// Databricks notebook source exported at Sat, 18 Jun 2016 04:23:16 UTC
Scalable Data Science
prepared by Raazesh Sainudiin and Sivanand Sivaram
The html source url of this databricks notebook and its recorded Uji :
HOMEWORK notebook - RDDs Transformations and Actions
Just go through the notebook and familiarize yourself with these transformations and actions.
1. Perform the takeOrdered
action on the RDD
To illustrate take
and takeOrdered
actions, let’s create a bigger RDD named rdd0_1000000
that is made up of a million integers from 0 to 1000000.
We will sc.parallelize
the Seq
Scala collection by using its .range(startInteger,stopInteger)
method.
val rdd0_1000000 = sc.parallelize(Seq.range(0, 1000000)) // <Shift+Enter> to create an RDD of million integers: 0,1,2,...,10^6
rdd0_1000000.take(5) // <Ctrl+Enter> gives the first 5 elements of the RDD, (0, 1, 2, 3, 4)
takeordered(n)
returns n
elements ordered in ascending order (by default) or as specified by the optional key function, as shown below.
rdd0_1000000.takeOrdered(5) // <Shift+Enter> is same as rdd0_1000000.take(5)
rdd0_1000000.takeOrdered(5)(Ordering[Int].reverse) // <Ctrl+Enter> to get the last 5 elements of the RDD 999999, 999998, ..., 999995
// HOMEWORK: edit the numbers below to get the last 20 elements of an RDD made of a sequence of integers from 669966 to 969696
sc.parallelize(Seq.range(0, 10)).takeOrdered(5)(Ordering[Int].reverse) // <Ctrl+Enter> evaluate this cell after editing it for the right answer
2. More examples of map
val rdd = sc.parallelize(Seq(1, 2, 3, 4)) // <Shift+Enter> to evaluate this cell (using default number of partitions)
rdd.map( x => x*2) // <Ctrl+Enter> to transform rdd by map that doubles each element
To see what’s in the transformed RDD, let’s perform the actions of count
and collect
on the rdd.map( x => x*2)
, the transformation of rdd
by the map
given by the closure x => x*2
.
rdd.map( x => x*2).count() // <Shift+Enter> to perform count (action) the element of the RDD = 4
rdd.map( x => x*2).collect() // <Shift+Enter> to perform collect (action) to show 2, 4, 6, 8
// HOMEWORK: modify the '???' in the code below to collect and display the square (x*x) of each element of the RDD
// the answer should be Array[Int] = Array(1, 4, 9, 16) Press <Cntrl+Enter> to evaluate the cell after modifying '???'
sc.parallelize(Seq(1, 2, 3, 4)).map( x => ???).collect()
3. More examples of filter
Let’s declare another val
RDD named rddFiltered
by transforming our first RDD named rdd
via the filter
transformation x%2==0
(of being even).
This filter transformation based on the closure x => x%2==0
will return true
if the element, modulo two, equals zero. The closure is automatically passed on to the workers for evaluation (when an action is called later).
So this will take our RDD of (1,2,3,4) and return RDD of (2, 4).
val rddFiltered = rdd.filter( x => x%2==0 ) // <Ctrl+Enter> to declare rddFiltered from transforming rdd
rddFiltered.collect() // <Ctrl+Enter> to collect (action) elements of rddFiltered; should be (2, 4)
4. More examples of reduce
val rdd = sc.parallelize(Array(1,2,3,4,5))
rdd.reduce( (x,y)=>x+y ) // <Shift+Enter> to do reduce (action) to sum and return Int = 15
rdd.reduce( _ + _ ) // <Shift+Enter> to do same sum as above and return Int = 15 (undescore syntax)
rdd.reduce( (x,y)=>x*y ) // <Shift+Enter> to do reduce (action) to multiply and return Int = 120
val rdd0_1000000 = sc.parallelize(Seq.range(0, 1000000)) // <Shift+Enter> to create an RDD of million integers: 0,1,2,...,10^6
rdd0_1000000.reduce( (x,y)=>x+y ) // <Ctrl+Enter> to do reduce (action) to sum and return Int 1783293664
// the following correctly returns Int = 0 although for wrong reason
// we have flowed out of Int's numeric limits!!! (but got lucky with 0*x=0 for any Int x)
// <Shift+Enter> to do reduce (action) to multiply and return Int = 0
rdd0_1000000.reduce( (x,y)=>x*y )
// <Ctrl+Enter> to do reduce (action) to multiply 1*2*...*9*10 and return correct answer Int = 3628800
sc.parallelize(Seq.range(1, 11)).reduce( (x,y)=>x*y )
CAUTION: Know the limits of your numeric types!
The minimum and maximum value of Int
and Long
types are as follows:
(Int.MinValue , Int.MaxValue)
(Long.MinValue, Long.MaxValue)
// <Ctrl+Enter> to do reduce (action) to multiply 1*2*...*20 and return wrong answer as Int = -2102132736
// we have overflowed out of Int's in a circle back to negative Ints!!! (rigorous distributed numerics, anyone?)
sc.parallelize(Seq.range(1, 21)).reduce( (x,y)=>x*y )
//<Ctrl+Enter> we can accomplish the multiplication using Long Integer types
// by adding 'L' ro integer values, Scala infers that it is type Long
sc.parallelize(Seq.range(1L, 21L)).reduce( (x,y)=>x*y )
As the following products over Long Integers indicate, they are limited too!
// <Shift+Enter> for wrong answer Long = -8718968878589280256 (due to Long's numeric limits)
sc.parallelize(Seq.range(1L, 61L)).reduce( (x,y)=>x*y )
// <Cntrl+Enter> for wrong answer Long = 0 (due to Long's numeric limits)
sc.parallelize(Seq.range(1L, 100L)).reduce( (x,y)=>x*y )
5. Let us do a bunch of transformations to our RDD and perform an action
- start from a Scala
Seq
, sc.parallelize
the list to create an RDD,filter
that RDD, creating a new filtered RDD,- do a
map
transformation that maps that RDD to a new mapped RDD, - and finally, perform a
reduce
action to sum the elements in the RDD.
This last reduce
action causes the parallelize
, the filter
, and the map
transformations to actually be executed, and return a result back to the driver machine.
sc.parallelize(Seq(1, 2, 3, 4)) // <Ctrl+Enter> will return Array(4, 8)
.filter(x => x%2==0) // (2, 4) is the filtered RDD
.map(x => x*2) // (4, 8) is the mapped RDD
.reduce(_+_) // 4+8=12 is the final result from reduce
6. Transform the RDD by distinct
to make another RDD
Let’s declare another RDD named rdd2
that has some repeated elements to apply the distinct
transformation to it.
That would give us a new RDD that only contains the distinct elements of the input RDD.
val rdd2 = sc.parallelize(Seq(4, 1, 3, 2, 2, 2, 3, 4)) // <Ctrl+Enter> to declare rdd2
Let’s apply the distinct
transformation to rdd2
and have it return a new RDD named rdd2Distinct
that contains the distinct elements of the source RDD rdd2
.
val rdd2Distinct = rdd2.distinct() // <Ctrl+Enter> transformation: distinct gives distinct elements of rdd2
rdd2Distinct.collect() // <Ctrl+Enter> to collect (action) as Array(4, 2, 1, 3)
7. more flatMap
val rdd = sc. parallelize(Array(1,2,3)) // <Shift+Enter> to create an RDD of three Int elements 1,2,3
Let us pass the rdd
above to a map with a closure that will take in each element x
and return Array(x, x+5)
.
So each element of the mapped RDD named rddOfArrays
is an Array[Int]
, an array of integers.
// <Shift+Enter> to make RDD of Arrays, i.e., RDD[Array[int]]
val rddOfArrays = rdd.map( x => Array(x, x+5) )
rddOfArrays.collect() // <Ctrl+Enter> to see it is RDD[Array[int]] = (Array(1, 6), Array(2, 7), Array(3, 8))
Now let’s observer what happens when we use flatMap
to transform the same rdd
and create another RDD called rddfM
.
Interestingly, flatMap
flattens our rdd
by taking each Array
(or sequence in general) and truning it into individual elements.
Thus, we end up with the RDD rddfM
consisting of the elements (1, 6, 2, 7, 3, 8) as shown from the output of rddfM.collect
below.
val rddfM = rdd.flatMap(x => Array(x, x+5)) // <Shift+Enter> to flatMap the rdd using closure (x => Array(x, x+5))
rddfM.collect // <Ctrl+Enter> to collect rddfM = (1, 6, 2, 7, 3, 8)