Introduction
- Course Name: Scalable Data Science and Distributed Machine Learning
- Course Acronym: ScaDaMaLe or sds-3.x.
The course was designed to be the fifth and final mandatory course in the AI-Track of the WASP Graduate School in 2021. From 2022 ScaDaMaLe is an optional course for WASP students who have successfully completed the mandatory courses. It is given in three modules. In addition to academic lectures there are invited guest speakers from industry.
The course can also be taken by select post-graduate students at Uppsala University as a Special Topics Course from the Department of Mathematics.
This site provides course contents for the three modules. This content is referred to as sds-3.x here.
Module 1 – Introduction to Data Science: Introduction to fault-tolerant distributed file systems and computing.
The whole data science process illustrated with industrial case-studies. Practical introduction to scalable data processing to ingest, extract, load, transform, and explore (un)structured datasets. Scalable machine learning pipelines to model, train/fit, validate, select, tune, test and predict or estimate in an unsupervised and a supervised setting using nonparametric and partitioning methods such as random forests. Introduction to distributed vertex-programming.
Module 2 – Distributed Deep Learning: Introduction to the theory and implementation of distributed deep learning.
Classification and regression using generalised linear models, including different learning, regularization, and hyperparameters tuning techniques. The feedforward deep network as a fundamental network, and the advanced techniques to overcome its main challenges, such as overfitting, vanishing/exploding gradient, and training speed. Various deep neural networks for various kinds of data. For example, the CNN for scaling up neural networks to process large images, RNN to scale up deep neural models to long temporal sequences, and autoencoder and GANs.
Module 3 – Decision-making with Scalable Algorithms
Theoretical foundations of distributed systems and analysis of their scalable algorithms for sorting, joining, streaming, sketching, optimising and computing in numerical linear algebra with applications in scalable machine learning pipelines for typical decision problems (eg. prediction, A/B testing, anomaly detection) with various types of data (eg. time-indexed, space-time-indexed and network-indexed). Privacy-aware decisions with sanitized (cleaned, imputed, anonymised) datasets and datastreams. Practical applications of these algorithms on real-world examples (eg. mobility, social media, machine sensors and logs). Illustration via industrial use-cases.
Expected Reference Readings
Note that you need to be logged into your library with access to these publishers:
- https://learning.oreilly.com/library/view/high-performance-spark/9781491943199/
- https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
- https://learning.oreilly.com/library/view/learning-spark-2nd/9781492050032/
- Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein from
- Reading Materials Provided
Course Contents
The databricks notebooks will be made available as the course progresses in the : - course site at: - [site](https://lamastex.github.io/scalable-data-science/sds/3/x/) and [book](https://lamastex.github.io/ScaDaMaLe/index.html) - and course book at: - https://lamastex.github.io/ScaDaMaLe/index.html
- You may upload Course Content into Databricks Community Edition from:
Course Assessment
There will be minimal reading and coding exercises that will not be graded. The main assessment will be based on a peer-reviewed group project. The group project will include notebooks/codes along with a video of the project presentation. Each group cannot have more than four members and should be seen as an opportunity to do something you are passionate about or interested in, as opposed to completing and auto-gradeable programming assessment in the shortest amount of time.
Detailed instructions will be given in the sequel.
Course Sponsors
The course builds on contents developed since 2016 with support from New Zealand's Data Industry. The 2017-2019 versions were academically sponsored by Uppsala University's Inter-Faculty Course grant, Department of Mathematics and The Centre for Interdisciplinary Mathematics and industrially sponsored by databricks, AWS and Swedish data industry via Combient AB, SEB and Combient Mix AB. This 2021 version is academically sponsored by AI-Track of the WASP Graduate School and Centre for Interdisciplinary Mathematics and industrially sponsored by databricks and AWS via databricks University Alliance and Combient Mix AB via industrial mentorships.
Course Instructor
I, Raazesh Sainudiin or Raaz, will be an instructor for the course.
I have
- more than 15 years of academic research experience in applied mathematics and statistics and
- over 3 and 5 years of full-time and part-time experience in the data industry.
I currently (2020) have an effective joint appointment as:
- Associate Professor of Mathematics with specialisation in Data Science at Department of Mathematics, Uppsala University, Uppsala, Sweden and
- Director, Technical Strategy and Research at Combient Mix AB, Stockholm, Sweden
Quick links on Raaz's background:
Industrial Case Study
We will see an industrial case-study that will illustrate a concrete data science process in action in the sequel.
What is the Data Science Process
The Data Science Process in one picture
What is scalable data science and distributed machine learning?
Scalability merely refers to the ability of the data science process to scale to massive datasets (popularly known as big data).
For this we need distributed fault-tolerant computing typically over large clusters of commodity computers -- the core infrastructure in a public cloud today.
Distributed Machine Learning allows the models in the data science process to be scalably trained and extract value from big data.
What is Data Science?
It is increasingly accepted that Data Science
is an inter-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data. Data science is related to data mining, machine learning and big data.
Data science is a "concept to unify statistics, data analysis and their related methods" in order to "understand and analyze actual phenomena" with data. It uses techniques and theories drawn from many fields within the context of mathematics, statistics, computer science, domain knowledge and information science. Turing award winner Jim Gray imagined data science as a "fourth paradigm" of science (empirical, theoretical, computational and now data-driven) and asserted that "everything about science is changing because of the impact of information technology" and the data deluge.
Now, let us look at two industrially-informed academic papers that influence the above quote on what is Data Science, but with a view towards the contents and syllabus of this course.
key insights in the above paper
- Data Science is the study of the generalizabile extraction of knowledge from data.
- A common epistemic requirement in assessing whether new knowledge is actionable for decision making is its predictive power, not just its ability to explain the past.
- A data scientist requires an integrated skill set spanning
- mathematics,
- machine learning,
- artificial intelligence,
- statistics,
- databases, and
- optimization,
- along with a deep understanding of the craft of problem formulation to engineer effective solutions.
key insights in the above paper
- ML is concerned with the building of computers that improve automatically through experience
- ML lies at the intersection of computer science and statistics and at the core of artificial intelligence and data science
- Recent progress in ML is due to:
- development of new algorithms and theory
- ongoing explosion in the availability of online data
- availability of low-cost computation (*through clusters of commodity hardware in the *cloud* )
- The adoption of data science and ML methods is leading to more evidence-based decision-making across:
- health sciences (neuroscience research, )
- manufacturing
- robotics (autonomous vehicle)
- vision, speech processing, natural language processing
- education
- financial modeling
- policing
- marketing
But what is Data Engineering (including Machine Learning Engineering and Operations) and how does it relate to Data Science?
Data Engineering
There are several views on what a data engineer is supposed to do:
Some views are rather narrow and emphasise division of labour between data engineers and data scientists:
- https://www.oreilly.com/ideas/data-engineering-a-quick-and-simple-definition
- Let's check out what skills a data engineer is expected to have according to the link above.
"Ian Buss, principal solutions architect at Cloudera, notes that data scientists focus on finding new insights from a data set, while data engineers are concerned with the production readiness of that data and all that comes with it: formats, scaling, resilience, security, and more."
What skills do data engineers need? Those “10-30 different big data technologies” Anderson references in “Data engineers vs. data scientists” can fall under numerous areas, such as file formats, > ingestion engines, stream processing, batch processing, batch SQL, data storage, cluster management, transaction databases, web frameworks, data visualizations, and machine learning. And that’s just the tip of the iceberg.
Buss says data engineers should have the following skills and knowledge:
- They need to know Linux and they should be comfortable using the command line.
- They should have experience programming in at least Python or Scala/Java.
- They need to know SQL.
- They need some understanding of distributed systems in general and how they are different from traditional storage and processing systems.
- They need a deep understanding of the ecosystem, including ingestion (e.g. Kafka, Kinesis), processing frameworks (e.g. Spark, Flink) and storage engines (e.g. S3, HDFS, HBase, Kudu). They should know the strengths and weaknesses of each tool and what it's best used for.
- They need to know how to access and process data.
Let's dive deeper into such highly compartmentalised views of data engineers and data scientists and the so-called "machine learning engineers" according the following view:
- https://www.oreilly.com/ideas/data-engineers-vs-data-scientists
embedded below.
The Data Engineering Scientist as "The Middle Way"
Here are some basic axioms that should be self-evident.
- Yes, there are differences in skillsets across humans
- some humans will be better and have inclinations for engineering and others for pure mathematics by nature and nurture
- one human cannot easily be a master of everything needed for innovating a new data-based product or service (very very rarely though this happens)
- Skills can be gained by any human who wants to learn to the extent s/he is able to expend time, energy, etc.
For the Scalable Data Engineering Science Process: towards Production-Ready and Productisable Prototyping for the Data-based Factory we need to allow each data engineer to be more of a data scientist and each data scientist to be more of a data engineer, up to each individual's comfort zones in technical and mathematical/conceptual and time-availability planes, but with some minimal expectations of mutual appreciation.
This course is designed to help you take the first minimal steps towards such a data engineering science.
In the sequel it will become apparent why a team of data engineering scientists with skills across the conventional (2021) spectrum of data engineer versus data scientist is crucial for Production-Ready and Productisable Prototyping for the Data-based Factory, whose outputs include standard AI products today.
Standing on shoulders of giants!
This course was originally structured from two other edX courses from 2015. Unfortunately, these courses and their content,including video lectures and slides, are not available openly any longer.
- BerkeleyX/CS100-1x, Introduction to Big Data Using Apache Spark by Anthony A Joseph, Chancellor's Professor, UC Berkeley
- BerkeleyX/CS190-1x, Scalable Machine Learning by Ameet Talwalkar, Ass. Prof., UC Los Angeles
This course will be an expanded and up-to-date scala version with an emphasis on individualized course project as opposed to completing labs that test sytactic skills that are auto-gradeable.
We will also be borrowing more theoretical aspects from the following course:
Note the Expected Reference Readings above for this course.
A Brief Tour of Data Science
History of Data Analysis and Where Does "Big Data" Come From?
-
A Brief History and Timeline of Data Analysis and Big Data
-
https://whatis.techtarget.com/feature/A-history-and-timeline-of-big-data
-
Where does Data Come From?
-
Some of the sources of big data.
- online click-streams (a lot of it is recorded but a tiny amount is analyzed):
- record every click
- every ad you view
- every billing event,
- every transaction, every network message, and every fault.
- User-generated content (on web and mobile devices):
- every post that you make on Facebook
- every picture sent on Instagram
- every review you write for Yelp or TripAdvisor
- every tweet you send on Twitter
- every video that you post to YouTube.
- Science (for scientific computing):
- data from various repositories for natural language processing:
- Wikipedia,
- the Library of Congress,
- twitter firehose and google ngrams and digital archives,
- data from scientific instruments/sensors/computers:
- the Large Hadron Collider (more data in a year than all the other data sources combined!)
- genome sequencing data (sequencing cost is dropping much faster than Moore's Law!)
- output of high-performance computers (super-computers) for data fusion, estimation/prediction and exploratory data analysis
- data from various repositories for natural language processing:
- Graphs are also an interesting source of big data (network science).
- social networks (collaborations, followers, fb-friends or other relationships),
- telecommunication networks,
- computer networks,
- road networks
- machine logs:
- by servers around the internet (hundreds of millions of machines out there!)
- internet of things.
- online click-streams (a lot of it is recorded but a tiny amount is analyzed):
Data Science with Cloud Computing and What's Hard about it?
- See Cloud Computing to understand the work-horse for analysing big data at data centers
Cloud computing is the on-demand availability of computer system resources, especially data storage (cloud storage) and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each location being a data center. Cloud computing relies on sharing of resources to achieve coherence and economies of scale, typically using a "pay-as-you-go" model which can help in reducing capital expenses but may also lead to unexpected operating expenses for unaware users.
-
In fact, if you are logged into
https://*.databricks.com/*
you are computing in the cloud! So the computations are actually running in an instance of the hardware available at a data center like the following: -
Here is a data center used by CERN in 2010.
-
What's hard about scalable data science in the cloud?
- To analyse datasets that are big, say more than a few TBs, we need to split the data and put it in several computers that are networked - *a typical cloud *
- However, as the number of computer nodes in such a network increases, the probability of hardware failure or fault (say the hard-disk or memory or CPU or switch breaking down) also increases and can happen while the computation is being performed
- Therefore for scalable data science, i.e., data science that can scale with the size of the input data by adding more computer nodes, we need fault-tolerant computing and storage framework at the software level to ensure the computations finish even if there are hardware faults.
Here is a recommended light reading on What is "Big Data" -- Understanding the History (18 minutes): - https://towardsdatascience.com/what-is-big-data-understanding-the-history-32078f3b53ce
What should you be able to do at the end of this course?
By following these online interactions in the form of lab/lectures, asking questions, engaging in discussions, doing HOMEWORK assignments and completing the group project, you should be able to:
- Understand the principles of fault-tolerant scalable computing in Spark
- in-memory and generic DAG extensions of Map-reduce
- resilient distributed datasets for fault-tolerance
- skills to process today's big data using state-of-the art techniques in Apache Spark 3.0, in terms of:
- hands-on coding with realistic datasets
- an intuitive understanding of the ideas behind the technology and methods
- pointers to academic papers in the literature, technical blogs and video streams for you to futher your theoretical understanding.
- More concretely, you will be able to:
- Extract, Transform, Load, Interact, Explore and Analyze Data
- Build Scalable Machine Learning Pipelines (or help build them) using Distributed Algorithms and Optimization
- How to keep up?
- This is a fast-changing world.
- Recent videos around Apache Spark are archived here (these videos are a great way to learn the latest happenings in industrial R&D today!):
- What is mathematically stable in the world of 'big data'?
- There is a growing body of work on the analysis of parallel and distributed algorithms, the work-horse of big data and AI.
- We will see some of this in a theoretical module later, but the immediate focus here is on how to write programs and analyze data.
Why Apache Spark?
- Apache Spark: A Unified Engine for Big Data Processing By Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica Communications of the ACM, Vol. 59 No. 11, Pages 56-65 10.1145/2934664
Right-click the above image-link, open in a new tab and watch the video (4 minutes) or read about it in the Communications of the ACM in the frame below or from the link above.
**Key Insights from Apache Spark: A Unified Engine for Big Data Processing **
- A simple programming model can capture streaming, batch, and interactive workloads and enable new applications that combine them.
- Apache Spark applications range from finance to scientific data processing and combine libraries for SQL, machine learning, and graphs.
- In six years, Apache Spark has grown to 1,000 contributors and thousands of deployments.
Spark 3.0 is the latest version now (20200918) and it should be seen as the latest step in the evolution of tools in the big data ecosystem as summarized in https://towardsdatascience.com/what-is-big-data-understanding-the-history-32078f3b53ce:
Alternatives to Apache Spark
There are several alternatives to Apache Spark, but none of them have the penetration and community of Spark as of 2021.
For real-time streaming operations Apache Flink is competitive. See Apache Flink vs Spark – Will one overtake the other? for a July 2021 comparison. Most scalable data science and engineering problems faced by several major industries in Sweden today are routinely solved using tools in the ecosystem around Apache Spark. Therefore, we will focus on Apache Spark here which still holds the world record for 10TB or 10,000 GB sort by Alibaba cloud in 06/17/2020.
The big data problem
Hardware, distributing work, handling failed and slow machines
Let us recall and appreciate the following:
- The Big Data Problem
- Many routine problems today involve dealing with "big data", operationally, this is a dataset that is larger than a few TBs and thus won't fit into a single commodity computer like a powerful desktop or laptop computer.
- Hardware for Big Data
- The best single commodity computer can not handle big data as it has limited hard-disk and memory
- Thus, we need to break the data up into lots of commodity computers that are networked together via cables to communicate instructions and data between them - this can be thought of as a cloud
- How to distribute work across a cluster of commodity machines?
- We need a software-level framework for this.
- How to deal with failures or slow machines?
- We also need a software-level framework for this.
Key Papers
-
Key Historical Milestones
- 1956-1979: Stanford, MIT, CMU, and other universities develop set/list operations in LISP, Prolog, and other languages for parallel processing
- 2004: READ: Google's MapReduce: Simplified Data Processing on Large Clusters, by Jeffrey Dean and Sanjay Ghemawat
- 2006: Yahoo!'s Apache Hadoop, originating from the Yahoo!’s Nutch Project, Doug Cutting - wikipedia
- 2009: Cloud computing with Amazon Web Services Elastic MapReduce, a Hadoop version modified for Amazon Elastic Cloud Computing (EC2) and Amazon Simple Storage System (S3), including support for Apache Hive and Pig.
- 2010: READ: The Hadoop Distributed File System, by Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. IEEE MSST
-
Apache Spark Core Papers
- 2012: READ: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker and Ion Stoica. NSDI
- 2016: Apache Spark: A Unified Engine for Big Data Processing By Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica , Communications of the ACM, Vol. 59 No. 11, Pages 56-65, 10.1145/2934664
-
A lot has happened since 2014 to improve efficiency of Spark and embed more into the big data ecosystem
-
More research papers on Spark are available from here:
MapReduce and Apache Spark.
MapReduce as we will see shortly in action is a framework for distributed fault-tolerant computing over a fault-tolerant distributed file-system, such as Google File System or open-source Hadoop for storage.
- Unfortunately, Map Reduce is bounded by Disk I/O and can be slow
- especially when doing a sequence of MapReduce operations requirinr multiple Disk I/O operations
- Apache Spark can use Memory instead of Disk to speed-up MapReduce Operations
- Spark Versus MapReduce - the speed-up is orders of magnitude faster
- SUMMARY
- Spark uses memory instead of disk alone and is thus fater than Hadoop MapReduce
- Spark's resilience abstraction is by RDD (resilient distributed dataset)
- RDDs can be recovered upon failures from their lineage graphs, the recipes to make them starting from raw data
- Spark supports a lot more than MapReduce, including streaming, interactive in-memory querying, etc.
- Spark demonstrated an unprecedented sort of 1 petabyte (1,000 terabytes) worth of data in 234 minutes running on 190 Amazon EC2 instances (in 2015).
- Spark expertise corresponds to the highest Median Salary in the US (~ 150K)
Next let us get everyone to login to databricks (or another Spark platform) to get our hands dirty with some Spark code!
Login to databricks
We will use databricks community edition and later on the databricks project shard granted for this course under the databricks university alliance with cloud computing grants from databricks for waived DBU units and AWS.
Please go here for a relaxed and detailed-enough tour (later):
databricks community edition
- First obtain a free Obtain a databricks community edition account at:
- Let's get an overview of the databricks managed cloud for processing big data with Apache Spark
DBC Essentials: Team, State, Collaboration, Elastic Resources in one picture
You Should All Have databricks community edition account by now! and have successfully logged in to it.
Import Course Content Now!
Two Steps:
- Create a folder named
scalable-data-science
in yourWorkspace
(NO Typos due to hard-coding of paths in the sequel!)
- Import the following
.dbc
archives from the following URL intoWorkspace/scalable-data-science
folder you just created:- https://github.com/lamastex/scalable-data-science/raw/master/dbcArchives/2021/
- start with the first file for now and import more as needed:
Cloud-free Computing Environment
(Optional but strongly recommended)
Before we dive into Scala crash course in a notebook, let's take a look at TASK 2 of the first step in the instructions to set up a local and "cloud-free" computing environment, say on your laptop computer here:
This can be handy for prototyping quickly and may even be necessary due to sensitivity of data in certain projects that mandate the data to be confined to some on-premise cluster, etc.
NOTE: This can be done as an optional exercise as it heavily depends on your local computing environment and your software skills or willingness to acquire them.
CAVEAT: The docker-compose prepared for your local environment uses Spark 2.x instead of 3.x, but most of the contents here would run in either version of Spark. - Feel free to make PR with latest versions of Spark :)
Please go here for a relaxed and detailed-enough tour (later):
Multi-lingual Notebooks
Write Spark code for processing your data in notebooks.
Note that there are several open-sourced notebook servers including:
Here, we are mainly focused on using databricks notebooks due to its effeciently managed engineering layers over AWS (or Azure public clouds).
NOTE: You should have already cloned this notebook and attached it to a cluster that you started in the Community Edition of databricks by now.
Databricks Notebook
Next we delve into the mechanics of working with databricks notebooks. But many of the details also apply to other notebook environments with minor differences.
Notebooks can be written in Python, Scala, R, or SQL.
- This is a Scala notebook - which is indicated next to the title above by
(Scala)
. - One can choose the default language of the notebook when it is created.
Creating a new Notebook
- Click the tiangle on the right side of a folder to open the folder menu.
- Select Create > Notebook.
- Enter the name of the notebook, the language (Python, Scala, R or SQL) for the notebook, and a cluster to run it on.
Cloning a Notebook
- You can clone a notebook to create a copy of it, for example if you want to edit or run an Example notebook like this one.
- Click File > Clone in the notebook context bar above.
- Enter a new name and location for your notebook. If Access Control is enabled, you can only clone to folders that you have Manage permissions on.
Clone Or Import This Notebook
- From the File menu at the top left of this notebook, choose Clone or click Import Notebook on the top right. This will allow you to interactively execute code cells as you proceed through the notebook.
* Enter a name and a desired location for your cloned notebook (i.e. Perhaps clone to your own user directory or the "Shared" directory.) * Navigate to the location you selected (e.g. click Menu > Workspace > Your cloned location
)
Attach the Notebook to a cluster
- A Cluster is a group of machines which can run commands in cells.
- Check the upper left corner of your notebook to see if it is Attached or Detached.
- If Detached, click on the right arrow and select a cluster to attach your notebook to.
- If there is no running cluster, create one as described in the Welcome to Databricks guide.
Deep-dive into databricks notebooks
Let's take a deeper dive into a databricks notebook next.
Cells are units that make up notebooks
Cells each have a type - including scala, python, sql, R, markdown, filesystem, and shell.
- While cells default to the type of the Notebook, other cell types are supported as well.
- This cell is in markdown and is used for documentation. Markdown is a simple text formatting syntax.
Create and Edit a New Markdown Cell in this Notebook
- When you mouse between cells, a + sign will pop up in the center that you can click on to create a new cell.
* Type %md Hello, world!
into your new cell (%md
indicates the cell is markdown).
-
Click out of the cell to see the cell contents update.
Hello, world!
Running a cell in your notebook.
-
Press Shift+Enter when in the cell to run it and proceed to the next cell.
- The cells contents should update.
-
NOTE: Cells are not automatically run each time you open it.
- Instead, Previous results from running a cell are saved and displayed.
-
Alternately, press Ctrl+Enter when in a cell to run it, but not proceed to the next cell.
You Try Now! Just double-click the cell below, modify the text following %md
and press Ctrl+Enter to evaluate it and see it's mark-down'd output.
> %md Hello, world!
Hello, world!
Markdown Cell Tips
- To change a non-markdown cell to markdown, add %md to very start of the cell.
- After updating the contents of a markdown cell, click out of the cell to update the formatted contents of a markdown cell.
- To edit an existing markdown cell, doubleclick the cell.
Learn more about markdown:
Note that there are flavours or minor variants and enhancements of markdown, including those specific to databricks, github, pandoc, etc.
It will be future-proof to remain in the syntactic zone of pure markdown (at the intersection of various flavours) as much as possible and go with pandoc-compatible style if choices are necessary. ***
Run a Scala Cell
- Run the following scala cell.
- Note: There is no need for any special indicator (such as
%md
) necessary to create a Scala cell in a Scala notebook. - You know it is a scala notebook because of the
(Scala)
appended to the name of this notebook. - Make sure the cell contents updates before moving on.
- Press Shift+Enter when in the cell to run it and proceed to the next cell.
- The cells contents should update.
- Alternately, press Ctrl+Enter when in a cell to run it, but not proceed to the next cell.
- characters following
//
are comments in scala. ***
1+1
res0: Int = 2
println(System.currentTimeMillis) // press Ctrl+Enter to evaluate println that prints its argument as a line
1610582284328
1+1
res2: Int = 2
Spark is written in Scala, but ...
For this reason Scala will be the primary language for this course is Scala.
However, let us use the best language for the job! as each cell can be written in a specific language in the same notebook. Such multi-lingual notebooks are the norm in any realistic data science process today!
The beginning of each cells has a language type if it is not the default language of the notebook. Such cell-specific language types include the following with the prefix %
:
-
%scala
for Scala, -
%py
for Python, -
%r
for R, -
%sql
for SQL, -
%fs
for databricks' filesystem, -
%sh
for BASH SHELL and -
%md
for markdown. -
While cells default to the language type of the Notebook (scala, python, r or sql), other cell types are supported as well in a cell-specific manner.
-
For example, Python Notebooks can contain python, sql, markdown, and even scala cells. This lets you write notebooks that do use multiple languages.
-
This cell is in markdown as it begins with
%md
and is used for documentation purposes.
Thus, all language-typed cells can be created in any notebook, regardless of the the default language of the notebook itself.
Cross-language cells can be used to mix commands from other languages.
Examples:
print("For example, this is a scala notebook, but we can use %py to run python commands inline.")
For example, this is a scala notebook, but we can use %py to run python commands inline.
print("We can also access other languages such as R.")
// you can be explicit about the language even if the notebook's default language is the same
println("We can access Scala like this.")
We can access Scala like this.
Command line cells can be used to work with local files on the Spark driver node. * Start a cell with %sh
to run a command line command
# This is a command line cell. Commands you write here will be executed as if they were run on the command line.
# For example, in this cell we access the help pages for the bash shell.
ls
conf
derby.log
eventlogs
ganglia
logs
whoami
root
Filesystem cells allow access to the Databricks File System (DBFS).
- Start a cell with
%fs
to run DBFS commands - Type
%fs help
for a list of commands
Notebooks can be run from other notebooks using %run
- Syntax:
%run /full/path/to/notebook
- This is commonly used to import functions you defined in other notebooks.
Further Pointers
Here are some useful links to bookmark as you will need to use them for Reference.
These links provide a relaxed and detailed-enough tour (that you are strongly encouraged to take later):
- databricks
- scala
Scala Crash Course
Here we take a minimalist approach to learning just enough Scala, the language that Apache Spark is written in, to be able to use Spark effectively.
In the sequel we can learn more Scala concepts as they arise. This learning can be done by chasing the pointers in this crash course for a detailed deeper dive on your own time.
There are two basic ways in which we can learn Scala:
1. Learn Scala in a notebook environment
For convenience we use databricks Scala notebooks like this one here.
You can learn Scala locally on your own computer using Scala REPL (and Spark using Spark-Shell).
2. Learn Scala in your own computer
The most easy way to get Scala locally is through sbt, the Scala Build Tool. You can also use an IDE that integrates sbt.
See: https://docs.scala-lang.org/getting-started/index.html to set up Scala in your own computer.
Software Engineering NOTE: If you completed TASK 2 for Cloud-free Computing Environment in the notebook prefixed 002_00
using dockerCompose (optional exercise) then you will have Scala 2.11 with sbt and Spark 2.4 inside the docker services you can start and stop locally. Using docker volume binds you can also connect the docker container and its services (including local zeppelin or jupyter notebook servers as well as hadoop file system) to IDEs on your machine, etc.
Scala Resources
You will not be learning scala systematically and thoroughly in this course. You will learn to use Scala by doing various Spark jobs.
If you are interested in learning scala properly, then there are various resources, including:
- scala-lang.org is the core Scala resource. Bookmark the following three links:
- tour-of-scala - Bite-sized introductions to core language features.
- we will go through the tour in a hurry now as some Scala familiarity is needed immediately.
- scala-book - An online book introducing the main language features
- you are expected to use this resource to figure out Scala as needed.
- scala-cheatsheet - A handy cheatsheet covering the basics of Scala syntax.
- visual-scala-reference - This guide collects some of the most common functions of the Scala Programming Language and explain them conceptual and graphically in a simple way.
- tour-of-scala - Bite-sized introductions to core language features.
- Online Resources, including:
- Books
The main sources for the following content are (you are encouraged to read them for more background):
- Martin Oderski's Scala by example
- Scala crash course by Holden Karau
- Darren's brief introduction to scala and breeze for statistical computing
What is Scala?
"Scala smoothly integrates object-oriented and functional programming. It is designed to express common programming patterns in a concise, elegant, and type-safe way." by Matrin Odersky.
- High-level language for the Java Virtual Machine (JVM)
- Object oriented + functional programming
- Statically typed
- Comparable in speed to Java
- Type inference saves us from having to write explicit types most of the time Interoperates with Java
- Can use any Java class (inherit from, etc.)
- Can be called from Java code
See a quick tour here:
Why Scala?
- Spark was originally written in Scala, which allows concise function syntax and interactive use
- Spark APIs for other languages include:
- Java API for standalone use
- Python API added to reach a wider user community of programmes
- R API added more recently to reach a wider community of data analyststs
- Unfortunately, Python and R APIs are generally behind Spark's native Scala (for eg. GraphX is only available in Scala currently and datasets are only available in Scala as of 20200918).
- See Darren Wilkinson's 11 reasons for scala as a platform for statistical computing and data science. It is embedded in-place below for your convenience.
Learn Scala in Notebook Environment
Run a Scala Cell
- Run the following scala cell.
- Note: There is no need for any special indicator (such as
%md
) necessary to create a Scala cell in a Scala notebook. - You know it is a scala notebook because of the
(Scala)
appended to the name of this notebook. - Make sure the cell contents updates before moving on.
- Press Shift+Enter when in the cell to run it and proceed to the next cell.
- The cells contents should update.
- Alternately, press Ctrl+Enter when in a cell to run it, but not proceed to the next cell.
- characters following
//
are comments in scala. ***
1+1
res0: Int = 2
println(System.currentTimeMillis) // press Ctrl+Enter to evaluate println that prints its argument as a line
1610582084465
frameIt: (u: String, h: Int)String
Let's get our hands dirty in Scala
We will go through the following programming concepts and tasks by building on https://docs.scala-lang.org/tour/basics.html.
- Scala Types
- Expressions and Printing
- Naming and Assignments
- Functions and Methods in Scala
- Classes and Case Classes
- Methods and Tab-completion
- Objects and Traits
- Collections in Scala and Type Hierarchy
- Functional Programming and MapReduce
- Lazy Evaluations and Recursions
Remark: You need to take a computer science course (from CourseEra, for example) to properly learn Scala. Here, we will learn to use Scala by example to accomplish our data science tasks at hand. You can learn more Scala as needed from various sources pointed out above in Scala Resources.
Scala Types
In Scala, all values have a type, including numerical values and functions. The diagram below illustrates a subset of the type hierarchy.
For now, notice some common types we will be usinf including Int
, String
, Double
, Unit
, Boolean
, List
, etc. For more details see https://docs.scala-lang.org/tour/unified-types.html. We will return to this at the end of the notebook after seeing a brief tour of Scala now.
Expressions
Expressions are computable statements such as the 1+1
we have seen before.
1+1
res3: Int = 2
We can print the output of a computed or evaluated expressions as a line using println
:
println(1+1) // printing 2
2
println("hej hej!") // printing a string
hej hej!
Naming and Assignments
value and variable as val
and var
You can name the results of expressions using keywords val
and var
.
Let us assign the integer value 5
to x
as follows:
val x : Int = 5 // <Ctrl+Enter> to declare a value x to be integer 5.
x: Int = 5
x
is a named result and it is a value since we used the keyword val
when naming it.
Scala is statically typed, but it uses built-in type inference machinery to automatically figure out that x
is an integer or Int
type as follows. Let's declare a value x
to be Int
5 next without explictly using Int
.
val x = 5 // <Ctrl+Enter> to declare a value x as Int 5 (type automatically inferred)
x: Int = 5
Let's declare x
as a Double
or double-precision floating-point type using decimal such as 5.0
(a digit has to follow the decimal point!)
val x = 5.0 // <Ctrl+Enter> to declare a value x as Double 5
x: Double = 5.0
Alternatively, we can assign x
as a Double
explicitly. Note that the decimal point is not needed in this case due to explicit typing as Double
.
val x : Double = 5 // <Ctrl+Enter> to declare a value x as Double 5 (type automatically inferred)
x: Double = 5.0
Next note that labels need to be declared on first use. We have declared x
to be a val
which is short for value. This makes x
immutable (cannot be changed).
Thus, x
cannot be just re-assigned, as the following code illustrates in the resulting error: ... error: reassignment to val
.
//x = 10 // uncomment and <Ctrl+Enter> to try to reassign val x to 10
Scala allows declaration of mutable variables as well using var
, as follows:
var y = 2 // <Shift+Enter> to declare a variable y to be integer 2 and go to next cell
y: Int = 2
y = 3 // <Shift+Enter> to change the value of y to 3
y: Int = 3
y = y+1 // adds 1 to y
y: Int = 4
y += 2 // adds 2 to y
println(y) // the var y is 6 now
6
Blocks
Just combine expressions by surrounding them with {
and }
called a block.
println({
val x = 1+1
x+2 // expression in last line is returned for the block
})// prints 4
4
println({ val x=22; x+2})
24
Functions
Functions are expressions that have parameters. A function takes arguments as input and returns expressions as output.
A function can be nameless or anonymous and simply return an output from a given input. For example, the following annymous function returns the square of the input integer.
(x: Int) => x*x
res11: Int => Int = line186c28489fff404184da2d59bd09a90463.$read$$Lambda$5065/1820207503@597d20b
On the left of =>
is a list of parameters with name and type. On the right is an expression involving the parameters.
You can also name functions:
val multiplyByItself = (x: Int) => x*x
multiplyByItself: Int => Int = line186c28489fff404184da2d59bd09a90465.$read$$Lambda$5067/2036039718@12f273c8
println(multiplyByItself(10))
100
A function can have no parameters:
val howManyAmI = () => 1
howManyAmI: () => Int = line186c28489fff404184da2d59bd09a90469.$read$$Lambda$5070/1826556511@56f9e3f2
println(howManyAmI()) // 1
1
A function can have more than one parameter:
val multiplyTheseTwoIntegers = (a: Int, b: Int) => a*b
multiplyTheseTwoIntegers: (Int, Int) => Int = line186c28489fff404184da2d59bd09a90473.$read$$Lambda$5071/161461748@62178cca
println(multiplyTheseTwoIntegers(2,4)) // 8
8
Methods
Methods are very similar to functions, but a few key differences exist.
Methods use the def
keyword followed by a name, parameter list(s), a return type, and a body.
def square(x: Int): Int = x*x // <Shitf+Enter> to define a function named square
square: (x: Int)Int
Note that the return type Int
is specified after the parameter list and a :
.
square(5) // <Shitf+Enter> to call this function on argument 5
res15: Int = 25
val y = 3 // <Shitf+Enter> make val y as Int 3
y: Int = 3
square(y) // <Shitf+Enter> to call the function on val y of the right argument type Int
res16: Int = 9
val x = 5.0 // let x be Double 5.0
x: Double = 5.0
//square(x) // <Shift+Enter> to call the function on val x of type Double will give type mismatch error
def square(x: Int): Int = { // <Shitf+Enter> to declare function in a block
val answer = x*x
answer // the last line of the function block is returned
}
square: (x: Int)Int
square(5000) // <Shift+Enter> to call the function
res18: Int = 25000000
// <Shift+Enter> to define function with input and output type as String
def announceAndEmit(text: String): String =
{
println(text)
text // the last line of the function block is returned
}
announceAndEmit: (text: String)String
Scala has a return
keyword but it is rarely used as the expression in the last line of the multi-line block is the method's return value.
// <Ctrl+Enter> to call function which prints as line and returns as String
announceAndEmit("roger roger")
roger roger
res19: String = roger roger
A method can have output expressions involving multiple parameter lists:
def multiplyAndTranslate(x: Int, y: Int)(translateBy: Int): Int = (x * y) + translateBy
multiplyAndTranslate: (x: Int, y: Int)(translateBy: Int)Int
println(multiplyAndTranslate(2, 3)(4)) // (2*3)+4 = 10
10
A method can have no parameter lists at all:
def time: Long = System.currentTimeMillis
time: Long
println("Current time in milliseconds is " + time)
Current time in milliseconds is 1610582096790
println("Current time in milliseconds is " + time)
Current time in milliseconds is 1610582097046
Classes
The class
keyword followed by the name and constructor parameters is used to define a class.
class Box(h: Int, w: Int, d: Int) {
def printVolume(): Unit = println(h*w*d)
}
defined class Box
- The return type of the method
printVolume
isUnit
. - When the return type is
Unit
it indicates that there is nothing meaningful to return, similar tovoid
in Java and C, but with a difference. - Because every Scala expression must have some value, there is actually a singleton value of type
Unit
, written()
and carrying no information.
We can make an instance of the class with the new
keyword.
val my1Cube = new Box(1,1,1)
my1Cube: Box = line186c28489fff404184da2d59bd09a904107.$read$Box@6c4cbb75
And call the method on the instance.
my1Cube.printVolume() // 1
1
Our named instance my1Cube
of the Box
class is immutable due to val
.
You can have mutable instances of the class using var
.
var myVaryingCuboid = new Box(1,3,2)
myVaryingCuboid: Box = line186c28489fff404184da2d59bd09a904107.$read$Box@77404a48
myVaryingCuboid.printVolume()
6
myVaryingCuboid = new Box(1,1,1)
myVaryingCuboid: Box = line186c28489fff404184da2d59bd09a904107.$read$Box@748cdfd1
myVaryingCuboid.printVolume()
1
See https://docs.scala-lang.org/tour/classes.html for more details as needed.
Case Classes
Scala has a special type of class called a case class that can be defined with the case class
keyword.
Unlike classes, whose instances are compared by reference, instances of case classes are immutable by default and compared by value. This makes them useful for defining rows of typed values in Spark.
case class Point(x: Int, y: Int, z: Int)
defined class Point
Case classes can be instantiated without the new
keyword.
val point = Point(1, 2, 3)
val anotherPoint = Point(1, 2, 3)
val yetAnotherPoint = Point(2, 2, 2)
point: Point = Point(1,2,3)
anotherPoint: Point = Point(1,2,3)
yetAnotherPoint: Point = Point(2,2,2)
Instances of case classes are compared by value and not by reference.
if (point == anotherPoint) {
println(point + " and " + anotherPoint + " are the same.")
} else {
println(point + " and " + anotherPoint + " are different.")
} // Point(1,2,3) and Point(1,2,3) are the same.
if (point == yetAnotherPoint) {
println(point + " and " + yetAnotherPoint + " are the same.")
} else {
println(point + " and " + yetAnotherPoint + " are different.")
} // Point(1,2,3) and Point(2,2,2) are different.
Point(1,2,3) and Point(1,2,3) are the same.
Point(1,2,3) and Point(2,2,2) are different.
By contrast, instances of classes are compared by reference.
myVaryingCuboid.printVolume() // should be 1 x 1 x 1
1
my1Cube.printVolume() // should be 1 x 1 x 1
1
if (myVaryingCuboid == my1Cube) {
println("myVaryingCuboid and my1Cube are the same.")
} else {
println("myVaryingCuboid and my1Cube are different.")
} // they are compared by reference and are not the same.
myVaryingCuboid and my1Cube are different.
More about case classes here: https://docs.scala-lang.org/tour/case-classes.html.
Methods and Tab-completion
Many methods of a class can be accessed by .
.
val s = "hi" // <Ctrl+Enter> to declare val s to String "hi"
s: String = hi
You can place the cursor after .
following a declared object and find out the methods available for it as shown in the image below.
You Try doing this next.
//s. // place cursor after the '.' and press Tab to see all available methods for s
For example,
- scroll down to
contains
and double-click on it. - This should lead to
s.contains
in your cell. - Now add an argument String to see if
s
contains the argument, for example, try:s.contains("f")
s.contains("")
ands.contains("i")
//s // <Shift-Enter> recall the value of String s
s.contains("f") // <Shift-Enter> returns Boolean false since s does not contain the string "f"
res32: Boolean = false
s.contains("") // <Shift-Enter> returns Boolean true since s contains the empty string ""
res33: Boolean = true
s.contains("i") // <Ctrl+Enter> returns Boolean true since s contains the string "i"
res34: Boolean = true
Objects
Objects are single instances of their own definitions using the object
keyword. You can think of them as singletons of their own classes.
object IdGenerator {
private var currentId = 0
def make(): Int = {
currentId += 1
currentId
}
}
defined object IdGenerator
You can access an object through its name:
val newId: Int = IdGenerator.make()
val newerId: Int = IdGenerator.make()
newId: Int = 1
newerId: Int = 2
println(newId) // 1
println(newerId) // 2
1
2
For details see https://docs.scala-lang.org/tour/singleton-objects.html
Traits
Traits are abstract data types containing certain fields and methods. They can be defined using the trait
keyword.
In Scala inheritance, a class can only extend one other class, but it can extend multiple traits.
trait Greeter {
def greet(name: String): Unit
}
defined trait Greeter
Traits can have default implementations also.
trait Greeter {
def greet(name: String): Unit =
println("Hello, " + name + "!")
}
defined trait Greeter
You can extend traits with the extends
keyword and override an implementation with the override
keyword:
class DefaultGreeter extends Greeter
class SwedishGreeter extends Greeter {
override def greet(name: String): Unit = {
println("Hej hej, " + name + "!")
}
}
class CustomizableGreeter(prefix: String, postfix: String) extends Greeter {
override def greet(name: String): Unit = {
println(prefix + name + postfix)
}
}
defined class DefaultGreeter
defined class SwedishGreeter
defined class CustomizableGreeter
Instantiate the classes.
val greeter = new DefaultGreeter()
val swedishGreeter = new SwedishGreeter()
val customGreeter = new CustomizableGreeter("How are you, ", "?")
greeter: DefaultGreeter = line186c28489fff404184da2d59bd09a904155.$read$DefaultGreeter@5d7c7786
swedishGreeter: SwedishGreeter = line186c28489fff404184da2d59bd09a904155.$read$SwedishGreeter@a1c1128
customGreeter: CustomizableGreeter = line186c28489fff404184da2d59bd09a904155.$read$CustomizableGreeter@7c2dc867
Call the greet
method in each case.
greeter.greet("Scala developer") // Hello, Scala developer!
swedishGreeter.greet("Scala developer") // Hej hej, Scala developer!
customGreeter.greet("Scala developer") // How are you, Scala developer?
Hello, Scala developer!
Hej hej, Scala developer!
How are you, Scala developer?
A class can also be made to extend multiple traits.
For more details see: https://docs.scala-lang.org/tour/traits.html.
Main Method
The main method is the entry point of a Scala program.
The Java Virtual Machine requires a main method, named main
, that takes an array of strings as its only argument.
Using an object, you can define the main method as follows:
object Main {
def main(args: Array[String]): Unit =
println("Hello, Scala developer!")
}
defined object Main
What I try not do while learning a new language?
- I don't immediately try to ask questions like: how can I do this particular variation of some small thing I just learned so I can use patterns I am used to from another language I am hooked-on right now?
- first go through the detailed Scala Tour on your own and then through the 50 odd lessons in the Scala Book
- then return to 1. and ask detailed cross-language comparison questions by diving deep as needed with the source and scala docs as needed (google or duck-duck-go search!).
Scala Crash Course Continued
Recall!
Scala Resources
You will not be learning scala systematically and thoroughly in this course. You will learn to use Scala by doing various Spark jobs.
If you are interested in learning scala properly, then there are various resources, including:
- scala-lang.org is the core Scala resource. Bookmark the following three links:
- tour-of-scala - Bite-sized introductions to core language features.
- we will go through the tour in a hurry now as some Scala familiarity is needed immediately.
- scala-book - An online book introducing the main language features
- you are expected to use this resource to figure out Scala as needed.
- scala-cheatsheet - A handy cheatsheet covering the basics of Scala syntax.
- visual-scala-reference - This guide collects some of the most common functions of the Scala Programming Language and explain them conceptual and graphically in a simple way.
- tour-of-scala - Bite-sized introductions to core language features.
- Online Resources, including:
- Books
The main sources for the following content are (you are encouraged to read them for more background):
//%run "/scalable-data-science/xtraResources/support/sdsFunctions"
//This allows easy embedding of publicly available information into any other notebook
//when viewing in git-book just ignore this block - you may have to manually chase the URL in frameIt("URL").
//Example usage:
// displayHTML(frameIt("https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation#Topics_in_LDA",250))
def frameIt( u:String, h:Int ) : String = {
"""<iframe
src=""""+ u+""""
width="95%" height="""" + h + """"
sandbox>
<p>
<a href="http://spark.apache.org/docs/latest/index.html">
Fallback link for browsers that, unlikely, don't support frames
</a>
</p>
</iframe>"""
}
frameIt: (u: String, h: Int)String
Let's continue getting our hands dirty in Scala
We will go through the remaining programming concepts and tasks by building on https://docs.scala-lang.org/tour/basics.html.
- Scala Types
- Expressions and Printing
- Naming and Assignments
- Functions and Methods in Scala
- Classes and Case Classes
- Methods and Tab-completion
- Objects and Traits
- Collections in Scala and Type Hierarchy
- Functional Programming and MapReduce
- Lazy Evaluations and Recursions
Remark: You need to take a computer science course (from CourseEra, for example) to properly learn Scala. Here, we will learn to use Scala by example to accomplish our data science tasks at hand. You can learn more Scala as needed from various sources pointed out above in Scala Resources.
Scala Type Hierarchy
In Scala, all values have a type, including numerical values and functions. The diagram below illustrates a subset of the type hierarchy.
For now, notice some common types we will be usinf including Int
, String
, Double
, Unit
, Boolean
, List
, etc. For more details see https://docs.scala-lang.org/tour/unified-types.html.
Let us take a closer look at Scala Type Hierarchy now.
displayHTML(frameIt("https://docs.scala-lang.org/tour/unified-types.html",550))
Scala Collections
Familiarize yourself with the main Scala collections classes here:
displayHTML(frameIt("https://docs.scala-lang.org/overviews/scala-book/collections-101.html",550))
List
Lists are one of the most basic data structures.
There are several other Scala collections and we will introduce them as needed. The other most common ones are Vector
, Array
and Seq
and the ArrayBuffer
.
For details on list see: - https://docs.scala-lang.org/overviews/scala-book/list-class.html
// <Ctrl+Enter> to declare (an immutable) val lst as List of Int's 1,2,3
val lst = List(1, 2, 3)
lst: List[Int] = List(1, 2, 3)
Vectors
The Vector class is an indexed, immutable sequence. The “indexed” part of the description means that you can access Vector elements very rapidly by their index value, such as accessing listOfPeople(999999).
In general, except for the difference that Vector is indexed and List is not, the two classes work the same, so we’ll run through these examples quickly.
For details see: - https://docs.scala-lang.org/overviews/scala-book/vector-class.html
val vec = Vector(1,2,3)
vec: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)
Arrays, Sequences and Tuples
See https://www.scala-lang.org/api/current/scala/collection/index.html for docs.
val arr = Array(1,2,3) // <Shift-Enter> to declare an Array
arr: Array[Int] = Array(1, 2, 3)
val seq = Seq(1,2,3) // <Shift-Enter> to declare a Seq
seq: Seq[Int] = List(1, 2, 3)
A tuple is a neat class that gives you a simple way to store heterogeneous (different) items in the same container. We will use tuples for key-value pairs in Spark.
See https://docs.scala-lang.org/overviews/scala-book/tuples.html
val myTuple = ('a',1) // a 2-tuple
myTuple: (Char, Int) = (a,1)
myTuple._1 // accessing the first element of the tuple. NOTE index starts at 1 not 0 for tuples
res2: Char = a
myTuple._2 // accessing the second element of the tuple
res3: Int = 1
Functional Programming and MapReduce
"Functional programming is a style of programming that emphasizes writing applications using only pure functions and immutable values. As Alvin Alexander wrote in Functional Programming, Simplified, rather than using that description, it can be helpful to say that functional programmers have an extremely strong desire to see their code as math — to see the combination of their functions as a series of algebraic equations. In that regard, you could say that functional programmers like to think of themselves as mathematicians. That’s the driving desire that leads them to use only pure functions and immutable values, because that’s what you use in algebra and other forms of math."
See https://docs.scala-lang.org/overviews/scala-book/functional-programming.html for short lessons in functional programming.
We will apply functions for processing elements of a scala collection to quickly demonstrate functional programming.
Five ways of adding 1
The first four use anonymous functions and the last one uses a named method.
- explicit version:
(x: Int) => x + 1
- type-inferred more intuitive version:
x => x + 1
- placeholder syntax (each argument must be used exactly once):
_ + 1
- type-inferred more intuitive version with code-block for larger function body:
x => {
// body is a block of code
val integerToAdd = 1
x + integerToAdd
}
- as methods using
def
:
def addOne(x: Int): Int = x + 1
displayHTML(frameIt("https://superruzafa.github.io/visual-scala-reference/map/",500))
Now, let's do some functional programming over scala collection (List
) using some of their methods: map
, filter
and reduce
. In the end we will write our first mapReduce program!
For more details see:
displayHTML(frameIt("https://superruzafa.github.io/visual-scala-reference/map/",500))
// <Shift+Enter> to map each value x of lst with x+10 to return a new List(11, 12, 13)
lst.map(x => x + 10)
res6: List[Int] = List(11, 12, 13)
// <Shift+Enter> for the same as above using place-holder syntax
lst.map( _ + 10)
res7: List[Int] = List(11, 12, 13)
displayHTML(frameIt("https://superruzafa.github.io/visual-scala-reference/filter/",600))
// <Shift+Enter> to return a new List(1, 3) after filtering x's from lst if (x % 2 == 1) is true
lst.filter(x => (x % 2 == 1) )
res9: List[Int] = List(1, 3)
// <Shift+Enter> for the same as above using place-holder syntax
lst.filter( _ % 2 == 1 )
res10: List[Int] = List(1, 3)
displayHTML(frameIt("https://superruzafa.github.io/visual-scala-reference/reduce/",600))
// <Shift+Enter> to use reduce to add elements of lst two at a time to return Int 6
lst.reduce( (x, y) => x + y )
res12: Int = 6
// <Ctrl+Enter> for the same as above but using place-holder syntax
lst.reduce( _ + _ )
res13: Int = 6
Let's combine map
and reduce
programs above to find the sum of after 10 has been added to every element of the original List lst
as follows:
lst.map(x => x+10)
.reduce((x,y) => x+y) // <Ctrl-Enter> to get Int 36 = sum(1+10,2+10,3+10)
res14: Int = 36
Exercise in Functional Programming
You should spend an hour or so going through the Functional Programming Section of the Scala Book:
displayHTML(frameIt("https://docs.scala-lang.org/overviews/scala-book/functional-programming.html",700))
There are lots of methods in Scala Collections. And much more in this scalable language. See for example http://docs.scala-lang.org/cheatsheets/index.html.
Lazy Evaluation
Another powerful programming concept we will need is lazy evaluation -- a form of delayed evaluation. So the value of an expression that is lazily evaluated is only available when it is actually needed.
This is to be contrasted with eager evaluation that we have seen so far -- an expression is immediately evaluated.
val eagerImmutableInt = 1 // eagerly evaluated as 1
eagerImmutableInt: Int = 1
var eagerMutableInt = 2 // eagerly evaluated as 2
eagerMutableInt: Int = 2
Let's demonstrate lazy evaluation using a getTime
method and the keyword lazy
.
import java.util.Calendar
import java.util.Calendar
lazy val lazyImmutableTime = Calendar.getInstance.getTime // lazily defined and not evaluated immediately
lazyImmutableTime: java.util.Date = <lazy>
val eagerImmutableTime = Calendar.getInstance.getTime // egaerly evaluated immediately
eagerImmutableTime: java.util.Date = Wed Jan 13 23:54:53 UTC 2021
println(lazyImmutableTime) // evaluated when actully needed by println
Wed Jan 13 23:54:53 UTC 2021
println(eagerImmutableTime) // prints what was already evaluated eagerly
Wed Jan 13 23:54:53 UTC 2021
def lazyDefinedInt = 5 // you can also use method to lazily define
lazyDefinedInt: Int
lazyDefinedInt // only evaluated now
res18: Int = 5
See https://www.scala-exercises.org/scalatutorial/lazyevaluation for more details including the following example with StringBuilder
.
val builder = new StringBuilder
builder: StringBuilder =
val x = { builder += 'x'; 1 } // eagerly evaluates x as 1 after appending 'x' to builder. NOTE: ';' is used to separate multiple expressions on the same line
x: Int = 1
builder.result()
res19: String = x
x
res20: Int = 1
builder.result() // calling x again should not append x again to builder
res21: String = x
lazy val y = { builder += 'y'; 2 } // lazily evaluate y later when it is called
y: Int = <lazy>
builder.result() // builder should remain unchanged
res22: String = x
def z = { builder += 'z'; 3 } // lazily evaluate z later when the method is called
z: Int
builder.result() // builder should remain unchanged
res23: String = x
What should builder.result()
be after the following arithmetic expression involving x
,y
and z
is evaluated?
z + y + x + z + y + x
res24: Int = 12
Lazy Evaluation Exercise - You try Now!
Understand why the output above is what it is!
- Why is
z
different in its appearance in the finalbuilder
string when compared tox
andy
as we evaluated?
z + y + x + z + y + x
builder.result()
res25: String = xzyz
Why Lazy?
Imagine a more complex expression involving the evaluation of millions of values. Lazy evaluation will allow us to actually compute with big data when it may become impossible to hold all the values in memory. This is exactly what Apache Spark does as we will see.
Recursions
Recursion is a powerful framework when a function calls another function, including itself, until some terminal condition is reached.
Here we want to distinguish between two ways of implementing a recursion using a simple example of factorial.
Recall that for any natural number \(n\), its factorial is denoted and defined as follows:
\[ n! := n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 \]
which has the following recursive expression:
\[ n! = n*(n-1)! , , \qquad 0! = 1 \]
Let us implement it using two approaches: a naive approach that can run out of memory and another tail-recursive approach that uses constant memory. Read https://www.scala-exercises.org/scalatutorial/tailrecursion for details.
def factorialNaive(n: Int): Int =
if (n == 0) 1 else n * factorialNaive(n - 1)
factorialNaive: (n: Int)Int
factorialNaive(4)
res26: Int = 24
When factorialNaive(4)
was evaluated above the following steps were actually done:
factorial(4)
if (4 == 0) 1 else 4 * factorial(4 - 1)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * factorial(1)))
4 * (3 * (2 * (1 * factorial(0)))
4 * (3 * (2 * (1 * 1)))
24
Notice how we add one more element to our expression at each recursive call. Our expressions becomes bigger and bigger until we end by reducing it to the final value. So the final expression given by a directed acyclic graph (DAG) of the pairwise multiplications given by the right-branching binary tree, whose leaves are input integers and internal nodes are the bianry *
operator, can get very large when the input n
is large.
Tail recursion is a sophisticated way of implementing certain recursions so that memory requirements can be kept constant, as opposed to naive recursions.
That difference in the rewriting rules actually translates directly to a difference in the actual execution on a computer. In fact, it turns out that if you have a recursive function that calls itself as its last action, then you can reuse the stack frame of that function. This is called tail recursion.
And by applying that trick, a tail recursive function can execute in constant stack space, so it's really just another formulation of an iterative process. We could say a tail recursive function is the functional form of a loop, and it executes just as efficiently as a loop.
Implementation of tail recursion in the Exercise below uses Scala annotation, which is a way to associate meta-information with definitions. In our case, the annotation @tailrec
ensures that a method is indeed tail-recursive. See the last link to understand how memory requirements can be kept constant in tail recursions.
We mainly want you to know that tail recursions are an important functional programming concept.
Tail Recursion Exercise - You Try Now
Replace ???
with the correct values to make this a tail recursion for factorial.
import scala.annotation.tailrec
// replace ??? with the right values to make this a tail recursion for factorial
def factorialTail(n: Int): Int = {
@tailrec
def iter(x: Int, result: Int): Int =
if ( x == ??? ) result
else iter(x - 1, result * x)
iter( n, ??? )
}
factorialTail(3) //shouldBe 6
factorialTail(4) //shouldBe 24
Functional Programming is a vast subject and we are merely covering the fewest core ideas to get started with Apache Spark asap.
We will return to more concepts as we need them in the sequel.
Introduction to Spark
Spark Essentials: RDDs, Transformations and Actions
- This introductory notebook describes how to get started running Spark (Scala) code in Notebooks.
- Working with Spark's Resilient Distributed Datasets (RDDs)
- creating RDDs
- performing basic transformations on RDDs
- performing basic actions on RDDs
RECOLLECT from 001_WhySpark
notebook and AJ's videos that Spark does fault-tolerant, distributed, in-memory computing
THEORY CAVEAT This module is focused on getting you to quickly write Spark programs with a high-level appreciation of the underlying concepts.
In the last module, we will spend more time on analyzing the core algorithms in parallel and distributed setting of a typical Spark cluster today -- where several multi-core parallel computers (Spark workers) are networked together to provide a fault-tolerant distributed computing platform.
Spark Cluster Overview:
Driver Program, Cluster Manager and Worker Nodes
The driver does the following:
- connects to a cluster manager to allocate resources across applications
- acquire executors on cluster nodes
- executor processs run compute tasks and cache data in memory or disk on a worker node
- sends application (user program built on Spark) to the executors
- sends tasks for the executors to run
- task is a unit of work that will be sent to one executor
See http://spark.apache.org/docs/latest/cluster-overview.html for an overview of the spark cluster.
The Abstraction of Resilient Distributed Dataset (RDD)
RDD is a fault-tolerant collection of elements that can be operated on in parallel.
Two types of Operations are possible on an RDD:
- Transformations
- Actions
(watch now 2:26):
Transformations
(watch now 1:18):
Actions
(watch now 0:48):
Key Points
- Resilient distributed datasets (RDDs) are the primary abstraction in Spark.
- RDDs are immutable once created:
- can transform it.
- can perform actions on it.
- but cannot change an RDD once you construct it.
- Spark tracks each RDD's lineage information or recipe to enable its efficient recomputation if a machine fails.
- RDDs enable operations on collections of elements in parallel.
- We can construct RDDs by:
- parallelizing Scala collections such as lists or arrays
- by transforming an existing RDD,
- from files in distributed file systems such as (HDFS, S3, etc.).
- We can specify the number of partitions for an RDD
- The more partitions in an RDD, the more opportunities for parallelism
- There are two types of operations you can perform on an RDD:
- transformations (are lazily evaluated)
- map
- flatMap
- filter
- distinct
- ...
- actions (actual evaluation happens)
- count
- reduce
- take
- collect
- takeOrdered
- ...
- transformations (are lazily evaluated)
- Spark transformations enable us to create new RDDs from an existing RDD.
- RDD transformations are lazy evaluations (results are not computed right away)
- Spark remembers the set of transformations that are applied to a base data set (this is the lineage graph of RDD)
- The allows Spark to automatically recover RDDs from failures and slow workers.
- The lineage graph is a recipe for creating a result and it can be optimized before execution.
- A transformed RDD is executed only when an action runs on it.
- You can also persist, or cache, RDDs in memory or on disk (this speeds up iterative ML algorithms that transforms the initial RDD iteratively).
- Here is a great reference URL for programming guides for Spark that one should try to cover first
Let's get our hands dirty in Spark!
DO NOW!
In your databricks community edition:
- In your
WorkSpace
create a Folder namedscalable-data-science
- Import the databricks archive file at the following URL:
- This should open a structure of directories in with path:
/Workspace/scalable-data-science/xtraResources/
Let us look at the legend and overview of the visual RDD Api by doing the following first:
Running Spark
The variable sc allows you to access a Spark Context to run your Spark programs. Recall SparkContext
is in the Driver Program.
**NOTE: Do not create the sc variable - it is already initialized for you in spark-shell REPL, that includes notebook environments like databricks, Jupyter, zeppelin, etc. **
We will do the following next:
- Create an RDD using
sc.parallelize
- Perform the
collect
action on the RDD and find the number of partitions it is made of usinggetNumPartitions
action - Perform the
take
action on the RDD - Transform the RDD by
map
to make another RDD - Transform the RDD by
filter
to make another RDD - Perform the
reduce
action on the RDD - Transform the RDD by
flatMap
to make another RDD - Create a Pair RDD
- Perform some transformations on a Pair RDD
- Where in the cluster is your computation running?
- Shipping Closures, Broadcast Variables and Accumulator Variables
- Spark Essentials: Summary
- HOMEWORK
- Importing Standard Scala and Java libraries
Entry Point
Now we are ready to start programming in Spark!
Our entry point for Spark 2.x applications is the class SparkSession
. An instance of this object is already instantiated for us which can be easily demonstrated by running the next cell
We will need these docs!
- RDD Scala Docs
- Dataset Scala Docs
- https://spark.apache.org/docs/3.0.1/api/scala/index.html you can simply search for other Spark classes, methods, etc here
println(spark)
org.apache.spark.sql.SparkSession@69141846
NOTE that since Spark 2.0 SparkSession
is a replacement for the other entry points: * SparkContext
, available in our notebook as sc. * SQLContext
, or more specifically its subclass HiveContext
, available in our notebook as sqlContext.
println(sc)
println(sqlContext)
org.apache.spark.SparkContext@517c9049
org.apache.spark.sql.hive.HiveContext@6c5b5052
We will be using the pre-made SparkContext sc
when learning about RDDs.
1. Create an RDD using sc.parallelize
First, let us create an RDD of three elements (of integer type Int
) from a Scala Seq
(or List
or Array
) with two partitions by using the parallelize
method of the available Spark Context sc
as follows:
val x = sc.parallelize(Array(1, 2, 3), 2) // <Ctrl+Enter> to evaluate this cell (using 2 partitions)
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[33] at parallelize at command-685894176422457:1
//x. // place the cursor after 'x.' and hit Tab to see the methods available for the RDD x we created
2. Perform the collect
action on the RDD and find the number of partitions in it using getNumPartitions
action
No action has been taken by sc.parallelize
above. To see what is "cooked" by the recipe for RDD x
we need to take an action.
The simplest is the collect
action which returns all of the elements of the RDD as an Array
to the driver program and displays it.
So you have to make sure that all of that data will fit in the driver program if you call collect
action!
Let us look at the collect action in detail and return here to try out the example codes.
Let us perform a collect
action on RDD x
as follows:
x.collect() // <Ctrl+Enter> to collect (action) elements of rdd; should be (1, 2, 3)
res44: Array[Int] = Array(1, 2, 3)
CAUTION: collect
can crash the driver when called upon an RDD with massively many elements.
So, it is better to use other diplaying actions like take
or takeOrdered
as follows:
Let us look at the getNumPartitions action in detail and return here to try out the example codes.
// <Ctrl+Enter> to evaluate this cell and find the number of partitions in RDD x
x.getNumPartitions
res45: Int = 2
We can see which elements of the RDD are in which parition by calling glom()
before collect()
.
glom()
flattens elements of the same partition into an Array
.
x.glom().collect() // glom() flattens elements on the same partition
res46: Array[Array[Int]] = Array(Array(1), Array(2, 3))
val a = x.glom().collect()
a: Array[Array[Int]] = Array(Array(1), Array(2, 3))
Thus from the output above, Array[Array[Int]] = Array(Array(1), Array(2, 3))
, we know that 1
is in one partition while 2
and 3
are in another partition.
You Try!
Crate an RDD x
with three elements, 1,2,3, and this time do not specifiy the number of partitions. Then the default number of partitions will be used. Find out what this is for the cluster you are attached to.
The default number of partitions for an RDD depends on the cluster this notebook is attached to among others - see programming-guide.
val x = sc.parallelize(Seq(1, 2, 3)) // <Shift+Enter> to evaluate this cell (using default number of partitions)
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[36] at parallelize at command-685894176422471:1
x.getNumPartitions // <Shift+Enter> to evaluate this cell
res47: Int = 8
x.glom().collect() // <Ctrl+Enter> to evaluate this cell
res48: Array[Array[Int]] = Array(Array(), Array(), Array(1), Array(), Array(), Array(2), Array(), Array(3))
3. Perform the take
action on the RDD
The .take(n)
action returns an array with the first n
elements of the RDD.
x.take(2) // Ctrl+Enter to take two elements from the RDD x
res49: Array[Int] = Array(1, 2)
You Try!
Fill in the parenthes ( )
below in order to take
just one element from RDD x
.
//x.take(1) // uncomment by removing '//' before x in the cell and fill in the parenthesis to take just one element from RDD x and Cntrl+Enter
4. Transform the RDD by map
to make another RDD
The map
transformation returns a new RDD that's formed by passing each element of the source RDD through a function (closure). The closure is automatically passed on to the workers for evaluation (when an action is called later).
Let us look at the map transformation in detail and return here to try out the example codes.
// Shift+Enter to make RDD x and RDD y that is mapped from x
val x = sc.parallelize(Array("b", "a", "c")) // make RDD x: [b, a, c]
val y = x.map(z => (z,1)) // map x into RDD y: [(b, 1), (a, 1), (c, 1)]
x: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[38] at parallelize at command-685894176422480:2
y: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[39] at map at command-685894176422480:3
// Cntrl+Enter to collect and print the two RDDs
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
b, a, c
(b,1), (a,1), (c,1)
5. Transform the RDD by filter
to make another RDD
The filter
transformation returns a new RDD that's formed by selecting those elements of the source RDD on which the function returns true
.
Let us look at the filter transformation in detail and return here to try out the example codes.
//Shift+Enter to make RDD x and filter it by (n => n%2 == 1) to make RDD y
val x = sc.parallelize(Array(1,2,3))
// the closure (n => n%2 == 1) in the filter will
// return True if element n in RDD x has remainder 1 when divided by 2 (i.e., if n is odd)
val y = x.filter(n => n%2 == 1)
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at parallelize at command-685894176422484:2
y: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[41] at filter at command-685894176422484:5
// Cntrl+Enter to collect and print the two RDDs
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
//y.collect()
1, 2, 3
1, 3
6. Perform the reduce
action on the RDD
Reduce aggregates a data set element using a function (closure). This function takes two arguments and returns one and can often be seen as a binary operator. This operator has to be commutative and associative so that it can be computed correctly in parallel (where we have little control over the order of the operations!).
Let us look at the reduce action in detail and return here to try out the example codes.
//Shift+Enter to make RDD x of inteegrs 1,2,3,4 and reduce it to sum
val x = sc.parallelize(Array(1,2,3,4))
val y = x.reduce((a,b) => a+b)
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[42] at parallelize at command-685894176422488:2
y: Int = 10
//Cntrl+Enter to collect and print RDD x and the Int y, sum of x
println(x.collect.mkString(", "))
println(y)
1, 2, 3, 4
10
7. Transform an RDD by flatMap
to make another RDD
flatMap
is similar to map
but each element from input RDD can be mapped to zero or more output elements. Therefore your function should return a sequential collection such as an Array
rather than a single element as shown below.
Let us look at the flatMap transformation in detail and return here to try out the example codes.
//Shift+Enter to make RDD x and flatMap it into RDD by closure (n => Array(n, n*100, 42))
val x = sc.parallelize(Array(1,2,3))
val y = x.flatMap(n => Array(n, n*100, 42))
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[43] at parallelize at command-685894176422492:2
y: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[44] at flatMap at command-685894176422492:3
//Cntrl+Enter to collect and print RDDs x and y
println(x.collect().mkString(", "))
println(y.collect().mkString(", "))
sc.parallelize(Array(1,2,3)).map(n => Array(n,n*100,42)).collect()
1, 2, 3
1, 100, 42, 2, 200, 42, 3, 300, 42
res54: Array[Array[Int]] = Array(Array(1, 100, 42), Array(2, 200, 42), Array(3, 300, 42))
8. Create a Pair RDD
Let's next work with RDD of (key,value)
pairs called a Pair RDD or Key-Value RDD.
// Cntrl+Enter to make RDD words and display it by collect
val words = sc.parallelize(Array("a", "b", "a", "a", "b", "b", "a", "a", "a", "b", "b"))
words.collect()
words: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[47] at parallelize at command-685894176422495:2
res55: Array[String] = Array(a, b, a, a, b, b, a, a, a, b, b)
Let's make a Pair RDD called wordCountPairRDD
that is made of (key,value) pairs with key=word and value=1 in order to encode each occurrence of each word in the RDD words
, as follows:
// Cntrl+Enter to make and collect Pair RDD wordCountPairRDD
val wordCountPairRDD = words.map(s => (s, 1))
wordCountPairRDD.collect()
wordCountPairRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[48] at map at command-685894176422497:2
res56: Array[(String, Int)] = Array((a,1), (b,1), (a,1), (a,1), (b,1), (b,1), (a,1), (a,1), (a,1), (b,1), (b,1))
Wide Transformations and Shuffles
So far we have seen transformations that are narrow -- with no data transfer between partitions. Think of map
.
ReduceByKey
and GroupByKey
are wide transformations as data has to be shuffled across the partitions in different executors -- this is generally very expensive operation.
READ the Background about Shuffles in the programming guide below.
In Spark, data is generally not distributed across partitions to be in the necessary place for a specific operation. During computations, a single task will operate on a single partition - thus, to organize all the data for a single reduceByKey reduce task to execute, Spark needs to perform an all-to-all operation. It must read from all partitions to find all the values for all keys, and then bring together values across partitions to compute the final result for each key - this is called the shuffle
READ the Performance Impact about Shuffles in the programming guide below.
The Shuffle is an expensive operation since it involves disk I/O, data serialization, and network I/O. To organize data for the shuffle, Spark generates sets of tasks - map tasks to organize the data, and a set of reduce tasks to aggregate it. This nomenclature comes from MapReduce and does not directly relate to Spark’s map and reduce operations.
Internally, results from individual map tasks are kept in memory until they can’t fit. Then, these are sorted based on the target partition and written to a single file. On the reduce side, tasks read the relevant sorted blocks.
https://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations
9. Perform some transformations on a Pair RDD
Let's next work with RDD of (key,value)
pairs called a Pair RDD or Key-Value RDD.
Now some of the Key-Value transformations that we could perform include the following.
reduceByKey
transformation- which takes an RDD and returns a new RDD of key-value pairs, such that:
- the values for each key are aggregated using the given reduced function
- and the reduce function has to be of the type that takes two values and returns one value.
- which takes an RDD and returns a new RDD of key-value pairs, such that:
sortByKey
transformation- this returns a new RDD of key-value pairs that's sorted by keys in ascending order
groupByKey
transformation- this returns a new RDD consisting of key and iterable-valued pairs.
Let's see some concrete examples next.
// Cntrl+Enter to reduceByKey and collect wordcounts RDD
//val wordcounts = wordCountPairRDD.reduceByKey( _ + _ )
val wordcounts = wordCountPairRDD.reduceByKey( (value1, value2) => value1 + value2 )
wordcounts.collect()
wordcounts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[49] at reduceByKey at command-685894176422504:3
res58: Array[(String, Int)] = Array((a,6), (b,5))
Now, let us do just the crucial steps and avoid collecting intermediate RDDs (something we should avoid for large datasets anyways, as they may not fit in the driver program).
//Cntrl+Enter to make words RDD and do the word count in two lines
val words = sc.parallelize(Array("a", "b", "a", "a", "b", "b", "a", "a", "a", "b", "b"))
val wordcounts = words
.map(s => (s, 1))
.reduceByKey(_ + _)
.collect()
words: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[50] at parallelize at command-685894176422506:2
wordcounts: Array[(String, Int)] = Array((a,6), (b,5))
You Try!
You try evaluating sortByKey()
which will make a new RDD that consists of the elements of the original pair RDD that are sorted by Keys.
// Shift+Enter and comprehend code
val words = sc.parallelize(Array("a", "b", "a", "a", "b", "b", "a", "a", "a", "b", "b"))
val wordCountPairRDD = words.map(s => (s, 1))
val wordCountPairRDDSortedByKey = wordCountPairRDD.sortByKey()
words: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[53] at parallelize at command-685894176422508:2
wordCountPairRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[54] at map at command-685894176422508:3
wordCountPairRDDSortedByKey: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[57] at sortByKey at command-685894176422508:4
wordCountPairRDD.collect() // Shift+Enter and comprehend code
res59: Array[(String, Int)] = Array((a,1), (b,1), (a,1), (a,1), (b,1), (b,1), (a,1), (a,1), (a,1), (b,1), (b,1))
wordCountPairRDDSortedByKey.collect() // Cntrl+Enter and comprehend code
res60: Array[(String, Int)] = Array((a,1), (a,1), (a,1), (a,1), (a,1), (a,1), (b,1), (b,1), (b,1), (b,1), (b,1))
The next key value transformation we will see is groupByKey
When we apply the groupByKey
transformation to wordCountPairRDD
we end up with a new RDD that contains two elements. The first element is the tuple b
and an iterable CompactBuffer(1,1,1,1,1)
obtained by grouping the value 1
for each of the five key value pairs (b,1)
. Similarly the second element is the key a
and an iterable CompactBuffer(1,1,1,1,1,1)
obtained by grouping the value 1
for each of the six key value pairs (a,1)
.
CAUTION: groupByKey
can cause a large amount of data movement across the network. It also can create very large iterables at a worker. Imagine you have an RDD where you have 1 billion pairs that have the key a
. All of the values will have to fit in a single worker if you use group by key. So instead of a group by key, consider using reduced by key.
val wordCountPairRDDGroupByKey = wordCountPairRDD.groupByKey() // <Shift+Enter> CAUTION: this transformation can be very wide!
wordCountPairRDDGroupByKey: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[58] at groupByKey at command-685894176422513:1
wordCountPairRDDGroupByKey.collect() // Cntrl+Enter
res61: Array[(String, Iterable[Int])] = Array((a,CompactBuffer(1, 1, 1, 1, 1, 1)), (b,CompactBuffer(1, 1, 1, 1, 1)))
10. Understanding Closures - Where in the cluster is your computation running?
One of the harder things about Spark is understanding the scope and life cycle of variables and methods when executing code across a cluster. RDD operations that modify variables outside of their scope can be a frequent source of confusion. In the example below we’ll look at code that uses
foreach()
to increment a counter, but similar issues can occur for other operations as well.
https://spark.apache.org/docs/latest/rdd-programming-guide.html#understanding-closures-
val data = Array(1, 2, 3, 4, 5)
var counter = 0
var rdd = sc.parallelize(data)
// Wrong: Don't do this!!
rdd.foreach(x => counter += x)
println("Counter value: " + counter)
Counter value: 0
data: Array[Int] = Array(1, 2, 3, 4, 5)
counter: Int = 0
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[59] at parallelize at command-685894176422517:3
From RDD programming guide:
The behavior of the above code is undefined, and may not work as intended. To execute jobs, Spark breaks up the processing of RDD operations into tasks, each of which is executed by an executor. Prior to execution, Spark computes the task’s closure. The closure is those variables and methods which must be visible for the executor to perform its computations on the RDD (in this case foreach()). This closure is serialized and sent to each executor.
The variables within the closure sent to each executor are now copies and thus, when counter is referenced within the foreach function, it’s no longer the counter on the driver node. There is still a counter in the memory of the driver node but this is no longer visible to the executors! The executors only see the copy from the serialized closure. Thus, the final value of counter will still be zero since all operations on counter were referencing the value within the serialized closure.
11. Shipping Closures, Broadcast Variables and Accumulator Variables
Closures, Broadcast and Accumulator Variables
(watch now 2:06):
We will use these variables in the sequel.
SUMMARY
Spark automatically creates closures
- for functions that run on RDDs at workers,
- and for any global variables that are used by those workers
- one closure per worker is sent with every task
- and there's no communication between workers
- closures are one way from the driver to the worker
- any changes that you make to the global variables at the workers
- are not sent to the driver or
- are not sent to other workers.
The problem we have is that these closures
- are automatically created are sent or re-sent with every job
- with a large global variable it gets inefficient to send/resend lots of data to each worker
- we cannot communicate that back to the driver
To do this, Spark provides shared variables in two different types.
- broadcast variables
- lets us to efficiently send large read-only values to all of the workers
- these are saved at the workers for use in one or more Spark operations.
- accumulator variables
- These allow us to aggregate values from workers back to the driver.
- only the driver can access the value of the accumulator
- for the tasks, the accumulators are basically write-only
Accumulators
Accumulators are variables that are only “added” to through an associative and commutative operation and can therefore be efficiently supported in parallel. They can be used to implement counters (as in MapReduce) or sums. Spark natively supports accumulators of numeric types, and programmers can add support for new types.
Read: https://spark.apache.org/docs/latest/rdd-programming-guide.html#accumulators.
A numeric accumulator can be created by calling SparkContext.longAccumulator() or SparkContext.doubleAccumulator() to accumulate values of type Long or Double, respectively. Tasks running on a cluster can then add to it using the add method. However, they cannot read its value. Only the driver program can read the accumulator’s value, using its value method.
The code below shows an accumulator being used to add up the elements of an array:
val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 1891, name: Some(My Accumulator), value: 0)
sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))
accum.value
res66: Long = 10
Broadcast Variables
From https://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables:
Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks. They can be used, for example, to give every node a copy of a large input dataset in an efficient manner. Spark also attempts to distribute broadcast variables using efficient broadcast algorithms to reduce communication cost.
Spark actions are executed through a set of stages, separated by distributed “shuffle” operations. Spark automatically broadcasts the common data needed by tasks within each stage. The data broadcasted this way is cached in serialized form and deserialized before running each task. This means that explicitly creating broadcast variables is only useful when tasks across multiple stages need the same data or when caching the data in deserialized form is important.
Broadcast variables are created from a variable v by calling SparkContext.broadcast(v). The broadcast variable is a wrapper around v, and its value can be accessed by calling the value method. The code below shows this in action.
val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(67)
broadcastVar.value
res68: Array[Int] = Array(1, 2, 3)
broadcastVar.value(0)
res69: Int = 1
val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[61] at parallelize at command-685894176422531:1
rdd.collect
res70: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
rdd.map(x => x%3).collect
res71: Array[Int] = Array(1, 2, 0, 1, 2, 0, 1, 2, 0, 1)
rdd.map(x => x+broadcastVar.value(x%3)).collect
res72: Array[Int] = Array(3, 5, 4, 6, 8, 7, 9, 11, 10, 12)
After the broadcast variable is created, it should be used instead of the value v in any functions run on the cluster so that v is not shipped to the nodes more than once. In addition, the object v should not be modified after it is broadcast in order to ensure that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped to a new node later).
To release the resources that the broadcast variable copied onto executors, call .unpersist(). If the broadcast is used again afterwards, it will be re-broadcast. To permanently release all resources used by the broadcast variable, call .destroy(). The broadcast variable can’t be used after that. Note that these methods do not block by default. To block until resources are freed, specify blocking=true when calling them.
broadcastVar.unpersist()
A more interesting example of broadcast variable
Let us broadcast maps and use them to lookup the values at each executor. This example is taken from: - https://sparkbyexamples.com/spark/spark-broadcast-variables/
val states = Map(("NY","New York"),("CA","California"),("FL","Florida"))
val countries = Map(("USA","United States of America"),("IN","India"))
val broadcastStates = spark.sparkContext.broadcast(states)
val broadcastCountries = spark.sparkContext.broadcast(countries)
val data = Seq(("James","Smith","USA","CA"),
("Michael","Rose","USA","NY"),
("Robert","Williams","USA","CA"),
("Maria","Jones","USA","FL"))
val rdd = spark.sparkContext.parallelize(data) // spark.sparkContext is the same as sc.parallelize in spark-shell/notebook
val rdd2 = rdd.map(f=>{
val country = f._3
val state = f._4
val fullCountry = broadcastCountries.value.get(country).get
val fullState = broadcastStates.value.get(state).get
(f._1,f._2,fullCountry,fullState)
})
states: scala.collection.immutable.Map[String,String] = Map(NY -> New York, CA -> California, FL -> Florida)
countries: scala.collection.immutable.Map[String,String] = Map(USA -> United States of America, IN -> India)
broadcastStates: org.apache.spark.broadcast.Broadcast[scala.collection.immutable.Map[String,String]] = Broadcast(71)
broadcastCountries: org.apache.spark.broadcast.Broadcast[scala.collection.immutable.Map[String,String]] = Broadcast(72)
data: Seq[(String, String, String, String)] = List((James,Smith,USA,CA), (Michael,Rose,USA,NY), (Robert,Williams,USA,CA), (Maria,Jones,USA,FL))
rdd: org.apache.spark.rdd.RDD[(String, String, String, String)] = ParallelCollectionRDD[64] at parallelize at command-685894176422538:12
rdd2: org.apache.spark.rdd.RDD[(String, String, String, String)] = MapPartitionsRDD[65] at map at command-685894176422538:14
println(rdd2.collect().mkString("\n"))
(James,Smith,United States of America,California)
(Michael,Rose,United States of America,New York)
(Robert,Williams,United States of America,California)
(Maria,Jones,United States of America,Florida)
12. Spark Essentials: Summary
(watch now: 0:29)
NOTE: In databricks cluster, we (the course coordinator/administrators) set the number of workers for you.
13. HOMEWORK
See the notebook in this folder named 005_RDDsTransformationsActionsHOMEWORK
. This notebook will give you more examples of the operations above as well as others we will be using later, including:
- Perform the
takeOrdered
action on the RDD - Transform the RDD by
distinct
to make another RDD and - Doing a bunch of transformations to our RDD and performing an action in a single cell.
14. Importing Standard Scala and Java libraries
- For other libraries that are not available by default, you can upload other libraries to the Workspace.
- Refer to the Libraries guide for more details.
import scala.math._
val x = min(1, 10)
import scala.math._
x: Int = 1
import java.util.HashMap
val map = new HashMap[String, Int]()
map.put("a", 1)
map.put("b", 2)
map.put("c", 3)
map.put("d", 4)
map.put("e", 5)
import java.util.HashMap
map: java.util.HashMap[String,Int] = {a=1, b=2, c=3, d=4, e=5}
res75: Int = 0
HOMEWORK on RDD Transformations and Actions
Just go through the notebook and familiarize yourself with these transformations and actions.
- Perform the
takeOrdered
action on the RDD**
To illustrate take
and takeOrdered
actions, let's create a bigger RDD named rdd0_1000000
that is made up of a million integers from 0 to 1000000.
We will sc.parallelize
the Seq
Scala collection by using its .range(startInteger,stopInteger)
method.
val rdd0_1000000 = sc.parallelize(Seq.range(0, 1000000)) // <Shift+Enter> to create an RDD of million integers: 0,1,2,...,10^6
rdd0_1000000.take(5) // <Ctrl+Enter> gives the first 5 elements of the RDD, (0, 1, 2, 3, 4)
takeordered(n)
returns n
elements ordered in ascending order (by default) or as specified by the optional key function, as shown below.
rdd0_1000000.takeOrdered(5) // <Shift+Enter> is same as rdd0_1000000.take(5)
rdd0_1000000.takeOrdered(5)(Ordering[Int].reverse) // <Ctrl+Enter> to get the last 5 elements of the RDD 999999, 999998, ..., 999995
// HOMEWORK: edit the numbers below to get the last 20 elements of an RDD made of a sequence of integers from 669966 to 969696
sc.parallelize(Seq.range(0, 10)).takeOrdered(5)(Ordering[Int].reverse) // <Ctrl+Enter> evaluate this cell after editing it for the right answer
- More examples of
map
val rdd = sc.parallelize(Seq(1, 2, 3, 4)) // <Shift+Enter> to evaluate this cell (using default number of partitions)
rdd.map( x => x*2) // <Ctrl+Enter> to transform rdd by map that doubles each element
To see what's in the transformed RDD, let's perform the actions of count
and collect
on the rdd.map( x => x*2)
, the transformation of rdd
by the map
given by the closure x => x*2
.
rdd.map( x => x*2).count() // <Shift+Enter> to perform count (action) the element of the RDD = 4
rdd.map( x => x*2).collect() // <Shift+Enter> to perform collect (action) to show 2, 4, 6, 8
// HOMEWORK: uncomment the last line in this cell and modify the '<Fill-In-Here>' in the code below to collect and display the square (x*x) of each element of the RDD
// the answer should be Array[Int] = Array(1, 4, 9, 16) Press <Cntrl+Enter> to evaluate the cell after modifying '???'
//sc.parallelize(Seq(1, 2, 3, 4)).map( x => <Fill-In-Here> ).collect()
- More examples of
filter
Let's declare another val
RDD named rddFiltered
by transforming our first RDD named rdd
via the filter
transformation x%2==0
(of being even).
This filter transformation based on the closure x => x%2==0
will return true
if the element, modulo two, equals zero. The closure is automatically passed on to the workers for evaluation (when an action is called later). So this will take our RDD of (1,2,3,4) and return RDD of (2, 4).
val rddFiltered = rdd.filter( x => x%2==0 ) // <Ctrl+Enter> to declare rddFiltered from transforming rdd
rddFiltered.collect() // <Ctrl+Enter> to collect (action) elements of rddFiltered; should be (2, 4)
- More examples of
reduce
val rdd = sc.parallelize(Array(1,2,3,4,5))
rdd.reduce( (x,y)=>x+y ) // <Shift+Enter> to do reduce (action) to sum and return Int = 15
rdd.reduce( _ + _ ) // <Shift+Enter> to do same sum as above and return Int = 15 (undescore syntax)
rdd.reduce( (x,y)=>x*y ) // <Shift+Enter> to do reduce (action) to multiply and return Int = 120
val rdd0_1000000 = sc.parallelize(Seq.range(0, 1000000)) // <Shift+Enter> to create an RDD of million integers: 0,1,2,...,10^6
rdd0_1000000.reduce( (x,y)=>x+y ) // <Ctrl+Enter> to do reduce (action) to sum and return Int 1783293664
// the following correctly returns Int = 0 although for wrong reason
// we have flowed out of Int's numeric limits!!! (but got lucky with 0*x=0 for any Int x)
// <Shift+Enter> to do reduce (action) to multiply and return Int = 0
rdd0_1000000.reduce( (x,y)=>x*y )
// <Ctrl+Enter> to do reduce (action) to multiply 1*2*...*9*10 and return correct answer Int = 3628800
sc.parallelize(Seq.range(1, 11)).reduce( (x,y)=>x*y )
CAUTION: Know the limits of your numeric types!
The minimum and maximum value of Int
and Long
types are as follows:
(Int.MinValue , Int.MaxValue)
(Long.MinValue, Long.MaxValue)
// <Ctrl+Enter> to do reduce (action) to multiply 1*2*...*20 and return wrong answer as Int = -2102132736
// we have overflowed out of Int's in a circle back to negative Ints!!! (rigorous distributed numerics, anyone?)
sc.parallelize(Seq.range(1, 21)).reduce( (x,y)=>x*y )
//<Ctrl+Enter> we can accomplish the multiplication using Long Integer types
// by adding 'L' ro integer values, Scala infers that it is type Long
sc.parallelize(Seq.range(1L, 21L)).reduce( (x,y)=>x*y )
As the following products over Long Integers indicate, they are limited too!
// <Shift+Enter> for wrong answer Long = -8718968878589280256 (due to Long's numeric limits)
sc.parallelize(Seq.range(1L, 61L)).reduce( (x,y)=>x*y )
// <Cntrl+Enter> for wrong answer Long = 0 (due to Long's numeric limits)
sc.parallelize(Seq.range(1L, 100L)).reduce( (x,y)=>x*y )
- Let us do a bunch of transformations to our RDD and perform an action
- start from a Scala
Seq
, sc.parallelize
the list to create an RDD,filter
that RDD, creating a new filtered RDD,- do a
map
transformation that maps that RDD to a new mapped RDD, - and finally, perform a
reduce
action to sum the elements in the RDD.
This last reduce
action causes the parallelize
, the filter
, and the map
transformations to actually be executed, and return a result back to the driver machine.
sc.parallelize(Seq(1, 2, 3, 4)) // <Ctrl+Enter> will return Array(4, 8)
.filter(x => x%2==0) // (2, 4) is the filtered RDD
.map(x => x*2) // (4, 8) is the mapped RDD
.reduce(_+_) // 4+8=12 is the final result from reduce
- Transform the RDD by
distinct
to make another RDD
Let's declare another RDD named rdd2
that has some repeated elements to apply the distinct
transformation to it. That would give us a new RDD that only contains the distinct elements of the input RDD.
val rdd2 = sc.parallelize(Seq(4, 1, 3, 2, 2, 2, 3, 4)) // <Ctrl+Enter> to declare rdd2
Let's apply the distinct
transformation to rdd2
and have it return a new RDD named rdd2Distinct
that contains the distinct elements of the source RDD rdd2
.
val rdd2Distinct = rdd2.distinct() // <Ctrl+Enter> transformation: distinct gives distinct elements of rdd2
rdd2Distinct.collect() // <Ctrl+Enter> to collect (action) as Array(4, 2, 1, 3)
- more flatMap
val rdd = sc. parallelize(Array(1,2,3)) // <Shift+Enter> to create an RDD of three Int elements 1,2,3
Let us pass the rdd
above to a map with a closure that will take in each element x
and return Array(x, x+5)
. So each element of the mapped RDD named rddOfArrays
is an Array[Int]
, an array of integers.
// <Shift+Enter> to make RDD of Arrays, i.e., RDD[Array[int]]
val rddOfArrays = rdd.map( x => Array(x, x+5) )
rddOfArrays.collect() // <Ctrl+Enter> to see it is RDD[Array[int]] = (Array(1, 6), Array(2, 7), Array(3, 8))
Now let's observer what happens when we use flatMap
to transform the same rdd
and create another RDD called rddfM
.
Interestingly, flatMap
flattens our rdd
by taking each Array
(or sequence in general) and truning it into individual elements.
Thus, we end up with the RDD rddfM
consisting of the elements (1, 6, 2, 7, 3, 8) as shown from the output of rddfM.collect
below.
val rddfM = rdd.flatMap(x => Array(x, x+5)) // <Shift+Enter> to flatMap the rdd using closure (x => Array(x, x+5))
rddfM.collect // <Ctrl+Enter> to collect rddfM = (1, 6, 2, 7, 3, 8)
Here we will first take excerpts with minor modifications from the end of Chapter 12. Resilient Distributed Datasets (RDDs) of Spark: The Definitive Guide:
- https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/ch12.html
Next, we will do Bayesian AB Testing using PipedRDDs.
First, we create the toy RDDs as in The Definitive Guide:
From a Local Collection
To create an RDD from a collection, you will need to use the parallelize method on a SparkContext (within a SparkSession). This turns a single node collection into a parallel collection. When creating this parallel collection, you can also explicitly state the number of partitions into which you would like to distribute this array. In this case, we are creating two partitions:
// in Scala
val myCollection = "Spark The Definitive Guide : Big Data Processing Made Simple" .split(" ")
val words = spark.sparkContext.parallelize(myCollection, 2)
# in Python
myCollection = "Spark The Definitive Guide : Big Data Processing Made Simple"\
.split(" ")
words = spark.sparkContext.parallelize(myCollection, 2)
words
glom from The Definitive Guide
glom
is an interesting function that takes every partition in your dataset and converts them to arrays. This can be useful if you’re going to collect the data to the driver and want to have an array for each partition. However, this can cause serious stability issues because if you have large partitions or a large number of partitions, it’s simple to crash the driver.
Let's use glom
to see how our words
are distributed among the two partitions we used explicitly.
words.glom.collect
words.glom().collect()
Checkpointing from The Definitive Guide
One feature not available in the DataFrame API is the concept of checkpointing. Checkpointing is the act of saving an RDD to disk so that future references to this RDD point to those intermediate partitions on disk rather than recomputing the RDD from its original source. This is similar to caching except that it’s not stored in memory, only disk. This can be helpful when performing iterative computation, similar to the use cases for caching:
Let's create a directory in dbfs:///
for checkpointing of RDDs in the sequel. The following %fs mkdirs /path_to_dir
is a shortcut to create a directory in dbfs:///
mkdirs /datasets/ScaDaMaLe/checkpointing/
spark.sparkContext.setCheckpointDir("dbfs:///datasets/ScaDaMaLe/checkpointing")
words.checkpoint()
Now, when we reference this RDD, it will derive from the checkpoint instead of the source data. This can be a helpful optimization.
YouTry
Just some more words in haha_words
with \n
, the End-Of-Line (EOL) characters, in-place.
val haha_words = sc.parallelize(Seq("ha\nha", "he\nhe\nhe", "ho\nho\nho\nho"),3)
Let's use glom
to see how our haha_words
are distributed among the partitions
haha_words.glom.collect
Pipe RDDs to System Commands
The pipe method is probably one of Spark’s more interesting methods. With pipe, you can return an RDD created by piping elements to a forked external process. The resulting RDD is computed by executing the given process once per partition. All elements of each input partition are written to a process’s stdin as lines of input separated by a newline. The resulting partition consists of the process’s stdout output, with each line of stdout resulting in one element of the output partition. A process is invoked even for empty partitions.
The print behavior can be customized by providing two functions.
We can use a simple example and pipe each partition to the command wc. Each row will be passed in as a new line, so if we perform a line count, we will get the number of lines, one per partition:
The following produces a PipedRDD
:
val wc_l_PipedRDD = words.pipe("wc -l")
wc_l_PipedRDD = words.pipe("wc -l")
wc_l_PipedRDD
Now, we take an action via collect
to bring the results to the Driver.
NOTE: Be careful what you collect! You can always write the output to parquet of binary files in dbfs:///
if the returned output is large.
wc_l_PipedRDD.collect
wc_l_PipedRDD.collect()
In this case, we got the number of lines returned by wc -l
per partition.
YouTry
Try to make sense of the next few cells where we do NOT specifiy the number of partitions explicitly and let Spark decide on the number of partitions automatically.
val haha_words = sc.parallelize(Seq("ha\nha", "he\nhe\nhe", "ho\nho\nho\nho"),3)
haha_words.glom.collect
val wc_l_PipedRDD_haha_words = haha_words.pipe("wc -l")
wc_l_PipedRDD_haha_words.collect()
Do you understand why the above collect
statement returns what it does?
val haha_words_again = sc.parallelize(Seq("ha\nha", "he\nhe\nhe", "ho\nho\nho\nho"))
haha_words_again.glom.collect
val wc_l_PipedRDD_haha_words_again = haha_words_again.pipe("wc -l")
wc_l_PipedRDD_haha_words_again.collect()
Did you understand why some of the results are 0
in the last collect
statement?
mapPartitions
The previous command revealed that Spark operates on a per-partition basis when it comes to actually executing code. You also might have noticed earlier that the return signature of a map function on an RDD is actually
MapPartitionsRDD
.
Or ParallelCollectionRDD
in our case.
This is because map is just a row-wise alias for
mapPartitions
, which makes it possible for you to map an individual partition (represented as an iterator). That’s because physically on the cluster we operate on each partition individually (and not a specific row). A simple example creates the value “1” for every partition in our data, and the sum of the following expression will count the number of partitions we have:
// in Scala
words.mapPartitions(part => Iterator[Int](1)).sum() // 2.0
# in Python
words.mapPartitions(lambda part: [1]).sum() # 2
Naturally, this means that we operate on a per-partition basis and therefore it allows us to perform an operation on that entire partition. This is valuable for performing something on an entire subdataset of your RDD. You can gather all values of a partition class or group into one partition and then operate on that entire group using arbitrary functions and controls. An example use case of this would be that you could pipe this through some custom machine learning algorithm and train an individual model for that company’s portion of the dataset. A Facebook engineer has an interesting demonstration of their particular implementation of the pipe operator with a similar use case demonstrated at Spark Summit East 2017.
Other functions similar to
mapPartitions
includemapPartitionsWithIndex
. With this you specify a function that accepts an index (within the partition) and an iterator that goes through all items within the partition. The partition index is the partition number in your RDD, which identifies where each record in our dataset sits (and potentially allows you to debug). You might use this to test whether your map functions are behaving correctly:
// in Scala
def indexedFunc(partitionIndex:Int, withinPartIterator: Iterator[String]) = { withinPartIterator.toList.map(
value => s"Partition: $partitionIndex => $value").iterator
}
words.mapPartitionsWithIndex(indexedFunc).collect()
# in Python
def indexedFunc(partitionIndex, withinPartIterator):
return ["partition: {} => {}".format(partitionIndex, x) for x in withinPartIterator]
words.mapPartitionsWithIndex(indexedFunc).collect()
foreachPartition
Although
mapPartitions
needs a return value to work properly, this next function does not.foreachPartition
simply iterates over all the partitions of the data. The difference is that the function has no return value. This makes it great for doing something with each partition like writing it out to a database. In fact, this is how many data source connectors are written. You can create
your
own text file source if you want by specifying outputs to the temp directory with a random ID:
words.foreachPartition { iter =>
import java.io._
import scala.util.Random
val randomFileName = new Random().nextInt()
val pw = new PrintWriter(new File(s"/tmp/random-file-${randomFileName}.txt"))
while (iter.hasNext) {
pw.write(iter.next())
}
pw.close()
}
You’ll find these two files if you scan your /tmp directory.
You need to scan for the file across all the nodes. As the file may not be in the Driver node's /tmp/
directory but in those of the executors that hosted the partition.
pwd
ls /tmp/random-file-*.txt
Numerically Rigorous Bayesian AB Testing
This is an example of Bayesian AB Testing with computer-aided proofs for the posterior samples.
The main learning goal for you is to use pipedRDDs to distribute, in an embarassingly paralle way, across all the worker nodes in the Spark cluster an executible IsIt1or2Coins
.
What does IsIt1or2Coins
do?
At a very high-level, to understand what IsIt1or2Coins
does, imagine the following simple experiment.
We are given
- the number of heads that result from a first sequence of independent and identical tosses of a coin and then
- we are given the number of heads that result from a second sequence of independent and identical tosses of a coin
Our decision problem is to do help shed light on whether both sequence of tosses came from the same coin or not (whatever the bias may be).
IsIt1or2Coins
tries to help us decide if the two sequence of coin-tosses are based on one coin with an unknown bias or two coins with different biases.
If you are curious about details feel free to see:
- Exact Bayesian A/B testing using distributed fault-tolerant Moore rejection sampler, Benny Avelin and Raazesh Sainudiin, Extended Abstract, 2 pages, 2018 (PDF 104KB).
- which builds on: An auto-validating, trans-dimensional, universal rejection sampler for locally Lipschitz arithmetical expressions, Raazesh Sainudiin and Thomas York, Reliable Computing, vol.18, pp.15-54, 2013 (preprint: PDF 2612KB)
See first about PipedRDDs
excerpt from Spark The Definitive Guide earlier.
Getting the executible IsIt1or2Coins
into our Spark Cluster
This has already been done in the project-shard. You need not do it again for this executible!
You need to upload the C++ executible IsIt1or2Coins
from: - https://github.com/lamastex/mrs2
Here, suppose you have an executible for linux x86 64 bit processor with all dependencies pre-compiled into one executibe.
Say this executible is IsIt10r2Coins
.
This executible comes from the following dockerised build:
- https://github.com/lamastex/mrs2/tree/master/docker
- by statically compiling inside the docerised environment for mrs2:
- https://github.com/lamastex/mrs2/tree/master/mrs-2.0/examples/MooreRejSam/IsIt1or2Coins
You can replace the executible with any other executible with appropriate I/O to it.
Then you upload the executible to databricks' FileStore
.
Just note the path to the file and DO NOT click Create Table
or other buttons!
ls "/FileStore/tables/IsIt1or2Coins"
Now copy the file from dbfs://FileStore
that you just uploaded into the local file system of the Driver.
dbutils.fs.cp("dbfs:/FileStore/tables/IsIt1or2Coins", "file:/tmp/IsIt1or2Coins")
ls -al /tmp/IsIt1or2Coins
Note it is a big static executible with all dependencies inbuilt (it uses GNU Scientific Library and a specialized C++ Library called C-XSC or C Extended for Scientific Computing to do hard-ware optimized rigorous numerical proofs using Interval-Extended Hessian Differentiation Arithmetics over Rounding-Controlled Hardware-Specified Machine Intervals).
Just note it is over 6.5MB. Also we need to change the permissions so it is indeed executible.
chmod +x /tmp/IsIt1or2Coins
Usage instructions for IsIt1or2Coins
./IsIt1or2Coins numboxes numiter seed numtosses1 heads1 numtosses2 heads2 logScale
- numboxes = Number of boxes for Moore Rejection Sampling (Rigorous von Neumann Rejection Sampler) - numiter = Number of samples drawn from posterior distribution to estimate the model probabilities - seed = a random number seed - numtosses1 = number of tosses for the first coin - heads1 = number of heads shown up on the first coin - numtosses2 = number of tosses for the second coin - heads2 = number of heads shown up on the second coin - logscale = True/False as Int
Don't worry about the details of what the executible IsIt1or2Coins
is doing for now. Just realise that this executible takes some input on command-line and gives some output.
Let's make sure the executible takes input and returns output string on the Driver node.
/tmp/IsIt1or2Coins 1000 100 234565432 1000 500 1200 600 1
# You can also do it like this
/dbfs/FileStore/tables/IsIt1or2Coins 1000 100 234565432 1000 500 1200 600 1
To copy the executible from dbfs
to the local drive of each executor you can use the following helper function.
import scala.sys.process._
import scala.concurrent.duration._
// from Ivan Sadikov
def copyFile(): Unit = {
"mkdir -p /tmp/executor/bin".!!
"cp /dbfs/FileStore/tables/IsIt1or2Coins /tmp/executor/bin/".!!
}
sc.runOnEachExecutor(copyFile, new FiniteDuration(1, HOURS))
Now, let us use piped RDDs via bash
to execute the given command in each partition as follows:
val input = Seq("/tmp/executor/bin/IsIt1or2Coins 1000 100 234565432 1000 500 1200 600 1", "/tmp/executor/bin/IsIt1or2Coins 1000 100 234565432 1000 500 1200 600 1")
val output = sc
.parallelize(input)
.repartition(2)
.pipe("bash")
.collect()
In fact, you can just use DBFS FUSE
to run the commands without any file copy in databricks-provisioned Spark clusters we are on here:
val isIt1or2StaticExecutible = "/dbfs/FileStore/tables/IsIt1or2Coins"
val same_input = Seq(s"$isIt1or2StaticExecutible 1000 100 234565432 1000 500 1200 600 1",
s"$isIt1or2StaticExecutible 1000 100 234565432 1000 500 1200 600 1")
val same_output = sc
.parallelize(same_input)
.repartition(2)
.pipe("bash")
.collect()
Thus by mixing several different executibles that are statically compiled for linux 64 bit machine, we can mix and match multiple executibles with appropriate inputs.
The resulting outputs can themselves be re-processed in Spark to feed into toher pipedRDDs or normal RDDs or DataFrames and DataSets.
Finally, we can have more than one command per partition and then use mapPartitions
to send all the executible commands within the input partition that is to be run by the executor in which that partition resides as follows:
val isIt1or2StaticExecutible = "/dbfs/FileStore/tables/IsIt1or2Coins"
// let us make 2 commands in each of the 2 input partitions
val same_input_mp = Seq(s"$isIt1or2StaticExecutible 1000 100 234565432 1000 500 1200 600 1",
s"$isIt1or2StaticExecutible 1000 100 123456789 1000 500 1200 600 1",
s"$isIt1or2StaticExecutible 1000 100 123456789 1000 500 1200 600 1",
s"$isIt1or2StaticExecutible 1000 100 234565432 1000 500 1200 600 1")
val same_output_mp = sc
.parallelize(same_input)
.repartition(2)
.pipe("bash")
.mapPartitions(x => Seq(x.mkString("\n")).iterator)
.collect()
allCatch is a useful tool to use as a filtering function when testing if a command will work without error.
import scala.util.control.Exception.allCatch
(allCatch opt " 12 ".trim.toLong).isDefined
Word Count on US State of the Union (SoU) Addresses
- Word Count in big data is the equivalent of
Hello World
in programming - We count the number of occurences of each word in the first and last (2016) SoU addresses.
prerequisite see DO NOW below. You should have loaded data as instructed in scalable-data-science/xtraResources/sdsDatasets
.
DO NOW (if not done already)
In your databricks community edition:
- In your
WorkSpace
create a Folder namedscalable-data-science
Import
the databricks archive file at the following URL:- This should open a structure of directories in with path:
/Workspace/scalable-data-science/xtraResources/
An interesting analysis of the textual content of the State of the Union (SoU) addresses by all US presidents was done in:
Fig. 5. A river network captures the flow across history of US political discourse, as perceived by contemporaries. Time moves along the x axis. Clusters on semantic networks of 300 most frequent terms for each of 10 historical periods are displayed as vertical bars. Relations between clusters of adjacent periods are indexed by gray flows, whose density reflects their degree of connection. Streams that connect at any point in history may be considered to be part of the same system, indicated with a single color.
Let us investigate this dataset ourselves!
- We first get the source text data by scraping and parsing from http://stateoftheunion.onetwothree.net/texts/index.html as explained in scraping and parsing SoU addresses.
- This data is already made available in DBFS, our distributed file system.
- We only do the simplest word count with this data in this notebook and will do more sophisticated analyses in the sequel (including topic modeling, etc).
Key Data Management Concepts
The Structure Spectrum
(watch now 1:10):
Here we will be working with unstructured or schema-never data (plain text files). ***
Files
(watch later 1:43):
DBFS and dbutils - where is this dataset in our distributed file system?
- Since we are on the databricks cloud, it has a file system called DBFS
- DBFS is similar to HDFS, the Hadoop distributed file system
- dbutils allows us to interact with dbfs.
- The 'display' command displays the list of files in a given directory in the file system.
display(dbutils.fs.ls("dbfs:/"))
display(dbutils.fs.ls("dbfs:/datasets/sou"))
display(dbutils.fs.ls("dbfs:/datasets/sou")) // Cntrl+Enter to display the files in dbfs:/datasets/sou
Let us display the head or the first few lines of the file dbfs:/datasets/sou/17900108.txt
to see what it contains using dbutils.fs.head
method.
head(file: String, maxBytes: int = 65536): String
-> Returns up to the first 'maxBytes' bytes of the given file as a String encoded in UTF-8 as follows:
dbutils.fs.head("dbfs:/datasets/sou/17900108.txt",673) // Cntrl+Enter to get the first 673 bytes of the file (which corresponds to the first five lines)
You Try!
Uncomment and modify xxxx
in the cell below to read the first 1000 bytes from the file.
//dbutils.fs.head("dbfs:/datasets/sou/17900108.txt", xxxx) // Cntrl+Enter to get the first 1000 bytes of the file
Read the file into Spark Context as an RDD of Strings
- The
textFile
method on the availableSparkContext
sc
can read the text filedbfs:/datasets/sou/17900108.txt
into Spark and create an RDD of Strings- but this is done lazily until an action is taken on the RDD
sou17900108
!
- but this is done lazily until an action is taken on the RDD
val sou17900108 = sc.textFile("dbfs:/datasets/sou/17900108.txt") // Cntrl+Enter to read in the textfile as RDD[String]
Perform some actions on the RDD
- Each String in the RDD
sou17900108
represents one line of data from the file and can be made to perform one of the following actions:- count the number of elements in the RDD
sou17900108
(i.e., the number of lines in the text filedbfs:/datasets/sou/17900108.txt
) usingsou17900108.count()
- display the contents of the RDD using
take
orcollect
.
- count the number of elements in the RDD
sou17900108.count() // <Shift+Enter> to count the number of elements in the RDD
sou17900108.take(5) // <Shift+Enter> to display the first 5 elements of RDD
sou17900108.take(5).foreach(println) // <Shift+Enter> to display the first 5 elements of RDD line by line
sou17900108.collect // <Cntrl+Enter> to display all the elements of RDD
Cache the RDD in (distributed) memory to avoid recreating it for each action
- Above, every time we took an action on the same RDD, the RDD was reconstructed from the textfile.
- Spark's advantage compared to Hadoop MapReduce is the ability to cache or store the RDD in distributed memory across the nodes.
- Let's use
.cache()
after creating an RDD so that it is in memory after the first action (and thus avoid reconstruction for subsequent actions).- count the number of elements in the RDD
sou17900108
(i.e., the number of lines in the text filedbfs:/datasets/sou/17900108.txt
) usingsou17900108.count()
- display the contents of the RDD using
take
orcollect
.
- count the number of elements in the RDD
// Shift+Enter to read in the textfile as RDD[String] and cache it in distributed memory
val sou17900108 = sc.textFile("dbfs:/datasets/sou/17900108.txt")
sou17900108.cache() // cache the RDD in memory
sou17900108.count() // Shift+Enter during this count action the RDD is constructed from texfile and cached
sou17900108.count() // Shift+Enter during this count action the cached RDD is used (notice less time taken by the same command)
sou17900108.take(5) // <Cntrl+Enter> to display the first 5 elements of the cached RDD
Lifecycle of a Spark Program
(watch now 0:23):
Summary
- create RDDs from:
- some external data source (such as a distributed file system)
- parallelized collection in your driver program
- lazily transform these RDDs into new RDDs
- cache some of those RDDs for future reuse
- you perform actions to execute parallel computation to produce results
Transform lines to words
- We need to loop through each line and split the line into words
- For now, let us split using whitespace
- More sophisticated regular expressions can be used to split the line (as we will see soon)
sou17900108
.flatMap(line => line.split(" "))
.take(100)
Naive word count
At a first glace, to do a word count of George Washingtons SoU address, we are templed to do the following:
- just break each line by the whitespace character " " and find the words using a
flatMap
- then do the
map
with the closureword => (word, 1)
to initialize eachword
with a integer count of1
- ie., transform each word to a (key, value) pair or
Tuple
such as(word, 1)
- ie., transform each word to a (key, value) pair or
- then count all values with the same key (
word
is the Key in our case) by doing areduceByKey(_+_)
- and finally
collect()
to display the results.
sou17900108
.flatMap( line => line.split(" ") )
.map( word => (word, 1) )
.reduceByKey(_+_)
.collect()
Unfortunately, as you can see from the collect
above:
- the words have punctuations at the end which means that the same words are being counted as different words. Eg: importance
- empty words are being counted
So we need a bit of regex
'ing or regular-expression matching (all readily available from Scala via Java String types).
We will cover the three things we want to do with a simple example from Middle Earth!
- replace all multiple whitespace characters with one white space character " "
- replace all punction characters we specify within
[
and]
such as[,?.!:;]
by the empty string""
(i.e., remove these punctuation characters) - convert everything to lower-case.
val example = "Master, Master! It's me, Sméagol... mhrhm*%* But they took away our precious, they wronged us. Gollum will protect us..., Master, it's me Sméagol."
example
.replaceAll("\\s+", " ") //replace multiple whitespace characters (including space, tab, new line, etc.) with one whitespace " "
.replaceAll("""([,?.!:;])""", "") // replace the following punctions characters: , ? . ! : ; . with the empty string ""
.toLowerCase() // converting to lower-case
More sophisticated word count
We are now ready to do a word count of George Washington's SoU on January 8th 1790 as follows:
val wordCount_sou17900108 =
sou17900108
.flatMap(line =>
line.replaceAll("\\s+", " ") //replace multiple whitespace characters (including space, tab, new line, etc.) with one whitespace " "
.replaceAll("""([,?.!:;])""", "") // replace the following punctions characters: , ? . ! : ; . with the empty string ""
.toLowerCase() // converting to lower-case
.split(" "))
.map(x => (x, 1))
.reduceByKey(_+_)
wordCount_sou17900108.collect()
val top10 = wordCount_sou17900108.sortBy(_._2, false).collect()
//sc.textFile("dbfs:/datasets/sou/17900108.txt") // George Washington's first SoU
sc.textFile("dbfs:/datasets/sou/20160112.txt") // Barrack Obama's second SoU
.flatMap(line =>
line.replaceAll("\\s+", " ") //replace multiple whitespace characters (including space, tab, new line, etc.) with one whitespace " "
.replaceAll("""([,?.!:;])""", "") // replace the following punctions characters: , ? . ! : ; . with the empty string ""
.toLowerCase() // converting to lower-case
.split(" "))
.map(x => (x,1))
.reduceByKey(_+_)
.sortBy(_._2, false)
.collect()
Reading all SoUs at once using wholetextFiles
Let us next read all text files (ending with .txt
) in the directory dbfs:/datasets/sou/
at once!
SparkContext.wholeTextFiles
lets you read a directory containing multiple small text files, and returns each of them as (filename, content)
pairs of strings.
This is in contrast with textFile
, which would return one record per line in each file.
val souAll = sc.wholeTextFiles("dbfs:/datasets/sou/*.txt") // Shift+Enter to read all text files in dbfs:/datasets/sou/
souAll.cache() // let's cache this RDD for efficient reuse
souAll.count() // Shift+enter to count the number of entries in RDD[(String,String)]
souAll.count() // Cntrl+Enter to count the number of entries in cached RDD[(String,String)] again (much faster!)
Let's examine the first two elements of the RDD souAll
.
souAll.take(2) // Cntr+Enter to see the first two elements of souAll
Clearly, the elements are a pair of Strings, where the first String gives the filename and the second String gives the contents in the file.
this can be very helpful to simply loop through the files and take an action, such as counting the number of words per address, as folows:
// this just collects the file names which is the first element of the tuple given by "._1"
souAll.map( fileContentsPair => fileContentsPair._1).collect()
Let us find the number of words in each of the SoU addresses next (we need to work with Strings inside the closure!).
val wcs = souAll.map( fileContentsPair =>
{
val wc = fileContentsPair._2
.replaceAll("\\s+", " ") //replace multiple whitespace characters (including space, tab, new line, etc.) with one whitespace " "
.replaceAll("""([,?.!:;])""", "") // replace the following punctions characters: , ? . ! : ; . with the empty string ""
.toLowerCase() // converting to lower-case
.split(" ") // split each word separated by white space
.size // find the length of array
wc
}
)
wcs.collect()
YouTry: HOMEWORK
- HOWEWORK WordCount 1:
sortBy
- HOMEWROK WordCount 2:
dbutils.fs
HOMEWORK WordCount 1. sortBy
Let's understand sortBy
a bit more carefully.
val example = "Master, Master! It's me, Sméagol... mhrhm*%* But they took away our precious, they wronged us. Gollum will protect us..., Master, it's me Sméagol."
val words = example.replaceAll("\\s+", " ") //replace multiple whitespace characters (including space, tab, new line, etc.) with one whitespace " "
.replaceAll("""([,?.!:;])""", "") // replace the following punctions characters: , ? . ! : ; . with the empty string ""
.toLowerCase() // converting to lower-case
.split(" ")
val rddWords = sc.parallelize(words)
rddWords.take(10)
val wordCounts = rddWords
.map(x => (x,1))
.reduceByKey(_+_)
val top10 = wordCounts.sortBy(_._2, false).take(10)
Make your code easy to read for other developers ;) Use 'case classes' with well defined variable names that everyone can understand
val top10 = wordCounts.sortBy({
case (word, count) => count
}, false).take(10)
If you just want a total count of all words in the file
rddWords.count
YoutTry: HOMEWORK WordCount 2: dbutils.fs
Have a brief look at what other commands dbutils.fs supports. We will introduce them as needed.
dbutils.fs.help // some of these were used to ETL this data into dbfs:/datasets/sou
Exercise 2: SouWordCount
Count the number of each word across all the "dbfs:/datasets/sou/*.txt" files and output the result as an Array of (word,count) tuples from the most frequent to the least frequent word.
This is the same as Exercise 2 in the local environment.
// code in this cell the solution to the above exercise in the notebook environment
//
//
This and the next sequence of notebooks are an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Spark Sql Programming Guide
- Overview
- SQL
- DataFrames
- Datasets
- Getting Started
- Starting Point: SQLContext
- Creating DataFrames
- DataFrame Operations
- Running SQL Queries Programmatically
- Creating Datasets
- Interoperating with RDDs
- Inferring the Schema Using Reflection
- Programmatically Specifying the Schema
- Data Sources
- Generic Load/Save Functions
- Manually Specifying Options
- Run SQL on files directly
- Save Modes
- Saving to Persistent Tables
- Parquet Files
- Loading Data Programmatically
- Partition Discovery
- Schema Merging
- Hive metastore Parquet table conversion
- Hive/Parquet Schema Reconciliation
- Metadata Refreshing
- Configuration
- JSON Datasets
- Hive Tables
- Interacting with Different Versions of Hive Metastore
- JDBC To Other Databases
- Troubleshooting
- Generic Load/Save Functions
- Performance Tuning
- Caching Data In Memory
- Other Configuration Options
- Distributed SQL Engine
- Running the Thrift JDBC/ODBC server
- Running the Spark SQL CLI
- SQL Reference
What could one do with these notebooks?
One could read the Spark SQL Programming Guide that is embedded below and also linked above while going through the cells and doing the YouTrys in the following notebooks.
Why might one do it?
This homework/self-study will help you solve the assigned lab and theory exercises in the sequel, much faster by introducing you to some basic knowledge you need about Spark SQL.
NOTE on intra-iframe html navigation within a notebook:
- When navigating in the html-page embedded as an iframe, as in the cell below, you can:
- click on a link in the displayed html page to see the content of the clicked link and
- then right-click on the page and click on the arrow keys
<-
and->
to go back or forward.
//This allows easy embedding of publicly available information into any other notebook
//Example usage:
// displayHTML(frameIt("https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation#Topics_in_LDA",250))
def frameIt( u:String, h:Int ) : String = {
"""<iframe
src=""""+ u+""""
width="95%" height="""" + h + """"
sandbox>
<p>
<a href="http://spark.apache.org/docs/latest/index.html">
Fallback link for browsers that, unlikely, don't support frames
</a>
</p>
</iframe>"""
}
displayHTML(frameIt("https://spark.apache.org/docs/latest/sql-programming-guide.html",750))
Let's go through the programming guide in databricks now
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Spark SQL, DataFrames and Datasets Guide
Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally, Spark SQL uses this extra information to perform extra optimizations. There are several ways to interact with Spark SQL including SQL and the Dataset API. When computing a result, the same execution engine is used, independent of which API/language you are using to express the computation. This unification means that developers can easily switch back and forth between different APIs based on which provides the most natural way to express a given transformation.
All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell
, pyspark
shell, or sparkR
shell.
SQL
One use of Spark SQL is to execute SQL queries. Spark SQL can also be used to read data from an existing Hive installation. For more on how to configure this feature, please refer to the Hive Tables section. When running SQL from within another programming language the results will be returned as a Dataset/DataFrame. You can also interact with the SQL interface using the command-line or over JDBC/ODBC.
Datasets and DataFrames
A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map
, flatMap
, filter
, etc.). The Dataset API is available in Scala and Java. Python does not have the support for the Dataset API. But due to Python’s dynamic nature, many of the benefits of the Dataset API are already available (i.e. you can access the field of a row by name naturally row.columnName
). The case for R is similar.
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of Row
s. In the Scala API, DataFrame
is simply a type alias of Dataset[Row]
. While, in Java API, users need to use Dataset<Row>
to represent a DataFrame
.
Throughout this document, we will often refer to Scala/Java Datasets of Row
s as DataFrames.
Background and Preparation
- If you are unfamiliar with SQL please brush-up from the basic links below.
- SQL allows one to systematically explore any structured data (i.e., tables) using queries. This is necessary part of the data science process.
One can use the SQL Reference at https://spark.apache.org/docs/latest/sql-ref.html to learn SQL quickly.
displayHTML(frameIt("https://en.wikipedia.org/wiki/SQL",500))
displayHTML(frameIt("https://en.wikipedia.org/wiki/Apache_Hive#HiveQL",175))
displayHTML(frameIt("https://spark.apache.org/docs/latest/sql-ref.html",700))
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Getting Started
Spark Sql Programming Guide
- Starting Point: SparkSession
- Creating DataFrames
- Untyped Dataset Operations (aka DataFrame Operations)
- Running SQL Queries Programmatically
- Global Temporary View
- Creating Datasets
- Interoperating with RDDs
- Inferring the Schema Using Reflection
- Programmatically Specifying the Schema
- Scalar Functions
- Aggregate Functions
Getting Started
Starting Point: SparkSession
The entry point into all functionality in Spark is the SparkSession
class and/or SQLContext
/HiveContext
. SparkSession
is created for you as spark
when you start spark-shell on command-line REPL or through a notebook server (databricks, zeppelin, jupyter, etc.). You will need to create SparkSession
usually when building an application for submission to a Spark cluster. To create a basic SparkSession
, just use SparkSession.builder()
:
import org.apache.spark.sql.SparkSession
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
Find full example code in the Spark repo at:
SparkSession
in Spark 2.0 provides builtin support for Hive features including the ability to write queries using HiveQL, access to Hive UDFs, and the ability to read data from Hive tables. To use these features, you do not need to have an existing Hive setup.
// You could get SparkContext and SQLContext from SparkSession
val sc = spark.sparkContext
val sqlContext = spark.sqlContext
But in Databricks notebook (similar to spark-shell
) SparkSession
is already created for you and is available as spark
(similarly, sc
and sqlContext
are also available).
// Evaluation of the cell by Ctrl+Enter will print spark session available in notebook
spark
After evaluation you should see something like this, i.e., a reference to the SparkSession
you just created:
res0: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@5a289bf5
Creating DataFrames
With a SparkSessions
, applications can create Dataset or DataFrame
from an existing RDD
, from a Hive table, or from various datasources.
Just to recap, a DataFrame is a distributed collection of data organized into named columns. You can think of it as an organized into table RDD of case class Row
(which is not exactly true). DataFrames, in comparison to RDDs, are backed by rich optimizations, including tracking their own schema, adaptive query execution, code generation including whole stage codegen, extensible Catalyst optimizer, and project Tungsten.
Dataset provides type-safety when working with SQL, since Row
is mapped to a case class, so that each column can be referenced by property of that class.
Note that performance for Dataset/DataFrames is the same across languages Scala, Java, Python, and R. This is due to the fact that the planning phase is just language-specific, only logical plan is constructed in Python, and all the physical execution is compiled and executed as JVM bytecode.
As an example, the following creates a DataFrame based on the content of a JSON file:
val df = spark.read.json("examples/src/main/resources/people.json")
// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
To be able to try this example in databricks we need to load the people.json
file into dbfs
. Let us do this programmatically next.
// the following lines merely fetch the file from the URL and load it into the dbfs for us to try in databricks
// getLines from the file at the URL
val peopleJsonLinesFromURL = scala.io.Source.fromURL("https://raw.githubusercontent.com/apache/spark/master/examples/src/main/resources/people.json").getLines
// remove any pre-existing file at the dbfs location
dbutils.fs.rm("dbfs:///datasets/spark-examples/people.json",recurse=true)
// convert the lines fetched from the URL to a Seq, then make it a RDD of String and finally save it as textfile to dbfs
sc.parallelize(peopleJsonLinesFromURL.toSeq).saveAsTextFile("dbfs:///datasets/spark-examples/people.json")
// read the text file we just saved and see what it has
sc.textFile("dbfs:///datasets/spark-examples/people.json").collect.mkString("\n")
val df = spark.read.json("dbfs:///datasets/spark-examples/people.json")
// you can also read into df like this
val df = spark.read.format("json").load("dbfs:///datasets/spark-examples/people.json")
df.show()
Untyped Dataset Operations (aka DataFrame Operations)
DataFrames provide a domain-specific language for structured data manipulation in Scala, Java, Python and R.
As mentioned above, in Spark 2.0, DataFrames are just Dataset of Row
s in Scala and Java API. These operations are also referred as “untyped transformations” in contrast to “typed transformations” come with strongly typed Scala/Java Datasets.
Here we include some basic examples of structured data processing using Datasets:
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df.printSchema()
// Select only the "name" column
df.select("name").show()
// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// Select people older than 21
df.filter($"age" > 21).show()
// Count people by age
df.groupBy("age").count().show()
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
For a complete list of the types of operations that can be performed on a Dataset, refer to the API Documentation.
In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
Running SQL Queries Programmatically
The sql
function on a SparkSession
enables applications to run SQL queries programmatically and returns the result as a DataFrame
.
// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
Global Temporary View
Temporary views in Spark SQL are session-scoped and will disappear if the session that creates it terminates. If you want to have a temporary view that is shared among all sessions and keep alive until the Spark application terminates, you can create a global temporary view. Global temporary view is tied to a system preserved database global_temp
, and we must use the qualified name to refer it, e.g. SELECT * FROM global_temp.view1
.
// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")
// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
Creating Datasets
Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized Encoder to serialize the objects for processing or transmitting over the network. While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object.
case class Person(name: String, age: Long)
// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)
// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "dbfs:///datasets/spark-examples/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
Dataset is not available directly in PySpark or SparkR.
Interoperating with RDDs
Spark SQL supports two different methods for converting existing RDDs into Datasets. The first method uses reflection to infer the schema of an RDD that contains specific types of objects. This reflection-based approach leads to more concise code and works well when you already know the schema while writing your Spark application.
The second method for creating Datasets is through a programmatic interface that allows you to construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows you to construct Datasets when the columns and their types are not known until runtime.
Inferring the Schema Using Reflection
The Scala interface for Spark SQL supports automatically converting an RDD containing case classes to a DataFrame. The case class defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Seq
s or Array
s. This RDD can be implicitly converted to a DataFrame and then be registered as a table. Tables can be used in subsequent SQL statements.
// the following lines merely fetch the file from the URL and load it into the dbfs for us to try in databricks
// getLines from the file at the URL
val peopleTxtLinesFromURL = scala.io.Source.fromURL("https://raw.githubusercontent.com/apache/spark/master/examples/src/main/resources/people.txt").getLines
// remove any pre-existing file at the dbfs location
dbutils.fs.rm("dbfs:///datasets/spark-examples/people.txt",recurse=true)
// convert the lines fetched from the URL to a Seq, then make it a RDD of String and finally save it as textfile to dbfs
sc.parallelize(peopleTxtLinesFromURL.toSeq).saveAsTextFile("dbfs:///datasets/spark-examples/people.txt")
// read the text file we just saved and see what it has
sc.textFile("dbfs:///datasets/spark-examples/people.txt").collect.mkString("\n")
sc.textFile("dbfs:///datasets/spark-examples/people.txt").collect.mkString("\n")
// For implicit conversions from RDDs to DataFrames
import spark.implicits._
// make a case class
case class Person(name: String, age: Long)
// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
.textFile("dbfs:///datasets/spark-examples/people.txt")
.map(_.split(","))
.map(attributes => Person(attributes(0), attributes(1).trim.toLong))
//.map(attributes => Person(attributes(0), attributes(1).trim.toLong))
.toDF()
peopleDF.show
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")
// SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")
teenagersDF.show()
// The columns of a row in the result can be accessed by field index
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
// or by field name
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
// No pre-defined encoders for Dataset[Map[K,V]], define explicitly
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
// Primitive types and case classes can be also defined as
// import more classes here...
//implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
Programmatically Specifying the Schema
When case classes cannot be defined ahead of time (for example, the structure of records is encoded in a string, or a text dataset will be parsed and fields will be projected differently for different users), a DataFrame
can be created programmatically with three steps.
- Create an RDD of
Row
s from the original RDD; - Create the schema represented by a
StructType
matching the structure ofRow
s in the RDD created in Step 1. - Apply the schema to the RDD of
Row
s viacreateDataFrame
method provided bySparkSession
.
For example:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// Create an RDD
val peopleRDD = spark.sparkContext.textFile("dbfs:///datasets/spark-examples/people.txt")
// The schema is encoded in a string
val schemaString = "name age"
// Generate the schema based on the string of schema
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldName, StringType, nullable = true))
val schema = StructType(fields)
// Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
.map(_.split(","))
.map(attributes => Row(attributes(0), attributes(1).trim))
// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
peopleDF.show
// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")
// SQL can be run over a temporary view created using DataFrames
val results = spark.sql("SELECT name FROM people")
results.show
// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => "Name: " + attributes(0)).show()
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala in the Spark repo.
Scalar Functions
Scalar functions are functions that return a single value per row, as opposed to aggregation functions, which return a value for a group of rows. Spark SQL supports a variety of Built-in Scalar Functions. It also supports User Defined Scalar Functions.
Aggregate Functions
Aggregate functions are functions that return a single value on a group of rows. The Built-in Aggregation Functions provide common aggregations such as count()
, countDistinct()
, avg()
, max()
, min()
, etc. Users are not limited to the predefined aggregate functions and can create their own. For more details about user defined aggregate functions, please refer to the documentation of User Defined Aggregate Functions.
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Getting Started - Exercise
After having gone through the simple example dataset in the programming guide, let's try a slightly larger dataset next.
Let us first create a table of social media usage from NYC
See the Load Data section to create this
social_media_usage
table from raw data.
First let's make sure this table is available for us. If you don't see social_media_usage
as a name
d table in the output of the next cell then we first need to ingest this dataset. Let's do it using the databricks' GUI for creating Data
as done next.
// Let's find out what tables are already available for loading
spark.catalog.listTables.show(50)
NYC Social Media Usage Data
This dataset is from https://datahub.io/JohnSnowLabs/nyc-social-media-usage#readme
The Demographic Reports are produced by the Economic, Demographic and Statistical Research unit within the Countywide Service Integration and Planning Management (CSIPM) Division of the Fairfax County Department of Neighborhood and Community Services. Information produced by the Economic, Demographic and Statistical Research unit is used by every county department, board, authority and the Fairfax County Public Schools. In addition to the small area estimates and forecasts, state and federal data on Fairfax County are collected and summarized, and special studies and Quantitative research are conducted by the unit.
We are going to fetch this data, with slightly simplified column names, from the following URL:
- http://lamastex.org/datasets/public/NYCUSA/social-media-usage.csv
To turn the dataset into a registered table we will load it using the GUI as follows:
- Download it to your local machine / laptop and then use the 'Data' button on the left to upload it (we will try this method now).
- This will put your data in the
Filestore
in databricks' distributed file system.
- This will put your data in the
Overview
Below we will show you how to create and query a table or DataFrame that you uploaded to DBFS. DBFS is a Databricks File System (their distributed file system) that allows you to store data for querying inside of Databricks. This notebook assumes that you have a file already inside of DBFS that you would like to read from.
In other setups, you can have the data in s3 (say in AWS) or in hdfs in your hadoop cluster, etc.
Alternatively, you can use curl
or wget
to download it to the local file system in /databricks/driver
and then load it into dbfs
, after this you can use read it via spark
session into a dataframe and register it as a hive table.
You can also get the data directly from here (but in this case you need to change the column names in the databricks Data upload GUI or programmatically to follow this notebook):
- http://datahub.io/JohnSnowLabs/nyc-social-media-usage
Load Data
How to uoload csv file and make a table in databricks
Okay, so how did we actually make table social_media_usage
? Databricks allows us to upload/link external data and make it available as registerd SQL table. It involves several steps:
- Dowload this
social-media-usage.csv
file from the following URL to your laptop:
-
http://lamastex.org/datasets/public/NYCUSA/social-media-usage.csv
-
Go to Databricks cloud (where you log in to use Databricks notebooks) and open tab Data on the left panel
-
On the very top of the left sub-menu you will see button +Add Data, click on it
-
Choose Upload File for Data Sources by Browse or Drag and Drop, where File means any file (Parquet, Avro, CSV), but it works the best with CSV format
-
Upload
social-media-usage.csv
file you just downloaded to databricks -
Just note the path to the uploaded file, for example in my case:
File uploaded to
/FileStore/tables/social_media_usage.csv
// File location and type
// You may need to change the file_location "social_media_usage-5dbee.csv" depending on your location given by
// File uploaded to /FileStore/tables/social_media_usage.csv
val file_location = "/FileStore/tables/social_media_usage.csv"
val file_type = "csv"
// CSV options
val infer_schema = "true"
val first_row_is_header = "true"
val delimiter = ","
// The applied options are for CSV files. For other file types, these will be ignored.
val socialMediaDF = spark.read.format(file_type)
.option("inferSchema", infer_schema)
.option("header", first_row_is_header)
.option("sep", delimiter)
.load(file_location)
socialMediaDF.show(10)
// Let's create a view or table
val temp_table_name = "social_media_usage"
socialMediaDF.createOrReplaceTempView(temp_table_name)
// Let's find out what tables are already available for loading
spark.catalog.listTables.show(100)
With this registered as a temporary view, social_media_usage
will only be available to this particular notebook.
If you'd like other users to be able to query this table (in the databricks professional shard - not the free community edition; or in a managed on-premise cluster), you can also create a table from the DataFrame.
Once saved, this table will persist across cluster restarts as well as allow various users across different notebooks to query this data. To do so, choose your table name and use saveAsTable
as done in the next cell.
val permanent_table_name = "social_media_usage"
socialMediaDF.write.format("parquet").saveAsTable(permanent_table_name)
// Let's find out what tables are already available for loading
// spark.catalog.listTables.show(100)
It looks like the table social_media_usage
is available as a permanent table (isTemporary
set as false
), if you have not uncommented the last line in the previous cell (otherwise it will be available from a parquet file as a permanent table - we will see more about parquet in the sequel).
Next let us do the following:
- load this table as a DataFrame (yes, the dataframe already exists as
socialMediaDF
, but we want to make a new DataFrame directly from the table) - print its schema and
- show the first 20 rows.
spark.catalog.listTables.show(100)
val df = spark.table("social_media_usage") // Ctrl+Enter
As you can see the immutable value df
is a DataFrame and more specifically it is:
org.apache.spark.sql.DataFrame = [agency: string, platform: string, url: string, date: timestamp, visits: integer]
.
Now let us print schema of the DataFrame df
and have a look at the actual data:
// Ctrl+Enter
df.printSchema() // prints schema of the DataFrame
df.show() // shows first n (default is 20) rows
Note that
(nullable = true)
simply means if the value is allowed to benull
.
Let us count the number of rows in df
.
df.count() // Ctrl+Enter to get 5898
So there are 5899 records or rows in the DataFrame df
. Pretty good! You can also select individual columns using so-called DataFrame API, as follows:
val platforms = df.select("platform") // Shift+Enter
platforms.count() // Shift+Enter to count the number of rows
platforms.show(5) // Ctrl+Enter to show top 5 rows
You can also apply .distinct()
to extract only unique entries as follows:
val uniquePlatforms = df.select("platform").distinct() // Shift+Enter
uniquePlatforms.count() // Ctrl+Enter to count the number of distinct platforms
Let's see all the rows of the DataFrame uniquePlatforms
.
Note that
display(uniquePlatforms)
unlikeuniquePlatforms.show()
displays all rows of the DataFrame + gives you ability to select different view, e.g. charts.
display(uniquePlatforms) // Ctrl+Enter to show all rows; use the scroll-bar on the right of the display to see all platforms
Spark SQL and DataFrame API
Spark SQL provides DataFrame API that can perform relational operations on both external data sources and internal collections, which is similar to widely used data frame concept in R, but evaluates operations support lazily (remember RDDs?), so that it can perform relational optimizations. This API is also available in Java, Python and R, but some functionality may not be available, although with every release of Spark people minimize this gap.
So we give some examples how to query data in Python and R, but continue with Scala. You can do all DataFrame operations in this notebook using Python or R.
# Ctrl+Enter to evaluate this python cell, recall '#' is the pre-comment character in python
# Using Python to query our "social_media_usage" table
pythonDF = spark.table("social_media_usage").select("platform").distinct()
pythonDF.show(3)
-- Ctrl+Enter to achieve the same result using standard SQL syntax!
select distinct platform from social_media_usage
Now it is time for some tips around how you use select
and what the difference is between $"a"
, col("a")
, df("a")
.
As you probably have noticed by now, you can specify individual columns to select by providing String values in select statement. But sometimes you need to: - distinguish between columns with the same name - use it to filter (actually you can still filter using full String expression) - do some "magic" with joins and user-defined functions (this will be shown later)
So Spark gives you ability to actually specify columns when you select. Now the difference between all those three notations is ... none, those things are just aliases for a Column
in Spark SQL, which means following expressions yield the same result:
// Using string expressions
df.select("agency", "visits")
// Using "$" alias for column
df.select($"agency", $"visits")
// Using "col" alias for column
df.select(col("agency"), col("visits"))
// Using DataFrame name for column
df.select(df("agency"), df("visits"))
This "same-difference" applies to filtering, i.e. you can either use full expression to filter, or column as shown in the following example:
// Using column to filter
df.select("visits").filter($"visits" > 100)
// Or you can use full expression as string
df.select("visits").filter("visits > 100")
Note that
$"visits" > 100
expression looks amazing, but under the hood it is just another column, and it equals todf("visits").>(100)
, where, thanks to Scala paradigm>
is just another function that you can define.
val sms = df.select($"agency", $"platform", $"visits").filter($"platform" === "SMS")
sms.show() // Ctrl+Enter
Again you could have written the query above using any column aliases or String names or even writing the query directly.
For example, we can do it using String names, as follows:
// Ctrl+Enter Note that we are using "platform = 'SMS'" since it will be evaluated as actual SQL
val sms = df.select(df("agency"), df("platform"), df("visits")).filter("platform = 'SMS'")
sms.show(5)
Refer to the DataFrame API for more detailed API. In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
Let's next explore some of the functionality that is available by transforming this DataFrame df
into a new DataFrame called fixedDF
.
- First, note that some columns are not exactly what we want them to be.
- visits should not contain null values, but
0
s instead.
- visits should not contain null values, but
- Let us fix it using some code that is briefly explained here (don't worry if you don't get it completely now, you will get the hang of it by playing more)
- The
coalesce
function is similar toif-else
statement, i.e., if first column in expression isnull
, then the value of the second column is used and so on. lit
just means column of constant value (lit
erally speaking!).- we also remove
TOTAL
value fromplatform
column.
- The
// Ctrl+Enter to make fixedDF
// import the needed sql functions
import org.apache.spark.sql.functions.{coalesce, lit}
// make the fixedDF DataFrame
val fixedDF = df.
select(
$"agency",
$"platform",
$"url",
$"date",
coalesce($"visits", lit(0)).as("visits"))
.filter($"platform" =!= "TOTAL")
fixedDF.printSchema() // print its schema
// and show the top 20 records fully
fixedDF.show(false) // the false argument does not truncate the rows, so you will not see something like this "anot..."
Okay, this is better, but url
s are still inconsistent.
Let's fix this by writing our own UDF (user-defined function) to deal with special cases.
Note that if you CAN USE Spark functions library, do it. But for the sake of the example, custom UDF is shown below.
We take value of a column as String type and return the same String type, but ignore values that do not start with http
.
// Ctrl+Enter to evaluate this UDF which takes a input String called "value"
// and converts it into lower-case if it begins with http and otherwise leaves it as null, so we sort of remove non valid web-urls
val cleanUrl = udf((value: String) => if (value != null && value.startsWith("http")) value.toLowerCase() else null)
Let us apply our UDF on fixedDF
to create a new DataFrame called cleanedDF
as follows:
// Ctrl+Enter
val cleanedDF = fixedDF.select($"agency", $"platform", cleanUrl($"url").as("url"), $"date", $"visits")
Now, let's check that it actually worked by seeing the first 5 rows of the cleanedDF
whose url
isNull
and isNotNull
, as follows:
// Shift+Enter
cleanedDF.filter($"url".isNull).show(5)
// Ctrl+Enter
cleanedDF.filter($"url".isNotNull).show(5, false) // false in .show(5, false) shows rows untruncated
Now there is a suggestion from you manager's manager's manager that due to some perceived privacy concerns we want to replace agency
with some unique identifier.
So we need to do the following:
- create unique list of agencies with ids and
- join them with main DataFrame.
Sounds easy, right? Let's do it.
// Crtl+Enter
// Import Spark SQL function that will give us unique id across all the records in this DataFrame
import org.apache.spark.sql.functions.monotonically_increasing_id
// We append column as SQL function that creates unique ids across all records in DataFrames
val agencies = cleanedDF.select(cleanedDF("agency"))
.distinct()
.withColumn("id", monotonically_increasing_id())
agencies.show(5)
Those who want to understand left/right inner/outer joins can see the video lectures in Module 3 of Anthony Joseph's Introduction to Big data edX course.
// Ctrl+Enter
// And join with the rest of the data, note how join condition is specified
val anonym = cleanedDF.join(agencies, cleanedDF("agency") === agencies("agency"), "inner").select("id", "platform", "url", "date", "visits")
// We also cache DataFrame since it can be quite expensive to recompute join
anonym.cache()
// Display result
anonym.show(5)
spark.catalog.listTables().show() // look at the available tables
-- to remove a TempTable if it exists already
drop table if exists anonym
// Register table for Spark SQL, we also import "month" function
import org.apache.spark.sql.functions.month
anonym.createOrReplaceTempView("anonym")
-- Interesting. Now let's do some aggregation. Display platform, month, visits
-- Date column allows us to extract month directly
select platform, month(date) as month, sum(visits) as visits from anonym group by platform, month(date)
Note, that we could have done aggregation using DataFrame API instead of Spark SQL.
Alright, now let's see some cool operations with window functions.
Our next task is to compute (daily visits / monthly average)
for all platforms.
import org.apache.spark.sql.functions.{dayofmonth, month, row_number, sum}
import org.apache.spark.sql.expressions.Window
val coolDF = anonym.select($"id", $"platform", dayofmonth($"date").as("day"), month($"date").as("month"), $"visits").
groupBy($"id", $"platform", $"day", $"month").agg(sum("visits").as("visits"))
// Run window aggregation on visits per month and platform
val window = coolDF.select($"id", $"day", $"visits", sum($"visits").over(Window.partitionBy("platform", "month")).as("monthly_visits"))
// Create and register percent table
val percent = window.select($"id", $"day", ($"visits" / $"monthly_visits").as("percent"))
percent.createOrReplaceTempView("percent")
-- A little bit of visualization as result of our efforts
select id, day, `percent` from percent where `percent` > 0.3 and day = 2
-- You also could just use plain SQL to write query above, note that you might need to group by id and day as well.
with aggr as (
select id, dayofmonth(date) as day, visits / sum(visits) over (partition by (platform, month(date))) as percent
from anonym
)
select * from aggr where day = 2 and percent > 0.3
Interoperating with RDDs
Spark SQL supports two different methods for converting existing RDDs into DataFrames. The first method uses reflection to infer the schema of an RDD that contains specific types of objects. This reflection based approach leads to more concise code and works well when you already know the schema.
The second method for creating DataFrames is through a programmatic interface that allows you to construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows you to construct DataFrames when the columns and their types are not known until runtime.
Inferring the Schema Using Reflection
The Scala interface for Spark SQL supports automatically converting an RDD containing case classes to a DataFrame. The case class defines the schema of the table. The names of the arguments to the case class are read using reflection and become the names of the columns. Case classes can also be nested or contain complex types such as Sequences or Arrays. This RDD can be implicitly converted to a DataFrame and then be registered as a table.
// Define case class that will be our schema for DataFrame
case class Hubot(name: String, year: Int, manufacturer: String, version: Array[Int], details: Map[String, String])
// You can process a text file, for example, to convert every row to our Hubot, but we will create RDD manually
val rdd = sc.parallelize(
Array(
Hubot("Jerry", 2015, "LCorp", Array(1, 2, 3), Map("eat" -> "yes", "sleep" -> "yes", "drink" -> "yes")),
Hubot("Mozart", 2010, "LCorp", Array(1, 2), Map("eat" -> "no", "sleep" -> "no", "drink" -> "no")),
Hubot("Einstein", 2012, "LCorp", Array(1, 2, 3), Map("eat" -> "yes", "sleep" -> "yes", "drink" -> "no"))
)
)
// In order to convert RDD into DataFrame you need to do this:
val hubots = rdd.toDF()
// Display DataFrame, note how array and map fields are displayed
hubots.printSchema()
hubots.show()
// You can query complex type the same as you query any other column
// By the way you can use `sql` function to invoke Spark SQL to create DataFrame
hubots.createOrReplaceTempView("hubots")
val onesThatEat = sqlContext.sql("select name, details.eat from hubots where details.eat = 'yes'")
onesThatEat.show()
Programmatically Specifying the Schema
When case classes cannot be defined ahead of time (for example, the structure of records is encoded in a string, or a text dataset will be parsed and fields will be projected differently for different users), a DataFrame
can be created programmatically with three steps.
- Create an RDD of
Row
s from the original RDD - Create the schema represented by a StructType and StructField classes matching the structure of
Row
s in the RDD created in Step 1. - Apply the schema to the RDD of
Row
s viacreateDataFrame
method provided bySQLContext
.
import org.apache.spark.sql.types._
// Let's say we have an RDD of String and we need to convert it into a DataFrame with schema "name", "year", and "manufacturer"
// As you can see every record is space-separated.
val rdd = sc.parallelize(
Array(
"Jerry 2015 LCorp",
"Mozart 2010 LCorp",
"Einstein 2012 LCorp"
)
)
// Create schema as StructType //
val schema = StructType(
StructField("name", StringType, false) ::
StructField("year", IntegerType, false) ::
StructField("manufacturer", StringType, false) ::
Nil
)
// Prepare RDD[Row]
val rows = rdd.map { entry =>
val arr = entry.split("\\s+")
val name = arr(0)
val year = arr(1).toInt
val manufacturer = arr(2)
Row(name, year, manufacturer)
}
// Create DataFrame
val bots = sqlContext.createDataFrame(rows, schema)
bots.printSchema()
bots.show()
Creating Datasets
A Dataset is a strongly-typed, immutable collection of objects that are mapped to a relational schema. At the core of the Dataset API is a new concept called an encoder, which is responsible for converting between JVM objects and tabular representation. The tabular representation is stored using Spark’s internal Tungsten binary format, allowing for operations on serialized data and improved memory utilization. Spark 2.2 comes with support for automatically generating encoders for a wide variety of types, including primitive types (e.g. String, Integer, Long), and Scala case classes.
Simply put, you will get all the benefits of DataFrames with fair amount of flexibility of RDD API.
// We can start working with Datasets by using our "hubots" table
// To create Dataset from DataFrame do this (assuming that case class Hubot exists):
val ds = hubots.as[Hubot]
ds.show()
Side-note: Dataset API is first-class citizen in Spark, and DataFrame is an alias for Dataset[Row]. Note that Python and R use DataFrames (since they are dynamically typed), but it is essentially a Dataset.
Finally
DataFrames and Datasets can simplify and improve most of the applications pipelines by bringing concise syntax and performance optimizations. We would highly recommend you to check out the official API documentation, specifically around
Unfortunately, this is just a getting started quickly course, and we skip features like custom aggregations, types, pivoting, etc., but if you are keen to know then start from the links above and this notebook and others in this directory.
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Data Sources
Spark Sql Programming Guide
- Data Sources
- Generic Load/Save Functions
- Manually Specifying Options
- Run SQL on files directly
- Save Modes
- Saving to Persistent Tables
- Parquet Files
- Loading Data Programmatically
- Partition Discovery
- Schema Merging
- Hive metastore Parquet table conversion
- Hive/Parquet Schema Reconciliation
- Metadata Refreshing
- Configuration
- JSON Datasets
- Hive Tables
- Interacting with Different Versions of Hive Metastore
- JDBC To Other Databases
- Troubleshooting
- Generic Load/Save Functions
Data Sources
Spark SQL supports operating on a variety of data sources through the DataFrame
or DataFrame
interfaces. A Dataset can be operated on as normal RDDs and can also be registered as a temporary table. Registering a Dataset as a table allows you to run SQL queries over its data. But from time to time you would need to either load or save Dataset. Spark SQL provides built-in data sources as well as Data Source API to define your own data source and use it read / write data into Spark.
Overview
Spark provides some built-in datasources that you can use straight out of the box, such as Parquet, JSON, JDBC, ORC (available with enabled Hive Support, but this is changing, and ORC will not require Hive support and will work with default Spark session starting from next release), and Text (since Spark 1.6) and CSV (since Spark 2.0, before that it is accessible as a package).
Third-party datasource packages
Community also have built quite a few datasource packages to provide easy access to the data from other formats. You can find list of those packages on http://spark-packages.org/, e.g. Avro, CSV, Amazon Redshit (for Spark < 2.0), XML, NetFlow and many others.
Generic Load/Save functions
In order to load or save DataFrame you have to call either read
or write
. This will return DataFrameReader or DataFrameWriter depending on what you are trying to achieve. Essentially these classes are entry points to the reading / writing actions. They allow you to specify writing mode or provide additional options to read data source.
// This will return DataFrameReader to read data source
println(spark.read)
val df = spark.range(0, 10)
// This will return DataFrameWriter to save DataFrame
println(df.write)
// Saving Parquet table in Scala
// DataFrames and tables can be saved as Parquet files, maintaining the schema information
val df_save = spark.table("social_media_usage").select("platform", "visits") // assuming you made the social_media_usage table permanent in previous notebook
df_save.write.mode("overwrite").parquet("/tmp/platforms.parquet")
// Read in the parquet file created above
// Parquet files are self-describing so the schema is preserved
// The result of loading a Parquet file is also a DataFrame
val df = spark.read.parquet("/tmp/platforms.parquet")
df.show(5)
// in databricks '/tmp/...' is the same as 'dbfs:///tmp/...'
display(dbutils.fs.ls("/tmp/"))
display(dbutils.fs.ls("/tmp/platforms.parquet/")) // note this is a directory with many files in it... files beginning with part have content in possibly many partitions
# Loading Parquet table in Python
dfPy = spark.read.parquet("/tmp/platforms.parquet")
dfPy.show(5)
// Saving JSON dataset in Scala
val df_save = spark.table("social_media_usage").select("platform", "visits")
df_save.write.mode("overwrite").json("/tmp/platforms.json")
// Loading JSON dataset in Scala
val df = spark.read.json("/tmp/platforms.json")
df.show(5)
# Loading JSON dataset in Python
dfPy = spark.read.json("/tmp/platforms.json")
dfPy.show(5)
Manually Specifying Options
You can also manually specify the data source that will be used along with any extra options that you would like to pass to the data source. Data sources are specified by their fully qualified name (i.e., org.apache.spark.sql.parquet
), but for built-in sources you can also use their short names (json
, parquet
, jdbc
). DataFrames of any type can be converted into other types using this syntax.
val json = sqlContext.read.format("json").load("/tmp/platforms.json")
json.select("platform").show(10)
val parquet = sqlContext.read.format("parquet").load("/tmp/platforms.parquet")
parquet.select("platform").show(10)
Run SQL on files directly
Instead of using read API to load a file into DataFrame and query it, you can also query that file directly with SQL.
val df = sqlContext.sql("SELECT * FROM parquet.`/tmp/platforms.parquet`")
df.printSchema()
Save Modes
Save operations can optionally take a SaveMode
, that specifies how to handle existing data if present. It is important to realize that these save modes do not utilize any locking and are not atomic. Additionally, when performing a Overwrite
, the data will be deleted before writing out the new data.
Scala/Java | Any language | Meaning |
---|---|---|
SaveMode.ErrorIfExists (default) | "error" (default) | When saving a DataFrame to a data source, if data already exists, an exception is expected to be thrown. |
SaveMode.Append | "append" | When saving a DataFrame to a data source, if data/table already exists, contents of the DataFrame are expected to be appended to existing data. |
SaveMode.Overwrite | "overwrite" | Overwrite mode means that when saving a DataFrame to a data source, if data/table already exists, existing data is expected to be overwritten by the contents of the DataFrame. |
SaveMode.Ignore | "ignore" | Ignore mode means that when saving a DataFrame to a data source, if data already exists, the save operation is expected to not save the contents of the DataFrame and to not change the existing data. This is similar to a CREATE TABLE IF NOT EXISTS in SQL. |
Saving to Persistent Tables
DataFrame
and Dataset
can also be saved as persistent tables using the saveAsTable
command. Unlike the createOrReplaceTempView
command, saveAsTable
will materialize the contents of the dataframe and create a pointer to the data in the metastore. Persistent tables will still exist even after your Spark program has restarted, as long as you maintain your connection to the same metastore. A DataFrame for a persistent table can be created by calling the table
method on a SparkSession
with the name of the table.
By default saveAsTable
will create a “managed table”, meaning that the location of the data will be controlled by the metastore. Managed tables will also have their data deleted automatically when a table is dropped.
// First of all list tables to see that table we are about to create does not exist
spark.catalog.listTables.show()
drop table if exists simple_range
val df = spark.range(0, 100)
df.write.saveAsTable("simple_range")
// Verify that table is saved and it is marked as persistent ("isTemporary" value should be "false")
spark.catalog.listTables.show()
Parquet Files
Parquet is a columnar format that is supported by many other data processing systems. Spark SQL provides support for both reading and writing Parquet files that automatically preserves the schema of the original data. When writing Parquet files, all columns are automatically converted to be nullable for compatibility reasons.
More on Parquet
Apache Parquet is a columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language. It is a more efficient way to store data frames.
- To understand the ideas read Dremel: Interactive Analysis of Web-Scale Datasets, Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton and Theo Vassilakis,Proc. of the 36th Int'l Conf on Very Large Data Bases (2010), pp. 330-339, whose Abstract is as follows:
- Dremel is a scalable, interactive ad-hoc query system for analysis of read-only nested data. By combining multi-level execution trees and columnar data layouts it is capable of running aggregation queries over trillion-row tables in seconds. The system scales to thousands of CPUs and petabytes of data, and has thousands of users at Google. In this paper, we describe the architecture and implementation of Dremel, and explain how it complements MapReduce-based computing. We present a novel columnar storage representation for nested records and discuss experiments on few-thousand node instances of the system.
//This allows easy embedding of publicly available information into any other notebook
//when viewing in git-book just ignore this block - you may have to manually chase the URL in frameIt("URL").
//Example usage:
// displayHTML(frameIt("https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation#Topics_in_LDA",250))
def frameIt( u:String, h:Int ) : String = {
"""<iframe
src=""""+ u+""""
width="95%" height="""" + h + """"
sandbox>
<p>
<a href="http://spark.apache.org/docs/latest/index.html">
Fallback link for browsers that, unlikely, don't support frames
</a>
</p>
</iframe>"""
}
displayHTML(frameIt("https://parquet.apache.org/documentation/latest/",500))
// Read in the parquet file created above. Parquet files are self-describing so the schema is preserved.
// The result of loading a Parquet file is also a DataFrame.
val parquetFile = sqlContext.read.parquet("/tmp/platforms.parquet")
// Parquet files can also be registered as tables and then used in SQL statements.
parquetFile.createOrReplaceTempView("parquetFile")
val platforms = sqlContext.sql("SELECT platform FROM parquetFile WHERE visits > 0")
platforms.distinct.map(t => "Name: " + t(0)).collect().foreach(println)
Bucketing, Sorting and Partitioning
For file-based data source, it is also possible to bucket and sort or partition the output. Bucketing and sorting are applicable only to persistent tables:
val social_media_usage_DF = spark.table("social_media_usage")
Find full example code at - https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala in the Spark repo.
Note that partitioning can be used with both save and saveAsTable when using the Dataset APIs.
partitionBy
creates a directory structure as described in the Partition Discovery section. Thus, it has limited applicability to columns with high cardinality. In contrast bucketBy
distributes data across a fixed number of buckets and can be used when the number of unique values is unbounded. One can use partitionBy
by itself or along with `bucketBy.
social_media_usage_DF.write.mode("overwrite").parquet("/tmp/social_media_usage.parquet") // write to parquet
display(dbutils.fs.ls("/tmp/social_media_usage.parquet")) // there is one part-00000 file inside the parquet folder
val social_media_usage_readFromParquet_DF = spark.read.parquet("/tmp/social_media_usage.parquet")
social_media_usage_readFromParquet_DF.count
social_media_usage_readFromParquet_DF.rdd.getNumPartitions
social_media_usage_readFromParquet_DF.printSchema
social_media_usage_readFromParquet_DF.select("platform").distinct.count
social_media_usage_readFromParquet_DF
.write
.partitionBy("platform")
.mode("overwrite").parquet("/tmp/social_media_usage_partitionedByPlatform.parquet")
display(dbutils.fs.ls("/tmp/social_media_usage_partitionedByPlatform.parquet")) // there are many platform=* folders inside the parquet folder
display(dbutils.fs.ls("/tmp/social_media_usage_partitionedByPlatform.parquet/platform=Android")) // threre are part-00000- files with contents inside each platform=* folder in the parquet folder
spark.read.parquet("/tmp/social_media_usage_partitionedByPlatform.parquet").rdd.getNumPartitions
We can also use a fixed number of buckets and sort by a column within each partition. Such finer control of the dataframe written as a parquet file can help with optimizing downstream operations on the dataframe.
social_media_usage_readFromParquet_DF
.write
.partitionBy("platform")
.bucketBy(10, "date")
.sortBy("date")
.mode("overwrite")
.saveAsTable("social_media_usage_table_partitionedByPlatformBucketedByDate")
spark.catalog.listTables.show()
val df = spark.table("social_media_usage_table_partitionedByPlatformBucketedByDate")
df.rdd.getNumPartitions
Partition Discovery
Table partitioning is a common optimization approach used in systems like Hive. In a partitioned table, data are usually stored in different directories, with partitioning column values encoded in the path of each partition directory. The Parquet data source is now able to discover and infer partitioning information automatically. For example, we can store all our previously used population data (from the programming guide example!) into a partitioned table using the following directory structure, with two extra columns, gender
and country
as partitioning columns:
path
└── to
└── table
├── gender=male
│ ├── ...
│ │
│ ├── country=US
│ │ └── data.parquet
│ ├── country=CN
│ │ └── data.parquet
│ └── ...
└── gender=female
├── ...
│
├── country=US
│ └── data.parquet
├── country=CN
│ └── data.parquet
└── ...
By passing path/to/table
to either SparkSession.read.parquet
or SparkSession.read.load
, Spark SQL will automatically extract the partitioning information from the paths. Now the schema of the returned DataFrame becomes:
root
|-- name: string (nullable = true)
|-- age: long (nullable = true)
|-- gender: string (nullable = true)
|-- country: string (nullable = true)
Notice that the data types of the partitioning columns are automatically inferred. Currently, numeric data types and string type are supported. Sometimes users may not want to automatically infer the data types of the partitioning columns. For these use cases, the automatic type inference can be configured by spark.sql.sources.partitionColumnTypeInference.enabled
, which is default to true
. When type inference is disabled, string type will be used for the partitioning columns.
Starting from Spark 1.6.0, partition discovery only finds partitions under the given paths by default. For the above example, if users pass path/to/table/gender=male
to either SparkSession.read.parquet
or SparkSession.read.load
, gender
will not be considered as a partitioning column. If users need to specify the base path that partition discovery should start with, they can set basePath
in the data source options. For example, when path/to/table/gender=male
is the path of the data and users set basePath
to path/to/table/
, gender
will be a partitioning column.
Schema Merging
Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.
Since schema merging is a relatively expensive operation, and is not a necessity in most cases, we turned it off by default starting from 1.5.0. You may enable it by:
- setting data source option
mergeSchema
totrue
when reading Parquet files (as shown in the examples below), or - setting the global SQL option
spark.sql.parquet.mergeSchema
totrue
.
// Create a simple DataFrame, stored into a partition directory
val df1 = sc.parallelize(1 to 5).map(i => (i, i * 2)).toDF("single", "double")
df1.write.mode("overwrite").parquet("/tmp/data/test_table/key=1")
// Create another DataFrame in a new partition directory, adding a new column and dropping an existing column
val df2 = sc.parallelize(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")
df2.write.mode("overwrite").parquet("/tmp/data/test_table/key=2")
// Read the partitioned table
val df3 = spark.read.option("mergeSchema", "true").parquet("/tmp/data/test_table")
df3.printSchema()
// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths.
// root
// |-- single: integer (nullable = true)
// |-- double: integer (nullable = true)
// |-- triple: integer (nullable = true)
// |-- key: integer (nullable = true))
df3.show
Hive metastore Parquet table conversion
When reading from and writing to Hive metastore Parquet tables, Spark SQL will try to use its own Parquet support instead of Hive SerDe for better performance. This behavior is controlled by the spark.sql.hive.convertMetastoreParquet
configuration, and is turned on by default.
Hive/Parquet Schema Reconciliation
There are two key differences between Hive and Parquet from the perspective of table schema processing.
- Hive is case insensitive, while Parquet is not
- Hive considers all columns nullable, while nullability in Parquet is significant
Due to this reason, we must reconcile Hive metastore schema with Parquet schema when converting a Hive metastore Parquet table to a Spark SQL Parquet table. The reconciliation rules are:
- Fields that have the same name in both schema must have the same data type regardless of nullability. The reconciled field should have the data type of the Parquet side, so that nullability is respected.
- The reconciled schema contains exactly those fields defined in Hive metastore schema.
- Any fields that only appear in the Parquet schema are dropped in the reconciled schema.
- Any fileds that only appear in the Hive metastore schema are added as nullable field in the reconciled schema.
Metadata Refreshing
Spark SQL caches Parquet metadata for better performance. When Hive metastore Parquet table conversion is enabled, metadata of those converted tables are also cached. If these tables are updated by Hive or other external tools, you need to refresh them manually to ensure consistent metadata.
// should refresh table metadata
spark.catalog.refreshTable("simple_range")
-- Or you can use SQL to refresh table
REFRESH TABLE simple_range;
Configuration
Configuration of Parquet can be done using the setConf
method on SQLContext
or by running SET key=value
commands using SQL.
Property Name | Default | Meaning | |
---|---|---|---|
spark.sql.parquet.binaryAsString | false | Some other Parquet-producing systems, in particular Impala, Hive, and older versions of Spark SQL, do not differentiate between binary data and strings when writing out the Parquet schema. This flag tells Spark SQL to interpret binary data as a string to provide compatibility with these systems. | |
spark.sql.parquet.int96AsTimestamp | true | Some Parquet-producing systems, in particular Impala and Hive, store Timestamp into INT96. This flag tells Spark SQL to interpret INT96 data as a timestamp to provide compatibility with these systems. | |
spark.sql.parquet.cacheMetadata | true | Turns on caching of Parquet schema metadata. Can speed up querying of static data. | |
spark.sql.parquet.compression.codec | gzip | Sets the compression codec use when writing Parquet files. Acceptable values include: uncompressed, snappy, gzip, lzo. | |
spark.sql.parquet.filterPushdown | true | Enables Parquet filter push-down optimization when set to true. | |
spark.sql.hive.convertMetastoreParquet | true | When set to false, Spark SQL will use the Hive SerDe for parquet tables instead of the built in support. | |
spark.sql.parquet.output.committer.class | org.apache.parquet.hadoop.ParquetOutputCommitter | The output committer class used by Parquet. The specified class needs to be a subclass of org.apache.hadoop.mapreduce.OutputCommitter . Typically, it's also a subclass of org.apache.parquet.hadoop.ParquetOutputCommitter . Spark SQL comes with a builtin org.apache.spark.sql.parquet.DirectParquetOutputCommitter , which can be more efficient then the default Parquet output committer when writing data to S3. | |
spark.sql.parquet.mergeSchema | false | When true, the Parquet data source merges schemas collected from all data files, otherwise the schema is picked from the summary file or a random data file if no summary file is available. |
JSON Datasets
Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. This conversion can be done using SparkSession.read.json()
on either an RDD of String, or a JSON file.
Note that the file that is offered as a json file is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will most often fail.
// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files.
val path = "/tmp/platforms.json"
val platforms = spark.read.json(path)
// The inferred schema can be visualized using the printSchema() method.
platforms.printSchema()
// root
// |-- platform: string (nullable = true)
// |-- visits: long (nullable = true)
// Register this DataFrame as a table.
platforms.createOrReplaceTempView("platforms")
// SQL statements can be run by using the sql methods provided by sqlContext.
val facebook = spark.sql("SELECT platform, visits FROM platforms WHERE platform like 'Face%k'")
facebook.show()
// Alternatively, a DataFrame can be created for a JSON dataset represented by
// an RDD[String] storing one JSON object per string.
val rdd = sc.parallelize("""{"name":"IWyn","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val anotherPlatforms = spark.read.json(rdd)
anotherPlatforms.show()
Hive Tables
Spark SQL also supports reading and writing data stored in Apache Hive. However, since Hive has a large number of dependencies, it is not included in the default Spark assembly. Hive support is enabled by adding the -Phive
and -Phive-thriftserver
flags to Spark’s build. This command builds a new assembly jar that includes Hive. Note that this Hive assembly jar must also be present on all of the worker nodes, as they will need access to the Hive serialization and deserialization libraries (SerDes) in order to access data stored in Hive.
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
(for security configuration), hdfs-site.xml
(for HDFS configuration) file in conf/
. Please note when running the query on a YARN cluster (cluster
mode), the datanucleus
jars under the lib_managed/jars
directory and hive-site.xml
under conf/
directory need to be available on the driver and all executors launched by the YARN cluster. The convenient way to do this is adding them through the --jars
option and --file
option of the spark-submit
command.
When working with Hive one must construct a HiveContext
, which inherits from SQLContext
, and adds support for finding tables in the MetaStore and writing queries using HiveQL. Users who do not have an existing Hive deployment can still create a HiveContext
. When not configured by the hive-site.xml, the context automatically creates metastore_db
in the current directory and creates warehouse
directory indicated by HiveConf, which defaults to /user/hive/warehouse
. Note that you may need to grant write privilege on /user/hive/warehouse
to the user who starts the spark application.
val spark = SparkSession.builder.enableHiveSupport().getOrCreate()
spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")
// Queries are expressed in HiveQL
spark.sql("FROM src SELECT key, value").collect().foreach(println)
Interacting with Different Versions of Hive Metastore
One of the most important pieces of Spark SQL’s Hive support is interaction with Hive metastore, which enables Spark SQL to access metadata of Hive tables. Starting from Spark 1.4.0, a single binary build of Spark SQL can be used to query different versions of Hive metastores, using the configuration described below. Note that independent of the version of Hive that is being used to talk to the metastore, internally Spark SQL will compile against Hive 1.2.1 and use those classes for internal execution (serdes, UDFs, UDAFs, etc).
The following options can be used to configure the version of Hive that is used to retrieve metadata:
Property Name | Default | Meaning |
---|---|---|
spark.sql.hive.metastore.version | 1.2.1 | Version of the Hive metastore. Available options are 0.12.0 through 1.2.1 . |
spark.sql.hive.metastore.jars | builtin | Location of the jars that should be used to instantiate the HiveMetastoreClient. This property can be one of three options: builtin , maven , a classpath in the standard format for the JVM. This classpath must include all of Hive and its dependencies, including the correct version of Hadoop. These jars only need to be present on the driver, but if you are running in yarn cluster mode then you must ensure they are packaged with you application. |
spark.sql.hive.metastore.sharedPrefixes | com.mysql.jdbc,org.postgresql,com.microsoft.sqlserver,oracle.jdbc | A comma separated list of class prefixes that should be loaded using the classloader that is shared between Spark SQL and a specific version of Hive. An example of classes that should be shared is JDBC drivers that are needed to talk to the metastore. Other classes that need to be shared are those that interact with classes that are already shared. For example, custom appenders that are used by log4j. |
spark.sql.hive.metastore.barrierPrefixes | (empty) | A comma separated list of class prefixes that should explicitly be reloaded for each version of Hive that Spark SQL is communicating with. For example, Hive UDFs that are declared in a prefix that typically would be shared (i.e. org.apache.spark.* ). |
JDBC To Other Databases
Spark SQL also includes a data source that can read data from other databases using JDBC. This functionality should be preferred over using JdbcRDD. This is because the results are returned as a DataFrame and they can easily be processed in Spark SQL or joined with other data sources. The JDBC data source is also easier to use from Java or Python as it does not require the user to provide a ClassTag. (Note that this is different than the Spark SQL JDBC server, which allows other applications to run queries using Spark SQL).
To get started you will need to include the JDBC driver for you particular database on the spark classpath. For example, to connect to postgres from the Spark Shell you would run the following command:
SPARK_CLASSPATH=postgresql-9.3-1102-jdbc41.jar bin/spark-shell
Tables from the remote database can be loaded as a DataFrame or Spark SQL Temporary table using the Data Sources API. The following options are supported:
Property Name | Meaning | |
---|---|---|
url | The JDBC URL to connect to. | |
dbtable | The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses. | |
driver | The class name of the JDBC driver needed to connect to this URL. This class will be loaded on the master and workers before running an JDBC commands to allow the driver to register itself with the JDBC subsystem. | |
partitionColumn, lowerBound, upperBound, numPartitions | These options must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from multiple workers. partitionColumn must be a numeric column from the table in question. Notice that lowerBound and upperBound are just used to decide the partition stride, not for filtering the rows in table. So all rows in the table will be partitioned and returned. | |
fetchSize | The JDBC fetch size, which determines how many rows to fetch per round trip. This can help performance on JDBC drivers which default to low fetch size (eg. Oracle with 10 rows). |
// Example of using JDBC datasource
val jdbcDF = spark.read.format("jdbc").options(Map("url" -> "jdbc:postgresql:dbserver", "dbtable" -> "schema.tablename")).load()
-- Or using JDBC datasource in SQL
CREATE TEMPORARY TABLE jdbcTable
USING org.apache.spark.sql.jdbc
OPTIONS (
url "jdbc:postgresql:dbserver",
dbtable "schema.tablename"
)
Troubleshooting
- The JDBC driver class must be visible to the primordial class loader on the client session and on all executors. This is because Java’s DriverManager class does a security check that results in it ignoring all drivers not visible to the primordial class loader when one goes to open a connection. One convenient way to do this is to modify compute_classpath.sh on all worker nodes to include your driver JARs.
- Some databases, such as H2, convert all names to upper case. You’ll need to use upper case to refer to those names in Spark SQL.
Performance Tuning
Spark Sql Programming Guide
If you have read the spark-SQL paper and have some idea of how distributed sorting and joining work then you will need to know the following part of the programming guide to tune the performance of Spark SQL queries:
This is an elaboration of the http://spark.apache.org/docs/latest/sql-programming-guide.html by Ivan Sadikov and Raazesh Sainudiin.
Distributed SQL Engine
Spark Sql Programming Guide
- Distributed SQL Engine
- Running the Thrift JDBC/ODBC server
- Running the Spark SQL CLI
Distributed SQL Engine
Spark SQL can also act as a distributed query engine using its JDBC/ODBC or command-line interface. In this mode, end-users or applications can interact with Spark SQL directly to run SQL queries, without the need to write any code.
Running the Thrift JDBC/ODBC server
The Thrift JDBC/ODBC server implemented here corresponds to the HiveServer2
in Hive 1.2.1 You can test the JDBC server with the beeline script that comes with either Spark or Hive 1.2.1.
To start the JDBC/ODBC server, run the following in the Spark directory:
./sbin/start-thriftserver.sh
This script accepts all bin/spark-submit
command line options, plus a --hiveconf
option to specify Hive properties. You may run ./sbin/start-thriftserver.sh --help
for a complete list of all available options. By default, the server listens on localhost:10000. You may override this behaviour via either environment variables, i.e.:
export HIVE_SERVER2_THRIFT_PORT=<listening-port>
export HIVE_SERVER2_THRIFT_BIND_HOST=<listening-host>
./sbin/start-thriftserver.sh \
--master <master-uri> \
...
or system properties:
./sbin/start-thriftserver.sh \
--hiveconf hive.server2.thrift.port=<listening-port> \
--hiveconf hive.server2.thrift.bind.host=<listening-host> \
--master <master-uri>
...
Now you can use beeline to test the Thrift JDBC/ODBC server:
./bin/beeline
Connect to the JDBC/ODBC server in beeline with:
beeline> !connect jdbc:hive2://localhost:10000
Beeline will ask you for a username and password. In non-secure mode, simply enter the username on your machine and a blank password. For secure mode, please follow the instructions given in the beeline documentation.
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
and hdfs-site.xml
files in conf/
.
You may also use the beeline script that comes with Hive.
Thrift JDBC server also supports sending thrift RPC messages over HTTP transport. Use the following setting to enable HTTP mode as system property or in hive-site.xml
file in conf/
:
hive.server2.transport.mode - Set this to value: http
hive.server2.thrift.http.port - HTTP port number fo listen on; default is 10001
hive.server2.http.endpoint - HTTP endpoint; default is cliservice
To test, use beeline to connect to the JDBC/ODBC server in http mode with:
beeline> !connect jdbc:hive2://<host>:<port>/<database>?hive.server2.transport.mode=http;hive.server2.thrift.http.path=<http_endpoint>
Running the Spark SQL CLI
The Spark SQL CLI is a convenient tool to run the Hive metastore service in local mode and execute queries input from the command line. Note that the Spark SQL CLI cannot talk to the Thrift JDBC server.
To start the Spark SQL CLI, run the following in the Spark directory:
./bin/spark-sql
Configuration of Hive is done by placing your hive-site.xml
, core-site.xml
and hdfs-site.xml
files in conf/
. You may run ./bin/spark-sql --help
for a complete list of all available options.
SQL Pivoting since Spark 2.4
SQL Pivot: Converting Rows to Columns
This is from the following blogpost: - https://databricks.com/blog/2018/11/01/sql-pivot-converting-rows-to-columns.html
This is a useful trick to know when having to do ETL before exploring datasets that need row to column conversions.
Load Data
Create tables and load temperature data
CREATE OR REPLACE TEMPORARY VIEW high_temps
USING csv
OPTIONS (path "/databricks-datasets/weather/high_temps", header "true", mode "FAILFAST")
CREATE OR REPLACE TEMPORARY VIEW low_temps
USING csv
OPTIONS (path "/databricks-datasets/weather/low_temps", header "true", mode "FAILFAST")
Pivoting in SQL
Getting the monthly average high temperatures with month as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp
FROM high_temps
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR month in (
1 JAN, 2 FEB, 3 MAR, 4 APR, 5 MAY, 6 JUN,
7 JUL, 8 AUG, 9 SEP, 10 OCT, 11 NOV, 12 DEC
)
)
ORDER BY year DESC
year | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018.0 | 49.7 | 45.8 | 54.0 | 58.6 | 70.8 | 71.9 | 82.8 | 79.1 | null | null | null | null |
2017.0 | 43.7 | 46.6 | 51.5 | 57.3 | 67.0 | 72.1 | 78.3 | 81.5 | 73.8 | 61.1 | 51.3 | 45.5 |
2016.0 | 49.1 | 53.6 | 56.4 | 65.9 | 68.8 | 73.1 | 76.0 | 79.5 | 69.6 | 60.5 | 56.0 | 41.9 |
2015.0 | 50.3 | 54.5 | 57.9 | 59.9 | 68.0 | 78.9 | 82.6 | 79.0 | 68.5 | 63.6 | 49.4 | 47.1 |
Pivoting with Multiple Aggregate Expressions
Getting monthly average and maximum high temperatures with month as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp
FROM high_temps
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1)) avg, max(temp) max
FOR month in (6 JUN, 7 JUL, 8 AUG, 9 SEP)
)
ORDER BY year DESC
year | JUN_avg | JUN_max | JUL_avg | JUL_max | AUG_avg | AUG_max | SEP_avg | SEP_max |
---|---|---|---|---|---|---|---|---|
2018.0 | 71.9 | 88 | 82.8 | 94 | 79.1 | 94 | null | null |
2017.0 | 72.1 | 96 | 78.3 | 87 | 81.5 | 94 | 73.8 | 90 |
2016.0 | 73.1 | 93 | 76.0 | 89 | 79.5 | 95 | 69.6 | 78 |
2015.0 | 78.9 | 92 | 82.6 | 95 | 79.0 | 92 | 68.5 | 81 |
Pivoting with Multiple Grouping Columns
Getting monthly average high and average low temperatures with month as columns and (year, hi/lo) as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp, flag `H/L`
FROM (
SELECT date, temp, 'H' as flag
FROM high_temps
UNION ALL
SELECT date, temp, 'L' as flag
FROM low_temps
)
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR month in (6 JUN, 7 JUL, 8 AUG, 9 SEP)
)
ORDER BY year DESC, `H/L` ASC
year | H/L | JUN | JUL | AUG | SEP |
---|---|---|---|---|---|
2018.0 | H | 71.9 | 82.8 | 79.1 | null |
2018.0 | L | 53.4 | 58.5 | 58.5 | null |
2017.0 | H | 72.1 | 78.3 | 81.5 | 73.8 |
2017.0 | L | 53.7 | 56.3 | 59.0 | 55.6 |
2016.0 | H | 73.1 | 76.0 | 79.5 | 69.6 |
2016.0 | L | 53.9 | 57.6 | 57.9 | 52.9 |
2015.0 | H | 78.9 | 82.6 | 79.0 | 68.5 |
2015.0 | L | 56.4 | 59.9 | 58.5 | 52.5 |
Pivoting with Multiple Pivot Columns
Getting monthly average high and average low temperatures with (month, hi/lo) as columns and year as rows.
SELECT * FROM (
SELECT year(date) year, month(date) month, temp, flag
FROM (
SELECT date, temp, 'H' as flag
FROM high_temps
UNION ALL
SELECT date, temp, 'L' as flag
FROM low_temps
)
WHERE date BETWEEN DATE '2015-01-01' AND DATE '2018-08-31'
)
PIVOT (
CAST(avg(temp) AS DECIMAL(4, 1))
FOR (month, flag) in (
(6, 'H') JUN_hi, (6, 'L') JUN_lo,
(7, 'H') JUL_hi, (7, 'L') JUL_lo,
(8, 'H') AUG_hi, (8, 'L') AUG_lo,
(9, 'H') SEP_hi, (9, 'L') SEP_lo
)
)
ORDER BY year DESC
year | JUN_hi | JUN_lo | JUL_hi | JUL_lo | AUG_hi | AUG_lo | SEP_hi | SEP_lo |
---|---|---|---|---|---|---|---|---|
2018.0 | 71.9 | 53.4 | 82.8 | 58.5 | 79.1 | 58.5 | null | null |
2017.0 | 72.1 | 53.7 | 78.3 | 56.3 | 81.5 | 59.0 | 73.8 | 55.6 |
2016.0 | 73.1 | 53.9 | 76.0 | 57.6 | 79.5 | 57.9 | 69.6 | 52.9 |
2015.0 | 78.9 | 56.4 | 82.6 | 59.9 | 79.0 | 58.5 | 68.5 | 52.5 |
Introduction to Spark SQL
- This notebook explains the motivation behind Spark SQL
- It introduces interactive SparkSQL queries and visualizations
- This notebook uses content from Databricks SparkSQL notebook and SparkSQL programming guide
Some resources on SQL
- https://en.wikipedia.org/wiki/SQL
- https://en.wikipedia.org/wiki/Apache_Hive
- http://www.infoq.com/articles/apache-spark-sql
- https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
- https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
- READ: https://people.csail.mit.edu/matei/papers/2015/sigmodsparksql.pdf
Some of them are embedded below in-place for your convenience.
This is an elaboration of the Apache Spark 2.2 sql-progamming-guide.
Overview
Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally, Spark SQL uses this extra information to perform extra optimizations. There are several ways to interact with Spark SQL including SQL and the Dataset API. When computing a result the same execution engine is used, independent of which API/language you are using to express the computation. This unification means that developers can easily switch back and forth between different APIs based on which provides the most natural way to express a given transformation.
All of the examples on this page use sample data included in the Spark distribution and can be run in the spark-shell, pyspark shell, or sparkR shell.
Datasets and DataFrames
A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map, flatMap, filter, etc.). The Dataset API is available in Scala and Java. Python does not have the support for the Dataset API. But due to Python’s dynamic nature, many of the benefits of the Dataset API are already available (i.e. you can access the field of a row by name naturally row.columnName
). The case for R is similar.
A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of Rows. In the Scala API, DataFrame is simply a type alias of Dataset[Row]. While, in Java API, users need to use Dataset<Row>
to represent a DataFrame.
Throughout this document, we will often refer to Scala/Java Datasets of Rows
as DataFrames.
Getting Started in Spark 2.x
Starting Point: SparkSession
The entry point into all functionality in Spark is the SparkSession. To create a basic SparkSession in your scala Spark code, just use SparkSession.builder()
:
import org.apache.spark.sql.SparkSession
val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
Conveniently, in Databricks notebook (similar to spark-shell
) SparkSession
is already created for you and is available as spark
.
spark // ready-made Spark-Session
res2: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@393e6c25
Creating DataFrames
With a SparkSession
or SQLContext
, applications can create DataFrame
- from an existing
RDD
, - from a Hive table, or
- from various other data sources.
Just to recap:
- A DataFrame is a distributed collection of data organized into named columns (it is not strogly typed).
- You can think of it as being organized into table RDD of case class
Row
(which is not exactly true). - DataFrames, in comparison to RDDs, are backed by rich optimizations, including:
- tracking their own schema,
- adaptive query execution,
- code generation including whole stage codegen,
- extensible Catalyst optimizer, and
- project Tungsten for optimized storage.
Note that performance for DataFrames is the same across languages Scala, Java, Python, and R. This is due to the fact that the only planning phase is language-specific (logical + physical SQL plan), not the actual execution of the SQL plan.
DataFrame Basics
1. An empty DataFrame
2. DataFrame from a range
3. DataFrame from an RDD
4. DataFrame Operations (aka Untyped Dataset Operations)
5. Running SQL Queries Programmatically
6. Creating Datasets
1. Making an empty DataFrame
Spark has some of the pre-built methods to create simple DataFrames
- let us make an Empty DataFrame
val emptyDF = spark.emptyDataFrame // Ctrl+Enter to make an empty DataFrame
Not really interesting, or is it?
You Try!
Uncomment the following cell, put your cursor after emptyDF.
below and hit Tab to see what can be done with emptyDF
.
//emptyDF.
2. Making a DataFrame from a range
Let us make a DataFrame next
- from a range of numbers, as follows:
val rangeDF = spark.range(0, 3).toDF() // Ctrl+Enter to make DataFrame with 0,1,2
// sc.parallelize(1 to 3).toDF()
Note that Spark automatically names column as id
and casts integers to type bigint
for big integer or Long.
In order to get a preview of data in DataFrame use show()
as follows:
rangeDF.show() // Ctrl+Enter
3. Making a DataFrame from an RDD
- Make an RDD
- Conver the RDD into a DataFrame using the defualt
.toDF()
method - Conver the RDD into a DataFrame using the non-default
.toDF(...)
method - Do it all in one line
Let's first make an RDD using the sc.parallelize
method, transform it by a map
and perform the collect
action to display it, as follows:
val rdd1 = sc.parallelize(1 to 5).map(i => (i, i*2))
rdd1.collect() // Ctrl+Enter
Next, let us convert the RDD into DataFrame using the .toDF()
method, as follows:
val df1 = rdd1.toDF() // Ctrl+Enter
As it is clear, the DataFrame has columns named _1
and _2
, each of type int
. Let us see its content using the .show()
method next.
df1.show() // Ctrl+Enter
Note that by default, i.e. without specifying any options as in toDF()
, the column names are given by _1
and _2
.
We can easily specify column names as follows:
val df1 = rdd1.toDF("once", "twice") // Ctrl+Enter
df1.show()
Of course, we can do all of the above steps to make the DataFrame df1
in one line and then show it, as follows:
val df1 = sc.parallelize(1 to 5)
.map(i => (i, i*2))
.toDF("once", "twice") //Ctrl+enter
df1.show()
4. DataFrame Operations (aka Untyped Dataset Operations)
DataFrames provide a domain-specific language for structured data manipulation in Scala, Java, Python and R.
As mentioned above, in Spark 2.0, DataFrames are just Dataset of Rows in Scala and Java API. These operations are also referred as “untyped transformations” in contrast to “typed transformations” come with strongly typed Scala/Java Datasets.
Here we include some basic examples of structured data processing using Datasets:
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df1.printSchema()
// Select only the "name" column
df1.select("once").show()
// Select both columns, but increment the double column by 1
df1.select($"once", $"once" + 1).show()
// Select both columns, but increment the double column by 1 and rename it as "oncemore"
df1.select($"once", ($"once" * 1).as("oncemore")).show()
df1.filter($"once" > 2).show()
// Count the number of distinct singles - a bit boring
df1.groupBy("once").count().show()
Let's make a more interesting DataFrame for groupBy
with repeated elements so that the count
will be more than 1
.
df1.show()
val df11 = sc.parallelize(3 to 5).map(i => (i, i*2)).toDF("once", "twice") // just make a small one
df11.show()
val df111 = df1.union(df11) // let's take the unionAll of df1 and df11 into df111
df111.show() // df111 is obtained by simply appending the rows of df11 to df1
// Count the number of distinct singles - a bit less boring
df111.groupBy("once").count().show()
For a complete list of the types of operations that can be performed on a Dataset refer to the API Documentation.
In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the DataFrame Function Reference.
You Try!
Uncomment the two lines in the next cell, and then fill in the ???
below to get a DataFrame df2
whose first two columns are the same as df1
and whose third column named triple has values that are three times the values in the first column.
//val df2 = sc.parallelize(1 to 5).map(i => (i, i*2, i????)).toDF("single", "double", "triple") // Ctrl+enter after editing ???
//df2.show()
5. Running SQL Queries Programmatically
The sql
function on a SparkSession
enables applications to run SQL queries programmatically and returns the result as a DataFrame
.
df1
// Register the DataFrame as a SQL temporary view
df1.createOrReplaceTempView("sdtable")
val sqlDF = spark.sql("SELECT * FROM sdtable")
sqlDF.show()
spark.sql("SELECT * FROM SDTable WHERE once>2").show()
5. Using SQL for interactively querying a table is very powerful!
Note -- comments
are how you add comments
in SQL cells beginning with %sql
.
- You can run SQL
select *
statement to see all columns of the table, as follows:- This is equivalent to the above `display(diamondsDF)' with the DataFrame
-- Ctrl+Enter to select all columns of the table
select * from SDTable
-- Ctrl+Enter to select all columns of the table
-- note table names of registered tables are case-insensitive
select * from sdtable
Global Temporary View
Temporary views in Spark SQL are session-scoped and will disappear if the session that creates it terminates. If you want to have a temporary view that is shared among all sessions and keep alive until the Spark application terminates, you can create a global temporary view. Global temporary view is tied to a system preserved database global_temp
, and we must use the qualified name to refer it, e.g. SELECT * FROM global_temp.view1
. See http://spark.apache.org/docs/latest/sql-programming-guide.html#global-temporary-view for details.
- Creating Datasets
Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized Encoder to serialize the objects for processing or transmitting over the network. While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object.
val rangeDS = spark.range(0, 3) // Ctrl+Enter to make DataSet with 0,1,2; Note we added '.toDF()' to this to create a DataFrame
rangeDS.show() // the column name 'id' is made by default here
We can have more complicated objects in a DataSet
too.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)
// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32), Person("Erik",44), Person("Anna", 15)).toDS()
caseClassDS.show()
// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)
df1
df1.show
// let's make a case class for our DF so we can convert it to Dataset
case class singleAndDoubleIntegers(once: Integer, twice: Integer)
val ds1 = df1.as[singleAndDoubleIntegers]
ds1.show()
Next we will play with data
The data here is semi-structured tabular data (Tab-delimited text file in dbfs). Let us see what Anthony Joseph in BerkeleyX/CS100.1x had to say about such data.
Key Data Management Concepts: Semi-Structured Tabular Data
(watch now 1:26):
Recommended Homework
This week's recommended homework is a deep dive into the SparkSQL programming guide.
Diamonds ML Pipeline Workflow - DataFrame ETL and EDA Part
This is the Spark SQL parts that are focussed on extract-transform-Load (ETL) and exploratory-data-analysis (EDA) parts of an end-to-end example of a Machine Learning (ML) workflow.
Why are we using DataFrames? This is because of the Announcement in the Spark MLlib Main Guide for Spark 2.2 https://spark.apache.org/docs/latest/ml-guide.html that "DataFrame-based API is primary API".
This notebook is a scalarific break-down of the pythonic 'Diamonds ML Pipeline Workflow' from the Databricks Guide.
We will see this example again in the sequel
For this example, we analyze the Diamonds dataset from the R Datasets hosted on DBC.
Later on, we will use the DecisionTree algorithm to predict the price of a diamond from its characteristics.
Here is an outline of our pipeline:
- Step 1. Load data: Load data as DataFrame
- Step 2. Understand the data: Compute statistics and create visualizations to get a better understanding of the data.
- Step 3. Hold out data: Split the data randomly into training and test sets. We will not look at the test data until after learning.
- Step 4. On the training dataset:
- Extract features: We will index categorical (String-valued) features so that DecisionTree can handle them.
- Learn a model: Run DecisionTree to learn how to predict a diamond's price from a description of the diamond.
- Tune the model: Tune the tree depth (complexity) using the training data. (This process is also called model selection.)
- Step 5. Evaluate the model: Now look at the test dataset. Compare the initial model with the tuned model to see the benefit of tuning parameters.
- Step 6. Understand the model: We will examine the learned model and results to gain further insight.
In this notebook, we will only cover Step 1 and Step 2. above. The other Steps will be revisited in the sequel.
Step 1. Load data as DataFrame
This section loads a dataset as a DataFrame and examines a few rows of it to understand the schema.
For more info, see the DB guide on importing data.
// We'll use the Diamonds dataset from the R datasets hosted on DBC.
val diamondsFilePath = "dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv"
diamondsFilePath: String = dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv
sc.textFile(diamondsFilePath).take(2) // looks like a csv file as it should
res0: Array[String] = Array("","carat","cut","color","clarity","depth","table","price","x","y","z", "1",0.23,"Ideal","E","SI2",61.5,55,326,3.95,3.98,2.43)
val diamondsRawDF = sqlContext.read // we can use sqlContext instead of SparkSession for backwards compatibility to 1.x
.format("com.databricks.spark.csv") // use spark.csv package
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
//.option("delimiter", ",") // Specify the delimiter as comma or ',' DEFAULT
.load(diamondsFilePath)
diamondsRawDF: org.apache.spark.sql.DataFrame = [_c0: int, carat: double ... 9 more fields]
//There are 10 columns. We will try to predict the price of diamonds, treating the other 9 columns as features.
diamondsRawDF.printSchema()
root
|-- _c0: integer (nullable = true)
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: integer (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
Note: (nullable = true)
simply means if the value is allowed to be null
.
Let us count the number of rows in diamondsDF
.
diamondsRawDF.count() // Ctrl+Enter
res3: Long = 53940
So there are 53940 records or rows in the DataFrame.
Use the show(n)
method to see the first n
(default is 20) rows of the DataFrame, as folows:
diamondsRawDF.show(10)
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|_c0|carat| cut|color|clarity|depth|table|price| x| y| z|
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
| 1| 0.23| Ideal| E| SI2| 61.5| 55.0| 326|3.95|3.98|2.43|
| 2| 0.21| Premium| E| SI1| 59.8| 61.0| 326|3.89|3.84|2.31|
| 3| 0.23| Good| E| VS1| 56.9| 65.0| 327|4.05|4.07|2.31|
| 4| 0.29| Premium| I| VS2| 62.4| 58.0| 334| 4.2|4.23|2.63|
| 5| 0.31| Good| J| SI2| 63.3| 58.0| 335|4.34|4.35|2.75|
| 6| 0.24|Very Good| J| VVS2| 62.8| 57.0| 336|3.94|3.96|2.48|
| 7| 0.24|Very Good| I| VVS1| 62.3| 57.0| 336|3.95|3.98|2.47|
| 8| 0.26|Very Good| H| SI1| 61.9| 55.0| 337|4.07|4.11|2.53|
| 9| 0.22| Fair| E| VS2| 65.1| 61.0| 337|3.87|3.78|2.49|
| 10| 0.23|Very Good| H| VS1| 59.4| 61.0| 338| 4.0|4.05|2.39|
+---+-----+---------+-----+-------+-----+-----+-----+----+----+----+
only showing top 10 rows
If you notice the schema of diamondsRawDF
you will see that the automatic schema inference of SqlContext.read
method has cast the values in the column price
as integer
.
To cleanup:
- let's recast the column
price
asdouble
for downstream ML tasks later and - let's also get rid of the first column of row indices.
import org.apache.spark.sql.types.DoubleType
//we will convert price column from int to double for being able to model, fit and predict in downstream ML task
val diamondsDF = diamondsRawDF.select($"carat", $"cut", $"color", $"clarity", $"depth", $"table",$"price".cast(DoubleType).as("price"), $"x", $"y", $"z")
diamondsDF.cache() // let's cache it for reuse
diamondsDF.printSchema // print schema
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
import org.apache.spark.sql.types.DoubleType
diamondsDF: org.apache.spark.sql.DataFrame = [carat: double, cut: string ... 8 more fields]
diamondsDF.show(10,false) // notice that price column has Double values that end in '.0' now
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|carat|cut |color|clarity|depth|table|price|x |y |z |
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
|0.23 |Ideal |E |SI2 |61.5 |55.0 |326.0|3.95|3.98|2.43|
|0.21 |Premium |E |SI1 |59.8 |61.0 |326.0|3.89|3.84|2.31|
|0.23 |Good |E |VS1 |56.9 |65.0 |327.0|4.05|4.07|2.31|
|0.29 |Premium |I |VS2 |62.4 |58.0 |334.0|4.2 |4.23|2.63|
|0.31 |Good |J |SI2 |63.3 |58.0 |335.0|4.34|4.35|2.75|
|0.24 |Very Good|J |VVS2 |62.8 |57.0 |336.0|3.94|3.96|2.48|
|0.24 |Very Good|I |VVS1 |62.3 |57.0 |336.0|3.95|3.98|2.47|
|0.26 |Very Good|H |SI1 |61.9 |55.0 |337.0|4.07|4.11|2.53|
|0.22 |Fair |E |VS2 |65.1 |61.0 |337.0|3.87|3.78|2.49|
|0.23 |Very Good|H |VS1 |59.4 |61.0 |338.0|4.0 |4.05|2.39|
+-----+---------+-----+-------+-----+-----+-----+----+----+----+
only showing top 10 rows
//View DataFrame in databricks
// note this 'display' is a databricks notebook specific command that is quite powerful for visual interaction with the data
// other notebooks like zeppelin have similar commands for interactive visualisation
display(diamondsDF)
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Step 2. Understand the data
Let's examine the data to get a better understanding of what is there. We only examine a couple of features (columns), but it gives an idea of the type of exploration you might do to understand a new dataset.
For more examples of using Databricks's visualization (even across languages) see https://docs.databricks.com/user-guide/visualizations/index.html NOW.
We can see that we have a mix of
- categorical features (
cut
,color
,clarity
) and - continuous features (
depth
,x
,y
,z
).
Let's first look at the categorical features.
You can also select one or more individual columns using so-called DataFrame API.
Let us select
the column cut
from diamondsDF
and create a new DataFrame called cutsDF
and then display it as follows:
val cutsDF = diamondsDF.select("cut") // Shift+Enter
cutsDF: org.apache.spark.sql.DataFrame = [cut: string]
cutsDF.show(10) // Ctrl+Enter
+---------+
| cut|
+---------+
| Ideal|
| Premium|
| Good|
| Premium|
| Good|
|Very Good|
|Very Good|
|Very Good|
| Fair|
|Very Good|
+---------+
only showing top 10 rows
Let us use distinct
to find the distinct types of cut
's in the dataset.
// View distinct diamond cuts in dataset
val cutsDistinctDF = diamondsDF.select("cut").distinct()
cutsDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [cut: string]
cutsDistinctDF.show()
+---------+
| cut|
+---------+
| Premium|
| Ideal|
| Good|
| Fair|
|Very Good|
+---------+
Clearly, there are just 5 kinds of cuts.
// View distinct diamond colors in dataset
val colorsDistinctDF = diamondsDF.select("color").distinct() //.collect()
colorsDistinctDF.show()
+-----+
|color|
+-----+
| F|
| E|
| D|
| J|
| G|
| I|
| H|
+-----+
colorsDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [color: string]
// View distinct diamond clarities in dataset
val claritiesDistinctDF = diamondsDF.select("clarity").distinct() // .collect()
claritiesDistinctDF.show()
+-------+
|clarity|
+-------+
| VVS2|
| SI1|
| IF|
| I1|
| VVS1|
| VS2|
| SI2|
| VS1|
+-------+
claritiesDistinctDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [clarity: string]
We can examine the distribution of a particular feature by using display(),
You Try!
- Click on the chart icon and Plot Options, and setting:
- Value=
<id>
- Series groupings='cut'
- and Aggregation=
COUNT
.
- You can also try this using columns "color" and "clarity"
display(diamondsDF.select("cut"))
cut |
---|
Ideal |
Premium |
Good |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Fair |
Very Good |
Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Ideal |
Good |
Good |
Very Good |
Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Premium |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Good |
Good |
Good |
Very Good |
Ideal |
Ideal |
Ideal |
Good |
Good |
Good |
Premium |
Very Good |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Good |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Premium |
Premium |
Very Good |
Very Good |
Premium |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Fair |
Ideal |
Very Good |
Very Good |
Good |
Good |
Fair |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Fair |
Fair |
Premium |
Premium |
Very Good |
Fair |
Fair |
Ideal |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Good |
Very Good |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Good |
Ideal |
Very Good |
Premium |
Very Good |
Good |
Good |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Premium |
Premium |
Good |
Fair |
Premium |
Very Good |
Ideal |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Fair |
Premium |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Good |
Ideal |
Fair |
Premium |
Good |
Good |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Fair |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Very Good |
Very Good |
Good |
Ideal |
Ideal |
Very Good |
Very Good |
Premium |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Good |
Very Good |
Very Good |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Premium |
Fair |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Very Good |
Good |
Premium |
Very Good |
Ideal |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Fair |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Good |
Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Premium |
Premium |
Ideal |
Fair |
Premium |
Ideal |
Fair |
Good |
Very Good |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Very Good |
Very Good |
Fair |
Very Good |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Fair |
Very Good |
Very Good |
Ideal |
Good |
Good |
Very Good |
Very Good |
Fair |
Fair |
Very Good |
Very Good |
Good |
Very Good |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Good |
Ideal |
Very Good |
Good |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Fair |
Premium |
Ideal |
Premium |
Very Good |
Good |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Fair |
Premium |
Premium |
Fair |
Premium |
Very Good |
Ideal |
Good |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Ideal |
Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Fair |
Very Good |
Ideal |
Good |
Good |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Good |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Good |
Ideal |
Premium |
Premium |
Ideal |
Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Very Good |
Good |
Premium |
Ideal |
Fair |
Ideal |
Premium |
Ideal |
Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Fair |
Premium |
Good |
Premium |
Premium |
Very Good |
Premium |
Very Good |
Premium |
Ideal |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Good |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Ideal |
Premium |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Very Good |
Ideal |
Ideal |
Very Good |
Fair |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Very Good |
Fair |
Premium |
Premium |
Premium |
Premium |
Premium |
Very Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Ideal |
Premium |
Fair |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Very Good |
Very Good |
Very Good |
Very Good |
Very Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Ideal |
Very Good |
Very Good |
Good |
Premium |
Ideal |
Very Good |
Ideal |
Fair |
Good |
Ideal |
Ideal |
Good |
Premium |
Premium |
Premium |
Very Good |
Ideal |
Premium |
Very Good |
Ideal |
Fair |
Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Very Good |
Premium |
Good |
Ideal |
Premium |
Premium |
Premium |
Very Good |
Very Good |
Premium |
Premium |
Fair |
Fair |
Good |
Fair |
Premium |
Premium |
Very Good |
Good |
Premium |
Fair |
Fair |
Fair |
Ideal |
Ideal |
Ideal |
Ideal |
Fair |
Ideal |
Ideal |
Ideal |
Good |
Good |
Good |
Good |
Very Good |
Ideal |
Good |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Good |
Premium |
Fair |
Premium |
Premium |
Good |
Very Good |
Ideal |
Premium |
Premium |
Ideal |
Very Good |
Very Good |
Premium |
Premium |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Premium |
Good |
Fair |
Fair |
Ideal |
Premium |
Premium |
Ideal |
Premium |
Fair |
Premium |
Very Good |
Very Good |
Ideal |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Premium |
Fair |
Premium |
Premium |
Very Good |
Very Good |
Very Good |
Premium |
Very Good |
Ideal |
Very Good |
Premium |
Premium |
Premium |
Fair |
Premium |
Good |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Very Good |
Premium |
Very Good |
Very Good |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Fair |
Ideal |
Ideal |
Premium |
Very Good |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Ideal |
Premium |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Very Good |
Good |
Premium |
Ideal |
Ideal |
Good |
Very Good |
Ideal |
Very Good |
Ideal |
Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Good |
Very Good |
Very Good |
Ideal |
Ideal |
Fair |
Fair |
Premium |
Good |
Fair |
Fair |
Premium |
Premium |
Premium |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Premium |
Fair |
Ideal |
Fair |
Fair |
Fair |
Premium |
Premium |
Very Good |
Ideal |
Ideal |
Good |
Good |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Premium |
Premium |
Premium |
Ideal |
Ideal |
Ideal |
Fair |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Premium |
Very Good |
Ideal |
Premium |
Fair |
Premium |
Ideal |
Good |
Fair |
Fair |
Very Good |
Premium |
Ideal |
Fair |
Fair |
Ideal |
Ideal |
Very Good |
Premium |
Ideal |
Very Good |
Very Good |
Very Good |
Good |
Very Good |
Ideal |
Ideal |
Ideal |
Premium |
Premium |
Ideal |
Ideal |
Premium |
Good |
Ideal |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Good |
Ideal |
Fair |
Very Good |
Very Good |
Ideal |
Ideal |
Very Good |
Ideal |
Good |
Very Good |
Premium |
Very Good |
Ideal |
Ideal |
Very Good |
Very Good |
Ideal |
Very Good |
Very Good |
Very Good |
Ideal |
Ideal |
Ideal |
Ideal |
Premium |
Very Good |
Ideal |
Very Good |
Premium |
Ideal |
Ideal |
Good |
Premium |
Premium |
// come on do the same for color NOW!
// and clarity too...
** You Try!**
Now play around with display of the entire DF and choosing what you want in the GUI as opposed to a .select(...)
statement earlier.
For instance, the following display(diamondsDF)
shows the counts of the colors by choosing in the Plot Options
a bar-chart
that is grouped
with Series Grouping
as color
, values
as <id>
and Aggregation
as COUNT
. You can click on Plot Options
to see these settings and can change them as you wish by dragging and dropping.
display(diamondsDF)
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Now let's examine one of the continuous features as an example.
//Select: "Plot Options..." --> "Display type" --> "histogram plot" and choose to "Plot over all results" OTHERWISE you get the image from first 1000 rows only
display(diamondsDF.select("carat"))
carat |
---|
0.23 |
0.21 |
0.23 |
0.29 |
0.31 |
0.24 |
0.24 |
0.26 |
0.22 |
0.23 |
0.3 |
0.23 |
0.22 |
0.31 |
0.2 |
0.32 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.23 |
0.23 |
0.31 |
0.31 |
0.23 |
0.24 |
0.3 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.23 |
0.31 |
0.26 |
0.33 |
0.33 |
0.33 |
0.26 |
0.26 |
0.32 |
0.29 |
0.32 |
0.32 |
0.25 |
0.29 |
0.24 |
0.23 |
0.32 |
0.22 |
0.22 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.35 |
0.3 |
0.3 |
0.3 |
0.42 |
0.28 |
0.32 |
0.31 |
0.31 |
0.24 |
0.24 |
0.3 |
0.3 |
0.3 |
0.3 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.26 |
0.38 |
0.26 |
0.24 |
0.24 |
0.24 |
0.24 |
0.32 |
0.7 |
0.86 |
0.7 |
0.71 |
0.78 |
0.7 |
0.7 |
0.96 |
0.73 |
0.8 |
0.75 |
0.75 |
0.74 |
0.75 |
0.8 |
0.75 |
0.8 |
0.74 |
0.81 |
0.59 |
0.8 |
0.74 |
0.9 |
0.74 |
0.73 |
0.73 |
0.8 |
0.71 |
0.7 |
0.8 |
0.71 |
0.74 |
0.7 |
0.7 |
0.7 |
0.7 |
0.91 |
0.61 |
0.91 |
0.91 |
0.77 |
0.71 |
0.71 |
0.7 |
0.77 |
0.63 |
0.71 |
0.71 |
0.76 |
0.64 |
0.71 |
0.71 |
0.7 |
0.7 |
0.71 |
0.7 |
0.71 |
0.73 |
0.7 |
0.7 |
0.71 |
0.74 |
0.71 |
0.73 |
0.76 |
0.76 |
0.71 |
0.73 |
0.73 |
0.73 |
0.73 |
0.72 |
0.73 |
0.71 |
0.79 |
0.73 |
0.8 |
0.58 |
0.58 |
0.71 |
0.75 |
0.7 |
1.17 |
0.6 |
0.7 |
0.83 |
0.74 |
0.72 |
0.71 |
0.71 |
0.54 |
0.54 |
0.72 |
0.72 |
0.72 |
0.71 |
0.7 |
0.71 |
0.71 |
0.71 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.72 |
0.7 |
0.7 |
0.7 |
0.7 |
0.98 |
0.78 |
0.7 |
0.52 |
0.73 |
0.74 |
0.7 |
0.77 |
0.71 |
0.74 |
0.7 |
1.01 |
0.77 |
0.78 |
0.72 |
0.53 |
0.76 |
0.7 |
0.7 |
0.75 |
0.72 |
0.72 |
0.7 |
0.84 |
0.75 |
0.52 |
0.72 |
0.79 |
0.72 |
0.51 |
0.64 |
0.7 |
0.83 |
0.76 |
0.71 |
0.77 |
0.71 |
1.01 |
1.01 |
0.77 |
0.76 |
0.76 |
0.76 |
1.05 |
0.81 |
0.7 |
0.55 |
0.81 |
0.63 |
0.63 |
0.77 |
1.05 |
0.64 |
0.76 |
0.83 |
0.71 |
0.71 |
0.87 |
0.73 |
0.71 |
0.71 |
0.71 |
0.7 |
0.7 |
0.76 |
0.7 |
0.79 |
0.7 |
0.7 |
0.76 |
0.73 |
0.79 |
0.71 |
0.81 |
0.81 |
0.72 |
0.72 |
0.72 |
0.81 |
0.72 |
1.0 |
0.73 |
0.81 |
0.81 |
0.71 |
0.71 |
0.71 |
0.57 |
0.51 |
0.72 |
0.74 |
0.74 |
0.7 |
0.8 |
1.01 |
0.8 |
0.77 |
0.83 |
0.82 |
0.78 |
0.6 |
0.9 |
0.7 |
0.9 |
0.83 |
0.83 |
0.83 |
0.74 |
0.79 |
0.61 |
0.76 |
0.96 |
0.73 |
0.73 |
0.75 |
0.71 |
0.71 |
0.71 |
0.71 |
1.04 |
1.0 |
0.87 |
0.53 |
0.72 |
0.72 |
0.7 |
0.74 |
0.71 |
0.73 |
0.7 |
0.71 |
0.71 |
0.71 |
0.77 |
0.71 |
0.78 |
0.71 |
0.91 |
0.71 |
0.71 |
0.8 |
0.7 |
0.72 |
0.72 |
0.82 |
0.7 |
0.72 |
0.72 |
0.9 |
0.74 |
0.74 |
0.73 |
0.57 |
0.73 |
0.72 |
0.74 |
0.82 |
0.81 |
0.75 |
0.7 |
0.71 |
0.71 |
0.93 |
0.8 |
0.7 |
1.0 |
0.75 |
0.58 |
0.73 |
0.81 |
0.81 |
0.71 |
1.2 |
0.7 |
0.7 |
0.74 |
0.7 |
0.8 |
0.75 |
0.83 |
1.0 |
0.99 |
0.7 |
0.7 |
0.7 |
0.7 |
0.32 |
0.32 |
0.32 |
0.32 |
0.32 |
0.32 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.3 |
0.32 |
0.33 |
0.29 |
0.29 |
0.31 |
0.34 |
0.34 |
0.34 |
0.34 |
0.3 |
0.29 |
0.35 |
0.43 |
0.32 |
0.36 |
0.3 |
0.26 |
0.7 |
0.7 |
0.71 |
0.99 |
0.73 |
0.51 |
0.91 |
0.84 |
0.91 |
0.76 |
0.76 |
0.75 |
0.55 |
0.76 |
0.74 |
0.7 |
0.7 |
0.7 |
0.7 |
0.9 |
0.95 |
0.89 |
0.72 |
0.96 |
1.02 |
0.78 |
0.61 |
0.71 |
0.78 |
0.87 |
0.83 |
0.71 |
0.71 |
0.71 |
0.71 |
0.63 |
0.71 |
0.71 |
0.71 |
0.71 |
0.9 |
0.71 |
0.7 |
0.7 |
0.7 |
1.0 |
0.86 |
0.8 |
0.7 |
0.7 |
0.7 |
0.7 |
1.0 |
0.72 |
0.72 |
0.7 |
0.86 |
0.71 |
0.75 |
0.73 |
0.53 |
0.73 |
0.73 |
0.73 |
0.73 |
0.73 |
0.73 |
0.7 |
0.72 |
0.72 |
0.72 |
0.7 |
0.6 |
0.74 |
0.73 |
0.71 |
0.71 |
0.7 |
0.7 |
0.9 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.79 |
0.9 |
0.71 |
0.61 |
0.9 |
0.71 |
0.71 |
0.77 |
0.74 |
0.82 |
0.82 |
0.71 |
0.83 |
0.73 |
0.83 |
1.17 |
0.91 |
0.73 |
0.7 |
0.9 |
0.7 |
0.7 |
0.7 |
0.9 |
0.78 |
0.96 |
0.7 |
0.72 |
0.79 |
0.7 |
0.7 |
0.7 |
1.01 |
0.72 |
0.8 |
0.59 |
0.72 |
0.75 |
0.8 |
0.71 |
0.77 |
0.97 |
0.53 |
0.53 |
0.8 |
0.9 |
0.76 |
0.72 |
0.75 |
0.72 |
0.79 |
0.72 |
0.91 |
0.71 |
0.81 |
0.82 |
0.71 |
0.9 |
0.8 |
0.56 |
0.7 |
0.7 |
0.61 |
0.85 |
0.7 |
0.8 |
0.8 |
0.51 |
0.53 |
0.78 |
0.9 |
0.9 |
0.77 |
0.73 |
0.63 |
0.7 |
0.72 |
0.72 |
0.75 |
0.82 |
0.71 |
0.7 |
0.7 |
0.71 |
0.76 |
0.82 |
0.72 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.74 |
0.71 |
0.7 |
0.71 |
0.71 |
0.71 |
0.71 |
0.7 |
0.73 |
0.7 |
0.7 |
0.71 |
0.71 |
0.79 |
0.71 |
0.77 |
0.75 |
0.7 |
0.71 |
0.92 |
0.83 |
0.7 |
0.73 |
0.71 |
0.73 |
0.82 |
0.82 |
0.82 |
0.52 |
1.0 |
0.95 |
0.73 |
0.73 |
0.73 |
0.8 |
0.7 |
0.7 |
0.7 |
0.71 |
0.81 |
0.71 |
0.73 |
0.73 |
0.72 |
0.81 |
0.71 |
0.73 |
0.7 |
1.01 |
1.01 |
0.79 |
0.7 |
0.7 |
0.8 |
1.27 |
0.79 |
0.72 |
0.73 |
1.01 |
1.01 |
0.73 |
0.7 |
0.7 |
0.77 |
0.77 |
0.77 |
0.84 |
0.72 |
0.76 |
0.7 |
0.54 |
0.75 |
0.79 |
0.74 |
0.7 |
0.7 |
0.75 |
1.2 |
0.8 |
0.66 |
0.87 |
0.86 |
0.74 |
0.58 |
0.78 |
0.74 |
0.73 |
0.91 |
0.71 |
0.71 |
0.79 |
0.79 |
0.71 |
0.82 |
0.78 |
0.7 |
1.12 |
0.73 |
0.91 |
0.91 |
0.91 |
0.91 |
0.7 |
0.68 |
0.73 |
1.03 |
0.74 |
0.98 |
1.02 |
1.0 |
1.02 |
0.6 |
0.8 |
0.97 |
1.0 |
0.26 |
0.26 |
0.36 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.34 |
0.32 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.31 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
0.33 |
1.0 |
0.77 |
0.77 |
0.7 |
0.9 |
0.72 |
0.9 |
0.72 |
0.7 |
0.81 |
0.81 |
0.71 |
0.7 |
0.71 |
0.71 |
0.92 |
0.76 |
0.73 |
0.71 |
0.7 |
0.9 |
0.71 |
0.7 |
0.7 |
0.77 |
0.71 |
0.7 |
0.75 |
0.83 |
0.71 |
0.9 |
0.6 |
0.71 |
0.53 |
0.71 |
0.62 |
0.62 |
0.9 |
0.62 |
0.82 |
0.66 |
0.7 |
0.8 |
0.8 |
0.79 |
0.71 |
0.7 |
0.7 |
0.79 |
0.7 |
1.22 |
1.01 |
0.73 |
0.91 |
0.71 |
0.83 |
0.84 |
0.71 |
0.71 |
0.71 |
0.71 |
0.71 |
0.71 |
0.91 |
0.9 |
0.71 |
0.71 |
0.72 |
0.72 |
0.71 |
0.81 |
0.83 |
0.73 |
0.56 |
0.56 |
0.71 |
0.7 |
0.96 |
0.71 |
0.7 |
0.71 |
0.8 |
0.95 |
0.82 |
0.52 |
0.82 |
0.82 |
0.82 |
0.8 |
0.96 |
0.72 |
0.62 |
0.79 |
0.75 |
1.08 |
0.72 |
0.62 |
0.73 |
0.72 |
0.52 |
0.83 |
0.64 |
0.8 |
0.74 |
0.72 |
0.82 |
0.73 |
1.04 |
0.73 |
0.73 |
0.9 |
0.75 |
0.79 |
0.7 |
0.75 |
1.02 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.72 |
0.74 |
0.84 |
0.76 |
0.77 |
0.76 |
1.0 |
1.0 |
0.9 |
0.9 |
0.9 |
0.9 |
0.9 |
0.9 |
0.78 |
0.71 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
0.7 |
1.0 |
0.77 |
1.0 |
1.0 |
1.0 |
0.73 |
0.79 |
0.72 |
0.71 |
0.74 |
0.7 |
0.7 |
0.79 |
0.79 |
0.79 |
0.71 |
0.79 |
0.73 |
0.63 |
0.7 |
0.71 |
0.84 |
0.84 |
1.02 |
0.72 |
0.72 |
0.92 |
0.74 |
0.7 |
0.71 |
1.05 |
0.7 |
0.54 |
0.73 |
0.88 |
0.73 |
0.72 |
0.9 |
0.9 |
1.03 |
0.84 |
1.01 |
0.77 |
0.8 |
0.9 |
0.73 |
0.72 |
0.71 |
0.7 |
0.79 |
0.72 |
0.7 |
0.7 |
0.9 |
0.71 |
0.5 |
0.5 |
0.74 |
0.77 |
0.77 |
0.8 |
0.8 |
0.8 |
0.8 |
0.66 |
0.71 |
0.71 |
0.71 |
0.71 |
0.72 |
0.71 |
0.86 |
1.19 |
0.71 |
0.82 |
0.71 |
0.75 |
0.7 |
0.8 |
0.82 |
0.82 |
0.82 |
0.81 |
0.81 |
0.76 |
0.71 |
0.7 |
0.7 |
0.74 |
0.77 |
0.77 |
0.53 |
0.79 |
0.73 |
0.77 |
0.77 |
1.01 |
1.01 |
0.6 |
0.76 |
0.54 |
0.72 |
0.72 |
0.74 |
1.12 |
The above histogram of the diamonds' carat ratings shows that carats have a skewed distribution: Many diamonds are small, but there are a number of diamonds in the dataset which are much larger.
- Extremely skewed distributions can cause problems for some algorithms (e.g., Linear Regression).
- However, Decision Trees handle skewed distributions very naturally.
Note: When you call display
to create a histogram like that above, it will plot using a subsample from the dataset (for efficiency), but you can plot using the full dataset by selecting "Plot over all results". For our dataset, the two plots can actually look very different due to the long-tailed distribution.
We will not examine the label distribution for now. It can be helpful to examine the label distribution, but it is best to do so only on the training set, not on the test set which we will hold out for evaluation. These will be seen in the sequel
You Try! Of course knock youself out visually exploring the dataset more...
display(diamondsDF.select("cut","carat"))
cut | carat |
---|---|
Ideal | 0.23 |
Premium | 0.21 |
Good | 0.23 |
Premium | 0.29 |
Good | 0.31 |
Very Good | 0.24 |
Very Good | 0.24 |
Very Good | 0.26 |
Fair | 0.22 |
Very Good | 0.23 |
Good | 0.3 |
Ideal | 0.23 |
Premium | 0.22 |
Ideal | 0.31 |
Premium | 0.2 |
Premium | 0.32 |
Ideal | 0.3 |
Good | 0.3 |
Good | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.31 |
Very Good | 0.31 |
Very Good | 0.23 |
Premium | 0.24 |
Very Good | 0.3 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Very Good | 0.23 |
Good | 0.23 |
Good | 0.23 |
Good | 0.31 |
Very Good | 0.26 |
Ideal | 0.33 |
Ideal | 0.33 |
Ideal | 0.33 |
Good | 0.26 |
Good | 0.26 |
Good | 0.32 |
Premium | 0.29 |
Very Good | 0.32 |
Good | 0.32 |
Very Good | 0.25 |
Very Good | 0.29 |
Very Good | 0.24 |
Ideal | 0.23 |
Ideal | 0.32 |
Premium | 0.22 |
Premium | 0.22 |
Ideal | 0.3 |
Premium | 0.3 |
Very Good | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Ideal | 0.35 |
Premium | 0.3 |
Ideal | 0.3 |
Ideal | 0.3 |
Premium | 0.42 |
Ideal | 0.28 |
Ideal | 0.32 |
Very Good | 0.31 |
Premium | 0.31 |
Premium | 0.24 |
Very Good | 0.24 |
Very Good | 0.3 |
Premium | 0.3 |
Premium | 0.3 |
Good | 0.3 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Very Good | 0.26 |
Ideal | 0.26 |
Ideal | 0.38 |
Good | 0.26 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.24 |
Premium | 0.32 |
Ideal | 0.7 |
Fair | 0.86 |
Ideal | 0.7 |
Very Good | 0.71 |
Very Good | 0.78 |
Good | 0.7 |
Good | 0.7 |
Fair | 0.96 |
Very Good | 0.73 |
Premium | 0.8 |
Very Good | 0.75 |
Premium | 0.75 |
Ideal | 0.74 |
Premium | 0.75 |
Ideal | 0.8 |
Ideal | 0.75 |
Premium | 0.8 |
Ideal | 0.74 |
Ideal | 0.81 |
Ideal | 0.59 |
Ideal | 0.8 |
Ideal | 0.74 |
Premium | 0.9 |
Very Good | 0.74 |
Ideal | 0.73 |
Ideal | 0.73 |
Premium | 0.8 |
Ideal | 0.71 |
Ideal | 0.7 |
Ideal | 0.8 |
Ideal | 0.71 |
Ideal | 0.74 |
Very Good | 0.7 |
Fair | 0.7 |
Fair | 0.7 |
Premium | 0.7 |
Premium | 0.91 |
Very Good | 0.61 |
Fair | 0.91 |
Fair | 0.91 |
Ideal | 0.77 |
Very Good | 0.71 |
Ideal | 0.71 |
Very Good | 0.7 |
Very Good | 0.77 |
Premium | 0.63 |
Very Good | 0.71 |
Premium | 0.71 |
Ideal | 0.76 |
Ideal | 0.64 |
Premium | 0.71 |
Premium | 0.71 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.71 |
Good | 0.7 |
Very Good | 0.71 |
Very Good | 0.73 |
Very Good | 0.7 |
Ideal | 0.7 |
Premium | 0.71 |
Ideal | 0.74 |
Premium | 0.71 |
Premium | 0.73 |
Very Good | 0.76 |
Ideal | 0.76 |
Ideal | 0.71 |
Premium | 0.73 |
Premium | 0.73 |
Ideal | 0.73 |
Premium | 0.73 |
Very Good | 0.72 |
Very Good | 0.73 |
Ideal | 0.71 |
Ideal | 0.79 |
Very Good | 0.73 |
Very Good | 0.8 |
Ideal | 0.58 |
Ideal | 0.58 |
Good | 0.71 |
Ideal | 0.75 |
Premium | 0.7 |
Very Good | 1.17 |
Ideal | 0.6 |
Ideal | 0.7 |
Good | 0.83 |
Very Good | 0.74 |
Very Good | 0.72 |
Premium | 0.71 |
Ideal | 0.71 |
Ideal | 0.54 |
Ideal | 0.54 |
Ideal | 0.72 |
Ideal | 0.72 |
Good | 0.72 |
Ideal | 0.71 |
Very Good | 0.7 |
Premium | 0.71 |
Very Good | 0.71 |
Good | 0.71 |
Good | 0.71 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Premium | 0.72 |
Very Good | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Good | 0.7 |
Fair | 0.98 |
Premium | 0.78 |
Very Good | 0.7 |
Ideal | 0.52 |
Very Good | 0.73 |
Ideal | 0.74 |
Very Good | 0.7 |
Premium | 0.77 |
Ideal | 0.71 |
Ideal | 0.74 |
Ideal | 0.7 |
Premium | 1.01 |
Ideal | 0.77 |
Ideal | 0.78 |
Very Good | 0.72 |
Very Good | 0.53 |
Ideal | 0.76 |
Good | 0.7 |
Premium | 0.7 |
Very Good | 0.75 |
Ideal | 0.72 |
Premium | 0.72 |
Premium | 0.7 |
Fair | 0.84 |
Premium | 0.75 |
Ideal | 0.52 |
Very Good | 0.72 |
Very Good | 0.79 |
Very Good | 0.72 |
Ideal | 0.51 |
Ideal | 0.64 |
Very Good | 0.7 |
Very Good | 0.83 |
Ideal | 0.76 |
Good | 0.71 |
Good | 0.77 |
Ideal | 0.71 |
Fair | 1.01 |
Premium | 1.01 |
Good | 0.77 |
Good | 0.76 |
Premium | 0.76 |
Premium | 0.76 |
Very Good | 1.05 |
Ideal | 0.81 |
Ideal | 0.7 |
Ideal | 0.55 |
Good | 0.81 |
Premium | 0.63 |
Premium | 0.63 |
Premium | 0.77 |
Fair | 1.05 |
Ideal | 0.64 |
Premium | 0.76 |
Ideal | 0.83 |
Premium | 0.71 |
Premium | 0.71 |
Very Good | 0.87 |
Ideal | 0.73 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.76 |
Ideal | 0.7 |
Very Good | 0.79 |
Very Good | 0.7 |
Good | 0.7 |
Ideal | 0.76 |
Ideal | 0.73 |
Very Good | 0.79 |
Very Good | 0.71 |
Premium | 0.81 |
Ideal | 0.81 |
Good | 0.72 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.81 |
Premium | 0.72 |
Premium | 1.0 |
Good | 0.73 |
Very Good | 0.81 |
Very Good | 0.81 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.57 |
Ideal | 0.51 |
Ideal | 0.72 |
Ideal | 0.74 |
Ideal | 0.74 |
Fair | 0.7 |
Premium | 0.8 |
Fair | 1.01 |
Very Good | 0.8 |
Ideal | 0.77 |
Very Good | 0.83 |
Ideal | 0.82 |
Ideal | 0.78 |
Very Good | 0.6 |
Good | 0.9 |
Premium | 0.7 |
Very Good | 0.9 |
Ideal | 0.83 |
Ideal | 0.83 |
Very Good | 0.83 |
Premium | 0.74 |
Ideal | 0.79 |
Ideal | 0.61 |
Fair | 0.76 |
Ideal | 0.96 |
Ideal | 0.73 |
Premium | 0.73 |
Ideal | 0.75 |
Premium | 0.71 |
Good | 0.71 |
Good | 0.71 |
Premium | 0.71 |
Premium | 1.04 |
Premium | 1.0 |
Very Good | 0.87 |
Ideal | 0.53 |
Premium | 0.72 |
Premium | 0.72 |
Very Good | 0.7 |
Very Good | 0.74 |
Ideal | 0.71 |
Ideal | 0.73 |
Good | 0.7 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.77 |
Premium | 0.71 |
Premium | 0.78 |
Very Good | 0.71 |
Ideal | 0.91 |
Very Good | 0.71 |
Very Good | 0.71 |
Very Good | 0.8 |
Very Good | 0.7 |
Ideal | 0.72 |
Very Good | 0.72 |
Ideal | 0.82 |
Ideal | 0.7 |
Ideal | 0.72 |
Ideal | 0.72 |
Fair | 0.9 |
Premium | 0.74 |
Premium | 0.74 |
Ideal | 0.73 |
Fair | 0.57 |
Premium | 0.73 |
Ideal | 0.72 |
Fair | 0.74 |
Good | 0.82 |
Very Good | 0.81 |
Very Good | 0.75 |
Ideal | 0.7 |
Very Good | 0.71 |
Very Good | 0.71 |
Premium | 0.93 |
Very Good | 0.8 |
Very Good | 0.7 |
Fair | 1.0 |
Very Good | 0.75 |
Ideal | 0.58 |
Very Good | 0.73 |
Very Good | 0.81 |
Premium | 0.81 |
Premium | 0.71 |
Fair | 1.2 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.74 |
Good | 0.7 |
Good | 0.8 |
Very Good | 0.75 |
Very Good | 0.83 |
Fair | 1.0 |
Fair | 0.99 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.7 |
Very Good | 0.7 |
Premium | 0.32 |
Premium | 0.32 |
Ideal | 0.32 |
Premium | 0.32 |
Very Good | 0.32 |
Ideal | 0.32 |
Premium | 0.3 |
Premium | 0.3 |
Premium | 0.3 |
Very Good | 0.3 |
Good | 0.3 |
Ideal | 0.3 |
Very Good | 0.3 |
Good | 0.32 |
Ideal | 0.33 |
Very Good | 0.29 |
Very Good | 0.29 |
Very Good | 0.31 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.34 |
Ideal | 0.3 |
Ideal | 0.29 |
Ideal | 0.35 |
Very Good | 0.43 |
Very Good | 0.32 |
Ideal | 0.36 |
Ideal | 0.3 |
Ideal | 0.26 |
Very Good | 0.7 |
Very Good | 0.7 |
Ideal | 0.71 |
Fair | 0.99 |
Premium | 0.73 |
Ideal | 0.51 |
Premium | 0.91 |
Very Good | 0.84 |
Good | 0.91 |
Premium | 0.76 |
Ideal | 0.76 |
Premium | 0.75 |
Very Good | 0.55 |
Very Good | 0.76 |
Premium | 0.74 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Fair | 0.9 |
Fair | 0.95 |
Premium | 0.89 |
Premium | 0.72 |
Fair | 0.96 |
Premium | 1.02 |
Very Good | 0.78 |
Ideal | 0.61 |
Good | 0.71 |
Premium | 0.78 |
Ideal | 0.87 |
Ideal | 0.83 |
Premium | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.63 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.9 |
Good | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 1.0 |
Premium | 0.86 |
Ideal | 0.8 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Fair | 1.0 |
Very Good | 0.72 |
Ideal | 0.72 |
Good | 0.7 |
Good | 0.86 |
Ideal | 0.71 |
Ideal | 0.75 |
Premium | 0.73 |
Ideal | 0.53 |
Premium | 0.73 |
Good | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Very Good | 0.73 |
Premium | 0.7 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.72 |
Premium | 0.7 |
Ideal | 0.6 |
Ideal | 0.74 |
Ideal | 0.73 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.7 |
Ideal | 0.7 |
Good | 0.9 |
Ideal | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Very Good | 0.79 |
Good | 0.9 |
Premium | 0.71 |
Ideal | 0.61 |
Fair | 0.9 |
Ideal | 0.71 |
Premium | 0.71 |
Ideal | 0.77 |
Good | 0.74 |
Ideal | 0.82 |
Premium | 0.82 |
Premium | 0.71 |
Premium | 0.83 |
Very Good | 0.73 |
Premium | 0.83 |
Premium | 1.17 |
Fair | 0.91 |
Premium | 0.73 |
Good | 0.7 |
Premium | 0.9 |
Premium | 0.7 |
Very Good | 0.7 |
Premium | 0.7 |
Very Good | 0.9 |
Premium | 0.78 |
Ideal | 0.96 |
Very Good | 0.7 |
Good | 0.72 |
Premium | 0.79 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 1.01 |
Premium | 0.72 |
Good | 0.8 |
Ideal | 0.59 |
Ideal | 0.72 |
Premium | 0.75 |
Premium | 0.8 |
Very Good | 0.71 |
Very Good | 0.77 |
Ideal | 0.97 |
Ideal | 0.53 |
Ideal | 0.53 |
Ideal | 0.8 |
Premium | 0.9 |
Very Good | 0.76 |
Ideal | 0.72 |
Ideal | 0.75 |
Premium | 0.72 |
Ideal | 0.79 |
Very Good | 0.72 |
Very Good | 0.91 |
Premium | 0.71 |
Premium | 0.81 |
Ideal | 0.82 |
Premium | 0.71 |
Good | 0.9 |
Very Good | 0.8 |
Very Good | 0.56 |
Very Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.61 |
Ideal | 0.85 |
Ideal | 0.7 |
Ideal | 0.8 |
Ideal | 0.8 |
Very Good | 0.51 |
Ideal | 0.53 |
Ideal | 0.78 |
Very Good | 0.9 |
Fair | 0.9 |
Ideal | 0.77 |
Ideal | 0.73 |
Ideal | 0.63 |
Ideal | 0.7 |
Ideal | 0.72 |
Ideal | 0.72 |
Premium | 0.75 |
Very Good | 0.82 |
Good | 0.71 |
Premium | 0.7 |
Ideal | 0.7 |
Ideal | 0.71 |
Very Good | 0.76 |
Fair | 0.82 |
Premium | 0.72 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Very Good | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Very Good | 0.74 |
Ideal | 0.71 |
Ideal | 0.7 |
Ideal | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.7 |
Ideal | 0.73 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.79 |
Premium | 0.71 |
Very Good | 0.77 |
Very Good | 0.75 |
Ideal | 0.7 |
Premium | 0.71 |
Ideal | 0.92 |
Premium | 0.83 |
Premium | 0.7 |
Premium | 0.73 |
Very Good | 0.71 |
Very Good | 0.73 |
Ideal | 0.82 |
Ideal | 0.82 |
Very Good | 0.82 |
Ideal | 0.52 |
Premium | 1.0 |
Fair | 0.95 |
Ideal | 0.73 |
Premium | 0.73 |
Premium | 0.73 |
Ideal | 0.8 |
Premium | 0.7 |
Very Good | 0.7 |
Very Good | 0.7 |
Very Good | 0.71 |
Very Good | 0.81 |
Very Good | 0.71 |
Ideal | 0.73 |
Very Good | 0.73 |
Ideal | 0.72 |
Ideal | 0.81 |
Ideal | 0.71 |
Very Good | 0.73 |
Very Good | 0.7 |
Ideal | 1.01 |
Good | 1.01 |
Ideal | 0.79 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.8 |
Premium | 1.27 |
Ideal | 0.79 |
Very Good | 0.72 |
Ideal | 0.73 |
Fair | 1.01 |
Good | 1.01 |
Ideal | 0.73 |
Ideal | 0.7 |
Good | 0.7 |
Premium | 0.77 |
Premium | 0.77 |
Premium | 0.77 |
Very Good | 0.84 |
Ideal | 0.72 |
Premium | 0.76 |
Very Good | 0.7 |
Ideal | 0.54 |
Fair | 0.75 |
Good | 0.79 |
Very Good | 0.74 |
Very Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.75 |
Very Good | 1.2 |
Very Good | 0.8 |
Ideal | 0.66 |
Very Good | 0.87 |
Premium | 0.86 |
Ideal | 0.74 |
Very Good | 0.58 |
Ideal | 0.78 |
Ideal | 0.74 |
Ideal | 0.73 |
Very Good | 0.91 |
Premium | 0.71 |
Good | 0.71 |
Ideal | 0.79 |
Premium | 0.79 |
Premium | 0.71 |
Premium | 0.82 |
Very Good | 0.78 |
Very Good | 0.7 |
Premium | 1.12 |
Premium | 0.73 |
Fair | 0.91 |
Fair | 0.91 |
Good | 0.91 |
Fair | 0.91 |
Premium | 0.7 |
Premium | 0.68 |
Very Good | 0.73 |
Good | 1.03 |
Premium | 0.74 |
Fair | 0.98 |
Fair | 1.02 |
Fair | 1.0 |
Ideal | 1.02 |
Ideal | 0.6 |
Ideal | 0.8 |
Ideal | 0.97 |
Fair | 1.0 |
Ideal | 0.26 |
Ideal | 0.26 |
Ideal | 0.36 |
Good | 0.34 |
Good | 0.34 |
Good | 0.34 |
Good | 0.34 |
Very Good | 0.34 |
Ideal | 0.34 |
Good | 0.32 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Ideal | 0.31 |
Premium | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Ideal | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Premium | 0.33 |
Ideal | 0.33 |
Ideal | 0.33 |
Good | 0.33 |
Premium | 0.33 |
Fair | 1.0 |
Premium | 0.77 |
Premium | 0.77 |
Good | 0.7 |
Very Good | 0.9 |
Ideal | 0.72 |
Premium | 0.9 |
Premium | 0.72 |
Ideal | 0.7 |
Very Good | 0.81 |
Very Good | 0.81 |
Premium | 0.71 |
Premium | 0.7 |
Premium | 0.71 |
Very Good | 0.71 |
Premium | 0.92 |
Ideal | 0.76 |
Ideal | 0.73 |
Premium | 0.71 |
Good | 0.7 |
Fair | 0.9 |
Fair | 0.71 |
Ideal | 0.7 |
Premium | 0.7 |
Premium | 0.77 |
Ideal | 0.71 |
Premium | 0.7 |
Fair | 0.75 |
Premium | 0.83 |
Very Good | 0.71 |
Very Good | 0.9 |
Ideal | 0.6 |
Premium | 0.71 |
Ideal | 0.53 |
Premium | 0.71 |
Ideal | 0.62 |
Ideal | 0.62 |
Premium | 0.9 |
Fair | 0.62 |
Premium | 0.82 |
Premium | 0.66 |
Very Good | 0.7 |
Very Good | 0.8 |
Very Good | 0.8 |
Premium | 0.79 |
Very Good | 0.71 |
Ideal | 0.7 |
Very Good | 0.7 |
Premium | 0.79 |
Premium | 0.7 |
Premium | 1.22 |
Fair | 1.01 |
Premium | 0.73 |
Good | 0.91 |
Ideal | 0.71 |
Premium | 0.83 |
Premium | 0.84 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.71 |
Premium | 0.71 |
Premium | 0.71 |
Premium | 0.91 |
Premium | 0.9 |
Premium | 0.71 |
Premium | 0.71 |
Ideal | 0.72 |
Premium | 0.72 |
Ideal | 0.71 |
Ideal | 0.81 |
Very Good | 0.83 |
Premium | 0.73 |
Very Good | 0.56 |
Very Good | 0.56 |
Ideal | 0.71 |
Ideal | 0.7 |
Premium | 0.96 |
Very Good | 0.71 |
Ideal | 0.7 |
Ideal | 0.71 |
Premium | 0.8 |
Premium | 0.95 |
Ideal | 0.82 |
Ideal | 0.52 |
Ideal | 0.82 |
Ideal | 0.82 |
Premium | 0.82 |
Ideal | 0.8 |
Fair | 0.96 |
Ideal | 0.72 |
Ideal | 0.62 |
Premium | 0.79 |
Very Good | 0.75 |
Premium | 1.08 |
Ideal | 0.72 |
Ideal | 0.62 |
Ideal | 0.73 |
Ideal | 0.72 |
Premium | 0.52 |
Ideal | 0.83 |
Premium | 0.64 |
Ideal | 0.8 |
Ideal | 0.74 |
Ideal | 0.72 |
Ideal | 0.82 |
Premium | 0.73 |
Premium | 1.04 |
Very Good | 0.73 |
Good | 0.73 |
Premium | 0.9 |
Ideal | 0.75 |
Ideal | 0.79 |
Good | 0.7 |
Very Good | 0.75 |
Ideal | 1.02 |
Very Good | 0.7 |
Ideal | 0.7 |
Good | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Very Good | 0.7 |
Very Good | 0.72 |
Ideal | 0.74 |
Good | 0.84 |
Very Good | 0.76 |
Very Good | 0.77 |
Ideal | 0.76 |
Ideal | 1.0 |
Fair | 1.0 |
Fair | 0.9 |
Premium | 0.9 |
Good | 0.9 |
Fair | 0.9 |
Fair | 0.9 |
Premium | 0.9 |
Premium | 0.78 |
Premium | 0.71 |
Premium | 0.7 |
Premium | 0.7 |
Premium | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Ideal | 0.7 |
Premium | 0.7 |
Fair | 1.0 |
Ideal | 0.77 |
Fair | 1.0 |
Fair | 1.0 |
Fair | 1.0 |
Premium | 0.73 |
Premium | 0.79 |
Very Good | 0.72 |
Ideal | 0.71 |
Ideal | 0.74 |
Good | 0.7 |
Good | 0.7 |
Very Good | 0.79 |
Very Good | 0.79 |
Very Good | 0.79 |
Ideal | 0.71 |
Ideal | 0.79 |
Very Good | 0.73 |
Premium | 0.63 |
Premium | 0.7 |
Premium | 0.71 |
Ideal | 0.84 |
Ideal | 0.84 |
Ideal | 1.02 |
Fair | 0.72 |
Ideal | 0.72 |
Very Good | 0.92 |
Very Good | 0.74 |
Ideal | 0.7 |
Very Good | 0.71 |
Premium | 1.05 |
Very Good | 0.7 |
Ideal | 0.54 |
Premium | 0.73 |
Fair | 0.88 |
Premium | 0.73 |
Ideal | 0.72 |
Good | 0.9 |
Fair | 0.9 |
Fair | 1.03 |
Very Good | 0.84 |
Premium | 1.01 |
Ideal | 0.77 |
Fair | 0.8 |
Fair | 0.9 |
Ideal | 0.73 |
Ideal | 0.72 |
Very Good | 0.71 |
Premium | 0.7 |
Ideal | 0.79 |
Very Good | 0.72 |
Very Good | 0.7 |
Very Good | 0.7 |
Good | 0.9 |
Very Good | 0.71 |
Ideal | 0.5 |
Ideal | 0.5 |
Ideal | 0.74 |
Premium | 0.77 |
Premium | 0.77 |
Ideal | 0.8 |
Ideal | 0.8 |
Premium | 0.8 |
Good | 0.8 |
Ideal | 0.66 |
Very Good | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Ideal | 0.71 |
Ideal | 0.72 |
Good | 0.71 |
Ideal | 0.86 |
Fair | 1.19 |
Very Good | 0.71 |
Very Good | 0.82 |
Ideal | 0.71 |
Ideal | 0.75 |
Very Good | 0.7 |
Ideal | 0.8 |
Good | 0.82 |
Very Good | 0.82 |
Premium | 0.82 |
Very Good | 0.81 |
Ideal | 0.81 |
Ideal | 0.76 |
Very Good | 0.71 |
Very Good | 0.7 |
Ideal | 0.7 |
Very Good | 0.74 |
Very Good | 0.77 |
Very Good | 0.77 |
Ideal | 0.53 |
Ideal | 0.79 |
Ideal | 0.73 |
Ideal | 0.77 |
Premium | 0.77 |
Very Good | 1.01 |
Ideal | 1.01 |
Very Good | 0.6 |
Premium | 0.76 |
Ideal | 0.54 |
Ideal | 0.72 |
Good | 0.72 |
Premium | 0.74 |
Premium | 1.12 |
Try scatter plot to see pairwise scatter plots of continuous features.
display(diamondsDF) //Ctrl+Enter
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326.0 | 3.95 | 3.98 | 2.43 |
0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326.0 | 3.89 | 3.84 | 2.31 |
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.31 | Good | J | SI2 | 63.3 | 58.0 | 335.0 | 4.34 | 4.35 | 2.75 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.26 | Very Good | H | SI1 | 61.9 | 55.0 | 337.0 | 4.07 | 4.11 | 2.53 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.3 | Good | J | SI1 | 64.0 | 55.0 | 339.0 | 4.25 | 4.28 | 2.73 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.22 | Premium | F | SI1 | 60.4 | 61.0 | 342.0 | 3.88 | 3.84 | 2.33 |
0.31 | Ideal | J | SI2 | 62.2 | 54.0 | 344.0 | 4.35 | 4.37 | 2.71 |
0.2 | Premium | E | SI2 | 60.2 | 62.0 | 345.0 | 3.79 | 3.75 | 2.27 |
0.32 | Premium | E | I1 | 60.9 | 58.0 | 345.0 | 4.38 | 4.42 | 2.68 |
0.3 | Ideal | I | SI2 | 62.0 | 54.0 | 348.0 | 4.31 | 4.34 | 2.68 |
0.3 | Good | J | SI1 | 63.4 | 54.0 | 351.0 | 4.23 | 4.29 | 2.7 |
0.3 | Good | J | SI1 | 63.8 | 56.0 | 351.0 | 4.23 | 4.26 | 2.71 |
0.3 | Very Good | J | SI1 | 62.7 | 59.0 | 351.0 | 4.21 | 4.27 | 2.66 |
0.3 | Good | I | SI2 | 63.3 | 56.0 | 351.0 | 4.26 | 4.3 | 2.71 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.31 | Very Good | J | SI1 | 59.4 | 62.0 | 353.0 | 4.39 | 4.43 | 2.62 |
0.31 | Very Good | J | SI1 | 58.1 | 62.0 | 353.0 | 4.44 | 4.47 | 2.59 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.31 | Good | H | SI1 | 64.0 | 54.0 | 402.0 | 4.29 | 4.31 | 2.75 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.33 | Ideal | I | SI2 | 61.8 | 55.0 | 403.0 | 4.49 | 4.51 | 2.78 |
0.33 | Ideal | I | SI2 | 61.2 | 56.0 | 403.0 | 4.49 | 4.5 | 2.75 |
0.33 | Ideal | J | SI1 | 61.1 | 56.0 | 403.0 | 4.49 | 4.55 | 2.76 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.32 | Good | H | SI2 | 63.1 | 56.0 | 403.0 | 4.34 | 4.37 | 2.75 |
0.29 | Premium | F | SI1 | 62.4 | 58.0 | 403.0 | 4.24 | 4.26 | 2.65 |
0.32 | Very Good | H | SI2 | 61.8 | 55.0 | 403.0 | 4.35 | 4.42 | 2.71 |
0.32 | Good | H | SI2 | 63.8 | 56.0 | 403.0 | 4.36 | 4.38 | 2.79 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.29 | Very Good | H | SI2 | 60.7 | 60.0 | 404.0 | 4.33 | 4.37 | 2.64 |
0.24 | Very Good | F | SI1 | 60.9 | 61.0 | 404.0 | 4.02 | 4.03 | 2.45 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.32 | Ideal | I | SI1 | 60.9 | 55.0 | 404.0 | 4.45 | 4.48 | 2.72 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.3 | Ideal | I | SI2 | 61.0 | 59.0 | 405.0 | 4.3 | 4.33 | 2.63 |
0.3 | Premium | J | SI2 | 59.3 | 61.0 | 405.0 | 4.43 | 4.38 | 2.61 |
0.3 | Very Good | I | SI1 | 62.6 | 57.0 | 405.0 | 4.25 | 4.28 | 2.67 |
0.3 | Very Good | I | SI1 | 63.0 | 57.0 | 405.0 | 4.28 | 4.32 | 2.71 |
0.3 | Good | I | SI1 | 63.2 | 55.0 | 405.0 | 4.25 | 4.29 | 2.7 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.3 | Premium | D | SI1 | 62.6 | 59.0 | 552.0 | 4.23 | 4.27 | 2.66 |
0.3 | Ideal | D | SI1 | 62.5 | 57.0 | 552.0 | 4.29 | 4.32 | 2.69 |
0.3 | Ideal | D | SI1 | 62.1 | 56.0 | 552.0 | 4.3 | 4.33 | 2.68 |
0.42 | Premium | I | SI2 | 61.5 | 59.0 | 552.0 | 4.78 | 4.84 | 2.96 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.31 | Very Good | G | SI1 | 63.3 | 57.0 | 553.0 | 4.33 | 4.3 | 2.73 |
0.31 | Premium | G | SI1 | 61.8 | 58.0 | 553.0 | 4.35 | 4.32 | 2.68 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.3 | Very Good | H | SI1 | 63.1 | 56.0 | 554.0 | 4.29 | 4.27 | 2.7 |
0.3 | Premium | H | SI1 | 62.9 | 59.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Premium | H | SI1 | 62.5 | 57.0 | 554.0 | 4.29 | 4.25 | 2.67 |
0.3 | Good | H | SI1 | 63.7 | 57.0 | 554.0 | 4.28 | 4.26 | 2.72 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.38 | Ideal | I | SI2 | 61.6 | 56.0 | 554.0 | 4.65 | 4.67 | 2.87 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.32 | Premium | I | SI1 | 62.9 | 58.0 | 554.0 | 4.35 | 4.33 | 2.73 |
0.7 | Ideal | E | SI1 | 62.5 | 57.0 | 2757.0 | 5.7 | 5.72 | 3.57 |
0.86 | Fair | E | SI2 | 55.1 | 69.0 | 2757.0 | 6.45 | 6.33 | 3.52 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.78 | Very Good | G | SI2 | 63.8 | 56.0 | 2759.0 | 5.81 | 5.85 | 3.72 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.96 | Fair | F | SI2 | 66.3 | 62.0 | 2759.0 | 6.27 | 5.95 | 4.07 |
0.73 | Very Good | E | SI1 | 61.6 | 59.0 | 2760.0 | 5.77 | 5.78 | 3.56 |
0.8 | Premium | H | SI1 | 61.5 | 58.0 | 2760.0 | 5.97 | 5.93 | 3.66 |
0.75 | Very Good | D | SI1 | 63.2 | 56.0 | 2760.0 | 5.8 | 5.75 | 3.65 |
0.75 | Premium | E | SI1 | 59.9 | 54.0 | 2760.0 | 6.0 | 5.96 | 3.58 |
0.74 | Ideal | G | SI1 | 61.6 | 55.0 | 2760.0 | 5.8 | 5.85 | 3.59 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.75 | Ideal | G | SI1 | 62.2 | 55.0 | 2760.0 | 5.87 | 5.8 | 3.63 |
0.8 | Premium | G | SI1 | 63.0 | 59.0 | 2760.0 | 5.9 | 5.81 | 3.69 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.81 | Ideal | F | SI2 | 58.8 | 57.0 | 2761.0 | 6.14 | 6.11 | 3.6 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.8 | Ideal | F | SI2 | 61.4 | 57.0 | 2761.0 | 5.96 | 6.0 | 3.67 |
0.74 | Ideal | E | SI2 | 62.2 | 56.0 | 2761.0 | 5.8 | 5.84 | 3.62 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.74 | Very Good | G | SI1 | 62.2 | 59.0 | 2762.0 | 5.73 | 5.82 | 3.59 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.8 | Premium | F | SI2 | 61.7 | 58.0 | 2762.0 | 5.98 | 5.94 | 3.68 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.8 | Ideal | F | SI2 | 59.9 | 59.0 | 2762.0 | 6.01 | 6.07 | 3.62 |
0.71 | Ideal | D | SI2 | 62.3 | 56.0 | 2762.0 | 5.73 | 5.69 | 3.56 |
0.74 | Ideal | E | SI1 | 62.3 | 54.0 | 2762.0 | 5.8 | 5.83 | 3.62 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.91 | Premium | H | SI1 | 61.4 | 56.0 | 2763.0 | 6.09 | 5.97 | 3.7 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.91 | Fair | H | SI2 | 64.4 | 57.0 | 2763.0 | 6.11 | 6.09 | 3.93 |
0.91 | Fair | H | SI2 | 65.7 | 60.0 | 2763.0 | 6.03 | 5.99 | 3.95 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.71 | Very Good | D | SI1 | 63.6 | 58.0 | 2764.0 | 5.64 | 5.68 | 3.6 |
0.71 | Ideal | D | SI1 | 61.9 | 59.0 | 2764.0 | 5.69 | 5.72 | 3.53 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.76 | Ideal | H | SI1 | 61.2 | 57.0 | 2765.0 | 5.88 | 5.91 | 3.61 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.71 | Ideal | D | SI2 | 61.6 | 55.0 | 2767.0 | 5.74 | 5.76 | 3.54 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.73 | Very Good | D | SI1 | 60.2 | 56.0 | 2768.0 | 5.83 | 5.87 | 3.52 |
0.7 | Very Good | D | SI1 | 61.1 | 58.0 | 2768.0 | 5.66 | 5.73 | 3.48 |
0.7 | Ideal | E | SI1 | 60.9 | 57.0 | 2768.0 | 5.73 | 5.76 | 3.5 |
0.71 | Premium | D | SI2 | 61.7 | 59.0 | 2768.0 | 5.71 | 5.67 | 3.51 |
0.74 | Ideal | I | SI1 | 61.3 | 56.0 | 2769.0 | 5.82 | 5.86 | 3.57 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.76 | Very Good | F | SI1 | 62.9 | 57.0 | 2770.0 | 5.79 | 5.81 | 3.65 |
0.76 | Ideal | D | SI2 | 62.4 | 57.0 | 2770.0 | 5.78 | 5.83 | 3.62 |
0.71 | Ideal | F | SI1 | 60.7 | 56.0 | 2770.0 | 5.77 | 5.8 | 3.51 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Ideal | D | SI2 | 59.9 | 57.0 | 2770.0 | 5.92 | 5.89 | 3.54 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.73 | Very Good | F | SI1 | 61.7 | 60.0 | 2771.0 | 5.79 | 5.82 | 3.58 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.79 | Ideal | F | SI2 | 61.9 | 55.0 | 2771.0 | 5.97 | 5.92 | 3.68 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.8 | Very Good | F | SI2 | 61.0 | 57.0 | 2772.0 | 6.01 | 6.03 | 3.67 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.75 | Ideal | D | SI2 | 61.3 | 56.0 | 2773.0 | 5.85 | 5.89 | 3.6 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
1.17 | Very Good | J | I1 | 60.2 | 61.0 | 2774.0 | 6.83 | 6.9 | 4.13 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.7 | Ideal | E | SI1 | 62.7 | 55.0 | 2774.0 | 5.68 | 5.74 | 3.58 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Ideal | G | SI1 | 61.8 | 56.0 | 2776.0 | 5.72 | 5.75 | 3.55 |
0.72 | Ideal | G | SI1 | 60.7 | 56.0 | 2776.0 | 5.79 | 5.82 | 3.53 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.71 | Ideal | G | SI1 | 60.5 | 56.0 | 2776.0 | 5.8 | 5.76 | 3.5 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Premium | E | SI1 | 60.0 | 59.0 | 2777.0 | 5.79 | 5.75 | 3.46 |
0.7 | Premium | E | SI1 | 61.2 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 62.7 | 59.0 | 2777.0 | 5.67 | 5.63 | 3.54 |
0.7 | Premium | E | SI1 | 61.0 | 57.0 | 2777.0 | 5.73 | 5.68 | 3.48 |
0.7 | Premium | E | SI1 | 61.0 | 58.0 | 2777.0 | 5.78 | 5.72 | 3.51 |
0.7 | Ideal | E | SI1 | 61.4 | 57.0 | 2777.0 | 5.76 | 5.7 | 3.52 |
0.72 | Premium | F | SI1 | 61.8 | 61.0 | 2777.0 | 5.82 | 5.71 | 3.56 |
0.7 | Very Good | E | SI1 | 59.9 | 63.0 | 2777.0 | 5.76 | 5.7 | 3.43 |
0.7 | Premium | E | SI1 | 61.3 | 58.0 | 2777.0 | 5.71 | 5.68 | 3.49 |
0.7 | Premium | E | SI1 | 60.5 | 58.0 | 2777.0 | 5.77 | 5.74 | 3.48 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.98 | Fair | H | SI2 | 67.9 | 60.0 | 2777.0 | 6.05 | 5.97 | 4.08 |
0.78 | Premium | F | SI1 | 62.4 | 58.0 | 2777.0 | 5.83 | 5.8 | 3.63 |
0.7 | Very Good | E | SI1 | 63.2 | 60.0 | 2777.0 | 5.6 | 5.51 | 3.51 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.74 | Ideal | E | SI1 | 61.7 | 56.0 | 2779.0 | 5.84 | 5.8 | 3.59 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
1.01 | Premium | F | I1 | 61.8 | 60.0 | 2781.0 | 6.39 | 6.36 | 3.94 |
0.77 | Ideal | H | SI1 | 62.2 | 56.0 | 2781.0 | 5.83 | 5.88 | 3.64 |
0.78 | Ideal | H | SI1 | 61.2 | 56.0 | 2781.0 | 5.92 | 5.99 | 3.64 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.75 | Very Good | D | SI2 | 63.1 | 58.0 | 2782.0 | 5.78 | 5.73 | 3.63 |
0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2782.0 | 5.76 | 5.75 | 3.5 |
0.72 | Premium | D | SI1 | 62.7 | 59.0 | 2782.0 | 5.73 | 5.69 | 3.58 |
0.7 | Premium | D | SI1 | 62.8 | 60.0 | 2782.0 | 5.68 | 5.66 | 3.56 |
0.84 | Fair | G | SI1 | 55.1 | 67.0 | 2782.0 | 6.39 | 6.2 | 3.47 |
0.75 | Premium | F | SI1 | 61.4 | 59.0 | 2782.0 | 5.88 | 5.85 | 3.6 |
0.52 | Ideal | F | IF | 62.2 | 55.0 | 2783.0 | 5.14 | 5.18 | 3.21 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.71 | Ideal | F | SI1 | 62.5 | 55.0 | 2788.0 | 5.71 | 5.65 | 3.55 |
1.01 | Fair | E | I1 | 64.5 | 58.0 | 2788.0 | 6.29 | 6.21 | 4.03 |
1.01 | Premium | H | SI2 | 62.7 | 59.0 | 2788.0 | 6.31 | 6.22 | 3.93 |
0.77 | Good | F | SI1 | 64.2 | 52.0 | 2789.0 | 5.81 | 5.77 | 3.72 |
0.76 | Good | E | SI1 | 63.7 | 54.0 | 2789.0 | 5.76 | 5.85 | 3.7 |
0.76 | Premium | E | SI1 | 60.4 | 58.0 | 2789.0 | 5.92 | 5.94 | 3.58 |
0.76 | Premium | E | SI1 | 61.8 | 58.0 | 2789.0 | 5.82 | 5.86 | 3.61 |
1.05 | Very Good | J | SI2 | 63.2 | 56.0 | 2789.0 | 6.49 | 6.45 | 4.09 |
0.81 | Ideal | G | SI2 | 61.6 | 56.0 | 2789.0 | 5.97 | 6.01 | 3.69 |
0.7 | Ideal | E | SI1 | 61.6 | 56.0 | 2789.0 | 5.72 | 5.75 | 3.53 |
0.55 | Ideal | G | IF | 60.9 | 57.0 | 2789.0 | 5.28 | 5.3 | 3.22 |
0.81 | Good | G | SI2 | 61.0 | 61.0 | 2789.0 | 5.94 | 5.99 | 3.64 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
1.05 | Fair | J | SI2 | 65.8 | 59.0 | 2789.0 | 6.41 | 6.27 | 4.18 |
0.64 | Ideal | G | IF | 61.3 | 56.0 | 2790.0 | 5.54 | 5.58 | 3.41 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.83 | Ideal | F | SI2 | 62.3 | 55.0 | 2790.0 | 6.02 | 6.05 | 3.76 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.87 | Very Good | I | SI1 | 63.6 | 55.8 | 2791.0 | 6.07 | 6.1 | 3.87 |
0.73 | Ideal | E | SI1 | 62.2 | 56.0 | 2791.0 | 5.74 | 5.78 | 3.58 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2792.0 | 5.83 | 5.86 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2792.0 | 5.7 | 5.75 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2792.0 | 5.72 | 5.77 | 3.52 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.79 | Very Good | G | SI1 | 60.6 | 57.0 | 2793.0 | 5.98 | 6.06 | 3.65 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.79 | Very Good | E | SI1 | 63.2 | 56.0 | 2794.0 | 5.91 | 5.86 | 3.72 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.81 | Ideal | F | SI2 | 62.6 | 55.0 | 2795.0 | 5.92 | 5.96 | 3.72 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.72 | Premium | D | SI2 | 62.0 | 60.0 | 2795.0 | 5.73 | 5.69 | 3.54 |
0.72 | Premium | I | IF | 63.0 | 57.0 | 2795.0 | 5.72 | 5.7 | 3.6 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
1.0 | Premium | I | SI2 | 58.2 | 60.0 | 2795.0 | 6.61 | 6.55 | 3.83 |
0.73 | Good | E | SI1 | 63.2 | 58.0 | 2796.0 | 5.7 | 5.76 | 3.62 |
0.81 | Very Good | H | SI2 | 61.3 | 59.0 | 2797.0 | 5.94 | 6.01 | 3.66 |
0.81 | Very Good | E | SI1 | 60.3 | 60.0 | 2797.0 | 6.07 | 6.1 | 3.67 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2797.0 | 5.67 | 5.71 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2797.0 | 5.73 | 5.75 | 3.52 |
0.71 | Premium | D | SI1 | 61.6 | 60.0 | 2797.0 | 5.74 | 5.69 | 3.52 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Premium | F | SI2 | 61.0 | 57.0 | 2797.0 | 6.03 | 6.01 | 3.67 |
1.01 | Fair | E | SI2 | 67.4 | 60.0 | 2797.0 | 6.19 | 6.05 | 4.13 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.83 | Very Good | E | SI2 | 58.0 | 62.0 | 2799.0 | 6.19 | 6.25 | 3.61 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2799.0 | 5.97 | 6.02 | 3.74 |
0.78 | Ideal | D | SI1 | 61.9 | 57.0 | 2799.0 | 5.91 | 5.86 | 3.64 |
0.6 | Very Good | G | IF | 61.6 | 56.0 | 2800.0 | 5.43 | 5.46 | 3.35 |
0.9 | Good | I | SI2 | 62.2 | 59.0 | 2800.0 | 6.07 | 6.11 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.9 | Very Good | I | SI2 | 61.3 | 56.0 | 2800.0 | 6.17 | 6.23 | 3.8 |
0.83 | Ideal | G | SI1 | 62.3 | 57.0 | 2800.0 | 5.99 | 6.08 | 3.76 |
0.83 | Ideal | G | SI1 | 61.8 | 57.0 | 2800.0 | 6.03 | 6.07 | 3.74 |
0.83 | Very Good | H | SI1 | 62.5 | 59.0 | 2800.0 | 5.95 | 6.02 | 3.74 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.61 | Ideal | G | IF | 62.3 | 56.0 | 2800.0 | 5.43 | 5.45 | 3.39 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2801.0 | 6.37 | 6.41 | 3.88 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.75 | Ideal | H | SI1 | 60.4 | 57.0 | 2801.0 | 5.93 | 5.96 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
1.04 | Premium | G | I1 | 62.2 | 58.0 | 2801.0 | 6.46 | 6.41 | 4.0 |
1.0 | Premium | J | SI2 | 62.3 | 58.0 | 2801.0 | 6.45 | 6.34 | 3.98 |
0.87 | Very Good | G | SI2 | 59.9 | 58.0 | 2802.0 | 6.19 | 6.23 | 3.72 |
0.53 | Ideal | F | IF | 61.9 | 54.0 | 2802.0 | 5.22 | 5.25 | 3.24 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.74 | Very Good | E | SI1 | 63.5 | 56.0 | 2803.0 | 5.74 | 5.79 | 3.66 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.73 | Ideal | E | SI1 | 60.6 | 54.0 | 2803.0 | 5.84 | 5.89 | 3.55 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.91 | Ideal | D | SI2 | 62.2 | 57.0 | 2803.0 | 6.21 | 6.15 | 3.85 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.8 | Very Good | E | SI2 | 62.5 | 56.0 | 2804.0 | 5.88 | 5.96 | 3.7 |
0.7 | Very Good | D | SI1 | 62.3 | 58.0 | 2804.0 | 5.69 | 5.73 | 3.56 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.7 | Ideal | D | SI1 | 61.0 | 59.0 | 2804.0 | 5.68 | 5.7 | 3.47 |
0.72 | Ideal | D | SI1 | 62.2 | 56.0 | 2804.0 | 5.74 | 5.77 | 3.58 |
0.72 | Ideal | D | SI1 | 61.5 | 54.0 | 2804.0 | 5.77 | 5.8 | 3.56 |
0.9 | Fair | I | SI1 | 67.3 | 59.0 | 2804.0 | 5.93 | 5.84 | 3.96 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.73 | Ideal | E | SI2 | 61.8 | 58.0 | 2805.0 | 5.77 | 5.81 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.81 | Very Good | G | SI1 | 62.5 | 60.0 | 2806.0 | 5.89 | 5.94 | 3.69 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.7 | Ideal | F | SI1 | 61.6 | 55.0 | 2806.0 | 5.72 | 5.74 | 3.53 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.93 | Premium | J | SI2 | 61.9 | 57.0 | 2807.0 | 6.21 | 6.19 | 3.84 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
1.0 | Fair | G | I1 | 66.4 | 59.0 | 2808.0 | 6.16 | 6.09 | 4.07 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.73 | Very Good | D | SI1 | 63.1 | 57.0 | 2808.0 | 5.74 | 5.7 | 3.61 |
0.81 | Very Good | F | SI1 | 63.1 | 59.0 | 2809.0 | 5.85 | 5.79 | 3.67 |
0.81 | Premium | D | SI2 | 59.2 | 57.0 | 2809.0 | 6.15 | 6.05 | 3.61 |
0.71 | Premium | F | SI1 | 60.7 | 54.0 | 2809.0 | 5.84 | 5.8 | 3.53 |
1.2 | Fair | F | I1 | 64.6 | 56.0 | 2809.0 | 6.73 | 6.66 | 4.33 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.74 | Ideal | D | SI2 | 61.7 | 55.0 | 2810.0 | 5.81 | 5.85 | 3.6 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
0.8 | Good | G | SI1 | 62.7 | 57.0 | 2810.0 | 5.84 | 5.93 | 3.69 |
0.75 | Very Good | F | SI1 | 63.4 | 58.0 | 2811.0 | 5.72 | 5.76 | 3.64 |
0.83 | Very Good | D | SI1 | 63.5 | 54.0 | 2811.0 | 5.98 | 5.95 | 3.79 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.99 | Fair | I | SI2 | 68.1 | 56.0 | 2811.0 | 6.21 | 6.06 | 4.18 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Good | E | SI1 | 63.5 | 59.0 | 2812.0 | 5.49 | 5.53 | 3.5 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.32 | Premium | I | SI1 | 62.7 | 58.0 | 554.0 | 4.37 | 4.34 | 2.73 |
0.32 | Premium | I | SI1 | 62.8 | 58.0 | 554.0 | 4.39 | 4.34 | 2.74 |
0.32 | Ideal | I | SI1 | 62.4 | 57.0 | 554.0 | 4.37 | 4.35 | 2.72 |
0.32 | Premium | I | SI1 | 61.0 | 59.0 | 554.0 | 4.39 | 4.36 | 2.67 |
0.32 | Very Good | I | SI1 | 63.1 | 56.0 | 554.0 | 4.39 | 4.36 | 2.76 |
0.32 | Ideal | I | SI1 | 60.7 | 57.0 | 554.0 | 4.47 | 4.42 | 2.7 |
0.3 | Premium | H | SI1 | 60.9 | 59.0 | 554.0 | 4.31 | 4.29 | 2.62 |
0.3 | Premium | H | SI1 | 60.1 | 55.0 | 554.0 | 4.41 | 4.38 | 2.64 |
0.3 | Premium | H | SI1 | 62.9 | 58.0 | 554.0 | 4.28 | 4.24 | 2.68 |
0.3 | Very Good | H | SI1 | 63.3 | 56.0 | 554.0 | 4.29 | 4.27 | 2.71 |
0.3 | Good | H | SI1 | 63.8 | 55.0 | 554.0 | 4.26 | 4.2 | 2.7 |
0.3 | Ideal | H | SI1 | 62.9 | 57.0 | 554.0 | 4.27 | 4.22 | 2.67 |
0.3 | Very Good | H | SI1 | 63.4 | 60.0 | 554.0 | 4.25 | 4.23 | 2.69 |
0.32 | Good | I | SI1 | 63.9 | 55.0 | 554.0 | 4.36 | 4.34 | 2.78 |
0.33 | Ideal | H | SI2 | 61.4 | 56.0 | 554.0 | 4.85 | 4.79 | 2.95 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.31 | Very Good | F | SI1 | 61.8 | 58.0 | 555.0 | 4.32 | 4.35 | 2.68 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.35 | Ideal | G | SI1 | 60.6 | 56.0 | 555.0 | 4.56 | 4.58 | 2.77 |
0.43 | Very Good | E | I1 | 58.4 | 62.0 | 555.0 | 4.94 | 5.0 | 2.9 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.71 | Ideal | D | SI1 | 62.4 | 57.0 | 2812.0 | 5.69 | 5.72 | 3.56 |
0.99 | Fair | J | SI1 | 55.0 | 61.0 | 2812.0 | 6.72 | 6.67 | 3.68 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Premium | G | SI2 | 59.8 | 58.0 | 2813.0 | 6.3 | 6.29 | 3.77 |
0.84 | Very Good | E | SI1 | 63.4 | 55.0 | 2813.0 | 6.0 | 5.95 | 3.79 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.76 | Premium | E | SI1 | 62.2 | 59.0 | 2814.0 | 5.86 | 5.81 | 3.63 |
0.76 | Ideal | E | SI1 | 61.7 | 57.0 | 2814.0 | 5.88 | 5.85 | 3.62 |
0.75 | Premium | E | SI1 | 61.1 | 59.0 | 2814.0 | 5.86 | 5.83 | 3.57 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.76 | Very Good | F | SI2 | 58.5 | 62.0 | 2815.0 | 5.93 | 6.01 | 3.49 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.7 | Ideal | H | SI1 | 60.4 | 56.0 | 2815.0 | 5.75 | 5.81 | 3.49 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.7 | 5.76 | 3.52 |
0.7 | Ideal | H | SI1 | 61.5 | 55.0 | 2815.0 | 5.73 | 5.79 | 3.54 |
0.7 | Ideal | H | SI1 | 61.4 | 56.0 | 2815.0 | 5.72 | 5.77 | 3.53 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.95 | Fair | F | SI2 | 56.0 | 60.0 | 2815.0 | 6.62 | 6.53 | 3.68 |
0.89 | Premium | H | SI2 | 60.2 | 59.0 | 2815.0 | 6.26 | 6.23 | 3.76 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.96 | Fair | E | SI2 | 53.1 | 63.0 | 2815.0 | 6.73 | 6.65 | 3.55 |
1.02 | Premium | G | I1 | 60.3 | 58.0 | 2815.0 | 6.55 | 6.5 | 3.94 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.78 | Premium | F | SI1 | 61.5 | 59.0 | 2816.0 | 5.96 | 5.88 | 3.64 |
0.87 | Ideal | H | SI2 | 62.7 | 56.0 | 2816.0 | 6.16 | 6.13 | 3.85 |
0.83 | Ideal | H | SI1 | 62.5 | 55.0 | 2816.0 | 6.04 | 6.0 | 3.76 |
0.71 | Premium | E | SI1 | 61.3 | 56.0 | 2817.0 | 5.78 | 5.73 | 3.53 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.71 | Premium | E | SI1 | 59.2 | 59.0 | 2817.0 | 5.86 | 5.83 | 3.46 |
0.71 | Premium | E | SI1 | 61.8 | 59.0 | 2817.0 | 5.75 | 5.7 | 3.54 |
0.71 | Ideal | E | SI1 | 61.3 | 55.0 | 2817.0 | 5.77 | 5.72 | 3.52 |
0.71 | Premium | E | SI1 | 61.4 | 58.0 | 2817.0 | 5.77 | 5.73 | 3.53 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.71 | Good | E | SI1 | 62.8 | 64.0 | 2817.0 | 5.6 | 5.54 | 3.5 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
1.0 | Premium | H | I1 | 61.3 | 60.0 | 2818.0 | 6.43 | 6.39 | 3.93 |
0.86 | Premium | F | SI2 | 59.3 | 62.0 | 2818.0 | 6.36 | 6.22 | 3.73 |
0.8 | Ideal | H | SI1 | 61.0 | 57.0 | 2818.0 | 6.07 | 6.0 | 3.68 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
1.0 | Fair | H | SI2 | 65.3 | 62.0 | 2818.0 | 6.34 | 6.12 | 4.08 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.86 | Good | F | SI2 | 64.3 | 60.0 | 2819.0 | 5.97 | 5.95 | 3.83 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.75 | Ideal | E | SI1 | 62.0 | 57.0 | 2821.0 | 5.8 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.73 | Premium | E | SI1 | 61.3 | 58.0 | 2821.0 | 5.83 | 5.76 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2821.0 | 5.72 | 5.7 | 3.63 |
0.73 | Premium | E | SI1 | 59.6 | 61.0 | 2821.0 | 5.92 | 5.85 | 3.51 |
0.73 | Premium | E | SI1 | 62.2 | 59.0 | 2821.0 | 5.77 | 5.68 | 3.56 |
0.73 | Premium | D | SI1 | 61.7 | 55.0 | 2821.0 | 5.84 | 5.82 | 3.6 |
0.73 | Very Good | E | SI1 | 63.2 | 58.0 | 2821.0 | 5.76 | 5.7 | 3.62 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.73 | Ideal | F | SI1 | 62.1 | 55.0 | 2822.0 | 5.75 | 5.78 | 3.58 |
0.71 | Premium | D | SI1 | 62.7 | 60.0 | 2822.0 | 5.71 | 5.67 | 3.57 |
0.71 | Premium | D | SI1 | 61.3 | 58.0 | 2822.0 | 5.75 | 5.73 | 3.52 |
0.7 | Premium | D | SI1 | 60.2 | 60.0 | 2822.0 | 5.82 | 5.75 | 3.48 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2822.0 | 5.75 | 5.72 | 3.48 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.71 | Ideal | D | SI1 | 60.2 | 56.0 | 2822.0 | 5.86 | 5.83 | 3.52 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Ideal | D | SI1 | 59.7 | 58.0 | 2822.0 | 5.82 | 5.77 | 3.46 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2822.0 | 5.71 | 5.66 | 3.49 |
0.7 | Ideal | D | SI1 | 62.5 | 57.0 | 2822.0 | 5.62 | 5.59 | 3.51 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2822.0 | 5.73 | 5.63 | 3.51 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2822.0 | 5.75 | 5.71 | 3.52 |
0.79 | Very Good | D | SI2 | 62.8 | 59.0 | 2823.0 | 5.86 | 5.9 | 3.69 |
0.9 | Good | I | SI1 | 63.8 | 57.0 | 2823.0 | 6.06 | 6.13 | 3.89 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.9 | Fair | H | SI2 | 65.8 | 54.0 | 2823.0 | 6.05 | 5.98 | 3.96 |
0.71 | Ideal | E | SI1 | 60.5 | 56.0 | 2823.0 | 5.77 | 5.73 | 3.47 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.82 | Ideal | F | SI2 | 62.4 | 54.0 | 2824.0 | 6.02 | 5.97 | 3.74 |
0.82 | Premium | E | SI2 | 60.8 | 60.0 | 2824.0 | 6.05 | 6.03 | 3.67 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.83 | Premium | H | SI1 | 60.0 | 59.0 | 2825.0 | 6.08 | 6.05 | 3.64 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.83 | Premium | H | SI1 | 62.5 | 59.0 | 2825.0 | 6.02 | 5.95 | 3.74 |
1.17 | Premium | J | I1 | 60.2 | 61.0 | 2825.0 | 6.9 | 6.83 | 4.13 |
0.91 | Fair | H | SI2 | 61.3 | 67.0 | 2825.0 | 6.24 | 6.19 | 3.81 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.9 | Premium | I | SI2 | 62.2 | 59.0 | 2826.0 | 6.11 | 6.07 | 3.79 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.9 | Very Good | I | SI2 | 63.5 | 56.0 | 2826.0 | 6.17 | 6.07 | 3.88 |
0.78 | Premium | F | SI1 | 60.8 | 60.0 | 2826.0 | 5.97 | 5.94 | 3.62 |
0.96 | Ideal | F | I1 | 60.7 | 55.0 | 2826.0 | 6.41 | 6.37 | 3.88 |
0.7 | Very Good | D | SI1 | 62.3 | 59.0 | 2827.0 | 5.67 | 5.7 | 3.54 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.7 | Ideal | D | SI2 | 60.6 | 57.0 | 2828.0 | 5.74 | 5.77 | 3.49 |
1.01 | Premium | H | SI2 | 61.6 | 61.0 | 2828.0 | 6.39 | 6.31 | 3.91 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.8 | Good | E | SI2 | 63.7 | 54.0 | 2829.0 | 5.91 | 5.87 | 3.75 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.75 | Premium | E | SI2 | 61.9 | 57.0 | 2829.0 | 5.88 | 5.82 | 3.62 |
0.8 | Premium | E | SI2 | 60.2 | 57.0 | 2829.0 | 6.05 | 6.01 | 3.63 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.77 | Very Good | H | SI1 | 61.7 | 56.0 | 2830.0 | 5.84 | 5.89 | 3.62 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2830.0 | 6.41 | 6.43 | 3.9 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.9 | Premium | G | SI1 | 60.6 | 62.0 | 2830.0 | 6.21 | 6.13 | 3.74 |
0.76 | Very Good | E | SI2 | 60.8 | 60.0 | 2831.0 | 5.89 | 5.98 | 3.61 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2831.0 | 5.7 | 5.76 | 3.57 |
0.75 | Ideal | E | SI1 | 61.4 | 57.0 | 2831.0 | 5.82 | 5.87 | 3.59 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2831.0 | 5.73 | 5.76 | 3.57 |
0.79 | Ideal | G | SI1 | 61.8 | 56.0 | 2831.0 | 5.93 | 5.91 | 3.66 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.91 | Very Good | I | SI2 | 62.8 | 61.0 | 2832.0 | 6.15 | 6.18 | 3.87 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.81 | Premium | G | SI1 | 63.0 | 60.0 | 2832.0 | 5.87 | 5.81 | 3.68 |
0.82 | Ideal | H | SI1 | 62.5 | 57.0 | 2832.0 | 5.91 | 5.97 | 3.71 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.9 | Good | J | SI1 | 64.3 | 63.0 | 2832.0 | 6.05 | 6.01 | 3.88 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.56 | Very Good | E | IF | 61.0 | 59.0 | 2833.0 | 5.28 | 5.34 | 3.24 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.85 | Ideal | H | SI2 | 62.5 | 57.0 | 2833.0 | 6.02 | 6.07 | 3.78 |
0.7 | Ideal | F | SI1 | 60.7 | 57.0 | 2833.0 | 5.73 | 5.75 | 3.49 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.9 | Very Good | J | SI1 | 63.4 | 54.0 | 2834.0 | 6.17 | 6.14 | 3.9 |
0.9 | Fair | G | SI2 | 65.3 | 59.0 | 2834.0 | 6.07 | 6.0 | 3.94 |
0.77 | Ideal | E | SI2 | 60.7 | 55.0 | 2834.0 | 6.01 | 5.95 | 3.63 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.72 | Ideal | E | SI1 | 61.0 | 57.0 | 2835.0 | 5.78 | 5.8 | 3.53 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.82 | Very Good | H | SI1 | 60.7 | 56.0 | 2836.0 | 6.04 | 6.06 | 3.67 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.71 | Ideal | F | SI1 | 59.8 | 53.0 | 2838.0 | 5.86 | 5.82 | 3.49 |
0.76 | Very Good | H | SI1 | 60.9 | 55.0 | 2838.0 | 5.92 | 5.94 | 3.61 |
0.82 | Fair | F | SI1 | 64.9 | 58.0 | 2838.0 | 5.83 | 5.79 | 3.77 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Very Good | E | SI1 | 63.5 | 59.0 | 2838.0 | 5.53 | 5.49 | 3.5 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.74 | Very Good | E | SI1 | 60.0 | 57.0 | 2839.0 | 5.85 | 5.89 | 3.52 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.75 | Very Good | F | SI2 | 59.8 | 56.0 | 2840.0 | 5.85 | 5.92 | 3.52 |
0.7 | Ideal | F | SI1 | 61.0 | 56.0 | 2840.0 | 5.75 | 5.8 | 3.52 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.92 | Ideal | D | SI2 | 61.9 | 56.0 | 2840.0 | 6.27 | 6.2 | 3.86 |
0.83 | Premium | F | SI2 | 61.4 | 59.0 | 2840.0 | 6.08 | 6.04 | 3.72 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.73 | Very Good | D | SI1 | 63.9 | 57.0 | 2841.0 | 5.66 | 5.71 | 3.63 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2841.0 | 6.0 | 6.12 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2841.0 | 5.96 | 6.02 | 3.73 |
0.82 | Very Good | F | SI2 | 59.7 | 57.0 | 2841.0 | 6.12 | 6.14 | 3.66 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
1.0 | Premium | F | I1 | 58.9 | 60.0 | 2841.0 | 6.6 | 6.55 | 3.87 |
0.95 | Fair | G | SI1 | 66.7 | 56.0 | 2841.0 | 6.16 | 6.03 | 4.06 |
0.73 | Ideal | D | SI1 | 61.4 | 57.0 | 2841.0 | 5.76 | 5.8 | 3.55 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.81 | Very Good | F | SI2 | 63.2 | 58.0 | 2843.0 | 5.91 | 5.92 | 3.74 |
0.71 | Very Good | D | SI1 | 61.5 | 58.0 | 2843.0 | 5.73 | 5.79 | 3.54 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.81 | Ideal | F | SI2 | 62.1 | 57.0 | 2843.0 | 5.91 | 5.95 | 3.68 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.73 | Very Good | E | SI1 | 57.7 | 61.0 | 2844.0 | 5.92 | 5.96 | 3.43 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2844.0 | 6.45 | 6.46 | 3.97 |
1.01 | Good | I | I1 | 63.1 | 57.0 | 2844.0 | 6.35 | 6.39 | 4.02 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
1.27 | Premium | H | SI2 | 59.3 | 61.0 | 2845.0 | 7.12 | 7.05 | 4.2 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2846.0 | 5.96 | 5.91 | 3.65 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
1.01 | Fair | H | SI2 | 65.4 | 59.0 | 2846.0 | 6.3 | 6.26 | 4.11 |
1.01 | Good | H | I1 | 64.2 | 61.0 | 2846.0 | 6.25 | 6.18 | 3.99 |
0.73 | Ideal | E | SI1 | 59.1 | 59.0 | 2846.0 | 5.92 | 5.95 | 3.51 |
0.7 | Ideal | E | SI1 | 61.6 | 57.0 | 2846.0 | 5.71 | 5.76 | 3.53 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | E | SI1 | 62.9 | 59.0 | 2846.0 | 5.84 | 5.79 | 3.66 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.84 | Very Good | H | SI1 | 61.2 | 57.0 | 2847.0 | 6.1 | 6.12 | 3.74 |
0.72 | Ideal | E | SI1 | 60.3 | 57.0 | 2847.0 | 5.83 | 5.85 | 3.52 |
0.76 | Premium | D | SI1 | 61.1 | 59.0 | 2847.0 | 5.93 | 5.88 | 3.61 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.75 | Fair | D | SI2 | 64.6 | 57.0 | 2848.0 | 5.74 | 5.72 | 3.7 |
0.79 | Good | E | SI1 | 64.1 | 54.0 | 2849.0 | 5.86 | 5.84 | 3.75 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.75 | Ideal | J | SI1 | 61.5 | 56.0 | 2850.0 | 5.83 | 5.87 | 3.6 |
1.2 | Very Good | H | I1 | 63.1 | 60.0 | 2850.0 | 6.75 | 6.67 | 4.23 |
0.8 | Very Good | F | SI1 | 63.4 | 57.0 | 2851.0 | 5.89 | 5.82 | 3.71 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.87 | Very Good | F | SI2 | 61.0 | 63.0 | 2851.0 | 6.22 | 6.07 | 3.75 |
0.86 | Premium | H | SI1 | 62.7 | 59.0 | 2851.0 | 6.04 | 5.98 | 3.77 |
0.74 | Ideal | F | SI1 | 61.0 | 57.0 | 2851.0 | 5.85 | 5.81 | 3.56 |
0.58 | Very Good | E | IF | 60.6 | 59.0 | 2852.0 | 5.37 | 5.43 | 3.27 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.74 | Ideal | G | SI1 | 61.3 | 55.0 | 2852.0 | 5.85 | 5.86 | 3.59 |
0.73 | Ideal | E | SI1 | 62.7 | 55.0 | 2852.0 | 5.7 | 5.79 | 3.6 |
0.91 | Very Good | I | SI1 | 63.5 | 57.0 | 2852.0 | 6.12 | 6.07 | 3.87 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.79 | Ideal | D | SI2 | 62.8 | 57.0 | 2853.0 | 5.9 | 5.85 | 3.69 |
0.79 | Premium | D | SI2 | 60.0 | 60.0 | 2853.0 | 6.07 | 6.03 | 3.63 |
0.71 | Premium | E | SI1 | 62.7 | 58.0 | 2853.0 | 5.73 | 5.66 | 3.57 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
1.12 | Premium | H | I1 | 59.1 | 61.0 | 2854.0 | 6.78 | 6.75 | 4.0 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.91 | Fair | H | SI1 | 65.8 | 58.0 | 2854.0 | 6.04 | 6.01 | 3.96 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
1.03 | Good | J | SI1 | 63.6 | 57.0 | 2855.0 | 6.38 | 6.29 | 4.03 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.98 | Fair | E | SI2 | 53.3 | 67.0 | 2855.0 | 6.82 | 6.74 | 3.61 |
1.02 | Fair | I | SI1 | 53.0 | 63.0 | 2856.0 | 6.84 | 6.77 | 3.66 |
1.0 | Fair | G | SI2 | 67.8 | 61.0 | 2856.0 | 5.96 | 5.9 | 4.02 |
1.02 | Ideal | H | SI2 | 61.6 | 55.0 | 2856.0 | 6.49 | 6.43 | 3.98 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.8 | Ideal | G | SI2 | 61.6 | 56.0 | 2856.0 | 5.97 | 6.01 | 3.69 |
0.97 | Ideal | F | I1 | 60.7 | 56.0 | 2856.0 | 6.43 | 6.41 | 3.9 |
1.0 | Fair | I | SI1 | 67.9 | 62.0 | 2856.0 | 6.19 | 6.03 | 4.15 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.36 | Ideal | H | SI1 | 61.9 | 55.0 | 556.0 | 4.57 | 4.59 | 2.83 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Good | E | SI1 | 63.3 | 57.0 | 556.0 | 4.44 | 4.47 | 2.82 |
0.34 | Good | E | SI1 | 63.5 | 55.0 | 556.0 | 4.44 | 4.47 | 2.83 |
0.34 | Good | E | SI1 | 63.4 | 55.0 | 556.0 | 4.44 | 4.46 | 2.82 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.34 | Ideal | E | SI1 | 62.2 | 54.0 | 556.0 | 4.47 | 4.5 | 2.79 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | G | SI2 | 59.4 | 59.0 | 557.0 | 4.52 | 4.5 | 2.68 |
0.33 | Premium | F | SI2 | 62.3 | 58.0 | 557.0 | 4.43 | 4.4 | 2.75 |
0.33 | Premium | G | SI2 | 62.6 | 58.0 | 557.0 | 4.42 | 4.4 | 2.76 |
0.33 | Ideal | G | SI2 | 61.9 | 56.0 | 557.0 | 4.45 | 4.41 | 2.74 |
0.33 | Premium | F | SI2 | 63.0 | 58.0 | 557.0 | 4.42 | 4.4 | 2.78 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.33 | Ideal | I | SI1 | 63.0 | 57.0 | 557.0 | 4.39 | 4.37 | 2.76 |
0.33 | Good | I | SI1 | 63.6 | 53.0 | 557.0 | 4.43 | 4.4 | 2.81 |
0.33 | Premium | I | SI1 | 60.4 | 59.0 | 557.0 | 4.54 | 4.5 | 2.73 |
1.0 | Fair | H | SI2 | 66.1 | 56.0 | 2856.0 | 6.21 | 5.97 | 4.04 |
0.77 | Premium | F | SI1 | 60.8 | 59.0 | 2856.0 | 5.92 | 5.86 | 3.58 |
0.77 | Premium | F | SI1 | 61.0 | 58.0 | 2856.0 | 5.94 | 5.9 | 3.61 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Very Good | G | SI2 | 63.1 | 58.0 | 2857.0 | 6.08 | 6.02 | 3.82 |
0.72 | Ideal | E | SI1 | 62.3 | 57.0 | 2857.0 | 5.76 | 5.7 | 3.57 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.72 | Premium | E | SI1 | 62.1 | 58.0 | 2857.0 | 5.76 | 5.73 | 3.57 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.81 | Very Good | F | SI1 | 61.3 | 57.0 | 2858.0 | 6.02 | 6.05 | 3.7 |
0.81 | Very Good | F | SI1 | 61.7 | 57.0 | 2858.0 | 6.0 | 6.05 | 3.72 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.92 | Premium | J | SI1 | 62.9 | 58.0 | 2858.0 | 6.22 | 6.18 | 3.9 |
0.76 | Ideal | E | SI1 | 62.7 | 54.0 | 2858.0 | 5.88 | 5.83 | 3.67 |
0.73 | Ideal | D | SI1 | 61.5 | 56.0 | 2858.0 | 5.84 | 5.8 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.9 | Fair | G | SI2 | 64.5 | 56.0 | 2858.0 | 6.06 | 6.0 | 3.89 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.83 | Premium | E | SI2 | 59.2 | 60.0 | 2859.0 | 6.17 | 6.12 | 3.64 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.9 | Very Good | J | SI2 | 63.6 | 58.0 | 2860.0 | 6.07 | 6.1 | 3.87 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.71 | Premium | D | SI1 | 60.7 | 58.0 | 2861.0 | 5.95 | 5.78 | 3.56 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.9 | Premium | I | SI1 | 63.0 | 58.0 | 2861.0 | 6.09 | 6.01 | 3.81 |
0.62 | Fair | F | IF | 60.1 | 61.0 | 2861.0 | 5.53 | 5.56 | 3.33 |
0.82 | Premium | E | SI2 | 61.7 | 59.0 | 2861.0 | 6.01 | 5.98 | 3.7 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.7 | Very Good | D | SI1 | 62.5 | 55.0 | 2862.0 | 5.67 | 5.72 | 3.56 |
0.8 | Very Good | F | SI1 | 62.6 | 58.0 | 2862.0 | 5.9 | 5.92 | 3.7 |
0.8 | Very Good | D | SI2 | 62.5 | 59.0 | 2862.0 | 5.88 | 5.92 | 3.69 |
0.79 | Premium | F | SI1 | 62.3 | 54.0 | 2862.0 | 5.97 | 5.91 | 3.7 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
1.22 | Premium | E | I1 | 60.9 | 57.0 | 2862.0 | 6.93 | 6.88 | 4.21 |
1.01 | Fair | E | SI2 | 67.6 | 57.0 | 2862.0 | 6.21 | 6.11 | 4.18 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.71 | Ideal | D | SI1 | 60.8 | 56.0 | 2863.0 | 5.8 | 5.77 | 3.52 |
0.83 | Premium | G | SI1 | 62.3 | 58.0 | 2863.0 | 6.01 | 5.97 | 3.73 |
0.84 | Premium | F | SI2 | 62.3 | 59.0 | 2863.0 | 6.06 | 6.01 | 3.76 |
0.71 | Premium | D | SI1 | 61.0 | 61.0 | 2863.0 | 5.82 | 5.75 | 3.53 |
0.71 | Premium | D | SI1 | 59.7 | 59.0 | 2863.0 | 5.82 | 5.8 | 3.47 |
0.71 | Premium | D | SI1 | 61.7 | 56.0 | 2863.0 | 5.8 | 5.68 | 3.54 |
0.71 | Ideal | D | SI1 | 61.7 | 57.0 | 2863.0 | 5.75 | 5.7 | 3.53 |
0.71 | Premium | D | SI1 | 61.4 | 58.0 | 2863.0 | 5.79 | 5.75 | 3.54 |
0.71 | Premium | D | SI1 | 60.6 | 58.0 | 2863.0 | 5.79 | 5.77 | 3.5 |
0.91 | Premium | J | SI1 | 59.5 | 62.0 | 2863.0 | 6.4 | 6.18 | 3.74 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.71 | Premium | E | SI1 | 59.1 | 61.0 | 2863.0 | 5.84 | 5.8 | 3.44 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.72 | Premium | E | SI1 | 60.9 | 60.0 | 2863.0 | 5.78 | 5.74 | 3.51 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.81 | Ideal | E | SI2 | 60.3 | 57.0 | 2864.0 | 6.07 | 6.04 | 3.65 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.73 | Premium | D | SI1 | 60.8 | 55.0 | 2865.0 | 5.87 | 5.81 | 3.55 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.96 | Premium | I | SI1 | 61.3 | 58.0 | 2866.0 | 6.39 | 6.3 | 3.89 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.95 | Premium | F | SI2 | 58.4 | 57.0 | 2867.0 | 6.49 | 6.41 | 3.77 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 5.99 | 5.95 | 3.72 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.82 | Ideal | F | SI2 | 61.7 | 53.0 | 2867.0 | 6.12 | 6.0 | 3.74 |
0.82 | Ideal | F | SI2 | 62.3 | 56.0 | 2867.0 | 6.02 | 5.96 | 3.73 |
0.82 | Premium | F | SI2 | 59.7 | 57.0 | 2867.0 | 6.14 | 6.12 | 3.66 |
0.8 | Ideal | G | SI1 | 61.3 | 57.0 | 2867.0 | 5.96 | 5.91 | 3.64 |
0.96 | Fair | F | SI2 | 68.2 | 61.0 | 2867.0 | 6.07 | 5.88 | 4.1 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.62 | Ideal | G | IF | 60.5 | 57.0 | 2868.0 | 5.52 | 5.56 | 3.35 |
0.79 | Premium | E | SI2 | 61.0 | 58.0 | 2868.0 | 5.96 | 5.9 | 3.62 |
0.75 | Very Good | E | SI1 | 63.1 | 56.0 | 2868.0 | 5.78 | 5.7 | 3.62 |
1.08 | Premium | D | I1 | 61.9 | 60.0 | 2869.0 | 6.55 | 6.48 | 4.03 |
0.72 | Ideal | E | SI1 | 60.8 | 55.0 | 2869.0 | 5.77 | 5.84 | 3.53 |
0.62 | Ideal | G | IF | 61.8 | 56.0 | 2869.0 | 5.43 | 5.47 | 3.37 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.83 | Ideal | E | SI2 | 62.2 | 57.0 | 2870.0 | 6.0 | 6.05 | 3.75 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.8 | Ideal | G | SI1 | 62.5 | 57.0 | 2870.0 | 5.94 | 5.9 | 3.7 |
0.74 | Ideal | H | SI1 | 62.1 | 56.0 | 2870.0 | 5.77 | 5.83 | 3.6 |
0.72 | Ideal | F | SI1 | 61.5 | 56.0 | 2870.0 | 5.72 | 5.79 | 3.54 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
1.04 | Premium | I | I1 | 61.6 | 61.0 | 2870.0 | 6.47 | 6.45 | 3.98 |
0.73 | Very Good | E | SI1 | 61.3 | 58.0 | 2871.0 | 5.76 | 5.83 | 3.55 |
0.73 | Good | E | SI1 | 63.6 | 57.0 | 2871.0 | 5.7 | 5.72 | 3.63 |
0.9 | Premium | J | SI1 | 62.8 | 59.0 | 2871.0 | 6.13 | 6.03 | 3.82 |
0.75 | Ideal | I | SI1 | 61.8 | 55.0 | 2871.0 | 5.83 | 5.85 | 3.61 |
0.79 | Ideal | G | SI1 | 62.6 | 55.0 | 2871.0 | 5.91 | 5.95 | 3.71 |
0.7 | Good | D | SI1 | 62.5 | 56.7 | 2872.0 | 5.59 | 5.62 | 3.51 |
0.75 | Very Good | D | SI1 | 60.7 | 55.0 | 2872.0 | 5.87 | 5.92 | 3.58 |
1.02 | Ideal | I | I1 | 61.7 | 56.0 | 2872.0 | 6.44 | 6.49 | 3.99 |
0.7 | Very Good | G | SI2 | 59.0 | 62.0 | 2872.0 | 5.79 | 5.81 | 3.42 |
0.7 | Ideal | D | SI1 | 61.8 | 56.0 | 2872.0 | 5.63 | 5.73 | 3.51 |
0.7 | Good | E | SI1 | 61.4 | 64.0 | 2872.0 | 5.66 | 5.71 | 3.49 |
0.7 | Ideal | D | SI1 | 61.4 | 54.0 | 2872.0 | 5.71 | 5.75 | 3.52 |
0.7 | Ideal | D | SI1 | 60.7 | 56.0 | 2872.0 | 5.72 | 5.75 | 3.48 |
0.7 | Very Good | D | SI1 | 60.2 | 60.0 | 2872.0 | 5.75 | 5.82 | 3.48 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.74 | Ideal | E | SI1 | 62.3 | 58.0 | 2872.0 | 5.74 | 5.78 | 3.59 |
0.84 | Good | G | SI1 | 65.1 | 55.0 | 2872.0 | 5.88 | 5.97 | 3.86 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.77 | Very Good | E | SI1 | 63.2 | 58.0 | 2873.0 | 5.8 | 5.84 | 3.68 |
0.76 | Ideal | E | SI2 | 62.8 | 56.0 | 2873.0 | 5.78 | 5.82 | 3.64 |
1.0 | Ideal | I | SI2 | 61.7 | 56.0 | 2873.0 | 6.45 | 6.41 | 3.97 |
1.0 | Fair | H | SI1 | 65.5 | 62.0 | 2873.0 | 6.14 | 6.07 | 4.0 |
0.9 | Fair | I | SI1 | 65.7 | 58.0 | 2873.0 | 6.03 | 6.0 | 3.95 |
0.9 | Premium | J | SI1 | 61.8 | 58.0 | 2873.0 | 6.16 | 6.13 | 3.8 |
0.9 | Good | J | SI1 | 64.0 | 61.0 | 2873.0 | 6.0 | 5.96 | 3.83 |
0.9 | Fair | I | SI1 | 65.3 | 61.0 | 2873.0 | 5.98 | 5.94 | 3.89 |
0.9 | Fair | I | SI1 | 65.8 | 56.0 | 2873.0 | 6.01 | 5.96 | 3.94 |
0.9 | Premium | J | SI1 | 60.9 | 61.0 | 2873.0 | 6.26 | 6.22 | 3.8 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | H | SI2 | 67.7 | 60.0 | 2875.0 | 6.11 | 5.98 | 4.09 |
0.77 | Ideal | H | SI1 | 62.4 | 56.0 | 2875.0 | 5.84 | 5.9 | 3.66 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
1.0 | Fair | I | SI1 | 66.3 | 61.0 | 2875.0 | 6.08 | 6.03 | 4.01 |
1.0 | Fair | H | SI2 | 69.5 | 55.0 | 2875.0 | 6.17 | 6.1 | 4.26 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.79 | Very Good | F | SI1 | 62.8 | 59.0 | 2878.0 | 5.86 | 5.89 | 3.69 |
0.79 | Very Good | F | SI1 | 62.7 | 60.0 | 2878.0 | 5.82 | 5.89 | 3.67 |
0.79 | Very Good | D | SI2 | 59.7 | 58.0 | 2878.0 | 6.0 | 6.07 | 3.6 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.79 | Ideal | F | SI1 | 62.8 | 56.0 | 2878.0 | 5.88 | 5.9 | 3.7 |
0.73 | Very Good | F | SI1 | 61.4 | 56.0 | 2879.0 | 5.81 | 5.86 | 3.58 |
0.63 | Premium | E | IF | 60.3 | 62.0 | 2879.0 | 5.55 | 5.53 | 3.34 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.84 | Ideal | G | SI2 | 61.0 | 56.0 | 2879.0 | 6.13 | 6.1 | 3.73 |
0.84 | Ideal | G | SI2 | 62.3 | 55.0 | 2879.0 | 6.08 | 6.03 | 3.77 |
1.02 | Ideal | J | SI2 | 60.3 | 54.0 | 2879.0 | 6.53 | 6.5 | 3.93 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.92 | Very Good | J | SI2 | 58.7 | 61.0 | 2880.0 | 6.34 | 6.43 | 3.75 |
0.74 | Very Good | D | SI1 | 63.9 | 57.0 | 2880.0 | 5.72 | 5.74 | 3.66 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
1.05 | Premium | H | I1 | 62.0 | 59.0 | 2881.0 | 6.5 | 6.47 | 4.02 |
0.7 | Very Good | H | IF | 62.8 | 56.0 | 2882.0 | 5.62 | 5.65 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.88 | Fair | F | SI1 | 56.6 | 65.0 | 2882.0 | 6.39 | 6.32 | 3.6 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.72 | Ideal | D | SI1 | 61.8 | 56.0 | 2883.0 | 5.75 | 5.81 | 3.57 |
0.9 | Good | H | SI2 | 62.7 | 64.0 | 2883.0 | 6.09 | 6.0 | 3.79 |
0.9 | Fair | H | SI2 | 65.0 | 61.0 | 2883.0 | 6.01 | 5.96 | 3.89 |
1.03 | Fair | I | SI2 | 65.3 | 55.0 | 2884.0 | 6.32 | 6.27 | 4.11 |
0.84 | Very Good | F | SI1 | 63.8 | 57.0 | 2885.0 | 5.95 | 6.0 | 3.81 |
1.01 | Premium | I | SI1 | 62.7 | 60.0 | 2885.0 | 6.36 | 6.27 | 3.96 |
0.77 | Ideal | D | SI2 | 61.5 | 55.0 | 2885.0 | 5.9 | 5.93 | 3.64 |
0.8 | Fair | E | SI1 | 56.3 | 63.0 | 2885.0 | 6.22 | 6.14 | 3.48 |
0.9 | Fair | D | SI2 | 66.9 | 57.0 | 2885.0 | 6.02 | 5.9 | 3.99 |
0.73 | Ideal | E | SI1 | 61.4 | 56.0 | 2886.0 | 5.79 | 5.81 | 3.56 |
0.72 | Ideal | E | SI1 | 62.7 | 55.0 | 2886.0 | 5.64 | 5.69 | 3.55 |
0.71 | Very Good | D | SI1 | 62.4 | 54.0 | 2887.0 | 5.71 | 5.79 | 3.59 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.9 | Good | H | SI2 | 63.5 | 58.0 | 2889.0 | 6.09 | 6.14 | 3.88 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.74 | Ideal | F | SI1 | 61.2 | 56.0 | 2889.0 | 5.83 | 5.87 | 3.58 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.77 | Premium | E | SI1 | 59.8 | 61.0 | 2889.0 | 5.99 | 5.95 | 3.57 |
0.8 | Ideal | F | SI1 | 61.5 | 54.0 | 2890.0 | 6.07 | 6.0 | 3.71 |
0.8 | Ideal | F | SI1 | 62.4 | 57.0 | 2890.0 | 5.9 | 5.87 | 3.67 |
0.8 | Premium | F | SI1 | 61.5 | 60.0 | 2890.0 | 5.97 | 5.94 | 3.66 |
0.8 | Good | F | SI1 | 63.8 | 59.0 | 2890.0 | 5.87 | 5.83 | 3.73 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.72 | Ideal | D | SI1 | 61.1 | 56.0 | 2891.0 | 5.78 | 5.81 | 3.54 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.86 | Ideal | H | SI2 | 61.8 | 55.0 | 2892.0 | 6.12 | 6.14 | 3.79 |
1.19 | Fair | H | I1 | 65.1 | 59.0 | 2892.0 | 6.62 | 6.55 | 4.29 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.82 | Very Good | G | SI2 | 62.5 | 56.0 | 2893.0 | 5.99 | 6.04 | 3.76 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.8 | Ideal | G | SI2 | 62.5 | 55.0 | 2893.0 | 5.89 | 5.92 | 3.69 |
0.82 | Good | G | SI2 | 59.9 | 62.0 | 2893.0 | 6.02 | 6.04 | 3.61 |
0.82 | Very Good | G | SI1 | 63.4 | 55.0 | 2893.0 | 6.0 | 5.93 | 3.78 |
0.82 | Premium | G | SI1 | 59.9 | 59.0 | 2893.0 | 6.09 | 6.06 | 3.64 |
0.81 | Very Good | E | SI2 | 62.4 | 57.0 | 2894.0 | 5.91 | 5.99 | 3.71 |
0.81 | Ideal | G | SI2 | 62.2 | 57.0 | 2894.0 | 5.96 | 6.0 | 3.72 |
0.76 | Ideal | F | SI1 | 61.4 | 56.0 | 2894.0 | 5.88 | 5.92 | 3.62 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.79 | Ideal | D | SI1 | 61.5 | 56.0 | 2896.0 | 5.91 | 5.96 | 3.65 |
0.73 | Ideal | E | SI2 | 61.5 | 55.0 | 2896.0 | 5.82 | 5.86 | 3.59 |
0.77 | Ideal | D | SI2 | 62.1 | 56.0 | 2896.0 | 5.83 | 5.89 | 3.64 |
0.77 | Premium | E | SI1 | 60.9 | 58.0 | 2896.0 | 5.94 | 5.88 | 3.6 |
1.01 | Very Good | I | I1 | 63.1 | 57.0 | 2896.0 | 6.39 | 6.35 | 4.02 |
1.01 | Ideal | I | I1 | 61.5 | 57.0 | 2896.0 | 6.46 | 6.45 | 3.97 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.76 | Premium | E | SI1 | 61.1 | 58.0 | 2897.0 | 5.91 | 5.85 | 3.59 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Ideal | E | SI1 | 62.5 | 55.0 | 2897.0 | 5.69 | 5.74 | 3.57 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
1.12 | Premium | J | SI2 | 60.6 | 59.0 | 2898.0 | 6.68 | 6.61 | 4.03 |
Note that columns of type string are not in the scatter plot!
diamondsDF.printSchema // Ctrl+Enter
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
Let us run through some basic inteactive SQL queries next
- HiveQL supports =, <, >, <=, >= and != operators. It also supports LIKE operator for fuzzy matching of Strings
- Enclose Strings in single quotes
- Multiple conditions can be combined using
and
andor
- Enclose conditions in
()
for precedence - ...
- ...
Why do I need to learn interactive SQL queries?
Such queries in the widely known declarative SQL language can help us explore the data and thereby inform the modeling process!!!
Using DataFrame API, we can apply a filter
after select
to transform the DataFrame diamondsDF
to the new DataFrame diamondsDColoredDF
.
Below, $
is an alias for column.
Let as select the columns named carat
, colour
, price
where color
value is equal to D
.
val diamondsDColoredDF = diamondsDF.select("carat", "color", "price").filter($"color" === "D") // Shift+Enter
diamondsDColoredDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [carat: double, color: string ... 1 more field]
diamondsDColoredDF.show(10) // Ctrl+Enter
+-----+-----+-----+
|carat|color|price|
+-----+-----+-----+
| 0.23| D|357.0|
| 0.23| D|402.0|
| 0.26| D|403.0|
| 0.26| D|403.0|
| 0.26| D|403.0|
| 0.22| D|404.0|
| 0.3| D|552.0|
| 0.3| D|552.0|
| 0.3| D|552.0|
| 0.24| D|553.0|
+-----+-----+-----+
only showing top 10 rows
As you can see all the colors are now 'D'. But to really confirm this we can do the following for fun:
diamondsDColoredDF.select("color").distinct().show
+-----+
|color|
+-----+
| D|
+-----+
Let's try to do the same in SQL for those who know SQL from before.
First we need to see if the table is registerd (not just the DataFrame), and if not we ened to register our DataFrame as a temporary table.
sqlContext.tables.show() // Ctrl+Enter to see available tables
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default|fxdata_bco_usd_20...| false|
| default|fxdata_xau_usd_20...| false|
| default|power_plant_predi...| false|
| default| sentimentlex_csv| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
+--------+--------------------+-----------+
Looks like diamonds is already there (if not just execute the following cell).
diamondsDF.createOrReplaceTempView("diamonds")
sqlContext.tables.show() // Ctrl+Enter to see available tables
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default|fxdata_bco_usd_20...| false|
| default|fxdata_xau_usd_20...| false|
| default|power_plant_predi...| false|
| default| sentimentlex_csv| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
| | diamonds| true|
+--------+--------------------+-----------+
-- Shift+Enter to do the same in SQL
select carat, color, price from diamonds where color='D'
carat | color | price |
---|---|---|
0.23 | D | 357.0 |
0.23 | D | 402.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.22 | D | 404.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.24 | D | 553.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.75 | D | 2760.0 |
0.71 | D | 2762.0 |
0.61 | D | 2763.0 |
0.71 | D | 2764.0 |
0.71 | D | 2764.0 |
0.7 | D | 2767.0 |
0.71 | D | 2767.0 |
0.73 | D | 2768.0 |
0.7 | D | 2768.0 |
0.71 | D | 2768.0 |
0.71 | D | 2770.0 |
0.76 | D | 2770.0 |
0.73 | D | 2770.0 |
0.75 | D | 2773.0 |
0.7 | D | 2773.0 |
0.7 | D | 2777.0 |
0.53 | D | 2782.0 |
0.75 | D | 2782.0 |
0.72 | D | 2782.0 |
0.72 | D | 2782.0 |
0.7 | D | 2782.0 |
0.64 | D | 2787.0 |
0.71 | D | 2788.0 |
0.72 | D | 2795.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.51 | D | 2797.0 |
0.78 | D | 2799.0 |
0.91 | D | 2803.0 |
0.7 | D | 2804.0 |
0.7 | D | 2804.0 |
0.72 | D | 2804.0 |
0.72 | D | 2804.0 |
0.73 | D | 2808.0 |
0.81 | D | 2809.0 |
0.74 | D | 2810.0 |
0.83 | D | 2811.0 |
0.71 | D | 2812.0 |
0.55 | D | 2815.0 |
0.71 | D | 2816.0 |
0.73 | D | 2821.0 |
0.71 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.79 | D | 2823.0 |
0.71 | D | 2824.0 |
0.7 | D | 2826.0 |
0.7 | D | 2827.0 |
0.72 | D | 2827.0 |
0.7 | D | 2828.0 |
0.7 | D | 2833.0 |
0.7 | D | 2833.0 |
0.51 | D | 2834.0 |
0.92 | D | 2840.0 |
0.71 | D | 2841.0 |
0.73 | D | 2841.0 |
0.73 | D | 2841.0 |
0.71 | D | 2843.0 |
0.79 | D | 2846.0 |
0.76 | D | 2847.0 |
0.54 | D | 2848.0 |
0.75 | D | 2848.0 |
0.66 | D | 2851.0 |
0.79 | D | 2853.0 |
0.79 | D | 2853.0 |
0.74 | D | 2855.0 |
0.73 | D | 2858.0 |
0.71 | D | 2858.0 |
0.71 | D | 2858.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.71 | D | 2860.0 |
0.71 | D | 2861.0 |
0.66 | D | 2861.0 |
0.7 | D | 2862.0 |
0.8 | D | 2862.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.73 | D | 2865.0 |
0.56 | D | 2866.0 |
0.56 | D | 2866.0 |
0.7 | D | 2867.0 |
1.08 | D | 2869.0 |
0.7 | D | 2872.0 |
0.75 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.71 | D | 2874.0 |
0.79 | D | 2878.0 |
0.74 | D | 2880.0 |
0.72 | D | 2883.0 |
0.77 | D | 2885.0 |
0.9 | D | 2885.0 |
0.71 | D | 2887.0 |
0.72 | D | 2891.0 |
0.71 | D | 2891.0 |
0.79 | D | 2896.0 |
0.77 | D | 2896.0 |
0.6 | D | 2897.0 |
0.54 | D | 2897.0 |
0.74 | D | 2897.0 |
0.75 | D | 2898.0 |
0.77 | D | 2898.0 |
0.72 | D | 2900.0 |
0.75 | D | 2903.0 |
0.75 | D | 2903.0 |
0.72 | D | 2903.0 |
0.72 | D | 2903.0 |
0.79 | D | 2904.0 |
0.53 | D | 2905.0 |
0.74 | D | 2906.0 |
0.32 | D | 558.0 |
0.7 | D | 2909.0 |
0.7 | D | 2909.0 |
0.71 | D | 2910.0 |
0.7 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.83 | D | 2918.0 |
0.71 | D | 2921.0 |
0.77 | D | 2922.0 |
0.77 | D | 2923.0 |
0.8 | D | 2925.0 |
0.81 | D | 2926.0 |
0.7 | D | 2928.0 |
0.59 | D | 2933.0 |
0.75 | D | 2933.0 |
0.71 | D | 2934.0 |
0.7 | D | 2936.0 |
0.77 | D | 2939.0 |
0.76 | D | 2942.0 |
0.73 | D | 2943.0 |
0.57 | D | 2945.0 |
0.78 | D | 2945.0 |
0.73 | D | 2947.0 |
0.73 | D | 2947.0 |
0.77 | D | 2949.0 |
0.71 | D | 2950.0 |
0.72 | D | 2951.0 |
0.72 | D | 2954.0 |
0.72 | D | 2954.0 |
0.75 | D | 2954.0 |
0.82 | D | 2954.0 |
0.7 | D | 2956.0 |
0.56 | D | 2959.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.63 | D | 2962.0 |
0.71 | D | 2964.0 |
0.71 | D | 2968.0 |
0.77 | D | 2973.0 |
1.0 | D | 2974.0 |
0.76 | D | 2977.0 |
0.7 | D | 2980.0 |
0.7 | D | 2985.0 |
0.74 | D | 2987.0 |
0.83 | D | 2990.0 |
0.7 | D | 2991.0 |
0.72 | D | 2993.0 |
0.81 | D | 2994.0 |
0.73 | D | 2995.0 |
0.77 | D | 2996.0 |
0.7 | D | 2998.0 |
0.7 | D | 2999.0 |
0.72 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.71 | D | 3002.0 |
1.01 | D | 3003.0 |
0.65 | D | 3003.0 |
0.92 | D | 3004.0 |
0.55 | D | 3006.0 |
0.76 | D | 3007.0 |
0.7 | D | 3008.0 |
0.8 | D | 3011.0 |
0.77 | D | 3011.0 |
0.9 | D | 3013.0 |
0.73 | D | 3014.0 |
0.72 | D | 3016.0 |
0.5 | D | 3017.0 |
0.78 | D | 3019.0 |
0.71 | D | 3020.0 |
0.75 | D | 3024.0 |
0.75 | D | 3024.0 |
0.65 | D | 3025.0 |
0.71 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.78 | D | 3035.0 |
0.71 | D | 3035.0 |
0.74 | D | 3036.0 |
0.61 | D | 3036.0 |
0.77 | D | 3040.0 |
0.71 | D | 3045.0 |
0.72 | D | 3045.0 |
0.75 | D | 3046.0 |
0.73 | D | 3047.0 |
0.75 | D | 3048.0 |
0.72 | D | 3048.0 |
0.72 | D | 3048.0 |
0.66 | D | 3049.0 |
0.62 | D | 3050.0 |
0.7 | D | 3052.0 |
0.7 | D | 3053.0 |
0.7 | D | 3054.0 |
0.65 | D | 3056.0 |
0.92 | D | 3057.0 |
0.79 | D | 3058.0 |
0.72 | D | 3062.0 |
0.85 | D | 3066.0 |
0.7 | D | 3073.0 |
0.72 | D | 3075.0 |
0.72 | D | 3075.0 |
0.7 | D | 3075.0 |
0.76 | D | 3075.0 |
0.71 | D | 3077.0 |
0.71 | D | 3077.0 |
0.75 | D | 3078.0 |
0.83 | D | 3078.0 |
0.91 | D | 3079.0 |
0.79 | D | 3081.0 |
0.7 | D | 3082.0 |
0.8 | D | 3082.0 |
0.71 | D | 3084.0 |
0.75 | D | 3085.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.74 | D | 3087.0 |
0.71 | D | 3090.0 |
0.71 | D | 3090.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3093.0 |
0.71 | D | 3096.0 |
0.71 | D | 3096.0 |
0.53 | D | 3097.0 |
0.72 | D | 3099.0 |
0.72 | D | 3102.0 |
0.66 | D | 3103.0 |
0.78 | D | 3103.0 |
0.75 | D | 3105.0 |
0.7 | D | 3107.0 |
0.79 | D | 3112.0 |
0.94 | D | 3125.0 |
0.57 | D | 3126.0 |
0.57 | D | 3126.0 |
0.7 | D | 3129.0 |
0.7 | D | 3131.0 |
0.71 | D | 3131.0 |
0.71 | D | 3135.0 |
0.71 | D | 3135.0 |
0.8 | D | 3135.0 |
0.81 | D | 3135.0 |
0.71 | D | 3136.0 |
0.71 | D | 3137.0 |
0.74 | D | 3138.0 |
0.72 | D | 3139.0 |
0.54 | D | 3139.0 |
0.73 | D | 3140.0 |
0.71 | D | 3145.0 |
0.84 | D | 3145.0 |
0.78 | D | 3145.0 |
0.75 | D | 3152.0 |
0.9 | D | 3153.0 |
0.71 | D | 3153.0 |
0.58 | D | 3154.0 |
0.8 | D | 3154.0 |
0.77 | D | 3158.0 |
0.82 | D | 3159.0 |
0.77 | D | 3160.0 |
0.81 | D | 3160.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.77 | D | 3166.0 |
0.8 | D | 3173.0 |
0.72 | D | 3176.0 |
0.74 | D | 3177.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.81 | D | 3179.0 |
0.73 | D | 3182.0 |
0.73 | D | 3182.0 |
0.7 | D | 3183.0 |
0.79 | D | 3185.0 |
0.73 | D | 3189.0 |
0.73 | D | 3189.0 |
0.71 | D | 3192.0 |
0.7 | D | 3193.0 |
0.54 | D | 3194.0 |
0.73 | D | 3195.0 |
0.8 | D | 3195.0 |
0.7 | D | 3199.0 |
0.71 | D | 3203.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.72 | D | 3205.0 |
0.58 | D | 3206.0 |
0.83 | D | 3207.0 |
0.7 | D | 3208.0 |
0.79 | D | 3209.0 |
0.8 | D | 3210.0 |
0.7 | D | 3210.0 |
0.71 | D | 3212.0 |
0.78 | D | 3214.0 |
0.7 | D | 3214.0 |
0.95 | D | 3214.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.52 | D | 3218.0 |
0.72 | D | 3219.0 |
0.72 | D | 3219.0 |
0.71 | D | 3222.0 |
0.71 | D | 3222.0 |
0.51 | D | 3223.0 |
0.8 | D | 3226.0 |
0.65 | D | 3228.0 |
0.7 | D | 3229.0 |
0.7 | D | 3229.0 |
0.7 | D | 3231.0 |
0.59 | D | 3234.0 |
0.71 | D | 3234.0 |
0.72 | D | 3236.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.77 | D | 3241.0 |
0.79 | D | 3242.0 |
0.71 | D | 3245.0 |
0.84 | D | 3246.0 |
0.25 | D | 563.0 |
0.26 | D | 564.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.7 | D | 3247.0 |
0.52 | D | 3247.0 |
0.76 | D | 3248.0 |
0.73 | D | 3250.0 |
0.77 | D | 3251.0 |
0.71 | D | 3252.0 |
0.78 | D | 3253.0 |
0.73 | D | 3255.0 |
0.78 | D | 3258.0 |
0.9 | D | 3262.0 |
0.71 | D | 3262.0 |
0.84 | D | 3265.0 |
0.81 | D | 3266.0 |
0.7 | D | 3267.0 |
0.56 | D | 3270.0 |
0.79 | D | 3270.0 |
0.72 | D | 3275.0 |
0.92 | D | 3277.0 |
0.7 | D | 3278.0 |
0.52 | D | 3284.0 |
0.86 | D | 3284.0 |
0.7 | D | 3287.0 |
0.7 | D | 3287.0 |
0.77 | D | 3291.0 |
0.76 | D | 3293.0 |
0.74 | D | 3294.0 |
0.7 | D | 3296.0 |
0.91 | D | 3298.0 |
0.78 | D | 3298.0 |
0.78 | D | 3298.0 |
0.71 | D | 3299.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
0.76 | D | 3306.0 |
0.76 | D | 3306.0 |
0.53 | D | 3307.0 |
0.73 | D | 3308.0 |
0.77 | D | 3309.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.8 | D | 3312.0 |
0.7 | D | 3312.0 |
0.8 | D | 3312.0 |
0.9 | D | 3312.0 |
0.9 | D | 3312.0 |
0.7 | D | 3312.0 |
0.9 | D | 3312.0 |
0.71 | D | 3316.0 |
0.73 | D | 3319.0 |
0.52 | D | 3321.0 |
0.71 | D | 3321.0 |
0.71 | D | 3321.0 |
0.72 | D | 3322.0 |
0.81 | D | 3324.0 |
0.78 | D | 3326.0 |
0.79 | D | 3328.0 |
0.71 | D | 3332.0 |
0.71 | D | 3333.0 |
0.92 | D | 3335.0 |
0.7 | D | 3335.0 |
0.61 | D | 3336.0 |
1.01 | D | 3337.0 |
0.77 | D | 3345.0 |
0.53 | D | 3346.0 |
0.73 | D | 3346.0 |
0.83 | D | 3347.0 |
0.91 | D | 3349.0 |
0.77 | D | 3351.0 |
0.76 | D | 3352.0 |
0.74 | D | 3353.0 |
0.76 | D | 3353.0 |
0.81 | D | 3353.0 |
0.82 | D | 3357.0 |
0.91 | D | 3357.0 |
0.7 | D | 3360.0 |
0.7 | D | 3361.0 |
0.7 | D | 3365.0 |
0.74 | D | 3365.0 |
0.71 | D | 3366.0 |
0.69 | D | 3369.0 |
0.9 | D | 3371.0 |
0.9 | D | 3371.0 |
0.71 | D | 3372.0 |
0.52 | D | 3373.0 |
0.7 | D | 3375.0 |
0.72 | D | 3375.0 |
0.5 | D | 3378.0 |
0.5 | D | 3378.0 |
0.6 | D | 3382.0 |
0.27 | D | 567.0 |
0.31 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.3 | D | 568.0 |
0.9 | D | 3382.0 |
0.95 | D | 3384.0 |
0.76 | D | 3384.0 |
0.78 | D | 3389.0 |
0.88 | D | 3390.0 |
0.61 | D | 3397.0 |
0.85 | D | 3398.0 |
0.76 | D | 3401.0 |
0.91 | D | 3403.0 |
0.71 | D | 3406.0 |
0.71 | D | 3406.0 |
0.91 | D | 3408.0 |
0.7 | D | 3410.0 |
0.73 | D | 3411.0 |
0.73 | D | 3412.0 |
0.8 | D | 3419.0 |
0.7 | D | 3419.0 |
0.96 | D | 3419.0 |
0.96 | D | 3419.0 |
0.71 | D | 3420.0 |
0.9 | D | 3425.0 |
0.7 | D | 3425.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.79 | D | 3432.0 |
0.73 | D | 3440.0 |
0.8 | D | 3441.0 |
0.53 | D | 3442.0 |
0.77 | D | 3442.0 |
0.76 | D | 3443.0 |
0.76 | D | 3443.0 |
0.51 | D | 3446.0 |
0.51 | D | 3446.0 |
0.7 | D | 3448.0 |
0.72 | D | 3450.0 |
0.3 | D | 568.0 |
0.74 | D | 3454.0 |
0.78 | D | 3454.0 |
0.7 | D | 3454.0 |
0.75 | D | 3456.0 |
0.72 | D | 3459.0 |
0.74 | D | 3461.0 |
0.81 | D | 3462.0 |
0.91 | D | 3463.0 |
0.7 | D | 3463.0 |
0.73 | D | 3464.0 |
0.56 | D | 3465.0 |
0.71 | D | 3465.0 |
0.73 | D | 3467.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.78 | D | 3473.0 |
0.74 | D | 3476.0 |
0.7 | D | 3477.0 |
0.71 | D | 3479.0 |
0.96 | D | 3480.0 |
0.74 | D | 3487.0 |
0.77 | D | 3489.0 |
0.77 | D | 3489.0 |
0.72 | D | 3493.0 |
0.54 | D | 3494.0 |
0.72 | D | 3495.0 |
0.56 | D | 3496.0 |
0.74 | D | 3498.0 |
0.7 | D | 3501.0 |
0.8 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.9 | D | 3505.0 |
0.55 | D | 3509.0 |
0.73 | D | 3509.0 |
0.91 | D | 3511.0 |
0.74 | D | 3517.0 |
0.53 | D | 3517.0 |
0.71 | D | 3518.0 |
0.72 | D | 3522.0 |
0.71 | D | 3524.0 |
0.73 | D | 3528.0 |
0.7 | D | 3529.0 |
0.32 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.78 | D | 3534.0 |
0.7 | D | 3535.0 |
0.93 | D | 3540.0 |
0.71 | D | 3540.0 |
0.72 | D | 3543.0 |
0.72 | D | 3550.0 |
0.92 | D | 3550.0 |
0.72 | D | 3554.0 |
0.83 | D | 3556.0 |
0.83 | D | 3556.0 |
0.73 | D | 3557.0 |
0.7 | D | 3561.0 |
0.75 | D | 3562.0 |
0.8 | D | 3564.0 |
0.9 | D | 3567.0 |
0.7 | D | 3567.0 |
0.9 | D | 3568.0 |
0.72 | D | 3568.0 |
1.0 | D | 3569.0 |
0.72 | D | 3570.0 |
0.6 | D | 3570.0 |
0.91 | D | 3573.0 |
0.71 | D | 3576.0 |
0.9 | D | 3578.0 |
0.9 | D | 3579.0 |
0.76 | D | 3581.0 |
0.71 | D | 3582.0 |
0.97 | D | 3585.0 |
1.11 | D | 3589.0 |
0.82 | D | 3593.0 |
0.78 | D | 3595.0 |
0.8 | D | 3597.0 |
0.72 | D | 3601.0 |
1.01 | D | 3604.0 |
0.9 | D | 3604.0 |
1.01 | D | 3605.0 |
0.79 | D | 3605.0 |
1.03 | D | 3607.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.92 | D | 3613.0 |
0.73 | D | 3615.0 |
0.7 | D | 3618.0 |
0.7 | D | 3618.0 |
0.71 | D | 3618.0 |
0.72 | D | 3619.0 |
0.73 | D | 3620.0 |
0.7 | D | 3622.0 |
0.7 | D | 3622.0 |
0.72 | D | 3622.0 |
0.72 | D | 3622.0 |
0.75 | D | 3625.0 |
0.61 | D | 3625.0 |
0.72 | D | 3629.0 |
0.9 | D | 3632.0 |
0.94 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
0.9 | D | 3643.0 |
0.77 | D | 3643.0 |
1.16 | D | 3644.0 |
0.77 | D | 3644.0 |
1.11 | D | 3655.0 |
0.91 | D | 3660.0 |
0.87 | D | 3664.0 |
0.7 | D | 3668.0 |
0.78 | D | 3668.0 |
0.74 | D | 3668.0 |
0.85 | D | 3669.0 |
0.71 | D | 3670.0 |
1.01 | D | 3671.0 |
1.01 | D | 3671.0 |
0.78 | D | 3672.0 |
0.73 | D | 3673.0 |
0.71 | D | 3674.0 |
0.71 | D | 3674.0 |
1.03 | D | 3675.0 |
0.75 | D | 3679.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.8 | D | 3682.0 |
0.84 | D | 3685.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.71 | D | 3690.0 |
0.94 | D | 3691.0 |
0.75 | D | 3696.0 |
0.9 | D | 3706.0 |
0.92 | D | 3707.0 |
0.86 | D | 3709.0 |
1.16 | D | 3711.0 |
0.75 | D | 3712.0 |
0.71 | D | 3716.0 |
0.71 | D | 3718.0 |
0.77 | D | 3721.0 |
0.72 | D | 3722.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.58 | D | 3732.0 |
0.76 | D | 3732.0 |
0.73 | D | 3735.0 |
0.78 | D | 3736.0 |
0.7 | D | 3737.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.58 | D | 3741.0 |
0.87 | D | 3742.0 |
1.09 | D | 3742.0 |
1.03 | D | 3743.0 |
1.03 | D | 3743.0 |
0.93 | D | 3744.0 |
0.74 | D | 3746.0 |
0.3 | D | 574.0 |
0.9 | D | 3751.0 |
0.7 | D | 3752.0 |
0.9 | D | 3755.0 |
0.9 | D | 3755.0 |
0.77 | D | 3755.0 |
0.61 | D | 3758.0 |
0.78 | D | 3763.0 |
0.91 | D | 3763.0 |
1.0 | D | 3767.0 |
1.02 | D | 3769.0 |
1.02 | D | 3773.0 |
0.83 | D | 3774.0 |
1.04 | D | 3780.0 |
1.04 | D | 3780.0 |
0.9 | D | 3780.0 |
1.04 | D | 3780.0 |
1.5 | D | 3780.0 |
0.91 | D | 3781.0 |
0.91 | D | 3781.0 |
0.77 | D | 3787.0 |
0.7 | D | 3788.0 |
0.9 | D | 3789.0 |
0.59 | D | 3791.0 |
0.91 | D | 3796.0 |
0.79 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.71 | D | 3799.0 |
0.78 | D | 3800.0 |
0.71 | D | 3801.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.84 | D | 3809.0 |
0.78 | D | 3811.0 |
0.74 | D | 3812.0 |
0.53 | D | 3812.0 |
0.93 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.93 | D | 3812.0 |
0.74 | D | 3813.0 |
1.18 | D | 3816.0 |
0.84 | D | 3816.0 |
1.05 | D | 3816.0 |
0.79 | D | 3818.0 |
0.9 | D | 3818.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.85 | D | 3821.0 |
0.92 | D | 3823.0 |
0.53 | D | 3827.0 |
0.91 | D | 3828.0 |
0.63 | D | 3832.0 |
0.91 | D | 3837.0 |
0.77 | D | 3837.0 |
0.71 | D | 3838.0 |
1.02 | D | 3838.0 |
1.02 | D | 3839.0 |
0.93 | D | 3839.0 |
0.7 | D | 3840.0 |
1.02 | D | 3842.0 |
0.92 | D | 3843.0 |
0.9 | D | 3847.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.6 | D | 3850.0 |
0.81 | D | 3852.0 |
0.91 | D | 3855.0 |
0.73 | D | 3856.0 |
0.71 | D | 3856.0 |
0.74 | D | 3858.0 |
0.94 | D | 3862.0 |
0.78 | D | 3864.0 |
1.17 | D | 3866.0 |
0.9 | D | 3871.0 |
1.01 | D | 3871.0 |
0.87 | D | 3873.0 |
0.92 | D | 3877.0 |
0.71 | D | 3877.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.93 | D | 3880.0 |
1.13 | D | 3883.0 |
1.18 | D | 3886.0 |
0.91 | D | 3889.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.25 | D | 575.0 |
0.27 | D | 575.0 |
0.25 | D | 575.0 |
1.09 | D | 3890.0 |
0.92 | D | 3891.0 |
1.0 | D | 3894.0 |
0.76 | D | 3894.0 |
0.72 | D | 3896.0 |
1.18 | D | 3899.0 |
1.02 | D | 3909.0 |
1.02 | D | 3909.0 |
0.91 | D | 3910.0 |
0.91 | D | 3911.0 |
0.66 | D | 3915.0 |
0.92 | D | 3916.0 |
0.9 | D | 3918.0 |
0.7 | D | 3920.0 |
0.78 | D | 3923.0 |
0.9 | D | 3931.0 |
1.01 | D | 3932.0 |
0.83 | D | 3933.0 |
0.92 | D | 3936.0 |
0.73 | D | 3937.0 |
0.91 | D | 3943.0 |
0.9 | D | 3945.0 |
0.91 | D | 3949.0 |
1.14 | D | 3950.0 |
0.76 | D | 3950.0 |
0.71 | D | 3952.0 |
0.91 | D | 3958.0 |
1.01 | D | 3959.0 |
0.75 | D | 3961.0 |
1.09 | D | 3961.0 |
0.88 | D | 3962.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
0.33 | D | 575.0 |
1.0 | D | 3965.0 |
0.77 | D | 3966.0 |
0.62 | D | 3968.0 |
1.02 | D | 3971.0 |
0.9 | D | 3975.0 |
0.9 | D | 3975.0 |
1.23 | D | 3977.0 |
0.77 | D | 3980.0 |
0.73 | D | 3980.0 |
0.83 | D | 3984.0 |
0.9 | D | 3989.0 |
0.96 | D | 3989.0 |
0.9 | D | 3990.0 |
0.93 | D | 3990.0 |
0.83 | D | 3990.0 |
0.92 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.7 | D | 4003.0 |
1.01 | D | 4004.0 |
0.75 | D | 4007.0 |
0.9 | D | 4007.0 |
0.9 | D | 4007.0 |
0.87 | D | 4012.0 |
0.71 | D | 4014.0 |
0.7 | D | 4022.0 |
0.65 | D | 4022.0 |
1.14 | D | 4022.0 |
0.56 | D | 4025.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.57 | D | 4032.0 |
0.77 | D | 4037.0 |
0.77 | D | 4039.0 |
0.74 | D | 4040.0 |
0.91 | D | 4041.0 |
0.54 | D | 4042.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
0.72 | D | 4047.0 |
1.23 | D | 4050.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.96 | D | 4060.0 |
1.01 | D | 4064.0 |
1.0 | D | 4065.0 |
0.91 | D | 4067.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
1.12 | D | 4071.0 |
1.01 | D | 4072.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.72 | D | 4082.0 |
0.72 | D | 4082.0 |
0.64 | D | 4084.0 |
0.92 | D | 4086.0 |
0.81 | D | 4087.0 |
0.7 | D | 4095.0 |
0.92 | D | 4096.0 |
0.92 | D | 4096.0 |
0.25 | D | 410.0 |
0.23 | D | 411.0 |
0.27 | D | 413.0 |
0.3 | D | 413.0 |
0.3 | D | 413.0 |
0.23 | D | 577.0 |
0.91 | D | 4107.0 |
0.91 | D | 4107.0 |
0.87 | D | 4108.0 |
0.91 | D | 4113.0 |
0.82 | D | 4113.0 |
0.9 | D | 4114.0 |
0.73 | D | 4116.0 |
0.9 | D | 4117.0 |
1.01 | D | 4118.0 |
0.9 | D | 4120.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
1.04 | D | 4123.0 |
0.9 | D | 4128.0 |
0.9 | D | 4130.0 |
0.9 | D | 4133.0 |
0.73 | D | 4134.0 |
0.73 | D | 4134.0 |
0.82 | D | 4135.0 |
0.82 | D | 4135.0 |
1.12 | D | 4139.0 |
0.93 | D | 4140.0 |
0.93 | D | 4140.0 |
0.92 | D | 4150.0 |
0.76 | D | 4150.0 |
1.0 | D | 4155.0 |
1.06 | D | 4155.0 |
0.92 | D | 4158.0 |
0.92 | D | 4158.0 |
0.83 | D | 4159.0 |
0.59 | D | 4161.0 |
0.93 | D | 4165.0 |
0.91 | D | 4165.0 |
0.9 | D | 4167.0 |
0.92 | D | 4168.0 |
0.92 | D | 4168.0 |
1.19 | D | 4168.0 |
0.8 | D | 4170.0 |
0.6 | D | 4172.0 |
1.03 | D | 4177.0 |
0.9 | D | 4178.0 |
Alternatively, one could just write the SQL statement in scala to create a new DataFrame diamondsDColoredDF_FromTable
from the table diamonds
and display it, as follows:
val diamondsDColoredDF_FromTable = sqlContext.sql("select carat, color, price from diamonds where color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
// or if you like use upper case for SQL then this is equivalent
val diamondsDColoredDF_FromTable = sqlContext.sql("SELECT carat, color, price FROM diamonds WHERE color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
// from version 2.x onwards you can call from SparkSession, the pre-made spark in spark-shell or databricks notebook
val diamondsDColoredDF_FromTable = spark.sql("SELECT carat, color, price FROM diamonds WHERE color='D'") // Shift+Enter
diamondsDColoredDF_FromTable: org.apache.spark.sql.DataFrame = [carat: double, color: string ... 1 more field]
display(diamondsDColoredDF_FromTable) // Ctrl+Enter to see the same DF!
carat | color | price |
---|---|---|
0.23 | D | 357.0 |
0.23 | D | 402.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.26 | D | 403.0 |
0.22 | D | 404.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.3 | D | 552.0 |
0.24 | D | 553.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.26 | D | 554.0 |
0.75 | D | 2760.0 |
0.71 | D | 2762.0 |
0.61 | D | 2763.0 |
0.71 | D | 2764.0 |
0.71 | D | 2764.0 |
0.7 | D | 2767.0 |
0.71 | D | 2767.0 |
0.73 | D | 2768.0 |
0.7 | D | 2768.0 |
0.71 | D | 2768.0 |
0.71 | D | 2770.0 |
0.76 | D | 2770.0 |
0.73 | D | 2770.0 |
0.75 | D | 2773.0 |
0.7 | D | 2773.0 |
0.7 | D | 2777.0 |
0.53 | D | 2782.0 |
0.75 | D | 2782.0 |
0.72 | D | 2782.0 |
0.72 | D | 2782.0 |
0.7 | D | 2782.0 |
0.64 | D | 2787.0 |
0.71 | D | 2788.0 |
0.72 | D | 2795.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.71 | D | 2797.0 |
0.51 | D | 2797.0 |
0.78 | D | 2799.0 |
0.91 | D | 2803.0 |
0.7 | D | 2804.0 |
0.7 | D | 2804.0 |
0.72 | D | 2804.0 |
0.72 | D | 2804.0 |
0.73 | D | 2808.0 |
0.81 | D | 2809.0 |
0.74 | D | 2810.0 |
0.83 | D | 2811.0 |
0.71 | D | 2812.0 |
0.55 | D | 2815.0 |
0.71 | D | 2816.0 |
0.73 | D | 2821.0 |
0.71 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.71 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.7 | D | 2822.0 |
0.79 | D | 2823.0 |
0.71 | D | 2824.0 |
0.7 | D | 2826.0 |
0.7 | D | 2827.0 |
0.72 | D | 2827.0 |
0.7 | D | 2828.0 |
0.7 | D | 2833.0 |
0.7 | D | 2833.0 |
0.51 | D | 2834.0 |
0.92 | D | 2840.0 |
0.71 | D | 2841.0 |
0.73 | D | 2841.0 |
0.73 | D | 2841.0 |
0.71 | D | 2843.0 |
0.79 | D | 2846.0 |
0.76 | D | 2847.0 |
0.54 | D | 2848.0 |
0.75 | D | 2848.0 |
0.66 | D | 2851.0 |
0.79 | D | 2853.0 |
0.79 | D | 2853.0 |
0.74 | D | 2855.0 |
0.73 | D | 2858.0 |
0.71 | D | 2858.0 |
0.71 | D | 2858.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.7 | D | 2859.0 |
0.71 | D | 2860.0 |
0.71 | D | 2861.0 |
0.66 | D | 2861.0 |
0.7 | D | 2862.0 |
0.8 | D | 2862.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.71 | D | 2863.0 |
0.73 | D | 2865.0 |
0.56 | D | 2866.0 |
0.56 | D | 2866.0 |
0.7 | D | 2867.0 |
1.08 | D | 2869.0 |
0.7 | D | 2872.0 |
0.75 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.7 | D | 2872.0 |
0.71 | D | 2874.0 |
0.79 | D | 2878.0 |
0.74 | D | 2880.0 |
0.72 | D | 2883.0 |
0.77 | D | 2885.0 |
0.9 | D | 2885.0 |
0.71 | D | 2887.0 |
0.72 | D | 2891.0 |
0.71 | D | 2891.0 |
0.79 | D | 2896.0 |
0.77 | D | 2896.0 |
0.6 | D | 2897.0 |
0.54 | D | 2897.0 |
0.74 | D | 2897.0 |
0.75 | D | 2898.0 |
0.77 | D | 2898.0 |
0.72 | D | 2900.0 |
0.75 | D | 2903.0 |
0.75 | D | 2903.0 |
0.72 | D | 2903.0 |
0.72 | D | 2903.0 |
0.79 | D | 2904.0 |
0.53 | D | 2905.0 |
0.74 | D | 2906.0 |
0.32 | D | 558.0 |
0.7 | D | 2909.0 |
0.7 | D | 2909.0 |
0.71 | D | 2910.0 |
0.7 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.71 | D | 2913.0 |
0.83 | D | 2918.0 |
0.71 | D | 2921.0 |
0.77 | D | 2922.0 |
0.77 | D | 2923.0 |
0.8 | D | 2925.0 |
0.81 | D | 2926.0 |
0.7 | D | 2928.0 |
0.59 | D | 2933.0 |
0.75 | D | 2933.0 |
0.71 | D | 2934.0 |
0.7 | D | 2936.0 |
0.77 | D | 2939.0 |
0.76 | D | 2942.0 |
0.73 | D | 2943.0 |
0.57 | D | 2945.0 |
0.78 | D | 2945.0 |
0.73 | D | 2947.0 |
0.73 | D | 2947.0 |
0.77 | D | 2949.0 |
0.71 | D | 2950.0 |
0.72 | D | 2951.0 |
0.72 | D | 2954.0 |
0.72 | D | 2954.0 |
0.75 | D | 2954.0 |
0.82 | D | 2954.0 |
0.7 | D | 2956.0 |
0.56 | D | 2959.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.7 | D | 2960.0 |
0.63 | D | 2962.0 |
0.71 | D | 2964.0 |
0.71 | D | 2968.0 |
0.77 | D | 2973.0 |
1.0 | D | 2974.0 |
0.76 | D | 2977.0 |
0.7 | D | 2980.0 |
0.7 | D | 2985.0 |
0.74 | D | 2987.0 |
0.83 | D | 2990.0 |
0.7 | D | 2991.0 |
0.72 | D | 2993.0 |
0.81 | D | 2994.0 |
0.73 | D | 2995.0 |
0.77 | D | 2996.0 |
0.7 | D | 2998.0 |
0.7 | D | 2999.0 |
0.72 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.7 | D | 3001.0 |
0.71 | D | 3002.0 |
1.01 | D | 3003.0 |
0.65 | D | 3003.0 |
0.92 | D | 3004.0 |
0.55 | D | 3006.0 |
0.76 | D | 3007.0 |
0.7 | D | 3008.0 |
0.8 | D | 3011.0 |
0.77 | D | 3011.0 |
0.9 | D | 3013.0 |
0.73 | D | 3014.0 |
0.72 | D | 3016.0 |
0.5 | D | 3017.0 |
0.78 | D | 3019.0 |
0.71 | D | 3020.0 |
0.75 | D | 3024.0 |
0.75 | D | 3024.0 |
0.65 | D | 3025.0 |
0.71 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.7 | D | 3033.0 |
0.78 | D | 3035.0 |
0.71 | D | 3035.0 |
0.74 | D | 3036.0 |
0.61 | D | 3036.0 |
0.77 | D | 3040.0 |
0.71 | D | 3045.0 |
0.72 | D | 3045.0 |
0.75 | D | 3046.0 |
0.73 | D | 3047.0 |
0.75 | D | 3048.0 |
0.72 | D | 3048.0 |
0.72 | D | 3048.0 |
0.66 | D | 3049.0 |
0.62 | D | 3050.0 |
0.7 | D | 3052.0 |
0.7 | D | 3053.0 |
0.7 | D | 3054.0 |
0.65 | D | 3056.0 |
0.92 | D | 3057.0 |
0.79 | D | 3058.0 |
0.72 | D | 3062.0 |
0.85 | D | 3066.0 |
0.7 | D | 3073.0 |
0.72 | D | 3075.0 |
0.72 | D | 3075.0 |
0.7 | D | 3075.0 |
0.76 | D | 3075.0 |
0.71 | D | 3077.0 |
0.71 | D | 3077.0 |
0.75 | D | 3078.0 |
0.83 | D | 3078.0 |
0.91 | D | 3079.0 |
0.79 | D | 3081.0 |
0.7 | D | 3082.0 |
0.8 | D | 3082.0 |
0.71 | D | 3084.0 |
0.75 | D | 3085.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.7 | D | 3087.0 |
0.74 | D | 3087.0 |
0.71 | D | 3090.0 |
0.71 | D | 3090.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3092.0 |
0.7 | D | 3093.0 |
0.71 | D | 3096.0 |
0.71 | D | 3096.0 |
0.53 | D | 3097.0 |
0.72 | D | 3099.0 |
0.72 | D | 3102.0 |
0.66 | D | 3103.0 |
0.78 | D | 3103.0 |
0.75 | D | 3105.0 |
0.7 | D | 3107.0 |
0.79 | D | 3112.0 |
0.94 | D | 3125.0 |
0.57 | D | 3126.0 |
0.57 | D | 3126.0 |
0.7 | D | 3129.0 |
0.7 | D | 3131.0 |
0.71 | D | 3131.0 |
0.71 | D | 3135.0 |
0.71 | D | 3135.0 |
0.8 | D | 3135.0 |
0.81 | D | 3135.0 |
0.71 | D | 3136.0 |
0.71 | D | 3137.0 |
0.74 | D | 3138.0 |
0.72 | D | 3139.0 |
0.54 | D | 3139.0 |
0.73 | D | 3140.0 |
0.71 | D | 3145.0 |
0.84 | D | 3145.0 |
0.78 | D | 3145.0 |
0.75 | D | 3152.0 |
0.9 | D | 3153.0 |
0.71 | D | 3153.0 |
0.58 | D | 3154.0 |
0.8 | D | 3154.0 |
0.77 | D | 3158.0 |
0.82 | D | 3159.0 |
0.77 | D | 3160.0 |
0.81 | D | 3160.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.71 | D | 3161.0 |
0.77 | D | 3166.0 |
0.8 | D | 3173.0 |
0.72 | D | 3176.0 |
0.74 | D | 3177.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.72 | D | 3179.0 |
0.81 | D | 3179.0 |
0.73 | D | 3182.0 |
0.73 | D | 3182.0 |
0.7 | D | 3183.0 |
0.79 | D | 3185.0 |
0.73 | D | 3189.0 |
0.73 | D | 3189.0 |
0.71 | D | 3192.0 |
0.7 | D | 3193.0 |
0.54 | D | 3194.0 |
0.73 | D | 3195.0 |
0.8 | D | 3195.0 |
0.7 | D | 3199.0 |
0.71 | D | 3203.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.9 | D | 3205.0 |
0.72 | D | 3205.0 |
0.58 | D | 3206.0 |
0.83 | D | 3207.0 |
0.7 | D | 3208.0 |
0.79 | D | 3209.0 |
0.8 | D | 3210.0 |
0.7 | D | 3210.0 |
0.71 | D | 3212.0 |
0.78 | D | 3214.0 |
0.7 | D | 3214.0 |
0.95 | D | 3214.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.71 | D | 3217.0 |
0.52 | D | 3218.0 |
0.72 | D | 3219.0 |
0.72 | D | 3219.0 |
0.71 | D | 3222.0 |
0.71 | D | 3222.0 |
0.51 | D | 3223.0 |
0.8 | D | 3226.0 |
0.65 | D | 3228.0 |
0.7 | D | 3229.0 |
0.7 | D | 3229.0 |
0.7 | D | 3231.0 |
0.59 | D | 3234.0 |
0.71 | D | 3234.0 |
0.72 | D | 3236.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.7 | D | 3239.0 |
0.77 | D | 3241.0 |
0.79 | D | 3242.0 |
0.71 | D | 3245.0 |
0.84 | D | 3246.0 |
0.25 | D | 563.0 |
0.26 | D | 564.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.7 | D | 3247.0 |
0.52 | D | 3247.0 |
0.76 | D | 3248.0 |
0.73 | D | 3250.0 |
0.77 | D | 3251.0 |
0.71 | D | 3252.0 |
0.78 | D | 3253.0 |
0.73 | D | 3255.0 |
0.78 | D | 3258.0 |
0.9 | D | 3262.0 |
0.71 | D | 3262.0 |
0.84 | D | 3265.0 |
0.81 | D | 3266.0 |
0.7 | D | 3267.0 |
0.56 | D | 3270.0 |
0.79 | D | 3270.0 |
0.72 | D | 3275.0 |
0.92 | D | 3277.0 |
0.7 | D | 3278.0 |
0.52 | D | 3284.0 |
0.86 | D | 3284.0 |
0.7 | D | 3287.0 |
0.7 | D | 3287.0 |
0.77 | D | 3291.0 |
0.76 | D | 3293.0 |
0.74 | D | 3294.0 |
0.7 | D | 3296.0 |
0.91 | D | 3298.0 |
0.78 | D | 3298.0 |
0.78 | D | 3298.0 |
0.71 | D | 3299.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
1.0 | D | 3304.0 |
0.76 | D | 3306.0 |
0.76 | D | 3306.0 |
0.53 | D | 3307.0 |
0.73 | D | 3308.0 |
0.77 | D | 3309.0 |
0.31 | D | 565.0 |
0.31 | D | 565.0 |
0.8 | D | 3312.0 |
0.7 | D | 3312.0 |
0.8 | D | 3312.0 |
0.9 | D | 3312.0 |
0.9 | D | 3312.0 |
0.7 | D | 3312.0 |
0.9 | D | 3312.0 |
0.71 | D | 3316.0 |
0.73 | D | 3319.0 |
0.52 | D | 3321.0 |
0.71 | D | 3321.0 |
0.71 | D | 3321.0 |
0.72 | D | 3322.0 |
0.81 | D | 3324.0 |
0.78 | D | 3326.0 |
0.79 | D | 3328.0 |
0.71 | D | 3332.0 |
0.71 | D | 3333.0 |
0.92 | D | 3335.0 |
0.7 | D | 3335.0 |
0.61 | D | 3336.0 |
1.01 | D | 3337.0 |
0.77 | D | 3345.0 |
0.53 | D | 3346.0 |
0.73 | D | 3346.0 |
0.83 | D | 3347.0 |
0.91 | D | 3349.0 |
0.77 | D | 3351.0 |
0.76 | D | 3352.0 |
0.74 | D | 3353.0 |
0.76 | D | 3353.0 |
0.81 | D | 3353.0 |
0.82 | D | 3357.0 |
0.91 | D | 3357.0 |
0.7 | D | 3360.0 |
0.7 | D | 3361.0 |
0.7 | D | 3365.0 |
0.74 | D | 3365.0 |
0.71 | D | 3366.0 |
0.69 | D | 3369.0 |
0.9 | D | 3371.0 |
0.9 | D | 3371.0 |
0.71 | D | 3372.0 |
0.52 | D | 3373.0 |
0.7 | D | 3375.0 |
0.72 | D | 3375.0 |
0.5 | D | 3378.0 |
0.5 | D | 3378.0 |
0.6 | D | 3382.0 |
0.27 | D | 567.0 |
0.31 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.33 | D | 567.0 |
0.3 | D | 568.0 |
0.9 | D | 3382.0 |
0.95 | D | 3384.0 |
0.76 | D | 3384.0 |
0.78 | D | 3389.0 |
0.88 | D | 3390.0 |
0.61 | D | 3397.0 |
0.85 | D | 3398.0 |
0.76 | D | 3401.0 |
0.91 | D | 3403.0 |
0.71 | D | 3406.0 |
0.71 | D | 3406.0 |
0.91 | D | 3408.0 |
0.7 | D | 3410.0 |
0.73 | D | 3411.0 |
0.73 | D | 3412.0 |
0.8 | D | 3419.0 |
0.7 | D | 3419.0 |
0.96 | D | 3419.0 |
0.96 | D | 3419.0 |
0.71 | D | 3420.0 |
0.9 | D | 3425.0 |
0.7 | D | 3425.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.77 | D | 3428.0 |
0.79 | D | 3432.0 |
0.73 | D | 3440.0 |
0.8 | D | 3441.0 |
0.53 | D | 3442.0 |
0.77 | D | 3442.0 |
0.76 | D | 3443.0 |
0.76 | D | 3443.0 |
0.51 | D | 3446.0 |
0.51 | D | 3446.0 |
0.7 | D | 3448.0 |
0.72 | D | 3450.0 |
0.3 | D | 568.0 |
0.74 | D | 3454.0 |
0.78 | D | 3454.0 |
0.7 | D | 3454.0 |
0.75 | D | 3456.0 |
0.72 | D | 3459.0 |
0.74 | D | 3461.0 |
0.81 | D | 3462.0 |
0.91 | D | 3463.0 |
0.7 | D | 3463.0 |
0.73 | D | 3464.0 |
0.56 | D | 3465.0 |
0.71 | D | 3465.0 |
0.73 | D | 3467.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.55 | D | 3468.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.7 | D | 3471.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.9 | D | 3473.0 |
0.78 | D | 3473.0 |
0.74 | D | 3476.0 |
0.7 | D | 3477.0 |
0.71 | D | 3479.0 |
0.96 | D | 3480.0 |
0.74 | D | 3487.0 |
0.77 | D | 3489.0 |
0.77 | D | 3489.0 |
0.72 | D | 3493.0 |
0.54 | D | 3494.0 |
0.72 | D | 3495.0 |
0.56 | D | 3496.0 |
0.74 | D | 3498.0 |
0.7 | D | 3501.0 |
0.8 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.71 | D | 3502.0 |
0.9 | D | 3505.0 |
0.55 | D | 3509.0 |
0.73 | D | 3509.0 |
0.91 | D | 3511.0 |
0.74 | D | 3517.0 |
0.53 | D | 3517.0 |
0.71 | D | 3518.0 |
0.72 | D | 3522.0 |
0.71 | D | 3524.0 |
0.73 | D | 3528.0 |
0.7 | D | 3529.0 |
0.32 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.9 | D | 3534.0 |
0.78 | D | 3534.0 |
0.7 | D | 3535.0 |
0.93 | D | 3540.0 |
0.71 | D | 3540.0 |
0.72 | D | 3543.0 |
0.72 | D | 3550.0 |
0.92 | D | 3550.0 |
0.72 | D | 3554.0 |
0.83 | D | 3556.0 |
0.83 | D | 3556.0 |
0.73 | D | 3557.0 |
0.7 | D | 3561.0 |
0.75 | D | 3562.0 |
0.8 | D | 3564.0 |
0.9 | D | 3567.0 |
0.7 | D | 3567.0 |
0.9 | D | 3568.0 |
0.72 | D | 3568.0 |
1.0 | D | 3569.0 |
0.72 | D | 3570.0 |
0.6 | D | 3570.0 |
0.91 | D | 3573.0 |
0.71 | D | 3576.0 |
0.9 | D | 3578.0 |
0.9 | D | 3579.0 |
0.76 | D | 3581.0 |
0.71 | D | 3582.0 |
0.97 | D | 3585.0 |
1.11 | D | 3589.0 |
0.82 | D | 3593.0 |
0.78 | D | 3595.0 |
0.8 | D | 3597.0 |
0.72 | D | 3601.0 |
1.01 | D | 3604.0 |
0.9 | D | 3604.0 |
1.01 | D | 3605.0 |
0.79 | D | 3605.0 |
1.03 | D | 3607.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.92 | D | 3613.0 |
0.73 | D | 3615.0 |
0.7 | D | 3618.0 |
0.7 | D | 3618.0 |
0.71 | D | 3618.0 |
0.72 | D | 3619.0 |
0.73 | D | 3620.0 |
0.7 | D | 3622.0 |
0.7 | D | 3622.0 |
0.72 | D | 3622.0 |
0.72 | D | 3622.0 |
0.75 | D | 3625.0 |
0.61 | D | 3625.0 |
0.72 | D | 3629.0 |
0.9 | D | 3632.0 |
0.94 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
1.0 | D | 3634.0 |
0.9 | D | 3643.0 |
0.77 | D | 3643.0 |
1.16 | D | 3644.0 |
0.77 | D | 3644.0 |
1.11 | D | 3655.0 |
0.91 | D | 3660.0 |
0.87 | D | 3664.0 |
0.7 | D | 3668.0 |
0.78 | D | 3668.0 |
0.74 | D | 3668.0 |
0.85 | D | 3669.0 |
0.71 | D | 3670.0 |
1.01 | D | 3671.0 |
1.01 | D | 3671.0 |
0.78 | D | 3672.0 |
0.73 | D | 3673.0 |
0.71 | D | 3674.0 |
0.71 | D | 3674.0 |
1.03 | D | 3675.0 |
0.75 | D | 3679.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.31 | D | 571.0 |
0.8 | D | 3682.0 |
0.84 | D | 3685.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.9 | D | 3689.0 |
0.71 | D | 3690.0 |
0.94 | D | 3691.0 |
0.75 | D | 3696.0 |
0.9 | D | 3706.0 |
0.92 | D | 3707.0 |
0.86 | D | 3709.0 |
1.16 | D | 3711.0 |
0.75 | D | 3712.0 |
0.71 | D | 3716.0 |
0.71 | D | 3718.0 |
0.77 | D | 3721.0 |
0.72 | D | 3722.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.91 | D | 3730.0 |
0.58 | D | 3732.0 |
0.76 | D | 3732.0 |
0.73 | D | 3735.0 |
0.78 | D | 3736.0 |
0.7 | D | 3737.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.9 | D | 3740.0 |
0.58 | D | 3741.0 |
0.87 | D | 3742.0 |
1.09 | D | 3742.0 |
1.03 | D | 3743.0 |
1.03 | D | 3743.0 |
0.93 | D | 3744.0 |
0.74 | D | 3746.0 |
0.3 | D | 574.0 |
0.9 | D | 3751.0 |
0.7 | D | 3752.0 |
0.9 | D | 3755.0 |
0.9 | D | 3755.0 |
0.77 | D | 3755.0 |
0.61 | D | 3758.0 |
0.78 | D | 3763.0 |
0.91 | D | 3763.0 |
1.0 | D | 3767.0 |
1.02 | D | 3769.0 |
1.02 | D | 3773.0 |
0.83 | D | 3774.0 |
1.04 | D | 3780.0 |
1.04 | D | 3780.0 |
0.9 | D | 3780.0 |
1.04 | D | 3780.0 |
1.5 | D | 3780.0 |
0.91 | D | 3781.0 |
0.91 | D | 3781.0 |
0.77 | D | 3787.0 |
0.7 | D | 3788.0 |
0.9 | D | 3789.0 |
0.59 | D | 3791.0 |
0.91 | D | 3796.0 |
0.79 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.9 | D | 3798.0 |
0.71 | D | 3799.0 |
0.78 | D | 3800.0 |
0.71 | D | 3801.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.9 | D | 3806.0 |
0.84 | D | 3809.0 |
0.78 | D | 3811.0 |
0.74 | D | 3812.0 |
0.53 | D | 3812.0 |
0.93 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.9 | D | 3812.0 |
0.93 | D | 3812.0 |
0.74 | D | 3813.0 |
1.18 | D | 3816.0 |
0.84 | D | 3816.0 |
1.05 | D | 3816.0 |
0.79 | D | 3818.0 |
0.9 | D | 3818.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.85 | D | 3821.0 |
0.92 | D | 3823.0 |
0.53 | D | 3827.0 |
0.91 | D | 3828.0 |
0.63 | D | 3832.0 |
0.91 | D | 3837.0 |
0.77 | D | 3837.0 |
0.71 | D | 3838.0 |
1.02 | D | 3838.0 |
1.02 | D | 3839.0 |
0.93 | D | 3839.0 |
0.7 | D | 3840.0 |
1.02 | D | 3842.0 |
0.92 | D | 3843.0 |
0.9 | D | 3847.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.91 | D | 3848.0 |
0.6 | D | 3850.0 |
0.81 | D | 3852.0 |
0.91 | D | 3855.0 |
0.73 | D | 3856.0 |
0.71 | D | 3856.0 |
0.74 | D | 3858.0 |
0.94 | D | 3862.0 |
0.78 | D | 3864.0 |
1.17 | D | 3866.0 |
0.9 | D | 3871.0 |
1.01 | D | 3871.0 |
0.87 | D | 3873.0 |
0.92 | D | 3877.0 |
0.71 | D | 3877.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.9 | D | 3880.0 |
0.93 | D | 3880.0 |
1.13 | D | 3883.0 |
1.18 | D | 3886.0 |
0.91 | D | 3889.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.3 | D | 574.0 |
0.25 | D | 575.0 |
0.27 | D | 575.0 |
0.25 | D | 575.0 |
1.09 | D | 3890.0 |
0.92 | D | 3891.0 |
1.0 | D | 3894.0 |
0.76 | D | 3894.0 |
0.72 | D | 3896.0 |
1.18 | D | 3899.0 |
1.02 | D | 3909.0 |
1.02 | D | 3909.0 |
0.91 | D | 3910.0 |
0.91 | D | 3911.0 |
0.66 | D | 3915.0 |
0.92 | D | 3916.0 |
0.9 | D | 3918.0 |
0.7 | D | 3920.0 |
0.78 | D | 3923.0 |
0.9 | D | 3931.0 |
1.01 | D | 3932.0 |
0.83 | D | 3933.0 |
0.92 | D | 3936.0 |
0.73 | D | 3937.0 |
0.91 | D | 3943.0 |
0.9 | D | 3945.0 |
0.91 | D | 3949.0 |
1.14 | D | 3950.0 |
0.76 | D | 3950.0 |
0.71 | D | 3952.0 |
0.91 | D | 3958.0 |
1.01 | D | 3959.0 |
0.75 | D | 3961.0 |
1.09 | D | 3961.0 |
0.88 | D | 3962.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
1.0 | D | 3965.0 |
0.33 | D | 575.0 |
1.0 | D | 3965.0 |
0.77 | D | 3966.0 |
0.62 | D | 3968.0 |
1.02 | D | 3971.0 |
0.9 | D | 3975.0 |
0.9 | D | 3975.0 |
1.23 | D | 3977.0 |
0.77 | D | 3980.0 |
0.73 | D | 3980.0 |
0.83 | D | 3984.0 |
0.9 | D | 3989.0 |
0.96 | D | 3989.0 |
0.9 | D | 3990.0 |
0.93 | D | 3990.0 |
0.83 | D | 3990.0 |
0.92 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.9 | D | 3997.0 |
0.7 | D | 4003.0 |
1.01 | D | 4004.0 |
0.75 | D | 4007.0 |
0.9 | D | 4007.0 |
0.9 | D | 4007.0 |
0.87 | D | 4012.0 |
0.71 | D | 4014.0 |
0.7 | D | 4022.0 |
0.65 | D | 4022.0 |
1.14 | D | 4022.0 |
0.56 | D | 4025.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.71 | D | 4029.0 |
0.57 | D | 4032.0 |
0.77 | D | 4037.0 |
0.77 | D | 4039.0 |
0.74 | D | 4040.0 |
0.91 | D | 4041.0 |
0.54 | D | 4042.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
1.02 | D | 4044.0 |
0.72 | D | 4047.0 |
1.23 | D | 4050.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.91 | D | 4051.0 |
0.96 | D | 4060.0 |
1.01 | D | 4064.0 |
1.0 | D | 4065.0 |
0.91 | D | 4067.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
0.9 | D | 4068.0 |
1.12 | D | 4071.0 |
1.01 | D | 4072.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.9 | D | 4078.0 |
0.72 | D | 4082.0 |
0.72 | D | 4082.0 |
0.64 | D | 4084.0 |
0.92 | D | 4086.0 |
0.81 | D | 4087.0 |
0.7 | D | 4095.0 |
0.92 | D | 4096.0 |
0.92 | D | 4096.0 |
0.25 | D | 410.0 |
0.23 | D | 411.0 |
0.27 | D | 413.0 |
0.3 | D | 413.0 |
0.3 | D | 413.0 |
0.23 | D | 577.0 |
0.91 | D | 4107.0 |
0.91 | D | 4107.0 |
0.87 | D | 4108.0 |
0.91 | D | 4113.0 |
0.82 | D | 4113.0 |
0.9 | D | 4114.0 |
0.73 | D | 4116.0 |
0.9 | D | 4117.0 |
1.01 | D | 4118.0 |
0.9 | D | 4120.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
0.91 | D | 4123.0 |
1.04 | D | 4123.0 |
0.9 | D | 4128.0 |
0.9 | D | 4130.0 |
0.9 | D | 4133.0 |
0.73 | D | 4134.0 |
0.73 | D | 4134.0 |
0.82 | D | 4135.0 |
0.82 | D | 4135.0 |
1.12 | D | 4139.0 |
0.93 | D | 4140.0 |
0.93 | D | 4140.0 |
0.92 | D | 4150.0 |
0.76 | D | 4150.0 |
1.0 | D | 4155.0 |
1.06 | D | 4155.0 |
0.92 | D | 4158.0 |
0.92 | D | 4158.0 |
0.83 | D | 4159.0 |
0.59 | D | 4161.0 |
0.93 | D | 4165.0 |
0.91 | D | 4165.0 |
0.9 | D | 4167.0 |
0.92 | D | 4168.0 |
0.92 | D | 4168.0 |
1.19 | D | 4168.0 |
0.8 | D | 4170.0 |
0.6 | D | 4172.0 |
1.03 | D | 4177.0 |
0.9 | D | 4178.0 |
// You can also use the familiar wildchard character '%' when matching Strings
display(spark.sql("SELECT * FROM diamonds WHERE clarity LIKE 'V%'"))
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
0.23 | Good | E | VS1 | 56.9 | 65.0 | 327.0 | 4.05 | 4.07 | 2.31 |
0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334.0 | 4.2 | 4.23 | 2.63 |
0.24 | Very Good | J | VVS2 | 62.8 | 57.0 | 336.0 | 3.94 | 3.96 | 2.48 |
0.24 | Very Good | I | VVS1 | 62.3 | 57.0 | 336.0 | 3.95 | 3.98 | 2.47 |
0.22 | Fair | E | VS2 | 65.1 | 61.0 | 337.0 | 3.87 | 3.78 | 2.49 |
0.23 | Very Good | H | VS1 | 59.4 | 61.0 | 338.0 | 4.0 | 4.05 | 2.39 |
0.23 | Ideal | J | VS1 | 62.8 | 56.0 | 340.0 | 3.93 | 3.9 | 2.46 |
0.23 | Very Good | E | VS2 | 63.8 | 55.0 | 352.0 | 3.85 | 3.92 | 2.48 |
0.23 | Very Good | H | VS1 | 61.0 | 57.0 | 353.0 | 3.94 | 3.96 | 2.41 |
0.23 | Very Good | G | VVS2 | 60.4 | 58.0 | 354.0 | 3.97 | 4.01 | 2.41 |
0.24 | Premium | I | VS1 | 62.5 | 57.0 | 355.0 | 3.97 | 3.94 | 2.47 |
0.3 | Very Good | J | VS2 | 62.2 | 57.0 | 357.0 | 4.28 | 4.3 | 2.67 |
0.23 | Very Good | D | VS2 | 60.5 | 61.0 | 357.0 | 3.96 | 3.97 | 2.4 |
0.23 | Very Good | F | VS1 | 60.9 | 57.0 | 357.0 | 3.96 | 3.99 | 2.42 |
0.23 | Very Good | F | VS1 | 60.0 | 57.0 | 402.0 | 4.0 | 4.03 | 2.41 |
0.23 | Very Good | F | VS1 | 59.8 | 57.0 | 402.0 | 4.04 | 4.06 | 2.42 |
0.23 | Very Good | E | VS1 | 60.7 | 59.0 | 402.0 | 3.97 | 4.01 | 2.42 |
0.23 | Very Good | E | VS1 | 59.5 | 58.0 | 402.0 | 4.01 | 4.06 | 2.4 |
0.23 | Very Good | D | VS1 | 61.9 | 58.0 | 402.0 | 3.92 | 3.96 | 2.44 |
0.23 | Good | F | VS1 | 58.2 | 59.0 | 402.0 | 4.06 | 4.08 | 2.37 |
0.23 | Good | E | VS1 | 64.1 | 59.0 | 402.0 | 3.83 | 3.85 | 2.46 |
0.26 | Very Good | D | VS2 | 60.8 | 59.0 | 403.0 | 4.13 | 4.16 | 2.52 |
0.26 | Good | D | VS2 | 65.2 | 56.0 | 403.0 | 3.99 | 4.02 | 2.61 |
0.26 | Good | D | VS1 | 58.4 | 63.0 | 403.0 | 4.19 | 4.24 | 2.46 |
0.25 | Very Good | E | VS2 | 63.3 | 60.0 | 404.0 | 4.0 | 4.03 | 2.54 |
0.23 | Ideal | G | VS1 | 61.9 | 54.0 | 404.0 | 3.93 | 3.95 | 2.44 |
0.22 | Premium | E | VS2 | 61.6 | 58.0 | 404.0 | 3.93 | 3.89 | 2.41 |
0.22 | Premium | D | VS2 | 59.3 | 62.0 | 404.0 | 3.91 | 3.88 | 2.31 |
0.35 | Ideal | I | VS1 | 60.9 | 57.0 | 552.0 | 4.54 | 4.59 | 2.78 |
0.28 | Ideal | G | VVS2 | 61.4 | 56.0 | 553.0 | 4.19 | 4.22 | 2.58 |
0.32 | Ideal | I | VVS1 | 62.0 | 55.3 | 553.0 | 4.39 | 4.42 | 2.73 |
0.24 | Premium | E | VVS1 | 60.7 | 58.0 | 553.0 | 4.01 | 4.03 | 2.44 |
0.24 | Very Good | D | VVS1 | 61.5 | 60.0 | 553.0 | 3.97 | 4.0 | 2.45 |
0.26 | Very Good | F | VVS2 | 59.2 | 60.0 | 554.0 | 4.19 | 4.22 | 2.49 |
0.26 | Very Good | E | VVS2 | 59.9 | 58.0 | 554.0 | 4.15 | 4.23 | 2.51 |
0.26 | Very Good | D | VVS2 | 62.4 | 54.0 | 554.0 | 4.08 | 4.13 | 2.56 |
0.26 | Very Good | D | VVS2 | 62.8 | 60.0 | 554.0 | 4.01 | 4.05 | 2.53 |
0.26 | Very Good | E | VVS1 | 62.6 | 59.0 | 554.0 | 4.06 | 4.09 | 2.55 |
0.26 | Very Good | E | VVS1 | 63.4 | 59.0 | 554.0 | 4.0 | 4.04 | 2.55 |
0.26 | Very Good | D | VVS1 | 62.1 | 60.0 | 554.0 | 4.03 | 4.12 | 2.53 |
0.26 | Ideal | E | VVS2 | 62.9 | 58.0 | 554.0 | 4.02 | 4.06 | 2.54 |
0.26 | Good | E | VVS1 | 57.9 | 60.0 | 554.0 | 4.22 | 4.25 | 2.45 |
0.24 | Premium | G | VVS1 | 62.3 | 59.0 | 554.0 | 3.95 | 3.92 | 2.45 |
0.24 | Premium | H | VVS1 | 61.2 | 58.0 | 554.0 | 4.01 | 3.96 | 2.44 |
0.24 | Premium | H | VVS1 | 60.8 | 59.0 | 554.0 | 4.02 | 4.0 | 2.44 |
0.24 | Premium | H | VVS2 | 60.7 | 58.0 | 554.0 | 4.07 | 4.04 | 2.46 |
0.7 | Ideal | G | VS2 | 61.6 | 56.0 | 2757.0 | 5.7 | 5.67 | 3.5 |
0.71 | Very Good | E | VS2 | 62.4 | 57.0 | 2759.0 | 5.68 | 5.73 | 3.56 |
0.7 | Good | E | VS2 | 57.5 | 58.0 | 2759.0 | 5.85 | 5.9 | 3.38 |
0.7 | Good | F | VS1 | 59.4 | 62.0 | 2759.0 | 5.71 | 5.76 | 3.4 |
0.75 | Premium | G | VS2 | 61.7 | 58.0 | 2760.0 | 5.85 | 5.79 | 3.59 |
0.8 | Ideal | I | VS1 | 62.9 | 56.0 | 2760.0 | 5.94 | 5.87 | 3.72 |
0.74 | Ideal | I | VVS2 | 62.3 | 55.0 | 2761.0 | 5.77 | 5.81 | 3.61 |
0.59 | Ideal | E | VVS2 | 62.0 | 55.0 | 2761.0 | 5.38 | 5.43 | 3.35 |
0.9 | Premium | I | VS2 | 63.0 | 58.0 | 2761.0 | 6.16 | 6.12 | 3.87 |
0.73 | Ideal | F | VS2 | 62.6 | 56.0 | 2762.0 | 5.77 | 5.74 | 3.6 |
0.73 | Ideal | F | VS2 | 62.7 | 53.0 | 2762.0 | 5.8 | 5.75 | 3.62 |
0.71 | Ideal | G | VS2 | 62.4 | 54.0 | 2762.0 | 5.72 | 5.76 | 3.58 |
0.7 | Ideal | E | VS2 | 60.7 | 58.0 | 2762.0 | 5.73 | 5.76 | 3.49 |
0.7 | Very Good | F | VS2 | 61.7 | 63.0 | 2762.0 | 5.64 | 5.61 | 3.47 |
0.7 | Fair | F | VS2 | 64.5 | 57.0 | 2762.0 | 5.57 | 5.53 | 3.58 |
0.7 | Fair | F | VS2 | 65.3 | 55.0 | 2762.0 | 5.63 | 5.58 | 3.66 |
0.7 | Premium | F | VS2 | 61.6 | 60.0 | 2762.0 | 5.65 | 5.59 | 3.46 |
0.61 | Very Good | D | VVS2 | 59.6 | 57.0 | 2763.0 | 5.56 | 5.58 | 3.32 |
0.77 | Ideal | H | VS2 | 62.0 | 56.0 | 2763.0 | 5.89 | 5.86 | 3.64 |
0.7 | Very Good | E | VS2 | 62.6 | 60.0 | 2765.0 | 5.62 | 5.65 | 3.53 |
0.77 | Very Good | H | VS1 | 61.3 | 60.0 | 2765.0 | 5.88 | 5.9 | 3.61 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2765.0 | 5.52 | 5.55 | 3.37 |
0.71 | Very Good | F | VS1 | 60.1 | 62.0 | 2765.0 | 5.74 | 5.77 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2765.0 | 5.69 | 5.73 | 3.53 |
0.64 | Ideal | G | VVS1 | 61.9 | 56.0 | 2766.0 | 5.53 | 5.56 | 3.43 |
0.71 | Premium | G | VS2 | 60.9 | 57.0 | 2766.0 | 5.78 | 5.75 | 3.51 |
0.71 | Premium | G | VS2 | 59.8 | 56.0 | 2766.0 | 5.89 | 5.81 | 3.5 |
0.7 | Very Good | D | VS2 | 61.8 | 55.0 | 2767.0 | 5.68 | 5.72 | 3.52 |
0.7 | Very Good | F | VS1 | 60.0 | 57.0 | 2767.0 | 5.8 | 5.87 | 3.5 |
0.7 | Good | H | VVS2 | 62.1 | 64.0 | 2767.0 | 5.62 | 5.65 | 3.5 |
0.71 | Very Good | G | VS1 | 63.3 | 59.0 | 2768.0 | 5.52 | 5.61 | 3.52 |
0.71 | Premium | D | VS2 | 62.5 | 60.0 | 2770.0 | 5.65 | 5.61 | 3.52 |
0.73 | Premium | G | VS2 | 61.4 | 59.0 | 2770.0 | 5.83 | 5.76 | 3.56 |
0.73 | Premium | G | VS2 | 60.7 | 58.0 | 2770.0 | 5.87 | 5.82 | 3.55 |
0.73 | Premium | G | VS1 | 61.5 | 58.0 | 2770.0 | 5.79 | 5.75 | 3.55 |
0.73 | Premium | G | VS2 | 59.2 | 59.0 | 2770.0 | 5.92 | 5.87 | 3.49 |
0.72 | Very Good | H | VVS2 | 60.3 | 56.0 | 2771.0 | 5.81 | 5.83 | 3.51 |
0.71 | Ideal | G | VS2 | 61.9 | 57.0 | 2771.0 | 5.73 | 5.77 | 3.56 |
0.73 | Very Good | H | VVS1 | 60.4 | 59.0 | 2772.0 | 5.83 | 5.89 | 3.54 |
0.58 | Ideal | G | VVS1 | 61.5 | 55.0 | 2772.0 | 5.39 | 5.44 | 3.33 |
0.58 | Ideal | F | VVS1 | 61.7 | 56.0 | 2772.0 | 5.33 | 5.37 | 3.3 |
0.71 | Good | E | VS2 | 59.2 | 61.0 | 2772.0 | 5.8 | 5.88 | 3.46 |
0.7 | Premium | D | VS2 | 58.0 | 62.0 | 2773.0 | 5.87 | 5.78 | 3.38 |
0.6 | Ideal | E | VS1 | 61.7 | 55.0 | 2774.0 | 5.41 | 5.44 | 3.35 |
0.83 | Good | I | VS2 | 64.6 | 54.0 | 2774.0 | 5.85 | 5.88 | 3.79 |
0.74 | Very Good | F | VS2 | 61.3 | 61.0 | 2775.0 | 5.8 | 5.84 | 3.57 |
0.72 | Very Good | G | VS2 | 63.7 | 56.4 | 2776.0 | 5.62 | 5.69 | 3.61 |
0.71 | Premium | E | VS2 | 62.7 | 58.0 | 2776.0 | 5.74 | 5.68 | 3.58 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 2776.0 | 5.79 | 5.62 | 3.55 |
0.54 | Ideal | E | VVS2 | 61.6 | 56.0 | 2776.0 | 5.25 | 5.27 | 3.24 |
0.54 | Ideal | E | VVS2 | 61.5 | 57.0 | 2776.0 | 5.24 | 5.26 | 3.23 |
0.72 | Good | G | VS2 | 59.7 | 60.5 | 2776.0 | 5.8 | 5.84 | 3.47 |
0.7 | Very Good | D | VS1 | 62.7 | 58.0 | 2777.0 | 5.66 | 5.73 | 3.57 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2777.0 | 5.67 | 5.7 | 3.53 |
0.71 | Very Good | F | VS2 | 62.8 | 57.0 | 2777.0 | 5.64 | 5.69 | 3.56 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2777.0 | 5.61 | 5.64 | 3.59 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2777.0 | 5.87 | 5.9 | 3.4 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2777.0 | 5.7 | 5.67 | 3.53 |
0.7 | Premium | E | VS2 | 61.1 | 60.0 | 2777.0 | 5.71 | 5.64 | 3.47 |
0.7 | Good | E | VS2 | 64.1 | 59.0 | 2777.0 | 5.64 | 5.59 | 3.6 |
0.52 | Ideal | F | VVS1 | 61.3 | 55.0 | 2778.0 | 5.19 | 5.22 | 3.19 |
0.73 | Very Good | H | VS2 | 60.8 | 56.0 | 2779.0 | 5.82 | 5.84 | 3.55 |
0.7 | Very Good | F | VS2 | 63.6 | 57.0 | 2780.0 | 5.61 | 5.65 | 3.58 |
0.77 | Premium | G | VS2 | 61.2 | 58.0 | 2780.0 | 5.9 | 5.93 | 3.62 |
0.71 | Ideal | F | VS2 | 62.1 | 54.0 | 2780.0 | 5.68 | 5.72 | 3.54 |
0.74 | Ideal | G | VS1 | 61.5 | 55.0 | 2780.0 | 5.81 | 5.86 | 3.59 |
0.7 | Ideal | G | VS1 | 61.4 | 59.0 | 2780.0 | 5.64 | 5.73 | 3.49 |
0.72 | Very Good | H | VS1 | 60.6 | 63.0 | 2782.0 | 5.83 | 5.76 | 3.51 |
0.53 | Very Good | D | VVS2 | 57.5 | 64.0 | 2782.0 | 5.34 | 5.37 | 3.08 |
0.76 | Ideal | G | VS2 | 61.3 | 56.0 | 2782.0 | 5.9 | 5.94 | 3.63 |
0.7 | Good | E | VS1 | 57.2 | 62.0 | 2782.0 | 5.81 | 5.77 | 3.31 |
0.7 | Premium | E | VS1 | 62.9 | 60.0 | 2782.0 | 5.62 | 5.54 | 3.51 |
0.72 | Very Good | F | VS2 | 63.0 | 54.0 | 2784.0 | 5.69 | 5.73 | 3.6 |
0.79 | Very Good | H | VS1 | 63.7 | 56.0 | 2784.0 | 5.85 | 5.92 | 3.75 |
0.72 | Very Good | F | VS2 | 63.6 | 58.0 | 2787.0 | 5.66 | 5.69 | 3.61 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2787.0 | 5.11 | 5.15 | 3.18 |
0.64 | Ideal | D | VS1 | 61.5 | 56.0 | 2787.0 | 5.54 | 5.55 | 3.41 |
0.7 | Very Good | H | VVS1 | 60.5 | 60.0 | 2788.0 | 5.74 | 5.77 | 3.48 |
0.83 | Very Good | I | VS1 | 61.1 | 60.0 | 2788.0 | 6.07 | 6.1 | 3.72 |
0.76 | Ideal | I | VVS2 | 61.8 | 56.0 | 2788.0 | 5.85 | 5.87 | 3.62 |
0.71 | Good | D | VS2 | 63.3 | 56.0 | 2788.0 | 5.64 | 5.68 | 3.58 |
0.77 | Good | G | VS1 | 59.4 | 64.0 | 2788.0 | 5.97 | 5.92 | 3.53 |
0.63 | Premium | E | VVS2 | 62.1 | 57.0 | 2789.0 | 5.48 | 5.41 | 3.38 |
0.63 | Premium | E | VVS1 | 60.9 | 60.0 | 2789.0 | 5.55 | 5.52 | 3.37 |
0.77 | Premium | H | VS1 | 61.3 | 60.0 | 2789.0 | 5.9 | 5.88 | 3.61 |
0.76 | Premium | I | VVS1 | 58.8 | 59.0 | 2790.0 | 6.0 | 5.94 | 3.51 |
0.71 | Premium | F | VS1 | 60.1 | 62.0 | 2790.0 | 5.77 | 5.74 | 3.46 |
0.71 | Premium | F | VS1 | 61.8 | 59.0 | 2790.0 | 5.73 | 5.69 | 3.53 |
0.7 | Premium | F | VS1 | 62.1 | 60.0 | 2792.0 | 5.71 | 5.65 | 3.53 |
0.7 | Premium | F | VS1 | 60.7 | 60.0 | 2792.0 | 5.78 | 5.75 | 3.5 |
0.76 | Premium | H | VVS2 | 59.6 | 57.0 | 2792.0 | 5.91 | 5.86 | 3.51 |
0.7 | Ideal | F | VS1 | 62.2 | 56.0 | 2792.0 | 5.73 | 5.68 | 3.55 |
0.7 | Very Good | E | VS2 | 62.9 | 57.0 | 2793.0 | 5.66 | 5.69 | 3.57 |
0.7 | Good | E | VS2 | 64.1 | 55.0 | 2793.0 | 5.6 | 5.66 | 3.61 |
0.76 | Ideal | I | VS2 | 61.3 | 56.0 | 2793.0 | 5.87 | 5.91 | 3.61 |
0.73 | Ideal | H | VS2 | 62.7 | 55.0 | 2793.0 | 5.72 | 5.76 | 3.6 |
0.71 | Very Good | E | VS2 | 60.7 | 56.0 | 2795.0 | 5.81 | 5.82 | 3.53 |
0.81 | Premium | I | VVS2 | 61.9 | 60.0 | 2795.0 | 5.91 | 5.86 | 3.64 |
0.72 | Good | F | VS1 | 60.7 | 60.0 | 2795.0 | 5.74 | 5.72 | 3.48 |
0.81 | Premium | H | VS2 | 58.0 | 59.0 | 2795.0 | 6.17 | 6.13 | 3.57 |
0.72 | Premium | G | VS2 | 62.9 | 57.0 | 2795.0 | 5.73 | 5.65 | 3.58 |
0.57 | Ideal | F | VVS2 | 61.9 | 55.0 | 2797.0 | 5.34 | 5.35 | 3.31 |
0.51 | Ideal | D | VVS1 | 61.7 | 56.0 | 2797.0 | 5.12 | 5.16 | 3.17 |
0.72 | Ideal | G | VS2 | 61.9 | 58.0 | 2797.0 | 5.72 | 5.75 | 3.55 |
0.74 | Ideal | H | VS1 | 61.8 | 58.0 | 2797.0 | 5.77 | 5.81 | 3.58 |
0.74 | Ideal | H | VS1 | 61.6 | 56.0 | 2797.0 | 5.81 | 5.82 | 3.58 |
0.7 | Fair | G | VVS1 | 58.8 | 66.0 | 2797.0 | 5.81 | 5.9 | 3.44 |
0.8 | Very Good | H | VS2 | 63.4 | 60.0 | 2797.0 | 5.92 | 5.82 | 3.72 |
0.77 | Ideal | I | VS1 | 61.5 | 59.0 | 2798.0 | 5.87 | 5.91 | 3.62 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2800.0 | 5.6 | 5.66 | 3.5 |
0.74 | Premium | G | VS1 | 62.9 | 60.0 | 2800.0 | 5.74 | 5.68 | 3.59 |
0.79 | Ideal | I | VS1 | 61.8 | 59.0 | 2800.0 | 5.92 | 5.95 | 3.67 |
0.76 | Fair | G | VS1 | 59.0 | 70.0 | 2800.0 | 5.89 | 5.8 | 3.46 |
0.73 | Ideal | F | VS2 | 62.5 | 55.0 | 2801.0 | 5.8 | 5.76 | 3.61 |
0.73 | Premium | F | VS2 | 62.7 | 58.0 | 2801.0 | 5.76 | 5.7 | 3.59 |
0.71 | Premium | F | VS2 | 62.1 | 58.0 | 2801.0 | 5.7 | 5.67 | 3.53 |
0.71 | Good | F | VS2 | 57.8 | 60.0 | 2801.0 | 5.9 | 5.87 | 3.4 |
0.71 | Good | F | VS2 | 63.8 | 58.0 | 2801.0 | 5.64 | 5.61 | 3.59 |
0.71 | Premium | F | VS2 | 62.8 | 57.0 | 2801.0 | 5.69 | 5.64 | 3.56 |
0.72 | Premium | E | VS2 | 63.0 | 55.0 | 2802.0 | 5.79 | 5.61 | 3.59 |
0.72 | Premium | F | VS1 | 62.4 | 58.0 | 2802.0 | 5.83 | 5.7 | 3.6 |
0.7 | Very Good | F | VS2 | 62.9 | 58.0 | 2803.0 | 5.63 | 5.65 | 3.55 |
0.71 | Ideal | G | VS2 | 61.3 | 56.0 | 2803.0 | 5.75 | 5.71 | 3.51 |
0.7 | Good | G | VS1 | 65.1 | 58.0 | 2803.0 | 5.56 | 5.59 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2803.0 | 5.7 | 5.67 | 3.56 |
0.71 | Premium | F | VS2 | 58.0 | 62.0 | 2803.0 | 5.85 | 5.81 | 3.38 |
0.71 | Premium | G | VS1 | 62.4 | 61.0 | 2803.0 | 5.7 | 5.65 | 3.54 |
0.77 | Premium | G | VS2 | 61.3 | 57.0 | 2803.0 | 5.93 | 5.88 | 3.62 |
0.71 | Premium | G | VS2 | 59.9 | 60.0 | 2803.0 | 5.81 | 5.77 | 3.47 |
0.78 | Premium | G | VS2 | 60.8 | 58.0 | 2803.0 | 6.03 | 5.95 | 3.64 |
0.71 | Very Good | G | VS1 | 63.5 | 55.0 | 2803.0 | 5.66 | 5.64 | 3.59 |
0.71 | Very Good | E | VS2 | 63.8 | 58.0 | 2804.0 | 5.62 | 5.66 | 3.6 |
0.71 | Very Good | E | VS2 | 64.0 | 57.0 | 2804.0 | 5.66 | 5.68 | 3.63 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2804.0 | 5.74 | 5.77 | 3.55 |
0.72 | Very Good | F | VS1 | 62.2 | 58.0 | 2804.0 | 5.75 | 5.7 | 3.56 |
0.82 | Ideal | H | VS2 | 61.5 | 56.0 | 2804.0 | 6.01 | 6.08 | 3.72 |
0.74 | Premium | F | VS2 | 61.7 | 58.0 | 2805.0 | 5.85 | 5.78 | 3.59 |
0.74 | Premium | F | VS2 | 61.9 | 56.0 | 2805.0 | 5.8 | 5.77 | 3.58 |
0.57 | Fair | E | VVS1 | 58.7 | 66.0 | 2805.0 | 5.34 | 5.43 | 3.16 |
0.73 | Premium | F | VS2 | 62.5 | 57.0 | 2805.0 | 5.75 | 5.7 | 3.58 |
0.72 | Ideal | G | VS2 | 62.8 | 56.0 | 2805.0 | 5.74 | 5.7 | 3.59 |
0.74 | Fair | F | VS2 | 61.1 | 68.0 | 2805.0 | 5.82 | 5.75 | 3.53 |
0.82 | Good | G | VS2 | 64.0 | 57.0 | 2805.0 | 5.92 | 5.89 | 3.78 |
0.75 | Very Good | H | VVS1 | 60.6 | 58.0 | 2806.0 | 5.85 | 5.9 | 3.56 |
0.71 | Very Good | F | VS1 | 62.2 | 58.0 | 2807.0 | 5.66 | 5.72 | 3.54 |
0.71 | Very Good | F | VS1 | 60.0 | 57.0 | 2807.0 | 5.84 | 5.9 | 3.52 |
0.8 | Very Good | H | VS2 | 62.8 | 57.0 | 2808.0 | 5.87 | 5.91 | 3.7 |
0.7 | Very Good | F | VS1 | 62.0 | 57.0 | 2808.0 | 5.64 | 5.71 | 3.52 |
0.75 | Very Good | G | VS2 | 63.4 | 56.0 | 2808.0 | 5.78 | 5.74 | 3.65 |
0.58 | Ideal | E | VVS2 | 60.9 | 56.0 | 2808.0 | 5.41 | 5.43 | 3.3 |
0.7 | Very Good | F | VS1 | 61.8 | 56.0 | 2810.0 | 5.63 | 5.7 | 3.5 |
0.7 | Very Good | F | VS1 | 59.9 | 60.0 | 2810.0 | 5.77 | 5.84 | 3.48 |
0.7 | Good | F | VS1 | 62.8 | 61.0 | 2810.0 | 5.57 | 5.61 | 3.51 |
1.0 | Fair | J | VS2 | 65.7 | 59.0 | 2811.0 | 6.14 | 6.07 | 4.01 |
0.7 | Very Good | G | VS1 | 63.0 | 60.0 | 2812.0 | 5.57 | 5.64 | 3.53 |
0.7 | Very Good | F | VS2 | 59.5 | 58.0 | 2812.0 | 5.75 | 5.85 | 3.45 |
0.7 | Very Good | F | VS2 | 61.7 | 58.0 | 2812.0 | 5.63 | 5.69 | 3.49 |
0.29 | Very Good | E | VS1 | 61.9 | 55.0 | 555.0 | 4.28 | 4.33 | 2.66 |
0.29 | Very Good | E | VS1 | 62.4 | 55.0 | 555.0 | 4.2 | 4.25 | 2.63 |
0.34 | Ideal | H | VS2 | 61.5 | 56.0 | 555.0 | 4.47 | 4.5 | 2.76 |
0.34 | Ideal | H | VS2 | 60.4 | 57.0 | 555.0 | 4.54 | 4.57 | 2.75 |
0.34 | Ideal | I | VS1 | 61.8 | 55.0 | 555.0 | 4.48 | 4.52 | 2.78 |
0.34 | Ideal | I | VS1 | 62.0 | 56.0 | 555.0 | 4.5 | 4.53 | 2.8 |
0.3 | Ideal | G | VS1 | 62.3 | 56.0 | 555.0 | 4.29 | 4.31 | 2.68 |
0.29 | Ideal | F | VS1 | 61.6 | 56.0 | 555.0 | 4.26 | 4.31 | 2.64 |
0.32 | Very Good | F | VS2 | 61.4 | 58.0 | 556.0 | 4.37 | 4.42 | 2.7 |
0.36 | Ideal | I | VS2 | 61.9 | 56.0 | 556.0 | 4.54 | 4.57 | 2.82 |
0.3 | Ideal | G | VS2 | 62.0 | 56.0 | 556.0 | 4.28 | 4.3 | 2.66 |
0.26 | Ideal | E | VS1 | 61.5 | 57.0 | 556.0 | 4.09 | 4.12 | 2.52 |
0.7 | Very Good | F | VS2 | 62.3 | 58.0 | 2812.0 | 5.64 | 5.72 | 3.54 |
0.7 | Very Good | F | VS2 | 60.9 | 61.0 | 2812.0 | 5.66 | 5.71 | 3.46 |
0.73 | Premium | E | VS2 | 58.6 | 60.0 | 2812.0 | 5.92 | 5.89 | 3.46 |
0.51 | Ideal | F | VVS1 | 62.0 | 57.0 | 2812.0 | 5.15 | 5.11 | 3.18 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2813.0 | 6.09 | 6.05 | 3.9 |
0.55 | Very Good | D | VVS1 | 61.5 | 56.0 | 2815.0 | 5.23 | 5.27 | 3.23 |
0.74 | Premium | G | VS1 | 61.7 | 58.0 | 2815.0 | 5.79 | 5.81 | 3.58 |
0.9 | Fair | J | VS2 | 65.0 | 56.0 | 2815.0 | 6.08 | 6.04 | 3.94 |
0.72 | Premium | E | VS2 | 58.3 | 58.0 | 2815.0 | 5.99 | 5.92 | 3.47 |
0.78 | Very Good | I | VVS2 | 61.4 | 56.0 | 2816.0 | 5.91 | 5.95 | 3.64 |
0.61 | Ideal | G | VVS2 | 60.1 | 57.0 | 2816.0 | 5.52 | 5.54 | 3.32 |
0.71 | Good | D | VS1 | 63.4 | 55.0 | 2816.0 | 5.61 | 5.69 | 3.58 |
0.71 | Ideal | I | VVS2 | 60.2 | 56.0 | 2817.0 | 5.84 | 5.89 | 3.53 |
0.71 | Ideal | E | VS2 | 62.7 | 57.0 | 2817.0 | 5.66 | 5.64 | 3.54 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2817.0 | 5.69 | 5.65 | 3.53 |
0.63 | Ideal | F | VVS2 | 61.5 | 56.0 | 2817.0 | 5.48 | 5.52 | 3.38 |
0.9 | Ideal | J | VS2 | 62.8 | 55.0 | 2817.0 | 6.2 | 6.16 | 3.88 |
0.7 | Premium | E | VS2 | 62.4 | 61.0 | 2818.0 | 5.66 | 5.63 | 3.52 |
0.7 | Premium | E | VS2 | 59.3 | 60.0 | 2818.0 | 5.78 | 5.73 | 3.41 |
0.7 | Premium | E | VS2 | 63.0 | 60.0 | 2818.0 | 5.64 | 5.6 | 3.54 |
0.7 | Ideal | E | VS1 | 62.9 | 57.0 | 2818.0 | 5.66 | 5.61 | 3.54 |
0.7 | Premium | E | VS1 | 59.6 | 57.0 | 2818.0 | 5.91 | 5.83 | 3.5 |
0.7 | Premium | F | VS2 | 61.8 | 60.0 | 2818.0 | 5.69 | 5.64 | 3.5 |
0.7 | Premium | E | VS1 | 62.7 | 57.0 | 2818.0 | 5.68 | 5.64 | 3.55 |
0.72 | Very Good | G | VS1 | 63.8 | 58.0 | 2819.0 | 5.64 | 5.68 | 3.61 |
0.72 | Ideal | H | VS1 | 62.3 | 56.0 | 2819.0 | 5.73 | 5.77 | 3.58 |
0.7 | Good | F | VS1 | 59.7 | 63.0 | 2819.0 | 5.76 | 5.79 | 3.45 |
0.71 | Ideal | G | VS1 | 62.9 | 58.0 | 2820.0 | 5.66 | 5.69 | 3.57 |
0.73 | Premium | E | VS2 | 61.6 | 59.0 | 2821.0 | 5.77 | 5.73 | 3.54 |
0.53 | Ideal | E | VVS1 | 61.9 | 55.0 | 2821.0 | 5.2 | 5.21 | 3.22 |
0.7 | Premium | E | VS1 | 60.8 | 60.0 | 2822.0 | 5.74 | 5.71 | 3.48 |
0.72 | Premium | E | VS2 | 60.3 | 59.0 | 2822.0 | 5.84 | 5.8 | 3.51 |
0.72 | Premium | E | VS2 | 60.9 | 60.0 | 2822.0 | 5.8 | 5.76 | 3.52 |
0.72 | Premium | E | VS2 | 62.4 | 59.0 | 2822.0 | 5.77 | 5.7 | 3.58 |
0.7 | Premium | E | VS2 | 60.2 | 60.0 | 2822.0 | 5.73 | 5.7 | 3.44 |
0.6 | Ideal | F | VVS2 | 62.0 | 55.0 | 2822.0 | 5.37 | 5.4 | 3.34 |
0.74 | Ideal | I | VVS1 | 60.8 | 57.0 | 2822.0 | 5.85 | 5.89 | 3.57 |
0.9 | Good | J | VS2 | 64.0 | 61.0 | 2822.0 | 6.04 | 6.03 | 3.86 |
0.7 | Premium | E | VS2 | 61.5 | 59.0 | 2822.0 | 5.73 | 5.68 | 3.51 |
0.7 | Premium | E | VS2 | 62.6 | 56.0 | 2822.0 | 5.71 | 5.66 | 3.56 |
0.7 | Premium | E | VS2 | 60.7 | 62.0 | 2822.0 | 5.72 | 5.68 | 3.46 |
0.7 | Premium | F | VS2 | 60.6 | 58.0 | 2822.0 | 5.8 | 5.72 | 3.49 |
0.71 | Premium | E | VS2 | 62.3 | 58.0 | 2823.0 | 5.71 | 5.66 | 3.54 |
0.61 | Ideal | E | VVS2 | 61.3 | 54.0 | 2823.0 | 5.51 | 5.59 | 3.4 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2824.0 | 5.74 | 5.69 | 3.5 |
0.77 | Ideal | I | VVS2 | 62.1 | 57.0 | 2824.0 | 5.84 | 5.86 | 3.63 |
0.74 | Good | E | VS1 | 63.1 | 58.0 | 2824.0 | 5.73 | 5.75 | 3.62 |
0.71 | Premium | G | VS1 | 62.2 | 59.0 | 2825.0 | 5.73 | 5.66 | 3.54 |
0.73 | Very Good | G | VS1 | 62.0 | 57.0 | 2825.0 | 5.75 | 5.8 | 3.58 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2826.0 | 5.75 | 5.68 | 3.58 |
0.7 | Good | E | VS1 | 57.2 | 59.0 | 2826.0 | 5.94 | 5.88 | 3.38 |
0.7 | Premium | E | VS1 | 62.2 | 58.0 | 2826.0 | 5.66 | 5.6 | 3.5 |
0.7 | Very Good | D | VS2 | 63.3 | 56.0 | 2826.0 | 5.6 | 5.58 | 3.54 |
0.7 | Premium | E | VS1 | 59.4 | 61.0 | 2826.0 | 5.78 | 5.74 | 3.42 |
0.72 | Good | D | VS2 | 64.0 | 54.0 | 2827.0 | 5.68 | 5.7 | 3.64 |
0.79 | Premium | H | VVS2 | 62.6 | 58.0 | 2827.0 | 5.96 | 5.9 | 3.71 |
0.7 | Ideal | H | VVS1 | 61.6 | 57.0 | 2827.0 | 5.69 | 5.74 | 3.52 |
0.7 | Ideal | H | VVS1 | 62.3 | 55.0 | 2827.0 | 5.66 | 5.7 | 3.54 |
0.72 | Premium | F | VS1 | 62.2 | 58.0 | 2829.0 | 5.75 | 5.7 | 3.56 |
0.59 | Ideal | E | VVS1 | 62.0 | 56.0 | 2829.0 | 5.36 | 5.38 | 3.33 |
0.72 | Ideal | F | VS1 | 61.7 | 57.0 | 2829.0 | 5.77 | 5.74 | 3.55 |
0.71 | Very Good | E | VS2 | 62.7 | 59.0 | 2830.0 | 5.65 | 5.7 | 3.56 |
0.53 | Ideal | F | VVS1 | 60.9 | 57.0 | 2830.0 | 5.23 | 5.29 | 3.19 |
0.53 | Ideal | F | VVS1 | 61.8 | 57.0 | 2830.0 | 5.16 | 5.19 | 3.2 |
0.8 | Ideal | I | VS2 | 62.1 | 54.4 | 2830.0 | 5.94 | 5.99 | 3.7 |
0.72 | Very Good | F | VS2 | 62.5 | 58.0 | 2832.0 | 5.71 | 5.75 | 3.58 |
0.71 | Premium | G | VVS2 | 62.1 | 57.0 | 2832.0 | 5.75 | 5.65 | 3.54 |
0.71 | Premium | F | VS1 | 62.2 | 58.0 | 2832.0 | 5.72 | 5.66 | 3.54 |
0.8 | Very Good | I | VS2 | 62.0 | 58.0 | 2833.0 | 5.86 | 5.95 | 3.66 |
0.7 | Very Good | D | VS2 | 59.6 | 61.0 | 2833.0 | 5.77 | 5.8 | 3.45 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2833.0 | 5.74 | 5.76 | 3.51 |
0.61 | Ideal | F | VVS2 | 61.7 | 55.0 | 2833.0 | 5.45 | 5.48 | 3.37 |
0.8 | Ideal | G | VS2 | 62.2 | 56.0 | 2834.0 | 5.94 | 5.87 | 3.67 |
0.8 | Ideal | H | VS2 | 62.8 | 57.0 | 2834.0 | 5.91 | 5.87 | 3.7 |
0.51 | Very Good | D | VVS1 | 59.9 | 58.0 | 2834.0 | 5.16 | 5.19 | 3.1 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2834.0 | 5.2 | 5.23 | 3.2 |
0.78 | Ideal | I | VS2 | 61.8 | 55.0 | 2834.0 | 5.92 | 5.95 | 3.67 |
0.73 | Ideal | F | VS1 | 61.2 | 56.0 | 2835.0 | 5.89 | 5.81 | 3.58 |
0.63 | Ideal | F | VVS2 | 61.9 | 57.0 | 2835.0 | 5.47 | 5.51 | 3.4 |
0.7 | Ideal | E | VS2 | 61.5 | 54.0 | 2835.0 | 5.7 | 5.75 | 3.52 |
0.72 | Ideal | E | VS2 | 62.8 | 57.0 | 2835.0 | 5.71 | 5.73 | 3.59 |
0.75 | Premium | F | VS2 | 59.6 | 59.0 | 2835.0 | 6.04 | 5.94 | 3.57 |
0.71 | Good | E | VS2 | 62.8 | 60.0 | 2836.0 | 5.6 | 5.65 | 3.53 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2837.0 | 5.69 | 5.66 | 3.55 |
0.7 | Ideal | E | VS1 | 61.8 | 56.0 | 2837.0 | 5.74 | 5.69 | 3.53 |
0.72 | Premium | F | VS1 | 58.8 | 60.0 | 2838.0 | 5.91 | 5.89 | 3.47 |
0.7 | Premium | F | VS2 | 62.3 | 58.0 | 2838.0 | 5.72 | 5.64 | 3.54 |
0.7 | Premium | F | VS2 | 61.7 | 58.0 | 2838.0 | 5.69 | 5.63 | 3.49 |
0.7 | Premium | G | VS1 | 62.6 | 55.0 | 2838.0 | 5.73 | 5.64 | 3.56 |
0.7 | Premium | F | VS2 | 59.4 | 61.0 | 2838.0 | 5.83 | 5.79 | 3.45 |
0.7 | Premium | F | VS2 | 60.9 | 61.0 | 2838.0 | 5.71 | 5.66 | 3.46 |
0.7 | Premium | F | VS2 | 59.5 | 58.0 | 2838.0 | 5.85 | 5.75 | 3.45 |
0.7 | Premium | G | VS1 | 63.0 | 60.0 | 2838.0 | 5.64 | 5.57 | 3.53 |
0.71 | Ideal | F | VS1 | 61.5 | 57.0 | 2839.0 | 5.74 | 5.71 | 3.52 |
0.7 | Ideal | F | VS1 | 61.6 | 54.0 | 2839.0 | 5.75 | 5.72 | 3.53 |
0.71 | Ideal | F | VS1 | 62.1 | 55.0 | 2839.0 | 5.82 | 5.68 | 3.57 |
0.71 | Premium | F | VS1 | 59.1 | 61.0 | 2839.0 | 5.84 | 5.81 | 3.44 |
0.71 | Premium | F | VS1 | 59.0 | 60.0 | 2839.0 | 5.82 | 5.8 | 3.43 |
0.71 | Premium | F | VS1 | 60.5 | 58.0 | 2839.0 | 5.75 | 5.72 | 3.47 |
0.7 | Ideal | F | VS1 | 62.4 | 53.0 | 2839.0 | 5.73 | 5.71 | 3.57 |
0.73 | Ideal | G | VS2 | 61.8 | 54.0 | 2839.0 | 5.8 | 5.82 | 3.59 |
0.7 | Ideal | E | VS2 | 62.1 | 54.0 | 2839.0 | 5.69 | 5.72 | 3.54 |
0.7 | Ideal | G | VS1 | 61.3 | 57.0 | 2839.0 | 5.71 | 5.74 | 3.51 |
0.71 | Premium | G | VVS2 | 60.3 | 58.0 | 2839.0 | 5.82 | 5.78 | 3.5 |
0.71 | Premium | F | VS1 | 59.2 | 58.0 | 2839.0 | 5.87 | 5.82 | 3.46 |
0.79 | Premium | G | VS2 | 59.3 | 62.0 | 2839.0 | 6.09 | 6.01 | 3.59 |
0.71 | Premium | F | VS1 | 62.7 | 59.0 | 2839.0 | 5.7 | 5.62 | 3.55 |
0.77 | Very Good | H | VS1 | 61.0 | 60.0 | 2840.0 | 5.9 | 5.87 | 3.59 |
0.71 | Premium | F | VS2 | 59.3 | 56.0 | 2840.0 | 5.88 | 5.82 | 3.47 |
0.7 | Premium | H | VVS1 | 59.2 | 60.0 | 2840.0 | 5.87 | 5.78 | 3.45 |
0.73 | Premium | F | VS2 | 60.3 | 59.0 | 2841.0 | 5.9 | 5.87 | 3.55 |
0.71 | Very Good | D | VS1 | 63.4 | 55.0 | 2841.0 | 5.69 | 5.61 | 3.58 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2841.0 | 5.19 | 5.21 | 3.18 |
0.73 | Premium | F | VS2 | 59.9 | 59.0 | 2841.0 | 5.87 | 5.77 | 3.5 |
0.73 | Premium | G | VS1 | 61.4 | 58.0 | 2841.0 | 5.82 | 5.77 | 3.56 |
0.8 | Ideal | I | VS1 | 62.6 | 54.0 | 2842.0 | 5.92 | 5.96 | 3.72 |
0.7 | Premium | F | VS2 | 58.7 | 61.0 | 2842.0 | 5.8 | 5.72 | 3.38 |
0.7 | Very Good | E | VS2 | 60.2 | 62.0 | 2843.0 | 5.71 | 5.75 | 3.45 |
0.7 | Very Good | E | VS2 | 62.7 | 58.0 | 2843.0 | 5.65 | 5.67 | 3.55 |
0.71 | Very Good | E | VS2 | 59.4 | 58.0 | 2843.0 | 5.76 | 5.82 | 3.44 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2843.0 | 5.81 | 5.84 | 3.57 |
0.73 | Very Good | F | VS1 | 61.8 | 59.0 | 2843.0 | 5.73 | 5.79 | 3.56 |
0.72 | Ideal | E | VS2 | 62.0 | 57.0 | 2843.0 | 5.71 | 5.74 | 3.55 |
0.71 | Ideal | G | VVS2 | 60.7 | 57.0 | 2843.0 | 5.81 | 5.78 | 3.52 |
0.7 | Very Good | E | VS1 | 62.0 | 59.0 | 2844.0 | 5.65 | 5.68 | 3.51 |
0.79 | Ideal | H | VS2 | 62.5 | 57.0 | 2844.0 | 5.91 | 5.93 | 3.7 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2845.0 | 5.65 | 5.68 | 3.5 |
0.7 | Very Good | E | VS2 | 58.9 | 60.0 | 2845.0 | 5.83 | 5.85 | 3.44 |
0.8 | Good | H | VS2 | 63.4 | 60.0 | 2845.0 | 5.92 | 5.82 | 3.72 |
0.72 | Very Good | F | VS1 | 60.2 | 59.0 | 2846.0 | 5.79 | 5.84 | 3.5 |
0.73 | Ideal | H | VVS2 | 61.6 | 56.0 | 2846.0 | 5.79 | 5.84 | 3.58 |
0.7 | Good | F | VS2 | 59.1 | 61.0 | 2846.0 | 5.76 | 5.84 | 3.43 |
0.77 | Premium | G | VS2 | 61.3 | 60.0 | 2846.0 | 5.91 | 5.81 | 3.59 |
0.77 | Premium | G | VS1 | 61.4 | 58.0 | 2846.0 | 5.94 | 5.89 | 3.63 |
0.7 | Very Good | G | VVS2 | 62.9 | 59.0 | 2848.0 | 5.61 | 5.68 | 3.55 |
0.54 | Ideal | D | VVS2 | 61.5 | 55.0 | 2848.0 | 5.25 | 5.29 | 3.24 |
0.74 | Very Good | E | VS1 | 63.1 | 58.0 | 2849.0 | 5.75 | 5.73 | 3.62 |
0.7 | Very Good | E | VS2 | 61.0 | 60.0 | 2850.0 | 5.74 | 5.77 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 59.0 | 2850.0 | 5.69 | 5.79 | 3.49 |
0.66 | Ideal | D | VS1 | 62.1 | 56.0 | 2851.0 | 5.54 | 5.57 | 3.45 |
0.78 | Ideal | I | VS1 | 61.5 | 57.0 | 2852.0 | 5.88 | 5.92 | 3.63 |
0.71 | Premium | F | VS2 | 62.6 | 58.0 | 2853.0 | 5.67 | 5.7 | 3.56 |
0.71 | Good | G | VS1 | 63.5 | 55.0 | 2853.0 | 5.64 | 5.66 | 3.59 |
0.82 | Premium | I | VS1 | 61.9 | 58.0 | 2853.0 | 5.99 | 5.97 | 3.7 |
0.78 | Very Good | H | VS1 | 61.9 | 57.1 | 2854.0 | 5.87 | 5.95 | 3.66 |
0.7 | Very Good | E | VS1 | 62.4 | 56.0 | 2854.0 | 5.64 | 5.7 | 3.54 |
0.73 | Premium | E | VS2 | 62.0 | 57.0 | 2854.0 | 5.86 | 5.76 | 3.6 |
0.91 | Fair | J | VS2 | 64.4 | 62.0 | 2854.0 | 6.06 | 6.03 | 3.89 |
0.91 | Fair | J | VS2 | 65.4 | 60.0 | 2854.0 | 6.04 | 6.0 | 3.94 |
0.91 | Good | J | VS2 | 64.2 | 58.0 | 2854.0 | 6.12 | 6.09 | 3.92 |
0.7 | Premium | E | VS1 | 58.4 | 59.0 | 2854.0 | 5.91 | 5.83 | 3.43 |
0.68 | Premium | F | VVS2 | 61.7 | 57.0 | 2854.0 | 5.67 | 5.64 | 3.49 |
0.73 | Very Good | F | VS2 | 62.5 | 57.0 | 2855.0 | 5.7 | 5.75 | 3.58 |
0.74 | Premium | D | VS2 | 62.4 | 57.0 | 2855.0 | 5.8 | 5.74 | 3.6 |
0.6 | Ideal | F | VVS2 | 60.8 | 57.0 | 2856.0 | 5.44 | 5.49 | 3.32 |
0.26 | Ideal | E | VS1 | 62.3 | 57.0 | 556.0 | 4.05 | 4.08 | 2.53 |
0.26 | Ideal | E | VS1 | 62.1 | 56.0 | 556.0 | 4.09 | 4.12 | 2.55 |
0.34 | Good | G | VS2 | 57.5 | 61.0 | 556.0 | 4.6 | 4.66 | 2.66 |
0.34 | Very Good | G | VS2 | 59.6 | 62.0 | 556.0 | 4.54 | 4.56 | 2.71 |
0.32 | Good | E | VS2 | 64.1 | 54.0 | 556.0 | 4.34 | 4.37 | 2.79 |
0.31 | Ideal | I | VVS1 | 61.6 | 55.0 | 557.0 | 4.36 | 4.41 | 2.7 |
0.31 | Ideal | I | VVS1 | 61.3 | 56.0 | 557.0 | 4.36 | 4.38 | 2.68 |
0.31 | Ideal | I | VVS1 | 62.3 | 54.0 | 557.0 | 4.37 | 4.4 | 2.73 |
0.31 | Ideal | I | VVS1 | 62.0 | 54.0 | 557.0 | 4.37 | 4.4 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.7 | 53.0 | 557.0 | 4.33 | 4.35 | 2.72 |
0.31 | Ideal | I | VVS1 | 62.2 | 53.0 | 557.0 | 4.36 | 4.38 | 2.72 |
0.31 | Ideal | G | VS2 | 62.2 | 53.6 | 557.0 | 4.32 | 4.35 | 2.7 |
0.31 | Ideal | H | VS1 | 61.6 | 54.8 | 557.0 | 4.35 | 4.37 | 2.69 |
0.31 | Ideal | H | VS1 | 61.8 | 54.2 | 557.0 | 4.33 | 4.37 | 2.69 |
0.33 | Premium | J | VS1 | 62.8 | 58.0 | 557.0 | 4.41 | 4.38 | 2.76 |
0.33 | Premium | J | VS1 | 61.5 | 61.0 | 557.0 | 4.46 | 4.39 | 2.72 |
0.33 | Ideal | J | VS1 | 62.1 | 55.0 | 557.0 | 4.44 | 4.41 | 2.75 |
0.7 | Good | E | VVS2 | 60.1 | 63.0 | 2857.0 | 5.68 | 5.71 | 3.42 |
0.9 | Premium | I | VS2 | 61.9 | 59.0 | 2857.0 | 6.2 | 6.14 | 3.82 |
0.7 | Ideal | G | VVS2 | 62.1 | 56.0 | 2858.0 | 5.63 | 5.71 | 3.52 |
0.71 | Premium | E | VS2 | 61.0 | 60.0 | 2858.0 | 5.76 | 5.69 | 3.49 |
0.7 | Premium | E | VS2 | 61.4 | 59.0 | 2858.0 | 5.73 | 5.7 | 3.51 |
0.71 | Premium | E | VS2 | 61.5 | 60.0 | 2858.0 | 5.76 | 5.68 | 3.52 |
0.71 | Very Good | E | VS2 | 63.5 | 59.0 | 2858.0 | 5.68 | 5.59 | 3.58 |
0.71 | Premium | D | VS2 | 60.4 | 62.0 | 2858.0 | 5.74 | 5.72 | 3.46 |
0.7 | Good | E | VVS2 | 63.6 | 62.0 | 2858.0 | 5.61 | 5.58 | 3.56 |
0.71 | Fair | D | VS2 | 56.9 | 65.0 | 2858.0 | 5.89 | 5.84 | 3.34 |
0.7 | Ideal | D | VS2 | 61.0 | 57.0 | 2859.0 | 5.76 | 5.74 | 3.51 |
0.7 | Premium | D | VS2 | 62.4 | 56.0 | 2859.0 | 5.72 | 5.66 | 3.55 |
0.77 | Premium | F | VS1 | 60.9 | 60.0 | 2859.0 | 5.91 | 5.88 | 3.59 |
0.71 | Ideal | G | VS1 | 61.5 | 56.0 | 2859.0 | 5.74 | 5.78 | 3.54 |
0.7 | Premium | D | VS2 | 59.6 | 61.0 | 2859.0 | 5.8 | 5.77 | 3.45 |
0.75 | Fair | F | VS1 | 55.8 | 70.0 | 2859.0 | 6.09 | 5.98 | 3.37 |
0.71 | Very Good | F | VS2 | 61.3 | 61.0 | 2860.0 | 5.68 | 5.73 | 3.5 |
0.6 | Ideal | E | VVS2 | 61.9 | 54.9 | 2860.0 | 5.41 | 5.44 | 3.35 |
0.71 | Premium | D | VS1 | 62.9 | 57.0 | 2860.0 | 5.66 | 5.6 | 3.54 |
0.53 | Ideal | F | VVS1 | 61.4 | 57.0 | 2860.0 | 5.23 | 5.2 | 3.2 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.45 | 5.48 | 3.37 |
0.62 | Ideal | G | VVS2 | 61.6 | 56.0 | 2861.0 | 5.48 | 5.51 | 3.38 |
0.66 | Premium | D | VS1 | 61.0 | 58.0 | 2861.0 | 5.67 | 5.57 | 3.43 |
0.71 | Very Good | F | VVS1 | 63.2 | 60.0 | 2862.0 | 5.65 | 5.61 | 3.56 |
0.7 | Ideal | H | VS2 | 61.1 | 57.0 | 2862.0 | 5.71 | 5.74 | 3.5 |
0.7 | Very Good | E | VS2 | 58.7 | 63.0 | 2862.0 | 5.73 | 5.69 | 3.35 |
0.79 | Premium | H | VS1 | 60.0 | 60.0 | 2862.0 | 6.07 | 5.99 | 3.64 |
0.7 | Premium | E | VS2 | 59.5 | 59.0 | 2862.0 | 5.82 | 5.77 | 3.45 |
0.73 | Premium | E | VS2 | 62.5 | 61.0 | 2862.0 | 5.78 | 5.64 | 3.59 |
0.91 | Good | I | VS2 | 64.3 | 58.0 | 2863.0 | 6.05 | 6.09 | 3.9 |
0.9 | Premium | J | VS2 | 59.8 | 62.0 | 2863.0 | 6.24 | 6.21 | 3.72 |
0.71 | Premium | H | VVS2 | 61.5 | 62.0 | 2863.0 | 5.74 | 5.68 | 3.51 |
0.72 | Ideal | F | VS2 | 59.5 | 57.0 | 2863.0 | 5.91 | 5.86 | 3.5 |
0.71 | Ideal | E | VS2 | 61.0 | 55.0 | 2863.0 | 5.79 | 5.75 | 3.52 |
0.83 | Very Good | I | VS2 | 61.6 | 58.0 | 2865.0 | 6.05 | 6.07 | 3.73 |
0.56 | Very Good | D | VVS1 | 62.0 | 56.0 | 2866.0 | 5.25 | 5.3 | 3.27 |
0.56 | Very Good | D | VVS1 | 61.8 | 55.0 | 2866.0 | 5.27 | 5.31 | 3.27 |
0.71 | Ideal | E | VS1 | 62.2 | 55.0 | 2866.0 | 5.74 | 5.7 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.3 | 58.0 | 2866.0 | 5.66 | 5.7 | 3.54 |
0.71 | Very Good | H | VVS1 | 62.9 | 57.0 | 2867.0 | 5.67 | 5.69 | 3.57 |
0.7 | Ideal | D | VS2 | 62.4 | 57.0 | 2867.0 | 5.68 | 5.61 | 3.52 |
0.71 | Ideal | H | VVS1 | 60.4 | 57.0 | 2867.0 | 5.78 | 5.81 | 3.5 |
0.8 | Premium | H | VS2 | 61.2 | 53.0 | 2867.0 | 6.05 | 5.98 | 3.68 |
0.52 | Ideal | F | VVS1 | 61.2 | 56.0 | 2867.0 | 5.21 | 5.19 | 3.18 |
0.72 | Ideal | I | VS1 | 62.4 | 55.0 | 2868.0 | 5.72 | 5.75 | 3.58 |
0.73 | Ideal | G | VVS2 | 61.3 | 57.0 | 2869.0 | 5.84 | 5.81 | 3.57 |
0.72 | Ideal | H | VVS2 | 60.9 | 57.0 | 2869.0 | 5.79 | 5.77 | 3.52 |
0.52 | Premium | F | VVS2 | 61.8 | 60.0 | 2870.0 | 5.16 | 5.13 | 3.18 |
0.64 | Premium | E | VVS2 | 62.1 | 58.0 | 2870.0 | 5.56 | 5.51 | 3.44 |
0.82 | Ideal | H | VS2 | 59.5 | 57.0 | 2870.0 | 6.12 | 6.09 | 3.63 |
0.73 | Premium | E | VS1 | 61.3 | 59.0 | 2870.0 | 5.81 | 5.78 | 3.55 |
0.72 | Very Good | E | VS2 | 58.3 | 57.0 | 2872.0 | 5.89 | 5.94 | 3.45 |
0.76 | Very Good | F | VS2 | 62.0 | 58.0 | 2873.0 | 5.8 | 5.86 | 3.62 |
0.78 | Premium | F | VS2 | 62.6 | 58.0 | 2874.0 | 5.91 | 5.82 | 3.67 |
0.71 | Premium | D | VS2 | 61.2 | 59.0 | 2874.0 | 5.69 | 5.74 | 3.5 |
0.7 | Premium | F | VS1 | 59.0 | 59.0 | 2874.0 | 5.79 | 5.77 | 3.41 |
0.7 | Premium | F | VS1 | 60.8 | 62.0 | 2874.0 | 5.71 | 5.67 | 3.46 |
0.7 | Premium | G | VVS2 | 61.8 | 58.0 | 2874.0 | 5.67 | 5.63 | 3.49 |
0.7 | Ideal | F | VS1 | 61.0 | 55.0 | 2874.0 | 5.77 | 5.73 | 3.51 |
0.7 | Ideal | F | VS1 | 61.6 | 55.0 | 2874.0 | 5.75 | 5.71 | 3.53 |
0.7 | Ideal | F | VS1 | 62.4 | 56.0 | 2874.0 | 5.69 | 5.65 | 3.54 |
0.7 | Premium | G | VVS2 | 62.9 | 59.0 | 2874.0 | 5.68 | 5.61 | 3.55 |
1.0 | Fair | J | VS1 | 65.5 | 55.0 | 2875.0 | 6.3 | 6.25 | 4.11 |
0.73 | Premium | E | VS1 | 62.6 | 60.0 | 2876.0 | 5.68 | 5.75 | 3.58 |
0.79 | Premium | E | VS2 | 60.6 | 53.0 | 2876.0 | 6.04 | 5.98 | 3.64 |
0.72 | Very Good | H | VS1 | 62.2 | 54.0 | 2877.0 | 5.74 | 5.76 | 3.57 |
0.71 | Ideal | E | VS1 | 62.4 | 56.0 | 2877.0 | 5.75 | 5.7 | 3.57 |
0.74 | Ideal | G | VS2 | 62.3 | 55.0 | 2877.0 | 5.8 | 5.83 | 3.62 |
0.7 | Good | H | VVS1 | 62.7 | 56.0 | 2877.0 | 5.6 | 5.66 | 3.53 |
0.7 | Good | F | VS1 | 59.1 | 62.0 | 2877.0 | 5.82 | 5.86 | 3.44 |
0.71 | Ideal | I | VS2 | 61.5 | 55.0 | 2878.0 | 5.76 | 5.78 | 3.55 |
0.7 | Premium | F | VS1 | 60.4 | 60.0 | 2879.0 | 5.73 | 5.7 | 3.45 |
0.71 | Premium | F | VS1 | 62.7 | 58.0 | 2879.0 | 5.71 | 5.67 | 3.57 |
0.72 | Fair | F | VS1 | 56.9 | 69.0 | 2879.0 | 5.93 | 5.77 | 3.33 |
0.72 | Ideal | F | VS1 | 62.0 | 56.0 | 2879.0 | 5.76 | 5.73 | 3.56 |
0.7 | Ideal | H | VVS1 | 62.0 | 55.0 | 2881.0 | 5.74 | 5.71 | 3.55 |
0.71 | Very Good | E | VS2 | 60.0 | 59.0 | 2881.0 | 5.84 | 5.83 | 3.5 |
0.54 | Ideal | F | VVS1 | 61.8 | 56.0 | 2882.0 | 5.23 | 5.26 | 3.24 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2882.0 | 5.87 | 5.84 | 3.51 |
0.73 | Premium | F | VS2 | 58.7 | 57.0 | 2882.0 | 5.97 | 5.92 | 3.49 |
0.7 | Premium | E | VS1 | 62.6 | 59.0 | 2887.0 | 5.66 | 5.69 | 3.55 |
0.79 | Ideal | I | VS1 | 61.7 | 59.0 | 2888.0 | 5.93 | 5.96 | 3.67 |
0.72 | Very Good | G | VVS2 | 62.5 | 58.0 | 2889.0 | 5.68 | 5.72 | 3.56 |
0.7 | Very Good | E | VS2 | 63.5 | 54.0 | 2889.0 | 5.62 | 5.66 | 3.58 |
0.7 | Very Good | F | VS1 | 62.2 | 58.0 | 2889.0 | 5.64 | 5.75 | 3.54 |
0.71 | Very Good | F | VS1 | 62.8 | 56.0 | 2889.0 | 5.69 | 5.72 | 3.58 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.08 | 5.12 | 3.17 |
0.5 | Ideal | E | VVS2 | 62.2 | 54.0 | 2889.0 | 5.09 | 5.11 | 3.17 |
0.77 | Premium | F | VS2 | 61.8 | 56.0 | 2889.0 | 5.94 | 5.9 | 3.66 |
0.66 | Ideal | G | VVS1 | 61.5 | 56.0 | 2890.0 | 5.61 | 5.58 | 3.44 |
0.71 | Very Good | E | VS2 | 61.2 | 58.0 | 2891.0 | 5.71 | 5.79 | 3.52 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2891.0 | 5.73 | 5.77 | 3.52 |
0.71 | Ideal | E | VS2 | 61.6 | 56.0 | 2891.0 | 5.74 | 5.76 | 3.54 |
0.71 | Ideal | E | VS2 | 62.7 | 56.0 | 2891.0 | 5.71 | 5.75 | 3.59 |
0.71 | Good | D | VS2 | 62.3 | 61.0 | 2891.0 | 5.7 | 5.73 | 3.56 |
0.71 | Very Good | F | VS1 | 62.6 | 55.0 | 2893.0 | 5.66 | 5.71 | 3.56 |
0.71 | Ideal | G | VVS2 | 61.5 | 57.0 | 2893.0 | 5.73 | 5.75 | 3.53 |
0.75 | Ideal | F | VS2 | 62.5 | 57.0 | 2893.0 | 5.78 | 5.83 | 3.63 |
0.7 | Very Good | H | VVS1 | 59.2 | 60.0 | 2893.0 | 5.87 | 5.78 | 3.45 |
0.71 | Very Good | G | VS2 | 60.9 | 56.0 | 2895.0 | 5.75 | 5.78 | 3.51 |
0.7 | Very Good | F | VS1 | 61.8 | 59.0 | 2895.0 | 5.66 | 5.76 | 3.53 |
0.7 | Ideal | G | VVS2 | 62.1 | 53.0 | 2895.0 | 5.71 | 5.75 | 3.56 |
0.74 | Very Good | G | VS1 | 59.8 | 58.0 | 2896.0 | 5.85 | 5.89 | 3.51 |
0.77 | Very Good | G | VS2 | 61.3 | 60.0 | 2896.0 | 5.81 | 5.91 | 3.59 |
0.77 | Very Good | G | VS2 | 58.3 | 63.0 | 2896.0 | 6.0 | 6.05 | 3.51 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2896.0 | 5.18 | 5.24 | 3.21 |
0.6 | Very Good | D | VVS2 | 60.6 | 57.0 | 2897.0 | 5.48 | 5.51 | 3.33 |
0.54 | Ideal | D | VVS2 | 61.4 | 52.0 | 2897.0 | 5.3 | 5.34 | 3.26 |
0.72 | Good | F | VS1 | 59.4 | 61.0 | 2897.0 | 5.82 | 5.89 | 3.48 |
0.74 | Premium | D | VS2 | 61.8 | 58.0 | 2897.0 | 5.81 | 5.77 | 3.58 |
0.7 | Good | G | VVS1 | 59.9 | 61.0 | 2899.0 | 5.75 | 5.81 | 3.46 |
0.72 | Premium | D | VS1 | 62.7 | 58.0 | 2900.0 | 5.68 | 5.65 | 3.55 |
0.74 | Ideal | E | VS2 | 61.9 | 57.0 | 2901.0 | 5.81 | 5.78 | 3.59 |
0.73 | Premium | E | VS2 | 62.0 | 60.0 | 2902.0 | 5.76 | 5.73 | 3.56 |
0.73 | Ideal | E | VS2 | 61.4 | 55.0 | 2902.0 | 5.82 | 5.8 | 3.57 |
0.71 | Fair | E | VS2 | 64.6 | 59.0 | 2902.0 | 5.62 | 5.59 | 3.62 |
0.71 | Premium | E | VS2 | 59.6 | 60.0 | 2902.0 | 5.85 | 5.8 | 3.47 |
0.72 | Premium | E | VS2 | 61.1 | 59.0 | 2903.0 | 5.8 | 5.75 | 3.53 |
0.7 | Very Good | E | VS1 | 58.4 | 59.0 | 2904.0 | 5.83 | 5.91 | 3.43 |
0.62 | Ideal | E | VVS2 | 62.0 | 56.0 | 2904.0 | 5.48 | 5.52 | 3.41 |
0.7 | Very Good | G | VVS2 | 59.3 | 62.0 | 2905.0 | 5.78 | 5.82 | 3.44 |
0.7 | Very Good | G | VVS2 | 63.4 | 59.0 | 2905.0 | 5.62 | 5.64 | 3.57 |
0.7 | Very Good | G | VVS2 | 63.3 | 59.0 | 2905.0 | 5.59 | 5.62 | 3.55 |
0.71 | Very Good | G | VS2 | 62.1 | 58.0 | 2905.0 | 5.65 | 5.71 | 3.53 |
0.86 | Very Good | I | VS1 | 61.2 | 58.0 | 2905.0 | 6.1 | 6.16 | 3.75 |
0.53 | Ideal | D | VVS1 | 62.5 | 54.0 | 2905.0 | 5.16 | 5.21 | 3.24 |
0.74 | Very Good | D | VS2 | 62.4 | 57.0 | 2906.0 | 5.74 | 5.8 | 3.6 |
0.8 | Ideal | I | VS1 | 62.2 | 58.0 | 2906.0 | 5.92 | 5.95 | 3.69 |
0.61 | Ideal | E | VVS2 | 62.4 | 53.9 | 2907.0 | 5.42 | 5.43 | 3.38 |
0.61 | Ideal | E | VVS2 | 62.4 | 53.6 | 2907.0 | 5.42 | 5.45 | 3.39 |
0.61 | Ideal | E | VVS2 | 62.1 | 54.2 | 2907.0 | 5.43 | 5.45 | 3.38 |
0.72 | Ideal | H | VVS1 | 62.8 | 57.0 | 2907.0 | 5.68 | 5.72 | 3.58 |
0.7 | Ideal | F | VS2 | 62.3 | 53.0 | 2907.0 | 5.69 | 5.73 | 3.56 |
0.71 | Ideal | F | VS1 | 61.9 | 56.0 | 2907.0 | 5.7 | 5.74 | 3.54 |
0.25 | Premium | F | VS1 | 61.2 | 59.0 | 558.0 | 4.05 | 4.02 | 2.47 |
0.25 | Good | F | VS1 | 63.6 | 57.0 | 558.0 | 4.04 | 4.01 | 2.56 |
0.25 | Premium | E | VS1 | 60.7 | 59.0 | 558.0 | 4.13 | 4.11 | 2.5 |
0.25 | Premium | E | VS1 | 61.5 | 60.0 | 558.0 | 4.04 | 4.02 | 2.48 |
0.31 | Premium | I | VS2 | 60.8 | 58.0 | 558.0 | 4.37 | 4.34 | 2.65 |
0.31 | Premium | I | VS2 | 59.8 | 60.0 | 558.0 | 4.42 | 4.38 | 2.63 |
0.31 | Very Good | I | VS2 | 63.2 | 55.0 | 558.0 | 4.4 | 4.3 | 2.75 |
0.31 | Premium | I | VS2 | 62.3 | 57.0 | 558.0 | 4.35 | 4.32 | 2.7 |
0.31 | Premium | I | VS2 | 60.8 | 60.0 | 558.0 | 4.42 | 4.37 | 2.67 |
0.31 | Ideal | I | VS2 | 59.9 | 57.0 | 558.0 | 4.4 | 4.38 | 2.63 |
0.31 | Premium | I | VS2 | 59.9 | 60.0 | 558.0 | 4.44 | 4.41 | 2.65 |
0.31 | Premium | I | VS2 | 61.1 | 58.0 | 558.0 | 4.38 | 4.36 | 2.67 |
0.31 | Premium | I | VS2 | 60.7 | 61.0 | 558.0 | 4.34 | 4.32 | 2.63 |
0.31 | Very Good | I | VS2 | 63.1 | 54.0 | 558.0 | 4.34 | 4.31 | 2.73 |
0.31 | Premium | I | VS2 | 62.3 | 60.0 | 558.0 | 4.32 | 4.31 | 2.69 |
0.73 | Ideal | I | VS1 | 61.5 | 55.0 | 2908.0 | 5.8 | 5.84 | 3.58 |
0.7 | Premium | D | VS2 | 61.0 | 60.0 | 2909.0 | 5.75 | 5.7 | 3.49 |
0.7 | Premium | D | VS2 | 60.9 | 57.0 | 2909.0 | 5.71 | 5.69 | 3.47 |
0.71 | Ideal | H | VS1 | 61.2 | 56.0 | 2909.0 | 5.76 | 5.81 | 3.54 |
0.71 | Ideal | H | VS1 | 61.9 | 56.0 | 2909.0 | 5.7 | 5.74 | 3.54 |
0.71 | Very Good | D | VS1 | 62.9 | 57.0 | 2910.0 | 5.6 | 5.66 | 3.54 |
0.59 | Ideal | E | VVS2 | 61.1 | 57.0 | 2911.0 | 5.39 | 5.41 | 3.3 |
0.71 | Ideal | G | VS2 | 60.6 | 56.0 | 2911.0 | 5.76 | 5.8 | 3.5 |
0.77 | Good | F | VS2 | 60.3 | 61.0 | 2911.0 | 5.89 | 5.96 | 3.57 |
0.73 | Good | E | VS2 | 64.2 | 54.0 | 2912.0 | 5.68 | 5.72 | 3.66 |
0.7 | Good | E | VS2 | 58.7 | 63.0 | 2912.0 | 5.69 | 5.73 | 3.35 |
0.73 | Good | E | VS2 | 63.2 | 56.0 | 2912.0 | 5.75 | 5.76 | 3.64 |
0.7 | Very Good | D | VS2 | 60.7 | 60.0 | 2913.0 | 5.72 | 5.74 | 3.48 |
0.83 | Very Good | I | VS2 | 62.0 | 55.0 | 2915.0 | 6.03 | 6.06 | 3.74 |
0.71 | Ideal | F | VS2 | 62.2 | 56.0 | 2915.0 | 5.74 | 5.71 | 3.56 |
0.73 | Very Good | H | VS1 | 60.8 | 57.0 | 2916.0 | 5.8 | 5.83 | 3.54 |
0.74 | Premium | F | VS1 | 62.5 | 60.0 | 2917.0 | 5.78 | 5.74 | 3.6 |
0.7 | Ideal | E | VS2 | 62.5 | 58.0 | 2917.0 | 5.63 | 5.67 | 3.53 |
0.71 | Ideal | F | VS2 | 61.2 | 56.0 | 2917.0 | 5.77 | 5.73 | 3.52 |
0.71 | Very Good | F | VS2 | 59.5 | 58.0 | 2918.0 | 5.82 | 5.87 | 3.48 |
0.8 | Very Good | H | VS2 | 61.2 | 53.0 | 2918.0 | 5.98 | 6.05 | 3.68 |
0.71 | Ideal | H | VVS1 | 62.1 | 54.0 | 2918.0 | 5.7 | 5.76 | 3.56 |
0.72 | Ideal | I | VS2 | 61.8 | 55.0 | 2918.0 | 5.75 | 5.79 | 3.56 |
0.72 | Very Good | G | VS1 | 60.5 | 57.0 | 2919.0 | 5.8 | 5.83 | 3.52 |
0.73 | Premium | G | VVS2 | 62.2 | 56.0 | 2919.0 | 5.79 | 5.75 | 3.59 |
0.7 | Good | F | VS1 | 63.8 | 58.0 | 2919.0 | 5.61 | 5.58 | 3.57 |
0.73 | Ideal | H | VS1 | 61.9 | 55.0 | 2919.0 | 5.79 | 5.76 | 3.58 |
0.73 | Ideal | G | VVS2 | 61.9 | 55.0 | 2919.0 | 5.83 | 5.77 | 3.59 |
0.71 | Premium | E | VS1 | 59.7 | 57.0 | 2920.0 | 5.87 | 5.78 | 3.48 |
0.71 | Premium | F | VS1 | 59.1 | 59.0 | 2920.0 | 5.88 | 5.83 | 3.46 |
0.71 | Ideal | F | VS1 | 62.6 | 55.0 | 2920.0 | 5.71 | 5.67 | 3.56 |
0.74 | Very Good | H | VVS2 | 60.5 | 60.0 | 2921.0 | 5.79 | 5.81 | 3.51 |
0.71 | Very Good | E | VS2 | 59.9 | 59.0 | 2921.0 | 5.77 | 5.81 | 3.47 |
0.71 | Very Good | E | VS2 | 60.7 | 60.0 | 2921.0 | 5.75 | 5.78 | 3.5 |
0.65 | Ideal | F | VVS2 | 61.3 | 56.0 | 2921.0 | 5.58 | 5.61 | 3.43 |
0.9 | Fair | I | VS2 | 64.1 | 66.0 | 2921.0 | 6.04 | 5.98 | 3.85 |
0.71 | Very Good | E | VS2 | 63.7 | 58.0 | 2922.0 | 5.6 | 5.64 | 3.58 |
0.71 | Very Good | E | VS2 | 63.3 | 59.0 | 2922.0 | 5.62 | 5.66 | 3.57 |
0.68 | Very Good | F | VS1 | 59.7 | 57.0 | 2922.0 | 5.79 | 5.76 | 3.45 |
0.53 | Ideal | F | VVS1 | 61.6 | 56.0 | 2922.0 | 5.24 | 5.18 | 3.21 |
0.72 | Very Good | E | VS2 | 63.0 | 57.0 | 2923.0 | 5.69 | 5.73 | 3.6 |
0.72 | Very Good | E | VS2 | 63.2 | 58.0 | 2923.0 | 5.67 | 5.72 | 3.6 |
0.71 | Ideal | E | VS1 | 62.4 | 54.0 | 2923.0 | 5.71 | 5.74 | 3.57 |
0.9 | Premium | I | VS2 | 58.7 | 60.0 | 2923.0 | 6.35 | 6.28 | 3.7 |
0.7 | Ideal | I | VS1 | 61.5 | 56.0 | 2924.0 | 5.71 | 5.75 | 3.52 |
0.7 | Very Good | F | VS1 | 64.5 | 58.0 | 2925.0 | 5.55 | 5.59 | 3.59 |
0.77 | Very Good | H | VS1 | 63.3 | 57.0 | 2927.0 | 5.79 | 5.83 | 3.68 |
0.7 | Very Good | F | VS2 | 61.3 | 54.0 | 2928.0 | 5.72 | 5.76 | 3.52 |
0.7 | Very Good | D | VS2 | 60.8 | 59.0 | 2928.0 | 5.67 | 5.71 | 3.46 |
0.8 | Very Good | G | VS2 | 61.1 | 57.0 | 2929.0 | 6.01 | 6.07 | 3.69 |
0.7 | Ideal | G | VS2 | 61.8 | 57.0 | 2929.0 | 5.68 | 5.71 | 3.52 |
0.71 | Very Good | E | VS2 | 61.3 | 60.0 | 2930.0 | 5.74 | 5.71 | 3.51 |
0.7 | Premium | E | VS1 | 60.3 | 58.0 | 2930.0 | 5.7 | 5.74 | 3.45 |
0.7 | Ideal | E | VS1 | 62.3 | 54.0 | 2930.0 | 5.67 | 5.72 | 3.55 |
0.71 | Ideal | F | VS2 | 62.3 | 57.0 | 2930.0 | 5.69 | 5.74 | 3.56 |
0.71 | Ideal | G | VS1 | 62.7 | 57.0 | 2930.0 | 5.69 | 5.73 | 3.58 |
0.71 | Ideal | G | VS1 | 62.6 | 57.0 | 2930.0 | 5.67 | 5.7 | 3.56 |
0.71 | Ideal | G | VVS1 | 61.7 | 57.0 | 2930.0 | 5.75 | 5.7 | 3.53 |
0.7 | Very Good | G | VVS2 | 60.8 | 57.0 | 2931.0 | 5.72 | 5.76 | 3.49 |
0.72 | Very Good | F | VS2 | 63.3 | 57.0 | 2931.0 | 5.69 | 5.72 | 3.61 |
0.72 | Ideal | F | VS2 | 61.8 | 59.0 | 2931.0 | 5.71 | 5.74 | 3.54 |
0.7 | Premium | G | VVS1 | 62.0 | 61.0 | 2932.0 | 5.71 | 5.62 | 3.51 |
0.7 | Premium | F | VVS2 | 61.0 | 57.0 | 2932.0 | 5.8 | 5.71 | 3.51 |
0.7 | Very Good | F | VVS2 | 63.2 | 58.0 | 2932.0 | 5.66 | 5.6 | 3.56 |
0.72 | Very Good | G | VVS2 | 62.2 | 57.0 | 2933.0 | 5.67 | 5.72 | 3.54 |
0.59 | Very Good | D | VVS2 | 60.6 | 59.0 | 2933.0 | 5.44 | 5.49 | 3.31 |
0.73 | Premium | F | VS2 | 59.9 | 58.0 | 2933.0 | 5.84 | 5.87 | 3.51 |
0.75 | Ideal | F | VS2 | 62.3 | 57.0 | 2933.0 | 5.81 | 5.87 | 3.64 |
0.8 | Premium | H | VS1 | 62.0 | 60.0 | 2935.0 | 5.92 | 5.86 | 3.65 |
0.7 | Very Good | G | VVS2 | 61.8 | 60.0 | 2936.0 | 5.63 | 5.69 | 3.5 |
0.74 | Ideal | F | VS2 | 60.5 | 59.0 | 2936.0 | 5.81 | 5.86 | 3.53 |
0.76 | Premium | G | VS1 | 59.6 | 57.0 | 2937.0 | 6.01 | 5.91 | 3.55 |
0.71 | Very Good | H | VVS1 | 62.7 | 57.0 | 2938.0 | 5.66 | 5.72 | 3.57 |
0.71 | Very Good | H | VVS1 | 62.7 | 59.0 | 2938.0 | 5.65 | 5.67 | 3.55 |
0.73 | Very Good | F | VS2 | 62.7 | 58.0 | 2939.0 | 5.73 | 5.75 | 3.6 |
0.73 | Very Good | G | VS1 | 60.7 | 57.0 | 2939.0 | 5.76 | 5.83 | 3.52 |
0.73 | Ideal | F | VS2 | 62.7 | 58.0 | 2939.0 | 5.72 | 5.77 | 3.6 |
0.75 | Ideal | G | VS2 | 60.6 | 55.0 | 2939.0 | 5.93 | 5.91 | 3.59 |
0.81 | Ideal | I | VS2 | 61.8 | 56.0 | 2939.0 | 6.02 | 5.99 | 3.71 |
0.82 | Premium | H | VS2 | 62.6 | 59.0 | 2939.0 | 5.99 | 5.93 | 3.73 |
0.7 | Good | F | VVS2 | 63.1 | 57.0 | 2940.0 | 5.59 | 5.66 | 3.55 |
0.7 | Very Good | F | VVS2 | 62.6 | 59.0 | 2940.0 | 5.6 | 5.64 | 3.52 |
0.7 | Ideal | F | VS1 | 61.2 | 54.0 | 2940.0 | 5.92 | 5.64 | 3.54 |
0.75 | Fair | E | VS2 | 56.0 | 67.0 | 2940.0 | 6.18 | 6.08 | 3.43 |
0.75 | Ideal | E | VS2 | 61.6 | 57.0 | 2940.0 | 5.84 | 5.81 | 3.59 |
0.7 | Ideal | E | VS2 | 61.5 | 56.0 | 2940.0 | 5.73 | 5.68 | 3.51 |
0.71 | Premium | F | VS1 | 61.1 | 58.0 | 2942.0 | 5.76 | 5.72 | 3.51 |
0.7 | Ideal | F | VS2 | 60.8 | 56.0 | 2942.0 | 5.78 | 5.79 | 3.52 |
0.72 | Ideal | F | VS2 | 62.0 | 56.0 | 2943.0 | 5.77 | 5.75 | 3.57 |
0.74 | Very Good | H | VVS2 | 61.3 | 58.0 | 2944.0 | 5.8 | 5.85 | 3.57 |
0.57 | Very Good | D | VVS1 | 60.4 | 57.0 | 2945.0 | 5.39 | 5.44 | 3.27 |
0.79 | Very Good | H | VS2 | 61.5 | 55.0 | 2945.0 | 5.89 | 5.94 | 3.64 |
0.71 | Very Good | E | VS1 | 63.3 | 59.0 | 2946.0 | 5.64 | 5.67 | 3.58 |
0.71 | Very Good | E | VS1 | 62.7 | 57.0 | 2946.0 | 5.69 | 5.73 | 3.58 |
0.72 | Ideal | H | VVS1 | 62.2 | 56.0 | 2946.0 | 5.72 | 5.75 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.5 | 57.0 | 2946.0 | 5.7 | 5.73 | 3.57 |
0.78 | Very Good | H | VS1 | 61.7 | 56.0 | 2947.0 | 5.92 | 5.94 | 3.66 |
0.76 | Ideal | E | VS1 | 62.1 | 57.0 | 2947.0 | 5.82 | 5.87 | 3.63 |
0.73 | Premium | D | VS2 | 60.9 | 59.0 | 2947.0 | 5.82 | 5.77 | 3.53 |
0.7 | Ideal | H | VVS1 | 61.2 | 57.0 | 2947.0 | 5.69 | 5.72 | 3.49 |
0.7 | Ideal | H | VVS1 | 60.5 | 58.0 | 2947.0 | 5.76 | 5.81 | 3.5 |
0.74 | Ideal | I | VS1 | 62.0 | 56.0 | 2947.0 | 5.79 | 5.82 | 3.6 |
0.74 | Ideal | I | VS1 | 61.1 | 57.0 | 2947.0 | 5.83 | 5.86 | 3.57 |
0.82 | Good | H | VS2 | 62.4 | 54.0 | 2947.0 | 5.97 | 6.04 | 3.75 |
0.73 | Ideal | G | VS1 | 61.7 | 55.0 | 2948.0 | 5.8 | 5.84 | 3.59 |
0.72 | Very Good | E | VS2 | 63.0 | 56.0 | 2949.0 | 5.66 | 5.73 | 3.59 |
0.72 | Ideal | H | VS1 | 62.3 | 55.0 | 2949.0 | 5.72 | 5.74 | 3.57 |
0.81 | Very Good | I | VS1 | 62.7 | 58.0 | 2950.0 | 5.9 | 5.96 | 3.72 |
0.71 | Ideal | G | VS1 | 62.4 | 57.0 | 2950.0 | 5.68 | 5.73 | 3.56 |
0.71 | Premium | D | VS2 | 62.1 | 60.0 | 2950.0 | 5.72 | 5.68 | 3.54 |
0.54 | Ideal | F | VVS1 | 61.6 | 55.0 | 2951.0 | 5.27 | 5.28 | 3.25 |
0.72 | Very Good | D | VS1 | 62.7 | 58.0 | 2951.0 | 5.65 | 5.68 | 3.55 |
0.7 | Very Good | E | VS2 | 62.4 | 58.0 | 2952.0 | 5.66 | 5.68 | 3.54 |
0.7 | Very Good | E | VS2 | 63.4 | 59.0 | 2952.0 | 5.63 | 5.67 | 3.58 |
0.7 | Very Good | E | VS2 | 61.8 | 59.0 | 2952.0 | 5.63 | 5.67 | 3.49 |
0.7 | Very Good | E | VS1 | 61.3 | 60.0 | 2952.0 | 5.68 | 5.7 | 3.49 |
0.72 | Ideal | G | VS2 | 61.5 | 55.0 | 2952.0 | 5.76 | 5.79 | 3.55 |
0.72 | Ideal | G | VS2 | 61.4 | 55.0 | 2952.0 | 5.76 | 5.8 | 3.55 |
0.7 | Ideal | E | VS2 | 61.9 | 58.0 | 2952.0 | 5.7 | 5.73 | 3.54 |
0.7 | Ideal | E | VS2 | 62.6 | 57.0 | 2952.0 | 5.63 | 5.68 | 3.54 |
0.7 | Ideal | E | VS2 | 62.1 | 55.0 | 2952.0 | 5.71 | 5.75 | 3.56 |
0.7 | Good | E | VS1 | 61.0 | 61.0 | 2952.0 | 5.69 | 5.72 | 3.48 |
0.8 | Very Good | H | VS2 | 59.1 | 59.0 | 2953.0 | 6.02 | 6.07 | 3.57 |
0.79 | Premium | F | VS2 | 63.0 | 59.0 | 2953.0 | 5.84 | 5.8 | 3.66 |
0.75 | Good | F | VS1 | 64.4 | 59.0 | 2953.0 | 5.67 | 5.72 | 3.66 |
0.71 | Very Good | E | VS2 | 59.6 | 60.0 | 2954.0 | 5.8 | 5.85 | 3.47 |
0.72 | Premium | E | VS2 | 61.1 | 59.0 | 2954.0 | 5.75 | 5.8 | 3.53 |
0.76 | Ideal | G | VS2 | 61.7 | 54.0 | 2954.0 | 5.88 | 5.92 | 3.64 |
0.89 | Premium | I | VS1 | 62.2 | 62.0 | 2955.0 | 6.14 | 6.02 | 3.78 |
0.7 | Very Good | F | VS2 | 62.4 | 57.0 | 2956.0 | 5.67 | 5.71 | 3.55 |
0.74 | Very Good | H | VS1 | 61.4 | 56.0 | 2956.0 | 5.81 | 5.84 | 3.57 |
0.74 | Very Good | H | VS1 | 62.3 | 56.0 | 2956.0 | 5.75 | 5.78 | 3.59 |
0.7 | Ideal | F | VS2 | 60.8 | 57.0 | 2956.0 | 5.75 | 5.77 | 3.5 |
0.71 | Good | F | VVS2 | 58.2 | 60.0 | 2956.0 | 5.89 | 5.94 | 3.44 |
0.7 | Premium | D | VS1 | 60.4 | 58.0 | 2956.0 | 5.78 | 5.71 | 3.47 |
0.72 | Ideal | F | VS2 | 62.6 | 56.0 | 2956.0 | 5.75 | 5.72 | 3.59 |
0.72 | Ideal | F | VS2 | 62.2 | 56.0 | 2956.0 | 5.75 | 5.73 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.0 | 55.0 | 2958.0 | 5.74 | 5.77 | 3.57 |
0.79 | Ideal | I | VS1 | 62.2 | 57.0 | 2958.0 | 5.89 | 5.94 | 3.68 |
0.72 | Good | G | VS1 | 58.0 | 57.8 | 2958.0 | 5.85 | 5.87 | 3.4 |
0.56 | Very Good | D | VVS1 | 60.1 | 58.0 | 2959.0 | 5.36 | 5.42 | 3.24 |
0.7 | Very Good | F | VS1 | 60.1 | 58.0 | 2959.0 | 5.73 | 5.79 | 3.46 |
0.79 | Premium | G | VS2 | 62.3 | 58.0 | 2959.0 | 5.92 | 5.89 | 3.68 |
0.74 | Fair | G | VVS2 | 65.2 | 58.0 | 2959.0 | 5.7 | 5.6 | 3.69 |
0.71 | Very Good | H | VVS2 | 61.8 | 56.0 | 2960.0 | 5.7 | 5.73 | 3.53 |
0.7 | Very Good | D | VS2 | 63.0 | 56.0 | 2960.0 | 5.61 | 5.69 | 3.56 |
0.7 | Good | D | VS2 | 63.4 | 57.0 | 2960.0 | 5.6 | 5.67 | 3.57 |
0.7 | Ideal | D | VS2 | 61.3 | 57.0 | 2960.0 | 5.72 | 5.76 | 3.52 |
0.76 | Ideal | F | VS2 | 62.6 | 56.0 | 2960.0 | 5.82 | 5.78 | 3.63 |
0.72 | Ideal | G | VS2 | 61.3 | 56.0 | 2960.0 | 5.77 | 5.81 | 3.55 |
0.71 | Good | F | VVS2 | 58.9 | 61.0 | 2960.0 | 5.8 | 5.9 | 3.44 |
0.74 | Ideal | G | VS1 | 61.8 | 55.0 | 2960.0 | 5.85 | 5.8 | 3.6 |
0.77 | Very Good | H | VS1 | 62.8 | 58.0 | 2961.0 | 5.75 | 5.78 | 3.62 |
0.74 | Ideal | H | VVS2 | 61.2 | 57.0 | 2961.0 | 5.79 | 5.85 | 3.56 |
0.72 | Premium | E | VS1 | 61.5 | 60.0 | 2961.0 | 5.79 | 5.75 | 3.55 |
0.73 | Premium | F | VS1 | 61.9 | 56.0 | 2961.0 | 5.81 | 5.76 | 3.58 |
0.73 | Premium | F | VS1 | 62.7 | 56.0 | 2961.0 | 5.75 | 5.73 | 3.6 |
0.63 | Ideal | F | VVS2 | 62.3 | 56.0 | 2961.0 | 5.48 | 5.5 | 3.42 |
0.72 | Ideal | H | VS1 | 61.1 | 57.0 | 2961.0 | 5.8 | 5.82 | 3.55 |
0.71 | Premium | F | VS1 | 62.1 | 53.0 | 2961.0 | 5.77 | 5.7 | 3.56 |
0.75 | Premium | H | VS1 | 61.9 | 61.0 | 2961.0 | 5.85 | 5.82 | 3.61 |
0.63 | Ideal | D | VVS2 | 62.6 | 56.0 | 2962.0 | 5.47 | 5.49 | 3.43 |
0.72 | Ideal | E | VS2 | 62.0 | 56.0 | 2962.0 | 5.73 | 5.76 | 3.56 |
0.71 | Ideal | G | VS1 | 62.2 | 56.0 | 2962.0 | 5.69 | 5.72 | 3.55 |
0.71 | Ideal | E | VS1 | 62.1 | 53.0 | 2963.0 | 5.76 | 5.73 | 3.57 |
0.71 | Very Good | E | VS2 | 62.9 | 57.0 | 2964.0 | 5.68 | 5.7 | 3.58 |
0.7 | Good | E | VS1 | 63.6 | 58.0 | 2964.0 | 5.61 | 5.56 | 3.55 |
0.7 | Fair | E | VS1 | 64.5 | 57.0 | 2964.0 | 5.59 | 5.55 | 3.59 |
0.9 | Fair | J | VS1 | 65.4 | 60.0 | 2964.0 | 6.02 | 5.93 | 3.91 |
0.9 | Premium | J | VS1 | 62.1 | 62.0 | 2964.0 | 6.12 | 6.05 | 3.78 |
0.9 | Fair | J | VS1 | 64.6 | 58.0 | 2964.0 | 6.12 | 6.06 | 3.93 |
0.71 | Ideal | I | VS1 | 61.8 | 56.0 | 2965.0 | 5.68 | 5.72 | 3.52 |
0.71 | Ideal | I | VS1 | 61.6 | 56.0 | 2965.0 | 5.71 | 5.75 | 3.53 |
0.71 | Ideal | I | VS1 | 61.3 | 57.0 | 2965.0 | 5.73 | 5.76 | 3.52 |
0.71 | Ideal | I | VS1 | 61.5 | 56.0 | 2965.0 | 5.72 | 5.76 | 3.52 |
0.73 | Very Good | G | VS2 | 62.1 | 59.0 | 2966.0 | 5.68 | 5.73 | 3.54 |
0.7 | Ideal | I | VVS1 | 61.8 | 56.0 | 2966.0 | 5.69 | 5.73 | 3.53 |
0.7 | Very Good | E | VS1 | 61.3 | 56.0 | 2967.0 | 5.68 | 5.71 | 3.49 |
0.7 | Very Good | E | VS1 | 61.5 | 56.0 | 2967.0 | 5.69 | 5.75 | 3.52 |
0.79 | Ideal | H | VS2 | 62.0 | 56.0 | 2967.0 | 5.91 | 5.93 | 3.67 |
0.3 | Very Good | H | VVS2 | 62.0 | 56.0 | 559.0 | 4.28 | 4.3 | 2.66 |
0.31 | Very Good | G | VS2 | 62.6 | 56.0 | 559.0 | 4.33 | 4.37 | 2.72 |
0.31 | Very Good | G | VS2 | 61.4 | 55.0 | 559.0 | 4.38 | 4.41 | 2.69 |
0.31 | Very Good | G | VS2 | 60.9 | 57.0 | 559.0 | 4.37 | 4.39 | 2.67 |
0.24 | Ideal | G | VVS1 | 62.4 | 56.0 | 559.0 | 3.97 | 3.99 | 2.48 |
0.24 | Ideal | G | VVS1 | 62.1 | 56.0 | 559.0 | 3.97 | 4.0 | 2.47 |
0.24 | Ideal | G | VVS1 | 62.2 | 56.0 | 559.0 | 4.0 | 4.04 | 2.5 |
0.24 | Ideal | G | VVS1 | 62.0 | 55.0 | 559.0 | 4.01 | 4.03 | 2.49 |
0.24 | Ideal | G | VVS1 | 62.0 | 56.0 | 559.0 | 3.97 | 4.01 | 2.47 |
0.32 | Ideal | G | VS1 | 62.3 | 55.0 | 559.0 | 4.39 | 4.41 | 2.74 |
0.32 | Ideal | G | VS1 | 61.8 | 55.0 | 559.0 | 4.42 | 4.45 | 2.74 |
0.25 | Very Good | E | VVS2 | 62.0 | 56.0 | 560.0 | 4.05 | 4.08 | 2.52 |
0.25 | Very Good | E | VVS1 | 61.5 | 56.0 | 560.0 | 4.06 | 4.08 | 2.5 |
0.32 | Ideal | G | VS2 | 61.6 | 54.0 | 560.0 | 4.4 | 4.43 | 2.72 |
0.32 | Premium | H | VS1 | 60.2 | 58.0 | 561.0 | 4.43 | 4.47 | 2.68 |
0.32 | Ideal | H | VS1 | 61.5 | 57.0 | 561.0 | 4.4 | 4.42 | 2.71 |
0.71 | Premium | D | VS2 | 58.7 | 61.0 | 2968.0 | 5.88 | 5.85 | 3.44 |
0.8 | Ideal | G | VS2 | 61.2 | 57.0 | 2969.0 | 6.02 | 6.07 | 3.7 |
0.52 | Premium | E | VVS2 | 60.1 | 58.0 | 2970.0 | 5.23 | 5.18 | 3.13 |
0.72 | Very Good | G | VS1 | 60.6 | 56.0 | 2970.0 | 5.84 | 5.87 | 3.55 |
0.7 | Good | F | VS1 | 63.8 | 58.0 | 2970.0 | 5.58 | 5.61 | 3.57 |
0.78 | Premium | E | VS2 | 62.6 | 57.0 | 2970.0 | 5.91 | 5.85 | 3.68 |
0.78 | Ideal | H | VS2 | 61.6 | 56.0 | 2970.0 | 5.94 | 5.91 | 3.64 |
0.76 | Ideal | G | VS1 | 59.4 | 57.0 | 2972.0 | 5.99 | 6.03 | 3.57 |
0.7 | Ideal | G | VS1 | 61.7 | 56.0 | 2972.0 | 5.64 | 5.71 | 3.5 |
0.81 | Premium | H | VS1 | 62.6 | 58.0 | 2972.0 | 5.96 | 5.9 | 3.71 |
0.75 | Ideal | G | VS1 | 62.3 | 57.0 | 2973.0 | 5.83 | 5.86 | 3.64 |
0.7 | Ideal | E | VS1 | 60.5 | 56.0 | 2973.0 | 5.74 | 5.79 | 3.49 |
0.7 | Good | E | VS1 | 59.8 | 62.0 | 2973.0 | 5.74 | 5.8 | 3.45 |
0.71 | Ideal | G | VS2 | 59.5 | 57.0 | 2974.0 | 5.81 | 5.8 | 3.46 |
0.7 | Very Good | F | VS1 | 62.1 | 57.0 | 2975.0 | 5.69 | 5.72 | 3.54 |
0.7 | Premium | F | VVS2 | 62.2 | 58.0 | 2975.0 | 5.72 | 5.66 | 3.54 |
0.83 | Ideal | H | VS2 | 61.3 | 54.0 | 2975.0 | 6.1 | 6.06 | 3.73 |
0.71 | Very Good | G | VVS2 | 60.8 | 58.0 | 2977.0 | 5.75 | 5.77 | 3.5 |
0.76 | Premium | D | VS2 | 60.9 | 58.0 | 2977.0 | 5.9 | 5.85 | 3.58 |
0.54 | Ideal | F | VVS1 | 61.6 | 55.0 | 2977.0 | 5.28 | 5.27 | 3.25 |
0.71 | Ideal | G | VVS2 | 62.5 | 58.0 | 2978.0 | 5.7 | 5.73 | 3.57 |
0.7 | Ideal | E | VS1 | 61.3 | 54.0 | 2978.0 | 5.77 | 5.83 | 3.54 |
0.72 | Ideal | H | VVS1 | 59.9 | 59.0 | 2979.0 | 5.76 | 5.82 | 3.47 |
0.7 | Ideal | E | VS2 | 61.7 | 56.0 | 2979.0 | 5.74 | 5.71 | 3.53 |
0.7 | Ideal | E | VS2 | 61.5 | 57.0 | 2980.0 | 5.67 | 5.78 | 3.52 |
0.7 | Ideal | E | VS2 | 62.2 | 55.0 | 2981.0 | 5.67 | 5.71 | 3.54 |
0.71 | Ideal | G | VVS1 | 61.7 | 57.0 | 2982.0 | 5.7 | 5.75 | 3.53 |
0.71 | Ideal | E | VS2 | 59.5 | 57.0 | 2982.0 | 5.86 | 5.83 | 3.48 |
0.71 | Very Good | G | VS1 | 60.8 | 63.0 | 2982.0 | 5.76 | 5.68 | 3.48 |
0.71 | Premium | E | VS2 | 62.6 | 58.0 | 2982.0 | 5.72 | 5.68 | 3.57 |
0.74 | Ideal | E | VS2 | 62.7 | 54.0 | 2984.0 | 5.8 | 5.77 | 3.63 |
0.9 | Very Good | J | VS2 | 63.1 | 57.0 | 2984.0 | 6.12 | 6.06 | 3.84 |
0.7 | Very Good | D | VS2 | 63.1 | 56.0 | 2985.0 | 5.62 | 5.69 | 3.57 |
0.82 | Premium | H | VS1 | 62.3 | 60.0 | 2985.0 | 5.97 | 5.94 | 3.71 |
0.77 | Very Good | G | VS1 | 62.8 | 58.0 | 2986.0 | 5.78 | 5.84 | 3.65 |
0.8 | Ideal | I | VS1 | 61.9 | 54.1 | 2986.0 | 5.92 | 5.98 | 3.69 |
0.82 | Ideal | I | VS1 | 61.6 | 57.0 | 2986.0 | 6.0 | 6.05 | 3.71 |
0.7 | Ideal | G | VS1 | 61.3 | 59.0 | 2987.0 | 5.68 | 5.7 | 3.49 |
0.72 | Ideal | F | VS2 | 62.1 | 54.0 | 2989.0 | 5.76 | 5.8 | 3.59 |
0.76 | Very Good | G | VS2 | 62.1 | 54.0 | 2990.0 | 5.88 | 5.94 | 3.67 |
0.72 | Very Good | E | VS2 | 62.9 | 57.0 | 2990.0 | 5.68 | 5.73 | 3.59 |
0.57 | Good | E | VVS1 | 59.1 | 65.0 | 2990.0 | 5.34 | 5.43 | 3.18 |
0.75 | Ideal | G | VS2 | 60.6 | 55.0 | 2991.0 | 5.91 | 5.93 | 3.59 |
0.7 | Ideal | D | VS2 | 60.3 | 60.0 | 2991.0 | 5.71 | 5.76 | 3.46 |
0.7 | Very Good | E | VS2 | 62.8 | 56.0 | 2992.0 | 5.66 | 5.68 | 3.56 |
0.75 | Ideal | H | VVS2 | 62.0 | 55.1 | 2992.0 | 5.83 | 5.85 | 3.62 |
0.69 | Very Good | F | VVS2 | 61.5 | 60.0 | 2993.0 | 5.64 | 5.67 | 3.48 |
0.7 | Ideal | G | VVS2 | 63.0 | 55.0 | 2993.0 | 5.65 | 5.69 | 3.57 |
0.7 | Ideal | F | VS1 | 62.4 | 55.0 | 2993.0 | 5.65 | 5.7 | 3.54 |
0.71 | Very Good | F | VS2 | 59.6 | 56.0 | 2994.0 | 5.84 | 5.88 | 3.49 |
0.71 | Very Good | G | VS1 | 59.3 | 55.0 | 2994.0 | 5.88 | 5.95 | 3.51 |
0.81 | Very Good | G | VS2 | 63.1 | 58.0 | 2994.0 | 5.88 | 5.84 | 3.7 |
0.81 | Premium | G | VS2 | 62.0 | 58.0 | 2994.0 | 5.95 | 5.92 | 3.68 |
0.7 | Ideal | G | VS1 | 60.9 | 56.0 | 2995.0 | 5.76 | 5.8 | 3.52 |
0.88 | Very Good | I | VS1 | 63.3 | 55.0 | 2996.0 | 6.11 | 6.06 | 3.85 |
0.74 | Ideal | I | VS2 | 61.9 | 55.0 | 2997.0 | 5.8 | 5.83 | 3.6 |
0.7 | Ideal | D | VS2 | 62.8 | 57.0 | 2998.0 | 5.69 | 5.75 | 3.59 |
0.72 | Ideal | H | VS1 | 61.4 | 56.0 | 2998.0 | 5.79 | 5.81 | 3.56 |
0.7 | Ideal | F | VS1 | 61.6 | 57.0 | 2998.0 | 5.7 | 5.73 | 3.52 |
1.01 | Fair | J | VVS2 | 66.0 | 56.0 | 2998.0 | 6.29 | 6.22 | 4.13 |
0.85 | Fair | G | VS1 | 57.7 | 67.0 | 2998.0 | 6.26 | 6.19 | 3.59 |
0.7 | Very Good | D | VS2 | 59.7 | 59.0 | 2999.0 | 5.82 | 5.78 | 3.46 |
0.73 | Very Good | G | VS1 | 62.4 | 58.1 | 2999.0 | 5.71 | 5.75 | 3.58 |
0.7 | Premium | G | VVS2 | 60.6 | 60.0 | 2999.0 | 5.77 | 5.69 | 3.47 |
0.74 | Premium | E | VS1 | 62.7 | 58.0 | 2999.0 | 5.83 | 5.74 | 3.63 |
0.74 | Premium | E | VS1 | 60.9 | 62.0 | 2999.0 | 5.83 | 5.8 | 3.54 |
0.7 | Premium | G | VVS2 | 60.2 | 61.0 | 2999.0 | 5.74 | 5.66 | 3.43 |
0.93 | Good | J | VS2 | 63.6 | 61.0 | 3000.0 | 6.16 | 6.08 | 3.89 |
0.7 | Premium | D | VS1 | 61.6 | 61.0 | 3001.0 | 5.66 | 5.61 | 3.47 |
0.7 | Good | D | VS1 | 63.6 | 60.0 | 3001.0 | 5.61 | 5.52 | 3.54 |
0.7 | Very Good | D | VS1 | 63.4 | 59.0 | 3001.0 | 5.58 | 5.55 | 3.53 |
0.6 | Ideal | G | VVS1 | 62.1 | 56.0 | 3001.0 | 5.42 | 5.43 | 3.37 |
0.75 | Very Good | H | VVS2 | 60.6 | 57.0 | 3002.0 | 5.86 | 5.89 | 3.56 |
0.71 | Premium | D | VS2 | 62.1 | 60.0 | 3002.0 | 5.68 | 5.72 | 3.54 |
0.72 | Good | F | VS1 | 63.8 | 58.0 | 3002.0 | 5.68 | 5.63 | 3.61 |
0.72 | Ideal | G | VVS2 | 61.6 | 55.0 | 3002.0 | 5.78 | 5.77 | 3.56 |
0.8 | Premium | G | VS2 | 60.6 | 59.0 | 3002.0 | 6.02 | 5.97 | 3.63 |
0.73 | Fair | F | VS1 | 58.6 | 66.0 | 3002.0 | 5.92 | 5.88 | 3.46 |
0.65 | Premium | D | VVS2 | 59.9 | 58.0 | 3003.0 | 5.69 | 5.63 | 3.39 |
0.7 | Ideal | H | VS1 | 61.7 | 55.0 | 3004.0 | 5.69 | 5.72 | 3.52 |
0.61 | Ideal | E | VS1 | 61.3 | 54.0 | 3004.0 | 5.53 | 5.5 | 3.38 |
0.55 | Ideal | F | VVS1 | 61.2 | 54.0 | 3005.0 | 5.3 | 5.35 | 3.26 |
0.72 | Ideal | I | VS1 | 60.4 | 56.0 | 3005.0 | 5.8 | 5.86 | 3.52 |
0.73 | Ideal | H | VVS1 | 61.6 | 57.0 | 3005.0 | 5.81 | 5.78 | 3.57 |
0.71 | Premium | E | VS1 | 61.1 | 58.0 | 3006.0 | 5.8 | 5.76 | 3.53 |
0.71 | Very Good | E | VS1 | 63.2 | 60.0 | 3006.0 | 5.63 | 5.6 | 3.55 |
0.55 | Premium | D | VVS1 | 60.3 | 59.0 | 3006.0 | 5.34 | 5.3 | 3.21 |
0.71 | Ideal | I | VVS2 | 60.7 | 57.0 | 3007.0 | 5.76 | 5.8 | 3.51 |
0.71 | Ideal | I | VVS2 | 60.4 | 57.0 | 3007.0 | 5.78 | 5.81 | 3.5 |
0.7 | Premium | E | VVS2 | 62.7 | 53.0 | 3007.0 | 5.65 | 5.61 | 3.53 |
0.7 | Very Good | D | VS1 | 60.4 | 58.0 | 3008.0 | 5.71 | 5.78 | 3.47 |
0.61 | Ideal | G | VVS1 | 61.2 | 56.0 | 3008.0 | 5.46 | 5.48 | 3.35 |
0.7 | Ideal | F | VS2 | 61.3 | 57.0 | 3008.0 | 5.7 | 5.76 | 3.51 |
0.82 | Premium | H | VS1 | 62.5 | 59.0 | 3008.0 | 5.96 | 5.94 | 3.72 |
0.71 | Very Good | E | VS1 | 63.7 | 58.0 | 3009.0 | 5.63 | 5.68 | 3.6 |
0.71 | Very Good | E | VS1 | 62.1 | 57.0 | 3009.0 | 5.67 | 5.69 | 3.53 |
0.71 | Very Good | E | VS1 | 63.4 | 58.0 | 3009.0 | 5.64 | 5.68 | 3.59 |
0.8 | Ideal | I | VS1 | 60.7 | 59.0 | 3010.0 | 5.98 | 6.02 | 3.64 |
0.73 | Very Good | G | VS1 | 60.7 | 55.0 | 3011.0 | 5.87 | 5.89 | 3.57 |
0.61 | Ideal | E | VVS2 | 62.0 | 54.0 | 3011.0 | 5.43 | 5.47 | 3.38 |
0.7 | Ideal | F | VS2 | 61.9 | 55.0 | 3011.0 | 5.7 | 5.74 | 3.54 |
0.7 | Ideal | F | VS2 | 61.8 | 57.0 | 3011.0 | 5.67 | 5.75 | 3.53 |
0.7 | Ideal | F | VS2 | 62.7 | 55.0 | 3011.0 | 5.66 | 5.69 | 3.56 |
0.7 | Ideal | F | VS2 | 61.4 | 58.0 | 3011.0 | 5.7 | 5.73 | 3.51 |
0.78 | Very Good | G | VS2 | 61.3 | 60.0 | 3012.0 | 5.89 | 5.96 | 3.63 |
0.72 | Ideal | G | VS2 | 61.7 | 56.0 | 3012.0 | 5.74 | 5.78 | 3.55 |
0.75 | Premium | F | VS2 | 61.6 | 58.0 | 3013.0 | 5.84 | 5.89 | 3.61 |
0.71 | Very Good | F | VS1 | 62.1 | 53.0 | 3013.0 | 5.7 | 5.77 | 3.56 |
0.71 | Ideal | F | VS1 | 61.1 | 57.0 | 3013.0 | 5.76 | 5.82 | 3.54 |
0.71 | Ideal | H | VVS1 | 61.8 | 56.0 | 3014.0 | 5.7 | 5.75 | 3.54 |
0.78 | Ideal | H | VVS2 | 61.7 | 55.0 | 3015.0 | 5.9 | 5.94 | 3.65 |
0.72 | Very Good | D | VS2 | 62.1 | 59.0 | 3016.0 | 5.7 | 5.73 | 3.55 |
0.7 | Premium | E | VS1 | 61.8 | 58.0 | 3016.0 | 5.71 | 5.75 | 3.54 |
0.7 | Ideal | E | VS1 | 62.7 | 57.0 | 3016.0 | 5.65 | 5.7 | 3.56 |
0.76 | Ideal | H | VS2 | 61.9 | 55.0 | 3016.0 | 5.85 | 5.88 | 3.64 |
0.7 | Very Good | G | VS1 | 60.1 | 60.0 | 3017.0 | 5.73 | 5.76 | 3.45 |
0.71 | Very Good | F | VS1 | 61.8 | 60.0 | 3017.0 | 5.66 | 5.7 | 3.51 |
0.7 | Ideal | G | VS1 | 61.1 | 56.0 | 3017.0 | 5.72 | 5.74 | 3.5 |
0.5 | Good | D | VVS2 | 62.4 | 64.0 | 3017.0 | 5.03 | 5.06 | 3.14 |
0.7 | Good | F | VVS1 | 63.2 | 58.0 | 3018.0 | 5.58 | 5.62 | 3.54 |
0.7 | Premium | F | VVS2 | 62.5 | 59.0 | 3018.0 | 5.68 | 5.61 | 3.53 |
0.71 | Ideal | F | VVS2 | 62.6 | 56.0 | 3018.0 | 5.7 | 5.65 | 3.55 |
0.72 | Ideal | H | VS2 | 61.2 | 57.0 | 3018.0 | 5.79 | 5.77 | 3.54 |
0.7 | Good | E | VS1 | 60.2 | 61.0 | 3018.0 | 5.71 | 5.75 | 3.45 |
0.77 | Premium | F | VS2 | 62.4 | 59.0 | 3018.0 | 5.85 | 5.81 | 3.64 |
0.7 | Premium | F | VVS2 | 62.2 | 56.0 | 3018.0 | 5.72 | 5.63 | 3.53 |
0.71 | Ideal | D | VS2 | 60.4 | 53.0 | 3020.0 | 5.81 | 5.85 | 3.52 |
0.65 | Ideal | E | VVS2 | 62.1 | 57.0 | 3023.0 | 5.55 | 5.6 | 3.46 |
0.75 | Premium | E | VS2 | 62.1 | 57.0 | 3024.0 | 5.9 | 5.79 | 3.63 |
0.9 | Very Good | J | VS2 | 63.1 | 59.0 | 3024.0 | 6.09 | 6.05 | 3.83 |
0.9 | Good | J | VS2 | 63.9 | 58.0 | 3024.0 | 6.15 | 6.08 | 3.91 |
0.72 | Premium | E | VS2 | 60.4 | 61.0 | 3024.0 | 5.79 | 5.76 | 3.49 |
0.72 | Premium | E | VS2 | 62.5 | 59.0 | 3024.0 | 5.73 | 5.7 | 3.57 |
0.72 | Very Good | G | VS1 | 60.1 | 63.0 | 3024.0 | 5.86 | 5.82 | 3.51 |
0.65 | Very Good | D | VVS2 | 57.7 | 60.0 | 3025.0 | 5.69 | 5.74 | 3.3 |
0.7 | Very Good | G | VS2 | 61.8 | 55.0 | 3026.0 | 5.69 | 5.74 | 3.53 |
0.59 | Ideal | E | VVS2 | 61.8 | 57.0 | 3026.0 | 5.35 | 5.4 | 3.32 |
0.71 | Ideal | E | VS2 | 62.3 | 56.0 | 3026.0 | 5.7 | 5.73 | 3.56 |
0.83 | Ideal | H | VS2 | 61.3 | 54.0 | 3027.0 | 6.06 | 6.1 | 3.73 |
0.77 | Good | H | VVS2 | 57.9 | 61.0 | 3027.0 | 6.07 | 6.01 | 3.5 |
0.7 | Very Good | F | VVS2 | 58.5 | 60.0 | 3028.0 | 5.82 | 5.94 | 3.44 |
0.8 | Ideal | H | VS2 | 62.1 | 54.0 | 3030.0 | 5.96 | 5.99 | 3.71 |
0.74 | Ideal | H | VS1 | 61.6 | 55.0 | 3030.0 | 5.79 | 5.83 | 3.58 |
0.77 | Fair | F | VS1 | 66.8 | 57.0 | 3031.0 | 5.66 | 5.76 | 3.82 |
0.72 | Premium | G | VS1 | 58.9 | 58.0 | 3032.0 | 5.93 | 5.85 | 3.47 |
0.55 | Ideal | F | VVS1 | 61.2 | 54.0 | 3032.0 | 5.35 | 5.3 | 3.26 |
0.71 | Very Good | D | VS2 | 63.0 | 57.0 | 3033.0 | 5.67 | 5.7 | 3.58 |
0.73 | Ideal | G | VS1 | 61.6 | 57.0 | 3033.0 | 5.76 | 5.79 | 3.56 |
0.7 | Good | D | VS2 | 64.1 | 59.0 | 3033.0 | 5.56 | 5.49 | 3.54 |
0.7 | Very Good | D | VS2 | 63.2 | 60.0 | 3033.0 | 5.61 | 5.56 | 3.53 |
0.7 | Good | D | VS2 | 63.9 | 58.0 | 3033.0 | 5.62 | 5.58 | 3.58 |
0.92 | Fair | I | VS2 | 64.4 | 58.0 | 3033.0 | 6.13 | 6.1 | 3.94 |
0.7 | Ideal | G | VS1 | 61.4 | 57.0 | 3034.0 | 5.7 | 5.73 | 3.51 |
0.72 | Very Good | E | VS2 | 63.8 | 57.0 | 3035.0 | 5.66 | 5.69 | 3.62 |
0.71 | Ideal | E | VS2 | 59.5 | 57.0 | 3035.0 | 5.83 | 5.86 | 3.48 |
0.72 | Ideal | G | VS1 | 62.4 | 59.0 | 3035.0 | 5.71 | 5.74 | 3.57 |
0.8 | Very Good | H | VVS2 | 62.9 | 56.0 | 3036.0 | 5.9 | 5.96 | 3.73 |
0.74 | Ideal | E | VS2 | 62.6 | 56.0 | 3036.0 | 5.73 | 5.81 | 3.61 |
0.61 | Ideal | D | VVS2 | 62.4 | 58.0 | 3036.0 | 5.38 | 5.42 | 3.37 |
0.7 | Very Good | G | VVS1 | 63.3 | 57.0 | 3037.0 | 5.59 | 5.63 | 3.55 |
0.32 | Premium | G | VS2 | 60.5 | 58.0 | 561.0 | 4.41 | 4.42 | 2.67 |
0.32 | Premium | G | VS2 | 62.5 | 60.0 | 561.0 | 4.32 | 4.38 | 2.72 |
0.32 | Ideal | G | VS2 | 61.4 | 56.0 | 561.0 | 4.37 | 4.39 | 2.69 |
0.32 | Premium | G | VS2 | 59.8 | 59.0 | 561.0 | 4.48 | 4.52 | 2.69 |
0.32 | Premium | I | VVS2 | 60.7 | 59.0 | 561.0 | 4.4 | 4.43 | 2.68 |
0.32 | Very Good | G | VS2 | 60.2 | 57.0 | 561.0 | 4.42 | 4.45 | 2.67 |
0.32 | Good | G | VS2 | 63.3 | 54.0 | 561.0 | 4.36 | 4.39 | 2.77 |
0.32 | Good | H | VS1 | 63.1 | 57.0 | 561.0 | 4.34 | 4.37 | 2.75 |
0.32 | Ideal | G | VS2 | 61.4 | 55.0 | 561.0 | 4.4 | 4.46 | 2.72 |
0.32 | Ideal | G | VS2 | 59.8 | 57.0 | 561.0 | 4.43 | 4.46 | 2.66 |
0.32 | Ideal | G | VS2 | 61.7 | 57.0 | 561.0 | 4.38 | 4.4 | 2.71 |
0.32 | Premium | H | VS1 | 62.3 | 58.0 | 561.0 | 4.34 | 4.39 | 2.72 |
0.32 | Very Good | H | VS1 | 63.0 | 57.0 | 561.0 | 4.32 | 4.35 | 2.73 |
0.32 | Premium | G | VS2 | 61.9 | 58.0 | 561.0 | 4.36 | 4.43 | 2.72 |
0.32 | Good | G | VS2 | 63.1 | 57.0 | 561.0 | 4.3 | 4.35 | 2.73 |
0.32 | Very Good | H | VS1 | 63.0 | 57.0 | 561.0 | 4.37 | 4.39 | 2.76 |
0.32 | Ideal | G | VS2 | 61.8 | 57.0 | 561.0 | 4.37 | 4.4 | 2.71 |
0.32 | Very Good | H | VS1 | 61.7 | 58.0 | 561.0 | 4.37 | 4.41 | 2.71 |
0.32 | Premium | H | VS1 | 61.7 | 58.0 | 561.0 | 4.38 | 4.44 | 2.72 |
0.32 | Ideal | G | VS2 | 61.8 | 55.0 | 561.0 | 4.41 | 4.42 | 2.73 |
0.32 | Premium | G | VS2 | 61.7 | 60.0 | 561.0 | 4.32 | 4.4 | 2.69 |
0.32 | Very Good | G | VS2 | 62.6 | 58.0 | 561.0 | 4.37 | 4.39 | 2.74 |
0.32 | Premium | G | VS2 | 62.3 | 58.0 | 561.0 | 4.36 | 4.41 | 2.73 |
0.32 | Ideal | G | VS2 | 61.6 | 57.0 | 561.0 | 4.39 | 4.41 | 2.71 |
0.32 | Ideal | H | VS1 | 61.9 | 55.0 | 561.0 | 4.4 | 4.42 | 2.73 |
0.32 | Ideal | H | VS1 | 60.2 | 56.0 | 561.0 | 4.44 | 4.49 | 2.69 |
0.76 | Ideal | H | VS2 | 61.4 | 57.0 | 3038.0 | 5.85 | 5.88 | 3.6 |
0.7 | Ideal | H | VS2 | 61.5 | 56.0 | 3038.0 | 5.71 | 5.73 | 3.52 |
0.7 | Very Good | G | VVS2 | 61.0 | 59.0 | 3039.0 | 5.67 | 5.7 | 3.47 |
0.7 | Fair | F | VS1 | 64.9 | 59.0 | 3039.0 | 5.56 | 5.59 | 3.62 |
0.73 | Ideal | G | VS1 | 61.8 | 57.0 | 3041.0 | 5.78 | 5.81 | 3.58 |
0.71 | Ideal | F | VS1 | 62.7 | 57.0 | 3041.0 | 5.66 | 5.7 | 3.56 |
0.71 | Ideal | F | VS1 | 61.7 | 55.0 | 3041.0 | 5.73 | 5.77 | 3.55 |
0.81 | Good | I | VS1 | 59.4 | 56.0 | 3042.0 | 5.97 | 6.11 | 3.59 |
0.71 | Ideal | G | VVS2 | 62.5 | 57.0 | 3042.0 | 5.73 | 5.7 | 3.57 |
0.72 | Very Good | G | VVS2 | 60.4 | 58.0 | 3043.0 | 5.77 | 5.82 | 3.5 |
0.71 | Very Good | F | VS1 | 62.2 | 55.0 | 3045.0 | 5.68 | 5.74 | 3.56 |
0.71 | Very Good | F | VS1 | 61.2 | 57.0 | 3045.0 | 5.73 | 5.77 | 3.52 |
0.71 | Very Good | D | VS2 | 62.8 | 56.0 | 3045.0 | 5.67 | 5.7 | 3.57 |
0.72 | Premium | D | VS2 | 60.2 | 60.0 | 3045.0 | 5.76 | 5.81 | 3.48 |
0.7 | Good | G | VVS2 | 61.1 | 61.0 | 3046.0 | 5.67 | 5.69 | 3.47 |
0.73 | Fair | D | VS1 | 66.0 | 54.0 | 3047.0 | 5.56 | 5.66 | 3.7 |
0.72 | Good | E | VS1 | 57.9 | 60.0 | 3048.0 | 5.97 | 5.91 | 3.44 |
0.72 | Very Good | E | VS1 | 63.1 | 56.0 | 3048.0 | 5.7 | 5.65 | 3.58 |
0.9 | Ideal | J | VS1 | 62.6 | 55.0 | 3048.0 | 6.13 | 6.11 | 3.83 |
0.66 | Ideal | D | VVS2 | 61.6 | 57.0 | 3049.0 | 5.64 | 5.57 | 3.45 |
0.62 | Very Good | D | VVS2 | 58.1 | 63.0 | 3050.0 | 5.59 | 5.66 | 3.27 |
0.7 | Very Good | D | VS2 | 62.5 | 55.0 | 3052.0 | 5.65 | 5.71 | 3.55 |
0.77 | Ideal | F | VS2 | 61.2 | 57.0 | 3052.0 | 5.93 | 5.97 | 3.64 |
0.7 | Very Good | G | VVS2 | 60.2 | 61.0 | 3052.0 | 5.66 | 5.74 | 3.43 |
0.7 | Very Good | D | VS2 | 62.6 | 58.0 | 3053.0 | 5.67 | 5.7 | 3.56 |
0.71 | Very Good | E | VS2 | 59.9 | 59.0 | 3053.0 | 5.79 | 5.83 | 3.48 |
0.7 | Very Good | F | VS1 | 62.8 | 59.0 | 3053.0 | 5.65 | 5.69 | 3.56 |
0.71 | Ideal | E | VS2 | 60.9 | 56.0 | 3053.0 | 5.77 | 5.83 | 3.53 |
0.79 | Premium | G | VS1 | 62.3 | 56.0 | 3053.0 | 5.94 | 5.87 | 3.68 |
0.79 | Premium | G | VS1 | 61.3 | 59.0 | 3053.0 | 5.97 | 5.91 | 3.64 |
0.7 | Very Good | D | VS1 | 62.9 | 60.0 | 3054.0 | 5.62 | 5.67 | 3.55 |
0.65 | Very Good | D | VVS2 | 59.9 | 58.0 | 3056.0 | 5.63 | 5.69 | 3.39 |
0.61 | Ideal | E | VVS2 | 60.8 | 56.0 | 3056.0 | 5.5 | 5.47 | 3.34 |
0.57 | Ideal | F | VVS1 | 61.1 | 55.0 | 3057.0 | 5.36 | 5.44 | 3.3 |
0.76 | Good | F | VS1 | 59.9 | 61.0 | 3057.0 | 5.89 | 5.98 | 3.56 |
0.91 | Premium | J | VS2 | 61.6 | 58.0 | 3058.0 | 6.28 | 6.23 | 3.85 |
0.72 | Very Good | F | VS1 | 62.1 | 59.0 | 3059.0 | 5.69 | 5.74 | 3.55 |
0.71 | Very Good | E | VS1 | 61.8 | 56.0 | 3059.0 | 5.74 | 5.78 | 3.56 |
0.74 | Very Good | H | VVS1 | 62.4 | 57.0 | 3061.0 | 5.76 | 5.81 | 3.61 |
0.7 | Very Good | E | VS1 | 61.1 | 55.0 | 3061.0 | 5.72 | 5.77 | 3.51 |
0.71 | Very Good | E | VS1 | 63.3 | 56.0 | 3061.0 | 5.64 | 5.68 | 3.58 |
0.71 | Fair | G | VVS1 | 62.8 | 57.0 | 3062.0 | 5.67 | 5.57 | 3.53 |
0.7 | Premium | F | VVS2 | 58.7 | 60.0 | 3062.0 | 5.8 | 5.75 | 3.39 |
0.71 | Premium | E | VS2 | 62.2 | 59.0 | 3062.0 | 5.71 | 5.61 | 3.52 |
0.71 | Premium | E | VS2 | 62.0 | 61.0 | 3062.0 | 5.71 | 5.65 | 3.52 |
0.93 | Premium | J | VS1 | 60.3 | 58.0 | 3062.0 | 6.37 | 6.31 | 3.82 |
0.7 | Very Good | E | VS1 | 62.2 | 57.0 | 3063.0 | 5.63 | 5.68 | 3.52 |
0.7 | Very Good | E | VS1 | 62.5 | 56.0 | 3063.0 | 5.64 | 5.68 | 3.54 |
0.7 | Good | E | VS1 | 59.4 | 61.0 | 3063.0 | 5.79 | 5.83 | 3.45 |
0.71 | Very Good | E | VS1 | 63.3 | 59.0 | 3064.0 | 5.64 | 5.68 | 3.58 |
0.76 | Premium | E | VS2 | 61.7 | 62.0 | 3064.0 | 5.85 | 5.82 | 3.6 |
0.7 | Ideal | F | VS2 | 61.4 | 56.0 | 3064.0 | 5.72 | 5.75 | 3.52 |
0.7 | Ideal | F | VS2 | 61.6 | 55.0 | 3064.0 | 5.72 | 5.75 | 3.53 |
0.72 | Very Good | E | VS2 | 63.0 | 58.0 | 3065.0 | 5.69 | 5.73 | 3.6 |
0.7 | Ideal | G | VS1 | 61.5 | 56.0 | 3065.0 | 5.7 | 5.75 | 3.52 |
0.77 | Ideal | I | VS1 | 61.4 | 56.0 | 3066.0 | 5.9 | 5.93 | 3.63 |
0.71 | Ideal | F | VS1 | 62.0 | 57.0 | 3066.0 | 5.7 | 5.75 | 3.55 |
0.71 | Ideal | F | VS1 | 62.1 | 57.0 | 3066.0 | 5.73 | 5.76 | 3.57 |
0.73 | Very Good | E | VS2 | 63.1 | 55.0 | 3066.0 | 5.77 | 5.71 | 3.62 |
0.7 | Very Good | E | VS1 | 63.4 | 60.0 | 3068.0 | 5.63 | 5.66 | 3.58 |
0.7 | Ideal | E | VS2 | 62.6 | 56.0 | 3068.0 | 5.65 | 5.69 | 3.55 |
0.85 | Very Good | I | VS2 | 60.0 | 57.0 | 3070.0 | 6.1 | 6.16 | 3.68 |
0.82 | Ideal | I | VS1 | 61.6 | 56.0 | 3071.0 | 6.05 | 6.01 | 3.72 |
0.71 | Good | G | VVS1 | 62.7 | 61.0 | 3072.0 | 5.64 | 5.68 | 3.55 |
0.7 | Very Good | G | VVS1 | 63.1 | 56.0 | 3073.0 | 5.64 | 5.67 | 3.57 |
0.7 | Ideal | G | VVS1 | 61.6 | 55.0 | 3073.0 | 5.72 | 5.75 | 3.53 |
0.75 | Ideal | G | VS2 | 61.6 | 55.0 | 3073.0 | 5.86 | 5.89 | 3.62 |
0.71 | Ideal | E | VS2 | 62.2 | 57.0 | 3073.0 | 5.69 | 5.73 | 3.55 |
0.62 | Premium | E | VVS1 | 61.9 | 59.0 | 3073.0 | 5.62 | 5.5 | 3.44 |
0.7 | Good | D | VS2 | 58.0 | 65.0 | 3073.0 | 5.81 | 5.73 | 3.39 |
0.78 | Very Good | G | VS2 | 61.7 | 58.0 | 3074.0 | 5.87 | 5.92 | 3.64 |
0.9 | Fair | I | VVS2 | 67.0 | 56.0 | 3074.0 | 5.91 | 5.83 | 3.93 |
0.77 | Ideal | H | VS1 | 61.4 | 55.0 | 3074.0 | 5.89 | 5.93 | 3.63 |
0.72 | Very Good | D | VS2 | 61.8 | 58.0 | 3075.0 | 5.73 | 5.76 | 3.55 |
0.72 | Very Good | D | VS2 | 62.6 | 59.0 | 3075.0 | 5.69 | 5.72 | 3.57 |
0.72 | Ideal | H | VVS1 | 62.2 | 57.0 | 3075.0 | 5.72 | 5.75 | 3.57 |
0.76 | Ideal | I | VS2 | 61.7 | 56.0 | 3075.0 | 5.87 | 5.9 | 3.63 |
0.73 | Ideal | E | VS2 | 62.7 | 56.0 | 3077.0 | 5.75 | 5.8 | 3.62 |
0.71 | Fair | D | VS2 | 64.7 | 58.0 | 3077.0 | 5.61 | 5.58 | 3.62 |
0.71 | Premium | D | VS2 | 60.3 | 62.0 | 3077.0 | 5.76 | 5.69 | 3.45 |
0.72 | Premium | E | VS2 | 62.5 | 59.0 | 3078.0 | 5.7 | 5.73 | 3.57 |
0.76 | Ideal | E | VS2 | 61.3 | 56.0 | 3079.0 | 5.79 | 5.83 | 3.56 |
// Combining conditions
display(spark.sql("SELECT * FROM diamonds WHERE clarity LIKE 'V%' AND price > 10000"))
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
1.7 | Ideal | J | VS2 | 60.5 | 58.0 | 10002.0 | 7.73 | 7.74 | 4.68 |
1.03 | Ideal | E | VVS2 | 60.6 | 59.0 | 10003.0 | 6.5 | 6.53 | 3.95 |
1.23 | Very Good | G | VVS2 | 60.6 | 55.0 | 10004.0 | 6.93 | 7.02 | 4.23 |
1.25 | Ideal | F | VS2 | 61.6 | 55.0 | 10006.0 | 6.93 | 6.96 | 4.28 |
1.21 | Very Good | F | VS1 | 62.3 | 58.0 | 10009.0 | 6.76 | 6.85 | 4.24 |
1.51 | Premium | I | VS2 | 59.9 | 60.0 | 10010.0 | 7.42 | 7.36 | 4.43 |
1.05 | Ideal | F | VVS2 | 60.5 | 55.0 | 10011.0 | 6.67 | 6.58 | 4.01 |
1.6 | Ideal | J | VS1 | 62.0 | 53.0 | 10011.0 | 7.57 | 7.56 | 4.69 |
1.35 | Premium | G | VS1 | 62.1 | 59.0 | 10012.0 | 7.06 | 7.02 | 4.37 |
1.53 | Premium | I | VS2 | 62.0 | 58.0 | 10013.0 | 7.36 | 7.41 | 4.58 |
1.13 | Ideal | F | VS1 | 60.9 | 57.0 | 10016.0 | 6.73 | 6.76 | 4.11 |
1.21 | Premium | F | VS1 | 62.6 | 59.0 | 10018.0 | 6.81 | 6.76 | 4.25 |
1.01 | Very Good | F | VVS1 | 62.9 | 57.0 | 10019.0 | 6.35 | 6.41 | 4.01 |
1.04 | Ideal | E | VVS2 | 62.9 | 55.0 | 10019.0 | 6.47 | 6.51 | 4.08 |
1.26 | Very Good | G | VVS2 | 60.9 | 56.0 | 10020.0 | 6.95 | 7.01 | 4.25 |
1.5 | Very Good | H | VS2 | 60.9 | 59.0 | 10023.0 | 7.37 | 7.43 | 4.51 |
1.12 | Premium | F | VVS2 | 62.4 | 59.0 | 10028.0 | 6.58 | 6.66 | 4.13 |
1.27 | Premium | F | VS1 | 60.3 | 58.0 | 10028.0 | 7.06 | 7.04 | 4.25 |
1.52 | Very Good | I | VS1 | 62.9 | 59.9 | 10032.0 | 7.27 | 7.31 | 4.59 |
1.24 | Premium | F | VS1 | 62.5 | 58.0 | 10033.0 | 6.87 | 6.83 | 4.28 |
1.23 | Very Good | F | VS1 | 62.0 | 59.0 | 10035.0 | 6.84 | 6.87 | 4.25 |
1.5 | Good | G | VS1 | 63.6 | 57.0 | 10036.0 | 7.23 | 7.14 | 4.57 |
1.22 | Ideal | G | VVS2 | 62.3 | 56.0 | 10038.0 | 6.81 | 6.84 | 4.25 |
1.3 | Ideal | G | VS1 | 62.0 | 55.0 | 10038.0 | 6.98 | 7.02 | 4.34 |
1.59 | Premium | I | VS2 | 60.2 | 60.0 | 10039.0 | 7.58 | 7.61 | 4.57 |
1.83 | Premium | I | VS2 | 60.5 | 60.0 | 10043.0 | 7.93 | 7.86 | 4.78 |
1.07 | Ideal | E | VVS2 | 61.4 | 56.0 | 10043.0 | 6.65 | 6.55 | 4.05 |
1.51 | Very Good | H | VS1 | 61.5 | 54.0 | 10045.0 | 7.34 | 7.42 | 4.54 |
1.08 | Ideal | F | VVS2 | 61.6 | 57.0 | 10046.0 | 6.57 | 6.6 | 4.06 |
1.0 | Premium | D | VVS2 | 61.6 | 60.0 | 10046.0 | 6.41 | 6.36 | 3.93 |
1.03 | Ideal | F | VVS2 | 61.1 | 57.0 | 10049.0 | 6.51 | 6.54 | 3.99 |
1.52 | Very Good | I | VS2 | 62.3 | 58.0 | 10051.0 | 7.32 | 7.28 | 4.55 |
1.08 | Ideal | F | VVS2 | 62.1 | 55.0 | 10052.0 | 6.57 | 6.6 | 4.09 |
1.2 | Premium | G | VVS2 | 62.8 | 59.0 | 10053.0 | 6.72 | 6.65 | 4.2 |
1.2 | Premium | E | VS1 | 60.7 | 57.0 | 10053.0 | 6.89 | 6.81 | 4.16 |
1.2 | Premium | G | VVS2 | 61.2 | 58.0 | 10053.0 | 6.88 | 6.84 | 4.2 |
1.71 | Premium | I | VS1 | 60.3 | 62.0 | 10055.0 | 7.76 | 7.7 | 4.66 |
1.0 | Ideal | F | VVS1 | 62.3 | 53.0 | 10058.0 | 6.37 | 6.43 | 3.99 |
1.07 | Ideal | F | VVS2 | 62.3 | 57.0 | 10061.0 | 6.56 | 6.58 | 4.09 |
1.66 | Premium | J | VVS2 | 62.6 | 59.0 | 10062.0 | 7.58 | 7.54 | 4.73 |
1.2 | Premium | F | VVS2 | 60.5 | 60.0 | 10064.0 | 6.98 | 6.87 | 4.19 |
1.11 | Very Good | F | VVS1 | 62.5 | 59.0 | 10069.0 | 6.59 | 6.63 | 4.13 |
1.34 | Ideal | G | VS1 | 62.7 | 57.0 | 10070.0 | 7.1 | 7.04 | 4.43 |
1.31 | Premium | G | VS1 | 61.5 | 59.0 | 10071.0 | 7.06 | 7.0 | 4.32 |
1.31 | Ideal | G | VS1 | 62.2 | 56.0 | 10071.0 | 7.05 | 7.01 | 4.37 |
1.31 | Ideal | G | VS1 | 61.5 | 57.0 | 10071.0 | 7.06 | 7.02 | 4.33 |
1.53 | Very Good | H | VS1 | 59.5 | 63.0 | 10076.0 | 7.51 | 7.44 | 4.45 |
1.26 | Premium | F | VS1 | 62.7 | 58.0 | 10076.0 | 6.93 | 6.86 | 4.32 |
1.73 | Ideal | J | VS2 | 63.0 | 57.0 | 10076.0 | 7.64 | 7.6 | 4.8 |
1.19 | Ideal | D | VS1 | 61.1 | 57.0 | 10079.0 | 6.84 | 6.87 | 4.19 |
1.5 | Ideal | I | VS1 | 61.3 | 57.0 | 10080.0 | 7.35 | 7.32 | 4.5 |
1.5 | Premium | I | VS1 | 62.7 | 59.0 | 10080.0 | 7.3 | 7.25 | 4.56 |
1.5 | Ideal | H | VS1 | 61.3 | 55.0 | 10080.0 | 7.37 | 7.34 | 4.51 |
1.21 | Premium | D | VS1 | 60.2 | 59.0 | 10083.0 | 6.89 | 6.86 | 4.14 |
1.71 | Premium | H | VS2 | 59.2 | 61.0 | 10084.0 | 7.83 | 7.77 | 4.62 |
1.82 | Very Good | J | VS1 | 62.2 | 56.0 | 10090.0 | 7.83 | 7.96 | 4.91 |
1.51 | Very Good | H | VS2 | 61.9 | 57.0 | 10090.0 | 7.32 | 7.36 | 4.54 |
1.3 | Ideal | F | VS2 | 62.2 | 56.0 | 10090.0 | 6.98 | 6.94 | 4.33 |
1.3 | Premium | F | VS2 | 60.4 | 59.0 | 10090.0 | 7.12 | 7.06 | 4.28 |
1.5 | Very Good | I | VVS2 | 63.3 | 58.0 | 10090.0 | 7.27 | 7.24 | 4.59 |
1.57 | Ideal | I | VS2 | 61.5 | 56.0 | 10093.0 | 7.56 | 7.49 | 4.63 |
1.07 | Ideal | F | VVS2 | 60.3 | 55.0 | 10093.0 | 6.65 | 6.68 | 4.02 |
1.31 | Very Good | E | VS2 | 63.1 | 56.0 | 10094.0 | 6.95 | 6.9 | 4.37 |
1.33 | Good | G | VS1 | 62.8 | 60.0 | 10096.0 | 6.87 | 6.92 | 4.33 |
1.53 | Premium | I | VS1 | 61.2 | 59.0 | 10098.0 | 7.39 | 7.41 | 4.53 |
1.61 | Ideal | I | VS2 | 62.5 | 57.0 | 10098.0 | 7.49 | 7.43 | 4.66 |
1.31 | Ideal | G | VS1 | 61.9 | 56.0 | 10099.0 | 7.03 | 7.13 | 4.38 |
1.22 | Ideal | F | VS1 | 62.3 | 57.0 | 10100.0 | 6.83 | 6.79 | 4.24 |
1.07 | Ideal | E | VVS2 | 61.7 | 57.0 | 10104.0 | 6.55 | 6.61 | 4.06 |
1.59 | Very Good | I | VS2 | 60.5 | 63.0 | 10106.0 | 7.52 | 7.45 | 4.53 |
1.22 | Premium | G | VVS2 | 62.0 | 58.0 | 10111.0 | 6.9 | 6.85 | 4.26 |
1.09 | Premium | E | VVS2 | 59.9 | 59.0 | 10111.0 | 6.73 | 6.7 | 4.02 |
1.58 | Very Good | I | VS1 | 61.8 | 57.0 | 10112.0 | 7.5 | 7.56 | 4.64 |
1.0 | Very Good | D | VVS2 | 61.7 | 58.0 | 10113.0 | 6.37 | 6.41 | 3.94 |
1.23 | Ideal | G | VVS1 | 63.2 | 56.0 | 10113.0 | 6.78 | 6.83 | 4.3 |
1.25 | Ideal | D | VS2 | 62.6 | 56.0 | 10114.0 | 6.87 | 6.84 | 4.29 |
1.17 | Premium | D | VS1 | 61.7 | 59.0 | 10115.0 | 6.77 | 6.72 | 4.16 |
1.28 | Ideal | G | VS1 | 62.1 | 57.0 | 10126.0 | 6.91 | 6.94 | 4.3 |
1.43 | Ideal | H | VVS2 | 61.6 | 54.0 | 10129.0 | 7.25 | 7.29 | 4.48 |
1.51 | Good | H | VS1 | 59.9 | 61.0 | 10129.0 | 7.34 | 7.39 | 4.41 |
1.52 | Very Good | I | VS2 | 61.7 | 55.0 | 10130.0 | 7.39 | 7.32 | 4.54 |
1.04 | Very Good | D | VVS2 | 60.8 | 58.0 | 10130.0 | 6.49 | 6.53 | 3.96 |
1.07 | Ideal | E | VVS2 | 62.3 | 56.0 | 10133.0 | 6.51 | 6.61 | 4.09 |
1.5 | Good | F | VS2 | 64.0 | 56.0 | 10134.0 | 7.18 | 7.13 | 4.64 |
1.0 | Premium | E | VVS1 | 60.3 | 54.0 | 10134.0 | 6.59 | 6.47 | 3.94 |
1.21 | Premium | E | VS1 | 60.3 | 58.0 | 10137.0 | 6.95 | 6.91 | 4.18 |
1.24 | Ideal | F | VS1 | 61.5 | 54.0 | 10138.0 | 6.93 | 6.89 | 4.25 |
1.24 | Ideal | F | VS1 | 60.9 | 54.0 | 10138.0 | 6.98 | 6.95 | 4.24 |
1.11 | Very Good | F | VVS1 | 59.7 | 55.0 | 10141.0 | 6.77 | 6.82 | 4.06 |
1.1 | Ideal | D | VS1 | 61.9 | 56.0 | 10144.0 | 6.58 | 6.61 | 4.09 |
1.01 | Premium | D | VVS2 | 60.2 | 58.0 | 10147.0 | 6.57 | 6.51 | 3.94 |
1.31 | Ideal | G | VS1 | 60.5 | 57.0 | 10155.0 | 7.1 | 7.14 | 4.31 |
1.2 | Premium | D | VS2 | 61.1 | 58.0 | 10161.0 | 6.85 | 6.83 | 4.18 |
1.5 | Very Good | I | VS1 | 62.2 | 59.0 | 10164.0 | 7.27 | 7.3 | 4.53 |
1.54 | Premium | I | VS1 | 61.6 | 58.0 | 10164.0 | 7.39 | 7.42 | 4.56 |
1.54 | Good | I | VS1 | 63.6 | 60.0 | 10164.0 | 7.3 | 7.33 | 4.65 |
1.5 | Ideal | I | VS1 | 62.0 | 54.0 | 10164.0 | 7.32 | 7.38 | 4.56 |
1.67 | Very Good | I | VS2 | 60.7 | 60.0 | 10165.0 | 7.61 | 7.68 | 4.64 |
1.7 | Very Good | J | VS1 | 62.9 | 58.0 | 10165.0 | 7.54 | 7.67 | 4.79 |
1.53 | Ideal | I | VS1 | 60.2 | 60.0 | 10171.0 | 7.51 | 7.48 | 4.51 |
1.2 | Very Good | F | VVS2 | 63.8 | 58.0 | 10173.0 | 6.67 | 6.69 | 4.26 |
1.21 | Ideal | F | VS2 | 61.5 | 54.0 | 10177.0 | 6.88 | 6.89 | 4.24 |
1.01 | Good | G | VS2 | 63.6 | 56.0 | 10181.0 | 6.31 | 6.24 | 3.99 |
1.24 | Very Good | E | VS1 | 62.0 | 58.0 | 10185.0 | 6.9 | 6.96 | 4.3 |
1.51 | Ideal | H | VS1 | 61.2 | 58.0 | 10186.0 | 7.36 | 7.42 | 4.52 |
1.35 | Ideal | G | VS1 | 61.5 | 56.0 | 10193.0 | 7.12 | 7.15 | 4.39 |
1.53 | Premium | I | VS2 | 62.0 | 58.0 | 10196.0 | 7.41 | 7.36 | 4.58 |
1.09 | Ideal | F | VVS2 | 62.0 | 56.0 | 10196.0 | 6.63 | 6.6 | 4.1 |
1.01 | Ideal | F | VVS1 | 60.5 | 60.0 | 10197.0 | 6.45 | 6.47 | 3.91 |
1.58 | Ideal | I | VS2 | 61.4 | 55.0 | 10197.0 | 7.49 | 7.55 | 4.62 |
1.24 | Premium | G | VVS2 | 59.9 | 60.0 | 10202.0 | 6.98 | 7.0 | 4.19 |
1.24 | Very Good | E | VS1 | 59.9 | 61.0 | 10202.0 | 6.96 | 6.99 | 4.18 |
1.27 | Premium | G | VVS2 | 61.0 | 58.0 | 10203.0 | 6.96 | 7.01 | 4.26 |
1.08 | Very Good | F | VVS1 | 61.0 | 58.0 | 10204.0 | 6.64 | 6.61 | 4.04 |
1.5 | Very Good | H | VS2 | 63.4 | 57.0 | 10206.0 | 7.27 | 7.2 | 4.59 |
1.5 | Fair | H | VS2 | 65.2 | 58.0 | 10206.0 | 7.12 | 7.06 | 4.62 |
1.57 | Ideal | I | VS1 | 62.3 | 57.0 | 10209.0 | 7.44 | 7.48 | 4.65 |
1.12 | Premium | F | VVS2 | 62.4 | 59.0 | 10211.0 | 6.66 | 6.58 | 4.13 |
1.52 | Ideal | I | VS1 | 62.9 | 60.0 | 10214.0 | 7.31 | 7.27 | 4.59 |
1.2 | Ideal | E | VS2 | 61.3 | 56.0 | 10214.0 | 6.89 | 6.84 | 4.21 |
1.51 | Very Good | I | VS1 | 61.1 | 61.0 | 10215.0 | 7.32 | 7.37 | 4.49 |
1.01 | Premium | D | VVS2 | 62.4 | 60.0 | 10221.0 | 6.31 | 6.36 | 3.95 |
1.3 | Ideal | G | VS1 | 62.0 | 55.0 | 10221.0 | 7.02 | 6.98 | 4.34 |
1.22 | Ideal | G | VVS2 | 62.3 | 56.0 | 10221.0 | 6.84 | 6.81 | 4.25 |
1.07 | Ideal | E | VVS2 | 61.3 | 56.0 | 10222.0 | 6.53 | 6.6 | 4.02 |
1.59 | Premium | I | VS2 | 60.2 | 60.0 | 10222.0 | 7.61 | 7.58 | 4.57 |
1.53 | Premium | H | VS2 | 59.3 | 59.0 | 10224.0 | 7.53 | 7.59 | 4.48 |
1.53 | Premium | H | VS2 | 59.8 | 58.0 | 10224.0 | 7.49 | 7.52 | 4.49 |
1.51 | Very Good | H | VS2 | 62.8 | 58.0 | 10225.0 | 7.21 | 7.28 | 4.55 |
1.37 | Very Good | G | VS1 | 58.3 | 60.0 | 10226.0 | 7.3 | 7.35 | 4.27 |
1.21 | Ideal | G | VVS1 | 60.2 | 57.0 | 10232.0 | 7.02 | 6.94 | 4.2 |
1.12 | Ideal | F | VVS2 | 60.4 | 56.0 | 10236.0 | 6.82 | 6.78 | 4.11 |
1.6 | Very Good | I | VS1 | 62.3 | 59.0 | 10238.0 | 7.46 | 7.51 | 4.66 |
1.16 | Ideal | D | VS1 | 61.2 | 58.0 | 10241.0 | 6.73 | 6.76 | 4.13 |
1.31 | Ideal | F | VS2 | 59.6 | 60.0 | 10243.0 | 7.06 | 7.16 | 4.24 |
1.35 | Ideal | G | VS1 | 62.2 | 57.0 | 10244.0 | 7.09 | 7.05 | 4.4 |
1.21 | Premium | F | VS1 | 61.9 | 58.0 | 10245.0 | 6.82 | 6.76 | 4.2 |
1.09 | Ideal | F | VVS2 | 62.1 | 56.0 | 10246.0 | 6.55 | 6.59 | 4.08 |
1.34 | Ideal | H | VVS1 | 62.1 | 56.0 | 10255.0 | 7.05 | 7.11 | 4.4 |
1.5 | Good | H | VS1 | 63.4 | 59.0 | 10256.0 | 7.2 | 7.29 | 4.59 |
1.21 | Ideal | G | VVS2 | 60.6 | 56.0 | 10256.0 | 6.9 | 6.89 | 4.18 |
1.14 | Premium | E | VVS2 | 59.7 | 58.0 | 10258.0 | 6.83 | 6.91 | 4.1 |
1.07 | Ideal | D | VVS2 | 61.3 | 58.0 | 10266.0 | 6.55 | 6.64 | 4.04 |
1.23 | Very Good | F | VS1 | 60.8 | 58.0 | 10276.0 | 6.9 | 6.94 | 4.21 |
1.57 | Ideal | I | VS2 | 62.7 | 56.0 | 10278.0 | 7.36 | 7.4 | 4.63 |
1.53 | Premium | I | VS1 | 61.2 | 59.0 | 10282.0 | 7.41 | 7.39 | 4.53 |
1.21 | Very Good | F | VS2 | 60.1 | 58.0 | 10283.0 | 6.85 | 6.92 | 4.14 |
1.01 | Ideal | E | VVS2 | 61.4 | 56.0 | 10283.0 | 6.49 | 6.45 | 3.97 |
1.26 | Very Good | F | VS1 | 62.5 | 58.0 | 10284.0 | 6.83 | 6.94 | 4.3 |
1.25 | Very Good | E | VS1 | 61.5 | 59.0 | 10285.0 | 6.91 | 6.95 | 4.26 |
1.55 | Ideal | I | VS1 | 61.2 | 55.0 | 10286.0 | 7.49 | 7.47 | 4.58 |
1.07 | Ideal | E | VVS2 | 61.7 | 57.0 | 10288.0 | 6.61 | 6.55 | 4.06 |
1.5 | Good | H | VS2 | 63.6 | 58.0 | 10291.0 | 7.22 | 7.27 | 4.61 |
1.5 | Good | H | VS2 | 61.2 | 61.0 | 10291.0 | 7.25 | 7.32 | 4.46 |
1.5 | Premium | H | VS2 | 62.2 | 58.0 | 10291.0 | 7.27 | 7.36 | 4.55 |
1.5 | Premium | H | VS2 | 60.8 | 59.0 | 10291.0 | 7.34 | 7.36 | 4.47 |
1.08 | Ideal | E | VS1 | 61.7 | 55.0 | 10292.0 | 6.58 | 6.61 | 4.07 |
1.21 | Ideal | G | VVS1 | 61.0 | 57.0 | 10295.0 | 6.87 | 6.93 | 4.21 |
1.08 | Ideal | E | VVS2 | 62.5 | 57.0 | 10300.0 | 6.52 | 6.57 | 4.09 |
1.52 | Premium | I | VS1 | 60.6 | 57.0 | 10300.0 | 7.51 | 7.44 | 4.53 |
1.46 | Ideal | G | VS2 | 62.3 | 56.0 | 10302.0 | 7.28 | 7.2 | 4.51 |
1.26 | Premium | G | VVS2 | 62.7 | 58.0 | 10302.0 | 6.95 | 6.86 | 4.33 |
1.23 | Ideal | G | VVS2 | 60.3 | 57.0 | 10304.0 | 6.98 | 6.97 | 4.21 |
1.23 | Ideal | G | VVS2 | 61.0 | 57.0 | 10304.0 | 6.93 | 6.9 | 4.22 |
1.12 | Ideal | G | VVS2 | 61.5 | 57.0 | 10305.0 | 6.65 | 6.67 | 4.1 |
1.18 | Ideal | G | VVS2 | 61.3 | 55.0 | 10308.0 | 6.86 | 6.81 | 4.19 |
1.59 | Very Good | I | VS2 | 61.1 | 58.6 | 10309.0 | 7.49 | 7.53 | 4.59 |
1.71 | Ideal | J | VS1 | 62.4 | 56.0 | 10309.0 | 7.59 | 7.63 | 4.75 |
1.4 | Ideal | G | VS2 | 61.7 | 56.0 | 10311.0 | 7.2 | 7.25 | 4.46 |
1.86 | Ideal | J | VS2 | 62.6 | 56.0 | 10312.0 | 7.95 | 7.87 | 4.95 |
1.08 | Ideal | E | VVS2 | 61.8 | 56.0 | 10313.0 | 6.55 | 6.59 | 4.06 |
1.09 | Ideal | E | VVS2 | 61.6 | 56.0 | 10314.0 | 6.6 | 6.64 | 4.08 |
1.04 | Premium | D | VVS2 | 60.8 | 58.0 | 10314.0 | 6.53 | 6.49 | 3.96 |
1.15 | Ideal | F | VS1 | 61.1 | 55.0 | 10316.0 | 6.76 | 6.82 | 4.15 |
1.23 | Ideal | G | VVS2 | 62.2 | 55.0 | 10317.0 | 6.86 | 6.9 | 4.28 |
1.23 | Ideal | G | VVS2 | 62.7 | 56.0 | 10317.0 | 6.81 | 6.84 | 4.28 |
1.51 | Very Good | H | VS2 | 63.0 | 57.0 | 10319.0 | 7.25 | 7.3 | 4.58 |
1.27 | Very Good | G | VVS2 | 61.5 | 58.0 | 10321.0 | 6.9 | 6.96 | 4.26 |
1.13 | Ideal | F | VVS2 | 61.4 | 56.0 | 10327.0 | 6.77 | 6.72 | 4.14 |
1.1 | Very Good | F | VVS1 | 62.2 | 59.0 | 10329.0 | 6.56 | 6.69 | 4.12 |
1.56 | Premium | H | VS2 | 62.4 | 58.0 | 10331.0 | 7.44 | 7.39 | 4.63 |
1.09 | Ideal | E | VVS2 | 60.9 | 56.0 | 10333.0 | 6.66 | 6.7 | 4.07 |
1.56 | Ideal | I | VS2 | 61.8 | 56.0 | 10333.0 | 7.41 | 7.45 | 4.59 |
1.7 | Premium | H | VS2 | 60.6 | 58.0 | 10333.0 | 7.72 | 7.65 | 4.66 |
1.7 | Ideal | H | VS2 | 62.8 | 55.0 | 10333.0 | 7.61 | 7.54 | 4.76 |
1.7 | Premium | H | VS2 | 59.0 | 58.0 | 10333.0 | 7.77 | 7.72 | 4.57 |
1.21 | Ideal | D | VS1 | 61.0 | 57.0 | 10335.0 | 6.88 | 6.85 | 4.19 |
1.57 | Very Good | I | VS1 | 59.7 | 61.0 | 10336.0 | 7.51 | 7.62 | 4.52 |
1.7 | Premium | H | VVS2 | 61.4 | 58.0 | 10337.0 | 7.66 | 7.62 | 4.69 |
1.58 | Ideal | I | VS2 | 61.1 | 55.0 | 10338.0 | 7.48 | 7.53 | 4.59 |
1.42 | Premium | F | VS1 | 58.4 | 59.0 | 10338.0 | 7.36 | 7.32 | 4.29 |
1.29 | Premium | F | VS1 | 60.9 | 58.0 | 10341.0 | 6.97 | 7.01 | 4.26 |
1.01 | Premium | F | VVS1 | 60.8 | 58.0 | 10341.0 | 6.55 | 6.48 | 3.96 |
1.27 | Ideal | G | VVS2 | 62.4 | 53.3 | 10342.0 | 6.94 | 6.95 | 4.33 |
1.17 | Ideal | G | VVS1 | 61.7 | 57.0 | 10342.0 | 6.84 | 6.9 | 4.13 |
1.23 | Ideal | F | VS2 | 62.4 | 54.0 | 10342.0 | 6.84 | 6.87 | 4.28 |
1.6 | Very Good | I | VS2 | 60.0 | 58.0 | 10346.0 | 7.61 | 7.68 | 4.59 |
1.54 | Premium | I | VS1 | 61.6 | 58.0 | 10349.0 | 7.42 | 7.39 | 4.56 |
1.54 | Very Good | I | VS1 | 61.1 | 63.0 | 10349.0 | 7.43 | 7.36 | 4.52 |
1.54 | Good | I | VS1 | 63.6 | 60.0 | 10349.0 | 7.33 | 7.3 | 4.65 |
1.04 | Premium | E | VVS1 | 62.5 | 59.0 | 10350.0 | 6.41 | 6.46 | 4.02 |
1.1 | Ideal | D | VS2 | 61.7 | 56.0 | 10350.0 | 6.63 | 6.67 | 4.1 |
1.4 | Very Good | G | VS2 | 60.1 | 62.0 | 10351.0 | 7.16 | 7.25 | 4.33 |
1.17 | Ideal | F | VVS2 | 61.9 | 54.0 | 10351.0 | 6.76 | 6.82 | 4.2 |
1.21 | Ideal | E | VS1 | 62.4 | 57.0 | 10351.0 | 6.75 | 6.83 | 4.24 |
1.21 | Ideal | D | VS2 | 60.9 | 60.0 | 10353.0 | 6.91 | 6.86 | 4.19 |
1.58 | Ideal | J | VVS1 | 61.5 | 56.0 | 10357.0 | 7.48 | 7.5 | 4.61 |
1.31 | Ideal | G | VS1 | 62.0 | 58.0 | 10359.0 | 6.97 | 7.02 | 4.34 |
1.62 | Premium | I | VS1 | 61.7 | 59.0 | 10362.0 | 7.55 | 7.47 | 4.63 |
1.26 | Premium | E | VS1 | 60.7 | 58.0 | 10367.0 | 7.02 | 7.04 | 4.27 |
1.26 | Ideal | G | VVS2 | 60.7 | 56.0 | 10367.0 | 7.03 | 7.05 | 4.27 |
1.2 | Ideal | F | VS1 | 62.1 | 58.0 | 10367.0 | 6.78 | 6.84 | 4.23 |
1.26 | Ideal | G | VS1 | 62.2 | 54.0 | 10371.0 | 6.89 | 6.98 | 4.31 |
1.4 | Very Good | G | VS2 | 62.2 | 61.0 | 10378.0 | 7.09 | 7.13 | 4.42 |
1.21 | Ideal | G | VVS2 | 62.0 | 56.0 | 10378.0 | 6.8 | 6.84 | 4.23 |
1.35 | Ideal | G | VS1 | 61.5 | 56.0 | 10378.0 | 7.15 | 7.12 | 4.39 |
1.55 | Ideal | I | VS1 | 61.5 | 54.0 | 10384.0 | 7.42 | 7.58 | 4.61 |
1.02 | Ideal | E | VVS2 | 61.5 | 57.0 | 10384.0 | 6.55 | 6.5 | 4.01 |
1.1 | Premium | E | VVS2 | 60.1 | 58.0 | 10387.0 | 6.69 | 6.76 | 4.04 |
1.24 | Premium | E | VS1 | 59.9 | 61.0 | 10388.0 | 6.99 | 6.96 | 4.18 |
1.24 | Premium | G | VVS2 | 59.9 | 60.0 | 10388.0 | 7.0 | 6.98 | 4.19 |
1.27 | Premium | G | VVS2 | 61.0 | 58.0 | 10389.0 | 7.01 | 6.96 | 4.26 |
1.52 | Ideal | I | VS1 | 60.7 | 60.0 | 10392.0 | 7.4 | 7.42 | 4.5 |
1.24 | Ideal | G | VVS2 | 61.4 | 58.0 | 10395.0 | 6.88 | 6.92 | 4.24 |
1.13 | Ideal | G | VVS2 | 61.6 | 57.0 | 10396.0 | 6.66 | 6.75 | 4.13 |
1.7 | Premium | I | VS2 | 61.9 | 56.0 | 10396.0 | 7.55 | 7.5 | 4.66 |
1.56 | Ideal | I | VS1 | 61.2 | 59.0 | 10399.0 | 7.43 | 7.5 | 4.57 |
2.01 | Premium | J | VS2 | 58.6 | 61.0 | 10401.0 | 8.18 | 8.14 | 4.78 |
1.51 | Premium | I | VS1 | 61.1 | 61.0 | 10401.0 | 7.37 | 7.32 | 4.49 |
1.5 | Ideal | I | VS1 | 62.2 | 54.0 | 10406.0 | 7.33 | 7.4 | 4.57 |
1.01 | Premium | D | VVS2 | 62.4 | 60.0 | 10407.0 | 6.36 | 6.31 | 3.95 |
1.31 | Very Good | D | VS2 | 59.5 | 61.0 | 10409.0 | 7.16 | 7.19 | 4.27 |
1.1 | Ideal | D | VVS2 | 61.0 | 56.0 | 10410.0 | 6.67 | 6.73 | 4.09 |
1.51 | Premium | H | VS2 | 60.6 | 58.0 | 10411.0 | 7.42 | 7.36 | 4.48 |
1.11 | Ideal | F | VVS1 | 61.9 | 57.0 | 10412.0 | 6.62 | 6.66 | 4.11 |
1.37 | Premium | G | VS1 | 58.3 | 60.0 | 10412.0 | 7.35 | 7.3 | 4.27 |
1.35 | Premium | G | VS1 | 61.0 | 59.0 | 10415.0 | 7.15 | 7.09 | 4.34 |
1.55 | Premium | I | VS1 | 58.2 | 60.0 | 10416.0 | 7.69 | 7.59 | 4.45 |
1.43 | Very Good | G | VS2 | 62.2 | 58.0 | 10419.0 | 7.15 | 7.18 | 4.46 |
1.32 | Premium | F | VS2 | 60.9 | 59.0 | 10423.0 | 7.12 | 7.06 | 4.32 |
1.56 | Premium | H | VS2 | 62.2 | 58.0 | 10424.0 | 7.41 | 7.44 | 4.62 |
1.5 | Very Good | H | VS2 | 58.9 | 59.0 | 10424.0 | 7.34 | 7.43 | 4.35 |
1.4 | Ideal | G | VS2 | 62.1 | 55.0 | 10427.0 | 7.12 | 7.05 | 4.4 |
1.58 | Premium | I | VS1 | 61.1 | 59.0 | 10428.0 | 7.44 | 7.52 | 4.57 |
1.52 | Good | H | VS2 | 63.3 | 57.0 | 10428.0 | 7.32 | 7.33 | 4.64 |
1.71 | Very Good | J | VS1 | 61.9 | 59.0 | 10428.0 | 7.6 | 7.69 | 4.73 |
1.75 | Premium | J | VS1 | 62.2 | 59.0 | 10429.0 | 7.7 | 7.74 | 4.8 |
1.21 | Very Good | E | VS1 | 60.0 | 58.0 | 10430.0 | 6.89 | 6.97 | 4.16 |
1.34 | Premium | F | VS2 | 61.1 | 58.0 | 10431.0 | 7.12 | 7.05 | 4.33 |
1.23 | Very Good | G | VVS1 | 61.3 | 57.0 | 10435.0 | 6.88 | 6.96 | 4.24 |
1.19 | Ideal | F | VVS2 | 61.7 | 56.0 | 10436.0 | 6.82 | 6.85 | 4.22 |
1.29 | Premium | F | VS1 | 59.3 | 60.0 | 10437.0 | 7.14 | 7.1 | 4.22 |
1.16 | Ideal | F | VVS2 | 61.8 | 56.7 | 10439.0 | 6.7 | 6.78 | 4.16 |
1.25 | Ideal | D | VS1 | 61.7 | 56.0 | 10441.0 | 6.92 | 7.01 | 4.3 |
1.11 | Ideal | D | VS2 | 61.2 | 57.0 | 10443.0 | 6.69 | 6.71 | 4.1 |
1.23 | Ideal | G | VVS2 | 61.3 | 56.0 | 10445.0 | 6.89 | 6.91 | 4.23 |
1.14 | Premium | E | VVS2 | 59.7 | 58.0 | 10446.0 | 6.91 | 6.83 | 4.1 |
1.57 | Very Good | I | VS2 | 60.3 | 58.0 | 10447.0 | 7.58 | 7.55 | 4.56 |
1.19 | Ideal | F | VS1 | 60.5 | 57.0 | 10449.0 | 6.82 | 6.88 | 4.15 |
1.01 | Very Good | D | VVS2 | 62.5 | 59.0 | 10453.0 | 6.34 | 6.4 | 3.98 |
1.07 | Ideal | E | VVS2 | 61.8 | 54.0 | 10453.0 | 6.56 | 6.61 | 4.07 |
1.2 | Ideal | G | VVS2 | 61.1 | 56.0 | 10454.0 | 6.88 | 6.91 | 4.21 |
1.36 | Ideal | G | VS1 | 61.0 | 56.0 | 10455.0 | 7.13 | 7.11 | 4.34 |
1.71 | Premium | H | VS1 | 62.1 | 59.0 | 10457.0 | 7.63 | 7.55 | 4.71 |
1.57 | Ideal | I | VS2 | 62.8 | 57.0 | 10462.0 | 7.46 | 7.37 | 4.66 |
1.09 | Very Good | F | VVS1 | 61.4 | 58.0 | 10463.0 | 6.6 | 6.65 | 4.07 |
1.0 | Very Good | E | VVS1 | 62.7 | 54.0 | 10463.0 | 6.36 | 6.39 | 4.0 |
1.2 | Ideal | G | VVS2 | 62.2 | 53.0 | 10463.0 | 6.8 | 6.84 | 4.24 |
1.59 | Premium | I | VS2 | 62.9 | 56.0 | 10471.0 | 7.48 | 7.43 | 4.69 |
1.35 | Ideal | G | VS1 | 60.9 | 54.0 | 10471.0 | 7.18 | 7.15 | 4.36 |
1.39 | Very Good | G | VS2 | 62.6 | 56.0 | 10476.0 | 7.08 | 7.11 | 4.44 |
1.72 | Very Good | J | VS2 | 60.9 | 61.0 | 10477.0 | 7.77 | 7.79 | 4.74 |
1.5 | Good | H | VS2 | 63.6 | 58.0 | 10478.0 | 7.27 | 7.22 | 4.61 |
1.5 | Premium | H | VS2 | 61.2 | 61.0 | 10478.0 | 7.32 | 7.25 | 4.46 |
1.63 | Premium | I | VS2 | 61.0 | 60.0 | 10479.0 | 7.62 | 7.59 | 4.64 |
1.56 | Ideal | I | VVS2 | 62.0 | 56.0 | 10481.0 | 7.39 | 7.42 | 4.6 |
1.21 | Ideal | G | VVS1 | 61.0 | 57.0 | 10482.0 | 6.93 | 6.87 | 4.21 |
1.5 | Premium | I | VVS2 | 60.2 | 58.0 | 10483.0 | 7.5 | 7.34 | 4.47 |
1.21 | Ideal | G | VVS1 | 61.4 | 58.0 | 10483.0 | 6.85 | 6.89 | 4.22 |
1.24 | Premium | G | VVS1 | 60.4 | 59.0 | 10485.0 | 7.02 | 7.01 | 4.24 |
1.1 | Ideal | F | VVS2 | 61.2 | 56.0 | 10487.0 | 6.66 | 6.74 | 4.1 |
1.22 | Premium | F | VVS2 | 63.0 | 56.0 | 10494.0 | 6.88 | 6.76 | 4.3 |
1.6 | Very Good | I | VS2 | 60.0 | 60.0 | 10497.0 | 7.55 | 7.59 | 4.54 |
1.52 | Very Good | H | VS1 | 59.8 | 57.0 | 10497.0 | 7.47 | 7.55 | 4.49 |
1.01 | Very Good | E | VVS1 | 63.2 | 54.0 | 10498.0 | 6.41 | 6.31 | 4.02 |
1.01 | Very Good | D | VVS2 | 59.8 | 57.0 | 10499.0 | 6.49 | 6.58 | 3.91 |
1.55 | Premium | G | VS2 | 60.5 | 60.0 | 10499.0 | 7.49 | 7.46 | 4.52 |
1.62 | Ideal | I | VS2 | 62.1 | 55.0 | 10501.0 | 7.53 | 7.58 | 4.69 |
1.21 | Ideal | F | VS1 | 61.8 | 56.0 | 10504.0 | 6.84 | 6.86 | 4.23 |
1.19 | Ideal | G | VVS1 | 61.6 | 59.0 | 10508.0 | 6.78 | 6.79 | 4.18 |
1.14 | Ideal | E | VVS2 | 62.3 | 55.0 | 10512.0 | 6.68 | 6.71 | 4.17 |
1.54 | Very Good | I | VVS2 | 62.7 | 57.0 | 10518.0 | 7.35 | 7.43 | 4.63 |
1.56 | Very Good | I | VS1 | 58.2 | 59.0 | 10523.0 | 7.65 | 7.7 | 4.47 |
1.29 | Premium | F | VS1 | 60.9 | 58.0 | 10530.0 | 7.01 | 6.97 | 4.26 |
1.71 | Ideal | H | VS2 | 63.0 | 57.0 | 10534.0 | 7.57 | 7.53 | 4.76 |
1.28 | Ideal | G | VS1 | 62.1 | 56.0 | 10537.0 | 6.97 | 6.94 | 4.32 |
1.22 | Ideal | D | VS2 | 61.7 | 56.0 | 10538.0 | 6.89 | 6.86 | 4.24 |
1.04 | Premium | E | VVS1 | 62.5 | 59.0 | 10539.0 | 6.46 | 6.41 | 4.02 |
1.33 | Ideal | G | VS1 | 62.0 | 55.0 | 10539.0 | 7.12 | 7.07 | 4.4 |
1.15 | Ideal | D | VS2 | 61.0 | 57.0 | 10546.0 | 6.76 | 6.78 | 4.13 |
1.03 | Premium | F | VVS1 | 59.7 | 60.0 | 10546.0 | 6.63 | 6.57 | 3.94 |
1.55 | Very Good | H | VS2 | 63.3 | 56.0 | 10546.0 | 7.38 | 7.32 | 4.65 |
1.51 | Premium | H | VS2 | 61.5 | 58.0 | 10548.0 | 7.45 | 7.32 | 4.45 |
1.51 | Premium | H | VS2 | 63.0 | 58.0 | 10548.0 | 7.34 | 7.27 | 4.6 |
1.5 | Very Good | I | VVS2 | 59.7 | 60.0 | 10551.0 | 7.46 | 7.62 | 4.5 |
1.51 | Ideal | G | VS2 | 62.8 | 57.0 | 10553.0 | 7.33 | 7.26 | 4.58 |
1.51 | Fair | G | VS2 | 58.1 | 67.0 | 10553.0 | 7.59 | 7.49 | 4.38 |
1.21 | Ideal | E | VS2 | 61.8 | 53.0 | 10556.0 | 6.86 | 6.9 | 4.25 |
1.31 | Ideal | G | VS1 | 62.0 | 53.0 | 10556.0 | 7.06 | 7.07 | 4.37 |
1.26 | Ideal | G | VVS2 | 60.7 | 56.0 | 10556.0 | 7.05 | 7.03 | 4.27 |
1.5 | Very Good | H | VS2 | 61.6 | 55.0 | 10558.0 | 7.37 | 7.43 | 4.56 |
1.53 | Ideal | I | VS1 | 61.5 | 55.0 | 10560.0 | 7.4 | 7.42 | 4.56 |
1.64 | Ideal | I | VS2 | 62.5 | 56.0 | 10562.0 | 7.58 | 7.52 | 4.72 |
1.0 | Fair | D | VVS2 | 61.1 | 57.0 | 10562.0 | 6.37 | 6.3 | 3.87 |
1.01 | Good | E | VVS1 | 63.1 | 59.0 | 10567.0 | 6.31 | 6.34 | 3.99 |
1.21 | Ideal | G | VVS2 | 61.3 | 57.0 | 10568.0 | 6.83 | 6.85 | 4.19 |
1.23 | Ideal | G | VVS1 | 61.8 | 56.0 | 10572.0 | 6.8 | 6.89 | 4.24 |
1.32 | Very Good | F | VS1 | 60.3 | 57.0 | 10575.0 | 7.08 | 7.12 | 4.28 |
1.51 | Ideal | I | VS1 | 61.6 | 56.0 | 10576.0 | 7.37 | 7.43 | 4.56 |
1.1 | Premium | E | VVS2 | 60.1 | 58.0 | 10577.0 | 6.76 | 6.69 | 4.04 |
1.0 | Ideal | F | VVS2 | 61.3 | 53.0 | 10577.0 | 6.44 | 6.48 | 3.96 |
1.02 | Premium | D | VVS2 | 61.4 | 58.0 | 10580.0 | 6.43 | 6.46 | 3.96 |
1.2 | Premium | F | VVS2 | 62.8 | 60.0 | 10580.0 | 6.79 | 6.74 | 4.25 |
1.23 | Ideal | F | VVS2 | 63.0 | 55.0 | 10580.0 | 6.89 | 6.79 | 4.31 |
1.79 | Premium | J | VS2 | 62.5 | 60.0 | 10581.0 | 7.76 | 7.69 | 4.83 |
1.41 | Ideal | G | VS2 | 60.8 | 55.0 | 10581.0 | 7.27 | 7.2 | 4.4 |
1.5 | Premium | H | VS1 | 59.3 | 61.0 | 10584.0 | 7.53 | 7.47 | 4.45 |
1.5 | Very Good | H | VS1 | 63.4 | 56.0 | 10584.0 | 7.29 | 7.25 | 4.61 |
1.7 | Ideal | J | VS1 | 60.9 | 58.0 | 10589.0 | 7.73 | 7.68 | 4.69 |
1.69 | Premium | I | VS2 | 62.4 | 58.0 | 10600.0 | 7.66 | 7.53 | 4.74 |
1.53 | Very Good | I | VS1 | 62.8 | 55.0 | 10602.0 | 7.35 | 7.4 | 4.63 |
1.35 | Ideal | D | VS2 | 61.3 | 57.0 | 10602.0 | 7.09 | 7.13 | 4.36 |
1.11 | Ideal | F | VVS1 | 61.9 | 57.0 | 10602.0 | 6.66 | 6.62 | 4.11 |
1.03 | Ideal | D | VS1 | 61.7 | 57.0 | 10607.0 | 6.45 | 6.48 | 3.99 |
1.58 | Very Good | H | VS2 | 61.4 | 60.0 | 10608.0 | 7.49 | 7.44 | 4.58 |
1.43 | Premium | G | VS2 | 62.2 | 58.0 | 10609.0 | 7.18 | 7.15 | 4.46 |
1.23 | Very Good | F | VS1 | 59.3 | 59.0 | 10609.0 | 6.98 | 7.01 | 4.15 |
1.29 | Ideal | G | VVS2 | 62.4 | 57.0 | 10614.0 | 6.94 | 6.97 | 4.34 |
1.52 | Very Good | H | VS2 | 63.3 | 57.0 | 10618.0 | 7.33 | 7.32 | 4.64 |
1.58 | Premium | I | VS1 | 61.1 | 59.0 | 10618.0 | 7.52 | 7.44 | 4.57 |
1.03 | Ideal | F | VVS1 | 62.1 | 56.3 | 10619.0 | 6.43 | 6.5 | 4.02 |
1.75 | Premium | J | VS1 | 62.2 | 59.0 | 10619.0 | 7.74 | 7.7 | 4.8 |
1.22 | Ideal | E | VS1 | 62.4 | 54.0 | 10622.0 | 6.77 | 6.88 | 4.26 |
1.52 | Fair | G | VS2 | 55.2 | 66.0 | 10623.0 | 7.72 | 7.67 | 4.26 |
1.51 | Premium | I | VVS2 | 61.1 | 60.0 | 10623.0 | 7.33 | 7.36 | 4.49 |
1.4 | Premium | F | VS2 | 61.5 | 60.0 | 10625.0 | 7.25 | 7.18 | 4.44 |
1.51 | Good | H | VS2 | 63.5 | 60.0 | 10628.0 | 7.24 | 7.27 | 4.61 |
1.32 | Ideal | G | VS1 | 62.4 | 53.0 | 10631.0 | 7.03 | 7.08 | 4.4 |
1.25 | Ideal | G | VVS2 | 61.5 | 55.0 | 10636.0 | 6.92 | 6.94 | 4.26 |
1.25 | Ideal | G | VVS2 | 62.5 | 54.0 | 10636.0 | 6.88 | 6.93 | 4.31 |
1.35 | Ideal | H | VVS1 | 61.9 | 57.0 | 10639.0 | 7.06 | 7.09 | 4.38 |
2.0 | Good | I | VS2 | 64.0 | 60.0 | 10640.0 | 7.9 | 7.83 | 5.04 |
1.25 | Premium | E | VS2 | 61.5 | 58.0 | 10640.0 | 6.98 | 6.91 | 4.27 |
1.52 | Premium | G | VS1 | 58.8 | 61.0 | 10640.0 | 7.54 | 7.45 | 4.41 |
1.02 | Very Good | E | VVS1 | 60.2 | 60.0 | 10641.0 | 6.39 | 6.54 | 3.89 |
1.52 | Ideal | I | VS1 | 62.4 | 57.0 | 10641.0 | 7.32 | 7.36 | 4.58 |
1.15 | Ideal | G | VVS1 | 62.7 | 56.0 | 10644.0 | 6.69 | 6.67 | 4.19 |
1.5 | Fair | G | VS2 | 66.2 | 53.0 | 10644.0 | 7.12 | 7.08 | 4.7 |
1.5 | Ideal | I | VVS2 | 61.7 | 55.0 | 10646.0 | 7.32 | 7.39 | 4.54 |
1.23 | Ideal | G | VVS2 | 60.8 | 57.0 | 10646.0 | 6.89 | 6.92 | 4.2 |
1.23 | Very Good | F | VVS2 | 58.5 | 59.0 | 10650.0 | 6.98 | 7.07 | 4.11 |
1.5 | Very Good | H | VS1 | 63.4 | 59.0 | 10652.0 | 7.13 | 7.2 | 4.54 |
1.3 | Very Good | G | VS1 | 62.5 | 58.0 | 10654.0 | 6.9 | 6.95 | 4.33 |
1.51 | Premium | H | VS1 | 59.6 | 60.0 | 10655.0 | 7.5 | 7.41 | 4.44 |
1.51 | Ideal | I | VS1 | 63.2 | 57.0 | 10655.0 | 7.4 | 7.28 | 4.62 |
1.35 | Ideal | G | VS1 | 62.7 | 57.0 | 10656.0 | 7.02 | 7.07 | 4.42 |
1.27 | Ideal | F | VS2 | 61.0 | 54.0 | 10656.0 | 7.0 | 7.02 | 4.28 |
1.79 | Ideal | J | VS2 | 61.8 | 56.0 | 10658.0 | 7.74 | 7.85 | 4.82 |
1.7 | Ideal | I | VS2 | 61.1 | 57.0 | 10662.0 | 7.7 | 7.66 | 4.69 |
1.7 | Premium | I | VS2 | 62.7 | 58.0 | 10662.0 | 7.57 | 7.52 | 4.73 |
1.5 | Premium | H | VS2 | 60.6 | 61.0 | 10668.0 | 7.34 | 7.31 | 4.44 |
1.62 | Premium | I | VS2 | 60.1 | 59.0 | 10669.0 | 7.63 | 7.6 | 4.58 |
1.26 | Premium | F | VS1 | 62.0 | 58.0 | 10669.0 | 6.95 | 6.88 | 4.29 |
1.5 | Good | G | VS2 | 63.7 | 57.0 | 10669.0 | 7.29 | 7.25 | 4.63 |
1.02 | Very Good | E | VVS1 | 62.2 | 57.0 | 10672.0 | 6.4 | 6.59 | 4.04 |
1.5 | Very Good | H | VS1 | 60.7 | 58.0 | 10681.0 | 7.35 | 7.42 | 4.48 |
1.75 | Very Good | J | VS1 | 61.5 | 59.0 | 10681.0 | 7.75 | 7.83 | 4.79 |
1.17 | Very Good | D | VS1 | 60.5 | 57.0 | 10681.0 | 6.79 | 6.86 | 4.13 |
1.68 | Ideal | J | VS1 | 61.1 | 57.0 | 10681.0 | 7.64 | 7.7 | 4.69 |
1.57 | Very Good | I | VS1 | 62.7 | 58.0 | 10682.0 | 7.41 | 7.43 | 4.65 |
1.21 | Ideal | G | VS1 | 61.3 | 57.0 | 10685.0 | 6.82 | 6.87 | 4.2 |
1.21 | Ideal | G | VS1 | 61.6 | 57.0 | 10685.0 | 6.85 | 6.87 | 4.22 |
1.21 | Ideal | G | VS1 | 61.8 | 57.0 | 10685.0 | 6.81 | 6.86 | 4.23 |
1.51 | Premium | H | VS2 | 60.7 | 58.0 | 10685.0 | 7.45 | 7.4 | 4.51 |
1.51 | Ideal | H | VS2 | 62.6 | 57.0 | 10685.0 | 7.37 | 7.33 | 4.6 |
1.66 | Ideal | I | VS1 | 61.0 | 55.0 | 10691.0 | 7.67 | 7.64 | 4.67 |
1.5 | Good | H | VS2 | 63.9 | 60.0 | 10692.0 | 7.17 | 7.22 | 4.6 |
1.5 | Ideal | H | VS2 | 62.2 | 57.0 | 10692.0 | 7.27 | 7.33 | 4.54 |
1.01 | Very Good | E | VVS1 | 61.6 | 58.0 | 10693.0 | 6.45 | 6.57 | 4.01 |
1.01 | Good | E | VVS1 | 63.1 | 57.0 | 10696.0 | 6.36 | 6.39 | 4.02 |
1.1 | Very Good | F | VVS1 | 59.8 | 54.0 | 10701.0 | 6.74 | 6.77 | 4.04 |
1.56 | Premium | H | VS2 | 62.5 | 59.0 | 10702.0 | 7.3 | 7.33 | 4.57 |
1.54 | Premium | H | VS2 | 61.8 | 59.0 | 10702.0 | 7.35 | 7.4 | 4.56 |
1.14 | Ideal | E | VVS2 | 62.3 | 55.0 | 10703.0 | 6.71 | 6.68 | 4.17 |
1.01 | Very Good | E | VVS1 | 62.3 | 56.0 | 10704.0 | 6.41 | 6.47 | 4.01 |
1.21 | Premium | D | VS1 | 62.6 | 56.0 | 10706.0 | 6.83 | 6.74 | 4.25 |
1.26 | Ideal | F | VS2 | 61.5 | 56.0 | 10709.0 | 6.97 | 7.01 | 4.3 |
1.04 | Ideal | D | VS1 | 61.6 | 57.0 | 10709.0 | 6.52 | 6.56 | 4.03 |
1.55 | Very Good | I | VS1 | 59.0 | 58.0 | 10711.0 | 7.56 | 7.63 | 4.48 |
1.31 | Ideal | E | VS1 | 61.7 | 55.0 | 10711.0 | 7.11 | 7.05 | 4.37 |
1.28 | Premium | G | VVS2 | 62.1 | 58.0 | 10716.0 | 6.96 | 6.91 | 4.31 |
1.22 | Very Good | F | VVS2 | 60.7 | 62.0 | 10719.0 | 6.81 | 6.84 | 4.14 |
1.26 | Ideal | G | VVS1 | 62.1 | 57.0 | 10720.0 | 6.91 | 7.01 | 4.32 |
1.24 | Ideal | G | VVS1 | 62.3 | 56.0 | 10724.0 | 6.86 | 6.89 | 4.28 |
1.29 | Ideal | F | VS1 | 62.3 | 54.4 | 10727.0 | 6.93 | 7.0 | 4.34 |
1.53 | Premium | I | VS1 | 62.4 | 59.0 | 10729.0 | 7.3 | 7.34 | 4.57 |
1.23 | Very Good | E | VS1 | 61.5 | 58.0 | 10730.0 | 6.88 | 6.93 | 4.25 |
1.01 | Premium | D | VVS2 | 62.4 | 58.0 | 10732.0 | 6.39 | 6.44 | 4.0 |
1.33 | Ideal | G | VS1 | 59.9 | 57.3 | 10732.0 | 7.16 | 7.21 | 4.3 |
1.42 | Ideal | G | VS2 | 62.6 | 57.0 | 10735.0 | 7.19 | 7.15 | 4.49 |
1.67 | Premium | I | VS2 | 61.9 | 56.0 | 10736.0 | 7.64 | 7.6 | 4.72 |
1.13 | Ideal | F | VVS2 | 62.1 | 54.0 | 10742.0 | 6.67 | 6.71 | 4.16 |
1.51 | Premium | H | VS1 | 62.4 | 60.0 | 10743.0 | 7.27 | 7.34 | 4.56 |
1.5 | Premium | I | VVS2 | 59.7 | 60.0 | 10744.0 | 7.62 | 7.46 | 4.5 |
1.19 | Ideal | F | VVS2 | 60.8 | 57.0 | 10748.0 | 6.85 | 6.83 | 4.16 |
1.5 | Premium | H | VS2 | 61.6 | 55.0 | 10750.0 | 7.43 | 7.37 | 4.56 |
1.0 | Fair | D | VVS1 | 56.7 | 68.0 | 10752.0 | 6.66 | 6.64 | 3.77 |
1.0 | Premium | D | VVS1 | 62.9 | 58.0 | 10752.0 | 6.34 | 6.28 | 3.97 |
1.59 | Ideal | I | VS2 | 61.7 | 57.0 | 10752.0 | 7.47 | 7.52 | 4.62 |
1.15 | Ideal | F | VVS2 | 62.7 | 57.0 | 10757.0 | 6.69 | 6.65 | 4.18 |
1.54 | Premium | H | VS2 | 61.9 | 61.0 | 10758.0 | 7.41 | 7.33 | 4.56 |
1.01 | Very Good | E | VVS1 | 63.1 | 59.0 | 10760.0 | 6.34 | 6.31 | 3.99 |
1.01 | Ideal | D | VVS2 | 61.7 | 57.0 | 10761.0 | 6.43 | 6.47 | 3.98 |
1.51 | Ideal | H | VS2 | 62.5 | 55.0 | 10763.0 | 7.29 | 7.34 | 4.57 |
1.51 | Good | H | VS2 | 64.2 | 58.5 | 10763.0 | 7.16 | 7.22 | 4.62 |
1.3 | Premium | G | VVS2 | 60.2 | 58.0 | 10763.0 | 7.17 | 7.08 | 4.29 |
1.12 | Ideal | F | VVS2 | 61.3 | 57.0 | 10764.0 | 6.67 | 6.7 | 4.1 |
1.54 | Good | H | VS1 | 63.1 | 57.0 | 10769.0 | 7.34 | 7.4 | 4.65 |
1.12 | Ideal | E | VVS2 | 60.6 | 57.0 | 10769.0 | 6.77 | 6.66 | 4.07 |
1.34 | Very Good | F | VS1 | 59.7 | 60.0 | 10771.0 | 7.17 | 7.2 | 4.29 |
1.02 | Premium | D | VVS2 | 61.4 | 58.0 | 10773.0 | 6.46 | 6.43 | 3.96 |
1.51 | Premium | H | VS1 | 62.1 | 58.0 | 10775.0 | 7.32 | 7.26 | 4.53 |
1.71 | Ideal | J | VS1 | 62.4 | 56.0 | 10778.0 | 7.63 | 7.59 | 4.75 |
1.29 | Very Good | E | VS1 | 61.8 | 57.0 | 10780.0 | 6.99 | 6.93 | 4.3 |
1.14 | Ideal | F | VVS2 | 61.9 | 57.0 | 10786.0 | 6.73 | 6.68 | 4.15 |
1.2 | Ideal | G | VVS1 | 63.1 | 56.0 | 10786.0 | 6.74 | 6.7 | 4.24 |
1.26 | Ideal | G | VVS1 | 61.1 | 57.0 | 10787.0 | 7.02 | 6.98 | 4.28 |
1.01 | Ideal | E | VVS1 | 61.8 | 54.0 | 10789.0 | 6.43 | 6.49 | 3.99 |
1.4 | Very Good | F | VS2 | 60.0 | 58.0 | 10790.0 | 7.24 | 7.29 | 4.36 |
1.53 | Ideal | I | VS1 | 62.8 | 55.0 | 10796.0 | 7.4 | 7.35 | 4.63 |
1.35 | Ideal | D | VS2 | 61.3 | 57.0 | 10796.0 | 7.13 | 7.09 | 4.36 |
1.01 | Ideal | D | VVS2 | 60.6 | 56.0 | 10797.0 | 6.53 | 6.48 | 3.94 |
1.01 | Premium | D | VVS2 | 61.6 | 58.0 | 10797.0 | 6.44 | 6.39 | 3.95 |
1.86 | Very Good | J | VS2 | 62.5 | 55.0 | 10798.0 | 7.81 | 7.9 | 4.91 |
1.01 | Very Good | D | VVS2 | 63.0 | 56.0 | 10800.0 | 6.35 | 6.41 | 4.02 |
1.68 | Ideal | I | VS2 | 62.1 | 57.0 | 10800.0 | 7.6 | 7.54 | 4.7 |
1.29 | Premium | F | VS1 | 61.3 | 61.0 | 10801.0 | 7.05 | 6.95 | 4.29 |
1.67 | Ideal | I | VS1 | 61.2 | 57.0 | 10802.0 | 7.69 | 7.66 | 4.7 |
1.04 | Ideal | F | VVS2 | 61.6 | 57.0 | 10804.0 | 6.47 | 6.51 | 4.0 |
1.27 | Ideal | G | VVS1 | 61.7 | 56.0 | 10805.0 | 6.9 | 7.03 | 4.3 |
1.29 | Ideal | G | VVS2 | 62.4 | 57.0 | 10807.0 | 6.97 | 6.94 | 4.34 |
1.7 | Very Good | J | VVS1 | 62.9 | 60.0 | 10808.0 | 7.56 | 7.61 | 4.77 |
1.16 | Premium | F | VVS1 | 60.4 | 60.0 | 10809.0 | 6.9 | 6.77 | 4.13 |
1.2 | Ideal | G | VVS2 | 62.3 | 54.0 | 10812.0 | 6.82 | 6.86 | 4.26 |
1.32 | Premium | F | VS2 | 62.2 | 58.0 | 10814.0 | 7.03 | 6.95 | 4.35 |
1.51 | Premium | I | VVS2 | 61.1 | 60.0 | 10817.0 | 7.36 | 7.33 | 4.49 |
1.51 | Good | H | VS1 | 58.2 | 58.0 | 10819.0 | 7.49 | 7.56 | 4.38 |
1.51 | Ideal | I | VVS2 | 61.6 | 58.0 | 10821.0 | 7.35 | 7.4 | 4.54 |
1.71 | Ideal | J | VS1 | 61.6 | 57.0 | 10821.0 | 7.67 | 7.62 | 4.71 |
1.51 | Very Good | H | VS2 | 63.5 | 60.0 | 10822.0 | 7.27 | 7.24 | 4.61 |
1.22 | Ideal | E | VS1 | 61.8 | 56.0 | 10823.0 | 6.84 | 6.88 | 4.24 |
1.6 | Very Good | I | VS1 | 58.6 | 58.0 | 10824.0 | 7.66 | 7.72 | 4.51 |
1.52 | Premium | I | VVS2 | 61.6 | 58.0 | 10824.0 | 7.37 | 7.41 | 4.55 |
1.51 | Premium | I | VVS1 | 61.0 | 61.0 | 10824.0 | 7.47 | 7.34 | 4.52 |
1.04 | Ideal | F | VVS1 | 61.6 | 55.0 | 10825.0 | 6.5 | 6.53 | 4.02 |
1.55 | Premium | H | VS2 | 62.7 | 57.0 | 10827.0 | 7.42 | 7.36 | 4.63 |
1.53 | Premium | H | VS2 | 59.9 | 60.0 | 10827.0 | 7.5 | 7.46 | 4.48 |
1.23 | Very Good | F | VVS2 | 62.4 | 58.0 | 10835.0 | 6.74 | 6.89 | 4.26 |
1.68 | Ideal | G | VS2 | 62.1 | 55.0 | 10838.0 | 7.64 | 7.59 | 4.73 |
1.28 | Ideal | G | VVS2 | 61.2 | 54.0 | 10839.0 | 7.03 | 7.06 | 4.31 |
1.23 | Premium | F | VVS2 | 58.5 | 59.0 | 10844.0 | 7.07 | 6.98 | 4.11 |
1.2 | Ideal | G | VVS2 | 61.2 | 56.0 | 10846.0 | 6.92 | 6.89 | 4.23 |
1.35 | Ideal | G | VS1 | 62.7 | 57.0 | 10850.0 | 7.07 | 7.02 | 4.42 |
1.16 | Ideal | F | VVS2 | 60.5 | 58.0 | 10850.0 | 6.77 | 6.85 | 4.12 |
1.38 | Premium | G | VS1 | 62.4 | 58.0 | 10850.0 | 7.14 | 7.09 | 4.44 |
1.52 | Ideal | I | VS1 | 61.8 | 55.0 | 10851.0 | 7.38 | 7.41 | 4.57 |
1.01 | Ideal | E | VVS2 | 61.7 | 55.0 | 10852.0 | 6.44 | 6.49 | 3.99 |
1.23 | Ideal | G | VS1 | 61.6 | 57.0 | 10859.0 | 6.84 | 6.9 | 4.23 |
1.01 | Ideal | D | VVS2 | 61.1 | 57.0 | 10860.0 | 6.47 | 6.49 | 3.96 |
1.1 | Ideal | F | VVS1 | 62.7 | 57.0 | 10861.0 | 6.57 | 6.63 | 4.14 |
1.51 | Ideal | H | VS2 | 61.4 | 58.0 | 10861.0 | 7.36 | 7.42 | 4.54 |
1.02 | Premium | E | VVS1 | 62.2 | 57.0 | 10867.0 | 6.59 | 6.4 | 4.04 |
1.55 | Ideal | I | VS1 | 61.9 | 55.0 | 10869.0 | 7.43 | 7.46 | 4.61 |
1.05 | Ideal | F | VVS1 | 61.6 | 55.0 | 10872.0 | 6.57 | 6.53 | 4.04 |
1.5 | Very Good | I | VVS2 | 62.0 | 53.0 | 10873.0 | 7.3 | 7.34 | 4.54 |
1.05 | Ideal | F | VVS2 | 62.1 | 55.0 | 10874.0 | 6.54 | 6.56 | 4.07 |
1.14 | Premium | F | VVS1 | 60.8 | 58.0 | 10878.0 | 6.79 | 6.74 | 4.11 |
1.57 | Premium | H | VS1 | 61.7 | 58.0 | 10880.0 | 7.47 | 7.56 | 4.64 |
1.26 | Ideal | G | VVS2 | 60.9 | 57.0 | 10886.0 | 6.98 | 7.01 | 4.26 |
1.5 | Good | H | VS2 | 63.9 | 60.0 | 10886.0 | 7.22 | 7.17 | 4.6 |
1.5 | Ideal | H | VS2 | 62.2 | 57.0 | 10886.0 | 7.33 | 7.27 | 4.54 |
1.01 | Ideal | E | VVS1 | 62.2 | 57.0 | 10887.0 | 6.38 | 6.44 | 3.99 |
1.22 | Ideal | G | VVS1 | 61.1 | 56.0 | 10888.0 | 6.91 | 6.94 | 4.23 |
1.01 | Premium | E | VVS1 | 61.6 | 58.0 | 10888.0 | 6.57 | 6.45 | 4.01 |
1.53 | Premium | H | VS2 | 60.1 | 58.0 | 10889.0 | 7.57 | 7.6 | 4.71 |
1.2 | Very Good | F | VVS2 | 62.9 | 59.0 | 10891.0 | 6.72 | 6.76 | 4.24 |
1.01 | Very Good | E | VVS1 | 63.1 | 57.0 | 10891.0 | 6.39 | 6.36 | 4.02 |
1.54 | Premium | H | VS2 | 61.8 | 59.0 | 10897.0 | 7.4 | 7.35 | 4.56 |
1.5 | Ideal | I | VVS2 | 60.3 | 57.0 | 10907.0 | 7.43 | 7.47 | 4.49 |
1.16 | Ideal | D | VS2 | 61.8 | 55.0 | 10907.0 | 6.72 | 6.75 | 4.16 |
1.7 | Premium | I | VS2 | 62.4 | 58.0 | 10910.0 | 7.61 | 7.56 | 4.73 |
1.62 | Very Good | H | VS2 | 62.6 | 58.0 | 10912.0 | 7.57 | 7.45 | 4.7 |
1.05 | Very Good | E | VVS1 | 59.5 | 60.0 | 10915.0 | 6.56 | 6.66 | 3.93 |
1.26 | Ideal | G | VVS1 | 62.1 | 57.0 | 10916.0 | 7.01 | 6.91 | 4.32 |
1.32 | Ideal | E | VS2 | 62.0 | 56.0 | 10919.0 | 7.02 | 7.07 | 4.37 |
1.5 | Ideal | H | VS2 | 62.3 | 56.0 | 10920.0 | 7.34 | 7.29 | 4.56 |
1.58 | Ideal | I | VS1 | 62.4 | 54.0 | 10920.0 | 7.43 | 7.46 | 4.64 |
1.26 | Very Good | G | VVS1 | 60.2 | 59.0 | 10922.0 | 6.98 | 7.07 | 4.23 |
1.29 | Ideal | F | VS1 | 62.3 | 54.0 | 10923.0 | 7.0 | 6.93 | 4.34 |
1.53 | Premium | I | VS1 | 62.4 | 59.0 | 10924.0 | 7.34 | 7.3 | 4.57 |
1.37 | Ideal | G | VS1 | 62.2 | 55.0 | 10927.0 | 7.09 | 7.12 | 4.42 |
1.01 | Premium | D | VVS2 | 62.4 | 58.0 | 10927.0 | 6.44 | 6.39 | 4.0 |
1.36 | Premium | F | VS2 | 59.3 | 60.0 | 10929.0 | 7.23 | 7.2 | 4.28 |
1.7 | Premium | I | VS2 | 62.0 | 59.0 | 10929.0 | 7.6 | 7.55 | 4.7 |
1.3 | Premium | F | VS1 | 61.0 | 59.0 | 10930.0 | 7.05 | 7.08 | 4.31 |
1.57 | Premium | H | VS1 | 60.5 | 61.0 | 10930.0 | 7.6 | 7.51 | 4.57 |
1.2 | Very Good | F | VVS2 | 61.4 | 60.0 | 10931.0 | 6.79 | 6.83 | 4.18 |
1.5 | Ideal | I | VVS2 | 60.7 | 60.0 | 10931.0 | 7.35 | 7.4 | 4.48 |
1.14 | Ideal | G | VVS1 | 61.1 | 58.0 | 10933.0 | 6.74 | 6.77 | 4.13 |
1.7 | Very Good | I | VS2 | 63.0 | 58.0 | 10935.0 | 7.52 | 7.65 | 4.78 |
1.51 | Premium | H | VS1 | 62.4 | 60.0 | 10939.0 | 7.34 | 7.27 | 4.56 |
1.71 | Ideal | J | VVS2 | 61.6 | 59.0 | 10945.0 | 7.65 | 7.68 | 4.72 |
1.24 | Ideal | G | VS1 | 61.8 | 55.0 | 10946.0 | 6.85 | 6.89 | 4.25 |
1.12 | Ideal | F | VVS2 | 62.2 | 55.0 | 10949.0 | 6.64 | 6.68 | 4.14 |
1.51 | Very Good | H | VS2 | 63.2 | 57.0 | 10950.0 | 7.18 | 7.32 | 4.58 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 10951.0 | 7.5 | 7.38 | 4.48 |
1.01 | Ideal | E | VVS1 | 62.0 | 57.0 | 10954.0 | 6.39 | 6.45 | 3.98 |
1.5 | Premium | I | VVS1 | 62.4 | 60.0 | 10956.0 | 7.29 | 7.32 | 4.56 |
1.31 | Ideal | F | VS1 | 61.9 | 54.0 | 10957.0 | 7.03 | 7.06 | 4.35 |
1.5 | Very Good | H | VS2 | 62.8 | 57.0 | 10959.0 | 7.25 | 7.3 | 4.57 |
1.51 | Ideal | H | VS2 | 64.2 | 59.0 | 10959.0 | 7.22 | 7.16 | 4.62 |
1.51 | Ideal | H | VS2 | 62.5 | 55.0 | 10959.0 | 7.34 | 7.29 | 4.57 |
1.25 | Very Good | G | VVS1 | 60.6 | 60.0 | 10962.0 | 6.92 | 6.95 | 4.2 |
1.35 | Premium | F | VS2 | 61.9 | 58.0 | 10962.0 | 7.06 | 7.02 | 4.36 |
1.57 | Ideal | I | VS2 | 60.4 | 58.0 | 10964.0 | 7.55 | 7.59 | 4.57 |
1.02 | Ideal | D | VVS2 | 62.0 | 56.0 | 10967.0 | 6.43 | 6.48 | 4.0 |
1.44 | Very Good | D | VS2 | 63.1 | 56.0 | 10967.0 | 7.15 | 7.12 | 4.5 |
1.52 | Ideal | I | VVS1 | 61.9 | 56.0 | 10968.0 | 7.34 | 7.37 | 4.55 |
1.32 | Premium | F | VS1 | 61.7 | 59.0 | 10977.0 | 6.95 | 6.99 | 4.3 |
1.54 | Premium | H | VS2 | 61.0 | 60.0 | 10977.0 | 7.42 | 7.46 | 4.54 |
1.2 | Good | F | VVS1 | 63.6 | 57.0 | 10982.0 | 6.71 | 6.74 | 4.28 |
1.25 | Ideal | G | VVS2 | 62.2 | 55.0 | 10983.0 | 6.87 | 6.93 | 4.29 |
1.04 | Premium | D | VVS2 | 61.1 | 60.0 | 10984.0 | 6.54 | 6.51 | 3.99 |
1.01 | Very Good | E | VVS1 | 63.6 | 55.0 | 10993.0 | 6.35 | 6.39 | 4.05 |
1.66 | Premium | H | VS2 | 62.3 | 58.0 | 10993.0 | 7.62 | 7.57 | 4.73 |
1.5 | Good | F | VS2 | 63.6 | 59.0 | 10995.0 | 7.13 | 7.22 | 4.56 |
1.25 | Ideal | G | VVS1 | 61.3 | 56.0 | 10996.0 | 6.95 | 6.98 | 4.28 |
1.27 | Ideal | G | VVS1 | 61.7 | 56.0 | 11002.0 | 7.03 | 6.9 | 4.3 |
1.22 | Ideal | G | VVS2 | 60.0 | 58.0 | 11003.0 | 6.95 | 6.99 | 4.18 |
1.7 | Premium | J | VVS1 | 62.9 | 60.0 | 11005.0 | 7.61 | 7.56 | 4.77 |
1.5 | Premium | I | VVS2 | 61.4 | 58.0 | 11007.0 | 7.38 | 7.32 | 4.51 |
1.5 | Fair | H | VS1 | 61.7 | 60.0 | 11007.0 | 7.37 | 7.27 | 4.52 |
1.5 | Premium | H | VS1 | 61.1 | 58.0 | 11007.0 | 7.46 | 7.37 | 4.53 |
1.41 | Ideal | G | VS1 | 60.4 | 57.0 | 11009.0 | 7.22 | 7.31 | 4.39 |
1.37 | Ideal | G | VS1 | 61.1 | 55.0 | 11009.0 | 7.2 | 7.16 | 4.39 |
1.41 | Very Good | F | VS1 | 63.4 | 63.0 | 11010.0 | 7.13 | 6.97 | 4.47 |
1.01 | Ideal | D | VVS2 | 61.5 | 57.0 | 11015.0 | 6.43 | 6.48 | 3.97 |
1.59 | Very Good | I | VS1 | 61.2 | 57.8 | 11018.0 | 7.5 | 7.52 | 4.6 |
1.63 | Ideal | I | VS2 | 61.9 | 54.3 | 11019.0 | 7.54 | 7.58 | 4.68 |
1.21 | Ideal | D | VS1 | 60.1 | 60.0 | 11019.0 | 6.92 | 6.99 | 4.18 |
1.2 | Premium | F | VVS2 | 62.2 | 58.0 | 11021.0 | 6.83 | 6.78 | 4.23 |
1.52 | Premium | I | VVS2 | 61.6 | 58.0 | 11021.0 | 7.41 | 7.37 | 4.55 |
1.6 | Premium | I | VS1 | 58.6 | 58.0 | 11021.0 | 7.72 | 7.66 | 4.51 |
1.33 | Good | D | VS2 | 63.6 | 58.0 | 11023.0 | 7.02 | 6.91 | 4.43 |
1.5 | Very Good | H | VS2 | 60.7 | 61.0 | 11025.0 | 7.34 | 7.41 | 4.48 |
1.02 | Ideal | E | VVS1 | 61.4 | 57.0 | 11028.0 | 6.39 | 6.47 | 3.95 |
1.44 | Premium | G | VS2 | 59.5 | 61.0 | 11032.0 | 7.38 | 7.3 | 4.37 |
1.71 | Premium | G | VS2 | 61.3 | 58.0 | 11032.0 | 7.64 | 7.6 | 4.67 |
1.52 | Ideal | I | VVS1 | 62.3 | 55.0 | 11033.0 | 7.32 | 7.37 | 4.58 |
1.56 | Very Good | H | VS2 | 63.1 | 60.0 | 11039.0 | 7.43 | 7.34 | 4.66 |
1.23 | Ideal | F | VVS2 | 61.8 | 56.0 | 11040.0 | 6.84 | 6.89 | 4.24 |
1.61 | Ideal | H | VS2 | 61.4 | 57.0 | 11045.0 | 7.52 | 7.57 | 4.63 |
1.55 | Premium | H | VS2 | 60.4 | 60.0 | 11048.0 | 7.39 | 7.44 | 4.48 |
1.74 | Premium | J | VS1 | 62.5 | 58.0 | 11050.0 | 7.67 | 7.65 | 4.79 |
1.13 | Ideal | F | VVS1 | 61.7 | 56.0 | 11051.0 | 6.68 | 6.75 | 4.14 |
1.2 | Ideal | D | VS1 | 61.0 | 59.0 | 11053.0 | 6.79 | 6.85 | 4.16 |
1.01 | Ideal | D | VVS2 | 61.1 | 57.0 | 11057.0 | 6.49 | 6.47 | 3.96 |
2.02 | Premium | I | VS2 | 61.2 | 60.0 | 11059.0 | 8.22 | 8.13 | 5.0 |
1.47 | Very Good | G | VS2 | 62.7 | 56.0 | 11060.0 | 7.15 | 7.18 | 4.49 |
1.3 | Premium | G | VVS1 | 60.5 | 60.0 | 11061.0 | 7.01 | 7.05 | 4.25 |
1.02 | Premium | E | VVS1 | 61.5 | 59.0 | 11062.0 | 6.41 | 6.46 | 3.96 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11062.0 | 7.63 | 7.57 | 4.69 |
1.52 | Premium | H | VS2 | 61.1 | 59.0 | 11066.0 | 7.45 | 7.38 | 4.53 |
1.55 | Ideal | I | VS1 | 61.9 | 55.0 | 11067.0 | 7.46 | 7.43 | 4.61 |
1.51 | Very Good | H | VS2 | 60.9 | 57.0 | 11068.0 | 7.39 | 7.43 | 4.51 |
1.3 | Ideal | G | VVS2 | 62.0 | 57.0 | 11073.0 | 6.96 | 7.03 | 4.34 |
1.11 | Ideal | E | VVS2 | 62.9 | 55.0 | 11074.0 | 6.56 | 6.62 | 4.14 |
1.51 | Very Good | H | VS2 | 60.9 | 54.0 | 11077.0 | 7.38 | 7.41 | 4.5 |
1.32 | Ideal | G | VS1 | 61.7 | 56.0 | 11079.0 | 7.03 | 7.11 | 4.36 |
1.23 | Very Good | G | VVS1 | 61.2 | 55.8 | 11081.0 | 6.9 | 6.94 | 4.23 |
1.01 | Ideal | D | VVS2 | 62.3 | 53.0 | 11082.0 | 6.4 | 6.47 | 4.02 |
1.69 | Ideal | I | VS2 | 61.7 | 56.0 | 11086.0 | 7.65 | 7.71 | 4.74 |
1.53 | Premium | H | VS2 | 60.1 | 58.0 | 11087.0 | 7.6 | 7.57 | 4.71 |
1.51 | Very Good | I | VVS1 | 63.0 | 59.0 | 11088.0 | 7.24 | 7.3 | 4.58 |
1.5 | Premium | H | VS1 | 62.1 | 59.0 | 11088.0 | 7.27 | 7.31 | 4.53 |
1.5 | Premium | H | VS1 | 59.9 | 60.0 | 11088.0 | 7.39 | 7.44 | 4.44 |
1.25 | Premium | E | VS1 | 61.5 | 59.0 | 11088.0 | 6.95 | 6.91 | 4.26 |
1.25 | Ideal | G | VVS2 | 62.0 | 59.0 | 11089.0 | 6.88 | 6.96 | 4.29 |
1.5 | Premium | H | VS2 | 62.4 | 59.0 | 11092.0 | 7.29 | 7.32 | 4.56 |
1.52 | Very Good | G | VS2 | 62.4 | 56.0 | 11093.0 | 7.26 | 7.36 | 4.56 |
1.18 | Ideal | E | VS1 | 61.4 | 57.0 | 11104.0 | 6.77 | 6.81 | 4.17 |
1.53 | Premium | H | VS2 | 62.7 | 56.0 | 11104.0 | 7.39 | 7.31 | 4.61 |
1.52 | Premium | H | VS2 | 59.4 | 59.0 | 11105.0 | 7.45 | 7.49 | 4.44 |
1.31 | Very Good | G | VVS2 | 62.2 | 59.0 | 11108.0 | 6.91 | 6.98 | 4.32 |
1.41 | Ideal | G | VS1 | 60.4 | 57.0 | 11109.0 | 7.31 | 7.22 | 4.39 |
1.47 | Premium | G | VS2 | 62.8 | 57.0 | 11113.0 | 7.27 | 7.22 | 4.55 |
1.62 | Ideal | H | VS2 | 62.4 | 57.0 | 11114.0 | 7.48 | 7.53 | 4.68 |
1.13 | Ideal | E | VVS2 | 61.4 | 57.0 | 11115.0 | 6.69 | 6.74 | 4.12 |
1.13 | Ideal | E | VVS2 | 61.6 | 56.0 | 11115.0 | 6.69 | 6.71 | 4.13 |
2.01 | Good | I | VS2 | 59.0 | 64.0 | 11115.0 | 8.25 | 8.19 | 4.85 |
1.34 | Premium | G | VVS2 | 61.3 | 58.0 | 11118.0 | 7.16 | 7.1 | 4.37 |
1.59 | Ideal | I | VS1 | 61.2 | 58.0 | 11119.0 | 7.52 | 7.5 | 4.6 |
1.16 | Ideal | F | VVS2 | 60.5 | 57.0 | 11120.0 | 6.8 | 6.86 | 4.13 |
1.53 | Premium | H | VS1 | 59.4 | 59.0 | 11127.0 | 7.58 | 7.51 | 4.48 |
1.02 | Ideal | E | VVS1 | 61.3 | 57.0 | 11128.0 | 6.47 | 6.54 | 3.99 |
1.24 | Very Good | F | VVS2 | 62.0 | 55.0 | 11130.0 | 6.88 | 6.95 | 4.29 |
1.3 | Premium | F | VS1 | 62.0 | 58.0 | 11130.0 | 6.94 | 6.9 | 4.29 |
1.1 | Ideal | D | VVS2 | 62.0 | 57.0 | 11132.0 | 6.57 | 6.62 | 4.09 |
1.1 | Very Good | D | VVS2 | 61.7 | 56.0 | 11132.0 | 6.64 | 6.65 | 4.1 |
1.36 | Ideal | F | VS1 | 61.4 | 57.0 | 11132.0 | 7.25 | 7.09 | 4.4 |
1.51 | Ideal | H | VS2 | 62.5 | 56.0 | 11133.0 | 7.37 | 7.33 | 4.57 |
1.7 | Very Good | H | VVS2 | 63.2 | 56.0 | 11133.0 | 7.59 | 7.56 | 4.79 |
1.31 | Ideal | F | VS1 | 61.7 | 56.0 | 11136.0 | 7.02 | 7.04 | 4.34 |
1.23 | Ideal | F | VVS2 | 61.8 | 56.0 | 11141.0 | 6.89 | 6.84 | 4.24 |
1.31 | Ideal | G | VVS1 | 61.1 | 57.0 | 11146.0 | 7.01 | 7.06 | 4.3 |
1.57 | Premium | I | VVS2 | 60.7 | 58.0 | 11146.0 | 7.54 | 7.51 | 4.57 |
1.28 | Ideal | G | VVS1 | 62.1 | 56.0 | 11147.0 | 6.93 | 6.96 | 4.31 |
1.55 | Premium | H | VS2 | 60.4 | 60.0 | 11149.0 | 7.44 | 7.39 | 4.48 |
1.77 | Ideal | J | VS1 | 62.2 | 56.0 | 11150.0 | 7.77 | 7.73 | 4.82 |
1.62 | Ideal | I | VS1 | 60.8 | 56.0 | 11152.0 | 7.56 | 7.61 | 4.62 |
1.52 | Ideal | H | VS1 | 62.3 | 55.0 | 11154.0 | 7.36 | 7.32 | 4.57 |
1.01 | Ideal | E | VVS1 | 62.0 | 57.0 | 11154.0 | 6.45 | 6.39 | 3.98 |
1.5 | Premium | I | VVS1 | 62.4 | 60.0 | 11155.0 | 7.32 | 7.29 | 4.56 |
1.66 | Ideal | I | VS2 | 62.3 | 54.0 | 11156.0 | 7.58 | 7.61 | 4.73 |
1.5 | Ideal | H | VS2 | 62.8 | 57.0 | 11159.0 | 7.3 | 7.25 | 4.57 |
1.51 | Very Good | G | VS2 | 59.3 | 58.0 | 11161.0 | 7.32 | 7.49 | 4.39 |
1.51 | Very Good | H | VS1 | 61.8 | 59.0 | 11161.0 | 7.27 | 7.32 | 4.51 |
1.51 | Premium | H | VS1 | 61.0 | 60.0 | 11161.0 | 7.29 | 7.34 | 4.46 |
1.71 | Premium | H | VS1 | 58.1 | 62.0 | 11161.0 | 8.02 | 7.84 | 4.61 |
1.3 | Premium | G | VVS1 | 60.5 | 60.0 | 11162.0 | 7.05 | 7.01 | 4.25 |
1.02 | Premium | E | VVS1 | 61.5 | 59.0 | 11163.0 | 6.46 | 6.41 | 3.96 |
1.51 | Very Good | H | VS2 | 62.8 | 60.0 | 11166.0 | 7.25 | 7.28 | 4.56 |
1.08 | Ideal | E | VVS2 | 61.0 | 56.0 | 11166.0 | 6.64 | 6.67 | 4.06 |
1.02 | Ideal | D | VVS2 | 62.0 | 56.0 | 11167.0 | 6.48 | 6.43 | 4.0 |
1.52 | Ideal | I | VVS1 | 61.9 | 56.0 | 11168.0 | 7.37 | 7.34 | 4.55 |
1.6 | Very Good | I | VVS1 | 59.8 | 56.0 | 11170.0 | 7.6 | 7.68 | 4.57 |
1.23 | Very Good | E | VVS2 | 60.4 | 62.0 | 11175.0 | 6.88 | 6.93 | 4.17 |
1.21 | Premium | F | VVS1 | 63.0 | 59.0 | 11175.0 | 6.75 | 6.7 | 4.24 |
1.3 | Ideal | G | VVS2 | 62.0 | 57.0 | 11175.0 | 7.03 | 6.96 | 4.34 |
1.76 | Premium | J | VS1 | 62.0 | 58.0 | 11177.0 | 7.74 | 7.7 | 4.79 |
1.54 | Premium | H | VS2 | 61.0 | 60.0 | 11177.0 | 7.46 | 7.42 | 4.54 |
1.32 | Premium | F | VS1 | 61.7 | 59.0 | 11177.0 | 6.99 | 6.95 | 4.3 |
1.53 | Very Good | H | VS2 | 62.2 | 58.0 | 11178.0 | 7.3 | 7.34 | 4.55 |
1.2 | Good | F | VVS1 | 63.6 | 57.0 | 11182.0 | 6.74 | 6.71 | 4.28 |
1.23 | Ideal | G | VVS1 | 61.2 | 56.0 | 11182.0 | 6.94 | 6.9 | 4.23 |
1.18 | Ideal | E | VVS2 | 61.6 | 58.0 | 11184.0 | 6.78 | 6.82 | 4.19 |
1.51 | Premium | H | VS2 | 61.2 | 58.0 | 11188.0 | 7.4 | 7.36 | 4.52 |
1.5 | Premium | G | VS2 | 59.9 | 58.0 | 11189.0 | 7.38 | 7.34 | 4.41 |
1.5 | Premium | H | VS1 | 62.1 | 59.0 | 11189.0 | 7.31 | 7.27 | 4.53 |
1.5 | Premium | G | VS2 | 58.4 | 58.0 | 11189.0 | 7.54 | 7.5 | 4.39 |
1.5 | Premium | H | VS1 | 59.9 | 60.0 | 11189.0 | 7.44 | 7.39 | 4.44 |
1.7 | Very Good | I | VS2 | 58.5 | 59.0 | 11190.0 | 7.81 | 7.89 | 4.59 |
1.5 | Premium | H | VS2 | 62.4 | 59.0 | 11194.0 | 7.32 | 7.29 | 4.56 |
1.74 | Ideal | J | VS1 | 61.1 | 56.0 | 11194.0 | 7.85 | 7.79 | 4.78 |
1.05 | Ideal | D | VVS2 | 61.9 | 54.0 | 11196.0 | 6.53 | 6.55 | 4.05 |
1.29 | Ideal | F | VS1 | 60.7 | 57.0 | 11197.0 | 7.08 | 7.05 | 4.29 |
1.38 | Ideal | F | VS2 | 61.9 | 55.0 | 11205.0 | 7.16 | 7.12 | 4.42 |
1.52 | Premium | H | VS2 | 59.4 | 59.0 | 11206.0 | 7.49 | 7.45 | 4.44 |
1.52 | Ideal | H | VS2 | 60.7 | 56.0 | 11206.0 | 7.49 | 7.41 | 4.52 |
1.14 | Ideal | E | VVS2 | 61.6 | 57.0 | 11206.0 | 6.68 | 6.73 | 4.13 |
1.27 | Ideal | G | VS1 | 61.2 | 57.0 | 11206.0 | 6.97 | 6.98 | 4.27 |
2.04 | Premium | J | VS2 | 60.9 | 59.0 | 11209.0 | 8.25 | 8.21 | 5.01 |
1.06 | Ideal | D | VVS2 | 61.1 | 56.0 | 11209.0 | 6.58 | 6.59 | 4.02 |
1.28 | Very Good | G | VVS1 | 60.3 | 59.0 | 11214.0 | 6.99 | 7.03 | 4.23 |
1.5 | Very Good | G | VS1 | 59.1 | 62.0 | 11216.0 | 7.38 | 7.42 | 4.37 |
1.62 | Ideal | I | VS2 | 61.8 | 55.0 | 11217.0 | 7.56 | 7.59 | 4.68 |
1.26 | Ideal | G | VVS1 | 61.7 | 56.0 | 11218.0 | 6.96 | 6.98 | 4.3 |
1.5 | Very Good | H | VS2 | 60.0 | 62.0 | 11220.0 | 7.38 | 7.41 | 4.44 |
1.72 | Ideal | I | VS2 | 62.8 | 57.0 | 11226.0 | 7.69 | 7.63 | 4.81 |
1.14 | Ideal | F | VVS1 | 60.1 | 60.0 | 11226.0 | 6.79 | 6.83 | 4.09 |
1.24 | Premium | F | VVS2 | 62.0 | 55.0 | 11231.0 | 6.95 | 6.88 | 4.29 |
1.1 | Ideal | D | VVS2 | 62.0 | 57.0 | 11233.0 | 6.62 | 6.57 | 4.09 |
1.1 | Premium | D | VVS2 | 61.7 | 56.0 | 11233.0 | 6.65 | 6.64 | 4.1 |
1.24 | Very Good | F | VVS2 | 59.0 | 58.0 | 11234.0 | 6.98 | 7.03 | 4.13 |
1.52 | Good | G | VS2 | 63.3 | 57.0 | 11235.0 | 7.27 | 7.32 | 4.62 |
1.31 | Ideal | F | VS1 | 61.7 | 56.0 | 11237.0 | 7.04 | 7.02 | 4.34 |
1.71 | Premium | I | VS1 | 60.6 | 57.0 | 11246.0 | 7.82 | 7.73 | 4.71 |
1.31 | Ideal | G | VVS1 | 61.1 | 57.0 | 11247.0 | 7.06 | 7.01 | 4.3 |
1.28 | Ideal | G | VVS1 | 62.1 | 56.0 | 11248.0 | 6.96 | 6.93 | 4.31 |
1.39 | Premium | E | VS2 | 61.7 | 59.0 | 11248.0 | 7.13 | 7.09 | 4.39 |
1.71 | Good | I | VS2 | 58.0 | 60.0 | 11250.0 | 7.85 | 7.9 | 4.57 |
1.5 | Premium | F | VS2 | 61.1 | 59.0 | 11255.0 | 7.37 | 7.35 | 4.5 |
1.31 | Premium | G | VVS2 | 59.6 | 61.0 | 11255.0 | 7.23 | 7.14 | 4.28 |
1.7 | Ideal | I | VS2 | 61.7 | 56.0 | 11257.0 | 7.64 | 7.72 | 4.74 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11257.0 | 7.63 | 7.68 | 4.72 |
1.7 | Premium | I | VS2 | 61.2 | 59.0 | 11257.0 | 7.55 | 7.62 | 4.64 |
1.58 | Ideal | H | VS2 | 62.7 | 56.0 | 11262.0 | 7.39 | 7.44 | 4.65 |
1.4 | Very Good | G | VS1 | 62.6 | 58.0 | 11262.0 | 7.03 | 7.07 | 4.41 |
1.51 | Premium | H | VS1 | 61.8 | 59.0 | 11263.0 | 7.32 | 7.27 | 4.51 |
1.51 | Very Good | H | VS1 | 63.2 | 60.0 | 11263.0 | 7.23 | 7.17 | 4.55 |
1.51 | Premium | H | VS1 | 61.0 | 60.0 | 11263.0 | 7.34 | 7.29 | 4.46 |
1.51 | Fair | H | VS1 | 58.0 | 67.0 | 11263.0 | 7.63 | 7.57 | 4.41 |
1.24 | Very Good | F | VVS2 | 63.6 | 56.0 | 11268.0 | 6.75 | 6.8 | 4.31 |
1.51 | Premium | H | VS2 | 62.9 | 59.0 | 11268.0 | 7.31 | 7.25 | 4.58 |
1.51 | Premium | H | VS2 | 62.8 | 60.0 | 11268.0 | 7.28 | 7.25 | 4.56 |
1.41 | Premium | E | VS2 | 61.3 | 58.0 | 11269.0 | 7.29 | 7.25 | 4.46 |
1.57 | Premium | H | VS1 | 59.8 | 60.0 | 11272.0 | 7.63 | 7.56 | 4.54 |
1.52 | Ideal | H | VS2 | 62.4 | 58.0 | 11272.0 | 7.3 | 7.37 | 4.58 |
1.04 | Premium | E | VVS1 | 60.9 | 58.0 | 11279.0 | 6.53 | 6.61 | 4.0 |
1.53 | Premium | H | VS2 | 62.2 | 58.0 | 11280.0 | 7.34 | 7.3 | 4.55 |
1.38 | Very Good | F | VS1 | 61.4 | 61.0 | 11286.0 | 7.1 | 7.14 | 4.37 |
1.5 | Good | G | VS2 | 59.0 | 58.0 | 11294.0 | 7.41 | 7.45 | 4.38 |
1.5 | Ideal | H | VS1 | 62.3 | 54.7 | 11296.0 | 7.29 | 7.33 | 4.55 |
1.2 | Premium | E | VVS2 | 62.1 | 58.0 | 11301.0 | 6.76 | 6.7 | 4.18 |
1.43 | Ideal | G | VS1 | 59.9 | 57.0 | 11302.0 | 7.35 | 7.3 | 4.39 |
1.5 | Very Good | H | VVS2 | 62.7 | 58.0 | 11303.0 | 7.21 | 7.24 | 4.53 |
1.64 | Ideal | I | VS1 | 60.5 | 57.0 | 11305.0 | 7.68 | 7.62 | 4.64 |
1.37 | Ideal | E | VS2 | 60.3 | 54.0 | 11314.0 | 7.26 | 7.2 | 4.36 |
2.0 | Fair | I | VS1 | 58.5 | 68.0 | 11322.0 | 8.26 | 8.15 | 4.8 |
1.5 | Premium | H | VS2 | 60.0 | 62.0 | 11322.0 | 7.41 | 7.38 | 4.44 |
1.26 | Ideal | E | VS1 | 61.2 | 56.0 | 11323.0 | 6.97 | 6.93 | 4.25 |
1.8 | Premium | J | VS1 | 58.2 | 61.0 | 11329.0 | 8.07 | 7.95 | 4.66 |
1.11 | Very Good | E | VVS1 | 60.2 | 59.0 | 11330.0 | 6.67 | 6.79 | 4.05 |
1.59 | Very Good | H | VS2 | 60.7 | 61.1 | 11333.0 | 7.5 | 7.56 | 4.57 |
1.59 | Premium | H | VS2 | 62.1 | 58.0 | 11333.0 | 7.42 | 7.48 | 4.63 |
1.52 | Ideal | H | VS2 | 61.8 | 55.1 | 11333.0 | 7.38 | 7.42 | 4.58 |
1.03 | Premium | D | VVS2 | 60.1 | 58.0 | 11335.0 | 6.55 | 6.6 | 3.95 |
1.52 | Very Good | G | VS2 | 63.3 | 57.0 | 11338.0 | 7.32 | 7.27 | 4.62 |
1.56 | Premium | H | VS1 | 62.0 | 57.0 | 11345.0 | 7.48 | 7.43 | 4.62 |
1.41 | Premium | G | VS1 | 62.1 | 59.0 | 11347.0 | 7.1 | 7.06 | 4.4 |
1.5 | Premium | H | VS2 | 61.8 | 59.0 | 11360.0 | 7.3 | 7.35 | 4.53 |
1.7 | Premium | I | VS2 | 61.2 | 59.0 | 11360.0 | 7.62 | 7.55 | 4.64 |
1.7 | Premium | I | VS2 | 61.7 | 59.0 | 11360.0 | 7.68 | 7.63 | 4.72 |
1.7 | Ideal | I | VS2 | 61.7 | 56.0 | 11360.0 | 7.72 | 7.64 | 4.74 |
1.72 | Premium | I | VS2 | 58.3 | 61.0 | 11360.0 | 7.91 | 7.87 | 4.6 |
1.55 | Good | H | VS2 | 61.0 | 61.0 | 11364.0 | 7.42 | 7.47 | 4.54 |
1.58 | Ideal | H | VS2 | 62.7 | 56.0 | 11365.0 | 7.44 | 7.39 | 4.65 |
1.4 | Premium | F | VS2 | 60.7 | 58.0 | 11368.0 | 7.26 | 7.17 | 4.38 |
1.7 | Premium | I | VS2 | 60.5 | 61.0 | 11369.0 | 7.68 | 7.65 | 4.64 |
1.52 | Ideal | H | VS2 | 61.8 | 54.0 | 11379.0 | 7.42 | 7.43 | 4.59 |
1.52 | Ideal | H | VS2 | 61.9 | 55.0 | 11379.0 | 7.38 | 7.43 | 4.58 |
1.53 | Very Good | F | VS1 | 63.2 | 58.0 | 11379.0 | 7.33 | 7.3 | 4.62 |
1.58 | Premium | G | VS1 | 60.8 | 58.0 | 11380.0 | 7.58 | 7.52 | 4.59 |
1.04 | Premium | E | VVS1 | 60.9 | 58.0 | 11382.0 | 6.61 | 6.53 | 4.0 |
1.23 | Very Good | F | VVS2 | 62.2 | 58.0 | 11382.0 | 6.81 | 6.86 | 4.25 |
1.13 | Ideal | E | VVS2 | 60.1 | 59.0 | 11387.0 | 6.77 | 6.81 | 4.08 |
1.31 | Premium | G | VVS2 | 62.7 | 59.0 | 11389.0 | 6.96 | 6.92 | 4.35 |
1.71 | Very Good | I | VS2 | 63.4 | 59.0 | 11389.0 | 7.53 | 7.45 | 4.75 |
1.52 | Very Good | J | VVS2 | 62.1 | 60.0 | 11392.0 | 7.33 | 7.36 | 4.56 |
1.3 | Premium | F | VS1 | 62.5 | 58.0 | 11392.0 | 6.97 | 6.94 | 4.35 |
1.21 | Premium | E | VVS2 | 61.9 | 58.0 | 11395.0 | 6.84 | 6.79 | 4.22 |
1.01 | Ideal | E | VVS2 | 61.7 | 57.0 | 11400.0 | 6.42 | 6.44 | 3.97 |
1.67 | Premium | I | VS1 | 61.1 | 58.0 | 11400.0 | 7.69 | 7.6 | 4.67 |
1.12 | Ideal | F | VVS1 | 61.0 | 56.0 | 11403.0 | 6.71 | 6.74 | 4.1 |
1.52 | Ideal | F | VS2 | 62.3 | 55.0 | 11405.0 | 7.37 | 7.33 | 4.58 |
1.83 | Ideal | J | VS2 | 62.0 | 56.0 | 11406.0 | 7.84 | 7.9 | 4.88 |
1.33 | Ideal | D | VS2 | 62.8 | 56.0 | 11409.0 | 7.08 | 7.03 | 4.43 |
1.53 | Premium | H | VS1 | 60.8 | 59.0 | 11413.0 | 7.41 | 7.36 | 4.49 |
1.57 | Premium | H | VS2 | 62.2 | 58.0 | 11415.0 | 7.45 | 7.4 | 4.62 |
1.18 | Ideal | F | VVS2 | 60.6 | 55.0 | 11415.0 | 6.84 | 6.88 | 4.16 |
1.23 | Ideal | G | VVS1 | 61.4 | 55.0 | 11417.0 | 6.89 | 6.93 | 4.24 |
1.32 | Ideal | G | VVS2 | 62.3 | 57.0 | 11419.0 | 6.96 | 7.04 | 4.36 |
1.58 | Ideal | H | VS2 | 63.0 | 56.0 | 11419.0 | 7.39 | 7.46 | 4.68 |
1.28 | Ideal | E | VS1 | 61.7 | 57.0 | 11419.0 | 6.93 | 6.97 | 4.29 |
1.25 | Ideal | E | VS2 | 60.7 | 56.0 | 11422.0 | 6.97 | 6.99 | 4.24 |
1.62 | Very Good | H | VS2 | 59.6 | 59.0 | 11427.0 | 7.59 | 7.67 | 4.55 |
1.55 | Premium | H | VS2 | 61.7 | 59.0 | 11428.0 | 7.44 | 7.4 | 4.58 |
1.18 | Very Good | F | VVS2 | 60.1 | 58.0 | 11430.0 | 6.88 | 6.92 | 4.15 |
1.23 | Premium | F | VVS2 | 61.6 | 59.0 | 11430.0 | 6.8 | 6.9 | 4.22 |
1.55 | Ideal | I | VVS2 | 61.3 | 59.0 | 11430.0 | 7.41 | 7.46 | 4.56 |
1.53 | Ideal | I | VS2 | 61.5 | 56.0 | 11434.0 | 7.39 | 7.44 | 4.55 |
1.42 | Premium | G | VS1 | 62.1 | 56.0 | 11434.0 | 7.27 | 7.22 | 4.5 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 11435.0 | 7.33 | 7.35 | 4.42 |
1.51 | Premium | H | VS2 | 62.3 | 59.0 | 11435.0 | 7.28 | 7.32 | 4.55 |
1.51 | Ideal | H | VS2 | 62.2 | 57.0 | 11435.0 | 7.29 | 7.33 | 4.55 |
1.58 | Ideal | I | VVS1 | 61.9 | 55.0 | 11435.0 | 7.47 | 7.51 | 4.64 |
1.2 | Premium | E | VVS2 | 61.4 | 56.0 | 11435.0 | 6.94 | 6.83 | 4.23 |
1.59 | Premium | H | VS2 | 62.1 | 58.0 | 11437.0 | 7.48 | 7.42 | 4.63 |
1.59 | Ideal | H | VS2 | 60.7 | 61.0 | 11437.0 | 7.56 | 7.5 | 4.57 |
1.01 | Ideal | D | VVS2 | 61.9 | 56.0 | 11442.0 | 6.41 | 6.45 | 3.98 |
1.42 | Very Good | G | VS1 | 62.7 | 55.0 | 11452.0 | 7.11 | 7.17 | 4.48 |
1.53 | Very Good | H | VS2 | 60.9 | 63.0 | 11452.0 | 7.37 | 7.41 | 4.5 |
1.21 | Very Good | F | VVS2 | 61.0 | 58.0 | 11455.0 | 6.89 | 6.92 | 4.21 |
1.71 | Ideal | I | VS2 | 60.5 | 56.0 | 11455.0 | 7.71 | 7.73 | 4.67 |
1.2 | Ideal | F | VVS1 | 62.0 | 56.0 | 11455.0 | 6.76 | 6.82 | 4.21 |
1.72 | Premium | H | VS2 | 59.5 | 60.0 | 11455.0 | 7.79 | 7.75 | 4.62 |
1.2 | Very Good | E | VVS2 | 63.2 | 56.0 | 11456.0 | 6.73 | 6.78 | 4.27 |
1.31 | Ideal | G | VVS2 | 59.2 | 59.0 | 11459.0 | 7.12 | 7.18 | 4.23 |
1.5 | Premium | H | VS2 | 61.8 | 59.0 | 11464.0 | 7.35 | 7.3 | 4.53 |
1.23 | Ideal | G | VVS1 | 59.5 | 57.0 | 11469.0 | 7.0 | 6.98 | 4.16 |
1.57 | Premium | H | VS2 | 61.0 | 59.0 | 11470.0 | 7.5 | 7.54 | 4.59 |
1.13 | Ideal | D | VS1 | 61.2 | 57.0 | 11477.0 | 6.7 | 6.72 | 4.1 |
1.28 | Very Good | G | VVS2 | 59.5 | 56.0 | 11478.0 | 7.12 | 7.16 | 4.25 |
1.01 | Premium | D | VVS1 | 59.3 | 59.0 | 11480.0 | 6.56 | 6.53 | 3.88 |
1.51 | Premium | G | VS2 | 60.4 | 58.0 | 11480.0 | 7.38 | 7.43 | 4.47 |
1.7 | Premium | I | VVS2 | 61.8 | 61.0 | 11481.0 | 7.57 | 7.5 | 4.66 |
1.54 | Ideal | G | VS2 | 61.5 | 57.0 | 11487.0 | 7.44 | 7.41 | 4.57 |
1.6 | Premium | G | VS2 | 62.2 | 59.0 | 11489.0 | 7.45 | 7.48 | 4.64 |
1.58 | Premium | H | VS1 | 61.7 | 59.0 | 11491.0 | 7.48 | 7.42 | 4.6 |
1.43 | Ideal | H | VS1 | 62.0 | 55.0 | 11498.0 | 7.21 | 7.28 | 4.49 |
2.07 | Ideal | J | VS2 | 62.2 | 56.0 | 11500.0 | 8.2 | 8.16 | 5.09 |
1.24 | Ideal | G | VVS1 | 62.1 | 56.0 | 11503.0 | 6.86 | 6.91 | 4.28 |
1.5 | Good | G | VS2 | 58.8 | 64.0 | 11508.0 | 7.43 | 7.4 | 4.36 |
1.5 | Good | G | VS2 | 63.8 | 56.0 | 11508.0 | 7.2 | 7.15 | 4.58 |
1.6 | Premium | H | VS2 | 62.6 | 58.0 | 11508.0 | 7.5 | 7.45 | 4.68 |
1.04 | Ideal | D | VVS2 | 60.9 | 57.0 | 11511.0 | 6.54 | 6.6 | 4.0 |
1.51 | Very Good | I | VVS1 | 62.0 | 58.0 | 11512.0 | 7.27 | 7.31 | 4.52 |
1.51 | Good | H | VS1 | 59.1 | 58.0 | 11512.0 | 7.48 | 7.52 | 4.43 |
1.7 | Very Good | I | VS1 | 60.6 | 59.0 | 11514.0 | 7.64 | 7.67 | 4.64 |
1.52 | Premium | H | VS1 | 61.4 | 58.0 | 11516.0 | 7.3 | 7.44 | 4.55 |
1.7 | Premium | I | VS2 | 61.4 | 59.0 | 11519.0 | 7.6 | 7.68 | 4.69 |
1.7 | Premium | I | VS2 | 60.7 | 59.0 | 11519.0 | 7.63 | 7.7 | 4.65 |
1.4 | Good | G | VVS2 | 63.4 | 59.0 | 11519.0 | 7.04 | 7.12 | 4.49 |
1.5 | Good | G | VS1 | 63.8 | 59.0 | 11524.0 | 7.16 | 7.22 | 4.59 |
2.01 | Good | J | VS1 | 63.7 | 59.0 | 11526.0 | 7.93 | 7.86 | 5.03 |
1.58 | Ideal | I | VVS1 | 61.7 | 53.0 | 11526.0 | 7.52 | 7.53 | 4.65 |
1.54 | Very Good | H | VS2 | 62.1 | 62.0 | 11527.0 | 7.31 | 7.38 | 4.56 |
1.38 | Ideal | G | VS1 | 62.2 | 54.0 | 11527.0 | 7.18 | 7.14 | 4.45 |
1.2 | Ideal | G | VVS2 | 60.9 | 56.0 | 11530.0 | 6.86 | 6.91 | 4.19 |
1.2 | Ideal | G | VVS2 | 61.0 | 56.0 | 11530.0 | 6.86 | 6.88 | 4.19 |
1.56 | Ideal | H | VS2 | 61.5 | 56.0 | 11531.0 | 7.46 | 7.5 | 4.6 |
1.31 | Ideal | G | VVS2 | 60.9 | 56.0 | 11531.0 | 7.17 | 7.07 | 4.32 |
1.51 | Very Good | G | VS2 | 62.1 | 57.0 | 11532.0 | 7.37 | 7.32 | 4.5 |
1.23 | Premium | F | VVS2 | 61.6 | 59.0 | 11534.0 | 6.9 | 6.8 | 4.22 |
1.63 | Premium | I | VS1 | 61.1 | 57.0 | 11534.0 | 7.7 | 7.58 | 4.67 |
1.03 | Premium | E | VVS1 | 58.8 | 59.0 | 11538.0 | 6.63 | 6.6 | 3.89 |
1.51 | Ideal | H | VS2 | 62.2 | 57.0 | 11540.0 | 7.33 | 7.29 | 4.55 |
1.51 | Premium | H | VS2 | 60.2 | 60.0 | 11540.0 | 7.35 | 7.33 | 4.42 |
1.51 | Premium | H | VS2 | 62.3 | 59.0 | 11540.0 | 7.32 | 7.28 | 4.55 |
1.51 | Ideal | H | VS2 | 60.6 | 57.0 | 11540.0 | 7.46 | 7.45 | 4.52 |
1.14 | Premium | F | VVS1 | 59.4 | 59.0 | 11549.0 | 6.87 | 6.8 | 4.06 |
1.1 | Ideal | D | VVS2 | 62.2 | 57.0 | 11550.0 | 6.58 | 6.54 | 4.08 |
1.5 | Ideal | H | VS1 | 61.0 | 56.8 | 11557.0 | 7.36 | 7.4 | 4.5 |
1.53 | Very Good | H | VS2 | 60.9 | 63.0 | 11557.0 | 7.41 | 7.37 | 4.5 |
1.71 | Ideal | I | VS2 | 60.5 | 56.0 | 11559.0 | 7.73 | 7.71 | 4.67 |
1.55 | Premium | H | VS1 | 62.6 | 58.0 | 11562.0 | 7.4 | 7.34 | 4.61 |
1.55 | Premium | H | VS2 | 60.7 | 58.0 | 11567.0 | 7.51 | 7.47 | 4.55 |
1.21 | Ideal | G | VVS1 | 61.5 | 56.0 | 11572.0 | 6.83 | 6.89 | 4.22 |
1.02 | Ideal | D | VVS2 | 62.2 | 59.0 | 11573.0 | 6.41 | 6.46 | 4.0 |
1.55 | Ideal | I | VS2 | 61.8 | 55.0 | 11574.0 | 7.4 | 7.44 | 4.58 |
1.57 | Premium | H | VS2 | 61.0 | 59.0 | 11575.0 | 7.54 | 7.5 | 4.59 |
2.09 | Good | J | VS2 | 57.2 | 64.0 | 11576.0 | 8.51 | 8.46 | 4.85 |
1.5 | Good | G | VS2 | 63.3 | 62.0 | 11577.0 | 7.08 | 7.2 | 4.52 |
1.51 | Ideal | H | VS1 | 62.6 | 56.0 | 11580.0 | 7.28 | 7.32 | 4.57 |
1.28 | Ideal | F | VS1 | 61.7 | 55.0 | 11580.0 | 7.01 | 6.98 | 4.32 |
1.4 | Very Good | G | VS1 | 59.9 | 56.0 | 11584.0 | 7.31 | 7.34 | 4.39 |
1.32 | Ideal | G | VS1 | 61.7 | 56.0 | 11584.0 | 7.04 | 7.07 | 4.35 |
1.62 | Ideal | I | VVS2 | 62.7 | 54.0 | 11587.0 | 7.47 | 7.52 | 4.7 |
1.44 | Premium | G | VS1 | 61.8 | 57.0 | 11588.0 | 7.21 | 7.09 | 4.42 |
1.25 | Very Good | G | VVS1 | 60.2 | 58.0 | 11589.0 | 6.97 | 7.04 | 4.22 |
1.24 | Ideal | G | VVS2 | 61.1 | 56.0 | 11601.0 | 6.94 | 6.97 | 4.25 |
1.28 | Very Good | F | VVS2 | 62.0 | 57.0 | 11602.0 | 6.92 | 7.01 | 4.32 |
1.55 | Very Good | H | VS2 | 61.3 | 61.0 | 11602.0 | 7.39 | 7.46 | 4.55 |
1.57 | Very Good | H | VS1 | 62.8 | 60.0 | 11605.0 | 7.36 | 7.44 | 4.65 |
1.7 | Ideal | H | VS2 | 62.3 | 57.0 | 11605.0 | 7.68 | 7.65 | 4.78 |
1.75 | Ideal | J | VVS2 | 62.0 | 55.0 | 11609.0 | 7.7 | 7.73 | 4.78 |
1.03 | Ideal | E | VVS2 | 61.7 | 56.0 | 11611.0 | 6.49 | 6.51 | 4.01 |
1.76 | Ideal | I | VS1 | 62.0 | 57.0 | 11616.0 | 7.71 | 7.74 | 4.79 |
1.52 | Premium | H | VS1 | 61.4 | 58.0 | 11621.0 | 7.44 | 7.3 | 4.55 |
1.4 | Very Good | G | VVS2 | 63.4 | 59.0 | 11624.0 | 7.12 | 7.04 | 4.49 |
1.61 | Very Good | H | VS2 | 59.4 | 58.0 | 11627.0 | 7.64 | 7.74 | 4.57 |
1.54 | Premium | H | VS2 | 62.1 | 62.0 | 11632.0 | 7.38 | 7.31 | 4.56 |
1.3 | Ideal | G | VVS2 | 62.4 | 56.1 | 11633.0 | 6.97 | 7.02 | 4.36 |
1.56 | Ideal | H | VS2 | 61.5 | 56.0 | 11636.0 | 7.5 | 7.46 | 4.6 |
1.51 | Very Good | G | VS2 | 61.5 | 59.0 | 11640.0 | 7.34 | 7.38 | 4.53 |
1.51 | Good | G | VS2 | 64.2 | 54.0 | 11640.0 | 7.18 | 7.27 | 4.64 |
1.34 | Ideal | G | VVS1 | 62.2 | 56.0 | 11640.0 | 7.11 | 7.04 | 4.4 |
1.13 | Ideal | E | VVS1 | 61.5 | 56.0 | 11641.0 | 6.68 | 6.71 | 4.12 |
1.41 | Premium | E | VS2 | 62.7 | 56.0 | 11644.0 | 7.18 | 7.1 | 4.48 |
1.37 | Ideal | F | VS1 | 59.6 | 57.0 | 11649.0 | 7.28 | 7.22 | 4.32 |
1.11 | Very Good | F | VVS2 | 59.4 | 58.0 | 11650.0 | 6.74 | 6.79 | 4.02 |
1.45 | Premium | F | VS2 | 61.1 | 58.0 | 11650.0 | 7.31 | 7.23 | 4.44 |
1.54 | Ideal | I | VS1 | 61.5 | 56.0 | 11651.0 | 7.42 | 7.47 | 4.58 |
1.5 | Very Good | H | VVS1 | 63.8 | 57.0 | 11654.0 | 7.17 | 7.21 | 4.59 |
1.14 | Premium | F | VVS1 | 59.4 | 59.0 | 11654.0 | 6.87 | 6.8 | 4.06 |
1.1 | Ideal | D | VVS2 | 62.2 | 57.0 | 11654.0 | 6.58 | 6.54 | 4.08 |
1.5 | Premium | I | VS2 | 61.4 | 58.0 | 11655.0 | 7.28 | 7.24 | 4.46 |
1.01 | Ideal | D | VVS1 | 62.5 | 55.0 | 11661.0 | 6.39 | 6.44 | 4.01 |
1.54 | Premium | H | VS2 | 61.9 | 59.0 | 11663.0 | 7.31 | 7.33 | 4.53 |
1.45 | Very Good | F | VS2 | 62.6 | 58.0 | 11667.0 | 7.12 | 7.2 | 4.48 |
1.03 | Very Good | D | VVS2 | 62.7 | 58.0 | 11677.0 | 6.39 | 6.43 | 4.02 |
1.52 | Very Good | H | VS2 | 59.7 | 55.0 | 11681.0 | 7.45 | 7.42 | 4.44 |
1.51 | Ideal | H | VS1 | 62.6 | 56.0 | 11686.0 | 7.32 | 7.28 | 4.57 |
1.5 | Very Good | H | VVS1 | 60.9 | 61.0 | 11688.0 | 7.36 | 7.39 | 4.49 |
1.51 | Ideal | H | VS2 | 61.9 | 59.0 | 11696.0 | 7.29 | 7.34 | 4.53 |
1.52 | Good | F | VS2 | 64.2 | 59.0 | 11696.0 | 7.16 | 7.2 | 4.61 |
1.55 | Very Good | G | VS2 | 63.1 | 57.0 | 11703.0 | 7.36 | 7.31 | 4.63 |
1.54 | Very Good | G | VS2 | 63.0 | 59.0 | 11708.0 | 7.3 | 7.36 | 4.62 |
1.55 | Premium | H | VS2 | 61.3 | 61.0 | 11708.0 | 7.46 | 7.39 | 4.55 |
1.71 | Ideal | J | VS1 | 62.1 | 55.0 | 11711.0 | 7.73 | 7.65 | 4.78 |
1.57 | Premium | G | VS2 | 62.7 | 60.0 | 11711.0 | 7.46 | 7.38 | 4.65 |
1.57 | Premium | H | VS1 | 62.8 | 60.0 | 11711.0 | 7.44 | 7.36 | 4.65 |
1.24 | Very Good | F | VVS1 | 62.7 | 61.0 | 11716.0 | 6.75 | 6.84 | 4.26 |
1.16 | Premium | G | VVS1 | 61.6 | 55.0 | 11717.0 | 6.85 | 6.72 | 4.18 |
1.53 | Very Good | H | VS2 | 62.5 | 61.0 | 11722.0 | 7.28 | 7.38 | 4.58 |
1.76 | Ideal | I | VS1 | 62.0 | 57.0 | 11722.0 | 7.74 | 7.71 | 4.79 |
1.22 | Premium | F | VVS1 | 61.9 | 58.0 | 11723.0 | 6.81 | 6.85 | 4.23 |
1.39 | Ideal | E | VS2 | 60.8 | 57.0 | 11726.0 | 7.24 | 7.21 | 4.39 |
1.22 | Ideal | F | VVS2 | 61.9 | 53.0 | 11730.0 | 6.9 | 6.92 | 4.28 |
1.14 | Very Good | F | VVS1 | 62.2 | 55.9 | 11737.0 | 6.67 | 6.69 | 4.16 |
1.55 | Premium | H | VS2 | 60.7 | 59.0 | 11738.0 | 7.46 | 7.5 | 4.54 |
1.51 | Fair | G | VS1 | 64.9 | 55.0 | 11739.0 | 7.25 | 7.14 | 4.67 |
1.51 | Good | G | VS2 | 64.2 | 54.0 | 11746.0 | 7.27 | 7.18 | 4.64 |
1.51 | Premium | G | VS2 | 58.1 | 61.0 | 11746.0 | 7.57 | 7.54 | 4.39 |
1.5 | Very Good | H | VVS2 | 62.9 | 59.0 | 11748.0 | 7.26 | 7.31 | 4.58 |
1.02 | Ideal | D | VVS2 | 61.0 | 56.0 | 11765.0 | 6.52 | 6.55 | 3.99 |
1.01 | Ideal | D | VVS1 | 62.5 | 55.0 | 11767.0 | 6.44 | 6.39 | 4.01 |
1.54 | Premium | H | VS2 | 61.9 | 59.0 | 11769.0 | 7.33 | 7.31 | 4.53 |
1.36 | Very Good | G | VVS2 | 60.8 | 60.0 | 11774.0 | 7.12 | 7.16 | 4.34 |
1.7 | Premium | I | VVS2 | 62.1 | 59.0 | 11775.0 | 7.6 | 7.53 | 4.7 |
1.7 | Premium | I | VS2 | 62.2 | 58.0 | 11781.0 | 7.6 | 7.65 | 4.74 |
1.58 | Premium | G | VS2 | 58.2 | 58.0 | 11786.0 | 7.68 | 7.64 | 4.46 |
2.0 | Premium | J | VS1 | 62.0 | 62.0 | 11793.0 | 8.02 | 7.91 | 4.94 |
1.36 | Ideal | D | VS2 | 62.1 | 55.0 | 11793.0 | 7.18 | 7.13 | 4.44 |
1.54 | Premium | D | VS2 | 59.4 | 59.0 | 11795.0 | 7.61 | 7.55 | 4.5 |
1.6 | Premium | H | VS2 | 62.1 | 60.0 | 11796.0 | 7.51 | 7.44 | 4.64 |
1.27 | Premium | F | VVS2 | 61.3 | 60.0 | 11797.0 | 6.9 | 6.99 | 4.26 |
1.56 | Very Good | H | VS1 | 63.9 | 57.0 | 11804.0 | 7.3 | 7.37 | 4.69 |
1.52 | Good | H | VS1 | 63.5 | 60.0 | 11804.0 | 7.24 | 7.28 | 4.61 |
1.54 | Premium | G | VS2 | 63.0 | 59.0 | 11815.0 | 7.36 | 7.3 | 4.62 |
1.06 | Very Good | D | VVS1 | 61.8 | 57.0 | 11815.0 | 6.49 | 6.52 | 4.03 |
1.41 | Ideal | G | VS1 | 62.6 | 56.0 | 11817.0 | 7.15 | 7.2 | 4.49 |
1.65 | Very Good | H | VS1 | 62.0 | 56.0 | 11823.0 | 7.53 | 7.59 | 4.68 |
1.51 | Good | H | VVS2 | 63.1 | 59.0 | 11826.0 | 7.26 | 7.28 | 4.59 |
1.61 | Ideal | I | VS2 | 61.7 | 56.0 | 11826.0 | 7.52 | 7.62 | 4.67 |
1.22 | Premium | F | VVS1 | 61.9 | 58.0 | 11830.0 | 6.85 | 6.81 | 4.23 |
1.06 | Ideal | D | VVS2 | 62.0 | 57.0 | 11837.0 | 6.52 | 6.54 | 4.05 |
1.2 | Ideal | E | VVS2 | 62.2 | 57.0 | 11839.0 | 6.81 | 6.77 | 4.22 |
1.27 | Ideal | E | VS1 | 61.8 | 57.0 | 11840.0 | 6.94 | 6.98 | 4.3 |
1.73 | Very Good | I | VS1 | 63.4 | 58.0 | 11843.0 | 7.57 | 7.6 | 4.81 |
1.14 | Ideal | F | VVS1 | 62.2 | 56.0 | 11844.0 | 6.69 | 6.67 | 4.16 |
1.55 | Premium | H | VS2 | 60.7 | 59.0 | 11846.0 | 7.5 | 7.46 | 4.54 |
1.36 | Ideal | G | VVS2 | 61.1 | 57.0 | 11848.0 | 7.14 | 7.2 | 4.38 |
1.71 | Very Good | I | VS2 | 62.8 | 59.0 | 11850.0 | 7.52 | 7.58 | 4.74 |
1.46 | Good | E | VS2 | 63.9 | 57.0 | 11851.0 | 7.06 | 7.12 | 4.53 |
1.3 | Ideal | G | VVS2 | 60.9 | 57.0 | 11853.0 | 7.04 | 7.11 | 4.31 |
1.52 | Premium | H | VS1 | 58.4 | 59.0 | 11853.0 | 7.55 | 7.52 | 4.4 |
1.5 | Premium | H | VVS2 | 62.9 | 59.0 | 11855.0 | 7.31 | 7.26 | 4.58 |
1.51 | Ideal | H | VS1 | 60.8 | 57.0 | 11856.0 | 7.43 | 7.46 | 4.53 |
1.42 | Premium | G | VS1 | 61.7 | 55.0 | 11861.0 | 7.29 | 7.24 | 4.48 |
1.67 | Very Good | I | VS1 | 61.6 | 59.1 | 11867.0 | 7.61 | 7.64 | 4.7 |
1.73 | Premium | G | VS1 | 61.6 | 60.0 | 11867.0 | 7.67 | 7.62 | 4.71 |
1.35 | Premium | G | VVS2 | 60.2 | 59.0 | 11868.0 | 7.2 | 7.16 | 4.32 |
1.55 | Ideal | I | VVS1 | 62.1 | 56.0 | 11869.0 | 7.36 | 7.43 | 4.59 |
1.22 | Ideal | F | VVS2 | 62.2 | 54.0 | 11870.0 | 6.83 | 6.87 | 4.26 |
1.5 | Very Good | I | VS1 | 63.3 | 54.0 | 11879.0 | 7.26 | 7.33 | 4.62 |
1.22 | Ideal | F | VVS2 | 62.7 | 54.0 | 11880.0 | 6.79 | 6.84 | 4.27 |
1.2 | Ideal | E | VVS2 | 61.5 | 57.0 | 11883.0 | 6.79 | 6.89 | 4.21 |
1.17 | Ideal | F | VVS1 | 62.1 | 57.0 | 11886.0 | 6.82 | 6.73 | 4.21 |
1.7 | Premium | I | VS2 | 62.2 | 58.0 | 11888.0 | 7.65 | 7.6 | 4.74 |
1.52 | Very Good | H | VVS2 | 63.0 | 60.0 | 11904.0 | 7.25 | 7.3 | 4.58 |
1.27 | Premium | F | VVS2 | 61.3 | 60.0 | 11905.0 | 6.99 | 6.9 | 4.26 |
1.18 | Ideal | E | VVS2 | 61.5 | 57.0 | 11906.0 | 6.8 | 6.75 | 4.17 |
1.52 | Very Good | H | VS1 | 63.5 | 60.0 | 11912.0 | 7.28 | 7.24 | 4.61 |
1.2 | Very Good | F | VVS1 | 59.8 | 63.0 | 11913.0 | 6.82 | 6.8 | 4.07 |
1.7 | Good | I | VS1 | 58.0 | 60.0 | 11921.0 | 7.84 | 7.88 | 4.56 |
1.56 | Ideal | H | VS2 | 61.6 | 57.0 | 11922.0 | 7.51 | 7.45 | 4.61 |
1.01 | Very Good | D | VVS1 | 63.9 | 56.0 | 11923.0 | 6.32 | 6.36 | 4.05 |
1.51 | Very Good | G | VS2 | 62.8 | 57.0 | 11923.0 | 7.25 | 7.3 | 4.57 |
1.23 | Ideal | F | VVS2 | 61.9 | 55.0 | 11927.0 | 6.92 | 6.89 | 4.27 |
1.51 | Very Good | H | VVS2 | 63.1 | 59.0 | 11934.0 | 7.28 | 7.26 | 4.59 |
1.5 | Very Good | E | VS2 | 61.9 | 57.0 | 11939.0 | 7.31 | 7.38 | 4.55 |
1.36 | Very Good | F | VS1 | 62.7 | 60.0 | 11946.0 | 7.05 | 7.02 | 4.41 |
1.52 | Ideal | H | VS1 | 60.1 | 60.0 | 11946.0 | 7.54 | 7.51 | 4.52 |
2.01 | Good | I | VS2 | 64.3 | 60.0 | 11954.0 | 7.91 | 7.86 | 5.07 |
1.34 | Ideal | G | VVS2 | 62.0 | 55.0 | 11955.0 | 7.02 | 7.08 | 4.37 |
1.36 | Ideal | G | VVS2 | 61.1 | 57.0 | 11956.0 | 7.2 | 7.14 | 4.38 |
1.71 | Premium | I | VS2 | 62.8 | 59.0 | 11958.0 | 7.58 | 7.52 | 4.74 |
1.63 | Ideal | I | VS2 | 61.8 | 56.0 | 11963.0 | 7.56 | 7.59 | 4.68 |
2.0 | Fair | J | VS2 | 65.4 | 58.0 | 11966.0 | 7.96 | 7.75 | 5.14 |
2.0 | Premium | J | VS2 | 62.9 | 60.0 | 11966.0 | 7.99 | 7.95 | 5.01 |
1.51 | Ideal | H | VS1 | 62.3 | 57.0 | 11967.0 | 7.34 | 7.29 | 4.55 |
2.24 | Premium | J | VS1 | 60.9 | 58.0 | 11970.0 | 8.46 | 8.41 | 5.14 |
1.27 | Ideal | F | VS1 | 61.6 | 55.0 | 11973.0 | 6.97 | 7.03 | 4.31 |
1.31 | Ideal | G | VVS2 | 61.3 | 58.0 | 11975.0 | 7.03 | 7.07 | 4.32 |
1.67 | Ideal | I | VS1 | 61.6 | 59.0 | 11975.0 | 7.64 | 7.61 | 4.7 |
1.52 | Premium | H | VVS2 | 61.2 | 58.0 | 11979.0 | 7.48 | 7.41 | 4.56 |
1.53 | Premium | H | VVS2 | 60.4 | 60.0 | 11982.0 | 7.41 | 7.46 | 4.49 |
1.52 | Very Good | G | VS2 | 63.4 | 58.0 | 11986.0 | 7.31 | 7.24 | 4.61 |
1.57 | Ideal | H | VS2 | 61.8 | 55.0 | 12004.0 | 7.45 | 7.49 | 4.62 |
1.5 | Very Good | G | VS1 | 63.4 | 59.0 | 12005.0 | 7.25 | 7.19 | 4.58 |
1.31 | Ideal | G | VS1 | 61.6 | 57.0 | 12008.0 | 6.99 | 7.04 | 4.32 |
1.52 | Premium | H | VVS2 | 63.0 | 60.0 | 12013.0 | 7.3 | 7.25 | 4.58 |
1.5 | Very Good | G | VS2 | 60.5 | 57.0 | 12014.0 | 7.39 | 7.43 | 4.48 |
1.11 | Ideal | D | VVS2 | 63.0 | 57.0 | 12016.0 | 6.58 | 6.65 | 4.17 |
1.7 | Ideal | I | VS1 | 63.0 | 55.0 | 12030.0 | 7.75 | 7.54 | 4.76 |
1.7 | Premium | I | VS1 | 58.0 | 60.0 | 12030.0 | 7.88 | 7.84 | 4.56 |
1.07 | Ideal | E | VVS2 | 61.3 | 56.0 | 12031.0 | 6.57 | 6.62 | 4.04 |
1.02 | Ideal | E | VVS1 | 62.2 | 58.0 | 12035.0 | 6.42 | 6.44 | 4.0 |
1.22 | Ideal | E | VVS2 | 63.0 | 55.0 | 12036.0 | 6.83 | 6.78 | 4.29 |
1.52 | Very Good | G | VS2 | 62.9 | 60.0 | 12038.0 | 7.28 | 7.31 | 4.59 |
1.52 | Premium | H | VS1 | 60.6 | 58.0 | 12047.0 | 7.46 | 7.39 | 4.5 |
1.59 | Ideal | H | VS1 | 61.8 | 57.0 | 12047.0 | 7.42 | 7.49 | 4.61 |
1.06 | Ideal | D | VVS2 | 62.0 | 56.0 | 12053.0 | 6.53 | 6.57 | 4.06 |
1.5 | Ideal | H | VS1 | 61.2 | 56.0 | 12055.0 | 7.39 | 7.4 | 4.52 |
1.24 | Ideal | F | VVS2 | 62.0 | 57.0 | 12059.0 | 6.86 | 6.91 | 4.27 |
1.54 | Ideal | H | VVS2 | 62.6 | 56.0 | 12061.0 | 7.35 | 7.42 | 4.62 |
1.28 | Ideal | F | VS1 | 61.5 | 55.0 | 12061.0 | 6.98 | 7.01 | 4.3 |
1.26 | Ideal | G | VVS2 | 61.4 | 55.0 | 12066.0 | 6.96 | 6.99 | 4.29 |
1.51 | Premium | G | VS2 | 61.4 | 58.0 | 12068.0 | 7.4 | 7.3 | 4.51 |
// selecting a subset of fields
display(spark.sql("SELECT carat, clarity, price FROM diamonds WHERE color = 'D'"))
carat | clarity | price |
---|---|---|
0.23 | VS2 | 357.0 |
0.23 | VS1 | 402.0 |
0.26 | VS2 | 403.0 |
0.26 | VS2 | 403.0 |
0.26 | VS1 | 403.0 |
0.22 | VS2 | 404.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.24 | VVS1 | 553.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.75 | SI1 | 2760.0 |
0.71 | SI2 | 2762.0 |
0.61 | VVS2 | 2763.0 |
0.71 | SI1 | 2764.0 |
0.71 | SI1 | 2764.0 |
0.7 | VS2 | 2767.0 |
0.71 | SI2 | 2767.0 |
0.73 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.71 | SI2 | 2768.0 |
0.71 | VS2 | 2770.0 |
0.76 | SI2 | 2770.0 |
0.73 | SI2 | 2770.0 |
0.75 | SI2 | 2773.0 |
0.7 | VS2 | 2773.0 |
0.7 | VS1 | 2777.0 |
0.53 | VVS2 | 2782.0 |
0.75 | SI2 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.7 | SI1 | 2782.0 |
0.64 | VS1 | 2787.0 |
0.71 | VS2 | 2788.0 |
0.72 | SI2 | 2795.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.51 | VVS1 | 2797.0 |
0.78 | SI1 | 2799.0 |
0.91 | SI2 | 2803.0 |
0.7 | SI1 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.73 | SI1 | 2808.0 |
0.81 | SI2 | 2809.0 |
0.74 | SI2 | 2810.0 |
0.83 | SI1 | 2811.0 |
0.71 | SI1 | 2812.0 |
0.55 | VVS1 | 2815.0 |
0.71 | VS1 | 2816.0 |
0.73 | SI1 | 2821.0 |
0.71 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.79 | SI2 | 2823.0 |
0.71 | VS2 | 2824.0 |
0.7 | VS2 | 2826.0 |
0.7 | SI1 | 2827.0 |
0.72 | VS2 | 2827.0 |
0.7 | SI2 | 2828.0 |
0.7 | VS2 | 2833.0 |
0.7 | VS2 | 2833.0 |
0.51 | VVS1 | 2834.0 |
0.92 | SI2 | 2840.0 |
0.71 | VS1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.71 | SI1 | 2843.0 |
0.79 | SI1 | 2846.0 |
0.76 | SI1 | 2847.0 |
0.54 | VVS2 | 2848.0 |
0.75 | SI2 | 2848.0 |
0.66 | VS1 | 2851.0 |
0.79 | SI2 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.74 | VS2 | 2855.0 |
0.73 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.71 | VS1 | 2860.0 |
0.71 | SI1 | 2861.0 |
0.66 | VS1 | 2861.0 |
0.7 | SI1 | 2862.0 |
0.8 | SI2 | 2862.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.73 | SI1 | 2865.0 |
0.56 | VVS1 | 2866.0 |
0.56 | VVS1 | 2866.0 |
0.7 | VS2 | 2867.0 |
1.08 | I1 | 2869.0 |
0.7 | SI1 | 2872.0 |
0.75 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.71 | VS2 | 2874.0 |
0.79 | SI2 | 2878.0 |
0.74 | SI1 | 2880.0 |
0.72 | SI1 | 2883.0 |
0.77 | SI2 | 2885.0 |
0.9 | SI2 | 2885.0 |
0.71 | SI1 | 2887.0 |
0.72 | SI1 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.79 | SI1 | 2896.0 |
0.77 | SI2 | 2896.0 |
0.6 | VVS2 | 2897.0 |
0.54 | VVS2 | 2897.0 |
0.74 | VS2 | 2897.0 |
0.75 | SI1 | 2898.0 |
0.77 | SI1 | 2898.0 |
0.72 | VS1 | 2900.0 |
0.75 | SI1 | 2903.0 |
0.75 | SI1 | 2903.0 |
0.72 | SI1 | 2903.0 |
0.72 | SI1 | 2903.0 |
0.79 | SI2 | 2904.0 |
0.53 | VVS1 | 2905.0 |
0.74 | VS2 | 2906.0 |
0.32 | SI1 | 558.0 |
0.7 | VS2 | 2909.0 |
0.7 | VS2 | 2909.0 |
0.71 | VS1 | 2910.0 |
0.7 | VS2 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.71 | SI1 | 2913.0 |
0.83 | SI2 | 2918.0 |
0.71 | SI1 | 2921.0 |
0.77 | SI2 | 2922.0 |
0.77 | SI2 | 2923.0 |
0.8 | SI1 | 2925.0 |
0.81 | SI2 | 2926.0 |
0.7 | VS2 | 2928.0 |
0.59 | VVS2 | 2933.0 |
0.75 | SI2 | 2933.0 |
0.71 | SI2 | 2934.0 |
0.7 | SI2 | 2936.0 |
0.77 | SI1 | 2939.0 |
0.76 | SI1 | 2942.0 |
0.73 | SI1 | 2943.0 |
0.57 | VVS1 | 2945.0 |
0.78 | SI1 | 2945.0 |
0.73 | VS2 | 2947.0 |
0.73 | SI1 | 2947.0 |
0.77 | SI1 | 2949.0 |
0.71 | VS2 | 2950.0 |
0.72 | VS1 | 2951.0 |
0.72 | SI1 | 2954.0 |
0.72 | SI1 | 2954.0 |
0.75 | SI1 | 2954.0 |
0.82 | SI1 | 2954.0 |
0.7 | VS1 | 2956.0 |
0.56 | VVS1 | 2959.0 |
0.7 | VS2 | 2960.0 |
0.7 | VS2 | 2960.0 |
0.7 | VS2 | 2960.0 |
0.63 | VVS2 | 2962.0 |
0.71 | SI1 | 2964.0 |
0.71 | VS2 | 2968.0 |
0.77 | SI2 | 2973.0 |
1.0 | SI2 | 2974.0 |
0.76 | VS2 | 2977.0 |
0.7 | SI1 | 2980.0 |
0.7 | VS2 | 2985.0 |
0.74 | SI1 | 2987.0 |
0.83 | SI1 | 2990.0 |
0.7 | VS2 | 2991.0 |
0.72 | SI1 | 2993.0 |
0.81 | SI2 | 2994.0 |
0.73 | SI1 | 2995.0 |
0.77 | SI1 | 2996.0 |
0.7 | VS2 | 2998.0 |
0.7 | VS2 | 2999.0 |
0.72 | SI1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.7 | VS1 | 3001.0 |
0.71 | VS2 | 3002.0 |
1.01 | SI2 | 3003.0 |
0.65 | VVS2 | 3003.0 |
0.92 | SI2 | 3004.0 |
0.55 | VVS1 | 3006.0 |
0.76 | SI1 | 3007.0 |
0.7 | VS1 | 3008.0 |
0.8 | SI1 | 3011.0 |
0.77 | SI2 | 3011.0 |
0.9 | SI1 | 3013.0 |
0.73 | SI1 | 3014.0 |
0.72 | VS2 | 3016.0 |
0.5 | VVS2 | 3017.0 |
0.78 | SI1 | 3019.0 |
0.71 | VS2 | 3020.0 |
0.75 | SI1 | 3024.0 |
0.75 | SI1 | 3024.0 |
0.65 | VVS2 | 3025.0 |
0.71 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.7 | VS2 | 3033.0 |
0.78 | SI1 | 3035.0 |
0.71 | SI1 | 3035.0 |
0.74 | SI1 | 3036.0 |
0.61 | VVS2 | 3036.0 |
0.77 | SI1 | 3040.0 |
0.71 | VS2 | 3045.0 |
0.72 | VS2 | 3045.0 |
0.75 | SI1 | 3046.0 |
0.73 | VS1 | 3047.0 |
0.75 | SI1 | 3048.0 |
0.72 | SI1 | 3048.0 |
0.72 | SI1 | 3048.0 |
0.66 | VVS2 | 3049.0 |
0.62 | VVS2 | 3050.0 |
0.7 | VS2 | 3052.0 |
0.7 | VS2 | 3053.0 |
0.7 | VS1 | 3054.0 |
0.65 | VVS2 | 3056.0 |
0.92 | SI2 | 3057.0 |
0.79 | SI1 | 3058.0 |
0.72 | SI1 | 3062.0 |
0.85 | SI2 | 3066.0 |
0.7 | VS2 | 3073.0 |
0.72 | VS2 | 3075.0 |
0.72 | VS2 | 3075.0 |
0.7 | SI1 | 3075.0 |
0.76 | SI1 | 3075.0 |
0.71 | VS2 | 3077.0 |
0.71 | VS2 | 3077.0 |
0.75 | SI1 | 3078.0 |
0.83 | SI2 | 3078.0 |
0.91 | SI2 | 3079.0 |
0.79 | SI2 | 3081.0 |
0.7 | VS2 | 3082.0 |
0.8 | SI2 | 3082.0 |
0.71 | VS2 | 3084.0 |
0.75 | SI1 | 3085.0 |
0.7 | VS2 | 3087.0 |
0.7 | VS2 | 3087.0 |
0.7 | VS2 | 3087.0 |
0.74 | VS2 | 3087.0 |
0.71 | VS1 | 3090.0 |
0.71 | VS1 | 3090.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS2 | 3092.0 |
0.7 | VS1 | 3093.0 |
0.71 | VS2 | 3096.0 |
0.71 | VS2 | 3096.0 |
0.53 | VVS1 | 3097.0 |
0.72 | VS2 | 3099.0 |
0.72 | SI1 | 3102.0 |
0.66 | VVS2 | 3103.0 |
0.78 | SI1 | 3103.0 |
0.75 | SI1 | 3105.0 |
0.7 | VS1 | 3107.0 |
0.79 | SI1 | 3112.0 |
0.94 | SI2 | 3125.0 |
0.57 | VVS1 | 3126.0 |
0.57 | VVS1 | 3126.0 |
0.7 | VS2 | 3129.0 |
0.7 | VS2 | 3131.0 |
0.71 | VS2 | 3131.0 |
0.71 | VS2 | 3135.0 |
0.71 | VS2 | 3135.0 |
0.8 | VS2 | 3135.0 |
0.81 | SI1 | 3135.0 |
0.71 | VS1 | 3136.0 |
0.71 | VS2 | 3137.0 |
0.74 | SI1 | 3138.0 |
0.72 | VS2 | 3139.0 |
0.54 | VVS1 | 3139.0 |
0.73 | SI1 | 3140.0 |
0.71 | VS1 | 3145.0 |
0.84 | SI2 | 3145.0 |
0.78 | SI1 | 3145.0 |
0.75 | SI1 | 3152.0 |
0.9 | SI2 | 3153.0 |
0.71 | VS2 | 3153.0 |
0.58 | VVS1 | 3154.0 |
0.8 | SI2 | 3154.0 |
0.77 | SI1 | 3158.0 |
0.82 | SI2 | 3159.0 |
0.77 | SI1 | 3160.0 |
0.81 | SI2 | 3160.0 |
0.71 | VS2 | 3161.0 |
0.71 | VS2 | 3161.0 |
0.71 | VS2 | 3161.0 |
0.77 | SI1 | 3166.0 |
0.8 | SI2 | 3173.0 |
0.72 | SI2 | 3176.0 |
0.74 | VS2 | 3177.0 |
0.72 | VS2 | 3179.0 |
0.72 | VS2 | 3179.0 |
0.72 | VS2 | 3179.0 |
0.81 | SI1 | 3179.0 |
0.73 | VS2 | 3182.0 |
0.73 | VS2 | 3182.0 |
0.7 | VS1 | 3183.0 |
0.79 | SI1 | 3185.0 |
0.73 | SI1 | 3189.0 |
0.73 | SI1 | 3189.0 |
0.71 | VS1 | 3192.0 |
0.7 | VS1 | 3193.0 |
0.54 | VVS1 | 3194.0 |
0.73 | SI1 | 3195.0 |
0.8 | SI1 | 3195.0 |
0.7 | SI1 | 3199.0 |
0.71 | VS2 | 3203.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.9 | SI2 | 3205.0 |
0.72 | VS2 | 3205.0 |
0.58 | VVS1 | 3206.0 |
0.83 | SI2 | 3207.0 |
0.7 | VS1 | 3208.0 |
0.79 | SI1 | 3209.0 |
0.8 | SI2 | 3210.0 |
0.7 | VVS2 | 3210.0 |
0.71 | VS2 | 3212.0 |
0.78 | SI1 | 3214.0 |
0.7 | VS1 | 3214.0 |
0.95 | SI2 | 3214.0 |
0.71 | VS2 | 3217.0 |
0.71 | VS2 | 3217.0 |
0.71 | VS2 | 3217.0 |
0.52 | VVS1 | 3218.0 |
0.72 | VS2 | 3219.0 |
0.72 | VS2 | 3219.0 |
0.71 | VS2 | 3222.0 |
0.71 | VS2 | 3222.0 |
0.51 | VVS2 | 3223.0 |
0.8 | SI1 | 3226.0 |
0.65 | VVS2 | 3228.0 |
0.7 | VS1 | 3229.0 |
0.7 | VS1 | 3229.0 |
0.7 | VS1 | 3231.0 |
0.59 | VVS1 | 3234.0 |
0.71 | VS2 | 3234.0 |
0.72 | VS2 | 3236.0 |
0.7 | VS1 | 3239.0 |
0.7 | VS1 | 3239.0 |
0.7 | VS1 | 3239.0 |
0.77 | SI1 | 3241.0 |
0.79 | SI1 | 3242.0 |
0.71 | VS2 | 3245.0 |
0.84 | SI2 | 3246.0 |
0.25 | VS1 | 563.0 |
0.26 | VVS2 | 564.0 |
0.31 | SI1 | 565.0 |
0.31 | SI1 | 565.0 |
0.7 | VS1 | 3247.0 |
0.52 | VVS1 | 3247.0 |
0.76 | VS2 | 3248.0 |
0.73 | VS2 | 3250.0 |
0.77 | SI1 | 3251.0 |
0.71 | SI1 | 3252.0 |
0.78 | SI1 | 3253.0 |
0.73 | VS2 | 3255.0 |
0.78 | SI1 | 3258.0 |
0.9 | SI2 | 3262.0 |
0.71 | SI1 | 3262.0 |
0.84 | SI1 | 3265.0 |
0.81 | SI1 | 3266.0 |
0.7 | VVS2 | 3267.0 |
0.56 | VVS1 | 3270.0 |
0.79 | SI1 | 3270.0 |
0.72 | VS2 | 3275.0 |
0.92 | SI2 | 3277.0 |
0.7 | VS1 | 3278.0 |
0.52 | VVS2 | 3284.0 |
0.86 | SI2 | 3284.0 |
0.7 | VS1 | 3287.0 |
0.7 | VS1 | 3287.0 |
0.77 | VS2 | 3291.0 |
0.76 | VS2 | 3293.0 |
0.74 | VS2 | 3294.0 |
0.7 | VVS2 | 3296.0 |
0.91 | SI2 | 3298.0 |
0.78 | VS2 | 3298.0 |
0.78 | VS2 | 3298.0 |
0.71 | VS2 | 3299.0 |
1.0 | SI2 | 3304.0 |
1.0 | SI2 | 3304.0 |
1.0 | SI2 | 3304.0 |
0.76 | VS2 | 3306.0 |
0.76 | SI1 | 3306.0 |
0.53 | VVS1 | 3307.0 |
0.73 | VS2 | 3308.0 |
0.77 | SI1 | 3309.0 |
0.31 | SI1 | 565.0 |
0.31 | SI1 | 565.0 |
0.8 | SI1 | 3312.0 |
0.7 | VVS2 | 3312.0 |
0.8 | SI1 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.7 | VVS2 | 3312.0 |
0.9 | SI2 | 3312.0 |
0.71 | SI1 | 3316.0 |
0.73 | VS2 | 3319.0 |
0.52 | VVS1 | 3321.0 |
0.71 | VS2 | 3321.0 |
0.71 | VS2 | 3321.0 |
0.72 | SI1 | 3322.0 |
0.81 | SI1 | 3324.0 |
0.78 | SI1 | 3326.0 |
0.79 | SI1 | 3328.0 |
0.71 | VS1 | 3332.0 |
0.71 | VS1 | 3333.0 |
0.92 | SI2 | 3335.0 |
0.7 | VS1 | 3335.0 |
0.61 | VVS2 | 3336.0 |
1.01 | SI2 | 3337.0 |
0.77 | SI1 | 3345.0 |
0.53 | VVS2 | 3346.0 |
0.73 | VS2 | 3346.0 |
0.83 | SI1 | 3347.0 |
0.91 | SI2 | 3349.0 |
0.77 | VS2 | 3351.0 |
0.76 | VS2 | 3352.0 |
0.74 | VS2 | 3353.0 |
0.76 | VS1 | 3353.0 |
0.81 | SI1 | 3353.0 |
0.82 | SI2 | 3357.0 |
0.91 | SI1 | 3357.0 |
0.7 | VS2 | 3360.0 |
0.7 | VS1 | 3361.0 |
0.7 | VS1 | 3365.0 |
0.74 | VS1 | 3365.0 |
0.71 | VS2 | 3366.0 |
0.69 | VVS2 | 3369.0 |
0.9 | SI2 | 3371.0 |
0.9 | SI2 | 3371.0 |
0.71 | VS2 | 3372.0 |
0.52 | VVS1 | 3373.0 |
0.7 | VS1 | 3375.0 |
0.72 | VS1 | 3375.0 |
0.5 | IF | 3378.0 |
0.5 | IF | 3378.0 |
0.6 | VVS2 | 3382.0 |
0.27 | VS2 | 567.0 |
0.31 | VS2 | 567.0 |
0.33 | SI1 | 567.0 |
0.33 | SI1 | 567.0 |
0.33 | SI1 | 567.0 |
0.3 | VS2 | 568.0 |
0.9 | SI1 | 3382.0 |
0.95 | SI2 | 3384.0 |
0.76 | VS2 | 3384.0 |
0.78 | SI1 | 3389.0 |
0.88 | SI2 | 3390.0 |
0.61 | VVS2 | 3397.0 |
0.85 | SI2 | 3398.0 |
0.76 | VS2 | 3401.0 |
0.91 | SI2 | 3403.0 |
0.71 | VS1 | 3406.0 |
0.71 | VS1 | 3406.0 |
0.91 | SI2 | 3408.0 |
0.7 | VS1 | 3410.0 |
0.73 | VS2 | 3411.0 |
0.73 | VS2 | 3412.0 |
0.8 | VS2 | 3419.0 |
0.7 | VS1 | 3419.0 |
0.96 | SI2 | 3419.0 |
0.96 | SI2 | 3419.0 |
0.71 | VS1 | 3420.0 |
0.9 | SI2 | 3425.0 |
0.7 | VS1 | 3425.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.77 | VS2 | 3428.0 |
0.79 | SI1 | 3432.0 |
0.73 | VS2 | 3440.0 |
0.8 | SI1 | 3441.0 |
0.53 | VVS1 | 3442.0 |
0.77 | VS2 | 3442.0 |
0.76 | VS2 | 3443.0 |
0.76 | VS2 | 3443.0 |
0.51 | IF | 3446.0 |
0.51 | IF | 3446.0 |
0.7 | VS2 | 3448.0 |
0.72 | VS2 | 3450.0 |
0.3 | VS2 | 568.0 |
0.74 | VS2 | 3454.0 |
0.78 | SI2 | 3454.0 |
0.7 | SI1 | 3454.0 |
0.75 | VS2 | 3456.0 |
0.72 | VVS2 | 3459.0 |
0.74 | VS1 | 3461.0 |
0.81 | SI1 | 3462.0 |
0.91 | SI2 | 3463.0 |
0.7 | VS1 | 3463.0 |
0.73 | VS2 | 3464.0 |
0.56 | VVS1 | 3465.0 |
0.71 | VS1 | 3465.0 |
0.73 | VS2 | 3467.0 |
0.55 | VVS2 | 3468.0 |
0.55 | VVS2 | 3468.0 |
0.55 | VVS2 | 3468.0 |
0.7 | VS1 | 3471.0 |
0.7 | SI1 | 3471.0 |
0.7 | SI1 | 3471.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.9 | SI2 | 3473.0 |
0.78 | VS2 | 3473.0 |
0.74 | VS2 | 3476.0 |
0.7 | VS1 | 3477.0 |
0.71 | VS1 | 3479.0 |
0.96 | SI2 | 3480.0 |
0.74 | VS2 | 3487.0 |
0.77 | VS2 | 3489.0 |
0.77 | VS2 | 3489.0 |
0.72 | VS2 | 3493.0 |
0.54 | VVS1 | 3494.0 |
0.72 | VS2 | 3495.0 |
0.56 | VVS1 | 3496.0 |
0.74 | VS2 | 3498.0 |
0.7 | VS1 | 3501.0 |
0.8 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.71 | SI1 | 3502.0 |
0.9 | SI1 | 3505.0 |
0.55 | IF | 3509.0 |
0.73 | VS1 | 3509.0 |
0.91 | SI2 | 3511.0 |
0.74 | SI1 | 3517.0 |
0.53 | IF | 3517.0 |
0.71 | VS1 | 3518.0 |
0.72 | VS1 | 3522.0 |
0.71 | VS1 | 3524.0 |
0.73 | VS2 | 3528.0 |
0.7 | VS1 | 3529.0 |
0.32 | SI2 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.9 | SI2 | 3534.0 |
0.78 | VS2 | 3534.0 |
0.7 | VS1 | 3535.0 |
0.93 | SI2 | 3540.0 |
0.71 | VS2 | 3540.0 |
0.72 | VS2 | 3543.0 |
0.72 | SI1 | 3550.0 |
0.92 | SI2 | 3550.0 |
0.72 | VS1 | 3554.0 |
0.83 | SI1 | 3556.0 |
0.83 | SI1 | 3556.0 |
0.73 | VS1 | 3557.0 |
0.7 | VS2 | 3561.0 |
0.75 | VS2 | 3562.0 |
0.8 | SI1 | 3564.0 |
0.9 | SI1 | 3567.0 |
0.7 | VS1 | 3567.0 |
0.9 | SI1 | 3568.0 |
0.72 | SI1 | 3568.0 |
1.0 | SI2 | 3569.0 |
0.72 | VS1 | 3570.0 |
0.6 | VVS1 | 3570.0 |
0.91 | SI2 | 3573.0 |
0.71 | VS1 | 3576.0 |
0.9 | SI2 | 3578.0 |
0.9 | SI2 | 3579.0 |
0.76 | VS2 | 3581.0 |
0.71 | VS1 | 3582.0 |
0.97 | SI2 | 3585.0 |
1.11 | I1 | 3589.0 |
0.82 | SI1 | 3593.0 |
0.78 | VS2 | 3595.0 |
0.8 | SI1 | 3597.0 |
0.72 | VS1 | 3601.0 |
1.01 | SI2 | 3604.0 |
0.9 | VS2 | 3604.0 |
1.01 | SI2 | 3605.0 |
0.79 | SI1 | 3605.0 |
1.03 | SI2 | 3607.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.92 | SI2 | 3613.0 |
0.73 | SI1 | 3615.0 |
0.7 | VS1 | 3618.0 |
0.7 | VS1 | 3618.0 |
0.71 | VVS2 | 3618.0 |
0.72 | VS1 | 3619.0 |
0.73 | VS1 | 3620.0 |
0.7 | VVS2 | 3622.0 |
0.7 | VVS2 | 3622.0 |
0.72 | VS1 | 3622.0 |
0.72 | VS1 | 3622.0 |
0.75 | VS2 | 3625.0 |
0.61 | VVS1 | 3625.0 |
0.72 | VS1 | 3629.0 |
0.9 | SI2 | 3632.0 |
0.94 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
1.0 | SI2 | 3634.0 |
0.9 | SI2 | 3643.0 |
0.77 | VS1 | 3643.0 |
1.16 | I1 | 3644.0 |
0.77 | VS1 | 3644.0 |
1.11 | I1 | 3655.0 |
0.91 | SI2 | 3660.0 |
0.87 | SI1 | 3664.0 |
0.7 | VS2 | 3668.0 |
0.78 | VS2 | 3668.0 |
0.74 | VS2 | 3668.0 |
0.85 | SI1 | 3669.0 |
0.71 | VVS2 | 3670.0 |
1.01 | SI2 | 3671.0 |
1.01 | SI2 | 3671.0 |
0.78 | VS2 | 3672.0 |
0.73 | VS2 | 3673.0 |
0.71 | SI1 | 3674.0 |
0.71 | SI1 | 3674.0 |
1.03 | SI2 | 3675.0 |
0.75 | VS2 | 3679.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.31 | SI1 | 571.0 |
0.8 | SI2 | 3682.0 |
0.84 | SI1 | 3685.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.9 | SI1 | 3689.0 |
0.71 | VS1 | 3690.0 |
0.94 | SI2 | 3691.0 |
0.75 | VS1 | 3696.0 |
0.9 | SI2 | 3706.0 |
0.92 | SI2 | 3707.0 |
0.86 | SI1 | 3709.0 |
1.16 | I1 | 3711.0 |
0.75 | SI1 | 3712.0 |
0.71 | VS1 | 3716.0 |
0.71 | VS1 | 3718.0 |
0.77 | VS2 | 3721.0 |
0.72 | SI1 | 3722.0 |
0.91 | SI1 | 3730.0 |
0.91 | SI1 | 3730.0 |
0.91 | SI1 | 3730.0 |
0.58 | VVS1 | 3732.0 |
0.76 | SI1 | 3732.0 |
0.73 | VS2 | 3735.0 |
0.78 | VS2 | 3736.0 |
0.7 | VVS2 | 3737.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.9 | SI2 | 3740.0 |
0.58 | VVS1 | 3741.0 |
0.87 | SI1 | 3742.0 |
1.09 | SI2 | 3742.0 |
1.03 | SI2 | 3743.0 |
1.03 | SI2 | 3743.0 |
0.93 | SI2 | 3744.0 |
0.74 | VS1 | 3746.0 |
0.3 | SI2 | 574.0 |
0.9 | SI1 | 3751.0 |
0.7 | VS1 | 3752.0 |
0.9 | SI1 | 3755.0 |
0.9 | SI1 | 3755.0 |
0.77 | VS2 | 3755.0 |
0.61 | VVS2 | 3758.0 |
0.78 | VS2 | 3763.0 |
0.91 | SI2 | 3763.0 |
1.0 | SI2 | 3767.0 |
1.02 | I1 | 3769.0 |
1.02 | SI2 | 3773.0 |
0.83 | SI2 | 3774.0 |
1.04 | SI2 | 3780.0 |
1.04 | SI2 | 3780.0 |
0.9 | SI2 | 3780.0 |
1.04 | SI2 | 3780.0 |
1.5 | I1 | 3780.0 |
0.91 | SI2 | 3781.0 |
0.91 | SI2 | 3781.0 |
0.77 | VS2 | 3787.0 |
0.7 | VS2 | 3788.0 |
0.9 | SI2 | 3789.0 |
0.59 | VVS1 | 3791.0 |
0.91 | SI1 | 3796.0 |
0.79 | VS1 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.9 | SI2 | 3798.0 |
0.71 | VVS2 | 3799.0 |
0.78 | VS1 | 3800.0 |
0.71 | VS1 | 3801.0 |
0.9 | SI2 | 3806.0 |
0.9 | SI2 | 3806.0 |
0.9 | SI2 | 3806.0 |
0.84 | SI1 | 3809.0 |
0.78 | VS2 | 3811.0 |
0.74 | VS1 | 3812.0 |
0.53 | IF | 3812.0 |
0.93 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.9 | SI1 | 3812.0 |
0.93 | SI1 | 3812.0 |
0.74 | VS1 | 3813.0 |
1.18 | I1 | 3816.0 |
0.84 | SI1 | 3816.0 |
1.05 | SI2 | 3816.0 |
0.79 | VS2 | 3818.0 |
0.9 | SI2 | 3818.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.85 | VS2 | 3821.0 |
0.92 | SI2 | 3823.0 |
0.53 | IF | 3827.0 |
0.91 | SI2 | 3828.0 |
0.63 | IF | 3832.0 |
0.91 | SI2 | 3837.0 |
0.77 | VS2 | 3837.0 |
0.71 | VS2 | 3838.0 |
1.02 | I1 | 3838.0 |
1.02 | SI2 | 3839.0 |
0.93 | SI2 | 3839.0 |
0.7 | VS1 | 3840.0 |
1.02 | SI2 | 3842.0 |
0.92 | SI2 | 3843.0 |
0.9 | SI2 | 3847.0 |
0.91 | SI2 | 3848.0 |
0.91 | SI2 | 3848.0 |
0.91 | SI2 | 3848.0 |
0.6 | VVS1 | 3850.0 |
0.81 | SI1 | 3852.0 |
0.91 | SI1 | 3855.0 |
0.73 | VS1 | 3856.0 |
0.71 | VVS2 | 3856.0 |
0.74 | VS2 | 3858.0 |
0.94 | SI2 | 3862.0 |
0.78 | VS2 | 3864.0 |
1.17 | SI2 | 3866.0 |
0.9 | SI2 | 3871.0 |
1.01 | SI2 | 3871.0 |
0.87 | VS2 | 3873.0 |
0.92 | SI2 | 3877.0 |
0.71 | VVS2 | 3877.0 |
0.9 | SI1 | 3880.0 |
0.9 | SI1 | 3880.0 |
0.9 | SI1 | 3880.0 |
0.93 | SI1 | 3880.0 |
1.13 | SI2 | 3883.0 |
1.18 | I1 | 3886.0 |
0.91 | SI2 | 3889.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.3 | SI2 | 574.0 |
0.25 | VVS2 | 575.0 |
0.27 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
1.09 | SI2 | 3890.0 |
0.92 | SI2 | 3891.0 |
1.0 | SI2 | 3894.0 |
0.76 | VS1 | 3894.0 |
0.72 | VS1 | 3896.0 |
1.18 | SI2 | 3899.0 |
1.02 | SI2 | 3909.0 |
1.02 | SI2 | 3909.0 |
0.91 | SI2 | 3910.0 |
0.91 | SI2 | 3911.0 |
0.66 | VVS2 | 3915.0 |
0.92 | SI2 | 3916.0 |
0.9 | SI2 | 3918.0 |
0.7 | VVS1 | 3920.0 |
0.78 | VS1 | 3923.0 |
0.9 | VS2 | 3931.0 |
1.01 | SI2 | 3932.0 |
0.83 | SI1 | 3933.0 |
0.92 | SI2 | 3936.0 |
0.73 | VS1 | 3937.0 |
0.91 | SI2 | 3943.0 |
0.9 | SI1 | 3945.0 |
0.91 | SI2 | 3949.0 |
1.14 | I1 | 3950.0 |
0.76 | VS1 | 3950.0 |
0.71 | VVS1 | 3952.0 |
0.91 | SI2 | 3958.0 |
1.01 | SI2 | 3959.0 |
0.75 | VS1 | 3961.0 |
1.09 | SI2 | 3961.0 |
0.88 | SI2 | 3962.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
1.0 | SI2 | 3965.0 |
0.33 | SI1 | 575.0 |
1.0 | SI2 | 3965.0 |
0.77 | VS1 | 3966.0 |
0.62 | VVS1 | 3968.0 |
1.02 | SI2 | 3971.0 |
0.9 | SI2 | 3975.0 |
0.9 | SI2 | 3975.0 |
1.23 | I1 | 3977.0 |
0.77 | VS2 | 3980.0 |
0.73 | VS2 | 3980.0 |
0.83 | VS1 | 3984.0 |
0.9 | SI2 | 3989.0 |
0.96 | SI2 | 3989.0 |
0.9 | SI2 | 3990.0 |
0.93 | SI2 | 3990.0 |
0.83 | SI1 | 3990.0 |
0.92 | SI2 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.9 | SI1 | 3997.0 |
0.7 | VS1 | 4003.0 |
1.01 | SI2 | 4004.0 |
0.75 | VS1 | 4007.0 |
0.9 | SI2 | 4007.0 |
0.9 | SI2 | 4007.0 |
0.87 | SI2 | 4012.0 |
0.71 | VVS2 | 4014.0 |
0.7 | VVS2 | 4022.0 |
0.65 | VVS1 | 4022.0 |
1.14 | I1 | 4022.0 |
0.56 | IF | 4025.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.71 | VS2 | 4029.0 |
0.57 | IF | 4032.0 |
0.77 | VS1 | 4037.0 |
0.77 | VS1 | 4039.0 |
0.74 | VVS2 | 4040.0 |
0.91 | SI1 | 4041.0 |
0.54 | VVS1 | 4042.0 |
1.02 | SI2 | 4044.0 |
1.02 | SI2 | 4044.0 |
1.02 | SI2 | 4044.0 |
0.72 | VS1 | 4047.0 |
1.23 | I1 | 4050.0 |
0.91 | SI2 | 4051.0 |
0.91 | SI2 | 4051.0 |
0.91 | SI2 | 4051.0 |
0.96 | SI2 | 4060.0 |
1.01 | SI2 | 4064.0 |
1.0 | SI2 | 4065.0 |
0.91 | SI2 | 4067.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
0.9 | SI1 | 4068.0 |
1.12 | SI2 | 4071.0 |
1.01 | SI2 | 4072.0 |
0.9 | SI2 | 4078.0 |
0.9 | SI2 | 4078.0 |
0.9 | SI2 | 4078.0 |
0.72 | VS2 | 4082.0 |
0.72 | VS2 | 4082.0 |
0.64 | VVS1 | 4084.0 |
0.92 | SI1 | 4086.0 |
0.81 | VS2 | 4087.0 |
0.7 | VS1 | 4095.0 |
0.92 | SI2 | 4096.0 |
0.92 | SI2 | 4096.0 |
0.25 | VS1 | 410.0 |
0.23 | VS2 | 411.0 |
0.27 | VS1 | 413.0 |
0.3 | SI2 | 413.0 |
0.3 | SI2 | 413.0 |
0.23 | VS2 | 577.0 |
0.91 | VS2 | 4107.0 |
0.91 | VS2 | 4107.0 |
0.87 | SI1 | 4108.0 |
0.91 | SI1 | 4113.0 |
0.82 | SI1 | 4113.0 |
0.9 | SI2 | 4114.0 |
0.73 | VS1 | 4116.0 |
0.9 | SI1 | 4117.0 |
1.01 | SI1 | 4118.0 |
0.9 | SI1 | 4120.0 |
0.91 | SI2 | 4123.0 |
0.91 | SI2 | 4123.0 |
0.91 | SI2 | 4123.0 |
1.04 | SI2 | 4123.0 |
0.9 | VS2 | 4128.0 |
0.9 | SI1 | 4130.0 |
0.9 | SI2 | 4133.0 |
0.73 | VS2 | 4134.0 |
0.73 | VS2 | 4134.0 |
0.82 | SI1 | 4135.0 |
0.82 | SI1 | 4135.0 |
1.12 | I1 | 4139.0 |
0.93 | SI2 | 4140.0 |
0.93 | SI2 | 4140.0 |
0.92 | SI2 | 4150.0 |
0.76 | VVS2 | 4150.0 |
1.0 | SI1 | 4155.0 |
1.06 | SI2 | 4155.0 |
0.92 | SI1 | 4158.0 |
0.92 | SI1 | 4158.0 |
0.83 | SI1 | 4159.0 |
0.59 | IF | 4161.0 |
0.93 | SI2 | 4165.0 |
0.91 | SI1 | 4165.0 |
0.9 | SI2 | 4167.0 |
0.92 | SI2 | 4168.0 |
0.92 | SI2 | 4168.0 |
1.19 | SI2 | 4168.0 |
0.8 | VS2 | 4170.0 |
0.6 | VVS1 | 4172.0 |
1.03 | SI2 | 4177.0 |
0.9 | SI1 | 4178.0 |
//renaming a field using as
display(spark.sql("SELECT carat AS carrot, clarity, price FROM diamonds"))
carrot | clarity | price |
---|---|---|
0.23 | SI2 | 326.0 |
0.21 | SI1 | 326.0 |
0.23 | VS1 | 327.0 |
0.29 | VS2 | 334.0 |
0.31 | SI2 | 335.0 |
0.24 | VVS2 | 336.0 |
0.24 | VVS1 | 336.0 |
0.26 | SI1 | 337.0 |
0.22 | VS2 | 337.0 |
0.23 | VS1 | 338.0 |
0.3 | SI1 | 339.0 |
0.23 | VS1 | 340.0 |
0.22 | SI1 | 342.0 |
0.31 | SI2 | 344.0 |
0.2 | SI2 | 345.0 |
0.32 | I1 | 345.0 |
0.3 | SI2 | 348.0 |
0.3 | SI1 | 351.0 |
0.3 | SI1 | 351.0 |
0.3 | SI1 | 351.0 |
0.3 | SI2 | 351.0 |
0.23 | VS2 | 352.0 |
0.23 | VS1 | 353.0 |
0.31 | SI1 | 353.0 |
0.31 | SI1 | 353.0 |
0.23 | VVS2 | 354.0 |
0.24 | VS1 | 355.0 |
0.3 | VS2 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.31 | SI1 | 402.0 |
0.26 | VS2 | 403.0 |
0.33 | SI2 | 403.0 |
0.33 | SI2 | 403.0 |
0.33 | SI1 | 403.0 |
0.26 | VS2 | 403.0 |
0.26 | VS1 | 403.0 |
0.32 | SI2 | 403.0 |
0.29 | SI1 | 403.0 |
0.32 | SI2 | 403.0 |
0.32 | SI2 | 403.0 |
0.25 | VS2 | 404.0 |
0.29 | SI2 | 404.0 |
0.24 | SI1 | 404.0 |
0.23 | VS1 | 404.0 |
0.32 | SI1 | 404.0 |
0.22 | VS2 | 404.0 |
0.22 | VS2 | 404.0 |
0.3 | SI2 | 405.0 |
0.3 | SI2 | 405.0 |
0.3 | SI1 | 405.0 |
0.3 | SI1 | 405.0 |
0.3 | SI1 | 405.0 |
0.35 | VS1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.3 | SI1 | 552.0 |
0.42 | SI2 | 552.0 |
0.28 | VVS2 | 553.0 |
0.32 | VVS1 | 553.0 |
0.31 | SI1 | 553.0 |
0.31 | SI1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.38 | SI2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS2 | 554.0 |
0.32 | SI1 | 554.0 |
0.7 | SI1 | 2757.0 |
0.86 | SI2 | 2757.0 |
0.7 | VS2 | 2757.0 |
0.71 | VS2 | 2759.0 |
0.78 | SI2 | 2759.0 |
0.7 | VS2 | 2759.0 |
0.7 | VS1 | 2759.0 |
0.96 | SI2 | 2759.0 |
0.73 | SI1 | 2760.0 |
0.8 | SI1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.74 | SI1 | 2760.0 |
0.75 | VS2 | 2760.0 |
0.8 | VS1 | 2760.0 |
0.75 | SI1 | 2760.0 |
0.8 | SI1 | 2760.0 |
0.74 | VVS2 | 2761.0 |
0.81 | SI2 | 2761.0 |
0.59 | VVS2 | 2761.0 |
0.8 | SI2 | 2761.0 |
0.74 | SI2 | 2761.0 |
0.9 | VS2 | 2761.0 |
0.74 | SI1 | 2762.0 |
0.73 | VS2 | 2762.0 |
0.73 | VS2 | 2762.0 |
0.8 | SI2 | 2762.0 |
0.71 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.8 | SI2 | 2762.0 |
0.71 | SI2 | 2762.0 |
0.74 | SI1 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.7 | VS2 | 2762.0 |
0.91 | SI1 | 2763.0 |
0.61 | VVS2 | 2763.0 |
0.91 | SI2 | 2763.0 |
0.91 | SI2 | 2763.0 |
0.77 | VS2 | 2763.0 |
0.71 | SI1 | 2764.0 |
0.71 | SI1 | 2764.0 |
0.7 | VS2 | 2765.0 |
0.77 | VS1 | 2765.0 |
0.63 | VVS1 | 2765.0 |
0.71 | VS1 | 2765.0 |
0.71 | VS1 | 2765.0 |
0.76 | SI1 | 2765.0 |
0.64 | VVS1 | 2766.0 |
0.71 | VS2 | 2766.0 |
0.71 | VS2 | 2766.0 |
0.7 | VS2 | 2767.0 |
0.7 | VS1 | 2767.0 |
0.71 | SI2 | 2767.0 |
0.7 | VVS2 | 2767.0 |
0.71 | VS1 | 2768.0 |
0.73 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.7 | SI1 | 2768.0 |
0.71 | SI2 | 2768.0 |
0.74 | SI1 | 2769.0 |
0.71 | VS2 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.76 | SI1 | 2770.0 |
0.76 | SI2 | 2770.0 |
0.71 | SI1 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.73 | VS1 | 2770.0 |
0.73 | SI2 | 2770.0 |
0.73 | VS2 | 2770.0 |
0.72 | VVS2 | 2771.0 |
0.73 | SI1 | 2771.0 |
0.71 | VS2 | 2771.0 |
0.79 | SI2 | 2771.0 |
0.73 | VVS1 | 2772.0 |
0.8 | SI2 | 2772.0 |
0.58 | VVS1 | 2772.0 |
0.58 | VVS1 | 2772.0 |
0.71 | VS2 | 2772.0 |
0.75 | SI2 | 2773.0 |
0.7 | VS2 | 2773.0 |
1.17 | I1 | 2774.0 |
0.6 | VS1 | 2774.0 |
0.7 | SI1 | 2774.0 |
0.83 | VS2 | 2774.0 |
0.74 | VS2 | 2775.0 |
0.72 | VS2 | 2776.0 |
0.71 | VS2 | 2776.0 |
0.71 | VS2 | 2776.0 |
0.54 | VVS2 | 2776.0 |
0.54 | VVS2 | 2776.0 |
0.72 | SI1 | 2776.0 |
0.72 | SI1 | 2776.0 |
0.72 | VS2 | 2776.0 |
0.71 | SI1 | 2776.0 |
0.7 | VS1 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.71 | VS2 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.72 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.7 | VS2 | 2777.0 |
0.98 | SI2 | 2777.0 |
0.78 | SI1 | 2777.0 |
0.7 | SI1 | 2777.0 |
0.52 | VVS1 | 2778.0 |
0.73 | VS2 | 2779.0 |
0.74 | SI1 | 2779.0 |
0.7 | VS2 | 2780.0 |
0.77 | VS2 | 2780.0 |
0.71 | VS2 | 2780.0 |
0.74 | VS1 | 2780.0 |
0.7 | VS1 | 2780.0 |
1.01 | I1 | 2781.0 |
0.77 | SI1 | 2781.0 |
0.78 | SI1 | 2781.0 |
0.72 | VS1 | 2782.0 |
0.53 | VVS2 | 2782.0 |
0.76 | VS2 | 2782.0 |
0.7 | VS1 | 2782.0 |
0.7 | VS1 | 2782.0 |
0.75 | SI2 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.72 | SI1 | 2782.0 |
0.7 | SI1 | 2782.0 |
0.84 | SI1 | 2782.0 |
0.75 | SI1 | 2782.0 |
0.52 | IF | 2783.0 |
0.72 | VS2 | 2784.0 |
0.79 | VS1 | 2784.0 |
0.72 | VS2 | 2787.0 |
0.51 | VVS1 | 2787.0 |
0.64 | VS1 | 2787.0 |
0.7 | VVS1 | 2788.0 |
0.83 | VS1 | 2788.0 |
0.76 | VVS2 | 2788.0 |
0.71 | VS2 | 2788.0 |
0.77 | VS1 | 2788.0 |
0.71 | SI1 | 2788.0 |
1.01 | I1 | 2788.0 |
1.01 | SI2 | 2788.0 |
0.77 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
0.76 | SI1 | 2789.0 |
1.05 | SI2 | 2789.0 |
0.81 | SI2 | 2789.0 |
0.7 | SI1 | 2789.0 |
0.55 | IF | 2789.0 |
0.81 | SI2 | 2789.0 |
0.63 | VVS2 | 2789.0 |
0.63 | VVS1 | 2789.0 |
0.77 | VS1 | 2789.0 |
1.05 | SI2 | 2789.0 |
0.64 | IF | 2790.0 |
0.76 | VVS1 | 2790.0 |
0.83 | SI2 | 2790.0 |
0.71 | VS1 | 2790.0 |
0.71 | VS1 | 2790.0 |
0.87 | SI1 | 2791.0 |
0.73 | SI1 | 2791.0 |
0.71 | SI1 | 2792.0 |
0.71 | SI1 | 2792.0 |
0.71 | SI1 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.76 | VVS2 | 2792.0 |
0.7 | VS1 | 2792.0 |
0.79 | SI1 | 2793.0 |
0.7 | VS2 | 2793.0 |
0.7 | VS2 | 2793.0 |
0.76 | VS2 | 2793.0 |
0.73 | VS2 | 2793.0 |
0.79 | SI1 | 2794.0 |
0.71 | VS2 | 2795.0 |
0.81 | VVS2 | 2795.0 |
0.81 | SI2 | 2795.0 |
0.72 | VS1 | 2795.0 |
0.72 | SI2 | 2795.0 |
0.72 | IF | 2795.0 |
0.81 | VS2 | 2795.0 |
0.72 | VS2 | 2795.0 |
1.0 | SI2 | 2795.0 |
0.73 | SI1 | 2796.0 |
0.81 | SI2 | 2797.0 |
0.81 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.71 | SI1 | 2797.0 |
0.57 | VVS2 | 2797.0 |
0.51 | VVS1 | 2797.0 |
0.72 | VS2 | 2797.0 |
0.74 | VS1 | 2797.0 |
0.74 | VS1 | 2797.0 |
0.7 | VVS1 | 2797.0 |
0.8 | SI2 | 2797.0 |
1.01 | SI2 | 2797.0 |
0.8 | VS2 | 2797.0 |
0.77 | VS1 | 2798.0 |
0.83 | SI2 | 2799.0 |
0.82 | SI2 | 2799.0 |
0.78 | SI1 | 2799.0 |
0.6 | IF | 2800.0 |
0.9 | SI2 | 2800.0 |
0.7 | VS1 | 2800.0 |
0.9 | SI2 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.83 | SI1 | 2800.0 |
0.74 | VS1 | 2800.0 |
0.79 | VS1 | 2800.0 |
0.61 | IF | 2800.0 |
0.76 | VS1 | 2800.0 |
0.96 | I1 | 2801.0 |
0.73 | VS2 | 2801.0 |
0.73 | VS2 | 2801.0 |
0.75 | SI1 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
0.71 | VS2 | 2801.0 |
1.04 | I1 | 2801.0 |
1.0 | SI2 | 2801.0 |
0.87 | SI2 | 2802.0 |
0.53 | IF | 2802.0 |
0.72 | VS2 | 2802.0 |
0.72 | VS1 | 2802.0 |
0.7 | VS2 | 2803.0 |
0.74 | SI1 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.73 | SI1 | 2803.0 |
0.7 | VS1 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.71 | VS1 | 2803.0 |
0.77 | VS2 | 2803.0 |
0.71 | VS2 | 2803.0 |
0.78 | VS2 | 2803.0 |
0.71 | VS1 | 2803.0 |
0.91 | SI2 | 2803.0 |
0.71 | VS2 | 2804.0 |
0.71 | VS2 | 2804.0 |
0.8 | SI2 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | VS1 | 2804.0 |
0.72 | VS1 | 2804.0 |
0.82 | VS2 | 2804.0 |
0.7 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.72 | SI1 | 2804.0 |
0.9 | SI1 | 2804.0 |
0.74 | VS2 | 2805.0 |
0.74 | VS2 | 2805.0 |
0.73 | SI2 | 2805.0 |
0.57 | VVS1 | 2805.0 |
0.73 | VS2 | 2805.0 |
0.72 | VS2 | 2805.0 |
0.74 | VS2 | 2805.0 |
0.82 | VS2 | 2805.0 |
0.81 | SI1 | 2806.0 |
0.75 | VVS1 | 2806.0 |
0.7 | SI1 | 2806.0 |
0.71 | VS1 | 2807.0 |
0.71 | VS1 | 2807.0 |
0.93 | SI2 | 2807.0 |
0.8 | VS2 | 2808.0 |
0.7 | VS1 | 2808.0 |
1.0 | I1 | 2808.0 |
0.75 | VS2 | 2808.0 |
0.58 | VVS2 | 2808.0 |
0.73 | SI1 | 2808.0 |
0.81 | SI1 | 2809.0 |
0.81 | SI2 | 2809.0 |
0.71 | SI1 | 2809.0 |
1.2 | I1 | 2809.0 |
0.7 | VS1 | 2810.0 |
0.7 | VS1 | 2810.0 |
0.74 | SI2 | 2810.0 |
0.7 | VS1 | 2810.0 |
0.8 | SI1 | 2810.0 |
0.75 | SI1 | 2811.0 |
0.83 | SI1 | 2811.0 |
1.0 | VS2 | 2811.0 |
0.99 | SI2 | 2811.0 |
0.7 | VS1 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.7 | SI1 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.3 | SI1 | 554.0 |
0.32 | SI1 | 554.0 |
0.33 | SI2 | 554.0 |
0.29 | VS1 | 555.0 |
0.29 | VS1 | 555.0 |
0.31 | SI1 | 555.0 |
0.34 | VS2 | 555.0 |
0.34 | VS2 | 555.0 |
0.34 | VS1 | 555.0 |
0.34 | VS1 | 555.0 |
0.3 | VS1 | 555.0 |
0.29 | VS1 | 555.0 |
0.35 | SI1 | 555.0 |
0.43 | I1 | 555.0 |
0.32 | VS2 | 556.0 |
0.36 | VS2 | 556.0 |
0.3 | VS2 | 556.0 |
0.26 | VS1 | 556.0 |
0.7 | VS2 | 2812.0 |
0.7 | VS2 | 2812.0 |
0.71 | SI1 | 2812.0 |
0.99 | SI1 | 2812.0 |
0.73 | VS2 | 2812.0 |
0.51 | VVS1 | 2812.0 |
0.91 | SI2 | 2813.0 |
0.84 | SI1 | 2813.0 |
0.91 | VS2 | 2813.0 |
0.76 | SI1 | 2814.0 |
0.76 | SI1 | 2814.0 |
0.75 | SI1 | 2814.0 |
0.55 | VVS1 | 2815.0 |
0.76 | SI2 | 2815.0 |
0.74 | VS1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.7 | SI1 | 2815.0 |
0.9 | VS2 | 2815.0 |
0.95 | SI2 | 2815.0 |
0.89 | SI2 | 2815.0 |
0.72 | VS2 | 2815.0 |
0.96 | SI2 | 2815.0 |
1.02 | I1 | 2815.0 |
0.78 | VVS2 | 2816.0 |
0.61 | VVS2 | 2816.0 |
0.71 | VS1 | 2816.0 |
0.78 | SI1 | 2816.0 |
0.87 | SI2 | 2816.0 |
0.83 | SI1 | 2816.0 |
0.71 | SI1 | 2817.0 |
0.71 | VVS2 | 2817.0 |
0.71 | VS2 | 2817.0 |
0.71 | VS2 | 2817.0 |
0.63 | VVS2 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.9 | VS2 | 2817.0 |
0.71 | SI1 | 2817.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS2 | 2818.0 |
1.0 | I1 | 2818.0 |
0.86 | SI2 | 2818.0 |
0.8 | SI1 | 2818.0 |
0.7 | VS1 | 2818.0 |
0.7 | VS1 | 2818.0 |
0.7 | VS2 | 2818.0 |
0.7 | VS1 | 2818.0 |
1.0 | SI2 | 2818.0 |
0.72 | VS1 | 2819.0 |
0.72 | VS1 | 2819.0 |
0.7 | VS1 | 2819.0 |
0.86 | SI2 | 2819.0 |
0.71 | VS1 | 2820.0 |
0.75 | SI1 | 2821.0 |
0.73 | VS2 | 2821.0 |
0.53 | VVS1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.73 | SI1 | 2821.0 |
0.7 | VS1 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.72 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.6 | VVS2 | 2822.0 |
0.74 | VVS1 | 2822.0 |
0.73 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.9 | VS2 | 2822.0 |
0.71 | SI1 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | VS2 | 2822.0 |
0.7 | SI1 | 2822.0 |
0.79 | SI2 | 2823.0 |
0.9 | SI1 | 2823.0 |
0.71 | VS2 | 2823.0 |
0.61 | VVS2 | 2823.0 |
0.9 | SI2 | 2823.0 |
0.71 | SI1 | 2823.0 |
0.71 | VS2 | 2824.0 |
0.77 | VVS2 | 2824.0 |
0.74 | VS1 | 2824.0 |
0.82 | SI2 | 2824.0 |
0.82 | SI2 | 2824.0 |
0.71 | VS1 | 2825.0 |
0.83 | SI1 | 2825.0 |
0.73 | VS1 | 2825.0 |
0.83 | SI1 | 2825.0 |
1.17 | I1 | 2825.0 |
0.91 | SI2 | 2825.0 |
0.73 | VS1 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.9 | SI2 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.7 | VS2 | 2826.0 |
0.7 | VS1 | 2826.0 |
0.9 | SI2 | 2826.0 |
0.78 | SI1 | 2826.0 |
0.96 | I1 | 2826.0 |
0.7 | SI1 | 2827.0 |
0.72 | VS2 | 2827.0 |
0.79 | VVS2 | 2827.0 |
0.7 | VVS1 | 2827.0 |
0.7 | VVS1 | 2827.0 |
0.7 | SI2 | 2828.0 |
1.01 | SI2 | 2828.0 |
0.72 | VS1 | 2829.0 |
0.8 | SI2 | 2829.0 |
0.59 | VVS1 | 2829.0 |
0.72 | VS1 | 2829.0 |
0.75 | SI2 | 2829.0 |
0.8 | SI2 | 2829.0 |
0.71 | VS2 | 2830.0 |
0.77 | SI1 | 2830.0 |
0.97 | I1 | 2830.0 |
0.53 | VVS1 | 2830.0 |
0.53 | VVS1 | 2830.0 |
0.8 | VS2 | 2830.0 |
0.9 | SI1 | 2830.0 |
0.76 | SI2 | 2831.0 |
0.72 | SI1 | 2831.0 |
0.75 | SI1 | 2831.0 |
0.72 | SI1 | 2831.0 |
0.79 | SI1 | 2831.0 |
0.72 | VS2 | 2832.0 |
0.91 | SI2 | 2832.0 |
0.71 | VVS2 | 2832.0 |
0.81 | SI1 | 2832.0 |
0.82 | SI1 | 2832.0 |
0.71 | VS1 | 2832.0 |
0.9 | SI1 | 2832.0 |
0.8 | VS2 | 2833.0 |
0.56 | IF | 2833.0 |
0.7 | VS2 | 2833.0 |
0.7 | VS2 | 2833.0 |
0.61 | VVS2 | 2833.0 |
0.85 | SI2 | 2833.0 |
0.7 | SI1 | 2833.0 |
0.8 | VS2 | 2834.0 |
0.8 | VS2 | 2834.0 |
0.51 | VVS1 | 2834.0 |
0.53 | VVS1 | 2834.0 |
0.78 | VS2 | 2834.0 |
0.9 | SI1 | 2834.0 |
0.9 | SI2 | 2834.0 |
0.77 | SI2 | 2834.0 |
0.73 | VS1 | 2835.0 |
0.63 | VVS2 | 2835.0 |
0.7 | VS2 | 2835.0 |
0.72 | VS2 | 2835.0 |
0.72 | SI1 | 2835.0 |
0.75 | VS2 | 2835.0 |
0.82 | SI1 | 2836.0 |
0.71 | VS2 | 2836.0 |
0.7 | VS1 | 2837.0 |
0.7 | VS1 | 2837.0 |
0.71 | SI1 | 2838.0 |
0.76 | SI1 | 2838.0 |
0.82 | SI1 | 2838.0 |
0.72 | VS1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | SI1 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS2 | 2838.0 |
0.7 | VS1 | 2838.0 |
0.74 | SI1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.73 | VS2 | 2839.0 |
0.7 | VS2 | 2839.0 |
0.7 | VS1 | 2839.0 |
0.71 | VVS2 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.79 | VS2 | 2839.0 |
0.71 | VS1 | 2839.0 |
0.77 | VS1 | 2840.0 |
0.75 | SI2 | 2840.0 |
0.7 | SI1 | 2840.0 |
0.71 | VS2 | 2840.0 |
0.92 | SI2 | 2840.0 |
0.83 | SI2 | 2840.0 |
0.7 | VVS1 | 2840.0 |
0.73 | VS2 | 2841.0 |
0.71 | VS1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.82 | SI2 | 2841.0 |
0.52 | VVS1 | 2841.0 |
1.0 | I1 | 2841.0 |
0.95 | SI1 | 2841.0 |
0.73 | SI1 | 2841.0 |
0.73 | VS2 | 2841.0 |
0.73 | VS1 | 2841.0 |
0.8 | VS1 | 2842.0 |
0.7 | VS2 | 2842.0 |
0.7 | VS2 | 2843.0 |
0.7 | VS2 | 2843.0 |
0.71 | VS2 | 2843.0 |
0.81 | SI2 | 2843.0 |
0.71 | SI1 | 2843.0 |
0.73 | VVS2 | 2843.0 |
0.73 | VS1 | 2843.0 |
0.72 | VS2 | 2843.0 |
0.81 | SI2 | 2843.0 |
0.71 | VVS2 | 2843.0 |
0.73 | SI1 | 2844.0 |
0.7 | VS1 | 2844.0 |
1.01 | I1 | 2844.0 |
1.01 | I1 | 2844.0 |
0.79 | VS2 | 2844.0 |
0.7 | VS2 | 2845.0 |
0.7 | VS2 | 2845.0 |
0.8 | VS2 | 2845.0 |
1.27 | SI2 | 2845.0 |
0.79 | SI1 | 2846.0 |
0.72 | VS1 | 2846.0 |
0.73 | VVS2 | 2846.0 |
1.01 | SI2 | 2846.0 |
1.01 | I1 | 2846.0 |
0.73 | SI1 | 2846.0 |
0.7 | SI1 | 2846.0 |
0.7 | VS2 | 2846.0 |
0.77 | SI1 | 2846.0 |
0.77 | VS2 | 2846.0 |
0.77 | VS1 | 2846.0 |
0.84 | SI1 | 2847.0 |
0.72 | SI1 | 2847.0 |
0.76 | SI1 | 2847.0 |
0.7 | VVS2 | 2848.0 |
0.54 | VVS2 | 2848.0 |
0.75 | SI2 | 2848.0 |
0.79 | SI1 | 2849.0 |
0.74 | VS1 | 2849.0 |
0.7 | VS2 | 2850.0 |
0.7 | VS2 | 2850.0 |
0.75 | SI1 | 2850.0 |
1.2 | I1 | 2850.0 |
0.8 | SI1 | 2851.0 |
0.66 | VS1 | 2851.0 |
0.87 | SI2 | 2851.0 |
0.86 | SI1 | 2851.0 |
0.74 | SI1 | 2851.0 |
0.58 | IF | 2852.0 |
0.78 | VS1 | 2852.0 |
0.74 | SI1 | 2852.0 |
0.73 | SI1 | 2852.0 |
0.91 | SI1 | 2852.0 |
0.71 | VS2 | 2853.0 |
0.71 | VS1 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.79 | SI2 | 2853.0 |
0.71 | SI1 | 2853.0 |
0.82 | VS1 | 2853.0 |
0.78 | VS1 | 2854.0 |
0.7 | VS1 | 2854.0 |
1.12 | I1 | 2854.0 |
0.73 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | VS2 | 2854.0 |
0.91 | SI1 | 2854.0 |
0.7 | VS1 | 2854.0 |
0.68 | VVS2 | 2854.0 |
0.73 | VS2 | 2855.0 |
1.03 | SI1 | 2855.0 |
0.74 | VS2 | 2855.0 |
0.98 | SI2 | 2855.0 |
1.02 | SI1 | 2856.0 |
1.0 | SI2 | 2856.0 |
1.02 | SI2 | 2856.0 |
0.6 | VVS2 | 2856.0 |
0.8 | SI2 | 2856.0 |
0.97 | I1 | 2856.0 |
1.0 | SI1 | 2856.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.36 | SI1 | 556.0 |
0.34 | VS2 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | SI1 | 556.0 |
0.34 | VS2 | 556.0 |
0.34 | SI1 | 556.0 |
0.32 | VS2 | 556.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VVS1 | 557.0 |
0.31 | VS2 | 557.0 |
0.31 | VS1 | 557.0 |
0.31 | VS1 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | SI2 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | VS1 | 557.0 |
0.33 | SI1 | 557.0 |
0.33 | SI1 | 557.0 |
0.33 | SI1 | 557.0 |
1.0 | SI2 | 2856.0 |
0.77 | SI1 | 2856.0 |
0.77 | SI1 | 2856.0 |
0.7 | VVS2 | 2857.0 |
0.9 | SI2 | 2857.0 |
0.72 | SI1 | 2857.0 |
0.9 | VS2 | 2857.0 |
0.72 | SI1 | 2857.0 |
0.7 | VVS2 | 2858.0 |
0.81 | SI1 | 2858.0 |
0.81 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.92 | SI1 | 2858.0 |
0.76 | SI1 | 2858.0 |
0.73 | SI1 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VVS2 | 2858.0 |
0.9 | SI2 | 2858.0 |
0.71 | VS2 | 2858.0 |
0.7 | VS2 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.77 | VS1 | 2859.0 |
0.71 | VS1 | 2859.0 |
0.7 | VS2 | 2859.0 |
0.75 | VS1 | 2859.0 |
0.83 | SI2 | 2859.0 |
0.71 | VS2 | 2860.0 |
0.9 | SI2 | 2860.0 |
0.6 | VVS2 | 2860.0 |
0.71 | VS1 | 2860.0 |
0.53 | VVS1 | 2860.0 |
0.71 | SI1 | 2861.0 |
0.62 | VVS2 | 2861.0 |
0.62 | VVS2 | 2861.0 |
0.9 | SI1 | 2861.0 |
0.62 | IF | 2861.0 |
0.82 | SI2 | 2861.0 |
0.66 | VS1 | 2861.0 |
0.7 | SI1 | 2862.0 |
0.8 | SI1 | 2862.0 |
0.8 | SI2 | 2862.0 |
0.79 | SI1 | 2862.0 |
0.71 | VVS1 | 2862.0 |
0.7 | VS2 | 2862.0 |
0.7 | VS2 | 2862.0 |
0.79 | VS1 | 2862.0 |
0.7 | VS2 | 2862.0 |
1.22 | I1 | 2862.0 |
1.01 | SI2 | 2862.0 |
0.73 | VS2 | 2862.0 |
0.91 | VS2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.83 | SI1 | 2863.0 |
0.84 | SI2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.91 | SI1 | 2863.0 |
0.9 | VS2 | 2863.0 |
0.71 | VVS2 | 2863.0 |
0.71 | SI1 | 2863.0 |
0.72 | VS2 | 2863.0 |
0.72 | SI1 | 2863.0 |
0.71 | VS2 | 2863.0 |
0.81 | SI2 | 2864.0 |
0.83 | VS2 | 2865.0 |
0.73 | SI1 | 2865.0 |
0.56 | VVS1 | 2866.0 |
0.56 | VVS1 | 2866.0 |
0.71 | VS1 | 2866.0 |
0.7 | VVS1 | 2866.0 |
0.96 | SI1 | 2866.0 |
0.71 | VVS1 | 2867.0 |
0.7 | VS2 | 2867.0 |
0.71 | VVS1 | 2867.0 |
0.8 | VS2 | 2867.0 |
0.95 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.52 | VVS1 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.82 | SI2 | 2867.0 |
0.8 | SI1 | 2867.0 |
0.96 | SI2 | 2867.0 |
0.72 | VS1 | 2868.0 |
0.62 | IF | 2868.0 |
0.79 | SI2 | 2868.0 |
0.75 | SI1 | 2868.0 |
1.08 | I1 | 2869.0 |
0.72 | SI1 | 2869.0 |
0.62 | IF | 2869.0 |
0.73 | VVS2 | 2869.0 |
0.72 | VVS2 | 2869.0 |
0.52 | VVS2 | 2870.0 |
0.83 | SI2 | 2870.0 |
0.64 | VVS2 | 2870.0 |
0.8 | SI1 | 2870.0 |
0.74 | SI1 | 2870.0 |
0.72 | SI1 | 2870.0 |
0.82 | VS2 | 2870.0 |
0.73 | VS1 | 2870.0 |
1.04 | I1 | 2870.0 |
0.73 | SI1 | 2871.0 |
0.73 | SI1 | 2871.0 |
0.9 | SI1 | 2871.0 |
0.75 | SI1 | 2871.0 |
0.79 | SI1 | 2871.0 |
0.7 | SI1 | 2872.0 |
0.75 | SI1 | 2872.0 |
1.02 | I1 | 2872.0 |
0.7 | SI2 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.7 | SI1 | 2872.0 |
0.72 | VS2 | 2872.0 |
0.74 | SI1 | 2872.0 |
0.84 | SI1 | 2872.0 |
0.76 | VS2 | 2873.0 |
0.77 | SI1 | 2873.0 |
0.76 | SI2 | 2873.0 |
1.0 | SI2 | 2873.0 |
1.0 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.9 | SI1 | 2873.0 |
0.78 | VS2 | 2874.0 |
0.71 | VS2 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VVS2 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VS1 | 2874.0 |
0.7 | VVS2 | 2874.0 |
1.0 | SI2 | 2875.0 |
0.77 | SI1 | 2875.0 |
1.0 | VS1 | 2875.0 |
1.0 | SI1 | 2875.0 |
1.0 | SI2 | 2875.0 |
0.73 | VS1 | 2876.0 |
0.79 | VS2 | 2876.0 |
0.72 | VS1 | 2877.0 |
0.71 | VS1 | 2877.0 |
0.74 | VS2 | 2877.0 |
0.7 | VVS1 | 2877.0 |
0.7 | VS1 | 2877.0 |
0.79 | SI1 | 2878.0 |
0.79 | SI1 | 2878.0 |
0.79 | SI2 | 2878.0 |
0.71 | VS2 | 2878.0 |
0.79 | SI1 | 2878.0 |
0.73 | SI1 | 2879.0 |
0.63 | IF | 2879.0 |
0.7 | VS1 | 2879.0 |
0.71 | VS1 | 2879.0 |
0.84 | SI2 | 2879.0 |
0.84 | SI2 | 2879.0 |
1.02 | SI2 | 2879.0 |
0.72 | VS1 | 2879.0 |
0.72 | VS1 | 2879.0 |
0.92 | SI2 | 2880.0 |
0.74 | SI1 | 2880.0 |
0.7 | VVS1 | 2881.0 |
0.71 | VS2 | 2881.0 |
1.05 | I1 | 2881.0 |
0.7 | IF | 2882.0 |
0.54 | VVS1 | 2882.0 |
0.73 | VS2 | 2882.0 |
0.88 | SI1 | 2882.0 |
0.73 | VS2 | 2882.0 |
0.72 | SI1 | 2883.0 |
0.9 | SI2 | 2883.0 |
0.9 | SI2 | 2883.0 |
1.03 | SI2 | 2884.0 |
0.84 | SI1 | 2885.0 |
1.01 | SI1 | 2885.0 |
0.77 | SI2 | 2885.0 |
0.8 | SI1 | 2885.0 |
0.9 | SI2 | 2885.0 |
0.73 | SI1 | 2886.0 |
0.72 | SI1 | 2886.0 |
0.71 | SI1 | 2887.0 |
0.7 | VS1 | 2887.0 |
0.79 | VS1 | 2888.0 |
0.72 | VVS2 | 2889.0 |
0.7 | VS2 | 2889.0 |
0.7 | VS1 | 2889.0 |
0.9 | SI2 | 2889.0 |
0.71 | VS1 | 2889.0 |
0.5 | VVS2 | 2889.0 |
0.5 | VVS2 | 2889.0 |
0.74 | SI1 | 2889.0 |
0.77 | VS2 | 2889.0 |
0.77 | SI1 | 2889.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.8 | SI1 | 2890.0 |
0.66 | VVS1 | 2890.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.72 | SI1 | 2891.0 |
0.71 | VS2 | 2891.0 |
0.86 | SI2 | 2892.0 |
1.19 | I1 | 2892.0 |
0.71 | VS1 | 2893.0 |
0.82 | SI2 | 2893.0 |
0.71 | VVS2 | 2893.0 |
0.75 | VS2 | 2893.0 |
0.7 | VVS1 | 2893.0 |
0.8 | SI2 | 2893.0 |
0.82 | SI2 | 2893.0 |
0.82 | SI1 | 2893.0 |
0.82 | SI1 | 2893.0 |
0.81 | SI2 | 2894.0 |
0.81 | SI2 | 2894.0 |
0.76 | SI1 | 2894.0 |
0.71 | VS2 | 2895.0 |
0.7 | VS1 | 2895.0 |
0.7 | VVS2 | 2895.0 |
0.74 | VS1 | 2896.0 |
0.77 | VS2 | 2896.0 |
0.77 | VS2 | 2896.0 |
0.53 | VVS1 | 2896.0 |
0.79 | SI1 | 2896.0 |
0.73 | SI2 | 2896.0 |
0.77 | SI2 | 2896.0 |
0.77 | SI1 | 2896.0 |
1.01 | I1 | 2896.0 |
1.01 | I1 | 2896.0 |
0.6 | VVS2 | 2897.0 |
0.76 | SI1 | 2897.0 |
0.54 | VVS2 | 2897.0 |
0.72 | SI1 | 2897.0 |
0.72 | VS1 | 2897.0 |
0.74 | VS2 | 2897.0 |
1.12 | SI2 | 2898.0 |
//sorting
display(spark.sql("SELECT carat, clarity, price FROM diamonds ORDER BY price DESC"))
carat | clarity | price |
---|---|---|
2.29 | VS2 | 18823.0 |
2.0 | SI1 | 18818.0 |
1.51 | IF | 18806.0 |
2.07 | SI2 | 18804.0 |
2.0 | SI1 | 18803.0 |
2.29 | SI1 | 18797.0 |
2.0 | VS1 | 18795.0 |
2.04 | SI1 | 18795.0 |
1.71 | VS2 | 18791.0 |
2.15 | SI2 | 18791.0 |
2.8 | SI2 | 18788.0 |
2.05 | SI1 | 18787.0 |
2.05 | SI2 | 18784.0 |
2.03 | SI1 | 18781.0 |
1.6 | VS1 | 18780.0 |
2.06 | VS2 | 18779.0 |
1.51 | VVS1 | 18777.0 |
1.71 | VVS2 | 18768.0 |
2.55 | VS1 | 18766.0 |
2.08 | SI1 | 18760.0 |
2.0 | SI1 | 18759.0 |
2.03 | SI1 | 18757.0 |
2.61 | SI2 | 18756.0 |
2.36 | SI2 | 18745.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18741.0 |
2.01 | SI1 | 18736.0 |
1.94 | SI1 | 18735.0 |
2.02 | SI1 | 18731.0 |
1.72 | VVS2 | 18730.0 |
1.51 | VS1 | 18729.0 |
1.7 | VVS2 | 18718.0 |
2.18 | SI1 | 18717.0 |
3.01 | SI2 | 18710.0 |
3.01 | SI2 | 18710.0 |
2.0 | SI1 | 18709.0 |
2.07 | VS2 | 18707.0 |
2.22 | VS1 | 18706.0 |
2.01 | SI2 | 18705.0 |
3.51 | VS2 | 18701.0 |
1.28 | IF | 18700.0 |
2.02 | VS2 | 18700.0 |
2.19 | SI2 | 18693.0 |
2.43 | VS2 | 18692.0 |
2.48 | SI2 | 18692.0 |
1.5 | VS2 | 18691.0 |
2.67 | SI2 | 18686.0 |
1.42 | VVS1 | 18682.0 |
2.03 | VS2 | 18680.0 |
2.02 | SI2 | 18678.0 |
2.16 | SI2 | 18678.0 |
2.01 | SI2 | 18674.0 |
2.04 | SI1 | 18663.0 |
2.05 | VS2 | 18659.0 |
2.12 | SI1 | 18656.0 |
2.29 | VS2 | 18653.0 |
2.1 | SI1 | 18648.0 |
2.01 | VS2 | 18640.0 |
2.09 | SI2 | 18640.0 |
2.03 | SI1 | 18630.0 |
2.01 | SI1 | 18625.0 |
2.42 | VS2 | 18615.0 |
1.49 | VVS2 | 18614.0 |
2.07 | SI2 | 18611.0 |
2.01 | VS2 | 18607.0 |
2.0 | SI1 | 18604.0 |
1.71 | VVS2 | 18599.0 |
1.7 | VS1 | 18598.0 |
2.29 | IF | 18594.0 |
3.01 | SI2 | 18593.0 |
2.03 | SI2 | 18578.0 |
2.11 | SI2 | 18575.0 |
2.01 | SI1 | 18574.0 |
2.01 | SI1 | 18572.0 |
1.6 | VS1 | 18571.0 |
2.02 | VS2 | 18565.0 |
2.01 | VS2 | 18561.0 |
2.01 | VS2 | 18561.0 |
2.09 | SI1 | 18559.0 |
3.04 | SI2 | 18559.0 |
2.38 | VS2 | 18559.0 |
1.72 | VS2 | 18557.0 |
1.5 | IF | 18552.0 |
1.04 | IF | 18542.0 |
2.4 | SI1 | 18541.0 |
2.4 | SI2 | 18541.0 |
2.03 | SI2 | 18535.0 |
2.32 | SI2 | 18532.0 |
2.22 | VS2 | 18531.0 |
4.5 | I1 | 18531.0 |
2.14 | SI1 | 18528.0 |
2.14 | SI2 | 18526.0 |
1.83 | VS2 | 18525.0 |
2.0 | SI1 | 18524.0 |
2.38 | VS1 | 18522.0 |
2.0 | VS2 | 18515.0 |
2.09 | SI2 | 18509.0 |
2.32 | SI2 | 18508.0 |
2.37 | SI1 | 18508.0 |
2.01 | VS2 | 18507.0 |
2.03 | SI1 | 18507.0 |
2.01 | VS1 | 18500.0 |
2.66 | SI2 | 18495.0 |
2.0 | SI1 | 18493.0 |
2.07 | SI1 | 18489.0 |
2.02 | SI2 | 18487.0 |
2.57 | SI1 | 18485.0 |
2.21 | SI2 | 18483.0 |
2.16 | VS2 | 18481.0 |
2.1 | SI1 | 18480.0 |
2.03 | SI2 | 18477.0 |
2.19 | SI1 | 18475.0 |
2.01 | VS2 | 18474.0 |
2.09 | SI2 | 18472.0 |
2.15 | SI1 | 18470.0 |
2.04 | SI1 | 18468.0 |
2.1 | SI2 | 18462.0 |
2.16 | VS1 | 18462.0 |
2.03 | SI2 | 18458.0 |
2.5 | SI2 | 18447.0 |
2.08 | VS2 | 18447.0 |
1.7 | VVS1 | 18445.0 |
2.09 | VS2 | 18443.0 |
2.13 | SI1 | 18442.0 |
2.0 | SI1 | 18440.0 |
2.0 | SI1 | 18440.0 |
2.06 | SI1 | 18439.0 |
1.33 | IF | 18435.0 |
2.22 | SI1 | 18432.0 |
1.72 | VVS2 | 18431.0 |
2.44 | VS2 | 18430.0 |
1.74 | VS2 | 18430.0 |
1.7 | VS1 | 18430.0 |
1.79 | VS2 | 18429.0 |
2.26 | SI1 | 18426.0 |
2.29 | IF | 18426.0 |
2.0 | SI2 | 18426.0 |
2.03 | SI1 | 18423.0 |
1.6 | VS2 | 18421.0 |
1.79 | VS1 | 18419.0 |
1.54 | VS1 | 18416.0 |
2.11 | SI2 | 18407.0 |
2.08 | SI2 | 18405.0 |
2.01 | SI1 | 18398.0 |
2.02 | VS2 | 18398.0 |
1.7 | VS1 | 18398.0 |
2.01 | SI2 | 18395.0 |
2.01 | SI2 | 18394.0 |
2.09 | SI1 | 18392.0 |
1.73 | VVS2 | 18377.0 |
2.0 | SI1 | 18376.0 |
2.4 | SI2 | 18374.0 |
2.01 | SI1 | 18374.0 |
2.32 | SI1 | 18371.0 |
2.0 | SI1 | 18371.0 |
2.0 | SI1 | 18371.0 |
2.06 | SI2 | 18371.0 |
2.6 | SI2 | 18369.0 |
2.2 | VS2 | 18364.0 |
2.22 | VS2 | 18363.0 |
2.07 | VS2 | 18359.0 |
1.83 | VS2 | 18358.0 |
2.07 | SI2 | 18344.0 |
2.27 | SI1 | 18343.0 |
1.7 | VS2 | 18342.0 |
2.16 | VS1 | 18342.0 |
2.01 | VS1 | 18340.0 |
2.5 | VS2 | 18325.0 |
2.49 | SI2 | 18325.0 |
2.02 | VS1 | 18324.0 |
2.02 | SI2 | 18320.0 |
2.05 | VS2 | 18318.0 |
1.61 | VS2 | 18318.0 |
2.1 | SI2 | 18312.0 |
2.03 | SI2 | 18310.0 |
2.51 | SI2 | 18308.0 |
1.93 | SI1 | 18306.0 |
2.3 | SI2 | 18304.0 |
2.24 | SI1 | 18299.0 |
2.02 | SI2 | 18296.0 |
2.01 | SI1 | 18295.0 |
2.01 | SI1 | 18295.0 |
1.54 | VVS1 | 18294.0 |
2.06 | SI2 | 18293.0 |
2.14 | SI2 | 18291.0 |
2.03 | SI2 | 18286.0 |
2.08 | VS2 | 18281.0 |
1.62 | VS2 | 18281.0 |
1.07 | IF | 18279.0 |
1.7 | VVS1 | 18279.0 |
2.21 | SI2 | 18276.0 |
2.13 | SI1 | 18275.0 |
2.02 | SI2 | 18274.0 |
2.01 | SI2 | 18259.0 |
2.03 | SI1 | 18257.0 |
2.51 | SI2 | 18255.0 |
2.53 | SI1 | 18254.0 |
2.52 | SI1 | 18252.0 |
2.01 | SI1 | 18252.0 |
1.7 | VS2 | 18251.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
3.01 | SI2 | 18242.0 |
2.3 | VS2 | 18239.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI1 | 18236.0 |
2.02 | SI2 | 18236.0 |
2.19 | SI2 | 18232.0 |
2.04 | SI2 | 18231.0 |
1.09 | IF | 18231.0 |
2.09 | VS1 | 18215.0 |
1.73 | VVS2 | 18211.0 |
2.02 | VS2 | 18207.0 |
2.02 | VS2 | 18207.0 |
2.01 | VS1 | 18206.0 |
2.07 | SI2 | 18198.0 |
2.2 | SI1 | 18193.0 |
2.05 | SI1 | 18193.0 |
2.07 | VS2 | 18193.0 |
2.3 | VS2 | 18190.0 |
2.01 | SI1 | 18188.0 |
1.55 | VVS2 | 18188.0 |
2.01 | SI1 | 18186.0 |
2.0 | SI1 | 18186.0 |
2.01 | SI2 | 18183.0 |
2.05 | SI2 | 18181.0 |
2.52 | SI2 | 18179.0 |
1.63 | VS1 | 18179.0 |
1.76 | VS1 | 18178.0 |
1.7 | VS2 | 18176.0 |
2.0 | SI2 | 18172.0 |
2.01 | VS2 | 18172.0 |
2.2 | SI2 | 18168.0 |
2.03 | VS2 | 18166.0 |
2.12 | SI2 | 18164.0 |
1.5 | VVS2 | 18159.0 |
2.04 | SI1 | 18153.0 |
2.05 | VS2 | 18152.0 |
2.23 | VS2 | 18149.0 |
2.01 | SI1 | 18149.0 |
2.03 | VS2 | 18139.0 |
2.03 | VS2 | 18139.0 |
2.08 | SI2 | 18128.0 |
2.08 | SI2 | 18128.0 |
1.78 | VS2 | 18128.0 |
2.21 | SI2 | 18128.0 |
2.04 | VS1 | 18127.0 |
2.14 | SI2 | 18125.0 |
2.08 | SI2 | 18124.0 |
2.1 | SI2 | 18124.0 |
2.03 | SI2 | 18120.0 |
2.12 | SI2 | 18120.0 |
2.33 | SI1 | 18119.0 |
2.12 | SI1 | 18118.0 |
2.02 | SI2 | 18117.0 |
2.04 | SI1 | 18115.0 |
2.04 | SI1 | 18115.0 |
2.03 | SI2 | 18115.0 |
1.07 | IF | 18114.0 |
2.45 | VS2 | 18113.0 |
1.14 | IF | 18112.0 |
2.3 | SI2 | 18108.0 |
1.7 | VS2 | 18107.0 |
1.7 | VS2 | 18107.0 |
2.04 | VS1 | 18104.0 |
1.51 | IF | 18102.0 |
2.51 | SI2 | 18090.0 |
2.32 | SI1 | 18080.0 |
2.02 | VS2 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.01 | SI1 | 18077.0 |
2.11 | SI2 | 18071.0 |
2.0 | SI1 | 18069.0 |
2.29 | SI1 | 18068.0 |
2.19 | SI2 | 18067.0 |
2.04 | SI2 | 18066.0 |
2.21 | SI1 | 18062.0 |
2.0 | SI1 | 18062.0 |
2.2 | SI1 | 18059.0 |
1.58 | VS1 | 18057.0 |
1.7 | VS2 | 18055.0 |
2.28 | SI2 | 18055.0 |
2.02 | VS2 | 18050.0 |
2.01 | VS1 | 18041.0 |
2.51 | SI2 | 18037.0 |
2.11 | SI2 | 18034.0 |
2.25 | SI1 | 18034.0 |
2.25 | SI2 | 18034.0 |
2.16 | SI1 | 18029.0 |
2.51 | SI2 | 18029.0 |
2.26 | SI2 | 18028.0 |
2.01 | SI1 | 18027.0 |
2.01 | SI1 | 18027.0 |
2.32 | SI1 | 18026.0 |
2.03 | SI1 | 18026.0 |
2.32 | SI1 | 18026.0 |
2.04 | SI1 | 18026.0 |
2.0 | VS2 | 18023.0 |
2.51 | VS2 | 18020.0 |
5.01 | I1 | 18018.0 |
2.05 | SI2 | 18017.0 |
1.76 | VS1 | 18014.0 |
2.25 | SI2 | 18007.0 |
2.06 | SI2 | 18005.0 |
2.18 | SI2 | 18003.0 |
2.09 | SI2 | 18002.0 |
2.16 | SI2 | 18001.0 |
2.35 | SI1 | 17999.0 |
2.09 | VS2 | 17999.0 |
2.54 | SI2 | 17996.0 |
1.93 | VS1 | 17995.0 |
2.24 | SI2 | 17989.0 |
2.05 | SI2 | 17988.0 |
2.01 | VS2 | 17987.0 |
2.08 | IF | 17986.0 |
2.01 | VS1 | 17983.0 |
2.03 | VS2 | 17975.0 |
2.05 | SI2 | 17957.0 |
2.4 | SI2 | 17955.0 |
2.39 | VS2 | 17955.0 |
2.0 | SI2 | 17953.0 |
2.04 | SI1 | 17952.0 |
2.04 | SI1 | 17952.0 |
1.54 | VS1 | 17949.0 |
2.02 | SI2 | 17938.0 |
1.51 | VS1 | 17936.0 |
2.02 | VS1 | 17936.0 |
2.16 | SI1 | 17934.0 |
1.29 | VVS1 | 17932.0 |
2.0 | SI1 | 17930.0 |
2.57 | SI2 | 17924.0 |
2.41 | SI2 | 17923.0 |
2.39 | VS1 | 17920.0 |
2.01 | VS2 | 17917.0 |
2.08 | VS2 | 17916.0 |
1.07 | IF | 17909.0 |
2.2 | VS2 | 17905.0 |
1.74 | VS1 | 17904.0 |
1.74 | VS1 | 17904.0 |
2.0 | SI1 | 17902.0 |
2.0 | VS2 | 17898.0 |
2.2 | SI1 | 17895.0 |
1.58 | VS1 | 17894.0 |
2.07 | SI1 | 17893.0 |
2.48 | SI1 | 17893.0 |
2.02 | VS2 | 17893.0 |
1.7 | VS2 | 17892.0 |
2.28 | SI2 | 17892.0 |
2.01 | SI1 | 17892.0 |
2.32 | VS1 | 17891.0 |
2.16 | VVS1 | 17891.0 |
2.0 | VS1 | 17889.0 |
1.76 | VVS2 | 17888.0 |
2.02 | VS2 | 17887.0 |
2.02 | SI1 | 17882.0 |
2.01 | VS1 | 17877.0 |
2.11 | SI2 | 17871.0 |
2.0 | SI2 | 17871.0 |
2.0 | SI1 | 17869.0 |
2.03 | SI1 | 17864.0 |
2.43 | SI2 | 17856.0 |
2.01 | SI2 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.01 | SI1 | 17849.0 |
2.18 | SI2 | 17841.0 |
2.09 | SI2 | 17840.0 |
2.01 | VS1 | 17838.0 |
2.1 | VS2 | 17837.0 |
2.0 | SI2 | 17835.0 |
2.36 | VS1 | 17829.0 |
2.01 | VS2 | 17826.0 |
1.63 | VS2 | 17825.0 |
2.02 | SI2 | 17825.0 |
2.16 | SI1 | 17820.0 |
2.11 | SI1 | 17816.0 |
2.05 | SI1 | 17811.0 |
2.09 | SI2 | 17805.0 |
2.17 | SI2 | 17805.0 |
2.01 | SI1 | 17804.0 |
2.03 | SI1 | 17803.0 |
1.69 | VS2 | 17803.0 |
2.72 | SI2 | 17801.0 |
2.01 | SI2 | 17798.0 |
2.21 | SI1 | 17784.0 |
2.08 | SI1 | 17778.0 |
2.05 | SI1 | 17776.0 |
1.55 | VS1 | 17773.0 |
2.16 | SI1 | 17772.0 |
1.71 | VS2 | 17766.0 |
1.72 | VS1 | 17765.0 |
1.87 | VS1 | 17761.0 |
2.0 | SI2 | 17760.0 |
2.0 | SI1 | 17760.0 |
2.0 | SI1 | 17760.0 |
2.0 | VS2 | 17760.0 |
2.0 | VS2 | 17760.0 |
2.0 | SI2 | 17760.0 |
2.01 | SI2 | 17759.0 |
2.01 | SI1 | 17759.0 |
2.56 | SI1 | 17753.0 |
2.03 | SI2 | 17752.0 |
2.01 | VS1 | 17751.0 |
2.17 | SI1 | 17747.0 |
2.01 | SI2 | 17746.0 |
2.14 | SI2 | 17742.0 |
2.0 | SI1 | 17740.0 |
2.12 | SI2 | 17730.0 |
1.65 | IF | 17729.0 |
2.0 | SI1 | 17724.0 |
1.52 | VS1 | 17723.0 |
2.0 | VS2 | 17716.0 |
2.31 | SI1 | 17715.0 |
2.21 | SI1 | 17714.0 |
1.99 | VS2 | 17713.0 |
2.11 | VS2 | 17712.0 |
2.0 | SI2 | 17710.0 |
2.12 | SI2 | 17694.0 |
2.02 | SI1 | 17692.0 |
2.52 | SI2 | 17689.0 |
1.51 | VVS2 | 17689.0 |
2.01 | SI1 | 17688.0 |
2.01 | SI2 | 17688.0 |
1.71 | VS1 | 17685.0 |
2.32 | SI2 | 17676.0 |
2.01 | SI1 | 17676.0 |
2.0 | SI2 | 17674.0 |
2.14 | SI2 | 17673.0 |
2.28 | SI1 | 17673.0 |
2.02 | SI1 | 17672.0 |
1.5 | VVS2 | 17667.0 |
2.29 | SI2 | 17666.0 |
1.34 | IF | 17663.0 |
1.7 | VS2 | 17662.0 |
1.52 | VS1 | 17659.0 |
2.02 | SI1 | 17658.0 |
2.06 | SI2 | 17650.0 |
1.51 | VS1 | 17649.0 |
2.39 | VS1 | 17642.0 |
2.05 | VS1 | 17640.0 |
2.2 | SI2 | 17634.0 |
2.08 | SI1 | 17617.0 |
1.74 | VS2 | 17614.0 |
2.07 | SI2 | 17614.0 |
2.01 | SI2 | 17609.0 |
2.52 | SI2 | 17608.0 |
2.0 | VS1 | 17607.0 |
2.48 | SI2 | 17607.0 |
2.1 | VVS1 | 17606.0 |
1.72 | VS1 | 17605.0 |
1.64 | VVS2 | 17604.0 |
2.0 | SI1 | 17600.0 |
1.38 | IF | 17598.0 |
1.7 | VS2 | 17597.0 |
1.7 | VS2 | 17597.0 |
1.71 | VS1 | 17595.0 |
2.01 | VS2 | 17592.0 |
2.53 | SI2 | 17591.0 |
1.03 | IF | 17590.0 |
2.14 | SI2 | 17582.0 |
2.02 | VS2 | 17581.0 |
2.02 | SI1 | 17579.0 |
2.0 | VS2 | 17574.0 |
2.01 | VS2 | 17570.0 |
2.36 | SI2 | 17569.0 |
1.65 | IF | 17569.0 |
2.01 | SI2 | 17555.0 |
2.19 | SI2 | 17554.0 |
1.89 | VS1 | 17553.0 |
1.59 | VS1 | 17552.0 |
1.57 | VS2 | 17548.0 |
1.45 | VVS2 | 17545.0 |
2.29 | VS2 | 17539.0 |
1.97 | VS2 | 17535.0 |
2.36 | VS2 | 17534.0 |
2.0 | SI2 | 17534.0 |
2.02 | VS1 | 17533.0 |
2.02 | SI1 | 17530.0 |
2.21 | SI2 | 17525.0 |
2.01 | VS1 | 17523.0 |
2.52 | SI2 | 17522.0 |
2.05 | SI1 | 17521.0 |
2.32 | SI2 | 17516.0 |
1.51 | VS1 | 17515.0 |
2.01 | SI2 | 17514.0 |
2.14 | SI2 | 17513.0 |
1.91 | SI1 | 17509.0 |
2.33 | VS2 | 17504.0 |
1.14 | IF | 17499.0 |
2.01 | VS2 | 17497.0 |
1.31 | VVS1 | 17496.0 |
2.01 | SI1 | 17492.0 |
1.7 | VS1 | 17492.0 |
2.02 | SI1 | 17489.0 |
1.7 | VS2 | 17485.0 |
2.01 | SI1 | 17476.0 |
2.18 | SI2 | 17475.0 |
2.01 | SI1 | 17474.0 |
2.18 | SI2 | 17473.0 |
2.44 | SI1 | 17472.0 |
2.08 | SI1 | 17469.0 |
2.08 | SI1 | 17469.0 |
2.2 | VS2 | 17460.0 |
2.01 | SI1 | 17458.0 |
1.56 | VS1 | 17455.0 |
2.51 | SI1 | 17452.0 |
2.31 | VS1 | 17451.0 |
1.5 | VVS2 | 17449.0 |
2.48 | SI2 | 17448.0 |
2.0 | SI1 | 17447.0 |
1.76 | VS2 | 17442.0 |
1.55 | VS2 | 17441.0 |
2.0 | VS1 | 17436.0 |
2.01 | SI1 | 17434.0 |
2.01 | VS2 | 17433.0 |
2.19 | SI2 | 17433.0 |
1.65 | VS1 | 17425.0 |
2.01 | VS2 | 17422.0 |
2.14 | VS2 | 17416.0 |
1.61 | VS1 | 17414.0 |
2.05 | VS1 | 17408.0 |
2.64 | SI2 | 17407.0 |
2.5 | SI2 | 17405.0 |
2.0 | SI1 | 17405.0 |
2.01 | SI2 | 17403.0 |
2.01 | SI1 | 17403.0 |
2.01 | SI1 | 17403.0 |
2.01 | SI1 | 17403.0 |
1.69 | VS1 | 17400.0 |
1.59 | VS1 | 17393.0 |
2.03 | SI2 | 17393.0 |
2.02 | SI1 | 17392.0 |
2.01 | SI1 | 17383.0 |
2.17 | SI1 | 17381.0 |
2.04 | SI2 | 17379.0 |
1.97 | VS2 | 17377.0 |
1.95 | VS2 | 17374.0 |
1.59 | VS1 | 17366.0 |
2.01 | VS1 | 17365.0 |
2.39 | VS1 | 17365.0 |
1.6 | VVS1 | 17360.0 |
1.7 | VS2 | 17360.0 |
1.79 | VS2 | 17358.0 |
2.02 | SI1 | 17357.0 |
1.21 | IF | 17353.0 |
1.93 | VS2 | 17353.0 |
1.67 | VS2 | 17351.0 |
2.01 | SI1 | 17347.0 |
1.75 | VS2 | 17343.0 |
2.54 | SI2 | 17339.0 |
1.69 | VS1 | 17338.0 |
2.01 | SI1 | 17334.0 |
1.7 | VS1 | 17330.0 |
4.13 | I1 | 17329.0 |
1.58 | IF | 17329.0 |
2.04 | IF | 17327.0 |
2.04 | SI1 | 17323.0 |
1.7 | VS2 | 17323.0 |
1.51 | VVS2 | 17317.0 |
2.04 | VS2 | 17315.0 |
2.16 | SI1 | 17313.0 |
2.01 | SI2 | 17313.0 |
2.26 | SI2 | 17312.0 |
2.03 | VS2 | 17297.0 |
2.35 | SI2 | 17294.0 |
2.35 | SI2 | 17294.0 |
2.05 | SI1 | 17294.0 |
2.05 | SI2 | 17294.0 |
1.5 | VVS1 | 17279.0 |
2.0 | VS1 | 17278.0 |
1.8 | SI1 | 17273.0 |
1.86 | VVS2 | 17267.0 |
2.02 | SI2 | 17265.0 |
2.02 | SI1 | 17265.0 |
2.2 | SI1 | 17265.0 |
2.16 | SI2 | 17263.0 |
2.02 | SI2 | 17263.0 |
2.42 | VS1 | 17262.0 |
2.08 | VS2 | 17258.0 |
1.61 | VS1 | 17256.0 |
2.12 | VS2 | 17254.0 |
2.1 | SI1 | 17250.0 |
2.0 | SI1 | 17247.0 |
2.02 | SI1 | 17245.0 |
2.01 | SI2 | 17244.0 |
1.54 | VS2 | 17240.0 |
2.05 | SI2 | 17237.0 |
2.01 | SI1 | 17235.0 |
2.01 | SI2 | 17235.0 |
2.25 | SI1 | 17233.0 |
2.52 | SI1 | 17231.0 |
1.7 | VVS2 | 17228.0 |
2.01 | VS1 | 17227.0 |
2.17 | SI1 | 17224.0 |
1.53 | VS2 | 17223.0 |
2.15 | SI2 | 17221.0 |
2.01 | SI2 | 17220.0 |
2.15 | SI2 | 17219.0 |
1.7 | VS1 | 17219.0 |
2.31 | SI2 | 17218.0 |
1.41 | VVS2 | 17216.0 |
2.05 | VVS2 | 17214.0 |
2.14 | SI1 | 17213.0 |
2.61 | SI2 | 17209.0 |
2.6 | SI2 | 17209.0 |
1.71 | VS1 | 17206.0 |
1.71 | VS1 | 17204.0 |
1.6 | VVS1 | 17204.0 |
1.51 | VVS2 | 17203.0 |
1.5 | VVS2 | 17203.0 |
2.01 | VS2 | 17197.0 |
1.71 | VS1 | 17197.0 |
1.67 | VS2 | 17194.0 |
2.3 | SI1 | 17193.0 |
2.14 | VS2 | 17193.0 |
1.21 | VVS1 | 17192.0 |
2.01 | VS2 | 17191.0 |
1.75 | VS1 | 17191.0 |
2.56 | SI1 | 17186.0 |
2.74 | SI2 | 17184.0 |
2.03 | SI2 | 17182.0 |
2.01 | SI2 | 17179.0 |
2.01 | SI2 | 17179.0 |
1.5 | VVS2 | 17176.0 |
1.57 | VS1 | 17175.0 |
1.75 | VS2 | 17172.0 |
2.0 | SI1 | 17172.0 |
2.42 | VS2 | 17168.0 |
2.42 | VS2 | 17168.0 |
2.02 | SI2 | 17166.0 |
2.74 | SI2 | 17164.0 |
2.51 | SI2 | 17162.0 |
2.22 | SI1 | 17160.0 |
2.09 | SI2 | 17156.0 |
1.5 | VS2 | 17153.0 |
2.02 | VS1 | 17153.0 |
2.22 | SI1 | 17151.0 |
2.27 | VS1 | 17149.0 |
2.71 | SI2 | 17146.0 |
1.5 | VS1 | 17143.0 |
2.25 | SI2 | 17143.0 |
2.02 | SI1 | 17141.0 |
2.05 | SI2 | 17138.0 |
2.0 | SI2 | 17136.0 |
2.14 | SI2 | 17127.0 |
2.01 | SI1 | 17126.0 |
1.72 | VS2 | 17125.0 |
2.22 | SI2 | 17123.0 |
2.01 | SI2 | 17118.0 |
2.57 | SI2 | 17116.0 |
2.01 | SI2 | 17115.0 |
2.09 | SI1 | 17114.0 |
1.7 | VS2 | 17114.0 |
1.51 | VS1 | 17111.0 |
1.56 | VS2 | 17108.0 |
2.53 | SI2 | 17103.0 |
1.02 | IF | 17100.0 |
2.02 | SI2 | 17099.0 |
1.93 | VS1 | 17096.0 |
2.07 | SI2 | 17095.0 |
2.01 | SI1 | 17095.0 |
2.0 | SI2 | 17094.0 |
2.0 | VS2 | 17084.0 |
2.05 | SI2 | 17081.0 |
2.01 | SI2 | 17079.0 |
2.01 | SI2 | 17078.0 |
1.61 | VS1 | 17076.0 |
2.13 | SI2 | 17073.0 |
1.7 | VVS2 | 17073.0 |
2.01 | VS1 | 17068.0 |
2.01 | VS2 | 17068.0 |
2.01 | VS1 | 17068.0 |
2.12 | VS2 | 17068.0 |
2.01 | VS1 | 17068.0 |
2.05 | SI2 | 17066.0 |
2.15 | SI2 | 17065.0 |
2.15 | SI2 | 17063.0 |
2.31 | SI2 | 17062.0 |
2.01 | VS2 | 17057.0 |
1.53 | VVS2 | 17057.0 |
2.32 | VS2 | 17053.0 |
1.71 | VS2 | 17052.0 |
2.27 | VS1 | 17051.0 |
2.09 | VS2 | 17051.0 |
1.6 | VS1 | 17050.0 |
1.71 | VS1 | 17049.0 |
2.04 | SI2 | 17049.0 |
2.07 | VS2 | 17045.0 |
2.13 | SI2 | 17045.0 |
1.07 | IF | 17042.0 |
1.71 | VS1 | 17041.0 |
2.4 | SI2 | 17039.0 |
2.14 | VS2 | 17038.0 |
1.75 | VS1 | 17036.0 |
1.54 | VS2 | 17029.0 |
2.04 | VS2 | 17028.0 |
1.67 | VVS2 | 17028.0 |
2.5 | SI1 | 17028.0 |
2.6 | SI2 | 17027.0 |
2.01 | SI2 | 17024.0 |
2.01 | SI2 | 17024.0 |
2.07 | SI1 | 17019.0 |
1.75 | VS2 | 17017.0 |
2.19 | SI1 | 17016.0 |
2.01 | SI2 | 17014.0 |
2.06 | SI2 | 17012.0 |
2.26 | VS2 | 17010.0 |
1.71 | VS1 | 17009.0 |
2.05 | SI1 | 17006.0 |
2.01 | SI2 | 17005.0 |
2.01 | SI1 | 17003.0 |
2.09 | SI2 | 17001.0 |
2.31 | SI2 | 17000.0 |
2.2 | SI2 | 16996.0 |
2.27 | VS1 | 16994.0 |
2.12 | SI2 | 16992.0 |
1.5 | VS1 | 16988.0 |
2.41 | SI2 | 16987.0 |
1.68 | VS1 | 16985.0 |
2.02 | SI1 | 16985.0 |
1.73 | VS2 | 16975.0 |
3.0 | SI2 | 16970.0 |
3.0 | SI2 | 16970.0 |
2.28 | SI2 | 16969.0 |
1.73 | VS2 | 16960.0 |
2.06 | SI1 | 16960.0 |
1.73 | VS2 | 16960.0 |
2.07 | SI1 | 16957.0 |
2.01 | SI1 | 16956.0 |
2.01 | SI1 | 16956.0 |
1.7 | VS1 | 16955.0 |
2.5 | VS2 | 16955.0 |
2.28 | SI2 | 16954.0 |
1.5 | VVS2 | 16948.0 |
2.03 | VS2 | 16945.0 |
2.02 | SI2 | 16944.0 |
2.04 | SI1 | 16942.0 |
1.93 | VS1 | 16941.0 |
2.37 | SI2 | 16937.0 |
2.53 | SI2 | 16934.0 |
2.13 | SI2 | 16931.0 |
2.02 | SI2 | 16929.0 |
2.01 | SI2 | 16922.0 |
1.54 | VS2 | 16921.0 |
1.52 | VS1 | 16916.0 |
2.49 | SI1 | 16915.0 |
2.01 | VS1 | 16914.0 |
2.63 | SI2 | 16914.0 |
2.14 | VS2 | 16914.0 |
2.01 | VS1 | 16914.0 |
2.26 | SI1 | 16904.0 |
2.01 | SI1 | 16901.0 |
2.03 | SI1 | 16900.0 |
2.03 | SI1 | 16900.0 |
2.03 | SI1 | 16900.0 |
2.05 | VS2 | 16896.0 |
1.54 | VS2 | 16889.0 |
2.01 | SI2 | 16881.0 |
2.01 | SI2 | 16881.0 |
1.76 | VS2 | 16879.0 |
2.18 | SI2 | 16878.0 |
2.04 | VS2 | 16874.0 |
2.04 | SI2 | 16872.0 |
2.0 | SI1 | 16872.0 |
2.02 | VS2 | 16861.0 |
2.06 | SI2 | 16857.0 |
2.08 | VS2 | 16854.0 |
2.18 | SI2 | 16842.0 |
2.51 | SI1 | 16842.0 |
2.42 | SI2 | 16826.0 |
2.09 | SI2 | 16824.0 |
1.25 | IF | 16823.0 |
2.48 | VS2 | 16820.0 |
2.05 | SI2 | 16819.0 |
1.71 | VS2 | 16817.0 |
1.71 | VS1 | 16813.0 |
2.01 | VS1 | 16811.0 |
1.4 | VVS1 | 16808.0 |
1.73 | VS2 | 16807.0 |
2.23 | SI2 | 16805.0 |
2.21 | SI1 | 16804.0 |
1.75 | VS2 | 16803.0 |
2.31 | SI1 | 16801.0 |
2.04 | SI2 | 16800.0 |
2.4 | SI2 | 16797.0 |
1.5 | VS1 | 16793.0 |
2.05 | VS1 | 16793.0 |
2.03 | VS2 | 16792.0 |
2.39 | VS2 | 16791.0 |
1.62 | VS1 | 16790.0 |
2.37 | VS2 | 16789.0 |
2.02 | VS2 | 16789.0 |
1.69 | VS2 | 16789.0 |
2.03 | SI1 | 16787.0 |
1.52 | VVS2 | 16786.0 |
1.75 | VS2 | 16783.0 |
2.1 | SI2 | 16783.0 |
1.75 | VS2 | 16783.0 |
1.5 | VS1 | 16783.0 |
1.71 | VS2 | 16779.0 |
1.52 | VS1 | 16779.0 |
1.52 | VS1 | 16779.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.01 | VS2 | 16778.0 |
2.13 | SI2 | 16778.0 |
2.01 | SI2 | 16776.0 |
2.01 | SI2 | 16776.0 |
2.07 | VVS2 | 16769.0 |
2.04 | VS2 | 16768.0 |
1.51 | VVS2 | 16754.0 |
1.54 | VS1 | 16750.0 |
2.03 | SI1 | 16747.0 |
2.01 | SI1 | 16742.0 |
2.01 | SI1 | 16737.0 |
1.54 | VS2 | 16736.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI2 | 16733.0 |
2.01 | SI2 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16733.0 |
2.01 | SI1 | 16731.0 |
2.01 | SI2 | 16728.0 |
2.11 | VS1 | 16723.0 |
2.14 | SI2 | 16723.0 |
2.04 | SI1 | 16718.0 |
2.04 | SI1 | 16718.0 |
2.51 | SI2 | 16717.0 |
1.51 | VVS2 | 16716.0 |
1.51 | VVS2 | 16716.0 |
2.17 | SI1 | 16716.0 |
2.48 | SI1 | 16715.0 |
2.53 | SI1 | 16709.0 |
2.02 | VS2 | 16709.0 |
2.24 | SI2 | 16709.0 |
2.36 | SI2 | 16707.0 |
2.09 | SI1 | 16704.0 |
2.02 | SI1 | 16704.0 |
2.09 | SI2 | 16703.0 |
2.01 | VS2 | 16700.0 |
2.0 | VS2 | 16694.0 |
2.0 | VS2 | 16694.0 |
2.03 | SI1 | 16693.0 |
2.18 | SI2 | 16690.0 |
2.22 | VS1 | 16689.0 |
1.51 | VS1 | 16688.0 |
2.39 | SI1 | 16687.0 |
2.4 | SI1 | 16687.0 |
1.8 | VS1 | 16683.0 |
2.01 | VS2 | 16677.0 |
1.52 | VS1 | 16670.0 |
1.51 | VS1 | 16669.0 |
2.02 | SI1 | 16665.0 |
2.21 | SI2 | 16657.0 |
2.24 | SI2 | 16656.0 |
2.0 | SI2 | 16650.0 |
2.0 | SI1 | 16650.0 |
2.0 | SI1 | 16650.0 |
2.38 | SI1 | 16643.0 |
1.67 | VS1 | 16643.0 |
2.03 | SI2 | 16642.0 |
2.05 | VS1 | 16641.0 |
1.52 | VS1 | 16636.0 |
1.75 | VS2 | 16632.0 |
2.03 | SI1 | 16629.0 |
2.1 | SI2 | 16629.0 |
2.1 | SI2 | 16629.0 |
1.52 | VS1 | 16628.0 |
1.52 | VS1 | 16628.0 |
2.01 | VS2 | 16626.0 |
2.01 | VS2 | 16626.0 |
2.06 | SI1 | 16626.0 |
2.01 | VS2 | 16626.0 |
2.01 | SI2 | 16624.0 |
1.71 | VS1 | 16618.0 |
2.07 | VVS2 | 16617.0 |
2.04 | VS2 | 16616.0 |
1.51 | VVS2 | 16613.0 |
2.05 | SI1 | 16611.0 |
2.06 | SI2 | 16603.0 |
1.53 | VVS1 | 16601.0 |
1.59 | VVS1 | 16599.0 |
2.02 | VS2 | 16593.0 |
2.28 | VS1 | 16592.0 |
2.45 | SI2 | 16589.0 |
2.06 | SI2 | 16587.0 |
1.69 | VS2 | 16583.0 |
2.01 | SI2 | 16582.0 |
2.01 | SI1 | 16582.0 |
2.0 | SI1 | 16580.0 |
1.71 | SI1 | 16575.0 |
2.25 | SI2 | 16575.0 |
1.57 | VS2 | 16570.0 |
2.02 | SI2 | 16565.0 |
2.28 | VS2 | 16564.0 |
2.01 | SI1 | 16562.0 |
2.02 | SI1 | 16560.0 |
2.21 | SI2 | 16558.0 |
1.5 | VS1 | 16558.0 |
2.24 | SI2 | 16558.0 |
1.51 | VS1 | 16551.0 |
1.6 | IF | 16547.0 |
2.22 | SI2 | 16547.0 |
1.41 | VVS1 | 16545.0 |
2.0 | VS2 | 16544.0 |
2.0 | VS2 | 16544.0 |
3.01 | I1 | 16538.0 |
2.44 | VS2 | 16533.0 |
2.47 | SI2 | 16532.0 |
2.2 | SI2 | 16530.0 |
1.7 | VS1 | 16521.0 |
1.51 | VS1 | 16520.0 |
1.52 | VS1 | 16519.0 |
1.51 | VS1 | 16518.0 |
1.8 | SI1 | 16513.0 |
2.11 | VS2 | 16512.0 |
2.06 | SI2 | 16512.0 |
1.62 | VS2 | 16507.0 |
2.05 | SI2 | 16506.0 |
2.1 | SI2 | 16506.0 |
2.03 | SI2 | 16505.0 |
2.01 | SI1 | 16499.0 |
2.01 | SI2 | 16499.0 |
1.52 | VVS1 | 16492.0 |
1.52 | VS1 | 16485.0 |
2.0 | SI2 | 16484.0 |
2.03 | VS2 | 16483.0 |
2.1 | SI2 | 16479.0 |
2.1 | SI2 | 16479.0 |
2.17 | SI2 | 16472.0 |
1.0 | IF | 16469.0 |
2.46 | SI2 | 16466.0 |
2.12 | SI2 | 16466.0 |
2.59 | VS1 | 16465.0 |
2.13 | SI2 | 16462.0 |
2.0 | SI2 | 16462.0 |
2.0 | VS2 | 16459.0 |
1.53 | VVS1 | 16451.0 |
2.28 | VS2 | 16450.0 |
2.05 | SI2 | 16446.0 |
2.03 | SI2 | 16442.0 |
2.0 | VS2 | 16439.0 |
2.06 | SI2 | 16437.0 |
2.05 | SI2 | 16431.0 |
2.51 | SI2 | 16427.0 |
2.18 | VS2 | 16427.0 |
2.18 | VS2 | 16427.0 |
2.04 | SI2 | 16426.0 |
2.0 | SI2 | 16425.0 |
2.03 | VS2 | 16422.0 |
2.04 | SI1 | 16420.0 |
2.03 | SI2 | 16412.0 |
2.01 | SI2 | 16410.0 |
1.5 | VS1 | 16409.0 |
2.0 | SI1 | 16407.0 |
1.5 | VS1 | 16407.0 |
1.09 | IF | 16406.0 |
2.11 | SI2 | 16404.0 |
1.51 | VS1 | 16402.0 |
2.16 | SI2 | 16400.0 |
2.22 | SI2 | 16398.0 |
2.19 | SI1 | 16397.0 |
2.02 | VS1 | 16397.0 |
2.11 | VS2 | 16395.0 |
2.03 | SI1 | 16392.0 |
2.07 | SI1 | 16392.0 |
2.14 | VS2 | 16390.0 |
2.04 | SI2 | 16389.0 |
2.02 | SI1 | 16386.0 |
1.71 | VS2 | 16384.0 |
2.01 | VS2 | 16383.0 |
2.0 | SI2 | 16380.0 |
2.07 | VS2 | 16378.0 |
1.51 | VS1 | 16370.0 |
2.28 | VS2 | 16369.0 |
2.02 | SI1 | 16368.0 |
1.5 | VVS2 | 16364.0 |
1.8 | SI1 | 16364.0 |
2.11 | VS2 | 16363.0 |
1.62 | VS2 | 16358.0 |
2.1 | SI2 | 16357.0 |
2.05 | SI2 | 16357.0 |
2.54 | SI2 | 16353.0 |
2.54 | SI2 | 16353.0 |
1.52 | VVS1 | 16343.0 |
2.35 | SI2 | 16340.0 |
1.8 | SI1 | 16340.0 |
1.6 | VVS1 | 16339.0 |
2.07 | SI2 | 16337.0 |
2.11 | SI2 | 16336.0 |
2.3 | SI2 | 16329.0 |
diamondsDF.printSchema // since price is double in the DF that was turned into table we can rely on the descenting sort on doubles
root
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: double (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
// sort by multiple fields
display(spark.sql("SELECT carat, clarity, price FROM diamonds ORDER BY carat ASC, price DESC"))
carat | clarity | price |
---|---|---|
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | VS2 | 367.0 |
0.2 | SI2 | 345.0 |
0.21 | SI2 | 394.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | VS2 | 386.0 |
0.21 | SI1 | 326.0 |
0.22 | SI1 | 470.0 |
0.22 | VS2 | 404.0 |
0.22 | VS2 | 404.0 |
0.22 | SI1 | 342.0 |
0.22 | VS2 | 337.0 |
0.23 | VVS2 | 688.0 |
0.23 | VVS1 | 682.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS1 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 680.0 |
0.23 | VVS2 | 650.0 |
0.23 | VVS2 | 640.0 |
0.23 | VVS1 | 640.0 |
0.23 | VS1 | 611.0 |
0.23 | VVS2 | 600.0 |
0.23 | VS1 | 586.0 |
0.23 | VS1 | 586.0 |
0.23 | VVS2 | 583.0 |
0.23 | VVS2 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS1 | 583.0 |
0.23 | VVS2 | 583.0 |
0.23 | VS2 | 577.0 |
0.23 | VVS2 | 571.0 |
0.23 | VVS2 | 550.0 |
0.23 | VVS2 | 549.0 |
0.23 | VS2 | 548.0 |
0.23 | VS1 | 548.0 |
0.23 | VS1 | 548.0 |
0.23 | VS2 | 548.0 |
0.23 | VS2 | 543.0 |
0.23 | VVS2 | 538.0 |
0.23 | VVS2 | 537.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | IF | 536.0 |
0.23 | VVS1 | 536.0 |
0.23 | VVS1 | 531.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | IF | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS1 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS2 | 530.0 |
0.23 | VVS1 | 525.0 |
0.23 | VVS1 | 518.0 |
0.23 | VS2 | 513.0 |
0.23 | VS1 | 513.0 |
0.23 | VS2 | 512.0 |
0.23 | VVS2 | 511.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS2 | 505.0 |
0.23 | VVS1 | 505.0 |
0.23 | VVS1 | 505.0 |
0.23 | VVS2 | 500.0 |
0.23 | VVS1 | 499.0 |
0.23 | VVS2 | 499.0 |
0.23 | VVS2 | 498.0 |
0.23 | VVS2 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VVS1 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VS2 | 498.0 |
0.23 | VVS2 | 498.0 |
0.23 | VS1 | 493.0 |
0.23 | VS2 | 493.0 |
0.23 | VVS2 | 492.0 |
0.23 | VVS1 | 492.0 |
0.23 | VVS1 | 492.0 |
0.23 | IF | 492.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS2 | 485.0 |
0.23 | VVS1 | 485.0 |
0.23 | IF | 485.0 |
0.23 | VVS1 | 484.0 |
0.23 | VVS1 | 484.0 |
0.23 | VVS1 | 484.0 |
0.23 | VS1 | 483.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS2 | 478.0 |
0.23 | VVS1 | 478.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS1 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VVS2 | 472.0 |
0.23 | VS1 | 468.0 |
0.23 | VVS2 | 468.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS1 | 465.0 |
0.23 | VVS1 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 465.0 |
0.23 | VVS2 | 462.0 |
0.23 | VVS1 | 462.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS1 | 458.0 |
0.23 | VVS2 | 458.0 |
0.23 | VVS2 | 458.0 |
0.23 | VVS2 | 452.0 |
0.23 | SI2 | 449.0 |
0.23 | VS2 | 447.0 |
0.23 | VVS2 | 445.0 |
0.23 | VS1 | 442.0 |
0.23 | VS2 | 442.0 |
0.23 | VVS1 | 439.0 |
0.23 | VVS2 | 438.0 |
0.23 | VS1 | 434.0 |
0.23 | VVS1 | 434.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 431.0 |
0.23 | VVS2 | 428.0 |
0.23 | VVS2 | 425.0 |
0.23 | VVS2 | 425.0 |
0.23 | VVS1 | 425.0 |
0.23 | VS1 | 423.0 |
0.23 | VS2 | 423.0 |
0.23 | VVS1 | 415.0 |
0.23 | VVS1 | 414.0 |
0.23 | VVS1 | 414.0 |
0.23 | VVS1 | 414.0 |
0.23 | VS2 | 411.0 |
0.23 | VS1 | 404.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS2 | 402.0 |
0.23 | VS1 | 400.0 |
0.23 | VS2 | 400.0 |
0.23 | VVS1 | 395.0 |
0.23 | VS1 | 391.0 |
0.23 | VS1 | 391.0 |
0.23 | VVS2 | 389.0 |
0.23 | VS1 | 384.0 |
0.23 | VS1 | 378.0 |
0.23 | VS1 | 378.0 |
0.23 | VVS2 | 378.0 |
0.23 | VS1 | 376.0 |
0.23 | SI1 | 375.0 |
0.23 | VS1 | 373.0 |
0.23 | VS2 | 373.0 |
0.23 | VS1 | 373.0 |
0.23 | VS1 | 373.0 |
0.23 | VVS2 | 369.0 |
0.23 | VS2 | 369.0 |
0.23 | IF | 369.0 |
0.23 | SI1 | 364.0 |
0.23 | SI1 | 364.0 |
0.23 | VS2 | 362.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VS1 | 357.0 |
0.23 | VS2 | 357.0 |
0.23 | VVS2 | 354.0 |
0.23 | VS1 | 353.0 |
0.23 | VS2 | 352.0 |
0.23 | VS1 | 340.0 |
0.23 | VS1 | 338.0 |
0.23 | VS1 | 327.0 |
0.23 | SI2 | 326.0 |
0.24 | VVS1 | 963.0 |
0.24 | VVS1 | 752.0 |
0.24 | VVS1 | 710.0 |
0.24 | VVS1 | 710.0 |
0.24 | VS1 | 687.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS1 | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | IF | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | IF | 678.0 |
0.24 | VVS2 | 678.0 |
0.24 | VVS2 | 668.0 |
0.24 | VVS2 | 668.0 |
0.24 | VVS1 | 668.0 |
0.24 | VVS1 | 668.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS1 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VVS2 | 608.0 |
0.24 | VS1 | 572.0 |
0.24 | VS1 | 572.0 |
0.24 | SI1 | 571.0 |
0.24 | VVS1 | 559.0 |
0.24 | IF | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | IF | 559.0 |
0.24 | VVS1 | 559.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS2 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 554.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS1 | 553.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | IF | 552.0 |
0.24 | IF | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS1 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 552.0 |
0.24 | VVS2 | 547.0 |
0.24 | VVS2 | 540.0 |
0.24 | VVS2 | 540.0 |
0.24 | VVS2 | 538.0 |
0.24 | VVS2 | 538.0 |
0.24 | VS2 | 536.0 |
0.24 | VS2 | 536.0 |
0.24 | VS1 | 536.0 |
0.24 | VVS2 | 533.0 |
0.24 | VVS1 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS1 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 526.0 |
0.24 | VVS2 | 523.0 |
0.24 | VVS2 | 521.0 |
0.24 | VVS2 | 521.0 |
0.24 | VVS1 | 521.0 |
0.24 | VVS1 | 521.0 |
0.24 | IF | 504.0 |
0.24 | VVS2 | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | IF | 504.0 |
0.24 | IF | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | VVS1 | 504.0 |
0.24 | VVS2 | 499.0 |
0.24 | VVS1 | 499.0 |
0.24 | VVS2 | 498.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | VVS1 | 492.0 |
0.24 | IF | 492.0 |
0.24 | VVS2 | 492.0 |
0.24 | VS1 | 490.0 |
0.24 | SI1 | 486.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 485.0 |
0.24 | VVS1 | 485.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS1 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | VVS2 | 478.0 |
0.24 | SI1 | 475.0 |
0.24 | VVS2 | 471.0 |
0.24 | VVS2 | 471.0 |
0.24 | VS2 | 461.0 |
0.24 | VS1 | 461.0 |
0.24 | VS2 | 461.0 |
0.24 | VS1 | 461.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | IF | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS1 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VVS2 | 449.0 |
0.24 | VS1 | 442.0 |
0.24 | VVS2 | 442.0 |
0.24 | VS1 | 436.0 |
0.24 | VVS2 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VVS2 | 432.0 |
0.24 | VS1 | 432.0 |
0.24 | VVS1 | 432.0 |
0.24 | VS1 | 430.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS1 | 419.0 |
0.24 | VS2 | 419.0 |
0.24 | VS2 | 417.0 |
0.24 | VS2 | 417.0 |
0.24 | VS1 | 417.0 |
0.24 | VS1 | 412.0 |
0.24 | VS2 | 408.0 |
0.24 | SI1 | 404.0 |
0.24 | VS1 | 399.0 |
0.24 | VS1 | 397.0 |
0.24 | VS1 | 393.0 |
0.24 | VS1 | 393.0 |
0.24 | VS2 | 391.0 |
0.24 | VS1 | 391.0 |
0.24 | VS1 | 391.0 |
0.24 | VS1 | 383.0 |
0.24 | VS1 | 378.0 |
0.24 | VS2 | 378.0 |
0.24 | VS1 | 373.0 |
0.24 | VS1 | 373.0 |
0.24 | VS2 | 373.0 |
0.24 | VS1 | 373.0 |
0.24 | SI1 | 370.0 |
0.24 | VS1 | 367.0 |
0.24 | VS2 | 367.0 |
0.24 | SI1 | 364.0 |
0.24 | VS2 | 362.0 |
0.24 | VS2 | 362.0 |
0.24 | VS1 | 357.0 |
0.24 | VS1 | 355.0 |
0.24 | VVS1 | 336.0 |
0.24 | VVS2 | 336.0 |
0.25 | SI2 | 1186.0 |
0.25 | SI2 | 1186.0 |
0.25 | SI2 | 1013.0 |
0.25 | VVS1 | 817.0 |
0.25 | VVS1 | 783.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS2 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | VVS1 | 740.0 |
0.25 | IF | 740.0 |
0.25 | IF | 739.0 |
0.25 | VVS2 | 705.0 |
0.25 | VVS1 | 705.0 |
0.25 | VVS2 | 705.0 |
0.25 | VVS1 | 705.0 |
0.25 | VVS2 | 696.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | IF | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS1 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | IF | 633.0 |
0.25 | VVS2 | 633.0 |
0.25 | IF | 624.0 |
0.25 | VS1 | 595.0 |
0.25 | VS1 | 595.0 |
0.25 | VS1 | 595.0 |
0.25 | VVS2 | 583.0 |
0.25 | VVS1 | 582.0 |
0.25 | IF | 582.0 |
0.25 | VVS1 | 582.0 |
0.25 | VVS1 | 582.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 577.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | IF | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 576.0 |
0.25 | VVS1 | 576.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS1 | 575.0 |
0.25 | VVS2 | 575.0 |
0.25 | VS1 | 563.0 |
0.25 | VVS1 | 560.0 |
0.25 | IF | 560.0 |
0.25 | VVS2 | 560.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VS1 | 558.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | IF | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VVS1 | 548.0 |
0.25 | VVS2 | 548.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VS2 | 535.0 |
0.25 | VVS2 | 533.0 |
0.25 | VVS1 | 533.0 |
0.25 | VVS2 | 526.0 |
0.25 | VVS1 | 526.0 |
0.25 | IF | 526.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | IF | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | VVS2 | 525.0 |
0.25 | VS2 | 525.0 |
0.25 | VVS1 | 525.0 |
0.25 | IF | 512.0 |
0.25 | VVS2 | 512.0 |
0.25 | VVS2 | 512.0 |
0.25 | VVS2 | 505.0 |
0.25 | VVS2 | 500.0 |
0.25 | VVS1 | 498.0 |
0.25 | VVS1 | 490.0 |
0.25 | VS2 | 480.0 |
0.25 | VS1 | 480.0 |
0.25 | VVS2 | 476.0 |
0.25 | VVS2 | 476.0 |
0.25 | VS2 | 472.0 |
0.25 | VVS2 | 467.0 |
0.25 | VVS1 | 467.0 |
0.25 | VVS2 | 462.0 |
0.25 | VS1 | 460.0 |
0.25 | VS2 | 460.0 |
0.25 | VS2 | 459.0 |
0.25 | VS2 | 459.0 |
0.25 | VVS1 | 457.0 |
0.25 | VVS2 | 455.0 |
0.25 | VS1 | 454.0 |
0.25 | VS1 | 454.0 |
0.25 | SI1 | 452.0 |
0.25 | VVS1 | 451.0 |
0.25 | VS2 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VVS1 | 450.0 |
0.25 | VS1 | 445.0 |
0.25 | VS1 | 445.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 438.0 |
0.25 | VS1 | 436.0 |
0.25 | VS2 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS1 | 436.0 |
0.25 | VS2 | 436.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 435.0 |
0.25 | VS1 | 431.0 |
0.25 | SI1 | 430.0 |
0.25 | SI1 | 430.0 |
0.25 | VS1 | 426.0 |
0.25 | VVS1 | 421.0 |
0.25 | VS1 | 410.0 |
0.25 | VS2 | 409.0 |
0.25 | VS2 | 407.0 |
0.25 | VS2 | 407.0 |
0.25 | SI1 | 407.0 |
0.25 | VS2 | 404.0 |
0.25 | VVS1 | 401.0 |
0.25 | VS2 | 399.0 |
0.25 | VS1 | 399.0 |
0.25 | SI1 | 395.0 |
0.25 | VS1 | 388.0 |
0.25 | VS1 | 388.0 |
0.25 | VS1 | 388.0 |
0.25 | VS2 | 367.0 |
0.25 | SI1 | 363.0 |
0.25 | VS1 | 361.0 |
0.25 | VS1 | 361.0 |
0.25 | SI1 | 357.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS1 | 814.0 |
0.26 | VVS2 | 777.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS1 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | VVS2 | 769.0 |
0.26 | IF | 768.0 |
0.26 | VVS2 | 733.0 |
0.26 | VVS1 | 733.0 |
0.26 | IF | 733.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS1 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS2 | 724.0 |
0.26 | VVS1 | 679.0 |
0.26 | VVS1 | 679.0 |
0.26 | SI1 | 658.0 |
0.26 | VVS2 | 657.0 |
0.26 | VVS2 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | IF | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | VVS1 | 657.0 |
0.26 | IF | 648.0 |
0.26 | IF | 648.0 |
0.26 | VVS1 | 635.0 |
0.26 | VVS1 | 635.0 |
0.26 | VVS1 | 635.0 |
0.26 | VS1 | 618.0 |
0.26 | VS1 | 618.0 |
0.26 | VVS2 | 614.0 |
0.26 | IF | 605.0 |
0.26 | IF | 605.0 |
0.26 | VVS1 | 605.0 |
0.26 | VVS1 | 605.0 |
0.26 | VS2 | 601.0 |
0.26 | IF | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS2 | 600.0 |
0.26 | VVS1 | 600.0 |
0.26 | VVS2 | 600.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS1 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 599.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | IF | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS2 | 597.0 |
0.26 | VVS1 | 591.0 |
0.26 | SI1 | 590.0 |
0.26 | VVS2 | 584.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS2 | 580.0 |
0.26 | VS2 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 580.0 |
0.26 | VS1 | 578.0 |
0.26 | VVS2 | 569.0 |
0.26 | VVS2 | 565.0 |
0.26 | VVS2 | 565.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS1 | 564.0 |
0.26 | VVS2 | 564.0 |
0.26 | VVS1 | 562.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.26 | VS1 | 556.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS1 | 554.0 |
0.26 | VVS2 | 554.0 |
0.26 | VVS2 | 547.0 |
0.26 | IF | 547.0 |
0.26 | VVS1 | 547.0 |
0.26 | VVS1 | 547.0 |
0.26 | VS1 | 546.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | IF | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | IF | 545.0 |
0.26 | VVS2 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 545.0 |
0.26 | VVS1 | 539.0 |
0.26 | VVS1 | 532.0 |
0.26 | VVS1 | 532.0 |
0.26 | VVS1 | 524.0 |
0.26 | VVS2 | 517.0 |
0.26 | VVS2 | 514.0 |
0.26 | VS1 | 508.0 |
0.26 | VVS2 | 508.0 |
0.26 | VVS2 | 506.0 |
0.26 | VS2 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 499.0 |
0.26 | VS1 | 491.0 |
0.26 | VS1 | 491.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VVS2 | 486.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VS1 | 482.0 |
0.26 | VVS2 | 478.0 |
0.26 | VS1 | 478.0 |
0.26 | SI1 | 474.0 |
0.26 | VVS2 | 468.0 |
0.26 | VVS2 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | VVS1 | 468.0 |
0.26 | IF | 468.0 |
0.26 | VS1 | 462.0 |
0.26 | VS2 | 456.0 |
0.26 | VS1 | 456.0 |
0.26 | VS1 | 456.0 |
0.26 | VS2 | 456.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 453.0 |
0.26 | VS2 | 453.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS2 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS2 | 452.0 |
0.26 | VS1 | 452.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | VS1 | 448.0 |
0.26 | SI1 | 447.0 |
0.26 | SI1 | 445.0 |
0.26 | VVS2 | 440.0 |
// use this to type cast strings into Int when the table is loaded with string-valued columns
//display(spark.sql("select cast(carat as Int) as carat, clarity, cast(price as Int) as price from diamond order by carat asc, price desc"))
// sort by multiple fields and limit to first 5
// I prefer lowercase for SQL - and you can use either in this course - but in the field do what your Boss or your colleagues prefer :)
display(spark.sql("select carat, clarity, price from diamonds order by carat desc, price desc limit 5"))
carat | clarity | price |
---|---|---|
5.01 | I1 | 18018.0 |
4.5 | I1 | 18531.0 |
4.13 | I1 | 17329.0 |
4.01 | I1 | 15223.0 |
4.01 | I1 | 15223.0 |
//aggregate functions
display(spark.sql("select avg(price) as avgprice from diamonds"))
avgprice |
---|
3932.799721913237 |
//average operator is doing an auto-type conversion from int to double
display(spark.sql("select avg(cast(price as Integer)) as avgprice from diamonds"))
avgprice |
---|
3932.799721913237 |
//aggregate function and grouping
display(spark.sql("select color, avg(price) as avgprice from diamonds group by color"))
color | avgprice |
---|---|
F | 3724.886396981765 |
E | 3076.7524752475247 |
D | 3169.9540959409596 |
J | 5323.81801994302 |
G | 3999.135671271697 |
I | 5091.874953891553 |
H | 4486.669195568401 |
Why do we need to know these interactive SQL queries?
Such queries can help us explore the data and thereby inform the modeling process!!!
Of course, if you don't know SQL then don't worry, we will be doing these things in scala using DataFrames.
Finally, those who are planning to take the Spark Developer Exams online, then you can't escape from SQL questions there...
Power Plant ML Pipeline Application - DataFrame Part
This is the Spark SQL parts of an end-to-end example of using a number of different machine learning algorithms to solve a supervised regression problem.
This is a break-down of Power Plant ML Pipeline Application from databricks.
This will be a recurring example in the sequel
Table of Contents
- Step 1: Business Understanding
- Step 2: Load Your Data
- Step 3: Explore Your Data
- Step 4: Visualize Your Data
- Step 5: Data Preparation
- Step 6: Data Modeling
- Step 7: Tuning and Evaluation
- Step 8: Deployment
We are trying to predict power output given a set of readings from various sensors in a gas-fired power generation plant. Power generation is a complex process, and understanding and predicting power output is an important element in managing a plant and its connection to the power grid.
- Given this business problem, we need to translate it to a Machine Learning task (actually a Statistical Machine Learning task).
- The ML task here is regression since the label (or target) we will be trying to predict takes a continuous numeric value
- Note: if the labels took values from a finite discrete set, such as,
Spam
/Not-Spam
orGood
/Bad
/Ugly
, then the ML task would be classification.
- Note: if the labels took values from a finite discrete set, such as,
Today, we will only cover Steps 1, 2, 3 and 4 above. You need introductions to linear algebra, stochastic gradient descent and decision trees before we can accomplish the applied ML task with some intuitive understanding. If you can't wait for ML then check out Spark MLLib Programming Guide for comming attractions!
The example data is provided by UCI at UCI Machine Learning Repository Combined Cycle Power Plant Data Set
You can read the background on the UCI page, but in summary:
- we have collected a number of readings from sensors at a Gas Fired Power Plant (also called a Peaker Plant) and
- want to use those sensor readings to predict how much power the plant will generate in a couple weeks from now.
- Again, today we will just focus on Steps 1-4 above that pertain to DataFrames.
More information about Peaker or Peaking Power Plants can be found on Wikipedia https://en.wikipedia.org/wiki/Peakingpowerplant.
displayHTML(frameIt("https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant",500))
sc.version.replace(".", "").toInt
res2: Int = 301
// a good habit to ensure the code is being run on the appropriate version of Spark - we are using Spark 2.2 actually if we use SparkSession object spark down the road...
require(sc.version.replace(".", "").toInt >= 140, "Spark 1.4.0+ is required to run this notebook. Please attach it to a Spark 1.4.0+ cluster.")
Step 1: Business Understanding
The first step in any machine learning task is to understand the business need.
As described in the overview we are trying to predict power output given a set of readings from various sensors in a gas-fired power generation plant.
The problem is a regression problem since the label (or target) we are trying to predict is numeric
Step 2: Load Your Data
Now that we understand what we are trying to do, we need to load our data and describe it, explore it and verify it.
Data was downloaded already as these five Tab-separated-variable or tsv files.
display(dbutils.fs.ls("/databricks-datasets/power-plant/data")) // Ctrl+Enter
path | name | size |
---|---|---|
dbfs:/databricks-datasets/power-plant/data/Sheet1.tsv | Sheet1.tsv | 308693.0 |
dbfs:/databricks-datasets/power-plant/data/Sheet2.tsv | Sheet2.tsv | 308693.0 |
dbfs:/databricks-datasets/power-plant/data/Sheet3.tsv | Sheet3.tsv | 308693.0 |
dbfs:/databricks-datasets/power-plant/data/Sheet4.tsv | Sheet4.tsv | 308693.0 |
dbfs:/databricks-datasets/power-plant/data/Sheet5.tsv | Sheet5.tsv | 308693.0 |
Now let us load the data from the Tab-separated-variable or tsv text file into an RDD[String]
using the familiar textFile
method.
val powerPlantRDD = sc.textFile("/databricks-datasets/power-plant/data/Sheet1.tsv") // Ctrl+Enter
powerPlantRDD: org.apache.spark.rdd.RDD[String] = /databricks-datasets/power-plant/data/Sheet1.tsv MapPartitionsRDD[187] at textFile at command-685894176422961:1
powerPlantRDD.take(5).foreach(println) // Ctrl+Enter to print first 5 lines
AT V AP RH PE
14.96 41.76 1024.07 73.17 463.26
25.18 62.96 1020.04 59.08 444.37
5.11 39.4 1012.16 92.14 488.56
20.86 57.32 1010.24 76.64 446.48
// let us make sure we are using Spark version greater than 2.2 - we need a version closer to 2.0 if we want to use SparkSession and SQLContext
require(sc.version.replace(".", "").toInt >= 220, "Spark 2.2.0+ is required to run this notebook. Please attach it to a Spark 2.2.0+ cluster.")
// this reads the tsv file and turns it into a dataframe
val powerPlantDF = spark.read // use 'sqlContext.read' instead if you want to use older Spark version > 1.3 see 008_ notebook
.format("csv") // use spark.csv package
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
.option("delimiter", "\t") // Specify the delimiter as Tab or '\t'
.load("/databricks-datasets/power-plant/data/Sheet1.tsv")
powerPlantDF: org.apache.spark.sql.DataFrame = [AT: double, V: double ... 3 more fields]
powerPlantDF.printSchema // print the schema of the DataFrame that was inferred
root
|-- AT: double (nullable = true)
|-- V: double (nullable = true)
|-- AP: double (nullable = true)
|-- RH: double (nullable = true)
|-- PE: double (nullable = true)
powerPlantDF.count
res9: Long = 9568
2.1. Alternatively, load data via the upload GUI feature in databricks
USE THIS FOR OTHER SMALLish DataSets you want to import to your CE
Since the dataset is relatively small, we will use the upload feature in Databricks to upload the data as a table.
First download the Data Folder from UCI Machine Learning Repository Combined Cycle Power Plant Data Set
The file is a multi-tab Excel document so you will need to save each tab as a Text file export.
I prefer exporting as a Tab-Separated-Values (TSV) since it is more consistent than CSV.
Call each file Folds5x2_pp<Sheet 1..5>.tsv and save to your machine.
Go to the Databricks Menu > Tables > Create Table
Select Datasource as "File"
Upload ALL 5 files at once.
See screenshots below (but refer https://docs.databricks.com/user-guide/importing-data.html for latest methods to import data):
2.1.1. Create Table _________________
When you import your data, name your table power_plant
, specify all of the columns with the datatype Double
and make sure you check the First row is header
box.
2.1.2. Review Schema __________________
Your table schema and preview should look like this after you click Create Table
:
Now that your data is loaded let's explore it.
Step 3: Explore Your Data
Now that we understand what we are trying to do, we need to load our data and describe it, explore it and verify it.
Viewing the table as text
By uisng .show
method we can see some of the contents of the table in plain text.
This works in pure Apache Spark, say in Spark-Shell
without any notebook layer on top of Spark like databricks, zeppelin or jupyter.
It is a good idea to use this method when possible.
powerPlantDF.show(10) // try putting 1000 here instead of 10
+-----+-----+-------+-----+------+
| AT| V| AP| RH| PE|
+-----+-----+-------+-----+------+
|14.96|41.76|1024.07|73.17|463.26|
|25.18|62.96|1020.04|59.08|444.37|
| 5.11| 39.4|1012.16|92.14|488.56|
|20.86|57.32|1010.24|76.64|446.48|
|10.82| 37.5|1009.23|96.62| 473.9|
|26.27|59.44|1012.23|58.77|443.67|
|15.89|43.96|1014.02|75.24|467.35|
| 9.48|44.71|1019.12|66.43|478.42|
|14.64| 45.0|1021.78|41.25|475.98|
|11.74|43.56|1015.14|70.72| 477.5|
+-----+-----+-------+-----+------+
only showing top 10 rows
Viewing as DataFrame
This is almost necessary for a data scientist to gain visual insights into all pair-wise relationships between the several (3 to 6 or so) variables in question.
display(powerPlantDF)
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
powerPlantDF.count() // count the number of rows in DF
res12: Long = 9568
Viewing as Table via SQL
Let us look at what tables are already available, as follows:
sqlContext.tables.show() // Ctrl+Enter to see available tables
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default|fxdata_bco_usd_20...| false|
| default|fxdata_xau_usd_20...| false|
| default|power_plant_predi...| false|
| default| sentimentlex_csv| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
+--------+--------------------+-----------+
We can also access the list of tables and databases using spark.catalog
methods as explained here:
spark.catalog.listTables.show(false)
+------------------------------------------------------------+--------+-----------+---------+-----------+
|name |database|description|tableType|isTemporary|
+------------------------------------------------------------+--------+-----------+---------+-----------+
|fxdata_bco_usd_2010_2020 |default |null |EXTERNAL |false |
|fxdata_xau_usd_2009_2020 |default |null |EXTERNAL |false |
|power_plant_predictions |default |null |MANAGED |false |
|sentimentlex_csv |default |null |EXTERNAL |false |
|simple_range |default |null |MANAGED |false |
|social_media_usage |default |null |MANAGED |false |
|social_media_usage_table_partitionedbyplatformbucketedbydate|default |null |MANAGED |false |
+------------------------------------------------------------+--------+-----------+---------+-----------+
spark.catalog.listDatabases.show(false)
+--------+---------------------+-------------------------------------+
|name |description |locationUri |
+--------+---------------------+-------------------------------------+
|default |Default Hive database|dbfs:/user/hive/warehouse |
|nih_xray| |dbfs:/user/hive/warehouse/nih_xray.db|
+--------+---------------------+-------------------------------------+
We need to create a temporary view of the DataFrame as a table before being able to access it via SQL.
powerPlantDF.createOrReplaceTempView("power_plant_table") // Shift+Enter
sqlContext.tables.show()
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default|fxdata_bco_usd_20...| false|
| default|fxdata_xau_usd_20...| false|
| default|power_plant_predi...| false|
| default| sentimentlex_csv| false|
| default| simple_range| false|
| default| social_media_usage| false|
| default|social_media_usag...| false|
| | power_plant_table| true|
+--------+--------------------+-----------+
Note that table names are in lower-case only!
You Try!
//sqlContext // uncomment and put . after sqlContext and hit Tab to see what methods are available
//sqlContext.dropTempTable("power_plant_table") // uncomment and Ctrl+Enter if you want to remove the table!
The following SQL statement simply selects all the columns (due to *
) from powerPlantTable
.
-- Ctrl+Enter to query the rows via SQL
SELECT * FROM power_plant_table
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
Note that the output of the above command is the same as display(powerPlantDF)
we did earlier.
We can use the SQL desc
command to describe the schema. This is the SQL equivalent of powerPlantDF.printSchema
we saw earlier.
desc power_plant_table
col_name | data_type | comment |
---|---|---|
AT | double | null |
V | double | null |
AP | double | null |
RH | double | null |
PE | double | null |
Schema Definition
Our schema definition from UCI appears below:
- AT = Atmospheric Temperature in C
- V = Exhaust Vaccum Speed
- AP = Atmospheric Pressure
- RH = Relative Humidity
- PE = Power Output
PE is our label or target. This is the value we are trying to predict given the measurements.
Reference UCI Machine Learning Repository Combined Cycle Power Plant Data Set
Let's do some basic statistical analysis of all the columns.
We can use the describe function with no parameters to get some basic stats for each column like count, mean, max, min and standard deviation. More information can be found in the Spark API docs
display(powerPlantDF.describe())
summary | AT | V | AP | RH | PE |
---|---|---|---|---|---|
count | 9568 | 9568 | 9568 | 9568 | 9568 |
mean | 19.65123118729102 | 54.30580372073601 | 1013.2590781772603 | 73.30897784280926 | 454.3650094063554 |
stddev | 7.4524732296110825 | 12.707892998326784 | 5.938783705811581 | 14.600268756728964 | 17.066994999803402 |
min | 1.81 | 25.36 | 992.89 | 25.56 | 420.26 |
max | 37.11 | 81.56 | 1033.3 | 100.16 | 495.76 |
Step 4: Visualize Your Data
To understand our data, we will look for correlations between features and the label. This can be important when choosing a model. E.g., if features and a label are linearly correlated, a linear model like Linear Regression can do well; if the relationship is very non-linear, more complex models such as Decision Trees or neural networks can be better. We use the Databricks built in visualization to view each of our predictors in relation to the label column as a scatter plot to see the correlation between the predictors and the label.
select AT as Temperature, PE as Power from power_plant_table
Temperature | Power |
---|---|
14.96 | 463.26 |
25.18 | 444.37 |
5.11 | 488.56 |
20.86 | 446.48 |
10.82 | 473.9 |
26.27 | 443.67 |
15.89 | 467.35 |
9.48 | 478.42 |
14.64 | 475.98 |
11.74 | 477.5 |
17.99 | 453.02 |
20.14 | 453.99 |
24.34 | 440.29 |
25.71 | 451.28 |
26.19 | 433.99 |
21.42 | 462.19 |
18.21 | 467.54 |
11.04 | 477.2 |
14.45 | 459.85 |
13.97 | 464.3 |
17.76 | 468.27 |
5.41 | 495.24 |
7.76 | 483.8 |
27.23 | 443.61 |
27.36 | 436.06 |
27.47 | 443.25 |
14.6 | 464.16 |
7.91 | 475.52 |
5.81 | 484.41 |
30.53 | 437.89 |
23.87 | 445.11 |
26.09 | 438.86 |
29.27 | 440.98 |
27.38 | 436.65 |
24.81 | 444.26 |
12.75 | 465.86 |
24.66 | 444.37 |
16.38 | 450.69 |
13.91 | 469.02 |
23.18 | 448.86 |
22.47 | 447.14 |
13.39 | 469.18 |
9.28 | 482.8 |
11.82 | 476.7 |
10.27 | 474.99 |
22.92 | 444.22 |
16.0 | 461.33 |
21.22 | 448.06 |
13.46 | 474.6 |
9.39 | 473.05 |
31.07 | 432.06 |
12.82 | 467.41 |
32.57 | 430.12 |
8.11 | 473.62 |
13.92 | 471.81 |
23.04 | 442.99 |
27.31 | 442.77 |
5.91 | 491.49 |
25.26 | 447.46 |
27.97 | 446.11 |
26.08 | 442.44 |
29.01 | 446.22 |
12.18 | 471.49 |
13.76 | 463.5 |
25.5 | 440.01 |
28.26 | 441.03 |
21.39 | 452.68 |
7.26 | 474.91 |
10.54 | 478.77 |
27.71 | 434.2 |
23.11 | 437.91 |
7.51 | 477.61 |
26.46 | 431.65 |
29.34 | 430.57 |
10.32 | 481.09 |
22.74 | 445.56 |
13.48 | 475.74 |
25.52 | 435.12 |
21.58 | 446.15 |
27.66 | 436.64 |
26.96 | 436.69 |
12.29 | 468.75 |
15.86 | 466.6 |
13.87 | 465.48 |
24.09 | 441.34 |
20.45 | 441.83 |
15.07 | 464.7 |
32.72 | 437.99 |
18.23 | 459.12 |
35.56 | 429.69 |
18.36 | 459.8 |
26.35 | 433.63 |
25.92 | 442.84 |
8.01 | 485.13 |
19.63 | 459.12 |
20.02 | 445.31 |
10.08 | 480.8 |
27.23 | 432.55 |
23.37 | 443.86 |
18.74 | 449.77 |
14.81 | 470.71 |
23.1 | 452.17 |
10.72 | 478.29 |
29.46 | 428.54 |
8.1 | 478.27 |
27.29 | 439.58 |
17.1 | 457.32 |
11.49 | 475.51 |
23.69 | 439.66 |
13.51 | 471.99 |
9.64 | 479.81 |
25.65 | 434.78 |
21.59 | 446.58 |
27.98 | 437.76 |
18.8 | 459.36 |
18.28 | 462.28 |
13.55 | 464.33 |
22.99 | 444.36 |
23.94 | 438.64 |
13.74 | 470.49 |
21.3 | 455.13 |
27.54 | 450.22 |
24.81 | 440.43 |
4.97 | 482.98 |
15.22 | 460.44 |
23.88 | 444.97 |
33.01 | 433.94 |
25.98 | 439.73 |
28.18 | 434.48 |
21.67 | 442.33 |
17.67 | 457.67 |
21.37 | 454.66 |
28.69 | 432.21 |
16.61 | 457.66 |
27.91 | 435.21 |
20.97 | 448.22 |
10.8 | 475.51 |
20.61 | 446.53 |
25.45 | 441.3 |
30.16 | 433.54 |
4.99 | 472.52 |
10.51 | 474.77 |
33.79 | 435.1 |
21.34 | 450.74 |
23.4 | 442.7 |
32.21 | 426.56 |
14.26 | 463.71 |
27.71 | 447.06 |
21.95 | 452.27 |
25.76 | 445.78 |
23.68 | 438.65 |
8.28 | 480.15 |
23.44 | 447.19 |
25.32 | 443.04 |
3.94 | 488.81 |
17.3 | 455.75 |
18.2 | 455.86 |
21.43 | 457.68 |
11.16 | 479.11 |
30.38 | 432.84 |
23.36 | 448.37 |
21.69 | 447.06 |
23.62 | 443.53 |
21.87 | 445.21 |
29.25 | 441.7 |
20.03 | 450.93 |
18.14 | 451.44 |
24.23 | 441.29 |
18.11 | 458.85 |
6.57 | 481.46 |
12.56 | 467.19 |
13.4 | 461.54 |
27.1 | 439.08 |
14.28 | 467.22 |
16.29 | 468.8 |
31.24 | 426.93 |
10.57 | 474.65 |
13.8 | 468.97 |
25.3 | 433.97 |
18.06 | 450.53 |
25.42 | 444.51 |
15.07 | 469.03 |
11.75 | 466.56 |
20.23 | 457.57 |
27.31 | 440.13 |
28.57 | 433.24 |
17.9 | 452.55 |
23.83 | 443.29 |
27.92 | 431.76 |
17.34 | 454.97 |
17.94 | 456.7 |
6.4 | 486.03 |
11.78 | 472.79 |
20.28 | 452.03 |
21.04 | 443.41 |
25.11 | 441.93 |
30.28 | 432.64 |
8.14 | 480.25 |
16.86 | 466.68 |
6.25 | 494.39 |
22.35 | 454.72 |
17.98 | 448.71 |
21.19 | 469.76 |
20.94 | 450.71 |
24.23 | 444.01 |
19.18 | 453.2 |
20.88 | 450.87 |
23.67 | 441.73 |
14.12 | 465.09 |
25.23 | 447.28 |
6.54 | 491.16 |
20.08 | 450.98 |
24.67 | 446.3 |
27.82 | 436.48 |
15.55 | 460.84 |
24.26 | 442.56 |
13.45 | 467.3 |
11.06 | 479.13 |
24.91 | 441.15 |
22.39 | 445.52 |
11.95 | 475.4 |
14.85 | 469.3 |
10.11 | 463.57 |
23.67 | 445.32 |
16.14 | 461.03 |
15.11 | 466.74 |
24.14 | 444.04 |
30.08 | 434.01 |
14.77 | 465.23 |
27.6 | 440.6 |
13.89 | 466.74 |
26.85 | 433.48 |
12.41 | 473.59 |
13.08 | 474.81 |
18.93 | 454.75 |
20.5 | 452.94 |
30.72 | 435.83 |
7.55 | 482.19 |
13.49 | 466.66 |
15.62 | 462.59 |
24.8 | 447.82 |
10.03 | 462.73 |
22.43 | 447.98 |
14.95 | 462.72 |
24.78 | 442.42 |
23.2 | 444.69 |
14.01 | 466.7 |
19.4 | 453.84 |
30.15 | 436.92 |
6.91 | 486.37 |
29.04 | 440.43 |
26.02 | 446.82 |
5.89 | 484.91 |
26.52 | 437.76 |
28.53 | 438.91 |
16.59 | 464.19 |
22.95 | 442.19 |
23.96 | 446.86 |
17.48 | 457.15 |
6.69 | 482.57 |
10.25 | 476.03 |
28.87 | 428.89 |
12.04 | 472.7 |
22.58 | 445.6 |
15.12 | 464.78 |
25.48 | 440.42 |
27.87 | 428.41 |
23.72 | 438.5 |
25.0 | 438.28 |
8.42 | 476.29 |
22.46 | 448.46 |
29.92 | 438.99 |
11.68 | 471.8 |
14.04 | 471.81 |
19.86 | 449.82 |
25.99 | 442.14 |
23.42 | 441.46 |
10.6 | 477.62 |
20.97 | 446.76 |
14.14 | 472.52 |
8.56 | 471.58 |
24.86 | 440.85 |
29.0 | 431.37 |
27.59 | 437.33 |
10.45 | 469.22 |
8.51 | 471.11 |
29.82 | 439.17 |
22.56 | 445.33 |
11.38 | 473.71 |
20.25 | 452.66 |
22.42 | 440.99 |
14.85 | 467.42 |
25.62 | 444.14 |
19.85 | 457.17 |
13.67 | 467.87 |
24.39 | 442.04 |
16.07 | 471.36 |
11.6 | 460.7 |
31.38 | 431.33 |
29.91 | 432.6 |
19.67 | 447.61 |
27.18 | 443.87 |
21.39 | 446.87 |
10.45 | 465.74 |
19.46 | 447.86 |
23.55 | 447.65 |
23.35 | 437.87 |
9.26 | 483.51 |
10.3 | 479.65 |
20.94 | 455.16 |
23.13 | 431.91 |
12.77 | 470.68 |
28.29 | 429.28 |
19.13 | 450.81 |
24.44 | 437.73 |
20.32 | 460.21 |
20.54 | 442.86 |
12.16 | 482.99 |
28.09 | 440.0 |
9.25 | 478.48 |
21.75 | 455.28 |
23.7 | 436.94 |
16.22 | 461.06 |
24.75 | 438.28 |
10.48 | 472.61 |
29.53 | 426.85 |
12.59 | 470.18 |
23.5 | 455.38 |
29.01 | 428.32 |
9.75 | 480.35 |
19.55 | 455.56 |
21.05 | 447.66 |
24.72 | 443.06 |
21.19 | 452.43 |
10.77 | 477.81 |
28.68 | 431.66 |
29.87 | 431.8 |
22.99 | 446.67 |
24.66 | 445.26 |
32.63 | 425.72 |
31.38 | 430.58 |
23.87 | 439.86 |
25.6 | 441.11 |
27.62 | 434.72 |
30.1 | 434.01 |
12.19 | 475.64 |
13.11 | 460.44 |
28.29 | 436.4 |
13.45 | 461.03 |
10.98 | 479.08 |
26.48 | 435.76 |
13.07 | 460.14 |
25.56 | 442.2 |
22.68 | 447.69 |
28.86 | 431.15 |
22.7 | 445.0 |
27.89 | 431.59 |
13.78 | 467.22 |
28.14 | 445.33 |
11.8 | 470.57 |
10.71 | 473.77 |
24.54 | 447.67 |
11.54 | 474.29 |
29.47 | 437.14 |
29.24 | 432.56 |
14.51 | 459.14 |
22.91 | 446.19 |
27.02 | 428.1 |
13.49 | 468.46 |
30.24 | 435.02 |
23.19 | 445.52 |
17.73 | 462.69 |
18.62 | 455.75 |
12.85 | 463.74 |
32.33 | 439.79 |
25.09 | 443.26 |
29.45 | 432.04 |
16.91 | 465.86 |
14.09 | 465.6 |
10.73 | 469.43 |
23.2 | 440.75 |
8.21 | 481.32 |
9.3 | 479.87 |
16.97 | 458.59 |
23.69 | 438.62 |
25.13 | 445.59 |
9.86 | 481.87 |
11.33 | 475.01 |
26.95 | 436.54 |
15.0 | 456.63 |
20.76 | 451.69 |
14.29 | 463.04 |
19.74 | 446.1 |
26.68 | 438.67 |
14.24 | 466.88 |
21.98 | 444.6 |
22.75 | 440.26 |
8.34 | 483.92 |
11.8 | 475.19 |
8.81 | 479.24 |
30.05 | 434.92 |
16.01 | 454.16 |
21.75 | 447.58 |
13.94 | 467.9 |
29.25 | 426.29 |
22.33 | 447.02 |
16.43 | 455.85 |
11.5 | 476.46 |
23.53 | 437.48 |
21.86 | 452.77 |
6.17 | 491.54 |
30.19 | 438.41 |
11.67 | 476.1 |
15.34 | 464.58 |
11.5 | 467.74 |
25.53 | 442.12 |
21.27 | 453.34 |
28.37 | 425.29 |
28.39 | 449.63 |
13.78 | 462.88 |
14.6 | 464.67 |
5.1 | 489.96 |
7.0 | 482.38 |
26.3 | 437.95 |
30.56 | 429.2 |
21.09 | 453.34 |
28.21 | 442.47 |
15.84 | 462.6 |
10.03 | 478.79 |
20.37 | 456.11 |
21.19 | 450.33 |
33.73 | 434.83 |
29.87 | 433.43 |
19.62 | 456.02 |
9.93 | 485.23 |
9.43 | 473.57 |
14.24 | 469.94 |
12.97 | 452.07 |
7.6 | 475.32 |
8.39 | 480.69 |
25.41 | 444.01 |
18.43 | 465.17 |
10.31 | 480.61 |
11.29 | 476.04 |
22.61 | 441.76 |
29.34 | 428.24 |
18.87 | 444.77 |
13.21 | 463.1 |
11.3 | 470.5 |
29.23 | 431.0 |
27.76 | 430.68 |
29.26 | 436.42 |
25.72 | 452.33 |
23.43 | 440.16 |
25.6 | 435.75 |
22.3 | 449.74 |
27.91 | 430.73 |
30.35 | 432.75 |
21.78 | 446.79 |
7.19 | 486.35 |
20.88 | 453.18 |
24.19 | 458.31 |
9.98 | 480.26 |
23.47 | 448.65 |
26.35 | 458.41 |
29.89 | 435.39 |
19.29 | 450.21 |
17.48 | 459.59 |
25.21 | 445.84 |
23.3 | 441.08 |
15.42 | 467.33 |
21.44 | 444.19 |
29.45 | 432.96 |
29.69 | 438.09 |
15.52 | 467.9 |
11.47 | 475.72 |
9.77 | 477.51 |
22.6 | 435.13 |
8.24 | 477.9 |
17.01 | 457.26 |
19.64 | 467.53 |
10.61 | 465.15 |
12.04 | 474.28 |
29.19 | 444.49 |
21.75 | 452.84 |
23.66 | 435.38 |
27.05 | 433.57 |
29.63 | 435.27 |
18.2 | 468.49 |
32.22 | 433.07 |
26.88 | 430.63 |
29.05 | 440.74 |
8.9 | 474.49 |
18.93 | 449.74 |
27.49 | 436.73 |
23.1 | 434.58 |
11.22 | 473.93 |
31.97 | 435.99 |
13.32 | 466.83 |
31.68 | 427.22 |
23.69 | 444.07 |
13.83 | 469.57 |
18.32 | 459.89 |
11.05 | 479.59 |
22.03 | 440.92 |
10.23 | 480.87 |
23.92 | 441.9 |
29.38 | 430.2 |
17.35 | 465.16 |
9.81 | 471.32 |
4.97 | 485.43 |
5.15 | 495.35 |
21.54 | 449.12 |
7.94 | 480.53 |
18.77 | 457.07 |
21.69 | 443.67 |
10.07 | 477.52 |
13.83 | 472.95 |
10.45 | 472.54 |
11.56 | 469.17 |
23.64 | 435.21 |
10.48 | 477.78 |
13.09 | 475.89 |
10.67 | 483.9 |
12.57 | 476.2 |
14.45 | 462.16 |
14.22 | 471.05 |
6.97 | 484.71 |
20.61 | 446.34 |
14.67 | 469.02 |
29.06 | 432.12 |
14.38 | 467.28 |
32.51 | 429.66 |
11.79 | 469.49 |
8.65 | 485.87 |
9.75 | 481.95 |
9.11 | 479.03 |
23.39 | 434.5 |
14.3 | 464.9 |
17.49 | 452.71 |
31.1 | 429.74 |
19.77 | 457.09 |
28.61 | 446.77 |
13.52 | 460.76 |
13.52 | 471.95 |
17.57 | 453.29 |
28.18 | 441.61 |
14.29 | 464.73 |
18.12 | 464.68 |
31.27 | 430.59 |
26.24 | 438.01 |
7.44 | 479.08 |
29.78 | 436.39 |
23.37 | 447.07 |
10.62 | 479.91 |
5.84 | 489.05 |
14.51 | 463.17 |
11.31 | 471.26 |
11.25 | 480.49 |
9.18 | 473.78 |
19.82 | 455.5 |
24.77 | 446.27 |
9.66 | 482.2 |
21.96 | 452.48 |
18.59 | 464.48 |
24.75 | 438.1 |
24.37 | 445.6 |
29.6 | 442.43 |
25.32 | 436.67 |
16.15 | 466.56 |
15.74 | 457.29 |
5.97 | 487.03 |
15.84 | 464.93 |
14.84 | 466.0 |
12.25 | 469.52 |
27.38 | 428.88 |
8.76 | 474.3 |
15.54 | 461.06 |
18.71 | 465.57 |
13.06 | 467.67 |
12.72 | 466.99 |
19.83 | 463.72 |
27.23 | 443.78 |
24.27 | 445.23 |
11.8 | 464.43 |
6.76 | 484.36 |
25.99 | 442.16 |
16.3 | 464.11 |
16.5 | 462.48 |
10.59 | 477.49 |
26.05 | 437.04 |
19.5 | 457.09 |
22.21 | 450.6 |
17.86 | 465.78 |
29.96 | 427.1 |
19.08 | 459.81 |
23.59 | 447.36 |
3.38 | 488.92 |
26.39 | 433.36 |
8.99 | 483.35 |
10.91 | 469.53 |
13.08 | 476.96 |
23.95 | 440.75 |
15.64 | 462.55 |
18.78 | 448.04 |
20.65 | 455.24 |
4.96 | 494.75 |
23.51 | 444.58 |
5.99 | 484.82 |
23.65 | 442.9 |
5.17 | 485.46 |
26.38 | 457.81 |
6.02 | 481.92 |
23.2 | 443.23 |
8.57 | 474.29 |
30.72 | 430.46 |
21.52 | 455.71 |
22.93 | 438.34 |
5.71 | 485.83 |
18.62 | 452.82 |
27.88 | 435.04 |
22.32 | 451.21 |
14.55 | 465.81 |
17.83 | 458.42 |
9.68 | 470.22 |
19.41 | 449.24 |
13.22 | 471.43 |
12.24 | 473.26 |
19.21 | 452.82 |
29.74 | 432.69 |
23.28 | 444.13 |
8.02 | 467.21 |
22.47 | 445.98 |
27.51 | 436.91 |
17.51 | 455.01 |
23.22 | 437.11 |
11.73 | 477.06 |
21.19 | 441.71 |
5.48 | 495.76 |
24.26 | 445.63 |
12.32 | 464.72 |
31.26 | 438.03 |
32.09 | 434.78 |
24.98 | 444.67 |
27.48 | 452.24 |
21.04 | 450.92 |
27.75 | 436.53 |
22.79 | 435.53 |
24.22 | 440.01 |
27.06 | 443.1 |
29.25 | 427.49 |
26.86 | 436.25 |
29.64 | 440.74 |
19.92 | 443.54 |
18.5 | 459.42 |
23.71 | 439.66 |
14.39 | 464.15 |
19.3 | 459.1 |
24.65 | 455.68 |
13.5 | 469.08 |
9.82 | 478.02 |
18.4 | 456.8 |
28.12 | 441.13 |
17.15 | 463.88 |
30.69 | 430.45 |
28.82 | 449.18 |
21.3 | 447.89 |
30.58 | 431.59 |
21.17 | 447.5 |
9.87 | 475.58 |
22.18 | 453.24 |
24.39 | 446.4 |
10.73 | 476.81 |
9.38 | 474.1 |
20.27 | 450.71 |
24.82 | 433.62 |
16.55 | 465.14 |
20.73 | 445.18 |
9.51 | 474.12 |
8.63 | 483.91 |
6.48 | 486.68 |
14.95 | 464.98 |
5.76 | 481.4 |
10.94 | 479.2 |
15.87 | 463.86 |
12.42 | 472.3 |
29.12 | 446.51 |
29.12 | 437.71 |
19.08 | 458.94 |
31.06 | 437.91 |
5.72 | 490.76 |
26.52 | 439.66 |
13.84 | 463.27 |
13.03 | 473.99 |
25.94 | 433.38 |
16.64 | 459.01 |
14.13 | 471.44 |
13.65 | 471.91 |
14.5 | 465.15 |
19.8 | 446.66 |
25.2 | 438.15 |
20.66 | 447.14 |
12.07 | 472.32 |
25.64 | 441.68 |
23.33 | 440.04 |
29.41 | 444.82 |
16.6 | 457.26 |
27.53 | 428.83 |
20.62 | 449.07 |
26.02 | 435.21 |
12.75 | 471.03 |
12.87 | 465.56 |
25.77 | 442.83 |
14.84 | 460.3 |
7.41 | 474.25 |
8.87 | 477.97 |
9.69 | 472.16 |
16.17 | 456.08 |
26.24 | 452.41 |
13.78 | 463.71 |
26.3 | 433.72 |
17.37 | 456.4 |
23.6 | 448.43 |
8.3 | 481.6 |
18.86 | 457.07 |
22.12 | 451.0 |
28.41 | 440.28 |
29.42 | 437.47 |
18.61 | 443.57 |
27.57 | 426.6 |
12.83 | 470.87 |
9.64 | 478.37 |
19.13 | 453.92 |
15.92 | 470.22 |
24.64 | 434.54 |
27.62 | 442.89 |
8.9 | 479.03 |
9.55 | 476.06 |
10.57 | 473.88 |
19.8 | 451.75 |
25.63 | 439.2 |
24.7 | 439.7 |
15.26 | 463.6 |
20.06 | 447.47 |
19.84 | 447.92 |
11.49 | 471.08 |
23.74 | 437.55 |
22.62 | 448.27 |
29.53 | 431.69 |
21.32 | 449.09 |
20.3 | 448.79 |
16.97 | 460.21 |
12.07 | 479.28 |
7.46 | 483.11 |
19.2 | 450.75 |
28.64 | 437.97 |
13.56 | 459.76 |
17.4 | 457.75 |
14.08 | 469.33 |
27.11 | 433.28 |
20.92 | 444.64 |
16.18 | 463.1 |
15.57 | 460.91 |
10.37 | 479.35 |
19.6 | 449.23 |
9.22 | 474.51 |
27.76 | 435.02 |
28.68 | 435.45 |
20.95 | 452.38 |
9.06 | 480.41 |
9.21 | 478.96 |
13.65 | 468.87 |
31.79 | 434.01 |
14.32 | 466.36 |
26.28 | 435.28 |
7.69 | 486.46 |
14.44 | 468.19 |
9.19 | 468.37 |
13.35 | 474.19 |
23.04 | 440.32 |
4.83 | 485.32 |
17.29 | 464.27 |
8.73 | 479.25 |
26.21 | 430.4 |
23.72 | 447.49 |
29.27 | 438.23 |
10.4 | 492.09 |
12.19 | 475.36 |
20.4 | 452.56 |
34.3 | 427.84 |
27.56 | 433.95 |
30.9 | 435.27 |
14.85 | 454.62 |
16.42 | 472.17 |
16.45 | 452.42 |
10.14 | 472.17 |
9.53 | 481.83 |
17.01 | 458.78 |
23.94 | 447.5 |
15.95 | 463.4 |
11.15 | 473.57 |
25.56 | 433.72 |
27.16 | 431.85 |
26.71 | 433.47 |
29.56 | 432.84 |
31.19 | 436.6 |
6.86 | 490.23 |
12.36 | 477.16 |
32.82 | 441.06 |
25.3 | 440.86 |
8.71 | 477.94 |
13.34 | 474.47 |
14.2 | 470.67 |
23.74 | 447.31 |
16.9 | 466.8 |
28.54 | 430.91 |
30.15 | 434.75 |
14.33 | 469.52 |
25.57 | 438.9 |
30.55 | 429.56 |
28.04 | 432.92 |
26.39 | 442.87 |
15.3 | 466.59 |
6.03 | 479.61 |
13.49 | 471.08 |
27.67 | 433.37 |
24.19 | 443.92 |
24.44 | 443.5 |
29.86 | 439.89 |
30.2 | 434.66 |
7.99 | 487.57 |
9.93 | 464.64 |
11.03 | 470.92 |
22.34 | 444.39 |
25.33 | 442.48 |
18.87 | 449.61 |
25.97 | 435.02 |
16.58 | 458.67 |
14.35 | 461.74 |
25.06 | 438.31 |
13.85 | 462.38 |
16.09 | 460.56 |
26.34 | 439.22 |
23.01 | 444.64 |
26.39 | 430.34 |
31.32 | 430.46 |
16.64 | 456.79 |
13.42 | 468.82 |
20.06 | 448.51 |
14.8 | 470.77 |
12.59 | 465.74 |
26.7 | 430.21 |
19.78 | 449.23 |
15.17 | 461.89 |
21.71 | 445.72 |
19.09 | 466.13 |
19.76 | 448.71 |
14.68 | 469.25 |
21.3 | 450.56 |
16.73 | 464.46 |
12.26 | 471.13 |
14.77 | 461.52 |
18.26 | 451.09 |
27.1 | 431.51 |
14.72 | 469.8 |
26.3 | 442.28 |
16.48 | 458.67 |
17.99 | 462.4 |
20.34 | 453.54 |
25.53 | 444.38 |
31.59 | 440.52 |
30.8 | 433.62 |
10.75 | 481.96 |
19.3 | 452.75 |
4.71 | 481.28 |
23.1 | 439.03 |
32.63 | 435.75 |
26.63 | 436.03 |
24.35 | 445.6 |
15.11 | 462.65 |
29.1 | 438.66 |
21.24 | 447.32 |
6.16 | 484.55 |
7.36 | 476.8 |
10.44 | 480.34 |
26.76 | 440.63 |
16.79 | 459.48 |
10.76 | 490.78 |
6.07 | 483.56 |
27.33 | 429.38 |
27.15 | 440.27 |
22.35 | 445.34 |
21.82 | 447.43 |
21.11 | 439.91 |
19.95 | 459.27 |
7.45 | 478.89 |
15.36 | 466.7 |
15.65 | 463.5 |
25.31 | 436.21 |
25.88 | 443.94 |
24.6 | 439.63 |
22.58 | 460.95 |
19.69 | 448.69 |
25.85 | 444.63 |
10.06 | 473.51 |
18.59 | 462.56 |
18.27 | 451.76 |
8.85 | 491.81 |
30.04 | 429.52 |
26.06 | 437.9 |
14.8 | 467.54 |
23.93 | 449.97 |
23.72 | 436.62 |
11.44 | 477.68 |
20.28 | 447.26 |
27.9 | 439.76 |
24.74 | 437.49 |
14.8 | 455.14 |
8.22 | 485.5 |
27.56 | 444.1 |
32.07 | 432.33 |
9.53 | 471.23 |
13.61 | 463.89 |
22.2 | 445.54 |
21.36 | 446.09 |
23.25 | 445.12 |
23.5 | 443.31 |
8.46 | 484.16 |
8.19 | 477.76 |
30.67 | 430.28 |
32.48 | 446.48 |
8.99 | 481.03 |
13.77 | 466.07 |
19.05 | 447.47 |
21.19 | 455.93 |
10.12 | 479.62 |
24.93 | 455.06 |
8.47 | 475.06 |
24.52 | 438.89 |
28.55 | 432.7 |
20.58 | 452.6 |
18.31 | 451.75 |
27.18 | 430.66 |
4.43 | 491.9 |
26.02 | 439.82 |
15.75 | 460.73 |
22.99 | 449.7 |
25.52 | 439.42 |
27.04 | 439.84 |
6.42 | 485.86 |
17.04 | 458.1 |
10.79 | 479.92 |
20.41 | 458.29 |
7.36 | 489.45 |
28.08 | 434.0 |
24.74 | 431.24 |
28.32 | 439.5 |
16.71 | 467.46 |
30.7 | 429.27 |
18.42 | 452.1 |
10.62 | 472.41 |
22.18 | 442.14 |
22.38 | 441.0 |
13.94 | 463.07 |
21.24 | 445.71 |
6.76 | 483.16 |
26.73 | 440.45 |
7.24 | 481.83 |
10.84 | 467.6 |
19.32 | 450.88 |
29.0 | 425.5 |
23.38 | 451.87 |
31.17 | 428.94 |
26.17 | 439.86 |
30.9 | 433.44 |
24.92 | 438.23 |
32.77 | 436.95 |
14.37 | 470.19 |
8.36 | 484.66 |
31.45 | 430.81 |
31.6 | 433.37 |
17.9 | 453.02 |
20.35 | 453.5 |
16.21 | 463.09 |
19.36 | 464.56 |
21.04 | 452.12 |
14.05 | 470.9 |
23.48 | 450.89 |
21.91 | 445.04 |
24.42 | 444.72 |
14.26 | 460.38 |
21.38 | 446.8 |
15.71 | 465.05 |
5.78 | 484.13 |
6.77 | 488.27 |
23.84 | 447.09 |
21.17 | 452.02 |
19.94 | 455.55 |
8.73 | 480.99 |
16.39 | 467.68 |
From the above plot, it looks like there is strong linear correlation between temperature and Power Output!
select V as ExhaustVaccum, PE as Power from power_plant_table;
ExhaustVaccum | Power |
---|---|
41.76 | 463.26 |
62.96 | 444.37 |
39.4 | 488.56 |
57.32 | 446.48 |
37.5 | 473.9 |
59.44 | 443.67 |
43.96 | 467.35 |
44.71 | 478.42 |
45.0 | 475.98 |
43.56 | 477.5 |
43.72 | 453.02 |
46.93 | 453.99 |
73.5 | 440.29 |
58.59 | 451.28 |
69.34 | 433.99 |
43.79 | 462.19 |
45.0 | 467.54 |
41.74 | 477.2 |
52.75 | 459.85 |
38.47 | 464.3 |
42.42 | 468.27 |
40.07 | 495.24 |
42.28 | 483.8 |
63.9 | 443.61 |
48.6 | 436.06 |
70.72 | 443.25 |
39.31 | 464.16 |
39.96 | 475.52 |
35.79 | 484.41 |
65.18 | 437.89 |
63.94 | 445.11 |
58.41 | 438.86 |
66.85 | 440.98 |
74.16 | 436.65 |
63.94 | 444.26 |
44.03 | 465.86 |
63.73 | 444.37 |
47.45 | 450.69 |
39.35 | 469.02 |
51.3 | 448.86 |
47.45 | 447.14 |
44.85 | 469.18 |
41.54 | 482.8 |
42.86 | 476.7 |
40.64 | 474.99 |
63.94 | 444.22 |
37.87 | 461.33 |
43.43 | 448.06 |
44.71 | 474.6 |
40.11 | 473.05 |
73.5 | 432.06 |
38.62 | 467.41 |
78.92 | 430.12 |
42.18 | 473.62 |
39.39 | 471.81 |
59.43 | 442.99 |
64.44 | 442.77 |
39.33 | 491.49 |
61.08 | 447.46 |
58.84 | 446.11 |
52.3 | 442.44 |
65.71 | 446.22 |
40.1 | 471.49 |
45.87 | 463.5 |
58.79 | 440.01 |
65.34 | 441.03 |
62.96 | 452.68 |
40.69 | 474.91 |
34.03 | 478.77 |
74.34 | 434.2 |
68.3 | 437.91 |
41.01 | 477.61 |
74.67 | 431.65 |
74.34 | 430.57 |
42.28 | 481.09 |
61.02 | 445.56 |
39.85 | 475.74 |
69.75 | 435.12 |
67.25 | 446.15 |
76.86 | 436.64 |
69.45 | 436.69 |
42.18 | 468.75 |
43.02 | 466.6 |
45.08 | 465.48 |
73.68 | 441.34 |
69.45 | 441.83 |
39.3 | 464.7 |
69.75 | 437.99 |
58.96 | 459.12 |
68.94 | 429.69 |
51.43 | 459.8 |
64.05 | 433.63 |
60.95 | 442.84 |
41.66 | 485.13 |
52.72 | 459.12 |
67.32 | 445.31 |
40.72 | 480.8 |
66.48 | 432.55 |
63.77 | 443.86 |
59.21 | 449.77 |
43.69 | 470.71 |
51.3 | 452.17 |
41.38 | 478.29 |
71.94 | 428.54 |
40.64 | 478.27 |
62.66 | 439.58 |
49.69 | 457.32 |
44.2 | 475.51 |
65.59 | 439.66 |
40.89 | 471.99 |
39.35 | 479.81 |
78.92 | 434.78 |
61.87 | 446.58 |
58.33 | 437.76 |
39.72 | 459.36 |
44.71 | 462.28 |
43.48 | 464.33 |
46.21 | 444.36 |
59.39 | 438.64 |
34.03 | 470.49 |
41.1 | 455.13 |
66.93 | 450.22 |
63.73 | 440.43 |
42.85 | 482.98 |
50.88 | 460.44 |
54.2 | 444.97 |
68.67 | 433.94 |
73.18 | 439.73 |
73.88 | 434.48 |
60.84 | 442.33 |
45.09 | 457.67 |
57.76 | 454.66 |
67.25 | 432.21 |
43.77 | 457.66 |
63.76 | 435.21 |
47.43 | 448.22 |
41.66 | 475.51 |
62.91 | 446.53 |
57.32 | 441.3 |
69.34 | 433.54 |
39.04 | 472.52 |
44.78 | 474.77 |
69.05 | 435.1 |
59.8 | 450.74 |
65.06 | 442.7 |
68.14 | 426.56 |
42.32 | 463.71 |
66.93 | 447.06 |
57.76 | 452.27 |
63.94 | 445.78 |
68.3 | 438.65 |
40.77 | 480.15 |
62.52 | 447.19 |
48.41 | 443.04 |
39.9 | 488.81 |
57.76 | 455.75 |
49.39 | 455.86 |
46.97 | 457.68 |
40.05 | 479.11 |
74.16 | 432.84 |
62.52 | 448.37 |
47.45 | 447.06 |
49.21 | 443.53 |
61.45 | 445.21 |
66.51 | 441.7 |
66.86 | 450.93 |
49.78 | 451.44 |
56.89 | 441.29 |
44.85 | 458.85 |
43.65 | 481.46 |
43.41 | 467.19 |
41.58 | 461.54 |
52.84 | 439.08 |
42.74 | 467.22 |
44.34 | 468.8 |
71.98 | 426.93 |
37.73 | 474.65 |
44.21 | 468.97 |
71.58 | 433.97 |
50.16 | 450.53 |
59.04 | 444.51 |
40.69 | 469.03 |
71.14 | 466.56 |
52.05 | 457.57 |
59.54 | 440.13 |
69.84 | 433.24 |
43.72 | 452.55 |
71.37 | 443.29 |
74.99 | 431.76 |
44.78 | 454.97 |
63.07 | 456.7 |
39.9 | 486.03 |
39.96 | 472.79 |
57.25 | 452.03 |
54.2 | 443.41 |
67.32 | 441.93 |
70.98 | 432.64 |
36.24 | 480.25 |
39.63 | 466.68 |
40.07 | 494.39 |
54.42 | 454.72 |
56.85 | 448.71 |
42.48 | 469.76 |
44.89 | 450.71 |
58.79 | 444.01 |
58.2 | 453.2 |
57.85 | 450.87 |
63.86 | 441.73 |
39.52 | 465.09 |
64.63 | 447.28 |
39.33 | 491.16 |
62.52 | 450.98 |
63.56 | 446.3 |
79.74 | 436.48 |
42.03 | 460.84 |
69.51 | 442.56 |
41.49 | 467.3 |
40.64 | 479.13 |
52.3 | 441.15 |
59.04 | 445.52 |
40.69 | 475.4 |
40.69 | 469.3 |
41.62 | 463.57 |
68.67 | 445.32 |
44.21 | 461.03 |
43.13 | 466.74 |
59.87 | 444.04 |
67.25 | 434.01 |
44.9 | 465.23 |
69.34 | 440.6 |
44.84 | 466.74 |
75.6 | 433.48 |
40.96 | 473.59 |
41.74 | 474.81 |
44.06 | 454.75 |
49.69 | 452.94 |
69.13 | 435.83 |
39.22 | 482.19 |
44.47 | 466.66 |
40.12 | 462.59 |
64.63 | 447.82 |
41.62 | 462.73 |
63.21 | 447.98 |
39.31 | 462.72 |
58.46 | 442.42 |
48.41 | 444.69 |
39.0 | 466.7 |
64.63 | 453.84 |
67.32 | 436.92 |
36.08 | 486.37 |
60.07 | 440.43 |
63.07 | 446.82 |
39.48 | 484.91 |
71.64 | 437.76 |
68.08 | 438.91 |
39.54 | 464.19 |
67.79 | 442.19 |
47.43 | 446.86 |
44.2 | 457.15 |
43.65 | 482.57 |
41.26 | 476.03 |
72.58 | 428.89 |
40.23 | 472.7 |
52.3 | 445.6 |
52.05 | 464.78 |
58.95 | 440.42 |
70.79 | 428.41 |
70.47 | 438.5 |
59.43 | 438.28 |
40.64 | 476.29 |
58.49 | 448.46 |
57.19 | 438.99 |
39.22 | 471.8 |
42.44 | 471.81 |
59.14 | 449.82 |
68.08 | 442.14 |
58.79 | 441.46 |
40.22 | 477.62 |
61.87 | 446.76 |
39.82 | 472.52 |
40.71 | 471.58 |
72.39 | 440.85 |
77.54 | 431.37 |
71.97 | 437.33 |
40.71 | 469.22 |
40.78 | 471.11 |
66.51 | 439.17 |
62.26 | 445.33 |
39.22 | 473.71 |
57.76 | 452.66 |
59.43 | 440.99 |
38.91 | 467.42 |
58.82 | 444.14 |
56.53 | 457.17 |
54.3 | 467.87 |
70.72 | 442.04 |
44.58 | 471.36 |
39.1 | 460.7 |
70.83 | 431.33 |
76.86 | 432.6 |
59.39 | 447.61 |
64.79 | 443.87 |
52.3 | 446.87 |
41.01 | 465.74 |
56.89 | 447.86 |
62.96 | 447.65 |
63.47 | 437.87 |
41.66 | 483.51 |
41.46 | 479.65 |
58.16 | 455.16 |
71.25 | 431.91 |
41.5 | 470.68 |
69.13 | 429.28 |
59.21 | 450.81 |
73.5 | 437.73 |
44.6 | 460.21 |
69.05 | 442.86 |
45.0 | 482.99 |
65.27 | 440.0 |
41.82 | 478.48 |
49.82 | 455.28 |
66.56 | 436.94 |
37.87 | 461.06 |
69.45 | 438.28 |
39.58 | 472.61 |
70.79 | 426.85 |
39.72 | 470.18 |
54.42 | 455.38 |
66.56 | 428.32 |
42.49 | 480.35 |
56.53 | 455.56 |
58.33 | 447.66 |
68.67 | 443.06 |
58.86 | 452.43 |
41.54 | 477.81 |
73.77 | 431.66 |
73.91 | 431.8 |
68.67 | 446.67 |
60.29 | 445.26 |
69.89 | 425.72 |
72.29 | 430.58 |
60.27 | 439.86 |
59.15 | 441.11 |
71.14 | 434.72 |
67.45 | 434.01 |
41.17 | 475.64 |
41.58 | 460.44 |
68.67 | 436.4 |
40.73 | 461.03 |
41.54 | 479.08 |
69.14 | 435.76 |
45.51 | 460.14 |
75.6 | 442.2 |
50.78 | 447.69 |
73.67 | 431.15 |
63.56 | 445.0 |
73.21 | 431.59 |
44.47 | 467.22 |
51.43 | 445.33 |
45.09 | 470.57 |
39.61 | 473.77 |
60.29 | 447.67 |
40.05 | 474.29 |
71.32 | 437.14 |
69.05 | 432.56 |
41.79 | 459.14 |
60.07 | 446.19 |
71.77 | 428.1 |
44.47 | 468.46 |
66.75 | 435.02 |
48.6 | 445.52 |
40.55 | 462.69 |
61.27 | 455.75 |
40.0 | 463.74 |
69.68 | 439.79 |
58.95 | 443.26 |
69.13 | 432.04 |
43.96 | 465.86 |
45.87 | 465.6 |
25.36 | 469.43 |
49.3 | 440.75 |
38.91 | 481.32 |
40.56 | 479.87 |
39.16 | 458.59 |
71.97 | 438.62 |
59.44 | 445.59 |
43.56 | 481.87 |
41.5 | 475.01 |
48.41 | 436.54 |
40.66 | 456.63 |
62.52 | 451.69 |
39.59 | 463.04 |
67.71 | 446.1 |
59.92 | 438.67 |
41.4 | 466.88 |
48.41 | 444.6 |
59.39 | 440.26 |
40.96 | 483.92 |
41.2 | 475.19 |
44.68 | 479.24 |
73.68 | 434.92 |
65.46 | 454.16 |
58.79 | 447.58 |
41.26 | 467.9 |
69.13 | 426.29 |
45.87 | 447.02 |
41.79 | 455.85 |
40.22 | 476.46 |
68.94 | 437.48 |
49.21 | 452.77 |
39.33 | 491.54 |
64.79 | 438.41 |
41.93 | 476.1 |
36.99 | 464.58 |
40.78 | 467.74 |
57.17 | 442.12 |
57.5 | 453.34 |
69.13 | 425.29 |
51.43 | 449.63 |
45.78 | 462.88 |
42.32 | 464.67 |
35.57 | 489.96 |
38.08 | 482.38 |
77.95 | 437.95 |
71.98 | 429.2 |
46.63 | 453.34 |
70.02 | 442.47 |
49.69 | 462.6 |
40.96 | 478.79 |
52.05 | 456.11 |
50.16 | 450.33 |
69.88 | 434.83 |
73.68 | 433.43 |
62.96 | 456.02 |
40.67 | 485.23 |
37.14 | 473.57 |
39.58 | 469.94 |
49.83 | 452.07 |
41.04 | 475.32 |
36.24 | 480.69 |
48.06 | 444.01 |
56.03 | 465.17 |
39.82 | 480.61 |
41.5 | 476.04 |
49.3 | 441.76 |
71.98 | 428.24 |
67.71 | 444.77 |
45.87 | 463.1 |
44.6 | 470.5 |
72.99 | 431.0 |
69.4 | 430.68 |
67.17 | 436.42 |
49.82 | 452.33 |
63.94 | 440.16 |
63.76 | 435.75 |
44.57 | 449.74 |
72.24 | 430.73 |
77.17 | 432.75 |
47.43 | 446.79 |
41.39 | 486.35 |
59.8 | 453.18 |
50.23 | 458.31 |
41.54 | 480.26 |
51.3 | 448.65 |
49.5 | 458.41 |
64.69 | 435.39 |
50.16 | 450.21 |
43.14 | 459.59 |
75.6 | 445.84 |
48.78 | 441.08 |
37.85 | 467.33 |
63.09 | 444.19 |
68.27 | 432.96 |
47.93 | 438.09 |
36.99 | 467.9 |
43.67 | 475.72 |
34.69 | 477.51 |
69.84 | 435.13 |
39.61 | 477.9 |
44.2 | 457.26 |
44.6 | 467.53 |
41.58 | 465.15 |
40.1 | 474.28 |
65.71 | 444.49 |
45.09 | 452.84 |
77.54 | 435.38 |
75.33 | 433.57 |
69.71 | 435.27 |
39.63 | 468.49 |
70.8 | 433.07 |
73.56 | 430.63 |
65.74 | 440.74 |
39.96 | 474.49 |
48.6 | 449.74 |
63.76 | 436.73 |
70.79 | 434.58 |
43.13 | 473.93 |
79.74 | 435.99 |
43.22 | 466.83 |
68.24 | 427.22 |
63.77 | 444.07 |
41.49 | 469.57 |
66.51 | 459.89 |
40.71 | 479.59 |
64.69 | 440.92 |
41.46 | 480.87 |
66.54 | 441.9 |
69.68 | 430.2 |
42.86 | 465.16 |
44.45 | 471.32 |
40.64 | 485.43 |
40.07 | 495.35 |
58.49 | 449.12 |
42.02 | 480.53 |
50.66 | 457.07 |
69.94 | 443.67 |
44.68 | 477.52 |
39.64 | 472.95 |
39.69 | 472.54 |
40.71 | 469.17 |
70.04 | 435.21 |
40.22 | 477.78 |
39.85 | 475.89 |
40.23 | 483.9 |
39.16 | 476.2 |
43.34 | 462.16 |
37.85 | 471.05 |
41.26 | 484.71 |
63.86 | 446.34 |
42.28 | 469.02 |
72.86 | 432.12 |
40.1 | 467.28 |
69.98 | 429.66 |
45.09 | 469.49 |
40.56 | 485.87 |
40.81 | 481.95 |
40.02 | 479.03 |
69.13 | 434.5 |
54.3 | 464.9 |
63.94 | 452.71 |
69.51 | 429.74 |
56.65 | 457.09 |
72.29 | 446.77 |
41.48 | 460.76 |
40.83 | 471.95 |
46.21 | 453.29 |
60.07 | 441.61 |
46.18 | 464.73 |
43.69 | 464.68 |
73.91 | 430.59 |
77.95 | 438.01 |
41.04 | 479.08 |
74.78 | 436.39 |
65.46 | 447.07 |
39.58 | 479.91 |
43.02 | 489.05 |
53.82 | 463.17 |
42.02 | 471.26 |
40.67 | 480.49 |
39.42 | 473.78 |
58.16 | 455.5 |
58.41 | 446.27 |
41.06 | 482.2 |
59.8 | 452.48 |
43.14 | 464.48 |
69.89 | 438.1 |
63.47 | 445.6 |
67.79 | 442.43 |
61.25 | 436.67 |
41.85 | 466.56 |
71.14 | 457.29 |
36.25 | 487.03 |
52.72 | 464.93 |
44.63 | 466.0 |
48.79 | 469.52 |
70.04 | 428.88 |
41.48 | 474.3 |
39.31 | 461.06 |
39.39 | 465.57 |
41.78 | 467.67 |
40.71 | 466.99 |
39.39 | 463.72 |
49.16 | 443.78 |
68.28 | 445.23 |
40.66 | 464.43 |
36.25 | 484.36 |
63.07 | 442.16 |
39.63 | 464.11 |
49.39 | 462.48 |
42.49 | 477.49 |
65.59 | 437.04 |
40.79 | 457.09 |
45.01 | 450.6 |
45.0 | 465.78 |
70.04 | 427.1 |
44.63 | 459.81 |
47.43 | 447.36 |
39.64 | 488.92 |
66.49 | 433.36 |
39.04 | 483.35 |
41.04 | 469.53 |
39.82 | 476.96 |
58.46 | 440.75 |
43.71 | 462.55 |
54.2 | 448.04 |
50.59 | 455.24 |
40.07 | 494.75 |
57.32 | 444.58 |
35.79 | 484.82 |
66.05 | 442.9 |
39.33 | 485.46 |
49.5 | 457.81 |
43.65 | 481.92 |
61.02 | 443.23 |
39.69 | 474.29 |
71.58 | 430.46 |
50.66 | 455.71 |
62.26 | 438.34 |
41.31 | 485.83 |
44.06 | 452.82 |
68.94 | 435.04 |
59.8 | 451.21 |
42.74 | 465.81 |
44.92 | 458.42 |
39.96 | 470.22 |
49.39 | 449.24 |
44.92 | 471.43 |
44.92 | 473.26 |
58.49 | 452.82 |
70.32 | 432.69 |
60.84 | 444.13 |
41.92 | 467.21 |
48.6 | 445.98 |
73.77 | 436.91 |
44.9 | 455.01 |
66.56 | 437.11 |
40.64 | 477.06 |
67.71 | 441.71 |
40.07 | 495.76 |
66.44 | 445.63 |
41.62 | 464.72 |
68.94 | 438.03 |
72.86 | 434.78 |
60.32 | 444.67 |
61.41 | 452.24 |
45.09 | 450.92 |
70.4 | 436.53 |
71.77 | 435.53 |
68.51 | 440.01 |
64.45 | 443.1 |
71.94 | 427.49 |
68.08 | 436.25 |
67.79 | 440.74 |
63.31 | 443.54 |
51.43 | 459.42 |
60.23 | 439.66 |
44.84 | 464.15 |
56.65 | 459.1 |
52.36 | 455.68 |
45.51 | 469.08 |
41.26 | 478.02 |
44.06 | 456.8 |
44.89 | 441.13 |
43.69 | 463.88 |
73.67 | 430.45 |
65.71 | 449.18 |
48.92 | 447.89 |
70.04 | 431.59 |
52.3 | 447.5 |
41.82 | 475.58 |
59.8 | 453.24 |
63.21 | 446.4 |
44.92 | 476.81 |
40.46 | 474.1 |
57.76 | 450.71 |
66.48 | 433.62 |
41.66 | 465.14 |
59.87 | 445.18 |
39.22 | 474.12 |
43.79 | 483.91 |
40.27 | 486.68 |
43.52 | 464.98 |
45.87 | 481.4 |
39.04 | 479.2 |
41.16 | 463.86 |
38.25 | 472.3 |
58.84 | 446.51 |
51.43 | 437.71 |
41.1 | 458.94 |
67.17 | 437.91 |
39.33 | 490.76 |
65.06 | 439.66 |
44.9 | 463.27 |
39.52 | 473.99 |
66.49 | 433.38 |
53.82 | 459.01 |
40.75 | 471.44 |
39.28 | 471.91 |
44.47 | 465.15 |
51.19 | 446.66 |
63.76 | 438.15 |
51.19 | 447.14 |
43.71 | 472.32 |
70.72 | 441.68 |
72.99 | 440.04 |
64.05 | 444.82 |
53.16 | 457.26 |
72.58 | 428.83 |
43.43 | 449.07 |
71.94 | 435.21 |
44.2 | 471.03 |
48.04 | 465.56 |
62.96 | 442.83 |
41.48 | 460.3 |
40.71 | 474.25 |
41.82 | 477.97 |
40.46 | 472.16 |
46.97 | 456.08 |
49.82 | 452.41 |
43.22 | 463.71 |
67.07 | 433.72 |
57.76 | 456.4 |
48.98 | 448.43 |
36.08 | 481.6 |
42.18 | 457.07 |
49.39 | 451.0 |
75.6 | 440.28 |
71.32 | 437.47 |
67.71 | 443.57 |
69.84 | 426.6 |
41.5 | 470.87 |
39.85 | 478.37 |
58.66 | 453.92 |
40.56 | 470.22 |
72.24 | 434.54 |
63.9 | 442.89 |
36.24 | 479.03 |
43.99 | 476.06 |
36.71 | 473.88 |
57.25 | 451.75 |
56.85 | 439.2 |
58.46 | 439.7 |
46.18 | 463.6 |
52.84 | 447.47 |
56.89 | 447.92 |
44.63 | 471.08 |
72.43 | 437.55 |
51.3 | 448.27 |
72.39 | 431.69 |
48.14 | 449.09 |
58.46 | 448.79 |
44.92 | 460.21 |
41.17 | 479.28 |
41.82 | 483.11 |
54.2 | 450.75 |
66.54 | 437.97 |
41.48 | 459.76 |
44.9 | 457.75 |
40.1 | 469.33 |
69.75 | 433.28 |
70.02 | 444.64 |
44.9 | 463.1 |
44.68 | 460.91 |
39.04 | 479.35 |
59.21 | 449.23 |
40.92 | 474.51 |
72.99 | 435.02 |
70.72 | 435.45 |
48.14 | 452.38 |
39.3 | 480.41 |
39.72 | 478.96 |
42.74 | 468.87 |
76.2 | 434.01 |
44.6 | 466.36 |
75.23 | 435.28 |
43.02 | 486.46 |
40.1 | 468.19 |
41.01 | 468.37 |
41.39 | 474.19 |
74.22 | 440.32 |
38.44 | 485.32 |
42.86 | 464.27 |
36.18 | 479.25 |
70.32 | 430.4 |
58.62 | 447.49 |
64.69 | 438.23 |
40.43 | 492.09 |
40.75 | 475.36 |
54.9 | 452.56 |
74.67 | 427.84 |
68.08 | 433.95 |
70.8 | 435.27 |
58.59 | 454.62 |
40.56 | 472.17 |
63.31 | 452.42 |
42.02 | 472.17 |
41.44 | 481.83 |
49.15 | 458.78 |
62.08 | 447.5 |
49.25 | 463.4 |
41.26 | 473.57 |
70.32 | 433.72 |
66.44 | 431.85 |
77.95 | 433.47 |
74.22 | 432.84 |
70.94 | 436.6 |
41.17 | 490.23 |
41.74 | 477.16 |
68.31 | 441.06 |
70.98 | 440.86 |
41.82 | 477.94 |
40.8 | 474.47 |
43.02 | 470.67 |
65.34 | 447.31 |
44.88 | 466.8 |
71.94 | 430.91 |
69.88 | 434.75 |
42.86 | 469.52 |
59.43 | 438.9 |
70.04 | 429.56 |
74.33 | 432.92 |
49.16 | 442.87 |
41.76 | 466.59 |
41.14 | 479.61 |
44.63 | 471.08 |
59.14 | 433.37 |
65.48 | 443.92 |
59.14 | 443.5 |
64.79 | 439.89 |
69.59 | 434.66 |
41.38 | 487.57 |
41.62 | 464.64 |
42.32 | 470.92 |
63.73 | 444.39 |
48.6 | 442.48 |
52.08 | 449.61 |
69.34 | 435.02 |
43.99 | 458.67 |
46.18 | 461.74 |
62.39 | 438.31 |
48.92 | 462.38 |
44.2 | 460.56 |
59.21 | 439.22 |
58.79 | 444.64 |
71.25 | 430.34 |
71.29 | 430.46 |
45.87 | 456.79 |
41.23 | 468.82 |
44.9 | 448.51 |
44.71 | 470.77 |
41.14 | 465.74 |
66.56 | 430.21 |
50.32 | 449.23 |
49.15 | 461.89 |
61.45 | 445.72 |
39.39 | 466.13 |
51.19 | 448.71 |
41.23 | 469.25 |
66.86 | 450.56 |
39.64 | 464.46 |
41.5 | 471.13 |
48.06 | 461.52 |
59.15 | 451.09 |
79.74 | 431.51 |
40.83 | 469.8 |
51.43 | 442.28 |
48.92 | 458.67 |
43.79 | 462.4 |
59.8 | 453.54 |
62.96 | 444.38 |
58.9 | 440.52 |
69.14 | 433.62 |
45.0 | 481.96 |
44.9 | 452.75 |
39.42 | 481.28 |
66.05 | 439.03 |
73.88 | 435.75 |
74.16 | 436.03 |
58.49 | 445.6 |
56.03 | 462.65 |
50.05 | 438.66 |
50.32 | 447.32 |
39.48 | 484.55 |
41.01 | 476.8 |
39.04 | 480.34 |
48.41 | 440.63 |
44.6 | 459.48 |
40.43 | 490.78 |
38.91 | 483.56 |
73.18 | 429.38 |
59.21 | 440.27 |
51.43 | 445.34 |
65.27 | 447.43 |
69.94 | 439.91 |
50.59 | 459.27 |
39.61 | 478.89 |
41.66 | 466.7 |
43.5 | 463.5 |
74.33 | 436.21 |
63.47 | 443.94 |
63.94 | 439.63 |
41.54 | 460.95 |
59.14 | 448.69 |
75.08 | 444.63 |
37.83 | 473.51 |
39.54 | 462.56 |
50.16 | 451.76 |
40.43 | 491.81 |
68.08 | 429.52 |
49.02 | 437.9 |
38.73 | 467.54 |
64.45 | 449.97 |
66.48 | 436.62 |
40.55 | 477.68 |
63.86 | 447.26 |
63.13 | 439.76 |
59.39 | 437.49 |
58.2 | 455.14 |
41.03 | 485.5 |
66.93 | 444.1 |
70.94 | 432.33 |
44.03 | 471.23 |
42.34 | 463.89 |
51.19 | 445.54 |
59.54 | 446.09 |
63.86 | 445.12 |
59.21 | 443.31 |
39.66 | 484.16 |
40.69 | 477.76 |
71.29 | 430.28 |
62.04 | 446.48 |
36.66 | 481.03 |
47.83 | 466.07 |
67.32 | 447.47 |
55.5 | 455.93 |
40.0 | 479.62 |
47.01 | 455.06 |
40.46 | 475.06 |
56.85 | 438.89 |
69.84 | 432.7 |
50.9 | 452.6 |
46.21 | 451.75 |
71.06 | 430.66 |
38.91 | 491.9 |
74.78 | 439.82 |
39.0 | 460.73 |
60.95 | 449.7 |
59.15 | 439.42 |
65.06 | 439.84 |
35.57 | 485.86 |
40.12 | 458.1 |
39.82 | 479.92 |
56.03 | 458.29 |
40.07 | 489.45 |
73.42 | 434.0 |
69.13 | 431.24 |
47.93 | 439.5 |
40.56 | 467.46 |
71.58 | 429.27 |
58.95 | 452.1 |
42.02 | 472.41 |
69.05 | 442.14 |
49.3 | 441.0 |
41.58 | 463.07 |
60.84 | 445.71 |
39.81 | 483.16 |
68.84 | 440.45 |
38.06 | 481.83 |
40.62 | 467.6 |
52.84 | 450.88 |
69.13 | 425.5 |
54.42 | 451.87 |
69.51 | 428.94 |
48.6 | 439.86 |
73.42 | 433.44 |
73.68 | 438.23 |
71.32 | 436.95 |
40.56 | 470.19 |
40.22 | 484.66 |
68.27 | 430.81 |
73.17 | 433.37 |
48.98 | 453.02 |
50.9 | 453.5 |
41.23 | 463.09 |
44.6 | 464.56 |
65.46 | 452.12 |
40.69 | 470.9 |
64.15 | 450.89 |
63.76 | 445.04 |
63.07 | 444.72 |
40.92 | 460.38 |
58.33 | 446.8 |
44.06 | 465.05 |
40.62 | 484.13 |
39.81 | 488.27 |
49.21 | 447.09 |
58.16 | 452.02 |
58.96 | 455.55 |
41.92 | 480.99 |
41.67 | 467.68 |
The linear correlation is not as strong between Exhaust Vacuum Speed and Power Output but there is some semblance of a pattern.
select AP as Pressure, PE as Power from power_plant_table;
Pressure | Power |
---|---|
1024.07 | 463.26 |
1020.04 | 444.37 |
1012.16 | 488.56 |
1010.24 | 446.48 |
1009.23 | 473.9 |
1012.23 | 443.67 |
1014.02 | 467.35 |
1019.12 | 478.42 |
1021.78 | 475.98 |
1015.14 | 477.5 |
1008.64 | 453.02 |
1014.66 | 453.99 |
1011.31 | 440.29 |
1012.77 | 451.28 |
1009.48 | 433.99 |
1015.76 | 462.19 |
1022.86 | 467.54 |
1022.6 | 477.2 |
1023.97 | 459.85 |
1015.15 | 464.3 |
1009.09 | 468.27 |
1019.16 | 495.24 |
1008.52 | 483.8 |
1014.3 | 443.61 |
1003.18 | 436.06 |
1009.97 | 443.25 |
1011.11 | 464.16 |
1023.57 | 475.52 |
1012.14 | 484.41 |
1012.69 | 437.89 |
1019.02 | 445.11 |
1013.64 | 438.86 |
1011.11 | 440.98 |
1010.08 | 436.65 |
1018.76 | 444.26 |
1007.29 | 465.86 |
1011.4 | 444.37 |
1010.08 | 450.69 |
1014.69 | 469.02 |
1012.04 | 448.86 |
1007.62 | 447.14 |
1017.24 | 469.18 |
1018.33 | 482.8 |
1014.12 | 476.7 |
1020.63 | 474.99 |
1019.28 | 444.22 |
1020.24 | 461.33 |
1010.96 | 448.06 |
1014.51 | 474.6 |
1029.14 | 473.05 |
1010.58 | 432.06 |
1018.71 | 467.41 |
1011.6 | 430.12 |
1014.82 | 473.62 |
1012.94 | 471.81 |
1010.23 | 442.99 |
1014.65 | 442.77 |
1010.18 | 491.49 |
1013.68 | 447.46 |
1002.25 | 446.11 |
1007.03 | 442.44 |
1013.61 | 446.22 |
1016.67 | 471.49 |
1008.89 | 463.5 |
1016.02 | 440.01 |
1014.56 | 441.03 |
1019.49 | 452.68 |
1020.43 | 474.91 |
1018.71 | 478.77 |
998.14 | 434.2 |
1017.83 | 437.91 |
1024.61 | 477.61 |
1016.65 | 431.65 |
998.58 | 430.57 |
1008.82 | 481.09 |
1009.56 | 445.56 |
1012.71 | 475.74 |
1010.36 | 435.12 |
1017.39 | 446.15 |
1001.31 | 436.64 |
1013.89 | 436.69 |
1016.53 | 468.75 |
1012.18 | 466.6 |
1024.42 | 465.48 |
1014.93 | 441.34 |
1012.53 | 441.83 |
1019.0 | 464.7 |
1009.6 | 437.99 |
1015.55 | 459.12 |
1006.56 | 429.69 |
1010.57 | 459.8 |
1009.81 | 433.63 |
1014.62 | 442.84 |
1014.49 | 485.13 |
1025.09 | 459.12 |
1012.05 | 445.31 |
1022.7 | 480.8 |
1005.23 | 432.55 |
1013.42 | 443.86 |
1018.3 | 449.77 |
1017.19 | 470.71 |
1011.93 | 452.17 |
1021.6 | 478.29 |
1006.96 | 428.54 |
1020.66 | 478.27 |
1007.63 | 439.58 |
1005.53 | 457.32 |
1018.79 | 475.51 |
1010.85 | 439.66 |
1011.03 | 471.99 |
1015.1 | 479.81 |
1010.83 | 434.78 |
1011.18 | 446.58 |
1013.92 | 437.76 |
1001.24 | 459.36 |
1016.99 | 462.28 |
1016.08 | 464.33 |
1010.71 | 444.36 |
1014.32 | 438.64 |
1018.69 | 470.49 |
1001.86 | 455.13 |
1017.06 | 450.22 |
1009.34 | 440.43 |
1014.02 | 482.98 |
1014.19 | 460.44 |
1012.81 | 444.97 |
1005.2 | 433.94 |
1012.28 | 439.73 |
1005.89 | 434.48 |
1017.93 | 442.33 |
1014.26 | 457.67 |
1018.8 | 454.66 |
1017.71 | 432.21 |
1012.25 | 457.66 |
1010.27 | 435.21 |
1007.64 | 448.22 |
1013.79 | 475.51 |
1013.24 | 446.53 |
1011.7 | 441.3 |
1007.67 | 433.54 |
1020.45 | 472.52 |
1012.59 | 474.77 |
1001.62 | 435.1 |
1016.92 | 450.74 |
1014.32 | 442.7 |
1003.34 | 426.56 |
1016.0 | 463.71 |
1016.85 | 447.06 |
1018.02 | 452.27 |
1018.49 | 445.78 |
1017.93 | 438.65 |
1011.55 | 480.15 |
1016.46 | 447.19 |
1008.47 | 443.04 |
1008.06 | 488.81 |
1016.26 | 455.75 |
1018.83 | 455.86 |
1013.94 | 457.68 |
1014.95 | 479.11 |
1007.44 | 432.84 |
1016.18 | 448.37 |
1007.56 | 447.06 |
1014.1 | 443.53 |
1011.13 | 445.21 |
1015.53 | 441.7 |
1013.05 | 450.93 |
1002.95 | 451.44 |
1012.32 | 441.29 |
1014.48 | 458.85 |
1018.24 | 481.46 |
1016.93 | 467.19 |
1020.5 | 461.54 |
1006.28 | 439.08 |
1028.79 | 467.22 |
1019.49 | 468.8 |
1004.66 | 426.93 |
1024.36 | 474.65 |
1022.93 | 468.97 |
1010.18 | 433.97 |
1009.52 | 450.53 |
1011.98 | 444.51 |
1015.29 | 469.03 |
1019.36 | 466.56 |
1012.15 | 457.57 |
1006.24 | 440.13 |
1003.57 | 433.24 |
1008.64 | 452.55 |
1002.04 | 443.29 |
1005.47 | 431.76 |
1007.81 | 454.97 |
1012.42 | 456.7 |
1007.75 | 486.03 |
1011.37 | 472.79 |
1010.12 | 452.03 |
1012.26 | 443.41 |
1014.49 | 441.93 |
1007.51 | 432.64 |
1013.15 | 480.25 |
1004.47 | 466.68 |
1020.19 | 494.39 |
1012.46 | 454.72 |
1012.28 | 448.71 |
1013.43 | 469.76 |
1009.64 | 450.71 |
1009.8 | 444.01 |
1017.46 | 453.2 |
1012.39 | 450.87 |
1019.67 | 441.73 |
1018.41 | 465.09 |
1020.59 | 447.28 |
1011.54 | 491.16 |
1017.99 | 450.98 |
1013.75 | 446.3 |
1008.37 | 436.48 |
1017.41 | 460.84 |
1013.43 | 442.56 |
1020.19 | 467.3 |
1021.47 | 479.13 |
1008.72 | 441.15 |
1011.78 | 445.52 |
1015.62 | 475.4 |
1014.91 | 469.3 |
1017.17 | 463.57 |
1006.71 | 445.32 |
1020.36 | 461.03 |
1014.99 | 466.74 |
1018.47 | 444.04 |
1017.6 | 434.01 |
1020.5 | 465.23 |
1009.63 | 440.6 |
1023.66 | 466.74 |
1017.43 | 433.48 |
1023.36 | 473.59 |
1020.75 | 474.81 |
1017.58 | 454.75 |
1009.6 | 452.94 |
1009.94 | 435.83 |
1014.53 | 482.19 |
1030.46 | 466.66 |
1013.03 | 462.59 |
1020.69 | 447.82 |
1014.55 | 462.73 |
1012.06 | 447.98 |
1009.15 | 462.72 |
1016.82 | 442.42 |
1008.64 | 444.69 |
1016.73 | 466.7 |
1020.38 | 453.84 |
1013.83 | 436.92 |
1021.82 | 486.37 |
1015.42 | 440.43 |
1010.94 | 446.82 |
1005.11 | 484.91 |
1008.27 | 437.76 |
1013.27 | 438.91 |
1007.97 | 464.19 |
1009.89 | 442.19 |
1008.38 | 446.86 |
1018.89 | 457.15 |
1020.14 | 482.57 |
1007.44 | 476.03 |
1008.69 | 428.89 |
1018.07 | 472.7 |
1009.04 | 445.6 |
1014.63 | 464.78 |
1017.02 | 440.42 |
1003.96 | 428.41 |
1010.65 | 438.5 |
1007.84 | 438.28 |
1022.35 | 476.29 |
1011.5 | 448.46 |
1008.62 | 438.99 |
1017.9 | 471.8 |
1012.74 | 471.81 |
1016.12 | 449.82 |
1013.13 | 442.14 |
1009.74 | 441.46 |
1011.37 | 477.62 |
1011.45 | 446.76 |
1012.46 | 472.52 |
1021.27 | 471.58 |
1001.15 | 440.85 |
1011.33 | 431.37 |
1008.64 | 437.33 |
1015.68 | 469.22 |
1023.51 | 471.11 |
1010.98 | 439.17 |
1012.11 | 445.33 |
1018.62 | 473.71 |
1016.28 | 452.66 |
1007.12 | 440.99 |
1014.48 | 467.42 |
1010.02 | 444.14 |
1020.57 | 457.17 |
1015.92 | 467.87 |
1009.78 | 442.04 |
1019.52 | 471.36 |
1009.81 | 460.7 |
1010.35 | 431.33 |
998.59 | 432.6 |
1014.07 | 447.61 |
1016.27 | 443.87 |
1009.2 | 446.87 |
1020.57 | 465.74 |
1014.02 | 447.86 |
1020.16 | 447.65 |
1011.78 | 437.87 |
1016.87 | 483.51 |
1018.21 | 479.65 |
1016.88 | 455.16 |
1002.49 | 431.91 |
1014.13 | 470.68 |
1009.29 | 429.28 |
1018.32 | 450.81 |
1011.49 | 437.73 |
1015.16 | 460.21 |
1001.6 | 442.86 |
1021.51 | 482.99 |
1013.27 | 440.0 |
1033.25 | 478.48 |
1015.01 | 455.28 |
1002.07 | 436.94 |
1022.36 | 461.06 |
1013.97 | 438.28 |
1011.81 | 472.61 |
1003.7 | 426.85 |
1017.76 | 470.18 |
1012.31 | 455.38 |
1006.44 | 428.32 |
1010.57 | 480.35 |
1020.2 | 455.56 |
1013.14 | 447.66 |
1006.74 | 443.06 |
1014.19 | 452.43 |
1019.94 | 477.81 |
1004.72 | 431.66 |
1004.53 | 431.8 |
1006.65 | 446.67 |
1018.0 | 445.26 |
1013.85 | 425.72 |
1008.73 | 430.58 |
1018.94 | 439.86 |
1013.31 | 441.11 |
1011.6 | 434.72 |
1014.23 | 434.01 |
1019.43 | 475.64 |
1020.43 | 460.44 |
1005.46 | 436.4 |
1018.7 | 461.03 |
1019.94 | 479.08 |
1009.31 | 435.76 |
1015.22 | 460.14 |
1017.37 | 442.2 |
1008.83 | 447.69 |
1006.65 | 431.15 |
1014.32 | 445.0 |
1001.32 | 431.59 |
1027.94 | 467.22 |
1012.16 | 445.33 |
1013.21 | 470.57 |
1018.72 | 473.77 |
1017.42 | 447.67 |
1014.78 | 474.29 |
1008.07 | 437.14 |
1003.12 | 432.56 |
1009.72 | 459.14 |
1016.03 | 446.19 |
1006.38 | 428.1 |
1030.18 | 468.46 |
1017.95 | 435.02 |
1002.38 | 445.52 |
1003.36 | 462.69 |
1019.26 | 455.75 |
1015.89 | 463.74 |
1011.95 | 439.79 |
1016.99 | 443.26 |
1009.3 | 432.04 |
1013.32 | 465.86 |
1009.05 | 465.6 |
1009.35 | 469.43 |
1003.4 | 440.75 |
1015.82 | 481.32 |
1022.64 | 479.87 |
1005.7 | 458.59 |
1009.62 | 438.62 |
1012.38 | 445.59 |
1015.13 | 481.87 |
1013.58 | 475.01 |
1008.53 | 436.54 |
1016.28 | 456.63 |
1015.63 | 451.69 |
1010.93 | 463.04 |
1007.68 | 446.1 |
1009.94 | 438.67 |
1019.7 | 466.88 |
1008.42 | 444.6 |
1015.4 | 440.26 |
1023.28 | 483.92 |
1017.18 | 475.19 |
1023.06 | 479.24 |
1014.95 | 434.92 |
1014.0 | 454.16 |
1012.42 | 447.58 |
1021.67 | 467.9 |
1010.27 | 426.29 |
1007.8 | 447.02 |
1005.47 | 455.85 |
1010.31 | 476.46 |
1007.53 | 437.48 |
1014.61 | 452.77 |
1012.57 | 491.54 |
1017.22 | 438.41 |
1019.81 | 476.1 |
1007.87 | 464.58 |
1023.91 | 467.74 |
1010.0 | 442.12 |
1014.53 | 453.34 |
1010.44 | 425.29 |
1011.74 | 449.63 |
1025.27 | 462.88 |
1015.71 | 464.67 |
1027.17 | 489.96 |
1020.27 | 482.38 |
1009.45 | 437.95 |
1004.74 | 429.2 |
1013.03 | 453.34 |
1010.58 | 442.47 |
1015.14 | 462.6 |
1024.57 | 478.79 |
1012.34 | 456.11 |
1005.81 | 450.33 |
1007.21 | 434.83 |
1015.1 | 433.43 |
1020.76 | 456.02 |
1018.08 | 485.23 |
1013.03 | 473.57 |
1011.17 | 469.94 |
1008.69 | 452.07 |
1021.82 | 475.32 |
1013.39 | 480.69 |
1013.12 | 444.01 |
1020.41 | 465.17 |
1012.87 | 480.61 |
1013.39 | 476.04 |
1003.51 | 441.76 |
1005.19 | 428.24 |
1004.0 | 444.77 |
1008.58 | 463.1 |
1018.19 | 470.5 |
1007.04 | 431.0 |
1004.27 | 430.68 |
1006.6 | 436.42 |
1016.19 | 452.33 |
1010.64 | 440.16 |
1010.18 | 435.75 |
1008.48 | 449.74 |
1010.74 | 430.73 |
1009.55 | 432.75 |
1007.88 | 446.79 |
1018.12 | 486.35 |
1015.66 | 453.18 |
1015.73 | 458.31 |
1019.7 | 480.26 |
1011.89 | 448.65 |
1012.67 | 458.41 |
1006.37 | 435.39 |
1010.49 | 450.21 |
1018.68 | 459.59 |
1017.19 | 445.84 |
1018.17 | 441.08 |
1009.89 | 467.33 |
1016.56 | 444.19 |
1007.96 | 432.96 |
1002.85 | 438.09 |
1006.86 | 467.9 |
1012.68 | 475.72 |
1027.72 | 477.51 |
1006.37 | 435.13 |
1017.99 | 477.9 |
1019.18 | 457.26 |
1015.88 | 467.53 |
1021.08 | 465.15 |
1014.42 | 474.28 |
1013.85 | 444.49 |
1014.15 | 452.84 |
1008.5 | 435.38 |
1003.88 | 433.57 |
1009.04 | 435.27 |
1005.35 | 468.49 |
1009.9 | 433.07 |
1004.85 | 430.63 |
1013.29 | 440.74 |
1026.31 | 474.49 |
1005.72 | 449.74 |
1010.09 | 436.73 |
1006.53 | 434.58 |
1017.24 | 473.93 |
1007.03 | 435.99 |
1009.45 | 466.83 |
1005.29 | 427.22 |
1013.39 | 444.07 |
1020.11 | 469.57 |
1015.18 | 459.89 |
1024.91 | 479.59 |
1007.21 | 440.92 |
1020.45 | 480.87 |
1009.93 | 441.9 |
1011.35 | 430.2 |
1014.62 | 465.16 |
1021.19 | 471.32 |
1020.91 | 485.43 |
1012.27 | 495.35 |
1010.85 | 449.12 |
1006.22 | 480.53 |
1014.89 | 457.07 |
1010.7 | 443.67 |
1023.44 | 477.52 |
1012.52 | 472.95 |
1003.92 | 472.54 |
1015.85 | 469.17 |
1011.09 | 435.21 |
1004.81 | 477.78 |
1012.86 | 475.89 |
1017.75 | 483.9 |
1016.53 | 476.2 |
1015.47 | 462.16 |
1011.24 | 471.05 |
1010.6 | 484.71 |
1015.43 | 446.34 |
1007.21 | 469.02 |
1004.23 | 432.12 |
1015.51 | 467.28 |
1013.29 | 429.66 |
1013.16 | 469.49 |
1023.23 | 485.87 |
1026.0 | 481.95 |
1031.1 | 479.03 |
1010.99 | 434.5 |
1015.16 | 464.9 |
1020.02 | 452.71 |
1010.84 | 429.74 |
1020.67 | 457.09 |
1011.61 | 446.77 |
1014.46 | 460.76 |
1008.31 | 471.95 |
1014.09 | 453.29 |
1016.34 | 441.61 |
1017.01 | 464.73 |
1016.91 | 464.68 |
1003.72 | 430.59 |
1014.19 | 438.01 |
1021.84 | 479.08 |
1009.28 | 436.39 |
1016.25 | 447.07 |
1011.9 | 479.91 |
1013.88 | 489.05 |
1016.46 | 463.17 |
1001.18 | 471.26 |
1011.64 | 480.49 |
1025.41 | 473.78 |
1016.76 | 455.5 |
1013.78 | 446.27 |
1021.21 | 482.2 |
1016.72 | 452.48 |
1011.92 | 464.48 |
1015.29 | 438.1 |
1012.77 | 445.6 |
1010.37 | 442.43 |
1011.56 | 436.67 |
1016.54 | 466.56 |
1019.65 | 457.29 |
1029.65 | 487.03 |
1026.45 | 464.93 |
1019.28 | 466.0 |
1017.44 | 469.52 |
1011.18 | 428.88 |
1018.49 | 474.3 |
1009.69 | 461.06 |
1014.09 | 465.57 |
1012.3 | 467.67 |
1016.02 | 466.99 |
1013.73 | 463.72 |
1004.03 | 443.78 |
1005.43 | 445.23 |
1017.13 | 464.43 |
1028.31 | 484.36 |
1012.5 | 442.16 |
1004.64 | 464.11 |
1018.35 | 462.48 |
1009.59 | 477.49 |
1012.78 | 437.04 |
1003.8 | 457.09 |
1012.22 | 450.6 |
1023.25 | 465.78 |
1010.15 | 427.1 |
1020.14 | 459.81 |
1006.64 | 447.36 |
1011.0 | 488.92 |
1012.96 | 433.36 |
1021.99 | 483.35 |
1026.57 | 469.53 |
1012.27 | 476.96 |
1017.5 | 440.75 |
1024.51 | 462.55 |
1012.05 | 448.04 |
1016.22 | 455.24 |
1011.8 | 494.75 |
1012.55 | 444.58 |
1011.56 | 484.82 |
1019.6 | 442.9 |
1009.68 | 485.46 |
1012.82 | 457.81 |
1013.85 | 481.92 |
1009.63 | 443.23 |
1000.91 | 474.29 |
1009.98 | 430.46 |
1013.56 | 455.71 |
1011.25 | 438.34 |
1003.24 | 485.83 |
1017.76 | 452.82 |
1007.68 | 435.04 |
1016.82 | 451.21 |
1028.41 | 465.81 |
1025.04 | 458.42 |
1026.09 | 470.22 |
1020.84 | 449.24 |
1023.84 | 471.43 |
1023.74 | 473.26 |
1011.7 | 452.82 |
1008.1 | 432.69 |
1017.91 | 444.13 |
1029.8 | 467.21 |
1002.33 | 445.98 |
1002.42 | 436.91 |
1009.05 | 455.01 |
1002.47 | 437.11 |
1020.68 | 477.06 |
1006.65 | 441.71 |
1019.63 | 495.76 |
1011.33 | 445.63 |
1012.88 | 464.72 |
1005.94 | 438.03 |
1003.47 | 434.78 |
1015.63 | 444.67 |
1012.2 | 452.24 |
1014.19 | 450.92 |
1006.65 | 436.53 |
1005.75 | 435.53 |
1013.23 | 440.01 |
1008.72 | 443.1 |
1007.18 | 427.49 |
1012.99 | 436.25 |
1009.99 | 440.74 |
1015.02 | 443.54 |
1010.82 | 459.42 |
1009.76 | 439.66 |
1023.55 | 464.15 |
1020.55 | 459.1 |
1014.76 | 455.68 |
1015.33 | 469.08 |
1007.71 | 478.02 |
1017.36 | 456.8 |
1009.18 | 441.13 |
1017.05 | 463.88 |
1006.14 | 430.45 |
1014.24 | 449.18 |
1010.92 | 447.89 |
1010.4 | 431.59 |
1009.36 | 447.5 |
1033.04 | 475.58 |
1016.77 | 453.24 |
1012.59 | 446.4 |
1025.1 | 476.81 |
1019.29 | 474.1 |
1016.66 | 450.71 |
1006.4 | 433.62 |
1011.45 | 465.14 |
1019.08 | 445.18 |
1015.3 | 474.12 |
1016.08 | 483.91 |
1010.55 | 486.68 |
1022.43 | 464.98 |
1010.83 | 481.4 |
1021.81 | 479.2 |
1005.85 | 463.86 |
1012.76 | 472.3 |
1001.31 | 446.51 |
1005.93 | 437.71 |
1001.96 | 458.94 |
1007.62 | 437.91 |
1009.96 | 490.76 |
1013.4 | 439.66 |
1007.58 | 463.27 |
1016.68 | 473.99 |
1012.83 | 433.38 |
1015.13 | 459.01 |
1016.05 | 471.44 |
1012.97 | 471.91 |
1028.2 | 465.15 |
1008.25 | 446.66 |
1009.78 | 438.15 |
1008.81 | 447.14 |
1025.53 | 472.32 |
1010.16 | 441.68 |
1009.33 | 440.04 |
1009.82 | 444.82 |
1014.5 | 457.26 |
1009.13 | 428.83 |
1009.93 | 449.07 |
1009.38 | 435.21 |
1017.59 | 471.03 |
1012.47 | 465.56 |
1019.86 | 442.83 |
1017.26 | 460.3 |
1023.07 | 474.25 |
1033.3 | 477.97 |
1019.1 | 472.16 |
1014.22 | 456.08 |
1014.9 | 452.41 |
1011.31 | 463.71 |
1006.26 | 433.72 |
1016.0 | 456.4 |
1015.41 | 448.43 |
1020.63 | 481.6 |
1001.16 | 457.07 |
1019.8 | 451.0 |
1018.48 | 440.28 |
1002.26 | 437.47 |
1004.07 | 443.57 |
1004.91 | 426.6 |
1013.12 | 470.87 |
1012.9 | 478.37 |
1013.32 | 453.92 |
1020.79 | 470.22 |
1011.37 | 434.54 |
1013.11 | 442.89 |
1013.29 | 479.03 |
1020.5 | 476.06 |
1022.62 | 473.88 |
1010.84 | 451.75 |
1012.68 | 439.2 |
1015.58 | 439.7 |
1013.68 | 463.6 |
1004.21 | 447.47 |
1013.23 | 447.92 |
1020.44 | 471.08 |
1007.99 | 437.55 |
1012.36 | 448.27 |
998.47 | 431.69 |
1016.57 | 449.09 |
1015.93 | 448.79 |
1025.21 | 460.21 |
1013.54 | 479.28 |
1032.67 | 483.11 |
1011.46 | 450.75 |
1010.43 | 437.97 |
1008.53 | 459.76 |
1020.5 | 457.75 |
1015.48 | 469.33 |
1009.74 | 433.28 |
1010.23 | 444.64 |
1021.3 | 463.1 |
1022.01 | 460.91 |
1023.95 | 479.35 |
1017.65 | 449.23 |
1021.83 | 474.51 |
1007.81 | 435.02 |
1009.43 | 435.45 |
1013.3 | 452.38 |
1019.73 | 480.41 |
1019.54 | 478.96 |
1026.58 | 468.87 |
1007.89 | 434.01 |
1013.85 | 466.36 |
1011.44 | 435.28 |
1014.51 | 486.46 |
1015.51 | 468.19 |
1022.14 | 468.37 |
1019.17 | 474.19 |
1009.52 | 440.32 |
1015.35 | 485.32 |
1014.38 | 464.27 |
1013.66 | 479.25 |
1007.0 | 430.4 |
1016.65 | 447.49 |
1006.85 | 438.23 |
1025.46 | 492.09 |
1015.13 | 475.36 |
1016.68 | 452.56 |
1015.98 | 427.84 |
1010.8 | 433.95 |
1008.48 | 435.27 |
1014.04 | 454.62 |
1020.36 | 472.17 |
1015.96 | 452.42 |
1003.19 | 472.17 |
1018.01 | 481.83 |
1021.83 | 458.78 |
1022.47 | 447.5 |
1019.04 | 463.4 |
1022.67 | 473.57 |
1009.07 | 433.72 |
1011.2 | 431.85 |
1012.13 | 433.47 |
1007.45 | 432.84 |
1007.29 | 436.6 |
1020.12 | 490.23 |
1020.58 | 477.16 |
1010.44 | 441.06 |
1007.22 | 440.86 |
1033.08 | 477.94 |
1026.56 | 474.47 |
1012.18 | 470.67 |
1013.7 | 447.31 |
1018.14 | 466.8 |
1007.4 | 430.91 |
1007.2 | 434.75 |
1010.82 | 469.52 |
1008.88 | 438.9 |
1010.51 | 429.56 |
1013.53 | 432.92 |
1005.68 | 442.87 |
1022.57 | 466.59 |
1028.04 | 479.61 |
1019.12 | 471.08 |
1016.51 | 433.37 |
1018.8 | 443.92 |
1016.74 | 443.5 |
1017.37 | 439.89 |
1008.9 | 434.66 |
1021.95 | 487.57 |
1013.76 | 464.64 |
1017.26 | 470.92 |
1014.37 | 444.39 |
1002.54 | 442.48 |
1005.25 | 449.61 |
1009.43 | 435.02 |
1021.81 | 458.67 |
1016.63 | 461.74 |
1008.09 | 438.31 |
1011.68 | 462.38 |
1019.39 | 460.56 |
1013.37 | 439.22 |
1009.71 | 444.64 |
999.8 | 430.34 |
1008.37 | 430.46 |
1009.02 | 456.79 |
994.17 | 468.82 |
1008.79 | 448.51 |
1014.67 | 470.77 |
1025.79 | 465.74 |
1005.31 | 430.21 |
1008.62 | 449.23 |
1021.91 | 461.89 |
1010.97 | 445.72 |
1013.36 | 466.13 |
1008.38 | 448.71 |
998.43 | 469.25 |
1013.04 | 450.56 |
1008.94 | 464.46 |
1014.87 | 471.13 |
1010.92 | 461.52 |
1012.04 | 451.09 |
1005.43 | 431.51 |
1009.65 | 469.8 |
1012.05 | 442.28 |
1011.84 | 458.67 |
1016.13 | 462.4 |
1015.18 | 453.54 |
1019.81 | 444.38 |
1003.39 | 440.52 |
1007.68 | 433.62 |
1023.68 | 481.96 |
1008.89 | 452.75 |
1026.4 | 481.28 |
1020.28 | 439.03 |
1005.64 | 435.75 |
1009.72 | 436.03 |
1011.03 | 445.6 |
1020.27 | 462.65 |
1005.87 | 438.66 |
1008.54 | 447.32 |
1004.85 | 484.55 |
1024.9 | 476.8 |
1023.99 | 480.34 |
1010.53 | 440.63 |
1014.27 | 459.48 |
1025.98 | 490.78 |
1019.25 | 483.56 |
1012.26 | 429.38 |
1013.49 | 440.27 |
1011.34 | 445.34 |
1013.86 | 447.43 |
1004.37 | 439.91 |
1016.11 | 459.27 |
1017.88 | 478.89 |
1012.41 | 466.7 |
1021.39 | 463.5 |
1015.04 | 436.21 |
1011.95 | 443.94 |
1012.87 | 439.63 |
1013.21 | 460.95 |
1015.99 | 448.69 |
1006.24 | 444.63 |
1005.49 | 473.51 |
1008.56 | 462.56 |
1011.07 | 451.76 |
1025.68 | 491.81 |
1011.04 | 429.52 |
1007.59 | 437.9 |
1003.18 | 467.54 |
1015.35 | 449.97 |
1003.61 | 436.62 |
1023.37 | 477.68 |
1016.04 | 447.26 |
1011.8 | 439.76 |
1015.23 | 437.49 |
1018.29 | 455.14 |
1021.76 | 485.5 |
1016.81 | 444.1 |
1006.91 | 432.33 |
1008.87 | 471.23 |
1017.93 | 463.89 |
1009.2 | 445.54 |
1007.99 | 446.09 |
1017.82 | 445.12 |
1018.29 | 443.31 |
1015.14 | 484.16 |
1019.86 | 477.76 |
1008.36 | 430.28 |
1010.39 | 446.48 |
1028.11 | 481.03 |
1007.41 | 466.07 |
1013.2 | 447.47 |
1019.83 | 455.93 |
1021.15 | 479.62 |
1014.28 | 455.06 |
1019.87 | 475.06 |
1012.59 | 438.89 |
1003.38 | 432.7 |
1011.89 | 452.6 |
1010.46 | 451.75 |
1008.16 | 430.66 |
1019.04 | 491.9 |
1010.04 | 439.82 |
1015.91 | 460.73 |
1015.14 | 449.7 |
1013.88 | 439.42 |
1013.33 | 439.84 |
1025.58 | 485.86 |
1011.81 | 458.1 |
1012.89 | 479.92 |
1019.94 | 458.29 |
1017.29 | 489.45 |
1012.17 | 434.0 |
1010.69 | 431.24 |
1003.26 | 439.5 |
1019.48 | 467.46 |
1010.0 | 429.27 |
1016.95 | 452.1 |
999.83 | 472.41 |
1002.75 | 442.14 |
1003.56 | 441.0 |
1020.76 | 463.07 |
1017.99 | 445.71 |
1017.11 | 483.16 |
1010.75 | 440.45 |
1020.6 | 481.83 |
1015.53 | 467.6 |
1004.29 | 450.88 |
1001.22 | 425.5 |
1013.95 | 451.87 |
1010.51 | 428.94 |
1002.59 | 439.86 |
1011.21 | 433.44 |
1015.12 | 438.23 |
1007.68 | 436.95 |
1021.67 | 470.19 |
1011.6 | 484.66 |
1007.56 | 430.81 |
1010.05 | 433.37 |
1014.17 | 453.02 |
1012.6 | 453.5 |
995.88 | 463.09 |
1016.25 | 464.56 |
1017.22 | 452.12 |
1015.66 | 470.9 |
1021.08 | 450.89 |
1009.85 | 445.04 |
1011.49 | 444.72 |
1022.07 | 460.38 |
1013.05 | 446.8 |
1018.34 | 465.05 |
1016.55 | 484.13 |
1017.01 | 488.27 |
1013.85 | 447.09 |
1017.16 | 452.02 |
1014.16 | 455.55 |
1029.41 | 480.99 |
1012.96 | 467.68 |
select RH as Humidity, PE as Power from power_plant_table;
Humidity | Power |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
...and atmospheric pressure and relative humidity seem to have little to no linear correlation.
These pairwise plots can also be done directly using display
on select
ed columns of the DataFrame powerPlantDF
.
In general we will shy from SQL as much as possible to focus on ML pipelines written with DataFrames and DataSets with occassional in-and-out of RDDs.
The illustations in %sql
above are to mainly reassure those with a RDBMS background and SQL that their SQL expressibility can be directly used in Apache Spark and in databricks notebooks.
display(powerPlantDF.select($"RH", $"PE"))
RH | PE |
---|---|
73.17 | 463.26 |
59.08 | 444.37 |
92.14 | 488.56 |
76.64 | 446.48 |
96.62 | 473.9 |
58.77 | 443.67 |
75.24 | 467.35 |
66.43 | 478.42 |
41.25 | 475.98 |
70.72 | 477.5 |
75.04 | 453.02 |
64.22 | 453.99 |
84.15 | 440.29 |
61.83 | 451.28 |
87.59 | 433.99 |
43.08 | 462.19 |
48.84 | 467.54 |
77.51 | 477.2 |
63.59 | 459.85 |
55.28 | 464.3 |
66.26 | 468.27 |
64.77 | 495.24 |
83.31 | 483.8 |
47.19 | 443.61 |
54.93 | 436.06 |
74.62 | 443.25 |
72.52 | 464.16 |
88.44 | 475.52 |
92.28 | 484.41 |
41.85 | 437.89 |
44.28 | 445.11 |
64.58 | 438.86 |
63.25 | 440.98 |
78.61 | 436.65 |
44.51 | 444.26 |
89.46 | 465.86 |
74.52 | 444.37 |
88.86 | 450.69 |
75.51 | 469.02 |
78.64 | 448.86 |
76.65 | 447.14 |
80.44 | 469.18 |
79.89 | 482.8 |
88.28 | 476.7 |
84.6 | 474.99 |
42.69 | 444.22 |
78.41 | 461.33 |
61.07 | 448.06 |
50.0 | 474.6 |
77.29 | 473.05 |
43.66 | 432.06 |
83.8 | 467.41 |
66.47 | 430.12 |
93.09 | 473.62 |
80.52 | 471.81 |
68.99 | 442.99 |
57.27 | 442.77 |
95.53 | 491.49 |
71.72 | 447.46 |
57.88 | 446.11 |
63.34 | 442.44 |
48.07 | 446.22 |
91.87 | 471.49 |
87.27 | 463.5 |
64.4 | 440.01 |
43.4 | 441.03 |
72.24 | 452.68 |
90.22 | 474.91 |
74.0 | 478.77 |
71.85 | 434.2 |
86.62 | 437.91 |
97.41 | 477.61 |
84.44 | 431.65 |
81.55 | 430.57 |
75.66 | 481.09 |
79.41 | 445.56 |
58.91 | 475.74 |
90.06 | 435.12 |
79.0 | 446.15 |
69.47 | 436.64 |
51.47 | 436.69 |
83.13 | 468.75 |
40.33 | 466.6 |
81.69 | 465.48 |
94.55 | 441.34 |
91.81 | 441.83 |
63.62 | 464.7 |
49.35 | 437.99 |
69.61 | 459.12 |
38.75 | 429.69 |
90.17 | 459.8 |
81.24 | 433.63 |
48.46 | 442.84 |
76.72 | 485.13 |
51.16 | 459.12 |
76.34 | 445.31 |
67.3 | 480.8 |
52.38 | 432.55 |
76.44 | 443.86 |
91.55 | 449.77 |
71.9 | 470.71 |
80.05 | 452.17 |
63.77 | 478.29 |
62.26 | 428.54 |
89.04 | 478.27 |
58.02 | 439.58 |
81.82 | 457.32 |
91.14 | 475.51 |
88.92 | 439.66 |
84.83 | 471.99 |
91.76 | 479.81 |
86.56 | 434.78 |
57.21 | 446.58 |
54.25 | 437.76 |
63.8 | 459.36 |
33.71 | 462.28 |
67.25 | 464.33 |
60.11 | 444.36 |
74.55 | 438.64 |
67.34 | 470.49 |
42.75 | 455.13 |
55.2 | 450.22 |
83.61 | 440.43 |
88.78 | 482.98 |
100.12 | 460.44 |
64.52 | 444.97 |
51.41 | 433.94 |
85.78 | 439.73 |
75.41 | 434.48 |
81.63 | 442.33 |
51.92 | 457.67 |
70.12 | 454.66 |
53.83 | 432.21 |
77.23 | 457.66 |
65.67 | 435.21 |
71.18 | 448.22 |
81.96 | 475.51 |
79.54 | 446.53 |
47.09 | 441.3 |
57.69 | 433.54 |
78.89 | 472.52 |
85.29 | 474.77 |
40.13 | 435.1 |
77.06 | 450.74 |
67.38 | 442.7 |
62.44 | 426.56 |
77.43 | 463.71 |
58.77 | 447.06 |
67.72 | 452.27 |
42.14 | 445.78 |
84.16 | 438.65 |
89.79 | 480.15 |
67.21 | 447.19 |
72.14 | 443.04 |
97.49 | 488.81 |
87.74 | 455.75 |
96.3 | 455.86 |
61.25 | 457.68 |
88.38 | 479.11 |
74.77 | 432.84 |
68.18 | 448.37 |
77.2 | 447.06 |
49.54 | 443.53 |
92.22 | 445.21 |
33.65 | 441.7 |
64.59 | 450.93 |
100.09 | 451.44 |
68.04 | 441.29 |
48.94 | 458.85 |
74.47 | 481.46 |
81.02 | 467.19 |
71.17 | 461.54 |
53.85 | 439.08 |
70.67 | 467.22 |
59.36 | 468.8 |
57.17 | 426.93 |
70.29 | 474.65 |
83.37 | 468.97 |
87.36 | 433.97 |
100.09 | 450.53 |
68.78 | 444.51 |
70.98 | 469.03 |
75.68 | 466.56 |
47.49 | 457.57 |
71.99 | 440.13 |
66.55 | 433.24 |
74.73 | 452.55 |
64.78 | 443.29 |
75.13 | 431.76 |
56.38 | 454.97 |
94.35 | 456.7 |
86.55 | 486.03 |
82.95 | 472.79 |
88.42 | 452.03 |
85.61 | 443.41 |
58.39 | 441.93 |
74.28 | 432.64 |
87.85 | 480.25 |
83.5 | 466.68 |
65.24 | 494.39 |
75.01 | 454.72 |
84.52 | 448.71 |
80.52 | 469.76 |
75.14 | 450.71 |
75.75 | 444.01 |
76.72 | 453.2 |
85.47 | 450.87 |
57.95 | 441.73 |
78.32 | 465.09 |
52.2 | 447.28 |
93.69 | 491.16 |
75.74 | 450.98 |
67.56 | 446.3 |
69.46 | 436.48 |
74.58 | 460.84 |
53.23 | 442.56 |
88.72 | 467.3 |
96.16 | 479.13 |
68.26 | 441.15 |
86.39 | 445.52 |
85.34 | 475.4 |
72.64 | 469.3 |
97.82 | 463.57 |
77.22 | 445.32 |
80.59 | 461.03 |
46.91 | 466.74 |
57.76 | 444.04 |
53.09 | 434.01 |
84.31 | 465.23 |
71.58 | 440.6 |
92.97 | 466.74 |
74.55 | 433.48 |
78.96 | 473.59 |
64.44 | 474.81 |
68.23 | 454.75 |
70.81 | 452.94 |
61.66 | 435.83 |
77.76 | 482.19 |
69.49 | 466.66 |
96.26 | 462.59 |
55.74 | 447.82 |
95.61 | 462.73 |
84.75 | 447.98 |
75.3 | 462.72 |
67.5 | 442.42 |
80.92 | 444.69 |
79.23 | 466.7 |
81.1 | 453.84 |
32.8 | 436.92 |
84.31 | 486.37 |
46.15 | 440.43 |
53.96 | 446.82 |
59.83 | 484.91 |
75.3 | 437.76 |
42.53 | 438.91 |
70.58 | 464.19 |
91.69 | 442.19 |
63.55 | 446.86 |
61.51 | 457.15 |
69.55 | 482.57 |
98.08 | 476.03 |
79.34 | 428.89 |
81.28 | 472.7 |
78.99 | 445.6 |
80.38 | 464.78 |
51.16 | 440.42 |
72.17 | 428.41 |
75.39 | 438.5 |
68.91 | 438.28 |
96.38 | 476.29 |
70.54 | 448.46 |
45.8 | 438.99 |
57.95 | 471.8 |
81.89 | 471.81 |
69.32 | 449.82 |
59.14 | 442.14 |
81.54 | 441.46 |
85.81 | 477.62 |
65.41 | 446.76 |
81.15 | 472.52 |
95.87 | 471.58 |
90.24 | 440.85 |
75.13 | 431.37 |
88.22 | 437.33 |
81.48 | 469.22 |
89.84 | 471.11 |
43.57 | 439.17 |
63.16 | 445.33 |
57.14 | 473.71 |
77.76 | 452.66 |
90.56 | 440.99 |
60.98 | 467.42 |
70.31 | 444.14 |
74.05 | 457.17 |
75.42 | 467.87 |
82.25 | 442.04 |
67.95 | 471.36 |
100.09 | 460.7 |
47.28 | 431.33 |
72.41 | 432.6 |
77.67 | 447.61 |
63.7 | 443.87 |
79.77 | 446.87 |
93.84 | 465.74 |
84.95 | 447.86 |
70.16 | 447.65 |
84.24 | 437.87 |
73.32 | 483.51 |
86.17 | 479.65 |
65.43 | 455.16 |
94.59 | 431.91 |
86.8 | 470.68 |
58.18 | 429.28 |
89.66 | 450.81 |
87.39 | 437.73 |
36.35 | 460.21 |
79.62 | 442.86 |
50.52 | 482.99 |
51.96 | 440.0 |
74.73 | 478.48 |
78.33 | 455.28 |
85.19 | 436.94 |
83.13 | 461.06 |
53.49 | 438.28 |
88.86 | 472.61 |
60.89 | 426.85 |
61.14 | 470.18 |
68.29 | 455.38 |
57.62 | 428.32 |
83.63 | 480.35 |
78.1 | 455.56 |
66.34 | 447.66 |
79.02 | 443.06 |
68.96 | 452.43 |
71.13 | 477.81 |
87.01 | 431.66 |
74.3 | 431.8 |
77.62 | 446.67 |
59.56 | 445.26 |
41.66 | 425.72 |
73.27 | 430.58 |
77.16 | 439.86 |
67.02 | 441.11 |
52.8 | 434.72 |
39.04 | 434.01 |
65.47 | 475.64 |
74.32 | 460.44 |
69.22 | 436.4 |
93.88 | 461.03 |
69.83 | 479.08 |
84.11 | 435.76 |
78.65 | 460.14 |
69.31 | 442.2 |
70.3 | 447.69 |
68.23 | 431.15 |
71.76 | 445.0 |
85.88 | 431.59 |
71.09 | 467.22 |
52.67 | 445.33 |
89.68 | 470.57 |
73.66 | 473.77 |
58.94 | 447.67 |
87.05 | 474.29 |
67.0 | 437.14 |
43.18 | 432.56 |
80.62 | 459.14 |
59.72 | 446.19 |
72.1 | 428.1 |
69.15 | 468.46 |
55.66 | 435.02 |
61.19 | 445.52 |
74.62 | 462.69 |
73.35 | 455.75 |
68.85 | 463.74 |
39.89 | 439.79 |
53.16 | 443.26 |
52.97 | 432.04 |
79.87 | 465.86 |
84.09 | 465.6 |
100.15 | 469.43 |
79.77 | 440.75 |
88.99 | 481.32 |
76.14 | 479.87 |
69.13 | 458.59 |
93.03 | 438.62 |
77.92 | 445.59 |
74.89 | 481.87 |
88.7 | 475.01 |
62.94 | 436.54 |
89.62 | 456.63 |
81.04 | 451.69 |
94.53 | 463.04 |
64.02 | 446.1 |
70.57 | 438.67 |
70.32 | 466.88 |
84.86 | 444.6 |
81.41 | 440.26 |
89.45 | 483.92 |
82.71 | 475.19 |
93.93 | 479.24 |
70.6 | 434.92 |
87.68 | 454.16 |
87.58 | 447.58 |
74.4 | 467.9 |
67.35 | 426.29 |
63.61 | 447.02 |
76.89 | 455.85 |
78.08 | 476.46 |
69.17 | 437.48 |
53.31 | 452.77 |
93.32 | 491.54 |
42.47 | 438.41 |
82.58 | 476.1 |
94.59 | 464.58 |
86.31 | 467.74 |
72.57 | 442.12 |
80.76 | 453.34 |
71.93 | 425.29 |
47.54 | 449.63 |
95.72 | 462.88 |
77.03 | 464.67 |
80.49 | 489.96 |
77.67 | 482.38 |
78.72 | 437.95 |
58.77 | 429.2 |
74.8 | 453.34 |
51.34 | 442.47 |
90.41 | 462.6 |
91.1 | 478.79 |
62.57 | 456.11 |
84.27 | 450.33 |
42.93 | 434.83 |
40.96 | 433.43 |
76.53 | 456.02 |
69.74 | 485.23 |
74.99 | 473.57 |
70.45 | 469.94 |
91.49 | 452.07 |
88.97 | 475.32 |
89.13 | 480.69 |
46.52 | 444.01 |
60.55 | 465.17 |
88.71 | 480.61 |
89.15 | 476.04 |
83.02 | 441.76 |
75.19 | 428.24 |
87.35 | 444.77 |
85.66 | 463.1 |
91.66 | 470.5 |
63.47 | 431.0 |
72.25 | 430.68 |
70.58 | 436.42 |
60.1 | 452.33 |
89.29 | 440.16 |
67.43 | 435.75 |
67.58 | 449.74 |
70.8 | 430.73 |
63.62 | 432.75 |
66.68 | 446.79 |
90.76 | 486.35 |
75.34 | 453.18 |
59.77 | 458.31 |
80.79 | 480.26 |
74.1 | 448.65 |
41.34 | 458.41 |
58.78 | 435.39 |
97.78 | 450.21 |
74.85 | 459.59 |
69.84 | 445.84 |
75.36 | 441.08 |
85.8 | 467.33 |
90.11 | 444.19 |
61.63 | 432.96 |
44.76 | 438.09 |
89.7 | 467.9 |
72.51 | 475.72 |
74.98 | 477.51 |
79.59 | 435.13 |
78.42 | 477.9 |
61.23 | 457.26 |
47.56 | 467.53 |
93.06 | 465.15 |
89.65 | 474.28 |
50.5 | 444.49 |
44.84 | 452.84 |
85.32 | 435.38 |
82.94 | 433.57 |
67.26 | 435.27 |
79.05 | 468.49 |
62.03 | 433.07 |
94.36 | 430.63 |
60.02 | 440.74 |
95.46 | 474.49 |
84.92 | 449.74 |
62.8 | 436.73 |
90.81 | 434.58 |
80.9 | 473.93 |
55.84 | 435.99 |
75.3 | 466.83 |
37.34 | 427.22 |
79.5 | 444.07 |
87.29 | 469.57 |
81.5 | 459.89 |
76.42 | 479.59 |
75.75 | 440.92 |
84.95 | 480.87 |
62.37 | 441.9 |
49.25 | 430.2 |
74.16 | 465.16 |
90.55 | 471.32 |
94.28 | 485.43 |
63.31 | 495.35 |
78.9 | 449.12 |
90.97 | 480.53 |
87.34 | 457.07 |
80.8 | 443.67 |
90.95 | 477.52 |
69.97 | 472.95 |
89.45 | 472.54 |
76.08 | 469.17 |
83.35 | 435.21 |
92.16 | 477.78 |
58.42 | 475.89 |
85.06 | 483.9 |
88.91 | 476.2 |
83.33 | 462.16 |
88.49 | 471.05 |
96.88 | 484.71 |
73.86 | 446.34 |
65.17 | 469.02 |
69.41 | 432.12 |
81.23 | 467.28 |
54.07 | 429.66 |
89.17 | 469.49 |
78.85 | 485.87 |
84.44 | 481.95 |
83.02 | 479.03 |
90.66 | 434.5 |
75.29 | 464.9 |
82.6 | 452.71 |
45.4 | 429.74 |
66.33 | 457.09 |
45.33 | 446.77 |
67.12 | 460.76 |
84.14 | 471.95 |
80.81 | 453.29 |
49.13 | 441.61 |
87.29 | 464.73 |
52.95 | 464.68 |
68.92 | 430.59 |
85.21 | 438.01 |
88.56 | 479.08 |
55.09 | 436.39 |
48.64 | 447.07 |
87.85 | 479.91 |
87.42 | 489.05 |
62.75 | 463.17 |
94.86 | 471.26 |
63.54 | 480.49 |
69.46 | 473.78 |
74.66 | 455.5 |
80.57 | 446.27 |
84.7 | 482.2 |
72.6 | 452.48 |
52.63 | 464.48 |
82.01 | 438.1 |
75.22 | 445.6 |
51.05 | 442.43 |
80.1 | 436.67 |
81.58 | 466.56 |
65.94 | 457.29 |
86.74 | 487.03 |
62.57 | 464.93 |
57.37 | 466.0 |
88.91 | 469.52 |
72.26 | 428.88 |
74.98 | 474.3 |
71.19 | 461.06 |
62.82 | 465.57 |
55.31 | 467.67 |
71.57 | 466.99 |
59.16 | 463.72 |
40.8 | 443.78 |
67.63 | 445.23 |
97.2 | 464.43 |
91.16 | 484.36 |
64.81 | 442.16 |
85.61 | 464.11 |
93.42 | 462.48 |
77.36 | 477.49 |
67.03 | 437.04 |
89.45 | 457.09 |
54.84 | 450.6 |
53.48 | 465.78 |
54.47 | 427.1 |
43.36 | 459.81 |
48.92 | 447.36 |
81.22 | 488.92 |
60.35 | 433.36 |
75.98 | 483.35 |
74.24 | 469.53 |
85.21 | 476.96 |
68.46 | 440.75 |
78.31 | 462.55 |
89.25 | 448.04 |
68.57 | 455.24 |
67.38 | 494.75 |
53.6 | 444.58 |
91.69 | 484.82 |
78.21 | 442.9 |
94.19 | 485.46 |
37.19 | 457.81 |
83.53 | 481.92 |
79.45 | 443.23 |
99.9 | 474.29 |
50.39 | 430.46 |
74.33 | 455.71 |
83.66 | 438.34 |
89.48 | 485.83 |
64.59 | 452.82 |
75.68 | 435.04 |
64.18 | 451.21 |
70.09 | 465.81 |
70.58 | 458.42 |
99.28 | 470.22 |
81.89 | 449.24 |
87.99 | 471.43 |
88.21 | 473.26 |
91.29 | 452.82 |
52.72 | 432.69 |
67.5 | 444.13 |
92.05 | 467.21 |
63.23 | 445.98 |
90.88 | 436.91 |
74.91 | 455.01 |
85.39 | 437.11 |
96.98 | 477.06 |
56.28 | 441.71 |
65.62 | 495.76 |
55.32 | 445.63 |
88.88 | 464.72 |
39.49 | 438.03 |
54.59 | 434.78 |
57.19 | 444.67 |
45.06 | 452.24 |
40.62 | 450.92 |
90.21 | 436.53 |
90.91 | 435.53 |
74.96 | 440.01 |
54.21 | 443.1 |
63.62 | 427.49 |
50.04 | 436.25 |
51.23 | 440.74 |
82.71 | 443.54 |
92.04 | 459.42 |
90.67 | 439.66 |
91.14 | 464.15 |
70.43 | 459.1 |
66.63 | 455.68 |
86.95 | 469.08 |
96.69 | 478.02 |
70.88 | 456.8 |
47.14 | 441.13 |
63.36 | 463.88 |
60.58 | 430.45 |
54.3 | 449.18 |
65.09 | 447.89 |
48.16 | 431.59 |
81.51 | 447.5 |
68.57 | 475.58 |
73.16 | 453.24 |
80.88 | 446.4 |
85.4 | 476.81 |
75.77 | 474.1 |
75.76 | 450.71 |
70.21 | 433.62 |
55.53 | 465.14 |
80.48 | 445.18 |
72.41 | 474.12 |
83.25 | 483.91 |
82.12 | 486.68 |
94.75 | 464.98 |
95.79 | 481.4 |
86.02 | 479.2 |
78.29 | 463.86 |
82.23 | 472.3 |
52.86 | 446.51 |
60.66 | 437.71 |
62.77 | 458.94 |
65.54 | 437.91 |
95.4 | 490.76 |
51.78 | 439.66 |
63.62 | 463.27 |
83.09 | 473.99 |
61.81 | 433.38 |
68.24 | 459.01 |
72.41 | 471.44 |
79.64 | 471.91 |
66.95 | 465.15 |
91.98 | 446.66 |
64.96 | 438.15 |
88.93 | 447.14 |
85.62 | 472.32 |
84.0 | 441.68 |
89.41 | 440.04 |
67.4 | 444.82 |
76.75 | 457.26 |
89.06 | 428.83 |
64.02 | 449.07 |
64.12 | 435.21 |
81.22 | 471.03 |
100.13 | 465.56 |
58.07 | 442.83 |
63.42 | 460.3 |
83.32 | 474.25 |
74.28 | 477.97 |
71.91 | 472.16 |
85.8 | 456.08 |
55.58 | 452.41 |
69.7 | 463.71 |
63.79 | 433.72 |
86.59 | 456.4 |
48.28 | 448.43 |
80.42 | 481.6 |
98.58 | 457.07 |
72.83 | 451.0 |
56.07 | 440.28 |
67.13 | 437.47 |
84.49 | 443.57 |
68.37 | 426.6 |
86.07 | 470.87 |
83.82 | 478.37 |
74.86 | 453.92 |
53.52 | 470.22 |
80.61 | 434.54 |
43.56 | 442.89 |
89.35 | 479.03 |
97.28 | 476.06 |
80.49 | 473.88 |
88.9 | 451.75 |
49.7 | 439.2 |
68.64 | 439.7 |
98.58 | 463.6 |
82.12 | 447.47 |
78.32 | 447.92 |
86.04 | 471.08 |
91.36 | 437.55 |
81.02 | 448.27 |
76.05 | 431.69 |
71.81 | 449.09 |
82.13 | 448.79 |
74.27 | 460.21 |
71.32 | 479.28 |
74.59 | 483.11 |
84.44 | 450.75 |
43.39 | 437.97 |
87.2 | 459.76 |
77.11 | 457.75 |
82.81 | 469.33 |
85.67 | 433.28 |
95.58 | 444.64 |
74.46 | 463.1 |
90.02 | 460.91 |
81.93 | 479.35 |
86.29 | 449.23 |
85.43 | 474.51 |
71.66 | 435.02 |
71.33 | 435.45 |
67.72 | 452.38 |
84.23 | 480.41 |
74.44 | 478.96 |
71.48 | 468.87 |
56.3 | 434.01 |
68.13 | 466.36 |
68.35 | 435.28 |
85.23 | 486.46 |
79.78 | 468.19 |
98.98 | 468.37 |
72.87 | 474.19 |
90.93 | 440.32 |
72.94 | 485.32 |
72.3 | 464.27 |
77.74 | 479.25 |
78.29 | 430.4 |
69.1 | 447.49 |
55.79 | 438.23 |
75.09 | 492.09 |
88.98 | 475.36 |
64.26 | 452.56 |
25.89 | 427.84 |
59.18 | 433.95 |
67.48 | 435.27 |
89.85 | 454.62 |
50.62 | 472.17 |
83.97 | 452.42 |
96.51 | 472.17 |
80.09 | 481.83 |
84.02 | 458.78 |
61.97 | 447.5 |
88.51 | 463.4 |
81.83 | 473.57 |
90.63 | 433.72 |
73.37 | 431.85 |
77.5 | 433.47 |
57.46 | 432.84 |
51.91 | 436.6 |
79.14 | 490.23 |
69.24 | 477.16 |
41.85 | 441.06 |
95.1 | 440.86 |
74.53 | 477.94 |
64.85 | 474.47 |
57.07 | 470.67 |
62.9 | 447.31 |
72.21 | 466.8 |
65.99 | 430.91 |
73.67 | 434.75 |
88.59 | 469.52 |
61.19 | 438.9 |
49.37 | 429.56 |
48.65 | 432.92 |
56.18 | 442.87 |
71.56 | 466.59 |
87.46 | 479.61 |
70.02 | 471.08 |
61.2 | 433.37 |
60.54 | 443.92 |
71.82 | 443.5 |
44.8 | 439.89 |
67.32 | 434.66 |
78.77 | 487.57 |
96.02 | 464.64 |
90.56 | 470.92 |
83.19 | 444.39 |
68.45 | 442.48 |
99.19 | 449.61 |
88.11 | 435.02 |
79.29 | 458.67 |
87.76 | 461.74 |
82.56 | 438.31 |
79.24 | 462.38 |
67.24 | 460.56 |
58.98 | 439.22 |
84.22 | 444.64 |
89.12 | 430.34 |
50.07 | 430.46 |
98.86 | 456.79 |
95.79 | 468.82 |
70.06 | 448.51 |
41.71 | 470.77 |
86.55 | 465.74 |
71.97 | 430.21 |
96.4 | 449.23 |
91.73 | 461.89 |
91.62 | 445.72 |
59.14 | 466.13 |
92.56 | 448.71 |
83.71 | 469.25 |
55.43 | 450.56 |
74.91 | 464.46 |
89.41 | 471.13 |
69.81 | 461.52 |
86.01 | 451.09 |
86.05 | 431.51 |
80.98 | 469.8 |
63.62 | 442.28 |
64.16 | 458.67 |
75.63 | 462.4 |
80.21 | 453.54 |
59.7 | 444.38 |
47.6 | 440.52 |
63.78 | 433.62 |
89.37 | 481.96 |
70.55 | 452.75 |
84.42 | 481.28 |
80.62 | 439.03 |
52.56 | 435.75 |
83.26 | 436.03 |
70.64 | 445.6 |
89.95 | 462.65 |
51.53 | 438.66 |
84.83 | 447.32 |
59.68 | 484.55 |
97.88 | 476.8 |
85.03 | 480.34 |
47.38 | 440.63 |
48.08 | 459.48 |
79.65 | 490.78 |
83.39 | 483.56 |
82.18 | 429.38 |
51.71 | 440.27 |
77.33 | 445.34 |
72.81 | 447.43 |
84.26 | 439.91 |
73.23 | 459.27 |
79.73 | 478.89 |
62.32 | 466.7 |
78.58 | 463.5 |
79.88 | 436.21 |
65.87 | 443.94 |
80.28 | 439.63 |
71.33 | 460.95 |
70.33 | 448.69 |
57.73 | 444.63 |
99.46 | 473.51 |
68.61 | 462.56 |
95.91 | 451.76 |
80.42 | 491.81 |
51.01 | 429.52 |
74.08 | 437.9 |
80.73 | 467.54 |
54.71 | 449.97 |
73.75 | 436.62 |
88.43 | 477.68 |
74.66 | 447.26 |
70.04 | 439.76 |
74.64 | 437.49 |
85.11 | 455.14 |
82.97 | 485.5 |
55.59 | 444.1 |
49.9 | 432.33 |
89.99 | 471.23 |
91.61 | 463.89 |
82.95 | 445.54 |
92.62 | 446.09 |
59.64 | 445.12 |
63.0 | 443.31 |
85.38 | 484.16 |
85.23 | 477.76 |
52.08 | 430.28 |
38.05 | 446.48 |
71.98 | 481.03 |
90.66 | 466.07 |
83.14 | 447.47 |
65.22 | 455.93 |
91.67 | 479.62 |
66.04 | 455.06 |
78.19 | 475.06 |
54.47 | 438.89 |
67.26 | 432.7 |
72.56 | 452.6 |
82.15 | 451.75 |
86.32 | 430.66 |
88.17 | 491.9 |
72.78 | 439.82 |
69.58 | 460.73 |
69.86 | 449.7 |
65.37 | 439.42 |
52.37 | 439.84 |
79.63 | 485.86 |
83.14 | 458.1 |
88.25 | 479.92 |
55.85 | 458.29 |
52.55 | 489.45 |
62.74 | 434.0 |
90.08 | 431.24 |
54.5 | 439.5 |
49.88 | 467.46 |
48.96 | 429.27 |
86.77 | 452.1 |
96.66 | 472.41 |
70.84 | 442.14 |
83.83 | 441.0 |
68.22 | 463.07 |
82.22 | 445.71 |
87.9 | 483.16 |
66.83 | 440.45 |
85.36 | 481.83 |
60.9 | 467.6 |
83.51 | 450.88 |
52.96 | 425.5 |
73.02 | 451.87 |
43.11 | 428.94 |
61.41 | 439.86 |
65.32 | 433.44 |
93.68 | 438.23 |
42.39 | 436.95 |
68.18 | 470.19 |
89.18 | 484.66 |
64.79 | 430.81 |
43.48 | 433.37 |
80.4 | 453.02 |
72.43 | 453.5 |
80.0 | 463.09 |
45.65 | 464.56 |
63.02 | 452.12 |
74.39 | 470.9 |
57.77 | 450.89 |
76.8 | 445.04 |
67.39 | 444.72 |
73.96 | 460.38 |
72.75 | 446.8 |
71.69 | 465.05 |
84.98 | 484.13 |
87.68 | 488.27 |
50.36 | 447.09 |
68.11 | 452.02 |
66.27 | 455.55 |
89.72 | 480.99 |
61.07 | 467.68 |
Furthermore, you can interactively start playing with display
on the full DataFrame!
display(powerPlantDF) // just as we did for the diamonds dataset
AT | V | AP | RH | PE |
---|---|---|---|---|
14.96 | 41.76 | 1024.07 | 73.17 | 463.26 |
25.18 | 62.96 | 1020.04 | 59.08 | 444.37 |
5.11 | 39.4 | 1012.16 | 92.14 | 488.56 |
20.86 | 57.32 | 1010.24 | 76.64 | 446.48 |
10.82 | 37.5 | 1009.23 | 96.62 | 473.9 |
26.27 | 59.44 | 1012.23 | 58.77 | 443.67 |
15.89 | 43.96 | 1014.02 | 75.24 | 467.35 |
9.48 | 44.71 | 1019.12 | 66.43 | 478.42 |
14.64 | 45.0 | 1021.78 | 41.25 | 475.98 |
11.74 | 43.56 | 1015.14 | 70.72 | 477.5 |
17.99 | 43.72 | 1008.64 | 75.04 | 453.02 |
20.14 | 46.93 | 1014.66 | 64.22 | 453.99 |
24.34 | 73.5 | 1011.31 | 84.15 | 440.29 |
25.71 | 58.59 | 1012.77 | 61.83 | 451.28 |
26.19 | 69.34 | 1009.48 | 87.59 | 433.99 |
21.42 | 43.79 | 1015.76 | 43.08 | 462.19 |
18.21 | 45.0 | 1022.86 | 48.84 | 467.54 |
11.04 | 41.74 | 1022.6 | 77.51 | 477.2 |
14.45 | 52.75 | 1023.97 | 63.59 | 459.85 |
13.97 | 38.47 | 1015.15 | 55.28 | 464.3 |
17.76 | 42.42 | 1009.09 | 66.26 | 468.27 |
5.41 | 40.07 | 1019.16 | 64.77 | 495.24 |
7.76 | 42.28 | 1008.52 | 83.31 | 483.8 |
27.23 | 63.9 | 1014.3 | 47.19 | 443.61 |
27.36 | 48.6 | 1003.18 | 54.93 | 436.06 |
27.47 | 70.72 | 1009.97 | 74.62 | 443.25 |
14.6 | 39.31 | 1011.11 | 72.52 | 464.16 |
7.91 | 39.96 | 1023.57 | 88.44 | 475.52 |
5.81 | 35.79 | 1012.14 | 92.28 | 484.41 |
30.53 | 65.18 | 1012.69 | 41.85 | 437.89 |
23.87 | 63.94 | 1019.02 | 44.28 | 445.11 |
26.09 | 58.41 | 1013.64 | 64.58 | 438.86 |
29.27 | 66.85 | 1011.11 | 63.25 | 440.98 |
27.38 | 74.16 | 1010.08 | 78.61 | 436.65 |
24.81 | 63.94 | 1018.76 | 44.51 | 444.26 |
12.75 | 44.03 | 1007.29 | 89.46 | 465.86 |
24.66 | 63.73 | 1011.4 | 74.52 | 444.37 |
16.38 | 47.45 | 1010.08 | 88.86 | 450.69 |
13.91 | 39.35 | 1014.69 | 75.51 | 469.02 |
23.18 | 51.3 | 1012.04 | 78.64 | 448.86 |
22.47 | 47.45 | 1007.62 | 76.65 | 447.14 |
13.39 | 44.85 | 1017.24 | 80.44 | 469.18 |
9.28 | 41.54 | 1018.33 | 79.89 | 482.8 |
11.82 | 42.86 | 1014.12 | 88.28 | 476.7 |
10.27 | 40.64 | 1020.63 | 84.6 | 474.99 |
22.92 | 63.94 | 1019.28 | 42.69 | 444.22 |
16.0 | 37.87 | 1020.24 | 78.41 | 461.33 |
21.22 | 43.43 | 1010.96 | 61.07 | 448.06 |
13.46 | 44.71 | 1014.51 | 50.0 | 474.6 |
9.39 | 40.11 | 1029.14 | 77.29 | 473.05 |
31.07 | 73.5 | 1010.58 | 43.66 | 432.06 |
12.82 | 38.62 | 1018.71 | 83.8 | 467.41 |
32.57 | 78.92 | 1011.6 | 66.47 | 430.12 |
8.11 | 42.18 | 1014.82 | 93.09 | 473.62 |
13.92 | 39.39 | 1012.94 | 80.52 | 471.81 |
23.04 | 59.43 | 1010.23 | 68.99 | 442.99 |
27.31 | 64.44 | 1014.65 | 57.27 | 442.77 |
5.91 | 39.33 | 1010.18 | 95.53 | 491.49 |
25.26 | 61.08 | 1013.68 | 71.72 | 447.46 |
27.97 | 58.84 | 1002.25 | 57.88 | 446.11 |
26.08 | 52.3 | 1007.03 | 63.34 | 442.44 |
29.01 | 65.71 | 1013.61 | 48.07 | 446.22 |
12.18 | 40.1 | 1016.67 | 91.87 | 471.49 |
13.76 | 45.87 | 1008.89 | 87.27 | 463.5 |
25.5 | 58.79 | 1016.02 | 64.4 | 440.01 |
28.26 | 65.34 | 1014.56 | 43.4 | 441.03 |
21.39 | 62.96 | 1019.49 | 72.24 | 452.68 |
7.26 | 40.69 | 1020.43 | 90.22 | 474.91 |
10.54 | 34.03 | 1018.71 | 74.0 | 478.77 |
27.71 | 74.34 | 998.14 | 71.85 | 434.2 |
23.11 | 68.3 | 1017.83 | 86.62 | 437.91 |
7.51 | 41.01 | 1024.61 | 97.41 | 477.61 |
26.46 | 74.67 | 1016.65 | 84.44 | 431.65 |
29.34 | 74.34 | 998.58 | 81.55 | 430.57 |
10.32 | 42.28 | 1008.82 | 75.66 | 481.09 |
22.74 | 61.02 | 1009.56 | 79.41 | 445.56 |
13.48 | 39.85 | 1012.71 | 58.91 | 475.74 |
25.52 | 69.75 | 1010.36 | 90.06 | 435.12 |
21.58 | 67.25 | 1017.39 | 79.0 | 446.15 |
27.66 | 76.86 | 1001.31 | 69.47 | 436.64 |
26.96 | 69.45 | 1013.89 | 51.47 | 436.69 |
12.29 | 42.18 | 1016.53 | 83.13 | 468.75 |
15.86 | 43.02 | 1012.18 | 40.33 | 466.6 |
13.87 | 45.08 | 1024.42 | 81.69 | 465.48 |
24.09 | 73.68 | 1014.93 | 94.55 | 441.34 |
20.45 | 69.45 | 1012.53 | 91.81 | 441.83 |
15.07 | 39.3 | 1019.0 | 63.62 | 464.7 |
32.72 | 69.75 | 1009.6 | 49.35 | 437.99 |
18.23 | 58.96 | 1015.55 | 69.61 | 459.12 |
35.56 | 68.94 | 1006.56 | 38.75 | 429.69 |
18.36 | 51.43 | 1010.57 | 90.17 | 459.8 |
26.35 | 64.05 | 1009.81 | 81.24 | 433.63 |
25.92 | 60.95 | 1014.62 | 48.46 | 442.84 |
8.01 | 41.66 | 1014.49 | 76.72 | 485.13 |
19.63 | 52.72 | 1025.09 | 51.16 | 459.12 |
20.02 | 67.32 | 1012.05 | 76.34 | 445.31 |
10.08 | 40.72 | 1022.7 | 67.3 | 480.8 |
27.23 | 66.48 | 1005.23 | 52.38 | 432.55 |
23.37 | 63.77 | 1013.42 | 76.44 | 443.86 |
18.74 | 59.21 | 1018.3 | 91.55 | 449.77 |
14.81 | 43.69 | 1017.19 | 71.9 | 470.71 |
23.1 | 51.3 | 1011.93 | 80.05 | 452.17 |
10.72 | 41.38 | 1021.6 | 63.77 | 478.29 |
29.46 | 71.94 | 1006.96 | 62.26 | 428.54 |
8.1 | 40.64 | 1020.66 | 89.04 | 478.27 |
27.29 | 62.66 | 1007.63 | 58.02 | 439.58 |
17.1 | 49.69 | 1005.53 | 81.82 | 457.32 |
11.49 | 44.2 | 1018.79 | 91.14 | 475.51 |
23.69 | 65.59 | 1010.85 | 88.92 | 439.66 |
13.51 | 40.89 | 1011.03 | 84.83 | 471.99 |
9.64 | 39.35 | 1015.1 | 91.76 | 479.81 |
25.65 | 78.92 | 1010.83 | 86.56 | 434.78 |
21.59 | 61.87 | 1011.18 | 57.21 | 446.58 |
27.98 | 58.33 | 1013.92 | 54.25 | 437.76 |
18.8 | 39.72 | 1001.24 | 63.8 | 459.36 |
18.28 | 44.71 | 1016.99 | 33.71 | 462.28 |
13.55 | 43.48 | 1016.08 | 67.25 | 464.33 |
22.99 | 46.21 | 1010.71 | 60.11 | 444.36 |
23.94 | 59.39 | 1014.32 | 74.55 | 438.64 |
13.74 | 34.03 | 1018.69 | 67.34 | 470.49 |
21.3 | 41.1 | 1001.86 | 42.75 | 455.13 |
27.54 | 66.93 | 1017.06 | 55.2 | 450.22 |
24.81 | 63.73 | 1009.34 | 83.61 | 440.43 |
4.97 | 42.85 | 1014.02 | 88.78 | 482.98 |
15.22 | 50.88 | 1014.19 | 100.12 | 460.44 |
23.88 | 54.2 | 1012.81 | 64.52 | 444.97 |
33.01 | 68.67 | 1005.2 | 51.41 | 433.94 |
25.98 | 73.18 | 1012.28 | 85.78 | 439.73 |
28.18 | 73.88 | 1005.89 | 75.41 | 434.48 |
21.67 | 60.84 | 1017.93 | 81.63 | 442.33 |
17.67 | 45.09 | 1014.26 | 51.92 | 457.67 |
21.37 | 57.76 | 1018.8 | 70.12 | 454.66 |
28.69 | 67.25 | 1017.71 | 53.83 | 432.21 |
16.61 | 43.77 | 1012.25 | 77.23 | 457.66 |
27.91 | 63.76 | 1010.27 | 65.67 | 435.21 |
20.97 | 47.43 | 1007.64 | 71.18 | 448.22 |
10.8 | 41.66 | 1013.79 | 81.96 | 475.51 |
20.61 | 62.91 | 1013.24 | 79.54 | 446.53 |
25.45 | 57.32 | 1011.7 | 47.09 | 441.3 |
30.16 | 69.34 | 1007.67 | 57.69 | 433.54 |
4.99 | 39.04 | 1020.45 | 78.89 | 472.52 |
10.51 | 44.78 | 1012.59 | 85.29 | 474.77 |
33.79 | 69.05 | 1001.62 | 40.13 | 435.1 |
21.34 | 59.8 | 1016.92 | 77.06 | 450.74 |
23.4 | 65.06 | 1014.32 | 67.38 | 442.7 |
32.21 | 68.14 | 1003.34 | 62.44 | 426.56 |
14.26 | 42.32 | 1016.0 | 77.43 | 463.71 |
27.71 | 66.93 | 1016.85 | 58.77 | 447.06 |
21.95 | 57.76 | 1018.02 | 67.72 | 452.27 |
25.76 | 63.94 | 1018.49 | 42.14 | 445.78 |
23.68 | 68.3 | 1017.93 | 84.16 | 438.65 |
8.28 | 40.77 | 1011.55 | 89.79 | 480.15 |
23.44 | 62.52 | 1016.46 | 67.21 | 447.19 |
25.32 | 48.41 | 1008.47 | 72.14 | 443.04 |
3.94 | 39.9 | 1008.06 | 97.49 | 488.81 |
17.3 | 57.76 | 1016.26 | 87.74 | 455.75 |
18.2 | 49.39 | 1018.83 | 96.3 | 455.86 |
21.43 | 46.97 | 1013.94 | 61.25 | 457.68 |
11.16 | 40.05 | 1014.95 | 88.38 | 479.11 |
30.38 | 74.16 | 1007.44 | 74.77 | 432.84 |
23.36 | 62.52 | 1016.18 | 68.18 | 448.37 |
21.69 | 47.45 | 1007.56 | 77.2 | 447.06 |
23.62 | 49.21 | 1014.1 | 49.54 | 443.53 |
21.87 | 61.45 | 1011.13 | 92.22 | 445.21 |
29.25 | 66.51 | 1015.53 | 33.65 | 441.7 |
20.03 | 66.86 | 1013.05 | 64.59 | 450.93 |
18.14 | 49.78 | 1002.95 | 100.09 | 451.44 |
24.23 | 56.89 | 1012.32 | 68.04 | 441.29 |
18.11 | 44.85 | 1014.48 | 48.94 | 458.85 |
6.57 | 43.65 | 1018.24 | 74.47 | 481.46 |
12.56 | 43.41 | 1016.93 | 81.02 | 467.19 |
13.4 | 41.58 | 1020.5 | 71.17 | 461.54 |
27.1 | 52.84 | 1006.28 | 53.85 | 439.08 |
14.28 | 42.74 | 1028.79 | 70.67 | 467.22 |
16.29 | 44.34 | 1019.49 | 59.36 | 468.8 |
31.24 | 71.98 | 1004.66 | 57.17 | 426.93 |
10.57 | 37.73 | 1024.36 | 70.29 | 474.65 |
13.8 | 44.21 | 1022.93 | 83.37 | 468.97 |
25.3 | 71.58 | 1010.18 | 87.36 | 433.97 |
18.06 | 50.16 | 1009.52 | 100.09 | 450.53 |
25.42 | 59.04 | 1011.98 | 68.78 | 444.51 |
15.07 | 40.69 | 1015.29 | 70.98 | 469.03 |
11.75 | 71.14 | 1019.36 | 75.68 | 466.56 |
20.23 | 52.05 | 1012.15 | 47.49 | 457.57 |
27.31 | 59.54 | 1006.24 | 71.99 | 440.13 |
28.57 | 69.84 | 1003.57 | 66.55 | 433.24 |
17.9 | 43.72 | 1008.64 | 74.73 | 452.55 |
23.83 | 71.37 | 1002.04 | 64.78 | 443.29 |
27.92 | 74.99 | 1005.47 | 75.13 | 431.76 |
17.34 | 44.78 | 1007.81 | 56.38 | 454.97 |
17.94 | 63.07 | 1012.42 | 94.35 | 456.7 |
6.4 | 39.9 | 1007.75 | 86.55 | 486.03 |
11.78 | 39.96 | 1011.37 | 82.95 | 472.79 |
20.28 | 57.25 | 1010.12 | 88.42 | 452.03 |
21.04 | 54.2 | 1012.26 | 85.61 | 443.41 |
25.11 | 67.32 | 1014.49 | 58.39 | 441.93 |
30.28 | 70.98 | 1007.51 | 74.28 | 432.64 |
8.14 | 36.24 | 1013.15 | 87.85 | 480.25 |
16.86 | 39.63 | 1004.47 | 83.5 | 466.68 |
6.25 | 40.07 | 1020.19 | 65.24 | 494.39 |
22.35 | 54.42 | 1012.46 | 75.01 | 454.72 |
17.98 | 56.85 | 1012.28 | 84.52 | 448.71 |
21.19 | 42.48 | 1013.43 | 80.52 | 469.76 |
20.94 | 44.89 | 1009.64 | 75.14 | 450.71 |
24.23 | 58.79 | 1009.8 | 75.75 | 444.01 |
19.18 | 58.2 | 1017.46 | 76.72 | 453.2 |
20.88 | 57.85 | 1012.39 | 85.47 | 450.87 |
23.67 | 63.86 | 1019.67 | 57.95 | 441.73 |
14.12 | 39.52 | 1018.41 | 78.32 | 465.09 |
25.23 | 64.63 | 1020.59 | 52.2 | 447.28 |
6.54 | 39.33 | 1011.54 | 93.69 | 491.16 |
20.08 | 62.52 | 1017.99 | 75.74 | 450.98 |
24.67 | 63.56 | 1013.75 | 67.56 | 446.3 |
27.82 | 79.74 | 1008.37 | 69.46 | 436.48 |
15.55 | 42.03 | 1017.41 | 74.58 | 460.84 |
24.26 | 69.51 | 1013.43 | 53.23 | 442.56 |
13.45 | 41.49 | 1020.19 | 88.72 | 467.3 |
11.06 | 40.64 | 1021.47 | 96.16 | 479.13 |
24.91 | 52.3 | 1008.72 | 68.26 | 441.15 |
22.39 | 59.04 | 1011.78 | 86.39 | 445.52 |
11.95 | 40.69 | 1015.62 | 85.34 | 475.4 |
14.85 | 40.69 | 1014.91 | 72.64 | 469.3 |
10.11 | 41.62 | 1017.17 | 97.82 | 463.57 |
23.67 | 68.67 | 1006.71 | 77.22 | 445.32 |
16.14 | 44.21 | 1020.36 | 80.59 | 461.03 |
15.11 | 43.13 | 1014.99 | 46.91 | 466.74 |
24.14 | 59.87 | 1018.47 | 57.76 | 444.04 |
30.08 | 67.25 | 1017.6 | 53.09 | 434.01 |
14.77 | 44.9 | 1020.5 | 84.31 | 465.23 |
27.6 | 69.34 | 1009.63 | 71.58 | 440.6 |
13.89 | 44.84 | 1023.66 | 92.97 | 466.74 |
26.85 | 75.6 | 1017.43 | 74.55 | 433.48 |
12.41 | 40.96 | 1023.36 | 78.96 | 473.59 |
13.08 | 41.74 | 1020.75 | 64.44 | 474.81 |
18.93 | 44.06 | 1017.58 | 68.23 | 454.75 |
20.5 | 49.69 | 1009.6 | 70.81 | 452.94 |
30.72 | 69.13 | 1009.94 | 61.66 | 435.83 |
7.55 | 39.22 | 1014.53 | 77.76 | 482.19 |
13.49 | 44.47 | 1030.46 | 69.49 | 466.66 |
15.62 | 40.12 | 1013.03 | 96.26 | 462.59 |
24.8 | 64.63 | 1020.69 | 55.74 | 447.82 |
10.03 | 41.62 | 1014.55 | 95.61 | 462.73 |
22.43 | 63.21 | 1012.06 | 84.75 | 447.98 |
14.95 | 39.31 | 1009.15 | 75.3 | 462.72 |
24.78 | 58.46 | 1016.82 | 67.5 | 442.42 |
23.2 | 48.41 | 1008.64 | 80.92 | 444.69 |
14.01 | 39.0 | 1016.73 | 79.23 | 466.7 |
19.4 | 64.63 | 1020.38 | 81.1 | 453.84 |
30.15 | 67.32 | 1013.83 | 32.8 | 436.92 |
6.91 | 36.08 | 1021.82 | 84.31 | 486.37 |
29.04 | 60.07 | 1015.42 | 46.15 | 440.43 |
26.02 | 63.07 | 1010.94 | 53.96 | 446.82 |
5.89 | 39.48 | 1005.11 | 59.83 | 484.91 |
26.52 | 71.64 | 1008.27 | 75.3 | 437.76 |
28.53 | 68.08 | 1013.27 | 42.53 | 438.91 |
16.59 | 39.54 | 1007.97 | 70.58 | 464.19 |
22.95 | 67.79 | 1009.89 | 91.69 | 442.19 |
23.96 | 47.43 | 1008.38 | 63.55 | 446.86 |
17.48 | 44.2 | 1018.89 | 61.51 | 457.15 |
6.69 | 43.65 | 1020.14 | 69.55 | 482.57 |
10.25 | 41.26 | 1007.44 | 98.08 | 476.03 |
28.87 | 72.58 | 1008.69 | 79.34 | 428.89 |
12.04 | 40.23 | 1018.07 | 81.28 | 472.7 |
22.58 | 52.3 | 1009.04 | 78.99 | 445.6 |
15.12 | 52.05 | 1014.63 | 80.38 | 464.78 |
25.48 | 58.95 | 1017.02 | 51.16 | 440.42 |
27.87 | 70.79 | 1003.96 | 72.17 | 428.41 |
23.72 | 70.47 | 1010.65 | 75.39 | 438.5 |
25.0 | 59.43 | 1007.84 | 68.91 | 438.28 |
8.42 | 40.64 | 1022.35 | 96.38 | 476.29 |
22.46 | 58.49 | 1011.5 | 70.54 | 448.46 |
29.92 | 57.19 | 1008.62 | 45.8 | 438.99 |
11.68 | 39.22 | 1017.9 | 57.95 | 471.8 |
14.04 | 42.44 | 1012.74 | 81.89 | 471.81 |
19.86 | 59.14 | 1016.12 | 69.32 | 449.82 |
25.99 | 68.08 | 1013.13 | 59.14 | 442.14 |
23.42 | 58.79 | 1009.74 | 81.54 | 441.46 |
10.6 | 40.22 | 1011.37 | 85.81 | 477.62 |
20.97 | 61.87 | 1011.45 | 65.41 | 446.76 |
14.14 | 39.82 | 1012.46 | 81.15 | 472.52 |
8.56 | 40.71 | 1021.27 | 95.87 | 471.58 |
24.86 | 72.39 | 1001.15 | 90.24 | 440.85 |
29.0 | 77.54 | 1011.33 | 75.13 | 431.37 |
27.59 | 71.97 | 1008.64 | 88.22 | 437.33 |
10.45 | 40.71 | 1015.68 | 81.48 | 469.22 |
8.51 | 40.78 | 1023.51 | 89.84 | 471.11 |
29.82 | 66.51 | 1010.98 | 43.57 | 439.17 |
22.56 | 62.26 | 1012.11 | 63.16 | 445.33 |
11.38 | 39.22 | 1018.62 | 57.14 | 473.71 |
20.25 | 57.76 | 1016.28 | 77.76 | 452.66 |
22.42 | 59.43 | 1007.12 | 90.56 | 440.99 |
14.85 | 38.91 | 1014.48 | 60.98 | 467.42 |
25.62 | 58.82 | 1010.02 | 70.31 | 444.14 |
19.85 | 56.53 | 1020.57 | 74.05 | 457.17 |
13.67 | 54.3 | 1015.92 | 75.42 | 467.87 |
24.39 | 70.72 | 1009.78 | 82.25 | 442.04 |
16.07 | 44.58 | 1019.52 | 67.95 | 471.36 |
11.6 | 39.1 | 1009.81 | 100.09 | 460.7 |
31.38 | 70.83 | 1010.35 | 47.28 | 431.33 |
29.91 | 76.86 | 998.59 | 72.41 | 432.6 |
19.67 | 59.39 | 1014.07 | 77.67 | 447.61 |
27.18 | 64.79 | 1016.27 | 63.7 | 443.87 |
21.39 | 52.3 | 1009.2 | 79.77 | 446.87 |
10.45 | 41.01 | 1020.57 | 93.84 | 465.74 |
19.46 | 56.89 | 1014.02 | 84.95 | 447.86 |
23.55 | 62.96 | 1020.16 | 70.16 | 447.65 |
23.35 | 63.47 | 1011.78 | 84.24 | 437.87 |
9.26 | 41.66 | 1016.87 | 73.32 | 483.51 |
10.3 | 41.46 | 1018.21 | 86.17 | 479.65 |
20.94 | 58.16 | 1016.88 | 65.43 | 455.16 |
23.13 | 71.25 | 1002.49 | 94.59 | 431.91 |
12.77 | 41.5 | 1014.13 | 86.8 | 470.68 |
28.29 | 69.13 | 1009.29 | 58.18 | 429.28 |
19.13 | 59.21 | 1018.32 | 89.66 | 450.81 |
24.44 | 73.5 | 1011.49 | 87.39 | 437.73 |
20.32 | 44.6 | 1015.16 | 36.35 | 460.21 |
20.54 | 69.05 | 1001.6 | 79.62 | 442.86 |
12.16 | 45.0 | 1021.51 | 50.52 | 482.99 |
28.09 | 65.27 | 1013.27 | 51.96 | 440.0 |
9.25 | 41.82 | 1033.25 | 74.73 | 478.48 |
21.75 | 49.82 | 1015.01 | 78.33 | 455.28 |
23.7 | 66.56 | 1002.07 | 85.19 | 436.94 |
16.22 | 37.87 | 1022.36 | 83.13 | 461.06 |
24.75 | 69.45 | 1013.97 | 53.49 | 438.28 |
10.48 | 39.58 | 1011.81 | 88.86 | 472.61 |
29.53 | 70.79 | 1003.7 | 60.89 | 426.85 |
12.59 | 39.72 | 1017.76 | 61.14 | 470.18 |
23.5 | 54.42 | 1012.31 | 68.29 | 455.38 |
29.01 | 66.56 | 1006.44 | 57.62 | 428.32 |
9.75 | 42.49 | 1010.57 | 83.63 | 480.35 |
19.55 | 56.53 | 1020.2 | 78.1 | 455.56 |
21.05 | 58.33 | 1013.14 | 66.34 | 447.66 |
24.72 | 68.67 | 1006.74 | 79.02 | 443.06 |
21.19 | 58.86 | 1014.19 | 68.96 | 452.43 |
10.77 | 41.54 | 1019.94 | 71.13 | 477.81 |
28.68 | 73.77 | 1004.72 | 87.01 | 431.66 |
29.87 | 73.91 | 1004.53 | 74.3 | 431.8 |
22.99 | 68.67 | 1006.65 | 77.62 | 446.67 |
24.66 | 60.29 | 1018.0 | 59.56 | 445.26 |
32.63 | 69.89 | 1013.85 | 41.66 | 425.72 |
31.38 | 72.29 | 1008.73 | 73.27 | 430.58 |
23.87 | 60.27 | 1018.94 | 77.16 | 439.86 |
25.6 | 59.15 | 1013.31 | 67.02 | 441.11 |
27.62 | 71.14 | 1011.6 | 52.8 | 434.72 |
30.1 | 67.45 | 1014.23 | 39.04 | 434.01 |
12.19 | 41.17 | 1019.43 | 65.47 | 475.64 |
13.11 | 41.58 | 1020.43 | 74.32 | 460.44 |
28.29 | 68.67 | 1005.46 | 69.22 | 436.4 |
13.45 | 40.73 | 1018.7 | 93.88 | 461.03 |
10.98 | 41.54 | 1019.94 | 69.83 | 479.08 |
26.48 | 69.14 | 1009.31 | 84.11 | 435.76 |
13.07 | 45.51 | 1015.22 | 78.65 | 460.14 |
25.56 | 75.6 | 1017.37 | 69.31 | 442.2 |
22.68 | 50.78 | 1008.83 | 70.3 | 447.69 |
28.86 | 73.67 | 1006.65 | 68.23 | 431.15 |
22.7 | 63.56 | 1014.32 | 71.76 | 445.0 |
27.89 | 73.21 | 1001.32 | 85.88 | 431.59 |
13.78 | 44.47 | 1027.94 | 71.09 | 467.22 |
28.14 | 51.43 | 1012.16 | 52.67 | 445.33 |
11.8 | 45.09 | 1013.21 | 89.68 | 470.57 |
10.71 | 39.61 | 1018.72 | 73.66 | 473.77 |
24.54 | 60.29 | 1017.42 | 58.94 | 447.67 |
11.54 | 40.05 | 1014.78 | 87.05 | 474.29 |
29.47 | 71.32 | 1008.07 | 67.0 | 437.14 |
29.24 | 69.05 | 1003.12 | 43.18 | 432.56 |
14.51 | 41.79 | 1009.72 | 80.62 | 459.14 |
22.91 | 60.07 | 1016.03 | 59.72 | 446.19 |
27.02 | 71.77 | 1006.38 | 72.1 | 428.1 |
13.49 | 44.47 | 1030.18 | 69.15 | 468.46 |
30.24 | 66.75 | 1017.95 | 55.66 | 435.02 |
23.19 | 48.6 | 1002.38 | 61.19 | 445.52 |
17.73 | 40.55 | 1003.36 | 74.62 | 462.69 |
18.62 | 61.27 | 1019.26 | 73.35 | 455.75 |
12.85 | 40.0 | 1015.89 | 68.85 | 463.74 |
32.33 | 69.68 | 1011.95 | 39.89 | 439.79 |
25.09 | 58.95 | 1016.99 | 53.16 | 443.26 |
29.45 | 69.13 | 1009.3 | 52.97 | 432.04 |
16.91 | 43.96 | 1013.32 | 79.87 | 465.86 |
14.09 | 45.87 | 1009.05 | 84.09 | 465.6 |
10.73 | 25.36 | 1009.35 | 100.15 | 469.43 |
23.2 | 49.3 | 1003.4 | 79.77 | 440.75 |
8.21 | 38.91 | 1015.82 | 88.99 | 481.32 |
9.3 | 40.56 | 1022.64 | 76.14 | 479.87 |
16.97 | 39.16 | 1005.7 | 69.13 | 458.59 |
23.69 | 71.97 | 1009.62 | 93.03 | 438.62 |
25.13 | 59.44 | 1012.38 | 77.92 | 445.59 |
9.86 | 43.56 | 1015.13 | 74.89 | 481.87 |
11.33 | 41.5 | 1013.58 | 88.7 | 475.01 |
26.95 | 48.41 | 1008.53 | 62.94 | 436.54 |
15.0 | 40.66 | 1016.28 | 89.62 | 456.63 |
20.76 | 62.52 | 1015.63 | 81.04 | 451.69 |
14.29 | 39.59 | 1010.93 | 94.53 | 463.04 |
19.74 | 67.71 | 1007.68 | 64.02 | 446.1 |
26.68 | 59.92 | 1009.94 | 70.57 | 438.67 |
14.24 | 41.4 | 1019.7 | 70.32 | 466.88 |
21.98 | 48.41 | 1008.42 | 84.86 | 444.6 |
22.75 | 59.39 | 1015.4 | 81.41 | 440.26 |
8.34 | 40.96 | 1023.28 | 89.45 | 483.92 |
11.8 | 41.2 | 1017.18 | 82.71 | 475.19 |
8.81 | 44.68 | 1023.06 | 93.93 | 479.24 |
30.05 | 73.68 | 1014.95 | 70.6 | 434.92 |
16.01 | 65.46 | 1014.0 | 87.68 | 454.16 |
21.75 | 58.79 | 1012.42 | 87.58 | 447.58 |
13.94 | 41.26 | 1021.67 | 74.4 | 467.9 |
29.25 | 69.13 | 1010.27 | 67.35 | 426.29 |
22.33 | 45.87 | 1007.8 | 63.61 | 447.02 |
16.43 | 41.79 | 1005.47 | 76.89 | 455.85 |
11.5 | 40.22 | 1010.31 | 78.08 | 476.46 |
23.53 | 68.94 | 1007.53 | 69.17 | 437.48 |
21.86 | 49.21 | 1014.61 | 53.31 | 452.77 |
6.17 | 39.33 | 1012.57 | 93.32 | 491.54 |
30.19 | 64.79 | 1017.22 | 42.47 | 438.41 |
11.67 | 41.93 | 1019.81 | 82.58 | 476.1 |
15.34 | 36.99 | 1007.87 | 94.59 | 464.58 |
11.5 | 40.78 | 1023.91 | 86.31 | 467.74 |
25.53 | 57.17 | 1010.0 | 72.57 | 442.12 |
21.27 | 57.5 | 1014.53 | 80.76 | 453.34 |
28.37 | 69.13 | 1010.44 | 71.93 | 425.29 |
28.39 | 51.43 | 1011.74 | 47.54 | 449.63 |
13.78 | 45.78 | 1025.27 | 95.72 | 462.88 |
14.6 | 42.32 | 1015.71 | 77.03 | 464.67 |
5.1 | 35.57 | 1027.17 | 80.49 | 489.96 |
7.0 | 38.08 | 1020.27 | 77.67 | 482.38 |
26.3 | 77.95 | 1009.45 | 78.72 | 437.95 |
30.56 | 71.98 | 1004.74 | 58.77 | 429.2 |
21.09 | 46.63 | 1013.03 | 74.8 | 453.34 |
28.21 | 70.02 | 1010.58 | 51.34 | 442.47 |
15.84 | 49.69 | 1015.14 | 90.41 | 462.6 |
10.03 | 40.96 | 1024.57 | 91.1 | 478.79 |
20.37 | 52.05 | 1012.34 | 62.57 | 456.11 |
21.19 | 50.16 | 1005.81 | 84.27 | 450.33 |
33.73 | 69.88 | 1007.21 | 42.93 | 434.83 |
29.87 | 73.68 | 1015.1 | 40.96 | 433.43 |
19.62 | 62.96 | 1020.76 | 76.53 | 456.02 |
9.93 | 40.67 | 1018.08 | 69.74 | 485.23 |
9.43 | 37.14 | 1013.03 | 74.99 | 473.57 |
14.24 | 39.58 | 1011.17 | 70.45 | 469.94 |
12.97 | 49.83 | 1008.69 | 91.49 | 452.07 |
7.6 | 41.04 | 1021.82 | 88.97 | 475.32 |
8.39 | 36.24 | 1013.39 | 89.13 | 480.69 |
25.41 | 48.06 | 1013.12 | 46.52 | 444.01 |
18.43 | 56.03 | 1020.41 | 60.55 | 465.17 |
10.31 | 39.82 | 1012.87 | 88.71 | 480.61 |
11.29 | 41.5 | 1013.39 | 89.15 | 476.04 |
22.61 | 49.3 | 1003.51 | 83.02 | 441.76 |
29.34 | 71.98 | 1005.19 | 75.19 | 428.24 |
18.87 | 67.71 | 1004.0 | 87.35 | 444.77 |
13.21 | 45.87 | 1008.58 | 85.66 | 463.1 |
11.3 | 44.6 | 1018.19 | 91.66 | 470.5 |
29.23 | 72.99 | 1007.04 | 63.47 | 431.0 |
27.76 | 69.4 | 1004.27 | 72.25 | 430.68 |
29.26 | 67.17 | 1006.6 | 70.58 | 436.42 |
25.72 | 49.82 | 1016.19 | 60.1 | 452.33 |
23.43 | 63.94 | 1010.64 | 89.29 | 440.16 |
25.6 | 63.76 | 1010.18 | 67.43 | 435.75 |
22.3 | 44.57 | 1008.48 | 67.58 | 449.74 |
27.91 | 72.24 | 1010.74 | 70.8 | 430.73 |
30.35 | 77.17 | 1009.55 | 63.62 | 432.75 |
21.78 | 47.43 | 1007.88 | 66.68 | 446.79 |
7.19 | 41.39 | 1018.12 | 90.76 | 486.35 |
20.88 | 59.8 | 1015.66 | 75.34 | 453.18 |
24.19 | 50.23 | 1015.73 | 59.77 | 458.31 |
9.98 | 41.54 | 1019.7 | 80.79 | 480.26 |
23.47 | 51.3 | 1011.89 | 74.1 | 448.65 |
26.35 | 49.5 | 1012.67 | 41.34 | 458.41 |
29.89 | 64.69 | 1006.37 | 58.78 | 435.39 |
19.29 | 50.16 | 1010.49 | 97.78 | 450.21 |
17.48 | 43.14 | 1018.68 | 74.85 | 459.59 |
25.21 | 75.6 | 1017.19 | 69.84 | 445.84 |
23.3 | 48.78 | 1018.17 | 75.36 | 441.08 |
15.42 | 37.85 | 1009.89 | 85.8 | 467.33 |
21.44 | 63.09 | 1016.56 | 90.11 | 444.19 |
29.45 | 68.27 | 1007.96 | 61.63 | 432.96 |
29.69 | 47.93 | 1002.85 | 44.76 | 438.09 |
15.52 | 36.99 | 1006.86 | 89.7 | 467.9 |
11.47 | 43.67 | 1012.68 | 72.51 | 475.72 |
9.77 | 34.69 | 1027.72 | 74.98 | 477.51 |
22.6 | 69.84 | 1006.37 | 79.59 | 435.13 |
8.24 | 39.61 | 1017.99 | 78.42 | 477.9 |
17.01 | 44.2 | 1019.18 | 61.23 | 457.26 |
19.64 | 44.6 | 1015.88 | 47.56 | 467.53 |
10.61 | 41.58 | 1021.08 | 93.06 | 465.15 |
12.04 | 40.1 | 1014.42 | 89.65 | 474.28 |
29.19 | 65.71 | 1013.85 | 50.5 | 444.49 |
21.75 | 45.09 | 1014.15 | 44.84 | 452.84 |
23.66 | 77.54 | 1008.5 | 85.32 | 435.38 |
27.05 | 75.33 | 1003.88 | 82.94 | 433.57 |
29.63 | 69.71 | 1009.04 | 67.26 | 435.27 |
18.2 | 39.63 | 1005.35 | 79.05 | 468.49 |
32.22 | 70.8 | 1009.9 | 62.03 | 433.07 |
26.88 | 73.56 | 1004.85 | 94.36 | 430.63 |
29.05 | 65.74 | 1013.29 | 60.02 | 440.74 |
8.9 | 39.96 | 1026.31 | 95.46 | 474.49 |
18.93 | 48.6 | 1005.72 | 84.92 | 449.74 |
27.49 | 63.76 | 1010.09 | 62.8 | 436.73 |
23.1 | 70.79 | 1006.53 | 90.81 | 434.58 |
11.22 | 43.13 | 1017.24 | 80.9 | 473.93 |
31.97 | 79.74 | 1007.03 | 55.84 | 435.99 |
13.32 | 43.22 | 1009.45 | 75.3 | 466.83 |
31.68 | 68.24 | 1005.29 | 37.34 | 427.22 |
23.69 | 63.77 | 1013.39 | 79.5 | 444.07 |
13.83 | 41.49 | 1020.11 | 87.29 | 469.57 |
18.32 | 66.51 | 1015.18 | 81.5 | 459.89 |
11.05 | 40.71 | 1024.91 | 76.42 | 479.59 |
22.03 | 64.69 | 1007.21 | 75.75 | 440.92 |
10.23 | 41.46 | 1020.45 | 84.95 | 480.87 |
23.92 | 66.54 | 1009.93 | 62.37 | 441.9 |
29.38 | 69.68 | 1011.35 | 49.25 | 430.2 |
17.35 | 42.86 | 1014.62 | 74.16 | 465.16 |
9.81 | 44.45 | 1021.19 | 90.55 | 471.32 |
4.97 | 40.64 | 1020.91 | 94.28 | 485.43 |
5.15 | 40.07 | 1012.27 | 63.31 | 495.35 |
21.54 | 58.49 | 1010.85 | 78.9 | 449.12 |
7.94 | 42.02 | 1006.22 | 90.97 | 480.53 |
18.77 | 50.66 | 1014.89 | 87.34 | 457.07 |
21.69 | 69.94 | 1010.7 | 80.8 | 443.67 |
10.07 | 44.68 | 1023.44 | 90.95 | 477.52 |
13.83 | 39.64 | 1012.52 | 69.97 | 472.95 |
10.45 | 39.69 | 1003.92 | 89.45 | 472.54 |
11.56 | 40.71 | 1015.85 | 76.08 | 469.17 |
23.64 | 70.04 | 1011.09 | 83.35 | 435.21 |
10.48 | 40.22 | 1004.81 | 92.16 | 477.78 |
13.09 | 39.85 | 1012.86 | 58.42 | 475.89 |
10.67 | 40.23 | 1017.75 | 85.06 | 483.9 |
12.57 | 39.16 | 1016.53 | 88.91 | 476.2 |
14.45 | 43.34 | 1015.47 | 83.33 | 462.16 |
14.22 | 37.85 | 1011.24 | 88.49 | 471.05 |
6.97 | 41.26 | 1010.6 | 96.88 | 484.71 |
20.61 | 63.86 | 1015.43 | 73.86 | 446.34 |
14.67 | 42.28 | 1007.21 | 65.17 | 469.02 |
29.06 | 72.86 | 1004.23 | 69.41 | 432.12 |
14.38 | 40.1 | 1015.51 | 81.23 | 467.28 |
32.51 | 69.98 | 1013.29 | 54.07 | 429.66 |
11.79 | 45.09 | 1013.16 | 89.17 | 469.49 |
8.65 | 40.56 | 1023.23 | 78.85 | 485.87 |
9.75 | 40.81 | 1026.0 | 84.44 | 481.95 |
9.11 | 40.02 | 1031.1 | 83.02 | 479.03 |
23.39 | 69.13 | 1010.99 | 90.66 | 434.5 |
14.3 | 54.3 | 1015.16 | 75.29 | 464.9 |
17.49 | 63.94 | 1020.02 | 82.6 | 452.71 |
31.1 | 69.51 | 1010.84 | 45.4 | 429.74 |
19.77 | 56.65 | 1020.67 | 66.33 | 457.09 |
28.61 | 72.29 | 1011.61 | 45.33 | 446.77 |
13.52 | 41.48 | 1014.46 | 67.12 | 460.76 |
13.52 | 40.83 | 1008.31 | 84.14 | 471.95 |
17.57 | 46.21 | 1014.09 | 80.81 | 453.29 |
28.18 | 60.07 | 1016.34 | 49.13 | 441.61 |
14.29 | 46.18 | 1017.01 | 87.29 | 464.73 |
18.12 | 43.69 | 1016.91 | 52.95 | 464.68 |
31.27 | 73.91 | 1003.72 | 68.92 | 430.59 |
26.24 | 77.95 | 1014.19 | 85.21 | 438.01 |
7.44 | 41.04 | 1021.84 | 88.56 | 479.08 |
29.78 | 74.78 | 1009.28 | 55.09 | 436.39 |
23.37 | 65.46 | 1016.25 | 48.64 | 447.07 |
10.62 | 39.58 | 1011.9 | 87.85 | 479.91 |
5.84 | 43.02 | 1013.88 | 87.42 | 489.05 |
14.51 | 53.82 | 1016.46 | 62.75 | 463.17 |
11.31 | 42.02 | 1001.18 | 94.86 | 471.26 |
11.25 | 40.67 | 1011.64 | 63.54 | 480.49 |
9.18 | 39.42 | 1025.41 | 69.46 | 473.78 |
19.82 | 58.16 | 1016.76 | 74.66 | 455.5 |
24.77 | 58.41 | 1013.78 | 80.57 | 446.27 |
9.66 | 41.06 | 1021.21 | 84.7 | 482.2 |
21.96 | 59.8 | 1016.72 | 72.6 | 452.48 |
18.59 | 43.14 | 1011.92 | 52.63 | 464.48 |
24.75 | 69.89 | 1015.29 | 82.01 | 438.1 |
24.37 | 63.47 | 1012.77 | 75.22 | 445.6 |
29.6 | 67.79 | 1010.37 | 51.05 | 442.43 |
25.32 | 61.25 | 1011.56 | 80.1 | 436.67 |
16.15 | 41.85 | 1016.54 | 81.58 | 466.56 |
15.74 | 71.14 | 1019.65 | 65.94 | 457.29 |
5.97 | 36.25 | 1029.65 | 86.74 | 487.03 |
15.84 | 52.72 | 1026.45 | 62.57 | 464.93 |
14.84 | 44.63 | 1019.28 | 57.37 | 466.0 |
12.25 | 48.79 | 1017.44 | 88.91 | 469.52 |
27.38 | 70.04 | 1011.18 | 72.26 | 428.88 |
8.76 | 41.48 | 1018.49 | 74.98 | 474.3 |
15.54 | 39.31 | 1009.69 | 71.19 | 461.06 |
18.71 | 39.39 | 1014.09 | 62.82 | 465.57 |
13.06 | 41.78 | 1012.3 | 55.31 | 467.67 |
12.72 | 40.71 | 1016.02 | 71.57 | 466.99 |
19.83 | 39.39 | 1013.73 | 59.16 | 463.72 |
27.23 | 49.16 | 1004.03 | 40.8 | 443.78 |
24.27 | 68.28 | 1005.43 | 67.63 | 445.23 |
11.8 | 40.66 | 1017.13 | 97.2 | 464.43 |
6.76 | 36.25 | 1028.31 | 91.16 | 484.36 |
25.99 | 63.07 | 1012.5 | 64.81 | 442.16 |
16.3 | 39.63 | 1004.64 | 85.61 | 464.11 |
16.5 | 49.39 | 1018.35 | 93.42 | 462.48 |
10.59 | 42.49 | 1009.59 | 77.36 | 477.49 |
26.05 | 65.59 | 1012.78 | 67.03 | 437.04 |
19.5 | 40.79 | 1003.8 | 89.45 | 457.09 |
22.21 | 45.01 | 1012.22 | 54.84 | 450.6 |
17.86 | 45.0 | 1023.25 | 53.48 | 465.78 |
29.96 | 70.04 | 1010.15 | 54.47 | 427.1 |
19.08 | 44.63 | 1020.14 | 43.36 | 459.81 |
23.59 | 47.43 | 1006.64 | 48.92 | 447.36 |
3.38 | 39.64 | 1011.0 | 81.22 | 488.92 |
26.39 | 66.49 | 1012.96 | 60.35 | 433.36 |
8.99 | 39.04 | 1021.99 | 75.98 | 483.35 |
10.91 | 41.04 | 1026.57 | 74.24 | 469.53 |
13.08 | 39.82 | 1012.27 | 85.21 | 476.96 |
23.95 | 58.46 | 1017.5 | 68.46 | 440.75 |
15.64 | 43.71 | 1024.51 | 78.31 | 462.55 |
18.78 | 54.2 | 1012.05 | 89.25 | 448.04 |
20.65 | 50.59 | 1016.22 | 68.57 | 455.24 |
4.96 | 40.07 | 1011.8 | 67.38 | 494.75 |
23.51 | 57.32 | 1012.55 | 53.6 | 444.58 |
5.99 | 35.79 | 1011.56 | 91.69 | 484.82 |
23.65 | 66.05 | 1019.6 | 78.21 | 442.9 |
5.17 | 39.33 | 1009.68 | 94.19 | 485.46 |
26.38 | 49.5 | 1012.82 | 37.19 | 457.81 |
6.02 | 43.65 | 1013.85 | 83.53 | 481.92 |
23.2 | 61.02 | 1009.63 | 79.45 | 443.23 |
8.57 | 39.69 | 1000.91 | 99.9 | 474.29 |
30.72 | 71.58 | 1009.98 | 50.39 | 430.46 |
21.52 | 50.66 | 1013.56 | 74.33 | 455.71 |
22.93 | 62.26 | 1011.25 | 83.66 | 438.34 |
5.71 | 41.31 | 1003.24 | 89.48 | 485.83 |
18.62 | 44.06 | 1017.76 | 64.59 | 452.82 |
27.88 | 68.94 | 1007.68 | 75.68 | 435.04 |
22.32 | 59.8 | 1016.82 | 64.18 | 451.21 |
14.55 | 42.74 | 1028.41 | 70.09 | 465.81 |
17.83 | 44.92 | 1025.04 | 70.58 | 458.42 |
9.68 | 39.96 | 1026.09 | 99.28 | 470.22 |
19.41 | 49.39 | 1020.84 | 81.89 | 449.24 |
13.22 | 44.92 | 1023.84 | 87.99 | 471.43 |
12.24 | 44.92 | 1023.74 | 88.21 | 473.26 |
19.21 | 58.49 | 1011.7 | 91.29 | 452.82 |
29.74 | 70.32 | 1008.1 | 52.72 | 432.69 |
23.28 | 60.84 | 1017.91 | 67.5 | 444.13 |
8.02 | 41.92 | 1029.8 | 92.05 | 467.21 |
22.47 | 48.6 | 1002.33 | 63.23 | 445.98 |
27.51 | 73.77 | 1002.42 | 90.88 | 436.91 |
17.51 | 44.9 | 1009.05 | 74.91 | 455.01 |
23.22 | 66.56 | 1002.47 | 85.39 | 437.11 |
11.73 | 40.64 | 1020.68 | 96.98 | 477.06 |
21.19 | 67.71 | 1006.65 | 56.28 | 441.71 |
5.48 | 40.07 | 1019.63 | 65.62 | 495.76 |
24.26 | 66.44 | 1011.33 | 55.32 | 445.63 |
12.32 | 41.62 | 1012.88 | 88.88 | 464.72 |
31.26 | 68.94 | 1005.94 | 39.49 | 438.03 |
32.09 | 72.86 | 1003.47 | 54.59 | 434.78 |
24.98 | 60.32 | 1015.63 | 57.19 | 444.67 |
27.48 | 61.41 | 1012.2 | 45.06 | 452.24 |
21.04 | 45.09 | 1014.19 | 40.62 | 450.92 |
27.75 | 70.4 | 1006.65 | 90.21 | 436.53 |
22.79 | 71.77 | 1005.75 | 90.91 | 435.53 |
24.22 | 68.51 | 1013.23 | 74.96 | 440.01 |
27.06 | 64.45 | 1008.72 | 54.21 | 443.1 |
29.25 | 71.94 | 1007.18 | 63.62 | 427.49 |
26.86 | 68.08 | 1012.99 | 50.04 | 436.25 |
29.64 | 67.79 | 1009.99 | 51.23 | 440.74 |
19.92 | 63.31 | 1015.02 | 82.71 | 443.54 |
18.5 | 51.43 | 1010.82 | 92.04 | 459.42 |
23.71 | 60.23 | 1009.76 | 90.67 | 439.66 |
14.39 | 44.84 | 1023.55 | 91.14 | 464.15 |
19.3 | 56.65 | 1020.55 | 70.43 | 459.1 |
24.65 | 52.36 | 1014.76 | 66.63 | 455.68 |
13.5 | 45.51 | 1015.33 | 86.95 | 469.08 |
9.82 | 41.26 | 1007.71 | 96.69 | 478.02 |
18.4 | 44.06 | 1017.36 | 70.88 | 456.8 |
28.12 | 44.89 | 1009.18 | 47.14 | 441.13 |
17.15 | 43.69 | 1017.05 | 63.36 | 463.88 |
30.69 | 73.67 | 1006.14 | 60.58 | 430.45 |
28.82 | 65.71 | 1014.24 | 54.3 | 449.18 |
21.3 | 48.92 | 1010.92 | 65.09 | 447.89 |
30.58 | 70.04 | 1010.4 | 48.16 | 431.59 |
21.17 | 52.3 | 1009.36 | 81.51 | 447.5 |
9.87 | 41.82 | 1033.04 | 68.57 | 475.58 |
22.18 | 59.8 | 1016.77 | 73.16 | 453.24 |
24.39 | 63.21 | 1012.59 | 80.88 | 446.4 |
10.73 | 44.92 | 1025.1 | 85.4 | 476.81 |
9.38 | 40.46 | 1019.29 | 75.77 | 474.1 |
20.27 | 57.76 | 1016.66 | 75.76 | 450.71 |
24.82 | 66.48 | 1006.4 | 70.21 | 433.62 |
16.55 | 41.66 | 1011.45 | 55.53 | 465.14 |
20.73 | 59.87 | 1019.08 | 80.48 | 445.18 |
9.51 | 39.22 | 1015.3 | 72.41 | 474.12 |
8.63 | 43.79 | 1016.08 | 83.25 | 483.91 |
6.48 | 40.27 | 1010.55 | 82.12 | 486.68 |
14.95 | 43.52 | 1022.43 | 94.75 | 464.98 |
5.76 | 45.87 | 1010.83 | 95.79 | 481.4 |
10.94 | 39.04 | 1021.81 | 86.02 | 479.2 |
15.87 | 41.16 | 1005.85 | 78.29 | 463.86 |
12.42 | 38.25 | 1012.76 | 82.23 | 472.3 |
29.12 | 58.84 | 1001.31 | 52.86 | 446.51 |
29.12 | 51.43 | 1005.93 | 60.66 | 437.71 |
19.08 | 41.1 | 1001.96 | 62.77 | 458.94 |
31.06 | 67.17 | 1007.62 | 65.54 | 437.91 |
5.72 | 39.33 | 1009.96 | 95.4 | 490.76 |
26.52 | 65.06 | 1013.4 | 51.78 | 439.66 |
13.84 | 44.9 | 1007.58 | 63.62 | 463.27 |
13.03 | 39.52 | 1016.68 | 83.09 | 473.99 |
25.94 | 66.49 | 1012.83 | 61.81 | 433.38 |
16.64 | 53.82 | 1015.13 | 68.24 | 459.01 |
14.13 | 40.75 | 1016.05 | 72.41 | 471.44 |
13.65 | 39.28 | 1012.97 | 79.64 | 471.91 |
14.5 | 44.47 | 1028.2 | 66.95 | 465.15 |
19.8 | 51.19 | 1008.25 | 91.98 | 446.66 |
25.2 | 63.76 | 1009.78 | 64.96 | 438.15 |
20.66 | 51.19 | 1008.81 | 88.93 | 447.14 |
12.07 | 43.71 | 1025.53 | 85.62 | 472.32 |
25.64 | 70.72 | 1010.16 | 84.0 | 441.68 |
23.33 | 72.99 | 1009.33 | 89.41 | 440.04 |
29.41 | 64.05 | 1009.82 | 67.4 | 444.82 |
16.6 | 53.16 | 1014.5 | 76.75 | 457.26 |
27.53 | 72.58 | 1009.13 | 89.06 | 428.83 |
20.62 | 43.43 | 1009.93 | 64.02 | 449.07 |
26.02 | 71.94 | 1009.38 | 64.12 | 435.21 |
12.75 | 44.2 | 1017.59 | 81.22 | 471.03 |
12.87 | 48.04 | 1012.47 | 100.13 | 465.56 |
25.77 | 62.96 | 1019.86 | 58.07 | 442.83 |
14.84 | 41.48 | 1017.26 | 63.42 | 460.3 |
7.41 | 40.71 | 1023.07 | 83.32 | 474.25 |
8.87 | 41.82 | 1033.3 | 74.28 | 477.97 |
9.69 | 40.46 | 1019.1 | 71.91 | 472.16 |
16.17 | 46.97 | 1014.22 | 85.8 | 456.08 |
26.24 | 49.82 | 1014.9 | 55.58 | 452.41 |
13.78 | 43.22 | 1011.31 | 69.7 | 463.71 |
26.3 | 67.07 | 1006.26 | 63.79 | 433.72 |
17.37 | 57.76 | 1016.0 | 86.59 | 456.4 |
23.6 | 48.98 | 1015.41 | 48.28 | 448.43 |
8.3 | 36.08 | 1020.63 | 80.42 | 481.6 |
18.86 | 42.18 | 1001.16 | 98.58 | 457.07 |
22.12 | 49.39 | 1019.8 | 72.83 | 451.0 |
28.41 | 75.6 | 1018.48 | 56.07 | 440.28 |
29.42 | 71.32 | 1002.26 | 67.13 | 437.47 |
18.61 | 67.71 | 1004.07 | 84.49 | 443.57 |
27.57 | 69.84 | 1004.91 | 68.37 | 426.6 |
12.83 | 41.5 | 1013.12 | 86.07 | 470.87 |
9.64 | 39.85 | 1012.9 | 83.82 | 478.37 |
19.13 | 58.66 | 1013.32 | 74.86 | 453.92 |
15.92 | 40.56 | 1020.79 | 53.52 | 470.22 |
24.64 | 72.24 | 1011.37 | 80.61 | 434.54 |
27.62 | 63.9 | 1013.11 | 43.56 | 442.89 |
8.9 | 36.24 | 1013.29 | 89.35 | 479.03 |
9.55 | 43.99 | 1020.5 | 97.28 | 476.06 |
10.57 | 36.71 | 1022.62 | 80.49 | 473.88 |
19.8 | 57.25 | 1010.84 | 88.9 | 451.75 |
25.63 | 56.85 | 1012.68 | 49.7 | 439.2 |
24.7 | 58.46 | 1015.58 | 68.64 | 439.7 |
15.26 | 46.18 | 1013.68 | 98.58 | 463.6 |
20.06 | 52.84 | 1004.21 | 82.12 | 447.47 |
19.84 | 56.89 | 1013.23 | 78.32 | 447.92 |
11.49 | 44.63 | 1020.44 | 86.04 | 471.08 |
23.74 | 72.43 | 1007.99 | 91.36 | 437.55 |
22.62 | 51.3 | 1012.36 | 81.02 | 448.27 |
29.53 | 72.39 | 998.47 | 76.05 | 431.69 |
21.32 | 48.14 | 1016.57 | 71.81 | 449.09 |
20.3 | 58.46 | 1015.93 | 82.13 | 448.79 |
16.97 | 44.92 | 1025.21 | 74.27 | 460.21 |
12.07 | 41.17 | 1013.54 | 71.32 | 479.28 |
7.46 | 41.82 | 1032.67 | 74.59 | 483.11 |
19.2 | 54.2 | 1011.46 | 84.44 | 450.75 |
28.64 | 66.54 | 1010.43 | 43.39 | 437.97 |
13.56 | 41.48 | 1008.53 | 87.2 | 459.76 |
17.4 | 44.9 | 1020.5 | 77.11 | 457.75 |
14.08 | 40.1 | 1015.48 | 82.81 | 469.33 |
27.11 | 69.75 | 1009.74 | 85.67 | 433.28 |
20.92 | 70.02 | 1010.23 | 95.58 | 444.64 |
16.18 | 44.9 | 1021.3 | 74.46 | 463.1 |
15.57 | 44.68 | 1022.01 | 90.02 | 460.91 |
10.37 | 39.04 | 1023.95 | 81.93 | 479.35 |
19.6 | 59.21 | 1017.65 | 86.29 | 449.23 |
9.22 | 40.92 | 1021.83 | 85.43 | 474.51 |
27.76 | 72.99 | 1007.81 | 71.66 | 435.02 |
28.68 | 70.72 | 1009.43 | 71.33 | 435.45 |
20.95 | 48.14 | 1013.3 | 67.72 | 452.38 |
9.06 | 39.3 | 1019.73 | 84.23 | 480.41 |
9.21 | 39.72 | 1019.54 | 74.44 | 478.96 |
13.65 | 42.74 | 1026.58 | 71.48 | 468.87 |
31.79 | 76.2 | 1007.89 | 56.3 | 434.01 |
14.32 | 44.6 | 1013.85 | 68.13 | 466.36 |
26.28 | 75.23 | 1011.44 | 68.35 | 435.28 |
7.69 | 43.02 | 1014.51 | 85.23 | 486.46 |
14.44 | 40.1 | 1015.51 | 79.78 | 468.19 |
9.19 | 41.01 | 1022.14 | 98.98 | 468.37 |
13.35 | 41.39 | 1019.17 | 72.87 | 474.19 |
23.04 | 74.22 | 1009.52 | 90.93 | 440.32 |
4.83 | 38.44 | 1015.35 | 72.94 | 485.32 |
17.29 | 42.86 | 1014.38 | 72.3 | 464.27 |
8.73 | 36.18 | 1013.66 | 77.74 | 479.25 |
26.21 | 70.32 | 1007.0 | 78.29 | 430.4 |
23.72 | 58.62 | 1016.65 | 69.1 | 447.49 |
29.27 | 64.69 | 1006.85 | 55.79 | 438.23 |
10.4 | 40.43 | 1025.46 | 75.09 | 492.09 |
12.19 | 40.75 | 1015.13 | 88.98 | 475.36 |
20.4 | 54.9 | 1016.68 | 64.26 | 452.56 |
34.3 | 74.67 | 1015.98 | 25.89 | 427.84 |
27.56 | 68.08 | 1010.8 | 59.18 | 433.95 |
30.9 | 70.8 | 1008.48 | 67.48 | 435.27 |
14.85 | 58.59 | 1014.04 | 89.85 | 454.62 |
16.42 | 40.56 | 1020.36 | 50.62 | 472.17 |
16.45 | 63.31 | 1015.96 | 83.97 | 452.42 |
10.14 | 42.02 | 1003.19 | 96.51 | 472.17 |
9.53 | 41.44 | 1018.01 | 80.09 | 481.83 |
17.01 | 49.15 | 1021.83 | 84.02 | 458.78 |
23.94 | 62.08 | 1022.47 | 61.97 | 447.5 |
15.95 | 49.25 | 1019.04 | 88.51 | 463.4 |
11.15 | 41.26 | 1022.67 | 81.83 | 473.57 |
25.56 | 70.32 | 1009.07 | 90.63 | 433.72 |
27.16 | 66.44 | 1011.2 | 73.37 | 431.85 |
26.71 | 77.95 | 1012.13 | 77.5 | 433.47 |
29.56 | 74.22 | 1007.45 | 57.46 | 432.84 |
31.19 | 70.94 | 1007.29 | 51.91 | 436.6 |
6.86 | 41.17 | 1020.12 | 79.14 | 490.23 |
12.36 | 41.74 | 1020.58 | 69.24 | 477.16 |
32.82 | 68.31 | 1010.44 | 41.85 | 441.06 |
25.3 | 70.98 | 1007.22 | 95.1 | 440.86 |
8.71 | 41.82 | 1033.08 | 74.53 | 477.94 |
13.34 | 40.8 | 1026.56 | 64.85 | 474.47 |
14.2 | 43.02 | 1012.18 | 57.07 | 470.67 |
23.74 | 65.34 | 1013.7 | 62.9 | 447.31 |
16.9 | 44.88 | 1018.14 | 72.21 | 466.8 |
28.54 | 71.94 | 1007.4 | 65.99 | 430.91 |
30.15 | 69.88 | 1007.2 | 73.67 | 434.75 |
14.33 | 42.86 | 1010.82 | 88.59 | 469.52 |
25.57 | 59.43 | 1008.88 | 61.19 | 438.9 |
30.55 | 70.04 | 1010.51 | 49.37 | 429.56 |
28.04 | 74.33 | 1013.53 | 48.65 | 432.92 |
26.39 | 49.16 | 1005.68 | 56.18 | 442.87 |
15.3 | 41.76 | 1022.57 | 71.56 | 466.59 |
6.03 | 41.14 | 1028.04 | 87.46 | 479.61 |
13.49 | 44.63 | 1019.12 | 70.02 | 471.08 |
27.67 | 59.14 | 1016.51 | 61.2 | 433.37 |
24.19 | 65.48 | 1018.8 | 60.54 | 443.92 |
24.44 | 59.14 | 1016.74 | 71.82 | 443.5 |
29.86 | 64.79 | 1017.37 | 44.8 | 439.89 |
30.2 | 69.59 | 1008.9 | 67.32 | 434.66 |
7.99 | 41.38 | 1021.95 | 78.77 | 487.57 |
9.93 | 41.62 | 1013.76 | 96.02 | 464.64 |
11.03 | 42.32 | 1017.26 | 90.56 | 470.92 |
22.34 | 63.73 | 1014.37 | 83.19 | 444.39 |
25.33 | 48.6 | 1002.54 | 68.45 | 442.48 |
18.87 | 52.08 | 1005.25 | 99.19 | 449.61 |
25.97 | 69.34 | 1009.43 | 88.11 | 435.02 |
16.58 | 43.99 | 1021.81 | 79.29 | 458.67 |
14.35 | 46.18 | 1016.63 | 87.76 | 461.74 |
25.06 | 62.39 | 1008.09 | 82.56 | 438.31 |
13.85 | 48.92 | 1011.68 | 79.24 | 462.38 |
16.09 | 44.2 | 1019.39 | 67.24 | 460.56 |
26.34 | 59.21 | 1013.37 | 58.98 | 439.22 |
23.01 | 58.79 | 1009.71 | 84.22 | 444.64 |
26.39 | 71.25 | 999.8 | 89.12 | 430.34 |
31.32 | 71.29 | 1008.37 | 50.07 | 430.46 |
16.64 | 45.87 | 1009.02 | 98.86 | 456.79 |
13.42 | 41.23 | 994.17 | 95.79 | 468.82 |
20.06 | 44.9 | 1008.79 | 70.06 | 448.51 |
14.8 | 44.71 | 1014.67 | 41.71 | 470.77 |
12.59 | 41.14 | 1025.79 | 86.55 | 465.74 |
26.7 | 66.56 | 1005.31 | 71.97 | 430.21 |
19.78 | 50.32 | 1008.62 | 96.4 | 449.23 |
15.17 | 49.15 | 1021.91 | 91.73 | 461.89 |
21.71 | 61.45 | 1010.97 | 91.62 | 445.72 |
19.09 | 39.39 | 1013.36 | 59.14 | 466.13 |
19.76 | 51.19 | 1008.38 | 92.56 | 448.71 |
14.68 | 41.23 | 998.43 | 83.71 | 469.25 |
21.3 | 66.86 | 1013.04 | 55.43 | 450.56 |
16.73 | 39.64 | 1008.94 | 74.91 | 464.46 |
12.26 | 41.5 | 1014.87 | 89.41 | 471.13 |
14.77 | 48.06 | 1010.92 | 69.81 | 461.52 |
18.26 | 59.15 | 1012.04 | 86.01 | 451.09 |
27.1 | 79.74 | 1005.43 | 86.05 | 431.51 |
14.72 | 40.83 | 1009.65 | 80.98 | 469.8 |
26.3 | 51.43 | 1012.05 | 63.62 | 442.28 |
16.48 | 48.92 | 1011.84 | 64.16 | 458.67 |
17.99 | 43.79 | 1016.13 | 75.63 | 462.4 |
20.34 | 59.8 | 1015.18 | 80.21 | 453.54 |
25.53 | 62.96 | 1019.81 | 59.7 | 444.38 |
31.59 | 58.9 | 1003.39 | 47.6 | 440.52 |
30.8 | 69.14 | 1007.68 | 63.78 | 433.62 |
10.75 | 45.0 | 1023.68 | 89.37 | 481.96 |
19.3 | 44.9 | 1008.89 | 70.55 | 452.75 |
4.71 | 39.42 | 1026.4 | 84.42 | 481.28 |
23.1 | 66.05 | 1020.28 | 80.62 | 439.03 |
32.63 | 73.88 | 1005.64 | 52.56 | 435.75 |
26.63 | 74.16 | 1009.72 | 83.26 | 436.03 |
24.35 | 58.49 | 1011.03 | 70.64 | 445.6 |
15.11 | 56.03 | 1020.27 | 89.95 | 462.65 |
29.1 | 50.05 | 1005.87 | 51.53 | 438.66 |
21.24 | 50.32 | 1008.54 | 84.83 | 447.32 |
6.16 | 39.48 | 1004.85 | 59.68 | 484.55 |
7.36 | 41.01 | 1024.9 | 97.88 | 476.8 |
10.44 | 39.04 | 1023.99 | 85.03 | 480.34 |
26.76 | 48.41 | 1010.53 | 47.38 | 440.63 |
16.79 | 44.6 | 1014.27 | 48.08 | 459.48 |
10.76 | 40.43 | 1025.98 | 79.65 | 490.78 |
6.07 | 38.91 | 1019.25 | 83.39 | 483.56 |
27.33 | 73.18 | 1012.26 | 82.18 | 429.38 |
27.15 | 59.21 | 1013.49 | 51.71 | 440.27 |
22.35 | 51.43 | 1011.34 | 77.33 | 445.34 |
21.82 | 65.27 | 1013.86 | 72.81 | 447.43 |
21.11 | 69.94 | 1004.37 | 84.26 | 439.91 |
19.95 | 50.59 | 1016.11 | 73.23 | 459.27 |
7.45 | 39.61 | 1017.88 | 79.73 | 478.89 |
15.36 | 41.66 | 1012.41 | 62.32 | 466.7 |
15.65 | 43.5 | 1021.39 | 78.58 | 463.5 |
25.31 | 74.33 | 1015.04 | 79.88 | 436.21 |
25.88 | 63.47 | 1011.95 | 65.87 | 443.94 |
24.6 | 63.94 | 1012.87 | 80.28 | 439.63 |
22.58 | 41.54 | 1013.21 | 71.33 | 460.95 |
19.69 | 59.14 | 1015.99 | 70.33 | 448.69 |
25.85 | 75.08 | 1006.24 | 57.73 | 444.63 |
10.06 | 37.83 | 1005.49 | 99.46 | 473.51 |
18.59 | 39.54 | 1008.56 | 68.61 | 462.56 |
18.27 | 50.16 | 1011.07 | 95.91 | 451.76 |
8.85 | 40.43 | 1025.68 | 80.42 | 491.81 |
30.04 | 68.08 | 1011.04 | 51.01 | 429.52 |
26.06 | 49.02 | 1007.59 | 74.08 | 437.9 |
14.8 | 38.73 | 1003.18 | 80.73 | 467.54 |
23.93 | 64.45 | 1015.35 | 54.71 | 449.97 |
23.72 | 66.48 | 1003.61 | 73.75 | 436.62 |
11.44 | 40.55 | 1023.37 | 88.43 | 477.68 |
20.28 | 63.86 | 1016.04 | 74.66 | 447.26 |
27.9 | 63.13 | 1011.8 | 70.04 | 439.76 |
24.74 | 59.39 | 1015.23 | 74.64 | 437.49 |
14.8 | 58.2 | 1018.29 | 85.11 | 455.14 |
8.22 | 41.03 | 1021.76 | 82.97 | 485.5 |
27.56 | 66.93 | 1016.81 | 55.59 | 444.1 |
32.07 | 70.94 | 1006.91 | 49.9 | 432.33 |
9.53 | 44.03 | 1008.87 | 89.99 | 471.23 |
13.61 | 42.34 | 1017.93 | 91.61 | 463.89 |
22.2 | 51.19 | 1009.2 | 82.95 | 445.54 |
21.36 | 59.54 | 1007.99 | 92.62 | 446.09 |
23.25 | 63.86 | 1017.82 | 59.64 | 445.12 |
23.5 | 59.21 | 1018.29 | 63.0 | 443.31 |
8.46 | 39.66 | 1015.14 | 85.38 | 484.16 |
8.19 | 40.69 | 1019.86 | 85.23 | 477.76 |
30.67 | 71.29 | 1008.36 | 52.08 | 430.28 |
32.48 | 62.04 | 1010.39 | 38.05 | 446.48 |
8.99 | 36.66 | 1028.11 | 71.98 | 481.03 |
13.77 | 47.83 | 1007.41 | 90.66 | 466.07 |
19.05 | 67.32 | 1013.2 | 83.14 | 447.47 |
21.19 | 55.5 | 1019.83 | 65.22 | 455.93 |
10.12 | 40.0 | 1021.15 | 91.67 | 479.62 |
24.93 | 47.01 | 1014.28 | 66.04 | 455.06 |
8.47 | 40.46 | 1019.87 | 78.19 | 475.06 |
24.52 | 56.85 | 1012.59 | 54.47 | 438.89 |
28.55 | 69.84 | 1003.38 | 67.26 | 432.7 |
20.58 | 50.9 | 1011.89 | 72.56 | 452.6 |
18.31 | 46.21 | 1010.46 | 82.15 | 451.75 |
27.18 | 71.06 | 1008.16 | 86.32 | 430.66 |
4.43 | 38.91 | 1019.04 | 88.17 | 491.9 |
26.02 | 74.78 | 1010.04 | 72.78 | 439.82 |
15.75 | 39.0 | 1015.91 | 69.58 | 460.73 |
22.99 | 60.95 | 1015.14 | 69.86 | 449.7 |
25.52 | 59.15 | 1013.88 | 65.37 | 439.42 |
27.04 | 65.06 | 1013.33 | 52.37 | 439.84 |
6.42 | 35.57 | 1025.58 | 79.63 | 485.86 |
17.04 | 40.12 | 1011.81 | 83.14 | 458.1 |
10.79 | 39.82 | 1012.89 | 88.25 | 479.92 |
20.41 | 56.03 | 1019.94 | 55.85 | 458.29 |
7.36 | 40.07 | 1017.29 | 52.55 | 489.45 |
28.08 | 73.42 | 1012.17 | 62.74 | 434.0 |
24.74 | 69.13 | 1010.69 | 90.08 | 431.24 |
28.32 | 47.93 | 1003.26 | 54.5 | 439.5 |
16.71 | 40.56 | 1019.48 | 49.88 | 467.46 |
30.7 | 71.58 | 1010.0 | 48.96 | 429.27 |
18.42 | 58.95 | 1016.95 | 86.77 | 452.1 |
10.62 | 42.02 | 999.83 | 96.66 | 472.41 |
22.18 | 69.05 | 1002.75 | 70.84 | 442.14 |
22.38 | 49.3 | 1003.56 | 83.83 | 441.0 |
13.94 | 41.58 | 1020.76 | 68.22 | 463.07 |
21.24 | 60.84 | 1017.99 | 82.22 | 445.71 |
6.76 | 39.81 | 1017.11 | 87.9 | 483.16 |
26.73 | 68.84 | 1010.75 | 66.83 | 440.45 |
7.24 | 38.06 | 1020.6 | 85.36 | 481.83 |
10.84 | 40.62 | 1015.53 | 60.9 | 467.6 |
19.32 | 52.84 | 1004.29 | 83.51 | 450.88 |
29.0 | 69.13 | 1001.22 | 52.96 | 425.5 |
23.38 | 54.42 | 1013.95 | 73.02 | 451.87 |
31.17 | 69.51 | 1010.51 | 43.11 | 428.94 |
26.17 | 48.6 | 1002.59 | 61.41 | 439.86 |
30.9 | 73.42 | 1011.21 | 65.32 | 433.44 |
24.92 | 73.68 | 1015.12 | 93.68 | 438.23 |
32.77 | 71.32 | 1007.68 | 42.39 | 436.95 |
14.37 | 40.56 | 1021.67 | 68.18 | 470.19 |
8.36 | 40.22 | 1011.6 | 89.18 | 484.66 |
31.45 | 68.27 | 1007.56 | 64.79 | 430.81 |
31.6 | 73.17 | 1010.05 | 43.48 | 433.37 |
17.9 | 48.98 | 1014.17 | 80.4 | 453.02 |
20.35 | 50.9 | 1012.6 | 72.43 | 453.5 |
16.21 | 41.23 | 995.88 | 80.0 | 463.09 |
19.36 | 44.6 | 1016.25 | 45.65 | 464.56 |
21.04 | 65.46 | 1017.22 | 63.02 | 452.12 |
14.05 | 40.69 | 1015.66 | 74.39 | 470.9 |
23.48 | 64.15 | 1021.08 | 57.77 | 450.89 |
21.91 | 63.76 | 1009.85 | 76.8 | 445.04 |
24.42 | 63.07 | 1011.49 | 67.39 | 444.72 |
14.26 | 40.92 | 1022.07 | 73.96 | 460.38 |
21.38 | 58.33 | 1013.05 | 72.75 | 446.8 |
15.71 | 44.06 | 1018.34 | 71.69 | 465.05 |
5.78 | 40.62 | 1016.55 | 84.98 | 484.13 |
6.77 | 39.81 | 1017.01 | 87.68 | 488.27 |
23.84 | 49.21 | 1013.85 | 50.36 | 447.09 |
21.17 | 58.16 | 1017.16 | 68.11 | 452.02 |
19.94 | 58.96 | 1014.16 | 66.27 | 455.55 |
8.73 | 41.92 | 1029.41 | 89.72 | 480.99 |
16.39 | 41.67 | 1012.96 | 61.07 | 467.68 |
We will do the following steps in the sequel.
- Step 5: Data Preparation
- Step 6: Data Modeling
- Step 7: Tuning and Evaluation
- Step 8: Deployment
Datasource References:
- Pinar Tüfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems, Volume 60, September 2014, Pages 126-140, ISSN 0142-0615, Web Link
- Heysem Kaya, Pinar Tüfekci , Sadik Fikret Gürgen: Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE 2012, pp. 13-18 (Mar. 2012, Dubai) Web Link
Wiki Clickstream Analysis
** Dataset: 3.2 billion requests collected during the month of February 2015 grouped by (src, dest) **
** Source: https://datahub.io/dataset/wikipedia-clickstream/ **
This notebook requires Spark 1.6+.
This notebook was originally a data analysis workflow developed with Databricks Community Edition, a free version of Databricks designed for learning Apache Spark.
Here we elucidate the original python notebook (also linked here) used in the talk by Michael Armbrust at Spark Summit East February 2016 shared from https://twitter.com/michaelarmbrust/status/699969850475737088 (watch later)
Data set
The data we are exploring in this lab is the February 2015 English Wikipedia Clickstream data, and it is available here: http://datahub.io/dataset/wikipedia-clickstream/resource/be85cc68-d1e6-4134-804a-fd36b94dbb82.
According to Wikimedia:
"The data contains counts of (referer, resource) pairs extracted from the request logs of English Wikipedia. When a client requests a resource by following a link or performing a search, the URI of the webpage that linked to the resource is included with the request in an HTTP header called the "referer". This data captures 22 million (referer, resource) pairs from a total of 3.2 billion requests collected during the month of February 2015."
The data is approximately 1.2GB and it is hosted in the following Databricks file: /databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed
display(dbutils.fs.ls("/databricks-datasets/wikipedia-datasets/"))
path | name | size |
---|---|---|
dbfs:/databricks-datasets/wikipedia-datasets/data-001/ | data-001/ | 0.0 |
Let us first understand this Wikimedia data set a bit more
Let's read the datahub-hosted link https://datahub.io/dataset/wikipedia-clickstream in the embedding below. Also click the blog by Ellery Wulczyn, Data Scientist at The Wikimedia Foundation, to better understand how the data was generated (remember to Right-Click and use -> and <- if navigating within the embedded html frame below).
Run the next two cells for some housekeeping.
if (org.apache.spark.BuildInfo.sparkBranch < "1.6") sys.error("Attach this notebook to a cluster running Spark 1.6+")
val data = sc.textFile("dbfs:///databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed")
data: org.apache.spark.rdd.RDD[String] = dbfs:///databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed MapPartitionsRDD[240] at textFile at command-685894176423189:1
data.take(5).foreach(println)
prev_id curr_id n prev_title curr_title type
3632887 121 other-google !! other
3632887 93 other-wikipedia !! other
3632887 46 other-empty !! other
3632887 10 other-other !! other
data.take(2)
res4: Array[String] = Array(prev_id curr_id n prev_title curr_title type, " 3632887 121 other-google !! other")
- The first line looks like a header
- The second line (separated from the first by ",") contains data organized according to the header, i.e.,
prev_id
= 3632887,curr_id
= 121", and so on.
Actually, here is the meaning of each column:
-
prev_id
: if the referer does not correspond to an article in the main namespace of English Wikipedia, this value will be empty. Otherwise, it contains the unique MediaWiki page ID of the article corresponding to the referer i.e. the previous article the client was on -
curr_id
: the MediaWiki unique page ID of the article the client requested -
prev_title
: the result of mapping the referer URL to the fixed set of values described below -
curr_title
: the title of the article the client requested -
n
: the number of occurrences of the (referer, resource) pair -
type
- "link" if the referer and request are both articles and the referer links to the request
- "redlink" if the referer is an article and links to the request, but the request is not in the production enwiki.page table
- "other" if the referer and request are both articles but the referer does not link to the request. This can happen when clients search or spoof their refer
Referers were mapped to a fixed set of values corresponding to internal traffic or external traffic from one of the top 5 global traffic sources to English Wikipedia, based on this scheme:
- an article in the main namespace of English Wikipedia -> the article title
- any Wikipedia page that is not in the main namespace of English Wikipedia ->
other-wikipedia
- an empty referer ->
other-empty
- a page from any other Wikimedia project ->
other-internal
- Google ->
other-google
- Yahoo ->
other-yahoo
- Bing ->
other-bing
- Facebook ->
other-facebook
- Twitter ->
other-twitter
- anything else ->
other-other
In the second line of the file above, we can see there were 121 clicks from Google to the Wikipedia page on "!!" (double exclamation marks). People search for everything!
- prev_id = (nothing)
- curr_id = 3632887 --> (Wikipedia page ID)
- n = 121 (People clicked from Google to this page 121 times in this month.)
- prev_title = other-google (This data record is for referals from Google.)
- curr_title = !! (This Wikipedia page is about a double exclamation mark.)
- type = other
Create a DataFrame from this CSV
- From the next Spark release - 2.0, CSV as a datasource will be part of Spark's standard release. But, we are using Spark 1.6
// Load the raw dataset stored as a CSV file
val clickstream = sqlContext
.read
.format("com.databricks.spark.csv")
.options(Map("header" -> "true", "delimiter" -> "\t", "mode" -> "PERMISSIVE", "inferSchema" -> "true"))
.load("dbfs:///databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-uncompressed")
clickstream: org.apache.spark.sql.DataFrame = [prev_id: int, curr_id: int ... 4 more fields]
clickstream.printSchema
root
|-- prev_id: integer (nullable = true)
|-- curr_id: integer (nullable = true)
|-- n: integer (nullable = true)
|-- prev_title: string (nullable = true)
|-- curr_title: string (nullable = true)
|-- type: string (nullable = true)
display(clickstream)
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
null | 3632887.0 | 121.0 | other-google | !! | other |
null | 3632887.0 | 93.0 | other-wikipedia | !! | other |
null | 3632887.0 | 46.0 | other-empty | !! | other |
null | 3632887.0 | 10.0 | other-other | !! | other |
64486.0 | 3632887.0 | 11.0 | !_(disambiguation) | !! | other |
2061699.0 | 2556962.0 | 19.0 | Louden_Up_Now | !!!_(album) | link |
null | 2556962.0 | 25.0 | other-empty | !!!_(album) | other |
null | 2556962.0 | 16.0 | other-google | !!!_(album) | other |
null | 2556962.0 | 44.0 | other-wikipedia | !!!_(album) | other |
64486.0 | 2556962.0 | 15.0 | !_(disambiguation) | !!!_(album) | link |
600744.0 | 2556962.0 | 297.0 | !!! | !!!_(album) | link |
null | 6893310.0 | 11.0 | other-empty | !Hero_(album) | other |
1921683.0 | 6893310.0 | 26.0 | !Hero | !Hero_(album) | link |
null | 6893310.0 | 16.0 | other-wikipedia | !Hero_(album) | other |
null | 6893310.0 | 23.0 | other-google | !Hero_(album) | other |
8127304.0 | 2.2602473e7 | 16.0 | Jericho_Rosales | !Oka_Tokat | link |
3.5978874e7 | 2.2602473e7 | 20.0 | List_of_telenovelas_of_ABS-CBN | !Oka_Tokat | link |
null | 2.2602473e7 | 57.0 | other-google | !Oka_Tokat | other |
null | 2.2602473e7 | 12.0 | other-wikipedia | !Oka_Tokat | other |
null | 2.2602473e7 | 23.0 | other-empty | !Oka_Tokat | other |
7360687.0 | 2.2602473e7 | 10.0 | Rica_Peralejo | !Oka_Tokat | link |
3.7104582e7 | 2.2602473e7 | 11.0 | Jeepney_TV | !Oka_Tokat | link |
3.437659e7 | 2.2602473e7 | 22.0 | Oka_Tokat_(2012_TV_series) | !Oka_Tokat | link |
null | 6810768.0 | 20.0 | other-wikipedia | !T.O.O.H.! | other |
null | 6810768.0 | 81.0 | other-google | !T.O.O.H.! | other |
3.1976181e7 | 6810768.0 | 51.0 | List_of_death_metal_bands,_!–K | !T.O.O.H.! | link |
null | 6810768.0 | 35.0 | other-empty | !T.O.O.H.! | other |
null | 3243047.0 | 21.0 | other-empty | !_(album) | other |
1337475.0 | 3243047.0 | 208.0 | The_Dismemberment_Plan | !_(album) | link |
3284285.0 | 3243047.0 | 78.0 | The_Dismemberment_Plan_Is_Terrified | !_(album) | link |
null | 3243047.0 | 28.0 | other-wikipedia | !_(album) | other |
2098292.0 | 899480.0 | 58.0 | United_States_military_award_devices | "A"_Device | link |
194844.0 | 899480.0 | 15.0 | USS_Yorktown_(CV-5) | "A"_Device | link |
null | 899480.0 | 17.0 | other-google | "A"_Device | other |
null | 899480.0 | 13.0 | other-empty | "A"_Device | other |
null | 899480.0 | 29.0 | other-wikipedia | "A"_Device | other |
878246.0 | 899480.0 | 11.0 | American_Defense_Service_Medal | "A"_Device | link |
855901.0 | 899480.0 | 24.0 | Overseas_Service_Ribbon | "A"_Device | other |
206427.0 | 899480.0 | 33.0 | USS_Ranger_(CV-4) | "A"_Device | link |
773691.0 | 899480.0 | 47.0 | Antarctica_Service_Medal | "A"_Device | link |
2301720.0 | 1282996.0 | 43.0 | Kinsey_Millhone | "A"_Is_for_Alibi | link |
null | 1282996.0 | 45.0 | other-empty | "A"_Is_for_Alibi | other |
null | 1282996.0 | 10.0 | other-yahoo | "A"_Is_for_Alibi | other |
470006.0 | 1282996.0 | 207.0 | Sue_Grafton | "A"_Is_for_Alibi | link |
null | 1282996.0 | 18.0 | other-other | "A"_Is_for_Alibi | other |
null | 1282996.0 | 31.0 | other-wikipedia | "A"_Is_for_Alibi | other |
null | 1282996.0 | 272.0 | other-google | "A"_Is_for_Alibi | other |
3.9606873e7 | 1282996.0 | 10.0 | "W"_Is_for_Wasted | "A"_Is_for_Alibi | link |
2.6181056e7 | 9003666.0 | 17.0 | And | "And"_theory_of_conservatism | link |
null | 9003666.0 | 109.0 | other-wikipedia | "And"_theory_of_conservatism | other |
null | 9003666.0 | 18.0 | other-google | "And"_theory_of_conservatism | other |
null | 3.9072529e7 | 49.0 | other-google | "Bassy"_Bob_Brockmann | other |
null | 3.9072529e7 | 10.0 | other-other | "Bassy"_Bob_Brockmann | other |
1.1273993e7 | null | 15.0 | Colt_1851_Navy_Revolver | "Bigfoot"_Wallace | redlink |
1.2571133e7 | 2.5033979e7 | 12.0 | "V"_Is_for_Vagina | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | link |
113468.0 | 2.5033979e7 | 24.0 | The_Mission | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | link |
1.4096078e7 | 2.5033979e7 | 15.0 | Trent_Reznor_discography | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
null | 2.5033979e7 | 42.0 | other-empty | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
1375614.0 | 2.5033979e7 | 15.0 | Tapeworm_(band) | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
159547.0 | 2.5033979e7 | 25.0 | Milla_Jovovich | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
2.8639397e7 | 2.5033979e7 | 73.0 | Sound_into_Blood_into_Wine | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | link |
1893465.0 | 2.5033979e7 | 30.0 | Carina_Round | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
3.3622887e7 | 2.5033979e7 | 10.0 | Conditions_of_My_Parole | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | link |
147692.0 | 2.5033979e7 | 25.0 | Tim_Alexander | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
4619790.0 | 2.5033979e7 | 593.0 | Puscifer | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | link |
null | 2.5033979e7 | 36.0 | other-wikipedia | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
null | 2.5033979e7 | 93.0 | other-google | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | other |
69161.0 | null | 51.0 | Tết | "Chúc_Mừng_Năm_Mới"_or_best_wishes_for_the_new_year. | redlink |
1438509.0 | null | 14.0 | List_of_Old_West_gunfighters | "Cool_Hand_Conor"_O'Neill | redlink |
null | 331586.0 | 6820.0 | other-google | "Crocodile"_Dundee | other |
null | 331586.0 | 20.0 | other-twitter | "Crocodile"_Dundee | other |
null | 331586.0 | 781.0 | other-wikipedia | "Crocodile"_Dundee | other |
489033.0 | 331586.0 | 59.0 | List_of_Academy_Awards_ceremonies | "Crocodile"_Dundee | link |
1.0040606e7 | 331586.0 | 38.0 | List_of_Australian_films | "Crocodile"_Dundee | other |
2564144.0 | 331586.0 | 154.0 | Crocodile_Dundee_in_Los_Angeles | "Crocodile"_Dundee | link |
6127928.0 | 331586.0 | 14.0 | Bobby_Alto | "Crocodile"_Dundee | other |
152171.0 | 331586.0 | 13.0 | Baz_Luhrmann | "Crocodile"_Dundee | link |
8078282.0 | 331586.0 | 348.0 | Australia_(2008_film) | "Crocodile"_Dundee | link |
3.7386608e7 | 331586.0 | 66.0 | 2015_in_film | "Crocodile"_Dundee | link |
34557.0 | 331586.0 | 12.0 | 1980s | "Crocodile"_Dundee | other |
1118809.0 | 331586.0 | 297.0 | "Crocodile"_Dundee_II | "Crocodile"_Dundee | link |
7033.0 | 331586.0 | 52.0 | Caitlin_Clarke | "Crocodile"_Dundee | other |
72766.0 | 331586.0 | 31.0 | Dundee_(disambiguation) | "Crocodile"_Dundee | other |
171612.0 | 331586.0 | 221.0 | 1986_in_film | "Crocodile"_Dundee | link |
2376452.0 | 331586.0 | 34.0 | Australian_New_Wave | "Crocodile"_Dundee | other |
1248074.0 | 331586.0 | 60.0 | David_Gulpilil | "Crocodile"_Dundee | link |
865241.0 | 331586.0 | 10.0 | Crocodile_Hunter | "Crocodile"_Dundee | other |
196020.0 | 331586.0 | 12.0 | Crocodilia | "Crocodile"_Dundee | link |
643649.0 | 331586.0 | 85.0 | List_of_most_watched_television_broadcasts | "Crocodile"_Dundee | link |
8306521.0 | 331586.0 | 13.0 | Anne_Carlisle | "Crocodile"_Dundee | other |
1448969.0 | 331586.0 | 18.0 | Bart_vs._Australia | "Crocodile"_Dundee | other |
70209.0 | 331586.0 | 153.0 | Cinema_of_Australia | "Crocodile"_Dundee | link |
4008173.0 | 331586.0 | 18.0 | 59th_Academy_Awards | "Crocodile"_Dundee | link |
331460.0 | 331586.0 | 17.0 | Bowie_knife | "Crocodile"_Dundee | link |
37882.0 | 331586.0 | 21.0 | Crocodile | "Crocodile"_Dundee | other |
4.4789934e7 | 331586.0 | 1283.0 | Deaths_in_2015 | "Crocodile"_Dundee | link |
2.2344579e7 | 331586.0 | 30.0 | Academy_Award_for_Best_Original_Screenplay | "Crocodile"_Dundee | link |
1872502.0 | 331586.0 | 10.0 | Boy-Scoutz_'n_the_Hood | "Crocodile"_Dundee | other |
5644.0 | 331586.0 | 13.0 | Comedy_film | "Crocodile"_Dundee | link |
458340.0 | 331586.0 | 10.0 | List_of_films_set_in_New_York_City | "Crocodile"_Dundee | other |
905528.0 | 331586.0 | 20.0 | List_of_films_set_in_Australia | "Crocodile"_Dundee | other |
1.9924718e7 | 331586.0 | 12.0 | Hello_Kitty's_Furry_Tale_Theater | "Crocodile"_Dundee | other |
1422400.0 | 331586.0 | 147.0 | Linda_Kozlowski | "Crocodile"_Dundee | other |
1.0449888e7 | 331586.0 | 28.0 | List_of_Paramount_Pictures_films | "Crocodile"_Dundee | link |
1.1730578e7 | 331586.0 | 20.0 | List_of_American_films_of_1986 | "Crocodile"_Dundee | other |
2321513.0 | 331586.0 | 45.0 | John_Meillon | "Crocodile"_Dundee | link |
null | 331586.0 | 910.0 | other-empty | "Crocodile"_Dundee | other |
238004.0 | 331586.0 | 15.0 | The_Rescuers_Down_Under | "Crocodile"_Dundee | other |
483895.0 | 331586.0 | 13.0 | Young_Einstein | "Crocodile"_Dundee | link |
6534317.0 | 331586.0 | 21.0 | The_Man_from_Snowy_River_(1982_film) | "Crocodile"_Dundee | other |
61066.0 | 331586.0 | 11.0 | Skippy_the_Bush_Kangaroo | "Crocodile"_Dundee | link |
1.0670306e7 | 331586.0 | 83.0 | Michael_"Crocodile"_Dundee | "Crocodile"_Dundee | link |
693780.0 | 331586.0 | 1222.0 | Paul_Hogan | "Crocodile"_Dundee | link |
566405.0 | 331586.0 | 26.0 | Saltwater_crocodile | "Crocodile"_Dundee | other |
null | 331586.0 | 274.0 | other-yahoo | "Crocodile"_Dundee | other |
2.081381e7 | 331586.0 | 13.0 | Peter_Best_(composer) | "Crocodile"_Dundee | other |
1260945.0 | 331586.0 | 28.0 | Reginald_VelJohnson | "Crocodile"_Dundee | other |
1065264.0 | 331586.0 | 12.0 | Plaza_Hotel | "Crocodile"_Dundee | link |
4.0156059e7 | 331586.0 | 30.0 | Live_It_Up_(Mental_As_Anything_song) | "Crocodile"_Dundee | link |
1.5580374e7 | 331586.0 | 289.0 | Main_Page | "Crocodile"_Dundee | other |
1264623.0 | 331586.0 | 14.0 | Mental_As_Anything | "Crocodile"_Dundee | link |
2.246655e7 | 331586.0 | 16.0 | Paul_Greco | "Crocodile"_Dundee | other |
22918.0 | 331586.0 | 140.0 | Paramount_Pictures | "Crocodile"_Dundee | link |
1352817.0 | 331586.0 | 31.0 | Rodney_Ansell | "Crocodile"_Dundee | link |
null | 331586.0 | 308.0 | other-other | "Crocodile"_Dundee | other |
6873934.0 | 331586.0 | 11.0 | Steve_Irwin | "Crocodile"_Dundee | other |
null | 331586.0 | 417.0 | other-bing | "Crocodile"_Dundee | other |
88609.0 | 331586.0 | 38.0 | Star_Trek_IV:_The_Voyage_Home | "Crocodile"_Dundee | link |
4464034.0 | 331586.0 | 1690.0 | Terry_Gill | "Crocodile"_Dundee | link |
4148842.0 | 331586.0 | 17.0 | The_Cowboy_Way_(film) | "Crocodile"_Dundee | other |
2747201.0 | 331586.0 | 33.0 | Shrimp_on_the_barbie | "Crocodile"_Dundee | other |
885480.0 | 331586.0 | 20.0 | The_Adventures_of_Bayou_Billy | "Crocodile"_Dundee | other |
470006.0 | 1.6250593e7 | 24.0 | Sue_Grafton | "D"_Is_for_Deadbeat | link |
1.6250549e7 | 1.6250593e7 | 31.0 | "C"_Is_for_Corpse | "D"_Is_for_Deadbeat | link |
null | 1.6250593e7 | 21.0 | other-google | "D"_Is_for_Deadbeat | other |
2301720.0 | 1.6250593e7 | 10.0 | Kinsey_Millhone | "D"_Is_for_Deadbeat | link |
null | 1.6250593e7 | 15.0 | other-empty | "D"_Is_for_Deadbeat | other |
4619790.0 | null | 47.0 | Puscifer | "D"_Is_for_Dubby_–_The_Lustmord_Dub_Mixes | redlink |
1.6079543e7 | null | 43.0 | "V"_Is_for_Viagra._The_Remixes | "D"_Is_for_Dubby_–_The_Lustmord_Dub_Mixes | redlink |
2.5033979e7 | null | 18.0 | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | "D"_Is_for_Dubby_–_The_Lustmord_Dub_Mixes | redlink |
238341.0 | 3.9304968e7 | 44.0 | David_Hockney | "David_Hockney:_A_Bigger_Picture"_in_Bilbao | link |
1728819.0 | 3.9304968e7 | 17.0 | Brian_Sewell | "David_Hockney:_A_Bigger_Picture"_in_Bilbao | link |
null | 3.9304968e7 | 108.0 | other-google | "David_Hockney:_A_Bigger_Picture"_in_Bilbao | other |
2548364.0 | 1896643.0 | 25.0 | Dutch_Mantel | "Dr._Death"_Steve_Williams | link |
1910311.0 | 1896643.0 | 34.0 | Clash_of_the_Champions | "Dr._Death"_Steve_Williams | link |
1451758.0 | 1896643.0 | 33.0 | Alexey_Ignashov | "Dr._Death"_Steve_Williams | link |
1983348.0 | 1896643.0 | 15.0 | Dan_Spivey | "Dr._Death"_Steve_Williams | link |
1691016.0 | 1896643.0 | 31.0 | Kevin_Sullivan_(wrestler) | "Dr._Death"_Steve_Williams | link |
1.6409926e7 | 1896643.0 | 19.0 | Learning_the_Ropes | "Dr._Death"_Steve_Williams | link |
1002441.0 | 1896643.0 | 238.0 | Jim_Ross | "Dr._Death"_Steve_Williams | link |
2004376.0 | 1896643.0 | 12.0 | List_of_NWA_World_Tag_Team_Champions | "Dr._Death"_Steve_Williams | link |
306115.0 | 1896643.0 | 27.0 | List_of_Extreme_Championship_Wrestling_alumni | "Dr._Death"_Steve_Williams | link |
2.4445746e7 | 1896643.0 | 20.0 | List_of_Legends_of_Wrestling_characters | "Dr._Death"_Steve_Williams | link |
1441354.0 | 1896643.0 | 19.0 | Jushin_Thunder_Liger | "Dr._Death"_Steve_Williams | link |
1902117.0 | 1896643.0 | 24.0 | List_of_World_Championship_Wrestling_alumni | "Dr._Death"_Steve_Williams | link |
3.9275628e7 | 1896643.0 | 38.0 | List_of_professional_wrestlers_by_MMA_record | "Dr._Death"_Steve_Williams | link |
3.3244435e7 | 1896643.0 | 72.0 | List_of_Wrestling_Observer_Newsletter_awards | "Dr._Death"_Steve_Williams | link |
null | 1896643.0 | 1227.0 | other-google | "Dr._Death"_Steve_Williams | other |
null | 1896643.0 | 226.0 | other-wikipedia | "Dr._Death"_Steve_Williams | other |
307526.0 | 1896643.0 | 24.0 | Raven_(wrestler) | "Dr._Death"_Steve_Williams | link |
1871528.0 | 1896643.0 | 75.0 | Mike_Polchlopek | "Dr._Death"_Steve_Williams | link |
1235858.0 | 1896643.0 | 31.0 | Ron_Simmons | "Dr._Death"_Steve_Williams | link |
3730230.0 | 1896643.0 | 46.0 | Powerslam | "Dr._Death"_Steve_Williams | link |
1779766.0 | 1896643.0 | 21.0 | Nikita_Koloff | "Dr._Death"_Steve_Williams | link |
9044129.0 | 1896643.0 | 10.0 | Salman_Hashimikov | "Dr._Death"_Steve_Williams | link |
1854348.0 | 1896643.0 | 36.0 | Michael_Hayes_(wrestler) | "Dr._Death"_Steve_Williams | link |
690045.0 | 1896643.0 | 21.0 | Sid_Eudy | "Dr._Death"_Steve_Williams | link |
1984531.0 | 1896643.0 | 30.0 | Skandor_Akbar | "Dr._Death"_Steve_Williams | link |
844984.0 | 1896643.0 | 23.0 | Ring_name | "Dr._Death"_Steve_Williams | link |
3.086496e7 | 1896643.0 | 46.0 | Mike_Rotunda | "Dr._Death"_Steve_Williams | link |
1887139.0 | 1896643.0 | 15.0 | The_Blade_Runners | "Dr._Death"_Steve_Williams | link |
1.7599211e7 | 1896643.0 | 17.0 | Starrcade_(1987) | "Dr._Death"_Steve_Williams | link |
2143297.0 | 1896643.0 | 42.0 | Triple_Crown_Heavyweight_Championship | "Dr._Death"_Steve_Williams | link |
1873599.0 | 1896643.0 | 104.0 | Terry_Gordy | "Dr._Death"_Steve_Williams | link |
472883.0 | 1896643.0 | 47.0 | Universal_Wrestling_Federation_(Bill_Watts) | "Dr._Death"_Steve_Williams | link |
null | 1896643.0 | 190.0 | other-empty | "Dr._Death"_Steve_Williams | other |
1848273.0 | 1896643.0 | 39.0 | Vampiro | "Dr._Death"_Steve_Williams | link |
579700.0 | 1896643.0 | 245.0 | Steve_Williams | "Dr._Death"_Steve_Williams | link |
1.326827e7 | 1896643.0 | 17.0 | The_Miracle_Violence_Connection | "Dr._Death"_Steve_Williams | link |
2100406.0 | 1896643.0 | 38.0 | The_Bushwhackers | "Dr._Death"_Steve_Williams | link |
2267673.0 | 1896643.0 | 45.0 | Wrestling_Observer_Newsletter_Hall_of_Fame | "Dr._Death"_Steve_Williams | link |
2001780.0 | 1896643.0 | 10.0 | Carl_Ouellet | "Dr._Death"_Steve_Williams | link |
1889491.0 | 1896643.0 | 128.0 | Dr._Death | "Dr._Death"_Steve_Williams | link |
2748007.0 | 1896643.0 | 28.0 | Bill_Watts | "Dr._Death"_Steve_Williams | link |
591757.0 | 1896643.0 | 33.0 | Big_Boss_Man_(wrestler) | "Dr._Death"_Steve_Williams | link |
1912776.0 | 1896643.0 | 12.0 | Chi-Town_Rumble | "Dr._Death"_Steve_Williams | link |
1027406.0 | 1896643.0 | 18.0 | Big_Van_Vader | "Dr._Death"_Steve_Williams | link |
1690819.0 | 1896643.0 | 11.0 | Barry_Windham | "Dr._Death"_Steve_Williams | link |
2024278.0 | 1896643.0 | 17.0 | Kenta_Kobashi | "Dr._Death"_Steve_Williams | link |
1931006.0 | 1896643.0 | 44.0 | John_Laurinaitis | "Dr._Death"_Steve_Williams | link |
272874.0 | 1896643.0 | 24.0 | Lex_Luger | "Dr._Death"_Steve_Williams | link |
3864676.0 | 1896643.0 | 10.0 | Gary_Albright | "Dr._Death"_Steve_Williams | link |
3.0654736e7 | 1896643.0 | 17.0 | List_of_Pro_Wrestling_Illustrated_awards | "Dr._Death"_Steve_Williams | link |
1911262.0 | 1896643.0 | 11.0 | Halloween_Havoc | "Dr._Death"_Steve_Williams | link |
795587.0 | 1896643.0 | 105.0 | Jerry_Only | "Dr._Death"_Steve_Williams | link |
1785504.0 | 1896643.0 | 16.0 | Ed_Ferrara | "Dr._Death"_Steve_Williams | link |
2.1771811e7 | 1896643.0 | 51.0 | List_of_WWE_alumni_(S–Z) | "Dr._Death"_Steve_Williams | link |
1985456.0 | 1896643.0 | 12.0 | List_of_WCW_World_Tag_Team_Champions | "Dr._Death"_Steve_Williams | link |
null | 1896643.0 | 54.0 | other-other | "Dr._Death"_Steve_Williams | other |
null | 1896643.0 | 70.0 | other-yahoo | "Dr._Death"_Steve_Williams | other |
1683451.0 | 1896643.0 | 10.0 | Paul_Orndorff | "Dr._Death"_Steve_Williams | link |
1766555.0 | 1896643.0 | 34.0 | One_Man_Gang | "Dr._Death"_Steve_Williams | link |
1940350.0 | 1896643.0 | 12.0 | Powerbomb | "Dr._Death"_Steve_Williams | other |
993933.0 | 1896643.0 | 17.0 | Rikishi_(wrestler) | "Dr._Death"_Steve_Williams | link |
1286898.0 | 1896643.0 | 19.0 | Mitsuharu_Misawa | "Dr._Death"_Steve_Williams | link |
1840022.0 | 1896643.0 | 36.0 | Pro_Wrestling_Illustrated | "Dr._Death"_Steve_Williams | link |
4167276.0 | 1896643.0 | 27.0 | Serena_Deeb | "Dr._Death"_Steve_Williams | link |
674611.0 | 1896643.0 | 18.0 | Tazz | "Dr._Death"_Steve_Williams | link |
471752.0 | 1896643.0 | 19.0 | World_Class_Championship_Wrestling | "Dr._Death"_Steve_Williams | link |
null | 1896643.0 | 75.0 | other-bing | "Dr._Death"_Steve_Williams | other |
2652496.0 | 1896643.0 | 12.0 | Virtual_Pro_Wrestling_2:_Ōdō_Keishō | "Dr._Death"_Steve_Williams | link |
882433.0 | 1896643.0 | 14.0 | Theodore_Long | "Dr._Death"_Steve_Williams | link |
1.7935523e7 | 1896643.0 | 17.0 | Starrcade_(1999) | "Dr._Death"_Steve_Williams | link |
1896801.0 | 1896643.0 | 35.0 | The_Varsity_Club | "Dr._Death"_Steve_Williams | link |
3202675.0 | 1896643.0 | 255.0 | WWF_Brawl_for_All | "Dr._Death"_Steve_Williams | link |
1513139.0 | 1896643.0 | 12.0 | Starrcade | "Dr._Death"_Steve_Williams | link |
5978726.0 | 1896643.0 | 13.0 | The_Great_American_Bash | "Dr._Death"_Steve_Williams | link |
3209327.0 | 1896643.0 | 33.0 | Universal_Wrestling_Federation_(Herb_Abrams) | "Dr._Death"_Steve_Williams | link |
470006.0 | 1.6251903e7 | 26.0 | Sue_Grafton | "E"_Is_for_Evidence | link |
null | 1.6251903e7 | 10.0 | other-wikipedia | "E"_Is_for_Evidence | other |
null | 1.6251903e7 | 26.0 | other-google | "E"_Is_for_Evidence | other |
1.6250593e7 | 1.6251903e7 | 27.0 | "D"_Is_for_Deadbeat | "E"_Is_for_Evidence | link |
2301720.0 | 1.6251903e7 | 10.0 | Kinsey_Millhone | "E"_Is_for_Evidence | link |
3.9737124e7 | null | 23.0 | Yoon_So-hee | EXO_Music_Video_Drama | redlink |
2.9668256e7 | null | 24.0 | Separation_(statistics) | "Firth"_logistic_regression | redlink |
null | 2.7653497e7 | 12.0 | other-empty | "Five_stars_rise_in_the_East"_arm_protector | other |
null | 2.7653497e7 | 32.0 | other-wikipedia | "Five_stars_rise_in_the_East"_arm_protector | other |
3.3109636e7 | 2.7653497e7 | 17.0 | List_of_Chinese_cultural_relics_forbidden_to_be_exhibited_abroad | "Five_stars_rise_in_the_East"_arm_protector | other |
3855385.0 | 4.4783572e7 | 10.0 | Albanian_Subversion | "Free_Albania"_National_Committee | link |
1733948.0 | 4.4783572e7 | 12.0 | Midhat_Frashëri | "Free_Albania"_National_Committee | link |
null | 4.4783572e7 | 13.0 | other-google | "Free_Albania"_National_Committee | other |
1696824.0 | null | 20.0 | Kirkwood,_Atlanta | "Future_(rapper)"_on_@Wikipedia:_https://en.wikipedia.org/wiki/Future_(rapper) | redlink |
null | 3.7732991e7 | 14.0 | other-google | "Good_Day,_Fellow!"_"Axe_Handle!" | other |
null | 3.7732991e7 | 16.0 | other-wikipedia | "Good_Day,_Fellow!"_"Axe_Handle!" | other |
null | 8617839.0 | 15.0 | other-wikipedia | Good_Luck,_Father_Ted | other |
null | 8617839.0 | 64.0 | other-google | Good_Luck,_Father_Ted | other |
2.6941571e7 | 8617839.0 | 16.0 | List_of_Father_Ted_characters | Good_Luck,_Father_Ted | link |
11313.0 | 8617839.0 | 10.0 | Father_Ted | Good_Luck,_Father_Ted | link |
6734598.0 | 8617839.0 | 94.0 | List_of_Father_Ted_episodes | Good_Luck,_Father_Ted | link |
8618299.0 | 8617839.0 | 13.0 | Entertaining_Father_Stone | Good_Luck,_Father_Ted | link |
null | 8617839.0 | 18.0 | other-empty | Good_Luck,_Father_Ted | other |
1.6203597e7 | 1.6204072e7 | 23.0 | "G"_Is_for_Gumshoe | "H"_Is_for_Homicide | link |
null | 1.6204072e7 | 24.0 | other-google | "H"_Is_for_Homicide | other |
2301720.0 | 1.6204072e7 | 11.0 | Kinsey_Millhone | "H"_Is_for_Homicide | link |
470006.0 | 1.6204072e7 | 26.0 | Sue_Grafton | "H"_Is_for_Homicide | link |
3.8164596e7 | 1261557.0 | 13.0 | Where_Are_We_Now? | Heroes | link |
null | 1261557.0 | 38.0 | other-bing | Heroes | other |
1261548.0 | 1261557.0 | 59.0 | Station_to_Station | Heroes | link |
809108.0 | 1261557.0 | 61.0 | The_Thin_White_Duke | Heroes | link |
3041018.0 | 1261557.0 | 395.0 | Stage_(David_Bowie_album) | Heroes | link |
77767.0 | 1261557.0 | 23.0 | The_Rise_and_Fall_of_Ziggy_Stardust_and_the_Spiders_from_Mars | Heroes | link |
4231979.0 | 1261557.0 | 29.0 | V-2_Schneider | Heroes | link |
1261545.0 | 1261557.0 | 17.0 | Young_Americans_(album) | Heroes | link |
1448584.0 | 1261557.0 | 14.0 | Symphony_No._1_(Glass) | Heroes | link |
null | 1261557.0 | 30.0 | other-other | Heroes | other |
954203.0 | 1261557.0 | 11.0 | Neu!_'75 | Heroes | link |
24540.0 | 1261557.0 | 10.0 | Philip_Glass | Heroes | link |
1.5580374e7 | 1261557.0 | 40.0 | Main_Page | Heroes | other |
4232032.0 | 1261557.0 | 16.0 | Sense_of_Doubt | Heroes | link |
286992.0 | 1261557.0 | 12.0 | Oblique_Strategies | Heroes | link |
1448572.0 | 1261557.0 | 2625.0 | Low_(David_Bowie_album) | Heroes | link |
2.1222062e7 | 1261557.0 | 17.0 | Brian_Eno | Heroes | link |
8786.0 | 1261557.0 | 2302.0 | David_Bowie | Heroes | link |
331174.0 | 1261557.0 | 1076.0 | David_Bowie_discography | Heroes | link |
195834.0 | 1261557.0 | 18.0 | Aladdin_Sane | Heroes | link |
3371542.0 | 1261557.0 | 30.0 | Beauty_and_the_Beast_(David_Bowie_song) | Heroes | link |
2371832.0 | 1261557.0 | 16.0 | Carlos_Alomar | Heroes | link |
2242811.0 | 1261557.0 | 10.0 | Best_of_Bowie | Heroes | link |
3239642.0 | 1261557.0 | 748.0 | "Heroes"_(David_Bowie_song) | Heroes | link |
2717533.0 | 1261557.0 | 17.0 | Joe_the_Lion | Heroes | link |
1.0631715e7 | 1261557.0 | 12.0 | Fripp_&_Eno | Heroes | link |
1.2439517e7 | 1261557.0 | 13.0 | Hansa_Tonstudio | Heroes | link |
735563.0 | 1261557.0 | 11.0 | Florian_Schneider | Heroes | link |
null | 1261557.0 | 1904.0 | other-google | Heroes | other |
null | 1261557.0 | 423.0 | other-wikipedia | Heroes | other |
null | 1261557.0 | 13.0 | other-twitter | Heroes | other |
525018.0 | 1261557.0 | 15.0 | Hunky_Dory | Heroes | link |
1261524.0 | 1261557.0 | 10.0 | Let's_Dance_(David_Bowie_album) | Heroes | link |
1.1327948e7 | 1261557.0 | 482.0 | Heroes | Heroes | other |
1261561.0 | 1261557.0 | 88.0 | Lodger_(album) | Heroes | link |
4231891.0 | 1261557.0 | 17.0 | Blackout_(David_Bowie_song) | Heroes | link |
160783.0 | 1261557.0 | 25.0 | 1977_in_music | Heroes | link |
1055167.0 | 1261557.0 | 10.0 | Diamond_Dogs | Heroes | link |
700842.0 | 1261557.0 | 11.0 | David_Bowie_(1969_album) | Heroes | link |
null | 1261557.0 | 33.0 | other-yahoo | Heroes | other |
null | 1261557.0 | 410.0 | other-empty | Heroes | other |
3.8164057e7 | 1261557.0 | 150.0 | The_Next_Day | Heroes | link |
751761.0 | 1261557.0 | 26.0 | Tony_Visconti | Heroes | link |
1448522.0 | 1261557.0 | 35.0 | Symphony_No._4_(Glass) | Heroes | link |
1260011.0 | 1261557.0 | 27.0 | The_Idiot_(album) | Heroes | link |
4232134.0 | 1261557.0 | 21.0 | The_Secret_Life_of_Arabia | Heroes | link |
207103.0 | 1261557.0 | 10.0 | Vince_Clarke | Heroes | link |
1261535.0 | 1261557.0 | 11.0 | The_Man_Who_Sold_the_World_(album) | Heroes | link |
3.5060284e7 | 1261557.0 | 31.0 | Robert_Fripp_discography | Heroes | link |
25893.0 | 1261557.0 | 143.0 | Robert_Fripp | Heroes | link |
4232070.0 | 1261557.0 | 12.0 | Neuköln | Heroes | link |
923669.0 | 1261557.0 | 26.0 | Lust_for_Life_(album) | Heroes | link |
4232056.0 | 1261557.0 | 14.0 | Moss_Garden | Heroes | link |
1261565.0 | 1261557.0 | 51.0 | Scary_Monsters_(And_Super_Creeps) | Heroes | link |
3.0871303e7 | 3564374.0 | 65.0 | I_Am_that_I_Am | "I_AM"_Activity | link |
704528.0 | 3564374.0 | 27.0 | Elizabeth_Clare_Prophet | "I_AM"_Activity | other |
2.3085408e7 | 3564374.0 | 76.0 | Legends_of_Mount_Shasta | "I_AM"_Activity | link |
1172131.0 | 3564374.0 | 47.0 | List_of_founders_of_religious_traditions | "I_AM"_Activity | link |
1.3251936e7 | 3564374.0 | 37.0 | Ascended_Master_Teachings | "I_AM"_Activity | other |
425823.0 | 3564374.0 | 16.0 | Alice_Bailey | "I_AM"_Activity | other |
1130388.0 | 3564374.0 | 18.0 | Robert_LeFevre | "I_AM"_Activity | link |
3.1597516e7 | 3564374.0 | 21.0 | St._Germain_(Theosophy) | "I_AM"_Activity | link |
21742.0 | 3564374.0 | 17.0 | New_Age | "I_AM"_Activity | link |
null | 3564374.0 | 369.0 | other-empty | "I_AM"_Activity | other |
2399670.0 | 3564374.0 | 10.0 | The_Aquarian_Gospel_of_Jesus_the_Christ | "I_AM"_Activity | other |
2880213.0 | 3564374.0 | 18.0 | United_States_v._Ballard | "I_AM"_Activity | link |
200264.0 | 3564374.0 | 85.0 | Theosophical_Society | "I_AM"_Activity | link |
5501897.0 | 3564374.0 | 11.0 | Seven_rays | "I_AM"_Activity | other |
833097.0 | 3564374.0 | 18.0 | William_Dudley_Pelley | "I_AM"_Activity | link |
31480.0 | 3564374.0 | 41.0 | Theosophy | "I_AM"_Activity | link |
null | 3564374.0 | 60.0 | other-bing | "I_AM"_Activity | other |
null | 3564374.0 | 118.0 | other-other | "I_AM"_Activity | other |
null | 3564374.0 | 33.0 | other-facebook | "I_AM"_Activity | other |
null | 3564374.0 | 43.0 | other-yahoo | "I_AM"_Activity | other |
null | 3564374.0 | 51.0 | other-wikipedia | "I_AM"_Activity | other |
null | 3564374.0 | 640.0 | other-google | "I_AM"_Activity | other |
null | 3564374.0 | 24.0 | other-twitter | "I_AM"_Activity | other |
609606.0 | 3564374.0 | 42.0 | Church_Universal_and_Triumphant | "I_AM"_Activity | link |
3207665.0 | 3564374.0 | 14.0 | A_Dweller_on_Two_Planets | "I_AM"_Activity | link |
804126.0 | 3564374.0 | 52.0 | Ascended_master | "I_AM"_Activity | link |
914523.0 | 3564374.0 | 100.0 | Guy_Ballard | "I_AM"_Activity | link |
1426548.0 | 3564374.0 | 20.0 | I_Am | "I_AM"_Activity | link |
1.4703837e7 | 3564374.0 | 38.0 | Great_White_Brotherhood | "I_AM"_Activity | link |
2399768.0 | 3564374.0 | 42.0 | List_of_new_religious_movements | "I_AM"_Activity | other |
2.4146787e7 | 3564374.0 | 40.0 | List_of_UFO_religions | "I_AM"_Activity | link |
4.2247669e7 | 1.7495549e7 | 30.0 | Just_Around_the_Riverbend | "I_Want"_song | other |
4.1895775e7 | 1.7495549e7 | 23.0 | For_the_First_Time_in_Forever | "I_Want"_song | link |
6131602.0 | 1.7495549e7 | 38.0 | Go_the_Distance | "I_Want"_song | other |
null | 1.7495549e7 | 36.0 | other-empty | "I_Want"_song | other |
4.2850941e7 | 1.7495549e7 | 38.0 | When_Will_My_Life_Begin? | "I_Want"_song | link |
1.0090698e7 | 1.7495549e7 | 30.0 | Part_of_Your_World | "I_Want"_song | link |
null | 1.7495549e7 | 135.0 | other-google | "I_Want"_song | other |
null | 1.7495549e7 | 23.0 | other-other | "I_Want"_song | other |
2.2825519e7 | 2.315869e7 | 11.0 | Anca_Petrescu | "Ion_Mincu"_University_of_Architecture_and_Urbanism | other |
1249478.0 | 2.315869e7 | 24.0 | List_of_universities_in_Romania | "Ion_Mincu"_University_of_Architecture_and_Urbanism | other |
null | 2.315869e7 | 60.0 | other-google | "Ion_Mincu"_University_of_Architecture_and_Urbanism | other |
null | 2.315869e7 | 22.0 | other-empty | "Ion_Mincu"_University_of_Architecture_and_Urbanism | other |
null | 1.6252208e7 | 11.0 | other-empty | "J"_Is_for_Judgment | other |
470006.0 | 1.6252208e7 | 17.0 | Sue_Grafton | "J"_Is_for_Judgment | link |
null | 1.6252208e7 | 20.0 | other-google | "J"_Is_for_Judgment | other |
1.6252078e7 | 1.6252208e7 | 25.0 | "I"_Is_for_Innocent | "J"_Is_for_Judgment | link |
1960430.0 | 4.4810634e7 | 12.0 | Fear_of_Pop:_Volume_1 | "Just_Your_Average_Second_On_This_Planet"_1997-1998 | link |
null | 4.4810634e7 | 10.0 | other-empty | "Just_Your_Average_Second_On_This_Planet"_1997-1998 | other |
null | 1.6252523e7 | 16.0 | other-empty | "K"_Is_for_Killer | other |
1.6252208e7 | 1.6252523e7 | 24.0 | "J"_Is_for_Judgment | "K"_Is_for_Killer | link |
null | 1.6252523e7 | 35.0 | other-google | "K"_Is_for_Killer | other |
null | 1.6252523e7 | 16.0 | other-wikipedia | "K"_Is_for_Killer | other |
470006.0 | 1.6252523e7 | 28.0 | Sue_Grafton | "K"_Is_for_Killer | link |
null | 487976.0 | 12.0 | other-empty | "King"_Bennie_Nawahi | other |
null | 487976.0 | 10.0 | other-other | "King"_Bennie_Nawahi | other |
null | 487976.0 | 11.0 | other-wikipedia | "King"_Bennie_Nawahi | other |
null | 487976.0 | 36.0 | other-google | "King"_Bennie_Nawahi | other |
2110406.0 | null | 10.0 | Pretty_Ricky | Knockin'_Boots redlink | null |
null | 3.8499517e7 | 68.0 | other-empty | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
null | 3.8499517e7 | 215.0 | other-google | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
null | 3.8499517e7 | 70.0 | other-wikipedia | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
242476.0 | 3.8499517e7 | 50.0 | Jack_Straw | "Left-Wing"_Communism:_An_Infantile_Disorder | link |
null | 3.8499517e7 | 15.0 | other-other | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
1.1015252e7 | 3.8499517e7 | 11.0 | Vladimir_Lenin | "Left-Wing"_Communism:_An_Infantile_Disorder | link |
420150.0 | 3.8499517e7 | 12.0 | The_State_and_Revolution | "Left-Wing"_Communism:_An_Infantile_Disorder | link |
2075551.0 | 3.8499517e7 | 14.0 | Ultra-leftism | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
302252.0 | 3.8499517e7 | 20.0 | Council_communism | "Left-Wing"_Communism:_An_Infantile_Disorder | link |
4.036248e7 | 3.8499517e7 | 13.0 | Communist_Party_of_Great_Britain | "Left-Wing"_Communism:_An_Infantile_Disorder | other |
3.9722572e7 | 3.8499517e7 | 19.0 | Left_communism | "Left-Wing"_Communism:_An_Infantile_Disorder | link |
null | 2.8480474e7 | 18.0 | other-google | "M"_Circle | other |
null | 1.6252603e7 | 11.0 | other-empty | "M"_Is_for_Malice | other |
null | 1.6252603e7 | 53.0 | other-google | "M"_Is_for_Malice | other |
2301720.0 | 1.6252603e7 | 11.0 | Kinsey_Millhone | "M"_Is_for_Malice | link |
470006.0 | 1.6252603e7 | 32.0 | Sue_Grafton | "M"_Is_for_Malice | link |
null | 1.6252603e7 | 12.0 | other-other | "M"_Is_for_Malice | other |
1.6252578e7 | 1.6252603e7 | 23.0 | "L"_Is_for_Lawless | "M"_Is_for_Malice | link |
null | 3.6758937e7 | 15.0 | other-empty | "Major"_John_Buchanan | other |
null | 3.6758937e7 | 17.0 | other-wikipedia | "Major"_John_Buchanan | other |
null | 3.6758937e7 | 53.0 | other-google | "Major"_John_Buchanan | other |
2.1163352e7 | 563697.0 | 10.0 | Master_Harold...and_the_Boys_(2010_film) | "Master_Harold"...and_the_Boys | link |
7028414.0 | 563697.0 | 101.0 | Eddie_Redmayne | "Master_Harold"...and_the_Boys | link |
null | 563697.0 | 36.0 | other-wikipedia | "Master_Harold"...and_the_Boys | other |
null | 563697.0 | 170.0 | other-empty | "Master_Harold"...and_the_Boys | other |
null | 563697.0 | 1967.0 | other-google | "Master_Harold"...and_the_Boys | other |
null | 563697.0 | 38.0 | other-other | "Master_Harold"...and_the_Boys | other |
3747865.0 | 563697.0 | 32.0 | Master_Harold_and_the_Boys | "Master_Harold"...and_the_Boys | link |
null | 563697.0 | 92.0 | other-bing | "Master_Harold"...and_the_Boys | other |
692334.0 | 563697.0 | 165.0 | Athol_Fugard | "Master_Harold"...and_the_Boys | link |
null | 563697.0 | 78.0 | other-yahoo | "Master_Harold"...and_the_Boys | other |
3419979.0 | null | 20.0 | Woodlouse_spider | "Mothercare"_spider | redlink |
null | 1.6252712e7 | 14.0 | other-empty | "N"_Is_for_Noose | other |
470006.0 | 1.6252712e7 | 22.0 | Sue_Grafton | "N"_Is_for_Noose | link |
null | 1.6252712e7 | 27.0 | other-google | "N"_Is_for_Noose | other |
1.6252603e7 | 1.6252712e7 | 28.0 | "M"_Is_for_Malice | "N"_Is_for_Noose | link |
2301720.0 | 1.6252712e7 | 11.0 | Kinsey_Millhone | "N"_Is_for_Noose | link |
null | 5400322.0 | 31.0 | other-empty | "No_Flashlight":_Songs_of_the_Fulfilled_Night | other |
null | 5400322.0 | 29.0 | other-google | "No_Flashlight":_Songs_of_the_Fulfilled_Night | other |
1367146.0 | 5400322.0 | 475.0 | Mount_Eerie | "No_Flashlight":_Songs_of_the_Fulfilled_Night | link |
1.3792594e7 | 5400322.0 | 64.0 | Mount_Eerie_pts._6_&_7 | "No_Flashlight":_Songs_of_the_Fulfilled_Night | link |
5412817.0 | 5400322.0 | 12.0 | Mount_Eerie_(album) | "No_Flashlight":_Songs_of_the_Fulfilled_Night | link |
1990114.0 | 5400322.0 | 14.0 | Phil_Elvrum | "No_Flashlight":_Songs_of_the_Fulfilled_Night | link |
6626648.0 | 1.1898394e7 | 58.0 | Masque_(The_Mission_album) | "No_Snow,_No_Show"_for_the_Eskimo | link |
2.1221111e7 | 1.1898394e7 | 17.0 | The_Mission_discography | "No_Snow,_No_Show"_for_the_Eskimo | other |
null | 1.1898394e7 | 14.0 | other-google | "No_Snow,_No_Show"_for_the_Eskimo | other |
null | 1.2565141e7 | 38.0 | other-empty | "O"-Jung.Ban.Hap. | other |
7194112.0 | 1.2565141e7 | 79.0 | TVXQ_albums_discography | "O"-Jung.Ban.Hap. | link |
3.6922845e7 | 1.2565141e7 | 25.0 | TVXQ_filmography | "O"-Jung.Ban.Hap. | link |
2103628.0 | 1.2565141e7 | 333.0 | TVXQ | "O"-Jung.Ban.Hap. | link |
4.4402525e7 | 1.2565141e7 | 10.0 | TVXQ_singles_discography | "O"-Jung.Ban.Hap. | link |
1.0138105e7 | 1.2565141e7 | 26.0 | Five_in_the_Black | "O"-Jung.Ban.Hap. | link |
4.4314654e7 | 1.2565141e7 | 38.0 | Jung_Chanwoo | "O"-Jung.Ban.Hap. | link |
1.013822e7 | 1.2565141e7 | 53.0 | Heart,_Mind_and_Soul_(TVXQ_album) | "O"-Jung.Ban.Hap. | link |
3.3482901e7 | 1.2565141e7 | 13.0 | List_of_songs_recorded_by_TVXQ | "O"-Jung.Ban.Hap. | link |
null | 1.2565141e7 | 168.0 | other-google | "O"-Jung.Ban.Hap. | other |
null | 1.2565141e7 | 11.0 | other-wikipedia | "O"-Jung.Ban.Hap. | other |
null | 2.8907601e7 | 12.0 | other-other | "Ode-to-Napoleon"_hexachord | other |
378674.0 | 2.8907601e7 | 11.0 | Luigi_Nono | "Ode-to-Napoleon"_hexachord | link |
null | 2.8907601e7 | 82.0 | other-google | "Ode-to-Napoleon"_hexachord | other |
2.5133882e7 | null | 13.0 | Goodnight–Loving_Trail | "One_Arm_Bill"_Wilson | redlink |
null | 1.6253383e7 | 39.0 | other-google | "P"_Is_for_Peril | other |
1.6252757e7 | 1.6253383e7 | 30.0 | "O"_Is_for_Outlaw | "P"_Is_for_Peril | link |
1.6253409e7 | 1.6253383e7 | 11.0 | "Q"_Is_for_Quarry | "P"_Is_for_Peril | link |
470006.0 | 1.6253383e7 | 27.0 | Sue_Grafton | "P"_Is_for_Peril | link |
null | 1.6253383e7 | 72.0 | other-empty | "P"_Is_for_Peril | other |
null | 1362990.0 | 31.0 | other-yahoo | "Pimpernel"_Smith | other |
83545.0 | 1362990.0 | 44.0 | The_Scarlet_Pimpernel | "Pimpernel"_Smith | link |
null | 1362990.0 | 48.0 | other-bing | "Pimpernel"_Smith | other |
1.5580374e7 | 1362990.0 | 41.0 | Main_Page | "Pimpernel"_Smith | other |
null | 1362990.0 | 48.0 | other-other | "Pimpernel"_Smith | other |
83538.0 | 1362990.0 | 205.0 | Leslie_Howard_(actor) | "Pimpernel"_Smith | link |
4331044.0 | 1362990.0 | 13.0 | List_of_World_War_II_films | "Pimpernel"_Smith | other |
null | 1362990.0 | 73.0 | other-wikipedia | "Pimpernel"_Smith | other |
null | 1362990.0 | 625.0 | other-google | "Pimpernel"_Smith | other |
null | 1362990.0 | 101.0 | other-empty | "Pimpernel"_Smith | other |
2295388.0 | 1362990.0 | 26.0 | Mary_Morris | "Pimpernel"_Smith | link |
2722166.0 | 1362990.0 | 17.0 | Francis_L._Sullivan | "Pimpernel"_Smith | link |
609020.0 | 1362990.0 | 18.0 | David_Tomlinson | "Pimpernel"_Smith | link |
8245402.0 | 1362990.0 | 11.0 | BOAC_Flight_777 | "Pimpernel"_Smith | other |
null | 4.3720216e7 | 32.0 | other-wikipedia | "Pro_knigi"_("About_books") | other |
8401830.0 | 4.5258416e7 | 59.0 | Red_Terror_(Ethiopia) | "Red_Terror"_Martyrs'_Memorial_Museum | link |
1.5580374e7 | 1478845.0 | 11.0 | Main_Page | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
419269.0 | 1478845.0 | 10.0 | Nebula_Award_for_Best_Short_Story | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
2838416.0 | 1478845.0 | 86.0 | Run-on_sentence | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
null | 1478845.0 | 27.0 | other-bing | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
null | 1478845.0 | 40.0 | other-other | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
null | 1478845.0 | 73.0 | other-wikipedia | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
null | 1478845.0 | 974.0 | other-google | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
593138.0 | 1478845.0 | 10.0 | I_Have_No_Mouth,_and_I_Must_Scream | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
2000840.0 | 1478845.0 | 24.0 | List_of_joint_winners_of_the_Hugo_and_Nebula_awards | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
13462.0 | 1478845.0 | 320.0 | Harlan_Ellison | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
38341.0 | 1478845.0 | 228.0 | Harlequin | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
2.9446866e7 | 1478845.0 | 271.0 | In_Time | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
151501.0 | 1478845.0 | 21.0 | Jelly_bean | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
418599.0 | 1478845.0 | 21.0 | Hugo_Award_for_Best_Short_Story | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
null | 1478845.0 | 28.0 | other-yahoo | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
1.0472351e7 | 1478845.0 | 14.0 | Paingod_and_Other_Delusions | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
73257.0 | 1478845.0 | 51.0 | V_for_Vendetta | "Repent,_Harlequin!"_Said_the_Ticktockman | link |
null | 1478845.0 | 136.0 | other-empty | "Repent,_Harlequin!"_Said_the_Ticktockman | other |
1.6253457e7 | 1.6253763e7 | 33.0 | "R"_Is_for_Ricochet | "S"_Is_for_Silence | link |
null | 1.6253763e7 | 27.0 | other-google | "S"_Is_for_Silence | other |
470006.0 | 1.6253763e7 | 21.0 | Sue_Grafton | "S"_Is_for_Silence | link |
1187218.0 | 2398711.0 | 30.0 | Bergen_Airport,_Flesland | "Solidarity"_Szczecin–Goleniów_Airport | other |
636093.0 | 2398711.0 | 39.0 | Warsaw_Chopin_Airport | "Solidarity"_Szczecin–Goleniów_Airport | link |
28456.0 | 2398711.0 | 51.0 | Szczecin | "Solidarity"_Szczecin–Goleniów_Airport | link |
6135578.0 | 2398711.0 | 66.0 | Szczecin_Airport | "Solidarity"_Szczecin–Goleniów_Airport | other |
164508.0 | 2398711.0 | 21.0 | Liverpool_John_Lennon_Airport | "Solidarity"_Szczecin–Goleniów_Airport | other |
9688173.0 | 2398711.0 | 27.0 | Moss_Airport,_Rygge | "Solidarity"_Szczecin–Goleniów_Airport | other |
null | 2398711.0 | 16.0 | other-other | "Solidarity"_Szczecin–Goleniów_Airport | other |
null | 2398711.0 | 59.0 | other-wikipedia | "Solidarity"_Szczecin–Goleniów_Airport | other |
193169.0 | 2398711.0 | 11.0 | Świnoujście | "Solidarity"_Szczecin–Goleniów_Airport | other |
null | 2398711.0 | 174.0 | other-google | "Solidarity"_Szczecin–Goleniów_Airport | other |
1.099953e7 | 2398711.0 | 14.0 | Eurolot | "Solidarity"_Szczecin–Goleniów_Airport | other |
293794.0 | 2398711.0 | 12.0 | Dublin_Airport | "Solidarity"_Szczecin–Goleniów_Airport | other |
400401.0 | 2398711.0 | 74.0 | List_of_airports_in_Poland | "Solidarity"_Szczecin–Goleniów_Airport | link |
null | 2398711.0 | 55.0 | other-empty | "Solidarity"_Szczecin–Goleniów_Airport | other |
2161284.0 | 2398711.0 | 10.0 | Wrocław–Copernicus_Airport | "Solidarity"_Szczecin–Goleniów_Airport | link |
2716198.0 | 2398711.0 | 24.0 | Rzeszów–Jasionka_Airport | "Solidarity"_Szczecin–Goleniów_Airport | link |
1272752.0 | 2398711.0 | 10.0 | Ryanair_destinations | "Solidarity"_Szczecin–Goleniów_Airport | link |
206934.0 | 2398711.0 | 16.0 | Luton_Airport | "Solidarity"_Szczecin–Goleniów_Airport | link |
null | 2641242.0 | 237.0 | other-google | "Still_Life"_(American_Concert_1981) | other |
null | 2641242.0 | 60.0 | other-wikipedia | "Still_Life"_(American_Concert_1981) | other |
null | 2641242.0 | 53.0 | other-empty | "Still_Life"_(American_Concert_1981) | other |
31056.0 | 2641242.0 | 19.0 | The_Rolling_Stones | "Still_Life"_(American_Concert_1981) | link |
8545280.0 | 2641242.0 | 13.0 | The_Rolling_Stones_American_Tour_1981 | "Still_Life"_(American_Concert_1981) | other |
1348046.0 | 2641242.0 | 402.0 | The_Rolling_Stones_discography | "Still_Life"_(American_Concert_1981) | link |
1458754.0 | 2641242.0 | 11.0 | Take_the_"A"_Train | "Still_Life"_(American_Concert_1981) | link |
null | 2641242.0 | 10.0 | other-other | "Still_Life"_(American_Concert_1981) | other |
null | 2641242.0 | 16.0 | other-bing | "Still_Life"_(American_Concert_1981) | other |
2290650.0 | 2641242.0 | 18.0 | Still_Life_(disambiguation) | "Still_Life"_(American_Concert_1981) | link |
5254045.0 | 2641242.0 | 11.0 | Time_Is_on_My_Side | "Still_Life"_(American_Concert_1981) | link |
2630454.0 | 2641242.0 | 152.0 | Love_You_Live | "Still_Life"_(American_Concert_1981) | link |
8799796.0 | 2641242.0 | 26.0 | Going_to_a_Go-Go_(song) | "Still_Life"_(American_Concert_1981) | link |
2644231.0 | 2641242.0 | 54.0 | Flashpoint_(album) | "Still_Life"_(American_Concert_1981) | link |
1.4416996e7 | 2641242.0 | 22.0 | Let's_Spend_the_Night_Together_(film) | "Still_Life"_(American_Concert_1981) | link |
2.4961418e7 | null | 14.0 | Caro_Emerald | That_Man | redlink |
4677458.0 | 2.249931e7 | 112.0 | Jake_Holmes | "The_Above_Ground_Sound"_of_Jake_Holmes | link |
null | 2.249931e7 | 11.0 | other-empty | "The_Above_Ground_Sound"_of_Jake_Holmes | other |
null | 2.249931e7 | 32.0 | other-google | "The_Above_Ground_Sound"_of_Jake_Holmes | other |
286821.0 | 2.249931e7 | 58.0 | Dazed_and_Confused_(song) | "The_Above_Ground_Sound"_of_Jake_Holmes | link |
1442421.0 | null | 12.0 | Chadds_Ford_Township,_Delaware_County,_Pennsylvania | "The_Mills",_Andrew_Wyeth_home_and_studio | redlink |
2804228.0 | null | 24.0 | Champ_Ferguson | "Tinker_Dave"_Beaty | redlink |
3.1466206e7 | 3.1466526e7 | 73.0 | Nightmare:_The_Acoustic_M.S.G. | "Unplugged"_Live | link |
207953.0 | 3.1466526e7 | 41.0 | Michael_Schenker | "Unplugged"_Live | link |
null | 3.1466526e7 | 15.0 | other-empty | "Unplugged"_Live | other |
5399286.0 | 3.1466526e7 | 69.0 | McAuley_Schenker_Group | "Unplugged"_Live | link |
null | 3.1466526e7 | 39.0 | other-google | "Unplugged"_Live | other |
null | 1.2571133e7 | 223.0 | other-google | "V"_Is_for_Vagina | other |
null | 1.2571133e7 | 51.0 | other-wikipedia | "V"_Is_for_Vagina | other |
9469360.0 | 1.2571133e7 | 14.0 | Queen_B. | "V"_Is_for_Vagina | link |
4619790.0 | 1.2571133e7 | 1031.0 | Puscifer | "V"_Is_for_Vagina | link |
null | 1.2571133e7 | 22.0 | other-other | "V"_Is_for_Vagina | other |
222217.0 | 1.2571133e7 | 48.0 | Tim_Commerford | "V"_Is_for_Vagina | link |
147692.0 | 1.2571133e7 | 32.0 | Tim_Alexander | "V"_Is_for_Vagina | link |
3145813.0 | 1.2571133e7 | 12.0 | Alessandro_Cortini | "V"_Is_for_Vagina | other |
3.3622887e7 | 1.2571133e7 | 19.0 | Conditions_of_My_Parole | "V"_Is_for_Vagina | link |
1.186153e7 | 1.2571133e7 | 15.0 | Jarboe | "V"_Is_for_Vagina | link |
1.3087996e7 | 1.2571133e7 | 103.0 | Eddie_McClintock | "V"_Is_for_Vagina | other |
1.1981948e7 | 1.2571133e7 | 12.0 | Gil_Sharone | "V"_Is_for_Vagina | other |
1.6079543e7 | 1.2571133e7 | 19.0 | "V"_Is_for_Viagra._The_Remixes | "V"_Is_for_Vagina | link |
2.5033979e7 | 1.2571133e7 | 26.0 | "C"_is_for_(Please_Insert_Sophomoric_Genitalia_Reference_HERE) | "V"_Is_for_Vagina | link |
269859.0 | 1.2571133e7 | 11.0 | A_Perfect_Circle | "V"_Is_for_Vagina | other |
1.4098392e7 | 1.2571133e7 | 76.0 | Don't_Shoot_the_Messenger | "V"_Is_for_Vagina | link |
782360.0 | 1.2571133e7 | 11.0 | Lustmord | "V"_Is_for_Vagina | other |
1.5331615e7 | 1.2571133e7 | 23.0 | Maynard_James_Keenan_discography | "V"_Is_for_Vagina | link |
920501.0 | 1.2571133e7 | 320.0 | Maynard_James_Keenan | "V"_Is_for_Vagina | link |
null | 1.2571133e7 | 94.0 | other-empty | "V"_Is_for_Vagina | other |
null | 3.1438273e7 | 16.0 | other-empty | "V"_Is_for_Vengeance | other |
3.9606873e7 | 3.1438273e7 | 12.0 | "W"_Is_for_Wasted | "V"_Is_for_Vengeance | link |
2.5577776e7 | 3.1438273e7 | 30.0 | "U"_Is_for_Undertow | "V"_Is_for_Vengeance | link |
470006.0 | 3.1438273e7 | 59.0 | Sue_Grafton | "V"_Is_for_Vengeance | link |
null | 3.1438273e7 | 76.0 | other-google | "V"_Is_for_Vengeance | other |
2301720.0 | 3.1438273e7 | 20.0 | Kinsey_Millhone | "V"_Is_for_Vengeance | link |
4619790.0 | 1.6079543e7 | 234.0 | Puscifer | "V"_Is_for_Viagra._The_Remixes | link |
null | 1.6079543e7 | 23.0 | other-empty | "V"_Is_for_Viagra._The_Remixes | other |
1.2571133e7 | 1.6079543e7 | 175.0 | "V"_Is_for_Vagina | "V"_Is_for_Viagra._The_Remixes | link |
null | 1.6079543e7 | 49.0 | other-google | "V"_Is_for_Viagra._The_Remixes | other |
null | 1.6079543e7 | 12.0 | other-wikipedia | "V"_Is_for_Viagra._The_Remixes | other |
null | 1.8938265e7 | 3683.0 | other-wikipedia | "Weird_Al"_Yankovic | other |
null | 1.8938265e7 | 38430.0 | other-google | "Weird_Al"_Yankovic | other |
null | 1.8938265e7 | 406.0 | other-twitter | "Weird_Al"_Yankovic | other |
3.3525518e7 | 1.8938265e7 | 22.0 | Noretta | "Weird_Al"_Yankovic | link |
26179.0 | 1.8938265e7 | 10.0 | Ron_Popeil | "Weird_Al"_Yankovic | link |
2560896.0 | 1.8938265e7 | 16.0 | Lump_(song) | "Weird_Al"_Yankovic | link |
4.1681071e7 | 1.8938265e7 | 26.0 | My_Little_Pony:_Friendship_Is_Magic_(season_5) | "Weird_Al"_Yankovic | link |
1093963.0 | 1.8938265e7 | 28.0 | Polka_Party! | "Weird_Al"_Yankovic | link |
1743090.0 | 1.8938265e7 | 52.0 | Parody_music | "Weird_Al"_Yankovic | link |
897080.0 | 1.8938265e7 | 12.0 | Nash_Metropolitan | "Weird_Al"_Yankovic | link |
21494.0 | 1.8938265e7 | 16.0 | Nerd | "Weird_Al"_Yankovic | link |
1124279.0 | 1.8938265e7 | 16.0 | Mmm_Mmm_Mmm_Mmm | "Weird_Al"_Yankovic | link |
2.6095723e7 | 1.8938265e7 | 16.0 | Nothin'_on_You | "Weird_Al"_Yankovic | link |
3.4826435e7 | 1.8938265e7 | 17.0 | Parody_in_popular_music | "Weird_Al"_Yankovic | link |
43397.0 | 1.8938265e7 | 52.0 | Polka | "Weird_Al"_Yankovic | link |
3.9863336e7 | 1.8938265e7 | 18.0 | Royals_(song) | "Weird_Al"_Yankovic | link |
1706988.0 | 1.8938265e7 | 15.0 | Mickey_(song) | "Weird_Al"_Yankovic | link |
1237220.0 | 1.8938265e7 | 25.0 | Patton_Oswalt | "Weird_Al"_Yankovic | link |
2.1985451e7 | 1.8938265e7 | 76.0 | Lynwood,_California | "Weird_Al"_Yankovic | link |
4711303.0 | 1.8938265e7 | 35.0 | Ridin' | "Weird_Al"_Yankovic | link |
4.180637e7 | 1.8938265e7 | 59.0 | Pinkie_Pride | "Weird_Al"_Yankovic | link |
1.5580374e7 | 1.8938265e7 | 1791.0 | Main_Page | "Weird_Al"_Yankovic | other |
1.8960192e7 | 1.8938265e7 | 66.0 | Parody | "Weird_Al"_Yankovic | link |
3070450.0 | 1.8938265e7 | 14.0 | My_Sharona | "Weird_Al"_Yankovic | link |
2.6330755e7 | 1.8938265e7 | 13.0 | Matt_L._Jones | "Weird_Al"_Yankovic | other |
1680148.0 | 1.8938265e7 | 37.0 | Piano_Man_(song) | "Weird_Al"_Yankovic | link |
667089.0 | 1.8938265e7 | 140.0 | Poodle_Hat | "Weird_Al"_Yankovic | link |
1346791.0 | 1.8938265e7 | 16.0 | Richard_Cheese | "Weird_Al"_Yankovic | link |
2366938.0 | 1.8938265e7 | 44.0 | Oy_vey | "Weird_Al"_Yankovic | link |
1614455.0 | 1.8938265e7 | 38.0 | Money_for_Nothing_(song) | "Weird_Al"_Yankovic | link |
3.3054146e7 | 1.8938265e7 | 13.0 | Sexy_and_I_Know_It | "Weird_Al"_Yankovic | link |
4072442.0 | 1.8938265e7 | 10.0 | One_More_Minute | "Weird_Al"_Yankovic | link |
3307306.0 | 1.8938265e7 | 17.0 | More_Than_Words | "Weird_Al"_Yankovic | link |
2271575.0 | 1.8938265e7 | 21.0 | Lose_Yourself | "Weird_Al"_Yankovic | link |
569820.0 | 1.8938265e7 | 28.0 | Losing_My_Religion | "Weird_Al"_Yankovic | link |
183389.0 | 1.8938265e7 | 11.0 | Scott_Raynor | "Weird_Al"_Yankovic | link |
183860.0 | 1.8938265e7 | 13.0 | National_Speech_and_Debate_Association | "Weird_Al"_Yankovic | link |
4.30701e7 | 1.8938265e7 | 1180.0 | Mandatory_Fun | "Weird_Al"_Yankovic | link |
1.1423454e7 | 1.8938265e7 | 56.0 | Pretty_Fly_for_a_Rabbi | "Weird_Al"_Yankovic | link |
4070747.0 | 1.8938265e7 | 17.0 | Ricky_(song) | "Weird_Al"_Yankovic | link |
2102697.0 | 1.8938265e7 | 25.0 | My_Bologna | "Weird_Al"_Yankovic | link |
3.3145323e7 | 1.8938265e7 | 11.0 | Peter_Shukoff | "Weird_Al"_Yankovic | other |
288469.0 | 1.8938265e7 | 23.0 | Novelty_song | "Weird_Al"_Yankovic | link |
1.0090978e7 | 1.8938265e7 | 21.0 | Peter_and_the_Wolf_("Weird_Al"_Yankovic_&_Wendy_Carlos_album) | "Weird_Al"_Yankovic | link |
2051328.0 | 1.8938265e7 | 16.0 | Pretty_Fly_(for_a_White_Guy) | "Weird_Al"_Yankovic | link |
1982071.0 | 1.8938265e7 | 54.0 | Lola_(song) | "Weird_Al"_Yankovic | link |
177256.0 | 1.8938265e7 | 112.0 | RCA_Records | "Weird_Al"_Yankovic | link |
30951.0 | 1.8938265e7 | 15.0 | Tom_Lehrer | "Weird_Al"_Yankovic | link |
48110.0 | 1.8938265e7 | 10.0 | Tonya_Harding | "Weird_Al"_Yankovic | link |
4.1599803e7 | 1.8938265e7 | 10.0 | The_Hotwives_of_Orlando | "Weird_Al"_Yankovic | link |
4.3303551e7 | 1.8938265e7 | 91.0 | Tacky_(song) | "Weird_Al"_Yankovic | link |
3588232.0 | 1.8938265e7 | 10.0 | We're_Not_Gonna_Take_It_(Twisted_Sister_song) | "Weird_Al"_Yankovic | link |
2.4204138e7 | 1.8938265e7 | 36.0 | The_Essential_"Weird_Al"_Yankovic | "Weird_Al"_Yankovic | link |
2.6423707e7 | 1.8938265e7 | 38.0 | Yugoslav_American | "Weird_Al"_Yankovic | link |
847078.0 | 1.8938265e7 | 13.0 | Taxman | "Weird_Al"_Yankovic | link |
8567624.0 | 1.8938265e7 | 18.0 | Tim_and_Eric_Awesome_Show,_Great_Job! | "Weird_Al"_Yankovic | link |
1.4295471e7 | 1.8938265e7 | 11.0 | Sussudio | "Weird_Al"_Yankovic | other |
3.7064351e7 | 1.8938265e7 | 10.0 | The_Wrong_Ferarri | "Weird_Al"_Yankovic | link |
924771.0 | 1.8938265e7 | 40.0 | The_Naked_Gun_2½:_The_Smell_of_Fear | "Weird_Al"_Yankovic | link |
1.0091063e7 | 1.8938265e7 | 34.0 | Trapped_in_the_Drive-Thru | "Weird_Al"_Yankovic | link |
1412241.0 | 1.8938265e7 | 10.0 | The_Late_Late_Show_with_Craig_Ferguson | "Weird_Al"_Yankovic | other |
6088238.0 | 1.8938265e7 | 18.0 | The_Grim_Adventures_of_Billy_&_Mandy_(video_game) | "Weird_Al"_Yankovic | link |
4110029.0 | 1.8938265e7 | 10.0 | The_Night_Santa_Went_Crazy | "Weird_Al"_Yankovic | link |
113092.0 | 1.8938265e7 | 57.0 | Twinkie | "Weird_Al"_Yankovic | link |
7051503.0 | 1.8938265e7 | 10.0 | The_Drew_Carey_Show | "Weird_Al"_Yankovic | link |
1.9156218e7 | 1.8938265e7 | 11.0 | Star_Wars_Kid | "Weird_Al"_Yankovic | link |
null | 1.8938265e7 | 1580.0 | other-bing | "Weird_Al"_Yankovic | other |
28367.0 | 1.8938265e7 | 33.0 | Spam_(food) | "Weird_Al"_Yankovic | other |
5578884.0 | 1.8938265e7 | 34.0 | You're_Pitiful | "Weird_Al"_Yankovic | link |
1996695.0 | 1.8938265e7 | 20.0 | You're_Beautiful | "Weird_Al"_Yankovic | link |
390867.0 | 1.8938265e7 | 438.0 | UHF_(film) | "Weird_Al"_Yankovic | link |
7894054.0 | 1.8938265e7 | 10.0 | Wayne_Bergeron | "Weird_Al"_Yankovic | link |
59993.0 | 1.8938265e7 | 21.0 | Smells_Like_Teen_Spirit | "Weird_Al"_Yankovic | link |
1708927.0 | 1.8938265e7 | 25.0 | Weird | "Weird_Al"_Yankovic | link |
627511.0 | 1.8938265e7 | 12.0 | Victoria_Jackson | "Weird_Al"_Yankovic | link |
2446828.0 | 1.8938265e7 | 12.0 | Trinidad_Silva | "Weird_Al"_Yankovic | link |
3.8575277e7 | 1.8938265e7 | 15.0 | Toby_Turner | "Weird_Al"_Yankovic | other |
194627.0 | 1.8938265e7 | 19.0 | Straight_Outta_Compton | "Weird_Al"_Yankovic | link |
1331938.0 | 1.8938265e7 | 32.0 | Three_Gays_of_the_Condo | "Weird_Al"_Yankovic | link |
189288.0 | 1.8938265e7 | 11.0 | The_Adventures_of_Captain_Underpants | "Weird_Al"_Yankovic | other |
2315700.0 | 1.8938265e7 | 85.0 | The_Saga_Begins | "Weird_Al"_Yankovic | link |
5043734.0 | 1.8938265e7 | 67.0 | Wikipedia | "Weird_Al"_Yankovic | link |
1.3932969e7 | 1.8938265e7 | 46.0 | That_'90s_Show | "Weird_Al"_Yankovic | link |
8109388.0 | 1.8938265e7 | 16.0 | Tomorrow_(TV_series) | "Weird_Al"_Yankovic | link |
5254612.0 | 1.8938265e7 | 11.0 | Yo_Gabba_Gabba! | "Weird_Al"_Yankovic | link |
983849.0 | 1.8938265e7 | 51.0 | Top_Secret! | "Weird_Al"_Yankovic | link |
6075882.0 | 1.8938265e7 | 257.0 | White_&_Nerdy | "Weird_Al"_Yankovic | link |
6064795.0 | 1.8938265e7 | 232.0 | Straight_Outta_Lynwood | "Weird_Al"_Yankovic | link |
1050549.0 | 1.8938265e7 | 17.0 | Volcano_Entertainment | "Weird_Al"_Yankovic | link |
1314319.0 | 1.8938265e7 | 142.0 | The_Weird_Al_Show | "Weird_Al"_Yankovic | link |
4109934.0 | 1.8938265e7 | 11.0 | Spy_Hard_(song) | "Weird_Al"_Yankovic | link |
4.4076048e7 | 1.8938265e7 | 241.0 | Super_Bowl_XLIX_halftime_show | "Weird_Al"_Yankovic | link |
null | 1.8938265e7 | 1369.0 | other-other | "Weird_Al"_Yankovic | other |
null | 1.8938265e7 | 33.0 | other-facebook | "Weird_Al"_Yankovic | other |
681786.0 | 1.8938265e7 | 94.0 | Bad_Hair_Day | "Weird_Al"_Yankovic | link |
693809.0 | 1.8938265e7 | 15.0 | Chop_Suey!_(song) | "Weird_Al"_Yankovic | link |
1779981.0 | 1.8938265e7 | 16.0 | Chamillionaire | "Weird_Al"_Yankovic | link |
2.6534206e7 | 1.8938265e7 | 11.0 | Comedy_Bang!_Bang! | "Weird_Al"_Yankovic | link |
3380816.0 | 1.8938265e7 | 11.0 | Down_with_the_Sickness | "Weird_Al"_Yankovic | link |
3.6682042e7 | 1.8938265e7 | 213.0 | Dollmaker_(comics) | "Weird_Al"_Yankovic | link |
143435.0 | 1.8938265e7 | 20.0 | Band_Aid_(band) | "Weird_Al"_Yankovic | other |
157548.0 | 1.8938265e7 | 31.0 | Allan_Sherman | "Weird_Al"_Yankovic | link |
107622.0 | 1.8938265e7 | 27.0 | Downey,_California | "Weird_Al"_Yankovic | link |
2320524.0 | 1.8938265e7 | 37.0 | Black_or_White | "Weird_Al"_Yankovic | link |
1.9375754e7 | 1.8938265e7 | 10.0 | Craigslist | "Weird_Al"_Yankovic | link |
1.6046327e7 | 1.8938265e7 | 242.0 | DC_Universe_Animated_Original_Movies | "Weird_Al"_Yankovic | link |
1.1560543e7 | 1.8938265e7 | 37.0 | Comedy_music | "Weird_Al"_Yankovic | link |
495591.0 | 1.8938265e7 | 25.0 | Cola_Wars | "Weird_Al"_Yankovic | other |
149681.0 | 1.8938265e7 | 13.0 | Beck | "Weird_Al"_Yankovic | other |
2102759.0 | 1.8938265e7 | 29.0 | Another_One_Rides_the_Bus | "Weird_Al"_Yankovic | link |
1856564.0 | 1.8938265e7 | 40.0 | Comedy_rock | "Weird_Al"_Yankovic | link |
2258507.0 | 1.8938265e7 | 39.0 | Albuquerque_(song) | "Weird_Al"_Yankovic | link |
539377.0 | 1.8938265e7 | 10.0 | Animal_Man | "Weird_Al"_Yankovic | link |
8133962.0 | 1.8938265e7 | 10.0 | Back_at_the_Barnyard | "Weird_Al"_Yankovic | link |
3.1561319e7 | 1.8938265e7 | 130.0 | Alpocalypse | "Weird_Al"_Yankovic | link |
59610.0 | 1.8938265e7 | 105.0 | Atlantic_Records | "Weird_Al"_Yankovic | link |
3.9384064e7 | 1.8938265e7 | 965.0 | 57th_Annual_Grammy_Awards | "Weird_Al"_Yankovic | link |
1.1700181e7 | 1.8938265e7 | 13.0 | Close_but_No_Cigar | "Weird_Al"_Yankovic | link |
3456183.0 | 1.8938265e7 | 12.0 | Christmas_at_Ground_Zero | "Weird_Al"_Yankovic | link |
3.9949337e7 | 1.8938265e7 | 24.0 | Drunk_History | "Weird_Al"_Yankovic | link |
1.0294516e7 | 1.8938265e7 | 17.0 | "Weird_Al"_Yankovic_videography | "Weird_Al"_Yankovic | link |
5828575.0 | 1.8938265e7 | 21.0 | Couch_Potato_(song) | "Weird_Al"_Yankovic | link |
680375.0 | 1.8938265e7 | 10.0 | Bill_Plympton | "Weird_Al"_Yankovic | link |
681837.0 | 1.8938265e7 | 160.0 | "Weird_Al"_Yankovic_in_3-D | "Weird_Al"_Yankovic | link |
3.3246249e7 | 1.8938265e7 | 13.0 | "Weird_Al"_Yankovic_Live!:_The_Alpocalypse_Tour | "Weird_Al"_Yankovic | link |
681846.0 | 1.8938265e7 | 284.0 | "Weird_Al"_Yankovic_(album) | "Weird_Al"_Yankovic | link |
3.1218217e7 | 1.8938265e7 | 25.0 | Comedy_hip_hop | "Weird_Al"_Yankovic | link |
3913016.0 | 1.8938265e7 | 26.0 | "Weird_Al"_Yankovic's_Greatest_Hits | "Weird_Al"_Yankovic | link |
231982.0 | 1.8938265e7 | 242.0 | Dr._Demento | "Weird_Al"_Yankovic | link |
51278.0 | 1.8938265e7 | 21.0 | Albuquerque,_New_Mexico | "Weird_Al"_Yankovic | other |
440017.0 | 1.8938265e7 | 48.0 | Aisha_Tyler | "Weird_Al"_Yankovic | link |
168263.0 | 1.8938265e7 | 26.0 | Coolio | "Weird_Al"_Yankovic | link |
1745307.0 | 1.8938265e7 | 26.0 | Cledus_T._Judd | "Weird_Al"_Yankovic | link |
4.1156988e7 | 1.8938265e7 | 52.0 | Doge_(meme) | "Weird_Al"_Yankovic | link |
7260565.0 | 1.8938265e7 | 26.0 | Canadian_Idiot | "Weird_Al"_Yankovic | link |
4082868.0 | 1.8938265e7 | 33.0 | Dare_to_Be_Stupid_(song) | "Weird_Al"_Yankovic | link |
286323.0 | 1.8938265e7 | 11.0 | Crash_Test_Dummies | "Weird_Al"_Yankovic | link |
1.1871605e7 | 1.8938265e7 | 10.0 | Cherry_Pie_(Warrant_song) | "Weird_Al"_Yankovic | other |
239034.0 | 1.8938265e7 | 20.0 | Dweezil_Zappa | "Weird_Al"_Yankovic | link |
726651.0 | 1.8938265e7 | 18.0 | Donny_Osmond | "Weird_Al"_Yankovic | link |
3.3629854e7 | 1.8938265e7 | 13.0 | DC_Nation_Shorts | "Weird_Al"_Yankovic | link |
5779338.0 | 1.8938265e7 | 13.0 | Closing_Time_(Semisonic_song) | "Weird_Al"_Yankovic | link |
4.3318058e7 | 1.8938265e7 | 11.0 | Claudia_O'Doherty | "Weird_Al"_Yankovic | link |
10672.0 | 1.8938265e7 | 56.0 | Frank_Zappa | "Weird_Al"_Yankovic | link |
1439800.0 | 1.8938265e7 | 82.0 | Eye_of_the_Tiger | "Weird_Al"_Yankovic | link |
428865.0 | 1.8938265e7 | 10.0 | Ironic_(song) | "Weird_Al"_Yankovic | link |
2.391975e7 | 1.8938265e7 | 11.0 | Fireflies_(Owl_City_song) | "Weird_Al"_Yankovic | link |
2125672.0 | 1.8938265e7 | 11.0 | Ghetto_Supastar_(That_Is_What_You_Are) | "Weird_Al"_Yankovic | link |
9181653.0 | 1.8938265e7 | 13.0 | List_of_How_I_Met_Your_Mother_characters | "Weird_Al"_Yankovic | link |
197889.0 | 1.8938265e7 | 17.0 | Felix_the_Cat | "Weird_Al"_Yankovic | link |
1.1901898e7 | 1.8938265e7 | 12.0 | Here's_Johnny | "Weird_Al"_Yankovic | link |
1.015197e7 | 1.8938265e7 | 12.0 | Hip_to_Be_Square | "Weird_Al"_Yankovic | other |
343560.0 | 1.8938265e7 | 19.0 | Jack_Black | "Weird_Al"_Yankovic | link |
2683218.0 | 1.8938265e7 | 15.0 | List_of_Lilo_&_Stitch:_The_Series_episodes | "Weird_Al"_Yankovic | link |
1.1311126e7 | 1.8938265e7 | 35.0 | It's_All_About_the_Pentiums | "Weird_Al"_Yankovic | link |
7297505.0 | 1.8938265e7 | 25.0 | Kristen_Schaal | "Weird_Al"_Yankovic | other |
4072138.0 | 1.8938265e7 | 52.0 | Like_a_Surgeon_("Weird_Al"_Yankovic_song) | "Weird_Al"_Yankovic | link |
7419707.0 | 1.8938265e7 | 24.0 | John_Morrison_(wrestler) | "Weird_Al"_Yankovic | link |
1178120.0 | 1.8938265e7 | 24.0 | Headline_News_(song) | "Weird_Al"_Yankovic | link |
4.1170737e7 | 1.8938265e7 | 37.0 | Happy_(Pharrell_Williams_song) | "Weird_Al"_Yankovic | link |
639642.0 | 1.8938265e7 | 13.0 | I'll_Be_There_for_You_(The_Rembrandts_song) | "Weird_Al"_Yankovic | link |
2.0593859e7 | 1.8938265e7 | 15.0 | Jizz_in_My_Pants | "Weird_Al"_Yankovic | link |
1053554.0 | 1.8938265e7 | 94.0 | Gangsta's_Paradise | "Weird_Al"_Yankovic | link |
1.2798266e7 | 1.8938265e7 | 182.0 | List_of_"Weird_Al"_Yankovic_polka_medleys | "Weird_Al"_Yankovic | link |
4012959.0 | 1.8938265e7 | 12.0 | I_Can't_Dance | "Weird_Al"_Yankovic | link |
9903893.0 | 1.8938265e7 | 12.0 | List_of_Italian-American_entertainers | "Weird_Al"_Yankovic | link |
4.3368354e7 | 1.8938265e7 | 33.0 | Handy_(song) | "Weird_Al"_Yankovic | link |
5888557.0 | 1.8938265e7 | 10.0 | Footloose_(song) | "Weird_Al"_Yankovic | link |
4429395.0 | 1.8938265e7 | 57.0 | Eminem | "Weird_Al"_Yankovic | link |
43727.0 | 1.8938265e7 | 144.0 | Frankie_Yankovic | "Weird_Al"_Yankovic | link |
681823.0 | 1.8938265e7 | 101.0 | Even_Worse | "Weird_Al"_Yankovic | link |
2706860.0 | 1.8938265e7 | 11.0 | Got_My_Mind_Set_on_You | "Weird_Al"_Yankovic | link |
3955585.0 | 1.8938265e7 | 12.0 | Janie's_Got_a_Gun | "Weird_Al"_Yankovic | link |
2.7748226e7 | 1.8938265e7 | 11.0 | Jeopardy! | "Weird_Al"_Yankovic | link |
238443.0 | 1.8938265e7 | 11.0 | Liam_Lynch_(musician) | "Weird_Al"_Yankovic | link |
4.009594e7 | 1.8938265e7 | 16.0 | List_of_2014_albums | "Weird_Al"_Yankovic | link |
8473867.0 | 1.8938265e7 | 10.0 | List_of_30_Rock_characters | "Weird_Al"_Yankovic | other |
3815781.0 | 1.8938265e7 | 42.0 | Keegan-Michael_Key | "Weird_Al"_Yankovic | link |
158879.0 | 1.8938265e7 | 60.0 | George_Carlin | "Weird_Al"_Yankovic | other |
912417.0 | 1.8938265e7 | 10.0 | Grammy_Award_for_Best_Concept_Music_Video | "Weird_Al"_Yankovic | link |
487070.0 | 1.8938265e7 | 14.0 | Emo_Philips | "Weird_Al"_Yankovic | other |
738015.0 | 1.8938265e7 | 27.0 | Johnny_Bravo | "Weird_Al"_Yankovic | link |
1.1224587e7 | 1.8938265e7 | 31.0 | I_Lost_on_Jeopardy | "Weird_Al"_Yankovic | link |
3671687.0 | 1.8938265e7 | 10.0 | Leibniz–Newton_calculus_controversy | "Weird_Al"_Yankovic | link |
1.0340709e7 | 1.8938265e7 | 13.0 | List_of_RCA_Records_artists | "Weird_Al"_Yankovic | link |
2.1207345e7 | 1.8938265e7 | 17.0 | Jerry_Springer | "Weird_Al"_Yankovic | link |
4.162918e7 | 1.8938265e7 | 87.0 | Game_Grumps | "Weird_Al"_Yankovic | link |
8376816.0 | 1.8938265e7 | 12.0 | Electric_Avenue_(song) | "Weird_Al"_Yankovic | link |
155452.0 | 1.8938265e7 | 16.0 | Hey_Jude | "Weird_Al"_Yankovic | link |
4.33773e7 | 1.8938265e7 | 31.0 | Foil_(song) | "Weird_Al"_Yankovic | link |
9030340.0 | 1.8938265e7 | 38.0 | List_of_Cal_Poly_at_San_Luis_Obispo_alumni | "Weird_Al"_Yankovic | link |
3795017.0 | 1.8938265e7 | 84.0 | Liberian_Girl | "Weird_Al"_Yankovic | link |
9410052.0 | 1.8938265e7 | 17.0 | List_of_polka_artists | "Weird_Al"_Yankovic | link |
2.0706022e7 | 1.8938265e7 | 10.0 | List_of_Volcano_Entertainment_artists | "Weird_Al"_Yankovic | link |
2018105.0 | 1.8938265e7 | 140.0 | List_of_songs_recorded_by_"Weird_Al"_Yankovic | "Weird_Al"_Yankovic | link |
703188.0 | 1.8938265e7 | 70.0 | List_of_vegans | "Weird_Al"_Yankovic | link |
640911.0 | 1.8938265e7 | 29.0 | List_of_satirists_and_satires | "Weird_Al"_Yankovic | link |
873835.0 | 1.8938265e7 | 19.0 | Al_TV | "Weird_Al"_Yankovic | link |
681811.0 | 1.8938265e7 | 53.0 | Alapalooza | "Weird_Al"_Yankovic | link |
156683.0 | 1.8938265e7 | 23.0 | Don_Pardo | "Weird_Al"_Yankovic | link |
3.4290593e7 | 1.8938265e7 | 31.0 | Call_Me_Maybe | "Weird_Al"_Yankovic | link |
4161738.0 | 1.8938265e7 | 11.0 | "Weird_Al"_Yankovic_Live! | "Weird_Al"_Yankovic | link |
1.8938265e7 | 1.8938265e7 | 38.0 | "Weird_Al"_Yankovic | "Weird_Al"_Yankovic | other |
2661948.0 | 1.8938265e7 | 54.0 | Auto-Tune | "Weird_Al"_Yankovic | other |
998258.0 | 1.8938265e7 | 180.0 | Amish_Paradise | "Weird_Al"_Yankovic | link |
7630017.0 | 1.8938265e7 | 140.0 | "Weird_Al"_Yankovic_discography | "Weird_Al"_Yankovic | link |
4.5137822e7 | 1.8938265e7 | 469.0 | Batman_vs._Robin | "Weird_Al"_Yankovic | link |
1.1424214e7 | 1.8938265e7 | 43.0 | EBay_(song) | "Weird_Al"_Yankovic | link |
1.5957378e7 | 1.8938265e7 | 844.0 | Aaron_Paul | "Weird_Al"_Yankovic | link |
739408.0 | 1.8938265e7 | 102.0 | Eat_It | "Weird_Al"_Yankovic | link |
41953.0 | 1.8938265e7 | 75.0 | Bohemian_Rhapsody | "Weird_Al"_Yankovic | link |
432147.0 | 1.8938265e7 | 10.0 | Charles_Nelson_Reilly | "Weird_Al"_Yankovic | link |
1.852763e7 | 1.8938265e7 | 16.0 | Eat_It_("Weird_Al"_Yankovic_album) | "Weird_Al"_Yankovic | link |
3716049.0 | 1.8938265e7 | 29.0 | Addicted_to_Love_(song) | "Weird_Al"_Yankovic | link |
154247.0 | 1.8938265e7 | 11.0 | Eddie_Vedder | "Weird_Al"_Yankovic | other |
1.6757649e7 | 1.8938265e7 | 22.0 | Batman:_The_Brave_and_the_Bold | "Weird_Al"_Yankovic | link |
681830.0 | 1.8938265e7 | 87.0 | Dare_to_Be_Stupid | "Weird_Al"_Yankovic | link |
6600777.0 | 1.8938265e7 | 29.0 | Don't_Download_This_Song | "Weird_Al"_Yankovic | link |
51744.0 | 1.8938265e7 | 86.0 | American_Pie_(song) | "Weird_Al"_Yankovic | link |
663903.0 | 1.8938265e7 | 16.0 | Behind_the_Music | "Weird_Al"_Yankovic | link |
209416.0 | 1.8938265e7 | 44.0 | Ben_Folds | "Weird_Al"_Yankovic | link |
1.1748645e7 | 1.8938265e7 | 17.0 | Another_One_Rides_the_Bus_(EP) | "Weird_Al"_Yankovic | link |
3281387.0 | 1.8938265e7 | 11.0 | Bedrock_Anthem | "Weird_Al"_Yankovic | link |
1.7080248e7 | 1.8938265e7 | 51.0 | Beat_It | "Weird_Al"_Yankovic | link |
3.9026706e7 | 1.8938265e7 | 11.0 | Blurred_Lines | "Weird_Al"_Yankovic | link |
2.3138118e7 | 1.8938265e7 | 23.0 | Craigslist_(song) | "Weird_Al"_Yankovic | link |
1782176.0 | 1.8938265e7 | 14.0 | Bad_(Michael_Jackson_song) | "Weird_Al"_Yankovic | link |
433230.0 | 1.8938265e7 | 29.0 | California_Polytechnic_State_University | "Weird_Al"_Yankovic | other |
1263456.0 | 1.8938265e7 | 40.0 | ApologetiX | "Weird_Al"_Yankovic | link |
1162.0 | 1.8938265e7 | 33.0 | Accordion | "Weird_Al"_Yankovic | link |
1.6173682e7 | 1.8938265e7 | 14.0 | List_of_keytarists | "Weird_Al"_Yankovic | link |
4807288.0 | 1.8938265e7 | 16.0 | List_of_backmasked_messages | "Weird_Al"_Yankovic | link |
5747670.0 | 1.8938265e7 | 58.0 | Live_and_Let_Die_(song) | "Weird_Al"_Yankovic | link |
6041.0 | 1.8938265e7 | 10.0 | List_of_comedians | "Weird_Al"_Yankovic | link |
2.5011929e7 | 1.8938265e7 | 10.0 | John_and_Lorena_Bobbitt | "Weird_Al"_Yankovic | link |
3.1526507e7 | 1.8938265e7 | 31.0 | How_I_Met_Your_Mother_(season_7) | "Weird_Al"_Yankovic | link |
4.274688e7 | 1.8938265e7 | 431.0 | Galavant | "Weird_Al"_Yankovic | link |
1503921.0 | 1.8938265e7 | 19.0 | Hidden_track | "Weird_Al"_Yankovic | link |
1.2089889e7 | 1.8938265e7 | 31.0 | Eric_Stonestreet | "Weird_Al"_Yankovic | link |
4094664.0 | 1.8938265e7 | 11.0 | Lasagna_(song) | "Weird_Al"_Yankovic | link |
4169218.0 | 1.8938265e7 | 11.0 | Haunted_Lighthouse | "Weird_Al"_Yankovic | link |
4109863.0 | 1.8938265e7 | 13.0 | Gump_(song) | "Weird_Al"_Yankovic | link |
4070828.0 | 1.8938265e7 | 17.0 | I_Love_Rocky_Road | "Weird_Al"_Yankovic | link |
2739735.0 | 1.8938265e7 | 10.0 | I_Touch_Myself | "Weird_Al"_Yankovic | link |
1847150.0 | 1.8938265e7 | 18.0 | Ice_Ice_Baby | "Weird_Al"_Yankovic | link |
4.4786839e7 | 1.8938265e7 | 31.0 | List_of_The_Late_Late_Show_episodes_(2015_guest_hosts) | "Weird_Al"_Yankovic | other |
3615165.0 | 1.8938265e7 | 18.0 | I_Want_It_That_Way | "Weird_Al"_Yankovic | link |
3785221.0 | 1.8938265e7 | 26.0 | Jim_West_(guitarist) | "Weird_Al"_Yankovic | link |
1928807.0 | 1.8938265e7 | 12.0 | Fanny_pack | "Weird_Al"_Yankovic | link |
3.3592458e7 | 1.8938265e7 | 213.0 | Epic_Rap_Battles_of_History | "Weird_Al"_Yankovic | link |
185416.0 | 1.8938265e7 | 220.0 | Grammy_Award_for_Best_Comedy_Album | "Weird_Al"_Yankovic | link |
1.5022585e7 | 1.8938265e7 | 12.0 | James_Blunt | "Weird_Al"_Yankovic | other |
4.3552374e7 | 1.8938265e7 | 26.0 | Ice_Bucket_Challenge | "Weird_Al"_Yankovic | link |
1.0417152e7 | 1.8938265e7 | 13.0 | I_Want_a_New_Drug | "Weird_Al"_Yankovic | link |
3.0821628e7 | 1.8938265e7 | 16.0 | List_of_My_Little_Pony:_Friendship_Is_Magic_episodes | "Weird_Al"_Yankovic | link |
4.3350433e7 | 1.8938265e7 | 25.0 | Lame_Claim_to_Fame | "Weird_Al"_Yankovic | link |
3.5191643e7 | 1.8938265e7 | 27.0 | Kidnapped_by_Danger | "Weird_Al"_Yankovic | other |
3.2291112e7 | 1.8938265e7 | 45.0 | List_of_My_Little_Pony:_Friendship_Is_Magic_characters | "Weird_Al"_Yankovic | link |
5458198.0 | 1.8938265e7 | 14.0 | Judy_Tenuta | "Weird_Al"_Yankovic | link |
85307.0 | 1.8938265e7 | 25.0 | Huey_Lewis_and_the_News | "Weird_Al"_Yankovic | link |
2157741.0 | 1.8938265e7 | 35.0 | Jon_Schwartz_(drummer) | "Weird_Al"_Yankovic | link |
210836.0 | 1.8938265e7 | 13.0 | Falco_(musician) | "Weird_Al"_Yankovic | link |
1.3101139e7 | 1.8938265e7 | 11.0 | Here's_Johnny_(song) | "Weird_Al"_Yankovic | link |
4196662.0 | 1.8938265e7 | 27.0 | Jordan_Peele | "Weird_Al"_Yankovic | link |
625478.0 | 1.8938265e7 | 22.0 | Gilbert_Gottfried | "Weird_Al"_Yankovic | other |
2.1604923e7 | 1.8938265e7 | 15.0 | Isaac_Newton_in_popular_culture | "Weird_Al"_Yankovic | link |
359520.0 | 1.8938265e7 | 43.0 | Joan_Jett | "Weird_Al"_Yankovic | link |
4109668.0 | 1.8938265e7 | 21.0 | Jurassic_Park_(song) | "Weird_Al"_Yankovic | link |
2.3138134e7 | 1.8938265e7 | 15.0 | Internet_Leaks | "Weird_Al"_Yankovic | link |
4.4955052e7 | 1.8938265e7 | 14.0 | List_of_Epic_Rap_Battles_of_History_episodes | "Weird_Al"_Yankovic | link |
1601775.0 | 1.8938265e7 | 10.0 | Let's_Get_It_Started | "Weird_Al"_Yankovic | link |
462389.0 | 1.8938265e7 | 19.0 | List_of_The_Simpsons_guest_stars | "Weird_Al"_Yankovic | link |
2.8271869e7 | 1.8938265e7 | 10.0 | Hurley_(album) | "Weird_Al"_Yankovic | other |
1742323.0 | 1.8938265e7 | 114.0 | Fat_(song) | "Weird_Al"_Yankovic | link |
null | 1.8938265e7 | 5129.0 | other-empty | "Weird_Al"_Yankovic | other |
32851.0 | 1.8938265e7 | 23.0 | Wiki | "Weird_Al"_Yankovic | other |
228355.0 | 1.8938265e7 | 95.0 | The_Naked_Gun:_From_the_Files_of_Police_Squad! | "Weird_Al"_Yankovic | link |
6932227.0 | 1.8938265e7 | 11.0 | The_Saga_Begins_(album) | "Weird_Al"_Yankovic | link |
1.0128701e7 | 1.8938265e7 | 14.0 | The_Biggest_Ball_of_Twine_in_Minnesota | "Weird_Al"_Yankovic | link |
7198320.0 | 1.8938265e7 | 24.0 | Weasel_Stomping_Day | "Weird_Al"_Yankovic | link |
2026444.0 | 1.8938265e7 | 44.0 | The_Safety_Dance | "Weird_Al"_Yankovic | link |
1.9653364e7 | 1.8938265e7 | 11.0 | Whatever_You_Like_("Weird_Al"_Yankovic_song) | "Weird_Al"_Yankovic | link |
4.1684727e7 | 1.8938265e7 | 10.0 | Whiplash_(2014_film) | "Weird_Al"_Yankovic | other |
5419140.0 | 1.8938265e7 | 91.0 | The_Naked_Gun | "Weird_Al"_Yankovic | link |
4.0688399e7 | 1.8938265e7 | 10.0 | Timber_(song) | "Weird_Al"_Yankovic | link |
1584368.0 | 1.8938265e7 | 65.0 | Yankovic | "Weird_Al"_Yankovic | link |
3732122.0 | 1.8938265e7 | 15.0 | Steve_Jay | "Weird_Al"_Yankovic | link |
890630.0 | 1.8938265e7 | 80.0 | Vanna_White | "Weird_Al"_Yankovic | link |
4.3630148e7 | 1.8938265e7 | 21.0 | Wallykazam! | "Weird_Al"_Yankovic | link |
681822.0 | 1.8938265e7 | 27.0 | UHF_–_Original_Motion_Picture_Soundtrack_and_Other_Stuff | "Weird_Al"_Yankovic | link |
3070376.0 | 1.8938265e7 | 16.0 | The_Food_Album | "Weird_Al"_Yankovic | link |
4584644.0 | 1.8938265e7 | 34.0 | Yoda_(song) | "Weird_Al"_Yankovic | link |
8567806.0 | 1.8938265e7 | 23.0 | WordGirl | "Weird_Al"_Yankovic | link |
4.3309524e7 | 1.8938265e7 | 92.0 | Word_Crimes | "Weird_Al"_Yankovic | link |
87474.0 | 1.8938265e7 | 13.0 | Tony_Hawk | "Weird_Al"_Yankovic | link |
1969519.0 | 1.8938265e7 | 24.0 | U_Can't_Touch_This | "Weird_Al"_Yankovic | link |
3.7656763e7 | 1.8938265e7 | 32.0 | Thrift_Shop | "Weird_Al"_Yankovic | link |
1.878465e7 | 1.8938265e7 | 832.0 | Super_Bowl_XLIX | "Weird_Al"_Yankovic | other |
4109439.0 | 1.8938265e7 | 21.0 | You_Don't_Love_Me_Anymore_("Weird_Al"_Yankovic_song) | "Weird_Al"_Yankovic | link |
1867173.0 | 1.8938265e7 | 57.0 | Naked_Gun_33⅓:_The_Final_Insult | "Weird_Al"_Yankovic | link |
22572.0 | 1.8938265e7 | 10.0 | October_23 | "Weird_Al"_Yankovic | link |
382199.0 | 1.8938265e7 | 14.0 | Ray_Manzarek | "Weird_Al"_Yankovic | link |
6967012.0 | 1.8938265e7 | 11.0 | Seth_Green | "Weird_Al"_Yankovic | link |
2.3811071e7 | 1.8938265e7 | 24.0 | Party_in_the_U.S.A. | "Weird_Al"_Yankovic | link |
1273502.0 | 1.8938265e7 | 118.0 | Loser_(Beck_song) | "Weird_Al"_Yankovic | link |
262457.0 | 1.8938265e7 | 16.0 | R._Lee_Ermey | "Weird_Al"_Yankovic | link |
26678.0 | 1.8938265e7 | 11.0 | Star_Wars | "Weird_Al"_Yankovic | link |
611396.0 | 1.8938265e7 | 39.0 | Rick_Derringer | "Weird_Al"_Yankovic | link |
37287.0 | 1.8938265e7 | 12.0 | Scooby-Doo | "Weird_Al"_Yankovic | link |
194036.0 | 1.8938265e7 | 11.0 | Spike_Jones | "Weird_Al"_Yankovic | link |
57317.0 | 1.8938265e7 | 11.0 | Prince_(musician) | "Weird_Al"_Yankovic | other |
2043990.0 | 1.8938265e7 | 102.0 | Spy_Hard | "Weird_Al"_Yankovic | link |
1.2694177e7 | 1.8938265e7 | 84.0 | Lynwood_High_School | "Weird_Al"_Yankovic | link |
681814.0 | 1.8938265e7 | 54.0 | Off_the_Deep_End | "Weird_Al"_Yankovic | link |
21073.0 | 1.8938265e7 | 14.0 | Mad_(magazine) | "Weird_Al"_Yankovic | link |
3434143.0 | 1.8938265e7 | 18.0 | Richard_Stallman | "Weird_Al"_Yankovic | link |
89662.0 | 1.8938265e7 | 20.0 | Margaret_Cho | "Weird_Al"_Yankovic | link |
1417851.0 | 1.8938265e7 | 11.0 | One_Week_(song) | "Weird_Al"_Yankovic | link |
3.9762022e7 | 1.8938265e7 | 18.0 | My_Little_Pony:_Friendship_Is_Magic_(season_4) | "Weird_Al"_Yankovic | link |
573460.0 | 1.8938265e7 | 12.0 | Space_Ghost_Coast_to_Coast | "Weird_Al"_Yankovic | link |
2246914.0 | 1.8938265e7 | 14.0 | Ray_of_Light_(song) | "Weird_Al"_Yankovic | link |
2.5140047e7 | 1.8938265e7 | 29.0 | NOH8_Campaign | "Weird_Al"_Yankovic | other |
1955961.0 | 1.8938265e7 | 85.0 | Smells_Like_Nirvana | "Weird_Al"_Yankovic | link |
371187.0 | 1.8938265e7 | 13.0 | National_Enquirer | "Weird_Al"_Yankovic | link |
3.680974e7 | 1.8938265e7 | 14.0 | Radioactive_(Imagine_Dragons_song) | "Weird_Al"_Yankovic | link |
681810.0 | 1.8938265e7 | 99.0 | Running_with_Scissors_("Weird_Al"_Yankovic_album) | "Weird_Al"_Yankovic | link |
1490639.0 | 1.8938265e7 | 20.0 | Pokémon:_The_Movie_2000 | "Weird_Al"_Yankovic | link |
4109077.0 | 1.8938265e7 | 14.0 | Money_for_Nothing/Beverly_Hillbillies* | "Weird_Al"_Yankovic | link |
2.8214451e7 | 1.8938265e7 | 15.0 | Mad_(TV_series) | "Weird_Al"_Yankovic | link |
1700806.0 | 1.8938265e7 | 14.0 | One_of_Us_(Joan_Osborne_song) | "Weird_Al"_Yankovic | other |
3.1552317e7 | 1.8938265e7 | 39.0 | Perform_This_Way | "Weird_Al"_Yankovic | link |
104998.0 | 1.8938265e7 | 27.0 | Michael_Richards | "Weird_Al"_Yankovic | link |
1527386.0 | 1.8938265e7 | 31.0 | Robot_Chicken | "Weird_Al"_Yankovic | link |
2300912.0 | 1.8938265e7 | 19.0 | Party_All_the_Time | "Weird_Al"_Yankovic | link |
null | 1.8938265e7 | 1553.0 | other-yahoo | "Weird_Al"_Yankovic | other |
7630017.0 | 4161738.0 | 12.0 | "Weird_Al"_Yankovic_discography | "Weird_Al"_Yankovic_Live! | link |
null | 4161738.0 | 10.0 | other-wikipedia | "Weird_Al"_Yankovic_Live! | other |
null | 4161738.0 | 26.0 | other-google | "Weird_Al"_Yankovic_Live! | other |
3.3246249e7 | 4161738.0 | 10.0 | "Weird_Al"_Yankovic_Live!:_The_Alpocalypse_Tour | "Weird_Al"_Yankovic_Live! | link |
null | 4161738.0 | 11.0 | other-empty | "Weird_Al"_Yankovic_Live! | other |
null | 7630017.0 | 532.0 | other-empty | "Weird_Al"_Yankovic_discography | other |
1955961.0 | 7630017.0 | 27.0 | Smells_Like_Nirvana | "Weird_Al"_Yankovic_discography | link |
3.1552317e7 | 7630017.0 | 15.0 | Perform_This_Way | "Weird_Al"_Yankovic_discography | link |
739408.0 | 7630017.0 | 25.0 | Eat_It | "Weird_Al"_Yankovic_discography | link |
4649999.0 | 7630017.0 | 21.0 | 911_(Wyclef_Jean_song) | "Weird_Al"_Yankovic_discography | other |
1.8938265e7 | 7630017.0 | 1871.0 | "Weird_Al"_Yankovic | "Weird_Al"_Yankovic_discography | link |
998258.0 | 7630017.0 | 30.0 | Amish_Paradise | "Weird_Al"_Yankovic_discography | link |
6600777.0 | 7630017.0 | 11.0 | Don't_Download_This_Song | "Weird_Al"_Yankovic_discography | link |
1742323.0 | 7630017.0 | 17.0 | Fat_(song) | "Weird_Al"_Yankovic_discography | link |
4.3350433e7 | 7630017.0 | 10.0 | Lame_Claim_to_Fame | "Weird_Al"_Yankovic_discography | link |
4.303942e7 | 7630017.0 | 11.0 | Everything_Will_Be_Alright_in_the_End | "Weird_Al"_Yankovic_discography | other |
null | 7630017.0 | 167.0 | other-yahoo | "Weird_Al"_Yankovic_discography | other |
null | 7630017.0 | 21.0 | other-other | "Weird_Al"_Yankovic_discography | other |
4070747.0 | 7630017.0 | 13.0 | Ricky_(song) | "Weird_Al"_Yankovic_discography | link |
4.30701e7 | 7630017.0 | 33.0 | Mandatory_Fun | "Weird_Al"_Yankovic_discography | link |
1.5580374e7 | 7630017.0 | 189.0 | Main_Page | "Weird_Al"_Yankovic_discography | other |
6075882.0 | 7630017.0 | 36.0 | White_&_Nerdy | "Weird_Al"_Yankovic_discography | link |
null | 7630017.0 | 84.0 | other-bing | "Weird_Al"_Yankovic_discography | other |
2018105.0 | 7630017.0 | 52.0 | List_of_songs_recorded_by_"Weird_Al"_Yankovic | "Weird_Al"_Yankovic_discography | link |
1.1311126e7 | 7630017.0 | 10.0 | It's_All_About_the_Pentiums | "Weird_Al"_Yankovic_discography | link |
null | 7630017.0 | 67.0 | other-twitter | "Weird_Al"_Yankovic_discography | other |
null | 7630017.0 | 1478.0 | other-google | "Weird_Al"_Yankovic_discography | other |
null | 7630017.0 | 137.0 | other-wikipedia | "Weird_Al"_Yankovic_discography | other |
null | 4.3882355e7 | 21.0 | other-wikipedia | What_Is_This_Heart? | other |
null | 4.3882355e7 | 132.0 | other-google | What_Is_This_Heart? | other |
null | 4.3882355e7 | 56.0 | other-empty | What_Is_This_Heart? | other |
2.9054561e7 | 4.3882355e7 | 1025.0 | How_to_Dress_Well | What_Is_This_Heart? | link |
3.3658579e7 | 4.3882355e7 | 12.0 | List_of_albums_awarded_Pitchfork_Best_New_Album | What_Is_This_Heart? | other |
3.7202658e7 | 4.3882355e7 | 128.0 | Total_Loss_(album) | What_Is_This_Heart? | other |
null | 3.781321e7 | 12.0 | other-other | Where_Are_Your_Keys? | other |
null | 3.781321e7 | 37.0 | other-google | Where_Are_Your_Keys? | other |
null | 3.781321e7 | 11.0 | other-empty | Where_Are_Your_Keys? | other |
null | 3.781321e7 | 17.0 | other-wikipedia | Where_Are_Your_Keys? | other |
595282.0 | 3.781321e7 | 71.0 | Hand_game | Where_Are_Your_Keys? | other |
1.0077425e7 | 3.781321e7 | 29.0 | Alutiiq_language | Where_Are_Your_Keys? | link |
261070.0 | 3.781321e7 | 58.0 | Total_physical_response | Where_Are_Your_Keys? | other |
9058458.0 | 3.781321e7 | 71.0 | Squamish_language | Where_Are_Your_Keys? | other |
null | 4.136318e7 | 15.0 | other-google | "Yes,_And"_rule | other |
null | 2.7111155e7 | 13.0 | other-empty | "You've_Got"_the_Touch | other |
null | 2.7111155e7 | 187.0 | other-google | "You've_Got"_the_Touch | other |
null | 3.5881722e7 | 12.0 | other-google | "Yume"_~Mugen_no_Kanata~ | other |
2.9264213e7 | 3.5881722e7 | 10.0 | Vivid_(band) | "Yume"_~Mugen_no_Kanata~ | link |
null | 3.6439291e7 | 10.0 | other-wikipedia | _(disambiguation) other | null |
7468179.0 | 3.6439291e7 | 231.0 | Quotation_mark | _(disambiguation) link | null |
null | 3.6439291e7 | 17.0 | other-empty | _(disambiguation) other | null |
202033.0 | null | 115.0 | ECT | et_cetera | redlink |
202033.0 | null | 244.0 | ECT | etc. | redlink |
null | 1.1489847e7 | 11.0 | other-wikipedia | $1.99_Romances | other |
5885018.0 | 1.1489847e7 | 18.0 | God_Street_Wine | $1.99_Romances | link |
null | 1.1489847e7 | 16.0 | other-empty | $1.99_Romances | other |
null | 3.9007767e7 | 10.0 | other-wikipedia | $100_Guitar_Project | other |
null | 3.9007767e7 | 33.0 | other-google | $100_Guitar_Project | other |
null | 3.9007767e7 | 14.0 | other-empty | $100_Guitar_Project | other |
1588040.0 | 3.9007767e7 | 10.0 | Nick_Didkovsky | $100_Guitar_Project | link |
1.5608128e7 | 3.9007767e7 | 25.0 | Ibanez_Jet_King | $100_Guitar_Project | link |
null | 4042422.0 | 86.0 | other-google | $2 | other |
null | 4042422.0 | 45.0 | other-wikipedia | $2 | other |
1.5580374e7 | 4042422.0 | 21.0 | Main_Page | $2 | other |
null | 4042422.0 | 42.0 | other-empty | $2 | other |
null | 1419311.0 | 38.0 | other-empty | $20 | other |
null | 1419311.0 | 20.0 | other-wikipedia | $20 | other |
null | 1419311.0 | 21.0 | other-google | $20 | other |
477331.0 | 1419311.0 | 10.0 | United_States_ten-dollar_bill | $20 | other |
null | 2.4648172e7 | 19.0 | other-google | $200 | other |
null | 1245168.0 | 16.0 | other-wikipedia | $25_Million_Dollar_Hoax | other |
null | 1245168.0 | 14.0 | other-google | $25_Million_Dollar_Hoax | other |
1023249.0 | 1245168.0 | 11.0 | George_Gray_(television_personality) | $25_Million_Dollar_Hoax | link |
300567.0 | 1245168.0 | 21.0 | Hidden_camera | $25_Million_Dollar_Hoax | link |
429120.0 | 1245168.0 | 19.0 | List_of_reality_television_programs | $25_Million_Dollar_Hoax | link |
3.6094463e7 | 2.8612415e7 | 11.0 | Diplo_production_discography | $O$_(Die_Antwoord_album) | other |
2.8588118e7 | 2.8612415e7 | 624.0 | 5_(Die_Antwoord_EP) | $O$_(Die_Antwoord_album) | other |
2.928693e7 | 2.8612415e7 | 385.0 | Yolandi_Visser | $O$_(Die_Antwoord_album) | other |
2.6182691e7 | 2.8612415e7 | 294.0 | Watkin_Tudor_Jones | $O$_(Die_Antwoord_album) | other |
3.4571991e7 | 2.8612415e7 | 446.0 | Tension_(Die_Antwoord_album) | $O$_(Die_Antwoord_album) | other |
2.8196738e7 | 2.8612415e7 | 32.0 | MaxNormal.TV | $O$_(Die_Antwoord_album) | other |
null | 2.8612415e7 | 241.0 | other-empty | $O$_(Die_Antwoord_album) | other |
null | 2.8612415e7 | 541.0 | other-google | $O$_(Die_Antwoord_album) | other |
null | 2.8612415e7 | 30.0 | other-wikipedia | $O$_(Die_Antwoord_album) | other |
3.5421075e7 | 2.8612415e7 | 49.0 | Evil_Boy | $O$_(Die_Antwoord_album) | other |
2.6050642e7 | 2.8612415e7 | 2527.0 | Die_Antwoord | $O$_(Die_Antwoord_album) | other |
2.2155074e7 | 1.0231968e7 | 11.0 | C$_(disambiguation) | $_(disambiguation) | link |
2308563.0 | 1.0231968e7 | 140.0 | Dollar_sign | $_(disambiguation) | link |
null | 1.0231968e7 | 14.0 | other-google | $_(disambiguation) | other |
null | 1.0231968e7 | 88.0 | other-wikipedia | $_(disambiguation) | other |
null | 1.0231968e7 | 116.0 | other-empty | $_(disambiguation) | other |
3361673.0 | 4213160.0 | 25.0 | Town_&_Country_(film) | $_(film) | link |
801116.0 | 4213160.0 | 31.0 | Richard_Brooks | $_(film) | link |
null | 4213160.0 | 75.0 | other-empty | $_(film) | other |
171680.0 | 4213160.0 | 10.0 | 1971_in_film | $_(film) | link |
313518.0 | 4213160.0 | 37.0 | Gert_Fröbe | $_(film) | link |
48071.0 | 4213160.0 | 123.0 | Goldie_Hawn | $_(film) | link |
1022198.0 | 4213160.0 | 12.0 | Heist | $_(film) | link |
null | 4213160.0 | 10.0 | other-other | $_(film) | other |
62809.0 | 4213160.0 | 140.0 | Warren_Beatty | $_(film) | link |
null | 4213160.0 | 40.0 | other-wikipedia | $_(film) | other |
null | 4213160.0 | 86.0 | other-google | $_(film) | other |
1.2379987e7 | 4213160.0 | 14.0 | List_of_crime_films_of_the_1970s | $_(film) | link |
1.198473e7 | 4597115.0 | 11.0 | Index_of_human_sexuality_articles | $pread | link |
null | 4597115.0 | 26.0 | other-empty | $pread | other |
2.2814756e7 | 4597115.0 | 12.0 | Madison_Young | $pread | link |
null | 4597115.0 | 99.0 | other-google | $pread | other |
null | 4597115.0 | 32.0 | other-wikipedia | $pread | other |
3.3545134e7 | 4597115.0 | 27.0 | Nica_Noelle | $pread | link |
326309.0 | 1831030.0 | 15.0 | Robert_Goulet | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
1681057.0 | 1831030.0 | 14.0 | Treehouse_of_Horror_XIII | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
null | 1831030.0 | 17.0 | other-bing | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
3620042.0 | 1831030.0 | 11.0 | Sweet_Seymour_Skinner's_Baadasssss_Song | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | link |
57850.0 | 1831030.0 | 13.0 | Springfield | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
4939444.0 | 1831030.0 | 84.0 | The_Simpsons_(season_5) | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | link |
292279.0 | 1831030.0 | 32.0 | List_of_recurring_The_Simpsons_characters | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
140332.0 | 1831030.0 | 149.0 | List_of_The_Simpsons_episodes | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | link |
14059.0 | 1831030.0 | 77.0 | Howard_Hughes | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
null | 1831030.0 | 48.0 | other-wikipedia | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
null | 1831030.0 | 741.0 | other-google | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
598368.0 | 1831030.0 | 12.0 | Josh_Weinstein | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
2011385.0 | 1831030.0 | 29.0 | Homer_the_Vigilante | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | link |
1889929.0 | 1831030.0 | 12.0 | Saddlesore_Galactica | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
null | 1831030.0 | 270.0 | other-empty | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | other |
3605255.0 | 1831030.0 | 44.0 | The_Last_Temptation_of_Homer | $pringfield_(or,_How_I_Learned_to_Stop_Worrying_and_Love_Legalized_Gambling) | link |
null | 1578140.0 | 1820.0 | other-google | %s | other |
null | 1578140.0 | 13.0 | other-twitter | %s | other |
null | 1578140.0 | 233.0 | other-wikipedia | %s | other |
null | 1578140.0 | 29756.0 | other-empty | %s | other |
Display is a utility provided by Databricks. If you are programming directly in Spark, use the show(numRows: Int) function of DataFrame
clickstream.show(5)
+-------+-------+---+------------------+----------+-----+
|prev_id|curr_id| n| prev_title|curr_title| type|
+-------+-------+---+------------------+----------+-----+
| null|3632887|121| other-google| !!|other|
| null|3632887| 93| other-wikipedia| !!|other|
| null|3632887| 46| other-empty| !!|other|
| null|3632887| 10| other-other| !!|other|
| 64486|3632887| 11|!_(disambiguation)| !!|other|
+-------+-------+---+------------------+----------+-----+
only showing top 5 rows
Reading from disk vs memory
The 1.2 GB Clickstream file is currently on S3, which means each time you scan through it, your Spark cluster has to read the 1.2 GB of data remotely over the network.
Call the count()
action to check how many rows are in the DataFrame and to see how long it takes to read the DataFrame from S3.
clickstream.cache().count()
res9: Long = 22509897
- It took about several minutes to read the 1.2 GB file into your Spark cluster. The file has 22.5 million rows/lines.
- Although we have called cache, remember that it is evaluated (cached) only when an action(count) is called
Now call count again to see how much faster it is to read from memory
clickstream.count()
res10: Long = 22509897
- Orders of magnitude faster!
- If you are going to be using the same data source multiple times, it is better to cache it in memory
What are the top 10 articles requested?
To do this we also need to order by the sum of column n
, in descending order.
//Type in your answer here...
display(clickstream
.select(clickstream("curr_title"), clickstream("n"))
.groupBy("curr_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(10))
curr_title | sum(n) |
---|---|
Main_Page | 1.2750062e8 |
87th_Academy_Awards | 2559794.0 |
Fifty_Shades_of_Grey | 2326175.0 |
Alive | 2244781.0 |
Chris_Kyle | 1709341.0 |
Fifty_Shades_of_Grey_(film) | 1683892.0 |
Deaths_in_2015 | 1614577.0 |
Birdman_(film) | 1545842.0 |
Islamic_State_of_Iraq_and_the_Levant | 1406530.0 |
Stephen_Hawking | 1384193.0 |
Who sent the most traffic to Wikipedia in Feb 2015?
In other words, who were the top referers to Wikipedia?
display(clickstream
.select(clickstream("prev_title"), clickstream("n"))
.groupBy("prev_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(10))
prev_title | sum(n) |
---|---|
other-google | 1.496209976e9 |
other-empty | 3.47693595e8 |
other-wikipedia | 1.29772279e8 |
other-other | 7.7569671e7 |
other-bing | 6.5962792e7 |
other-yahoo | 4.8501171e7 |
Main_Page | 2.9923502e7 |
other-twitter | 1.9241298e7 |
other-facebook | 2314026.0 |
87th_Academy_Awards | 1680675.0 |
As expected, the top referer by a large margin is Google. Next comes refererless traffic (usually clients using HTTPS). The third largest sender of traffic to English Wikipedia are Wikipedia pages that are not in the main namespace (ns = 0) of English Wikipedia. Learn about the Wikipedia namespaces here: https://en.wikipedia.org/wiki/Wikipedia:Project_namespace
Also, note that Twitter sends 10x more requests to Wikipedia than Facebook.
//Type in your answer here...
display(clickstream
.select(clickstream("curr_title"), clickstream("prev_title"), clickstream("n"))
.filter("prev_title = 'other-twitter'")
.groupBy("curr_title")
.sum()
.orderBy($"sum(n)".desc)
.limit(5))
curr_title | sum(n) |
---|---|
Johnny_Knoxville | 198908.0 |
Peter_Woodcock | 126259.0 |
2002_Tampa_plane_crash | 119906.0 |
Sơn_Đoòng_Cave | 116012.0 |
The_boy_Jones | 114401.0 |
val allClicks = clickstream.selectExpr("sum(n)").first.getLong(0)
val referals = clickstream.
filter(clickstream("prev_id").isNotNull).
selectExpr("sum(n)").first.getLong(0)
(referals * 100.0) / allClicks
allClicks: Long = 3283067885
referals: Long = 1095462001
res14: Double = 33.36702253416853
clickstream.createOrReplaceTempView("clicks")
SELECT *
FROM clicks
WHERE
curr_title = 'Donald_Trump' AND
prev_id IS NOT NULL AND prev_title != 'Main_Page'
ORDER BY n DESC
LIMIT 20
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
1861441.0 | 4848272.0 | 4658.0 | Ivanka_Trump | Donald_Trump | link |
4848272.0 | 4848272.0 | 2212.0 | Donald_Trump | Donald_Trump | link |
1209075.0 | 4848272.0 | 1855.0 | Melania_Trump | Donald_Trump | link |
1057887.0 | 4848272.0 | 1760.0 | Ivana_Trump | Donald_Trump | link |
5679119.0 | 4848272.0 | 1074.0 | Donald_Trump_Jr. | Donald_Trump | link |
2.1377251e7 | 4848272.0 | 918.0 | United_States_presidential_election,_2016 | Donald_Trump | link |
8095589.0 | 4848272.0 | 728.0 | Eric_Trump | Donald_Trump | link |
473806.0 | 4848272.0 | 652.0 | Marla_Maples | Donald_Trump | link |
2565136.0 | 4848272.0 | 651.0 | The_Trump_Organization | Donald_Trump | link |
9917693.0 | 4848272.0 | 599.0 | The_Celebrity_Apprentice | Donald_Trump | link |
9289480.0 | 4848272.0 | 597.0 | The_Apprentice_(U.S._TV_series) | Donald_Trump | link |
290327.0 | 4848272.0 | 596.0 | German_American | Donald_Trump | link |
1.2643497e7 | 4848272.0 | 585.0 | Comedy_Central_Roast | Donald_Trump | link |
3.7643999e7 | 4848272.0 | 549.0 | Republican_Party_presidential_candidates,_2016 | Donald_Trump | link |
417559.0 | 4848272.0 | 543.0 | Alan_Sugar | Donald_Trump | link |
1203316.0 | 4848272.0 | 489.0 | Fred_Trump | Donald_Trump | link |
303951.0 | 4848272.0 | 426.0 | Vince_McMahon | Donald_Trump | link |
6191053.0 | 4848272.0 | 413.0 | Jared_Kushner | Donald_Trump | link |
1295216.0 | 4848272.0 | 412.0 | Trump_Tower_(New_York_City) | Donald_Trump | link |
6509278.0 | 4848272.0 | 402.0 | Trump | Donald_Trump | link |
YouTry: Top referrers to other 2016 US presidential candidate pages
'Donald_Trump', 'Bernie_Sanders', 'Hillary_Rodham_Clinton', 'Ted_Cruz'
-- YouTry
---
-- fill in the right sql query here
Load a visualization library
This code is copied after doing a live google search (by Michael Armbrust at Spark Summit East February 2016 shared from https://twitter.com/michaelarmbrust/status/699969850475737088). The d3ivan
package is an updated version of the original package used by Michael Armbrust as it needed some TLC for Spark 2.2 on newer databricks notebook. These changes were kindly made by Ivan Sadikov from Middle Earth.
You need to hit the Play Button in next cell and 'Run Cell' exactly once.
package d3ivan
// We use a package object so that we can define top level classes like Edge that need to be used in other cells
import org.apache.spark.sql._
import com.databricks.backend.daemon.driver.EnhancedRDDFunctions.displayHTML
case class Edge(src: String, dest: String, count: Long)
case class Node(name: String)
case class Link(source: Int, target: Int, value: Long)
case class Graph(nodes: Seq[Node], links: Seq[Link])
object graphs {
// val sqlContext = SQLContext.getOrCreate(org.apache.spark.SparkContext.getOrCreate()) /// fix
val sqlContext = SparkSession.builder().getOrCreate().sqlContext
import sqlContext.implicits._
def force(clicks: Dataset[Edge], height: Int = 100, width: Int = 960): Unit = {
val data = clicks.collect()
val nodes = (data.map(_.src) ++ data.map(_.dest)).map(_.replaceAll("_", " ")).toSet.toSeq.map(Node)
val links = data.map { t =>
Link(nodes.indexWhere(_.name == t.src.replaceAll("_", " ")), nodes.indexWhere(_.name == t.dest.replaceAll("_", " ")), t.count / 20 + 1)
}
showGraph(height, width, Seq(Graph(nodes, links)).toDF().toJSON.first())
}
/**
* Displays a force directed graph using d3
* input: {"nodes": [{"name": "..."}], "links": [{"source": 1, "target": 2, "value": 0}]}
*/
def showGraph(height: Int, width: Int, graph: String): Unit = {
displayHTML(s"""
<style>
.node_circle {
stroke: #777;
stroke-width: 1.3px;
}
.node_label {
pointer-events: none;
}
.link {
stroke: #777;
stroke-opacity: .2;
}
.node_count {
stroke: #777;
stroke-width: 1.0px;
fill: #999;
}
text.legend {
font-family: Verdana;
font-size: 13px;
fill: #000;
}
.node text {
font-family: "Helvetica Neue","Helvetica","Arial",sans-serif;
font-size: 17px;
font-weight: 200;
}
</style>
<div id="clicks-graph">
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var graph = $graph;
var width = $width,
height = $height;
var color = d3.scale.category20();
var force = d3.layout.force()
.charge(-700)
.linkDistance(180)
.size([width, height]);
var svg = d3.select("#clicks-graph").append("svg")
.attr("width", width)
.attr("height", height);
force
.nodes(graph.nodes)
.links(graph.links)
.start();
var link = svg.selectAll(".link")
.data(graph.links)
.enter().append("line")
.attr("class", "link")
.style("stroke-width", function(d) { return Math.sqrt(d.value); });
var node = svg.selectAll(".node")
.data(graph.nodes)
.enter().append("g")
.attr("class", "node")
.call(force.drag);
node.append("circle")
.attr("r", 10)
.style("fill", function (d) {
if (d.name.startsWith("other")) { return color(1); } else { return color(2); };
})
node.append("text")
.attr("dx", 10)
.attr("dy", ".35em")
.text(function(d) { return d.name });
//Now we are giving the SVGs co-ordinates - the force layout is generating the co-ordinates which this code is using to update the attributes of the SVG elements
force.on("tick", function () {
link.attr("x1", function (d) {
return d.source.x;
})
.attr("y1", function (d) {
return d.source.y;
})
.attr("x2", function (d) {
return d.target.x;
})
.attr("y2", function (d) {
return d.target.y;
});
d3.selectAll("circle").attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
d3.selectAll("text").attr("x", function (d) {
return d.x;
})
.attr("y", function (d) {
return d.y;
});
});
</script>
</div>
""")
}
def help() = {
displayHTML("""
<p>
Produces a force-directed graph given a collection of edges of the following form:</br>
<tt><font color="#a71d5d">case class</font> <font color="#795da3">Edge</font>(<font color="#ed6a43">src</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">dest</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">count</font>: <font color="#a71d5d">Long</font>)</tt>
</p>
<p>Usage:<br/>
<tt><font color="#a71d5d">import</font> <font color="#ed6a43">d3._</font></tt><br/>
<tt><font color="#795da3">graphs.force</font>(</br>
<font color="#ed6a43">height</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">width</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">clicks</font>: <font color="#795da3">Dataset</font>[<font color="#795da3">Edge</font>])</tt>
</p>""")
}
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
d3ivan.graphs.help()
Produces a force-directed graph given a collection of edges of the following form: case class Edge(src: String, dest: String, count: Long)
Usage:
import d3._
graphs.force(
height = 500,
width = 500,
clicks: Dataset[Edge])
d3ivan.graphs.force(
height = 800,
width = 800,
clicks = sql("""
SELECT
prev_title AS src,
curr_title AS dest,
n AS count FROM clicks
WHERE
curr_title IN ('Donald_Trump', 'Bernie_Sanders', 'Hillary_Rodham_Clinton', 'Ted_Cruz') AND
prev_id IS NOT NULL AND prev_title != 'Main_Page'
ORDER BY n DESC
LIMIT 20""").as[d3ivan.Edge])
What we have done above is essentially pass the output of an SQL query into a D3 visualizer via javascript. Don't worry about all the details. The main idea here is that SQL and interactive visualizations usually come together in a proper data exploratory tool and the above steps are minimal excursions into how to do it in a simple way from within a notebook environment like databricks. Python and R have many plotting libraries and we can always write the dataframe to parquet and load it into pySpark or SparkR to leverage those languages. But D3 is a nice solutions also especially if you want somethinf customized for your queries.
Convert raw data to parquet
Recall:
Apache Parquet is a columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language. It is a more efficient way to store data frames.
- To understand the ideas read Dremel: Interactive Analysis of Web-Scale Datasets, Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton and Theo Vassilakis,Proc. of the 36th Int'l Conf on Very Large Data Bases (2010), pp. 330-339, whose Abstract is as follows:
- Dremel is a scalable, interactive ad-hoc query system for analysis of read-only nested data. By combining multi-level execution trees and columnar data layouts it is capable of running aggregation queries over trillion-row tables in seconds. The system scales to thousands of CPUs and petabytes of data, and has thousands of users at Google. In this paper, we describe the architecture and implementation of Dremel, and explain how it complements MapReduce-based computing. We present a novel columnar storage representation for nested records and discuss experiments on few-thousand node instances of the system.
displayHTML(frameIt("https://parquet.apache.org/documentation/latest/",350))
// Convert the DatFrame to a more efficent format to speed up our analysis
clickstream.
write.
mode(SaveMode.Overwrite).
parquet("/datasets/wiki-clickstream")
Load parquet file efficiently and quickly into a DataFrame
Now we can simply load from this parquet file next time instead of creating the RDD from the text file (much slower).
Also using parquet files to store DataFrames allows us to go between languages quickly in a a scalable manner.
val clicks = sqlContext.read.parquet("/datasets/wiki-clickstream")
clicks: org.apache.spark.sql.DataFrame = [prev_id: int, curr_id: int ... 4 more fields]
clicks.printSchema
root
|-- prev_id: integer (nullable = true)
|-- curr_id: integer (nullable = true)
|-- n: integer (nullable = true)
|-- prev_title: string (nullable = true)
|-- curr_title: string (nullable = true)
|-- type: string (nullable = true)
display(clicks) // let's display this DataFrame
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
1.3710401e7 | 1.2653094e7 | 12.0 | Punk_rock_subgenres | Music_genre | link |
25423.0 | 1.2653094e7 | 16.0 | Rock_music | Music_genre | other |
178244.0 | 1.2653094e7 | 10.0 | Muse_(band) | Music_genre | link |
156547.0 | 1.2653094e7 | 10.0 | Remix | Music_genre | link |
1564758.0 | 1.2653094e7 | 73.0 | Pop_rock | Music_genre | link |
18839.0 | 1.2653094e7 | 203.0 | Music | Music_genre | link |
5079506.0 | 1.2653094e7 | 10.0 | Pink_Floyd | Music_genre | link |
24624.0 | 1.2653094e7 | 167.0 | Pop_music | Music_genre | link |
379560.0 | 1.2653094e7 | 15.0 | Musical_form | Music_genre | link |
1.5580374e7 | 1.2653094e7 | 197.0 | Main_Page | Music_genre | other |
2.4297671e7 | 1.2653094e7 | 862.0 | Popular_music | Music_genre | link |
1.2653094e7 | 1.2653094e7 | 23.0 | Music_genre | Music_genre | other |
25520.0 | 1.2653094e7 | 90.0 | Reggae | Music_genre | link |
54783.0 | 1.2653094e7 | 18.0 | Music_theory | Music_genre | link |
147311.0 | 1.2653094e7 | 14.0 | Ray_Charles | Music_genre | link |
8886086.0 | 1.2653094e7 | 11.0 | Oi! | Music_genre | link |
19499.0 | 1.2653094e7 | 10.0 | Mariah_Carey | Music_genre | link |
3.8954428e7 | 1.2653094e7 | 23.0 | Sam_Smith_(singer) | Music_genre | link |
2110323.0 | 1.2653094e7 | 12.0 | Rihanna | Music_genre | link |
null | 1.2653094e7 | 632.0 | other-other | Music_genre | other |
null | 1.2653094e7 | 20.0 | other-facebook | Music_genre | other |
62808.0 | 1.2653094e7 | 56.0 | Soul_music | Music_genre | link |
null | 1.2653094e7 | 514.0 | other-bing | Music_genre | other |
162707.0 | 1.2653094e7 | 95.0 | Singing | Music_genre | link |
5422144.0 | 1.2653094e7 | 35.0 | Taylor_Swift | Music_genre | link |
27176.0 | 1.2653094e7 | 16.0 | Ska | Music_genre | link |
28830.0 | 1.2653094e7 | 21.0 | Song | Music_genre | link |
4.1884523e7 | 1.2653094e7 | 22.0 | Vaporwave | Music_genre | other |
295560.0 | 1.2653094e7 | 13.0 | Style | Music_genre | link |
424093.0 | 1.2653094e7 | 10.0 | 1990s_in_music | Music_genre | other |
236918.0 | 1.2653094e7 | 14.0 | Concert | Music_genre | other |
41536.0 | 1.2653094e7 | 11.0 | Duke_Ellington | Music_genre | link |
2.5276055e7 | 1.2653094e7 | 16.0 | Ariana_Grande | Music_genre | link |
363651.0 | 1.2653094e7 | 10.0 | Dark_wave | Music_genre | link |
183304.0 | 1.2653094e7 | 11.0 | Dub_(music) | Music_genre | link |
4637590.0 | 1.2653094e7 | 16.0 | Bob_Dylan | Music_genre | link |
83688.0 | 1.2653094e7 | 16.0 | Beyoncé | Music_genre | link |
3.0528002e7 | 1.2653094e7 | 17.0 | Ed_Sheeran | Music_genre | link |
8239846.0 | 1.2653094e7 | 10.0 | Bob_Marley | Music_genre | link |
880.0 | 1.2653094e7 | 10.0 | ABBA | Music_genre | link |
5261.0 | 1.2653094e7 | 13.0 | Celtic_music | Music_genre | other |
2.7005455e7 | 1.2653094e7 | 12.0 | Bruno_Mars | Music_genre | link |
1.0232935e7 | 1.2653094e7 | 10.0 | Diatonic_and_chromatic | Music_genre | other |
7966.0 | 1.2653094e7 | 25.0 | Disco | Music_genre | link |
413723.0 | 1.2653094e7 | 12.0 | Heavy_metal_subgenres | Music_genre | link |
168377.0 | 1.2653094e7 | 40.0 | Folk_rock | Music_genre | other |
1.1655198e7 | 1.2653094e7 | 15.0 | Ishkur's_Guide_to_Electronic_Music | Music_genre | link |
3.0863005e7 | 1.2653094e7 | 13.0 | List_of_Christian_bands_and_artists_by_genre | Music_genre | link |
3.1976854e7 | 1.2653094e7 | 11.0 | Japanese_Girl | Music_genre | link |
10778.0 | 1.2653094e7 | 60.0 | Funk | Music_genre | link |
171111.0 | 1.2653094e7 | 11.0 | Honky-tonk | Music_genre | link |
4.1518485e7 | 1.2653094e7 | 10.0 | Hozier_(musician) | Music_genre | other |
1.198307e7 | 1.2653094e7 | 17.0 | Johnny_Cash | Music_genre | link |
3.1919748e7 | 1.2653094e7 | 31.0 | FIFA_12 | Music_genre | link |
172830.0 | 1.2653094e7 | 11.0 | Fado | Music_genre | link |
1.6477368e7 | 1.2653094e7 | 18.0 | Katy_Perry | Music_genre | link |
2319440.0 | 1.2653094e7 | 15.0 | List_of_saxophonists | Music_genre | link |
6921880.0 | 1.2653094e7 | 11.0 | List_of_composers_by_name | Music_genre | other |
2878021.0 | 1.2653094e7 | 16.0 | List_of_country_genres | Music_genre | link |
2.399895e7 | 1.2653094e7 | 28.0 | Lists_of_musicians | Music_genre | link |
559487.0 | 1.2653094e7 | 20.0 | List_of_styles_of_music:_S–Z | Music_genre | link |
559484.0 | 1.2653094e7 | 70.0 | List_of_styles_of_music:_A–F | Music_genre | link |
417829.0 | 1.2653094e7 | 18.0 | List_of_all-female_bands | Music_genre | link |
275671.0 | 1.2653094e7 | 44.0 | List_of_electronic_music_genres | Music_genre | link |
1.449809e7 | 1.2653094e7 | 13.0 | Fall_Out_Boy | Music_genre | link |
4429395.0 | 1.2653094e7 | 20.0 | Eminem | Music_genre | link |
973905.0 | 1.2653094e7 | 24.0 | Genealogy_of_musical_genres | Music_genre | link |
3.6042633e7 | 1.2653094e7 | 12.0 | Electro_house | Music_genre | other |
682482.0 | 1.2653094e7 | 53.0 | Human | Music_genre | link |
2.9909823e7 | 1.2653094e7 | 39.0 | Kendrick_Lamar | Music_genre | link |
7653811.0 | 1.2653094e7 | 19.0 | Hip_hop_(disambiguation) | Music_genre | link |
11181.0 | 1.2653094e7 | 10.0 | Frank_Sinatra | Music_genre | link |
3.3209238e7 | 1.2653094e7 | 13.0 | Lana_Del_Rey | Music_genre | link |
629945.0 | 1.2653094e7 | 29.0 | K-pop | Music_genre | link |
1.8945847e7 | 1.2653094e7 | 225.0 | Hip_hop_music | Music_genre | link |
2527136.0 | 1.2653094e7 | 14.0 | Jazz_poetry | Music_genre | link |
124802.0 | 1.2653094e7 | 38.0 | Hard_rock | Music_genre | link |
44706.0 | 1.2653094e7 | 283.0 | Genre | Music_genre | link |
73010.0 | 1.2653094e7 | 23.0 | Hardcore_punk | Music_genre | link |
1.7782843e7 | 1.2653094e7 | 22.0 | Lady_Gaga | Music_genre | link |
9355587.0 | 1.2653094e7 | 154.0 | Example_(musician) | Music_genre | link |
15613.0 | 1.2653094e7 | 218.0 | Jazz | Music_genre | link |
547533.0 | 1.2653094e7 | 10.0 | Crossover_(music) | Music_genre | link |
2.4686326e7 | 1.2653094e7 | 15.0 | 21st-century_classical_music | Music_genre | link |
7885.0 | 1.2653094e7 | 15.0 | Dance | Music_genre | other |
3.3269956e7 | 1.2653094e7 | 24.0 | 5ive_(disambiguation) | Music_genre | other |
167409.0 | 1.2653094e7 | 11.0 | Alternative_rock | Music_genre | other |
1.8127544e7 | 1.2653094e7 | 11.0 | Ah_Me,_Ah_My | Music_genre | link |
386347.0 | 1.2653094e7 | 15.0 | Anti-folk | Music_genre | link |
3.4953684e7 | 1.2653094e7 | 17.0 | Charli_XCX | Music_genre | link |
392811.0 | 1.2653094e7 | 23.0 | African-American_music | Music_genre | other |
2468299.0 | 1.2653094e7 | 13.0 | CD-Text | Music_genre | link |
3603298.0 | 1.2653094e7 | 150.0 | Art_Official_Intelligence:_Mosaic_Thump | Music_genre | link |
66038.0 | 1.2653094e7 | 28.0 | Breakbeat | Music_genre | link |
368323.0 | 1.2653094e7 | 12.0 | Cockney_Rejects | Music_genre | link |
255791.0 | 1.2653094e7 | 56.0 | Art_music | Music_genre | link |
461637.0 | 1.2653094e7 | 10.0 | Cumbia | Music_genre | link |
3352.0 | 1.2653094e7 | 118.0 | Blues | Music_genre | link |
149681.0 | 1.2653094e7 | 10.0 | Beck | Music_genre | link |
214666.0 | 1.2653094e7 | 402.0 | List_of_music_styles | Music_genre | link |
5347350.0 | 1.2653094e7 | 27.0 | List_of_popular_music_genres | Music_genre | link |
2.7052778e7 | 1.2653094e7 | 54.0 | List_of_genres | Music_genre | link |
3142048.0 | 1.2653094e7 | 29.0 | List_of_jazz_genres | Music_genre | link |
559485.0 | 1.2653094e7 | 14.0 | List_of_styles_of_music:_G–M | Music_genre | link |
413631.0 | 1.2653094e7 | 12.0 | List_of_blues_genres | Music_genre | link |
303261.0 | 1.2653094e7 | 10.0 | Top_40 | Music_genre | other |
147687.0 | 1.2653094e7 | 10.0 | Stevie_Wonder | Music_genre | link |
31056.0 | 1.2653094e7 | 10.0 | The_Rolling_Stones | Music_genre | link |
29812.0 | 1.2653094e7 | 84.0 | The_Beatles | Music_genre | link |
3208697.0 | 1.2653094e7 | 16.0 | Youth_subculture | Music_genre | link |
null | 1.2653094e7 | 2746.0 | other-empty | Music_genre | other |
28261.0 | 1.2653094e7 | 38.0 | Samba | Music_genre | other |
1795886.0 | 1.2653094e7 | 11.0 | Record_chart | Music_genre | other |
21151.0 | 1.2653094e7 | 12.0 | New_wave_music | Music_genre | link |
248462.0 | 1.2653094e7 | 20.0 | Music_of_Colombia | Music_genre | link |
7504750.0 | 1.2653094e7 | 21.0 | Music_festival | Music_genre | other |
1.932133e7 | 1.2653094e7 | 41.0 | Nightclub | Music_genre | link |
199630.0 | 1.2653094e7 | 11.0 | Pop_punk | Music_genre | link |
171080.0 | 1.2653094e7 | 18.0 | Music_of_the_United_States | Music_genre | link |
18313.0 | 1.2653094e7 | 14.0 | Louis_Armstrong | Music_genre | link |
394633.0 | 1.2653094e7 | 16.0 | Reggaeton | Music_genre | link |
4635444.0 | 1.2653094e7 | 16.0 | March_(music) | Music_genre | other |
565560.0 | 1.2653094e7 | 11.0 | Protopunk | Music_genre | other |
37735.0 | 1.2653094e7 | 10.0 | Melody | Music_genre | other |
26168.0 | 1.2653094e7 | 59.0 | Rhythm_and_blues | Music_genre | link |
3.1772741e7 | 1.2653094e7 | 14.0 | One_Direction | Music_genre | link |
2.1065992e7 | 1.2653094e7 | 19.0 | Sex_(The_Necks_album) | Music_genre | link |
4.3272496e7 | 1.2653094e7 | 18.0 | Meghan_Trainor | Music_genre | link |
2.719197e7 | 1.2653094e7 | 15.0 | Moombahton | Music_genre | other |
3403168.0 | 1.2653094e7 | 35.0 | Outline_of_music | Music_genre | link |
null | 1.2653094e7 | 359.0 | other-yahoo | Music_genre | other |
2.888765e7 | 2.8887473e7 | 11.0 | Music_Group_(company) | Music_group_(disambiguation) | link |
20180.0 | 2.8887473e7 | 69.0 | Musical_ensemble | Music_group_(disambiguation) | link |
897299.0 | 232692.0 | 11.0 | Stan_Laurel | Music_hall | link |
103067.0 | 232692.0 | 15.0 | Stand-up_comedy | Music_hall | link |
1.2892136e7 | 232692.0 | 10.0 | Pack_Up_Your_Troubles_in_Your_Old_Kit-Bag | Music_hall | link |
2.0715761e7 | 232692.0 | 103.0 | The_boy_Jones | Music_hall | link |
9206390.0 | 232692.0 | 11.0 | Sunny_Afternoon | Music_hall | link |
3158351.0 | 232692.0 | 47.0 | The_Kinks | Music_hall | link |
470943.0 | 232692.0 | 16.0 | The_Triplets_of_Belleville | Music_hall | link |
326433.0 | 232692.0 | 32.0 | Variety_show | Music_hall | link |
null | 232692.0 | 417.0 | other-empty | Music_hall | other |
2246663.0 | 232692.0 | 45.0 | Martha_My_Dear | Music_hall | link |
24864.0 | 232692.0 | 23.0 | Professional_wrestling | Music_hall | link |
1.5580374e7 | 232692.0 | 35.0 | Main_Page | Music_hall | other |
5106604.0 | 232692.0 | 87.0 | Seymour_Hicks | Music_hall | link |
556635.0 | 232692.0 | 27.0 | When_I'm_Sixty-Four | Music_hall | link |
3.8027034e7 | 232692.0 | 46.0 | Songs_of_the_First_World_War | Music_hall | link |
null | 232692.0 | 93.0 | other-bing | Music_hall | other |
48235.0 | 232692.0 | 51.0 | Vaudeville | Music_hall | link |
null | 232692.0 | 103.0 | other-other | Music_hall | other |
null | 232692.0 | 77.0 | other-yahoo | Music_hall | other |
null | 232692.0 | 2106.0 | other-google | Music_hall | other |
null | 232692.0 | 231.0 | other-wikipedia | Music_hall | other |
null | 232692.0 | 15.0 | other-twitter | Music_hall | other |
2260734.0 | 232692.0 | 11.0 | List_of_musical_forms_by_era | Music_hall | link |
2861.0 | 232692.0 | 15.0 | Advertising | Music_hall | link |
7566837.0 | 232692.0 | 16.0 | Bioscope_show | Music_hall | link |
100096.0 | 232692.0 | 14.0 | Edwardian_era | Music_hall | link |
605891.0 | 232692.0 | 18.0 | David_Bowie_(1967_album) | Music_hall | link |
36999.0 | 232692.0 | 25.0 | Carry_On_(franchise) | Music_hall | link |
5142.0 | 232692.0 | 63.0 | Charlie_Chaplin | Music_hall | link |
95805.0 | 232692.0 | 13.0 | Leslie_Phillips | Music_hall | link |
1163667.0 | 232692.0 | 10.0 | I'm_Henery_the_Eighth,_I_Am | Music_hall | link |
1932690.0 | 232692.0 | 54.0 | Honey_Pie | Music_hall | link |
1468518.0 | 232692.0 | 34.0 | Her_Majesty_(song) | Music_hall | link |
43492.0 | 232692.0 | 10.0 | Ian_Dury | Music_hall | link |
6835232.0 | 232692.0 | 15.0 | Holiday_(Bee_Gees_song) | Music_hall | link |
1.871959e7 | 232692.0 | 13.0 | I_Do_Like_To_be_Beside_the_Seaside | Music_hall | link |
1084094.0 | 232692.0 | 28.0 | It's_a_Long_Way_to_Tipperary | Music_hall | link |
3832925.0 | 232692.0 | 25.0 | Good_Old-Fashioned_Lover_Boy | Music_hall | link |
8786.0 | 232692.0 | 19.0 | David_Bowie | Music_hall | link |
5130871.0 | 232692.0 | 52.0 | America's_Most_Endangered_Places | Music_hall | other |
428611.0 | 232692.0 | 14.0 | Can-can | Music_hall | link |
1.4923927e7 | 232692.0 | 11.0 | Concert_saloon | Music_hall | link |
3.0995031e7 | 232692.0 | 23.0 | American_burlesque | Music_hall | link |
null | 7570941.0 | 39.0 | other-google | Music_history_of_Barbados | other |
null | 2735439.0 | 49.0 | other-google | Music_history_of_Hungary | other |
null | 2735439.0 | 10.0 | other-empty | Music_history_of_Hungary | other |
null | 3430507.0 | 18.0 | other-empty | Music_history_of_Portugal | other |
387719.0 | 3430507.0 | 13.0 | Music_of_Portugal | Music_history_of_Portugal | link |
null | 3430507.0 | 80.0 | other-google | Music_history_of_Portugal | other |
null | 1616933.0 | 158.0 | other-empty | Music_history_of_the_United_States | other |
null | 1616933.0 | 1935.0 | other-google | Music_history_of_the_United_States | other |
null | 1616933.0 | 18.0 | other-wikipedia | Music_history_of_the_United_States | other |
null | 1616933.0 | 40.0 | other-yahoo | Music_history_of_the_United_States | other |
171080.0 | 1616933.0 | 25.0 | Music_of_the_United_States | Music_history_of_the_United_States | link |
null | 1616933.0 | 36.0 | other-other | Music_history_of_the_United_States | other |
null | 1616933.0 | 49.0 | other-bing | Music_history_of_the_United_States | other |
246497.0 | 1616933.0 | 10.0 | American_folk_music | Music_history_of_the_United_States | link |
1.8985287e7 | 1616933.0 | 57.0 | Culture_of_the_United_States | Music_history_of_the_United_States | link |
2.3932051e7 | 3.1437105e7 | 80.0 | 1960s_in_music | Music_history_of_the_United_States_in_the_1960s | link |
null | 3.1437105e7 | 103.0 | other-empty | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 23.0 | other-yahoo | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 12.0 | other-wikipedia | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 1679.0 | other-google | Music_history_of_the_United_States_in_the_1960s | other |
8544676.0 | 3.1437105e7 | 46.0 | Counterculture_of_the_1960s | Music_history_of_the_United_States_in_the_1960s | link |
null | 3.1437105e7 | 82.0 | other-bing | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 16.0 | other-other | Music_history_of_the_United_States_in_the_1960s | other |
null | 411041.0 | 16.0 | other-other | Music_history_of_the_United_States_in_the_1980s | other |
1616933.0 | 411041.0 | 10.0 | Music_history_of_the_United_States | Music_history_of_the_United_States_in_the_1980s | link |
null | 411041.0 | 36.0 | other-bing | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 11.0 | other-yahoo | Music_history_of_the_United_States_in_the_1980s | other |
23726.0 | 411041.0 | 15.0 | Pixies | Music_history_of_the_United_States_in_the_1980s | other |
411040.0 | 411041.0 | 11.0 | Music_history_of_the_United_States_in_the_1970s | Music_history_of_the_United_States_in_the_1980s | link |
1.9753121e7 | 411041.0 | 79.0 | 1980s_in_music | Music_history_of_the_United_States_in_the_1980s | link |
null | 411041.0 | 51.0 | other-empty | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 593.0 | other-google | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 11.0 | other-wikipedia | Music_history_of_the_United_States_in_the_1980s | other |
null | 1369822.0 | 23.0 | other-google | Music_in_Adygea | other |
247772.0 | 1369822.0 | 12.0 | Music_of_Russia | Music_in_Adygea | other |
407750.0 | 1369822.0 | 11.0 | Adygea | Music_in_Adygea | other |
735530.0 | 1284752.0 | 27.0 | Bashkortostan | Music_in_Bashkortostan | link |
61024.0 | 3.8584535e7 | 33.0 | Charleston,_South_Carolina | Music_in_Charleston | link |
null | 3.8584535e7 | 82.0 | other-google | Music_in_Charleston | other |
null | 3.8584535e7 | 21.0 | other-empty | Music_in_Charleston | other |
null | 2.5941812e7 | 28.0 | other-google | Music_in_Colonial_Mexico | other |
751099.0 | 1499681.0 | 28.0 | Dagestan | Music_in_Dagestan | other |
null | 1499681.0 | 10.0 | other-google | Music_in_Dagestan | other |
null | 1.1374661e7 | 19.0 | other-google | Music_in_Darkness | other |
null | 1.1374661e7 | 13.0 | other-wikipedia | Music_in_Darkness | other |
null | 1.1374661e7 | 10.0 | other-other | Music_in_Darkness | other |
1.3075438e7 | 1.1374661e7 | 62.0 | Ingmar_Bergman_filmography | Music_in_Darkness | link |
null | 2.5548658e7 | 77.0 | other-empty | Music_in_Dollhouse | other |
null | 2.5548658e7 | 11.0 | other-bing | Music_in_Dollhouse | other |
1.4014034e7 | 2.5548658e7 | 75.0 | Dollhouse_(TV_series) | Music_in_Dollhouse | link |
null | 2.5548658e7 | 253.0 | other-google | Music_in_Dollhouse | other |
null | 2.5548658e7 | 11.0 | other-wikipedia | Music_in_Dollhouse | other |
null | 1.6378289e7 | 45.0 | other-google | Music_in_Dresden | other |
null | 1264053.0 | 33.0 | other-google | Music_in_High_Places | other |
1264134.0 | 1264053.0 | 22.0 | Here's_to_the_Mourning | Music_in_High_Places | link |
1136526.0 | 1264053.0 | 20.0 | Unwritten_Law | Music_in_High_Places | link |
2.4597057e7 | 1264053.0 | 10.0 | Unwritten_Law_discography | Music_in_High_Places | link |
1179127.0 | 1499731.0 | 14.0 | Kuban_Cossacks | Music_in_Krasnodar_Krai | other |
474125.0 | 1499731.0 | 13.0 | Krasnodar_Krai | Music_in_Krasnodar_Krai | link |
8262427.0 | 5563451.0 | 20.0 | Leeds | Music_in_Leeds | link |
5563531.0 | 5563451.0 | 15.0 | List_of_bands_originating_in_Leeds | Music_in_Leeds | link |
null | 5563451.0 | 11.0 | other-wikipedia | Music_in_Leeds | other |
null | 5563451.0 | 311.0 | other-google | Music_in_Leeds | other |
null | 5563451.0 | 124.0 | other-empty | Music_in_Leeds | other |
473991.0 | 1499616.0 | 13.0 | Mordovia | Music_in_Mordovia | other |
null | 3087094.0 | 10.0 | other-empty | Music_in_Mouth | other |
4455620.0 | 3087094.0 | 12.0 | Neither_Am_I | Music_in_Mouth | link |
2.5688717e7 | 3087094.0 | 14.0 | Bell_X1_discography | Music_in_Mouth | link |
2809365.0 | 3087094.0 | 41.0 | Bell_X1_(band) | Music_in_Mouth | link |
277952.0 | 4.2439092e7 | 34.0 | Rita_Hayworth | Music_in_My_Heart | link |
null | 4.2439092e7 | 20.0 | other-google | Music_in_My_Heart | other |
174689.0 | 1492279.0 | 80.0 | Nenets_people | Music_in_Nenets_Autonomous_Okrug | other |
null | 3.9884449e7 | 227.0 | other-google | Music_in_Paris | other |
309852.0 | 3.9884449e7 | 10.0 | List_of_cultural_and_regional_genres_of_music | Music_in_Paris | other |
null | 3.9884449e7 | 24.0 | other-empty | Music_in_Paris | other |
22989.0 | 3.9884449e7 | 36.0 | Paris | Music_in_Paris | link |
null | 3.9530149e7 | 86.0 | other-google | Music_in_Varanasi | other |
null | 3.9530149e7 | 16.0 | other-empty | Music_in_Varanasi | other |
4108684.0 | 2129287.0 | 19.0 | WWF_The_Music,_Vol._5 | Music_in_professional_wrestling | link |
1.4521129e7 | 2129287.0 | 17.0 | The_Time_Is_Now_(John_Cena_song) | Music_in_professional_wrestling | link |
3174133.0 | 2129287.0 | 12.0 | WWE_Originals | Music_in_professional_wrestling | link |
1.4681044e7 | 2129287.0 | 14.0 | The_Bella_Twins | Music_in_professional_wrestling | link |
1954598.0 | 2129287.0 | 14.0 | You_Can't_See_Me | Music_in_professional_wrestling | link |
null | 2129287.0 | 115.0 | other-empty | Music_in_professional_wrestling | other |
4373640.0 | 2129287.0 | 12.0 | Roman_Reigns | Music_in_professional_wrestling | link |
3.5347635e7 | 2129287.0 | 16.0 | Sasha_Banks | Music_in_professional_wrestling | link |
611396.0 | 2129287.0 | 36.0 | Rick_Derringer | Music_in_professional_wrestling | link |
2121727.0 | 2129287.0 | 17.0 | Music_at_sporting_events | Music_in_professional_wrestling | link |
4395990.0 | 2129287.0 | 11.0 | Piledriver:_The_Wrestling_Album_2 | Music_in_professional_wrestling | link |
665823.0 | 2129287.0 | 13.0 | Randy_Orton | Music_in_professional_wrestling | link |
303225.0 | 2129287.0 | 67.0 | Triple_H | Music_in_professional_wrestling | link |
null | 2129287.0 | 18.0 | other-bing | Music_in_professional_wrestling | other |
655575.0 | 2129287.0 | 24.0 | Sting_(wrestler) | Music_in_professional_wrestling | link |
4395892.0 | 2129287.0 | 12.0 | The_Wrestling_Album | Music_in_professional_wrestling | link |
2.5816978e7 | 2129287.0 | 40.0 | WWE_The_Music:_A_New_Day,_Vol._10 | Music_in_professional_wrestling | link |
4.345633e7 | 2129287.0 | 31.0 | WWE_Music_Group_discography | Music_in_professional_wrestling | link |
6434529.0 | 2129287.0 | 332.0 | WWE_Music_Group | Music_in_professional_wrestling | link |
345792.0 | 2129287.0 | 24.0 | The_Undertaker | Music_in_professional_wrestling | link |
null | 2129287.0 | 12.0 | other-other | Music_in_professional_wrestling | other |
4.0532625e7 | 2129287.0 | 10.0 | Alexander_Rusev | Music_in_professional_wrestling | link |
156126.0 | 2129287.0 | 19.0 | Dwayne_Johnson | Music_in_professional_wrestling | link |
2321041.0 | 2129287.0 | 10.0 | Gravity_(Our_Lady_Peace_album) | Music_in_professional_wrestling | other |
2710336.0 | 2129287.0 | 52.0 | Jim_Johnston_(composer) | Music_in_professional_wrestling | link |
4786864.0 | 2129287.0 | 39.0 | Entrance_music | Music_in_professional_wrestling | link |
null | 2129287.0 | 14.0 | other-yahoo | Music_in_professional_wrestling | other |
null | 2129287.0 | 460.0 | other-google | Music_in_professional_wrestling | other |
null | 2129287.0 | 28.0 | other-wikipedia | Music_in_professional_wrestling | other |
4.1413713e7 | 2129287.0 | 14.0 | Lana_(wrestling) | Music_in_professional_wrestling | link |
345802.0 | 2129287.0 | 17.0 | John_Cena | Music_in_professional_wrestling | link |
1.7487089e7 | 2129287.0 | 31.0 | List_of_Total_Nonstop_Action_Wrestling_albums | Music_in_professional_wrestling | link |
289900.0 | 2.0009687e7 | 93.0 | Castlevania | Music_in_the_Castlevania_series | link |
2852745.0 | 2.0009687e7 | 12.0 | Castlevania:_Portrait_of_Ruin | Music_in_the_Castlevania_series | link |
null | 2.0009687e7 | 16.0 | other-empty | Music_in_the_Castlevania_series | other |
null | 2.0009687e7 | 218.0 | other-google | Music_in_the_Castlevania_series | other |
null | 1182126.0 | 16.0 | other-wikipedia | Music_in_the_Chechen_Republic | other |
null | 1182126.0 | 34.0 | other-google | Music_in_the_Chechen_Republic | other |
247772.0 | 1182126.0 | 16.0 | Music_of_Russia | Music_in_the_Chechen_Republic | other |
6427285.0 | 1182126.0 | 10.0 | Makka_Sagaipova | Music_in_the_Chechen_Republic | other |
null | 1.1083892e7 | 23.0 | other-google | Music_in_the_Community | other |
474004.0 | 1518955.0 | 17.0 | Komi_Republic | Music_in_the_Komi_Republic | other |
null | 5520065.0 | 104.0 | other-google | Music_in_the_Parks | other |
3935908.0 | 5520065.0 | 11.0 | Hersheypark_Arena | Music_in_the_Parks | link |
57905.0 | 1284783.0 | 19.0 | Sakha_Republic | Music_in_the_Sakha_Republic | link |
483558.0 | 1284783.0 | 58.0 | Yakuts | Music_in_the_Sakha_Republic | link |
null | 1284764.0 | 98.0 | other-google | Music_in_the_Tyva_Republic | other |
3309582.0 | 1284764.0 | 15.0 | Acoustic_scale | Music_in_the_Tyva_Republic | link |
null | 1284764.0 | 10.0 | other-bing | Music_in_the_Tyva_Republic | other |
483570.0 | 1284764.0 | 25.0 | Tuvans | Music_in_the_Tyva_Republic | other |
719202.0 | 1284764.0 | 10.0 | Igil | Music_in_the_Tyva_Republic | other |
1616030.0 | 1284764.0 | 49.0 | Tuva | Music_in_the_Tyva_Republic | other |
null | 1284764.0 | 37.0 | other-empty | Music_in_the_Tyva_Republic | other |
1946204.0 | null | 31.0 | Music_industry | Music_industry_of_Asia | redlink |
1946204.0 | 3.9326699e7 | 73.0 | Music_industry | Music_industry_of_East_Asia | link |
414082.0 | 3.9326699e7 | 28.0 | J-pop | Music_industry_of_East_Asia | link |
null | 3.9326699e7 | 53.0 | other-empty | Music_industry_of_East_Asia | other |
null | 3.9326699e7 | 186.0 | other-google | Music_industry_of_East_Asia | other |
null | 3.9326699e7 | 10.0 | other-twitter | Music_industry_of_East_Asia | other |
629945.0 | 3.9326699e7 | 37.0 | K-pop | Music_industry_of_East_Asia | link |
1946204.0 | null | 62.0 | Music_industry | Music_industry_of_Europe | redlink |
1946204.0 | null | 92.0 | Music_industry | Music_industry_of_North_America | redlink |
1946204.0 | null | 10.0 | Music_industry | Music_industry_of_South_America | redlink |
null | 1.7025056e7 | 77.0 | other-google | Music_informatics | other |
null | 261193.0 | 706.0 | other-google | Music_information_retrieval | other |
null | 261193.0 | 14.0 | other-wikipedia | Music_information_retrieval | other |
2.1189305e7 | 261193.0 | 11.0 | Audio_engineer | Music_information_retrieval | link |
1.4004969e7 | 261193.0 | 11.0 | Audio_mining | Music_information_retrieval | link |
125297.0 | 261193.0 | 11.0 | Dynamic_programming | Music_information_retrieval | link |
42253.0 | 261193.0 | 19.0 | Data_mining | Music_information_retrieval | other |
3267504.0 | 261193.0 | 19.0 | Music_OCR | Music_information_retrieval | link |
1708126.0 | 261193.0 | 15.0 | Pitch_detection_algorithm | Music_information_retrieval | link |
null | 261193.0 | 177.0 | other-empty | Music_information_retrieval | other |
null | 261193.0 | 27.0 | other-bing | Music_information_retrieval | other |
null | 261193.0 | 60.0 | other-other | Music_information_retrieval | other |
300730.0 | 261193.0 | 24.0 | Mel-frequency_cepstrum | Music_information_retrieval | link |
1.7025056e7 | 261193.0 | 11.0 | Music_informatics | Music_information_retrieval | other |
null | 261193.0 | 18.0 | other-yahoo | Music_information_retrieval | other |
null | 981637.0 | 10.0 | other-yahoo | Music_library | other |
null | 981637.0 | 18.0 | other-wikipedia | Music_library | other |
null | 981637.0 | 205.0 | other-google | Music_library | other |
9305406.0 | 981637.0 | 77.0 | Production_music | Music_library | other |
null | 981637.0 | 13.0 | other-bing | Music_library | other |
null | 981637.0 | 17.0 | other-other | Music_library | other |
null | 981637.0 | 50.0 | other-empty | Music_library | other |
null | 4.2280305e7 | 14.0 | other-google | Music_massage_therapy | other |
null | 4530556.0 | 12.0 | other-google | Music_of_Abruzzo | other |
null | 3721528.0 | 40.0 | other-google | Music_of_Adelaide | other |
1148.0 | 3721528.0 | 30.0 | Adelaide | Music_of_Adelaide | link |
null | 412891.0 | 47.0 | other-empty | Music_of_Alabama | other |
null | 412891.0 | 36.0 | other-yahoo | Music_of_Alabama | other |
null | 412891.0 | 402.0 | other-google | Music_of_Alabama | other |
null | 412891.0 | 24.0 | other-wikipedia | Music_of_Alabama | other |
null | 412891.0 | 15.0 | other-other | Music_of_Alabama | other |
1291814.0 | 412891.0 | 14.0 | Music_of_Alaska | Music_of_Alabama | link |
null | 412891.0 | 39.0 | other-bing | Music_of_Alabama | other |
null | 1291814.0 | 16.0 | other-bing | Music_of_Alaska | other |
624.0 | 1291814.0 | 17.0 | Alaska | Music_of_Alaska | link |
null | 1291814.0 | 18.0 | other-empty | Music_of_Alaska | other |
null | 1291814.0 | 19.0 | other-wikipedia | Music_of_Alaska | other |
null | 1291814.0 | 279.0 | other-google | Music_of_Alaska | other |
null | 1291814.0 | 11.0 | other-yahoo | Music_of_Alaska | other |
null | 999857.0 | 98.0 | other-google | Music_of_Alberta | other |
null | 999857.0 | 12.0 | other-wikipedia | Music_of_Alberta | other |
248269.0 | 999857.0 | 13.0 | Music_of_Canada | Music_of_Alberta | link |
null | 243022.0 | 15.0 | other-yahoo | Music_of_Algeria | other |
358.0 | 243022.0 | 26.0 | Algeria | Music_of_Algeria | link |
null | 243022.0 | 28.0 | other-bing | Music_of_Algeria | other |
null | 243022.0 | 69.0 | other-other | Music_of_Algeria | other |
1424498.0 | 243022.0 | 15.0 | Andalusian_classical_music | Music_of_Algeria | link |
1116955.0 | 243022.0 | 14.0 | Islamic_music | Music_of_Algeria | link |
451841.0 | 243022.0 | 16.0 | Music_of_North_Africa | Music_of_Algeria | link |
null | 243022.0 | 135.0 | other-empty | Music_of_Algeria | other |
null | 243022.0 | 33.0 | other-wikipedia | Music_of_Algeria | other |
null | 243022.0 | 449.0 | other-google | Music_of_Algeria | other |
null | 561191.0 | 49.0 | other-google | Music_of_Andorra | other |
600.0 | 561191.0 | 28.0 | Andorra | Music_of_Andorra | link |
null | 561191.0 | 69.0 | other-empty | Music_of_Andorra | other |
null | 364942.0 | 27.0 | other-empty | Music_of_Anguilla | other |
null | 364942.0 | 26.0 | other-google | Music_of_Anguilla | other |
1217.0 | 364942.0 | 72.0 | Anguilla | Music_of_Anguilla | link |
null | 1501429.0 | 16.0 | other-google | Music_of_Anhui | other |
154175.0 | 987406.0 | 18.0 | Calypso_music | Music_of_Antigua_and_Barbuda | link |
951.0 | 987406.0 | 18.0 | Antigua_and_Barbuda | Music_of_Antigua_and_Barbuda | link |
9887612.0 | 987406.0 | 35.0 | Benna_(genre) | Music_of_Antigua_and_Barbuda | link |
7504750.0 | 987406.0 | 16.0 | Music_festival | Music_of_Antigua_and_Barbuda | link |
null | 987406.0 | 22.0 | other-other | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 17.0 | other-bing | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 248.0 | other-google | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 110.0 | other-empty | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 21.0 | other-wikipedia | Music_of_Antigua_and_Barbuda | other |
3181553.0 | 987406.0 | 26.0 | Banjar | Music_of_Antigua_and_Barbuda | other |
null | 1400826.0 | 25.0 | other-google | Music_of_Aquitaine | other |
403097.0 | 247169.0 | 20.0 | Culture_of_Argentina | Music_of_Argentina | link |
309852.0 | 247169.0 | 10.0 | List_of_cultural_and_regional_genres_of_music | Music_of_Argentina | link |
2569276.0 | 247169.0 | 11.0 | Argentine_cumbia | Music_of_Argentina | link |
1.8951905e7 | 247169.0 | 80.0 | Argentina | Music_of_Argentina | link |
58895.0 | 247169.0 | 48.0 | Latin_American_music | Music_of_Argentina | link |
null | 247169.0 | 60.0 | other-yahoo | Music_of_Argentina | other |
null | 247169.0 | 244.0 | other-empty | Music_of_Argentina | other |
null | 247169.0 | 126.0 | other-wikipedia | Music_of_Argentina | other |
null | 247169.0 | 2174.0 | other-google | Music_of_Argentina | other |
null | 247169.0 | 115.0 | other-bing | Music_of_Argentina | other |
376118.0 | 247169.0 | 21.0 | Tango_music | Music_of_Argentina | link |
null | 247169.0 | 39.0 | other-other | Music_of_Argentina | other |
null | 410801.0 | 35.0 | other-other | Music_of_Armenia | other |
null | 410801.0 | 16.0 | other-bing | Music_of_Armenia | other |
241240.0 | 410801.0 | 13.0 | Sabre_Dance | Music_of_Armenia | link |
8473458.0 | 410801.0 | 10.0 | Armenian_dance | Music_of_Armenia | link |
1.0918072e7 | 410801.0 | 56.0 | Armenia | Music_of_Armenia | link |
865062.0 | 410801.0 | 25.0 | Duduk | Music_of_Armenia | link |
232847.0 | 410801.0 | 15.0 | Aram_Khachaturian | Music_of_Armenia | link |
413618.0 | 410801.0 | 10.0 | Music_of_Iran | Music_of_Armenia | link |
2058881.0 | 410801.0 | 39.0 | Middle_Eastern_music | Music_of_Armenia | link |
92149.0 | 410801.0 | 34.0 | Oud | Music_of_Armenia | other |
2.3931407e7 | 410801.0 | 10.0 | Pop-folk | Music_of_Armenia | link |
285300.0 | 410801.0 | 12.0 | Qanun_(instrument) | Music_of_Armenia | link |
null | 410801.0 | 208.0 | other-empty | Music_of_Armenia | other |
387816.0 | 410801.0 | 12.0 | Armenians | Music_of_Armenia | link |
2049464.0 | 410801.0 | 15.0 | Culture_of_Armenia | Music_of_Armenia | link |
732267.0 | 410801.0 | 16.0 | Komitas | Music_of_Armenia | link |
null | 410801.0 | 676.0 | other-google | Music_of_Armenia | other |
null | 410801.0 | 68.0 | other-wikipedia | Music_of_Armenia | other |
null | 410801.0 | 19.0 | other-yahoo | Music_of_Armenia | other |
null | 2591959.0 | 11.0 | other-empty | Music_of_Arunachal_Pradesh | other |
null | 2591959.0 | 13.0 | other-wikipedia | Music_of_Arunachal_Pradesh | other |
null | 2591959.0 | 70.0 | other-google | Music_of_Arunachal_Pradesh | other |
null | 1049220.0 | 141.0 | other-empty | Music_of_Assam | other |
null | 1049220.0 | 312.0 | other-google | Music_of_Assam | other |
null | 1049220.0 | 28.0 | other-other | Music_of_Assam | other |
602639.0 | 1049220.0 | 13.0 | Northeast_India | Music_of_Assam | link |
171300.0 | 3.489527e7 | 13.0 | Southern_hip_hop | Music_of_Atlanta | link |
null | 3.489527e7 | 42.0 | other-empty | Music_of_Atlanta | other |
null | 3.489527e7 | 596.0 | other-google | Music_of_Atlanta | other |
2206945.0 | 3.489527e7 | 24.0 | Atlanta_hip_hop | Music_of_Atlanta | link |
3138.0 | 3.489527e7 | 178.0 | Atlanta | Music_of_Atlanta | link |
null | 3.489527e7 | 12.0 | other-other | Music_of_Atlanta | other |
null | 3.489527e7 | 21.0 | other-bing | Music_of_Atlanta | other |
null | 308391.0 | 865.0 | other-google | Music_of_Austria | other |
null | 308391.0 | 52.0 | other-wikipedia | Music_of_Austria | other |
null | 308391.0 | 143.0 | other-empty | Music_of_Austria | other |
null | 308391.0 | 41.0 | other-yahoo | Music_of_Austria | other |
55866.0 | 308391.0 | 48.0 | Vienna | Music_of_Austria | link |
null | 308391.0 | 50.0 | other-bing | Music_of_Austria | other |
null | 308391.0 | 19.0 | other-other | Music_of_Austria | other |
2.6964606e7 | 308391.0 | 67.0 | Austria | Music_of_Austria | link |
2089641.0 | 1400477.0 | 17.0 | French_folk_music | Music_of_Auvergne | link |
null | 1400477.0 | 25.0 | other-google | Music_of_Auvergne | other |
null | 309778.0 | 415.0 | other-google | Music_of_Azerbaijan | other |
null | 309778.0 | 36.0 | other-wikipedia | Music_of_Azerbaijan | other |
440310.0 | 309778.0 | 24.0 | Music_of_Asia | Music_of_Azerbaijan | link |
null | 309778.0 | 155.0 | other-empty | Music_of_Azerbaijan | other |
746.0 | 309778.0 | 26.0 | Azerbaijan | Music_of_Azerbaijan | link |
null | 309778.0 | 17.0 | other-other | Music_of_Azerbaijan | other |
3470781.0 | 309778.0 | 10.0 | Mugham | Music_of_Azerbaijan | link |
null | 309778.0 | 26.0 | other-bing | Music_of_Azerbaijan | other |
null | 309778.0 | 14.0 | other-yahoo | Music_of_Azerbaijan | other |
58481.0 | 1923094.0 | 27.0 | Badakhshan | Music_of_Badakhshan | link |
null | 412724.0 | 64.0 | other-empty | Music_of_Bahrain | other |
null | 412724.0 | 111.0 | other-google | Music_of_Bahrain | other |
1.8933277e7 | 412724.0 | 13.0 | Bahrain | Music_of_Bahrain | link |
2.6997138e7 | 2753032.0 | 39.0 | Baltimore | Music_of_Baltimore | link |
null | 2753032.0 | 14.0 | other-yahoo | Music_of_Baltimore | other |
null | 2753032.0 | 32.0 | other-empty | Music_of_Baltimore | other |
null | 2753032.0 | 348.0 | other-google | Music_of_Baltimore | other |
null | 2753032.0 | 15.0 | other-wikipedia | Music_of_Baltimore | other |
1.0721944e7 | 2753032.0 | 10.0 | Spiderman_of_the_Rings | Music_of_Baltimore | link |
null | 2753032.0 | 17.0 | other-bing | Music_of_Baltimore | other |
null | 2753032.0 | 11.0 | other-other | Music_of_Baltimore | other |
null | 245850.0 | 49.0 | other-other | Music_of_Bangladesh | other |
null | 245850.0 | 12.0 | other-bing | Music_of_Bangladesh | other |
null | 245850.0 | 26.0 | other-yahoo | Music_of_Bangladesh | other |
3454.0 | 245850.0 | 26.0 | Bangladesh | Music_of_Bangladesh | link |
null | 245850.0 | 64.0 | other-wikipedia | Music_of_Bangladesh | other |
null | 245850.0 | 743.0 | other-google | Music_of_Bangladesh | other |
null | 245850.0 | 238.0 | other-empty | Music_of_Bangladesh | other |
440310.0 | 245850.0 | 25.0 | Music_of_Asia | Music_of_Bangladesh | link |
519963.0 | 245850.0 | 13.0 | Baul | Music_of_Bangladesh | link |
null | 4532941.0 | 11.0 | other-wikipedia | Music_of_Basilicata | other |
null | 4532941.0 | 15.0 | other-google | Music_of_Basilicata | other |
null | 8468129.0 | 713.0 | other-twitter | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 34.0 | other-wikipedia | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 1586.0 | other-google | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 478.0 | other-empty | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
3604689.0 | 8468129.0 | 36.0 | Battlestar_Galactica_(miniseries) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2.1304123e7 | 8468129.0 | 13.0 | Battlestar_Galactica_(season_2) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
413556.0 | 8468129.0 | 26.0 | All_Along_the_Watchtower | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 36.0 | other-yahoo | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 33.0 | other-bing | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 41.0 | other-other | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2391393.0 | 8468129.0 | 17.0 | Richard_Gibbs | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2700625.0 | 8468129.0 | 89.0 | Bear_McCreary | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
3604726.0 | 8468129.0 | 145.0 | Battlestar_Galactica_(2004_TV_series) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2821280.0 | 8468129.0 | 44.0 | Kara_Thrace | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
5457957.0 | 8468129.0 | 14.0 | Shape_of_Things_to_Come | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
247087.0 | 373626.0 | 20.0 | Music_of_the_Netherlands | Music_of_Belgium | link |
null | 373626.0 | 108.0 | other-empty | Music_of_Belgium | other |
null | 373626.0 | 16.0 | other-yahoo | Music_of_Belgium | other |
null | 373626.0 | 1081.0 | other-google | Music_of_Belgium | other |
null | 373626.0 | 46.0 | other-wikipedia | Music_of_Belgium | other |
143432.0 | 373626.0 | 31.0 | Culture_of_Belgium | Music_of_Belgium | link |
6180884.0 | 373626.0 | 20.0 | French_pop_music | Music_of_Belgium | link |
10878.0 | 373626.0 | 12.0 | Flanders | Music_of_Belgium | link |
3343.0 | 373626.0 | 47.0 | Belgium | Music_of_Belgium | link |
3.087116e7 | 373626.0 | 55.0 | New_Beat | Music_of_Belgium | link |
null | 373626.0 | 33.0 | other-bing | Music_of_Belgium | other |
null | 373626.0 | 22.0 | other-other | Music_of_Belgium | other |
null | 306641.0 | 32.0 | other-bing | Music_of_Belize | other |
null | 306641.0 | 25.0 | other-wikipedia | Music_of_Belize | other |
null | 306641.0 | 408.0 | other-google | Music_of_Belize | other |
null | 306641.0 | 134.0 | other-empty | Music_of_Belize | other |
null | 306641.0 | 15.0 | other-yahoo | Music_of_Belize | other |
3458.0 | 306641.0 | 17.0 | Belize | Music_of_Belize | link |
5052533.0 | 951080.0 | 19.0 | Rabindranath_Tagore | Music_of_Bengal | link |
1158934.0 | 951080.0 | 11.0 | Rabindra_Sangeet | Music_of_Bengal | link |
245850.0 | 951080.0 | 11.0 | Music_of_Bangladesh | Music_of_Bengal | link |
null | 951080.0 | 36.0 | other-other | Music_of_Bengal | other |
null | 951080.0 | 157.0 | other-empty | Music_of_Bengal | other |
null | 951080.0 | 42.0 | other-wikipedia | Music_of_Bengal | other |
null | 951080.0 | 801.0 | other-google | Music_of_Bengal | other |
null | 951080.0 | 11.0 | other-yahoo | Music_of_Bengal | other |
5985171.0 | 951080.0 | 10.0 | Culture_of_West_Bengal | Music_of_Bengal | link |
2.2612537e7 | 2.2648389e7 | 21.0 | Terry_Riley:_Cadenza_on_the_Night_Plain | Music_of_Bill_Evans | link |
null | 2.2648389e7 | 17.0 | other-google | Music_of_Bill_Evans | other |
null | 5508131.0 | 396.0 | other-empty | Music_of_Bollywood | other |
53207.0 | 5508131.0 | 42.0 | Record_producer | Music_of_Bollywood | other |
2.2138795e7 | 5508131.0 | 25.0 | Sad_Hindi_songs | Music_of_Bollywood | other |
4246.0 | 5508131.0 | 96.0 | Bollywood | Music_of_Bollywood | link |
5925126.0 | 5508131.0 | 18.0 | Binaca_Geetmala | Music_of_Bollywood | other |
406271.0 | 5508131.0 | 22.0 | Filmi | Music_of_Bollywood | link |
2.2448394e7 | 5508131.0 | 82.0 | Hindi_dance_songs | Music_of_Bollywood | other |
null | 5508131.0 | 123.0 | other-wikipedia | Music_of_Bollywood | other |
null | 5508131.0 | 1527.0 | other-google | Music_of_Bollywood | other |
5968908.0 | 5508131.0 | 27.0 | Filmi_Devotional_songs | Music_of_Bollywood | other |
222789.0 | 5508131.0 | 74.0 | Lata_Mangeshkar | Music_of_Bollywood | other |
1346834.0 | 5508131.0 | 11.0 | K._L._Saigal | Music_of_Bollywood | other |
334547.0 | 5508131.0 | 14.0 | Kishore_Kumar | Music_of_Bollywood | link |
null | 5508131.0 | 59.0 | other-bing | Music_of_Bollywood | other |
null | 5508131.0 | 76.0 | other-other | Music_of_Bollywood | other |
1.5580374e7 | 5508131.0 | 14.0 | Main_Page | Music_of_Bollywood | other |
14535.0 | 5508131.0 | 49.0 | Music_of_India | Music_of_Bollywood | link |
null | 5508131.0 | 36.0 | other-yahoo | Music_of_Bollywood | other |
2173379.0 | 373624.0 | 11.0 | Šaban_Šaulić | Music_of_Bosnia_and_Herzegovina | link |
null | 373624.0 | 11.0 | other-yahoo | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 98.0 | other-empty | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 364.0 | other-google | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 25.0 | other-wikipedia | Music_of_Bosnia_and_Herzegovina | other |
3463.0 | 373624.0 | 38.0 | Bosnia_and_Herzegovina | Music_of_Bosnia_and_Herzegovina | link |
1444274.0 | 373624.0 | 29.0 | Music_of_Southeastern_Europe | Music_of_Bosnia_and_Herzegovina | link |
1532326.0 | 373624.0 | 18.0 | Narodna_muzika | Music_of_Bosnia_and_Herzegovina | link |
null | 373624.0 | 16.0 | other-other | Music_of_Bosnia_and_Herzegovina | other |
1471762.0 | 373624.0 | 13.0 | Bosnian_rock | Music_of_Bosnia_and_Herzegovina | link |
397584.0 | 373624.0 | 12.0 | Culture_of_Bosnia_and_Herzegovina | Music_of_Bosnia_and_Herzegovina | link |
3464.0 | 987389.0 | 33.0 | Botswana | Music_of_Botswana | link |
null | 987389.0 | 22.0 | other-wikipedia | Music_of_Botswana | other |
null | 987389.0 | 264.0 | other-google | Music_of_Botswana | other |
null | 987389.0 | 34.0 | other-other | Music_of_Botswana | other |
null | 987389.0 | 18.0 | other-bing | Music_of_Botswana | other |
null | 987389.0 | 106.0 | other-empty | Music_of_Botswana | other |
null | 432369.0 | 89.0 | other-empty | Music_of_Brittany | other |
4.2647129e7 | 432369.0 | 29.0 | Tri_Martolod | Music_of_Brittany | link |
5261.0 | 432369.0 | 28.0 | Celtic_music | Music_of_Brittany | link |
468295.0 | 432369.0 | 39.0 | Denez_Prigent | Music_of_Brittany | link |
3239660.0 | 432369.0 | 12.0 | Culture_of_Brittany | Music_of_Brittany | link |
1687254.0 | 432369.0 | 10.0 | Fest_Noz | Music_of_Brittany | link |
550629.0 | 432369.0 | 20.0 | Bagad | Music_of_Brittany | link |
38748.0 | 432369.0 | 13.0 | Brittany | Music_of_Brittany | link |
2089641.0 | 432369.0 | 26.0 | French_folk_music | Music_of_Brittany | link |
null | 432369.0 | 18.0 | other-bing | Music_of_Brittany | other |
null | 432369.0 | 32.0 | other-other | Music_of_Brittany | other |
null | 432369.0 | 397.0 | other-google | Music_of_Brittany | other |
null | 432369.0 | 36.0 | other-wikipedia | Music_of_Brittany | other |
null | 987349.0 | 18.0 | other-wikipedia | Music_of_Brunei | other |
null | 987349.0 | 296.0 | other-google | Music_of_Brunei | other |
3559333.0 | 987349.0 | 33.0 | Culture_of_Brunei | Music_of_Brunei | link |
null | 987349.0 | 90.0 | other-empty | Music_of_Brunei | other |
987349.0 | 987349.0 | 56.0 | Music_of_Brunei | Music_of_Brunei | other |
3466.0 | 987349.0 | 43.0 | Brunei | Music_of_Brunei | link |
1824190.0 | 373849.0 | 14.0 | Bulgarian_State_Television_Female_Vocal_Choir | Music_of_Bulgaria | link |
251620.0 | 373849.0 | 17.0 | Culture_of_Bulgaria | Music_of_Bulgaria | link |
1749887.0 | 373849.0 | 16.0 | Bulgarian_dances | Music_of_Bulgaria | link |
4527.0 | 373849.0 | 16.0 | Béla_Bartók | Music_of_Bulgaria | link |
3228403.0 | 373849.0 | 19.0 | Ghost_in_the_Shell_(film) | Music_of_Bulgaria | other |
null | 373849.0 | 1203.0 | other-google | Music_of_Bulgaria | other |
null | 373849.0 | 81.0 | other-wikipedia | Music_of_Bulgaria | other |
null | 373849.0 | 15.0 | other-yahoo | Music_of_Bulgaria | other |
1532326.0 | 373849.0 | 18.0 | Narodna_muzika | Music_of_Bulgaria | link |
null | 373849.0 | 31.0 | other-bing | Music_of_Bulgaria | other |
null | 373849.0 | 63.0 | other-other | Music_of_Bulgaria | other |
null | 373849.0 | 204.0 | other-empty | Music_of_Bulgaria | other |
1444274.0 | 373849.0 | 40.0 | Music_of_Southeastern_Europe | Music_of_Bulgaria | link |
null | 987266.0 | 125.0 | other-empty | Music_of_Burma | other |
null | 987266.0 | 36.0 | other-wikipedia | Music_of_Burma | other |
null | 987266.0 | 543.0 | other-google | Music_of_Burma | other |
1018512.0 | 987266.0 | 21.0 | Culture_of_Burma | Music_of_Burma | link |
null | 987266.0 | 38.0 | other-other | Music_of_Burma | other |
null | 987266.0 | 18.0 | other-bing | Music_of_Burma | other |
null | 987266.0 | 26.0 | other-yahoo | Music_of_Burma | other |
null | 561089.0 | 74.0 | other-google | Music_of_Burundi | other |
null | 561089.0 | 11.0 | other-wikipedia | Music_of_Burundi | other |
null | 561089.0 | 50.0 | other-empty | Music_of_Burundi | other |
2.1490998e7 | 561089.0 | 18.0 | Burundi | Music_of_Burundi | link |
196953.0 | 561089.0 | 68.0 | Kings_of_the_Wild_Frontier | Music_of_Burundi | link |
741441.0 | 1284811.0 | 44.0 | Buryatia | Music_of_Buryatia | link |
null | 1284811.0 | 10.0 | other-google | Music_of_Buryatia | other |
null | 4497082.0 | 37.0 | other-google | Music_of_Calabria | other |
null | 442836.0 | 21.0 | other-google | Music_of_Canada's_Prairie_Provinces | other |
null | 2.3921367e7 | 22.0 | other-empty | Music_of_Canadian_cultures | other |
null | 2.3921367e7 | 338.0 | other-google | Music_of_Canadian_cultures | other |
3.569409e7 | 2.3921367e7 | 19.0 | Anthems_and_nationalistic_songs_of_Canada | Music_of_Canadian_cultures | link |
248269.0 | 2.3921367e7 | 26.0 | Music_of_Canada | Music_of_Canadian_cultures | link |
10623.0 | 2.3921367e7 | 11.0 | Folk_music | Music_of_Canadian_cultures | link |
2700625.0 | 2.2645621e7 | 36.0 | Bear_McCreary | Music_of_Caprica | link |
null | 2.2645621e7 | 37.0 | other-google | Music_of_Caprica | other |
8468129.0 | 2.2645621e7 | 12.0 | Music_of_Battlestar_Galactica_(2004_TV_series) | Music_of_Caprica | link |
null | 2.2645621e7 | 17.0 | other-empty | Music_of_Caprica | other |
null | 7339937.0 | 29.0 | other-empty | Music_of_Cardiff | other |
165147.0 | 7339937.0 | 35.0 | Stereophonics | Music_of_Cardiff | link |
5882.0 | 7339937.0 | 36.0 | Cardiff | Music_of_Cardiff | link |
2.3794044e7 | 7339937.0 | 10.0 | Bullet_for_My_Valentine_discography | Music_of_Cardiff | other |
2213065.0 | 7339937.0 | 187.0 | Bullet_for_My_Valentine | Music_of_Cardiff | link |
492820.0 | 7339937.0 | 45.0 | Lostprophets | Music_of_Cardiff | link |
null | 7339937.0 | 143.0 | other-google | Music_of_Cardiff | other |
null | 444625.0 | 75.0 | other-google | Music_of_Castile_and_León | other |
null | 444625.0 | 15.0 | other-empty | Music_of_Castile_and_León | other |
105621.0 | 444625.0 | 12.0 | Music_of_Spain | Music_of_Castile_and_León | other |
292222.0 | 1.4164396e7 | 15.0 | Stochastic | Music_of_Changes | link |
null | 1.4164396e7 | 12.0 | other-other | Music_of_Changes | other |
null | 1.4164396e7 | 435.0 | other-google | Music_of_Changes | other |
null | 1.4164396e7 | 22.0 | other-wikipedia | Music_of_Changes | other |
1.4163e7 | 1.4164396e7 | 39.0 | List_of_compositions_by_John_Cage | Music_of_Changes | link |
null | 1.4164396e7 | 60.0 | other-empty | Music_of_Changes | other |
99234.0 | 1.4164396e7 | 32.0 | Aleatoric_music | Music_of_Changes | link |
65954.0 | 1.4164396e7 | 50.0 | John_Cage | Music_of_Changes | link |
null | 333496.0 | 24.0 | other-yahoo | Music_of_Chile | other |
null | 333496.0 | 63.0 | other-wikipedia | Music_of_Chile | other |
null | 333496.0 | 1371.0 | other-google | Music_of_Chile | other |
null | 333496.0 | 15.0 | other-other | Music_of_Chile | other |
1.5580374e7 | 333496.0 | 12.0 | Main_Page | Music_of_Chile | other |
null | 333496.0 | 78.0 | other-bing | Music_of_Chile | other |
null | 333496.0 | 188.0 | other-empty | Music_of_Chile | other |
5489.0 | 333496.0 | 18.0 | Chile | Music_of_Chile | link |
58895.0 | 333496.0 | 19.0 | Latin_American_music | Music_of_Chile | link |
null | 1.4216009e7 | 109.0 | other-google | Music_of_Coal | other |
5399.0 | 1291889.0 | 58.0 | Colorado | Music_of_Colorado | link |
null | 1291889.0 | 22.0 | other-yahoo | Music_of_Colorado | other |
null | 1291889.0 | 782.0 | other-google | Music_of_Colorado | other |
null | 1291889.0 | 22.0 | other-wikipedia | Music_of_Colorado | other |
null | 1291889.0 | 53.0 | other-empty | Music_of_Colorado | other |
null | 1291889.0 | 49.0 | other-bing | Music_of_Colorado | other |
912509.0 | 1291889.0 | 10.0 | Post-hardcore | Music_of_Colorado | link |
null | 1291920.0 | 11.0 | other-bing | Music_of_Connecticut | other |
null | 1291920.0 | 11.0 | other-empty | Music_of_Connecticut | other |
null | 1291920.0 | 182.0 | other-google | Music_of_Connecticut | other |
null | 1291920.0 | 30.0 | other-wikipedia | Music_of_Connecticut | other |
6591.0 | 1297518.0 | 24.0 | Crete | Music_of_Crete | link |
3237687.0 | 1297518.0 | 10.0 | Greek_folk_music | Music_of_Crete | link |
null | 1297518.0 | 30.0 | other-wikipedia | Music_of_Crete | other |
null | 1297518.0 | 185.0 | other-google | Music_of_Crete | other |
null | 1297518.0 | 39.0 | other-empty | Music_of_Crete | other |
1.8170476e7 | 1297518.0 | 12.0 | Psarantonis | Music_of_Crete | link |
962945.0 | 1297518.0 | 21.0 | Nikos_Xilouris | Music_of_Crete | link |
null | 1297518.0 | 27.0 | other-other | Music_of_Crete | other |
246225.0 | 1297518.0 | 11.0 | Music_of_Greece | Music_of_Crete | link |
1.5580374e7 | 1297518.0 | 15.0 | Main_Page | Music_of_Crete | other |
1408397.0 | 1297518.0 | 17.0 | Nakshatra | Music_of_Crete | other |
1532326.0 | 243011.0 | 11.0 | Narodna_muzika | Music_of_Croatia | link |
null | 243011.0 | 19.0 | other-bing | Music_of_Croatia | other |
null | 243011.0 | 30.0 | other-other | Music_of_Croatia | other |
474950.0 | 243011.0 | 34.0 | Culture_of_Croatia | Music_of_Croatia | link |
1.4203005e7 | 243011.0 | 14.0 | Croatian_popular_music | Music_of_Croatia | link |
1.2248405e7 | 243011.0 | 19.0 | Croatian_art | Music_of_Croatia | link |
1.0600968e7 | 243011.0 | 12.0 | Music_of_Yugoslavia | Music_of_Croatia | link |
2119998.0 | 243011.0 | 22.0 | Oliver_Dragojević | Music_of_Croatia | link |
1444274.0 | 243011.0 | 40.0 | Music_of_Southeastern_Europe | Music_of_Croatia | link |
null | 243011.0 | 29.0 | other-yahoo | Music_of_Croatia | other |
null | 243011.0 | 99.0 | other-empty | Music_of_Croatia | other |
null | 243011.0 | 513.0 | other-google | Music_of_Croatia | other |
null | 243011.0 | 43.0 | other-wikipedia | Music_of_Croatia | other |
null | 240761.0 | 15.0 | other-twitter | Music_of_Cuba | other |
null | 240761.0 | 4444.0 | other-google | Music_of_Cuba | other |
null | 240761.0 | 247.0 | other-wikipedia | Music_of_Cuba | other |
1005480.0 | 240761.0 | 84.0 | Afro-Cuban | Music_of_Cuba | link |
5347660.0 | 240761.0 | 11.0 | Cascara | Music_of_Cuba | link |
513544.0 | 240761.0 | 12.0 | Buena_Vista_Social_Club | Music_of_Cuba | link |
1654043.0 | 240761.0 | 42.0 | Afro-Caribbean_music | Music_of_Cuba | link |
682524.0 | 240761.0 | 24.0 | Culture_of_Cuba | Music_of_Cuba | link |
516807.0 | 240761.0 | 15.0 | Cuban_cuisine | Music_of_Cuba | link |
1107981.0 | 240761.0 | 10.0 | Afro-Cuban_jazz | Music_of_Cuba | link |
7966.0 | 240761.0 | 31.0 | Disco | Music_of_Cuba | other |
285709.0 | 240761.0 | 16.0 | Latin_jazz | Music_of_Cuba | other |
1.5703993e7 | 240761.0 | 11.0 | Gente_de_Zona | Music_of_Cuba | other |
1751751.0 | 240761.0 | 17.0 | Guaracha | Music_of_Cuba | link |
null | 240761.0 | 180.0 | other-other | Music_of_Cuba | other |
1.5580374e7 | 240761.0 | 25.0 | Main_Page | Music_of_Cuba | other |
25423.0 | 240761.0 | 11.0 | Rock_music | Music_of_Cuba | other |
240761.0 | 240761.0 | 26.0 | Music_of_Cuba | Music_of_Cuba | other |
null | 240761.0 | 274.0 | other-bing | Music_of_Cuba | other |
957080.0 | 240761.0 | 17.0 | Son_(music) | Music_of_Cuba | link |
null | 240761.0 | 208.0 | other-yahoo | Music_of_Cuba | other |
2.5179257e7 | 240761.0 | 20.0 | Dance_in_Cuba | Music_of_Cuba | link |
5042481.0 | 240761.0 | 116.0 | Cuba | Music_of_Cuba | link |
1.0891249e7 | 240761.0 | 17.0 | Cuban_rumba | Music_of_Cuba | link |
274927.0 | 240761.0 | 19.0 | Clave_(rhythm) | Music_of_Cuba | link |
1467094.0 | 240761.0 | 15.0 | Cha-cha-cha_(dance) | Music_of_Cuba | other |
3840752.0 | 240761.0 | 13.0 | Cachao_López | Music_of_Cuba | link |
9069468.0 | 240761.0 | 23.0 | Cha-cha-cha_(music) | Music_of_Cuba | link |
755312.0 | 240761.0 | 36.0 | Buena_Vista_Social_Club_(album) | Music_of_Cuba | link |
54403.0 | 240761.0 | 13.0 | Dizzy_Gillespie | Music_of_Cuba | other |
166331.0 | 240761.0 | 38.0 | Celia_Cruz | Music_of_Cuba | link |
58895.0 | 240761.0 | 55.0 | Latin_American_music | Music_of_Cuba | link |
9197579.0 | 240761.0 | 17.0 | List_of_Caribbean_music_groups | Music_of_Cuba | link |
1683462.0 | 240761.0 | 30.0 | Rumba_(dance) | Music_of_Cuba | link |
1.9261987e7 | 240761.0 | 27.0 | Trova | Music_of_Cuba | link |
null | 240761.0 | 703.0 | other-empty | Music_of_Cuba | other |
33134.0 | 240761.0 | 12.0 | World_music | Music_of_Cuba | other |
null | 2.3291343e7 | 14.0 | other-empty | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 17.0 | other-wikipedia | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 14.0 | other-twitter | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 70.0 | other-google | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
2.1011855e7 | 2.3291343e7 | 25.0 | List_of_Dance_Dance_Revolution_songs | Music_of_Dance_Dance_Revolution_(1998_video_game) | link |
1459689.0 | 2.3291343e7 | 232.0 | Dance_Dance_Revolution_(1998_video_game) | Music_of_Dance_Dance_Revolution_(1998_video_game) | link |
575919.0 | 1291938.0 | 12.0 | Jade_Tree_(record_label) | Music_of_Delaware | link |
null | 1291938.0 | 10.0 | other-empty | Music_of_Delaware | other |
null | 1291938.0 | 60.0 | other-google | Music_of_Delaware | other |
null | 3.0865941e7 | 2241.0 | other-google | Music_of_Detroit | other |
null | 3.0865941e7 | 123.0 | other-wikipedia | Music_of_Detroit | other |
1730307.0 | 3.0865941e7 | 14.0 | List_of_Super_Bowl_halftime_shows | Music_of_Detroit | link |
73010.0 | 3.0865941e7 | 11.0 | Hardcore_punk | Music_of_Detroit | other |
559332.0 | 3.0865941e7 | 25.0 | List_of_hip_hop_genres | Music_of_Detroit | other |
5027648.0 | 3.0865941e7 | 28.0 | Detroit_Rock_City | Music_of_Detroit | link |
8687.0 | 3.0865941e7 | 106.0 | Detroit | Music_of_Detroit | link |
180178.0 | 3.0865941e7 | 15.0 | Detroit_techno | Music_of_Detroit | other |
140308.0 | 3.0865941e7 | 29.0 | Alice_Cooper | Music_of_Detroit | other |
1242998.0 | 3.0865941e7 | 15.0 | History_of_Detroit | Music_of_Detroit | link |
1171542.0 | 3.0865941e7 | 20.0 | Hitsville_U.S.A. | Music_of_Detroit | link |
null | 3.0865941e7 | 231.0 | other-empty | Music_of_Detroit | other |
168617.0 | 3.0865941e7 | 86.0 | The_White_Stripes | Music_of_Detroit | link |
307387.0 | 3.0865941e7 | 58.0 | Music_of_Michigan | Music_of_Detroit | link |
167396.0 | 3.0865941e7 | 100.0 | Motown | Music_of_Detroit | link |
null | 3.0865941e7 | 103.0 | other-bing | Music_of_Detroit | other |
1384091.0 | 3.0865941e7 | 11.0 | The_Electrifying_Mojo | Music_of_Detroit | link |
685028.0 | 3.0865941e7 | 10.0 | Super_Bowl_XL | Music_of_Detroit | link |
null | 3.0865941e7 | 44.0 | other-other | Music_of_Detroit | other |
null | 3.0865941e7 | 32.0 | other-facebook | Music_of_Detroit | other |
1.5580374e7 | 3.0865941e7 | 10.0 | Main_Page | Music_of_Detroit | other |
3235772.0 | 3.0865941e7 | 27.0 | Midwest_hip_hop | Music_of_Detroit | link |
null | 3.0865941e7 | 92.0 | other-yahoo | Music_of_Detroit | other |
null | 467018.0 | 20.0 | other-wikipedia | Music_of_East_Timor | other |
null | 467018.0 | 113.0 | other-google | Music_of_East_Timor | other |
376026.0 | 467018.0 | 29.0 | Culture_of_East_Timor | Music_of_East_Timor | link |
null | 467018.0 | 134.0 | other-empty | Music_of_East_Timor | other |
1444274.0 | 2.880603e7 | 20.0 | Music_of_Southeastern_Europe | Music_of_Eastern_Europe | link |
33134.0 | 2.880603e7 | 27.0 | World_music | Music_of_Eastern_Europe | link |
null | 306026.0 | 109.0 | other-empty | Music_of_Ecuador | other |
9334.0 | 306026.0 | 23.0 | Ecuador | Music_of_Ecuador | link |
null | 306026.0 | 30.0 | other-yahoo | Music_of_Ecuador | other |
679331.0 | 306026.0 | 27.0 | Culture_of_Ecuador | Music_of_Ecuador | link |
null | 306026.0 | 71.0 | other-bing | Music_of_Ecuador | other |
null | 306026.0 | 13.0 | other-other | Music_of_Ecuador | other |
null | 306026.0 | 941.0 | other-google | Music_of_Ecuador | other |
null | 306026.0 | 32.0 | other-wikipedia | Music_of_Ecuador | other |
null | 247746.0 | 101.0 | other-wikipedia | Music_of_Egypt | other |
null | 247746.0 | 2575.0 | other-google | Music_of_Egypt | other |
8087628.0 | 247746.0 | 55.0 | Egypt | Music_of_Egypt | link |
5884148.0 | 247746.0 | 18.0 | Baladi | Music_of_Egypt | link |
1.1298796e7 | 247746.0 | 11.0 | Ancient_Egyptian_cuisine | Music_of_Egypt | link |
null | 247746.0 | 426.0 | other-empty | Music_of_Egypt | other |
451841.0 | 247746.0 | 23.0 | Music_of_North_Africa | Music_of_Egypt | link |
3.2186235e7 | 247746.0 | 22.0 | Music_in_the_Civilization_video_game_series | Music_of_Egypt | link |
1427446.0 | 247746.0 | 10.0 | Prehistoric_Egypt | Music_of_Egypt | link |
855541.0 | 247746.0 | 20.0 | Phrygian_dominant_scale | Music_of_Egypt | other |
1.6173864e7 | 247746.0 | 10.0 | Nefer | Music_of_Egypt | link |
null | 247746.0 | 100.0 | other-other | Music_of_Egypt | other |
3378045.0 | 247746.0 | 10.0 | Public_holidays_in_Egypt | Music_of_Egypt | link |
1.5580374e7 | 247746.0 | 11.0 | Main_Page | Music_of_Egypt | other |
18839.0 | 247746.0 | 44.0 | Music | Music_of_Egypt | link |
null | 247746.0 | 154.0 | other-bing | Music_of_Egypt | other |
null | 247746.0 | 69.0 | other-yahoo | Music_of_Egypt | other |
51218.0 | 247746.0 | 57.0 | Culture_of_Egypt | Music_of_Egypt | link |
1969914.0 | 247746.0 | 11.0 | Coptic_music | Music_of_Egypt | link |
8233.0 | 247746.0 | 10.0 | Death_metal | Music_of_Egypt | other |
1502321.0 | 247746.0 | 50.0 | Ancient_music | Music_of_Egypt | link |
8559295.0 | 247746.0 | 24.0 | Egyptian_cuisine | Music_of_Egypt | link |
null | 4534705.0 | 23.0 | other-google | Music_of_Emilia-Romagna | other |
null | 1.0645556e7 | 39.0 | other-google | Music_of_Epirus_(Greece) | other |
3237687.0 | 1.0645556e7 | 10.0 | Greek_folk_music | Music_of_Epirus_(Greece) | other |
9667732.0 | 1.0645556e7 | 14.0 | Polyphonic_song_of_Epirus | Music_of_Epirus_(Greece) | link |
null | 1.0645556e7 | 19.0 | other-empty | Music_of_Epirus_(Greece) | other |
null | 423133.0 | 113.0 | other-empty | Music_of_Equatorial_Guinea | other |
null | 423133.0 | 178.0 | other-google | Music_of_Equatorial_Guinea | other |
null | 423133.0 | 14.0 | other-wikipedia | Music_of_Equatorial_Guinea | other |
418571.0 | 423133.0 | 30.0 | Culture_of_Equatorial_Guinea | Music_of_Equatorial_Guinea | link |
9366.0 | 423133.0 | 63.0 | Equatorial_Guinea | Music_of_Equatorial_Guinea | link |
null | 423133.0 | 17.0 | other-bing | Music_of_Equatorial_Guinea | other |
5073646.0 | 372892.0 | 12.0 | Veljo_Tormis | Music_of_Estonia | link |
null | 372892.0 | 11.0 | other-bing | Music_of_Estonia | other |
null | 372892.0 | 20.0 | other-other | Music_of_Estonia | other |
null | 372892.0 | 104.0 | other-empty | Music_of_Estonia | other |
3.5061186e7 | 372892.0 | 11.0 | Traffic_(Estonian_band) | Music_of_Estonia | link |
null | 372892.0 | 359.0 | other-google | Music_of_Estonia | other |
null | 372892.0 | 39.0 | other-wikipedia | Music_of_Estonia | other |
2.8222445e7 | 372892.0 | 33.0 | Estonia | Music_of_Estonia | link |
1.2454919e7 | 372892.0 | 14.0 | Culture_of_Estonia | Music_of_Estonia | link |
2157363.0 | 247149.0 | 57.0 | K'naan | Music_of_Ethiopia | link |
1632417.0 | 247149.0 | 11.0 | Tilahun_Gessesse | Music_of_Ethiopia | link |
null | 247149.0 | 253.0 | other-empty | Music_of_Ethiopia | other |
2194444.0 | 247149.0 | 146.0 | Mulatu_Astatke | Music_of_Ethiopia | link |
166141.0 | 247149.0 | 10.0 | Music_of_Africa | Music_of_Ethiopia | link |
null | 247149.0 | 84.0 | other-other | Music_of_Ethiopia | other |
null | 247149.0 | 77.0 | other-bing | Music_of_Ethiopia | other |
1.5580374e7 | 247149.0 | 10.0 | Main_Page | Music_of_Ethiopia | other |
187749.0 | 247149.0 | 85.0 | Ethiopia | Music_of_Ethiopia | link |
2022635.0 | 247149.0 | 13.0 | Éthiopiques | Music_of_Ethiopia | link |
null | 247149.0 | 64.0 | other-yahoo | Music_of_Ethiopia | other |
null | 247149.0 | 88.0 | other-wikipedia | Music_of_Ethiopia | other |
null | 247149.0 | 1232.0 | other-google | Music_of_Ethiopia | other |
null | 1.1214612e7 | 143.0 | other-google | Music_of_Final_Fantasy_III | other |
5137643.0 | 1.1214612e7 | 53.0 | Music_of_Final_Fantasy_I_and_II | Music_of_Final_Fantasy_III | link |
null | 1.1214612e7 | 37.0 | other-empty | Music_of_Final_Fantasy_III | other |
1001643.0 | 1.1214612e7 | 28.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_III | link |
null | 1.1214612e7 | 10.0 | other-other | Music_of_Final_Fantasy_III | other |
66495.0 | 1.1214612e7 | 17.0 | Final_Fantasy_III | Music_of_Final_Fantasy_III | link |
52754.0 | 1.1209352e7 | 47.0 | Final_Fantasy_IV | Music_of_Final_Fantasy_IV | link |
null | 1.1209352e7 | 296.0 | other-google | Music_of_Final_Fantasy_IV | other |
null | 1.1209352e7 | 31.0 | other-wikipedia | Music_of_Final_Fantasy_IV | other |
1.1139384e7 | 1.1209352e7 | 12.0 | Final_Fantasy_IV_(3D_remake) | Music_of_Final_Fantasy_IV | link |
1001643.0 | 1.1209352e7 | 19.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_IV | link |
1.1214612e7 | 1.1209352e7 | 51.0 | Music_of_Final_Fantasy_III | Music_of_Final_Fantasy_IV | link |
null | 1.1209352e7 | 133.0 | other-empty | Music_of_Final_Fantasy_IV | other |
5130807.0 | 1.1209352e7 | 10.0 | Music_of_Final_Fantasy_V | Music_of_Final_Fantasy_IV | link |
1337053.0 | 1.1216149e7 | 27.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_IX | link |
2159211.0 | 1.1216149e7 | 17.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_IX | link |
null | 1.1216149e7 | 295.0 | other-empty | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 30.0 | other-wikipedia | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 618.0 | other-google | Music_of_Final_Fantasy_IX | other |
52758.0 | 1.1216149e7 | 90.0 | Final_Fantasy_IX | Music_of_Final_Fantasy_IX | link |
625605.0 | 1.1216149e7 | 15.0 | Emiko_Shiratori | Music_of_Final_Fantasy_IX | link |
2171749.0 | 1.1216149e7 | 12.0 | Music_of_Final_Fantasy_VI | Music_of_Final_Fantasy_IX | link |
1001643.0 | 1.1216149e7 | 37.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_IX | link |
1.0091424e7 | 1.1216149e7 | 58.0 | Music_of_Final_Fantasy_VIII | Music_of_Final_Fantasy_IX | link |
null | 1.1216149e7 | 22.0 | other-bing | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 11.0 | other-yahoo | Music_of_Final_Fantasy_IX | other |
4.2374187e7 | 1.1216149e7 | 17.0 | List_of_Vietnamese_films_of_2014 | Music_of_Final_Fantasy_IX | other |
null | 2171749.0 | 43.0 | other-wikipedia | Music_of_Final_Fantasy_VI | other |
null | 2171749.0 | 445.0 | other-google | Music_of_Final_Fantasy_VI | other |
null | 2171749.0 | 146.0 | other-empty | Music_of_Final_Fantasy_VI | other |
5130807.0 | 2171749.0 | 39.0 | Music_of_Final_Fantasy_V | Music_of_Final_Fantasy_VI | link |
2159211.0 | 2171749.0 | 22.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_VI | link |
57677.0 | 2171749.0 | 13.0 | Nobuo_Uematsu | Music_of_Final_Fantasy_VI | other |
52755.0 | 2171749.0 | 139.0 | Final_Fantasy_VI | Music_of_Final_Fantasy_VI | link |
3.5792677e7 | 2171749.0 | 16.0 | Dancing_Mad | Music_of_Final_Fantasy_VI | link |
2756115.0 | 2171749.0 | 17.0 | Shirō_Sagisu | Music_of_Final_Fantasy_VI | link |
null | 2171749.0 | 32.0 | other-other | Music_of_Final_Fantasy_VI | other |
1001643.0 | 2171749.0 | 48.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_VI | link |
1.1209352e7 | 2171749.0 | 11.0 | Music_of_Final_Fantasy_IV | Music_of_Final_Fantasy_VI | link |
1.0091424e7 | 2171749.0 | 13.0 | Music_of_Final_Fantasy_VIII | Music_of_Final_Fantasy_VI | link |
1001643.0 | 1.0091424e7 | 42.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_VIII | link |
1.1216149e7 | 1.0091424e7 | 22.0 | Music_of_Final_Fantasy_IX | Music_of_Final_Fantasy_VIII | link |
1.5580374e7 | 1.0091424e7 | 139.0 | Main_Page | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 14.0 | other-bing | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 29.0 | other-other | Music_of_Final_Fantasy_VIII | other |
1.4241133e7 | 1.0091424e7 | 34.0 | Eyes_on_Me_(Faye_Wong_song) | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 777.0 | other-google | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 124.0 | other-wikipedia | Music_of_Final_Fantasy_VIII | other |
52757.0 | 1.0091424e7 | 159.0 | Final_Fantasy_VIII | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 16.0 | other-yahoo | Music_of_Final_Fantasy_VIII | other |
57677.0 | 1.0091424e7 | 35.0 | Nobuo_Uematsu | Music_of_Final_Fantasy_VIII | link |
2159211.0 | 1.0091424e7 | 67.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_VIII | link |
1337053.0 | 1.0091424e7 | 14.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 375.0 | other-empty | Music_of_Final_Fantasy_VIII | other |
1337053.0 | 7873264.0 | 75.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_X-2 | link |
1.1216149e7 | 7873264.0 | 12.0 | Music_of_Final_Fantasy_IX | Music_of_Final_Fantasy_X-2 | link |
1001643.0 | 7873264.0 | 19.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_X-2 | link |
null | 7873264.0 | 465.0 | other-google | Music_of_Final_Fantasy_X-2 | other |
null | 7873264.0 | 13.0 | other-wikipedia | Music_of_Final_Fantasy_X-2 | other |
null | 7873264.0 | 70.0 | other-empty | Music_of_Final_Fantasy_X-2 | other |
398631.0 | 7873264.0 | 55.0 | Final_Fantasy_X-2 | Music_of_Final_Fantasy_X-2 | link |
419271.0 | 1.1245276e7 | 46.0 | Final_Fantasy_XI | Music_of_Final_Fantasy_XI | link |
4264381.0 | 1.1245276e7 | 12.0 | Music_of_Final_Fantasy_XII | Music_of_Final_Fantasy_XI | link |
1337053.0 | 1.1245276e7 | 14.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_XI | link |
null | 1.1245276e7 | 127.0 | other-empty | Music_of_Final_Fantasy_XI | other |
null | 1.1245276e7 | 13.0 | other-wikipedia | Music_of_Final_Fantasy_XI | other |
null | 1.1245276e7 | 194.0 | other-google | Music_of_Final_Fantasy_XI | other |
7873264.0 | 1.1245276e7 | 29.0 | Music_of_Final_Fantasy_X-2 | Music_of_Final_Fantasy_XI | link |
1001643.0 | 1.1245276e7 | 22.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XI | link |
2194883.0 | 1.1245276e7 | 17.0 | The_Star_Onions | Music_of_Final_Fantasy_XI | link |
1001643.0 | 2.719431e7 | 49.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XIII | link |
1636825.0 | 2.719431e7 | 135.0 | Final_Fantasy_XIII | Music_of_Final_Fantasy_XIII | link |
null | 2.719431e7 | 10.0 | other-wikipedia | Music_of_Final_Fantasy_XIII | other |
null | 2.719431e7 | 597.0 | other-google | Music_of_Final_Fantasy_XIII | other |
4264381.0 | 2.719431e7 | 57.0 | Music_of_Final_Fantasy_XII | Music_of_Final_Fantasy_XIII | link |
1337053.0 | 2.719431e7 | 16.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_XIII | link |
3.8124492e7 | 2.719431e7 | 23.0 | Music_of_Final_Fantasy_XIII-2 | Music_of_Final_Fantasy_XIII | link |
2159211.0 | 2.719431e7 | 10.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_XIII | link |
391547.0 | 2.719431e7 | 14.0 | Masashi_Hamauzu | Music_of_Final_Fantasy_XIII | link |
4.3990854e7 | 2.719431e7 | 12.0 | Music_of_Lightning_Returns:_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIII | link |
null | 2.719431e7 | 216.0 | other-empty | Music_of_Final_Fantasy_XIII | other |
null | 4.2517401e7 | 107.0 | other-empty | Music_of_Final_Fantasy_XIV | other |
4.3990854e7 | 4.2517401e7 | 36.0 | Music_of_Lightning_Returns:_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIV | link |
3.8080015e7 | 4.2517401e7 | 156.0 | Final_Fantasy_XIV:_A_Realm_Reborn | Music_of_Final_Fantasy_XIV | link |
1001643.0 | 4.2517401e7 | 35.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XIV | link |
2.719431e7 | 4.2517401e7 | 15.0 | Music_of_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIV | link |
null | 4.2517401e7 | 661.0 | other-google | Music_of_Final_Fantasy_XIV | other |
null | 4.2517401e7 | 20.0 | other-wikipedia | Music_of_Final_Fantasy_XIV | other |
2.3068765e7 | 4.2517401e7 | 69.0 | Final_Fantasy_XIV | Music_of_Final_Fantasy_XIV | link |
1.8933066e7 | 308346.0 | 55.0 | Florida | Music_of_Florida | link |
8233.0 | 308346.0 | 55.0 | Death_metal | Music_of_Florida | other |
2.1027603e7 | 308346.0 | 20.0 | Culture_of_Florida | Music_of_Florida | link |
171080.0 | 308346.0 | 17.0 | Music_of_the_United_States | Music_of_Florida | link |
null | 308346.0 | 79.0 | other-empty | Music_of_Florida | other |
null | 308346.0 | 1170.0 | other-google | Music_of_Florida | other |
null | 308346.0 | 38.0 | other-wikipedia | Music_of_Florida | other |
null | 308346.0 | 36.0 | other-yahoo | Music_of_Florida | other |
null | 308346.0 | 23.0 | other-other | Music_of_Florida | other |
null | 308346.0 | 44.0 | other-bing | Music_of_Florida | other |
3.031949e7 | 244703.0 | 49.0 | Zaz_(singer) | Music_of_France | link |
460074.0 | 244703.0 | 15.0 | Zouk | Music_of_France | other |
null | 244703.0 | 347.0 | other-bing | Music_of_France | other |
1.5580374e7 | 244703.0 | 15.0 | Main_Page | Music_of_France | other |
154437.0 | 244703.0 | 10.0 | Mireille_Mathieu | Music_of_France | link |
455818.0 | 244703.0 | 13.0 | Léo_Ferré | Music_of_France | link |
null | 244703.0 | 107.0 | other-other | Music_of_France | other |
98988.0 | 244703.0 | 46.0 | Culture_of_France | Music_of_France | link |
1028178.0 | 244703.0 | 10.0 | Françoise_Hardy | Music_of_France | link |
53185.0 | 244703.0 | 19.0 | French_hip_hop | Music_of_France | link |
244706.0 | 244703.0 | 133.0 | French_music | Music_of_France | link |
6180884.0 | 244703.0 | 64.0 | French_pop_music | Music_of_France | link |
2462478.0 | 244703.0 | 20.0 | List_of_French_artists | Music_of_France | link |
6181221.0 | 244703.0 | 13.0 | French_popular_music | Music_of_France | link |
4.2854258e7 | 244703.0 | 15.0 | Kendji_Girac | Music_of_France | link |
5843419.0 | 244703.0 | 128.0 | France | Music_of_France | link |
143486.0 | 244703.0 | 16.0 | Indie_rock | Music_of_France | link |
3.8384402e7 | 244703.0 | 33.0 | French_electronic_music | Music_of_France | link |
12343.0 | 244703.0 | 36.0 | Guadeloupe | Music_of_France | other |
null | 244703.0 | 173.0 | other-yahoo | Music_of_France | other |
660446.0 | 244703.0 | 27.0 | Vanessa_Paradis | Music_of_France | link |
null | 244703.0 | 658.0 | other-empty | Music_of_France | other |
61159.0 | 244703.0 | 10.0 | Maurice_Chevalier | Music_of_France | link |
null | 244703.0 | 137.0 | other-wikipedia | Music_of_France | other |
null | 244703.0 | 5065.0 | other-google | Music_of_France | other |
64963.0 | 244703.0 | 20.0 | Édith_Piaf | Music_of_France | link |
null | 319399.0 | 16.0 | other-empty | Music_of_French_Polynesia | other |
null | 319399.0 | 29.0 | other-google | Music_of_French_Polynesia | other |
10737.0 | 319399.0 | 23.0 | French_Polynesia | Music_of_French_Polynesia | link |
null | 2.2598486e7 | 12.0 | other-google | Music_of_Fujian | other |
null | 2.2598486e7 | 16.0 | other-empty | Music_of_Fujian | other |
null | 988801.0 | 66.0 | other-empty | Music_of_Gabon | other |
12027.0 | 988801.0 | 19.0 | Gabon | Music_of_Gabon | link |
null | 988801.0 | 113.0 | other-google | Music_of_Gabon | other |
null | 988801.0 | 11.0 | other-wikipedia | Music_of_Gabon | other |
null | 432418.0 | 65.0 | other-empty | Music_of_Galicia,_Cantabria_and_Asturias | other |
4243394.0 | 432418.0 | 18.0 | Galician_people | Music_of_Galicia,_Cantabria_and_Asturias | other |
158996.0 | 432418.0 | 35.0 | Hurdy-gurdy | Music_of_Galicia,_Cantabria_and_Asturias | link |
5261.0 | 432418.0 | 26.0 | Celtic_music | Music_of_Galicia,_Cantabria_and_Asturias | link |
null | 432418.0 | 13.0 | other-other | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 25.0 | other-bing | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 31.0 | other-wikipedia | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 292.0 | other-google | Music_of_Galicia,_Cantabria_and_Asturias | other |
12837.0 | 432418.0 | 32.0 | Galicia_(Spain) | Music_of_Galicia,_Cantabria_and_Asturias | link |
362965.0 | 432418.0 | 20.0 | Capriccio_Espagnol | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 17.0 | other-yahoo | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 244795.0 | 189.0 | other-yahoo | Music_of_Germany | other |
1195868.0 | 244795.0 | 53.0 | Culture_of_Germany | Music_of_Germany | link |
953401.0 | 244795.0 | 94.0 | German_rock | Music_of_Germany | link |
1587088.0 | 244795.0 | 21.0 | List_of_German_musicians | Music_of_Germany | link |
12636.0 | 244795.0 | 12.0 | German_literature | Music_of_Germany | link |
5103330.0 | 244795.0 | 19.0 | German_art | Music_of_Germany | link |
276919.0 | 244795.0 | 70.0 | Krautrock | Music_of_Germany | other |
262094.0 | 244795.0 | 43.0 | Volksmusik | Music_of_Germany | link |
null | 244795.0 | 724.0 | other-empty | Music_of_Germany | other |
598055.0 | 244795.0 | 28.0 | Volkstümliche_Musik | Music_of_Germany | link |
636692.0 | 244795.0 | 18.0 | Metalcore | Music_of_Germany | other |
5243467.0 | 244795.0 | 14.0 | Neue_Deutsche_Härte | Music_of_Germany | link |
497068.0 | 244795.0 | 112.0 | Ostalgie | Music_of_Germany | other |
234666.0 | 244795.0 | 62.0 | Blind_Guardian | Music_of_Germany | link |
8203.0 | 244795.0 | 16.0 | Deutschlandlied | Music_of_Germany | link |
609351.0 | 244795.0 | 47.0 | Accept_(band) | Music_of_Germany | link |
11867.0 | 244795.0 | 245.0 | Germany | Music_of_Germany | link |
152735.0 | 244795.0 | 24.0 | Germans | Music_of_Germany | link |
2130627.0 | 244795.0 | 44.0 | Grave_Digger_(band) | Music_of_Germany | link |
757143.0 | 244795.0 | 67.0 | Gamma_Ray_(band) | Music_of_Germany | link |
1246795.0 | 244795.0 | 12.0 | German_folklore | Music_of_Germany | link |
720421.0 | 244795.0 | 22.0 | List_of_rock_genres | Music_of_Germany | other |
null | 244795.0 | 339.0 | other-bing | Music_of_Germany | other |
null | 244795.0 | 132.0 | other-other | Music_of_Germany | other |
1332497.0 | 244795.0 | 22.0 | Rage_(German_band) | Music_of_Germany | link |
1.5580374e7 | 244795.0 | 32.0 | Main_Page | Music_of_Germany | other |
378119.0 | 244795.0 | 15.0 | Neue_Deutsche_Welle | Music_of_Germany | link |
1130361.0 | 244795.0 | 32.0 | Running_Wild_(band) | Music_of_Germany | link |
299409.0 | 244795.0 | 75.0 | Schlager_music | Music_of_Germany | link |
244795.0 | 244795.0 | 69.0 | Music_of_Germany | Music_of_Germany | link |
4.1005564e7 | 244795.0 | 37.0 | Milky_Chance | Music_of_Germany | other |
null | 244795.0 | 4975.0 | other-google | Music_of_Germany | other |
null | 244795.0 | 249.0 | other-wikipedia | Music_of_Germany | other |
null | 245844.0 | 49.0 | other-wikipedia | Music_of_Ghana | other |
null | 245844.0 | 1018.0 | other-google | Music_of_Ghana | other |
null | 245844.0 | 167.0 | other-empty | Music_of_Ghana | other |
788753.0 | 245844.0 | 19.0 | Culture_of_Ghana | Music_of_Ghana | link |
null | 245844.0 | 37.0 | other-yahoo | Music_of_Ghana | other |
null | 245844.0 | 52.0 | other-bing | Music_of_Ghana | other |
null | 245844.0 | 46.0 | other-other | Music_of_Ghana | other |
1791457.0 | 245844.0 | 96.0 | Music_of_West_Africa | Music_of_Ghana | link |
12067.0 | 245844.0 | 24.0 | Ghana | Music_of_Ghana | link |
197453.0 | 1356974.0 | 100.0 | Goa_trance | Music_of_Goa | link |
1980910.0 | 1356974.0 | 24.0 | Culture_of_Goa | Music_of_Goa | link |
clicksPy = sqlContext.read.parquet("/datasets/wiki-clickstream")
# in Python you need to put the object int its own line like this to get the type information
clicksPy
clicksPy.show()
+--------+--------+---+-------------------+-----------+-----+
| prev_id| curr_id| n| prev_title| curr_title| type|
+--------+--------+---+-------------------+-----------+-----+
|13710401|12653094| 12|Punk_rock_subgenres|Music_genre| link|
| 25423|12653094| 16| Rock_music|Music_genre|other|
| 178244|12653094| 10| Muse_(band)|Music_genre| link|
| 156547|12653094| 10| Remix|Music_genre| link|
| 1564758|12653094| 73| Pop_rock|Music_genre| link|
| 18839|12653094|203| Music|Music_genre| link|
| 5079506|12653094| 10| Pink_Floyd|Music_genre| link|
| 24624|12653094|167| Pop_music|Music_genre| link|
| 379560|12653094| 15| Musical_form|Music_genre| link|
|15580374|12653094|197| Main_Page|Music_genre|other|
|24297671|12653094|862| Popular_music|Music_genre| link|
|12653094|12653094| 23| Music_genre|Music_genre|other|
| 25520|12653094| 90| Reggae|Music_genre| link|
| 54783|12653094| 18| Music_theory|Music_genre| link|
| 147311|12653094| 14| Ray_Charles|Music_genre| link|
| 8886086|12653094| 11| Oi!|Music_genre| link|
| 19499|12653094| 10| Mariah_Carey|Music_genre| link|
|38954428|12653094| 23| Sam_Smith_(singer)|Music_genre| link|
| 2110323|12653094| 12| Rihanna|Music_genre| link|
| null|12653094|632| other-other|Music_genre|other|
+--------+--------+---+-------------------+-----------+-----+
only showing top 20 rows
Now you can continue from the original python notebook tweeted by Michael.
Recall from the beginning of this notebook that this python databricks notebook was used in the talk by Michael Armbrust at Spark Summit East February 2016 shared from https://twitter.com/michaelarmbrust/status/699969850475737088
(watch now, if you haven't already!)
You Try!
Try to laoad a DataFrame in R from the parquet file just as we did for python. Read the docs in databricks guide first:
And see the R
example in the Programming Guide:
library(SparkR)
# just a quick test
df <- createDataFrame(faithful)
head(df)
# Read in the Parquet file created above. Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a DataFrame.
clicksR <- read.df("/datasets/wiki-clickstream", source = "parquet")
clicksR # in R you need to put the object int its own line like this to get the type information
head(clicksR)
display(clicksR)
prev_id | curr_id | n | prev_title | curr_title | type |
---|---|---|---|---|---|
1.3710401e7 | 1.2653094e7 | 12.0 | Punk_rock_subgenres | Music_genre | link |
25423.0 | 1.2653094e7 | 16.0 | Rock_music | Music_genre | other |
178244.0 | 1.2653094e7 | 10.0 | Muse_(band) | Music_genre | link |
156547.0 | 1.2653094e7 | 10.0 | Remix | Music_genre | link |
1564758.0 | 1.2653094e7 | 73.0 | Pop_rock | Music_genre | link |
18839.0 | 1.2653094e7 | 203.0 | Music | Music_genre | link |
5079506.0 | 1.2653094e7 | 10.0 | Pink_Floyd | Music_genre | link |
24624.0 | 1.2653094e7 | 167.0 | Pop_music | Music_genre | link |
379560.0 | 1.2653094e7 | 15.0 | Musical_form | Music_genre | link |
1.5580374e7 | 1.2653094e7 | 197.0 | Main_Page | Music_genre | other |
2.4297671e7 | 1.2653094e7 | 862.0 | Popular_music | Music_genre | link |
1.2653094e7 | 1.2653094e7 | 23.0 | Music_genre | Music_genre | other |
25520.0 | 1.2653094e7 | 90.0 | Reggae | Music_genre | link |
54783.0 | 1.2653094e7 | 18.0 | Music_theory | Music_genre | link |
147311.0 | 1.2653094e7 | 14.0 | Ray_Charles | Music_genre | link |
8886086.0 | 1.2653094e7 | 11.0 | Oi! | Music_genre | link |
19499.0 | 1.2653094e7 | 10.0 | Mariah_Carey | Music_genre | link |
3.8954428e7 | 1.2653094e7 | 23.0 | Sam_Smith_(singer) | Music_genre | link |
2110323.0 | 1.2653094e7 | 12.0 | Rihanna | Music_genre | link |
null | 1.2653094e7 | 632.0 | other-other | Music_genre | other |
null | 1.2653094e7 | 20.0 | other-facebook | Music_genre | other |
62808.0 | 1.2653094e7 | 56.0 | Soul_music | Music_genre | link |
null | 1.2653094e7 | 514.0 | other-bing | Music_genre | other |
162707.0 | 1.2653094e7 | 95.0 | Singing | Music_genre | link |
5422144.0 | 1.2653094e7 | 35.0 | Taylor_Swift | Music_genre | link |
27176.0 | 1.2653094e7 | 16.0 | Ska | Music_genre | link |
28830.0 | 1.2653094e7 | 21.0 | Song | Music_genre | link |
4.1884523e7 | 1.2653094e7 | 22.0 | Vaporwave | Music_genre | other |
295560.0 | 1.2653094e7 | 13.0 | Style | Music_genre | link |
424093.0 | 1.2653094e7 | 10.0 | 1990s_in_music | Music_genre | other |
236918.0 | 1.2653094e7 | 14.0 | Concert | Music_genre | other |
41536.0 | 1.2653094e7 | 11.0 | Duke_Ellington | Music_genre | link |
2.5276055e7 | 1.2653094e7 | 16.0 | Ariana_Grande | Music_genre | link |
363651.0 | 1.2653094e7 | 10.0 | Dark_wave | Music_genre | link |
183304.0 | 1.2653094e7 | 11.0 | Dub_(music) | Music_genre | link |
4637590.0 | 1.2653094e7 | 16.0 | Bob_Dylan | Music_genre | link |
83688.0 | 1.2653094e7 | 16.0 | Beyoncé | Music_genre | link |
3.0528002e7 | 1.2653094e7 | 17.0 | Ed_Sheeran | Music_genre | link |
8239846.0 | 1.2653094e7 | 10.0 | Bob_Marley | Music_genre | link |
880.0 | 1.2653094e7 | 10.0 | ABBA | Music_genre | link |
5261.0 | 1.2653094e7 | 13.0 | Celtic_music | Music_genre | other |
2.7005455e7 | 1.2653094e7 | 12.0 | Bruno_Mars | Music_genre | link |
1.0232935e7 | 1.2653094e7 | 10.0 | Diatonic_and_chromatic | Music_genre | other |
7966.0 | 1.2653094e7 | 25.0 | Disco | Music_genre | link |
413723.0 | 1.2653094e7 | 12.0 | Heavy_metal_subgenres | Music_genre | link |
168377.0 | 1.2653094e7 | 40.0 | Folk_rock | Music_genre | other |
1.1655198e7 | 1.2653094e7 | 15.0 | Ishkur's_Guide_to_Electronic_Music | Music_genre | link |
3.0863005e7 | 1.2653094e7 | 13.0 | List_of_Christian_bands_and_artists_by_genre | Music_genre | link |
3.1976854e7 | 1.2653094e7 | 11.0 | Japanese_Girl | Music_genre | link |
10778.0 | 1.2653094e7 | 60.0 | Funk | Music_genre | link |
171111.0 | 1.2653094e7 | 11.0 | Honky-tonk | Music_genre | link |
4.1518485e7 | 1.2653094e7 | 10.0 | Hozier_(musician) | Music_genre | other |
1.198307e7 | 1.2653094e7 | 17.0 | Johnny_Cash | Music_genre | link |
3.1919748e7 | 1.2653094e7 | 31.0 | FIFA_12 | Music_genre | link |
172830.0 | 1.2653094e7 | 11.0 | Fado | Music_genre | link |
1.6477368e7 | 1.2653094e7 | 18.0 | Katy_Perry | Music_genre | link |
2319440.0 | 1.2653094e7 | 15.0 | List_of_saxophonists | Music_genre | link |
6921880.0 | 1.2653094e7 | 11.0 | List_of_composers_by_name | Music_genre | other |
2878021.0 | 1.2653094e7 | 16.0 | List_of_country_genres | Music_genre | link |
2.399895e7 | 1.2653094e7 | 28.0 | Lists_of_musicians | Music_genre | link |
559487.0 | 1.2653094e7 | 20.0 | List_of_styles_of_music:_S–Z | Music_genre | link |
559484.0 | 1.2653094e7 | 70.0 | List_of_styles_of_music:_A–F | Music_genre | link |
417829.0 | 1.2653094e7 | 18.0 | List_of_all-female_bands | Music_genre | link |
275671.0 | 1.2653094e7 | 44.0 | List_of_electronic_music_genres | Music_genre | link |
1.449809e7 | 1.2653094e7 | 13.0 | Fall_Out_Boy | Music_genre | link |
4429395.0 | 1.2653094e7 | 20.0 | Eminem | Music_genre | link |
973905.0 | 1.2653094e7 | 24.0 | Genealogy_of_musical_genres | Music_genre | link |
3.6042633e7 | 1.2653094e7 | 12.0 | Electro_house | Music_genre | other |
682482.0 | 1.2653094e7 | 53.0 | Human | Music_genre | link |
2.9909823e7 | 1.2653094e7 | 39.0 | Kendrick_Lamar | Music_genre | link |
7653811.0 | 1.2653094e7 | 19.0 | Hip_hop_(disambiguation) | Music_genre | link |
11181.0 | 1.2653094e7 | 10.0 | Frank_Sinatra | Music_genre | link |
3.3209238e7 | 1.2653094e7 | 13.0 | Lana_Del_Rey | Music_genre | link |
629945.0 | 1.2653094e7 | 29.0 | K-pop | Music_genre | link |
1.8945847e7 | 1.2653094e7 | 225.0 | Hip_hop_music | Music_genre | link |
2527136.0 | 1.2653094e7 | 14.0 | Jazz_poetry | Music_genre | link |
124802.0 | 1.2653094e7 | 38.0 | Hard_rock | Music_genre | link |
44706.0 | 1.2653094e7 | 283.0 | Genre | Music_genre | link |
73010.0 | 1.2653094e7 | 23.0 | Hardcore_punk | Music_genre | link |
1.7782843e7 | 1.2653094e7 | 22.0 | Lady_Gaga | Music_genre | link |
9355587.0 | 1.2653094e7 | 154.0 | Example_(musician) | Music_genre | link |
15613.0 | 1.2653094e7 | 218.0 | Jazz | Music_genre | link |
547533.0 | 1.2653094e7 | 10.0 | Crossover_(music) | Music_genre | link |
2.4686326e7 | 1.2653094e7 | 15.0 | 21st-century_classical_music | Music_genre | link |
7885.0 | 1.2653094e7 | 15.0 | Dance | Music_genre | other |
3.3269956e7 | 1.2653094e7 | 24.0 | 5ive_(disambiguation) | Music_genre | other |
167409.0 | 1.2653094e7 | 11.0 | Alternative_rock | Music_genre | other |
1.8127544e7 | 1.2653094e7 | 11.0 | Ah_Me,_Ah_My | Music_genre | link |
386347.0 | 1.2653094e7 | 15.0 | Anti-folk | Music_genre | link |
3.4953684e7 | 1.2653094e7 | 17.0 | Charli_XCX | Music_genre | link |
392811.0 | 1.2653094e7 | 23.0 | African-American_music | Music_genre | other |
2468299.0 | 1.2653094e7 | 13.0 | CD-Text | Music_genre | link |
3603298.0 | 1.2653094e7 | 150.0 | Art_Official_Intelligence:_Mosaic_Thump | Music_genre | link |
66038.0 | 1.2653094e7 | 28.0 | Breakbeat | Music_genre | link |
368323.0 | 1.2653094e7 | 12.0 | Cockney_Rejects | Music_genre | link |
255791.0 | 1.2653094e7 | 56.0 | Art_music | Music_genre | link |
461637.0 | 1.2653094e7 | 10.0 | Cumbia | Music_genre | link |
3352.0 | 1.2653094e7 | 118.0 | Blues | Music_genre | link |
149681.0 | 1.2653094e7 | 10.0 | Beck | Music_genre | link |
214666.0 | 1.2653094e7 | 402.0 | List_of_music_styles | Music_genre | link |
5347350.0 | 1.2653094e7 | 27.0 | List_of_popular_music_genres | Music_genre | link |
2.7052778e7 | 1.2653094e7 | 54.0 | List_of_genres | Music_genre | link |
3142048.0 | 1.2653094e7 | 29.0 | List_of_jazz_genres | Music_genre | link |
559485.0 | 1.2653094e7 | 14.0 | List_of_styles_of_music:_G–M | Music_genre | link |
413631.0 | 1.2653094e7 | 12.0 | List_of_blues_genres | Music_genre | link |
303261.0 | 1.2653094e7 | 10.0 | Top_40 | Music_genre | other |
147687.0 | 1.2653094e7 | 10.0 | Stevie_Wonder | Music_genre | link |
31056.0 | 1.2653094e7 | 10.0 | The_Rolling_Stones | Music_genre | link |
29812.0 | 1.2653094e7 | 84.0 | The_Beatles | Music_genre | link |
3208697.0 | 1.2653094e7 | 16.0 | Youth_subculture | Music_genre | link |
null | 1.2653094e7 | 2746.0 | other-empty | Music_genre | other |
28261.0 | 1.2653094e7 | 38.0 | Samba | Music_genre | other |
1795886.0 | 1.2653094e7 | 11.0 | Record_chart | Music_genre | other |
21151.0 | 1.2653094e7 | 12.0 | New_wave_music | Music_genre | link |
248462.0 | 1.2653094e7 | 20.0 | Music_of_Colombia | Music_genre | link |
7504750.0 | 1.2653094e7 | 21.0 | Music_festival | Music_genre | other |
1.932133e7 | 1.2653094e7 | 41.0 | Nightclub | Music_genre | link |
199630.0 | 1.2653094e7 | 11.0 | Pop_punk | Music_genre | link |
171080.0 | 1.2653094e7 | 18.0 | Music_of_the_United_States | Music_genre | link |
18313.0 | 1.2653094e7 | 14.0 | Louis_Armstrong | Music_genre | link |
394633.0 | 1.2653094e7 | 16.0 | Reggaeton | Music_genre | link |
4635444.0 | 1.2653094e7 | 16.0 | March_(music) | Music_genre | other |
565560.0 | 1.2653094e7 | 11.0 | Protopunk | Music_genre | other |
37735.0 | 1.2653094e7 | 10.0 | Melody | Music_genre | other |
26168.0 | 1.2653094e7 | 59.0 | Rhythm_and_blues | Music_genre | link |
3.1772741e7 | 1.2653094e7 | 14.0 | One_Direction | Music_genre | link |
2.1065992e7 | 1.2653094e7 | 19.0 | Sex_(The_Necks_album) | Music_genre | link |
4.3272496e7 | 1.2653094e7 | 18.0 | Meghan_Trainor | Music_genre | link |
2.719197e7 | 1.2653094e7 | 15.0 | Moombahton | Music_genre | other |
3403168.0 | 1.2653094e7 | 35.0 | Outline_of_music | Music_genre | link |
null | 1.2653094e7 | 359.0 | other-yahoo | Music_genre | other |
2.888765e7 | 2.8887473e7 | 11.0 | Music_Group_(company) | Music_group_(disambiguation) | link |
20180.0 | 2.8887473e7 | 69.0 | Musical_ensemble | Music_group_(disambiguation) | link |
897299.0 | 232692.0 | 11.0 | Stan_Laurel | Music_hall | link |
103067.0 | 232692.0 | 15.0 | Stand-up_comedy | Music_hall | link |
1.2892136e7 | 232692.0 | 10.0 | Pack_Up_Your_Troubles_in_Your_Old_Kit-Bag | Music_hall | link |
2.0715761e7 | 232692.0 | 103.0 | The_boy_Jones | Music_hall | link |
9206390.0 | 232692.0 | 11.0 | Sunny_Afternoon | Music_hall | link |
3158351.0 | 232692.0 | 47.0 | The_Kinks | Music_hall | link |
470943.0 | 232692.0 | 16.0 | The_Triplets_of_Belleville | Music_hall | link |
326433.0 | 232692.0 | 32.0 | Variety_show | Music_hall | link |
null | 232692.0 | 417.0 | other-empty | Music_hall | other |
2246663.0 | 232692.0 | 45.0 | Martha_My_Dear | Music_hall | link |
24864.0 | 232692.0 | 23.0 | Professional_wrestling | Music_hall | link |
1.5580374e7 | 232692.0 | 35.0 | Main_Page | Music_hall | other |
5106604.0 | 232692.0 | 87.0 | Seymour_Hicks | Music_hall | link |
556635.0 | 232692.0 | 27.0 | When_I'm_Sixty-Four | Music_hall | link |
3.8027034e7 | 232692.0 | 46.0 | Songs_of_the_First_World_War | Music_hall | link |
null | 232692.0 | 93.0 | other-bing | Music_hall | other |
48235.0 | 232692.0 | 51.0 | Vaudeville | Music_hall | link |
null | 232692.0 | 103.0 | other-other | Music_hall | other |
null | 232692.0 | 77.0 | other-yahoo | Music_hall | other |
null | 232692.0 | 2106.0 | other-google | Music_hall | other |
null | 232692.0 | 231.0 | other-wikipedia | Music_hall | other |
null | 232692.0 | 15.0 | other-twitter | Music_hall | other |
2260734.0 | 232692.0 | 11.0 | List_of_musical_forms_by_era | Music_hall | link |
2861.0 | 232692.0 | 15.0 | Advertising | Music_hall | link |
7566837.0 | 232692.0 | 16.0 | Bioscope_show | Music_hall | link |
100096.0 | 232692.0 | 14.0 | Edwardian_era | Music_hall | link |
605891.0 | 232692.0 | 18.0 | David_Bowie_(1967_album) | Music_hall | link |
36999.0 | 232692.0 | 25.0 | Carry_On_(franchise) | Music_hall | link |
5142.0 | 232692.0 | 63.0 | Charlie_Chaplin | Music_hall | link |
95805.0 | 232692.0 | 13.0 | Leslie_Phillips | Music_hall | link |
1163667.0 | 232692.0 | 10.0 | I'm_Henery_the_Eighth,_I_Am | Music_hall | link |
1932690.0 | 232692.0 | 54.0 | Honey_Pie | Music_hall | link |
1468518.0 | 232692.0 | 34.0 | Her_Majesty_(song) | Music_hall | link |
43492.0 | 232692.0 | 10.0 | Ian_Dury | Music_hall | link |
6835232.0 | 232692.0 | 15.0 | Holiday_(Bee_Gees_song) | Music_hall | link |
1.871959e7 | 232692.0 | 13.0 | I_Do_Like_To_be_Beside_the_Seaside | Music_hall | link |
1084094.0 | 232692.0 | 28.0 | It's_a_Long_Way_to_Tipperary | Music_hall | link |
3832925.0 | 232692.0 | 25.0 | Good_Old-Fashioned_Lover_Boy | Music_hall | link |
8786.0 | 232692.0 | 19.0 | David_Bowie | Music_hall | link |
5130871.0 | 232692.0 | 52.0 | America's_Most_Endangered_Places | Music_hall | other |
428611.0 | 232692.0 | 14.0 | Can-can | Music_hall | link |
1.4923927e7 | 232692.0 | 11.0 | Concert_saloon | Music_hall | link |
3.0995031e7 | 232692.0 | 23.0 | American_burlesque | Music_hall | link |
null | 7570941.0 | 39.0 | other-google | Music_history_of_Barbados | other |
null | 2735439.0 | 49.0 | other-google | Music_history_of_Hungary | other |
null | 2735439.0 | 10.0 | other-empty | Music_history_of_Hungary | other |
null | 3430507.0 | 18.0 | other-empty | Music_history_of_Portugal | other |
387719.0 | 3430507.0 | 13.0 | Music_of_Portugal | Music_history_of_Portugal | link |
null | 3430507.0 | 80.0 | other-google | Music_history_of_Portugal | other |
null | 1616933.0 | 158.0 | other-empty | Music_history_of_the_United_States | other |
null | 1616933.0 | 1935.0 | other-google | Music_history_of_the_United_States | other |
null | 1616933.0 | 18.0 | other-wikipedia | Music_history_of_the_United_States | other |
null | 1616933.0 | 40.0 | other-yahoo | Music_history_of_the_United_States | other |
171080.0 | 1616933.0 | 25.0 | Music_of_the_United_States | Music_history_of_the_United_States | link |
null | 1616933.0 | 36.0 | other-other | Music_history_of_the_United_States | other |
null | 1616933.0 | 49.0 | other-bing | Music_history_of_the_United_States | other |
246497.0 | 1616933.0 | 10.0 | American_folk_music | Music_history_of_the_United_States | link |
1.8985287e7 | 1616933.0 | 57.0 | Culture_of_the_United_States | Music_history_of_the_United_States | link |
2.3932051e7 | 3.1437105e7 | 80.0 | 1960s_in_music | Music_history_of_the_United_States_in_the_1960s | link |
null | 3.1437105e7 | 103.0 | other-empty | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 23.0 | other-yahoo | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 12.0 | other-wikipedia | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 1679.0 | other-google | Music_history_of_the_United_States_in_the_1960s | other |
8544676.0 | 3.1437105e7 | 46.0 | Counterculture_of_the_1960s | Music_history_of_the_United_States_in_the_1960s | link |
null | 3.1437105e7 | 82.0 | other-bing | Music_history_of_the_United_States_in_the_1960s | other |
null | 3.1437105e7 | 16.0 | other-other | Music_history_of_the_United_States_in_the_1960s | other |
null | 411041.0 | 16.0 | other-other | Music_history_of_the_United_States_in_the_1980s | other |
1616933.0 | 411041.0 | 10.0 | Music_history_of_the_United_States | Music_history_of_the_United_States_in_the_1980s | link |
null | 411041.0 | 36.0 | other-bing | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 11.0 | other-yahoo | Music_history_of_the_United_States_in_the_1980s | other |
23726.0 | 411041.0 | 15.0 | Pixies | Music_history_of_the_United_States_in_the_1980s | other |
411040.0 | 411041.0 | 11.0 | Music_history_of_the_United_States_in_the_1970s | Music_history_of_the_United_States_in_the_1980s | link |
1.9753121e7 | 411041.0 | 79.0 | 1980s_in_music | Music_history_of_the_United_States_in_the_1980s | link |
null | 411041.0 | 51.0 | other-empty | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 593.0 | other-google | Music_history_of_the_United_States_in_the_1980s | other |
null | 411041.0 | 11.0 | other-wikipedia | Music_history_of_the_United_States_in_the_1980s | other |
null | 1369822.0 | 23.0 | other-google | Music_in_Adygea | other |
247772.0 | 1369822.0 | 12.0 | Music_of_Russia | Music_in_Adygea | other |
407750.0 | 1369822.0 | 11.0 | Adygea | Music_in_Adygea | other |
735530.0 | 1284752.0 | 27.0 | Bashkortostan | Music_in_Bashkortostan | link |
61024.0 | 3.8584535e7 | 33.0 | Charleston,_South_Carolina | Music_in_Charleston | link |
null | 3.8584535e7 | 82.0 | other-google | Music_in_Charleston | other |
null | 3.8584535e7 | 21.0 | other-empty | Music_in_Charleston | other |
null | 2.5941812e7 | 28.0 | other-google | Music_in_Colonial_Mexico | other |
751099.0 | 1499681.0 | 28.0 | Dagestan | Music_in_Dagestan | other |
null | 1499681.0 | 10.0 | other-google | Music_in_Dagestan | other |
null | 1.1374661e7 | 19.0 | other-google | Music_in_Darkness | other |
null | 1.1374661e7 | 13.0 | other-wikipedia | Music_in_Darkness | other |
null | 1.1374661e7 | 10.0 | other-other | Music_in_Darkness | other |
1.3075438e7 | 1.1374661e7 | 62.0 | Ingmar_Bergman_filmography | Music_in_Darkness | link |
null | 2.5548658e7 | 77.0 | other-empty | Music_in_Dollhouse | other |
null | 2.5548658e7 | 11.0 | other-bing | Music_in_Dollhouse | other |
1.4014034e7 | 2.5548658e7 | 75.0 | Dollhouse_(TV_series) | Music_in_Dollhouse | link |
null | 2.5548658e7 | 253.0 | other-google | Music_in_Dollhouse | other |
null | 2.5548658e7 | 11.0 | other-wikipedia | Music_in_Dollhouse | other |
null | 1.6378289e7 | 45.0 | other-google | Music_in_Dresden | other |
null | 1264053.0 | 33.0 | other-google | Music_in_High_Places | other |
1264134.0 | 1264053.0 | 22.0 | Here's_to_the_Mourning | Music_in_High_Places | link |
1136526.0 | 1264053.0 | 20.0 | Unwritten_Law | Music_in_High_Places | link |
2.4597057e7 | 1264053.0 | 10.0 | Unwritten_Law_discography | Music_in_High_Places | link |
1179127.0 | 1499731.0 | 14.0 | Kuban_Cossacks | Music_in_Krasnodar_Krai | other |
474125.0 | 1499731.0 | 13.0 | Krasnodar_Krai | Music_in_Krasnodar_Krai | link |
8262427.0 | 5563451.0 | 20.0 | Leeds | Music_in_Leeds | link |
5563531.0 | 5563451.0 | 15.0 | List_of_bands_originating_in_Leeds | Music_in_Leeds | link |
null | 5563451.0 | 11.0 | other-wikipedia | Music_in_Leeds | other |
null | 5563451.0 | 311.0 | other-google | Music_in_Leeds | other |
null | 5563451.0 | 124.0 | other-empty | Music_in_Leeds | other |
473991.0 | 1499616.0 | 13.0 | Mordovia | Music_in_Mordovia | other |
null | 3087094.0 | 10.0 | other-empty | Music_in_Mouth | other |
4455620.0 | 3087094.0 | 12.0 | Neither_Am_I | Music_in_Mouth | link |
2.5688717e7 | 3087094.0 | 14.0 | Bell_X1_discography | Music_in_Mouth | link |
2809365.0 | 3087094.0 | 41.0 | Bell_X1_(band) | Music_in_Mouth | link |
277952.0 | 4.2439092e7 | 34.0 | Rita_Hayworth | Music_in_My_Heart | link |
null | 4.2439092e7 | 20.0 | other-google | Music_in_My_Heart | other |
174689.0 | 1492279.0 | 80.0 | Nenets_people | Music_in_Nenets_Autonomous_Okrug | other |
null | 3.9884449e7 | 227.0 | other-google | Music_in_Paris | other |
309852.0 | 3.9884449e7 | 10.0 | List_of_cultural_and_regional_genres_of_music | Music_in_Paris | other |
null | 3.9884449e7 | 24.0 | other-empty | Music_in_Paris | other |
22989.0 | 3.9884449e7 | 36.0 | Paris | Music_in_Paris | link |
null | 3.9530149e7 | 86.0 | other-google | Music_in_Varanasi | other |
null | 3.9530149e7 | 16.0 | other-empty | Music_in_Varanasi | other |
4108684.0 | 2129287.0 | 19.0 | WWF_The_Music,_Vol._5 | Music_in_professional_wrestling | link |
1.4521129e7 | 2129287.0 | 17.0 | The_Time_Is_Now_(John_Cena_song) | Music_in_professional_wrestling | link |
3174133.0 | 2129287.0 | 12.0 | WWE_Originals | Music_in_professional_wrestling | link |
1.4681044e7 | 2129287.0 | 14.0 | The_Bella_Twins | Music_in_professional_wrestling | link |
1954598.0 | 2129287.0 | 14.0 | You_Can't_See_Me | Music_in_professional_wrestling | link |
null | 2129287.0 | 115.0 | other-empty | Music_in_professional_wrestling | other |
4373640.0 | 2129287.0 | 12.0 | Roman_Reigns | Music_in_professional_wrestling | link |
3.5347635e7 | 2129287.0 | 16.0 | Sasha_Banks | Music_in_professional_wrestling | link |
611396.0 | 2129287.0 | 36.0 | Rick_Derringer | Music_in_professional_wrestling | link |
2121727.0 | 2129287.0 | 17.0 | Music_at_sporting_events | Music_in_professional_wrestling | link |
4395990.0 | 2129287.0 | 11.0 | Piledriver:_The_Wrestling_Album_2 | Music_in_professional_wrestling | link |
665823.0 | 2129287.0 | 13.0 | Randy_Orton | Music_in_professional_wrestling | link |
303225.0 | 2129287.0 | 67.0 | Triple_H | Music_in_professional_wrestling | link |
null | 2129287.0 | 18.0 | other-bing | Music_in_professional_wrestling | other |
655575.0 | 2129287.0 | 24.0 | Sting_(wrestler) | Music_in_professional_wrestling | link |
4395892.0 | 2129287.0 | 12.0 | The_Wrestling_Album | Music_in_professional_wrestling | link |
2.5816978e7 | 2129287.0 | 40.0 | WWE_The_Music:_A_New_Day,_Vol._10 | Music_in_professional_wrestling | link |
4.345633e7 | 2129287.0 | 31.0 | WWE_Music_Group_discography | Music_in_professional_wrestling | link |
6434529.0 | 2129287.0 | 332.0 | WWE_Music_Group | Music_in_professional_wrestling | link |
345792.0 | 2129287.0 | 24.0 | The_Undertaker | Music_in_professional_wrestling | link |
null | 2129287.0 | 12.0 | other-other | Music_in_professional_wrestling | other |
4.0532625e7 | 2129287.0 | 10.0 | Alexander_Rusev | Music_in_professional_wrestling | link |
156126.0 | 2129287.0 | 19.0 | Dwayne_Johnson | Music_in_professional_wrestling | link |
2321041.0 | 2129287.0 | 10.0 | Gravity_(Our_Lady_Peace_album) | Music_in_professional_wrestling | other |
2710336.0 | 2129287.0 | 52.0 | Jim_Johnston_(composer) | Music_in_professional_wrestling | link |
4786864.0 | 2129287.0 | 39.0 | Entrance_music | Music_in_professional_wrestling | link |
null | 2129287.0 | 14.0 | other-yahoo | Music_in_professional_wrestling | other |
null | 2129287.0 | 460.0 | other-google | Music_in_professional_wrestling | other |
null | 2129287.0 | 28.0 | other-wikipedia | Music_in_professional_wrestling | other |
4.1413713e7 | 2129287.0 | 14.0 | Lana_(wrestling) | Music_in_professional_wrestling | link |
345802.0 | 2129287.0 | 17.0 | John_Cena | Music_in_professional_wrestling | link |
1.7487089e7 | 2129287.0 | 31.0 | List_of_Total_Nonstop_Action_Wrestling_albums | Music_in_professional_wrestling | link |
289900.0 | 2.0009687e7 | 93.0 | Castlevania | Music_in_the_Castlevania_series | link |
2852745.0 | 2.0009687e7 | 12.0 | Castlevania:_Portrait_of_Ruin | Music_in_the_Castlevania_series | link |
null | 2.0009687e7 | 16.0 | other-empty | Music_in_the_Castlevania_series | other |
null | 2.0009687e7 | 218.0 | other-google | Music_in_the_Castlevania_series | other |
null | 1182126.0 | 16.0 | other-wikipedia | Music_in_the_Chechen_Republic | other |
null | 1182126.0 | 34.0 | other-google | Music_in_the_Chechen_Republic | other |
247772.0 | 1182126.0 | 16.0 | Music_of_Russia | Music_in_the_Chechen_Republic | other |
6427285.0 | 1182126.0 | 10.0 | Makka_Sagaipova | Music_in_the_Chechen_Republic | other |
null | 1.1083892e7 | 23.0 | other-google | Music_in_the_Community | other |
474004.0 | 1518955.0 | 17.0 | Komi_Republic | Music_in_the_Komi_Republic | other |
null | 5520065.0 | 104.0 | other-google | Music_in_the_Parks | other |
3935908.0 | 5520065.0 | 11.0 | Hersheypark_Arena | Music_in_the_Parks | link |
57905.0 | 1284783.0 | 19.0 | Sakha_Republic | Music_in_the_Sakha_Republic | link |
483558.0 | 1284783.0 | 58.0 | Yakuts | Music_in_the_Sakha_Republic | link |
null | 1284764.0 | 98.0 | other-google | Music_in_the_Tyva_Republic | other |
3309582.0 | 1284764.0 | 15.0 | Acoustic_scale | Music_in_the_Tyva_Republic | link |
null | 1284764.0 | 10.0 | other-bing | Music_in_the_Tyva_Republic | other |
483570.0 | 1284764.0 | 25.0 | Tuvans | Music_in_the_Tyva_Republic | other |
719202.0 | 1284764.0 | 10.0 | Igil | Music_in_the_Tyva_Republic | other |
1616030.0 | 1284764.0 | 49.0 | Tuva | Music_in_the_Tyva_Republic | other |
null | 1284764.0 | 37.0 | other-empty | Music_in_the_Tyva_Republic | other |
1946204.0 | null | 31.0 | Music_industry | Music_industry_of_Asia | redlink |
1946204.0 | 3.9326699e7 | 73.0 | Music_industry | Music_industry_of_East_Asia | link |
414082.0 | 3.9326699e7 | 28.0 | J-pop | Music_industry_of_East_Asia | link |
null | 3.9326699e7 | 53.0 | other-empty | Music_industry_of_East_Asia | other |
null | 3.9326699e7 | 186.0 | other-google | Music_industry_of_East_Asia | other |
null | 3.9326699e7 | 10.0 | other-twitter | Music_industry_of_East_Asia | other |
629945.0 | 3.9326699e7 | 37.0 | K-pop | Music_industry_of_East_Asia | link |
1946204.0 | null | 62.0 | Music_industry | Music_industry_of_Europe | redlink |
1946204.0 | null | 92.0 | Music_industry | Music_industry_of_North_America | redlink |
1946204.0 | null | 10.0 | Music_industry | Music_industry_of_South_America | redlink |
null | 1.7025056e7 | 77.0 | other-google | Music_informatics | other |
null | 261193.0 | 706.0 | other-google | Music_information_retrieval | other |
null | 261193.0 | 14.0 | other-wikipedia | Music_information_retrieval | other |
2.1189305e7 | 261193.0 | 11.0 | Audio_engineer | Music_information_retrieval | link |
1.4004969e7 | 261193.0 | 11.0 | Audio_mining | Music_information_retrieval | link |
125297.0 | 261193.0 | 11.0 | Dynamic_programming | Music_information_retrieval | link |
42253.0 | 261193.0 | 19.0 | Data_mining | Music_information_retrieval | other |
3267504.0 | 261193.0 | 19.0 | Music_OCR | Music_information_retrieval | link |
1708126.0 | 261193.0 | 15.0 | Pitch_detection_algorithm | Music_information_retrieval | link |
null | 261193.0 | 177.0 | other-empty | Music_information_retrieval | other |
null | 261193.0 | 27.0 | other-bing | Music_information_retrieval | other |
null | 261193.0 | 60.0 | other-other | Music_information_retrieval | other |
300730.0 | 261193.0 | 24.0 | Mel-frequency_cepstrum | Music_information_retrieval | link |
1.7025056e7 | 261193.0 | 11.0 | Music_informatics | Music_information_retrieval | other |
null | 261193.0 | 18.0 | other-yahoo | Music_information_retrieval | other |
null | 981637.0 | 10.0 | other-yahoo | Music_library | other |
null | 981637.0 | 18.0 | other-wikipedia | Music_library | other |
null | 981637.0 | 205.0 | other-google | Music_library | other |
9305406.0 | 981637.0 | 77.0 | Production_music | Music_library | other |
null | 981637.0 | 13.0 | other-bing | Music_library | other |
null | 981637.0 | 17.0 | other-other | Music_library | other |
null | 981637.0 | 50.0 | other-empty | Music_library | other |
null | 4.2280305e7 | 14.0 | other-google | Music_massage_therapy | other |
null | 4530556.0 | 12.0 | other-google | Music_of_Abruzzo | other |
null | 3721528.0 | 40.0 | other-google | Music_of_Adelaide | other |
1148.0 | 3721528.0 | 30.0 | Adelaide | Music_of_Adelaide | link |
null | 412891.0 | 47.0 | other-empty | Music_of_Alabama | other |
null | 412891.0 | 36.0 | other-yahoo | Music_of_Alabama | other |
null | 412891.0 | 402.0 | other-google | Music_of_Alabama | other |
null | 412891.0 | 24.0 | other-wikipedia | Music_of_Alabama | other |
null | 412891.0 | 15.0 | other-other | Music_of_Alabama | other |
1291814.0 | 412891.0 | 14.0 | Music_of_Alaska | Music_of_Alabama | link |
null | 412891.0 | 39.0 | other-bing | Music_of_Alabama | other |
null | 1291814.0 | 16.0 | other-bing | Music_of_Alaska | other |
624.0 | 1291814.0 | 17.0 | Alaska | Music_of_Alaska | link |
null | 1291814.0 | 18.0 | other-empty | Music_of_Alaska | other |
null | 1291814.0 | 19.0 | other-wikipedia | Music_of_Alaska | other |
null | 1291814.0 | 279.0 | other-google | Music_of_Alaska | other |
null | 1291814.0 | 11.0 | other-yahoo | Music_of_Alaska | other |
null | 999857.0 | 98.0 | other-google | Music_of_Alberta | other |
null | 999857.0 | 12.0 | other-wikipedia | Music_of_Alberta | other |
248269.0 | 999857.0 | 13.0 | Music_of_Canada | Music_of_Alberta | link |
null | 243022.0 | 15.0 | other-yahoo | Music_of_Algeria | other |
358.0 | 243022.0 | 26.0 | Algeria | Music_of_Algeria | link |
null | 243022.0 | 28.0 | other-bing | Music_of_Algeria | other |
null | 243022.0 | 69.0 | other-other | Music_of_Algeria | other |
1424498.0 | 243022.0 | 15.0 | Andalusian_classical_music | Music_of_Algeria | link |
1116955.0 | 243022.0 | 14.0 | Islamic_music | Music_of_Algeria | link |
451841.0 | 243022.0 | 16.0 | Music_of_North_Africa | Music_of_Algeria | link |
null | 243022.0 | 135.0 | other-empty | Music_of_Algeria | other |
null | 243022.0 | 33.0 | other-wikipedia | Music_of_Algeria | other |
null | 243022.0 | 449.0 | other-google | Music_of_Algeria | other |
null | 561191.0 | 49.0 | other-google | Music_of_Andorra | other |
600.0 | 561191.0 | 28.0 | Andorra | Music_of_Andorra | link |
null | 561191.0 | 69.0 | other-empty | Music_of_Andorra | other |
null | 364942.0 | 27.0 | other-empty | Music_of_Anguilla | other |
null | 364942.0 | 26.0 | other-google | Music_of_Anguilla | other |
1217.0 | 364942.0 | 72.0 | Anguilla | Music_of_Anguilla | link |
null | 1501429.0 | 16.0 | other-google | Music_of_Anhui | other |
154175.0 | 987406.0 | 18.0 | Calypso_music | Music_of_Antigua_and_Barbuda | link |
951.0 | 987406.0 | 18.0 | Antigua_and_Barbuda | Music_of_Antigua_and_Barbuda | link |
9887612.0 | 987406.0 | 35.0 | Benna_(genre) | Music_of_Antigua_and_Barbuda | link |
7504750.0 | 987406.0 | 16.0 | Music_festival | Music_of_Antigua_and_Barbuda | link |
null | 987406.0 | 22.0 | other-other | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 17.0 | other-bing | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 248.0 | other-google | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 110.0 | other-empty | Music_of_Antigua_and_Barbuda | other |
null | 987406.0 | 21.0 | other-wikipedia | Music_of_Antigua_and_Barbuda | other |
3181553.0 | 987406.0 | 26.0 | Banjar | Music_of_Antigua_and_Barbuda | other |
null | 1400826.0 | 25.0 | other-google | Music_of_Aquitaine | other |
403097.0 | 247169.0 | 20.0 | Culture_of_Argentina | Music_of_Argentina | link |
309852.0 | 247169.0 | 10.0 | List_of_cultural_and_regional_genres_of_music | Music_of_Argentina | link |
2569276.0 | 247169.0 | 11.0 | Argentine_cumbia | Music_of_Argentina | link |
1.8951905e7 | 247169.0 | 80.0 | Argentina | Music_of_Argentina | link |
58895.0 | 247169.0 | 48.0 | Latin_American_music | Music_of_Argentina | link |
null | 247169.0 | 60.0 | other-yahoo | Music_of_Argentina | other |
null | 247169.0 | 244.0 | other-empty | Music_of_Argentina | other |
null | 247169.0 | 126.0 | other-wikipedia | Music_of_Argentina | other |
null | 247169.0 | 2174.0 | other-google | Music_of_Argentina | other |
null | 247169.0 | 115.0 | other-bing | Music_of_Argentina | other |
376118.0 | 247169.0 | 21.0 | Tango_music | Music_of_Argentina | link |
null | 247169.0 | 39.0 | other-other | Music_of_Argentina | other |
null | 410801.0 | 35.0 | other-other | Music_of_Armenia | other |
null | 410801.0 | 16.0 | other-bing | Music_of_Armenia | other |
241240.0 | 410801.0 | 13.0 | Sabre_Dance | Music_of_Armenia | link |
8473458.0 | 410801.0 | 10.0 | Armenian_dance | Music_of_Armenia | link |
1.0918072e7 | 410801.0 | 56.0 | Armenia | Music_of_Armenia | link |
865062.0 | 410801.0 | 25.0 | Duduk | Music_of_Armenia | link |
232847.0 | 410801.0 | 15.0 | Aram_Khachaturian | Music_of_Armenia | link |
413618.0 | 410801.0 | 10.0 | Music_of_Iran | Music_of_Armenia | link |
2058881.0 | 410801.0 | 39.0 | Middle_Eastern_music | Music_of_Armenia | link |
92149.0 | 410801.0 | 34.0 | Oud | Music_of_Armenia | other |
2.3931407e7 | 410801.0 | 10.0 | Pop-folk | Music_of_Armenia | link |
285300.0 | 410801.0 | 12.0 | Qanun_(instrument) | Music_of_Armenia | link |
null | 410801.0 | 208.0 | other-empty | Music_of_Armenia | other |
387816.0 | 410801.0 | 12.0 | Armenians | Music_of_Armenia | link |
2049464.0 | 410801.0 | 15.0 | Culture_of_Armenia | Music_of_Armenia | link |
732267.0 | 410801.0 | 16.0 | Komitas | Music_of_Armenia | link |
null | 410801.0 | 676.0 | other-google | Music_of_Armenia | other |
null | 410801.0 | 68.0 | other-wikipedia | Music_of_Armenia | other |
null | 410801.0 | 19.0 | other-yahoo | Music_of_Armenia | other |
null | 2591959.0 | 11.0 | other-empty | Music_of_Arunachal_Pradesh | other |
null | 2591959.0 | 13.0 | other-wikipedia | Music_of_Arunachal_Pradesh | other |
null | 2591959.0 | 70.0 | other-google | Music_of_Arunachal_Pradesh | other |
null | 1049220.0 | 141.0 | other-empty | Music_of_Assam | other |
null | 1049220.0 | 312.0 | other-google | Music_of_Assam | other |
null | 1049220.0 | 28.0 | other-other | Music_of_Assam | other |
602639.0 | 1049220.0 | 13.0 | Northeast_India | Music_of_Assam | link |
171300.0 | 3.489527e7 | 13.0 | Southern_hip_hop | Music_of_Atlanta | link |
null | 3.489527e7 | 42.0 | other-empty | Music_of_Atlanta | other |
null | 3.489527e7 | 596.0 | other-google | Music_of_Atlanta | other |
2206945.0 | 3.489527e7 | 24.0 | Atlanta_hip_hop | Music_of_Atlanta | link |
3138.0 | 3.489527e7 | 178.0 | Atlanta | Music_of_Atlanta | link |
null | 3.489527e7 | 12.0 | other-other | Music_of_Atlanta | other |
null | 3.489527e7 | 21.0 | other-bing | Music_of_Atlanta | other |
null | 308391.0 | 865.0 | other-google | Music_of_Austria | other |
null | 308391.0 | 52.0 | other-wikipedia | Music_of_Austria | other |
null | 308391.0 | 143.0 | other-empty | Music_of_Austria | other |
null | 308391.0 | 41.0 | other-yahoo | Music_of_Austria | other |
55866.0 | 308391.0 | 48.0 | Vienna | Music_of_Austria | link |
null | 308391.0 | 50.0 | other-bing | Music_of_Austria | other |
null | 308391.0 | 19.0 | other-other | Music_of_Austria | other |
2.6964606e7 | 308391.0 | 67.0 | Austria | Music_of_Austria | link |
2089641.0 | 1400477.0 | 17.0 | French_folk_music | Music_of_Auvergne | link |
null | 1400477.0 | 25.0 | other-google | Music_of_Auvergne | other |
null | 309778.0 | 415.0 | other-google | Music_of_Azerbaijan | other |
null | 309778.0 | 36.0 | other-wikipedia | Music_of_Azerbaijan | other |
440310.0 | 309778.0 | 24.0 | Music_of_Asia | Music_of_Azerbaijan | link |
null | 309778.0 | 155.0 | other-empty | Music_of_Azerbaijan | other |
746.0 | 309778.0 | 26.0 | Azerbaijan | Music_of_Azerbaijan | link |
null | 309778.0 | 17.0 | other-other | Music_of_Azerbaijan | other |
3470781.0 | 309778.0 | 10.0 | Mugham | Music_of_Azerbaijan | link |
null | 309778.0 | 26.0 | other-bing | Music_of_Azerbaijan | other |
null | 309778.0 | 14.0 | other-yahoo | Music_of_Azerbaijan | other |
58481.0 | 1923094.0 | 27.0 | Badakhshan | Music_of_Badakhshan | link |
null | 412724.0 | 64.0 | other-empty | Music_of_Bahrain | other |
null | 412724.0 | 111.0 | other-google | Music_of_Bahrain | other |
1.8933277e7 | 412724.0 | 13.0 | Bahrain | Music_of_Bahrain | link |
2.6997138e7 | 2753032.0 | 39.0 | Baltimore | Music_of_Baltimore | link |
null | 2753032.0 | 14.0 | other-yahoo | Music_of_Baltimore | other |
null | 2753032.0 | 32.0 | other-empty | Music_of_Baltimore | other |
null | 2753032.0 | 348.0 | other-google | Music_of_Baltimore | other |
null | 2753032.0 | 15.0 | other-wikipedia | Music_of_Baltimore | other |
1.0721944e7 | 2753032.0 | 10.0 | Spiderman_of_the_Rings | Music_of_Baltimore | link |
null | 2753032.0 | 17.0 | other-bing | Music_of_Baltimore | other |
null | 2753032.0 | 11.0 | other-other | Music_of_Baltimore | other |
null | 245850.0 | 49.0 | other-other | Music_of_Bangladesh | other |
null | 245850.0 | 12.0 | other-bing | Music_of_Bangladesh | other |
null | 245850.0 | 26.0 | other-yahoo | Music_of_Bangladesh | other |
3454.0 | 245850.0 | 26.0 | Bangladesh | Music_of_Bangladesh | link |
null | 245850.0 | 64.0 | other-wikipedia | Music_of_Bangladesh | other |
null | 245850.0 | 743.0 | other-google | Music_of_Bangladesh | other |
null | 245850.0 | 238.0 | other-empty | Music_of_Bangladesh | other |
440310.0 | 245850.0 | 25.0 | Music_of_Asia | Music_of_Bangladesh | link |
519963.0 | 245850.0 | 13.0 | Baul | Music_of_Bangladesh | link |
null | 4532941.0 | 11.0 | other-wikipedia | Music_of_Basilicata | other |
null | 4532941.0 | 15.0 | other-google | Music_of_Basilicata | other |
null | 8468129.0 | 713.0 | other-twitter | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 34.0 | other-wikipedia | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 1586.0 | other-google | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 478.0 | other-empty | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
3604689.0 | 8468129.0 | 36.0 | Battlestar_Galactica_(miniseries) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2.1304123e7 | 8468129.0 | 13.0 | Battlestar_Galactica_(season_2) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
413556.0 | 8468129.0 | 26.0 | All_Along_the_Watchtower | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 36.0 | other-yahoo | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 33.0 | other-bing | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
null | 8468129.0 | 41.0 | other-other | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2391393.0 | 8468129.0 | 17.0 | Richard_Gibbs | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2700625.0 | 8468129.0 | 89.0 | Bear_McCreary | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
3604726.0 | 8468129.0 | 145.0 | Battlestar_Galactica_(2004_TV_series) | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
2821280.0 | 8468129.0 | 44.0 | Kara_Thrace | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
5457957.0 | 8468129.0 | 14.0 | Shape_of_Things_to_Come | Music_of_Battlestar_Galactica_(2004_TV_series) | other |
247087.0 | 373626.0 | 20.0 | Music_of_the_Netherlands | Music_of_Belgium | link |
null | 373626.0 | 108.0 | other-empty | Music_of_Belgium | other |
null | 373626.0 | 16.0 | other-yahoo | Music_of_Belgium | other |
null | 373626.0 | 1081.0 | other-google | Music_of_Belgium | other |
null | 373626.0 | 46.0 | other-wikipedia | Music_of_Belgium | other |
143432.0 | 373626.0 | 31.0 | Culture_of_Belgium | Music_of_Belgium | link |
6180884.0 | 373626.0 | 20.0 | French_pop_music | Music_of_Belgium | link |
10878.0 | 373626.0 | 12.0 | Flanders | Music_of_Belgium | link |
3343.0 | 373626.0 | 47.0 | Belgium | Music_of_Belgium | link |
3.087116e7 | 373626.0 | 55.0 | New_Beat | Music_of_Belgium | link |
null | 373626.0 | 33.0 | other-bing | Music_of_Belgium | other |
null | 373626.0 | 22.0 | other-other | Music_of_Belgium | other |
null | 306641.0 | 32.0 | other-bing | Music_of_Belize | other |
null | 306641.0 | 25.0 | other-wikipedia | Music_of_Belize | other |
null | 306641.0 | 408.0 | other-google | Music_of_Belize | other |
null | 306641.0 | 134.0 | other-empty | Music_of_Belize | other |
null | 306641.0 | 15.0 | other-yahoo | Music_of_Belize | other |
3458.0 | 306641.0 | 17.0 | Belize | Music_of_Belize | link |
5052533.0 | 951080.0 | 19.0 | Rabindranath_Tagore | Music_of_Bengal | link |
1158934.0 | 951080.0 | 11.0 | Rabindra_Sangeet | Music_of_Bengal | link |
245850.0 | 951080.0 | 11.0 | Music_of_Bangladesh | Music_of_Bengal | link |
null | 951080.0 | 36.0 | other-other | Music_of_Bengal | other |
null | 951080.0 | 157.0 | other-empty | Music_of_Bengal | other |
null | 951080.0 | 42.0 | other-wikipedia | Music_of_Bengal | other |
null | 951080.0 | 801.0 | other-google | Music_of_Bengal | other |
null | 951080.0 | 11.0 | other-yahoo | Music_of_Bengal | other |
5985171.0 | 951080.0 | 10.0 | Culture_of_West_Bengal | Music_of_Bengal | link |
2.2612537e7 | 2.2648389e7 | 21.0 | Terry_Riley:_Cadenza_on_the_Night_Plain | Music_of_Bill_Evans | link |
null | 2.2648389e7 | 17.0 | other-google | Music_of_Bill_Evans | other |
null | 5508131.0 | 396.0 | other-empty | Music_of_Bollywood | other |
53207.0 | 5508131.0 | 42.0 | Record_producer | Music_of_Bollywood | other |
2.2138795e7 | 5508131.0 | 25.0 | Sad_Hindi_songs | Music_of_Bollywood | other |
4246.0 | 5508131.0 | 96.0 | Bollywood | Music_of_Bollywood | link |
5925126.0 | 5508131.0 | 18.0 | Binaca_Geetmala | Music_of_Bollywood | other |
406271.0 | 5508131.0 | 22.0 | Filmi | Music_of_Bollywood | link |
2.2448394e7 | 5508131.0 | 82.0 | Hindi_dance_songs | Music_of_Bollywood | other |
null | 5508131.0 | 123.0 | other-wikipedia | Music_of_Bollywood | other |
null | 5508131.0 | 1527.0 | other-google | Music_of_Bollywood | other |
5968908.0 | 5508131.0 | 27.0 | Filmi_Devotional_songs | Music_of_Bollywood | other |
222789.0 | 5508131.0 | 74.0 | Lata_Mangeshkar | Music_of_Bollywood | other |
1346834.0 | 5508131.0 | 11.0 | K._L._Saigal | Music_of_Bollywood | other |
334547.0 | 5508131.0 | 14.0 | Kishore_Kumar | Music_of_Bollywood | link |
null | 5508131.0 | 59.0 | other-bing | Music_of_Bollywood | other |
null | 5508131.0 | 76.0 | other-other | Music_of_Bollywood | other |
1.5580374e7 | 5508131.0 | 14.0 | Main_Page | Music_of_Bollywood | other |
14535.0 | 5508131.0 | 49.0 | Music_of_India | Music_of_Bollywood | link |
null | 5508131.0 | 36.0 | other-yahoo | Music_of_Bollywood | other |
2173379.0 | 373624.0 | 11.0 | Šaban_Šaulić | Music_of_Bosnia_and_Herzegovina | link |
null | 373624.0 | 11.0 | other-yahoo | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 98.0 | other-empty | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 364.0 | other-google | Music_of_Bosnia_and_Herzegovina | other |
null | 373624.0 | 25.0 | other-wikipedia | Music_of_Bosnia_and_Herzegovina | other |
3463.0 | 373624.0 | 38.0 | Bosnia_and_Herzegovina | Music_of_Bosnia_and_Herzegovina | link |
1444274.0 | 373624.0 | 29.0 | Music_of_Southeastern_Europe | Music_of_Bosnia_and_Herzegovina | link |
1532326.0 | 373624.0 | 18.0 | Narodna_muzika | Music_of_Bosnia_and_Herzegovina | link |
null | 373624.0 | 16.0 | other-other | Music_of_Bosnia_and_Herzegovina | other |
1471762.0 | 373624.0 | 13.0 | Bosnian_rock | Music_of_Bosnia_and_Herzegovina | link |
397584.0 | 373624.0 | 12.0 | Culture_of_Bosnia_and_Herzegovina | Music_of_Bosnia_and_Herzegovina | link |
3464.0 | 987389.0 | 33.0 | Botswana | Music_of_Botswana | link |
null | 987389.0 | 22.0 | other-wikipedia | Music_of_Botswana | other |
null | 987389.0 | 264.0 | other-google | Music_of_Botswana | other |
null | 987389.0 | 34.0 | other-other | Music_of_Botswana | other |
null | 987389.0 | 18.0 | other-bing | Music_of_Botswana | other |
null | 987389.0 | 106.0 | other-empty | Music_of_Botswana | other |
null | 432369.0 | 89.0 | other-empty | Music_of_Brittany | other |
4.2647129e7 | 432369.0 | 29.0 | Tri_Martolod | Music_of_Brittany | link |
5261.0 | 432369.0 | 28.0 | Celtic_music | Music_of_Brittany | link |
468295.0 | 432369.0 | 39.0 | Denez_Prigent | Music_of_Brittany | link |
3239660.0 | 432369.0 | 12.0 | Culture_of_Brittany | Music_of_Brittany | link |
1687254.0 | 432369.0 | 10.0 | Fest_Noz | Music_of_Brittany | link |
550629.0 | 432369.0 | 20.0 | Bagad | Music_of_Brittany | link |
38748.0 | 432369.0 | 13.0 | Brittany | Music_of_Brittany | link |
2089641.0 | 432369.0 | 26.0 | French_folk_music | Music_of_Brittany | link |
null | 432369.0 | 18.0 | other-bing | Music_of_Brittany | other |
null | 432369.0 | 32.0 | other-other | Music_of_Brittany | other |
null | 432369.0 | 397.0 | other-google | Music_of_Brittany | other |
null | 432369.0 | 36.0 | other-wikipedia | Music_of_Brittany | other |
null | 987349.0 | 18.0 | other-wikipedia | Music_of_Brunei | other |
null | 987349.0 | 296.0 | other-google | Music_of_Brunei | other |
3559333.0 | 987349.0 | 33.0 | Culture_of_Brunei | Music_of_Brunei | link |
null | 987349.0 | 90.0 | other-empty | Music_of_Brunei | other |
987349.0 | 987349.0 | 56.0 | Music_of_Brunei | Music_of_Brunei | other |
3466.0 | 987349.0 | 43.0 | Brunei | Music_of_Brunei | link |
1824190.0 | 373849.0 | 14.0 | Bulgarian_State_Television_Female_Vocal_Choir | Music_of_Bulgaria | link |
251620.0 | 373849.0 | 17.0 | Culture_of_Bulgaria | Music_of_Bulgaria | link |
1749887.0 | 373849.0 | 16.0 | Bulgarian_dances | Music_of_Bulgaria | link |
4527.0 | 373849.0 | 16.0 | Béla_Bartók | Music_of_Bulgaria | link |
3228403.0 | 373849.0 | 19.0 | Ghost_in_the_Shell_(film) | Music_of_Bulgaria | other |
null | 373849.0 | 1203.0 | other-google | Music_of_Bulgaria | other |
null | 373849.0 | 81.0 | other-wikipedia | Music_of_Bulgaria | other |
null | 373849.0 | 15.0 | other-yahoo | Music_of_Bulgaria | other |
1532326.0 | 373849.0 | 18.0 | Narodna_muzika | Music_of_Bulgaria | link |
null | 373849.0 | 31.0 | other-bing | Music_of_Bulgaria | other |
null | 373849.0 | 63.0 | other-other | Music_of_Bulgaria | other |
null | 373849.0 | 204.0 | other-empty | Music_of_Bulgaria | other |
1444274.0 | 373849.0 | 40.0 | Music_of_Southeastern_Europe | Music_of_Bulgaria | link |
null | 987266.0 | 125.0 | other-empty | Music_of_Burma | other |
null | 987266.0 | 36.0 | other-wikipedia | Music_of_Burma | other |
null | 987266.0 | 543.0 | other-google | Music_of_Burma | other |
1018512.0 | 987266.0 | 21.0 | Culture_of_Burma | Music_of_Burma | link |
null | 987266.0 | 38.0 | other-other | Music_of_Burma | other |
null | 987266.0 | 18.0 | other-bing | Music_of_Burma | other |
null | 987266.0 | 26.0 | other-yahoo | Music_of_Burma | other |
null | 561089.0 | 74.0 | other-google | Music_of_Burundi | other |
null | 561089.0 | 11.0 | other-wikipedia | Music_of_Burundi | other |
null | 561089.0 | 50.0 | other-empty | Music_of_Burundi | other |
2.1490998e7 | 561089.0 | 18.0 | Burundi | Music_of_Burundi | link |
196953.0 | 561089.0 | 68.0 | Kings_of_the_Wild_Frontier | Music_of_Burundi | link |
741441.0 | 1284811.0 | 44.0 | Buryatia | Music_of_Buryatia | link |
null | 1284811.0 | 10.0 | other-google | Music_of_Buryatia | other |
null | 4497082.0 | 37.0 | other-google | Music_of_Calabria | other |
null | 442836.0 | 21.0 | other-google | Music_of_Canada's_Prairie_Provinces | other |
null | 2.3921367e7 | 22.0 | other-empty | Music_of_Canadian_cultures | other |
null | 2.3921367e7 | 338.0 | other-google | Music_of_Canadian_cultures | other |
3.569409e7 | 2.3921367e7 | 19.0 | Anthems_and_nationalistic_songs_of_Canada | Music_of_Canadian_cultures | link |
248269.0 | 2.3921367e7 | 26.0 | Music_of_Canada | Music_of_Canadian_cultures | link |
10623.0 | 2.3921367e7 | 11.0 | Folk_music | Music_of_Canadian_cultures | link |
2700625.0 | 2.2645621e7 | 36.0 | Bear_McCreary | Music_of_Caprica | link |
null | 2.2645621e7 | 37.0 | other-google | Music_of_Caprica | other |
8468129.0 | 2.2645621e7 | 12.0 | Music_of_Battlestar_Galactica_(2004_TV_series) | Music_of_Caprica | link |
null | 2.2645621e7 | 17.0 | other-empty | Music_of_Caprica | other |
null | 7339937.0 | 29.0 | other-empty | Music_of_Cardiff | other |
165147.0 | 7339937.0 | 35.0 | Stereophonics | Music_of_Cardiff | link |
5882.0 | 7339937.0 | 36.0 | Cardiff | Music_of_Cardiff | link |
2.3794044e7 | 7339937.0 | 10.0 | Bullet_for_My_Valentine_discography | Music_of_Cardiff | other |
2213065.0 | 7339937.0 | 187.0 | Bullet_for_My_Valentine | Music_of_Cardiff | link |
492820.0 | 7339937.0 | 45.0 | Lostprophets | Music_of_Cardiff | link |
null | 7339937.0 | 143.0 | other-google | Music_of_Cardiff | other |
null | 444625.0 | 75.0 | other-google | Music_of_Castile_and_León | other |
null | 444625.0 | 15.0 | other-empty | Music_of_Castile_and_León | other |
105621.0 | 444625.0 | 12.0 | Music_of_Spain | Music_of_Castile_and_León | other |
292222.0 | 1.4164396e7 | 15.0 | Stochastic | Music_of_Changes | link |
null | 1.4164396e7 | 12.0 | other-other | Music_of_Changes | other |
null | 1.4164396e7 | 435.0 | other-google | Music_of_Changes | other |
null | 1.4164396e7 | 22.0 | other-wikipedia | Music_of_Changes | other |
1.4163e7 | 1.4164396e7 | 39.0 | List_of_compositions_by_John_Cage | Music_of_Changes | link |
null | 1.4164396e7 | 60.0 | other-empty | Music_of_Changes | other |
99234.0 | 1.4164396e7 | 32.0 | Aleatoric_music | Music_of_Changes | link |
65954.0 | 1.4164396e7 | 50.0 | John_Cage | Music_of_Changes | link |
null | 333496.0 | 24.0 | other-yahoo | Music_of_Chile | other |
null | 333496.0 | 63.0 | other-wikipedia | Music_of_Chile | other |
null | 333496.0 | 1371.0 | other-google | Music_of_Chile | other |
null | 333496.0 | 15.0 | other-other | Music_of_Chile | other |
1.5580374e7 | 333496.0 | 12.0 | Main_Page | Music_of_Chile | other |
null | 333496.0 | 78.0 | other-bing | Music_of_Chile | other |
null | 333496.0 | 188.0 | other-empty | Music_of_Chile | other |
5489.0 | 333496.0 | 18.0 | Chile | Music_of_Chile | link |
58895.0 | 333496.0 | 19.0 | Latin_American_music | Music_of_Chile | link |
null | 1.4216009e7 | 109.0 | other-google | Music_of_Coal | other |
5399.0 | 1291889.0 | 58.0 | Colorado | Music_of_Colorado | link |
null | 1291889.0 | 22.0 | other-yahoo | Music_of_Colorado | other |
null | 1291889.0 | 782.0 | other-google | Music_of_Colorado | other |
null | 1291889.0 | 22.0 | other-wikipedia | Music_of_Colorado | other |
null | 1291889.0 | 53.0 | other-empty | Music_of_Colorado | other |
null | 1291889.0 | 49.0 | other-bing | Music_of_Colorado | other |
912509.0 | 1291889.0 | 10.0 | Post-hardcore | Music_of_Colorado | link |
null | 1291920.0 | 11.0 | other-bing | Music_of_Connecticut | other |
null | 1291920.0 | 11.0 | other-empty | Music_of_Connecticut | other |
null | 1291920.0 | 182.0 | other-google | Music_of_Connecticut | other |
null | 1291920.0 | 30.0 | other-wikipedia | Music_of_Connecticut | other |
6591.0 | 1297518.0 | 24.0 | Crete | Music_of_Crete | link |
3237687.0 | 1297518.0 | 10.0 | Greek_folk_music | Music_of_Crete | link |
null | 1297518.0 | 30.0 | other-wikipedia | Music_of_Crete | other |
null | 1297518.0 | 185.0 | other-google | Music_of_Crete | other |
null | 1297518.0 | 39.0 | other-empty | Music_of_Crete | other |
1.8170476e7 | 1297518.0 | 12.0 | Psarantonis | Music_of_Crete | link |
962945.0 | 1297518.0 | 21.0 | Nikos_Xilouris | Music_of_Crete | link |
null | 1297518.0 | 27.0 | other-other | Music_of_Crete | other |
246225.0 | 1297518.0 | 11.0 | Music_of_Greece | Music_of_Crete | link |
1.5580374e7 | 1297518.0 | 15.0 | Main_Page | Music_of_Crete | other |
1408397.0 | 1297518.0 | 17.0 | Nakshatra | Music_of_Crete | other |
1532326.0 | 243011.0 | 11.0 | Narodna_muzika | Music_of_Croatia | link |
null | 243011.0 | 19.0 | other-bing | Music_of_Croatia | other |
null | 243011.0 | 30.0 | other-other | Music_of_Croatia | other |
474950.0 | 243011.0 | 34.0 | Culture_of_Croatia | Music_of_Croatia | link |
1.4203005e7 | 243011.0 | 14.0 | Croatian_popular_music | Music_of_Croatia | link |
1.2248405e7 | 243011.0 | 19.0 | Croatian_art | Music_of_Croatia | link |
1.0600968e7 | 243011.0 | 12.0 | Music_of_Yugoslavia | Music_of_Croatia | link |
2119998.0 | 243011.0 | 22.0 | Oliver_Dragojević | Music_of_Croatia | link |
1444274.0 | 243011.0 | 40.0 | Music_of_Southeastern_Europe | Music_of_Croatia | link |
null | 243011.0 | 29.0 | other-yahoo | Music_of_Croatia | other |
null | 243011.0 | 99.0 | other-empty | Music_of_Croatia | other |
null | 243011.0 | 513.0 | other-google | Music_of_Croatia | other |
null | 243011.0 | 43.0 | other-wikipedia | Music_of_Croatia | other |
null | 240761.0 | 15.0 | other-twitter | Music_of_Cuba | other |
null | 240761.0 | 4444.0 | other-google | Music_of_Cuba | other |
null | 240761.0 | 247.0 | other-wikipedia | Music_of_Cuba | other |
1005480.0 | 240761.0 | 84.0 | Afro-Cuban | Music_of_Cuba | link |
5347660.0 | 240761.0 | 11.0 | Cascara | Music_of_Cuba | link |
513544.0 | 240761.0 | 12.0 | Buena_Vista_Social_Club | Music_of_Cuba | link |
1654043.0 | 240761.0 | 42.0 | Afro-Caribbean_music | Music_of_Cuba | link |
682524.0 | 240761.0 | 24.0 | Culture_of_Cuba | Music_of_Cuba | link |
516807.0 | 240761.0 | 15.0 | Cuban_cuisine | Music_of_Cuba | link |
1107981.0 | 240761.0 | 10.0 | Afro-Cuban_jazz | Music_of_Cuba | link |
7966.0 | 240761.0 | 31.0 | Disco | Music_of_Cuba | other |
285709.0 | 240761.0 | 16.0 | Latin_jazz | Music_of_Cuba | other |
1.5703993e7 | 240761.0 | 11.0 | Gente_de_Zona | Music_of_Cuba | other |
1751751.0 | 240761.0 | 17.0 | Guaracha | Music_of_Cuba | link |
null | 240761.0 | 180.0 | other-other | Music_of_Cuba | other |
1.5580374e7 | 240761.0 | 25.0 | Main_Page | Music_of_Cuba | other |
25423.0 | 240761.0 | 11.0 | Rock_music | Music_of_Cuba | other |
240761.0 | 240761.0 | 26.0 | Music_of_Cuba | Music_of_Cuba | other |
null | 240761.0 | 274.0 | other-bing | Music_of_Cuba | other |
957080.0 | 240761.0 | 17.0 | Son_(music) | Music_of_Cuba | link |
null | 240761.0 | 208.0 | other-yahoo | Music_of_Cuba | other |
2.5179257e7 | 240761.0 | 20.0 | Dance_in_Cuba | Music_of_Cuba | link |
5042481.0 | 240761.0 | 116.0 | Cuba | Music_of_Cuba | link |
1.0891249e7 | 240761.0 | 17.0 | Cuban_rumba | Music_of_Cuba | link |
274927.0 | 240761.0 | 19.0 | Clave_(rhythm) | Music_of_Cuba | link |
1467094.0 | 240761.0 | 15.0 | Cha-cha-cha_(dance) | Music_of_Cuba | other |
3840752.0 | 240761.0 | 13.0 | Cachao_López | Music_of_Cuba | link |
9069468.0 | 240761.0 | 23.0 | Cha-cha-cha_(music) | Music_of_Cuba | link |
755312.0 | 240761.0 | 36.0 | Buena_Vista_Social_Club_(album) | Music_of_Cuba | link |
54403.0 | 240761.0 | 13.0 | Dizzy_Gillespie | Music_of_Cuba | other |
166331.0 | 240761.0 | 38.0 | Celia_Cruz | Music_of_Cuba | link |
58895.0 | 240761.0 | 55.0 | Latin_American_music | Music_of_Cuba | link |
9197579.0 | 240761.0 | 17.0 | List_of_Caribbean_music_groups | Music_of_Cuba | link |
1683462.0 | 240761.0 | 30.0 | Rumba_(dance) | Music_of_Cuba | link |
1.9261987e7 | 240761.0 | 27.0 | Trova | Music_of_Cuba | link |
null | 240761.0 | 703.0 | other-empty | Music_of_Cuba | other |
33134.0 | 240761.0 | 12.0 | World_music | Music_of_Cuba | other |
null | 2.3291343e7 | 14.0 | other-empty | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 17.0 | other-wikipedia | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 14.0 | other-twitter | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
null | 2.3291343e7 | 70.0 | other-google | Music_of_Dance_Dance_Revolution_(1998_video_game) | other |
2.1011855e7 | 2.3291343e7 | 25.0 | List_of_Dance_Dance_Revolution_songs | Music_of_Dance_Dance_Revolution_(1998_video_game) | link |
1459689.0 | 2.3291343e7 | 232.0 | Dance_Dance_Revolution_(1998_video_game) | Music_of_Dance_Dance_Revolution_(1998_video_game) | link |
575919.0 | 1291938.0 | 12.0 | Jade_Tree_(record_label) | Music_of_Delaware | link |
null | 1291938.0 | 10.0 | other-empty | Music_of_Delaware | other |
null | 1291938.0 | 60.0 | other-google | Music_of_Delaware | other |
null | 3.0865941e7 | 2241.0 | other-google | Music_of_Detroit | other |
null | 3.0865941e7 | 123.0 | other-wikipedia | Music_of_Detroit | other |
1730307.0 | 3.0865941e7 | 14.0 | List_of_Super_Bowl_halftime_shows | Music_of_Detroit | link |
73010.0 | 3.0865941e7 | 11.0 | Hardcore_punk | Music_of_Detroit | other |
559332.0 | 3.0865941e7 | 25.0 | List_of_hip_hop_genres | Music_of_Detroit | other |
5027648.0 | 3.0865941e7 | 28.0 | Detroit_Rock_City | Music_of_Detroit | link |
8687.0 | 3.0865941e7 | 106.0 | Detroit | Music_of_Detroit | link |
180178.0 | 3.0865941e7 | 15.0 | Detroit_techno | Music_of_Detroit | other |
140308.0 | 3.0865941e7 | 29.0 | Alice_Cooper | Music_of_Detroit | other |
1242998.0 | 3.0865941e7 | 15.0 | History_of_Detroit | Music_of_Detroit | link |
1171542.0 | 3.0865941e7 | 20.0 | Hitsville_U.S.A. | Music_of_Detroit | link |
null | 3.0865941e7 | 231.0 | other-empty | Music_of_Detroit | other |
168617.0 | 3.0865941e7 | 86.0 | The_White_Stripes | Music_of_Detroit | link |
307387.0 | 3.0865941e7 | 58.0 | Music_of_Michigan | Music_of_Detroit | link |
167396.0 | 3.0865941e7 | 100.0 | Motown | Music_of_Detroit | link |
null | 3.0865941e7 | 103.0 | other-bing | Music_of_Detroit | other |
1384091.0 | 3.0865941e7 | 11.0 | The_Electrifying_Mojo | Music_of_Detroit | link |
685028.0 | 3.0865941e7 | 10.0 | Super_Bowl_XL | Music_of_Detroit | link |
null | 3.0865941e7 | 44.0 | other-other | Music_of_Detroit | other |
null | 3.0865941e7 | 32.0 | other-facebook | Music_of_Detroit | other |
1.5580374e7 | 3.0865941e7 | 10.0 | Main_Page | Music_of_Detroit | other |
3235772.0 | 3.0865941e7 | 27.0 | Midwest_hip_hop | Music_of_Detroit | link |
null | 3.0865941e7 | 92.0 | other-yahoo | Music_of_Detroit | other |
null | 467018.0 | 20.0 | other-wikipedia | Music_of_East_Timor | other |
null | 467018.0 | 113.0 | other-google | Music_of_East_Timor | other |
376026.0 | 467018.0 | 29.0 | Culture_of_East_Timor | Music_of_East_Timor | link |
null | 467018.0 | 134.0 | other-empty | Music_of_East_Timor | other |
1444274.0 | 2.880603e7 | 20.0 | Music_of_Southeastern_Europe | Music_of_Eastern_Europe | link |
33134.0 | 2.880603e7 | 27.0 | World_music | Music_of_Eastern_Europe | link |
null | 306026.0 | 109.0 | other-empty | Music_of_Ecuador | other |
9334.0 | 306026.0 | 23.0 | Ecuador | Music_of_Ecuador | link |
null | 306026.0 | 30.0 | other-yahoo | Music_of_Ecuador | other |
679331.0 | 306026.0 | 27.0 | Culture_of_Ecuador | Music_of_Ecuador | link |
null | 306026.0 | 71.0 | other-bing | Music_of_Ecuador | other |
null | 306026.0 | 13.0 | other-other | Music_of_Ecuador | other |
null | 306026.0 | 941.0 | other-google | Music_of_Ecuador | other |
null | 306026.0 | 32.0 | other-wikipedia | Music_of_Ecuador | other |
null | 247746.0 | 101.0 | other-wikipedia | Music_of_Egypt | other |
null | 247746.0 | 2575.0 | other-google | Music_of_Egypt | other |
8087628.0 | 247746.0 | 55.0 | Egypt | Music_of_Egypt | link |
5884148.0 | 247746.0 | 18.0 | Baladi | Music_of_Egypt | link |
1.1298796e7 | 247746.0 | 11.0 | Ancient_Egyptian_cuisine | Music_of_Egypt | link |
null | 247746.0 | 426.0 | other-empty | Music_of_Egypt | other |
451841.0 | 247746.0 | 23.0 | Music_of_North_Africa | Music_of_Egypt | link |
3.2186235e7 | 247746.0 | 22.0 | Music_in_the_Civilization_video_game_series | Music_of_Egypt | link |
1427446.0 | 247746.0 | 10.0 | Prehistoric_Egypt | Music_of_Egypt | link |
855541.0 | 247746.0 | 20.0 | Phrygian_dominant_scale | Music_of_Egypt | other |
1.6173864e7 | 247746.0 | 10.0 | Nefer | Music_of_Egypt | link |
null | 247746.0 | 100.0 | other-other | Music_of_Egypt | other |
3378045.0 | 247746.0 | 10.0 | Public_holidays_in_Egypt | Music_of_Egypt | link |
1.5580374e7 | 247746.0 | 11.0 | Main_Page | Music_of_Egypt | other |
18839.0 | 247746.0 | 44.0 | Music | Music_of_Egypt | link |
null | 247746.0 | 154.0 | other-bing | Music_of_Egypt | other |
null | 247746.0 | 69.0 | other-yahoo | Music_of_Egypt | other |
51218.0 | 247746.0 | 57.0 | Culture_of_Egypt | Music_of_Egypt | link |
1969914.0 | 247746.0 | 11.0 | Coptic_music | Music_of_Egypt | link |
8233.0 | 247746.0 | 10.0 | Death_metal | Music_of_Egypt | other |
1502321.0 | 247746.0 | 50.0 | Ancient_music | Music_of_Egypt | link |
8559295.0 | 247746.0 | 24.0 | Egyptian_cuisine | Music_of_Egypt | link |
null | 4534705.0 | 23.0 | other-google | Music_of_Emilia-Romagna | other |
null | 1.0645556e7 | 39.0 | other-google | Music_of_Epirus_(Greece) | other |
3237687.0 | 1.0645556e7 | 10.0 | Greek_folk_music | Music_of_Epirus_(Greece) | other |
9667732.0 | 1.0645556e7 | 14.0 | Polyphonic_song_of_Epirus | Music_of_Epirus_(Greece) | link |
null | 1.0645556e7 | 19.0 | other-empty | Music_of_Epirus_(Greece) | other |
null | 423133.0 | 113.0 | other-empty | Music_of_Equatorial_Guinea | other |
null | 423133.0 | 178.0 | other-google | Music_of_Equatorial_Guinea | other |
null | 423133.0 | 14.0 | other-wikipedia | Music_of_Equatorial_Guinea | other |
418571.0 | 423133.0 | 30.0 | Culture_of_Equatorial_Guinea | Music_of_Equatorial_Guinea | link |
9366.0 | 423133.0 | 63.0 | Equatorial_Guinea | Music_of_Equatorial_Guinea | link |
null | 423133.0 | 17.0 | other-bing | Music_of_Equatorial_Guinea | other |
5073646.0 | 372892.0 | 12.0 | Veljo_Tormis | Music_of_Estonia | link |
null | 372892.0 | 11.0 | other-bing | Music_of_Estonia | other |
null | 372892.0 | 20.0 | other-other | Music_of_Estonia | other |
null | 372892.0 | 104.0 | other-empty | Music_of_Estonia | other |
3.5061186e7 | 372892.0 | 11.0 | Traffic_(Estonian_band) | Music_of_Estonia | link |
null | 372892.0 | 359.0 | other-google | Music_of_Estonia | other |
null | 372892.0 | 39.0 | other-wikipedia | Music_of_Estonia | other |
2.8222445e7 | 372892.0 | 33.0 | Estonia | Music_of_Estonia | link |
1.2454919e7 | 372892.0 | 14.0 | Culture_of_Estonia | Music_of_Estonia | link |
2157363.0 | 247149.0 | 57.0 | K'naan | Music_of_Ethiopia | link |
1632417.0 | 247149.0 | 11.0 | Tilahun_Gessesse | Music_of_Ethiopia | link |
null | 247149.0 | 253.0 | other-empty | Music_of_Ethiopia | other |
2194444.0 | 247149.0 | 146.0 | Mulatu_Astatke | Music_of_Ethiopia | link |
166141.0 | 247149.0 | 10.0 | Music_of_Africa | Music_of_Ethiopia | link |
null | 247149.0 | 84.0 | other-other | Music_of_Ethiopia | other |
null | 247149.0 | 77.0 | other-bing | Music_of_Ethiopia | other |
1.5580374e7 | 247149.0 | 10.0 | Main_Page | Music_of_Ethiopia | other |
187749.0 | 247149.0 | 85.0 | Ethiopia | Music_of_Ethiopia | link |
2022635.0 | 247149.0 | 13.0 | Éthiopiques | Music_of_Ethiopia | link |
null | 247149.0 | 64.0 | other-yahoo | Music_of_Ethiopia | other |
null | 247149.0 | 88.0 | other-wikipedia | Music_of_Ethiopia | other |
null | 247149.0 | 1232.0 | other-google | Music_of_Ethiopia | other |
null | 1.1214612e7 | 143.0 | other-google | Music_of_Final_Fantasy_III | other |
5137643.0 | 1.1214612e7 | 53.0 | Music_of_Final_Fantasy_I_and_II | Music_of_Final_Fantasy_III | link |
null | 1.1214612e7 | 37.0 | other-empty | Music_of_Final_Fantasy_III | other |
1001643.0 | 1.1214612e7 | 28.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_III | link |
null | 1.1214612e7 | 10.0 | other-other | Music_of_Final_Fantasy_III | other |
66495.0 | 1.1214612e7 | 17.0 | Final_Fantasy_III | Music_of_Final_Fantasy_III | link |
52754.0 | 1.1209352e7 | 47.0 | Final_Fantasy_IV | Music_of_Final_Fantasy_IV | link |
null | 1.1209352e7 | 296.0 | other-google | Music_of_Final_Fantasy_IV | other |
null | 1.1209352e7 | 31.0 | other-wikipedia | Music_of_Final_Fantasy_IV | other |
1.1139384e7 | 1.1209352e7 | 12.0 | Final_Fantasy_IV_(3D_remake) | Music_of_Final_Fantasy_IV | link |
1001643.0 | 1.1209352e7 | 19.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_IV | link |
1.1214612e7 | 1.1209352e7 | 51.0 | Music_of_Final_Fantasy_III | Music_of_Final_Fantasy_IV | link |
null | 1.1209352e7 | 133.0 | other-empty | Music_of_Final_Fantasy_IV | other |
5130807.0 | 1.1209352e7 | 10.0 | Music_of_Final_Fantasy_V | Music_of_Final_Fantasy_IV | link |
1337053.0 | 1.1216149e7 | 27.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_IX | link |
2159211.0 | 1.1216149e7 | 17.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_IX | link |
null | 1.1216149e7 | 295.0 | other-empty | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 30.0 | other-wikipedia | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 618.0 | other-google | Music_of_Final_Fantasy_IX | other |
52758.0 | 1.1216149e7 | 90.0 | Final_Fantasy_IX | Music_of_Final_Fantasy_IX | link |
625605.0 | 1.1216149e7 | 15.0 | Emiko_Shiratori | Music_of_Final_Fantasy_IX | link |
2171749.0 | 1.1216149e7 | 12.0 | Music_of_Final_Fantasy_VI | Music_of_Final_Fantasy_IX | link |
1001643.0 | 1.1216149e7 | 37.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_IX | link |
1.0091424e7 | 1.1216149e7 | 58.0 | Music_of_Final_Fantasy_VIII | Music_of_Final_Fantasy_IX | link |
null | 1.1216149e7 | 22.0 | other-bing | Music_of_Final_Fantasy_IX | other |
null | 1.1216149e7 | 11.0 | other-yahoo | Music_of_Final_Fantasy_IX | other |
4.2374187e7 | 1.1216149e7 | 17.0 | List_of_Vietnamese_films_of_2014 | Music_of_Final_Fantasy_IX | other |
null | 2171749.0 | 43.0 | other-wikipedia | Music_of_Final_Fantasy_VI | other |
null | 2171749.0 | 445.0 | other-google | Music_of_Final_Fantasy_VI | other |
null | 2171749.0 | 146.0 | other-empty | Music_of_Final_Fantasy_VI | other |
5130807.0 | 2171749.0 | 39.0 | Music_of_Final_Fantasy_V | Music_of_Final_Fantasy_VI | link |
2159211.0 | 2171749.0 | 22.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_VI | link |
57677.0 | 2171749.0 | 13.0 | Nobuo_Uematsu | Music_of_Final_Fantasy_VI | other |
52755.0 | 2171749.0 | 139.0 | Final_Fantasy_VI | Music_of_Final_Fantasy_VI | link |
3.5792677e7 | 2171749.0 | 16.0 | Dancing_Mad | Music_of_Final_Fantasy_VI | link |
2756115.0 | 2171749.0 | 17.0 | Shirō_Sagisu | Music_of_Final_Fantasy_VI | link |
null | 2171749.0 | 32.0 | other-other | Music_of_Final_Fantasy_VI | other |
1001643.0 | 2171749.0 | 48.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_VI | link |
1.1209352e7 | 2171749.0 | 11.0 | Music_of_Final_Fantasy_IV | Music_of_Final_Fantasy_VI | link |
1.0091424e7 | 2171749.0 | 13.0 | Music_of_Final_Fantasy_VIII | Music_of_Final_Fantasy_VI | link |
1001643.0 | 1.0091424e7 | 42.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_VIII | link |
1.1216149e7 | 1.0091424e7 | 22.0 | Music_of_Final_Fantasy_IX | Music_of_Final_Fantasy_VIII | link |
1.5580374e7 | 1.0091424e7 | 139.0 | Main_Page | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 14.0 | other-bing | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 29.0 | other-other | Music_of_Final_Fantasy_VIII | other |
1.4241133e7 | 1.0091424e7 | 34.0 | Eyes_on_Me_(Faye_Wong_song) | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 777.0 | other-google | Music_of_Final_Fantasy_VIII | other |
null | 1.0091424e7 | 124.0 | other-wikipedia | Music_of_Final_Fantasy_VIII | other |
52757.0 | 1.0091424e7 | 159.0 | Final_Fantasy_VIII | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 16.0 | other-yahoo | Music_of_Final_Fantasy_VIII | other |
57677.0 | 1.0091424e7 | 35.0 | Nobuo_Uematsu | Music_of_Final_Fantasy_VIII | link |
2159211.0 | 1.0091424e7 | 67.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_VIII | link |
1337053.0 | 1.0091424e7 | 14.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_VIII | link |
null | 1.0091424e7 | 375.0 | other-empty | Music_of_Final_Fantasy_VIII | other |
1337053.0 | 7873264.0 | 75.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_X-2 | link |
1.1216149e7 | 7873264.0 | 12.0 | Music_of_Final_Fantasy_IX | Music_of_Final_Fantasy_X-2 | link |
1001643.0 | 7873264.0 | 19.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_X-2 | link |
null | 7873264.0 | 465.0 | other-google | Music_of_Final_Fantasy_X-2 | other |
null | 7873264.0 | 13.0 | other-wikipedia | Music_of_Final_Fantasy_X-2 | other |
null | 7873264.0 | 70.0 | other-empty | Music_of_Final_Fantasy_X-2 | other |
398631.0 | 7873264.0 | 55.0 | Final_Fantasy_X-2 | Music_of_Final_Fantasy_X-2 | link |
419271.0 | 1.1245276e7 | 46.0 | Final_Fantasy_XI | Music_of_Final_Fantasy_XI | link |
4264381.0 | 1.1245276e7 | 12.0 | Music_of_Final_Fantasy_XII | Music_of_Final_Fantasy_XI | link |
1337053.0 | 1.1245276e7 | 14.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_XI | link |
null | 1.1245276e7 | 127.0 | other-empty | Music_of_Final_Fantasy_XI | other |
null | 1.1245276e7 | 13.0 | other-wikipedia | Music_of_Final_Fantasy_XI | other |
null | 1.1245276e7 | 194.0 | other-google | Music_of_Final_Fantasy_XI | other |
7873264.0 | 1.1245276e7 | 29.0 | Music_of_Final_Fantasy_X-2 | Music_of_Final_Fantasy_XI | link |
1001643.0 | 1.1245276e7 | 22.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XI | link |
2194883.0 | 1.1245276e7 | 17.0 | The_Star_Onions | Music_of_Final_Fantasy_XI | link |
1001643.0 | 2.719431e7 | 49.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XIII | link |
1636825.0 | 2.719431e7 | 135.0 | Final_Fantasy_XIII | Music_of_Final_Fantasy_XIII | link |
null | 2.719431e7 | 10.0 | other-wikipedia | Music_of_Final_Fantasy_XIII | other |
null | 2.719431e7 | 597.0 | other-google | Music_of_Final_Fantasy_XIII | other |
4264381.0 | 2.719431e7 | 57.0 | Music_of_Final_Fantasy_XII | Music_of_Final_Fantasy_XIII | link |
1337053.0 | 2.719431e7 | 16.0 | Music_of_Final_Fantasy_X | Music_of_Final_Fantasy_XIII | link |
3.8124492e7 | 2.719431e7 | 23.0 | Music_of_Final_Fantasy_XIII-2 | Music_of_Final_Fantasy_XIII | link |
2159211.0 | 2.719431e7 | 10.0 | Music_of_the_Final_Fantasy_VII_series | Music_of_Final_Fantasy_XIII | link |
391547.0 | 2.719431e7 | 14.0 | Masashi_Hamauzu | Music_of_Final_Fantasy_XIII | link |
4.3990854e7 | 2.719431e7 | 12.0 | Music_of_Lightning_Returns:_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIII | link |
null | 2.719431e7 | 216.0 | other-empty | Music_of_Final_Fantasy_XIII | other |
null | 4.2517401e7 | 107.0 | other-empty | Music_of_Final_Fantasy_XIV | other |
4.3990854e7 | 4.2517401e7 | 36.0 | Music_of_Lightning_Returns:_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIV | link |
3.8080015e7 | 4.2517401e7 | 156.0 | Final_Fantasy_XIV:_A_Realm_Reborn | Music_of_Final_Fantasy_XIV | link |
1001643.0 | 4.2517401e7 | 35.0 | Music_of_the_Final_Fantasy_series | Music_of_Final_Fantasy_XIV | link |
2.719431e7 | 4.2517401e7 | 15.0 | Music_of_Final_Fantasy_XIII | Music_of_Final_Fantasy_XIV | link |
null | 4.2517401e7 | 661.0 | other-google | Music_of_Final_Fantasy_XIV | other |
null | 4.2517401e7 | 20.0 | other-wikipedia | Music_of_Final_Fantasy_XIV | other |
2.3068765e7 | 4.2517401e7 | 69.0 | Final_Fantasy_XIV | Music_of_Final_Fantasy_XIV | link |
1.8933066e7 | 308346.0 | 55.0 | Florida | Music_of_Florida | link |
8233.0 | 308346.0 | 55.0 | Death_metal | Music_of_Florida | other |
2.1027603e7 | 308346.0 | 20.0 | Culture_of_Florida | Music_of_Florida | link |
171080.0 | 308346.0 | 17.0 | Music_of_the_United_States | Music_of_Florida | link |
null | 308346.0 | 79.0 | other-empty | Music_of_Florida | other |
null | 308346.0 | 1170.0 | other-google | Music_of_Florida | other |
null | 308346.0 | 38.0 | other-wikipedia | Music_of_Florida | other |
null | 308346.0 | 36.0 | other-yahoo | Music_of_Florida | other |
null | 308346.0 | 23.0 | other-other | Music_of_Florida | other |
null | 308346.0 | 44.0 | other-bing | Music_of_Florida | other |
3.031949e7 | 244703.0 | 49.0 | Zaz_(singer) | Music_of_France | link |
460074.0 | 244703.0 | 15.0 | Zouk | Music_of_France | other |
null | 244703.0 | 347.0 | other-bing | Music_of_France | other |
1.5580374e7 | 244703.0 | 15.0 | Main_Page | Music_of_France | other |
154437.0 | 244703.0 | 10.0 | Mireille_Mathieu | Music_of_France | link |
455818.0 | 244703.0 | 13.0 | Léo_Ferré | Music_of_France | link |
null | 244703.0 | 107.0 | other-other | Music_of_France | other |
98988.0 | 244703.0 | 46.0 | Culture_of_France | Music_of_France | link |
1028178.0 | 244703.0 | 10.0 | Françoise_Hardy | Music_of_France | link |
53185.0 | 244703.0 | 19.0 | French_hip_hop | Music_of_France | link |
244706.0 | 244703.0 | 133.0 | French_music | Music_of_France | link |
6180884.0 | 244703.0 | 64.0 | French_pop_music | Music_of_France | link |
2462478.0 | 244703.0 | 20.0 | List_of_French_artists | Music_of_France | link |
6181221.0 | 244703.0 | 13.0 | French_popular_music | Music_of_France | link |
4.2854258e7 | 244703.0 | 15.0 | Kendji_Girac | Music_of_France | link |
5843419.0 | 244703.0 | 128.0 | France | Music_of_France | link |
143486.0 | 244703.0 | 16.0 | Indie_rock | Music_of_France | link |
3.8384402e7 | 244703.0 | 33.0 | French_electronic_music | Music_of_France | link |
12343.0 | 244703.0 | 36.0 | Guadeloupe | Music_of_France | other |
null | 244703.0 | 173.0 | other-yahoo | Music_of_France | other |
660446.0 | 244703.0 | 27.0 | Vanessa_Paradis | Music_of_France | link |
null | 244703.0 | 658.0 | other-empty | Music_of_France | other |
61159.0 | 244703.0 | 10.0 | Maurice_Chevalier | Music_of_France | link |
null | 244703.0 | 137.0 | other-wikipedia | Music_of_France | other |
null | 244703.0 | 5065.0 | other-google | Music_of_France | other |
64963.0 | 244703.0 | 20.0 | Édith_Piaf | Music_of_France | link |
null | 319399.0 | 16.0 | other-empty | Music_of_French_Polynesia | other |
null | 319399.0 | 29.0 | other-google | Music_of_French_Polynesia | other |
10737.0 | 319399.0 | 23.0 | French_Polynesia | Music_of_French_Polynesia | link |
null | 2.2598486e7 | 12.0 | other-google | Music_of_Fujian | other |
null | 2.2598486e7 | 16.0 | other-empty | Music_of_Fujian | other |
null | 988801.0 | 66.0 | other-empty | Music_of_Gabon | other |
12027.0 | 988801.0 | 19.0 | Gabon | Music_of_Gabon | link |
null | 988801.0 | 113.0 | other-google | Music_of_Gabon | other |
null | 988801.0 | 11.0 | other-wikipedia | Music_of_Gabon | other |
null | 432418.0 | 65.0 | other-empty | Music_of_Galicia,_Cantabria_and_Asturias | other |
4243394.0 | 432418.0 | 18.0 | Galician_people | Music_of_Galicia,_Cantabria_and_Asturias | other |
158996.0 | 432418.0 | 35.0 | Hurdy-gurdy | Music_of_Galicia,_Cantabria_and_Asturias | link |
5261.0 | 432418.0 | 26.0 | Celtic_music | Music_of_Galicia,_Cantabria_and_Asturias | link |
null | 432418.0 | 13.0 | other-other | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 25.0 | other-bing | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 31.0 | other-wikipedia | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 292.0 | other-google | Music_of_Galicia,_Cantabria_and_Asturias | other |
12837.0 | 432418.0 | 32.0 | Galicia_(Spain) | Music_of_Galicia,_Cantabria_and_Asturias | link |
362965.0 | 432418.0 | 20.0 | Capriccio_Espagnol | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 432418.0 | 17.0 | other-yahoo | Music_of_Galicia,_Cantabria_and_Asturias | other |
null | 244795.0 | 189.0 | other-yahoo | Music_of_Germany | other |
1195868.0 | 244795.0 | 53.0 | Culture_of_Germany | Music_of_Germany | link |
953401.0 | 244795.0 | 94.0 | German_rock | Music_of_Germany | link |
1587088.0 | 244795.0 | 21.0 | List_of_German_musicians | Music_of_Germany | link |
12636.0 | 244795.0 | 12.0 | German_literature | Music_of_Germany | link |
5103330.0 | 244795.0 | 19.0 | German_art | Music_of_Germany | link |
276919.0 | 244795.0 | 70.0 | Krautrock | Music_of_Germany | other |
262094.0 | 244795.0 | 43.0 | Volksmusik | Music_of_Germany | link |
null | 244795.0 | 724.0 | other-empty | Music_of_Germany | other |
598055.0 | 244795.0 | 28.0 | Volkstümliche_Musik | Music_of_Germany | link |
636692.0 | 244795.0 | 18.0 | Metalcore | Music_of_Germany | other |
5243467.0 | 244795.0 | 14.0 | Neue_Deutsche_Härte | Music_of_Germany | link |
497068.0 | 244795.0 | 112.0 | Ostalgie | Music_of_Germany | other |
234666.0 | 244795.0 | 62.0 | Blind_Guardian | Music_of_Germany | link |
8203.0 | 244795.0 | 16.0 | Deutschlandlied | Music_of_Germany | link |
609351.0 | 244795.0 | 47.0 | Accept_(band) | Music_of_Germany | link |
11867.0 | 244795.0 | 245.0 | Germany | Music_of_Germany | link |
152735.0 | 244795.0 | 24.0 | Germans | Music_of_Germany | link |
2130627.0 | 244795.0 | 44.0 | Grave_Digger_(band) | Music_of_Germany | link |
757143.0 | 244795.0 | 67.0 | Gamma_Ray_(band) | Music_of_Germany | link |
1246795.0 | 244795.0 | 12.0 | German_folklore | Music_of_Germany | link |
720421.0 | 244795.0 | 22.0 | List_of_rock_genres | Music_of_Germany | other |
null | 244795.0 | 339.0 | other-bing | Music_of_Germany | other |
null | 244795.0 | 132.0 | other-other | Music_of_Germany | other |
1332497.0 | 244795.0 | 22.0 | Rage_(German_band) | Music_of_Germany | link |
1.5580374e7 | 244795.0 | 32.0 | Main_Page | Music_of_Germany | other |
378119.0 | 244795.0 | 15.0 | Neue_Deutsche_Welle | Music_of_Germany | link |
1130361.0 | 244795.0 | 32.0 | Running_Wild_(band) | Music_of_Germany | link |
299409.0 | 244795.0 | 75.0 | Schlager_music | Music_of_Germany | link |
244795.0 | 244795.0 | 69.0 | Music_of_Germany | Music_of_Germany | link |
4.1005564e7 | 244795.0 | 37.0 | Milky_Chance | Music_of_Germany | other |
null | 244795.0 | 4975.0 | other-google | Music_of_Germany | other |
null | 244795.0 | 249.0 | other-wikipedia | Music_of_Germany | other |
null | 245844.0 | 49.0 | other-wikipedia | Music_of_Ghana | other |
null | 245844.0 | 1018.0 | other-google | Music_of_Ghana | other |
null | 245844.0 | 167.0 | other-empty | Music_of_Ghana | other |
788753.0 | 245844.0 | 19.0 | Culture_of_Ghana | Music_of_Ghana | link |
null | 245844.0 | 37.0 | other-yahoo | Music_of_Ghana | other |
null | 245844.0 | 52.0 | other-bing | Music_of_Ghana | other |
null | 245844.0 | 46.0 | other-other | Music_of_Ghana | other |
1791457.0 | 245844.0 | 96.0 | Music_of_West_Africa | Music_of_Ghana | link |
12067.0 | 245844.0 | 24.0 | Ghana | Music_of_Ghana | link |
197453.0 | 1356974.0 | 100.0 | Goa_trance | Music_of_Goa | link |
1980910.0 | 1356974.0 | 24.0 | Culture_of_Goa | Music_of_Goa | link |