This notebook is from databricks document: - https://docs.databricks.com/_static/notebooks/package-cells.html
As you know, we need to eventually package and deploy our models, say using sbt
.
However it is nice to be in a notebook environment to prototype and build intuition and create better pipelines.
Using package cells we can be in the best of both worlds to an extent.
NOTE: This is not applicable to Zeppelin notes.
Package Cells
Package cells are special cells that get compiled when executed. These cells have no visibility with respect to the rest of the notebook. You may think of them as separate scala files.
This means that only class
and object
definitions may go inside this cell. You may not have any variable or function definitions lying around by itself. The following cell will not work.
If you wish to use custom classes and/or objects defined within notebooks reliably in Spark, and across notebook sessions, you must use package cells to define those classes.
Unless you use package cells to define classes, you may also come across obscure bugs as follows:
// We define a class
case class TestKey(id: Long, str: String)
defined class TestKey
// we use that class as a key in the group by
val rdd = sc.parallelize(Array((TestKey(1L, "abd"), "dss"), (TestKey(2L, "ggs"), "dse"), (TestKey(1L, "abd"), "qrf")))
rdd.groupByKey().collect
rdd: org.apache.spark.rdd.RDD[(TestKey, String)] = ParallelCollectionRDD[121] at parallelize at command-2971213210276613:2
res0: Array[(TestKey, Iterable[String])] = Array((TestKey(1,abd),CompactBuffer(dss, qrf)), (TestKey(2,ggs),CompactBuffer(dse)))
What went wrong above? Even though we have two elements for the key TestKey(1L, "abd")
, they behaved as two different keys resulting in:
Array[(TestKey, Iterable[String])] = Array(
(TestKey(2,ggs),CompactBuffer(dse)),
(TestKey(1,abd),CompactBuffer(dss)),
(TestKey(1,abd),CompactBuffer(qrf)))
Once we define our case class within a package cell, we will not face this issue.
package com.databricks.example
case class TestKey(id: Long, str: String)
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
import com.databricks.example
val rdd = sc.parallelize(Array(
(example.TestKey(1L, "abd"), "dss"), (example.TestKey(2L, "ggs"), "dse"), (example.TestKey(1L, "abd"), "qrf")))
rdd.groupByKey().collect
import com.databricks.example
rdd: org.apache.spark.rdd.RDD[(com.databricks.example.TestKey, String)] = ParallelCollectionRDD[123] at parallelize at command-2971213210276616:3
res2: Array[(com.databricks.example.TestKey, Iterable[String])] = Array((TestKey(1,abd),CompactBuffer(dss, qrf)), (TestKey(2,ggs),CompactBuffer(dse)))
As you can see above, the group by worked above, grouping two elements (dss, qrf
) under TestKey(1,abd)
.
These cells behave as individual source files, therefore only classes and objects can be defined inside these cells.
package x.y.z
val aNumber = 5 // won't work
def functionThatWillNotWork(a: Int): Int = a + 1
The following cell is the way to go.
package x.y.z
object Utils {
val aNumber = 5 // works!
def functionThatWillWork(a: Int): Int = a + 1
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
import x.y.z.Utils
Utils.functionThatWillWork(Utils.aNumber)
import x.y.z.Utils
res9: Int = 6
Why did we get the warning: classes defined within packages cannot be redefined without a cluster restart
?
Classes that get compiled with the package
cells get dynamically injected into Spark's classloader. Currently it's not possible to remove classes from Spark's classloader. Any classes that you define and compile will have precedence in the classloader, therefore once you recompile, it will not be visible to your application.
Well that kind of beats the purpose of iterative notebook development if I have to restart the cluster, right? In that case, you may just rename the package to x.y.z2
during development/fast iteration and fix it once everything works.
One thing to remember with package cells is that it has no visiblity regarding the notebook environment.
- The SparkContext will not be defined as
sc
. - The SQLContext will not be defined as
sqlContext
. - Did you import a package in a separate cell? Those imports will not be available in the package cell and have to be remade.
- Variables imported through
%run
cells will not be available.
It is really a standalone file that just looks like a cell in a notebook. This means that any function that uses anything that was defined in a separate cell, needs to take that variable as a parameter or the class needs to take it inside the constructor.
package x.y.zpackage
import org.apache.spark.SparkContext
case class IntArray(values: Array[Int])
class MyClass(sc: SparkContext) {
def sparkSum(array: IntArray): Int = {
sc.parallelize(array.values).reduce(_ + _)
}
}
object MyClass {
def sparkSum(sc: SparkContext, array: IntArray): Int = {
sc.parallelize(array.values).reduce(_ + _)
}
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
import x.y.zpackage._
val array = IntArray(Array(1, 2, 3, 4, 5))
val myClass = new MyClass(sc)
myClass.sparkSum(array)
import x.y.zpackage._
array: x.y.zpackage.IntArray = IntArray([I@5bb7ffc8)
myClass: x.y.zpackage.MyClass = x.y.zpackage.MyClass@5124c9d2
res11: Int = 15
MyClass.sparkSum(sc, array)
res12: Int = 15
Build Packages Locally
Although package cells are quite handy for quick prototyping in notebook environemnts, it is better to develop packages locally on your laptop and then upload the packaged or assembled jar file into databricks to use the classes and methods developed in the package.
For examples of how to build Scala Spark packages and libraries using mvn or sbt see for example:
- using mvn and Scala:
- using sbt and Scala:
- using sbt and Scala while allowing interaction with other language libraries plus terraformed infrastructure:
Core ideas in Monte Carlo simulation
- modular arithmetic gives pseudo-random streams that are indistiguishable from 'true' Uniformly distributed samples in integers from \({0,1,2,...,m}\)
- by diving the integer streams from above by \(m\) we get samples from \({0/m,1/m,...,(m-1)/m}\) and "pretend" this to be samples from the Uniform(0,1) RV
- we can use inverse distribution function of von Neumann's rejection sampler to convert samples from Uniform(0,1) RV to the following:
- any other random variable
- vector of random variables that could be dependent
- or more generally other random structures:
- random graphs and networks
- random walks or (sensible perturbations of live traffic data on open street maps for hypothesis tests)
- models of interacting paticle systems in ecology / chemcal physics, etc...
- Source of randomness is the Standard Uniform RV on the Unit Interval: https://en.wikipedia.org/wiki/Continuousuniformdistribution
- Transform the Uniform RV using one of several methods, including:
- https://en.wikipedia.org/wiki/Inversetransformsampling
- https://en.wikipedia.org/wiki/Rejection_sampling - will revisit below for Expoential RV
breeze.stats.distributions
Breeze also provides a fairly large number of probability distributions. These come with access to probability density function for either discrete or continuous distributions. Many distributions also have methods for giving the mean and the variance.
Let us simulate from the Poisson distribution with the following probability mass and cumulative distribution functions:
import breeze.stats.distributions._
val poi = new Poisson(3.0);
import breeze.stats.distributions._
poi: breeze.stats.distributions.Poisson = Poisson(3.0)
val s = poi.sample(5); // let's draw five samples - black-box
s: IndexedSeq[Int] = Vector(3, 2, 5, 4, 1)
Getting probabilities of the Poisson samples
s.map( x => poi.probabilityOf(x) ) // PMF
res0: IndexedSeq[Double] = Vector(0.22404180765538775, 0.22404180765538775, 0.10081881344492458, 0.16803135574154085, 0.14936120510359185)
val doublePoi = for(x <- poi) yield x.toDouble // meanAndVariance requires doubles, but Poisson samples over Ints
doublePoi: breeze.stats.distributions.Rand[Double] = MappedRand(Poisson(3.0),$Lambda$8556/443731598@3fbbf491)
breeze.stats.meanAndVariance(doublePoi.samples.take(1000));
res1: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(3.0660000000000034,3.250894894894892,1000)
(poi.mean, poi.variance) // population mean and variance
res1: (Double, Double) = (3.0,3.0)
Exponential random Variable
Let's focus on getting our hands dirty with the Exponential random variable, a common continuous RV with rate parameter \(\lambda\) with the following probability density and distribution functions:
NOTE: Below, there is a possibility of confusion for the term rate
in the family of exponential distributions. Breeze parameterizes the distribution with the mean, but refers to it as the rate.
val expo = new Exponential(0.5);
expo: breeze.stats.distributions.Exponential = Exponential(0.5)
expo.rate // what is the rate parameter
res2: Double = 0.5
A characteristic of exponential distributions is its half-life, but we can compute the probability a value falls between any two numbers.
expo.probability(0, math.log(2) * expo.rate)
res3: Double = 0.1591035847462855
expo.probability(math.log(2) * expo.rate, 10000.0)
res4: Double = 0.8408964152537145
expo.probability(0.0, 1.5)
res5: Double = 0.5276334472589853
The above result means that approximately 95% of the draws from an exponential distribution fall between 0 and thrice the mean. We could have easily computed this with the cumulative distribution as well.
1 - math.exp(-3.0) // the CDF of the Exponential RV with rate parameter 3
res6: Double = 0.950212931632136
Drawing samples from Exponential RV
Using the Inverse Transform Sampling, we can sample from the Exponential RV by transforming the samples from the standard Uniform RV as shown in the animation below:
val samples = expo.sample(2).sorted; // built-in black box - we will roll our own shortly in Spark
samples: IndexedSeq[Double] = Vector(0.5783204633797516, 2.470656843546517)
expo.probability(samples(0), samples(1));
res7: Double = 0.4581529379432925
breeze.stats.meanAndVariance(expo.samples.take(10000)); // mean and variance of the sample
res8: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(1.9763018410146713,3.9243880003317417,10000)
(1 / expo.rate, 1 / (expo.rate * expo.rate)) // mean and variance of the population
res9: (Double, Double) = (2.0,4.0)
import spark.implicits._
import org.apache.spark.sql.functions._
import spark.implicits._
import org.apache.spark.sql.functions._
val df = spark.range(1000).toDF("Id") // just make a DF of 1000 row indices
df: org.apache.spark.sql.DataFrame = [Id: bigint]
df.show(5)
+---+
| Id|
+---+
| 0|
| 1|
| 2|
| 3|
| 4|
+---+
only showing top 5 rows
val dfRand = df.select($"Id", rand(seed=1234567) as "rand") // add a column of random numbers in (0,1)
dfRand: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double]
dfRand.show(5) // these are first 5 of the 1000 samples from the Uniform(0,1) RV
+---+--------------------+
| Id| rand|
+---+--------------------+
| 0|0.024042816995877625|
| 1| 0.4763832311243641|
| 2| 0.3392911406256911|
| 3| 0.6282132043405342|
| 4| 0.9665960987271114|
+---+--------------------+
only showing top 5 rows
val dfRand = df.select($"Id", rand(seed=1234567) as "rand") // add a column of random numbers in (0,1)
dfRand.show(5) // these are first 5 of the 1000 samples from the Uniform(0,1) RV
+---+--------------------+
| Id| rand|
+---+--------------------+
| 0|0.024042816995877625|
| 1| 0.4763832311243641|
| 2| 0.3392911406256911|
| 3| 0.6282132043405342|
| 4| 0.9665960987271114|
+---+--------------------+
only showing top 5 rows
dfRand: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double]
val dfRand = df.select($"Id", rand(seed=879664) as "rand") // add a column of random numbers in (0,1)
dfRand.show(5) // these are first 5 of the 1000 samples from the Uniform(0,1) RV
+---+-------------------+
| Id| rand|
+---+-------------------+
| 0| 0.269224348263137|
| 1|0.20433965628039852|
| 2| 0.8481228617934538|
| 3| 0.6665103087537884|
| 4| 0.7712898780552342|
+---+-------------------+
only showing top 5 rows
dfRand: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double]
Let's use the inverse CDF of the Exponential RV to transform these samples from the Uniform(0,1) RV into those from the Exponential RV.
val dfRand = df.select($"Id", rand(seed=1234567) as "rand") // add a column of random numbers in (0,1)
.withColumn("one",lit(1.0))
.withColumn("rate",lit(0.5))
dfRand: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double ... 2 more fields]
dfRand.show(5)
+---+--------------------+---+----+
| Id| rand|one|rate|
+---+--------------------+---+----+
| 0|0.024042816995877625|1.0| 0.5|
| 1| 0.4763832311243641|1.0| 0.5|
| 2| 0.3392911406256911|1.0| 0.5|
| 3| 0.6282132043405342|1.0| 0.5|
| 4| 0.9665960987271114|1.0| 0.5|
+---+--------------------+---+----+
only showing top 5 rows
val dfExpRand = dfRand.withColumn("expo_sample", -($"one" / $"rate") * log($"one" - $"rand")) // samples from expo(rate=0.5)
dfExpRand: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double ... 3 more fields]
dfExpRand.show(5)
+---+--------------------+---+----+--------------------+
| Id| rand|one|rate| expo_sample|
+---+--------------------+---+----+--------------------+
| 0|0.024042816995877625|1.0| 0.5|0.048673126808362034|
| 1| 0.4763832311243641|1.0| 0.5| 1.2939904386814756|
| 2| 0.3392911406256911|1.0| 0.5| 0.8288839819270684|
| 3| 0.6282132043405342|1.0| 0.5| 1.9788694379168241|
| 4| 0.9665960987271114|1.0| 0.5| 6.798165162486205|
+---+--------------------+---+----+--------------------+
only showing top 5 rows
display(dfExpRand)
Id | rand | one | rate | expo_sample |
---|---|---|---|---|
0.0 | 2.4042816995877625e-2 | 1.0 | 0.5 | 4.8673126808362034e-2 |
1.0 | 0.4763832311243641 | 1.0 | 0.5 | 1.2939904386814756 |
2.0 | 0.3392911406256911 | 1.0 | 0.5 | 0.8288839819270684 |
3.0 | 0.6282132043405342 | 1.0 | 0.5 | 1.9788694379168241 |
4.0 | 0.9665960987271114 | 1.0 | 0.5 | 6.798165162486205 |
5.0 | 0.8269758822163711 | 1.0 | 0.5 | 3.508648570093974 |
6.0 | 0.3404052214826948 | 1.0 | 0.5 | 0.8322592089262 |
7.0 | 0.5658253891225227 | 1.0 | 0.5 | 1.6686169931673005 |
8.0 | 0.11737981749647353 | 1.0 | 0.5 | 0.24972063061386013 |
9.0 | 0.7848668745585088 | 1.0 | 0.5 | 3.072996508744745 |
10.0 | 0.10665116151243736 | 1.0 | 0.5 | 0.2255562755600773 |
11.0 | 0.34971775733163646 | 1.0 | 0.5 | 0.8606975816973311 |
12.0 | 3.349566781262969e-2 | 1.0 | 0.5 | 6.813899599567436e-2 |
13.0 | 0.334063669089834 | 1.0 | 0.5 | 0.8131224244912618 |
14.0 | 0.4105052702588069 | 1.0 | 0.5 | 1.0569789985263547 |
15.0 | 0.22519777483698333 | 1.0 | 0.5 | 0.5102949510683874 |
16.0 | 0.21124107883891907 | 1.0 | 0.5 | 0.47458910937069004 |
17.0 | 0.12332274767843698 | 1.0 | 0.5 | 0.26323273531964136 |
18.0 | 4.324422155449681e-2 | 1.0 | 0.5 | 8.841423006745963e-2 |
19.0 | 3.933267172708754e-2 | 1.0 | 0.5 | 8.025420479220831e-2 |
20.0 | 0.8162723223794007 | 1.0 | 0.5 | 3.388601261211285 |
21.0 | 7.785566240785313e-2 | 1.0 | 0.5 | 0.16210703862675058 |
22.0 | 0.1244015150504949 | 1.0 | 0.5 | 0.26569528726942954 |
23.0 | 0.5313795676534989 | 1.0 | 0.5 | 1.5159243018004147 |
24.0 | 0.8177063965639969 | 1.0 | 0.5 | 3.4042733720631824 |
25.0 | 0.7757379079578416 | 1.0 | 0.5 | 2.98987971469377 |
26.0 | 0.9019086568714294 | 1.0 | 0.5 | 4.643712323362237 |
27.0 | 0.5793202308042869 | 1.0 | 0.5 | 1.7317667559523853 |
28.0 | 4.913530139386124e-2 | 1.0 | 0.5 | 0.10076699863506142 |
29.0 | 0.6984668419742928 | 1.0 | 0.5 | 2.3977505839877837 |
30.0 | 1.579141234703818e-2 | 1.0 | 0.5 | 3.18348501444197e-2 |
31.0 | 0.3170147319677016 | 1.0 | 0.5 | 0.762563978285606 |
32.0 | 0.6243818511105477 | 1.0 | 0.5 | 1.9583644261768265 |
33.0 | 0.9720896733059052 | 1.0 | 0.5 | 7.157517052464175 |
34.0 | 6.406755887221727e-2 | 1.0 | 0.5 | 0.13242396678361196 |
35.0 | 0.8275324400058236 | 1.0 | 0.5 | 3.515092236401242 |
36.0 | 0.4223760255739688 | 1.0 | 0.5 | 1.0976643705892708 |
37.0 | 0.6237792697270514 | 1.0 | 0.5 | 1.9551585184791915 |
38.0 | 0.30676209726152626 | 1.0 | 0.5 | 0.7327640894184466 |
39.0 | 0.7209798363387625 | 1.0 | 0.5 | 2.5529424571699533 |
40.0 | 0.5408086036735253 | 1.0 | 0.5 | 1.556576340750279 |
41.0 | 0.22254408000797787 | 1.0 | 0.5 | 0.5034566621599345 |
42.0 | 0.6478051949133747 | 1.0 | 0.5 | 2.0871416658496442 |
43.0 | 0.6186563924196967 | 1.0 | 0.5 | 1.9281089062362353 |
44.0 | 0.2689179760895458 | 1.0 | 0.5 | 0.6264592354306907 |
45.0 | 0.1310898372764776 | 1.0 | 0.5 | 0.28103107825164747 |
46.0 | 0.8459785027719904 | 1.0 | 0.5 | 3.741326187841892 |
47.0 | 0.7844461581951896 | 1.0 | 0.5 | 3.069089109365284 |
48.0 | 0.3195541476806115 | 1.0 | 0.5 | 0.7700140609818293 |
49.0 | 0.326892158146161 | 1.0 | 0.5 | 0.7916994433570004 |
50.0 | 0.4392312327086285 | 1.0 | 0.5 | 1.1568932758900772 |
51.0 | 0.5377790694946909 | 1.0 | 0.5 | 1.543424595293625 |
52.0 | 0.4369640582174875 | 1.0 | 0.5 | 1.1488236262486446 |
53.0 | 0.26672242876690055 | 1.0 | 0.5 | 0.6204619408451196 |
54.0 | 0.9743181848790359 | 1.0 | 0.5 | 7.323944240755433 |
55.0 | 0.5636877255447679 | 1.0 | 0.5 | 1.6587941323713102 |
56.0 | 0.8214194684040824 | 1.0 | 0.5 | 3.44543124420649 |
57.0 | 4.2394218638494574e-2 | 1.0 | 0.5 | 8.663817482333575e-2 |
58.0 | 0.2986030735782996 | 1.0 | 0.5 | 0.7093626466953578 |
59.0 | 0.9251464009715654 | 1.0 | 0.5 | 5.184442172120483 |
60.0 | 0.9768531076059933 | 1.0 | 0.5 | 7.531789490600966 |
61.0 | 0.4147651110232632 | 1.0 | 0.5 | 1.0714839854387161 |
62.0 | 0.4525161010109643 | 1.0 | 0.5 | 1.2048444519262322 |
63.0 | 7.638776464132979e-2 | 1.0 | 0.5 | 0.1589259082490955 |
64.0 | 0.8203900440907219 | 1.0 | 0.5 | 3.433935381714252 |
65.0 | 0.9746746584977457 | 1.0 | 0.5 | 7.35189948830076 |
66.0 | 0.41832172801299305 | 1.0 | 0.5 | 1.083675562745256 |
67.0 | 3.3131200470495226e-2 | 1.0 | 0.5 | 6.738494114620364e-2 |
68.0 | 0.10008247055930286 | 1.0 | 0.5 | 0.21090430762250917 |
69.0 | 0.4268021831375646 | 1.0 | 0.5 | 1.113048783438383 |
70.0 | 0.8213380254753332 | 1.0 | 0.5 | 3.444519337826204 |
71.0 | 0.47431121070064797 | 1.0 | 0.5 | 1.2860917933318652 |
72.0 | 0.68679164992865 | 1.0 | 0.5 | 2.321773309424188 |
73.0 | 0.7057803676609208 | 1.0 | 0.5 | 2.4468574835462356 |
74.0 | 0.32184620342731496 | 1.0 | 0.5 | 0.776762356325894 |
75.0 | 0.3589329148022541 | 1.0 | 0.5 | 0.8892423408857425 |
76.0 | 0.7448782338623747 | 1.0 | 0.5 | 2.7320286670643386 |
77.0 | 0.9740613004640858 | 1.0 | 0.5 | 7.304038469785621 |
78.0 | 0.7453909609063684 | 1.0 | 0.5 | 2.736052180743762 |
79.0 | 6.853610233988816e-2 | 1.0 | 0.5 | 0.14199569380051374 |
80.0 | 0.336012781812836 | 1.0 | 0.5 | 0.8189847588182159 |
81.0 | 0.2963058480260412 | 1.0 | 0.5 | 0.7028229208813994 |
82.0 | 0.38627232525200883 | 1.0 | 0.5 | 0.9764079513820425 |
83.0 | 0.9097248909817963 | 1.0 | 0.5 | 4.809787008391862 |
84.0 | 0.20679745942261907 | 1.0 | 0.5 | 0.46335335878970363 |
85.0 | 0.16582497569469312 | 1.0 | 0.5 | 0.36262407472768277 |
86.0 | 0.6960738838737711 | 1.0 | 0.5 | 2.381941292346302 |
87.0 | 0.890094879396298 | 1.0 | 0.5 | 4.416275650715409 |
88.0 | 0.8258738496535992 | 1.0 | 0.5 | 3.4959504809275685 |
89.0 | 0.4066244237870885 | 1.0 | 0.5 | 1.0438554620679272 |
90.0 | 0.44414816275414526 | 1.0 | 0.5 | 1.1745070000344822 |
91.0 | 0.8820223175378497 | 1.0 | 0.5 | 4.274519608161631 |
92.0 | 0.3814200182827251 | 1.0 | 0.5 | 0.9606575597598919 |
93.0 | 0.491252177347836 | 1.0 | 0.5 | 1.3516056440673538 |
94.0 | 0.9042145561359308 | 1.0 | 0.5 | 4.691289097027222 |
95.0 | 0.8293982814391448 | 1.0 | 0.5 | 3.536847140695551 |
96.0 | 0.6957817964411346 | 1.0 | 0.5 | 2.38002012037681 |
97.0 | 0.46108317902841456 | 1.0 | 0.5 | 1.2363880819986401 |
98.0 | 0.658234439306857 | 1.0 | 0.5 | 2.14726054405596 |
99.0 | 0.43175037735005384 | 1.0 | 0.5 | 1.130388960612226 |
100.0 | 0.7719881477151886 | 1.0 | 0.5 | 2.9567153353469786 |
101.0 | 6.397418621476536e-2 | 1.0 | 0.5 | 0.13222444810891013 |
102.0 | 0.44410081132020296 | 1.0 | 0.5 | 1.1743366329905425 |
103.0 | 0.9364231799229901 | 1.0 | 0.5 | 5.511012678534471 |
104.0 | 0.5453471566845608 | 1.0 | 0.5 | 1.576442265948382 |
105.0 | 0.7346238968987211 | 1.0 | 0.5 | 2.653214404406468 |
106.0 | 0.3493365535175731 | 1.0 | 0.5 | 0.8595254994862054 |
107.0 | 0.5230037795263933 | 1.0 | 0.5 | 1.480493423321206 |
108.0 | 0.6886814284788837 | 1.0 | 0.5 | 2.333877090719847 |
109.0 | 0.7731252946239237 | 1.0 | 0.5 | 2.966714745163421 |
110.0 | 2.276168830750991e-2 | 1.0 | 0.5 | 4.604946957472576e-2 |
111.0 | 0.264951110753621 | 1.0 | 0.5 | 0.6156365319998442 |
112.0 | 0.14616140102686104 | 1.0 | 0.5 | 0.3160261944637388 |
113.0 | 3.066619523108849e-2 | 1.0 | 0.5 | 6.229248529326732e-2 |
114.0 | 0.49017052188807597 | 1.0 | 0.5 | 1.3473579316333943 |
115.0 | 9.835381148010536e-2 | 1.0 | 0.5 | 0.20706617613153588 |
116.0 | 8.828156810764243e-2 | 1.0 | 0.5 | 0.1848481470740138 |
117.0 | 0.6868446103815881 | 1.0 | 0.5 | 2.3221115183574854 |
118.0 | 0.4067862578001439 | 1.0 | 0.5 | 1.0444010055396156 |
119.0 | 0.44070042328022496 | 1.0 | 0.5 | 1.1621400679168603 |
120.0 | 0.19523663294276805 | 1.0 | 0.5 | 0.4344139974853618 |
121.0 | 0.34930320794183467 | 1.0 | 0.5 | 0.8594230049585315 |
122.0 | 0.37713232784782635 | 1.0 | 0.5 | 0.9468423740115679 |
123.0 | 0.6429635193876022 | 1.0 | 0.5 | 2.0598346316676848 |
124.0 | 0.5726782020473655 | 1.0 | 0.5 | 1.7004358488091253 |
125.0 | 0.3013872989669776 | 1.0 | 0.5 | 0.7173175321607891 |
126.0 | 0.3469657736553403 | 1.0 | 0.5 | 0.8522514741503977 |
127.0 | 0.3062597218624077 | 1.0 | 0.5 | 0.7313152550300903 |
128.0 | 0.875187814442521 | 1.0 | 0.5 | 4.161890374256847 |
129.0 | 0.4331447487608374 | 1.0 | 0.5 | 1.1353025933318837 |
130.0 | 0.40669672646934574 | 1.0 | 0.5 | 1.0440991764725864 |
131.0 | 0.10105613827873039 | 1.0 | 0.5 | 0.21306938341833667 |
132.0 | 0.7598058191143243 | 1.0 | 0.5 | 2.852615191501923 |
133.0 | 0.7882552857444408 | 1.0 | 0.5 | 3.104747815909758 |
134.0 | 0.41196255767852374 | 1.0 | 0.5 | 1.0619293113867083 |
135.0 | 0.23956793737837967 | 1.0 | 0.5 | 0.5477370075782519 |
136.0 | 0.301117813053034 | 1.0 | 0.5 | 0.716546192187808 |
137.0 | 0.4359866364410945 | 1.0 | 0.5 | 1.1453546670228079 |
138.0 | 0.9682651399507317 | 1.0 | 0.5 | 6.90067903242789 |
139.0 | 0.10678335714273168 | 1.0 | 0.5 | 0.22585225268919112 |
140.0 | 0.2693226978676214 | 1.0 | 0.5 | 0.6275667277003328 |
141.0 | 0.5668302775070247 | 1.0 | 0.5 | 1.6732513179468083 |
142.0 | 0.7096151948853401 | 1.0 | 0.5 | 2.473096642771549 |
143.0 | 0.7574375459472653 | 1.0 | 0.5 | 2.8329921185549365 |
144.0 | 0.49769652658104957 | 1.0 | 0.5 | 1.3771016264425564 |
145.0 | 0.45884572648841415 | 1.0 | 0.5 | 1.2281017543594028 |
146.0 | 0.3288386747446713 | 1.0 | 0.5 | 0.7974914915764556 |
147.0 | 0.5410136911709724 | 1.0 | 0.5 | 1.557469795251325 |
148.0 | 0.6336220553800798 | 1.0 | 0.5 | 2.008179685617141 |
149.0 | 0.375647544465191 | 1.0 | 0.5 | 0.9420804749655175 |
150.0 | 0.10142418148506294 | 1.0 | 0.5 | 0.21388838577034947 |
151.0 | 0.4721728293756773 | 1.0 | 0.5 | 1.2779727544450452 |
152.0 | 0.7518331384524283 | 1.0 | 0.5 | 2.787307860488268 |
153.0 | 6.676079335730689e-2 | 1.0 | 0.5 | 0.13818745319668635 |
154.0 | 0.8053497028664404 | 1.0 | 0.5 | 3.2731013568502365 |
155.0 | 0.6436250826649516 | 1.0 | 0.5 | 2.063543927419815 |
156.0 | 0.28432165233043427 | 1.0 | 0.5 | 0.6690488961123614 |
157.0 | 0.33131329522029473 | 1.0 | 0.5 | 0.8048792646192418 |
158.0 | 0.4390246975576103 | 1.0 | 0.5 | 1.1561567971907922 |
159.0 | 0.9576167619712271 | 1.0 | 0.5 | 6.322004648835221 |
160.0 | 0.2191897706358752 | 1.0 | 0.5 | 0.4948462856734829 |
161.0 | 1.1385964425825512e-2 | 1.0 | 0.5 | 2.2902561570486413e-2 |
162.0 | 0.679111841181116 | 1.0 | 0.5 | 2.2733252629142697 |
163.0 | 0.3189329784940914 | 1.0 | 0.5 | 0.768189122733912 |
164.0 | 0.5494024842158357 | 1.0 | 0.5 | 1.5943615282559738 |
165.0 | 0.4995339525325778 | 1.0 | 0.5 | 1.3844310395116766 |
166.0 | 0.6133797107105055 | 1.0 | 0.5 | 1.900624464472158 |
167.0 | 0.18020899363866738 | 1.0 | 0.5 | 0.3974116829996968 |
168.0 | 0.3549472573452819 | 1.0 | 0.5 | 0.8768463879435472 |
169.0 | 0.6992620601216817 | 1.0 | 0.5 | 2.403032050173198 |
170.0 | 0.24085612119427668 | 1.0 | 0.5 | 0.5511279118150403 |
171.0 | 0.1609790935708849 | 1.0 | 0.5 | 0.3510393091093769 |
172.0 | 0.9711366383834527 | 1.0 | 0.5 | 7.090364504579701 |
173.0 | 0.38455734034855193 | 1.0 | 0.5 | 0.9708269965922631 |
174.0 | 0.7140149247000265 | 1.0 | 0.5 | 2.503631307579515 |
175.0 | 0.6231707003505403 | 1.0 | 0.5 | 1.9519259602967969 |
176.0 | 0.6056033420465197 | 1.0 | 0.5 | 1.8607962600766825 |
177.0 | 0.9191984318132235 | 1.0 | 0.5 | 5.03151781078248 |
178.0 | 0.31549310135748787 | 1.0 | 0.5 | 0.7581131118739614 |
179.0 | 0.4450415722231543 | 1.0 | 0.5 | 1.1777241458955992 |
180.0 | 0.4583485174404076 | 1.0 | 0.5 | 1.2262650109539877 |
181.0 | 0.8948048795370758 | 1.0 | 0.5 | 4.503876726373103 |
182.0 | 0.5068846132533013 | 1.0 | 0.5 | 1.4140241642575553 |
183.0 | 0.474099338611806 | 1.0 | 0.5 | 1.2852858815130643 |
184.0 | 3.968996187382612e-2 | 1.0 | 0.5 | 8.099818055602134e-2 |
185.0 | 0.3812923011104965 | 1.0 | 0.5 | 0.9602446657347301 |
186.0 | 0.4490455490374048 | 1.0 | 0.5 | 1.1922062787516934 |
187.0 | 0.18885603597795153 | 1.0 | 0.5 | 0.4186194528265905 |
188.0 | 0.14835262533228888 | 1.0 | 0.5 | 0.32116543464514347 |
189.0 | 1.0239721160210324e-2 | 1.0 | 0.5 | 2.0585015521643695e-2 |
190.0 | 0.7812863611722196 | 1.0 | 0.5 | 3.0399839801249593 |
191.0 | 0.40315501297127665 | 1.0 | 0.5 | 1.032195705046974 |
192.0 | 0.27623054102229216 | 1.0 | 0.5 | 0.6465647282627558 |
193.0 | 0.3476188563715197 | 1.0 | 0.5 | 0.8542526234724834 |
194.0 | 0.40005917714351136 | 1.0 | 0.5 | 1.0218485144052543 |
195.0 | 0.690531564629077 | 1.0 | 0.5 | 2.3457983558717395 |
196.0 | 0.6243976540207664 | 1.0 | 0.5 | 1.9584485714328679 |
197.0 | 0.6936108435709636 | 1.0 | 0.5 | 2.365798463973219 |
198.0 | 0.5580754032112615 | 1.0 | 0.5 | 1.6332320139161962 |
199.0 | 0.5077201201493545 | 1.0 | 0.5 | 1.4174157254902722 |
200.0 | 0.24217287516689856 | 1.0 | 0.5 | 0.5545999737072358 |
201.0 | 0.5866156019146013 | 1.0 | 0.5 | 1.7667547458541368 |
202.0 | 0.13480908234777678 | 1.0 | 0.5 | 0.289610164710414 |
203.0 | 0.8592340571612042 | 1.0 | 0.5 | 3.921313495527709 |
204.0 | 0.5015919278028333 | 1.0 | 0.5 | 1.3926722308356132 |
205.0 | 0.9524596166650006 | 1.0 | 0.5 | 6.092351507324665 |
206.0 | 0.7897861372493181 | 1.0 | 0.5 | 3.1192597448504493 |
207.0 | 0.992502482003315 | 1.0 | 0.5 | 9.786366493971752 |
208.0 | 0.7190312712917515 | 1.0 | 0.5 | 2.539023803153757 |
209.0 | 4.905914294075553e-2 | 1.0 | 0.5 | 0.10060681726863402 |
210.0 | 7.292405751548614e-2 | 1.0 | 0.5 | 0.15143958783801956 |
211.0 | 0.7448249635342986 | 1.0 | 0.5 | 2.731611103575813 |
212.0 | 7.024810923770186e-2 | 1.0 | 0.5 | 0.14567502510922456 |
213.0 | 0.6499895525785409 | 1.0 | 0.5 | 2.0995845503371515 |
214.0 | 0.2347304081263114 | 1.0 | 0.5 | 0.5350541991171558 |
215.0 | 0.5554391604460018 | 1.0 | 0.5 | 1.62133672301354 |
216.0 | 0.45655849903065526 | 1.0 | 0.5 | 1.2196664242497346 |
217.0 | 0.7734426024060143 | 1.0 | 0.5 | 2.969513910302441 |
218.0 | 0.13396935067038884 | 1.0 | 0.5 | 0.28766995842079884 |
219.0 | 0.44732092861928796 | 1.0 | 0.5 | 1.1859555740131458 |
220.0 | 0.532360601482588 | 1.0 | 0.5 | 1.5201155921058849 |
221.0 | 0.8353842261129955 | 1.0 | 0.5 | 3.6082823273928657 |
222.0 | 0.4415319449291001 | 1.0 | 0.5 | 1.1651157196663489 |
223.0 | 7.107670903097285e-2 | 1.0 | 0.5 | 0.14745823038641734 |
224.0 | 0.2587810776672368 | 1.0 | 0.5 | 0.5989185111514972 |
225.0 | 0.8783986898097359 | 1.0 | 0.5 | 4.214015069834256 |
226.0 | 0.8772054215086009 | 1.0 | 0.5 | 4.194484826673072 |
227.0 | 0.8792794678306639 | 1.0 | 0.5 | 4.228554112475122 |
228.0 | 0.9704733519907857 | 1.0 | 0.5 | 7.04492420208042 |
229.0 | 0.5911949898493493 | 1.0 | 0.5 | 1.7890339688352386 |
230.0 | 0.1881415659970821 | 1.0 | 0.5 | 0.4168585927615873 |
231.0 | 0.27280409460696464 | 1.0 | 0.5 | 0.6371187335647226 |
232.0 | 0.8997405595900834 | 1.0 | 0.5 | 4.599988097103155 |
233.0 | 0.805703299381296 | 1.0 | 0.5 | 3.2767378072078768 |
234.0 | 0.12469160466325713 | 1.0 | 0.5 | 0.26635800581530467 |
235.0 | 4.5007500538482015e-2 | 1.0 | 0.5 | 9.210358499849247e-2 |
236.0 | 0.5406049480217902 | 1.0 | 0.5 | 1.5556895188057671 |
237.0 | 0.7089850749112344 | 1.0 | 0.5 | 2.4687614483220965 |
238.0 | 0.4050350886413143 | 1.0 | 0.5 | 1.038505695363729 |
239.0 | 0.18681323647475456 | 1.0 | 0.5 | 0.4135889487659769 |
240.0 | 0.23557258393827696 | 1.0 | 0.5 | 0.5372564022794455 |
241.0 | 0.32077303736600393 | 1.0 | 0.5 | 0.7735998942749642 |
242.0 | 0.27136665743377386 | 1.0 | 0.5 | 0.6331692658855377 |
243.0 | 8.600287997937284e-2 | 1.0 | 0.5 | 0.1798557169901321 |
244.0 | 0.7600332087019175 | 1.0 | 0.5 | 2.8545094696108473 |
245.0 | 0.41783858737032487 | 1.0 | 0.5 | 1.0820150568291664 |
246.0 | 0.8293413803867148 | 1.0 | 0.5 | 3.5361801888515507 |
247.0 | 0.7333405374926266 | 1.0 | 0.5 | 2.6435657118891944 |
248.0 | 0.8772160342203914 | 1.0 | 0.5 | 4.194657687243259 |
249.0 | 5.301719603632349e-2 | 1.0 | 0.5 | 0.10894868878842578 |
250.0 | 0.9026197915984311 | 1.0 | 0.5 | 4.658264576287863 |
251.0 | 0.23914978744357662 | 1.0 | 0.5 | 0.5466375404979962 |
252.0 | 0.4968410398019236 | 1.0 | 0.5 | 1.3736982691137887 |
253.0 | 0.5384099353933083 | 1.0 | 0.5 | 1.5461561756710942 |
254.0 | 0.8907377100572391 | 1.0 | 0.5 | 4.428007915156274 |
255.0 | 0.9066080833593035 | 1.0 | 0.5 | 4.741900966190897 |
256.0 | 0.6829340520390256 | 1.0 | 0.5 | 2.297290978019848 |
257.0 | 0.6571961620790489 | 1.0 | 0.5 | 2.1411937930382208 |
258.0 | 0.3669337202760652 | 1.0 | 0.5 | 0.9143603100291875 |
259.0 | 0.5097789017273943 | 1.0 | 0.5 | 1.4257975373650602 |
260.0 | 0.19359708351354943 | 1.0 | 0.5 | 0.4303435299938143 |
261.0 | 0.4198903553742862 | 1.0 | 0.5 | 1.0890763016996372 |
262.0 | 0.8275841161941834 | 1.0 | 0.5 | 3.515691583104315 |
263.0 | 0.5245014108343904 | 1.0 | 0.5 | 1.486782728111085 |
264.0 | 0.20212413144380958 | 1.0 | 0.5 | 0.45160449363942295 |
265.0 | 0.6588746438800428 | 1.0 | 0.5 | 2.1510105119936225 |
266.0 | 0.6090021282726809 | 1.0 | 0.5 | 1.8781063243284435 |
267.0 | 0.8237249377890233 | 1.0 | 0.5 | 3.4714193009141487 |
268.0 | 0.39616901908028135 | 1.0 | 0.5 | 1.0089219062444619 |
269.0 | 0.46974976524528655 | 1.0 | 0.5 | 1.268812485625708 |
270.0 | 0.1430991547459871 | 1.0 | 0.5 | 0.30886613379677225 |
271.0 | 0.8900411063855386 | 1.0 | 0.5 | 4.415297354889731 |
272.0 | 0.8908538606807918 | 1.0 | 0.5 | 4.430135134053363 |
273.0 | 0.7571966906626759 | 1.0 | 0.5 | 2.8310071799990957 |
274.0 | 0.45373865486682496 | 1.0 | 0.5 | 1.2093155273309903 |
275.0 | 0.5105750301805768 | 1.0 | 0.5 | 1.429048215969818 |
276.0 | 0.8703161512938904 | 1.0 | 0.5 | 4.085311447017532 |
277.0 | 0.6263910497078812 | 1.0 | 0.5 | 1.9690912320594496 |
278.0 | 0.8879229935650624 | 1.0 | 0.5 | 4.377138172983162 |
279.0 | 0.4592765782031528 | 1.0 | 0.5 | 1.2296947319737286 |
280.0 | 0.3332564208219061 | 1.0 | 0.5 | 0.8106994919909759 |
281.0 | 0.7769330816977306 | 1.0 | 0.5 | 3.000566940929362 |
282.0 | 0.47688504943059673 | 1.0 | 0.5 | 1.2959080966079761 |
283.0 | 0.5519970113210297 | 1.0 | 0.5 | 1.6059107508619763 |
284.0 | 0.6116679748262741 | 1.0 | 0.5 | 1.8917891406149387 |
285.0 | 0.23344992857646873 | 1.0 | 0.5 | 0.5317105161007432 |
286.0 | 0.547367711693101 | 1.0 | 0.5 | 1.5853504174370916 |
287.0 | 0.45229676089796134 | 1.0 | 0.5 | 1.2040433464044202 |
288.0 | 0.2232542399926749 | 1.0 | 0.5 | 0.5052843787124497 |
289.0 | 4.812719615823391e-2 | 1.0 | 0.5 | 9.864772505442727e-2 |
290.0 | 0.9924754840764293 | 1.0 | 0.5 | 9.779177599019986 |
291.0 | 0.23112957413067814 | 1.0 | 0.5 | 0.525665641185302 |
292.0 | 0.7136348699646448 | 1.0 | 0.5 | 2.500975207955907 |
293.0 | 0.7097521146725535 | 1.0 | 0.5 | 2.474039888248458 |
294.0 | 0.2534528100999812 | 1.0 | 0.5 | 0.584592898262904 |
295.0 | 0.14159162922836588 | 1.0 | 0.5 | 0.30535067223059725 |
296.0 | 0.286451779155965 | 1.0 | 0.5 | 0.6750105216507689 |
297.0 | 0.9194163349443866 | 1.0 | 0.5 | 5.0369186336261 |
298.0 | 0.8565261729771216 | 1.0 | 0.5 | 3.8832053010040535 |
299.0 | 0.9963446427954837 | 1.0 | 0.5 | 11.223122920363782 |
300.0 | 0.44312606197302895 | 1.0 | 0.5 | 1.1708327755623118 |
301.0 | 0.3333780003343948 | 1.0 | 0.5 | 0.8110642217087809 |
302.0 | 8.100442373331274e-2 | 1.0 | 0.5 | 0.16894794055205103 |
303.0 | 0.9114279295358697 | 1.0 | 0.5 | 4.847877405697818 |
304.0 | 0.1420851500734669 | 1.0 | 0.5 | 0.30650085385781334 |
305.0 | 0.3998938086649432 | 1.0 | 0.5 | 1.0212973077353178 |
306.0 | 0.43509561875462044 | 1.0 | 0.5 | 1.1421975977833791 |
307.0 | 0.2607501670030833 | 1.0 | 0.5 | 0.6042386923167598 |
308.0 | 0.7861629300585208 | 1.0 | 0.5 | 3.0850818187043214 |
309.0 | 0.4238639225351366 | 1.0 | 0.5 | 1.1028228011782435 |
310.0 | 0.8296205577621936 | 1.0 | 0.5 | 3.5394546320186806 |
311.0 | 0.797111503088613 | 1.0 | 0.5 | 3.190197454292849 |
312.0 | 4.847906767173793e-2 | 1.0 | 0.5 | 9.93871863877833e-2 |
313.0 | 0.2272307227002427 | 1.0 | 0.5 | 0.5155495038419591 |
314.0 | 0.28798275880438495 | 1.0 | 0.5 | 0.6793063054019258 |
315.0 | 0.9119630135350312 | 1.0 | 0.5 | 4.859996504134525 |
316.0 | 0.9247506337150422 | 1.0 | 0.5 | 5.173895593701935 |
317.0 | 0.313064117705499 | 1.0 | 0.5 | 0.7510286422175019 |
318.0 | 0.10267561230063371 | 1.0 | 0.5 | 0.2166756921335689 |
319.0 | 0.7800056454356652 | 1.0 | 0.5 | 3.0283067880604637 |
320.0 | 0.9880505590690435 | 1.0 | 0.5 | 8.854141571438799 |
321.0 | 0.5199897620784429 | 1.0 | 0.5 | 1.4678956926088331 |
322.0 | 0.9631286266437556 | 1.0 | 0.5 | 6.6006396376399366 |
323.0 | 0.6526508389996869 | 1.0 | 0.5 | 2.1148495545527686 |
324.0 | 0.44331946385558707 | 1.0 | 0.5 | 1.1715274946406817 |
325.0 | 0.7657175467075138 | 1.0 | 0.5 | 2.9024556523792184 |
326.0 | 0.8587810198761535 | 1.0 | 0.5 | 3.914887085632034 |
327.0 | 0.17717500338441594 | 1.0 | 0.5 | 0.39002348344727783 |
328.0 | 0.6400146315652561 | 1.0 | 0.5 | 2.043383783189525 |
329.0 | 0.5429950331288752 | 1.0 | 0.5 | 1.5661220394400488 |
330.0 | 0.1519419896098827 | 1.0 | 0.5 | 0.3296124741021507 |
331.0 | 0.2317505808062127 | 1.0 | 0.5 | 0.5272816679676412 |
332.0 | 0.9587236527128663 | 1.0 | 0.5 | 6.374931295970532 |
333.0 | 0.3957876337227971 | 1.0 | 0.5 | 1.0076590860947048 |
334.0 | 0.7520930392631228 | 1.0 | 0.5 | 2.7894035230513716 |
335.0 | 0.5219702075466132 | 1.0 | 0.5 | 1.4761644422492128 |
336.0 | 0.2718748554726389 | 1.0 | 0.5 | 0.6345646874711566 |
337.0 | 0.43339022569610974 | 1.0 | 0.5 | 1.1361688818668743 |
338.0 | 0.654264591604089 | 1.0 | 0.5 | 2.124163024174615 |
339.0 | 0.21929573754620202 | 1.0 | 0.5 | 0.4951177321724933 |
340.0 | 0.6463525037251117 | 1.0 | 0.5 | 2.0789092703893584 |
341.0 | 0.40363690799123597 | 1.0 | 0.5 | 1.0338111652659434 |
342.0 | 0.5464987531537895 | 1.0 | 0.5 | 1.5815145200909522 |
343.0 | 0.2794928368714429 | 1.0 | 0.5 | 0.6555998434128101 |
344.0 | 0.9679988160115437 | 1.0 | 0.5 | 6.883964754455241 |
345.0 | 0.9374750976583118 | 1.0 | 0.5 | 5.5443807282558 |
346.0 | 0.5043382898350185 | 1.0 | 0.5 | 1.403723241814482 |
347.0 | 0.37940066231801983 | 1.0 | 0.5 | 0.9541391883810038 |
348.0 | 0.16327499528946765 | 1.0 | 0.5 | 0.35651962241911506 |
349.0 | 0.6814882638496493 | 1.0 | 0.5 | 2.2881919129060675 |
350.0 | 0.7593963453274154 | 1.0 | 0.5 | 2.8492085714581132 |
351.0 | 8.2716537875273e-2 | 1.0 | 0.5 | 0.17267747098244784 |
352.0 | 0.9864630812678177 | 1.0 | 0.5 | 8.604669210362268 |
353.0 | 0.10362777838201431 | 1.0 | 0.5 | 0.2187990527194605 |
354.0 | 0.3018065167087475 | 1.0 | 0.5 | 0.7185180358786611 |
355.0 | 0.1981827289480086 | 1.0 | 0.5 | 0.4417490773130338 |
356.0 | 0.2519352721846343 | 1.0 | 0.5 | 0.5805315404780675 |
357.0 | 0.37720491978724313 | 1.0 | 0.5 | 0.947075477038406 |
358.0 | 3.334532342207808e-2 | 1.0 | 0.5 | 6.782791058537331e-2 |
359.0 | 0.49142274606532255 | 1.0 | 0.5 | 1.3522762997820723 |
360.0 | 0.7658697744126436 | 1.0 | 0.5 | 2.9037555976399063 |
361.0 | 0.430584327777621 | 1.0 | 0.5 | 1.1262891608345273 |
362.0 | 0.18774246417057594 | 1.0 | 0.5 | 0.41587565350859623 |
363.0 | 0.43213770208564395 | 1.0 | 0.5 | 1.131752645804099 |
364.0 | 0.5254311249185892 | 1.0 | 0.5 | 1.4906970370036838 |
365.0 | 0.21632961088151903 | 1.0 | 0.5 | 0.48753353815321687 |
366.0 | 0.5866314734106438 | 1.0 | 0.5 | 1.766831535403086 |
367.0 | 0.2127018826329221 | 1.0 | 0.5 | 0.47829660009371444 |
368.0 | 0.762880957964817 | 1.0 | 0.5 | 2.8783859537652954 |
369.0 | 0.7092177159493649 | 1.0 | 0.5 | 2.4703609132000657 |
370.0 | 0.4668447454243504 | 1.0 | 0.5 | 1.25788522569854 |
371.0 | 8.984189541128584e-2 | 1.0 | 0.5 | 0.18827390651246967 |
372.0 | 0.8401841637115331 | 1.0 | 0.5 | 3.6674662997626886 |
373.0 | 0.1769541258232804 | 1.0 | 0.5 | 0.3894866793361383 |
374.0 | 0.32759234424821526 | 1.0 | 0.5 | 0.793780983603854 |
375.0 | 0.7549436630804378 | 1.0 | 0.5 | 2.812534296521244 |
376.0 | 0.5406091390043264 | 1.0 | 0.5 | 1.5557077645471398 |
377.0 | 7.226167164454322e-2 | 1.0 | 0.5 | 0.15001111942581233 |
378.0 | 3.9174989741246e-2 | 1.0 | 0.5 | 7.992595578900699e-2 |
379.0 | 0.43530038855865494 | 1.0 | 0.5 | 1.1429227007667369 |
380.0 | 0.19425051459560916 | 1.0 | 0.5 | 0.4319647938819565 |
381.0 | 0.2690512431721227 | 1.0 | 0.5 | 0.6268238435762967 |
382.0 | 0.6122531354155542 | 1.0 | 0.5 | 1.894805126272543 |
383.0 | 0.8144904991435312 | 1.0 | 0.5 | 3.3692983613822673 |
384.0 | 0.44435200950498954 | 1.0 | 0.5 | 1.1752405917023965 |
385.0 | 0.40334065577595324 | 1.0 | 0.5 | 1.0328178822819034 |
386.0 | 0.6712465016160815 | 1.0 | 0.5 | 2.2248941081495746 |
387.0 | 0.610470870145168 | 1.0 | 0.5 | 1.8856332573010395 |
388.0 | 0.3753417849616416 | 1.0 | 0.5 | 0.941101269529212 |
389.0 | 0.5760552709957159 | 1.0 | 0.5 | 1.7163043767384967 |
390.0 | 0.8958499208801377 | 1.0 | 0.5 | 4.523844703206438 |
391.0 | 0.6375933030298327 | 1.0 | 0.5 | 2.0299764509716054 |
392.0 | 0.4996734547364764 | 1.0 | 0.5 | 1.3849886064074164 |
393.0 | 0.43886175915693537 | 1.0 | 0.5 | 1.1555759704008648 |
394.0 | 2.1262190388847357e-2 | 1.0 | 0.5 | 4.298297362707392e-2 |
395.0 | 0.2612612193574123 | 1.0 | 0.5 | 0.6056217946491596 |
396.0 | 0.9053544127651678 | 1.0 | 0.5 | 4.715232048676575 |
397.0 | 5.715293130681975e-3 | 1.0 | 0.5 | 1.146337583128797e-2 |
398.0 | 0.2947471489241186 | 1.0 | 0.5 | 0.6983977729250015 |
399.0 | 8.460986179878727e-2 | 1.0 | 0.5 | 0.17680984806639513 |
400.0 | 0.30069220409765574 | 1.0 | 0.5 | 0.7153285923659113 |
401.0 | 0.997746334354857 | 1.0 | 0.5 | 12.190394425627364 |
402.0 | 0.18308241899251243 | 1.0 | 0.5 | 0.40443413850132504 |
403.0 | 0.3105228234689785 | 1.0 | 0.5 | 0.7436433675489958 |
404.0 | 0.9179013483983409 | 1.0 | 0.5 | 4.999667373023489 |
405.0 | 0.11926274283498617 | 1.0 | 0.5 | 0.2539918600578725 |
406.0 | 0.43776630003690786 | 1.0 | 0.5 | 1.1516753585822221 |
407.0 | 0.4762249664302428 | 1.0 | 0.5 | 1.2933860241922412 |
408.0 | 0.8482098508688078 | 1.0 | 0.5 | 3.770512619720418 |
409.0 | 0.4567392533274949 | 1.0 | 0.5 | 1.2203317557106708 |
410.0 | 0.4435608409662263 | 1.0 | 0.5 | 1.1723948842501484 |
411.0 | 0.50408147116895 | 1.0 | 0.5 | 1.4026872442755594 |
412.0 | 0.36104698819880265 | 1.0 | 0.5 | 0.8958487225315878 |
413.0 | 0.4194713065185254 | 1.0 | 0.5 | 1.0876321003142069 |
414.0 | 7.486133824518293e-2 | 1.0 | 0.5 | 0.1556232962089628 |
415.0 | 3.373382017468085e-2 | 1.0 | 0.5 | 6.863186850542395e-2 |
416.0 | 0.4932147269781292 | 1.0 | 0.5 | 1.3593357794290557 |
417.0 | 0.8616586394474591 | 1.0 | 0.5 | 3.956062042024912 |
418.0 | 0.4117184281160471 | 1.0 | 0.5 | 1.0610991639078917 |
419.0 | 9.116459643129304e-2 | 1.0 | 0.5 | 0.19118255076481538 |
420.0 | 0.5890322019489482 | 1.0 | 0.5 | 1.7784808355923856 |
421.0 | 0.43778596825837024 | 1.0 | 0.5 | 1.1517453243828897 |
422.0 | 0.5541973559190224 | 1.0 | 0.5 | 1.6157578539111792 |
423.0 | 0.5236632829365838 | 1.0 | 0.5 | 1.4832605720870944 |
424.0 | 0.6204546477584022 | 1.0 | 0.5 | 1.9375623680773675 |
425.0 | 0.970316394356556 | 1.0 | 0.5 | 7.034320768236008 |
426.0 | 0.43993687089356626 | 1.0 | 0.5 | 1.1594115421186992 |
427.0 | 0.8405879195529187 | 1.0 | 0.5 | 3.6725254570044403 |
428.0 | 0.749280638128116 | 1.0 | 0.5 | 2.766842091120008 |
429.0 | 0.5488427514547121 | 1.0 | 0.5 | 1.5918786677038552 |
430.0 | 0.13747140435906435 | 1.0 | 0.5 | 0.29577395251982774 |
431.0 | 0.4576343120245375 | 1.0 | 0.5 | 1.2236296079783713 |
432.0 | 0.8148665411500688 | 1.0 | 0.5 | 3.3733566295966297 |
433.0 | 0.19547202902357552 | 1.0 | 0.5 | 0.4349990900088173 |
434.0 | 0.4890095869756548 | 1.0 | 0.5 | 1.3428089003184602 |
435.0 | 0.12715136653541503 | 1.0 | 0.5 | 0.27198624962848195 |
436.0 | 0.2032311331013058 | 1.0 | 0.5 | 0.45438129228481317 |
437.0 | 0.8787527473448604 | 1.0 | 0.5 | 4.21984681587113 |
438.0 | 0.4663010675042861 | 1.0 | 0.5 | 1.2558467916792808 |
439.0 | 0.3142004342512348 | 1.0 | 0.5 | 0.7543397443148356 |
440.0 | 0.5376680285543044 | 1.0 | 0.5 | 1.5429441860463613 |
441.0 | 0.8288823435429962 | 1.0 | 0.5 | 3.530807819241641 |
442.0 | 0.5381362365823195 | 1.0 | 0.5 | 1.5449706315293206 |
443.0 | 0.8741054855972965 | 1.0 | 0.5 | 4.144621819895548 |
444.0 | 0.9650736097727945 | 1.0 | 0.5 | 6.709025137110639 |
445.0 | 8.401495565683514e-2 | 1.0 | 0.5 | 0.17551048315515766 |
446.0 | 0.16014272925069362 | 1.0 | 0.5 | 0.34904663471346736 |
447.0 | 0.6761260538348454 | 1.0 | 0.5 | 2.254801787874353 |
448.0 | 0.30491746315485757 | 1.0 | 0.5 | 0.7274493648359186 |
449.0 | 0.8823536465498564 | 1.0 | 0.5 | 4.280144318376048 |
450.0 | 0.35138375129442345 | 1.0 | 0.5 | 0.8658280669121068 |
451.0 | 0.8162562408450885 | 1.0 | 0.5 | 3.388426210497536 |
452.0 | 0.673617698352461 | 1.0 | 0.5 | 2.2393717605117374 |
453.0 | 8.256976107323988e-2 | 1.0 | 0.5 | 0.1723574716228483 |
454.0 | 0.8365768515057421 | 1.0 | 0.5 | 3.6228248778772634 |
455.0 | 0.48971308441437955 | 1.0 | 0.5 | 1.3455642637453662 |
456.0 | 8.774182190296687e-2 | 1.0 | 0.5 | 0.18366447790309529 |
457.0 | 0.24099238723353444 | 1.0 | 0.5 | 0.5514869432829278 |
458.0 | 0.5907862348164701 | 1.0 | 0.5 | 1.787035212429029 |
459.0 | 0.9282830732565702 | 1.0 | 0.5 | 5.270056963848408 |
460.0 | 0.32874248016649343 | 1.0 | 0.5 | 0.7972048609806637 |
461.0 | 0.7759823021398251 | 1.0 | 0.5 | 2.9920604438874734 |
462.0 | 0.9906880008613337 | 1.0 | 0.5 | 9.352902960980467 |
463.0 | 0.35519401347986057 | 1.0 | 0.5 | 0.8776116070547805 |
464.0 | 0.22036578800170115 | 1.0 | 0.5 | 0.4978608565413814 |
465.0 | 0.8023870524533302 | 1.0 | 0.5 | 3.242889943586732 |
466.0 | 0.6555700243159146 | 1.0 | 0.5 | 2.131728945611721 |
467.0 | 0.6966117625572236 | 1.0 | 0.5 | 2.385483963919468 |
468.0 | 0.31199672354331665 | 1.0 | 0.5 | 0.7479233575368842 |
469.0 | 0.10874684309305482 | 1.0 | 0.5 | 0.23025353029665035 |
470.0 | 0.7768279542152332 | 1.0 | 0.5 | 2.999624598436637 |
471.0 | 0.5194659966765868 | 1.0 | 0.5 | 1.465714573067321 |
472.0 | 3.387321287945699e-2 | 1.0 | 0.5 | 6.892040754981558e-2 |
473.0 | 0.9137616097231142 | 1.0 | 0.5 | 4.901279675232361 |
474.0 | 0.9310800753319032 | 1.0 | 0.5 | 5.349619920714008 |
475.0 | 0.8956753753595035 | 1.0 | 0.5 | 4.520495700986587 |
476.0 | 0.9734569283996768 | 1.0 | 0.5 | 7.257973044045264 |
477.0 | 0.3100378260015375 | 1.0 | 0.5 | 0.7422370063712049 |
478.0 | 0.9004067891568347 | 1.0 | 0.5 | 4.613322561880238 |
479.0 | 0.3595142946826074 | 1.0 | 0.5 | 0.8910569518000615 |
480.0 | 0.5858555389814262 | 1.0 | 0.5 | 1.7630808527274318 |
481.0 | 0.7207027332090898 | 1.0 | 0.5 | 2.5509571840094765 |
482.0 | 0.5207773901843563 | 1.0 | 0.5 | 1.4711801017479904 |
483.0 | 0.5010641338355079 | 1.0 | 0.5 | 1.3905554324221692 |
484.0 | 0.7386177898402442 | 1.0 | 0.5 | 2.683543072229971 |
485.0 | 0.7514865091276058 | 1.0 | 0.5 | 2.784516291388268 |
486.0 | 0.996791280204512 | 1.0 | 0.5 | 11.48376647798819 |
487.0 | 0.31973896223026976 | 1.0 | 0.5 | 0.7705573508031445 |
488.0 | 0.5409498257000886 | 1.0 | 0.5 | 1.557191525390985 |
489.0 | 0.2351915468213719 | 1.0 | 0.5 | 0.5362597290194078 |
490.0 | 0.5722823786456511 | 1.0 | 0.5 | 1.6985841286612482 |
491.0 | 0.8872393295593034 | 1.0 | 0.5 | 4.364975334044577 |
492.0 | 0.7466377111677412 | 1.0 | 0.5 | 2.745869685758634 |
493.0 | 0.8944045014489479 | 1.0 | 0.5 | 4.496279071952017 |
494.0 | 0.7761279146229962 | 1.0 | 0.5 | 2.993360875321733 |
495.0 | 6.282087728304298e-4 | 1.0 | 0.5 | 1.2568123572811955e-3 |
496.0 | 2.1755806290161828e-2 | 1.0 | 0.5 | 4.399190658802096e-2 |
497.0 | 0.25822043228050306 | 1.0 | 0.5 | 0.5974063169929631 |
498.0 | 0.36706789505445514 | 1.0 | 0.5 | 0.9147842435207847 |
499.0 | 0.8535706465084604 | 1.0 | 0.5 | 3.8424243911227456 |
500.0 | 0.9583607379261688 | 1.0 | 0.5 | 6.357423513924509 |
501.0 | 0.1736332737734787 | 1.0 | 0.5 | 0.38143325101594394 |
502.0 | 0.7191057722209122 | 1.0 | 0.5 | 2.539554188214649 |
503.0 | 0.5866772207662699 | 1.0 | 0.5 | 1.7670528869782172 |
504.0 | 0.44342504955089734 | 1.0 | 0.5 | 1.171906870972165 |
505.0 | 0.8638825079861409 | 1.0 | 0.5 | 3.988473708673089 |
506.0 | 0.19206484030065873 | 1.0 | 0.5 | 0.42654694315586256 |
507.0 | 6.329398370441452e-2 | 1.0 | 0.5 | 0.1307715918497558 |
508.0 | 0.8324305296152746 | 1.0 | 0.5 | 3.5727145302718077 |
509.0 | 0.788341172013531 | 1.0 | 0.5 | 3.105559205156182 |
510.0 | 0.9968069620813552 | 1.0 | 0.5 | 11.493564979531474 |
511.0 | 0.5738675981141458 | 1.0 | 0.5 | 1.70601035690584 |
512.0 | 2.1924901743684888e-2 | 1.0 | 0.5 | 4.433764862438196e-2 |
513.0 | 0.31475857342097047 | 1.0 | 0.5 | 0.755968110508673 |
514.0 | 0.5840924030390661 | 1.0 | 0.5 | 1.7545843321676697 |
515.0 | 0.7770937124350712 | 1.0 | 0.5 | 3.0020076619607927 |
516.0 | 0.7130309607190969 | 1.0 | 0.5 | 2.496761892223379 |
517.0 | 0.3991683439699586 | 1.0 | 0.5 | 1.0188809802465286 |
518.0 | 0.48509787688675254 | 1.0 | 0.5 | 1.3275568971757934 |
519.0 | 0.45169086393350866 | 1.0 | 0.5 | 1.2018320683571915 |
520.0 | 0.12902719463817103 | 1.0 | 0.5 | 0.2762890498682689 |
521.0 | 0.2592134704552379 | 1.0 | 0.5 | 0.6000855589507411 |
522.0 | 0.2813001484016546 | 1.0 | 0.5 | 0.660622921987986 |
523.0 | 0.3762566475369137 | 1.0 | 0.5 | 0.9440325786940167 |
524.0 | 0.9267694189625785 | 1.0 | 0.5 | 5.228284343045507 |
525.0 | 0.15197347800388006 | 1.0 | 0.5 | 0.32968673548099053 |
526.0 | 0.14593597548755854 | 1.0 | 0.5 | 0.3154982356972103 |
527.0 | 0.35991105880863383 | 1.0 | 0.5 | 0.8922962833448616 |
528.0 | 0.3071108301936344 | 1.0 | 0.5 | 0.7337704414228866 |
529.0 | 0.18406488587857806 | 1.0 | 0.5 | 0.40684088837547255 |
530.0 | 0.5136711150110314 | 1.0 | 0.5 | 1.4417403317355608 |
531.0 | 0.6056599490894785 | 1.0 | 0.5 | 1.8610833370818218 |
532.0 | 0.44302266378392197 | 1.0 | 0.5 | 1.1704614578045645 |
533.0 | 0.7453946147476727 | 1.0 | 0.5 | 2.736080882533261 |
534.0 | 0.35502683979054106 | 1.0 | 0.5 | 0.8770931502610587 |
535.0 | 0.8797839338461947 | 1.0 | 0.5 | 4.236929207935352 |
536.0 | 6.238712029644411e-2 | 1.0 | 0.5 | 0.12883624673709432 |
537.0 | 0.9424758304767943 | 1.0 | 0.5 | 5.711100159925468 |
538.0 | 0.5704103694439081 | 1.0 | 0.5 | 1.689849747036119 |
539.0 | 0.9158448954522559 | 1.0 | 0.5 | 4.950187400162322 |
540.0 | 0.8873811703242918 | 1.0 | 0.5 | 4.367492702015337 |
541.0 | 0.6216382152888731 | 1.0 | 0.5 | 1.9438088773652653 |
542.0 | 0.48827370203072595 | 1.0 | 0.5 | 1.3399307423143256 |
543.0 | 0.4572473011375716 | 1.0 | 0.5 | 1.2222029953319737 |
544.0 | 3.967393021768029e-2 | 1.0 | 0.5 | 8.096479233410842e-2 |
545.0 | 0.29505351687188286 | 1.0 | 0.5 | 0.6992667790155687 |
546.0 | 0.5639878272499856 | 1.0 | 0.5 | 1.6601702337428519 |
547.0 | 0.48965142848521204 | 1.0 | 0.5 | 1.3453226263340796 |
548.0 | 0.8749613569725964 | 1.0 | 0.5 | 4.15826489047167 |
549.0 | 0.9256239598413039 | 1.0 | 0.5 | 5.19724285977426 |
550.0 | 0.7569605924580269 | 1.0 | 0.5 | 2.8290633556705096 |
551.0 | 0.3844172120051691 | 1.0 | 0.5 | 0.9703716742615802 |
552.0 | 0.1362858511639865 | 1.0 | 0.5 | 0.29302682234878386 |
553.0 | 0.37983323803435165 | 1.0 | 0.5 | 0.9555337323937093 |
554.0 | 0.26566735487098103 | 1.0 | 0.5 | 0.6175863160615908 |
555.0 | 0.36961293921650573 | 1.0 | 0.5 | 0.9228425321120206 |
556.0 | 9.63913755811967e-2 | 1.0 | 0.5 | 0.2027178998486325 |
557.0 | 0.18788147800222665 | 1.0 | 0.5 | 0.4162179728411676 |
558.0 | 0.26504942094508055 | 1.0 | 0.5 | 0.6159040428220617 |
559.0 | 0.739578089934357 | 1.0 | 0.5 | 2.6909044643005315 |
560.0 | 0.6457524310661318 | 1.0 | 0.5 | 2.075518526013794 |
561.0 | 0.9092071659989257 | 1.0 | 0.5 | 4.798349834364611 |
562.0 | 0.210969342425946 | 1.0 | 0.5 | 0.4739002053005348 |
563.0 | 0.9875371965277739 | 1.0 | 0.5 | 8.770013586320161 |
564.0 | 5.026001823606596e-2 | 1.0 | 0.5 | 0.10313407051509839 |
565.0 | 0.12100530799389475 | 1.0 | 0.5 | 0.2579528399771316 |
566.0 | 0.5890018173984741 | 1.0 | 0.5 | 1.7783329727795534 |
567.0 | 0.7224532694248171 | 1.0 | 0.5 | 2.563531923007902 |
568.0 | 0.8883622267112601 | 1.0 | 0.5 | 4.384991631947751 |
569.0 | 1.997234871111797e-2 | 1.0 | 0.5 | 4.0348984229344e-2 |
570.0 | 0.2212019516532856 | 1.0 | 0.5 | 0.5000070229243507 |
571.0 | 0.4273320266042193 | 1.0 | 0.5 | 1.1148983665533385 |
572.0 | 0.9981606891187609 | 1.0 | 0.5 | 12.596728597154938 |
573.0 | 0.24173972097342367 | 1.0 | 0.5 | 0.5534571525106269 |
574.0 | 0.30996923292210077 | 1.0 | 0.5 | 0.7420381848339302 |
575.0 | 0.5586292644735815 | 1.0 | 0.5 | 1.635740173145147 |
576.0 | 0.5710479605847417 | 1.0 | 0.5 | 1.6928203250772282 |
577.0 | 0.7716668116970227 | 1.0 | 0.5 | 2.953898729115331 |
578.0 | 0.1347753271289409 | 1.0 | 0.5 | 0.2895321367059855 |
579.0 | 0.7338594799945437 | 1.0 | 0.5 | 2.647461677978153 |
580.0 | 0.11653928663743118 | 1.0 | 0.5 | 0.2478169105193333 |
581.0 | 0.939970706008818 | 1.0 | 0.5 | 5.6258452054414265 |
582.0 | 0.6523955046706064 | 1.0 | 0.5 | 2.1133799063928125 |
583.0 | 0.8032152138335183 | 1.0 | 0.5 | 3.2512892068337553 |
584.0 | 0.6707576127357098 | 1.0 | 0.5 | 2.22192212014176 |
585.0 | 0.706492182007378 | 1.0 | 0.5 | 2.451702005911791 |
586.0 | 0.7647771000645677 | 1.0 | 0.5 | 2.894443408052288 |
587.0 | 0.8173666289040515 | 1.0 | 0.5 | 3.400549144677044 |
588.0 | 0.21872300084295448 | 1.0 | 0.5 | 0.49365103921530656 |
589.0 | 0.7310001086753175 | 1.0 | 0.5 | 2.626088606755685 |
590.0 | 0.8697372961374548 | 1.0 | 0.5 | 4.076404137303028 |
591.0 | 0.16400157324713815 | 1.0 | 0.5 | 0.35825709554754664 |
592.0 | 0.443313209241608 | 1.0 | 0.5 | 1.1715050236598006 |
593.0 | 0.8053657385685586 | 1.0 | 0.5 | 3.2732661278566844 |
594.0 | 0.30079618388942353 | 1.0 | 0.5 | 0.7156259936633084 |
595.0 | 0.45365879994299696 | 1.0 | 0.5 | 1.2090231797639022 |
596.0 | 0.8069809893677921 | 1.0 | 0.5 | 3.2899331884862204 |
597.0 | 0.8245884511775761 | 1.0 | 0.5 | 3.4812407168767363 |
598.0 | 0.41234621682526684 | 1.0 | 0.5 | 1.063234617242673 |
599.0 | 0.7968250346184004 | 1.0 | 0.5 | 3.1873755454599793 |
600.0 | 0.3927417451741644 | 1.0 | 0.5 | 0.9976022348148476 |
601.0 | 0.2728256265562098 | 1.0 | 0.5 | 0.6371779535572102 |
602.0 | 8.203703710226784e-2 | 1.0 | 0.5 | 0.1711964692057045 |
603.0 | 0.37776869105901545 | 1.0 | 0.5 | 0.9488867520931888 |
604.0 | 0.629411417011517 | 1.0 | 0.5 | 1.9853255448725573 |
605.0 | 0.7501910378551001 | 1.0 | 0.5 | 2.774117609305619 |
606.0 | 0.5996333900313177 | 1.0 | 0.5 | 1.8307492534099181 |
607.0 | 6.970492186242305e-2 | 1.0 | 0.5 | 0.14450690968030883 |
608.0 | 0.8940723635978487 | 1.0 | 0.5 | 4.489998186900931 |
609.0 | 0.6914380476986998 | 1.0 | 0.5 | 2.3516652759309613 |
610.0 | 0.3650550811756098 | 1.0 | 0.5 | 0.9084340517211708 |
611.0 | 6.128389132423373e-2 | 1.0 | 0.5 | 0.12648435832908939 |
612.0 | 0.7680345331232672 | 1.0 | 0.5 | 2.9223335361285874 |
613.0 | 0.23058140936561866 | 1.0 | 0.5 | 0.5242402528938145 |
614.0 | 0.18527936511039267 | 1.0 | 0.5 | 0.40982000756014936 |
615.0 | 0.28710359124883345 | 1.0 | 0.5 | 0.676838316784801 |
616.0 | 0.2108511727487865 | 1.0 | 0.5 | 0.4736006964588179 |
617.0 | 0.4624966724507077 | 1.0 | 0.5 | 1.241640656420202 |
618.0 | 0.9811961480020145 | 1.0 | 0.5 | 7.947387073248349 |
619.0 | 0.8245811182215507 | 1.0 | 0.5 | 3.4811571100355176 |
620.0 | 0.8168888824501829 | 1.0 | 0.5 | 3.3953242213722077 |
621.0 | 0.6208021859846258 | 1.0 | 0.5 | 1.9393945466905502 |
622.0 | 0.6514815007857316 | 1.0 | 0.5 | 2.108127935592991 |
623.0 | 0.8002695403068458 | 1.0 | 0.5 | 3.221573045869622 |
624.0 | 0.44461502006124476 | 1.0 | 0.5 | 1.176187496315193 |
625.0 | 0.24944701714221795 | 1.0 | 0.5 | 0.5738900673091492 |
626.0 | 0.15074825367641687 | 1.0 | 0.5 | 0.32679923126166255 |
627.0 | 0.48159464793185214 | 1.0 | 0.5 | 1.3139956195836684 |
628.0 | 0.7293846186875164 | 1.0 | 0.5 | 2.614113446702638 |
629.0 | 0.22027782974542087 | 1.0 | 0.5 | 0.49763522946247984 |
630.0 | 0.20798244662851184 | 1.0 | 0.5 | 0.46634344813095197 |
631.0 | 0.6919106866218325 | 1.0 | 0.5 | 2.354731119087316 |
632.0 | 0.9720879966592072 | 1.0 | 0.5 | 7.1573969108149464 |
633.0 | 0.9555225762947214 | 1.0 | 0.5 | 6.2255471020245 |
634.0 | 0.9266176357074408 | 1.0 | 0.5 | 5.22414328144902 |
635.0 | 0.3345233531787639 | 1.0 | 0.5 | 0.8145034658807747 |
636.0 | 0.718429616730576 | 1.0 | 0.5 | 2.5347456665564865 |
637.0 | 0.8878295863454977 | 1.0 | 0.5 | 4.375472027171012 |
638.0 | 0.3092083755044568 | 1.0 | 0.5 | 0.7398341142762942 |
639.0 | 0.7848160471899103 | 1.0 | 0.5 | 3.0725240444024844 |
640.0 | 0.4053789118552892 | 1.0 | 0.5 | 1.0396618058885414 |
641.0 | 0.7411589342475445 | 1.0 | 0.5 | 2.7030821027672483 |
642.0 | 0.45881127046875336 | 1.0 | 0.5 | 1.2279744157261765 |
643.0 | 0.22682375665456067 | 1.0 | 0.5 | 0.5144965144587033 |
644.0 | 0.16776368155499566 | 1.0 | 0.5 | 0.3672776837982627 |
645.0 | 0.5154869010668474 | 1.0 | 0.5 | 1.449221624070085 |
646.0 | 0.34454745235530915 | 1.0 | 0.5 | 0.8448587389647154 |
647.0 | 0.7272962306454143 | 1.0 | 0.5 | 2.5987383337541456 |
648.0 | 0.9326344100560882 | 1.0 | 0.5 | 5.395241852776035 |
649.0 | 0.29777872274027883 | 1.0 | 0.5 | 0.7070134297056129 |
650.0 | 0.9174126215561729 | 1.0 | 0.5 | 4.987796826948644 |
651.0 | 4.5376575536940744e-2 | 1.0 | 0.5 | 9.28766723998495e-2 |
652.0 | 0.4810458793989424 | 1.0 | 0.5 | 1.3118795986726604 |
653.0 | 0.2950958156948137 | 1.0 | 0.5 | 0.6993867883865484 |
654.0 | 0.2212183176044329 | 1.0 | 0.5 | 0.5000490521080256 |
655.0 | 0.8206110378697538 | 1.0 | 0.5 | 3.436397715675071 |
656.0 | 0.5629205916000906 | 1.0 | 0.5 | 1.6552807756173478 |
657.0 | 0.6994457934362445 | 1.0 | 0.5 | 2.4042543067509254 |
658.0 | 0.9830737705685453 | 1.0 | 0.5 | 8.15778164570834 |
659.0 | 0.8325491011982105 | 1.0 | 0.5 | 3.5741302243464643 |
660.0 | 0.2556320014497683 | 1.0 | 0.5 | 0.5904394894534792 |
661.0 | 0.5735719811333211 | 1.0 | 0.5 | 1.7046233960032402 |
662.0 | 0.3675775710486384 | 1.0 | 0.5 | 0.916395415751471 |
663.0 | 0.34003954250576196 | 1.0 | 0.5 | 0.8311507172880653 |
664.0 | 0.11876686109163148 | 1.0 | 0.5 | 0.2528661163846483 |
665.0 | 0.4006303818268926 | 1.0 | 0.5 | 1.0237536248988528 |
666.0 | 0.6505245015357007 | 1.0 | 0.5 | 2.10264364860553 |
667.0 | 0.10086413330967303 | 1.0 | 0.5 | 0.21264225003430867 |
668.0 | 0.5732670526062165 | 1.0 | 0.5 | 1.7031937546945186 |
669.0 | 0.11878163120957308 | 1.0 | 0.5 | 0.25289963814199007 |
670.0 | 0.10072655638961314 | 1.0 | 0.5 | 0.21233625313017732 |
671.0 | 0.5618155656093103 | 1.0 | 0.5 | 1.6502307483050531 |
672.0 | 0.4500194541428453 | 1.0 | 0.5 | 1.1957447451000092 |
673.0 | 0.3981179573374246 | 1.0 | 0.5 | 1.0153875905870227 |
674.0 | 0.3056380605496083 | 1.0 | 0.5 | 0.7295238556749573 |
675.0 | 0.30445908406220024 | 1.0 | 0.5 | 0.7261308796389632 |
676.0 | 0.3632627258496999 | 1.0 | 0.5 | 0.9027963019039356 |
677.0 | 0.9360322656138116 | 1.0 | 0.5 | 5.49875294592944 |
678.0 | 9.829392285480298e-2 | 1.0 | 0.5 | 0.20693333769178202 |
679.0 | 0.16857186470900742 | 1.0 | 0.5 | 0.3692208237524054 |
680.0 | 0.6851865756088779 | 1.0 | 0.5 | 2.3115502383155535 |
681.0 | 6.0746870332459846e-2 | 1.0 | 0.5 | 0.12534052488294534 |
682.0 | 0.13633830378369793 | 1.0 | 0.5 | 0.29314828432216455 |
683.0 | 7.392456123744273e-2 | 1.0 | 0.5 | 0.15359916061613507 |
684.0 | 0.5086610045902572 | 1.0 | 0.5 | 1.4212419421338762 |
685.0 | 6.49975666739836e-2 | 1.0 | 0.5 | 0.13441229441823688 |
686.0 | 0.5965150506093662 | 1.0 | 0.5 | 1.8152321842298589 |
687.0 | 0.4605739048163946 | 1.0 | 0.5 | 1.2344989825581794 |
688.0 | 6.864473076963751e-2 | 1.0 | 0.5 | 0.14222894978542783 |
689.0 | 0.8344360964556317 | 1.0 | 0.5 | 3.596796069113207 |
690.0 | 8.732363913477414e-2 | 1.0 | 0.5 | 0.18274788003816578 |
691.0 | 0.21142843578856352 | 1.0 | 0.5 | 0.4750642335181355 |
692.0 | 0.7222864812254323 | 1.0 | 0.5 | 2.56233040927018 |
693.0 | 0.8184225707114926 | 1.0 | 0.5 | 3.41214621719645 |
694.0 | 0.21034070512424763 | 1.0 | 0.5 | 0.4723073977097867 |
695.0 | 0.3162647360277784 | 1.0 | 0.5 | 0.7603689545111227 |
696.0 | 0.790802361192664 | 1.0 | 0.5 | 3.1289516672537636 |
697.0 | 0.13344125555833664 | 1.0 | 0.5 | 0.28645075407773934 |
698.0 | 0.7007503099963927 | 1.0 | 0.5 | 2.4129539409113554 |
699.0 | 0.9187168349404677 | 1.0 | 0.5 | 5.019632711418354 |
700.0 | 0.4599361344660652 | 1.0 | 0.5 | 1.2321357538196342 |
701.0 | 0.27682148640453996 | 1.0 | 0.5 | 0.6481983610575905 |
702.0 | 1.800784163218272e-3 | 1.0 | 0.5 | 3.604815048388172e-3 |
703.0 | 0.7228478637519237 | 1.0 | 0.5 | 2.566377390466142 |
704.0 | 0.2985911645520416 | 1.0 | 0.5 | 0.7093286889612735 |
705.0 | 0.17315276773821076 | 1.0 | 0.5 | 0.38027065243919844 |
706.0 | 0.14367496112886713 | 1.0 | 0.5 | 0.3102105132154968 |
707.0 | 0.8032824900526222 | 1.0 | 0.5 | 3.2519730780123863 |
708.0 | 0.9263217228455575 | 1.0 | 0.5 | 5.216094540240102 |
709.0 | 0.14390022398042068 | 1.0 | 0.5 | 0.3107366977250743 |
710.0 | 0.16040391518009045 | 1.0 | 0.5 | 0.349668708391516 |
711.0 | 0.23371462343815053 | 1.0 | 0.5 | 0.5324012487287254 |
712.0 | 0.5919728166898646 | 1.0 | 0.5 | 1.7928429620744737 |
713.0 | 0.103304290572939 | 1.0 | 0.5 | 0.2180774117665795 |
714.0 | 0.9472027518538018 | 1.0 | 0.5 | 5.8825924161427 |
715.0 | 2.606352915311938e-2 | 1.0 | 0.5 | 5.2818404940095244e-2 |
716.0 | 0.3644003382289155 | 1.0 | 0.5 | 0.9063727529217371 |
717.0 | 0.8078186466096073 | 1.0 | 0.5 | 3.298631607703358 |
718.0 | 0.945005788294678 | 1.0 | 0.5 | 5.801054682018765 |
719.0 | 0.3026751927307447 | 1.0 | 0.5 | 0.7210079384190151 |
720.0 | 0.13192709639852174 | 1.0 | 0.5 | 0.28295915504898594 |
721.0 | 0.2566043774869836 | 1.0 | 0.5 | 0.5930538192083015 |
722.0 | 0.10698594605754641 | 1.0 | 0.5 | 0.22630592066398597 |
723.0 | 0.6145249789812167 | 1.0 | 0.5 | 1.9065577687955066 |
724.0 | 8.930234303466789e-2 | 1.0 | 0.5 | 0.18708863439196044 |
725.0 | 0.5078727259176272 | 1.0 | 0.5 | 1.4180358175685772 |
726.0 | 0.6074906579312169 | 1.0 | 0.5 | 1.87038988118759 |
727.0 | 0.4328926795524597 | 1.0 | 0.5 | 1.1344134309597795 |
728.0 | 0.9199649411490993 | 1.0 | 0.5 | 5.0505810093383765 |
729.0 | 0.9554407909442231 | 1.0 | 0.5 | 6.221872867230832 |
730.0 | 0.25047456653555367 | 1.0 | 0.5 | 0.5766300562133851 |
731.0 | 0.8421247486490246 | 1.0 | 0.5 | 3.6919002124484552 |
732.0 | 7.259025420929721e-2 | 1.0 | 0.5 | 0.15071959671184512 |
733.0 | 0.11620186500134255 | 1.0 | 0.5 | 0.24705319299034392 |
734.0 | 0.30850615207588095 | 1.0 | 0.5 | 0.7378020492564494 |
735.0 | 0.1883626739567803 | 1.0 | 0.5 | 0.4174033627979661 |
736.0 | 0.6623776199438104 | 1.0 | 0.5 | 2.171654453643791 |
737.0 | 0.11290896034135722 | 1.0 | 0.5 | 0.2396153284366351 |
738.0 | 0.7422642656298815 | 1.0 | 0.5 | 2.7116410087728458 |
739.0 | 0.7587318490143916 | 1.0 | 0.5 | 2.8436926086943526 |
740.0 | 0.530336944600492 | 1.0 | 0.5 | 1.5114794895629295 |
741.0 | 0.6223687487469611 | 1.0 | 0.5 | 1.9476741705662395 |
742.0 | 0.5630377543656311 | 1.0 | 0.5 | 1.6558169640962446 |
743.0 | 0.6774789767908294 | 1.0 | 0.5 | 2.2631739132509616 |
744.0 | 0.7134140595880138 | 1.0 | 0.5 | 2.499433642548651 |
745.0 | 0.10002976757404214 | 1.0 | 0.5 | 0.2107871825741759 |
746.0 | 0.567848281252265 | 1.0 | 0.5 | 1.677957103179304 |
747.0 | 0.4060863958044679 | 1.0 | 0.5 | 1.0420428353605442 |
748.0 | 9.50513656846318e-2 | 1.0 | 0.5 | 0.19975418911112916 |
749.0 | 0.16631249236543122 | 1.0 | 0.5 | 0.36379327584656745 |
750.0 | 0.8411217147036525 | 1.0 | 0.5 | 3.6792337423769124 |
751.0 | 0.8261179212585096 | 1.0 | 0.5 | 3.49875583579596 |
752.0 | 2.270068052664842e-2 | 1.0 | 0.5 | 4.5924615942012824e-2 |
753.0 | 0.794409914691346 | 1.0 | 0.5 | 3.163741939541678 |
754.0 | 9.042111886289728e-2 | 1.0 | 0.5 | 0.18954710912519077 |
755.0 | 0.8703489330265705 | 1.0 | 0.5 | 4.0858170747733435 |
756.0 | 0.4310407173673936 | 1.0 | 0.5 | 1.1278928138744269 |
757.0 | 0.3363067143343986 | 1.0 | 0.5 | 0.819870310803085 |
758.0 | 0.5130758701244038 | 1.0 | 0.5 | 1.4392939176921202 |
759.0 | 0.7908192098998476 | 1.0 | 0.5 | 3.1291127530653498 |
760.0 | 0.13285818054236243 | 1.0 | 0.5 | 0.28510548131242014 |
761.0 | 0.20374760571336736 | 1.0 | 0.5 | 0.45567813029380005 |
762.0 | 0.5394576445781261 | 1.0 | 0.5 | 1.5507009009747217 |
763.0 | 6.022815649686475e-2 | 1.0 | 0.5 | 0.12423630571358278 |
764.0 | 6.998298713513784e-2 | 1.0 | 0.5 | 0.1451047991981602 |
765.0 | 0.8970007092256013 | 1.0 | 0.5 | 4.546066352923313 |
766.0 | 0.4229521552684008 | 1.0 | 0.5 | 1.0996601921991296 |
767.0 | 0.8670835830456738 | 1.0 | 0.5 | 4.036069584532981 |
768.0 | 0.4225403174878275 | 1.0 | 0.5 | 1.0982333057100466 |
769.0 | 0.7514278370027265 | 1.0 | 0.5 | 2.784044162493016 |
770.0 | 0.3166625910490667 | 1.0 | 0.5 | 0.7615330624342808 |
771.0 | 0.35844011299274825 | 1.0 | 0.5 | 0.8877054892696948 |
772.0 | 0.6478614003000068 | 1.0 | 0.5 | 2.08746086347037 |
773.0 | 0.7201698321036184 | 1.0 | 0.5 | 2.547144806123709 |
774.0 | 0.36834307496040686 | 1.0 | 0.5 | 0.9188177447070995 |
775.0 | 0.8093749686530289 | 1.0 | 0.5 | 3.3148939343546955 |
776.0 | 0.11152824342387613 | 1.0 | 0.5 | 0.2365048393033555 |
777.0 | 0.8664817488175403 | 1.0 | 0.5 | 4.027034195017947 |
778.0 | 0.5335069631739435 | 1.0 | 0.5 | 1.525024370448048 |
779.0 | 0.3938842132094552 | 1.0 | 0.5 | 1.0013684877054532 |
780.0 | 0.10183253557450678 | 1.0 | 0.5 | 0.21479748413816208 |
781.0 | 8.053929148343719e-2 | 1.0 | 0.5 | 0.16793593441701318 |
782.0 | 0.6987324536890543 | 1.0 | 0.5 | 2.39951310171572 |
783.0 | 0.9652504478720477 | 1.0 | 0.5 | 6.719177190917287 |
784.0 | 8.352182889441673e-2 | 1.0 | 0.5 | 0.17443405931174336 |
785.0 | 0.6848311037778758 | 1.0 | 0.5 | 2.309293210731784 |
786.0 | 0.8753831237435886 | 1.0 | 0.5 | 4.165022476660053 |
787.0 | 0.5017501580403889 | 1.0 | 0.5 | 1.3933072741604589 |
788.0 | 0.5164740417097261 | 1.0 | 0.5 | 1.4533005544713893 |
789.0 | 5.34146726412843e-3 | 1.0 | 0.5 | 1.0711567808793232e-2 |
790.0 | 0.3318023439651666 | 1.0 | 0.5 | 0.8063425138905206 |
791.0 | 0.8980158281288398 | 1.0 | 0.5 | 4.565875310945801 |
792.0 | 0.3077912787425361 | 1.0 | 0.5 | 0.7357354970569514 |
793.0 | 8.244870505377133e-2 | 1.0 | 0.5 | 0.1720935866356492 |
794.0 | 0.9525163323404254 | 1.0 | 0.5 | 6.09473893162687 |
795.0 | 0.8150156026591003 | 1.0 | 0.5 | 3.37496759231672 |
796.0 | 0.6942073379694466 | 1.0 | 0.5 | 2.3696959635020733 |
797.0 | 0.3064154871080699 | 1.0 | 0.5 | 0.7317643647045484 |
798.0 | 0.6766043921266462 | 1.0 | 0.5 | 2.257757826055945 |
799.0 | 0.8850082431583656 | 1.0 | 0.5 | 4.325789665651913 |
800.0 | 0.390824501859813 | 1.0 | 0.5 | 0.9912977570009057 |
801.0 | 0.9277232680571199 | 1.0 | 0.5 | 5.254506056261732 |
802.0 | 0.9515352841551716 | 1.0 | 0.5 | 6.0538385083107515 |
803.0 | 0.931339195694947 | 1.0 | 0.5 | 5.3571535534070165 |
804.0 | 0.41693501872311356 | 1.0 | 0.5 | 1.078913277353363 |
805.0 | 0.9925072396884476 | 1.0 | 0.5 | 9.787636032854072 |
806.0 | 0.6270345104129288 | 1.0 | 0.5 | 1.9725387696659187 |
807.0 | 0.9026186077418837 | 1.0 | 0.5 | 4.658240262325699 |
808.0 | 0.9572829405210631 | 1.0 | 0.5 | 6.306313838242294 |
809.0 | 0.3836448542598979 | 1.0 | 0.5 | 0.9678638925777285 |
810.0 | 0.9149835758010022 | 1.0 | 0.5 | 4.929821630573945 |
811.0 | 0.9650769640332738 | 1.0 | 0.5 | 6.70921722232391 |
812.0 | 0.8333633906893451 | 1.0 | 0.5 | 3.5838796592561692 |
813.0 | 0.4659441674707303 | 1.0 | 0.5 | 1.254509780378417 |
814.0 | 0.6644565585399186 | 1.0 | 0.5 | 2.1840076964202977 |
815.0 | 0.5950530445808047 | 1.0 | 0.5 | 1.8079983894541376 |
816.0 | 0.6963681256453612 | 1.0 | 0.5 | 2.383878501957269 |
817.0 | 0.7577963228381738 | 1.0 | 0.5 | 2.835952531284403 |
818.0 | 5.205609640929987e-2 | 1.0 | 0.5 | 0.10691990381092617 |
819.0 | 0.266407912351019 | 1.0 | 0.5 | 0.6196042874911304 |
820.0 | 0.2334514658552196 | 1.0 | 0.5 | 0.5317145270071396 |
821.0 | 0.3750267027666355 | 1.0 | 0.5 | 0.9400927091701334 |
822.0 | 0.6114309357827568 | 1.0 | 0.5 | 1.8905687070019104 |
823.0 | 0.15551257370829796 | 1.0 | 0.5 | 0.338050863566619 |
824.0 | 0.23813670768097417 | 1.0 | 0.5 | 0.5439762915924459 |
825.0 | 0.870266707449991 | 1.0 | 0.5 | 4.084549063402345 |
826.0 | 3.154053223157938e-2 | 1.0 | 0.5 | 6.409729506779938e-2 |
827.0 | 0.1696763468222191 | 1.0 | 0.5 | 0.3718794212240955 |
828.0 | 0.9382537256649148 | 1.0 | 0.5 | 5.5694432798975 |
829.0 | 0.5690815690817298 | 1.0 | 0.5 | 1.6836729243990005 |
830.0 | 0.40173525398781396 | 1.0 | 0.5 | 1.027443807837522 |
831.0 | 0.37414920622824466 | 1.0 | 0.5 | 0.9372865697980035 |
832.0 | 0.8470235035676409 | 1.0 | 0.5 | 3.75494197495865 |
833.0 | 0.1639959478716596 | 1.0 | 0.5 | 0.35824363773142587 |
834.0 | 0.8417875076966232 | 1.0 | 0.5 | 3.6876325230218985 |
835.0 | 4.4800017902082656e-2 | 1.0 | 0.5 | 9.166911017102182e-2 |
836.0 | 8.371841878440967e-2 | 1.0 | 0.5 | 0.17486311694572496 |
837.0 | 0.792681678313694 | 1.0 | 0.5 | 3.1469997619491537 |
838.0 | 0.70931724616291 | 1.0 | 0.5 | 2.4710455990059654 |
839.0 | 0.9536753385934513 | 1.0 | 0.5 | 6.14416163184868 |
840.0 | 0.9602885160673758 | 1.0 | 0.5 | 6.452229730589149 |
841.0 | 0.7554874920826832 | 1.0 | 0.5 | 2.8169776284993024 |
842.0 | 0.13372214044518893 | 1.0 | 0.5 | 0.28709913578589247 |
843.0 | 0.5137668062151739 | 1.0 | 0.5 | 1.442133895114351 |
844.0 | 0.7646430480436962 | 1.0 | 0.5 | 2.893303945544842 |
845.0 | 0.737797471240314 | 1.0 | 0.5 | 2.677276126613299 |
846.0 | 0.2757355366840477 | 1.0 | 0.5 | 0.64519734494416 |
847.0 | 0.9070120314664122 | 1.0 | 0.5 | 4.750570329609125 |
848.0 | 0.8891902056378072 | 1.0 | 0.5 | 4.399880223610048 |
849.0 | 0.6345074545436008 | 1.0 | 0.5 | 2.0130187909368447 |
850.0 | 0.7278594124350969 | 1.0 | 0.5 | 2.602872960335896 |
851.0 | 0.7746614730325766 | 1.0 | 0.5 | 2.9803028864018035 |
852.0 | 0.1615769961852126 | 1.0 | 0.5 | 0.35246505607116085 |
853.0 | 0.791392456147658 | 1.0 | 0.5 | 3.134601145736619 |
854.0 | 0.6680598448264417 | 1.0 | 0.5 | 2.2056011636299084 |
855.0 | 8.13464244932427e-3 | 1.0 | 0.5 | 1.63358183694174e-2 |
856.0 | 0.10662505504031572 | 1.0 | 0.5 | 0.2254978301028323 |
857.0 | 0.9560295924470773 | 1.0 | 0.5 | 6.248476853892508 |
858.0 | 0.852060175832956 | 1.0 | 0.5 | 3.821899362730954 |
859.0 | 0.9719898411238275 | 1.0 | 0.5 | 7.150376035205891 |
860.0 | 0.2712547072167808 | 1.0 | 0.5 | 0.6328620012818229 |
861.0 | 0.5288209915498573 | 1.0 | 0.5 | 1.5050343935333608 |
862.0 | 0.7664883160339533 | 1.0 | 0.5 | 2.909046329453154 |
863.0 | 0.19497241124386178 | 1.0 | 0.5 | 0.433757460808162 |
864.0 | 0.22833492954177637 | 1.0 | 0.5 | 0.5184093393054244 |
865.0 | 0.8948424632463157 | 1.0 | 0.5 | 4.504591406380232 |
866.0 | 0.8605530887700942 | 1.0 | 0.5 | 3.9401426296279958 |
867.0 | 0.15650870586231802 | 1.0 | 0.5 | 0.34041139633305906 |
868.0 | 0.45930982890306726 | 1.0 | 0.5 | 1.2298177217350685 |
869.0 | 0.3246506528569505 | 1.0 | 0.5 | 0.7850503413401291 |
870.0 | 0.9510363593524436 | 1.0 | 0.5 | 6.033354567822288 |
871.0 | 0.5038715294705464 | 1.0 | 0.5 | 1.4018407452622141 |
872.0 | 5.1203794293428584e-2 | 1.0 | 0.5 | 0.10512249958235921 |
873.0 | 0.5544890265721415 | 1.0 | 0.5 | 1.617066801324528 |
874.0 | 0.2614676505710716 | 1.0 | 0.5 | 0.6061807474664205 |
875.0 | 5.243774821209923e-2 | 1.0 | 0.5 | 0.10772528617673659 |
876.0 | 0.7971971719215974 | 1.0 | 0.5 | 3.191042124405132 |
877.0 | 0.7919800318693259 | 1.0 | 0.5 | 3.140242406520687 |
878.0 | 0.5219283825848018 | 1.0 | 0.5 | 1.4759894609704223 |
879.0 | 0.4275949818719734 | 1.0 | 0.5 | 1.1158169290356357 |
880.0 | 0.6781991679783914 | 1.0 | 0.5 | 2.267644917806484 |
881.0 | 0.8932373960711312 | 1.0 | 0.5 | 4.4742951285035835 |
882.0 | 0.5478472624532599 | 1.0 | 0.5 | 1.5874704826077597 |
883.0 | 0.5685711063530478 | 1.0 | 0.5 | 1.6813051416100346 |
884.0 | 0.9721023498460244 | 1.0 | 0.5 | 7.158425635147378 |
885.0 | 0.21573425270663737 | 1.0 | 0.5 | 0.486014705364895 |
886.0 | 0.35259191127848954 | 1.0 | 0.5 | 0.8695568868089019 |
887.0 | 0.3472690789117947 | 1.0 | 0.5 | 0.853180600685918 |
888.0 | 0.5447448280041739 | 1.0 | 0.5 | 1.573794399314694 |
889.0 | 0.6727997991506037 | 1.0 | 0.5 | 2.2343661208216705 |
890.0 | 0.8696740488652007 | 1.0 | 0.5 | 4.0754333003570125 |
891.0 | 0.8734188023436674 | 1.0 | 0.5 | 4.133742596048804 |
892.0 | 0.29463161413393557 | 1.0 | 0.5 | 0.6980701589988371 |
893.0 | 3.283064353893961e-2 | 1.0 | 0.5 | 6.676332583206068e-2 |
894.0 | 0.23328215590600432 | 1.0 | 0.5 | 0.5312728295896356 |
895.0 | 0.40670843024467607 | 1.0 | 0.5 | 1.044138629788592 |
896.0 | 0.8227097978732368 | 1.0 | 0.5 | 3.45993465796266 |
897.0 | 0.7693837137837822 | 1.0 | 0.5 | 2.9340000964909345 |
898.0 | 0.5297116607776882 | 1.0 | 0.5 | 1.5088185693552791 |
899.0 | 0.7754688592512937 | 1.0 | 0.5 | 2.98748173968772 |
900.0 | 0.3248143864258809 | 1.0 | 0.5 | 0.7855352856755076 |
901.0 | 0.9401865839181958 | 1.0 | 0.5 | 5.633050587988034 |
902.0 | 0.34780122634541877 | 1.0 | 0.5 | 0.8548117918995641 |
903.0 | 0.7284097775344618 | 1.0 | 0.5 | 2.6069217674085974 |
904.0 | 0.9414922145837621 | 1.0 | 0.5 | 5.677190899121933 |
905.0 | 0.9905747699450492 | 1.0 | 0.5 | 9.328730273865226 |
906.0 | 0.6248601140341811 | 1.0 | 0.5 | 1.9609125866553052 |
907.0 | 2.9604572975377663e-2 | 1.0 | 0.5 | 6.010326765544391e-2 |
908.0 | 5.571585670694823e-3 | 1.0 | 0.5 | 1.1174329696467535e-2 |
909.0 | 0.6109088431526207 | 1.0 | 0.5 | 1.8878832528951692 |
910.0 | 0.4546914044998336 | 1.0 | 0.5 | 1.2128068285824642 |
911.0 | 6.989233588498944e-2 | 1.0 | 0.5 | 0.1449098633396298 |
912.0 | 7.423451728270214e-2 | 1.0 | 0.5 | 0.1542686696318581 |
913.0 | 0.5259803352971397 | 1.0 | 0.5 | 1.4930129428654308 |
914.0 | 0.658351708925572 | 1.0 | 0.5 | 2.1479469194904803 |
915.0 | 0.7900569250260353 | 1.0 | 0.5 | 3.121837713127503 |
916.0 | 0.23734310603381692 | 1.0 | 0.5 | 0.5418940581763712 |
917.0 | 0.5669448736548646 | 1.0 | 0.5 | 1.6737804930156697 |
918.0 | 0.32179695871984115 | 1.0 | 0.5 | 0.7766171299190336 |
919.0 | 0.10866609186678144 | 1.0 | 0.5 | 0.23007233022421117 |
920.0 | 0.45705634966886644 | 1.0 | 0.5 | 1.2214994782912616 |
921.0 | 0.9167978760940737 | 1.0 | 0.5 | 4.972964807530681 |
922.0 | 0.3082714338000597 | 1.0 | 0.5 | 0.7371232913772323 |
923.0 | 0.47735097863544884 | 1.0 | 0.5 | 1.2976902549082674 |
924.0 | 0.4404786851833078 | 1.0 | 0.5 | 1.161347311537362 |
925.0 | 0.7939848260637378 | 1.0 | 0.5 | 3.1596109060410877 |
926.0 | 0.2412573034838612 | 1.0 | 0.5 | 0.5521851246673014 |
927.0 | 0.3000287671367394 | 1.0 | 0.5 | 0.7134320813856403 |
928.0 | 0.6396708208326259 | 1.0 | 0.5 | 2.0414745575053637 |
929.0 | 0.7579547542491935 | 1.0 | 0.5 | 2.83726120877795 |
930.0 | 0.3396814387067095 | 1.0 | 0.5 | 0.8300657835650016 |
931.0 | 0.2892910263130618 | 1.0 | 0.5 | 0.6829845053640449 |
932.0 | 0.9011216837211008 | 1.0 | 0.5 | 4.6277306266829745 |
933.0 | 0.8210499505161656 | 1.0 | 0.5 | 3.441297130493794 |
934.0 | 0.20855830013501853 | 1.0 | 0.5 | 0.4677981203133048 |
935.0 | 0.20067661109578638 | 1.0 | 0.5 | 0.4479793460879907 |
936.0 | 0.2783975695108384 | 1.0 | 0.5 | 0.6525618840897621 |
937.0 | 8.228356433882655e-2 | 1.0 | 0.5 | 0.171733659388771 |
938.0 | 0.6509731323562694 | 1.0 | 0.5 | 2.105212750180706 |
939.0 | 0.22847862352050963 | 1.0 | 0.5 | 0.5187817997542151 |
940.0 | 0.8395983631124934 | 1.0 | 0.5 | 3.6601487571349267 |
941.0 | 0.9743748330931115 | 1.0 | 0.5 | 7.328360656210449 |
942.0 | 0.9784624250877514 | 1.0 | 0.5 | 7.675912397820349 |
943.0 | 0.30092332380443143 | 1.0 | 0.5 | 0.7159896972722992 |
944.0 | 0.9500911854862217 | 1.0 | 0.5 | 5.995115296523221 |
945.0 | 8.677317380760863e-2 | 1.0 | 0.5 | 0.1815419774519955 |
946.0 | 0.7801060191136249 | 1.0 | 0.5 | 3.0292195076905384 |
947.0 | 0.8407117298539127 | 1.0 | 0.5 | 3.674079397023548 |
948.0 | 2.5783170671583644e-2 | 1.0 | 0.5 | 5.2242765469739556e-2 |
949.0 | 0.6060746119884648 | 1.0 | 0.5 | 1.8631875162923288 |
950.0 | 0.5958910047385527 | 1.0 | 0.5 | 1.8121412943134505 |
951.0 | 0.1746502894487323 | 1.0 | 0.5 | 0.3838961817736315 |
952.0 | 0.5840255212924214 | 1.0 | 0.5 | 1.7542627397268897 |
953.0 | 0.39662332502701947 | 1.0 | 0.5 | 1.010427217997472 |
954.0 | 0.8294609650651269 | 1.0 | 0.5 | 3.5375821291253438 |
955.0 | 0.6431589573123884 | 1.0 | 0.5 | 2.060929709875304 |
956.0 | 0.985945005032187 | 1.0 | 0.5 | 8.52955486531813 |
957.0 | 0.6701686585706427 | 1.0 | 0.5 | 2.218347683497157 |
958.0 | 0.9097930895031728 | 1.0 | 0.5 | 4.8112984836026484 |
959.0 | 0.9461308232792471 | 1.0 | 0.5 | 5.842393650220309 |
960.0 | 5.2337673573452204e-2 | 1.0 | 0.5 | 0.10751407186495446 |
961.0 | 0.8460764659780871 | 1.0 | 0.5 | 3.7425986644134888 |
962.0 | 0.10514312394105463 | 1.0 | 0.5 | 0.22218297702597922 |
963.0 | 0.6975701033741791 | 1.0 | 0.5 | 2.3918115501203125 |
964.0 | 0.9576315406611462 | 1.0 | 0.5 | 6.322702154160914 |
965.0 | 0.5756726043081537 | 1.0 | 0.5 | 1.714499924122977 |
966.0 | 0.14180795869433915 | 1.0 | 0.5 | 0.3058547603470779 |
967.0 | 0.476602852426136 | 1.0 | 0.5 | 1.2948294774050015 |
968.0 | 0.5735933728030692 | 1.0 | 0.5 | 1.7047237280891907 |
969.0 | 0.21074148987963792 | 1.0 | 0.5 | 0.47332273812264397 |
970.0 | 0.4040283383810781 | 1.0 | 0.5 | 1.0351243213329395 |
971.0 | 0.44809616679520103 | 1.0 | 0.5 | 1.188762926181943 |
972.0 | 0.49753260138877997 | 1.0 | 0.5 | 1.376449039078463 |
973.0 | 0.3981895324367999 | 1.0 | 0.5 | 1.0156254423601343 |
974.0 | 0.4631341447354761 | 1.0 | 0.5 | 1.2440140393123216 |
975.0 | 0.7621220718869883 | 1.0 | 0.5 | 2.8719952879613677 |
976.0 | 0.35491286990322435 | 1.0 | 0.5 | 0.8767397717764418 |
977.0 | 0.5624416059435056 | 1.0 | 0.5 | 1.6530902199238997 |
978.0 | 0.9048958001682184 | 1.0 | 0.5 | 4.705564296273839 |
979.0 | 0.5871353426885598 | 1.0 | 0.5 | 1.769270891992473 |
980.0 | 0.9552974642377905 | 1.0 | 0.5 | 6.215450101021099 |
981.0 | 0.11683294268351829 | 1.0 | 0.5 | 0.24848180677799192 |
982.0 | 0.804763553103361 | 1.0 | 0.5 | 3.2670878135466657 |
983.0 | 0.9017746463190758 | 1.0 | 0.5 | 4.640981825644075 |
984.0 | 0.3546593618234335 | 1.0 | 0.5 | 0.8759539607786164 |
985.0 | 0.8175329055993971 | 1.0 | 0.5 | 3.4023708537413193 |
986.0 | 0.9271651336840998 | 1.0 | 0.5 | 5.239121011041082 |
987.0 | 0.43755514801054285 | 1.0 | 0.5 | 1.150924381235035 |
988.0 | 0.12335439229044076 | 1.0 | 0.5 | 0.2633049287820745 |
989.0 | 0.3823717678509384 | 1.0 | 0.5 | 0.9637371372795477 |
990.0 | 0.7134192888551714 | 1.0 | 0.5 | 2.499470136417535 |
991.0 | 0.5559806916407091 | 1.0 | 0.5 | 1.6237744603995141 |
992.0 | 0.7947950806945909 | 1.0 | 0.5 | 3.167492385499269 |
993.0 | 0.8593443260366468 | 1.0 | 0.5 | 3.9228808076956767 |
994.0 | 0.9695468897099642 | 1.0 | 0.5 | 6.983134291741286 |
995.0 | 9.645307355937993e-2 | 1.0 | 0.5 | 0.20285446358422873 |
996.0 | 0.5759218175673997 | 1.0 | 0.5 | 1.7156748964373492 |
997.0 | 0.8948271404741518 | 1.0 | 0.5 | 4.504300002523024 |
998.0 | 0.8288317043606008 | 1.0 | 0.5 | 3.5302160428926017 |
999.0 | 0.7727026977235016 | 1.0 | 0.5 | 2.962992833506503 |
dfExpRand.describe().show() // look sensible
+-------+-----------------+--------------------+----+----+--------------------+
|summary| Id| rand| one|rate| expo_sample|
+-------+-----------------+--------------------+----+----+--------------------+
| count| 1000| 1000|1000|1000| 1000|
| mean| 499.5| 0.5060789944940257| 1.0| 0.5| 2.024647367046763|
| stddev|288.8194360957494| 0.28795893414434537| 0.0| 0.0| 1.9649069025265538|
| min| 0|6.282087728304298E-4| 1.0| 0.5|0.001256812357281...|
| max| 999| 0.9981606891187609| 1.0| 0.5| 12.596728597154938|
+-------+-----------------+--------------------+----+----+--------------------+
val expoSamplesDF = spark.range(1000000000).toDF("Id") // just make a DF of 100 row indices
.select($"Id", rand(seed=1234567) as "rand") // add a column of random numbers in (0,1)
.withColumn("one",lit(1.0))
.withColumn("rate",lit(0.5))
.withColumn("expo_sample", -($"one" / $"rate") * log($"one" - $"rand"))
expoSamplesDF: org.apache.spark.sql.DataFrame = [Id: bigint, rand: double ... 3 more fields]
expoSamplesDF.describe().show()
+-------+--------------------+--------------------+----------+----------+--------------------+
|summary| Id| rand| one| rate| expo_sample|
+-------+--------------------+--------------------+----------+----------+--------------------+
| count| 1000000000| 1000000000|1000000000|1000000000| 1000000000|
| mean|4.9999999907595944E8| 0.49999521358240573| 1.0| 0.5| 1.9999814119383708|
| stddev|2.8867513473915565E8| 0.2886816216562552| 0.0| 0.0| 2.0000011916404206|
| min| 0|1.584746778249268...| 1.0| 0.5|3.169493556749679...|
| max| 999999999| 0.9999999996809935| 1.0| 0.5| 43.731619350261035|
+-------+--------------------+--------------------+----------+----------+--------------------+
Using sql.functions
and sql.expr
for expressions, one can write a much simpler syntax to get Exponetially distributed samples.
See: - spark/sql/expressions/ docs - https://sparkbyexamples.com/spark/spark-sql-functions/
import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions.expr
val expoSamplesDFAsSQLExp = spark.range(1000000000).toDF("Id") // just make a DF of 100 row indices
.select($"Id", rand(seed=1234567) as "random") // add a column of random numbers in (0,1)
.withColumn("expo_sample", expr("-(1.0 / 0.5) * log(1.0 - random)"))
import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions.expr
expoSamplesDFAsSQLExp: org.apache.spark.sql.DataFrame = [Id: bigint, random: double ... 1 more field]
expoSamplesDFAsSQLExp.describe().show()
+-------+--------------------+--------------------+--------------------+
|summary| Id| random| expo_sample|
+-------+--------------------+--------------------+--------------------+
| count| 1000000000| 1000000000| 1000000000|
| mean|4.9999999907595944E8| 0.49999521358240573| 1.9999814119383708|
| stddev|2.8867513473915565E8| 0.2886816216562552| 2.0000011916404206|
| min| 0|1.584746778249268...|3.169493556749679...|
| max| 999999999| 0.9999999996809935| 43.731619350261035|
+-------+--------------------+--------------------+--------------------+
Approximating Pi with Monte Carlo simulations
Uisng RDDs directly, let's estimate Pi.
//Calculate pi with Monte Carlo estimation
import scala.math.random
//make a very large unique set of 1 -> n
val partitions = 2
val n = math.min(100000L * partitions, Int.MaxValue).toInt
val xs = 1 until n
//split up n into the number of partitions we can use
val rdd = sc.parallelize(xs, partitions).setName("'N values rdd'")
//generate a random set of points within a 2x2 square
val sample = rdd.map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
(x, y)
}.setName("'Random points rdd'")
//points w/in the square also w/in the center circle of r=1
val inside = sample.filter { case (x, y) => (x * x + y * y < 1) }.setName("'Random points inside circle'")
val count = inside.count()
//Area(circle)/Area(square) = inside/n => pi=4*inside/n
println("Pi is roughly " + 4.0 * count / n)
Pi is roughly 3.1387
import scala.math.random
partitions: Int = 2
n: Int = 200000
xs: scala.collection.immutable.Range = Range 1 until 200000
rdd: org.apache.spark.rdd.RDD[Int] = 'N values rdd' ParallelCollectionRDD[192] at parallelize at command-2971213210276568:10
sample: org.apache.spark.rdd.RDD[(Double, Double)] = 'Random points rdd' MapPartitionsRDD[193] at map at command-2971213210276568:13
inside: org.apache.spark.rdd.RDD[(Double, Double)] = 'Random points inside circle' MapPartitionsRDD[194] at filter at command-2971213210276568:20
count: Long = 156935
Doing it in PySpark is just as easy. This may be needed if there are pyhton libraries you want to take advantage of in Spark.
# # Estimating $\pi$
#
# This PySpark example shows you how to estimate $\pi$ in parallel
# using Monte Carlo integration.
from __future__ import print_function
import sys
from random import random
from operator import add
partitions = 2
n = 100000 * partitions
def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 < 1 else 0
# To access the associated SparkContext
count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))
The following is from this google turotial.
Programming a Monte Carlo simulation in Scala
Monte Carlo, of course, is famous as a gambling destination. In this section, you use Scala to create a simulation that models the mathematical advantage that a casino enjoys in a game of chance. The "house edge" at a real casino varies widely from game to game; it can be over 20% in keno, for example. This tutorial creates a simple game where the house has only a one-percent advantage. Here's how the game works:
- The player places a bet, consisting of a number of chips from a bankroll fund.
- The player rolls a 100-sided die (how cool would that be?).
- If the result of the roll is a number from 1 to 49, the player wins.
- For results 50 to 100, the player loses the bet.
You can see that this game creates a one-percent disadvantage for the player: in 51 of the 100 possible outcomes for each roll, the player loses.
Follow these steps to create and run the game:
val STARTING_FUND = 10
val STAKE = 1 // the amount of the bet
val NUMBER_OF_GAMES = 25
def rollDie: Int = {
val r = scala.util.Random
r.nextInt(99) + 1
}
def playGame(stake: Int): (Int) = {
val faceValue = rollDie
if (faceValue < 50)
(2*stake)
else
(0)
}
// Function to play the game multiple times
// Returns the final fund amount
def playSession(
startingFund: Int = STARTING_FUND,
stake: Int = STAKE,
numberOfGames: Int = NUMBER_OF_GAMES):
(Int) = {
// Initialize values
var (currentFund, currentStake, currentGame) = (startingFund, 0, 1)
// Keep playing until number of games is reached or funds run out
while (currentGame <= numberOfGames && currentFund > 0) {
// Set the current bet and deduct it from the fund
currentStake = math.min(stake, currentFund)
currentFund -= currentStake
// Play the game
val (winnings) = playGame(currentStake)
// Add any winnings
currentFund += winnings
// Increment the loop counter
currentGame += 1
}
(currentFund)
}
STARTING_FUND: Int = 10
STAKE: Int = 1
NUMBER_OF_GAMES: Int = 25
rollDie: Int
playGame: (stake: Int)Int
playSession: (startingFund: Int, stake: Int, numberOfGames: Int)Int
Enter the following code to play the game 25 times, which is the default value for NUMBER_OF_GAMES
.
playSession()
res31: Int = 5
Your bankroll started with a value of 10 units. Is it higher or lower, now?
Now simulate 10,000 players betting 100 chips per game. Play 10,000 games in a session. This Monte Carlo simulation calculates the probability of losing all your money before the end of the session. Enter the follow code:
(sc.parallelize(1 to 10000, 500)
.map(i => playSession(100000, 100, 250000))
.map(i => if (i == 0) 1 else 0)
.reduce(_+_)/10000.0)
res32: Double = 0.9992
Note that the syntax .reduce(_+_)
is shorthand in Scala for aggregating by using a summing function.
The preceding code performs the following steps:
- Creates an RDD with the results of playing the session.
- Replaces bankrupt players' results with the number 1 and nonzero results with the number 0.
- Sums the count of bankrupt players.
- Divides the count by the number of players.
A typical result might be:
res32: Double = 0.9992
Which represents a near guarantee of losing all your money, even though the casino had only a one-percent advantage.
Project Ideas
Try to create a scalable simulation of interest to you.
Here are some mature projects:
- https://github.com/zishanfu/GeoSparkSim
- https://github.com/srbaird/mc-var-spark
See a more complete VaR modeling: - https://databricks.com/blog/2020/05/27/modernizing-risk-management-part-1-streaming-data-ingestion-rapid-model-development-and-monte-carlo-simulations-at-scale.html
Introduction to Machine Learning
Some very useful resources we will weave around for Statistical Learning, Data Mining, Machine Learning:
- January 2014, Stanford University professors Trevor Hastie and Rob Tibshirani (authors of the legendary Elements of Statistical Learning textbook) taught an online course based on their newest textbook, An Introduction to Statistical Learning with Applications in R (ISLR).
- https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
- free PDF of the ISLR book: http://www-bcf.usc.edu/~gareth/ISL/
- A more theoretically sound book with interesting aplications is Elements of Statistical Learning by the Stanford Gang of 3 (Hastie, Tibshirani and Friedman):
- free PDF of the 10th printing: http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
- Solutions: http://waxworksmath.com/Authors/GM/Hastie/WriteUp/weatherwaxepsteinhastiesolutions_manual.pdf
- A great series on Probabilistic ML by Kevin P. Murphy https://probml.github.io/pml-book/.
Deep Learning is a popular method currently (2022) in Machine Learning.
Note: We will focus on intution here and the distributed ML Pipeline in action as most of you already have some exposure to ML concepts and methods.
Summary of Machine Learning at a High Level
- A rough definition of machine learning.
- constructing and studying algorithms that learn from and make predictions on data.
- This broad area involves tools and ideas from various domains, including:
- computer science,
- probability and statistics,
- optimization,
- linear algebra
- logic
- etc.
- Common examples of ML, include:
- facial recognition,
- link prediction,
- text or document classification, eg.::
- spam detection,
- protein structure prediction
- teaching computers to play games (go!)
Some common terminology
using example of spam detection as a running example.
-
the data points we learn from are call observations:
- they are items or entities used for::
- learning or
- evaluation.
- they are items or entities used for::
-
in the context of spam detection,
- emails are our observations.
- Features are attributes used to represent an observation.
- Features are typically numeric,
- and in spam detection, they can be:
- the length,
- the date, or
- the presence or absence of keywords in emails.
- Labels are values or categories assigned to observations.
- and in spam detection, they can be:
- an email being defined as spam or not spam.
-
Training and test data sets are the observations that we use to train and evaluate a learning algorithm.
-
Pop-Quiz
- What is the difference between supervised and unsupervised learning?
If you are interested, watch this later (12:12) for a Stats@Stanford Hastie-Tibshirani Perspective on Supervised and Unsupervised Learning from https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/ - an effective way to brush up on ML if you are rusty.
ML Pipelines
Expected Reading
Here we will use ML Pipelines to do machine learning at scale.
See https://spark.apache.org/docs/latest/ml-pipeline.html for a quick overview (about 10 minutes of reading).
Read this section for an overview:
Million Song Dataset - Kaggle Challenge
Predict which songs a user will listen to.
SOURCE: This is just a Scala-rification of the Python notebook published in databricks community edition in 2016.
When you first hear a song, do you ever categorize it as slow or fast in your head? Is it even a valid categorization? If so, can one do it automatically? I have always wondered about that. That is why I got excited when I learned about the Million Songs Dataset -Kaggle Challenge.
In this tutorial we will walk through a practical example of a data science project with Apache Spark in Python. We are going to parse, explore and model a sample from the million songs dataset stored on distributed storage. This tutorial is organized into three sections:
- ETL: Parses raw texts and creates a cached table
- Explore: Explores different aspects of the songs table using graphs
- Model: Uses SparkML to cluster songs based on some of their attributes
The goal of this tutorial is to prepare you for real world data science projects. Make sure you go through the tutorial in the above order and use the exercises to make yourself familiar further with the API. Also make sure you run these notebooks on a 1.6.x cluster.
1. ETL
The first step of most data science projects is extracting, transforming and loading data into well formated tables. Our example starts with ETL as well. By following the ETL noteboook you can expect to learn about following Spark concepts:
- RDD: Resilient Distributed Dataset
- Reading and transforming RDDs
- Schema in Spark
- Spark DataFrame
- Temp tables
- Caching tables
2. Explore
Exploratory analysis is a key step in any real data project. Data scientists use variety of tools to explore and visualize their data. In the second notebook of this tutorial we introduce several tools in Python and Databricks notebooks that can help you visually explore your large data. By reading this notebook and finishing its exercises you will become familiar with:
- How to view the schema of a table
- How to display ggplot and matplotlib figures in Notebooks
- How to summarize and visualize different aspects of large datasets
- How to sample and visualize large data
3. Model
The end goal of many data scientists is producing useful models. These models are often used for prediction of new and upcoming events in production. In our third notebook we construct a simple K-means clustering model. In this notebook you will learn about:
- Feature transformation
- Fitting a model using SparkML API
- Applying a model to data
- Visualizing model results
- Model tuning
Million Song Dataset - Kaggle Challenge
Predict which songs a user will listen to.
SOURCE: This is just a Scala-rification of the Python notebook published in databricks community edition in 2016.
CAUTION: This notebook is expected to have an error in command 28 (Cmd 28
in databricks notebook). You are meant to learn how to fix this error with simple exception-handling to become a better data scientist. So ignore this warning, if any.
Stage 1: Parsing songs data
This is the first notebook in this tutorial. In this notebook we will read data from DBFS (DataBricks FileSystem). We will parse data and load it as a table that can be readily used in following notebooks.
By going through this notebook you can expect to learn how to read distributed data as an RDD, how to transform RDDs, and how to construct a Spark DataFrame from an RDD and register it as a table.
We first explore different files in our distributed file system. We use a header file to construct a Spark Schema
object. We write a function that takes the header and casts strings in each line of our data to corresponding types. Once we run this function on the data we find that it fails on some corner caes. We update our function and finally get a parsed RDD. We combine that RDD and the Schema to construct a DataFame and register it as a temporary table in SparkSQL.
Datasets
Text data files that are a bit larger than the ones in /datasets/sds/songs/data-001/
are stored in dbfs:/databricks-datasets/songs/data-001
in the databricks shard.
You can conveniently list files on distributed file system (DBFS, S3 or HDFS) using %fs
commands in databricks.
NOTE: we will work first with the dataset in /datasets/sds/songs/data-001/
.
ls /datasets/sds/songs/data-001/
path | name | size | modificationTime |
---|---|---|---|
dbfs:/datasets/sds/songs/data-001/header.txt | header.txt | 377.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00000 | part-00000 | 52837.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00001 | part-00001 | 52469.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00002 | part-00002 | 51778.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00003 | part-00003 | 50551.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00004 | part-00004 | 53449.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00005 | part-00005 | 53301.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00006 | part-00006 | 54184.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00007 | part-00007 | 50924.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00008 | part-00008 | 52533.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00009 | part-00009 | 54570.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00010 | part-00010 | 54338.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00011 | part-00011 | 51836.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00012 | part-00012 | 52297.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00013 | part-00013 | 52044.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00014 | part-00014 | 50704.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00015 | part-00015 | 54158.0 | 1.664295995e12 |
dbfs:/datasets/sds/songs/data-001/part-00016 | part-00016 | 50080.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00017 | part-00017 | 47708.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00018 | part-00018 | 8858.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00019 | part-00019 | 53323.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00020 | part-00020 | 57877.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00021 | part-00021 | 52491.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00022 | part-00022 | 54791.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00023 | part-00023 | 50682.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00024 | part-00024 | 52863.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00025 | part-00025 | 47416.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00026 | part-00026 | 50130.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00027 | part-00027 | 53462.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00028 | part-00028 | 54179.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00029 | part-00029 | 52738.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00030 | part-00030 | 54159.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00031 | part-00031 | 51247.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00032 | part-00032 | 51610.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00033 | part-00033 | 53895.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00034 | part-00034 | 53125.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00035 | part-00035 | 54066.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00036 | part-00036 | 54265.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00037 | part-00037 | 54264.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00038 | part-00038 | 50540.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00039 | part-00039 | 55193.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00040 | part-00040 | 54537.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00041 | part-00041 | 52402.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00042 | part-00042 | 54673.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00043 | part-00043 | 53009.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00044 | part-00044 | 51789.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00045 | part-00045 | 52986.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00046 | part-00046 | 54442.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00047 | part-00047 | 52971.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00048 | part-00048 | 53331.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00049 | part-00049 | 44263.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00050 | part-00050 | 54841.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00051 | part-00051 | 54306.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00052 | part-00052 | 53610.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00053 | part-00053 | 53573.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00054 | part-00054 | 53854.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00055 | part-00055 | 54236.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00056 | part-00056 | 54455.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00057 | part-00057 | 52307.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00058 | part-00058 | 52313.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00059 | part-00059 | 52446.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00060 | part-00060 | 51958.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00061 | part-00061 | 53859.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00062 | part-00062 | 53698.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00063 | part-00063 | 54482.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00064 | part-00064 | 40182.0 | 1.664295979e12 |
dbfs:/datasets/sds/songs/data-001/part-00065 | part-00065 | 54410.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00066 | part-00066 | 49123.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00067 | part-00067 | 50796.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00068 | part-00068 | 49561.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00069 | part-00069 | 52294.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00070 | part-00070 | 51250.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00071 | part-00071 | 58942.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00072 | part-00072 | 54589.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00073 | part-00073 | 54233.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00074 | part-00074 | 54725.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00075 | part-00075 | 54877.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00076 | part-00076 | 54333.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00077 | part-00077 | 51927.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00078 | part-00078 | 51744.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00079 | part-00079 | 53187.0 | 1.664295986e12 |
dbfs:/datasets/sds/songs/data-001/part-00080 | part-00080 | 43246.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00081 | part-00081 | 54269.0 | 1.664295993e12 |
dbfs:/datasets/sds/songs/data-001/part-00082 | part-00082 | 48464.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00083 | part-00083 | 52144.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00084 | part-00084 | 53375.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00085 | part-00085 | 55139.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00086 | part-00086 | 50924.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00087 | part-00087 | 52013.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00088 | part-00088 | 54262.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00089 | part-00089 | 53007.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00090 | part-00090 | 55142.0 | 1.664295979e12 |
dbfs:/datasets/sds/songs/data-001/part-00091 | part-00091 | 52049.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00092 | part-00092 | 54714.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00093 | part-00093 | 52906.0 | 1.664295991e12 |
dbfs:/datasets/sds/songs/data-001/part-00094 | part-00094 | 52188.0 | 1.664295985e12 |
dbfs:/datasets/sds/songs/data-001/part-00095 | part-00095 | 50768.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00096 | part-00096 | 55242.0 | 1.66429598e12 |
dbfs:/datasets/sds/songs/data-001/part-00097 | part-00097 | 52059.0 | 1.664295988e12 |
dbfs:/datasets/sds/songs/data-001/part-00098 | part-00098 | 52982.0 | 1.664295989e12 |
dbfs:/datasets/sds/songs/data-001/part-00099 | part-00099 | 52015.0 | 1.664295982e12 |
dbfs:/datasets/sds/songs/data-001/part-00100 | part-00100 | 51467.0 | 1.664295983e12 |
dbfs:/datasets/sds/songs/data-001/part-00101 | part-00101 | 50926.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00102 | part-00102 | 55018.0 | 1.664295994e12 |
dbfs:/datasets/sds/songs/data-001/part-00103 | part-00103 | 50043.0 | 1.664295981e12 |
dbfs:/datasets/sds/songs/data-001/part-00104 | part-00104 | 51936.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00105 | part-00105 | 57311.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00106 | part-00106 | 55090.0 | 1.66429599e12 |
dbfs:/datasets/sds/songs/data-001/part-00107 | part-00107 | 54396.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00108 | part-00108 | 56594.0 | 1.664295987e12 |
dbfs:/datasets/sds/songs/data-001/part-00109 | part-00109 | 53260.0 | 1.664295992e12 |
dbfs:/datasets/sds/songs/data-001/part-00110 | part-00110 | 42007.0 | 1.664295984e12 |
dbfs:/datasets/sds/songs/data-001/part-00119 | part-00119 | 0.0 | 1.664295989e12 |
As you can see in the listing we have data files and a single header file. The header file seems interesting and worth a first inspection at first. The file is 377 bytes, therefore it is safe to collect the entire content of the file in the notebook.
sc.textFile("/datasets/sds/songs/data-001/header.txt").collect()
res1: Array[String] = Array(artist_id:string, artist_latitude:double, artist_longitude:double, artist_location:string, artist_name:string, duration:double, end_of_fade_in:double, key:int, key_confidence:double, loudness:double, release:string, song_hotnes:double, song_id:string, start_of_fade_out:double, tempo:double, time_signature:double, time_signature_confidence:double, title:string, year:double, partial_sequence:int)
Remember you can collect()
a huge RDD and crash the driver program - so it is a good practise to take a couple lines and count the number of lines, especially if you have no idea what file you are trying to read.
sc.textFile("/datasets/sds/songs/data-001/header.txt").take(2)
res2: Array[String] = Array(artist_id:string, artist_latitude:double)
sc.textFile("/datasets/sds/songs/data-001/header.txt").count()
res3: Long = 20
sc.textFile("/datasets/sds/songs/data-001/header.txt").collect.map(println) // uncomment to see line-by-line
artist_id:string
artist_latitude:double
artist_longitude:double
artist_location:string
artist_name:string
duration:double
end_of_fade_in:double
key:int
key_confidence:double
loudness:double
release:string
song_hotnes:double
song_id:string
start_of_fade_out:double
tempo:double
time_signature:double
time_signature_confidence:double
title:string
year:double
partial_sequence:int
res4: Array[Unit] = Array((), (), (), (), (), (), (), (), (), (), (), (), (), (), (), (), (), (), (), ())
As seen above each line in the header consists of a name and a type separated by colon. We will need to parse the header file as follows:
val header = sc.textFile("/datasets/sds/songs/data-001/header.txt").map(
line => {
val headerElement = line.split(":")
(headerElement(0), headerElement(1))
}
).collect()
header: Array[(String, String)] = Array((artist_id,string), (artist_latitude,double), (artist_longitude,double), (artist_location,string), (artist_name,string), (duration,double), (end_of_fade_in,double), (key,int), (key_confidence,double), (loudness,double), (release,string), (song_hotnes,double), (song_id,string), (start_of_fade_out,double), (tempo,double), (time_signature,double), (time_signature_confidence,double), (title,string), (year,double), (partial_sequence,int))
Let's define a case class
called Song
that will be used to represent each row of data in the files:
/databricks-datasets/songs/data-001/part-00000
through/databricks-datasets/songs/data-001/part-00119
or the last.../part-*****
file.
case class Song(artist_id: String, artist_latitude: Double, artist_longitude: Double, artist_location: String, artist_name: String, duration: Double, end_of_fade_in: Double, key: Int, key_confidence: Double, loudness: Double, release: String, song_hotness: Double, song_id: String, start_of_fade_out: Double, tempo: Double, time_signature: Double, time_signature_confidence: Double, title: String, year: Double, partial_sequence: Int)
defined class Song
Now we turn to data files. First, step is inspecting the first line of data to inspect its format.
// this is loads all the data - a subset of the 1M songs dataset
val dataRDD = sc.textFile("/datasets/sds/songs/data-001/part-*")
dataRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/songs/data-001/part-* MapPartitionsRDD[209] at textFile at command-2971213210276292:2
dataRDD.count // number of songs
res5: Long = 31369
dataRDD.take(3)
res6: Array[String] = Array(AR81V6H1187FB48872 nan nan Earl Sixteen 213.7073 0.0 11 0.419 -12.106 Soldier of Jah Army nan SOVNZSZ12AB018A9B8 208.289 125.882 1 0.0 Rastaman 2003 --, ARVVZQP11E2835DBCB nan nan Wavves 133.25016 0.0 0 0.282 0.596 Wavvves 0.471578247701 SOJTQHQ12A8C143C5F 128.116 89.519 1 0.0 I Want To See You (And Go To The Movies) 2009 --, ARFG9M11187FB3BBCB nan nan Nashua USA C-Side 247.32689 0.0 9 0.612 -4.896 Santa Festival Compilation 2008 vol.1 nan SOAJSQL12AB0180501 242.196 171.278 5 1.0 Loose on the Dancefloor 0 225261)
Each line of data consists of multiple fields separated by \t
. With that information and what we learned from the header file, we set out to parse our data.
- We have already created a case class based on the header (which seems to agree with the 3 lines above).
- Next, we will create a function that takes each line as input and returns the case class as output.
// let's do this 'by hand' to re-flex our RDD-muscles :)
// although this is not a robust way to read from a data engineering perspective (without fielding exceptions)
def parseLine(line: String): Song = {
val tokens = line.split("\t")
Song(tokens(0), tokens(1).toDouble, tokens(2).toDouble, tokens(3), tokens(4), tokens(5).toDouble, tokens(6).toDouble, tokens(7).toInt, tokens(8).toDouble, tokens(9).toDouble, tokens(10), tokens(11).toDouble, tokens(12), tokens(13).toDouble, tokens(14).toDouble, tokens(15).toDouble, tokens(16).toDouble, tokens(17), tokens(18).toDouble, tokens(19).toInt)
}
parseLine: (line: String)Song
With this function we can transform the dataRDD to another RDD that consists of Song case classes
val parsedRDD = dataRDD.map(parseLine)
parsedRDD: org.apache.spark.rdd.RDD[Song] = MapPartitionsRDD[210] at map at command-2971213210276298:1
To convert an RDD of case classes to a DataFrame, we just need to call the toDF method
val df = parsedRDD.toDF
df: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 18 more fields]
Once we get a DataFrame we can register it as a temporary table. That will allow us to use its name in SQL queries.
df.createOrReplaceTempView("songsTable")
We can now cache our table. So far all operations have been lazy. This is the first time Spark will attempt to actually read all our data and apply the transformations.
If you are running Spark 1.6+ the next command will throw a parsing error.
cache table songsTable
The error means that we are trying to convert a missing value to a Double. Here is an updated version of the parseLine
function to deal with missing values.
// good data engineering science practise
def parseLine(line: String): Song = {
def toDouble(value: String, defaultVal: Double): Double = {
try {
value.toDouble
} catch {
case e: Exception => defaultVal
}
}
def toInt(value: String, defaultVal: Int): Int = {
try {
value.toInt
} catch {
case e: Exception => defaultVal
}
}
val tokens = line.split("\t")
Song(tokens(0), toDouble(tokens(1), 0.0), toDouble(tokens(2), 0.0), tokens(3), tokens(4), toDouble(tokens(5), 0.0), toDouble(tokens(6), 0.0), toInt(tokens(7), -1), toDouble(tokens(8), 0.0), toDouble(tokens(9), 0.0), tokens(10), toDouble(tokens(11), 0.0), tokens(12), toDouble(tokens(13), 0.0), toDouble(tokens(14), 0.0), toDouble(tokens(15), 0.0), toDouble(tokens(16), 0.0), tokens(17), toDouble(tokens(18), 0.0), toInt(tokens(19), -1))
}
parseLine: (line: String)Song
val df = dataRDD.map(parseLine).toDF
df.createOrReplaceTempView("songsTable")
df: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 18 more fields]
And let's try caching the table. We are going to access this data multiple times in following notebooks, therefore it is a good idea to cache it in memory for faster subsequent access.
cache table songsTable
From now on we can easily query our data using the temporary table we just created and cached in memory. Since it is registered as a table we can conveniently use SQL as well as Spark API to access it.
select * from songsTable limit 10
artist_id | artist_latitude | artist_longitude | artist_location | artist_name | duration | end_of_fade_in | key | key_confidence | loudness | release | song_hotness | song_id | start_of_fade_out | tempo | time_signature | time_signature_confidence | title | year | partial_sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR81V6H1187FB48872 | 0.0 | 0.0 | Earl Sixteen | 213.7073 | 0.0 | 11.0 | 0.419 | -12.106 | Soldier of Jah Army | 0.0 | SOVNZSZ12AB018A9B8 | 208.289 | 125.882 | 1.0 | 0.0 | Rastaman | 2003.0 | -1.0 | |
ARVVZQP11E2835DBCB | 0.0 | 0.0 | Wavves | 133.25016 | 0.0 | 0.0 | 0.282 | 0.596 | Wavvves | 0.471578247701 | SOJTQHQ12A8C143C5F | 128.116 | 89.519 | 1.0 | 0.0 | I Want To See You (And Go To The Movies) | 2009.0 | -1.0 | |
ARFG9M11187FB3BBCB | 0.0 | 0.0 | Nashua USA | C-Side | 247.32689 | 0.0 | 9.0 | 0.612 | -4.896 | Santa Festival Compilation 2008 vol.1 | 0.0 | SOAJSQL12AB0180501 | 242.196 | 171.278 | 5.0 | 1.0 | Loose on the Dancefloor | 0.0 | 225261.0 |
ARK4Z2O1187FB45FF0 | 0.0 | 0.0 | Harvest | 337.05751 | 0.247 | 4.0 | 0.46 | -9.092 | Underground Community | 0.0 | SOTDRVW12AB018BEB9 | 327.436 | 84.986 | 4.0 | 0.673 | No Return | 0.0 | 101619.0 | |
AR4VQSG1187FB57E18 | 35.25082 | -91.74015 | Searcy, AR | Gossip | 430.23628 | 0.0 | 2.0 | 3.4e-2 | -6.846 | Yr Mangled Heart | 0.0 | SOTVOCL12A8AE478DD | 424.06 | 121.998 | 4.0 | 0.847 | Yr Mangled Heart | 2006.0 | 740623.0 |
ARNBV1X1187B996249 | 0.0 | 0.0 | Alex | 186.80118 | 0.0 | 4.0 | 0.641 | -16.108 | Jolgaledin | 0.0 | SODTGRY12AB0182438 | 166.156 | 140.735 | 4.0 | 5.5e-2 | Mariu Sonur Jesus | 0.0 | 673970.0 | |
ARXOEZX1187B9B82A1 | 0.0 | 0.0 | Elie Attieh | 361.89995 | 0.0 | 7.0 | 0.863 | -4.919 | ELITE | 0.0 | SOIINTJ12AB0180BA6 | 354.476 | 128.024 | 4.0 | 0.399 | Fe Yom We Leila | 0.0 | 280304.0 | |
ARXPUIA1187B9A32F1 | 0.0 | 0.0 | Rome, Italy | Simone Cristicchi | 220.00281 | 2.119 | 4.0 | 0.486 | -6.52 | Dall'Altra Parte Del Cancello | 0.484225272411 | SONHXJK12AAF3B5290 | 214.761 | 99.954 | 1.0 | 0.928 | L'Italiano | 2007.0 | 745962.0 |
ARNPPTH1187B9AD429 | 51.4855 | -0.37196 | Heston, Middlesex, England | Jimmy Page | 156.86485 | 0.334 | 7.0 | 0.493 | -9.962 | No Introduction Necessary [Deluxe Edition] | 0.0 | SOGUHGW12A58A80E06 | 149.269 | 162.48 | 4.0 | 0.534 | Wailing Sounds | 2004.0 | 599250.0 |
AROGWRA122988FEE45 | 0.0 | 0.0 | Christos Dantis | 256.67873 | 2.537 | 9.0 | 0.742 | -13.404 | Daktilika Apotipomata | 0.0 | SOJJOYI12A8C13399D | 248.912 | 134.944 | 4.0 | 0.162 | Stin Proigoumeni Zoi | 0.0 | 611396.0 |
Next up is exploring this data. Click on the Exploration notebook to continue the tutorial.
Million Song Dataset - Kaggle Challenge
Predict which songs a user will listen to.
SOURCE: This is just a Scala-rification of the Python notebook published in databricks community edition in 2016.
Stage 2: Exploring songs data
This is the second notebook in this tutorial. In this notebook we do what any data scientist does with their data right after parsing it: exploring and understanding different aspect of data. Make sure you understand how we get the songsTable
by reading and running the ETL notebook. In the ETL notebook we created and cached a temporary table named songsTable
Let's Do all the main bits in Stage 1 now before doing Stage 2 in this Notebook.
// Let's quickly do everything to register the tempView of the table here
// fill in comment ... EXERCISE!
case class Song(artist_id: String, artist_latitude: Double, artist_longitude: Double, artist_location: String, artist_name: String, duration: Double, end_of_fade_in: Double, key: Int, key_confidence: Double, loudness: Double, release: String, song_hotness: Double, song_id: String, start_of_fade_out: Double, tempo: Double, time_signature: Double, time_signature_confidence: Double, title: String, year: Double, partial_sequence: Int)
def parseLine(line: String): Song = {
// fill in comment ...
def toDouble(value: String, defaultVal: Double): Double = {
try {
value.toDouble
} catch {
case e: Exception => defaultVal
}
}
def toInt(value: String, defaultVal: Int): Int = {
try {
value.toInt
} catch {
case e: Exception => defaultVal
}
}
// fill in comment ...
val tokens = line.split("\t")
Song(tokens(0), toDouble(tokens(1), 0.0), toDouble(tokens(2), 0.0), tokens(3), tokens(4), toDouble(tokens(5), 0.0), toDouble(tokens(6), 0.0), toInt(tokens(7), -1), toDouble(tokens(8), 0.0), toDouble(tokens(9), 0.0), tokens(10), toDouble(tokens(11), 0.0), tokens(12), toDouble(tokens(13), 0.0), toDouble(tokens(14), 0.0), toDouble(tokens(15), 0.0), toDouble(tokens(16), 0.0), tokens(17), toDouble(tokens(18), 0.0), toInt(tokens(19), -1))
}
// this is loads all the data - a subset of the 1M songs dataset
val dataRDD = sc.textFile("/datasets/sds/songs/data-001/part-*")
// .. fill in comment
val df = dataRDD.map(parseLine).toDF
// .. fill in comment
df.createOrReplaceTempView("songsTable")
defined class Song
parseLine: (line: String)Song
dataRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/songs/data-001/part-* MapPartitionsRDD[236] at textFile at command-2971213210276755:30
df: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 18 more fields]
spark.catalog.listTables.show(false) // make sure the temp view of our table is there
+----------------------------+--------+-----------+---------+-----------+
|name |database|description|tableType|isTemporary|
+----------------------------+--------+-----------+---------+-----------+
|all_prices |default |null |MANAGED |false |
|bitcoin_normed_window |default |null |MANAGED |false |
|bitcoin_reversals_window |default |null |MANAGED |false |
|countrycodes |default |null |EXTERNAL |false |
|gold_normed_window |default |null |MANAGED |false |
|gold_reversals_window |default |null |MANAGED |false |
|ltcar_locations_2_csv |default |null |MANAGED |false |
|magellan |default |null |MANAGED |false |
|mobile_sample |default |null |EXTERNAL |false |
|oil_normed_window |default |null |MANAGED |false |
|oil_reversals_window |default |null |MANAGED |false |
|oil_reversals_window2 |default |null |MANAGED |false |
|over300all_2_txt |default |null |MANAGED |false |
|person |default |null |MANAGED |false |
|personer |default |null |MANAGED |false |
|persons |default |null |MANAGED |false |
|simple_range |default |null |MANAGED |false |
|social_media_usage |default |null |MANAGED |false |
|social_media_usage_csv_gui |default |null |MANAGED |false |
|voronoi20191213uppsla1st_txt|default |null |MANAGED |false |
+----------------------------+--------+-----------+---------+-----------+
only showing top 20 rows
A first inspection
A first step to any data exploration is viewing sample data. For this purpose we can use a simple SQL query that returns first 10 rows.
select * from songsTable limit 10
artist_id | artist_latitude | artist_longitude | artist_location | artist_name | duration | end_of_fade_in | key | key_confidence | loudness | release | song_hotness | song_id | start_of_fade_out | tempo | time_signature | time_signature_confidence | title | year | partial_sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR81V6H1187FB48872 | 0.0 | 0.0 | Earl Sixteen | 213.7073 | 0.0 | 11.0 | 0.419 | -12.106 | Soldier of Jah Army | 0.0 | SOVNZSZ12AB018A9B8 | 208.289 | 125.882 | 1.0 | 0.0 | Rastaman | 2003.0 | -1.0 | |
ARVVZQP11E2835DBCB | 0.0 | 0.0 | Wavves | 133.25016 | 0.0 | 0.0 | 0.282 | 0.596 | Wavvves | 0.471578247701 | SOJTQHQ12A8C143C5F | 128.116 | 89.519 | 1.0 | 0.0 | I Want To See You (And Go To The Movies) | 2009.0 | -1.0 | |
ARFG9M11187FB3BBCB | 0.0 | 0.0 | Nashua USA | C-Side | 247.32689 | 0.0 | 9.0 | 0.612 | -4.896 | Santa Festival Compilation 2008 vol.1 | 0.0 | SOAJSQL12AB0180501 | 242.196 | 171.278 | 5.0 | 1.0 | Loose on the Dancefloor | 0.0 | 225261.0 |
ARK4Z2O1187FB45FF0 | 0.0 | 0.0 | Harvest | 337.05751 | 0.247 | 4.0 | 0.46 | -9.092 | Underground Community | 0.0 | SOTDRVW12AB018BEB9 | 327.436 | 84.986 | 4.0 | 0.673 | No Return | 0.0 | 101619.0 | |
AR4VQSG1187FB57E18 | 35.25082 | -91.74015 | Searcy, AR | Gossip | 430.23628 | 0.0 | 2.0 | 3.4e-2 | -6.846 | Yr Mangled Heart | 0.0 | SOTVOCL12A8AE478DD | 424.06 | 121.998 | 4.0 | 0.847 | Yr Mangled Heart | 2006.0 | 740623.0 |
ARNBV1X1187B996249 | 0.0 | 0.0 | Alex | 186.80118 | 0.0 | 4.0 | 0.641 | -16.108 | Jolgaledin | 0.0 | SODTGRY12AB0182438 | 166.156 | 140.735 | 4.0 | 5.5e-2 | Mariu Sonur Jesus | 0.0 | 673970.0 | |
ARXOEZX1187B9B82A1 | 0.0 | 0.0 | Elie Attieh | 361.89995 | 0.0 | 7.0 | 0.863 | -4.919 | ELITE | 0.0 | SOIINTJ12AB0180BA6 | 354.476 | 128.024 | 4.0 | 0.399 | Fe Yom We Leila | 0.0 | 280304.0 | |
ARXPUIA1187B9A32F1 | 0.0 | 0.0 | Rome, Italy | Simone Cristicchi | 220.00281 | 2.119 | 4.0 | 0.486 | -6.52 | Dall'Altra Parte Del Cancello | 0.484225272411 | SONHXJK12AAF3B5290 | 214.761 | 99.954 | 1.0 | 0.928 | L'Italiano | 2007.0 | 745962.0 |
ARNPPTH1187B9AD429 | 51.4855 | -0.37196 | Heston, Middlesex, England | Jimmy Page | 156.86485 | 0.334 | 7.0 | 0.493 | -9.962 | No Introduction Necessary [Deluxe Edition] | 0.0 | SOGUHGW12A58A80E06 | 149.269 | 162.48 | 4.0 | 0.534 | Wailing Sounds | 2004.0 | 599250.0 |
AROGWRA122988FEE45 | 0.0 | 0.0 | Christos Dantis | 256.67873 | 2.537 | 9.0 | 0.742 | -13.404 | Daktilika Apotipomata | 0.0 | SOJJOYI12A8C13399D | 248.912 | 134.944 | 4.0 | 0.162 | Stin Proigoumeni Zoi | 0.0 | 611396.0 |
table("songsTable").printSchema()
root
|-- artist_id: string (nullable = true)
|-- artist_latitude: double (nullable = false)
|-- artist_longitude: double (nullable = false)
|-- artist_location: string (nullable = true)
|-- artist_name: string (nullable = true)
|-- duration: double (nullable = false)
|-- end_of_fade_in: double (nullable = false)
|-- key: integer (nullable = false)
|-- key_confidence: double (nullable = false)
|-- loudness: double (nullable = false)
|-- release: string (nullable = true)
|-- song_hotness: double (nullable = false)
|-- song_id: string (nullable = true)
|-- start_of_fade_out: double (nullable = false)
|-- tempo: double (nullable = false)
|-- time_signature: double (nullable = false)
|-- time_signature_confidence: double (nullable = false)
|-- title: string (nullable = true)
|-- year: double (nullable = false)
|-- partial_sequence: integer (nullable = false)
select count(*) from songsTable
count(1) |
---|
31369.0 |
table("songsTable").count() // or equivalently with DataFrame API - recall table("songsTable") is a DataFrame
res4: Long = 31369
display(sqlContext.sql("SELECT duration, year FROM songsTable")) // Aggregation is set to 'Average' in 'Plot Options'
duration | year |
---|---|
213.7073 | 2003.0 |
133.25016 | 2009.0 |
247.32689 | 0.0 |
337.05751 | 0.0 |
430.23628 | 2006.0 |
186.80118 | 0.0 |
361.89995 | 0.0 |
220.00281 | 2007.0 |
156.86485 | 2004.0 |
256.67873 | 0.0 |
204.64281 | 0.0 |
112.48281 | 0.0 |
170.39628 | 0.0 |
215.95383 | 0.0 |
303.62077 | 0.0 |
266.60526 | 0.0 |
326.19057 | 1997.0 |
51.04281 | 2009.0 |
129.4624 | 0.0 |
253.33506 | 2003.0 |
237.76608 | 2004.0 |
132.96281 | 0.0 |
399.35955 | 2006.0 |
168.75057 | 1991.0 |
396.042 | 0.0 |
192.10404 | 1968.0 |
12.2771 | 2006.0 |
367.56853 | 0.0 |
189.93587 | 0.0 |
233.50812 | 0.0 |
462.68036 | 0.0 |
202.60526 | 0.0 |
241.52771 | 0.0 |
275.64363 | 1992.0 |
350.69342 | 2007.0 |
166.55628 | 1968.0 |
249.49506 | 1983.0 |
53.86404 | 1992.0 |
233.76934 | 2001.0 |
275.12118 | 2009.0 |
191.13751 | 2006.0 |
299.07546 | 0.0 |
468.74077 | 0.0 |
110.34077 | 0.0 |
234.78812 | 2003.0 |
705.25342 | 2006.0 |
383.52934 | 0.0 |
196.10077 | 0.0 |
299.20608 | 1998.0 |
94.04036 | 0.0 |
28.08118 | 2006.0 |
207.93424 | 2006.0 |
152.0322 | 1999.0 |
207.96036 | 2002.0 |
371.25179 | 0.0 |
288.93995 | 2002.0 |
235.93751 | 2004.0 |
505.70404 | 0.0 |
177.57995 | 0.0 |
376.842 | 2004.0 |
266.84036 | 2004.0 |
270.8371 | 2006.0 |
178.18077 | 0.0 |
527.17669 | 0.0 |
244.27057 | 0.0 |
436.47955 | 2006.0 |
236.79955 | 0.0 |
134.53016 | 2005.0 |
181.002 | 0.0 |
239.41179 | 1999.0 |
72.98567 | 0.0 |
214.36036 | 2001.0 |
150.59546 | 2007.0 |
152.45016 | 1970.0 |
218.17424 | 0.0 |
290.63791 | 0.0 |
149.05424 | 0.0 |
440.21506 | 0.0 |
212.34893 | 1988.0 |
278.67383 | 0.0 |
269.60934 | 1974.0 |
182.69995 | 2002.0 |
207.882 | 2007.0 |
102.50404 | 0.0 |
437.60281 | 0.0 |
216.11057 | 2009.0 |
193.25342 | 0.0 |
234.16118 | 2009.0 |
695.77098 | 0.0 |
297.58649 | 1996.0 |
265.37751 | 2000.0 |
182.85669 | 1990.0 |
202.23955 | 0.0 |
390.08608 | 2009.0 |
242.78159 | 2000.0 |
242.54649 | 2002.0 |
496.66567 | 2004.0 |
395.36281 | 0.0 |
234.89261 | 1999.0 |
237.84444 | 2005.0 |
313.57342 | 2009.0 |
489.22077 | 2001.0 |
239.98649 | 2004.0 |
128.65261 | 0.0 |
193.07057 | 0.0 |
144.19546 | 0.0 |
196.96281 | 2006.0 |
222.06649 | 1997.0 |
58.38322 | 0.0 |
346.14812 | 1998.0 |
406.54322 | 0.0 |
304.09098 | 2009.0 |
180.21832 | 2003.0 |
213.41995 | 0.0 |
323.44771 | 0.0 |
54.7522 | 2009.0 |
437.02812 | 1994.0 |
268.7473 | 2009.0 |
104.75057 | 0.0 |
248.60689 | 2006.0 |
221.41342 | 0.0 |
237.81832 | 1991.0 |
216.34567 | 2009.0 |
78.94159 | 0.0 |
47.22893 | 2005.0 |
202.00444 | 2007.0 |
293.56363 | 0.0 |
206.44526 | 1986.0 |
267.78077 | 2003.0 |
187.27138 | 2008.0 |
249.05098 | 2009.0 |
221.51791 | 0.0 |
452.88444 | 0.0 |
163.76118 | 1992.0 |
257.17506 | 0.0 |
235.78077 | 0.0 |
257.82812 | 1996.0 |
195.34322 | 0.0 |
478.1971 | 0.0 |
268.01587 | 1997.0 |
136.93342 | 1983.0 |
397.53098 | 0.0 |
194.69016 | 2001.0 |
580.80608 | 0.0 |
177.71057 | 2006.0 |
257.43628 | 1999.0 |
184.13669 | 0.0 |
64.57424 | 2001.0 |
123.92444 | 1993.0 |
257.07057 | 0.0 |
219.48036 | 1996.0 |
679.41832 | 0.0 |
252.29016 | 1995.0 |
311.90159 | 2004.0 |
252.76036 | 1998.0 |
138.94485 | 0.0 |
428.64281 | 0.0 |
295.31383 | 0.0 |
212.03546 | 0.0 |
426.50077 | 0.0 |
197.11955 | 0.0 |
191.55546 | 0.0 |
187.53261 | 2006.0 |
184.97261 | 2004.0 |
388.41424 | 2009.0 |
218.90567 | 0.0 |
246.49098 | 0.0 |
452.88444 | 0.0 |
223.18975 | 0.0 |
245.2371 | 0.0 |
148.92363 | 0.0 |
362.81424 | 2005.0 |
171.44118 | 0.0 |
207.72526 | 2005.0 |
191.29424 | 0.0 |
208.50893 | 0.0 |
240.24771 | 1995.0 |
373.44608 | 2002.0 |
172.01587 | 0.0 |
153.25995 | 2007.0 |
242.36363 | 1994.0 |
177.55383 | 0.0 |
263.20934 | 1994.0 |
191.03302 | 2007.0 |
232.77669 | 0.0 |
220.65587 | 0.0 |
132.57098 | 2002.0 |
189.6224 | 1993.0 |
32.522 | 1997.0 |
173.94893 | 0.0 |
268.01587 | 2006.0 |
91.97669 | 0.0 |
215.77098 | 0.0 |
195.47383 | 0.0 |
234.81424 | 1977.0 |
110.78485 | 0.0 |
155.74159 | 0.0 |
172.5122 | 0.0 |
227.76118 | 1995.0 |
233.01179 | 2007.0 |
298.89261 | 0.0 |
245.36771 | 1994.0 |
276.08771 | 2005.0 |
375.77098 | 2003.0 |
273.71057 | 0.0 |
226.92526 | 0.0 |
196.46649 | 0.0 |
199.65342 | 1995.0 |
243.40853 | 0.0 |
207.62077 | 2006.0 |
252.73424 | 0.0 |
244.32281 | 0.0 |
152.65914 | 0.0 |
203.88526 | 2003.0 |
120.16281 | 0.0 |
214.77832 | 1977.0 |
204.9824 | 0.0 |
118.30812 | 1996.0 |
205.26975 | 0.0 |
499.22567 | 0.0 |
217.83465 | 2005.0 |
192.57424 | 2005.0 |
328.09751 | 0.0 |
298.03057 | 1968.0 |
501.49832 | 0.0 |
276.40118 | 0.0 |
507.55873 | 2006.0 |
191.08526 | 2008.0 |
324.38812 | 0.0 |
218.56608 | 0.0 |
232.30649 | 0.0 |
295.05261 | 1972.0 |
225.74975 | 2003.0 |
522.00444 | 0.0 |
245.86404 | 1967.0 |
263.67955 | 0.0 |
556.61669 | 2009.0 |
227.94404 | 1998.0 |
83.82649 | 1964.0 |
242.85995 | 0.0 |
233.09016 | 2008.0 |
201.74322 | 0.0 |
476.15955 | 0.0 |
370.93832 | 2005.0 |
229.17179 | 0.0 |
288.07791 | 2001.0 |
91.34975 | 0.0 |
230.79138 | 2005.0 |
256.46975 | 2003.0 |
203.44118 | 0.0 |
230.81751 | 2003.0 |
272.29995 | 0.0 |
201.22077 | 2008.0 |
204.93016 | 2010.0 |
372.84526 | 0.0 |
63.65995 | 2005.0 |
412.15955 | 0.0 |
270.10567 | 0.0 |
104.6722 | 0.0 |
214.25587 | 1970.0 |
230.05995 | 0.0 |
155.74159 | 0.0 |
218.04363 | 2008.0 |
357.77261 | 2007.0 |
318.27546 | 1985.0 |
444.55138 | 2010.0 |
509.07383 | 0.0 |
176.95302 | 0.0 |
95.34649 | 0.0 |
207.67302 | 0.0 |
256.67873 | 1994.0 |
252.78649 | 0.0 |
234.60526 | 0.0 |
167.65342 | 0.0 |
266.16118 | 0.0 |
188.05506 | 0.0 |
229.14567 | 2009.0 |
227.00363 | 2004.0 |
74.50077 | 1992.0 |
222.09261 | 0.0 |
212.68853 | 1984.0 |
155.74159 | 0.0 |
153.65179 | 0.0 |
548.51873 | 0.0 |
445.90975 | 2003.0 |
317.49179 | 1999.0 |
140.32934 | 0.0 |
309.4722 | 0.0 |
142.91546 | 0.0 |
429.24363 | 2007.0 |
172.19873 | 0.0 |
215.562 | 0.0 |
290.79465 | 2009.0 |
197.04118 | 0.0 |
309.44608 | 0.0 |
265.01179 | 1999.0 |
257.64526 | 2000.0 |
203.54567 | 0.0 |
161.56689 | 0.0 |
177.84118 | 0.0 |
260.04853 | 2004.0 |
195.00363 | 1988.0 |
268.042 | 0.0 |
195.97016 | 1991.0 |
351.92118 | 0.0 |
119.35302 | 0.0 |
177.24036 | 0.0 |
259.83955 | 0.0 |
222.51057 | 2008.0 |
163.97016 | 2004.0 |
139.49342 | 0.0 |
158.77179 | 0.0 |
193.4624 | 2000.0 |
131.082 | 1963.0 |
190.95465 | 1998.0 |
413.3873 | 2005.0 |
134.73914 | 1966.0 |
162.40281 | 1965.0 |
243.59138 | 1965.0 |
180.84526 | 0.0 |
315.14077 | 0.0 |
221.51791 | 1994.0 |
122.53995 | 2008.0 |
243.43465 | 1990.0 |
200.202 | 1982.0 |
95.50322 | 2000.0 |
200.4371 | 1998.0 |
186.93179 | 0.0 |
492.22485 | 1999.0 |
359.33995 | 1972.0 |
89.39057 | 1990.0 |
212.81914 | 0.0 |
315.03628 | 1996.0 |
214.69995 | 0.0 |
137.92608 | 1993.0 |
559.49016 | 0.0 |
382.14485 | 1991.0 |
430.31465 | 2008.0 |
171.25832 | 0.0 |
210.12853 | 2002.0 |
53.18485 | 2005.0 |
78.65424 | 1993.0 |
209.162 | 2008.0 |
237.60934 | 2006.0 |
184.47628 | 2009.0 |
323.02975 | 1997.0 |
158.27546 | 0.0 |
213.86404 | 0.0 |
470.69995 | 0.0 |
229.79873 | 2005.0 |
392.22812 | 0.0 |
196.62322 | 0.0 |
80.97914 | 0.0 |
124.55138 | 1989.0 |
230.32118 | 1971.0 |
132.51873 | 0.0 |
112.95302 | 1994.0 |
131.52608 | 0.0 |
153.25995 | 2010.0 |
211.01669 | 0.0 |
218.93179 | 2008.0 |
175.0722 | 2010.0 |
116.61016 | 1997.0 |
251.45424 | 2001.0 |
269.50485 | 2004.0 |
231.47057 | 0.0 |
298.37016 | 1996.0 |
314.122 | 2005.0 |
263.99302 | 0.0 |
480.91383 | 2001.0 |
305.10975 | 0.0 |
280.16281 | 0.0 |
295.65342 | 1999.0 |
411.45424 | 2007.0 |
265.97832 | 0.0 |
153.96526 | 0.0 |
210.31138 | 1970.0 |
241.44934 | 0.0 |
235.33669 | 0.0 |
352.65261 | 0.0 |
293.35465 | 0.0 |
243.66975 | 2003.0 |
133.22404 | 0.0 |
233.03791 | 0.0 |
339.93098 | 0.0 |
249.80853 | 1993.0 |
253.72689 | 2004.0 |
94.35383 | 1981.0 |
130.63791 | 0.0 |
195.36934 | 0.0 |
229.25016 | 2007.0 |
314.64444 | 2007.0 |
329.1424 | 1998.0 |
224.46975 | 1990.0 |
215.562 | 1987.0 |
236.85179 | 1990.0 |
197.11955 | 1957.0 |
251.76771 | 2004.0 |
183.50975 | 0.0 |
268.01587 | 2005.0 |
413.02159 | 0.0 |
385.17506 | 2000.0 |
358.16444 | 0.0 |
164.77995 | 0.0 |
253.36118 | 2004.0 |
196.49261 | 2007.0 |
157.6224 | 1999.0 |
310.93506 | 0.0 |
434.96444 | 1991.0 |
157.04771 | 1991.0 |
266.16118 | 2007.0 |
267.59791 | 1977.0 |
303.90812 | 0.0 |
277.18485 | 2009.0 |
272.22159 | 0.0 |
155.95057 | 0.0 |
127.00689 | 1997.0 |
152.86812 | 2005.0 |
224.7571 | 1990.0 |
175.41179 | 0.0 |
151.97995 | 0.0 |
199.99302 | 0.0 |
251.53261 | 0.0 |
252.96934 | 2004.0 |
181.13261 | 1984.0 |
195.49995 | 0.0 |
328.202 | 2001.0 |
187.71546 | 0.0 |
166.94812 | 1985.0 |
242.72934 | 1988.0 |
218.80118 | 2005.0 |
205.68771 | 0.0 |
146.93832 | 1996.0 |
449.4624 | 2000.0 |
503.40526 | 0.0 |
181.34159 | 0.0 |
143.90812 | 0.0 |
406.36036 | 0.0 |
269.87057 | 0.0 |
265.29914 | 0.0 |
242.88608 | 0.0 |
110.39302 | 0.0 |
262.84363 | 0.0 |
334.00118 | 1990.0 |
173.81832 | 2007.0 |
608.78322 | 0.0 |
197.22404 | 0.0 |
163.94404 | 2008.0 |
93.09995 | 2001.0 |
206.75873 | 0.0 |
183.50975 | 0.0 |
402.442 | 0.0 |
735.79057 | 1986.0 |
233.19465 | 1997.0 |
326.55628 | 0.0 |
525.50485 | 0.0 |
396.19873 | 0.0 |
171.12771 | 0.0 |
318.1971 | 2006.0 |
323.70893 | 2002.0 |
526.99383 | 0.0 |
161.09669 | 1991.0 |
168.41098 | 1990.0 |
249.57342 | 0.0 |
405.4722 | 0.0 |
271.0722 | 2010.0 |
190.69342 | 2009.0 |
151.61424 | 2001.0 |
121.57342 | 0.0 |
117.08036 | 0.0 |
244.24444 | 2008.0 |
246.85669 | 0.0 |
144.03873 | 2007.0 |
169.79546 | 1988.0 |
193.93261 | 2004.0 |
325.77261 | 0.0 |
337.34485 | 0.0 |
143.67302 | 2009.0 |
211.69587 | 0.0 |
299.4673 | 1978.0 |
159.76444 | 0.0 |
337.31873 | 0.0 |
259.18649 | 2007.0 |
221.64853 | 0.0 |
164.54485 | 0.0 |
56.34567 | 0.0 |
184.21506 | 0.0 |
249.23383 | 2010.0 |
127.29424 | 1994.0 |
306.6771 | 1980.0 |
168.98567 | 0.0 |
290.2722 | 0.0 |
182.33424 | 2004.0 |
180.92363 | 0.0 |
233.76934 | 1990.0 |
423.70567 | 0.0 |
139.36281 | 0.0 |
289.72363 | 2005.0 |
100.96281 | 2005.0 |
153.05098 | 2009.0 |
129.25342 | 0.0 |
190.11873 | 1993.0 |
158.1971 | 0.0 |
234.94485 | 2000.0 |
256.02567 | 0.0 |
279.84934 | 0.0 |
217.7824 | 2005.0 |
271.62077 | 2005.0 |
372.34893 | 0.0 |
264.88118 | 0.0 |
270.18404 | 1984.0 |
42.86649 | 0.0 |
247.27465 | 0.0 |
185.10322 | 1990.0 |
333.94893 | 0.0 |
380.49914 | 1999.0 |
517.72036 | 0.0 |
208.95302 | 2006.0 |
359.73179 | 0.0 |
378.72281 | 1995.0 |
110.41914 | 0.0 |
237.37424 | 2003.0 |
136.30649 | 0.0 |
153.73016 | 2005.0 |
209.8673 | 2007.0 |
224.86159 | 0.0 |
202.34404 | 0.0 |
229.43302 | 0.0 |
300.56444 | 2003.0 |
264.35873 | 0.0 |
213.9424 | 0.0 |
164.77995 | 2004.0 |
206.75873 | 0.0 |
249.73016 | 2009.0 |
521.11628 | 2002.0 |
240.09098 | 0.0 |
347.89832 | 0.0 |
224.96608 | 1993.0 |
250.25261 | 0.0 |
419.00363 | 0.0 |
593.3971 | 1958.0 |
269.89669 | 1999.0 |
235.12771 | 2009.0 |
180.76689 | 0.0 |
304.03873 | 2004.0 |
253.36118 | 2006.0 |
311.74485 | 2006.0 |
353.43628 | 0.0 |
337.00526 | 0.0 |
305.00526 | 2006.0 |
113.76281 | 2007.0 |
379.74159 | 0.0 |
258.76853 | 1993.0 |
157.64853 | 0.0 |
352.28689 | 0.0 |
221.51791 | 0.0 |
249.44281 | 0.0 |
205.42649 | 0.0 |
166.922 | 0.0 |
250.25261 | 0.0 |
224.73098 | 2003.0 |
316.83873 | 2002.0 |
269.34812 | 2007.0 |
188.02893 | 0.0 |
276.87138 | 2001.0 |
263.02649 | 0.0 |
320.44363 | 0.0 |
531.43465 | 2005.0 |
126.85016 | 2008.0 |
232.01914 | 0.0 |
243.87873 | 0.0 |
288.60036 | 2004.0 |
817.57995 | 2007.0 |
200.9073 | 0.0 |
229.48526 | 2009.0 |
263.65342 | 1971.0 |
209.71057 | 2008.0 |
430.54975 | 2007.0 |
531.9571 | 0.0 |
277.39383 | 0.0 |
253.41342 | 1999.0 |
538.5922 | 0.0 |
187.34975 | 0.0 |
189.67465 | 2006.0 |
247.66649 | 0.0 |
196.15302 | 2008.0 |
248.45016 | 0.0 |
266.26567 | 2005.0 |
174.41914 | 0.0 |
241.21424 | 1996.0 |
213.39383 | 0.0 |
201.66485 | 1956.0 |
141.16526 | 0.0 |
198.76526 | 2010.0 |
234.03057 | 2002.0 |
293.77261 | 0.0 |
149.83791 | 0.0 |
193.09669 | 0.0 |
416.62649 | 2007.0 |
206.18404 | 2008.0 |
292.15302 | 0.0 |
209.55383 | 1997.0 |
303.46404 | 0.0 |
284.31628 | 0.0 |
209.34485 | 0.0 |
131.34322 | 2010.0 |
127.16363 | 0.0 |
228.98893 | 1983.0 |
18.18077 | 0.0 |
202.762 | 1999.0 |
475.21914 | 1989.0 |
434.52036 | 2002.0 |
306.36363 | 0.0 |
251.84608 | 2007.0 |
392.80281 | 1999.0 |
191.63383 | 0.0 |
207.90812 | 0.0 |
298.86649 | 0.0 |
195.36934 | 0.0 |
236.06812 | 1995.0 |
315.76771 | 2009.0 |
214.5171 | 0.0 |
140.90404 | 0.0 |
147.66975 | 0.0 |
230.50404 | 0.0 |
259.99628 | 2010.0 |
234.70975 | 1994.0 |
191.97342 | 1992.0 |
305.6322 | 0.0 |
197.53751 | 1997.0 |
152.05832 | 0.0 |
360.82893 | 1998.0 |
440.37179 | 0.0 |
211.09506 | 2009.0 |
362.60526 | 1998.0 |
364.64281 | 1997.0 |
267.12771 | 0.0 |
380.81261 | 2007.0 |
248.13669 | 1995.0 |
253.20444 | 0.0 |
244.03546 | 0.0 |
159.13751 | 0.0 |
246.12526 | 0.0 |
40.95955 | 2005.0 |
200.04526 | 2007.0 |
155.08853 | 0.0 |
144.66567 | 0.0 |
170.86649 | 0.0 |
286.71955 | 2001.0 |
333.19138 | 1996.0 |
542.1971 | 0.0 |
222.37995 | 0.0 |
195.68281 | 2003.0 |
440.00608 | 0.0 |
223.08526 | 0.0 |
378.98404 | 0.0 |
91.45424 | 1983.0 |
114.65098 | 2009.0 |
218.80118 | 0.0 |
242.36363 | 0.0 |
143.0722 | 1962.0 |
242.78159 | 2007.0 |
256.31302 | 0.0 |
244.37506 | 0.0 |
36.54485 | 2007.0 |
401.94567 | 1999.0 |
178.65098 | 2003.0 |
277.002 | 2009.0 |
288.70485 | 2002.0 |
228.91057 | 2006.0 |
204.06812 | 0.0 |
212.40118 | 0.0 |
224.31302 | 2008.0 |
195.7873 | 1985.0 |
244.63628 | 2005.0 |
241.81506 | 0.0 |
224.10404 | 2001.0 |
132.75383 | 2008.0 |
113.3971 | 0.0 |
237.03465 | 0.0 |
162.58567 | 1987.0 |
247.24853 | 2008.0 |
285.30893 | 0.0 |
318.24934 | 0.0 |
375.53587 | 2007.0 |
188.78649 | 0.0 |
108.79955 | 0.0 |
270.91546 | 0.0 |
249.23383 | 0.0 |
192.80934 | 1984.0 |
295.20934 | 0.0 |
177.84118 | 2006.0 |
242.6771 | 0.0 |
245.28934 | 1999.0 |
105.61261 | 0.0 |
329.29914 | 0.0 |
207.46404 | 0.0 |
225.51465 | 2007.0 |
123.8722 | 0.0 |
270.10567 | 2008.0 |
174.86322 | 0.0 |
377.28608 | 0.0 |
220.18567 | 2005.0 |
1190.53016 | 0.0 |
1518.65424 | 0.0 |
438.64771 | 2008.0 |
344.842 | 2001.0 |
76.48608 | 1994.0 |
174.52363 | 2002.0 |
581.14567 | 0.0 |
177.68444 | 0.0 |
125.962 | 0.0 |
160.39138 | 2006.0 |
211.27791 | 0.0 |
182.88281 | 0.0 |
261.53751 | 2005.0 |
285.80526 | 0.0 |
263.44444 | 1991.0 |
133.32853 | 1998.0 |
313.99138 | 1990.0 |
199.18322 | 0.0 |
200.98567 | 0.0 |
170.84036 | 2009.0 |
194.48118 | 0.0 |
241.65832 | 0.0 |
245.15873 | 1970.0 |
262.66077 | 2002.0 |
307.46077 | 1999.0 |
295.20934 | 0.0 |
259.52608 | 0.0 |
347.19302 | 0.0 |
206.91546 | 0.0 |
399.51628 | 2008.0 |
271.25506 | 0.0 |
172.7473 | 1991.0 |
231.65342 | 1993.0 |
208.1171 | 1991.0 |
195.76118 | 1983.0 |
723.27791 | 1970.0 |
282.95791 | 0.0 |
153.12934 | 0.0 |
207.15057 | 0.0 |
174.41914 | 0.0 |
269.29587 | 2005.0 |
275.3824 | 0.0 |
149.41995 | 0.0 |
108.35546 | 1963.0 |
243.69587 | 0.0 |
308.27057 | 1996.0 |
204.90404 | 2007.0 |
311.24853 | 2001.0 |
164.77995 | 0.0 |
449.51465 | 0.0 |
140.93016 | 0.0 |
165.22404 | 2005.0 |
53.26322 | 2007.0 |
218.80118 | 2005.0 |
300.85179 | 1991.0 |
388.75383 | 2007.0 |
150.77832 | 1970.0 |
293.11955 | 0.0 |
177.71057 | 0.0 |
184.11057 | 2005.0 |
225.17506 | 2009.0 |
272.19546 | 2002.0 |
157.67465 | 0.0 |
204.61669 | 0.0 |
93.98812 | 0.0 |
204.45995 | 0.0 |
307.1473 | 0.0 |
347.0624 | 1970.0 |
184.73751 | 2005.0 |
146.65098 | 0.0 |
513.90649 | 2001.0 |
293.85098 | 1970.0 |
121.73016 | 2003.0 |
86.72608 | 0.0 |
171.25832 | 2007.0 |
264.95955 | 2007.0 |
411.68934 | 0.0 |
190.79791 | 1971.0 |
159.65995 | 0.0 |
162.89914 | 0.0 |
205.97506 | 2006.0 |
204.59057 | 0.0 |
117.02812 | 0.0 |
135.28771 | 0.0 |
163.65669 | 0.0 |
254.95465 | 0.0 |
178.31138 | 2001.0 |
150.77832 | 2001.0 |
410.53995 | 2001.0 |
222.30159 | 0.0 |
314.74893 | 0.0 |
233.11628 | 0.0 |
226.21995 | 0.0 |
441.67791 | 0.0 |
120.99873 | 2009.0 |
157.75302 | 0.0 |
203.65016 | 0.0 |
287.73832 | 0.0 |
226.7424 | 1997.0 |
69.56363 | 1993.0 |
174.52363 | 2007.0 |
363.67628 | 0.0 |
136.48934 | 0.0 |
390.60853 | 0.0 |
284.60363 | 0.0 |
291.81342 | 1990.0 |
502.7522 | 0.0 |
197.27628 | 0.0 |
329.53424 | 2009.0 |
340.1922 | 2003.0 |
170.94485 | 0.0 |
113.57995 | 0.0 |
205.24363 | 2009.0 |
169.22077 | 1994.0 |
285.70077 | 1980.0 |
221.23057 | 0.0 |
310.38649 | 0.0 |
353.48853 | 2008.0 |
415.92118 | 0.0 |
150.59546 | 0.0 |
236.90404 | 0.0 |
227.42159 | 1981.0 |
229.8771 | 1995.0 |
359.3922 | 0.0 |
403.17342 | 1998.0 |
296.59383 | 1997.0 |
117.65506 | 0.0 |
241.3971 | 0.0 |
34.92526 | 0.0 |
188.31628 | 0.0 |
409.02485 | 2002.0 |
335.5424 | 0.0 |
354.63791 | 0.0 |
213.31546 | 2007.0 |
238.62812 | 0.0 |
193.33179 | 1972.0 |
225.33179 | 0.0 |
166.84363 | 0.0 |
79.96036 | 1990.0 |
158.69342 | 2000.0 |
176.53506 | 0.0 |
347.61098 | 1999.0 |
106.39628 | 1994.0 |
147.93098 | 0.0 |
446.92853 | 0.0 |
360.22812 | 0.0 |
214.56934 | 0.0 |
325.35465 | 0.0 |
413.23057 | 0.0 |
218.04363 | 2001.0 |
215.30077 | 2002.0 |
57.44281 | 0.0 |
247.48363 | 2006.0 |
793.25995 | 0.0 |
467.3824 | 0.0 |
327.00036 | 1984.0 |
232.72444 | 2006.0 |
251.68934 | 0.0 |
197.3024 | 0.0 |
193.88036 | 0.0 |
383.32036 | 2004.0 |
269.71383 | 0.0 |
255.05914 | 0.0 |
337.18812 | 2009.0 |
240.92689 | 0.0 |
206.18404 | 2002.0 |
143.22893 | 0.0 |
244.27057 | 1980.0 |
83.56526 | 0.0 |
428.40771 | 0.0 |
261.11955 | 2007.0 |
208.37832 | 2008.0 |
369.78893 | 0.0 |
47.17669 | 2006.0 |
239.3073 | 0.0 |
17.37098 | 1993.0 |
257.04444 | 0.0 |
198.63465 | 0.0 |
208.40444 | 2002.0 |
338.28526 | 2005.0 |
175.15057 | 0.0 |
234.97098 | 0.0 |
275.06893 | 0.0 |
186.46159 | 0.0 |
201.74322 | 0.0 |
237.58322 | 0.0 |
219.402 | 0.0 |
461.29587 | 0.0 |
196.67546 | 0.0 |
290.63791 | 0.0 |
328.22812 | 0.0 |
260.64934 | 1981.0 |
245.83791 | 0.0 |
97.54077 | 0.0 |
248.0322 | 0.0 |
175.33342 | 1998.0 |
199.57506 | 0.0 |
229.45914 | 2005.0 |
902.26893 | 2000.0 |
271.12444 | 1991.0 |
211.17342 | 0.0 |
179.3824 | 1967.0 |
156.96934 | 0.0 |
281.0771 | 1998.0 |
291.97016 | 0.0 |
392.85506 | 0.0 |
223.00689 | 0.0 |
269.94893 | 1987.0 |
36.64934 | 1996.0 |
309.26322 | 0.0 |
178.41587 | 0.0 |
206.75873 | 2006.0 |
155.68934 | 1971.0 |
254.71955 | 1993.0 |
133.11955 | 0.0 |
260.362 | 0.0 |
135.28771 | 1984.0 |
158.27546 | 2005.0 |
154.93179 | 0.0 |
205.84444 | 2005.0 |
276.21832 | 0.0 |
193.61914 | 0.0 |
153.73016 | 1997.0 |
389.11955 | 0.0 |
195.23873 | 2007.0 |
210.72934 | 1995.0 |
336.06485 | 0.0 |
263.02649 | 0.0 |
230.26893 | 2001.0 |
40.6722 | 2007.0 |
255.92118 | 2009.0 |
305.60608 | 1995.0 |
177.8673 | 0.0 |
361.11628 | 0.0 |
357.66812 | 0.0 |
196.49261 | 2004.0 |
218.40934 | 1992.0 |
91.58485 | 0.0 |
185.25995 | 0.0 |
282.80118 | 0.0 |
244.68853 | 0.0 |
215.40526 | 1993.0 |
211.19955 | 1978.0 |
327.75791 | 0.0 |
510.40608 | 2005.0 |
212.74077 | 2009.0 |
120.86812 | 2008.0 |
507.08853 | 2001.0 |
265.11628 | 0.0 |
183.06567 | 0.0 |
199.54893 | 1982.0 |
41.92608 | 0.0 |
164.75383 | 0.0 |
267.33669 | 0.0 |
208.74404 | 1984.0 |
253.09995 | 2007.0 |
244.50567 | 0.0 |
195.73506 | 2007.0 |
160.07791 | 2007.0 |
327.70567 | 0.0 |
174.86322 | 0.0 |
272.92689 | 2005.0 |
251.53261 | 0.0 |
216.99873 | 0.0 |
195.3171 | 0.0 |
247.11791 | 0.0 |
101.3024 | 0.0 |
315.97669 | 2003.0 |
449.67138 | 0.0 |
173.16526 | 1998.0 |
394.44853 | 0.0 |
226.69016 | 2007.0 |
219.11465 | 0.0 |
240.92689 | 1997.0 |
227.91791 | 1999.0 |
119.84934 | 0.0 |
109.92281 | 1997.0 |
116.08771 | 0.0 |
187.71546 | 1975.0 |
191.65995 | 0.0 |
116.32281 | 1979.0 |
482.45506 | 0.0 |
262.71302 | 2003.0 |
208.97914 | 2005.0 |
209.81506 | 1975.0 |
129.85424 | 2002.0 |
219.0624 | 0.0 |
500.4273 | 2010.0 |
224.7571 | 0.0 |
274.85995 | 2003.0 |
145.162 | 1993.0 |
211.27791 | 0.0 |
167.49669 | 1981.0 |
415.7122 | 0.0 |
346.33098 | 0.0 |
399.69914 | 1999.0 |
136.56771 | 0.0 |
Exercises
- Why do you think average song durations increase dramatically in 70's?
- Add error bars with standard deviation around each average point in the plot.
- How did average loudness change over time?
- How did tempo change over time?
- What other aspects of songs can you explore with this technique?
Sampling and visualizing
You can dive deep into Scala visualisations here: - https://docs.databricks.com/notebooks/visualizations/charts-and-graphs-scala.html
You can also use R and Python for visualisations in the same notebook: - https://docs.databricks.com/notebooks/visualizations/index.html
Million Song Dataset - Kaggle Challenge
Predict which songs a user will listen to.
SOURCE: This is just a Scala-rification of the Python notebook published in databricks community edition in 2016.
Stage 3: Modeling Songs via k-means
This is the third step into our project. In the first step we parsed raw text files and created a table. Then we explored different aspects of data and learned that things have been changing over time. In this step we attempt to gain deeper understanding of our data by categorizing (a.k.a. clustering) our data. For the sake of training we pick a fairly simple model based on only three parameters. We leave more sophisticated modeling as exercies to the reader
We pick the most commonly used and simplest clustering algorithm (KMeans) for our job. The SparkML KMeans implementation expects input in a vector column. Fortunately, there are already utilities in SparkML that can help us convert existing columns in our table to a vector field. It is called VectorAssembler
. Here we import that functionality and use it to create a new DataFrame
// Let's quickly do everything to register the tempView of the table here
// this is a case class for our row objects
case class Song(artist_id: String, artist_latitude: Double, artist_longitude: Double, artist_location: String, artist_name: String, duration: Double, end_of_fade_in: Double, key: Int, key_confidence: Double, loudness: Double, release: String, song_hotness: Double, song_id: String, start_of_fade_out: Double, tempo: Double, time_signature: Double, time_signature_confidence: Double, title: String, year: Double, partial_sequence: Int)
def parseLine(line: String): Song = {
// this is robust parsing by try-catching type exceptions
def toDouble(value: String, defaultVal: Double): Double = {
try {
value.toDouble
} catch {
case e: Exception => defaultVal
}
}
def toInt(value: String, defaultVal: Int): Int = {
try {
value.toInt
} catch {
case e: Exception => defaultVal
}
}
// splitting the sting of each line by the delimiter TAB character '\t'
val tokens = line.split("\t")
// making song objects
Song(tokens(0), toDouble(tokens(1), 0.0), toDouble(tokens(2), 0.0), tokens(3), tokens(4), toDouble(tokens(5), 0.0), toDouble(tokens(6), 0.0), toInt(tokens(7), -1), toDouble(tokens(8), 0.0), toDouble(tokens(9), 0.0), tokens(10), toDouble(tokens(11), 0.0), tokens(12), toDouble(tokens(13), 0.0), toDouble(tokens(14), 0.0), toDouble(tokens(15), 0.0), toDouble(tokens(16), 0.0), tokens(17), toDouble(tokens(18), 0.0), toInt(tokens(19), -1))
}
// this is loads all the data - a subset of the 1M songs dataset
val dataRDD = sc.textFile("/datasets/sds/songs/data-001/part-*")
// .. fill in comment
val df = dataRDD.map(parseLine).toDF
// .. fill in comment
df.createOrReplaceTempView("songsTable")
defined class Song
parseLine: (line: String)Song
dataRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/songs/data-001/part-* MapPartitionsRDD[380] at textFile at command-2971213210277067:32
df: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 18 more fields]
import org.apache.spark.ml.feature.VectorAssembler
val trainingData = new VectorAssembler()
.setInputCols(Array("duration", "tempo", "loudness"))
.setOutputCol("features")
.transform(table("songsTable"))
import org.apache.spark.ml.feature.VectorAssembler
trainingData: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 19 more fields]
All we have done above with the VectorAssembler
method is:
- created a DataFrame called
trainingData
- that
transform
ed ourtable
calledsongsTable
- by adding an output column named
features
usingsetOutputCol("features")
- that was obtained from an
Array
of thesongsTable
's columns namedduration
,tempo
andloudness
usingsetInputCols(Array("duration", "tempo", "loudness"))
.
trainingData.take(3) // see first 3 rows of trainingData DataFrame, notice the vectors in the last column
res3: Array[org.apache.spark.sql.Row] = Array([AR81V6H1187FB48872,0.0,0.0,,Earl Sixteen,213.7073,0.0,11,0.419,-12.106,Soldier of Jah Army,0.0,SOVNZSZ12AB018A9B8,208.289,125.882,1.0,0.0,Rastaman,2003.0,-1,[213.7073,125.882,-12.106]], [ARVVZQP11E2835DBCB,0.0,0.0,,Wavves,133.25016,0.0,0,0.282,0.596,Wavvves,0.471578247701,SOJTQHQ12A8C143C5F,128.116,89.519,1.0,0.0,I Want To See You (And Go To The Movies),2009.0,-1,[133.25016,89.519,0.596]], [ARFG9M11187FB3BBCB,0.0,0.0,Nashua USA,C-Side,247.32689,0.0,9,0.612,-4.896,Santa Festival Compilation 2008 vol.1,0.0,SOAJSQL12AB0180501,242.196,171.278,5.0,1.0,Loose on the Dancefloor,0.0,225261,[247.32689,171.278,-4.896]])
Transformers
A Transformer is an abstraction that includes feature transformers and learned models. Technically, a Transformer implements a method transform(), which converts one DataFrame into another, generally by appending one or more columns. For example:
- A feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g., feature vectors), and output a new DataFrame with the mapped column appended.
- A learning model might take a DataFrame, read the column containing feature vectors, predict the label for each feature vector, and output a new DataFrame with predicted labels appended as a column.
Estimators
An Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data.
Technically, an Estimator implements a method fit()
, which accepts a DataFrame and produces a Model, which is a Transformer.
For example, a learning algorithm such as LogisticRegression
is an Estimator, and calling fit()
trains a LogisticRegressionModel
, which is a Model and hence a Transformer.
display(trainingData.select("duration", "tempo", "loudness", "features").limit(5)) // see features in more detail
Demonstration of the standard algorithm
(1) (2) (3) (4)
- k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).
- k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.
- The centroid of each of the k clusters becomes the new mean.
- Steps 2 and 3 are repeated until local convergence has been reached.
The "assignment" step 2 is also referred to as expectation step, the "update step" 3 as maximization step, making this algorithm a variant of the generalized expectation-maximization algorithm.
Caveats: As k-means is a heuristic algorithm, there is no guarantee that it will converge to the global optimum, and the result may depend on the initial clusters. As the algorithm is usually very fast, it is common to run it multiple times with different starting conditions. However, in the worst case, k-means can be very slow to converge. For more details see https://en.wikipedia.org/wiki/K-means_clustering that is also embedded in-place below.
CAUTION!
Iris flower data set, clustered using
- k-means (left) and
- true species in the data set (right).
k-means clustering result for the Iris flower data set and actual species visualized using ELKI. Cluster means are marked using larger, semi-transparent symbols.
Note that k-means is non-determinicstic, so results vary. Cluster means are visualized using larger, semi-transparent markers. The visualization was generated using ELKI.
With some cautionary tales we go ahead with applying k-means to our dataset next.
We can now pass this new DataFrame to the KMeans
model and ask it to categorize different rows in our data to two different classes (setK(2)
). We place the model in a immutable val
ue named model
.
Note: This command performs multiple spark jobs (one job per iteration in the KMeans algorithm). You will see the progress bar starting over and over again.
import org.apache.spark.ml.clustering.KMeans
val model = new KMeans().setK(2).fit(trainingData) // 37 seconds in 5 workers cluster
import org.apache.spark.ml.clustering.KMeans
model: org.apache.spark.ml.clustering.KMeansModel = KMeansModel: uid=kmeans_7370bad07a6f, k=2, distanceMeasure=euclidean, numFeatures=3
//model. // uncomment and place cursor next to . and hit Tab to see all methods on model
model.clusterCenters // get cluster centres
res5: Array[org.apache.spark.ml.linalg.Vector] = Array([208.72069181761955,124.38376303683947,-9.986137113920133], [441.1413218945455,123.00973381818183,-10.560375818181816])
val modelTransformed = model.transform(trainingData) // to get predictions as last column
modelTransformed: org.apache.spark.sql.DataFrame = [artist_id: string, artist_latitude: double ... 20 more fields]
Remember that ML Pipelines works with DataFrames. So, our trainingData and modelTransformed are both DataFrames
trainingData.printSchema
root
|-- artist_id: string (nullable = true)
|-- artist_latitude: double (nullable = false)
|-- artist_longitude: double (nullable = false)
|-- artist_location: string (nullable = true)
|-- artist_name: string (nullable = true)
|-- duration: double (nullable = false)
|-- end_of_fade_in: double (nullable = false)
|-- key: integer (nullable = false)
|-- key_confidence: double (nullable = false)
|-- loudness: double (nullable = false)
|-- release: string (nullable = true)
|-- song_hotness: double (nullable = false)
|-- song_id: string (nullable = true)
|-- start_of_fade_out: double (nullable = false)
|-- tempo: double (nullable = false)
|-- time_signature: double (nullable = false)
|-- time_signature_confidence: double (nullable = false)
|-- title: string (nullable = true)
|-- year: double (nullable = false)
|-- partial_sequence: integer (nullable = false)
|-- features: vector (nullable = true)
modelTransformed.printSchema
root
|-- artist_id: string (nullable = true)
|-- artist_latitude: double (nullable = false)
|-- artist_longitude: double (nullable = false)
|-- artist_location: string (nullable = true)
|-- artist_name: string (nullable = true)
|-- duration: double (nullable = false)
|-- end_of_fade_in: double (nullable = false)
|-- key: integer (nullable = false)
|-- key_confidence: double (nullable = false)
|-- loudness: double (nullable = false)
|-- release: string (nullable = true)
|-- song_hotness: double (nullable = false)
|-- song_id: string (nullable = true)
|-- start_of_fade_out: double (nullable = false)
|-- tempo: double (nullable = false)
|-- time_signature: double (nullable = false)
|-- time_signature_confidence: double (nullable = false)
|-- title: string (nullable = true)
|-- year: double (nullable = false)
|-- partial_sequence: integer (nullable = false)
|-- features: vector (nullable = true)
|-- prediction: integer (nullable = false)
- The column
features
that we specified as output column to ourVectorAssembler
contains the features - The new column
prediction
in modelTransformed contains the predicted output
val transformed = modelTransformed.select("duration", "tempo", "loudness", "prediction")
transformed: org.apache.spark.sql.DataFrame = [duration: double, tempo: double ... 2 more fields]
To comfortably visualize the data we produce a random sample. Remember the display()
function? We can use it to produce a nicely rendered table of transformed DataFrame.
// just sampling the fraction 0.005 of all the rows at random,
// 'false' argument to sample is for sampling without replacement
display(transformed.sample(false, fraction = 0.005, 12988934L))
duration | tempo | loudness | prediction |
---|---|---|---|
265.97832 | 129.987 | -5.065 | 0.0 |
306.36363 | 127.529 | -8.273 | 0.0 |
195.73506 | 115.191 | -6.327 | 0.0 |
257.82812 | 92.892 | -13.621 | 0.0 |
177.55383 | 149.853 | -10.969 | 0.0 |
224.9922 | 97.98 | -5.921 | 0.0 |
528.09098 | 160.022 | -5.956 | 1.0 |
213.68118 | 100.219 | -4.528 | 0.0 |
35.52608 | 121.349 | -18.721 | 0.0 |
213.68118 | 120.581 | -10.633 | 0.0 |
300.53832 | 139.017 | -13.319 | 0.0 |
138.81424 | 160.044 | -11.138 | 0.0 |
413.962 | 89.588 | -13.143 | 1.0 |
292.17914 | 188.543 | -5.389 | 0.0 |
419.34322 | 140.008 | -5.389 | 1.0 |
261.61587 | 152.951 | -12.447 | 0.0 |
168.64608 | 99.617 | -8.164 | 0.0 |
446.27546 | 196.005 | -6.621 | 1.0 |
343.92771 | 122.877 | -10.264 | 1.0 |
261.69424 | 145.129 | -4.733 | 0.0 |
408.47628 | 61.259 | -11.244 | 1.0 |
243.3824 | 161.778 | -6.88 | 0.0 |
184.00608 | 111.461 | -9.788 | 0.0 |
67.39546 | 188.723 | -3.239 | 0.0 |
165.51138 | 81.125 | -18.692 | 0.0 |
214.85669 | 144.174 | -17.989 | 0.0 |
185.96526 | 186.897 | -6.041 | 0.0 |
170.05669 | 75.356 | -16.486 | 0.0 |
193.72363 | 117.131 | -9.822 | 0.0 |
227.23873 | 91.953 | -11.221 | 0.0 |
177.6322 | 150.962 | -7.288 | 0.0 |
117.21098 | 100.021 | -10.782 | 0.0 |
422.42567 | 91.214 | -8.872 | 1.0 |
145.162 | 95.388 | -10.166 | 0.0 |
242.93832 | 112.015 | -7.135 | 0.0 |
366.00118 | 65.05 | -13.768 | 1.0 |
601.15546 | 70.623 | -11.179 | 1.0 |
196.17914 | 121.563 | -5.434 | 0.0 |
399.35955 | 124.963 | -3.415 | 1.0 |
287.73832 | 161.648 | -14.721 | 0.0 |
285.09995 | 132.86 | -10.23 | 0.0 |
358.32118 | 132.874 | -6.071 | 1.0 |
407.71873 | 85.996 | -10.103 | 1.0 |
463.25506 | 95.083 | -6.4 | 1.0 |
295.91465 | 93.515 | -8.987 | 0.0 |
273.8673 | 190.044 | -10.556 | 0.0 |
280.73751 | 113.363 | -6.893 | 0.0 |
142.65424 | 206.067 | -7.996 | 0.0 |
197.38077 | 84.023 | -10.964 | 0.0 |
226.24608 | 166.768 | -5.941 | 0.0 |
152.47628 | 153.528 | -7.393 | 0.0 |
315.32363 | 139.919 | -7.438 | 0.0 |
329.03791 | 180.059 | -6.473 | 1.0 |
296.88118 | 137.976 | -5.49 | 0.0 |
250.77506 | 84.543 | -18.058 | 0.0 |
48.14322 | 52.814 | -11.617 | 0.0 |
290.16771 | 141.24 | -14.009 | 0.0 |
406.04689 | 133.997 | -9.685 | 1.0 |
124.57751 | 161.237 | -12.314 | 0.0 |
280.45016 | 154.003 | -8.094 | 0.0 |
472.31955 | 219.371 | -6.08 | 1.0 |
267.4673 | 152.123 | -18.457 | 0.0 |
216.21506 | 88.022 | -7.096 | 0.0 |
31.00689 | 237.737 | -11.538 | 0.0 |
283.21914 | 132.934 | -11.153 | 0.0 |
284.21179 | 110.585 | -15.384 | 0.0 |
154.87955 | 157.881 | -4.377 | 0.0 |
431.46404 | 113.905 | -8.651 | 1.0 |
215.87546 | 124.572 | -7.67 | 0.0 |
161.43628 | 43.884 | -14.936 | 0.0 |
29.09995 | 135.146 | -1.837 | 0.0 |
301.68771 | 123.672 | -9.293 | 0.0 |
170.10893 | 124.022 | -9.589 | 0.0 |
281.96526 | 63.544 | -8.25 | 0.0 |
484.54485 | 149.565 | -5.501 | 1.0 |
135.1571 | 92.749 | -7.881 | 0.0 |
180.45342 | 137.899 | -5.246 | 0.0 |
142.44526 | 85.406 | -11.305 | 0.0 |
209.3971 | 93.233 | -13.079 | 0.0 |
319.9473 | 122.936 | -5.98 | 0.0 |
55.82322 | 249.325 | -8.656 | 0.0 |
192.88771 | 124.006 | -5.745 | 0.0 |
624.14322 | 128.988 | -7.872 | 1.0 |
188.49914 | 107.264 | -13.24 | 0.0 |
148.32281 | 150.075 | -5.793 | 0.0 |
195.00363 | 49.31 | -14.54 | 0.0 |
130.61179 | 100.208 | -10.487 | 0.0 |
212.11383 | 111.048 | -4.749 | 0.0 |
204.56444 | 92.076 | -7.906 | 0.0 |
292.04853 | 135.932 | -9.004 | 0.0 |
377.83465 | 73.336 | -13.457 | 1.0 |
246.96118 | 116.761 | -8.117 | 0.0 |
90.30485 | 39.3 | -15.444 | 0.0 |
201.92608 | 123.558 | -9.857 | 0.0 |
282.06975 | 136.09 | -6.202 | 0.0 |
194.55955 | 119.488 | -16.454 | 0.0 |
318.4322 | 140.467 | -6.375 | 0.0 |
55.45751 | 121.476 | -7.891 | 0.0 |
275.30404 | 90.024 | -6.191 | 0.0 |
422.24281 | 131.994 | -8.786 | 1.0 |
269.47873 | 88.921 | -4.419 | 0.0 |
186.01751 | 55.271 | -16.153 | 0.0 |
221.17832 | 94.967 | -6.591 | 0.0 |
275.66975 | 94.999 | -16.843 | 0.0 |
335.28118 | 90.129 | -13.33 | 1.0 |
288.88771 | 102.96 | -10.967 | 0.0 |
190.71955 | 88.269 | -13.167 | 0.0 |
211.17342 | 126.741 | -10.398 | 0.0 |
116.92363 | 140.09 | -7.578 | 0.0 |
310.282 | 181.753 | -17.61 | 0.0 |
184.21506 | 112.336 | -8.764 | 0.0 |
248.21506 | 101.988 | -6.487 | 0.0 |
116.00934 | 84.793 | -9.057 | 0.0 |
299.88526 | 143.66 | -7.279 | 0.0 |
1376.78322 | 107.066 | -7.893 | 1.0 |
182.85669 | 191.559 | -10.367 | 0.0 |
238.2624 | 48.592 | -9.687 | 0.0 |
239.5424 | 105.47 | -9.258 | 0.0 |
195.16036 | 127.911 | -7.054 | 0.0 |
149.73342 | 118.643 | -10.526 | 0.0 |
424.30649 | 62.8 | -22.35 | 1.0 |
221.77914 | 104.983 | -7.908 | 0.0 |
407.7971 | 126.983 | -11.675 | 1.0 |
175.04608 | 120.542 | -17.484 | 0.0 |
306.65098 | 120.0 | -18.973 | 0.0 |
315.0624 | 85.82 | -11.858 | 0.0 |
88.5024 | 211.429 | -11.543 | 0.0 |
101.61587 | 19.215 | -26.402 | 0.0 |
132.04853 | 186.123 | -7.21 | 0.0 |
146.25914 | 200.16 | -15.88 | 0.0 |
147.3824 | 104.658 | -8.836 | 0.0 |
156.26404 | 135.353 | -8.245 | 0.0 |
66.2722 | 115.129 | -16.416 | 0.0 |
247.43138 | 124.991 | -11.79 | 0.0 |
282.90567 | 115.472 | -12.448 | 0.0 |
401.05751 | 125.015 | -9.465 | 1.0 |
156.08118 | 88.128 | -16.916 | 0.0 |
198.08608 | 133.961 | -8.055 | 0.0 |
214.09914 | 84.353 | -12.991 | 0.0 |
269.73995 | 161.953 | -3.091 | 0.0 |
199.44444 | 169.922 | -6.241 | 0.0 |
149.65506 | 190.802 | -30.719 | 0.0 |
227.23873 | 120.14 | -12.39 | 0.0 |
To generate a scatter plot matrix, click on the plot button bellow the table and select scatter
. That will transform your table to a scatter plot matrix. It automatically picks all numeric columns as values. To include predicted clusters, click on Plot Options
and drag prediction
to the list of Keys. You will get the following plot. On the diagonal panels you see the PDF of marginal distribution of each variable. Non-diagonal panels show a scatter plot between variables of the two variables of the row and column. For example the top right panel shows the scatter plot between duration and loudness. Each point is colored according to the cluster it is assigned to.
display(transformed.sample(false, fraction = 0.01)) // try fraction=1.0 as this dataset is small
duration | tempo | loudness | prediction |
---|---|---|---|
244.27057 | 112.731 | -10.505 | 0.0 |
195.47383 | 97.965 | -11.452 | 0.0 |
63.65995 | 104.664 | -17.248 | 0.0 |
200.202 | 200.191 | -10.104 | 0.0 |
306.36363 | 127.529 | -8.273 | 0.0 |
196.49261 | 42.746 | -7.608 | 0.0 |
202.89261 | 131.021 | -4.434 | 0.0 |
203.33669 | 157.886 | -2.236 | 0.0 |
182.85669 | 157.139 | -7.1 | 0.0 |
205.50485 | 95.979 | -7.698 | 0.0 |
109.73995 | 113.462 | -20.321 | 0.0 |
163.23873 | 83.005 | -13.396 | 0.0 |
224.9922 | 97.98 | -5.921 | 0.0 |
176.61342 | 94.052 | -8.77 | 0.0 |
443.66322 | 125.979 | -5.778 | 1.0 |
298.26567 | 169.845 | -7.725 | 0.0 |
184.42404 | 78.437 | -12.727 | 0.0 |
267.17995 | 180.542 | -6.627 | 0.0 |
253.30893 | 94.987 | -7.692 | 0.0 |
200.46322 | 106.733 | -12.94 | 0.0 |
253.36118 | 86.342 | -6.782 | 0.0 |
138.73587 | 155.904 | -5.893 | 0.0 |
121.52118 | 86.994 | -6.913 | 0.0 |
85.81179 | 89.253 | -5.191 | 0.0 |
289.43628 | 95.95 | -13.052 | 0.0 |
262.37342 | 165.932 | -6.124 | 0.0 |
467.09506 | 138.769 | -10.777 | 1.0 |
191.84281 | 180.105 | -11.451 | 0.0 |
300.40771 | 163.844 | -7.44 | 0.0 |
271.51628 | 144.111 | -6.032 | 0.0 |
213.91628 | 105.987 | -3.815 | 0.0 |
452.57098 | 125.01 | -12.88 | 1.0 |
195.94404 | 56.525 | -16.71 | 0.0 |
111.17669 | 146.334 | -10.847 | 0.0 |
278.85669 | 112.459 | -11.918 | 0.0 |
290.58567 | 131.844 | -7.134 | 0.0 |
246.17751 | 95.323 | -7.515 | 0.0 |
180.37506 | 192.659 | -6.815 | 0.0 |
268.38159 | 156.076 | -4.435 | 0.0 |
495.98649 | 120.467 | -11.189 | 1.0 |
605.33506 | 145.803 | -13.557 | 1.0 |
343.92771 | 122.877 | -10.264 | 1.0 |
313.28608 | 137.929 | -9.179 | 0.0 |
279.74485 | 103.98 | -7.026 | 0.0 |
183.11791 | 101.679 | -24.065 | 0.0 |
270.62812 | 96.544 | -7.089 | 0.0 |
235.4673 | 111.282 | -12.93 | 0.0 |
143.20281 | 101.104 | -4.278 | 0.0 |
213.21098 | 110.858 | -10.904 | 0.0 |
248.55465 | 99.389 | -5.273 | 0.0 |
211.27791 | 106.629 | -5.518 | 0.0 |
297.53424 | 125.142 | -6.341 | 0.0 |
252.57751 | 98.328 | -12.207 | 0.0 |
230.63465 | 150.118 | -4.63 | 0.0 |
234.91873 | 100.022 | -3.952 | 0.0 |
482.5073 | 145.1 | -12.697 | 1.0 |
133.69424 | 145.629 | -11.526 | 0.0 |
221.83138 | 146.375 | -6.363 | 0.0 |
243.61751 | 131.243 | -10.148 | 0.0 |
662.93506 | 113.008 | -10.187 | 1.0 |
254.92853 | 111.017 | -9.153 | 0.0 |
121.41669 | 100.339 | -8.565 | 0.0 |
176.06485 | 125.435 | -10.29 | 0.0 |
332.43383 | 103.119 | -13.376 | 1.0 |
437.26322 | 104.97 | -14.029 | 1.0 |
134.81751 | 39.42 | -15.975 | 0.0 |
226.37669 | 140.502 | -7.333 | 0.0 |
184.842 | 152.671 | -7.156 | 0.0 |
191.45098 | 84.029 | -9.696 | 0.0 |
248.31955 | 137.923 | -1.57 | 0.0 |
132.91057 | 86.912 | -10.106 | 0.0 |
252.86485 | 133.005 | -5.409 | 0.0 |
249.10322 | 98.047 | -6.547 | 0.0 |
170.00444 | 112.46 | -9.011 | 0.0 |
307.59138 | 122.547 | -12.767 | 0.0 |
200.80281 | 130.182 | -6.988 | 0.0 |
292.64934 | 106.006 | -3.538 | 0.0 |
139.36281 | 103.898 | -3.788 | 0.0 |
262.13832 | 180.04 | -6.318 | 0.0 |
214.7522 | 107.956 | -2.691 | 0.0 |
245.4722 | 124.999 | -6.846 | 0.0 |
268.53832 | 132.01 | -6.298 | 0.0 |
187.14077 | 161.933 | -10.074 | 0.0 |
215.66649 | 140.381 | -5.111 | 0.0 |
176.92689 | 117.172 | -9.213 | 0.0 |
555.04934 | 110.119 | -5.311 | 1.0 |
80.48281 | 149.108 | -11.616 | 0.0 |
162.63791 | 164.106 | -22.073 | 0.0 |
159.65995 | 156.785 | -12.696 | 0.0 |
198.26893 | 131.377 | -8.376 | 0.0 |
167.33995 | 150.654 | -7.907 | 0.0 |
183.58812 | 133.9 | -17.413 | 0.0 |
288.70485 | 79.198 | -12.843 | 0.0 |
77.63546 | 106.902 | -18.099 | 0.0 |
141.26975 | 124.414 | -8.835 | 0.0 |
276.16608 | 95.231 | -8.471 | 0.0 |
272.56118 | 200.29 | -11.23 | 0.0 |
207.96036 | 88.026 | -13.496 | 0.0 |
282.06975 | 74.975 | -11.123 | 0.0 |
526.44526 | 119.559 | -37.527 | 1.0 |
259.97016 | 125.149 | -12.906 | 0.0 |
159.65995 | 207.66 | -6.344 | 0.0 |
300.7473 | 224.518 | -6.432 | 0.0 |
304.97914 | 106.716 | -9.78 | 0.0 |
214.04689 | 99.189 | -4.772 | 0.0 |
231.88853 | 80.091 | -5.629 | 0.0 |
237.97506 | 116.126 | -10.743 | 0.0 |
182.54322 | 72.894 | -17.837 | 0.0 |
52.11383 | 168.794 | -6.383 | 0.0 |
158.92853 | 165.406 | -9.687 | 0.0 |
267.33669 | 112.741 | -25.091 | 0.0 |
261.69424 | 191.883 | -24.9 | 0.0 |
343.06567 | 123.951 | -6.143 | 1.0 |
534.93506 | 91.53 | -7.688 | 1.0 |
227.83955 | 125.951 | -6.689 | 0.0 |
186.69669 | 86.635 | -6.139 | 0.0 |
216.18893 | 130.325 | -12.527 | 0.0 |
230.42567 | 116.913 | -12.477 | 0.0 |
159.55546 | 105.245 | -23.254 | 0.0 |
202.39628 | 55.307 | -6.039 | 0.0 |
215.74485 | 106.31 | -8.126 | 0.0 |
336.22159 | 142.252 | -9.546 | 1.0 |
207.67302 | 153.947 | -4.633 | 0.0 |
289.59302 | 90.51 | -27.653 | 0.0 |
133.32853 | 125.883 | -10.795 | 0.0 |
183.06567 | 104.177 | -6.329 | 0.0 |
227.082 | 90.997 | -6.716 | 0.0 |
245.65506 | 160.077 | -3.661 | 0.0 |
128.67873 | 144.519 | -9.05 | 0.0 |
445.07383 | 124.982 | -5.163 | 1.0 |
260.57098 | 122.819 | -12.271 | 0.0 |
257.51465 | 142.945 | -8.397 | 0.0 |
170.81424 | 132.335 | -3.687 | 0.0 |
183.66649 | 87.833 | -15.591 | 0.0 |
424.82893 | 173.814 | -6.585 | 1.0 |
135.1571 | 92.749 | -7.881 | 0.0 |
153.0771 | 104.976 | -5.611 | 0.0 |
307.90485 | 147.753 | -4.254 | 0.0 |
217.15546 | 99.508 | -11.413 | 0.0 |
190.27546 | 127.754 | -4.402 | 0.0 |
234.26567 | 86.654 | -8.753 | 0.0 |
295.02649 | 127.96 | -7.766 | 0.0 |
420.28363 | 139.991 | -13.264 | 1.0 |
166.71302 | 208.839 | -18.976 | 0.0 |
225.72363 | 110.028 | -4.573 | 0.0 |
161.85424 | 91.393 | -8.609 | 0.0 |
232.41098 | 126.606 | -6.709 | 0.0 |
437.41995 | 147.984 | -6.066 | 1.0 |
205.13914 | 115.028 | -5.83 | 0.0 |
174.70649 | 100.886 | -12.613 | 0.0 |
254.30159 | 85.012 | -11.373 | 0.0 |
184.99873 | 119.071 | -17.613 | 0.0 |
198.47791 | 168.829 | -14.589 | 0.0 |
224.46975 | 124.459 | -7.934 | 0.0 |
188.86485 | 145.123 | -6.104 | 0.0 |
41.35138 | 173.793 | -12.26 | 0.0 |
309.39383 | 89.986 | -12.035 | 0.0 |
149.52444 | 173.984 | -12.84 | 0.0 |
187.79383 | 112.146 | -21.23 | 0.0 |
191.00689 | 146.664 | -6.587 | 0.0 |
216.5024 | 119.576 | -8.772 | 0.0 |
176.8224 | 73.616 | -19.386 | 0.0 |
225.30567 | 105.067 | -6.96 | 0.0 |
226.66404 | 91.386 | -7.419 | 0.0 |
237.89669 | 143.888 | -14.289 | 0.0 |
279.92771 | 124.046 | -13.476 | 0.0 |
207.3073 | 198.496 | -11.67 | 0.0 |
202.39628 | 93.366 | -18.305 | 0.0 |
406.9873 | 128.419 | -14.869 | 1.0 |
220.73424 | 157.958 | -9.327 | 0.0 |
237.21751 | 130.013 | -3.837 | 0.0 |
253.17832 | 89.702 | -5.557 | 0.0 |
152.42404 | 141.991 | -11.27 | 0.0 |
440.89424 | 127.935 | -10.072 | 1.0 |
144.40444 | 91.946 | -7.005 | 0.0 |
169.69098 | 103.956 | -11.004 | 0.0 |
217.10322 | 90.379 | -13.479 | 0.0 |
394.78812 | 127.996 | -7.112 | 1.0 |
185.52118 | 134.03 | -5.529 | 0.0 |
260.98893 | 85.0 | -5.263 | 0.0 |
132.25751 | 97.619 | -3.397 | 0.0 |
242.78159 | 149.953 | -6.236 | 0.0 |
298.03057 | 84.896 | -8.511 | 0.0 |
180.13995 | 92.063 | -9.866 | 0.0 |
72.82893 | 135.059 | -17.814 | 0.0 |
305.47546 | 130.016 | -10.648 | 0.0 |
49.99791 | 94.143 | -12.105 | 0.0 |
213.60281 | 157.762 | -12.58 | 0.0 |
332.48608 | 156.616 | -8.777 | 1.0 |
386.35057 | 120.513 | -21.297 | 1.0 |
260.30975 | 190.015 | -5.148 | 0.0 |
229.19791 | 164.202 | -6.88 | 0.0 |
473.25995 | 159.997 | -7.717 | 1.0 |
233.22077 | 101.313 | -6.339 | 0.0 |
235.2322 | 98.591 | -9.746 | 0.0 |
172.61669 | 102.747 | -9.067 | 0.0 |
246.49098 | 75.408 | -5.108 | 0.0 |
326.42567 | 36.489 | -26.396 | 1.0 |
243.3824 | 103.205 | -9.898 | 0.0 |
425.24689 | 131.368 | -8.297 | 1.0 |
221.25669 | 135.04 | -5.154 | 0.0 |
190.9024 | 107.104 | -10.353 | 0.0 |
172.32934 | 160.707 | -8.875 | 0.0 |
166.71302 | 127.945 | -18.645 | 0.0 |
183.97995 | 115.659 | -11.091 | 0.0 |
237.97506 | 116.167 | -6.36 | 0.0 |
223.52934 | 154.645 | -9.71 | 0.0 |
298.50077 | 126.038 | -5.151 | 0.0 |
465.31873 | 175.035 | -4.044 | 1.0 |
138.55302 | 85.67 | -12.052 | 0.0 |
240.40444 | 120.03 | -8.459 | 0.0 |
341.99465 | 141.156 | -21.177 | 1.0 |
157.02159 | 141.477 | -4.464 | 0.0 |
288.78322 | 95.049 | -7.796 | 0.0 |
184.08444 | 122.905 | -14.019 | 0.0 |
248.99873 | 211.264 | -10.24 | 0.0 |
174.2624 | 127.693 | -12.39 | 0.0 |
315.8722 | 143.013 | -15.79 | 0.0 |
247.40526 | 141.204 | -8.753 | 0.0 |
295.44444 | 85.545 | -3.997 | 0.0 |
321.33179 | 130.964 | -13.273 | 0.0 |
361.22077 | 133.027 | -2.875 | 1.0 |
322.58567 | 121.964 | -7.198 | 0.0 |
75.07546 | 116.339 | -15.41 | 0.0 |
228.64934 | 128.01 | -10.045 | 0.0 |
153.3122 | 101.93 | -22.817 | 0.0 |
218.53995 | 126.607 | -9.678 | 0.0 |
289.69751 | 107.998 | -7.901 | 0.0 |
213.62893 | 184.052 | -9.174 | 0.0 |
363.4673 | 114.397 | -11.772 | 1.0 |
219.71546 | 93.135 | -9.806 | 0.0 |
179.19955 | 129.99 | -9.664 | 0.0 |
293.35465 | 144.596 | -7.363 | 0.0 |
180.94975 | 157.921 | -5.232 | 0.0 |
277.89016 | 57.623 | -17.473 | 0.0 |
210.99057 | 163.841 | -16.969 | 0.0 |
264.202 | 120.034 | -19.802 | 0.0 |
194.42893 | 188.35 | -9.564 | 0.0 |
258.61179 | 92.829 | -8.928 | 0.0 |
176.37832 | 99.829 | -11.923 | 0.0 |
247.11791 | 134.445 | -2.932 | 0.0 |
252.3424 | 164.599 | -7.585 | 0.0 |
159.21587 | 104.799 | -10.143 | 0.0 |
479.11138 | 125.125 | -12.127 | 1.0 |
268.9824 | 140.062 | -10.898 | 0.0 |
374.77832 | 180.044 | -10.436 | 1.0 |
428.22485 | 127.982 | -17.48 | 1.0 |
817.05751 | 145.897 | -5.303 | 1.0 |
198.63465 | 166.593 | -3.315 | 0.0 |
192.36526 | 90.019 | -6.396 | 0.0 |
151.77098 | 187.791 | -8.472 | 0.0 |
164.20526 | 191.878 | -4.388 | 0.0 |
301.73995 | 112.045 | -17.254 | 0.0 |
282.30485 | 83.331 | -10.754 | 0.0 |
371.48689 | 104.993 | -9.919 | 1.0 |
119.06567 | 173.919 | -6.858 | 0.0 |
283.6371 | 69.909 | -17.178 | 0.0 |
261.69424 | 98.007 | -21.256 | 0.0 |
280.13669 | 128.037 | -4.909 | 0.0 |
124.31628 | 200.182 | -7.938 | 0.0 |
241.37098 | 128.527 | -4.834 | 0.0 |
299.02322 | 109.944 | -9.461 | 0.0 |
461.21751 | 160.027 | -13.182 | 1.0 |
108.72118 | 115.168 | -12.621 | 0.0 |
182.09914 | 161.077 | -6.536 | 0.0 |
161.04444 | 240.577 | -5.114 | 0.0 |
233.01179 | 145.232 | -10.703 | 0.0 |
237.92281 | 140.481 | -7.453 | 0.0 |
237.29587 | 98.184 | -8.888 | 0.0 |
258.61179 | 96.752 | -13.219 | 0.0 |
45.76608 | 112.436 | -20.112 | 0.0 |
164.77995 | 209.448 | -0.438 | 0.0 |
196.38812 | 176.511 | -6.945 | 0.0 |
264.09751 | 125.995 | -11.854 | 0.0 |
318.87628 | 130.011 | -6.758 | 0.0 |
133.90322 | 137.567 | -4.931 | 0.0 |
265.53424 | 88.519 | -11.095 | 0.0 |
170.68363 | 167.807 | -9.308 | 0.0 |
243.64363 | 127.97 | -7.569 | 0.0 |
280.0322 | 147.816 | -4.771 | 0.0 |
525.29587 | 85.619 | -12.152 | 1.0 |
457.32526 | 127.983 | -6.449 | 1.0 |
349.07383 | 125.798 | -11.251 | 1.0 |
display(transformed.sample(false, fraction = 0.01)) // try fraction=1.0 as this dataset is small
duration | tempo | loudness | prediction |
---|---|---|---|
189.93587 | 134.957 | -12.934 | 0.0 |
206.44526 | 135.26 | -11.146 | 0.0 |
295.65342 | 137.904 | -7.308 | 0.0 |
158.1971 | 174.831 | -12.544 | 0.0 |
259.99628 | 171.094 | -12.057 | 0.0 |
277.002 | 88.145 | -6.039 | 0.0 |
1518.65424 | 65.003 | -19.182 | 1.0 |
121.73016 | 85.041 | -8.193 | 0.0 |
205.97506 | 106.952 | -6.572 | 0.0 |
206.18404 | 89.447 | -9.535 | 0.0 |
202.52689 | 134.13 | -6.535 | 0.0 |
259.02975 | 97.948 | -11.276 | 0.0 |
308.53179 | 80.017 | -12.277 | 0.0 |
151.71873 | 117.179 | -12.394 | 0.0 |
165.56363 | 99.187 | -11.414 | 0.0 |
370.83383 | 67.495 | -20.449 | 1.0 |
238.65424 | 100.071 | -9.276 | 0.0 |
163.7873 | 119.924 | -5.941 | 0.0 |
279.32689 | 67.371 | -26.67 | 0.0 |
353.85424 | 68.405 | -8.105 | 1.0 |
227.23873 | 117.62 | -7.874 | 0.0 |
195.49995 | 85.916 | -8.828 | 0.0 |
322.45506 | 135.826 | -5.034 | 0.0 |
235.88526 | 109.773 | -10.919 | 0.0 |
235.15383 | 163.924 | -9.666 | 0.0 |
253.67465 | 125.014 | -7.171 | 0.0 |
415.03302 | 71.991 | -15.224 | 1.0 |
190.85016 | 152.805 | -2.871 | 0.0 |
290.76853 | 84.841 | -6.161 | 0.0 |
346.8273 | 129.981 | -10.377 | 1.0 |
174.70649 | 143.446 | -11.994 | 0.0 |
170.84036 | 70.033 | -7.782 | 0.0 |
517.66812 | 151.948 | -12.363 | 1.0 |
62.06649 | 154.406 | -9.387 | 0.0 |
505.96526 | 90.59 | -19.848 | 1.0 |
480.86159 | 0.0 | -11.707 | 1.0 |
330.13506 | 204.534 | -9.85 | 1.0 |
223.99955 | 110.3 | -12.339 | 0.0 |
200.98567 | 89.215 | -3.858 | 0.0 |
158.09261 | 178.826 | -13.681 | 0.0 |
186.46159 | 110.102 | -16.477 | 0.0 |
399.46404 | 125.03 | -10.786 | 1.0 |
118.64771 | 85.747 | -34.461 | 0.0 |
352.49587 | 91.139 | -9.13 | 1.0 |
150.15138 | 106.364 | -7.337 | 0.0 |
158.98077 | 124.54 | -17.405 | 0.0 |
122.17424 | 170.018 | -9.047 | 0.0 |
299.38893 | 91.976 | -6.266 | 0.0 |
197.95546 | 142.744 | -8.189 | 0.0 |
332.38159 | 89.071 | -5.08 | 1.0 |
309.78567 | 136.05 | -15.105 | 0.0 |
198.47791 | 82.546 | -12.594 | 0.0 |
254.17098 | 144.01 | -9.0 | 0.0 |
155.81995 | 233.022 | -8.978 | 0.0 |
176.53506 | 136.255 | -9.675 | 0.0 |
331.54567 | 221.511 | -13.778 | 1.0 |
140.72118 | 162.44 | -10.654 | 0.0 |
210.9122 | 120.039 | -5.391 | 0.0 |
197.27628 | 119.396 | -22.599 | 0.0 |
339.25179 | 96.842 | -16.207 | 1.0 |
355.97016 | 142.777 | -5.118 | 1.0 |
170.23955 | 55.107 | -17.654 | 0.0 |
360.01914 | 119.997 | -7.53 | 1.0 |
241.76281 | 101.938 | -3.765 | 0.0 |
84.92363 | 236.863 | -15.846 | 0.0 |
361.09016 | 120.121 | -5.861 | 1.0 |
262.37342 | 89.924 | -4.819 | 0.0 |
225.74975 | 139.994 | -11.505 | 0.0 |
246.9873 | 172.147 | -16.273 | 0.0 |
159.242 | 166.855 | -4.771 | 0.0 |
192.86159 | 148.297 | -13.423 | 0.0 |
140.90404 | 92.602 | -12.604 | 0.0 |
224.20853 | 71.879 | -16.615 | 0.0 |
235.78077 | 180.366 | -3.918 | 0.0 |
244.45342 | 105.077 | -5.004 | 0.0 |
210.57261 | 200.044 | -11.381 | 0.0 |
327.3922 | 112.023 | -11.341 | 1.0 |
168.38485 | 99.991 | -4.1 | 0.0 |
287.13751 | 137.154 | -12.948 | 0.0 |
148.63628 | 121.773 | -11.432 | 0.0 |
214.7522 | 124.437 | -5.834 | 0.0 |
197.43302 | 92.959 | -4.948 | 0.0 |
150.17751 | 112.0 | -5.968 | 0.0 |
152.86812 | 120.884 | -15.693 | 0.0 |
173.322 | 120.827 | -7.96 | 0.0 |
235.15383 | 85.519 | -8.172 | 0.0 |
299.41506 | 94.68 | -15.486 | 0.0 |
222.35383 | 156.046 | -8.885 | 0.0 |
235.85914 | 130.055 | -5.341 | 0.0 |
276.71465 | 170.059 | -2.926 | 0.0 |
136.07138 | 168.895 | -6.971 | 0.0 |
205.7922 | 129.57 | -6.113 | 0.0 |
268.72118 | 126.894 | -7.142 | 0.0 |
390.63465 | 232.08 | -5.493 | 1.0 |
242.59873 | 124.034 | -11.24 | 0.0 |
274.80771 | 108.178 | -21.456 | 0.0 |
157.25669 | 151.108 | -11.678 | 0.0 |
203.67628 | 140.02 | -5.939 | 0.0 |
302.47138 | 148.2 | -10.428 | 0.0 |
292.64934 | 106.006 | -3.538 | 0.0 |
245.002 | 135.997 | -10.6 | 0.0 |
181.57669 | 132.89 | -5.429 | 0.0 |
36.38812 | 65.132 | -12.621 | 0.0 |
656.14322 | 95.469 | -8.588 | 1.0 |
262.50404 | 88.025 | -4.359 | 0.0 |
261.95546 | 117.93 | -5.5 | 0.0 |
337.57995 | 122.08 | -6.658 | 1.0 |
373.08036 | 126.846 | -10.115 | 1.0 |
220.36853 | 157.934 | -13.192 | 0.0 |
357.22404 | 199.889 | -9.832 | 1.0 |
663.61424 | 143.681 | -9.066 | 1.0 |
155.08853 | 201.152 | -7.43 | 0.0 |
264.56771 | 133.7 | -11.767 | 0.0 |
262.53016 | 105.041 | -3.933 | 0.0 |
386.61179 | 132.644 | -8.34 | 1.0 |
224.41751 | 93.333 | -12.001 | 0.0 |
264.25424 | 117.547 | -6.134 | 0.0 |
12.82567 | 99.229 | -29.527 | 0.0 |
470.25587 | 135.99 | -7.403 | 1.0 |
213.7073 | 92.584 | -8.398 | 0.0 |
50.59873 | 108.989 | -10.006 | 0.0 |
273.162 | 114.014 | -8.527 | 0.0 |
285.1522 | 101.877 | -9.361 | 0.0 |
267.88526 | 123.903 | -10.177 | 0.0 |
334.54975 | 138.386 | -7.389 | 1.0 |
174.0273 | 95.084 | -21.944 | 0.0 |
242.15465 | 87.196 | -9.749 | 0.0 |
188.96934 | 188.967 | -3.288 | 0.0 |
480.67873 | 127.989 | -7.243 | 1.0 |
182.54322 | 72.894 | -17.837 | 0.0 |
231.1571 | 126.959 | -5.632 | 0.0 |
105.37751 | 136.156 | -13.607 | 0.0 |
125.88363 | 93.022 | -13.496 | 0.0 |
216.99873 | 151.866 | -7.47 | 0.0 |
176.50893 | 142.601 | -3.881 | 0.0 |
245.57669 | 123.186 | -3.609 | 0.0 |
191.37261 | 145.008 | -14.3 | 0.0 |
62.11873 | 80.961 | -12.453 | 0.0 |
274.80771 | 83.505 | -10.032 | 0.0 |
148.29669 | 92.154 | -13.542 | 0.0 |
241.47546 | 115.886 | -11.948 | 0.0 |
250.40934 | 100.001 | -18.335 | 0.0 |
154.56608 | 96.464 | -12.133 | 0.0 |
485.14567 | 84.633 | -8.812 | 1.0 |
307.22567 | 63.498 | -9.047 | 0.0 |
167.78404 | 122.92 | -13.528 | 0.0 |
345.10322 | 130.003 | -7.858 | 1.0 |
178.9122 | 111.13 | -7.33 | 0.0 |
237.29587 | 111.244 | -15.209 | 0.0 |
230.16444 | 74.335 | -12.244 | 0.0 |
230.50404 | 98.933 | -12.616 | 0.0 |
195.16036 | 131.037 | -12.769 | 0.0 |
130.01098 | 99.176 | -11.082 | 0.0 |
150.02077 | 97.501 | -2.945 | 0.0 |
239.64689 | 89.99 | -9.224 | 0.0 |
91.6371 | 71.187 | -16.523 | 0.0 |
136.88118 | 121.19 | -12.181 | 0.0 |
265.29914 | 167.132 | -13.859 | 0.0 |
166.84363 | 76.298 | -7.692 | 0.0 |
34.79465 | 109.386 | -13.591 | 0.0 |
344.29342 | 138.826 | -12.746 | 1.0 |
294.71302 | 123.963 | -15.225 | 0.0 |
232.9073 | 100.264 | -7.171 | 0.0 |
501.68118 | 126.947 | -8.972 | 1.0 |
163.00363 | 154.296 | -19.387 | 0.0 |
186.51383 | 89.989 | -5.338 | 0.0 |
279.30077 | 130.522 | -11.813 | 0.0 |
202.78812 | 79.515 | -26.44 | 0.0 |
123.45424 | 129.987 | -14.751 | 0.0 |
237.08689 | 82.135 | -6.347 | 0.0 |
239.75138 | 169.111 | -7.915 | 0.0 |
105.87383 | 145.028 | -2.414 | 0.0 |
250.46159 | 123.306 | -5.113 | 0.0 |
227.68281 | 132.51 | -6.661 | 0.0 |
487.44444 | 100.065 | -16.668 | 1.0 |
247.17016 | 165.886 | -8.476 | 0.0 |
194.92526 | 99.414 | -7.516 | 0.0 |
174.602 | 194.079 | -4.611 | 0.0 |
199.96689 | 148.78 | -9.657 | 0.0 |
278.7522 | 185.291 | -10.58 | 0.0 |
147.82649 | 88.634 | -3.83 | 0.0 |
166.1122 | 106.748 | -10.875 | 0.0 |
150.67383 | 120.367 | -14.628 | 0.0 |
237.53098 | 127.24 | -27.291 | 0.0 |
174.10567 | 124.185 | -6.983 | 0.0 |
84.84526 | 98.321 | -4.167 | 0.0 |
287.50322 | 121.821 | -9.951 | 0.0 |
142.23628 | 184.994 | -16.834 | 0.0 |
85.91628 | 180.788 | -9.972 | 0.0 |
217.23383 | 108.892 | -7.211 | 0.0 |
233.63873 | 113.878 | -6.394 | 0.0 |
291.94404 | 91.976 | -6.998 | 0.0 |
502.5171 | 140.015 | -5.285 | 1.0 |
316.02893 | 97.508 | -10.52 | 0.0 |
408.58077 | 176.977 | -15.701 | 1.0 |
244.13995 | 156.187 | -5.985 | 0.0 |
146.46812 | 140.032 | -13.347 | 0.0 |
131.05587 | 114.198 | -23.084 | 0.0 |
175.80363 | 137.052 | -7.147 | 0.0 |
230.53016 | 115.496 | -3.953 | 0.0 |
247.92771 | 90.092 | -10.103 | 0.0 |
207.04608 | 132.94 | -7.325 | 0.0 |
163.70893 | 77.698 | -18.806 | 0.0 |
179.722 | 81.884 | -40.036 | 0.0 |
214.02077 | 87.003 | -4.724 | 0.0 |
379.68934 | 127.986 | -8.715 | 1.0 |
173.322 | 74.929 | -3.089 | 0.0 |
263.81016 | 131.945 | -6.911 | 0.0 |
244.21832 | 109.004 | -3.762 | 0.0 |
220.1073 | 99.948 | -14.54 | 0.0 |
298.37016 | 87.591 | -31.42 | 0.0 |
273.97179 | 169.372 | -10.764 | 0.0 |
229.74649 | 117.184 | -6.174 | 0.0 |
383.68608 | 127.261 | -3.975 | 1.0 |
278.02077 | 47.779 | -4.486 | 0.0 |
135.75791 | 164.977 | -5.974 | 0.0 |
373.75955 | 129.057 | -8.391 | 1.0 |
272.40444 | 162.882 | -14.916 | 0.0 |
164.93669 | 120.317 | -11.476 | 0.0 |
242.99057 | 103.45 | -16.493 | 0.0 |
248.24118 | 116.026 | -6.973 | 0.0 |
304.61342 | 212.051 | -17.131 | 0.0 |
228.91057 | 91.879 | -23.314 | 0.0 |
308.50567 | 118.188 | -7.159 | 0.0 |
419.83955 | 125.007 | -11.017 | 1.0 |
189.67465 | 193.129 | -8.674 | 0.0 |
242.28526 | 69.129 | -16.121 | 0.0 |
213.02812 | 126.919 | -8.439 | 0.0 |
290.16771 | 135.96 | -7.305 | 0.0 |
143.12444 | 100.706 | -12.15 | 0.0 |
278.22975 | 103.227 | -7.35 | 0.0 |
260.30975 | 190.015 | -5.148 | 0.0 |
112.53506 | 128.054 | -18.969 | 0.0 |
248.78975 | 102.113 | -7.149 | 0.0 |
178.33751 | 147.659 | -3.494 | 0.0 |
242.83383 | 72.278 | -11.75 | 0.0 |
226.97751 | 100.012 | -4.935 | 0.0 |
172.61669 | 102.747 | -9.067 | 0.0 |
188.96934 | 110.208 | -7.915 | 0.0 |
129.35791 | 183.983 | -7.223 | 0.0 |
169.45587 | 91.872 | -5.507 | 0.0 |
57.67791 | 104.328 | -9.213 | 0.0 |
294.47791 | 107.29 | -6.285 | 0.0 |
372.79302 | 124.018 | -8.312 | 1.0 |
226.82077 | 132.001 | -5.636 | 0.0 |
171.25832 | 111.129 | -10.311 | 0.0 |
130.61179 | 204.936 | -9.571 | 0.0 |
123.48036 | 171.624 | -7.069 | 0.0 |
230.86975 | 154.048 | -4.541 | 0.0 |
181.26322 | 120.07 | -3.623 | 0.0 |
102.79138 | 113.374 | -13.804 | 0.0 |
385.64526 | 116.331 | -6.748 | 1.0 |
193.69751 | 112.542 | -4.375 | 0.0 |
249.20771 | 146.99 | -7.306 | 0.0 |
172.64281 | 119.993 | -9.333 | 0.0 |
152.45016 | 95.981 | -12.144 | 0.0 |
142.75873 | 86.66 | -14.115 | 0.0 |
413.20444 | 123.564 | -10.417 | 1.0 |
208.87465 | 134.331 | -14.099 | 0.0 |
200.51546 | 165.825 | -12.445 | 0.0 |
337.6322 | 115.649 | -11.181 | 1.0 |
222.9024 | 75.527 | -15.198 | 0.0 |
221.77914 | 104.983 | -7.908 | 0.0 |
262.922 | 156.13 | -13.043 | 0.0 |
206.602 | 236.05 | -3.612 | 0.0 |
277.9424 | 147.967 | -8.768 | 0.0 |
139.4673 | 159.421 | -18.781 | 0.0 |
167.73179 | 161.62 | -11.271 | 0.0 |
205.71383 | 190.11 | -3.171 | 0.0 |
308.55791 | 92.008 | -11.944 | 0.0 |
184.89424 | 111.551 | -11.777 | 0.0 |
162.42893 | 83.324 | -15.155 | 0.0 |
150.04689 | 119.14 | -23.358 | 0.0 |
217.15546 | 128.463 | -3.67 | 0.0 |
156.49914 | 155.053 | -3.135 | 0.0 |
720.74404 | 113.527 | -11.96 | 1.0 |
429.84444 | 146.456 | -10.661 | 1.0 |
258.61179 | 92.829 | -8.928 | 0.0 |
210.31138 | 86.073 | -16.77 | 0.0 |
263.02649 | 98.531 | -27.825 | 0.0 |
167.49669 | 90.052 | -10.736 | 0.0 |
358.08608 | 63.867 | -12.322 | 1.0 |
326.19057 | 140.026 | -4.9 | 1.0 |
418.42893 | 85.351 | -7.587 | 1.0 |
192.13016 | 147.428 | -8.522 | 0.0 |
180.61016 | 89.582 | -12.25 | 0.0 |
194.21995 | 137.415 | -21.924 | 0.0 |
194.5073 | 169.757 | -10.502 | 0.0 |
260.64934 | 193.875 | -7.698 | 0.0 |
246.38649 | 142.081 | -7.517 | 0.0 |
237.40036 | 196.665 | -9.895 | 0.0 |
183.71873 | 124.706 | -28.112 | 0.0 |
125.64853 | 94.467 | -4.691 | 0.0 |
217.0771 | 98.966 | -4.5 | 0.0 |
297.22077 | 107.963 | -16.542 | 0.0 |
153.57342 | 93.931 | -15.579 | 0.0 |
258.35057 | 145.774 | -7.775 | 0.0 |
213.13261 | 86.633 | -7.306 | 0.0 |
215.66649 | 111.961 | -5.529 | 0.0 |
84.4273 | 74.848 | -22.231 | 0.0 |
215.87546 | 105.793 | -8.988 | 0.0 |
165.48526 | 127.001 | -13.785 | 0.0 |
399.33342 | 161.057 | -3.206 | 1.0 |
367.93424 | 119.991 | -6.123 | 1.0 |
313.44281 | 129.342 | -10.202 | 0.0 |
295.67955 | 114.641 | -9.913 | 0.0 |
196.5971 | 96.798 | -14.001 | 0.0 |
191.4771 | 100.248 | -5.114 | 0.0 |
313.44281 | 102.699 | -7.444 | 0.0 |
205.11302 | 93.238 | -6.034 | 0.0 |
81.42322 | 207.494 | -24.804 | 0.0 |
188.78649 | 194.439 | -9.626 | 0.0 |
308.24444 | 145.975 | -6.359 | 0.0 |
411.92444 | 237.466 | -9.633 | 1.0 |
256.86159 | 131.837 | -11.147 | 0.0 |
38.45179 | 73.214 | -14.797 | 0.0 |
264.77669 | 130.674 | -4.721 | 0.0 |
212.4273 | 116.029 | -2.106 | 0.0 |
displayHTML(frameIt("https://en.wikipedia.org/wiki/Euclidean_space",500)) // make sure you run the cell with first wikipedia article!
Do you see the problem in our clusters based on the plot?
As you can see there is very little "separation" (in the sense of being separable into two point clouds, that represent our two identifed clusters, such that they have minimal overlay of these two features, i.e. tempo and loudness. NOTE that this sense of "pairwise separation" is a 2D projection of all three features in 3D Euclidean Space, i.e. loudness, tempo and duration, that depends directly on their two-dimensional visually sense-making projection of perhaps two important song features, as depicted in the corresponding 2D-scatter-plot of tempo versus loudness within the 2D scatter plot matrix that is helping us to partially visualize in the 2D-plane all of the three features in the three dimensional real-valued feature space that was the input to our K-Means algorithm) between loudness, and tempo and generated clusters. To see that, focus on the panels in the first and second columns of the scatter plot matrix. For varying values of loudness and tempo prediction does not change. Instead, duration of a song alone predicts what cluster it belongs to. Why is that?
To see the reason, let's take a look at the marginal distribution of duration in the next cell.
To produce this plot, we have picked histogram from the plots menu and in Plot Options
we chose prediction as key and duration as value. The histogram plot shows significant skew in duration. Basically there are a few very long songs. These data points have large leverage on the mean function (what KMeans uses for clustering).
display(transformed.sample(false, fraction = 1.0).select("duration", "prediction")) // plotting over all results
duration | prediction |
---|---|
213.7073 | 0.0 |
133.25016 | 0.0 |
247.32689 | 0.0 |
337.05751 | 1.0 |
430.23628 | 1.0 |
186.80118 | 0.0 |
361.89995 | 1.0 |
220.00281 | 0.0 |
156.86485 | 0.0 |
256.67873 | 0.0 |
204.64281 | 0.0 |
112.48281 | 0.0 |
170.39628 | 0.0 |
215.95383 | 0.0 |
303.62077 | 0.0 |
266.60526 | 0.0 |
326.19057 | 1.0 |
51.04281 | 0.0 |
129.4624 | 0.0 |
253.33506 | 0.0 |
237.76608 | 0.0 |
132.96281 | 0.0 |
399.35955 | 1.0 |
168.75057 | 0.0 |
396.042 | 1.0 |
192.10404 | 0.0 |
12.2771 | 0.0 |
367.56853 | 1.0 |
189.93587 | 0.0 |
233.50812 | 0.0 |
462.68036 | 1.0 |
202.60526 | 0.0 |
241.52771 | 0.0 |
275.64363 | 0.0 |
350.69342 | 1.0 |
166.55628 | 0.0 |
249.49506 | 0.0 |
53.86404 | 0.0 |
233.76934 | 0.0 |
275.12118 | 0.0 |
191.13751 | 0.0 |
299.07546 | 0.0 |
468.74077 | 1.0 |
110.34077 | 0.0 |
234.78812 | 0.0 |
705.25342 | 1.0 |
383.52934 | 1.0 |
196.10077 | 0.0 |
299.20608 | 0.0 |
94.04036 | 0.0 |
28.08118 | 0.0 |
207.93424 | 0.0 |
152.0322 | 0.0 |
207.96036 | 0.0 |
371.25179 | 1.0 |
288.93995 | 0.0 |
235.93751 | 0.0 |
505.70404 | 1.0 |
177.57995 | 0.0 |
376.842 | 1.0 |
266.84036 | 0.0 |
270.8371 | 0.0 |
178.18077 | 0.0 |
527.17669 | 1.0 |
244.27057 | 0.0 |
436.47955 | 1.0 |
236.79955 | 0.0 |
134.53016 | 0.0 |
181.002 | 0.0 |
239.41179 | 0.0 |
72.98567 | 0.0 |
214.36036 | 0.0 |
150.59546 | 0.0 |
152.45016 | 0.0 |
218.17424 | 0.0 |
290.63791 | 0.0 |
149.05424 | 0.0 |
440.21506 | 1.0 |
212.34893 | 0.0 |
278.67383 | 0.0 |
269.60934 | 0.0 |
182.69995 | 0.0 |
207.882 | 0.0 |
102.50404 | 0.0 |
437.60281 | 1.0 |
216.11057 | 0.0 |
193.25342 | 0.0 |
234.16118 | 0.0 |
695.77098 | 1.0 |
297.58649 | 0.0 |
265.37751 | 0.0 |
182.85669 | 0.0 |
202.23955 | 0.0 |
390.08608 | 1.0 |
242.78159 | 0.0 |
242.54649 | 0.0 |
496.66567 | 1.0 |
395.36281 | 1.0 |
234.89261 | 0.0 |
237.84444 | 0.0 |
313.57342 | 0.0 |
489.22077 | 1.0 |
239.98649 | 0.0 |
128.65261 | 0.0 |
193.07057 | 0.0 |
144.19546 | 0.0 |
196.96281 | 0.0 |
222.06649 | 0.0 |
58.38322 | 0.0 |
346.14812 | 1.0 |
406.54322 | 1.0 |
304.09098 | 0.0 |
180.21832 | 0.0 |
213.41995 | 0.0 |
323.44771 | 0.0 |
54.7522 | 0.0 |
437.02812 | 1.0 |
268.7473 | 0.0 |
104.75057 | 0.0 |
248.60689 | 0.0 |
221.41342 | 0.0 |
237.81832 | 0.0 |
216.34567 | 0.0 |
78.94159 | 0.0 |
47.22893 | 0.0 |
202.00444 | 0.0 |
293.56363 | 0.0 |
206.44526 | 0.0 |
267.78077 | 0.0 |
187.27138 | 0.0 |
249.05098 | 0.0 |
221.51791 | 0.0 |
452.88444 | 1.0 |
163.76118 | 0.0 |
257.17506 | 0.0 |
235.78077 | 0.0 |
257.82812 | 0.0 |
195.34322 | 0.0 |
478.1971 | 1.0 |
268.01587 | 0.0 |
136.93342 | 0.0 |
397.53098 | 1.0 |
194.69016 | 0.0 |
580.80608 | 1.0 |
177.71057 | 0.0 |
257.43628 | 0.0 |
184.13669 | 0.0 |
64.57424 | 0.0 |
123.92444 | 0.0 |
257.07057 | 0.0 |
219.48036 | 0.0 |
679.41832 | 1.0 |
252.29016 | 0.0 |
311.90159 | 0.0 |
252.76036 | 0.0 |
138.94485 | 0.0 |
428.64281 | 1.0 |
295.31383 | 0.0 |
212.03546 | 0.0 |
426.50077 | 1.0 |
197.11955 | 0.0 |
191.55546 | 0.0 |
187.53261 | 0.0 |
184.97261 | 0.0 |
388.41424 | 1.0 |
218.90567 | 0.0 |
246.49098 | 0.0 |
452.88444 | 1.0 |
223.18975 | 0.0 |
245.2371 | 0.0 |
148.92363 | 0.0 |
362.81424 | 1.0 |
171.44118 | 0.0 |
207.72526 | 0.0 |
191.29424 | 0.0 |
208.50893 | 0.0 |
240.24771 | 0.0 |
373.44608 | 1.0 |
172.01587 | 0.0 |
153.25995 | 0.0 |
242.36363 | 0.0 |
177.55383 | 0.0 |
263.20934 | 0.0 |
191.03302 | 0.0 |
232.77669 | 0.0 |
220.65587 | 0.0 |
132.57098 | 0.0 |
189.6224 | 0.0 |
32.522 | 0.0 |
173.94893 | 0.0 |
268.01587 | 0.0 |
91.97669 | 0.0 |
215.77098 | 0.0 |
195.47383 | 0.0 |
234.81424 | 0.0 |
110.78485 | 0.0 |
155.74159 | 0.0 |
172.5122 | 0.0 |
227.76118 | 0.0 |
233.01179 | 0.0 |
298.89261 | 0.0 |
245.36771 | 0.0 |
276.08771 | 0.0 |
375.77098 | 1.0 |
273.71057 | 0.0 |
226.92526 | 0.0 |
196.46649 | 0.0 |
199.65342 | 0.0 |
243.40853 | 0.0 |
207.62077 | 0.0 |
252.73424 | 0.0 |
244.32281 | 0.0 |
152.65914 | 0.0 |
203.88526 | 0.0 |
120.16281 | 0.0 |
214.77832 | 0.0 |
204.9824 | 0.0 |
118.30812 | 0.0 |
205.26975 | 0.0 |
499.22567 | 1.0 |
217.83465 | 0.0 |
192.57424 | 0.0 |
328.09751 | 1.0 |
298.03057 | 0.0 |
501.49832 | 1.0 |
276.40118 | 0.0 |
507.55873 | 1.0 |
191.08526 | 0.0 |
324.38812 | 0.0 |
218.56608 | 0.0 |
232.30649 | 0.0 |
295.05261 | 0.0 |
225.74975 | 0.0 |
522.00444 | 1.0 |
245.86404 | 0.0 |
263.67955 | 0.0 |
556.61669 | 1.0 |
227.94404 | 0.0 |
83.82649 | 0.0 |
242.85995 | 0.0 |
233.09016 | 0.0 |
201.74322 | 0.0 |
476.15955 | 1.0 |
370.93832 | 1.0 |
229.17179 | 0.0 |
288.07791 | 0.0 |
91.34975 | 0.0 |
230.79138 | 0.0 |
256.46975 | 0.0 |
203.44118 | 0.0 |
230.81751 | 0.0 |
272.29995 | 0.0 |
201.22077 | 0.0 |
204.93016 | 0.0 |
372.84526 | 1.0 |
63.65995 | 0.0 |
412.15955 | 1.0 |
270.10567 | 0.0 |
104.6722 | 0.0 |
214.25587 | 0.0 |
230.05995 | 0.0 |
155.74159 | 0.0 |
218.04363 | 0.0 |
357.77261 | 1.0 |
318.27546 | 0.0 |
444.55138 | 1.0 |
509.07383 | 1.0 |
176.95302 | 0.0 |
95.34649 | 0.0 |
207.67302 | 0.0 |
256.67873 | 0.0 |
252.78649 | 0.0 |
234.60526 | 0.0 |
167.65342 | 0.0 |
266.16118 | 0.0 |
188.05506 | 0.0 |
229.14567 | 0.0 |
227.00363 | 0.0 |
74.50077 | 0.0 |
222.09261 | 0.0 |
212.68853 | 0.0 |
155.74159 | 0.0 |
153.65179 | 0.0 |
548.51873 | 1.0 |
445.90975 | 1.0 |
317.49179 | 0.0 |
140.32934 | 0.0 |
309.4722 | 0.0 |
142.91546 | 0.0 |
429.24363 | 1.0 |
172.19873 | 0.0 |
215.562 | 0.0 |
290.79465 | 0.0 |
197.04118 | 0.0 |
309.44608 | 0.0 |
265.01179 | 0.0 |
257.64526 | 0.0 |
203.54567 | 0.0 |
161.56689 | 0.0 |
177.84118 | 0.0 |
260.04853 | 0.0 |
195.00363 | 0.0 |
268.042 | 0.0 |
195.97016 | 0.0 |
351.92118 | 1.0 |
119.35302 | 0.0 |
177.24036 | 0.0 |
259.83955 | 0.0 |
222.51057 | 0.0 |
163.97016 | 0.0 |
139.49342 | 0.0 |
158.77179 | 0.0 |
193.4624 | 0.0 |
131.082 | 0.0 |
190.95465 | 0.0 |
413.3873 | 1.0 |
134.73914 | 0.0 |
162.40281 | 0.0 |
243.59138 | 0.0 |
180.84526 | 0.0 |
315.14077 | 0.0 |
221.51791 | 0.0 |
122.53995 | 0.0 |
243.43465 | 0.0 |
200.202 | 0.0 |
95.50322 | 0.0 |
200.4371 | 0.0 |
186.93179 | 0.0 |
492.22485 | 1.0 |
359.33995 | 1.0 |
89.39057 | 0.0 |
212.81914 | 0.0 |
315.03628 | 0.0 |
214.69995 | 0.0 |
137.92608 | 0.0 |
559.49016 | 1.0 |
382.14485 | 1.0 |
430.31465 | 1.0 |
171.25832 | 0.0 |
210.12853 | 0.0 |
53.18485 | 0.0 |
78.65424 | 0.0 |
209.162 | 0.0 |
237.60934 | 0.0 |
184.47628 | 0.0 |
323.02975 | 0.0 |
158.27546 | 0.0 |
213.86404 | 0.0 |
470.69995 | 1.0 |
229.79873 | 0.0 |
392.22812 | 1.0 |
196.62322 | 0.0 |
80.97914 | 0.0 |
124.55138 | 0.0 |
230.32118 | 0.0 |
132.51873 | 0.0 |
112.95302 | 0.0 |
131.52608 | 0.0 |
153.25995 | 0.0 |
211.01669 | 0.0 |
218.93179 | 0.0 |
175.0722 | 0.0 |
116.61016 | 0.0 |
251.45424 | 0.0 |
269.50485 | 0.0 |
231.47057 | 0.0 |
298.37016 | 0.0 |
314.122 | 0.0 |
263.99302 | 0.0 |
480.91383 | 1.0 |
305.10975 | 0.0 |
280.16281 | 0.0 |
295.65342 | 0.0 |
411.45424 | 1.0 |
265.97832 | 0.0 |
153.96526 | 0.0 |
210.31138 | 0.0 |
241.44934 | 0.0 |
235.33669 | 0.0 |
352.65261 | 1.0 |
293.35465 | 0.0 |
243.66975 | 0.0 |
133.22404 | 0.0 |
233.03791 | 0.0 |
339.93098 | 1.0 |
249.80853 | 0.0 |
253.72689 | 0.0 |
94.35383 | 0.0 |
130.63791 | 0.0 |
195.36934 | 0.0 |
229.25016 | 0.0 |
314.64444 | 0.0 |
329.1424 | 1.0 |
224.46975 | 0.0 |
215.562 | 0.0 |
236.85179 | 0.0 |
197.11955 | 0.0 |
251.76771 | 0.0 |
183.50975 | 0.0 |
268.01587 | 0.0 |
413.02159 | 1.0 |
385.17506 | 1.0 |
358.16444 | 1.0 |
164.77995 | 0.0 |
253.36118 | 0.0 |
196.49261 | 0.0 |
157.6224 | 0.0 |
310.93506 | 0.0 |
434.96444 | 1.0 |
157.04771 | 0.0 |
266.16118 | 0.0 |
267.59791 | 0.0 |
303.90812 | 0.0 |
277.18485 | 0.0 |
272.22159 | 0.0 |
155.95057 | 0.0 |
127.00689 | 0.0 |
152.86812 | 0.0 |
224.7571 | 0.0 |
175.41179 | 0.0 |
151.97995 | 0.0 |
199.99302 | 0.0 |
251.53261 | 0.0 |
252.96934 | 0.0 |
181.13261 | 0.0 |
195.49995 | 0.0 |
328.202 | 1.0 |
187.71546 | 0.0 |
166.94812 | 0.0 |
242.72934 | 0.0 |
218.80118 | 0.0 |
205.68771 | 0.0 |
146.93832 | 0.0 |
449.4624 | 1.0 |
503.40526 | 1.0 |
181.34159 | 0.0 |
143.90812 | 0.0 |
406.36036 | 1.0 |
269.87057 | 0.0 |
265.29914 | 0.0 |
242.88608 | 0.0 |
110.39302 | 0.0 |
262.84363 | 0.0 |
334.00118 | 1.0 |
173.81832 | 0.0 |
608.78322 | 1.0 |
197.22404 | 0.0 |
163.94404 | 0.0 |
93.09995 | 0.0 |
206.75873 | 0.0 |
183.50975 | 0.0 |
402.442 | 1.0 |
735.79057 | 1.0 |
233.19465 | 0.0 |
326.55628 | 1.0 |
525.50485 | 1.0 |
396.19873 | 1.0 |
171.12771 | 0.0 |
318.1971 | 0.0 |
323.70893 | 0.0 |
526.99383 | 1.0 |
161.09669 | 0.0 |
168.41098 | 0.0 |
249.57342 | 0.0 |
405.4722 | 1.0 |
271.0722 | 0.0 |
190.69342 | 0.0 |
151.61424 | 0.0 |
121.57342 | 0.0 |
117.08036 | 0.0 |
244.24444 | 0.0 |
246.85669 | 0.0 |
144.03873 | 0.0 |
169.79546 | 0.0 |
193.93261 | 0.0 |
325.77261 | 1.0 |
337.34485 | 1.0 |
143.67302 | 0.0 |
211.69587 | 0.0 |
299.4673 | 0.0 |
159.76444 | 0.0 |
337.31873 | 1.0 |
259.18649 | 0.0 |
221.64853 | 0.0 |
164.54485 | 0.0 |
56.34567 | 0.0 |
184.21506 | 0.0 |
249.23383 | 0.0 |
127.29424 | 0.0 |
306.6771 | 0.0 |
168.98567 | 0.0 |
290.2722 | 0.0 |
182.33424 | 0.0 |
180.92363 | 0.0 |
233.76934 | 0.0 |
423.70567 | 1.0 |
139.36281 | 0.0 |
289.72363 | 0.0 |
100.96281 | 0.0 |
153.05098 | 0.0 |
129.25342 | 0.0 |
190.11873 | 0.0 |
158.1971 | 0.0 |
234.94485 | 0.0 |
256.02567 | 0.0 |
279.84934 | 0.0 |
217.7824 | 0.0 |
271.62077 | 0.0 |
372.34893 | 1.0 |
264.88118 | 0.0 |
270.18404 | 0.0 |
42.86649 | 0.0 |
247.27465 | 0.0 |
185.10322 | 0.0 |
333.94893 | 1.0 |
380.49914 | 1.0 |
517.72036 | 1.0 |
208.95302 | 0.0 |
359.73179 | 1.0 |
378.72281 | 1.0 |
110.41914 | 0.0 |
237.37424 | 0.0 |
136.30649 | 0.0 |
153.73016 | 0.0 |
209.8673 | 0.0 |
224.86159 | 0.0 |
202.34404 | 0.0 |
229.43302 | 0.0 |
300.56444 | 0.0 |
264.35873 | 0.0 |
213.9424 | 0.0 |
164.77995 | 0.0 |
206.75873 | 0.0 |
249.73016 | 0.0 |
521.11628 | 1.0 |
240.09098 | 0.0 |
347.89832 | 1.0 |
224.96608 | 0.0 |
250.25261 | 0.0 |
419.00363 | 1.0 |
593.3971 | 1.0 |
269.89669 | 0.0 |
235.12771 | 0.0 |
180.76689 | 0.0 |
304.03873 | 0.0 |
253.36118 | 0.0 |
311.74485 | 0.0 |
353.43628 | 1.0 |
337.00526 | 1.0 |
305.00526 | 0.0 |
113.76281 | 0.0 |
379.74159 | 1.0 |
258.76853 | 0.0 |
157.64853 | 0.0 |
352.28689 | 1.0 |
221.51791 | 0.0 |
249.44281 | 0.0 |
205.42649 | 0.0 |
166.922 | 0.0 |
250.25261 | 0.0 |
224.73098 | 0.0 |
316.83873 | 0.0 |
269.34812 | 0.0 |
188.02893 | 0.0 |
276.87138 | 0.0 |
263.02649 | 0.0 |
320.44363 | 0.0 |
531.43465 | 1.0 |
126.85016 | 0.0 |
232.01914 | 0.0 |
243.87873 | 0.0 |
288.60036 | 0.0 |
817.57995 | 1.0 |
200.9073 | 0.0 |
229.48526 | 0.0 |
263.65342 | 0.0 |
209.71057 | 0.0 |
430.54975 | 1.0 |
531.9571 | 1.0 |
277.39383 | 0.0 |
253.41342 | 0.0 |
538.5922 | 1.0 |
187.34975 | 0.0 |
189.67465 | 0.0 |
247.66649 | 0.0 |
196.15302 | 0.0 |
248.45016 | 0.0 |
266.26567 | 0.0 |
174.41914 | 0.0 |
241.21424 | 0.0 |
213.39383 | 0.0 |
201.66485 | 0.0 |
141.16526 | 0.0 |
198.76526 | 0.0 |
234.03057 | 0.0 |
293.77261 | 0.0 |
149.83791 | 0.0 |
193.09669 | 0.0 |
416.62649 | 1.0 |
206.18404 | 0.0 |
292.15302 | 0.0 |
209.55383 | 0.0 |
303.46404 | 0.0 |
284.31628 | 0.0 |
209.34485 | 0.0 |
131.34322 | 0.0 |
127.16363 | 0.0 |
228.98893 | 0.0 |
18.18077 | 0.0 |
202.762 | 0.0 |
475.21914 | 1.0 |
434.52036 | 1.0 |
306.36363 | 0.0 |
251.84608 | 0.0 |
392.80281 | 1.0 |
191.63383 | 0.0 |
207.90812 | 0.0 |
298.86649 | 0.0 |
195.36934 | 0.0 |
236.06812 | 0.0 |
315.76771 | 0.0 |
214.5171 | 0.0 |
140.90404 | 0.0 |
147.66975 | 0.0 |
230.50404 | 0.0 |
259.99628 | 0.0 |
234.70975 | 0.0 |
191.97342 | 0.0 |
305.6322 | 0.0 |
197.53751 | 0.0 |
152.05832 | 0.0 |
360.82893 | 1.0 |
440.37179 | 1.0 |
211.09506 | 0.0 |
362.60526 | 1.0 |
364.64281 | 1.0 |
267.12771 | 0.0 |
380.81261 | 1.0 |
248.13669 | 0.0 |
253.20444 | 0.0 |
244.03546 | 0.0 |
159.13751 | 0.0 |
246.12526 | 0.0 |
40.95955 | 0.0 |
200.04526 | 0.0 |
155.08853 | 0.0 |
144.66567 | 0.0 |
170.86649 | 0.0 |
286.71955 | 0.0 |
333.19138 | 1.0 |
542.1971 | 1.0 |
222.37995 | 0.0 |
195.68281 | 0.0 |
440.00608 | 1.0 |
223.08526 | 0.0 |
378.98404 | 1.0 |
91.45424 | 0.0 |
114.65098 | 0.0 |
218.80118 | 0.0 |
242.36363 | 0.0 |
143.0722 | 0.0 |
242.78159 | 0.0 |
256.31302 | 0.0 |
244.37506 | 0.0 |
36.54485 | 0.0 |
401.94567 | 1.0 |
178.65098 | 0.0 |
277.002 | 0.0 |
288.70485 | 0.0 |
228.91057 | 0.0 |
204.06812 | 0.0 |
212.40118 | 0.0 |
224.31302 | 0.0 |
195.7873 | 0.0 |
244.63628 | 0.0 |
241.81506 | 0.0 |
224.10404 | 0.0 |
132.75383 | 0.0 |
113.3971 | 0.0 |
237.03465 | 0.0 |
162.58567 | 0.0 |
247.24853 | 0.0 |
285.30893 | 0.0 |
318.24934 | 0.0 |
375.53587 | 1.0 |
188.78649 | 0.0 |
108.79955 | 0.0 |
270.91546 | 0.0 |
249.23383 | 0.0 |
192.80934 | 0.0 |
295.20934 | 0.0 |
177.84118 | 0.0 |
242.6771 | 0.0 |
245.28934 | 0.0 |
105.61261 | 0.0 |
329.29914 | 1.0 |
207.46404 | 0.0 |
225.51465 | 0.0 |
123.8722 | 0.0 |
270.10567 | 0.0 |
174.86322 | 0.0 |
377.28608 | 1.0 |
220.18567 | 0.0 |
1190.53016 | 1.0 |
1518.65424 | 1.0 |
438.64771 | 1.0 |
344.842 | 1.0 |
76.48608 | 0.0 |
174.52363 | 0.0 |
581.14567 | 1.0 |
177.68444 | 0.0 |
125.962 | 0.0 |
160.39138 | 0.0 |
211.27791 | 0.0 |
182.88281 | 0.0 |
261.53751 | 0.0 |
285.80526 | 0.0 |
263.44444 | 0.0 |
133.32853 | 0.0 |
313.99138 | 0.0 |
199.18322 | 0.0 |
200.98567 | 0.0 |
170.84036 | 0.0 |
194.48118 | 0.0 |
241.65832 | 0.0 |
245.15873 | 0.0 |
262.66077 | 0.0 |
307.46077 | 0.0 |
295.20934 | 0.0 |
259.52608 | 0.0 |
347.19302 | 1.0 |
206.91546 | 0.0 |
399.51628 | 1.0 |
271.25506 | 0.0 |
172.7473 | 0.0 |
231.65342 | 0.0 |
208.1171 | 0.0 |
195.76118 | 0.0 |
723.27791 | 1.0 |
282.95791 | 0.0 |
153.12934 | 0.0 |
207.15057 | 0.0 |
174.41914 | 0.0 |
269.29587 | 0.0 |
275.3824 | 0.0 |
149.41995 | 0.0 |
108.35546 | 0.0 |
243.69587 | 0.0 |
308.27057 | 0.0 |
204.90404 | 0.0 |
311.24853 | 0.0 |
164.77995 | 0.0 |
449.51465 | 1.0 |
140.93016 | 0.0 |
165.22404 | 0.0 |
53.26322 | 0.0 |
218.80118 | 0.0 |
300.85179 | 0.0 |
388.75383 | 1.0 |
150.77832 | 0.0 |
293.11955 | 0.0 |
177.71057 | 0.0 |
184.11057 | 0.0 |
225.17506 | 0.0 |
272.19546 | 0.0 |
157.67465 | 0.0 |
204.61669 | 0.0 |
93.98812 | 0.0 |
204.45995 | 0.0 |
307.1473 | 0.0 |
347.0624 | 1.0 |
184.73751 | 0.0 |
146.65098 | 0.0 |
513.90649 | 1.0 |
293.85098 | 0.0 |
121.73016 | 0.0 |
86.72608 | 0.0 |
171.25832 | 0.0 |
264.95955 | 0.0 |
411.68934 | 1.0 |
190.79791 | 0.0 |
159.65995 | 0.0 |
162.89914 | 0.0 |
205.97506 | 0.0 |
204.59057 | 0.0 |
117.02812 | 0.0 |
135.28771 | 0.0 |
163.65669 | 0.0 |
254.95465 | 0.0 |
178.31138 | 0.0 |
150.77832 | 0.0 |
410.53995 | 1.0 |
222.30159 | 0.0 |
314.74893 | 0.0 |
233.11628 | 0.0 |
226.21995 | 0.0 |
441.67791 | 1.0 |
120.99873 | 0.0 |
157.75302 | 0.0 |
203.65016 | 0.0 |
287.73832 | 0.0 |
226.7424 | 0.0 |
69.56363 | 0.0 |
174.52363 | 0.0 |
363.67628 | 1.0 |
136.48934 | 0.0 |
390.60853 | 1.0 |
284.60363 | 0.0 |
291.81342 | 0.0 |
502.7522 | 1.0 |
197.27628 | 0.0 |
329.53424 | 1.0 |
340.1922 | 1.0 |
170.94485 | 0.0 |
113.57995 | 0.0 |
205.24363 | 0.0 |
169.22077 | 0.0 |
285.70077 | 0.0 |
221.23057 | 0.0 |
310.38649 | 0.0 |
353.48853 | 1.0 |
415.92118 | 1.0 |
150.59546 | 0.0 |
236.90404 | 0.0 |
227.42159 | 0.0 |
229.8771 | 0.0 |
359.3922 | 1.0 |
403.17342 | 1.0 |
296.59383 | 0.0 |
117.65506 | 0.0 |
241.3971 | 0.0 |
34.92526 | 0.0 |
188.31628 | 0.0 |
409.02485 | 1.0 |
335.5424 | 1.0 |
354.63791 | 1.0 |
213.31546 | 0.0 |
238.62812 | 0.0 |
193.33179 | 0.0 |
225.33179 | 0.0 |
166.84363 | 0.0 |
79.96036 | 0.0 |
158.69342 | 0.0 |
176.53506 | 0.0 |
347.61098 | 1.0 |
106.39628 | 0.0 |
147.93098 | 0.0 |
446.92853 | 1.0 |
360.22812 | 1.0 |
214.56934 | 0.0 |
325.35465 | 1.0 |
413.23057 | 1.0 |
218.04363 | 0.0 |
215.30077 | 0.0 |
57.44281 | 0.0 |
247.48363 | 0.0 |
793.25995 | 1.0 |
467.3824 | 1.0 |
327.00036 | 1.0 |
232.72444 | 0.0 |
251.68934 | 0.0 |
197.3024 | 0.0 |
193.88036 | 0.0 |
383.32036 | 1.0 |
269.71383 | 0.0 |
255.05914 | 0.0 |
337.18812 | 1.0 |
240.92689 | 0.0 |
206.18404 | 0.0 |
143.22893 | 0.0 |
244.27057 | 0.0 |
83.56526 | 0.0 |
428.40771 | 1.0 |
261.11955 | 0.0 |
208.37832 | 0.0 |
369.78893 | 1.0 |
47.17669 | 0.0 |
239.3073 | 0.0 |
17.37098 | 0.0 |
257.04444 | 0.0 |
198.63465 | 0.0 |
208.40444 | 0.0 |
338.28526 | 1.0 |
175.15057 | 0.0 |
234.97098 | 0.0 |
275.06893 | 0.0 |
186.46159 | 0.0 |
201.74322 | 0.0 |
237.58322 | 0.0 |
219.402 | 0.0 |
461.29587 | 1.0 |
196.67546 | 0.0 |
290.63791 | 0.0 |
328.22812 | 1.0 |
260.64934 | 0.0 |
245.83791 | 0.0 |
97.54077 | 0.0 |
248.0322 | 0.0 |
175.33342 | 0.0 |
199.57506 | 0.0 |
229.45914 | 0.0 |
902.26893 | 1.0 |
271.12444 | 0.0 |
211.17342 | 0.0 |
179.3824 | 0.0 |
156.96934 | 0.0 |
281.0771 | 0.0 |
291.97016 | 0.0 |
392.85506 | 1.0 |
223.00689 | 0.0 |
269.94893 | 0.0 |
36.64934 | 0.0 |
309.26322 | 0.0 |
178.41587 | 0.0 |
206.75873 | 0.0 |
155.68934 | 0.0 |
254.71955 | 0.0 |
133.11955 | 0.0 |
260.362 | 0.0 |
135.28771 | 0.0 |
158.27546 | 0.0 |
154.93179 | 0.0 |
205.84444 | 0.0 |
276.21832 | 0.0 |
193.61914 | 0.0 |
153.73016 | 0.0 |
389.11955 | 1.0 |
195.23873 | 0.0 |
210.72934 | 0.0 |
336.06485 | 1.0 |
263.02649 | 0.0 |
230.26893 | 0.0 |
40.6722 | 0.0 |
255.92118 | 0.0 |
305.60608 | 0.0 |
177.8673 | 0.0 |
361.11628 | 1.0 |
357.66812 | 1.0 |
196.49261 | 0.0 |
218.40934 | 0.0 |
91.58485 | 0.0 |
185.25995 | 0.0 |
282.80118 | 0.0 |
244.68853 | 0.0 |
215.40526 | 0.0 |
211.19955 | 0.0 |
327.75791 | 1.0 |
510.40608 | 1.0 |
212.74077 | 0.0 |
120.86812 | 0.0 |
507.08853 | 1.0 |
265.11628 | 0.0 |
183.06567 | 0.0 |
199.54893 | 0.0 |
41.92608 | 0.0 |
164.75383 | 0.0 |
267.33669 | 0.0 |
208.74404 | 0.0 |
253.09995 | 0.0 |
244.50567 | 0.0 |
195.73506 | 0.0 |
160.07791 | 0.0 |
327.70567 | 1.0 |
174.86322 | 0.0 |
272.92689 | 0.0 |
251.53261 | 0.0 |
216.99873 | 0.0 |
195.3171 | 0.0 |
247.11791 | 0.0 |
101.3024 | 0.0 |
315.97669 | 0.0 |
449.67138 | 1.0 |
173.16526 | 0.0 |
394.44853 | 1.0 |
226.69016 | 0.0 |
219.11465 | 0.0 |
240.92689 | 0.0 |
227.91791 | 0.0 |
119.84934 | 0.0 |
109.92281 | 0.0 |
116.08771 | 0.0 |
187.71546 | 0.0 |
191.65995 | 0.0 |
116.32281 | 0.0 |
482.45506 | 1.0 |
262.71302 | 0.0 |
208.97914 | 0.0 |
209.81506 | 0.0 |
129.85424 | 0.0 |
219.0624 | 0.0 |
500.4273 | 1.0 |
224.7571 | 0.0 |
274.85995 | 0.0 |
145.162 | 0.0 |
211.27791 | 0.0 |
167.49669 | 0.0 |
415.7122 | 1.0 |
346.33098 | 1.0 |
399.69914 | 1.0 |
136.56771 | 0.0 |
There are known techniques for dealing with skewed features. A simple technique is applying a power transformation. We are going to use the simplest and most common power transformation: logarithm.
In following cell we repeat the clustering experiment with a transformed DataFrame that includes a new column called log_duration
.
val df = table("songsTable").selectExpr("tempo", "loudness", "log(duration) as log_duration")
val trainingData2 = new VectorAssembler().
setInputCols(Array("log_duration", "tempo", "loudness")).
setOutputCol("features").
transform(df)
val model2 = new KMeans().setK(2).fit(trainingData2)
val transformed2 = model2.transform(trainingData2).select("log_duration", "tempo", "loudness", "prediction")
display(transformed2.sample(false, fraction = 0.1))
log_duration | tempo | loudness | prediction |
---|---|---|---|
4.892228263795702 | 89.519 | 0.596 | 1.0 |
5.321266069167063 | 99.722 | -12.339 | 1.0 |
4.890069465059506 | 77.072 | -19.018 | 1.0 |
5.128421707524712 | 149.709 | -9.086 | 0.0 |
5.981520266236513 | 125.086 | -8.858 | 1.0 |
3.9864630938537244 | 102.771 | -8.348 | 1.0 |
5.4586834904217785 | 81.03 | -4.351 | 1.0 |
4.901788411822545 | 104.155 | -9.995 | 1.0 |
5.3676585240430414 | 121.879 | -6.676 | 1.0 |
4.629902212435873 | 107.065 | -5.793 | 1.0 |
5.695704905423108 | 133.245 | -15.968 | 0.0 |
5.098409146993903 | 109.509 | -11.688 | 1.0 |
5.274758113962512 | 160.093 | -9.8 | 0.0 |
5.271409371809784 | 125.722 | -11.383 | 1.0 |
5.220207760063188 | 178.457 | -5.111 | 0.0 |
5.4080223065135975 | 115.051 | -4.391 | 1.0 |
5.253812766217677 | 100.846 | -17.772 | 1.0 |
5.450079581978073 | 123.436 | -7.885 | 1.0 |
5.1587617503861605 | 104.546 | -17.661 | 1.0 |
4.707590032112409 | 123.436 | -7.661 | 1.0 |
5.532338501851636 | 79.327 | -9.448 | 1.0 |
5.419427084876769 | 99.071 | -6.437 | 1.0 |
5.574734540105573 | 131.984 | -3.124 | 0.0 |
5.451425331508477 | 81.996 | -5.243 | 1.0 |
5.30699570063741 | 117.089 | -7.265 | 1.0 |
6.165752987143742 | 124.985 | -9.327 | 1.0 |
5.315376921332985 | 172.282 | -11.732 | 0.0 |
5.322669238165966 | 178.637 | -5.65 | 0.0 |
5.367170955002224 | 153.471 | -5.629 | 0.0 |
5.3359648235518415 | 152.604 | -16.311 | 0.0 |
5.863407230069623 | 133.41 | -11.714 | 0.0 |
5.177506777473437 | 105.835 | -13.759 | 1.0 |
5.752687806796722 | 90.654 | -7.9 | 1.0 |
5.343109071331969 | 155.839 | -13.898 | 0.0 |
6.154220842182319 | 124.993 | -9.335 | 1.0 |
4.394191590641474 | 81.892 | -17.253 | 1.0 |
4.824718321534403 | 96.931 | -25.969 | 1.0 |
5.4394747695975 | 115.32 | -27.166 | 1.0 |
4.879205158949818 | 167.916 | -10.475 | 0.0 |
5.57592266340285 | 66.84 | -17.105 | 1.0 |
5.583414801700688 | 129.987 | -5.065 | 1.0 |
5.212267799598076 | 126.594 | -11.339 | 1.0 |
5.624684612142528 | 150.15 | -2.945 | 0.0 |
5.049539098064766 | 106.711 | -9.961 | 1.0 |
5.793629272482639 | 229.55 | -11.221 | 0.0 |
5.234927305677438 | 101.512 | -15.01 | 1.0 |
5.580858019525172 | 84.452 | -15.906 | 1.0 |
5.571559292617606 | 131.909 | -13.378 | 0.0 |
5.788602307521884 | 141.122 | -8.686 | 0.0 |
4.970082221746526 | 152.041 | -3.942 | 0.0 |
6.049039039652957 | 73.965 | -6.694 | 1.0 |
5.030771068507152 | 122.206 | -4.552 | 1.0 |
5.383496399152903 | 87.535 | -8.193 | 1.0 |
5.59910335642404 | 202.202 | -9.769 | 0.0 |
3.7580904018205405 | 144.656 | -21.759 | 0.0 |
5.510499662196736 | 91.734 | -7.787 | 1.0 |
5.415949635284104 | 88.669 | -13.021 | 1.0 |
5.5224708477113715 | 147.009 | -12.932 | 0.0 |
5.867703214491927 | 123.972 | -8.218 | 1.0 |
5.93949099508187 | 135.225 | -7.149 | 0.0 |
5.325088257046393 | 170.058 | -7.167 | 0.0 |
5.414904042406895 | 115.039 | -3.915 | 1.0 |
5.5960046693360805 | 133.809 | -7.065 | 0.0 |
5.302843607646548 | 95.944 | -14.027 | 1.0 |
5.535022226232155 | 109.03 | -7.646 | 1.0 |
5.512083042725035 | 114.308 | -5.128 | 1.0 |
4.949931260793479 | 76.955 | -9.919 | 1.0 |
5.68280603270908 | 120.029 | -8.123 | 1.0 |
5.5288181072501965 | 123.362 | -12.138 | 1.0 |
5.755006848335441 | 96.66 | -5.153 | 1.0 |
5.4583496443886625 | 95.173 | -8.032 | 1.0 |
5.888403967900819 | 75.822 | -20.6 | 1.0 |
5.497313542602982 | 148.228 | -7.631 | 0.0 |
5.404387405434715 | 213.22 | -6.547 | 0.0 |
5.40755403022849 | 130.008 | -5.239 | 1.0 |
5.358476844907908 | 89.546 | -5.737 | 1.0 |
5.762835163594046 | 135.286 | -11.203 | 0.0 |
5.240616693947672 | 116.085 | -15.192 | 1.0 |
4.689507198383877 | 196.218 | -5.037 | 0.0 |
5.334958023447545 | 122.167 | -14.249 | 1.0 |
5.1640040683149815 | 128.976 | -10.014 | 1.0 |
5.933003732571149 | 96.627 | -25.713 | 1.0 |
7.082153999499342 | 70.198 | -20.06 | 1.0 |
6.083696607997674 | 96.715 | -6.698 | 1.0 |
5.843086341116113 | 111.976 | -7.519 | 1.0 |
5.3531743758536185 | 173.791 | -8.575 | 0.0 |
5.749365533302135 | 126.926 | -10.405 | 1.0 |
5.595810663643512 | 182.629 | -4.415 | 0.0 |
5.1801562156651 | 202.819 | -6.508 | 0.0 |
5.215536501039555 | 84.913 | -9.411 | 1.0 |
6.242041322834571 | 106.155 | -20.058 | 1.0 |
5.676114625435545 | 121.843 | -5.426 | 1.0 |
5.141340989863751 | 122.12 | -11.558 | 1.0 |
4.7325069942308415 | 112.172 | -19.122 | 1.0 |
5.99936679196512 | 102.913 | -5.725 | 1.0 |
5.871097297119184 | 164.057 | -7.287 | 0.0 |
6.024005718051915 | 126.089 | -7.56 | 1.0 |
4.050789844156208 | 92.502 | -21.488 | 1.0 |
4.425627883486494 | 198.038 | -4.413 | 0.0 |
5.823889504042276 | 127.869 | -5.024 | 1.0 |
5.617021720803423 | 102.532 | -21.859 | 1.0 |
5.056050499653188 | 204.32 | -33.671 | 0.0 |
5.598232792959459 | 119.752 | -6.199 | 1.0 |
4.891247596658531 | 137.639 | -7.418 | 0.0 |
5.265893033592153 | 161.881 | -11.354 | 0.0 |
4.517265864988051 | 174.526 | -1.968 | 0.0 |
6.228685603732306 | 132.484 | -10.758 | 0.0 |
5.423584151189881 | 99.976 | -6.921 | 1.0 |
5.4844935264715495 | 125.023 | -12.544 | 1.0 |
4.7543460260807855 | 66.166 | -19.338 | 1.0 |
4.7563691709899825 | 194.894 | -15.227 | 0.0 |
5.389356620738077 | 120.119 | -6.989 | 1.0 |
6.215462333459528 | 140.038 | -7.024 | 0.0 |
4.916820535591926 | 162.84 | -21.235 | 0.0 |
5.67360501441859 | 167.627 | -14.819 | 0.0 |
4.9297436261579115 | 131.889 | -19.341 | 0.0 |
5.559460924718209 | 180.063 | -8.458 | 0.0 |
5.6208132082285225 | 65.726 | -18.979 | 1.0 |
5.717756350350775 | 99.095 | -11.938 | 1.0 |
5.881794174009387 | 90.194 | -11.13 | 1.0 |
5.750861938316315 | 142.684 | -34.187 | 0.0 |
6.124023041620579 | 66.856 | -18.342 | 1.0 |
4.959141137431965 | 110.091 | -4.261 | 1.0 |
4.96097301974927 | 151.719 | -12.37 | 0.0 |
5.312676824285775 | 131.021 | -4.434 | 0.0 |
5.080219439635137 | 212.067 | -6.545 | 0.0 |
5.395538310588208 | 122.881 | -9.178 | 1.0 |
5.077128279024546 | 167.543 | -27.615 | 0.0 |
5.360688133553469 | 191.044 | -6.615 | 0.0 |
5.165496806936141 | 72.821 | -22.331 | 1.0 |
5.330414836847097 | 117.99 | -12.271 | 1.0 |
5.516713145004406 | 181.216 | -10.646 | 0.0 |
5.291467207691819 | 141.057 | -4.902 | 0.0 |
5.337849809954547 | 146.124 | -9.33 | 0.0 |
5.639836453511393 | 94.363 | -10.975 | 1.0 |
5.292518736943963 | 149.03 | -7.679 | 0.0 |
5.3942338170785735 | 187.495 | -9.851 | 0.0 |
5.480800285322447 | 106.475 | -12.97 | 1.0 |
5.560968705190409 | 141.892 | -6.395 | 0.0 |
4.587209351549678 | 100.152 | -7.49 | 1.0 |
5.882449835222424 | 125.015 | -6.138 | 1.0 |
5.12609700051445 | 95.002 | -12.737 | 1.0 |
5.743273792218448 | 117.694 | -13.517 | 1.0 |
5.680758751195347 | 127.045 | -3.325 | 1.0 |
5.185287796501603 | 121.236 | -7.65 | 1.0 |
5.667122570497586 | 109.965 | -6.519 | 1.0 |
5.850632972880582 | 108.969 | -8.918 | 1.0 |
5.168921752645453 | 114.372 | -13.792 | 1.0 |
5.443888273735132 | 99.821 | -6.999 | 1.0 |
5.667483810822177 | 168.042 | -6.125 | 0.0 |
5.830661908645668 | 94.324 | -4.089 | 1.0 |
5.641876503095035 | 143.837 | -5.964 | 0.0 |
5.929118873255758 | 109.973 | -13.02 | 1.0 |
5.858123107869744 | 127.977 | -5.467 | 1.0 |
5.658048889386408 | 229.909 | -5.407 | 0.0 |
6.1138473210629245 | 227.001 | -16.889 | 0.0 |
5.221195796527836 | 127.304 | -17.207 | 1.0 |
5.3080310357356755 | 106.987 | -4.381 | 1.0 |
5.693683888480423 | 64.531 | -8.135 | 1.0 |
5.024779393055371 | 126.968 | -3.041 | 1.0 |
5.286457313335375 | 90.21 | -5.072 | 1.0 |
5.628259435100028 | 125.06 | -9.314 | 1.0 |
4.863794002154297 | 99.352 | -11.506 | 1.0 |
5.105720054556155 | 128.73 | -13.708 | 1.0 |
5.443210556309651 | 106.409 | -13.678 | 1.0 |
5.586650576963475 | 187.973 | -3.6 | 0.0 |
5.423584151189881 | 79.583 | -11.749 | 1.0 |
5.50573446287648 | 90.984 | -8.763 | 1.0 |
5.996381912027348 | 146.091 | -10.571 | 0.0 |
5.378927989850037 | 96.081 | -5.866 | 1.0 |
5.263055769740461 | 102.959 | -5.813 | 1.0 |
4.994801464692383 | 77.26 | -16.736 | 1.0 |
5.87741203189931 | 125.916 | -4.355 | 1.0 |
5.021683965446997 | 66.09 | -11.861 | 1.0 |
5.309194495513895 | 160.067 | -3.026 | 0.0 |
5.312161690119503 | 137.979 | -3.415 | 0.0 |
5.473482250340327 | 160.075 | -5.482 | 0.0 |
6.172641657606361 | 199.772 | -8.871 | 0.0 |
5.714574233587672 | 92.008 | -6.051 | 1.0 |
5.395419802936953 | 171.865 | -8.63 | 0.0 |
4.844858199794328 | 96.873 | -19.552 | 1.0 |
5.060202299303682 | 104.551 | -4.231 | 1.0 |
4.748930818586818 | 115.094 | -17.793 | 1.0 |
5.314349167717073 | 149.229 | -10.206 | 0.0 |
5.269932346654381 | 68.629 | -15.055 | 1.0 |
5.9277973529214725 | 127.997 | -4.827 | 1.0 |
5.43492773924482 | 129.895 | -6.047 | 1.0 |
4.994270518609824 | 91.863 | -14.203 | 1.0 |
5.095693709742171 | 105.907 | -10.031 | 1.0 |
5.672617347966057 | 137.165 | -7.992 | 0.0 |
5.5347129603785135 | 92.352 | -10.665 | 1.0 |
5.327374538139593 | 127.007 | -5.728 | 1.0 |
5.288833536866274 | 92.78 | -8.946 | 1.0 |
5.484818758978618 | 133.085 | -4.901 | 0.0 |
5.873672073907065 | 168.195 | -3.712 | 0.0 |
5.944636977040216 | 173.331 | -14.65 | 0.0 |
5.378566422161142 | 120.003 | -7.086 | 1.0 |
5.103976627903757 | 135.011 | -6.256 | 0.0 |
5.464009755293217 | 137.912 | -9.125 | 0.0 |
5.081842591930373 | 70.493 | -13.819 | 1.0 |
5.24199941706601 | 122.322 | -16.949 | 1.0 |
5.3975509759903 | 127.839 | -7.259 | 1.0 |
5.180009168017768 | 142.4 | -11.379 | 0.0 |
5.514611191961615 | 174.931 | -13.835 | 0.0 |
5.405444091539472 | 207.5 | -14.066 | 0.0 |
5.312934267254636 | 119.386 | -7.572 | 1.0 |
5.277695744967576 | 133.256 | -8.598 | 0.0 |
5.434585866125362 | 99.652 | -12.738 | 1.0 |
5.708526172177688 | 131.914 | -7.071 | 0.0 |
5.991822533023377 | 105.729 | -8.32 | 1.0 |
5.093932699490288 | 93.755 | -11.965 | 1.0 |
4.676943535028833 | 133.688 | -25.357 | 0.0 |
5.255177375047388 | 99.933 | -17.731 | 1.0 |
5.473591859344723 | 127.986 | -5.204 | 1.0 |
5.06845460431089 | 137.476 | -20.349 | 0.0 |
6.269861975338076 | 125.036 | -9.35 | 1.0 |
4.6061773785992814 | 107.049 | -17.63 | 1.0 |
5.811613665680493 | 96.005 | -8.276 | 1.0 |
5.37518557930167 | 144.646 | -4.768 | 0.0 |
5.407202667843807 | 127.865 | -6.744 | 1.0 |
5.10935559222606 | 89.513 | -8.42 | 1.0 |
6.3119724941522355 | 80.637 | -21.579 | 1.0 |
4.60068212971353 | 171.133 | -7.373 | 0.0 |
5.302843607646548 | 146.46 | -9.778 | 0.0 |
5.313963475320257 | 172.222 | -5.742 | 0.0 |
5.945594651051933 | 91.964 | -18.118 | 1.0 |
5.481561789037084 | 115.205 | -14.74 | 1.0 |
5.240755041735268 | 119.842 | -8.305 | 1.0 |
5.88121099672321 | 62.239 | -11.823 | 1.0 |
5.417110114495573 | 169.442 | -9.472 | 0.0 |
5.6501791457712125 | 117.221 | -11.272 | 1.0 |
5.629667005038476 | 86.954 | -5.186 | 1.0 |
5.153340899640642 | 106.959 | -16.133 | 1.0 |
5.637140908112494 | 139.016 | -3.58 | 0.0 |
4.536195814330017 | 89.495 | -9.888 | 1.0 |
5.357123064536815 | 134.136 | -4.418 | 0.0 |
4.956570935784844 | 124.498 | -4.068 | 1.0 |
5.176622106863231 | 106.504 | -17.826 | 1.0 |
6.215462333459528 | 140.004 | -3.739 | 0.0 |
6.124080233101131 | 85.715 | -11.73 | 1.0 |
5.496242551087362 | 186.035 | -4.3 | 0.0 |
5.617970959362721 | 154.859 | -8.951 | 0.0 |
4.89477353660241 | 180.719 | -13.166 | 0.0 |
6.112748824037213 | 137.977 | -6.56 | 0.0 |
6.09500688588351 | 158.965 | -7.366 | 0.0 |
6.09459461717037 | 137.956 | -5.248 | 0.0 |
5.4849271324832785 | 146.145 | -11.286 | 0.0 |
5.786600466126096 | 103.014 | -7.489 | 1.0 |
6.091644939062009 | 168.511 | -1.296 | 0.0 |
5.459573173642483 | 105.409 | -9.947 | 1.0 |
5.433445502449236 | 165.389 | -14.098 | 0.0 |
5.265893033592153 | 116.564 | -4.325 | 1.0 |
5.460239895734497 | 163.924 | -9.666 | 0.0 |
5.6821833846868 | 109.337 | -10.829 | 1.0 |
5.433559588618923 | 140.073 | -2.28 | 0.0 |
5.139658682588309 | 95.939 | -15.853 | 1.0 |
5.913426759488363 | 85.337 | -10.002 | 1.0 |
5.651464515127707 | 80.394 | -11.654 | 1.0 |
5.707051791278539 | 148.899 | -9.717 | 0.0 |
5.268049377893244 | 89.584 | -9.583 | 1.0 |
5.364485091062758 | 100.219 | -4.528 | 1.0 |
5.174702584264729 | 161.441 | -4.071 | 0.0 |
5.293700374625018 | 152.3 | -5.655 | 0.0 |
5.377118888885022 | 89.335 | -12.522 | 1.0 |
5.276762010119172 | 96.441 | -15.351 | 1.0 |
5.335713194456806 | 74.808 | -11.763 | 1.0 |
5.052215593031031 | 122.819 | -5.179 | 1.0 |
5.574139929699739 | 104.013 | -9.321 | 1.0 |
5.413740954228259 | 104.069 | -6.998 | 1.0 |
5.837464901707784 | 154.916 | -5.063 | 0.0 |
5.564477992630099 | 84.732 | -13.35 | 1.0 |
6.413348475654663 | 135.016 | -9.955 | 0.0 |
4.786017489938488 | 127.304 | -14.125 | 1.0 |
5.323815800718434 | 88.023 | -4.729 | 1.0 |
5.986914310465229 | 152.857 | -17.676 | 0.0 |
5.589973519371366 | 115.341 | -4.88 | 1.0 |
5.54853737950824 | 180.153 | -4.271 | 0.0 |
5.732417387460131 | 152.865 | -6.536 | 0.0 |
5.03008812165755 | 92.959 | -11.161 | 1.0 |
5.133363062166066 | 148.873 | -11.132 | 0.0 |
5.566777436858224 | 114.514 | -9.754 | 1.0 |
5.237845445572235 | 87.652 | -15.15 | 1.0 |
5.364485091062758 | 120.581 | -10.633 | 1.0 |
5.281156456841302 | 136.499 | -7.225 | 0.0 |
5.974304781873222 | 116.977 | -5.82 | 1.0 |
5.712591031821589 | 96.74 | -16.773 | 1.0 |
4.768201034433 | 163.559 | -7.325 | 0.0 |
5.246961543889845 | 86.97 | -3.22 | 1.0 |
5.848525642277589 | 135.013 | -6.84 | 0.0 |
5.262785106679844 | 114.559 | -16.931 | 1.0 |
5.715263119130469 | 89.991 | -8.187 | 1.0 |
5.91891896148484 | 104.962 | -8.96 | 1.0 |
5.752604892273739 | 98.979 | -5.167 | 1.0 |
3.8280990755466293 | 120.914 | -13.748 | 1.0 |
5.44422698189371 | 40.559 | -16.461 | 1.0 |
5.775072248464427 | 141.395 | -5.066 | 0.0 |
5.727072250071925 | 89.141 | -7.753 | 1.0 |
5.099843744640108 | 243.768 | -11.206 | 0.0 |
5.445467902438007 | 154.563 | -7.677 | 0.0 |
5.863481448480461 | 150.891 | -10.697 | 0.0 |
5.4541114095996726 | 88.904 | -5.66 | 1.0 |
5.1318214806084255 | 129.198 | -17.277 | 1.0 |
5.056549644534826 | 101.825 | -12.092 | 1.0 |
5.568971940469297 | 90.02 | -8.901 | 1.0 |
5.831275313524761 | 167.31 | -6.281 | 0.0 |
5.435724974434051 | 122.089 | -9.126 | 1.0 |
5.371307757297379 | 133.107 | -21.615 | 0.0 |
5.0493715309354785 | 142.034 | -5.804 | 0.0 |
5.0006231393320295 | 101.266 | -11.025 | 1.0 |
5.138892996898216 | 143.89 | -9.4 | 0.0 |
5.607958929769235 | 160.884 | -10.113 | 0.0 |
5.114234780051099 | 101.722 | -17.746 | 1.0 |
5.5619726050421585 | 82.061 | -20.423 | 1.0 |
5.905558558950945 | 74.663 | -16.268 | 1.0 |
5.559159087919424 | 160.04 | -6.269 | 0.0 |
5.673425495622962 | 98.749 | -9.197 | 1.0 |
5.5975552131122885 | 78.017 | -10.212 | 1.0 |
4.068369957397399 | 85.893 | -10.422 | 1.0 |
5.663049608108374 | 144.369 | -16.004 | 0.0 |
5.745364212498396 | 106.679 | -9.803 | 1.0 |
5.381695597481382 | 136.542 | -8.01 | 0.0 |
5.6928919542966945 | 90.645 | -9.302 | 1.0 |
5.8151253204408455 | 128.342 | -10.902 | 1.0 |
5.611307435373474 | 92.365 | -8.088 | 1.0 |
5.497741626441108 | 241.9 | -7.06 | 0.0 |
5.483734294400877 | 100.05 | -8.816 | 1.0 |
4.463356820883433 | 178.097 | -20.59 | 0.0 |
6.009616032607714 | 120.021 | -4.022 | 1.0 |
5.443323533906124 | 126.076 | -4.774 | 1.0 |
4.51897582060811 | 99.609 | -18.533 | 1.0 |
5.2034029884039 | 140.032 | -13.016 | 0.0 |
5.327628225432808 | 105.253 | -15.568 | 1.0 |
5.172927427877826 | 185.86 | -24.732 | 0.0 |
5.241584779677972 | 98.853 | -9.131 | 1.0 |
5.2885697626443715 | 127.053 | -5.689 | 1.0 |
5.57404080623269 | 90.029 | -5.921 | 1.0 |
5.988291041862788 | 146.713 | -12.065 | 0.0 |
5.563576782171857 | 121.147 | -7.329 | 1.0 |
4.800088568576119 | 86.994 | -6.913 | 1.0 |
5.490007979677294 | 96.037 | -6.355 | 1.0 |
5.705922882348458 | 45.29 | -4.764 | 1.0 |
5.9032786988787525 | 130.906 | -9.294 | 0.0 |
4.983234429165613 | 138.528 | -13.315 | 0.0 |
5.32864242853564 | 142.029 | -8.286 | 0.0 |
5.826203420044363 | 124.649 | -6.772 | 1.0 |
5.346475426219603 | 87.048 | -9.33 | 1.0 |
5.6017103980030365 | 86.005 | -4.337 | 1.0 |
5.232977190837952 | 118.591 | -22.645 | 1.0 |
4.914905953122828 | 132.841 | -4.908 | 0.0 |
4.605394160903837 | 163.073 | -7.354 | 0.0 |
5.490007979677294 | 90.417 | -5.357 | 1.0 |
5.93050805616658 | 125.067 | -7.343 | 1.0 |
4.602255241662874 | 86.067 | -11.15 | 1.0 |
5.2573569249444265 | 111.942 | -9.924 | 1.0 |
6.281461450769486 | 131.111 | -14.636 | 0.0 |
5.206414390626549 | 51.149 | -15.564 | 1.0 |
5.447270117662992 | 174.245 | -13.962 | 0.0 |
5.0583776714334965 | 101.144 | -19.823 | 1.0 |
5.123611357715729 | 159.947 | -4.682 | 0.0 |
5.191411212562029 | 180.749 | -10.095 | 0.0 |
5.52455636202782 | 85.036 | -6.62 | 1.0 |
5.3465998780741435 | 130.047 | -8.107 | 1.0 |
5.533165036662569 | 122.851 | -8.173 | 1.0 |
5.352432281417797 | 133.252 | -11.591 | 0.0 |
4.786453370526792 | 130.029 | -9.234 | 1.0 |
5.322669238165966 | 106.696 | -6.39 | 1.0 |
6.177370567861687 | 188.507 | -5.994 | 0.0 |
5.747700248303512 | 123.554 | -10.384 | 1.0 |
4.322313917258714 | 155.171 | -22.438 | 0.0 |
5.768646067952092 | 100.014 | -9.319 | 1.0 |
5.525285235827343 | 156.019 | -5.927 | 0.0 |
5.755337701403143 | 131.966 | -7.267 | 0.0 |
5.4158334776943535 | 109.389 | -3.559 | 1.0 |
5.049706573007874 | 190.767 | -6.435 | 0.0 |
5.0782682101517675 | 158.383 | -12.358 | 0.0 |
6.0521169097161085 | 92.548 | -7.185 | 1.0 |
5.270469694487864 | 167.866 | -8.306 | 0.0 |
5.929744237745122 | 125.005 | -11.71 | 1.0 |
5.094893657240654 | 62.415 | -16.983 | 1.0 |
5.139199353255555 | 149.999 | -11.615 | 0.0 |
5.192573332912147 | 140.193 | -11.629 | 0.0 |
5.751692283172318 | 130.003 | -7.796 | 1.0 |
5.823580575001653 | 114.618 | -5.992 | 1.0 |
5.300891351005935 | 96.945 | -7.784 | 1.0 |
5.5434394506679086 | 113.922 | -5.388 | 1.0 |
4.544834553660172 | 100.041 | -21.365 | 1.0 |
5.471507020818305 | 144.973 | -10.508 | 0.0 |
5.5207992990407755 | 107.686 | -8.702 | 1.0 |
4.946409115285852 | 108.942 | -13.145 | 1.0 |
6.380080264819872 | 72.873 | -13.246 | 1.0 |
5.393165257695243 | 92.993 | -6.1 | 1.0 |
5.371429156963169 | 86.792 | -7.699 | 1.0 |
5.964490624933571 | 115.305 | -6.148 | 1.0 |
5.416646075519875 | 105.688 | -6.344 | 1.0 |
5.711295514294399 | 93.226 | -6.833 | 1.0 |
5.181037766646605 | 145.639 | -14.832 | 0.0 |
5.336970611029115 | 191.115 | -7.926 | 0.0 |
5.520380974933744 | 95.11 | -8.842 | 1.0 |
5.046015307863599 | 109.808 | -12.783 | 1.0 |
5.5221576350984165 | 145.29 | -4.883 | 0.0 |
6.158927002222738 | 125.589 | -8.6 | 1.0 |
5.829664300472271 | 105.233 | -7.115 | 1.0 |
5.82928035569681 | 97.345 | -11.499 | 1.0 |
5.3234337429963565 | 150.431 | -14.729 | 0.0 |
5.843843560689231 | 79.998 | -9.381 | 1.0 |
5.718185583433604 | 135.973 | -9.091 | 0.0 |
5.183677878514388 | 151.075 | -17.056 | 0.0 |
6.2489305655005545 | 123.994 | -11.529 | 1.0 |
4.801162783465707 | 149.935 | -14.465 | 0.0 |
5.679867340584397 | 140.047 | -5.647 | 0.0 |
5.726391454576292 | 172.19 | -10.391 | 0.0 |
4.950671183261074 | 64.334 | -14.529 | 1.0 |
5.580069994537434 | 73.737 | -11.521 | 1.0 |
5.633877937728569 | 88.543 | -12.427 | 1.0 |
6.074302935529481 | 112.419 | -9.126 | 1.0 |
5.515242262040878 | 98.573 | -6.031 | 1.0 |
5.2981518028431225 | 88.983 | -4.398 | 1.0 |
5.090079730533548 | 114.11 | -16.08 | 1.0 |
4.577857260875427 | 126.393 | -12.856 | 1.0 |
5.443210556309651 | 90.877 | -20.028 | 1.0 |
5.7051405853395805 | 163.844 | -7.44 | 0.0 |
5.226963621104301 | 91.977 | -4.739 | 1.0 |
5.3436085115214835 | 116.677 | -10.331 | 1.0 |
6.072136472167348 | 170.13 | -5.743 | 0.0 |
5.312676824285775 | 70.164 | -6.71 | 1.0 |
5.569071605770565 | 119.904 | -15.7 | 1.0 |
4.879602263678485 | 57.169 | -26.899 | 1.0 |
5.361424175775055 | 121.539 | -4.295 | 1.0 |
5.539957987406313 | 175.214 | -8.771 | 0.0 |
5.449069090750414 | 116.113 | -10.064 | 1.0 |
6.39178918226169 | 119.462 | -10.856 | 1.0 |
4.898092230774137 | 131.2 | -23.689 | 1.0 |
5.146675187799474 | 180.176 | -14.71 | 0.0 |
5.570465459051283 | 98.365 | -5.838 | 1.0 |
4.637012398680066 | 117.831 | -3.863 | 1.0 |
6.043164853654845 | 101.039 | -8.928 | 1.0 |
5.6010351712128035 | 116.092 | -5.004 | 1.0 |
5.784915818139458 | 128.608 | -13.294 | 1.0 |
5.755420389655247 | 97.126 | -9.347 | 1.0 |
6.071051466310348 | 140.007 | -5.984 | 0.0 |
5.334832065977185 | 137.951 | -3.854 | 0.0 |
5.575724721914124 | 111.492 | -14.293 | 1.0 |
5.206843867263241 | 166.771 | -13.425 | 0.0 |
5.232279802406715 | 163.892 | -4.669 | 0.0 |
5.20182193961576 | 130.02 | -4.823 | 1.0 |
5.726817030503055 | 80.231 | -13.916 | 1.0 |
5.491085665616085 | 107.381 | -14.135 | 1.0 |
5.5339908888778595 | 108.004 | -9.795 | 1.0 |
6.766217520778982 | 89.822 | -19.157 | 1.0 |
5.706965005029758 | 180.668 | -12.834 | 0.0 |
5.441853698683162 | 127.398 | -14.408 | 1.0 |
5.875873741134217 | 135.997 | -6.62 | 0.0 |
5.1883541636466 | 101.284 | -5.788 | 1.0 |
5.535228389797455 | 136.224 | -2.943 | 0.0 |
3.7023283607776896 | 163.647 | -17.534 | 0.0 |
4.715809006851246 | 136.747 | -7.223 | 0.0 |
5.842252713576319 | 97.774 | -12.557 | 1.0 |
5.119871270445839 | 122.053 | -11.468 | 1.0 |
5.476547021251197 | 197.455 | -10.545 | 0.0 |
7.29769003979548 | 160.031 | -13.735 | 0.0 |
5.212267799598076 | 96.092 | -15.221 | 1.0 |
5.027522892507361 | 120.527 | -7.075 | 1.0 |
5.964087980307709 | 147.982 | -3.273 | 0.0 |
5.194313929642153 | 177.327 | -6.08 | 0.0 |
5.235205613758929 | 120.09 | -11.84 | 1.0 |
5.3531743758536185 | 65.392 | -16.533 | 1.0 |
5.454334902714114 | 83.76 | -6.132 | 1.0 |
5.490977957518122 | 102.659 | -4.713 | 1.0 |
5.38313652571645 | 147.487 | -2.089 | 0.0 |
5.701307146892026 | 87.303 | -6.336 | 1.0 |
5.648984132478454 | 163.031 | -4.385 | 0.0 |
5.0889531304187505 | 93.12 | -4.397 | 1.0 |
5.985535655916327 | 210.021 | -8.131 | 0.0 |
5.167582972957962 | 120.007 | -7.847 | 1.0 |
6.134096280733756 | 90.518 | -9.769 | 1.0 |
4.684211007325698 | 110.907 | -13.362 | 1.0 |
5.057048540395142 | 142.979 | -16.184 | 0.0 |
4.874227540136429 | 173.551 | -10.198 | 0.0 |
5.173519496873623 | 136.255 | -9.675 | 0.0 |
6.1482649632811555 | 114.385 | -6.821 | 1.0 |
6.575998134820792 | 97.952 | -10.883 | 1.0 |
5.37106486725144 | 130.003 | -5.82 | 1.0 |
5.1625090980936195 | 91.284 | -10.212 | 1.0 |
5.287514121066575 | 131.953 | -11.937 | 0.0 |
5.400975032797074 | 130.012 | -8.769 | 1.0 |
5.5118720512729995 | 154.237 | -7.34 | 0.0 |
5.339229916967983 | 98.959 | -3.163 | 1.0 |
5.435497239117816 | 124.462 | -12.121 | 1.0 |
5.334832065977185 | 92.483 | -9.725 | 1.0 |
5.027180333628548 | 112.266 | -4.523 | 1.0 |
5.831351955349967 | 106.887 | -11.365 | 1.0 |
5.478839513708417 | 159.525 | -9.96 | 0.0 |
3.867647830833469 | 104.033 | -9.942 | 1.0 |
5.261701824986476 | 194.1 | -4.3 | 0.0 |
5.206557551732531 | 99.772 | -12.43 | 1.0 |
5.119715144445624 | 36.299 | -22.109 | 1.0 |
5.20469469210529 | 119.894 | -11.582 | 1.0 |
5.481453008551355 | 133.748 | -12.546 | 0.0 |
4.99692236688031 | 121.083 | -22.873 | 1.0 |
5.162060147947414 | 86.994 | -7.803 | 1.0 |
5.731232031348783 | 110.043 | -8.811 | 1.0 |
5.372521184108441 | 112.056 | -13.859 | 1.0 |
5.566777436858224 | 92.446 | -5.72 | 1.0 |
5.824275523795551 | 120.51 | -11.445 | 1.0 |
5.599586650851792 | 102.846 | -7.898 | 1.0 |
5.479275577741912 | 119.922 | -8.373 | 1.0 |
5.083301136404237 | 78.461 | -13.798 | 1.0 |
5.9151903650301545 | 76.072 | -9.454 | 1.0 |
5.659779244812856 | 136.148 | -8.394 | 0.0 |
5.865113031652334 | 86.034 | -16.263 | 1.0 |
6.245339882354565 | 94.557 | -7.916 | 1.0 |
5.771254033978842 | 125.757 | -12.297 | 1.0 |
4.38901689577076 | 126.156 | -7.754 | 1.0 |
5.695002409108728 | 66.264 | -14.232 | 1.0 |
5.507219386966034 | 167.92 | -5.221 | 0.0 |
5.245860974972483 | 186.697 | -9.365 | 0.0 |
5.6208132082285225 | 158.8 | -9.679 | 0.0 |
6.407851345829801 | 124.995 | -6.92 | 1.0 |
5.604406865514699 | 220.697 | -5.316 | 0.0 |
5.80376556785929 | 221.511 | -13.778 | 0.0 |
5.314349167717073 | 118.004 | -6.349 | 1.0 |
6.345254533555875 | 121.533 | -11.372 | 1.0 |
5.301672731011365 | 132.67 | -5.925 | 0.0 |
5.270738285863943 | 83.702 | -23.316 | 1.0 |
5.466441490053851 | 163.937 | -4.379 | 0.0 |
5.994365335749508 | 122.241 | -11.11 | 1.0 |
5.142867977095725 | 122.183 | -4.372 | 1.0 |
5.218935952671551 | 153.253 | -22.082 | 0.0 |
5.240755041735268 | 195.997 | -12.009 | 0.0 |
4.798367387974085 | 174.479 | -28.719 | 0.0 |
5.183091795289894 | 184.937 | -4.113 | 0.0 |
5.187624939257254 | 191.88 | -10.798 | 0.0 |
6.188747496998347 | 129.979 | -8.072 | 1.0 |
5.800608989092355 | 215.644 | -15.482 | 0.0 |
5.2727501941416905 | 141.364 | -11.059 | 0.0 |
3.464087670210369 | 148.661 | -16.007 | 0.0 |
5.421623256463088 | 144.502 | -9.495 | 0.0 |
5.129040713809273 | 124.967 | -3.605 | 1.0 |
5.0006231393320295 | 84.205 | -12.463 | 1.0 |
5.474796891858358 | 163.236 | -12.258 | 0.0 |
5.1877708155139 | 86.154 | -19.712 | 1.0 |
5.830661908645668 | 85.046 | -9.732 | 1.0 |
5.489792278278364 | 169.914 | -11.318 | 0.0 |
5.062189064556968 | 106.606 | -16.264 | 1.0 |
5.3715505418928675 | 137.395 | -6.876 | 0.0 |
4.955283318252515 | 103.193 | -27.34 | 1.0 |
5.331931526930796 | 136.835 | -12.374 | 0.0 |
6.976220349873523 | 89.058 | -9.173 | 1.0 |
5.2625144221634805 | 99.305 | -23.979 | 1.0 |
5.824352733505806 | 119.451 | -11.391 | 1.0 |
5.226683009407633 | 217.213 | -17.298 | 0.0 |
5.042816351013717 | 210.493 | -10.655 | 0.0 |
5.495063101237499 | 123.999 | -5.145 | 1.0 |
4.968630308451178 | 100.309 | -4.012 | 1.0 |
5.495170411319036 | 134.757 | -8.431 | 0.0 |
4.9477082027968295 | 100.576 | -7.781 | 1.0 |
6.208758281558591 | 183.824 | -7.48 | 0.0 |
5.521739878948984 | 169.369 | -12.558 | 0.0 |
5.08475755662406 | 109.249 | -5.537 | 1.0 |
5.509971324552225 | 111.036 | -5.844 | 1.0 |
5.487741018652274 | 159.984 | -9.817 | 0.0 |
4.585079513210795 | 106.927 | -18.665 | 1.0 |
5.497206503249116 | 135.755 | -7.424 | 0.0 |
5.534197225661299 | 86.821 | -7.87 | 1.0 |
4.914139077895411 | 170.274 | -9.547 | 0.0 |
5.241031679903366 | 84.583 | -21.428 | 1.0 |
5.634811317219212 | 150.033 | -5.412 | 0.0 |
5.582333904127796 | 165.465 | -3.384 | 0.0 |
5.219642706004484 | 62.586 | -20.636 | 1.0 |
5.56187226807967 | 94.05 | -5.058 | 1.0 |
5.415601210962535 | 122.002 | -8.926 | 1.0 |
5.321393698049809 | 147.628 | -10.107 | 0.0 |
5.355274093383862 | 159.163 | -16.636 | 0.0 |
5.583021872946544 | 138.174 | -12.248 | 0.0 |
5.105561703300366 | 91.173 | -15.527 | 1.0 |
6.218537428483649 | 130.097 | -5.685 | 1.0 |
5.5424167623007925 | 156.889 | -7.987 | 0.0 |
5.063676599821411 | 207.965 | -5.222 | 0.0 |
5.774666756298699 | 103.84 | -14.444 | 1.0 |
5.8748469071142 | 142.777 | -5.118 | 0.0 |
4.812054590855806 | 109.219 | -6.767 | 1.0 |
5.277162267073541 | 111.806 | -8.802 | 1.0 |
5.20569822265645 | 160.686 | -9.063 | 0.0 |
6.206548688450743 | 120.467 | -11.189 | 1.0 |
5.624213299292985 | 73.536 | -9.517 | 1.0 |
5.892738309215478 | 196.909 | -22.759 | 0.0 |
5.40755403022849 | 120.04 | -12.557 | 1.0 |
5.1477386330514046 | 189.559 | -4.416 | 0.0 |
5.127802317834028 | 99.617 | -8.164 | 1.0 |
5.573048916820139 | 145.024 | -7.266 | 0.0 |
5.6244961280916925 | 86.97 | -6.875 | 1.0 |
5.885358726001259 | 135.322 | -9.147 | 0.0 |
5.771498193152581 | 77.546 | -26.015 | 1.0 |
5.172927427877826 | 201.438 | -23.14 | 0.0 |
5.4992384988300875 | 96.119 | -15.96 | 1.0 |
5.139964745919678 | 84.774 | -9.253 | 1.0 |
5.272884218579013 | 100.222 | -4.278 | 1.0 |
5.423123107406227 | 195.391 | -18.105 | 0.0 |
5.4624591684756965 | 125.754 | -11.187 | 1.0 |
4.891247596658531 | 106.712 | -6.241 | 1.0 |
4.971169740305285 | 95.764 | -10.343 | 1.0 |
5.598329584361599 | 105.539 | -11.365 | 1.0 |
5.752521970875367 | 150.74 | -11.409 | 0.0 |
4.906051143655614 | 81.263 | -13.755 | 1.0 |
5.540983231364382 | 88.327 | -14.618 | 1.0 |
4.540942443220586 | 111.522 | -22.854 | 1.0 |
5.840431489940934 | 122.877 | -10.264 | 1.0 |
4.716977625501516 | 121.601 | -11.847 | 1.0 |
5.6704590661683625 | 85.965 | -8.232 | 1.0 |
5.295273739410578 | 171.934 | -6.797 | 0.0 |
6.303021733454967 | 102.874 | -9.574 | 1.0 |
5.632943722006943 | 120.018 | -6.493 | 1.0 |
5.071408798946709 | 89.803 | -4.474 | 1.0 |
5.055884083884031 | 115.957 | -4.313 | 1.0 |
5.802504131779203 | 120.783 | -6.07 | 1.0 |
5.372399916950057 | 148.113 | -6.821 | 0.0 |
5.619961385101719 | 128.005 | -5.02 | 1.0 |
5.597361508030061 | 117.384 | -12.507 | 1.0 |
5.622514716915152 | 125.075 | -9.747 | 1.0 |
5.620907802420415 | 175.036 | -17.373 | 0.0 |
5.553002142155581 | 146.02 | -2.758 | 0.0 |
4.973883477375123 | 115.076 | -25.03 | 1.0 |
5.461128195938892 | 139.014 | -13.208 | 0.0 |
5.209273999190886 | 137.968 | -3.682 | 0.0 |
5.478948537110532 | 105.101 | -9.257 | 1.0 |
5.912508457184818 | 120.006 | -9.817 | 1.0 |
4.935767700169621 | 224.168 | -4.118 | 0.0 |
5.8511591195715145 | 98.018 | -7.316 | 1.0 |
5.217095977001863 | 203.536 | -5.012 | 0.0 |
5.918075966130367 | 126.679 | -7.866 | 1.0 |
5.743859551794383 | 132.226 | -6.22 | 0.0 |
4.652329783410577 | 80.952 | -9.428 | 1.0 |
4.846501257092688 | 152.828 | -10.117 | 0.0 |
5.427150018610761 | 140.022 | -8.666 | 0.0 |
5.938389745726143 | 126.896 | -8.268 | 1.0 |
5.305570349956937 | 165.071 | -6.987 | 0.0 |
5.0360481025678565 | 96.369 | -10.233 | 1.0 |
5.976561064878677 | 130.082 | -7.592 | 1.0 |
5.362527177416307 | 135.122 | -8.42 | 0.0 |
5.102706841247405 | 122.77 | -7.029 | 1.0 |
5.688657635429779 | 93.599 | -7.747 | 1.0 |
5.514505988311902 | 163.746 | -6.083 | 0.0 |
5.5721554009981205 | 110.946 | -12.825 | 1.0 |
5.228785492682541 | 100.101 | -5.655 | 1.0 |
5.976693642436394 | 107.667 | -14.245 | 1.0 |
4.882971605159166 | 152.978 | -10.637 | 0.0 |
5.629667005038476 | 81.091 | -16.247 | 1.0 |
5.2261216034182745 | 116.854 | -11.529 | 1.0 |
5.494633868982558 | 161.778 | -6.88 | 0.0 |
5.812317007786956 | 146.907 | -8.42 | 0.0 |
5.577405806789707 | 115.884 | -5.74 | 1.0 |
5.345229959659761 | 156.364 | -11.807 | 0.0 |
5.219218692301358 | 121.962 | -8.005 | 1.0 |
5.197786170929668 | 99.705 | -7.341 | 1.0 |
5.21992524590593 | 104.392 | -12.048 | 1.0 |
3.6527962139408547 | 41.35 | -23.844 | 1.0 |
5.495063101237499 | 143.899 | -4.766 | 0.0 |
4.852026748288437 | 123.659 | -8.514 | 1.0 |
5.670549079024892 | 142.517 | -5.021 | 0.0 |
5.435383373805797 | 95.03 | -12.839 | 1.0 |
5.820021029326741 | 124.992 | -7.268 | 1.0 |
5.881429735039414 | 183.054 | -17.493 | 0.0 |
5.345229959659761 | 73.95 | -18.446 | 1.0 |
7.321494872253953 | 68.261 | -23.546 | 1.0 |
6.022487398465634 | 141.698 | -18.521 | 0.0 |
5.678707303899785 | 214.793 | -6.437 | 0.0 |
5.474796891858358 | 175.59 | -5.836 | 0.0 |
5.946004783492934 | 175.813 | -12.149 | 0.0 |
5.720671547947515 | 133.604 | -4.943 | 0.0 |
5.8116918591861175 | 140.085 | -17.522 | 0.0 |
5.349334192721773 | 95.18 | -10.21 | 1.0 |
5.207130046067124 | 102.432 | -10.55 | 1.0 |
5.3080310357356755 | 111.98 | -10.477 | 1.0 |
5.21070071550793 | 90.069 | -9.896 | 1.0 |
5.461572050312247 | 111.282 | -12.93 | 1.0 |
5.3699712477394845 | 188.077 | -2.44 | 0.0 |
5.382896492177674 | 130.014 | -8.025 | 1.0 |
5.054384966781395 | 81.619 | -16.783 | 1.0 |
6.024005718051915 | 132.043 | -8.854 | 0.0 |
5.478839513708417 | 120.12 | -6.536 | 1.0 |
5.96375233636642 | 70.005 | -8.163 | 1.0 |
5.153038845796511 | 131.943 | -6.733 | 0.0 |
5.396012246148784 | 63.958 | -9.75 | 1.0 |
5.716123542777973 | 130.017 | -9.825 | 1.0 |
5.639929265305522 | 112.043 | -8.633 | 1.0 |
5.503928356814888 | 148.041 | -7.276 | 0.0 |
5.607000171810274 | 111.365 | -10.116 | 1.0 |
5.422661850963155 | 131.378 | -16.48 | 0.0 |
5.884414271275885 | 90.104 | -12.29 | 1.0 |
5.530165601932363 | 124.072 | -8.523 | 1.0 |
5.813332034006042 | 101.357 | -14.142 | 1.0 |
5.754924125879842 | 142.785 | -13.831 | 0.0 |
5.22218291169532 | 124.969 | -6.707 | 1.0 |
6.120757401055048 | 130.004 | -10.715 | 1.0 |
5.4360664584111635 | 154.461 | -8.014 | 0.0 |
5.124544227693321 | 103.274 | -5.609 | 1.0 |
6.140755810501547 | 127.983 | -9.151 | 1.0 |
5.698947538500373 | 143.929 | -7.615 | 0.0 |
5.462015707766298 | 104.959 | -6.832 | 1.0 |
6.048298936235371 | 135.999 | -5.845 | 0.0 |
5.210558146357011 | 115.936 | -20.443 | 1.0 |
5.439814975694829 | 73.099 | -19.293 | 1.0 |
5.515662740875034 | 99.389 | -5.273 | 1.0 |
5.312419265723114 | 105.096 | -9.143 | 1.0 |
5.520590138844219 | 104.019 | -6.168 | 1.0 |
5.59590768975971 | 86.879 | -7.154 | 1.0 |
5.29775986117079 | 119.383 | -13.538 | 1.0 |
5.265488187950617 | 119.05 | -14.293 | 1.0 |
5.032987413771107 | 149.967 | -17.245 | 0.0 |
5.156657138568294 | 125.669 | -9.773 | 1.0 |
5.459350805751235 | 107.244 | -12.316 | 1.0 |
4.327844566531178 | 111.022 | -11.143 | 1.0 |
6.003117709498463 | 94.353 | -4.723 | 1.0 |
5.40026758875988 | 102.654 | -4.451 | 1.0 |
5.465115810845681 | 200.007 | -2.279 | 0.0 |
4.986986110278029 | 130.116 | -18.077 | 1.0 |
5.831964937226711 | 107.301 | -14.613 | 1.0 |
5.569868342129439 | 88.06 | -5.256 | 1.0 |
6.167287911306899 | 132.329 | -8.917 | 0.0 |
5.4739206562390805 | 102.869 | -5.441 | 1.0 |
5.994104833482265 | 120.009 | -16.17 | 1.0 |
5.302323381743563 | 95.79 | -8.603 | 1.0 |
6.6315375194469555 | 116.65 | -7.073 | 1.0 |
5.443888273735132 | 118.562 | -5.283 | 1.0 |
5.02837867842324 | 180.874 | -12.504 | 0.0 |
5.055551169240041 | 119.965 | -14.589 | 1.0 |
7.093021778505688 | 113.487 | -22.016 | 1.0 |
6.1961189425446355 | 134.995 | -5.432 | 0.0 |
5.013729502093481 | 161.374 | -3.537 | 0.0 |
5.168475672890415 | 100.162 | -4.317 | 1.0 |
5.965161305025012 | 107.205 | -13.267 | 1.0 |
5.603059559058559 | 116.989 | -9.141 | 1.0 |
5.4125765563014685 | 71.879 | -16.615 | 1.0 |
5.96971012630147 | 85.231 | -11.807 | 1.0 |
5.328515721513685 | 130.042 | -10.653 | 1.0 |
5.9024224095191435 | 131.37 | -8.168 | 0.0 |
5.669288057615403 | 160.371 | -4.355 | 0.0 |
6.150384215780737 | 101.745 | -6.087 | 1.0 |
4.841770152276834 | 98.718 | -12.394 | 1.0 |
5.500199568748536 | 127.232 | -5.098 | 1.0 |
4.8930121206612265 | 130.275 | -6.172 | 1.0 |
5.512715669405525 | 102.72 | -8.132 | 1.0 |
5.440948103038991 | 129.765 | -6.458 | 1.0 |
6.022550701770231 | 157.299 | -14.304 | 0.0 |
5.870065544214879 | 145.781 | -6.364 | 0.0 |
5.248472811704074 | 125.033 | -7.126 | 1.0 |
5.27114096064532 | 114.179 | -15.265 | 1.0 |
5.186164893232419 | 43.871 | -19.915 | 1.0 |
5.278628659762669 | 147.463 | -15.299 | 0.0 |
5.440834856737833 | 150.118 | -4.63 | 0.0 |
5.496885316425803 | 92.33 | -14.265 | 1.0 |
6.095065761101785 | 113.609 | -10.615 | 1.0 |
6.338215331576072 | 137.947 | -8.37 | 0.0 |
6.516728435671002 | 150.119 | -7.031 | 0.0 |
5.39530128123997 | 157.772 | -11.69 | 0.0 |
5.604214520046329 | 40.925 | -29.594 | 1.0 |
5.4470449967586525 | 174.542 | -4.122 | 0.0 |
5.033327924314677 | 160.027 | -11.308 | 0.0 |
5.541495439837404 | 139.051 | -5.808 | 0.0 |
5.955391985321944 | 60.029 | -13.5 | 1.0 |
5.498811055436358 | 109.986 | -6.547 | 1.0 |
5.0488688535069 | 110.305 | -21.996 | 1.0 |
5.316660105195753 | 141.646 | -17.401 | 0.0 |
5.179126709407211 | 95.161 | -9.088 | 1.0 |
4.569770961636226 | 137.145 | -7.001 | 0.0 |
5.363751299185053 | 96.92 | -11.98 | 1.0 |
5.460239895734497 | 90.061 | -9.326 | 1.0 |
5.455340089536665 | 89.41 | -20.371 | 1.0 |
5.324961050170624 | 130.293 | -12.07 | 1.0 |
6.362931616127083 | 112.493 | -12.219 | 1.0 |
5.780732034244935 | 87.52 | -6.887 | 1.0 |
5.321138423993106 | 61.559 | -25.038 | 1.0 |
5.216670936098296 | 86.813 | -12.724 | 1.0 |
4.9303098797983 | 115.033 | -5.961 | 1.0 |
5.837617262918279 | 119.713 | -8.219 | 1.0 |
5.656589464357225 | 129.915 | -4.602 | 1.0 |
4.786453370526792 | 172.839 | -11.03 | 0.0 |
4.919304054466615 | 88.034 | -7.413 | 1.0 |
5.730808363040245 | 158.546 | -4.839 | 0.0 |
5.422661850963155 | 99.944 | -11.273 | 1.0 |
5.388879519564472 | 196.972 | -1.682 | 0.0 |
5.6840501328899355 | 153.878 | -4.352 | 0.0 |
5.814891615261906 | 110.284 | -13.965 | 1.0 |
5.594160261221249 | 168.372 | -9.951 | 0.0 |
5.495599413383852 | 131.243 | -10.148 | 0.0 |
5.839063406776918 | 130.462 | -7.743 | 1.0 |
5.207273104763058 | 171.76 | -7.701 | 0.0 |
4.929932413000636 | 178.874 | -4.06 | 0.0 |
5.545379728706228 | 87.931 | -25.083 | 1.0 |
5.899061552343131 | 110.555 | -6.531 | 1.0 |
3.9362407735904275 | 102.651 | -19.475 | 1.0 |
5.013555891662754 | 107.696 | -5.334 | 1.0 |
5.019787550797372 | 112.32 | -11.828 | 1.0 |
5.7743422379268114 | 88.163 | -22.409 | 1.0 |
5.348464989905088 | 118.972 | -4.855 | 1.0 |
5.1760318725212615 | 156.503 | -10.618 | 0.0 |
5.562875300086254 | 101.336 | -16.5 | 1.0 |
5.789561773504737 | 131.846 | -13.308 | 0.0 |
4.969719475730237 | 116.272 | -9.544 | 1.0 |
5.593771532879778 | 96.243 | -13.505 | 1.0 |
5.305959292509338 | 95.283 | -13.174 | 1.0 |
6.022740611873921 | 90.211 | -20.61 | 1.0 |
6.0135843161877975 | 230.273 | -8.474 | 0.0 |
5.0251227095366655 | 88.039 | -3.151 | 1.0 |
5.624401872742262 | 125.951 | -7.896 | 1.0 |
5.090401409675572 | 105.555 | -10.29 | 1.0 |
5.484276673697668 | 131.25 | -6.723 | 0.0 |
5.283147534265708 | 97.011 | -4.284 | 1.0 |
5.659961229933871 | 137.154 | -12.948 | 0.0 |
5.397196125936762 | 100.055 | -5.714 | 1.0 |
5.138892996898216 | 149.918 | -13.349 | 0.0 |
6.271936167869813 | 105.471 | -16.197 | 1.0 |
5.846640344336648 | 132.015 | -9.453 | 0.0 |
5.780893288526451 | 120.074 | -9.993 | 1.0 |
5.1242333478822175 | 123.788 | -3.942 | 1.0 |
5.135517221042158 | 174.99 | -13.746 | 0.0 |
5.636302886150193 | 132.04 | -4.807 | 0.0 |
4.267456479061423 | 137.389 | -4.395 | 0.0 |
5.810675135979183 | 146.426 | -5.048 | 0.0 |
6.208495494465677 | 132.007 | -8.931 | 0.0 |
5.568174489309459 | 157.041 | -8.216 | 0.0 |
5.579675749052393 | 87.447 | -7.733 | 1.0 |
5.1218988723462795 | 95.946 | -17.03 | 1.0 |
6.35551712177877 | 146.064 | -6.331 | 0.0 |
5.660870554706838 | 153.587 | -8.91 | 0.0 |
6.283316662831049 | 114.273 | -20.792 | 1.0 |
5.483842785490134 | 143.21 | -7.974 | 0.0 |
5.1625090980936195 | 80.727 | -14.976 | 1.0 |
5.029575588906314 | 120.884 | -15.693 | 1.0 |
5.155151136154312 | 120.827 | -7.96 | 1.0 |
5.34834076996525 | 91.963 | -15.893 | 1.0 |
5.477639345770583 | 133.386 | -7.999 | 0.0 |
3.9534303645890856 | 159.893 | -22.096 | 0.0 |
4.96389701337343 | 103.823 | -9.856 | 1.0 |
5.272884218579013 | 176.549 | -13.379 | 0.0 |
5.967103768204722 | 140.024 | -9.438 | 0.0 |
5.481670516067202 | 93.537 | -5.165 | 1.0 |
5.383736288754334 | 200.374 | -10.233 | 0.0 |
6.152054124101608 | 126.748 | -5.715 | 1.0 |
5.863852486334342 | 104.587 | -12.516 | 1.0 |
5.005536316376433 | 86.797 | -13.678 | 1.0 |
5.538931730551451 | 120.05 | -6.744 | 1.0 |
5.497420611473917 | 171.487 | -6.941 | 0.0 |
5.099843744640108 | 96.857 | -7.279 | 1.0 |
5.0111219756475744 | 157.013 | -7.22 | 0.0 |
4.597001815500064 | 168.325 | -10.217 | 0.0 |
5.299718184943652 | 130.94 | -6.372 | 0.0 |
5.393284032812886 | 113.031 | -7.892 | 1.0 |
5.086534784332229 | 128.029 | -4.363 | 1.0 |
5.370214356996374 | 139.645 | -8.873 | 0.0 |
5.992148887893402 | 128.004 | -8.36 | 1.0 |
5.1254761688016615 | 140.422 | -14.278 | 0.0 |
5.762260448974631 | 101.048 | -17.318 | 1.0 |
4.886921078717307 | 156.884 | -8.85 | 0.0 |
5.412343487161914 | 145.06 | -14.511 | 0.0 |
5.647879766205785 | 75.073 | -13.498 | 1.0 |
5.68856923797772 | 146.001 | -4.621 | 0.0 |
5.654853575863566 | 140.284 | -11.154 | 0.0 |
5.4053267071466236 | 198.06 | -5.99 | 0.0 |
6.036257303707656 | 132.001 | -9.288 | 0.0 |
4.763975558761478 | 100.021 | -10.782 | 1.0 |
5.8521354947724085 | 125.933 | -11.969 | 1.0 |
6.193987875385685 | 121.544 | -11.663 | 1.0 |
4.84032586198911 | 85.65 | -12.166 | 1.0 |
5.254768219224744 | 124.113 | -11.111 | 1.0 |
6.55877942087373 | 131.016 | -6.231 | 0.0 |
6.055369148610952 | 116.256 | -13.986 | 1.0 |
5.0759869845220456 | 103.013 | -6.912 | 1.0 |
4.781209802648447 | 122.948 | -4.409 | 1.0 |
5.186310982615107 | 65.315 | -4.905 | 1.0 |
6.508039466952436 | 155.996 | -7.234 | 0.0 |
5.517867348720116 | 83.798 | -16.654 | 1.0 |
5.335335656146118 | 116.121 | -12.526 | 1.0 |
5.498917923186882 | 127.639 | -10.966 | 1.0 |
5.10935559222606 | 108.97 | -7.745 | 1.0 |
5.888548762879765 | 86.79 | -9.088 | 1.0 |
5.075823853912898 | 89.38 | -26.61 | 1.0 |
5.200958529678126 | 90.007 | -7.236 | 1.0 |
5.83418384470021 | 125.9 | -10.454 | 1.0 |
5.734868265796364 | 179.804 | -11.507 | 0.0 |
5.1117194391010905 | 88.518 | -11.4 | 1.0 |
5.6852039917893995 | 145.983 | -4.189 | 0.0 |
5.557043752722271 | 171.928 | -8.569 | 0.0 |
4.9477082027968295 | 129.658 | -4.43 | 1.0 |
5.418385123573062 | 133.722 | -18.631 | 0.0 |
5.758969878813607 | 110.136 | -6.808 | 1.0 |
6.077244205426854 | 125.004 | -13.744 | 1.0 |
4.962801482475908 | 116.049 | -8.742 | 1.0 |
3.7352846336099574 | 92.736 | -18.076 | 1.0 |
5.012165788957924 | 100.234 | -17.07 | 1.0 |
5.742017477797979 | 153.876 | -11.65 | 0.0 |
5.484385105962749 | 110.301 | -12.249 | 1.0 |
5.588313409703403 | 86.415 | -12.559 | 1.0 |
5.678439401395482 | 136.869 | -6.221 | 0.0 |
5.457124616276923 | 105.985 | -7.973 | 1.0 |
5.967772724185528 | 232.08 | -5.493 | 0.0 |
5.795219831419931 | 120.349 | -13.084 | 1.0 |
5.154849628686833 | 107.51 | -10.176 | 1.0 |
5.655767554907144 | 113.624 | -7.942 | 1.0 |
4.880197701210259 | 91.039 | -12.242 | 1.0 |
5.6135017591989005 | 98.375 | -7.397 | 1.0 |
5.561470781093142 | 155.746 | -8.475 | 0.0 |
5.69086523855581 | 80.249 | -6.368 | 1.0 |
5.460462066030494 | 110.33 | -12.56 | 1.0 |
5.442758474965817 | 97.118 | -6.476 | 1.0 |
6.2260032464103645 | 136.708 | -9.193 | 0.0 |
4.235459501926911 | 163.762 | -13.409 | 0.0 |
5.708959384637226 | 136.95 | -16.247 | 0.0 |
5.297106183361719 | 63.211 | -23.239 | 1.0 |
5.385772824085969 | 133.317 | -10.874 | 0.0 |
5.413508200907366 | 121.09 | -3.423 | 1.0 |
5.6077672663776985 | 75.419 | -16.783 | 1.0 |
5.660779666389345 | 104.417 | -10.339 | 1.0 |
5.940316136961045 | 64.287 | -17.837 | 1.0 |
6.001244021781906 | 90.182 | -9.47 | 1.0 |
5.400975032797074 | 129.749 | -12.142 | 1.0 |
5.363628963785261 | 88.222 | -6.461 | 1.0 |
5.459684317773558 | 150.979 | -19.374 | 0.0 |
4.707354232003726 | 240.409 | -9.958 | 0.0 |
5.40026758875988 | 88.922 | -7.283 | 1.0 |
5.966969938663496 | 116.631 | -19.261 | 1.0 |
5.457904357110395 | 133.973 | -12.558 | 0.0 |
5.325088257046393 | 101.662 | -10.225 | 1.0 |
5.457570250821884 | 167.909 | -6.022 | 0.0 |
5.043153531656211 | 116.918 | -6.256 | 1.0 |
5.090079730533548 | 130.771 | -10.753 | 1.0 |
5.135824554356261 | 112.46 | -9.011 | 1.0 |
5.552090486434681 | 77.483 | -9.846 | 1.0 |
4.437127676630507 | 168.791 | -12.926 | 0.0 |
5.73882765547205 | 173.908 | -4.996 | 0.0 |
4.828904202943149 | 134.731 | -12.021 | 0.0 |
5.344481896278029 | 130.863 | -6.155 | 0.0 |
5.4750158098978945 | 85.092 | -10.397 | 1.0 |
5.453328704474266 | 147.617 | -15.986 | 0.0 |
4.916629256861545 | 121.926 | -15.981 | 1.0 |
5.294749559486927 | 126.195 | -9.953 | 1.0 |
5.823117017214163 | 117.966 | -10.669 | 1.0 |
4.630666378060994 | 114.869 | -7.877 | 1.0 |
5.825741076784775 | 112.582 | -10.447 | 1.0 |
5.0921685826096885 | 125.02 | -4.532 | 1.0 |
5.258580876404669 | 144.32 | -16.982 | 0.0 |
5.016330313312448 | 97.034 | -7.087 | 1.0 |
5.255859033956585 | 160.063 | -9.434 | 0.0 |
6.4121485579856445 | 80.067 | -14.007 | 1.0 |
5.77911821422353 | 143.499 | -12.111 | 0.0 |
5.754096429647435 | 238.327 | -7.028 | 0.0 |
5.268318568522543 | 96.792 | -6.779 | 1.0 |
5.394589765089577 | 86.031 | -9.499 | 1.0 |
5.369484805282204 | 107.956 | -2.691 | 1.0 |
5.229765094411506 | 143.875 | -12.669 | 0.0 |
4.886921078717307 | 107.077 | -6.865 | 1.0 |
5.603252126785378 | 88.77 | -15.305 | 1.0 |
5.939353392047761 | 125.872 | -7.381 | 1.0 |
5.589973519371366 | 139.881 | -11.774 | 0.0 |
5.832577543586846 | 108.428 | -8.926 | 1.0 |
5.342109442007951 | 72.719 | -6.972 | 1.0 |
5.138892996898216 | 68.997 | -18.497 | 1.0 |
5.146523191314886 | 113.846 | -10.347 | 1.0 |
5.2425519819921025 | 165.056 | -3.491 | 0.0 |
5.473372587349946 | 148.009 | -7.561 | 0.0 |
5.845507445551246 | 149.844 | -12.284 | 0.0 |
5.0334981361160445 | 77.19 | -10.41 | 1.0 |
5.559863219284914 | 191.634 | -10.957 | 0.0 |
4.955099257607818 | 86.117 | -10.34 | 1.0 |
5.777987004052884 | 200.035 | -4.225 | 0.0 |
5.259803279675589 | 76.654 | -6.583 | 1.0 |
5.221901009044842 | 146.079 | -6.028 | 0.0 |
5.763573619815682 | 145.904 | -5.366 | 0.0 |
6.0530384358750045 | 89.98 | -5.539 | 1.0 |
5.569569630848934 | 191.269 | -4.025 | 0.0 |
5.82628048105143 | 144.995 | -7.894 | 0.0 |
5.452769272430743 | 144.119 | -7.375 | 0.0 |
4.7352630988107265 | 114.697 | -4.575 | 1.0 |
5.124699601624018 | 153.994 | -3.267 | 0.0 |
5.501266373776714 | 135.997 | -10.6 | 0.0 |
5.196340896321897 | 145.565 | -9.9 | 0.0 |
5.050543591322241 | 75.314 | -14.662 | 1.0 |
5.041972837064726 | 149.979 | -12.687 | 0.0 |
5.5109221395078025 | 93.012 | -4.912 | 1.0 |
6.018745027789532 | 130.405 | -17.193 | 1.0 |
5.59774884361815 | 122.54 | -7.804 | 1.0 |
6.053652299540131 | 89.921 | -7.685 | 1.0 |
5.519962475758416 | 154.601 | -10.035 | 0.0 |
5.262243612520556 | 112.61 | -18.747 | 1.0 |
6.41949682365767 | 122.987 | -13.159 | 1.0 |
5.48860523287039 | 205.482 | -12.729 | 0.0 |
5.314606180567949 | 124.083 | -5.768 | 1.0 |
5.816837670187332 | 85.129 | -12.53 | 1.0 |
5.1786851597280235 | 116.436 | -12.144 | 1.0 |
5.372828928676938 | 106.837 | -24.014 | 1.0 |
5.422200381664391 | 95.014 | -3.967 | 1.0 |
5.320499904706436 | 140.125 | -6.84 | 0.0 |
5.232837762731037 | 100.021 | -19.166 | 1.0 |
5.585769137482459 | 85.753 | -15.435 | 1.0 |
5.426460857965772 | 71.021 | -8.512 | 1.0 |
6.1902475551906875 | 125.993 | -10.421 | 1.0 |
5.692275556616212 | 151.957 | -6.651 | 0.0 |
5.39530128123997 | 177.287 | -8.019 | 0.0 |
5.126717447034353 | 111.207 | -6.467 | 1.0 |
5.7766116580794655 | 106.395 | -12.657 | 1.0 |
The new clustering model makes much more sense. Songs with high tempo and loudness are put in one cluster and song duration does not affect song categories.
To really understand how the points in 3D behave you need to see them in 3D interactively and understand the limits of its three 2D projections. For this let us spend some time and play in sageMath Worksheet in CoCalc (it is free for light-weight use and perhaps worth the 7 USD a month if you need more serious computing in mathematics, statistics, etc. in multiple languages!).
Let us take a look at this sageMath Worksheet published here:
- https://cocalc.com/share/ee9392a2-c83b-4eed-9468-767bb90fd12a/3DEuclideanSpace_1MSongsKMeansClustering.sagews?viewer=share
- and the accompanying datasets (downloaded from the
display
s in this notebook and uploaded to CoCalc as CSV files):- https://cocalc.com/projects/ee9392a2-c83b-4eed-9468-767bb90fd12a/files/KMeansClusters10003DFeaturesloudness-tempologDurationOf1MSongsKMeansfor015sds2-2.csv
- https://cocalc.com/projects/ee9392a2-c83b-4eed-9468-767bb90fd12a/files/KMeansClusters10003DFeaturesloudness-tempoDurationOf1MSongsKMeansfor015sds2-2.csv
The point of the above little example is that you need to be able to tell a sensible story with your data science process and not just blindly apply a heuristic, but highly scalable, algorithm which depends on the notion of nearest neighborhoods defined by the metric (Euclidean distances in 3-dimensional real-valued spaces in this example) induced by the features you have engineered or have the power to re/re/...-engineer to increase the meaningfullness of the problem at hand.
Determining Optimal K
There are methods to find the optimal number of clusters. This partly depends on the purpose of the unsupervised learning task.
See here for some metrics in scala for the Irish dataset.
Supervised Clustering with Decision Trees
Visual Introduction to decision trees and application to hand-written digit recognition
SOURCE: This is just a couple of decorations on a notebook published in databricks community edition in 2016.
Decision Trees for handwritten digit recognition
This notebook demonstrates learning a Decision Tree using Spark's distributed implementation. It gives the reader a better understanding of some critical hyperparameters for the tree learning algorithm, using examples to demonstrate how tuning the hyperparameters can improve accuracy.
Background: To learn more about Decision Trees, check out the resources at the end of this notebook. The visual description of ML and Decision Trees provides nice intuition helpful to understand this notebook, and Wikipedia gives lots of details.
Data: We use the classic MNIST handwritten digit recognition dataset. It is from LeCun et al. (1998) and may be found under "mnist" at the LibSVM dataset page.
Goal: Our goal for our data is to learn how to recognize digits (0 - 9) from images of handwriting. However, we will focus on understanding trees, not on this particular learning problem.
Takeaways: Decision Trees take several hyperparameters which can affect the accuracy of the learned model. There is no one "best" setting for these for all datasets. To get the optimal accuracy, we need to tune these hyperparameters based on our data.
Let's Build Intuition for Learning with Decision Trees
- Right-click and open the following link in a new Tab:
- The visual description of ML and Decision Trees which was nominated for a NSF Vizzie award.
Load MNIST training and test datasets
Our datasets are vectors of pixels representing images of handwritten digits. For example:
These datasets are stored in the popular LibSVM dataset format. We will load them using MLlib's LibSVM dataset reader utility.
//-----------------------------------------------------------------------------------------------------------------
// using RDD-based MLlib - ok for Spark 1.x
// MLUtils.loadLibSVMFile returns an RDD.
//import org.apache.spark.mllib.util.MLUtils
//val trainingRDD = MLUtils.loadLibSVMFile(sc, "/databricks-datasets/mnist-digits/data-001/mnist-digits-train.txt")
//val testRDD = MLUtils.loadLibSVMFile(sc, "/databricks-datasets/mnist-digits/data-001/mnist-digits-test.txt")
// We convert the RDDs to DataFrames to use with ML Pipelines.
//val training = trainingRDD.toDF()
//val test = testRDD.toDF()
// Note: In Spark 1.6 and later versions, Spark SQL has a LibSVM data source. The above lines can be simplified to:
//// val training = sqlContext.read.format("libsvm").load("/mnt/mllib/mnist-digits-csv/mnist-digits-train.txt")
//// val test = sqlContext.read.format("libsvm").load("/mnt/mllib/mnist-digits-csv/mnist-digits-test.txt")
//-----------------------------------------------------------------------------------------------------------------
val training = spark.read.format("libsvm")
.option("numFeatures", "780")
.load("/databricks-datasets/mnist-digits/data-001/mnist-digits-train.txt")
val test = spark.read.format("libsvm")
.option("numFeatures", "780")
.load("/databricks-datasets/mnist-digits/data-001/mnist-digits-test.txt")
// Cache data for multiple uses.
training.cache()
test.cache()
println(s"We have ${training.count} training images and ${test.count} test images.")
We have 60000 training images and 10000 test images.
training: org.apache.spark.sql.DataFrame = [label: double, features: vector]
test: org.apache.spark.sql.DataFrame = [label: double, features: vector]
Display our data. Each image has the true label (the label
column) and a vector of features
which represent pixel intensities (see below for details of what is in training
).
training.printSchema()
root
|-- label: double (nullable = true)
|-- features: vector (nullable = true)
training.show(3) // replace 'true' by 'false' to see the whole row hidden by '...'
+-----+--------------------+
|label| features|
+-----+--------------------+
| 5.0|(780,[152,153,154...|
| 0.0|(780,[127,128,129...|
| 4.0|(780,[160,161,162...|
+-----+--------------------+
only showing top 3 rows
display(training) // this is databricks-specific for interactive visual convenience
The pixel intensities are represented in features
as a sparse vector, for example the first observation, as seen in row 1 of the output to display(training)
or training.show(2,false)
above, has label
as 5
, i.e. the hand-written image is for the number 5. And this hand-written image is the following sparse vector (just click the triangle to the left of the feature in first row to see the following):
type: 0
size: 780
indices: [152,153,155,...,682,683]
values: [3, 18, 18,18,126,...,132,16]
Here,
type: 0
says we have a sparse vector that only represents non-zero entries (as opposed to a dense vector where every entry is represented).size: 780
says the vector has 780 indices in total- these indices from 0,...,779 are a unidimensional indexing of the two-dimensional array of pixels in the image
indices: [152,153,155,...,682,683]
are the indices from the[0,1,...,779]
possible indices with non-zero values- a value is an integer encoding the gray-level at the pixel index
values: [3, 18, 18,18,126,...,132,16]
are the actual gray level values, for example:- at pixed index
152
the gray-level value is3
, - at index
153
the gray-level value is18
, - ..., and finally at
- at index
683
the gray-level value is18
- at pixed index
Train a Decision Tree
We begin by training a decision tree using the default settings. Before training, we want to tell the algorithm that the labels are categories 0-9, rather than continuous values. We use the StringIndexer
class to do this. We tie this feature preprocessing together with the tree algorithm using a Pipeline
. ML Pipelines are tools Spark provides for piecing together Machine Learning algorithms into workflows. To learn more about Pipelines, check out other ML example notebooks in Databricks and the ML Pipelines user guide. Also See mllib-decision-tree.html#basic-algorithm.
// Import the ML algorithms we will use.
import org.apache.spark.ml.classification.{DecisionTreeClassifier, DecisionTreeClassificationModel}
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{DecisionTreeClassifier, DecisionTreeClassificationModel}
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.Pipeline
// StringIndexer: Read input column "label" (digits) and annotate them as categorical values.
val indexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel")
// DecisionTreeClassifier: Learn to predict column "indexedLabel" using the "features" column.
val dtc = new DecisionTreeClassifier().setLabelCol("indexedLabel")
// Chain indexer + dtc together into a single ML Pipeline.
val pipeline = new Pipeline().setStages(Array(indexer, dtc))
indexer: org.apache.spark.ml.feature.StringIndexer = strIdx_7ad9a3cadad8
dtc: org.apache.spark.ml.classification.DecisionTreeClassifier = dtc_be3336ba3ef4
pipeline: org.apache.spark.ml.Pipeline = pipeline_518a89c2841c
Now, let's fit a model to our data.
val model = pipeline.fit(training)
model: org.apache.spark.ml.PipelineModel = pipeline_518a89c2841c
We can inspect the learned tree by displaying it using Databricks ML visualization. (Visualization is available for several but not all models.)
// The tree is the last stage of the Pipeline. Display it!
val tree = model.stages.last.asInstanceOf[DecisionTreeClassificationModel]
display(tree)
treeNode |
---|
{"index":31,"featureType":"continuous","prediction":null,"threshold":133.5,"categories":null,"feature":350,"overflow":false} |
{"index":15,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":568,"overflow":false} |
{"index":7,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":430,"overflow":false} |
{"index":3,"featureType":"continuous","prediction":null,"threshold":2.5,"categories":null,"feature":405,"overflow":false} |
{"index":1,"featureType":"continuous","prediction":null,"threshold":12.5,"categories":null,"feature":485,"overflow":false} |
{"index":0,"featureType":null,"prediction":1.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":2,"featureType":null,"prediction":4.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":5,"featureType":"continuous","prediction":null,"threshold":14.5,"categories":null,"feature":516,"overflow":false} |
{"index":4,"featureType":null,"prediction":9.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":6,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":11,"featureType":"continuous","prediction":null,"threshold":34.5,"categories":null,"feature":211,"overflow":false} |
{"index":9,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":98,"overflow":false} |
{"index":8,"featureType":null,"prediction":8.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":10,"featureType":null,"prediction":6.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":13,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":156,"overflow":false} |
{"index":12,"featureType":null,"prediction":4.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":14,"featureType":null,"prediction":6.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":23,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":435,"overflow":false} |
{"index":19,"featureType":"continuous","prediction":null,"threshold":10.5,"categories":null,"feature":489,"overflow":false} |
{"index":17,"featureType":"continuous","prediction":null,"threshold":2.5,"categories":null,"feature":380,"overflow":false} |
{"index":16,"featureType":null,"prediction":5.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":18,"featureType":null,"prediction":9.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":21,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":320,"overflow":false} |
{"index":20,"featureType":null,"prediction":3.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":22,"featureType":null,"prediction":9.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":27,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":346,"overflow":false} |
{"index":25,"featureType":"continuous","prediction":null,"threshold":97.5,"categories":null,"feature":348,"overflow":false} |
{"index":24,"featureType":null,"prediction":3.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":26,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":29,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":655,"overflow":false} |
{"index":28,"featureType":null,"prediction":6.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":30,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":47,"featureType":"continuous","prediction":null,"threshold":36.5,"categories":null,"feature":489,"overflow":false} |
{"index":39,"featureType":"continuous","prediction":null,"threshold":26.5,"categories":null,"feature":290,"overflow":false} |
{"index":35,"featureType":"continuous","prediction":null,"threshold":100.5,"categories":null,"feature":486,"overflow":false} |
{"index":33,"featureType":"continuous","prediction":null,"threshold":129.5,"categories":null,"feature":490,"overflow":false} |
{"index":32,"featureType":null,"prediction":2.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":34,"featureType":null,"prediction":0.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":37,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":656,"overflow":false} |
{"index":36,"featureType":null,"prediction":3.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":38,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":43,"featureType":"continuous","prediction":null,"threshold":5.5,"categories":null,"feature":297,"overflow":false} |
{"index":41,"featureType":"continuous","prediction":null,"threshold":169.5,"categories":null,"feature":486,"overflow":false} |
{"index":40,"featureType":null,"prediction":9.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":42,"featureType":null,"prediction":6.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":45,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":598,"overflow":false} |
{"index":44,"featureType":null,"prediction":4.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":46,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":55,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":521,"overflow":false} |
{"index":51,"featureType":"continuous","prediction":null,"threshold":7.5,"categories":null,"feature":347,"overflow":false} |
{"index":49,"featureType":"continuous","prediction":null,"threshold":4.5,"categories":null,"feature":206,"overflow":false} |
{"index":48,"featureType":null,"prediction":0.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":50,"featureType":null,"prediction":3.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":53,"featureType":"continuous","prediction":null,"threshold":16.5,"categories":null,"feature":514,"overflow":false} |
{"index":52,"featureType":null,"prediction":4.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":54,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":59,"featureType":"continuous","prediction":null,"threshold":0.5,"categories":null,"feature":658,"overflow":false} |
{"index":57,"featureType":"continuous","prediction":null,"threshold":8.5,"categories":null,"feature":555,"overflow":false} |
{"index":56,"featureType":null,"prediction":6.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":58,"featureType":null,"prediction":3.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":61,"featureType":"continuous","prediction":null,"threshold":12.5,"categories":null,"feature":543,"overflow":false} |
{"index":60,"featureType":null,"prediction":0.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":62,"featureType":null,"prediction":7.0,"threshold":null,"categories":null,"feature":null,"overflow":false} |
Above, we can see how the tree makes predictions. When classifying a new example, the tree starts at the "root" node (at the top). Each tree node tests a pixel value and goes either left or right. At the bottom "leaf" nodes, the tree predicts a digit as the image's label.
Hyperparameter Tuning
Run the next cell and come back into hyper-parameter tuning for a couple minutes.
Exploring "maxDepth": training trees of different sizes
In this section, we test tuning a single hyperparameter maxDepth
, which determines how deep (and large) the tree can be. We will train trees at varying depths and see how it affects the accuracy on our held-out test set.
Note: The next cell can take about 1 minute to run since it is training several trees which get deeper and deeper.
val variedMaxDepthModels = (0 until 8).map { maxDepth =>
// For this setting of maxDepth, learn a decision tree.
dtc.setMaxDepth(maxDepth)
// Create a Pipeline with our feature processing stage (indexer) plus the tree algorithm
val pipeline = new Pipeline().setStages(Array(indexer, dtc))
// Run the ML Pipeline to learn a tree.
pipeline.fit(training)
}
variedMaxDepthModels: scala.collection.immutable.IndexedSeq[org.apache.spark.ml.PipelineModel] = Vector(pipeline_665dda68220e, pipeline_b414c08244ef, pipeline_44a8ad1622ad, pipeline_c5a942b290e4, pipeline_032a64305933, pipeline_92a56b5767ee, pipeline_ab0cc9448943, pipeline_adc5aa7af814)
We will use the default metric to evaluate the performance of our classifier:
// Define an evaluation metric. In this case, we will use "accuracy".
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setMetricName("f1") // default MetricName
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
evaluator: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator = MulticlassClassificationEvaluator: uid=mcEval_eac7c153e73e, metricName=f1, metricLabel=0.0, beta=1.0, eps=1.0E-15
// For each maxDepth setting, make predictions on the test data, and compute the classifier's f1 performance metric.
val f1MetricPerformanceMeasures = (0 until 8).map { maxDepth =>
val model = variedMaxDepthModels(maxDepth)
// Calling transform() on the test set runs the fitted pipeline.
// The learned model makes predictions on each test example.
val predictions = model.transform(test)
// Calling evaluate() on the predictions DataFrame computes our performance metric.
(maxDepth, evaluator.evaluate(predictions))
}.toDF("maxDepth", "f1")
f1MetricPerformanceMeasures: org.apache.spark.sql.DataFrame = [maxDepth: int, f1: double]
We can display our accuracy results and see immediately that deeper, larger trees are more powerful classifiers, achieving higher accuracies.
Note: When you run f1MetricPerformanceMeasures.show()
, you will get a table with f1 score getting better (i.e., approaching 1) with depth.
f1MetricPerformanceMeasures.show()
+--------+-------------------+
|maxDepth| f1|
+--------+-------------------+
| 0| 0.023138302649304|
| 1|0.07692344325297736|
| 2|0.21454218035530098|
| 3|0.43262516590643385|
| 4| 0.5918539983626627|
| 5| 0.6806954435278861|
| 6| 0.7478698562916142|
| 7| 0.7876393954574569|
+--------+-------------------+
Even though deeper trees are more powerful, they are not always better (recall from the SF/NYC city classification from house features at The visual description of ML and Decision Trees). If we kept increasing the depth on a rich enough dataset, training would take longer and longer. We also might risk overfitting (fitting the training data so well that our predictions get worse on test data); it is important to tune parameters based on held-out data to prevent overfitting. This will ensure that the fitted model generalizes well to yet unseen data, i.e. minimizes generalization error in a mathematical statistical sense.
Exploring "maxBins": discretization for efficient distributed computing
This section explores a more expert-level setting maxBins
. For efficient distributed training of Decision Trees, Spark and most other libraries discretize (or "bin") continuous features (such as pixel values) into a finite number of values. This is an important step for the distributed implementation, but it introduces a tradeoff: Larger maxBins
mean your data will be more accurately represented, but it will also mean more communication (and slower training).
The default value of maxBins
generally works, but it is interesting to explore on our handwritten digit dataset. Remember our digit image from above:
It is grayscale. But if we set maxBins = 2
, then we are effectively making it a black-and-white image, not grayscale. Will that affect the accuracy of our model? Let's see!
Note: The next cell can take about 35 seconds to run since it trains several trees. Read the details on maxBins
at mllib-decision-tree.html#split-candidates.
dtc.setMaxDepth(6) // Set maxDepth to a reasonable value.
// now try the maxBins "hyper-parameter" which actually acts as a "coarsener"
// mathematical researchers should note that it is a sub-algebra of the finite
// algebra of observable pixel images at the finest resolution available to us
// giving a compression of the image to fewer coarsely represented pixels
val f1MetricPerformanceMeasures = Seq(2, 4, 8, 16, 32).map { case maxBins =>
// For this value of maxBins, learn a tree.
dtc.setMaxBins(maxBins)
val pipeline = new Pipeline().setStages(Array(indexer, dtc))
val model = pipeline.fit(training)
// Make predictions on test data, and compute accuracy.
val predictions = model.transform(test)
(maxBins, evaluator.evaluate(predictions))
}.toDF("maxBins", "f1")
f1MetricPerformanceMeasures: org.apache.spark.sql.DataFrame = [maxBins: int, f1: double]
f1MetricPerformanceMeasures.show()
+-------+------------------+
|maxBins| f1|
+-------+------------------+
| 2|0.7429289482693366|
| 4|0.7390759023032782|
| 8|0.7443669963407805|
| 16|0.7426765688669141|
| 32|0.7478698562916142|
+-------+------------------+
We can see that extreme discretization (black and white) hurts performance as measured by F1-error, but only a bit. Using more bins increases the accuracy (but also makes learning more costly).
What's next?
- Explore: Try out tuning other parameters of trees---or even ensembles like Random Forests or Gradient-Boosted Trees.
- Automated tuning: This type of tuning does not have to be done by hand. (We did it by hand here to show the effects of tuning in detail.) MLlib provides automated tuning functionality via
CrossValidator
. Check out the other Databricks ML Pipeline guides or the Spark ML user guide for details.
Resources
If you are interested in learning more on these topics, these resources can get you started:
- Excellent visual description of Machine Learning and Decision Trees
- This gives an intuitive visual explanation of ML, decision trees, overfitting, and more.
- Blog post on MLlib Random Forests and Gradient-Boosted Trees
- Random Forests and Gradient-Boosted Trees combine many trees into more powerful ensemble models. This is the original post describing MLlib's forest and GBT implementations.
- Wikipedia
Linear Algebra Review
This is a breeze
'y scala
rific break-down of:
- Home Work: read this! https://github.com/scalanlp/breeze/wiki/Quickstart
Using the above resources we'll provide a review of basic linear algebra concepts that will recur throughout the course. These concepts include:
- Matrices
- Vectors
- Arithmetic operations with vectors and matrices
We will see the accompanying Scala computations in the local or non-distributed setting.
Let's get a quick visual geometric interpretation for vectors, matrices and matrix-vector multiplications, eigen systems with real and comples Eigen values NOW from the following interactive visual-cognitive aid at:
- http://setosa.io/ev/eigenvectors-and-eigenvalues/ just focus on geometric interpretation of vectors and matrices in Cartesian coordinates.
Breeze is a linear algebra package in Scala. First, let us import it as follows:
import breeze.linalg._
import breeze.linalg._
1. Matrix: creation and element-access
A matrix is a two-dimensional array.
Let us denote matrices via bold uppercase letters as follows:
For instance, the matrix below is denoted with \(\mathbf{A}\), a capital bold A.
\[ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix} \]
We usually put commas between the row and column indexing sub-scripts, to make the possibly multi-digit indices distinguishable as follows:
\[ \mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \ a_{2,1} & a_{2,2} & a_{2,3} \ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \]
- \(\mathbf{A}_{i,j}\) denotes the entry in \(i\)-th row and \(j\)-th column of the matrix \(\mathbf{A}\).
- So for instance,
- the first entry, the top left entry, is denoted by \(\mathbf{A}_{1,1}\).
- And the entry in the third row and second column is denoted by \(\mathbf{A}_{3,2}\).
- We say that a matrix with n rows and m columns is an \(n\) by \(m\) matrix and written as \(n \times m\)
- The matrix \(\mathbf{A}\) shown above is a generic \(3 \times 3\) (pronounced 3-by-3) matrix.
- And the matrix in Ameet's example in the video above, having 4 rows and 3 columns, is a 4 by 3 matrix.
- If a matrix \(\mathbf{A}\) is \(n \times m\), we write:
- \(\mathbf{A} \in \mathbb{R}^{n \times m}\) and say that \(\mathbf{A}\) is an \(\mathbb{R}\) to the power of the n times m,
- where, \(\mathbb{R}\) here denotes the set of all real numbers in the line given by the open interval: \((-\infty,+\infty)\).
- \(\mathbf{A} \in \mathbb{R}^{n \times m}\) and say that \(\mathbf{A}\) is an \(\mathbb{R}\) to the power of the n times m,
Let us created a matrix A
as a val
(that is immutable) in scala. The matrix we want to create is mathematically notated as follows:
\[ \mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \ a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix}
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{pmatrix} \]
val A = DenseMatrix((1, 2, 3), (4, 5, 6)) // let's create this 2 by 3 matrix
A: breeze.linalg.DenseMatrix[Int] =
1 2 3
4 5 6
A.size
res0: Int = 6
A.rows // number of rows
res1: Int = 2
A.size / A.rows // num of columns
res2: Int = 3
A.cols // also say
res3: Int = 3
Now, let's access the element \(a_{1,1}\), i.e., the element from the first row and first column of \(\mathbf{A}\), which in our val A
matrix is the integer of type Int
equalling 1
.
A(0, 0) // Remember elements are indexed by zero in scala
res4: Int = 1
Gotcha: indices in breeze matrices start at 0 as in numpy of python and not at 1 as in MATLAB!
Of course if you assign the same dense matrix to a mutable var
B
then its entries can be modified as follows:
var B = DenseMatrix((1, 2, 3), (4, 5, 6))
B: breeze.linalg.DenseMatrix[Int] =
1 2 3
4 5 6
B(0,0)=999; B(1,1)=969; B(0,2)=666
B
res5: breeze.linalg.DenseMatrix[Int] =
999 2 666
4 969 6
-
A vector is a matrix with many rows and one column.
-
We'll denote a vector by bold lowercase letters: \[\mathbf{a} = \begin{pmatrix} 3.3 \ 1.0 \ 6.3 \ 3.6 \end{pmatrix}\]
So, the vector above is denoted by \(\mathbf{a}\), the lowercase, bold a.
-
\(a_i\) denotes the i-th entry of a vector. So for instance:
- \(a_2\) denotes the second entry of the vector and it is 1.0 for our vector.
-
If a vector is m-dimensional, then we say that \(\mathbf{a}\) is in \(\mathbb{R}^m\) and write \(\mathbf{a} \in \ \mathbb{R}^m\).
- So our \(\mathbf{a} \in \ \mathbb{R}^4\).
val a = DenseVector(3.3, 1.0, 6.3, 3.6) // these are row vectors
a: breeze.linalg.DenseVector[Double] = DenseVector(3.3, 1.0, 6.3, 3.6)
a.size // a is a column vector of size 4
res6: Int = 4
a(1) // the second element of a is indexed by 1 as the first element is indexed by 0
res7: Double = 1.0
val a = DenseVector[Double](5, 4, -1) // this makes a vector of Doubles from input Int
a: breeze.linalg.DenseVector[Double] = DenseVector(5.0, 4.0, -1.0)
val a = DenseVector(5.0, 4.0, -1.0) // this makes a vector of Doubles from type inference . NOTE "5.0" is needed not just "5."
a: breeze.linalg.DenseVector[Double] = DenseVector(5.0, 4.0, -1.0)
val x = DenseVector.zeros[Double](5) // this will output x: breeze.linalg.DenseVector[Double] = DenseVector(0.0, 0.0, 0.0, 0.0, 0.0)
x: breeze.linalg.DenseVector[Double] = DenseVector(0.0, 0.0, 0.0, 0.0, 0.0)
val A = DenseMatrix((1, 4), (6, 1), (3, 5)) // let's create this 2 by 3 matrix
A: breeze.linalg.DenseMatrix[Int] =
1 4
6 1
3 5
A.t // transpose of A
res8: breeze.linalg.DenseMatrix[Int] =
1 6 3
4 1 5
val a = DenseVector(3.0, 4.0, 1.0)
a: breeze.linalg.DenseVector[Double] = DenseVector(3.0, 4.0, 1.0)
a.t
res9: breeze.linalg.Transpose[breeze.linalg.DenseVector[Double]] = Transpose(DenseVector(3.0, 4.0, 1.0))
val A = DenseMatrix((1, 4), (6, 1), (3, 5))
A: breeze.linalg.DenseMatrix[Int] =
1 4
6 1
3 5
val B = -A
B: breeze.linalg.DenseMatrix[Int] =
-1 -4
-6 -1
-3 -5
A + B // should be A-A=0
res10: breeze.linalg.DenseMatrix[Int] =
0 0
0 0
0 0
A - B // should be A+A=2A
res11: breeze.linalg.DenseMatrix[Int] =
2 8
12 2
6 10
B - A // should be -A-A=-2A
res12: breeze.linalg.DenseMatrix[Int] =
-2 -8
-12 -2
-6 -10
Operators
All Tensors support a set of operators, similar to those used in Matlab or Numpy.
For HOMEWORK see: Workspace -> scalable-data-science -> xtraResources -> LinearAlgebra -> LAlgCheatSheet
for a list of most of the operators and various operations.
Some of the basic ones are reproduced here, to give you an idea.
Operation | Breeze | Matlab | Numpy |
---|---|---|---|
Elementwise addition | a + b | a + b | a + b |
Elementwise multiplication | a :* b | a .* b | a * b |
Elementwise comparison | a :< b | a < b (gives matrix of 1/0 instead of true/false) | a < b |
Inplace addition | a :+= 1.0 | a += 1 | a += 1 |
Inplace elementwise multiplication | a :*= 2.0 | a *= 2 | a *= 2 |
Vector dot product | a dot b ,a.t * b † | dot(a,b) | dot(a,b) |
Elementwise sum | sum(a) | sum(sum(a)) | a.sum() |
Elementwise max | a.max | max(a) | a.max() |
Elementwise argmax | argmax(a) | argmax(a) | a.argmax() |
Ceiling | ceil(a) | ceil(a) | ceil(a) |
Floor | floor(a) | floor(a) | floor(a) |
Pop Quiz:
- what is a natural geometric interpretation of scalar multiplication of a vector or a matrix and what about vector matrix multiplication?
Let's get a quick visual geometric interpretation for vectors, matrices and matrix-vector multiplications from the first interactive visual-cognitive aid at:
val A = DenseMatrix((1, 4), (6, 1), (3, 5))
A: breeze.linalg.DenseMatrix[Int] =
1 4
6 1
3 5
5 * A
res13: breeze.linalg.DenseMatrix[Int] =
5 20
30 5
15 25
A * 5
res14: breeze.linalg.DenseMatrix[Int] =
5 20
30 5
15 25
val A = DenseMatrix((1, 4), (6, 1), (3, 5))
A: breeze.linalg.DenseMatrix[Int] =
1 4
6 1
3 5
val B = DenseMatrix((3, 1), (2, 2), (1, 3))
B: breeze.linalg.DenseMatrix[Int] =
3 1
2 2
1 3
A *:* B // element-wise multiplication
res15: breeze.linalg.DenseMatrix[Int] =
3 4
12 2
3 15
val A = DenseMatrix((1, 4), (3, 1))
A: breeze.linalg.DenseMatrix[Int] =
1 4
3 1
val a = DenseVector(1, -1) // is a column vector
a: breeze.linalg.DenseVector[Int] = DenseVector(1, -1)
a.size // a is a column vector of size 2
res16: Int = 2
A * a
res17: breeze.linalg.DenseVector[Int] = DenseVector(-3, 2)
val A = DenseMatrix((1,2,3),(1,1,1))
A: breeze.linalg.DenseMatrix[Int] =
1 2 3
1 1 1
val B = DenseMatrix((4, 1), (9, 2), (8, 9))
B: breeze.linalg.DenseMatrix[Int] =
4 1
9 2
8 9
A*B // 4+18+14
res18: breeze.linalg.DenseMatrix[Int] =
46 32
21 12
1*4 + 2*9 + 3*8 // checking first entry of A*B
res19: Int = 46
val A = DenseMatrix((1,2,3),(4,5,6))
A: breeze.linalg.DenseMatrix[Int] =
1 2 3
4 5 6
DenseMatrix.eye[Int](3)
res20: breeze.linalg.DenseMatrix[Int] =
1 0 0
0 1 0
0 0 1
A * DenseMatrix.eye[Int](3)
res21: breeze.linalg.DenseMatrix[Int] =
1 2 3
4 5 6
DenseMatrix.eye[Int](2) * A
res22: breeze.linalg.DenseMatrix[Int] =
1 2 3
4 5 6
val D = DenseMatrix((2.0, 3.0), (4.0, 5.0))
val Dinv = inv(D)
D: breeze.linalg.DenseMatrix[Double] =
2.0 3.0
4.0 5.0
Dinv: breeze.linalg.DenseMatrix[Double] =
-2.5 1.5
2.0 -1.0
D * Dinv
res23: breeze.linalg.DenseMatrix[Double] =
1.0 0.0
0.0 1.0
Dinv * D
res24: breeze.linalg.DenseMatrix[Double] =
1.0 0.0
0.0 1.0
val b = DenseVector(4, 3)
norm(b)
b: breeze.linalg.DenseVector[Int] = DenseVector(4, 3)
res25: Double = 5.0
Math.sqrt(4*4 + 3*3) // check
res26: Double = 5.0
HOMEWORK: read this! https://github.com/scalanlp/breeze/wiki/Quickstart
It is here in markdown'd via wget and pandoc for your convenience.
Scala / nlp / breeze / Quickstart
David Hall edited this page on 24 Dec 2015
Breeze is modeled on Scala, and so if you're familiar with it, you'll be familiar with Breeze. First, import the linear algebra package:
scala> import breeze.linalg._
Let's create a vector:
scala> val x = DenseVector.zeros[Double](5)
x: breeze.linalg.DenseVector[Double] = DenseVector(0.0, 0.0, 0.0, 0.0, 0.0)
Here we make a column vector of zeros of type Double. And there are other ways we could create the vector - such as with a literal DenseVector(1,2,3)
or with a call to fill
or tabulate
. The vector is "dense" because it is backed by an Array[Double]
, but could as well have created a SparseVector.zeros[Double](5)
, which would not allocate memory for zeros.
Unlike Scalala, all Vectors are column vectors. Row vectors are represented as Transpose[Vector[T]]
.
The vector object supports accessing and updating data elements by their index in 0
to x.length-1
. Like Numpy, negative indices are supported, with the semantics that for an index i < 0
we operate on the i-th element from the end (x(i) == x(x.length + i)
).
scala> x(0)
Double = 0.0
scala> x(1) = 2
scala> x
breeze.linalg.DenseVector[Double] = DenseVector(0.0, 2.0, 0.0, 0.0, 0.0)
Breeze also supports slicing. Note that slices using a Range are much, much faster than those with an arbitrary sequence.
scala> x(3 to 4) := .5
breeze.linalg.DenseVector[Double] = DenseVector(0.5, 0.5)
scala> x
breeze.linalg.DenseVector[Double] = DenseVector(0.0, 2.0, 0.0, 0.5, 0.5)
The slice operator constructs a read-through and write-through view of the given elements in the underlying vector. You set its values using the vectorized-set operator :=
. You could as well have set it to a compatibly sized Vector.
scala> x(0 to 1) := DenseVector(.1,.2)
scala> x
breeze.linalg.DenseVector[Double] = DenseVector(0.1, 0.2, 0.0, 0.5, 0.5)
Similarly, a DenseMatrix can be created with a constructor method call, and its elements can be accessed and updated.
scala> val m = DenseMatrix.zeros[Int](5,5)
m: breeze.linalg.DenseMatrix[Int] =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
The columns of m
can be accessed as DenseVectors, and the rows as DenseMatrices.
scala> (m.rows, m.cols)
(Int, Int) = (5,5)
scala> m(::,1)
breeze.linalg.DenseVector[Int] = DenseVector(0, 0, 0, 0, 0)
scala> m(4,::) := DenseVector(1,2,3,4,5).t // transpose to match row shape
breeze.linalg.DenseMatrix[Int] = 1 2 3 4 5
scala> m
breeze.linalg.DenseMatrix[Int] =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 2 3 4 5
Assignments with incompatible cardinality or a larger numeric type won't compile.
scala> m := x
<console>:13: error: could not find implicit value for parameter op: breeze.linalg.operators.BinaryUpdateOp[breeze.linalg.DenseMatrix[Int],breeze.linalg.DenseVector[Double],breeze.linalg.operators.OpSet]
m := x
^
Assignments with incompatible size will throw an exception:
scala> m := DenseMatrix.zeros[Int](3,3)
java.lang.IllegalArgumentException: requirement failed: Matrices must have same number of row
Sub-matrices can be sliced and updated, and literal matrices can be specified using a simple tuple-based syntax. Unlike Scalala, only range slices are supported, and only the columns (or rows for a transposed matrix) can have a Range step size different from 1.
scala> m(0 to 1, 0 to 1) := DenseMatrix((3,1),(-1,-2))
breeze.linalg.DenseMatrix[Int] =
3 1
-1 -2
scala> m
breeze.linalg.DenseMatrix[Int] =
3 1 0 0 0
-1 -2 0 0 0
0 0 0 0 0
0 0 0 0 0
1 2 3 4 5
Broadcasting
Sometimes we want to apply an operation to every row or column of a matrix, as a unit. For instance, you might want to compute the mean of each row, or add a vector to every column. Adapting a matrix so that operations can be applied column-wise or row-wise is called broadcasting. Languages like R and numpy automatically and implicitly do broadcasting, meaning they won't stop you if you accidentally add a matrix and a vector. In Breeze, you have to signal your intent using the broadcasting operator *
. The *
is meant to evoke "foreach" visually. Here are some examples:
scala> import breeze.stats.mean
scala> val dm = DenseMatrix((1.0,2.0,3.0),
(4.0,5.0,6.0))
scala> val res = dm(::, *) + DenseVector(3.0, 4.0)
breeze.linalg.DenseMatrix[Double] =
4.0 5.0 6.0
8.0 9.0 10.0
scala> res(::, *) := DenseVector(3.0, 4.0)
scala> res
breeze.linalg.DenseMatrix[Double] =
3.0 3.0 3.0
4.0 4.0 4.0
scala> mean(dm(*, ::))
breeze.linalg.DenseVector[Double] = DenseVector(2.0, 5.0)
breeze.stats.distributions
Breeze also provides a fairly large number of probability distributions. These come with access to probability density function for either discrete or continuous distributions. Many distributions also have methods for giving the mean and the variance.
scala> import breeze.stats.distributions._
scala> val poi = new Poisson(3.0);
poi: breeze.stats.distributions.Poisson = <function1>
scala> val s = poi.sample(5);
s: IndexedSeq[Int] = Vector(5, 4, 5, 7, 4)
scala> s map { poi.probabilityOf(_) }
IndexedSeq[Double] = Vector(0.10081881344492458, 0.16803135574154085, 0.10081881344492458, 0.02160403145248382, 0.16803135574154085)
scala> val doublePoi = for(x <- poi) yield x.toDouble // meanAndVariance requires doubles, but Poisson samples over Ints
doublePoi: breeze.stats.distributions.Rand[Double] = breeze.stats.distributions.Rand$$anon$11@1b52e04
scala> breeze.stats.meanAndVariance(doublePoi.samples.take(1000));
breeze.stats.MeanAndVariance = MeanAndVariance(2.9960000000000067,2.9669509509509533,1000)
scala> (poi.mean,poi.variance)
(Double, Double) = (3.0,3.0)
NOTE: Below, there is a possibility of confusion for the term rate
in the family of exponential distributions. Breeze parameterizes the distribution with the mean, but refers to it as the rate.
scala> val expo = new Exponential(0.5);
expo: breeze.stats.distributions.Exponential = Exponential(0.5)
scala> expo.rate
Double = 0.5
A characteristic of exponential distributions is its half-life, but we can compute the probability a value falls between any two numbers.
scala> expo.probability(0, log(2) * expo.rate)
Double = 0.5
scala> expo.probability(0.0, 1.5)
Double = 0.950212931632136
This means that approximately 95% of the draws from an exponential distribution fall between 0 and thrice the mean. We could have easily computed this with the cumulative distribution as well
scala> 1 - exp(-3.0)
Double = 0.950212931632136
scala> val samples = expo.sample(2).sorted;
samples: IndexedSeq[Double] = Vector(1.1891135726280517, 2.325607782657507)
scala> expo.probability(samples(0), samples(1));
Double = 0.08316481553047272
scala> breeze.stats.meanAndVariance(expo.samples.take(10000));
breeze.stats.MeanAndVariance = MeanAndVariance(2.029351863973081,4.163267835527843,10000)
scala> (1 / expo.rate, 1 / (expo.rate * expo.rate))
(Double, Double) = (2.0,4.0)
breeze.optimize
TODO: document breeze.optimize.minimize, recommend that instead.
Breeze's optimization package includes several convex optimization routines and a simple linear program solver. Convex optimization routines typically take a DiffFunction[T]
, which is a Function1
extended to have a gradientAt
method, which returns the gradient at a particular point. Most routines will require a breeze.linalg
-enabled type: something like a Vector
or a Counter
.
Here's a simple DiffFunction
: a parabola along each vector's coordinate.
scala> import breeze.optimize._
scala> val f = new DiffFunction[DenseVector[Double]] {
| def calculate(x: DenseVector[Double]) = {
| (norm((x - 3d) :^ 2d,1d),(x * 2d) - 6d);
| }
| }
f: java.lang.Object with breeze.optimize.DiffFunction[breeze.linalg.DenseVector[Double]] = $anon$1@617746b2
Note that this function takes its minimum when all values are 3. (It's just a parabola along each coordinate.)
scala> f.valueAt(DenseVector(3,3,3))
Double = 0.0
scala> f.gradientAt(DenseVector(3,0,1))
breeze.linalg.DenseVector[Double] = DenseVector(0.0, -6.0, -4.0)
scala> f.calculate(DenseVector(0,0))
(Double, breeze.linalg.DenseVector[Double]) = (18.0,DenseVector(-6.0, -6.0))
You can also use approximate derivatives, if your function is easy enough to compute:
scala> def g(x: DenseVector[Double]) = (x - 3.0):^ 2.0 sum
scala> g(DenseVector(0.,0.,0.))
Double = 27.0
scala> val diffg = new ApproximateGradientFunction(g)
scala> diffg.gradientAt(DenseVector(3,0,1))
breeze.linalg.DenseVector[Double] = DenseVector(1.000000082740371E-5, -5.999990000127297, -3.999990000025377)
Ok, now let's optimize f
. The easiest routine to use is just LBFGS
, which is a quasi-Newton method that works well for most problems.
scala> val lbfgs = new LBFGS[DenseVector[Double]](maxIter=100, m=3) // m is the memory. anywhere between 3 and 7 is fine. The larger m, the more memory is needed.
scala> val optimum = lbfgs.minimize(f,DenseVector(0,0,0))
optimum: breeze.linalg.DenseVector[Double] = DenseVector(2.9999999999999973, 2.9999999999999973, 2.9999999999999973)
scala> f(optimum)
Double = 2.129924444096732E-29
That's pretty close to 0! You can also use a configurable optimizer, using FirstOrderMinimizer.OptParams
. It takes several parameters:
case class OptParams(batchSize:Int = 512,
regularization: Double = 1.0,
alpha: Double = 0.5,
maxIterations:Int = -1,
useL1: Boolean = false,
tolerance:Double = 1E-4,
useStochastic: Boolean= false) {
// ...
}
batchSize
applies to BatchDiffFunctions
, which support using small minibatches of a dataset. regularization
integrates L2 or L1 (depending on useL1
) regularization with constant lambda. alpha
controls the initial stepsize for algorithms that need it. maxIterations
is the maximum number of gradient steps to be taken (or -1 for until convergence). tolerance
controls the sensitivity of the convergence check. Finally, useStochastic
determines whether or not batch functions should be optimized using a stochastic gradient algorithm (using small batches), or using LBFGS (using the entire dataset).
OptParams
can be controlled using breeze.config.Configuration
, which we described earlier.
breeze.optimize.linear
We provide a DSL for solving linear programs, using Apache's Simplex Solver as the backend. This package isn't industrial strength yet by any means, but it's good for simple problems. The DSL is pretty simple:
import breeze.optimize.linear._
val lp = new LinearProgram()
import lp._
val x0 = Real()
val x1 = Real()
val x2 = Real()
val lpp = ( (x0 + x1 * 2 + x2 * 3 )
subjectTo ( x0 * -1 + x1 + x2 <= 20)
subjectTo ( x0 - x1 * 3 + x2 <= 30)
subjectTo ( x0 <= 40 )
)
val result = maximize( lpp)
assert( norm(result.result - DenseVector(40.0,17.5,42.5), 2) < 1E-4)
We also have specialized routines for bipartite matching (KuhnMunkres
and CompetitiveLinking
) and flow problems.
Where to go next?
After reading this quickstart, you can go to other wiki pages, especially Linear Algebra Cheat-Sheet and Data Structures.
Review the following for example:
if you have not experienced or forgotten big-O and big-Omega and big-Theta notation to study the computational efficiency of algorithms.
Let us visit an interactive visual cognitive tool for the basics ideas in linear regression:
Linear Regression by Hastie and Tibshirani
Chapter 3 of https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
The following video playlist is a very concise and thorough treatment of linear regression for those who have taken the 200-level linear algebra. Others can fully understand it with some effort and revisiting.
Ridge regression has a Bayesian interpretation where the weights have a zero-mean Gaussian prior. See 7.5 in Murphy's Machine Learning: A Probabilistic Perspective for details.
Please take notes in mark-down if you want.
For latex math within markdown you can do the following for in-line maths: \(\mathbf{A}_{i,j} \in \mathbb{R}^1\). And to write maths in display mode do the following:
\[\mathbf{A} \in \mathbb{R}^{m \times d} \]
You will need to write such notes for your final project presentation!
Gradient Descent
Refresher: what-is-gradient-descent
Getting our hands dirty with Darren Wilkinson's blog on regression
Let's follow the exposition in:
- https://darrenjw.wordpress.com/2017/02/08/a-quick-introduction-to-apache-spark-for-statisticians/
- https://darrenjw.wordpress.com/2017/06/21/scala-glm-regression-modelling-in-scala/
You need to scroll down the fitst link embedded in iframe below to get to the section on Analysis of quantitative data with Descriptive statistics and Linear regression sub-sections (you can skip the earlier part that shows you how to run everything locally in spark-shell
- try this on your own later).
Let's do this live now...
import breeze.stats.distributions._
def x = Gaussian(1.0,2.0).sample(10000)
val xRdd = sc.parallelize(x)
import breeze.stats.distributions._
x: IndexedSeq[Double]
xRdd: org.apache.spark.rdd.RDD[Double] = ParallelCollectionRDD[0] at parallelize at command-2971213210277124:3
println(xRdd.mean)
println(xRdd.sampleVariance)
0.9961211853107911
4.025384520599017
val xStats = xRdd.stats
xStats.mean
xStats.sampleVariance
xStats.sum
xStats: org.apache.spark.util.StatCounter = (count: 10000, mean: 0.996121, stdev: 2.006236, max: 8.326542, min: -6.840659)
res1: Double = 9961.21185310791
val x2 = Gaussian(0.0,1.0).sample(10000) // 10,000 Gaussian samples with mean 0.0 and std dev 1.0
val xx = x zip x2 // creating tuples { (x,x2)_1, ... , (x,x2)_10000}
val lp = xx map {p => 2.0*p._1 + 1.0*p._2 + 1.5} // { lp_i := (2.0*x + 1.0 * x2 + 1.5)_i, i=1,...,10000 }
val eps = Gaussian(0.0,1.0).sample(10000) // standard normal errors
val y = (lp zip eps) map (p => p._1 + p._2)
val yx = (y zip xx) map (p => (p._1, p._2._1, p._2._2))
x2: IndexedSeq[Double] = Vector(0.1510498720110515, -0.21709023201809416, -0.9420189342233366, -0.6050521762158899, 0.48771393128636853, 0.027986752952643124, 0.08206698908429294, -0.7810931162704136, -1.2057806605697985, -0.9176042669882863, 1.1959113751272468, 0.5771223111098949, -0.5030579509564024, 0.05792512611966754, 2.0492117764647917, -1.6192400586380957, -0.28568171141353893, 1.662660432138664, -0.3053683539449641, 0.3879563181609168, -0.7733054017369991, -0.39556455561853454, 1.7717311537878704, 0.33232937623812936, -0.1392031424321576, -0.5587152832826312, -1.7575839385785728, -0.6579581256900572, 2.037190332203657, 0.03462069676057432, -0.3795037160416964, 0.4622268686186779, -1.0897313199516543, -1.6880936202156007, -0.19374927120525648, -0.5509651353004006, -1.7588836379571422, -0.28930357427256465, 0.4020360571731675, -1.6301541413671794, 0.5958281089725639, 0.366330814768569, 0.4073858014158006, 0.16855406345881346, -0.947375008877488, -1.301502215739479, 0.1470275032863848, 1.0019450542117738, -0.5904174670089379, 0.5435130824204192, 0.3257024438513822, 0.7490447645980914, 0.7972538819971793, -3.008935968399453, -0.2458138862820675, 2.2893054863712985, -0.16582870751291443, -0.7663457059098656, -0.02129165082715293, -1.678393618311418, 0.4477301980923963, -1.3761630188037661, 0.8348043252317754, 2.593999513789406, 0.6054528239524932, -0.517937225538966, -0.8704495697165462, 0.7963689735065775, -0.22860472183526676, -0.8133035588543074, 1.1807570202429787, 0.09708549308780165, -0.1255029357381233, -0.23174042403046444, 1.9877912284224935, -1.6162508631493637, -0.1284467343953938, 0.715203575233169, 0.3144454735478882, -0.1848647516127121, -0.5496887866336722, -0.2545756305645813, 0.16750436775298258, -2.4673043543431854, 1.1418851052679557, 0.3748790073641352, -0.817404869860111, -0.8361798593188912, -1.5394267146879406, -0.41572364800501355, -0.1012436049109305, -1.1015184209065036, 1.8240944932710277, -0.028399443888511452, -0.8207026038892242, 0.015061100495787802, 0.18421526981224481, 1.2655676528174074, -1.057100552093993, 0.9714045895202634, 0.7411082212281875, 0.8163373740421433, -0.08103816988370252, 0.5892784701674155, 0.32505574686630534, -0.9962963394557808, 0.484895621648311, 0.9927193853136387, -1.7490403684405513, 1.6202003817264536, -0.2699908354021868, 0.9907548061408172, -0.6242833307164519, 0.4843781855746414, 0.4842034053606869, 0.7600831116212132, -0.6640803417192944, -0.5474019416456044, 0.2700255027168447, -1.3841075813504558, 1.6002816913642322, -0.7092207329917671, -0.08883062902810138, 2.025819363561132, 0.05567161231138376, -1.556067597966872, -0.5832140748557112, 0.31537969362482127, 0.015469743624534625, -1.2740442928737779, 1.3809654728074165, -2.333571571876549, 0.20354188937573037, 1.0247244424109938, -0.25757737278880144, -2.8220962107471803, 0.09738713753633461, 1.89542633873579, -2.6782503894934844, 0.7782540200985733, 0.6414117319660293, 2.264173731050526, -1.5111510345308878, 0.9287758292855764, 0.5055499928507728, 0.16205786373841113, -1.0297014434622302, -1.291377179402119, -0.40663773460337127, -1.2343888551769233, -0.5036902484765656, -0.3721487060577523, -1.987521549256808, 1.175800228965741, -0.00707441417410632, 1.0509376236793728, 0.7494475310558243, -0.38427172332612247, -0.930358252352808, 0.960228212698756, 1.0130821037354474, -0.03770027592004082, -0.9950054698782884, -1.8847718393419073, 1.2260442128311473, 0.8973362086382494, -1.1448274676767252, 1.2547096088120568, -0.9186364033184078, 0.8026832422467616, -0.4758593270796066, -0.830645491686263, -0.5400873564064651, -0.6630169496517384, 0.6381413581264455, -0.7504597023733945, -0.5222934465699843, 1.8847574147176338, 0.6145641448752742, -0.5988311192477164, -0.48271398431423773, 0.5473323912712278, -0.5885123950740869, 1.0174330673374294, 0.9167061097763491, -0.5816363296158883, 0.030959788500977675, -0.5137243911676949, -1.8709170592192632, -1.7472131497273815, -1.1974973880763593, -0.09142445477515819, 0.40624320435362116, -0.40045440389966913, -0.37854644978248697, 0.11830887334108421, 1.4637485338108103, -0.7665087390801844, -0.3760615977493943, -1.5309037473721014, -1.4651567904030773, -0.026798948253209182, 0.2066789574673153, 1.8143254569727947, 2.3406140678357765, 0.18034205783137355, -1.4479109856334291, -1.1294650286779386, 1.2932328016031633, -0.1393663274001316, -0.8468551132460095, 1.2713996676202226, -0.060721411812719187, 0.6928376952914521, 1.0579153298124913, -0.7645892788282653, -1.4263627705259183, 0.5336299350415817, 0.6573179344240204, 0.6654619137191999, -2.123504844254055, 1.4866262970106303, 0.129061989976924, 0.22269040795154907, -0.049559875163616714, -0.9450310180664842, -0.11473631908336672, -0.39245949031895117, 1.5510785871987065, 1.8254864916125728, 2.061530134034693, 0.8418470519782356, 0.06828445075170164, 1.663002872049384, 0.5626537089196723, 1.1924431746135973, 0.37430311472451033, -0.370821637491865, -0.09451085038956872, 1.8818552958789954, -0.5452487096855598, 0.9207216541161212, -0.03840103995077165, 1.3724685915375903, 0.8666584948313616, -1.1444960562771815, 0.2805555937763331, 0.7940128878027313, 0.5091140746762197, 1.5121770072162093, -0.5742888800806798, 2.3581174706724157, 1.7068949917127816, 0.4624349386051622, 0.1225204014240068, 0.9398794428978549, -0.9518050374642764, -1.0522230289227708, 0.8902191043953458, -1.0945928783869934, 0.18036570004934346, -0.8406140101582382, -0.8634555290392517, 0.7792166711410811, 1.289633532883873, -0.4501732830926528, 2.7021303462005424, -0.22262701182155162, 0.6460605038491092, -1.0247372175076013, -1.307280513522457, 1.6404006952919912, -0.0518398187177849, 0.45080433367542755, 0.3719461665317735, -1.4543187272074507, 0.10188821604602745, -0.27296335375143177, 1.2451029860749379, 0.14487479131269917, 0.18201741036674932, 0.03920775130429693, -0.2580100207138237, 1.7047536767840974, 0.29766687892421284, -1.7401156308492993, 0.05515391539227905, -0.27119832477161965, -1.0452547788609865, -1.4984850253735646, -2.079436054773939, 0.44308840473545447, 0.25444206315208995, -0.19417163889547193, -0.5363606084152478, 0.36176129341638513, -0.33671294206693936, -2.2316073845645206, 0.0455416268115695, 1.0401389018577378, -0.3141083536641634, 0.07341971359886727, 1.0284248217766079, 1.278483571961632, -0.7833209611949998, 1.3772836627732903, 0.9700373682532052, -0.8662419500657893, -1.5938783703449753, -0.6174495172524604, -0.7819620808358254, 0.10302666069195707, 1.0028767323240257, -0.10674590158973656, 0.38777338877043965, -1.0509152481698179, -0.06337185419126991, 1.4117521801837538, 0.7613291392405328, 1.0897823589924052, -0.6637558495096709, -1.8157963102001593, 1.2358784007741146, -2.15537358668726, 0.2971613832014052, -0.750050504028126, 0.8329394704642922, -1.071705174325631, -0.9018883675016863, -0.8504391140892998, -1.0078945028740045, -0.44317562320236065, 1.3250813581783045, 0.6196354624287462, -1.278621584064485, 1.9184511848237962, -0.516835702626045, 0.6357213808712543, 0.925579417321024, -0.5545984413834245, -1.3658354424121768, -0.5628777726709475, -0.04769253246241577, -0.6991542495947202, -1.1147192653783664, -0.5166063563392334, -1.7956252514175055, 1.6987454382135425, -0.43821792344869875, 1.022408572973808, 0.3336089209393924, 0.02312505623899069, -0.31233039785382466, -0.824119195846109, 0.13191861079694536, -0.6036888443048509, 0.11668453965551463, -1.2724302084947103, 0.28050518201340424, -1.0824241957346425, -1.1326924749331988, 0.5172393559288399, -0.7220647087293313, -1.2436289736107498, -0.6156240117132562, 1.0406128654122049, -0.6297102775960882, 0.012206672359322898, 0.4525998876038395, -1.0451363444854351, -1.3734168129137967, 0.08679497767122704, -2.04474580239617, -0.19771649973564123, -1.3186299012886857, -0.2761375653147074, 0.5741590875530609, 0.9593237124668771, 1.0961298140479905, 0.4391578691796409, -0.6238036279250703, -0.05430692986877771, -0.11640313781962018, 2.0002028697055154, 0.7350624069633737, -0.17859693817047373, -2.314523014865333, 0.22960402078570183, 0.5724080038056716, -0.07916244301664163, -0.5341143586242104, 1.6460207223980545, 0.3137460006226553, -0.9207927088314583, 0.6967661703270028, 0.5571396449070067, 0.31796421714524625, -0.2228633316357967, -0.5499817903565626, -0.7841758341511148, -0.02401453955427877, -2.3166764321273394, 1.0391140336549198, 0.5498488089121792, 1.2335108771359133, -1.9943985764799559, 0.042171455201203426, -0.7485156690697342, -0.9570963024254994, 1.301620771050323, 0.04031728339000787, -0.6859845801505859, 1.3911313622090693, -1.6605547611122933, 0.6699454108732157, -1.1570517171606756, -0.36244860379594424, -0.09907031133103263, 0.19148521269498425, 0.8267773040085179, -1.3644874947043841, -1.197567110439719, 1.4817262828203837, -0.10843051264695289, 0.08108871807685476, 1.3545724635606313, 0.5100719528278953, 0.057285477365546435, -0.37191016428905793, 0.18281213200485982, -0.8842932261652275, -1.6494429918726925, -0.7764264486783047, -0.3042211935492598, -0.020825036678536985, -0.30368381843937947, 0.7800891562758471, -0.0735325489432372, -0.1679937736476282, -1.79719393467339, 1.0755228066035305, -0.15773836735128086, -0.0783402653348485, -1.719143525921516, 0.8435175129296529, 0.6761343445136715, 0.5244103817082383, 0.8620143952438806, -2.3060336651929445, 1.4304037697137544, -0.7759942408828852, -1.2609787369882242, -1.4478365748347117, 2.0278952751593384, -0.7861955769834937, -0.2479198127035199, -0.6571378828960646, -2.1673373348092366, -1.7499456634223678, 0.19663998656853085, 0.23504549724402013, 0.3638239098400113, -1.3775094864583974, -0.020668102118018273, 0.25664562550595316, 0.28318073789879256, -0.29571052367446293, 0.7681213080895282, 1.5610874049559282, -2.622344889120145, -0.8202101196954132, 0.7748393413408604, 0.508724216091097, -0.3751101664710589, -0.9591972717671285, 0.925165234056263, 1.8459965937810827, 0.27342245677072646, -2.4602979491815096, 0.6963477323668592, 2.167550027845107, -0.19332822247961037, 0.5981380076459031, -0.694964755780304, 0.08919555493105245, -2.0804801088705767, 1.1920101085447832, 1.231750346524178, -1.455653407187848, 1.2328411389316813, -0.39573709387712014, -1.1956194147671937, -0.04302633139042216, 2.0750703846663137, -1.7646202495106422, -0.017144573753570983, 0.1715206676563901, -0.9656202470043257, -1.2648785618794656, -1.3357866485679637, 0.1818276074213889, -0.1742396893961462, -0.6767070415199365, 2.137638188136061, 0.4838102855828845, 0.3075626385768448, -1.3633563499769654, 0.02908534679907131, 2.321245009450074, -0.037890984508530186, -1.3762801283466828, 1.6125793622774343, 0.201560934160273, -0.15731271258242444, 0.6015468376832578, -0.0991480003326356, 0.9603378027154168, 0.5407700164856909, -0.18116162969719404, 1.515039231410728, 1.0516518441747622, -1.108150706054602, -0.0902162047955897, 0.525636626469496, -0.6505154458390053, -0.6385600015638014, -0.03765503579803463, -0.8067465597676813, 0.25298188952694345, -1.2484755253881343, 0.5907884315290602, -0.7407171504354528, 0.09342389392065106, -0.6358631568411891, -0.7990035391904377, 0.7318639477491172, 1.0721139408861649, -0.7709696933298915, 1.4262689270118047, 0.008052693380149429, -0.7675924241217212, -0.875355770610139, 0.3318552144813144, 0.47230162167225975, -0.28845007593399613, 0.33674053005607557, -1.2685836846998517, 0.9973713512813284, -0.14095584542177128, 0.6434211266970435, -1.3166935231718915, 0.5010874593219053, 0.5400322253256449, 0.1131615290866549, 1.1948743843705798, -0.4068064171361299, -0.2145531753251343, -0.8414414845064078, -0.17448661922809763, 0.015039956542559319, -2.00225473143416, 0.7768533690748148, 0.7280781053306761, -0.6814357844622568, 2.4398143015234925, -1.9715384636473667, -1.089089720589046, -1.0771030789727833, -1.1187887124853761, 0.26304747184316635, 0.6104069218328998, 0.814212432670669, -1.1311163095796626, -0.715657837824097, 0.11337791560485909, 1.1903117127474667, 0.8655118045637775, -0.4786300318354617, 1.1374241148097717, 1.3574248394663742, -0.59796895966422, 0.5787074373907313, -1.4837192620796162, 0.15009771866713956, -1.0785198355458125, 0.43654174540174034, 1.367374206941478, 1.1624833124548457, 1.4378845237950593, -0.4752367281036082, -0.6295231876858187, 0.13609988490474167, 1.451172421854568, -0.9690521636819287, -0.4657652028114279, -0.3272245138051527, -0.3254730682226242, -1.1968451698216205, -2.374605096166881, 1.4231065460066927, 0.3339627050188421, -0.37529586334821136, 1.7121288810552737, 0.7740341080806812, -0.08101997848273264, 0.8171553719668059, 1.004037394973044, 0.22996069331921015, -0.135350519278533, -0.4727403129550938, -0.1182151974084787, -1.9468945045910213, 0.4579087802822954, 1.3836409234546432, 0.02325932498935564, 0.475495388508411, -0.37698432805620236, -0.8219848732487407, -1.3951694203634668, 0.0484490852454009, 0.9222291689334502, 1.5679464498188418, 0.810147143385619, 1.9186942393210789, -0.2176761309409645, 1.497682278641026, -0.6745280698091511, -0.14287398549911423, -0.6123313834457077, 0.5533479535312111, 0.17525285583058028, 0.26417401560092896, 0.7989612854266647, -0.6531854416899909, 0.3890137678570137, 1.5942398929174109, 0.29843502966443813, 0.28270288452527464, -1.030296515196584, 0.29004278605641326, 1.1839066433022867, 0.5617980143776449, 0.3177318190024553, -0.17078152902760071, -0.4129031279462113, 1.6509715706618235, -0.27367425727559463, 1.2450208243939591, 1.4063428988232145, 1.6639488103943056, 0.4109699563209272, -2.1509670233572784, 0.2639495116581482, -0.9708523309574577, 1.2588123216998128, -0.6395148239066109, -2.3731627585033115, 0.43524872907522616, 0.6328073362083871, -0.2381862432808314, 0.40492896291344244, -1.0527840343286374, 1.0689442908821987, 0.789255581937264, 1.1724902795494772, 1.2893390188349818, 0.8926054903089587, 1.4246842661952515, 0.21910907895561132, 0.34689263334132264, -0.5771627038699307, -0.04827308490054824, -0.8361201294738408, 0.2776346366703466, -2.583216199463966, -0.5754336242709439, -0.4740298729504418, 0.45528050967309863, -0.937001723779216, 0.12442585999261868, -1.037597020742512, 0.6656497732259127, 0.09718535082910094, 0.472044663569549, 0.01365815985041524, 0.21443946294874028, 0.38540036725618015, 0.7807770362857364, 0.12940125757456059, -0.9556204076037894, -1.0007190699745476, -1.4238233782457508, 0.09834207753278863, -2.5447136959911605, 0.1997331013963162, 1.2806574080505437, 0.9315316175761184, -0.6394107818742375, -1.4099227738716835, -0.21682467720141205, -0.2142482857139384, 1.1299353191945833, 0.26409499420187055, -0.6837618328677663, 1.748176871520828, -0.45137750181529596, 0.2545934586572956, 0.6078542443352412, -0.21436291927129, -0.01807798719673732, 0.9995581200333848, -1.9002339898589569, -0.2693745536442081, 0.27738326061401086, 0.9588088083048624, -2.2809380920777813, 0.38515662164152703, 0.14815918760114763, 0.21892066892130446, 1.2291414798572955, -0.7027138126400151, 0.001101516410189726, -0.19878057656460413, -1.3484820015025956, -1.3475429219400465, -2.0210923601428465, -0.09144126594108812, 0.4059005816276273, 0.9335476898909668, -0.17037852812849555, 1.1797576294046501, -0.9814138435948395, -0.59577026888633, -0.946118594015114, 0.31024225601384786, -0.36715612264555036, -0.9129082906750721, 0.24118225941129226, 1.6953067460054017, -0.44575419487658474, 0.8440499307509399, -0.6987818896793766, -1.6504422204189202, 0.9076290994167842, -0.5720216124887916, -0.3907622872528834, -0.5344435450123501, 0.2434291400674394, -1.3828080206005129, -0.40522439460185156, -0.9329831282017179, 1.5016477371243226, -0.4782955772741999, -0.35933071932718297, -0.013071727079844811, 0.9457197761151667, 0.88547572536491, -0.7284350484475177, 3.34597265464979, -0.6565486096719748, 2.0071882494870747, 1.0595021575719632, -0.6347598710491432, 1.7780817104271445, -0.7474659036256496, 2.274681811945376, -0.16661804033866273, 1.229846682825196, -0.24202493293949087, 1.3043974875572906, 0.6542233003162868, 1.1297955530475419, -0.6421340260679929, 0.6218989933034942, 0.41508966549094883, 0.19856384065980512, -0.9782335050516806, 1.5826472247462247, 0.17887593907764898, -1.3498741915231427, -1.9667878392676454, 3.305663883668763, -0.4350440334262082, -0.4097682527976977, 0.9434336763573686, -0.5436220786767807, -0.018197193698519923, -0.8423313162472719, -0.5537406141818406, -1.3445810021139153, 0.5739597321896511, 0.9027226090601936, 0.9962807601235416, -0.3944869331359751, -0.49948645872557595, -1.592644252527489, -0.8963075632556161, -0.281124928867554, -0.38290172562814223, -0.08623070871608174, 0.8689176122759706, -0.6022076534932924, 0.5023469816085081, -0.696239800321511, 0.9822179345376554, 0.9843867592827164, 1.253737442052706, -0.21561036112503276, 0.4763897291185735, -0.3816621678778997, -1.2726727941938998, 0.7808462914630361, -1.279321770813609, -1.249085767708575, -0.5262007219347724, 2.0375551711803523, 0.35565466738690976, 1.729140884257809, -0.2134341316049298, 1.0661506262996305, 0.14405639612841104, 1.5283790176593852, 1.083286397653919, 0.08705656468813867, 0.12354297653909227, -0.8885387288040731, 0.868850539965121, 0.38468690199897226, 0.10529276620539245, -1.5467019468693028, 0.11134848558121198, 0.5242581436594406, -1.4612754791339186, 0.6170671476298276, 2.404874088438192, 0.4536536350335747, 0.5590316578013409, 1.4722471502737542, -0.7826074583703301, 0.03864057928741479, 0.5409052205287742, -0.91764558020482, 0.2907284432003232, 0.0926246944836777, -0.6715464756911873, 1.6188813415483425, 1.937486011066117, -1.2872213802790935, 0.05028238793779849, 0.34278782978677325, -0.9317921756615996, 0.847157773949496, -1.7309498009428164, 1.131234684816195, 1.42559703424871, -1.1042663027995043, 0.5482757432406922, 0.49093316226965256, 1.4299765283373023, 1.2699610859231685, -0.6885892269356135, -0.6834163635059881, 0.09970998500665039, -0.05252250656608228, -0.5738061460548269, 0.04684493779144785, -2.0403431803564103, -2.3426040850283334, 1.3263987617975324, -1.6066813971687723, -1.3712077945231729, 0.023194145470648, 2.0233789284442305, 0.0552515096510362, -0.1848702031009112, 0.8678035694514004, 2.584641397416784, -1.374802793486839, -0.41275499089901185, 1.757248960282745, -0.9174957372175073, 0.8454219752897207, -0.48424938225642095, -0.9452258787410663, -0.4063011961676097, -0.14610880161061304, -1.191656301348928, -0.05534876749708337, -1.0824577801299335, 0.5065919371099356, -0.7234007146985317, -0.4393685486065214, -0.28713403102892043, 0.4023446222345482, 0.7408646840398053, 1.1735145587625548, -1.4959369385460655, 0.9569777537825604, -1.5309823669985632, -0.32832346606728907, -1.9702457066985795, 0.4915363188477118, 0.6267936755653063, 0.5264923978293093, 0.2793517169291047, 0.699630827386399, -0.48194010545572347, -1.9163915803321179, 0.4917274635159007, -0.8918023989162509, 0.054382578076211927, -0.13063575946183192, -2.963221181278889, -1.930107473646217, 0.27434769083662114, -2.5862229219736177, 0.12021993055087092, -0.6499875101530838, 1.2841140434979073, 1.795232260277804, 0.5983161934190495, 0.14748215452570676, 0.012732674940682266, 1.0596508622852832, 0.2612567028003964, -1.048184716657201, 1.2910337044306555, -0.40112015879164387, -2.474368538289194, 0.3607932548010173, -0.39277746077266656, 0.43117281807232705, -0.780462370732576, 0.004212935254872857, 1.1794924506297337, -0.11782146771505461, -0.9169817156798284, 0.6436607218522247, 1.009270297159163, 1.1191953425233845, -1.3185250855422, -0.06390167874291222, 1.0043732007738526, 0.8901659700461146, -0.09710628953572964, -1.7985358888300125, -0.4017184943845876, -0.49366231492607787, 0.47104211065537627, -0.8011138987145442, -0.5644297030299493, -1.2117395349774904, 1.7752801442541137, -0.06040866197475744, 0.5856200577072064, -2.3049530233040403, -1.2233947361735646, 1.789286715947381, -0.5678735891299862, 0.2884538364881288, 0.596466411038459, 0.1257010162863289, 0.08710239368087719, -0.3976608617928727, 0.03973466759058689, 1.2929183222053455, 0.2995297455403365, -0.4712635910013849, -1.404574175177837, 1.6770901706769825, 2.0017133748539893, 0.1274278689589807, 1.3587051209065415, 0.24268281140561118, -1.4595561645069262, 0.6652637699287584, -1.0625231499800574, -0.5489552263804611, 0.011217276797261928, -0.4537248029565897, 0.5114095357826577, 1.110198956335098, 0.417931247837064, -0.5197879191519639, 0.8908423822038136, -0.05428396733277234, -1.6971217632848712, -0.27867393472168944, 0.9007900540298039, -0.20140571160773263, -0.05687271801962116, -0.3743529665542792, -0.5108114271524771, -0.227006519061247, 0.12787523499272155, -0.303674313770039, 0.21916688186617306, 1.5129638774909924, 0.5287700042827598, -0.7887173081259768)
xx: IndexedSeq[(Double, Double)] = Vector((1.6983876233282715,0.1510498720110515), (1.9306937118935266,-0.21709023201809416), (-3.613579039093624,-0.9420189342233366), (1.4774128627063305,-0.6050521762158899), (0.49536920319327216,0.48771393128636853), (2.619266385545484,0.027986752952643124), (-1.6216138344745752,0.08206698908429294), (1.2511380715559544,-0.7810931162704136), (-0.6891022233658615,-1.2057806605697985), (2.7890847095863527,-0.9176042669882863), (-0.8384317817611013,1.1959113751272468), (-0.39702300426389736,0.5771223111098949), (-0.20341459413042506,-0.5030579509564024), (1.940354690386933,0.05792512611966754), (3.1686700336304794,2.0492117764647917), (-0.015718251511384507,-1.6192400586380957), (3.5222633033548227,-0.28568171141353893), (-1.7700416261712641,1.662660432138664), (-1.276616299487233,-0.3053683539449641), (2.847017612404211,0.3879563181609168), (-2.2095588075327264,-0.7733054017369991), (0.12398381308330297,-0.39556455561853454), (-0.889038019080473,1.7717311537878704), (1.2682927214864042,0.33232937623812936), (-1.5242980017423502,-0.1392031424321576), (-1.1047188228499718,-0.5587152832826312), (1.7722204452187196,-1.7575839385785728), (0.04169431488122677,-0.6579581256900572), (0.008442861000104274,2.037190332203657), (2.129861454185579,0.03462069676057432), (-1.3075615522200312,-0.3795037160416964), (2.640226790983577,0.4622268686186779), (1.8115120733853414,-1.0897313199516543), (-2.4269557944745266,-1.6880936202156007), (0.25161494380013494,-0.19374927120525648), (0.6972213441690793,-0.5509651353004006), (-1.4249662489137846,-1.7588836379571422), (-2.8058490335385198,-0.28930357427256465), (3.8366909938243237,0.4020360571731675), (3.110632056495419,-1.6301541413671794), (3.7294439220903084,0.5958281089725639), (-0.003590308691806099,0.366330814768569), (0.6670448231750639,0.4073858014158006), (0.7077886272690928,0.16855406345881346), (4.810852253296299,-0.947375008877488), (1.537026192682279,-1.301502215739479), (1.5778035760893996,0.1470275032863848), (0.8034872067976389,1.0019450542117738), (2.1781007920189275,-0.5904174670089379), (2.1582500596745224,0.5435130824204192), (1.5702056724507172,0.3257024438513822), (0.6273909939411992,0.7490447645980914), (2.9737351998521557,0.7972538819971793), (0.19226769228505514,-3.008935968399453), (0.7040906058297841,-0.2458138862820675), (1.7748793746647895,2.2893054863712985), (0.817755138729894,-0.16582870751291443), (5.098321911797599,-0.7663457059098656), (3.72224257935207,-0.02129165082715293), (2.819825663241845,-1.678393618311418), (-1.0541007736252888,0.4477301980923963), (-1.9931816211815754,-1.3761630188037661), (2.053200357360071,0.8348043252317754), (2.6504828464040466,2.593999513789406), (0.7635959419715312,0.6054528239524932), (-0.6985217947431726,-0.517937225538966), (1.0200787394354123,-0.8704495697165462), (0.9900523144691149,0.7963689735065775), (-2.636058289151889,-0.22860472183526676), (-0.006865612686181466,-0.8133035588543074), (-1.9369303943736362,1.1807570202429787), (0.8207830907828872,0.09708549308780165), (2.9960365323274516,-0.1255029357381233), (-1.4598715511713443,-0.23174042403046444), (-1.6850847827294002,1.9877912284224935), (1.8660345919208075,-1.6162508631493637), (3.4665378645024973,-0.1284467343953938), (-0.5413207856162352,0.715203575233169), (2.0812024732066883,0.3144454735478882), (1.0478641099166173,-0.1848647516127121), (0.09764242478884722,-0.5496887866336722), (2.455169809100939,-0.2545756305645813), (3.929354758370917,0.16750436775298258), (3.050688866390247,-2.4673043543431854), (5.053919984936024,1.1418851052679557), (0.6709281732489789,0.3748790073641352), (0.4881210472750994,-0.817404869860111), (3.6510567194061876,-0.8361798593188912), (1.146503253972402,-1.5394267146879406), (-1.255812790663824,-0.41572364800501355), (0.5596948430990623,-0.1012436049109305), (0.6787285726710425,-1.1015184209065036), (1.5295781767138816,1.8240944932710277), (0.9792294583717878,-0.028399443888511452), (2.5772503164411127,-0.8207026038892242), (3.5067014361379223,0.015061100495787802), (1.0530086719680942,0.18421526981224481), (3.1546436554171695,1.2655676528174074), (2.5666446000164393,-1.057100552093993), (-0.25408644443838413,0.9714045895202634), (5.094415707144548,0.7411082212281875), (-0.5842186502529905,0.8163373740421433), (0.27046894035259084,-0.08103816988370252), (-0.1900912387832303,0.5892784701674155), (0.19119860102738795,0.32505574686630534), (1.342435075277992,-0.9962963394557808), (2.01576225946382,0.484895621648311), (-1.3315732630965176,0.9927193853136387), (4.651801823771725,-1.7490403684405513), (0.40875990335626267,1.6202003817264536), (-0.6688861808540578,-0.2699908354021868), (-1.2112344110158406,0.9907548061408172), (-0.273739139868751,-0.6242833307164519), (0.008955401325448697,0.4843781855746414), (-0.4364876411254188,0.4842034053606869), (-0.5943099209874005,0.7600831116212132), (1.211946845667774,-0.6640803417192944), (1.5083366446138549,-0.5474019416456044), (0.31043238086970926,0.2700255027168447), (-0.026444982031816222,-1.3841075813504558), (5.594258068053623,1.6002816913642322), (1.7386180400754943,-0.7092207329917671), (3.234629000567968,-0.08883062902810138), (0.07317713975488005,2.025819363561132), (-1.7615858067511803,0.05567161231138376), (2.903921478619658,-1.556067597966872), (2.1095663416536077,-0.5832140748557112), (0.8984342190126537,0.31537969362482127), (-1.2562548556289594,0.015469743624534625), (0.70371421222917,-1.2740442928737779), (6.682663984938959,1.3809654728074165), (2.8144107440089066,-2.333571571876549), (-0.8992433388942302,0.20354188937573037), (3.472636066658491,1.0247244424109938), (1.6891867366656383,-0.25757737278880144), (2.5374071736508563,-2.8220962107471803), (4.690232337846138,0.09738713753633461), (0.12067267908807089,1.89542633873579), (2.7169593848024887,-2.6782503894934844), (1.8062659512087649,0.7782540200985733), (-0.01845293657257696,0.6414117319660293), (-0.4462823816579564,2.264173731050526), (1.7946315433961588,-1.5111510345308878), (-0.4798514257428741,0.9287758292855764), (-1.2555272864460045,0.5055499928507728), (0.4590668877631503,0.16205786373841113), (1.3155977358341158,-1.0297014434622302), (2.9623034849030443,-1.291377179402119), (0.7177622753575823,-0.40663773460337127), (4.726242809142292,-1.2343888551769233), (0.40501124104084163,-0.5036902484765656), (0.671193674673483,-0.3721487060577523), (0.07291534205751815,-1.987521549256808), (3.0132477799937103,1.175800228965741), (1.5800876523474532,-0.00707441417410632), (0.7578218048199775,1.0509376236793728), (-1.0013372637909774,0.7494475310558243), (2.4973399203372537,-0.38427172332612247), (2.7430757646823727,-0.930358252352808), (0.9420574052414756,0.960228212698756), (1.6907242105347866,1.0130821037354474), (0.5383478390341173,-0.03770027592004082), (-0.8776876240450338,-0.9950054698782884), (-2.176789802349519,-1.8847718393419073), (1.438183108689277,1.2260442128311473), (4.2808350483606805,0.8973362086382494), (1.4736191295860737,-1.1448274676767252), (-1.0596070355961702,1.2547096088120568), (1.2806057245712048,-0.9186364033184078), (1.699538265086482,0.8026832422467616), (2.4523729028460886,-0.4758593270796066), (-2.076551861641827,-0.830645491686263), (0.3829213050954927,-0.5400873564064651), (2.526475840066497,-0.6630169496517384), (-2.0435565279682697,0.6381413581264455), (1.0949799154339852,-0.7504597023733945), (2.9295011827611033,-0.5222934465699843), (-1.423740168713263,1.8847574147176338), (0.017436888071446166,0.6145641448752742), (-3.5813526640199997,-0.5988311192477164), (0.41775620625790433,-0.48271398431423773), (3.85232854616207,0.5473323912712278), (0.8559247574537103,-0.5885123950740869), (-1.004205312524907,1.0174330673374294), (-0.3466207150003797,0.9167061097763491), (2.6655511325842545,-0.5816363296158883), (-1.3576480411223657,0.030959788500977675), (0.6570353947095654,-0.5137243911676949), (0.4292434709946844,-1.8709170592192632), (1.0774815292368056,-1.7472131497273815), (1.1870324868533702,-1.1974973880763593), (0.2095199581899425,-0.09142445477515819), (0.010174654351863599,0.40624320435362116), (2.2901710235045103,-0.40045440389966913), (2.863966697515529,-0.37854644978248697), (3.688198186591751,0.11830887334108421), (2.0169458626980523,1.4637485338108103), (-1.505319168869295,-0.7665087390801844), (1.8372698368751088,-0.3760615977493943), (1.8008952595300867,-1.5309037473721014), (-1.546114129410773,-1.4651567904030773), (-0.841091525148669,-0.026798948253209182), (3.3919309207490786,0.2066789574673153), (2.088811112176163,1.8143254569727947), (-2.8769838245667856,2.3406140678357765), (0.4322984726888067,0.18034205783137355), (1.303043972931992,-1.4479109856334291), (-0.8423009866321116,-1.1294650286779386), (2.3991460284110797,1.2932328016031633), (-1.2931723513142943,-0.1393663274001316), (2.0843200968397437,-0.8468551132460095), (1.588879714937239,1.2713996676202226), (0.16628786148190622,-0.060721411812719187), (3.381916527851547,0.6928376952914521), (-1.4139426566326065,1.0579153298124913), (-1.9182803080402397,-0.7645892788282653), (3.4030209272918843,-1.4263627705259183), (2.348169386628692,0.5336299350415817), (2.7108694994929197,0.6573179344240204), (3.526692155778424,0.6654619137191999), (1.9363458607956388,-2.123504844254055), (1.2676248599666975,1.4866262970106303), (0.6250180966831009,0.129061989976924), (0.5133381875585852,0.22269040795154907), (4.062846560502843,-0.049559875163616714), (-1.0584402793210144,-0.9450310180664842), (-1.3944570089945305,-0.11473631908336672), (5.159311184253761,-0.39245949031895117), (1.05473696332479,1.5510785871987065), (0.15029838928005657,1.8254864916125728), (-4.3831809540558195,2.061530134034693), (-0.5446931918197788,0.8418470519782356), (1.7932009992060465,0.06828445075170164), (2.873840491469598,1.663002872049384), (-2.392423493455181,0.5626537089196723), (-2.246490718314186,1.1924431746135973), (3.051289545082127,0.37430311472451033), (2.921558256207268,-0.370821637491865), (3.9054719498051775,-0.09451085038956872), (0.30648948283890143,1.8818552958789954), (0.28062132301179654,-0.5452487096855598), (-0.6636405711277971,0.9207216541161212), (-0.23995842176230187,-0.03840103995077165), (-3.091235716784537,1.3724685915375903), (-1.4940558643511443,0.8666584948313616), (1.9003814806931487,-1.1444960562771815), (2.8178532836819334,0.2805555937763331), (0.37928684873689544,0.7940128878027313), (3.586810316002774,0.5091140746762197), (3.4620802514921007,1.5121770072162093), (0.0576382324555591,-0.5742888800806798), (2.3444623732611887,2.3581174706724157), (4.446712694084447,1.7068949917127816), (0.11914364217820061,0.4624349386051622), (1.0378949464259808,0.1225204014240068), (3.1306376315369757,0.9398794428978549), (3.2980072200625696,-0.9518050374642764), (-0.2975742780145032,-1.0522230289227708), (2.4125155391923037,0.8902191043953458), (-0.009450198942695609,-1.0945928783869934), (-0.4114802634876489,0.18036570004934346), (-1.039046520029077,-0.8406140101582382), (0.03977909071980956,-0.8634555290392517), (3.84686114196863,0.7792166711410811), (-0.4466827723217275,1.289633532883873), (1.1955794181366715,-0.4501732830926528), (3.305267656565898,2.7021303462005424), (0.5920837478263631,-0.22262701182155162), (1.8041012458041257,0.6460605038491092), (1.0663497873352485,-1.0247372175076013), (0.46091153333898405,-1.307280513522457), (0.7938864878059918,1.6404006952919912), (1.1094190243389264,-0.0518398187177849), (-0.641191315654986,0.45080433367542755), (-2.2044702809494647,0.3719461665317735), (1.0625161889548376,-1.4543187272074507), (3.9153759785005255,0.10188821604602745), (-0.31526297573578144,-0.27296335375143177), (6.7096374220372565,1.2451029860749379), (1.0132384508094343,0.14487479131269917), (2.1110257417957357,0.18201741036674932), (1.7567294506702076,0.03920775130429693), (2.2859862705949117,-0.2580100207138237), (3.0561313373519234,1.7047536767840974), (1.676678150633316,0.29766687892421284), (1.937200165306161,-1.7401156308492993), (1.7306597418522667,0.05515391539227905), (-0.7687330306969606,-0.27119832477161965), (1.6133041783818296,-1.0452547788609865), (-0.45709897470234107,-1.4984850253735646), (-0.11760611625946105,-2.079436054773939), (1.6931561226134122,0.44308840473545447), (-3.120132757148525,0.25444206315208995), (2.4874329799865276,-0.19417163889547193), (-2.071286380736543,-0.5363606084152478), (1.2245794297058403,0.36176129341638513), (1.5561427304696545,-0.33671294206693936), (-2.2132167533079596,-2.2316073845645206), (-0.1806519997812015,0.0455416268115695), (-1.8531519070689244,1.0401389018577378), (-1.4251005245889679,-0.3141083536641634), (-0.12116861831588355,0.07341971359886727), (-0.16311082359616202,1.0284248217766079), (1.1452304838866687,1.278483571961632), (0.16439959613142852,-0.7833209611949998), (2.372898903650935,1.3772836627732903), (-1.620865721699925,0.9700373682532052), (0.36995107938907257,-0.8662419500657893), (1.3699125246227284,-1.5938783703449753), (2.48540066183223,-0.6174495172524604), (1.7700634670756181,-0.7819620808358254), (-1.4895838800008887,0.10302666069195707), (-2.2924674968350516,1.0028767323240257), (1.7961909211171703,-0.10674590158973656), (5.272881180606573,0.38777338877043965), (-0.25483551061368104,-1.0509152481698179), (-0.6889539664067525,-0.06337185419126991), (4.8051377193993385,1.4117521801837538), (2.9847454768322432,0.7613291392405328), (-0.24298275058801688,1.0897823589924052), (0.4450211079339286,-0.6637558495096709), (3.9757632460215255,-1.8157963102001593), (3.1943058250078,1.2358784007741146), (1.6029441920839047,-2.15537358668726), (0.34496068898614773,0.2971613832014052), (-0.701365313565937,-0.750050504028126), (2.8797174467601363,0.8329394704642922), (-0.13811245773318692,-1.071705174325631), (-0.4071920336779187,-0.9018883675016863), (-0.980614720236086,-0.8504391140892998), (2.049070837825484,-1.0078945028740045), (-0.6656569729544988,-0.44317562320236065), (1.6714981157456288,1.3250813581783045), (3.3730612370932245,0.6196354624287462), (3.0056576612532875,-1.278621584064485), (1.5115584507080988,1.9184511848237962), (1.7299939794801924,-0.516835702626045), (2.578275842879262,0.6357213808712543), (2.6052371080790184,0.925579417321024), (-2.250831271025072,-0.5545984413834245), (2.6102577747003695,-1.3658354424121768), (-0.6857732802886782,-0.5628777726709475), (2.68127965494721,-0.04769253246241577), (-0.23756253168905261,-0.6991542495947202), (2.933572585641892,-1.1147192653783664), (0.5614839385686299,-0.5166063563392334), (3.225346367977653,-1.7956252514175055), (-0.004972800365140584,1.6987454382135425), (2.3788301806207484,-0.43821792344869875), (-2.039370915599196,1.022408572973808), (2.0463606707908997,0.3336089209393924), (-0.4145554379817833,0.02312505623899069), (0.08116934207464666,-0.31233039785382466), (-0.5477934703182952,-0.824119195846109), (-2.1370441042978534,0.13191861079694536), (0.25420113532525435,-0.6036888443048509), (1.0360988579414563,0.11668453965551463), (1.8638704589133164,-1.2724302084947103), (4.753630548842833,0.28050518201340424), (-3.3515189565291017,-1.0824241957346425), (1.5594601410586848,-1.1326924749331988), (3.1996282995078142,0.5172393559288399), (-2.898934616162431,-0.7220647087293313), (0.954273115625876,-1.2436289736107498), (0.28240108595091895,-0.6156240117132562), (0.7716522151389817,1.0406128654122049), (3.5094764570608667,-0.6297102775960882), (-2.7297328544947694,0.012206672359322898), (3.1669548682515365,0.4525998876038395), (-1.4851752825309625,-1.0451363444854351), (1.737419298693093,-1.3734168129137967), (1.7310067105728377,0.08679497767122704), (2.5247654346540447,-2.04474580239617), (1.7264929904926656,-0.19771649973564123), (3.4257461180577016,-1.3186299012886857), (-2.5422136030597478,-0.2761375653147074), (0.4542310289448179,0.5741590875530609), (-3.195921668005856,0.9593237124668771), (0.7587040179222494,1.0961298140479905), (1.4084546036945158,0.4391578691796409), (-1.0057668147395509,-0.6238036279250703), (-0.49303951955178493,-0.05430692986877771), (-1.1278958812038873,-0.11640313781962018), (-0.5550385126005621,2.0002028697055154), (-1.327368897717546,0.7350624069633737), (0.6693045410982479,-0.17859693817047373), (0.9549634686422886,-2.314523014865333), (1.500290442382846,0.22960402078570183), (-1.062055316386933,0.5724080038056716), (4.17217815778416,-0.07916244301664163), (2.678008750316924,-0.5341143586242104), (-0.8407983093249223,1.6460207223980545), (0.1875458897850375,0.3137460006226553), (-1.4179172686232406,-0.9207927088314583), (-0.49483409094368813,0.6967661703270028), (3.0009788765530763,0.5571396449070067), (2.0247746940707065,0.31796421714524625), (-0.2532041121084554,-0.2228633316357967), (3.652347645598589,-0.5499817903565626), (0.7886575879739799,-0.7841758341511148), (1.8099012750189574,-0.02401453955427877), (2.6230258299791482,-2.3166764321273394), (-0.717877434770809,1.0391140336549198), (-0.061241279683518,0.5498488089121792), (5.075089912736638,1.2335108771359133), (-0.8661311149639208,-1.9943985764799559), (-0.4069254685974877,0.042171455201203426), (4.929354815737875,-0.7485156690697342), (1.5066515864634513,-0.9570963024254994), (-1.509352007807196,1.301620771050323), (-0.17664963489668062,0.04031728339000787), (-0.4992194165794621,-0.6859845801505859), (-1.113404970974071,1.3911313622090693), (0.09081039944017699,-1.6605547611122933), (-1.109106884499735,0.6699454108732157), (0.6485386309736403,-1.1570517171606756), (7.436914934152387,-0.36244860379594424), (0.4579796383680059,-0.09907031133103263), (0.43490753215458244,0.19148521269498425), (1.5924776792705433,0.8267773040085179), (1.5577372417716786,-1.3644874947043841), (-0.1383846240201141,-1.197567110439719), (1.102472332306647,1.4817262828203837), (-0.5007687156746798,-0.10843051264695289), (2.746605165951965,0.08108871807685476), (1.1354991842453341,1.3545724635606313), (0.5494189005690517,0.5100719528278953), (-0.06026129274218861,0.057285477365546435), (4.089663482193665,-0.37191016428905793), (0.726791148499311,0.18281213200485982), (2.4464995994435466,-0.8842932261652275), (0.15700154458188786,-1.6494429918726925), (1.272472165346263,-0.7764264486783047), (-3.195988699113852,-0.3042211935492598), (3.520246085692976,-0.020825036678536985), (1.3375848973775626,-0.30368381843937947), (0.15355688719653504,0.7800891562758471), (0.3017504926614425,-0.0735325489432372), (1.210549152793178,-0.1679937736476282), (2.722259220076117,-1.79719393467339), (2.145916964295476,1.0755228066035305), (1.2838598063485724,-0.15773836735128086), (-0.47498086044457755,-0.0783402653348485), (-1.5584264763520719,-1.719143525921516), (2.0902157221330726,0.8435175129296529), (0.14776584386725267,0.6761343445136715), (3.954333236916723,0.5244103817082383), (0.5686484060482982,0.8620143952438806), (0.5252372312948147,-2.3060336651929445), (1.0577965808033563,1.4304037697137544), (0.9412615679730147,-0.7759942408828852), (3.5989366916799774,-1.2609787369882242), (2.919020206007784,-1.4478365748347117), (0.7075735919201673,2.0278952751593384), (-1.7988006346520633,-0.7861955769834937), (-0.1702629410006551,-0.2479198127035199), (-1.8327114024097777,-0.6571378828960646), (-2.4320883864687493,-2.1673373348092366), (1.5506981243634088,-1.7499456634223678), (-1.6486363495756167,0.19663998656853085), (-0.07210328541259714,0.23504549724402013), (3.3359309494368614,0.3638239098400113), (-1.9661523473680842,-1.3775094864583974), (-1.5234912819808697,-0.020668102118018273), (3.6096747834567844,0.25664562550595316), (3.792600951806,0.28318073789879256), (5.445353546258513,-0.29571052367446293), (3.5440273579163764,0.7681213080895282), (0.9197396037638609,1.5610874049559282), (3.811849778098893,-2.622344889120145), (2.7332345459673975,-0.8202101196954132), (-0.5818046844472109,0.7748393413408604), (-0.5281115636440643,0.508724216091097), (1.5044235562058499,-0.3751101664710589), (2.873650376809124,-0.9591972717671285), (1.8129440785275448,0.925165234056263), (2.0179287591118342,1.8459965937810827), (0.8322142722701716,0.27342245677072646), (-0.4285731224378031,-2.4602979491815096), (2.4399636602901773,0.6963477323668592), (-0.9106687544606735,2.167550027845107), (2.2303985755555713,-0.19332822247961037), (1.3790259597005396,0.5981380076459031), (3.7996185186834577,-0.694964755780304), (1.2956010771846629,0.08919555493105245), (1.538146993149411,-2.0804801088705767), (0.34956131459239337,1.1920101085447832), (2.324890219256198,1.231750346524178), (-0.007461769742674651,-1.455653407187848), (-0.25687852714004933,1.2328411389316813), (-0.10083857130927787,-0.39573709387712014), (-0.4576304833103986,-1.1956194147671937), (3.5460429684560597,-0.04302633139042216), (2.3895059706818245,2.0750703846663137), (0.6141642991105689,-1.7646202495106422), (2.7461944701594874,-0.017144573753570983), (-0.9026983960663617,0.1715206676563901), (0.7378437996873302,-0.9656202470043257), (1.66416214705831,-1.2648785618794656), (0.27509031436823117,-1.3357866485679637), (-1.1687533676873079,0.1818276074213889), (-0.3868893758816525,-0.1742396893961462), (4.421141775966374,-0.6767070415199365), (2.3562673999312493,2.137638188136061), (-1.4191111968198054,0.4838102855828845), (1.2100382115048613,0.3075626385768448), (3.9433787679288734,-1.3633563499769654), (3.4523083260238985,0.02908534679907131), (0.5931106981807055,2.321245009450074), (0.5323635042903148,-0.037890984508530186), (0.6432548496942007,-1.3762801283466828), (1.7830049160784451,1.6125793622774343), (3.343550972317695,0.201560934160273), (0.3058331091080799,-0.15731271258242444), (3.5132026769406743,0.6015468376832578), (-2.971225740597245,-0.0991480003326356), (1.3624546339392878,0.9603378027154168), (-0.8015108509863962,0.5407700164856909), (-2.1839032564232803,-0.18116162969719404), (-0.304110507108742,1.515039231410728), (3.3539330766126354,1.0516518441747622), (1.3933519433178922,-1.108150706054602), (2.734409447480007,-0.0902162047955897), (1.4442418533781687,0.525636626469496), (4.870497710752748,-0.6505154458390053), (0.27599486504010007,-0.6385600015638014), (1.249763671657228,-0.03765503579803463), (2.8900482496931597,-0.8067465597676813), (0.35997271322967783,0.25298188952694345), (1.6204223282918582,-1.2484755253881343), (0.17015908552188153,0.5907884315290602), (-0.17656545289416115,-0.7407171504354528), (4.73815324418716,0.09342389392065106), (-2.4335528485721105,-0.6358631568411891), (3.4290423053083563,-0.7990035391904377), (-2.204366994061862,0.7318639477491172), (-2.9824782737280255,1.0721139408861649), (1.559154053243073,-0.7709696933298915), (1.7355575197273223,1.4262689270118047), (1.11638805377925,0.008052693380149429), (4.6951872993892,-0.7675924241217212), (2.737373852455214,-0.875355770610139), (-1.151456200240173,0.3318552144813144), (3.0152094819448543,0.47230162167225975), (2.0959843639444466,-0.28845007593399613), (0.33596546387727444,0.33674053005607557), (1.040331737541483,-1.2685836846998517), (2.431166696911837,0.9973713512813284), (2.230055598607015,-0.14095584542177128), (1.3700666149073755,0.6434211266970435), (-0.4327077332358864,-1.3166935231718915), (-1.6077594316454586,0.5010874593219053), (-2.3718964441684305,0.5400322253256449), (2.6760922672748455,0.1131615290866549), (1.460158508062642,1.1948743843705798), (4.289535800486267,-0.4068064171361299), (0.7168408537080622,-0.2145531753251343), (-0.354296028077995,-0.8414414845064078), (0.6348900562033981,-0.17448661922809763), (4.50175610250241,0.015039956542559319), (4.007289452214197,-2.00225473143416), (0.5029484622378626,0.7768533690748148), (1.6705288530684772,0.7280781053306761), (-1.9266086884168034,-0.6814357844622568), (0.6563298284821315,2.4398143015234925), (3.8936524199780114,-1.9715384636473667), (-0.5323653052192214,-1.089089720589046), (-2.187378645730113,-1.0771030789727833), (1.4490595169584695,-1.1187887124853761), (-4.570489383235827,0.26304747184316635), (0.15125945754562187,0.6104069218328998), (3.502660482621176,0.814212432670669), (-0.7485242949055997,-1.1311163095796626), (3.5175847260522777,-0.715657837824097), (1.292722602559689,0.11337791560485909), (-1.0688535529107246,1.1903117127474667), (2.610918918455355,0.8655118045637775), (2.165592336786331,-0.4786300318354617), (3.2180039450399307,1.1374241148097717), (2.3110620837831366,1.3574248394663742), (-1.2620670074181475,-0.59796895966422), (-2.022658500226865,0.5787074373907313), (0.4225942665282606,-1.4837192620796162), (-1.8746483642338414,0.15009771866713956), (1.3304121456690439,-1.0785198355458125), (2.528499056420297,0.43654174540174034), (-2.5920035883882417,1.367374206941478), (1.8434672245723738,1.1624833124548457), (2.099308858628433,1.4378845237950593), (-0.8157539314263724,-0.4752367281036082), (-0.5844201825108297,-0.6295231876858187), (3.6001251647036625,0.13609988490474167), (0.9750494830689591,1.451172421854568), (-1.591208358857827,-0.9690521636819287), (2.272688328123594,-0.4657652028114279), (1.088984838199552,-0.3272245138051527), (2.700650297482846,-0.3254730682226242), (0.29059088340060446,-1.1968451698216205), (-0.8790370032378447,-2.374605096166881), (4.604279856177609,1.4231065460066927), (2.722449227993615,0.3339627050188421), (3.587573251254368,-0.37529586334821136), (-1.4412229896551314,1.7121288810552737), (2.0753371457353946,0.7740341080806812), (1.1111154091929833,-0.08101997848273264), (1.7671887536692417,0.8171553719668059), (1.9408459883070575,1.004037394973044), (0.7804144409892885,0.22996069331921015), (-1.8543998116282898,-0.135350519278533), (6.042636547872292,-0.4727403129550938), (2.1280007672692847,-0.1182151974084787), (0.4471612263594835,-1.9468945045910213), (1.2505523478947802,0.4579087802822954), (0.6984945299477181,1.3836409234546432), (-0.8471775601094396,0.02325932498935564), (4.322477962324404,0.475495388508411), (1.4341612180258405,-0.37698432805620236), (6.239615258142803,-0.8219848732487407), (-3.1535278213087903,-1.3951694203634668), (-0.463940144432212,0.0484490852454009), (-0.14771318640324793,0.9222291689334502), (0.20282785933721803,1.5679464498188418), (1.8482316809367179,0.810147143385619), (1.464243976509526,1.9186942393210789), (-2.344895033686407,-0.2176761309409645), (-0.6222382474654642,1.497682278641026), (-2.028256489351115,-0.6745280698091511), (-1.8185091579263823,-0.14287398549911423), (0.7775757995485517,-0.6123313834457077), (2.208419884574348,0.5533479535312111), (-1.510931362400885,0.17525285583058028), (0.15702274793503757,0.26417401560092896), (-0.460045243107128,0.7989612854266647), (3.543882315893044,-0.6531854416899909), (1.1358671646312586,0.3890137678570137), (1.0004036793674747,1.5942398929174109), (-2.229985885404819,0.29843502966443813), (0.27723413696937793,0.28270288452527464), (-1.0586523471937253,-1.030296515196584), (-0.6053699726992356,0.29004278605641326), (-0.9059032244427896,1.1839066433022867), (0.30610586096155024,0.5617980143776449), (-1.1035109557285785,0.3177318190024553), (0.818395734988232,-0.17078152902760071), (1.2887245591289829,-0.4129031279462113), (3.228020724069559,1.6509715706618235), (0.6610048448754513,-0.27367425727559463), (1.5679633903647399,1.2450208243939591), (1.5877868046262307,1.4063428988232145), (1.9799774803293921,1.6639488103943056), (1.8297536930120843,0.4109699563209272), (-0.21778571324236595,-2.1509670233572784), (0.6433445252381844,0.2639495116581482), (-1.261874773876885,-0.9708523309574577), (-1.020712141743926,1.2588123216998128), (-0.942167556946186,-0.6395148239066109), (2.7320211668089156,-2.3731627585033115), (2.812558906168454,0.43524872907522616), (-0.056923496414450714,0.6328073362083871), (-0.6014131312820246,-0.2381862432808314), (-3.5196269653783325,0.40492896291344244), (-1.1067214502928073,-1.0527840343286374), (-0.4736116098154268,1.0689442908821987), (2.6403094933932953,0.789255581937264), (1.5982824524769197,1.1724902795494772), (-0.09123150857004858,1.2893390188349818), (0.3777640975590455,0.8926054903089587), (1.5757168418364564,1.4246842661952515), (-0.24202485980852528,0.21910907895561132), (4.589933486557021,0.34689263334132264), (-2.331742795642637,-0.5771627038699307), (1.0060513913917988,-0.04827308490054824), (-0.4295021770429881,-0.8361201294738408), (-0.21561647198666445,0.2776346366703466), (1.4993086132360396,-2.583216199463966), (1.0627822777545926,-0.5754336242709439), (-2.4095942089088482,-0.4740298729504418), (1.5975461609152366,0.45528050967309863), (2.1565799558529477,-0.937001723779216), (0.0962289023611611,0.12442585999261868), (2.7095641996945012,-1.037597020742512), (-0.9219208363686942,0.6656497732259127), (-1.0338058740520197,0.09718535082910094), (1.6364174103842437,0.472044663569549), (1.2274838964756027,0.01365815985041524), (-0.7303973452135653,0.21443946294874028), (1.6471043795729972,0.38540036725618015), (0.13612088488197083,0.7807770362857364), (-4.201610226957669,0.12940125757456059), (0.8225909001565422,-0.9556204076037894), (-0.9482388322224697,-1.0007190699745476), (-1.5523717842885172,-1.4238233782457508), (-1.4048827543540963,0.09834207753278863), (1.5338217310158921,-2.5447136959911605), (2.2987508128497063,0.1997331013963162), (-1.9069233483255275,1.2806574080505437), (-0.48017389975436475,0.9315316175761184), (3.708171200382932,-0.6394107818742375), (1.646362242992558,-1.4099227738716835), (5.344457888650813,-0.21682467720141205), (4.0401870066710455,-0.214248285713938...
val rddLR = sc.parallelize(yx)
rddLR.take(5)
rddLR: org.apache.spark.rdd.RDD[(Double, Double, Double)] = ParallelCollectionRDD[4] at parallelize at command-2971213210277128:1
res2: Array[(Double, Double, Double)] = Array((5.677461671611596,1.6983876233282715,0.1510498720110515), (6.5963106438672625,1.9306937118935266,-0.21709023201809416), (-6.457080480280965,-3.613579039093624,-0.9420189342233366), (5.725199404014689,1.4774128627063305,-0.6050521762158899), (5.2485124653727215,0.49536920319327216,0.48771393128636853))
val dfLR = rddLR.toDF("y","x1","x2")
dfLR.show
dfLR.show(5)
+-------------------+--------------------+--------------------+
| y| x1| x2|
+-------------------+--------------------+--------------------+
| 5.677461671611596| 1.6983876233282715| 0.1510498720110515|
| 6.5963106438672625| 1.9306937118935266|-0.21709023201809416|
| -6.457080480280965| -3.613579039093624| -0.9420189342233366|
| 5.725199404014689| 1.4774128627063305| -0.6050521762158899|
| 5.2485124653727215| 0.49536920319327216| 0.48771393128636853|
| 6.147100844408568| 2.619266385545484|0.027986752952643124|
|-0.7268042607303868| -1.6216138344745752| 0.08206698908429294|
| 5.5363351738375695| 1.2511380715559544| -0.7810931162704136|
|-0.1828379004896784| -0.6891022233658615| -1.2057806605697985|
| 6.488199218865876| 2.7890847095863527| -0.9176042669882863|
| 1.3969322930903634| -0.8384317817611013| 1.1959113751272468|
| 1.468434023004454|-0.39702300426389736| 0.5771223111098949|
|-0.6234341966751746|-0.20341459413042506| -0.5030579509564024|
| 6.452061108539848| 1.940354690386933| 0.05792512611966754|
| 9.199371261060582| 3.1686700336304794| 2.0492117764647917|
|0.07256979343692907|-0.01571825151138...| -1.6192400586380957|
| 9.589528428542355| 3.5222633033548227|-0.28568171141353893|
| 1.1696257215909478| -1.7700416261712641| 1.662660432138664|
|-0.8138719762638745| -1.276616299487233| -0.3053683539449641|
| 9.309926019422797| 2.847017612404211| 0.3879563181609168|
+-------------------+--------------------+--------------------+
only showing top 20 rows
+------------------+-------------------+--------------------+
| y| x1| x2|
+------------------+-------------------+--------------------+
| 5.677461671611596| 1.6983876233282715| 0.1510498720110515|
|6.5963106438672625| 1.9306937118935266|-0.21709023201809416|
|-6.457080480280965| -3.613579039093624| -0.9420189342233366|
| 5.725199404014689| 1.4774128627063305| -0.6050521762158899|
|5.2485124653727215|0.49536920319327216| 0.48771393128636853|
+------------------+-------------------+--------------------+
only showing top 5 rows
dfLR: org.apache.spark.sql.DataFrame = [y: double, x1: double ... 1 more field]
// importing for regression
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.linalg._
val lm = new LinearRegression
lm.explainParams
lm.getStandardization
lm.setStandardization(false)
lm.getStandardization
lm.explainParams
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.linalg._
lm: org.apache.spark.ml.regression.LinearRegression = linReg_fd18c4adb9af
res5: String =
aggregationDepth: suggested depth for treeAggregate (>= 2) (default: 2)
elasticNetParam: the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty (default: 0.0)
epsilon: The shape parameter to control the amount of robustness. Must be > 1.0. (default: 1.35)
featuresCol: features column name (default: features)
fitIntercept: whether to fit an intercept term (default: true)
labelCol: label column name (default: label)
loss: The loss function to be optimized. Supported options: squaredError, huber. (Default squaredError) (default: squaredError)
maxBlockSizeInMB: Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0. (default: 0.0)
maxIter: maximum number of iterations (>= 0) (default: 100)
predictionCol: prediction column name (default: prediction)
regParam: regularization parameter (>= 0) (default: 0.0)
solver: The solver algorithm for optimization. Supported options: auto, normal, l-bfgs. (Default auto) (default: auto)
standardization: whether to standardize the training features before fitting the model (default: true, current: false)
tol: the convergence tolerance for iterative algorithms (>= 0) (default: 1.0E-6)
weightCol: weight column name. If this is not set or empty, we treat all instance weights as 1.0 (undefined)
// Transform data frame to required format
val dflr = (dfLR map {row => (row.getDouble(0),
Vectors.dense(row.getDouble(1),row.getDouble(2)))}).
toDF("label","features")
dflr.show(5)
+------------------+--------------------+
| label| features|
+------------------+--------------------+
| 5.677461671611596|[1.69838762332827...|
|6.5963106438672625|[1.93069371189352...|
|-6.457080480280965|[-3.6135790390936...|
| 5.725199404014689|[1.47741286270633...|
|5.2485124653727215|[0.49536920319327...|
+------------------+--------------------+
only showing top 5 rows
dflr: org.apache.spark.sql.DataFrame = [label: double, features: vector]
// Fit model
val fit = lm.fit(dflr)
fit.intercept
fit: org.apache.spark.ml.regression.LinearRegressionModel = LinearRegressionModel: uid=linReg_fd18c4adb9af, numFeatures=2
res8: Double = 1.4942320912612896
fit.coefficients
res9: org.apache.spark.ml.linalg.Vector = [1.9996093571014764,1.0144075351786204]
val summ = fit.summary
summ: org.apache.spark.ml.regression.LinearRegressionTrainingSummary = org.apache.spark.ml.regression.LinearRegressionTrainingSummary@b34e84f
summ.r2
res10: Double = 0.9436414660418528
summ.rootMeanSquaredError
res11: Double = 1.0026971017612039
summ.coefficientStandardErrors
res12: Array[Double] = Array(0.005018897596822849, 0.009968316877946075, 0.01123197045538135)
summ.pValues
res13: Array[Double] = Array(0.0, 0.0, 0.0)
summ.tValues
res14: Array[Double] = Array(398.4160502432455, 101.76317101464718, 133.03383384038267)
summ.predictions.show(5)
+------------------+--------------------+------------------+
| label| features| prediction|
+------------------+--------------------+------------------+
| 5.677461671611596|[1.69838762332827...| 5.043570003209616|
|6.5963106438672625|[1.93069371189352...| 5.134647336087737|
|-6.457080480280965|[-3.6135790390936...|-6.687105473093168|
| 5.725199404014689|[1.47741286270633...| 3.834711189101326|
|5.2485124653727215|[0.49536920319327...|2.9795176720949392|
+------------------+--------------------+------------------+
only showing top 5 rows
summ.residuals.show(5)
+-------------------+
| residuals|
+-------------------+
| 0.6338916684019802|
| 1.4616633077795251|
|0.23002499281220334|
| 1.890488214913363|
| 2.2689947932777823|
+-------------------+
only showing top 5 rows
This gives you more on doing generalised linear modelling in Scala. But let's go back to out pipeline using the power-plant data.
Exercise: Writing your own Spark program for the least squares fit
Your task is to use the syntactic sugar below to write your own linear regression function using reduce
and broadcast
operations
How would you write your own Spark program to find the least squares fit on the following 1000 data points in RDD rddLR
, where the variable y
is the response variable, and X1
and X2
are independent variables?
More precisely, find \(w_1, w_2\), such that,
\(\sum_{i=1}^{10} (w_1 X1_i + w_2 X2_i - y_i)^2\) is minimized.
Report \(w_1\), \(w_2\), and the Root Mean Square Error and submit code in Spark. Analyze the resulting algorithm in terms of all-to-all, one-to-all, and all-to-one communication patterns.
rddLR.count
res17: Long = 10000
rddLR.take(10)
res18: Array[(Double, Double, Double)] = Array((5.677461671611596,1.6983876233282715,0.1510498720110515), (6.5963106438672625,1.9306937118935266,-0.21709023201809416), (-6.457080480280965,-3.613579039093624,-0.9420189342233366), (5.725199404014689,1.4774128627063305,-0.6050521762158899), (5.2485124653727215,0.49536920319327216,0.48771393128636853), (6.147100844408568,2.619266385545484,0.027986752952643124), (-0.7268042607303868,-1.6216138344745752,0.08206698908429294), (5.5363351738375695,1.2511380715559544,-0.7810931162704136), (-0.1828379004896784,-0.6891022233658615,-1.2057806605697985), (6.488199218865876,2.7890847095863527,-0.9176042669882863))
val dfLR = rddLR.toDF("y","x1","x2")
dfLR.show(10)
+-------------------+-------------------+--------------------+
| y| x1| x2|
+-------------------+-------------------+--------------------+
| 5.677461671611596| 1.6983876233282715| 0.1510498720110515|
| 6.5963106438672625| 1.9306937118935266|-0.21709023201809416|
| -6.457080480280965| -3.613579039093624| -0.9420189342233366|
| 5.725199404014689| 1.4774128627063305| -0.6050521762158899|
| 5.2485124653727215|0.49536920319327216| 0.48771393128636853|
| 6.147100844408568| 2.619266385545484|0.027986752952643124|
|-0.7268042607303868|-1.6216138344745752| 0.08206698908429294|
| 5.5363351738375695| 1.2511380715559544| -0.7810931162704136|
|-0.1828379004896784|-0.6891022233658615| -1.2057806605697985|
| 6.488199218865876| 2.7890847095863527| -0.9176042669882863|
+-------------------+-------------------+--------------------+
only showing top 10 rows
dfLR: org.apache.spark.sql.DataFrame = [y: double, x1: double ... 1 more field]
rddLR.getNumPartitions
res21: Int = 2
rddLR.map( yx1x2 => (yx1x2._2, yx1x2._3, yx1x2._1) ).take(10)
res22: Array[(Double, Double, Double)] = Array((1.6983876233282715,0.1510498720110515,5.677461671611596), (1.9306937118935266,-0.21709023201809416,6.5963106438672625), (-3.613579039093624,-0.9420189342233366,-6.457080480280965), (1.4774128627063305,-0.6050521762158899,5.725199404014689), (0.49536920319327216,0.48771393128636853,5.2485124653727215), (2.619266385545484,0.027986752952643124,6.147100844408568), (-1.6216138344745752,0.08206698908429294,-0.7268042607303868), (1.2511380715559544,-0.7810931162704136,5.5363351738375695), (-0.6891022233658615,-1.2057806605697985,-0.1828379004896784), (2.7890847095863527,-0.9176042669882863,6.488199218865876))
import breeze.linalg.DenseVector
val pts = rddLR.map( yx1x2 => DenseVector(yx1x2._2, yx1x2._3, yx1x2._1) ).cache
import breeze.linalg.DenseVector
pts: org.apache.spark.rdd.RDD[breeze.linalg.DenseVector[Double]] = MapPartitionsRDD[40] at map at command-2971213210277150:2
Now all we need to do is one-to-all and all-to-one broadcast of the gradient...
val w = DenseVector(0.0, 0.0, 0.0)
val w_bc = sc.broadcast(w)
val step = 0.1
val max_iter = 100
/*
YouTry: Fix the expressions for grad_w0, grad_w1 and grad_w2 to have w_bc.value be the same as that from ml lib's fit.coefficients
*/
for (i <- 1 to max_iter) {
val grad_w0 = pts.map(x => 2*(w_bc.value(0)*1.0 + w_bc.value(1)*x(0) + w_bc.value(2)*x(1) - x(2))*1.0).reduce(_+_)
val grad_w1 = pts.map(x => 2*(w_bc.value(0)*1.0 + w_bc.value(1)*x(0) + w_bc.value(2)*x(1) - x(2))*x(0)).reduce(_+_)
val grad_w2 = pts.map(x => 2*(w_bc.value(0)*1.0 + w_bc.value(1)*x(0) + w_bc.value(2)*x(1) - x(2))*x(1)).reduce(_+_)
w_bc.value(0) = w_bc.value(0) - step*grad_w0
w_bc.value(1) = w_bc.value(1) - step*grad_w1
w_bc.value(2) = w_bc.value(2) - step*grad_w2
}
w: breeze.linalg.DenseVector[Double] = DenseVector(703602.5501372493, 2297216.693185762, 194396.78259181185)
w_bc: org.apache.spark.broadcast.Broadcast[breeze.linalg.DenseVector[Double]] = Broadcast(16)
step: Double = 0.1
max_iter: Int = 100
w_bc.value
res24: breeze.linalg.DenseVector[Double] = DenseVector(703602.5501372493, 2297216.693185762, 194396.78259181185)
fit.intercept
res25: Double = 1.4942320912612896
fit.coefficients
res26: org.apache.spark.ml.linalg.Vector = [1.9996093571014764,1.0144075351786204]
Computing each of the gradients requires an all-to-one communication (due to the .reduce(_+_)
). There are two of these per iteration. Broadcasting the updated w_bc
requires one to all communication.
A more detailed deep dive
We will mostly be using ML algorithms already implemented in Spark's libraries and packages.
However, in order to innovate and devise new algorithms, we need to understand more about distributed linear algebra and optimisation algorithms.
- read: http://arxiv.org/pdf/1509.02256.pdf (also see References and Appendix A).
- and go through the notebooks prepended by '19x' on various Data Types for distributed linear algebra.
You may want to follow this course from Stanford for a guided deeper dive. * http://stanford.edu/~rezab/dao/ * see notes here: https://github.com/lamastex/scalable-data-science/blob/master/read/daosu.pdf
Communication Hierarchy
In addition to time and space complexity of an algorithm, in the distributed setting, we also need to take care of communication complexity.
Access rates fall sharply with distance.
- roughly 50 x gap between reading from memory and reading from either disk or the network.
We must take this communication hierarchy into consideration when developing parallel and distributed algorithms.
Focusing on strategies to reduce communication costs.
- access rates fall sharply with distance.
- so this communication hierarchy needs to be accounted for when developing parallel and distributed algorithms.
Lessons:
-
parallelism makes our computation faster
-
but network communication slows us down
-
SOLUTION: perform parallel and in-memory computation.
-
Persisting in memory is a particularly attractive option when working with iterative algorithms that read the same data multiple times, as is the case in gradient descent.
-
Several machine learning algorithms are iterative!
-
Limits of multi-core scaling (powerful multicore machine with several CPUs, and a huge amount of RAM).
- advantageous:
- sidestep any network communication when working with a single multicore machine
- can indeed handle fairly large data sets, and they're an attractive option in many settings.
- disadvantages:
- can be quite expensive (due to specialized hardware),
- not as widely accessible as commodity computing nodes.
- this approach does have scalability limitations, as we'll eventually hit a wall when the data grows large enough! This is not the case for a distributed environment (like the AWS EC2 cloud under the hood here).
- advantageous:
Simple strategies for algorithms in a distributed setting: to reduce network communication, simply keep large objects local
- In the big n, small d case for linear regression
- we can solve the problem via a closed form solution.
- And this requires us to communicate \(O(d)^2\) intermediate data.
- the largest object in this example is our initial data, which we store in a distributed fashion and never communicate! This is a data parallel setting.
- In the big n, big d case (n is the sample size and d is the number of features):
- for linear regression.
- we use gradient descent to iteratively train our model and are again in a data parallel setting.
- At each iteration we communicate the current parameter vector \(w_i\) and the required \(O(d)\) communication is feasible even for fairly large d.
- for linear regression.
- In the small n, small d case:
- for ridge regression.
- we can communicate the small data to all of the workers.
- this is an example of a model parallel setting where we can train the model for each hyper-parameter in parallel.
- for ridge regression.
- Linear regression with big n and huge d is an example of both data and model parallelism.
In this setting, since our data is large, we must still store it across multiple machines. We can still use gradient descent, or stochastic variants of gradient descent to train our model, but we may not want to communicate the entire d dimensional parameter vector at each iteration, when we have 10s, or hundreds of millions of features. In this setting we often rely on sparsity to reduce the communication. So far we discussed how we can reduce communication by keeping large data local.
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
Why are we going through the basic distributed linear algebra Data Types?
This is to get you to be able to directly use them in a project or to roll your own algorithms.
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
Local vector in Scala
A local vector has integer-typed and 0-based indices and double-typed values, stored on a single machine.
MLlib supports two types of local vectors:
- dense and
- sparse.
A dense vector is backed by a double array representing its entry values, while a sparse vector is backed by two parallel arrays: indices and values.
For example, a vector (1.0, 0.0, 3.0)
can be represented:
- in dense format as
[1.0, 0.0, 3.0]
or - in sparse format as
(3, [0, 2], [1.0, 3.0])
, where3
is the size of the vector.
The base class of local vectors is Vector
, and we provide two implementations: DenseVector
and SparseVector
. We recommend using the factory methods implemented in Vectors
to create local vectors. Refer to the Vector
Scala docs and Vectors
Scala docs for details on the API.
import org.apache.spark.mllib.linalg.{Vector, Vectors}
// Create a dense vector (1.0, 0.0, 3.0).
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
import org.apache.spark.mllib.linalg.{Vector, Vectors}
dv: org.apache.spark.mllib.linalg.Vector = [1.0,0.0,3.0]
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
sv1: org.apache.spark.mllib.linalg.Vector = (3,[0,2],[1.0,3.0])
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries.
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
sv2: org.apache.spark.mllib.linalg.Vector = (3,[0,2],[1.0,3.0])
Note: Scala imports scala.collection.immutable.Vector
by default, so you have to import org.apache.spark.mllib.linalg.Vector
explicitly to use MLlib’s Vector
.
python: MLlib recognizes the following types as dense vectors:
- NumPy’s
array
- Python’s list, e.g.,
[1, 2, 3]
and the following as sparse vectors:
- MLlib’s
SparseVector
. - SciPy’s
csc_matrix
with a single column
We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented in Vectors
to create sparse vectors.
Refer to the Vectors
Python docs for more details on the API.
import numpy as np
import scipy.sparse as sps
from pyspark.mllib.linalg import Vectors
# Use a NumPy array as a dense vector.
dv1 = np.array([1.0, 0.0, 3.0])
# Use a Python list as a dense vector.
dv2 = [1.0, 0.0, 3.0]
# Create a SparseVector.
sv1 = Vectors.sparse(3, [0, 2], [1.0, 3.0])
# Use a single-column SciPy csc_matrix as a sparse vector.
sv2 = sps.csc_matrix((np.array([1.0, 3.0]), np.array([0, 2]), np.array([0, 2])), shape = (3, 1))
print (dv1)
print (dv2)
print (sv1)
print (sv2)
[1. 0. 3.]
[1.0, 0.0, 3.0]
(3,[0,2],[1.0,3.0])
(0, 0) 1.0
(2, 0) 3.0
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
Labeled point in Scala
A labeled point is a local vector, either dense or sparse, associated with a label/response. In MLlib, labeled points are used in supervised learning algorithms.
We use a double to store a label, so we can use labeled points in both regression and classification.
For binary classification, a label should be either 0
(negative) or 1
(positive). For multiclass classification, labels should be class indices starting from zero: 0, 1, 2, ...
.
A labeled point is represented by the case class LabeledPoint
.
Refer to the LabeledPoint
Scala docs for details on the API.
//import first
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
// Create a labeled point with a "positive" label and a dense feature vector.
val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))
pos: org.apache.spark.mllib.regression.LabeledPoint = (1.0,[1.0,0.0,3.0])
// Create a labeled point with a "negative" label and a sparse feature vector.
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
neg: org.apache.spark.mllib.regression.LabeledPoint = (0.0,(3,[0,2],[1.0,3.0]))
Sparse data in Scala
It is very common in practice to have sparse training data. MLlib supports reading training examples stored in LIBSVM
format, which is the default format used by LIBSVM
and LIBLINEAR
. It is a text format in which each line represents a labeled sparse feature vector using the following format:
label index1:value1 index2:value2 ...
where the indices are one-based and in ascending order. After loading, the feature indices are converted to zero-based.
MLUtils.loadLibSVMFile
reads training examples stored in LIBSVM format.
Refer to the MLUtils
Scala docs for details on the API.
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
//val examples: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") // from prog guide but no such data here - can wget from github
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
Load MNIST training and test datasets
Our datasets are vectors of pixels representing images of handwritten digits. For example:
display(dbutils.fs.ls("/datasets/sds/mnist-digits/data-001/mnist-digits-train.txt"))
path | name | size |
---|---|---|
dbfs:/datasets/sds/mnist-digits/data-001/mnist-digits-train.txt | mnist-digits-train.txt | 6.9430283e7 |
val examples: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "/datasets/sds/mnist-digits/data-001/mnist-digits-train.txt")
examples: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = MapPartitionsRDD[246] at map at MLUtils.scala:87
examples.take(1)
res7: Array[org.apache.spark.mllib.regression.LabeledPoint] = Array((5.0,(780,[152,153,154,155,156,157,158,159,160,161,162,163,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,231,232,233,234,235,236,237,238,239,240,241,260,261,262,263,264,265,266,268,269,289,290,291,292,293,319,320,321,322,347,348,349,350,376,377,378,379,380,381,405,406,407,408,409,410,434,435,436,437,438,439,463,464,465,466,467,493,494,495,496,518,519,520,521,522,523,524,544,545,546,547,548,549,550,551,570,571,572,573,574,575,576,577,578,596,597,598,599,600,601,602,603,604,605,622,623,624,625,626,627,628,629,630,631,648,649,650,651,652,653,654,655,656,657,676,677,678,679,680,681,682,683],[3.0,18.0,18.0,18.0,126.0,136.0,175.0,26.0,166.0,255.0,247.0,127.0,30.0,36.0,94.0,154.0,170.0,253.0,253.0,253.0,253.0,253.0,225.0,172.0,253.0,242.0,195.0,64.0,49.0,238.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0,251.0,93.0,82.0,82.0,56.0,39.0,18.0,219.0,253.0,253.0,253.0,253.0,253.0,198.0,182.0,247.0,241.0,80.0,156.0,107.0,253.0,253.0,205.0,11.0,43.0,154.0,14.0,1.0,154.0,253.0,90.0,139.0,253.0,190.0,2.0,11.0,190.0,253.0,70.0,35.0,241.0,225.0,160.0,108.0,1.0,81.0,240.0,253.0,253.0,119.0,25.0,45.0,186.0,253.0,253.0,150.0,27.0,16.0,93.0,252.0,253.0,187.0,249.0,253.0,249.0,64.0,46.0,130.0,183.0,253.0,253.0,207.0,2.0,39.0,148.0,229.0,253.0,253.0,253.0,250.0,182.0,24.0,114.0,221.0,253.0,253.0,253.0,253.0,201.0,78.0,23.0,66.0,213.0,253.0,253.0,253.0,253.0,198.0,81.0,2.0,18.0,171.0,219.0,253.0,253.0,253.0,253.0,195.0,80.0,9.0,55.0,172.0,226.0,253.0,253.0,253.0,253.0,244.0,133.0,11.0,136.0,253.0,253.0,253.0,212.0,135.0,132.0,16.0])))
Display our data. Each image has the true label (the label
column) and a vector of features
which represent pixel intensities (see below for details of what is in training
).
display(examples.toDF) // covert to DataFrame and display for convenient db visualization
The pixel intensities are represented in features
as a sparse vector, for example the first observation, as seen in row 1 of the output to display(training)
below, has label
as 5
, i.e. the hand-written image is for the number 5. And this hand-written image is the following sparse vector (just click the triangle to the left of the feature in first row to see the following):
type: 0
size: 780
indices: [152,153,155,...,682,683]
values: [3, 18, 18,18,126,...,132,16]
Here
type: 0
says we hve a sparse vector.size: 780
says the vector has 780 indices in total- these indices from 0,...,779 are a unidimensional indexing of the two-dimensional array of pixels in the image
indices: [152,153,155,...,682,683]
are the indices from the[0,1,...,779]
possible indices with non-zero values- a value is an integer encoding the gray-level at the pixel index
values: [3, 18, 18,18,126,...,132,16]
are the actual gray level values, for example:- at pixed index
152
the gray-level value is3
, - at index
153
the gray-level value is18
, - ..., and finally at
- at index
683
the gray-level value is18
- at pixed index
We could also use the following method as done in notebook 016_*
already.
val training = spark.read.format("libsvm")
.option("numFeatures", "780")
.load("/datasets/sds/mnist-digits/data-001/mnist-digits-train.txt")
training: org.apache.spark.sql.DataFrame = [label: double, features: vector]
display(training)
Labeled point in Python
A labeled point is represented by LabeledPoint
.
Refer to the LabeledPoint
Python docs for more details on the API.
# import first
from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint
# Create a labeled point with a positive label and a dense feature vector.
pos = LabeledPoint(1.0, [1.0, 0.0, 3.0])
# Create a labeled point with a negative label and a sparse feature vector.
neg = LabeledPoint(0.0, SparseVector(3, [0, 2], [1.0, 3.0]))
Sparse data in Python
MLUtils.loadLibSVMFile
reads training examples stored in LIBSVM format.
Refer to the MLUtils
Python docs for more details on the API.
from pyspark.mllib.util import MLUtils
# examples = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") #from prog guide but no such data here - can wget from github
examples = MLUtils.loadLibSVMFile(sc, "/datasets/sds/mnist-digits/data-001/mnist-digits-train.txt")
examples.take(1)
res11: Array[org.apache.spark.mllib.regression.LabeledPoint] = Array((5.0,(780,[152,153,154,155,156,157,158,159,160,161,162,163,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,231,232,233,234,235,236,237,238,239,240,241,260,261,262,263,264,265,266,268,269,289,290,291,292,293,319,320,321,322,347,348,349,350,376,377,378,379,380,381,405,406,407,408,409,410,434,435,436,437,438,439,463,464,465,466,467,493,494,495,496,518,519,520,521,522,523,524,544,545,546,547,548,549,550,551,570,571,572,573,574,575,576,577,578,596,597,598,599,600,601,602,603,604,605,622,623,624,625,626,627,628,629,630,631,648,649,650,651,652,653,654,655,656,657,676,677,678,679,680,681,682,683],[3.0,18.0,18.0,18.0,126.0,136.0,175.0,26.0,166.0,255.0,247.0,127.0,30.0,36.0,94.0,154.0,170.0,253.0,253.0,253.0,253.0,253.0,225.0,172.0,253.0,242.0,195.0,64.0,49.0,238.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0,251.0,93.0,82.0,82.0,56.0,39.0,18.0,219.0,253.0,253.0,253.0,253.0,253.0,198.0,182.0,247.0,241.0,80.0,156.0,107.0,253.0,253.0,205.0,11.0,43.0,154.0,14.0,1.0,154.0,253.0,90.0,139.0,253.0,190.0,2.0,11.0,190.0,253.0,70.0,35.0,241.0,225.0,160.0,108.0,1.0,81.0,240.0,253.0,253.0,119.0,25.0,45.0,186.0,253.0,253.0,150.0,27.0,16.0,93.0,252.0,253.0,187.0,249.0,253.0,249.0,64.0,46.0,130.0,183.0,253.0,253.0,207.0,2.0,39.0,148.0,229.0,253.0,253.0,253.0,250.0,182.0,24.0,114.0,221.0,253.0,253.0,253.0,253.0,201.0,78.0,23.0,66.0,213.0,253.0,253.0,253.0,253.0,198.0,81.0,2.0,18.0,171.0,219.0,253.0,253.0,253.0,253.0,195.0,80.0,9.0,55.0,172.0,226.0,253.0,253.0,253.0,253.0,244.0,133.0,11.0,136.0,253.0,253.0,253.0,212.0,135.0,132.0,16.0])))
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
Local Matrix in Scala
A local matrix has integer-typed row and column indices and double-typed values, stored on a single machine. MLlib supports:
- dense matrices, whose entry values are stored in a single double array in column-major order, and
- sparse matrices, whose non-zero entry values are stored in the Compressed Sparse Column (CSC) format in column-major order.
For example, the following dense matrix: \[ \begin{pmatrix} 1.0 & 2.0 \\ 3.0 & 4.0 \\ 5.0 & 6.0 \end{pmatrix} \] is stored in a one-dimensional array [1.0, 3.0, 5.0, 2.0, 4.0, 6.0]
with the matrix size (3, 2)
.
The base class of local matrices is Matrix
, and we provide two implementations: DenseMatrix
, and SparseMatrix
. We recommend using the factory methods implemented in Matrices
to create local matrices. Remember, local matrices in MLlib are stored in column-major order.
Refer to the Matrix
Scala docs and Matrices
Scala docs for details on the API.
Int.MaxValue // note the largest value an index can take
res0: Int = 2147483647
import org.apache.spark.mllib.linalg.{Matrix, Matrices}
// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
import org.apache.spark.mllib.linalg.{Matrix, Matrices}
dm: org.apache.spark.mllib.linalg.Matrix =
1.0 2.0
3.0 4.0
5.0 6.0
Next, let us create the following sparse local matrix: \[ \begin{pmatrix} 9.0 & 0.0 \\ 0.0 & 8.0 \\ 0.0 & 6.0 \end{pmatrix} \]
// Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))
val sm: Matrix = Matrices.sparse(3, 2, Array(0, 1, 3), Array(0, 2, 1), Array(9, 6, 8))
sm: org.apache.spark.mllib.linalg.Matrix =
3 x 2 CSCMatrix
(0,0) 9.0
(2,1) 6.0
(1,1) 8.0
Local Matrix in Python
The base class of local matrices is Matrix
, and we provide two implementations: DenseMatrix
, and SparseMatrix
. We recommend using the factory methods implemented in Matrices
to create local matrices. Remember, local matrices in MLlib are stored in column-major order.
Refer to the Matrix
Python docs and Matrices
Python docs for more details on the API.
from pyspark.mllib.linalg import Matrix, Matrices
# Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
dm2 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])
dm2
# Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))
sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 2, 1], [9, 6, 8])
sm
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
Distributed matrix in Scala
A distributed matrix has long-typed row and column indices and double-typed values, stored distributively in one or more RDDs.
It is very important to choose the right format to store large and distributed matrices. Converting a distributed matrix to a different format may require a global shuffle, which is quite expensive.
Three types of distributed matrices have been implemented so far.
- The basic type is called
RowMatrix
.
- A
RowMatrix
is a row-oriented distributed matrix without meaningful row indices, e.g., a collection of feature vectors. It is backed by an RDD of its rows, where each row is a local vector. - We assume that the number of columns is not huge for a
RowMatrix
so that a single local vector can be reasonably communicated to the driver and can also be stored / operated on using a single node. - An
IndexedRowMatrix
is similar to aRowMatrix
but with row indices, which can be used for identifying rows and executing joins. - A
CoordinateMatrix
is a distributed matrix stored in coordinate list (COO) format, backed by an RDD of its entries.
Note
The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size. In general the use of non-deterministic RDDs can lead to errors.
Remark: there is a huge difference in the orders of magnitude between the maximum size of local versus distributed matrices!
print(Long.MaxValue.toDouble, Int.MaxValue.toDouble, Long.MaxValue.toDouble / Int.MaxValue.toDouble) // index ranges and ratio for local and distributed matrices
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
RowMatrix in Scala
A RowMatrix
is a row-oriented distributed matrix without meaningful row indices, backed by an RDD of its rows, where each row is a local vector. Since each row is represented by a local vector, the number of columns is limited by the integer range but it should be much smaller in practice.
A RowMatrix
can be created from an RDD[Vector]
instance. Then we can compute its column summary statistics and decompositions.
- QR decomposition is of the form A = QR where Q is an orthogonal matrix and R is an upper triangular matrix.
- For singular value decomposition (SVD) and principal component analysis (PCA), please refer to Dimensionality reduction.
Refer to the RowMatrix
Scala docs for details on the API.
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
val rows: RDD[Vector] = sc.parallelize(Array(Vectors.dense(12.0, -51.0, 4.0), Vectors.dense(6.0, 167.0, -68.0), Vectors.dense(-4.0, 24.0, -41.0))) // an RDD of local vectors
rows: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = ParallelCollectionRDD[3670] at parallelize at command-2972105651606776:1
// Create a RowMatrix from an RDD[Vector].
val mat: RowMatrix = new RowMatrix(rows)
mat: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix@75c66624
mat.rows.collect
res0: Array[org.apache.spark.mllib.linalg.Vector] = Array([12.0,-51.0,4.0], [6.0,167.0,-68.0], [-4.0,24.0,-41.0])
// Get its size.
val m = mat.numRows()
val n = mat.numCols()
m: Long = 3
n: Long = 3
// QR decomposition
val qrResult = mat.tallSkinnyQR(true)
qrResult: org.apache.spark.mllib.linalg.QRDecomposition[org.apache.spark.mllib.linalg.distributed.RowMatrix,org.apache.spark.mllib.linalg.Matrix] =
QRDecomposition(org.apache.spark.mllib.linalg.distributed.RowMatrix@34f5da4f,14.0 21.0 -14.0
0.0 -174.99999999999997 70.00000000000001
0.0 0.0 -35.000000000000014 )
qrResult.R
res1: org.apache.spark.mllib.linalg.Matrix =
14.0 21.0 -14.0
0.0 -174.99999999999997 70.00000000000001
0.0 0.0 -35.000000000000014
RowMatrix in Python
A RowMatrix
can be created from an RDD
of vectors.
Refer to the RowMatrix
Python docs for more details on the API.
from pyspark.mllib.linalg.distributed import RowMatrix
# Create an RDD of vectors.
rows = sc.parallelize([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
# Create a RowMatrix from an RDD of vectors.
mat = RowMatrix(rows)
# Get its size.
m = mat.numRows() # 4
n = mat.numCols() # 3
print (m,'x',n)
# Get the rows as an RDD of vectors again.
rowsRDD = mat.rows
4 x 3
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
IndexedRowMatrix in Scala
An IndexedRowMatrix
is similar to a RowMatrix
but with meaningful row indices. It is backed by an RDD of indexed rows, so that each row is represented by its index (long-typed) and a local vector.
An IndexedRowMatrix
can be created from an RDD[IndexedRow]
instance, where IndexedRow
is a wrapper over (Long, Vector)
. An IndexedRowMatrix
can be converted to a RowMatrix
by dropping its row indices.
Refer to the IndexedRowMatrix
Scala docs for details on the API.
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}
Vector(12.0, -51.0, 4.0) // note Vector is a scala collection
res0: scala.collection.immutable.Vector[Double] = Vector(12.0, -51.0, 4.0)
Vectors.dense(12.0, -51.0, 4.0) // while this is a mllib.linalg.Vector
res1: org.apache.spark.mllib.linalg.Vector = [12.0,-51.0,4.0]
val rows: RDD[IndexedRow] = sc.parallelize(Array(IndexedRow(2, Vectors.dense(1,3)), IndexedRow(4, Vectors.dense(4,5)))) // an RDD of indexed rows
rows: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.distributed.IndexedRow] = ParallelCollectionRDD[3685] at parallelize at command-2972105651607186:1
// Create an IndexedRowMatrix from an RDD[IndexedRow].
val mat: IndexedRowMatrix = new IndexedRowMatrix(rows)
mat: org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix = org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix@300e1e99
// Get its size.
val m = mat.numRows()
val n = mat.numCols()
m: Long = 5
n: Long = 2
// Drop its row indices.
val rowMat: RowMatrix = mat.toRowMatrix()
rowMat: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix@425fc4a2
rowMat.rows.collect()
res2: Array[org.apache.spark.mllib.linalg.Vector] = Array([1.0,3.0], [4.0,5.0])
IndexedRowMatrix in Python
An IndexedRowMatrix
can be created from an RDD
of IndexedRow
s, where IndexedRow
is a wrapper over (long, vector)
. An IndexedRowMatrix
can be converted to a RowMatrix
by dropping its row indices.
Refer to the IndexedRowMatrix
Python docs for more details on the API.
from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix
# Create an RDD of indexed rows.
# - This can be done explicitly with the IndexedRow class:
indexedRows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
IndexedRow(1, [4, 5, 6]),
IndexedRow(2, [7, 8, 9]),
IndexedRow(3, [10, 11, 12])])
# - or by using (long, vector) tuples:
indexedRows = sc.parallelize([(0, [1, 2, 3]), (1, [4, 5, 6]),
(2, [7, 8, 9]), (3, [10, 11, 12])])
# Create an IndexedRowMatrix from an RDD of IndexedRows.
mat = IndexedRowMatrix(indexedRows)
# Get its size.
m = mat.numRows() # 4
n = mat.numCols() # 3
print (m,n)
# Get the rows as an RDD of IndexedRows.
rowsRDD = mat.rows
# Convert to a RowMatrix by dropping the row indices.
rowMat = mat.toRowMatrix()
# Convert to a CoordinateMatrix.
coordinateMat = mat.toCoordinateMatrix()
# Convert to a BlockMatrix.
blockMat = mat.toBlockMatrix()
4 3
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
CoordinateMatrix in Scala
A CoordinateMatrix
is a distributed matrix backed by an RDD of its entries. Each entry is a tuple of (i: Long, j: Long, value: Double)
, where i
is the row index, j
is the column index, and value
is the entry value. A CoordinateMatrix
should be used only when both dimensions of the matrix are huge and the matrix is very sparse.
A CoordinateMatrix
can be created from an RDD[MatrixEntry]
instance, where MatrixEntry
is a wrapper over (Long, Long, Double)
. A CoordinateMatrix
can be converted to an IndexedRowMatrix
with sparse rows by calling toIndexedRowMatrix
. Other computations for CoordinateMatrix
are not currently supported.
Refer to the CoordinateMatrix
Scala docs for details on the API.
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
val entries: RDD[MatrixEntry] = sc.parallelize(Array(MatrixEntry(0, 0, 1.2), MatrixEntry(1, 0, 2.1), MatrixEntry(6, 1, 3.7))) // an RDD of matrix entries
entries: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.distributed.MatrixEntry] = ParallelCollectionRDD[3712] at parallelize at command-2972105651606627:1
// Create a CoordinateMatrix from an RDD[MatrixEntry].
val mat: CoordinateMatrix = new CoordinateMatrix(entries)
mat: org.apache.spark.mllib.linalg.distributed.CoordinateMatrix = org.apache.spark.mllib.linalg.distributed.CoordinateMatrix@56954954
// Get its size.
val m = mat.numRows()
val n = mat.numCols()
m: Long = 7
n: Long = 2
// Convert it to an IndexRowMatrix whose rows are sparse vectors.
val indexedRowMatrix = mat.toIndexedRowMatrix()
indexedRowMatrix: org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix = org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix@45570b82
indexedRowMatrix.rows.collect()
res0: Array[org.apache.spark.mllib.linalg.distributed.IndexedRow] = Array(IndexedRow(0,(2,[0],[1.2])), IndexedRow(1,(2,[0],[2.1])), IndexedRow(6,(2,[1],[3.7])))
CoordinateMatrix in Scala
A CoordinateMatrix
can be created from an RDD
of MatrixEntry
entries, where MatrixEntry
is a wrapper over (long, long, float)
. A CoordinateMatrix
can be converted to a RowMatrix
by calling toRowMatrix
, or to an IndexedRowMatrix
with sparse rows by calling toIndexedRowMatrix
.
Refer to the CoordinateMatrix
Python docs for more details on the API.
from pyspark.mllib.linalg.distributed import CoordinateMatrix, MatrixEntry
# Create an RDD of coordinate entries.
# - This can be done explicitly with the MatrixEntry class:
entries = sc.parallelize([MatrixEntry(0, 0, 1.2), MatrixEntry(1, 0, 2.1), MatrixEntry(6, 1, 3.7)])
# - or using (long, long, float) tuples:
entries = sc.parallelize([(0, 0, 1.2), (1, 0, 2.1), (2, 1, 3.7)])
# Create an CoordinateMatrix from an RDD of MatrixEntries.
mat = CoordinateMatrix(entries)
# Get its size.
m = mat.numRows() # 3
n = mat.numCols() # 2
print (m,n)
# Get the entries as an RDD of MatrixEntries.
entriesRDD = mat.entries
# Convert to a RowMatrix.
rowMat = mat.toRowMatrix()
# Convert to an IndexedRowMatrix.
indexedRowMat = mat.toIndexedRowMatrix()
# Convert to a BlockMatrix.
blockMat = mat.toBlockMatrix()
3 2
This is an elaboration of the Apache Spark mllib-progamming-guide on mllib-data-types.
Overview
Data Types - MLlib Programming Guide
MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. Local vectors and local matrices are simple data models that serve as public interfaces. The underlying linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called a “labeled point” in MLlib.
BlockMatrix in Scala
A BlockMatrix
is a distributed matrix backed by an RDD of MatrixBlock
s, where a MatrixBlock
is a tuple of ((Int, Int), Matrix)
, where the (Int, Int)
is the index of the block, and Matrix
is the sub-matrix at the given index with size rowsPerBlock
x colsPerBlock
. BlockMatrix
supports methods such as add
and multiply
with another BlockMatrix
. BlockMatrix
also has a helper function validate
which can be used to check whether the BlockMatrix
is set up properly.
A BlockMatrix
can be most easily created from an IndexedRowMatrix
or CoordinateMatrix
by calling toBlockMatrix
. toBlockMatrix
creates blocks of size 1024 x 1024 by default. Users may change the block size by supplying the values through toBlockMatrix(rowsPerBlock, colsPerBlock)
.
Refer to the BlockMatrix
Scala docs for details on the API.
//import org.apache.spark.mllib.linalg.{Matrix, Matrices}
import org.apache.spark.mllib.linalg.distributed.{BlockMatrix, CoordinateMatrix, MatrixEntry}
import org.apache.spark.mllib.linalg.distributed.{BlockMatrix, CoordinateMatrix, MatrixEntry}
val entries: RDD[MatrixEntry] = sc.parallelize(Array(MatrixEntry(0, 0, 1.2), MatrixEntry(1, 0, 2.1), MatrixEntry(6, 1, 3.7))) // an RDD of matrix entries
entries: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.distributed.MatrixEntry] = ParallelCollectionRDD[3746] at parallelize at command-2972105651607062:1
// Create a CoordinateMatrix from an RDD[MatrixEntry].
val coordMat: CoordinateMatrix = new CoordinateMatrix(entries)
coordMat: org.apache.spark.mllib.linalg.distributed.CoordinateMatrix = org.apache.spark.mllib.linalg.distributed.CoordinateMatrix@161a1942
// Transform the CoordinateMatrix to a BlockMatrix
val matA: BlockMatrix = coordMat.toBlockMatrix().cache()
matA: org.apache.spark.mllib.linalg.distributed.BlockMatrix = org.apache.spark.mllib.linalg.distributed.BlockMatrix@1ddf85ce
// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate()
// Calculate A^T A.
val ata = matA.transpose.multiply(matA)
ata: org.apache.spark.mllib.linalg.distributed.BlockMatrix = org.apache.spark.mllib.linalg.distributed.BlockMatrix@18c0eeca
ata.blocks.collect()
res1: Array[((Int, Int), org.apache.spark.mllib.linalg.Matrix)] =
Array(((0,0),5.85 0.0
0.0 13.690000000000001 ))
ata.toLocalMatrix()
res2: org.apache.spark.mllib.linalg.Matrix =
5.85 0.0
0.0 13.690000000000001
BlockMatrix in Scala
A BlockMatrix
can be created from an RDD
of sub-matrix blocks, where a sub-matrix block is a ((blockRowIndex, blockColIndex), sub-matrix)
tuple.
Refer to the BlockMatrix
Python docs for more details on the API.
from pyspark.mllib.linalg import Matrices
from pyspark.mllib.linalg.distributed import BlockMatrix
# Create an RDD of sub-matrix blocks.
blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
# Create a BlockMatrix from an RDD of sub-matrix blocks.
mat = BlockMatrix(blocks, 3, 2)
# Get its size.
m = mat.numRows() # 6
n = mat.numCols() # 2
print (m,n)
# Get the blocks as an RDD of sub-matrix blocks.
blocksRDD = mat.blocks
# Convert to a LocalMatrix.
localMat = mat.toLocalMatrix()
# Convert to an IndexedRowMatrix.
indexedRowMat = mat.toIndexedRowMatrix()
# Convert to a CoordinateMatrix.
coordinateMat = mat.toCoordinateMatrix()
6 2
Power Plant ML Pipeline Application
This is an end-to-end example of using a number of different machine learning algorithms to solve a supervised regression problem.
Table of Contents
- Step 1: Business Understanding
- Step 2: Load Your Data
- Step 3: Explore Your Data
- Step 4: Visualize Your Data
- Step 5: Data Preparation
- Step 6: Data Modeling
- Step 7: Tuning and Evaluation
- Step 8: Deployment
We are trying to predict power output given a set of readings from various sensors in a gas-fired power generation plant. Power generation is a complex process, and understanding and predicting power output is an important element in managing a plant and its connection to the power grid.
More information about Peaker or Peaking Power Plants can be found on Wikipedia https://en.wikipedia.org/wiki/Peakingpowerplant
Given this business problem, we need to translate it to a Machine Learning task. The ML task is regression since the label (or target) we are trying to predict is numeric.
The example data is provided by UCI at UCI Machine Learning Repository Combined Cycle Power Plant Data Set
You can read the background on the UCI page, but in summary we have collected a number of readings from sensors at a Gas Fired Power Plant
(also called a Peaker Plant) and now we want to use those sensor readings to predict how much power the plant will generate.
More information about Machine Learning with Spark can be found in the Spark MLLib Programming Guide
Please note this example only works with Spark version 1.4 or higher
To Rerun Steps 1-4 done in the notebook at:
Workspace -> PATH_TO -> 009_PowerPlantPipeline_01ETLEDA]
just run
the following command as shown in the cell below:
%run "/PATH_TO/009_PowerPlantPipeline_01ETLEDA"
-
Note: If you already evaluated the
%run ...
command above then:- first delete the cell by pressing on
x
on the top-right corner of the cell and - revaluate the
run
command above.
- first delete the cell by pressing on
"../000_1-sds-3-x-sql/009_PowerPlantPipeline_01ETLEDA"
Now we will do the following Steps:
Step 5: Data Preparation,
Step 6: Modeling, and
Step 7: Tuning and Evaluation
We will do Step 8: Deployment later after we get introduced to SparkStreaming.
Step 5: Data Preparation
The next step is to prepare the data. Since all of this data is numeric and consistent, this is a simple task for us today.
We will need to convert the predictor features from columns to Feature Vectors using the org.apache.spark.ml.feature.VectorAssembler
The VectorAssembler will be the first step in building our ML pipeline.
res2: Int = 321
//Let's quickly recall the schema and make sure our table is here now
table("power_plant_table").printSchema
root
|-- AT: double (nullable = true)
|-- V: double (nullable = true)
|-- AP: double (nullable = true)
|-- RH: double (nullable = true)
|-- PE: double (nullable = true)
path | name | size | modificationTime |
---|---|---|---|
dbfs:/datasets/sds/power-plant/data/Sheet1.tsv | Sheet1.tsv | 308693.0 | 1.664295999e12 |
dbfs:/datasets/sds/power-plant/data/Sheet2.tsv | Sheet2.tsv | 308693.0 | 1.664295998e12 |
dbfs:/datasets/sds/power-plant/data/Sheet3.tsv | Sheet3.tsv | 308693.0 | 1.664295999e12 |
dbfs:/datasets/sds/power-plant/data/Sheet4.tsv | Sheet4.tsv | 308693.0 | 1.664295998e12 |
dbfs:/datasets/sds/power-plant/data/Sheet5.tsv | Sheet5.tsv | 308693.0 | 1.664295998e12 |
powerPlantDF // make sure we have the DataFrame too
res21: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 3 more fields]
powerPlantRDD: org.apache.spark.rdd.RDD[String] = /datasets/sds/power-plant/data/Sheet1.tsv MapPartitionsRDD[1] at textFile at command-2971213210277530:1
AT V AP RH PE
14.96 41.76 1024.07 73.17 463.26
25.18 62.96 1020.04 59.08 444.37
5.11 39.4 1012.16 92.14 488.56
20.86 57.32 1010.24 76.64 446.48
powerPlantDF: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 3 more fields]
import org.apache.spark.ml.feature.VectorAssembler
// make a DataFrame called dataset from the table
val dataset = sqlContext.table("power_plant_table")
val vectorizer = new VectorAssembler()
.setInputCols(Array("AT", "V", "AP", "RH"))
.setOutputCol("features")
import org.apache.spark.ml.feature.VectorAssembler
dataset: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 3 more fields]
vectorizer: org.apache.spark.ml.feature.VectorAssembler = VectorAssembler: uid=vecAssembler_38ac3d0b0ea7, handleInvalid=error, numInputCols=4
root
|-- AT: double (nullable = true)
|-- V: double (nullable = true)
|-- AP: double (nullable = true)
|-- RH: double (nullable = true)
|-- PE: double (nullable = true)
res9: Long = 9568
+-----+-----+-------+-----+------+
| AT| V| AP| RH| PE|
+-----+-----+-------+-----+------+
|14.96|41.76|1024.07|73.17|463.26|
|25.18|62.96|1020.04|59.08|444.37|
| 5.11| 39.4|1012.16|92.14|488.56|
|20.86|57.32|1010.24|76.64|446.48|
|10.82| 37.5|1009.23|96.62| 473.9|
|26.27|59.44|1012.23|58.77|443.67|
|15.89|43.96|1014.02|75.24|467.35|
| 9.48|44.71|1019.12|66.43|478.42|
|14.64| 45.0|1021.78|41.25|475.98|
|11.74|43.56|1015.14|70.72| 477.5|
+-----+-----+-------+-----+------+
only showing top 10 rows
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
res12: Long = 9568
+-----------------+--------+-----------+---------+-----------+
| name|database|description|tableType|isTemporary|
+-----------------+--------+-----------+---------+-----------+
|power_plant_table| null| null|TEMPORARY| true|
+-----------------+--------+-----------+---------+-----------+
Step 6: Data Modeling
Now let's model our data to predict what the power output will be given a set of sensor readings
Our first model will be based on simple linear regression since we saw some linear patterns in our data based on the scatter plots during the exploration stage.
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
col_name | data_type | comment |
---|---|---|
AT | double | null |
V | double | null |
AP | double | null |
RH | double | null |
PE | double | null |
summary | AT | V | AP | RH | PE |
---|---|---|---|---|---|
count | 9568 | 9568 | 9568 | 9568 | 9568 |
mean | 19.65123118729102 | 54.30580372073601 | 1013.2590781772603 | 73.30897784280926 | 454.3650094063554 |
stddev | 7.4524732296110825 | 12.707892998326784 | 5.938783705811581 | 14.600268756728964 | 17.066994999803402 |
min | 1.81 | 25.36 | 992.89 | 25.56 | 420.26 |
max | 37.11 | 81.56 | 1033.3 | 100.16 | 495.76 |
Temperature | Power |
---|---|
14.96 | 463.26 |
25.18 | 444.37 |
5.11 | 488.56 |
20.86 | 446.48 |
10.82 | 473.9 |
26.27 | 443.67 |
15.89 | 467.35 |
9.48 | 478.42 |
14.64 | 475.98 |
11.74 | 477.5 |
17.99 | 453.02 |
20.14 | 453.99 |
24.34 | 440.29 |
25.71 | 451.28 |
26.19 | 433.99 |
21.42 | 462.19 |
18.21 | 467.54 |
11.04 | 477.2 |
14.45 | 459.85 |
13.97 | 464.3 |
17.76 | 468.27 |
5.41 | 495.24 |
7.76 | 483.8 |
27.23 | 443.61 |
27.36 | 436.06 |
27.47 | 443.25 |
14.6 | 464.16 |
7.91 | 475.52 |
5.81 | 484.41 |
30.53 | 437.89 |
23.87 | 445.11 |
26.09 | 438.86 |
29.27 | 440.98 |
27.38 | 436.65 |
24.81 | 444.26 |
12.75 | 465.86 |
24.66 | 444.37 |
16.38 | 450.69 |
13.91 | 469.02 |
23.18 | 448.86 |
22.47 | 447.14 |
13.39 | 469.18 |
9.28 | 482.8 |
11.82 | 476.7 |
10.27 | 474.99 |
22.92 | 444.22 |
16.0 | 461.33 |
21.22 | 448.06 |
13.46 | 474.6 |
9.39 | 473.05 |
31.07 | 432.06 |
12.82 | 467.41 |
32.57 | 430.12 |
8.11 | 473.62 |
13.92 | 471.81 |
23.04 | 442.99 |
27.31 | 442.77 |
5.91 | 491.49 |
25.26 | 447.46 |
27.97 | 446.11 |
26.08 | 442.44 |
29.01 | 446.22 |
12.18 | 471.49 |
13.76 | 463.5 |
25.5 | 440.01 |
28.26 | 441.03 |
21.39 | 452.68 |
7.26 | 474.91 |
10.54 | 478.77 |
27.71 | 434.2 |
23.11 | 437.91 |
7.51 | 477.61 |
26.46 | 431.65 |
29.34 | 430.57 |
10.32 | 481.09 |
22.74 | 445.56 |
13.48 | 475.74 |
25.52 | 435.12 |
21.58 | 446.15 |
27.66 | 436.64 |
26.96 | 436.69 |
12.29 | 468.75 |
15.86 | 466.6 |
13.87 | 465.48 |
24.09 | 441.34 |
20.45 | 441.83 |
15.07 | 464.7 |
32.72 | 437.99 |
18.23 | 459.12 |
35.56 | 429.69 |
18.36 | 459.8 |
26.35 | 433.63 |
25.92 | 442.84 |
8.01 | 485.13 |
19.63 | 459.12 |
20.02 | 445.31 |
10.08 | 480.8 |
27.23 | 432.55 |
23.37 | 443.86 |
18.74 | 449.77 |
14.81 | 470.71 |
23.1 | 452.17 |
10.72 | 478.29 |
29.46 | 428.54 |
8.1 | 478.27 |
27.29 | 439.58 |
17.1 | 457.32 |
11.49 | 475.51 |
23.69 | 439.66 |
13.51 | 471.99 |
9.64 | 479.81 |
25.65 | 434.78 |
21.59 | 446.58 |
27.98 | 437.76 |
18.8 | 459.36 |
18.28 | 462.28 |
13.55 | 464.33 |
22.99 | 444.36 |
23.94 | 438.64 |
13.74 | 470.49 |
21.3 | 455.13 |
27.54 | 450.22 |
24.81 | 440.43 |
4.97 | 482.98 |
15.22 | 460.44 |
23.88 | 444.97 |
33.01 | 433.94 |
25.98 | 439.73 |
28.18 | 434.48 |
21.67 | 442.33 |
17.67 | 457.67 |
21.37 | 454.66 |
28.69 | 432.21 |
16.61 | 457.66 |
27.91 | 435.21 |
20.97 | 448.22 |
10.8 | 475.51 |
20.61 | 446.53 |
25.45 | 441.3 |
30.16 | 433.54 |
4.99 | 472.52 |
10.51 | 474.77 |
33.79 | 435.1 |
21.34 | 450.74 |
23.4 | 442.7 |
32.21 | 426.56 |
14.26 | 463.71 |
27.71 | 447.06 |
21.95 | 452.27 |
25.76 | 445.78 |
23.68 | 438.65 |
8.28 | 480.15 |
23.44 | 447.19 |
25.32 | 443.04 |
3.94 | 488.81 |
17.3 | 455.75 |
18.2 | 455.86 |
21.43 | 457.68 |
11.16 | 479.11 |
30.38 | 432.84 |
23.36 | 448.37 |
21.69 | 447.06 |
23.62 | 443.53 |
21.87 | 445.21 |
29.25 | 441.7 |
20.03 | 450.93 |
18.14 | 451.44 |
24.23 | 441.29 |
18.11 | 458.85 |
6.57 | 481.46 |
12.56 | 467.19 |
13.4 | 461.54 |
27.1 | 439.08 |
14.28 | 467.22 |
16.29 | 468.8 |
31.24 | 426.93 |
10.57 | 474.65 |
13.8 | 468.97 |
25.3 | 433.97 |
18.06 | 450.53 |
25.42 | 444.51 |
15.07 | 469.03 |
11.75 | 466.56 |
20.23 | 457.57 |
27.31 | 440.13 |
28.57 | 433.24 |
17.9 | 452.55 |
23.83 | 443.29 |
27.92 | 431.76 |
17.34 | 454.97 |
17.94 | 456.7 |
6.4 | 486.03 |
11.78 | 472.79 |
20.28 | 452.03 |
21.04 | 443.41 |
25.11 | 441.93 |
30.28 | 432.64 |
8.14 | 480.25 |
16.86 | 466.68 |
6.25 | 494.39 |
22.35 | 454.72 |
17.98 | 448.71 |
21.19 | 469.76 |
20.94 | 450.71 |
24.23 | 444.01 |
19.18 | 453.2 |
20.88 | 450.87 |
23.67 | 441.73 |
14.12 | 465.09 |
25.23 | 447.28 |
6.54 | 491.16 |
20.08 | 450.98 |
24.67 | 446.3 |
27.82 | 436.48 |
15.55 | 460.84 |
24.26 | 442.56 |
13.45 | 467.3 |
11.06 | 479.13 |
24.91 | 441.15 |
22.39 | 445.52 |
11.95 | 475.4 |
14.85 | 469.3 |
10.11 | 463.57 |
23.67 | 445.32 |
16.14 | 461.03 |
15.11 | 466.74 |
24.14 | 444.04 |
30.08 | 434.01 |
14.77 | 465.23 |
27.6 | 440.6 |
13.89 | 466.74 |
26.85 | 433.48 |
12.41 | 473.59 |
13.08 | 474.81 |
18.93 | 454.75 |
20.5 | 452.94 |
30.72 | 435.83 |
7.55 | 482.19 |
13.49 | 466.66 |
15.62 | 462.59 |
24.8 | 447.82 |
10.03 | 462.73 |
22.43 | 447.98 |
14.95 | 462.72 |
24.78 | 442.42 |
23.2 | 444.69 |
14.01 | 466.7 |
19.4 | 453.84 |
30.15 | 436.92 |
6.91 | 486.37 |
29.04 | 440.43 |
26.02 | 446.82 |
5.89 | 484.91 |
26.52 | 437.76 |
28.53 | 438.91 |
16.59 | 464.19 |
22.95 | 442.19 |
23.96 | 446.86 |
17.48 | 457.15 |
6.69 | 482.57 |
10.25 | 476.03 |
28.87 | 428.89 |
12.04 | 472.7 |
22.58 | 445.6 |
15.12 | 464.78 |
25.48 | 440.42 |
27.87 | 428.41 |
23.72 | 438.5 |
25.0 | 438.28 |
8.42 | 476.29 |
22.46 | 448.46 |
29.92 | 438.99 |
11.68 | 471.8 |
14.04 | 471.81 |
19.86 | 449.82 |
25.99 | 442.14 |
23.42 | 441.46 |
10.6 | 477.62 |
20.97 | 446.76 |
14.14 | 472.52 |
8.56 | 471.58 |
24.86 | 440.85 |
29.0 | 431.37 |
27.59 | 437.33 |
10.45 | 469.22 |
8.51 | 471.11 |
29.82 | 439.17 |
22.56 | 445.33 |
11.38 | 473.71 |
20.25 | 452.66 |
22.42 | 440.99 |
14.85 | 467.42 |
25.62 | 444.14 |
19.85 | 457.17 |
13.67 | 467.87 |
24.39 | 442.04 |
16.07 | 471.36 |
11.6 | 460.7 |
31.38 | 431.33 |
29.91 | 432.6 |
19.67 | 447.61 |
27.18 | 443.87 |
21.39 | 446.87 |
10.45 | 465.74 |
19.46 | 447.86 |
23.55 | 447.65 |
23.35 | 437.87 |
9.26 | 483.51 |
10.3 | 479.65 |
20.94 | 455.16 |
23.13 | 431.91 |
12.77 | 470.68 |
28.29 | 429.28 |
19.13 | 450.81 |
24.44 | 437.73 |
20.32 | 460.21 |
20.54 | 442.86 |
12.16 | 482.99 |
28.09 | 440.0 |
9.25 | 478.48 |
21.75 | 455.28 |
23.7 | 436.94 |
16.22 | 461.06 |
24.75 | 438.28 |
10.48 | 472.61 |
29.53 | 426.85 |
12.59 | 470.18 |
23.5 | 455.38 |
29.01 | 428.32 |
9.75 | 480.35 |
19.55 | 455.56 |
21.05 | 447.66 |
24.72 | 443.06 |
21.19 | 452.43 |
10.77 | 477.81 |
28.68 | 431.66 |
29.87 | 431.8 |
22.99 | 446.67 |
24.66 | 445.26 |
32.63 | 425.72 |
31.38 | 430.58 |
23.87 | 439.86 |
25.6 | 441.11 |
27.62 | 434.72 |
30.1 | 434.01 |
12.19 | 475.64 |
13.11 | 460.44 |
28.29 | 436.4 |
13.45 | 461.03 |
10.98 | 479.08 |
26.48 | 435.76 |
13.07 | 460.14 |
25.56 | 442.2 |
22.68 | 447.69 |
28.86 | 431.15 |
22.7 | 445.0 |
27.89 | 431.59 |
13.78 | 467.22 |
28.14 | 445.33 |
11.8 | 470.57 |
10.71 | 473.77 |
24.54 | 447.67 |
11.54 | 474.29 |
29.47 | 437.14 |
29.24 | 432.56 |
14.51 | 459.14 |
22.91 | 446.19 |
27.02 | 428.1 |
13.49 | 468.46 |
30.24 | 435.02 |
23.19 | 445.52 |
17.73 | 462.69 |
18.62 | 455.75 |
12.85 | 463.74 |
32.33 | 439.79 |
25.09 | 443.26 |
29.45 | 432.04 |
16.91 | 465.86 |
14.09 | 465.6 |
10.73 | 469.43 |
23.2 | 440.75 |
8.21 | 481.32 |
9.3 | 479.87 |
16.97 | 458.59 |
23.69 | 438.62 |
25.13 | 445.59 |
9.86 | 481.87 |
11.33 | 475.01 |
26.95 | 436.54 |
15.0 | 456.63 |
20.76 | 451.69 |
14.29 | 463.04 |
19.74 | 446.1 |
26.68 | 438.67 |
14.24 | 466.88 |
21.98 | 444.6 |
22.75 | 440.26 |
8.34 | 483.92 |
11.8 | 475.19 |
8.81 | 479.24 |
30.05 | 434.92 |
16.01 | 454.16 |
21.75 | 447.58 |
13.94 | 467.9 |
29.25 | 426.29 |
22.33 | 447.02 |
16.43 | 455.85 |
11.5 | 476.46 |
23.53 | 437.48 |
21.86 | 452.77 |
6.17 | 491.54 |
30.19 | 438.41 |
11.67 | 476.1 |
15.34 | 464.58 |
11.5 | 467.74 |
25.53 | 442.12 |
21.27 | 453.34 |
28.37 | 425.29 |
28.39 | 449.63 |
13.78 | 462.88 |
14.6 | 464.67 |
5.1 | 489.96 |
7.0 | 482.38 |
26.3 | 437.95 |
30.56 | 429.2 |
21.09 | 453.34 |
28.21 | 442.47 |
15.84 | 462.6 |
10.03 | 478.79 |
20.37 | 456.11 |
21.19 | 450.33 |
33.73 | 434.83 |
29.87 | 433.43 |
19.62 | 456.02 |
9.93 | 485.23 |
9.43 | 473.57 |
14.24 | 469.94 |
12.97 | 452.07 |
7.6 | 475.32 |
8.39 | 480.69 |
25.41 | 444.01 |
18.43 | 465.17 |
10.31 | 480.61 |
11.29 | 476.04 |
22.61 | 441.76 |
29.34 | 428.24 |
18.87 | 444.77 |
13.21 | 463.1 |
11.3 | 470.5 |
29.23 | 431.0 |
27.76 | 430.68 |
29.26 | 436.42 |
25.72 | 452.33 |
23.43 | 440.16 |
25.6 | 435.75 |
22.3 | 449.74 |
27.91 | 430.73 |
30.35 | 432.75 |
21.78 | 446.79 |
7.19 | 486.35 |
20.88 | 453.18 |
24.19 | 458.31 |
9.98 | 480.26 |
23.47 | 448.65 |
26.35 | 458.41 |
29.89 | 435.39 |
19.29 | 450.21 |
17.48 | 459.59 |
25.21 | 445.84 |
23.3 | 441.08 |
15.42 | 467.33 |
21.44 | 444.19 |
29.45 | 432.96 |
29.69 | 438.09 |
15.52 | 467.9 |
11.47 | 475.72 |
9.77 | 477.51 |
22.6 | 435.13 |
8.24 | 477.9 |
17.01 | 457.26 |
19.64 | 467.53 |
10.61 | 465.15 |
12.04 | 474.28 |
29.19 | 444.49 |
21.75 | 452.84 |
23.66 | 435.38 |
27.05 | 433.57 |
29.63 | 435.27 |
18.2 | 468.49 |
32.22 | 433.07 |
26.88 | 430.63 |
29.05 | 440.74 |
8.9 | 474.49 |
18.93 | 449.74 |
27.49 | 436.73 |
23.1 | 434.58 |
11.22 | 473.93 |
31.97 | 435.99 |
13.32 | 466.83 |
31.68 | 427.22 |
23.69 | 444.07 |
13.83 | 469.57 |
18.32 | 459.89 |
11.05 | 479.59 |
22.03 | 440.92 |
10.23 | 480.87 |
23.92 | 441.9 |
29.38 | 430.2 |
17.35 | 465.16 |
9.81 | 471.32 |
4.97 | 485.43 |
5.15 | 495.35 |
21.54 | 449.12 |
7.94 | 480.53 |
18.77 | 457.07 |
21.69 | 443.67 |
10.07 | 477.52 |
13.83 | 472.95 |
10.45 | 472.54 |
11.56 | 469.17 |
23.64 | 435.21 |
10.48 | 477.78 |
13.09 | 475.89 |
10.67 | 483.9 |
12.57 | 476.2 |
14.45 | 462.16 |
14.22 | 471.05 |
6.97 | 484.71 |
20.61 | 446.34 |
14.67 | 469.02 |
29.06 | 432.12 |
14.38 | 467.28 |
32.51 | 429.66 |
11.79 | 469.49 |
8.65 | 485.87 |
9.75 | 481.95 |
9.11 | 479.03 |
23.39 | 434.5 |
14.3 | 464.9 |
17.49 | 452.71 |
31.1 | 429.74 |
19.77 | 457.09 |
28.61 | 446.77 |
13.52 | 460.76 |
13.52 | 471.95 |
17.57 | 453.29 |
28.18 | 441.61 |
14.29 | 464.73 |
18.12 | 464.68 |
31.27 | 430.59 |
26.24 | 438.01 |
7.44 | 479.08 |
29.78 | 436.39 |
23.37 | 447.07 |
10.62 | 479.91 |
5.84 | 489.05 |
14.51 | 463.17 |
11.31 | 471.26 |
11.25 | 480.49 |
9.18 | 473.78 |
19.82 | 455.5 |
24.77 | 446.27 |
9.66 | 482.2 |
21.96 | 452.48 |
18.59 | 464.48 |
24.75 | 438.1 |
24.37 | 445.6 |
29.6 | 442.43 |
25.32 | 436.67 |
16.15 | 466.56 |
15.74 | 457.29 |
5.97 | 487.03 |
15.84 | 464.93 |
14.84 | 466.0 |
12.25 | 469.52 |
27.38 | 428.88 |
8.76 | 474.3 |
15.54 | 461.06 |
18.71 | 465.57 |
13.06 | 467.67 |
12.72 | 466.99 |
19.83 | 463.72 |
27.23 | 443.78 |
24.27 | 445.23 |
11.8 | 464.43 |
6.76 | 484.36 |
25.99 | 442.16 |
16.3 | 464.11 |
16.5 | 462.48 |
10.59 | 477.49 |
26.05 | 437.04 |
19.5 | 457.09 |
22.21 | 450.6 |
17.86 | 465.78 |
29.96 | 427.1 |
19.08 | 459.81 |
23.59 | 447.36 |
3.38 | 488.92 |
26.39 | 433.36 |
8.99 | 483.35 |
10.91 | 469.53 |
13.08 | 476.96 |
23.95 | 440.75 |
15.64 | 462.55 |
18.78 | 448.04 |
20.65 | 455.24 |
4.96 | 494.75 |
23.51 | 444.58 |
5.99 | 484.82 |
23.65 | 442.9 |
5.17 | 485.46 |
26.38 | 457.81 |
6.02 | 481.92 |
23.2 | 443.23 |
8.57 | 474.29 |
30.72 | 430.46 |
21.52 | 455.71 |
22.93 | 438.34 |
5.71 | 485.83 |
18.62 | 452.82 |
27.88 | 435.04 |
22.32 | 451.21 |
14.55 | 465.81 |
17.83 | 458.42 |
9.68 | 470.22 |
19.41 | 449.24 |
13.22 | 471.43 |
12.24 | 473.26 |
19.21 | 452.82 |
29.74 | 432.69 |
23.28 | 444.13 |
8.02 | 467.21 |
22.47 | 445.98 |
27.51 | 436.91 |
17.51 | 455.01 |
23.22 | 437.11 |
11.73 | 477.06 |
21.19 | 441.71 |
5.48 | 495.76 |
24.26 | 445.63 |
12.32 | 464.72 |
31.26 | 438.03 |
32.09 | 434.78 |
24.98 | 444.67 |
27.48 | 452.24 |
21.04 | 450.92 |
27.75 | 436.53 |
22.79 | 435.53 |
24.22 | 440.01 |
27.06 | 443.1 |
29.25 | 427.49 |
26.86 | 436.25 |
29.64 | 440.74 |
19.92 | 443.54 |
18.5 | 459.42 |
23.71 | 439.66 |
14.39 | 464.15 |
19.3 | 459.1 |
24.65 | 455.68 |
13.5 | 469.08 |
9.82 | 478.02 |
18.4 | 456.8 |
28.12 | 441.13 |
17.15 | 463.88 |
30.69 | 430.45 |
28.82 | 449.18 |
21.3 | 447.89 |
30.58 | 431.59 |
21.17 | 447.5 |
9.87 | 475.58 |
22.18 | 453.24 |
24.39 | 446.4 |
10.73 | 476.81 |
9.38 | 474.1 |
20.27 | 450.71 |
24.82 | 433.62 |
16.55 | 465.14 |
20.73 | 445.18 |
9.51 | 474.12 |
8.63 | 483.91 |
6.48 | 486.68 |
14.95 | 464.98 |
5.76 | 481.4 |
10.94 | 479.2 |
15.87 | 463.86 |
12.42 | 472.3 |
29.12 | 446.51 |
29.12 | 437.71 |
19.08 | 458.94 |
31.06 | 437.91 |
5.72 | 490.76 |
26.52 | 439.66 |
13.84 | 463.27 |
13.03 | 473.99 |
25.94 | 433.38 |
16.64 | 459.01 |
14.13 | 471.44 |
13.65 | 471.91 |
14.5 | 465.15 |
19.8 | 446.66 |
25.2 | 438.15 |
20.66 | 447.14 |
12.07 | 472.32 |
25.64 | 441.68 |
23.33 | 440.04 |
29.41 | 444.82 |
16.6 | 457.26 |
27.53 | 428.83 |
20.62 | 449.07 |
26.02 | 435.21 |
12.75 | 471.03 |
12.87 | 465.56 |
25.77 | 442.83 |
14.84 | 460.3 |
7.41 | 474.25 |
8.87 | 477.97 |
9.69 | 472.16 |
16.17 | 456.08 |
26.24 | 452.41 |
13.78 | 463.71 |
26.3 | 433.72 |
17.37 | 456.4 |
23.6 | 448.43 |
8.3 | 481.6 |
18.86 | 457.07 |
22.12 | 451.0 |
28.41 | 440.28 |
29.42 | 437.47 |
18.61 | 443.57 |
27.57 | 426.6 |
12.83 | 470.87 |
9.64 | 478.37 |
19.13 | 453.92 |
15.92 | 470.22 |
24.64 | 434.54 |
27.62 | 442.89 |
8.9 | 479.03 |
9.55 | 476.06 |
10.57 | 473.88 |
19.8 | 451.75 |
25.63 | 439.2 |
24.7 | 439.7 |
15.26 | 463.6 |
20.06 | 447.47 |
19.84 | 447.92 |
11.49 | 471.08 |
23.74 | 437.55 |
22.62 | 448.27 |
29.53 | 431.69 |
21.32 | 449.09 |
20.3 | 448.79 |
16.97 | 460.21 |
12.07 | 479.28 |
7.46 | 483.11 |
19.2 | 450.75 |
28.64 | 437.97 |
13.56 | 459.76 |
17.4 | 457.75 |
14.08 | 469.33 |
27.11 | 433.28 |
20.92 | 444.64 |
16.18 | 463.1 |
15.57 | 460.91 |
10.37 | 479.35 |
19.6 | 449.23 |
9.22 | 474.51 |
27.76 | 435.02 |
28.68 | 435.45 |
20.95 | 452.38 |
9.06 | 480.41 |
9.21 | 478.96 |
13.65 | 468.87 |
31.79 | 434.01 |
14.32 | 466.36 |
26.28 | 435.28 |
7.69 | 486.46 |
14.44 | 468.19 |
9.19 | 468.37 |
13.35 | 474.19 |
23.04 | 440.32 |
4.83 | 485.32 |
17.29 | 464.27 |
8.73 | 479.25 |
26.21 | 430.4 |
23.72 | 447.49 |
29.27 | 438.23 |
10.4 | 492.09 |
12.19 | 475.36 |
20.4 | 452.56 |
34.3 | 427.84 |
27.56 | 433.95 |
30.9 | 435.27 |
14.85 | 454.62 |
16.42 | 472.17 |
16.45 | 452.42 |
10.14 | 472.17 |
9.53 | 481.83 |
17.01 | 458.78 |
23.94 | 447.5 |
15.95 | 463.4 |
11.15 | 473.57 |
25.56 | 433.72 |
27.16 | 431.85 |
26.71 | 433.47 |
29.56 | 432.84 |
31.19 | 436.6 |
6.86 | 490.23 |
12.36 | 477.16 |
32.82 | 441.06 |
25.3 | 440.86 |
8.71 | 477.94 |
13.34 | 474.47 |
14.2 | 470.67 |
23.74 | 447.31 |
16.9 | 466.8 |
28.54 | 430.91 |
30.15 | 434.75 |
14.33 | 469.52 |
25.57 | 438.9 |
30.55 | 429.56 |
28.04 | 432.92 |
26.39 | 442.87 |
15.3 | 466.59 |
6.03 | 479.61 |
13.49 | 471.08 |
27.67 | 433.37 |
24.19 | 443.92 |
24.44 | 443.5 |
29.86 | 439.89 |
30.2 | 434.66 |
7.99 | 487.57 |
9.93 | 464.64 |
11.03 | 470.92 |
22.34 | 444.39 |
25.33 | 442.48 |
18.87 | 449.61 |
25.97 | 435.02 |
16.58 | 458.67 |
14.35 | 461.74 |
25.06 | 438.31 |
13.85 | 462.38 |
16.09 | 460.56 |
26.34 | 439.22 |
23.01 | 444.64 |
26.39 | 430.34 |
31.32 | 430.46 |
16.64 | 456.79 |
13.42 | 468.82 |
20.06 | 448.51 |
14.8 | 470.77 |
12.59 | 465.74 |
26.7 | 430.21 |
19.78 | 449.23 |
15.17 | 461.89 |
21.71 | 445.72 |
19.09 | 466.13 |
19.76 | 448.71 |
14.68 | 469.25 |
21.3 | 450.56 |
16.73 | 464.46 |
12.26 | 471.13 |
14.77 | 461.52 |
18.26 | 451.09 |
27.1 | 431.51 |
14.72 | 469.8 |
26.3 | 442.28 |
16.48 | 458.67 |
17.99 | 462.4 |
20.34 | 453.54 |
25.53 | 444.38 |
31.59 | 440.52 |
30.8 | 433.62 |
10.75 | 481.96 |
19.3 | 452.75 |
4.71 | 481.28 |
23.1 | 439.03 |
32.63 | 435.75 |
26.63 | 436.03 |
24.35 | 445.6 |
15.11 | 462.65 |
29.1 | 438.66 |
21.24 | 447.32 |
6.16 | 484.55 |
7.36 | 476.8 |
10.44 | 480.34 |
26.76 | 440.63 |
16.79 | 459.48 |
10.76 | 490.78 |
6.07 | 483.56 |
27.33 | 429.38 |
27.15 | 440.27 |
22.35 | 445.34 |
21.82 | 447.43 |
21.11 | 439.91 |
19.95 | 459.27 |
7.45 | 478.89 |
15.36 | 466.7 |
15.65 | 463.5 |
25.31 | 436.21 |
25.88 | 443.94 |
24.6 | 439.63 |
22.58 | 460.95 |
19.69 | 448.69 |
25.85 | 444.63 |
10.06 | 473.51 |
18.59 | 462.56 |
18.27 | 451.76 |
8.85 | 491.81 |
30.04 | 429.52 |
26.06 | 437.9 |
14.8 | 467.54 |
23.93 | 449.97 |
23.72 | 436.62 |
11.44 | 477.68 |
20.28 | 447.26 |
27.9 | 439.76 |
24.74 | 437.49 |
14.8 | 455.14 |
8.22 | 485.5 |
27.56 | 444.1 |
32.07 | 432.33 |
9.53 | 471.23 |
13.61 | 463.89 |
22.2 | 445.54 |
21.36 | 446.09 |
23.25 | 445.12 |
23.5 | 443.31 |
8.46 | 484.16 |
8.19 | 477.76 |
30.67 | 430.28 |
32.48 | 446.48 |
8.99 | 481.03 |
13.77 | 466.07 |
19.05 | 447.47 |
21.19 | 455.93 |
10.12 | 479.62 |
24.93 | 455.06 |
8.47 | 475.06 |
24.52 | 438.89 |
28.55 | 432.7 |
20.58 | 452.6 |
18.31 | 451.75 |
27.18 | 430.66 |
4.43 | 491.9 |
26.02 | 439.82 |
15.75 | 460.73 |
22.99 | 449.7 |
25.52 | 439.42 |
27.04 | 439.84 |
6.42 | 485.86 |
17.04 | 458.1 |
10.79 | 479.92 |
20.41 | 458.29 |
7.36 | 489.45 |
28.08 | 434.0 |
24.74 | 431.24 |
28.32 | 439.5 |
16.71 | 467.46 |
30.7 | 429.27 |
18.42 | 452.1 |
10.62 | 472.41 |
22.18 | 442.14 |
22.38 | 441.0 |
13.94 | 463.07 |
21.24 | 445.71 |
6.76 | 483.16 |
26.73 | 440.45 |
7.24 | 481.83 |
10.84 | 467.6 |
19.32 | 450.88 |
29.0 | 425.5 |
23.38 | 451.87 |
31.17 | 428.94 |
26.17 | 439.86 |
30.9 | 433.44 |
24.92 | 438.23 |
32.77 | 436.95 |
14.37 | 470.19 |
8.36 | 484.66 |
31.45 | 430.81 |
31.6 | 433.37 |
17.9 | 453.02 |
20.35 | 453.5 |
16.21 | 463.09 |
19.36 | 464.56 |
21.04 | 452.12 |
14.05 | 470.9 |
23.48 | 450.89 |
21.91 | 445.04 |
24.42 | 444.72 |
14.26 | 460.38 |
21.38 | 446.8 |
15.71 | 465.05 |
5.78 | 484.13 |
6.77 | 488.27 |
23.84 | 447.09 |
21.17 | 452.02 |
19.94 | 455.55 |
8.73 | 480.99 |
16.39 | 467.68 |
ExhaustVaccum | Power |
---|---|
41.76 | 463.26 |
62.96 | 444.37 |
39.4 | 488.56 |
57.32 | 446.48 |
37.5 | 473.9 |
59.44 | 443.67 |
43.96 | 467.35 |
44.71 | 478.42 |
45.0 | 475.98 |
43.56 | 477.5 |
43.72 | 453.02 |
46.93 | 453.99 |
73.5 | 440.29 |
58.59 | 451.28 |
69.34 | 433.99 |
43.79 | 462.19 |
45.0 | 467.54 |
41.74 | 477.2 |
52.75 | 459.85 |
38.47 | 464.3 |
42.42 | 468.27 |
40.07 | 495.24 |
42.28 | 483.8 |
63.9 | 443.61 |
48.6 | 436.06 |
70.72 | 443.25 |
39.31 | 464.16 |
39.96 | 475.52 |
35.79 | 484.41 |
65.18 | 437.89 |
63.94 | 445.11 |
58.41 | 438.86 |
66.85 | 440.98 |
74.16 | 436.65 |
63.94 | 444.26 |
44.03 | 465.86 |
63.73 | 444.37 |
47.45 | 450.69 |
39.35 | 469.02 |
51.3 | 448.86 |
47.45 | 447.14 |
44.85 | 469.18 |
41.54 | 482.8 |
42.86 | 476.7 |
40.64 | 474.99 |
63.94 | 444.22 |
37.87 | 461.33 |
43.43 | 448.06 |
44.71 | 474.6 |
40.11 | 473.05 |
73.5 | 432.06 |
38.62 | 467.41 |
78.92 | 430.12 |
42.18 | 473.62 |
39.39 | 471.81 |
59.43 | 442.99 |
64.44 | 442.77 |
39.33 | 491.49 |
61.08 | 447.46 |
58.84 | 446.11 |
52.3 | 442.44 |
65.71 | 446.22 |
40.1 | 471.49 |
45.87 | 463.5 |
58.79 | 440.01 |
65.34 | 441.03 |
62.96 | 452.68 |
40.69 | 474.91 |
34.03 | 478.77 |
74.34 | 434.2 |
68.3 | 437.91 |
41.01 | 477.61 |
74.67 | 431.65 |
74.34 | 430.57 |
42.28 | 481.09 |
61.02 | 445.56 |
39.85 | 475.74 |
69.75 | 435.12 |
67.25 | 446.15 |
76.86 | 436.64 |
69.45 | 436.69 |
42.18 | 468.75 |
43.02 | 466.6 |
45.08 | 465.48 |
73.68 | 441.34 |
69.45 | 441.83 |
39.3 | 464.7 |
69.75 | 437.99 |
58.96 | 459.12 |
68.94 | 429.69 |
51.43 | 459.8 |
64.05 | 433.63 |
60.95 | 442.84 |
41.66 | 485.13 |
52.72 | 459.12 |
67.32 | 445.31 |
40.72 | 480.8 |
66.48 | 432.55 |
63.77 | 443.86 |
59.21 | 449.77 |
43.69 | 470.71 |
51.3 | 452.17 |
41.38 | 478.29 |
71.94 | 428.54 |
40.64 | 478.27 |
62.66 | 439.58 |
49.69 | 457.32 |
44.2 | 475.51 |
65.59 | 439.66 |
40.89 | 471.99 |
39.35 | 479.81 |
78.92 | 434.78 |
61.87 | 446.58 |
58.33 | 437.76 |
39.72 | 459.36 |
44.71 | 462.28 |
43.48 | 464.33 |
46.21 | 444.36 |
59.39 | 438.64 |
34.03 | 470.49 |
41.1 | 455.13 |
66.93 | 450.22 |
63.73 | 440.43 |
42.85 | 482.98 |
50.88 | 460.44 |
54.2 | 444.97 |
68.67 | 433.94 |
73.18 | 439.73 |
73.88 | 434.48 |
60.84 | 442.33 |
45.09 | 457.67 |
57.76 | 454.66 |
67.25 | 432.21 |
43.77 | 457.66 |
63.76 | 435.21 |
47.43 | 448.22 |
41.66 | 475.51 |
62.91 | 446.53 |
57.32 | 441.3 |
69.34 | 433.54 |
39.04 | 472.52 |
44.78 | 474.77 |
69.05 | 435.1 |
59.8 | 450.74 |
65.06 | 442.7 |
68.14 | 426.56 |
42.32 | 463.71 |
66.93 | 447.06 |
57.76 | 452.27 |
63.94 | 445.78 |
68.3 | 438.65 |
40.77 | 480.15 |
62.52 | 447.19 |
48.41 | 443.04 |
39.9 | 488.81 |
57.76 | 455.75 |
49.39 | 455.86 |
46.97 | 457.68 |
40.05 | 479.11 |
74.16 | 432.84 |
62.52 | 448.37 |
47.45 | 447.06 |
49.21 | 443.53 |
61.45 | 445.21 |
66.51 | 441.7 |
66.86 | 450.93 |
49.78 | 451.44 |
56.89 | 441.29 |
44.85 | 458.85 |
43.65 | 481.46 |
43.41 | 467.19 |
41.58 | 461.54 |
52.84 | 439.08 |
42.74 | 467.22 |
44.34 | 468.8 |
71.98 | 426.93 |
37.73 | 474.65 |
44.21 | 468.97 |
71.58 | 433.97 |
50.16 | 450.53 |
59.04 | 444.51 |
40.69 | 469.03 |
71.14 | 466.56 |
52.05 | 457.57 |
59.54 | 440.13 |
69.84 | 433.24 |
43.72 | 452.55 |
71.37 | 443.29 |
74.99 | 431.76 |
44.78 | 454.97 |
63.07 | 456.7 |
39.9 | 486.03 |
39.96 | 472.79 |
57.25 | 452.03 |
54.2 | 443.41 |
67.32 | 441.93 |
70.98 | 432.64 |
36.24 | 480.25 |
39.63 | 466.68 |
40.07 | 494.39 |
54.42 | 454.72 |
56.85 | 448.71 |
42.48 | 469.76 |
44.89 | 450.71 |
58.79 | 444.01 |
58.2 | 453.2 |
57.85 | 450.87 |
63.86 | 441.73 |
39.52 | 465.09 |
64.63 | 447.28 |
39.33 | 491.16 |
62.52 | 450.98 |
63.56 | 446.3 |
79.74 | 436.48 |
42.03 | 460.84 |
69.51 | 442.56 |
41.49 | 467.3 |
40.64 | 479.13 |
52.3 | 441.15 |
59.04 | 445.52 |
40.69 | 475.4 |
40.69 | 469.3 |
41.62 | 463.57 |
68.67 | 445.32 |
44.21 | 461.03 |
43.13 | 466.74 |
59.87 | 444.04 |
67.25 | 434.01 |
44.9 | 465.23 |
69.34 | 440.6 |
44.84 | 466.74 |
75.6 | 433.48 |
40.96 | 473.59 |
41.74 | 474.81 |
44.06 | 454.75 |
49.69 | 452.94 |
69.13 | 435.83 |
39.22 | 482.19 |
44.47 | 466.66 |
40.12 | 462.59 |
64.63 | 447.82 |
41.62 | 462.73 |
63.21 | 447.98 |
39.31 | 462.72 |
58.46 | 442.42 |
48.41 | 444.69 |
39.0 | 466.7 |
64.63 | 453.84 |
67.32 | 436.92 |
36.08 | 486.37 |
60.07 | 440.43 |
63.07 | 446.82 |
39.48 | 484.91 |
71.64 | 437.76 |
68.08 | 438.91 |
39.54 | 464.19 |
67.79 | 442.19 |
47.43 | 446.86 |
44.2 | 457.15 |
43.65 | 482.57 |
41.26 | 476.03 |
72.58 | 428.89 |
40.23 | 472.7 |
52.3 | 445.6 |
52.05 | 464.78 |
58.95 | 440.42 |
70.79 | 428.41 |
70.47 | 438.5 |
59.43 | 438.28 |
40.64 | 476.29 |
58.49 | 448.46 |
57.19 | 438.99 |
39.22 | 471.8 |
42.44 | 471.81 |
59.14 | 449.82 |
68.08 | 442.14 |
58.79 | 441.46 |
40.22 | 477.62 |
61.87 | 446.76 |
39.82 | 472.52 |
40.71 | 471.58 |
72.39 | 440.85 |
77.54 | 431.37 |
71.97 | 437.33 |
40.71 | 469.22 |
40.78 | 471.11 |
66.51 | 439.17 |
62.26 | 445.33 |
39.22 | 473.71 |
57.76 | 452.66 |
59.43 | 440.99 |
38.91 | 467.42 |
58.82 | 444.14 |
56.53 | 457.17 |
54.3 | 467.87 |
70.72 | 442.04 |
44.58 | 471.36 |
39.1 | 460.7 |
70.83 | 431.33 |
76.86 | 432.6 |
59.39 | 447.61 |
64.79 | 443.87 |
52.3 | 446.87 |
41.01 | 465.74 |
56.89 | 447.86 |
62.96 | 447.65 |
63.47 | 437.87 |
41.66 | 483.51 |
41.46 | 479.65 |
58.16 | 455.16 |
71.25 | 431.91 |
41.5 | 470.68 |
69.13 | 429.28 |
59.21 | 450.81 |
73.5 | 437.73 |
44.6 | 460.21 |
69.05 | 442.86 |
45.0 | 482.99 |
65.27 | 440.0 |
41.82 | 478.48 |
49.82 | 455.28 |
66.56 | 436.94 |
37.87 | 461.06 |
69.45 | 438.28 |
39.58 | 472.61 |
70.79 | 426.85 |
39.72 | 470.18 |
54.42 | 455.38 |
66.56 | 428.32 |
42.49 | 480.35 |
56.53 | 455.56 |
58.33 | 447.66 |
68.67 | 443.06 |
58.86 | 452.43 |
41.54 | 477.81 |
73.77 | 431.66 |
73.91 | 431.8 |
68.67 | 446.67 |
60.29 | 445.26 |
69.89 | 425.72 |
72.29 | 430.58 |
60.27 | 439.86 |
59.15 | 441.11 |
71.14 | 434.72 |
67.45 | 434.01 |
41.17 | 475.64 |
41.58 | 460.44 |
68.67 | 436.4 |
40.73 | 461.03 |
41.54 | 479.08 |
69.14 | 435.76 |
45.51 | 460.14 |
75.6 | 442.2 |
50.78 | 447.69 |
73.67 | 431.15 |
63.56 | 445.0 |
73.21 | 431.59 |
44.47 | 467.22 |
51.43 | 445.33 |
45.09 | 470.57 |
39.61 | 473.77 |
60.29 | 447.67 |
40.05 | 474.29 |
71.32 | 437.14 |
69.05 | 432.56 |
41.79 | 459.14 |
60.07 | 446.19 |
71.77 | 428.1 |
44.47 | 468.46 |
66.75 | 435.02 |
48.6 | 445.52 |
40.55 | 462.69 |
61.27 | 455.75 |
40.0 | 463.74 |
69.68 | 439.79 |
58.95 | 443.26 |
69.13 | 432.04 |
43.96 | 465.86 |
45.87 | 465.6 |
25.36 | 469.43 |
49.3 | 440.75 |
38.91 | 481.32 |
40.56 | 479.87 |
39.16 | 458.59 |
71.97 | 438.62 |
59.44 | 445.59 |
43.56 | 481.87 |
41.5 | 475.01 |
48.41 | 436.54 |
40.66 | 456.63 |
62.52 | 451.69 |
39.59 | 463.04 |
67.71 | 446.1 |
59.92 | 438.67 |
41.4 | 466.88 |
48.41 | 444.6 |
59.39 | 440.26 |
40.96 | 483.92 |
41.2 | 475.19 |
44.68 | 479.24 |
73.68 | 434.92 |
65.46 | 454.16 |
58.79 | 447.58 |
41.26 | 467.9 |
69.13 | 426.29 |
45.87 | 447.02 |
41.79 | 455.85 |
40.22 | 476.46 |
68.94 | 437.48 |
49.21 | 452.77 |
39.33 | 491.54 |
64.79 | 438.41 |
41.93 | 476.1 |
36.99 | 464.58 |
40.78 | 467.74 |
57.17 | 442.12 |
57.5 | 453.34 |
69.13 | 425.29 |
51.43 | 449.63 |
45.78 | 462.88 |
42.32 | 464.67 |
35.57 | 489.96 |
38.08 | 482.38 |
77.95 | 437.95 |
71.98 | 429.2 |
46.63 | 453.34 |
70.02 | 442.47 |
49.69 | 462.6 |
40.96 | 478.79 |
52.05 | 456.11 |
50.16 | 450.33 |
69.88 | 434.83 |
73.68 | 433.43 |
62.96 | 456.02 |
40.67 | 485.23 |
37.14 | 473.57 |
39.58 | 469.94 |
49.83 | 452.07 |
41.04 | 475.32 |
36.24 | 480.69 |
48.06 | 444.01 |
56.03 | 465.17 |
39.82 | 480.61 |
41.5 | 476.04 |
49.3 | 441.76 |
71.98 | 428.24 |
67.71 | 444.77 |
45.87 | 463.1 |
44.6 | 470.5 |
72.99 | 431.0 |
69.4 | 430.68 |
67.17 | 436.42 |
49.82 | 452.33 |
63.94 | 440.16 |
63.76 | 435.75 |
44.57 | 449.74 |
72.24 | 430.73 |
77.17 | 432.75 |
47.43 | 446.79 |
41.39 | 486.35 |
59.8 | 453.18 |
50.23 | 458.31 |
41.54 | 480.26 |
51.3 | 448.65 |
49.5 | 458.41 |
64.69 | 435.39 |
50.16 | 450.21 |
43.14 | 459.59 |
75.6 | 445.84 |
48.78 | 441.08 |
37.85 | 467.33 |
63.09 | 444.19 |
68.27 | 432.96 |
47.93 | 438.09 |
36.99 | 467.9 |
43.67 | 475.72 |
34.69 | 477.51 |
69.84 | 435.13 |
39.61 | 477.9 |
44.2 | 457.26 |
44.6 | 467.53 |
41.58 | 465.15 |
40.1 | 474.28 |
65.71 | 444.49 |
45.09 | 452.84 |
77.54 | 435.38 |
75.33 | 433.57 |
69.71 | 435.27 |
39.63 | 468.49 |
70.8 | 433.07 |
73.56 | 430.63 |
65.74 | 440.74 |
39.96 | 474.49 |
48.6 | 449.74 |
63.76 | 436.73 |
70.79 | 434.58 |
43.13 | 473.93 |
79.74 | 435.99 |
43.22 | 466.83 |
68.24 | 427.22 |
63.77 | 444.07 |
41.49 | 469.57 |
66.51 | 459.89 |
40.71 | 479.59 |
64.69 | 440.92 |
41.46 | 480.87 |
66.54 | 441.9 |
69.68 | 430.2 |
42.86 | 465.16 |
44.45 | 471.32 |
40.64 | 485.43 |
40.07 | 495.35 |
58.49 | 449.12 |
42.02 | 480.53 |
50.66 | 457.07 |
69.94 | 443.67 |
44.68 | 477.52 |
39.64 | 472.95 |
39.69 | 472.54 |
40.71 | 469.17 |
70.04 | 435.21 |
40.22 | 477.78 |
39.85 | 475.89 |
40.23 | 483.9 |
39.16 | 476.2 |
43.34 | 462.16 |
37.85 | 471.05 |
41.26 | 484.71 |
63.86 | 446.34 |
42.28 | 469.02 |
72.86 | 432.12 |
40.1 | 467.28 |
69.98 | 429.66 |
45.09 | 469.49 |
40.56 | 485.87 |
40.81 | 481.95 |
40.02 | 479.03 |
69.13 | 434.5 |
54.3 | 464.9 |
63.94 | 452.71 |
69.51 | 429.74 |
56.65 | 457.09 |
72.29 | 446.77 |
41.48 | 460.76 |
40.83 | 471.95 |
46.21 | 453.29 |
60.07 | 441.61 |
46.18 | 464.73 |
43.69 | 464.68 |
73.91 | 430.59 |
77.95 | 438.01 |
41.04 | 479.08 |
74.78 | 436.39 |
65.46 | 447.07 |
39.58 | 479.91 |
43.02 | 489.05 |
53.82 | 463.17 |
42.02 | 471.26 |
40.67 | 480.49 |
39.42 | 473.78 |
58.16 | 455.5 |
58.41 | 446.27 |
41.06 | 482.2 |
59.8 | 452.48 |
43.14 | 464.48 |
69.89 | 438.1 |
63.47 | 445.6 |
67.79 | 442.43 |
61.25 | 436.67 |
41.85 | 466.56 |
71.14 | 457.29 |
36.25 | 487.03 |
52.72 | 464.93 |
44.63 | 466.0 |
48.79 | 469.52 |
70.04 | 428.88 |
41.48 | 474.3 |
39.31 | 461.06 |
39.39 | 465.57 |
41.78 | 467.67 |
40.71 | 466.99 |
39.39 | 463.72 |
49.16 | 443.78 |
68.28 | 445.23 |
40.66 | 464.43 |
36.25 | 484.36 |
63.07 | 442.16 |
39.63 | 464.11 |
49.39 | 462.48 |
42.49 | 477.49 |
65.59 | 437.04 |
40.79 | 457.09 |
45.01 | 450.6 |
45.0 | 465.78 |
70.04 | 427.1 |
44.63 | 459.81 |
47.43 | 447.36 |
39.64 | 488.92 |
66.49 | 433.36 |
39.04 | 483.35 |
41.04 | 469.53 |
39.82 | 476.96 |
58.46 | 440.75 |
43.71 | 462.55 |
54.2 | 448.04 |
50.59 | 455.24 |
40.07 | 494.75 |
57.32 | 444.58 |
35.79 | 484.82 |
66.05 | 442.9 |
39.33 | 485.46 |
49.5 | 457.81 |
43.65 | 481.92 |
61.02 | 443.23 |
39.69 | 474.29 |
71.58 | 430.46 |
50.66 | 455.71 |
62.26 | 438.34 |
41.31 | 485.83 |
44.06 | 452.82 |
68.94 | 435.04 |
59.8 | 451.21 |
42.74 | 465.81 |
44.92 | 458.42 |
39.96 | 470.22 |
49.39 | 449.24 |
44.92 | 471.43 |
44.92 | 473.26 |
58.49 | 452.82 |
70.32 | 432.69 |
60.84 | 444.13 |
41.92 | 467.21 |
48.6 | 445.98 |
73.77 | 436.91 |
44.9 | 455.01 |
66.56 | 437.11 |
40.64 | 477.06 |
67.71 | 441.71 |
40.07 | 495.76 |
66.44 | 445.63 |
41.62 | 464.72 |
68.94 | 438.03 |
72.86 | 434.78 |
60.32 | 444.67 |
61.41 | 452.24 |
45.09 | 450.92 |
70.4 | 436.53 |
71.77 | 435.53 |
68.51 | 440.01 |
64.45 | 443.1 |
71.94 | 427.49 |
68.08 | 436.25 |
67.79 | 440.74 |
63.31 | 443.54 |
51.43 | 459.42 |
60.23 | 439.66 |
44.84 | 464.15 |
56.65 | 459.1 |
52.36 | 455.68 |
45.51 | 469.08 |
41.26 | 478.02 |
44.06 | 456.8 |
44.89 | 441.13 |
43.69 | 463.88 |
73.67 | 430.45 |
65.71 | 449.18 |
48.92 | 447.89 |
70.04 | 431.59 |
52.3 | 447.5 |
41.82 | 475.58 |
59.8 | 453.24 |
63.21 | 446.4 |
44.92 | 476.81 |
40.46 | 474.1 |
57.76 | 450.71 |
66.48 | 433.62 |
41.66 | 465.14 |
59.87 | 445.18 |
39.22 | 474.12 |
43.79 | 483.91 |
40.27 | 486.68 |
43.52 | 464.98 |
45.87 | 481.4 |
39.04 | 479.2 |
41.16 | 463.86 |
38.25 | 472.3 |
58.84 | 446.51 |
51.43 | 437.71 |
41.1 | 458.94 |
67.17 | 437.91 |
39.33 | 490.76 |
65.06 | 439.66 |
44.9 | 463.27 |
39.52 | 473.99 |
66.49 | 433.38 |
53.82 | 459.01 |
40.75 | 471.44 |
39.28 | 471.91 |
44.47 | 465.15 |
51.19 | 446.66 |
63.76 | 438.15 |
51.19 | 447.14 |
43.71 | 472.32 |
70.72 | 441.68 |
72.99 | 440.04 |
64.05 | 444.82 |
53.16 | 457.26 |
72.58 | 428.83 |
43.43 | 449.07 |
71.94 | 435.21 |
44.2 | 471.03 |
48.04 | 465.56 |
62.96 | 442.83 |
41.48 | 460.3 |
40.71 | 474.25 |
41.82 | 477.97 |
40.46 | 472.16 |
46.97 | 456.08 |
49.82 | 452.41 |
43.22 | 463.71 |
67.07 | 433.72 |
57.76 | 456.4 |
48.98 | 448.43 |
36.08 | 481.6 |
42.18 | 457.07 |
49.39 | 451.0 |
75.6 | 440.28 |
71.32 | 437.47 |
67.71 | 443.57 |
69.84 | 426.6 |
41.5 | 470.87 |
39.85 | 478.37 |
58.66 | 453.92 |
40.56 | 470.22 |
72.24 | 434.54 |
63.9 | 442.89 |
36.24 | 479.03 |
43.99 | 476.06 |
36.71 | 473.88 |
57.25 | 451.75 |
56.85 | 439.2 |
58.46 | 439.7 |
46.18 | 463.6 |
52.84 | 447.47 |
56.89 | 447.92 |
44.63 | 471.08 |
72.43 | 437.55 |
51.3 | 448.27 |
72.39 | 431.69 |
48.14 | 449.09 |
58.46 | 448.79 |
44.92 | 460.21 |
41.17 | 479.28 |
41.82 | 483.11 |
54.2 | 450.75 |
66.54 | 437.97 |
41.48 | 459.76 |
44.9 | 457.75 |
40.1 | 469.33 |
69.75 | 433.28 |
70.02 | 444.64 |
44.9 | 463.1 |
44.68 | 460.91 |
39.04 | 479.35 |
59.21 | 449.23 |
40.92 | 474.51 |
72.99 | 435.02 |
70.72 | 435.45 |
48.14 | 452.38 |
39.3 | 480.41 |
39.72 | 478.96 |
42.74 | 468.87 |
76.2 | 434.01 |
44.6 | 466.36 |
75.23 | 435.28 |
43.02 | 486.46 |
40.1 | 468.19 |
41.01 | 468.37 |
41.39 | 474.19 |
74.22 | 440.32 |
38.44 | 485.32 |
42.86 | 464.27 |
36.18 | 479.25 |
70.32 | 430.4 |
58.62 | 447.49 |
64.69 | 438.23 |
40.43 | 492.09 |
40.75 | 475.36 |
54.9 | 452.56 |
74.67 | 427.84 |
68.08 | 433.95 |
70.8 | 435.27 |
58.59 | 454.62 |
40.56 | 472.17 |
63.31 | 452.42 |
42.02 | 472.17 |
41.44 | 481.83 |
49.15 | 458.78 |
62.08 | 447.5 |
49.25 | 463.4 |
41.26 | 473.57 |
70.32 | 433.72 |
66.44 | 431.85 |
77.95 | 433.47 |
74.22 | 432.84 |
70.94 | 436.6 |
41.17 | 490.23 |
41.74 | 477.16 |
68.31 | 441.06 |
70.98 | 440.86 |
41.82 | 477.94 |
40.8 | 474.47 |
43.02 | 470.67 |
65.34 | 447.31 |
44.88 | 466.8 |
71.94 | 430.91 |
69.88 | 434.75 |
42.86 | 469.52 |
59.43 | 438.9 |
70.04 | 429.56 |
74.33 | 432.92 |
49.16 | 442.87 |
41.76 | 466.59 |
41.14 | 479.61 |
44.63 | 471.08 |
59.14 | 433.37 |
65.48 | 443.92 |
59.14 | 443.5 |
64.79 | 439.89 |
69.59 | 434.66 |
41.38 | 487.57 |
41.62 | 464.64 |
42.32 | 470.92 |
63.73 | 444.39 |
48.6 | 442.48 |
52.08 | 449.61 |
69.34 | 435.02 |
43.99 | 458.67 |
46.18 | 461.74 |
62.39 | 438.31 |
48.92 | 462.38 |
44.2 | 460.56 |
59.21 | 439.22 |
58.79 | 444.64 |
71.25 | 430.34 |
71.29 | 430.46 |
45.87 | 456.79 |
41.23 | 468.82 |
44.9 | 448.51 |
44.71 | 470.77 |
41.14 | 465.74 |
66.56 | 430.21 |
50.32 | 449.23 |
49.15 | 461.89 |
61.45 | 445.72 |
39.39 | 466.13 |
51.19 | 448.71 |
41.23 | 469.25 |
66.86 | 450.56 |
39.64 | 464.46 |
41.5 | 471.13 |
48.06 | 461.52 |
59.15 | 451.09 |
79.74 | 431.51 |
40.83 | 469.8 |
51.43 | 442.28 |
48.92 | 458.67 |
43.79 | 462.4 |
59.8 | 453.54 |
62.96 | 444.38 |
58.9 | 440.52 |
69.14 | 433.62 |
45.0 | 481.96 |
44.9 | 452.75 |
39.42 | 481.28 |
66.05 | 439.03 |
73.88 | 435.75 |
74.16 | 436.03 |
58.49 | 445.6 |
56.03 | 462.65 |
50.05 | 438.66 |
50.32 | 447.32 |
39.48 | 484.55 |
41.01 | 476.8 |
39.04 | 480.34 |
48.41 | 440.63 |
44.6 | 459.48 |
40.43 | 490.78 |
38.91 | 483.56 |
73.18 | 429.38 |
59.21 | 440.27 |
51.43 | 445.34 |
65.27 | 447.43 |
69.94 | 439.91 |
50.59 | 459.27 |
39.61 | 478.89 |
41.66 | 466.7 |
43.5 | 463.5 |
74.33 | 436.21 |
63.47 | 443.94 |
63.94 | 439.63 |
41.54 | 460.95 |
59.14 | 448.69 |
75.08 | 444.63 |
37.83 | 473.51 |
39.54 | 462.56 |
50.16 | 451.76 |
40.43 | 491.81 |
68.08 | 429.52 |
49.02 | 437.9 |
38.73 | 467.54 |
64.45 | 449.97 |
66.48 | 436.62 |
40.55 | 477.68 |
63.86 | 447.26 |
63.13 | 439.76 |
59.39 | 437.49 |
58.2 | 455.14 |
41.03 | 485.5 |
66.93 | 444.1 |
70.94 | 432.33 |
44.03 | 471.23 |
42.34 | 463.89 |
51.19 | 445.54 |
59.54 | 446.09 |
63.86 | 445.12 |
59.21 | 443.31 |
39.66 | 484.16 |
40.69 | 477.76 |
71.29 | 430.28 |
62.04 | 446.48 |
36.66 | 481.03 |
47.83 | 466.07 |
67.32 | 447.47 |
55.5 | 455.93 |
40.0 | 479.62 |
47.01 | 455.06 |
40.46 | 475.06 |
56.85 | 438.89 |
69.84 | 432.7 |
50.9 | 452.6 |
46.21 | 451.75 |
71.06 | 430.66 |
38.91 | 491.9 |
74.78 | 439.82 |
39.0 | 460.73 |
60.95 | 449.7 |
59.15 | 439.42 |
65.06 | 439.84 |
35.57 | 485.86 |
40.12 | 458.1 |
39.82 | 479.92 |
56.03 | 458.29 |
40.07 | 489.45 |
73.42 | 434.0 |
69.13 | 431.24 |
47.93 | 439.5 |
40.56 | 467.46 |
71.58 | 429.27 |
58.95 | 452.1 |
42.02 | 472.41 |
69.05 | 442.14 |
49.3 | 441.0 |
41.58 | 463.07 |
60.84 | 445.71 |
39.81 | 483.16 |
68.84 | 440.45 |
38.06 | 481.83 |
40.62 | 467.6 |
52.84 | 450.88 |
69.13 | 425.5 |
54.42 | 451.87 |
69.51 | 428.94 |
48.6 | 439.86 |
73.42 | 433.44 |
73.68 | 438.23 |
71.32 | 436.95 |
40.56 | 470.19 |
40.22 | 484.66 |
68.27 | 430.81 |
73.17 | 433.37 |
48.98 | 453.02 |
50.9 | 453.5 |
41.23 | 463.09 |
44.6 | 464.56 |
65.46 | 452.12 |
40.69 | 470.9 |
64.15 | 450.89 |
63.76 | 445.04 |
63.07 | 444.72 |
40.92 | 460.38 |
58.33 | 446.8 |
44.06 | 465.05 |
40.62 | 484.13 |
39.81 | 488.27 |
49.21 | 447.09 |
58.16 | 452.02 |
58.96 | 455.55 |
41.92 | 480.99 |
41.67 | 467.68 |
Pressure | Power |
---|---|
1024.07 | 463.26 |
1020.04 | 444.37 |
1012.16 | 488.56 |
1010.24 | 446.48 |
1009.23 | 473.9 |
1012.23 | 443.67 |
1014.02 | 467.35 |
1019.12 | 478.42 |
1021.78 | 475.98 |
1015.14 | 477.5 |
1008.64 | 453.02 |
1014.66 | 453.99 |
1011.31 | 440.29 |
1012.77 | 451.28 |
1009.48 | 433.99 |
1015.76 | 462.19 |
1022.86 | 467.54 |
1022.6 | 477.2 |
1023.97 | 459.85 |
1015.15 | 464.3 |
1009.09 | 468.27 |
1019.16 | 495.24 |
1008.52 | 483.8 |
1014.3 | 443.61 |
1003.18 | 436.06 |
1009.97 | 443.25 |
1011.11 | 464.16 |
1023.57 | 475.52 |
1012.14 | 484.41 |
1012.69 | 437.89 |
1019.02 | 445.11 |
1013.64 | 438.86 |
1011.11 | 440.98 |
1010.08 | 436.65 |
1018.76 | 444.26 |
1007.29 | 465.86 |
1011.4 | 444.37 |
1010.08 | 450.69 |
1014.69 | 469.02 |
1012.04 | 448.86 |
1007.62 | 447.14 |
1017.24 | 469.18 |
1018.33 | 482.8 |
1014.12 | 476.7 |
1020.63 | 474.99 |
1019.28 | 444.22 |
1020.24 | 461.33 |
1010.96 | 448.06 |
1014.51 | 474.6 |
1029.14 | 473.05 |
1010.58 | 432.06 |
1018.71 | 467.41 |
1011.6 | 430.12 |
1014.82 | 473.62 |
1012.94 | 471.81 |
1010.23 | 442.99 |
1014.65 | 442.77 |
1010.18 | 491.49 |
1013.68 | 447.46 |
1002.25 | 446.11 |
1007.03 | 442.44 |
1013.61 | 446.22 |
1016.67 | 471.49 |
1008.89 | 463.5 |
1016.02 | 440.01 |
1014.56 | 441.03 |
1019.49 | 452.68 |
1020.43 | 474.91 |
1018.71 | 478.77 |
998.14 | 434.2 |
1017.83 | 437.91 |
1024.61 | 477.61 |
1016.65 | 431.65 |
998.58 | 430.57 |
1008.82 | 481.09 |
1009.56 | 445.56 |
1012.71 | 475.74 |
1010.36 | 435.12 |
1017.39 | 446.15 |
1001.31 | 436.64 |
1013.89 | 436.69 |
1016.53 | 468.75 |
1012.18 | 466.6 |
1024.42 | 465.48 |
1014.93 | 441.34 |
1012.53 | 441.83 |
1019.0 | 464.7 |
1009.6 | 437.99 |
1015.55 | 459.12 |
1006.56 | 429.69 |
1010.57 | 459.8 |
1009.81 | 433.63 |
1014.62 | 442.84 |
1014.49 | 485.13 |
1025.09 | 459.12 |
1012.05 | 445.31 |
1022.7 | 480.8 |
1005.23 | 432.55 |
1013.42 | 443.86 |
1018.3 | 449.77 |
1017.19 | 470.71 |
1011.93 | 452.17 |
1021.6 | 478.29 |
1006.96 | 428.54 |
1020.66 | 478.27 |
1007.63 | 439.58 |
1005.53 | 457.32 |
1018.79 | 475.51 |
1010.85 | 439.66 |
1011.03 | 471.99 |
1015.1 | 479.81 |
1010.83 | 434.78 |
1011.18 | 446.58 |
1013.92 | 437.76 |
1001.24 | 459.36 |
1016.99 | 462.28 |
1016.08 | 464.33 |
1010.71 | 444.36 |
1014.32 | 438.64 |
1018.69 | 470.49 |
1001.86 | 455.13 |
1017.06 | 450.22 |
1009.34 | 440.43 |
1014.02 | 482.98 |
1014.19 | 460.44 |
1012.81 | 444.97 |
1005.2 | 433.94 |
1012.28 | 439.73 |
1005.89 | 434.48 |
1017.93 | 442.33 |
1014.26 | 457.67 |
1018.8 | 454.66 |
1017.71 | 432.21 |
1012.25 | 457.66 |
1010.27 | 435.21 |
1007.64 | 448.22 |
1013.79 | 475.51 |
1013.24 | 446.53 |
1011.7 | 441.3 |
1007.67 | 433.54 |
1020.45 | 472.52 |
1012.59 | 474.77 |
1001.62 | 435.1 |
1016.92 | 450.74 |
1014.32 | 442.7 |
1003.34 | 426.56 |
1016.0 | 463.71 |
1016.85 | 447.06 |
1018.02 | 452.27 |
1018.49 | 445.78 |
1017.93 | 438.65 |
1011.55 | 480.15 |
1016.46 | 447.19 |
1008.47 | 443.04 |
1008.06 | 488.81 |
1016.26 | 455.75 |
1018.83 | 455.86 |
1013.94 | 457.68 |
1014.95 | 479.11 |
1007.44 | 432.84 |
1016.18 | 448.37 |
1007.56 | 447.06 |
1014.1 | 443.53 |
1011.13 | 445.21 |
1015.53 | 441.7 |
1013.05 | 450.93 |
1002.95 | 451.44 |
1012.32 | 441.29 |
1014.48 | 458.85 |
1018.24 | 481.46 |
1016.93 | 467.19 |
1020.5 | 461.54 |
1006.28 | 439.08 |
1028.79 | 467.22 |
1019.49 | 468.8 |
1004.66 | 426.93 |
1024.36 | 474.65 |
1022.93 | 468.97 |
1010.18 | 433.97 |
1009.52 | 450.53 |
1011.98 | 444.51 |
1015.29 | 469.03 |
1019.36 | 466.56 |
1012.15 | 457.57 |
1006.24 | 440.13 |
1003.57 | 433.24 |
1008.64 | 452.55 |
1002.04 | 443.29 |
1005.47 | 431.76 |
1007.81 | 454.97 |
1012.42 | 456.7 |
1007.75 | 486.03 |
1011.37 | 472.79 |
1010.12 | 452.03 |
1012.26 | 443.41 |
1014.49 | 441.93 |
1007.51 | 432.64 |
1013.15 | 480.25 |
1004.47 | 466.68 |
1020.19 | 494.39 |
1012.46 | 454.72 |
1012.28 | 448.71 |
1013.43 | 469.76 |
1009.64 | 450.71 |
1009.8 | 444.01 |
1017.46 | 453.2 |
1012.39 | 450.87 |
1019.67 | 441.73 |
1018.41 | 465.09 |
1020.59 | 447.28 |
1011.54 | 491.16 |
1017.99 | 450.98 |
1013.75 | 446.3 |
1008.37 | 436.48 |
1017.41 | 460.84 |
1013.43 | 442.56 |
1020.19 | 467.3 |
1021.47 | 479.13 |
1008.72 | 441.15 |
1011.78 | 445.52 |
1015.62 | 475.4 |
1014.91 | 469.3 |
1017.17 | 463.57 |
1006.71 | 445.32 |
1020.36 | 461.03 |
1014.99 | 466.74 |
1018.47 | 444.04 |
1017.6 | 434.01 |
1020.5 | 465.23 |
1009.63 | 440.6 |
1023.66 | 466.74 |
1017.43 | 433.48 |
1023.36 | 473.59 |
1020.75 | 474.81 |
1017.58 | 454.75 |
1009.6 | 452.94 |
1009.94 | 435.83 |
1014.53 | 482.19 |
1030.46 | 466.66 |
1013.03 | 462.59 |
1020.69 | 447.82 |
1014.55 | 462.73 |
1012.06 | 447.98 |
1009.15 | 462.72 |
1016.82 | 442.42 |
1008.64 | 444.69 |
1016.73 | 466.7 |
1020.38 | 453.84 |
1013.83 | 436.92 |
1021.82 | 486.37 |
1015.42 | 440.43 |
1010.94 | 446.82 |
1005.11 | 484.91 |
1008.27 | 437.76 |
1013.27 | 438.91 |
1007.97 | 464.19 |
1009.89 | 442.19 |
1008.38 | 446.86 |
1018.89 | 457.15 |
1020.14 | 482.57 |
1007.44 | 476.03 |
1008.69 | 428.89 |
1018.07 | 472.7 |
1009.04 | 445.6 |
1014.63 | 464.78 |
1017.02 | 440.42 |
1003.96 | 428.41 |
1010.65 | 438.5 |
1007.84 | 438.28 |
1022.35 | 476.29 |
1011.5 | 448.46 |
1008.62 | 438.99 |
1017.9 | 471.8 |
1012.74 | 471.81 |
1016.12 | 449.82 |
1013.13 | 442.14 |
1009.74 | 441.46 |
1011.37 | 477.62 |
1011.45 | 446.76 |
1012.46 | 472.52 |
1021.27 | 471.58 |
1001.15 | 440.85 |
1011.33 | 431.37 |
1008.64 | 437.33 |
1015.68 | 469.22 |
1023.51 | 471.11 |
1010.98 | 439.17 |
1012.11 | 445.33 |
1018.62 | 473.71 |
1016.28 | 452.66 |
1007.12 | 440.99 |
1014.48 | 467.42 |
1010.02 | 444.14 |
1020.57 | 457.17 |
1015.92 | 467.87 |
1009.78 | 442.04 |
1019.52 | 471.36 |
1009.81 | 460.7 |
1010.35 | 431.33 |
998.59 | 432.6 |
1014.07 | 447.61 |
1016.27 | 443.87 |
1009.2 | 446.87 |
1020.57 | 465.74 |
1014.02 | 447.86 |
1020.16 | 447.65 |
1011.78 | 437.87 |
1016.87 | 483.51 |
1018.21 | 479.65 |
1016.88 | 455.16 |
1002.49 | 431.91 |
1014.13 | 470.68 |
1009.29 | 429.28 |
1018.32 | 450.81 |
1011.49 | 437.73 |
1015.16 | 460.21 |
1001.6 | 442.86 |
1021.51 | 482.99 |
1013.27 | 440.0 |
1033.25 | 478.48 |
1015.01 | 455.28 |
1002.07 | 436.94 |
1022.36 | 461.06 |
1013.97 | 438.28 |
1011.81 | 472.61 |
1003.7 | 426.85 |
1017.76 | 470.18 |
1012.31 | 455.38 |
1006.44 | 428.32 |
1010.57 | 480.35 |
1020.2 | 455.56 |
1013.14 | 447.66 |
1006.74 | 443.06 |
1014.19 | 452.43 |
1019.94 | 477.81 |
1004.72 | 431.66 |
1004.53 | 431.8 |
1006.65 | 446.67 |
1018.0 | 445.26 |
1013.85 | 425.72 |
1008.73 | 430.58 |
1018.94 | 439.86 |
1013.31 | 441.11 |
1011.6 | 434.72 |
1014.23 | 434.01 |
1019.43 | 475.64 |
1020.43 | 460.44 |
1005.46 | 436.4 |
1018.7 | 461.03 |
1019.94 | 479.08 |
1009.31 | 435.76 |
1015.22 | 460.14 |
1017.37 | 442.2 |
1008.83 | 447.69 |
1006.65 | 431.15 |
1014.32 | 445.0 |
1001.32 | 431.59 |
1027.94 | 467.22 |
1012.16 | 445.33 |
1013.21 | 470.57 |
1018.72 | 473.77 |
1017.42 | 447.67 |
1014.78 | 474.29 |
1008.07 | 437.14 |
1003.12 | 432.56 |
1009.72 | 459.14 |
1016.03 | 446.19 |
1006.38 | 428.1 |
1030.18 | 468.46 |
1017.95 | 435.02 |
1002.38 | 445.52 |
1003.36 | 462.69 |
1019.26 | 455.75 |
1015.89 | 463.74 |
1011.95 | 439.79 |
1016.99 | 443.26 |
1009.3 | 432.04 |
1013.32 | 465.86 |
1009.05 | 465.6 |
1009.35 | 469.43 |
1003.4 | 440.75 |
1015.82 | 481.32 |
1022.64 | 479.87 |
1005.7 | 458.59 |
1009.62 | 438.62 |
1012.38 | 445.59 |
1015.13 | 481.87 |
1013.58 | 475.01 |
1008.53 | 436.54 |
1016.28 | 456.63 |
1015.63 | 451.69 |
1010.93 | 463.04 |
1007.68 | 446.1 |
1009.94 | 438.67 |
1019.7 | 466.88 |
1008.42 | 444.6 |
1015.4 | 440.26 |
1023.28 | 483.92 |
1017.18 | 475.19 |
1023.06 | 479.24 |
1014.95 | 434.92 |
1014.0 | 454.16 |
1012.42 | 447.58 |
1021.67 | 467.9 |
1010.27 | 426.29 |
1007.8 | 447.02 |
1005.47 | 455.85 |
1010.31 | 476.46 |
1007.53 | 437.48 |
1014.61 | 452.77 |
1012.57 | 491.54 |
1017.22 | 438.41 |
1019.81 | 476.1 |
1007.87 | 464.58 |
1023.91 | 467.74 |
1010.0 | 442.12 |
1014.53 | 453.34 |
1010.44 | 425.29 |
1011.74 | 449.63 |
1025.27 | 462.88 |
1015.71 | 464.67 |
1027.17 | 489.96 |
1020.27 | 482.38 |
1009.45 | 437.95 |
1004.74 | 429.2 |
1013.03 | 453.34 |
1010.58 | 442.47 |
1015.14 | 462.6 |
1024.57 | 478.79 |
1012.34 | 456.11 |
1005.81 | 450.33 |
1007.21 | 434.83 |
1015.1 | 433.43 |
1020.76 | 456.02 |
1018.08 | 485.23 |
1013.03 | 473.57 |
1011.17 | 469.94 |
1008.69 | 452.07 |
1021.82 | 475.32 |
1013.39 | 480.69 |
1013.12 | 444.01 |
1020.41 | 465.17 |
1012.87 | 480.61 |
1013.39 | 476.04 |
1003.51 | 441.76 |
1005.19 | 428.24 |
1004.0 | 444.77 |
1008.58 | 463.1 |
1018.19 | 470.5 |
1007.04 | 431.0 |
1004.27 | 430.68 |
1006.6 | 436.42 |
1016.19 | 452.33 |
1010.64 | 440.16 |
1010.18 | 435.75 |
1008.48 | 449.74 |
1010.74 | 430.73 |
1009.55 | 432.75 |
1007.88 | 446.79 |
1018.12 | 486.35 |
1015.66 | 453.18 |
1015.73 | 458.31 |
1019.7 | 480.26 |
1011.89 | 448.65 |
1012.67 | 458.41 |
1006.37 | 435.39 |
1010.49 | 450.21 |
1018.68 | 459.59 |
1017.19 | 445.84 |
1018.17 | 441.08 |
1009.89 | 467.33 |
1016.56 | 444.19 |
1007.96 | 432.96 |
1002.85 | 438.09 |
1006.86 | 467.9 |
1012.68 | 475.72 |
1027.72 | 477.51 |
1006.37 | 435.13 |
1017.99 | 477.9 |
1019.18 | 457.26 |
1015.88 | 467.53 |
1021.08 | 465.15 |
1014.42 | 474.28 |
1013.85 | 444.49 |
1014.15 | 452.84 |
1008.5 | 435.38 |
1003.88 | 433.57 |
1009.04 | 435.27 |
1005.35 | 468.49 |
1009.9 | 433.07 |
1004.85 | 430.63 |
1013.29 | 440.74 |
1026.31 | 474.49 |
1005.72 | 449.74 |
1010.09 | 436.73 |
1006.53 | 434.58 |
1017.24 | 473.93 |
1007.03 | 435.99 |
1009.45 | 466.83 |
1005.29 | 427.22 |
1013.39 | 444.07 |
1020.11 | 469.57 |
1015.18 | 459.89 |
1024.91 | 479.59 |
1007.21 | 440.92 |
1020.45 | 480.87 |
1009.93 | 441.9 |
1011.35 | 430.2 |
1014.62 | 465.16 |
1021.19 | 471.32 |
1020.91 | 485.43 |
1012.27 | 495.35 |
1010.85 | 449.12 |
1006.22 | 480.53 |
1014.89 | 457.07 |
1010.7 | 443.67 |
1023.44 | 477.52 |
1012.52 | 472.95 |
1003.92 | 472.54 |
1015.85 | 469.17 |
1011.09 | 435.21 |
1004.81 | 477.78 |
1012.86 | 475.89 |
1017.75 | 483.9 |
1016.53 | 476.2 |
1015.47 | 462.16 |
1011.24 | 471.05 |
1010.6 | 484.71 |
1015.43 | 446.34 |
1007.21 | 469.02 |
1004.23 | 432.12 |
1015.51 | 467.28 |
1013.29 | 429.66 |
1013.16 | 469.49 |
1023.23 | 485.87 |
1026.0 | 481.95 |
1031.1 | 479.03 |
1010.99 | 434.5 |
1015.16 | 464.9 |
1020.02 | 452.71 |
1010.84 | 429.74 |
1020.67 | 457.09 |
1011.61 | 446.77 |
1014.46 | 460.76 |
1008.31 | 471.95 |
1014.09 | 453.29 |
1016.34 | 441.61 |
1017.01 | 464.73 |
1016.91 | 464.68 |
1003.72 | 430.59 |
1014.19 | 438.01 |
1021.84 | 479.08 |
1009.28 | 436.39 |
1016.25 | 447.07 |
1011.9 | 479.91 |
1013.88 | 489.05 |
1016.46 | 463.17 |
1001.18 | 471.26 |
1011.64 | 480.49 |
1025.41 | 473.78 |
1016.76 | 455.5 |
1013.78 | 446.27 |
1021.21 | 482.2 |
1016.72 | 452.48 |
1011.92 | 464.48 |
1015.29 | 438.1 |
1012.77 | 445.6 |
1010.37 | 442.43 |
1011.56 | 436.67 |
1016.54 | 466.56 |
1019.65 | 457.29 |
1029.65 | 487.03 |
1026.45 | 464.93 |
1019.28 | 466.0 |
1017.44 | 469.52 |
1011.18 | 428.88 |
1018.49 | 474.3 |
1009.69 | 461.06 |
1014.09 | 465.57 |
1012.3 | 467.67 |
1016.02 | 466.99 |
1013.73 | 463.72 |
1004.03 | 443.78 |
1005.43 | 445.23 |
1017.13 | 464.43 |
1028.31 | 484.36 |
1012.5 | 442.16 |
1004.64 | 464.11 |
1018.35 | 462.48 |
1009.59 | 477.49 |
1012.78 | 437.04 |
1003.8 | 457.09 |
1012.22 | 450.6 |
1023.25 | 465.78 |
1010.15 | 427.1 |
1020.14 | 459.81 |
1006.64 | 447.36 |
1011.0 | 488.92 |
1012.96 | 433.36 |
1021.99 | 483.35 |
1026.57 | 469.53 |
1012.27 | 476.96 |
1017.5 | 440.75 |
1024.51 | 462.55 |
1012.05 | 448.04 |
1016.22 | 455.24 |
1011.8 | 494.75 |
1012.55 | 444.58 |
1011.56 | 484.82 |
1019.6 | 442.9 |
1009.68 | 485.46 |
1012.82 | 457.81 |
1013.85 | 481.92 |
1009.63 | 443.23 |
1000.91 | 474.29 |
1009.98 | 430.46 |
1013.56 | 455.71 |
1011.25 | 438.34 |
1003.24 | 485.83 |
1017.76 | 452.82 |
1007.68 | 435.04 |
1016.82 | 451.21 |
1028.41 | 465.81 |
1025.04 | 458.42 |
1026.09 | 470.22 |
1020.84 | 449.24 |
1023.84 | 471.43 |
1023.74 | 473.26 |
1011.7 | 452.82 |
1008.1 | 432.69 |
1017.91 | 444.13 |
1029.8 | 467.21 |
1002.33 | 445.98 |
1002.42 | 436.91 |
1009.05 | 455.01 |
1002.47 | 437.11 |
1020.68 | 477.06 |
1006.65 | 441.71 |
1019.63 | 495.76 |
1011.33 | 445.63 |
1012.88 | 464.72 |
1005.94 | 438.03 |
1003.47 | 434.78 |
1015.63 | 444.67 |
1012.2 | 452.24 |
1014.19 | 450.92 |
1006.65 | 436.53 |
1005.75 | 435.53 |
1013.23 | 440.01 |
1008.72 | 443.1 |
1007.18 | 427.49 |
1012.99 | 436.25 |
1009.99 | 440.74 |
1015.02 | 443.54 |
1010.82 | 459.42 |
1009.76 | 439.66 |
1023.55 | 464.15 |
1020.55 | 459.1 |
1014.76 | 455.68 |
1015.33 | 469.08 |
1007.71 | 478.02 |
1017.36 | 456.8 |
1009.18 | 441.13 |
1017.05 | 463.88 |
1006.14 | 430.45 |
1014.24 | 449.18 |
1010.92 | 447.89 |
1010.4 | 431.59 |
1009.36 | 447.5 |
1033.04 | 475.58 |
1016.77 | 453.24 |
1012.59 | 446.4 |
1025.1 | 476.81 |
1019.29 | 474.1 |
1016.66 | 450.71 |
1006.4 | 433.62 |
1011.45 | 465.14 |
1019.08 | 445.18 |
1015.3 | 474.12 |
1016.08 | 483.91 |
1010.55 | 486.68 |
1022.43 | 464.98 |
1010.83 | 481.4 |
1021.81 | 479.2 |
1005.85 | 463.86 |
1012.76 | 472.3 |
1001.31 | 446.51 |
1005.93 | 437.71 |
1001.96 | 458.94 |
1007.62 | 437.91 |
1009.96 | 490.76 |
1013.4 | 439.66 |
1007.58 | 463.27 |
1016.68 | 473.99 |
1012.83 | 433.38 |
1015.13 | 459.01 |
1016.05 | 471.44 |
1012.97 | 471.91 |
1028.2 | 465.15 |
1008.25 | 446.66 |
1009.78 | 438.15 |
1008.81 | 447.14 |
1025.53 | 472.32 |
1010.16 | 441.68 |
1009.33 | 440.04 |
1009.82 | 444.82 |
1014.5 | 457.26 |
1009.13 | 428.83 |
1009.93 | 449.07 |
1009.38 | 435.21 |
1017.59 | 471.03 |
1012.47 | 465.56 |
1019.86 | 442.83 |
1017.26 | 460.3 |
1023.07 | 474.25 |
1033.3 | 477.97 |
1019.1 | 472.16 |
1014.22 | 456.08 |
1014.9 | 452.41 |
1011.31 | 463.71 |
1006.26 | 433.72 |
1016.0 | 456.4 |
1015.41 | 448.43 |
1020.63 | 481.6 |
1001.16 | 457.07 |
1019.8 | 451.0 |
1018.48 | 440.28 |
1002.26 | 437.47 |
1004.07 | 443.57 |
1004.91 | 426.6 |
1013.12 | 470.87 |
1012.9 | 478.37 |
1013.32 | 453.92 |
1020.79 | 470.22 |
1011.37 | 434.54 |
1013.11 | 442.89 |
1013.29 | 479.03 |
1020.5 | 476.06 |
1022.62 | 473.88 |
1010.84 | 451.75 |
1012.68 | 439.2 |
1015.58 | 439.7 |
1013.68 | 463.6 |
1004.21 | 447.47 |
1013.23 | 447.92 |
1020.44 | 471.08 |
1007.99 | 437.55 |
1012.36 | 448.27 |
998.47 | 431.69 |
1016.57 | 449.09 |
1015.93 | 448.79 |
1025.21 | 460.21 |
1013.54 | 479.28 |
1032.67 | 483.11 |
1011.46 | 450.75 |
1010.43 | 437.97 |
1008.53 | 459.76 |
1020.5 | 457.75 |
1015.48 | 469.33 |
1009.74 | 433.28 |
1010.23 | 444.64 |
1021.3 | 463.1 |
1022.01 | 460.91 |
1023.95 | 479.35 |
1017.65 | 449.23 |
1021.83 | 474.51 |
1007.81 | 435.02 |
1009.43 | 435.45 |
1013.3 | 452.38 |
1019.73 | 480.41 |
1019.54 | 478.96 |
1026.58 | 468.87 |
1007.89 | 434.01 |
1013.85 | 466.36 |
1011.44 | 435.28 |
1014.51 | 486.46 |
1015.51 | 468.19 |
1022.14 | 468.37 |
1019.17 | 474.19 |
1009.52 | 440.32 |
1015.35 | 485.32 |
1014.38 | 464.27 |
1013.66 | 479.25 |
1007.0 | 430.4 |
1016.65 | 447.49 |
1006.85 | 438.23 |
1025.46 | 492.09 |
1015.13 | 475.36 |
1016.68 | 452.56 |
1015.98 | 427.84 |
1010.8 | 433.95 |
1008.48 | 435.27 |
1014.04 | 454.62 |
1020.36 | 472.17 |
1015.96 | 452.42 |
1003.19 | 472.17 |
1018.01 | 481.83 |
1021.83 | 458.78 |
1022.47 | 447.5 |
1019.04 | 463.4 |
1022.67 | 473.57 |
1009.07 | 433.72 |
1011.2 | 431.85 |
1012.13 | 433.47 |
1007.45 | 432.84 |
1007.29 | 436.6 |
1020.12 | 490.23 |
1020.58 | 477.16 |
1010.44 | 441.06 |
1007.22 | 440.86 |
1033.08 | 477.94 |
1026.56 | 474.47 |
1012.18 | 470.67 |
1013.7 | 447.31 |
1018.14 | 466.8 |
1007.4 | 430.91 |
1007.2 | 434.75 |
1010.82 | 469.52 |
1008.88 | 438.9 |
1010.51 | 429.56 |
1013.53 | 432.92 |
1005.68 | 442.87 |
1022.57 | 466.59 |
1028.04 | 479.61 |
1019.12 | 471.08 |
1016.51 | 433.37 |
1018.8 | 443.92 |
1016.74 | 443.5 |
1017.37 | 439.89 |
1008.9 | 434.66 |
1021.95 | 487.57 |
1013.76 | 464.64 |
1017.26 | 470.92 |
1014.37 | 444.39 |
1002.54 | 442.48 |
1005.25 | 449.61 |
1009.43 | 435.02 |
1021.81 | 458.67 |
1016.63 | 461.74 |
1008.09 | 438.31 |
1011.68 | 462.38 |
1019.39 | 460.56 |
1013.37 | 439.22 |
1009.71 | 444.64 |
999.8 | 430.34 |
1008.37 | 430.46 |
1009.02 | 456.79 |
994.17 | 468.82 |
1008.79 | 448.51 |
1014.67 | 470.77 |
1025.79 | 465.74 |
1005.31 | 430.21 |
1008.62 | 449.23 |
1021.91 | 461.89 |
1010.97 | 445.72 |
1013.36 | 466.13 |
1008.38 | 448.71 |
998.43 | 469.25 |
1013.04 | 450.56 |
1008.94 | 464.46 |
1014.87 | 471.13 |
1010.92 | 461.52 |
1012.04 | 451.09 |
1005.43 | 431.51 |
1009.65 | 469.8 |
1012.05 | 442.28 |
1011.84 | 458.67 |
1016.13 | 462.4 |
1015.18 | 453.54 |
1019.81 | 444.38 |
1003.39 | 440.52 |
1007.68 | 433.62 |
1023.68 | 481.96 |
1008.89 | 452.75 |
1026.4 | 481.28 |
1020.28 | 439.03 |
1005.64 | 435.75 |
1009.72 | 436.03 |
1011.03 | 445.6 |
1020.27 | 462.65 |
1005.87 | 438.66 |
1008.54 | 447.32 |
1004.85 | 484.55 |
1024.9 | 476.8 |
1023.99 | 480.34 |
1010.53 | 440.63 |
1014.27 | 459.48 |
1025.98 | 490.78 |
1019.25 | 483.56 |
1012.26 | 429.38 |
1013.49 | 440.27 |
1011.34 | 445.34 |
1013.86 | 447.43 |
1004.37 | 439.91 |
1016.11 | 459.27 |
1017.88 | 478.89 |
1012.41 | 466.7 |
1021.39 | 463.5 |
1015.04 | 436.21 |
1011.95 | 443.94 |
1012.87 | 439.63 |
1013.21 | 460.95 |
1015.99 | 448.69 |
1006.24 | 444.63 |
1005.49 | 473.51 |
1008.56 | 462.56 |
1011.07 | 451.76 |
1025.68 | 491.81 |
1011.04 | 429.52 |
1007.59 | 437.9 |
1003.18 | 467.54 |
1015.35 | 449.97 |
1003.61 | 436.62 |
1023.37 | 477.68 |
1016.04 | 447.26 |
1011.8 | 439.76 |
1015.23 | 437.49 |
1018.29 | 455.14 |
1021.76 | 485.5 |
1016.81 | 444.1 |
1006.91 | 432.33 |
1008.87 | 471.23 |
1017.93 | 463.89 |
1009.2 | 445.54 |
1007.99 | 446.09 |
1017.82 | 445.12 |
1018.29 | 443.31 |
1015.14 | 484.16 |
1019.86 | 477.76 |
1008.36 | 430.28 |
1010.39 | 446.48 |
1028.11 | 481.03 |
1007.41 | 466.07 |
1013.2 | 447.47 |
1019.83 | 455.93 |
1021.15 | 479.62 |
1014.28 | 455.06 |
1019.87 | 475.06 |
1012.59 | 438.89 |
1003.38 | 432.7 |
1011.89 | 452.6 |
1010.46 | 451.75 |
1008.16 | 430.66 |
1019.04 | 491.9 |
1010.04 | 439.82 |
1015.91 | 460.73 |
1015.14 | 449.7 |
1013.88 | 439.42 |
1013.33 | 439.84 |
1025.58 | 485.86 |
1011.81 | 458.1 |
1012.89 | 479.92 |
1019.94 | 458.29 |
1017.29 | 489.45 |
1012.17 | 434.0 |
1010.69 | 431.24 |
1003.26 | 439.5 |
1019.48 | 467.46 |
1010.0 | 429.27 |
1016.95 | 452.1 |
999.83 | 472.41 |
1002.75 | 442.14 |
1003.56 | 441.0 |
1020.76 | 463.07 |
1017.99 | 445.71 |
1017.11 | 483.16 |
1010.75 | 440.45 |
1020.6 | 481.83 |
1015.53 | 467.6 |
1004.29 | 450.88 |
1001.22 | 425.5 |
1013.95 | 451.87 |
1010.51 | 428.94 |
1002.59 | 439.86 |
1011.21 | 433.44 |
1015.12 | 438.23 |
1007.68 | 436.95 |
1021.67 | 470.19 |
1011.6 | 484.66 |
1007.56 | 430.81 |
1010.05 | 433.37 |
1014.17 | 453.02 |
1012.6 | 453.5 |
995.88 | 463.09 |
1016.25 | 464.56 |
1017.22 | 452.12 |
1015.66 | 470.9 |
1021.08 | 450.89 |
1009.85 | 445.04 |
1011.49 | 444.72 |
1022.07 | 460.38 |
1013.05 | 446.8 |
1018.34 | 465.05 |
1016.55 | 484.13 |
1017.01 | 488.27 |
1013.85 | 447.09 |
1017.16 | 452.02 |
1014.16 | 455.55 |
1029.41 | 480.99 |
1012.96 | 467.68 |
Humidity | Power |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
RH | PE |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
Linear Regression Model
- Linear Regression is one of the most useful work-horses of statistical learning
- See Chapter 7 of Kevin Murphy's Machine Learning froma Probabilistic Perspective for a good mathematical and algorithmic introduction.
- You should have already seen Ameet's treatment of the topic from earlier notebook.
Let's open http://spark.apache.org/docs/latest/mllib-linear-methods.html#regression for some details.
// First let's hold out 20% of our data for testing and leave 80% for training
var Array(split20, split80) = dataset.randomSplit(Array(0.20, 0.80), 1800009193L)
split20: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [AT: double, V: double ... 3 more fields]
split80: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [AT: double, V: double ... 3 more fields]
// Let's cache these datasets for performance
val testSet = split20.cache()
val trainingSet = split80.cache()
testSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [AT: double, V: double ... 3 more fields]
trainingSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [AT: double, V: double ... 3 more fields]
testSet.count() // action to actually cache
res26: Long = 1856
trainingSet.count() // action to actually cache
res27: Long = 7712
Let's take a few elements of the three DataFrames.
dataset.take(3)
res28: Array[org.apache.spark.sql.Row] = Array([14.96,41.76,1024.07,73.17,463.26], [25.18,62.96,1020.04,59.08,444.37], [5.11,39.4,1012.16,92.14,488.56])
testSet.take(3)
res29: Array[org.apache.spark.sql.Row] = Array([2.34,39.42,1028.47,69.68,490.34], [2.8,39.64,1011.01,82.96,482.66], [3.82,35.47,1016.62,84.34,489.04])
trainingSet.take(3)
res30: Array[org.apache.spark.sql.Row] = Array([1.81,39.42,1026.92,76.97,490.55], [2.58,39.42,1028.68,69.03,488.69], [2.64,39.64,1011.02,85.24,481.29])
// ***** LINEAR REGRESSION MODEL ****
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.ml.Pipeline
// Let's initialize our linear regression learner
val lr = new LinearRegression()
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.ml.Pipeline
lr: org.apache.spark.ml.regression.LinearRegression = linReg_96951eb5ad16
// We use explain params to dump the parameters we can use
lr.explainParams()
res31: String =
aggregationDepth: suggested depth for treeAggregate (>= 2) (default: 2)
elasticNetParam: the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty (default: 0.0)
epsilon: The shape parameter to control the amount of robustness. Must be > 1.0. (default: 1.35)
featuresCol: features column name (default: features)
fitIntercept: whether to fit an intercept term (default: true)
labelCol: label column name (default: label)
loss: The loss function to be optimized. Supported options: squaredError, huber. (Default squaredError) (default: squaredError)
maxBlockSizeInMB: Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0. (default: 0.0)
maxIter: maximum number of iterations (>= 0) (default: 100)
predictionCol: prediction column name (default: prediction)
regParam: regularization parameter (>= 0) (default: 0.0)
solver: The solver algorithm for optimization. Supported options: auto, normal, l-bfgs. (Default auto) (default: auto)
standardization: whether to standardize the training features before fitting the model (default: true)
tol: the convergence tolerance for iterative algorithms (>= 0) (default: 1.0E-6)
weightCol: weight column name. If this is not set or empty, we treat all instance weights as 1.0 (undefined)
The cell below is based on the Spark ML pipeline API. More information can be found in the Spark ML Programming Guide at https://spark.apache.org/docs/latest/ml-guide.html
// Now we set the parameters for the method
lr.setPredictionCol("Predicted_PE")
.setLabelCol("PE")
.setMaxIter(100)
.setRegParam(0.1)
// We will use the new spark.ml pipeline API. If you have worked with scikit-learn this will be very familiar.
val lrPipeline = new Pipeline()
lrPipeline.setStages(Array(vectorizer, lr))
// Let's first train on the entire dataset to see what we get
val lrModel = lrPipeline.fit(trainingSet)
lrPipeline: org.apache.spark.ml.Pipeline = pipeline_1fbeea3a78d7
lrModel: org.apache.spark.ml.PipelineModel = pipeline_1fbeea3a78d7
Since Linear Regression is simply a line of best fit over the data that minimizes the square of the error, given multiple input dimensions we can express each predictor as a line function of the form:
\[ y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \ldots + b_i x_i + \ldots + b_k x_k \]
where \(b_0\) is the intercept and \(b_i\)'s are coefficients.
To express the coefficients of that line we can retrieve the Estimator stage from the fitted, linear-regression pipeline model named lrModel
and express the weights and the intercept for the function.
// The intercept is as follows:
val intercept = lrModel.stages(1).asInstanceOf[LinearRegressionModel].intercept
intercept: Double = 434.0183482458498
// The coefficents (i.e. weights) are as follows:
val weights = lrModel.stages(1).asInstanceOf[LinearRegressionModel].coefficients.toArray
weights: Array[Double] = Array(-1.9288465830311992, -0.2493165946592376, 0.08140785421512364, -0.14587975219954638)
The model has been fit and the intercept and coefficients displayed above.
Now, let us do some work to make a string of the model that is easy to understand for an applied data scientist or data analyst.
val featuresNoLabel = dataset.columns.filter(col => col != "PE")
featuresNoLabel: Array[String] = Array(AT, V, AP, RH)
val coefficentFeaturePairs = sc.parallelize(weights).zip(sc.parallelize(featuresNoLabel))
coefficentFeaturePairs: org.apache.spark.rdd.RDD[(Double, String)] = ZippedPartitionsRDD2[113] at zip at command-2971213210275912:1
coefficentFeaturePairs.collect() // this just pairs each coefficient with the name of its corresponding feature
res32: Array[(Double, String)] = Array((-1.9288465830311992,AT), (-0.2493165946592376,V), (0.08140785421512364,AP), (-0.14587975219954638,RH))
// Now let's sort the coefficients from the largest to the smallest
var equation = s"y = $intercept "
//var variables = Array
coefficentFeaturePairs.sortByKey().collect().foreach({
case (weight, feature) =>
{
val symbol = if (weight > 0) "+" else "-"
val absWeight = Math.abs(weight)
equation += (s" $symbol (${absWeight} * ${feature})")
}
}
)
equation: String = y = 434.0183482458498 - (1.9288465830311992 * AT) - (0.2493165946592376 * V) - (0.14587975219954638 * RH) + (0.08140785421512364 * AP)
// Finally here is our equation
println("Linear Regression Equation: " + equation)
Linear Regression Equation: y = 434.0183482458498 - (1.9288465830311992 * AT) - (0.2493165946592376 * V) - (0.14587975219954638 * RH) + (0.08140785421512364 * AP)
Based on examining the fitted Linear Regression Equation above:
- There is a strong negative correlation between Atmospheric Temperature (AT) and Power Output due to the coefficient being greater than -1.91.
- But our other dimenensions seem to have little to no correlation with Power Output.
Do you remember Step 2: Explore Your Data? When we visualized each predictor against Power Output using a Scatter Plot, only the temperature variable seemed to have a linear correlation with Power Output so our final equation seems logical.
Now let's see what our predictions look like given this model.
val predictionsAndLabels = lrModel.transform(testSet)
display(predictionsAndLabels.select("AT", "V", "AP", "RH", "PE", "Predicted_PE"))
AT | V | AP | RH | PE | Predicted_PE |
---|---|---|---|---|---|
2.34 | 39.42 | 1028.47 | 69.68 | 490.34 | 493.23742177145346 |
2.8 | 39.64 | 1011.01 | 82.96 | 482.66 | 488.93663844862806 |
3.82 | 35.47 | 1016.62 | 84.34 | 489.04 | 488.2642491377767 |
3.98 | 35.47 | 1017.22 | 86.53 | 489.64 | 487.6850017397038 |
4.23 | 38.44 | 1016.46 | 76.64 | 489.0 | 487.84320058785806 |
4.32 | 35.47 | 1017.8 | 88.51 | 488.03 | 486.78756854756284 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 | 485.8682911927762 |
4.65 | 35.19 | 1018.23 | 94.78 | 489.36 | 485.34119715268844 |
4.78 | 42.85 | 1013.39 | 93.36 | 481.47 | 482.9938172155268 |
4.87 | 42.85 | 1012.69 | 94.72 | 482.05 | 482.56483906211207 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 | 487.00024243767604 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 | 483.34675257798034 |
5.01 | 39.4 | 1003.69 | 91.9 | 475.34 | 482.83365300532864 |
5.06 | 40.64 | 1021.49 | 93.7 | 483.73 | 483.61453434986964 |
5.15 | 35.19 | 1018.63 | 93.94 | 488.42 | 484.5318759947065 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 | 487.26575386983336 |
5.17 | 35.57 | 1026.68 | 79.86 | 491.32 | 487.10787889447676 |
5.21 | 41.31 | 1003.51 | 91.23 | 486.46 | 482.0547750131382 |
5.23 | 40.78 | 1025.13 | 92.74 | 483.12 | 483.68809525895665 |
5.25 | 40.07 | 1019.48 | 67.7 | 495.23 | 487.01940772826526 |
5.28 | 45.87 | 1008.25 | 97.88 | 479.91 | 480.1986449575326 |
5.29 | 41.38 | 1020.62 | 83.83 | 492.12 | 484.355413676767 |
5.42 | 41.38 | 1020.77 | 86.02 | 491.38 | 483.7973981417882 |
5.47 | 40.62 | 1018.66 | 83.61 | 481.56 | 484.07023605498466 |
5.51 | 41.03 | 1022.28 | 84.5 | 491.84 | 484.0557258406543 |
5.53 | 35.79 | 1011.19 | 94.01 | 484.64 | 483.0334383183447 |
5.54 | 41.38 | 1020.47 | 82.91 | 490.07 | 483.99520022490054 |
5.54 | 45.87 | 1008.69 | 95.91 | 478.02 | 480.0203474136323 |
5.56 | 45.87 | 1006.99 | 96.48 | 476.61 | 479.76022567105224 |
5.65 | 40.72 | 1022.46 | 85.17 | 487.09 | 483.77988944315933 |
5.7 | 40.62 | 1016.07 | 84.94 | 482.82 | 483.22173492804495 |
5.8 | 45.87 | 1009.14 | 92.06 | 481.6 | 480.1171178824092 |
5.82 | 40.78 | 1024.82 | 96.01 | 470.02 | 482.047812550469 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 | 481.8132715930524 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 | 484.63339497556956 |
6.02 | 41.38 | 1021.2 | 88.71 | 490.57 | 482.2826790358652 |
6.03 | 41.17 | 1019.81 | 84.2 | 488.57 | 482.86050781997426 |
6.04 | 41.14 | 1027.8 | 86.4 | 480.39 | 483.17821215232357 |
6.04 | 41.14 | 1027.92 | 87.12 | 481.37 | 483.0829476732457 |
6.06 | 41.17 | 1019.67 | 84.7 | 489.62 | 482.71830544679347 |
6.13 | 40.64 | 1020.69 | 94.57 | 481.13 | 481.3586268382406 |
6.14 | 39.4 | 1011.21 | 90.87 | 485.94 | 481.4164995749667 |
6.15 | 40.77 | 1022.42 | 88.57 | 482.49 | 482.30375285026366 |
6.17 | 36.25 | 1028.68 | 90.59 | 483.77 | 483.6070229944064 |
6.22 | 39.33 | 1012.31 | 93.23 | 491.77 | 481.024916434396 |
6.25 | 39.64 | 1010.98 | 83.45 | 483.43 | 482.20819442296613 |
6.3 | 41.14 | 1027.45 | 86.11 | 481.49 | 482.69052441989805 |
6.34 | 40.64 | 1020.62 | 94.39 | 478.78 | 480.9741288614049 |
6.38 | 40.07 | 1018.53 | 60.2 | 492.96 | 485.85657176943226 |
6.45 | 40.02 | 1032.08 | 79.7 | 481.36 | 483.9924395950768 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 | 481.76650494734656 |
6.49 | 43.65 | 1020.41 | 72.78 | 484.94 | 483.0697247196729 |
6.52 | 39.85 | 1012.55 | 86.36 | 483.01 | 481.33834961288636 |
6.59 | 39.37 | 1020.34 | 77.92 | 488.17 | 483.18839461041057 |
6.65 | 39.33 | 1011.29 | 92.85 | 490.41 | 480.167910698229 |
6.71 | 40.72 | 1022.78 | 80.69 | 483.11 | 482.41490386834903 |
6.72 | 38.91 | 1016.89 | 90.47 | 485.89 | 480.9406822010133 |
6.76 | 39.22 | 1013.91 | 77.0 | 487.08 | 482.5086450499145 |
6.8 | 41.16 | 1023.17 | 95.4 | 477.8 | 480.01746628251476 |
6.84 | 41.06 | 1021.04 | 89.59 | 489.96 | 480.63940670946056 |
6.86 | 38.08 | 1019.62 | 77.37 | 486.92 | 483.01084464877744 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 | 482.5797273079528 |
6.91 | 39.37 | 1019.58 | 71.02 | 488.2 | 483.515864024814 |
6.93 | 41.14 | 1027.18 | 84.67 | 479.06 | 481.66343779511766 |
6.99 | 35.19 | 1019.32 | 68.95 | 480.05 | 484.68450470880424 |
6.99 | 39.37 | 1020.19 | 75.06 | 487.18 | 482.82186089035656 |
7.05 | 43.65 | 1018.41 | 72.36 | 480.47 | 481.888024420669 |
7.1 | 35.77 | 1015.39 | 92.1 | 480.36 | 480.6306788292835 |
7.11 | 41.74 | 1022.35 | 90.68 | 487.85 | 479.89671820679814 |
7.11 | 43.13 | 1018.96 | 87.82 | 486.11 | 479.69141160572326 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 | 481.1970697561752 |
7.3 | 43.65 | 1019.33 | 67.62 | 482.96 | 482.17217802621497 |
7.34 | 40.72 | 1023.01 | 80.08 | 483.92 | 481.3074409763506 |
7.4 | 41.04 | 1024.44 | 90.9 | 477.69 | 479.6499231838063 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 | 480.7071489556114 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 | 479.70246751967267 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 | 481.00544489343514 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 | 482.3890108435553 |
7.48 | 38.5 | 1014.01 | 77.35 | 488.43 | 481.25646633043834 |
7.52 | 41.66 | 1015.2 | 78.41 | 483.28 | 480.33371483717843 |
7.54 | 38.56 | 1016.49 | 69.1 | 486.76 | 482.5311759738767 |
7.55 | 41.04 | 1027.03 | 83.32 | 476.58 | 480.6772110604413 |
7.55 | 43.65 | 1019.09 | 61.71 | 481.61 | 482.5325778309449 |
7.57 | 41.14 | 1028.23 | 87.97 | 477.8 | 480.033051046645 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 | 479.33241321090156 |
7.65 | 41.01 | 1024.31 | 97.17 | 475.89 | 478.24994196854914 |
7.67 | 41.66 | 1016.25 | 77.0 | 485.03 | 480.335556547251 |
7.69 | 36.24 | 1013.08 | 88.37 | 482.46 | 479.7315598782726 |
7.7 | 40.35 | 1011.72 | 92.88 | 484.57 | 477.91894784424034 |
7.73 | 37.8 | 1020.71 | 63.93 | 483.94 | 483.4519151987013 |
7.73 | 39.04 | 1018.61 | 68.23 | 482.39 | 482.344523193014 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 | 478.4576001166274 |
7.81 | 39.64 | 1011.42 | 86.68 | 482.22 | 478.7638216096876 |
7.82 | 40.72 | 1022.17 | 88.13 | 481.52 | 479.1388800137486 |
7.84 | 43.52 | 1022.23 | 96.51 | 483.79 | 477.1846287648628 |
7.87 | 42.85 | 1012.18 | 94.21 | 480.54 | 476.81117998099046 |
7.89 | 40.46 | 1019.61 | 74.53 | 477.27 | 480.8442435906709 |
7.9 | 40.0 | 1018.74 | 79.55 | 474.5 | 480.13649956917493 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 | 479.22351270593606 |
7.92 | 39.54 | 1011.51 | 84.41 | 481.44 | 478.9150538893924 |
7.95 | 41.26 | 1008.48 | 97.92 | 480.6 | 476.2108626985999 |
7.97 | 38.5 | 1013.84 | 72.36 | 487.19 | 481.02543213301226 |
8.01 | 40.46 | 1019.42 | 76.15 | 475.42 | 480.36098930984303 |
8.01 | 40.62 | 1015.62 | 86.43 | 476.22 | 478.5121049560687 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 | 479.57731721621764 |
8.03 | 40.07 | 1016.06 | 47.46 | 488.02 | 484.33140555054166 |
8.04 | 40.64 | 1020.64 | 89.26 | 477.78 | 478.4450809561198 |
8.05 | 40.62 | 1018.16 | 73.67 | 477.2 | 480.5031526805201 |
8.07 | 43.41 | 1016.02 | 76.26 | 467.56 | 479.216941083543 |
8.07 | 43.69 | 1017.05 | 87.34 | 485.18 | 477.61463487250904 |
8.11 | 41.92 | 1029.61 | 91.92 | 483.52 | 478.33312476560263 |
8.16 | 39.72 | 1020.54 | 82.11 | 480.21 | 479.4778900760478 |
8.18 | 40.02 | 1031.45 | 73.66 | 478.81 | 481.48536176156256 |
8.23 | 43.79 | 1016.11 | 82.11 | 484.67 | 477.96751548079953 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 | 479.6817134321856 |
8.25 | 41.26 | 1020.59 | 91.84 | 475.17 | 477.50500673160894 |
8.26 | 40.96 | 1025.23 | 89.22 | 485.73 | 478.3204506384974 |
8.27 | 39.64 | 1011.0 | 84.64 | 479.91 | 478.13995557721 |
8.28 | 40.56 | 1023.29 | 79.44 | 486.4 | 479.6503730840347 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 | 477.13243295540536 |
8.3 | 36.3 | 1015.97 | 60.62 | 480.58 | 482.82343628916317 |
8.3 | 43.13 | 1020.02 | 83.11 | 484.07 | 478.169470130244 |
8.33 | 38.08 | 1018.94 | 73.78 | 481.89 | 480.64379114125165 |
8.34 | 40.72 | 1023.62 | 83.75 | 483.14 | 478.8928744938183 |
8.35 | 43.52 | 1022.78 | 97.34 | 479.31 | 476.1246111330096 |
8.35 | 43.79 | 1016.2 | 85.23 | 484.21 | 477.28823577085257 |
8.37 | 40.92 | 1021.82 | 86.03 | 476.02 | 478.3060058047933 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 | 478.2957350932858 |
8.42 | 42.28 | 1008.4 | 87.78 | 481.91 | 476.52270993698903 |
8.46 | 40.8 | 1023.57 | 81.27 | 485.06 | 478.99917896902593 |
8.48 | 38.5 | 1013.5 | 66.51 | 485.29 | 480.8674382556005 |
8.51 | 38.5 | 1013.33 | 64.28 | 482.39 | 481.121045370298 |
8.61 | 43.8 | 1021.9 | 74.35 | 478.25 | 478.83543896627515 |
8.63 | 39.96 | 1024.39 | 99.47 | 475.79 | 476.292443939849 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 | 479.017884430858 |
8.67 | 40.77 | 1011.81 | 89.4 | 479.23 | 476.458241933477 |
8.68 | 41.82 | 1032.83 | 73.62 | 478.61 | 480.1903466285652 |
8.72 | 36.25 | 1029.31 | 85.73 | 479.94 | 479.44872675152214 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 | 479.3384367489257 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 | 477.4418937681193 |
8.74 | 40.03 | 1016.81 | 93.37 | 481.07 | 476.335613607556 |
8.75 | 36.3 | 1015.61 | 57.53 | 480.4 | 482.3769169335783 |
8.75 | 40.22 | 1008.96 | 90.53 | 482.8 | 476.0442018293985 |
8.76 | 41.82 | 1033.29 | 76.5 | 480.08 | 479.653352828527 |
8.77 | 40.46 | 1019.68 | 77.84 | 475.0 | 478.669695167618 |
8.8 | 42.32 | 1017.91 | 86.8 | 483.88 | 476.69692642239215 |
8.81 | 43.56 | 1014.99 | 81.5 | 482.52 | 476.90393713153384 |
8.83 | 36.25 | 1028.86 | 85.6 | 478.45 | 479.2188844607779 |
8.85 | 40.22 | 1008.61 | 90.6 | 482.3 | 475.8126128394661 |
8.87 | 41.16 | 1023.17 | 94.13 | 472.45 | 476.2100211409336 |
8.88 | 36.66 | 1026.61 | 76.16 | 480.2 | 480.2141595165957 |
8.91 | 43.52 | 1022.78 | 98.0 | 478.38 | 474.9481764100604 |
8.93 | 40.46 | 1019.03 | 71.0 | 472.77 | 479.3059821141381 |
8.94 | 41.74 | 1022.55 | 90.74 | 483.53 | 476.37445774556215 |
8.96 | 40.02 | 1031.21 | 82.32 | 475.47 | 478.69800488773853 |
8.96 | 40.05 | 1015.91 | 89.4 | 467.24 | 476.41215657483457 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 | 480.7338755379791 |
9.01 | 38.56 | 1016.67 | 63.61 | 482.37 | 480.5113047501551 |
9.03 | 40.71 | 1025.98 | 81.94 | 484.97 | 478.0206284049022 |
9.04 | 44.68 | 1023.14 | 90.73 | 479.53 | 475.49807173046975 |
9.06 | 43.79 | 1016.05 | 81.32 | 482.8 | 476.4769333498684 |
9.08 | 36.18 | 1020.24 | 68.37 | 477.26 | 480.56589740371004 |
9.08 | 36.71 | 1025.07 | 81.32 | 479.02 | 478.9378167534155 |
9.08 | 40.02 | 1031.2 | 75.34 | 476.69 | 479.48396988958547 |
9.11 | 40.64 | 1020.68 | 86.91 | 476.62 | 476.72728884411396 |
9.12 | 41.49 | 1020.58 | 96.23 | 475.69 | 475.128341196902 |
9.12 | 41.54 | 1018.61 | 79.26 | 482.95 | 477.4310812891916 |
9.13 | 39.04 | 1022.36 | 74.6 | 483.24 | 479.02016340856596 |
9.13 | 39.16 | 1014.14 | 86.17 | 484.86 | 476.63324412260977 |
9.14 | 37.36 | 1015.22 | 78.06 | 491.97 | 478.33373080005674 |
9.15 | 39.61 | 1018.11 | 75.29 | 474.88 | 478.3928356085176 |
9.15 | 39.61 | 1018.69 | 84.47 | 475.64 | 477.10087603877054 |
9.16 | 41.03 | 1021.3 | 76.08 | 484.96 | 478.1639636289798 |
9.19 | 40.62 | 1017.78 | 68.91 | 475.42 | 478.9677202117326 |
9.2 | 40.03 | 1017.05 | 92.46 | 480.38 | 475.6006326388749 |
9.26 | 44.68 | 1023.22 | 91.44 | 478.82 | 474.9766634864784 |
9.29 | 39.04 | 1022.72 | 74.29 | 482.55 | 478.78607750598024 |
9.3 | 38.18 | 1017.19 | 71.51 | 480.14 | 478.936561588862 |
9.31 | 43.56 | 1015.09 | 79.96 | 482.55 | 476.17230944382703 |
9.32 | 37.73 | 1022.14 | 79.49 | 477.91 | 478.2490255806105 |
9.35 | 44.03 | 1011.02 | 88.11 | 476.25 | 474.4577268339341 |
9.37 | 40.11 | 1024.94 | 75.03 | 471.13 | 478.4377754427823 |
9.39 | 39.66 | 1019.22 | 75.33 | 482.16 | 478.00197412694797 |
9.41 | 34.69 | 1027.02 | 78.91 | 480.87 | 479.3152324207473 |
9.41 | 39.61 | 1016.14 | 78.38 | 477.34 | 477.2801935898291 |
9.45 | 39.04 | 1023.08 | 75.81 | 483.66 | 478.2850316568694 |
9.46 | 42.28 | 1008.67 | 78.16 | 481.95 | 475.9420528274343 |
9.47 | 41.4 | 1026.49 | 87.9 | 479.68 | 476.171982140594 |
9.48 | 44.68 | 1023.29 | 92.9 | 478.66 | 474.3450313497953 |
9.5 | 37.36 | 1015.13 | 63.41 | 478.8 | 479.7691576930095 |
9.51 | 43.79 | 1016.02 | 79.81 | 481.12 | 475.8267885776992 |
9.53 | 38.18 | 1018.43 | 75.33 | 476.54 | 478.0366119605893 |
9.53 | 38.38 | 1020.49 | 80.08 | 478.03 | 477.46151999839276 |
9.55 | 38.08 | 1019.34 | 68.38 | 479.23 | 479.1109121135172 |
9.55 | 39.66 | 1018.8 | 74.88 | 480.74 | 477.7248132633824 |
9.59 | 34.69 | 1027.65 | 75.32 | 478.88 | 479.5430352943536 |
9.59 | 38.56 | 1017.52 | 61.89 | 481.05 | 479.7126835818631 |
9.61 | 44.03 | 1008.3 | 91.36 | 473.54 | 473.2606881642323 |
9.63 | 41.14 | 1027.99 | 87.89 | 469.73 | 476.0517595807651 |
9.68 | 38.16 | 1015.54 | 79.67 | 475.51 | 476.88388448180007 |
9.68 | 41.06 | 1022.75 | 87.44 | 476.67 | 475.61433131158884 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 | 477.71300668632784 |
9.72 | 41.44 | 1015.17 | 84.41 | 481.85 | 475.26738125651104 |
9.75 | 36.66 | 1026.21 | 70.12 | 479.45 | 479.3846135509578 |
9.76 | 39.16 | 1014.19 | 85.4 | 482.38 | 475.5344685772045 |
9.78 | 52.75 | 1022.97 | 78.31 | 469.58 | 473.85672752722843 |
9.82 | 39.64 | 1010.79 | 69.22 | 477.93 | 477.38261350304344 |
9.83 | 41.17 | 1019.34 | 72.29 | 478.21 | 477.2300569616712 |
9.84 | 36.66 | 1026.7 | 70.02 | 477.62 | 479.26549518227034 |
9.86 | 37.83 | 1005.05 | 100.15 | 472.46 | 472.77738085732864 |
9.86 | 41.01 | 1018.49 | 98.71 | 467.37 | 473.28874249013086 |
9.87 | 40.81 | 1017.17 | 84.25 | 473.2 | 475.32128019247386 |
9.88 | 39.66 | 1017.81 | 76.05 | 480.05 | 476.8370208052357 |
9.92 | 40.64 | 1020.39 | 95.41 | 469.65 | 473.90133694044016 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 | 477.4312500724955 |
9.95 | 43.56 | 1014.85 | 82.62 | 477.88 | 474.53026960482464 |
9.96 | 41.26 | 1022.9 | 83.83 | 475.21 | 475.5632280329809 |
9.96 | 41.55 | 1002.59 | 65.86 | 475.91 | 476.45899184844643 |
9.96 | 42.03 | 1017.78 | 82.39 | 477.85 | 475.1645128846792 |
9.97 | 41.62 | 1013.99 | 96.02 | 464.86 | 472.950567432704 |
9.98 | 41.01 | 1017.83 | 98.07 | 466.05 | 473.0969147577929 |
9.98 | 41.62 | 1013.56 | 95.77 | 463.16 | 472.9327435276111 |
9.99 | 41.82 | 1033.14 | 68.36 | 475.75 | 478.45612153617066 |
9.99 | 42.07 | 1018.78 | 85.68 | 471.6 | 474.6981382928805 |
10.01 | 40.78 | 1023.71 | 88.11 | 470.82 | 475.02803269176593 |
10.02 | 41.44 | 1017.37 | 77.65 | 479.63 | 475.85397168574394 |
10.06 | 34.69 | 1027.9 | 71.73 | 477.68 | 479.1805376742791 |
10.08 | 43.14 | 1010.67 | 85.9 | 478.73 | 473.56546210095377 |
10.09 | 37.14 | 1012.99 | 72.59 | 473.66 | 477.1725989266339 |
10.1 | 41.4 | 1024.29 | 85.94 | 474.28 | 475.0636358283222 |
10.1 | 41.58 | 1021.26 | 94.06 | 468.19 | 473.5875494551514 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 | 472.67682233352457 |
10.12 | 41.55 | 1005.78 | 62.34 | 475.46 | 476.92356417785004 |
10.12 | 43.72 | 1011.33 | 97.62 | 473.05 | 471.6877231007335 |
10.13 | 38.16 | 1013.57 | 79.04 | 474.92 | 475.94743429051795 |
10.15 | 41.46 | 1019.78 | 83.56 | 481.31 | 474.9322788912158 |
10.15 | 43.41 | 1018.4 | 82.07 | 473.43 | 474.55112952359076 |
10.16 | 41.55 | 1005.69 | 58.04 | 477.27 | 477.4663665421075 |
10.18 | 43.5 | 1022.84 | 88.7 | 476.91 | 473.86509374821264 |
10.2 | 41.01 | 1021.39 | 96.64 | 468.27 | 473.1709885161772 |
10.2 | 41.46 | 1019.12 | 83.26 | 480.11 | 474.8258713039421 |
10.22 | 37.83 | 1005.94 | 93.53 | 471.79 | 473.12117303724983 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 | 474.6297415713401 |
10.24 | 39.28 | 1010.13 | 81.61 | 477.53 | 474.8010725987133 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 | 471.6665106288925 |
10.25 | 41.46 | 1018.67 | 84.41 | 479.28 | 474.52503372536427 |
10.27 | 52.75 | 1026.19 | 76.78 | 470.76 | 473.3969220129811 |
10.28 | 39.64 | 1010.45 | 74.15 | 477.65 | 475.74847822607217 |
10.31 | 37.5 | 1008.55 | 99.31 | 474.16 | 472.3991408528027 |
10.31 | 38.18 | 1018.02 | 70.1 | 476.31 | 477.2616855096004 |
10.32 | 38.91 | 1012.11 | 81.49 | 479.17 | 474.91770513370466 |
10.33 | 40.62 | 1017.41 | 64.22 | 473.16 | 477.42289023883336 |
10.34 | 41.46 | 1017.75 | 89.73 | 478.03 | 473.500462025312 |
10.37 | 37.83 | 1006.5 | 90.99 | 470.66 | 473.24796901874254 |
10.39 | 40.22 | 1006.59 | 87.77 | 479.14 | 473.0905849348082 |
10.4 | 42.44 | 1014.24 | 93.48 | 480.04 | 472.3076103285207 |
10.42 | 41.26 | 1008.48 | 96.76 | 472.54 | 471.6158321510643 |
10.42 | 41.46 | 1021.04 | 89.16 | 479.24 | 473.69713759779097 |
10.44 | 37.83 | 1006.31 | 97.2 | 474.42 | 472.19156900447024 |
10.45 | 39.61 | 1020.23 | 73.39 | 477.41 | 476.3350912306922 |
10.46 | 37.5 | 1013.12 | 76.74 | 472.16 | 475.7743537662549 |
10.47 | 43.14 | 1010.35 | 86.86 | 476.55 | 472.6471168581112 |
10.51 | 37.5 | 1010.7 | 96.29 | 474.24 | 472.6289552744016 |
10.58 | 42.34 | 1022.32 | 94.01 | 474.91 | 472.56580879643343 |
10.59 | 38.38 | 1021.58 | 68.23 | 474.94 | 477.2343522450388 |
10.6 | 41.17 | 1018.38 | 87.92 | 478.47 | 473.38659302581175 |
10.6 | 41.46 | 1021.23 | 89.02 | 481.3 | 473.3858358704542 |
10.63 | 44.2 | 1018.63 | 90.26 | 477.19 | 472.2522916899102 |
10.66 | 41.93 | 1016.12 | 94.16 | 479.61 | 471.9871102146375 |
10.68 | 37.92 | 1009.59 | 65.05 | 474.03 | 476.6632591260645 |
10.7 | 44.77 | 1017.8 | 82.37 | 484.94 | 473.0585846959981 |
10.71 | 41.93 | 1018.23 | 90.88 | 478.76 | 472.54092404509436 |
10.73 | 40.35 | 1012.27 | 89.65 | 477.23 | 472.5905086170786 |
10.74 | 40.05 | 1015.45 | 87.33 | 477.93 | 473.2433331311531 |
10.76 | 44.58 | 1016.41 | 79.24 | 483.54 | 473.33367076102707 |
10.77 | 44.78 | 1012.87 | 84.16 | 470.66 | 472.2586067915216 |
10.82 | 39.96 | 1025.53 | 95.89 | 468.57 | 472.6833243896903 |
10.82 | 42.02 | 996.03 | 99.34 | 475.46 | 469.2649153602577 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 | 476.7704524928655 |
10.89 | 44.2 | 1018.3 | 86.32 | 479.16 | 472.29869321009727 |
10.91 | 37.92 | 1008.66 | 66.53 | 473.72 | 475.92801307429187 |
10.94 | 25.36 | 1009.47 | 100.1 | 470.9 | 474.17032118629646 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 | 473.8182300033423 |
10.94 | 40.81 | 1026.03 | 80.79 | 476.32 | 474.48343187958693 |
10.94 | 43.67 | 1012.36 | 73.3 | 477.34 | 473.7501803957154 |
10.98 | 37.5 | 1011.12 | 97.51 | 472.34 | 471.57861538146386 |
10.99 | 44.63 | 1020.67 | 90.09 | 473.29 | 471.6415723647882 |
11.01 | 43.69 | 1016.7 | 81.48 | 477.3 | 472.77018851731134 |
11.02 | 38.28 | 1013.51 | 95.66 | 472.11 | 471.7714368874517 |
11.02 | 40.0 | 1015.75 | 74.83 | 468.09 | 474.56364117639623 |
11.02 | 41.17 | 1018.18 | 86.86 | 477.62 | 472.71482842742716 |
11.04 | 39.96 | 1025.75 | 94.44 | 468.84 | 472.4884135100401 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 | 474.25793943550735 |
11.06 | 37.92 | 1008.76 | 67.32 | 473.16 | 475.5315818680211 |
11.06 | 41.16 | 1018.52 | 89.14 | 467.46 | 472.33524056547066 |
11.06 | 41.5 | 1013.09 | 89.8 | 476.24 | 471.7121476384467 |
11.1 | 40.92 | 1021.98 | 94.14 | 462.07 | 471.87019509945424 |
11.16 | 40.96 | 1023.49 | 83.7 | 478.3 | 473.3904021135141 |
11.17 | 39.72 | 1002.4 | 81.4 | 474.64 | 472.29889800972325 |
11.17 | 40.27 | 1009.54 | 74.56 | 476.18 | 473.74084346680155 |
11.18 | 37.5 | 1013.32 | 74.32 | 472.02 | 474.75489479763837 |
11.18 | 39.61 | 1018.56 | 68.0 | 468.75 | 475.57737397289577 |
11.2 | 41.38 | 1021.65 | 61.89 | 476.87 | 476.24038222415226 |
11.2 | 42.02 | 999.99 | 96.69 | 472.27 | 469.24091010472654 |
11.22 | 40.22 | 1011.01 | 81.67 | 476.7 | 472.7393314749404 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 | 472.63331852543587 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 | 471.3877571195438 |
11.31 | 39.61 | 1018.74 | 68.9 | 471.92 | 475.2099855538808 |
11.38 | 52.75 | 1026.19 | 72.71 | 469.9 | 471.8496328972687 |
11.41 | 39.61 | 1018.69 | 69.44 | 467.19 | 474.9342554366792 |
11.48 | 41.14 | 1027.67 | 90.5 | 464.07 | 472.07659673556776 |
11.49 | 35.76 | 1019.08 | 60.04 | 472.45 | 477.14283533329444 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 | 470.4781347032422 |
11.51 | 41.06 | 1021.3 | 78.11 | 476.91 | 473.32755876405156 |
11.53 | 41.14 | 1025.63 | 88.54 | 469.04 | 472.1000066981285 |
11.53 | 41.39 | 1018.39 | 85.52 | 474.49 | 471.88884153658876 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 | 471.6865589330199 |
11.54 | 40.77 | 1022.13 | 83.5 | 465.61 | 472.6232718336548 |
11.56 | 39.28 | 1011.27 | 82.05 | 477.71 | 472.2836129719496 |
11.56 | 41.62 | 1012.5 | 91.42 | 460.6 | 470.4334505230218 |
11.57 | 39.72 | 1002.26 | 78.69 | 474.72 | 471.9112964053814 |
11.57 | 41.54 | 1020.13 | 69.14 | 476.89 | 474.30545019143153 |
11.62 | 39.72 | 1018.4 | 68.06 | 471.56 | 474.67947860914313 |
11.67 | 37.73 | 1021.2 | 68.88 | 473.54 | 475.18749689836216 |
11.67 | 44.6 | 1018.09 | 92.53 | 467.96 | 469.77145732692486 |
11.68 | 40.55 | 1022.21 | 85.76 | 475.13 | 472.0849073512217 |
11.7 | 25.36 | 1008.65 | 92.11 | 470.88 | 473.80322256281073 |
11.71 | 41.44 | 1015.37 | 79.95 | 474.22 | 472.095881821932 |
11.72 | 40.35 | 1012.08 | 83.98 | 476.41 | 471.4926212025483 |
11.76 | 41.58 | 1020.91 | 88.35 | 465.45 | 471.19014476340374 |
11.77 | 39.39 | 1012.9 | 85.8 | 478.51 | 471.43677609572285 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 | 469.74360467126985 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 | 471.726841712236 |
11.8 | 41.54 | 1020.0 | 65.85 | 476.12 | 474.3311768410229 |
11.8 | 42.34 | 1020.25 | 93.54 | 466.52 | 470.11266519044386 |
11.8 | 43.99 | 1020.86 | 98.44 | 466.75 | 469.0361408145495 |
11.82 | 41.54 | 1019.96 | 67.65 | 476.97 | 474.02676004123447 |
11.82 | 41.67 | 1012.94 | 84.51 | 476.73 | 470.9633331252543 |
11.84 | 40.05 | 1014.54 | 86.78 | 473.82 | 471.1277546061928 |
11.86 | 39.85 | 1013.0 | 66.92 | 478.29 | 473.9108447766557 |
11.87 | 40.55 | 1019.06 | 94.11 | 473.79 | 470.24389582880195 |
11.9 | 39.16 | 1016.53 | 84.59 | 477.75 | 471.7153938676628 |
11.92 | 43.8 | 1022.96 | 60.49 | 470.33 | 474.5591424673956 |
11.93 | 38.78 | 1013.15 | 96.08 | 474.57 | 469.80095187612244 |
11.95 | 41.58 | 1015.83 | 89.35 | 464.57 | 470.2642322610154 |
11.96 | 43.41 | 1017.42 | 79.44 | 469.34 | 471.3638012594583 |
12.02 | 41.92 | 1030.1 | 84.45 | 465.82 | 471.92094622344666 |
12.02 | 43.69 | 1016.12 | 74.07 | 477.74 | 471.8558058768037 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 | 470.3010756285351 |
12.05 | 48.04 | 1009.14 | 100.13 | 464.14 | 466.34356012780336 |
12.05 | 49.83 | 1008.54 | 95.11 | 454.18 | 466.58075506687595 |
12.06 | 52.72 | 1024.53 | 80.05 | 467.21 | 469.33960229950543 |
12.07 | 38.25 | 1012.67 | 81.66 | 470.36 | 471.7275614063617 |
12.08 | 40.75 | 1015.84 | 86.9 | 476.84 | 470.57863445021957 |
12.09 | 40.6 | 1013.85 | 85.72 | 474.35 | 470.6068799512955 |
12.1 | 40.27 | 1005.53 | 68.37 | 477.61 | 472.52356631529506 |
12.1 | 41.17 | 1013.72 | 75.61 | 478.1 | 471.9097423001989 |
12.12 | 40.0 | 1018.72 | 84.42 | 462.1 | 471.2847044384872 |
12.14 | 40.83 | 1010.56 | 78.31 | 474.82 | 471.2662319288032 |
12.17 | 41.58 | 1013.89 | 88.98 | 463.03 | 469.73593028388507 |
12.19 | 40.05 | 1014.65 | 85.1 | 472.68 | 470.7066911497908 |
12.19 | 40.23 | 1017.45 | 82.07 | 474.91 | 471.3317718037191 |
12.19 | 44.63 | 1018.96 | 80.91 | 468.91 | 470.5269251596348 |
12.23 | 41.58 | 1018.76 | 87.66 | 464.45 | 470.20921701183426 |
12.24 | 49.83 | 1007.9 | 94.28 | 466.83 | 466.283253383728 |
12.25 | 44.58 | 1016.47 | 81.15 | 475.24 | 470.1859434968623 |
12.27 | 41.17 | 1019.39 | 52.18 | 473.84 | 475.4613835085187 |
12.27 | 41.17 | 1019.41 | 58.1 | 475.13 | 474.59940353258173 |
12.3 | 39.85 | 1012.59 | 73.38 | 476.42 | 472.0863918606848 |
12.3 | 40.69 | 1015.74 | 82.58 | 474.46 | 470.7913069417128 |
12.31 | 44.03 | 1007.78 | 94.42 | 468.13 | 467.5640782641256 |
12.32 | 41.26 | 1022.42 | 79.74 | 470.27 | 471.5687225135002 |
12.32 | 43.69 | 1016.26 | 83.18 | 471.6 | 469.9595844589466 |
12.33 | 38.91 | 1017.24 | 79.84 | 472.49 | 471.6990473850648 |
12.33 | 39.85 | 1012.53 | 66.04 | 479.32 | 473.0943993730856 |
12.35 | 44.2 | 1017.81 | 82.49 | 471.65 | 470.0014068012306 |
12.36 | 40.56 | 1022.11 | 72.99 | 474.71 | 472.62554215898064 |
12.36 | 45.09 | 1013.05 | 88.4 | 467.2 | 468.5105758445902 |
12.36 | 48.04 | 1012.8 | 93.59 | 468.37 | 466.9976240128761 |
12.37 | 46.97 | 1013.95 | 90.76 | 464.4 | 467.75156303440326 |
12.38 | 45.09 | 1013.26 | 90.55 | 467.47 | 468.1754530950858 |
12.39 | 49.83 | 1007.6 | 92.43 | 468.43 | 466.2393815815779 |
12.42 | 41.58 | 1019.49 | 86.31 | 466.05 | 470.0991015601047 |
12.42 | 43.14 | 1015.88 | 79.48 | 471.1 | 470.4126440262426 |
12.43 | 43.22 | 1008.93 | 77.42 | 468.01 | 470.10813793557554 |
12.45 | 40.56 | 1017.84 | 66.52 | 477.41 | 473.0481764257403 |
12.47 | 38.25 | 1012.74 | 82.89 | 469.56 | 470.78228922773883 |
12.47 | 45.01 | 1017.8 | 95.25 | 467.18 | 467.7057590529845 |
12.49 | 41.62 | 1011.37 | 82.68 | 461.35 | 469.82262135976373 |
12.5 | 41.38 | 1021.87 | 57.59 | 474.4 | 474.37807432859705 |
12.5 | 43.67 | 1013.99 | 90.91 | 473.26 | 468.3049320923233 |
12.54 | 43.69 | 1017.26 | 83.59 | 470.04 | 469.55683536649303 |
12.55 | 39.58 | 1010.68 | 76.9 | 472.31 | 471.00250996619167 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 | 469.9361134525989 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 | 469.7928661275298 |
12.57 | 41.79 | 1014.99 | 87.8 | 461.88 | 469.1737219130262 |
12.58 | 39.72 | 1017.85 | 57.74 | 471.24 | 474.28849061231415 |
12.58 | 43.67 | 1014.36 | 91.72 | 473.02 | 468.0625826724588 |
12.59 | 39.18 | 1024.18 | 67.57 | 471.32 | 473.48514686066005 |
12.6 | 41.74 | 1022.13 | 67.89 | 474.23 | 472.6140402906572 |
12.61 | 43.22 | 1013.41 | 78.94 | 466.85 | 469.90391551417036 |
12.64 | 41.26 | 1020.79 | 83.66 | 465.78 | 470.2469481759373 |
12.65 | 44.34 | 1014.74 | 92.81 | 473.46 | 467.6324473479292 |
12.68 | 41.4 | 1021.59 | 78.57 | 466.64 | 470.94254421143154 |
12.71 | 43.8 | 1023.15 | 71.16 | 466.2 | 471.4942842031327 |
12.72 | 39.13 | 1008.36 | 92.59 | 467.28 | 468.30907898088304 |
12.72 | 40.64 | 1021.11 | 93.24 | 475.73 | 468.8757392252607 |
12.73 | 37.73 | 1021.89 | 61.76 | 470.89 | 474.2377547754183 |
12.74 | 49.83 | 1007.44 | 91.47 | 466.09 | 465.69130458295416 |
12.75 | 39.85 | 1012.51 | 62.37 | 475.61 | 472.81803434170047 |
12.79 | 44.68 | 1022.51 | 99.55 | 465.75 | 466.9269506815472 |
12.83 | 41.67 | 1012.84 | 84.29 | 474.81 | 469.0391508364551 |
12.83 | 44.88 | 1017.86 | 87.88 | 474.26 | 468.12380368536253 |
12.87 | 39.3 | 1019.26 | 71.55 | 471.48 | 471.9340237695596 |
12.87 | 45.51 | 1015.3 | 86.67 | 475.77 | 467.8576907607767 |
12.88 | 44.0 | 1022.71 | 88.58 | 470.31 | 468.5394722259148 |
12.88 | 44.71 | 1018.73 | 51.95 | 469.12 | 473.3820295069999 |
12.89 | 36.71 | 1013.36 | 87.29 | 475.13 | 469.7647231785763 |
12.9 | 44.63 | 1020.72 | 89.51 | 467.41 | 468.04615604018517 |
12.92 | 39.35 | 1014.56 | 88.29 | 469.83 | 469.00047164404356 |
12.95 | 41.38 | 1021.97 | 53.83 | 474.46 | 474.06674201992485 |
12.99 | 40.55 | 1007.52 | 94.15 | 472.18 | 467.1383058280765 |
13.02 | 45.51 | 1015.24 | 80.05 | 468.46 | 468.52920326163013 |
13.03 | 42.86 | 1014.39 | 86.25 | 475.03 | 468.1969526319267 |
13.04 | 40.69 | 1015.96 | 82.37 | 473.49 | 469.41250494615895 |
13.06 | 44.2 | 1018.95 | 85.68 | 469.02 | 468.25937427156714 |
13.07 | 38.47 | 1015.16 | 57.26 | 468.9 | 473.50603668317 |
13.07 | 40.83 | 1010.0 | 84.84 | 471.19 | 468.4742214263607 |
13.08 | 39.28 | 1012.41 | 77.98 | 474.13 | 470.0383017109995 |
13.08 | 44.9 | 1020.47 | 86.46 | 472.01 | 468.0562294553364 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 | 472.7669442736334 |
13.09 | 54.3 | 1017.61 | 82.38 | 471.0 | 466.0557279256281 |
13.1 | 40.55 | 1007.59 | 95.46 | 472.37 | 466.7407287783567 |
13.1 | 49.83 | 1007.29 | 92.79 | 466.08 | 464.7921473620272 |
13.11 | 41.44 | 1015.55 | 74.45 | 471.61 | 470.21248865654456 |
13.12 | 39.18 | 1023.11 | 64.33 | 471.44 | 472.8484021647698 |
13.15 | 40.78 | 1024.13 | 79.59 | 462.3 | 470.2485412085585 |
13.15 | 41.14 | 1026.72 | 80.31 | 461.49 | 470.26460015531467 |
13.18 | 43.72 | 1010.59 | 99.09 | 464.7 | 465.5107675088055 |
13.19 | 44.88 | 1017.61 | 94.95 | 467.68 | 466.3776971038667 |
13.2 | 40.83 | 1007.75 | 94.98 | 472.41 | 466.5610830112792 |
13.2 | 41.78 | 1010.49 | 64.96 | 468.58 | 470.9265999279328 |
13.25 | 43.7 | 1013.61 | 76.05 | 472.22 | 468.9876557902937 |
13.25 | 44.92 | 1024.11 | 89.34 | 469.18 | 467.59953010733625 |
13.27 | 40.27 | 1006.1 | 40.04 | 473.88 | 474.4459916698643 |
13.34 | 41.79 | 1011.48 | 86.66 | 461.12 | 467.5690713933046 |
13.41 | 40.89 | 1010.85 | 89.61 | 472.4 | 467.17680485054154 |
13.42 | 40.92 | 1022.84 | 75.89 | 458.49 | 470.1275872590886 |
13.43 | 43.69 | 1016.21 | 73.01 | 475.36 | 469.2980914389406 |
13.44 | 40.69 | 1014.54 | 77.97 | 473.0 | 469.167238069639 |
13.44 | 41.14 | 1026.41 | 77.26 | 461.44 | 470.1249314556375 |
13.48 | 41.92 | 1030.2 | 65.96 | 463.9 | 471.8102876158123 |
13.49 | 43.41 | 1015.75 | 57.86 | 461.06 | 471.4247999233475 |
13.51 | 39.31 | 1012.18 | 75.19 | 466.46 | 469.5896988846236 |
13.53 | 38.73 | 1004.86 | 85.38 | 472.46 | 467.61330541009727 |
13.53 | 42.86 | 1014.0 | 90.63 | 471.73 | 466.56182696263323 |
13.54 | 40.69 | 1015.85 | 77.55 | 471.05 | 469.1422671962815 |
13.55 | 40.71 | 1019.13 | 75.44 | 467.21 | 469.69281643752464 |
13.56 | 40.03 | 1017.73 | 83.76 | 472.59 | 468.51537272186124 |
13.56 | 49.83 | 1007.01 | 89.86 | 466.33 | 464.30951140859736 |
13.57 | 42.99 | 1007.51 | 88.95 | 472.04 | 466.16900295184536 |
13.58 | 39.28 | 1016.17 | 79.17 | 472.17 | 469.2063750462153 |
13.61 | 38.47 | 1015.1 | 54.98 | 466.51 | 472.79218089209525 |
13.65 | 41.58 | 1020.56 | 72.17 | 460.8 | 469.8764663630881 |
13.67 | 41.48 | 1017.51 | 63.54 | 463.97 | 470.8734693970194 |
13.67 | 42.32 | 1015.41 | 79.04 | 464.56 | 468.2319508045609 |
13.69 | 34.03 | 1018.45 | 65.76 | 469.12 | 472.4449714286493 |
13.69 | 40.83 | 1008.53 | 84.81 | 471.26 | 467.1630433917511 |
13.71 | 43.41 | 1015.45 | 69.26 | 466.06 | 469.31300214374124 |
13.72 | 44.47 | 1027.2 | 68.89 | 470.66 | 470.03995588291366 |
13.72 | 49.83 | 1006.88 | 89.49 | 463.65 | 464.0442884425782 |
13.73 | 45.08 | 1023.55 | 81.64 | 470.35 | 467.7114787859118 |
13.74 | 42.74 | 1029.54 | 70.0 | 465.92 | 470.4612645139354 |
13.74 | 44.21 | 1023.26 | 84.2 | 466.67 | 467.5120353140818 |
13.77 | 42.86 | 1030.72 | 77.3 | 471.38 | 469.40462020200255 |
13.77 | 43.13 | 1016.63 | 62.13 | 468.45 | 470.4032638964206 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 | 469.663531445212 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 | 465.52654943877917 |
13.8 | 39.82 | 1012.37 | 83.69 | 473.56 | 467.6786715108731 |
13.83 | 38.73 | 999.62 | 91.95 | 469.81 | 465.64964430714963 |
13.84 | 42.18 | 1015.74 | 79.76 | 468.66 | 467.86078237900523 |
13.85 | 45.08 | 1024.86 | 83.85 | 468.35 | 467.2642672326089 |
13.86 | 37.85 | 1011.4 | 89.7 | 469.94 | 467.09839147806196 |
13.86 | 40.66 | 1017.15 | 83.82 | 463.49 | 467.72367995173977 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 | 467.50497110984463 |
13.88 | 48.79 | 1017.28 | 79.4 | 464.14 | 466.3135306312695 |
13.9 | 39.54 | 1007.01 | 81.33 | 471.16 | 467.46352561567244 |
13.91 | 44.58 | 1021.36 | 78.98 | 472.67 | 467.6987016384155 |
13.93 | 42.86 | 1032.37 | 71.11 | 468.88 | 470.13332337428767 |
13.95 | 40.2 | 1013.18 | 90.77 | 464.79 | 466.32771593378936 |
13.95 | 71.14 | 1019.76 | 75.51 | 461.18 | 461.37564919433316 |
13.96 | 39.54 | 1011.05 | 85.72 | 468.82 | 467.0362704395636 |
13.97 | 45.01 | 1017.44 | 89.15 | 461.96 | 465.67304883933747 |
13.98 | 44.84 | 1023.6 | 89.09 | 462.81 | 466.2063693616964 |
14.0 | 41.78 | 1010.96 | 48.37 | 465.62 | 471.8419294419794 |
14.01 | 45.08 | 1023.28 | 82.49 | 464.79 | 467.0254238326554 |
14.02 | 40.66 | 1017.05 | 84.14 | 465.39 | 467.36024219232945 |
14.03 | 44.88 | 1019.6 | 57.63 | 465.51 | 470.3636999560957 |
14.04 | 40.2 | 1013.29 | 89.54 | 465.25 | 466.3425067004856 |
14.04 | 40.83 | 1008.98 | 82.04 | 469.75 | 466.9286675356798 |
14.04 | 44.21 | 1021.93 | 86.12 | 468.64 | 466.5450197688432 |
14.07 | 40.78 | 1024.67 | 72.66 | 456.71 | 469.5289092761888 |
14.07 | 42.99 | 1007.57 | 96.05 | 468.87 | 464.1737178909659 |
14.07 | 43.34 | 1015.79 | 86.0 | 463.77 | 466.22172115408887 |
14.08 | 39.31 | 1011.67 | 72.0 | 464.16 | 468.91409473616267 |
14.09 | 41.2 | 1016.45 | 67.27 | 472.42 | 469.50273867747853 |
14.09 | 44.84 | 1023.65 | 94.29 | 466.12 | 465.23969191883606 |
14.1 | 41.04 | 1026.11 | 74.25 | 465.89 | 469.29150006815894 |
14.1 | 42.18 | 1015.05 | 78.25 | 463.3 | 467.52338927383 |
14.12 | 39.52 | 1016.79 | 75.89 | 472.32 | 468.63392036548817 |
14.12 | 41.39 | 1018.73 | 76.51 | 472.88 | 468.23518412428905 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 | 467.40072495010867 |
14.17 | 42.86 | 1030.94 | 66.47 | 466.2 | 470.2308690130385 |
14.18 | 39.3 | 1020.1 | 67.48 | 464.32 | 470.06934793478155 |
14.18 | 40.69 | 1014.73 | 74.88 | 471.52 | 468.2061275247934 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 | 466.56749595165775 |
14.22 | 42.32 | 1015.54 | 77.23 | 465.0 | 467.4457105564229 |
14.24 | 39.52 | 1018.22 | 77.19 | 468.51 | 468.32922832919263 |
14.24 | 39.99 | 1009.3 | 83.75 | 466.2 | 466.5289202956749 |
14.24 | 44.84 | 1023.6 | 94.06 | 466.67 | 464.9798468816765 |
14.27 | 41.48 | 1014.83 | 62.7 | 458.19 | 469.62052738975177 |
14.28 | 42.77 | 1020.06 | 81.77 | 466.75 | 466.92345671991075 |
14.28 | 43.02 | 1012.97 | 49.44 | 467.83 | 471.00023827347206 |
14.31 | 40.78 | 1024.3 | 76.41 | 463.54 | 468.4888161194534 |
14.32 | 45.08 | 1023.24 | 84.53 | 467.21 | 466.12663038326 |
14.33 | 45.51 | 1015.42 | 71.55 | 468.92 | 467.2570455453141 |
14.34 | 42.86 | 1031.75 | 66.81 | 466.17 | 469.9193063400896 |
14.35 | 40.71 | 1023.09 | 69.5 | 473.56 | 469.3386400018569 |
14.35 | 49.83 | 1006.39 | 91.23 | 462.54 | 462.5353944778759 |
14.36 | 40.0 | 1016.16 | 68.79 | 460.42 | 469.0357845125855 |
14.38 | 40.66 | 1016.34 | 92.37 | 463.1 | 465.4074674853432 |
14.39 | 43.56 | 1012.97 | 59.17 | 469.35 | 469.2340241993211 |
14.4 | 40.2 | 1013.04 | 90.5 | 464.5 | 465.48772540492905 |
14.41 | 40.71 | 1016.78 | 69.77 | 467.01 | 468.6698381136837 |
14.41 | 40.83 | 1009.82 | 80.43 | 470.13 | 466.5182432985402 |
14.42 | 41.16 | 1004.32 | 88.42 | 467.25 | 464.8033579382148 |
14.43 | 35.85 | 1021.99 | 78.25 | 464.6 | 469.03001445387565 |
14.48 | 39.0 | 1016.75 | 75.97 | 464.56 | 468.0542535304752 |
14.48 | 40.89 | 1011.39 | 82.18 | 470.44 | 466.240785806817 |
14.5 | 41.76 | 1023.94 | 84.42 | 464.23 | 466.6802013632756 |
14.52 | 40.35 | 1011.11 | 69.84 | 470.8 | 468.07562484757386 |
14.54 | 41.17 | 1015.15 | 67.78 | 470.19 | 468.46200832885285 |
14.54 | 43.14 | 1010.26 | 82.98 | 465.45 | 465.3553979968291 |
14.55 | 44.84 | 1023.83 | 87.6 | 465.14 | 465.3430114466154 |
14.57 | 41.79 | 1007.61 | 82.85 | 457.21 | 465.437343556244 |
14.58 | 41.92 | 1030.42 | 61.96 | 462.69 | 470.28998511120346 |
14.58 | 42.07 | 1017.9 | 86.14 | 460.66 | 465.70598887904623 |
14.64 | 44.92 | 1025.54 | 91.12 | 462.64 | 464.77518062953527 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 | 471.7241650123051 |
14.65 | 35.4 | 1016.16 | 60.26 | 469.61 | 470.86762962520106 |
14.65 | 41.92 | 1030.61 | 63.07 | 464.95 | 470.00850681775063 |
14.65 | 44.84 | 1023.39 | 87.76 | 467.18 | 465.0909665721057 |
14.66 | 41.76 | 1022.12 | 78.13 | 463.6 | 467.14100725665423 |
14.66 | 42.07 | 1018.14 | 84.68 | 462.77 | 465.78420347562667 |
14.72 | 39.0 | 1016.42 | 76.42 | 464.93 | 467.4988198701669 |
14.74 | 43.71 | 1024.35 | 81.53 | 465.49 | 466.1860805278475 |
14.76 | 39.64 | 1010.37 | 81.99 | 465.82 | 465.9570356485108 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 | 465.6600911572585 |
14.77 | 58.2 | 1018.78 | 83.83 | 460.54 | 461.726652495707 |
14.78 | 38.58 | 1017.02 | 82.4 | 460.54 | 466.6642858393177 |
14.79 | 47.83 | 1007.27 | 92.04 | 463.22 | 462.1388114830884 |
14.81 | 39.58 | 1011.62 | 73.64 | 467.32 | 467.1954080636739 |
14.81 | 40.71 | 1018.54 | 73.0 | 467.66 | 467.5703857042853 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 | 466.87798937642987 |
14.82 | 42.74 | 1028.04 | 69.81 | 466.34 | 468.28371557585695 |
14.83 | 53.82 | 1016.57 | 63.47 | 464.0 | 465.49312878229995 |
14.84 | 71.14 | 1019.61 | 66.78 | 454.16 | 460.92029479400514 |
14.85 | 45.01 | 1013.12 | 85.53 | 460.19 | 464.15206661902306 |
14.86 | 37.85 | 1010.58 | 86.8 | 467.71 | 465.52584173595307 |
14.87 | 41.23 | 997.39 | 82.06 | 465.01 | 464.2815636085029 |
14.87 | 54.3 | 1017.17 | 71.57 | 462.87 | 464.163521673255 |
14.88 | 42.28 | 1007.26 | 71.3 | 466.73 | 466.3736543730507 |
14.91 | 39.28 | 1014.57 | 75.23 | 469.34 | 467.08552274770585 |
14.91 | 40.73 | 1017.44 | 86.91 | 458.99 | 465.2537787213567 |
14.92 | 41.16 | 1004.83 | 83.7 | 465.72 | 464.5690050827307 |
14.92 | 46.18 | 1014.21 | 98.82 | 465.63 | 461.8753395968221 |
14.93 | 42.44 | 1012.65 | 86.8 | 471.24 | 464.41497356388027 |
14.94 | 40.0 | 1017.69 | 65.43 | 456.41 | 468.53176347876706 |
14.94 | 42.77 | 1018.06 | 75.35 | 460.51 | 466.424150275801 |
14.98 | 39.58 | 1011.78 | 75.07 | 467.77 | 466.67192135558764 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 | 464.6078674511597 |
15.01 | 39.52 | 1017.53 | 72.0 | 468.02 | 467.5449609547658 |
15.02 | 37.64 | 1016.49 | 83.28 | 463.93 | 466.2641999137003 |
15.03 | 43.71 | 1025.07 | 83.25 | 463.12 | 465.4344155000201 |
15.03 | 44.45 | 1020.94 | 65.57 | 460.06 | 467.4928608009518 |
15.08 | 42.77 | 1018.67 | 73.89 | 461.6 | 466.4167549834592 |
15.09 | 41.76 | 1022.4 | 76.22 | 463.27 | 466.6130277518322 |
15.11 | 43.67 | 1012.06 | 91.75 | 467.82 | 462.9909863601291 |
15.12 | 48.92 | 1011.8 | 72.93 | 462.59 | 464.3870766666373 |
15.14 | 39.72 | 1002.96 | 72.52 | 460.15 | 465.98237767298184 |
15.14 | 44.21 | 1019.97 | 83.86 | 463.1 | 464.59341737321824 |
15.15 | 53.82 | 1016.34 | 62.59 | 461.6 | 464.9855482511961 |
15.19 | 42.03 | 1017.38 | 71.66 | 462.64 | 466.60937185484113 |
15.21 | 50.88 | 1014.24 | 100.11 | 460.56 | 459.95844344813366 |
15.24 | 48.6 | 1007.08 | 86.49 | 459.85 | 461.8730218752433 |
15.27 | 38.73 | 1002.83 | 77.77 | 465.99 | 465.2019993258048 |
15.27 | 39.54 | 1010.64 | 81.91 | 464.49 | 465.0319060514448 |
15.29 | 38.73 | 1000.9 | 81.17 | 468.62 | 464.51031407803055 |
15.31 | 40.66 | 1016.46 | 84.64 | 458.26 | 464.7510595901325 |
15.31 | 41.35 | 1005.09 | 95.25 | 466.5 | 462.10563966655445 |
15.32 | 45.01 | 1013.3 | 83.72 | 459.31 | 463.5242044902383 |
15.34 | 43.5 | 1021.18 | 79.44 | 459.77 | 465.12795484714235 |
15.34 | 71.14 | 1019.79 | 77.56 | 457.1 | 458.3979411875371 |
15.4 | 38.73 | 1000.67 | 79.71 | 469.18 | 464.49240158563896 |
15.41 | 42.44 | 1012.6 | 86.74 | 472.28 | 463.4938095964465 |
15.46 | 42.07 | 1017.9 | 81.12 | 459.15 | 464.7409202420205 |
15.47 | 43.13 | 1015.11 | 50.5 | 466.63 | 468.6970662849413 |
15.48 | 53.82 | 1016.1 | 64.77 | 462.69 | 464.01147313398917 |
15.5 | 44.34 | 1019.21 | 65.21 | 468.53 | 466.5254088553394 |
15.5 | 49.25 | 1021.41 | 77.92 | 453.99 | 463.6262300043795 |
15.52 | 41.93 | 1022.97 | 52.92 | 471.97 | 469.1866406031888 |
15.52 | 58.59 | 1014.12 | 91.22 | 457.74 | 458.7253721171194 |
15.55 | 39.63 | 1004.98 | 89.82 | 466.83 | 462.85471321992077 |
15.55 | 43.02 | 1011.97 | 44.66 | 466.2 | 469.16650047432114 |
15.55 | 43.71 | 1024.34 | 79.61 | 465.14 | 464.9029898412732 |
15.55 | 45.09 | 1014.33 | 62.19 | 457.36 | 466.28526560326617 |
15.61 | 38.52 | 1018.4 | 80.99 | 439.21 | 465.3963354604996 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 | 462.3133964499922 |
15.62 | 58.59 | 1013.91 | 97.6 | 457.3 | 457.584678990398 |
15.66 | 41.35 | 1001.68 | 86.26 | 463.57 | 462.4644015518939 |
15.67 | 45.17 | 1018.73 | 94.74 | 462.09 | 461.643667310181 |
15.69 | 37.87 | 1021.18 | 84.38 | 465.41 | 465.1358649951472 |
15.69 | 39.3 | 1019.03 | 60.57 | 464.17 | 468.07771227809314 |
15.7 | 42.99 | 1007.51 | 76.05 | 464.59 | 463.94240853336305 |
15.75 | 36.99 | 1007.67 | 93.8 | 464.38 | 462.7655254272994 |
15.75 | 39.99 | 1007.02 | 77.44 | 464.95 | 464.35125328406644 |
15.79 | 58.86 | 1015.85 | 91.91 | 455.15 | 458.1774466179175 |
15.81 | 58.59 | 1014.41 | 90.03 | 456.91 | 458.3632117908802 |
15.84 | 41.04 | 1025.64 | 63.43 | 456.21 | 467.47546424100267 |
15.85 | 42.28 | 1007.4 | 82.12 | 467.3 | 462.93565136830154 |
15.85 | 49.69 | 1015.48 | 88.65 | 464.72 | 460.79339608207175 |
15.86 | 38.62 | 1016.65 | 67.51 | 462.58 | 466.71318747004926 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 | 469.2173130099907 |
15.86 | 43.5 | 1021.22 | 75.38 | 459.42 | 464.7204827320649 |
15.92 | 37.64 | 1014.93 | 83.73 | 464.14 | 464.3355958479068 |
15.92 | 39.16 | 1006.59 | 71.32 | 460.45 | 465.088060844667 |
15.92 | 41.2 | 1016.04 | 73.37 | 468.91 | 465.049705721886 |
15.96 | 41.66 | 1011.93 | 55.47 | 466.39 | 467.13452750856925 |
15.98 | 39.64 | 1009.31 | 81.21 | 467.22 | 463.6313366984603 |
15.98 | 44.68 | 1018.48 | 85.94 | 462.77 | 462.4312798566266 |
15.99 | 39.63 | 1006.09 | 89.92 | 464.95 | 462.08179546634585 |
16.0 | 40.66 | 1016.12 | 89.23 | 457.12 | 462.7228887148119 |
16.0 | 44.9 | 1020.5 | 80.89 | 461.5 | 463.2389898882632 |
16.0 | 45.09 | 1014.31 | 60.02 | 458.46 | 465.73221554609086 |
16.01 | 43.69 | 1017.12 | 62.43 | 465.89 | 465.9391561803271 |
16.02 | 39.54 | 1007.73 | 72.81 | 466.15 | 464.6758800034213 |
16.02 | 44.9 | 1009.3 | 82.62 | 455.48 | 462.03627301808797 |
16.09 | 44.71 | 1017.86 | 42.74 | 464.95 | 468.4631596600604 |
16.09 | 65.46 | 1013.84 | 85.52 | 454.88 | 456.7218449478398 |
16.12 | 45.87 | 1008.15 | 86.12 | 457.41 | 460.9973530979196 |
16.14 | 44.71 | 1014.83 | 39.41 | 468.88 | 468.60583110746154 |
16.16 | 25.88 | 1009.58 | 72.24 | 461.86 | 468.0452621538938 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 | 461.1674897104325 |
16.19 | 36.99 | 1007.37 | 92.4 | 462.94 | 462.0966422275805 |
16.2 | 45.76 | 1014.73 | 89.84 | 460.87 | 460.8634611992428 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 | 464.39198726436393 |
16.22 | 50.88 | 1014.33 | 100.09 | 454.94 | 458.02055270119547 |
16.23 | 43.69 | 1016.4 | 68.9 | 466.22 | 464.51235428029423 |
16.29 | 53.82 | 1014.97 | 73.15 | 459.95 | 461.1346442030386 |
16.3 | 41.16 | 1007.88 | 76.61 | 463.47 | 463.1897781965986 |
16.31 | 52.75 | 1024.4 | 55.69 | 456.58 | 464.6775725663161 |
16.32 | 43.56 | 1014.4 | 59.77 | 463.57 | 465.54023567427873 |
16.33 | 42.44 | 1013.98 | 84.9 | 462.44 | 462.10003232292183 |
16.34 | 47.45 | 1009.41 | 92.96 | 448.59 | 459.28384302135726 |
16.36 | 39.99 | 1008.91 | 72.48 | 462.5 | 464.0520812837937 |
16.37 | 36.99 | 1006.37 | 90.11 | 463.76 | 462.0021066209567 |
16.39 | 52.75 | 1024.42 | 54.61 | 459.48 | 464.6824431291334 |
16.39 | 58.59 | 1014.58 | 90.34 | 455.05 | 457.2130973847568 |
16.4 | 44.9 | 1009.22 | 82.31 | 456.11 | 461.34202141138076 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 | 467.9152913437013 |
16.47 | 38.01 | 1022.3 | 72.29 | 461.54 | 465.451323337944 |
16.47 | 44.89 | 1010.04 | 82.01 | 459.69 | 461.32001368263144 |
16.49 | 49.39 | 1018.1 | 93.13 | 461.54 | 459.1934765355192 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 | 459.15223490510476 |
16.51 | 51.86 | 1022.37 | 81.18 | 442.48 | 460.6299621913334 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 | 465.9486794694256 |
16.56 | 42.99 | 1007.48 | 74.45 | 464.62 | 462.514565839849 |
16.57 | 43.7 | 1015.67 | 71.95 | 465.78 | 463.3496922983314 |
16.57 | 53.82 | 1015.17 | 63.69 | 462.52 | 461.9908711864406 |
16.57 | 63.31 | 1016.19 | 81.02 | 454.78 | 457.1797966088057 |
16.59 | 43.56 | 1012.88 | 59.61 | 465.03 | 464.9190479188053 |
16.62 | 39.99 | 1007.07 | 77.14 | 463.74 | 462.7209910751999 |
16.62 | 54.3 | 1017.99 | 63.76 | 459.59 | 461.9941154580853 |
16.65 | 46.18 | 1010.6 | 95.69 | 465.6 | 458.7011562788461 |
16.7 | 36.99 | 1006.19 | 89.33 | 464.7 | 461.4647200415134 |
16.73 | 54.3 | 1017.96 | 59.44 | 460.54 | 462.4097006278274 |
16.77 | 42.28 | 1007.53 | 73.19 | 465.52 | 462.4744017201027 |
16.82 | 41.66 | 1010.49 | 63.14 | 465.64 | 464.23959443772213 |
16.82 | 45.0 | 1022.05 | 37.28 | 468.22 | 468.1204021981673 |
16.85 | 39.64 | 1008.82 | 80.81 | 464.2 | 461.9717022235376 |
16.85 | 42.24 | 1017.43 | 66.01 | 472.63 | 464.1834210347691 |
16.87 | 52.05 | 1012.7 | 71.63 | 460.31 | 460.49414495170237 |
16.89 | 49.21 | 1015.19 | 70.39 | 458.25 | 461.54722359859704 |
16.94 | 49.64 | 1024.43 | 69.22 | 459.25 | 462.2664630167632 |
16.97 | 42.86 | 1013.92 | 74.8 | 463.62 | 462.22935856598747 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 | 464.22591401634224 |
17.02 | 51.86 | 1021.53 | 81.28 | 460.0 | 459.5632798612268 |
17.03 | 43.99 | 1021.5 | 82.32 | 460.25 | 461.35195581745074 |
17.07 | 41.35 | 1005.88 | 83.43 | 464.6 | 460.49948055624816 |
17.08 | 38.58 | 1015.41 | 73.42 | 461.49 | 463.4068722278115 |
17.08 | 58.86 | 1016.04 | 87.46 | 449.98 | 456.3538669153961 |
17.19 | 43.14 | 1014.34 | 68.62 | 464.72 | 462.6709318385796 |
17.27 | 43.52 | 1021.37 | 76.73 | 460.08 | 461.8110962307606 |
17.27 | 44.9 | 1007.85 | 78.8 | 454.19 | 460.0644340540893 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 | 462.01427465285536 |
17.3 | 43.72 | 1009.64 | 77.86 | 456.55 | 460.5836092644089 |
17.32 | 43.7 | 1015.13 | 61.66 | 464.5 | 463.36019976991514 |
17.32 | 44.34 | 1019.52 | 56.24 | 468.8 | 464.3486858862592 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 | 461.64674540379394 |
17.35 | 52.72 | 1026.31 | 58.01 | 463.65 | 462.49609959425135 |
17.36 | 43.96 | 1013.02 | 79.59 | 466.36 | 460.43082906265073 |
17.37 | 48.92 | 1011.91 | 58.4 | 455.53 | 462.17575951824017 |
17.39 | 46.21 | 1013.94 | 82.73 | 454.06 | 459.4288341311478 |
17.4 | 63.09 | 1020.84 | 92.58 | 453.0 | 454.32588018238846 |
17.41 | 40.55 | 1003.91 | 76.87 | 461.47 | 460.83972369537014 |
17.44 | 44.89 | 1009.9 | 80.54 | 457.67 | 459.6520786332344 |
17.45 | 50.9 | 1012.16 | 83.8 | 458.67 | 457.8428111918577 |
17.46 | 39.99 | 1008.52 | 69.73 | 461.01 | 462.29977029786426 |
17.48 | 52.9 | 1020.03 | 76.47 | 458.34 | 458.996291001344 |
17.61 | 56.53 | 1019.5 | 82.3 | 457.01 | 456.94689658887955 |
17.64 | 57.76 | 1016.28 | 85.04 | 455.75 | 455.9205279683583 |
17.66 | 60.08 | 1017.22 | 86.96 | 456.62 | 455.09997079582735 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 | 463.6885973525343 |
17.67 | 50.88 | 1015.64 | 90.55 | 456.16 | 456.72206228080574 |
17.7 | 49.21 | 1015.16 | 67.91 | 455.97 | 460.3441974161702 |
17.74 | 49.69 | 1006.09 | 80.7 | 457.05 | 457.54320031904916 |
17.74 | 50.88 | 1015.56 | 89.78 | 457.71 | 456.69285780085 |
17.75 | 55.5 | 1020.15 | 81.26 | 459.43 | 457.1382842072816 |
17.77 | 52.9 | 1020.11 | 81.51 | 457.98 | 457.7082041695164 |
17.79 | 40.12 | 1012.74 | 79.03 | 459.13 | 460.6176992174903 |
17.82 | 49.15 | 1020.73 | 70.25 | 457.35 | 460.23977794971734 |
17.83 | 66.86 | 1011.65 | 77.31 | 456.56 | 454.0359982256698 |
17.84 | 61.27 | 1020.1 | 70.68 | 454.57 | 457.0654686491854 |
17.85 | 48.14 | 1017.16 | 86.68 | 451.9 | 457.74629194464563 |
17.86 | 50.88 | 1015.59 | 88.28 | 457.33 | 456.682658074812 |
17.89 | 42.42 | 1008.92 | 65.08 | 467.59 | 461.57543093155283 |
17.89 | 44.6 | 1014.48 | 42.51 | 463.99 | 464.7770544317755 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 | 459.80149708475966 |
17.9 | 58.33 | 1013.6 | 85.81 | 452.28 | 454.94641693932425 |
17.94 | 62.1 | 1019.81 | 82.65 | 453.55 | 454.8958623057641 |
17.97 | 65.94 | 1012.92 | 88.22 | 448.88 | 452.5071708494881 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 | 455.2418242855509 |
18.0 | 44.06 | 1016.8 | 78.88 | 454.59 | 459.5827319030397 |
18.01 | 62.26 | 1011.89 | 89.29 | 451.14 | 453.1075606298177 |
18.02 | 53.16 | 1013.41 | 82.84 | 458.01 | 456.4217175154805 |
18.03 | 53.16 | 1013.02 | 81.95 | 456.55 | 456.50051296596394 |
18.03 | 53.16 | 1013.06 | 82.03 | 458.04 | 456.49209889995655 |
18.04 | 44.85 | 1015.13 | 48.4 | 463.31 | 463.61908166044054 |
18.06 | 65.48 | 1018.79 | 77.95 | 454.34 | 454.42430944989064 |
18.11 | 58.95 | 1016.61 | 89.17 | 454.29 | 454.14166454199597 |
18.13 | 60.1 | 1009.67 | 84.75 | 455.82 | 453.8961915229463 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 | 453.66499413493267 |
18.14 | 67.71 | 1003.82 | 95.69 | 442.45 | 449.90744333553766 |
18.16 | 43.72 | 1008.64 | 75.22 | 454.98 | 459.2285158945938 |
18.16 | 43.96 | 1012.78 | 78.33 | 465.26 | 459.05202239898557 |
18.17 | 52.08 | 1001.91 | 100.09 | 451.06 | 452.9490364013417 |
18.17 | 66.86 | 1011.29 | 78.48 | 452.77 | 453.18020424984826 |
18.2 | 52.72 | 1025.87 | 54.26 | 463.47 | 461.36780961356845 |
18.21 | 39.54 | 1009.81 | 70.92 | 461.73 | 460.89674705500755 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 | 463.8188758742415 |
18.22 | 45.09 | 1013.62 | 75.56 | 454.74 | 459.12703336317225 |
18.22 | 58.2 | 1017.09 | 81.92 | 451.04 | 455.21318283732694 |
18.24 | 49.5 | 1014.37 | 79.36 | 464.13 | 457.4956830813674 |
18.25 | 60.1 | 1009.72 | 90.15 | 456.25 | 452.88104966381576 |
18.26 | 58.96 | 1014.04 | 69.7 | 457.43 | 456.48090497858703 |
18.27 | 58.2 | 1018.34 | 72.73 | 448.17 | 456.55913524865815 |
18.28 | 60.1 | 1009.72 | 85.79 | 452.93 | 453.45921998591484 |
18.31 | 62.1 | 1020.38 | 79.02 | 455.24 | 454.75813504742956 |
18.32 | 39.53 | 1008.15 | 64.85 | 454.44 | 461.4374201546749 |
18.32 | 42.28 | 1007.86 | 45.62 | 460.27 | 463.53345887643684 |
18.32 | 65.94 | 1012.74 | 86.77 | 450.5 | 452.02894677235776 |
18.34 | 44.63 | 1000.76 | 89.27 | 455.22 | 455.9633409988894 |
18.34 | 50.59 | 1018.42 | 83.95 | 457.17 | 456.69115708186104 |
18.36 | 53.16 | 1013.31 | 83.18 | 458.47 | 455.7081697760806 |
18.36 | 56.65 | 1020.29 | 82.0 | 456.49 | 455.57841979073686 |
18.38 | 55.28 | 1020.22 | 68.33 | 451.29 | 457.86988425653215 |
18.4 | 50.16 | 1011.51 | 98.07 | 453.78 | 454.06028204889856 |
18.41 | 42.44 | 1012.66 | 65.93 | 463.2 | 460.7479119618784 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 | 453.92151217696835 |
18.42 | 60.1 | 1009.77 | 86.75 | 451.93 | 453.05320729488966 |
18.42 | 63.94 | 1020.47 | 74.47 | 450.55 | 454.7582989685104 |
18.48 | 46.48 | 1007.53 | 82.57 | 461.49 | 456.7605922899188 |
18.48 | 58.59 | 1015.61 | 85.14 | 452.52 | 454.02423282750084 |
18.5 | 52.08 | 1006.23 | 100.09 | 451.23 | 452.6641989591508 |
18.51 | 48.06 | 1015.14 | 79.83 | 455.44 | 457.32803096447014 |
18.53 | 63.91 | 1010.26 | 97.8 | 440.64 | 450.31905653186493 |
18.55 | 41.85 | 1015.24 | 62.47 | 467.51 | 461.3397464375884 |
18.55 | 46.48 | 1007.34 | 80.67 | 452.37 | 456.8872770659849 |
18.56 | 42.28 | 1007.75 | 60.89 | 462.05 | 460.8339970164586 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 | 462.10615685280607 |
18.63 | 45.87 | 1007.98 | 79.9 | 453.79 | 457.0494808979759 |
18.65 | 52.08 | 1005.48 | 99.94 | 449.55 | 452.3356980438647 |
18.66 | 56.53 | 1020.13 | 80.04 | 459.45 | 455.3025828648233 |
18.68 | 43.69 | 1016.68 | 48.88 | 463.02 | 462.729986990083 |
18.68 | 56.65 | 1020.38 | 80.26 | 455.79 | 455.2223463598734 |
18.68 | 62.1 | 1019.78 | 83.67 | 453.25 | 453.31727625145106 |
18.73 | 40.12 | 1013.19 | 74.12 | 454.71 | 459.55748654713756 |
18.73 | 46.48 | 1007.19 | 79.23 | 450.74 | 456.73794034607437 |
18.8 | 47.83 | 1005.86 | 76.77 | 453.9 | 456.51693542677697 |
18.81 | 52.08 | 1004.43 | 99.6 | 450.87 | 451.9912034594017 |
18.83 | 48.98 | 1016.33 | 74.23 | 453.28 | 457.3952307496471 |
18.84 | 61.27 | 1019.64 | 71.95 | 454.47 | 454.9139071679218 |
18.86 | 50.78 | 1008.46 | 91.67 | 446.7 | 453.7037727907364 |
18.87 | 43.43 | 1009.16 | 69.5 | 454.58 | 458.8081008998661 |
18.87 | 52.05 | 1012.02 | 53.46 | 458.64 | 459.2317295422394 |
18.89 | 66.86 | 1012.38 | 71.96 | 454.02 | 452.8313052555013 |
18.9 | 62.96 | 1020.69 | 80.57 | 455.88 | 453.2048261109316 |
18.91 | 43.14 | 1013.56 | 58.34 | 460.19 | 460.7894614420895 |
18.95 | 46.21 | 1013.47 | 81.22 | 457.58 | 456.6018501959594 |
18.97 | 50.59 | 1016.01 | 74.9 | 459.68 | 456.60000256329886 |
18.98 | 38.52 | 1018.85 | 63.16 | 454.6 | 461.53379199179915 |
18.99 | 56.65 | 1020.46 | 77.16 | 457.55 | 455.08314377928957 |
19.02 | 50.66 | 1013.04 | 85.25 | 455.42 | 454.7344713102369 |
19.05 | 53.16 | 1013.22 | 82.8 | 455.76 | 454.42537323274547 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 | 450.8438229795386 |
19.06 | 56.65 | 1020.82 | 82.14 | 455.7 | 454.25095018004106 |
19.08 | 44.63 | 1020.05 | 41.07 | 455.95 | 463.13775609127424 |
19.08 | 58.59 | 1013.42 | 68.88 | 451.05 | 455.0606464477156 |
19.11 | 58.95 | 1017.07 | 85.49 | 449.89 | 452.78710305999806 |
19.12 | 50.16 | 1011.52 | 99.71 | 451.49 | 452.433083794051 |
19.13 | 42.18 | 1001.45 | 98.77 | 456.04 | 453.7206916287227 |
19.14 | 56.65 | 1020.84 | 82.97 | 458.06 | 453.97719041615727 |
19.2 | 58.71 | 1009.8 | 84.62 | 448.17 | 452.20842313451317 |
19.22 | 62.1 | 1019.43 | 79.19 | 451.8 | 452.9007476374929 |
19.23 | 41.67 | 1012.53 | 48.86 | 465.66 | 461.8378158906787 |
19.24 | 58.33 | 1013.65 | 85.47 | 449.26 | 452.41543202652105 |
19.25 | 43.43 | 1012.01 | 73.26 | 451.08 | 457.758643714557 |
19.26 | 44.34 | 1019.45 | 51.32 | 467.72 | 461.31875334620537 |
19.31 | 43.56 | 1013.65 | 41.54 | 463.35 | 462.3713163829519 |
19.31 | 60.07 | 1014.86 | 69.37 | 453.47 | 454.29376940501476 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 | 453.1538192034153 |
19.43 | 52.9 | 1018.35 | 61.12 | 456.08 | 457.3375291656148 |
19.44 | 59.21 | 1018.5 | 88.35 | 448.04 | 451.78495851322333 |
19.47 | 58.79 | 1016.8 | 87.26 | 450.17 | 451.85242166322104 |
19.54 | 44.57 | 1007.19 | 78.93 | 450.54 | 455.6955332352781 |
19.54 | 50.66 | 1014.7 | 84.53 | 456.61 | 453.9716415466415 |
19.57 | 68.61 | 1011.13 | 96.4 | 448.73 | 447.41632457686063 |
19.6 | 48.14 | 1013.18 | 68.71 | 456.57 | 456.66826631159074 |
19.6 | 60.95 | 1015.4 | 84.26 | 456.06 | 451.3868160236605 |
19.61 | 56.65 | 1020.64 | 63.74 | 457.41 | 455.85961858608687 |
19.62 | 58.79 | 1017.59 | 87.39 | 446.29 | 451.60844251281037 |
19.62 | 68.63 | 1012.26 | 68.05 | 453.84 | 451.54257776593613 |
19.64 | 56.65 | 1020.79 | 73.88 | 456.03 | 454.3347436794248 |
19.65 | 42.23 | 1013.04 | 75.9 | 461.16 | 456.9850125389704 |
19.65 | 57.85 | 1011.73 | 93.89 | 450.5 | 450.35966629930147 |
19.66 | 51.43 | 1010.17 | 84.19 | 459.12 | 453.22902771494347 |
19.67 | 60.77 | 1017.33 | 88.13 | 444.87 | 450.88923626750994 |
19.68 | 44.34 | 1019.49 | 49.5 | 468.27 | 460.777395244504 |
19.68 | 51.19 | 1008.64 | 94.88 | 452.04 | 451.56627819803873 |
19.68 | 56.65 | 1020.75 | 67.25 | 456.89 | 455.22151625901796 |
19.69 | 39.72 | 1001.49 | 60.34 | 456.55 | 458.8632715562841 |
19.69 | 56.65 | 1020.84 | 72.14 | 455.07 | 454.4962025118112 |
19.7 | 51.3 | 1014.88 | 88.1 | 454.94 | 452.99732617118093 |
19.7 | 52.84 | 1004.86 | 89.72 | 444.64 | 451.56134671760685 |
19.72 | 44.78 | 1009.27 | 39.18 | 464.54 | 461.2640328521535 |
19.73 | 49.69 | 1007.78 | 73.02 | 454.28 | 454.96273138933316 |
19.73 | 68.63 | 1012.41 | 74.12 | 450.26 | 450.45712572408365 |
19.76 | 62.1 | 1020.07 | 73.55 | 450.44 | 452.73403331175916 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 | 451.36693359666157 |
19.79 | 60.1 | 1010.47 | 84.04 | 452.41 | 450.8630071025483 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 | 450.8754162418666 |
19.8 | 58.79 | 1017.04 | 87.71 | 449.66 | 451.1697942873426 |
19.8 | 67.71 | 1005.58 | 69.65 | 446.03 | 450.6475445784007 |
19.82 | 46.63 | 1013.17 | 87.1 | 456.36 | 453.9368453997675 |
19.83 | 46.33 | 1013.27 | 96.4 | 451.22 | 452.6438110023007 |
19.83 | 59.21 | 1012.67 | 96.42 | 440.03 | 449.3808509555166 |
19.86 | 41.67 | 1012.31 | 53.9 | 462.86 | 459.869498864356 |
19.87 | 48.14 | 1016.94 | 81.56 | 451.14 | 454.579016450257 |
19.87 | 49.69 | 1012.23 | 68.57 | 456.03 | 455.70412271625406 |
19.89 | 50.78 | 1008.85 | 92.97 | 446.35 | 451.5591661954988 |
19.89 | 51.43 | 1007.38 | 91.79 | 448.85 | 451.44957897086954 |
19.89 | 68.08 | 1012.65 | 80.25 | 448.71 | 449.4109294018897 |
19.92 | 46.97 | 1014.32 | 69.17 | 459.39 | 456.3684360885655 |
19.93 | 56.65 | 1020.7 | 62.82 | 456.53 | 455.38148152279337 |
19.94 | 44.63 | 1004.73 | 78.48 | 455.58 | 454.77441817350666 |
19.94 | 44.9 | 1008.52 | 74.69 | 459.47 | 455.56852272126025 |
19.94 | 56.53 | 1020.48 | 76.43 | 453.8 | 453.388777892959 |
19.95 | 58.46 | 1017.45 | 89.46 | 447.1 | 450.74082943000445 |
19.97 | 50.78 | 1008.75 | 92.7 | 446.57 | 451.4361052165287 |
19.99 | 40.79 | 1003.15 | 87.55 | 455.28 | 454.1835978057368 |
20.01 | 45.09 | 1014.21 | 38.19 | 453.96 | 461.17395495323035 |
20.01 | 68.63 | 1012.34 | 69.49 | 454.5 | 450.5867733837238 |
20.03 | 60.77 | 1017.23 | 87.82 | 449.31 | 450.23193343537906 |
20.04 | 49.39 | 1020.62 | 78.84 | 449.63 | 454.63584061731206 |
20.04 | 58.2 | 1017.56 | 74.31 | 448.92 | 452.85108866192985 |
20.08 | 54.42 | 1011.79 | 89.35 | 457.14 | 451.0525967345181 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 | 451.52328444134787 |
20.1 | 57.17 | 1011.96 | 87.68 | 452.67 | 450.58585768893437 |
20.11 | 51.19 | 1007.82 | 92.06 | 449.03 | 451.0815006280817 |
20.12 | 58.12 | 1015.47 | 79.38 | 453.33 | 451.8069735038988 |
20.16 | 57.76 | 1019.34 | 72.1 | 455.13 | 453.1966266064801 |
20.19 | 44.57 | 1009.2 | 72.13 | 454.36 | 455.59739505823717 |
20.19 | 66.86 | 1012.97 | 64.7 | 454.84 | 451.4309223325164 |
20.21 | 54.9 | 1016.82 | 66.56 | 454.23 | 454.4162557726173 |
20.21 | 69.94 | 1009.33 | 83.96 | 447.06 | 447.518481672599 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 | 457.4899833309962 |
20.24 | 56.65 | 1020.72 | 62.9 | 455.49 | 454.77349685896206 |
20.25 | 44.78 | 1007.93 | 40.16 | 462.44 | 459.9896954813431 |
20.28 | 48.78 | 1017.4 | 82.51 | 451.59 | 453.52748857898166 |
20.28 | 62.52 | 1017.89 | 75.67 | 452.45 | 451.13958592197406 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 | 451.0112917711592 |
20.33 | 57.76 | 1016.47 | 75.35 | 450.25 | 452.1609729511189 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 | 455.0355456385036 |
20.43 | 63.09 | 1016.46 | 91.78 | 445.58 | 448.24161243610126 |
20.45 | 59.8 | 1015.13 | 79.21 | 452.96 | 450.74872313991176 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 | 453.94807606743166 |
20.51 | 39.72 | 1002.25 | 47.97 | 452.39 | 459.1480198621104 |
20.51 | 68.08 | 1012.73 | 78.05 | 445.96 | 448.54249260358654 |
20.56 | 60.08 | 1017.79 | 78.08 | 452.8 | 450.84813038147144 |
20.56 | 64.45 | 1012.24 | 53.09 | 458.97 | 452.9523382793833 |
20.58 | 39.53 | 1005.68 | 62.09 | 460.1 | 457.2797775931837 |
20.59 | 59.8 | 1015.27 | 77.94 | 453.83 | 450.67534900317094 |
20.6 | 59.15 | 1013.32 | 91.07 | 443.76 | 448.7439698617696 |
20.61 | 60.1 | 1010.84 | 80.57 | 450.46 | 449.8176765506547 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 | 449.46273191454407 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 | 450.23276134284237 |
20.61 | 65.61 | 1014.91 | 83.82 | 449.72 | 448.30116288608934 |
20.64 | 61.86 | 1012.81 | 99.97 | 447.14 | 446.6513202266961 |
20.65 | 41.67 | 1012.76 | 45.27 | 455.5 | 459.6412858596402 |
20.65 | 57.5 | 1016.04 | 87.45 | 448.22 | 449.80841398023324 |
20.68 | 63.86 | 1015.73 | 74.36 | 447.84 | 450.0492245621949 |
20.69 | 50.78 | 1008.71 | 91.95 | 447.58 | 450.15348917672725 |
20.71 | 58.18 | 1007.63 | 98.44 | 447.06 | 447.2352893702609 |
20.72 | 63.94 | 1017.17 | 59.83 | 447.69 | 452.1889854808301 |
20.76 | 44.58 | 1017.09 | 57.47 | 462.01 | 457.27636447696545 |
20.76 | 59.04 | 1012.51 | 85.39 | 448.92 | 449.22543586447625 |
20.76 | 69.05 | 1001.89 | 77.86 | 442.82 | 446.96369987423526 |
20.77 | 43.77 | 1010.76 | 63.12 | 453.46 | 456.11949013569995 |
20.78 | 58.86 | 1016.02 | 77.29 | 446.2 | 450.69910348096573 |
20.8 | 69.45 | 1013.7 | 82.48 | 443.77 | 447.07428167616905 |
20.82 | 63.77 | 1014.28 | 86.37 | 448.9 | 447.93156732156143 |
20.83 | 44.78 | 1008.51 | 35.9 | 460.6 | 459.5396287629999 |
20.85 | 59.21 | 1012.9 | 75.97 | 444.44 | 450.41539217977504 |
20.87 | 57.19 | 1006.5 | 77.0 | 445.95 | 450.20916835758374 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 | 450.5270199129546 |
20.9 | 67.07 | 1005.43 | 82.85 | 443.46 | 446.747552050482 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 | 444.507199619309 |
20.94 | 44.78 | 1008.14 | 35.7 | 465.57 | 459.32651068324674 |
20.94 | 68.12 | 1012.43 | 78.2 | 446.41 | 447.6568115900023 |
20.95 | 44.89 | 1010.48 | 67.97 | 450.39 | 454.76275216738793 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 | 454.21851332168194 |
20.95 | 70.72 | 1009.96 | 87.73 | 445.66 | 445.39798853968495 |
20.96 | 69.48 | 1011.04 | 82.63 | 444.31 | 446.51975987000213 |
20.98 | 60.1 | 1011.07 | 79.44 | 450.95 | 449.28757124138815 |
20.99 | 67.07 | 1005.17 | 82.41 | 442.02 | 446.61697690688106 |
21.01 | 58.96 | 1014.33 | 61.8 | 453.88 | 452.35263519535005 |
21.06 | 50.59 | 1016.42 | 66.12 | 454.15 | 453.88291464930387 |
21.06 | 62.91 | 1011.92 | 75.52 | 455.22 | 449.07372918845823 |
21.06 | 67.07 | 1004.9 | 84.09 | 446.44 | 446.2148995417356 |
21.08 | 44.05 | 1008.13 | 72.52 | 449.6 | 453.8663667211942 |
21.11 | 58.66 | 1011.7 | 68.71 | 457.89 | 451.01241377116 |
21.11 | 59.39 | 1013.87 | 85.29 | 446.02 | 448.5883814092371 |
21.13 | 51.43 | 1007.43 | 88.72 | 445.4 | 449.5097304398742 |
21.14 | 58.05 | 1012.98 | 87.27 | 449.74 | 448.503305348983 |
21.14 | 58.98 | 1009.05 | 94.36 | 448.31 | 446.91722060578974 |
21.16 | 45.38 | 1014.65 | 73.06 | 458.63 | 453.8324720669498 |
21.18 | 44.57 | 1007.27 | 73.67 | 449.93 | 453.3060649640138 |
21.18 | 60.1 | 1011.02 | 78.19 | 452.39 | 449.0800812223206 |
21.19 | 74.93 | 1015.75 | 80.84 | 443.29 | 445.3619054648025 |
21.26 | 50.32 | 1008.41 | 87.22 | 446.22 | 449.83432112958207 |
21.28 | 70.32 | 1011.06 | 90.12 | 439.0 | 444.60209183702807 |
21.32 | 45.01 | 1012.23 | 59.94 | 452.75 | 455.3330390953461 |
21.32 | 49.02 | 1008.81 | 85.81 | 445.65 | 450.2809554999446 |
21.33 | 58.46 | 1016.17 | 79.73 | 445.27 | 449.39422908092763 |
21.33 | 60.1 | 1010.97 | 78.36 | 451.95 | 448.7618842842812 |
21.33 | 63.86 | 1020.33 | 72.13 | 445.02 | 449.4952622600192 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 | 449.4914112072881 |
21.36 | 58.95 | 1018.35 | 78.87 | 443.93 | 449.51712426113426 |
21.36 | 68.28 | 1007.6 | 72.37 | 445.91 | 447.26408438944804 |
21.38 | 44.05 | 1005.69 | 81.66 | 445.71 | 451.7557366468961 |
21.39 | 51.3 | 1013.39 | 89.05 | 452.7 | 449.4776919784881 |
21.39 | 63.9 | 1013.44 | 70.95 | 449.38 | 448.98079679330425 |
21.4 | 44.57 | 1005.7 | 73.09 | 445.09 | 452.8385186409049 |
21.4 | 68.28 | 1008.2 | 60.34 | 450.22 | 448.9907086576164 |
21.41 | 56.9 | 1007.03 | 79.41 | 441.41 | 448.93146897513117 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 | 458.191223029991 |
21.44 | 51.19 | 1009.1 | 84.94 | 446.17 | 449.6590005617063 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 | 446.5452373588345 |
21.45 | 45.09 | 1013.83 | 52.26 | 453.15 | 456.31295277561605 |
21.45 | 60.08 | 1017.92 | 72.7 | 451.49 | 449.9268730104552 |
21.45 | 66.05 | 1014.81 | 73.73 | 453.38 | 448.035018368965 |
21.46 | 46.63 | 1012.97 | 71.29 | 452.1 | 453.06361431502813 |
21.47 | 58.79 | 1017.0 | 76.97 | 446.33 | 449.51211271813503 |
21.49 | 56.9 | 1007.47 | 66.66 | 452.46 | 450.67294754488756 |
21.52 | 66.51 | 1015.32 | 72.85 | 444.87 | 447.9552056621949 |
21.53 | 52.84 | 1005.06 | 88.22 | 444.04 | 448.2666586698021 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 | 448.6696822105525 |
21.54 | 69.48 | 1011.04 | 80.48 | 443.15 | 445.71467031907304 |
21.55 | 44.57 | 1006.03 | 71.54 | 446.84 | 452.8021698612505 |
21.55 | 60.27 | 1017.42 | 92.59 | 443.93 | 446.74436600081026 |
21.57 | 66.49 | 1014.76 | 68.19 | 455.18 | 448.49796091182594 |
21.58 | 63.87 | 1015.27 | 63.15 | 451.88 | 449.90863388073825 |
21.61 | 41.54 | 1014.5 | 75.62 | 458.47 | 453.53620348431406 |
21.61 | 49.39 | 1019.41 | 78.2 | 449.26 | 451.6024110197605 |
21.62 | 50.05 | 1007.2 | 92.9 | 444.16 | 448.28015134415506 |
21.65 | 58.18 | 1008.33 | 95.28 | 441.05 | 445.9401390971127 |
21.69 | 44.57 | 1005.84 | 71.53 | 447.88 | 452.51812264484727 |
21.71 | 65.27 | 1013.24 | 63.58 | 444.91 | 449.0808543549187 |
21.73 | 69.05 | 1001.31 | 86.64 | 439.01 | 443.7646779089382 |
21.75 | 59.8 | 1016.65 | 72.94 | 453.17 | 449.2796285666693 |
Now that we have real predictions we can use an evaluation metric such as Root Mean Squared Error to validate our regression model. The lower the Root Mean Squared Error, the better our model.
//Now let's compute some evaluation metrics against our test dataset
import org.apache.spark.mllib.evaluation.RegressionMetrics
val metrics = new RegressionMetrics(predictionsAndLabels.select("Predicted_PE", "PE").rdd.map(r => (r(0).asInstanceOf[Double], r(1).asInstanceOf[Double])))
import org.apache.spark.mllib.evaluation.RegressionMetrics
metrics: org.apache.spark.mllib.evaluation.RegressionMetrics = org.apache.spark.mllib.evaluation.RegressionMetrics@225e9fbb
val rmse = metrics.rootMeanSquaredError
rmse: Double = 4.426730543741229
val explainedVariance = metrics.explainedVariance
explainedVariance: Double = 269.3177257387674
val r2 = metrics.r2
r2: Double = 0.9314313152952859
println (f"Root Mean Squared Error: $rmse")
println (f"Explained Variance: $explainedVariance")
println (f"R2: $r2")
Root Mean Squared Error: 4.426730543741229
Explained Variance: 269.3177257387674
R2: 0.9314313152952859
Generally a good model will have 68% of predictions within 1 RMSE and 95% within 2 RMSE of the actual value. Let's calculate and see if our RMSE meets this criteria.
display(predictionsAndLabels) // recall the DataFrame predictionsAndLabels
// First we calculate the residual error and divide it by the RMSE from predictionsAndLabels DataFrame and make another DataFrame that is registered as a temporary table Power_Plant_RMSE_Evaluation
predictionsAndLabels.selectExpr("PE", "Predicted_PE", "PE - Predicted_PE AS Residual_Error", s""" (PE - Predicted_PE) / $rmse AS Within_RSME""").createOrReplaceTempView("Power_Plant_RMSE_Evaluation")
SELECT * from Power_Plant_RMSE_Evaluation
PE | Predicted_PE | Residual_Error | Within_RSME |
---|---|---|---|
490.34 | 493.23742177145346 | -2.8974217714534802 | -0.6545286058917738 |
482.66 | 488.93663844862806 | -6.276638448628034 | -1.417894851879411 |
489.04 | 488.2642491377767 | 0.7757508622233331 | 0.17524239493640179 |
489.64 | 487.6850017397038 | 1.954998260296179 | 0.4416348004421164 |
489.0 | 487.84320058785806 | 1.156799412141936 | 0.26132139752158323 |
488.03 | 486.78756854756284 | 1.2424314524371312 | 0.28066570579809824 |
491.9 | 485.8682911927762 | 6.031708807223765 | 1.362565159009226 |
489.36 | 485.34119715268844 | 4.018802847311576 | 0.9078489886838934 |
481.47 | 482.9938172155268 | -1.5238172155267762 | -0.344230849488058 |
482.05 | 482.56483906211207 | -0.5148390621120598 | -0.11630232674540568 |
494.75 | 487.00024243767604 | 7.749757562323964 | 1.7506729821811777 |
482.98 | 483.34675257798034 | -0.36675257798032135 | -8.284953745351807e-2 |
475.34 | 482.83365300532864 | -7.493653005328667 | -1.6928188719152182 |
483.73 | 483.61453434986964 | 0.1154656501303748 | 2.6083731320314243e-2 |
488.42 | 484.5318759947065 | 3.8881240052934913 | 0.8783285919200003 |
495.35 | 487.26575386983336 | 8.084246130166662 | 1.8262340683005074 |
491.32 | 487.10787889447676 | 4.212121105523238 | 0.9515196517842229 |
486.46 | 482.0547750131382 | 4.405224986861754 | 0.9951418870728689 |
483.12 | 483.68809525895665 | -0.5680952589566459 | -0.12833292050266135 |
495.23 | 487.01940772826526 | 8.210592271734754 | 1.8547757064959307 |
479.91 | 480.1986449575326 | -0.2886449575325969 | -6.520499828947122e-2 |
492.12 | 484.355413676767 | 7.764586323233004 | 1.7540228045303168 |
491.38 | 483.7973981417882 | 7.582601858211774 | 1.7129124493318213 |
481.56 | 484.07023605498466 | -2.5102360549846594 | -0.5670632152060346 |
491.84 | 484.0557258406543 | 7.784274159345671 | 1.7584702936914771 |
484.64 | 483.0334383183447 | 1.6065616816553074 | 0.3629228537360962 |
490.07 | 483.99520022490054 | 6.07479977509945 | 1.372299423936783 |
478.02 | 480.0203474136323 | -2.000347413632312 | -0.4518791902661707 |
476.61 | 479.76022567105224 | -3.150225671052226 | -0.7116370964811038 |
487.09 | 483.77988944315933 | 3.310110556840641 | 0.7477551488921478 |
482.82 | 483.22173492804495 | -0.40173492804495936 | -9.075206274141889e-2 |
481.6 | 480.1171178824092 | 1.4828821175908047 | 0.33498359634457314 |
470.02 | 482.047812550469 | -12.027812550469037 | -2.7170871214365335 |
489.05 | 481.8132715930524 | 7.236728406947634 | 1.6347795140093504 |
487.03 | 484.63339497556956 | 2.3966050244304142 | 0.5413939250987108 |
490.57 | 482.2826790358652 | 8.287320964134778 | 1.8721087453248941 |
488.57 | 482.86050781997426 | 5.709492180025734 | 1.2897763086344047 |
480.39 | 483.17821215232357 | -2.788212152323581 | -0.6298581141934918 |
481.37 | 483.0829476732457 | -1.7129476732457078 | -0.3869554869716598 |
489.62 | 482.71830544679347 | 6.901694553206539 | 1.5590952476121591 |
481.13 | 481.3586268382406 | -0.2286268382405865 | -5.1646883852877044e-2 |
485.94 | 481.4164995749667 | 4.523500425033319 | 1.0218603505083248 |
482.49 | 482.30375285026366 | 0.18624714973634582 | 4.207329718762145e-2 |
483.77 | 483.6070229944064 | 0.16297700559357509 | 3.6816563371809816e-2 |
491.77 | 481.024916434396 | 10.745083565603977 | 2.427318188769363 |
483.43 | 482.20819442296613 | 1.2218055770338765 | 0.2760063132284699 |
481.49 | 482.69052441989805 | -1.200524419898045 | -0.2711988922830229 |
478.78 | 480.9741288614049 | -2.19412886140492 | -0.4956544880526121 |
492.96 | 485.85657176943226 | 7.103428230567715 | 1.6046669568833274 |
481.36 | 483.9924395950768 | -2.6324395950767894 | -0.5946690382586505 |
486.68 | 481.76650494734656 | 4.913495052653445 | 1.1099602752194693 |
484.94 | 483.0697247196729 | 1.870275280327121 | 0.42249584921572103 |
483.01 | 481.33834961288636 | 1.6716503871136297 | 0.3776264153862057 |
488.17 | 483.18839461041057 | 4.981605389589447 | 1.1253464244921645 |
490.41 | 480.167910698229 | 10.242089301771045 | 2.313691606156582 |
483.11 | 482.41490386834903 | 0.6950961316509847 | 0.1570224626917381 |
485.89 | 480.9406822010133 | 4.9493177989866695 | 1.1180526463225338 |
487.08 | 482.5086450499145 | 4.571354950085492 | 1.032670704691692 |
477.8 | 480.01746628251476 | -2.2174662825147493 | -0.5009264197591455 |
489.96 | 480.63940670946056 | 9.32059329053942 | 2.105525330363155 |
486.92 | 483.01084464877744 | 3.90915535122258 | 0.8830795804252357 |
486.37 | 482.5797273079528 | 3.7902726920472105 | 0.8562239455496382 |
488.2 | 483.515864024814 | 4.6841359751859954 | 1.0581479782655172 |
479.06 | 481.66343779511766 | -2.6034377951176566 | -0.5881175213608946 |
480.05 | 484.68450470880424 | -4.634504708804229 | -1.0469362575855816 |
487.18 | 482.82186089035656 | 4.358139109643446 | 0.9845051707078124 |
480.47 | 481.888024420669 | -1.418024420668985 | -0.32033221960479863 |
480.36 | 480.6306788292835 | -0.2706788292834972 | -6.1146443545383344e-2 |
487.85 | 479.89671820679814 | 7.9532817932018816 | 1.7966491781268903 |
486.11 | 479.69141160572326 | 6.418588394276753 | 1.449961394951344 |
481.83 | 481.1970697561752 | 0.6329302438247737 | 0.14297916658145085 |
482.96 | 482.17217802621497 | 0.7878219737850145 | 0.17796926331982943 |
483.92 | 481.3074409763506 | 2.6125590236493963 | 0.5901780101215298 |
477.69 | 479.6499231838063 | -1.9599231838063247 | -0.442747342409937 |
474.25 | 480.7071489556114 | -6.4571489556113875 | -1.4586722394343345 |
479.08 | 479.70246751967267 | -0.6224675196726821 | -0.1406156334843473 |
478.89 | 481.00544489343514 | -2.1154448934351535 | -0.4778797517789045 |
483.11 | 482.3890108435553 | 0.7209891564447162 | 0.162871706176942 |
488.43 | 481.25646633043834 | 7.173533669561664 | 1.620503800418579 |
483.28 | 480.33371483717843 | 2.946285162821539 | 0.6655668633337463 |
486.76 | 482.5311759738767 | 4.228824026123277 | 0.9552928474723261 |
476.58 | 480.6772110604413 | -4.097211060441339 | -0.9255614318414334 |
481.61 | 482.5325778309449 | -0.9225778309448742 | -0.20841065925037358 |
477.8 | 480.033051046645 | -2.2330510466450164 | -0.5044470235041152 |
475.32 | 479.33241321090156 | -4.01241321090157 | -0.9064055675524582 |
475.89 | 478.24994196854914 | -2.359941968549151 | -0.5331117277706852 |
485.03 | 480.335556547251 | 4.694443452748999 | 1.0604764411030796 |
482.46 | 479.7315598782726 | 2.728440121727374 | 0.6163555912805676 |
484.57 | 477.91894784424034 | 6.651052155759658 | 1.5024750411256238 |
483.94 | 483.4519151987013 | 0.4880848012987258 | 0.1102585297378917 |
482.39 | 482.344523193014 | 4.5476806985959684e-2 | 1.0273226828829113e-2 |
483.8 | 478.4576001166274 | 5.342399883372593 | 1.2068500286121981 |
482.22 | 478.7638216096876 | 3.4561783903124024 | 0.7807519242839278 |
481.52 | 479.1388800137486 | 2.381119986251406 | 0.5378958494815034 |
483.79 | 477.1846287648628 | 6.605371235137227 | 1.4921557049539163 |
480.54 | 476.81117998099046 | 3.728820019009561 | 0.8423417649130654 |
477.27 | 480.8442435906709 | -3.5742435906709034 | -0.8074228949228406 |
474.5 | 480.13649956917493 | -5.63649956917493 | -1.2732872519526048 |
475.52 | 479.22351270593606 | -3.7035127059360775 | -0.8366248339132186 |
481.44 | 478.9150538893924 | 2.524946110607573 | 0.5703862219889325 |
480.6 | 476.2108626985999 | 4.389137301400126 | 0.9915076732207578 |
487.19 | 481.02543213301226 | 6.164567866987738 | 1.3925780677352422 |
475.42 | 480.36098930984303 | -4.940989309843019 | -1.1161712376708537 |
476.22 | 478.5121049560687 | -2.2921049560686697 | -0.5177873225894406 |
485.13 | 479.57731721621764 | 5.552682783782359 | 1.2543530104024667 |
488.02 | 484.33140555054166 | 3.6885944494583214 | 0.8332547944833625 |
477.78 | 478.4450809561198 | -0.665080956119823 | -0.15024202389281485 |
477.2 | 480.5031526805201 | -3.3031526805200997 | -0.7461833621633669 |
467.56 | 479.216941083543 | -11.656941083543018 | -2.6333071255092055 |
485.18 | 477.61463487250904 | 7.5653651274909635 | 1.7090186657480926 |
483.52 | 478.33312476560263 | 5.186875234397348 | 1.1717169552438327 |
480.21 | 479.4778900760478 | 0.73210992395218 | 0.16538389150143323 |
478.81 | 481.48536176156256 | -2.675361761562556 | -0.6043651708923505 |
484.67 | 477.96751548079953 | 6.702484519200482 | 1.5140936302700527 |
477.9 | 479.6817134321856 | -1.7817134321855974 | -0.40248969630751263 |
475.17 | 477.50500673160894 | -2.335006731608928 | -0.5274788489013178 |
485.73 | 478.3204506384974 | 7.409549361502627 | 1.67381982894321 |
479.91 | 478.13995557721 | 1.770044422790022 | 0.39985366294603464 |
486.4 | 479.6503730840347 | 6.74962691596528 | 1.5247431144207089 |
480.15 | 477.13243295540536 | 3.017567044594614 | 0.6816694657100887 |
480.58 | 482.82343628916317 | -2.243436289163185 | -0.5067930534726327 |
484.07 | 478.169470130244 | 5.900529869755985 | 1.3329317905058622 |
481.89 | 480.64379114125165 | 1.2462088587483322 | 0.28151902322365097 |
483.14 | 478.8928744938183 | 4.247125506181703 | 0.9594271583090908 |
479.31 | 476.1246111330096 | 3.1853888669904222 | 0.7195804749159878 |
484.21 | 477.28823577085257 | 6.9217642291474135 | 1.563628994525951 |
476.02 | 478.3060058047933 | -2.2860058047933194 | -0.5164095221529597 |
480.69 | 478.2957350932858 | 2.39426490671417 | 0.5408652916765675 |
481.91 | 476.52270993698903 | 5.387290063010994 | 1.2169907361151358 |
485.06 | 478.99917896902593 | 6.060821030974068 | 1.3691416206805749 |
485.29 | 480.8674382556005 | 4.422561744399502 | 0.9990582667500236 |
482.39 | 481.121045370298 | 1.268954629701966 | 0.28665730095004055 |
478.25 | 478.83543896627515 | -0.5854389662751487 | -0.1322508701377536 |
475.79 | 476.292443939849 | -0.5024439398490017 | -0.1135022642296099 |
485.87 | 479.017884430858 | 6.852115569142029 | 1.5478953375262363 |
479.23 | 476.458241933477 | 2.7717580665230344 | 0.6261411303748561 |
478.61 | 480.1903466285652 | -1.5803466285651666 | -0.3570008639445094 |
479.94 | 479.44872675152214 | 0.49127324847785303 | 0.11097880108660418 |
479.25 | 479.3384367489257 | -8.843674892568743e-2 | -1.9977892950978116e-2 |
480.99 | 477.4418937681193 | 3.548106231880695 | 0.8015184563011668 |
481.07 | 476.335613607556 | 4.73438639244398 | 1.0694995653480046 |
480.4 | 482.3769169335783 | -1.976916933578309 | -0.44658623651114027 |
482.8 | 476.0442018293985 | 6.7557981706015084 | 1.5261372030319875 |
480.08 | 479.653352828527 | 0.42664717147300735 | 9.637974736823006e-2 |
475.0 | 478.669695167618 | -3.669695167617988 | -0.8289854400120238 |
483.88 | 476.69692642239215 | 7.183073577607843 | 1.6226588690300323 |
482.52 | 476.90393713153384 | 5.616062868466145 | 1.2686705940135579 |
478.45 | 479.2188844607779 | -0.7688844607778833 | -0.1736912724143504 |
482.3 | 475.8126128394661 | 6.487387160533899 | 1.4655030606518726 |
472.45 | 476.2100211409336 | -3.7600211409335884 | -0.8493901094227944 |
480.2 | 480.2141595165957 | -1.4159516595725563e-2 | -3.198639821379035e-3 |
478.38 | 474.9481764100604 | 3.4318235899395972 | 0.7752501662410219 |
472.77 | 479.3059821141381 | -6.535982114138108 | -1.476480677907776 |
483.53 | 476.37445774556215 | 7.155542254437819 | 1.6164395333605168 |
475.47 | 478.69800488773853 | -3.228004887738507 | -0.7292074491189552 |
467.24 | 476.41215657483457 | -9.17215657483456 | -2.0719934236346713 |
481.03 | 480.7338755379791 | 0.2961244620208845 | 6.689462100636837e-2 |
482.37 | 480.5113047501551 | 1.8586952498449136 | 0.41987991622233384 |
484.97 | 478.0206284049022 | 6.94937159509783 | 1.5698655082865296 |
479.53 | 475.49807173046975 | 4.031928269530226 | 0.910814026218696 |
482.8 | 476.4769333498684 | 6.323066650131636 | 1.4283829990672368 |
477.26 | 480.56589740371004 | -3.3058974037100484 | -0.7468033961055344 |
479.02 | 478.9378167534155 | 8.218324658446363e-2 | 1.856522455396774e-2 |
476.69 | 479.48396988958547 | -2.793969889585469 | -0.6311587890832315 |
476.62 | 476.72728884411396 | -0.10728884411395256 | -2.4236587940877453e-2 |
475.69 | 475.128341196902 | 0.5616588030979983 | 0.126878922841171 |
482.95 | 477.4310812891916 | 5.518918710808407 | 1.2467256943414768 |
483.24 | 479.02016340856596 | 4.219836591434046 | 0.9532625827881703 |
484.86 | 476.63324412260977 | 8.226755877390246 | 1.858427070746765 |
491.97 | 478.33373080005674 | 13.636269199943285 | 3.080438049075077 |
474.88 | 478.3928356085176 | -3.512835608517605 | -0.7935508099728947 |
475.64 | 477.10087603877054 | -1.4608760387705502 | -0.3300124153334841 |
484.96 | 478.1639636289798 | 6.796036371020193 | 1.5352270267791266 |
475.42 | 478.9677202117326 | -3.54772021173261 | -0.8014312542127925 |
480.38 | 475.6006326388749 | 4.779367361125082 | 1.0796607821278916 |
478.82 | 474.9766634864784 | 3.8433365135215922 | 0.8682110816425288 |
482.55 | 478.78607750598024 | 3.7639224940197664 | 0.8502714264687785 |
480.14 | 478.936561588862 | 1.203438411137995 | 0.27185716393772524 |
482.55 | 476.17230944382703 | 6.377690556172979 | 1.4407225588171686 |
477.91 | 478.2490255806105 | -0.33902558061049604 | -7.658599891286139e-2 |
476.25 | 474.4577268339341 | 1.792273166065911 | 0.40487514393663104 |
471.13 | 478.4377754427823 | -7.307775442782315 | -1.6508290646049095 |
482.16 | 478.00197412694797 | 4.158025873052054 | 0.9392995195813114 |
480.87 | 479.3152324207473 | 1.5547675792527116 | 0.3512225476318935 |
477.34 | 477.2801935898291 | 5.980641017089283e-2 | 1.3510289271040145e-2 |
483.66 | 478.2850316568694 | 5.374968343130604 | 1.2142072552236207 |
481.95 | 475.9420528274343 | 6.007947172565707 | 1.3571973973116784 |
479.68 | 476.171982140594 | 3.5080178594059817 | 0.7924624787397152 |
478.66 | 474.3450313497953 | 4.314968650204719 | 0.9747529486079686 |
478.8 | 479.7691576930095 | -0.9691576930094925 | -0.21893306661272718 |
481.12 | 475.8267885776992 | 5.293211422300828 | 1.1957383378088555 |
476.54 | 478.0366119605893 | -1.4966119605892914 | -0.33808517274793 |
478.03 | 477.46151999839276 | 0.5684800016072131 | 0.12841983400389334 |
479.23 | 479.1109121135172 | 0.11908788648281643 | 2.6901995797144206e-2 |
480.74 | 477.7248132633824 | 3.015186736617636 | 0.6811317532937902 |
478.88 | 479.5430352943536 | -0.6630352943536195 | -0.1497799081742298 |
481.05 | 479.7126835818631 | 1.3373164181369361 | 0.30210025320554296 |
473.54 | 473.2606881642323 | 0.27931183576771446 | 6.309664277231011e-2 |
469.73 | 476.0517595807651 | -6.321759580765104 | -1.4280877316337173 |
475.51 | 476.88388448180007 | -1.3738844818000757 | -0.3103609917578006 |
476.67 | 475.61433131158884 | 1.0556686884111741 | 0.23847593115956434 |
472.16 | 477.71300668632784 | -5.553006686327819 | -1.254426180102375 |
481.85 | 475.26738125651104 | 6.582618743488979 | 1.4870159090202295 |
479.45 | 479.3846135509578 | 6.538644904219382e-2 | 1.477082203131632e-2 |
482.38 | 475.5344685772045 | 6.845531422795489 | 1.546407976531145 |
469.58 | 473.85672752722843 | -4.276727527228445 | -0.9661142653634369 |
477.93 | 477.38261350304344 | 0.5473864969565625 | 0.12365480382140936 |
478.21 | 477.2300569616712 | 0.9799430383287699 | 0.22136947994593228 |
477.62 | 479.26549518227034 | -1.6454951822703379 | -0.37171794533481045 |
472.46 | 472.77738085732864 | -0.31738085732865784 | -7.169644824607395e-2 |
467.37 | 473.28874249013086 | -5.918742490130853 | -1.3370460279085923 |
473.2 | 475.32128019247386 | -2.1212801924738756 | -0.4791979479015423 |
480.05 | 476.8370208052357 | 3.21297919476433 | 0.7258131397464497 |
469.65 | 473.90133694044016 | -4.251336940440183 | -0.9603785228018842 |
485.23 | 477.4312500724955 | 7.7987499275045025 | 1.7617403748531366 |
477.88 | 474.53026960482464 | 3.3497303951753565 | 0.7567052844251841 |
475.21 | 475.5632280329809 | -0.3532280329808941 | -7.979433794096832e-2 |
475.91 | 476.45899184844643 | -0.5489918484464056 | -0.12401745329238582 |
477.85 | 475.1645128846792 | 2.685487115320825 | 0.6066524918978238 |
464.86 | 472.950567432704 | -8.090567432704006 | -1.8276620527858702 |
466.05 | 473.0969147577929 | -7.046914757792877 | -1.5919005433380664 |
463.16 | 472.9327435276111 | -9.772743527611055 | -2.207666229296096 |
475.75 | 478.45612153617066 | -2.706121536170656 | -0.6113138148868648 |
471.6 | 474.6981382928805 | -3.098138292880492 | -0.6998705392766273 |
470.82 | 475.02803269176593 | -4.208032691765936 | -0.9505960776662812 |
479.63 | 475.85397168574394 | 3.7760283142560525 | 0.8530061355541106 |
477.68 | 479.1805376742791 | -1.5005376742790872 | -0.3389719928629122 |
478.73 | 473.56546210095377 | 5.164537899046252 | 1.166670943264929 |
473.66 | 477.1725989266339 | -3.5125989266338706 | -0.7934973434514077 |
474.28 | 475.0636358283222 | -0.7836358283222467 | -0.17702361157495725 |
468.19 | 473.5875494551514 | -5.39754945515142 | -1.219308336438682 |
463.57 | 472.67682233352457 | -9.106822333524576 | -2.0572343953485794 |
475.46 | 476.92356417785004 | -1.4635641778500599 | -0.3306196669050328 |
473.05 | 471.6877231007335 | 1.3622768992665328 | 0.30773883474624397 |
474.92 | 475.94743429051795 | -1.027434290517931 | -0.23209777066069173 |
481.31 | 474.9322788912158 | 6.377721108784215 | 1.4407294606628838 |
473.43 | 474.55112952359076 | -1.1211295235907528 | -0.2532635570457008 |
477.27 | 477.4663665421075 | -0.19636654210751203 | -4.435927151363359e-2 |
476.91 | 473.86509374821264 | 3.0449062517873813 | 0.6878454023121982 |
468.27 | 473.1709885161772 | -4.900988516177222 | -1.1071350441934005 |
480.11 | 474.8258713039421 | 5.2841286960579055 | 1.1936865467289208 |
471.79 | 473.12117303724983 | -1.3311730372498118 | -0.3007124612840739 |
480.87 | 474.6297415713401 | 6.240258428659899 | 1.4096765924645542 |
477.53 | 474.8010725987133 | 2.7289274012866827 | 0.6164656679058543 |
476.03 | 471.6665106288925 | 4.363489371107448 | 0.9857137966702774 |
479.28 | 474.52503372536427 | 4.754966274635706 | 1.0741485680348346 |
470.76 | 473.3969220129811 | -2.636922012981131 | -0.5956816180531624 |
477.65 | 475.74847822607217 | 1.9015217739278114 | 0.42955444320330144 |
474.16 | 472.3991408528027 | 1.7608591471973227 | 0.39777870593161097 |
476.31 | 477.2616855096004 | -0.9516855096003951 | -0.2149860941831989 |
479.17 | 474.91770513370466 | 4.252294866295358 | 0.9605949185923461 |
473.16 | 477.42289023883336 | -4.262890238833336 | -0.962988417006872 |
478.03 | 473.500462025312 | 4.529537974687969 | 1.0232242351168392 |
470.66 | 473.24796901874254 | -2.5879690187425126 | -0.5846231192909482 |
479.14 | 473.0905849348082 | 6.049415065191795 | 1.3665650089646437 |
480.04 | 472.3076103285207 | 7.732389671479325 | 1.7467495694789534 |
472.54 | 471.6158321510643 | 0.9241678489357241 | 0.20876984487848865 |
479.24 | 473.69713759779097 | 5.542862402209039 | 1.2521345827217476 |
474.42 | 472.19156900447024 | 2.228430995529777 | 0.5034033523184427 |
477.41 | 476.3350912306922 | 1.0749087693077968 | 0.2428222722586008 |
472.16 | 475.7743537662549 | -3.614353766254851 | -0.816483797814402 |
476.55 | 472.6471168581112 | 3.9028831418888217 | 0.8816626861119764 |
474.24 | 472.6289552744016 | 1.61104472559839 | 0.3639355749529818 |
474.91 | 472.56580879643343 | 2.344191203566595 | 0.5295536243743026 |
474.94 | 477.2343522450388 | -2.2943522450387945 | -0.5182949859649091 |
478.47 | 473.38659302581175 | 5.083406974188279 | 1.1483434385622358 |
481.3 | 473.3858358704542 | 7.9141641295458385 | 1.7878124840318883 |
477.19 | 472.2522916899102 | 4.937708310089818 | 1.1154300586628294 |
479.61 | 471.9871102146375 | 7.622889785362531 | 1.7220135063653736 |
474.03 | 476.6632591260645 | -2.6332591260645017 | -0.5948541705994637 |
484.94 | 473.0585846959981 | 11.881415304001905 | 2.6840159315322563 |
478.76 | 472.54092404509436 | 6.219075954905634 | 1.4048914641300063 |
477.23 | 472.5905086170786 | 4.639491382921392 | 1.0480627490374306 |
477.93 | 473.2433331311531 | 4.686666868846885 | 1.0587197080412245 |
483.54 | 473.33367076102707 | 10.206329238972955 | 2.305613395286339 |
470.66 | 472.2586067915216 | -1.5986067915215472 | -0.36112584123326663 |
468.57 | 472.6833243896903 | -4.1133243896903195 | -0.9292014386342035 |
475.46 | 469.2649153602577 | 6.1950846397422765 | 1.3994718175248435 |
467.6 | 476.7704524928655 | -9.17045249286548 | -2.0716084709134153 |
479.16 | 472.29869321009727 | 6.8613067899027556 | 1.549971637556226 |
473.72 | 475.92801307429187 | -2.2080130742918413 | -0.49879093666852153 |
470.9 | 474.17032118629646 | -3.270321186296485 | -0.7387667159728655 |
479.2 | 473.8182300033423 | 5.381769996657681 | 1.2157437511679456 |
476.32 | 474.48343187958693 | 1.8365681204130624 | 0.4148813898351482 |
477.34 | 473.7501803957154 | 3.589819604284571 | 0.8109415219230067 |
472.34 | 471.57861538146386 | 0.7613846185361126 | 0.1719970553917276 |
473.29 | 471.6415723647882 | 1.6484276352118172 | 0.3723803874944367 |
477.3 | 472.77018851731134 | 4.529811482688672 | 1.0232860206712118 |
472.11 | 471.7714368874517 | 0.33856311254828597 | 7.648152721356992e-2 |
468.09 | 474.56364117639623 | -6.4736411763962565 | -1.462397837959455 |
477.62 | 472.71482842742716 | 4.90517157257284 | 1.108079998116908 |
468.84 | 472.4884135100401 | -3.648413510040143 | -0.8241779060165485 |
477.2 | 474.25793943550735 | 2.9420605644926354 | 0.6646125250727748 |
473.16 | 475.5315818680211 | -2.371581868021053 | -0.53574118519008 |
467.46 | 472.33524056547066 | -4.875240565470676 | -1.10131857299595 |
476.24 | 471.7121476384467 | 4.5278523615533 | 1.0228434545118277 |
462.07 | 471.87019509945424 | -9.800195099454243 | -2.213867549112591 |
478.3 | 473.3904021135141 | 4.909597886485926 | 1.1090799039998953 |
474.64 | 472.29889800972325 | 2.3411019902767407 | 0.5288557699963753 |
476.18 | 473.74084346680155 | 2.4391565331984566 | 0.5510063260225041 |
472.02 | 474.75489479763837 | -2.7348947976383897 | -0.6178137048583506 |
468.75 | 475.57737397289577 | -6.827373972895771 | -1.5423062021583203 |
476.87 | 476.24038222415226 | 0.6296177758477484 | 0.14223087889050282 |
472.27 | 469.24091010472654 | 3.0290898952734437 | 0.6842724817656111 |
476.7 | 472.7393314749404 | 3.9606685250595888 | 0.8947164246668264 |
473.93 | 472.63331852543587 | 1.2966814745641386 | 0.29292080503916434 |
476.04 | 471.3877571195438 | 4.652242880456242 | 1.0509433168535312 |
471.92 | 475.2099855538808 | -3.289985553880797 | -0.7432089035851462 |
469.9 | 471.8496328972687 | -1.9496328972687138 | -0.4404227630311086 |
467.19 | 474.9342554366792 | -7.744255436679225 | -1.749430050046418 |
464.07 | 472.07659673556776 | -8.006596735567769 | -1.808693042518245 |
472.45 | 477.14283533329444 | -4.692835333294454 | -1.060113166347895 |
475.51 | 470.4781347032422 | 5.031865296757815 | 1.1367001553487732 |
476.91 | 473.32755876405156 | 3.5824412359484654 | 0.8092747458987606 |
469.04 | 472.1000066981285 | -3.0600066981284613 | -0.6912565984968021 |
474.49 | 471.88884153658876 | 2.6011584634112523 | 0.587602619519935 |
474.29 | 471.6865589330199 | 2.6034410669801105 | 0.5881182604757834 |
465.61 | 472.6232718336548 | -7.013271833654812 | -1.5843005948420752 |
477.71 | 472.2836129719496 | 5.426387028050385 | 1.2258227543852944 |
460.6 | 470.4334505230218 | -9.833450523021781 | -2.2213799610922536 |
474.72 | 471.9112964053814 | 2.8087035946186347 | 0.6344871382762939 |
476.89 | 474.30545019143153 | 2.584549808568454 | 0.5838507184998287 |
471.56 | 474.67947860914313 | -3.1194786091431297 | -0.7046913242898037 |
473.54 | 475.18749689836216 | -1.6474968983621352 | -0.37217013370995955 |
467.96 | 469.77145732692486 | -1.8114573269248808 | -0.40920885267932683 |
475.13 | 472.0849073512217 | 3.0450926487782795 | 0.6878875094585574 |
470.88 | 473.80322256281073 | -2.923222562810736 | -0.6603570138109623 |
474.22 | 472.095881821932 | 2.124118178068045 | 0.4798390498539035 |
476.41 | 471.4926212025483 | 4.917378797451704 | 1.1108376145469667 |
465.45 | 471.19014476340374 | -5.740144763403748 | -1.2967007380920217 |
478.51 | 471.43677609572285 | 7.0732239042771425 | 1.597843788860761 |
464.43 | 469.74360467126985 | -5.313604671269843 | -1.200345179984476 |
475.19 | 471.726841712236 | 3.4631582877639744 | 0.7823286855940194 |
476.12 | 474.3311768410229 | 1.7888231589770953 | 0.4040957861115442 |
466.52 | 470.11266519044386 | -3.5926651904438813 | -0.8115843408457291 |
466.75 | 469.0361408145495 | -2.286140814549526 | -0.5164400209047749 |
476.97 | 474.02676004123447 | 2.9432399587655595 | 0.6648789506573615 |
476.73 | 470.9633331252543 | 5.766666874745738 | 1.3026920924516152 |
473.82 | 471.1277546061928 | 2.692245393807184 | 0.6081791894050652 |
478.29 | 473.9108447766557 | 4.3791552233442985 | 0.9892527182472863 |
473.79 | 470.24389582880195 | 3.546104171198067 | 0.8010661900828269 |
477.75 | 471.7153938676628 | 6.034606132337217 | 1.3632196657800408 |
470.33 | 474.5591424673956 | -4.229142467395604 | -0.9553647834686965 |
474.57 | 469.80095187612244 | 4.769048123877553 | 1.077329662773424 |
464.57 | 470.2642322610154 | -5.694232261015429 | -1.2863290875172577 |
469.34 | 471.3638012594583 | -2.0238012594583097 | -0.45717742235738257 |
465.82 | 471.92094622344666 | -6.10094622344667 | -1.3782059158926094 |
477.74 | 471.8558058768037 | 5.884194123196323 | 1.3292415395637174 |
474.28 | 470.3010756285351 | 3.9789243714648705 | 0.8988404268451593 |
464.14 | 466.34356012780336 | -2.203560127803371 | -0.4977850144773084 |
454.18 | 466.58075506687595 | -12.400755066875945 | -2.8013349681761994 |
467.21 | 469.33960229950543 | -2.12960229950545 | -0.48107791483184054 |
470.36 | 471.7275614063617 | -1.3675614063616877 | -0.3089326067734631 |
476.84 | 470.57863445021957 | 6.2613655497804075 | 1.4144446986124088 |
474.35 | 470.6068799512955 | 3.7431200487044975 | 0.8455721466933965 |
477.61 | 472.52356631529506 | 5.086433684704957 | 1.149027173541533 |
478.1 | 471.9097423001989 | 6.190257699801123 | 1.3983814100800132 |
462.1 | 471.2847044384872 | -9.184704438487188 | -2.0748279904845486 |
474.82 | 471.2662319288032 | 3.553768071196771 | 0.8027974678109325 |
463.03 | 469.73593028388507 | -6.705930283885095 | -1.5148720297345255 |
472.68 | 470.7066911497908 | 1.9733088502092073 | 0.44577116919826687 |
474.91 | 471.3317718037191 | 3.578228196280918 | 0.8083230187434893 |
468.91 | 470.5269251596348 | -1.616925159634775 | -0.3652639670876011 |
464.45 | 470.20921701183426 | -5.7592170118342665 | -1.3010091657774348 |
466.83 | 466.283253383728 | 0.5467466162720029 | 0.1235102545478006 |
475.24 | 470.1859434968623 | 5.054056503137701 | 1.1417131567412484 |
473.84 | 475.4613835085187 | -1.6213835085187043 | -0.3662711096818647 |
475.13 | 474.59940353258173 | 0.5305964674182633 | 0.11986193019325553 |
476.42 | 472.0863918606848 | 4.333608139315231 | 0.9789636158094918 |
474.46 | 470.7913069417128 | 3.6686930582872037 | 0.8287590631587497 |
468.13 | 467.5640782641256 | 0.5659217358743831 | 0.12784192086742582 |
470.27 | 471.5687225135002 | -1.298722513500195 | -0.2933818764587795 |
471.6 | 469.9595844589466 | 1.6404155410534145 | 0.37057045258215005 |
472.49 | 471.6990473850648 | 0.7909526149352359 | 0.1786764762661082 |
479.32 | 473.0943993730856 | 6.2256006269143995 | 1.4063653898510986 |
471.65 | 470.0014068012306 | 1.6485931987693903 | 0.3724177883608181 |
474.71 | 472.62554215898064 | 2.0844578410193435 | 0.47087976564701284 |
467.2 | 468.5105758445902 | -1.3105758445902325 | -0.29605954815641566 |
468.37 | 466.9976240128761 | 1.3723759871239167 | 0.31002022227539067 |
464.4 | 467.75156303440326 | -3.3515630344032843 | -0.7571192782768132 |
467.47 | 468.1754530950858 | -0.7054530950857725 | -0.15936210440528922 |
468.43 | 466.2393815815779 | 2.1906184184221047 | 0.494861477737634 |
466.05 | 470.0991015601047 | -4.0491015601047025 | -0.9146934786508656 |
471.1 | 470.4126440262426 | 0.6873559737574055 | 0.1552739582781314 |
468.01 | 470.10813793557554 | -2.0981379355755507 | -0.47397010385961286 |
477.41 | 473.0481764257403 | 4.361823574259745 | 0.9853374925715203 |
469.56 | 470.78228922773883 | -1.2222892277388269 | -0.2761155700942699 |
467.18 | 467.7057590529845 | -0.5257590529844833 | -0.1187691565568255 |
461.35 | 469.82262135976373 | -8.472621359763707 | -1.9139681704238347 |
474.4 | 474.37807432859705 | 2.1925671402925673e-2 | 4.953016946993865e-3 |
473.26 | 468.3049320923233 | 4.955067907676664 | 1.119351597915177 |
470.04 | 469.55683536649303 | 0.4831646335069877 | 0.10914706208854617 |
472.31 | 471.00250996619167 | 1.3074900338083353 | 0.29536246240624275 |
467.19 | 469.9361134525989 | -2.746113452598877 | -0.6203480029932007 |
476.2 | 469.7928661275298 | 6.407133872470183 | 1.4473738144123014 |
461.88 | 469.1737219130262 | -7.293721913026218 | -1.647654367248196 |
471.24 | 474.28849061231415 | -3.04849061231414 | -0.6886551106265717 |
473.02 | 468.0625826724588 | 4.9574173275411795 | 1.119882332695914 |
471.32 | 473.48514686066005 | -2.165146860660059 | -0.489107443804383 |
474.23 | 472.6140402906572 | 1.6159597093428033 | 0.3650458715241979 |
466.85 | 469.90391551417036 | -3.053915514170342 | -0.6898805978801096 |
465.78 | 470.2469481759373 | -4.466948175937318 | -1.0090851773783591 |
473.46 | 467.6324473479292 | 5.8275526520707785 | 1.3164462111456308 |
466.64 | 470.94254421143154 | -4.302544211431552 | -0.9719462634821406 |
466.2 | 471.4942842031327 | -5.29428420313269 | -1.1959806793792904 |
467.28 | 468.30907898088304 | -1.029078980883071 | -0.23246930679755132 |
475.73 | 468.8757392252607 | 6.854260774739316 | 1.5483799402315714 |
470.89 | 474.2377547754183 | -3.3477547754183092 | -0.7562589912213115 |
466.09 | 465.69130458295416 | 0.3986954170458148 | 9.006543612859241e-2 |
475.61 | 472.81803434170047 | 2.791965658299546 | 0.6307060325248371 |
465.75 | 466.9269506815472 | -1.1769506815472255 | -0.2658735764279277 |
474.81 | 469.0391508364551 | 5.770849163544881 | 1.3036368729748065 |
474.26 | 468.12380368536253 | 6.136196314637459 | 1.386168923995876 |
471.48 | 471.9340237695596 | -0.45402376955956925 | -0.10256413058651032 |
475.77 | 467.8576907607767 | 7.912309239223305 | 1.7873934636500952 |
470.31 | 468.5394722259148 | 1.7705277740852239 | 0.3999628521750663 |
469.12 | 473.3820295069999 | -4.262029506999909 | -0.9627939773803977 |
475.13 | 469.7647231785763 | 5.36527682142372 | 1.2120179370324364 |
467.41 | 468.04615604018517 | -0.636156040185142 | -0.1437078751234535 |
469.83 | 469.00047164404356 | 0.8295283559564268 | 0.1873907498456762 |
474.46 | 474.06674201992485 | 0.39325798007513413 | 8.88371171882475e-2 |
472.18 | 467.1383058280765 | 5.041694171923496 | 1.1389205017350195 |
468.46 | 468.52920326163013 | -6.920326163015034e-2 | -1.5633041348765617e-2 |
475.03 | 468.1969526319267 | 6.833047368073267 | 1.5435878241412795 |
473.49 | 469.41250494615895 | 4.077495053841062 | 0.9211075789571298 |
469.02 | 468.25937427156714 | 0.7606257284328422 | 0.1718256218482192 |
468.9 | 473.50603668317 | -4.606036683170032 | -1.0405053204971595 |
471.19 | 468.4742214263607 | 2.715778573639284 | 0.6134953430763954 |
474.13 | 470.0383017109995 | 4.091698289000476 | 0.9243160948175531 |
472.01 | 468.0562294553364 | 3.9537705446635982 | 0.8931581684486467 |
475.89 | 472.7669442736334 | 3.1230557263666014 | 0.7054993963393956 |
471.0 | 466.0557279256281 | 4.944272074371895 | 1.1169128153423291 |
472.37 | 466.7407287783567 | 5.629271221643307 | 1.2716543656813042 |
466.08 | 464.7921473620272 | 1.287852637972776 | 0.29092636772157215 |
471.61 | 470.21248865654456 | 1.3975113434554487 | 0.3156983081862374 |
471.44 | 472.8484021647698 | -1.408402164769825 | -0.3181585485841478 |
462.3 | 470.2485412085585 | -7.948541208558481 | -1.7955782783744527 |
461.49 | 470.26460015531467 | -8.774600155314658 | -1.9821852874511872 |
464.7 | 465.5107675088055 | -0.8107675088054975 | -0.18315266781977688 |
467.68 | 466.3776971038667 | 1.3023028961333125 | 0.29419068616556854 |
472.41 | 466.5610830112792 | 5.848916988720816 | 1.3212724223728407 |
468.58 | 470.9265999279328 | -2.3465999279328003 | -0.530097756063007 |
472.22 | 468.9876557902937 | 3.232344209706355 | 0.7301877034906569 |
469.18 | 467.59953010733625 | 1.580469892663757 | 0.357028709348103 |
473.88 | 474.4459916698643 | -0.5659916698643315 | -0.12785771898056086 |
461.12 | 467.5690713933046 | -6.449071393304621 | -1.4568475152441107 |
472.4 | 467.17680485054154 | 5.223195149458434 | 1.1799216369388674 |
458.49 | 470.1275872590886 | -11.637587259088605 | -2.628935089700119 |
475.36 | 469.2980914389406 | 6.061908561059397 | 1.3693872941125993 |
473.0 | 469.167238069639 | 3.8327619303610163 | 0.8658222795557321 |
461.44 | 470.1249314556375 | -8.684931455637525 | -1.9619290963884823 |
463.9 | 471.8102876158123 | -7.910287615812308 | -1.7869367782044778 |
461.06 | 471.4247999233475 | -10.364799923347505 | -2.341411979096371 |
466.46 | 469.5896988846236 | -3.129698884623622 | -0.707000088145996 |
472.46 | 467.61330541009727 | 4.846694589902711 | 1.0948700269898406 |
471.73 | 466.56182696263323 | 5.168173037366785 | 1.1674921223009271 |
471.05 | 469.1422671962815 | 1.9077328037184884 | 0.4309575170360782 |
467.21 | 469.69281643752464 | -2.4828164375246615 | -0.5608691138960362 |
472.59 | 468.51537272186124 | 4.074627278138735 | 0.9204597474087691 |
466.33 | 464.30951140859736 | 2.020488591402625 | 0.4564290894685944 |
472.04 | 466.16900295184536 | 5.870997048154663 | 1.3262603156307815 |
472.17 | 469.2063750462153 | 2.963624953784688 | 0.669483928262775 |
466.51 | 472.79218089209525 | -6.282180892095255 | -1.4191468918245702 |
460.8 | 469.8764663630881 | -9.076466363088116 | -2.050376970859669 |
463.97 | 470.8734693970194 | -6.903469397019364 | -1.5594961854590164 |
464.56 | 468.2319508045609 | -3.671950804560879 | -0.8294949891975011 |
469.12 | 472.4449714286493 | -3.3249714286492917 | -0.7511122251048985 |
471.26 | 467.1630433917511 | 4.096956608248888 | 0.9255039510009041 |
466.06 | 469.31300214374124 | -3.2530021437412415 | -0.7348543381165421 |
470.66 | 470.03995588291366 | 0.6200441170863655 | 0.14006818598051338 |
463.65 | 464.0442884425782 | -0.3942884425782154 | -8.906989903320035e-2 |
470.35 | 467.7114787859118 | 2.6385212140882004 | 0.5960428781504888 |
465.92 | 470.4612645139354 | -4.541264513935403 | -1.025873264492258 |
466.67 | 467.5120353140818 | -0.8420353140817838 | -0.19021607612243366 |
471.38 | 469.40462020200255 | 1.975379797997448 | 0.44623899703819914 |
468.45 | 470.4032638964206 | -1.9532638964205944 | -0.44124300702744 |
467.22 | 469.663531445212 | -2.4435314452119883 | -0.5519946201981497 |
462.88 | 465.52654943877917 | -2.646549438779175 | -0.5978564569558049 |
473.56 | 467.6786715108731 | 5.881328489126929 | 1.328594191810996 |
469.81 | 465.64964430714963 | 4.1603556928503735 | 0.9398258267001429 |
468.66 | 467.86078237900523 | 0.7992176209947957 | 0.18054354406657444 |
468.35 | 467.2642672326089 | 1.0857327673911072 | 0.2452674172649112 |
469.94 | 467.09839147806196 | 2.841608521938042 | 0.6419203730291817 |
463.49 | 467.72367995173977 | -4.233679951739759 | -0.9563898027914945 |
465.48 | 467.50497110984463 | -2.024971109844614 | -0.45744169197459666 |
464.14 | 466.3135306312695 | -2.1735306312695 | -0.49100134055879346 |
471.16 | 467.46352561567244 | 3.696474384327587 | 0.8350348745653559 |
472.67 | 467.6987016384155 | 4.971298361584502 | 1.123018063209927 |
468.88 | 470.13332337428767 | -1.2533233742876746 | -0.2831261948075192 |
464.79 | 466.32771593378936 | -1.5377159337893431 | -0.3473705748734709 |
461.18 | 461.37564919433316 | -0.19564919433315708 | -4.419722239696233e-2 |
468.82 | 467.0362704395636 | 1.7837295604363703 | 0.4029451403944863 |
461.96 | 465.67304883933747 | -3.713048839337489 | -0.8387790498310802 |
462.81 | 466.2063693616964 | -3.3963693616963724 | -0.7672410435052024 |
465.62 | 471.8419294419794 | -6.221929441979398 | -1.4055360678721063 |
464.79 | 467.0254238326554 | -2.2354238326553855 | -0.5049830367054888 |
465.39 | 467.36024219232945 | -1.970242192329465 | -0.4450784100954843 |
465.51 | 470.3636999560957 | -4.8536999560956815 | -1.0964525416976478 |
465.25 | 466.3425067004856 | -1.0925067004856146 | -0.24679765115368602 |
469.75 | 466.9286675356798 | 2.8213324643202213 | 0.6373400044213638 |
468.64 | 466.5450197688432 | 2.0949802311567964 | 0.4732567773113731 |
456.71 | 469.5289092761888 | -12.818909276188833 | -2.89579615237999 |
468.87 | 464.1737178909659 | 4.696282109034087 | 1.0608917942100555 |
463.77 | 466.22172115408887 | -2.4517211540888866 | -0.5538446783383447 |
464.16 | 468.91409473616267 | -4.754094736162642 | -1.0739516871846333 |
472.42 | 469.50273867747853 | 2.917261322521483 | 0.6590103675151582 |
466.12 | 465.23969191883606 | 0.8803080811639461 | 0.19886190778170973 |
465.89 | 469.29150006815894 | -3.4015000681589527 | -0.7684000719149696 |
463.3 | 467.52338927383 | -4.22338927382998 | -0.9540651350015544 |
472.32 | 468.63392036548817 | 3.6860796345118274 | 0.8326866968949403 |
472.88 | 468.23518412428905 | 4.644815875710947 | 1.0492655538471976 |
472.52 | 467.40072495010867 | 5.119275049891314 | 1.156446049586019 |
466.2 | 470.2308690130385 | -4.030869013038512 | -0.9105747398014976 |
464.32 | 470.06934793478155 | -5.749347934781554 | -1.2987797377706485 |
471.52 | 468.2061275247934 | 3.313872475206608 | 0.7486049675853786 |
471.05 | 466.56749595165775 | 4.482504048342264 | 1.0125992544723308 |
465.0 | 467.4457105564229 | -2.4457105564229096 | -0.5524868821936313 |
468.51 | 468.32922832919263 | 0.1807716708073599 | 4.083638455540184e-2 |
466.2 | 466.5289202956749 | -0.3289202956748909 | -7.430321146154642e-2 |
466.67 | 464.9798468816765 | 1.690153118323508 | 0.38180618892946744 |
458.19 | 469.62052738975177 | -11.430527389751774 | -2.582160191772441 |
466.75 | 466.92345671991075 | -0.17345671991074596 | -3.918393455323122e-2 |
467.83 | 471.00023827347206 | -3.17023827347208 | -0.716157950466253 |
463.54 | 468.4888161194534 | -4.948816119453397 | -1.117939316738021 |
467.21 | 466.12663038326 | 1.083369616739958 | 0.24473358069460302 |
468.92 | 467.2570455453141 | 1.6629544546859165 | 0.3756620011663233 |
466.17 | 469.9193063400896 | -3.7493063400895608 | -0.8469696321115704 |
473.56 | 469.3386400018569 | 4.2213599981431 | 0.9536067209041007 |
462.54 | 462.5353944778759 | 4.605522124109029e-3 | 1.040389081422764e-3 |
460.42 | 469.0357845125855 | -8.615784512585492 | -1.9463087774264898 |
463.1 | 465.4074674853432 | -2.3074674853431816 | -0.5212577234016681 |
469.35 | 469.2340241993211 | 0.11597580067893887 | 2.6198974510186136e-2 |
464.5 | 465.48772540492905 | -0.9877254049290514 | -0.22312751932135455 |
467.01 | 468.6698381136837 | -1.6598381136836906 | -0.374958018628549 |
470.13 | 466.5182432985402 | 3.6117567014597967 | 0.8158971199560158 |
467.25 | 464.8033579382148 | 2.4466420617852123 | 0.552697309585382 |
464.6 | 469.03001445387565 | -4.4300144538756285 | -1.0007418364641694 |
464.56 | 468.0542535304752 | -3.4942535304751914 | -0.7893531119520188 |
470.44 | 466.240785806817 | 4.199214193183025 | 0.948603975708465 |
464.23 | 466.6802013632756 | -2.450201363275596 | -0.55350135705455 |
470.8 | 468.07562484757386 | 2.7243751524261484 | 0.6154373132735693 |
470.19 | 468.46200832885285 | 1.7279916711471515 | 0.3903539314337276 |
465.45 | 465.3553979968291 | 9.460200317090539e-2 | 2.1370626071799025e-2 |
465.14 | 465.3430114466154 | -0.20301144661539183 | -4.586035779892257e-2 |
457.21 | 465.437343556244 | -8.227343556244023 | -1.8585598276082838 |
462.69 | 470.28998511120346 | -7.599985111203466 | -1.716839332348514 |
460.66 | 465.70598887904623 | -5.045988879046206 | -1.1398906775973796 |
462.64 | 464.77518062953527 | -2.1351806295352844 | -0.48233806156422326 |
475.98 | 471.7241650123051 | 4.255834987694925 | 0.9613946332721954 |
469.61 | 470.86762962520106 | -1.257629625201048 | -0.2840989784162848 |
464.95 | 470.00850681775063 | -5.05850681775064 | -1.1427184843908453 |
467.18 | 465.0909665721057 | 2.0890334278943214 | 0.47191339234503876 |
463.6 | 467.14100725665423 | -3.5410072566542112 | -0.7999147952794856 |
462.77 | 465.78420347562667 | -3.0142034756266867 | -0.6809096342871703 |
464.93 | 467.4988198701669 | -2.5688198701669194 | -0.5802973198354862 |
465.49 | 466.1860805278475 | -0.6960805278474709 | -0.15724483814169135 |
465.82 | 465.9570356485108 | -0.1370356485107891 | -3.095640160536496e-2 |
461.52 | 465.6600911572585 | -4.140091157258496 | -0.9352480609220725 |
460.54 | 461.726652495707 | -1.1866524957069942 | -0.2680652196878694 |
460.54 | 466.6642858393177 | -6.124285839317679 | -1.383478343396472 |
463.22 | 462.1388114830884 | 1.0811885169116522 | 0.24424086946974893 |
467.32 | 467.1954080636739 | 0.12459193632611232 | 2.8145362609040592e-2 |
467.66 | 467.5703857042853 | 8.9614295714739e-2 | 2.024390118830272e-2 |
470.71 | 466.87798937642987 | 3.8320106235701132 | 0.8656525590851772 |
466.34 | 468.28371557585695 | -1.9437155758569702 | -0.43908603802531176 |
464.0 | 465.49312878229995 | -1.493128782299948 | -0.337298321536878 |
454.16 | 460.92029479400514 | -6.7602947940051195 | -1.5271529918538231 |
460.19 | 464.15206661902306 | -3.9620666190230622 | -0.8950322545890813 |
467.71 | 465.52584173595307 | 2.184158264046914 | 0.4934021265728507 |
465.01 | 464.2815636085029 | 0.7284363914970982 | 0.16455403921682205 |
462.87 | 464.163521673255 | -1.2935216732549861 | -0.29220700480263995 |
466.73 | 466.3736543730507 | 0.3563456269492917 | 8.049860352424523e-2 |
469.34 | 467.08552274770585 | 2.254477252294123 | 0.5092872109601599 |
458.99 | 465.2537787213567 | -6.263778721356687 | -1.4149898349274463 |
465.72 | 464.5690050827307 | 1.1509949172693155 | 0.26001016007099403 |
465.63 | 461.8753395968221 | 3.7546604031779225 | 0.8481791168623266 |
471.24 | 464.41497356388027 | 6.825026436119742 | 1.5417758927679401 |
456.41 | 468.53176347876706 | -12.121763478767036 | -2.7383106694636057 |
460.51 | 466.424150275801 | -5.914150275801035 | -1.33600864506262 |
467.77 | 466.67192135558764 | 1.0980786444123396 | 0.24805635526311118 |
456.63 | 464.6078674511597 | -7.977867451159682 | -1.8022030869801322 |
468.02 | 467.5449609547658 | 0.47503904523415486 | 0.10731148881555325 |
463.93 | 466.2641999137003 | -2.3341999137002745 | -0.5272965884495733 |
463.12 | 465.4344155000201 | -2.314415500020118 | -0.5228272823816608 |
460.06 | 467.4928608009518 | -7.432860800951801 | -1.6790858913833857 |
461.6 | 466.4167549834592 | -4.816754983459191 | -1.08810665927462 |
463.27 | 466.6130277518322 | -3.34302775183221 | -0.7551911549165283 |
467.82 | 462.9909863601291 | 4.82901363987088 | 1.090875894106187 |
462.59 | 464.3870766666373 | -1.797076666637338 | -0.4059602564195262 |
460.15 | 465.98237767298184 | -5.832377672981863 | -1.3175361850808878 |
463.1 | 464.59341737321824 | -1.4934173732182217 | -0.33736351432767975 |
461.6 | 464.9855482511961 | -3.3855482511960986 | -0.7647965508049243 |
462.64 | 466.60937185484113 | -3.9693718548411425 | -0.8966825099515653 |
460.56 | 459.95844344813366 | 0.6015565518663379 | 0.1358918384397383 |
459.85 | 461.8730218752433 | -2.0230218752432734 | -0.457001359186757 |
465.99 | 465.2019993258048 | 0.7880006741951888 | 0.17800963180587315 |
464.49 | 465.0319060514448 | -0.541906051444812 | -0.12241676923638158 |
468.62 | 464.51031407803055 | 4.109685921969458 | 0.9283795074854901 |
458.26 | 464.7510595901325 | -6.491059590132522 | -1.4663326638008185 |
466.5 | 462.10563966655445 | 4.394360333445547 | 0.9926875580124369 |
459.31 | 463.5242044902383 | -4.214204490238274 | -0.9519902891303296 |
459.77 | 465.12795484714235 | -5.357954847142366 | -1.2103639004451618 |
457.1 | 458.3979411875371 | -1.2979411875371056 | -0.29320537464658 |
469.18 | 464.49240158563896 | 4.687598414361048 | 1.0589301445032948 |
472.28 | 463.4938095964465 | 8.786190403553462 | 1.984803528639414 |
459.15 | 464.7409202420205 | -5.590920242020502 | -1.2629908657813547 |
466.63 | 468.6970662849413 | -2.0670662849412906 | -0.4669510069601661 |
462.69 | 464.01147313398917 | -1.3214731339891728 | -0.29852124969692334 |
468.53 | 466.5254088553394 | 2.004591144660594 | 0.45283785061071824 |
453.99 | 463.6262300043795 | -9.636230004379513 | -2.1768277759765113 |
471.97 | 469.1866406031888 | 2.7833593968112496 | 0.6287618750019754 |
457.74 | 458.7253721171194 | -0.9853721171193683 | -0.22259591077043195 |
466.83 | 462.85471321992077 | 3.975286780079216 | 0.8980186936608802 |
466.2 | 469.16650047432114 | -2.966500474321151 | -0.6701335093719141 |
465.14 | 464.9029898412732 | 0.23701015872677544 | 5.354067892428517e-2 |
457.36 | 466.28526560326617 | -8.925265603266155 | -2.0162206655847212 |
439.21 | 465.3963354604996 | -26.186335460499606 | -5.915502468864608 |
462.59 | 462.3133964499922 | 0.2766035500077919 | 6.248484005851005e-2 |
457.3 | 457.584678990398 | -0.2846789903979925 | -6.43090849070288e-2 |
463.57 | 462.4644015518939 | 1.1055984481060932 | 0.24975508158481727 |
462.09 | 461.643667310181 | 0.44633268981897345 | 0.10082671294507066 |
465.41 | 465.1358649951472 | 0.2741350048528375 | 6.1927194832408675e-2 |
464.17 | 468.07771227809314 | -3.907712278093129 | -0.8827535896934322 |
464.59 | 463.94240853336305 | 0.6475914666369249 | 0.14629114201507648 |
464.38 | 462.7655254272994 | 1.6144745727006011 | 0.36471037862994393 |
464.95 | 464.35125328406644 | 0.5987467159335438 | 0.1352570955058665 |
455.15 | 458.1774466179175 | -3.0274466179175192 | -0.6839012648280345 |
456.91 | 458.3632117908802 | -1.4532117908801752 | -0.3282810590165266 |
456.21 | 467.47546424100267 | -11.26546424100269 | -2.544872367921843 |
467.3 | 462.93565136830154 | 4.364348631698476 | 0.9859079039425718 |
464.72 | 460.79339608207175 | 3.9266039179282757 | 0.8870212178330886 |
462.58 | 466.71318747004926 | -4.133187470049279 | -0.9336885155327608 |
466.6 | 469.2173130099907 | -2.617313009990653 | -0.5912519373222668 |
459.42 | 464.7204827320649 | -5.300482732064893 | -1.1973809292637037 |
464.14 | 464.3355958479068 | -0.19559584790681583 | -4.418517142032977e-2 |
460.45 | 465.088060844667 | -4.638060844666995 | -1.047739589938348 |
468.91 | 465.049705721886 | 3.8602942781139973 | 0.8720418466789011 |
466.39 | 467.13452750856925 | -0.7445275085692629 | -0.16818902827097065 |
467.22 | 463.6313366984603 | 3.588663301539725 | 0.8106803127228034 |
462.77 | 462.4312798566266 | 0.3387201433733935 | 7.651700053266082e-2 |
464.95 | 462.08179546634585 | 2.8682045336541364 | 0.647928421509498 |
457.12 | 462.7228887148119 | -5.602888714811911 | -1.2656945480301718 |
461.5 | 463.2389898882632 | -1.738989888263177 | -0.3928384325813241 |
458.46 | 465.73221554609086 | -7.272215546090877 | -1.6427960713291576 |
465.89 | 465.9391561803271 | -4.915618032708835e-2 | -1.1104398571670065e-2 |
466.15 | 464.6758800034213 | 1.474119996578679 | 0.33300423009999475 |
455.48 | 462.03627301808797 | -6.55627301808795 | -1.4810644003072635 |
464.95 | 468.4631596600604 | -3.51315966006041 | -0.793624013331356 |
454.88 | 456.7218449478398 | -1.8418449478398315 | -0.416073427022555 |
457.41 | 460.9973530979196 | -3.5873530979195607 | -0.8103843372602768 |
468.88 | 468.60583110746154 | 0.2741688925384551 | 6.1934850072609716e-2 |
461.86 | 468.0452621538938 | -6.185262153893802 | -1.3972529144876207 |
456.08 | 461.1674897104325 | -5.087489710432521 | -1.1492657301279636 |
462.94 | 462.0966422275805 | 0.8433577724194947 | 0.1905148199300008 |
460.87 | 460.8634611992428 | 6.53880075719826e-3 | 1.4771174103748418e-3 |
461.06 | 464.39198726436393 | -3.3319872643639314 | -0.7526971048813644 |
454.94 | 458.02055270119547 | -3.0805527011954723 | -0.6958979478773422 |
466.22 | 464.51235428029423 | 1.7076457197057948 | 0.38575777378638154 |
459.95 | 461.1346442030386 | -1.1846442030386015 | -0.2676115456617347 |
463.47 | 463.1897781965986 | 0.28022180340144587 | 6.330220478353711e-2 |
456.58 | 464.6775725663161 | -8.097572566316103 | -1.8292445149535757 |
463.57 | 465.54023567427873 | -1.9702356742787401 | -0.4450769376655136 |
462.44 | 462.10003232292183 | 0.3399676770781639 | 7.679881883907078e-2 |
448.59 | 459.28384302135726 | -10.693843021357281 | -2.4157429316489263 |
462.5 | 464.0520812837937 | -1.5520812837937115 | -0.3506157125348718 |
463.76 | 462.0021066209567 | 1.7578933790433098 | 0.39710873785365647 |
459.48 | 464.6824431291334 | -5.202443129133371 | -1.1752337481866588 |
455.05 | 457.2130973847568 | -2.1630973847567816 | -0.48864446647088006 |
456.11 | 461.34202141138076 | -5.232021411380742 | -1.181915492637807 |
472.17 | 467.9152913437013 | 4.254708656298703 | 0.9611401946102772 |
461.54 | 465.451323337944 | -3.9113233379439976 | -0.8835693293945925 |
459.69 | 461.32001368263144 | -1.6300136826314429 | -0.3682206690750698 |
461.54 | 459.1934765355192 | 2.3465234644808106 | 0.5300804829420808 |
462.48 | 459.15223490510476 | 3.3277650948952555 | 0.7517433153007799 |
442.48 | 460.6299621913334 | -18.149962191333373 | -4.100082896844682 |
465.14 | 465.9486794694256 | -0.8086794694256128 | -0.18268097898322977 |
464.62 | 462.514565839849 | 2.105434160150992 | 0.47561832357918826 |
465.78 | 463.3496922983314 | 2.430307701668596 | 0.5490073718412131 |
462.52 | 461.9908711864406 | 0.5291288135593959 | 0.11953038666595807 |
454.78 | 457.1797966088057 | -2.3997966088057296 | -0.5421149051411549 |
465.03 | 464.9190479188053 | 0.11095208119468225 | 2.5064114496770717e-2 |
463.74 | 462.7209910751999 | 1.0190089248001186 | 0.23019447755654637 |
459.59 | 461.9941154580853 | -2.4041154580853004 | -0.5430905347253132 |
465.6 | 458.7011562788461 | 6.8988437211539235 | 1.5584512436402782 |
464.7 | 461.4647200415134 | 3.2352799584866148 | 0.7308508901814327 |
460.54 | 462.4097006278274 | -1.8697006278273989 | -0.42236603501220354 |
465.52 | 462.4744017201027 | 3.0455982798972627 | 0.6880017317076839 |
465.64 | 464.23959443772213 | 1.4004055622778537 | 0.316352113244803 |
468.22 | 468.1204021981673 | 9.959780183271505e-2 | 2.2499178761520116e-2 |
464.2 | 461.9717022235376 | 2.228297776462398 | 0.5033732580838687 |
472.63 | 464.1834210347691 | 8.446578965230913 | 1.908085184261595 |
460.31 | 460.49414495170237 | -0.18414495170236478 | -4.159840990609191e-2 |
458.25 | 461.54722359859704 | -3.297223598597043 | -0.744843980453893 |
459.25 | 462.2664630167632 | -3.0164630167632254 | -0.6814200654313775 |
463.62 | 462.22935856598747 | 1.3906414340125366 | 0.314146393206315 |
457.26 | 464.22591401634224 | -6.9659140163422535 | -1.57360244711327 |
460.0 | 459.5632798612268 | 0.4367201387731825 | 9.865523425423826e-2 |
460.25 | 461.35195581745074 | -1.1019558174507438 | -0.24893221002772656 |
464.6 | 460.49948055624816 | 4.100519443751864 | 0.9263087968047702 |
461.49 | 463.4068722278115 | -1.9168722278114956 | -0.4330221161804578 |
449.98 | 456.3538669153961 | -6.373866915396093 | -1.4398587970094179 |
464.72 | 462.6709318385796 | 2.0490681614204505 | 0.4628852244728433 |
460.08 | 461.8110962307606 | -1.7310962307606133 | -0.39105525255160123 |
454.19 | 460.0644340540893 | -5.874434054089306 | -1.3270367364905291 |
464.27 | 462.01427465285536 | 2.255725347144619 | 0.5095691560295883 |
456.55 | 460.5836092644089 | -4.033609264408881 | -0.9111937635580358 |
464.5 | 463.36019976991514 | 1.1398002300848589 | 0.2574812762652507 |
468.8 | 464.3486858862592 | 4.451314113740807 | 1.0055534371827388 |
465.16 | 461.64674540379394 | 3.5132545962060817 | 0.7936454594403373 |
463.65 | 462.49609959425135 | 1.1539004057486295 | 0.2606665109490528 |
466.36 | 460.43082906265073 | 5.929170937349284 | 1.3394018178342237 |
455.53 | 462.17575951824017 | -6.645759518240197 | -1.5012794324326701 |
454.06 | 459.4288341311478 | -5.368834131147821 | -1.2128215345608948 |
453.0 | 454.32588018238846 | -1.3258801823884596 | -0.29951680349350984 |
461.47 | 460.83972369537014 | 0.6302763046298878 | 0.14237964077596937 |
457.67 | 459.6520786332344 | -1.98207863323438 | -0.44775226629431036 |
458.67 | 457.8428111918577 | 0.8271888081422958 | 0.1868622451646224 |
461.01 | 462.29977029786426 | -1.2897702978642656 | -0.29135956777125693 |
458.34 | 458.996291001344 | -0.656291001344016 | -0.14825636999114813 |
457.01 | 456.94689658887955 | 6.310341112043716e-2 | 1.4255082954994055e-2 |
455.75 | 455.9205279683583 | -0.17052796835827166 | -3.852232853869412e-2 |
456.62 | 455.09997079582735 | 1.5200292041726584 | 0.34337513637954875 |
457.67 | 463.6885973525343 | -6.0185973525343 | -1.3596032767442205 |
456.16 | 456.72206228080574 | -0.5620622808057192 | -0.12697006859845936 |
455.97 | 460.3441974161702 | -4.374197416170148 | -0.988132747848103 |
457.05 | 457.54320031904916 | -0.4932003190491514 | -0.11141412701219569 |
457.71 | 456.69285780085 | 1.017142199149987 | 0.22977278357005085 |
459.43 | 457.1382842072816 | 2.291715792718435 | 0.5176994104505857 |
457.98 | 457.7082041695164 | 0.27179583048359746 | 6.139877451268822e-2 |
459.13 | 460.6176992174903 | -1.4876992174903307 | -0.3360717809205096 |
457.35 | 460.23977794971734 | -2.8897779497173133 | -0.652801863850297 |
456.56 | 454.0359982256698 | 2.524001774330202 | 0.5701728960889167 |
454.57 | 457.0654686491854 | -2.4954686491853977 | -0.5637272529979575 |
451.9 | 457.74629194464563 | -5.846291944645657 | -1.3206794239851547 |
457.33 | 456.682658074812 | 0.6473419251879591 | 0.14623477051324232 |
467.59 | 461.57543093155283 | 6.014569068447145 | 1.3586932859400929 |
463.99 | 464.7770544317755 | -0.7870544317755162 | -0.1777958753076353 |
452.55 | 459.80149708475966 | -7.251497084759649 | -1.6381157635655597 |
452.28 | 454.94641693932425 | -2.6664169393242787 | -0.6023445323759801 |
453.55 | 454.8958623057641 | -1.3458623057641148 | -0.3040307722517635 |
448.88 | 452.5071708494881 | -3.6271708494880954 | -0.819379181463033 |
448.71 | 455.2418242855509 | -6.531824285550897 | -1.4755414229551362 |
454.59 | 459.5827319030397 | -4.992731903039726 | -1.1278599078271756 |
451.14 | 453.1075606298177 | -1.96756062981774 | -0.44447264417293086 |
458.01 | 456.4217175154805 | 1.5882824845194818 | 0.3587935766194508 |
456.55 | 456.50051296596394 | 4.948703403607624e-2 | 1.1179138541884803e-2 |
458.04 | 456.49209889995655 | 1.5479011000434753 | 0.34967140754297515 |
463.31 | 463.61908166044054 | -0.3090816604405404 | -6.982165672530898e-2 |
454.34 | 454.42430944989064 | -8.430944989066802e-2 | -1.9045534635007244e-2 |
454.29 | 454.14166454199597 | 0.14833545800405545 | 3.350903257795549e-2 |
455.82 | 453.8961915229463 | 1.923808477053683 | 0.43458901734456734 |
451.44 | 453.66499413493267 | -2.224994134932672 | -0.5026269642904962 |
442.45 | 449.90744333553766 | -7.4574433355376755 | -1.6846390946658016 |
454.98 | 459.2285158945938 | -4.2485158945937656 | -0.9597412475445487 |
465.26 | 459.05202239898557 | 6.20797760101442 | 1.402384342049376 |
451.06 | 452.9490364013417 | -1.8890364013416843 | -0.4267339931075124 |
452.77 | 453.18020424984826 | -0.4102042498482774 | -9.266528554087129e-2 |
463.47 | 461.36780961356845 | 2.102190386431573 | 0.47488555394539955 |
461.73 | 460.89674705500755 | 0.8332529449924664 | 0.1882321358300356 |
467.54 | 463.8188758742415 | 3.7211241257585357 | 0.8406032598979125 |
454.74 | 459.12703336317225 | -4.387033363172236 | -0.991032392828807 |
451.04 | 455.21318283732694 | -4.1731828373269195 | -0.9427234831872046 |
464.13 | 457.4956830813674 | 6.634316918632578 | 1.4986945451225993 |
456.25 | 452.88104966381576 | 3.3689503361842412 | 0.7610470759164369 |
457.43 | 456.48090497858703 | 0.9490950214129725 | 0.21440090198280956 |
448.17 | 456.55913524865815 | -8.389135248658135 | -1.8951086283124203 |
452.93 | 453.45921998591484 | -0.5292199859148354 | -0.11955098253339085 |
455.24 | 454.75813504742956 | 0.48186495257044726 | 0.10885346370398265 |
454.44 | 461.4374201546749 | -6.997420154674899 | -1.5807196949378952 |
460.27 | 463.53345887643684 | -3.2634588764368573 | -0.7372165177415027 |
450.5 | 452.02894677235776 | -1.528946772357756 | -0.34538961819563885 |
455.22 | 455.9633409988894 | -0.74334099888938 | -0.1679209953134281 |
457.17 | 456.69115708186104 | 0.47884291813898017 | 0.10817078505399348 |
458.47 | 455.7081697760806 | 2.7618302239194463 | 0.6238984272092829 |
456.49 | 455.57841979073686 | 0.9115802092631498 | 0.2059262926115969 |
451.29 | 457.86988425653215 | -6.579884256532125 | -1.4863981874467491 |
453.78 | 454.06028204889856 | -0.28028204889858443 | -6.33158142627099e-2 |
463.2 | 460.7479119618784 | 2.4520880381215875 | 0.5539275575714662 |
452.1 | 453.92151217696835 | -1.8215121769683265 | -0.4114802468706136 |
451.93 | 453.05320729488966 | -1.123207294889653 | -0.2537329263191114 |
450.55 | 454.7582989685104 | -4.208298968510405 | -0.9506562296773056 |
461.49 | 456.7605922899188 | 4.729407710081205 | 1.0683748792363064 |
452.52 | 454.02423282750084 | -1.5042328275008572 | -0.33980672928638717 |
451.23 | 452.6641989591508 | -1.4341989591507627 | -0.3239860535849685 |
455.44 | 457.32803096447014 | -1.888030964470147 | -0.426506864561602 |
440.64 | 450.31905653186493 | -9.679056531864944 | -2.1865023037261127 |
467.51 | 461.3397464375884 | 6.170253562411574 | 1.3938624683482124 |
452.37 | 456.8872770659849 | -4.517277065984899 | -1.0204544914918507 |
462.05 | 460.8339970164586 | 1.2160029835413866 | 0.27469550530032666 |
464.48 | 462.10615685280607 | 2.373843147193952 | 0.5362520089573174 |
453.79 | 457.0494808979759 | -3.259480897975891 | -0.7363178909961746 |
449.55 | 452.3356980438647 | -2.78569804386467 | -0.6292901762008652 |
459.45 | 455.3025828648233 | 4.147417135176681 | 0.9369030019323273 |
463.02 | 462.729986990083 | 0.2900130099170042 | 6.551404180835935e-2 |
455.79 | 455.2223463598734 | 0.5676536401265935 | 0.12823315865230953 |
453.25 | 453.31727625145106 | -6.727625145106231e-2 | -1.5197729065795843e-2 |
454.71 | 459.55748654713756 | -4.847486547137578 | -1.0950489304101056 |
450.74 | 456.73794034607437 | -5.997940346074358 | -1.3549368516578444 |
453.9 | 456.51693542677697 | -2.6169354267769904 | -0.591166641140371 |
450.87 | 451.9912034594017 | -1.12120345940167 | -0.2532802591716121 |
453.28 | 457.3952307496471 | -4.115230749647139 | -0.9296320860246382 |
454.47 | 454.9139071679218 | -0.4439071679217932 | -0.1002787866881609 |
446.7 | 453.7037727907364 | -7.003772790736434 | -1.582154757677487 |
454.58 | 458.8081008998661 | -4.228100899866092 | -0.9551294929943339 |
458.64 | 459.2317295422394 | -0.5917295422394204 | -0.13367191347936058 |
454.02 | 452.8313052555013 | 1.1886947444986617 | 0.26852656441429623 |
455.88 | 453.2048261109316 | 2.6751738890683896 | 0.6043227304292798 |
460.19 | 460.7894614420895 | -0.5994614420894777 | -0.13541855239800657 |
457.58 | 456.6018501959594 | 0.9781498040405836 | 0.22096438768416773 |
459.68 | 456.60000256329886 | 3.0799974367011487 | 0.6957725134311212 |
454.6 | 461.53379199179915 | -6.933791991799126 | -1.5663460703752405 |
457.55 | 455.08314377928957 | 2.46685622071044 | 0.5572636952565875 |
455.42 | 454.7344713102369 | 0.685528689763089 | 0.15486117417567455 |
455.76 | 454.42537323274547 | 1.3346267672545196 | 0.3014926601171813 |
447.47 | 450.8438229795386 | -3.373822979538545 | -0.7621478077785091 |
455.7 | 454.25095018004106 | 1.4490498199589297 | 0.32734086830915904 |
455.95 | 463.13775609127424 | -7.187756091274252 | -1.62371665052817 |
451.05 | 455.0606464477156 | -4.010646447715601 | -0.9060064551220738 |
449.89 | 452.78710305999806 | -2.8971030599980736 | -0.6544566088609499 |
451.49 | 452.433083794051 | -0.943083794051006 | -0.21304296358954875 |
456.04 | 453.7206916287227 | 2.319308371277316 | 0.5239325837341715 |
458.06 | 453.97719041615727 | 4.082809583842732 | 0.9223081331695797 |
448.17 | 452.20842313451317 | -4.0384231345131525 | -0.9122812185220788 |
451.8 | 452.9007476374929 | -1.1007476374928729 | -0.24865928174670002 |
465.66 | 461.8378158906787 | 3.822184109321313 | 0.8634327460308919 |
449.26 | 452.41543202652105 | -3.155432026521055 | -0.7128132140282154 |
451.08 | 457.758643714557 | -6.67864371455704 | -1.5087079840447253 |
467.72 | 461.31875334620537 | 6.401246653794658 | 1.4460438896252936 |
463.35 | 462.3713163829519 | 0.9786836170481479 | 0.2210849762319209 |
453.47 | 454.29376940501476 | -0.8237694050147297 | -0.18608980078523712 |
450.88 | 453.1538192034153 | -2.2738192034153144 | -0.5136565645790601 |
456.08 | 457.3375291656148 | -1.2575291656148124 | -0.28407628456012096 |
448.04 | 451.78495851322333 | -3.7449585132233096 | -0.8459874564803027 |
450.17 | 451.85242166322104 | -1.682421663221021 | -0.3800596504794554 |
450.54 | 455.6955332352781 | -5.155533235278085 | -1.1646367865257305 |
456.61 | 453.9716415466415 | 2.638358453358535 | 0.5960061104439258 |
448.73 | 447.41632457686063 | 1.3136754231393866 | 0.29675974405009536 |
456.57 | 456.66826631159074 | -9.82663115907485e-2 | -2.2198394643578017e-2 |
456.06 | 451.3868160236605 | 4.673183976339487 | 1.0556739178413985 |
457.41 | 455.85961858608687 | 1.5503814139131578 | 0.35023171132590797 |
446.29 | 451.60844251281037 | -5.31844251281035 | -1.2014380501044672 |
453.84 | 451.54257776593613 | 2.297422234063845 | 0.5189884975745983 |
456.03 | 454.3347436794248 | 1.6952563205751972 | 0.3829590041282386 |
461.16 | 456.9850125389704 | 4.174987461029616 | 0.9431311483217468 |
450.5 | 450.35966629930147 | 0.1403337006985339 | 3.170143276440124e-2 |
459.12 | 453.22902771494347 | 5.8909722850565345 | 1.3307727287321647 |
444.87 | 450.88923626750994 | -6.019236267509939 | -1.3597476078638415 |
468.27 | 460.777395244504 | 7.492604755495961 | 1.6925820719061937 |
452.04 | 451.56627819803873 | 0.47372180196128966 | 0.10701392309298458 |
456.89 | 455.22151625901796 | 1.6684837409820261 | 0.3769110689018617 |
456.55 | 458.8632715562841 | -2.3132715562840644 | -0.5225688650859275 |
455.07 | 454.4962025118112 | 0.5737974881888022 | 0.12962105610879585 |
454.94 | 452.99732617118093 | 1.9426738288190677 | 0.4388507069999401 |
444.64 | 451.56134671760685 | -6.921346717606866 | -1.563534678520849 |
464.54 | 461.2640328521535 | 3.2759671478465293 | 0.7400421406896527 |
454.28 | 454.96273138933316 | -0.6827313893331848 | -0.15422926301635198 |
450.26 | 450.45712572408365 | -0.19712572408366213 | -4.453077099132904e-2 |
450.44 | 452.73403331175916 | -2.294033311759165 | -0.5182229388239146 |
449.23 | 451.36693359666157 | -2.1369335966615495 | -0.48273405745982695 |
452.41 | 450.8630071025483 | 1.5469928974517302 | 0.34946624425535894 |
451.75 | 450.8754162418666 | 0.8745837581333831 | 0.19756878117867843 |
449.66 | 451.1697942873426 | -1.5097942873425723 | -0.34106306503728984 |
446.03 | 450.6475445784007 | -4.617544578400725 | -1.043104958111643 |
456.36 | 453.9368453997675 | 2.4231546002325217 | 0.5473914836895866 |
451.22 | 452.6438110023007 | -1.4238110023006811 | -0.3216394104479091 |
440.03 | 449.3808509555166 | -9.350850955516648 | -2.112360547613956 |
462.86 | 459.869498864356 | 2.990501135644024 | 0.6755552672778264 |
451.14 | 454.579016450257 | -3.439016450256986 | -0.7768750359380399 |
456.03 | 455.70412271625406 | 0.3258772837459105 | 7.361579398742824e-2 |
446.35 | 451.5591661954988 | -5.209166195498767 | -1.176752491263285 |
448.85 | 451.44957897086954 | -2.5995789708695156 | -0.587245811594508 |
448.71 | 449.4109294018897 | -0.7009294018897094 | -0.1583402005077369 |
459.39 | 456.3684360885655 | 3.021563911434498 | 0.682572359346914 |
456.53 | 455.38148152279337 | 1.1485184772066077 | 0.25945073138243085 |
455.58 | 454.77441817350666 | 0.8055818264933237 | 0.18198122034608644 |
459.47 | 455.56852272126025 | 3.901477278739776 | 0.881345101127945 |
453.8 | 453.388777892959 | 0.4112221070409987 | 9.28952198417427e-2 |
447.1 | 450.74082943000445 | -3.6408294300044304 | -0.8224646596463948 |
446.57 | 451.4361052165287 | -4.866105216528695 | -1.0992548944296325 |
455.28 | 454.1835978057368 | 1.0964021942631916 | 0.24767764457977892 |
453.96 | 461.17395495323035 | -7.21395495323037 | -1.6296349827368377 |
454.5 | 450.5867733837238 | 3.9132266162761766 | 0.8839992806449278 |
449.31 | 450.23193343537906 | -0.92193343537906 | -0.20826509006348795 |
449.63 | 454.63584061731206 | -5.00584061731206 | -1.1308211710309792 |
448.92 | 452.85108866192985 | -3.9310886619298344 | -0.8880343230937872 |
457.14 | 451.0525967345181 | 6.087403265481896 | 1.3751465568846568 |
450.98 | 451.52328444134787 | -0.5432844413478506 | -0.12272814800439524 |
452.67 | 450.58585768893437 | 2.084142311065648 | 0.47080848731855396 |
449.03 | 451.0815006280817 | -2.051500628081726 | -0.4634347195544255 |
453.33 | 451.8069735038988 | 1.5230264961011812 | 0.34405222568934657 |
455.13 | 453.1966266064801 | 1.9333733935199007 | 0.4367497353669781 |
454.36 | 455.59739505823717 | -1.237395058237155 | -0.279527982561906 |
454.84 | 451.4309223325164 | 3.4090776674835865 | 0.7701118542901917 |
454.23 | 454.4162557726173 | -0.18625577261730086 | -4.207524509948774e-2 |
447.06 | 447.518481672599 | -0.45848167259902084 | -0.10357117246434823 |
457.57 | 457.4899833309962 | 8.001666900378268e-2 | 1.807579391000316e-2 |
455.49 | 454.77349685896206 | 0.716503141037947 | 0.16185831370535556 |
462.44 | 459.9896954813431 | 2.4503045186568784 | 0.553524659891771 |
451.59 | 453.52748857898166 | -1.9374885789816858 | -0.4376793572224586 |
452.45 | 451.13958592197406 | 1.3104140780259286 | 0.29602300503216056 |
448.79 | 451.0112917711592 | -2.2212917711592013 | -0.5017905990008346 |
450.25 | 452.1609729511189 | -1.9109729511188789 | -0.4316894674831122 |
456.11 | 455.0355456385036 | 1.0744543614964073 | 0.2427196213728287 |
445.58 | 448.24161243610126 | -2.6616124361012794 | -0.6012591933937391 |
452.96 | 450.74872313991176 | 2.211276860088219 | 0.4995282270375937 |
452.94 | 453.94807606743166 | -1.0080760674316593 | -0.2277247411991083 |
452.39 | 459.1480198621104 | -6.758019862110416 | -1.5266390839318875 |
445.96 | 448.54249260358654 | -2.5824926035865587 | -0.5833859951647244 |
452.8 | 450.84813038147144 | 1.9518696185285762 | 0.44092803915708034 |
458.97 | 452.9523382793833 | 6.017661720616729 | 1.3593919171621711 |
460.1 | 457.2797775931837 | 2.820222406816299 | 0.6370892420374885 |
453.83 | 450.67534900317094 | 3.154650996829048 | 0.7126367791437584 |
443.76 | 448.7439698617696 | -4.9839698617695944 | -1.1258805595963421 |
450.46 | 449.8176765506547 | 0.6423234493452696 | 0.14510109504031687 |
446.53 | 449.46273191454407 | -2.9327319145440924 | -0.6625051797405109 |
446.34 | 450.23276134284237 | -3.892761342842391 | -0.8793761681171683 |
449.72 | 448.30116288608934 | 1.4188371139106835 | 0.320515807296362 |
447.14 | 446.6513202266961 | 0.4886797733038861 | 0.110392934124895 |
455.5 | 459.6412858596402 | -4.14128585964022 | -0.935517944613867 |
448.22 | 449.80841398023324 | -1.588413980233213 | -0.35882328154782445 |
447.84 | 450.0492245621949 | -2.2092245621949473 | -0.49906461221555004 |
447.58 | 450.15348917672725 | -2.5734891767272643 | -0.581352117843679 |
447.06 | 447.2352893702609 | -0.17528937026088443 | -3.9597930917371696e-2 |
447.69 | 452.1889854808301 | -4.498985480830129 | -1.0163224159173316 |
462.01 | 457.27636447696545 | 4.733635523034536 | 1.0693299436820765 |
448.92 | 449.22543586447625 | -0.3054358644762374 | -6.899807012380288e-2 |
442.82 | 446.96369987423526 | -4.143699874235267 | -0.9360632713671432 |
453.46 | 456.11949013569995 | -2.6594901356999685 | -0.6007797649802994 |
446.2 | 450.69910348096573 | -4.4991034809657435 | -1.0163490721898218 |
443.77 | 447.07428167616905 | -3.3042816761690688 | -0.7464384026809258 |
448.9 | 447.93156732156143 | 0.9684326784385462 | 0.2187692855639865 |
460.6 | 459.5396287629999 | 1.0603712370001404 | 0.2395382385538138 |
444.44 | 450.41539217977504 | -5.975392179775042 | -1.3498432128929558 |
445.95 | 450.20916835758374 | -4.2591683575837465 | -0.9621476427124321 |
453.18 | 450.5270199129546 | 2.652980087045421 | 0.5993091426801118 |
443.46 | 446.747552050482 | -3.28755205048202 | -0.7426591743041947 |
444.64 | 444.507199619309 | 0.13280038069098055 | 2.999965310261351e-2 |
465.57 | 459.32651068324674 | 6.243489316753255 | 1.410406451230845 |
446.41 | 447.6568115900023 | -1.2468115900022667 | -0.2816551804277046 |
450.39 | 454.76275216738793 | -4.372752167387944 | -0.987806265635571 |
452.38 | 454.21851332168194 | -1.838513321681944 | -0.41532081149175476 |
445.66 | 445.39798853968495 | 0.2620114603150796 | 5.9188481821087296e-2 |
444.31 | 446.51975987000213 | -2.209759870002131 | -0.4991855384390674 |
450.95 | 449.28757124138815 | 1.6624287586118385 | 0.37554324623672375 |
442.02 | 446.61697690688106 | -4.596976906881082 | -1.0384587138199675 |
453.88 | 452.35263519535005 | 1.5273648046499488 | 0.3450322511293186 |
454.15 | 453.88291464930387 | 0.2670853506961066 | 6.033467545787885e-2 |
455.22 | 449.07372918845823 | 6.146270811541797 | 1.3884447564200073 |
446.44 | 446.2148995417356 | 0.22510045826442138 | 5.085027336544837e-2 |
449.6 | 453.8663667211942 | -4.266366721194174 | -0.9637737556052997 |
457.89 | 451.01241377116 | 6.877586228839959 | 1.553649168586485 |
446.02 | 448.5883814092371 | -2.5683814092371335 | -0.5801982713559247 |
445.4 | 449.5097304398742 | -4.109730439874227 | -0.928389564095968 |
449.74 | 448.503305348983 | 1.2366946510169896 | 0.27936976032243505 |
448.31 | 446.91722060578974 | 1.3927793942102653 | 0.31462935917332 |
458.63 | 453.8324720669498 | 4.797527933050219 | 1.0837632617673658 |
449.93 | 453.3060649640138 | -3.3760649640137785 | -0.7626542728667 |
452.39 | 449.0800812223206 | 3.3099187776793997 | 0.747711825911599 |
443.29 | 445.3619054648025 | -2.0719054648024553 | -0.46804417940726856 |
446.22 | 449.83432112958207 | -3.614321129582038 | -0.8164764251784371 |
439.0 | 444.60209183702807 | -5.60209183702807 | -1.2655145330561481 |
452.75 | 455.3330390953461 | -2.5830390953461233 | -0.5835094478470516 |
445.65 | 450.2809554999446 | -4.630955499944605 | -1.046134490045282 |
445.27 | 449.39422908092763 | -4.124229080927648 | -0.9316648122526285 |
451.95 | 448.7618842842812 | 3.188115715718766 | 0.7201964710109384 |
445.02 | 449.4952622600192 | -4.475262260019235 | -1.010963331921484 |
450.74 | 449.4914112072881 | 1.248588792711928 | 0.2820566511501939 |
443.93 | 449.51712426113426 | -5.5871242611342495 | -1.2621333523527094 |
445.91 | 447.26408438944804 | -1.354084389448019 | -0.30588814387234453 |
445.71 | 451.7557366468961 | -6.045736646896103 | -1.3657340529669058 |
452.7 | 449.4776919784881 | 3.2223080215118785 | 0.7279205250176717 |
449.38 | 448.98079679330425 | 0.39920320669574494 | 9.018014599062547e-2 |
445.09 | 452.8385186409049 | -7.748518640904933 | -1.7503931093931713 |
450.22 | 448.9907086576164 | 1.2292913423836467 | 0.2776973502761967 |
441.41 | 448.93146897513117 | -7.5214689751311425 | -1.699102509359969 |
462.19 | 458.191223029991 | 3.9987769700089757 | 0.9033251358980232 |
446.17 | 449.6590005617063 | -3.489000561706291 | -0.7881664644438873 |
444.19 | 446.5452373588345 | -2.355237358834529 | -0.532048954767419 |
453.15 | 456.31295277561605 | -3.162952775616077 | -0.7145121539164033 |
451.49 | 449.9268730104552 | 1.5631269895447986 | 0.353110941381973 |
453.38 | 448.035018368965 | 5.344981631035012 | 1.2074332463248887 |
452.1 | 453.06361431502813 | -0.96361431502811 | -0.21768081556048727 |
446.33 | 449.51211271813503 | -3.182112718135045 | -0.7188403917275025 |
452.46 | 450.67294754488756 | 1.7870524551124163 | 0.4036957834804415 |
444.87 | 447.9552056621949 | -3.0852056621948805 | -0.6969490534175217 |
444.04 | 448.2666586698021 | -4.226658669802077 | -0.9548036927113115 |
449.12 | 448.6696822105525 | 0.4503177894475243 | 0.10172694836468192 |
443.15 | 445.71467031907304 | -2.564670319073059 | -0.5793599347715302 |
446.84 | 452.8021698612505 | -5.962169861250516 | -1.3468562864482865 |
443.93 | 446.74436600081026 | -2.814366000810253 | -0.6357662778434455 |
455.18 | 448.49796091182594 | 6.682039088174065 | 1.509475000149156 |
451.88 | 449.90863388073825 | 1.971366119261745 | 0.4453323055881452 |
458.47 | 453.53620348431406 | 4.9337965156859696 | 1.11454638291948 |
449.26 | 451.6024110197605 | -2.3424110197605046 | -0.5291514802210725 |
444.16 | 448.28015134415506 | -4.120151344155033 | -0.9307436500693146 |
441.05 | 445.9401390971127 | -4.890139097112694 | -1.1046841565784165 |
447.88 | 452.51812264484727 | -4.638122644847272 | -1.047753550620993 |
444.91 | 449.0808543549187 | -4.170854354918674 | -0.9421974781852653 |
439.01 | 443.7646779089382 | -4.75467790893822 | -1.0740834261214887 |
453.17 | 449.2796285666693 | 3.8903714333306993 | 0.8788362867107722 |
-- Now we can display the RMSE as a Histogram. Clearly this shows that the RMSE is centered around 0 with the vast majority of the error within 2 RMSEs.
SELECT Within_RSME from Power_Plant_RMSE_Evaluation
Within_RSME |
---|
-0.6545286058914855 |
-1.4178948518800556 |
0.17524239493619823 |
0.44163480044197995 |
0.26132139752130357 |
0.28066570579802425 |
1.3625651590092023 |
0.9078489886839033 |
-0.3442308494884213 |
-0.11630232674577932 |
1.7506729821805804 |
-8.284953745386567e-2 |
-1.692818871916148 |
2.608373132048146e-2 |
0.8783285919200484 |
1.8262340682999108 |
0.9515196517846441 |
0.9951418870719423 |
-0.12833292050229034 |
1.8547757064958097 |
-6.520499829010114e-2 |
1.7540228045303743 |
1.712912449331917 |
-0.567063215206105 |
1.758470293691663 |
0.36292285373571487 |
1.3722994239368362 |
-0.4518791902667791 |
-0.711637096481805 |
0.7477551488923485 |
-9.075206274161249e-2 |
0.33498359634397323 |
-2.717087121436152 |
1.6347795140090344 |
0.5413939250993844 |
1.8721087453250556 |
1.2897763086344445 |
-0.6298581141929721 |
-0.3869554869711247 |
1.5590952476122018 |
-5.164688385271067e-2 |
1.021860350507925 |
4.2073297187840204e-2 |
3.6816563372465104e-2 |
2.4273181887690556 |
0.2760063132279849 |
-0.2711988922825122 |
-0.49565448805243767 |
1.6046669568831393 |
-0.5946690382578993 |
1.1099602752189677 |
0.42249584921569994 |
0.3776264153858503 |
1.1253464244922151 |
2.313691606156222 |
0.15702246269194528 |
1.1180526463224945 |
1.0326707046913566 |
-0.5009264197587914 |
2.1055253303633577 |
0.883079580425271 |
0.8562239455498787 |
1.0581479782654901 |
-0.5881175213603873 |
-1.0469362575856187 |
0.9845051707078616 |
-0.32033221960491765 |
-6.11464435454739e-2 |
1.7966491781271794 |
1.449961394951398 |
0.1429791665816065 |
0.17796926331974147 |
0.590178010121793 |
-0.4427473424095181 |
-1.4586722394340677 |
-0.14061563348410486 |
-0.4778797517789611 |
0.16287170617772706 |
1.6205038004183012 |
0.6655668633335223 |
0.9552928474721311 |
-0.9255614318409298 |
-0.20841065925050425 |
-0.5044470235035043 |
-0.9064055675522111 |
-0.5331117277702286 |
1.0604764411029242 |
0.6163555912803304 |
1.502475041125319 |
0.11025852973791857 |
1.027322682875218e-2 |
1.2068500286116204 |
0.7807519242835766 |
0.5378958494817917 |
1.4921557049542535 |
0.8423417649127792 |
-0.8074228949228237 |
-1.273287251952606 |
-0.8366248339128552 |
0.5703862219885535 |
0.9915076732202934 |
1.392578067734949 |
-1.1161712376708273 |
-0.5177873225895746 |
1.2543530104022107 |
0.8332547944829863 |
-0.15024202389261102 |
-0.7461833621634392 |
-2.6333071255094267 |
1.7090186657480726 |
1.17171695524459 |
0.16538389150158914 |
-0.6043651708916123 |
1.5140936302699408 |
-0.40248969630754267 |
-0.5274788489010923 |
1.673819828943716 |
0.3998536629456538 |
1.5247431144210337 |
0.681669465709775 |
-0.5067930534728822 |
1.3329317905059794 |
0.2815190232236669 |
0.9594271583094607 |
0.7195804749163808 |
1.563628994525865 |
-0.5164095221527084 |
0.5408652916763936 |
1.2169907361146226 |
1.3691416206809235 |
0.9990582667496749 |
0.2866573009496584 |
-0.1322508701375881 |
-0.11350226422907182 |
1.5478953375265612 |
0.6261411303745675 |
-0.3570008639436786 |
0.11097880108736301 |
-1.997789295120947e-2 |
0.8015184563019332 |
1.0694995653480546 |
-0.44658623651141477 |
1.5261372030315674 |
9.637974736911713e-2 |
-0.8289854400119429 |
1.6226588690300885 |
1.2686705940133918 |
-0.17369127241360752 |
1.465503060651426 |
-0.8493901094223798 |
-3.19863982083975e-3 |
0.775250166241454 |
-1.476480677907779 |
1.6164395333609067 |
-0.7292074491181413 |
-2.0719934236347326 |
6.689462100697262e-2 |
0.41987991622217147 |
1.5698655082870474 |
0.9108140262190783 |
1.4283829990671366 |
-0.7468033961054397 |
1.8565224554443056e-2 |
-0.631158789082455 |
-2.423658794064658e-2 |
0.1268789228414677 |
1.2467256943415417 |
0.9532625827884375 |
1.858427070746631 |
3.080438049074982 |
-0.7935508099728905 |
-0.33001241533337206 |
1.5352270267793358 |
-0.8014312542128782 |
1.0796607821279804 |
0.8682110816429235 |
0.8502714264690703 |
0.271857163937664 |
1.4407225588170043 |
-7.658599891256687e-2 |
0.4048751439362759 |
-1.6508290646045036 |
0.9392995195813987 |
0.3512225476325008 |
1.3510289270963245e-2 |
1.214207255223955 |
1.357197397311141 |
0.7924624787403274 |
0.9747529486084029 |
-0.2189330666129607 |
1.1957383378087658 |
-0.33808517274788225 |
0.12841983400410018 |
2.6901995797195863e-2 |
0.6811317532938489 |
-0.14977990817360218 |
0.3021002532054435 |
6.309664277182285e-2 |
-1.4280877316330394 |
-0.31036099175789383 |
0.23847593115995214 |
-1.2544261801023373 |
1.487015909020143 |
1.4770822031817277e-2 |
1.5464079765310332 |
-0.9661142653632034 |
0.12365480382094843 |
0.2213694799459989 |
-0.371717945334288 |
-7.16964482466269e-2 |
-1.3370460279083884 |
-0.4791979479015218 |
0.7258131397464832 |
-0.9603785228015735 |
1.761740374853143 |
0.756705284425051 |
-7.97943379405968e-2 |
-0.12401745329336308 |
0.6066524918978817 |
-1.827662052785967 |
-1.591900543337891 |
-2.2076662292962226 |
-0.6113138148859982 |
-0.6998705392764937 |
-0.950596077665842 |
0.8530061355541199 |
-0.3389719928622738 |
1.166670943264595 |
-0.793497343451686 |
-0.17702361157448407 |
-1.2193083364383357 |
-2.0572343953484604 |
-0.3306196669058454 |
0.30773883474602903 |
-0.23209777066088685 |
1.4407294606630792 |
-0.25326355704561365 |
-4.4359271514481574e-2 |
0.6878454023126037 |
-1.1071350441930146 |
1.1936865467290878 |
-0.3007124612846165 |
1.4096765924648265 |
0.6164656679054759 |
0.9857137966698644 |
1.0741485680349747 |
-0.5956816180527323 |
0.42955444320288233 |
0.3977787059312943 |
-0.21498609418317555 |
0.9605949185920998 |
-0.9629884170069595 |
1.0232242351169787 |
-0.5846231192914554 |
1.3665650089641064 |
1.746749569478921 |
0.20876984487810568 |
1.2521345827220822 |
0.5034033523179731 |
0.2428222722587704 |
-0.8164837978146291 |
0.8816626861116392 |
0.3639355749527803 |
0.529553624374745 |
-0.5182949859646964 |
1.1483434385624023 |
1.7878124840322416 |
1.1154300586630213 |
1.7220135063654567 |
-0.5948541705999838 |
2.6840159315323495 |
1.4048914641301884 |
1.048062749037262 |
1.0587197080412232 |
2.305613395286325 |
-0.36112584123348884 |
-0.9292014386335458 |
1.3994718175237673 |
-2.07160847091363 |
1.5499716375563712 |
-0.49879093666907914 |
-0.7387667159730148 |
1.215743751168344 |
0.41488138983573053 |
0.8109415219227073 |
0.17199705539157537 |
0.37238038749473606 |
1.0232860206712358 |
7.648152721354506e-2 |
-1.462397837959548 |
1.1080799981170868 |
-0.8241779060158768 |
0.6646125250731286 |
-0.5357411851906123 |
-1.1013185729957693 |
1.0228434545117104 |
-2.2138675491121655 |
1.1090799040003696 |
0.528855769995572 |
0.5510063260220736 |
-0.6178137048585499 |
-1.5423062021582727 |
0.14223087889069697 |
0.6842724817647582 |
0.8947164246665408 |
0.2929208050392189 |
1.0509433168534397 |
-0.7432089035850772 |
-0.4404227630306511 |
-1.749430050046347 |
-1.8086930425174812 |
-1.0601131663478296 |
1.1367001553490168 |
0.8092747458990647 |
-0.6912565984961676 |
0.5876026195201212 |
0.588118260475777 |
-1.5843005948416944 |
1.2258227543850637 |
-2.221379961092406 |
0.634487138275479 |
0.5838507185000019 |
-0.7046913242897344 |
-0.37217013370970675 |
-0.40920885267913865 |
0.6878875094589886 |
-0.6603570138111878 |
0.47983904985387016 |
1.1108376145467862 |
-1.2967007380916762 |
1.597843788860663 |
-1.2003451799842708 |
0.7823286855941306 |
0.4040957861116898 |
-0.8115843408453783 |
-0.5164400209043697 |
0.6648789506575099 |
1.302692092451488 |
0.6081791894050589 |
0.9892527182470402 |
0.8010661900831437 |
1.3632196657801583 |
-0.95536478346845 |
1.0773296627734226 |
-1.2863290875171947 |
-0.45717742235729764 |
-1.3782059158917384 |
1.3292415395636934 |
0.898840426845182 |
-0.49778501447760914 |
-2.8013349681766146 |
-0.4810779148314091 |
-0.30893260677359485 |
1.4144446986124883 |
0.8455721466933415 |
1.149027173540852 |
1.398381410079887 |
-2.07482799048434 |
0.802797467810633 |
-1.5148720297345803 |
0.4457711691982717 |
0.8083230187436264 |
-0.3652639670874125 |
-1.301009165777192 |
0.12351025454739102 |
1.1417131567412993 |
-0.36627110968185583 |
0.11986193019333387 |
0.9789636158092969 |
0.8287590631587972 |
0.12784192086705481 |
-0.2933818764583589 |
0.37057045258220545 |
0.17867647626623853 |
1.4063653898508444 |
0.3724177883609634 |
0.47087976564737744 |
-0.29605954815653446 |
0.3100202222752913 |
-0.7571192782768728 |
-0.159362104405368 |
0.4948614777371899 |
-0.914693478650593 |
0.1552739582781331 |
-0.47397010386004174 |
0.9853374925715822 |
-0.27611557009437565 |
-0.11876915655659566 |
-1.9139681704240736 |
4.953016947212214e-3 |
1.1193515979151634 |
0.10914706208866293 |
0.2953624624059635 |
-0.6203480029931175 |
1.447373814412471 |
-1.6476543672481883 |
-0.688655110626592 |
1.119882332695939 |
-0.489107443803926 |
0.36504587152451 |
-0.6898805978802584 |
-1.0090851773780105 |
1.3164462111456963 |
-0.9719462634817788 |
-1.195980679378918 |
-0.2324693067978492 |
1.5483799402320506 |
-0.7562589912210242 |
9.006543612814395e-2 |
0.6307060325245487 |
-0.2658735764273784 |
1.3036368729747179 |
1.3861689239960837 |
-0.10256413058630598 |
1.7873934636501403 |
0.39996285217557137 |
-0.962793977380421 |
1.2120179370324367 |
-0.14370787512306984 |
0.1873907498457296 |
8.883711718846676e-2 |
1.1389205017346977 |
-1.5633041348778628e-2 |
1.5435878241412961 |
0.9211075789572168 |
0.17182562184847788 |
-1.0405053204973118 |
0.6134953430761453 |
0.924316094817409 |
0.893158168449016 |
0.7054993963391207 |
1.1169128153424053 |
1.2716543656809969 |
0.2909263677211387 |
0.3156983081862408 |
-0.3181585485837661 |
-1.79557827837392 |
-1.9821852874504897 |
-0.18315266781990724 |
0.29419068616581573 |
1.321272422372547 |
-0.5300977560633852 |
0.7301877034905364 |
0.35702870934871034 |
-0.12785771898138407 |
-1.4568475152442806 |
1.1799216369387262 |
-2.6289350896996853 |
1.36938729411264 |
0.8658222795557158 |
-1.961929096387823 |
-1.7869367782036754 |
-2.3414119790965118 |
-0.7070000881461707 |
1.094870026989326 |
1.1674921223009784 |
0.4309575170361471 |
-0.5608691138957983 |
0.9204597474090102 |
0.45642908946816274 |
1.3262603156304236 |
0.6694839282628849 |
-1.4191468918247268 |
-2.0503769708593955 |
-1.559496185458982 |
-0.8294949891974716 |
-0.7511122251047269 |
0.9255039510005931 |
-0.7348543381165886 |
0.14006818598115695 |
-8.906989903365076e-2 |
0.5960428781510217 |
-1.02587326449146 |
-0.19021607612190924 |
0.4462389970391413 |
-0.4412430070274576 |
-0.5519946201974366 |
-0.5978564569550795 |
1.3285941918109334 |
0.9398258266993826 |
0.18054354406665346 |
0.24526741726554308 |
0.6419203730291116 |
-0.9563898027913122 |
-0.4574416919740238 |
-0.49100134055869604 |
0.8350348745649541 |
1.1230180632103244 |
-0.2831261948065207 |
-0.34737057487344897 |
-4.4197222396898606e-2 |
0.4029451403943494 |
-0.8387790498308709 |
-0.76724104350462 |
-1.405536067872571 |
-0.5049830367049549 |
-0.4450784100952837 |
-1.0964525416975441 |
-0.24679765115367583 |
0.6373400044210754 |
0.47325677731185334 |
-2.895796152379444 |
1.0608917942097844 |
-0.5538446783382351 |
-1.0739516871848376 |
0.6590103675152038 |
0.19886190778235394 |
-0.7684000719143101 |
-0.9540651350015262 |
0.8326866968950778 |
1.049265553847453 |
1.1564460495859417 |
-0.9105747398006214 |
-1.298779737770393 |
0.7486049675853867 |
1.0125992544722646 |
-0.552486882193573 |
4.083638455563342e-2 |
-7.43032114617912e-2 |
0.38180618893011364 |
-2.5821601917725587 |
-3.9183934552884936e-2 |
-0.7161579504665817 |
-1.1179393167374423 |
0.24473358069515785 |
0.37566200116631454 |
-0.8469696321106422 |
0.9536067209045733 |
1.040389080973342e-3 |
-1.9463087774264596 |
-0.5212577234014426 |
2.6198974509955283e-2 |
-0.22312751932133126 |
-0.3749580186284632 |
0.8158971199557807 |
0.5526973095848743 |
-1.0007418364636667 |
-0.7893531119518733 |
0.948603975708334 |
-0.5535013570539268 |
0.615437313273332 |
0.390353931433719 |
2.1370626071593804e-2 |
-4.58603577983067e-2 |
-1.8585598276086635 |
-1.7168393323476852 |
-1.1398906775971094 |
-0.4823380615634837 |
0.96139463327236 |
-0.28409897841626214 |
-1.1427184843899973 |
0.47191339234564744 |
-0.7999147952790192 |
-0.6809096342868951 |
-0.5802973198353383 |
-0.15724483814107668 |
-3.095640160553223e-2 |
-0.935248060922378 |
-0.2680652196876797 |
-1.3834783433962559 |
0.24424086946940488 |
2.8145362608873965e-2 |
2.0243901188534075e-2 |
0.8656525590853151 |
-0.43908603802454604 |
-0.3372983215369459 |
-1.527152991853827 |
-0.8950322545891167 |
0.49340212657275334 |
0.16455403921586076 |
-0.2922070048026174 |
8.049860352378384e-2 |
0.5092872109601911 |
-1.4149898349271792 |
0.26001016007049604 |
0.848179116862477 |
1.541775892767944 |
-2.7383106694634813 |
-1.3360086450624162 |
0.24805635526298545 |
-1.8022030869799206 |
0.10731148881574702 |
-0.5272965884493478 |
-0.522827282380973 |
-1.6790858913831084 |
-1.0881066592743878 |
-0.7551911549160485 |
1.0908758941061858 |
-0.40596025641974887 |
-1.3175361850815699 |
-0.33736351432728534 |
-0.7647965508049966 |
-0.8966825099514081 |
0.13589183843986818 |
-0.45700135918716 |
0.17800963180524587 |
-0.12241676923652416 |
0.928379507484781 |
-1.4663326638006033 |
0.9926875580120624 |
-0.9519902891303528 |
-1.2103639004447255 |
-0.29320537464645474 |
1.0589301445025614 |
1.9848035286394352 |
-1.262990865781086 |
-0.4669510069602996 |
-0.29852124969696514 |
0.4528378506109543 |
-2.176827775976124 |
0.6287618750023547 |
-0.22259591077043436 |
0.8980186936604918 |
-0.6701335093722809 |
5.3540678924927795e-2 |
-2.0162206655848456 |
-5.915502468864325 |
6.248484005862629e-2 |
-6.430908490699098e-2 |
0.24975508158417795 |
0.10082671294548266 |
6.192719483296151e-2 |
-0.8827535896932235 |
0.14629114201469284 |
0.3647103786297681 |
0.13525709550549558 |
-0.6839012648279135 |
-0.3282810590165173 |
-2.5448723679212413 |
0.9859079039422615 |
0.8870212178332524 |
-0.9336885155326297 |
-0.5912519373226456 |
-1.19738092926328 |
-4.418517142015048e-2 |
-1.0477395899387958 |
0.8720418466790518 |
-0.16818902827121646 |
0.8106803127226195 |
7.651700053300835e-2 |
0.6479284215091841 |
-1.2656945480299158 |
-0.3928384325809046 |
-1.6427960713292782 |
-1.1104398571567456e-2 |
0.33300423009965163 |
-1.4810644003074978 |
-0.7936240133313774 |
-0.41607342702266226 |
-0.8103843372605553 |
6.1934850072404936e-2 |
-1.3972529144877643 |
-1.1492657301278992 |
0.19051481992981023 |
1.4771174105289492e-3 |
-0.7526971048807434 |
-0.6958979478771827 |
0.3857577737865013 |
-0.26761154566176326 |
6.330220478322962e-2 |
-1.8292445149531718 |
-0.4450769376655955 |
7.679881883917433e-2 |
-2.4157429316491066 |
-0.35061571253514523 |
0.39710873785339107 |
-1.1752337481862478 |
-0.488644466470834 |
-1.1819154926380382 |
0.9611401946105317 |
-0.88356932939405 |
-0.3682206690752407 |
0.5300804829424589 |
0.7517433153011605 |
-4.100082896844213 |
-0.18268097898348856 |
0.4756183235788339 |
0.5490073718413218 |
0.11953038666589516 |
-0.5421149051411095 |
2.5064114496629736e-2 |
0.230194477556215 |
-0.5430905347252163 |
1.5584512436402695 |
0.7308508901811838 |
-0.4223660350121439 |
0.6880017317073447 |
0.3163521132445753 |
2.2499178761738656e-2 |
0.5033732580836815 |
1.908085184261808 |
-4.159840990620793e-2 |
-0.7448439804538625 |
-0.681420065430807 |
0.3141463932063569 |
-1.573602447113043 |
9.865523425471445e-2 |
-0.24893221002717708 |
0.9263087968044336 |
-0.43302211618029557 |
-1.4398587970092795 |
0.462885224472874 |
-0.391055252551079 |
-1.3270367364908389 |
0.5095691560296709 |
-0.9111937635582255 |
0.25748127626527917 |
1.0055534371830066 |
0.7936454594404486 |
0.26066651094965915 |
1.3394018178342768 |
-1.5012794324329175 |
-1.212821534560818 |
-0.2995168034930508 |
0.14237964077547013 |
-0.44775226629445647 |
0.18686224516459876 |
-0.2913595677715297 |
-0.14825636999077735 |
1.4255082955353757e-2 |
-3.85223285385276e-2 |
0.34337513637978356 |
-1.3596032767443251 |
-0.12697006859821677 |
-0.9881327478480624 |
-0.11141412701259497 |
0.22977278357028447 |
0.5176994104510022 |
6.13987745130998e-2 |
-0.3360717809204362 |
-0.6528018638498932 |
0.5701728960887047 |
-0.5637272529976811 |
-1.3206794239848478 |
0.1462347705134622 |
1.358693285939825 |
-0.17779587530777846 |
-1.6381157635658086 |
-0.602344532375961 |
-0.3040307722514201 |
-0.8193791814630933 |
-1.4755414229551909 |
-1.1278599078269054 |
-0.4444726441730127 |
0.35879357661949324 |
1.1179138541897764e-2 |
0.34967140754299175 |
-6.982165672536109e-2 |
-1.904553463477631e-2 |
3.3509032578186985e-2 |
0.43458901734435373 |
-0.5026269642909126 |
-1.684639094666372 |
-0.9597412475447774 |
1.4023843420494426 |
-0.4267339931080307 |
-9.266528554109059e-2 |
0.47488555394598253 |
0.18823213582988355 |
0.8406032598983453 |
-0.9910323928287407 |
-0.9427234831869965 |
1.4986945451227311 |
0.7610470759162783 |
0.21440090198276052 |
-1.8951086283122098 |
-0.1195509825335976 |
0.10885346370435622 |
-1.580719694938195 |
-0.7372165177419857 |
-0.3453896181957068 |
-0.1679209953140206 |
0.10817078505437988 |
0.623898427209341 |
0.2059262926120357 |
-1.4863981874464185 |
-6.331581426263354e-2 |
0.5539275575714465 |
-0.4114802468703741 |
-0.2537329263193067 |
-0.9506562296769948 |
1.068374879236074 |
-0.3398067292862239 |
-0.32398605358520316 |
-0.42650686456142684 |
-2.186502303726239 |
1.3938624683483432 |
-1.0204544914921314 |
0.27469550529997006 |
0.5362520089571434 |
-0.7363178909964009 |
-0.6292901762011418 |
0.9369030019327613 |
6.551404180844994e-2 |
0.1282331586527475 |
-1.5197729065410778e-2 |
-1.0950489304100275 |
-1.3549368516581415 |
-0.5911666411407626 |
-0.2532802591719359 |
-0.9296320860244299 |
-0.1002787866878538 |
-1.5821547576776454 |
-0.9551294929945369 |
-0.13367191347958032 |
0.2685265644141194 |
0.6043227304296972 |
-0.13541855239802086 |
0.22096438768429855 |
0.6957725134313342 |
-1.566346070374885 |
0.5572636952570301 |
0.15486117417577897 |
0.3014926601172488 |
-0.7621478077785558 |
0.32734086830965053 |
-1.6237166505279563 |
-0.9060064551221478 |
-0.6544566088606873 |
-0.21304296358942265 |
0.5239325837337663 |
0.9223081331700905 |
-0.9122812185222428 |
-0.24865928174635601 |
0.8634327460307729 |
-0.7128132140281332 |
-1.5087079840447288 |
1.4460438896255918 |
0.22108497623179488 |
-0.18608980078521345 |
-0.5136565645795023 |
-0.2840762845598929 |
-0.8459874564799138 |
-0.380059650479177 |
-1.1646367865259744 |
0.5960061104441506 |
0.29675974405004724 |
-2.2198394643539735e-2 |
1.0556739178415897 |
0.35023171132628417 |
-1.2014380501041335 |
0.5189884975744112 |
0.38295900412869216 |
0.9431311483218855 |
3.170143276445295e-2 |
1.3307727287321278 |
-1.3597476078635353 |
1.6925820719064946 |
0.10701392309290869 |
0.3769110689022767 |
-0.5225688650866008 |
0.12962105610924668 |
0.4388507070002017 |
-1.5635346785212256 |
0.7400421406892627 |
-0.1542292630166233 |
-4.453077099148361e-2 |
-0.5182229388235478 |
-0.48273405745988357 |
0.34946624425526 |
0.1975687811786549 |
-0.34106306503697253 |
-1.0431049581122194 |
0.5473914836897852 |
-0.32163941044764294 |
-2.1123605476138505 |
0.6755552672777567 |
-0.7768750359376887 |
7.361579398740335e-2 |
-1.1767524912633618 |
-0.5872458115946685 |
-0.15834020050780284 |
0.682572359347037 |
0.25945073138280605 |
0.18198122034572886 |
0.8813451011277746 |
9.289521984221884e-2 |
-0.8224646596460314 |
-1.0992548944297087 |
0.24767764457942207 |
-1.6296349827369583 |
0.8839992806447705 |
-0.20826509006315633 |
-1.1308211710304394 |
-0.888034323093527 |
1.375146556884749 |
-0.12272814800411408 |
0.4708084873186104 |
-0.4634347195545461 |
0.3440522256895429 |
0.4367497353673552 |
-0.2795279825620374 |
0.7701118542900588 |
-4.2075245099282746e-2 |
-0.10357117246458049 |
1.80757939097979e-2 |
0.16185831370575537 |
0.5535246598913276 |
-0.4376793572220653 |
0.2960230050324334 |
-0.501790599000596 |
-0.4316894674828857 |
0.24271962137276715 |
-0.6012591933934375 |
0.499528227037766 |
-0.227724741199252 |
-1.5266390839325845 |
-0.5833859951647822 |
0.44092803915740614 |
1.3593919171619417 |
0.637089242037123 |
0.712636779143946 |
-1.1258805595962003 |
0.1451010950402414 |
-0.6625051797404924 |
-0.8793761681170623 |
0.3205158072965067 |
0.11039293412506312 |
-0.935517944613967 |
-0.35882328154752013 |
-0.4990646122154142 |
-0.5813521178437366 |
-3.959793091748769e-2 |
-1.016322415917227 |
1.069329943682345 |
-6.899807012373943e-2 |
-0.9360632713678595 |
-0.600779764980383 |
-1.0163490721896018 |
-0.7464384026808953 |
0.21876928556414296 |
0.23953823855339262 |
-1.349843212892932 |
-0.9621476427127764 |
0.599309142680298 |
-0.7426591743046266 |
2.999965310254963e-2 |
1.4104064512304106 |
-0.281655180427759 |
-0.9878062656356458 |
-0.4153208114916822 |
5.918848182094669e-2 |
-0.4991855384391755 |
0.37554324623667645 |
-1.0384587138204282 |
0.34503225112933517 |
6.033467545812348e-2 |
1.388444756419958 |
5.085027336501233e-2 |
-0.9637737556054642 |
1.553649168586412 |
-0.5801982713557641 |
-0.9283895640961064 |
0.2793697603225793 |
0.3146293591732849 |
1.0837632617676214 |
-0.7626542728669009 |
0.7477118259115428 |
-0.4680441794071581 |
-0.8164764251785102 |
-1.2655145330562003 |
-0.5835094478470579 |
-1.046134490045332 |
-0.9316648122523561 |
0.7201964710108949 |
-1.0109633319210711 |
0.2820566511504923 |
-1.262133352352325 |
-0.30588814387272023 |
-1.3657340529671387 |
0.7279205250179235 |
9.01801459906393e-2 |
-1.7503931093934726 |
0.27769735027577597 |
-1.6991025093602443 |
0.9033251358981357 |
-0.7881664644439343 |
-0.532048954767078 |
-0.7145121539163726 |
0.35311094138229787 |
1.2074332463249917 |
-0.21768081556036123 |
-0.718840391727202 |
0.40369578348012486 |
-0.6969490534174008 |
-0.9548036927115915 |
0.10172694836464449 |
-0.5793599347716393 |
-1.3468562864485707 |
-0.6357662778430159 |
1.5094750001492365 |
0.44533230558821424 |
1.1145463829197875 |
-0.5291514802205262 |
-0.9307436500694146 |
-1.1046841565784926 |
-1.047753550621287 |
-0.9421974781853397 |
-1.0740834261221295 |
0.8788362867110385 |
We can see this definitively if we count the number of predictions within + or - 1.0 and + or - 2.0 and display this as a pie chart:
SELECT case when Within_RSME <= 1.0 and Within_RSME >= -1.0 then 1 when Within_RSME <= 2.0 and Within_RSME >= -2.0 then 2 else 3 end RSME_Multiple, COUNT(*) count from Power_Plant_RMSE_Evaluation
group by case when Within_RSME <= 1.0 and Within_RSME >= -1.0 then 1 when Within_RSME <= 2.0 and Within_RSME >= -2.0 then 2 else 3 end
RSME_Multiple | count |
---|---|
1.0 | 1267.0 |
3.0 | 77.0 |
2.0 | 512.0 |
So we have about 70% of our training data within 1 RMSE and about 97% (70% + 27%) within 2 RMSE. So the model is pretty decent. Let's see if we can tune the model to improve it further.
NOTE: these numbers will vary across runs due to the seed in random sampling of training and test set, number of iterations, and other stopping rules in optimization, for example.
Step 7: Tuning and Evaluation
Now that we have a model with all of the data let's try to make a better model by tuning over several parameters.
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.evaluation._
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.evaluation._
First let's use a cross validator to split the data into training and validation subsets. See http://spark.apache.org/docs/latest/ml-tuning.html.
//Let's set up our evaluator class to judge the model based on the best root mean squared error
val regEval = new RegressionEvaluator()
regEval.setLabelCol("PE")
.setPredictionCol("Predicted_PE")
.setMetricName("rmse")
regEval: org.apache.spark.ml.evaluation.RegressionEvaluator = RegressionEvaluator: uid=regEval_3679d6d8cb8b, metricName=rmse, throughOrigin=false
res40: regEval.type = RegressionEvaluator: uid=regEval_3679d6d8cb8b, metricName=rmse, throughOrigin=false
We now treat the lrPipeline
as an Estimator
, wrapping it in a CrossValidator
instance.
This will allow us to jointly choose parameters for all Pipeline stages.
A CrossValidator
requires an Estimator
, an Evaluator
(which we set
next).
//Let's create our crossvalidator with 3 fold cross validation
val crossval = new CrossValidator()
crossval.setEstimator(lrPipeline)
crossval.setNumFolds(3)
crossval.setEvaluator(regEval)
crossval: org.apache.spark.ml.tuning.CrossValidator = cv_3b91131c250a
res41: crossval.type = cv_3b91131c250a
A CrossValidator
also requires a set of EstimatorParamMaps
which we set
next.
For this we need a regularization parameter (more generally a hyper-parameter that is model-specific).
Now, let's tune over our regularization parameter from 0.01 to 0.10.
val regParam = ((1 to 10) toArray).map(x => (x /100.0))
warning: one feature warning; for details, enable `:setting -feature' or `:replay -feature'
regParam: Array[Double] = Array(0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1)
Check out the scala docs for syntactic details on org.apache.spark.ml.tuning.ParamGridBuilder.
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, regParam)
.build()
crossval.setEstimatorParamMaps(paramGrid)
paramGrid: Array[org.apache.spark.ml.param.ParamMap] =
Array({
linReg_96951eb5ad16-regParam: 0.01
}, {
linReg_96951eb5ad16-regParam: 0.02
}, {
linReg_96951eb5ad16-regParam: 0.03
}, {
linReg_96951eb5ad16-regParam: 0.04
}, {
linReg_96951eb5ad16-regParam: 0.05
}, {
linReg_96951eb5ad16-regParam: 0.06
}, {
linReg_96951eb5ad16-regParam: 0.07
}, {
linReg_96951eb5ad16-regParam: 0.08
}, {
linReg_96951eb5ad16-regParam: 0.09
}, {
linReg_96951eb5ad16-regParam: 0.1
})
res42: crossval.type = cv_3b91131c250a
//Now let's create our model
val cvModel = crossval.fit(trainingSet)
cvModel: org.apache.spark.ml.tuning.CrossValidatorModel = CrossValidatorModel: uid=cv_3b91131c250a, bestModel=pipeline_1fbeea3a78d7, numFolds=3
In addition to CrossValidator
Spark also offers TrainValidationSplit
for hyper-parameter tuning. TrainValidationSplit
only evaluates each combination of parameters once as opposed to k times in case of CrossValidator
. It is therefore less expensive, but will not produce as reliable results when the training dataset is not sufficiently large.
Now that we have tuned let's see what we got for tuning parameters and what our RMSE was versus our intial model
val predictionsAndLabels = cvModel.transform(testSet)
val metrics = new RegressionMetrics(predictionsAndLabels.select("Predicted_PE", "PE").rdd.map(r => (r(0).asInstanceOf[Double], r(1).asInstanceOf[Double])))
val rmse = metrics.rootMeanSquaredError
val explainedVariance = metrics.explainedVariance
val r2 = metrics.r2
predictionsAndLabels: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 5 more fields]
metrics: org.apache.spark.mllib.evaluation.RegressionMetrics = org.apache.spark.mllib.evaluation.RegressionMetrics@671c9416
rmse: Double = 4.4286032895695895
explainedVariance: Double = 271.5750243564875
r2: Double = 0.9313732865178349
println (f"Root Mean Squared Error: $rmse")
println (f"Explained Variance: $explainedVariance")
println (f"R2: $r2")
Root Mean Squared Error: 4.4286032895695895
Explained Variance: 271.5750243564875
R2: 0.9313732865178349
Let us explore other models to see if we can predict the power output better
There are several families of models in Spark's scalable machine learning library:
So our initial untuned and tuned linear regression models are statistically identical.
Given that the only linearly correlated variable is Temperature, it makes sense try another machine learning method such a Decision Tree to handle non-linear data and see if we can improve our model
A Decision Tree creates a model based on splitting variables using a tree structure. We will first start with a single decision tree model.
Reference Decision Trees: https://en.wikipedia.org/wiki/Decisiontreelearning
//Let's build a decision tree pipeline
import org.apache.spark.ml.regression.DecisionTreeRegressor
// we are using a Decision Tree Regressor as opposed to a classifier we used for the hand-written digit classification problem
val dt = new DecisionTreeRegressor()
dt.setLabelCol("PE")
dt.setPredictionCol("Predicted_PE")
dt.setFeaturesCol("features")
dt.setMaxBins(100)
val dtPipeline = new Pipeline()
dtPipeline.setStages(Array(vectorizer, dt))
import org.apache.spark.ml.regression.DecisionTreeRegressor
dt: org.apache.spark.ml.regression.DecisionTreeRegressor = dtr_92691f930484
dtPipeline: org.apache.spark.ml.Pipeline = pipeline_ddfeb1cfff04
res106: dtPipeline.type = pipeline_ddfeb1cfff04
//Let's just resuse our CrossValidator
crossval.setEstimator(dtPipeline)
res107: crossval.type = cv_bc136566b6a6
val paramGrid = new ParamGridBuilder()
.addGrid(dt.maxDepth, Array(2, 3))
.build()
paramGrid: Array[org.apache.spark.ml.param.ParamMap] =
Array({
dtr_92691f930484-maxDepth: 2
}, {
dtr_92691f930484-maxDepth: 3
})
crossval.setEstimatorParamMaps(paramGrid)
res108: crossval.type = cv_bc136566b6a6
val dtModel = crossval.fit(trainingSet) // fit decitionTree with cv
dtModel: org.apache.spark.ml.tuning.CrossValidatorModel = CrossValidatorModel: uid=cv_bc136566b6a6, bestModel=pipeline_ddfeb1cfff04, numFolds=3
import org.apache.spark.ml.regression.DecisionTreeRegressionModel
import org.apache.spark.ml.PipelineModel
dtModel.bestModel.asInstanceOf[PipelineModel].stages.last.asInstanceOf[DecisionTreeRegressionModel].toDebugString
import org.apache.spark.ml.regression.DecisionTreeRegressionModel
import org.apache.spark.ml.PipelineModel
res109: String =
"DecisionTreeRegressionModel: uid=dtr_92691f930484, depth=3, numNodes=15, numFeatures=4
If (feature 0 <= 18.595)
If (feature 0 <= 11.885000000000002)
If (feature 0 <= 8.575)
Predict: 483.994943457189
Else (feature 0 > 8.575)
Predict: 476.04374262101527
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 15.475000000000001)
Predict: 467.5564649956784
Else (feature 0 > 15.475000000000001)
Predict: 459.5010376134889
Else (feature 0 > 18.595)
If (feature 1 <= 66.21000000000001)
If (feature 0 <= 22.055)
Predict: 452.01076923076914
Else (feature 0 > 22.055)
Predict: 443.46937926330156
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 25.325)
Predict: 440.73731707317074
Else (feature 0 > 25.325)
Predict: 433.86131215469624
"
The line above will pull the Decision Tree model from the Pipeline and display it as an if-then-else string.
Next let's visualize it as a decision tree for regression.
display(dtModel.bestModel.asInstanceOf[PipelineModel].stages.last.asInstanceOf[DecisionTreeRegressionModel])
treeNode |
---|
{"index":7,"featureType":"continuous","prediction":null,"threshold":18.595,"categories":null,"feature":0,"overflow":false} |
{"index":3,"featureType":"continuous","prediction":null,"threshold":11.885000000000002,"categories":null,"feature":0,"overflow":false} |
{"index":1,"featureType":"continuous","prediction":null,"threshold":8.575,"categories":null,"feature":0,"overflow":false} |
{"index":0,"featureType":null,"prediction":483.994943457189,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":2,"featureType":null,"prediction":476.04374262101527,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":5,"featureType":"continuous","prediction":null,"threshold":15.475000000000001,"categories":null,"feature":0,"overflow":false} |
{"index":4,"featureType":null,"prediction":467.5564649956784,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":6,"featureType":null,"prediction":459.5010376134889,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":11,"featureType":"continuous","prediction":null,"threshold":66.21000000000001,"categories":null,"feature":1,"overflow":false} |
{"index":9,"featureType":"continuous","prediction":null,"threshold":22.055,"categories":null,"feature":0,"overflow":false} |
{"index":8,"featureType":null,"prediction":452.01076923076914,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":10,"featureType":null,"prediction":443.46937926330156,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":13,"featureType":"continuous","prediction":null,"threshold":25.325,"categories":null,"feature":0,"overflow":false} |
{"index":12,"featureType":null,"prediction":440.73731707317074,"threshold":null,"categories":null,"feature":null,"overflow":false} |
{"index":14,"featureType":null,"prediction":433.86131215469624,"threshold":null,"categories":null,"feature":null,"overflow":false} |
Now let's see how our DecisionTree model compares to our LinearRegression model
val predictionsAndLabels = dtModel.bestModel.transform(testSet)
val metrics = new RegressionMetrics(predictionsAndLabels.select("Predicted_PE", "PE").map(r => (r(0).asInstanceOf[Double], r(1).asInstanceOf[Double])).rdd)
val rmse = metrics.rootMeanSquaredError
val explainedVariance = metrics.explainedVariance
val r2 = metrics.r2
println (f"Root Mean Squared Error: $rmse")
println (f"Explained Variance: $explainedVariance")
println (f"R2: $r2")
Root Mean Squared Error: 5.111944542729953
Explained Variance: 261.4355220034205
R2: 0.908560906504635
predictionsAndLabels: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 5 more fields]
metrics: org.apache.spark.mllib.evaluation.RegressionMetrics = org.apache.spark.mllib.evaluation.RegressionMetrics@684c4c50
rmse: Double = 5.111944542729953
explainedVariance: Double = 261.4355220034205
r2: Double = 0.908560906504635
So our DecisionTree was slightly worse than our LinearRegression model (LR: 4.6 vs DT: 5.2). Maybe we can try an Ensemble method such as Gradient-Boosted Decision Trees to see if we can strengthen our model by using an ensemble of weaker trees with weighting to reduce the error in our model.
*Note since this is a complex model, the cell below can take about *16 minutes* or so to run on a small cluster with a couple nodes with about 6GB RAM, go out and grab a coffee and come back :-).*
This GBTRegressor code will be way faster on a larger cluster of course.
A visual explanation of gradient boosted trees:
Let's see what a boosting algorithm, a type of ensemble method, is all about in more detail.
import org.apache.spark.ml.regression.GBTRegressor
val gbt = new GBTRegressor()
gbt.setLabelCol("PE")
gbt.setPredictionCol("Predicted_PE")
gbt.setFeaturesCol("features")
gbt.setSeed(100088121L)
gbt.setMaxBins(100)
gbt.setMaxIter(120)
val gbtPipeline = new Pipeline()
gbtPipeline.setStages(Array(vectorizer, gbt))
//Let's just resuse our CrossValidator
crossval.setEstimator(gbtPipeline)
val paramGrid = new ParamGridBuilder()
.addGrid(gbt.maxDepth, Array(2, 3))
.build()
crossval.setEstimatorParamMaps(paramGrid)
//gbt.explainParams
val gbtModel = crossval.fit(trainingSet)
import org.apache.spark.ml.regression.GBTRegressor
gbt: org.apache.spark.ml.regression.GBTRegressor = gbtr_0a275b363831
gbtPipeline: org.apache.spark.ml.Pipeline = pipeline_8b2722444cff
paramGrid: Array[org.apache.spark.ml.param.ParamMap] =
Array({
gbtr_0a275b363831-maxDepth: 2
}, {
gbtr_0a275b363831-maxDepth: 3
})
gbtModel: org.apache.spark.ml.tuning.CrossValidatorModel = CrossValidatorModel: uid=cv_bc136566b6a6, bestModel=pipeline_8b2722444cff, numFolds=3
import org.apache.spark.ml.regression.GBTRegressionModel
val predictionsAndLabels = gbtModel.bestModel.transform(testSet)
val metrics = new RegressionMetrics(predictionsAndLabels.select("Predicted_PE", "PE").map(r => (r(0).asInstanceOf[Double], r(1).asInstanceOf[Double])).rdd)
val rmse = metrics.rootMeanSquaredError
val explainedVariance = metrics.explainedVariance
val r2 = metrics.r2
println (f"Root Mean Squared Error: $rmse")
println (f"Explained Variance: $explainedVariance")
println (f"R2: $r2")
Root Mean Squared Error: 3.7034735091301307
Explained Variance: 272.208177448154
R2: 0.9520069744321176
import org.apache.spark.ml.regression.GBTRegressionModel
predictionsAndLabels: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 5 more fields]
metrics: org.apache.spark.mllib.evaluation.RegressionMetrics = org.apache.spark.mllib.evaluation.RegressionMetrics@79d7946a
rmse: Double = 3.7034735091301307
explainedVariance: Double = 272.208177448154
r2: Double = 0.9520069744321176
We can use the toDebugString method to dump out what our trees and weighting look like:
gbtModel.bestModel.asInstanceOf[PipelineModel].stages.last.asInstanceOf[GBTRegressionModel].toDebugString
res116: String =
"GBTRegressionModel: uid=gbtr_0a275b363831, numTrees=120, numFeatures=4
Tree 0 (weight 1.0):
If (feature 0 <= 18.595)
If (feature 0 <= 11.885000000000002)
If (feature 0 <= 8.575)
Predict: 483.994943457189
Else (feature 0 > 8.575)
Predict: 476.04374262101527
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 15.475000000000001)
Predict: 467.5564649956784
Else (feature 0 > 15.475000000000001)
Predict: 459.5010376134889
Else (feature 0 > 18.595)
If (feature 1 <= 66.21000000000001)
If (feature 0 <= 22.055)
Predict: 452.01076923076914
Else (feature 0 > 22.055)
Predict: 443.46937926330156
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 25.325)
Predict: 440.73731707317074
Else (feature 0 > 25.325)
Predict: 433.86131215469624
Tree 1 (weight 0.1):
If (feature 3 <= 82.55000000000001)
If (feature 0 <= 26.505000000000003)
If (feature 3 <= 64.11500000000001)
Predict: 6.095232469256877
Else (feature 3 > 64.11500000000001)
Predict: 1.4337156041793564
Else (feature 0 > 26.505000000000003)
If (feature 1 <= 65.55000000000001)
Predict: -7.6527692217902885
Else (feature 1 > 65.55000000000001)
Predict: -0.5844786594493007
Else (feature 3 > 82.55000000000001)
If (feature 1 <= 45.754999999999995)
If (feature 3 <= 93.075)
Predict: 0.6108402960070604
Else (feature 3 > 93.075)
Predict: -3.913147108789527
Else (feature 1 > 45.754999999999995)
If (feature 0 <= 18.595)
Predict: -9.443118256805649
Else (feature 0 > 18.595)
Predict: -3.9650066253122347
Tree 2 (weight 0.1):
If (feature 1 <= 45.754999999999995)
If (feature 0 <= 15.475000000000001)
If (feature 0 <= 14.285)
Predict: 1.1090321642566017
Else (feature 0 > 14.285)
Predict: -3.898383406004269
Else (feature 0 > 15.475000000000001)
If (feature 0 <= 18.595)
Predict: 4.874047316205584
Else (feature 0 > 18.595)
Predict: 10.653531335032094
Else (feature 1 > 45.754999999999995)
If (feature 0 <= 18.595)
If (feature 1 <= 58.19)
Predict: -5.0005796708960615
Else (feature 1 > 58.19)
Predict: -13.749053154552547
Else (feature 0 > 18.595)
If (feature 2 <= 1009.295)
Predict: -3.1410617295379555
Else (feature 2 > 1009.295)
Predict: 0.8001319329379373
Tree 3 (weight 0.1):
If (feature 3 <= 85.52000000000001)
If (feature 1 <= 55.825)
If (feature 0 <= 26.505000000000003)
Predict: 2.695149105254423
Else (feature 0 > 26.505000000000003)
Predict: -6.7564705067621675
Else (feature 1 > 55.825)
If (feature 1 <= 66.21000000000001)
Predict: -2.282355645191304
Else (feature 1 > 66.21000000000001)
Predict: 0.5508297910243797
Else (feature 3 > 85.52000000000001)
If (feature 1 <= 40.629999999999995)
If (feature 2 <= 1022.8399999999999)
Predict: 2.236331037122985
Else (feature 2 > 1022.8399999999999)
Predict: -7.220151471077029
Else (feature 1 > 40.629999999999995)
If (feature 3 <= 89.595)
Predict: -2.175085332960937
Else (feature 3 > 89.595)
Predict: -4.54715329410012
Tree 4 (weight 0.1):
If (feature 2 <= 1010.335)
If (feature 1 <= 43.005)
If (feature 0 <= 15.475000000000001)
Predict: -0.004818717215773318
Else (feature 0 > 15.475000000000001)
Predict: 5.355639866401019
Else (feature 1 > 43.005)
If (feature 1 <= 65.15)
Predict: -5.132340755716604
Else (feature 1 > 65.15)
Predict: -0.7228608840382099
Else (feature 2 > 1010.335)
If (feature 3 <= 74.525)
If (feature 0 <= 29.455)
Predict: 3.0313483965828176
Else (feature 0 > 29.455)
Predict: -2.560863167947768
Else (feature 3 > 74.525)
If (feature 1 <= 40.629999999999995)
Predict: 2.228142113797423
Else (feature 1 > 40.629999999999995)
Predict: -1.6052323952407273
Tree 5 (weight 0.1):
If (feature 3 <= 81.045)
If (feature 0 <= 27.585)
If (feature 3 <= 46.92)
Predict: 8.005444802948366
Else (feature 3 > 46.92)
Predict: 1.301219291279602
Else (feature 0 > 27.585)
If (feature 1 <= 65.55000000000001)
Predict: -6.568175152421089
Else (feature 1 > 65.55000000000001)
Predict: -0.8331220915230161
Else (feature 3 > 81.045)
If (feature 1 <= 41.519999999999996)
If (feature 2 <= 1019.835)
Predict: 1.7054425589091675
Else (feature 2 > 1019.835)
Predict: -2.6266728146418195
Else (feature 1 > 41.519999999999996)
If (feature 1 <= 41.805)
Predict: -11.130585327952137
Else (feature 1 > 41.805)
Predict: -2.111742422947989
Tree 6 (weight 0.1):
If (feature 2 <= 1009.625)
If (feature 1 <= 43.005)
If (feature 0 <= 15.475000000000001)
Predict: -0.4497329015715072
Else (feature 0 > 15.475000000000001)
Predict: 3.661440765591046
Else (feature 1 > 43.005)
If (feature 1 <= 66.85499999999999)
Predict: -3.861085082339984
Else (feature 1 > 66.85499999999999)
Predict: -0.7492674320362704
Else (feature 2 > 1009.625)
If (feature 3 <= 69.32499999999999)
If (feature 0 <= 29.455)
Predict: 2.621042446270476
Else (feature 0 > 29.455)
Predict: -1.4554021183385886
Else (feature 3 > 69.32499999999999)
If (feature 1 <= 58.19)
Predict: 0.42605173456002876
Else (feature 1 > 58.19)
Predict: -1.9554878629891888
Tree 7 (weight 0.1):
If (feature 3 <= 86.625)
If (feature 1 <= 52.795)
If (feature 0 <= 18.595)
Predict: 0.4988124937300424
Else (feature 0 > 18.595)
Predict: 4.447321094438702
Else (feature 1 > 52.795)
If (feature 1 <= 66.21000000000001)
Predict: -1.721618872277871
Else (feature 1 > 66.21000000000001)
Predict: 0.6365209437219329
Else (feature 3 > 86.625)
If (feature 0 <= 6.895)
If (feature 3 <= 87.32499999999999)
Predict: -10.224737687790185
Else (feature 3 > 87.32499999999999)
Predict: 3.712660431036073
Else (feature 0 > 6.895)
If (feature 0 <= 8.575)
Predict: -7.105091794629204
Else (feature 0 > 8.575)
Predict: -1.5060749360589718
Tree 8 (weight 0.1):
If (feature 2 <= 1008.745)
If (feature 1 <= 41.665)
If (feature 0 <= 15.475000000000001)
Predict: 0.11492519898093705
Else (feature 0 > 15.475000000000001)
Predict: 3.532699993937119
Else (feature 1 > 41.665)
If (feature 1 <= 66.85499999999999)
Predict: -3.366654434213031
Else (feature 1 > 66.85499999999999)
Predict: -0.9165259817521934
Else (feature 2 > 1008.745)
If (feature 3 <= 82.955)
If (feature 1 <= 51.905)
Predict: 1.841638760642105
Else (feature 1 > 51.905)
Predict: 0.33265178659776373
Else (feature 3 > 82.955)
If (feature 3 <= 95.68)
Predict: -0.4850135884105616
Else (feature 3 > 95.68)
Predict: -3.812639024859598
Tree 9 (weight 0.1):
If (feature 0 <= 29.455)
If (feature 3 <= 61.89)
If (feature 1 <= 71.18)
Predict: 1.9301726185107941
Else (feature 1 > 71.18)
Predict: 8.938327477606107
Else (feature 3 > 61.89)
If (feature 0 <= 5.8149999999999995)
Predict: 4.428862111265314
Else (feature 0 > 5.8149999999999995)
Predict: -0.3308347482908286
Else (feature 0 > 29.455)
If (feature 1 <= 68.28999999999999)
If (feature 2 <= 1009.875)
Predict: -8.941194411728706
Else (feature 2 > 1009.875)
Predict: -1.8834474815204216
Else (feature 1 > 68.28999999999999)
If (feature 2 <= 1014.405)
Predict: -0.5760094442636617
Else (feature 2 > 1014.405)
Predict: -5.50575933697771
Tree 10 (weight 0.1):
If (feature 2 <= 1005.345)
If (feature 0 <= 27.355)
If (feature 3 <= 99.3)
Predict: -0.5544332197918127
Else (feature 3 > 99.3)
Predict: -6.049841121821514
Else (feature 0 > 27.355)
If (feature 1 <= 70.815)
Predict: -8.03479585317622
Else (feature 1 > 70.815)
Predict: 0.0619269945107018
Else (feature 2 > 1005.345)
If (feature 3 <= 72.41499999999999)
If (feature 0 <= 24.755000000000003)
Predict: 2.020104454165069
Else (feature 0 > 24.755000000000003)
Predict: -0.22964512858748945
Else (feature 3 > 72.41499999999999)
If (feature 1 <= 40.7)
Predict: 1.2987210163143512
Else (feature 1 > 40.7)
Predict: -0.8347660227231797
Tree 11 (weight 0.1):
If (feature 0 <= 5.0600000000000005)
If (feature 1 <= 42.3)
If (feature 1 <= 39.765)
Predict: 4.261094449524424
Else (feature 1 > 39.765)
Predict: 9.140536590115639
Else (feature 1 > 42.3)
If (feature 2 <= 1007.835)
Predict: 0.9746298984436711
Else (feature 2 > 1007.835)
Predict: -6.317973546286112
Else (feature 0 > 5.0600000000000005)
If (feature 3 <= 95.68)
If (feature 2 <= 1009.295)
Predict: -0.8626626541525325
Else (feature 2 > 1009.295)
Predict: 0.3906915507169364
Else (feature 3 > 95.68)
If (feature 0 <= 11.885000000000002)
Predict: -6.002679638413293
Else (feature 0 > 11.885000000000002)
Predict: -0.7509189525586508
Tree 12 (weight 0.1):
If (feature 0 <= 18.595)
If (feature 1 <= 51.905)
If (feature 0 <= 13.695)
Predict: 0.5958576966099496
Else (feature 0 > 13.695)
Predict: -1.2694566117501789
Else (feature 1 > 51.905)
If (feature 1 <= 58.19)
Predict: -4.248373100253223
Else (feature 1 > 58.19)
Predict: -9.144729000689791
Else (feature 0 > 18.595)
If (feature 1 <= 47.64)
If (feature 2 <= 1012.675)
Predict: 0.8560563666774771
Else (feature 2 > 1012.675)
Predict: 10.801233083620462
Else (feature 1 > 47.64)
If (feature 0 <= 20.015)
Predict: 3.1978561830060213
Else (feature 0 > 20.015)
Predict: -0.16716555702980626
Tree 13 (weight 0.1):
If (feature 0 <= 28.655)
If (feature 1 <= 66.21000000000001)
If (feature 1 <= 58.19)
Predict: 0.34765099851241454
Else (feature 1 > 58.19)
Predict: -1.8189329025195076
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 22.525)
Predict: 6.490484815153365
Else (feature 0 > 22.525)
Predict: 0.7933381751314565
Else (feature 0 > 28.655)
If (feature 1 <= 68.28999999999999)
If (feature 2 <= 1005.665)
Predict: -8.922459399148678
Else (feature 2 > 1005.665)
Predict: -2.3989441108132668
Else (feature 1 > 68.28999999999999)
If (feature 2 <= 1018.215)
Predict: -0.3023338438804105
Else (feature 2 > 1018.215)
Predict: 14.559949112833806
Tree 14 (weight 0.1):
If (feature 0 <= 15.475000000000001)
If (feature 0 <= 13.695)
If (feature 0 <= 11.885000000000002)
Predict: -0.8897676968273979
Else (feature 0 > 11.885000000000002)
Predict: 3.5874467728768487
Else (feature 0 > 13.695)
If (feature 1 <= 46.345)
Predict: -3.2690852418064273
Else (feature 1 > 46.345)
Predict: -8.844433418899179
Else (feature 0 > 15.475000000000001)
If (feature 1 <= 43.175)
If (feature 1 <= 41.805)
Predict: 3.298855216614116
Else (feature 1 > 41.805)
Predict: 9.150659154207167
Else (feature 1 > 43.175)
If (feature 2 <= 1012.495)
Predict: -0.7109832273625656
Else (feature 2 > 1012.495)
Predict: 1.1631179843236674
Tree 15 (weight 0.1):
If (feature 3 <= 90.055)
If (feature 0 <= 30.41)
If (feature 1 <= 66.21000000000001)
Predict: -0.01732155577258642
Else (feature 1 > 66.21000000000001)
Predict: 1.3432966941310502
Else (feature 0 > 30.41)
If (feature 1 <= 69.465)
Predict: -3.6657811330207344
Else (feature 1 > 69.465)
Predict: -0.38803561342243853
Else (feature 3 > 90.055)
If (feature 2 <= 1015.725)
If (feature 1 <= 47.64)
Predict: 1.5063080039677825
Else (feature 1 > 47.64)
Predict: -1.860635777865782
Else (feature 2 > 1015.725)
If (feature 1 <= 40.7)
Predict: 0.21921885078759318
Else (feature 1 > 40.7)
Predict: -4.793242614118129
Tree 16 (weight 0.1):
If (feature 0 <= 6.895)
If (feature 3 <= 67.42500000000001)
If (feature 1 <= 39.620000000000005)
Predict: -1.8477082180199003
Else (feature 1 > 39.620000000000005)
Predict: 16.387935166882745
Else (feature 3 > 67.42500000000001)
If (feature 0 <= 5.0600000000000005)
Predict: 4.152127693563297
Else (feature 0 > 5.0600000000000005)
Predict: 0.7556214745509566
Else (feature 0 > 6.895)
If (feature 0 <= 8.575)
If (feature 2 <= 1022.8399999999999)
Predict: -2.9436476590152036
Else (feature 2 > 1022.8399999999999)
Predict: -8.032234733606465
Else (feature 0 > 8.575)
If (feature 0 <= 9.325)
Predict: 5.082738415532321
Else (feature 0 > 9.325)
Predict: -0.032287806549855816
Tree 17 (weight 0.1):
If (feature 3 <= 61.89)
If (feature 0 <= 28.655)
If (feature 0 <= 11.885000000000002)
Predict: -4.455566502931916
Else (feature 0 > 11.885000000000002)
Predict: 1.9027943448616742
Else (feature 0 > 28.655)
If (feature 1 <= 66.21000000000001)
Predict: -3.1810487244675034
Else (feature 1 > 66.21000000000001)
Predict: 0.11525363261816625
Else (feature 3 > 61.89)
If (feature 1 <= 43.175)
If (feature 0 <= 18.595)
Predict: 0.22262511130066664
Else (feature 0 > 18.595)
Predict: 10.13639446335034
Else (feature 1 > 43.175)
If (feature 0 <= 22.055)
Predict: -1.4775024201129299
Else (feature 0 > 22.055)
Predict: 0.20591189539330298
Tree 18 (weight 0.1):
If (feature 2 <= 1005.345)
If (feature 1 <= 70.815)
If (feature 0 <= 23.564999999999998)
Predict: -0.178777362918765
Else (feature 0 > 23.564999999999998)
Predict: -4.52113806132068
Else (feature 1 > 70.815)
If (feature 3 <= 60.025000000000006)
Predict: 4.247605743793766
Else (feature 3 > 60.025000000000006)
Predict: -0.26865379510738685
Else (feature 2 > 1005.345)
If (feature 1 <= 66.21000000000001)
If (feature 1 <= 55.825)
Predict: 0.3773109266288433
Else (feature 1 > 55.825)
Predict: -1.3659380946007862
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 21.335)
Predict: 8.448170645066464
Else (feature 0 > 21.335)
Predict: 0.5048679905700459
Tree 19 (weight 0.1):
If (feature 0 <= 18.595)
If (feature 1 <= 51.905)
If (feature 0 <= 17.655)
Predict: -0.003054757854134698
Else (feature 0 > 17.655)
Predict: -2.9290357116654935
Else (feature 1 > 51.905)
If (feature 1 <= 66.525)
Predict: -4.061825439604536
Else (feature 1 > 66.525)
Predict: -11.67844591879286
Else (feature 0 > 18.595)
If (feature 0 <= 23.945)
If (feature 3 <= 74.525)
Predict: 3.807909998319029
Else (feature 3 > 74.525)
Predict: 0.008459259251505081
Else (feature 0 > 23.945)
If (feature 1 <= 74.915)
Predict: -0.6429811796826012
Else (feature 1 > 74.915)
Predict: 2.099670946504916
Tree 20 (weight 0.1):
If (feature 0 <= 15.475000000000001)
If (feature 0 <= 14.285)
If (feature 0 <= 11.885000000000002)
Predict: -0.7234702732306101
Else (feature 0 > 11.885000000000002)
Predict: 1.589299673192479
Else (feature 0 > 14.285)
If (feature 2 <= 1016.495)
Predict: -2.4381805412578545
Else (feature 2 > 1016.495)
Predict: -6.544687605774689
Else (feature 0 > 15.475000000000001)
If (feature 1 <= 43.005)
If (feature 2 <= 1008.405)
Predict: 0.8119248626873221
Else (feature 2 > 1008.405)
Predict: 5.506769369239865
Else (feature 1 > 43.005)
If (feature 2 <= 1012.935)
Predict: -0.5028175384892806
Else (feature 2 > 1012.935)
Predict: 1.0290531238165197
Tree 21 (weight 0.1):
If (feature 0 <= 6.895)
If (feature 3 <= 67.42500000000001)
If (feature 1 <= 39.620000000000005)
Predict: -0.9752219334588972
Else (feature 1 > 39.620000000000005)
Predict: 13.369575512848845
Else (feature 3 > 67.42500000000001)
If (feature 1 <= 42.705)
Predict: 1.850492181024754
Else (feature 1 > 42.705)
Predict: -2.033710059657357
Else (feature 0 > 6.895)
If (feature 0 <= 8.575)
If (feature 2 <= 1022.8399999999999)
Predict: -2.256120115332435
Else (feature 2 > 1022.8399999999999)
Predict: -6.380948299395909
Else (feature 0 > 8.575)
If (feature 0 <= 9.594999999999999)
Predict: 3.4448565562285904
Else (feature 0 > 9.594999999999999)
Predict: -0.05858832726578875
Tree 22 (weight 0.1):
If (feature 0 <= 22.055)
If (feature 0 <= 21.095)
If (feature 1 <= 66.21000000000001)
Predict: -0.17987193554240402
Else (feature 1 > 66.21000000000001)
Predict: 6.044335675519052
Else (feature 0 > 21.095)
If (feature 1 <= 66.21000000000001)
Predict: -5.809637597188877
Else (feature 1 > 66.21000000000001)
Predict: 2.7761443044302214
Else (feature 0 > 22.055)
If (feature 0 <= 23.564999999999998)
If (feature 1 <= 64.74000000000001)
Predict: 5.951769778696803
Else (feature 1 > 64.74000000000001)
Predict: -0.30197045172071896
Else (feature 0 > 23.564999999999998)
If (feature 1 <= 44.519999999999996)
Predict: -7.283292958317056
Else (feature 1 > 44.519999999999996)
Predict: -0.19387573131258415
Tree 23 (weight 0.1):
If (feature 3 <= 53.025000000000006)
If (feature 0 <= 24.945)
If (feature 0 <= 18.29)
Predict: 1.0381040338364682
Else (feature 0 > 18.29)
Predict: 5.164469183375362
Else (feature 0 > 24.945)
If (feature 1 <= 66.21000000000001)
Predict: -1.0707595335847206
Else (feature 1 > 66.21000000000001)
Predict: 0.8108674466901084
Else (feature 3 > 53.025000000000006)
If (feature 1 <= 73.725)
If (feature 1 <= 71.505)
Predict: -0.0525992725981239
Else (feature 1 > 71.505)
Predict: -2.807221561152817
Else (feature 1 > 73.725)
If (feature 2 <= 1017.295)
Predict: 1.037788102485777
Else (feature 2 > 1017.295)
Predict: 7.287181806639116
Tree 24 (weight 0.1):
If (feature 2 <= 1004.505)
If (feature 1 <= 70.815)
If (feature 1 <= 59.144999999999996)
Predict: -0.3743851611431973
Else (feature 1 > 59.144999999999996)
Predict: -4.648812647772385
Else (feature 1 > 70.815)
If (feature 0 <= 27.884999999999998)
Predict: 2.4545579195950995
Else (feature 0 > 27.884999999999998)
Predict: -0.32777974793969294
Else (feature 2 > 1004.505)
If (feature 0 <= 22.055)
If (feature 0 <= 20.795)
Predict: 0.045218490740101897
Else (feature 0 > 20.795)
Predict: -3.3620385127109333
Else (feature 0 > 22.055)
If (feature 0 <= 22.955)
Predict: 4.485324626081587
Else (feature 0 > 22.955)
Predict: 0.13166549369330485
Tree 25 (weight 0.1):
If (feature 0 <= 18.595)
If (feature 1 <= 58.19)
If (feature 0 <= 17.655)
Predict: -0.023636417468335308
Else (feature 0 > 17.655)
Predict: -2.607492744918568
Else (feature 1 > 58.19)
If (feature 1 <= 66.525)
Predict: -4.8994505786627665
Else (feature 1 > 66.525)
Predict: -10.07085237281708
Else (feature 0 > 18.595)
If (feature 0 <= 19.725)
If (feature 1 <= 66.21000000000001)
Predict: 2.2716539497960406
Else (feature 1 > 66.21000000000001)
Predict: 13.879740983230867
Else (feature 0 > 19.725)
If (feature 1 <= 43.005)
Predict: 5.616411926544602
Else (feature 1 > 43.005)
Predict: -0.00532316539213451
Tree 26 (weight 0.1):
If (feature 3 <= 93.075)
If (feature 1 <= 55.825)
If (feature 0 <= 22.055)
Predict: 0.15441544139943786
Else (feature 0 > 22.055)
Predict: 2.7626508552722306
Else (feature 1 > 55.825)
If (feature 1 <= 66.21000000000001)
Predict: -1.2060290652635515
Else (feature 1 > 66.21000000000001)
Predict: 0.4827535356971057
Else (feature 3 > 93.075)
If (feature 2 <= 1015.725)
If (feature 0 <= 7.34)
Predict: 4.241421869391143
Else (feature 0 > 7.34)
Predict: -0.704916847045625
Else (feature 2 > 1015.725)
If (feature 0 <= 11.885000000000002)
Predict: -5.4904249010577795
Else (feature 0 > 11.885000000000002)
Predict: 0.0976872424106726
Tree 27 (weight 0.1):
If (feature 2 <= 1008.745)
If (feature 1 <= 41.665)
If (feature 1 <= 39.765)
Predict: -1.0511879426704696
Else (feature 1 > 39.765)
Predict: 1.894883627758776
Else (feature 1 > 41.665)
If (feature 1 <= 41.805)
Predict: -13.576686832482961
Else (feature 1 > 41.805)
Predict: -0.7168167899342832
Else (feature 2 > 1008.745)
If (feature 0 <= 15.475000000000001)
If (feature 0 <= 13.695)
Predict: 0.303140697564446
Else (feature 0 > 13.695)
Predict: -2.8034862119109945
Else (feature 0 > 15.475000000000001)
If (feature 1 <= 55.825)
Predict: 2.0736158373993576
Else (feature 1 > 55.825)
Predict: -0.03336709818500243
Tree 28 (weight 0.1):
If (feature 2 <= 1001.785)
If (feature 3 <= 69.86500000000001)
If (feature 1 <= 69.465)
Predict: -7.299995136853619
Else (feature 1 > 69.465)
Predict: 0.23757420536270835
Else (feature 3 > 69.86500000000001)
If (feature 0 <= 7.34)
Predict: 3.4313360513286284
Else (feature 0 > 7.34)
Predict: -1.276734468456009
Else (feature 2 > 1001.785)
If (feature 0 <= 11.885000000000002)
If (feature 0 <= 11.335)
Predict: 0.04499264982858887
Else (feature 0 > 11.335)
Predict: -6.156735713959919
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 12.715)
Predict: 4.4864210547378915
Else (feature 0 > 12.715)
Predict: 0.030721690290287165
Tree 29 (weight 0.1):
If (feature 1 <= 66.21000000000001)
If (feature 0 <= 26.505000000000003)
If (feature 0 <= 22.055)
Predict: -0.3694472776628706
Else (feature 0 > 22.055)
Predict: 1.5208925945902059
Else (feature 0 > 26.505000000000003)
If (feature 1 <= 43.510000000000005)
Predict: -17.99975152056241
Else (feature 1 > 43.510000000000005)
Predict: -2.4033598663496183
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 22.055)
If (feature 0 <= 18.595)
Predict: -7.600012529438
Else (feature 0 > 18.595)
Predict: 6.469471961408998
Else (feature 0 > 22.055)
If (feature 0 <= 25.325)
Predict: -2.6540186758683166
Else (feature 0 > 25.325)
Predict: 0.9869775581610103
Tree 30 (weight 0.1):
If (feature 0 <= 5.0600000000000005)
If (feature 1 <= 42.3)
If (feature 3 <= 95.68)
Predict: 2.6307256050737506
Else (feature 3 > 95.68)
Predict: 7.168878406232186
Else (feature 1 > 42.3)
If (feature 2 <= 1007.835)
Predict: -0.1884983669158752
Else (feature 2 > 1007.835)
Predict: -5.920088632100639
Else (feature 0 > 5.0600000000000005)
If (feature 1 <= 37.815)
If (feature 0 <= 11.885000000000002)
Predict: -3.8096010917307517
Else (feature 0 > 11.885000000000002)
Predict: 3.5943708074284917
Else (feature 1 > 37.815)
If (feature 1 <= 41.519999999999996)
Predict: 0.6752927073561888
Else (feature 1 > 41.519999999999996)
Predict: -0.14342050966250913
Tree 31 (weight 0.1):
If (feature 3 <= 99.3)
If (feature 0 <= 31.155)
If (feature 3 <= 46.92)
Predict: 2.011051499336945
Else (feature 3 > 46.92)
Predict: 0.012791339921714258
Else (feature 0 > 31.155)
If (feature 2 <= 1014.405)
Predict: -0.916397796921109
Else (feature 2 > 1014.405)
Predict: -6.832504867736499
Else (feature 3 > 99.3)
If (feature 1 <= 39.765)
If (feature 1 <= 38.41)
Predict: -5.505405887296888
Else (feature 1 > 38.41)
Predict: -16.748187635942333
Else (feature 1 > 39.765)
If (feature 0 <= 16.04)
Predict: 0.7708563952983728
Else (feature 0 > 16.04)
Predict: -3.909609799859729
Tree 32 (weight 0.1):
If (feature 1 <= 66.21000000000001)
If (feature 1 <= 64.74000000000001)
If (feature 2 <= 1011.515)
Predict: -1.0002623040885374
Else (feature 2 > 1011.515)
Predict: 0.3591184679910596
Else (feature 1 > 64.74000000000001)
If (feature 2 <= 1006.775)
Predict: -13.788703659238209
Else (feature 2 > 1006.775)
Predict: -2.4620285364725656
Else (feature 1 > 66.21000000000001)
If (feature 1 <= 69.09)
If (feature 0 <= 22.525)
Predict: 6.088217885246919
Else (feature 0 > 22.525)
Predict: 1.0364537580784474
Else (feature 1 > 69.09)
If (feature 0 <= 25.325)
Predict: -2.7946704533493856
Else (feature 0 > 25.325)
Predict: 0.6607665941219878
Tree 33 (weight 0.1):
If (feature 2 <= 1028.14)
If (feature 0 <= 29.455)
If (feature 1 <= 66.21000000000001)
Predict: -0.08158010506593574
Else (feature 1 > 66.21000000000001)
Predict: 0.8815313937000332
Else (feature 0 > 29.455)
If (feature 1 <= 44.519999999999996)
Predict: -12.581939252812768
Else (feature 1 > 44.519999999999996)
Predict: -0.77008278158028
Else (feature 2 > 1028.14)
If (feature 0 <= 8.575)
If (feature 1 <= 39.45)
Predict: 0.6766771966451415
Else (feature 1 > 39.45)
Predict: -8.445008186341592
Else (feature 0 > 8.575)
If (feature 0 <= 8.96)
Predict: 3.777292703648982
Else (feature 0 > 8.96)
Predict: -2.398045803854934
Tree 34 (weight 0.1):
If (feature 0 <= 6.895)
If (feature 3 <= 67.42500000000001)
If (feature 1 <= 39.620000000000005)
Predict: -0.6804590872791323
Else (feature 1 > 39.620000000000005)
Predict: 10.518093452986212
Else (feature 3 > 67.42500000000001)
If (feature 1 <= 42.705)
Predict: 1.3098801739379287
Else (feature 1 > 42.705)
Predict: -1.7450883352732074
Else (feature 0 > 6.895)
If (feature 0 <= 8.575)
If (feature 0 <= 7.765)
Predict: -0.7816329288490581
Else (feature 0 > 7.765)
Predict: -3.7319393815256547
Else (feature 0 > 8.575)
If (feature 0 <= 9.965)
Predict: 2.5600814387681337
Else (feature 0 > 9.965)
Predict: -0.06944896856946733
Tree 35 (weight 0.1):
If (feature 3 <= 61.89)
If (feature 1 <= 39.34)
If (feature 0 <= 16.695)
Predict: -4.078381955056753
Else (feature 0 > 16.695)
Predict: -16.616821684050763
Else (feature 1 > 39.34)
If (feature 1 <= 40.82)
Predict: 4.4394084324272045
Else (feature 1 > 40.82)
Predict: 0.4663514281701948
Else (feature 3 > 61.89)
If (feature 1 <= 58.19)
If (feature 0 <= 22.055)
Predict: -0.027831559557693095
Else (feature 0 > 22.055)
Predict: 2.492136574233702
Else (feature 1 > 58.19)
If (feature 0 <= 18.595)
Predict: -4.183073089901298
Else (feature 0 > 18.595)
Predict: -0.40866909936948326
Tree 36 (weight 0.1):
If (feature 2 <= 1004.505)
If (feature 1 <= 38.754999999999995)
If (feature 3 <= 77.195)
Predict: 9.579430817769946
Else (feature 3 > 77.195)
Predict: 2.6305173165509195
Else (feature 1 > 38.754999999999995)
If (feature 1 <= 70.065)
Predict: -1.801035005150415
Else (feature 1 > 70.065)
Predict: 0.4054557218074593
Else (feature 2 > 1004.505)
If (feature 2 <= 1017.475)
If (feature 1 <= 43.175)
Predict: 1.09341093192285
Else (feature 1 > 43.175)
Predict: -0.03229585395374685
Else (feature 2 > 1017.475)
If (feature 2 <= 1019.365)
Predict: -1.7719467091167656
Else (feature 2 > 1019.365)
Predict: 0.2537098831339789
Tree 37 (weight 0.1):
If (feature 0 <= 15.475000000000001)
If (feature 0 <= 13.695)
If (feature 0 <= 11.885000000000002)
Predict: -0.5104239863875834
Else (feature 0 > 11.885000000000002)
Predict: 2.1202163252308432
Else (feature 0 > 13.695)
If (feature 3 <= 78.38499999999999)
Predict: -3.379040627299855
Else (feature 3 > 78.38499999999999)
Predict: -0.9911440360990582
Else (feature 0 > 15.475000000000001)
If (feature 0 <= 16.395)
If (feature 3 <= 67.42500000000001)
Predict: 0.4887402058080506
Else (feature 3 > 67.42500000000001)
Predict: 3.884289185845989
Else (feature 0 > 16.395)
If (feature 2 <= 1020.565)
Predict: -0.02862374251288089
Else (feature 2 > 1020.565)
Predict: 3.15734851002617
Tree 38 (weight 0.1):
If (feature 3 <= 43.385)
If (feature 0 <= 24.945)
If (feature 2 <= 1014.405)
Predict: 1.603183026814036
Else (feature 2 > 1014.405)
Predict: 7.05673098720603
Else (feature 0 > 24.945)
If (feature 0 <= 26.295)
Predict: -5.886157652325024
Else (feature 0 > 26.295)
Predict: 0.7387886738447553
Else (feature 3 > 43.385)
If (feature 1 <= 73.725)
If (feature 1 <= 71.505)
Predict: 0.008754170391068655
Else (feature 1 > 71.505)
Predict: -2.0178119354056765
Else (feature 1 > 73.725)
If (feature 1 <= 77.42)
Predict: 1.8396223170900134
Else (feature 1 > 77.42)
Predict: -1.5747478023010713
Tree 39 (weight 0.1):
If (feature 0 <= 22.055)
If (feature 0 <= 20.795)
If (feature 0 <= 18.595)
Predict: -0.25201916420658693
Else (feature 0 > 18.595)
Predict: 1.5718496558845116
Else (feature 0 > 20.795)
If (feature 1 <= 66.21000000000001)
Predict: -3.7201562729508804
Else (feature 1 > 66.21000000000001)
Predict: 2.087916157719636
Else (feature 0 > 22.055)
If (feature 0 <= 23.564999999999998)
If (feature 2 <= 1012.015)
Predict: 0.7371264627237751
Else (feature 2 > 1012.015)
Predict: 4.6381746481309065
Else (feature 0 > 23.564999999999998)
If (feature 1 <= 44.519999999999996)
Predict: -5.772062593218147
Else (feature 1 > 44.519999999999996)
Predict: -0.12977023255758624
Tree 40 (weight 0.1):
If (feature 0 <= 5.0600000000000005)
If (feature 3 <= 95.68)
If (feature 2 <= 1011.105)
Predict: -3.365769010003795
Else (feature 2 > 1011.105)
Predict: 2.955050770650336
Else (feature 3 > 95.68)
If (feature 2 <= 1008.205)
Predict: 2.728200788704399
Else (feature 2 > 1008.205)
Predict: 6.919382935391042
Else (feature 0 > 5.0600000000000005)
If (feature 3 <= 96.61)
If (feature 1 <= 37.815)
Predict: -1.3949762323292278
Else (feature 1 > 37.815)
Predict: 0.06411431759031856
Else (feature 3 > 96.61)
If (feature 0 <= 11.605)
Predict: -3.491961189446582
Else (feature 0 > 11.605)
Predict: -0.16406940197018208
Tree 41 (weight 0.1):
If (feature 0 <= 30.41)
If (feature 1 <= 66.21000000000001)
If (feature 1 <= 58.85)
Predict: 0.15540001609212736
Else (feature 1 > 58.85)
Predict: -1.1352706510871309
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 25.325)
Predict: -0.6390388689881783
Else (feature 0 > 25.325)
Predict: 1.3909471658872326
Else (feature 0 > 30.41)
If (feature 2 <= 1014.405)
If (feature 1 <= 56.894999999999996)
Predict: -9.841212730443857
Else (feature 1 > 56.894999999999996)
Predict: -0.5054201979116707
Else (feature 2 > 1014.405)
If (feature 1 <= 74.915)
Predict: -5.898616989217175
Else (feature 1 > 74.915)
Predict: 1.042314191558674
Tree 42 (weight 0.1):
If (feature 2 <= 1009.625)
If (feature 1 <= 43.005)
If (feature 1 <= 42.025000000000006)
Predict: -0.05077288158998095
Else (feature 1 > 42.025000000000006)
Predict: 3.619244461816007
Else (feature 1 > 43.005)
If (feature 0 <= 18.595)
Predict: -3.5057172058309307
Else (feature 0 > 18.595)
Predict: -0.32537979322253646
Else (feature 2 > 1009.625)
If (feature 2 <= 1017.475)
If (feature 1 <= 55.825)
Predict: 0.8076710222538108
Else (feature 1 > 55.825)
Predict: -0.01784249647067053
Else (feature 2 > 1017.475)
If (feature 2 <= 1019.365)
Predict: -1.4312272708033218
Else (feature 2 > 1019.365)
Predict: 0.20844195286029432
Tree 43 (weight 0.1):
If (feature 0 <= 18.595)
If (feature 0 <= 17.655)
If (feature 0 <= 15.475000000000001)
Predict: -0.2913115404147692
Else (feature 0 > 15.475000000000001)
Predict: 1.1145997107947745
Else (feature 0 > 17.655)
If (feature 1 <= 37.815)
Predict: 14.538914074443028
Else (feature 1 > 37.815)
Predict: -3.0407663665320683
Else (feature 0 > 18.595)
If (feature 2 <= 1020.325)
If (feature 1 <= 43.175)
Predict: 3.881117973012625
Else (feature 1 > 43.175)
Predict: 0.04538590552170286
Else (feature 2 > 1020.325)
If (feature 1 <= 64.74000000000001)
Predict: 4.662857871344832
Else (feature 1 > 64.74000000000001)
Predict: -43.5190245896606
Tree 44 (weight 0.1):
If (feature 0 <= 6.895)
If (feature 3 <= 67.42500000000001)
If (feature 1 <= 39.620000000000005)
Predict: -0.7153417257252007
Else (feature 1 > 39.620000000000005)
Predict: 8.417772324738223
Else (feature 3 > 67.42500000000001)
If (feature 2 <= 1010.985)
Predict: 2.5111312207852263
Else (feature 2 > 1010.985)
Predict: 0.29950092637128345
Else (feature 0 > 6.895)
If (feature 0 <= 8.575)
If (feature 1 <= 40.06)
Predict: -3.30672576579827
Else (feature 1 > 40.06)
Predict: -0.45097750406116727
Else (feature 0 > 8.575)
If (feature 0 <= 9.325)
Predict: 3.226884779601992
Else (feature 0 > 9.325)
Predict: -0.041218673012550146
Tree 45 (weight 0.1):
If (feature 2 <= 1028.14)
If (feature 0 <= 10.395)
If (feature 3 <= 92.22999999999999)
Predict: 1.0355113706204075
Else (feature 3 > 92.22999999999999)
Predict: -1.4603765116034264
Else (feature 0 > 10.395)
If (feature 0 <= 11.885000000000002)
Predict: -2.630098257038007
Else (feature 0 > 11.885000000000002)
Predict: 0.09582680902226459
Else (feature 2 > 1028.14)
If (feature 0 <= 8.575)
If (feature 1 <= 39.45)
Predict: 1.107359449029309
Else (feature 1 > 39.45)
Predict: -6.096185488604492
Else (feature 0 > 8.575)
If (feature 3 <= 70.57499999999999)
Predict: -3.516006231223605
Else (feature 3 > 70.57499999999999)
Predict: -0.26144006873351155
Tree 46 (weight 0.1):
If (feature 0 <= 27.884999999999998)
If (feature 1 <= 66.21000000000001)
If (feature 0 <= 25.145)
Predict: 0.06412914679730906
Else (feature 0 > 25.145)
Predict: -1.554041618425865
Else (feature 1 > 66.21000000000001)
If (feature 0 <= 25.325)
Predict: -0.4748636523867588
Else (feature 0 > 25.325)
Predict: 2.4595627925276826
Else (feature 0 > 27.884999999999998)
If (feature 3 <= 61.89)
If (feature 1 <= 71.895)
Predict: -0.4429995884239883
Else (feature 1 > 71.895)
Predict: 1.4321627506429122
Else (feature 3 > 61.89)
If (feature 1 <= 71.505)
Predict: -0.2617373838209719
Else (feature 1 > 71.505)
Predict: -2.637373068367584
Tree 47 (weight 0.1):
If (feature 3 <= 61.89)
If (feature 1 <= 39.34)
If (feature 0 <= 16.695)
Predict: -2.855821258258964
Else (feature 0 > 16.695)
Predict: -13.80709248590955
Else (feature 1 > 39.34)
If (feature 1 <= 74.915)
Predict: 0.35443616318343385
Else (feature 1 > 74.915)
Predict: 2.9400682899293233
Else (feature 3 > 61.89)
If (feature 1 <= 71.505)
If (feature 1 <= 66.85499999999999)
Predict: -0.142107366817925
Else (feature 1 > 66.85499999999999)
Predict: 1.0352328327059535
Else (feature 1 > 71.505)
If (feature 1 <= 73.00999999999999)
Predict: -2.947898208728739
Else (feature 1 > 73.00999999999999)
Predict: -0.0830706492691125
Tree 48 (weight 0.1):
If (feature 2 <= 1004.505)
If (feature 1 <= 38.754999999999995)
If (feature 3 <= 86.625)
Predict: 4.921331281961159
Else (feature 3 > 86.625)
Predict: -5.961237317667383
Else (feature 1 > 38.754999999999995)
If (feature 1 <= 39.765)
Predict: -4.436072018762161
Else (feature 1 > 39.765)
Predict: -0.7283906418193187
Else (feature 2 > 1004.505)
If (feature 0 <= 22.055)
If (feature 0 <= 20.795)
Predict: 0.044899959208437666
Else (feature 0 > 20.795)
Predict: -2.2295677836603995
Else (feature 0 > 22.055)
If (feature 0 <= 23.564999999999998)
Predict: 2.3559950404053414
Else (feature 0 > 23.564999999999998)
Predict: -0.06950420285239005
Tree 49 (weight 0.1):
If (feature 1 <= 41.435)
If (feature 0 <= 11.885000000000002)
If (feature 0 <= 11.335)
Predict: -0.02697483446966382
Else (feature 0 > 11.335)
Predict: -3.7031660865730367
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 13.265)
Predict: 4.209724879257512
Else (feature 0 > 13.265)
Predict: 0.41602586770224464
Else (feature 1 > 41.435)
If (feature 1 <= 41.805)
If (feature 3 <= 89.595)
Predict: -1.6099299736449546
Else (feature 3 > 89.595)
Predict: -9.419799062932288
Else (feature 1 > 41.805)
If (feature 1 <= 43.175)
Predict: 1.5951066240527068
Else (feature 1 > 43.175)
Predict: -0.11481901338423915
Tree 50 (weight 0.1):
If (feature 1 <= 38.41)
If (feature 0 <= 11.885000000000002)
If (feature 2 <= 1016.665)
Predict: -5.344526613859499
Else (feature 2 > 1016.665)
Predict: 0.058134490545794976
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 16.985)
Predict: 1.537246393097642
Else (feature 0 > 16.985)
Predict: 9.920778277565365
Else (feature 1 > 38.41)
If (feature 0 <= 13.485)
If (feature 1 <= 51.045)
Predict: 0.6675749827847329
Else (feature 1 > 51.045)
Predict: -5.737026170963195
Else (feature 0 > 13.485)
If (feature 0 <= 15.475000000000001)
Predict: -1.7210713764803844
Else (feature 0 > 15.475000000000001)
Predict: 0.09027853735147576
Tree 51 (weight 0.1):
If (feature 0 <= 31.155)
If (feature 3 <= 48.230000000000004)
If (feature 2 <= 1020.325)
Predict: 0.9307527734280435
Else (feature 2 > 1020.325)
Predict: 9.070547343579028
Else (feature 3 > 48.230000000000004)
If (feature 1 <= 73.725)
Predict: -0.06359121142988887
Else (feature 1 > 73.725)
Predict: 1.049949579330099
Else (feature 0 > 31.155)
If (feature 1 <= 63.08)
If (feature 1 <= 44.519999999999996)
Predict: -6.355864033256125
Else (feature 1 > 44.519999999999996)
Predict: 13.6760008529786
Else (feature 1 > 63.08)
If (feature 1 <= 68.28999999999999)
Predict: -3.953494984806905
Else (feature 1 > 68.28999999999999)
Predict: -0.6145841300086397
Tree 52 (weight 0.1):
If (feature 2 <= 1012.495)
If (feature 1 <= 41.435)
If (feature 1 <= 39.975)
Predict: -0.4047468839922722
Else (feature 1 > 39.975)
Predict: 2.509624688414308
Else (feature 1 > 41.435)
If (feature 1 <= 41.805)
Predict: -6.811044477667833
Else (feature 1 > 41.805)
Predict: -0.26889174065489546
Else (feature 2 > 1012.495)
If (feature 3 <= 92.22999999999999)
If (feature 1 <= 58.19)
Predict: 0.7048711166950787
Else (feature 1 > 58.19)
Predict: -0.5475390646726656
Else (feature 3 > 92.22999999999999)
If (feature 1 <= 41.805)
Predict: -3.7013459723577355
Else (feature 1 > 41.805)
Predict: 0.7237930378019226
Tree 53 (weight 0.1):
If (feature 0 <= 18.595)
If (feature 0 <= 17.335)
If (feature 3 <= 74.08500000000001)
Predict: -0.8631764946312587
Else (feature 3 > 74.08500000000001)
Predict: 0.2803856631344212
Else (feature 0 > 17.335)
If (feature 1 <= 42.705)
Predict: 0.9335711174385192
Else (feature 1 > 42.705)
Predict: -2.950020164379197
Else (feature 0 > 18.595)
If (feature 2 <= 1013.395)
If (feature 1 <= 66.85499999999999)
Predict: -0.7231135633124072
Else (feature 1 > 66.85499999999999)
Predict: 0.41724670068145925
Else (feature 2 > 1013.395)
If (feature 1 <= 58.19)
Predict: 4.568024116358373
Else (feature 1 > 58.19)
Predict: -0.36270787813043714
Tree 54 (weight 0.1):
If (feature 2 <= 1001.785)
If (feature 3 <= 63.575)
If (feature 3 <= 60.025000000000006)
Predict: -1.7427137986580719
Else (feature 3 > 60.025000000000006)
Predict: -7.776342039375448
Else (feature 3 > 63.575)
If (feature 0 <= 27.119999999999997)
Predict: 0.026174663094801796
Else (feature 0 > 27.119999999999997)
Predict: -2.343138620856655
Else (feature 2 > 1001.785)
If (feature 0 <= 22.055)
If (feature 1 <= 66.21000000000001)
Predict: -0.27236570115397085
Else (feature 1 > 66.21000000000001)
Predict: 3.164590339421908
Else (feature 0 > 22.055)
If (feature 0 <= 22.725)
Predict: 2.9597120242025485
Else (feature 0 > 22.725)
Predict: 0.054881549113388446
Tree 55 (weight 0.1):
If (feature 2 <= 1028.14)
If (feature 1 <= 45.754999999999995)
If (feature 0 <= 26.715)
Predict: 0.2599176823406179
Else (feature 0 > 26.715)
Predict: -5.549910372715466
Else (feature 1 > 45.754999999999995)
If (feature 0 <= 15.475000000000001)
Predict: -2.867925531108855
Else (feature 0 > 15.475000000000001)
Predict: -0.0236838100703647
Else (feature 2 > 1028.14)
If (feature 0 <= 8.575)
If (feature 1 <= 39.45)
Predict: 0.7777761733424086
Else (feature 1 > 39.45)
Predict: -5.202001886405932
Else (feature 0 > 8.575)
If (feature 3 <= 68.945)
Predict: -3.641368616696809
Else (feature 3 > 68.945)
Predict: -0.6008141057791702
Tree 56 (weight 0.1):
If (feature 3 <= 61.89)
If (feature 0 <= 18.29)
If (feature 2 <= 1019.025)
Predict: -2.1632736300070996
Else (feature 2 > 1019.025)
Predict: 1.2430029950309498
Else (feature 0 > 18.29)
If (feature 1 <= 44.91)
Predict: 3.2134324628571003
Else (feature 1 > 44.91)
Predict: 0.2988556025240279
Else (feature 3 > 61.89)
If (feature 1 <= 71.505)
If (feature 1 <= 66.85499999999999)
Predict: -0.09866504525517336
Else (feature 1 > 66.85499999999999)
Predict: 0.7271499788275563
Else (feature 1 > 71.505)
If (feature 1 <= 73.00999999999999)
Predict: -2.395971400707892
Else (feature 1 > 73.00999999999999)
Predict: -0.16608323426526406
Tree 57 (weight 0.1):
If (feature 2 <= 1017.645)
If (feature 2 <= 1014.615)
If (feature 1 <= 43.175)
Predict: 1.0389282601473917
Else (feature 1 > 43.175)
Predict: -0.3646675630154698
Else (feature 2 > 1014.615)
If (feature 1 <= 43.510000000000005)
Predict: -0.6889797697082773
Else (feature 1 > 43.510000000000005)
Predict: 1.5908362409321974
Else (feature 2 > 1017.645)
If (feature 2 <= 1019.025)
If (feature 1 <= 71.18)
Predict: -1.6569133708803008
Else (feature 1 > 71.18)
Predict: 4.314967971455512
Else (feature 2 > 1019.025)
If (feature 3 <= 89.595)
Predict: 0.43765066032139976
Else (feature 3 > 89.595)
Predict: -1.7344432288008194
Tree 58 (weight 0.1):
If (feature 2 <= 1004.505)
If (feature 1 <= 70.815)
If (feature 1 <= 59.834999999999994)
Predict: -0.170418541124326
Else (feature 1 > 59.834999999999994)
Predict: -2.895038840312831
Else (feature 1 > 70.815)
If (feature 2 <= 1000.505)
Predict: -1.3832637115340176
Else (feature 2 > 1000.505)
Predict: 1.2249185299155396
Else (feature 2 > 1004.505)
If (feature 0 <= 22.055)
If (feature 1 <= 66.21000000000001)
Predict: -0.2418541439735617
Else (feature 1 > 66.21000000000001)
Predict: 3.0110894160107886
Else (feature 0 > 22.055)
If (feature 0 <= 23.945)
Predict: 1.4999960684883906
Else (feature 0 > 23.945)
Predict: -0.042407486119460915
Tree 59 (weight 0.1):
If (feature 1 <= 77.42)
If (feature 1 <= 74.915)
If (feature 1 <= 71.505)
Predict: 0.03983464447255206
Else (feature 1 > 71.505)
Predict: -0.7683021525819648
Else (feature 1 > 74.915)
If (feature 3 <= 72.82)
Predict: 2.774179202497669
Else (feature 3 > 72.82)
Predict: -0.32979787820368633
Else (feature 1 > 77.42)
If (feature 0 <= 21.595)
If (feature 0 <= 21.335)
Predict: -13.565760771414489
Else (feature 0 > 21.335)
Predict: -13.954507897669714
Else (feature 0 > 21.595)
If (feature 0 <= 22.955)
Predict: 10.853700477067264
Else (feature 0 > 22.955)
Predict: -1.4643467280880287
Tree 60 (weight 0.1):
If (feature 0 <= 10.395)
If (feature 1 <= 40.629999999999995)
If (feature 3 <= 75.545)
Predict: -2.3127871072788375
Else (feature 3 > 75.545)
Predict: 0.3992391857664209
Else (feature 1 > 40.629999999999995)
If (feature 3 <= 89.595)
Predict: 2.9152362525803523
Else (feature 3 > 89.595)
Predict: -1.4086879927580456
Else (feature 0 > 10.395)
If (feature 0 <= 11.885000000000002)
If (feature 2 <= 1025.2150000000001)
Predict: -2.2352340341897547
Else (feature 2 > 1025.2150000000001)
Predict: 5.952010328542228
Else (feature 0 > 11.885000000000002)
If (feature 0 <= 12.415)
Predict: 3.4957190546300447
Else (feature 0 > 12.415)
Predict: -0.03992973893781255
Tree 61 (weight 0.1):
If (feature 1 <= 40.82)
If (feature 1 <= 40.224999999999994)
If (feature 3 <= 75.545)
Predict: -1.2944988036912455
Else (feature 3 > 75.545)
Predict: 0.44866615475817667
Else (feature 1 > 40.224999999999994)
If (feature 2 <= 1025.2150000000001)
Predict: 0.7826360308981203
Else (feature 2 > 1025.2150000000001)
Predict: 9.875672812487991
Else (feature 1 > 40.82)
If (feature 2 <= 1025.2150000000001)
If (feature 0 <= 10.945)
Predict: 1.1628421208118285
Else (feature 0 > 10.945)
Predict: -0.12551627485602937
Else (feature 2 > 1025.2150000000001)
If (feature 1 <= 41.15)
Predict: -7.782369290305258
Else (feature 1 > 41.15)
Predict: -1.200273276366743
Tree 62 (weight 0.1):
If (feature 0 <= 22.055)
If (feature 0 <= 21.335)
If (feature 1 <= 66.21000000000001)
Predict: -0.09621281022933233
Else (feature 1 > 66.21000000000001)
Predict: 2.680549669942832
Else (feature 0 > 21.335)
If (feature 1 <= 63.864999999999995)
Predict: -3.207766197974041
Else (feature 1 > 63.864999999999995)
Predict: -0.14162445042909583
Else (feature 0 > 22.055)
If (feature 0 <= 22.725)
If (feature 2 <= 1011.515)
Predict: 0.5064350504779975
Else (feature 2 > 1011.515)
Predict: 3.659612527058891
Else (feature 0 > 22.725)
If (feature 3 <= 75.545)
Predict: 0.2595183211083464
Else (feature 3 > 75.545)
Predict: -0.6564588168227348
Tree 63 (weight 0.1):
If (feature 2 <= 1017.645)
If (feature 1 <= 44.67)
If (feature 1 <= 44.13)
Predict: 0.3869693354075677
Else (feature 1 > 44.13)
Predict: 4.723132901950317
Else (f...
Conclusion
Wow! So our best model is in fact our Gradient Boosted Decision tree model which uses an ensemble of 120 Trees with a depth of 3 to construct a better model than the single decision tree.
Step 8: Deployment will be done later
Now that we have a predictive model it is time to deploy the model into an operational environment.
In our example, let's say we have a series of sensors attached to the power plant and a monitoring station.
The monitoring station will need close to real-time information about how much power that their station will generate so they can relay that to the utility.
For this we need to create a Spark Streaming utility that we can use for this purpose. For this you need to be introduced to basic concepts in Spark Streaming first. See http://spark.apache.org/docs/latest/streaming-programming-guide.html if you can't wait!
After deployment you will be able to use the best predictions from gradient boosed regression trees to feed a real-time dashboard or feed the utility with information on how much power the peaker plant will deliver give current conditions.
Persisting Statistical Machine Learning Models
See https://databricks.com/blog/2016/05/31/apache-spark-2-0-preview-machine-learning-model-persistence.html
Let's save our best model so we can load it without having to rerun the validation and training again.
gbtModel
res117: org.apache.spark.ml.tuning.CrossValidatorModel = CrossValidatorModel: uid=cv_bc136566b6a6, bestModel=pipeline_8b2722444cff, numFolds=3
gbtModel.bestModel.asInstanceOf[PipelineModel]
.write.overwrite().save("/databricks/driver/MyTrainedBestPipelineModel")
When it is time to deploy the trained model to serve predicitons, we can simply reload this model and proceed as shown later.
This is one of the Deploymnet Patterns for Serving a Model's Prediction.
Datasource References:
- Pinar Tüfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems, Volume 60, September 2014, Pages 126-140, ISSN 0142-0615, Web Link
- Heysem Kaya, Pinar Tüfekci , Sadik Fikret Gürgen: Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE 2012, pp. 13-18 (Mar. 2012, Dubai) Web Link
Distributed Vertex Programming using GraphX
This is an augmentation of http://go.databricks.com/hubfs/notebooks/3-GraphFrames-User-Guide-scala.html that was last retrieved in 2019.
See:
- https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf
- https://amplab.github.io/graphx/
- https://spark.apache.org/docs/latest/graphx-programming-guide.html
- https://databricks.com/blog/2016/03/03/introducing-graphframes.html
- https://databricks.com/blog/2016/03/16/on-time-flight-performance-with-spark-graphframes.html
- http://ampcamp.berkeley.edu/big-data-mini-course/graph-analytics-with-graphx.html
And of course the databricks guide: * https://docs.databricks.com/spark/latest/graph-analysis/index.html
Use the source, Luke/Lea!
Community Packages in Spark - more generally
Let us recall the following quoate in Chapter 10 of High Performance Spark book (needs access to Orielly publishers via your library/subscription): - https://learning.oreilly.com/library/view/high-performance-spark/9781491943199/ch10.html#components
Beyond the integrated components, the community packages can add important functionality to Spark, sometimes even superseding built-in functionality—like with GraphFrames.
Here we introduce you to GraphFrames quickly so you don't need to drop down to the GraphX library that requires more understanding of caching and checkpointing to keep the vertex program's DAG from exploding or becoming inefficient.
GraphFrames User Guide (Scala)
GraphFrames is a package for Apache Spark which provides DataFrame-based Graphs. It provides high-level APIs in Scala, Java, and Python. It aims to provide both the functionality of GraphX and extended functionality taking advantage of Spark DataFrames. This extended functionality includes motif finding, DataFrame-based serialization, and highly expressive graph queries.
The GraphFrames package is available from Spark Packages.
This notebook demonstrates examples from the GraphFrames User Guide: https://graphframes.github.io/graphframes/docs/_site/user-guide.html.
sc.version // link the right library depending on Spark version of the cluster that's running
// spark version 2.3.0 works with graphframes:graphframes:0.7.0-spark2.3-s_2.11
// spark version 3.0.1 works with graphframes:graphframes:0.8.1-spark3.0-s_2.12
res1: String = 3.2.1
Since databricks.com stopped allowing IFrame embeds we have to open it in a separate window now. The blog is insightful and worth a perusal:
- https://databricks.com/blog/2016/03/03/introducing-graphframes.html
// we first need to install the library - graphframes as a Spark package - and attach it to our cluster - see note two cells above!
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
Creating GraphFrames
Let us try to create an example social network from the blog: * https://databricks.com/blog/2016/03/03/introducing-graphframes.html.
Users can create GraphFrames from vertex and edge DataFrames.
- Vertex DataFrame: A vertex DataFrame should contain a special column named
id
which specifies unique IDs for each vertex in the graph. - Edge DataFrame: An edge DataFrame should contain two special columns:
src
(source vertex ID of edge) anddst
(destination vertex ID of edge).
Both DataFrames can have arbitrary other columns. Those columns can represent vertex and edge attributes.
In our example, we can use a GraphFrame can store data or properties associated with each vertex and edge.
In our social network, each user might have an age and name, and each connection might have a relationship type.
Create the vertices and edges
// Vertex DataFrame
val v = sqlContext.createDataFrame(List(
("a", "Alice", 34),
("b", "Bob", 36),
("c", "Charlie", 30),
("d", "David", 29),
("e", "Esther", 32),
("f", "Fanny", 36),
("g", "Gabby", 60)
)).toDF("id", "name", "age")
// Edge DataFrame
val e = sqlContext.createDataFrame(List(
("a", "b", "friend"),
("b", "c", "follow"),
("c", "b", "follow"),
("f", "c", "follow"),
("e", "f", "follow"),
("e", "d", "friend"),
("d", "a", "friend"),
("a", "e", "friend")
)).toDF("src", "dst", "relationship")
v: org.apache.spark.sql.DataFrame = [id: string, name: string ... 1 more field]
e: org.apache.spark.sql.DataFrame = [src: string, dst: string ... 1 more field]
Let's create a graph from these vertices and these edges:
val g = GraphFrame(v, e)
g: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
Let's use the d3.graphs to visualise graphs (recall the D3 graphs in wiki-click example). You need the Run Cell
below using that cell's Play button's drop-down menu.
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
d3.graphs.help()
Produces a force-directed graph given a collection of edges of the following form: case class Edge(src: String, dest: String, count: Long)
Usage:
import d3._
graphs.force(
height = 500,
width = 500,
clicks: Dataset[Edge])
import org.apache.spark.sql.functions.lit // import the lit function in sql
val gE= g.edges.select($"src", $"dst".as("dest"), lit(1L).as("count")) // for us the column count is just an edge incidence
import org.apache.spark.sql.functions.lit
gE: org.apache.spark.sql.DataFrame = [src: string, dest: string ... 1 more field]
display(gE)
src | dest | count |
---|---|---|
a | b | 1.0 |
b | c | 1.0 |
c | b | 1.0 |
f | c | 1.0 |
e | f | 1.0 |
e | d | 1.0 |
d | a | 1.0 |
a | e | 1.0 |
d3.graphs.force(
height = 500,
width = 500,
clicks = gE.as[d3.Edge])
// This example graph also comes with the GraphFrames package.
val g0 = examples.Graphs.friends
g0: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
d3.graphs.force( // let us see g0 now in one cell
height = 500,
width = 500,
clicks = g0.edges.select($"src", $"dst".as("dest"), lit(1L).as("count")).as[d3.Edge])
Basic graph and DataFrame queries
GraphFrames provide several simple graph queries, such as node degree.
Also, since GraphFrames represent graphs as pairs of vertex and edge DataFrames, it is easy to make powerful queries directly on the vertex and edge DataFrames. Those DataFrames are made available as vertices and edges fields in the GraphFrame.
Simple queries are simple
GraphFrames make it easy to express queries over graphs. Since GraphFrame vertices and edges are stored as DataFrames, many queries are just DataFrame (or SQL) queries.
display(g.vertices)
id | name | age |
---|---|---|
a | Alice | 34.0 |
b | Bob | 36.0 |
c | Charlie | 30.0 |
d | David | 29.0 |
e | Esther | 32.0 |
f | Fanny | 36.0 |
g | Gabby | 60.0 |
display(g0.vertices) // this is the same query on the graph loaded as an example from GraphFrame package
id | name | age |
---|---|---|
a | Alice | 34.0 |
b | Bob | 36.0 |
c | Charlie | 30.0 |
d | David | 29.0 |
e | Esther | 32.0 |
f | Fanny | 36.0 |
g | Gabby | 60.0 |
display(g.edges)
src | dst | relationship |
---|---|---|
a | b | friend |
b | c | follow |
c | b | follow |
f | c | follow |
e | f | follow |
e | d | friend |
d | a | friend |
a | e | friend |
The incoming degree of the vertices:
display(g.inDegrees)
id | inDegree |
---|---|
c | 2.0 |
b | 2.0 |
f | 1.0 |
e | 1.0 |
d | 1.0 |
a | 1.0 |
The outgoing degree of the vertices:
display(g.outDegrees)
id | outDegree |
---|---|
f | 1.0 |
c | 1.0 |
b | 1.0 |
a | 2.0 |
e | 2.0 |
d | 1.0 |
The degree of the vertices:
display(g.degrees)
id | degree |
---|---|
f | 2.0 |
c | 3.0 |
b | 3.0 |
a | 3.0 |
e | 3.0 |
d | 2.0 |
You can run queries directly on the vertices DataFrame. For example, we can find the age of the youngest person in the graph:
val youngest = g.vertices.groupBy().min("age")
display(youngest)
min(age) |
---|
29.0 |
Likewise, you can run queries on the edges DataFrame.
For example, let us count the number of 'follow' relationships in the graph:
val numFollows = g.edges.filter("relationship = 'follow'").count()
numFollows: Long = 4
Motif finding
More complex relationships involving edges and vertices can be built using motifs.
The following cell finds the pairs of vertices with edges in both directions between them.
The result is a dataframe, in which the column names are given by the motif keys.
Check out the GraphFrame User Guide at https://graphframes.github.io/graphframes/docs/_site/user-guide.html for more details on the API.
// Search for pairs of vertices with edges in both directions between them, i.e., find undirected or bidirected edges.
val motifs = g.find("(a)-[e1]->(b); (b)-[e2]->(a)")
display(motifs)
Since the result is a DataFrame, more complex queries can be built on top of the motif.
Let us find all the reciprocal relationships in which one person is older than 30:
val filtered = motifs.filter("b.age > 30")
display(filtered)
You Try!
//Search for all "directed triangles" or triplets of vertices: a,b,c with edges: a->b, b->c and c->a
//uncomment the next 2 lines and replace the "XXX" below
//val motifs3 = g.find("(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(XXX)")
//display(motifs3)
Stateful queries
Many motif queries are stateless and simple to express, as in the examples above. The next examples demonstrate more complex queries which carry state along a path in the motif. These queries can be expressed by combining GraphFrame motif finding with filters on the result, where the filters use sequence operations to construct a series of DataFrame Columns.
For example, suppose one wishes to identify a chain of 4 vertices with some property defined by a sequence of functions. That is, among chains of 4 vertices a->b->c->d
, identify the subset of chains matching this complex filter:
- Initialize state on path.
- Update state based on vertex a.
- Update state based on vertex b.
- Etc. for c and d.
- If final state matches some condition, then the chain is accepted by the filter.
The below code snippets demonstrate this process, where we identify chains of 4 vertices such that at least 2 of the 3 edges are friend
relationships. In this example, the state is the current count of friend
edges; in general, it could be any DataFrame Column.
// Find chains of 4 vertices.
val chain4 = g.find("(a)-[ab]->(b); (b)-[bc]->(c); (c)-[cd]->(d)")
// Query on sequence, with state (cnt)
// (a) Define method for updating state given the next element of the motif.
def sumFriends(cnt: Column, relationship: Column): Column = {
when(relationship === "friend", cnt + 1).otherwise(cnt)
}
// (b) Use sequence operation to apply method to sequence of elements in motif.
// In this case, the elements are the 3 edges.
val condition = Seq("ab", "bc", "cd").
foldLeft(lit(0))((cnt, e) => sumFriends(cnt, col(e)("relationship")))
// (c) Apply filter to DataFrame.
val chainWith2Friends2 = chain4.where(condition >= 2)
display(chainWith2Friends2)
chain4
res22: org.apache.spark.sql.DataFrame = [a: struct<id: string, name: string ... 1 more field>, ab: struct<src: string, dst: string ... 1 more field> ... 5 more fields]
chain4.printSchema
root
|-- a: struct (nullable = false)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
| |-- age: integer (nullable = false)
|-- ab: struct (nullable = false)
| |-- src: string (nullable = true)
| |-- dst: string (nullable = true)
| |-- relationship: string (nullable = true)
|-- b: struct (nullable = false)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
| |-- age: integer (nullable = false)
|-- bc: struct (nullable = false)
| |-- src: string (nullable = true)
| |-- dst: string (nullable = true)
| |-- relationship: string (nullable = true)
|-- c: struct (nullable = false)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
| |-- age: integer (nullable = false)
|-- cd: struct (nullable = false)
| |-- src: string (nullable = true)
| |-- dst: string (nullable = true)
| |-- relationship: string (nullable = true)
|-- d: struct (nullable = false)
| |-- id: string (nullable = true)
| |-- name: string (nullable = true)
| |-- age: integer (nullable = false)
An idea -- a diatribe into an AI security product.
Can you think of a way to use stateful queries in social media networks to find perpetrators of hate-speech online who are possibly worthy of an investigation by domain experts, say in the intelligence or security domain, for potential prosecution on charges of having incited another person to cause physical violence... This is a real problem today as Swedish law effectively prohibits certain forms of online hate-speech.
An idea for a product that can be used by Swedish security agencies?
See https://näthatsgranskaren.se/ for details of a non-profit in Sweden doing such operaitons mostly manually as of early 2020.
Subgraphs
Subgraphs are built by filtering a subset of edges and vertices. For example, the following subgraph only contains people who are friends and who are more than 30 years old.
// Select subgraph of users older than 30, and edges of type "friend"
val v2 = g.vertices.filter("age > 30")
val e2 = g.edges.filter("relationship = 'friend'")
val g2 = GraphFrame(v2, e2)
v2: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: string, name: string ... 1 more field]
e2: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [src: string, dst: string ... 1 more field]
g2: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
display(g2.vertices)
id | name | age |
---|---|---|
a | Alice | 34.0 |
b | Bob | 36.0 |
e | Esther | 32.0 |
f | Fanny | 36.0 |
g | Gabby | 60.0 |
display(g2.edges)
src | dst | relationship |
---|---|---|
a | b | friend |
e | d | friend |
d | a | friend |
a | e | friend |
d3.graphs.force( // let us see g2 now in one cell
height = 500,
width = 500,
clicks = g2.edges.select($"src", $"dst".as("dest"), lit(1L).as("count")).as[d3.Edge])
Complex triplet filters
The following example shows how to select a subgraph based upon triplet filters which operate on:
- an edge and
- its src and
- dst vertices.
This example could be extended to go beyond triplets by using more complex motifs.
// Select subgraph based on edges "e" of type "follow"
// pointing from a younger user "a" to an older user "b".
val paths = g.find("(a)-[e]->(b)")
.filter("e.relationship = 'follow'")
.filter("a.age < b.age")
// "paths" contains vertex info. Extract the edges.
val e2 = paths.select("e.src", "e.dst", "e.relationship")
// In Spark 1.5+, the user may simplify this call:
// val e2 = paths.select("e.*")
// Construct the subgraph
val g2 = GraphFrame(g.vertices, e2)
paths: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: string, name: string ... 1 more field>, e: struct<src: string, dst: string ... 1 more field> ... 1 more field]
e2: org.apache.spark.sql.DataFrame = [src: string, dst: string ... 1 more field]
g2: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
display(g2.vertices)
id | name | age |
---|---|---|
a | Alice | 34.0 |
b | Bob | 36.0 |
c | Charlie | 30.0 |
d | David | 29.0 |
e | Esther | 32.0 |
f | Fanny | 36.0 |
g | Gabby | 60.0 |
display(g2.edges)
src | dst | relationship |
---|---|---|
c | b | follow |
e | f | follow |
Standard graph algorithms in GraphX conveniently via GraphFrames
GraphFrames comes with a number of standard graph algorithms built in:
- Breadth-first search (BFS)
- Connected components
- Strongly connected components
- Label Propagation Algorithm (LPA)
- PageRank
- Shortest paths
- Triangle count
Read
https://graphframes.github.io/graphframes/docs/_site/user-guide.html
Search from "Esther" for users of age < 32.
// Search from "Esther" for users of age <= 32.
val paths: DataFrame = g.bfs.fromExpr("name = 'Esther'").toExpr("age < 32").run()
display(paths)
val paths: DataFrame = g.bfs.fromExpr("name = 'Esther' OR name = 'Bob'").toExpr("age < 32").run()
display(paths)
The search may also be limited by edge filters and maximum path lengths.
val filteredPaths = g.bfs.fromExpr("name = 'Esther'").toExpr("age < 32")
.edgeFilter("relationship != 'friend'")
.maxPathLength(3)
.run()
display(filteredPaths)
Connected components
Compute the connected component membership of each vertex and return a graph with each vertex assigned a component ID.
READ https://graphframes.github.io/graphframes/docs/_site/user-guide.html#connected-components.
From https://graphframes.github.io/graphframes/docs/_site/user-guide.html#connected-components:-
NOTE: With GraphFrames 0.3.0 and later releases, the default Connected Components algorithm requires setting a Spark checkpoint directory. Users can revert to the old algorithm using .setAlgorithm("graphx")
.
Recall the following quote from Chapter 5 on Effective Transformations of the High Performance Spark Book why one needs to check-point to keep the RDD lineage DAGs from growing too large.
Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files If you decide that you need to reuse your RDD, Spark provides a multitude of options for how to store the RDD. Thus it is important to understand when to use the various types of persistence.There are three primary operations that you can use to store your RDD: cache, persist, and checkpoint. In general, caching (equivalent to persisting with the in-memory storage) and persisting are most useful to avoid recomputation during one Spark job or to break RDDs with long lineages, since they keep an RDD on the executors during a Spark job. Checkpointing is most useful to prevent failures and a high cost of recomputation by saving intermediate results. Like persisting, checkpointing helps avoid computation, thus minimizing the cost of failure, and avoids recomputation by breaking the lineage graph.
sc.setCheckpointDir("/_checkpoint") // just a directory in distributed file system
val result = g.connectedComponents.run()
display(result)
id | name | age | component |
---|---|---|---|
a | Alice | 34.0 | 4.12316860416e11 |
b | Bob | 36.0 | 4.12316860416e11 |
c | Charlie | 30.0 | 4.12316860416e11 |
d | David | 29.0 | 4.12316860416e11 |
e | Esther | 32.0 | 4.12316860416e11 |
f | Fanny | 36.0 | 4.12316860416e11 |
g | Gabby | 60.0 | 1.46028888064e11 |
Fun Exercise: Try to modify the d3.graph function to allow a visualisation of a given Sequence of component
ids in the above result
.
Strongly connected components
Compute the strongly connected component (SCC) of each vertex and return a graph with each vertex assigned to the SCC containing that vertex.
READ https://graphframes.github.io/graphframes/docs/_site/user-guide.html#strongly-connected-components.
val result = g.stronglyConnectedComponents.maxIter(10).run()
display(result.orderBy("component"))
id | name | age | component |
---|---|---|---|
g | Gabby | 60.0 | 1.46028888064e11 |
f | Fanny | 36.0 | 4.12316860416e11 |
a | Alice | 34.0 | 6.70014898176e11 |
e | Esther | 32.0 | 6.70014898176e11 |
d | David | 29.0 | 6.70014898176e11 |
b | Bob | 36.0 | 1.047972020224e12 |
c | Charlie | 30.0 | 1.047972020224e12 |
Label propagation
Run static Label Propagation Algorithm for detecting communities in networks.
Each node in the network is initially assigned to its own community. At every superstep, nodes send their community affiliation to all neighbors and update their state to the mode community affiliation of incoming messages.
LPA is a standard community detection algorithm for graphs. It is very inexpensive computationally, although
- (1) convergence is not guaranteed and
- (2) one can end up with trivial solutions (all nodes are identified into a single community).
READ: https://graphframes.github.io/graphframes/docs/_site/user-guide.html#label-propagation-algorithm-lpa.
val result = g.labelPropagation.maxIter(5).run()
display(result.orderBy("label"))
id | name | age | label |
---|---|---|---|
g | Gabby | 60.0 | 1.46028888064e11 |
b | Bob | 36.0 | 1.047972020224e12 |
e | Esther | 32.0 | 1.382979469312e12 |
a | Alice | 34.0 | 1.382979469312e12 |
c | Charlie | 30.0 | 1.382979469312e12 |
f | Fanny | 36.0 | 1.46028888064e12 |
d | David | 29.0 | 1.46028888064e12 |
PageRank
Identify important vertices in a graph based on connections.
READ: https://graphframes.github.io/graphframes/docs/_site/user-guide.html#pagerank.
// Run PageRank until convergence to tolerance "tol".
val results = g.pageRank.resetProbability(0.15).tol(0.01).run()
display(results.vertices)
id | name | age | pagerank |
---|---|---|---|
b | Bob | 36.0 | 2.655507832863289 |
e | Esther | 32.0 | 0.37085233187676075 |
a | Alice | 34.0 | 0.44910633706538744 |
f | Fanny | 36.0 | 0.3283606792049851 |
g | Gabby | 60.0 | 0.1799821386239711 |
d | David | 29.0 | 0.3283606792049851 |
c | Charlie | 30.0 | 2.6878300011606218 |
display(results.edges)
src | dst | relationship | weight |
---|---|---|---|
f | c | follow | 1.0 |
e | f | follow | 0.5 |
e | d | friend | 0.5 |
d | a | friend | 1.0 |
c | b | follow | 1.0 |
b | c | follow | 1.0 |
a | e | friend | 0.5 |
a | b | friend | 0.5 |
// Run PageRank for a fixed number of iterations.
val results2 = g.pageRank.resetProbability(0.15).maxIter(10).run()
display(results2.vertices)
id | name | age | pagerank |
---|---|---|---|
b | Bob | 36.0 | 2.7025217677349773 |
e | Esther | 32.0 | 0.3613490987992571 |
a | Alice | 34.0 | 0.4485115093698443 |
f | Fanny | 36.0 | 0.32504910549694244 |
g | Gabby | 60.0 | 0.17073170731707318 |
d | David | 29.0 | 0.32504910549694244 |
c | Charlie | 30.0 | 2.6667877057849627 |
// Run PageRank personalized for vertex "a"
val results3 = g.pageRank.resetProbability(0.15).maxIter(10).sourceId("a").run()
display(results3.vertices)
id | name | age | pagerank |
---|---|---|---|
b | Bob | 36.0 | 0.3366143039702568 |
e | Esther | 32.0 | 7.657840357273027e-2 |
a | Alice | 34.0 | 0.17710831642683564 |
f | Fanny | 36.0 | 3.189213697274781e-2 |
g | Gabby | 60.0 | 0.0 |
d | David | 29.0 | 3.189213697274781e-2 |
c | Charlie | 30.0 | 0.3459147020846817 |
Shortest paths
Computes shortest paths to the given set of landmark vertices, where landmarks are specified by vertex ID.
READ https://graphframes.github.io/graphframes/docs/_site/user-guide.html#shortest-paths.
val paths = g.shortestPaths.landmarks(Seq("a", "d")).run()
display(paths)
g.edges.show()
+---+---+------------+
|src|dst|relationship|
+---+---+------------+
| a| b| friend|
| b| c| follow|
| c| b| follow|
| f| c| follow|
| e| f| follow|
| e| d| friend|
| d| a| friend|
| a| e| friend|
+---+---+------------+
Triangle count
Computes the number of triangles passing through each vertex.
val results = g.triangleCount.run()
display(results)
count | id | name | age |
---|---|---|---|
1.0 | a | Alice | 34.0 |
0.0 | b | Bob | 36.0 |
0.0 | c | Charlie | 30.0 |
1.0 | d | David | 29.0 |
1.0 | e | Esther | 32.0 |
0.0 | f | Fanny | 36.0 |
0.0 | g | Gabby | 60.0 |
YouTry
and undestand how the below code snippet shows how to use aggregateMessages to compute the sum of the ages of adjacent users.
import org.graphframes.{examples,GraphFrame}
import org.graphframes.lib.AggregateMessages
val g: GraphFrame = examples.Graphs.friends // get example graph
// We will use AggregateMessages utilities later, so name it "AM" for short.
val AM = AggregateMessages
// For each user, sum the ages of the adjacent users.
val msgToSrc = AM.dst("age")
val msgToDst = AM.src("age")
val agg = { g.aggregateMessages
.sendToSrc(msgToSrc) // send destination user's age to source
.sendToDst(msgToDst) // send source user's age to destination
.agg(sum(AM.msg).as("summedAges")) } // sum up ages, stored in AM.msg column
agg.show()
+---+----------+
| id|summedAges|
+---+----------+
| a| 97|
| c| 108|
| e| 99|
| d| 66|
| b| 94|
| f| 62|
+---+----------+
import org.graphframes.{examples, GraphFrame}
import org.graphframes.lib.AggregateMessages
g: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
AM: org.graphframes.lib.AggregateMessages.type = org.graphframes.lib.AggregateMessages$@706833c8
msgToSrc: org.apache.spark.sql.Column = dst[age]
msgToDst: org.apache.spark.sql.Column = src[age]
agg: org.apache.spark.sql.DataFrame = [id: string, summedAges: bigint]
There is a lot more that can be done with aggregate messaging - let's get into belief propogation algorithm for a more complex example!
Belief propogation is a powerful computational framework for Graphical Models.
- let's dive here:
as
This provides a template for building customized BP algorithms for different types of graphical models.
Project Idea
Understand parallel belief propagation using colored fields in the Scala code linked above and also pasted below in one cell (for you to modify if you want to do it in a databricks or jupyter or zeppelin notebook) unless you want to fork and extend the github repo directly with your own example.
Then use it with necessary adaptations to be able to model your favorite interacting particle system. Don't just redo the Ising model done there!
This can be used to gain intuition for various real-world scenarios, including the mathematics in your head:
- Make a graph for contact network of a set of hosts
- A simple model of COVID spreading in an SI or SIS or SIR or other epidemic models
- this can be abstract and simply show your skills in programming, say create a random network
- or be more explicit with some assumptions about the contact process (population sampled, in one or two cities, with some assumptions on contacts during transportation, school, work, etc)
- show that you have a fully scalable simulation model that can theoretically scale to billions of hosts
The project does not have to be a recommendation to Swedish authorities! Just a start in the right direction, for instance.
Some readings that can help here include the following and references therein:
- The Transmission Process: A Combinatorial Stochastic Process for the Evolution of Transmission Trees over Networks, Raazesh Sainudiin and David Welch, Journal of Theoretical Biology, Volume 410, Pages 137–170, 10.1016/j.jtbi.2016.07.038, 2016.
Other Project Ideas
- try to do a scalable inference algorithm for one of the graphical models that you already know...
- make a large simulaiton of your favourite Finite Markov Information Exchange (FMIE) process defined by Aldous (see reference in the above linked paper)
- anything else that fancies you or your research orientation/interests and can benefit from adapting the template for the parallel belief propagation algorithm here.
If you want to do this project in databricks (or other) notebook then start by modifying the following code from the example and making it run... Then adapt... start in small steps... make a team with fellow students with complementary skills...
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.graphframes.examples
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.graphx.{Graph, VertexRDD, Edge => GXEdge}
import org.apache.spark.sql.{Column, Row, SparkSession, SQLContext}
import org.apache.spark.sql.functions.{col, lit, sum, udf, when}
import org.graphframes.GraphFrame
import org.graphframes.examples.Graphs.gridIsingModel
import org.graphframes.lib.AggregateMessages
/**
* Example code for Belief Propagation (BP)
*
* This provides a template for building customized BP algorithms for different types of
* graphical models.
*
* This example:
* - Ising model on a grid
* - Parallel Belief Propagation using colored fields
*
* Ising models are probabilistic graphical models over binary variables x,,i,,.
* Each binary variable x,,i,, corresponds to one vertex, and it may take values -1 or +1.
* The probability distribution P(X) (over all x,,i,,) is parameterized by vertex factors a,,i,,
* and edge factors b,,ij,,:
* {{{
* P(X) = (1/Z) * exp[ \sum_i a_i x_i + \sum_{ij} b_{ij} x_i x_j ]
* }}}
* where Z is the normalization constant (partition function).
* See [[https://en.wikipedia.org/wiki/Ising_model Wikipedia]] for more information on Ising models.
*
* Belief Propagation (BP) provides marginal probabilities of the values of the variables x,,i,,,
* i.e., P(x,,i,,) for each i. This allows a user to understand likely values of variables.
* See [[https://en.wikipedia.org/wiki/Belief_propagation Wikipedia]] for more information on BP.
*
* We use a batch synchronous BP algorithm, where batches of vertices are updated synchronously.
* We follow the mean field update algorithm in Slide 13 of the
* [[http://www.eecs.berkeley.edu/~wainwrig/Talks/A_GraphModel_Tutorial talk slides]] from:
* Wainwright. "Graphical models, message-passing algorithms, and convex optimization."
*
* The batches are chosen according to a coloring. For background on graph colorings for inference,
* see for example:
* Gonzalez et al. "Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees."
* AISTATS, 2011.
*
* The BP algorithm works by:
* - Coloring the graph by assigning a color to each vertex such that no neighboring vertices
* share the same color.
* - In each step of BP, update all vertices of a single color. Alternate colors.
*/
object BeliefPropagation {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("BeliefPropagation example")
.getOrCreate()
val sql = spark.sqlContext
// Create graphical model g of size 3 x 3.
val g = gridIsingModel(sql, 3)
println("Original Ising model:")
g.vertices.show()
g.edges.show()
// Run BP for 5 iterations.
val numIter = 5
val results = runBPwithGraphX(g, numIter)
// Display beliefs.
val beliefs = results.vertices.select("id", "belief")
println(s"Done with BP. Final beliefs after $numIter iterations:")
beliefs.show()
spark.stop()
}
/**
* Given a GraphFrame, choose colors for each vertex. No neighboring vertices will share the
* same color. The number of colors is minimized.
*
* This is written specifically for grid graphs. For non-grid graphs, it should be generalized,
* such as by using a greedy coloring scheme.
*
* @param g Grid graph generated by [[org.graphframes.examples.Graphs.gridIsingModel()]]
* @return Same graph, but with a new vertex column "color" of type Int (0 or 1)
*/
private def colorGraph(g: GraphFrame): GraphFrame = {
val colorUDF = udf { (i: Int, j: Int) => (i + j) % 2 }
val v = g.vertices.withColumn("color", colorUDF(col("i"), col("j")))
GraphFrame(v, g.edges)
}
/**
* Run Belief Propagation.
*
* This implementation of BP shows how to use GraphX's aggregateMessages method.
* It is simple to convert to and from GraphX format. This method does the following:
* - Color GraphFrame vertices for BP scheduling.
* - Convert GraphFrame to GraphX format.
* - Run BP using GraphX's aggregateMessages API.
* - Augment the original GraphFrame with the BP results (vertex beliefs).
*
* @param g Graphical model created by `org.graphframes.examples.Graphs.gridIsingModel()`
* @param numIter Number of iterations of BP to run. One iteration includes updating each
* vertex's belief once.
* @return Same graphical model, but with [[GraphFrame.vertices]] augmented with a new column
* "belief" containing P(x,,i,, = +1), the marginal probability of vertex i taking
* value +1 instead of -1.
*/
def runBPwithGraphX(g: GraphFrame, numIter: Int): GraphFrame = {
// Choose colors for vertices for BP scheduling.
val colorG = colorGraph(g)
val numColors: Int = colorG.vertices.select("color").distinct.count().toInt
// Convert GraphFrame to GraphX, and initialize beliefs.
val gx0 = colorG.toGraphX
// Schema maps for extracting attributes
val vColsMap = colorG.vertexColumnMap
val eColsMap = colorG.edgeColumnMap
// Convert vertex attributes to nice case classes.
val gx1: Graph[VertexAttr, Row] = gx0.mapVertices { case (_, attr) =>
// Initialize belief at 0.0
VertexAttr(attr.getDouble(vColsMap("a")), 0.0, attr.getInt(vColsMap("color")))
}
// Convert edge attributes to nice case classes.
val extractEdgeAttr: (GXEdge[Row] => EdgeAttr) = { e =>
EdgeAttr(e.attr.getDouble(eColsMap("b")))
}
var gx: Graph[VertexAttr, EdgeAttr] = gx1.mapEdges(extractEdgeAttr)
// Run BP for numIter iterations.
for (iter <- Range(0, numIter)) {
// For each color, have that color receive messages from neighbors.
for (color <- Range(0, numColors)) {
// Send messages to vertices of the current color.
val msgs: VertexRDD[Double] = gx.aggregateMessages(
ctx =>
// Can send to source or destination since edges are treated as undirected.
if (ctx.dstAttr.color == color) {
val msg = ctx.attr.b * ctx.srcAttr.belief
// Only send message if non-zero.
if (msg != 0) ctx.sendToDst(msg)
} else if (ctx.srcAttr.color == color) {
val msg = ctx.attr.b * ctx.dstAttr.belief
// Only send message if non-zero.
if (msg != 0) ctx.sendToSrc(msg)
},
_ + _)
// Receive messages, and update beliefs for vertices of the current color.
gx = gx.outerJoinVertices(msgs) {
case (vID, vAttr, optMsg) =>
if (vAttr.color == color) {
val x = vAttr.a + optMsg.getOrElse(0.0)
val newBelief = math.exp(-log1pExp(-x))
VertexAttr(vAttr.a, newBelief, color)
} else {
vAttr
}
}
}
}
// Convert back to GraphFrame with a new column "belief" for vertices DataFrame.
val gxFinal: Graph[Double, Unit] = gx.mapVertices((_, attr) => attr.belief).mapEdges(_ => ())
GraphFrame.fromGraphX(colorG, gxFinal, vertexNames = Seq("belief"))
}
case class VertexAttr(a: Double, belief: Double, color: Int)
case class EdgeAttr(b: Double)
/**
* Run Belief Propagation.
*
* This implementation of BP shows how to use GraphFrame's aggregateMessages method.
* - Color GraphFrame vertices for BP scheduling.
* - Run BP using GraphFrame's aggregateMessages API.
* - Augment the original GraphFrame with the BP results (vertex beliefs).
*
* @param g Graphical model created by `org.graphframes.examples.Graphs.gridIsingModel()`
* @param numIter Number of iterations of BP to run. One iteration includes updating each
* vertex's belief once.
* @return Same graphical model, but with [[GraphFrame.vertices]] augmented with a new column
* "belief" containing P(x,,i,, = +1), the marginal probability of vertex i taking
* value +1 instead of -1.
*/
def runBPwithGraphFrames(g: GraphFrame, numIter: Int): GraphFrame = {
// Choose colors for vertices for BP scheduling.
val colorG = colorGraph(g)
val numColors: Int = colorG.vertices.select("color").distinct.count().toInt
// TODO: Handle vertices without any edges.
// Initialize vertex beliefs at 0.0.
var gx = GraphFrame(colorG.vertices.withColumn("belief", lit(0.0)), colorG.edges)
// Run BP for numIter iterations.
for (iter <- Range(0, numIter)) {
// For each color, have that color receive messages from neighbors.
for (color <- Range(0, numColors)) {
// Define "AM" for shorthand for referring to the src, dst, edge, and msg fields.
// (See usage below.)
val AM = AggregateMessages
// Send messages to vertices of the current color.
// We may send to source or destination since edges are treated as undirected.
val msgForSrc: Column = when(AM.src("color") === color, AM.edge("b") * AM.dst("belief"))
val msgForDst: Column = when(AM.dst("color") === color, AM.edge("b") * AM.src("belief"))
val logistic = udf { (x: Double) => math.exp(-log1pExp(-x)) }
val aggregates = gx.aggregateMessages
.sendToSrc(msgForSrc)
.sendToDst(msgForDst)
.agg(sum(AM.msg).as("aggMess"))
val v = gx.vertices
// Receive messages, and update beliefs for vertices of the current color.
val newBeliefCol = when(v("color") === color && aggregates("aggMess").isNotNull,
logistic(aggregates("aggMess") + v("a")))
.otherwise(v("belief")) // keep old beliefs for other colors
val newVertices = v
.join(aggregates, v("id") === aggregates("id"), "left_outer") // join messages, vertices
.drop(aggregates("id")) // drop duplicate ID column (from outer join)
.withColumn("newBelief", newBeliefCol) // compute new beliefs
.drop("aggMess") // drop messages
.drop("belief") // drop old beliefs
.withColumnRenamed("newBelief", "belief")
// Cache new vertices using workaround for SPARK-13346
val cachedNewVertices = AM.getCachedDataFrame(newVertices)
gx = GraphFrame(cachedNewVertices, gx.edges)
}
}
// Drop the "color" column from vertices
GraphFrame(gx.vertices.drop("color"), gx.edges)
}
/** More numerically stable `log(1 + exp(x))` */
private def log1pExp(x: Double): Double = {
if (x > 0) {
x + math.log1p(math.exp(-x))
} else {
math.log1p(math.exp(x))
}
}
}
This is a scala version of the python notebook in the following talk:
Homework:
See https://www.brighttalk.com/webcast/12891/199003 (you need to subscribe freely to Bright Talk first). Then go through this scala version of the notebook from the talk.
On-Time Flight Performance with GraphFrames for Apache Spark
This notebook provides an analysis of On-Time Flight Performance and Departure Delays data using GraphFrames for Apache Spark.
Source Data:
- OpenFlights: Airport, airline and route data
- United States Department of Transportation: Bureau of Transportation Statistics (TranStats)
- Note, the data used here was extracted from the US DOT:BTS between 1/1/2014 and 3/31/2014*
References:
Preparation
Extract the Airports and Departure Delays information from S3 / DBFS
// Set File Paths
val tripdelaysFilePath = "/datasets/sds/flights/departuredelays.csv"
val airportsnaFilePath = "/datasets/sds/flights/airport-codes-na.txt"
tripdelaysFilePath: String = /datasets/sds/flights/departuredelays.csv
airportsnaFilePath: String = /datasets/sds/flights/airport-codes-na.txt
// Obtain airports dataset
// Note that "spark-csv" package is built-in datasource in Spark 2.0
val airportsna = sqlContext.read.format("com.databricks.spark.csv").
option("header", "true").
option("inferschema", "true").
option("delimiter", "\t").
load(airportsnaFilePath)
airportsna.createOrReplaceTempView("airports_na")
// Obtain departure Delays data
val departureDelays = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").load(tripdelaysFilePath)
departureDelays.createOrReplaceTempView("departureDelays")
departureDelays.cache()
// Available IATA (International Air Transport Association) codes from the departuredelays sample dataset
val tripIATA = sqlContext.sql("select distinct iata from (select distinct origin as iata from departureDelays union all select distinct destination as iata from departureDelays) a")
tripIATA.createOrReplaceTempView("tripIATA")
// Only include airports with atleast one trip from the departureDelays dataset
val airports = sqlContext.sql("select f.IATA, f.City, f.State, f.Country from airports_na f join tripIATA t on t.IATA = f.IATA")
airports.createOrReplaceTempView("airports")
airports.cache()
airportsna: org.apache.spark.sql.DataFrame = [City: string, State: string ... 2 more fields]
departureDelays: org.apache.spark.sql.DataFrame = [date: string, delay: string ... 3 more fields]
tripIATA: org.apache.spark.sql.DataFrame = [iata: string]
airports: org.apache.spark.sql.DataFrame = [IATA: string, City: string ... 2 more fields]
res0: airports.type = [IATA: string, City: string ... 2 more fields]
// Build `departureDelays_geo` DataFrame
// Obtain key attributes such as Date of flight, delays, distance, and airport information (Origin, Destination)
val departureDelays_geo = sqlContext.sql("select cast(f.date as int) as tripid, cast(concat(concat(concat(concat(concat(concat('2014-', concat(concat(substr(cast(f.date as string), 1, 2), '-')), substr(cast(f.date as string), 3, 2)), ' '), substr(cast(f.date as string), 5, 2)), ':'), substr(cast(f.date as string), 7, 2)), ':00') as timestamp) as `localdate`, cast(f.delay as int), cast(f.distance as int), f.origin as src, f.destination as dst, o.city as city_src, d.city as city_dst, o.state as state_src, d.state as state_dst from departuredelays f join airports o on o.iata = f.origin join airports d on d.iata = f.destination")
// RegisterTempTable
departureDelays_geo.createOrReplaceTempView("departureDelays_geo")
// Cache and Count
departureDelays_geo.cache()
departureDelays_geo.count()
departureDelays_geo: org.apache.spark.sql.DataFrame = [tripid: int, localdate: timestamp ... 8 more fields]
res2: Long = 1361141
display(departureDelays_geo)
tripid | localdate | delay | distance | src | dst | city_src | city_dst | state_src | state_dst |
---|---|---|---|---|---|---|---|---|---|
1011111.0 | 2014-01-01T11:11:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1021111.0 | 2014-01-02T11:11:00.000+0000 | 7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1031111.0 | 2014-01-03T11:11:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1041925.0 | 2014-01-04T19:25:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1061115.0 | 2014-01-06T11:15:00.000+0000 | 33.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1071115.0 | 2014-01-07T11:15:00.000+0000 | 23.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1081115.0 | 2014-01-08T11:15:00.000+0000 | -9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1091115.0 | 2014-01-09T11:15:00.000+0000 | 11.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1101115.0 | 2014-01-10T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1112015.0 | 2014-01-11T20:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1121925.0 | 2014-01-12T19:25:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1131115.0 | 2014-01-13T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1141115.0 | 2014-01-14T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1151115.0 | 2014-01-15T11:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1161115.0 | 2014-01-16T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1171115.0 | 2014-01-17T11:15:00.000+0000 | 4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1182015.0 | 2014-01-18T20:15:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1191925.0 | 2014-01-19T19:25:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1201115.0 | 2014-01-20T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1211115.0 | 2014-01-21T11:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1221115.0 | 2014-01-22T11:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1231115.0 | 2014-01-23T11:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1241115.0 | 2014-01-24T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1252015.0 | 2014-01-25T20:15:00.000+0000 | -12.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1261925.0 | 2014-01-26T19:25:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1271115.0 | 2014-01-27T11:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1281115.0 | 2014-01-28T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1291115.0 | 2014-01-29T11:15:00.000+0000 | -2.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1301115.0 | 2014-01-30T11:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
1311115.0 | 2014-01-31T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2012015.0 | 2014-02-01T20:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2022015.0 | 2014-02-02T20:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2031115.0 | 2014-02-03T11:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2041115.0 | 2014-02-04T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2051115.0 | 2014-02-05T11:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2061115.0 | 2014-02-06T11:15:00.000+0000 | -2.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2071115.0 | 2014-02-07T11:15:00.000+0000 | -15.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2082015.0 | 2014-02-08T20:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2091925.0 | 2014-02-09T19:25:00.000+0000 | 1.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2101115.0 | 2014-02-10T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2111115.0 | 2014-02-11T11:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2121115.0 | 2014-02-12T11:15:00.000+0000 | -2.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2131115.0 | 2014-02-13T11:15:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2141115.0 | 2014-02-14T11:15:00.000+0000 | -11.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2152015.0 | 2014-02-15T20:15:00.000+0000 | 16.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2161925.0 | 2014-02-16T19:25:00.000+0000 | 169.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2171115.0 | 2014-02-17T11:15:00.000+0000 | 27.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2181115.0 | 2014-02-18T11:15:00.000+0000 | 96.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2191115.0 | 2014-02-19T11:15:00.000+0000 | -9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2201115.0 | 2014-02-20T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2211115.0 | 2014-02-21T11:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2222015.0 | 2014-02-22T20:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2231925.0 | 2014-02-23T19:25:00.000+0000 | -3.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2241115.0 | 2014-02-24T11:15:00.000+0000 | -2.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2251115.0 | 2014-02-25T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2261115.0 | 2014-02-26T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2271115.0 | 2014-02-27T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2281115.0 | 2014-02-28T11:15:00.000+0000 | 5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3012015.0 | 2014-03-01T20:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3022000.0 | 2014-03-02T20:00:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3031115.0 | 2014-03-03T11:15:00.000+0000 | 17.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3041115.0 | 2014-03-04T11:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3051115.0 | 2014-03-05T11:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3061115.0 | 2014-03-06T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3071115.0 | 2014-03-07T11:15:00.000+0000 | -10.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3082000.0 | 2014-03-08T20:00:00.000+0000 | -11.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3092000.0 | 2014-03-09T20:00:00.000+0000 | -9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3101115.0 | 2014-03-10T11:15:00.000+0000 | -10.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3111115.0 | 2014-03-11T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3121115.0 | 2014-03-12T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3131115.0 | 2014-03-13T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3141115.0 | 2014-03-14T11:15:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3152000.0 | 2014-03-15T20:00:00.000+0000 | -11.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3162000.0 | 2014-03-16T20:00:00.000+0000 | -10.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3171115.0 | 2014-03-17T11:15:00.000+0000 | 25.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3181115.0 | 2014-03-18T11:15:00.000+0000 | 2.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3191115.0 | 2014-03-19T11:15:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3201115.0 | 2014-03-20T11:15:00.000+0000 | -6.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3211115.0 | 2014-03-21T11:15:00.000+0000 | 0.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3222000.0 | 2014-03-22T20:00:00.000+0000 | -10.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3232000.0 | 2014-03-23T20:00:00.000+0000 | -9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3241115.0 | 2014-03-24T11:15:00.000+0000 | -9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3251115.0 | 2014-03-25T11:15:00.000+0000 | -4.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3261115.0 | 2014-03-26T11:15:00.000+0000 | -5.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3271115.0 | 2014-03-27T11:15:00.000+0000 | 9.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3281115.0 | 2014-03-28T11:15:00.000+0000 | -7.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3292000.0 | 2014-03-29T20:00:00.000+0000 | -19.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3302000.0 | 2014-03-30T20:00:00.000+0000 | -10.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
3311115.0 | 2014-03-31T11:15:00.000+0000 | -8.0 | 221.0 | MSP | INL | Minneapolis | International Falls | MN | MN |
2011230.0 | 2014-02-01T12:30:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2010719.0 | 2014-02-01T07:19:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2021230.0 | 2014-02-02T12:30:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2020709.0 | 2014-02-02T07:09:00.000+0000 | 59.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2021654.0 | 2014-02-02T16:54:00.000+0000 | 21.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2030719.0 | 2014-02-03T07:19:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2031659.0 | 2014-02-03T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2031230.0 | 2014-02-03T12:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2032043.0 | 2014-02-03T20:43:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2041230.0 | 2014-02-04T12:30:00.000+0000 | 24.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2040719.0 | 2014-02-04T07:19:00.000+0000 | 168.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2041730.0 | 2014-02-04T17:30:00.000+0000 | 88.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2042043.0 | 2014-02-04T20:43:00.000+0000 | 106.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2051659.0 | 2014-02-05T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2050719.0 | 2014-02-05T07:19:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2050929.0 | 2014-02-05T09:29:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2052043.0 | 2014-02-05T20:43:00.000+0000 | 46.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2060719.0 | 2014-02-06T07:19:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2061659.0 | 2014-02-06T16:59:00.000+0000 | 82.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2061230.0 | 2014-02-06T12:30:00.000+0000 | 61.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2062043.0 | 2014-02-06T20:43:00.000+0000 | 7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2070719.0 | 2014-02-07T07:19:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2071659.0 | 2014-02-07T16:59:00.000+0000 | 19.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2071230.0 | 2014-02-07T12:30:00.000+0000 | 27.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2072048.0 | 2014-02-07T20:48:00.000+0000 | 47.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2081230.0 | 2014-02-08T12:30:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2080719.0 | 2014-02-08T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2091229.0 | 2014-02-09T12:29:00.000+0000 | 95.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2091654.0 | 2014-02-09T16:54:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2090709.0 | 2014-02-09T07:09:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2092043.0 | 2014-02-09T20:43:00.000+0000 | 32.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2100719.0 | 2014-02-10T07:19:00.000+0000 | 14.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2101659.0 | 2014-02-10T16:59:00.000+0000 | 16.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2101230.0 | 2014-02-10T12:30:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2102043.0 | 2014-02-10T20:43:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2111230.0 | 2014-02-11T12:30:00.000+0000 | 10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2110719.0 | 2014-02-11T07:19:00.000+0000 | 46.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2111730.0 | 2014-02-11T17:30:00.000+0000 | -9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2112043.0 | 2014-02-11T20:43:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2120719.0 | 2014-02-12T07:19:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2121230.0 | 2014-02-12T12:30:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2120929.0 | 2014-02-12T09:29:00.000+0000 | 89.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2122043.0 | 2014-02-12T20:43:00.000+0000 | 36.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2130738.0 | 2014-02-13T07:38:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2132041.0 | 2014-02-13T20:41:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2140729.0 | 2014-02-14T07:29:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2142041.0 | 2014-02-14T20:41:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2151206.0 | 2014-02-15T12:06:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2150659.0 | 2014-02-15T06:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2160705.0 | 2014-02-16T07:05:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2170729.0 | 2014-02-17T07:29:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2172041.0 | 2014-02-17T20:41:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2180738.0 | 2014-02-18T07:38:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2182041.0 | 2014-02-18T20:41:00.000+0000 | 36.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2190727.0 | 2014-02-19T07:27:00.000+0000 | 15.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2200738.0 | 2014-02-20T07:38:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2202041.0 | 2014-02-20T20:41:00.000+0000 | 51.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2210729.0 | 2014-02-21T07:29:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2212041.0 | 2014-02-21T20:41:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2221206.0 | 2014-02-22T12:06:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2220659.0 | 2014-02-22T06:59:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2232041.0 | 2014-02-23T20:41:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2230705.0 | 2014-02-23T07:05:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2240729.0 | 2014-02-24T07:29:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2242041.0 | 2014-02-24T20:41:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2250738.0 | 2014-02-25T07:38:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2260727.0 | 2014-02-26T07:27:00.000+0000 | 23.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2262041.0 | 2014-02-26T20:41:00.000+0000 | 174.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2270738.0 | 2014-02-27T07:38:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2272041.0 | 2014-02-27T20:41:00.000+0000 | 32.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2280729.0 | 2014-02-28T07:29:00.000+0000 | 12.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2282041.0 | 2014-02-28T20:41:00.000+0000 | 49.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2281000.0 | 2014-02-28T10:00:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2051230.0 | 2014-02-05T12:30:00.000+0000 | 216.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2131536.0 | 2014-02-13T15:36:00.000+0000 | 273.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2141536.0 | 2014-02-14T15:36:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2151902.0 | 2014-02-15T19:02:00.000+0000 | 31.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2151536.0 | 2014-02-15T15:36:00.000+0000 | 66.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2162041.0 | 2014-02-16T20:41:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2161536.0 | 2014-02-16T15:36:00.000+0000 | 7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2171536.0 | 2014-02-17T15:36:00.000+0000 | 3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2181536.0 | 2014-02-18T15:36:00.000+0000 | 26.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2191536.0 | 2014-02-19T15:36:00.000+0000 | -9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2201536.0 | 2014-02-20T15:36:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2211536.0 | 2014-02-21T15:36:00.000+0000 | 34.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2221900.0 | 2014-02-22T19:00:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2221536.0 | 2014-02-22T15:36:00.000+0000 | 65.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2231536.0 | 2014-02-23T15:36:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2241536.0 | 2014-02-24T15:36:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2251536.0 | 2014-02-25T15:36:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2261536.0 | 2014-02-26T15:36:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2271536.0 | 2014-02-27T15:36:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2281536.0 | 2014-02-28T15:36:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2010730.0 | 2014-02-01T07:30:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2021815.0 | 2014-02-02T18:15:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2031815.0 | 2014-02-03T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2041815.0 | 2014-02-04T18:15:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2051815.0 | 2014-02-05T18:15:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2061815.0 | 2014-02-06T18:15:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2071815.0 | 2014-02-07T18:15:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2080730.0 | 2014-02-08T07:30:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2091815.0 | 2014-02-09T18:15:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2101815.0 | 2014-02-10T18:15:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2111815.0 | 2014-02-11T18:15:00.000+0000 | 4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2121815.0 | 2014-02-12T18:15:00.000+0000 | 64.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2131805.0 | 2014-02-13T18:05:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2141635.0 | 2014-02-14T16:35:00.000+0000 | 52.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2150730.0 | 2014-02-15T07:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2161635.0 | 2014-02-16T16:35:00.000+0000 | 21.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2171635.0 | 2014-02-17T16:35:00.000+0000 | 23.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2181635.0 | 2014-02-18T16:35:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2191635.0 | 2014-02-19T16:35:00.000+0000 | 21.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2201635.0 | 2014-02-20T16:35:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2211635.0 | 2014-02-21T16:35:00.000+0000 | 292.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2220730.0 | 2014-02-22T07:30:00.000+0000 | 28.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2231635.0 | 2014-02-23T16:35:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2241635.0 | 2014-02-24T16:35:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2251635.0 | 2014-02-25T16:35:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2261635.0 | 2014-02-26T16:35:00.000+0000 | 10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2271635.0 | 2014-02-27T16:35:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2281635.0 | 2014-02-28T16:35:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3011206.0 | 2014-03-01T12:06:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3010659.0 | 2014-03-01T06:59:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3022041.0 | 2014-03-02T20:41:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3020705.0 | 2014-03-02T07:05:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3030729.0 | 2014-03-03T07:29:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3032041.0 | 2014-03-03T20:41:00.000+0000 | 113.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3040738.0 | 2014-03-04T07:38:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3050727.0 | 2014-03-05T07:27:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3052041.0 | 2014-03-05T20:41:00.000+0000 | 4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3060705.0 | 2014-03-06T07:05:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3061252.0 | 2014-03-06T12:52:00.000+0000 | 67.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3062100.0 | 2014-03-06T21:00:00.000+0000 | 21.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3070705.0 | 2014-03-07T07:05:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3071252.0 | 2014-03-07T12:52:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3072100.0 | 2014-03-07T21:00:00.000+0000 | 13.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3080705.0 | 2014-03-08T07:05:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3081250.0 | 2014-03-08T12:50:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3091255.0 | 2014-03-09T12:55:00.000+0000 | -9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3092059.0 | 2014-03-09T20:59:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3100705.0 | 2014-03-10T07:05:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3101252.0 | 2014-03-10T12:52:00.000+0000 | -9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3102059.0 | 2014-03-10T20:59:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3112059.0 | 2014-03-11T20:59:00.000+0000 | 181.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3111252.0 | 2014-03-11T12:52:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3122059.0 | 2014-03-12T20:59:00.000+0000 | 22.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3121252.0 | 2014-03-12T12:52:00.000+0000 | 161.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3130705.0 | 2014-03-13T07:05:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3131252.0 | 2014-03-13T12:52:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3132059.0 | 2014-03-13T20:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3140705.0 | 2014-03-14T07:05:00.000+0000 | 66.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3141252.0 | 2014-03-14T12:52:00.000+0000 | 39.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3142059.0 | 2014-03-14T20:59:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3150700.0 | 2014-03-15T07:00:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3151250.0 | 2014-03-15T12:50:00.000+0000 | 34.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3161255.0 | 2014-03-16T12:55:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3162059.0 | 2014-03-16T20:59:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3170705.0 | 2014-03-17T07:05:00.000+0000 | -11.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3171252.0 | 2014-03-17T12:52:00.000+0000 | 22.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3172059.0 | 2014-03-17T20:59:00.000+0000 | 132.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3182059.0 | 2014-03-18T20:59:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3181252.0 | 2014-03-18T12:52:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3192059.0 | 2014-03-19T20:59:00.000+0000 | 16.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3191252.0 | 2014-03-19T12:52:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3200705.0 | 2014-03-20T07:05:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3201252.0 | 2014-03-20T12:52:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3202059.0 | 2014-03-20T20:59:00.000+0000 | 77.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3210705.0 | 2014-03-21T07:05:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3211252.0 | 2014-03-21T12:52:00.000+0000 | 9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3212059.0 | 2014-03-21T20:59:00.000+0000 | 11.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3220705.0 | 2014-03-22T07:05:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3221250.0 | 2014-03-22T12:50:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3221600.0 | 2014-03-22T16:00:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3231255.0 | 2014-03-23T12:55:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3240705.0 | 2014-03-24T07:05:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3241252.0 | 2014-03-24T12:52:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3242059.0 | 2014-03-24T20:59:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3252059.0 | 2014-03-25T20:59:00.000+0000 | 121.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3251252.0 | 2014-03-25T12:52:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3262059.0 | 2014-03-26T20:59:00.000+0000 | 49.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3261252.0 | 2014-03-26T12:52:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3270705.0 | 2014-03-27T07:05:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3271252.0 | 2014-03-27T12:52:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3272059.0 | 2014-03-27T20:59:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3280705.0 | 2014-03-28T07:05:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3281252.0 | 2014-03-28T12:52:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3282059.0 | 2014-03-28T20:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3291250.0 | 2014-03-29T12:50:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3290705.0 | 2014-03-29T07:05:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3291600.0 | 2014-03-29T16:00:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3301255.0 | 2014-03-30T12:55:00.000+0000 | 64.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3302059.0 | 2014-03-30T20:59:00.000+0000 | 166.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3310705.0 | 2014-03-31T07:05:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3311252.0 | 2014-03-31T12:52:00.000+0000 | 12.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3312059.0 | 2014-03-31T20:59:00.000+0000 | 7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3011902.0 | 2014-03-01T19:02:00.000+0000 | 64.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3011536.0 | 2014-03-01T15:36:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3021536.0 | 2014-03-02T15:36:00.000+0000 | 9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3031536.0 | 2014-03-03T15:36:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3041536.0 | 2014-03-04T15:36:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3051536.0 | 2014-03-05T15:36:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3090715.0 | 2014-03-09T07:15:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3110705.0 | 2014-03-11T07:05:00.000+0000 | -11.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3120659.0 | 2014-03-12T06:59:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3160715.0 | 2014-03-16T07:15:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3180705.0 | 2014-03-18T07:05:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3190659.0 | 2014-03-19T06:59:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3230715.0 | 2014-03-23T07:15:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3250705.0 | 2014-03-25T07:05:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3260659.0 | 2014-03-26T06:59:00.000+0000 | 63.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3300715.0 | 2014-03-30T07:15:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3010730.0 | 2014-03-01T07:30:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3021635.0 | 2014-03-02T16:35:00.000+0000 | 16.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3031635.0 | 2014-03-03T16:35:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3041635.0 | 2014-03-04T16:35:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3051635.0 | 2014-03-05T16:35:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3061635.0 | 2014-03-06T16:35:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3071635.0 | 2014-03-07T16:35:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3080730.0 | 2014-03-08T07:30:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3091825.0 | 2014-03-09T18:25:00.000+0000 | 45.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3101825.0 | 2014-03-10T18:25:00.000+0000 | 10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3111825.0 | 2014-03-11T18:25:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3121825.0 | 2014-03-12T18:25:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3131825.0 | 2014-03-13T18:25:00.000+0000 | 123.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3141825.0 | 2014-03-14T18:25:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3150730.0 | 2014-03-15T07:30:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3161825.0 | 2014-03-16T18:25:00.000+0000 | 24.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3171825.0 | 2014-03-17T18:25:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3181825.0 | 2014-03-18T18:25:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3191825.0 | 2014-03-19T18:25:00.000+0000 | 223.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3201825.0 | 2014-03-20T18:25:00.000+0000 | 178.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3211825.0 | 2014-03-21T18:25:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3220730.0 | 2014-03-22T07:30:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3231825.0 | 2014-03-23T18:25:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3241825.0 | 2014-03-24T18:25:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3251825.0 | 2014-03-25T18:25:00.000+0000 | 222.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3261825.0 | 2014-03-26T18:25:00.000+0000 | 51.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3271825.0 | 2014-03-27T18:25:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3281825.0 | 2014-03-28T18:25:00.000+0000 | 26.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3290730.0 | 2014-03-29T07:30:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3301825.0 | 2014-03-30T18:25:00.000+0000 | 139.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
3311825.0 | 2014-03-31T18:25:00.000+0000 | 25.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1020705.0 | 2014-01-02T07:05:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1030705.0 | 2014-01-03T07:05:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1040655.0 | 2014-01-04T06:55:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1050703.0 | 2014-01-05T07:03:00.000+0000 | 4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1060705.0 | 2014-01-06T07:05:00.000+0000 | 36.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1071230.0 | 2014-01-07T12:30:00.000+0000 | 24.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1070719.0 | 2014-01-07T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1071730.0 | 2014-01-07T17:30:00.000+0000 | 161.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1072043.0 | 2014-01-07T20:43:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1080719.0 | 2014-01-08T07:19:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1081659.0 | 2014-01-08T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1081230.0 | 2014-01-08T12:30:00.000+0000 | 66.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1082043.0 | 2014-01-08T20:43:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1090719.0 | 2014-01-09T07:19:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1091659.0 | 2014-01-09T16:59:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1091230.0 | 2014-01-09T12:30:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1092043.0 | 2014-01-09T20:43:00.000+0000 | 63.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1100719.0 | 2014-01-10T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1101659.0 | 2014-01-10T16:59:00.000+0000 | 244.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1101230.0 | 2014-01-10T12:30:00.000+0000 | 110.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1102043.0 | 2014-01-10T20:43:00.000+0000 | 43.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1111230.0 | 2014-01-11T12:30:00.000+0000 | 87.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1110719.0 | 2014-01-11T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1121654.0 | 2014-01-12T16:54:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1121230.0 | 2014-01-12T12:30:00.000+0000 | 21.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1120709.0 | 2014-01-12T07:09:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1122043.0 | 2014-01-12T20:43:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1130719.0 | 2014-01-13T07:19:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1131659.0 | 2014-01-13T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1131230.0 | 2014-01-13T12:30:00.000+0000 | 14.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1132043.0 | 2014-01-13T20:43:00.000+0000 | 51.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1141230.0 | 2014-01-14T12:30:00.000+0000 | 30.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1140719.0 | 2014-01-14T07:19:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1141730.0 | 2014-01-14T17:30:00.000+0000 | 69.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1142043.0 | 2014-01-14T20:43:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1150719.0 | 2014-01-15T07:19:00.000+0000 | 42.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1151659.0 | 2014-01-15T16:59:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1151230.0 | 2014-01-15T12:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1152043.0 | 2014-01-15T20:43:00.000+0000 | 22.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1160719.0 | 2014-01-16T07:19:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1161659.0 | 2014-01-16T16:59:00.000+0000 | -9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1161230.0 | 2014-01-16T12:30:00.000+0000 | -10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1162043.0 | 2014-01-16T20:43:00.000+0000 | 3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1171659.0 | 2014-01-17T16:59:00.000+0000 | 46.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1170719.0 | 2014-01-17T07:19:00.000+0000 | -4.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1172043.0 | 2014-01-17T20:43:00.000+0000 | 54.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1181230.0 | 2014-01-18T12:30:00.000+0000 | 20.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1180719.0 | 2014-01-18T07:19:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1191654.0 | 2014-01-19T16:54:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1191230.0 | 2014-01-19T12:30:00.000+0000 | 29.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1190709.0 | 2014-01-19T07:09:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1192043.0 | 2014-01-19T20:43:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1201659.0 | 2014-01-20T16:59:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1200719.0 | 2014-01-20T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1202043.0 | 2014-01-20T20:43:00.000+0000 | 12.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1211230.0 | 2014-01-21T12:30:00.000+0000 | 102.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1210719.0 | 2014-01-21T07:19:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1211730.0 | 2014-01-21T17:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1212043.0 | 2014-01-21T20:43:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1220719.0 | 2014-01-22T07:19:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1221659.0 | 2014-01-22T16:59:00.000+0000 | 6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1221230.0 | 2014-01-22T12:30:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1222043.0 | 2014-01-22T20:43:00.000+0000 | 70.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1230719.0 | 2014-01-23T07:19:00.000+0000 | 12.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1231659.0 | 2014-01-23T16:59:00.000+0000 | 94.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1231230.0 | 2014-01-23T12:30:00.000+0000 | 111.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1232043.0 | 2014-01-23T20:43:00.000+0000 | 13.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1240719.0 | 2014-01-24T07:19:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1241659.0 | 2014-01-24T16:59:00.000+0000 | 84.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1241230.0 | 2014-01-24T12:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1242043.0 | 2014-01-24T20:43:00.000+0000 | 56.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1251230.0 | 2014-01-25T12:30:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1250719.0 | 2014-01-25T07:19:00.000+0000 | 23.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1261654.0 | 2014-01-26T16:54:00.000+0000 | 113.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1261230.0 | 2014-01-26T12:30:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1260709.0 | 2014-01-26T07:09:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1262043.0 | 2014-01-26T20:43:00.000+0000 | 31.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1271659.0 | 2014-01-27T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1270719.0 | 2014-01-27T07:19:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1281230.0 | 2014-01-28T12:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1280719.0 | 2014-01-28T07:19:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1281730.0 | 2014-01-28T17:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1282043.0 | 2014-01-28T20:43:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1291659.0 | 2014-01-29T16:59:00.000+0000 | -6.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1290719.0 | 2014-01-29T07:19:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1292043.0 | 2014-01-29T20:43:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1300719.0 | 2014-01-30T07:19:00.000+0000 | 2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1301659.0 | 2014-01-30T16:59:00.000+0000 | 9.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1301230.0 | 2014-01-30T12:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1302043.0 | 2014-01-30T20:43:00.000+0000 | 93.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1310719.0 | 2014-01-31T07:19:00.000+0000 | 34.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1311659.0 | 2014-01-31T16:59:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1311230.0 | 2014-01-31T12:30:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1312043.0 | 2014-01-31T20:43:00.000+0000 | 28.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1171230.0 | 2014-01-17T12:30:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1201250.0 | 2014-01-20T12:50:00.000+0000 | -12.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1291230.0 | 2014-01-29T12:30:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1011815.0 | 2014-01-01T18:15:00.000+0000 | 125.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1021815.0 | 2014-01-02T18:15:00.000+0000 | 33.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1031815.0 | 2014-01-03T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1040755.0 | 2014-01-04T07:55:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1051815.0 | 2014-01-05T18:15:00.000+0000 | 172.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1061815.0 | 2014-01-06T18:15:00.000+0000 | 151.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1071815.0 | 2014-01-07T18:15:00.000+0000 | 43.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1081815.0 | 2014-01-08T18:15:00.000+0000 | 14.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1091815.0 | 2014-01-09T18:15:00.000+0000 | 3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1101815.0 | 2014-01-10T18:15:00.000+0000 | 10.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1110730.0 | 2014-01-11T07:30:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1121815.0 | 2014-01-12T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1131815.0 | 2014-01-13T18:15:00.000+0000 | -2.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1141815.0 | 2014-01-14T18:15:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1151815.0 | 2014-01-15T18:15:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1161815.0 | 2014-01-16T18:15:00.000+0000 | 8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1171815.0 | 2014-01-17T18:15:00.000+0000 | 22.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1180730.0 | 2014-01-18T07:30:00.000+0000 | 1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1191815.0 | 2014-01-19T18:15:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1201815.0 | 2014-01-20T18:15:00.000+0000 | 5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1211815.0 | 2014-01-21T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1221815.0 | 2014-01-22T18:15:00.000+0000 | 3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1231815.0 | 2014-01-23T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1241815.0 | 2014-01-24T18:15:00.000+0000 | 84.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1250730.0 | 2014-01-25T07:30:00.000+0000 | -7.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1261815.0 | 2014-01-26T18:15:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1271815.0 | 2014-01-27T18:15:00.000+0000 | -1.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1281815.0 | 2014-01-28T18:15:00.000+0000 | 0.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1291815.0 | 2014-01-29T18:15:00.000+0000 | -3.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1301815.0 | 2014-01-30T18:15:00.000+0000 | -5.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
1311815.0 | 2014-01-31T18:15:00.000+0000 | -8.0 | 1014.0 | EWR | MSY | Newark | New Orleans | NJ | LA |
2011055.0 | 2014-02-01T10:55:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2021025.0 | 2014-02-02T10:25:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2031025.0 | 2014-02-03T10:25:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2031750.0 | 2014-02-03T17:50:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2041025.0 | 2014-02-04T10:25:00.000+0000 | 6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2041750.0 | 2014-02-04T17:50:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2051025.0 | 2014-02-05T10:25:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2051750.0 | 2014-02-05T17:50:00.000+0000 | 29.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2061025.0 | 2014-02-06T10:25:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2061750.0 | 2014-02-06T17:50:00.000+0000 | 48.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2071025.0 | 2014-02-07T10:25:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2071750.0 | 2014-02-07T17:50:00.000+0000 | 20.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2081055.0 | 2014-02-08T10:55:00.000+0000 | 2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2091025.0 | 2014-02-09T10:25:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2091750.0 | 2014-02-09T17:50:00.000+0000 | 33.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2101025.0 | 2014-02-10T10:25:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2101750.0 | 2014-02-10T17:50:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2111025.0 | 2014-02-11T10:25:00.000+0000 | 15.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2111750.0 | 2014-02-11T17:50:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2121025.0 | 2014-02-12T10:25:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2121750.0 | 2014-02-12T17:50:00.000+0000 | 158.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2131855.0 | 2014-02-13T18:55:00.000+0000 | 11.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2131215.0 | 2014-02-13T12:15:00.000+0000 | 23.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2141855.0 | 2014-02-14T18:55:00.000+0000 | 22.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2141215.0 | 2014-02-14T12:15:00.000+0000 | 18.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2150935.0 | 2014-02-15T09:35:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2151635.0 | 2014-02-15T16:35:00.000+0000 | 4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2161855.0 | 2014-02-16T18:55:00.000+0000 | 58.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2161215.0 | 2014-02-16T12:15:00.000+0000 | 17.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2171855.0 | 2014-02-17T18:55:00.000+0000 | 14.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2171215.0 | 2014-02-17T12:15:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2181855.0 | 2014-02-18T18:55:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2181215.0 | 2014-02-18T12:15:00.000+0000 | 58.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2191855.0 | 2014-02-19T18:55:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2191215.0 | 2014-02-19T12:15:00.000+0000 | 32.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2201855.0 | 2014-02-20T18:55:00.000+0000 | 14.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2201215.0 | 2014-02-20T12:15:00.000+0000 | 28.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2211855.0 | 2014-02-21T18:55:00.000+0000 | 4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2211215.0 | 2014-02-21T12:15:00.000+0000 | 11.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2220935.0 | 2014-02-22T09:35:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2221635.0 | 2014-02-22T16:35:00.000+0000 | 133.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2231855.0 | 2014-02-23T18:55:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2231215.0 | 2014-02-23T12:15:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2241855.0 | 2014-02-24T18:55:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2241215.0 | 2014-02-24T12:15:00.000+0000 | 16.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2251855.0 | 2014-02-25T18:55:00.000+0000 | 7.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2251215.0 | 2014-02-25T12:15:00.000+0000 | 15.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2261855.0 | 2014-02-26T18:55:00.000+0000 | 2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2261215.0 | 2014-02-26T12:15:00.000+0000 | 16.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2271855.0 | 2014-02-27T18:55:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2271215.0 | 2014-02-27T12:15:00.000+0000 | 32.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2281855.0 | 2014-02-28T18:55:00.000+0000 | 61.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2281215.0 | 2014-02-28T12:15:00.000+0000 | 94.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3010935.0 | 2014-03-01T09:35:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3011635.0 | 2014-03-01T16:35:00.000+0000 | 39.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3021855.0 | 2014-03-02T18:55:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3021215.0 | 2014-03-02T12:15:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3031855.0 | 2014-03-03T18:55:00.000+0000 | 25.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3031215.0 | 2014-03-03T12:15:00.000+0000 | 8.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3041855.0 | 2014-03-04T18:55:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3041215.0 | 2014-03-04T12:15:00.000+0000 | 28.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3051855.0 | 2014-03-05T18:55:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3051215.0 | 2014-03-05T12:15:00.000+0000 | 27.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3061855.0 | 2014-03-06T18:55:00.000+0000 | 20.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3061215.0 | 2014-03-06T12:15:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3071855.0 | 2014-03-07T18:55:00.000+0000 | 36.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3071215.0 | 2014-03-07T12:15:00.000+0000 | 14.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3081940.0 | 2014-03-08T19:40:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3080830.0 | 2014-03-08T08:30:00.000+0000 | 6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3091905.0 | 2014-03-09T19:05:00.000+0000 | 4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3090840.0 | 2014-03-09T08:40:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3101905.0 | 2014-03-10T19:05:00.000+0000 | 49.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3100840.0 | 2014-03-10T08:40:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3111905.0 | 2014-03-11T19:05:00.000+0000 | 9.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3110840.0 | 2014-03-11T08:40:00.000+0000 | 84.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3121905.0 | 2014-03-12T19:05:00.000+0000 | 26.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3120840.0 | 2014-03-12T08:40:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3131905.0 | 2014-03-13T19:05:00.000+0000 | 37.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3130840.0 | 2014-03-13T08:40:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3141905.0 | 2014-03-14T19:05:00.000+0000 | 14.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3140840.0 | 2014-03-14T08:40:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3150830.0 | 2014-03-15T08:30:00.000+0000 | 16.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3151940.0 | 2014-03-15T19:40:00.000+0000 | 95.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3161905.0 | 2014-03-16T19:05:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3160840.0 | 2014-03-16T08:40:00.000+0000 | -6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3171905.0 | 2014-03-17T19:05:00.000+0000 | 13.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3170840.0 | 2014-03-17T08:40:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3181905.0 | 2014-03-18T19:05:00.000+0000 | 52.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3180840.0 | 2014-03-18T08:40:00.000+0000 | 2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3191905.0 | 2014-03-19T19:05:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3190840.0 | 2014-03-19T08:40:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3201905.0 | 2014-03-20T19:05:00.000+0000 | 36.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3200840.0 | 2014-03-20T08:40:00.000+0000 | 68.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3211905.0 | 2014-03-21T19:05:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3210840.0 | 2014-03-21T08:40:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3220830.0 | 2014-03-22T08:30:00.000+0000 | 12.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3221940.0 | 2014-03-22T19:40:00.000+0000 | 11.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3231905.0 | 2014-03-23T19:05:00.000+0000 | 9.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3230840.0 | 2014-03-23T08:40:00.000+0000 | 16.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3241905.0 | 2014-03-24T19:05:00.000+0000 | 9.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3240840.0 | 2014-03-24T08:40:00.000+0000 | 4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3251905.0 | 2014-03-25T19:05:00.000+0000 | 10.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3250840.0 | 2014-03-25T08:40:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3261905.0 | 2014-03-26T19:05:00.000+0000 | 14.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3260840.0 | 2014-03-26T08:40:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3271905.0 | 2014-03-27T19:05:00.000+0000 | 13.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3270840.0 | 2014-03-27T08:40:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3281905.0 | 2014-03-28T19:05:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3280840.0 | 2014-03-28T08:40:00.000+0000 | 33.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3290830.0 | 2014-03-29T08:30:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3291940.0 | 2014-03-29T19:40:00.000+0000 | 231.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3301905.0 | 2014-03-30T19:05:00.000+0000 | 7.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3300840.0 | 2014-03-30T08:40:00.000+0000 | 15.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3311905.0 | 2014-03-31T19:05:00.000+0000 | 19.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
3310840.0 | 2014-03-31T08:40:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1010850.0 | 2014-01-01T08:50:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1011755.0 | 2014-01-01T17:55:00.000+0000 | 160.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1021805.0 | 2014-01-02T18:05:00.000+0000 | 138.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1020905.0 | 2014-01-02T09:05:00.000+0000 | 5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1031805.0 | 2014-01-03T18:05:00.000+0000 | 154.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1030905.0 | 2014-01-03T09:05:00.000+0000 | 179.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1041655.0 | 2014-01-04T16:55:00.000+0000 | 113.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1040900.0 | 2014-01-04T09:00:00.000+0000 | 56.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1050905.0 | 2014-01-05T09:05:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1051805.0 | 2014-01-05T18:05:00.000+0000 | 53.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1061755.0 | 2014-01-06T17:55:00.000+0000 | 61.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1060905.0 | 2014-01-06T09:05:00.000+0000 | 23.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1071025.0 | 2014-01-07T10:25:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1071750.0 | 2014-01-07T17:50:00.000+0000 | 302.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1081025.0 | 2014-01-08T10:25:00.000+0000 | 7.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1081750.0 | 2014-01-08T17:50:00.000+0000 | 52.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1091025.0 | 2014-01-09T10:25:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1091750.0 | 2014-01-09T17:50:00.000+0000 | 8.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1101025.0 | 2014-01-10T10:25:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1101750.0 | 2014-01-10T17:50:00.000+0000 | 92.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1111055.0 | 2014-01-11T10:55:00.000+0000 | 31.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1121025.0 | 2014-01-12T10:25:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1121750.0 | 2014-01-12T17:50:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1131025.0 | 2014-01-13T10:25:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1131750.0 | 2014-01-13T17:50:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1141025.0 | 2014-01-14T10:25:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1141750.0 | 2014-01-14T17:50:00.000+0000 | 127.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1151025.0 | 2014-01-15T10:25:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1151750.0 | 2014-01-15T17:50:00.000+0000 | -3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1161025.0 | 2014-01-16T10:25:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1161750.0 | 2014-01-16T17:50:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1171025.0 | 2014-01-17T10:25:00.000+0000 | 12.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1171750.0 | 2014-01-17T17:50:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1181055.0 | 2014-01-18T10:55:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1191025.0 | 2014-01-19T10:25:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1191750.0 | 2014-01-19T17:50:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1201025.0 | 2014-01-20T10:25:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1201750.0 | 2014-01-20T17:50:00.000+0000 | 6.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1211025.0 | 2014-01-21T10:25:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1211750.0 | 2014-01-21T17:50:00.000+0000 | 4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1221025.0 | 2014-01-22T10:25:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1221750.0 | 2014-01-22T17:50:00.000+0000 | 3.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1231025.0 | 2014-01-23T10:25:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1231750.0 | 2014-01-23T17:50:00.000+0000 | 30.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1241025.0 | 2014-01-24T10:25:00.000+0000 | 43.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1241750.0 | 2014-01-24T17:50:00.000+0000 | -4.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1251055.0 | 2014-01-25T10:55:00.000+0000 | 5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1261025.0 | 2014-01-26T10:25:00.000+0000 | -1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1261750.0 | 2014-01-26T17:50:00.000+0000 | 27.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1271025.0 | 2014-01-27T10:25:00.000+0000 | -2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1271750.0 | 2014-01-27T17:50:00.000+0000 | 2.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1281025.0 | 2014-01-28T10:25:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1281750.0 | 2014-01-28T17:50:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1291025.0 | 2014-01-29T10:25:00.000+0000 | 1.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1291750.0 | 2014-01-29T17:50:00.000+0000 | -5.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1301025.0 | 2014-01-30T10:25:00.000+0000 | 0.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1301750.0 | 2014-01-30T17:50:00.000+0000 | 35.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1311025.0 | 2014-01-31T10:25:00.000+0000 | 11.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
1311750.0 | 2014-01-31T17:50:00.000+0000 | 25.0 | 1303.0 | LAS | MSY | Las Vegas | New Orleans | NV | LA |
2011530.0 | 2014-02-01T15:30:00.000+0000 | -3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2021105.0 | 2014-02-02T11:05:00.000+0000 | -4.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2031105.0 | 2014-02-03T11:05:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2041105.0 | 2014-02-04T11:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2051105.0 | 2014-02-05T11:05:00.000+0000 | 6.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2061105.0 | 2014-02-06T11:05:00.000+0000 | 40.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2071105.0 | 2014-02-07T11:05:00.000+0000 | 7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2081530.0 | 2014-02-08T15:30:00.000+0000 | 2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2091105.0 | 2014-02-09T11:05:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2101105.0 | 2014-02-10T11:05:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2111105.0 | 2014-02-11T11:05:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2121105.0 | 2014-02-12T11:05:00.000+0000 | 7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2130800.0 | 2014-02-13T08:00:00.000+0000 | -5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2140830.0 | 2014-02-14T08:30:00.000+0000 | 3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2150750.0 | 2014-02-15T07:50:00.000+0000 | 7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2160930.0 | 2014-02-16T09:30:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2170830.0 | 2014-02-17T08:30:00.000+0000 | 10.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2180830.0 | 2014-02-18T08:30:00.000+0000 | 2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2190830.0 | 2014-02-19T08:30:00.000+0000 | -4.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2200830.0 | 2014-02-20T08:30:00.000+0000 | 9.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2210830.0 | 2014-02-21T08:30:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2220750.0 | 2014-02-22T07:50:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2230930.0 | 2014-02-23T09:30:00.000+0000 | 2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2240830.0 | 2014-02-24T08:30:00.000+0000 | 3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2250830.0 | 2014-02-25T08:30:00.000+0000 | -5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2260830.0 | 2014-02-26T08:30:00.000+0000 | 251.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2270830.0 | 2014-02-27T08:30:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
2280830.0 | 2014-02-28T08:30:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3010750.0 | 2014-03-01T07:50:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3020930.0 | 2014-03-02T09:30:00.000+0000 | 35.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3030830.0 | 2014-03-03T08:30:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3040830.0 | 2014-03-04T08:30:00.000+0000 | 11.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3050830.0 | 2014-03-05T08:30:00.000+0000 | 2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3060830.0 | 2014-03-06T08:30:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3070830.0 | 2014-03-07T08:30:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3081610.0 | 2014-03-08T16:10:00.000+0000 | 93.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3090950.0 | 2014-03-09T09:50:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3100950.0 | 2014-03-10T09:50:00.000+0000 | 8.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3110950.0 | 2014-03-11T09:50:00.000+0000 | 36.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3120950.0 | 2014-03-12T09:50:00.000+0000 | 68.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3130950.0 | 2014-03-13T09:50:00.000+0000 | 13.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3140950.0 | 2014-03-14T09:50:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3151610.0 | 2014-03-15T16:10:00.000+0000 | 16.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3160950.0 | 2014-03-16T09:50:00.000+0000 | -5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3170950.0 | 2014-03-17T09:50:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3180950.0 | 2014-03-18T09:50:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3190950.0 | 2014-03-19T09:50:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3200950.0 | 2014-03-20T09:50:00.000+0000 | 3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3210950.0 | 2014-03-21T09:50:00.000+0000 | 7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3221610.0 | 2014-03-22T16:10:00.000+0000 | 38.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3230950.0 | 2014-03-23T09:50:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3240950.0 | 2014-03-24T09:50:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3250950.0 | 2014-03-25T09:50:00.000+0000 | 4.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3260950.0 | 2014-03-26T09:50:00.000+0000 | 5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3270950.0 | 2014-03-27T09:50:00.000+0000 | 12.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3280950.0 | 2014-03-28T09:50:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3291610.0 | 2014-03-29T16:10:00.000+0000 | 12.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3300950.0 | 2014-03-30T09:50:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3310950.0 | 2014-03-31T09:50:00.000+0000 | 3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1011635.0 | 2014-01-01T16:35:00.000+0000 | -7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1021635.0 | 2014-01-02T16:35:00.000+0000 | 96.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1031635.0 | 2014-01-03T16:35:00.000+0000 | 3.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1041205.0 | 2014-01-04T12:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1051635.0 | 2014-01-05T16:35:00.000+0000 | 60.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1061635.0 | 2014-01-06T16:35:00.000+0000 | -7.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1071105.0 | 2014-01-07T11:05:00.000+0000 | 14.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1081105.0 | 2014-01-08T11:05:00.000+0000 | 4.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1091105.0 | 2014-01-09T11:05:00.000+0000 | 11.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1101105.0 | 2014-01-10T11:05:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1111530.0 | 2014-01-11T15:30:00.000+0000 | 11.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1121105.0 | 2014-01-12T11:05:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1131105.0 | 2014-01-13T11:05:00.000+0000 | -5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1141105.0 | 2014-01-14T11:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1151105.0 | 2014-01-15T11:05:00.000+0000 | 9.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1161105.0 | 2014-01-16T11:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1171105.0 | 2014-01-17T11:05:00.000+0000 | -1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1181530.0 | 2014-01-18T15:30:00.000+0000 | 48.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1191105.0 | 2014-01-19T11:05:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1201105.0 | 2014-01-20T11:05:00.000+0000 | -4.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1211105.0 | 2014-01-21T11:05:00.000+0000 | 2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1221105.0 | 2014-01-22T11:05:00.000+0000 | 19.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1231105.0 | 2014-01-23T11:05:00.000+0000 | -2.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1241105.0 | 2014-01-24T11:05:00.000+0000 | 72.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1251530.0 | 2014-01-25T15:30:00.000+0000 | 5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1261105.0 | 2014-01-26T11:05:00.000+0000 | -5.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1271105.0 | 2014-01-27T11:05:00.000+0000 | -6.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1281105.0 | 2014-01-28T11:05:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1291105.0 | 2014-01-29T11:05:00.000+0000 | 0.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1301105.0 | 2014-01-30T11:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
1311105.0 | 2014-01-31T11:05:00.000+0000 | 1.0 | 599.0 | MCI | MSY | Kansas City | New Orleans | MO | LA |
3011530.0 | 2014-03-01T15:30:00.000+0000 | 72.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3010850.0 | 2014-03-01T08:50:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3011245.0 | 2014-03-01T12:45:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3021610.0 | 2014-03-02T16:10:00.000+0000 | 14.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3021350.0 | 2014-03-02T13:50:00.000+0000 | 15.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3021800.0 | 2014-03-02T18:00:00.000+0000 | 56.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3031610.0 | 2014-03-03T16:10:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3030810.0 | 2014-03-03T08:10:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3031350.0 | 2014-03-03T13:50:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3031800.0 | 2014-03-03T18:00:00.000+0000 | -5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3041610.0 | 2014-03-04T16:10:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3040810.0 | 2014-03-04T08:10:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3041350.0 | 2014-03-04T13:50:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3041800.0 | 2014-03-04T18:00:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3051610.0 | 2014-03-05T16:10:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3050810.0 | 2014-03-05T08:10:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3051350.0 | 2014-03-05T13:50:00.000+0000 | 48.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3051800.0 | 2014-03-05T18:00:00.000+0000 | 21.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3061610.0 | 2014-03-06T16:10:00.000+0000 | 26.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3060810.0 | 2014-03-06T08:10:00.000+0000 | -5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3061350.0 | 2014-03-06T13:50:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3061800.0 | 2014-03-06T18:00:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3071610.0 | 2014-03-07T16:10:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3070810.0 | 2014-03-07T08:10:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3071350.0 | 2014-03-07T13:50:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3071800.0 | 2014-03-07T18:00:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3081540.0 | 2014-03-08T15:40:00.000+0000 | 27.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3081335.0 | 2014-03-08T13:35:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3080945.0 | 2014-03-08T09:45:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3091620.0 | 2014-03-09T16:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3091820.0 | 2014-03-09T18:20:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3091420.0 | 2014-03-09T14:20:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3100820.0 | 2014-03-10T08:20:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3101420.0 | 2014-03-10T14:20:00.000+0000 | 41.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3101820.0 | 2014-03-10T18:20:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3101620.0 | 2014-03-10T16:20:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3110820.0 | 2014-03-11T08:20:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3111420.0 | 2014-03-11T14:20:00.000+0000 | 15.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3111820.0 | 2014-03-11T18:20:00.000+0000 | 29.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3111620.0 | 2014-03-11T16:20:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3120820.0 | 2014-03-12T08:20:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3121420.0 | 2014-03-12T14:20:00.000+0000 | 40.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3121820.0 | 2014-03-12T18:20:00.000+0000 | 15.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3121620.0 | 2014-03-12T16:20:00.000+0000 | 24.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3130820.0 | 2014-03-13T08:20:00.000+0000 | 126.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3131420.0 | 2014-03-13T14:20:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3131820.0 | 2014-03-13T18:20:00.000+0000 | 55.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3131620.0 | 2014-03-13T16:20:00.000+0000 | 40.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3140820.0 | 2014-03-14T08:20:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3141420.0 | 2014-03-14T14:20:00.000+0000 | 35.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3141820.0 | 2014-03-14T18:20:00.000+0000 | 21.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3141620.0 | 2014-03-14T16:20:00.000+0000 | 36.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3151335.0 | 2014-03-15T13:35:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3150945.0 | 2014-03-15T09:45:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3151540.0 | 2014-03-15T15:40:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3161620.0 | 2014-03-16T16:20:00.000+0000 | 22.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3161820.0 | 2014-03-16T18:20:00.000+0000 | 39.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3161420.0 | 2014-03-16T14:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3170820.0 | 2014-03-17T08:20:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3171420.0 | 2014-03-17T14:20:00.000+0000 | 112.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3171820.0 | 2014-03-17T18:20:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3171620.0 | 2014-03-17T16:20:00.000+0000 | 56.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3180820.0 | 2014-03-18T08:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3181420.0 | 2014-03-18T14:20:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3181820.0 | 2014-03-18T18:20:00.000+0000 | 36.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3181620.0 | 2014-03-18T16:20:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3190820.0 | 2014-03-19T08:20:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3191420.0 | 2014-03-19T14:20:00.000+0000 | 54.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3191820.0 | 2014-03-19T18:20:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3191620.0 | 2014-03-19T16:20:00.000+0000 | 29.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3200820.0 | 2014-03-20T08:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3201420.0 | 2014-03-20T14:20:00.000+0000 | 18.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3201820.0 | 2014-03-20T18:20:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3201620.0 | 2014-03-20T16:20:00.000+0000 | 79.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3210820.0 | 2014-03-21T08:20:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3211420.0 | 2014-03-21T14:20:00.000+0000 | 22.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3211820.0 | 2014-03-21T18:20:00.000+0000 | 30.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3211620.0 | 2014-03-21T16:20:00.000+0000 | 22.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3221335.0 | 2014-03-22T13:35:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3220945.0 | 2014-03-22T09:45:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3221540.0 | 2014-03-22T15:40:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3231620.0 | 2014-03-23T16:20:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3231820.0 | 2014-03-23T18:20:00.000+0000 | 6.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3231420.0 | 2014-03-23T14:20:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3240820.0 | 2014-03-24T08:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3241420.0 | 2014-03-24T14:20:00.000+0000 | 27.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3241820.0 | 2014-03-24T18:20:00.000+0000 | 44.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3241620.0 | 2014-03-24T16:20:00.000+0000 | 41.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3250820.0 | 2014-03-25T08:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3251420.0 | 2014-03-25T14:20:00.000+0000 | 70.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3251820.0 | 2014-03-25T18:20:00.000+0000 | 30.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3251620.0 | 2014-03-25T16:20:00.000+0000 | 30.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3260820.0 | 2014-03-26T08:20:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3261420.0 | 2014-03-26T14:20:00.000+0000 | 8.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3261820.0 | 2014-03-26T18:20:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3261620.0 | 2014-03-26T16:20:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3270820.0 | 2014-03-27T08:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3271420.0 | 2014-03-27T14:20:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3271820.0 | 2014-03-27T18:20:00.000+0000 | 41.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3271620.0 | 2014-03-27T16:20:00.000+0000 | 23.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3280820.0 | 2014-03-28T08:20:00.000+0000 | -5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3281420.0 | 2014-03-28T14:20:00.000+0000 | 52.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3281820.0 | 2014-03-28T18:20:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3281620.0 | 2014-03-28T16:20:00.000+0000 | 15.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3291335.0 | 2014-03-29T13:35:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3290945.0 | 2014-03-29T09:45:00.000+0000 | 20.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3291540.0 | 2014-03-29T15:40:00.000+0000 | 35.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3301620.0 | 2014-03-30T16:20:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3301820.0 | 2014-03-30T18:20:00.000+0000 | 22.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3301420.0 | 2014-03-30T14:20:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3310820.0 | 2014-03-31T08:20:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3311420.0 | 2014-03-31T14:20:00.000+0000 | 19.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3311820.0 | 2014-03-31T18:20:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
3311620.0 | 2014-03-31T16:20:00.000+0000 | 30.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1010800.0 | 2014-01-01T08:00:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1011210.0 | 2014-01-01T12:10:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1011835.0 | 2014-01-01T18:35:00.000+0000 | 53.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1021215.0 | 2014-01-02T12:15:00.000+0000 | 43.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1021835.0 | 2014-01-02T18:35:00.000+0000 | 200.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1020800.0 | 2014-01-02T08:00:00.000+0000 | 29.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1031215.0 | 2014-01-03T12:15:00.000+0000 | 185.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1031835.0 | 2014-01-03T18:35:00.000+0000 | 226.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1030800.0 | 2014-01-03T08:00:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1041420.0 | 2014-01-04T14:20:00.000+0000 | 174.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1040835.0 | 2014-01-04T08:35:00.000+0000 | 18.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1051215.0 | 2014-01-05T12:15:00.000+0000 | 85.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1051835.0 | 2014-01-05T18:35:00.000+0000 | 283.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1050800.0 | 2014-01-05T08:00:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1061215.0 | 2014-01-06T12:15:00.000+0000 | 150.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1061835.0 | 2014-01-06T18:35:00.000+0000 | 133.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1060800.0 | 2014-01-06T08:00:00.000+0000 | 102.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1071240.0 | 2014-01-07T12:40:00.000+0000 | 57.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1071455.0 | 2014-01-07T14:55:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1070905.0 | 2014-01-07T09:05:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1071735.0 | 2014-01-07T17:35:00.000+0000 | 131.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1081240.0 | 2014-01-08T12:40:00.000+0000 | 19.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1081455.0 | 2014-01-08T14:55:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1080905.0 | 2014-01-08T09:05:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1081735.0 | 2014-01-08T17:35:00.000+0000 | 34.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1091240.0 | 2014-01-09T12:40:00.000+0000 | 14.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1091455.0 | 2014-01-09T14:55:00.000+0000 | 24.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1090905.0 | 2014-01-09T09:05:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1091735.0 | 2014-01-09T17:35:00.000+0000 | 28.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1101240.0 | 2014-01-10T12:40:00.000+0000 | 50.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1101455.0 | 2014-01-10T14:55:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1100905.0 | 2014-01-10T09:05:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1101735.0 | 2014-01-10T17:35:00.000+0000 | 33.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1111305.0 | 2014-01-11T13:05:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1111805.0 | 2014-01-11T18:05:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1110950.0 | 2014-01-11T09:50:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1121235.0 | 2014-01-12T12:35:00.000+0000 | 8.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1121455.0 | 2014-01-12T14:55:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1121735.0 | 2014-01-12T17:35:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1131240.0 | 2014-01-13T12:40:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1131455.0 | 2014-01-13T14:55:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1130850.0 | 2014-01-13T08:50:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1131735.0 | 2014-01-13T17:35:00.000+0000 | 15.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1141240.0 | 2014-01-14T12:40:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1141455.0 | 2014-01-14T14:55:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1140850.0 | 2014-01-14T08:50:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1141735.0 | 2014-01-14T17:35:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1151240.0 | 2014-01-15T12:40:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1151455.0 | 2014-01-15T14:55:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1150850.0 | 2014-01-15T08:50:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1151735.0 | 2014-01-15T17:35:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1161240.0 | 2014-01-16T12:40:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1161455.0 | 2014-01-16T14:55:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1160850.0 | 2014-01-16T08:50:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1161735.0 | 2014-01-16T17:35:00.000+0000 | 52.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1171240.0 | 2014-01-17T12:40:00.000+0000 | 21.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1171455.0 | 2014-01-17T14:55:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1170850.0 | 2014-01-17T08:50:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1171735.0 | 2014-01-17T17:35:00.000+0000 | 40.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1181305.0 | 2014-01-18T13:05:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1181805.0 | 2014-01-18T18:05:00.000+0000 | 42.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1180950.0 | 2014-01-18T09:50:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1191235.0 | 2014-01-19T12:35:00.000+0000 | 23.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1191455.0 | 2014-01-19T14:55:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1191735.0 | 2014-01-19T17:35:00.000+0000 | 64.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1201240.0 | 2014-01-20T12:40:00.000+0000 | 8.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1201455.0 | 2014-01-20T14:55:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1200850.0 | 2014-01-20T08:50:00.000+0000 | 7.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1201735.0 | 2014-01-20T17:35:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1211240.0 | 2014-01-21T12:40:00.000+0000 | 41.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1211455.0 | 2014-01-21T14:55:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1210850.0 | 2014-01-21T08:50:00.000+0000 | 18.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1211735.0 | 2014-01-21T17:35:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1221240.0 | 2014-01-22T12:40:00.000+0000 | 19.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1221455.0 | 2014-01-22T14:55:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1220850.0 | 2014-01-22T08:50:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1221735.0 | 2014-01-22T17:35:00.000+0000 | 118.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1231240.0 | 2014-01-23T12:40:00.000+0000 | 20.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1231455.0 | 2014-01-23T14:55:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1230850.0 | 2014-01-23T08:50:00.000+0000 | 18.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1231735.0 | 2014-01-23T17:35:00.000+0000 | 33.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1241240.0 | 2014-01-24T12:40:00.000+0000 | 20.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1241455.0 | 2014-01-24T14:55:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1240850.0 | 2014-01-24T08:50:00.000+0000 | 12.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1241735.0 | 2014-01-24T17:35:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1251305.0 | 2014-01-25T13:05:00.000+0000 | 27.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1251805.0 | 2014-01-25T18:05:00.000+0000 | 19.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1250950.0 | 2014-01-25T09:50:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1261235.0 | 2014-01-26T12:35:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1261455.0 | 2014-01-26T14:55:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1261735.0 | 2014-01-26T17:35:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1271240.0 | 2014-01-27T12:40:00.000+0000 | 17.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1271455.0 | 2014-01-27T14:55:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1270850.0 | 2014-01-27T08:50:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1271735.0 | 2014-01-27T17:35:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1281240.0 | 2014-01-28T12:40:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1281455.0 | 2014-01-28T14:55:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1280850.0 | 2014-01-28T08:50:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1281735.0 | 2014-01-28T17:35:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1291240.0 | 2014-01-29T12:40:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1291455.0 | 2014-01-29T14:55:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1290850.0 | 2014-01-29T08:50:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1291735.0 | 2014-01-29T17:35:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1301240.0 | 2014-01-30T12:40:00.000+0000 | 38.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1301455.0 | 2014-01-30T14:55:00.000+0000 | 6.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1300850.0 | 2014-01-30T08:50:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1301735.0 | 2014-01-30T17:35:00.000+0000 | 57.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1311240.0 | 2014-01-31T12:40:00.000+0000 | 31.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1311455.0 | 2014-01-31T14:55:00.000+0000 | 22.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1310850.0 | 2014-01-31T08:50:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
1311735.0 | 2014-01-31T17:35:00.000+0000 | 6.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2011305.0 | 2014-02-01T13:05:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2011805.0 | 2014-02-01T18:05:00.000+0000 | -6.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2010950.0 | 2014-02-01T09:50:00.000+0000 | 4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2021455.0 | 2014-02-02T14:55:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2021235.0 | 2014-02-02T12:35:00.000+0000 | 26.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2021650.0 | 2014-02-02T16:50:00.000+0000 | 77.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2031240.0 | 2014-02-03T12:40:00.000+0000 | 30.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2031455.0 | 2014-02-03T14:55:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2030850.0 | 2014-02-03T08:50:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2031735.0 | 2014-02-03T17:35:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2041240.0 | 2014-02-04T12:40:00.000+0000 | 56.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2041455.0 | 2014-02-04T14:55:00.000+0000 | 23.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2040850.0 | 2014-02-04T08:50:00.000+0000 | -1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2041735.0 | 2014-02-04T17:35:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2051240.0 | 2014-02-05T12:40:00.000+0000 | 33.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2051455.0 | 2014-02-05T14:55:00.000+0000 | 14.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2050850.0 | 2014-02-05T08:50:00.000+0000 | 19.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2051735.0 | 2014-02-05T17:35:00.000+0000 | 26.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2061240.0 | 2014-02-06T12:40:00.000+0000 | 43.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2061455.0 | 2014-02-06T14:55:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2060850.0 | 2014-02-06T08:50:00.000+0000 | 10.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2061735.0 | 2014-02-06T17:35:00.000+0000 | 34.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2071240.0 | 2014-02-07T12:40:00.000+0000 | 88.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2071455.0 | 2014-02-07T14:55:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2070850.0 | 2014-02-07T08:50:00.000+0000 | 1.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2071735.0 | 2014-02-07T17:35:00.000+0000 | 20.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2081305.0 | 2014-02-08T13:05:00.000+0000 | -6.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2081805.0 | 2014-02-08T18:05:00.000+0000 | 0.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2080950.0 | 2014-02-08T09:50:00.000+0000 | -3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2091235.0 | 2014-02-09T12:35:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2091455.0 | 2014-02-09T14:55:00.000+0000 | 2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2091735.0 | 2014-02-09T17:35:00.000+0000 | 8.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2101240.0 | 2014-02-10T12:40:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2101455.0 | 2014-02-10T14:55:00.000+0000 | 14.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2100850.0 | 2014-02-10T08:50:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2101735.0 | 2014-02-10T17:35:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2111240.0 | 2014-02-11T12:40:00.000+0000 | 145.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2111455.0 | 2014-02-11T14:55:00.000+0000 | -2.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2110850.0 | 2014-02-11T08:50:00.000+0000 | 96.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2111735.0 | 2014-02-11T17:35:00.000+0000 | 25.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2121240.0 | 2014-02-12T12:40:00.000+0000 | 8.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2121455.0 | 2014-02-12T14:55:00.000+0000 | 29.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2120850.0 | 2014-02-12T08:50:00.000+0000 | 3.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2121735.0 | 2014-02-12T17:35:00.000+0000 | 39.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2131350.0 | 2014-02-13T13:50:00.000+0000 | 5.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2131610.0 | 2014-02-13T16:10:00.000+0000 | 11.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2130810.0 | 2014-02-13T08:10:00.000+0000 | -4.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2131800.0 | 2014-02-13T18:00:00.000+0000 | 9.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2141610.0 | 2014-02-14T16:10:00.000+0000 | 37.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2140810.0 | 2014-02-14T08:10:00.000+0000 | 13.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2141350.0 | 2014-02-14T13:50:00.000+0000 | 46.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
2141800.0 | 2014-02-14T18:00:00.000+0000 | 21.0 | 409.0 | BNA | MSY | Nashville | New Orleans | TN | LA |
Building the Graph
Now that we've imported our data, we're going to need to build our graph. To do so we're going to do two things. We are going to build the structure of the vertices (or nodes) and we're going to build the structure of the edges. What's awesome about GraphFrames is that this process is incredibly simple.
- Rename IATA airport code to id in the Vertices Table
- Start and End airports to src and dst for the Edges Table (flights)
These are required naming conventions for vertices and edges in GraphFrames.
WARNING: If the graphframes package, required in the cell below, is not installed, follow the instructions here.
// Note, ensure you have already installed the GraphFrames spack-package
import org.apache.spark.sql.functions._
import org.graphframes._
// Create Vertices (airports) and Edges (flights)
val tripVertices = airports.withColumnRenamed("IATA", "id").distinct()
val tripEdges = departureDelays_geo.select("tripid", "delay", "src", "dst", "city_dst", "state_dst")
// Cache Vertices and Edges
tripEdges.cache()
tripVertices.cache()
import org.apache.spark.sql.functions._
import org.graphframes._
tripVertices: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: string, City: string ... 2 more fields]
tripEdges: org.apache.spark.sql.DataFrame = [tripid: int, delay: int ... 4 more fields]
res5: tripVertices.type = [id: string, City: string ... 2 more fields]
// Vertices
// The vertices of our graph are the airports
display(tripVertices)
id | City | State | Country |
---|---|---|---|
FAT | Fresno | CA | USA |
CMH | Columbus | OH | USA |
PHX | Phoenix | AZ | USA |
PAH | Paducah | KY | USA |
COS | Colorado Springs | CO | USA |
RNO | Reno | NV | USA |
MYR | Myrtle Beach | SC | USA |
VLD | Valdosta | GA | USA |
BPT | Beaumont | TX | USA |
CAE | Columbia | SC | USA |
PSC | Pasco | WA | USA |
SRQ | Sarasota | FL | USA |
LAX | Los Angeles | CA | USA |
DAY | Dayton | OH | USA |
AVP | Wilkes-Barre | PA | USA |
MFR | Medford | OR | USA |
JFK | New York | NY | USA |
BNA | Nashville | TN | USA |
CLT | Charlotte | NC | USA |
LAS | Las Vegas | NV | USA |
BDL | Hartford | CT | USA |
ILG | Wilmington | DE | USA |
ACT | Waco | TX | USA |
ATW | Appleton | WI | USA |
RHI | Rhinelander | WI | USA |
PWM | Portland | ME | USA |
SJT | San Angelo | TX | USA |
APN | Alpena | MI | USA |
GRB | Green Bay | WI | USA |
CAK | Akron | OH | USA |
LAN | Lansing | MI | USA |
FLL | Fort Lauderdale | FL | USA |
MSY | New Orleans | LA | USA |
SAT | San Antonio | TX | USA |
TPA | Tampa | FL | USA |
COD | Cody | WY | USA |
MOD | Modesto | CA | USA |
GTR | Columbus | MS | USA |
BTV | Burlington | VT | USA |
RDD | Redding | CA | USA |
HLN | Helena | MT | USA |
CPR | Casper | WY | USA |
FWA | Fort Wayne | IN | USA |
IMT | Iron Mountain | MI | USA |
DTW | Detroit | MI | USA |
BZN | Bozeman | MT | USA |
SBN | South Bend | IN | USA |
SPS | Wichita Falls | TX | USA |
BFL | Bakersfield | CA | USA |
HOB | Hobbs | NM | USA |
TVC | Traverse City | MI | USA |
CLE | Cleveland | OH | USA |
ABR | Aberdeen | SD | USA |
CHS | Charleston | SC | USA |
GUC | Gunnison | CO | USA |
IND | Indianapolis | IN | USA |
SDF | Louisville | KY | USA |
SAN | San Diego | CA | USA |
RSW | Fort Myers | FL | USA |
BOS | Boston | MA | USA |
TUL | Tulsa | OK | USA |
AGS | Augusta | GA | USA |
MOB | Mobile | AL | USA |
TUS | Tucson | AZ | USA |
KTN | Ketchikan | AK | USA |
BTR | Baton Rouge | LA | USA |
PNS | Pensacola | FL | USA |
ABQ | Albuquerque | NM | USA |
LGA | New York | NY | USA |
DAL | Dallas | TX | USA |
JNU | Juneau | AK | USA |
MAF | Midland | TX | USA |
RIC | Richmond | VA | USA |
FAR | Fargo | ND | USA |
MTJ | Montrose | CO | USA |
AMA | Amarillo | TX | USA |
ROC | Rochester | NY | USA |
SHV | Shreveport | LA | USA |
YAK | Yakutat | AK | USA |
CSG | Columbus | GA | USA |
ALO | Waterloo | IA | USA |
DRO | Durango | CO | USA |
CRP | Corpus Christi | TX | USA |
FNT | Flint | MI | USA |
GSO | Greensboro | NC | USA |
LWS | Lewiston | ID | USA |
TOL | Toledo | OH | USA |
GTF | Great Falls | MT | USA |
MKE | Milwaukee | WI | USA |
RKS | Rock Springs | WY | USA |
STL | St. Louis | MO | USA |
MHT | Manchester | NH | USA |
CRW | Charleston | WV | USA |
SLC | Salt Lake City | UT | USA |
ACV | Eureka | CA | USA |
DFW | Dallas | TX | USA |
OME | Nome | AK | USA |
ORF | Norfolk | VA | USA |
RDU | Raleigh | NC | USA |
SYR | Syracuse | NY | USA |
BQK | Brunswick | GA | USA |
ROA | Roanoke | VA | USA |
OKC | Oklahoma City | OK | USA |
EYW | Key West | FL | USA |
BOI | Boise | ID | USA |
ABY | Albany | GA | USA |
PIA | Peoria | IL | USA |
GRI | Grand Island | NE | USA |
PBI | West Palm Beach | FL | USA |
FSM | Fort Smith | AR | USA |
TYS | Knoxville | TN | USA |
DAB | Daytona Beach | FL | USA |
TTN | Trenton | NJ | USA |
MDT | Harrisburg | PA | USA |
AUS | Austin | TX | USA |
DCA | Washington DC | null | USA |
PIH | Pocatello | ID | USA |
GCC | Gillette | WY | USA |
BUR | Burbank | CA | USA |
GRK | Killeen | TX | USA |
LBB | Lubbock | TX | USA |
JAN | Jackson | MS | USA |
MSP | Minneapolis | MN | USA |
SAF | Santa Fe | NM | USA |
HPN | White Plains | NY | USA |
DHN | Dothan | AL | USA |
PSP | Palm Springs | CA | USA |
INL | International Falls | MN | USA |
CIC | Chico | CA | USA |
EGE | Vail | CO | USA |
CLD | Carlsbad | CA | USA |
RST | Rochester | MN | USA |
DEN | Denver | CO | USA |
EUG | Eugene | OR | USA |
LFT | Lafayette | LA | USA |
PVD | Providence | RI | USA |
DBQ | Dubuque | IA | USA |
SAV | Savannah | GA | USA |
SFO | San Francisco | CA | USA |
JAX | Jacksonville | FL | USA |
LIT | Little Rock | AR | USA |
IDA | Idaho Falls | ID | USA |
TYR | Tyler | TX | USA |
ANC | Anchorage | AK | USA |
HRL | Harlingen | TX | USA |
LMT | Klamath Falls | OR | USA |
PHF | Newport News | VA | USA |
HOU | Houston | TX | USA |
SPI | Springfield | IL | USA |
MOT | Minot | ND | USA |
BTM | Butte | MT | USA |
SMF | Sacramento | CA | USA |
HIB | Hibbing | MN | USA |
ROW | Roswell | NM | USA |
MBS | Saginaw | MI | USA |
ILM | Wilmington | NC | USA |
LGB | Long Beach | CA | USA |
IAD | Washington DC | null | USA |
ICT | Wichita | KS | USA |
BGR | Bangor | ME | USA |
ELP | El Paso | TX | USA |
SUX | Sioux City | IA | USA |
HSV | Huntsville | AL | USA |
SIT | Sitka | AK | USA |
CWA | Wausau | WI | USA |
LCH | Lake Charles | LA | USA |
CMI | Champaign | IL | USA |
ELM | Elmira | NY | USA |
CLL | College Station | TX | USA |
VPS | Fort Walton Beach | FL | USA |
MSN | Madison | WI | USA |
MHK | Manhattan | KS | USA |
OAJ | Jacksonville | NC | USA |
EKO | Elko | NV | USA |
FSD | Sioux Falls | SD | USA |
EWR | Newark | NJ | USA |
MEM | Memphis | TN | USA |
ADQ | Kodiak | AK | USA |
GGG | Longview | TX | USA |
BLI | Bellingham | WA | USA |
OMA | Omaha | NE | USA |
ATL | Atlanta | GA | USA |
SJC | San Jose | CA | USA |
SBA | Santa Barbara | CA | USA |
ONT | Ontario | CA | USA |
EAU | Eau Claire | WI | USA |
GPT | Gulfport | MS | USA |
SUN | Sun Valley | ID | USA |
CHO | Charlottesville | VA | USA |
MSO | Missoula | MT | USA |
CMX | Hancock | MI | USA |
ORD | Chicago | IL | USA |
EVV | Evansville | IN | USA |
MLU | Monroe | LA | USA |
LAW | Lawton | OK | USA |
BRW | Barrow | AK | USA |
SBP | San Luis Obispo | CA | USA |
LIH | Lihue, Kauai | HI | USA |
GJT | Grand Junction | CO | USA |
FAI | Fairbanks | AK | USA |
BIS | Bismarck | ND | USA |
SNA | Orange County | CA | USA |
LAR | Laramie | WY | USA |
JLN | Joplin | MO | USA |
LRD | Laredo | TX | USA |
LEX | Lexington | KY | USA |
SGU | St. George | UT | USA |
MCI | Kansas City | MO | USA |
AEX | Alexandria | LA | USA |
ISN | Williston | ND | USA |
TXK | Texarkana | AR | USA |
BIL | Billings | MT | USA |
CID | Cedar Rapids | IA | USA |
PDX | Portland | OR | USA |
ABE | Allentown | PA | USA |
DIK | Dickinson | ND | USA |
ART | Watertown | NY | USA |
GCK | Garden City | KS | USA |
BET | Bethel | AK | USA |
AVL | Asheville | NC | USA |
MCO | Orlando | FL | USA |
GSP | Greenville | SC | USA |
TWF | Twin Falls | ID | USA |
MKG | Muskegon | MI | USA |
FAY | Fayetteville | NC | USA |
SCE | State College | PA | USA |
EWN | New Bern | NC | USA |
XNA | Fayetteville | AR | USA |
MRY | Monterey | CA | USA |
MLB | Melbourne | FL | USA |
HNL | Honolulu, Oahu | HI | USA |
CVG | Cincinnati | OH | USA |
RAP | Rapid City | SD | USA |
AZO | Kalamazoo | MI | USA |
WRG | Wrangell | AK | USA |
ISP | Islip | NY | USA |
FLG | Flagstaff | AZ | USA |
BHM | Birmingham | AL | USA |
ALB | Albany | NY | USA |
SEA | Seattle | WA | USA |
GRR | Grand Rapids | MI | USA |
CHA | Chattanooga | TN | USA |
IAH | Houston | TX | USA |
SMX | Santa Maria | CA | USA |
MDW | Chicago | IL | USA |
MQT | Marquette | MI | USA |
LNK | Lincoln | NE | USA |
RDM | Redmond | OR | USA |
DLH | Duluth | MN | USA |
DSM | Des Moines | IA | USA |
OAK | Oakland | CA | USA |
PHL | Philadelphia | PA | USA |
FCA | Kalispell | MT | USA |
MFE | McAllen | TX | USA |
OGG | Kahului, Maui | HI | USA |
YUM | Yuma | AZ | USA |
BMI | Bloomington | IL | USA |
GEG | Spokane | WA | USA |
TLH | Tallahassee | FL | USA |
LSE | La Crosse | WI | USA |
MIA | Miami | FL | USA |
BRO | Brownsville | TX | USA |
JAC | Jackson Hole | WY | USA |
CDV | Cordova | AK | USA |
TRI | Tri-City Airport | TN | USA |
SWF | Newburgh | NY | USA |
MGM | Montgomery | AL | USA |
BWI | Baltimore | MD | USA |
SGF | Springfield | MO | USA |
GFK | Grand Forks | ND | USA |
GNV | Gainesville | FL | USA |
OTH | North Bend | OR | USA |
PIT | Pittsburgh | PA | USA |
BJI | Bemidji | MN | USA |
ASE | Aspen | CO | USA |
BUF | Buffalo | NY | USA |
COU | Columbia | MO | USA |
ABI | Abilene | TX | USA |
MLI | Moline | IL | USA |
// Edges
// The edges of our graph are the flights between airports
display(tripEdges)
tripid | delay | src | dst | city_dst | state_dst |
---|---|---|---|---|---|
1011111.0 | -5.0 | MSP | INL | International Falls | MN |
1021111.0 | 7.0 | MSP | INL | International Falls | MN |
1031111.0 | 0.0 | MSP | INL | International Falls | MN |
1041925.0 | 0.0 | MSP | INL | International Falls | MN |
1061115.0 | 33.0 | MSP | INL | International Falls | MN |
1071115.0 | 23.0 | MSP | INL | International Falls | MN |
1081115.0 | -9.0 | MSP | INL | International Falls | MN |
1091115.0 | 11.0 | MSP | INL | International Falls | MN |
1101115.0 | -3.0 | MSP | INL | International Falls | MN |
1112015.0 | -7.0 | MSP | INL | International Falls | MN |
1121925.0 | -5.0 | MSP | INL | International Falls | MN |
1131115.0 | -3.0 | MSP | INL | International Falls | MN |
1141115.0 | -6.0 | MSP | INL | International Falls | MN |
1151115.0 | -7.0 | MSP | INL | International Falls | MN |
1161115.0 | -3.0 | MSP | INL | International Falls | MN |
1171115.0 | 4.0 | MSP | INL | International Falls | MN |
1182015.0 | -5.0 | MSP | INL | International Falls | MN |
1191925.0 | -7.0 | MSP | INL | International Falls | MN |
1201115.0 | -6.0 | MSP | INL | International Falls | MN |
1211115.0 | 0.0 | MSP | INL | International Falls | MN |
1221115.0 | -4.0 | MSP | INL | International Falls | MN |
1231115.0 | -4.0 | MSP | INL | International Falls | MN |
1241115.0 | -3.0 | MSP | INL | International Falls | MN |
1252015.0 | -12.0 | MSP | INL | International Falls | MN |
1261925.0 | -5.0 | MSP | INL | International Falls | MN |
1271115.0 | 0.0 | MSP | INL | International Falls | MN |
1281115.0 | -8.0 | MSP | INL | International Falls | MN |
1291115.0 | -2.0 | MSP | INL | International Falls | MN |
1301115.0 | 0.0 | MSP | INL | International Falls | MN |
1311115.0 | -3.0 | MSP | INL | International Falls | MN |
2012015.0 | -4.0 | MSP | INL | International Falls | MN |
2022015.0 | 0.0 | MSP | INL | International Falls | MN |
2031115.0 | -7.0 | MSP | INL | International Falls | MN |
2041115.0 | -6.0 | MSP | INL | International Falls | MN |
2051115.0 | -4.0 | MSP | INL | International Falls | MN |
2061115.0 | -2.0 | MSP | INL | International Falls | MN |
2071115.0 | -15.0 | MSP | INL | International Falls | MN |
2082015.0 | -4.0 | MSP | INL | International Falls | MN |
2091925.0 | 1.0 | MSP | INL | International Falls | MN |
2101115.0 | -3.0 | MSP | INL | International Falls | MN |
2111115.0 | -7.0 | MSP | INL | International Falls | MN |
2121115.0 | -2.0 | MSP | INL | International Falls | MN |
2131115.0 | -3.0 | MSP | INL | International Falls | MN |
2141115.0 | -11.0 | MSP | INL | International Falls | MN |
2152015.0 | 16.0 | MSP | INL | International Falls | MN |
2161925.0 | 169.0 | MSP | INL | International Falls | MN |
2171115.0 | 27.0 | MSP | INL | International Falls | MN |
2181115.0 | 96.0 | MSP | INL | International Falls | MN |
2191115.0 | -9.0 | MSP | INL | International Falls | MN |
2201115.0 | -6.0 | MSP | INL | International Falls | MN |
2211115.0 | -4.0 | MSP | INL | International Falls | MN |
2222015.0 | -4.0 | MSP | INL | International Falls | MN |
2231925.0 | -3.0 | MSP | INL | International Falls | MN |
2241115.0 | -2.0 | MSP | INL | International Falls | MN |
2251115.0 | -6.0 | MSP | INL | International Falls | MN |
2261115.0 | -8.0 | MSP | INL | International Falls | MN |
2271115.0 | -8.0 | MSP | INL | International Falls | MN |
2281115.0 | 5.0 | MSP | INL | International Falls | MN |
3012015.0 | -4.0 | MSP | INL | International Falls | MN |
3022000.0 | 0.0 | MSP | INL | International Falls | MN |
3031115.0 | 17.0 | MSP | INL | International Falls | MN |
3041115.0 | 0.0 | MSP | INL | International Falls | MN |
3051115.0 | -7.0 | MSP | INL | International Falls | MN |
3061115.0 | -8.0 | MSP | INL | International Falls | MN |
3071115.0 | -10.0 | MSP | INL | International Falls | MN |
3082000.0 | -11.0 | MSP | INL | International Falls | MN |
3092000.0 | -9.0 | MSP | INL | International Falls | MN |
3101115.0 | -10.0 | MSP | INL | International Falls | MN |
3111115.0 | -8.0 | MSP | INL | International Falls | MN |
3121115.0 | -6.0 | MSP | INL | International Falls | MN |
3131115.0 | -8.0 | MSP | INL | International Falls | MN |
3141115.0 | -5.0 | MSP | INL | International Falls | MN |
3152000.0 | -11.0 | MSP | INL | International Falls | MN |
3162000.0 | -10.0 | MSP | INL | International Falls | MN |
3171115.0 | 25.0 | MSP | INL | International Falls | MN |
3181115.0 | 2.0 | MSP | INL | International Falls | MN |
3191115.0 | -5.0 | MSP | INL | International Falls | MN |
3201115.0 | -6.0 | MSP | INL | International Falls | MN |
3211115.0 | 0.0 | MSP | INL | International Falls | MN |
3222000.0 | -10.0 | MSP | INL | International Falls | MN |
3232000.0 | -9.0 | MSP | INL | International Falls | MN |
3241115.0 | -9.0 | MSP | INL | International Falls | MN |
3251115.0 | -4.0 | MSP | INL | International Falls | MN |
3261115.0 | -5.0 | MSP | INL | International Falls | MN |
3271115.0 | 9.0 | MSP | INL | International Falls | MN |
3281115.0 | -7.0 | MSP | INL | International Falls | MN |
3292000.0 | -19.0 | MSP | INL | International Falls | MN |
3302000.0 | -10.0 | MSP | INL | International Falls | MN |
3311115.0 | -8.0 | MSP | INL | International Falls | MN |
2011230.0 | -3.0 | EWR | MSY | New Orleans | LA |
2010719.0 | -2.0 | EWR | MSY | New Orleans | LA |
2021230.0 | -10.0 | EWR | MSY | New Orleans | LA |
2020709.0 | 59.0 | EWR | MSY | New Orleans | LA |
2021654.0 | 21.0 | EWR | MSY | New Orleans | LA |
2030719.0 | -6.0 | EWR | MSY | New Orleans | LA |
2031659.0 | 0.0 | EWR | MSY | New Orleans | LA |
2031230.0 | 0.0 | EWR | MSY | New Orleans | LA |
2032043.0 | 0.0 | EWR | MSY | New Orleans | LA |
2041230.0 | 24.0 | EWR | MSY | New Orleans | LA |
2040719.0 | 168.0 | EWR | MSY | New Orleans | LA |
2041730.0 | 88.0 | EWR | MSY | New Orleans | LA |
2042043.0 | 106.0 | EWR | MSY | New Orleans | LA |
2051659.0 | 0.0 | EWR | MSY | New Orleans | LA |
2050719.0 | 0.0 | EWR | MSY | New Orleans | LA |
2050929.0 | 0.0 | EWR | MSY | New Orleans | LA |
2052043.0 | 46.0 | EWR | MSY | New Orleans | LA |
2060719.0 | -3.0 | EWR | MSY | New Orleans | LA |
2061659.0 | 82.0 | EWR | MSY | New Orleans | LA |
2061230.0 | 61.0 | EWR | MSY | New Orleans | LA |
2062043.0 | 7.0 | EWR | MSY | New Orleans | LA |
2070719.0 | 8.0 | EWR | MSY | New Orleans | LA |
2071659.0 | 19.0 | EWR | MSY | New Orleans | LA |
2071230.0 | 27.0 | EWR | MSY | New Orleans | LA |
2072048.0 | 47.0 | EWR | MSY | New Orleans | LA |
2081230.0 | -10.0 | EWR | MSY | New Orleans | LA |
2080719.0 | -1.0 | EWR | MSY | New Orleans | LA |
2091229.0 | 95.0 | EWR | MSY | New Orleans | LA |
2091654.0 | -5.0 | EWR | MSY | New Orleans | LA |
2090709.0 | -8.0 | EWR | MSY | New Orleans | LA |
2092043.0 | 32.0 | EWR | MSY | New Orleans | LA |
2100719.0 | 14.0 | EWR | MSY | New Orleans | LA |
2101659.0 | 16.0 | EWR | MSY | New Orleans | LA |
2101230.0 | -4.0 | EWR | MSY | New Orleans | LA |
2102043.0 | -4.0 | EWR | MSY | New Orleans | LA |
2111230.0 | 10.0 | EWR | MSY | New Orleans | LA |
2110719.0 | 46.0 | EWR | MSY | New Orleans | LA |
2111730.0 | -9.0 | EWR | MSY | New Orleans | LA |
2112043.0 | -2.0 | EWR | MSY | New Orleans | LA |
2120719.0 | 1.0 | EWR | MSY | New Orleans | LA |
2121230.0 | -4.0 | EWR | MSY | New Orleans | LA |
2120929.0 | 89.0 | EWR | MSY | New Orleans | LA |
2122043.0 | 36.0 | EWR | MSY | New Orleans | LA |
2130738.0 | 0.0 | EWR | MSY | New Orleans | LA |
2132041.0 | 0.0 | EWR | MSY | New Orleans | LA |
2140729.0 | 0.0 | EWR | MSY | New Orleans | LA |
2142041.0 | 0.0 | EWR | MSY | New Orleans | LA |
2151206.0 | 0.0 | EWR | MSY | New Orleans | LA |
2150659.0 | 0.0 | EWR | MSY | New Orleans | LA |
2160705.0 | -5.0 | EWR | MSY | New Orleans | LA |
2170729.0 | 0.0 | EWR | MSY | New Orleans | LA |
2172041.0 | -7.0 | EWR | MSY | New Orleans | LA |
2180738.0 | 0.0 | EWR | MSY | New Orleans | LA |
2182041.0 | 36.0 | EWR | MSY | New Orleans | LA |
2190727.0 | 15.0 | EWR | MSY | New Orleans | LA |
2200738.0 | -7.0 | EWR | MSY | New Orleans | LA |
2202041.0 | 51.0 | EWR | MSY | New Orleans | LA |
2210729.0 | -2.0 | EWR | MSY | New Orleans | LA |
2212041.0 | 0.0 | EWR | MSY | New Orleans | LA |
2221206.0 | -8.0 | EWR | MSY | New Orleans | LA |
2220659.0 | 8.0 | EWR | MSY | New Orleans | LA |
2232041.0 | 8.0 | EWR | MSY | New Orleans | LA |
2230705.0 | -10.0 | EWR | MSY | New Orleans | LA |
2240729.0 | 6.0 | EWR | MSY | New Orleans | LA |
2242041.0 | -7.0 | EWR | MSY | New Orleans | LA |
2250738.0 | 0.0 | EWR | MSY | New Orleans | LA |
2260727.0 | 23.0 | EWR | MSY | New Orleans | LA |
2262041.0 | 174.0 | EWR | MSY | New Orleans | LA |
2270738.0 | 8.0 | EWR | MSY | New Orleans | LA |
2272041.0 | 32.0 | EWR | MSY | New Orleans | LA |
2280729.0 | 12.0 | EWR | MSY | New Orleans | LA |
2282041.0 | 49.0 | EWR | MSY | New Orleans | LA |
2281000.0 | 2.0 | EWR | MSY | New Orleans | LA |
2051230.0 | 216.0 | EWR | MSY | New Orleans | LA |
2131536.0 | 273.0 | EWR | MSY | New Orleans | LA |
2141536.0 | 6.0 | EWR | MSY | New Orleans | LA |
2151902.0 | 31.0 | EWR | MSY | New Orleans | LA |
2151536.0 | 66.0 | EWR | MSY | New Orleans | LA |
2162041.0 | -4.0 | EWR | MSY | New Orleans | LA |
2161536.0 | 7.0 | EWR | MSY | New Orleans | LA |
2171536.0 | 3.0 | EWR | MSY | New Orleans | LA |
2181536.0 | 26.0 | EWR | MSY | New Orleans | LA |
2191536.0 | -9.0 | EWR | MSY | New Orleans | LA |
2201536.0 | -3.0 | EWR | MSY | New Orleans | LA |
2211536.0 | 34.0 | EWR | MSY | New Orleans | LA |
2221900.0 | -2.0 | EWR | MSY | New Orleans | LA |
2221536.0 | 65.0 | EWR | MSY | New Orleans | LA |
2231536.0 | -3.0 | EWR | MSY | New Orleans | LA |
2241536.0 | -1.0 | EWR | MSY | New Orleans | LA |
2251536.0 | 0.0 | EWR | MSY | New Orleans | LA |
2261536.0 | 0.0 | EWR | MSY | New Orleans | LA |
2271536.0 | -4.0 | EWR | MSY | New Orleans | LA |
2281536.0 | 8.0 | EWR | MSY | New Orleans | LA |
2010730.0 | -1.0 | EWR | MSY | New Orleans | LA |
2021815.0 | -1.0 | EWR | MSY | New Orleans | LA |
2031815.0 | 0.0 | EWR | MSY | New Orleans | LA |
2041815.0 | -4.0 | EWR | MSY | New Orleans | LA |
2051815.0 | -4.0 | EWR | MSY | New Orleans | LA |
2061815.0 | -4.0 | EWR | MSY | New Orleans | LA |
2071815.0 | -5.0 | EWR | MSY | New Orleans | LA |
2080730.0 | -4.0 | EWR | MSY | New Orleans | LA |
2091815.0 | -1.0 | EWR | MSY | New Orleans | LA |
2101815.0 | -5.0 | EWR | MSY | New Orleans | LA |
2111815.0 | 4.0 | EWR | MSY | New Orleans | LA |
2121815.0 | 64.0 | EWR | MSY | New Orleans | LA |
2131805.0 | 0.0 | EWR | MSY | New Orleans | LA |
2141635.0 | 52.0 | EWR | MSY | New Orleans | LA |
2150730.0 | 0.0 | EWR | MSY | New Orleans | LA |
2161635.0 | 21.0 | EWR | MSY | New Orleans | LA |
2171635.0 | 23.0 | EWR | MSY | New Orleans | LA |
2181635.0 | -5.0 | EWR | MSY | New Orleans | LA |
2191635.0 | 21.0 | EWR | MSY | New Orleans | LA |
2201635.0 | 0.0 | EWR | MSY | New Orleans | LA |
2211635.0 | 292.0 | EWR | MSY | New Orleans | LA |
2220730.0 | 28.0 | EWR | MSY | New Orleans | LA |
2231635.0 | 0.0 | EWR | MSY | New Orleans | LA |
2241635.0 | -8.0 | EWR | MSY | New Orleans | LA |
2251635.0 | 6.0 | EWR | MSY | New Orleans | LA |
2261635.0 | 10.0 | EWR | MSY | New Orleans | LA |
2271635.0 | -1.0 | EWR | MSY | New Orleans | LA |
2281635.0 | -1.0 | EWR | MSY | New Orleans | LA |
3011206.0 | -5.0 | EWR | MSY | New Orleans | LA |
3010659.0 | -1.0 | EWR | MSY | New Orleans | LA |
3022041.0 | 0.0 | EWR | MSY | New Orleans | LA |
3020705.0 | -6.0 | EWR | MSY | New Orleans | LA |
3030729.0 | 0.0 | EWR | MSY | New Orleans | LA |
3032041.0 | 113.0 | EWR | MSY | New Orleans | LA |
3040738.0 | 0.0 | EWR | MSY | New Orleans | LA |
3050727.0 | -4.0 | EWR | MSY | New Orleans | LA |
3052041.0 | 4.0 | EWR | MSY | New Orleans | LA |
3060705.0 | -1.0 | EWR | MSY | New Orleans | LA |
3061252.0 | 67.0 | EWR | MSY | New Orleans | LA |
3062100.0 | 21.0 | EWR | MSY | New Orleans | LA |
3070705.0 | -7.0 | EWR | MSY | New Orleans | LA |
3071252.0 | -3.0 | EWR | MSY | New Orleans | LA |
3072100.0 | 13.0 | EWR | MSY | New Orleans | LA |
3080705.0 | -5.0 | EWR | MSY | New Orleans | LA |
3081250.0 | 5.0 | EWR | MSY | New Orleans | LA |
3091255.0 | -9.0 | EWR | MSY | New Orleans | LA |
3092059.0 | -3.0 | EWR | MSY | New Orleans | LA |
3100705.0 | -5.0 | EWR | MSY | New Orleans | LA |
3101252.0 | -9.0 | EWR | MSY | New Orleans | LA |
3102059.0 | -4.0 | EWR | MSY | New Orleans | LA |
3112059.0 | 181.0 | EWR | MSY | New Orleans | LA |
3111252.0 | -7.0 | EWR | MSY | New Orleans | LA |
3122059.0 | 22.0 | EWR | MSY | New Orleans | LA |
3121252.0 | 161.0 | EWR | MSY | New Orleans | LA |
3130705.0 | 0.0 | EWR | MSY | New Orleans | LA |
3131252.0 | 0.0 | EWR | MSY | New Orleans | LA |
3132059.0 | 0.0 | EWR | MSY | New Orleans | LA |
3140705.0 | 66.0 | EWR | MSY | New Orleans | LA |
3141252.0 | 39.0 | EWR | MSY | New Orleans | LA |
3142059.0 | -6.0 | EWR | MSY | New Orleans | LA |
3150700.0 | 2.0 | EWR | MSY | New Orleans | LA |
3151250.0 | 34.0 | EWR | MSY | New Orleans | LA |
3161255.0 | -2.0 | EWR | MSY | New Orleans | LA |
3162059.0 | -1.0 | EWR | MSY | New Orleans | LA |
3170705.0 | -11.0 | EWR | MSY | New Orleans | LA |
3171252.0 | 22.0 | EWR | MSY | New Orleans | LA |
3172059.0 | 132.0 | EWR | MSY | New Orleans | LA |
3182059.0 | -5.0 | EWR | MSY | New Orleans | LA |
3181252.0 | 2.0 | EWR | MSY | New Orleans | LA |
3192059.0 | 16.0 | EWR | MSY | New Orleans | LA |
3191252.0 | -4.0 | EWR | MSY | New Orleans | LA |
3200705.0 | -6.0 | EWR | MSY | New Orleans | LA |
3201252.0 | -4.0 | EWR | MSY | New Orleans | LA |
3202059.0 | 77.0 | EWR | MSY | New Orleans | LA |
3210705.0 | -4.0 | EWR | MSY | New Orleans | LA |
3211252.0 | 9.0 | EWR | MSY | New Orleans | LA |
3212059.0 | 11.0 | EWR | MSY | New Orleans | LA |
3220705.0 | -4.0 | EWR | MSY | New Orleans | LA |
3221250.0 | -7.0 | EWR | MSY | New Orleans | LA |
3221600.0 | -6.0 | EWR | MSY | New Orleans | LA |
3231255.0 | 5.0 | EWR | MSY | New Orleans | LA |
3240705.0 | -4.0 | EWR | MSY | New Orleans | LA |
3241252.0 | -2.0 | EWR | MSY | New Orleans | LA |
3242059.0 | -10.0 | EWR | MSY | New Orleans | LA |
3252059.0 | 121.0 | EWR | MSY | New Orleans | LA |
3251252.0 | -8.0 | EWR | MSY | New Orleans | LA |
3262059.0 | 49.0 | EWR | MSY | New Orleans | LA |
3261252.0 | -2.0 | EWR | MSY | New Orleans | LA |
3270705.0 | -6.0 | EWR | MSY | New Orleans | LA |
3271252.0 | -6.0 | EWR | MSY | New Orleans | LA |
3272059.0 | -2.0 | EWR | MSY | New Orleans | LA |
3280705.0 | -3.0 | EWR | MSY | New Orleans | LA |
3281252.0 | -4.0 | EWR | MSY | New Orleans | LA |
3282059.0 | 0.0 | EWR | MSY | New Orleans | LA |
3291250.0 | -6.0 | EWR | MSY | New Orleans | LA |
3290705.0 | -1.0 | EWR | MSY | New Orleans | LA |
3291600.0 | 1.0 | EWR | MSY | New Orleans | LA |
3301255.0 | 64.0 | EWR | MSY | New Orleans | LA |
3302059.0 | 166.0 | EWR | MSY | New Orleans | LA |
3310705.0 | -3.0 | EWR | MSY | New Orleans | LA |
3311252.0 | 12.0 | EWR | MSY | New Orleans | LA |
3312059.0 | 7.0 | EWR | MSY | New Orleans | LA |
3011902.0 | 64.0 | EWR | MSY | New Orleans | LA |
3011536.0 | -5.0 | EWR | MSY | New Orleans | LA |
3021536.0 | 9.0 | EWR | MSY | New Orleans | LA |
3031536.0 | -10.0 | EWR | MSY | New Orleans | LA |
3041536.0 | -8.0 | EWR | MSY | New Orleans | LA |
3051536.0 | 0.0 | EWR | MSY | New Orleans | LA |
3090715.0 | 1.0 | EWR | MSY | New Orleans | LA |
3110705.0 | -11.0 | EWR | MSY | New Orleans | LA |
3120659.0 | -5.0 | EWR | MSY | New Orleans | LA |
3160715.0 | -4.0 | EWR | MSY | New Orleans | LA |
3180705.0 | -7.0 | EWR | MSY | New Orleans | LA |
3190659.0 | -2.0 | EWR | MSY | New Orleans | LA |
3230715.0 | -4.0 | EWR | MSY | New Orleans | LA |
3250705.0 | -8.0 | EWR | MSY | New Orleans | LA |
3260659.0 | 63.0 | EWR | MSY | New Orleans | LA |
3300715.0 | 2.0 | EWR | MSY | New Orleans | LA |
3010730.0 | -4.0 | EWR | MSY | New Orleans | LA |
3021635.0 | 16.0 | EWR | MSY | New Orleans | LA |
3031635.0 | -1.0 | EWR | MSY | New Orleans | LA |
3041635.0 | 8.0 | EWR | MSY | New Orleans | LA |
3051635.0 | -5.0 | EWR | MSY | New Orleans | LA |
3061635.0 | -2.0 | EWR | MSY | New Orleans | LA |
3071635.0 | 5.0 | EWR | MSY | New Orleans | LA |
3080730.0 | -5.0 | EWR | MSY | New Orleans | LA |
3091825.0 | 45.0 | EWR | MSY | New Orleans | LA |
3101825.0 | 10.0 | EWR | MSY | New Orleans | LA |
3111825.0 | 5.0 | EWR | MSY | New Orleans | LA |
3121825.0 | -5.0 | EWR | MSY | New Orleans | LA |
3131825.0 | 123.0 | EWR | MSY | New Orleans | LA |
3141825.0 | 6.0 | EWR | MSY | New Orleans | LA |
3150730.0 | -3.0 | EWR | MSY | New Orleans | LA |
3161825.0 | 24.0 | EWR | MSY | New Orleans | LA |
3171825.0 | 6.0 | EWR | MSY | New Orleans | LA |
3181825.0 | -6.0 | EWR | MSY | New Orleans | LA |
3191825.0 | 223.0 | EWR | MSY | New Orleans | LA |
3201825.0 | 178.0 | EWR | MSY | New Orleans | LA |
3211825.0 | -4.0 | EWR | MSY | New Orleans | LA |
3220730.0 | -3.0 | EWR | MSY | New Orleans | LA |
3231825.0 | -4.0 | EWR | MSY | New Orleans | LA |
3241825.0 | 0.0 | EWR | MSY | New Orleans | LA |
3251825.0 | 222.0 | EWR | MSY | New Orleans | LA |
3261825.0 | 51.0 | EWR | MSY | New Orleans | LA |
3271825.0 | -2.0 | EWR | MSY | New Orleans | LA |
3281825.0 | 26.0 | EWR | MSY | New Orleans | LA |
3290730.0 | -3.0 | EWR | MSY | New Orleans | LA |
3301825.0 | 139.0 | EWR | MSY | New Orleans | LA |
3311825.0 | 25.0 | EWR | MSY | New Orleans | LA |
1020705.0 | 0.0 | EWR | MSY | New Orleans | LA |
1030705.0 | 0.0 | EWR | MSY | New Orleans | LA |
1040655.0 | 0.0 | EWR | MSY | New Orleans | LA |
1050703.0 | 4.0 | EWR | MSY | New Orleans | LA |
1060705.0 | 36.0 | EWR | MSY | New Orleans | LA |
1071230.0 | 24.0 | EWR | MSY | New Orleans | LA |
1070719.0 | -1.0 | EWR | MSY | New Orleans | LA |
1071730.0 | 161.0 | EWR | MSY | New Orleans | LA |
1072043.0 | 8.0 | EWR | MSY | New Orleans | LA |
1080719.0 | -2.0 | EWR | MSY | New Orleans | LA |
1081659.0 | 0.0 | EWR | MSY | New Orleans | LA |
1081230.0 | 66.0 | EWR | MSY | New Orleans | LA |
1082043.0 | 5.0 | EWR | MSY | New Orleans | LA |
1090719.0 | 0.0 | EWR | MSY | New Orleans | LA |
1091659.0 | -1.0 | EWR | MSY | New Orleans | LA |
1091230.0 | -3.0 | EWR | MSY | New Orleans | LA |
1092043.0 | 63.0 | EWR | MSY | New Orleans | LA |
1100719.0 | -1.0 | EWR | MSY | New Orleans | LA |
1101659.0 | 244.0 | EWR | MSY | New Orleans | LA |
1101230.0 | 110.0 | EWR | MSY | New Orleans | LA |
1102043.0 | 43.0 | EWR | MSY | New Orleans | LA |
1111230.0 | 87.0 | EWR | MSY | New Orleans | LA |
1110719.0 | -1.0 | EWR | MSY | New Orleans | LA |
1121654.0 | -2.0 | EWR | MSY | New Orleans | LA |
1121230.0 | 21.0 | EWR | MSY | New Orleans | LA |
1120709.0 | -3.0 | EWR | MSY | New Orleans | LA |
1122043.0 | -1.0 | EWR | MSY | New Orleans | LA |
1130719.0 | -4.0 | EWR | MSY | New Orleans | LA |
1131659.0 | 0.0 | EWR | MSY | New Orleans | LA |
1131230.0 | 14.0 | EWR | MSY | New Orleans | LA |
1132043.0 | 51.0 | EWR | MSY | New Orleans | LA |
1141230.0 | 30.0 | EWR | MSY | New Orleans | LA |
1140719.0 | 0.0 | EWR | MSY | New Orleans | LA |
1141730.0 | 69.0 | EWR | MSY | New Orleans | LA |
1142043.0 | 0.0 | EWR | MSY | New Orleans | LA |
1150719.0 | 42.0 | EWR | MSY | New Orleans | LA |
1151659.0 | 2.0 | EWR | MSY | New Orleans | LA |
1151230.0 | 0.0 | EWR | MSY | New Orleans | LA |
1152043.0 | 22.0 | EWR | MSY | New Orleans | LA |
1160719.0 | -7.0 | EWR | MSY | New Orleans | LA |
1161659.0 | -9.0 | EWR | MSY | New Orleans | LA |
1161230.0 | -10.0 | EWR | MSY | New Orleans | LA |
1162043.0 | 3.0 | EWR | MSY | New Orleans | LA |
1171659.0 | 46.0 | EWR | MSY | New Orleans | LA |
1170719.0 | -4.0 | EWR | MSY | New Orleans | LA |
1172043.0 | 54.0 | EWR | MSY | New Orleans | LA |
1181230.0 | 20.0 | EWR | MSY | New Orleans | LA |
1180719.0 | -5.0 | EWR | MSY | New Orleans | LA |
1191654.0 | -3.0 | EWR | MSY | New Orleans | LA |
1191230.0 | 29.0 | EWR | MSY | New Orleans | LA |
1190709.0 | 0.0 | EWR | MSY | New Orleans | LA |
1192043.0 | 5.0 | EWR | MSY | New Orleans | LA |
1201659.0 | -1.0 | EWR | MSY | New Orleans | LA |
1200719.0 | -1.0 | EWR | MSY | New Orleans | LA |
1202043.0 | 12.0 | EWR | MSY | New Orleans | LA |
1211230.0 | 102.0 | EWR | MSY | New Orleans | LA |
1210719.0 | -7.0 | EWR | MSY | New Orleans | LA |
1211730.0 | 0.0 | EWR | MSY | New Orleans | LA |
1212043.0 | 0.0 | EWR | MSY | New Orleans | LA |
1220719.0 | 0.0 | EWR | MSY | New Orleans | LA |
1221659.0 | 6.0 | EWR | MSY | New Orleans | LA |
1221230.0 | -2.0 | EWR | MSY | New Orleans | LA |
1222043.0 | 70.0 | EWR | MSY | New Orleans | LA |
1230719.0 | 12.0 | EWR | MSY | New Orleans | LA |
1231659.0 | 94.0 | EWR | MSY | New Orleans | LA |
1231230.0 | 111.0 | EWR | MSY | New Orleans | LA |
1232043.0 | 13.0 | EWR | MSY | New Orleans | LA |
1240719.0 | -1.0 | EWR | MSY | New Orleans | LA |
1241659.0 | 84.0 | EWR | MSY | New Orleans | LA |
1241230.0 | 0.0 | EWR | MSY | New Orleans | LA |
1242043.0 | 56.0 | EWR | MSY | New Orleans | LA |
1251230.0 | -5.0 | EWR | MSY | New Orleans | LA |
1250719.0 | 23.0 | EWR | MSY | New Orleans | LA |
1261654.0 | 113.0 | EWR | MSY | New Orleans | LA |
1261230.0 | 8.0 | EWR | MSY | New Orleans | LA |
1260709.0 | -7.0 | EWR | MSY | New Orleans | LA |
1262043.0 | 31.0 | EWR | MSY | New Orleans | LA |
1271659.0 | 0.0 | EWR | MSY | New Orleans | LA |
1270719.0 | -3.0 | EWR | MSY | New Orleans | LA |
1281230.0 | 0.0 | EWR | MSY | New Orleans | LA |
1280719.0 | 0.0 | EWR | MSY | New Orleans | LA |
1281730.0 | 0.0 | EWR | MSY | New Orleans | LA |
1282043.0 | 0.0 | EWR | MSY | New Orleans | LA |
1291659.0 | -6.0 | EWR | MSY | New Orleans | LA |
1290719.0 | -2.0 | EWR | MSY | New Orleans | LA |
1292043.0 | -8.0 | EWR | MSY | New Orleans | LA |
1300719.0 | 2.0 | EWR | MSY | New Orleans | LA |
1301659.0 | 9.0 | EWR | MSY | New Orleans | LA |
1301230.0 | 0.0 | EWR | MSY | New Orleans | LA |
1302043.0 | 93.0 | EWR | MSY | New Orleans | LA |
1310719.0 | 34.0 | EWR | MSY | New Orleans | LA |
1311659.0 | 0.0 | EWR | MSY | New Orleans | LA |
1311230.0 | 5.0 | EWR | MSY | New Orleans | LA |
1312043.0 | 28.0 | EWR | MSY | New Orleans | LA |
1171230.0 | -5.0 | EWR | MSY | New Orleans | LA |
1201250.0 | -12.0 | EWR | MSY | New Orleans | LA |
1291230.0 | -2.0 | EWR | MSY | New Orleans | LA |
1011815.0 | 125.0 | EWR | MSY | New Orleans | LA |
1021815.0 | 33.0 | EWR | MSY | New Orleans | LA |
1031815.0 | 0.0 | EWR | MSY | New Orleans | LA |
1040755.0 | 0.0 | EWR | MSY | New Orleans | LA |
1051815.0 | 172.0 | EWR | MSY | New Orleans | LA |
1061815.0 | 151.0 | EWR | MSY | New Orleans | LA |
1071815.0 | 43.0 | EWR | MSY | New Orleans | LA |
1081815.0 | 14.0 | EWR | MSY | New Orleans | LA |
1091815.0 | 3.0 | EWR | MSY | New Orleans | LA |
1101815.0 | 10.0 | EWR | MSY | New Orleans | LA |
1110730.0 | 0.0 | EWR | MSY | New Orleans | LA |
1121815.0 | 0.0 | EWR | MSY | New Orleans | LA |
1131815.0 | -2.0 | EWR | MSY | New Orleans | LA |
1141815.0 | 1.0 | EWR | MSY | New Orleans | LA |
1151815.0 | 1.0 | EWR | MSY | New Orleans | LA |
1161815.0 | 8.0 | EWR | MSY | New Orleans | LA |
1171815.0 | 22.0 | EWR | MSY | New Orleans | LA |
1180730.0 | 1.0 | EWR | MSY | New Orleans | LA |
1191815.0 | 5.0 | EWR | MSY | New Orleans | LA |
1201815.0 | 5.0 | EWR | MSY | New Orleans | LA |
1211815.0 | 0.0 | EWR | MSY | New Orleans | LA |
1221815.0 | 3.0 | EWR | MSY | New Orleans | LA |
1231815.0 | 0.0 | EWR | MSY | New Orleans | LA |
1241815.0 | 84.0 | EWR | MSY | New Orleans | LA |
1250730.0 | -7.0 | EWR | MSY | New Orleans | LA |
1261815.0 | -5.0 | EWR | MSY | New Orleans | LA |
1271815.0 | -1.0 | EWR | MSY | New Orleans | LA |
1281815.0 | 0.0 | EWR | MSY | New Orleans | LA |
1291815.0 | -3.0 | EWR | MSY | New Orleans | LA |
1301815.0 | -5.0 | EWR | MSY | New Orleans | LA |
1311815.0 | -8.0 | EWR | MSY | New Orleans | LA |
2011055.0 | -5.0 | LAS | MSY | New Orleans | LA |
2021025.0 | 3.0 | LAS | MSY | New Orleans | LA |
2031025.0 | 0.0 | LAS | MSY | New Orleans | LA |
2031750.0 | -2.0 | LAS | MSY | New Orleans | LA |
2041025.0 | 6.0 | LAS | MSY | New Orleans | LA |
2041750.0 | -6.0 | LAS | MSY | New Orleans | LA |
2051025.0 | -4.0 | LAS | MSY | New Orleans | LA |
2051750.0 | 29.0 | LAS | MSY | New Orleans | LA |
2061025.0 | 1.0 | LAS | MSY | New Orleans | LA |
2061750.0 | 48.0 | LAS | MSY | New Orleans | LA |
2071025.0 | -4.0 | LAS | MSY | New Orleans | LA |
2071750.0 | 20.0 | LAS | MSY | New Orleans | LA |
2081055.0 | 2.0 | LAS | MSY | New Orleans | LA |
2091025.0 | -6.0 | LAS | MSY | New Orleans | LA |
2091750.0 | 33.0 | LAS | MSY | New Orleans | LA |
2101025.0 | -1.0 | LAS | MSY | New Orleans | LA |
2101750.0 | -2.0 | LAS | MSY | New Orleans | LA |
2111025.0 | 15.0 | LAS | MSY | New Orleans | LA |
2111750.0 | -3.0 | LAS | MSY | New Orleans | LA |
2121025.0 | -6.0 | LAS | MSY | New Orleans | LA |
2121750.0 | 158.0 | LAS | MSY | New Orleans | LA |
2131855.0 | 11.0 | LAS | MSY | New Orleans | LA |
2131215.0 | 23.0 | LAS | MSY | New Orleans | LA |
2141855.0 | 22.0 | LAS | MSY | New Orleans | LA |
2141215.0 | 18.0 | LAS | MSY | New Orleans | LA |
2150935.0 | -4.0 | LAS | MSY | New Orleans | LA |
2151635.0 | 4.0 | LAS | MSY | New Orleans | LA |
2161855.0 | 58.0 | LAS | MSY | New Orleans | LA |
2161215.0 | 17.0 | LAS | MSY | New Orleans | LA |
2171855.0 | 14.0 | LAS | MSY | New Orleans | LA |
2171215.0 | 10.0 | LAS | MSY | New Orleans | LA |
2181855.0 | 1.0 | LAS | MSY | New Orleans | LA |
2181215.0 | 58.0 | LAS | MSY | New Orleans | LA |
2191855.0 | -3.0 | LAS | MSY | New Orleans | LA |
2191215.0 | 32.0 | LAS | MSY | New Orleans | LA |
2201855.0 | 14.0 | LAS | MSY | New Orleans | LA |
2201215.0 | 28.0 | LAS | MSY | New Orleans | LA |
2211855.0 | 4.0 | LAS | MSY | New Orleans | LA |
2211215.0 | 11.0 | LAS | MSY | New Orleans | LA |
2220935.0 | -5.0 | LAS | MSY | New Orleans | LA |
2221635.0 | 133.0 | LAS | MSY | New Orleans | LA |
2231855.0 | -4.0 | LAS | MSY | New Orleans | LA |
2231215.0 | 10.0 | LAS | MSY | New Orleans | LA |
2241855.0 | -6.0 | LAS | MSY | New Orleans | LA |
2241215.0 | 16.0 | LAS | MSY | New Orleans | LA |
2251855.0 | 7.0 | LAS | MSY | New Orleans | LA |
2251215.0 | 15.0 | LAS | MSY | New Orleans | LA |
2261855.0 | 2.0 | LAS | MSY | New Orleans | LA |
2261215.0 | 16.0 | LAS | MSY | New Orleans | LA |
2271855.0 | 10.0 | LAS | MSY | New Orleans | LA |
2271215.0 | 32.0 | LAS | MSY | New Orleans | LA |
2281855.0 | 61.0 | LAS | MSY | New Orleans | LA |
2281215.0 | 94.0 | LAS | MSY | New Orleans | LA |
3010935.0 | 10.0 | LAS | MSY | New Orleans | LA |
3011635.0 | 39.0 | LAS | MSY | New Orleans | LA |
3021855.0 | -5.0 | LAS | MSY | New Orleans | LA |
3021215.0 | -6.0 | LAS | MSY | New Orleans | LA |
3031855.0 | 25.0 | LAS | MSY | New Orleans | LA |
3031215.0 | 8.0 | LAS | MSY | New Orleans | LA |
3041855.0 | -6.0 | LAS | MSY | New Orleans | LA |
3041215.0 | 28.0 | LAS | MSY | New Orleans | LA |
3051855.0 | -3.0 | LAS | MSY | New Orleans | LA |
3051215.0 | 27.0 | LAS | MSY | New Orleans | LA |
3061855.0 | 20.0 | LAS | MSY | New Orleans | LA |
3061215.0 | 10.0 | LAS | MSY | New Orleans | LA |
3071855.0 | 36.0 | LAS | MSY | New Orleans | LA |
3071215.0 | 14.0 | LAS | MSY | New Orleans | LA |
3081940.0 | -4.0 | LAS | MSY | New Orleans | LA |
3080830.0 | 6.0 | LAS | MSY | New Orleans | LA |
3091905.0 | 4.0 | LAS | MSY | New Orleans | LA |
3090840.0 | -2.0 | LAS | MSY | New Orleans | LA |
3101905.0 | 49.0 | LAS | MSY | New Orleans | LA |
3100840.0 | -1.0 | LAS | MSY | New Orleans | LA |
3111905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3110840.0 | 84.0 | LAS | MSY | New Orleans | LA |
3121905.0 | 26.0 | LAS | MSY | New Orleans | LA |
3120840.0 | -1.0 | LAS | MSY | New Orleans | LA |
3131905.0 | 37.0 | LAS | MSY | New Orleans | LA |
3130840.0 | 1.0 | LAS | MSY | New Orleans | LA |
3141905.0 | 14.0 | LAS | MSY | New Orleans | LA |
3140840.0 | -5.0 | LAS | MSY | New Orleans | LA |
3150830.0 | 16.0 | LAS | MSY | New Orleans | LA |
3151940.0 | 95.0 | LAS | MSY | New Orleans | LA |
3161905.0 | -4.0 | LAS | MSY | New Orleans | LA |
3160840.0 | -6.0 | LAS | MSY | New Orleans | LA |
3171905.0 | 13.0 | LAS | MSY | New Orleans | LA |
3170840.0 | 3.0 | LAS | MSY | New Orleans | LA |
3181905.0 | 52.0 | LAS | MSY | New Orleans | LA |
3180840.0 | 2.0 | LAS | MSY | New Orleans | LA |
3191905.0 | 0.0 | LAS | MSY | New Orleans | LA |
3190840.0 | 0.0 | LAS | MSY | New Orleans | LA |
3201905.0 | 36.0 | LAS | MSY | New Orleans | LA |
3200840.0 | 68.0 | LAS | MSY | New Orleans | LA |
3211905.0 | 0.0 | LAS | MSY | New Orleans | LA |
3210840.0 | -1.0 | LAS | MSY | New Orleans | LA |
3220830.0 | 12.0 | LAS | MSY | New Orleans | LA |
3221940.0 | 11.0 | LAS | MSY | New Orleans | LA |
3231905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3230840.0 | 16.0 | LAS | MSY | New Orleans | LA |
3241905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3240840.0 | 4.0 | LAS | MSY | New Orleans | LA |
3251905.0 | 10.0 | LAS | MSY | New Orleans | LA |
3250840.0 | 0.0 | LAS | MSY | New Orleans | LA |
3261905.0 | 14.0 | LAS | MSY | New Orleans | LA |
3260840.0 | 3.0 | LAS | MSY | New Orleans | LA |
3271905.0 | 13.0 | LAS | MSY | New Orleans | LA |
3270840.0 | -5.0 | LAS | MSY | New Orleans | LA |
3281905.0 | -1.0 | LAS | MSY | New Orleans | LA |
3280840.0 | 33.0 | LAS | MSY | New Orleans | LA |
3290830.0 | -1.0 | LAS | MSY | New Orleans | LA |
3291940.0 | 231.0 | LAS | MSY | New Orleans | LA |
3301905.0 | 7.0 | LAS | MSY | New Orleans | LA |
3300840.0 | 15.0 | LAS | MSY | New Orleans | LA |
3311905.0 | 19.0 | LAS | MSY | New Orleans | LA |
3310840.0 | 0.0 | LAS | MSY | New Orleans | LA |
1010850.0 | -1.0 | LAS | MSY | New Orleans | LA |
1011755.0 | 160.0 | LAS | MSY | New Orleans | LA |
1021805.0 | 138.0 | LAS | MSY | New Orleans | LA |
1020905.0 | 5.0 | LAS | MSY | New Orleans | LA |
1031805.0 | 154.0 | LAS | MSY | New Orleans | LA |
1030905.0 | 179.0 | LAS | MSY | New Orleans | LA |
1041655.0 | 113.0 | LAS | MSY | New Orleans | LA |
1040900.0 | 56.0 | LAS | MSY | New Orleans | LA |
1050905.0 | -2.0 | LAS | MSY | New Orleans | LA |
1051805.0 | 53.0 | LAS | MSY | New Orleans | LA |
1061755.0 | 61.0 | LAS | MSY | New Orleans | LA |
1060905.0 | 23.0 | LAS | MSY | New Orleans | LA |
1071025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1071750.0 | 302.0 | LAS | MSY | New Orleans | LA |
1081025.0 | 7.0 | LAS | MSY | New Orleans | LA |
1081750.0 | 52.0 | LAS | MSY | New Orleans | LA |
1091025.0 | -5.0 | LAS | MSY | New Orleans | LA |
1091750.0 | 8.0 | LAS | MSY | New Orleans | LA |
1101025.0 | 0.0 | LAS | MSY | New Orleans | LA |
1101750.0 | 92.0 | LAS | MSY | New Orleans | LA |
1111055.0 | 31.0 | LAS | MSY | New Orleans | LA |
1121025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1121750.0 | -2.0 | LAS | MSY | New Orleans | LA |
1131025.0 | -1.0 | LAS | MSY | New Orleans | LA |
1131750.0 | -3.0 | LAS | MSY | New Orleans | LA |
1141025.0 | -3.0 | LAS | MSY | New Orleans | LA |
1141750.0 | 127.0 | LAS | MSY | New Orleans | LA |
1151025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1151750.0 | -3.0 | LAS | MSY | New Orleans | LA |
1161025.0 | -2.0 | LAS | MSY | New Orleans | LA |
1161750.0 | 0.0 | LAS | MSY | New Orleans | LA |
1171025.0 | 12.0 | LAS | MSY | New Orleans | LA |
1171750.0 | -2.0 | LAS | MSY | New Orleans | LA |
1181055.0 | -5.0 | LAS | MSY | New Orleans | LA |
1191025.0 | 3.0 | LAS | MSY | New Orleans | LA |
1191750.0 | -4.0 | LAS | MSY | New Orleans | LA |
1201025.0 | -4.0 | LAS | MSY | New Orleans | LA |
1201750.0 | 6.0 | LAS | MSY | New Orleans | LA |
1211025.0 | 3.0 | LAS | MSY | New Orleans | LA |
1211750.0 | 4.0 | LAS | MSY | New Orleans | LA |
1221025.0 | -5.0 | LAS | MSY | New Orleans | LA |
1221750.0 | 3.0 | LAS | MSY | New Orleans | LA |
1231025.0 | 0.0 | LAS | MSY | New Orleans | LA |
1231750.0 | 30.0 | LAS | MSY | New Orleans | LA |
1241025.0 | 43.0 | LAS | MSY | New Orleans | LA |
1241750.0 | -4.0 | LAS | MSY | New Orleans | LA |
1251055.0 | 5.0 | LAS | MSY | New Orleans | LA |
1261025.0 | -1.0 | LAS | MSY | New Orleans | LA |
1261750.0 | 27.0 | LAS | MSY | New Orleans | LA |
1271025.0 | -2.0 | LAS | MSY | New Orleans | LA |
1271750.0 | 2.0 | LAS | MSY | New Orleans | LA |
1281025.0 | 0.0 | LAS | MSY | New Orleans | LA |
1281750.0 | 0.0 | LAS | MSY | New Orleans | LA |
1291025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1291750.0 | -5.0 | LAS | MSY | New Orleans | LA |
1301025.0 | 0.0 | LAS | MSY | New Orleans | LA |
1301750.0 | 35.0 | LAS | MSY | New Orleans | LA |
1311025.0 | 11.0 | LAS | MSY | New Orleans | LA |
1311750.0 | 25.0 | LAS | MSY | New Orleans | LA |
2011530.0 | -3.0 | MCI | MSY | New Orleans | LA |
2021105.0 | -4.0 | MCI | MSY | New Orleans | LA |
2031105.0 | -1.0 | MCI | MSY | New Orleans | LA |
2041105.0 | 1.0 | MCI | MSY | New Orleans | LA |
2051105.0 | 6.0 | MCI | MSY | New Orleans | LA |
2061105.0 | 40.0 | MCI | MSY | New Orleans | LA |
2071105.0 | 7.0 | MCI | MSY | New Orleans | LA |
2081530.0 | 2.0 | MCI | MSY | New Orleans | LA |
2091105.0 | -2.0 | MCI | MSY | New Orleans | LA |
2101105.0 | -2.0 | MCI | MSY | New Orleans | LA |
2111105.0 | -1.0 | MCI | MSY | New Orleans | LA |
2121105.0 | 7.0 | MCI | MSY | New Orleans | LA |
2130800.0 | -5.0 | MCI | MSY | New Orleans | LA |
2140830.0 | 3.0 | MCI | MSY | New Orleans | LA |
2150750.0 | 7.0 | MCI | MSY | New Orleans | LA |
2160930.0 | -1.0 | MCI | MSY | New Orleans | LA |
2170830.0 | 10.0 | MCI | MSY | New Orleans | LA |
2180830.0 | 2.0 | MCI | MSY | New Orleans | LA |
2190830.0 | -4.0 | MCI | MSY | New Orleans | LA |
2200830.0 | 9.0 | MCI | MSY | New Orleans | LA |
2210830.0 | -2.0 | MCI | MSY | New Orleans | LA |
2220750.0 | 0.0 | MCI | MSY | New Orleans | LA |
2230930.0 | 2.0 | MCI | MSY | New Orleans | LA |
2240830.0 | 3.0 | MCI | MSY | New Orleans | LA |
2250830.0 | -5.0 | MCI | MSY | New Orleans | LA |
2260830.0 | 251.0 | MCI | MSY | New Orleans | LA |
2270830.0 | -1.0 | MCI | MSY | New Orleans | LA |
2280830.0 | -2.0 | MCI | MSY | New Orleans | LA |
3010750.0 | 0.0 | MCI | MSY | New Orleans | LA |
3020930.0 | 35.0 | MCI | MSY | New Orleans | LA |
3030830.0 | 1.0 | MCI | MSY | New Orleans | LA |
3040830.0 | 11.0 | MCI | MSY | New Orleans | LA |
3050830.0 | 2.0 | MCI | MSY | New Orleans | LA |
3060830.0 | -1.0 | MCI | MSY | New Orleans | LA |
3070830.0 | -2.0 | MCI | MSY | New Orleans | LA |
3081610.0 | 93.0 | MCI | MSY | New Orleans | LA |
3090950.0 | -1.0 | MCI | MSY | New Orleans | LA |
3100950.0 | 8.0 | MCI | MSY | New Orleans | LA |
3110950.0 | 36.0 | MCI | MSY | New Orleans | LA |
3120950.0 | 68.0 | MCI | MSY | New Orleans | LA |
3130950.0 | 13.0 | MCI | MSY | New Orleans | LA |
3140950.0 | 1.0 | MCI | MSY | New Orleans | LA |
3151610.0 | 16.0 | MCI | MSY | New Orleans | LA |
3160950.0 | -5.0 | MCI | MSY | New Orleans | LA |
3170950.0 | -1.0 | MCI | MSY | New Orleans | LA |
3180950.0 | 1.0 | MCI | MSY | New Orleans | LA |
3190950.0 | -1.0 | MCI | MSY | New Orleans | LA |
3200950.0 | 3.0 | MCI | MSY | New Orleans | LA |
3210950.0 | 7.0 | MCI | MSY | New Orleans | LA |
3221610.0 | 38.0 | MCI | MSY | New Orleans | LA |
3230950.0 | -1.0 | MCI | MSY | New Orleans | LA |
3240950.0 | 0.0 | MCI | MSY | New Orleans | LA |
3250950.0 | 4.0 | MCI | MSY | New Orleans | LA |
3260950.0 | 5.0 | MCI | MSY | New Orleans | LA |
3270950.0 | 12.0 | MCI | MSY | New Orleans | LA |
3280950.0 | 0.0 | MCI | MSY | New Orleans | LA |
3291610.0 | 12.0 | MCI | MSY | New Orleans | LA |
3300950.0 | -2.0 | MCI | MSY | New Orleans | LA |
3310950.0 | 3.0 | MCI | MSY | New Orleans | LA |
1011635.0 | -7.0 | MCI | MSY | New Orleans | LA |
1021635.0 | 96.0 | MCI | MSY | New Orleans | LA |
1031635.0 | 3.0 | MCI | MSY | New Orleans | LA |
1041205.0 | 1.0 | MCI | MSY | New Orleans | LA |
1051635.0 | 60.0 | MCI | MSY | New Orleans | LA |
1061635.0 | -7.0 | MCI | MSY | New Orleans | LA |
1071105.0 | 14.0 | MCI | MSY | New Orleans | LA |
1081105.0 | 4.0 | MCI | MSY | New Orleans | LA |
1091105.0 | 11.0 | MCI | MSY | New Orleans | LA |
1101105.0 | -1.0 | MCI | MSY | New Orleans | LA |
1111530.0 | 11.0 | MCI | MSY | New Orleans | LA |
1121105.0 | 0.0 | MCI | MSY | New Orleans | LA |
1131105.0 | -5.0 | MCI | MSY | New Orleans | LA |
1141105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1151105.0 | 9.0 | MCI | MSY | New Orleans | LA |
1161105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1171105.0 | -1.0 | MCI | MSY | New Orleans | LA |
1181530.0 | 48.0 | MCI | MSY | New Orleans | LA |
1191105.0 | 0.0 | MCI | MSY | New Orleans | LA |
1201105.0 | -4.0 | MCI | MSY | New Orleans | LA |
1211105.0 | 2.0 | MCI | MSY | New Orleans | LA |
1221105.0 | 19.0 | MCI | MSY | New Orleans | LA |
1231105.0 | -2.0 | MCI | MSY | New Orleans | LA |
1241105.0 | 72.0 | MCI | MSY | New Orleans | LA |
1251530.0 | 5.0 | MCI | MSY | New Orleans | LA |
1261105.0 | -5.0 | MCI | MSY | New Orleans | LA |
1271105.0 | -6.0 | MCI | MSY | New Orleans | LA |
1281105.0 | 0.0 | MCI | MSY | New Orleans | LA |
1291105.0 | 0.0 | MCI | MSY | New Orleans | LA |
1301105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1311105.0 | 1.0 | MCI | MSY | New Orleans | LA |
3011530.0 | 72.0 | BNA | MSY | New Orleans | LA |
3010850.0 | 2.0 | BNA | MSY | New Orleans | LA |
3011245.0 | 4.0 | BNA | MSY | New Orleans | LA |
3021610.0 | 14.0 | BNA | MSY | New Orleans | LA |
3021350.0 | 15.0 | BNA | MSY | New Orleans | LA |
3021800.0 | 56.0 | BNA | MSY | New Orleans | LA |
3031610.0 | 13.0 | BNA | MSY | New Orleans | LA |
3030810.0 | 0.0 | BNA | MSY | New Orleans | LA |
3031350.0 | -1.0 | BNA | MSY | New Orleans | LA |
3031800.0 | -5.0 | BNA | MSY | New Orleans | LA |
3041610.0 | -3.0 | BNA | MSY | New Orleans | LA |
3040810.0 | -4.0 | BNA | MSY | New Orleans | LA |
3041350.0 | 10.0 | BNA | MSY | New Orleans | LA |
3041800.0 | 7.0 | BNA | MSY | New Orleans | LA |
3051610.0 | -1.0 | BNA | MSY | New Orleans | LA |
3050810.0 | 11.0 | BNA | MSY | New Orleans | LA |
3051350.0 | 48.0 | BNA | MSY | New Orleans | LA |
3051800.0 | 21.0 | BNA | MSY | New Orleans | LA |
3061610.0 | 26.0 | BNA | MSY | New Orleans | LA |
3060810.0 | -5.0 | BNA | MSY | New Orleans | LA |
3061350.0 | 13.0 | BNA | MSY | New Orleans | LA |
3061800.0 | 5.0 | BNA | MSY | New Orleans | LA |
3071610.0 | 12.0 | BNA | MSY | New Orleans | LA |
3070810.0 | -3.0 | BNA | MSY | New Orleans | LA |
3071350.0 | 10.0 | BNA | MSY | New Orleans | LA |
3071800.0 | 7.0 | BNA | MSY | New Orleans | LA |
3081540.0 | 27.0 | BNA | MSY | New Orleans | LA |
3081335.0 | -4.0 | BNA | MSY | New Orleans | LA |
3080945.0 | 11.0 | BNA | MSY | New Orleans | LA |
3091620.0 | 0.0 | BNA | MSY | New Orleans | LA |
3091820.0 | 25.0 | BNA | MSY | New Orleans | LA |
3091420.0 | 12.0 | BNA | MSY | New Orleans | LA |
3100820.0 | -1.0 | BNA | MSY | New Orleans | LA |
3101420.0 | 41.0 | BNA | MSY | New Orleans | LA |
3101820.0 | 11.0 | BNA | MSY | New Orleans | LA |
3101620.0 | 7.0 | BNA | MSY | New Orleans | LA |
3110820.0 | 3.0 | BNA | MSY | New Orleans | LA |
3111420.0 | 15.0 | BNA | MSY | New Orleans | LA |
3111820.0 | 29.0 | BNA | MSY | New Orleans | LA |
3111620.0 | 5.0 | BNA | MSY | New Orleans | LA |
3120820.0 | 12.0 | BNA | MSY | New Orleans | LA |
3121420.0 | 40.0 | BNA | MSY | New Orleans | LA |
3121820.0 | 15.0 | BNA | MSY | New Orleans | LA |
3121620.0 | 24.0 | BNA | MSY | New Orleans | LA |
3130820.0 | 126.0 | BNA | MSY | New Orleans | LA |
3131420.0 | 13.0 | BNA | MSY | New Orleans | LA |
3131820.0 | 55.0 | BNA | MSY | New Orleans | LA |
3131620.0 | 40.0 | BNA | MSY | New Orleans | LA |
3140820.0 | -2.0 | BNA | MSY | New Orleans | LA |
3141420.0 | 35.0 | BNA | MSY | New Orleans | LA |
3141820.0 | 21.0 | BNA | MSY | New Orleans | LA |
3141620.0 | 36.0 | BNA | MSY | New Orleans | LA |
3151335.0 | -3.0 | BNA | MSY | New Orleans | LA |
3150945.0 | 3.0 | BNA | MSY | New Orleans | LA |
3151540.0 | -3.0 | BNA | MSY | New Orleans | LA |
3161620.0 | 22.0 | BNA | MSY | New Orleans | LA |
3161820.0 | 39.0 | BNA | MSY | New Orleans | LA |
3161420.0 | 0.0 | BNA | MSY | New Orleans | LA |
3170820.0 | 1.0 | BNA | MSY | New Orleans | LA |
3171420.0 | 112.0 | BNA | MSY | New Orleans | LA |
3171820.0 | 12.0 | BNA | MSY | New Orleans | LA |
3171620.0 | 56.0 | BNA | MSY | New Orleans | LA |
3180820.0 | 0.0 | BNA | MSY | New Orleans | LA |
3181420.0 | 25.0 | BNA | MSY | New Orleans | LA |
3181820.0 | 36.0 | BNA | MSY | New Orleans | LA |
3181620.0 | 1.0 | BNA | MSY | New Orleans | LA |
3190820.0 | -2.0 | BNA | MSY | New Orleans | LA |
3191420.0 | 54.0 | BNA | MSY | New Orleans | LA |
3191820.0 | 7.0 | BNA | MSY | New Orleans | LA |
3191620.0 | 29.0 | BNA | MSY | New Orleans | LA |
3200820.0 | 0.0 | BNA | MSY | New Orleans | LA |
3201420.0 | 18.0 | BNA | MSY | New Orleans | LA |
3201820.0 | 9.0 | BNA | MSY | New Orleans | LA |
3201620.0 | 79.0 | BNA | MSY | New Orleans | LA |
3210820.0 | 3.0 | BNA | MSY | New Orleans | LA |
3211420.0 | 22.0 | BNA | MSY | New Orleans | LA |
3211820.0 | 30.0 | BNA | MSY | New Orleans | LA |
3211620.0 | 22.0 | BNA | MSY | New Orleans | LA |
3221335.0 | -2.0 | BNA | MSY | New Orleans | LA |
3220945.0 | 0.0 | BNA | MSY | New Orleans | LA |
3221540.0 | -1.0 | BNA | MSY | New Orleans | LA |
3231620.0 | -2.0 | BNA | MSY | New Orleans | LA |
3231820.0 | 6.0 | BNA | MSY | New Orleans | LA |
3231420.0 | -3.0 | BNA | MSY | New Orleans | LA |
3240820.0 | 0.0 | BNA | MSY | New Orleans | LA |
3241420.0 | 27.0 | BNA | MSY | New Orleans | LA |
3241820.0 | 44.0 | BNA | MSY | New Orleans | LA |
3241620.0 | 41.0 | BNA | MSY | New Orleans | LA |
3250820.0 | 0.0 | BNA | MSY | New Orleans | LA |
3251420.0 | 70.0 | BNA | MSY | New Orleans | LA |
3251820.0 | 30.0 | BNA | MSY | New Orleans | LA |
3251620.0 | 30.0 | BNA | MSY | New Orleans | LA |
3260820.0 | -1.0 | BNA | MSY | New Orleans | LA |
3261420.0 | 8.0 | BNA | MSY | New Orleans | LA |
3261820.0 | 1.0 | BNA | MSY | New Orleans | LA |
3261620.0 | -4.0 | BNA | MSY | New Orleans | LA |
3270820.0 | 0.0 | BNA | MSY | New Orleans | LA |
3271420.0 | 25.0 | BNA | MSY | New Orleans | LA |
3271820.0 | 41.0 | BNA | MSY | New Orleans | LA |
3271620.0 | 23.0 | BNA | MSY | New Orleans | LA |
3280820.0 | -5.0 | BNA | MSY | New Orleans | LA |
3281420.0 | 52.0 | BNA | MSY | New Orleans | LA |
3281820.0 | 17.0 | BNA | MSY | New Orleans | LA |
3281620.0 | 15.0 | BNA | MSY | New Orleans | LA |
3291335.0 | 1.0 | BNA | MSY | New Orleans | LA |
3290945.0 | 20.0 | BNA | MSY | New Orleans | LA |
3291540.0 | 35.0 | BNA | MSY | New Orleans | LA |
3301620.0 | 0.0 | BNA | MSY | New Orleans | LA |
3301820.0 | 22.0 | BNA | MSY | New Orleans | LA |
3301420.0 | 10.0 | BNA | MSY | New Orleans | LA |
3310820.0 | -1.0 | BNA | MSY | New Orleans | LA |
3311420.0 | 19.0 | BNA | MSY | New Orleans | LA |
3311820.0 | 25.0 | BNA | MSY | New Orleans | LA |
3311620.0 | 30.0 | BNA | MSY | New Orleans | LA |
1010800.0 | -3.0 | BNA | MSY | New Orleans | LA |
1011210.0 | 7.0 | BNA | MSY | New Orleans | LA |
1011835.0 | 53.0 | BNA | MSY | New Orleans | LA |
1021215.0 | 43.0 | BNA | MSY | New Orleans | LA |
1021835.0 | 200.0 | BNA | MSY | New Orleans | LA |
1020800.0 | 29.0 | BNA | MSY | New Orleans | LA |
1031215.0 | 185.0 | BNA | MSY | New Orleans | LA |
1031835.0 | 226.0 | BNA | MSY | New Orleans | LA |
1030800.0 | -1.0 | BNA | MSY | New Orleans | LA |
1041420.0 | 174.0 | BNA | MSY | New Orleans | LA |
1040835.0 | 18.0 | BNA | MSY | New Orleans | LA |
1051215.0 | 85.0 | BNA | MSY | New Orleans | LA |
1051835.0 | 283.0 | BNA | MSY | New Orleans | LA |
1050800.0 | 3.0 | BNA | MSY | New Orleans | LA |
1061215.0 | 150.0 | BNA | MSY | New Orleans | LA |
1061835.0 | 133.0 | BNA | MSY | New Orleans | LA |
1060800.0 | 102.0 | BNA | MSY | New Orleans | LA |
1071240.0 | 57.0 | BNA | MSY | New Orleans | LA |
1071455.0 | 12.0 | BNA | MSY | New Orleans | LA |
1070905.0 | 5.0 | BNA | MSY | New Orleans | LA |
1071735.0 | 131.0 | BNA | MSY | New Orleans | LA |
1081240.0 | 19.0 | BNA | MSY | New Orleans | LA |
1081455.0 | 2.0 | BNA | MSY | New Orleans | LA |
1080905.0 | -2.0 | BNA | MSY | New Orleans | LA |
1081735.0 | 34.0 | BNA | MSY | New Orleans | LA |
1091240.0 | 14.0 | BNA | MSY | New Orleans | LA |
1091455.0 | 24.0 | BNA | MSY | New Orleans | LA |
1090905.0 | -1.0 | BNA | MSY | New Orleans | LA |
1091735.0 | 28.0 | BNA | MSY | New Orleans | LA |
1101240.0 | 50.0 | BNA | MSY | New Orleans | LA |
1101455.0 | 11.0 | BNA | MSY | New Orleans | LA |
1100905.0 | 4.0 | BNA | MSY | New Orleans | LA |
1101735.0 | 33.0 | BNA | MSY | New Orleans | LA |
1111305.0 | 0.0 | BNA | MSY | New Orleans | LA |
1111805.0 | 2.0 | BNA | MSY | New Orleans | LA |
1110950.0 | 0.0 | BNA | MSY | New Orleans | LA |
1121235.0 | 8.0 | BNA | MSY | New Orleans | LA |
1121455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1121735.0 | 4.0 | BNA | MSY | New Orleans | LA |
1131240.0 | 9.0 | BNA | MSY | New Orleans | LA |
1131455.0 | 2.0 | BNA | MSY | New Orleans | LA |
1130850.0 | -1.0 | BNA | MSY | New Orleans | LA |
1131735.0 | 15.0 | BNA | MSY | New Orleans | LA |
1141240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1141455.0 | -1.0 | BNA | MSY | New Orleans | LA |
1140850.0 | -4.0 | BNA | MSY | New Orleans | LA |
1141735.0 | 7.0 | BNA | MSY | New Orleans | LA |
1151240.0 | -2.0 | BNA | MSY | New Orleans | LA |
1151455.0 | 1.0 | BNA | MSY | New Orleans | LA |
1150850.0 | -2.0 | BNA | MSY | New Orleans | LA |
1151735.0 | 9.0 | BNA | MSY | New Orleans | LA |
1161240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1161455.0 | 17.0 | BNA | MSY | New Orleans | LA |
1160850.0 | -2.0 | BNA | MSY | New Orleans | LA |
1161735.0 | 52.0 | BNA | MSY | New Orleans | LA |
1171240.0 | 21.0 | BNA | MSY | New Orleans | LA |
1171455.0 | 13.0 | BNA | MSY | New Orleans | LA |
1170850.0 | 10.0 | BNA | MSY | New Orleans | LA |
1171735.0 | 40.0 | BNA | MSY | New Orleans | LA |
1181305.0 | 2.0 | BNA | MSY | New Orleans | LA |
1181805.0 | 42.0 | BNA | MSY | New Orleans | LA |
1180950.0 | 4.0 | BNA | MSY | New Orleans | LA |
1191235.0 | 23.0 | BNA | MSY | New Orleans | LA |
1191455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1191735.0 | 64.0 | BNA | MSY | New Orleans | LA |
1201240.0 | 8.0 | BNA | MSY | New Orleans | LA |
1201455.0 | 5.0 | BNA | MSY | New Orleans | LA |
1200850.0 | 7.0 | BNA | MSY | New Orleans | LA |
1201735.0 | -3.0 | BNA | MSY | New Orleans | LA |
1211240.0 | 41.0 | BNA | MSY | New Orleans | LA |
1211455.0 | -1.0 | BNA | MSY | New Orleans | LA |
1210850.0 | 18.0 | BNA | MSY | New Orleans | LA |
1211735.0 | 17.0 | BNA | MSY | New Orleans | LA |
1221240.0 | 19.0 | BNA | MSY | New Orleans | LA |
1221455.0 | -1.0 | BNA | MSY | New Orleans | LA |
1220850.0 | -4.0 | BNA | MSY | New Orleans | LA |
1221735.0 | 118.0 | BNA | MSY | New Orleans | LA |
1231240.0 | 20.0 | BNA | MSY | New Orleans | LA |
1231455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1230850.0 | 18.0 | BNA | MSY | New Orleans | LA |
1231735.0 | 33.0 | BNA | MSY | New Orleans | LA |
1241240.0 | 20.0 | BNA | MSY | New Orleans | LA |
1241455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1240850.0 | 12.0 | BNA | MSY | New Orleans | LA |
1241735.0 | 0.0 | BNA | MSY | New Orleans | LA |
1251305.0 | 27.0 | BNA | MSY | New Orleans | LA |
1251805.0 | 19.0 | BNA | MSY | New Orleans | LA |
1250950.0 | -2.0 | BNA | MSY | New Orleans | LA |
1261235.0 | 0.0 | BNA | MSY | New Orleans | LA |
1261455.0 | 5.0 | BNA | MSY | New Orleans | LA |
1261735.0 | 3.0 | BNA | MSY | New Orleans | LA |
1271240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1271455.0 | -3.0 | BNA | MSY | New Orleans | LA |
1270850.0 | -2.0 | BNA | MSY | New Orleans | LA |
1271735.0 | 10.0 | BNA | MSY | New Orleans | LA |
1281240.0 | 0.0 | BNA | MSY | New Orleans | LA |
1281455.0 | 0.0 | BNA | MSY | New Orleans | LA |
1280850.0 | 0.0 | BNA | MSY | New Orleans | LA |
1281735.0 | 0.0 | BNA | MSY | New Orleans | LA |
1291240.0 | 13.0 | BNA | MSY | New Orleans | LA |
1291455.0 | -2.0 | BNA | MSY | New Orleans | LA |
1290850.0 | 0.0 | BNA | MSY | New Orleans | LA |
1291735.0 | 9.0 | BNA | MSY | New Orleans | LA |
1301240.0 | 38.0 | BNA | MSY | New Orleans | LA |
1301455.0 | 6.0 | BNA | MSY | New Orleans | LA |
1300850.0 | -1.0 | BNA | MSY | New Orleans | LA |
1301735.0 | 57.0 | BNA | MSY | New Orleans | LA |
1311240.0 | 31.0 | BNA | MSY | New Orleans | LA |
1311455.0 | 22.0 | BNA | MSY | New Orleans | LA |
1310850.0 | -2.0 | BNA | MSY | New Orleans | LA |
1311735.0 | 6.0 | BNA | MSY | New Orleans | LA |
2011305.0 | -1.0 | BNA | MSY | New Orleans | LA |
2011805.0 | -6.0 | BNA | MSY | New Orleans | LA |
2010950.0 | 4.0 | BNA | MSY | New Orleans | LA |
2021455.0 | 11.0 | BNA | MSY | New Orleans | LA |
2021235.0 | 26.0 | BNA | MSY | New Orleans | LA |
2021650.0 | 77.0 | BNA | MSY | New Orleans | LA |
2031240.0 | 30.0 | BNA | MSY | New Orleans | LA |
2031455.0 | 10.0 | BNA | MSY | New Orleans | LA |
2030850.0 | -1.0 | BNA | MSY | New Orleans | LA |
2031735.0 | -3.0 | BNA | MSY | New Orleans | LA |
2041240.0 | 56.0 | BNA | MSY | New Orleans | LA |
2041455.0 | 23.0 | BNA | MSY | New Orleans | LA |
2040850.0 | -1.0 | BNA | MSY | New Orleans | LA |
2041735.0 | 3.0 | BNA | MSY | New Orleans | LA |
2051240.0 | 33.0 | BNA | MSY | New Orleans | LA |
2051455.0 | 14.0 | BNA | MSY | New Orleans | LA |
2050850.0 | 19.0 | BNA | MSY | New Orleans | LA |
2051735.0 | 26.0 | BNA | MSY | New Orleans | LA |
2061240.0 | 43.0 | BNA | MSY | New Orleans | LA |
2061455.0 | -2.0 | BNA | MSY | New Orleans | LA |
2060850.0 | 10.0 | BNA | MSY | New Orleans | LA |
2061735.0 | 34.0 | BNA | MSY | New Orleans | LA |
2071240.0 | 88.0 | BNA | MSY | New Orleans | LA |
2071455.0 | 5.0 | BNA | MSY | New Orleans | LA |
2070850.0 | 1.0 | BNA | MSY | New Orleans | LA |
2071735.0 | 20.0 | BNA | MSY | New Orleans | LA |
2081305.0 | -6.0 | BNA | MSY | New Orleans | LA |
2081805.0 | 0.0 | BNA | MSY | New Orleans | LA |
2080950.0 | -3.0 | BNA | MSY | New Orleans | LA |
2091235.0 | 5.0 | BNA | MSY | New Orleans | LA |
2091455.0 | 2.0 | BNA | MSY | New Orleans | LA |
2091735.0 | 8.0 | BNA | MSY | New Orleans | LA |
2101240.0 | 25.0 | BNA | MSY | New Orleans | LA |
2101455.0 | 14.0 | BNA | MSY | New Orleans | LA |
2100850.0 | 9.0 | BNA | MSY | New Orleans | LA |
2101735.0 | -2.0 | BNA | MSY | New Orleans | LA |
2111240.0 | 145.0 | BNA | MSY | New Orleans | LA |
2111455.0 | -2.0 | BNA | MSY | New Orleans | LA |
2110850.0 | 96.0 | BNA | MSY | New Orleans | LA |
2111735.0 | 25.0 | BNA | MSY | New Orleans | LA |
2121240.0 | 8.0 | BNA | MSY | New Orleans | LA |
2121455.0 | 29.0 | BNA | MSY | New Orleans | LA |
2120850.0 | 3.0 | BNA | MSY | New Orleans | LA |
2121735.0 | 39.0 | BNA | MSY | New Orleans | LA |
2131350.0 | 5.0 | BNA | MSY | New Orleans | LA |
2131610.0 | 11.0 | BNA | MSY | New Orleans | LA |
2130810.0 | -4.0 | BNA | MSY | New Orleans | LA |
2131800.0 | 9.0 | BNA | MSY | New Orleans | LA |
2141610.0 | 37.0 | BNA | MSY | New Orleans | LA |
2140810.0 | 13.0 | BNA | MSY | New Orleans | LA |
2141350.0 | 46.0 | BNA | MSY | New Orleans | LA |
2141800.0 | 21.0 | BNA | MSY | New Orleans | LA |
// Build `tripGraph` GraphFrame
// This GraphFrame builds up on the vertices and edges based on our trips (flights)
val tripGraph = GraphFrame(tripVertices, tripEdges)
println(tripGraph)
// Build `tripGraphPrime` GraphFrame
// This graphframe contains a smaller subset of data to make it easier to display motifs and subgraphs (below)
val tripEdgesPrime = departureDelays_geo.select("tripid", "delay", "src", "dst")
val tripGraphPrime = GraphFrame(tripVertices, tripEdgesPrime)
GraphFrame(v:[id: string, City: string ... 2 more fields], e:[src: string, dst: string ... 4 more fields])
tripGraph: org.graphframes.GraphFrame = GraphFrame(v:[id: string, City: string ... 2 more fields], e:[src: string, dst: string ... 4 more fields])
tripEdgesPrime: org.apache.spark.sql.DataFrame = [tripid: int, delay: int ... 2 more fields]
tripGraphPrime: org.graphframes.GraphFrame = GraphFrame(v:[id: string, City: string ... 2 more fields], e:[src: string, dst: string ... 2 more fields])
Simple Queries
Let's start with a set of simple graph queries to understand flight performance and departure delays
println(s"Airports: ${tripGraph.vertices.count()}")
println(s"Trips: ${tripGraph.edges.count()}")
Airports: 279
Trips: 1361141
// Finding the longest Delay
val longestDelay = tripGraph.edges.groupBy().max("delay")
display(longestDelay)
max(delay) |
---|
1642.0 |
1642.0/60.0
res13: Double = 27.366666666666667
// Determining number of on-time / early flights vs. delayed flights
println(s"On-time / Early Flights: ${tripGraph.edges.filter("delay <= 0").count()}")
println(s"Delayed Flights: ${tripGraph.edges.filter("delay > 0").count()}")
On-time / Early Flights: 780469
Delayed Flights: 580672
What flights departing SFO are most likely to have significant delays
Note, delay can be <= 0 meaning the flight left on time or early
//tripGraph.createOrReplaceTempView("tripgraph")
val sfoDelayedTrips = tripGraph.edges.
filter("src = 'SFO' and delay > 0").
groupBy("src", "dst").
avg("delay").
sort(desc("avg(delay)"))
sfoDelayedTrips: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [src: string, dst: string ... 1 more field]
display(sfoDelayedTrips)
src | dst | avg(delay) |
---|---|---|
SFO | OKC | 59.073170731707314 |
SFO | JAC | 57.13333333333333 |
SFO | COS | 53.976190476190474 |
SFO | OTH | 48.09090909090909 |
SFO | SAT | 47.625 |
SFO | MOD | 46.80952380952381 |
SFO | SUN | 46.723404255319146 |
SFO | CIC | 46.72164948453608 |
SFO | ABQ | 44.8125 |
SFO | ASE | 44.285714285714285 |
SFO | PIT | 43.875 |
SFO | MIA | 43.81730769230769 |
SFO | FAT | 43.23972602739726 |
SFO | MFR | 43.11848341232228 |
SFO | SBP | 43.09770114942529 |
SFO | MSP | 42.766917293233085 |
SFO | BOI | 42.65482233502538 |
SFO | RDM | 41.98823529411764 |
SFO | AUS | 41.690677966101696 |
SFO | SLC | 41.407272727272726 |
SFO | JFK | 41.01379310344828 |
SFO | PSP | 40.909909909909906 |
SFO | PHX | 40.67272727272727 |
SFO | MRY | 40.61764705882353 |
SFO | ACV | 40.3728813559322 |
SFO | LAS | 40.107602339181284 |
SFO | TUS | 39.853658536585364 |
SFO | SAN | 38.97361809045226 |
SFO | SBA | 38.758620689655174 |
SFO | BFL | 38.51136363636363 |
SFO | RDU | 38.170731707317074 |
SFO | STL | 38.13513513513514 |
SFO | IND | 38.114285714285714 |
SFO | EUG | 37.573913043478264 |
SFO | RNO | 36.81372549019608 |
SFO | BUR | 36.75675675675676 |
SFO | LGB | 36.752941176470586 |
SFO | HNL | 36.25367647058823 |
SFO | LAX | 36.165543071161046 |
SFO | RDD | 36.11009174311926 |
SFO | MSY | 35.421052631578945 |
SFO | SMF | 34.936 |
SFO | MDW | 34.824742268041234 |
SFO | FLL | 34.76842105263158 |
SFO | SEA | 34.68854961832061 |
SFO | MCI | 34.68571428571428 |
SFO | DFW | 34.36642599277978 |
SFO | OGG | 34.171875 |
SFO | PDX | 34.14430894308943 |
SFO | ORD | 33.991130820399114 |
SFO | LIH | 32.93023255813954 |
SFO | DEN | 32.861491628614914 |
SFO | PSC | 32.604651162790695 |
SFO | PHL | 32.440677966101696 |
SFO | BWI | 31.70212765957447 |
SFO | ONT | 31.49079754601227 |
SFO | SNA | 31.18426103646833 |
SFO | MCO | 31.03488372093023 |
SFO | MKE | 31.03448275862069 |
SFO | CLE | 30.979591836734695 |
SFO | EWR | 30.354285714285716 |
SFO | BOS | 29.623471882640587 |
SFO | LMT | 29.233333333333334 |
SFO | DTW | 28.34722222222222 |
SFO | IAH | 28.322105263157894 |
SFO | CVG | 27.03125 |
SFO | ATL | 26.84860557768924 |
SFO | IAD | 26.125964010282775 |
SFO | ANC | 25.5 |
SFO | BZN | 23.964285714285715 |
SFO | CLT | 22.636363636363637 |
SFO | DCA | 21.896103896103895 |
// After displaying tripDelays, use Plot Options to set `state_dst` as a Key.
val tripDelays = tripGraph.edges.filter($"delay" > 0)
display(tripDelays)
tripid | delay | src | dst | city_dst | state_dst |
---|---|---|---|---|---|
1021111.0 | 7.0 | MSP | INL | International Falls | MN |
1061115.0 | 33.0 | MSP | INL | International Falls | MN |
1071115.0 | 23.0 | MSP | INL | International Falls | MN |
1091115.0 | 11.0 | MSP | INL | International Falls | MN |
1171115.0 | 4.0 | MSP | INL | International Falls | MN |
2091925.0 | 1.0 | MSP | INL | International Falls | MN |
2152015.0 | 16.0 | MSP | INL | International Falls | MN |
2161925.0 | 169.0 | MSP | INL | International Falls | MN |
2171115.0 | 27.0 | MSP | INL | International Falls | MN |
2181115.0 | 96.0 | MSP | INL | International Falls | MN |
2281115.0 | 5.0 | MSP | INL | International Falls | MN |
3031115.0 | 17.0 | MSP | INL | International Falls | MN |
3171115.0 | 25.0 | MSP | INL | International Falls | MN |
3181115.0 | 2.0 | MSP | INL | International Falls | MN |
3271115.0 | 9.0 | MSP | INL | International Falls | MN |
2020709.0 | 59.0 | EWR | MSY | New Orleans | LA |
2021654.0 | 21.0 | EWR | MSY | New Orleans | LA |
2041230.0 | 24.0 | EWR | MSY | New Orleans | LA |
2040719.0 | 168.0 | EWR | MSY | New Orleans | LA |
2041730.0 | 88.0 | EWR | MSY | New Orleans | LA |
2042043.0 | 106.0 | EWR | MSY | New Orleans | LA |
2052043.0 | 46.0 | EWR | MSY | New Orleans | LA |
2061659.0 | 82.0 | EWR | MSY | New Orleans | LA |
2061230.0 | 61.0 | EWR | MSY | New Orleans | LA |
2062043.0 | 7.0 | EWR | MSY | New Orleans | LA |
2070719.0 | 8.0 | EWR | MSY | New Orleans | LA |
2071659.0 | 19.0 | EWR | MSY | New Orleans | LA |
2071230.0 | 27.0 | EWR | MSY | New Orleans | LA |
2072048.0 | 47.0 | EWR | MSY | New Orleans | LA |
2091229.0 | 95.0 | EWR | MSY | New Orleans | LA |
2092043.0 | 32.0 | EWR | MSY | New Orleans | LA |
2100719.0 | 14.0 | EWR | MSY | New Orleans | LA |
2101659.0 | 16.0 | EWR | MSY | New Orleans | LA |
2111230.0 | 10.0 | EWR | MSY | New Orleans | LA |
2110719.0 | 46.0 | EWR | MSY | New Orleans | LA |
2120719.0 | 1.0 | EWR | MSY | New Orleans | LA |
2120929.0 | 89.0 | EWR | MSY | New Orleans | LA |
2122043.0 | 36.0 | EWR | MSY | New Orleans | LA |
2182041.0 | 36.0 | EWR | MSY | New Orleans | LA |
2190727.0 | 15.0 | EWR | MSY | New Orleans | LA |
2202041.0 | 51.0 | EWR | MSY | New Orleans | LA |
2220659.0 | 8.0 | EWR | MSY | New Orleans | LA |
2232041.0 | 8.0 | EWR | MSY | New Orleans | LA |
2240729.0 | 6.0 | EWR | MSY | New Orleans | LA |
2260727.0 | 23.0 | EWR | MSY | New Orleans | LA |
2262041.0 | 174.0 | EWR | MSY | New Orleans | LA |
2270738.0 | 8.0 | EWR | MSY | New Orleans | LA |
2272041.0 | 32.0 | EWR | MSY | New Orleans | LA |
2280729.0 | 12.0 | EWR | MSY | New Orleans | LA |
2282041.0 | 49.0 | EWR | MSY | New Orleans | LA |
2281000.0 | 2.0 | EWR | MSY | New Orleans | LA |
2051230.0 | 216.0 | EWR | MSY | New Orleans | LA |
2131536.0 | 273.0 | EWR | MSY | New Orleans | LA |
2141536.0 | 6.0 | EWR | MSY | New Orleans | LA |
2151902.0 | 31.0 | EWR | MSY | New Orleans | LA |
2151536.0 | 66.0 | EWR | MSY | New Orleans | LA |
2161536.0 | 7.0 | EWR | MSY | New Orleans | LA |
2171536.0 | 3.0 | EWR | MSY | New Orleans | LA |
2181536.0 | 26.0 | EWR | MSY | New Orleans | LA |
2211536.0 | 34.0 | EWR | MSY | New Orleans | LA |
2221536.0 | 65.0 | EWR | MSY | New Orleans | LA |
2281536.0 | 8.0 | EWR | MSY | New Orleans | LA |
2111815.0 | 4.0 | EWR | MSY | New Orleans | LA |
2121815.0 | 64.0 | EWR | MSY | New Orleans | LA |
2141635.0 | 52.0 | EWR | MSY | New Orleans | LA |
2161635.0 | 21.0 | EWR | MSY | New Orleans | LA |
2171635.0 | 23.0 | EWR | MSY | New Orleans | LA |
2191635.0 | 21.0 | EWR | MSY | New Orleans | LA |
2211635.0 | 292.0 | EWR | MSY | New Orleans | LA |
2220730.0 | 28.0 | EWR | MSY | New Orleans | LA |
2251635.0 | 6.0 | EWR | MSY | New Orleans | LA |
2261635.0 | 10.0 | EWR | MSY | New Orleans | LA |
3032041.0 | 113.0 | EWR | MSY | New Orleans | LA |
3052041.0 | 4.0 | EWR | MSY | New Orleans | LA |
3061252.0 | 67.0 | EWR | MSY | New Orleans | LA |
3062100.0 | 21.0 | EWR | MSY | New Orleans | LA |
3072100.0 | 13.0 | EWR | MSY | New Orleans | LA |
3081250.0 | 5.0 | EWR | MSY | New Orleans | LA |
3112059.0 | 181.0 | EWR | MSY | New Orleans | LA |
3122059.0 | 22.0 | EWR | MSY | New Orleans | LA |
3121252.0 | 161.0 | EWR | MSY | New Orleans | LA |
3140705.0 | 66.0 | EWR | MSY | New Orleans | LA |
3141252.0 | 39.0 | EWR | MSY | New Orleans | LA |
3150700.0 | 2.0 | EWR | MSY | New Orleans | LA |
3151250.0 | 34.0 | EWR | MSY | New Orleans | LA |
3171252.0 | 22.0 | EWR | MSY | New Orleans | LA |
3172059.0 | 132.0 | EWR | MSY | New Orleans | LA |
3181252.0 | 2.0 | EWR | MSY | New Orleans | LA |
3192059.0 | 16.0 | EWR | MSY | New Orleans | LA |
3202059.0 | 77.0 | EWR | MSY | New Orleans | LA |
3211252.0 | 9.0 | EWR | MSY | New Orleans | LA |
3212059.0 | 11.0 | EWR | MSY | New Orleans | LA |
3231255.0 | 5.0 | EWR | MSY | New Orleans | LA |
3252059.0 | 121.0 | EWR | MSY | New Orleans | LA |
3262059.0 | 49.0 | EWR | MSY | New Orleans | LA |
3291600.0 | 1.0 | EWR | MSY | New Orleans | LA |
3301255.0 | 64.0 | EWR | MSY | New Orleans | LA |
3302059.0 | 166.0 | EWR | MSY | New Orleans | LA |
3311252.0 | 12.0 | EWR | MSY | New Orleans | LA |
3312059.0 | 7.0 | EWR | MSY | New Orleans | LA |
3011902.0 | 64.0 | EWR | MSY | New Orleans | LA |
3021536.0 | 9.0 | EWR | MSY | New Orleans | LA |
3090715.0 | 1.0 | EWR | MSY | New Orleans | LA |
3260659.0 | 63.0 | EWR | MSY | New Orleans | LA |
3300715.0 | 2.0 | EWR | MSY | New Orleans | LA |
3021635.0 | 16.0 | EWR | MSY | New Orleans | LA |
3041635.0 | 8.0 | EWR | MSY | New Orleans | LA |
3071635.0 | 5.0 | EWR | MSY | New Orleans | LA |
3091825.0 | 45.0 | EWR | MSY | New Orleans | LA |
3101825.0 | 10.0 | EWR | MSY | New Orleans | LA |
3111825.0 | 5.0 | EWR | MSY | New Orleans | LA |
3131825.0 | 123.0 | EWR | MSY | New Orleans | LA |
3141825.0 | 6.0 | EWR | MSY | New Orleans | LA |
3161825.0 | 24.0 | EWR | MSY | New Orleans | LA |
3171825.0 | 6.0 | EWR | MSY | New Orleans | LA |
3191825.0 | 223.0 | EWR | MSY | New Orleans | LA |
3201825.0 | 178.0 | EWR | MSY | New Orleans | LA |
3251825.0 | 222.0 | EWR | MSY | New Orleans | LA |
3261825.0 | 51.0 | EWR | MSY | New Orleans | LA |
3281825.0 | 26.0 | EWR | MSY | New Orleans | LA |
3301825.0 | 139.0 | EWR | MSY | New Orleans | LA |
3311825.0 | 25.0 | EWR | MSY | New Orleans | LA |
1050703.0 | 4.0 | EWR | MSY | New Orleans | LA |
1060705.0 | 36.0 | EWR | MSY | New Orleans | LA |
1071230.0 | 24.0 | EWR | MSY | New Orleans | LA |
1071730.0 | 161.0 | EWR | MSY | New Orleans | LA |
1072043.0 | 8.0 | EWR | MSY | New Orleans | LA |
1081230.0 | 66.0 | EWR | MSY | New Orleans | LA |
1082043.0 | 5.0 | EWR | MSY | New Orleans | LA |
1092043.0 | 63.0 | EWR | MSY | New Orleans | LA |
1101659.0 | 244.0 | EWR | MSY | New Orleans | LA |
1101230.0 | 110.0 | EWR | MSY | New Orleans | LA |
1102043.0 | 43.0 | EWR | MSY | New Orleans | LA |
1111230.0 | 87.0 | EWR | MSY | New Orleans | LA |
1121230.0 | 21.0 | EWR | MSY | New Orleans | LA |
1131230.0 | 14.0 | EWR | MSY | New Orleans | LA |
1132043.0 | 51.0 | EWR | MSY | New Orleans | LA |
1141230.0 | 30.0 | EWR | MSY | New Orleans | LA |
1141730.0 | 69.0 | EWR | MSY | New Orleans | LA |
1150719.0 | 42.0 | EWR | MSY | New Orleans | LA |
1151659.0 | 2.0 | EWR | MSY | New Orleans | LA |
1152043.0 | 22.0 | EWR | MSY | New Orleans | LA |
1162043.0 | 3.0 | EWR | MSY | New Orleans | LA |
1171659.0 | 46.0 | EWR | MSY | New Orleans | LA |
1172043.0 | 54.0 | EWR | MSY | New Orleans | LA |
1181230.0 | 20.0 | EWR | MSY | New Orleans | LA |
1191230.0 | 29.0 | EWR | MSY | New Orleans | LA |
1192043.0 | 5.0 | EWR | MSY | New Orleans | LA |
1202043.0 | 12.0 | EWR | MSY | New Orleans | LA |
1211230.0 | 102.0 | EWR | MSY | New Orleans | LA |
1221659.0 | 6.0 | EWR | MSY | New Orleans | LA |
1222043.0 | 70.0 | EWR | MSY | New Orleans | LA |
1230719.0 | 12.0 | EWR | MSY | New Orleans | LA |
1231659.0 | 94.0 | EWR | MSY | New Orleans | LA |
1231230.0 | 111.0 | EWR | MSY | New Orleans | LA |
1232043.0 | 13.0 | EWR | MSY | New Orleans | LA |
1241659.0 | 84.0 | EWR | MSY | New Orleans | LA |
1242043.0 | 56.0 | EWR | MSY | New Orleans | LA |
1250719.0 | 23.0 | EWR | MSY | New Orleans | LA |
1261654.0 | 113.0 | EWR | MSY | New Orleans | LA |
1261230.0 | 8.0 | EWR | MSY | New Orleans | LA |
1262043.0 | 31.0 | EWR | MSY | New Orleans | LA |
1300719.0 | 2.0 | EWR | MSY | New Orleans | LA |
1301659.0 | 9.0 | EWR | MSY | New Orleans | LA |
1302043.0 | 93.0 | EWR | MSY | New Orleans | LA |
1310719.0 | 34.0 | EWR | MSY | New Orleans | LA |
1311230.0 | 5.0 | EWR | MSY | New Orleans | LA |
1312043.0 | 28.0 | EWR | MSY | New Orleans | LA |
1011815.0 | 125.0 | EWR | MSY | New Orleans | LA |
1021815.0 | 33.0 | EWR | MSY | New Orleans | LA |
1051815.0 | 172.0 | EWR | MSY | New Orleans | LA |
1061815.0 | 151.0 | EWR | MSY | New Orleans | LA |
1071815.0 | 43.0 | EWR | MSY | New Orleans | LA |
1081815.0 | 14.0 | EWR | MSY | New Orleans | LA |
1091815.0 | 3.0 | EWR | MSY | New Orleans | LA |
1101815.0 | 10.0 | EWR | MSY | New Orleans | LA |
1141815.0 | 1.0 | EWR | MSY | New Orleans | LA |
1151815.0 | 1.0 | EWR | MSY | New Orleans | LA |
1161815.0 | 8.0 | EWR | MSY | New Orleans | LA |
1171815.0 | 22.0 | EWR | MSY | New Orleans | LA |
1180730.0 | 1.0 | EWR | MSY | New Orleans | LA |
1191815.0 | 5.0 | EWR | MSY | New Orleans | LA |
1201815.0 | 5.0 | EWR | MSY | New Orleans | LA |
1221815.0 | 3.0 | EWR | MSY | New Orleans | LA |
1241815.0 | 84.0 | EWR | MSY | New Orleans | LA |
2021025.0 | 3.0 | LAS | MSY | New Orleans | LA |
2041025.0 | 6.0 | LAS | MSY | New Orleans | LA |
2051750.0 | 29.0 | LAS | MSY | New Orleans | LA |
2061025.0 | 1.0 | LAS | MSY | New Orleans | LA |
2061750.0 | 48.0 | LAS | MSY | New Orleans | LA |
2071750.0 | 20.0 | LAS | MSY | New Orleans | LA |
2081055.0 | 2.0 | LAS | MSY | New Orleans | LA |
2091750.0 | 33.0 | LAS | MSY | New Orleans | LA |
2111025.0 | 15.0 | LAS | MSY | New Orleans | LA |
2121750.0 | 158.0 | LAS | MSY | New Orleans | LA |
2131855.0 | 11.0 | LAS | MSY | New Orleans | LA |
2131215.0 | 23.0 | LAS | MSY | New Orleans | LA |
2141855.0 | 22.0 | LAS | MSY | New Orleans | LA |
2141215.0 | 18.0 | LAS | MSY | New Orleans | LA |
2151635.0 | 4.0 | LAS | MSY | New Orleans | LA |
2161855.0 | 58.0 | LAS | MSY | New Orleans | LA |
2161215.0 | 17.0 | LAS | MSY | New Orleans | LA |
2171855.0 | 14.0 | LAS | MSY | New Orleans | LA |
2171215.0 | 10.0 | LAS | MSY | New Orleans | LA |
2181855.0 | 1.0 | LAS | MSY | New Orleans | LA |
2181215.0 | 58.0 | LAS | MSY | New Orleans | LA |
2191215.0 | 32.0 | LAS | MSY | New Orleans | LA |
2201855.0 | 14.0 | LAS | MSY | New Orleans | LA |
2201215.0 | 28.0 | LAS | MSY | New Orleans | LA |
2211855.0 | 4.0 | LAS | MSY | New Orleans | LA |
2211215.0 | 11.0 | LAS | MSY | New Orleans | LA |
2221635.0 | 133.0 | LAS | MSY | New Orleans | LA |
2231215.0 | 10.0 | LAS | MSY | New Orleans | LA |
2241215.0 | 16.0 | LAS | MSY | New Orleans | LA |
2251855.0 | 7.0 | LAS | MSY | New Orleans | LA |
2251215.0 | 15.0 | LAS | MSY | New Orleans | LA |
2261855.0 | 2.0 | LAS | MSY | New Orleans | LA |
2261215.0 | 16.0 | LAS | MSY | New Orleans | LA |
2271855.0 | 10.0 | LAS | MSY | New Orleans | LA |
2271215.0 | 32.0 | LAS | MSY | New Orleans | LA |
2281855.0 | 61.0 | LAS | MSY | New Orleans | LA |
2281215.0 | 94.0 | LAS | MSY | New Orleans | LA |
3010935.0 | 10.0 | LAS | MSY | New Orleans | LA |
3011635.0 | 39.0 | LAS | MSY | New Orleans | LA |
3031855.0 | 25.0 | LAS | MSY | New Orleans | LA |
3031215.0 | 8.0 | LAS | MSY | New Orleans | LA |
3041215.0 | 28.0 | LAS | MSY | New Orleans | LA |
3051215.0 | 27.0 | LAS | MSY | New Orleans | LA |
3061855.0 | 20.0 | LAS | MSY | New Orleans | LA |
3061215.0 | 10.0 | LAS | MSY | New Orleans | LA |
3071855.0 | 36.0 | LAS | MSY | New Orleans | LA |
3071215.0 | 14.0 | LAS | MSY | New Orleans | LA |
3080830.0 | 6.0 | LAS | MSY | New Orleans | LA |
3091905.0 | 4.0 | LAS | MSY | New Orleans | LA |
3101905.0 | 49.0 | LAS | MSY | New Orleans | LA |
3111905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3110840.0 | 84.0 | LAS | MSY | New Orleans | LA |
3121905.0 | 26.0 | LAS | MSY | New Orleans | LA |
3131905.0 | 37.0 | LAS | MSY | New Orleans | LA |
3130840.0 | 1.0 | LAS | MSY | New Orleans | LA |
3141905.0 | 14.0 | LAS | MSY | New Orleans | LA |
3150830.0 | 16.0 | LAS | MSY | New Orleans | LA |
3151940.0 | 95.0 | LAS | MSY | New Orleans | LA |
3171905.0 | 13.0 | LAS | MSY | New Orleans | LA |
3170840.0 | 3.0 | LAS | MSY | New Orleans | LA |
3181905.0 | 52.0 | LAS | MSY | New Orleans | LA |
3180840.0 | 2.0 | LAS | MSY | New Orleans | LA |
3201905.0 | 36.0 | LAS | MSY | New Orleans | LA |
3200840.0 | 68.0 | LAS | MSY | New Orleans | LA |
3220830.0 | 12.0 | LAS | MSY | New Orleans | LA |
3221940.0 | 11.0 | LAS | MSY | New Orleans | LA |
3231905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3230840.0 | 16.0 | LAS | MSY | New Orleans | LA |
3241905.0 | 9.0 | LAS | MSY | New Orleans | LA |
3240840.0 | 4.0 | LAS | MSY | New Orleans | LA |
3251905.0 | 10.0 | LAS | MSY | New Orleans | LA |
3261905.0 | 14.0 | LAS | MSY | New Orleans | LA |
3260840.0 | 3.0 | LAS | MSY | New Orleans | LA |
3271905.0 | 13.0 | LAS | MSY | New Orleans | LA |
3280840.0 | 33.0 | LAS | MSY | New Orleans | LA |
3291940.0 | 231.0 | LAS | MSY | New Orleans | LA |
3301905.0 | 7.0 | LAS | MSY | New Orleans | LA |
3300840.0 | 15.0 | LAS | MSY | New Orleans | LA |
3311905.0 | 19.0 | LAS | MSY | New Orleans | LA |
1011755.0 | 160.0 | LAS | MSY | New Orleans | LA |
1021805.0 | 138.0 | LAS | MSY | New Orleans | LA |
1020905.0 | 5.0 | LAS | MSY | New Orleans | LA |
1031805.0 | 154.0 | LAS | MSY | New Orleans | LA |
1030905.0 | 179.0 | LAS | MSY | New Orleans | LA |
1041655.0 | 113.0 | LAS | MSY | New Orleans | LA |
1040900.0 | 56.0 | LAS | MSY | New Orleans | LA |
1051805.0 | 53.0 | LAS | MSY | New Orleans | LA |
1061755.0 | 61.0 | LAS | MSY | New Orleans | LA |
1060905.0 | 23.0 | LAS | MSY | New Orleans | LA |
1071025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1071750.0 | 302.0 | LAS | MSY | New Orleans | LA |
1081025.0 | 7.0 | LAS | MSY | New Orleans | LA |
1081750.0 | 52.0 | LAS | MSY | New Orleans | LA |
1091750.0 | 8.0 | LAS | MSY | New Orleans | LA |
1101750.0 | 92.0 | LAS | MSY | New Orleans | LA |
1111055.0 | 31.0 | LAS | MSY | New Orleans | LA |
1121025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1141750.0 | 127.0 | LAS | MSY | New Orleans | LA |
1151025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1171025.0 | 12.0 | LAS | MSY | New Orleans | LA |
1191025.0 | 3.0 | LAS | MSY | New Orleans | LA |
1201750.0 | 6.0 | LAS | MSY | New Orleans | LA |
1211025.0 | 3.0 | LAS | MSY | New Orleans | LA |
1211750.0 | 4.0 | LAS | MSY | New Orleans | LA |
1221750.0 | 3.0 | LAS | MSY | New Orleans | LA |
1231750.0 | 30.0 | LAS | MSY | New Orleans | LA |
1241025.0 | 43.0 | LAS | MSY | New Orleans | LA |
1251055.0 | 5.0 | LAS | MSY | New Orleans | LA |
1261750.0 | 27.0 | LAS | MSY | New Orleans | LA |
1271750.0 | 2.0 | LAS | MSY | New Orleans | LA |
1291025.0 | 1.0 | LAS | MSY | New Orleans | LA |
1301750.0 | 35.0 | LAS | MSY | New Orleans | LA |
1311025.0 | 11.0 | LAS | MSY | New Orleans | LA |
1311750.0 | 25.0 | LAS | MSY | New Orleans | LA |
2041105.0 | 1.0 | MCI | MSY | New Orleans | LA |
2051105.0 | 6.0 | MCI | MSY | New Orleans | LA |
2061105.0 | 40.0 | MCI | MSY | New Orleans | LA |
2071105.0 | 7.0 | MCI | MSY | New Orleans | LA |
2081530.0 | 2.0 | MCI | MSY | New Orleans | LA |
2121105.0 | 7.0 | MCI | MSY | New Orleans | LA |
2140830.0 | 3.0 | MCI | MSY | New Orleans | LA |
2150750.0 | 7.0 | MCI | MSY | New Orleans | LA |
2170830.0 | 10.0 | MCI | MSY | New Orleans | LA |
2180830.0 | 2.0 | MCI | MSY | New Orleans | LA |
2200830.0 | 9.0 | MCI | MSY | New Orleans | LA |
2230930.0 | 2.0 | MCI | MSY | New Orleans | LA |
2240830.0 | 3.0 | MCI | MSY | New Orleans | LA |
2260830.0 | 251.0 | MCI | MSY | New Orleans | LA |
3020930.0 | 35.0 | MCI | MSY | New Orleans | LA |
3030830.0 | 1.0 | MCI | MSY | New Orleans | LA |
3040830.0 | 11.0 | MCI | MSY | New Orleans | LA |
3050830.0 | 2.0 | MCI | MSY | New Orleans | LA |
3081610.0 | 93.0 | MCI | MSY | New Orleans | LA |
3100950.0 | 8.0 | MCI | MSY | New Orleans | LA |
3110950.0 | 36.0 | MCI | MSY | New Orleans | LA |
3120950.0 | 68.0 | MCI | MSY | New Orleans | LA |
3130950.0 | 13.0 | MCI | MSY | New Orleans | LA |
3140950.0 | 1.0 | MCI | MSY | New Orleans | LA |
3151610.0 | 16.0 | MCI | MSY | New Orleans | LA |
3180950.0 | 1.0 | MCI | MSY | New Orleans | LA |
3200950.0 | 3.0 | MCI | MSY | New Orleans | LA |
3210950.0 | 7.0 | MCI | MSY | New Orleans | LA |
3221610.0 | 38.0 | MCI | MSY | New Orleans | LA |
3250950.0 | 4.0 | MCI | MSY | New Orleans | LA |
3260950.0 | 5.0 | MCI | MSY | New Orleans | LA |
3270950.0 | 12.0 | MCI | MSY | New Orleans | LA |
3291610.0 | 12.0 | MCI | MSY | New Orleans | LA |
3310950.0 | 3.0 | MCI | MSY | New Orleans | LA |
1021635.0 | 96.0 | MCI | MSY | New Orleans | LA |
1031635.0 | 3.0 | MCI | MSY | New Orleans | LA |
1041205.0 | 1.0 | MCI | MSY | New Orleans | LA |
1051635.0 | 60.0 | MCI | MSY | New Orleans | LA |
1071105.0 | 14.0 | MCI | MSY | New Orleans | LA |
1081105.0 | 4.0 | MCI | MSY | New Orleans | LA |
1091105.0 | 11.0 | MCI | MSY | New Orleans | LA |
1111530.0 | 11.0 | MCI | MSY | New Orleans | LA |
1141105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1151105.0 | 9.0 | MCI | MSY | New Orleans | LA |
1161105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1181530.0 | 48.0 | MCI | MSY | New Orleans | LA |
1211105.0 | 2.0 | MCI | MSY | New Orleans | LA |
1221105.0 | 19.0 | MCI | MSY | New Orleans | LA |
1241105.0 | 72.0 | MCI | MSY | New Orleans | LA |
1251530.0 | 5.0 | MCI | MSY | New Orleans | LA |
1301105.0 | 1.0 | MCI | MSY | New Orleans | LA |
1311105.0 | 1.0 | MCI | MSY | New Orleans | LA |
3011530.0 | 72.0 | BNA | MSY | New Orleans | LA |
3010850.0 | 2.0 | BNA | MSY | New Orleans | LA |
3011245.0 | 4.0 | BNA | MSY | New Orleans | LA |
3021610.0 | 14.0 | BNA | MSY | New Orleans | LA |
3021350.0 | 15.0 | BNA | MSY | New Orleans | LA |
3021800.0 | 56.0 | BNA | MSY | New Orleans | LA |
3031610.0 | 13.0 | BNA | MSY | New Orleans | LA |
3041350.0 | 10.0 | BNA | MSY | New Orleans | LA |
3041800.0 | 7.0 | BNA | MSY | New Orleans | LA |
3050810.0 | 11.0 | BNA | MSY | New Orleans | LA |
3051350.0 | 48.0 | BNA | MSY | New Orleans | LA |
3051800.0 | 21.0 | BNA | MSY | New Orleans | LA |
3061610.0 | 26.0 | BNA | MSY | New Orleans | LA |
3061350.0 | 13.0 | BNA | MSY | New Orleans | LA |
3061800.0 | 5.0 | BNA | MSY | New Orleans | LA |
3071610.0 | 12.0 | BNA | MSY | New Orleans | LA |
3071350.0 | 10.0 | BNA | MSY | New Orleans | LA |
3071800.0 | 7.0 | BNA | MSY | New Orleans | LA |
3081540.0 | 27.0 | BNA | MSY | New Orleans | LA |
3080945.0 | 11.0 | BNA | MSY | New Orleans | LA |
3091820.0 | 25.0 | BNA | MSY | New Orleans | LA |
3091420.0 | 12.0 | BNA | MSY | New Orleans | LA |
3101420.0 | 41.0 | BNA | MSY | New Orleans | LA |
3101820.0 | 11.0 | BNA | MSY | New Orleans | LA |
3101620.0 | 7.0 | BNA | MSY | New Orleans | LA |
3110820.0 | 3.0 | BNA | MSY | New Orleans | LA |
3111420.0 | 15.0 | BNA | MSY | New Orleans | LA |
3111820.0 | 29.0 | BNA | MSY | New Orleans | LA |
3111620.0 | 5.0 | BNA | MSY | New Orleans | LA |
3120820.0 | 12.0 | BNA | MSY | New Orleans | LA |
3121420.0 | 40.0 | BNA | MSY | New Orleans | LA |
3121820.0 | 15.0 | BNA | MSY | New Orleans | LA |
3121620.0 | 24.0 | BNA | MSY | New Orleans | LA |
3130820.0 | 126.0 | BNA | MSY | New Orleans | LA |
3131420.0 | 13.0 | BNA | MSY | New Orleans | LA |
3131820.0 | 55.0 | BNA | MSY | New Orleans | LA |
3131620.0 | 40.0 | BNA | MSY | New Orleans | LA |
3141420.0 | 35.0 | BNA | MSY | New Orleans | LA |
3141820.0 | 21.0 | BNA | MSY | New Orleans | LA |
3141620.0 | 36.0 | BNA | MSY | New Orleans | LA |
3150945.0 | 3.0 | BNA | MSY | New Orleans | LA |
3161620.0 | 22.0 | BNA | MSY | New Orleans | LA |
3161820.0 | 39.0 | BNA | MSY | New Orleans | LA |
3170820.0 | 1.0 | BNA | MSY | New Orleans | LA |
3171420.0 | 112.0 | BNA | MSY | New Orleans | LA |
3171820.0 | 12.0 | BNA | MSY | New Orleans | LA |
3171620.0 | 56.0 | BNA | MSY | New Orleans | LA |
3181420.0 | 25.0 | BNA | MSY | New Orleans | LA |
3181820.0 | 36.0 | BNA | MSY | New Orleans | LA |
3181620.0 | 1.0 | BNA | MSY | New Orleans | LA |
3191420.0 | 54.0 | BNA | MSY | New Orleans | LA |
3191820.0 | 7.0 | BNA | MSY | New Orleans | LA |
3191620.0 | 29.0 | BNA | MSY | New Orleans | LA |
3201420.0 | 18.0 | BNA | MSY | New Orleans | LA |
3201820.0 | 9.0 | BNA | MSY | New Orleans | LA |
3201620.0 | 79.0 | BNA | MSY | New Orleans | LA |
3210820.0 | 3.0 | BNA | MSY | New Orleans | LA |
3211420.0 | 22.0 | BNA | MSY | New Orleans | LA |
3211820.0 | 30.0 | BNA | MSY | New Orleans | LA |
3211620.0 | 22.0 | BNA | MSY | New Orleans | LA |
3231820.0 | 6.0 | BNA | MSY | New Orleans | LA |
3241420.0 | 27.0 | BNA | MSY | New Orleans | LA |
3241820.0 | 44.0 | BNA | MSY | New Orleans | LA |
3241620.0 | 41.0 | BNA | MSY | New Orleans | LA |
3251420.0 | 70.0 | BNA | MSY | New Orleans | LA |
3251820.0 | 30.0 | BNA | MSY | New Orleans | LA |
3251620.0 | 30.0 | BNA | MSY | New Orleans | LA |
3261420.0 | 8.0 | BNA | MSY | New Orleans | LA |
3261820.0 | 1.0 | BNA | MSY | New Orleans | LA |
3271420.0 | 25.0 | BNA | MSY | New Orleans | LA |
3271820.0 | 41.0 | BNA | MSY | New Orleans | LA |
3271620.0 | 23.0 | BNA | MSY | New Orleans | LA |
3281420.0 | 52.0 | BNA | MSY | New Orleans | LA |
3281820.0 | 17.0 | BNA | MSY | New Orleans | LA |
3281620.0 | 15.0 | BNA | MSY | New Orleans | LA |
3291335.0 | 1.0 | BNA | MSY | New Orleans | LA |
3290945.0 | 20.0 | BNA | MSY | New Orleans | LA |
3291540.0 | 35.0 | BNA | MSY | New Orleans | LA |
3301820.0 | 22.0 | BNA | MSY | New Orleans | LA |
3301420.0 | 10.0 | BNA | MSY | New Orleans | LA |
3311420.0 | 19.0 | BNA | MSY | New Orleans | LA |
3311820.0 | 25.0 | BNA | MSY | New Orleans | LA |
3311620.0 | 30.0 | BNA | MSY | New Orleans | LA |
1011210.0 | 7.0 | BNA | MSY | New Orleans | LA |
1011835.0 | 53.0 | BNA | MSY | New Orleans | LA |
1021215.0 | 43.0 | BNA | MSY | New Orleans | LA |
1021835.0 | 200.0 | BNA | MSY | New Orleans | LA |
1020800.0 | 29.0 | BNA | MSY | New Orleans | LA |
1031215.0 | 185.0 | BNA | MSY | New Orleans | LA |
1031835.0 | 226.0 | BNA | MSY | New Orleans | LA |
1041420.0 | 174.0 | BNA | MSY | New Orleans | LA |
1040835.0 | 18.0 | BNA | MSY | New Orleans | LA |
1051215.0 | 85.0 | BNA | MSY | New Orleans | LA |
1051835.0 | 283.0 | BNA | MSY | New Orleans | LA |
1050800.0 | 3.0 | BNA | MSY | New Orleans | LA |
1061215.0 | 150.0 | BNA | MSY | New Orleans | LA |
1061835.0 | 133.0 | BNA | MSY | New Orleans | LA |
1060800.0 | 102.0 | BNA | MSY | New Orleans | LA |
1071240.0 | 57.0 | BNA | MSY | New Orleans | LA |
1071455.0 | 12.0 | BNA | MSY | New Orleans | LA |
1070905.0 | 5.0 | BNA | MSY | New Orleans | LA |
1071735.0 | 131.0 | BNA | MSY | New Orleans | LA |
1081240.0 | 19.0 | BNA | MSY | New Orleans | LA |
1081455.0 | 2.0 | BNA | MSY | New Orleans | LA |
1081735.0 | 34.0 | BNA | MSY | New Orleans | LA |
1091240.0 | 14.0 | BNA | MSY | New Orleans | LA |
1091455.0 | 24.0 | BNA | MSY | New Orleans | LA |
1091735.0 | 28.0 | BNA | MSY | New Orleans | LA |
1101240.0 | 50.0 | BNA | MSY | New Orleans | LA |
1101455.0 | 11.0 | BNA | MSY | New Orleans | LA |
1100905.0 | 4.0 | BNA | MSY | New Orleans | LA |
1101735.0 | 33.0 | BNA | MSY | New Orleans | LA |
1111805.0 | 2.0 | BNA | MSY | New Orleans | LA |
1121235.0 | 8.0 | BNA | MSY | New Orleans | LA |
1121455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1121735.0 | 4.0 | BNA | MSY | New Orleans | LA |
1131240.0 | 9.0 | BNA | MSY | New Orleans | LA |
1131455.0 | 2.0 | BNA | MSY | New Orleans | LA |
1131735.0 | 15.0 | BNA | MSY | New Orleans | LA |
1141240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1141735.0 | 7.0 | BNA | MSY | New Orleans | LA |
1151455.0 | 1.0 | BNA | MSY | New Orleans | LA |
1151735.0 | 9.0 | BNA | MSY | New Orleans | LA |
1161240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1161455.0 | 17.0 | BNA | MSY | New Orleans | LA |
1161735.0 | 52.0 | BNA | MSY | New Orleans | LA |
1171240.0 | 21.0 | BNA | MSY | New Orleans | LA |
1171455.0 | 13.0 | BNA | MSY | New Orleans | LA |
1170850.0 | 10.0 | BNA | MSY | New Orleans | LA |
1171735.0 | 40.0 | BNA | MSY | New Orleans | LA |
1181305.0 | 2.0 | BNA | MSY | New Orleans | LA |
1181805.0 | 42.0 | BNA | MSY | New Orleans | LA |
1180950.0 | 4.0 | BNA | MSY | New Orleans | LA |
1191235.0 | 23.0 | BNA | MSY | New Orleans | LA |
1191455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1191735.0 | 64.0 | BNA | MSY | New Orleans | LA |
1201240.0 | 8.0 | BNA | MSY | New Orleans | LA |
1201455.0 | 5.0 | BNA | MSY | New Orleans | LA |
1200850.0 | 7.0 | BNA | MSY | New Orleans | LA |
1211240.0 | 41.0 | BNA | MSY | New Orleans | LA |
1210850.0 | 18.0 | BNA | MSY | New Orleans | LA |
1211735.0 | 17.0 | BNA | MSY | New Orleans | LA |
1221240.0 | 19.0 | BNA | MSY | New Orleans | LA |
1221735.0 | 118.0 | BNA | MSY | New Orleans | LA |
1231240.0 | 20.0 | BNA | MSY | New Orleans | LA |
1231455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1230850.0 | 18.0 | BNA | MSY | New Orleans | LA |
1231735.0 | 33.0 | BNA | MSY | New Orleans | LA |
1241240.0 | 20.0 | BNA | MSY | New Orleans | LA |
1241455.0 | 4.0 | BNA | MSY | New Orleans | LA |
1240850.0 | 12.0 | BNA | MSY | New Orleans | LA |
1251305.0 | 27.0 | BNA | MSY | New Orleans | LA |
1251805.0 | 19.0 | BNA | MSY | New Orleans | LA |
1261455.0 | 5.0 | BNA | MSY | New Orleans | LA |
1261735.0 | 3.0 | BNA | MSY | New Orleans | LA |
1271240.0 | 17.0 | BNA | MSY | New Orleans | LA |
1271735.0 | 10.0 | BNA | MSY | New Orleans | LA |
1291240.0 | 13.0 | BNA | MSY | New Orleans | LA |
1291735.0 | 9.0 | BNA | MSY | New Orleans | LA |
1301240.0 | 38.0 | BNA | MSY | New Orleans | LA |
1301455.0 | 6.0 | BNA | MSY | New Orleans | LA |
1301735.0 | 57.0 | BNA | MSY | New Orleans | LA |
1311240.0 | 31.0 | BNA | MSY | New Orleans | LA |
1311455.0 | 22.0 | BNA | MSY | New Orleans | LA |
1311735.0 | 6.0 | BNA | MSY | New Orleans | LA |
2010950.0 | 4.0 | BNA | MSY | New Orleans | LA |
2021455.0 | 11.0 | BNA | MSY | New Orleans | LA |
2021235.0 | 26.0 | BNA | MSY | New Orleans | LA |
2021650.0 | 77.0 | BNA | MSY | New Orleans | LA |
2031240.0 | 30.0 | BNA | MSY | New Orleans | LA |
2031455.0 | 10.0 | BNA | MSY | New Orleans | LA |
2041240.0 | 56.0 | BNA | MSY | New Orleans | LA |
2041455.0 | 23.0 | BNA | MSY | New Orleans | LA |
2041735.0 | 3.0 | BNA | MSY | New Orleans | LA |
2051240.0 | 33.0 | BNA | MSY | New Orleans | LA |
2051455.0 | 14.0 | BNA | MSY | New Orleans | LA |
2050850.0 | 19.0 | BNA | MSY | New Orleans | LA |
2051735.0 | 26.0 | BNA | MSY | New Orleans | LA |
2061240.0 | 43.0 | BNA | MSY | New Orleans | LA |
2060850.0 | 10.0 | BNA | MSY | New Orleans | LA |
2061735.0 | 34.0 | BNA | MSY | New Orleans | LA |
2071240.0 | 88.0 | BNA | MSY | New Orleans | LA |
2071455.0 | 5.0 | BNA | MSY | New Orleans | LA |
2070850.0 | 1.0 | BNA | MSY | New Orleans | LA |
2071735.0 | 20.0 | BNA | MSY | New Orleans | LA |
2091235.0 | 5.0 | BNA | MSY | New Orleans | LA |
2091455.0 | 2.0 | BNA | MSY | New Orleans | LA |
2091735.0 | 8.0 | BNA | MSY | New Orleans | LA |
2101240.0 | 25.0 | BNA | MSY | New Orleans | LA |
2101455.0 | 14.0 | BNA | MSY | New Orleans | LA |
2100850.0 | 9.0 | BNA | MSY | New Orleans | LA |
2111240.0 | 145.0 | BNA | MSY | New Orleans | LA |
2110850.0 | 96.0 | BNA | MSY | New Orleans | LA |
2111735.0 | 25.0 | BNA | MSY | New Orleans | LA |
2121240.0 | 8.0 | BNA | MSY | New Orleans | LA |
2121455.0 | 29.0 | BNA | MSY | New Orleans | LA |
2120850.0 | 3.0 | BNA | MSY | New Orleans | LA |
2121735.0 | 39.0 | BNA | MSY | New Orleans | LA |
2131350.0 | 5.0 | BNA | MSY | New Orleans | LA |
2131610.0 | 11.0 | BNA | MSY | New Orleans | LA |
2131800.0 | 9.0 | BNA | MSY | New Orleans | LA |
2141610.0 | 37.0 | BNA | MSY | New Orleans | LA |
2140810.0 | 13.0 | BNA | MSY | New Orleans | LA |
2141350.0 | 46.0 | BNA | MSY | New Orleans | LA |
2141800.0 | 21.0 | BNA | MSY | New Orleans | LA |
2151530.0 | 35.0 | BNA | MSY | New Orleans | LA |
2150850.0 | 7.0 | BNA | MSY | New Orleans | LA |
2161800.0 | 17.0 | BNA | MSY | New Orleans | LA |
2170810.0 | 1.0 | BNA | MSY | New Orleans | LA |
2171350.0 | 1.0 | BNA | MSY | New Orleans | LA |
2180810.0 | 11.0 | BNA | MSY | New Orleans | LA |
2181350.0 | 40.0 | BNA | MSY | New Orleans | LA |
2181800.0 | 1.0 | BNA | MSY | New Orleans | LA |
2191350.0 | 7.0 | BNA | MSY | New Orleans | LA |
2191800.0 | 21.0 | BNA | MSY | New Orleans | LA |
2201610.0 | 1.0 | BNA | MSY | New Orleans | LA |
2200810.0 | 16.0 | BNA | MSY | New Orleans | LA |
2201350.0 | 5.0 | BNA | MSY | New Orleans | LA |
2201800.0 | 162.0 | BNA | MSY | New Orleans | LA |
2211610.0 | 46.0 | BNA | MSY | New Orleans | LA |
2210810.0 | 1.0 | BNA | MSY | New Orleans | LA |
2211350.0 | 10.0 | BNA | MSY | New Orleans | LA |
2211800.0 | 10.0 | BNA | MSY | New Orleans | LA |
2221530.0 | 1.0 | BNA | MSY | New Orleans | LA |
2231350.0 | 2.0 | BNA | MSY | New Orleans | LA |
2231800.0 | 6.0 | BNA | MSY | New Orleans | LA |
2241350.0 | 12.0 | BNA | MSY | New Orleans | LA |
2250810.0 | 26.0 | BNA | MSY | New Orleans | LA |
2251800.0 | 103.0 | BNA | MSY | New Orleans | LA |
2261610.0 | 7.0 | BNA | MSY | New Orleans | LA |
2260810.0 | 1.0 | BNA | MSY | New Orleans | LA |
2261350.0 | 11.0 | BNA | MSY | New Orleans | LA |
2261800.0 | 6.0 | BNA | MSY | New Orleans | LA |
2271800.0 | 9.0 | BNA | MSY | New Orleans | LA |
2281610.0 | 23.0 | BNA | MSY | New Orleans | LA |
2281350.0 | 8.0 | BNA | MSY | New Orleans | LA |
2281800.0 | 4.0 | BNA | MSY | New Orleans | LA |
3011117.0 | 36.0 | CLT | MSY | New Orleans | LA |
3011635.0 | 77.0 | CLT | MSY | New Orleans | LA |
3021117.0 | 30.0 | CLT | MSY | New Orleans | LA |
3031825.0 | 9.0 | CLT | MSY | New Orleans | LA |
3061825.0 | 32.0 | CLT | MSY | New Orleans | LA |
3062010.0 | 33.0 | CLT | MSY | New Orleans | LA |
3070750.0 | 3.0 | CLT | MSY | New Orleans | LA |
3071435.0 | 16.0 | CLT | MSY | New Orleans | LA |
3081115.0 | 28.0 | CLT | MSY | New Orleans | LA |
3091115.0 | 28.0 | CLT | MSY | New Orleans | LA |
3090909.0 | 118.0 | CLT | MSY | New Orleans | LA |
3102010.0 | 4.0 | CLT | MSY | New Orleans | LA |
3110750.0 | 27.0 | CLT | MSY | New Orleans | LA |
3121115.0 | 16.0 | CLT | MSY | New Orleans | LA |
3122010.0 | 31.0 | CLT | MSY | New Orleans | LA |
3121435.0 | 5.0 | CLT | MSY | New Orleans | LA |
3141825.0 | 28.0 | CLT | MSY | New Orleans | LA |
3141115.0 | 5.0 | CLT | MSY | New Orleans | LA |
3140915.0 | 17.0 | CLT | MSY | New Orleans | LA |
3161840.0 | 24.0 | CLT | MSY | New Orleans | LA |
3162010.0 | 34.0 | CLT | MSY | New Orleans | LA |
3161435.0 | 2.0 | CLT | MSY | New Orleans | LA |
3171825.0 | 23.0 | CLT | MSY | New Orleans | LA |
3171115.0 | 2.0 | CLT | MSY | New Orleans | LA |
3172010.0 | 2.0 | CLT | MSY | New Orleans | LA |
3171435.0 | 8.0 | CLT | MSY | New Orleans | LA |
3170915.0 | 8.0 | CLT | MSY | New Orleans | LA |
3180750.0 | 46.0 | CLT | MSY | New Orleans | LA |
3182010.0 | 1.0 | CLT | MSY | New Orleans | LA |
3180915.0 | 5.0 | CLT | MSY | New Orleans | LA |
3190915.0 | 65.0 | CLT | MSY | New Orleans | LA |
3202010.0 | 24.0 | CLT | MSY | New Orleans | LA |
3201435.0 | 5.0 | CLT | MSY | New Orleans | LA |
3210750.0 | 2.0 | CLT | MSY | New Orleans | LA |
3230909.0 | 14.0 | CLT | MSY | New Orleans | LA |
3241115.0 | 21.0 | CLT | MSY | New Orleans | LA |
3240915.0 | 4.0 | CLT | MSY | New Orleans | LA |
3251435.0 | 56.0 | CLT | MSY | New Orleans | LA |
3250915.0 | 1.0 | CLT | MSY | New Orleans | LA |
3261115.0 | 9.0 | CLT | MSY | New Orleans | LA |
3261435.0 | 96.0 | CLT | MSY | New Orleans | LA |
3260915.0 | 8.0 | CLT | MSY | New Orleans | LA |
3271115.0 | 1.0 | CLT | MSY | New Orleans | LA |
3270915.0 | 23.0 | CLT | MSY | New Orleans | LA |
3281115.0 | 37.0 | CLT | MSY | New Orleans | LA |
3282010.0 | 46.0 | CLT | MSY | New Orleans | LA |
3291825.0 | 150.0 | CLT | MSY | New Orleans | LA |
3291115.0 | 3.0 | CLT | MSY | New Orleans | LA |
3292010.0 | 53.0 | CLT | MSY | New Orleans | LA |
3291635.0 | 8.0 | CLT | MSY | New Orleans | LA |
3290915.0 | 2.0 | CLT | MSY | New Orleans | LA |
3311115.0 | 18.0 | CLT | MSY | New Orleans | LA |
3311435.0 | 1.0 | CLT | MSY | New Orleans | LA |
1011815.0 | 11.0 | CLT | MSY | New Orleans | LA |
1011435.0 | 40.0 | CLT | MSY | New Orleans | LA |
1021815.0 | 22.0 | CLT | MSY | New Orleans | LA |
1022015.0 | 2.0 | CLT | MSY | New Orleans | LA |
1021435.0 | 1.0 | CLT | MSY | New Orleans | LA |
1042020.0 | 53.0 | CLT | MSY | New Orleans | LA |
1041435.0 | 15.0 | CLT | MSY | New Orleans | LA |
1051815.0 | 45.0 | CLT | MSY | New Orleans | LA |
1052015.0 | 19.0 | CLT | MSY | New Orleans | LA |
1051435.0 | 60.0 | CLT | MSY | New Orleans | LA |
1060750.0 | 7.0 | CLT | MSY | New Orleans | LA |
1061120.0 | 15.0 | CLT | MSY | New Orleans | LA |
1071825.0 | 58.0 | CLT | MSY | New Orleans | LA |
1071435.0 | 11.0 | CLT | MSY | New Orleans | LA |
1081435.0 | 13.0 | CLT | MSY | New Orleans | LA |
1080915.0 | 1.0 | CLT | MSY | New Orleans | LA |
1091117.0 | 13.0 | CLT | MSY | New Orleans | LA |
1100750.0 | 21.0 | CLT | MSY | New Orleans | LA |
1101825.0 | 8.0 | CLT | MSY | New Orleans | LA |
1101117.0 | 27.0 | CLT | MSY | New Orleans | LA |
1101635.0 | 55.0 | CLT | MSY | New Orleans | LA |
1101435.0 | 13.0 | CLT | MSY | New Orleans | LA |
1110750.0 | 115.0 | CLT | MSY | New Orleans | LA |
1111117.0 | 49.0 | CLT | MSY | New Orleans | LA |
1111635.0 | 145.0 | CLT | MSY | New Orleans | LA |
1112010.0 | 2.0 | CLT | MSY | New Orleans | LA |
1111435.0 | 126.0 | CLT | MSY | New Orleans | LA |
1110915.0 | 72.0 | CLT | MSY | New Orleans | LA |
1121117.0 | 5.0 | CLT | MSY | New Orleans | LA |
1121435.0 | 1.0 | CLT | MSY | New Orleans | LA |
1131435.0 | 3.0 | CLT | MSY | New Orleans | LA |
1151117.0 | 16.0 | CLT | MSY | New Orleans | LA |
1151435.0 | 2.0 | CLT | MSY | New Orleans | LA |
1171117.0 | 16.0 | CLT | MSY | New Orleans | LA |
1181117.0 | 3.0 | CLT | MSY | New Orleans | LA |
1180915.0 | 14.0 | CLT | MSY | New Orleans | LA |
1191117.0 | 2.0 | CLT | MSY | New Orleans | LA |
1200750.0 | 51.0 | CLT | MSY | New Orleans | LA |
1211825.0 | 2.0 | CLT | MSY | New Orleans | LA |
1211435.0 | 4.0 | CLT | MSY | New Orleans | LA |
1221117.0 | 10.0 | CLT | MSY | New Orleans | LA |
1221435.0 | 25.0 | CLT | MSY | New Orleans | LA |
1230750.0 | 23.0 | CLT | MSY | New Orleans | LA |
1231117.0 | 27.0 | CLT | MSY | New Orleans | LA |
1231635.0 | 4.0 | CLT | MSY | New Orleans | LA |
1230915.0 | 131.0 | CLT | MSY | New Orleans | LA |
1241117.0 | 5.0 | CLT | MSY | New Orleans | LA |
1252010.0 | 1.0 | CLT | MSY | New Orleans | LA |
1250915.0 | 2.0 | CLT | MSY | New Orleans | LA |
1271825.0 | 27.0 | CLT | MSY | New Orleans | LA |
1271117.0 | 52.0 | CLT | MSY | New Orleans | LA |
1290750.0 | 26.0 | CLT | MSY | New Orleans | LA |
1291117.0 | 19.0 | CLT | MSY | New Orleans | LA |
1291635.0 | 21.0 | CLT | MSY | New Orleans | LA |
1291435.0 | 6.0 | CLT | MSY | New Orleans | LA |
1290915.0 | 1.0 | CLT | MSY | New Orleans | LA |
1311825.0 | 50.0 | CLT | MSY | New Orleans | LA |
1310915.0 | 1.0 | CLT | MSY | New Orleans | LA |
2011117.0 | 30.0 | CLT | MSY | New Orleans | LA |
2011635.0 | 23.0 | CLT | MSY | New Orleans | LA |
2010900.0 | 2.0 | CLT | MSY | New Orleans | LA |
2031117.0 | 8.0 | CLT | MSY | New Orleans | LA |
2031435.0 | 6.0 | CLT | MSY | New Orleans | LA |
2041117.0 | 22.0 | CLT | MSY | New Orleans | LA |
2051117.0 | 36.0 | CLT | MSY | New Orleans | LA |
2051435.0 | 13.0 | CLT | MSY | New Orleans | LA |
2050915.0 | 7.0 | CLT | MSY | New Orleans | LA |
2060750.0 | 34.0 | CLT | MSY | New Orleans | LA |
2061117.0 | 3.0 | CLT | MSY | New Orleans | LA |
2061635.0 | 14.0 | CLT | MSY | New Orleans | LA |
2071825.0 | 11.0 | CLT | MSY | New Orleans | LA |
2090915.0 | 79.0 | CLT | MSY | New Orleans | LA |
2101435.0 | 4.0 | CLT | MSY | New Orleans | LA |
2121635.0 | 42.0 | CLT | MSY | New Orleans | LA |
2121435.0 | 1.0 | CLT | MSY | New Orleans | LA |
2140750.0 | 151.0 | CLT | MSY | New Orleans | LA |
2141825.0 | 33.0 | CLT | MSY | New Orleans | LA |
2142010.0 | 28.0 | CLT | MSY | New Orleans | LA |
2141435.0 | 13.0 | CLT | MSY | New Orleans | LA |
2140915.0 | 174.0 | CLT | MSY | New Orleans | LA |
2150915.0 | 4.0 | CLT | MSY | New Orleans | LA |
2161117.0 | 27.0 | CLT | MSY | New Orleans | LA |
2161435.0 | 12.0 | CLT | MSY | New Orleans | LA |
2171117.0 | 2.0 | CLT | MSY | New Orleans | LA |
2171435.0 | 2.0 | CLT | MSY | New Orleans | LA |
2170915.0 | 30.0 | CLT | MSY | New Orleans | LA |
2200915.0 | 6.0 | CLT | MSY | New Orleans | LA |
2211117.0 | 2.0 | CLT | MSY | New Orleans | LA |
2211435.0 | 24.0 | CLT | MSY | New Orleans | LA |
2210915.0 | 52.0 | CLT | MSY | New Orleans | LA |
2232010.0 | 74.0 | CLT | MSY | New Orleans | LA |
2251435.0 | 5.0 | CLT | MSY | New Orleans | LA |
2261825.0 | 53.0 | CLT | MSY | New Orleans | LA |
2272010.0 | 10.0 | CLT | MSY | New Orleans | LA |
2271435.0 | 16.0 | CLT | MSY | New Orleans | LA |
2280750.0 | 2.0 | CLT | MSY | New Orleans | LA |
2281117.0 | 3.0 | CLT | MSY | New Orleans | LA |
3011715.0 | 20.0 | DAL | MSY | New Orleans | LA |
3011830.0 | 124.0 | DAL | MSY | New Orleans | LA |
3021710.0 | 174.0 | DAL | MSY | New Orleans | LA |
3021335.0 | 30.0 | DAL | MSY | New Orleans | LA |
3022025.0 | 84.0 | DAL | MSY | New Orleans | LA |
3021855.0 | 55.0 | DAL | MSY | New Orleans | LA |
3030605.0 | 19.0 | DAL | MSY | New Orleans | LA |
3031335.0 | 22.0 | DAL | MSY | New Orleans | LA |
3032025.0 | 2.0 | DAL | MSY | New Orleans | LA |
3030920.0 | 2.0 | DAL | MSY | New Orleans | LA |
3031710.0 | 29.0 | DAL | MSY | New Orleans | LA |
3031100.0 | 3.0 | DAL | MSY | New Orleans | LA |
3031855.0 | 3.0 | DAL | MSY | New Orleans | LA |
3041335.0 | 15.0 | DAL | MSY | New Orleans | LA |
3042025.0 | 13.0 | DAL | MSY | New Orleans | LA |
3052025.0 | 16.0 | DAL | MSY | New Orleans | LA |
3051710.0 | 45.0 | DAL | MSY | New Orleans | LA |
3051855.0 | 17.0 | DAL | MSY | New Orleans | LA |
3061335.0 | 24.0 | DAL | MSY | New Orleans | LA |
3062025.0 | 52.0 | DAL | MSY | New Orleans | LA |
3060920.0 | 30.0 | DAL | MSY | New Orleans | LA |
3061710.0 | 16.0 | DAL | MSY | New Orleans | LA |
3061100.0 | 22.0 | DAL | MSY | New Orleans | LA |
3070805.0 | 9.0 | DAL | MSY | New Orleans | LA |
3071335.0 | 60.0 | DAL | MSY | New Orleans | LA |
3072025.0 | 26.0 | DAL | MSY | New Orleans | LA |
3071710.0 | 12.0 | DAL | MSY | New Orleans | LA |
3071100.0 | 13.0 | DAL | MSY | New Orleans | LA |
3071855.0 | 66.0 | DAL | MSY | New Orleans | LA |
3081440.0 | 107.0 | DAL | MSY | New Orleans | LA |
3081745.0 | 4.0 | DAL | MSY | New Orleans | LA |
3091900.0 | 15.0 | DAL | MSY | New Orleans | LA |
3092055.0 | 35.0 | DAL | MSY | New Orleans | LA |
3091810.0 | 15.0 | DAL | MSY | New Orleans | LA |
3091455.0 | 2.0 | DAL | MSY | New Orleans | LA |
3101900.0 | 15.0 | DAL | MSY | New Orleans | LA |
3102055.0 | 21.0 | DAL | MSY | New Orleans | LA |
3101810.0 | 7.0 | DAL | MSY | New Orleans | LA |
3111900.0 | 19.0 | DAL | MSY | New Orleans | LA |
3112055.0 | 103.0 | DAL | MSY | New Orleans | LA |
3111205.0 | 15.0 | DAL | MSY | New Orleans | LA |
3110825.0 | 3.0 | DAL | MSY | New Orleans | LA |
3111810.0 | 7.0 | DAL | MSY | New Orleans | LA |
3111455.0 | 4.0 | DAL | MSY | New Orleans | LA |
3121900.0 | 50.0 | DAL | MSY | New Orleans | LA |
3122055.0 | 57.0 | DAL | MSY | New Orleans | LA |
3121205.0 | 30.0 | DAL | MSY | New Orleans | LA |
3120825.0 | 2.0 | DAL | MSY | New Orleans | LA |
3121810.0 | 9.0 | DAL | MSY | New Orleans | LA |
3131900.0 | 70.0 | DAL | MSY | New Orleans | LA |
3130930.0 | 7.0 | DAL | MSY | New Orleans | LA |
3132055.0 | 77.0 | DAL | MSY | New Orleans | LA |
3130600.0 | 3.0 | DAL | MSY | New Orleans | LA |
3130825.0 | 4.0 | DAL | MSY | New Orleans | LA |
3131810.0 | 10.0 | DAL | MSY | New Orleans | LA |
3141900.0 | 28.0 | DAL | MSY | New Orleans | LA |
3142055.0 | 25.0 | DAL | MSY | New Orleans | LA |
3140600.0 | 8.0 | DAL | MSY | New Orleans | LA |
3141205.0 | 54.0 | DAL | MSY | New Orleans | LA |
3141810.0 | 1.0 | DAL | MSY | New Orleans | LA |
3141455.0 | 4.0 | DAL | MSY | New Orleans | LA |
3150830.0 | 2.0 | DAL | MSY | New Orleans | LA |
3151440.0 | 5.0 | DAL | MSY | New Orleans | LA |
3161900.0 | 15.0 | DAL | MSY | New Orleans | LA |
3162055.0 | 22.0 | DAL | MSY | New Orleans | LA |
3161810.0 | 5.0 | DAL | MSY | New Orleans | LA |
3160930.0 | 7.0 | DAL | MSY | New Orleans | LA |
3171900.0 | 83.0 | DAL | MSY | New Orleans | LA |
3170930.0 | 1.0 | DAL | MSY | New Orleans | LA |
3172055.0 | 81.0 | DAL | MSY | New Orleans | LA |
3170825.0 | 7.0 | DAL | MSY | New Orleans | LA |
3171810.0 | 20.0 | DAL | MSY | New Orleans | LA |
3181900.0 | 46.0 | DAL | MSY | New Orleans | LA |
3182055.0 | 148.0 | DAL | MSY | New Orleans | LA |
3180600.0 | 8.0 | DAL | MSY | New Orleans | LA |
3181205.0 | 32.0 | DAL | MSY | New Orleans | LA |
3180825.0 | 7.0 | DAL | MSY | New Orleans | LA |
3181810.0 | 92.0 | DAL | MSY | New Orleans | LA |
3181455.0 | 11.0 | DAL | MSY | New Orleans | LA |
3191900.0 | 29.0 | DAL | MSY | New Orleans | LA |
3192055.0 | 71.0 | DAL | MSY | New Orleans | LA |
3191205.0 | 10.0 | DAL | MSY | New Orleans | LA |
3191810.0 | 11.0 | DAL | MSY | New Orleans | LA |
3191455.0 | 2.0 | DAL | MSY | New Orleans | LA |
3201900.0 | 26.0 | DAL | MSY | New Orleans | LA |
3202055.0 | 34.0 | DAL | MSY | New Orleans | LA |
3200600.0 | 19.0 | DAL | MSY | New Orleans | LA |
3201205.0 | 4.0 | DAL | MSY | New Orleans | LA |
3200825.0 | 5.0 | DAL | MSY | New Orleans | LA |
3201810.0 | 31.0 | DAL | MSY | New Orleans | LA |
3211900.0 | 52.0 | DAL | MSY | New Orleans | LA |
3212055.0 | 23.0 | DAL | MSY | New Orleans | LA |
3210600.0 | 1.0 | DAL | MSY | New Orleans | LA |
3211205.0 | 29.0 | DAL | MSY | New Orleans | LA |
3210825.0 | 13.0 | DAL | MSY | New Orleans | LA |
3211810.0 | 14.0 | DAL | MSY | New Orleans | LA |
3211455.0 | 9.0 | DAL | MSY | New Orleans | LA |
3221750.0 | 7.0 | DAL | MSY | New Orleans | LA |
3221440.0 | 23.0 | DAL | MSY | New Orleans | LA |
3231900.0 | 36.0 | DAL | MSY | New Orleans | LA |
3231810.0 | 6.0 | DAL | MSY | New Orleans | LA |
3231455.0 | 8.0 | DAL | MSY | New Orleans | LA |
3231210.0 | 16.0 | DAL | MSY | New Orleans | LA |
3231045.0 | 13.0 | DAL | MSY | New Orleans | LA |
3230930.0 | 6.0 | DAL | MSY | New Orleans | LA |
3241900.0 | 15.0 | DAL | MSY | New Orleans | LA |
3242055.0 | 36.0 | DAL | MSY | New Orleans | LA |
3241205.0 | 23.0 | DAL | MSY | New Orleans | LA |
3240825.0 | 5.0 | DAL | MSY | New Orleans | LA |
3241810.0 | 9.0 | DAL | MSY | New Orleans | LA |
3241455.0 | 17.0 | DAL | MSY | New Orleans | LA |
3251900.0 | 58.0 | DAL | MSY | New Orleans | LA |
3252055.0 | 51.0 | DAL | MSY | New Orleans | LA |
3251205.0 | 5.0 | DAL | MSY | New Orleans | LA |
3250825.0 | 5.0 | DAL | MSY | New Orleans | LA |
3251810.0 | 17.0 | DAL | MSY | New Orleans | LA |
3251455.0 | 10.0 | DAL | MSY | New Orleans | LA |
3261900.0 | 15.0 | DAL | MSY | New Orleans | LA |
3262055.0 | 69.0 | DAL | MSY | New Orleans | LA |
3261205.0 | 6.0 | DAL | MSY | New Orleans | LA |
3260825.0 | 3.0 | DAL | MSY | New Orleans | LA |
3261810.0 | 20.0 | DAL | MSY | New Orleans | LA |
3261455.0 | 10.0 | DAL | MSY | New Orleans | LA |
3271900.0 | 36.0 | DAL | MSY | New Orleans | LA |
3272055.0 | 78.0 | DAL | MSY | New Orleans | LA |
3271205.0 | 17.0 | DAL | MSY | New Orleans | LA |
3270825.0 | 8.0 | DAL | MSY | New Orleans | LA |
3271810.0 | 45.0 | DAL | MSY | New Orleans | LA |
3271455.0 | 11.0 | DAL | MSY | New Orleans | LA |
3281900.0 | 46.0 | DAL | MSY | New Orleans | LA |
3280930.0 | 11.0 | DAL | MSY | New Orleans | LA |
3282055.0 | 65.0 | DAL | MSY | New Orleans | LA |
3281205.0 | 13.0 | DAL | MSY | New Orleans | LA |
3280825.0 | 6.0 | DAL | MSY | New Orleans | LA |
3281810.0 | 49.0 | DAL | MSY | New Orleans | LA |
3281455.0 | 1.0 | DAL | MSY | New Orleans | LA |
3290830.0 | 1.0 | DAL | MSY | New Orleans | LA |
3291440.0 | 7.0 | DAL | MSY | New Orleans | LA |
3301900.0 | 126.0 | DAL | MSY | New Orleans | LA |
3301810.0 | 4.0 | DAL | MSY | New Orleans | LA |
3301455.0 | 4.0 | DAL | MSY | New Orleans | LA |
3301045.0 | 29.0 | DAL | MSY | New Orleans | LA |
3300930.0 | 4.0 | DAL | MSY | New Orleans | LA |
3311900.0 | 47.0 | DAL | MSY | New Orleans | LA |
3310930.0 | 10.0 | DAL | MSY | New Orleans | LA |
3312055.0 | 3.0 | DAL | MSY | New Orleans | LA |
3311205.0 | 20.0 | DAL | MSY | New Orleans | LA |
3310825.0 | 21.0 | DAL | MSY | New Orleans | LA |
3311810.0 | 18.0 | DAL | MSY | New Orleans | LA |
3311455.0 | 3.0 | DAL | MSY | New Orleans | LA |
1012115.0 | 24.0 | DAL | MSY | New Orleans | LA |
1011235.0 | 8.0 | DAL | MSY | New Orleans | LA |
1011650.0 | 70.0 | DAL | MSY | New Orleans | LA |
1011525.0 | 21.0 | DAL | MSY | New Orleans | LA |
1011120.0 | 5.0 | DAL | MSY | New Orleans | LA |
1021120.0 | 40.0 | DAL | MSY | New Orleans | LA |
1021650.0 | 37.0 | DAL | MSY | New Orleans | LA |
1020925.0 | 3.0 | DAL | MSY | New Orleans | LA |
1022110.0 | 115.0 | DAL | MSY | New Orleans | LA |
1021235.0 | 66.0 | DAL | MSY | New Orleans | LA |
1020605.0 | 31.0 | DAL | MSY | New Orleans | LA |
1021525.0 | 91.0 | DAL | MSY | New Orleans | LA |
1021910.0 | 12.0 | DAL | MSY | New Orleans | LA |
1031120.0 | 121.0 | DAL | MSY | New Orleans | LA |
1031650.0 | 154.0 | DAL | MSY | New Orleans | LA |
1030925.0 | 46.0 | DAL | MSY | New Orleans | LA |
1032110.0 | 120.0 | DAL | MSY | New Orleans | LA |
1031235.0 | 43.0 | DAL | MSY | New Orleans | LA |
1031525.0 | 45.0 | DAL | MSY | New Orleans | LA |
1031910.0 | 194.0 | DAL | MSY | New Orleans | LA |
1040710.0 | 6.0 | DAL | MSY | New Orleans | LA |
1041730.0 | 108.0 | DAL | MSY | New Orleans | LA |
1041420.0 | 49.0 | DAL | MSY | New Orleans | LA |
1040930.0 | 45.0 | DAL | MSY | New Orleans | LA |
1041540.0 | 1.0 | DAL | MSY | New Orleans | LA |
1052110.0 | 110.0 | DAL | MSY | New Orleans | LA |
1051235.0 | 3.0 | DAL | MSY | New Orleans | LA |
1051525.0 | 24.0 | DAL | MSY | New Orleans | LA |
1051150.0 | 32.0 | DAL | MSY | New Orleans | LA |
1051910.0 | 29.0 | DAL | MSY | New Orleans | LA |
1050925.0 | 11.0 | DAL | MSY | New Orleans | LA |
1051650.0 | 101.0 | DAL | MSY | New Orleans | LA |
1061120.0 | 48.0 | DAL | MSY | New Orleans | LA |
1061650.0 | 29.0 | DAL | MSY | New Orleans | LA |
1062110.0 | 103.0 | DAL | MSY | New Orleans | LA |
1061235.0 | 71.0 | DAL | MSY | New Orleans | LA |
1061525.0 | 18.0 | DAL | MSY | New Orleans | LA |
1072015.0 | 46.0 | DAL | MSY | New Orleans | LA |
1071535.0 | 53.0 | DAL | MSY | New Orleans | LA |
1070630.0 | 1.0 | DAL | MSY | New Orleans | LA |
1071930.0 | 1.0 | DAL | MSY | New Orleans | LA |
1070925.0 | 17.0 | DAL | MSY | New Orleans | LA |
1071025.0 | 22.0 | DAL | MSY | New Orleans | LA |
1071230.0 | 2.0 | DAL | MSY | New Orleans | LA |
1071635.0 | 2.0 | DAL | MSY | New Orleans | LA |
1082015.0 | 28.0 | DAL | MSY | New Orleans | LA |
1081535.0 | 31.0 | DAL | MSY | New Orleans | LA |
1081930.0 | 16.0 | DAL | MSY | New Orleans | LA |
1080925.0 | 4.0 | DAL | MSY | New Orleans | LA |
1081025.0 | 24.0 | DAL | MSY | New Orleans | LA |
1081230.0 | 8.0 | DAL | MSY | New Orleans | LA |
1081635.0 | 29.0 | DAL | MSY | New Orleans | LA |
1092015.0 | 89.0 | DAL | MSY | New Orleans | LA |
1091535.0 | 20.0 | DAL | MSY | New Orleans | LA |
1090925.0 | 39.0 | DAL | MSY | New Orleans | LA |
1091025.0 | 94.0 | DAL | MSY | New Orleans | LA |
1091230.0 | 73.0 | DAL | MSY | New Orleans | LA |
1091635.0 | 35.0 | DAL | MSY | New Orleans | LA |
1102015.0 | 100.0 | DAL | MSY | New Orleans | LA |
1101535.0 | 70.0 | DAL | MSY | New Orleans | LA |
1101930.0 | 118.0 | DAL | MSY | New Orleans | LA |
1100925.0 | 10.0 | DAL | MSY | New Orleans | LA |
1101025.0 | 9.0 | DAL | MSY | New Orleans | LA |
1101230.0 | 21.0 | DAL | MSY | New Orleans | LA |
1101635.0 | 57.0 | DAL | MSY | New Orleans | LA |
1111750.0 | 36.0 | DAL | MSY | New Orleans | LA |
1110645.0 | 2.0 | DAL | MSY | New Orleans | LA |
1111450.0 | 3.0 | DAL | MSY | New Orleans | LA |
1111625.0 | 50.0 | DAL | MSY | New Orleans | LA |
1122015.0 | 2.0 | DAL | MSY | New Orleans | LA |
1121535.0 | 8.0 | DAL | MSY | New Orleans | LA |
1121620.0 | 33.0 | DAL | MSY | New Orleans | LA |
1121930.0 | 23.0 | DAL | MSY | New Orleans | LA |
1120925.0 | 3.0 | DAL | MSY | New Orleans | LA |
1121230.0 | 6.0 | DAL | MSY | New Orleans | LA |
1131535.0 | 3.0 | DAL | MSY | New Orleans | LA |
1130630.0 | 2.0 | DAL | MSY | New Orleans | LA |
1130925.0 | 9.0 | DAL | MSY | New Orleans | LA |
1131025.0 | 18.0 | DAL | MSY | New Orleans | LA |
1142015.0 | 10.0 | DAL | MSY | New Orleans | LA |
1140630.0 | 5.0 | DAL | MSY | New Orleans | LA |
1140925.0 | 12.0 | DAL | MSY | New Orleans | LA |
1141025.0 | 16.0 | DAL | MSY | New Orleans | LA |
1141230.0 | 3.0 | DAL | MSY | New Orleans | LA |
1141635.0 | 5.0 | DAL | MSY | New Orleans | LA |
1151930.0 | 1.0 | DAL | MSY | New Orleans | LA |
1150925.0 | 8.0 | DAL | MSY | New Orleans | LA |
1151025.0 | 19.0 | DAL | MSY | New Orleans | LA |
1162015.0 | 6.0 | DAL | MSY | New Orleans | LA |
1161535.0 | 26.0 | DAL | MSY | New Orleans | LA |
1161930.0 | 5.0 | DAL | MSY | New Orleans | LA |
1160925.0 | 10.0 | DAL | MSY | New Orleans | LA |
1161025.0 | 23.0 | DAL | MSY | New Orleans | LA |
1161230.0 | 4.0 | DAL | MSY | New Orleans | LA |
1161635.0 | 28.0 | DAL | MSY | New Orleans | LA |
1172015.0 | 17.0 | DAL | MSY | New Orleans | LA |
1171535.0 | 2.0 | DAL | MSY | New Orleans | LA |
1171025.0 | 3.0 | DAL | MSY | New Orleans | LA |
1171230.0 | 17.0 | DAL | MSY | New Orleans | LA |
1171635.0 | 30.0 | DAL | MSY | New Orleans | LA |
1180645.0 | 19.0 | DAL | MSY | New Orleans | LA |
1181450.0 | 3.0 | DAL | MSY | New Orleans | LA |
1181625.0 | 7.0 | DAL | MSY | New Orleans | LA |
1191535.0 | 23.0 | DAL | MSY | New Orleans | LA |
1191620.0 | 4.0 | DAL | MSY | New Orleans | LA |
1191930.0 | 219.0 | DAL | MSY | New Orleans | LA |
1190925.0 | 5.0 | DAL | MSY | New Orleans | LA |
1200925.0 | 12.0 | DAL | MSY | New Orleans | LA |
1201025.0 | 33.0 | DAL | MSY | New Orleans | LA |
1201230.0 | 1.0 | DAL | MSY | New Orleans | LA |
1201635.0 | 6.0 | DAL | MSY | New Orleans | LA |
1211535.0 | 95.0 | DAL | MSY | New Orleans | LA |
// States with the longest cumulative delays (with individual delays > 100 minutes) (origin: Seattle)
display(tripGraph.edges.filter($"src" === "SEA" && $"delay" > 100))
tripid | delay | src | dst | city_dst | state_dst |
---|---|---|---|---|---|
3201938.0 | 108.0 | SEA | BUR | Burbank | CA |
3201655.0 | 107.0 | SEA | SNA | Orange County | CA |
1011950.0 | 123.0 | SEA | OAK | Oakland | CA |
1021950.0 | 194.0 | SEA | OAK | Oakland | CA |
1021615.0 | 317.0 | SEA | OAK | Oakland | CA |
1021755.0 | 385.0 | SEA | OAK | Oakland | CA |
1031950.0 | 283.0 | SEA | OAK | Oakland | CA |
1031615.0 | 364.0 | SEA | OAK | Oakland | CA |
1031325.0 | 130.0 | SEA | OAK | Oakland | CA |
1061755.0 | 107.0 | SEA | OAK | Oakland | CA |
1081330.0 | 118.0 | SEA | OAK | Oakland | CA |
2282055.0 | 150.0 | SEA | OAK | Oakland | CA |
3061600.0 | 130.0 | SEA | OAK | Oakland | CA |
3170815.0 | 199.0 | SEA | DCA | Washington DC | null |
2151845.0 | 128.0 | SEA | KTN | Ketchikan | AK |
2281845.0 | 104.0 | SEA | KTN | Ketchikan | AK |
3130720.0 | 117.0 | SEA | KTN | Ketchikan | AK |
1011411.0 | 177.0 | SEA | IAH | Houston | TX |
1022347.0 | 158.0 | SEA | IAH | Houston | TX |
1021411.0 | 170.0 | SEA | IAH | Houston | TX |
1031201.0 | 116.0 | SEA | IAH | Houston | TX |
1031900.0 | 178.0 | SEA | IAH | Houston | TX |
1042347.0 | 114.0 | SEA | IAH | Houston | TX |
1062347.0 | 136.0 | SEA | IAH | Houston | TX |
1101203.0 | 173.0 | SEA | IAH | Houston | TX |
1172300.0 | 125.0 | SEA | IAH | Houston | TX |
1250605.0 | 227.0 | SEA | IAH | Houston | TX |
1291203.0 | 106.0 | SEA | IAH | Houston | TX |
2141157.0 | 127.0 | SEA | IAH | Houston | TX |
2150740.0 | 466.0 | SEA | IAH | Houston | TX |
2180750.0 | 105.0 | SEA | IAH | Houston | TX |
3010740.0 | 103.0 | SEA | IAH | Houston | TX |
3021152.0 | 124.0 | SEA | IAH | Houston | TX |
3121152.0 | 340.0 | SEA | IAH | Houston | TX |
3140600.0 | 139.0 | SEA | IAH | Houston | TX |
3171152.0 | 121.0 | SEA | IAH | Houston | TX |
3280600.0 | 103.0 | SEA | IAH | Houston | TX |
1151746.0 | 229.0 | SEA | HNL | Honolulu, Oahu | HI |
1271746.0 | 111.0 | SEA | HNL | Honolulu, Oahu | HI |
1030840.0 | 294.0 | SEA | HNL | Honolulu, Oahu | HI |
2091035.0 | 132.0 | SEA | HNL | Honolulu, Oahu | HI |
3141035.0 | 295.0 | SEA | HNL | Honolulu, Oahu | HI |
3141930.0 | 128.0 | SEA | HNL | Honolulu, Oahu | HI |
3311930.0 | 104.0 | SEA | HNL | Honolulu, Oahu | HI |
3030840.0 | 185.0 | SEA | HNL | Honolulu, Oahu | HI |
3240845.0 | 114.0 | SEA | HNL | Honolulu, Oahu | HI |
1041740.0 | 256.0 | SEA | SJC | San Jose | CA |
1061815.0 | 200.0 | SEA | SJC | San Jose | CA |
3031600.0 | 161.0 | SEA | SJC | San Jose | CA |
1031100.0 | 145.0 | SEA | LGB | Long Beach | CA |
1041737.0 | 320.0 | SEA | LGB | Long Beach | CA |
1081728.0 | 122.0 | SEA | LGB | Long Beach | CA |
1221140.0 | 189.0 | SEA | LGB | Long Beach | CA |
2121140.0 | 365.0 | SEA | LGB | Long Beach | CA |
3070710.0 | 115.0 | SEA | LGB | Long Beach | CA |
3180935.0 | 135.0 | SEA | LGB | Long Beach | CA |
2141245.0 | 176.0 | SEA | RNO | Reno | NV |
1052147.0 | 110.0 | SEA | BOS | Boston | MA |
1081420.0 | 109.0 | SEA | BOS | Boston | MA |
1112313.0 | 110.0 | SEA | BOS | Boston | MA |
1232313.0 | 110.0 | SEA | BOS | Boston | MA |
2140945.0 | 105.0 | SEA | BOS | Boston | MA |
2032313.0 | 114.0 | SEA | BOS | Boston | MA |
2121420.0 | 108.0 | SEA | BOS | Boston | MA |
2141415.0 | 152.0 | SEA | BOS | Boston | MA |
3282307.0 | 119.0 | SEA | BOS | Boston | MA |
1110905.0 | 130.0 | SEA | EWR | Newark | NJ |
1022227.0 | 236.0 | SEA | EWR | Newark | NJ |
1180703.0 | 138.0 | SEA | EWR | Newark | NJ |
2030905.0 | 212.0 | SEA | EWR | Newark | NJ |
3141530.0 | 131.0 | SEA | EWR | Newark | NJ |
3171530.0 | 181.0 | SEA | EWR | Newark | NJ |
3202200.0 | 168.0 | SEA | EWR | Newark | NJ |
1032115.0 | 196.0 | SEA | LAS | Las Vegas | NV |
1201840.0 | 113.0 | SEA | LAS | Las Vegas | NV |
1260840.0 | 165.0 | SEA | LAS | Las Vegas | NV |
1261840.0 | 121.0 | SEA | LAS | Las Vegas | NV |
1031905.0 | 103.0 | SEA | LAS | Las Vegas | NV |
1041550.0 | 156.0 | SEA | LAS | Las Vegas | NV |
1061820.0 | 213.0 | SEA | LAS | Las Vegas | NV |
1061515.0 | 116.0 | SEA | LAS | Las Vegas | NV |
1080805.0 | 235.0 | SEA | LAS | Las Vegas | NV |
1170800.0 | 247.0 | SEA | LAS | Las Vegas | NV |
2191235.0 | 210.0 | SEA | LAS | Las Vegas | NV |
2281430.0 | 121.0 | SEA | LAS | Las Vegas | NV |
2281235.0 | 187.0 | SEA | LAS | Las Vegas | NV |
2170830.0 | 610.0 | SEA | LAS | Las Vegas | NV |
2051205.0 | 110.0 | SEA | LAS | Las Vegas | NV |
2111835.0 | 133.0 | SEA | LAS | Las Vegas | NV |
2132005.0 | 135.0 | SEA | LAS | Las Vegas | NV |
2272005.0 | 102.0 | SEA | LAS | Las Vegas | NV |
3031430.0 | 108.0 | SEA | LAS | Las Vegas | NV |
3141410.0 | 102.0 | SEA | LAS | Las Vegas | NV |
3151205.0 | 103.0 | SEA | LAS | Las Vegas | NV |
3281245.0 | 140.0 | SEA | LAS | Las Vegas | NV |
3181520.0 | 103.0 | SEA | LAS | Las Vegas | NV |
3292000.0 | 107.0 | SEA | LAS | Las Vegas | NV |
1051955.0 | 160.0 | SEA | FAI | Fairbanks | AK |
1040955.0 | 126.0 | SEA | DEN | Denver | CO |
1040650.0 | 103.0 | SEA | DEN | Denver | CO |
1160650.0 | 120.0 | SEA | DEN | Denver | CO |
1011940.0 | 167.0 | SEA | DEN | Denver | CO |
1041039.0 | 113.0 | SEA | DEN | Denver | CO |
1041437.0 | 256.0 | SEA | DEN | Denver | CO |
1041937.0 | 191.0 | SEA | DEN | Denver | CO |
1040605.0 | 138.0 | SEA | DEN | Denver | CO |
1061937.0 | 111.0 | SEA | DEN | Denver | CO |
1121937.0 | 118.0 | SEA | DEN | Denver | CO |
1171937.0 | 104.0 | SEA | DEN | Denver | CO |
1021523.0 | 118.0 | SEA | DEN | Denver | CO |
1041521.0 | 177.0 | SEA | DEN | Denver | CO |
1061055.0 | 154.0 | SEA | DEN | Denver | CO |
1281515.0 | 137.0 | SEA | DEN | Denver | CO |
1011450.0 | 102.0 | SEA | DEN | Denver | CO |
1021205.0 | 425.0 | SEA | DEN | Denver | CO |
1031450.0 | 211.0 | SEA | DEN | Denver | CO |
2210955.0 | 132.0 | SEA | DEN | Denver | CO |
2111537.0 | 156.0 | SEA | DEN | Denver | CO |
2110700.0 | 625.0 | SEA | DEN | Denver | CO |
2191039.0 | 148.0 | SEA | DEN | Denver | CO |
2211039.0 | 105.0 | SEA | DEN | Denver | CO |
2031055.0 | 174.0 | SEA | DEN | Denver | CO |
2051055.0 | 112.0 | SEA | DEN | Denver | CO |
2211110.0 | 106.0 | SEA | DEN | Denver | CO |
3131405.0 | 154.0 | SEA | DEN | Denver | CO |
3181930.0 | 115.0 | SEA | DEN | Denver | CO |
3191749.0 | 103.0 | SEA | DEN | Denver | CO |
3011405.0 | 109.0 | SEA | DEN | Denver | CO |
3121519.0 | 231.0 | SEA | DEN | Denver | CO |
3061445.0 | 148.0 | SEA | DEN | Denver | CO |
3181440.0 | 132.0 | SEA | DEN | Denver | CO |
1011306.0 | 206.0 | SEA | IAD | Washington DC | null |
1050806.0 | 105.0 | SEA | IAD | Washington DC | null |
1052226.0 | 111.0 | SEA | IAD | Washington DC | null |
1291256.0 | 108.0 | SEA | IAD | Washington DC | null |
2031256.0 | 185.0 | SEA | IAD | Washington DC | null |
2041256.0 | 129.0 | SEA | IAD | Washington DC | null |
2101256.0 | 144.0 | SEA | IAD | Washington DC | null |
2191316.0 | 122.0 | SEA | IAD | Washington DC | null |
3080800.0 | 273.0 | SEA | IAD | Washington DC | null |
3162225.0 | 174.0 | SEA | IAD | Washington DC | null |
3201316.0 | 111.0 | SEA | IAD | Washington DC | null |
3261311.0 | 104.0 | SEA | IAD | Washington DC | null |
1111300.0 | 133.0 | SEA | PSP | Palm Springs | CA |
1110910.0 | 171.0 | SEA | PSP | Palm Springs | CA |
3170915.0 | 114.0 | SEA | PSP | Palm Springs | CA |
3310645.0 | 179.0 | SEA | PSP | Palm Springs | CA |
1161050.0 | 132.0 | SEA | SBA | Santa Barbara | CA |
2091050.0 | 310.0 | SEA | SBA | Santa Barbara | CA |
3191045.0 | 109.0 | SEA | SBA | Santa Barbara | CA |
3241045.0 | 140.0 | SEA | SBA | Santa Barbara | CA |
2122225.0 | 228.0 | SEA | CLT | Charlotte | NC |
2142225.0 | 104.0 | SEA | CLT | Charlotte | NC |
2152225.0 | 113.0 | SEA | CLT | Charlotte | NC |
3081110.0 | 110.0 | SEA | CLT | Charlotte | NC |
1290940.0 | 316.0 | SEA | ABQ | Albuquerque | NM |
1171153.0 | 119.0 | SEA | PDX | Portland | OR |
1171439.0 | 112.0 | SEA | PDX | Portland | OR |
2091041.0 | 309.0 | SEA | PDX | Portland | OR |
2090845.0 | 133.0 | SEA | PDX | Portland | OR |
3021455.0 | 226.0 | SEA | PDX | Portland | OR |
3021914.0 | 165.0 | SEA | PDX | Portland | OR |
3090926.0 | 112.0 | SEA | PDX | Portland | OR |
3251041.0 | 274.0 | SEA | PDX | Portland | OR |
3261728.0 | 109.0 | SEA | PDX | Portland | OR |
3301728.0 | 108.0 | SEA | PDX | Portland | OR |
1112205.0 | 101.0 | SEA | MIA | Miami | FL |
1262205.0 | 130.0 | SEA | MIA | Miami | FL |
2142215.0 | 229.0 | SEA | MIA | Miami | FL |
3292220.0 | 117.0 | SEA | MIA | Miami | FL |
1012140.0 | 136.0 | SEA | SMF | Sacramento | CA |
1010715.0 | 164.0 | SEA | SMF | Sacramento | CA |
1021930.0 | 109.0 | SEA | SMF | Sacramento | CA |
1031630.0 | 113.0 | SEA | SMF | Sacramento | CA |
1041440.0 | 137.0 | SEA | SMF | Sacramento | CA |
1041710.0 | 102.0 | SEA | SMF | Sacramento | CA |
2211915.0 | 103.0 | SEA | SMF | Sacramento | CA |
3262140.0 | 113.0 | SEA | SMF | Sacramento | CA |
3271855.0 | 113.0 | SEA | SMF | Sacramento | CA |
3191020.0 | 139.0 | SEA | SMF | Sacramento | CA |
1291410.0 | 136.0 | SEA | PHX | Phoenix | AZ |
1040830.0 | 294.0 | SEA | PHX | Phoenix | AZ |
1300830.0 | 371.0 | SEA | PHX | Phoenix | AZ |
1031510.0 | 119.0 | SEA | PHX | Phoenix | AZ |
1061510.0 | 180.0 | SEA | PHX | Phoenix | AZ |
1290720.0 | 147.0 | SEA | PHX | Phoenix | AZ |
2082020.0 | 130.0 | SEA | PHX | Phoenix | AZ |
2281855.0 | 186.0 | SEA | PHX | Phoenix | AZ |
2110520.0 | 463.0 | SEA | PHX | Phoenix | AZ |
2111132.0 | 107.0 | SEA | PHX | Phoenix | AZ |
2160830.0 | 110.0 | SEA | PHX | Phoenix | AZ |
2241132.0 | 107.0 | SEA | PHX | Phoenix | AZ |
2251615.0 | 103.0 | SEA | PHX | Phoenix | AZ |
3041455.0 | 108.0 | SEA | PHX | Phoenix | AZ |
3051745.0 | 169.0 | SEA | PHX | Phoenix | AZ |
3091455.0 | 126.0 | SEA | PHX | Phoenix | AZ |
3251132.0 | 123.0 | SEA | PHX | Phoenix | AZ |
3221530.0 | 121.0 | SEA | PHX | Phoenix | AZ |
1060830.0 | 116.0 | SEA | DFW | Dallas | TX |
1180830.0 | 132.0 | SEA | DFW | Dallas | TX |
1281350.0 | 115.0 | SEA | DFW | Dallas | TX |
1291545.0 | 247.0 | SEA | DFW | Dallas | TX |
2031545.0 | 230.0 | SEA | DFW | Dallas | TX |
2040830.0 | 135.0 | SEA | DFW | Dallas | TX |
2061115.0 | 110.0 | SEA | DFW | Dallas | TX |
2061545.0 | 125.0 | SEA | DFW | Dallas | TX |
2061350.0 | 126.0 | SEA | DFW | Dallas | TX |
2080830.0 | 356.0 | SEA | DFW | Dallas | TX |
2090830.0 | 128.0 | SEA | DFW | Dallas | TX |
3012320.0 | 123.0 | SEA | DFW | Dallas | TX |
3152320.0 | 143.0 | SEA | DFW | Dallas | TX |
3151400.0 | 146.0 | SEA | DFW | Dallas | TX |
3301400.0 | 277.0 | SEA | DFW | Dallas | TX |
1171220.0 | 110.0 | SEA | SFO | San Francisco | CA |
1291220.0 | 103.0 | SEA | SFO | San Francisco | CA |
1031125.0 | 107.0 | SEA | SFO | San Francisco | CA |
1120924.0 | 268.0 | SEA | SFO | San Francisco | CA |
1161058.0 | 131.0 | SEA | SFO | San Francisco | CA |
1171058.0 | 138.0 | SEA | SFO | San Francisco | CA |
1010955.0 | 104.0 | SEA | SFO | San Francisco | CA |
1021914.0 | 105.0 | SEA | SFO | San Francisco | CA |
1041830.0 | 131.0 | SEA | SFO | San Francisco | CA |
1051214.0 | 139.0 | SEA | SFO | San Francisco | CA |
1061214.0 | 384.0 | SEA | SFO | San Francisco | CA |
1111310.0 | 124.0 | SEA | SFO | San Francisco | CA |
1241310.0 | 133.0 | SEA | SFO | San Francisco | CA |
1281310.0 | 250.0 | SEA | SFO | San Francisco | CA |
1051855.0 | 166.0 | SEA | SFO | San Francisco | CA |
2060955.0 | 148.0 | SEA | SFO | San Francisco | CA |
2072125.0 | 105.0 | SEA | SFO | San Francisco | CA |
2071845.0 | 203.0 | SEA | SFO | San Francisco | CA |
2071220.0 | 139.0 | SEA | SFO | San Francisco | CA |
2071100.0 | 113.0 | SEA | SFO | San Francisco | CA |
2071405.0 | 144.0 | SEA | SFO | San Francisco | CA |
2080955.0 | 121.0 | SEA | SFO | San Francisco | CA |
2091835.0 | 124.0 | SEA | SFO | San Francisco | CA |
2091405.0 | 101.0 | SEA | SFO | San Francisco | CA |
2101220.0 | 134.0 | SEA | SFO | San Francisco | CA |
2100955.0 | 107.0 | SEA | SFO | San Francisco | CA |
2101100.0 | 105.0 | SEA | SFO | San Francisco | CA |
2101405.0 | 105.0 | SEA | SFO | San Francisco | CA |
2130955.0 | 108.0 | SEA | SFO | San Francisco | CA |
2131100.0 | 139.0 | SEA | SFO | San Francisco | CA |
2141100.0 | 107.0 | SEA | SFO | San Francisco | CA |
2281100.0 | 130.0 | SEA | SFO | San Francisco | CA |
2231058.0 | 136.0 | SEA | SFO | San Francisco | CA |
2021310.0 | 115.0 | SEA | SFO | San Francisco | CA |
2091820.0 | 149.0 | SEA | SFO | San Francisco | CA |
2181526.0 | 106.0 | SEA | SFO | San Francisco | CA |
2271905.0 | 154.0 | SEA | SFO | San Francisco | CA |
2021450.0 | 139.0 | SEA | SFO | San Francisco | CA |
2060950.0 | 150.0 | SEA | SFO | San Francisco | CA |
2061450.0 | 140.0 | SEA | SFO | San Francisco | CA |
2061855.0 | 119.0 | SEA | SFO | San Francisco | CA |
2071855.0 | 146.0 | SEA | SFO | San Francisco | CA |
2081330.0 | 164.0 | SEA | SFO | San Francisco | CA |
2091450.0 | 106.0 | SEA | SFO | San Francisco | CA |
2091855.0 | 182.0 | SEA | SFO | San Francisco | CA |
2261450.0 | 259.0 | SEA | SFO | San Francisco | CA |
2261855.0 | 224.0 | SEA | SFO | San Francisco | CA |
2270950.0 | 174.0 | SEA | SFO | San Francisco | CA |
2271450.0 | 240.0 | SEA | SFO | San Francisco | CA |
2280950.0 | 207.0 | SEA | SFO | San Francisco | CA |
2281450.0 | 331.0 | SEA | SFO | San Francisco | CA |
2281855.0 | 124.0 | SEA | SFO | San Francisco | CA |
3142043.0 | 101.0 | SEA | SFO | San Francisco | CA |
3180950.0 | 155.0 | SEA | SFO | San Francisco | CA |
3260950.0 | 117.0 | SEA | SFO | San Francisco | CA |
3281430.0 | 112.0 | SEA | SFO | San Francisco | CA |
3291050.0 | 138.0 | SEA | SFO | San Francisco | CA |
3062055.0 | 113.0 | SEA | SFO | San Francisco | CA |
3091028.0 | 143.0 | SEA | SFO | San Francisco | CA |
3112055.0 | 116.0 | SEA | SFO | San Francisco | CA |
3261043.0 | 121.0 | SEA | SFO | San Francisco | CA |
3311043.0 | 257.0 | SEA | SFO | San Francisco | CA |
3171237.0 | 182.0 | SEA | SFO | San Francisco | CA |
3251933.0 | 197.0 | SEA | SFO | San Francisco | CA |
3011330.0 | 115.0 | SEA | SFO | San Francisco | CA |
3311045.0 | 189.0 | SEA | SFO | San Francisco | CA |
3311440.0 | 101.0 | SEA | SFO | San Francisco | CA |
1031152.0 | 397.0 | SEA | ATL | Atlanta | GA |
1050830.0 | 106.0 | SEA | ATL | Atlanta | GA |
1051152.0 | 107.0 | SEA | ATL | Atlanta | GA |
1121159.0 | 201.0 | SEA | ATL | Atlanta | GA |
1250630.0 | 206.0 | SEA | ATL | Atlanta | GA |
1301159.0 | 117.0 | SEA | ATL | Atlanta | GA |
1301322.0 | 179.0 | SEA | ATL | Atlanta | GA |
2021159.0 | 145.0 | SEA | ATL | Atlanta | GA |
2171320.0 | 133.0 | SEA | ATL | Atlanta | GA |
3171320.0 | 109.0 | SEA | ATL | Atlanta | GA |
1092015.0 | 119.0 | SEA | FAT | Fresno | CA |
2012015.0 | 189.0 | SEA | FAT | Fresno | CA |
2091150.0 | 232.0 | SEA | FAT | Fresno | CA |
1021425.0 | 298.0 | SEA | ORD | Chicago | IL |
1030600.0 | 103.0 | SEA | ORD | Chicago | IL |
1081205.0 | 135.0 | SEA | ORD | Chicago | IL |
1161205.0 | 582.0 | SEA | ORD | Chicago | IL |
1241205.0 | 174.0 | SEA | ORD | Chicago | IL |
1300815.0 | 209.0 | SEA | ORD | Chicago | IL |
1021235.0 | 113.0 | SEA | ORD | Chicago | IL |
1020830.0 | 151.0 | SEA | ORD | Chicago | IL |
1051235.0 | 240.0 | SEA | ORD | Chicago | IL |
1050830.0 | 163.0 | SEA | ORD | Chicago | IL |
1241235.0 | 171.0 | SEA | ORD | Chicago | IL |
1301235.0 | 111.0 | SEA | ORD | Chicago | IL |
1300830.0 | 141.0 | SEA | ORD | Chicago | IL |
1012359.0 | 227.0 | SEA | ORD | Chicago | IL |
1040859.0 | 302.0 | SEA | ORD | Chicago | IL |
1241110.0 | 223.0 | SEA | ORD | Chicago | IL |
1311411.0 | 142.0 | SEA | ORD | Chicago | IL |
2051235.0 | 115.0 | SEA | ORD | Chicago | IL |
2050830.0 | 128.0 | SEA | ORD | Chicago | IL |
2171235.0 | 204.0 | SEA | ORD | Chicago | IL |
2170830.0 | 220.0 | SEA | ORD | Chicago | IL |
2031615.0 | 185.0 | SEA | ORD | Chicago | IL |
2171415.0 | 164.0 | SEA | ORD | Chicago | IL |
2261415.0 | 138.0 | SEA | ORD | Chicago | IL |
3120820.0 | 179.0 | SEA | ORD | Chicago | IL |
3121200.0 | 151.0 | SEA | ORD | Chicago | IL |
3200600.0 | 140.0 | SEA | ORD | Chicago | IL |
3051235.0 | 140.0 | SEA | ORD | Chicago | IL |
3120830.0 | 204.0 | SEA | ORD | Chicago | IL |
3132240.0 | 127.0 | SEA | ORD | Chicago | IL |
3162240.0 | 150.0 | SEA | ORD | Chicago | IL |
3181417.0 | 127.0 | SEA | ORD | Chicago | IL |
1091350.0 | 133.0 | SEA | MDW | Chicago | IL |
1261350.0 | 109.0 | SEA | MDW | Chicago | IL |
3171420.0 | 111.0 | SEA | MDW | Chicago | IL |
3310600.0 | 206.0 | SEA | MDW | Chicago | IL |
2271820.0 | 203.0 | SEA | COS | Colorado Springs | CO |
3171825.0 | 205.0 | SEA | COS | Colorado Springs | CO |
1250755.0 | 233.0 | SEA | JNU | Juneau | AK |
1310755.0 | 210.0 | SEA | JNU | Juneau | AK |
1311120.0 | 105.0 | SEA | JNU | Juneau | AK |
3030755.0 | 110.0 | SEA | JNU | Juneau | AK |
3130750.0 | 320.0 | SEA | JNU | Juneau | AK |
1062320.0 | 107.0 | SEA | DTW | Detroit | MI |
3121405.0 | 135.0 | SEA | ONT | Ontario | CA |
3130725.0 | 174.0 | SEA | ONT | Ontario | CA |
1171425.0 | 105.0 | SEA | LAX | Los Angeles | CA |
1041700.0 | 264.0 | SEA | LAX | Los Angeles | CA |
1051700.0 | 136.0 | SEA | LAX | Los Angeles | CA |
1071645.0 | 151.0 | SEA | LAX | Los Angeles | CA |
1311645.0 | 136.0 | SEA | LAX | Los Angeles | CA |
1251020.0 | 130.0 | SEA | LAX | Los Angeles | CA |
1261020.0 | 108.0 | SEA | LAX | Los Angeles | CA |
1291258.0 | 126.0 | SEA | LAX | Los Angeles | CA |
2022140.0 | 131.0 | SEA | LAX | Los Angeles | CA |
2130610.0 | 135.0 | SEA | LAX | Los Angeles | CA |
2091645.0 | 104.0 | SEA | LAX | Los Angeles | CA |
2131645.0 | 134.0 | SEA | LAX | Los Angeles | CA |
2031805.0 | 212.0 | SEA | LAX | Los Angeles | CA |
2071805.0 | 105.0 | SEA | LAX | Los Angeles | CA |
2071649.0 | 126.0 | SEA | LAX | Los Angeles | CA |
2081649.0 | 154.0 | SEA | LAX | Los Angeles | CA |
2091649.0 | 245.0 | SEA | LAX | Los Angeles | CA |
2131705.0 | 107.0 | SEA | LAX | Los Angeles | CA |
2161010.0 | 124.0 | SEA | LAX | Los Angeles | CA |
2271149.0 | 192.0 | SEA | LAX | Los Angeles | CA |
3141650.0 | 197.0 | SEA | LAX | Los Angeles | CA |
3152105.0 | 115.0 | SEA | LAX | Los Angeles | CA |
3171700.0 | 131.0 | SEA | LAX | Los Angeles | CA |
3291700.0 | 118.0 | SEA | LAX | Los Angeles | CA |
1050037.0 | 102.0 | SEA | MSP | Minneapolis | MN |
1070700.0 | 193.0 | SEA | MSP | Minneapolis | MN |
1130700.0 | 429.0 | SEA | MSP | Minneapolis | MN |
2240655.0 | 109.0 | SEA | MSP | Minneapolis | MN |
2121515.0 | 118.0 | SEA | MSP | Minneapolis | MN |
1060800.0 | 132.0 | SEA | MCO | Orlando | FL |
2220955.0 | 157.0 | SEA | SAN | San Diego | CA |
3010955.0 | 108.0 | SEA | SAN | San Diego | CA |
1031300.0 | 108.0 | SEA | ANC | Anchorage | AK |
1062110.0 | 149.0 | SEA | ANC | Anchorage | AK |
1132112.0 | 106.0 | SEA | ANC | Anchorage | AK |
2072350.0 | 141.0 | SEA | ANC | Anchorage | AK |
2091815.0 | 133.0 | SEA | ANC | Anchorage | AK |
3181605.0 | 187.0 | SEA | ANC | Anchorage | AK |
3231915.0 | 115.0 | SEA | ANC | Anchorage | AK |
3311605.0 | 135.0 | SEA | ANC | Anchorage | AK |
1022258.0 | 180.0 | SEA | JFK | New York | NY |
1042258.0 | 285.0 | SEA | JFK | New York | NY |
1022259.0 | 116.0 | SEA | JFK | New York | NY |
2090715.0 | 110.0 | SEA | JFK | New York | NY |
2022145.0 | 101.0 | SEA | JFK | New York | NY |
2032145.0 | 165.0 | SEA | JFK | New York | NY |
2031535.0 | 181.0 | SEA | JFK | New York | NY |
2042145.0 | 201.0 | SEA | JFK | New York | NY |
2142140.0 | 113.0 | SEA | JFK | New York | NY |
2222140.0 | 118.0 | SEA | JFK | New York | NY |
2032258.0 | 130.0 | SEA | JFK | New York | NY |
2220700.0 | 404.0 | SEA | JFK | New York | NY |
3310715.0 | 385.0 | SEA | JFK | New York | NY |
3192140.0 | 119.0 | SEA | JFK | New York | NY |
3091300.0 | 125.0 | SEA | JFK | New York | NY |
1241000.0 | 806.0 | SEA | OGG | Kahului, Maui | HI |
1030845.0 | 342.0 | SEA | PHL | Philadelphia | PA |
1050845.0 | 174.0 | SEA | PHL | Philadelphia | PA |
1210845.0 | 866.0 | SEA | PHL | Philadelphia | PA |
1022215.0 | 121.0 | SEA | PHL | Philadelphia | PA |
1031130.0 | 146.0 | SEA | PHL | Philadelphia | PA |
1090835.0 | 148.0 | SEA | PHL | Philadelphia | PA |
1170835.0 | 203.0 | SEA | PHL | Philadelphia | PA |
2030845.0 | 202.0 | SEA | PHL | Philadelphia | PA |
3130835.0 | 290.0 | SEA | PHL | Philadelphia | PA |
1031810.0 | 142.0 | SEA | SLC | Salt Lake City | UT |
1041016.0 | 117.0 | SEA | SLC | Salt Lake City | UT |
1291725.0 | 111.0 | SEA | SLC | Salt Lake City | UT |
1021555.0 | 175.0 | SEA | SLC | Salt Lake City | UT |
1041825.0 | 110.0 | SEA | SLC | Salt Lake City | UT |
2131635.0 | 134.0 | SEA | SLC | Salt Lake City | UT |
2230710.0 | 739.0 | SEA | SLC | Salt Lake City | UT |
2240710.0 | 477.0 | SEA | SLC | Salt Lake City | UT |
2061005.0 | 119.0 | SEA | SLC | Salt Lake City | UT |
3051315.0 | 123.0 | SEA | SLC | Salt Lake City | UT |
3260710.0 | 149.0 | SEA | SLC | Salt Lake City | UT |
3281750.0 | 125.0 | SEA | SLC | Salt Lake City | UT |
Vertex Degrees
inDegrees
: Incoming connections to the airportoutDegrees
: Outgoing connections from the airportdegrees
: Total connections to and from the airport
Reviewing the various properties of the property graph to understand the incoming and outgoing connections between airports.
// Degrees
// The number of degrees - the number of incoming and outgoing connections - for various airports within this sample dataset
display(tripGraph.degrees.sort($"degree".desc).limit(20))
id | degree |
---|---|
ATL | 179774.0 |
DFW | 133966.0 |
ORD | 125405.0 |
LAX | 106853.0 |
DEN | 103699.0 |
IAH | 85685.0 |
PHX | 79672.0 |
SFO | 77635.0 |
LAS | 66101.0 |
CLT | 56103.0 |
EWR | 54407.0 |
MCO | 54300.0 |
LGA | 50927.0 |
SLC | 50780.0 |
BOS | 49936.0 |
DTW | 46705.0 |
MSP | 46235.0 |
SEA | 45816.0 |
JFK | 43661.0 |
BWI | 42526.0 |
City / Flight Relationships through Motif Finding
To more easily understand the complex relationship of city airports and their flights with each other, we can use motifs to find patterns of airports (i.e. vertices) connected by flights (i.e. edges). The result is a DataFrame in which the column names are given by the motif keys.
/*
Using tripGraphPrime to more easily display
- The associated edge (ab, bc) relationships
- With the different the city / airports (a, b, c) where SFO is the connecting city (b)
- Ensuring that flight ab (i.e. the flight to SFO) occured before flight bc (i.e. flight leaving SFO)
- Note, TripID was generated based on time in the format of MMDDHHMM converted to int
- Therefore bc.tripid < ab.tripid + 10000 means the second flight (bc) occured within approx a day of the first flight (ab)
Note: In reality, we would need to be more careful to link trips ab and bc.
*/
val motifs = tripGraphPrime.
find("(a)-[ab]->(b); (b)-[bc]->(c)").
filter("(b.id = 'SFO') and (ab.delay > 500 or bc.delay > 500) and bc.tripid > ab.tripid and bc.tripid < ab.tripid + 10000")
display(motifs)
Determining Airport Ranking using PageRank
There are a large number of flights and connections through these various airports included in this Departure Delay Dataset. Using the pageRank
algorithm, Spark iteratively traverses the graph and determines a rough estimate of how important the airport is.
// Determining Airport ranking of importance using `pageRank`
val ranks = tripGraph.pageRank.resetProbability(0.15).maxIter(5).run()
ranks: org.graphframes.GraphFrame = GraphFrame(v:[id: string, City: string ... 3 more fields], e:[src: string, dst: string ... 5 more fields])
display(ranks.vertices.orderBy($"pagerank".desc).limit(20))
id | City | State | Country | pagerank |
---|---|---|---|---|
ATL | Atlanta | GA | USA | 18.910104616729814 |
DFW | Dallas | TX | USA | 13.699227467378964 |
ORD | Chicago | IL | USA | 13.163049993795985 |
DEN | Denver | CO | USA | 9.723388283811563 |
LAX | Los Angeles | CA | USA | 8.703656827807166 |
IAH | Houston | TX | USA | 7.991324463091128 |
SFO | San Francisco | CA | USA | 6.903242998287933 |
PHX | Phoenix | AZ | USA | 6.505886984498643 |
SLC | Salt Lake City | UT | USA | 5.799587684561128 |
LAS | Las Vegas | NV | USA | 5.25359244560915 |
SEA | Seattle | WA | USA | 4.626877547905697 |
EWR | Newark | NJ | USA | 4.401221169028188 |
MCO | Orlando | FL | USA | 4.389045874474043 |
CLT | Charlotte | NC | USA | 4.378459524081744 |
DTW | Detroit | MI | USA | 4.223377976049847 |
MSP | Minneapolis | MN | USA | 4.1490048912541795 |
LGA | New York | NY | USA | 4.129454491295321 |
BOS | Boston | MA | USA | 3.812077076528526 |
BWI | Baltimore | MD | USA | 3.53116352570383 |
JFK | New York | NY | USA | 3.521942669296845 |
BTW, A lot more delicate air-traffic arithmetic is possible for a full month of airplane co-trajectories over the radar range of Atlanta, Georgia, one of the busiest airports in the world.
See for instance:
- Statistical regular pavings to analyze massive data of aircraft trajectories, Gloria Teng, Kenneth Kuhn and Raazesh Sainudiin, Journal of Aerospace Computing, Information, and Communication, Vol. 9, No. 1, pp. 14-25, doi: 10.2514/1.I010015, 2012. See free preprint: http://lamastex.org/preprints/AAIASubPavingATC.pdf.
Most popular flights (single city hops)
Using the tripGraph
, we can quickly determine what are the most popular single city hop flights
// Determine the most popular flights (single city hops)
import org.apache.spark.sql.functions._
val topTrips = tripGraph.edges.
groupBy("src", "dst").
agg(count("delay").as("trips"))
import org.apache.spark.sql.functions._
topTrips: org.apache.spark.sql.DataFrame = [src: string, dst: string ... 1 more field]
// Show the top 20 most popular flights (single city hops)
display(topTrips.orderBy($"trips".desc).limit(20))
src | dst | trips |
---|---|---|
SFO | LAX | 3232.0 |
LAX | SFO | 3198.0 |
LAS | LAX | 3016.0 |
LAX | LAS | 2964.0 |
JFK | LAX | 2720.0 |
LAX | JFK | 2719.0 |
ATL | LGA | 2501.0 |
LGA | ATL | 2500.0 |
LAX | PHX | 2394.0 |
PHX | LAX | 2387.0 |
HNL | OGG | 2380.0 |
OGG | HNL | 2379.0 |
LAX | SAN | 2215.0 |
SAN | LAX | 2214.0 |
SJC | LAX | 2208.0 |
LAX | SJC | 2201.0 |
ATL | MCO | 2136.0 |
MCO | ATL | 2090.0 |
JFK | SFO | 2084.0 |
SFO | JFK | 2084.0 |
Top Transfer Cities
Many airports are used as transfer points instead of the final Destination. An easy way to calculate this is by calculating the ratio of inDegree (the number of flights to the airport) / outDegree (the number of flights leaving the airport). Values close to 1 may indicate many transfers, whereas values < 1 indicate many outgoing flights and > 1 indicate many incoming flights. Note, this is a simple calculation that does not take into account of timing or scheduling of flights, just the overall aggregate number within the dataset.
// Calculate the inDeg (flights into the airport) and outDeg (flights leaving the airport)
val inDeg = tripGraph.inDegrees
val outDeg = tripGraph.outDegrees
// Calculate the degreeRatio (inDeg/outDeg), perform inner join on "id" column
val degreeRatio = inDeg.join(outDeg, inDeg("id") === outDeg("id")).
drop(outDeg("id")).
selectExpr("id", "double(inDegree)/double(outDegree) as degreeRatio").
cache()
// Join back to the `airports` DataFrame (instead of registering temp table as above)
val nonTransferAirports = degreeRatio.as("d").join(airports.as("a"), $"d.id" === $"a.IATA").
selectExpr("id", "city", "degreeRatio").
filter("degreeRatio < 0.9 or degreeRatio > 1.1")
// List out the city airports which have abnormal degree ratios
display(nonTransferAirports)
id | city | degreeRatio |
---|---|---|
GFK | Grand Forks | 1.3333333333333333 |
FAI | Fairbanks | 1.1232686980609419 |
OME | Nome | 0.5084745762711864 |
BRW | Barrow | 0.28651685393258425 |
// Join back to the `airports` DataFrame (instead of registering temp table as above)
val transferAirports = degreeRatio.as("d").join(airports.as("a"), $"d.id" === $"a.IATA"). //degreeRatio.join(airports, degreeRatio("id") === airports("IATA")).
selectExpr("id", "city", "degreeRatio").
filter("degreeRatio between 0.9 and 1.1")
// List out the top 10 transfer city airports
display(transferAirports.orderBy("degreeRatio").limit(10))
id | city | degreeRatio |
---|---|---|
MSP | Minneapolis | 0.9375183338222353 |
DEN | Denver | 0.958025717037065 |
DFW | Dallas | 0.964339653074092 |
ORD | Chicago | 0.9671063983310065 |
SLC | Salt Lake City | 0.9827417906368358 |
IAH | Houston | 0.9846895050147083 |
PHX | Phoenix | 0.9891643572266746 |
OGG | Kahului, Maui | 0.9898718478710211 |
HNL | Honolulu, Oahu | 0.990535889872173 |
SFO | San Francisco | 0.9909473252295224 |
Breadth First Search
Breadth-first search (BFS) is designed to traverse the graph to quickly find the desired vertices (i.e. airports) and edges (i.e flights). Let's try to find the shortest number of connections between cities based on the dataset. Note, these examples do not take into account of time or distance, just hops between cities.
// Example 1: Direct Seattle to San Francisco
// This method returns a DataFrame of valid shortest paths from vertices matching "fromExpr" to vertices matching "toExpr"
val filteredPaths = tripGraph.bfs.fromExpr((col("id") === "SEA")).toExpr(col("id") === "SFO").maxPathLength(1).run()
display(filteredPaths)
As you can see, there are a number of direct flights between Seattle and San Francisco.
// Example 2: Direct San Francisco and Buffalo
// You can also specify expression as a String, instead of Column
val filteredPaths = tripGraph.bfs.fromExpr("id = 'SFO'").toExpr("id = 'BUF'").maxPathLength(1).run()
filteredPaths: org.apache.spark.sql.DataFrame = [id: string, City: string ... 2 more fields]
filteredPaths.show()
+---+----+-----+-------+
| id|City|State|Country|
+---+----+-----+-------+
+---+----+-----+-------+
display(filteredPaths) // display instead of show - same diference
But there are no direct flights between San Francisco and Buffalo.
// Example 2a: Flying from San Francisco to Buffalo
val filteredPaths = tripGraph.bfs.fromExpr("id = 'SFO'").toExpr("id = 'BUF'").maxPathLength(2).run()
display(filteredPaths)
But there are flights from San Francisco to Buffalo with Minneapolis as the transfer point.
Loading the D3 Visualization
Using the airports D3 visualization to visualize airports and flight paths
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
d3a1.graphs.help()
Produces a force-directed graph given a collection of edges of the following form: case class Edge(src: String, dest: String, count: Long)
Usage:
%scala
import d3._
graphs.force(
height = 500,
width = 500,
clicks: Dataset[Edge])
// On-time and Early Arrivals
import d3a1._
graphs.force(
height = 800,
width = 1200,
clicks = sql("select src, dst as dest, count(1) as count from departureDelays_geo where delay <= 0 group by src, dst").as[Edge])