 | 464.7 |
1009.6 | 437.99 |
1015.55 | 459.12 |
1006.56 | 429.69 |
1010.57 | 459.8 |
1009.81 | 433.63 |
1014.62 | 442.84 |
1014.49 | 485.13 |
1025.09 | 459.12 |
1012.05 | 445.31 |
1022.7 | 480.8 |
1005.23 | 432.55 |
1013.42 | 443.86 |
1018.3 | 449.77 |
1017.19 | 470.71 |
1011.93 | 452.17 |
1021.6 | 478.29 |
1006.96 | 428.54 |
1020.66 | 478.27 |
1007.63 | 439.58 |
1005.53 | 457.32 |
1018.79 | 475.51 |
1010.85 | 439.66 |
1011.03 | 471.99 |
1015.1 | 479.81 |
1010.83 | 434.78 |
1011.18 | 446.58 |
1013.92 | 437.76 |
1001.24 | 459.36 |
1016.99 | 462.28 |
1016.08 | 464.33 |
1010.71 | 444.36 |
1014.32 | 438.64 |
1018.69 | 470.49 |
1001.86 | 455.13 |
1017.06 | 450.22 |
1009.34 | 440.43 |
1014.02 | 482.98 |
1014.19 | 460.44 |
1012.81 | 444.97 |
1005.2 | 433.94 |
1012.28 | 439.73 |
1005.89 | 434.48 |
1017.93 | 442.33 |
1014.26 | 457.67 |
1018.8 | 454.66 |
1017.71 | 432.21 |
1012.25 | 457.66 |
1010.27 | 435.21 |
1007.64 | 448.22 |
1013.79 | 475.51 |
1013.24 | 446.53 |
1011.7 | 441.3 |
1007.67 | 433.54 |
1020.45 | 472.52 |
1012.59 | 474.77 |
1001.62 | 435.1 |
1016.92 | 450.74 |
1014.32 | 442.7 |
1003.34 | 426.56 |
1016.0 | 463.71 |
1016.85 | 447.06 |
1018.02 | 452.27 |
1018.49 | 445.78 |
1017.93 | 438.65 |
1011.55 | 480.15 |
1016.46 | 447.19 |
1008.47 | 443.04 |
1008.06 | 488.81 |
1016.26 | 455.75 |
1018.83 | 455.86 |
1013.94 | 457.68 |
1014.95 | 479.11 |
1007.44 | 432.84 |
1016.18 | 448.37 |
1007.56 | 447.06 |
1014.1 | 443.53 |
1011.13 | 445.21 |
1015.53 | 441.7 |
1013.05 | 450.93 |
1002.95 | 451.44 |
1012.32 | 441.29 |
1014.48 | 458.85 |
1018.24 | 481.46 |
1016.93 | 467.19 |
1020.5 | 461.54 |
1006.28 | 439.08 |
1028.79 | 467.22 |
1019.49 | 468.8 |
1004.66 | 426.93 |
1024.36 | 474.65 |
1022.93 | 468.97 |
1010.18 | 433.97 |
1009.52 | 450.53 |
1011.98 | 444.51 |
1015.29 | 469.03 |
1019.36 | 466.56 |
1012.15 | 457.57 |
1006.24 | 440.13 |
1003.57 | 433.24 |
1008.64 | 452.55 |
1002.04 | 443.29 |
1005.47 | 431.76 |
1007.81 | 454.97 |
1012.42 | 456.7 |
1007.75 | 486.03 |
1011.37 | 472.79 |
1010.12 | 452.03 |
1012.26 | 443.41 |
1014.49 | 441.93 |
1007.51 | 432.64 |
1013.15 | 480.25 |
1004.47 | 466.68 |
1020.19 | 494.39 |
1012.46 | 454.72 |
1012.28 | 448.71 |
1013.43 | 469.76 |
1009.64 | 450.71 |
1009.8 | 444.01 |
1017.46 | 453.2 |
1012.39 | 450.87 |
1019.67 | 441.73 |
1018.41 | 465.09 |
1020.59 | 447.28 |
1011.54 | 491.16 |
1017.99 | 450.98 |
1013.75 | 446.3 |
1008.37 | 436.48 |
1017.41 | 460.84 |
1013.43 | 442.56 |
1020.19 | 467.3 |
1021.47 | 479.13 |
1008.72 | 441.15 |
1011.78 | 445.52 |
1015.62 | 475.4 |
1014.91 | 469.3 |
1017.17 | 463.57 |
1006.71 | 445.32 |
1020.36 | 461.03 |
1014.99 | 466.74 |
1018.47 | 444.04 |
1017.6 | 434.01 |
1020.5 | 465.23 |
1009.63 | 440.6 |
1023.66 | 466.74 |
1017.43 | 433.48 |
1023.36 | 473.59 |
1020.75 | 474.81 |
1017.58 | 454.75 |
1009.6 | 452.94 |
1009.94 | 435.83 |
1014.53 | 482.19 |
1030.46 | 466.66 |
1013.03 | 462.59 |
1020.69 | 447.82 |
1014.55 | 462.73 |
1012.06 | 447.98 |
1009.15 | 462.72 |
1016.82 | 442.42 |
1008.64 | 444.69 |
1016.73 | 466.7 |
1020.38 | 453.84 |
1013.83 | 436.92 |
1021.82 | 486.37 |
1015.42 | 440.43 |
1010.94 | 446.82 |
1005.11 | 484.91 |
1008.27 | 437.76 |
1013.27 | 438.91 |
1007.97 | 464.19 |
1009.89 | 442.19 |
1008.38 | 446.86 |
1018.89 | 457.15 |
1020.14 | 482.57 |
1007.44 | 476.03 |
1008.69 | 428.89 |
1018.07 | 472.7 |
1009.04 | 445.6 |
1014.63 | 464.78 |
1017.02 | 440.42 |
1003.96 | 428.41 |
1010.65 | 438.5 |
1007.84 | 438.28 |
1022.35 | 476.29 |
1011.5 | 448.46 |
1008.62 | 438.99 |
1017.9 | 471.8 |
1012.74 | 471.81 |
1016.12 | 449.82 |
1013.13 | 442.14 |
1009.74 | 441.46 |
1011.37 | 477.62 |
1011.45 | 446.76 |
1012.46 | 472.52 |
1021.27 | 471.58 |
1001.15 | 440.85 |
1011.33 | 431.37 |
1008.64 | 437.33 |
1015.68 | 469.22 |
1023.51 | 471.11 |
1010.98 | 439.17 |
1012.11 | 445.33 |
1018.62 | 473.71 |
1016.28 | 452.66 |
1007.12 | 440.99 |
1014.48 | 467.42 |
1010.02 | 444.14 |
1020.57 | 457.17 |
1015.92 | 467.87 |
1009.78 | 442.04 |
1019.52 | 471.36 |
1009.81 | 460.7 |
1010.35 | 431.33 |
998.59 | 432.6 |
1014.07 | 447.61 |
1016.27 | 443.87 |
1009.2 | 446.87 |
1020.57 | 465.74 |
1014.02 | 447.86 |
1020.16 | 447.65 |
1011.78 | 437.87 |
1016.87 | 483.51 |
1018.21 | 479.65 |
1016.88 | 455.16 |
1002.49 | 431.91 |
1014.13 | 470.68 |
1009.29 | 429.28 |
1018.32 | 450.81 |
1011.49 | 437.73 |
1015.16 | 460.21 |
1001.6 | 442.86 |
1021.51 | 482.99 |
1013.27 | 440.0 |
1033.25 | 478.48 |
1015.01 | 455.28 |
1002.07 | 436.94 |
1022.36 | 461.06 |
1013.97 | 438.28 |
1011.81 | 472.61 |
1003.7 | 426.85 |
1017.76 | 470.18 |
1012.31 | 455.38 |
1006.44 | 428.32 |
1010.57 | 480.35 |
1020.2 | 455.56 |
1013.14 | 447.66 |
1006.74 | 443.06 |
1014.19 | 452.43 |
1019.94 | 477.81 |
1004.72 | 431.66 |
1004.53 | 431.8 |
1006.65 | 446.67 |
1018.0 | 445.26 |
1013.85 | 425.72 |
1008.73 | 430.58 |
1018.94 | 439.86 |
1013.31 | 441.11 |
1011.6 | 434.72 |
1014.23 | 434.01 |
1019.43 | 475.64 |
1020.43 | 460.44 |
1005.46 | 436.4 |
1018.7 | 461.03 |
1019.94 | 479.08 |
1009.31 | 435.76 |
1015.22 | 460.14 |
1017.37 | 442.2 |
1008.83 | 447.69 |
1006.65 | 431.15 |
1014.32 | 445.0 |
1001.32 | 431.59 |
1027.94 | 467.22 |
1012.16 | 445.33 |
1013.21 | 470.57 |
1018.72 | 473.77 |
1017.42 | 447.67 |
1014.78 | 474.29 |
1008.07 | 437.14 |
1003.12 | 432.56 |
1009.72 | 459.14 |
1016.03 | 446.19 |
1006.38 | 428.1 |
1030.18 | 468.46 |
1017.95 | 435.02 |
1002.38 | 445.52 |
1003.36 | 462.69 |
1019.26 | 455.75 |
1015.89 | 463.74 |
1011.95 | 439.79 |
1016.99 | 443.26 |
1009.3 | 432.04 |
1013.32 | 465.86 |
1009.05 | 465.6 |
1009.35 | 469.43 |
1003.4 | 440.75 |
1015.82 | 481.32 |
1022.64 | 479.87 |
1005.7 | 458.59 |
1009.62 | 438.62 |
1012.38 | 445.59 |
1015.13 | 481.87 |
1013.58 | 475.01 |
1008.53 | 436.54 |
1016.28 | 456.63 |
1015.63 | 451.69 |
1010.93 | 463.04 |
1007.68 | 446.1 |
1009.94 | 438.67 |
1019.7 | 466.88 |
1008.42 | 444.6 |
1015.4 | 440.26 |
1023.28 | 483.92 |
1017.18 | 475.19 |
1023.06 | 479.24 |
1014.95 | 434.92 |
1014.0 | 454.16 |
1012.42 | 447.58 |
1021.67 | 467.9 |
1010.27 | 426.29 |
1007.8 | 447.02 |
1005.47 | 455.85 |
1010.31 | 476.46 |
1007.53 | 437.48 |
1014.61 | 452.77 |
1012.57 | 491.54 |
1017.22 | 438.41 |
1019.81 | 476.1 |
1007.87 | 464.58 |
1023.91 | 467.74 |
1010.0 | 442.12 |
1014.53 | 453.34 |
1010.44 | 425.29 |
1011.74 | 449.63 |
1025.27 | 462.88 |
1015.71 | 464.67 |
1027.17 | 489.96 |
1020.27 | 482.38 |
1009.45 | 437.95 |
1004.74 | 429.2 |
1013.03 | 453.34 |
1010.58 | 442.47 |
1015.14 | 462.6 |
1024.57 | 478.79 |
1012.34 | 456.11 |
1005.81 | 450.33 |
1007.21 | 434.83 |
1015.1 | 433.43 |
1020.76 | 456.02 |
1018.08 | 485.23 |
1013.03 | 473.57 |
1011.17 | 469.94 |
1008.69 | 452.07 |
1021.82 | 475.32 |
1013.39 | 480.69 |
1013.12 | 444.01 |
1020.41 | 465.17 |
1012.87 | 480.61 |
1013.39 | 476.04 |
1003.51 | 441.76 |
1005.19 | 428.24 |
1004.0 | 444.77 |
1008.58 | 463.1 |
1018.19 | 470.5 |
1007.04 | 431.0 |
1004.27 | 430.68 |
1006.6 | 436.42 |
1016.19 | 452.33 |
1010.64 | 440.16 |
1010.18 | 435.75 |
1008.48 | 449.74 |
1010.74 | 430.73 |
1009.55 | 432.75 |
1007.88 | 446.79 |
1018.12 | 486.35 |
1015.66 | 453.18 |
1015.73 | 458.31 |
1019.7 | 480.26 |
1011.89 | 448.65 |
1012.67 | 458.41 |
1006.37 | 435.39 |
1010.49 | 450.21 |
1018.68 | 459.59 |
1017.19 | 445.84 |
1018.17 | 441.08 |
1009.89 | 467.33 |
1016.56 | 444.19 |
1007.96 | 432.96 |
1002.85 | 438.09 |
1006.86 | 467.9 |
1012.68 | 475.72 |
1027.72 | 477.51 |
1006.37 | 435.13 |
1017.99 | 477.9 |
1019.18 | 457.26 |
1015.88 | 467.53 |
1021.08 | 465.15 |
1014.42 | 474.28 |
1013.85 | 444.49 |
1014.15 | 452.84 |
1008.5 | 435.38 |
1003.88 | 433.57 |
1009.04 | 435.27 |
1005.35 | 468.49 |
1009.9 | 433.07 |
1004.85 | 430.63 |
1013.29 | 440.74 |
1026.31 | 474.49 |
1005.72 | 449.74 |
1010.09 | 436.73 |
1006.53 | 434.58 |
1017.24 | 473.93 |
1007.03 | 435.99 |
1009.45 | 466.83 |
1005.29 | 427.22 |
1013.39 | 444.07 |
1020.11 | 469.57 |
1015.18 | 459.89 |
1024.91 | 479.59 |
1007.21 | 440.92 |
1020.45 | 480.87 |
1009.93 | 441.9 |
1011.35 | 430.2 |
1014.62 | 465.16 |
1021.19 | 471.32 |
1020.91 | 485.43 |
1012.27 | 495.35 |
1010.85 | 449.12 |
1006.22 | 480.53 |
1014.89 | 457.07 |
1010.7 | 443.67 |
1023.44 | 477.52 |
1012.52 | 472.95 |
1003.92 | 472.54 |
1015.85 | 469.17 |
1011.09 | 435.21 |
1004.81 | 477.78 |
1012.86 | 475.89 |
1017.75 | 483.9 |
1016.53 | 476.2 |
1015.47 | 462.16 |
1011.24 | 471.05 |
1010.6 | 484.71 |
1015.43 | 446.34 |
1007.21 | 469.02 |
1004.23 | 432.12 |
1015.51 | 467.28 |
1013.29 | 429.66 |
1013.16 | 469.49 |
1023.23 | 485.87 |
1026.0 | 481.95 |
1031.1 | 479.03 |
1010.99 | 434.5 |
1015.16 | 464.9 |
1020.02 | 452.71 |
1010.84 | 429.74 |
1020.67 | 457.09 |
1011.61 | 446.77 |
1014.46 | 460.76 |
1008.31 | 471.95 |
1014.09 | 453.29 |
1016.34 | 441.61 |
1017.01 | 464.73 |
1016.91 | 464.68 |
1003.72 | 430.59 |
1014.19 | 438.01 |
1021.84 | 479.08 |
1009.28 | 436.39 |
1016.25 | 447.07 |
1011.9 | 479.91 |
1013.88 | 489.05 |
1016.46 | 463.17 |
1001.18 | 471.26 |
1011.64 | 480.49 |
1025.41 | 473.78 |
1016.76 | 455.5 |
1013.78 | 446.27 |
1021.21 | 482.2 |
1016.72 | 452.48 |
1011.92 | 464.48 |
1015.29 | 438.1 |
1012.77 | 445.6 |
1010.37 | 442.43 |
1011.56 | 436.67 |
1016.54 | 466.56 |
1019.65 | 457.29 |
1029.65 | 487.03 |
1026.45 | 464.93 |
1019.28 | 466.0 |
1017.44 | 469.52 |
1011.18 | 428.88 |
1018.49 | 474.3 |
1009.69 | 461.06 |
1014.09 | 465.57 |
1012.3 | 467.67 |
1016.02 | 466.99 |
1013.73 | 463.72 |
1004.03 | 443.78 |
1005.43 | 445.23 |
1017.13 | 464.43 |
1028.31 | 484.36 |
1012.5 | 442.16 |
1004.64 | 464.11 |
1018.35 | 462.48 |
1009.59 | 477.49 |
1012.78 | 437.04 |
1003.8 | 457.09 |
1012.22 | 450.6 |
1023.25 | 465.78 |
1010.15 | 427.1 |
1020.14 | 459.81 |
1006.64 | 447.36 |
1011.0 | 488.92 |
1012.96 | 433.36 |
1021.99 | 483.35 |
1026.57 | 469.53 |
1012.27 | 476.96 |
1017.5 | 440.75 |
1024.51 | 462.55 |
1012.05 | 448.04 |
1016.22 | 455.24 |
1011.8 | 494.75 |
1012.55 | 444.58 |
1011.56 | 484.82 |
1019.6 | 442.9 |
1009.68 | 485.46 |
1012.82 | 457.81 |
1013.85 | 481.92 |
1009.63 | 443.23 |
1000.91 | 474.29 |
1009.98 | 430.46 |
1013.56 | 455.71 |
1011.25 | 438.34 |
1003.24 | 485.83 |
1017.76 | 452.82 |
1007.68 | 435.04 |
1016.82 | 451.21 |
1028.41 | 465.81 |
1025.04 | 458.42 |
1026.09 | 470.22 |
1020.84 | 449.24 |
1023.84 | 471.43 |
1023.74 | 473.26 |
1011.7 | 452.82 |
1008.1 | 432.69 |
1017.91 | 444.13 |
1029.8 | 467.21 |
1002.33 | 445.98 |
1002.42 | 436.91 |
1009.05 | 455.01 |
1002.47 | 437.11 |
1020.68 | 477.06 |
1006.65 | 441.71 |
1019.63 | 495.76 |
1011.33 | 445.63 |
1012.88 | 464.72 |
1005.94 | 438.03 |
1003.47 | 434.78 |
1015.63 | 444.67 |
1012.2 | 452.24 |
1014.19 | 450.92 |
1006.65 | 436.53 |
1005.75 | 435.53 |
1013.23 | 440.01 |
1008.72 | 443.1 |
1007.18 | 427.49 |
1012.99 | 436.25 |
1009.99 | 440.74 |
1015.02 | 443.54 |
1010.82 | 459.42 |
1009.76 | 439.66 |
1023.55 | 464.15 |
1020.55 | 459.1 |
1014.76 | 455.68 |
1015.33 | 469.08 |
1007.71 | 478.02 |
1017.36 | 456.8 |
1009.18 | 441.13 |
1017.05 | 463.88 |
1006.14 | 430.45 |
1014.24 | 449.18 |
1010.92 | 447.89 |
1010.4 | 431.59 |
1009.36 | 447.5 |
1033.04 | 475.58 |
1016.77 | 453.24 |
1012.59 | 446.4 |
1025.1 | 476.81 |
1019.29 | 474.1 |
1016.66 | 450.71 |
1006.4 | 433.62 |
1011.45 | 465.14 |
1019.08 | 445.18 |
1015.3 | 474.12 |
1016.08 | 483.91 |
1010.55 | 486.68 |
1022.43 | 464.98 |
1010.83 | 481.4 |
1021.81 | 479.2 |
1005.85 | 463.86 |
1012.76 | 472.3 |
1001.31 | 446.51 |
1005.93 | 437.71 |
1001.96 | 458.94 |
1007.62 | 437.91 |
1009.96 | 490.76 |
1013.4 | 439.66 |
1007.58 | 463.27 |
1016.68 | 473.99 |
1012.83 | 433.38 |
1015.13 | 459.01 |
1016.05 | 471.44 |
1012.97 | 471.91 |
1028.2 | 465.15 |
1008.25 | 446.66 |
1009.78 | 438.15 |
1008.81 | 447.14 |
1025.53 | 472.32 |
1010.16 | 441.68 |
1009.33 | 440.04 |
1009.82 | 444.82 |
1014.5 | 457.26 |
1009.13 | 428.83 |
1009.93 | 449.07 |
1009.38 | 435.21 |
1017.59 | 471.03 |
1012.47 | 465.56 |
1019.86 | 442.83 |
1017.26 | 460.3 |
1023.07 | 474.25 |
1033.3 | 477.97 |
1019.1 | 472.16 |
1014.22 | 456.08 |
1014.9 | 452.41 |
1011.31 | 463.71 |
1006.26 | 433.72 |
1016.0 | 456.4 |
1015.41 | 448.43 |
1020.63 | 481.6 |
1001.16 | 457.07 |
1019.8 | 451.0 |
1018.48 | 440.28 |
1002.26 | 437.47 |
1004.07 | 443.57 |
1004.91 | 426.6 |
1013.12 | 470.87 |
1012.9 | 478.37 |
1013.32 | 453.92 |
1020.79 | 470.22 |
1011.37 | 434.54 |
1013.11 | 442.89 |
1013.29 | 479.03 |
1020.5 | 476.06 |
1022.62 | 473.88 |
1010.84 | 451.75 |
1012.68 | 439.2 |
1015.58 | 439.7 |
1013.68 | 463.6 |
1004.21 | 447.47 |
1013.23 | 447.92 |
1020.44 | 471.08 |
1007.99 | 437.55 |
1012.36 | 448.27 |
998.47 | 431.69 |
1016.57 | 449.09 |
1015.93 | 448.79 |
1025.21 | 460.21 |
1013.54 | 479.28 |
1032.67 | 483.11 |
1011.46 | 450.75 |
1010.43 | 437.97 |
1008.53 | 459.76 |
1020.5 | 457.75 |
1015.48 | 469.33 |
1009.74 | 433.28 |
1010.23 | 444.64 |
1021.3 | 463.1 |
1022.01 | 460.91 |
1023.95 | 479.35 |
1017.65 | 449.23 |
1021.83 | 474.51 |
1007.81 | 435.02 |
1009.43 | 435.45 |
1013.3 | 452.38 |
1019.73 | 480.41 |
1019.54 | 478.96 |
1026.58 | 468.87 |
1007.89 | 434.01 |
1013.85 | 466.36 |
1011.44 | 435.28 |
1014.51 | 486.46 |
1015.51 | 468.19 |
1022.14 | 468.37 |
1019.17 | 474.19 |
1009.52 | 440.32 |
1015.35 | 485.32 |
1014.38 | 464.27 |
1013.66 | 479.25 |
1007.0 | 430.4 |
1016.65 | 447.49 |
1006.85 | 438.23 |
1025.46 | 492.09 |
1015.13 | 475.36 |
1016.68 | 452.56 |
1015.98 | 427.84 |
1010.8 | 433.95 |
1008.48 | 435.27 |
1014.04 | 454.62 |
1020.36 | 472.17 |
1015.96 | 452.42 |
1003.19 | 472.17 |
1018.01 | 481.83 |
1021.83 | 458.78 |
1022.47 | 447.5 |
1019.04 | 463.4 |
1022.67 | 473.57 |
1009.07 | 433.72 |
1011.2 | 431.85 |
1012.13 | 433.47 |
1007.45 | 432.84 |
1007.29 | 436.6 |
1020.12 | 490.23 |
1020.58 | 477.16 |
1010.44 | 441.06 |
1007.22 | 440.86 |
1033.08 | 477.94 |
1026.56 | 474.47 |
1012.18 | 470.67 |
1013.7 | 447.31 |
1018.14 | 466.8 |
1007.4 | 430.91 |
1007.2 | 434.75 |
1010.82 | 469.52 |
1008.88 | 438.9 |
1010.51 | 429.56 |
1013.53 | 432.92 |
1005.68 | 442.87 |
1022.57 | 466.59 |
1028.04 | 479.61 |
1019.12 | 471.08 |
1016.51 | 433.37 |
1018.8 | 443.92 |
1016.74 | 443.5 |
1017.37 | 439.89 |
1008.9 | 434.66 |
1021.95 | 487.57 |
1013.76 | 464.64 |
1017.26 | 470.92 |
1014.37 | 444.39 |
1002.54 | 442.48 |
1005.25 | 449.61 |
1009.43 | 435.02 |
1021.81 | 458.67 |
1016.63 | 461.74 |
1008.09 | 438.31 |
1011.68 | 462.38 |
1019.39 | 460.56 |
1013.37 | 439.22 |
1009.71 | 444.64 |
999.8 | 430.34 |
1008.37 | 430.46 |
1009.02 | 456.79 |
994.17 | 468.82 |
1008.79 | 448.51 |
1014.67 | 470.77 |
1025.79 | 465.74 |
1005.31 | 430.21 |
1008.62 | 449.23 |
1021.91 | 461.89 |
1010.97 | 445.72 |
1013.36 | 466.13 |
1008.38 | 448.71 |
998.43 | 469.25 |
1013.04 | 450.56 |
1008.94 | 464.46 |
1014.87 | 471.13 |
1010.92 | 461.52 |
1012.04 | 451.09 |
1005.43 | 431.51 |
1009.65 | 469.8 |
1012.05 | 442.28 |
1011.84 | 458.67 |
1016.13 | 462.4 |
1015.18 | 453.54 |
1019.81 | 444.38 |
1003.39 | 440.52 |
1007.68 | 433.62 |
1023.68 | 481.96 |
1008.89 | 452.75 |
1026.4 | 481.28 |
1020.28 | 439.03 |
1005.64 | 435.75 |
1009.72 | 436.03 |
1011.03 | 445.6 |
1020.27 | 462.65 |
1005.87 | 438.66 |
1008.54 | 447.32 |
1004.85 | 484.55 |
1024.9 | 476.8 |
1023.99 | 480.34 |
1010.53 | 440.63 |
1014.27 | 459.48 |
1025.98 | 490.78 |
1019.25 | 483.56 |
1012.26 | 429.38 |
1013.49 | 440.27 |
1011.34 | 445.34 |
1013.86 | 447.43 |
1004.37 | 439.91 |
1016.11 | 459.27 |
1017.88 | 478.89 |
1012.41 | 466.7 |
1021.39 | 463.5 |
1015.04 | 436.21 |
1011.95 | 443.94 |
1012.87 | 439.63 |
1013.21 | 460.95 |
1015.99 | 448.69 |
1006.24 | 444.63 |
1005.49 | 473.51 |
1008.56 | 462.56 |
1011.07 | 451.76 |
1025.68 | 491.81 |
1011.04 | 429.52 |
1007.59 | 437.9 |
1003.18 | 467.54 |
1015.35 | 449.97 |
1003.61 | 436.62 |
1023.37 | 477.68 |
1016.04 | 447.26 |
1011.8 | 439.76 |
1015.23 | 437.49 |
1018.29 | 455.14 |
1021.76 | 485.5 |
1016.81 | 444.1 |
1006.91 | 432.33 |
1008.87 | 471.23 |
1017.93 | 463.89 |
1009.2 | 445.54 |
1007.99 | 446.09 |
1017.82 | 445.12 |
1018.29 | 443.31 |
1015.14 | 484.16 |
1019.86 | 477.76 |
1008.36 | 430.28 |
1010.39 | 446.48 |
1028.11 | 481.03 |
1007.41 | 466.07 |
1013.2 | 447.47 |
1019.83 | 455.93 |
1021.15 | 479.62 |
1014.28 | 455.06 |
1019.87 | 475.06 |
1012.59 | 438.89 |
1003.38 | 432.7 |
1011.89 | 452.6 |
1010.46 | 451.75 |
1008.16 | 430.66 |
1019.04 | 491.9 |
1010.04 | 439.82 |
1015.91 | 460.73 |
1015.14 | 449.7 |
1013.88 | 439.42 |
1013.33 | 439.84 |
1025.58 | 485.86 |
1011.81 | 458.1 |
1012.89 | 479.92 |
1019.94 | 458.29 |
1017.29 | 489.45 |
1012.17 | 434.0 |
1010.69 | 431.24 |
1003.26 | 439.5 |
1019.48 | 467.46 |
1010.0 | 429.27 |
1016.95 | 452.1 |
999.83 | 472.41 |
1002.75 | 442.14 |
1003.56 | 441.0 |
1020.76 | 463.07 |
1017.99 | 445.71 |
1017.11 | 483.16 |
1010.75 | 440.45 |
1020.6 | 481.83 |
1015.53 | 467.6 |
1004.29 | 450.88 |
1001.22 | 425.5 |
1013.95 | 451.87 |
1010.51 | 428.94 |
1002.59 | 439.86 |
1011.21 | 433.44 |
1015.12 | 438.23 |
1007.68 | 436.95 |
1021.67 | 470.19 |
1011.6 | 484.66 |
1007.56 | 430.81 |
1010.05 | 433.37 |
1014.17 | 453.02 |
1012.6 | 453.5 |
995.88 | 463.09 |
1016.25 | 464.56 |
1017.22 | 452.12 |
1015.66 | 470.9 |
1021.08 | 450.89 |
1009.85 | 445.04 |
1011.49 | 444.72 |
1022.07 | 460.38 |
1013.05 | 446.8 |
1018.34 | 465.05 |
1016.55 | 484.13 |
1017.01 | 488.27 |
1013.85 | 447.09 |
1017.16 | 452.02 |
1014.16 | 455.55 |
1029.41 | 480.99 |
1012.96 | 467.68 |
select RH as Humidity, PE as Power from power_plant_table;
Humidity | Power |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
...and atmospheric pressure and relative humidity seem to have little to no linear correlation.
These pairwise plots can also be done directly using display
on select
ed columns of the DataFrame powerPlantDF
.
In general we will shy from SQL as much as possible to focus on ML pipelines written with DataFrames and DataSets with occassional in-and-out of RDDs.
The illustations in %sql
above are to mainly reassure those with a RDBMS background and SQL that their SQL expressibility can be directly used in Apache Spark and in databricks notebooks.
display(powerPlantDF.select($"RH", $"PE"))
RH | PE |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
Furthermore, you can interactively start playing with display
on the full DataFrame!
display(powerPlantDF) // just as we did for the diamonds dataset
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
We will do the following steps in the sequel.
- Step 5: Data Preparation
- Step 6: Data Modeling
- Step 7: Tuning and Evaluation
- Step 8: Deployment
Datasource References:
- Pinar Tüfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems, Volume 60, September 2014, Pages 126-140, ISSN 0142-0615, Web Link
- Heysem Kaya, Pinar Tüfekci , Sadik Fikret Gürgen: Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE 2012, pp. 13-18 (Mar. 2012, Dubai) Web Link
Wiki Clickstream Analysis
Dataset: 3.2 billion requests collected during the month of February 2015 grouped by (src, dest)
.
Source: https://datahub.io/dataset/wikipedia-clickstream/
This notebook was originally a data analysis workflow developed with Databricks Community Edition, a free version of Databricks designed for learning Apache Spark.
Here we elucidate in Scala the original Python notebook used in the talk by Michael Armbrust at Spark Summit East February 2016 shared from https://twitter.com/michaelarmbrust/status/699969850475737088 (watch later)
Data set
The data we are exploring in this lab is the February 2015 English Wikipedia Clickstream data, and it is available here.
According to Wikimedia:
"The data contains counts of (referer, resource) pairs extracted from the request logs of English Wikipedia. When a client requests a resource by following a link or performing a search, the URI of the webpage that linked to the resource is included with the request in an HTTP header called the "referer". This data captures 22 million (referer, resource) pairs from a total of 3.2 billion requests collected during the month of February 2015."
The data is approximately 1.2GB and it is hosted in the following Databricks file:
/databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed/2015_2_clickstream.tsv
if you are on databricks.
We will work with a smaller sample of this dataset here first:
/datasets/sds/wikipedia-datasets/2015_2_clickstream_subsampled.tsv
.
Let us first understand this Wikimedia data set a bit more
Let's read the datahub-hosted link https://datahub.io/dataset/wikipedia-clickstream.
Also click the blog by Ellery Wulczyn, Data Scientist at The Wikimedia Foundation, to better understand how the data was generated.
Run the next two cells for some housekeeping.
val data = sc.textFile("/datasets/sds/wikipedia-datasets/2015_2_clickstream_subsampled.tsv")
data: org.apache.spark.rdd.RDD[String] = /datasets/sds/wikipedia-datasets/2015_2_clickstream_subsampled.tsv MapPartitionsRDD[831] at textFile at command-2971213210277624:1
data.take(5).foreach(println)
prev_id curr_id n prev_title curr_title type
37284.0 197438.0 41 Brain_tumor Fontanelle link
2904478.0 29932496.0 14 Ottoman_Reform_Edict_of_1856 Hatt-i_humayun other
412127.0 39 other-wikipedia Tony_Zale other
2368683.0 209811.0 15 Trajan's_Forum Looting other
data.take(2)
res1: Array[String] = Array(prev_id curr_id n prev_title curr_title type, 37284.0 197438.0 41 Brain_tumor Fontanelle link)
- The first line looks like a header
- The second line (separated from the first by ",") contains data organized according to the header, i.e.,
prev_id
= 3632887,curr_id
= 121", and so on.
Actually, here is the meaning of each column:
-
prev_id
: if the referer does not correspond to an article in the main namespace of English Wikipedia, this value will be empty. Otherwise, it contains the unique MediaWiki page ID of the article corresponding to the referer i.e. the previous article the client was on -
curr_id
: the MediaWiki unique page ID of the article the client requested -
prev_title
: the result of mapping the referer URL to the fixed set of values described below -
curr_title
: the title of the article the client requested -
n
: the number of occurrences of the (referer, resource) pair -
type
- "link" if the referer and request are both articles and the referer links to the request
- "redlink" if the referer is an article and links to the request, but the request is not in the production enwiki.page table
- "other" if the referer and request are both articles but the referer does not link to the request. This can happen when clients search or spoof their refer
Referers were mapped to a fixed set of values corresponding to internal traffic or external traffic from one of the top 5 global traffic sources to English Wikipedia, based on this scheme:
- an article in the main namespace of English Wikipedia -> the article title
- any Wikipedia page that is not in the main namespace of English Wikipedia ->
other-wikipedia
- an empty referer ->
other-empty
- a page from any other Wikimedia project ->
other-internal
- Google ->
other-google
- Yahoo ->
other-yahoo
- Bing ->
other-bing
- Facebook ->
other-facebook
- Twitter ->
other-twitter
- anything else ->
other-other
In the second line of the file above, we can see there were 121 clicks from Google to the Wikipedia page on "!!" (double exclamation marks). People search for everything!
- prev_id = (nothing)
- curr_id = 3632887 --> (Wikipedia page ID)
- n = 121 (People clicked from Google to this page 121 times in this month.)
- prev_title = other-google (This data record is for referals from Google.)
- curr_title = !! (This Wikipedia page is about a double exclamation mark.)
- type = other
Create a DataFrame from this CSV
- it's as easy as the following code.
// Load the raw dataset stored as a CSV file
val clickstream = sqlContext
.read
.format("csv")
.options(Map("header" -> "true", "delimiter" -> "\t", "mode" -> "PERMISSIVE", "inferSchema" -> "true"))
.load("/datasets/sds/wikipedia-datasets/2015_2_clickstream_subsampled.tsv")
clickstream: org.apache.spark.sql.DataFrame = [prev_id: double, curr_id: double ... 4 more fields]
clickstream.count
res4: Long = 224809
clickstream.printSchema
root
|-- prev_id: double (nullable = true)
|-- curr_id: double (nullable = true)
|-- n: integer (nullable = true)
|-- prev_title: string (nullable = true)
|-- curr_title: string (nullable = true)
|-- type: string (nullable = true)
display(clickstream)
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
37284.0 | 197438.0 | 41.0 | Brain_tumor | Fontanelle | link |
2904478.0 | 2.9932496e7 | 14.0 | Ottoman_Reform_Edict_of_1856 | Hatt-i_humayun | other |
null | 412127.0 | 39.0 | other-wikipedia | Tony_Zale | other |
2368683.0 | 209811.0 | 15.0 | Trajan's_Forum | Looting | other |
7691324.0 | 17616.0 | 14.0 | Zonal_flow | Latitude | link |
null | 1.9730805e7 | 170.0 | other-empty | Ryan_Jones_(ice_hockey) | other |
null | 129375.0 | 32.0 | other-empty | Reading,_Ohio | other |
1.5580374e7 | 2554846.0 | 14.0 | Main_Page | Toots | other |
348959.0 | 3.5701262e7 | 53.0 | Japanese_dialects | Hokkaido_dialects | link |
null | 614279.0 | 16.0 | other-yahoo | Nick_13 | other |
148898.0 | 3.6496677e7 | 13.0 | Asian_American | Watsonville_riots | other |
7997964.0 | 2.0992676e7 | 11.0 | Chikara_Campeonatos_de_Parejas | The_Colony_(professional_wrestling) | link |
null | 5922274.0 | 22.0 | other-empty | John_William_Loudon | other |
null | 1997924.0 | 30.0 | other-empty | Mister_Cartoon | other |
null | 2774369.0 | 10.0 | other-empty | Knottingley_railway_station | other |
null | 2.7283921e7 | 13.0 | other-google | Caret,_Virginia | other |
4940115.0 | 2370506.0 | 68.0 | Drew_Mitchell | RC_Toulonnais | link |
6514702.0 | 6982829.0 | 2755.0 | Lonelygirl15 | Jessica_Lee_Rose | link |
4.3010378e7 | 451169.0 | 74.0 | Pro_Evolution_Soccer_2015 | Swansea_City_A.F.C. | other |
null | 2653829.0 | 12.0 | other-google | List_of_places_in_New_York:_V | other |
2979541.0 | 1.5580374e7 | 16.0 | The_Kooks | Main_Page | other |
2378072.0 | 877225.0 | 42.0 | The_Crow:_Wicked_Prayer | The_Crow:_Salvation | link |
49706.0 | 77491.0 | 14.0 | Paul_Newman | Gregory_Peck | link |
3084058.0 | 1352229.0 | 10.0 | Sport_coat | Harrington_jacket | link |
null | 7079047.0 | 30.0 | other-empty | Mario_Gjurovski | other |
752246.0 | 1.1507227e7 | 13.0 | Miller_Park_(Milwaukee) | United_Football_League_(2009–12) | other |
412214.0 | 278018.0 | 18.0 | Bill_Russell | NBA_All-Star_Game | link |
158696.0 | 26272.0 | 11.0 | Roland_TR-808 | Ryuichi_Sakamoto | link |
322055.0 | 322060.0 | 254.0 | USS_Constellation_(1797) | USS_Constellation_(1854) | link |
525928.0 | 3.3402653e7 | 13.0 | Special_agent | Gus_Fring | link |
2.4930946e7 | 27169.0 | 113.0 | Eric_Mangini | San_Francisco_49ers | link |
null | 3.5027653e7 | 48.0 | other-wikipedia | Mara_Maru | other |
2.1073732e7 | 3.3188989e7 | 12.0 | Mexican–American_War | Santa_Ana | other |
1.4912557e7 | 4.1491686e7 | 18.0 | Caucasus_Emirate | December_2013_Volgograd_bombings | link |
3219844.0 | 3002478.0 | 29.0 | Azure_Dragon | Horn_(Chinese_constellation) | link |
null | 116508.0 | 43.0 | other-empty | Brentwood,_Maryland | other |
26750.0 | 220636.0 | 18.0 | Sri_Lanka | Universal_suffrage | link |
34404.0 | 341594.0 | 78.0 | Economy_of_Zimbabwe | Land_reform_in_Zimbabwe | link |
null | 3.074887e7 | 25.0 | other-google | Sam_Weiss | other |
3.8870894e7 | 1.5580374e7 | 17.0 | Lupe_Fuentes | Main_Page | other |
null | 5020425.0 | 1375.0 | other-google | FEG_PA-63 | other |
null | 99891.0 | 341.0 | other-empty | Gulf_Shores,_Alabama | other |
1260484.0 | 2.2763421e7 | 23.0 | Ubud | Ubud_District | link |
1.6113578e7 | 2.065561e7 | 12.0 | Ronald_Allen_Smith | Montana_State_Prison | link |
null | 1.199021e7 | 24.0 | other-yahoo | List_of_awards_and_nominations_received_by_Shah_Rukh_Khan | other |
3841.0 | 2266430.0 | 187.0 | Bud_Spencer | Ace_High_(1968_film) | link |
846862.0 | 1148.0 | 15.0 | W._O._Bentley | Adelaide | link |
null | 34168.0 | 18.0 | other-twitter | Xenogears | other |
2.3712589e7 | 557091.0 | 76.0 | Alternative_hip_hop | Underground_hip_hop | link |
null | 1.379992e7 | 31.0 | other-google | Gheorghe_Păun | other |
24140.0 | 28436.0 | 10.0 | Paul_the_Apostle | Saint | other |
null | 8343572.0 | 16.0 | other-wikipedia | Hulwan | other |
null | 2.392808e7 | 110.0 | other-empty | Craig_Dawson | other |
null | 3.6155348e7 | 15.0 | other-bing | List_of_world_championships_medalists_in_powerlifting_(men) | other |
4673783.0 | 4676317.0 | 51.0 | Double_fisherman's_knot | Double_overhand_knot | link |
null | 619770.0 | 10.0 | other-wikipedia | Royal_Academy_summer_exhibition | other |
5577654.0 | 601316.0 | 42.0 | List_of_Fables_characters | Ichabod_Crane | link |
11006.0 | 2.8363011e7 | 39.0 | February_19 | Sérgio_Júnior | other |
null | 1.4978921e7 | 16.0 | other-wikipedia | Herbert_Walther | other |
19374.0 | 57546.0 | 154.0 | Model_organism | Caenorhabditis_elegans | link |
null | 4049702.0 | 15.0 | other-bing | A-91 | other |
2.4572232e7 | 2.2008992e7 | 12.0 | Joey_Sturgis | Someday_Came_Suddenly | link |
1122303.0 | 6950178.0 | 13.0 | Ben_Olsen | Ben_Olson | link |
null | 4403167.0 | 15.0 | other-other | Fereydoon_Moshiri | other |
null | 423041.0 | 23.0 | other-empty | First_Circle | other |
1.3078837e7 | 2.7332848e7 | 12.0 | 2007_US_Open_–_Boys'_Singles | Matteo_Trevisan | link |
null | 6493680.0 | 11.0 | other-google | Mentai_Rock | other |
1.1197284e7 | 1.744141e7 | 12.0 | Kurt_Pellegrino | Júnior_Assunção | other |
887544.0 | 2420403.0 | 552.0 | Alisha_Klass | Seymore_Butts | link |
1.0609116e7 | 4.3173611e7 | 17.0 | Arizona_Wildcats_men's_basketball | Rondae_Hollis-Jefferson | link |
null | 616622.0 | 724.0 | other-wikipedia | Andriy_Shevchenko | other |
2296379.0 | 1771587.0 | 14.0 | Palmar_erythema | Pregnancy | link |
6678.0 | 99426.0 | 19.0 | Cat | Naphthalene | link |
55502.0 | 55501.0 | 40.0 | 860s_BC | 850s_BC | link |
2.181477e7 | 74940.0 | 106.0 | Langston_Hughes | Marian_Anderson | link |
763905.0 | 3.9681124e7 | 62.0 | Tien | Tien_(surname) | link |
4.4251018e7 | 3.7049649e7 | 14.0 | HyperDex | Spanner_(database) | link |
5697437.0 | 192755.0 | 65.0 | The_Cockpit_(OVA) | Yokosuka_MXY7_Ohka | link |
3084191.0 | null | 17.0 | Dany_Verissimo | John_B._Root | redlink |
9624289.0 | 1.9985931e7 | 329.0 | DirecTV | DirecTV_satellite_fleet | link |
31734.0 | 72227.0 | 18.0 | Urea | Plywood | link |
1078676.0 | 4486620.0 | 13.0 | Burundian_Civil_War | United_Nations_Operation_in_Burundi | link |
4408.0 | 1147922.0 | 168.0 | Buddy_Holly | Music_of_Lubbock,_Texas | other |
null | 444112.0 | 33.0 | other-yahoo | Gnoll | other |
3369981.0 | 1516915.0 | 16.0 | Flu_(disambiguation) | Swine_influenza | other |
468301.0 | 982480.0 | 229.0 | Samantha_Morton | John_Carter_(film) | link |
null | 6469961.0 | 35.0 | other-wikipedia | Sertorian_War | other |
null | 3.8758012e7 | 109.0 | other-other | List_of_federal_subjects_of_Russia_by_GDP_per_capita | other |
null | 3.6390439e7 | 25.0 | other-google | Major_Mining_Sites_of_Wallonia | other |
11887.0 | 895357.0 | 43.0 | Greek_language | English_words_of_Greek_origin | link |
21383.0 | 7901223.0 | 14.0 | Nigeria | Nigerian_general_election,_2007 | link |
731774.0 | 2539671.0 | 324.0 | Law_of_Moses | Ten_Commandments | link |
2.3896488e7 | 1.1263766e7 | 11.0 | Vampire_Academy_(novel) | Diary_of_a_Wimpy_Kid | link |
null | 1508712.0 | 20.0 | other-empty | Mikoyan_MiG-110 | other |
2.1536106e7 | 2.7520075e7 | 17.0 | Jennifer_Blake_(wrestler) | Mari_Apache | link |
null | 2.4052308e7 | 58.0 | other-empty | Francis_Crowley | other |
null | 1.6792585e7 | 75.0 | other-google | Phulkian_sardars | other |
2812945.0 | 1.6230289e7 | 25.0 | Double_Dutch_Bus | Raven-Symoné_(album) | link |
3.9522631e7 | 253375.0 | 70.0 | News_Corp | HarperCollins | link |
null | 2.1329684e7 | 17.0 | other-other | David_Lyon_(sociologist) | other |
338344.0 | 3.9032732e7 | 84.0 | List_of_tallest_buildings_in_the_world | Discovery_Primea | link |
3.9839062e7 | 1.9087186e7 | 12.0 | List_of_unicorns | Noah's_Ark_(2007_film) | link |
58666.0 | 3550910.0 | 12.0 | United_States_Environmental_Protection_Agency | Marine_Mammal_Protection_Act_of_1972 | link |
null | 3.5675894e7 | 11.0 | other-wikipedia | AdMarketplace | other |
627321.0 | 203426.0 | 16.0 | Burma_Campaign | Nyasaland | link |
234382.0 | 378561.0 | 180.0 | Elephant_(2003_film) | Eric_Harris_and_Dylan_Klebold | link |
null | 434919.0 | 81.0 | other-google | Alan_Meale | other |
null | 2.6552915e7 | 21.0 | other-empty | Gertrude_Abercrombie | other |
1.9172225e7 | 206790.0 | 84.0 | Prokaryote | Spirochaete | link |
null | 8759210.0 | 46.0 | other-google | TM_and_Cult_Mania | other |
34742.0 | 75831.0 | 27.0 | 5th_century | Flavius_Aetius | other |
737160.0 | 4445580.0 | 10.0 | Soilwork | Sonic_Syndicate | link |
null | 2.0594394e7 | 12.0 | other-wikipedia | Claus_Costa | other |
490391.0 | 682513.0 | 10.0 | Adnan_Gulshair_el_Shukrijumah | Abderraouf_Jdey | link |
null | 5772621.0 | 21.0 | other-wikipedia | The_Watsons | other |
1.7015795e7 | 1.336124e7 | 23.0 | Teyana_Taylor | Blue_Magic_(song) | link |
8026795.0 | 14653.0 | 12.0 | Iran–Turkey_relations | Iran | link |
null | 3.7569668e7 | 15.0 | other-google | I.O.U._(Jimmy_Dean_song) | other |
null | 2.3416901e7 | 21.0 | other-google | Strathcarron_Sports_Cars | other |
303241.0 | 719034.0 | 14.0 | Strong_Guy | Mephisto_(comics) | link |
null | 673275.0 | 203.0 | other-other | Scale_insect | other |
null | 5925339.0 | 151.0 | other-google | Flintham | other |
11092.0 | 653246.0 | 39.0 | Finger_Lakes | Canadice_Lake | link |
45715.0 | 2011918.0 | 22.0 | Arecaceae | Minoo_Island | link |
8427319.0 | 245765.0 | 16.0 | List_of_alternative_country_musicians | The_Jayhawks | other |
93036.0 | 129736.0 | 13.0 | Portage_County,_Ohio | Hiram,_Ohio | link |
null | 3.1998475e7 | 10.0 | other-empty | Royal_Botanical_Expedition_to_New_Granada | other |
3717.0 | 4911607.0 | 33.0 | Brain | Anterior_grey_column | other |
null | 4.3030724e7 | 15.0 | other-wikipedia | 99th_Infantry_Battalion_(United_States) | other |
3615880.0 | 2.9646991e7 | 11.0 | Ranger_(Dungeons_&_Dragons) | The_Complete_Fighter's_Handbook | link |
null | 3.6599164e7 | 26.0 | other-wikipedia | Rudding_Park_House | other |
null | 2.0000187e7 | 405.0 | other-wikipedia | Inflection | other |
3.593072e7 | 574988.0 | 41.0 | Stairway_to_Hell | Ugly_Kid_Joe | link |
78127.0 | 3358304.0 | 10.0 | James_Doohan | Star_Trek_(film_franchise) | other |
4.0530767e7 | 19281.0 | 42.0 | Visa_requirements_for_Palestinian_citizens | Montserrat | link |
4100885.0 | 29301.0 | 27.0 | Meaning_(linguistics) | Semiotics | link |
null | 1.9535017e7 | 48.0 | other-google | Aumism | other |
null | 3.9268446e7 | 10.0 | other-other | Raúl_Duarte_(basketball) | other |
2.2942232e7 | 9891690.0 | 24.0 | Lists_of_academic_journals | List_of_pharmaceutical_sciences_journals | link |
null | 9108276.0 | 797.0 | other-other | Kesh_(Sikhism) | other |
4306874.0 | 1615009.0 | 14.0 | Khartoum_International_Airport | Flynas | link |
3.3948854e7 | 2.7572278e7 | 10.0 | Robert_A._J._Gagnon | Jack_Rogers_(clergy) | link |
2.5318118e7 | 17867.0 | 19.0 | Government_of_the_United_Kingdom | London | link |
4.4729787e7 | 5070615.0 | 12.0 | Marvel_Contest_of_Champions | Marvel_Super_Heroes:_War_of_the_Gems | link |
65192.0 | 141976.0 | 17.0 | Three_Gorges_Dam | Alstom | link |
194664.0 | 924738.0 | 86.0 | The_Flintstones_(film) | Richard_Moll | link |
null | 2370304.0 | 1180.0 | other-google | Sriperumbudur | other |
null | 2.6678779e7 | 19.0 | other-google | Geeklog | other |
null | 109049.0 | 55.0 | other-other | Margate,_Florida | other |
null | 365310.0 | 961.0 | other-google | Vostok_(spacecraft) | other |
null | 191537.0 | 271.0 | other-other | Internment | other |
null | 1250542.0 | 27.0 | other-other | Jake_Peavy | other |
1069442.0 | 180425.0 | 39.0 | Charles_Bickford | Woodlawn_Memorial_Cemetery,_Santa_Monica | link |
null | 3.8641017e7 | 3802.0 | other-google | GeForce_800M_series | other |
80387.0 | 77944.0 | 29.0 | Hamadryad | Hesperides | link |
18819.0 | 2399697.0 | 35.0 | Microeconomics | Heterodox_economics | link |
9566994.0 | 9574674.0 | 12.0 | The_Renegade_(short_story) | The_Silent_Men | link |
333703.0 | 161436.0 | 15.0 | Angelo_Dundee | Ernest_Borgnine | link |
2.6301553e7 | 10150.0 | 34.0 | António_de_Oliveira_Salazar | Engelbert_Dollfuss | other |
4.2255443e7 | null | 21.0 | List_of_United_States_bomber_aircraft | List_of_United_States_attack_aircraft | redlink |
null | 1.2290729e7 | 40.0 | other-wikipedia | Monte_Carlo_(biscuit) | other |
7619598.0 | 2916479.0 | 33.0 | Fusiliers_Commandos_de_l'Air | German_Air_Force_Regiment | link |
7457961.0 | 1651671.0 | 28.0 | List_of_Castlevania:_Aria_of_Sorrow_and_Dawn_of_Sorrow_characters | Soma_Cruz | link |
null | 1.8755551e7 | 167.0 | other-google | Hooli | other |
null | 2.557502e7 | 12.0 | other-wikipedia | Leucadendron_album | other |
null | 9041425.0 | 57.0 | other-empty | Country_Teasers | other |
null | 1.9226982e7 | 17.0 | other-google | The_Wits | other |
5625186.0 | 2.3378704e7 | 22.0 | Chadian–Libyan_conflict | Chadian_Civil_War_(1965–79) | link |
null | 2783508.0 | 17.0 | other-other | Encephalartos | other |
192042.0 | 155627.0 | 22.0 | Over-the-counter_drug | Ibuprofen | link |
null | 3.8764007e7 | 31.0 | other-empty | Secret_Story_4_(Portugal) | other |
22205.0 | 1147409.0 | 305.0 | Oasis | Ein_Gedi | link |
1.8899195e7 | 4527556.0 | 12.0 | Rhynchosaurus | Rhynchosaur | link |
null | 2.61932e7 | 42.0 | other-wikipedia | Charl_Van_Den_Berg | other |
1.9567899e7 | 2.5757144e7 | 224.0 | Nintendo_DSi | Foto_Showdown | link |
1.7981721e7 | 518667.0 | 13.0 | Afamelanotide | Erythropoietic_protoporphyria | link |
637310.0 | 1.0684273e7 | 41.0 | Japanese_submarine_I-25 | Leninets-class_submarine | other |
null | 3958341.0 | 27.0 | other-empty | Atsushi_Itō_(actor) | other |
30085.0 | 1185285.0 | 20.0 | Thomas_Mann | Kilchberg,_Zürich | link |
2652103.0 | 2.65684e7 | 294.0 | Tiling_window_manager | Awesome_(window_manager) | link |
null | 9653709.0 | 36.0 | other-google | Clint_Warwick | other |
1.802006e7 | 4857534.0 | 17.0 | Brimonidine/timolol | Brimonidine | link |
156778.0 | 52671.0 | 122.0 | Hypochondriasis | Psychosomatic_medicine | link |
1.3335045e7 | 335195.0 | 18.0 | Dungeons_&_Dragons_in_popular_culture | Stephen_Colbert | link |
3338747.0 | 4134000.0 | 18.0 | Travis_Willingham | Ouran_High_School_Host_Club | link |
2.4370563e7 | 1.9866746e7 | 66.0 | Harry_Potter_and_the_Forbidden_Journey | Transformers:_The_Ride | link |
3.6438468e7 | 2.483689e7 | 12.0 | Alternative_versions_of_Joker | Homosexuality_in_the_Batman_franchise | link |
8119611.0 | 33158.0 | 21.0 | 100_Photographs_that_Changed_the_World | War | link |
2.4102801e7 | 8986839.0 | 72.0 | List_of_Stradivarius_instruments | Hammer_Stradivarius | link |
null | 4043540.0 | 37.0 | other-empty | The_Silverado_Squatters | other |
1.2801225e7 | 198606.0 | 28.0 | Blair_Tindall | Malcolm_McDowell | link |
737.0 | 1.1203313e7 | 47.0 | Afghanistan | Afghanistan–Pakistan_skirmishes | link |
null | 26039.0 | 189.0 | other-empty | Photek | other |
null | 7008604.0 | 44.0 | other-empty | Edward_S._Walker,_Jr. | other |
null | 5031359.0 | 18.0 | other-google | Families_Acting_for_Innocent_Relatives | other |
null | 5545390.0 | 21.0 | other-other | EWR_VJ_101 | other |
4503997.0 | 1.4695141e7 | 127.0 | What_About_Brian | List_of_What_About_Brian_episodes | link |
null | 4.137716e7 | 14.0 | other-empty | Frederick_Fox_(milliner) | other |
3096312.0 | 99459.0 | 15.0 | Dana_Wynter | Airport_(1970_film) | link |
null | 1.2995239e7 | 18.0 | other-wikipedia | Nervous_Night_(album) | other |
null | 1.47815e7 | 49.0 | other-google | Thermal_dose_unit | other |
1.8186074e7 | 1.608506e7 | 33.0 | National_Highway_7A_(India)(old_numbering) | National_Highway_7_(India)(old_numbering) | link |
null | 3880952.0 | 19.0 | other-empty | Marion_Dudley | other |
1171412.0 | 6847270.0 | 22.0 | Ivatan_language | Batanic_languages | link |
8837050.0 | 30027.0 | 14.0 | Copernican_heliocentrism | Tycho_Brahe | link |
4.3380319e7 | 4.2654791e7 | 49.0 | Scandal_(season_4) | Grey's_Anatomy_(season_11) | other |
1928831.0 | 1928617.0 | 15.0 | List_of_moths | Laothoe_populi | link |
222417.0 | 1793072.0 | 21.0 | A._R._Rahman | Dil_Se.. | link |
1537974.0 | 3.3757237e7 | 18.0 | Angelo_Scola | Francesco_Moraglia | link |
2.0755574e7 | 8249183.0 | 37.0 | Venezuelan_of_European_descent | María_Rivas | other |
524874.0 | 2204.0 | 16.0 | Voiced_pharyngeal_fricative | Arabic_alphabet | link |
60730.0 | 212182.0 | 33.0 | Lucy_Maud_Montgomery | Order_of_the_British_Empire | link |
null | 2.2965354e7 | 13.0 | other-google | Shelek | other |
2.0646706e7 | 1977645.0 | 10.0 | 2009_Campeonato_Brasileiro_Série_A | Diego_Tardelli | link |
2.1513743e7 | 2.4708146e7 | 17.0 | Jason_Aldean_discography | The_Truth_(Jason_Aldean_song) | link |
null | 9277.0 | 1925.0 | other-wikipedia | Ellipse | other |
null | 2.0958639e7 | 40.0 | other-empty | Trailer_Park_of_Terror | other |
33265.0 | 6723726.0 | 74.0 | Winston_Churchill | Operation_Overlord | link |
3.0533402e7 | 2.1723891e7 | 25.0 | Tryblidiida | Micropilina | link |
2721803.0 | 1.5146151e7 | 16.0 | Battle_of_Baugé | Baugé | link |
153784.0 | 17098.0 | 14.0 | Naginata | Kendo | other |
null | 1.4347506e7 | 15.0 | other-bing | The_Hat | other |
9768801.0 | 3.3196141e7 | 12.0 | Manchester_United_F.C._Reserves_and_Academy | Peter_O'Sullivan_(Welsh_footballer) | link |
330447.0 | 1718041.0 | 14.0 | Binti_Jua | Western_lowland_gorilla | link |
18522.0 | 17730.0 | 10.0 | Latino_(demonym) | Latin | link |
1.1610928e7 | 1179269.0 | 25.0 | Peacock-class_corvette | Naval_Service_(Ireland) | other |
625758.0 | 144367.0 | 11.0 | Bill_Willingham | Justice_Society_of_America | link |
3.3930403e7 | 5064492.0 | 108.0 | South_Park:_The_Stick_of_Truth | South_Park_(video_game) | link |
148682.0 | 3891002.0 | 10.0 | Pertinax | Marcomannic_Wars | link |
null | 2.5584664e7 | 43.0 | other-other | Discharge_coefficient | other |
null | 2374342.0 | 27.0 | other-yahoo | Axillary_vein | other |
null | 3.5009269e7 | 47.0 | other-bing | Successful_aging | other |
62069.0 | 2925739.0 | 50.0 | Panthéon | San_Pietro_in_Montorio | link |
1602491.0 | 3568081.0 | 24.0 | Ghazipur | Abdul_Hamid_(soldier) | link |
null | 4849167.0 | 29.0 | other-other | Brethren_of_Purity | other |
null | 1.8592807e7 | 53.0 | other-wikipedia | Doc_Shaw | other |
2.3576946e7 | 4440840.0 | 13.0 | The_Collector_(2009_film) | The_Collection | other |
null | 2.7612808e7 | 24.0 | other-bing | "Benjamin_Miles_""C-Note""_Franklin" | other |
null | 560667.0 | 25.0 | other-wikipedia | Index_of_Babylon_5_articles | other |
1.5432504e7 | 315269.0 | 22.0 | Death_Scream | Murder_of_Kitty_Genovese | other |
null | 1904377.0 | 40.0 | other-yahoo | Canon_A-1 | other |
8556123.0 | 1.3036212e7 | 1866.0 | Rules_of_Engagement_(TV_series) | David_Spade | link |
null | 2843028.0 | 17.0 | other-wikipedia | Mid-Canada_Communications | other |
null | 4724437.0 | 345.0 | other-google | University_of_the_Balearic_Islands | other |
null | 2.9457801e7 | 247.0 | other-wikipedia | Age_of_Heroes_(film) | other |
3.9120425e7 | 3.9868659e7 | 90.0 | Santhosh_Narayanan | Lucia_(2013_film) | link |
1904112.0 | 1004953.0 | 42.0 | Lamberto_Bava | Mario_Bava | link |
null | 2.1372915e7 | 33.0 | other-yahoo | Christian_views_on_divorce | other |
91320.0 | 91267.0 | 15.0 | Franklin_County,_Virginia | Pittsylvania_County,_Virginia | link |
1334948.0 | 238273.0 | 221.0 | Lupus_anticoagulant | Antiphospholipid_syndrome | link |
null | 3.2782542e7 | 24.0 | other-wikipedia | Sara_Pichelli | other |
null | 1.7954948e7 | 12.0 | other-google | Club_Sportif_Makthar | other |
null | 2.1880672e7 | 14.0 | other-bing | Bitte_Orca | other |
10128.0 | 75899.0 | 32.0 | Elizabeth_I_of_England | Huguenot | link |
7437933.0 | 1.1869952e7 | 29.0 | Space_and_Upper_Atmosphere_Research_Commission | Chronology_of_Pakistan's_rocket_tests | link |
2.4426866e7 | 1.2757148e7 | 27.0 | Huamei | Li_hing_mui | link |
2942161.0 | 2933074.0 | 28.0 | Canon_T_series | Canon_T50 | link |
null | 1.4084798e7 | 18.0 | other-empty | 2008_Russian_Premier_League | other |
3.8317679e7 | 3.8780447e7 | 11.0 | Marxist_humanism | Structural_Marxism | link |
null | 2.2571562e7 | 13.0 | other-bing | Jennifer_Servo | other |
2.0618103e7 | 275978.0 | 25.0 | Camphora | Camphor | link |
1.5580374e7 | 2.4128239e7 | 36.0 | Main_Page | Selena_Gomez_&_the_Scene | other |
4.5274337e7 | 32538.0 | 133.0 | Gotlandsdricka | Viking_Age | link |
null | 1.1252905e7 | 205.0 | other-yahoo | Biblical_manuscript | other |
239038.0 | 1170.0 | 18.0 | Construction | Architect | link |
3.8465988e7 | 2540476.0 | 12.0 | List_of_Republic_of_Ireland_international_footballers | Kevin_Kilbane | link |
3.9413121e7 | 49696.0 | 68.0 | Giorgio_Moroder_discography | Metropolis_(1927_film) | link |
null | 36743.0 | 281.0 | other-other | Atalanta | other |
28237.0 | 177534.0 | 192.0 | Space_Shuttle_Columbia | Ilan_Ramon | link |
3.148073e7 | 715008.0 | 36.0 | 2011–12_Football_League_Championship | Football_League_Championship | link |
null | 1014389.0 | 37.0 | other-bing | No_Man's_Land_Fort | other |
502307.0 | 323983.0 | 46.0 | Cole_Turner | Billy_Zane | link |
167745.0 | 5301493.0 | 10.0 | Vaquero | Mesoamerica | link |
1925385.0 | 1925397.0 | 12.0 | Walter_F._Murphy | The_Vicar_of_Christ | other |
null | 2.1766442e7 | 113.0 | other-empty | David_Álvarez | other |
3244595.0 | 1584677.0 | 22.0 | Harpe_brothers | War_of_the_Regulation | link |
1.1221038e7 | 1510621.0 | 13.0 | 2007–08_Rangers_F.C._season | Alan_Hutton | link |
1.5580374e7 | 1.7408264e7 | 10.0 | Main_Page | Vorapaxar | other |
null | 2.5008567e7 | 18.0 | other-empty | Roderic_Noble | other |
3424149.0 | 5912292.0 | 27.0 | 1975–76_NBA_season | 1976_NBA_Playoffs | link |
4.2736926e7 | 418286.0 | 158.0 | The_Blacklist_(season_1) | Justin_Kirk | link |
null | 1.3598815e7 | 17.0 | other-google | Niquero | other |
2.4509049e7 | 1.4952458e7 | 10.0 | Maritime_flag_signalling | Flag_semaphore | other |
3660711.0 | 1335545.0 | 62.0 | Duncan_Keith | 2002_NHL_Entry_Draft | link |
30450.0 | 49172.0 | 15.0 | Topological_space | Interval_(mathematics) | link |
1424791.0 | 60368.0 | 60.0 | Anne_Wiazemsky | Jean-Luc_Godard | link |
null | 4.0712418e7 | 14.0 | other-google | NEWS_(Austrian_magazine) | other |
null | 1214237.0 | 111.0 | other-wikipedia | Fold_Your_Hands_Child,_You_Walk_Like_a_Peasant | other |
null | 1.5832772e7 | 223.0 | other-other | Osu! | other |
966943.0 | 5092756.0 | 22.0 | List_of_Family_Guy_episodes | List_of_Top_Gear_episodes | other |
1.3638115e7 | 4.0387861e7 | 23.0 | Carciofi_alla_giudia | Carciofi_alla_romana | link |
null | 6787685.0 | 33.0 | other-google | Bovalino | other |
null | 1386389.0 | 81.0 | other-other | Southern_African_Customs_Union | other |
576635.0 | 986684.0 | 12.0 | Port_scanner | Rate_limiting | link |
56462.0 | 8639835.0 | 24.0 | Carpal_tunnel_syndrome | Radiculopathy | link |
1.602284e7 | 1.8895122e7 | 29.0 | 2008_Major_League_Baseball_Draft | Brett_Lawrie | link |
null | 1834626.0 | 17.0 | other-bing | Knowsley_Safari_Park | other |
861686.0 | 343056.0 | 16.0 | Tyrone_Guthrie | Stratford_Shakespeare_Festival | other |
1.5580374e7 | 288197.0 | 124.0 | Main_Page | Kapil_Dev | other |
3.4075076e7 | 3.6541863e7 | 59.0 | Gopichand_Malineni | Balupu | link |
171141.0 | 3966054.0 | 19.0 | Guava | Mexico | link |
null | 9441043.0 | 77.0 | other-empty | Cooliris | other |
null | 5500697.0 | 3623.0 | other-google | Kiss_Me_(Sixpence_None_the_Richer_song) | other |
null | 2.287596e7 | 11.0 | other-bing | Abblasen | other |
66297.0 | 53682.0 | 12.0 | Chinese_art | Calligraphy | link |
null | 4.5282472e7 | 75.0 | other-other | Aspire_Music_Group | other |
3.0588065e7 | 86817.0 | 14.0 | List_of_authoritarian_regimes_supported_by_the_United_States | Omar_Torrijos | link |
null | 1.7341725e7 | 15.0 | other-empty | Nasim_Wali_Khan | other |
46426.0 | 1.0834159e7 | 21.0 | Basil_II | Battle_of_Kreta | link |
59653.0 | 226141.0 | 123.0 | Foreign_and_Commonwealth_Office | Secretary_of_State_for_Commonwealth_Affairs | link |
9378717.0 | 164227.0 | 50.0 | The_Spy_Who_Came_in_from_the_Cold_(film) | Michael_Hordern | link |
5444617.0 | 5485318.0 | 12.0 | Military_of_Montenegro | UTVA_75 | other |
796141.0 | 8532006.0 | 17.0 | 1966–67_United_States_network_television_schedule | Coronet_Blue | link |
381658.0 | 3.7085064e7 | 21.0 | FK_Partizan | History_of_FK_Partizan | link |
null | 2.8350129e7 | 11.0 | other-empty | Arizona_Mountains_forests | other |
3.1927202e7 | 2.9381422e7 | 11.0 | List_of_songs_recorded_by_My_Chemical_Romance | Sing_(My_Chemical_Romance_song) | link |
null | 7289088.0 | 30.0 | other-google | 1938_World_Men's_Handball_Championship | other |
8926582.0 | 174104.0 | 12.0 | Imperial_Japanese_Army_General_Staff_Office | Yamagata_Aritomo | link |
1.9258996e7 | 1.4116605e7 | 14.0 | Den_Saakaldte | Niklas_Kvarforth | link |
44682.0 | 6988539.0 | 48.0 | CMYK_color_model | Screen_angle | link |
2.3608452e7 | 1.5062239e7 | 152.0 | Galatasaray_S.K._(football) | Sercan_Yıldırım | link |
2617605.0 | 4.3680163e7 | 27.0 | Saipa_F.C. | Hamed_Shiri | link |
1.7645814e7 | 1.7519198e7 | 20.0 | I_Hate_You_with_a_Passion | Andre_Nickatina | link |
2.1327889e7 | 1110833.0 | 12.0 | Kröd_Mändoon_and_the_Flaming_Sword_of_Fire | Roger_Allam | link |
2.3487767e7 | 2.6323418e7 | 27.0 | The_Tempest | True_Reportory | link |
20869.0 | 2.3041952e7 | 12.0 | Monoamine_oxidase_inhibitor | Mebanazine | link |
null | 3.1056907e7 | 12.0 | other-yahoo | Adebisi_Shank | other |
16716.0 | 1.5580374e7 | 68.0 | Kansas | Main_Page | other |
2.5731835e7 | 2.6693897e7 | 16.0 | Colourist_painting | Fauvism | other |
763785.0 | 3540456.0 | 111.0 | Wellcome_Trust | List_of_wealthiest_charitable_foundations | link |
null | 177953.0 | 357.0 | other-wikipedia | America's_Army | other |
null | 2138855.0 | 22.0 | other-empty | Garchitorena,_Camarines_Sur | other |
1161802.0 | 1.4216651e7 | 10.0 | Nokia_3110 | Nokia_1011 | link |
null | 1.410232e7 | 318.0 | other-google | Take_Me_in_Your_Arms_(Rock_Me_a_Little_While) | other |
162036.0 | 110232.0 | 30.0 | List_of_United_States_military_bases | Moody_Air_Force_Base | link |
3984468.0 | 3166244.0 | 11.0 | Oscar_Peterson_discography | Ella_and_Oscar | link |
4255996.0 | 1.4312625e7 | 12.0 | Western_Sahara_conflict | Sahrawi_refugee_camps | link |
null | 2.2661704e7 | 11.0 | other-google | Robin_Backhaus | other |
null | 1988.0 | 65.0 | other-yahoo | Abel_Tasman | other |
null | 6051097.0 | 482.0 | other-google | Trifluridine | other |
null | 2309869.0 | 11.0 | other-bing | Frank_Henenlotter | other |
1248129.0 | 1.1718319e7 | 16.0 | Port-Gentil | Stephane_Lasme | link |
null | 2872565.0 | 22.0 | other-other | Starfire_(board_wargame) | other |
1.0659362e7 | 1.7160872e7 | 16.0 | Yoon_Dong-sik | Gegard_Mousasi | link |
null | 1792018.0 | 55.0 | other-empty | Nintendo_Gamebooks | other |
null | 1.1223317e7 | 344.0 | other-other | Prince_Devitt | other |
null | 3.5910828e7 | 10.0 | other-wikipedia | Sheffield_United_F.C._Player_of_the_Year | other |
null | 2.8027307e7 | 109.0 | other-yahoo | Bones_(season_6) | other |
1.1911941e7 | 215619.0 | 10.0 | All_Out_of_Love | VH1 | link |
299717.0 | 3.5724251e7 | 192.0 | Courteney_Cox | Go_On_(TV_series) | link |
2.1930714e7 | 9265058.0 | 19.0 | Outline_of_Florida | List_of_ghost_towns_in_Florida | link |
581009.0 | 1439662.0 | 59.0 | Ford_GT | Super_GT | other |
null | 985187.0 | 92.0 | other-wikipedia | Driving_simulator | other |
null | 2995929.0 | 13.0 | other-empty | Edwards_Gardens | other |
34282.0 | 34393.0 | 116.0 | Yule | Yule_log | link |
355852.0 | 874356.0 | 13.0 | Dachau_concentration_camp | Miklós_Horthy,_Jr. | link |
601127.0 | 4194741.0 | 12.0 | List_of_Democratic_National_Conventions | Denver_Auditorium_Arena | link |
null | 2.6415234e7 | 60.0 | other-empty | Customs_valuation | other |
null | 2285190.0 | 20.0 | other-empty | Gastein_Convention | other |
499451.0 | 598952.0 | 15.0 | STS-42 | Ronald_J._Grabe | link |
null | 3.279898e7 | 11.0 | other-empty | Jalan_Besar_MRT_Station | other |
2.5864167e7 | 920737.0 | 51.0 | List_of_crowdsourcing_projects | Clickworkers | link |
3.4199866e7 | 7253509.0 | 318.0 | AKB0048 | AKB48 | link |
3.3526094e7 | 3.1748786e7 | 36.0 | QUnit | Jasmine_(JavaScript_framework) | link |
null | 5290240.0 | 10.0 | other-empty | Angus_M._Cannon | other |
1.52438e7 | 492820.0 | 13.0 | Eric_Valentine | Lostprophets | link |
20566.0 | 3564279.0 | 26.0 | Mandy_Patinkin | Tony_Award_for_Best_Featured_Actor_in_a_Musical | other |
5139911.0 | 1.4619184e7 | 12.0 | Entering_Heaven_alive | Ramalinga_Swamigal | link |
886579.0 | 1.1921455e7 | 14.0 | Eva_Longoria | Longoria | link |
null | 8743616.0 | 14.0 | other-other | Chung_Ling_High_School | other |
4593958.0 | 2069950.0 | 23.0 | The_Maltese_Falcon_(1941_film) | The_Celluloid_Closet | link |
211913.0 | 89235.0 | 107.0 | Christian_metal | Christian_rock | link |
null | 2.3834973e7 | 14.0 | other-google | Jitender_Kumar | other |
93135.0 | 58116.0 | 13.0 | Butler_County,_Ohio | Montgomery_County,_Ohio | link |
null | 2.9085741e7 | 15.0 | other-wikipedia | Parris_Cues | other |
null | 57564.0 | 33.0 | other-empty | Anselme_Payen | other |
1.9172199e7 | 1.9167679e7 | 10.0 | Monera | Virus | other |
379518.0 | 7301806.0 | 45.0 | Panoramic_photography | Panography | link |
null | 4.5383298e7 | 92.0 | other-wikipedia | Vachagan_Khalatyan | other |
3618502.0 | 1.9337279e7 | 69.0 | Echelon_Place | Great_Recession | link |
null | 3.1716175e7 | 59.0 | other-google | Nikki,_Wild_Dog_of_the_North | other |
null | 3.990522e7 | 16.0 | other-google | Harold_Harris_(disambiguation) | other |
3.5038133e7 | 8721272.0 | 13.0 | Pathogen | PHI-base | link |
null | 2016556.0 | 72.0 | other-google | Timmins/Victor_M._Power_Airport | other |
3.9746293e7 | 1758267.0 | 12.0 | Tulpa_(film) | Giallo | link |
480658.0 | 2.3742879e7 | 10.0 | List_of_web_service_specifications | XQuery | link |
1.7176729e7 | 2.010093e7 | 14.0 | Mondo_Meyer_Upakhyan | Samata_Das | link |
1259342.0 | 389664.0 | 11.0 | The_Street | The_Streets | link |
null | 3.2124266e7 | 26.0 | other-google | SnoRNA_prediction_software | other |
null | 136247.0 | 113.0 | other-yahoo | Boerne,_Texas | other |
2.4662654e7 | 1249019.0 | 13.0 | Killer_Klowns_from_Outer_Space_(album) | Killer_Klowns_from_Outer_Space | link |
null | 1565005.0 | 82.0 | other-yahoo | Retinal_haemorrhage | other |
null | 9315616.0 | 21.0 | other-empty | Gene_Youngblood | other |
1548943.0 | 802895.0 | 22.0 | Limited_partnership | Private_limited_company | link |
null | 3.1110904e7 | 147.0 | other-bing | Effects_of_stress_on_memory | other |
2.7553159e7 | 58250.0 | 13.0 | Health_care_in_the_United_States | United_States_Department_of_Health_and_Human_Services | link |
791155.0 | 60626.0 | 61.0 | Marty_Stuart | Lester_Flatt | link |
4.4740812e7 | 3.8382626e7 | 48.0 | Jin_Kyung | Gu_Family_Book | link |
1.5610217e7 | 2756348.0 | 132.0 | Useless_Loop,_Western_Australia | Monkey_Mia | link |
null | 1055437.0 | 46.0 | other-wikipedia | Deniable_encryption | other |
null | 1.7962717e7 | 10.0 | other-empty | Ayres_LM200_Loadmaster | other |
2502077.0 | 1.3015878e7 | 14.0 | Sales_taxes_in_the_United_States | Washington_(state) | other |
82933.0 | 349335.0 | 38.0 | Chloroform | Anesthesiologist | link |
1278087.0 | 1277999.0 | 21.0 | Nissan_Titan | North_American_Car_of_the_Year | link |
null | 718020.0 | 76.0 | other-yahoo | Equality | other |
3445929.0 | 3445909.0 | 54.0 | Obscura_(album) | The_Erosion_of_Sanity | link |
null | 2036467.0 | 21.0 | other-empty | Overath | other |
1.7647526e7 | 664019.0 | 10.0 | Alternative_versions_of_the_Punisher | Owl_(Marvel_Comics) | link |
1619743.0 | 3.1636392e7 | 16.0 | York—Simcoe | York—Simcoe_(provincial_electoral_district) | link |
2.5121085e7 | 7499.0 | 10.0 | APAV40 | RDX | other |
null | 1.2778103e7 | 13.0 | other-google | Shaden_Abu-Hijleh | other |
3.2866171e7 | 1221420.0 | 14.0 | John_F._Kennedy_assassination_conspiracy_theories | William_Greer | link |
1.0567624e7 | 173305.0 | 25.0 | Tert-Butyl_chloride | Isobutane | link |
null | 5625238.0 | 23.0 | other-wikipedia | Prehistoric_man | other |
6819181.0 | 5755695.0 | 14.0 | Valmara_59 | PROM-1 | link |
2453648.0 | 2012734.0 | 11.0 | List_of_comic_book_supervillain_debuts | Floronic_Man | link |
97006.0 | 96981.0 | 14.0 | Costilla_County,_Colorado | Las_Animas_County,_Colorado | link |
null | 1230540.0 | 79.0 | other-other | Daniel_Yergin | other |
null | 1.6615403e7 | 147.0 | other-wikipedia | List_of_women_warriors_in_folklore | other |
74326.0 | 3993162.0 | 30.0 | Nadia_Comăneci | Art_of_Mentoring | link |
2232219.0 | 2920148.0 | 28.0 | Tarquinius | Sextus_Tarquinius | link |
6014615.0 | 4.3471582e7 | 21.0 | Fox_Interactive | Anastasia:_Adventures_with_Pooka_and_Bartok | link |
null | 5191431.0 | 15.0 | other-google | Mansfield_Woodhouse_railway_station | other |
null | 2.6523084e7 | 16.0 | other-google | Dominic_Arizona_Bonuccelli | other |
null | 616958.0 | 26.0 | other-empty | Electrostatic_deflection | other |
485118.0 | 2249026.0 | 220.0 | List_of_countries_by_GDP_(PPP) | List_of_countries_by_income_equality | link |
1.3141832e7 | 47660.0 | 14.0 | Versailles_restaurant | Espresso | link |
null | 1777994.0 | 14.0 | other-twitter | 1,1-Difluoroethane | other |
1091514.0 | 3.8702216e7 | 70.0 | Bila_Tserkva | 1941_Bila_Tserkva_massacre | link |
11362.0 | 3.1300186e7 | 24.0 | February_16 | André_Berthomieu | link |
7994183.0 | 4460532.0 | 35.0 | Zicam | ICAM-1 | link |
3.1436814e7 | 1.6455081e7 | 99.0 | Brynne_Edelsten | Geoffrey_Edelsten | link |
null | 2139618.0 | 592.0 | other-google | Lee_Chapman | other |
2464121.0 | 2.1552009e7 | 13.0 | Asra_Nomani | Aisha | link |
59949.0 | 2845319.0 | 11.0 | Anglo-Catholicism | Traditional_Anglican_Communion | link |
2019904.0 | 3.9574425e7 | 17.0 | CSC_Media_Group | True_Drama | link |
null | 4168628.0 | 58.0 | other-empty | 1997_NCAA_Division_I-A_football_season | other |
null | 3.5535478e7 | 497.0 | other-wikipedia | Port_Royale_3:_Pirates_&_Merchants | other |
4477.0 | 9288.0 | 20.0 | The_Beach_Boys | Elvis_Presley | other |
null | 3899315.0 | 20.0 | other-google | Anglican_Diocese_of_Jos | other |
null | 2210627.0 | 26.0 | other-wikipedia | Zayed_Port | other |
null | 1467229.0 | 24.0 | other-facebook | Fetal_viability | other |
7922200.0 | 1.3386129e7 | 12.0 | The_Outfit_(1973_film) | Felice_Orlandi | link |
1.5905472e7 | 1.3753303e7 | 178.0 | Miss_Universe_1972 | Miss_Universe_1973 | link |
434695.0 | null | 10.0 | İzmir_Province | Mustafa_Toprak | redlink |
277289.0 | 1055890.0 | 43.0 | Wind_power | Sustainable_energy | link |
1.9332171e7 | 5215871.0 | 12.0 | Richard_Wright_(musician) | Delay_(audio_effect) | link |
37417.0 | 840184.0 | 10.0 | Mercury_(mythology) | Hendrik_Goltzius | link |
356617.0 | 510764.0 | 35.0 | Operation_Tannenberg | Einsatzgruppen | link |
3.8174481e7 | 196279.0 | 43.0 | List_of_sports_cars | Lamborghini_Diablo | link |
1371727.0 | 433285.0 | 51.0 | Bullet_(disambiguation) | Bullitt | link |
null | 1914019.0 | 121.0 | other-google | GTB | other |
5057404.0 | null | 12.0 | Eureka_Forbes | Aushim_Gupta_&_Company_Ltd. | redlink |
null | 3.5394122e7 | 14.0 | other-empty | Joseph_Maynard | other |
1065035.0 | 2987765.0 | 10.0 | Benson_&_Hedges | Assault_occasioning_actual_bodily_harm | link |
null | 1.9353281e7 | 13.0 | other-google | 1160_AM | other |
null | 4155017.0 | 10.0 | other-bing | Gökhan_Özoğuz | other |
3.6909154e7 | 3.0563823e7 | 20.0 | Dani_Carvajal | Jesé | link |
null | 4.2675612e7 | 6560.0 | other-google | Elfrid_Payton_(basketball) | other |
189048.0 | 6919555.0 | 24.0 | Klaus_Schulze | Angst_(soundtrack) | link |
null | 4.1501305e7 | 19.0 | other-twitter | Telegram_(software) | other |
4848945.0 | 143163.0 | 76.0 | Enclave_and_exclave | Gadsden_Purchase | link |
1.163353e7 | 2657310.0 | 17.0 | Injection_molding_machine | Sprue_(manufacturing) | link |
null | 2645023.0 | 34.0 | other-google | Monash,_Australian_Capital_Territory | other |
null | 543169.0 | 111.0 | other-empty | William_Jackson_Palmer | other |
1.4174205e7 | 1920113.0 | 29.0 | 1981_UEFA_Cup_Final | Arnold_Mühren | link |
null | 1924219.0 | 229.0 | other-empty | Emperor:_Battle_for_Dune | other |
2.3670849e7 | 3623280.0 | 34.0 | No_One's_Gonna_Love_You | Band_of_Horses | link |
null | 1.5964132e7 | 15.0 | other-empty | Jun_He_Law_Offices | other |
null | 5545139.0 | 14.0 | other-google | Chief_Examiner | other |
2998033.0 | 1.5472645e7 | 16.0 | West_Hampstead_Thameslink_railway_station | West_Hampstead_railway_station | link |
null | 1649162.0 | 90.0 | other-other | Starbreeze_Studios | other |
3.9617946e7 | 4.2742632e7 | 18.0 | 2014_French_Open | 2014_French_Open_–_Girls'_Singles | link |
null | 2.3915342e7 | 1813.0 | other-google | Cracked_tooth_syndrome | other |
null | 2.4459316e7 | 11.0 | other-empty | OARnet | other |
174750.0 | 2.0974012e7 | 135.0 | High/Low_(Nada_Surf_album) | Popular_(Nada_Surf_song) | link |
6595367.0 | 7482590.0 | 12.0 | Hewitt–Savage_zero–one_law | Edwin_Hewitt | link |
1.3036961e7 | 199630.0 | 24.0 | Something_for_Nothing | Pop_punk | link |
null | 2.2407888e7 | 101.0 | other-google | PSR_B1509-58 | other |
397145.0 | 3336186.0 | 23.0 | List_of_districts_of_Maharashtra | Nagpur_division | link |
345356.0 | 54251.0 | 106.0 | Skate_(fish) | Myliobatiformes | link |
3.7386608e7 | 4.069023e7 | 11.0 | 2015_in_film | Sonic_Boom_(TV_series) | other |
8864153.0 | 1303857.0 | 20.0 | Energy_policy_of_the_European_Union | Electricity_liberalization | link |
null | 1681589.0 | 58.0 | other-empty | Girl_on_the_Bridge | other |
27318.0 | 2701625.0 | 194.0 | Singapore | List_of_countries_by_life_expectancy | link |
1.7994862e7 | 1.3126459e7 | 13.0 | Elastix | Unified_communications | link |
418179.0 | 1880887.0 | 23.0 | Whyte_notation | 2-12-2 | link |
1.9769679e7 | 1057476.0 | 60.0 | List_of_Nobel_Memorial_Prize_laureates_in_Economics | Finn_E._Kydland | link |
null | 1.2175763e7 | 14.0 | other-wikipedia | Palm_rat | other |
null | 53884.0 | 30.0 | other-other | Penalty_area | other |
null | 1819715.0 | 18.0 | other-other | Marine_geology | other |
5866621.0 | 3.6655551e7 | 12.0 | Nayantara | Vijay_Sethupathi | link |
5683212.0 | 1531683.0 | 15.0 | McLeod_syndrome | Myopathy | link |
50409.0 | 2563761.0 | 13.0 | Cistercians | Monastery_of_the_Holy_Spirit | link |
null | 2.0720709e7 | 24.0 | other-other | 2-Pentyne | other |
null | 1602370.0 | 29.0 | other-google | Kaleb_Toth | other |
740070.0 | 1.9891664e7 | 13.0 | Body_farm | Stephen_Fry_in_America | link |
null | 8308.0 | 118.0 | other-yahoo | Delft | other |
3.4396117e7 | 2.2992135e7 | 129.0 | Sofia_the_First | Rapunzel_(Disney) | link |
2.6552124e7 | 735009.0 | 14.0 | Sammy_Adams | Pharrell_Williams | other |
6254282.0 | 164365.0 | 10.0 | John_Chambers_(make-up_artist) | The_China_Syndrome | link |
1468740.0 | 1.3964958e7 | 17.0 | Gran_Turismo_4 | Gran_Turismo_official_steering_wheel | link |
null | 3233890.0 | 76.0 | other-bing | The_Bronx_(band) | other |
17851.0 | 6501490.0 | 81.0 | Lambda | Half-Life_(series) | link |
5574932.0 | 292086.0 | 13.0 | Princess_Niloufer | Abdülmecid_II | link |
401530.0 | 1.9283982e7 | 14.0 | National_Democratic_Party | New_Democratic_Party | other |
492211.0 | 3024814.0 | 113.0 | Power_Rangers_in_Space | Jason_Narvy | link |
32053.0 | 4.346807e7 | 115.0 | Utrecht_University | List_of_people_associated_with_Utrecht_University | other |
57731.0 | 62276.0 | 10.0 | Leopold_II_of_Belgium | Monarchy_of_Belgium | link |
298518.0 | 18189.0 | 17.0 | Staraya_Ladoga | Lake_Ladoga | link |
2929855.0 | 9962.0 | 56.0 | Aenor_de_Châtellerault | Eleanor_of_Aquitaine | link |
1196902.0 | 3.2826589e7 | 15.0 | Saif_al-Islam_Gaddafi | Rixos_Al_Nasr | link |
3119136.0 | 488105.0 | 144.0 | British_Army_order_of_precedence | Foot_Guards | link |
null | 3.024141e7 | 10.0 | other-empty | Glover_v._United_States | other |
32308.0 | 21888.0 | 70.0 | United_States_customary_units | National_Institute_of_Standards_and_Technology | link |
1.4015242e7 | 345792.0 | 32.0 | One_Night_Stand_(2008) | The_Undertaker | link |
null | 4.0759212e7 | 25.0 | other-google | Janet_Trujillo | other |
172369.0 | 51932.0 | 81.0 | Challenger_2 | Kinetic_energy_penetrator | link |
118444.0 | 3.6190531e7 | 12.0 | Almere | Almere_(lake) | link |
2.0395872e7 | 4066670.0 | 273.0 | Oprah_Winfrey | Kpelle_people | link |
5611605.0 | 1.6757325e7 | 57.0 | Korean_People's_Army_Ground_Force | Vz._52_machine_gun | link |
4.2411677e7 | 4.2567991e7 | 14.0 | Cinedigm | Chris_McGurk | link |
null | 3.1257583e7 | 15.0 | other-empty | Bueng_Kan | other |
2.2258861e7 | 4.2534471e7 | 10.0 | Total_penumbral_lunar_eclipse | Tetrad_(astronomy) | link |
808402.0 | 1.6527475e7 | 115.0 | Mexico_national_football_team | Luis_Montes | link |
354296.0 | 994976.0 | 12.0 | Vestment | Monstrance | link |
362116.0 | 51784.0 | 85.0 | Robinson_projection | Map_projection | link |
4.2766864e7 | 2431566.0 | 37.0 | 2014–15_Northern_Premier_League | Stamford_A.F.C. | link |
4251160.0 | 9313589.0 | 17.0 | Taylor_Negron | Wizards_of_Waverly_Place | link |
182214.0 | 2.0656228e7 | 17.0 | Tassel | Maize | link |
null | 1595922.0 | 91.0 | other-other | Photosensitivity | other |
38872.0 | 4469999.0 | 15.0 | Bessarabia | Hotin_County | link |
1.3502823e7 | 1.252086e7 | 12.0 | Brassiere | Demi_Lovato | link |
4.4539913e7 | 1255017.0 | 26.0 | The_Flintstones_&_WWE:_Stone_Age_SmackDown! | Warner_Home_Video | link |
null | 1.0433852e7 | 11.0 | other-empty | Robbie_Ellis | other |
1.2373195e7 | 33422.0 | 12.0 | 1984–85_Edmonton_Oilers_season | Wayne_Gretzky | link |
1705212.0 | 133117.0 | 26.0 | Lucknow_Pact | Sarojini_Naidu | link |
309431.0 | 3.193663e7 | 24.0 | Rhino_(wrestler) | Leva_Bates | other |
1515653.0 | 1905405.0 | 20.0 | Satellite_navigation | Differential_GPS | link |
1.3099067e7 | 1.4306615e7 | 11.0 | 2007_Texas_Tech_Red_Raiders_football_team | 2006_Texas_Tech_Red_Raiders_football_team | link |
4.4696649e7 | 1.3014023e7 | 31.0 | Academy_Stadium | Manchester_City_F.C._Reserves_and_Academy | link |
104650.0 | 38556.0 | 54.0 | Oscar_II_of_Sweden | List_of_Swedish_monarchs | link |
3.2457372e7 | 2.7152057e7 | 10.0 | Sound_of_My_Voice | Rostam_Batmanglij | link |
null | 948103.0 | 44.0 | other-other | Meow_Mix | other |
553772.0 | 2100323.0 | 41.0 | Robert_Pirès | FWA_Footballer_of_the_Year | link |
6212853.0 | 4960.0 | 178.0 | List_of_BSA_motorcycles | Birmingham_Small_Arms_Company | link |
1.7006496e7 | 4.5002693e7 | 79.0 | Batty_boy | Homophobia_in_Jamaica | link |
4993017.0 | 706379.0 | 1033.0 | The_Beach_Boys_discography | Surfin'_Safari | link |
null | 8790509.0 | 10.0 | other-empty | Folk_Lore_Museum_Mysore | other |
48946.0 | 5245439.0 | 29.0 | Graz | UPC-Arena | other |
92421.0 | 1.8396282e7 | 28.0 | Interstate_64 | Interstate_64_in_Indiana | link |
1.5580374e7 | 425059.0 | 81.0 | Main_Page | Ranch_dressing | other |
null | 1.1172066e7 | 98.0 | other-google | Gerald_Stone | other |
3521882.0 | 81024.0 | 18.0 | Airline_bankruptcies_in_the_United_States | Pan_American_World_Airways | link |
null | 294627.0 | 34.0 | other-bing | Mr._Garrison | other |
null | 774449.0 | 75.0 | other-wikipedia | Richard_Lynn | other |
1.9975991e7 | 47707.0 | 49.0 | Lex_Immers | Feyenoord | link |
372478.0 | 1654769.0 | 15.0 | Video_game_industry | Artificial_intelligence_(video_games) | link |
null | 207132.0 | 677.0 | other-google | Star_Trek:_Armada | other |
null | 1863524.0 | 49.0 | other-google | Disney_Time | other |
null | 780419.0 | 103.0 | other-empty | Philip_Don_Estridge | other |
null | 1.4024425e7 | 17.0 | other-wikipedia | Nightwing_(novel) | other |
1020829.0 | 6260.0 | 23.0 | 20th-century_music | Claude_Debussy | link |
4810477.0 | 1042506.0 | 24.0 | Tawagalawa_letter | Wilusa | link |
3821983.0 | 262233.0 | 167.0 | 1998_Russian_financial_crisis | 1997_Asian_financial_crisis | link |
null | 2.435744e7 | 68.0 | other-wikipedia | Académica_Petróleos_do_Lobito | other |
2.4097561e7 | 735348.0 | 13.0 | List_of_newspaper_comic_strips_P–Z | Pickles_(comic_strip) | link |
1669185.0 | 1624131.0 | 19.0 | Phantasmagoria_(The_Damned_album) | Roman_Jugg | link |
null | 7197167.0 | 155.0 | other-google | Matei | other |
null | 1.2315045e7 | 21.0 | other-empty | Dead_Air_(2009_film) | other |
null | 969363.0 | 133.0 | other-google | Arlberg_technique | other |
891692.0 | 2.1803312e7 | 17.0 | United_States_District_Court_for_the_Northern_District_of_California | William_Haskell_Alsup | link |
957326.0 | 4915083.0 | 74.0 | Italy_national_rugby_union_team | Rugby_union_in_Italy | link |
null | 8399976.0 | 146.0 | other-wikipedia | ASU-57 | other |
null | 1558354.0 | 684.0 | other-empty | Demographics_of_Europe | other |
null | 1.305149e7 | 134.0 | other-google | Courtney_Love_discography | other |
3.9654815e7 | 1034678.0 | 29.0 | MFi_Program | MFI | other |
1.9283769e7 | 3192804.0 | 14.0 | Ausar | Ausar_Auset_Society | link |
null | 472075.0 | 65.0 | other-google | Viscount_Brookeborough | other |
262376.0 | 3183896.0 | 12.0 | Roger_Federer | 2006_Tennis_Masters_Cup | link |
1.1161932e7 | 1.1590877e7 | 12.0 | Saints_Row_2 | Red_Faction:_Guerrilla | link |
7712434.0 | 4579172.0 | 36.0 | Vijay_Arora | Yaadon_Ki_Baaraat | link |
null | 4496629.0 | 14.0 | other-empty | One_Must_Fall:_Battlegrounds | other |
null | 3.6894375e7 | 26.0 | other-google | Dragan_Lakićević | other |
211080.0 | 170459.0 | 110.0 | Method_Man | LL_Cool_J | link |
2646730.0 | 6733556.0 | 27.0 | Pokémon:_The_First_Movie_(soundtrack) | Pokémon_2.B.A._Master | link |
null | 9472399.0 | 10.0 | other-google | Black_Duck_(group) | other |
2663129.0 | 16321.0 | 411.0 | Good_Night,_and_Good_Luck | Joseph_McCarthy | link |
1.1024497e7 | 1.0398699e7 | 35.0 | Brown-Séquard_syndrome | Central_cord_syndrome | link |
null | 72434.0 | 14.0 | other-empty | Maximilian_Kaller | other |
202886.0 | 5869.0 | 10.0 | Covariance_and_contravariance_of_vectors | Category_theory | link |
6742.0 | 653196.0 | 16.0 | Central_Asia | Economic_Cooperation_Organization | link |
942704.0 | 46525.0 | 14.0 | Song_of_Songs_(disambiguation) | Wilfred_Owen | link |
null | 1.0987478e7 | 62.0 | other-google | Pouch_Cove | other |
null | 2122098.0 | 266.0 | other-google | Seabiscuit:_An_American_Legend | other |
null | 454779.0 | 24.0 | other-wikipedia | Twitch_City | other |
96775.0 | 96815.0 | 24.0 | Fulton_County,_Georgia | Carroll_County,_Georgia | link |
296849.0 | 2520715.0 | 10.0 | Ernest_Becker | Sam_Keen | link |
347713.0 | 284262.0 | 28.0 | Huia | Callaeidae | link |
1.9137828e7 | 2.0753462e7 | 370.0 | List_of_stadiums_under_construction | Estadio_La_Peineta | link |
19859.0 | 277696.0 | 13.0 | Moby-Dick | The_Scarlet_Letter | other |
16844.0 | 523445.0 | 169.0 | Kofi_Annan | Lakhdar_Brahimi | link |
null | 2.1230974e7 | 20.0 | other-google | Chhantyal | other |
2.892839e7 | 113519.0 | 36.0 | Nucky_Thompson | Short_(finance) | link |
219731.0 | 36168.0 | 30.0 | Myst | 3DO_Interactive_Multiplayer | link |
4.4845611e7 | 3.1597122e7 | 1377.0 | My_Sunshine | Wallace_Chung | link |
1107477.0 | 1345497.0 | 24.0 | River_gunboat | USS_Cairo | link |
4.2688351e7 | 5933689.0 | 439.0 | 2014–15_FC_Barcelona_season | Jérémy_Mathieu | link |
4461110.0 | 1.0640807e7 | 41.0 | Shilpa_Shirodkar | Bhrashtachar | link |
77390.0 | 2.3769406e7 | 155.0 | Natalie_Wood | Sex_and_the_Single_Girl_(film) | link |
57877.0 | 7280414.0 | 53.0 | Sodium_hydroxide | List_of_commonly_available_chemicals | other |
null | 683450.0 | 983.0 | other-google | Dawson's_Field_hijackings | other |
1990194.0 | 1.6290655e7 | 10.0 | Ima_Hogg | Thomas_Elisha_Hogg | link |
14015.0 | 2226.0 | 32.0 | Herstory | Ad_hominem | other |
3.1990324e7 | 4.2269335e7 | 19.0 | List_of_Switched_at_Birth_episodes | The_Futon_Critic | link |
null | 9081713.0 | 30.0 | other-bing | The_Bitter_End | other |
108956.0 | 575052.0 | 120.0 | Washington,_D.C. | Verizon_Center | link |
1415821.0 | 1998515.0 | 72.0 | Fiat_Ducato | JTD_engine | link |
218742.0 | 490089.0 | 159.0 | Ontario_Hockey_League | Peterborough_Petes | link |
null | 1792799.0 | 9379.0 | other-google | Stakeholder_theory | other |
null | 216639.0 | 33.0 | other-wikipedia | Gondwanatheria | other |
3.0875744e7 | 26961.0 | 13.0 | Artur_Rasizade | Shia_Islam | link |
2.4378497e7 | null | 28.0 | Mark_Salling | Rocky_Road_(TV_Movie) | redlink |
1.1900681e7 | 312228.0 | 143.0 | List_of_teen_films | House_Party_(film) | link |
2608405.0 | 2418357.0 | 13.0 | Roy_Mayorga | Shelter_(band) | link |
null | 2.1312852e7 | 10.0 | other-yahoo | Igor_Sijsling | other |
2809559.0 | 414267.0 | 12.0 | Salirophilia | Lust_murder | link |
null | 3.0876253e7 | 116.0 | other-wikipedia | List_of_Jewish_prayers_and_blessings | other |
3966054.0 | 537551.0 | 28.0 | Mexico | Azteca_(multimedia_conglomerate) | other |
null | 2.7437943e7 | 42.0 | other-wikipedia | Donna_Simpson_(internet_celebrity) | other |
null | 1318322.0 | 89.0 | other-other | Callable_bond | other |
1972785.0 | 1053430.0 | 16.0 | Illinois_(album) | 2005_in_music | link |
null | 2875803.0 | 68.0 | other-google | Lennon_(musical) | other |
438417.0 | 26977.0 | 11.0 | Orange_County_(film) | Stanford_University | link |
4178394.0 | 1589455.0 | 17.0 | Chamar | Kanshi_Ram | link |
null | 390818.0 | 650.0 | other-empty | Endive | other |
null | 2186604.0 | 21.0 | other-google | Caldecott,_Rutland | other |
976050.0 | 1.9084502e7 | 23.0 | Fell's_Point,_Baltimore | Michael_Phelps | link |
1027240.0 | 1.165959e7 | 130.0 | Biryani | Hyderabadi_cuisine | link |
4887.0 | 11523.0 | 236.0 | British_Army | Falklands_War | link |
498478.0 | 1.1395198e7 | 12.0 | Shanghai_World_Financial_Center | World_Trade_Center | link |
193918.0 | 39282.0 | 10.0 | Kurgan | Caucasus | link |
4754.0 | 1009445.0 | 12.0 | Blue_Streak_(missile) | European_Launcher_Development_Organisation | link |
206928.0 | 236519.0 | 11.0 | List_of_birds_of_New_Zealand | Australian_pelican | link |
7720774.0 | 1908172.0 | 15.0 | WIN.INI | INI_file | link |
null | 3.101165e7 | 26.0 | other-empty | Betty_Jane_Gorin-Smith | other |
1.8952953e7 | 411723.0 | 173.0 | Peyote | Chihuahuan_Desert | other |
3.3469792e7 | 2412317.0 | 11.0 | Here's_to_You_(song) | Franz_Josef_Degenhardt | link |
null | 2205218.0 | 40.0 | other-wikipedia | Six_Pieces_for_Piano,_Op._118_(Brahms) | other |
null | 3872704.0 | 20.0 | other-empty | Caridad_de_la_Luz | other |
1.7621236e7 | 1.4485544e7 | 11.0 | H._Eugene_Stanley | List_of_members_of_the_National_Academy_of_Sciences_(Applied_physical_sciences) | link |
null | 1495605.0 | 31.0 | other-bing | Hew_Strachan | other |
1.2136846e7 | 358527.0 | 27.0 | The_Unfairground | Kevin_Ayers | link |
4.3047831e7 | 4.3797734e7 | 113.0 | Giant_in_My_Heart | Sound_of_a_Woman | link |
null | 9656353.0 | 73.0 | other-google | New_folk_media | other |
2909374.0 | 1.895149e7 | 11.0 | Health_issues_in_American_football | American_football | link |
null | 595888.0 | 11.0 | other-google | Hail,_Vermont! | other |
null | 2.3306201e7 | 11.0 | other-empty | EFestivals | other |
4446461.0 | 524502.0 | 63.0 | Film_budgeting | Box_office_bomb | link |
null | 1.3437204e7 | 18.0 | other-bing | New_classical_macroeconomics | other |
2772399.0 | 1.8595033e7 | 134.0 | Bill_T._Jones | Arnie_Zane | link |
null | 5903.0 | 13.0 | other-yahoo | Cultural_movement | other |
551711.0 | 408652.0 | 25.0 | Ron_Dellums | Barbara_Lee | link |
3.2628378e7 | 2.9017966e7 | 39.0 | List_of_horror_films_of_1972 | The_Fiend_(film) | link |
2945357.0 | 1770333.0 | 31.0 | Amateur_rocketry | High-power_rocketry | link |
280929.0 | 1278771.0 | 36.0 | Erechtheion | Palladium_(classical_antiquity) | other |
null | 2342731.0 | 23.0 | other-yahoo | Walther_von_Seydlitz-Kurzbach | other |
18727.0 | 579219.0 | 17.0 | List_of_food_additives,_Codex_Alimentarius | Beta-Carotene | other |
2.548813e7 | 219287.0 | 33.0 | Separate_legal_entity | Legal_personality | other |
376581.0 | 2.0611504e7 | 12.0 | Transnistria | Russian_Empire | link |
3.3623665e7 | 2592839.0 | 18.0 | Thimar | Anouar_Brahem | link |
null | 2.5650291e7 | 11.0 | other-bing | 2010_Tampa_Bay_Buccaneers_season | other |
2064142.0 | 346585.0 | 11.0 | Chafing_dish | Brazier | link |
null | 461211.0 | 4961.0 | other-google | Mizoram | other |
660231.0 | 1257944.0 | 14.0 | Adelaide_Oval | WACA_Ground | link |
null | 2.5679855e7 | 21.0 | other-wikipedia | Banco_Bicentenario | other |
1.30362e7 | 3.6604477e7 | 25.0 | Automobile_drag_coefficient | Jaguar_XE | link |
417606.0 | 1.4265701e7 | 76.0 | Expedia_(website) | Wotif.com | link |
3.5645946e7 | 1629175.0 | 22.0 | Luís_Leal_(footballer) | G.D._Estoril_Praia | link |
2.6458478e7 | 959456.0 | 100.0 | German_military_brothels_in_World_War_II | Roundup_(history) | link |
null | 2.9027399e7 | 22.0 | other-google | The_Dog_Who_Saved_Christmas_Vacation | other |
null | 1988582.0 | 33.0 | other-empty | Kovač | other |
null | 987320.0 | 37.0 | other-other | Neurotechnology | other |
1022665.0 | 2366194.0 | 18.0 | String_Quartets_Nos._7–9,_Op._59_–_Rasumovsky_(Beethoven) | String_Quartet_No._10_(Beethoven) | link |
1373758.0 | 843532.0 | 49.0 | Luther_Adler | Stella_Adler | link |
null | 9118436.0 | 13.0 | other-google | Jeremy_Huw_Williams | other |
1677928.0 | 268683.0 | 23.0 | Children's_song | Riddle | other |
null | 7448450.0 | 18.0 | other-other | Louis_Zorich | other |
2.0803357e7 | 4.0026015e7 | 20.0 | Parks_and_Recreation | Drew_Barrymore_filmography | other |
4604481.0 | 4.02451e7 | 61.0 | Storm_Model_Management | Tiah_Delaney | link |
7481030.0 | 3098376.0 | 70.0 | MPEG-4_Part_14 | Comparison_of_audio_coding_formats | link |
null | 3.920506e7 | 10.0 | other-empty | 72nd_Division_(United_Kingdom) | other |
1.7401306e7 | 2488280.0 | 139.0 | Ripstop | Ballistic_nylon | link |
1.0904287e7 | 423689.0 | 25.0 | Termcap | Curses_(programming_library) | link |
null | 2.3268278e7 | 16.0 | other-wikipedia | Trakr | other |
null | 458310.0 | 19.0 | other-wikipedia | Frank_Teschemacher | other |
47271.0 | 83835.0 | 16.0 | Sponge | Gonad | link |
null | 1793967.0 | 43.0 | other-other | Pitman_arm | other |
3.1192297e7 | 2.1377045e7 | 298.0 | Magic_City_(TV_series) | Rick_Ross | link |
null | 1362205.0 | 100.0 | other-other | Area_code_920 | other |
58478.0 | 2260425.0 | 15.0 | Airborne_forces | 502nd_Infantry_Regiment_(United_States) | other |
1510249.0 | 414822.0 | 35.0 | Bering_Strait_crossing | Tung-Yen_Lin | other |
1601795.0 | 5231575.0 | 11.0 | V24_engine | V5_engine | link |
44784.0 | 5533243.0 | 12.0 | Bari | The_Bridges_of_Madison_County_(film) | link |
null | 4038132.0 | 47.0 | other-empty | Gary_Gaines | other |
1.6378571e7 | 1.6085877e7 | 273.0 | Genealogies_in_the_Bible | Abraham's_family_tree | link |
762354.0 | 1127973.0 | 11.0 | Greatest_Hits_(ZZ_Top_album) | Billy_Gibbons | link |
462091.0 | 3056665.0 | 113.0 | Vairocana | Sambhogakāya | link |
null | 1210333.0 | 1335.0 | other-google | Millfield | other |
397810.0 | 2035119.0 | 12.0 | Alexander_McQueen | Elie_Saab | link |
8169386.0 | 3.7918222e7 | 13.0 | Rick_Sebak | Yinztagram | link |
1928513.0 | 3662295.0 | 13.0 | Government_of_India_Act_1858 | Dominion_of_Pakistan | link |
7919595.0 | 2615949.0 | 72.0 | Clos_network | Omega_network | link |
null | 4.0485213e7 | 15.0 | other-google | Singapore_national_under-19_football_team | other |
null | 2.0911775e7 | 14.0 | other-wikipedia | Fyodor_Druzhinin | other |
84112.0 | 84109.0 | 21.0 | Berenice | Berenice_II_of_Egypt | link |
null | 1252215.0 | 30.0 | other-google | Dancer_with_Bruised_Knees | other |
null | 17703.0 | 363.0 | other-bing | Leo_(constellation) | other |
1.6975268e7 | 3.0873764e7 | 26.0 | Chess_theory | Scandinavian_Defense | link |
null | 1.6787376e7 | 56.0 | other-empty | Universiti_Malaysia_Terengganu | other |
null | 347603.0 | 227.0 | other-empty | Carpenter_bee | other |
1.7798548e7 | 1.9183413e7 | 10.0 | Rush_(2008_TV_series) | Stephen_Rae_(composer) | link |
314628.0 | 1.0188712e7 | 15.0 | Tooth_enamel | Cusp_(anatomy) | link |
null | 44903.0 | 169.0 | other-yahoo | Astor_Piazzolla | other |
1.9988138e7 | 1885136.0 | 23.0 | Ramsay_(surname) | Clan_Ramsay | link |
null | 4.4010295e7 | 2438.0 | other-google | Survivor's_Remorse | other |
null | 735443.0 | 25.0 | other-bing | Neumann_boundary_condition | other |
714047.0 | 544762.0 | 39.0 | Chromolithography | Offset_printing | link |
null | 1686225.0 | 15.0 | other-yahoo | Tamara_Karsavina | other |
5859950.0 | 7616334.0 | 39.0 | When_Worlds_Collide_(1951_film) | Larry_Keating | link |
2.4132083e7 | 2955815.0 | 126.0 | Dexter_(season_4) | Julia_Campbell | link |
null | 466851.0 | 16.0 | other-empty | Azteca_(band) | other |
1164252.0 | 527125.0 | 10.0 | GamePro | Game_Informer | other |
null | 3.1863547e7 | 34.0 | other-other | Tarun_Khanna | other |
null | 9038883.0 | 26.0 | other-empty | College_of_Physicians_and_Surgeons_Pakistan | other |
958572.0 | 592436.0 | 10.0 | Glenn_Hall | Ted_Lindsay | link |
3820404.0 | 3.0812082e7 | 10.0 | Cross-dressing_in_film_and_television | Bucket_&_Skinner's_Epic_Adventures | link |
2.7205785e7 | 2.8233212e7 | 25.0 | School_attacks_in_China_(2010–12) | 2010_Hebei_tractor_rampage | other |
3.4445585e7 | 3.8764549e7 | 40.0 | American_Idol_(season_12) | Curtis_Finch,_Jr. | link |
402942.0 | 436614.0 | 80.0 | List_of_traditional_children's_games | Pat-a-cake,_pat-a-cake,_baker's_man | link |
null | 893198.0 | 16.0 | other-other | What_I_Learned_About_Ego,_Opinion,_Art_&_Commerce | other |
871210.0 | 1292261.0 | 38.0 | Utricularia | Utricularia_vulgaris | link |
5575722.0 | 11585.0 | 33.0 | Fuck | Show_Me_Love_(film) | other |
5465550.0 | 5512301.0 | 19.0 | Morphinan | Levomethorphan | link |
3.086259e7 | 9499.0 | 116.0 | Link_layer | Ethernet | link |
46336.0 | 5376.0 | 28.0 | Passerine | Cladistics | other |
158558.0 | 154820.0 | 18.0 | King_of_the_Romanians | List_of_rulers_of_Wallachia | link |
2.7804243e7 | 416577.0 | 10.0 | List_of_birds_of_Pennsylvania | Alder_flycatcher | link |
851800.0 | 915646.0 | 83.0 | Air_America_(film) | Pilatus_PC-6_Porter | other |
null | 2.2976039e7 | 150.0 | other-google | Armenian_Wikipedia | other |
2019407.0 | 764428.0 | 28.0 | Ali_Azmat | Bhat | link |
4097772.0 | 2162718.0 | 11.0 | Battle_of_Honey_Springs | James_G._Blunt | link |
null | 3824728.0 | 31.0 | other-google | Can_U_Get_wit_It | other |
null | 1.0567795e7 | 135.0 | other-google | Robbie_van_Leeuwen | other |
null | 4100412.0 | 111.0 | other-google | The_Truth_(Melbourne_newspaper) | other |
436522.0 | 229703.0 | 11.0 | Hot_rod | Roots-type_supercharger | link |
4.1660623e7 | 1.3280198e7 | 577.0 | Tokyo_Ghoul | Ling_Tosite_Sigure | link |
3.5034514e7 | 3.554456e7 | 12.0 | 2012_World_Junior_Championships_in_Athletics | 2012_World_Junior_Championships_in_Athletics_–_Men's_100_metres | link |
null | 2.4303131e7 | 18.0 | other-wikipedia | Treska | other |
null | 1.7262978e7 | 19.0 | other-bing | Shake_It_(Metro_Station_song) | other |
6833695.0 | 1.2237982e7 | 10.0 | Demihypercube | Hypercubic_honeycomb | other |
1253121.0 | 264458.0 | 38.0 | Battle_of_Kennesaw_Mountain | Joseph_E._Johnston | link |
null | 2.6626591e7 | 15.0 | other-wikipedia | Banqiao_Station | other |
null | 239930.0 | 929.0 | other-empty | Temple_University | other |
679346.0 | 172063.0 | 153.0 | Lucozade | Ribena | link |
null | 2.4619717e7 | 146.0 | other-google | Much_the_Same | other |
1.5609213e7 | 1602398.0 | 138.0 | List_of_airlines_of_Nigeria | Associated_Aviation | link |
1.2727445e7 | null | 22.0 | I'm_Not_Like_Everybody_Else | The_Sacred_Mushroom | redlink |
1478064.0 | 3.7165545e7 | 34.0 | Andy_Souwer | Steve_Moxon | link |
36396.0 | 39995.0 | 57.0 | 1214 | 1213 | link |
null | 212416.0 | 14.0 | other-yahoo | Phitsanulok_Province | other |
1.8619244e7 | 305854.0 | 53.0 | SMS_language | Text_messaging | link |
180437.0 | 27071.0 | 89.0 | Pavel_Chekov | Star_Trek:_The_Original_Series | link |
null | 4064.0 | 394.0 | other-google | Borsuk–Ulam_theorem | other |
null | 1018286.0 | 284.0 | other-empty | Capri_Sun | other |
null | 160753.0 | 28.0 | other-twitter | Manuel_L._Quezon | other |
3.6169584e7 | 4.0603571e7 | 23.0 | 2014–15_figure_skating_season | Lombardia_Trophy | link |
1251507.0 | 1.0564133e7 | 207.0 | Kirk_Acevedo | Joe_Toye | link |
1302191.0 | 4393323.0 | 10.0 | Opel_Commodore | Ranger_(automobile) | other |
3.1523612e7 | 3.1348196e7 | 17.0 | Mark_McNeill | Phillip_Danault | link |
5906626.0 | 2.0534384e7 | 33.0 | Horace_Trumbauer | Elkins_Estate | link |
1006148.0 | 59003.0 | 10.0 | Ludlow_(disambiguation) | Ludlow | link |
3515315.0 | 1.0074452e7 | 19.0 | Reebok_Freestyle | Reebok_Classic | other |
null | 5257744.0 | 40.0 | other-wikipedia | Some_Kind_of_Hero | other |
573177.0 | 2.3740297e7 | 31.0 | Wendish_Crusade | Wagria | link |
1.0367494e7 | 107204.0 | 12.0 | Fried_pickle | Atkins,_Arkansas | link |
743895.0 | 2278793.0 | 19.0 | Timeline_of_Eastern_philosophers | Parashara | link |
null | 2.2484087e7 | 16.0 | other-google | Nnooo | other |
5824627.0 | 5042916.0 | 37.0 | Inheritance_tax | Canada | link |
40656.0 | 7247.0 | 29.0 | 13th_century_BC | Cemetery_H_culture | link |
null | 4.0389354e7 | 19.0 | other-wikipedia | ASAN_service | other |
null | 334882.0 | 13.0 | other-wikipedia | Chamarajanagar_district | other |
299404.0 | 741705.0 | 18.0 | Gunnery_sergeant | Mark_Harmon | link |
1424575.0 | 4.0371665e7 | 31.0 | Battle_of_Bailén | Dominique_Honoré_Antoine_Vedel | link |
null | 6598147.0 | 1322.0 | other-google | Concentration_risk | other |
1858211.0 | 21444.0 | 24.0 | The_Jew_of_Malta | Niccolò_Machiavelli | link |
16880.0 | 46853.0 | 13.0 | Karnataka | Indus_Valley_Civilization | link |
null | 2.7255423e7 | 28.0 | other-google | Fornham_St_Genevieve | other |
2437139.0 | 1552544.0 | 15.0 | Russian_architecture | Onion_dome | link |
56315.0 | 6423327.0 | 14.0 | Mango | 2-Furanone | other |
8087287.0 | 1254779.0 | 164.0 | Hot_Blooded | Double_Vision_(Foreigner_album) | link |
null | 3555863.0 | 114.0 | other-other | Frank_Hamer | other |
null | 1.4270466e7 | 148.0 | other-wikipedia | Gautam_Adani | other |
2.0519849e7 | 4.0736758e7 | 38.0 | Cage_discography | Kill_the_Architect | link |
null | 2.0776944e7 | 16.0 | other-google | Phintys | other |
null | 2.4509692e7 | 38.0 | other-empty | Tri-City_Medical_Center | other |
3.6295719e7 | 1.817631e7 | 10.0 | Garrett_(character) | Guinness_World_Records_Gamer's_Edition | link |
87603.0 | 9295254.0 | 613.0 | Robert_Mitchum | Bentley_Mitchum | link |
2.1173707e7 | 3.6897865e7 | 20.0 | Moreton_Bay_Rail_Link | Murrumba_Downs_railway_station | link |
null | 969732.0 | 15.0 | other-wikipedia | Brand_(disambiguation) | other |
1699425.0 | 3152733.0 | 19.0 | Power-on_self-test | Memory_refresh | link |
null | 144948.0 | 137.0 | other-yahoo | Universal_joint | other |
571462.0 | 37585.0 | 13.0 | National_Museum_of_the_United_States_Air_Force | Museum | link |
890293.0 | 1.9147563e7 | 36.0 | Mike_Smith_(actor) | Thorburn,_Nova_Scotia | link |
876966.0 | 1.7702228e7 | 10.0 | Vancouver_Island_University | Higher_education_in_British_Columbia | link |
2003796.0 | 142421.0 | 22.0 | Roscoe_Lee_Browne | Babe_(film) | link |
null | 528150.0 | 15.0 | other-wikipedia | Brothers_Keepers | other |
null | 4958063.0 | 87.0 | other-google | Palma_di_Montechiaro | other |
null | 4.2035866e7 | 14.0 | other-wikipedia | Collection_manager | other |
1257770.0 | 4799962.0 | 22.0 | Tim_Drake | Jaime_Reyes | link |
null | 675786.0 | 231.0 | other-google | Scaffold_(disambiguation) | other |
null | 1630583.0 | 39.0 | other-empty | Arica_School | other |
2753730.0 | 1203602.0 | 12.0 | Copa_Airlines_Flight_201 | United_Airlines_Flight_585 | link |
1.4529239e7 | 16861.0 | 14.0 | Zoophilia | Kurt_Vonnegut | link |
null | 4.2270307e7 | 13.0 | other-bing | Bad_(David_Guetta_and_Showtek_song) | other |
64946.0 | 21724.0 | 18.0 | Danelaw | Normandy | link |
3285435.0 | 39205.0 | 13.0 | 2010_Asian_Games | Asian_Games | link |
null | 467628.0 | 736.0 | other-google | Margaret_Dumont | other |
592456.0 | 598977.0 | 16.0 | This_Is_My_Truth_Tell_Me_Yours | James_Dean_Bradfield | link |
null | 19965.0 | 105.0 | other-yahoo | Morphogenesis | other |
95185.0 | 6939163.0 | 886.0 | Frantz_Fanon | Black_Skin,_White_Masks | link |
null | 2.7633566e7 | 24.0 | other-wikipedia | ConsensusDOCS | other |
80777.0 | 8309183.0 | 24.0 | Kurdistan | Koçgiri_Rebellion | link |
null | 5064426.0 | 24.0 | other-yahoo | Misha_Glenny | other |
null | 4.0846967e7 | 23.0 | other-google | Hitkarini_Sabha | other |
null | 2.2600019e7 | 17.0 | other-wikipedia | Country_folk | other |
99782.0 | 1154193.0 | 50.0 | Vritra | Aesir-Asura_correspondence | link |
246020.0 | 3516576.0 | 13.0 | Freydís_Eiríksdóttir | Greenland_saga | other |
12463.0 | 6124461.0 | 124.0 | Glacier | Quelccaya_Ice_Cap | link |
3628651.0 | 67234.0 | 10.0 | New_Jersey's_10th_congressional_district | Newark,_New_Jersey | link |
1878882.0 | 2.5016782e7 | 30.0 | List_of_anthropomorphic_animal_superheroes | Quick_Draw_McGraw | link |
null | 126987.0 | 91.0 | other-google | Cleveland,_New_York | other |
6310617.0 | 2711314.0 | 19.0 | Cristine_Rose | How_I_Met_Your_Mother | link |
null | 266033.0 | 308.0 | other-empty | Robert_I,_Duke_of_Normandy | other |
3125454.0 | 3536263.0 | 130.0 | David_J._O'Reilly | Kenneth_T._Derr | link |
1.9165698e7 | 228211.0 | 12.0 | Teletoon_at_Night | Futurama | link |
6452550.0 | 3.8121496e7 | 130.0 | Hayley_Tamaddon | List_of_Coronation_Street_characters_(2013) | other |
null | 4.171206e7 | 45.0 | other-empty | Consider_the_Source | other |
1104597.0 | 494926.0 | 49.0 | Kirovohrad | Kirovohrad_Oblast | link |
1928711.0 | 896897.0 | 16.0 | Etheric_plane | Plane_(Dungeons_&_Dragons) | other |
null | 2.2654444e7 | 419.0 | other-google | Pineapple_Dance_Studios | other |
1.3895544e7 | 788074.0 | 36.0 | Vigor | Physical_strength | link |
2583157.0 | 2.2509614e7 | 21.0 | Byzantine_dress | English_medieval_clothing | link |
null | 8055634.0 | 15.0 | other-google | Unbarred_lenticular_galaxy | other |
1445268.0 | 236723.0 | 13.0 | Master_of_Arts_(Oxbridge_and_Dublin) | Master_of_Arts_(disambiguation) | link |
2.7656285e7 | 1739962.0 | 20.0 | Geo_URI | ICBM_address | link |
null | 1.2892672e7 | 110.0 | other-google | Leandra | other |
1.5580374e7 | 3722614.0 | 18.0 | Main_Page | African_Cup_Winners'_Cup | other |
1.0078096e7 | 245335.0 | 55.0 | This_Is_Just_To_Say | Found_poetry | link |
2172281.0 | 1.0774494e7 | 32.0 | Mumtaz_(actress) | Apna_Desh | link |
null | 2.7289759e7 | 19.0 | other-empty | 2010_Santos_FC_season | other |
39021.0 | 1.2230576e7 | 40.0 | Daytona_500 | Coke_Zero_400 | link |
3016712.0 | 4682876.0 | 10.0 | Terminal_degree | Professional_degrees_of_public_health | other |
939423.0 | 7216989.0 | 49.0 | Mr._Lawrence | The_Grim_Adventures_of_Billy_&_Mandy | other |
null | 2697919.0 | 11.0 | other-wikipedia | Antemnae | other |
2463448.0 | 3.0668895e7 | 23.0 | Ted_McCarty | Gibson_Guitar_Corporation | link |
845407.0 | 2.8320131e7 | 25.0 | Sezen_Aksu | Ağlamak_Güzeldir | link |
null | 1.4454507e7 | 79.0 | other-google | Eleider_Álvarez | other |
null | 4923077.0 | 209.0 | other-google | Demon_Seed_(novel) | other |
4666669.0 | 2796527.0 | 10.0 | Area_code_904 | T-Pain | link |
null | 1.9111554e7 | 11.0 | other-empty | Hermann_Hauser,_Sr. | other |
31827.0 | 145144.0 | 78.0 | Demographics_of_Ukraine | Ukrainians | link |
1980240.0 | 3.9277098e7 | 138.0 | List_of_American_comedy_films | About_Last_Night_(2014_film) | link |
730462.0 | 558569.0 | 16.0 | Flower-class_corvette | HMCS_Oakville_(K178) | link |
609002.0 | 1.4814799e7 | 13.0 | Biloela | Callide_Dam | link |
27695.0 | 30403.0 | 15.0 | Structured_programming | Turing_machine | link |
12449.0 | 2013048.0 | 45.0 | Mobile_Suit_Gundam_Wing | Mobile_weapons | link |
1.094599e7 | 1.7608953e7 | 14.0 | Alternative_versions_of_Wolverine | Marvel_Zombies_2 | link |
null | 1.6917052e7 | 26.0 | other-empty | Kacy_Rodgers | other |
null | 1.3805947e7 | 30.0 | other-empty | Unlimited_Touch | other |
2.1444421e7 | 1.915323e7 | 62.0 | Roberta_Flack_discography | Born_to_Love | link |
null | 6493684.0 | 10.0 | other-google | Oświęcim_County | other |
11033.0 | 1.1991546e7 | 13.0 | Frederick_Douglass | Civilization_Revolution | link |
1.8302482e7 | 38170.0 | 12.0 | List_of_bisexual_people_(A–F) | Bi-curious | link |
1009423.0 | 4528243.0 | 44.0 | Talysh_people | Talysh_Khanate | link |
3.6355277e7 | 3.0214103e7 | 23.0 | Vikings_(TV_series) | Falling_Skies | other |
null | 2.996522e7 | 14.0 | other-empty | Peter_White_(Michigan) | other |
8035013.0 | 3.377343e7 | 11.0 | Lee_Jung | Saturday_Freedom | link |
3.3050531e7 | 1.1612491e7 | 153.0 | List_of_Deadly_Women_episodes | Murder_of_Shanda_Sharer | link |
8670674.0 | 7364118.0 | 22.0 | U218_Videos | U218_Singles | link |
1374327.0 | 826555.0 | 11.0 | ETA_SA | Breitling_SA | link |
2312056.0 | 202652.0 | 12.0 | Pride_&_Prejudice_(2005_film) | Romeo_+_Juliet | link |
6027027.0 | 2697824.0 | 23.0 | House_of_Carters | Andy_Samberg | link |
null | 3.3484283e7 | 22.0 | other-google | Dovedale_by_Moonlight | other |
null | 3360692.0 | 11.0 | other-google | Harvey_Hodder | other |
null | 1.4940878e7 | 10.0 | other-empty | 1982_Baltimore_Colts_season | other |
453246.0 | 142058.0 | 18.0 | Breakout_(video_game) | Homebrew_Computer_Club | link |
65910.0 | 3.8481732e7 | 219.0 | Printed_circuit_board | Chemical_milling | other |
null | 9646491.0 | 47.0 | other-google | Fouad_Abou_Nader | other |
253868.0 | 524481.0 | 45.0 | Eye_of_the_Beholder_(video_game) | Gold_Box | link |
null | 2.0207353e7 | 14.0 | other-wikipedia | Type-90 | other |
2.9156836e7 | 2.8439144e7 | 96.0 | Park_Ha-sun | Dong_Yi_(TV_series) | link |
null | 54530.0 | 30.0 | other-wikipedia | Bookmark_(disambiguation) | other |
197181.0 | 1.7898921e7 | 18.0 | Kunming | Yuantong_Temple | link |
5043734.0 | 14800.0 | 10.0 | Wikipedia | Icon | other |
973639.0 | 1929375.0 | 16.0 | Lacombe | Lacombe,_Alberta | link |
380569.0 | 53607.0 | 46.0 | John_F._Kennedy_Center_for_the_Performing_Arts | Edward_Durell_Stone | link |
149689.0 | 190226.0 | 10.0 | Midnight's_Children | 1981_in_literature | link |
null | 1.73024e7 | 24.0 | other-other | Baltimore_City_Circuit_Courthouses | other |
null | 2.1313911e7 | 10.0 | other-bing | Wind_power_in_Wyoming | other |
null | 1.3005006e7 | 12.0 | other-empty | Douglas_Guest | other |
714928.0 | 1.5704166e7 | 30.0 | Greenland_Dog | Inuit | link |
null | 9471611.0 | 28.0 | other-empty | Memphis_Light,_Gas_and_Water | other |
1585091.0 | 348208.0 | 16.0 | List_of_Turkish_artists | Avni_Arbaş | link |
null | 4120275.0 | 56.0 | other-google | Marjie_Lundstrom | other |
39482.0 | 2079614.0 | 27.0 | Mai_Zetterling | Tutte_Lemkow | link |
46526.0 | 57744.0 | 10.0 | 419_scams | Ivory_Coast | link |
52967.0 | 411914.0 | 16.0 | Gynaecology | Oophorectomy | link |
6059111.0 | 2.8039598e7 | 17.0 | Ethan_Spaulding | The_Legend_of_Korra | link |
null | 501536.0 | 20.0 | other-yahoo | Ministry_of_Intelligence | other |
480634.0 | 1989200.0 | 27.0 | Absorbance | Densitometry | link |
3924114.0 | 2455426.0 | 26.0 | Bottom_Dollar_Food | PriceRite | link |
null | 2.1715001e7 | 15.0 | other-google | You_Are_My_Joy | other |
1.8899968e7 | 44700.0 | 11.0 | List_of_Chinese_discoveries | Leprosy | link |
984322.0 | 2176065.0 | 45.0 | Krome_Studios_Melbourne | Nightshade_(1992_video_game) | other |
null | 867983.0 | 24.0 | other-wikipedia | Microsoft_Narrator | other |
3303790.0 | 2.3384265e7 | 21.0 | Military_history_of_Mexico | Mexican_Armed_Forces | other |
null | 5435750.0 | 14.0 | other-wikipedia | Punk-O-Rama_5 | other |
24555.0 | 129618.0 | 11.0 | Photosynthetic_pigment | Cyanobacteria | link |
null | 1.2391537e7 | 11.0 | other-other | Flores_(canton) | other |
null | 8703722.0 | 16.0 | other-wikipedia | Get_down | other |
117337.0 | 181005.0 | 35.0 | Westlake_Village,_California | Robert_Young_(actor) | link |
1266404.0 | 201829.0 | 20.0 | Hypalon | DuPont | link |
null | 150521.0 | 63.0 | other-yahoo | Henry_Armstrong | other |
null | 46933.0 | 20.0 | other-yahoo | Spelljammer | other |
9947607.0 | 1610870.0 | 11.0 | Nick_Raskulinecz | In_Your_Honor | link |
7890238.0 | 5400269.0 | 20.0 | Test_Drive_4 | TVR_Cerbera_Speed_12 | link |
3051596.0 | 611873.0 | 17.0 | Chaminade_College_Preparatory_School_(California) | West_Hills,_Los_Angeles | other |
null | 2054489.0 | 92.0 | other-empty | Jean_van_de_Velde_(golfer) | other |
1.8220755e7 | 3.9815494e7 | 123.0 | Holly_Hunter | Bonnie_&_Clyde_(2013_miniseries) | link |
null | 1.2201032e7 | 83.0 | other-wikipedia | M_jak_miłość | other |
1511052.0 | 1182345.0 | 40.0 | Jim_Kelly_(martial_artist) | Undercover_Brother | link |
127894.0 | 3.2564669e7 | 30.0 | Winston-Salem,_North_Carolina | Novant_Health | link |
72566.0 | 806290.0 | 29.0 | Carmina_Burana | Cockaigne | link |
1018512.0 | 1.2219012e7 | 12.0 | Culture_of_Burma | Burmese_dance | link |
4.4789934e7 | 1.9156186e7 | 10.0 | Deaths_in_2015 | Adrian_Peterson | other |
null | 1615103.0 | 51.0 | other-other | Lucy_Ford:_The_Atmosphere_EP's | other |
null | 3.4567346e7 | 17.0 | other-google | Simon_Paulli | other |
1113778.0 | 235321.0 | 40.0 | Heaven_Tonight | Rick_Nielsen | link |
null | 2.1158505e7 | 97.0 | other-other | SDL_Trados | other |
null | 1.7838929e7 | 13.0 | other-google | Christian_Maclagan | other |
294791.0 | 4.248568e7 | 18.0 | Steven_Moffat | Time_Heist | link |
null | 3.5096982e7 | 14.0 | other-empty | Even_If_It_Breaks_Your_Heart | other |
null | 3352391.0 | 33.0 | other-wikipedia | Pecheneg_language | other |
109495.0 | 2835130.0 | 25.0 | Key_West,_Florida | Key_Haven,_Florida | link |
22093.0 | 1658814.0 | 233.0 | National_Basketball_Association | Barclays_Center | link |
24096.0 | 1.9049004e7 | 16.0 | Plough | Stump-jump_plough | link |
null | 5576399.0 | 10.0 | other-wikipedia | Santahamina | other |
null | 1.3646286e7 | 29.0 | other-google | WYFI | other |
null | 1803482.0 | 21.0 | other-empty | Aldene_Connection | other |
308142.0 | 4.1443125e7 | 26.0 | General_Santos | SM_City_General_Santos | link |
1.9486157e7 | 2.0975298e7 | 116.0 | Mirotic | Mirotic_(song) | other |
192381.0 | 1.7161967e7 | 27.0 | Joe_Pantoliano | The_Handler_(TV_series) | link |
967278.0 | 2604085.0 | 49.0 | KiKa | Bernd_das_Brot | link |
null | 8252419.0 | 853.0 | other-google | Foxhole | other |
55906.0 | 17391.0 | 16.0 | Zagreb | Kosovo | link |
null | 130195.0 | 23.0 | other-google | Covington,_Oklahoma | other |
null | 2984353.0 | 21.0 | other-empty | 251_(number) | other |
23324.0 | 20474.0 | 22.0 | Platinum | Mohs_scale_of_mineral_hardness | link |
1298.0 | 2.3555068e7 | 10.0 | Ames,_Iowa | Neva_Morris | link |
2117651.0 | 1.808438e7 | 18.0 | AFI's_100_Years...100_Movie_Quotes | George_M._Cohan | link |
null | 2.8370582e7 | 14.0 | other-google | Palača | other |
138022.0 | 267590.0 | 34.0 | North_Bend,_Washington | Mount_Si | link |
null | 4.0810754e7 | 325.0 | other-google | List_of_travel_books | other |
2387806.0 | 12301.0 | 26.0 | Harry_Potter | A_Song_of_Ice_and_Fire | other |
48630.0 | 7159144.0 | 11.0 | 2014 | Michael_Sata | link |
1.1976532e7 | 3.7562767e7 | 84.0 | TOP500 | Graph500 | link |
599365.0 | 1.904146e7 | 78.0 | Liiga | Kanada-malja | link |
null | 4.1274079e7 | 44.0 | other-wikipedia | Jeremy_Jamm | other |
4.0379651e7 | 8744746.0 | 144.0 | IBM | Big_Blue_(disambiguation) | link |
52036.0 | 5573.0 | 50.0 | Istria | Croatia | link |
null | 8260496.0 | 106.0 | other-wikipedia | Wrestle_Kingdom | other |
402652.0 | 581760.0 | 27.0 | Compulsive_hoarding | Plyushkin | link |
4.2839033e7 | 2.1418097e7 | 13.0 | List_of_hot_dog_restaurants | Montreal_Pool_Room | link |
null | 2.394422e7 | 28.0 | other-wikipedia | Iván_Pillud | other |
206004.0 | 988219.0 | 14.0 | Military_history_of_Egypt_during_World_War_II | East_African_Campaign_(World_War_II) | link |
null | 1.0235545e7 | 14.0 | other-other | D'Ieteren | other |
null | 475805.0 | 548.0 | other-google | Pansy_Division | other |
49966.0 | 287855.0 | 199.0 | Carlos_Menem | Cecilia_Bolocco | link |
null | 1.4750893e7 | 44.0 | other-google | Ain't_No_Shame_in_My_Game | other |
2.0550801e7 | 2.6771113e7 | 10.0 | La_Scala_(album) | Tokyo_'96 | link |
null | 7304198.0 | 22.0 | other-empty | Ernst_Fischer | other |
1.5851039e7 | 10618.0 | 11.0 | Davy_Crockett_and_the_River_Pirates | Fiddle | other |
null | 1.1927959e7 | 17.0 | other-wikipedia | Metal_Gear_Solid_2:_Sons_of_Liberty_Soundtrack_2:_The_Other_Side | other |
null | 38325.0 | 15.0 | other-bing | Descent | other |
null | 6017828.0 | 11.0 | other-empty | Center_for_Libertarian_Studies | other |
3.0873608e7 | 245390.0 | 21.0 | Metal_Gear_(video_game) | Stealth_game | link |
2.0846219e7 | 2.084622e7 | 12.0 | Benzathine | Benzathine_phenoxymethylpenicillin | link |
null | 3.666971e7 | 21.0 | other-google | Sydney_state_by-election,_2012 | other |
498348.0 | 1587778.0 | 12.0 | Guinea_Pig_(film_series) | Japanese_horror | other |
Display is a utility provided by Databricks. If you are programming directly in Spark, use the show(numRows: Int) function of DataFrame
clickstream.show(5)
+---------+-----------+---+--------------------+--------------+-----+
| prev_id| curr_id| n| prev_title| curr_title| type|
+---------+-----------+---+--------------------+--------------+-----+
| 37284.0| 197438.0| 41| Brain_tumor| Fontanelle| link|
|2904478.0|2.9932496E7| 14|Ottoman_Reform_Ed...|Hatt-i_humayun|other|
| null| 412127.0| 39| other-wikipedia| Tony_Zale|other|
|2368683.0| 209811.0| 15| Trajan's_Forum| Looting|other|
|7691324.0| 17616.0| 14| Zonal_flow| Latitude| link|
+---------+-----------+---+--------------------+--------------+-----+
only showing top 5 rows
Reading from disk vs memory
The 1.2 GB Clickstream file is currently on S3, which means each time you scan through it, your Spark cluster has to read the 1.2 GB of data remotely over the network.
Call the count()
action to check how many rows are in the DataFrame and to see how long it takes to read the DataFrame from S3.
clickstream.cache().count()
res8: Long = 224809
- It took about several minutes to read the 1.2 GB file into your Spark cluster. The file has 22.5 million rows/lines.
- Although we have called cache, remember that it is evaluated (cached) only when an action(count) is called
Now call count again to see how much faster it is to read from memory
clickstream.count()
res9: Long = 224809
- Orders of magnitude faster!
- If you are going to be using the same data source multiple times, it is better to cache it in memory
What are the top 10 articles requested?
To do this we also need to order by the sum of column n
, in descending order.
//Type in your answer here...
display(clickstream
.select(clickstream("curr_title"), clickstream("n"))
.groupBy("curr_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(10))
curr_title | sum(n) |
---|---|
Anna_Kendrick | 137305.0 |
Avengers:_Age_of_Ultron | 128626.0 |
Supernatural_(U.S._TV_series) | 116686.0 |
Clint_Eastwood | 106473.0 |
List_of_Person_of_Interest_episodes | 100807.0 |
List_of_James_Bond_films | 96604.0 |
E._L._James | 95611.0 |
Uber_(company) | 93768.0 |
Marco_Polo | 75583.0 |
Main_Page | 71087.0 |
Who sent the most traffic to Wikipedia in Feb 2015?
In other words, who were the top referers to Wikipedia?
display(clickstream
.select(clickstream("prev_title"), clickstream("n"))
.groupBy("prev_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(10))
prev_title | sum(n) |
---|---|
other-google | 1.5189547e7 |
other-empty | 2345980.0 |
other-wikipedia | 1169428.0 |
other-other | 750332.0 |
other-bing | 623218.0 |
other-yahoo | 437115.0 |
Main_Page | 348099.0 |
other-twitter | 234104.0 |
Beck | 68092.0 |
Deaths_in_2015 | 38579.0 |
As expected, the top referer by a large margin is Google. Next comes refererless traffic (usually clients using HTTPS). The third largest sender of traffic to English Wikipedia are Wikipedia pages that are not in the main namespace (ns = 0) of English Wikipedia. Learn about the Wikipedia namespaces here: https://en.wikipedia.org/wiki/Wikipedia:Project_namespace
Also, note that Twitter sends 10x more requests to Wikipedia than Facebook.
//Type in your answer here...
display(clickstream
.select(clickstream("curr_title"), clickstream("prev_title"), clickstream("n"))
.filter("prev_title = 'other-twitter'")
.groupBy("curr_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(5))
curr_title | sum(n) |
---|---|
12_Angry_Men_(1957_film) | 54643.0 |
Beit_Aghion | 20819.0 |
Mongolian_horse | 9829.0 |
Vermiform_appendix | 9678.0 |
American_Ninja | 8266.0 |
val allClicks = clickstream.selectExpr("sum(n)").first.getLong(0)
val referals = clickstream.
filter(clickstream("prev_id").isNotNull).
selectExpr("sum(n)").first.getLong(0)
(referals * 100.0) / allClicks
allClicks: Long = 31696586
referals: Long = 10915724
res13: Double = 34.4381694609003
clickstream.createOrReplaceTempView("clicks")
SELECT *
FROM clicks
WHERE
curr_title = 'Donald_Trump' AND
prev_id IS NOT NULL AND prev_title != 'Main_Page'
ORDER BY n DESC
LIMIT 20
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
290327.0 | 4848272.0 | 596.0 | German_American | Donald_Trump | link |
1.0477604e7 | 4848272.0 | 68.0 | ACN_Inc. | Donald_Trump | link |
891829.0 | 4848272.0 | 12.0 | Celebrity_(film) | Donald_Trump | link |
YouTry: Top referrers to other 2016 US presidential candidate pages
'Donald_Trump', 'Bernie_Sanders', 'Hillary_Rodham_Clinton', 'Ted_Cruz'
-- YouTry
---
-- fill in the right sql query here
val clicksDFsql = sql("""
SELECT
prev_title AS src,
curr_title AS dest,
n AS count FROM clicks
WHERE
curr_title IN ('Donald_Trump', 'Bernie_Sanders', 'Hillary_Rodham_Clinton', 'Ted_Cruz') AND
prev_id IS NOT NULL AND prev_title != 'Main_Page'
ORDER BY n DESC
LIMIT 20""")
clicksDFsql: org.apache.spark.sql.DataFrame = [src: string, dest: string ... 1 more field]
clicksDFsql.show(false)
+-----------------------------------------------------+----------------------+-----+
|src |dest |count|
+-----------------------------------------------------+----------------------+-----+
|German_American |Donald_Trump |596 |
|List_of_current_United_States_Senators |Ted_Cruz |207 |
|Hilary_(name) |Hillary_Rodham_Clinton|109 |
|ACN_Inc. |Donald_Trump |68 |
|United_States_congressional_delegations_from_Texas |Ted_Cruz |27 |
|Hillary_Rodham_Clinton |Bernie_Sanders |20 |
|Angus_King |Bernie_Sanders |13 |
|David_Sirota |Bernie_Sanders |13 |
|Celebrity_(film) |Donald_Trump |12 |
|List_of_Southern_Baptist_Convention_affiliated_people|Ted_Cruz |10 |
+-----------------------------------------------------+----------------------+-----+
Convert raw data to parquet
Recall:
Apache Parquet is a columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language. It is a more efficient way to store data frames.
- To understand the ideas read Dremel: Interactive Analysis of Web-Scale Datasets, Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton and Theo Vassilakis,Proc. of the 36th Int'l Conf on Very Large Data Bases (2010), pp. 330-339, whose Abstract is as follows:
- Dremel is a scalable, interactive ad-hoc query system for analysis of read-only nested data. By combining multi-level execution trees and columnar data layouts it is capable of running aggregation queries over trillion-row tables in seconds. The system scales to thousands of CPUs and petabytes of data, and has thousands of users at Google. In this paper, we describe the architecture and implementation of Dremel, and explain how it complements MapReduce-based computing. We present a novel columnar storage representation for nested records and discuss experiments on few-thousand node instances of the system.
// Convert the DatFrame to a more efficent format to speed up our analysis
// writing intermediate files to temporary dir .../tmp/...
clickstream
.write
.mode(SaveMode.Overwrite)
.parquet("/datasets/sds/tmp/wiki-clickstream")
Load parquet file efficiently and quickly into a DataFrame
Now we can simply load from this parquet file next time instead of creating the RDD from the text file (much slower).
Also using parquet files to store DataFrames allows us to go between languages quickly in a a scalable manner.
val clicks = spark.read.parquet("/datasets/sds/tmp/wiki-clickstream")
clicks: org.apache.spark.sql.DataFrame = [prev_id: double, curr_id: double ... 4 more fields]
clicks.printSchema
root
|-- prev_id: double (nullable = true)
|-- curr_id: double (nullable = true)
|-- n: integer (nullable = true)
|-- prev_title: string (nullable = true)
|-- curr_title: string (nullable = true)
|-- type: string (nullable = true)
display(clicks) // let's display this DataFrame
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
37284.0 | 197438.0 | 41.0 | Brain_tumor | Fontanelle | link |
2904478.0 | 2.9932496e7 | 14.0 | Ottoman_Reform_Edict_of_1856 | Hatt-i_humayun | other |
null | 412127.0 | 39.0 | other-wikipedia | Tony_Zale | other |
2368683.0 | 209811.0 | 15.0 | Trajan's_Forum | Looting | other |
7691324.0 | 17616.0 | 14.0 | Zonal_flow | Latitude | link |
null | 1.9730805e7 | 170.0 | other-empty | Ryan_Jones_(ice_hockey) | other |
null | 129375.0 | 32.0 | other-empty | Reading,_Ohio | other |
1.5580374e7 | 2554846.0 | 14.0 | Main_Page | Toots | other |
348959.0 | 3.5701262e7 | 53.0 | Japanese_dialects | Hokkaido_dialects | link |
null | 614279.0 | 16.0 | other-yahoo | Nick_13 | other |
148898.0 | 3.6496677e7 | 13.0 | Asian_American | Watsonville_riots | other |
7997964.0 | 2.0992676e7 | 11.0 | Chikara_Campeonatos_de_Parejas | The_Colony_(professional_wrestling) | link |
null | 5922274.0 | 22.0 | other-empty | John_William_Loudon | other |
null | 1997924.0 | 30.0 | other-empty | Mister_Cartoon | other |
null | 2774369.0 | 10.0 | other-empty | Knottingley_railway_station | other |
null | 2.7283921e7 | 13.0 | other-google | Caret,_Virginia | other |
4940115.0 | 2370506.0 | 68.0 | Drew_Mitchell | RC_Toulonnais | link |
6514702.0 | 6982829.0 | 2755.0 | Lonelygirl15 | Jessica_Lee_Rose | link |
4.3010378e7 | 451169.0 | 74.0 | Pro_Evolution_Soccer_2015 | Swansea_City_A.F.C. | other |
null | 2653829.0 | 12.0 | other-google | List_of_places_in_New_York:_V | other |
2979541.0 | 1.5580374e7 | 16.0 | The_Kooks | Main_Page | other |
2378072.0 | 877225.0 | 42.0 | The_Crow:_Wicked_Prayer | The_Crow:_Salvation | link |
49706.0 | 77491.0 | 14.0 | Paul_Newman | Gregory_Peck | link |
3084058.0 | 1352229.0 | 10.0 | Sport_coat | Harrington_jacket | link |
null | 7079047.0 | 30.0 | other-empty | Mario_Gjurovski | other |
752246.0 | 1.1507227e7 | 13.0 | Miller_Park_(Milwaukee) | United_Football_League_(2009–12) | other |
412214.0 | 278018.0 | 18.0 | Bill_Russell | NBA_All-Star_Game | link |
158696.0 | 26272.0 | 11.0 | Roland_TR-808 | Ryuichi_Sakamoto | link |
322055.0 | 322060.0 | 254.0 | USS_Constellation_(1797) | USS_Constellation_(1854) | link |
525928.0 | 3.3402653e7 | 13.0 | Special_agent | Gus_Fring | link |
2.4930946e7 | 27169.0 | 113.0 | Eric_Mangini | San_Francisco_49ers | link |
null | 3.5027653e7 | 48.0 | other-wikipedia | Mara_Maru | other |
2.1073732e7 | 3.3188989e7 | 12.0 | Mexican–American_War | Santa_Ana | other |
1.4912557e7 | 4.1491686e7 | 18.0 | Caucasus_Emirate | December_2013_Volgograd_bombings | link |
3219844.0 | 3002478.0 | 29.0 | Azure_Dragon | Horn_(Chinese_constellation) | link |
null | 116508.0 | 43.0 | other-empty | Brentwood,_Maryland | other |
26750.0 | 220636.0 | 18.0 | Sri_Lanka | Universal_suffrage | link |
34404.0 | 341594.0 | 78.0 | Economy_of_Zimbabwe | Land_reform_in_Zimbabwe | link |
null | 3.074887e7 | 25.0 | other-google | Sam_Weiss | other |
3.8870894e7 | 1.5580374e7 | 17.0 | Lupe_Fuentes | Main_Page | other |
null | 5020425.0 | 1375.0 | other-google | FEG_PA-63 | other |
null | 99891.0 | 341.0 | other-empty | Gulf_Shores,_Alabama | other |
1260484.0 | 2.2763421e7 | 23.0 | Ubud | Ubud_District | link |
1.6113578e7 | 2.065561e7 | 12.0 | Ronald_Allen_Smith | Montana_State_Prison | link |
null | 1.199021e7 | 24.0 | other-yahoo | List_of_awards_and_nominations_received_by_Shah_Rukh_Khan | other |
3841.0 | 2266430.0 | 187.0 | Bud_Spencer | Ace_High_(1968_film) | link |
846862.0 | 1148.0 | 15.0 | W._O._Bentley | Adelaide | link |
null | 34168.0 | 18.0 | other-twitter | Xenogears | other |
2.3712589e7 | 557091.0 | 76.0 | Alternative_hip_hop | Underground_hip_hop | link |
null | 1.379992e7 | 31.0 | other-google | Gheorghe_Păun | other |
24140.0 | 28436.0 | 10.0 | Paul_the_Apostle | Saint | other |
null | 8343572.0 | 16.0 | other-wikipedia | Hulwan | other |
null | 2.392808e7 | 110.0 | other-empty | Craig_Dawson | other |
null | 3.6155348e7 | 15.0 | other-bing | List_of_world_championships_medalists_in_powerlifting_(men) | other |
4673783.0 | 4676317.0 | 51.0 | Double_fisherman's_knot | Double_overhand_knot | link |
null | 619770.0 | 10.0 | other-wikipedia | Royal_Academy_summer_exhibition | other |
5577654.0 | 601316.0 | 42.0 | List_of_Fables_characters | Ichabod_Crane | link |
11006.0 | 2.8363011e7 | 39.0 | February_19 | Sérgio_Júnior | other |
null | 1.4978921e7 | 16.0 | other-wikipedia | Herbert_Walther | other |
19374.0 | 57546.0 | 154.0 | Model_organism | Caenorhabditis_elegans | link |
null | 4049702.0 | 15.0 | other-bing | A-91 | other |
2.4572232e7 | 2.2008992e7 | 12.0 | Joey_Sturgis | Someday_Came_Suddenly | link |
1122303.0 | 6950178.0 | 13.0 | Ben_Olsen | Ben_Olson | link |
null | 4403167.0 | 15.0 | other-other | Fereydoon_Moshiri | other |
null | 423041.0 | 23.0 | other-empty | First_Circle | other |
1.3078837e7 | 2.7332848e7 | 12.0 | 2007_US_Open_–_Boys'_Singles | Matteo_Trevisan | link |
null | 6493680.0 | 11.0 | other-google | Mentai_Rock | other |
1.1197284e7 | 1.744141e7 | 12.0 | Kurt_Pellegrino | Júnior_Assunção | other |
887544.0 | 2420403.0 | 552.0 | Alisha_Klass | Seymore_Butts | link |
1.0609116e7 | 4.3173611e7 | 17.0 | Arizona_Wildcats_men's_basketball | Rondae_Hollis-Jefferson | link |
null | 616622.0 | 724.0 | other-wikipedia | Andriy_Shevchenko | other |
2296379.0 | 1771587.0 | 14.0 | Palmar_erythema | Pregnancy | link |
6678.0 | 99426.0 | 19.0 | Cat | Naphthalene | link |
55502.0 | 55501.0 | 40.0 | 860s_BC | 850s_BC | link |
2.181477e7 | 74940.0 | 106.0 | Langston_Hughes | Marian_Anderson | link |
763905.0 | 3.9681124e7 | 62.0 | Tien | Tien_(surname) | link |
4.4251018e7 | 3.7049649e7 | 14.0 | HyperDex | Spanner_(database) | link |
5697437.0 | 192755.0 | 65.0 | The_Cockpit_(OVA) | Yokosuka_MXY7_Ohka | link |
3084191.0 | null | 17.0 | Dany_Verissimo | John_B._Root | redlink |
9624289.0 | 1.9985931e7 | 329.0 | DirecTV | DirecTV_satellite_fleet | link |
31734.0 | 72227.0 | 18.0 | Urea | Plywood | link |
1078676.0 | 4486620.0 | 13.0 | Burundian_Civil_War | United_Nations_Operation_in_Burundi | link |
4408.0 | 1147922.0 | 168.0 | Buddy_Holly | Music_of_Lubbock,_Texas | other |
null | 444112.0 | 33.0 | other-yahoo | Gnoll | other |
3369981.0 | 1516915.0 | 16.0 | Flu_(disambiguation) | Swine_influenza | other |
468301.0 | 982480.0 | 229.0 | Samantha_Morton | John_Carter_(film) | link |
null | 6469961.0 | 35.0 | other-wikipedia | Sertorian_War | other |
null | 3.8758012e7 | 109.0 | other-other | List_of_federal_subjects_of_Russia_by_GDP_per_capita | other |
null | 3.6390439e7 | 25.0 | other-google | Major_Mining_Sites_of_Wallonia | other |
11887.0 | 895357.0 | 43.0 | Greek_language | English_words_of_Greek_origin | link |
21383.0 | 7901223.0 | 14.0 | Nigeria | Nigerian_general_election,_2007 | link |
731774.0 | 2539671.0 | 324.0 | Law_of_Moses | Ten_Commandments | link |
2.3896488e7 | 1.1263766e7 | 11.0 | Vampire_Academy_(novel) | Diary_of_a_Wimpy_Kid | link |
null | 1508712.0 | 20.0 | other-empty | Mikoyan_MiG-110 | other |
2.1536106e7 | 2.7520075e7 | 17.0 | Jennifer_Blake_(wrestler) | Mari_Apache | link |
null | 2.4052308e7 | 58.0 | other-empty | Francis_Crowley | other |
null | 1.6792585e7 | 75.0 | other-google | Phulkian_sardars | other |
2812945.0 | 1.6230289e7 | 25.0 | Double_Dutch_Bus | Raven-Symoné_(album) | link |
3.9522631e7 | 253375.0 | 70.0 | News_Corp | HarperCollins | link |
null | 2.1329684e7 | 17.0 | other-other | David_Lyon_(sociologist) | other |
338344.0 | 3.9032732e7 | 84.0 | List_of_tallest_buildings_in_the_world | Discovery_Primea | link |
3.9839062e7 | 1.9087186e7 | 12.0 | List_of_unicorns | Noah's_Ark_(2007_film) | link |
58666.0 | 3550910.0 | 12.0 | United_States_Environmental_Protection_Agency | Marine_Mammal_Protection_Act_of_1972 | link |
null | 3.5675894e7 | 11.0 | other-wikipedia | AdMarketplace | other |
627321.0 | 203426.0 | 16.0 | Burma_Campaign | Nyasaland | link |
234382.0 | 378561.0 | 180.0 | Elephant_(2003_film) | Eric_Harris_and_Dylan_Klebold | link |
null | 434919.0 | 81.0 | other-google | Alan_Meale | other |
null | 2.6552915e7 | 21.0 | other-empty | Gertrude_Abercrombie | other |
1.9172225e7 | 206790.0 | 84.0 | Prokaryote | Spirochaete | link |
null | 8759210.0 | 46.0 | other-google | TM_and_Cult_Mania | other |
34742.0 | 75831.0 | 27.0 | 5th_century | Flavius_Aetius | other |
737160.0 | 4445580.0 | 10.0 | Soilwork | Sonic_Syndicate | link |
null | 2.0594394e7 | 12.0 | other-wikipedia | Claus_Costa | other |
490391.0 | 682513.0 | 10.0 | Adnan_Gulshair_el_Shukrijumah | Abderraouf_Jdey | link |
null | 5772621.0 | 21.0 | other-wikipedia | The_Watsons | other |
1.7015795e7 | 1.336124e7 | 23.0 | Teyana_Taylor | Blue_Magic_(song) | link |
8026795.0 | 14653.0 | 12.0 | Iran–Turkey_relations | Iran | link |
null | 3.7569668e7 | 15.0 | other-google | I.O.U._(Jimmy_Dean_song) | other |
null | 2.3416901e7 | 21.0 | other-google | Strathcarron_Sports_Cars | other |
303241.0 | 719034.0 | 14.0 | Strong_Guy | Mephisto_(comics) | link |
null | 673275.0 | 203.0 | other-other | Scale_insect | other |
null | 5925339.0 | 151.0 | other-google | Flintham | other |
11092.0 | 653246.0 | 39.0 | Finger_Lakes | Canadice_Lake | link |
45715.0 | 2011918.0 | 22.0 | Arecaceae | Minoo_Island | link |
8427319.0 | 245765.0 | 16.0 | List_of_alternative_country_musicians | The_Jayhawks | other |
93036.0 | 129736.0 | 13.0 | Portage_County,_Ohio | Hiram,_Ohio | link |
null | 3.1998475e7 | 10.0 | other-empty | Royal_Botanical_Expedition_to_New_Granada | other |
3717.0 | 4911607.0 | 33.0 | Brain | Anterior_grey_column | other |
null | 4.3030724e7 | 15.0 | other-wikipedia | 99th_Infantry_Battalion_(United_States) | other |
3615880.0 | 2.9646991e7 | 11.0 | Ranger_(Dungeons_&_Dragons) | The_Complete_Fighter's_Handbook | link |
null | 3.6599164e7 | 26.0 | other-wikipedia | Rudding_Park_House | other |
null | 2.0000187e7 | 405.0 | other-wikipedia | Inflection | other |
3.593072e7 | 574988.0 | 41.0 | Stairway_to_Hell | Ugly_Kid_Joe | link |
78127.0 | 3358304.0 | 10.0 | James_Doohan | Star_Trek_(film_franchise) | other |
4.0530767e7 | 19281.0 | 42.0 | Visa_requirements_for_Palestinian_citizens | Montserrat | link |
4100885.0 | 29301.0 | 27.0 | Meaning_(linguistics) | Semiotics | link |
null | 1.9535017e7 | 48.0 | other-google | Aumism | other |
null | 3.9268446e7 | 10.0 | other-other | Raúl_Duarte_(basketball) | other |
2.2942232e7 | 9891690.0 | 24.0 | Lists_of_academic_journals | List_of_pharmaceutical_sciences_journals | link |
null | 9108276.0 | 797.0 | other-other | Kesh_(Sikhism) | other |
4306874.0 | 1615009.0 | 14.0 | Khartoum_International_Airport | Flynas | link |
3.3948854e7 | 2.7572278e7 | 10.0 | Robert_A._J._Gagnon | Jack_Rogers_(clergy) | link |
2.5318118e7 | 17867.0 | 19.0 | Government_of_the_United_Kingdom | London | link |
4.4729787e7 | 5070615.0 | 12.0 | Marvel_Contest_of_Champions | Marvel_Super_Heroes:_War_of_the_Gems | link |
65192.0 | 141976.0 | 17.0 | Three_Gorges_Dam | Alstom | link |
194664.0 | 924738.0 | 86.0 | The_Flintstones_(film) | Richard_Moll | link |
null | 2370304.0 | 1180.0 | other-google | Sriperumbudur | other |
null | 2.6678779e7 | 19.0 | other-google | Geeklog | other |
null | 109049.0 | 55.0 | other-other | Margate,_Florida | other |
null | 365310.0 | 961.0 | other-google | Vostok_(spacecraft) | other |
null | 191537.0 | 271.0 | other-other | Internment | other |
null | 1250542.0 | 27.0 | other-other | Jake_Peavy | other |
1069442.0 | 180425.0 | 39.0 | Charles_Bickford | Woodlawn_Memorial_Cemetery,_Santa_Monica | link |
null | 3.8641017e7 | 3802.0 | other-google | GeForce_800M_series | other |
80387.0 | 77944.0 | 29.0 | Hamadryad | Hesperides | link |
18819.0 | 2399697.0 | 35.0 | Microeconomics | Heterodox_economics | link |
9566994.0 | 9574674.0 | 12.0 | The_Renegade_(short_story) | The_Silent_Men | link |
333703.0 | 161436.0 | 15.0 | Angelo_Dundee | Ernest_Borgnine | link |
2.6301553e7 | 10150.0 | 34.0 | António_de_Oliveira_Salazar | Engelbert_Dollfuss | other |
4.2255443e7 | null | 21.0 | List_of_United_States_bomber_aircraft | List_of_United_States_attack_aircraft | redlink |
null | 1.2290729e7 | 40.0 | other-wikipedia | Monte_Carlo_(biscuit) | other |
7619598.0 | 2916479.0 | 33.0 | Fusiliers_Commandos_de_l'Air | German_Air_Force_Regiment | link |
7457961.0 | 1651671.0 | 28.0 | List_of_Castlevania:_Aria_of_Sorrow_and_Dawn_of_Sorrow_characters | Soma_Cruz | link |
null | 1.8755551e7 | 167.0 | other-google | Hooli | other |
null | 2.557502e7 | 12.0 | other-wikipedia | Leucadendron_album | other |
null | 9041425.0 | 57.0 | other-empty | Country_Teasers | other |
null | 1.9226982e7 | 17.0 | other-google | The_Wits | other |
5625186.0 | 2.3378704e7 | 22.0 | Chadian–Libyan_conflict | Chadian_Civil_War_(1965–79) | link |
null | 2783508.0 | 17.0 | other-other | Encephalartos | other |
192042.0 | 155627.0 | 22.0 | Over-the-counter_drug | Ibuprofen | link |
null | 3.8764007e7 | 31.0 | other-empty | Secret_Story_4_(Portugal) | other |
22205.0 | 1147409.0 | 305.0 | Oasis | Ein_Gedi | link |
1.8899195e7 | 4527556.0 | 12.0 | Rhynchosaurus | Rhynchosaur | link |
null | 2.61932e7 | 42.0 | other-wikipedia | Charl_Van_Den_Berg | other |
1.9567899e7 | 2.5757144e7 | 224.0 | Nintendo_DSi | Foto_Showdown | link |
1.7981721e7 | 518667.0 | 13.0 | Afamelanotide | Erythropoietic_protoporphyria | link |
637310.0 | 1.0684273e7 | 41.0 | Japanese_submarine_I-25 | Leninets-class_submarine | other |
null | 3958341.0 | 27.0 | other-empty | Atsushi_Itō_(actor) | other |
30085.0 | 1185285.0 | 20.0 | Thomas_Mann | Kilchberg,_Zürich | link |
2652103.0 | 2.65684e7 | 294.0 | Tiling_window_manager | Awesome_(window_manager) | link |
null | 9653709.0 | 36.0 | other-google | Clint_Warwick | other |
1.802006e7 | 4857534.0 | 17.0 | Brimonidine/timolol | Brimonidine | link |
156778.0 | 52671.0 | 122.0 | Hypochondriasis | Psychosomatic_medicine | link |
1.3335045e7 | 335195.0 | 18.0 | Dungeons_&_Dragons_in_popular_culture | Stephen_Colbert | link |
3338747.0 | 4134000.0 | 18.0 | Travis_Willingham | Ouran_High_School_Host_Club | link |
2.4370563e7 | 1.9866746e7 | 66.0 | Harry_Potter_and_the_Forbidden_Journey | Transformers:_The_Ride | link |
3.6438468e7 | 2.483689e7 | 12.0 | Alternative_versions_of_Joker | Homosexuality_in_the_Batman_franchise | link |
8119611.0 | 33158.0 | 21.0 | 100_Photographs_that_Changed_the_World | War | link |
2.4102801e7 | 8986839.0 | 72.0 | List_of_Stradivarius_instruments | Hammer_Stradivarius | link |
null | 4043540.0 | 37.0 | other-empty | The_Silverado_Squatters | other |
1.2801225e7 | 198606.0 | 28.0 | Blair_Tindall | Malcolm_McDowell | link |
737.0 | 1.1203313e7 | 47.0 | Afghanistan | Afghanistan–Pakistan_skirmishes | link |
null | 26039.0 | 189.0 | other-empty | Photek | other |
null | 7008604.0 | 44.0 | other-empty | Edward_S._Walker,_Jr. | other |
null | 5031359.0 | 18.0 | other-google | Families_Acting_for_Innocent_Relatives | other |
null | 5545390.0 | 21.0 | other-other | EWR_VJ_101 | other |
4503997.0 | 1.4695141e7 | 127.0 | What_About_Brian | List_of_What_About_Brian_episodes | link |
null | 4.137716e7 | 14.0 | other-empty | Frederick_Fox_(milliner) | other |
3096312.0 | 99459.0 | 15.0 | Dana_Wynter | Airport_(1970_film) | link |
null | 1.2995239e7 | 18.0 | other-wikipedia | Nervous_Night_(album) | other |
null | 1.47815e7 | 49.0 | other-google | Thermal_dose_unit | other |
1.8186074e7 | 1.608506e7 | 33.0 | National_Highway_7A_(India)(old_numbering) | National_Highway_7_(India)(old_numbering) | link |
null | 3880952.0 | 19.0 | other-empty | Marion_Dudley | other |
1171412.0 | 6847270.0 | 22.0 | Ivatan_language | Batanic_languages | link |
8837050.0 | 30027.0 | 14.0 | Copernican_heliocentrism | Tycho_Brahe | link |
4.3380319e7 | 4.2654791e7 | 49.0 | Scandal_(season_4) | Grey's_Anatomy_(season_11) | other |
1928831.0 | 1928617.0 | 15.0 | List_of_moths | Laothoe_populi | link |
222417.0 | 1793072.0 | 21.0 | A._R._Rahman | Dil_Se.. | link |
1537974.0 | 3.3757237e7 | 18.0 | Angelo_Scola | Francesco_Moraglia | link |
2.0755574e7 | 8249183.0 | 37.0 | Venezuelan_of_European_descent | María_Rivas | other |
524874.0 | 2204.0 | 16.0 | Voiced_pharyngeal_fricative | Arabic_alphabet | link |
60730.0 | 212182.0 | 33.0 | Lucy_Maud_Montgomery | Order_of_the_British_Empire | link |
null | 2.2965354e7 | 13.0 | other-google | Shelek | other |
2.0646706e7 | 1977645.0 | 10.0 | 2009_Campeonato_Brasileiro_Série_A | Diego_Tardelli | link |
2.1513743e7 | 2.4708146e7 | 17.0 | Jason_Aldean_discography | The_Truth_(Jason_Aldean_song) | link |
null | 9277.0 | 1925.0 | other-wikipedia | Ellipse | other |
null | 2.0958639e7 | 40.0 | other-empty | Trailer_Park_of_Terror | other |
33265.0 | 6723726.0 | 74.0 | Winston_Churchill | Operation_Overlord | link |
3.0533402e7 | 2.1723891e7 | 25.0 | Tryblidiida | Micropilina | link |
2721803.0 | 1.5146151e7 | 16.0 | Battle_of_Baugé | Baugé | link |
153784.0 | 17098.0 | 14.0 | Naginata | Kendo | other |
null | 1.4347506e7 | 15.0 | other-bing | The_Hat | other |
9768801.0 | 3.3196141e7 | 12.0 | Manchester_United_F.C._Reserves_and_Academy | Peter_O'Sullivan_(Welsh_footballer) | link |
330447.0 | 1718041.0 | 14.0 | Binti_Jua | Western_lowland_gorilla | link |
18522.0 | 17730.0 | 10.0 | Latino_(demonym) | Latin | link |
1.1610928e7 | 1179269.0 | 25.0 | Peacock-class_corvette | Naval_Service_(Ireland) | other |
625758.0 | 144367.0 | 11.0 | Bill_Willingham | Justice_Society_of_America | link |
3.3930403e7 | 5064492.0 | 108.0 | South_Park:_The_Stick_of_Truth | South_Park_(video_game) | link |
148682.0 | 3891002.0 | 10.0 | Pertinax | Marcomannic_Wars | link |
null | 2.5584664e7 | 43.0 | other-other | Discharge_coefficient | other |
null | 2374342.0 | 27.0 | other-yahoo | Axillary_vein | other |
null | 3.5009269e7 | 47.0 | other-bing | Successful_aging | other |
62069.0 | 2925739.0 | 50.0 | Panthéon | San_Pietro_in_Montorio | link |
1602491.0 | 3568081.0 | 24.0 | Ghazipur | Abdul_Hamid_(soldier) | link |
null | 4849167.0 | 29.0 | other-other | Brethren_of_Purity | other |
null | 1.8592807e7 | 53.0 | other-wikipedia | Doc_Shaw | other |
2.3576946e7 | 4440840.0 | 13.0 | The_Collector_(2009_film) | The_Collection | other |
null | 2.7612808e7 | 24.0 | other-bing | "Benjamin_Miles_""C-Note""_Franklin" | other |
null | 560667.0 | 25.0 | other-wikipedia | Index_of_Babylon_5_articles | other |
1.5432504e7 | 315269.0 | 22.0 | Death_Scream | Murder_of_Kitty_Genovese | other |
null | 1904377.0 | 40.0 | other-yahoo | Canon_A-1 | other |
8556123.0 | 1.3036212e7 | 1866.0 | Rules_of_Engagement_(TV_series) | David_Spade | link |
null | 2843028.0 | 17.0 | other-wikipedia | Mid-Canada_Communications | other |
null | 4724437.0 | 345.0 | other-google | University_of_the_Balearic_Islands | other |
null | 2.9457801e7 | 247.0 | other-wikipedia | Age_of_Heroes_(film) | other |
3.9120425e7 | 3.9868659e7 | 90.0 | Santhosh_Narayanan | Lucia_(2013_film) | link |
1904112.0 | 1004953.0 | 42.0 | Lamberto_Bava | Mario_Bava | link |
null | 2.1372915e7 | 33.0 | other-yahoo | Christian_views_on_divorce | other |
91320.0 | 91267.0 | 15.0 | Franklin_County,_Virginia | Pittsylvania_County,_Virginia | link |
1334948.0 | 238273.0 | 221.0 | Lupus_anticoagulant | Antiphospholipid_syndrome | link |
null | 3.2782542e7 | 24.0 | other-wikipedia | Sara_Pichelli | other |
null | 1.7954948e7 | 12.0 | other-google | Club_Sportif_Makthar | other |
null | 2.1880672e7 | 14.0 | other-bing | Bitte_Orca | other |
10128.0 | 75899.0 | 32.0 | Elizabeth_I_of_England | Huguenot | link |
7437933.0 | 1.1869952e7 | 29.0 | Space_and_Upper_Atmosphere_Research_Commission | Chronology_of_Pakistan's_rocket_tests | link |
2.4426866e7 | 1.2757148e7 | 27.0 | Huamei | Li_hing_mui | link |
2942161.0 | 2933074.0 | 28.0 | Canon_T_series | Canon_T50 | link |
null | 1.4084798e7 | 18.0 | other-empty | 2008_Russian_Premier_League | other |
3.8317679e7 | 3.8780447e7 | 11.0 | Marxist_humanism | Structural_Marxism | link |
null | 2.2571562e7 | 13.0 | other-bing | Jennifer_Servo | other |
2.0618103e7 | 275978.0 | 25.0 | Camphora | Camphor | link |
1.5580374e7 | 2.4128239e7 | 36.0 | Main_Page | Selena_Gomez_&_the_Scene | other |
4.5274337e7 | 32538.0 | 133.0 | Gotlandsdricka | Viking_Age | link |
null | 1.1252905e7 | 205.0 | other-yahoo | Biblical_manuscript | other |
239038.0 | 1170.0 | 18.0 | Construction | Architect | link |
3.8465988e7 | 2540476.0 | 12.0 | List_of_Republic_of_Ireland_international_footballers | Kevin_Kilbane | link |
3.9413121e7 | 49696.0 | 68.0 | Giorgio_Moroder_discography | Metropolis_(1927_film) | link |
null | 36743.0 | 281.0 | other-other | Atalanta | other |
28237.0 | 177534.0 | 192.0 | Space_Shuttle_Columbia | Ilan_Ramon | link |
3.148073e7 | 715008.0 | 36.0 | 2011–12_Football_League_Championship | Football_League_Championship | link |
null | 1014389.0 | 37.0 | other-bing | No_Man's_Land_Fort | other |
502307.0 | 323983.0 | 46.0 | Cole_Turner | Billy_Zane | link |
167745.0 | 5301493.0 | 10.0 | Vaquero | Mesoamerica | link |
1925385.0 | 1925397.0 | 12.0 | Walter_F._Murphy | The_Vicar_of_Christ | other |
null | 2.1766442e7 | 113.0 | other-empty | David_Álvarez | other |
3244595.0 | 1584677.0 | 22.0 | Harpe_brothers | War_of_the_Regulation | link |
1.1221038e7 | 1510621.0 | 13.0 | 2007–08_Rangers_F.C._season | Alan_Hutton | link |
1.5580374e7 | 1.7408264e7 | 10.0 | Main_Page | Vorapaxar | other |
null | 2.5008567e7 | 18.0 | other-empty | Roderic_Noble | other |
3424149.0 | 5912292.0 | 27.0 | 1975–76_NBA_season | 1976_NBA_Playoffs | link |
4.2736926e7 | 418286.0 | 158.0 | The_Blacklist_(season_1) | Justin_Kirk | link |
null | 1.3598815e7 | 17.0 | other-google | Niquero | other |
2.4509049e7 | 1.4952458e7 | 10.0 | Maritime_flag_signalling | Flag_semaphore | other |
3660711.0 | 1335545.0 | 62.0 | Duncan_Keith | 2002_NHL_Entry_Draft | link |
30450.0 | 49172.0 | 15.0 | Topological_space | Interval_(mathematics) | link |
1424791.0 | 60368.0 | 60.0 | Anne_Wiazemsky | Jean-Luc_Godard | link |
null | 4.0712418e7 | 14.0 | other-google | NEWS_(Austrian_magazine) | other |
null | 1214237.0 | 111.0 | other-wikipedia | Fold_Your_Hands_Child,_You_Walk_Like_a_Peasant | other |
null | 1.5832772e7 | 223.0 | other-other | Osu! | other |
966943.0 | 5092756.0 | 22.0 | List_of_Family_Guy_episodes | List_of_Top_Gear_episodes | other |
1.3638115e7 | 4.0387861e7 | 23.0 | Carciofi_alla_giudia | Carciofi_alla_romana | link |
null | 6787685.0 | 33.0 | other-google | Bovalino | other |
null | 1386389.0 | 81.0 | other-other | Southern_African_Customs_Union | other |
576635.0 | 986684.0 | 12.0 | Port_scanner | Rate_limiting | link |
56462.0 | 8639835.0 | 24.0 | Carpal_tunnel_syndrome | Radiculopathy | link |
1.602284e7 | 1.8895122e7 | 29.0 | 2008_Major_League_Baseball_Draft | Brett_Lawrie | link |
null | 1834626.0 | 17.0 | other-bing | Knowsley_Safari_Park | other |
861686.0 | 343056.0 | 16.0 | Tyrone_Guthrie | Stratford_Shakespeare_Festival | other |
1.5580374e7 | 288197.0 | 124.0 | Main_Page | Kapil_Dev | other |
3.4075076e7 | 3.6541863e7 | 59.0 | Gopichand_Malineni | Balupu | link |
171141.0 | 3966054.0 | 19.0 | Guava | Mexico | link |
null | 9441043.0 | 77.0 | other-empty | Cooliris | other |
null | 5500697.0 | 3623.0 | other-google | Kiss_Me_(Sixpence_None_the_Richer_song) | other |
null | 2.287596e7 | 11.0 | other-bing | Abblasen | other |
66297.0 | 53682.0 | 12.0 | Chinese_art | Calligraphy | link |
null | 4.5282472e7 | 75.0 | other-other | Aspire_Music_Group | other |
3.0588065e7 | 86817.0 | 14.0 | List_of_authoritarian_regimes_supported_by_the_United_States | Omar_Torrijos | link |
null | 1.7341725e7 | 15.0 | other-empty | Nasim_Wali_Khan | other |
46426.0 | 1.0834159e7 | 21.0 | Basil_II | Battle_of_Kreta | link |
59653.0 | 226141.0 | 123.0 | Foreign_and_Commonwealth_Office | Secretary_of_State_for_Commonwealth_Affairs | link |
9378717.0 | 164227.0 | 50.0 | The_Spy_Who_Came_in_from_the_Cold_(film) | Michael_Hordern | link |
5444617.0 | 5485318.0 | 12.0 | Military_of_Montenegro | UTVA_75 | other |
796141.0 | 8532006.0 | 17.0 | 1966–67_United_States_network_television_schedule | Coronet_Blue | link |
381658.0 | 3.7085064e7 | 21.0 | FK_Partizan | History_of_FK_Partizan | link |
null | 2.8350129e7 | 11.0 | other-empty | Arizona_Mountains_forests | other |
3.1927202e7 | 2.9381422e7 | 11.0 | List_of_songs_recorded_by_My_Chemical_Romance | Sing_(My_Chemical_Romance_song) | link |
null | 7289088.0 | 30.0 | other-google | 1938_World_Men's_Handball_Championship | other |
8926582.0 | 174104.0 | 12.0 | Imperial_Japanese_Army_General_Staff_Office | Yamagata_Aritomo | link |
1.9258996e7 | 1.4116605e7 | 14.0 | Den_Saakaldte | Niklas_Kvarforth | link |
44682.0 | 6988539.0 | 48.0 | CMYK_color_model | Screen_angle | link |
2.3608452e7 | 1.5062239e7 | 152.0 | Galatasaray_S.K._(football) | Sercan_Yıldırım | link |
2617605.0 | 4.3680163e7 | 27.0 | Saipa_F.C. | Hamed_Shiri | link |
1.7645814e7 | 1.7519198e7 | 20.0 | I_Hate_You_with_a_Passion | Andre_Nickatina | link |
2.1327889e7 | 1110833.0 | 12.0 | Kröd_Mändoon_and_the_Flaming_Sword_of_Fire | Roger_Allam | link |
2.3487767e7 | 2.6323418e7 | 27.0 | The_Tempest | True_Reportory | link |
20869.0 | 2.3041952e7 | 12.0 | Monoamine_oxidase_inhibitor | Mebanazine | link |
null | 3.1056907e7 | 12.0 | other-yahoo | Adebisi_Shank | other |
16716.0 | 1.5580374e7 | 68.0 | Kansas | Main_Page | other |
2.5731835e7 | 2.6693897e7 | 16.0 | Colourist_painting | Fauvism | other |
763785.0 | 3540456.0 | 111.0 | Wellcome_Trust | List_of_wealthiest_charitable_foundations | link |
null | 177953.0 | 357.0 | other-wikipedia | America's_Army | other |
null | 2138855.0 | 22.0 | other-empty | Garchitorena,_Camarines_Sur | other |
1161802.0 | 1.4216651e7 | 10.0 | Nokia_3110 | Nokia_1011 | link |
null | 1.410232e7 | 318.0 | other-google | Take_Me_in_Your_Arms_(Rock_Me_a_Little_While) | other |
162036.0 | 110232.0 | 30.0 | List_of_United_States_military_bases | Moody_Air_Force_Base | link |
3984468.0 | 3166244.0 | 11.0 | Oscar_Peterson_discography | Ella_and_Oscar | link |
4255996.0 | 1.4312625e7 | 12.0 | Western_Sahara_conflict | Sahrawi_refugee_camps | link |
null | 2.2661704e7 | 11.0 | other-google | Robin_Backhaus | other |
null | 1988.0 | 65.0 | other-yahoo | Abel_Tasman | other |
null | 6051097.0 | 482.0 | other-google | Trifluridine | other |
null | 2309869.0 | 11.0 | other-bing | Frank_Henenlotter | other |
1248129.0 | 1.1718319e7 | 16.0 | Port-Gentil | Stephane_Lasme | link |
null | 2872565.0 | 22.0 | other-other | Starfire_(board_wargame) | other |
1.0659362e7 | 1.7160872e7 | 16.0 | Yoon_Dong-sik | Gegard_Mousasi | link |
null | 1792018.0 | 55.0 | other-empty | Nintendo_Gamebooks | other |
null | 1.1223317e7 | 344.0 | other-other | Prince_Devitt | other |
null | 3.5910828e7 | 10.0 | other-wikipedia | Sheffield_United_F.C._Player_of_the_Year | other |
null | 2.8027307e7 | 109.0 | other-yahoo | Bones_(season_6) | other |
1.1911941e7 | 215619.0 | 10.0 | All_Out_of_Love | VH1 | link |
299717.0 | 3.5724251e7 | 192.0 | Courteney_Cox | Go_On_(TV_series) | link |
2.1930714e7 | 9265058.0 | 19.0 | Outline_of_Florida | List_of_ghost_towns_in_Florida | link |
581009.0 | 1439662.0 | 59.0 | Ford_GT | Super_GT | other |
null | 985187.0 | 92.0 | other-wikipedia | Driving_simulator | other |
null | 2995929.0 | 13.0 | other-empty | Edwards_Gardens | other |
34282.0 | 34393.0 | 116.0 | Yule | Yule_log | link |
355852.0 | 874356.0 | 13.0 | Dachau_concentration_camp | Miklós_Horthy,_Jr. | link |
601127.0 | 4194741.0 | 12.0 | List_of_Democratic_National_Conventions | Denver_Auditorium_Arena | link |
null | 2.6415234e7 | 60.0 | other-empty | Customs_valuation | other |
null | 2285190.0 | 20.0 | other-empty | Gastein_Convention | other |
499451.0 | 598952.0 | 15.0 | STS-42 | Ronald_J._Grabe | link |
null | 3.279898e7 | 11.0 | other-empty | Jalan_Besar_MRT_Station | other |
2.5864167e7 | 920737.0 | 51.0 | List_of_crowdsourcing_projects | Clickworkers | link |
3.4199866e7 | 7253509.0 | 318.0 | AKB0048 | AKB48 | link |
3.3526094e7 | 3.1748786e7 | 36.0 | QUnit | Jasmine_(JavaScript_framework) | link |
null | 5290240.0 | 10.0 | other-empty | Angus_M._Cannon | other |
1.52438e7 | 492820.0 | 13.0 | Eric_Valentine | Lostprophets | link |
20566.0 | 3564279.0 | 26.0 | Mandy_Patinkin | Tony_Award_for_Best_Featured_Actor_in_a_Musical | other |
5139911.0 | 1.4619184e7 | 12.0 | Entering_Heaven_alive | Ramalinga_Swamigal | link |
886579.0 | 1.1921455e7 | 14.0 | Eva_Longoria | Longoria | link |
null | 8743616.0 | 14.0 | other-other | Chung_Ling_High_School | other |
4593958.0 | 2069950.0 | 23.0 | The_Maltese_Falcon_(1941_film) | The_Celluloid_Closet | link |
211913.0 | 89235.0 | 107.0 | Christian_metal | Christian_rock | link |
null | 2.3834973e7 | 14.0 | other-google | Jitender_Kumar | other |
93135.0 | 58116.0 | 13.0 | Butler_County,_Ohio | Montgomery_County,_Ohio | link |
null | 2.9085741e7 | 15.0 | other-wikipedia | Parris_Cues | other |
null | 57564.0 | 33.0 | other-empty | Anselme_Payen | other |
1.9172199e7 | 1.9167679e7 | 10.0 | Monera | Virus | other |
379518.0 | 7301806.0 | 45.0 | Panoramic_photography | Panography | link |
null | 4.5383298e7 | 92.0 | other-wikipedia | Vachagan_Khalatyan | other |
3618502.0 | 1.9337279e7 | 69.0 | Echelon_Place | Great_Recession | link |
null | 3.1716175e7 | 59.0 | other-google | Nikki,_Wild_Dog_of_the_North | other |
null | 3.990522e7 | 16.0 | other-google | Harold_Harris_(disambiguation) | other |
3.5038133e7 | 8721272.0 | 13.0 | Pathogen | PHI-base | link |
null | 2016556.0 | 72.0 | other-google | Timmins/Victor_M._Power_Airport | other |
3.9746293e7 | 1758267.0 | 12.0 | Tulpa_(film) | Giallo | link |
480658.0 | 2.3742879e7 | 10.0 | List_of_web_service_specifications | XQuery | link |
1.7176729e7 | 2.010093e7 | 14.0 | Mondo_Meyer_Upakhyan | Samata_Das | link |
1259342.0 | 389664.0 | 11.0 | The_Street | The_Streets | link |
null | 3.2124266e7 | 26.0 | other-google | SnoRNA_prediction_software | other |
null | 136247.0 | 113.0 | other-yahoo | Boerne,_Texas | other |
2.4662654e7 | 1249019.0 | 13.0 | Killer_Klowns_from_Outer_Space_(album) | Killer_Klowns_from_Outer_Space | link |
null | 1565005.0 | 82.0 | other-yahoo | Retinal_haemorrhage | other |
null | 9315616.0 | 21.0 | other-empty | Gene_Youngblood | other |
1548943.0 | 802895.0 | 22.0 | Limited_partnership | Private_limited_company | link |
null | 3.1110904e7 | 147.0 | other-bing | Effects_of_stress_on_memory | other |
2.7553159e7 | 58250.0 | 13.0 | Health_care_in_the_United_States | United_States_Department_of_Health_and_Human_Services | link |
791155.0 | 60626.0 | 61.0 | Marty_Stuart | Lester_Flatt | link |
4.4740812e7 | 3.8382626e7 | 48.0 | Jin_Kyung | Gu_Family_Book | link |
1.5610217e7 | 2756348.0 | 132.0 | Useless_Loop,_Western_Australia | Monkey_Mia | link |
null | 1055437.0 | 46.0 | other-wikipedia | Deniable_encryption | other |
null | 1.7962717e7 | 10.0 | other-empty | Ayres_LM200_Loadmaster | other |
2502077.0 | 1.3015878e7 | 14.0 | Sales_taxes_in_the_United_States | Washington_(state) | other |
82933.0 | 349335.0 | 38.0 | Chloroform | Anesthesiologist | link |
1278087.0 | 1277999.0 | 21.0 | Nissan_Titan | North_American_Car_of_the_Year | link |
null | 718020.0 | 76.0 | other-yahoo | Equality | other |
3445929.0 | 3445909.0 | 54.0 | Obscura_(album) | The_Erosion_of_Sanity | link |
null | 2036467.0 | 21.0 | other-empty | Overath | other |
1.7647526e7 | 664019.0 | 10.0 | Alternative_versions_of_the_Punisher | Owl_(Marvel_Comics) | link |
1619743.0 | 3.1636392e7 | 16.0 | York—Simcoe | York—Simcoe_(provincial_electoral_district) | link |
2.5121085e7 | 7499.0 | 10.0 | APAV40 | RDX | other |
null | 1.2778103e7 | 13.0 | other-google | Shaden_Abu-Hijleh | other |
3.2866171e7 | 1221420.0 | 14.0 | John_F._Kennedy_assassination_conspiracy_theories | William_Greer | link |
1.0567624e7 | 173305.0 | 25.0 | Tert-Butyl_chloride | Isobutane | link |
null | 5625238.0 | 23.0 | other-wikipedia | Prehistoric_man | other |
6819181.0 | 5755695.0 | 14.0 | Valmara_59 | PROM-1 | link |
2453648.0 | 2012734.0 | 11.0 | List_of_comic_book_supervillain_debuts | Floronic_Man | link |
97006.0 | 96981.0 | 14.0 | Costilla_County,_Colorado | Las_Animas_County,_Colorado | link |
null | 1230540.0 | 79.0 | other-other | Daniel_Yergin | other |
null | 1.6615403e7 | 147.0 | other-wikipedia | List_of_women_warriors_in_folklore | other |
74326.0 | 3993162.0 | 30.0 | Nadia_Comăneci | Art_of_Mentoring | link |
2232219.0 | 2920148.0 | 28.0 | Tarquinius | Sextus_Tarquinius | link |
6014615.0 | 4.3471582e7 | 21.0 | Fox_Interactive | Anastasia:_Adventures_with_Pooka_and_Bartok | link |
null | 5191431.0 | 15.0 | other-google | Mansfield_Woodhouse_railway_station | other |
null | 2.6523084e7 | 16.0 | other-google | Dominic_Arizona_Bonuccelli | other |
null | 616958.0 | 26.0 | other-empty | Electrostatic_deflection | other |
485118.0 | 2249026.0 | 220.0 | List_of_countries_by_GDP_(PPP) | List_of_countries_by_income_equality | link |
1.3141832e7 | 47660.0 | 14.0 | Versailles_restaurant | Espresso | link |
null | 1777994.0 | 14.0 | other-twitter | 1,1-Difluoroethane | other |
1091514.0 | 3.8702216e7 | 70.0 | Bila_Tserkva | 1941_Bila_Tserkva_massacre | link |
11362.0 | 3.1300186e7 | 24.0 | February_16 | André_Berthomieu | link |
7994183.0 | 4460532.0 | 35.0 | Zicam | ICAM-1 | link |
3.1436814e7 | 1.6455081e7 | 99.0 | Brynne_Edelsten | Geoffrey_Edelsten | link |
null | 2139618.0 | 592.0 | other-google | Lee_Chapman | other |
2464121.0 | 2.1552009e7 | 13.0 | Asra_Nomani | Aisha | link |
59949.0 | 2845319.0 | 11.0 | Anglo-Catholicism | Traditional_Anglican_Communion | link |
2019904.0 | 3.9574425e7 | 17.0 | CSC_Media_Group | True_Drama | link |
null | 4168628.0 | 58.0 | other-empty | 1997_NCAA_Division_I-A_football_season | other |
null | 3.5535478e7 | 497.0 | other-wikipedia | Port_Royale_3:_Pirates_&_Merchants | other |
4477.0 | 9288.0 | 20.0 | The_Beach_Boys | Elvis_Presley | other |
null | 3899315.0 | 20.0 | other-google | Anglican_Diocese_of_Jos | other |
null | 2210627.0 | 26.0 | other-wikipedia | Zayed_Port | other |
null | 1467229.0 | 24.0 | other-facebook | Fetal_viability | other |
7922200.0 | 1.3386129e7 | 12.0 | The_Outfit_(1973_film) | Felice_Orlandi | link |
1.5905472e7 | 1.3753303e7 | 178.0 | Miss_Universe_1972 | Miss_Universe_1973 | link |
434695.0 | null | 10.0 | İzmir_Province | Mustafa_Toprak | redlink |
277289.0 | 1055890.0 | 43.0 | Wind_power | Sustainable_energy | link |
1.9332171e7 | 5215871.0 | 12.0 | Richard_Wright_(musician) | Delay_(audio_effect) | link |
37417.0 | 840184.0 | 10.0 | Mercury_(mythology) | Hendrik_Goltzius | link |
356617.0 | 510764.0 | 35.0 | Operation_Tannenberg | Einsatzgruppen | link |
3.8174481e7 | 196279.0 | 43.0 | List_of_sports_cars | Lamborghini_Diablo | link |
1371727.0 | 433285.0 | 51.0 | Bullet_(disambiguation) | Bullitt | link |
null | 1914019.0 | 121.0 | other-google | GTB | other |
5057404.0 | null | 12.0 | Eureka_Forbes | Aushim_Gupta_&_Company_Ltd. | redlink |
null | 3.5394122e7 | 14.0 | other-empty | Joseph_Maynard | other |
1065035.0 | 2987765.0 | 10.0 | Benson_&_Hedges | Assault_occasioning_actual_bodily_harm | link |
null | 1.9353281e7 | 13.0 | other-google | 1160_AM | other |
null | 4155017.0 | 10.0 | other-bing | Gökhan_Özoğuz | other |
3.6909154e7 | 3.0563823e7 | 20.0 | Dani_Carvajal | Jesé | link |
null | 4.2675612e7 | 6560.0 | other-google | Elfrid_Payton_(basketball) | other |
189048.0 | 6919555.0 | 24.0 | Klaus_Schulze | Angst_(soundtrack) | link |
null | 4.1501305e7 | 19.0 | other-twitter | Telegram_(software) | other |
4848945.0 | 143163.0 | 76.0 | Enclave_and_exclave | Gadsden_Purchase | link |
1.163353e7 | 2657310.0 | 17.0 | Injection_molding_machine | Sprue_(manufacturing) | link |
null | 2645023.0 | 34.0 | other-google | Monash,_Australian_Capital_Territory | other |
null | 543169.0 | 111.0 | other-empty | William_Jackson_Palmer | other |
1.4174205e7 | 1920113.0 | 29.0 | 1981_UEFA_Cup_Final | Arnold_Mühren | link |
null | 1924219.0 | 229.0 | other-empty | Emperor:_Battle_for_Dune | other |
2.3670849e7 | 3623280.0 | 34.0 | No_One's_Gonna_Love_You | Band_of_Horses | link |
null | 1.5964132e7 | 15.0 | other-empty | Jun_He_Law_Offices | other |
null | 5545139.0 | 14.0 | other-google | Chief_Examiner | other |
2998033.0 | 1.5472645e7 | 16.0 | West_Hampstead_Thameslink_railway_station | West_Hampstead_railway_station | link |
null | 1649162.0 | 90.0 | other-other | Starbreeze_Studios | other |
3.9617946e7 | 4.2742632e7 | 18.0 | 2014_French_Open | 2014_French_Open_–_Girls'_Singles | link |
null | 2.3915342e7 | 1813.0 | other-google | Cracked_tooth_syndrome | other |
null | 2.4459316e7 | 11.0 | other-empty | OARnet | other |
174750.0 | 2.0974012e7 | 135.0 | High/Low_(Nada_Surf_album) | Popular_(Nada_Surf_song) | link |
6595367.0 | 7482590.0 | 12.0 | Hewitt–Savage_zero–one_law | Edwin_Hewitt | link |
1.3036961e7 | 199630.0 | 24.0 | Something_for_Nothing | Pop_punk | link |
null | 2.2407888e7 | 101.0 | other-google | PSR_B1509-58 | other |
397145.0 | 3336186.0 | 23.0 | List_of_districts_of_Maharashtra | Nagpur_division | link |
345356.0 | 54251.0 | 106.0 | Skate_(fish) | Myliobatiformes | link |
3.7386608e7 | 4.069023e7 | 11.0 | 2015_in_film | Sonic_Boom_(TV_series) | other |
8864153.0 | 1303857.0 | 20.0 | Energy_policy_of_the_European_Union | Electricity_liberalization | link |
null | 1681589.0 | 58.0 | other-empty | Girl_on_the_Bridge | other |
27318.0 | 2701625.0 | 194.0 | Singapore | List_of_countries_by_life_expectancy | link |
1.7994862e7 | 1.3126459e7 | 13.0 | Elastix | Unified_communications | link |
418179.0 | 1880887.0 | 23.0 | Whyte_notation | 2-12-2 | link |
1.9769679e7 | 1057476.0 | 60.0 | List_of_Nobel_Memorial_Prize_laureates_in_Economics | Finn_E._Kydland | link |
null | 1.2175763e7 | 14.0 | other-wikipedia | Palm_rat | other |
null | 53884.0 | 30.0 | other-other | Penalty_area | other |
null | 1819715.0 | 18.0 | other-other | Marine_geology | other |
5866621.0 | 3.6655551e7 | 12.0 | Nayantara | Vijay_Sethupathi | link |
5683212.0 | 1531683.0 | 15.0 | McLeod_syndrome | Myopathy | link |
50409.0 | 2563761.0 | 13.0 | Cistercians | Monastery_of_the_Holy_Spirit | link |
null | 2.0720709e7 | 24.0 | other-other | 2-Pentyne | other |
null | 1602370.0 | 29.0 | other-google | Kaleb_Toth | other |
740070.0 | 1.9891664e7 | 13.0 | Body_farm | Stephen_Fry_in_America | link |
null | 8308.0 | 118.0 | other-yahoo | Delft | other |
3.4396117e7 | 2.2992135e7 | 129.0 | Sofia_the_First | Rapunzel_(Disney) | link |
2.6552124e7 | 735009.0 | 14.0 | Sammy_Adams | Pharrell_Williams | other |
6254282.0 | 164365.0 | 10.0 | John_Chambers_(make-up_artist) | The_China_Syndrome | link |
1468740.0 | 1.3964958e7 | 17.0 | Gran_Turismo_4 | Gran_Turismo_official_steering_wheel | link |
null | 3233890.0 | 76.0 | other-bing | The_Bronx_(band) | other |
17851.0 | 6501490.0 | 81.0 | Lambda | Half-Life_(series) | link |
5574932.0 | 292086.0 | 13.0 | Princess_Niloufer | Abdülmecid_II | link |
401530.0 | 1.9283982e7 | 14.0 | National_Democratic_Party | New_Democratic_Party | other |
492211.0 | 3024814.0 | 113.0 | Power_Rangers_in_Space | Jason_Narvy | link |
32053.0 | 4.346807e7 | 115.0 | Utrecht_University | List_of_people_associated_with_Utrecht_University | other |
57731.0 | 62276.0 | 10.0 | Leopold_II_of_Belgium | Monarchy_of_Belgium | link |
298518.0 | 18189.0 | 17.0 | Staraya_Ladoga | Lake_Ladoga | link |
2929855.0 | 9962.0 | 56.0 | Aenor_de_Châtellerault | Eleanor_of_Aquitaine | link |
1196902.0 | 3.2826589e7 | 15.0 | Saif_al-Islam_Gaddafi | Rixos_Al_Nasr | link |
3119136.0 | 488105.0 | 144.0 | British_Army_order_of_precedence | Foot_Guards | link |
null | 3.024141e7 | 10.0 | other-empty | Glover_v._United_States | other |
32308.0 | 21888.0 | 70.0 | United_States_customary_units | National_Institute_of_Standards_and_Technology | link |
1.4015242e7 | 345792.0 | 32.0 | One_Night_Stand_(2008) | The_Undertaker | link |
null | 4.0759212e7 | 25.0 | other-google | Janet_Trujillo | other |
172369.0 | 51932.0 | 81.0 | Challenger_2 | Kinetic_energy_penetrator | link |
118444.0 | 3.6190531e7 | 12.0 | Almere | Almere_(lake) | link |
2.0395872e7 | 4066670.0 | 273.0 | Oprah_Winfrey | Kpelle_people | link |
5611605.0 | 1.6757325e7 | 57.0 | Korean_People's_Army_Ground_Force | Vz._52_machine_gun | link |
4.2411677e7 | 4.2567991e7 | 14.0 | Cinedigm | Chris_McGurk | link |
null | 3.1257583e7 | 15.0 | other-empty | Bueng_Kan | other |
2.2258861e7 | 4.2534471e7 | 10.0 | Total_penumbral_lunar_eclipse | Tetrad_(astronomy) | link |
808402.0 | 1.6527475e7 | 115.0 | Mexico_national_football_team | Luis_Montes | link |
354296.0 | 994976.0 | 12.0 | Vestment | Monstrance | link |
362116.0 | 51784.0 | 85.0 | Robinson_projection | Map_projection | link |
4.2766864e7 | 2431566.0 | 37.0 | 2014–15_Northern_Premier_League | Stamford_A.F.C. | link |
4251160.0 | 9313589.0 | 17.0 | Taylor_Negron | Wizards_of_Waverly_Place | link |
182214.0 | 2.0656228e7 | 17.0 | Tassel | Maize | link |
null | 1595922.0 | 91.0 | other-other | Photosensitivity | other |
38872.0 | 4469999.0 | 15.0 | Bessarabia | Hotin_County | link |
1.3502823e7 | 1.252086e7 | 12.0 | Brassiere | Demi_Lovato | link |
4.4539913e7 | 1255017.0 | 26.0 | The_Flintstones_&_WWE:_Stone_Age_SmackDown! | Warner_Home_Video | link |
null | 1.0433852e7 | 11.0 | other-empty | Robbie_Ellis | other |
1.2373195e7 | 33422.0 | 12.0 | 1984–85_Edmonton_Oilers_season | Wayne_Gretzky | link |
1705212.0 | 133117.0 | 26.0 | Lucknow_Pact | Sarojini_Naidu | link |
309431.0 | 3.193663e7 | 24.0 | Rhino_(wrestler) | Leva_Bates | other |
1515653.0 | 1905405.0 | 20.0 | Satellite_navigation | Differential_GPS | link |
1.3099067e7 | 1.4306615e7 | 11.0 | 2007_Texas_Tech_Red_Raiders_football_team | 2006_Texas_Tech_Red_Raiders_football_team | link |
4.4696649e7 | 1.3014023e7 | 31.0 | Academy_Stadium | Manchester_City_F.C._Reserves_and_Academy | link |
104650.0 | 38556.0 | 54.0 | Oscar_II_of_Sweden | List_of_Swedish_monarchs | link |
3.2457372e7 | 2.7152057e7 | 10.0 | Sound_of_My_Voice | Rostam_Batmanglij | link |
null | 948103.0 | 44.0 | other-other | Meow_Mix | other |
553772.0 | 2100323.0 | 41.0 | Robert_Pirès | FWA_Footballer_of_the_Year | link |
6212853.0 | 4960.0 | 178.0 | List_of_BSA_motorcycles | Birmingham_Small_Arms_Company | link |
1.7006496e7 | 4.5002693e7 | 79.0 | Batty_boy | Homophobia_in_Jamaica | link |
4993017.0 | 706379.0 | 1033.0 | The_Beach_Boys_discography | Surfin'_Safari | link |
null | 8790509.0 | 10.0 | other-empty | Folk_Lore_Museum_Mysore | other |
48946.0 | 5245439.0 | 29.0 | Graz | UPC-Arena | other |
92421.0 | 1.8396282e7 | 28.0 | Interstate_64 | Interstate_64_in_Indiana | link |
1.5580374e7 | 425059.0 | 81.0 | Main_Page | Ranch_dressing | other |
null | 1.1172066e7 | 98.0 | other-google | Gerald_Stone | other |
3521882.0 | 81024.0 | 18.0 | Airline_bankruptcies_in_the_United_States | Pan_American_World_Airways | link |
null | 294627.0 | 34.0 | other-bing | Mr._Garrison | other |
null | 774449.0 | 75.0 | other-wikipedia | Richard_Lynn | other |
1.9975991e7 | 47707.0 | 49.0 | Lex_Immers | Feyenoord | link |
372478.0 | 1654769.0 | 15.0 | Video_game_industry | Artificial_intelligence_(video_games) | link |
null | 207132.0 | 677.0 | other-google | Star_Trek:_Armada | other |
null | 1863524.0 | 49.0 | other-google | Disney_Time | other |
null | 780419.0 | 103.0 | other-empty | Philip_Don_Estridge | other |
null | 1.4024425e7 | 17.0 | other-wikipedia | Nightwing_(novel) | other |
1020829.0 | 6260.0 | 23.0 | 20th-century_music | Claude_Debussy | link |
4810477.0 | 1042506.0 | 24.0 | Tawagalawa_letter | Wilusa | link |
3821983.0 | 262233.0 | 167.0 | 1998_Russian_financial_crisis | 1997_Asian_financial_crisis | link |
null | 2.435744e7 | 68.0 | other-wikipedia | Académica_Petróleos_do_Lobito | other |
2.4097561e7 | 735348.0 | 13.0 | List_of_newspaper_comic_strips_P–Z | Pickles_(comic_strip) | link |
1669185.0 | 1624131.0 | 19.0 | Phantasmagoria_(The_Damned_album) | Roman_Jugg | link |
null | 7197167.0 | 155.0 | other-google | Matei | other |
null | 1.2315045e7 | 21.0 | other-empty | Dead_Air_(2009_film) | other |
null | 969363.0 | 133.0 | other-google | Arlberg_technique | other |
891692.0 | 2.1803312e7 | 17.0 | United_States_District_Court_for_the_Northern_District_of_California | William_Haskell_Alsup | link |
957326.0 | 4915083.0 | 74.0 | Italy_national_rugby_union_team | Rugby_union_in_Italy | link |
null | 8399976.0 | 146.0 | other-wikipedia | ASU-57 | other |
null | 1558354.0 | 684.0 | other-empty | Demographics_of_Europe | other |
null | 1.305149e7 | 134.0 | other-google | Courtney_Love_discography | other |
3.9654815e7 | 1034678.0 | 29.0 | MFi_Program | MFI | other |
1.9283769e7 | 3192804.0 | 14.0 | Ausar | Ausar_Auset_Society | link |
null | 472075.0 | 65.0 | other-google | Viscount_Brookeborough | other |
262376.0 | 3183896.0 | 12.0 | Roger_Federer | 2006_Tennis_Masters_Cup | link |
1.1161932e7 | 1.1590877e7 | 12.0 | Saints_Row_2 | Red_Faction:_Guerrilla | link |
7712434.0 | 4579172.0 | 36.0 | Vijay_Arora | Yaadon_Ki_Baaraat | link |
null | 4496629.0 | 14.0 | other-empty | One_Must_Fall:_Battlegrounds | other |
null | 3.6894375e7 | 26.0 | other-google | Dragan_Lakićević | other |
211080.0 | 170459.0 | 110.0 | Method_Man | LL_Cool_J | link |
2646730.0 | 6733556.0 | 27.0 | Pokémon:_The_First_Movie_(soundtrack) | Pokémon_2.B.A._Master | link |
null | 9472399.0 | 10.0 | other-google | Black_Duck_(group) | other |
2663129.0 | 16321.0 | 411.0 | Good_Night,_and_Good_Luck | Joseph_McCarthy | link |
1.1024497e7 | 1.0398699e7 | 35.0 | Brown-Séquard_syndrome | Central_cord_syndrome | link |
null | 72434.0 | 14.0 | other-empty | Maximilian_Kaller | other |
202886.0 | 5869.0 | 10.0 | Covariance_and_contravariance_of_vectors | Category_theory | link |
6742.0 | 653196.0 | 16.0 | Central_Asia | Economic_Cooperation_Organization | link |
942704.0 | 46525.0 | 14.0 | Song_of_Songs_(disambiguation) | Wilfred_Owen | link |
null | 1.0987478e7 | 62.0 | other-google | Pouch_Cove | other |
null | 2122098.0 | 266.0 | other-google | Seabiscuit:_An_American_Legend | other |
null | 454779.0 | 24.0 | other-wikipedia | Twitch_City | other |
96775.0 | 96815.0 | 24.0 | Fulton_County,_Georgia | Carroll_County,_Georgia | link |
296849.0 | 2520715.0 | 10.0 | Ernest_Becker | Sam_Keen | link |
347713.0 | 284262.0 | 28.0 | Huia | Callaeidae | link |
1.9137828e7 | 2.0753462e7 | 370.0 | List_of_stadiums_under_construction | Estadio_La_Peineta | link |
19859.0 | 277696.0 | 13.0 | Moby-Dick | The_Scarlet_Letter | other |
16844.0 | 523445.0 | 169.0 | Kofi_Annan | Lakhdar_Brahimi | link |
null | 2.1230974e7 | 20.0 | other-google | Chhantyal | other |
2.892839e7 | 113519.0 | 36.0 | Nucky_Thompson | Short_(finance) | link |
219731.0 | 36168.0 | 30.0 | Myst | 3DO_Interactive_Multiplayer | link |
4.4845611e7 | 3.1597122e7 | 1377.0 | My_Sunshine | Wallace_Chung | link |
1107477.0 | 1345497.0 | 24.0 | River_gunboat | USS_Cairo | link |
4.2688351e7 | 5933689.0 | 439.0 | 2014–15_FC_Barcelona_season | Jérémy_Mathieu | link |
4461110.0 | 1.0640807e7 | 41.0 | Shilpa_Shirodkar | Bhrashtachar | link |
77390.0 | 2.3769406e7 | 155.0 | Natalie_Wood | Sex_and_the_Single_Girl_(film) | link |
57877.0 | 7280414.0 | 53.0 | Sodium_hydroxide | List_of_commonly_available_chemicals | other |
null | 683450.0 | 983.0 | other-google | Dawson's_Field_hijackings | other |
1990194.0 | 1.6290655e7 | 10.0 | Ima_Hogg | Thomas_Elisha_Hogg | link |
14015.0 | 2226.0 | 32.0 | Herstory | Ad_hominem | other |
3.1990324e7 | 4.2269335e7 | 19.0 | List_of_Switched_at_Birth_episodes | The_Futon_Critic | link |
null | 9081713.0 | 30.0 | other-bing | The_Bitter_End | other |
108956.0 | 575052.0 | 120.0 | Washington,_D.C. | Verizon_Center | link |
1415821.0 | 1998515.0 | 72.0 | Fiat_Ducato | JTD_engine | link |
218742.0 | 490089.0 | 159.0 | Ontario_Hockey_League | Peterborough_Petes | link |
null | 1792799.0 | 9379.0 | other-google | Stakeholder_theory | other |
null | 216639.0 | 33.0 | other-wikipedia | Gondwanatheria | other |
3.0875744e7 | 26961.0 | 13.0 | Artur_Rasizade | Shia_Islam | link |
2.4378497e7 | null | 28.0 | Mark_Salling | Rocky_Road_(TV_Movie) | redlink |
1.1900681e7 | 312228.0 | 143.0 | List_of_teen_films | House_Party_(film) | link |
2608405.0 | 2418357.0 | 13.0 | Roy_Mayorga | Shelter_(band) | link |
null | 2.1312852e7 | 10.0 | other-yahoo | Igor_Sijsling | other |
2809559.0 | 414267.0 | 12.0 | Salirophilia | Lust_murder | link |
null | 3.0876253e7 | 116.0 | other-wikipedia | List_of_Jewish_prayers_and_blessings | other |
3966054.0 | 537551.0 | 28.0 | Mexico | Azteca_(multimedia_conglomerate) | other |
null | 2.7437943e7 | 42.0 | other-wikipedia | Donna_Simpson_(internet_celebrity) | other |
null | 1318322.0 | 89.0 | other-other | Callable_bond | other |
1972785.0 | 1053430.0 | 16.0 | Illinois_(album) | 2005_in_music | link |
null | 2875803.0 | 68.0 | other-google | Lennon_(musical) | other |
438417.0 | 26977.0 | 11.0 | Orange_County_(film) | Stanford_University | link |
4178394.0 | 1589455.0 | 17.0 | Chamar | Kanshi_Ram | link |
null | 390818.0 | 650.0 | other-empty | Endive | other |
null | 2186604.0 | 21.0 | other-google | Caldecott,_Rutland | other |
976050.0 | 1.9084502e7 | 23.0 | Fell's_Point,_Baltimore | Michael_Phelps | link |
1027240.0 | 1.165959e7 | 130.0 | Biryani | Hyderabadi_cuisine | link |
4887.0 | 11523.0 | 236.0 | British_Army | Falklands_War | link |
498478.0 | 1.1395198e7 | 12.0 | Shanghai_World_Financial_Center | World_Trade_Center | link |
193918.0 | 39282.0 | 10.0 | Kurgan | Caucasus | link |
4754.0 | 1009445.0 | 12.0 | Blue_Streak_(missile) | European_Launcher_Development_Organisation | link |
206928.0 | 236519.0 | 11.0 | List_of_birds_of_New_Zealand | Australian_pelican | link |
7720774.0 | 1908172.0 | 15.0 | WIN.INI | INI_file | link |
null | 3.101165e7 | 26.0 | other-empty | Betty_Jane_Gorin-Smith | other |
1.8952953e7 | 411723.0 | 173.0 | Peyote | Chihuahuan_Desert | other |
3.3469792e7 | 2412317.0 | 11.0 | Here's_to_You_(song) | Franz_Josef_Degenhardt | link |
null | 2205218.0 | 40.0 | other-wikipedia | Six_Pieces_for_Piano,_Op._118_(Brahms) | other |
null | 3872704.0 | 20.0 | other-empty | Caridad_de_la_Luz | other |
1.7621236e7 | 1.4485544e7 | 11.0 | H._Eugene_Stanley | List_of_members_of_the_National_Academy_of_Sciences_(Applied_physical_sciences) | link |
null | 1495605.0 | 31.0 | other-bing | Hew_Strachan | other |
1.2136846e7 | 358527.0 | 27.0 | The_Unfairground | Kevin_Ayers | link |
4.3047831e7 | 4.3797734e7 | 113.0 | Giant_in_My_Heart | Sound_of_a_Woman | link |
null | 9656353.0 | 73.0 | other-google | New_folk_media | other |
2909374.0 | 1.895149e7 | 11.0 | Health_issues_in_American_football | American_football | link |
null | 595888.0 | 11.0 | other-google | Hail,_Vermont! | other |
null | 2.3306201e7 | 11.0 | other-empty | EFestivals | other |
4446461.0 | 524502.0 | 63.0 | Film_budgeting | Box_office_bomb | link |
null | 1.3437204e7 | 18.0 | other-bing | New_classical_macroeconomics | other |
2772399.0 | 1.8595033e7 | 134.0 | Bill_T._Jones | Arnie_Zane | link |
null | 5903.0 | 13.0 | other-yahoo | Cultural_movement | other |
551711.0 | 408652.0 | 25.0 | Ron_Dellums | Barbara_Lee | link |
3.2628378e7 | 2.9017966e7 | 39.0 | List_of_horror_films_of_1972 | The_Fiend_(film) | link |
2945357.0 | 1770333.0 | 31.0 | Amateur_rocketry | High-power_rocketry | link |
280929.0 | 1278771.0 | 36.0 | Erechtheion | Palladium_(classical_antiquity) | other |
null | 2342731.0 | 23.0 | other-yahoo | Walther_von_Seydlitz-Kurzbach | other |
18727.0 | 579219.0 | 17.0 | List_of_food_additives,_Codex_Alimentarius | Beta-Carotene | other |
2.548813e7 | 219287.0 | 33.0 | Separate_legal_entity | Legal_personality | other |
376581.0 | 2.0611504e7 | 12.0 | Transnistria | Russian_Empire | link |
3.3623665e7 | 2592839.0 | 18.0 | Thimar | Anouar_Brahem | link |
null | 2.5650291e7 | 11.0 | other-bing | 2010_Tampa_Bay_Buccaneers_season | other |
2064142.0 | 346585.0 | 11.0 | Chafing_dish | Brazier | link |
null | 461211.0 | 4961.0 | other-google | Mizoram | other |
660231.0 | 1257944.0 | 14.0 | Adelaide_Oval | WACA_Ground | link |
null | 2.5679855e7 | 21.0 | other-wikipedia | Banco_Bicentenario | other |
1.30362e7 | 3.6604477e7 | 25.0 | Automobile_drag_coefficient | Jaguar_XE | link |
417606.0 | 1.4265701e7 | 76.0 | Expedia_(website) | Wotif.com | link |
3.5645946e7 | 1629175.0 | 22.0 | Luís_Leal_(footballer) | G.D._Estoril_Praia | link |
2.6458478e7 | 959456.0 | 100.0 | German_military_brothels_in_World_War_II | Roundup_(history) | link |
null | 2.9027399e7 | 22.0 | other-google | The_Dog_Who_Saved_Christmas_Vacation | other |
null | 1988582.0 | 33.0 | other-empty | Kovač | other |
null | 987320.0 | 37.0 | other-other | Neurotechnology | other |
1022665.0 | 2366194.0 | 18.0 | String_Quartets_Nos._7–9,_Op._59_–_Rasumovsky_(Beethoven) | String_Quartet_No._10_(Beethoven) | link |
1373758.0 | 843532.0 | 49.0 | Luther_Adler | Stella_Adler | link |
null | 9118436.0 | 13.0 | other-google | Jeremy_Huw_Williams | other |
1677928.0 | 268683.0 | 23.0 | Children's_song | Riddle | other |
null | 7448450.0 | 18.0 | other-other | Louis_Zorich | other |
2.0803357e7 | 4.0026015e7 | 20.0 | Parks_and_Recreation | Drew_Barrymore_filmography | other |
4604481.0 | 4.02451e7 | 61.0 | Storm_Model_Management | Tiah_Delaney | link |
7481030.0 | 3098376.0 | 70.0 | MPEG-4_Part_14 | Comparison_of_audio_coding_formats | link |
null | 3.920506e7 | 10.0 | other-empty | 72nd_Division_(United_Kingdom) | other |
1.7401306e7 | 2488280.0 | 139.0 | Ripstop | Ballistic_nylon | link |
1.0904287e7 | 423689.0 | 25.0 | Termcap | Curses_(programming_library) | link |
null | 2.3268278e7 | 16.0 | other-wikipedia | Trakr | other |
null | 458310.0 | 19.0 | other-wikipedia | Frank_Teschemacher | other |
47271.0 | 83835.0 | 16.0 | Sponge | Gonad | link |
null | 1793967.0 | 43.0 | other-other | Pitman_arm | other |
3.1192297e7 | 2.1377045e7 | 298.0 | Magic_City_(TV_series) | Rick_Ross | link |
null | 1362205.0 | 100.0 | other-other | Area_code_920 | other |
58478.0 | 2260425.0 | 15.0 | Airborne_forces | 502nd_Infantry_Regiment_(United_States) | other |
1510249.0 | 414822.0 | 35.0 | Bering_Strait_crossing | Tung-Yen_Lin | other |
1601795.0 | 5231575.0 | 11.0 | V24_engine | V5_engine | link |
44784.0 | 5533243.0 | 12.0 | Bari | The_Bridges_of_Madison_County_(film) | link |
null | 4038132.0 | 47.0 | other-empty | Gary_Gaines | other |
1.6378571e7 | 1.6085877e7 | 273.0 | Genealogies_in_the_Bible | Abraham's_family_tree | link |
762354.0 | 1127973.0 | 11.0 | Greatest_Hits_(ZZ_Top_album) | Billy_Gibbons | link |
462091.0 | 3056665.0 | 113.0 | Vairocana | Sambhogakāya | link |
null | 1210333.0 | 1335.0 | other-google | Millfield | other |
397810.0 | 2035119.0 | 12.0 | Alexander_McQueen | Elie_Saab | link |
8169386.0 | 3.7918222e7 | 13.0 | Rick_Sebak | Yinztagram | link |
1928513.0 | 3662295.0 | 13.0 | Government_of_India_Act_1858 | Dominion_of_Pakistan | link |
7919595.0 | 2615949.0 | 72.0 | Clos_network | Omega_network | link |
null | 4.0485213e7 | 15.0 | other-google | Singapore_national_under-19_football_team | other |
null | 2.0911775e7 | 14.0 | other-wikipedia | Fyodor_Druzhinin | other |
84112.0 | 84109.0 | 21.0 | Berenice | Berenice_II_of_Egypt | link |
null | 1252215.0 | 30.0 | other-google | Dancer_with_Bruised_Knees | other |
null | 17703.0 | 363.0 | other-bing | Leo_(constellation) | other |
1.6975268e7 | 3.0873764e7 | 26.0 | Chess_theory | Scandinavian_Defense | link |
null | 1.6787376e7 | 56.0 | other-empty | Universiti_Malaysia_Terengganu | other |
null | 347603.0 | 227.0 | other-empty | Carpenter_bee | other |
1.7798548e7 | 1.9183413e7 | 10.0 | Rush_(2008_TV_series) | Stephen_Rae_(composer) | link |
314628.0 | 1.0188712e7 | 15.0 | Tooth_enamel | Cusp_(anatomy) | link |
null | 44903.0 | 169.0 | other-yahoo | Astor_Piazzolla | other |
1.9988138e7 | 1885136.0 | 23.0 | Ramsay_(surname) | Clan_Ramsay | link |
null | 4.4010295e7 | 2438.0 | other-google | Survivor's_Remorse | other |
null | 735443.0 | 25.0 | other-bing | Neumann_boundary_condition | other |
714047.0 | 544762.0 | 39.0 | Chromolithography | Offset_printing | link |
null | 1686225.0 | 15.0 | other-yahoo | Tamara_Karsavina | other |
5859950.0 | 7616334.0 | 39.0 | When_Worlds_Collide_(1951_film) | Larry_Keating | link |
2.4132083e7 | 2955815.0 | 126.0 | Dexter_(season_4) | Julia_Campbell | link |
null | 466851.0 | 16.0 | other-empty | Azteca_(band) | other |
1164252.0 | 527125.0 | 10.0 | GamePro | Game_Informer | other |
null | 3.1863547e7 | 34.0 | other-other | Tarun_Khanna | other |
null | 9038883.0 | 26.0 | other-empty | College_of_Physicians_and_Surgeons_Pakistan | other |
958572.0 | 592436.0 | 10.0 | Glenn_Hall | Ted_Lindsay | link |
3820404.0 | 3.0812082e7 | 10.0 | Cross-dressing_in_film_and_television | Bucket_&_Skinner's_Epic_Adventures | link |
2.7205785e7 | 2.8233212e7 | 25.0 | School_attacks_in_China_(2010–12) | 2010_Hebei_tractor_rampage | other |
3.4445585e7 | 3.8764549e7 | 40.0 | American_Idol_(season_12) | Curtis_Finch,_Jr. | link |
402942.0 | 436614.0 | 80.0 | List_of_traditional_children's_games | Pat-a-cake,_pat-a-cake,_baker's_man | link |
null | 893198.0 | 16.0 | other-other | What_I_Learned_About_Ego,_Opinion,_Art_&_Commerce | other |
871210.0 | 1292261.0 | 38.0 | Utricularia | Utricularia_vulgaris | link |
5575722.0 | 11585.0 | 33.0 | Fuck | Show_Me_Love_(film) | other |
5465550.0 | 5512301.0 | 19.0 | Morphinan | Levomethorphan | link |
3.086259e7 | 9499.0 | 116.0 | Link_layer | Ethernet | link |
46336.0 | 5376.0 | 28.0 | Passerine | Cladistics | other |
158558.0 | 154820.0 | 18.0 | King_of_the_Romanians | List_of_rulers_of_Wallachia | link |
2.7804243e7 | 416577.0 | 10.0 | List_of_birds_of_Pennsylvania | Alder_flycatcher | link |
851800.0 | 915646.0 | 83.0 | Air_America_(film) | Pilatus_PC-6_Porter | other |
null | 2.2976039e7 | 150.0 | other-google | Armenian_Wikipedia | other |
2019407.0 | 764428.0 | 28.0 | Ali_Azmat | Bhat | link |
4097772.0 | 2162718.0 | 11.0 | Battle_of_Honey_Springs | James_G._Blunt | link |
null | 3824728.0 | 31.0 | other-google | Can_U_Get_wit_It | other |
null | 1.0567795e7 | 135.0 | other-google | Robbie_van_Leeuwen | other |
null | 4100412.0 | 111.0 | other-google | The_Truth_(Melbourne_newspaper) | other |
436522.0 | 229703.0 | 11.0 | Hot_rod | Roots-type_supercharger | link |
4.1660623e7 | 1.3280198e7 | 577.0 | Tokyo_Ghoul | Ling_Tosite_Sigure | link |
3.5034514e7 | 3.554456e7 | 12.0 | 2012_World_Junior_Championships_in_Athletics | 2012_World_Junior_Championships_in_Athletics_–_Men's_100_metres | link |
null | 2.4303131e7 | 18.0 | other-wikipedia | Treska | other |
null | 1.7262978e7 | 19.0 | other-bing | Shake_It_(Metro_Station_song) | other |
6833695.0 | 1.2237982e7 | 10.0 | Demihypercube | Hypercubic_honeycomb | other |
1253121.0 | 264458.0 | 38.0 | Battle_of_Kennesaw_Mountain | Joseph_E._Johnston | link |
null | 2.6626591e7 | 15.0 | other-wikipedia | Banqiao_Station | other |
null | 239930.0 | 929.0 | other-empty | Temple_University | other |
679346.0 | 172063.0 | 153.0 | Lucozade | Ribena | link |
null | 2.4619717e7 | 146.0 | other-google | Much_the_Same | other |
1.5609213e7 | 1602398.0 | 138.0 | List_of_airlines_of_Nigeria | Associated_Aviation | link |
1.2727445e7 | null | 22.0 | I'm_Not_Like_Everybody_Else | The_Sacred_Mushroom | redlink |
1478064.0 | 3.7165545e7 | 34.0 | Andy_Souwer | Steve_Moxon | link |
36396.0 | 39995.0 | 57.0 | 1214 | 1213 | link |
null | 212416.0 | 14.0 | other-yahoo | Phitsanulok_Province | other |
1.8619244e7 | 305854.0 | 53.0 | SMS_language | Text_messaging | link |
180437.0 | 27071.0 | 89.0 | Pavel_Chekov | Star_Trek:_The_Original_Series | link |
null | 4064.0 | 394.0 | other-google | Borsuk–Ulam_theorem | other |
null | 1018286.0 | 284.0 | other-empty | Capri_Sun | other |
null | 160753.0 | 28.0 | other-twitter | Manuel_L._Quezon | other |
3.6169584e7 | 4.0603571e7 | 23.0 | 2014–15_figure_skating_season | Lombardia_Trophy | link |
1251507.0 | 1.0564133e7 | 207.0 | Kirk_Acevedo | Joe_Toye | link |
1302191.0 | 4393323.0 | 10.0 | Opel_Commodore | Ranger_(automobile) | other |
3.1523612e7 | 3.1348196e7 | 17.0 | Mark_McNeill | Phillip_Danault | link |
5906626.0 | 2.0534384e7 | 33.0 | Horace_Trumbauer | Elkins_Estate | link |
1006148.0 | 59003.0 | 10.0 | Ludlow_(disambiguation) | Ludlow | link |
3515315.0 | 1.0074452e7 | 19.0 | Reebok_Freestyle | Reebok_Classic | other |
null | 5257744.0 | 40.0 | other-wikipedia | Some_Kind_of_Hero | other |
573177.0 | 2.3740297e7 | 31.0 | Wendish_Crusade | Wagria | link |
1.0367494e7 | 107204.0 | 12.0 | Fried_pickle | Atkins,_Arkansas | link |
743895.0 | 2278793.0 | 19.0 | Timeline_of_Eastern_philosophers | Parashara | link |
null | 2.2484087e7 | 16.0 | other-google | Nnooo | other |
5824627.0 | 5042916.0 | 37.0 | Inheritance_tax | Canada | link |
40656.0 | 7247.0 | 29.0 | 13th_century_BC | Cemetery_H_culture | link |
null | 4.0389354e7 | 19.0 | other-wikipedia | ASAN_service | other |
null | 334882.0 | 13.0 | other-wikipedia | Chamarajanagar_district | other |
299404.0 | 741705.0 | 18.0 | Gunnery_sergeant | Mark_Harmon | link |
1424575.0 | 4.0371665e7 | 31.0 | Battle_of_Bailén | Dominique_Honoré_Antoine_Vedel | link |
null | 6598147.0 | 1322.0 | other-google | Concentration_risk | other |
1858211.0 | 21444.0 | 24.0 | The_Jew_of_Malta | Niccolò_Machiavelli | link |
16880.0 | 46853.0 | 13.0 | Karnataka | Indus_Valley_Civilization | link |
null | 2.7255423e7 | 28.0 | other-google | Fornham_St_Genevieve | other |
2437139.0 | 1552544.0 | 15.0 | Russian_architecture | Onion_dome | link |
56315.0 | 6423327.0 | 14.0 | Mango | 2-Furanone | other |
8087287.0 | 1254779.0 | 164.0 | Hot_Blooded | Double_Vision_(Foreigner_album) | link |
null | 3555863.0 | 114.0 | other-other | Frank_Hamer | other |
null | 1.4270466e7 | 148.0 | other-wikipedia | Gautam_Adani | other |
2.0519849e7 | 4.0736758e7 | 38.0 | Cage_discography | Kill_the_Architect | link |
null | 2.0776944e7 | 16.0 | other-google | Phintys | other |
null | 2.4509692e7 | 38.0 | other-empty | Tri-City_Medical_Center | other |
3.6295719e7 | 1.817631e7 | 10.0 | Garrett_(character) | Guinness_World_Records_Gamer's_Edition | link |
87603.0 | 9295254.0 | 613.0 | Robert_Mitchum | Bentley_Mitchum | link |
2.1173707e7 | 3.6897865e7 | 20.0 | Moreton_Bay_Rail_Link | Murrumba_Downs_railway_station | link |
null | 969732.0 | 15.0 | other-wikipedia | Brand_(disambiguation) | other |
1699425.0 | 3152733.0 | 19.0 | Power-on_self-test | Memory_refresh | link |
null | 144948.0 | 137.0 | other-yahoo | Universal_joint | other |
571462.0 | 37585.0 | 13.0 | National_Museum_of_the_United_States_Air_Force | Museum | link |
890293.0 | 1.9147563e7 | 36.0 | Mike_Smith_(actor) | Thorburn,_Nova_Scotia | link |
876966.0 | 1.7702228e7 | 10.0 | Vancouver_Island_University | Higher_education_in_British_Columbia | link |
2003796.0 | 142421.0 | 22.0 | Roscoe_Lee_Browne | Babe_(film) | link |
null | 528150.0 | 15.0 | other-wikipedia | Brothers_Keepers | other |
null | 4958063.0 | 87.0 | other-google | Palma_di_Montechiaro | other |
null | 4.2035866e7 | 14.0 | other-wikipedia | Collection_manager | other |
1257770.0 | 4799962.0 | 22.0 | Tim_Drake | Jaime_Reyes | link |
null | 675786.0 | 231.0 | other-google | Scaffold_(disambiguation) | other |
null | 1630583.0 | 39.0 | other-empty | Arica_School | other |
2753730.0 | 1203602.0 | 12.0 | Copa_Airlines_Flight_201 | United_Airlines_Flight_585 | link |
1.4529239e7 | 16861.0 | 14.0 | Zoophilia | Kurt_Vonnegut | link |
null | 4.2270307e7 | 13.0 | other-bing | Bad_(David_Guetta_and_Showtek_song) | other |
64946.0 | 21724.0 | 18.0 | Danelaw | Normandy | link |
3285435.0 | 39205.0 | 13.0 | 2010_Asian_Games | Asian_Games | link |
null | 467628.0 | 736.0 | other-google | Margaret_Dumont | other |
592456.0 | 598977.0 | 16.0 | This_Is_My_Truth_Tell_Me_Yours | James_Dean_Bradfield | link |
null | 19965.0 | 105.0 | other-yahoo | Morphogenesis | other |
95185.0 | 6939163.0 | 886.0 | Frantz_Fanon | Black_Skin,_White_Masks | link |
null | 2.7633566e7 | 24.0 | other-wikipedia | ConsensusDOCS | other |
80777.0 | 8309183.0 | 24.0 | Kurdistan | Koçgiri_Rebellion | link |
null | 5064426.0 | 24.0 | other-yahoo | Misha_Glenny | other |
null | 4.0846967e7 | 23.0 | other-google | Hitkarini_Sabha | other |
null | 2.2600019e7 | 17.0 | other-wikipedia | Country_folk | other |
99782.0 | 1154193.0 | 50.0 | Vritra | Aesir-Asura_correspondence | link |
246020.0 | 3516576.0 | 13.0 | Freydís_Eiríksdóttir | Greenland_saga | other |
12463.0 | 6124461.0 | 124.0 | Glacier | Quelccaya_Ice_Cap | link |
3628651.0 | 67234.0 | 10.0 | New_Jersey's_10th_congressional_district | Newark,_New_Jersey | link |
1878882.0 | 2.5016782e7 | 30.0 | List_of_anthropomorphic_animal_superheroes | Quick_Draw_McGraw | link |
null | 126987.0 | 91.0 | other-google | Cleveland,_New_York | other |
6310617.0 | 2711314.0 | 19.0 | Cristine_Rose | How_I_Met_Your_Mother | link |
null | 266033.0 | 308.0 | other-empty | Robert_I,_Duke_of_Normandy | other |
3125454.0 | 3536263.0 | 130.0 | David_J._O'Reilly | Kenneth_T._Derr | link |
1.9165698e7 | 228211.0 | 12.0 | Teletoon_at_Night | Futurama | link |
6452550.0 | 3.8121496e7 | 130.0 | Hayley_Tamaddon | List_of_Coronation_Street_characters_(2013) | other |
null | 4.171206e7 | 45.0 | other-empty | Consider_the_Source | other |
1104597.0 | 494926.0 | 49.0 | Kirovohrad | Kirovohrad_Oblast | link |
1928711.0 | 896897.0 | 16.0 | Etheric_plane | Plane_(Dungeons_&_Dragons) | other |
null | 2.2654444e7 | 419.0 | other-google | Pineapple_Dance_Studios | other |
1.3895544e7 | 788074.0 | 36.0 | Vigor | Physical_strength | link |
2583157.0 | 2.2509614e7 | 21.0 | Byzantine_dress | English_medieval_clothing | link |
null | 8055634.0 | 15.0 | other-google | Unbarred_lenticular_galaxy | other |
1445268.0 | 236723.0 | 13.0 | Master_of_Arts_(Oxbridge_and_Dublin) | Master_of_Arts_(disambiguation) | link |
2.7656285e7 | 1739962.0 | 20.0 | Geo_URI | ICBM_address | link |
null | 1.2892672e7 | 110.0 | other-google | Leandra | other |
1.5580374e7 | 3722614.0 | 18.0 | Main_Page | African_Cup_Winners'_Cup | other |
1.0078096e7 | 245335.0 | 55.0 | This_Is_Just_To_Say | Found_poetry | link |
2172281.0 | 1.0774494e7 | 32.0 | Mumtaz_(actress) | Apna_Desh | link |
null | 2.7289759e7 | 19.0 | other-empty | 2010_Santos_FC_season | other |
39021.0 | 1.2230576e7 | 40.0 | Daytona_500 | Coke_Zero_400 | link |
3016712.0 | 4682876.0 | 10.0 | Terminal_degree | Professional_degrees_of_public_health | other |
939423.0 | 7216989.0 | 49.0 | Mr._Lawrence | The_Grim_Adventures_of_Billy_&_Mandy | other |
null | 2697919.0 | 11.0 | other-wikipedia | Antemnae | other |
2463448.0 | 3.0668895e7 | 23.0 | Ted_McCarty | Gibson_Guitar_Corporation | link |
845407.0 | 2.8320131e7 | 25.0 | Sezen_Aksu | Ağlamak_Güzeldir | link |
null | 1.4454507e7 | 79.0 | other-google | Eleider_Álvarez | other |
null | 4923077.0 | 209.0 | other-google | Demon_Seed_(novel) | other |
4666669.0 | 2796527.0 | 10.0 | Area_code_904 | T-Pain | link |
null | 1.9111554e7 | 11.0 | other-empty | Hermann_Hauser,_Sr. | other |
31827.0 | 145144.0 | 78.0 | Demographics_of_Ukraine | Ukrainians | link |
1980240.0 | 3.9277098e7 | 138.0 | List_of_American_comedy_films | About_Last_Night_(2014_film) | link |
730462.0 | 558569.0 | 16.0 | Flower-class_corvette | HMCS_Oakville_(K178) | link |
609002.0 | 1.4814799e7 | 13.0 | Biloela | Callide_Dam | link |
27695.0 | 30403.0 | 15.0 | Structured_programming | Turing_machine | link |
12449.0 | 2013048.0 | 45.0 | Mobile_Suit_Gundam_Wing | Mobile_weapons | link |
1.094599e7 | 1.7608953e7 | 14.0 | Alternative_versions_of_Wolverine | Marvel_Zombies_2 | link |
null | 1.6917052e7 | 26.0 | other-empty | Kacy_Rodgers | other |
null | 1.3805947e7 | 30.0 | other-empty | Unlimited_Touch | other |
2.1444421e7 | 1.915323e7 | 62.0 | Roberta_Flack_discography | Born_to_Love | link |
null | 6493684.0 | 10.0 | other-google | Oświęcim_County | other |
11033.0 | 1.1991546e7 | 13.0 | Frederick_Douglass | Civilization_Revolution | link |
1.8302482e7 | 38170.0 | 12.0 | List_of_bisexual_people_(A–F) | Bi-curious | link |
1009423.0 | 4528243.0 | 44.0 | Talysh_people | Talysh_Khanate | link |
3.6355277e7 | 3.0214103e7 | 23.0 | Vikings_(TV_series) | Falling_Skies | other |
null | 2.996522e7 | 14.0 | other-empty | Peter_White_(Michigan) | other |
8035013.0 | 3.377343e7 | 11.0 | Lee_Jung | Saturday_Freedom | link |
3.3050531e7 | 1.1612491e7 | 153.0 | List_of_Deadly_Women_episodes | Murder_of_Shanda_Sharer | link |
8670674.0 | 7364118.0 | 22.0 | U218_Videos | U218_Singles | link |
1374327.0 | 826555.0 | 11.0 | ETA_SA | Breitling_SA | link |
2312056.0 | 202652.0 | 12.0 | Pride_&_Prejudice_(2005_film) | Romeo_+_Juliet | link |
6027027.0 | 2697824.0 | 23.0 | House_of_Carters | Andy_Samberg | link |
null | 3.3484283e7 | 22.0 | other-google | Dovedale_by_Moonlight | other |
null | 3360692.0 | 11.0 | other-google | Harvey_Hodder | other |
null | 1.4940878e7 | 10.0 | other-empty | 1982_Baltimore_Colts_season | other |
453246.0 | 142058.0 | 18.0 | Breakout_(video_game) | Homebrew_Computer_Club | link |
65910.0 | 3.8481732e7 | 219.0 | Printed_circuit_board | Chemical_milling | other |
null | 9646491.0 | 47.0 | other-google | Fouad_Abou_Nader | other |
253868.0 | 524481.0 | 45.0 | Eye_of_the_Beholder_(video_game) | Gold_Box | link |
null | 2.0207353e7 | 14.0 | other-wikipedia | Type-90 | other |
2.9156836e7 | 2.8439144e7 | 96.0 | Park_Ha-sun | Dong_Yi_(TV_series) | link |
null | 54530.0 | 30.0 | other-wikipedia | Bookmark_(disambiguation) | other |
197181.0 | 1.7898921e7 | 18.0 | Kunming | Yuantong_Temple | link |
5043734.0 | 14800.0 | 10.0 | Wikipedia | Icon | other |
973639.0 | 1929375.0 | 16.0 | Lacombe | Lacombe,_Alberta | link |
380569.0 | 53607.0 | 46.0 | John_F._Kennedy_Center_for_the_Performing_Arts | Edward_Durell_Stone | link |
149689.0 | 190226.0 | 10.0 | Midnight's_Children | 1981_in_literature | link |
null | 1.73024e7 | 24.0 | other-other | Baltimore_City_Circuit_Courthouses | other |
null | 2.1313911e7 | 10.0 | other-bing | Wind_power_in_Wyoming | other |
null | 1.3005006e7 | 12.0 | other-empty | Douglas_Guest | other |
714928.0 | 1.5704166e7 | 30.0 | Greenland_Dog | Inuit | link |
null | 9471611.0 | 28.0 | other-empty | Memphis_Light,_Gas_and_Water | other |
1585091.0 | 348208.0 | 16.0 | List_of_Turkish_artists | Avni_Arbaş | link |
null | 4120275.0 | 56.0 | other-google | Marjie_Lundstrom | other |
39482.0 | 2079614.0 | 27.0 | Mai_Zetterling | Tutte_Lemkow | link |
46526.0 | 57744.0 | 10.0 | 419_scams | Ivory_Coast | link |
52967.0 | 411914.0 | 16.0 | Gynaecology | Oophorectomy | link |
6059111.0 | 2.8039598e7 | 17.0 | Ethan_Spaulding | The_Legend_of_Korra | link |
null | 501536.0 | 20.0 | other-yahoo | Ministry_of_Intelligence | other |
480634.0 | 1989200.0 | 27.0 | Absorbance | Densitometry | link |
3924114.0 | 2455426.0 | 26.0 | Bottom_Dollar_Food | PriceRite | link |
null | 2.1715001e7 | 15.0 | other-google | You_Are_My_Joy | other |
1.8899968e7 | 44700.0 | 11.0 | List_of_Chinese_discoveries | Leprosy | link |
984322.0 | 2176065.0 | 45.0 | Krome_Studios_Melbourne | Nightshade_(1992_video_game) | other |
null | 867983.0 | 24.0 | other-wikipedia | Microsoft_Narrator | other |
3303790.0 | 2.3384265e7 | 21.0 | Military_history_of_Mexico | Mexican_Armed_Forces | other |
null | 5435750.0 | 14.0 | other-wikipedia | Punk-O-Rama_5 | other |
24555.0 | 129618.0 | 11.0 | Photosynthetic_pigment | Cyanobacteria | link |
null | 1.2391537e7 | 11.0 | other-other | Flores_(canton) | other |
null | 8703722.0 | 16.0 | other-wikipedia | Get_down | other |
117337.0 | 181005.0 | 35.0 | Westlake_Village,_California | Robert_Young_(actor) | link |
1266404.0 | 201829.0 | 20.0 | Hypalon | DuPont | link |
null | 150521.0 | 63.0 | other-yahoo | Henry_Armstrong | other |
null | 46933.0 | 20.0 | other-yahoo | Spelljammer | other |
9947607.0 | 1610870.0 | 11.0 | Nick_Raskulinecz | In_Your_Honor | link |
7890238.0 | 5400269.0 | 20.0 | Test_Drive_4 | TVR_Cerbera_Speed_12 | link |
3051596.0 | 611873.0 | 17.0 | Chaminade_College_Preparatory_School_(California) | West_Hills,_Los_Angeles | other |
null | 2054489.0 | 92.0 | other-empty | Jean_van_de_Velde_(golfer) | other |
1.8220755e7 | 3.9815494e7 | 123.0 | Holly_Hunter | Bonnie_&_Clyde_(2013_miniseries) | link |
null | 1.2201032e7 | 83.0 | other-wikipedia | M_jak_miłość | other |
1511052.0 | 1182345.0 | 40.0 | Jim_Kelly_(martial_artist) | Undercover_Brother | link |
127894.0 | 3.2564669e7 | 30.0 | Winston-Salem,_North_Carolina | Novant_Health | link |
72566.0 | 806290.0 | 29.0 | Carmina_Burana | Cockaigne | link |
1018512.0 | 1.2219012e7 | 12.0 | Culture_of_Burma | Burmese_dance | link |
4.4789934e7 | 1.9156186e7 | 10.0 | Deaths_in_2015 | Adrian_Peterson | other |
null | 1615103.0 | 51.0 | other-other | Lucy_Ford:_The_Atmosphere_EP's | other |
null | 3.4567346e7 | 17.0 | other-google | Simon_Paulli | other |
1113778.0 | 235321.0 | 40.0 | Heaven_Tonight | Rick_Nielsen | link |
null | 2.1158505e7 | 97.0 | other-other | SDL_Trados | other |
null | 1.7838929e7 | 13.0 | other-google | Christian_Maclagan | other |
294791.0 | 4.248568e7 | 18.0 | Steven_Moffat | Time_Heist | link |
null | 3.5096982e7 | 14.0 | other-empty | Even_If_It_Breaks_Your_Heart | other |
null | 3352391.0 | 33.0 | other-wikipedia | Pecheneg_language | other |
109495.0 | 2835130.0 | 25.0 | Key_West,_Florida | Key_Haven,_Florida | link |
22093.0 | 1658814.0 | 233.0 | National_Basketball_Association | Barclays_Center | link |
24096.0 | 1.9049004e7 | 16.0 | Plough | Stump-jump_plough | link |
null | 5576399.0 | 10.0 | other-wikipedia | Santahamina | other |
null | 1.3646286e7 | 29.0 | other-google | WYFI | other |
null | 1803482.0 | 21.0 | other-empty | Aldene_Connection | other |
308142.0 | 4.1443125e7 | 26.0 | General_Santos | SM_City_General_Santos | link |
1.9486157e7 | 2.0975298e7 | 116.0 | Mirotic | Mirotic_(song) | other |
192381.0 | 1.7161967e7 | 27.0 | Joe_Pantoliano | The_Handler_(TV_series) | link |
967278.0 | 2604085.0 | 49.0 | KiKa | Bernd_das_Brot | link |
null | 8252419.0 | 853.0 | other-google | Foxhole | other |
55906.0 | 17391.0 | 16.0 | Zagreb | Kosovo | link |
null | 130195.0 | 23.0 | other-google | Covington,_Oklahoma | other |
null | 2984353.0 | 21.0 | other-empty | 251_(number) | other |
23324.0 | 20474.0 | 22.0 | Platinum | Mohs_scale_of_mineral_hardness | link |
1298.0 | 2.3555068e7 | 10.0 | Ames,_Iowa | Neva_Morris | link |
2117651.0 | 1.808438e7 | 18.0 | AFI's_100_Years...100_Movie_Quotes | George_M._Cohan | link |
null | 2.8370582e7 | 14.0 | other-google | Palača | other |
138022.0 | 267590.0 | 34.0 | North_Bend,_Washington | Mount_Si | link |
null | 4.0810754e7 | 325.0 | other-google | List_of_travel_books | other |
2387806.0 | 12301.0 | 26.0 | Harry_Potter | A_Song_of_Ice_and_Fire | other |
48630.0 | 7159144.0 | 11.0 | 2014 | Michael_Sata | link |
1.1976532e7 | 3.7562767e7 | 84.0 | TOP500 | Graph500 | link |
599365.0 | 1.904146e7 | 78.0 | Liiga | Kanada-malja | link |
null | 4.1274079e7 | 44.0 | other-wikipedia | Jeremy_Jamm | other |
4.0379651e7 | 8744746.0 | 144.0 | IBM | Big_Blue_(disambiguation) | link |
52036.0 | 5573.0 | 50.0 | Istria | Croatia | link |
null | 8260496.0 | 106.0 | other-wikipedia | Wrestle_Kingdom | other |
402652.0 | 581760.0 | 27.0 | Compulsive_hoarding | Plyushkin | link |
4.2839033e7 | 2.1418097e7 | 13.0 | List_of_hot_dog_restaurants | Montreal_Pool_Room | link |
null | 2.394422e7 | 28.0 | other-wikipedia | Iván_Pillud | other |
206004.0 | 988219.0 | 14.0 | Military_history_of_Egypt_during_World_War_II | East_African_Campaign_(World_War_II) | link |
null | 1.0235545e7 | 14.0 | other-other | D'Ieteren | other |
null | 475805.0 | 548.0 | other-google | Pansy_Division | other |
49966.0 | 287855.0 | 199.0 | Carlos_Menem | Cecilia_Bolocco | link |
null | 1.4750893e7 | 44.0 | other-google | Ain't_No_Shame_in_My_Game | other |
2.0550801e7 | 2.6771113e7 | 10.0 | La_Scala_(album) | Tokyo_'96 | link |
null | 7304198.0 | 22.0 | other-empty | Ernst_Fischer | other |
1.5851039e7 | 10618.0 | 11.0 | Davy_Crockett_and_the_River_Pirates | Fiddle | other |
null | 1.1927959e7 | 17.0 | other-wikipedia | Metal_Gear_Solid_2:_Sons_of_Liberty_Soundtrack_2:_The_Other_Side | other |
null | 38325.0 | 15.0 | other-bing | Descent | other |
null | 6017828.0 | 11.0 | other-empty | Center_for_Libertarian_Studies | other |
3.0873608e7 | 245390.0 | 21.0 | Metal_Gear_(video_game) | Stealth_game | link |
2.0846219e7 | 2.084622e7 | 12.0 | Benzathine | Benzathine_phenoxymethylpenicillin | link |
null | 3.666971e7 | 21.0 | other-google | Sydney_state_by-election,_2012 | other |
498348.0 | 1587778.0 | 12.0 | Guinea_Pig_(film_series) | Japanese_horror | other |
DataFrame in Pyspark
Python API for Spark
clicksPy = sqlContext.read.parquet("/datasets/sds/tmp/wiki-clickstream")
# in Python you need to put the object int its own line like this to get the type information
clicksPy
clicksPy.show()
DataFrame in SparkR
We can now load a DataFrame in R (using SparkR) from the parquet file just as we did for python. Read the docs in databricks guide first:
And see the R
example in the Programming Guide:
library(SparkR)
# just a quick test
df <- createDataFrame(faithful)
head(df)
# Read in the Parquet file created above. Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a DataFrame.
clicksR <- read.df("/datasets/sds/tmp/wiki-clickstream", source = "parquet")
clicksR # in R you need to put the object int its own line like this to get the type information
head(clicksR)
display(clicksR)
YouTry! in databricks
If you are on databricks then clone this notebook and run all cells in the cloned notebook by using the full dataset and not the small sample we used here.
Loading and exploring the data Cmd 9
should be the following to load the full data:
val data = sc.textFile("databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed/2015_2_clickstream.tsv")
We are avoiding this YouTry! in zeppelin as we do not want to load very large datasets into a spark server running on possibly limited resources.
Editors
Here is a list of the editors who have helped improve this book