// Databricks notebook source exported at Tue, 28 Jun 2016 06:58:47 UTC

Old Bailey Online Data Analysis in Apache Spark

2016, by Raaz Sainudiin and James Smithies is licensed under Creative Commons Attribution-NonCommercial 4.0 International License.

The html source url of this databricks notebook.

This is a starting point for ETL of Old Bailey Online Data from http://www.math.canterbury.ac.nz/~r.sainudiin/datasets/public/OldBailey/index.html.

This work merely builds on Old Bailey Online by Clive Emsley, Tim Hitchcock and Robert Shoemaker that is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Permissions beyond the scope of this license may be available at https://www.oldbaileyonline.org/static/Legal-info.jsp.

The data is already loaded in dbfs (see dowloading and loading section below for these details).


1+1 // sanity check!


display(dbutils.fs.ls("dbfs:/datasets/obo/tei/"))


display(dbutils.fs.ls("dbfs:/datasets/obo/tei/ordinarysAccounts"))


display(dbutils.fs.ls("dbfs:/datasets/obo/tei/sessionsPapers"))

Extract, Transform and Load XML files to get DataFrame of counts

Let’s parse the xml files and turn into Dataframe.

We have played enough (see Exploring data first: xml parsing in scala below first) to understand what to do now with our xml data in order to get it converted to counts of crimes, verdicts and punishments.


val rawWTF = sc.wholeTextFiles("dbfs:/datasets/obo/tei/sessionsPapers/*.xml") // has all data on crimes and punishments
val raw = rawWTF.map( x => x._2 )
val trials = raw.flatMap( x => { 
                       val elem = scala.xml.XML.loadString(x);
                       val outJson = (elem \\ "div1").filter(Node => ((Node \ "@type").text == "trialAccount"))
                           .map(Node => {val trialId = (Node \ "@id").text;
                               val trialInterps = (Node \\ "rs" \\ "interp")
                                                                 .filter(n => wantedFields.contains( (n \\ "@type").text))
                                                                 //.map( n => ((n \\ "@type").text, (n \\ "@value").text ));
                                                                 .map( n => ((n \\ "@value").text , 1 ));
                               val trialCounts = reduceByKey(trialInterps).toMap;
                               //(trialId, trialInterps, trialCounts)
                               scala.util.parsing.json.JSONObject(trialCounts updated ("id", trialId)).toString()
                              })
  outJson
})


dbutils.fs.rm("dbfs:/datasets/obo/processed/trialCounts",recurse=true)
trials.saveAsTextFile("dbfs:/datasets/obo/processed/trialCounts")


display(dbutils.fs.ls("dbfs:/datasets/obo/processed/trialCounts"))


val trialCountsDF = sqlContext.read.json("dbfs:/datasets/obo/processed/trialCounts")


trialCountsDF.printSchema


trialCountsDF.count


display(trialCountsDF)


val trDF = trialCountsDF.na.fill(0)


display(trDF)


display(trDF)

Exploring data first: xml parsing in scala

But, first let’s understand the data and its structure.


val raw = sc.wholeTextFiles("dbfs:/datasets/obo/tei/ordinarysAccounts/OA17261103.xml")


val raw = sc.wholeTextFiles("dbfs:/datasets/obo/tei/sessionsPapers/17930109.xml") // has data on crimes and punishments


//val oboTest = sc.wholeTextFiles("dbfs:/datasets/obo/tei/ordinaryAccounts/OA1693072*.xml")
val xml = raw.map( x => x._2 )
val x = xml.take(1)(0) // getting content of xml file as a string


val elem = scala.xml.XML.loadString(x)


elem


(elem \\ "div0").map(Node => (Node \ "@type").text) // types of div0 node, the singleton root node for the file


(elem \\ "div1").map(Node => (Node \ "@type").text) // types of div1 node


(elem \\ "div1")


(elem \\ "div1").filter(Node => ((Node \ "@type").text == "trialAccount"))
                 .map(Node => (Node \ "@type", Node \ "@id" ))


val trials = (elem \\ "div1").filter(Node => ((Node \ "@type").text == "trialAccount"))
                 .map(Node => (Node \ "@type", Node \ "@id", (Node \\ "rs" \\ "interp").map( n => ((n \\ "@type").text, (n \\ "@value").text ))))


val wantedFields = Seq("verdictCategory","punishmentCategory","offenceCategory").toSet



val trials = (elem \\ "div1").filter(Node => ((Node \ "@type").text == "trialAccount"))
                 .map(Node => ((Node \ "@type").text, (Node \ "@id").text, (Node \\ "rs" \\ "interp")
                                                               .filter(n => wantedFields.contains( (n \\ "@type").text))
                                                               .map( n => ((n \\ "@type").text, (n \\ "@value").text ))))

Since there can be more than one defendant in a trial, we need to reduce by key as follows.


def reduceByKey(collection: Traversable[Tuple2[String, Int]]) = {    
    collection
      .groupBy(_._1)
      .map { case (group: String, traversable) => traversable.reduce{(a,b) => (a._1, a._2 + b._2)} }
  }

Let’s process the coarsest data on the trial as json strings.


val trials = (elem \\ "div1").filter(Node => ((Node \ "@type").text == "trialAccount"))
                 .map(Node => {val trialId = (Node \ "@id").text;
                               val trialInterps = (Node \\ "rs" \\ "interp")
                                                                 .filter(n => wantedFields.contains( (n \\ "@type").text))
                                                                 //.map( n => ((n \\ "@type").text, (n \\ "@value").text ));
                                                                 .map( n => ((n \\ "@value").text , 1 ));
                               val trialCounts = reduceByKey(trialInterps).toMap;
                               //(trialId, trialInterps, trialCounts)
                               scala.util.parsing.json.JSONObject(trialCounts updated ("id", trialId))
                              })


trials.foreach(println)

Some examples to learn xml and scala


val p = new scala.xml.PrettyPrinter(80, 2)


p.format(elem)

Better examples:

http://alvinalexander.com/scala/how-to-extract-data-from-xml-nodes-in-scala

http://alvinalexander.com/scala/scala-xml-xpath-example

XML to JSON, if you want to go this route:

http://scala-tools.org/mvnsites/liftweb-2.0/framework/scaladocs/index.html

https://mkaz.github.io/2011/05/23/how-to-convert-xml-to-json/

Dowloading and Loading Data

First we will be downloading data from http://www.math.canterbury.ac.nz/~r.sainudiin/datasets/public/OldBailey/index.html.

The steps below need to be done once for a give shard!

Optional TODOs:

  • one could just read the zip files directly (see week 10 on Beijing taxi trajectories example).
  • one could just download from s3 directly

%sh
wget http://www.math.canterbury.ac.nz/~r.sainudiin/datasets/public/OldBailey/OB_tei_7-2_CC-BY-NC.zip


%sh
pwd && ls -al


%sh
unzip OB_tei_7-2_CC-BY-NC.zip

Let’s put the files in dbfs.


dbutils.fs.mkdirs("dbfs:/datasets/obo/tei") //need not be done again!


 dbutils.fs.cp("file:/databricks/driver/tei", "dbfs:/datasets/obo/tei/",recurse=true) // already done and it takes 1500 seconds - a while!


display(dbutils.fs.ls("dbfs:/datasets/obo/tei/ordinarysAccounts"))

```scala

util.Properties.versionString // check scala version```

Updated: