Group Projects: ScaDaMaLe WASP Instance 2022-2023
Edited by Oskar Åsbrink and Raazesh Sainudiin.
Peer-reviewed by project authors according to these instructions using this template.
Introduction
A total of 42 PhD students in 13 groups did projects of their choosing in Scalable Data Science and Distributed Machine Learning, a mandatory as well as elective course of The WASP Graduate School in 2022-2023. See ScaDaMaLe Course Pathways to appreciate the pre-requisite modules 000_1 through 000_9 for the union of all 13 projects.
The Best Student Group Projects on the basis of peer-review and industrial feed-back are:
- Group 5 on Scalable Bayesian optimization with distributed Gaussian processes and deep kernel learning (academic-track)
- Carl Hvarfner, Lund University
- Leonard Papenmeier, Lund University
- Manu Upadhyaya, Lund University
- Group 9 on Predicting the load in wireless networks (industry-track)
- Sofia Ek, Department of Information Technology, Uppsala University
- Oscar Stenhammar, Network and System Engineering, KTH and Ericsson
Table of Contents
- Graph of Wiki by Vilhelm Agdur, Henrik Ekström, Simon Johansson and Albin Toft.
- Visual Question Answering using Transformers by Ehsan Doostmohammadi and Hariprasath Govindarajan.
- Scalable Analysis of a Massive Knowledge Graph by Filip Cornell, Yifei Jin, Joel Oskarsson and Tianyi Zho.
- Federated Learning for Brain Tumor Segmentation by Jingru Fu, Lidia Kidane and Romuald Esdras Wandji.
- Scalable Bayesian optimization with distributed Gaussian processes and deep kernel learning by Carl Hvarfner, Leonard Papenmeier and Manu Upadhyaya.
- Experiments with ZerO initialisation by Livia Qian and Rajmund Nagy.
- Smart Search in Wikipedia by David Mohlin, Erik Englesson and Fereidoon Zangeneh.
- Distributed Ensembles for 3D Human Pose Estimation by Hampus Gummesson Svensson, Xixi Liu, Yaroslava Lochman and Erik Wallin.
- Predicting the load in wireless networks by Sofia Ek and Oscar Stenhammar.
- Collaborative Filtering in Movie Recommender Systems by Jacob Lindbäck, Rebecka Winqvist, Robert Bereza and Damianos Tranos.
- Federated Learning Using Horovod by Amandine Caut, Ali Dadras, Hoomaan Maskan and Seyedsaeed Razavikia.
- Distributed Reinforcement Learning by Johan Edstedt, Arvi Jonnarth and Yushan Zhang.
- Earth Observation by Daniel Brunnsåker, Alexander H. Gower and Filip Kronström.
- Conclusion and BrIntSuSb by Raazesh Sainudiin.
- Editors
Invited Talks from Industry
Thanks to the inspiring talks from the following invited speakers from industry:
- Vivian Ribeiro, Nanxu Su and Tomas Carvalho, trase (Stockholm, Sweden), Transparency for sustainable trade.
- Reza Zadeh, Matroid and Stanford University (Palo Alto, California, USA), Computer Vision from an academic perspective.
- Andreas Hellander, Scaleout Systems and Uppsala University (Uppsala, Sweden), Taking Federated Learning to Production - towards privacy-preserving ML at scale.
- Ali Sarrafi, Christian Von Koch and William Anzen, Combient Mix (Stockholm, Sweden), Slag segmentation with deep neural networks at LKAB.
- Juozas Vaicenavicius, SENSmetry (Uppsala, Sweden and Vilnius, Lithuania), Autonomous systems safety: what is so difficult?
- Jim Dowling, Logical Clocks, hopsworks and KTH Royal Institute of Technology (Stockholm, Sweden), Serverless Machine Learning with Hopsworks.
Graph of Wikipedia
Project members:
- Vilhelm Agdur, Department of Mathematics, Uppsala University
- Henrik Ekström, Department of Mathematical Statistics, Lund University
- Simon Johansson, Department of Computer Science and Engineering, Chalmers University of Technology and AstraZeneca, Gothenburg
- Albin Toft, Department of Mathematics, KTH Royal Institute of Technology and Combient Mix AB, Stockholm.
Background
To assume that Wikipedia is a webiste known to most is perhaps not a controversial statement, however to avoid confusion in case someone is not familiar with the website, the following can be found on the Wikipedia article about Wikipedia:
When reading articles on Wikipedia, a reader will be faced with hyper-links to other articles in the Wiki-verse, which might lead a reader onto a path towards a completely different subject than what was on the first page that was read. This phenomena, together with a curiosity about the properties of a graph constructed using the articles and links of Wikipedia, lead to this project with a goal of exploring and analysing what will be reffered to as the "Wiki-Graph". For those unfamiliar with the term "Graph", a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge. For instance, a graph could be a social network, where the verices are the users and the edges are the friendship relationships among the users. Or as in our case, the vertices could be articles and the edges the hyperlinks between the articles.
Example of a directed graph.
Purpose
The main goal of the project was to explore the Wiki-Graph to answer some exploration oriented questions about the structure. These were questions such as: 1. What is the size of the graph? 2. How dense is it? 3. What can be said about the hierarchical structure of categories? 4. What is the fastest way to go from article A to B, using only the hyper-links? 5. Etc.
Methods
In order to answer these questions we have used the GraphFrames API with Apache Spark. GraphFrames provide tools for analyzing and querying large graphs in a distributed and scalable fashion, with built-in implementations for algorithms such as PageRank, LabelPropagation, BFS and many more.
Data
The data used for the project came from WikiData database dumps. More about precisely what data, how it was ingested, preprocessed and finally joined to produce a GraphFrame, will be presented in upcoming notebooks.
Loading of the Wikipedia data
The data from Wikipedia is available as .sql-file dumps here. So we need to do a little bit of work to get these SQL files into an actual database on the cloud.
All these database dumps are too big to fit into the memory of the driver, so the most naïve way of doing this will not work. Let's do something slightly tricky instead.
As a first step, we download the .sql file:
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
FileUtils.copyURLToFile(new URL("https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-redirect.sql.gz"), new File("/tmp/enwiki-latest-redirect.sql.gz"))
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Having done this, we first unzip the file, and then move the file from local storage to the DBFS:
gzip -d /tmp/enwiki-latest-redirect.sql.gz
mv file:/tmp/enwiki-latest-redirect.sql /enwiki-latest-redirect.sql
res1: Boolean = true
Having gotten the data onto the DBFS, we can now read it into Spark:
val rawSQLdump = spark.read.textFile("/enwiki-latest-redirect.sql")
rawSQLdump: org.apache.spark.sql.Dataset[String] = [value: string]
The first forty lines are setting up the database, then we get a lot of very long INSERT INTO lines with many many entries being inserted.
println(rawSQLdump.take(40).mkString("\n"))
-- MySQL dump 10.19 Distrib 10.3.34-MariaDB, for debian-linux-gnu (x86_64)
--
-- Host: db1106 Database: enwiki
-- ------------------------------------------------------
-- Server version 10.4.25-MariaDB-log
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `redirect`
--
DROP TABLE IF EXISTS `redirect`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `redirect` (
`rd_from` int(8) unsigned NOT NULL DEFAULT 0,
`rd_namespace` int(11) NOT NULL DEFAULT 0,
`rd_title` varbinary(255) NOT NULL DEFAULT '',
`rd_interwiki` varbinary(32) DEFAULT NULL,
`rd_fragment` varbinary(255) DEFAULT NULL,
PRIMARY KEY (`rd_from`),
KEY `rd_ns_title` (`rd_namespace`,`rd_title`,`rd_from`)
) ENGINE=InnoDB DEFAULT CHARSET=binary ROW_FORMAT=COMPRESSED;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `redirect`
--
/*!40000 ALTER TABLE `redirect` DISABLE KEYS */;
The remaining rows look something like this, except much much longer:
println(rawSQLdump.take(41)(40).substring(0,188) + ",...,"+rawSQLdump.take(41)(40).substring(rawSQLdump.take(41)(40).length()-75, rawSQLdump.take(41)(40).length()))
INSERT INTO `redirect` VALUES (10,0,'Computer_accessibility','',''),(13,0,'History_of_Afghanistan','',''),(14,0,'Geography_of_Afghanistan','',''),(15,0,'Demographics_of_Afghanistan','',''),...,(170997,0,'Supersaturation','',''),(171002,0,'Dubbing','','ADR/post-sync');
Next up, let us strip out the INSERT INTO
bit and the initial and final parentheses, then split at each ),(
, so that we get each entry as its own string.
val pageDataRows = rawSQLdump.filter(x => x.startsWith("INSERT INTO"))
.flatMap(x => x.substring(31, x.length()-2).split("""\),\("""))
pageDataRows: org.apache.spark.sql.Dataset[String] = [value: string]
So now our data looks like this:
println(pageDataRows.take(20).mkString("\n"))
10,0,'Computer_accessibility','',''
13,0,'History_of_Afghanistan','',''
14,0,'Geography_of_Afghanistan','',''
15,0,'Demographics_of_Afghanistan','',''
18,0,'Communications_in_Afghanistan','',''
19,0,'Transport_in_Afghanistan','',''
20,0,'Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan','',''
21,0,'Foreign_relations_of_Afghanistan','',''
23,0,'Assistive_technology','',''
24,0,'Amoeba','',''
25,0,'Autism_spectrum','',''
27,0,'History_of_Albania','',''
29,0,'Demographics_of_Albania','',''
30,0,'As_We_May_Think','',''
35,0,'Politics_of_Albania','',''
36,0,'Economy_of_Albania','',''
40,0,'Afroasiatic_languages','',''
42,0,'Constructed_language','',''
46,0,'Abacus','',''
47,0,'Abalone','',''
This table has a modest amount of rows, only 12.9 million.
pageDataRows.count()
res15: Long = 12937954
The above looks a whole lot like a CSV file, doesn't it? Let's write it to file as such. Note that we write it as text instead of as CSV because our data is in the format of a single string per row.
pageDataRows.toDF().write.mode("overwrite").text("/WikipediaData/enwiki-redirect.csv")
Now we want to read this back in, but with the right schema and column names and so on. So we start by creating the schema. In order to be sure that all the rows got parsed correctly, we add an extra column named _corrupt_record
, which will get the raw CSV text whenever it couldn't be parsed right, and otherwise be set to NULL.
import org.apache.spark.sql.types._
// Start by creating a case class of a row entry:
case class WikiRedirect(rd_from:Int,
rd_namespace:Int,
rd_title:String,
rd_interwiki:String,
rd_fragment:String
)
// then we generate a schema object from the case class: (code copypasted from here: https://sparkbyexamples.com/spark/convert-case-class-to-spark-schema/)
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
val pageSchema = ScalaReflection.schemaFor[WikiRedirect].dataType.asInstanceOf[StructType].add("_corrupt_record", StringType, true)
import org.apache.spark.sql.types._
defined class WikiRedirect
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
pageSchema: org.apache.spark.sql.types.StructType = StructType(StructField(rd_from,IntegerType,false),StructField(rd_namespace,IntegerType,false),StructField(rd_title,StringType,true),StructField(rd_interwiki,StringType,true),StructField(rd_fragment,StringType,true),StructField(_corrupt_record,StringType,true))
Then we read it back in with the schema we just created:
val readFromCSV = spark.read
.options(Map("quote" -> "'", "mode" -> "PERMISSIVE", "columnNameOfCorruptRecord" -> "_corrupt_record"))
.schema(pageSchema)
.csv("/WikipediaData/enwiki-redirect.csv")
readFromCSV: org.apache.spark.sql.DataFrame = [rd_from: int, rd_namespace: int ... 4 more fields]
Let's have a look at what we just created:
display(readFromCSV)
rd_from | rd_namespace | rd_title | rd_interwiki | rd_fragment | _corrupt_record |
---|---|---|---|---|---|
10.0 | 0.0 | Computer_accessibility | null | null | null |
13.0 | 0.0 | History_of_Afghanistan | null | null | null |
14.0 | 0.0 | Geography_of_Afghanistan | null | null | null |
15.0 | 0.0 | Demographics_of_Afghanistan | null | null | null |
18.0 | 0.0 | Communications_in_Afghanistan | null | null | null |
19.0 | 0.0 | Transport_in_Afghanistan | null | null | null |
20.0 | 0.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan | null | null | null |
21.0 | 0.0 | Foreign_relations_of_Afghanistan | null | null | null |
23.0 | 0.0 | Assistive_technology | null | null | null |
24.0 | 0.0 | Amoeba | null | null | null |
25.0 | 0.0 | Autism_spectrum | null | null | null |
27.0 | 0.0 | History_of_Albania | null | null | null |
29.0 | 0.0 | Demographics_of_Albania | null | null | null |
30.0 | 0.0 | As_We_May_Think | null | null | null |
35.0 | 0.0 | Politics_of_Albania | null | null | null |
36.0 | 0.0 | Economy_of_Albania | null | null | null |
40.0 | 0.0 | Afroasiatic_languages | null | null | null |
42.0 | 0.0 | Constructed_language | null | null | null |
46.0 | 0.0 | Abacus | null | null | null |
47.0 | 0.0 | Abalone | null | null | null |
48.0 | 0.0 | Abbadid_dynasty | null | null | null |
49.0 | 0.0 | Abbess | null | null | null |
50.0 | 0.0 | Abbeville | null | null | null |
51.0 | 0.0 | Abbey | null | null | null |
52.0 | 0.0 | Abbot | null | null | null |
53.0 | 0.0 | Abbreviation | null | null | null |
54.0 | 0.0 | Atlas_Shrugged | null | null | null |
56.0 | 0.0 | Constructed_language | null | null | null |
58.0 | 0.0 | List_of_Atlas_Shrugged_characters | null | null | null |
59.0 | 0.0 | Atlas_Shrugged | null | null | null |
60.0 | 0.0 | Atlas_Shrugged | null | null | null |
241.0 | 0.0 | African_Americans | null | null | null |
242.0 | 0.0 | Adolf_Hitler | null | null | null |
247.0 | 0.0 | Abecedarian | null | null | null |
248.0 | 0.0 | Cain_and_Abel | null | null | null |
249.0 | 0.0 | Abensberg | null | null | null |
251.0 | 0.0 | Aberdeen,_South_Dakota | null | null | null |
254.0 | 0.0 | Arthur_Koestler | null | null | null |
255.0 | 0.0 | Ayn_Rand | null | null | null |
256.0 | 0.0 | Alexander_the_Great | null | null | null |
258.0 | 0.0 | Anchorage,_Alaska | null | null | null |
259.0 | 0.0 | Logical_form | null | null | null |
260.0 | 0.0 | Existence_of_God | null | null | null |
263.0 | 0.0 | Anarchy | null | null | null |
264.0 | 0.0 | ASCII_art | null | null | null |
269.0 | 0.0 | Academy_Awards | null | null | null |
270.0 | 0.0 | Academy_Award_for_Best_Picture | null | null | null |
271.0 | 0.0 | Austrian_German | null | null | null |
272.0 | 0.0 | Elitism | null | null | null |
274.0 | 0.0 | Axiom_of_choice | null | null | null |
276.0 | 0.0 | American_football | null | null | null |
278.0 | 0.0 | United_States | null | null | null |
279.0 | 0.0 | Anna_Kournikova | null | null | null |
280.0 | 0.0 | Andorra | null | null | null |
287.0 | 0.0 | Austroasiatic_languages | null | null | null |
289.0 | 0.0 | Lists_of_actors | null | null | null |
291.0 | 0.0 | Anarcho-capitalism | null | null | null |
293.0 | 0.0 | Anarcho-capitalism | null | null | null |
296.0 | 0.0 | Lists_of_actors | null | null | null |
299.0 | 0.0 | An_American_in_Paris | null | null | null |
301.0 | 0.0 | Automorphism | null | null | null |
302.0 | 0.0 | Action_film | null | null | null |
304.0 | 0.0 | Africa | null | null | null |
306.0 | 0.0 | Statistics | null | null | null |
325.0 | 0.0 | Action_film | null | null | null |
338.0 | 0.0 | Auto_racing | null | null | null |
347.0 | 0.0 | Demographics_of_Algeria | null | null | null |
353.0 | 0.0 | Foreign_relations_of_Algeria | null | null | null |
369.0 | 0.0 | Atlas_Shrugged | null | null | null |
583.0 | 0.0 | Amoeba | null | null | null |
589.0 | 0.0 | Ashmore_and_Cartier_Islands | null | null | null |
596.0 | 0.0 | Artificial_language | null | null | null |
598.0 | 0.0 | Afroasiatic_languages | null | null | null |
609.0 | 0.0 | Foreign_relations_of_Andorra | null | null | null |
617.0 | 0.0 | Al_Gore | null | null | null |
618.0 | 0.0 | An_Enquiry_Concerning_Human_Understanding | null | null | null |
622.0 | 0.0 | Al_Gore | null | null | null |
626.0 | 0.0 | Auteur | null | null | null |
629.0 | 0.0 | Abstract_algebra | null | null | null |
635.0 | 0.0 | Analysis_of_variance | null | null | null |
644.0 | 0.0 | Arithmetic_logic_unit | null | null | null |
648.0 | 0.0 | Actor | null | null | null |
654.0 | 0.0 | Computer_accessibility | null | null | null |
668.0 | 0.0 | Logical_form | null | null | null |
669.0 | 0.0 | Allotropy | null | null | null |
686.0 | 0.0 | Amalthea_(mythology) | null | null | null |
687.0 | 0.0 | Analysis_of_variance | null | null | null |
693.0 | 0.0 | Broch | null | null | null |
696.0 | 0.0 | AA | null | Rivers | null |
724.0 | 4.0 | Nupedia_and_Wikipedia | null | null | null |
726.0 | 5.0 | Nupedia_and_Wikipedia | null | null | null |
727.0 | 0.0 | History_of_astronomy | null | null | null |
731.0 | 0.0 | History_of_astronomy | null | null | null |
735.0 | 0.0 | Al_Gore | null | null | null |
743.0 | 0.0 | Antigua_and_Barbuda | null | null | null |
749.0 | 0.0 | Astronomer | null | null | null |
755.0 | 0.0 | History_of_Albania | null | null | null |
758.0 | 0.0 | Foreign_relations_of_Albania | null | null | null |
759.0 | 0.0 | Demographics_of_Albania | null | null | null |
763.0 | 0.0 | Foreign_relations_of_Albania | null | null | null |
767.0 | 0.0 | A._E._van_Vogt | null | null | null |
807.0 | 0.0 | Telecommunications_in_Albania | null | null | null |
813.0 | 0.0 | History_of_Afghanistan | null | null | null |
814.0 | 0.0 | Geography_of_Afghanistan | null | null | null |
815.0 | 0.0 | Government_of_the_Islamic_Emirate_of_Afghanistan | null | null | null |
816.0 | 0.0 | Demographics_of_Afghanistan | null | null | null |
817.0 | 0.0 | Economy_of_Afghanistan | null | null | null |
818.0 | 0.0 | Communications_in_Afghanistan | null | null | null |
820.0 | 0.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan | null | null | null |
821.0 | 0.0 | Foreign_relations_of_Afghanistan | null | null | null |
822.0 | 0.0 | Afghanistan | null | null | null |
832.0 | 0.0 | Foreign_relations_of_Austria | null | null | null |
839.0 | 0.0 | Anglicanism | null | null | null |
855.0 | 0.0 | Abiotic_component | null | null | null |
858.0 | 0.0 | Au | null | null | null |
860.0 | 0.0 | Åland | null | null | null |
873.0 | 0.0 | Civilization | null | null | null |
882.0 | 0.0 | Supermajority | null | Majority of the entire membership | null |
891.0 | 0.0 | Accounting | null | null | null |
907.0 | 0.0 | AWK | null | null | null |
908.0 | 0.0 | Nomic | null | null | null |
918.0 | 0.0 | Antisemitism | null | null | null |
919.0 | 0.0 | Antisemitism | null | null | null |
923.0 | 0.0 | A._A._Milne | null | null | null |
926.0 | 0.0 | Alumni | null | null | null |
935.0 | 0.0 | Automated_Alice | null | null | null |
936.0 | 0.0 | Automated_Alice | null | null | null |
937.0 | 0.0 | Automated_Alice | null | null | null |
938.0 | 0.0 | Automated_Alice | null | null | null |
939.0 | 0.0 | Automated_Alice | null | null | null |
940.0 | 0.0 | Automated_Alice | null | null | null |
941.0 | 0.0 | Automated_Alice | null | null | null |
942.0 | 0.0 | Automated_Alice | null | null | null |
943.0 | 0.0 | Automated_Alice | null | null | null |
944.0 | 0.0 | Automated_Alice | null | null | null |
945.0 | 0.0 | Automated_Alice | null | null | null |
946.0 | 0.0 | Automated_Alice | null | null | null |
959.0 | 0.0 | Voiced_velar_nasal | null | null | null |
963.0 | 0.0 | Existence_of_God | null | null | null |
970.0 | 0.0 | Ambient_calculus | null | null | null |
972.0 | 0.0 | Necronomicon | null | Fictional history | null |
973.0 | 0.0 | A_priori_and_a_posteriori | null | null | null |
975.0 | 0.0 | Ambient_calculus | null | null | null |
982.0 | 0.0 | A_priori_and_a_posteriori | null | null | null |
1026.0 | 0.0 | Anarcho-capitalism | null | null | null |
1035.0 | 0.0 | AAL | null | null | null |
1059.0 | 0.0 | Statistics | null | Applications | null |
1061.0 | 0.0 | Analysis_of_variance | null | Random-effects models | null |
1062.0 | 0.0 | Analysis_of_variance | null | null | null |
1075.0 | 0.0 | Foreign_relations_of_Antigua_and_Barbuda | null | null | null |
1083.0 | 0.0 | Demographics_of_Azerbaijan | null | null | null |
1085.0 | 0.0 | Telecommunications_in_Azerbaijan | null | null | null |
1089.0 | 0.0 | Foreign_relations_of_Azerbaijan | null | null | null |
1105.0 | 0.0 | Foreign_relations_of_Argentina | null | null | null |
1108.0 | 0.0 | Foreign_relations_of_Argentina | null | null | null |
1109.0 | 0.0 | American_Samoa | null | Geography | null |
1114.0 | 0.0 | American_Samoa | null | null | null |
1116.0 | 0.0 | American_Samoa | null | null | null |
1123.0 | 0.0 | Foreign_relations_of_Australia | null | null | null |
1151.0 | 0.0 | AK-47 | null | null | null |
1153.0 | 0.0 | Amhrán_na_bhFiann | null | null | null |
1186.0 | 0.0 | Aphex_Twin | null | null | null |
1189.0 | 0.0 | Creed | null | null | null |
1190.0 | 0.0 | Alternate_history | null | null | null |
1195.0 | 0.0 | Allotropy | null | null | null |
1199.0 | 0.0 | Angles | null | null | null |
1205.0 | 0.0 | Atomic_orbital | null | null | null |
1220.0 | 0.0 | Anguilla | null | null | null |
1221.0 | 0.0 | Anguilla | null | null | null |
1228.0 | 0.0 | Ashmore_and_Cartier_Islands | null | Geography | null |
1229.0 | 0.0 | Ashmore_and_Cartier_Islands | null | null | null |
1230.0 | 0.0 | Ashmore_and_Cartier_Islands | null | Government | null |
1231.0 | 0.0 | Ashmore_and_Cartier_Islands | null | null | null |
1232.0 | 0.0 | Ashmore_and_Cartier_Islands | null | Economy and migration | null |
1233.0 | 0.0 | Ashmore_and_Cartier_Islands | null | null | null |
1238.0 | 0.0 | Nuclear_weapon | null | null | null |
1245.0 | 0.0 | Alpha_particle | null | null | null |
1246.0 | 0.0 | Alfonso_Arau | null | null | null |
1255.0 | 0.0 | Astronomical_unit | null | null | null |
1262.0 | 0.0 | Cant_(language) | null | Argot | null |
1268.0 | 0.0 | Artificial_intelligence | null | null | null |
1276.0 | 0.0 | Antarctica | null | Economic activity and tourism | null |
1277.0 | 0.0 | Antarctic_Treaty_System | null | null | null |
1280.0 | 0.0 | Military_activity_in_the_Antarctic | null | null | null |
1290.0 | 0.0 | Antarctic_Treaty_System | null | null | null |
1292.0 | 0.0 | Algernon_Charles_Swinburne | null | null | null |
1295.0 | 0.0 | American_League_Championship_Series | null | null | null |
1297.0 | 0.0 | Hebrew_Bible | null | null | null |
1299.0 | 0.0 | Abbadid_dynasty | null | null | null |
1302.0 | 0.0 | Abdomen | null | null | null |
1311.0 | 0.0 | Ada_Lovelace | null | Ada Byron's notes on the analytical engine | null |
1312.0 | 0.0 | Augustine_of_Hippo | null | null | null |
1321.0 | 0.0 | Sagrada_Família | null | null | null |
1328.0 | 0.0 | Anno_Domini | null | null | null |
1339.0 | 0.0 | Americans_with_Disabilities_Act_of_1990 | null | null | null |
1340.0 | 0.0 | Americans_with_Disabilities_Act_of_1990 | null | null | null |
1341.0 | 0.0 | Americans_with_Disabilities_Act_of_1990 | null | null | null |
1342.0 | 0.0 | Anno_Domini | null | null | null |
1345.0 | 0.0 | Apache_HTTP_Server | null | null | null |
1355.0 | 0.0 | Anderitum | null | null | null |
1399.0 | 0.0 | Attention_deficit_hyperactivity_disorder | null | null | null |
1406.0 | 0.0 | Amine | null | null | null |
1407.0 | 0.0 | Antonie_van_Leeuwenhoek | null | null | null |
1410.0 | 0.0 | Antonie_van_Leeuwenhoek | null | null | null |
1415.0 | 0.0 | Pope_Adrian_I | null | null | null |
1426.0 | 0.0 | Pope_Adrian_II | null | null | null |
1429.0 | 0.0 | Pope_Adrian_IV | null | null | null |
1434.0 | 0.0 | Abgar_V | null | null | null |
1457.0 | 0.0 | Alzheimer's_disease | null | null | null |
1459.0 | 0.0 | Vitamin_C | null | null | null |
1476.0 | 0.0 | Prime_Minister_of_Australia | null | null | null |
1502.0 | 0.0 | List_of_minor_characters_in_the_Alice_series | null | The Eaglet, the Lory, the Duck, and the Dodo | null |
1511.0 | 0.0 | Albert_I_of_Germany | null | null | null |
1515.0 | 0.0 | Albert_III,_Duke_of_Saxony | null | null | null |
1516.0 | 0.0 | Albert_II,_Margrave_of_Meissen | null | null | null |
1517.0 | 0.0 | Albert_of_Aix | null | null | null |
1533.0 | 0.0 | Aachen | null | null | null |
1535.0 | 0.0 | Acorn | null | null | null |
1539.0 | 0.0 | Adirondack_Mountains | null | null | null |
1561.0 | 0.0 | Áedán_mac_Gabráin | null | null | null |
1572.0 | 0.0 | Al-Battani | null | null | null |
1609.0 | 0.0 | Pope_Alexander_VI | null | null | null |
1610.0 | 0.0 | Pope_Alexander_VII | null | null | null |
1611.0 | 0.0 | Pope_Alexander_VIII | null | null | null |
1626.0 | 0.0 | Aleksandr_Solzhenitsyn | null | null | null |
1636.0 | 0.0 | Antoine_de_Saint-Exupéry | null | null | null |
1641.0 | 0.0 | Alfred,_Duke_of_Saxe-Coburg_and_Gotha | null | null | null |
1651.0 | 0.0 | Alfred_of_Beverley | null | null | null |
1672.0 | 0.0 | Alfonso_VIII_of_Castile | null | null | null |
1673.0 | 0.0 | Alfonso_IX_of_León | null | null | null |
1678.0 | 0.0 | Alfonso_de_Cartagena | null | null | null |
1682.0 | 0.0 | Ahmose_I | null | null | null |
1699.0 | 0.0 | Alfonso_VI_of_León_and_Castile | null | null | null |
1703.0 | 0.0 | Alfonso_VII_of_León_and_Castile | null | null | null |
1704.0 | 0.0 | Alfonso_VIII_of_Castile | null | null | null |
1705.0 | 0.0 | Alfonso_IX_of_León | null | null | null |
1706.0 | 0.0 | Alfonso_X_of_Castile | null | null | null |
1707.0 | 0.0 | Alfonso_XI_of_Castile | null | null | null |
1708.0 | 0.0 | Alfonso_XII | null | null | null |
1709.0 | 0.0 | Alfonso_XIII | null | null | null |
1733.0 | 0.0 | Anacreon | null | null | null |
1744.0 | 0.0 | Pope_Anastasius_III | null | null | null |
1745.0 | 0.0 | Pope_Anastasius_IV | null | null | null |
1766.0 | 0.0 | Asteroid_belt | null | null | null |
1768.0 | 0.0 | Alice | null | null | null |
1769.0 | 0.0 | An_Enquiry_Concerning_Human_Understanding | null | null | null |
1771.0 | 0.0 | Apollo_program | null | null | null |
1772.0 | 0.0 | Arthritis | null | null | null |
1775.0 | 0.0 | Discrete_mathematics | null | null | null |
1809.0 | 0.0 | Thomas_Aquinas | null | null | null |
1811.0 | 0.0 | Hydrolysis | null | Hydrolysis of amide links | null |
1821.0 | 0.0 | Antoine_Lavoisier | null | null | null |
1824.0 | 0.0 | Footage | null | null | null |
1830.0 | 0.0 | Air_pollution | null | null | null |
1831.0 | 0.0 | Protocol_on_Environmental_Protection_to_the_Antarctic_Treaty | null | null | null |
1833.0 | 0.0 | Americentrism | null | null | null |
1838.0 | 0.0 | Amazon_River | null | null | null |
1852.0 | 0.0 | Ancient_Greece | null | null | null |
1855.0 | 0.0 | History_of_Africa | null | null | null |
1858.0 | 0.0 | Aromatic_compound | null | null | null |
1876.0 | 0.0 | Adémar_de_Chabannes | null | null | null |
1877.0 | 0.0 | Catharism | null | null | null |
1885.0 | 0.0 | Erotic_asphyxiation | null | null | null |
1889.0 | 0.0 | Assault_weapons_ban | null | null | null |
1903.0 | 0.0 | American_Airlines_Flight_77 | null | null | null |
1904.0 | 0.0 | American_Airlines_Flight_11 | null | null | null |
1906.0 | 0.0 | Aberration_(astronomy) | null | null | null |
1936.0 | 0.0 | Astronomical_unit | null | null | null |
1952.0 | 0.0 | Industry_Standard_Architecture | null | null | null |
1959.0 | 0.0 | Telephone_exchange | null | Early automatic exchanges | null |
1972.0 | 0.0 | Aviation | null | null | null |
1976.0 | 0.0 | Adomnán | null | null | null |
1978.0 | 0.0 | Assassin_(disambiguation) | null | null | null |
1982.0 | 0.0 | Alice | null | Acronyms | null |
1984.0 | 0.0 | Arab_world | null | null | null |
1993.0 | 0.0 | Alan_Ayckbourn | null | null | null |
2001.0 | 0.0 | Al-Qaeda | null | null | null |
2002.0 | 0.0 | Argumentum_ad_populum | null | null | null |
2005.0 | 0.0 | Addiction | null | null | null |
2008.0 | 0.0 | Al-Qaeda | null | null | null |
2043.0 | 0.0 | Anti-Americanism | null | null | null |
2050.0 | 0.0 | Archaeology | null | null | null |
2051.0 | 0.0 | Anarchism | null | null | null |
2058.0 | 0.0 | Atheism | null | null | null |
2071.0 | 0.0 | Afro_Celt_Sound_System | null | null | null |
2073.0 | 0.0 | Andrew_Jackson | null | null | null |
2074.0 | 0.0 | Andrew_Jackson | null | null | null |
2079.0 | 0.0 | Autumnal_equinox | null | null | null |
2090.0 | 0.0 | Albert_of_Hohenzollern | null | null | null |
2095.0 | 0.0 | Parapsychology | null | null | null |
2128.0 | 0.0 | Los_Angeles_Angels | null | null | null |
2132.0 | 0.0 | Ara_Pacis | null | null | null |
2145.0 | 0.0 | Catharism | null | null | null |
2146.0 | 0.0 | Aleksandr_Solzhenitsyn | null | null | null |
2149.0 | 0.0 | Armour | null | null | null |
2153.0 | 0.0 | Elitism | null | null | null |
2164.0 | 0.0 | Peremptory_plea | null | null | null |
2165.0 | 0.0 | Peremptory_plea | null | null | null |
2188.0 | 0.0 | Accident_(philosophy) | null | null | null |
2190.0 | 0.0 | Alternate_history | null | null | null |
2203.0 | 0.0 | Religion_in_Poland | null | null | null |
2206.0 | 0.0 | Ampere | null | null | null |
2211.0 | 0.0 | Folklore_of_the_United_States | null | null | null |
2213.0 | 0.0 | Modus_ponens | null | null | null |
2220.0 | 0.0 | Acts_of_the_Apostles | null | null | null |
2223.0 | 0.0 | Slaughterhouse | null | null | null |
2227.0 | 0.0 | Argumentum_a_fortiori | null | null | null |
2228.0 | 0.0 | Ad_hominem | null | null | null |
2249.0 | 0.0 | Amplification | null | null | null |
2258.0 | 0.0 | Anglicanism | null | null | null |
2260.0 | 0.0 | Analog_Science_Fiction_and_Fact | null | null | null |
2261.0 | 0.0 | Analog_Science_Fiction_and_Fact | null | null | null |
2262.0 | 0.0 | Analog_Science_Fiction_and_Fact | null | null | null |
2264.0 | 0.0 | Heptarchy | null | List of Anglo-Saxon kingdoms | null |
2269.0 | 0.0 | Asynchronous_Transfer_Mode | null | null | null |
2271.0 | 0.0 | Asymmetric_digital_subscriber_line | null | null | null |
2280.0 | 0.0 | Giant_panda | null | null | null |
2281.0 | 0.0 | Arctic_fox | null | null | null |
2285.0 | 0.0 | Tank_destroyer | null | null | null |
2290.0 | 0.0 | Indigenous_peoples | null | null | null |
2295.0 | 0.0 | Arhat | null | null | null |
2297.0 | 0.0 | Springbok | null | null | null |
2298.0 | 0.0 | Blue_crane | null | null | null |
2302.0 | 0.0 | Aramaic | null | null | null |
2306.0 | 0.0 | AT&T | null | null | null |
2320.0 | 0.0 | Audio_codec | null | null | null |
2324.0 | 0.0 | All_Saints'_Day | null | null | null |
2351.0 | 0.0 | HIV/AIDS | null | null | null |
2354.0 | 0.0 | Outline_of_archaeology | null | null | null |
2367.0 | 0.0 | HIV/AIDS | null | null | null |
2379.0 | 0.0 | Binary_relation | null | null | null |
2404.0 | 0.0 | Aon_(company) | null | null | null |
2419.0 | 0.0 | Alloy | null | null | null |
2432.0 | 0.0 | Albrecht_III_Achilles,_Elector_of_Brandenburg | null | null | null |
2446.0 | 0.0 | Appalachian_dulcimer | null | null | null |
2462.0 | 0.0 | Anti-globalization_movement | null | null | null |
2464.0 | 0.0 | Anti-globalization_movement | null | null | null |
2468.0 | 0.0 | Aaron's_rod | null | null | null |
2469.0 | 0.0 | AB | null | null | null |
2478.0 | 0.0 | Barada | null | null | null |
2479.0 | 0.0 | Manama | null | null | null |
2486.0 | 0.0 | Chrysoberyl | null | Alexandrite | null |
2488.0 | 1.0 | Chrysoberyl | null | null | null |
2489.0 | 0.0 | Abandon | null | null | null |
2492.0 | 0.0 | Anal_sex | null | null | null |
2495.0 | 0.0 | Aurochs | null | null | null |
2496.0 | 0.0 | Etiology | null | null | null |
2520.0 | 0.0 | Addition | null | Natural numbers | null |
2523.0 | 0.0 | Alien | null | null | null |
2525.0 | 0.0 | Al_Jazeera | null | null | null |
2527.0 | 0.0 | Ruhollah_Khomeini | null | null | null |
2533.0 | 0.0 | Alphorn | null | null | null |
2535.0 | 0.0 | AW | null | null | null |
2537.0 | 0.0 | Analog_Science_Fiction_and_Fact | null | null | null |
2549.0 | 0.0 | Analog_Science_Fiction_and_Fact | null | null | null |
2561.0 | 0.0 | List_of_federal_political_scandals_in_the_United_States | null | null | null |
2565.0 | 0.0 | Albert,_Duke_of_Prussia | null | null | null |
2567.0 | 0.0 | Academy_Awards | null | null | null |
2568.0 | 0.0 | Apsis | null | Perihelion and aphelion | null |
2569.0 | 0.0 | Apsis | null | null | null |
2571.0 | 0.0 | Rope_(film) | null | null | null |
2572.0 | 0.0 | Arianism | null | null | null |
2595.0 | 0.0 | Atlas_(computer) | null | null | null |
2599.0 | 0.0 | AA | null | null | null |
2600.0 | 0.0 | Aaron's_rod | null | null | null |
2601.0 | 0.0 | Abandon | null | null | null |
2603.0 | 0.0 | Abaris_the_Hyperborean | null | null | null |
2612.0 | 0.0 | Abbo_of_Fleury | null | null | null |
2615.0 | 0.0 | Charles_Farrar_Browne | null | null | null |
2631.0 | 0.0 | Ælfric | null | null | null |
2636.0 | 0.0 | Accounting | null | null | null |
2638.0 | 0.0 | ACID | null | null | null |
2643.0 | 0.0 | Ajax_the_Lesser | null | null | null |
2644.0 | 0.0 | Ajax_the_Great | null | null | null |
2647.0 | 0.0 | American_Indians | null | null | null |
2648.0 | 0.0 | Abandon | null | null | null |
2649.0 | 0.0 | Abandonment_(legal) | null | null | null |
2650.0 | 0.0 | Abandonment_(legal) | null | Abandonment of easement | null |
2651.0 | 0.0 | Abandonment_(legal) | null | null | null |
2652.0 | 0.0 | Nuisance_abatement | null | null | null |
2653.0 | 0.0 | Abatement | null | null | null |
2655.0 | 0.0 | Abatement | null | null | null |
2656.0 | 0.0 | Abatement | null | null | null |
2657.0 | 0.0 | Abatement | null | null | null |
2658.0 | 0.0 | Abatement_(heraldry) | null | null | null |
2659.0 | 0.0 | American_Revolutionary_War | null | null | null |
2664.0 | 0.0 | Affirmation_(law) | null | null | null |
2675.0 | 0.0 | Abd_al-Rahman | null | null | null |
2682.0 | 0.0 | Abdul_Qadir | null | null | null |
2683.0 | 0.0 | Abdelaziz_of_Morocco | null | null | null |
2688.0 | 0.0 | Pneumatic_motor | null | null | null |
2697.0 | 0.0 | Abraham_ibn_Ezra | null | null | null |
2711.0 | 0.0 | Aberdeenshire_(historic) | null | null | null |
2713.0 | 0.0 | Aberdyfi | null | null | null |
2725.0 | 0.0 | Aesthetics | null | null | null |
2746.0 | 0.0 | Same-sex_relationship | null | Forms of same-sex relationships throughout history | null |
2751.0 | 0.0 | The_Angry_Brigade | null | null | null |
2760.0 | 0.0 | Arab_(disambiguation) | null | null | null |
2765.0 | 0.0 | Anatomical_Therapeutic_Chemical_Classification_System | null | null | null |
2768.0 | 0.0 | Antiarrhythmic_agent | null | null | null |
2771.0 | 0.0 | Air_conditioning | null | null | null |
2774.0 | 0.0 | Alfred_Kinsey | null | null | null |
2775.0 | 0.0 | Auto_racing | null | null | null |
2776.0 | 0.0 | Antisemitism | null | null | null |
2789.0 | 0.0 | James_Tiptree_Jr. | null | null | null |
2793.0 | 0.0 | Application_software | null | null | null |
2804.0 | 0.0 | Application_firewall | null | null | null |
2808.0 | 0.0 | Nuclear_weapon | null | null | null |
2821.0 | 0.0 | Set_theory | null | Axiomatic set theory | null |
2828.0 | 0.0 | Abipón | null | null | null |
2831.0 | 0.0 | Abkhazia | null | null | null |
2842.0 | 0.0 | Bohr_model | null | null | null |
2855.0 | 0.0 | Latin_American_Integration_Association | null | null | null |
2863.0 | 0.0 | AT&T | null | null | null |
2872.0 | 0.0 | Arthur,_Prince_of_Wales | null | null | null |
2880.0 | 0.0 | Anti-ballistic_missile | null | null | null |
2884.0 | 5.0 | WikiProject_Computer_science/Manual_of_style | null | null | null |
2888.0 | 0.0 | Amorphous_solid | null | null | null |
2897.0 | 0.0 | Indigenous_peoples_of_Arizona | null | null | null |
2898.0 | 0.0 | Abdul_Rashid_Dostum | null | null | null |
2903.0 | 0.0 | The_Diary_of_a_Young_Girl | null | null | null |
2904.0 | 0.0 | Kabylia | null | null | null |
2912.0 | 0.0 | Archaeoastronomy | null | null | null |
2914.0 | 0.0 | French_hip_hop | null | null | null |
2915.0 | 0.0 | Gh_hip_hop | null | null | null |
2918.0 | 0.0 | Argument_from_ignorance | null | null | null |
2922.0 | 0.0 | AIM_(software) | null | null | null |
2929.0 | 0.0 | Armillary_sphere | null | null | null |
2937.0 | 0.0 | Algemeen_Nijmeegs_Studentenblad | null | null | null |
2951.0 | 0.0 | Louis_Althusser | null | null | null |
2969.0 | 0.0 | Aurora | null | null | null |
2970.0 | 0.0 | Aurora | null | null | null |
2971.0 | 0.0 | Abstraction_(computer_science) | null | Abstraction in object oriented programming | null |
2977.0 | 0.0 | American_Sign_Language | null | null | null |
2993.0 | 0.0 | Amputation | null | null | null |
2996.0 | 0.0 | HMS_Ark_Royal | null | null | null |
2998.0 | 0.0 | Acceleration | null | null | null |
3000.0 | 0.0 | AD_Police_Files | null | Manga | null |
3005.0 | 0.0 | Apadravya | null | null | null |
3006.0 | 0.0 | Ampallang | null | null | null |
3008.0 | 0.0 | Albinism | null | null | null |
3009.0 | 0.0 | Analcime | null | null | null |
3023.0 | 0.0 | Archimedes'_screw | null | null | null |
3024.0 | 0.0 | Multiplication | null | null | null |
3033.0 | 0.0 | Antenna_(radio) | null | null | null |
3039.0 | 0.0 | Shadrach,_Meshach,_and_Abednego | null | null | null |
3041.0 | 0.0 | Acanthocephala | null | null | null |
3042.0 | 0.0 | Alcobaça | null | null | null |
3051.0 | 0.0 | Clan_McDuck | null | Angus \"Pothole\" McDuck | null |
3057.0 | 0.0 | List_of_Donald_Duck_universe_characters | null | April, May, and June | null |
3059.0 | 0.0 | Athlon | null | null | null |
3062.0 | 0.0 | Duck_family_(Disney) | null | Whitewater Duck | null |
3063.0 | 0.0 | Asperger_syndrome | null | null | null |
3066.0 | 0.0 | Authoritarianism | null | null | null |
3086.0 | 0.0 | İskenderun | null | null | null |
3099.0 | 0.0 | AbiWord | null | null | null |
3106.0 | 0.0 | AirPort | null | null | null |
3114.0 | 0.0 | Amiga_500 | null | Amiga 500 Plus | null |
3126.0 | 0.0 | Ahriman | null | null | null |
3136.0 | 0.0 | Concept | null | null | null |
3139.0 | 0.0 | Apostle_(disambiguation) | null | Religion | null |
3154.0 | 0.0 | Fairchild_Republic_A-10_Thunderbolt_II | null | null | null |
3156.0 | 0.0 | Albrecht_Dürer | null | null | null |
3163.0 | 0.0 | Anthroposophy | null | null | null |
3164.0 | 0.0 | Evidence_of_common_descent | null | null | null |
3166.0 | 0.0 | A.C._Milan | null | null | null |
3180.0 | 0.0 | Anomaly | null | null | null |
3182.0 | 0.0 | Avenger | null | null | null |
3187.0 | 0.0 | Agglutination | null | null | null |
3190.0 | 0.0 | Ascending_chain_condition | null | null | null |
3197.0 | 0.0 | A._E._Housman | null | null | null |
3208.0 | 0.0 | Antidepressant | null | null | null |
3210.0 | 0.0 | Alexander_Rutskoy | null | null | null |
3215.0 | 0.0 | Multivibrator | null | Astable | null |
3219.0 | 0.0 | Actor | null | null | null |
3220.0 | 0.0 | Artificial_intelligence | null | null | null |
3223.0 | 0.0 | Ai | null | null | null |
3227.0 | 0.0 | Azores | null | null | null |
3230.0 | 0.0 | Relative_atomic_mass | null | null | null |
3232.0 | 0.0 | Anthropic_principle | null | null | null |
3247.0 | 0.0 | Roman_Catholic_Archdiocese_for_the_Military_Services,_USA | null | null | null |
3248.0 | 0.0 | Archaeopteryx | null | null | null |
3254.0 | 0.0 | Amuck! | null | null | null |
3260.0 | 0.0 | Line_Islands | null | null | null |
3264.0 | 0.0 | Aborigine | null | null | null |
3276.0 | 0.0 | Antiterrorism_and_Effective_Death_Penalty_Act_of_1996 | null | null | null |
3280.0 | 0.0 | Bomis | null | null | null |
3281.0 | 0.0 | Biblical_hermeneutics | null | null | null |
3282.0 | 0.0 | Baltic_Sea | null | null | null |
3283.0 | 0.0 | Ballroom_dance | null | null | null |
3284.0 | 0.0 | Biology | null | null | null |
3288.0 | 0.0 | Bill_Clinton | null | null | null |
3290.0 | 0.0 | Biblical_canon | null | null | null |
3298.0 | 0.0 | The_Buddha | null | null | null |
3299.0 | 0.0 | Bijection,_injection_and_surjection | null | null | null |
3300.0 | 0.0 | Buddhism | null | null | null |
3303.0 | 0.0 | Baltimore_Ravens | null | null | null |
3307.0 | 0.0 | Aaron | null | null | null |
3311.0 | 0.0 | List_of_business_schools_in_Asia | null | null | null |
3317.0 | 0.0 | The_Birth_of_a_Nation | null | null | null |
3318.0 | 0.0 | Boethius | null | null | null |
3320.0 | 0.0 | Mental_event | null | null | null |
3322.0 | 0.0 | Business_school | null | null | null |
3323.0 | 0.0 | Britney_Spears | null | null | null |
3326.0 | 0.0 | Baby_One_More_Time | null | null | null |
3327.0 | 0.0 | Binomial_distribution | null | null | null |
3329.0 | 0.0 | Binomial_distribution | null | null | null |
3330.0 | 0.0 | Biochemistry | null | null | null |
3342.0 | 0.0 | Germany | null | null | null |
3344.0 | 0.0 | Basic | null | null | null |
3346.0 | 0.0 | Robert_Byrd | null | null | null |
3349.0 | 0.0 | Business_school | null | null | null |
3366.0 | 0.0 | Commonwealth_of_Nations | null | null | null |
3369.0 | 0.0 | Board_game | null | null | null |
3373.0 | 0.0 | Outline_of_biology | null | null | null |
3407.0 | 0.0 | Baruch_Spinoza | null | null | null |
3409.0 | 0.0 | Ontology | null | Overview | null |
3413.0 | 0.0 | Batch_processing | null | null | null |
3418.0 | 0.0 | Basil | null | null | null |
3424.0 | 0.0 | BBC_Radio_1 | null | null | null |
3425.0 | 0.0 | BBC_Online | null | null | null |
3433.0 | 0.0 | Visual_impairment | null | null | null |
3445.0 | 0.0 | Alcohol_intoxication | null | null | null |
3448.0 | 0.0 | Steer_wrestling | null | null | null |
3480.0 | 0.0 | Royal_Bahamas_Defence_Force | null | null | null |
3481.0 | 0.0 | Foreign_relations_of_the_Bahamas | null | null | null |
3484.0 | 0.0 | Bahrain | null | null | null |
3492.0 | 0.0 | Baker_Island | null | null | null |
3493.0 | 0.0 | Baker_Island | null | null | null |
3494.0 | 0.0 | Baker_Island | null | null | null |
3496.0 | 0.0 | Baker_Island | null | Description | null |
3509.0 | 0.0 | Foreign_relations_of_Bangladesh | null | null | null |
3510.0 | 0.0 | Foreign_relations_of_Bangladesh | null | null | null |
3519.0 | 0.0 | Foreign_relations_of_Barbados | null | null | null |
3522.0 | 0.0 | Bassas_da_India | null | null | null |
3524.0 | 0.0 | Bassas_da_India | null | null | null |
3527.0 | 0.0 | Bassas_da_India | null | null | null |
3529.0 | 0.0 | Bassas_da_India | null | null | null |
3539.0 | 0.0 | Telecommunications_in_Belarus | null | null | null |
3548.0 | 0.0 | Foreign_relations_of_Belgium | null | null | null |
3549.0 | 0.0 | Belgium | null | null | null |
3550.0 | 0.0 | Foreign_relations_of_Belgium | null | null | null |
3551.0 | 0.0 | Belgium | null | null | null |
3578.0 | 0.0 | Bermuda | null | null | null |
3587.0 | 0.0 | Bhutan | null | null | null |
3600.0 | 0.0 | Cultural_depictions_of_blindness | null | null | null |
3619.0 | 0.0 | Botswana_Defence_Force | null | null | null |
3622.0 | 0.0 | Bouvet_Island | null | Geography and geology | null |
3623.0 | 0.0 | Bouvet_Island | null | null | null |
3624.0 | 0.0 | Bouvet_Island | null | null | null |
3625.0 | 0.0 | Bouvet_Island | null | null | null |
3626.0 | 0.0 | Bouvet_Island | null | null | null |
3627.0 | 0.0 | Bouvet_Island | null | null | null |
3628.0 | 0.0 | Bouvet_Island | null | null | null |
3640.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3641.0 | 0.0 | British_Indian_Ocean_Territory | null | Demographics | null |
3642.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3643.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3644.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3645.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3646.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3647.0 | 0.0 | British_Indian_Ocean_Territory | null | null | null |
3656.0 | 0.0 | British_Virgin_Islands | null | null | null |
3686.0 | 0.0 | Geography_of_Myanmar | null | null | null |
3689.0 | 0.0 | Economy_of_Myanmar | null | null | null |
3690.0 | 0.0 | Telecommunications_in_Myanmar | null | null | null |
3723.0 | 0.0 | BSE | null | null | null |
3726.0 | 0.0 | Breakdancing | null | null | null |
3732.0 | 0.0 | Bhangra | null | null | null |
3737.0 | 0.0 | Baptists | null | null | null |
3739.0 | 0.0 | BSD_licenses | null | null | null |
3762.0 | 0.0 | Länder | null | null | null |
3763.0 | 0.0 | Bavaria | null | null | null |
3767.0 | 0.0 | Bundeskanzler | null | null | null |
3770.0 | 0.0 | Cabinet_of_Germany | null | null | null |
3773.0 | 0.0 | Der_Blaue_Reiter | null | null | null |
3781.0 | 0.0 | Mumbai | null | null | null |
3790.0 | 0.0 | Bodybuilding | null | null | null |
3791.0 | 0.0 | Bryan_MacLean | null | null | null |
3796.0 | 0.0 | Biblical_canon | null | null | null |
3803.0 | 0.0 | Strike_zone | null | null | null |
3804.0 | 0.0 | Slugging_percentage | null | null | null |
3818.0 | 0.0 | Babel_fish | null | null | null |
3820.0 | 0.0 | Mental_event | null | null | null |
3824.0 | 0.0 | Babel_fish | null | null | null |
3830.0 | 0.0 | Bryce_Canyon_National_Park | null | null | null |
3831.0 | 0.0 | Encyclopædia_Britannica | null | null | null |
3847.0 | 0.0 | Taste | null | Basic tastes | null |
3855.0 | 0.0 | Origins_of_baseball | null | null | null |
3871.0 | 0.0 | Substance_theory | null | null | null |
3879.0 | 0.0 | Statistics | null | Business statistics | null |
3913.0 | 0.0 | Binary_operation | null | null | null |
3920.0 | 0.0 | The_Beatles | null | null | null |
3922.0 | 0.0 | Road_bicycle | null | null | null |
3934.0 | 0.0 | Baby_boom | null | null | null |
3935.0 | 0.0 | Buddhism | null | null | null |
3966.0 | 0.0 | Border_Gateway_Protocol | null | null | null |
3972.0 | 0.0 | Cycling | null | null | null |
3991.0 | 0.0 | BITS | null | null | null |
3994.0 | 0.0 | Benoit_Mandelbrot | null | null | null |
4003.0 | 0.0 | Pierre_Beaumarchais | null | null | null |
4014.0 | 0.0 | Bipolar_disorder | null | null | null |
4021.0 | 0.0 | Common_Era | null | null | null |
4022.0 | 0.0 | Common_Era | null | null | null |
4025.0 | 0.0 | BC | null | null | null |
4026.0 | 0.0 | Buckminster_Fuller | null | null | null |
4034.0 | 0.0 | Encyclopædia_Britannica_Eleventh_Edition | null | null | null |
4038.0 | 0.0 | Banach–Tarski_paradox | null | null | null |
4040.0 | 0.0 | BC | null | null | null |
4090.0 | 0.0 | Bitwise_operation | null | AND | null |
4105.0 | 0.0 | Outline_of_biochemistry | null | null | null |
4122.0 | 0.0 | B-roll | null | null | null |
4126.0 | 0.0 | Ballroom_dance | null | null | null |
4129.0 | 0.0 | CIM-10_Bomarc | null | null | null |
4151.0 | 0.0 | Brainfuck | null | null | null |
4167.0 | 0.0 | Utility_knife | null | null | null |
4174.0 | 0.0 | Six_Degrees_of_Kevin_Bacon | null | Bacon numbers | null |
4186.0 | 0.0 | Bacteriostatic_agent | null | null | null |
4201.0 | 0.0 | Francesco_Borromini | null | null | null |
4212.0 | 0.0 | Bolsheviks | null | null | null |
4215.0 | 0.0 | Brian_De_Palma | null | null | null |
4221.0 | 0.0 | North_American_B-25_Mitchell | null | null | null |
4222.0 | 0.0 | Berry_Berenson | null | null | null |
4226.0 | 0.0 | Brewster's_angle | null | null | null |
4229.0 | 1.0 | Bipolar_disorder | null | null | null |
4238.0 | 0.0 | The_Bronx | null | null | null |
4252.0 | 0.0 | Baháʼí_Faith | null | null | null |
4253.0 | 0.0 | Red_Army_Faction | null | null | null |
4265.0 | 0.0 | Titius–Bode_law | null | null | null |
4268.0 | 0.0 | The_Boston_Globe | null | null | null |
4272.0 | 0.0 | Elbląg | null | null | null |
4273.0 | 0.0 | Elbląg | null | null | null |
4275.0 | 0.0 | Gdańsk | null | null | null |
4276.0 | 0.0 | Oder | null | null | null |
4290.0 | 0.0 | Buddhism | null | null | null |
4291.0 | 0.0 | Buddhism | null | null | null |
4303.0 | 0.0 | University_of_Brighton | null | null | null |
4328.0 | 0.0 | Bohemia | null | null | null |
4336.0 | 0.0 | Bosnia_and_Herzegovina | null | null | null |
4412.0 | 0.0 | Binary_Synchronous_Communications | null | null | null |
4415.0 | 0.0 | ETA_(separatist_group) | null | null | null |
4426.0 | 0.0 | Brownian_motion | null | null | null |
4428.0 | 0.0 | Bacillus_thuringiensis | null | null | null |
4435.0 | 0.0 | Baltic_languages | null | null | null |
4439.0 | 0.0 | Baptists | null | null | null |
4464.0 | 0.0 | Book_of_Zechariah | null | null | null |
4466.0 | 0.0 | Black_Sox_Scandal | null | null | null |
4486.0 | 0.0 | Buckminsterfullerene | null | null | null |
4509.0 | 0.0 | GNU_Free_Documentation_License | null | null | null |
4521.0 | 0.0 | Bubble_sort | null | null | null |
4523.0 | 0.0 | Bipolar_disorder | null | Bipolar spectrum | null |
4530.0 | 0.0 | Blue_screen | null | null | null |
4562.0 | 0.0 | Pub | null | null | null |
4564.0 | 0.0 | Bitter_(beer) | null | null | null |
4586.0 | 0.0 | Greek_fire | null | null | null |
4590.0 | 0.0 | Brachycephaly | null | null | null |
4593.0 | 0.0 | Battleship_(game) | null | null | null |
4597.0 | 0.0 | Beryl | null | null | null |
4598.0 | 1.0 | Bolesław_I_the_Brave | null | null | null |
4599.0 | 0.0 | Boleslaus_I | null | null | null |
4600.0 | 0.0 | Bolesław_III_Wrymouth | null | null | null |
4605.0 | 0.0 | Battle_of_the_Nile | null | null | null |
4612.0 | 0.0 | Bird | null | null | null |
4623.0 | 0.0 | Great_Britain_and_Ireland | null | null | null |
4632.0 | 0.0 | Monarchy_of_the_United_Kingdom | null | null | null |
4634.0 | 0.0 | Bombardier | null | null | null |
4655.0 | 0.0 | Alliance_90/The_Greens | null | null | null |
4656.0 | 0.0 | Shogun | null | Shogunate | null |
4657.0 | 0.0 | Arbitration | null | null | null |
4663.0 | 0.0 | Basil_of_Caesarea | null | null | null |
4666.0 | 0.0 | C*-algebra | null | null | null |
4678.0 | 0.0 | Computer_font | null | BITMAP | null |
4696.0 | 0.0 | Prime_Minister_of_the_United_Kingdom | null | null | null |
4697.0 | 0.0 | List_of_United_Kingdom_general_elections | null | null | null |
4703.0 | 0.0 | Bob_Dylan | null | null | null |
4716.0 | 0.0 | Bohemia | null | null | null |
4720.0 | 0.0 | Epistle_to_the_Hebrews | null | null | null |
4740.0 | 0.0 | International_Bureau_of_Weights_and_Measures | null | null | null |
4747.0 | 0.0 | Blu_Tack | null | null | null |
4750.0 | 0.0 | Bodhidharma | null | null | null |
4773.0 | 0.0 | Balfour_Declaration | null | null | null |
4784.0 | 0.0 | Normal_distribution | null | null | null |
4790.0 | 0.0 | German_Navy | null | null | null |
4798.0 | 0.0 | Bronze_Age | null | null | null |
4799.0 | 0.0 | Bicameral_mentality | null | null | null |
4808.0 | 0.0 | Arbitrary-precision_arithmetic | null | null | null |
4812.0 | 0.0 | Battle_of_Świecino | null | null | null |
4830.0 | 0.0 | Bohr_model | null | null | null |
4837.0 | 0.0 | Befehlshaber_der_U-Boote | null | null | null |
4844.0 | 0.0 | Symmetry_in_biology | null | Bilateral symmetry | null |
4846.0 | 0.0 | Symmetry_in_biology | null | Bilateral symmetry | null |
4853.0 | 0.0 | Wrocław | null | null | null |
4855.0 | 0.0 | Basso_continuo | null | null | null |
4889.0 | 0.0 | Semi-trailer_truck | null | null | null |
4891.0 | 0.0 | Ballet | null | null | null |
4901.0 | 0.0 | Daiquiri | null | null | null |
4903.0 | 0.0 | Boson | null | null | null |
4919.0 | 0.0 | Bipolar_II_disorder | null | null | null |
4920.0 | 0.0 | October_Revolution | null | null | null |
4923.0 | 0.0 | List_of_Bubblegum_Crisis_characters | null | Boomers | null |
4932.0 | 0.0 | Basal_body_temperature | null | null | null |
4938.0 | 0.0 | Branch_predictor | null | null | null |
4939.0 | 0.0 | Gambling | null | null | null |
4954.0 | 0.0 | Battle_of_Świecino | null | null | null |
4962.0 | 0.0 | Batting_average_(baseball) | null | null | null |
4977.0 | 0.0 | Battle_of_Adrianople | null | null | null |
4984.0 | 0.0 | Battle_of_Adrianople | null | null | null |
4985.0 | 0.0 | Battle_of_the_Ardennes | null | null | null |
4998.0 | 0.0 | Operation_Aphrodite | null | null | null |
5010.0 | 0.0 | Mexican_tetra | null | null | null |
5012.0 | 0.0 | The_Adventures_of_Brisco_County,_Jr. | null | null | null |
5017.0 | 0.0 | The_Book_of_Counted_Sorrows | null | null | null |
5018.0 | 0.0 | Anal_sex | null | null | null |
5022.0 | 0.0 | B._F._Skinner | null | null | null |
5044.0 | 0.0 | Beast_of_Bodmin_Moor | null | null | null |
5054.0 | 0.0 | List_of_sovereign_states | null | null | null |
5055.0 | 0.0 | Computing | null | null | null |
5056.0 | 0.0 | Software | null | null | null |
5057.0 | 0.0 | Common_sense | null | null | null |
5058.0 | 0.0 | Celtic_music | null | null | null |
5060.0 | 0.0 | List_of_sovereign_states | null | null | null |
5061.0 | 0.0 | List_of_sovereign_states | null | null | null |
5062.0 | 0.0 | List_of_sovereign_states | null | null | null |
5063.0 | 0.0 | List_of_sovereign_states | null | null | null |
5064.0 | 0.0 | List_of_sovereign_states | null | null | null |
5065.0 | 0.0 | List_of_sovereign_states | null | null | null |
5066.0 | 0.0 | COBOL | null | null | null |
5067.0 | 0.0 | Christianity | null | null | null |
5068.0 | 0.0 | List_of_sovereign_states | null | null | null |
5069.0 | 0.0 | List_of_sovereign_states | null | null | null |
5070.0 | 0.0 | List_of_sovereign_states | null | null | null |
5071.0 | 0.0 | List_of_sovereign_states | null | null | null |
5072.0 | 0.0 | Country | null | null | null |
5073.0 | 0.0 | List_of_sovereign_states | null | null | null |
5074.0 | 0.0 | List_of_sovereign_states | null | null | null |
5075.0 | 0.0 | List_of_sovereign_states | null | null | null |
5076.0 | 0.0 | List_of_sovereign_states | null | null | null |
5077.0 | 0.0 | List_of_sovereign_states | null | null | null |
5078.0 | 0.0 | List_of_sovereign_states | null | null | null |
5079.0 | 0.0 | List_of_sovereign_states | null | null | null |
5080.0 | 0.0 | List_of_sovereign_states | null | null | null |
5081.0 | 0.0 | List_of_sovereign_states | null | null | null |
5082.0 | 0.0 | List_of_sovereign_states | null | null | null |
5085.0 | 0.0 | Berlin | null | null | null |
5088.0 | 0.0 | List_of_sovereign_states | null | null | null |
5089.0 | 0.0 | Cantor_set | null | null | null |
5093.0 | 0.0 | Cold_War | null | null | null |
5097.0 | 0.0 | Cryptography | null | null | null |
5098.0 | 0.0 | Cryptography | null | null | null |
5099.0 | 0.0 | Cryptanalysis | null | null | null |
5100.0 | 0.0 | Code | null | null | null |
5101.0 | 0.0 | Encryption | null | null | null |
5103.0 | 0.0 | Charleston | null | null | null |
5104.0 | 0.0 | Consequentialism | null | null | null |
5105.0 | 0.0 | On_the_Consolation_of_Philosophy | null | null | null |
5107.0 | 0.0 | Regress_argument | null | null | null |
5110.0 | 0.0 | Consciousness | null | null | null |
5112.0 | 0.0 | Charlie_Chaplin | null | null | null |
5115.0 | 0.0 | Khmer_language | null | null | null |
5120.0 | 0.0 | Chordate | null | null | null |
5121.0 | 0.0 | Combinatorics | null | null | null |
5122.0 | 0.0 | Constellation | null | null | null |
5123.0 | 0.0 | Cognitive_therapy | null | null | null |
5125.0 | 0.0 | Category_theory | null | null | null |
5126.0 | 0.0 | Summary_statistics | null | null | null |
5128.0 | 0.0 | Comedy_film | null | null | null |
5129.0 | 0.0 | Cult_film | null | null | null |
5130.0 | 0.0 | List_of_sovereign_states | null | null | null |
5133.0 | 0.0 | Charlize_Theron | null | null | null |
5137.0 | 0.0 | Cluster_sampling | null | null | null |
5138.0 | 0.0 | Cumulative_distribution_function | null | null | null |
5140.0 | 0.0 | Comedy_film | null | null | null |
5141.0 | 0.0 | Cult_film | null | null | null |
5143.0 | 0.0 | Cryptography | null | null | null |
5146.0 | 0.0 | Hash_function | null | null | null |
5149.0 | 0.0 | Computer_hardware | null | null | null |
5167.0 | 0.0 | Central_tendency | null | null | null |
5168.0 | 0.0 | Checkers | null | null | null |
5173.0 | 0.0 | Probability_distribution | null | Continuous probability distribution | null |
5181.0 | 0.0 | Continent | null | null | null |
5182.0 | 0.0 | Constitution | null | null | null |
5186.0 | 0.0 | List_of_sovereign_states | null | null | null |
5198.0 | 0.0 | Canadian_Armed_Forces | null | null | null |
5202.0 | 0.0 | List_of_cities_in_Canada | null | null | null |
5206.0 | 0.0 | Algorithmic_art | null | null | null |
5208.0 | 0.0 | List_of_sovereign_states | null | null | null |
5209.0 | 0.0 | The_World_Factbook | null | null | null |
5210.0 | 0.0 | C._S._Lewis | null | null | null |
5214.0 | 1.0 | C._S._Lewis | null | null | null |
5220.0 | 0.0 | Complex_number | null | null | null |
5227.0 | 0.0 | Chessboard | null | null | null |
5231.0 | 0.0 | Old_World_monkey | null | null | null |
5238.0 | 0.0 | List_of_sovereign_states | null | null | null |
5239.0 | 0.0 | Countable_set | null | null | null |
5242.0 | 0.0 | Ciliate | null | null | null |
5258.0 | 0.0 | Computer_data_storage | null | null | null |
5264.0 | 0.0 | Computer_monitor | null | null | null |
5276.0 | 1.0 | Computer_monitor | null | null | null |
5283.0 | 0.0 | Cryptomonad | null | null | null |
5287.0 | 0.0 | Classical_music | null | null | null |
5289.0 | 0.0 | Card_game | null | null | null |
5290.0 | 0.0 | Casino_game | null | null | null |
5291.0 | 0.0 | PC_game | null | null | null |
5292.0 | 0.0 | Collectible_card_game | null | null | null |
5297.0 | 0.0 | Character_(computing) | null | null | null |
5303.0 | 0.0 | Conic_section | null | null | null |
5310.0 | 0.0 | Computer_hardware | null | null | null |
5318.0 | 0.0 | Time-sharing | null | null | null |
5319.0 | 0.0 | Computer_multitasking | null | null | null |
5341.0 | 0.0 | List_of_sovereign_states | null | null | null |
5343.0 | 0.0 | Constitution_of_Canada | null | null | null |
5345.0 | 0.0 | Colloid | null | null | null |
5356.0 | 0.0 | Cancer_cluster | null | null | null |
5359.0 | 0.0 | Collectible_card_game | null | null | null |
5365.0 | 0.0 | Ichthys | null | null | null |
5369.0 | 0.0 | Birth_control | null | null | null |
5392.0 | 0.0 | Coriander | null | null | null |
5393.0 | 0.0 | Coriander | null | null | null |
5396.0 | 0.0 | Chris_Morris | null | null | null |
5400.0 | 0.0 | List_of_sovereign_states | null | null | null |
5410.0 | 0.0 | Poales | null | Cyperales | null |
5414.0 | 0.0 | Wargame | null | null | null |
5418.0 | 0.0 | Capitalism | null | null | null |
5419.0 | 0.0 | Computer | null | null | null |
5423.0 | 0.0 | Cross-examination | null | null | null |
5425.0 | 0.0 | Class_conflict | null | null | null |
5426.0 | 0.0 | Compression | null | null | null |
5435.0 | 0.0 | Royal_Cambodian_Armed_Forces | null | null | null |
5441.0 | 0.0 | C_(programming_language) | null | null | null |
5442.0 | 0.0 | Constructed_language | null | null | null |
5444.0 | 0.0 | Regress_argument | null | null | null |
5445.0 | 0.0 | Class_conflict | null | null | null |
5457.0 | 0.0 | Civilization_(video_game) | null | null | null |
5476.0 | 0.0 | Cayman_Islands | null | Law enforcement | null |
5501.0 | 0.0 | Christmas_Island | null | History | null |
5502.0 | 0.0 | Christmas_Island | null | Geography | null |
5503.0 | 0.0 | Christmas_Island | null | Demographics | null |
5504.0 | 0.0 | Christmas_Island | null | Government | null |
5505.0 | 0.0 | Christmas_Island | null | Economy | null |
5506.0 | 0.0 | Christmas_Island | null | null | null |
5507.0 | 0.0 | Christmas_Island | null | Transport | null |
5508.0 | 0.0 | Christmas_Island | null | null | null |
5511.0 | 0.0 | Clipperton_Island | null | History | null |
5512.0 | 0.0 | Clipperton_Island | null | Geography | null |
5513.0 | 0.0 | Clipperton_Island | null | null | null |
5514.0 | 0.0 | Clipperton_Island | null | null | null |
5515.0 | 0.0 | Clipperton_Island | null | null | null |
5516.0 | 0.0 | Clipperton_Island | null | null | null |
5517.0 | 0.0 | Clipperton_Island | null | null | null |
5518.0 | 0.0 | Clipperton_Island | null | null | null |
5521.0 | 0.0 | Cocos_(Keeling)_Islands | null | History | null |
5522.0 | 0.0 | Cocos_(Keeling)_Islands | null | Geography | null |
5524.0 | 0.0 | Cocos_(Keeling)_Islands | null | null | null |
5525.0 | 0.0 | Cocos_(Keeling)_Islands | null | Economy | null |
5526.0 | 0.0 | Cocos_(Keeling)_Islands | null | null | null |
5527.0 | 0.0 | Cocos_(Keeling)_Islands | null | Communications and transport | null |
5528.0 | 0.0 | Cocos_(Keeling)_Islands | null | null | null |
5542.0 | 0.0 | Coral_Sea_Islands | null | History and status | null |
5543.0 | 0.0 | Coral_Sea_Islands | null | Geography | null |
5544.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5545.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5546.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5547.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5548.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5549.0 | 0.0 | Coral_Sea_Islands | null | null | null |
5601.0 | 0.0 | Cypriot_National_Guard | null | null | null |
5604.0 | 0.0 | Czech_Republic | null | null | null |
5607.0 | 0.0 | Demographics_of_the_Czech_Republic | null | null | null |
5608.0 | 0.0 | Politics_of_the_Czech_Republic | null | null | null |
5612.0 | 0.0 | Army_of_the_Czech_Republic | null | null | null |
5613.0 | 0.0 | Foreign_relations_of_the_Czech_Republic | null | null | null |
5616.0 | 0.0 | Creutzfeldt–Jakob_disease | null | null | null |
5618.0 | 0.0 | A_Clockwork_Orange | null | null | null |
5620.0 | 0.0 | Stroke | null | null | null |
5628.0 | 0.0 | Compiler | null | null | null |
5631.0 | 0.0 | Gruyère_cheese | null | null | null |
5632.0 | 0.0 | Cheese_Shop_sketch | null | null | null |
5634.0 | 0.0 | List_of_decades,_centuries,_and_millennia | null | null | null |
5650.0 | 0.0 | Comet | null | null | null |
5652.0 | 0.0 | Computer_network | null | null | null |
5677.0 | 0.0 | Cerebrospinal_fluid | null | null | null |
5680.0 | 0.0 | Chief_executive_officer | null | null | null |
5683.0 | 0.0 | Trade_fair | null | null | null |
5687.0 | 0.0 | University_of_Cambridge | null | null | null |
5731.0 | 0.0 | Capitalism | null | null | null |
5737.0 | 0.0 | Cross-cutting | null | null | null |
5741.0 | 0.0 | Monetary_policy | null | null | null |
5746.0 | 0.0 | Hash_function | null | null | null |
5747.0 | 0.0 | Key_(cryptography) | null | null | null |
5753.0 | 0.0 | Sexual_intercourse | null | null | null |
5764.0 | 0.0 | Charlie_Chaplin | null | null | null |
5773.0 | 0.0 | Carroll_O'Connor | null | null | null |
5780.0 | 0.0 | Chaco_Culture_National_Historical_Park | null | null | null |
5788.0 | 0.0 | Cretaceous–Paleogene_extinction_event | null | null | null |
5792.0 | 0.0 | Probability_distribution | null | Absolutely continuous probability distribution | null |
5798.0 | 0.0 | Closeted | null | null | null |
5799.0 | 0.0 | Coming_out | null | null | null |
5801.0 | 0.0 | Ecumenical_council | null | null | null |
5802.0 | 0.0 | Council_of_Trent | null | null | null |
5803.0 | 0.0 | Second_Vatican_Council | null | null | null |
5842.0 | 0.0 | Foreign_relations_of_Colombia | null | null | null |
5852.0 | 0.0 | Foreign_relations_of_the_Czech_Republic | null | null | null |
5856.0 | 0.0 | Holy_Roman_Empire | null | null | null |
5870.0 | 0.0 | Comics | null | null | null |
5871.0 | 0.0 | Tachycardia | null | null | null |
5875.0 | 0.0 | Jargon | null | null | null |
5877.0 | 0.0 | CORAL | null | null | null |
5880.0 | 0.0 | Comment_(computer_programming) | null | null | null |
5900.0 | 0.0 | Megacorporation | null | null | null |
5908.0 | 0.0 | Counterpoint | null | null | null |
5911.0 | 0.0 | Continuum_hypothesis | null | null | null |
5913.0 | 0.0 | Catalysis | null | null | null |
5915.0 | 0.0 | Catalysis | null | null | null |
5924.0 | 0.0 | Christian_eschatology | null | null | null |
5925.0 | 0.0 | Color | null | null | null |
5953.0 | 0.0 | Claude_Monet | null | null | null |
5960.0 | 0.0 | Genetic_code | null | Codons | null |
5968.0 | 0.0 | Computer_music | null | Computer-generated music | null |
5975.0 | 0.0 | Call_of_Cthulhu_(role-playing_game) | null | null | null |
5978.0 | 0.0 | Kyoto_Protocol | null | null | null |
5983.0 | 0.0 | Computer_science | null | null | null |
5994.0 | 4.0 | Nupedia_and_Wikipedia | null | null | null |
6012.0 | 0.0 | Church–Turing_thesis | null | null | null |
6017.0 | 0.0 | Cruise_missile | null | null | null |
6018.0 | 0.0 | Call_of_Cthulhu | null | null | null |
6022.0 | 0.0 | Cell_biology | null | null | null |
6030.0 | 0.0 | Chronic_fatigue_syndrome | null | null | null |
6031.0 | 0.0 | Chronic_fatigue_syndrome | null | null | null |
6032.0 | 0.0 | Chronic_fatigue_syndrome | null | null | null |
6033.0 | 0.0 | Chronic_fatigue_syndrome | null | null | null |
6037.0 | 0.0 | Continuous_function | null | null | null |
6043.0 | 0.0 | Critical_point_(thermodynamics) | null | null | null |
6053.0 | 0.0 | CE | null | null | null |
6054.0 | 0.0 | CE | null | null | null |
6055.0 | 0.0 | CD-ROM | null | null | null |
6063.0 | 0.0 | Cartoonist | null | null | null |
6065.0 | 0.0 | Sine_and_cosine | null | null | null |
6067.0 | 0.0 | Common_Lisp | null | null | null |
6070.0 | 0.0 | Orange_(colour) | null | null | null |
6071.0 | 0.0 | Black | null | null | null |
6074.0 | 0.0 | Orange_(colour) | null | null | null |
6076.0 | 0.0 | Cyan | null | null | null |
6077.0 | 0.0 | Black | null | null | null |
6078.0 | 0.0 | White | null | null | null |
6086.0 | 0.0 | Cauchy_sequence | null | null | null |
6087.0 | 0.0 | Nicolaus_Copernicus | null | null | null |
6089.0 | 0.0 | Creationism | null | null | null |
6098.0 | 0.0 | Carolingian_Renaissance | null | null | null |
6142.0 | 0.0 | Cardinal_number | null | null | null |
6150.0 | 0.0 | Blanching_(cooking) | null | null | null |
6178.0 | 0.0 | Cardinal | null | null | null |
6179.0 | 0.0 | Buddhist_cuisine | null | null | null |
6190.0 | 0.0 | Five-spice_powder | null | null | null |
6196.0 | 0.0 | Self-replicating_machine | null | null | null |
6197.0 | 0.0 | Self-replicating_machine | null | null | null |
6202.0 | 0.0 | London_Convention_on_the_Prevention_of_Marine_Pollution_by_Dumping_of_Wastes_and_Other_Matter | null | null | null |
6204.0 | 0.0 | Ramsar_Convention | null | null | null |
6219.0 | 0.0 | Claudio_Monteverdi | null | null | null |
6223.0 | 0.0 | Comics | null | null | null |
6228.0 | 0.0 | List_of_ancient_Celtic_peoples_and_tribes | null | null | null |
6236.0 | 0.0 | Champagne_socialist | null | null | null |
6240.0 | 0.0 | Celtic_languages | null | null | null |
6242.0 | 0.0 | Glossary_of_climbing_terms | null | on-sight | null |
6243.0 | 0.0 | Cascade_Range | null | null | null |
6263.0 | 0.0 | Charles_Darwin | null | null | null |
6266.0 | 0.0 | Climate_change | null | null | null |
6269.0 | 0.0 | Wipe_(transition) | null | null | null |
6278.0 | 0.0 | Banach_space | null | null | null |
6287.0 | 0.0 | Lists_of_cities_by_country | null | null | null |
6302.0 | 0.0 | Classical_element | null | null | null |
6307.0 | 0.0 | Aether_(classical_element) | null | null | null |
6311.0 | 0.0 | College_football | null | null | null |
6345.0 | 0.0 | Central_dogma_of_molecular_biology | null | null | null |
6348.0 | 0.0 | Medal_of_Honor | null | null | null |
6368.0 | 0.0 | Chōshū | null | null | null |
6453.0 | 2.0 | ClaudineChionh | null | null | null |
6461.0 | 0.0 | Wuxing_(Chinese_philosophy) | null | null | null |
6464.0 | 0.0 | Mobile_phone | null | null | null |
6470.0 | 0.0 | Computational_linguistics | null | null | null |
6500.0 | 0.0 | Lists_of_universities_and_colleges | null | null | null |
6502.0 | 0.0 | Clean_Air_Act_(United_States) | null | null | null |
6510.0 | 0.0 | Color_space | null | null | null |
6515.0 | 0.0 | Lists_of_atheists | null | null | null |
6522.0 | 0.0 | Chief_executive_officer | null | null | null |
6524.0 | 0.0 | Clam_dip | null | null | null |
6531.0 | 0.0 | Chinese_cuisine | null | null | null |
6553.0 | 0.0 | Context-free_grammar | null | null | null |
6554.0 | 0.0 | Computer_graphics | null | null | null |
6564.0 | 0.0 | Conjunction_elimination | null | null | null |
6573.0 | 0.0 | Widewuto | null | null | null |
6581.0 | 0.0 | Musique_concrète | null | null | null |
6594.0 | 0.0 | Casimir_IV_Jagiellon | null | null | null |
6595.0 | 0.0 | Computer_vision | null | null | null |
6605.0 | 0.0 | Citric_acid_cycle | null | null | null |
6609.0 | 0.0 | Stork | null | null | null |
6622.0 | 0.0 | Coelenterata | null | null | null |
6625.0 | 0.0 | Catholic_Church | null | null | null |
6646.0 | 0.0 | List_of_ancient_Germanic_peoples | null | null | null |
6657.0 | 0.0 | Catholic_Church | null | null | null |
6668.0 | 0.0 | Mousse | null | null | null |
Next, let us check that we got all the data, and there are no corrupted records:
readFromCSV.createOrReplaceTempView("redirects")
SELECT * FROM redirects WHERE _corrupt_record IS NOT NULL
rd_from | rd_namespace | rd_title | rd_interwiki | rd_fragment | _corrupt_record |
---|---|---|---|---|---|
null | null | null | null | null | 7),11' |
A single bad row seems fine, we can just drop that one with no harm done.
Let us now write this to the Delta Lake, having filtered out all the bad rows and irrelevant rows, and dropped the columns we don't need. In particular, we remove all redirects to non-main-Wikipedia articles and non-English Wiki articles. (There is exactly one redirect to an article on a different Wiki, and that's on a user talk page.)
SELECT rd_from, rd_title FROM redirects WHERE (rd_from IS NOT NULL) AND (rd_namespace = 0) AND (rd_title IS NOT NULL) AND (rd_interwiki IS NULL) AND (_corrupt_record IS NULL)
rd_from | rd_title |
---|---|
10.0 | Computer_accessibility |
13.0 | History_of_Afghanistan |
14.0 | Geography_of_Afghanistan |
15.0 | Demographics_of_Afghanistan |
18.0 | Communications_in_Afghanistan |
19.0 | Transport_in_Afghanistan |
20.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
21.0 | Foreign_relations_of_Afghanistan |
23.0 | Assistive_technology |
24.0 | Amoeba |
25.0 | Autism_spectrum |
27.0 | History_of_Albania |
29.0 | Demographics_of_Albania |
30.0 | As_We_May_Think |
35.0 | Politics_of_Albania |
36.0 | Economy_of_Albania |
40.0 | Afroasiatic_languages |
42.0 | Constructed_language |
46.0 | Abacus |
47.0 | Abalone |
48.0 | Abbadid_dynasty |
49.0 | Abbess |
50.0 | Abbeville |
51.0 | Abbey |
52.0 | Abbot |
53.0 | Abbreviation |
54.0 | Atlas_Shrugged |
56.0 | Constructed_language |
58.0 | List_of_Atlas_Shrugged_characters |
59.0 | Atlas_Shrugged |
60.0 | Atlas_Shrugged |
241.0 | African_Americans |
242.0 | Adolf_Hitler |
247.0 | Abecedarian |
248.0 | Cain_and_Abel |
249.0 | Abensberg |
251.0 | Aberdeen,_South_Dakota |
254.0 | Arthur_Koestler |
255.0 | Ayn_Rand |
256.0 | Alexander_the_Great |
258.0 | Anchorage,_Alaska |
259.0 | Logical_form |
260.0 | Existence_of_God |
263.0 | Anarchy |
264.0 | ASCII_art |
269.0 | Academy_Awards |
270.0 | Academy_Award_for_Best_Picture |
271.0 | Austrian_German |
272.0 | Elitism |
274.0 | Axiom_of_choice |
276.0 | American_football |
278.0 | United_States |
279.0 | Anna_Kournikova |
280.0 | Andorra |
287.0 | Austroasiatic_languages |
289.0 | Lists_of_actors |
291.0 | Anarcho-capitalism |
293.0 | Anarcho-capitalism |
296.0 | Lists_of_actors |
299.0 | An_American_in_Paris |
301.0 | Automorphism |
302.0 | Action_film |
304.0 | Africa |
306.0 | Statistics |
325.0 | Action_film |
338.0 | Auto_racing |
347.0 | Demographics_of_Algeria |
353.0 | Foreign_relations_of_Algeria |
369.0 | Atlas_Shrugged |
583.0 | Amoeba |
589.0 | Ashmore_and_Cartier_Islands |
596.0 | Artificial_language |
598.0 | Afroasiatic_languages |
609.0 | Foreign_relations_of_Andorra |
617.0 | Al_Gore |
618.0 | An_Enquiry_Concerning_Human_Understanding |
622.0 | Al_Gore |
626.0 | Auteur |
629.0 | Abstract_algebra |
635.0 | Analysis_of_variance |
644.0 | Arithmetic_logic_unit |
648.0 | Actor |
654.0 | Computer_accessibility |
668.0 | Logical_form |
669.0 | Allotropy |
686.0 | Amalthea_(mythology) |
687.0 | Analysis_of_variance |
693.0 | Broch |
696.0 | AA |
727.0 | History_of_astronomy |
731.0 | History_of_astronomy |
735.0 | Al_Gore |
743.0 | Antigua_and_Barbuda |
749.0 | Astronomer |
755.0 | History_of_Albania |
758.0 | Foreign_relations_of_Albania |
759.0 | Demographics_of_Albania |
763.0 | Foreign_relations_of_Albania |
767.0 | A._E._van_Vogt |
807.0 | Telecommunications_in_Albania |
813.0 | History_of_Afghanistan |
814.0 | Geography_of_Afghanistan |
815.0 | Government_of_the_Islamic_Emirate_of_Afghanistan |
816.0 | Demographics_of_Afghanistan |
817.0 | Economy_of_Afghanistan |
818.0 | Communications_in_Afghanistan |
820.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
821.0 | Foreign_relations_of_Afghanistan |
822.0 | Afghanistan |
832.0 | Foreign_relations_of_Austria |
839.0 | Anglicanism |
855.0 | Abiotic_component |
858.0 | Au |
860.0 | Åland |
873.0 | Civilization |
882.0 | Supermajority |
891.0 | Accounting |
907.0 | AWK |
908.0 | Nomic |
918.0 | Antisemitism |
919.0 | Antisemitism |
923.0 | A._A._Milne |
926.0 | Alumni |
935.0 | Automated_Alice |
936.0 | Automated_Alice |
937.0 | Automated_Alice |
938.0 | Automated_Alice |
939.0 | Automated_Alice |
940.0 | Automated_Alice |
941.0 | Automated_Alice |
942.0 | Automated_Alice |
943.0 | Automated_Alice |
944.0 | Automated_Alice |
945.0 | Automated_Alice |
946.0 | Automated_Alice |
959.0 | Voiced_velar_nasal |
963.0 | Existence_of_God |
970.0 | Ambient_calculus |
972.0 | Necronomicon |
973.0 | A_priori_and_a_posteriori |
975.0 | Ambient_calculus |
982.0 | A_priori_and_a_posteriori |
1026.0 | Anarcho-capitalism |
1035.0 | AAL |
1059.0 | Statistics |
1061.0 | Analysis_of_variance |
1062.0 | Analysis_of_variance |
1075.0 | Foreign_relations_of_Antigua_and_Barbuda |
1083.0 | Demographics_of_Azerbaijan |
1085.0 | Telecommunications_in_Azerbaijan |
1089.0 | Foreign_relations_of_Azerbaijan |
1105.0 | Foreign_relations_of_Argentina |
1108.0 | Foreign_relations_of_Argentina |
1109.0 | American_Samoa |
1114.0 | American_Samoa |
1116.0 | American_Samoa |
1123.0 | Foreign_relations_of_Australia |
1151.0 | AK-47 |
1153.0 | Amhrán_na_bhFiann |
1186.0 | Aphex_Twin |
1189.0 | Creed |
1190.0 | Alternate_history |
1195.0 | Allotropy |
1199.0 | Angles |
1205.0 | Atomic_orbital |
1220.0 | Anguilla |
1221.0 | Anguilla |
1228.0 | Ashmore_and_Cartier_Islands |
1229.0 | Ashmore_and_Cartier_Islands |
1230.0 | Ashmore_and_Cartier_Islands |
1231.0 | Ashmore_and_Cartier_Islands |
1232.0 | Ashmore_and_Cartier_Islands |
1233.0 | Ashmore_and_Cartier_Islands |
1238.0 | Nuclear_weapon |
1245.0 | Alpha_particle |
1246.0 | Alfonso_Arau |
1255.0 | Astronomical_unit |
1262.0 | Cant_(language) |
1268.0 | Artificial_intelligence |
1276.0 | Antarctica |
1277.0 | Antarctic_Treaty_System |
1280.0 | Military_activity_in_the_Antarctic |
1290.0 | Antarctic_Treaty_System |
1292.0 | Algernon_Charles_Swinburne |
1295.0 | American_League_Championship_Series |
1297.0 | Hebrew_Bible |
1299.0 | Abbadid_dynasty |
1302.0 | Abdomen |
1311.0 | Ada_Lovelace |
1312.0 | Augustine_of_Hippo |
1321.0 | Sagrada_Família |
1328.0 | Anno_Domini |
1339.0 | Americans_with_Disabilities_Act_of_1990 |
1340.0 | Americans_with_Disabilities_Act_of_1990 |
1341.0 | Americans_with_Disabilities_Act_of_1990 |
1342.0 | Anno_Domini |
1345.0 | Apache_HTTP_Server |
1355.0 | Anderitum |
1399.0 | Attention_deficit_hyperactivity_disorder |
1406.0 | Amine |
1407.0 | Antonie_van_Leeuwenhoek |
1410.0 | Antonie_van_Leeuwenhoek |
1415.0 | Pope_Adrian_I |
1426.0 | Pope_Adrian_II |
1429.0 | Pope_Adrian_IV |
1434.0 | Abgar_V |
1457.0 | Alzheimer's_disease |
1459.0 | Vitamin_C |
1476.0 | Prime_Minister_of_Australia |
1502.0 | List_of_minor_characters_in_the_Alice_series |
1511.0 | Albert_I_of_Germany |
1515.0 | Albert_III,_Duke_of_Saxony |
1516.0 | Albert_II,_Margrave_of_Meissen |
1517.0 | Albert_of_Aix |
1533.0 | Aachen |
1535.0 | Acorn |
1539.0 | Adirondack_Mountains |
1561.0 | Áedán_mac_Gabráin |
1572.0 | Al-Battani |
1609.0 | Pope_Alexander_VI |
1610.0 | Pope_Alexander_VII |
1611.0 | Pope_Alexander_VIII |
1626.0 | Aleksandr_Solzhenitsyn |
1636.0 | Antoine_de_Saint-Exupéry |
1641.0 | Alfred,_Duke_of_Saxe-Coburg_and_Gotha |
1651.0 | Alfred_of_Beverley |
1672.0 | Alfonso_VIII_of_Castile |
1673.0 | Alfonso_IX_of_León |
1678.0 | Alfonso_de_Cartagena |
1682.0 | Ahmose_I |
1699.0 | Alfonso_VI_of_León_and_Castile |
1703.0 | Alfonso_VII_of_León_and_Castile |
1704.0 | Alfonso_VIII_of_Castile |
1705.0 | Alfonso_IX_of_León |
1706.0 | Alfonso_X_of_Castile |
1707.0 | Alfonso_XI_of_Castile |
1708.0 | Alfonso_XII |
1709.0 | Alfonso_XIII |
1733.0 | Anacreon |
1744.0 | Pope_Anastasius_III |
1745.0 | Pope_Anastasius_IV |
1766.0 | Asteroid_belt |
1768.0 | Alice |
1769.0 | An_Enquiry_Concerning_Human_Understanding |
1771.0 | Apollo_program |
1772.0 | Arthritis |
1775.0 | Discrete_mathematics |
1809.0 | Thomas_Aquinas |
1811.0 | Hydrolysis |
1821.0 | Antoine_Lavoisier |
1824.0 | Footage |
1830.0 | Air_pollution |
1831.0 | Protocol_on_Environmental_Protection_to_the_Antarctic_Treaty |
1833.0 | Americentrism |
1838.0 | Amazon_River |
1852.0 | Ancient_Greece |
1855.0 | History_of_Africa |
1858.0 | Aromatic_compound |
1876.0 | Adémar_de_Chabannes |
1877.0 | Catharism |
1885.0 | Erotic_asphyxiation |
1889.0 | Assault_weapons_ban |
1903.0 | American_Airlines_Flight_77 |
1904.0 | American_Airlines_Flight_11 |
1906.0 | Aberration_(astronomy) |
1936.0 | Astronomical_unit |
1952.0 | Industry_Standard_Architecture |
1959.0 | Telephone_exchange |
1972.0 | Aviation |
1976.0 | Adomnán |
1978.0 | Assassin_(disambiguation) |
1982.0 | Alice |
1984.0 | Arab_world |
1993.0 | Alan_Ayckbourn |
2001.0 | Al-Qaeda |
2002.0 | Argumentum_ad_populum |
2005.0 | Addiction |
2008.0 | Al-Qaeda |
2043.0 | Anti-Americanism |
2050.0 | Archaeology |
2051.0 | Anarchism |
2058.0 | Atheism |
2071.0 | Afro_Celt_Sound_System |
2073.0 | Andrew_Jackson |
2074.0 | Andrew_Jackson |
2079.0 | Autumnal_equinox |
2090.0 | Albert_of_Hohenzollern |
2095.0 | Parapsychology |
2128.0 | Los_Angeles_Angels |
2132.0 | Ara_Pacis |
2145.0 | Catharism |
2146.0 | Aleksandr_Solzhenitsyn |
2149.0 | Armour |
2153.0 | Elitism |
2164.0 | Peremptory_plea |
2165.0 | Peremptory_plea |
2188.0 | Accident_(philosophy) |
2190.0 | Alternate_history |
2203.0 | Religion_in_Poland |
2206.0 | Ampere |
2211.0 | Folklore_of_the_United_States |
2213.0 | Modus_ponens |
2220.0 | Acts_of_the_Apostles |
2223.0 | Slaughterhouse |
2227.0 | Argumentum_a_fortiori |
2228.0 | Ad_hominem |
2249.0 | Amplification |
2258.0 | Anglicanism |
2260.0 | Analog_Science_Fiction_and_Fact |
2261.0 | Analog_Science_Fiction_and_Fact |
2262.0 | Analog_Science_Fiction_and_Fact |
2264.0 | Heptarchy |
2269.0 | Asynchronous_Transfer_Mode |
2271.0 | Asymmetric_digital_subscriber_line |
2280.0 | Giant_panda |
2281.0 | Arctic_fox |
2285.0 | Tank_destroyer |
2290.0 | Indigenous_peoples |
2295.0 | Arhat |
2297.0 | Springbok |
2298.0 | Blue_crane |
2302.0 | Aramaic |
2306.0 | AT&T |
2320.0 | Audio_codec |
2324.0 | All_Saints'_Day |
2351.0 | HIV/AIDS |
2354.0 | Outline_of_archaeology |
2367.0 | HIV/AIDS |
2379.0 | Binary_relation |
2404.0 | Aon_(company) |
2419.0 | Alloy |
2432.0 | Albrecht_III_Achilles,_Elector_of_Brandenburg |
2446.0 | Appalachian_dulcimer |
2462.0 | Anti-globalization_movement |
2464.0 | Anti-globalization_movement |
2468.0 | Aaron's_rod |
2469.0 | AB |
2478.0 | Barada |
2479.0 | Manama |
2486.0 | Chrysoberyl |
2489.0 | Abandon |
2492.0 | Anal_sex |
2495.0 | Aurochs |
2496.0 | Etiology |
2520.0 | Addition |
2523.0 | Alien |
2525.0 | Al_Jazeera |
2527.0 | Ruhollah_Khomeini |
2533.0 | Alphorn |
2535.0 | AW |
2537.0 | Analog_Science_Fiction_and_Fact |
2549.0 | Analog_Science_Fiction_and_Fact |
2561.0 | List_of_federal_political_scandals_in_the_United_States |
2565.0 | Albert,_Duke_of_Prussia |
2567.0 | Academy_Awards |
2568.0 | Apsis |
2569.0 | Apsis |
2571.0 | Rope_(film) |
2572.0 | Arianism |
2595.0 | Atlas_(computer) |
2599.0 | AA |
2600.0 | Aaron's_rod |
2601.0 | Abandon |
2603.0 | Abaris_the_Hyperborean |
2612.0 | Abbo_of_Fleury |
2615.0 | Charles_Farrar_Browne |
2631.0 | Ælfric |
2636.0 | Accounting |
2638.0 | ACID |
2643.0 | Ajax_the_Lesser |
2644.0 | Ajax_the_Great |
2647.0 | American_Indians |
2648.0 | Abandon |
2649.0 | Abandonment_(legal) |
2650.0 | Abandonment_(legal) |
2651.0 | Abandonment_(legal) |
2652.0 | Nuisance_abatement |
2653.0 | Abatement |
2655.0 | Abatement |
2656.0 | Abatement |
2657.0 | Abatement |
2658.0 | Abatement_(heraldry) |
2659.0 | American_Revolutionary_War |
2664.0 | Affirmation_(law) |
2675.0 | Abd_al-Rahman |
2682.0 | Abdul_Qadir |
2683.0 | Abdelaziz_of_Morocco |
2688.0 | Pneumatic_motor |
2697.0 | Abraham_ibn_Ezra |
2711.0 | Aberdeenshire_(historic) |
2713.0 | Aberdyfi |
2725.0 | Aesthetics |
2746.0 | Same-sex_relationship |
2751.0 | The_Angry_Brigade |
2760.0 | Arab_(disambiguation) |
2765.0 | Anatomical_Therapeutic_Chemical_Classification_System |
2768.0 | Antiarrhythmic_agent |
2771.0 | Air_conditioning |
2774.0 | Alfred_Kinsey |
2775.0 | Auto_racing |
2776.0 | Antisemitism |
2789.0 | James_Tiptree_Jr. |
2793.0 | Application_software |
2804.0 | Application_firewall |
2808.0 | Nuclear_weapon |
2821.0 | Set_theory |
2828.0 | Abipón |
2831.0 | Abkhazia |
2842.0 | Bohr_model |
2855.0 | Latin_American_Integration_Association |
2863.0 | AT&T |
2872.0 | Arthur,_Prince_of_Wales |
2880.0 | Anti-ballistic_missile |
2888.0 | Amorphous_solid |
2897.0 | Indigenous_peoples_of_Arizona |
2898.0 | Abdul_Rashid_Dostum |
2903.0 | The_Diary_of_a_Young_Girl |
2904.0 | Kabylia |
2912.0 | Archaeoastronomy |
2914.0 | French_hip_hop |
2915.0 | Gh_hip_hop |
2918.0 | Argument_from_ignorance |
2922.0 | AIM_(software) |
2929.0 | Armillary_sphere |
2937.0 | Algemeen_Nijmeegs_Studentenblad |
2951.0 | Louis_Althusser |
2969.0 | Aurora |
2970.0 | Aurora |
2971.0 | Abstraction_(computer_science) |
2977.0 | American_Sign_Language |
2993.0 | Amputation |
2996.0 | HMS_Ark_Royal |
2998.0 | Acceleration |
3000.0 | AD_Police_Files |
3005.0 | Apadravya |
3006.0 | Ampallang |
3008.0 | Albinism |
3009.0 | Analcime |
3023.0 | Archimedes'_screw |
3024.0 | Multiplication |
3033.0 | Antenna_(radio) |
3039.0 | Shadrach,_Meshach,_and_Abednego |
3041.0 | Acanthocephala |
3042.0 | Alcobaça |
3051.0 | Clan_McDuck |
3057.0 | List_of_Donald_Duck_universe_characters |
3059.0 | Athlon |
3062.0 | Duck_family_(Disney) |
3063.0 | Asperger_syndrome |
3066.0 | Authoritarianism |
3086.0 | İskenderun |
3099.0 | AbiWord |
3106.0 | AirPort |
3114.0 | Amiga_500 |
3126.0 | Ahriman |
3136.0 | Concept |
3139.0 | Apostle_(disambiguation) |
3154.0 | Fairchild_Republic_A-10_Thunderbolt_II |
3156.0 | Albrecht_Dürer |
3163.0 | Anthroposophy |
3164.0 | Evidence_of_common_descent |
3166.0 | A.C._Milan |
3180.0 | Anomaly |
3182.0 | Avenger |
3187.0 | Agglutination |
3190.0 | Ascending_chain_condition |
3197.0 | A._E._Housman |
3208.0 | Antidepressant |
3210.0 | Alexander_Rutskoy |
3215.0 | Multivibrator |
3219.0 | Actor |
3220.0 | Artificial_intelligence |
3223.0 | Ai |
3227.0 | Azores |
3230.0 | Relative_atomic_mass |
3232.0 | Anthropic_principle |
3247.0 | Roman_Catholic_Archdiocese_for_the_Military_Services,_USA |
3248.0 | Archaeopteryx |
3254.0 | Amuck! |
3260.0 | Line_Islands |
3264.0 | Aborigine |
3276.0 | Antiterrorism_and_Effective_Death_Penalty_Act_of_1996 |
3280.0 | Bomis |
3281.0 | Biblical_hermeneutics |
3282.0 | Baltic_Sea |
3283.0 | Ballroom_dance |
3284.0 | Biology |
3288.0 | Bill_Clinton |
3290.0 | Biblical_canon |
3298.0 | The_Buddha |
3299.0 | Bijection,_injection_and_surjection |
3300.0 | Buddhism |
3303.0 | Baltimore_Ravens |
3307.0 | Aaron |
3311.0 | List_of_business_schools_in_Asia |
3317.0 | The_Birth_of_a_Nation |
3318.0 | Boethius |
3320.0 | Mental_event |
3322.0 | Business_school |
3323.0 | Britney_Spears |
3326.0 | Baby_One_More_Time |
3327.0 | Binomial_distribution |
3329.0 | Binomial_distribution |
3330.0 | Biochemistry |
3342.0 | Germany |
3344.0 | Basic |
3346.0 | Robert_Byrd |
3349.0 | Business_school |
3366.0 | Commonwealth_of_Nations |
3369.0 | Board_game |
3373.0 | Outline_of_biology |
3407.0 | Baruch_Spinoza |
3409.0 | Ontology |
3413.0 | Batch_processing |
3418.0 | Basil |
3424.0 | BBC_Radio_1 |
3425.0 | BBC_Online |
3433.0 | Visual_impairment |
3445.0 | Alcohol_intoxication |
3448.0 | Steer_wrestling |
3480.0 | Royal_Bahamas_Defence_Force |
3481.0 | Foreign_relations_of_the_Bahamas |
3484.0 | Bahrain |
3492.0 | Baker_Island |
3493.0 | Baker_Island |
3494.0 | Baker_Island |
3496.0 | Baker_Island |
3509.0 | Foreign_relations_of_Bangladesh |
3510.0 | Foreign_relations_of_Bangladesh |
3519.0 | Foreign_relations_of_Barbados |
3522.0 | Bassas_da_India |
3524.0 | Bassas_da_India |
3527.0 | Bassas_da_India |
3529.0 | Bassas_da_India |
3539.0 | Telecommunications_in_Belarus |
3548.0 | Foreign_relations_of_Belgium |
3549.0 | Belgium |
3550.0 | Foreign_relations_of_Belgium |
3551.0 | Belgium |
3578.0 | Bermuda |
3587.0 | Bhutan |
3600.0 | Cultural_depictions_of_blindness |
3619.0 | Botswana_Defence_Force |
3622.0 | Bouvet_Island |
3623.0 | Bouvet_Island |
3624.0 | Bouvet_Island |
3625.0 | Bouvet_Island |
3626.0 | Bouvet_Island |
3627.0 | Bouvet_Island |
3628.0 | Bouvet_Island |
3640.0 | British_Indian_Ocean_Territory |
3641.0 | British_Indian_Ocean_Territory |
3642.0 | British_Indian_Ocean_Territory |
3643.0 | British_Indian_Ocean_Territory |
3644.0 | British_Indian_Ocean_Territory |
3645.0 | British_Indian_Ocean_Territory |
3646.0 | British_Indian_Ocean_Territory |
3647.0 | British_Indian_Ocean_Territory |
3656.0 | British_Virgin_Islands |
3686.0 | Geography_of_Myanmar |
3689.0 | Economy_of_Myanmar |
3690.0 | Telecommunications_in_Myanmar |
3723.0 | BSE |
3726.0 | Breakdancing |
3732.0 | Bhangra |
3737.0 | Baptists |
3739.0 | BSD_licenses |
3762.0 | Länder |
3763.0 | Bavaria |
3767.0 | Bundeskanzler |
3770.0 | Cabinet_of_Germany |
3773.0 | Der_Blaue_Reiter |
3781.0 | Mumbai |
3790.0 | Bodybuilding |
3791.0 | Bryan_MacLean |
3796.0 | Biblical_canon |
3803.0 | Strike_zone |
3804.0 | Slugging_percentage |
3818.0 | Babel_fish |
3820.0 | Mental_event |
3824.0 | Babel_fish |
3830.0 | Bryce_Canyon_National_Park |
3831.0 | Encyclopædia_Britannica |
3847.0 | Taste |
3855.0 | Origins_of_baseball |
3871.0 | Substance_theory |
3879.0 | Statistics |
3913.0 | Binary_operation |
3920.0 | The_Beatles |
3922.0 | Road_bicycle |
3934.0 | Baby_boom |
3935.0 | Buddhism |
3966.0 | Border_Gateway_Protocol |
3972.0 | Cycling |
3991.0 | BITS |
3994.0 | Benoit_Mandelbrot |
4003.0 | Pierre_Beaumarchais |
4014.0 | Bipolar_disorder |
4021.0 | Common_Era |
4022.0 | Common_Era |
4025.0 | BC |
4026.0 | Buckminster_Fuller |
4034.0 | Encyclopædia_Britannica_Eleventh_Edition |
4038.0 | Banach–Tarski_paradox |
4040.0 | BC |
4090.0 | Bitwise_operation |
4105.0 | Outline_of_biochemistry |
4122.0 | B-roll |
4126.0 | Ballroom_dance |
4129.0 | CIM-10_Bomarc |
4151.0 | Brainfuck |
4167.0 | Utility_knife |
4174.0 | Six_Degrees_of_Kevin_Bacon |
4186.0 | Bacteriostatic_agent |
4201.0 | Francesco_Borromini |
4212.0 | Bolsheviks |
4215.0 | Brian_De_Palma |
4221.0 | North_American_B-25_Mitchell |
4222.0 | Berry_Berenson |
4226.0 | Brewster's_angle |
4238.0 | The_Bronx |
4252.0 | Baháʼí_Faith |
4253.0 | Red_Army_Faction |
4265.0 | Titius–Bode_law |
4268.0 | The_Boston_Globe |
4272.0 | Elbląg |
4273.0 | Elbląg |
4275.0 | Gdańsk |
4276.0 | Oder |
4290.0 | Buddhism |
4291.0 | Buddhism |
4303.0 | University_of_Brighton |
4328.0 | Bohemia |
4336.0 | Bosnia_and_Herzegovina |
4412.0 | Binary_Synchronous_Communications |
4415.0 | ETA_(separatist_group) |
4426.0 | Brownian_motion |
4428.0 | Bacillus_thuringiensis |
4435.0 | Baltic_languages |
4439.0 | Baptists |
4464.0 | Book_of_Zechariah |
4466.0 | Black_Sox_Scandal |
4486.0 | Buckminsterfullerene |
4509.0 | GNU_Free_Documentation_License |
4521.0 | Bubble_sort |
4523.0 | Bipolar_disorder |
4530.0 | Blue_screen |
4562.0 | Pub |
4564.0 | Bitter_(beer) |
4586.0 | Greek_fire |
4590.0 | Brachycephaly |
4593.0 | Battleship_(game) |
4597.0 | Beryl |
4599.0 | Boleslaus_I |
4600.0 | Bolesław_III_Wrymouth |
4605.0 | Battle_of_the_Nile |
4612.0 | Bird |
4623.0 | Great_Britain_and_Ireland |
4632.0 | Monarchy_of_the_United_Kingdom |
4634.0 | Bombardier |
4655.0 | Alliance_90/The_Greens |
4656.0 | Shogun |
4657.0 | Arbitration |
4663.0 | Basil_of_Caesarea |
4666.0 | C*-algebra |
4678.0 | Computer_font |
4696.0 | Prime_Minister_of_the_United_Kingdom |
4697.0 | List_of_United_Kingdom_general_elections |
4703.0 | Bob_Dylan |
4716.0 | Bohemia |
4720.0 | Epistle_to_the_Hebrews |
4740.0 | International_Bureau_of_Weights_and_Measures |
4747.0 | Blu_Tack |
4750.0 | Bodhidharma |
4773.0 | Balfour_Declaration |
4784.0 | Normal_distribution |
4790.0 | German_Navy |
4798.0 | Bronze_Age |
4799.0 | Bicameral_mentality |
4808.0 | Arbitrary-precision_arithmetic |
4812.0 | Battle_of_Świecino |
4830.0 | Bohr_model |
4837.0 | Befehlshaber_der_U-Boote |
4844.0 | Symmetry_in_biology |
4846.0 | Symmetry_in_biology |
4853.0 | Wrocław |
4855.0 | Basso_continuo |
4889.0 | Semi-trailer_truck |
4891.0 | Ballet |
4901.0 | Daiquiri |
4903.0 | Boson |
4919.0 | Bipolar_II_disorder |
4920.0 | October_Revolution |
4923.0 | List_of_Bubblegum_Crisis_characters |
4932.0 | Basal_body_temperature |
4938.0 | Branch_predictor |
4939.0 | Gambling |
4954.0 | Battle_of_Świecino |
4962.0 | Batting_average_(baseball) |
4977.0 | Battle_of_Adrianople |
4984.0 | Battle_of_Adrianople |
4985.0 | Battle_of_the_Ardennes |
4998.0 | Operation_Aphrodite |
5010.0 | Mexican_tetra |
5012.0 | The_Adventures_of_Brisco_County,_Jr. |
5017.0 | The_Book_of_Counted_Sorrows |
5018.0 | Anal_sex |
5022.0 | B._F._Skinner |
5044.0 | Beast_of_Bodmin_Moor |
5054.0 | List_of_sovereign_states |
5055.0 | Computing |
5056.0 | Software |
5057.0 | Common_sense |
5058.0 | Celtic_music |
5060.0 | List_of_sovereign_states |
5061.0 | List_of_sovereign_states |
5062.0 | List_of_sovereign_states |
5063.0 | List_of_sovereign_states |
5064.0 | List_of_sovereign_states |
5065.0 | List_of_sovereign_states |
5066.0 | COBOL |
5067.0 | Christianity |
5068.0 | List_of_sovereign_states |
5069.0 | List_of_sovereign_states |
5070.0 | List_of_sovereign_states |
5071.0 | List_of_sovereign_states |
5072.0 | Country |
5073.0 | List_of_sovereign_states |
5074.0 | List_of_sovereign_states |
5075.0 | List_of_sovereign_states |
5076.0 | List_of_sovereign_states |
5077.0 | List_of_sovereign_states |
5078.0 | List_of_sovereign_states |
5079.0 | List_of_sovereign_states |
5080.0 | List_of_sovereign_states |
5081.0 | List_of_sovereign_states |
5082.0 | List_of_sovereign_states |
5085.0 | Berlin |
5088.0 | List_of_sovereign_states |
5089.0 | Cantor_set |
5093.0 | Cold_War |
5097.0 | Cryptography |
5098.0 | Cryptography |
5099.0 | Cryptanalysis |
5100.0 | Code |
5101.0 | Encryption |
5103.0 | Charleston |
5104.0 | Consequentialism |
5105.0 | On_the_Consolation_of_Philosophy |
5107.0 | Regress_argument |
5110.0 | Consciousness |
5112.0 | Charlie_Chaplin |
5115.0 | Khmer_language |
5120.0 | Chordate |
5121.0 | Combinatorics |
5122.0 | Constellation |
5123.0 | Cognitive_therapy |
5125.0 | Category_theory |
5126.0 | Summary_statistics |
5128.0 | Comedy_film |
5129.0 | Cult_film |
5130.0 | List_of_sovereign_states |
5133.0 | Charlize_Theron |
5137.0 | Cluster_sampling |
5138.0 | Cumulative_distribution_function |
5140.0 | Comedy_film |
5141.0 | Cult_film |
5143.0 | Cryptography |
5146.0 | Hash_function |
5149.0 | Computer_hardware |
5167.0 | Central_tendency |
5168.0 | Checkers |
5173.0 | Probability_distribution |
5181.0 | Continent |
5182.0 | Constitution |
5186.0 | List_of_sovereign_states |
5198.0 | Canadian_Armed_Forces |
5202.0 | List_of_cities_in_Canada |
5206.0 | Algorithmic_art |
5208.0 | List_of_sovereign_states |
5209.0 | The_World_Factbook |
5210.0 | C._S._Lewis |
5220.0 | Complex_number |
5227.0 | Chessboard |
5231.0 | Old_World_monkey |
5238.0 | List_of_sovereign_states |
5239.0 | Countable_set |
5242.0 | Ciliate |
5258.0 | Computer_data_storage |
5264.0 | Computer_monitor |
5283.0 | Cryptomonad |
5287.0 | Classical_music |
5289.0 | Card_game |
5290.0 | Casino_game |
5291.0 | PC_game |
5292.0 | Collectible_card_game |
5297.0 | Character_(computing) |
5303.0 | Conic_section |
5310.0 | Computer_hardware |
5318.0 | Time-sharing |
5319.0 | Computer_multitasking |
5341.0 | List_of_sovereign_states |
5343.0 | Constitution_of_Canada |
5345.0 | Colloid |
5356.0 | Cancer_cluster |
5359.0 | Collectible_card_game |
5365.0 | Ichthys |
5369.0 | Birth_control |
5392.0 | Coriander |
5393.0 | Coriander |
5396.0 | Chris_Morris |
5400.0 | List_of_sovereign_states |
5410.0 | Poales |
5414.0 | Wargame |
5418.0 | Capitalism |
5419.0 | Computer |
5423.0 | Cross-examination |
5425.0 | Class_conflict |
5426.0 | Compression |
5435.0 | Royal_Cambodian_Armed_Forces |
5441.0 | C_(programming_language) |
5442.0 | Constructed_language |
5444.0 | Regress_argument |
5445.0 | Class_conflict |
5457.0 | Civilization_(video_game) |
5476.0 | Cayman_Islands |
5501.0 | Christmas_Island |
5502.0 | Christmas_Island |
5503.0 | Christmas_Island |
5504.0 | Christmas_Island |
5505.0 | Christmas_Island |
5506.0 | Christmas_Island |
5507.0 | Christmas_Island |
5508.0 | Christmas_Island |
5511.0 | Clipperton_Island |
5512.0 | Clipperton_Island |
5513.0 | Clipperton_Island |
5514.0 | Clipperton_Island |
5515.0 | Clipperton_Island |
5516.0 | Clipperton_Island |
5517.0 | Clipperton_Island |
5518.0 | Clipperton_Island |
5521.0 | Cocos_(Keeling)_Islands |
5522.0 | Cocos_(Keeling)_Islands |
5524.0 | Cocos_(Keeling)_Islands |
5525.0 | Cocos_(Keeling)_Islands |
5526.0 | Cocos_(Keeling)_Islands |
5527.0 | Cocos_(Keeling)_Islands |
5528.0 | Cocos_(Keeling)_Islands |
5542.0 | Coral_Sea_Islands |
5543.0 | Coral_Sea_Islands |
5544.0 | Coral_Sea_Islands |
5545.0 | Coral_Sea_Islands |
5546.0 | Coral_Sea_Islands |
5547.0 | Coral_Sea_Islands |
5548.0 | Coral_Sea_Islands |
5549.0 | Coral_Sea_Islands |
5601.0 | Cypriot_National_Guard |
5604.0 | Czech_Republic |
5607.0 | Demographics_of_the_Czech_Republic |
5608.0 | Politics_of_the_Czech_Republic |
5612.0 | Army_of_the_Czech_Republic |
5613.0 | Foreign_relations_of_the_Czech_Republic |
5616.0 | Creutzfeldt–Jakob_disease |
5618.0 | A_Clockwork_Orange |
5620.0 | Stroke |
5628.0 | Compiler |
5631.0 | Gruyère_cheese |
5632.0 | Cheese_Shop_sketch |
5634.0 | List_of_decades,_centuries,_and_millennia |
5650.0 | Comet |
5652.0 | Computer_network |
5677.0 | Cerebrospinal_fluid |
5680.0 | Chief_executive_officer |
5683.0 | Trade_fair |
5687.0 | University_of_Cambridge |
5731.0 | Capitalism |
5737.0 | Cross-cutting |
5741.0 | Monetary_policy |
5746.0 | Hash_function |
5747.0 | Key_(cryptography) |
5753.0 | Sexual_intercourse |
5764.0 | Charlie_Chaplin |
5773.0 | Carroll_O'Connor |
5780.0 | Chaco_Culture_National_Historical_Park |
5788.0 | Cretaceous–Paleogene_extinction_event |
5792.0 | Probability_distribution |
5798.0 | Closeted |
5799.0 | Coming_out |
5801.0 | Ecumenical_council |
5802.0 | Council_of_Trent |
5803.0 | Second_Vatican_Council |
5842.0 | Foreign_relations_of_Colombia |
5852.0 | Foreign_relations_of_the_Czech_Republic |
5856.0 | Holy_Roman_Empire |
5870.0 | Comics |
5871.0 | Tachycardia |
5875.0 | Jargon |
5877.0 | CORAL |
5880.0 | Comment_(computer_programming) |
5900.0 | Megacorporation |
5908.0 | Counterpoint |
5911.0 | Continuum_hypothesis |
5913.0 | Catalysis |
5915.0 | Catalysis |
5924.0 | Christian_eschatology |
5925.0 | Color |
5953.0 | Claude_Monet |
5960.0 | Genetic_code |
5968.0 | Computer_music |
5975.0 | Call_of_Cthulhu_(role-playing_game) |
5978.0 | Kyoto_Protocol |
5983.0 | Computer_science |
6012.0 | Church–Turing_thesis |
6017.0 | Cruise_missile |
6018.0 | Call_of_Cthulhu |
6022.0 | Cell_biology |
6030.0 | Chronic_fatigue_syndrome |
6031.0 | Chronic_fatigue_syndrome |
6032.0 | Chronic_fatigue_syndrome |
6033.0 | Chronic_fatigue_syndrome |
6037.0 | Continuous_function |
6043.0 | Critical_point_(thermodynamics) |
6053.0 | CE |
6054.0 | CE |
6055.0 | CD-ROM |
6063.0 | Cartoonist |
6065.0 | Sine_and_cosine |
6067.0 | Common_Lisp |
6070.0 | Orange_(colour) |
6071.0 | Black |
6074.0 | Orange_(colour) |
6076.0 | Cyan |
6077.0 | Black |
6078.0 | White |
6086.0 | Cauchy_sequence |
6087.0 | Nicolaus_Copernicus |
6089.0 | Creationism |
6098.0 | Carolingian_Renaissance |
6142.0 | Cardinal_number |
6150.0 | Blanching_(cooking) |
6178.0 | Cardinal |
6179.0 | Buddhist_cuisine |
6190.0 | Five-spice_powder |
6196.0 | Self-replicating_machine |
6197.0 | Self-replicating_machine |
6202.0 | London_Convention_on_the_Prevention_of_Marine_Pollution_by_Dumping_of_Wastes_and_Other_Matter |
6204.0 | Ramsar_Convention |
6219.0 | Claudio_Monteverdi |
6223.0 | Comics |
6228.0 | List_of_ancient_Celtic_peoples_and_tribes |
6236.0 | Champagne_socialist |
6240.0 | Celtic_languages |
6242.0 | Glossary_of_climbing_terms |
6243.0 | Cascade_Range |
6263.0 | Charles_Darwin |
6266.0 | Climate_change |
6269.0 | Wipe_(transition) |
6278.0 | Banach_space |
6287.0 | Lists_of_cities_by_country |
6302.0 | Classical_element |
6307.0 | Aether_(classical_element) |
6311.0 | College_football |
6345.0 | Central_dogma_of_molecular_biology |
6348.0 | Medal_of_Honor |
6368.0 | Chōshū |
6461.0 | Wuxing_(Chinese_philosophy) |
6464.0 | Mobile_phone |
6470.0 | Computational_linguistics |
6500.0 | Lists_of_universities_and_colleges |
6502.0 | Clean_Air_Act_(United_States) |
6510.0 | Color_space |
6515.0 | Lists_of_atheists |
6522.0 | Chief_executive_officer |
6524.0 | Clam_dip |
6531.0 | Chinese_cuisine |
6553.0 | Context-free_grammar |
6554.0 | Computer_graphics |
6564.0 | Conjunction_elimination |
6573.0 | Widewuto |
6581.0 | Musique_concrète |
6594.0 | Casimir_IV_Jagiellon |
6595.0 | Computer_vision |
6605.0 | Citric_acid_cycle |
6609.0 | Stork |
6622.0 | Coelenterata |
6625.0 | Catholic_Church |
6646.0 | List_of_ancient_Germanic_peoples |
6657.0 | Catholic_Church |
6668.0 | Mousse |
6676.0 | Consociationalism |
6685.0 | Coca-Cola |
6699.0 | Plato |
6709.0 | Tree_(data_structure) |
6712.0 | Compressor |
6714.0 | Comic_book |
6726.0 | Antisemitism_in_Christianity |
6737.0 | Dhole |
6738.0 | Red_wolf |
6740.0 | Coyote |
val rowsToSave = spark.sql("SELECT rd_from, rd_title FROM redirects WHERE (rd_from IS NOT NULL) AND (rd_namespace = 0) AND (rd_title IS NOT NULL) AND (rd_interwiki IS NULL) AND (_corrupt_record IS NULL)")
rowsToSave.write.saveAsTable("enwiki_redirect")
rowsToSave: org.apache.spark.sql.DataFrame = [rd_from: int, rd_title: string]
DESCRIBE DETAIL enwiki_redirect
Looks like our data is safely in Delta Lake now. Nice.
Loading of the Wikipedia data
This notebook is largely a copy-paste of the previous one, with some edits to make it fit the structure of the page table.
The data from Wikipedia is available as .sql-file dumps here. So we need to do a little bit of work to get these SQL files into an actual database on the cloud.
All these database dumps are too big to fit into the memory of the driver, so the most naïve way of doing this will not work. Let's do something slightly tricky instead.
As a first step, we download the .sql file:
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
FileUtils.copyURLToFile(new URL("https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-page.sql.gz"), new File("/tmp/enwiki-latest-page.sql.gz"))
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Having done this, we first unzip the file, and then move the file from local storage to the DBFS:
gzip -d /tmp/enwiki-latest-page.sql.gz
mv file:/tmp/enwiki-latest-page.sql /enwiki-latest-page.sql
res1: Boolean = true
Having gotten the data onto the DBFS, we can now read it into Spark:
val rawSQLdump = spark.read.textFile("/enwiki-latest-page.sql")
rawSQLdump: org.apache.spark.sql.Dataset[String] = [value: string]
The first fifty lines are setting up the database, then we get a lot of very long INSERT INTO lines with many many entries being inserted.
println(rawSQLdump.take(50).mkString("\n"))
-- MySQL dump 10.19 Distrib 10.3.34-MariaDB, for debian-linux-gnu (x86_64)
--
-- Host: db1106 Database: enwiki
-- ------------------------------------------------------
-- Server version 10.4.25-MariaDB-log
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `page`
--
DROP TABLE IF EXISTS `page`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `page` (
`page_id` int(8) unsigned NOT NULL AUTO_INCREMENT,
`page_namespace` int(11) NOT NULL DEFAULT 0,
`page_title` varbinary(255) NOT NULL DEFAULT '',
`page_is_redirect` tinyint(1) unsigned NOT NULL DEFAULT 0,
`page_is_new` tinyint(1) unsigned NOT NULL DEFAULT 0,
`page_random` double unsigned NOT NULL DEFAULT 0,
`page_touched` binary(14) NOT NULL,
`page_links_updated` varbinary(14) DEFAULT NULL,
`page_latest` int(8) unsigned NOT NULL DEFAULT 0,
`page_len` int(8) unsigned NOT NULL DEFAULT 0,
`page_content_model` varbinary(32) DEFAULT NULL,
`page_lang` varbinary(35) DEFAULT NULL,
PRIMARY KEY (`page_id`),
UNIQUE KEY `page_name_title` (`page_namespace`,`page_title`),
KEY `page_random` (`page_random`),
KEY `page_len` (`page_len`),
KEY `page_redirect_namespace_len` (`page_is_redirect`,`page_namespace`,`page_len`)
) ENGINE=InnoDB AUTO_INCREMENT=72155458 DEFAULT CHARSET=binary ROW_FORMAT=COMPRESSED;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `page`
--
/*!40000 ALTER TABLE `page` DISABLE KEYS */;
The remaining rows look something like this, except much much longer:
println(rawSQLdump.take(51)(50).substring(0,252) + ",...,"+rawSQLdump.take(51)(50).substring(rawSQLdump.take(51)(50).length()-112, rawSQLdump.take(51)(50).length()))
INSERT INTO `page` VALUES (10,0,'AccessibleComputing',1,0,0.33167112649574004,'20221023042651','20221023043017',1002250816,111,'wikitext',NULL),(12,0,'Anarchism',0,0,0.786172332974311,'20221031175348','20221031175436',1119287356,108971,'wikitext',NULL),...,(12488,0,'Gospel_of_mark',1,0,0.831610906712348,'20221026225428','20221023045452',783863262,93,'wikitext',NULL);
Next up, let us strip out the INSERT INTO
bit and the initial and final parentheses, then split at each ),(
, so that we get each entry as its own string.
val pageDataRows = rawSQLdump.filter(x => x.startsWith("INSERT INTO"))
.flatMap(x => x.substring(27, x.length()-2).split("""\),\("""))
pageDataRows: org.apache.spark.sql.Dataset[String] = [value: string]
So now our data looks like this:
println(pageDataRows.take(20).mkString("\n"))
10,0,'AccessibleComputing',1,0,0.33167112649574004,'20221023042651','20221023043017',1002250816,111,'wikitext',NULL
12,0,'Anarchism',0,0,0.786172332974311,'20221031175348','20221031175436',1119287356,108971,'wikitext',NULL
13,0,'AfghanistanHistory',1,0,0.0621502865684687,'20221031175320','20221023043017',783865149,90,'wikitext',NULL
14,0,'AfghanistanGeography',1,0,0.952234464653055,'20221023042651','20221023043017',783865160,92,'wikitext',NULL
15,0,'AfghanistanPeople',1,0,0.574721494293512,'20221030081456','20221023043017',783865293,95,'wikitext',NULL
18,0,'AfghanistanCommunications',1,0,0.7510681513241201,'20221023042651','20221023043017',783865299,97,'wikitext',NULL
19,0,'AfghanistanTransportations',1,0,0.674272520164282,'20221023042651','20221023043017',783821589,113,'wikitext',NULL
20,0,'AfghanistanMilitary',1,0,0.118158177582694,'20221023042651','20221023043017',1093067805,154,'wikitext',NULL
21,0,'AfghanistanTransnationalIssues',1,0,0.567973358154272,'20221031093955','20221023043017',783821743,101,'wikitext',NULL
23,0,'AssistiveTechnology',1,0,0.72304140005544,'20221023042651','20221023043017',783865310,88,'wikitext',NULL
24,0,'AmoeboidTaxa',1,0,0.159030164740076,'20221023042651','20221023043017',783865319,74,'wikitext',NULL
25,0,'Autism',1,0,0.626026654267708,'20221030132922','20221023043017',1094874534,150,'wikitext',NULL
27,0,'AlbaniaHistory',1,0,0.387134107190309,'20221023042651','20221023043017',783865328,86,'wikitext',NULL
29,0,'AlbaniaPeople',1,0,0.721308424809304,'20221031202408','20221023043017',783865341,91,'wikitext',NULL
30,0,'AsWeMayThink',1,0,0.6769157253922109,'20221023042651','20221023043017',783821752,84,'wikitext',NULL
35,0,'AlbaniaGovernment',1,0,0.326255799575016,'20221023042651','20221023043017',783822027,87,'wikitext',NULL
36,0,'AlbaniaEconomy',1,0,0.774375843605377,'20221024180150','20221023043017',783822029,86,'wikitext',NULL
39,0,'Albedo',0,0,0.14243175009492,'20221030013136','20221030013529',1118971142,61598,'wikitext',NULL
40,0,'AfroAsiaticLanguages',1,0,0.0328232311018028,'20221023042651','20221023043017',783822032,89,'wikitext',NULL
42,0,'ArtificalLanguages',1,0,0.736820935957898,'20221023042651','20221023043017',899426448,160,'wikitext',NULL
With quite a lot of rows - 56.8 million, to be particular.
pageDataRows.count()
res4: Long = 56841730
The above looks a whole lot like a CSV file, doesn't it? Let's write it to file as such. Note that we write it as text instead of as CSV because our data is in the format of a single string per row.
pageDataRows.toDF().write.mode("overwrite").text("/WikipediaData/enwiki-page.csv")
Now we want to read this back in, but with the right schema and column names and so on. So we start by creating the schema. In order to be sure that all the rows got parsed correctly, we add an extra column named _corrupt_record
, which will get the raw CSV text whenever it couldn't be parsed right, and otherwise be set to NULL.
import org.apache.spark.sql.types._
// Start by creating a case class of a row entry:
case class WikiPage(page_id:Int,
page_namespace:Int,
page_title:String,
page_is_redirect:Int,
page_is_new:Int,
page_random:Double,
page_touched:String,
page_links_updated:String,
page_latest:Int,
page_len:Int,
page_content_model:String,
page_lang:String)
// then we generate a schema object from the case class: (code copypasted from here: https://sparkbyexamples.com/spark/convert-case-class-to-spark-schema/)
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
val pageSchema = ScalaReflection.schemaFor[WikiPage].dataType.asInstanceOf[StructType].add("_corrupt_record", StringType, true)
import org.apache.spark.sql.types._
defined class WikiPage
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
pageSchema: org.apache.spark.sql.types.StructType = StructType(StructField(page_id,IntegerType,false),StructField(page_namespace,IntegerType,false),StructField(page_title,StringType,true),StructField(page_is_redirect,IntegerType,false),StructField(page_is_new,IntegerType,false),StructField(page_random,DoubleType,false),StructField(page_touched,StringType,true),StructField(page_links_updated,StringType,true),StructField(page_latest,IntegerType,false),StructField(page_len,IntegerType,false),StructField(page_content_model,StringType,true),StructField(page_lang,StringType,true),StructField(_corrupt_record,StringType,true))
Then we read it back in with the schema we just created:
val readFromCSV = spark.read
.options(Map("quote" -> "'", "mode" -> "PERMISSIVE", "columnNameOfCorruptRecord" -> "_corrupt_record"))
.schema(pageSchema)
.csv("/WikipediaData/enwiki-page.csv")
readFromCSV: org.apache.spark.sql.DataFrame = [page_id: int, page_namespace: int ... 11 more fields]
Let's have a look at what we just created:
display(readFromCSV)
page_id | page_namespace | page_title | page_is_redirect | page_is_new | page_random | page_touched | page_links_updated | page_latest | page_len | page_content_model | page_lang | _corrupt_record |
---|---|---|---|---|---|---|---|---|---|---|---|---|
6.8860822e7 | 3.0 | Akshata_Tiwari | 0.0 | 0.0 | 0.433054031876 | 20220528183322 | 20221003060232 | 1.051999765e9 | 7037.0 | wikitext | NULL | null |
6.8860823e7 | 3.0 | 2401:3C00:18E:19AA:5973:5CC7:B49D:C258 | 0.0 | 1.0 | 0.400991271811 | 20220520213044 | 20221008154248 | 1.047557002e9 | 1083.0 | wikitext | NULL | null |
6.8860824e7 | 3.0 | 2401:4900:4A95:A727:1:1:5182:FA63 | 0.0 | 1.0 | 0.30129749129 | 20220520213114 | 20221008154248 | 1.047557066e9 | 1381.0 | wikitext | NULL | null |
6.8860825e7 | 3.0 | SUPROCKS | 0.0 | 0.0 | 0.725841331722 | 20220821081144 | 20221003060232 | 1.052000304e9 | 4924.0 | wikitext | NULL | null |
6.8860826e7 | 7.0 | WEASEL.JPG | 0.0 | 1.0 | 0.281630812613 | 20221021144754 | 20220829095138 | 1.047557093e9 | 50.0 | wikitext | NULL | null |
6.8860827e7 | 3.0 | 130.193.221.44 | 0.0 | 1.0 | 0.487532485502 | 20220803125143 | 20220803125142 | 1.047557095e9 | 741.0 | wikitext | NULL | null |
6.8860828e7 | 3.0 | Kspencer2 | 0.0 | 1.0 | 0.9383753637 | 20220803125143 | 20220803125142 | 1.047557107e9 | 4568.0 | wikitext | NULL | null |
6.8860829e7 | 10.0 | Schrader-Porsche-924-944-968 | 0.0 | 0.0 | 0.14985841197 | 20221023074722 | 20221101064157 | 1.048533127e9 | 529.0 | wikitext | NULL | null |
6.886083e7 | 0.0 | William_Alexander_(architect) | 0.0 | 0.0 | 4.3310289959e-2 | 20221026145423 | 20221021064111 | 1.050465598e9 | 4098.0 | wikitext | NULL | null |
6.8860831e7 | 3.0 | 2405:201:4012:5093:A846:8D6A:DECE:1C33 | 0.0 | 1.0 | 0.539577992208 | 20220520213438 | 20221008154248 | 1.047557191e9 | 936.0 | wikitext | NULL | null |
6.8860832e7 | 6.0 | David_Graves.jpg | 0.0 | 0.0 | 0.404485287144 | 20221101064048 | 20221101064040 | 1.049134032e9 | 497.0 | wikitext | NULL | null |
6.8860833e7 | 0.0 | 1911_South_Sydney_season | 0.0 | 0.0 | 0.827142123494 | 20221023074722 | 20221012090340 | 1.091550923e9 | 9240.0 | wikitext | NULL | null |
6.8860834e7 | 11.0 | Schrader-Porsche-924-944-968 | 0.0 | 1.0 | 0.594639863808 | 20221023135015 | 20221026140056 | 1.047557236e9 | 27.0 | wikitext | NULL | null |
6.8860835e7 | 7.0 | David_Graves.jpg | 0.0 | 1.0 | 0.121902250077 | 20221023135015 | 20221026140056 | 1.047557247e9 | 88.0 | wikitext | NULL | null |
6.8860836e7 | 3.0 | Yashkulkarnixoxo | 0.0 | 1.0 | 0.215607243257 | 20220913101409 | 20220804014401 | 1.047557262e9 | 1272.0 | wikitext | NULL | null |
6.8860837e7 | 0.0 | Longtail_weasel | 1.0 | 1.0 | 4.1464632495e-2 | 20221021170204 | 20221018092305 | 1.047557371e9 | 32.0 | wikitext | NULL | null |
6.8860838e7 | 3.0 | 171.49.166.241 | 0.0 | 1.0 | 0.923431613927 | 20220520202801 | 20221008154248 | 1.047557394e9 | 1270.0 | wikitext | NULL | null |
6.8860839e7 | 1.0 | Longtail_weasel | 0.0 | 1.0 | 0.699760250093 | 20221021144754 | 20220829095115 | 1.047557418e9 | 54.0 | wikitext | NULL | null |
6.8860841e7 | 0.0 | RTL_Up | 1.0 | 1.0 | 0.980251414377 | 20221031141310 | 20221031141306 | 1.047557513e9 | 66.0 | wikitext | NULL | null |
6.8860842e7 | 6.0 | Raame_Aandalum_Raavane_Aandalum_poster.jpg | 0.0 | 0.0 | 0.294557725343 | 20221023093710 | 20221023171424 | 1.113556468e9 | 315.0 | wikitext | NULL | null |
6.8860843e7 | 3.0 | 123.231.123.237 | 0.0 | 1.0 | 0.190008213578 | 20220520200714 | 20221008154248 | 1.047557548e9 | 830.0 | wikitext | NULL | null |
6.8860844e7 | 3.0 | MattyShub | 0.0 | 1.0 | 0.587473902242 | 20221018143335 | 20221018143333 | 1.047557565e9 | 4246.0 | wikitext | NULL | null |
6.8860845e7 | 3.0 | Ocheaccounts | 0.0 | 1.0 | 0.697112716587 | 20220828115945 | 20220828115937 | 1.047557609e9 | 917.0 | wikitext | NULL | null |
6.8860846e7 | 10.0 | Schrader-Porsche-924-944-968/doc | 0.0 | 1.0 | 0.546049679537 | 20221101064048 | 20221101064046 | 1.047557655e9 | 1699.0 | wikitext | NULL | null |
6.8860847e7 | 0.0 | The_Sex_Side_of_Life | 1.0 | 1.0 | 0.411621099913 | 20221018180322 | 20221018180322 | 1.047557725e9 | 26.0 | wikitext | NULL | null |
6.8860848e7 | 3.0 | 2A02:C7F:7C57:9000:51C0:BB90:7DFA:A059 | 0.0 | 1.0 | 0.788242241036 | 20220520222441 | 20221008154249 | 1.047557726e9 | 977.0 | wikitext | NULL | null |
6.8860849e7 | 11.0 | Schrader-Porsche-924-944-968/doc | 1.0 | 1.0 | 0.494634656132 | 20220930232633 | 20220930232631 | 1.047557767e9 | 56.0 | wikitext | NULL | null |
6.886085e7 | 0.0 | Facemasks_during_the_Covid-19_pandemic | 1.0 | 1.0 | 0.301272045424 | 20221101031429 | 20221018072950 | 1.047557828e9 | 53.0 | wikitext | NULL | null |
6.8860851e7 | 3.0 | 2001:D08:D8:E609:6481:EB5A:4646:D743 | 0.0 | 1.0 | 0.685161615027 | 20220520210022 | 20221008154248 | 1.047557837e9 | 855.0 | wikitext | NULL | null |
6.8860853e7 | 2.0 | Rubymhel04/sandbox | 0.0 | 0.0 | 0.382185656223 | 20220728025144 | 20220728025143 | 1.047582817e9 | 1863.0 | wikitext | NULL | null |
6.8860854e7 | 7.0 | MRNA_vaccines_against_the_coronavirus.webm | 0.0 | 1.0 | 0.84661630027 | 20221021144754 | 20220829095139 | 1.047557886e9 | 177.0 | wikitext | NULL | null |
6.8860855e7 | 0.0 | List_of_awards_and_nominations_received_by_George_Lucas | 0.0 | 0.0 | 0.711784833384 | 20221030004103 | 20221030004449 | 1.10620484e9 | 12877.0 | wikitext | NULL | null |
6.8860856e7 | 3.0 | 77.96.168.101 | 0.0 | 0.0 | 0.885016413037 | 20220419035920 | 20221008154248 | 1.047559489e9 | 6509.0 | wikitext | NULL | null |
6.8860857e7 | 2.0 | Mrjwwd | 0.0 | 0.0 | 8.833056386e-3 | 20221023093710 | 20221013034855 | 1.047560555e9 | 434.0 | wikitext | NULL | null |
6.8860858e7 | 2.0 | Name6547/sandbox | 0.0 | 1.0 | 0.825950411417 | 20221023093710 | 20220803125341 | 1.047557986e9 | 74.0 | wikitext | NULL | null |
6.8860859e7 | 0.0 | Second_Chance_Motorsports | 0.0 | 0.0 | 0.972959691201 | 20221011054852 | 20220927082638 | 1.052480957e9 | 144.0 | wikitext | NULL | null |
6.886086e7 | 6.0 | CodexMendoza01.jpg | 0.0 | 0.0 | 0.367723667089 | 20221023093710 | 20220827190429 | 1.069935152e9 | 67.0 | wikitext | NULL | null |
6.8860861e7 | 0.0 | Lenny_Massey | 0.0 | 0.0 | 0.397275337479 | 20221023074722 | 20221023001612 | 1.111727583e9 | 5170.0 | wikitext | NULL | null |
6.8860862e7 | 0.0 | 2021–22_EHF_European_League | 0.0 | 0.0 | 0.970692318602 | 20221031232845 | 20221101014016 | 1.109832634e9 | 26821.0 | wikitext | NULL | null |
6.8860863e7 | 10.0 | Austen-Porsche-924-944-968 | 0.0 | 1.0 | 0.505228432583 | 20221023074722 | 20221101064157 | 1.047558268e9 | 491.0 | wikitext | NULL | null |
6.8860864e7 | 0.0 | 2021_Asian_Table_Tennis_Championships_–_Women's_team | 0.0 | 0.0 | 0.153117753767 | 20221024175505 | 20221022114857 | 1.063537781e9 | 10200.0 | wikitext | NULL | null |
6.8860865e7 | 2.0 | Shabraiz567 | 0.0 | 0.0 | 0.982321458825 | 20220728025144 | 20220728025143 | 1.047558563e9 | 394.0 | wikitext | NULL | null |
6.8860866e7 | 11.0 | Austen-Porsche-924-944-968 | 0.0 | 1.0 | 0.342443434686 | 20221023135015 | 20221026140056 | 1.04755834e9 | 27.0 | wikitext | NULL | null |
6.8860867e7 | 0.0 | Rina_Fukushi | 0.0 | 0.0 | 0.937815749526 | 20221023074722 | 20221002125141 | 1.068963921e9 | 2431.0 | wikitext | NULL | null |
6.8860868e7 | 14.0 | Adaptations_of_works_by_Georg_Büchner | 0.0 | 1.0 | 0.903088165199 | 20221004153754 | 20220912133804 | 1.047558431e9 | 95.0 | wikitext | NULL | null |
6.8860869e7 | 3.0 | Twofingered_Typist/Archives/2021/September | 0.0 | 1.0 | 0.687101836698 | 20220902081543 | 20221030074922 | 1.047558511e9 | 7074.0 | wikitext | NULL | null |
6.886087e7 | 14.0 | 2021_Asian_Table_Tennis_Championships | 0.0 | 1.0 | 0.206480787518 | 20221004174814 | 20221004174813 | 1.047558616e9 | 391.0 | wikitext | NULL | null |
6.8860871e7 | 0.0 | 1979_in_Finland | 0.0 | 0.0 | 0.866086508971 | 20221023074722 | 20221027141538 | 1.068272744e9 | 2619.0 | wikitext | NULL | null |
6.8860872e7 | 3.0 | Estefce | 0.0 | 0.0 | 0.202777871268 | 20220913101409 | 20220825203341 | 1.047558757e9 | 6283.0 | wikitext | NULL | null |
6.8860873e7 | 6.0 | I'm_the_Villainess,_So_I'm_Taming_the_Final_Boss_light_novel_volume_1_cover.jpg | 0.0 | 0.0 | 0.491724215508 | 20221023093710 | 20220724102005 | 1.049134598e9 | 853.0 | wikitext | NULL | null |
6.8860874e7 | 3.0 | Kennygoldprince | 0.0 | 1.0 | 0.796714685352 | 20220803125143 | 20220803125142 | 1.047558736e9 | 628.0 | wikitext | NULL | null |
6.8860875e7 | 10.0 | Austen-Porsche-924-944-968/doc | 0.0 | 1.0 | 0.805875194013 | 20221101064048 | 20221101064045 | 1.047558773e9 | 1682.0 | wikitext | NULL | null |
6.8860876e7 | 2.0 | Arnav_Bhate/vector.css | 0.0 | 1.0 | 0.457996502764 | 20220728025144 | 20220728025142 | 1.047558789e9 | 78.0 | css | NULL | null |
6.8860877e7 | 14.0 | Works_based_on_Woyzeck | 0.0 | 1.0 | 0.958023053289 | 20221004153754 | 20220907092914 | 1.047558809e9 | 184.0 | wikitext | NULL | null |
6.8860878e7 | 3.0 | SmartClinic | 0.0 | 0.0 | 0.392863797502 | 20221020153735 | 20221020153734 | 1.063201083e9 | 2648.0 | wikitext | NULL | null |
6.8860879e7 | 11.0 | Austen-Porsche-924-944-968/doc | 1.0 | 1.0 | 0.54459759364 | 20220930232633 | 20220930232630 | 1.047558939e9 | 54.0 | wikitext | NULL | null |
6.8860882e7 | 2.0 | Craft53 | 0.0 | 1.0 | 0.856275501275 | 20220728025144 | 20220728025143 | 1.047558962e9 | 0.0 | wikitext | NULL | null |
6.8860883e7 | 4.0 | Sockpuppet_investigations/CredEsTy | 0.0 | 0.0 | 0.296354585509 | 20221024143700 | 20221027013921 | 1.047558989e9 | 81.0 | wikitext | NULL | null |
6.8860884e7 | 0.0 | Charlie_Patino | 0.0 | 0.0 | 0.873178431548 | 20221031200508 | 20221028205743 | 1.118777946e9 | 11964.0 | wikitext | NULL | null |
6.8860885e7 | 3.0 | Salva_Reviews | 0.0 | 0.0 | 0.49000916154 | 20221020153735 | 20221020153734 | 1.063101111e9 | 2648.0 | wikitext | NULL | null |
6.8860886e7 | 3.0 | 117.20.69.159 | 0.0 | 1.0 | 0.688069343258 | 20220520195653 | 20221008154248 | 1.047559091e9 | 951.0 | wikitext | NULL | null |
6.8860887e7 | 3.0 | 2403:5800:7700:1300:3103:CD9D:6A2F:3153 | 0.0 | 1.0 | 8.3266595477e-2 | 20220803125143 | 20220803125142 | 1.047559106e9 | 2203.0 | wikitext | NULL | null |
6.8860889e7 | 2.0 | Eritque_arcus | 0.0 | 1.0 | 0.916796158262 | 20220728025144 | 20220728025143 | 1.047559146e9 | 68.0 | wikitext | NULL | null |
6.886089e7 | 2.0 | Botushali | 0.0 | 0.0 | 0.174368789891 | 20221019010418 | 20221019010418 | 1.116919316e9 | 998.0 | wikitext | NULL | null |
6.8860891e7 | 1.0 | Charlie_Patino | 0.0 | 0.0 | 0.250746277407 | 20221023093710 | 20220808033123 | 1.053690677e9 | 327.0 | wikitext | NULL | null |
6.8860893e7 | 0.0 | Thomas_Beven | 0.0 | 0.0 | 0.664714178705 | 20221030073953 | 20221030120120 | 1.055970968e9 | 3931.0 | wikitext | NULL | null |
6.8860894e7 | 1.0 | William_Alexander_(architect) | 0.0 | 0.0 | 0.949304483861 | 20221023093710 | 20220929112058 | 1.094935732e9 | 344.0 | wikitext | NULL | null |
6.8860896e7 | 1.0 | Thomas_Beven | 0.0 | 1.0 | 0.552309689933 | 20221021144754 | 20221016062122 | 1.047559432e9 | 106.0 | wikitext | NULL | null |
6.8860897e7 | 0.0 | Tomas_Serra_Olives | 0.0 | 0.0 | 3.5481266726e-2 | 20221023130113 | 20221006183220 | 1.069043029e9 | 2357.0 | wikitext | NULL | null |
6.8860898e7 | 0.0 | Charlie_Patiño | 1.0 | 1.0 | 0.356744216841 | 20221028205428 | 20221018064114 | 1.047559449e9 | 28.0 | wikitext | NULL | null |
6.8860899e7 | 2.0 | Eewilson/Work | 0.0 | 0.0 | 0.795391773552 | 20221023074722 | 20221005082017 | 1.111690035e9 | 36219.0 | wikitext | NULL | null |
6.88609e7 | 3.0 | 2409:4043:2D96:9570:366A:A20D:1CA3:D35B | 0.0 | 1.0 | 0.824473449436 | 20220520213808 | 20221008154249 | 1.047559471e9 | 1028.0 | wikitext | NULL | null |
6.8860901e7 | 1.0 | Tomas_Serra_Olives | 0.0 | 0.0 | 0.212171341464 | 20221023135015 | 20221024155536 | 1.100645198e9 | 238.0 | wikitext | NULL | null |
6.8860902e7 | 3.0 | Md_Saidul_Hasan_Adnan | 0.0 | 0.0 | 0.847609578148 | 20220809232000 | 20221010150718 | 1.049048019e9 | 9685.0 | wikitext | NULL | null |
6.8860903e7 | 0.0 | Tetilla_(sponge) | 0.0 | 0.0 | 0.928679518927 | 20221023074722 | 20221011101710 | 1.091133919e9 | 5630.0 | wikitext | NULL | null |
6.8860904e7 | 0.0 | Something_Real_(Phoebe_Snow_album) | 0.0 | 0.0 | 0.842222110265 | 20221029202802 | 20221029210048 | 1.118525442e9 | 8917.0 | wikitext | NULL | null |
6.8860905e7 | 0.0 | Luca_Pretolesi | 0.0 | 0.0 | 0.77092673445 | 20221023074722 | 20221009073326 | 1.114981309e9 | 6932.0 | wikitext | NULL | null |
6.8860907e7 | 3.0 | 78.80.16.63 | 0.0 | 1.0 | 1.5157985722e-2 | 20220521000539 | 20221008154248 | 1.047559784e9 | 912.0 | wikitext | NULL | null |
6.8860908e7 | 2.0 | Dishitha_Sathyaseelan/sandbox | 0.0 | 1.0 | 0.721020112919 | 20221023093710 | 20220803125341 | 1.047559788e9 | 350.0 | wikitext | NULL | null |
6.8860909e7 | 3.0 | 46.135.91.1 | 0.0 | 1.0 | 2.6013833417e-2 | 20220520223514 | 20221008154248 | 1.04755982e9 | 912.0 | wikitext | NULL | null |
6.886091e7 | 2.0 | Eewilson/Links | 0.0 | 0.0 | 0.603283862608 | 20221023093710 | 20221005082017 | 1.111690205e9 | 4887.0 | wikitext | NULL | null |
6.8860912e7 | 2.0 | Ethanix7 | 0.0 | 1.0 | 0.237041813811 | 20220728025144 | 20220728025143 | 1.047560008e9 | 120.0 | wikitext | NULL | null |
6.8860913e7 | 3.0 | 2A02:C7E:687:DF00:2937:2794:FB24:AA9E | 0.0 | 1.0 | 0.961504961061 | 20220520222302 | 20221008154248 | 1.047560011e9 | 1399.0 | wikitext | NULL | null |
6.8860914e7 | 0.0 | Jme_tire | 1.0 | 1.0 | 0.762124254894 | 20221018142316 | 20221018084611 | 1.047560035e9 | 23.0 | wikitext | NULL | null |
6.8860916e7 | 0.0 | Doolot_Sydykov | 0.0 | 0.0 | 0.985011776783 | 20221023074722 | 20221023032807 | 1.105642554e9 | 4332.0 | wikitext | NULL | null |
6.8860917e7 | 3.0 | 87.116.173.73 | 0.0 | 0.0 | 0.909803349467 | 20220521003541 | 20221008154248 | 1.047714392e9 | 2573.0 | wikitext | NULL | null |
6.8860918e7 | 2.0 | Eewilson/Editing_plant_articles | 0.0 | 0.0 | 0.560822079386 | 20221027044103 | 20221027044103 | 1.118467047e9 | 7147.0 | wikitext | NULL | null |
6.8860919e7 | 3.0 | 80.183.85.74 | 0.0 | 1.0 | 0.130867322555 | 20220803125143 | 20220803125142 | 1.04756028e9 | 641.0 | wikitext | NULL | null |
6.8860921e7 | 2.0 | SMAK/Editnotice | 0.0 | 0.0 | 0.150602441099 | 20220728025147 | 20220728025146 | 1.048008225e9 | 279.0 | wikitext | NULL | null |
6.8860923e7 | 2.0 | Randyinbonn | 0.0 | 0.0 | 0.727967064384 | 20221028052204 | 20221028052741 | 1.089775114e9 | 653.0 | wikitext | NULL | null |
6.8860924e7 | 3.0 | 196.15.207.227 | 0.0 | 1.0 | 0.412250851556 | 20220520205036 | 20221008154249 | 1.047560397e9 | 1080.0 | wikitext | NULL | null |
6.8860925e7 | 3.0 | 204.81.109.143 | 0.0 | 1.0 | 0.882543834418 | 20220911065958 | 20220911065957 | 1.047560411e9 | 615.0 | wikitext | NULL | null |
6.8860926e7 | 3.0 | Ranjha0083 | 0.0 | 1.0 | 0.615229553392 | 20221002143159 | 20221002143157 | 1.04756043e9 | 3272.0 | wikitext | NULL | null |
6.8860927e7 | 6.0 | Al_McCoy_baseball.jpg | 0.0 | 1.0 | 0.61827591825 | 20221101064048 | 20221101064038 | 1.04756049e9 | 524.0 | wikitext | NULL | null |
6.8860928e7 | 0.0 | Saterfrisian | 1.0 | 1.0 | 0.769987582065 | 20221018165829 | 20221018165828 | 1.047560498e9 | 40.0 | wikitext | NULL | null |
6.8860929e7 | 10.0 | Morgan-Porsche-924-944-968 | 0.0 | 1.0 | 0.557495026563 | 20221023074722 | 20221101064157 | 1.047560516e9 | 585.0 | wikitext | NULL | null |
6.886093e7 | 1.0 | Diffusion_gradient | 0.0 | 0.0 | 0.214232432513 | 20221021144754 | 20220913203008 | 1.060647447e9 | 49.0 | wikitext | NULL | null |
6.8860931e7 | 11.0 | Morgan-Porsche-924-944-968 | 0.0 | 1.0 | 0.955415040881 | 20221023135015 | 20221026140056 | 1.047560595e9 | 27.0 | wikitext | NULL | null |
6.8860932e7 | 3.0 | 98.229.237.70 | 0.0 | 1.0 | 0.618328241273 | 20220803125147 | 20220803125145 | 1.047560602e9 | 2244.0 | wikitext | NULL | null |
6.8860933e7 | 1.0 | 1973_Montana_State_Bobcats_football_team | 0.0 | 1.0 | 0.525878099586 | 20221027063132 | 20221027080018 | 1.047560626e9 | 105.0 | wikitext | NULL | null |
6.8860934e7 | 1.0 | 1974_Montana_State_Bobcats_football_team | 0.0 | 1.0 | 0.427495890992 | 20221027063132 | 20221027080048 | 1.047560636e9 | 105.0 | wikitext | NULL | null |
6.8860935e7 | 0.0 | Al_McCoy_(baseball) | 0.0 | 0.0 | 0.930369345899 | 20221101064050 | 20221101064156 | 1.071763991e9 | 2658.0 | wikitext | NULL | null |
6.8860936e7 | 0.0 | Ich_bin_weg_(Boro_boro) | 1.0 | 1.0 | 0.326664303833 | 20221021165642 | 20221018081349 | 1.047560665e9 | 36.0 | wikitext | NULL | null |
6.8860938e7 | 0.0 | Ich_bin_weg_(Boro_Boro) | 1.0 | 0.0 | 0.60755184816 | 20221020090731 | 20221020090731 | 1.07279941e9 | 47.0 | wikitext | NULL | null |
6.8860939e7 | 3.0 | AngelicCrusade | 0.0 | 1.0 | 0.53426683569 | 20220803125147 | 20220803125145 | 1.047560698e9 | 635.0 | wikitext | NULL | null |
6.886094e7 | 1.0 | Al_McCoy_(baseball) | 0.0 | 0.0 | 0.981241316884 | 20221021144754 | 20220916083249 | 1.092221011e9 | 150.0 | wikitext | NULL | null |
6.8860941e7 | 3.0 | Sakib108 | 0.0 | 1.0 | 0.368763431326 | 20221002143159 | 20221002143157 | 1.047560712e9 | 3268.0 | wikitext | NULL | null |
6.8860942e7 | 3.0 | Phawu | 0.0 | 1.0 | 0.152886132979 | 20221002143159 | 20221002143157 | 1.047560715e9 | 3262.0 | wikitext | NULL | null |
6.8860943e7 | 0.0 | Ich_bin_weg | 1.0 | 1.0 | 0.497140544602 | 20221021165642 | 20221018081349 | 1.047560722e9 | 36.0 | wikitext | NULL | null |
6.8860945e7 | 2.0 | EGGBUTTEATERLOL | 0.0 | 1.0 | 0.434198432559 | 20220728025147 | 20220728025145 | 1.047560806e9 | 2.0 | wikitext | NULL | null |
6.8860946e7 | 3.0 | 76.74.122.250 | 0.0 | 0.0 | 0.599551730357 | 20221025153032 | 20221008154248 | 1.089578323e9 | 7125.0 | wikitext | NULL | null |
6.8860947e7 | 10.0 | Morgan-Porsche-924-944-968/doc | 0.0 | 1.0 | 0.898751906908 | 20221101064048 | 20221101064046 | 1.047560829e9 | 1683.0 | wikitext | NULL | null |
6.8860949e7 | 3.0 | 2405:201:D00D:7012:40C0:BC4B:D61E:FBDB | 0.0 | 0.0 | 0.74870130798 | 20220917231312 | 20221010150718 | 1.078878783e9 | 4950.0 | wikitext | NULL | null |
6.886095e7 | 2.0 | Montag313 | 0.0 | 0.0 | 0.278251575766 | 20221023093710 | 20220804010330 | 1.051407297e9 | 5986.0 | wikitext | NULL | null |
6.8860951e7 | 3.0 | 112.209.164.160 | 0.0 | 0.0 | 0.493993193084 | 20220803125147 | 20220803125145 | 1.047673237e9 | 1044.0 | wikitext | NULL | null |
6.8860952e7 | 2.0 | Kayote_Music/sandbox | 0.0 | 1.0 | 0.339108753837 | 20221023093710 | 20220803125342 | 1.047560916e9 | 46.0 | wikitext | NULL | null |
6.8860953e7 | 0.0 | Yahya_Mahayni | 1.0 | 0.0 | 0.485066265148 | 20221030172535 | 20221030172534 | 1.064350445e9 | 39.0 | wikitext | NULL | null |
6.8860954e7 | 11.0 | Morgan-Porsche-924-944-968/doc | 1.0 | 1.0 | 0.553477519859 | 20220930232633 | 20220930232631 | 1.047560993e9 | 54.0 | wikitext | NULL | null |
6.8860955e7 | 3.0 | Omar_JOHN_234 | 0.0 | 1.0 | 0.690628191888 | 20221020153735 | 20221020153734 | 1.047561008e9 | 1096.0 | wikitext | NULL | null |
6.8860956e7 | 2.0 | Editeditit/common.js | 0.0 | 1.0 | 0.889054596992 | 20220728025147 | 20220728025146 | 1.047561118e9 | 66.0 | javascript | NULL | null |
6.8860957e7 | 0.0 | Barium_ethynediide | 1.0 | 1.0 | 0.351157398617 | 20221017151819 | 20221017151818 | 1.047561125e9 | 27.0 | wikitext | NULL | null |
6.8860958e7 | 3.0 | 5.30.24.187 | 0.0 | 1.0 | 0.231537075169 | 20220520224040 | 20221008154249 | 1.047561126e9 | 971.0 | wikitext | NULL | null |
6.886096e7 | 3.0 | OKKAMI | 0.0 | 0.0 | 0.466130757425 | 20221020153735 | 20221020153734 | 1.063101161e9 | 2681.0 | wikitext | NULL | null |
6.8860961e7 | 1.0 | Yahya_Mahayni | 0.0 | 0.0 | 0.130900065435 | 20221023093710 | 20220808033123 | 1.047682957e9 | 165.0 | wikitext | NULL | null |
6.8860962e7 | 3.0 | NHexcel47 | 0.0 | 1.0 | 0.526338186155 | 20220913101409 | 20220803125146 | 1.047561236e9 | 6275.0 | wikitext | NULL | null |
6.8860963e7 | 0.0 | P-synephrine | 1.0 | 1.0 | 0.738934139964 | 20221021053606 | 20221018101820 | 1.047561259e9 | 24.0 | wikitext | NULL | null |
6.8860964e7 | 6.0 | Ibac.jpg | 0.0 | 0.0 | 0.989366727154 | 20221101064048 | 20221101064044 | 1.049134611e9 | 450.0 | wikitext | NULL | null |
6.8860966e7 | 2.0 | ThatCollectibleDude/sandbox | 0.0 | 0.0 | 0.471178628925 | 20220728025147 | 20220728025146 | 1.048617729e9 | 90.0 | wikitext | NULL | null |
6.8860967e7 | 3.0 | Clare_Logan | 0.0 | 0.0 | 4.4957474871e-2 | 20220911065958 | 20220911065957 | 1.04771849e9 | 2628.0 | wikitext | NULL | null |
6.8860968e7 | 7.0 | Ibac.jpg | 0.0 | 1.0 | 0.474194091891 | 20221023135015 | 20221026140056 | 1.047561397e9 | 88.0 | wikitext | NULL | null |
6.8860969e7 | 3.0 | Dekoracje228 | 0.0 | 0.0 | 0.56539472642 | 20220825203343 | 20220825203341 | 1.051119198e9 | 3975.0 | wikitext | NULL | null |
6.886097e7 | 3.0 | 2A01:4C8:1075:90DE:50D5:8BDC:9130:F3F9 | 0.0 | 1.0 | 0.394188205673 | 20220520221915 | 20221008154249 | 1.047561428e9 | 953.0 | wikitext | NULL | null |
6.8860972e7 | 1.0 | Blessed_&_Free_(Kane_Brown_and_H.E.R._song) | 0.0 | 1.0 | 0.818181934338 | 20221021144754 | 20220827152103 | 1.047561556e9 | 8.0 | wikitext | NULL | null |
6.8860973e7 | 3.0 | Nisha_kanwar | 0.0 | 1.0 | 0.832091060827 | 20221002143159 | 20221002143157 | 1.047561605e9 | 3276.0 | wikitext | NULL | null |
6.8860974e7 | 3.0 | 125.209.162.73 | 0.0 | 1.0 | 0.853538291286 | 20220803125147 | 20220803125145 | 1.047561609e9 | 903.0 | wikitext | NULL | null |
6.8860975e7 | 3.0 | LowlySnake1 | 0.0 | 1.0 | 0.167491965007 | 20221020153735 | 20221020153734 | 1.047561625e9 | 1096.0 | wikitext | NULL | null |
6.8860976e7 | 3.0 | Enie_Meyer | 0.0 | 1.0 | 0.722047964643 | 20221020153735 | 20221020153733 | 1.047561664e9 | 1096.0 | wikitext | NULL | null |
6.8860977e7 | 0.0 | Blessed_&_Free | 1.0 | 1.0 | 7.4770833929e-2 | 20221023134808 | 20221017181120 | 1.047561667e9 | 24.0 | wikitext | NULL | null |
6.8860978e7 | 3.0 | 2601:8A:4002:620:383E:C558:EA22:D6DA | 0.0 | 1.0 | 0.372525884803 | 20220803125147 | 20220803125145 | 1.047561686e9 | 748.0 | wikitext | NULL | null |
6.8860979e7 | 3.0 | 81.234.44.249 | 0.0 | 1.0 | 0.300832812782 | 20220521001409 | 20221008154249 | 1.047561697e9 | 1110.0 | wikitext | NULL | null |
6.886098e7 | 0.0 | Early-May_1933_tornado_outbreak_sequence | 1.0 | 1.0 | 0.311521024485 | 20221027101433 | 20221027101432 | 1.0475617e9 | 106.0 | wikitext | NULL | null |
6.8860981e7 | 1.0 | Early-May_1933_tornado_outbreak_sequence | 1.0 | 1.0 | 0.404470664907 | 20221023093710 | 20221027101622 | 1.047561702e9 | 111.0 | wikitext | NULL | null |
6.8860982e7 | 118.0 | Flynn:_Son_of_Crimson | 1.0 | 1.0 | 0.328990800811 | 20221023093710 | 20220926111553 | 1.047561708e9 | 82.0 | wikitext | NULL | null |
6.8860983e7 | 119.0 | Flynn:_Son_of_Crimson | 1.0 | 1.0 | 0.60117549287 | 20221023093710 | 20220926111554 | 1.047561712e9 | 87.0 | wikitext | NULL | null |
6.8860984e7 | 3.0 | 118.103.253.90 | 0.0 | 1.0 | 0.684945054561 | 20221020153735 | 20221020153733 | 1.047561801e9 | 1360.0 | wikitext | NULL | null |
6.8860985e7 | 3.0 | 2A04:4A43:4D7E:BB11:0:0:ECED:D16 | 0.0 | 1.0 | 0.612589092258 | 20220803125147 | 20220803125145 | 1.047561827e9 | 924.0 | wikitext | NULL | null |
6.8860986e7 | 3.0 | Eaton_Community_Development_Specialist | 1.0 | 1.0 | 4.1052156935e-2 | 20221023093710 | 20220926111553 | 1.047561849e9 | 86.0 | wikitext | NULL | null |
6.8860987e7 | 1.0 | KaiserNeko | 0.0 | 1.0 | 0.58774716488 | 20221021144754 | 20221011075753 | 1.04756193e9 | 31.0 | wikitext | NULL | null |
6.8860988e7 | 3.0 | Surajkumar8453 | 0.0 | 0.0 | 0.773494478964 | 20221017141655 | 20221030074922 | 1.04759519e9 | 1441.0 | wikitext | NULL | null |
6.886099e7 | 3.0 | 2A01:4C8:62:E6FB:1:2:49E2:264F | 0.0 | 1.0 | 0.290155335269 | 20220911065958 | 20220911065957 | 1.047562121e9 | 444.0 | wikitext | NULL | null |
6.8860991e7 | 1.0 | Tell_the_Vision/GA1 | 0.0 | 0.0 | 0.904757931659 | 20221022145713 | 20221010223513 | 1.047768329e9 | 3188.0 | wikitext | NULL | null |
6.8860992e7 | 10.0 | User_Socialist_Guinea | 0.0 | 0.0 | 0.960672985447 | 20221028164502 | 20221028164502 | 1.118745246e9 | 496.0 | wikitext | NULL | null |
6.8860993e7 | 14.0 | Adaptations_of_works_by_Charles_Nodier | 0.0 | 1.0 | 0.821631248283 | 20221004153754 | 20220910131553 | 1.04756222e9 | 96.0 | wikitext | NULL | null |
6.8860994e7 | 10.0 | Cotton-Porsche-924-944-968 | 0.0 | 1.0 | 0.645743990372 | 20221023074722 | 20221101064157 | 1.047562242e9 | 538.0 | wikitext | NULL | null |
6.8860995e7 | 11.0 | User_Socialist_Guinea | 0.0 | 0.0 | 0.739109530208 | 20221027024549 | 20221027110843 | 1.047565275e9 | 69.0 | wikitext | NULL | null |
6.8860996e7 | 3.0 | Mariothegod | 0.0 | 1.0 | 0.709017181503 | 20221020153735 | 20221020153734 | 1.047562274e9 | 1096.0 | wikitext | NULL | null |
6.8860997e7 | 3.0 | 178.132.122.66 | 0.0 | 1.0 | 0.632715130639 | 20220520203748 | 20221008154249 | 1.047562276e9 | 1132.0 | wikitext | NULL | null |
6.8860999e7 | 3.0 | Xeo23 | 0.0 | 1.0 | 0.583293740672 | 20221020153735 | 20221020153734 | 1.047562305e9 | 1096.0 | wikitext | NULL | null |
6.8861001e7 | 0.0 | Date_of_birth_and_personality | 1.0 | 1.0 | 0.557424118229 | 20221024173837 | 20221018065835 | 1.047562313e9 | 35.0 | wikitext | NULL | null |
6.8861003e7 | 0.0 | Karl_Richard_Hanitsch | 1.0 | 1.0 | 0.889188304059 | 20221018085821 | 20221018085820 | 1.04756235e9 | 30.0 | wikitext | NULL | null |
6.8861004e7 | 14.0 | PinkPantheress_songs | 0.0 | 0.0 | 0.365549754865 | 20221023093710 | 20221003060232 | 1.081921122e9 | 114.0 | wikitext | NULL | null |
6.8861005e7 | 0.0 | Personality_and_date_of_birth | 1.0 | 1.0 | 0.373357342144 | 20221024173837 | 20221018102455 | 1.047562377e9 | 35.0 | wikitext | NULL | null |
6.8861007e7 | 0.0 | 2021–22_Serbian_Cup | 0.0 | 0.0 | 0.735104640879 | 20221023074722 | 20221011083330 | 1.11116143e9 | 26127.0 | wikitext | NULL | null |
6.8861008e7 | 2.0 | Mizux | 0.0 | 0.0 | 0.113582449457 | 20220728025147 | 20220728025146 | 1.048103235e9 | 240.0 | wikitext | NULL | null |
6.8861009e7 | 3.0 | The_Killarney_Park | 1.0 | 1.0 | 0.591876825826 | 20221023093710 | 20220926111553 | 1.047562447e9 | 88.0 | wikitext | NULL | null |
6.886101e7 | 3.0 | 103.95.167.173 | 0.0 | 0.0 | 0.628398902376 | 20220419035920 | 20221008154249 | 1.059994938e9 | 5919.0 | wikitext | NULL | null |
6.8861011e7 | 2.0 | Farhan087/sandbox | 0.0 | 1.0 | 0.343727005111 | 20220728025147 | 20220728025146 | 1.047562547e9 | 554.0 | wikitext | NULL | null |
6.8861013e7 | 0.0 | Siege_of_Kufa | 1.0 | 0.0 | 0.877521158747 | 20221031144712 | 20221031144709 | 1.047633899e9 | 145.0 | wikitext | NULL | null |
6.8861014e7 | 10.0 | Cotton-Porsche-924-944-968/doc | 0.0 | 1.0 | 0.391288619807 | 20221101064048 | 20221101064045 | 1.047562602e9 | 1685.0 | wikitext | NULL | null |
6.8861015e7 | 3.0 | 204.38.171.125 | 0.0 | 0.0 | 0.489317311422 | 20220419035920 | 20221008154249 | 1.073615064e9 | 10722.0 | wikitext | NULL | null |
6.8861017e7 | 3.0 | Paulfinebaum6789 | 0.0 | 0.0 | 0.330383173362 | 20221020153735 | 20221020153734 | 1.047709823e9 | 11522.0 | wikitext | NULL | null |
6.8861018e7 | 11.0 | Cotton-Porsche-924-944-968 | 0.0 | 1.0 | 0.334543728917 | 20221023135015 | 20221026115434 | 1.04756268e9 | 27.0 | wikitext | NULL | null |
6.886102e7 | 3.0 | 103.54.25.79 | 0.0 | 1.0 | 0.458591567167 | 20220913101409 | 20220803125145 | 1.047562697e9 | 8654.0 | wikitext | NULL | null |
6.8861021e7 | 1.0 | MetropolitaN | 0.0 | 1.0 | 0.629075388309 | 20221021144754 | 20221004174813 | 1.047562753e9 | 22.0 | wikitext | NULL | null |
6.8861022e7 | 3.0 | Azax_1147 | 0.0 | 1.0 | 0.87226933181 | 20220803125147 | 20220803125145 | 1.047562758e9 | 741.0 | wikitext | NULL | null |
6.8861023e7 | 11.0 | Cotton-Porsche-924-944-968/doc | 1.0 | 1.0 | 0.589742351974 | 20220930232633 | 20220930232631 | 1.047562789e9 | 54.0 | wikitext | NULL | null |
6.8861024e7 | 0.0 | Candy_Thuzar | 1.0 | 1.0 | 0.628799406728 | 20221018063413 | 20221018063412 | 1.047562806e9 | 30.0 | wikitext | NULL | null |
6.8861025e7 | 2.0 | Eewilson/Subpages | 0.0 | 0.0 | 1.177710859e-3 | 20221023093710 | 20221005041907 | 1.11329358e9 | 3555.0 | wikitext | NULL | null |
6.8861026e7 | 2.0 | Cagriyalcinkaya/Sample_page | 0.0 | 1.0 | 0.800111872346 | 20221023074722 | 20220820005754 | 1.047562873e9 | 2183.0 | wikitext | NULL | null |
6.8861027e7 | 2.0 | Filelakeshoe/shoot_on_sight | 1.0 | 1.0 | 0.906004238091 | 20221023093710 | 20220926111553 | 1.047562894e9 | 89.0 | wikitext | NULL | null |
6.8861028e7 | 3.0 | Filelakeshoe/shoot_on_sight | 1.0 | 1.0 | 0.919614293729 | 20221023093710 | 20220926111554 | 1.047562898e9 | 94.0 | wikitext | NULL | null |
6.8861029e7 | 2.0 | Slambo_312 | 0.0 | 0.0 | 0.808362003064 | 20220813143131 | 20220728111155 | 1.05434138e9 | 1408.0 | wikitext | NULL | null |
6.886103e7 | 2.0 | Surajkumar8453/sandbox | 0.0 | 1.0 | 0.841486423271 | 20221023093710 | 20220803125343 | 1.047562904e9 | 46.0 | wikitext | NULL | null |
6.8861031e7 | 6.0 | Andree_Millar.jpeg | 0.0 | 1.0 | 0.660084663932 | 20221028191549 | 20221028191534 | 1.047562921e9 | 574.0 | wikitext | NULL | null |
6.8861032e7 | 0.0 | Just_a_Waste_(PinkPantheress_song) | 1.0 | 0.0 | 0.593975111268 | 20221028192123 | 20221018085501 | 1.053857208e9 | 36.0 | wikitext | NULL | null |
6.8861033e7 | 3.0 | Mandsover_tose | 0.0 | 1.0 | 0.570651134131 | 20221020153735 | 20221020153734 | 1.047563e9 | 1096.0 | wikitext | NULL | null |
6.8861034e7 | 3.0 | 2600:1700:C1B0:8A0:608A:C24F:FC98:7E35 | 0.0 | 1.0 | 0.592983108317 | 20220803125147 | 20220803125145 | 1.047563077e9 | 1350.0 | wikitext | NULL | null |
6.8861035e7 | 3.0 | SentientObject | 0.0 | 0.0 | 0.118984446389 | 20220920171514 | 20221023171403 | 1.111371182e9 | 6216.0 | wikitext | NULL | null |
6.8861036e7 | 2.0 | Kierandi/sandbox | 0.0 | 0.0 | 8.7654050898e-2 | 20221023093710 | 20220803125342 | 1.047563447e9 | 128.0 | wikitext | NULL | null |
6.8861037e7 | 0.0 | La_Vie_d'artiste_(film) | 0.0 | 0.0 | 0.187811804904 | 20221026145423 | 20221028213000 | 1.06714546e9 | 3611.0 | wikitext | NULL | null |
6.8861038e7 | 3.0 | 194.228.129.62 | 0.0 | 1.0 | 0.691743996791 | 20220520204944 | 20221008154249 | 1.047563313e9 | 912.0 | wikitext | NULL | null |
6.8861039e7 | 3.0 | MusingSilence | 0.0 | 0.0 | 0.671761116097 | 20221025142144 | 20221010150718 | 1.097607833e9 | 18424.0 | wikitext | NULL | null |
6.8861042e7 | 3.0 | Rpdam | 0.0 | 1.0 | 0.392277193375 | 20221020153735 | 20221020153734 | 1.047563395e9 | 1096.0 | wikitext | NULL | null |
6.8861043e7 | 14.0 | People_from_Ribeira_Grande,_Azores | 0.0 | 1.0 | 0.825396556614 | 20220906030805 | 20220906032352 | 1.047563429e9 | 279.0 | wikitext | NULL | null |
6.8861044e7 | 10.0 | Did_you_know_nominations/Border_Violence_Monitoring_Network | 0.0 | 0.0 | 4.9008389936e-2 | 20221022145713 | 20221006131118 | 1.049983896e9 | 3476.0 | wikitext | NULL | null |
6.8861045e7 | 1.0 | Border_Violence_Monitoring_Network | 0.0 | 0.0 | 8.2274793982e-2 | 20221023135015 | 20221026140056 | 1.051420881e9 | 666.0 | wikitext | NULL | null |
6.8861046e7 | 2.0 | AloofBidoof/Lake_Balaton | 0.0 | 0.0 | 0.601086893403 | 20221023074722 | 20221003060232 | 1.058837589e9 | 8841.0 | wikitext | NULL | null |
6.8861047e7 | 0.0 | US_Embassy_in_Berlin | 1.0 | 1.0 | 0.980791395118 | 20221010020209 | 20221010020208 | 1.04756349e9 | 78.0 | wikitext | NULL | null |
6.8861048e7 | 1.0 | US_Embassy_in_Berlin | 0.0 | 1.0 | 0.942078004343 | 20221021144754 | 20220828115936 | 1.047563491e9 | 60.0 | wikitext | NULL | null |
6.8861049e7 | 118.0 | Le_Grêlé | 1.0 | 0.0 | 0.197899211497 | 20221005111337 | 20221005111336 | 1.047854844e9 | 48.0 | wikitext | NULL | null |
6.886105e7 | 3.0 | 149.170.83.198 | 0.0 | 1.0 | 0.528309849795 | 20220803125147 | 20220803125145 | 1.047563527e9 | 913.0 | wikitext | NULL | null |
6.8861051e7 | 2.0 | Jenben74 | 0.0 | 1.0 | 0.996996977197 | 20220728025147 | 20220728025146 | 1.047563552e9 | 0.0 | wikitext | NULL | null |
6.8861053e7 | 0.0 | Gaualofa | 0.0 | 0.0 | 0.712239232017 | 20221023074722 | 20220928130538 | 1.090602071e9 | 8798.0 | wikitext | NULL | null |
6.8861054e7 | 828.0 | Location_map/data/Metro_Cebu | 0.0 | 1.0 | 0.741044788824 | 20221022131052 | 20221017142125 | 1.047563608e9 | 143.0 | Scribunto | NULL | null |
6.8861055e7 | 0.0 | Gilberto_García_(chess_player) | 0.0 | 0.0 | 0.331635082339 | 20221023130113 | 20221006183845 | 1.113671223e9 | 2298.0 | wikitext | NULL | null |
6.8861056e7 | 3.0 | 88.241.42.109 | 0.0 | 1.0 | 0.352048758197 | 20220803125147 | 20220803125145 | 1.047563633e9 | 903.0 | wikitext | NULL | null |
6.8861057e7 | 3.0 | AIFS2020 | 0.0 | 1.0 | 0.455197346834 | 20220803125147 | 20220803125145 | 1.047563636e9 | 1423.0 | wikitext | NULL | null |
6.8861058e7 | 1.0 | Gilberto_García_(chess_player) | 0.0 | 0.0 | 0.47774836336 | 20221024144950 | 20221024145555 | 1.09718531e9 | 224.0 | wikitext | NULL | null |
6.8861059e7 | 1.0 | Gaualofa | 0.0 | 0.0 | 0.396666792232 | 20221023093710 | 20221011075753 | 1.054996589e9 | 236.0 | wikitext | NULL | null |
6.886106e7 | 828.0 | Location_map/data/Metro_Cebu/doc | 0.0 | 1.0 | 0.863560794396 | 20221022131052 | 20221017141654 | 1.047563692e9 | 117.0 | wikitext | NULL | null |
6.8861061e7 | 6.0 | Ian_Karkull.jpg | 0.0 | 0.0 | 0.353066024219 | 20221101064048 | 20221101064043 | 1.049134601e9 | 446.0 | wikitext | NULL | null |
6.8861062e7 | 10.0 | User_Zaire | 0.0 | 0.0 | 0.434146508841 | 20221028163533 | 20221028163533 | 1.118743755e9 | 956.0 | wikitext | NULL | null |
6.8861063e7 | 7.0 | Ian_Karkull.jpg | 0.0 | 1.0 | 0.867076865655 | 20221023135015 | 20221026140056 | 1.047563733e9 | 88.0 | wikitext | NULL | null |
6.8861064e7 | 0.0 | Andrée_Millar | 0.0 | 0.0 | 0.864725971777 | 20221028191551 | 20221028191753 | 1.11762431e9 | 7806.0 | wikitext | NULL | null |
6.8861066e7 | 0.0 | Parliamentary_Office_for_the_Evaluation_of_Scientific_and_Technological_Choices | 0.0 | 0.0 | 1.852428195e-3 | 20221028072423 | 20221023012504 | 1.096967357e9 | 23592.0 | wikitext | NULL | null |
6.8861067e7 | 3.0 | 2001:8003:26BE:1300:3092:FCD6:1021:165F | 0.0 | 0.0 | 0.450252497759 | 20220911065958 | 20220911065957 | 1.048218158e9 | 587.0 | wikitext | NULL | null |
6.8861068e7 | 0.0 | Attracted_to_You_(PinkPantheress_song) | 1.0 | 0.0 | 0.246034263149 | 20221028192123 | 20221017151045 | 1.053856972e9 | 36.0 | wikitext | NULL | null |
6.8861069e7 | 2.0 | SentientObject | 0.0 | 0.0 | 0.96430655643 | 20220701113733 | 20220929060310 | 1.08181685e9 | 228.0 | wikitext | NULL | null |
6.886107e7 | 11.0 | User_Zaire | 0.0 | 0.0 | 0.114709487891 | 20221027024549 | 20221027110843 | 1.070931877e9 | 85.0 | wikitext | NULL | null |
6.8861071e7 | 3.0 | Noddleloans | 0.0 | 1.0 | 0.87566863721 | 20220803125147 | 20220803125146 | 1.047563869e9 | 1425.0 | wikitext | NULL | null |
6.8861072e7 | 2.0 | MISSION_33/Talks | 0.0 | 0.0 | 0.855020648969 | 20220327234038 | 20221011101710 | 1.050904079e9 | 5213.0 | wikitext | NULL | null |
6.8861073e7 | 0.0 | Nam_Tok_Sai_Yok_Noi_railway_halt | 1.0 | 1.0 | 0.261635947116 | 20221019092324 | 20221018100023 | 1.047563974e9 | 66.0 | wikitext | NULL | null |
6.8861074e7 | 119.0 | Le_Grêlé | 0.0 | 0.0 | 0.967064373386 | 20221027214635 | 20221028144851 | 1.047854981e9 | 257.0 | wikitext | NULL | null |
6.8861075e7 | 3.0 | Aiden66362 | 0.0 | 1.0 | 0.725592975534 | 20221020153735 | 20221020153733 | 1.04756405e9 | 1096.0 | wikitext | NULL | null |
6.8861076e7 | 1.0 | La_Vie_d'artiste_(film) | 0.0 | 1.0 | 0.553412265316 | 20221023093710 | 20220802033548 | 1.047564116e9 | 279.0 | wikitext | NULL | null |
6.8861077e7 | 15.0 | February_1980_events_in_Africa | 0.0 | 1.0 | 0.631694656297 | 20221027024549 | 20221027110843 | 1.047564143e9 | 44.0 | wikitext | NULL | null |
6.8861078e7 | 0.0 | Sonterra,_Texas | 0.0 | 0.0 | 0.876032616141 | 20221023074722 | 20221002214204 | 1.113706292e9 | 3323.0 | wikitext | NULL | null |
6.8861079e7 | 0.0 | 2021–22_Zamalek_SC_(basketball)_season | 0.0 | 0.0 | 0.995119582976 | 20221031210758 | 20221031215131 | 1.108541779e9 | 60744.0 | wikitext | NULL | null |
6.886108e7 | 0.0 | The_Work_(album) | 0.0 | 0.0 | 0.902587268013 | 20221029202802 | 20221029221007 | 1.118081971e9 | 6095.0 | wikitext | NULL | null |
6.8861081e7 | 0.0 | The_Work_(Rivers_of_Nihil_album) | 1.0 | 1.0 | 0.73727670429 | 20221021050950 | 20221018180643 | 1.047564264e9 | 41.0 | wikitext | NULL | null |
6.8861082e7 | 0.0 | Sonterra | 1.0 | 1.0 | 0.430380507157 | 20221018170912 | 20221018170911 | 1.047564287e9 | 29.0 | wikitext | NULL | null |
6.8861083e7 | 3.0 | 64.25.209.17 | 0.0 | 0.0 | 6.0288165699e-2 | 20220601142848 | 20221008154249 | 1.090983032e9 | 3903.0 | wikitext | NULL | null |
6.8861084e7 | 0.0 | Rivers_of_Nihil_discography | 1.0 | 1.0 | 0.199407046268 | 20221021050950 | 20221018104650 | 1.047564309e9 | 41.0 | wikitext | NULL | null |
6.8861085e7 | 3.0 | 109.97.137.153 | 0.0 | 0.0 | 0.625455704213 | 20221026145423 | 20220913014600 | 1.047567055e9 | 784.0 | wikitext | NULL | null |
6.8861087e7 | 119.0 | Pocket_of_Lollipops | 0.0 | 0.0 | 0.598168388417 | 20221021144754 | 20220928033734 | 1.067380635e9 | 279.0 | wikitext | NULL | null |
6.8861088e7 | 3.0 | 42.201.249.84 | 0.0 | 1.0 | 0.569884454705 | 20220520223358 | 20221008154249 | 1.047564398e9 | 1000.0 | wikitext | NULL | null |
6.886109e7 | 3.0 | 1983littlemj | 0.0 | 0.0 | 0.513252441938 | 20220809232000 | 20221010150718 | 1.04757281e9 | 6971.0 | wikitext | NULL | null |
6.8861091e7 | 3.0 | 2405:205:C82D:553F:0:0:2629:68A4 | 0.0 | 1.0 | 0.951044663515 | 20220520213627 | 20221008154249 | 1.047564419e9 | 1213.0 | wikitext | NULL | null |
6.8861093e7 | 3.0 | Mobinabahari2007 | 0.0 | 1.0 | 0.183893817314 | 20220803125147 | 20220803125145 | 1.047564472e9 | 814.0 | wikitext | NULL | null |
6.8861094e7 | 2.0 | Slambo_312/sandbox | 0.0 | 1.0 | 0.31451408781 | 20221023093710 | 20220803125342 | 1.047564487e9 | 649.0 | wikitext | NULL | null |
6.8861095e7 | 11.0 | Charmap/sandbox | 1.0 | 1.0 | 0.461149556774 | 20221023093710 | 20220926111554 | 1.04756449e9 | 94.0 | wikitext | NULL | null |
6.8861096e7 | 6.0 | Arutz_24_logo.png | 0.0 | 1.0 | 0.587193919184 | 20221101064048 | 20221101064039 | 1.047564503e9 | 685.0 | wikitext | NULL | null |
6.8861097e7 | 4.0 | WikiProject_Spam/LinkReports/diplomi-ukr.com | 0.0 | 1.0 | 0.577406918431 | 20221023093710 | 20221024211651 | 1.047564514e9 | 882.0 | wikitext | NULL | null |
6.8861098e7 | 11.0 | Charmap/testcases | 1.0 | 1.0 | 0.568815933532 | 20221023093710 | 20220926111554 | 1.047564519e9 | 94.0 | wikitext | NULL | null |
6.8861099e7 | 2.0 | MauraWen/sandbox_Jens_Munk | 0.0 | 0.0 | 0.308689478004 | 20220728025147 | 20220728025146 | 1.047642099e9 | 0.0 | wikitext | NULL | null |
6.88611e7 | 2.0 | David0616 | 0.0 | 0.0 | 0.936660531026 | 20220728025147 | 20220728025145 | 1.048165054e9 | 0.0 | wikitext | NULL | null |
6.8861102e7 | 3.0 | 142.117.83.248 | 0.0 | 1.0 | 0.779504684666 | 20220520201706 | 20221008154249 | 1.047564722e9 | 980.0 | wikitext | NULL | null |
6.8861103e7 | 4.0 | WikiProject_Spam/LinkReports/chidiplomys.co | 0.0 | 1.0 | 0.170002422083 | 20221023093710 | 20221024211651 | 1.047564732e9 | 862.0 | wikitext | NULL | null |
6.8861104e7 | 2.0 | Moriiteusz/sandbox | 0.0 | 1.0 | 0.246552635691 | 20220728025147 | 20220728025146 | 1.047564738e9 | 126.0 | wikitext | NULL | null |
6.8861106e7 | 2.0 | UBX/Mammootty | 0.0 | 0.0 | 0.818161820266 | 20220728025147 | 20220728025146 | 1.048123754e9 | 656.0 | wikitext | NULL | null |
6.8861107e7 | 10.0 | Pitt-Porsche-924-944-968 | 0.0 | 0.0 | 0.35745623817 | 20221023074722 | 20221101064157 | 1.047603689e9 | 455.0 | wikitext | NULL | null |
6.8861108e7 | 3.0 | Yuriykolesn | 0.0 | 0.0 | 0.157824375333 | 20220825090443 | 20220825090441 | 1.047565565e9 | 1724.0 | wikitext | NULL | null |
6.8861109e7 | 3.0 | Maturescholar | 0.0 | 1.0 | 7.6482708854e-2 | 20220910174405 | 20221011101710 | 1.047564922e9 | 1694.0 | wikitext | NULL | null |
6.886111e7 | 4.0 | WikiProject_Spam/LinkReports/chidiplomys.com | 0.0 | 0.0 | 0.442736773133 | 20221023093710 | 20221024211651 | 1.068735569e9 | 1116.0 | wikitext | NULL | null |
6.8861111e7 | 3.0 | 2A02:C7E:16A3:6000:9D49:6279:873B:DADF | 0.0 | 1.0 | 0.849486279585 | 20220520222254 | 20221008154249 | 1.047564948e9 | 1003.0 | wikitext | NULL | null |
6.8861113e7 | 0.0 | Jean_Paul_Hobler | 1.0 | 1.0 | 0.289179563073 | 20221031121905 | 20221031121859 | 1.047565087e9 | 84.0 | wikitext | NULL | null |
6.8861114e7 | 1.0 | Andrée_Millar | 0.0 | 0.0 | 0.918885493177 | 20221021161300 | 20221012013039 | 1.047753235e9 | 335.0 | wikitext | NULL | null |
6.8861115e7 | 3.0 | 2607:FEA8:2B41:B570:923E:E36:D9C1:C371 | 0.0 | 1.0 | 0.1298600773 | 20220520221117 | 20221008154249 | 1.047565129e9 | 987.0 | wikitext | NULL | null |
6.8861116e7 | 3.0 | 2405:205:1281:D538:8C4D:2EBA:CA12:BB2F | 0.0 | 1.0 | 0.818269943236 | 20220803125150 | 20220803125148 | 1.047565144e9 | 754.0 | wikitext | NULL | null |
6.8861117e7 | 10.0 | 2021_World_Wrestling_Championships | 0.0 | 1.0 | 0.683163195517 | 20221021212824 | 20221021222504 | 1.047565145e9 | 3084.0 | wikitext | NULL | null |
6.8861119e7 | 4.0 | WikiProject_Spam/LinkReports/reeldrama.com | 0.0 | 1.0 | 0.968616957223 | 20221023093710 | 20221030150250 | 1.047565215e9 | 9323.0 | wikitext | NULL | null |
6.886112e7 | 3.0 | 174.88.48.194 | 0.0 | 1.0 | 0.616385814252 | 20220803125150 | 20220803125148 | 1.04756522e9 | 530.0 | wikitext | NULL | null |
6.8861121e7 | 0.0 | Listed_buildings_in_Barnsley_(Central_Ward) | 0.0 | 0.0 | 0.301613563899 | 20221025021906 | 20221025095607 | 1.109409216e9 | 54609.0 | wikitext | NULL | null |
6.8861122e7 | 10.0 | User_Central_African_Empire | 0.0 | 0.0 | 0.896534751239 | 20220930232633 | 20220930232630 | 1.047686644e9 | 618.0 | wikitext | NULL | null |
6.8861123e7 | 3.0 | Prayatnasoe123 | 0.0 | 1.0 | 0.738633505154 | 20220911065958 | 20220911065957 | 1.047565294e9 | 1166.0 | wikitext | NULL | null |
6.8861126e7 | 1.0 | Listed_buildings_in_Barnsley_(Central_Ward) | 0.0 | 0.0 | 0.765204076373 | 20221023093710 | 20220929112058 | 1.090601962e9 | 263.0 | wikitext | NULL | null |
6.8861128e7 | 0.0 | Tetilla_capillosa | 0.0 | 0.0 | 0.957410724573 | 20221023074722 | 20221010101746 | 1.091133939e9 | 2973.0 | wikitext | NULL | null |
6.8861129e7 | 14.0 | Adaptations_of_works_by_Charles_De_Coster | 0.0 | 1.0 | 0.79573803653 | 20221004153754 | 20220907025323 | 1.047565391e9 | 103.0 | wikitext | NULL | null |
6.886113e7 | 3.0 | KIttylover18916 | 0.0 | 1.0 | 0.612889521974 | 20221020153735 | 20221020153734 | 1.047565438e9 | 1096.0 | wikitext | NULL | null |
6.8861131e7 | 0.0 | (326732)_2003_HB6 | 1.0 | 0.0 | 0.465551005617 | 20221023093710 | 20221003060233 | 1.047565716e9 | 278.0 | wikitext | NULL | null |
6.8861132e7 | 11.0 | User_Central_African_Empire | 0.0 | 0.0 | 0.766677352447 | 20221027024549 | 20221027110843 | 1.047574978e9 | 105.0 | wikitext | NULL | null |
6.8861133e7 | 10.0 | Pitt-Porsche-924-944-968/doc | 0.0 | 1.0 | 0.650560051018 | 20221101064048 | 20221101064046 | 1.047565523e9 | 1524.0 | wikitext | NULL | null |
6.8861134e7 | 0.0 | 2021_Ecuadorian_prison_riot | 1.0 | 0.0 | 0.996969121116 | 20221017120853 | 20221017120852 | 1.055098058e9 | 50.0 | wikitext | NULL | null |
6.8861135e7 | 3.0 | 216.211.245.111 | 0.0 | 1.0 | 0.710983366049 | 20220520211512 | 20221008154249 | 1.047565613e9 | 1096.0 | wikitext | NULL | null |
6.8861136e7 | 14.0 | People_from_Angra_do_Heroísmo | 0.0 | 0.0 | 0.912121468154 | 20221024211515 | 20221024211619 | 1.048101052e9 | 240.0 | wikitext | NULL | null |
6.8861137e7 | 3.0 | 49.37.159.10 | 0.0 | 1.0 | 0.253278812142 | 20220803125150 | 20220803125149 | 1.047565687e9 | 676.0 | wikitext | NULL | null |
6.8861138e7 | 0.0 | Shanna_Swan | 0.0 | 0.0 | 0.890997308733 | 20221031211746 | 20221021055127 | 1.117341317e9 | 5518.0 | wikitext | NULL | null |
6.8861139e7 | 2.0 | Linanoisette/sandbox | 0.0 | 1.0 | 0.857319569261 | 20221023093710 | 20220803125343 | 1.047565724e9 | 579.0 | wikitext | NULL | null |
6.8861141e7 | 11.0 | Pitt-Porsche-924-944-968 | 0.0 | 1.0 | 0.567553974446 | 20221023135015 | 20221026140056 | 1.047565779e9 | 27.0 | wikitext | NULL | null |
6.8861142e7 | 3.0 | Slambo_312 | 0.0 | 0.0 | 0.391452734907 | 20221017141655 | 20221030074922 | 1.047594908e9 | 2387.0 | wikitext | NULL | null |
6.8861143e7 | 11.0 | Pitt-Porsche-924-944-968/doc | 1.0 | 1.0 | 0.443931678698 | 20220930232633 | 20220930232631 | 1.04756581e9 | 52.0 | wikitext | NULL | null |
6.8861144e7 | 3.0 | SmokinLikeWilKvng | 0.0 | 0.0 | 0.177138607698 | 20220913101409 | 20221003060232 | 1.082358249e9 | 6807.0 | wikitext | NULL | null |
6.8861145e7 | 3.0 | 2409:4040:E1E:828:0:0:CB8A:4106 | 0.0 | 1.0 | 0.794787493752 | 20220520213719 | 20221008154249 | 1.047565958e9 | 910.0 | wikitext | NULL | null |
6.8861146e7 | 2.0 | AloofBidoof/Lake_Balaton/Bibliography | 0.0 | 1.0 | 0.182562997735 | 20221023093710 | 20221003060232 | 1.047566049e9 | 639.0 | wikitext | NULL | null |
6.8861147e7 | 2.0 | Abtiw15218 | 0.0 | 1.0 | 0.824630748309 | 20220728025147 | 20220728025145 | 1.047566077e9 | 83.0 | wikitext | NULL | null |
6.8861148e7 | 3.0 | 213.162.73.206 | 0.0 | 1.0 | 0.166757245612 | 20220803125150 | 20220803125148 | 1.047566143e9 | 367.0 | wikitext | NULL | null |
6.8861149e7 | 3.0 | Cristianmusician | 0.0 | 1.0 | 0.925253650884 | 20220803125150 | 20220803125149 | 1.047566153e9 | 831.0 | wikitext | NULL | null |
6.886115e7 | 3.0 | 87.119.179.153 | 0.0 | 1.0 | 0.674256523774 | 20220803125150 | 20220803125149 | 1.047566257e9 | 567.0 | wikitext | NULL | null |
6.8861151e7 | 3.0 | 51.154.161.92 | 0.0 | 1.0 | 0.882245928298 | 20220520224220 | 20221008154249 | 1.047566303e9 | 1088.0 | wikitext | NULL | null |
6.8861153e7 | 14.0 | Self-contradictory_articles_from_April_2015 | 0.0 | 1.0 | 0.934802860689 | 20221023093710 | 20221005165456 | 1.047566352e9 | 29.0 | wikitext | NULL | null |
6.8861154e7 | 0.0 | Funeral_Ceremonies | 0.0 | 0.0 | 0.809580931206 | 20221026145423 | 20221016030457 | 1.111262145e9 | 5006.0 | wikitext | NULL | null |
6.8861155e7 | 3.0 | Atlantisandlemuria | 0.0 | 0.0 | 0.553803577295 | 20220904212513 | 20220904212513 | 1.108519782e9 | 4568.0 | wikitext | NULL | null |
6.8861156e7 | 0.0 | Abdorrasul_Zarrin | 0.0 | 0.0 | 0.515135012352 | 20221030120304 | 20221030120515 | 1.115686123e9 | 9600.0 | wikitext | NULL | null |
6.8861157e7 | 2.0 | Elixeral | 0.0 | 0.0 | 0.201855615703 | 20221023074722 | 20221010223513 | 1.047570167e9 | 506.0 | wikitext | NULL | null |
6.8861158e7 | 0.0 | Banque_du_Peuple | 1.0 | 0.0 | 8.5765610088e-2 | 20221024090256 | 20221024090254 | 1.051407049e9 | 78.0 | wikitext | NULL | null |
6.8861159e7 | 0.0 | National_Board_of_Student_Aid_(Sweden) | 1.0 | 1.0 | 0.998253717698 | 20221031211508 | 20221031133405 | 1.04756657e9 | 99.0 | wikitext | NULL | null |
6.886116e7 | 1.0 | National_Board_of_Student_Aid_(Sweden) | 1.0 | 1.0 | 8.6297795541e-2 | 20221023093710 | 20221031133441 | 1.047566574e9 | 104.0 | wikitext | NULL | null |
6.8861161e7 | 1.0 | RAWGraphs | 0.0 | 0.0 | 0.190756542716 | 20221029204943 | 20221029210449 | 1.074099999e9 | 493.0 | wikitext | NULL | null |
6.8861162e7 | 1.0 | I'm_the_Villainess,_So_I'm_Taming_the_Final_Boss | 0.0 | 0.0 | 0.284891589071 | 20221023001504 | 20221023001505 | 1.117672205e9 | 359.0 | wikitext | NULL | null |
6.8861163e7 | 0.0 | Kurdistan_Democratic_Independence_Party_(PASOK) | 0.0 | 0.0 | 0.873379599362 | 20221031093844 | 20221014074945 | 1.062473696e9 | 2611.0 | wikitext | NULL | null |
6.8861164e7 | 0.0 | (285571)_2000_PQ9 | 1.0 | 0.0 | 0.767397309544 | 20221023093710 | 20221003060233 | 1.047566929e9 | 278.0 | wikitext | NULL | null |
6.8861165e7 | 2.0 | Aggreybusiingeofficial | 0.0 | 1.0 | 0.528593417482 | 20220728025147 | 20220728025145 | 1.04756671e9 | 15.0 | wikitext | NULL | null |
6.8861166e7 | 1.0 | Sugar_Apple_Fairy_Tale | 0.0 | 1.0 | 0.4809985768 | 20221021144754 | 20221011075753 | 1.047566773e9 | 87.0 | wikitext | NULL | null |
6.8861167e7 | 0.0 | 1951_South_Sydney_season | 0.0 | 0.0 | 0.547547941329 | 20221023074722 | 20221012090356 | 1.091700784e9 | 12682.0 | wikitext | NULL | null |
6.8861168e7 | 3.0 | 194.230.103.220 | 0.0 | 0.0 | 0.147607203446 | 20220522110425 | 20221008154249 | 1.066650279e9 | 1926.0 | wikitext | NULL | null |
6.8861169e7 | 1.0 | Shanna_Swan | 0.0 | 0.0 | 0.395668260268 | 20221023093710 | 20220920165455 | 1.097331285e9 | 146.0 | wikitext | NULL | null |
6.886117e7 | 0.0 | Dea_Liane | 1.0 | 0.0 | 0.669896387246 | 20221018213727 | 20221018213726 | 1.064351223e9 | 39.0 | wikitext | NULL | null |
6.8861172e7 | 1.0 | Dea_Liane | 0.0 | 0.0 | 4.1747161777e-2 | 20221023093710 | 20220808033124 | 1.047682887e9 | 162.0 | wikitext | NULL | null |
6.8861173e7 | 3.0 | 121.200.26.188 | 0.0 | 0.0 | 0.192103902174 | 20220520200220 | 20221008154249 | 1.047568066e9 | 3198.0 | wikitext | NULL | null |
6.8861174e7 | 3.0 | Popsmoke2 | 0.0 | 1.0 | 0.516559962762 | 20221020153735 | 20221020153734 | 1.047567486e9 | 1096.0 | wikitext | NULL | null |
6.8861176e7 | 2.0 | Saradhanjana/sandbox | 0.0 | 0.0 | 0.338065007535 | 20221023074722 | 20221003152347 | 1.048122257e9 | 3167.0 | wikitext | NULL | null |
6.8861177e7 | 1.0 | These_Things_Happen_Too | 0.0 | 0.0 | 0.696546951809 | 20221021144754 | 20221004114451 | 1.048239607e9 | 85.0 | wikitext | NULL | null |
6.8861178e7 | 2.0 | Johnthegayman/sandbox | 0.0 | 1.0 | 0.658826963067 | 20221023093710 | 20220803125344 | 1.047567563e9 | 108.0 | wikitext | NULL | null |
6.8861181e7 | 2.0 | Abantesigmano/sandbox | 0.0 | 0.0 | 0.423609426997 | 20221023074722 | 20221003152347 | 1.049216135e9 | 429.0 | wikitext | NULL | null |
6.8861182e7 | 3.0 | 2A01:4C8:829:8713:A121:7E5F:1F81:C5B3 | 0.0 | 1.0 | 0.495858654361 | 20220803125150 | 20220803125148 | 1.047567754e9 | 641.0 | wikitext | NULL | null |
6.8861183e7 | 2.0 | O'Dea/Sandbox/Rathfarnham | 0.0 | 0.0 | 0.272839949618 | 20220728025147 | 20220728025146 | 1.047569197e9 | 0.0 | wikitext | NULL | null |
6.8861184e7 | 3.0 | 62.254.149.226 | 0.0 | 0.0 | 0.970432828794 | 20221007154646 | 20221007154646 | 1.114652569e9 | 12867.0 | wikitext | NULL | null |
6.8861185e7 | 3.0 | Drebullient21 | 0.0 | 1.0 | 0.925999831436 | 20220910174405 | 20221011101710 | 1.047567846e9 | 1528.0 | wikitext | NULL | null |
6.8861186e7 | 0.0 | Barnabáš_Lacík | 0.0 | 1.0 | 0.534405990275 | 20221031200508 | 20221023001722 | 1.04756785e9 | 2079.0 | wikitext | NULL | null |
6.8861187e7 | 3.0 | 136.158.42.168 | 0.0 | 1.0 | 0.284511319779 | 20220520201402 | 20221008154249 | 1.047567851e9 | 1372.0 | wikitext | NULL | null |
6.886119e7 | 3.0 | 49.156.99.118 | 0.0 | 1.0 | 0.576359413822 | 20220520223802 | 20221008154249 | 1.047567968e9 | 1318.0 | wikitext | NULL | null |
6.8861191e7 | 3.0 | Fatimah2222.x | 0.0 | 0.0 | 0.424520559629 | 20220917231312 | 20221010150718 | 1.047568846e9 | 6121.0 | wikitext | NULL | null |
6.8861192e7 | 3.0 | Official_Rakib | 0.0 | 1.0 | 0.483211031178 | 20220803125150 | 20220803125149 | 1.047568074e9 | 699.0 | wikitext | NULL | null |
6.8861193e7 | 3.0 | Snooker_coordinator | 0.0 | 1.0 | 0.660832736988 | 20221020153739 | 20221020153738 | 1.047568137e9 | 2850.0 | wikitext | NULL | null |
6.8861194e7 | 3.0 | 203.177.252.230 | 0.0 | 1.0 | 0.260818790199 | 20220520210344 | 20221008154249 | 1.047568327e9 | 1413.0 | wikitext | NULL | null |
6.8861195e7 | 3.0 | 2405:201:5500:B1DC:A427:DB01:C70C:95FF | 0.0 | 1.0 | 0.413955142467 | 20220520213446 | 20221008154249 | 1.047568344e9 | 1004.0 | wikitext | NULL | null |
6.8861196e7 | 3.0 | 2A01:4C8:C8D:784E:395B:15C6:503F:6AA8 | 0.0 | 1.0 | 0.88818020391 | 20220520222004 | 20221008154249 | 1.047568349e9 | 1035.0 | wikitext | NULL | null |
6.8861197e7 | 3.0 | 142.255.40.152 | 0.0 | 1.0 | 0.880738020072 | 20220520201755 | 20221008154249 | 1.04756842e9 | 896.0 | wikitext | NULL | null |
6.8861199e7 | 3.0 | DBYZ | 0.0 | 0.0 | 0.67393525601 | 20221020153739 | 20221020153737 | 1.063201252e9 | 2587.0 | wikitext | NULL | null |
6.88612e7 | 3.0 | My.bh1307 | 0.0 | 1.0 | 7.7617059823e-2 | 20221018143335 | 20221018143334 | 1.047568445e9 | 4672.0 | wikitext | NULL | null |
6.8861201e7 | 0.0 | Alqabas | 1.0 | 1.0 | 0.137252332236 | 20221026202856 | 20221026202855 | 1.047568456e9 | 69.0 | wikitext | NULL | null |
6.8861202e7 | 1.0 | Alqabas | 1.0 | 1.0 | 0.592292562805 | 20221023093710 | 20221026204734 | 1.047568458e9 | 74.0 | wikitext | NULL | null |
6.8861204e7 | 1.0 | Mackenzie_Evangelical_College_of_Paraná | 0.0 | 0.0 | 0.926969710693 | 20221021144754 | 20220829095130 | 1.052178294e9 | 757.0 | wikitext | NULL | null |
6.8861205e7 | 3.0 | Oshansandipa | 0.0 | 1.0 | 0.366734327553 | 20220803125150 | 20220803125149 | 1.047568511e9 | 4888.0 | wikitext | NULL | null |
6.8861206e7 | 3.0 | 106.193.129.171 | 0.0 | 1.0 | 0.337492356489 | 20220520194535 | 20221008154249 | 1.047568595e9 | 1047.0 | wikitext | NULL | null |
6.8861209e7 | 0.0 | Blauw-Wit_Beursbengels | 1.0 | 0.0 | 7.2446305381e-2 | 20221026224339 | 20221026224338 | 1.047743497e9 | 74.0 | wikitext | NULL | null |
6.886121e7 | 1.0 | Blauw-Wit_Beursbengels | 1.0 | 0.0 | 0.188104267146 | 20221004085508 | 20221004085506 | 1.047748355e9 | 32.0 | wikitext | NULL | null |
6.8861211e7 | 0.0 | Petrol_panic | 1.0 | 0.0 | 0.186349512546 | 20221101042741 | 20221018102534 | 1.050348684e9 | 52.0 | wikitext | NULL | null |
6.8861212e7 | 1.0 | Informationism | 0.0 | 0.0 | 9.8279050912e-2 | 20221023093710 | 20221008124051 | 1.04758989e9 | 252.0 | wikitext | NULL | null |
6.8861213e7 | 3.0 | Cyrusvidallo | 0.0 | 0.0 | 0.104725212006 | 20220917231312 | 20221010150718 | 1.078878861e9 | 5370.0 | wikitext | NULL | null |
6.8861214e7 | 3.0 | Dj_Caboo | 0.0 | 1.0 | 0.726681395395 | 20220803125150 | 20220803125149 | 1.047568803e9 | 4864.0 | wikitext | NULL | null |
6.8861215e7 | 1.0 | Paka_(River_of_Blood) | 0.0 | 0.0 | 0.744205260423 | 20221021144754 | 20221011073130 | 1.061308086e9 | 113.0 | wikitext | NULL | null |
6.8861216e7 | 3.0 | RothariumCF | 0.0 | 0.0 | 4.7149303519e-2 | 20221020153739 | 20221020153738 | 1.063201258e9 | 2587.0 | wikitext | NULL | null |
6.8861218e7 | 1.0 | Dataism | 0.0 | 0.0 | 0.625787272897 | 20221027214034 | 20221028015825 | 1.047619671e9 | 592.0 | wikitext | NULL | null |
6.8861219e7 | 3.0 | Çıtır_Kuruyemiş | 0.0 | 0.0 | 2.3337589586e-2 | 20220803125150 | 20220803125149 | 1.047592238e9 | 1991.0 | wikitext | NULL | null |
6.886122e7 | 1.0 | Sanctus_(species) | 0.0 | 0.0 | 0.195594263183 | 20221021144754 | 20220808033124 | 1.047661482e9 | 207.0 | wikitext | NULL | null |
6.8861221e7 | 0.0 | Nick_McCloud | 0.0 | 0.0 | 0.535065289001 | 20221031185426 | 20221031201120 | 1.119234093e9 | 5266.0 | wikitext | NULL | null |
6.8861222e7 | 6.0 | Jimmy_Dean_baseball.jpg | 0.0 | 0.0 | 0.398933181182 | 20221101064103 | 20221101064054 | 1.049134722e9 | 523.0 | wikitext | NULL | null |
6.8861223e7 | 118.0 | List_of_American_Samoa_international_footballers | 1.0 | 1.0 | 0.959454885324 | 20221023093710 | 20220926111554 | 1.047569077e9 | 109.0 | wikitext | NULL | null |
6.8861224e7 | 6.0 | Sugar_Apple_Fairy_Tale_light_novel_volume_1_cover.jpg | 0.0 | 0.0 | 0.622304182553 | 20221023093710 | 20220724114808 | 1.049135992e9 | 823.0 | wikitext | NULL | null |
6.8861225e7 | 3.0 | Muneeriaha | 0.0 | 1.0 | 0.284548724445 | 20221018143335 | 20221018143334 | 1.047569127e9 | 4573.0 | wikitext | NULL | null |
6.8861226e7 | 3.0 | 2001:4451:711:FF00:B9BF:1E57:3391:8354 | 0.0 | 1.0 | 9.0238491785e-2 | 20221101064103 | 20221101064050 | 1.047569167e9 | 1120.0 | wikitext | NULL | null |
6.8861227e7 | 0.0 | Unification_of_Germany_(1871) | 1.0 | 0.0 | 0.23100564693 | 20221025054139 | 20221006071040 | 1.047665935e9 | 74.0 | wikitext | NULL | null |
6.8861228e7 | 1.0 | Unification_of_Germany_(1871) | 0.0 | 1.0 | 0.801136422725 | 20221021144754 | 20220828115937 | 1.047569174e9 | 60.0 | wikitext | NULL | null |
6.8861229e7 | 4.0 | WikiProject_Opera/SotM/October2021 | 0.0 | 1.0 | 0.139475203152 | 20220712205541 | 20221001064658 | 1.047569175e9 | 629.0 | wikitext | NULL | null |
6.886123e7 | 1.0 | Nick_McCloud | 0.0 | 0.0 | 0.993796185815 | 20221027063132 | 20221027154624 | 1.107821221e9 | 496.0 | wikitext | NULL | null |
6.8861231e7 | 0.0 | Santa_Rita_Ranch,_Texas | 0.0 | 0.0 | 0.339660693995 | 20221023074722 | 20221002214219 | 1.113706383e9 | 3286.0 | wikitext | NULL | null |
6.8861233e7 | 0.0 | Santa_Rita_Ranch | 1.0 | 1.0 | 0.527985029601 | 20221018165754 | 20221018165753 | 1.047569316e9 | 37.0 | wikitext | NULL | null |
6.8861234e7 | 0.0 | Jimmy_Dean_(baseball) | 0.0 | 0.0 | 0.197508780412 | 20221101064104 | 20221101064213 | 1.071935189e9 | 2685.0 | wikitext | NULL | null |
6.8861235e7 | 1.0 | Jimmy_Dean_(baseball) | 0.0 | 0.0 | 0.857538996596 | 20221021144754 | 20220921193718 | 1.092541953e9 | 152.0 | wikitext | NULL | null |
6.8861236e7 | 4.0 | WikiProject_Opera/OotM/October2021 | 0.0 | 0.0 | 0.742397000448 | 20220825090443 | 20220825090441 | 1.074547987e9 | 527.0 | wikitext | NULL | null |
6.8861237e7 | 3.0 | 212.139.107.222 | 0.0 | 0.0 | 0.520387612315 | 20220522112336 | 20221008154249 | 1.067907895e9 | 1092.0 | wikitext | NULL | null |
6.8861238e7 | 3.0 | 2600:1700:8E70:1C60:98E4:847:6709:2392 | 0.0 | 1.0 | 0.653851227756 | 20221020153739 | 20221020153737 | 1.047569538e9 | 1358.0 | wikitext | NULL | null |
6.886124e7 | 3.0 | 49.144.101.200 | 0.0 | 1.0 | 0.123016462189 | 20220520223724 | 20221008154249 | 1.047569754e9 | 1142.0 | wikitext | NULL | null |
6.8861241e7 | 1.0 | Aperregi | 0.0 | 1.0 | 0.341637360838 | 20221023093710 | 20221017050852 | 1.04756978e9 | 75.0 | wikitext | NULL | null |
6.8861242e7 | 3.0 | 106.206.200.245 | 0.0 | 0.0 | 7.9455857638e-2 | 20220520194556 | 20221008154249 | 1.047570048e9 | 1921.0 | wikitext | NULL | null |
6.8861244e7 | 0.0 | Watthana_Nakhon_railway_station | 0.0 | 0.0 | 0.768673755786 | 20221023074722 | 20221006195758 | 1.062250408e9 | 1397.0 | wikitext | NULL | null |
6.8861245e7 | 0.0 | Border_abolitionism | 1.0 | 1.0 | 0.51347671272 | 20221017181354 | 20221017181353 | 1.047569901e9 | 25.0 | wikitext | NULL | null |
6.8861246e7 | 3.0 | 67.9.33.134 | 0.0 | 1.0 | 0.640919888816 | 20220924045256 | 20221008154249 | 1.047569904e9 | 1101.0 | wikitext | NULL | null |
6.8861247e7 | 3.0 | Lukejohnb | 0.0 | 0.0 | 0.966817565856 | 20221018143335 | 20221018143333 | 1.04812191e9 | 5607.0 | wikitext | NULL | null |
6.8861248e7 | 0.0 | Boyfriend_(EP) | 1.0 | 1.0 | 0.617102514738 | 20221025185104 | 20221017181458 | 1.047569919e9 | 18.0 | wikitext | NULL | null |
6.8861249e7 | 0.0 | Border_abolition | 1.0 | 1.0 | 0.484774287438 | 20221017181354 | 20221017181353 | 1.047569933e9 | 25.0 | wikitext | NULL | null |
6.886125e7 | 0.0 | Boyfriend_(CKay_EP) | 1.0 | 1.0 | 0.751719313186 | 20221025185104 | 20221017181458 | 1.047569956e9 | 18.0 | wikitext | NULL | null |
6.8861251e7 | 6.0 | Rodney_Franklin_The_Groove.jpg | 0.0 | 0.0 | 0.775837687295 | 20221101064103 | 20221101064058 | 1.049135777e9 | 261.0 | wikitext | NULL | null |
6.8861253e7 | 3.0 | 2.51.100.71 | 0.0 | 0.0 | 0.386120262513 | 20220913101409 | 20221008154249 | 1.049034209e9 | 4099.0 | wikitext | NULL | null |
6.8861254e7 | 3.0 | Zenkai.vis | 0.0 | 1.0 | 0.716432042645 | 20220803125150 | 20220803125149 | 1.047570092e9 | 795.0 | wikitext | NULL | null |
6.8861255e7 | 0.0 | Dickie_Moltisanti | 1.0 | 1.0 | 8.5936212898e-2 | 20221031204923 | 20221018070338 | 1.047570098e9 | 64.0 | wikitext | NULL | null |
6.8861256e7 | 1.0 | Mucus_fishing_syndrome | 0.0 | 0.0 | 0.135459342002 | 20221021144754 | 20220829095139 | 1.048126693e9 | 370.0 | wikitext | NULL | null |
6.8861257e7 | 2.0 | Cone.exe | 0.0 | 1.0 | 0.20280217003 | 20220728025147 | 20220728025145 | 1.047570232e9 | 200.0 | wikitext | NULL | null |
6.8861258e7 | 0.0 | Faustina_Rehuher-Marugg | 1.0 | 0.0 | 0.785963788889 | 20221018214957 | 20221018214955 | 1.048951836e9 | 57.0 | wikitext | NULL | null |
6.8861259e7 | 119.0 | Scott_Seiss | 0.0 | 0.0 | 0.268538015405 | 20221023135015 | 20221026140056 | 1.079750477e9 | 177.0 | wikitext | NULL | null |
6.8861261e7 | 0.0 | Erkin_Tuniyaz | 0.0 | 0.0 | 0.314431987325 | 20221028134415 | 20221028134742 | 1.117709857e9 | 6115.0 | wikitext | NULL | null |
6.8861262e7 | 0.0 | Nong_Sang_railway_station | 0.0 | 0.0 | 0.671846718707 | 20221023074722 | 20221006195758 | 1.062250098e9 | 1364.0 | wikitext | NULL | null |
6.8861263e7 | 0.0 | Matthew_Smith | 0.0 | 0.0 | 0.275415680888 | 20221011054852 | 20221006152641 | 1.109493971e9 | 3273.0 | wikitext | NULL | null |
6.8861264e7 | 3.0 | Allthisnmore | 0.0 | 1.0 | 0.507221481034 | 20220803125150 | 20220803125149 | 1.047570484e9 | 2114.0 | wikitext | NULL | null |
6.8861265e7 | 4.0 | WikiProject_Opera/OotM/November2021 | 0.0 | 0.0 | 5.1560827547e-2 | 20220930232633 | 20220930232630 | 1.05392793e9 | 501.0 | wikitext | NULL | null |
6.8861266e7 | 2.0 | MD380/Peer_review_response | 0.0 | 1.0 | 1.5915246255e-2 | 20220728025147 | 20220728025146 | 1.047570586e9 | 1320.0 | wikitext | NULL | null |
6.8861267e7 | 0.0 | Caravaggio_(song) | 1.0 | 1.0 | 5.8513223111e-2 | 20221018063525 | 20221018063524 | 1.047570654e9 | 41.0 | wikitext | NULL | null |
6.8861268e7 | 0.0 | Matt_Smith_(disambiguation) | 1.0 | 0.0 | 0.779985103825 | 20221031131412 | 20221031131406 | 1.072194209e9 | 74.0 | wikitext | NULL | null |
6.8861269e7 | 0.0 | Government_College_of_Education,_Komarapalayam | 0.0 | 0.0 | 0.792413523322 | 20221023074722 | 20221015083512 | 1.092178413e9 | 3784.0 | wikitext | NULL | null |
6.886127e7 | 0.0 | Thomas_Burton_(16th_century_MP) | 0.0 | 0.0 | 0.470640426691 | 20221028074243 | 20221028174027 | 1.081858699e9 | 4883.0 | wikitext | NULL | null |
6.8861271e7 | 4.0 | WikiProject_Opera/OotM/December2021 | 0.0 | 0.0 | 0.859540386621 | 20220930232633 | 20220930232630 | 1.058929499e9 | 501.0 | wikitext | NULL | null |
6.8861272e7 | 3.0 | 4glorybound | 0.0 | 1.0 | 1.7730772921e-2 | 20220803125150 | 20220803125149 | 1.047570683e9 | 848.0 | wikitext | NULL | null |
6.8861273e7 | 3.0 | MariyaKapadia | 0.0 | 0.0 | 0.803715223697 | 20221023093710 | 20221018143338 | 1.047570826e9 | 5071.0 | wikitext | NULL | null |
6.8861274e7 | 0.0 | Caravaggio_(1.Cuz_song) | 1.0 | 1.0 | 0.143515280666 | 20221018063525 | 20221018063524 | 1.047570698e9 | 19.0 | wikitext | NULL | null |
6.8861275e7 | 4.0 | WikiProject_Women_in_Red/Metrics/October_2021 | 0.0 | 0.0 | 7.9451577497e-2 | 20221027132800 | 20221031132704 | 1.118523997e9 | 44109.0 | wikitext | NULL | null |
6.8861276e7 | 0.0 | Berlinia_grandiflora | 0.0 | 0.0 | 0.711850619294 | 20221031201239 | 20221031202143 | 1.071049562e9 | 2781.0 | wikitext | NULL | null |
6.8861278e7 | 0.0 | Ban_Dong_Bang_railway_station | 0.0 | 0.0 | 0.706852665157 | 20221023074722 | 20221009224542 | 1.115118647e9 | 1431.0 | wikitext | NULL | null |
6.8861279e7 | 4.0 | WikiProject_Opera/OotM/January2022 | 0.0 | 0.0 | 0.435848781725 | 20220930232633 | 20220930232630 | 1.062465836e9 | 500.0 | wikitext | NULL | null |
6.886128e7 | 0.0 | Zhang_Jianmin | 0.0 | 0.0 | 0.301344026944 | 20221027214104 | 20221027235739 | 1.073372152e9 | 4178.0 | wikitext | NULL | null |
6.8861281e7 | 2.0 | Joeytje50/JWB.js/i18n-it.js | 0.0 | 1.0 | 0.670529959486 | 20220728025147 | 20220728025146 | 1.047570865e9 | 12220.0 | javascript | NULL | null |
6.8861282e7 | 1.0 | Thomas_Burton_(16th_century_MP) | 0.0 | 0.0 | 9.350098045e-3 | 20221021144754 | 20220921193720 | 1.048924766e9 | 172.0 | wikitext | NULL | null |
6.8861283e7 | 0.0 | Deng_Jianjun | 0.0 | 0.0 | 0.267661179324 | 20221027214104 | 20221027235739 | 1.093463681e9 | 3647.0 | wikitext | NULL | null |
6.8861284e7 | 4.0 | WikiProject_Opera/SotM/November2021 | 0.0 | 0.0 | 0.502803439878 | 20220712205541 | 20221001064658 | 1.053210325e9 | 630.0 | wikitext | NULL | null |
6.8861285e7 | 3.0 | 43.245.249.1 | 0.0 | 0.0 | 4.9054269556e-2 | 20221019154858 | 20221019154858 | 1.117033247e9 | 11654.0 | wikitext | NULL | null |
6.8861286e7 | 0.0 | Michela_De_Rossi | 0.0 | 0.0 | 8.2959157203e-2 | 20221023074722 | 20221009074034 | 1.110917445e9 | 4008.0 | wikitext | NULL | null |
6.8861287e7 | 3.0 | 49.195.224.203 | 0.0 | 0.0 | 0.307749642374 | 20220911065958 | 20220911065957 | 1.048218164e9 | 596.0 | wikitext | NULL | null |
6.8861288e7 | 3.0 | 87.252.98.132 | 0.0 | 1.0 | 0.689187194443 | 20220521003633 | 20221008154249 | 1.047571024e9 | 982.0 | wikitext | NULL | null |
6.8861289e7 | 14.0 | 1909_Western_(genre)_films | 0.0 | 0.0 | 0.553211356372 | 20221023093710 | 20221004143823 | 1.048131261e9 | 167.0 | wikitext | NULL | null |
6.886129e7 | 0.0 | Mao_Jingwen | 0.0 | 0.0 | 0.946978053248 | 20221023074722 | 20221029034229 | 1.073372185e9 | 3579.0 | wikitext | NULL | null |
6.8861291e7 | 15.0 | 1909_Western_(genre)_films | 0.0 | 1.0 | 7.0420955403e-2 | 20221021144754 | 20221011073130 | 1.047571088e9 | 145.0 | wikitext | NULL | null |
6.8861292e7 | 2.0 | Jjfap02 | 0.0 | 0.0 | 0.21021837675 | 20220728025147 | 20220728025146 | 1.047572108e9 | 0.0 | wikitext | NULL | null |
6.8861293e7 | 0.0 | Prachantakham_railway_station | 0.0 | 0.0 | 2.9569522751e-2 | 20221023074722 | 20221006164258 | 1.062250108e9 | 1397.0 | wikitext | NULL | null |
6.8861294e7 | 0.0 | Mennekes_connector | 1.0 | 1.0 | 0.480868260488 | 20221018094340 | 20221018094339 | 1.047571125e9 | 30.0 | wikitext | NULL | null |
6.8861295e7 | 14.0 | Hebei_GEO_University_alumni | 0.0 | 1.0 | 0.184394101198 | 20221004174814 | 20221004174814 | 1.047571177e9 | 77.0 | wikitext | NULL | null |
6.8861297e7 | 0.0 | Koreatwon,_Flushing | 1.0 | 1.0 | 0.182418631803 | 20221018090411 | 20221018090411 | 1.04757122e9 | 31.0 | wikitext | NULL | null |
6.8861298e7 | 2.0 | JonasfromDublin | 0.0 | 0.0 | 0.575161025232 | 20220701113736 | 20220929053435 | 1.04847656e9 | 680.0 | wikitext | NULL | null |
6.8861299e7 | 14.0 | Hebei_GEO_University | 0.0 | 0.0 | 0.776072979072 | 20221004153754 | 20220906115717 | 1.048248632e9 | 81.0 | wikitext | NULL | null |
6.88613e7 | 2.0 | Daniel_Phantom/be_bold | 0.0 | 0.0 | 6.55843e-4 | 20220728025147 | 20220728025145 | 1.047571428e9 | 102.0 | wikitext | NULL | null |
6.8861301e7 | 3.0 | Udaibkhattak47 | 0.0 | 1.0 | 0.863627172946 | 20220911065958 | 20220911065957 | 1.047571253e9 | 1332.0 | wikitext | NULL | null |
6.8861302e7 | 3.0 | 2601:CF:8480:4FE0:0:0:0:ADA0 | 0.0 | 1.0 | 0.54934820989 | 20220803125150 | 20220803125148 | 1.047571266e9 | 2042.0 | wikitext | NULL | null |
6.8861303e7 | 4.0 | WikiProject_Opera/SotM/December2021 | 0.0 | 0.0 | 0.205011840495 | 20220712205541 | 20221001064658 | 1.058929644e9 | 630.0 | wikitext | NULL | null |
6.8861304e7 | 14.0 | Xi'an_University_of_Technology_faculty | 0.0 | 1.0 | 0.924229140718 | 20221004204156 | 20221004204155 | 1.047571315e9 | 51.0 | wikitext | NULL | null |
6.8861305e7 | 2.0 | Victuallers/sandboxada | 0.0 | 0.0 | 0.866299870286 | 20221027194953 | 20221027195135 | 1.047944226e9 | 5130.0 | wikitext | NULL | null |
6.8861306e7 | 14.0 | Works_based_on_The_Blue_Bird_(play) | 0.0 | 1.0 | 0.976285512658 | 20221004153754 | 20220909160223 | 1.047571337e9 | 217.0 | wikitext | NULL | null |
6.8861307e7 | 3.0 | The_aliens12 | 0.0 | 1.0 | 0.639515287834 | 20221020153739 | 20221020153738 | 1.047571349e9 | 1096.0 | wikitext | NULL | null |
6.8861308e7 | 3.0 | 139.216.147.152 | 0.0 | 0.0 | 0.973054802866 | 20220809020059 | 20221008154249 | 1.04757193e9 | 1851.0 | wikitext | NULL | null |
6.886131e7 | 0.0 | Alexandra_Intrator | 1.0 | 1.0 | 0.852416805851 | 20221017123344 | 20221017123344 | 1.047571389e9 | 39.0 | wikitext | NULL | null |
6.8861311e7 | 3.0 | 12yellow34 | 0.0 | 1.0 | 0.430878618675 | 20220909152227 | 20220803125148 | 1.047571394e9 | 2122.0 | wikitext | NULL | null |
6.8861312e7 | 0.0 | Khok_Makok_railway_station | 0.0 | 0.0 | 0.825873564314 | 20221023074722 | 20221006195758 | 1.062250089e9 | 1388.0 | wikitext | NULL | null |
6.8861313e7 | 3.0 | Barbarelarino | 0.0 | 0.0 | 0.200094277387 | 20221020153739 | 20221020153737 | 1.093575832e9 | 6196.0 | wikitext | NULL | null |
6.8861314e7 | 0.0 | Lauren_DiMario | 1.0 | 1.0 | 0.582812103222 | 20221018090904 | 20221018090903 | 1.047571453e9 | 39.0 | wikitext | NULL | null |
6.8861316e7 | 1.0 | 2021_Georgian_local_elections | 0.0 | 1.0 | 4.4789110454e-2 | 20221021144754 | 20221002174735 | 1.047571475e9 | 48.0 | wikitext | NULL | null |
6.8861317e7 | 0.0 | Johnny_Soprano | 1.0 | 1.0 | 0.972120480791 | 20221031204923 | 20221018085002 | 1.04757149e9 | 56.0 | wikitext | NULL | null |
6.886132e7 | 3.0 | 2A04:4A43:4B0F:CFEE:F504:F269:8BBD:BB24 | 0.0 | 1.0 | 0.638094985879 | 20220809020059 | 20220803125149 | 1.047571538e9 | 822.0 | wikitext | NULL | null |
6.8861321e7 | 4.0 | WikiProject_Opera/SotM/January2022 | 0.0 | 0.0 | 0.510326792293 | 20220712205541 | 20221001064658 | 1.062465983e9 | 629.0 | wikitext | NULL | null |
6.8861322e7 | 14.0 | 1908_Western_(genre)_films | 0.0 | 0.0 | 0.312987041072 | 20221023093710 | 20221004143823 | 1.048131214e9 | 167.0 | wikitext | NULL | null |
6.8861324e7 | 15.0 | 1908_Western_(genre)_films | 0.0 | 1.0 | 0.832204982152 | 20221021144754 | 20221011073130 | 1.047571622e9 | 145.0 | wikitext | NULL | null |
6.8861325e7 | 0.0 | Asclepiadeae | 1.0 | 1.0 | 0.223444737545 | 20221017150610 | 20221017150610 | 1.047571639e9 | 41.0 | wikitext | NULL | null |
6.8861328e7 | 0.0 | Suicide_of_Etika | 1.0 | 0.0 | 0.968860183039 | 20221101084058 | 20221018172514 | 1.04757209e9 | 19.0 | wikitext | NULL | null |
6.8861329e7 | 0.0 | Death_and_the_Maiden_(novel) | 0.0 | 0.0 | 1.7996125508e-2 | 20221101064104 | 20221101064213 | 1.106522755e9 | 1738.0 | wikitext | NULL | null |
6.886133e7 | 2.0 | Bokoharamwatch/Nigeria_had_15_mill_in_early_20cen | 0.0 | 1.0 | 0.932434301803 | 20221023093710 | 20220828202635 | 1.047571748e9 | 404.0 | wikitext | NULL | null |
6.8861333e7 | 1.0 | Death_and_the_Maiden_(novel) | 0.0 | 1.0 | 0.214889866833 | 20221021144754 | 20220828055326 | 1.047571849e9 | 51.0 | wikitext | NULL | null |
6.8861334e7 | 0.0 | Sterphus_auricaudatus | 0.0 | 0.0 | 5.9138294976e-2 | 20221023074722 | 20221010101746 | 1.048040165e9 | 1526.0 | wikitext | NULL | null |
6.8861335e7 | 0.0 | Peter_Heering | 1.0 | 1.0 | 0.766682327608 | 20221031135847 | 20221031135844 | 1.047572021e9 | 75.0 | wikitext | NULL | null |
6.8861336e7 | 3.0 | Will111111 | 0.0 | 1.0 | 0.450302477105 | 20220803125150 | 20220803125149 | 1.047572022e9 | 636.0 | wikitext | NULL | null |
6.8861337e7 | 1.0 | Peter_Heering | 1.0 | 1.0 | 0.31537608064 | 20221023093710 | 20221031135916 | 1.047572028e9 | 80.0 | wikitext | NULL | null |
6.8861339e7 | 3.0 | 157.49.165.171 | 0.0 | 0.0 | 0.285910574487 | 20220911065958 | 20220911065957 | 1.047572188e9 | 991.0 | wikitext | NULL | null |
6.886134e7 | 2.0 | Pyaarkarona | 0.0 | 0.0 | 0.56225487949 | 20221026145423 | 20220924172831 | 1.048526631e9 | 27.0 | wikitext | NULL | null |
6.8861341e7 | 3.0 | Annamaria.dmrt | 0.0 | 0.0 | 0.552257586967 | 20220909152227 | 20221010150718 | 1.077109947e9 | 10216.0 | wikitext | NULL | null |
6.8861343e7 | 0.0 | Build-up_(association_football) | 1.0 | 0.0 | 0.8913515291 | 20221018062603 | 20221018062601 | 1.047689819e9 | 97.0 | wikitext | NULL | null |
6.8861344e7 | 0.0 | Ban_Pak_Phli_railway_station | 0.0 | 0.0 | 0.471663896049 | 20221023074722 | 20221009225148 | 1.115119891e9 | 1697.0 | wikitext | NULL | null |
6.8861346e7 | 3.0 | Jjfap02 | 0.0 | 0.0 | 0.615230519033 | 20220917231312 | 20221010150718 | 1.078878931e9 | 7906.0 | wikitext | NULL | null |
6.8861347e7 | 3.0 | ContributorFromSpace | 0.0 | 0.0 | 0.274525705749 | 20220917231312 | 20221010150718 | 1.083486419e9 | 15110.0 | wikitext | NULL | null |
6.8861348e7 | 3.0 | 95.93.142.252 | 0.0 | 0.0 | 0.456753677188 | 20220809020059 | 20221008154250 | 1.052177915e9 | 7018.0 | wikitext | NULL | null |
6.8861349e7 | 0.0 | Diocese_of_the_Romanian_Army | 0.0 | 0.0 | 0.338084096938 | 20221029150903 | 20221029151500 | 1.11051681e9 | 5009.0 | wikitext | NULL | null |
6.886135e7 | 0.0 | Michael_and_Alice_Halkias | 1.0 | 1.0 | 0.607025844452 | 20221018094541 | 20221018094540 | 1.047572351e9 | 33.0 | wikitext | NULL | null |
6.8861351e7 | 2.0 | Bhanu_Pratap_Mirjapur | 0.0 | 1.0 | 0.296926693738 | 20220728025147 | 20220728025145 | 1.047572358e9 | 151.0 | wikitext | NULL | null |
6.8861352e7 | 4.0 | WikiProject_Spam/LinkReports/michelsogny.net | 0.0 | 0.0 | 0.864672250368 | 20221023093710 | 20221030150250 | 1.047648113e9 | 3282.0 | wikitext | NULL | null |
6.8861353e7 | 0.0 | Auguste_Gérôme | 0.0 | 0.0 | 0.976816109928 | 20221023074722 | 20221009182742 | 1.08435709e9 | 5689.0 | wikitext | NULL | null |
6.8861354e7 | 2.0 | Bluecrayon13/citing_sources | 0.0 | 0.0 | 0.18062361222 | 20221023074722 | 20221003152347 | 1.047573776e9 | 1118.0 | wikitext | NULL | null |
6.8861356e7 | 6.0 | Death_and_the_Maiden_(novel).jpg | 0.0 | 0.0 | 0.106007785046 | 20221101064103 | 20221101064051 | 1.068979417e9 | 710.0 | wikitext | NULL | null |
6.8861357e7 | 0.0 | Ban_Sang_railway_station | 0.0 | 0.0 | 0.680014719492 | 20221023074722 | 20221006195758 | 1.06225008e9 | 1364.0 | wikitext | NULL | null |
6.8861358e7 | 4.0 | WikiProject_Spam/UserReports/Lieangent | 0.0 | 1.0 | 0.569387701016 | 20221023093710 | 20221024211651 | 1.047572496e9 | 378.0 | wikitext | NULL | null |
6.8861359e7 | 3.0 | 49.244.74.112 | 0.0 | 1.0 | 0.257846683425 | 20220520223932 | 20221008154249 | 1.047572589e9 | 1482.0 | wikitext | NULL | null |
6.886136e7 | 0.0 | Jehiel_Beman | 0.0 | 0.0 | 0.735264228261 | 20221023074722 | 20220930144050 | 1.113243235e9 | 5038.0 | wikitext | NULL | null |
6.8861362e7 | 14.0 | Deaths_from_pneumonia_in_Campania | 0.0 | 0.0 | 0.794313282536 | 20220910045527 | 20220910045526 | 1.087774601e9 | 244.0 | wikitext | NULL | null |
6.8861364e7 | 0.0 | Underbart_i_all_misär | 1.0 | 1.0 | 0.951053716936 | 20221027235721 | 20221019065824 | 1.04757277e9 | 21.0 | wikitext | NULL | null |
6.8861365e7 | 0.0 | Bolshoy_Yeravna | 0.0 | 0.0 | 0.162189157614 | 20221023120021 | 20221023164516 | 1.051296588e9 | 4534.0 | wikitext | NULL | null |
6.8861367e7 | 0.0 | Prachinburi_railway_station | 0.0 | 0.0 | 0.572125372474 | 20221023074722 | 20221012043022 | 1.062250115e9 | 2222.0 | wikitext | NULL | null |
6.8861368e7 | 0.0 | Tanja_Gellenthien | 0.0 | 0.0 | 0.789369174473 | 20221023074722 | 20221015102032 | 1.098462228e9 | 5679.0 | wikitext | NULL | null |
6.8861369e7 | 0.0 | Bolshoy_Yeravna_Lake | 1.0 | 1.0 | 0.898150715588 | 20221017181315 | 20221017181314 | 1.047572956e9 | 29.0 | wikitext | NULL | null |
6.886137e7 | 0.0 | Melissa_Malzkuhn | 0.0 | 0.0 | 4.1070808107e-2 | 20221026145423 | 20221016122515 | 1.097656646e9 | 7541.0 | wikitext | NULL | null |
6.8861373e7 | 0.0 | Tanja_Jensen | 1.0 | 1.0 | 0.949419346791 | 20221018173817 | 20221018173816 | 1.04757307e9 | 54.0 | wikitext | NULL | null |
6.8861374e7 | 3.0 | 2A00:23C8:9624:F401:F07C:EBD9:6069:904 | 0.0 | 1.0 | 0.623825464426 | 20221020153739 | 20221020153737 | 1.047573096e9 | 1360.0 | wikitext | NULL | null |
6.8861376e7 | 0.0 | Mohamed_Shamas | 1.0 | 1.0 | 0.50537919632 | 20221031132629 | 20221031132626 | 1.047573124e9 | 77.0 | wikitext | NULL | null |
6.8861377e7 | 1.0 | Mohamed_Shamas | 1.0 | 1.0 | 0.367530596644 | 20221023093710 | 20221031132645 | 1.047573126e9 | 82.0 | wikitext | NULL | null |
6.8861378e7 | 1.0 | Bjarmian_languages | 0.0 | 1.0 | 0.908266042111 | 20221021074520 | 20221021074514 | 1.047573191e9 | 116.0 | wikitext | NULL | null |
6.8861379e7 | 3.0 | Jimmiboi69420 | 0.0 | 1.0 | 0.244803729315 | 20221020153739 | 20221020153737 | 1.047573193e9 | 1096.0 | wikitext | NULL | null |
6.8861381e7 | 3.0 | Trulymematelol | 0.0 | 1.0 | 0.392660534458 | 20221020153739 | 20221020153738 | 1.047573305e9 | 1096.0 | wikitext | NULL | null |
6.8861382e7 | 0.0 | Bukit_Merah_double_murders | 1.0 | 1.0 | 0.932067365049 | 20221018062605 | 20221018062605 | 1.047573341e9 | 33.0 | wikitext | NULL | null |
6.8861383e7 | 6.0 | Manga_Khan.jpg | 0.0 | 0.0 | 0.551662473219 | 20221101064103 | 20221101064055 | 1.049134943e9 | 441.0 | wikitext | NULL | null |
6.8861384e7 | 0.0 | Fourth_Son_South | 0.0 | 0.0 | 0.749225267969 | 20221023074722 | 20221017111347 | 1.064351511e9 | 3839.0 | wikitext | NULL | null |
6.8861385e7 | 7.0 | Manga_Khan.jpg | 0.0 | 1.0 | 0.267952500832 | 20221023135015 | 20221026140056 | 1.047573409e9 | 88.0 | wikitext | NULL | null |
6.8861386e7 | 15.0 | Bands_of_the_Royal_Canadian_Navy | 0.0 | 0.0 | 0.807686817247 | 20221027214635 | 20221028023705 | 1.047573862e9 | 46.0 | wikitext | NULL | null |
6.8861387e7 | 0.0 | Two_Point_Campus | 0.0 | 0.0 | 0.96805960018 | 20221028164354 | 20221028164718 | 1.110866562e9 | 9340.0 | wikitext | NULL | null |
6.8861388e7 | 1.0 | HMCS_Carleton_Band | 0.0 | 0.0 | 4.9547009558e-2 | 20221027214635 | 20221028023705 | 1.048636566e9 | 82.0 | wikitext | NULL | null |
6.8861389e7 | 0.0 | Angie_Ng_(murder_victim) | 1.0 | 1.0 | 0.80979520392 | 20221017124356 | 20221017124355 | 1.047573473e9 | 33.0 | wikitext | NULL | null |
6.886139e7 | 0.0 | Naoki_Ishikawa_(photographer) | 0.0 | 0.0 | 0.500847608481 | 20221023074722 | 20221022133156 | 1.086631936e9 | 20610.0 | wikitext | NULL | null |
6.8861391e7 | 0.0 | Jacaeber_Kastor | 0.0 | 0.0 | 0.693137053498 | 20221023074722 | 20221005095816 | 1.083921543e9 | 10114.0 | wikitext | NULL | null |
6.8861392e7 | 3.0 | 72.50.4.152 | 0.0 | 0.0 | 0.436061513625 | 20220520234022 | 20221008154249 | 1.051885194e9 | 2112.0 | wikitext | NULL | null |
6.8861393e7 | 0.0 | Crystal_Poh | 1.0 | 1.0 | 0.23265413571 | 20221018065333 | 20221018065332 | 1.047573522e9 | 33.0 | wikitext | NULL | null |
6.8861394e7 | 0.0 | List_of_English_football_transfers_winter_2021–22 | 0.0 | 0.0 | 9.0613722231e-2 | 20221031232845 | 20221101070401 | 1.106908388e9 | 168980.0 | wikitext | NULL | null |
6.8861396e7 | 3.0 | 66.249.83.15 | 0.0 | 1.0 | 0.971188916909 | 20220803125152 | 20220803125151 | 1.047573654e9 | 139.0 | wikitext | NULL | null |
6.8861397e7 | 1.0 | HMCS_York_Band | 0.0 | 1.0 | 0.885724841657 | 20221027214635 | 20221028023651 | 1.047573694e9 | 54.0 | wikitext | NULL | null |
6.8861398e7 | 1.0 | Naden_Band_of_Maritime_Forces_Pacific | 0.0 | 0.0 | 0.306488161949 | 20221027214635 | 20221028023705 | 1.048021873e9 | 135.0 | wikitext | NULL | null |
6.8861399e7 | 0.0 | James_Winston | 0.0 | 0.0 | 0.943883795624 | 20221101014137 | 20221101014135 | 1.053415443e9 | 425.0 | wikitext | NULL | null |
6.88614e7 | 1.0 | James_Winston | 0.0 | 0.0 | 0.467815129709 | 20220828124315 | 20221101014411 | 1.047696522e9 | 30.0 | wikitext | NULL | null |
6.8861401e7 | 1.0 | Navy_bands_in_Canada | 0.0 | 0.0 | 0.19484469679 | 20221027214635 | 20221028023651 | 1.048635336e9 | 81.0 | wikitext | NULL | null |
6.8861402e7 | 1.0 | Kurdistan_Democratic_Independence_Party_(PASOK) | 0.0 | 1.0 | 0.408845241848 | 20221004085508 | 20221004085506 | 1.047573838e9 | 240.0 | wikitext | NULL | null |
6.8861404e7 | 0.0 | Khlong_Bang_Phra_railway_station | 0.0 | 0.0 | 0.990281211749 | 20221023074722 | 20221006195758 | 1.06224683e9 | 1475.0 | wikitext | NULL | null |
6.8861405e7 | 0.0 | Hans_Nylund | 0.0 | 1.0 | 0.834262069977 | 20221031200508 | 20221026112506 | 1.047573889e9 | 1364.0 | wikitext | NULL | null |
6.8861406e7 | 1.0 | Tanja_Gellenthien | 0.0 | 1.0 | 0.164331170589 | 20221023093710 | 20220925082020 | 1.047573904e9 | 307.0 | wikitext | NULL | null |
6.8861407e7 | 2.0 | The448/citing_sources | 0.0 | 0.0 | 0.247574736219 | 20221023074722 | 20221002044719 | 1.047574802e9 | 1120.0 | wikitext | NULL | null |
6.8861408e7 | 1.0 | Hans_Nylund | 0.0 | 1.0 | 0.515792370116 | 20221021144754 | 20220808033124 | 1.047573937e9 | 263.0 | wikitext | NULL | null |
6.8861409e7 | 0.0 | Anton_Edler_von_Schmid | 0.0 | 0.0 | 0.176814380366 | 20221023074722 | 20221001064658 | 1.062330915e9 | 7688.0 | wikitext | NULL | null |
6.886141e7 | 1.0 | Band_of_the_Ceremonial_Guard | 0.0 | 0.0 | 0.508124846892 | 20221027214635 | 20221028023651 | 1.048635009e9 | 68.0 | wikitext | NULL | null |
6.8861411e7 | 3.0 | 108.30.123.67 | 0.0 | 1.0 | 0.573314255944 | 20220911065958 | 20220911065957 | 1.047573996e9 | 1105.0 | wikitext | NULL | null |
6.8861412e7 | 1.0 | Canadian_Forces_School_of_Music | 0.0 | 0.0 | 0.571533463874 | 20221027214635 | 20221028023705 | 1.048632918e9 | 89.0 | wikitext | NULL | null |
6.8861414e7 | 10.0 | Taxonomy/Echinosteliales | 0.0 | 0.0 | 0.198838577428 | 20221022045344 | 20220825074945 | 1.063127685e9 | 127.0 | wikitext | NULL | null |
6.8861415e7 | 3.0 | Ineedthisaccountforschool1 | 0.0 | 1.0 | 0.364789801479 | 20220809020059 | 20220803125152 | 1.047574081e9 | 844.0 | wikitext | NULL | null |
6.8861416e7 | 2.0 | Lisalex954 | 0.0 | 1.0 | 7.8400704439e-2 | 20220728025149 | 20220728025148 | 1.047574086e9 | 32.0 | wikitext | NULL | null |
6.8861417e7 | 10.0 | Taxonomy/Echinosteliaceae | 0.0 | 1.0 | 0.702956295611 | 20221022045344 | 20220825074946 | 1.047574101e9 | 172.0 | wikitext | NULL | null |
6.8861418e7 | 6.0 | Two_Point_Campus_cover_art.jpg | 0.0 | 0.0 | 0.522980906477 | 20221026174447 | 20220927153754 | 1.049136302e9 | 768.0 | wikitext | NULL | null |
6.8861419e7 | 10.0 | Taxonomy/Echinostelium | 0.0 | 1.0 | 0.956420406943 | 20221022045344 | 20220825074945 | 1.047574146e9 | 167.0 | wikitext | NULL | null |
6.886142e7 | 2.0 | Phoebewolf/1811–1812_New_Madrid_earthquakes/Bibliography | 0.0 | 0.0 | 0.594246278311 | 20221023074722 | 20221003060233 | 1.04762819e9 | 2681.0 | wikitext | NULL | null |
6.8861421e7 | 0.0 | Preng_railway_station | 0.0 | 0.0 | 0.880041487629 | 20221023074722 | 20221006195758 | 1.06224684e9 | 1541.0 | wikitext | NULL | null |
6.8861422e7 | 0.0 | Khlong_Udom_Chonlajorn_Halt_railway_station | 1.0 | 1.0 | 0.865059118132 | 20221018090140 | 20221018090139 | 1.047574221e9 | 49.0 | wikitext | NULL | null |
6.8861424e7 | 3.0 | Mossley_Music_&_Arts_Society | 0.0 | 0.0 | 0.661424077935 | 20221020153739 | 20221020153737 | 1.063101543e9 | 2696.0 | wikitext | NULL | null |
6.8861426e7 | 1.0 | Gordon_Bradt | 0.0 | 0.0 | 0.957536303136 | 20221029204943 | 20221029210356 | 1.054024909e9 | 569.0 | wikitext | NULL | null |
6.8861427e7 | 2.0 | Zofthej/Jean-Michel_Kibushi | 0.0 | 1.0 | 0.990369865089 | 20220728081650 | 20220728081649 | 1.047574374e9 | 1078.0 | wikitext | NULL | null |
6.8861428e7 | 0.0 | Jan_Ørke | 0.0 | 1.0 | 0.461347584239 | 20221031200508 | 20221026112552 | 1.047574375e9 | 1318.0 | wikitext | NULL | null |
6.8861429e7 | 1.0 | Yaduvanshi | 0.0 | 1.0 | 0.961398806928 | 20221004114453 | 20221004114452 | 1.04757438e9 | 262.0 | wikitext | NULL | null |
6.886143e7 | 1.0 | Royal_Roads_Military_College_Band | 0.0 | 0.0 | 0.35453297474 | 20221027214635 | 20221028023705 | 1.048635441e9 | 68.0 | wikitext | NULL | null |
6.8861431e7 | 1.0 | Two_Point_Campus | 0.0 | 1.0 | 0.408887073857 | 20221101070921 | 20221031235110 | 1.047574412e9 | 56.0 | wikitext | NULL | null |
6.8861433e7 | 1.0 | Toronto_Signals_Band | 0.0 | 0.0 | 0.293931929932 | 20221027214635 | 20221028023739 | 1.048635509e9 | 69.0 | wikitext | NULL | null |
6.8861434e7 | 2.0 | Asterbal/Ida_Bagus_Putra_Manuaba_Ida_Bagus_Putra_Manuaba | 0.0 | 0.0 | 0.983332311928 | 20221028074243 | 20221028174027 | 1.107157233e9 | 4003.0 | wikitext | NULL | null |
6.8861435e7 | 1.0 | Jan_Ørke | 0.0 | 1.0 | 0.596353789275 | 20221023093710 | 20220808033125 | 1.047574449e9 | 262.0 | wikitext | NULL | null |
6.8861436e7 | 0.0 | Jan_Orke | 1.0 | 1.0 | 0.358049974409 | 20221018084214 | 20221018084213 | 1.047574486e9 | 22.0 | wikitext | NULL | null |
6.8861437e7 | 1.0 | ADM_Capital_Foundation | 0.0 | 0.0 | 8.5939807084e-2 | 20221021144754 | 20220929065214 | 1.076810391e9 | 210.0 | wikitext | NULL | null |
6.8861438e7 | 0.0 | Rathana_Club | 1.0 | 1.0 | 0.223155929611 | 20221018103950 | 20221018103948 | 1.04757456e9 | 29.0 | wikitext | NULL | null |
6.8861439e7 | 1.0 | Chen_Yet-Sen_Family_Foundation | 0.0 | 0.0 | 0.334808324663 | 20221021144754 | 20220929065214 | 1.072370892e9 | 52.0 | wikitext | NULL | null |
6.886144e7 | 0.0 | 1923_West_Tennessee_State_Normal_football_team | 0.0 | 0.0 | 0.946479789312 | 20221029222957 | 20221030052910 | 1.079637328e9 | 3809.0 | wikitext | NULL | null |
6.8861441e7 | 0.0 | Rakhagarhi | 1.0 | 1.0 | 0.362216691923 | 20221018103837 | 20221018103834 | 1.04757469e9 | 24.0 | wikitext | NULL | null |
6.8861442e7 | 0.0 | Manlio_De_Domenico | 0.0 | 0.0 | 7.7860122806e-2 | 20221023074722 | 20221010224437 | 1.097202268e9 | 11894.0 | wikitext | NULL | null |
6.8861443e7 | 2.0 | Purlspearls/citing_sources | 0.0 | 0.0 | 0.875540256806 | 20221023074722 | 20221003152348 | 1.047575282e9 | 1092.0 | wikitext | NULL | null |
6.8861444e7 | 15.0 | Ships_transferred_from_the_United_States_Coast_Guard_to_the_Estonian_Border_Guard | 0.0 | 0.0 | 0.956394601084 | 20221027214635 | 20221028023651 | 1.10341493e9 | 149.0 | wikitext | NULL | null |
6.8861445e7 | 0.0 | Daniela_Rathana_discography | 1.0 | 1.0 | 0.279482947472 | 20221018065754 | 20221018065752 | 1.047574726e9 | 41.0 | wikitext | NULL | null |
6.8861446e7 | 0.0 | Hans_Saksvik | 0.0 | 1.0 | 0.690117156549 | 20221031200508 | 20221026112723 | 1.047574761e9 | 1374.0 | wikitext | NULL | null |
6.8861447e7 | 2.0 | Mohammadjunaidkhan.phd | 0.0 | 0.0 | 0.832856065381 | 20220728025149 | 20220728025148 | 1.04757549e9 | 0.0 | wikitext | NULL | null |
6.8861448e7 | 0.0 | Sarah_Story | 0.0 | 0.0 | 0.531698951545 | 20221023074722 | 20221010145952 | 1.104060753e9 | 4272.0 | wikitext | NULL | null |
6.8861449e7 | 1.0 | Hans_Saksvik | 0.0 | 1.0 | 0.531836971905 | 20221021144754 | 20220808033124 | 1.047574805e9 | 264.0 | wikitext | NULL | null |
6.886145e7 | 3.0 | Userperson1234 | 0.0 | 0.0 | 0.63767210743 | 20220917231312 | 20221010150718 | 1.07887896e9 | 8703.0 | wikitext | NULL | null |
6.8861451e7 | 3.0 | Nonproliferation_Policy_Education_Center | 0.0 | 1.0 | 0.69501894072 | 20221020153739 | 20221020153738 | 1.047574824e9 | 3244.0 | wikitext | NULL | null |
6.8861452e7 | 3.0 | Squam_Lizard | 0.0 | 1.0 | 0.928357104094 | 20220913101409 | 20220803125152 | 1.047574827e9 | 7101.0 | wikitext | NULL | null |
6.8861453e7 | 4.0 | Articles_for_deletion/Gosine | 0.0 | 0.0 | 8.946256082e-3 | 20220821072540 | 20220930094855 | 1.050149774e9 | 4463.0 | wikitext | NULL | null |
6.8861454e7 | 0.0 | Recursion_in_natural_languages | 1.0 | 1.0 | 0.450072889052 | 20221031141636 | 20221031141633 | 1.047574838e9 | 82.0 | wikitext | NULL | null |
6.8861455e7 | 1.0 | Sarah_Story | 0.0 | 0.0 | 0.377251601981 | 20221023093710 | 20220905193115 | 1.050898058e9 | 356.0 | wikitext | NULL | null |
6.8861457e7 | 101.0 | Current_events/October_2021 | 0.0 | 1.0 | 0.625686154178 | 20221021144754 | 20220808033124 | 1.047574883e9 | 119.0 | wikitext | NULL | null |
6.8861458e7 | 3.0 | 2A02:C7F:8E3D:8A00:20BE:4A95:C3D3:9466 | 0.0 | 1.0 | 0.967094321396 | 20220913101409 | 20220803215305 | 1.047574887e9 | 1559.0 | wikitext | NULL | null |
6.8861459e7 | 0.0 | Anton_von_Schmid | 1.0 | 1.0 | 4.7907270015e-2 | 20221017124751 | 20221017124750 | 1.047574913e9 | 36.0 | wikitext | NULL | null |
6.886146e7 | 0.0 | Sean_Rhyan | 0.0 | 0.0 | 0.431785935971 | 20221031185426 | 20221031200926 | 1.117906364e9 | 7144.0 | wikitext | NULL | null |
6.8861461e7 | 6.0 | William_Breda.png | 0.0 | 0.0 | 0.890394697256 | 20221101064103 | 20221101064100 | 1.049136407e9 | 528.0 | wikitext | NULL | null |
6.8861462e7 | 1.0 | Medium_Support_Vehicle_System | 0.0 | 0.0 | 0.81325499521 | 20221027214635 | 20221028023705 | 1.04863531e9 | 68.0 | wikitext | NULL | null |
6.8861463e7 | 0.0 | Epistlar | 1.0 | 1.0 | 0.474092779035 | 20221028111314 | 20221018071936 | 1.047575069e9 | 30.0 | wikitext | NULL | null |
6.8861464e7 | 6.0 | Pentatonix_The_Lucky_Ones_Album_Art.jpeg | 0.0 | 0.0 | 0.426200252786 | 20221101064103 | 20221101064056 | 1.049135363e9 | 651.0 | wikitext | NULL | null |
6.8861465e7 | 6.0 | Rama_Khan.png | 0.0 | 0.0 | 0.734086696952 | 20221101064103 | 20221101064057 | 1.049135695e9 | 433.0 | wikitext | NULL | null |
6.8861466e7 | 0.0 | Kåre_Bjørnsen | 0.0 | 0.0 | 1.462314077e-2 | 20221031200508 | 20221026104446 | 1.111599351e9 | 1462.0 | wikitext | NULL | null |
6.8861467e7 | 0.0 | Epistlar_(EP) | 1.0 | 1.0 | 0.519263226207 | 20221028111314 | 20221018071936 | 1.047575112e9 | 30.0 | wikitext | NULL | null |
6.8861468e7 | 1.0 | Anton_Edler_von_Schmid | 0.0 | 0.0 | 0.444257704902 | 20221021144754 | 20221001064658 | 1.053871344e9 | 331.0 | wikitext | NULL | null |
6.8861469e7 | 7.0 | Rama_Khan.png | 0.0 | 1.0 | 7.3324712703e-2 | 20221023135015 | 20221026140056 | 1.047575148e9 | 88.0 | wikitext | NULL | null |
6.8861471e7 | 1.0 | Kåre_Bjørnsen | 0.0 | 1.0 | 0.25925871008 | 20221021144754 | 20220808033125 | 1.047575166e9 | 265.0 | wikitext | NULL | null |
6.8861472e7 | 0.0 | Kare_Bjornsen | 1.0 | 1.0 | 0.204720382591 | 20221018085804 | 20221018085801 | 1.047575205e9 | 28.0 | wikitext | NULL | null |
6.8861473e7 | 2.0 | Javad5351/Sample_page | 0.0 | 1.0 | 0.279989810259 | 20221023074722 | 20220820005754 | 1.047575233e9 | 2914.0 | wikitext | NULL | null |
6.8861474e7 | 3.0 | SWFLucknow | 0.0 | 0.0 | 0.467292303819 | 20220522054029 | 20221003060233 | 1.051985056e9 | 2566.0 | wikitext | NULL | null |
6.8861476e7 | 3.0 | 2A02:C7F:6080:4400:89A3:FCE4:D32:E468 | 0.0 | 1.0 | 0.523401492936 | 20220803125152 | 20220803125151 | 1.04757527e9 | 803.0 | wikitext | NULL | null |
6.8861477e7 | 3.0 | Ismailismo | 0.0 | 0.0 | 0.587531600576 | 20221023142513 | 20221003060233 | 1.085417666e9 | 9696.0 | wikitext | NULL | null |
6.8861478e7 | 3.0 | 114.122.41.123 | 0.0 | 1.0 | 9.3870138167e-2 | 20220520195336 | 20221008154249 | 1.047575365e9 | 1429.0 | wikitext | NULL | null |
6.8861479e7 | 2.0 | Droid248 | 0.0 | 1.0 | 0.310798261387 | 20220728025149 | 20220728025148 | 1.047575375e9 | 1080.0 | wikitext | NULL | null |
6.886148e7 | 1.0 | Alexander_Madsen | 0.0 | 0.0 | 0.540968099849 | 20221023093710 | 20220808033125 | 1.047585226e9 | 240.0 | wikitext | NULL | null |
6.8861481e7 | 2.0 | Droid248/sandbox | 0.0 | 1.0 | 0.18825135305 | 20221023093710 | 20220803125344 | 1.047575472e9 | 1103.0 | wikitext | NULL | null |
6.8861482e7 | 0.0 | Don_Si_Non_railway_station | 0.0 | 0.0 | 0.969199138449 | 20221023074722 | 20221006195759 | 1.062246825e9 | 3011.0 | wikitext | NULL | null |
6.8861483e7 | 0.0 | Phil_L._Hudson_Municipal_Airport | 1.0 | 1.0 | 0.720833694848 | 20221031140001 | 20221031135956 | 1.047575574e9 | 74.0 | wikitext | NULL | null |
6.8861485e7 | 1.0 | Middle_European_Class | 0.0 | 1.0 | 0.247475979508 | 20221021144754 | 20220903095647 | 1.047575589e9 | 49.0 | wikitext | NULL | null |
6.8861486e7 | 100.0 | Current_events/September_2021/Sidebar | 0.0 | 0.0 | 0.282004274702 | 20221028000118 | 20221028000215 | 1.111672171e9 | 20181.0 | wikitext | NULL | null |
6.8861487e7 | 1.0 | Results_of_the_2021_German_federal_election | 0.0 | 0.0 | 0.787946801893 | 20221027214034 | 20221028015922 | 1.048662836e9 | 97.0 | wikitext | NULL | null |
6.8861488e7 | 3.0 | 49.144.3.64 | 0.0 | 1.0 | 0.361861032064 | 20220520223729 | 20221008154249 | 1.04757564e9 | 1184.0 | wikitext | NULL | null |
6.8861489e7 | 10.0 | Southern_Brave_squad | 0.0 | 0.0 | 0.481267317548 | 20220822174002 | 20220822174002 | 1.105983346e9 | 1790.0 | wikitext | NULL | null |
6.886149e7 | 3.0 | RhonJean | 0.0 | 1.0 | 0.652303954524 | 20220803125152 | 20220803125152 | 1.047575659e9 | 147.0 | wikitext | NULL | null |
6.8861491e7 | 3.0 | Allison_SoCHC | 0.0 | 0.0 | 0.608747775355 | 20221020153739 | 20221020153737 | 1.079876563e9 | 6395.0 | wikitext | NULL | null |
6.8861495e7 | 6.0 | Campari_bottle.jpg | 0.0 | 0.0 | 0.373193395334 | 20221023093710 | 20221022095034 | 1.049133858e9 | 733.0 | wikitext | NULL | null |
6.8861496e7 | 0.0 | James_Winston_(thespian) | 0.0 | 0.0 | 0.842387330941 | 20221023074722 | 20221018084330 | 1.075871926e9 | 765.0 | wikitext | NULL | null |
6.8861497e7 | 3.0 | 2600:100F:B001:316C:4C25:F730:1D30:B62B | 0.0 | 1.0 | 0.596354889418 | 20220825090443 | 20220825090439 | 1.047575766e9 | 6356.0 | wikitext | NULL | null |
6.8861498e7 | 0.0 | 2021-22_Serbian_Cup | 1.0 | 1.0 | 0.166172006199 | 20221024003111 | 20221024144846 | 1.047575769e9 | 178.0 | wikitext | NULL | null |
6.8861499e7 | 3.0 | Wonyounghoon | 0.0 | 0.0 | 9.9381170001e-2 | 20220914210635 | 20220914212118 | 1.049068885e9 | 15654.0 | wikitext | NULL | null |
6.88615e7 | 1.0 | 2014-15_ISTAF_SuperSeries | 1.0 | 1.0 | 0.956051031476 | 20221024003111 | 20221024144846 | 1.047575793e9 | 211.0 | wikitext | NULL | null |
6.8861501e7 | 1.0 | 4_Field_Ambulance_(Canada) | 0.0 | 1.0 | 0.904763052959 | 20221027214635 | 20221028023705 | 1.047575805e9 | 41.0 | wikitext | NULL | null |
6.8861502e7 | 0.0 | 2021-22_EHF_European_League | 1.0 | 1.0 | 0.705241294012 | 20221024003111 | 20221024144846 | 1.047575842e9 | 202.0 | wikitext | NULL | null |
6.8861503e7 | 0.0 | Phan_Thong_railway_station | 0.0 | 0.0 | 0.791486566217 | 20221023074722 | 20221006195759 | 1.062247208e9 | 2992.0 | wikitext | NULL | null |
6.8861504e7 | 0.0 | Anton_Von_Schmid | 1.0 | 1.0 | 0.712684783764 | 20221017124751 | 20221017124750 | 1.047575847e9 | 36.0 | wikitext | NULL | null |
6.8861505e7 | 2.0 | Sergej319 | 0.0 | 0.0 | 0.633951446825 | 20221028052204 | 20221028053417 | 1.04757633e9 | 658.0 | wikitext | NULL | null |
6.8861506e7 | 1.0 | 4_Health_Services_Group | 0.0 | 1.0 | 0.279722095376 | 20221027214635 | 20221028023739 | 1.047575851e9 | 41.0 | wikitext | NULL | null |
6.8861507e7 | 0.0 | 2021_World_Wrestling_Championships_–_Men's_freestyle_61_kg | 0.0 | 0.0 | 0.763995298751 | 20221031224549 | 20221031224603 | 1.11885109e9 | 8763.0 | wikitext | NULL | null |
6.8861508e7 | 0.0 | Listed_buildings_in_Cudworth,_South_Yorkshire | 0.0 | 0.0 | 0.386215955183 | 20221025021906 | 20221025060121 | 1.081558101e9 | 3246.0 | wikitext | NULL | null |
6.886151e7 | 0.0 | Heropanti_2_(2022_film) | 1.0 | 0.0 | 0.583099660144 | 20221019200123 | 20221004121157 | 1.050306308e9 | 63.0 | wikitext | NULL | null |
6.8861511e7 | 0.0 | List_of_English_football_transfers_winter_2021-22 | 1.0 | 1.0 | 0.813798611037 | 20221024003111 | 20221024144846 | 1.047575921e9 | 268.0 | wikitext | NULL | null |
6.8861512e7 | 3.0 | QPEdson | 0.0 | 0.0 | 0.374551694661 | 20220911065958 | 20220911065957 | 1.047580158e9 | 1800.0 | wikitext | NULL | null |
6.8861513e7 | 1.0 | Listed_buildings_in_Cudworth,_South_Yorkshire | 0.0 | 0.0 | 0.457781165398 | 20221023093710 | 20220929112058 | 1.090601968e9 | 263.0 | wikitext | NULL | null |
6.8861514e7 | 0.0 | 2021-22_Liga_IV_Galați | 1.0 | 0.0 | 0.744574310445 | 20221101060548 | 20221101060645 | 1.057590759e9 | 272.0 | wikitext | NULL | null |
6.8861515e7 | 11.0 | Southern_Brave_squad | 0.0 | 1.0 | 0.845539608806 | 20221023135015 | 20221025195513 | 1.047575944e9 | 23.0 | wikitext | NULL | null |
6.8861516e7 | 0.0 | Wilhelm_Eliassen | 0.0 | 0.0 | 0.951302242849 | 20221031200508 | 20221030153506 | 1.098801875e9 | 1437.0 | wikitext | NULL | null |
6.8861517e7 | 1.0 | No._4_Casualty_Clearing_Station_(Canada) | 0.0 | 1.0 | 0.373859467709 | 20221027214635 | 20221028023651 | 1.047575981e9 | 41.0 | wikitext | NULL | null |
6.8861518e7 | 0.0 | Tornado_outbreak_sequence_of_May_4-10,_1933 | 1.0 | 1.0 | 0.752944651488 | 20221024003111 | 20221024144846 | 1.047575996e9 | 250.0 | wikitext | NULL | null |
6.8861519e7 | 1.0 | Wilhelm_Eliassen | 0.0 | 1.0 | 0.772792459872 | 20221021144754 | 20220808033125 | 1.047576012e9 | 268.0 | wikitext | NULL | null |
6.8861521e7 | 1.0 | 2021-22_Liga_IV_Galați | 1.0 | 1.0 | 0.366768119492 | 20221024003111 | 20221024144846 | 1.047576039e9 | 205.0 | wikitext | NULL | null |
6.8861522e7 | 1.0 | Tornado_outbreak_sequence_of_May_4-10,_1933 | 1.0 | 1.0 | 0.992471269296 | 20221024003111 | 20221024144846 | 1.047576085e9 | 265.0 | wikitext | NULL | null |
6.8861523e7 | 0.0 | Servant_of_the_Mind | 0.0 | 0.0 | 0.734067114006 | 20221029202802 | 20221029204109 | 1.08806323e9 | 21859.0 | wikitext | NULL | null |
6.8861524e7 | 15.0 | N-Train_members | 0.0 | 1.0 | 0.671184852634 | 20221021144754 | 20220913203012 | 1.047576113e9 | 55.0 | wikitext | NULL | null |
6.8861525e7 | 0.0 | 2021_Asian_Table_Tennis_Championships_-_Women's_team | 1.0 | 1.0 | 0.886355683538 | 20221024003111 | 20221024144847 | 1.047576118e9 | 277.0 | wikitext | NULL | null |
6.8861526e7 | 0.0 | Servant_of_the_Mind_(album) | 1.0 | 0.0 | 0.919372430568 | 20221021041923 | 20221021041922 | 1.058526987e9 | 33.0 | wikitext | NULL | null |
6.8861527e7 | 14.0 | The_Hundred_(cricket)_navigational_boxes | 0.0 | 0.0 | 0.82015890849 | 20221023093710 | 20220912212504 | 1.050346429e9 | 83.0 | wikitext | NULL | null |
6.8861528e7 | 15.0 | The_Hundred_(cricket)_navigational_boxes | 0.0 | 1.0 | 0.386911736267 | 20221023135015 | 20221026140056 | 1.047576157e9 | 23.0 | wikitext | NULL | null |
6.8861529e7 | 0.0 | Servant_of_the_Mind_(Volbeat_album) | 1.0 | 0.0 | 0.75130791004 | 20221021041923 | 20221021041922 | 1.058527029e9 | 33.0 | wikitext | NULL | null |
6.886153e7 | 0.0 | +-=÷x_Tour | 1.0 | 1.0 | 0.413178095315 | 20221029075509 | 20221024144847 | 1.047576171e9 | 154.0 | wikitext | NULL | null |
6.8861531e7 | 3.0 | 202.53.6.50 | 0.0 | 1.0 | 0.468829287196 | 20220803125152 | 20220803125151 | 1.047576177e9 | 780.0 | wikitext | NULL | null |
6.8861532e7 | 0.0 | Bang_Phra_railway_station | 0.0 | 0.0 | 0.225654598504 | 20221023074722 | 20221009225432 | 1.115120615e9 | 3003.0 | wikitext | NULL | null |
6.8861533e7 | 0.0 | Pucheng-Meizhou_railway | 1.0 | 1.0 | 0.527611556057 | 20221024003111 | 20221024144846 | 1.047576246e9 | 190.0 | wikitext | NULL | null |
6.8861534e7 | 6.0 | HKU23_Logo.png | 0.0 | 0.0 | 0.312190070195 | 20221101064103 | 20221101064053 | 1.049134554e9 | 715.0 | wikitext | NULL | null |
6.8861535e7 | 1.0 | Non-Public_Property | 0.0 | 0.0 | 0.103550822165 | 20221027214635 | 20221028023738 | 1.048022726e9 | 56.0 | wikitext | NULL | null |
6.8861536e7 | 0.0 | 2021_World_Wrestling_Championships_-_Men's_freestyle_61_kg | 1.0 | 1.0 | 0.118874152145 | 20221029081732 | 20221024144846 | 1.047576321e9 | 295.0 | wikitext | NULL | null |
6.8861537e7 | 1.0 | 2021-22_European_winter_storm_season | 1.0 | 0.0 | 0.847009798845 | 20221024003111 | 20221024144847 | 1.072785624e9 | 315.0 | wikitext | NULL | null |
6.8861539e7 | 2.0 | Gng1999/sandbox | 0.0 | 1.0 | 0.556154596235 | 20220728025149 | 20220728025148 | 1.047576368e9 | 23.0 | wikitext | NULL | null |
6.886154e7 | 1.0 | Pucheng-Meizhou_railway | 1.0 | 1.0 | 0.566333012756 | 20221024003111 | 20221024144847 | 1.047576371e9 | 205.0 | wikitext | NULL | null |
6.8861541e7 | 2.0 | Sammysterns/citing_sources | 0.0 | 0.0 | 0.287798894536 | 20221023074722 | 20221003152348 | 1.047576961e9 | 1119.0 | wikitext | NULL | null |
6.8861542e7 | 2.0 | Johnmilton2/sandbox | 0.0 | 1.0 | 0.897323524058 | 20220728025149 | 20220728025148 | 1.047576433e9 | 19.0 | wikitext | NULL | null |
6.8861543e7 | 3.0 | Sijark | 0.0 | 1.0 | 0.801482013454 | 20220803125152 | 20220803125152 | 1.047576495e9 | 1107.0 | wikitext | NULL | null |
6.8861544e7 | 2.0 | Fmei00/Non-rapid_eye_movement_sleep | 0.0 | 0.0 | 0.932286206975 | 20221023074722 | 20221003060233 | 1.047683031e9 | 6302.0 | wikitext | NULL | null |
6.8861545e7 | 0.0 | Kåre_Aasgaard | 0.0 | 0.0 | 0.966844812768 | 20221031200508 | 20221026104438 | 1.10898553e9 | 1415.0 | wikitext | NULL | null |
6.8861546e7 | 2.0 | Vitsuha/notes_(i) | 0.0 | 0.0 | 0.250838806716 | 20220906030707 | 20220906030707 | 1.108753823e9 | 3.0 | wikitext | NULL | null |
6.8861547e7 | 2.0 | Flabrador/be_bold | 0.0 | 0.0 | 0.82306296176 | 20220728025149 | 20220728025148 | 1.04759136e9 | 189.0 | wikitext | NULL | null |
6.8861549e7 | 1.0 | Kåre_Aasgaard | 0.0 | 1.0 | 0.28314638423 | 20221023093710 | 20220808033125 | 1.047576603e9 | 267.0 | wikitext | NULL | null |
6.886155e7 | 3.0 | Eggsareslimy | 0.0 | 0.0 | 0.650776568678 | 20221020153739 | 20221020153737 | 1.04757734e9 | 1766.0 | wikitext | NULL | null |
6.8861551e7 | 0.0 | Kare_Aasgaard | 1.0 | 1.0 | 7.5414990947e-2 | 20221018085804 | 20221018085801 | 1.047576654e9 | 27.0 | wikitext | NULL | null |
6.8861552e7 | 0.0 | Ban_Huai_Khwang_railway_station | 0.0 | 0.0 | 0.286773424358 | 20221023074722 | 20221009224825 | 1.115119202e9 | 3119.0 | wikitext | NULL | null |
6.8861553e7 | 0.0 | Jaume_Masiá | 1.0 | 1.0 | 0.27830484156 | 20221031121826 | 20221031121822 | 1.04757679e9 | 73.0 | wikitext | NULL | null |
6.8861554e7 | 1.0 | Jaume_Masiá | 1.0 | 1.0 | 0.581284200718 | 20221023093710 | 20221031121857 | 1.047576792e9 | 78.0 | wikitext | NULL | null |
6.8861555e7 | 3.0 | Gcverberkmoespstcc | 0.0 | 1.0 | 0.193024734681 | 20220803125152 | 20220803125151 | 1.047576812e9 | 407.0 | wikitext | NULL | null |
6.8861556e7 | 4.0 | Featured_picture_candidates/Australian_Cattle_Dog_with_injured_leg | 0.0 | 0.0 | 0.844833567862 | 20211011204245 | 20221005182147 | 1.049437822e9 | 1884.0 | wikitext | NULL | null |
6.8861557e7 | 118.0 | Cornal_Tower | 1.0 | 1.0 | 0.919870007496 | 20221023093710 | 20220926111554 | 1.047576883e9 | 73.0 | wikitext | NULL | null |
6.8861558e7 | 119.0 | Cornal_Tower | 1.0 | 1.0 | 0.672623057336 | 20221023093710 | 20220926111554 | 1.047576888e9 | 78.0 | wikitext | NULL | null |
6.8861559e7 | 4.0 | Meetup/DC/Vaccine_Safety_Wikipedia_Edit-a-thon_WCNA | 0.0 | 0.0 | 0.461617922043 | 20221021213221 | 20221006152628 | 1.063337222e9 | 18386.0 | wikitext | NULL | null |
6.8861561e7 | 0.0 | Roald_Paulsen | 0.0 | 1.0 | 0.8363145374 | 20221031200508 | 20221028223847 | 1.047576964e9 | 1343.0 | wikitext | NULL | null |
6.8861563e7 | 2.0 | Acomplex/sandbox | 1.0 | 0.0 | 0.553532459364 | 20221023093710 | 20220926111554 | 1.054901509e9 | 93.0 | wikitext | NULL | null |
6.8861564e7 | 3.0 | Acomplex | 0.0 | 0.0 | 0.493133900092 | 20220913101409 | 20220803215305 | 1.053687135e9 | 4330.0 | wikitext | NULL | null |
6.8861565e7 | 1.0 | Roald_Paulsen | 0.0 | 1.0 | 0.614880810445 | 20221023093710 | 20220808033125 | 1.047577026e9 | 267.0 | wikitext | NULL | null |
6.8861566e7 | 3.0 | 114.10.11.192 | 0.0 | 1.0 | 0.648033010974 | 20220520195330 | 20221008154249 | 1.047577044e9 | 912.0 | wikitext | NULL | null |
6.8861568e7 | 0.0 | Anthonio_Sanjairag | 0.0 | 0.0 | 0.798989476049 | 20221031200508 | 20221022171332 | 1.099084629e9 | 4105.0 | wikitext | NULL | null |
6.886157e7 | 0.0 | Tor_Wæhler | 0.0 | 1.0 | 0.736069985338 | 20221031200508 | 20221030043917 | 1.047577283e9 | 1327.0 | wikitext | NULL | null |
6.8861571e7 | 6.0 | Cynar_bottles.jpg | 0.0 | 0.0 | 0.653375547803 | 20221023093710 | 20221022095041 | 1.10190775e9 | 507.0 | wikitext | NULL | null |
6.8861573e7 | 3.0 | Efraín.gms1981 | 0.0 | 1.0 | 0.214802695027 | 20220803125152 | 20220803125151 | 1.047577334e9 | 870.0 | wikitext | NULL | null |
6.8861574e7 | 3.0 | Lili_Strumf | 0.0 | 0.0 | 0.282928251397 | 20220913101409 | 20221010150718 | 1.080542122e9 | 9141.0 | wikitext | NULL | null |
6.8861575e7 | 0.0 | Mulholland_Drive_(album) | 0.0 | 0.0 | 0.371721268812 | 20221101084220 | 20221101084317 | 1.105943769e9 | 8628.0 | wikitext | NULL | null |
6.8861576e7 | 1.0 | Tor_Wæhler | 0.0 | 1.0 | 0.913285632129 | 20221023093710 | 20220808033125 | 1.047577364e9 | 265.0 | wikitext | NULL | null |
6.8861577e7 | 0.0 | Chonburi_railway_station | 0.0 | 0.0 | 0.561010395256 | 20221023074722 | 20221012043025 | 1.062247189e9 | 3598.0 | wikitext | NULL | null |
6.8861578e7 | 0.0 | Tor_Waehler | 1.0 | 1.0 | 0.590057216079 | 20221018182303 | 20221018182303 | 1.047577423e9 | 24.0 | wikitext | NULL | null |
6.8861579e7 | 3.0 | Luk0121 | 0.0 | 1.0 | 0.445646170257 | 20221018143339 | 20221018143338 | 1.047577457e9 | 4517.0 | wikitext | NULL | null |
6.886158e7 | 3.0 | Hamzahalloubi | 0.0 | 0.0 | 0.545223979699 | 20220809232000 | 20221010150718 | 1.04758432e9 | 8671.0 | wikitext | NULL | null |
6.8861581e7 | 3.0 | Itssanjeet | 0.0 | 1.0 | 0.798677938355 | 20221002143159 | 20221002143157 | 1.0475775e9 | 3206.0 | wikitext | NULL | null |
6.8861582e7 | 0.0 | 1898_Nebraska_gubernatorial_election | 0.0 | 0.0 | 0.721812551772 | 20221031203138 | 20221031232413 | 1.088064221e9 | 6402.0 | wikitext | NULL | null |
6.8861583e7 | 0.0 | Circuit_Laundry | 1.0 | 1.0 | 3.6330973482e-2 | 20221018064543 | 20221018064542 | 1.04757751e9 | 27.0 | wikitext | NULL | null |
6.8861584e7 | 3.0 | Dannybai2020 | 0.0 | 0.0 | 0.611355520962 | 20221020153739 | 20221020153737 | 1.047578603e9 | 1666.0 | wikitext | NULL | null |
6.8861585e7 | 0.0 | Cynanchum_pulchellum | 0.0 | 0.0 | 0.287379829217 | 20221031201239 | 20221031202144 | 1.047651649e9 | 1238.0 | wikitext | NULL | null |
6.8861587e7 | 14.0 | Grijalva_River | 0.0 | 0.0 | 0.914342930927 | 20221004153754 | 20220909225100 | 1.052140725e9 | 204.0 | wikitext | NULL | null |
6.8861588e7 | 119.0 | A_Blue_Flower | 0.0 | 0.0 | 6.4172306652e-2 | 20221023135015 | 20221025131059 | 1.104259038e9 | 143.0 | wikitext | NULL | null |
6.8861589e7 | 3.0 | Leonida-hr | 0.0 | 0.0 | 0.911740787173 | 20220821074719 | 20221008133447 | 1.104259033e9 | 5701.0 | wikitext | NULL | null |
6.886159e7 | 0.0 | Svein_Hammerø | 0.0 | 1.0 | 0.947982816025 | 20221031200508 | 20221029190021 | 1.047577717e9 | 1350.0 | wikitext | NULL | null |
6.8861591e7 | 15.0 | Grijalva_River | 0.0 | 1.0 | 0.107262643926 | 20221021144754 | 20220829095139 | 1.04757772e9 | 45.0 | wikitext | NULL | null |
6.8861592e7 | 1.0 | Svein_Hammerø | 0.0 | 1.0 | 0.381694237043 | 20221023093710 | 20220808033125 | 1.047577784e9 | 267.0 | wikitext | NULL | null |
6.8861593e7 | 0.0 | Svein_Hammero | 1.0 | 1.0 | 0.627646051687 | 20221018172923 | 20221018172921 | 1.047577826e9 | 27.0 | wikitext | NULL | null |
6.8861594e7 | 3.0 | Gerard_Alferez | 0.0 | 0.0 | 0.497730577097 | 20220917231312 | 20221010150718 | 1.078879036e9 | 5238.0 | wikitext | NULL | null |
6.8861596e7 | 0.0 | Savage_River_(TV_series) | 0.0 | 0.0 | 0.832486029373 | 20221026155522 | 20221026161217 | 1.116432979e9 | 11382.0 | wikitext | NULL | null |
6.8861597e7 | 3.0 | 2A02:2F08:200B:6900:A57E:D148:8BD7:787C | 0.0 | 0.0 | 0.721580578781 | 20221026145423 | 20221020153737 | 1.047581199e9 | 2076.0 | wikitext | NULL | null |
6.8861598e7 | 0.0 | Børge_Josefsen | 0.0 | 1.0 | 0.755900706387 | 20221031200508 | 20221026112112 | 1.047578e9 | 1358.0 | wikitext | NULL | null |
6.8861599e7 | 1.0 | Børge_Josefsen | 0.0 | 1.0 | 0.845328233809 | 20221023093710 | 20220808033126 | 1.047578045e9 | 268.0 | wikitext | NULL | null |
6.88616e7 | 0.0 | Borge_Josefsen | 1.0 | 1.0 | 0.242849578734 | 20221017181359 | 20221017181358 | 1.047578088e9 | 28.0 | wikitext | NULL | null |
6.8861601e7 | 3.0 | Visiontopgs | 0.0 | 0.0 | 0.565732359902 | 20221002143159 | 20221002143157 | 1.048130301e9 | 4902.0 | wikitext | NULL | null |
6.8861602e7 | 0.0 | The_Dancing_Druids | 0.0 | 0.0 | 0.186123261878 | 20221101080448 | 20221101080646 | 1.106522837e9 | 1868.0 | wikitext | NULL | null |
6.8861603e7 | 6.0 | Aperol_bottle.jpeg | 0.0 | 0.0 | 0.551915296732 | 20221023093710 | 20221022095041 | 1.049133697e9 | 469.0 | wikitext | NULL | null |
6.8861605e7 | 3.0 | Newmalayalam | 0.0 | 0.0 | 0.44932761902 | 20220917231312 | 20221010150719 | 1.05243175e9 | 7883.0 | wikitext | NULL | null |
6.8861606e7 | 3.0 | 2409:4043:2C9A:8945:0:0:B4B:1208 | 0.0 | 1.0 | 0.337823910212 | 20220520213805 | 20221008154250 | 1.047578209e9 | 1088.0 | wikitext | NULL | null |
6.8861607e7 | 0.0 | Finn_Vådahl | 0.0 | 1.0 | 0.221588568266 | 20221031200508 | 20221026113035 | 1.047578288e9 | 1333.0 | wikitext | NULL | null |
6.8861608e7 | 3.0 | Mohammed12313893/TWA | 0.0 | 0.0 | 0.20839706644 | 20211001142312 | 20220929165626 | 1.047578587e9 | 1245.0 | wikitext | NULL | null |
6.8861609e7 | 3.0 | Alpha23212 | 0.0 | 1.0 | 0.413322656595 | 20220803125152 | 20220803125151 | 1.047578388e9 | 753.0 | wikitext | NULL | null |
6.886161e7 | 1.0 | The_Dancing_Druids | 0.0 | 1.0 | 0.757476913698 | 20221021144754 | 20220828055325 | 1.047578418e9 | 51.0 | wikitext | NULL | null |
6.8861611e7 | 0.0 | Rutherford_B._Hayes_Presidential_Library_&_Museums | 1.0 | 1.0 | 5.8720509783e-2 | 20221018165227 | 20221018165226 | 1.04757844e9 | 53.0 | wikitext | NULL | null |
6.8861612e7 | 118.0 | St._Stefan_Serbian_Orthodox_Church_(Ottawa) | 1.0 | 1.0 | 0.380131768953 | 20221023093710 | 20220926111555 | 1.047578454e9 | 104.0 | wikitext | NULL | null |
6.8861613e7 | 1.0 | Finn_Vådahl | 0.0 | 1.0 | 0.156301444028 | 20221023093710 | 20220808033126 | 1.047578459e9 | 265.0 | wikitext | NULL | null |
6.8861614e7 | 1.0 | St._Stefan_Serbian_Orthodox_Church_(Ottawa) | 0.0 | 0.0 | 0.834079599272 | 20221023135015 | 20221026140056 | 1.072580834e9 | 311.0 | wikitext | NULL | null |
6.8861615e7 | 0.0 | Finn_Vadahl | 1.0 | 1.0 | 0.693225527805 | 20221018073416 | 20221018073415 | 1.047578504e9 | 25.0 | wikitext | NULL | null |
6.8861616e7 | 2.0 | Johnmilton2 | 0.0 | 0.0 | 0.920629466627 | 20220728025149 | 20220728025148 | 1.047759069e9 | 0.0 | wikitext | NULL | null |
6.8861617e7 | 0.0 | Oxalis_bifida | 0.0 | 0.0 | 0.148172456274 | 20221031201239 | 20221031202144 | 1.090526284e9 | 2900.0 | wikitext | NULL | null |
6.8861618e7 | 14.0 | 2022_song_contests | 0.0 | 1.0 | 3.5658509896e-2 | 20221028205914 | 20221005232416 | 1.047578547e9 | 211.0 | wikitext | NULL | null |
6.8861619e7 | 3.0 | 2402:8100:3A0A:4DF2:D645:A8B5:8E9E:CF73 | 0.0 | 1.0 | 0.633554224694 | 20220803125152 | 20220803125151 | 1.047578555e9 | 694.0 | wikitext | NULL | null |
6.886162e7 | 14.0 | 2022_in_British_motorsport | 0.0 | 1.0 | 0.292467983233 | 20221016125205 | 20220919202302 | 1.04757859e9 | 50.0 | wikitext | NULL | null |
6.8861623e7 | 15.0 | 2022_in_British_motorsport | 0.0 | 1.0 | 0.236316371919 | 20221021144754 | 20220808033126 | 1.047578618e9 | 164.0 | wikitext | NULL | null |
6.8861624e7 | 3.0 | 84.52.185.65 | 0.0 | 1.0 | 0.176158335205 | 20220521002319 | 20221008154250 | 1.047578625e9 | 1190.0 | wikitext | NULL | null |
6.8861626e7 | 3.0 | Syedabdulrehmantariq | 0.0 | 0.0 | 0.213534112906 | 20221020153739 | 20221020153738 | 1.047580445e9 | 2255.0 | wikitext | NULL | null |
6.8861627e7 | 0.0 | 2021_AFL_Sydney | 1.0 | 1.0 | 0.308018153373 | 20221018150426 | 20221018150425 | 1.047578894e9 | 156.0 | wikitext | NULL | null |
6.8861628e7 | 3.0 | MrWilson-2012 | 0.0 | 0.0 | 0.798583822693 | 20221017141655 | 20221030074922 | 1.047595265e9 | 1826.0 | wikitext | NULL | null |
6.8861629e7 | 3.0 | Vnlands | 0.0 | 0.0 | 0.522266584921 | 20221018143339 | 20221018143338 | 1.063101686e9 | 7511.0 | wikitext | NULL | null |
6.886163e7 | 0.0 | Dancing_on_My_Knees | 1.0 | 0.0 | 0.230558095314 | 20221018065718 | 20221018065717 | 1.047578949e9 | 28.0 | wikitext | NULL | null |
6.8861631e7 | 1.0 | Cynanchum_pulchellum | 0.0 | 1.0 | 0.121498072865 | 20221021144754 | 20221012013039 | 1.047578928e9 | 49.0 | wikitext | NULL | null |
6.8861632e7 | 0.0 | Melbourne_Welsh_Church | 0.0 | 0.0 | 0.207103875771 | 20221023074722 | 20221018035613 | 1.116748846e9 | 4587.0 | wikitext | NULL | null |
6.8861633e7 | 15.0 | Military_airbases_in_Prince_Edward_Island | 0.0 | 1.0 | 0.739978833852 | 20221027214635 | 20221028023705 | 1.047578938e9 | 46.0 | wikitext | NULL | null |
6.8861635e7 | 1.0 | OR-Tools | 0.0 | 0.0 | 0.157341108097 | 20221023093710 | 20220928234944 | 1.049381583e9 | 327.0 | wikitext | NULL | null |
6.8861636e7 | 0.0 | Ole_Kristian_Olsen | 0.0 | 1.0 | 0.978883627695 | 20221031200508 | 20221028061944 | 1.047578978e9 | 1366.0 | wikitext | NULL | null |
6.8861637e7 | 3.0 | GeorgiPergelov | 0.0 | 0.0 | 6.858411693e-3 | 20220809232000 | 20221010150718 | 1.059928632e9 | 25901.0 | wikitext | NULL | null |
6.8861638e7 | 0.0 | Jarle_Bernhoft_discography | 1.0 | 1.0 | 0.71790941436 | 20221018084255 | 20221018084254 | 1.047579007e9 | 40.0 | wikitext | NULL | null |
6.8861639e7 | 3.0 | PondStibbons | 0.0 | 0.0 | 0.582698852727 | 20220803125152 | 20220803125152 | 1.047579054e9 | 6271.0 | wikitext | NULL | null |
6.886164e7 | 3.0 | Imbadatthinkingofnames | 0.0 | 1.0 | 0.741327292098 | 20220803125152 | 20220803125152 | 1.047579042e9 | 1159.0 | wikitext | NULL | null |
6.8861641e7 | 1.0 | Ole_Kristian_Olsen | 0.0 | 1.0 | 0.255037177462 | 20221023093710 | 20220808033125 | 1.047579047e9 | 272.0 | wikitext | NULL | null |
6.8861643e7 | 3.0 | Glitt006 | 0.0 | 0.0 | 0.160600637554 | 20221017050855 | 20221017050854 | 1.069356321e9 | 3340.0 | wikitext | NULL | null |
6.8861644e7 | 0.0 | SF_Mono | 1.0 | 1.0 | 0.816669958605 | 20221018165333 | 20221018165332 | 1.047579121e9 | 57.0 | wikitext | NULL | null |
6.8861645e7 | 3.0 | 2600:8807:9A05:4800:1880:4CCA:18BB:8C1 | 0.0 | 1.0 | 0.284172731076 | 20220520215326 | 20221008154250 | 1.047579155e9 | 1470.0 | wikitext | NULL | null |
6.8861646e7 | 1.0 | Melbourne_Welsh_Church | 0.0 | 0.0 | 0.479874917931 | 20221023135015 | 20221026140056 | 1.047605704e9 | 197.0 | wikitext | NULL | null |
6.8861647e7 | 1.0 | RCAF_Station_North_Battleford | 0.0 | 1.0 | 0.459713561948 | 20221027214635 | 20221028023651 | 1.047579205e9 | 54.0 | wikitext | NULL | null |
6.8861648e7 | 0.0 | Impact_of_the_COVID-19_pandemic_on_gridiron_football | 0.0 | 0.0 | 0.667928214675 | 20221101031402 | 20221101021108 | 1.115534667e9 | 61782.0 | wikitext | NULL | null |
6.8861649e7 | 14.0 | July_2012_events_in_Turkey | 0.0 | 1.0 | 0.757621003179 | 20220918235337 | 20220924004206 | 1.047579283e9 | 466.0 | wikitext | NULL | null |
6.886165e7 | 0.0 | Erik_Karlsen | 0.0 | 0.0 | 0.248231303911 | 20221031200508 | 20221026112123 | 1.090848233e9 | 1839.0 | wikitext | NULL | null |
6.8861651e7 | 3.0 | Imranjofficial | 0.0 | 0.0 | 0.630675208811 | 20221018143339 | 20221018143338 | 1.078913719e9 | 6235.0 | wikitext | NULL | null |
6.8861652e7 | 15.0 | July_2012_events_in_Turkey | 0.0 | 1.0 | 0.876785695685 | 20221021144754 | 20220921193721 | 1.047579315e9 | 44.0 | wikitext | NULL | null |
6.8861654e7 | 3.0 | Kanij_Fatima_Ammim_Ammani | 0.0 | 1.0 | 0.902408900649 | 20221002143159 | 20221002143157 | 1.047579351e9 | 3236.0 | wikitext | NULL | null |
6.8861655e7 | 1.0 | Erik_Karlsen | 0.0 | 1.0 | 0.309267132221 | 20221023093710 | 20220808033125 | 1.047579353e9 | 266.0 | wikitext | NULL | null |
6.8861656e7 | 3.0 | FishandChipoer | 0.0 | 1.0 | 0.346937826364 | 20221002143159 | 20221002143157 | 1.047579354e9 | 3214.0 | wikitext | NULL | null |
6.8861657e7 | 10.0 | Birmingham_Phoenix_squad | 0.0 | 0.0 | 0.224743416717 | 20220831185957 | 20220831185957 | 1.10776084e9 | 1815.0 | wikitext | NULL | null |
6.8861658e7 | 3.0 | 83.27.149.184 | 0.0 | 0.0 | 0.680591639605 | 20220521002109 | 20221008154249 | 1.047796329e9 | 1962.0 | wikitext | NULL | null |
6.886166e7 | 3.0 | Aggreybusiingeofficial | 0.0 | 0.0 | 0.130356332991 | 20221018143339 | 20221018143337 | 1.047593081e9 | 6083.0 | wikitext | NULL | null |
6.8861661e7 | 11.0 | Birmingham_Phoenix_squad | 0.0 | 1.0 | 0.372726350092 | 20221023135015 | 20221025052855 | 1.047579443e9 | 23.0 | wikitext | NULL | null |
6.8861662e7 | 3.0 | 203.128.29.147 | 0.0 | 1.0 | 0.653254773606 | 20220520210323 | 20221008154249 | 1.047579447e9 | 978.0 | wikitext | NULL | null |
6.8861663e7 | 0.0 | Angie_Ng_Wee_Peng | 1.0 | 1.0 | 0.678790056665 | 20221017124356 | 20221017124355 | 1.047579452e9 | 33.0 | wikitext | NULL | null |
6.8861664e7 | 3.0 | RosarioGilley | 0.0 | 1.0 | 0.680344579362 | 20221018143339 | 20221018143338 | 1.047579456e9 | 5065.0 | wikitext | NULL | null |
6.8861665e7 | 0.0 | The_Art_of_Disappearing | 1.0 | 1.0 | 0.18989396894 | 20221018175023 | 20221018175022 | 1.047579492e9 | 23.0 | wikitext | NULL | null |
6.8861666e7 | 3.0 | 2001:8003:60A8:2601:A52A:1622:9BB5:6B18 | 0.0 | 1.0 | 1.943363543e-2 | 20220520205821 | 20221008154249 | 1.0475795e9 | 1047.0 | wikitext | NULL | null |
6.8861667e7 | 0.0 | Crystal_Poh_Shi_Qi | 1.0 | 1.0 | 0.449060083749 | 20221018065333 | 20221018065332 | 1.047579523e9 | 33.0 | wikitext | NULL | null |
6.8861668e7 | 3.0 | Lucygirl03 | 0.0 | 0.0 | 0.343472742219 | 20221031134605 | 20221029212144 | 1.118942661e9 | 58892.0 | wikitext | NULL | null |
6.8861669e7 | 0.0 | Women's_Wrestling_Grand_Prize | 1.0 | 0.0 | 0.945515118365 | 20221021165957 | 20221021165954 | 1.047579633e9 | 123.0 | wikitext | NULL | null |
6.886167e7 | 0.0 | Rune_Hansen | 0.0 | 0.0 | 1.764101452e-2 | 20221031200508 | 20221029034930 | 1.090848236e9 | 1853.0 | wikitext | NULL | null |
6.8861671e7 | 0.0 | Murders_of_Angie_Ng_and_Crystal_Poh | 1.0 | 1.0 | 0.449544406206 | 20221018095536 | 20221018095534 | 1.04757961e9 | 33.0 | wikitext | NULL | null |
6.8861672e7 | 3.0 | Izaz_Shaikh | 0.0 | 1.0 | 0.864586181688 | 20220803125152 | 20220803125152 | 1.047579631e9 | 4372.0 | wikitext | NULL | null |
6.8861674e7 | 3.0 | Tuxtion | 0.0 | 0.0 | 1.830774519e-2 | 20221028052204 | 20221028053417 | 1.049035853e9 | 346.0 | wikitext | NULL | null |
6.8861676e7 | 3.0 | Blaady_bla | 0.0 | 1.0 | 0.143920265519 | 20220803125152 | 20220803125151 | 1.047579661e9 | 813.0 | wikitext | NULL | null |
6.8861677e7 | 1.0 | Rune_Hansen | 0.0 | 1.0 | 0.318146488019 | 20221023093710 | 20220808033125 | 1.047579663e9 | 265.0 | wikitext | NULL | null |
6.8861678e7 | 0.0 | Rachel_David | 0.0 | 0.0 | 0.463874093755 | 20221029184648 | 20221029184932 | 1.100547605e9 | 9366.0 | wikitext | NULL | null |
6.8861679e7 | 3.0 | Alamgirsislam10 | 0.0 | 1.0 | 0.175995307733 | 20221002143159 | 20221002143157 | 1.047579702e9 | 3216.0 | wikitext | NULL | null |
6.886168e7 | 3.0 | AmethystShell | 0.0 | 1.0 | 7.5346351735e-2 | 20221002143159 | 20221002143157 | 1.047579706e9 | 3212.0 | wikitext | NULL | null |
6.8861681e7 | 3.0 | Delaytelo | 0.0 | 1.0 | 0.200387008872 | 20221018143339 | 20221018143337 | 1.047579736e9 | 4522.0 | wikitext | NULL | null |
6.8861682e7 | 2.0 | Edeckard | 0.0 | 1.0 | 0.402867021878 | 20221023093710 | 20220728025148 | 1.047579749e9 | 171.0 | wikitext | NULL | null |
6.8861683e7 | 3.0 | Edeckard | 0.0 | 0.0 | 0.717875434092 | 20221023093710 | 20220825090440 | 1.075054292e9 | 2089.0 | wikitext | NULL | null |
6.8861684e7 | 2.0 | Edeckard/sandbox | 0.0 | 1.0 | 0.888282655355 | 20221023093710 | 20221019025458 | 1.047579758e9 | 33.0 | wikitext | NULL | null |
6.8861685e7 | 3.0 | 2A00:23C5:2204:5D01:3933:97EA:4CEB:DB4C | 0.0 | 1.0 | 0.636211007029 | 20220520221541 | 20221008154250 | 1.047579798e9 | 976.0 | wikitext | NULL | null |
6.8861686e7 | 0.0 | UFC_Fight_Night_199 | 1.0 | 0.0 | 0.91191131742 | 20221019065242 | 20221019065242 | 1.04996754e9 | 48.0 | wikitext | NULL | null |
6.8861687e7 | 1.0 | UFC_Fight_Night_199 | 1.0 | 0.0 | 0.869512044887 | 20221004114453 | 20221004114451 | 1.049976086e9 | 53.0 | wikitext | NULL | null |
6.8861688e7 | 3.0 | Mr.Muhmmad_Rizwan | 0.0 | 0.0 | 2.7070221201e-2 | 20220909152227 | 20220726160342 | 1.047774495e9 | 9430.0 | wikitext | NULL | null |
6.8861689e7 | 14.0 | 2022_music_festivals | 0.0 | 1.0 | 0.539723337011 | 20220930022739 | 20220919024712 | 1.047579913e9 | 31.0 | wikitext | NULL | null |
6.886169e7 | 118.0 | Gersh_v._Anglin | 1.0 | 1.0 | 0.343766485777 | 20221023093710 | 20220926111554 | 1.047579919e9 | 76.0 | wikitext | NULL | null |
6.8861691e7 | 0.0 | Pa_Sheehy_discography | 1.0 | 1.0 | 0.661032362047 | 20221018101907 | 20221018101907 | 1.047579928e9 | 35.0 | wikitext | NULL | null |
6.8861692e7 | 1.0 | Gersh_v._Anglin | 0.0 | 0.0 | 0.362317932123 | 20221021144754 | 20221016062122 | 1.072580869e9 | 226.0 | wikitext | NULL | null |
6.8861693e7 | 1.0 | RCAF_Langar | 0.0 | 1.0 | 0.835245453042 | 20221027214635 | 20221028023652 | 1.04757994e9 | 54.0 | wikitext | NULL | null |
6.8861694e7 | 1.0 | RCAF_Resolution_Island | 0.0 | 1.0 | 0.359892949298 | 20221027214635 | 20221028023651 | 1.047579991e9 | 54.0 | wikitext | NULL | null |
6.8861695e7 | 0.0 | Association_of_Polish_Electrical_Engineers | 0.0 | 0.0 | 1.3017694285e-2 | 20221023074722 | 20221014201625 | 1.116096265e9 | 6602.0 | wikitext | NULL | null |
6.8861696e7 | 1.0 | RCAF_Station_Baden-Soellingen | 0.0 | 1.0 | 0.596917846664 | 20221027214635 | 20221028023705 | 1.047580024e9 | 54.0 | wikitext | NULL | null |
6.8861697e7 | 0.0 | While_We_Live | 0.0 | 0.0 | 0.352387668117 | 20221026145423 | 20221029135409 | 1.112985117e9 | 4140.0 | wikitext | NULL | null |
6.8861698e7 | 3.0 | 123456ronan | 0.0 | 1.0 | 0.622099238964 | 20220803125152 | 20220803125151 | 1.047580047e9 | 678.0 | wikitext | NULL | null |
6.8861699e7 | 0.0 | The_Polymath | 0.0 | 0.0 | 0.31029265449 | 20221026145423 | 20221025065711 | 1.111200237e9 | 15716.0 | wikitext | NULL | null |
6.88617e7 | 0.0 | Joshi_Puroresu_Grand_Prize | 1.0 | 0.0 | 0.857849904434 | 20221018085201 | 20221018085200 | 1.047580131e9 | 123.0 | wikitext | NULL | null |
6.8861701e7 | 0.0 | Ground_Controlled_Approach_Squadron_RAF | 1.0 | 1.0 | 7.4606633983e-2 | 20221031125114 | 20221018075357 | 1.047580095e9 | 100.0 | wikitext | NULL | null |
6.8861702e7 | 0.0 | Ground_Controlled_Approach_Flight_RAF | 1.0 | 1.0 | 0.63373790948 | 20221031125114 | 20221018075357 | 1.047580106e9 | 100.0 | wikitext | NULL | null |
6.8861703e7 | 0.0 | Human_hermaphroditism | 1.0 | 0.0 | 0.100351509146 | 20221030000223 | 20221030000221 | 1.047580175e9 | 70.0 | wikitext | NULL | null |
6.8861704e7 | 1.0 | Association_of_Polish_Electrical_Engineers | 0.0 | 1.0 | 0.840889201971 | 20221023093710 | 20220828041353 | 1.047580198e9 | 56.0 | wikitext | NULL | null |
6.8861706e7 | 3.0 | Thebossblogger | 0.0 | 1.0 | 0.273042505425 | 20220803125152 | 20220803125152 | 1.04758026e9 | 257.0 | wikitext | NULL | null |
6.8861707e7 | 0.0 | Joshua_Vanneck | 0.0 | 1.0 | 7.7101199755e-2 | 20221011054852 | 20220927181812 | 1.047580297e9 | 275.0 | wikitext | NULL | null |
6.8861708e7 | 3.0 | Hunzaikashif49 | 0.0 | 0.0 | 0.319086531661 | 20221017141659 | 20221030074922 | 1.04759526e9 | 3587.0 | wikitext | NULL | null |
6.8861709e7 | 2.0 | Bokoharamwatch/Contra_trade | 0.0 | 1.0 | 0.196832859129 | 20220728025149 | 20220728025148 | 1.047580453e9 | 106.0 | wikitext | NULL | null |
6.8861711e7 | 0.0 | Franz_Schmidt_(serial_killer) | 0.0 | 0.0 | 0.411672900331 | 20221023074722 | 20221013102206 | 1.111423489e9 | 7866.0 | wikitext | NULL | null |
6.8861712e7 | 3.0 | AussieYTgrl | 0.0 | 0.0 | 0.103206945213 | 20220911065958 | 20220911065957 | 1.047625907e9 | 1054.0 | wikitext | NULL | null |
6.8861713e7 | 1.0 | Franz_Schmidt_(serial_killer) | 0.0 | 0.0 | 0.789008104812 | 20221023093710 | 20221006085557 | 1.04787779e9 | 414.0 | wikitext | NULL | null |
6.8861714e7 | 3.0 | Siofraferriter | 0.0 | 1.0 | 0.546016904058 | 20220803125152 | 20220803125152 | 1.047580654e9 | 803.0 | wikitext | NULL | null |
6.8861715e7 | 0.0 | PonJola_Coney | 0.0 | 0.0 | 0.39386415113 | 20221023074722 | 20221011211739 | 1.105013615e9 | 6349.0 | wikitext | NULL | null |
6.8861716e7 | 3.0 | 2A00:23C8:1901:F001:5D32:9DC3:D765:14C3 | 0.0 | 1.0 | 0.463345781963 | 20220520221816 | 20221008154249 | 1.047580761e9 | 1166.0 | wikitext | NULL | null |
6.8861717e7 | 3.0 | 92.184.96.235 | 0.0 | 1.0 | 0.733334083846 | 20220803125152 | 20220803125151 | 1.047580764e9 | 846.0 | wikitext | NULL | null |
6.8861718e7 | 3.0 | 78.1.199.16 | 0.0 | 1.0 | 0.671051757512 | 20220521000316 | 20221008154249 | 1.047580767e9 | 1203.0 | wikitext | NULL | null |
6.8861719e7 | 3.0 | 37.161.41.122 | 0.0 | 1.0 | 7.6172751058e-2 | 20220803125155 | 20220803125154 | 1.047580802e9 | 757.0 | wikitext | NULL | null |
6.886172e7 | 4.0 | Miscellany_for_deletion/User:Pomtarr82/List_of_cyclists_nicknames | 0.0 | 0.0 | 0.332515262719 | 20220821081144 | 20220724102001 | 1.049115936e9 | 5689.0 | wikitext | NULL | null |
6.8861721e7 | 3.0 | 217.155.32.184 | 0.0 | 1.0 | 0.970328707658 | 20221018143339 | 20221018143337 | 1.047580836e9 | 5629.0 | wikitext | NULL | null |
6.8861722e7 | 0.0 | The_Lathums_discography | 1.0 | 1.0 | 7.0618592386e-2 | 20221028153121 | 20221018175829 | 1.047580868e9 | 37.0 | wikitext | NULL | null |
6.8861723e7 | 0.0 | East_Basin,_Utah | 0.0 | 1.0 | 0.141818813628 | 20221028095959 | 20221028100118 | 1.047580997e9 | 3712.0 | wikitext | NULL | null |
6.8861724e7 | 3.0 | Pomroy24 | 0.0 | 0.0 | 0.387735741104 | 20220803125155 | 20220803125155 | 1.047626147e9 | 5904.0 | wikitext | NULL | null |
6.8861725e7 | 1.0 | While_We_Live | 0.0 | 0.0 | 0.292435202511 | 20221027024549 | 20221027110843 | 1.096312003e9 | 131.0 | wikitext | NULL | null |
6.8861726e7 | 3.0 | 170.51.180.115 | 0.0 | 1.0 | 2.2290709287e-2 | 20220520202753 | 20221008154249 | 1.047581087e9 | 1035.0 | wikitext | NULL | null |
6.8861727e7 | 3.0 | 174.215.200.36 | 0.0 | 1.0 | 0.899278947575 | 20220520203402 | 20221008154249 | 1.047581132e9 | 1041.0 | wikitext | NULL | null |
6.8861728e7 | 2.0 | Dhemmy234 | 0.0 | 1.0 | 0.364917944126 | 20221023093710 | 20221018143337 | 1.047581189e9 | 25.0 | wikitext | NULL | null |
6.8861729e7 | 3.0 | 156.110.149.15 | 0.0 | 0.0 | 2.721336808e-3 | 20220706160733 | 20221008154249 | 1.084617531e9 | 1600.0 | wikitext | NULL | null |
6.886173e7 | 2.0 | Abbigail01 | 0.0 | 1.0 | 0.142922321573 | 20221026145423 | 20221018143337 | 1.047581234e9 | 31.0 | wikitext | NULL | null |
6.8861731e7 | 3.0 | 180.151.89.168 | 0.0 | 1.0 | 0.737758692268 | 20220803125155 | 20220803125154 | 1.047581245e9 | 598.0 | wikitext | NULL | null |
6.8861732e7 | 2.0 | Freddy435 | 0.0 | 1.0 | 0.718269901805 | 20221026145423 | 20221018143337 | 1.047581254e9 | 31.0 | wikitext | NULL | null |
6.8861733e7 | 3.0 | 2409:4073:4E99:6AD1:A42C:532E:8BF7:EF43 | 0.0 | 1.0 | 5.3006528582e-2 | 20220520214222 | 20221008154249 | 1.047581281e9 | 1155.0 | wikitext | NULL | null |
6.8861734e7 | 2.0 | Acatalinaa/sandbox | 0.0 | 0.0 | 0.357636973489 | 20221023093710 | 20220803125345 | 1.049596984e9 | 3472.0 | wikitext | NULL | null |
6.8861735e7 | 3.0 | Vieites | 0.0 | 0.0 | 0.738307811644 | 20220917231312 | 20221010150718 | 1.078879137e9 | 5275.0 | wikitext | NULL | null |
6.8861736e7 | 14.0 | Wikipedia_sockpuppets_of_Dhemmy234 | 0.0 | 1.0 | 0.434483750992 | 20221023093710 | 20220807180730 | 1.047581304e9 | 23.0 | wikitext | NULL | null |
6.8861737e7 | 3.0 | Raunak1401 | 0.0 | 1.0 | 0.580320971627 | 20220803125155 | 20220803125155 | 1.047581331e9 | 295.0 | wikitext | NULL | null |
6.8861738e7 | 3.0 | Newsomj | 0.0 | 0.0 | 0.274491359421 | 20220911065958 | 20220911065957 | 1.047581847e9 | 1312.0 | wikitext | NULL | null |
6.8861739e7 | 0.0 | 2021_World_Wrestling_Championships_–_Men's_freestyle_125_kg | 0.0 | 0.0 | 0.496605890429 | 20221031130513 | 20221031130539 | 1.118338045e9 | 6785.0 | wikitext | NULL | null |
6.8861741e7 | 6.0 | Crossroads_Guitar_Festival_2019.jpg | 0.0 | 0.0 | 0.119779970409 | 20221023093710 | 20220828202426 | 1.049133993e9 | 659.0 | wikitext | NULL | null |
6.8861742e7 | 3.0 | 69.193.53.210 | 0.0 | 1.0 | 0.757593606517 | 20220520231342 | 20221008154249 | 1.047581527e9 | 1122.0 | wikitext | NULL | null |
6.8861743e7 | 2.0 | Alliekohl/Manatee | 0.0 | 0.0 | 0.523647112501 | 20221023074722 | 20221003060233 | 1.057322854e9 | 6100.0 | wikitext | NULL | null |
6.8861744e7 | 3.0 | 66.177.145.115 | 0.0 | 1.0 | 0.434904880862 | 20220520225434 | 20221008154249 | 1.047581537e9 | 1352.0 | wikitext | NULL | null |
6.8861745e7 | 3.0 | 2402:8100:24E6:BD42:0:0:437F:9BBA | 0.0 | 1.0 | 0.494716478361 | 20220520213335 | 20221008154249 | 1.047581616e9 | 1120.0 | wikitext | NULL | null |
6.8861747e7 | 1.0 | Music_at_the_University_of_Massachusetts_Lowell | 0.0 | 0.0 | 0.440188196974 | 20221021144754 | 20220908104247 | 1.064185405e9 | 171.0 | wikitext | NULL | null |
6.8861748e7 | 3.0 | 112.201.255.86 | 0.0 | 1.0 | 0.611161960646 | 20220520195223 | 20221008154249 | 1.047581702e9 | 1133.0 | wikitext | NULL | null |
6.886175e7 | 1.0 | Rachel_David | 0.0 | 0.0 | 0.454477336572 | 20221023093710 | 20220808033126 | 1.072674857e9 | 1042.0 | wikitext | NULL | null |
6.8861751e7 | 2.0 | Highdee24 | 0.0 | 1.0 | 0.467001553705 | 20220728025149 | 20220728025148 | 1.047581773e9 | 59.0 | wikitext | NULL | null |
6.8861752e7 | 2.0 | Doniefitz | 0.0 | 1.0 | 0.576368289221 | 20220728025149 | 20220728025148 | 1.047581778e9 | 86.0 | wikitext | NULL | null |
6.8861753e7 | 6.0 | Kid_Amazo.jpg | 0.0 | 0.0 | 3.5000067019e-2 | 20221101064103 | 20221101064055 | 1.049134801e9 | 447.0 | wikitext | NULL | null |
6.8861754e7 | 7.0 | Kid_Amazo.jpg | 0.0 | 1.0 | 2.7056837242e-2 | 20221023135015 | 20221026140056 | 1.047581881e9 | 88.0 | wikitext | NULL | null |
6.8861755e7 | 3.0 | Rizwan_Chopan | 0.0 | 1.0 | 0.33821325296 | 20220913101409 | 20220803125155 | 1.047581901e9 | 7067.0 | wikitext | NULL | null |
6.8861756e7 | 3.0 | 2401:4900:5082:3B62:FED3:211D:C79C:BC17 | 0.0 | 1.0 | 0.670463157926 | 20220520213136 | 20221008154249 | 1.047581919e9 | 1209.0 | wikitext | NULL | null |
6.8861757e7 | 3.0 | ElerAstaldo | 0.0 | 1.0 | 0.651419446544 | 20220913101409 | 20220803215305 | 1.047581923e9 | 1237.0 | wikitext | NULL | null |
6.8861758e7 | 6.0 | Winnipeg_Goldeyes_cap_insignia.jpg | 0.0 | 0.0 | 0.12662280051 | 20221101064103 | 20221101064100 | 1.049136426e9 | 742.0 | wikitext | NULL | null |
6.8861759e7 | 3.0 | 2601:646:8400:5750:1D56:EA28:77DC:ECB2 | 0.0 | 1.0 | 0.511939001131 | 20221020153739 | 20221020153737 | 1.047582019e9 | 1266.0 | wikitext | NULL | null |
6.886176e7 | 3.0 | Taking_Out_The_Trash/Archive_2 | 0.0 | 1.0 | 0.39605814858 | 20221023093710 | 20221004181835 | 1.047582021e9 | 10144.0 | wikitext | NULL | null |
6.8861761e7 | 4.0 | WikiProject_Spam/LinkReports/ourrangefinder.com | 0.0 | 1.0 | 2.3157795549e-2 | 20221023093710 | 20221030150250 | 1.047582024e9 | 1638.0 | wikitext | NULL | null |
6.8861762e7 | 3.0 | 2601:403:4380:130:E455:4089:7F8A:C43E | 0.0 | 1.0 | 5.9168522535e-2 | 20220520215814 | 20221008154249 | 1.047582046e9 | 1409.0 | wikitext | NULL | null |
6.8861764e7 | 3.0 | Vitaliy.Pipich | 0.0 | 1.0 | 0.357926496386 | 20221018143339 | 20221018143338 | 1.047582112e9 | 5406.0 | wikitext | NULL | null |
6.8861765e7 | 3.0 | Kollegal_nauman | 0.0 | 0.0 | 0.257665881021 | 20220803125155 | 20220803125154 | 1.047586439e9 | 3254.0 | wikitext | NULL | null |
6.8861766e7 | 3.0 | 192.41.128.1 | 0.0 | 0.0 | 0.357625620949 | 20221023093710 | 20221008154249 | 1.06942658e9 | 3453.0 | wikitext | NULL | null |
6.8861767e7 | 2.0 | DanielleNabor/citing_sources | 0.0 | 1.0 | 0.199786223805 | 20220728025149 | 20220728025148 | 1.047582147e9 | 569.0 | wikitext | NULL | null |
6.8861769e7 | 3.0 | 124.188.94.172 | 0.0 | 1.0 | 0.469298660535 | 20220520200921 | 20221008154249 | 1.04758218e9 | 970.0 | wikitext | NULL | null |
6.886177e7 | 2.0 | Spark_23 | 0.0 | 1.0 | 0.740738063712 | 20220728025149 | 20220728025149 | 1.047582186e9 | 46.0 | wikitext | NULL | null |
6.8861771e7 | 3.0 | 50.38.71.7 | 0.0 | 1.0 | 0.962142659684 | 20220520224151 | 20221008154249 | 1.047582266e9 | 1164.0 | wikitext | NULL | null |
6.8861772e7 | 3.0 | Ethan12343 | 0.0 | 1.0 | 0.901623879695 | 20221020153739 | 20221020153737 | 1.047582288e9 | 1096.0 | wikitext | NULL | null |
6.8861773e7 | 0.0 | Ida_Bagus_Putra_Manuaba | 0.0 | 0.0 | 0.179596175015 | 20221028074243 | 20221028171830 | 1.072429367e9 | 4073.0 | wikitext | NULL | null |
6.8861774e7 | 3.0 | 106.210.111.44 | 0.0 | 1.0 | 0.82661407957 | 20220520194604 | 20221008154249 | 1.047582375e9 | 1109.0 | wikitext | NULL | null |
6.8861775e7 | 10.0 | Did_you_know_nominations/Temagami_River | 0.0 | 0.0 | 8.5992991566e-2 | 20221022145713 | 20221005084203 | 1.050411648e9 | 4856.0 | wikitext | NULL | null |
6.8861776e7 | 3.0 | 2804:18:1030:5D9B:1:0:BBEA:CB0F | 0.0 | 0.0 | 0.460354565734 | 20220520221353 | 20221008154249 | 1.04758308e9 | 2042.0 | wikitext | NULL | null |
6.8861777e7 | 3.0 | Watchword22 | 0.0 | 1.0 | 0.644140814578 | 20220913101409 | 20220803125155 | 1.047582408e9 | 7812.0 | wikitext | NULL | null |
6.8861779e7 | 3.0 | 2600:1004:B035:8140:25DD:8C02:96AA:739B | 0.0 | 1.0 | 0.119643256648 | 20220520214308 | 20221008154249 | 1.047582433e9 | 1128.0 | wikitext | NULL | null |
6.886178e7 | 3.0 | 2409:4054:21D:ED22:0:0:16C7:8A0 | 0.0 | 1.0 | 8.8093467974e-2 | 20220520213911 | 20221008154250 | 1.047582465e9 | 1114.0 | wikitext | NULL | null |
6.8861781e7 | 3.0 | 2A01:4C8:824:BD37:1:1:3782:2EEE | 0.0 | 1.0 | 0.230604727012 | 20220520221949 | 20221008154250 | 1.047582489e9 | 1142.0 | wikitext | NULL | null |
6.8861783e7 | 0.0 | Drina_National_Park | 0.0 | 0.0 | 0.97249602974 | 20221029113445 | 20221029113616 | 1.118868998e9 | 4738.0 | wikitext | NULL | null |
6.8861784e7 | 0.0 | Ceriogaster_auricaudatus | 1.0 | 1.0 | 0.780797044139 | 20221018063921 | 20221018063920 | 1.047582506e9 | 35.0 | wikitext | NULL | null |
6.8861785e7 | 3.0 | 87.49.146.57 | 0.0 | 1.0 | 0.87093594294 | 20220521003644 | 20221008154250 | 1.047582546e9 | 1285.0 | wikitext | NULL | null |
6.8861786e7 | 3.0 | Harrison_Debbage-Price | 0.0 | 0.0 | 0.586234953028 | 20221018143339 | 20221018143338 | 1.047629635e9 | 6617.0 | wikitext | NULL | null |
6.8861787e7 | 3.0 | 86.5.23.74 | 0.0 | 1.0 | 0.300839433818 | 20220521003439 | 20221008154250 | 1.047582613e9 | 1101.0 | wikitext | NULL | null |
6.8861788e7 | 3.0 | Merosharesansar | 0.0 | 0.0 | 0.585822644305 | 20221026145423 | 20220926204458 | 1.063101805e9 | 4063.0 | wikitext | NULL | null |
6.8861789e7 | 2.0 | Jar07016/Bay_cat | 0.0 | 0.0 | 0.695544602478 | 20221023074722 | 20221002044719 | 1.056075745e9 | 9461.0 | wikitext | NULL | null |
6.8861791e7 | 3.0 | 98.199.148.184 | 0.0 | 1.0 | 0.551692139509 | 20220803125155 | 20220803125154 | 1.047582727e9 | 765.0 | wikitext | NULL | null |
6.8861792e7 | 3.0 | Michaelakasa | 0.0 | 1.0 | 0.998616434338 | 20220803125155 | 20220803125154 | 1.047582773e9 | 4237.0 | wikitext | NULL | null |
6.8861793e7 | 1.0 | Drina_National_Park | 0.0 | 1.0 | 0.695918977527 | 20221021144754 | 20220930051002 | 1.047582807e9 | 124.0 | wikitext | NULL | null |
6.8861794e7 | 3.0 | Mrizki99 | 0.0 | 1.0 | 0.569223652433 | 20220913101410 | 20220803125155 | 1.047582837e9 | 7057.0 | wikitext | NULL | null |
6.8861795e7 | 3.0 | 111.125.221.74 | 0.0 | 0.0 | 0.929996313723 | 20220520195114 | 20221008154250 | 1.049541697e9 | 1754.0 | wikitext | NULL | null |
6.8861796e7 | 2.0 | Itssanjeet/Sample_page | 0.0 | 0.0 | 0.696292106561 | 20221023074722 | 20220820005754 | 1.04758609e9 | 1413.0 | wikitext | NULL | null |
6.8861798e7 | 0.0 | Oleh_Synyehubov | 0.0 | 0.0 | 0.566756842883 | 20221029150903 | 20221101090857 | 1.112124149e9 | 9731.0 | wikitext | NULL | null |
6.8861799e7 | 2.0 | Newsomj | 0.0 | 0.0 | 0.918120724423 | 20220728025149 | 20220728025148 | 1.047583408e9 | 48.0 | wikitext | NULL | null |
6.88618e7 | 0.0 | No._1312_Mobile_Wing_RAF_Regiment | 1.0 | 1.0 | 0.906150380108 | 20221018100742 | 20221018100741 | 1.047583065e9 | 96.0 | wikitext | NULL | null |
6.8861801e7 | 0.0 | No._1315_Mobile_Wing_RAF_Regiment | 1.0 | 1.0 | 0.298123591379 | 20221018100742 | 20221018100741 | 1.047583081e9 | 96.0 | wikitext | NULL | null |
6.8861803e7 | 0.0 | Nijel_Pack | 0.0 | 0.0 | 4.6544136393e-2 | 20221031210758 | 20221031232314 | 1.085247506e9 | 8170.0 | wikitext | NULL | null |
6.8861804e7 | 3.0 | 67.84.96.201 | 0.0 | 1.0 | 0.967831947824 | 20220520230120 | 20221008154250 | 1.047583122e9 | 1331.0 | wikitext | NULL | null |
6.8861805e7 | 2.0 | Newsomj/sandbox | 0.0 | 1.0 | 0.39403599361 | 20221023093710 | 20220803125344 | 1.047583157e9 | 20686.0 | wikitext | NULL | null |
6.8861806e7 | 1.0 | Ilham_Aliyev/en.wikipedia.org/wiki/Wikipedia:Contact_us | 0.0 | 1.0 | 0.20574776888 | 20221004085508 | 20221004085506 | 1.047583179e9 | 550.0 | wikitext | NULL | null |
6.8861807e7 | 0.0 | Sienna_Mapelli_Mozzi | 1.0 | 0.0 | 0.336951694117 | 20221031144728 | 20221031144725 | 1.063193953e9 | 302.0 | wikitext | NULL | null |
6.8861808e7 | 3.0 | 96.250.225.94 | 0.0 | 1.0 | 0.24331932106 | 20220803125155 | 20220803125154 | 1.047583219e9 | 1441.0 | wikitext | NULL | null |
6.886181e7 | 1.0 | Sienna_Mapelli_Mozzi | 1.0 | 1.0 | 4.8955040707e-2 | 20221004114453 | 20221004114451 | 1.047583238e9 | 36.0 | wikitext | NULL | null |
6.8861812e7 | 2.0 | Vladrichi | 0.0 | 1.0 | 0.424546887019 | 20220728025149 | 20220728025149 | 1.047583297e9 | 260.0 | wikitext | NULL | null |
6.8861813e7 | 3.0 | 198.162.12.104 | 0.0 | 0.0 | 0.727789268992 | 20221010144831 | 20221010144831 | 1.115249655e9 | 2985.0 | wikitext | NULL | null |
6.8861814e7 | 14.0 | 82_mm_mortars | 0.0 | 0.0 | 0.108307763495 | 20221004174814 | 20221004174813 | 1.047583397e9 | 49.0 | wikitext | NULL | null |
6.8861815e7 | 3.0 | 2600:8800:2440:8800:3993:D3FB:A23F:DAB5 | 0.0 | 1.0 | 0.10102904064 | 20220520215201 | 20221008154250 | 1.047583411e9 | 1334.0 | wikitext | NULL | null |
6.8861816e7 | 2.0 | Govind_khiste/sandbox | 0.0 | 0.0 | 0.258211406435 | 20220728025149 | 20220728025148 | 1.047583826e9 | 19.0 | wikitext | NULL | null |
6.8861817e7 | 2.0 | PaulFourtySix | 0.0 | 0.0 | 0.605800648075 | 20220728025149 | 20220728025148 | 1.047583619e9 | 182.0 | wikitext | NULL | null |
6.8861818e7 | 3.0 | 24.51.244.117 | 0.0 | 0.0 | 0.893682734984 | 20221025184820 | 20221008154250 | 1.05845096e9 | 2613.0 | wikitext | NULL | null |
6.8861819e7 | 3.0 | 41.13.90.118 | 0.0 | 1.0 | 0.873893964498 | 20220520223210 | 20221008154250 | 1.047583662e9 | 1303.0 | wikitext | NULL | null |
6.886182e7 | 3.0 | Praguebass | 0.0 | 0.0 | 0.326821205446 | 20221017141659 | 20221030074922 | 1.047595254e9 | 2034.0 | wikitext | NULL | null |
6.8861821e7 | 3.0 | 198.162.12.103 | 0.0 | 1.0 | 0.259907034682 | 20220520205202 | 20221008154250 | 1.047583705e9 | 1299.0 | wikitext | NULL | null |
6.8861822e7 | 3.0 | Ashfaqanjum87866 | 0.0 | 1.0 | 0.562247849456 | 20220911065958 | 20220911065957 | 1.04758375e9 | 1154.0 | wikitext | NULL | null |
6.8861824e7 | 3.0 | 2406:3003:2001:2CB2:4766:5012:B7ED:6495 | 0.0 | 1.0 | 5.900386518e-2 | 20220520213652 | 20221008154250 | 1.047583797e9 | 1160.0 | wikitext | NULL | null |
6.8861825e7 | 3.0 | 217.181.22.34 | 0.0 | 1.0 | 0.246331105287 | 20220520211631 | 20221008154250 | 1.047583875e9 | 1164.0 | wikitext | NULL | null |
6.8861826e7 | 3.0 | Tereza_Rachinhas | 0.0 | 0.0 | 0.453983245454 | 20211001153209 | 20221023171403 | 1.047589501e9 | 2074.0 | wikitext | NULL | null |
6.8861827e7 | 6.0 | Arnold_Waites.png | 0.0 | 1.0 | 0.247635596695 | 20221101064103 | 20221101064050 | 1.047583953e9 | 562.0 | wikitext | NULL | null |
6.8861828e7 | 0.0 | No._2893_Squadron_RAF_Regiment | 1.0 | 1.0 | 0.689552314085 | 20221018100804 | 20221018100803 | 1.047584042e9 | 104.0 | wikitext | NULL | null |
6.8861829e7 | 3.0 | Manoharjha007 | 0.0 | 0.0 | 6.3489272777e-2 | 20220917231312 | 20221010150718 | 1.078879304e9 | 13601.0 | wikitext | NULL | null |
6.886183e7 | 0.0 | Parti_Libre_Canada | 1.0 | 0.0 | 0.717577517062 | 20221028225437 | 20221028225435 | 1.052406246e9 | 107.0 | wikitext | NULL | null |
6.8861831e7 | 3.0 | 77.143.4.161 | 0.0 | 0.0 | 7.696295473e-3 | 20220521000209 | 20221008154250 | 1.047588045e9 | 2231.0 | wikitext | NULL | null |
6.8861833e7 | 4.0 | Map_data/Buckingham_(UK_Parliament_constituency) | 0.0 | 1.0 | 0.805125839464 | 20220930232637 | 20220930232635 | 1.047584202e9 | 27662.0 | wikitext | NULL | null |
6.8861834e7 | 3.0 | 67.230.57.242 | 0.0 | 1.0 | 4.48050033e-3 | 20220520225931 | 20221008154250 | 1.047584224e9 | 1165.0 | wikitext | NULL | null |
6.8861835e7 | 3.0 | The_Ranger71 | 0.0 | 1.0 | 5.966677788e-3 | 20220825203343 | 20220825203342 | 1.047584247e9 | 1610.0 | wikitext | NULL | null |
6.8861836e7 | 3.0 | 27.5.41.250 | 0.0 | 1.0 | 3.1604290122e-2 | 20220803125155 | 20220803125154 | 1.047584319e9 | 2160.0 | wikitext | NULL | null |
6.8861837e7 | 3.0 | Pope_Atlas | 0.0 | 0.0 | 0.758090112304 | 20220803125155 | 20220803125155 | 1.047584496e9 | 0.0 | wikitext | NULL | null |
6.8861839e7 | 3.0 | 70.188.227.235 | 0.0 | 1.0 | 0.521936706791 | 20220520231958 | 20221008154250 | 1.047584359e9 | 1160.0 | wikitext | NULL | null |
6.886184e7 | 3.0 | 2405:9800:B920:BEE1:70F3:36EE:A05C:4B02 | 0.0 | 1.0 | 1.6355332409e-2 | 20220520213649 | 20221008154250 | 1.047584406e9 | 1161.0 | wikitext | NULL | null |
6.8861841e7 | 4.0 | Map_data/Broadland_(UK_Parliament_constituency) | 0.0 | 0.0 | 0.654343544499 | 20220930232637 | 20220930232635 | 1.047584606e9 | 30514.0 | wikitext | NULL | null |
6.8861842e7 | 3.0 | Uliberty | 0.0 | 0.0 | 0.855941773689 | 20221017141659 | 20221030074922 | 1.050055715e9 | 1538.0 | wikitext | NULL | null |
6.8861843e7 | 3.0 | 46.217.8.152 | 0.0 | 1.0 | 0.668734638243 | 20220803125155 | 20220803125154 | 1.047584514e9 | 951.0 | wikitext | NULL | null |
6.8861844e7 | 3.0 | 58.171.165.26 | 0.0 | 0.0 | 0.751571243845 | 20220913101410 | 20221008154250 | 1.071398583e9 | 3689.0 | wikitext | NULL | null |
6.8861845e7 | 0.0 | 1941_Spring_Hill_Badgers_football_team | 0.0 | 0.0 | 0.278381223903 | 20221029222957 | 20221030055702 | 1.075449158e9 | 5517.0 | wikitext | NULL | null |
6.8861846e7 | 3.0 | F14fixr | 0.0 | 0.0 | 0.739826030302 | 20220913101410 | 20220911065957 | 1.047701129e9 | 3803.0 | wikitext | NULL | null |
6.8861847e7 | 3.0 | 2600:1702:50:26A0:B9B2:D2C5:BB01:4DC0 | 0.0 | 1.0 | 0.416172998708 | 20220520214955 | 20221008154250 | 1.047584582e9 | 1136.0 | wikitext | NULL | null |
6.8861848e7 | 0.0 | Adolfo_Infante | 0.0 | 0.0 | 0.40812327842 | 20221026195056 | 20221026202059 | 1.112497988e9 | 8149.0 | wikitext | NULL | null |
6.8861849e7 | 0.0 | 2021_UCI_Road_World_Championships_–_Men's_under-23_time_trial | 0.0 | 0.0 | 0.122725132469 | 20221031232845 | 20221101014106 | 1.111168054e9 | 6687.0 | wikitext | NULL | null |
6.886185e7 | 1.0 | 1941_Spring_Hill_Badgers_football_team | 0.0 | 1.0 | 3.394632847e-2 | 20221027063132 | 20221027080018 | 1.047584622e9 | 58.0 | wikitext | NULL | null |
6.8861851e7 | 3.0 | 72.49.184.215 | 0.0 | 0.0 | 0.592386771717 | 20221023093710 | 20221008154250 | 1.052144377e9 | 12462.0 | wikitext | NULL | null |
6.8861852e7 | 6.0 | Kroloteans.jpg | 0.0 | 0.0 | 0.878866743388 | 20221028191549 | 20221028191542 | 1.049134812e9 | 426.0 | wikitext | NULL | null |
6.8861853e7 | 3.0 | 163.53.24.4 | 0.0 | 1.0 | 0.256537768397 | 20220803125155 | 20220803125154 | 1.047584745e9 | 759.0 | wikitext | NULL | null |
6.8861854e7 | 1.0 | Anthonio_Sanjairag | 0.0 | 0.0 | 0.616228320155 | 20221023093710 | 20221018222633 | 1.072334032e9 | 320.0 | wikitext | NULL | null |
6.8861855e7 | 7.0 | Kroloteans.jpg | 0.0 | 1.0 | 0.750467786145 | 20221023135015 | 20221026140056 | 1.047584777e9 | 88.0 | wikitext | NULL | null |
6.8861856e7 | 3.0 | 2A02:C7F:AEB8:3A00:4962:50F1:F845:CEE8 | 0.0 | 1.0 | 0.611340277264 | 20220520222530 | 20221008154250 | 1.047584809e9 | 1131.0 | wikitext | NULL | null |
6.8861857e7 | 3.0 | Karlpalencia1 | 0.0 | 1.0 | 0.950279345147 | 20220803125155 | 20220803125154 | 1.047584829e9 | 762.0 | wikitext | NULL | null |
6.8861858e7 | 3.0 | MJL | 0.0 | 0.0 | 0.975106054945 | 20221101080002 | 20221101080128 | 1.119180297e9 | 93473.0 | wikitext | NULL | null |
6.8861859e7 | 0.0 | Volevo_fare_la_Rockstar | 1.0 | 1.0 | 0.56488220082 | 20221031021207 | 20221019095107 | 1.047584928e9 | 28.0 | wikitext | NULL | null |
6.886186e7 | 3.0 | 86.187.235.140 | 0.0 | 0.0 | 0.325001882446 | 20220521003232 | 20221008154250 | 1.047585867e9 | 2006.0 | wikitext | NULL | null |
6.8861861e7 | 0.0 | Richard_Sseruwagi | 0.0 | 0.0 | 0.424117628639 | 20221026145423 | 20221018170201 | 1.116846399e9 | 4659.0 | wikitext | NULL | null |
6.8861862e7 | 3.0 | Talimaria | 0.0 | 0.0 | 0.880984816595 | 20220522063708 | 20221003060233 | 1.052000354e9 | 2499.0 | wikitext | NULL | null |
6.8861863e7 | 0.0 | Volevo_fare_la_rockstar | 1.0 | 1.0 | 0.657988224884 | 20221031021207 | 20221019095107 | 1.047584979e9 | 28.0 | wikitext | NULL | null |
6.8861864e7 | 14.0 | Self-contradictory_articles_from_July_2017 | 0.0 | 1.0 | 0.102905024446 | 20221023093710 | 20221005165456 | 1.047584995e9 | 29.0 | wikitext | NULL | null |
6.8861865e7 | 2.0 | Somurox | 0.0 | 0.0 | 0.830758339322 | 20220728111157 | 20220728111155 | 1.055091654e9 | 347.0 | wikitext | NULL | null |
6.8861866e7 | 14.0 | Self-contradictory_articles_from_October_2013 | 0.0 | 1.0 | 0.446698774899 | 20221023093710 | 20221005165456 | 1.047585013e9 | 29.0 | wikitext | NULL | null |
6.8861867e7 | 4.0 | Map_data/Brigg_and_Goole_(UK_Parliament_constituency) | 0.0 | 0.0 | 0.150736769017 | 20220930232637 | 20220930232635 | 1.047587368e9 | 22813.0 | wikitext | NULL | null |
6.8861868e7 | 0.0 | Volevo_fare_la_rockstar_(album) | 1.0 | 1.0 | 0.50370102472 | 20221031021207 | 20221019095107 | 1.047585017e9 | 28.0 | wikitext | NULL | null |
6.8861869e7 | 3.0 | BurakD53 | 0.0 | 0.0 | 0.218400747162 | 20220827012947 | 20220826170353 | 1.106823792e9 | 9869.0 | wikitext | NULL | null |
6.886187e7 | 3.0 | 106.207.133.117 | 0.0 | 1.0 | 0.109003474409 | 20220520194556 | 20221008154250 | 1.047585117e9 | 1104.0 | wikitext | NULL | null |
6.8861871e7 | 3.0 | 2600:1014:B10B:3837:91B8:6AE3:6529:DC6D | 0.0 | 1.0 | 0.498635366936 | 20220520214530 | 20221008154250 | 1.047585153e9 | 1580.0 | wikitext | NULL | null |
6.8861872e7 | 3.0 | Holabtbot | 0.0 | 1.0 | 0.569906338818 | 20220803125155 | 20220803125154 | 1.047585164e9 | 1174.0 | wikitext | NULL | null |
6.8861874e7 | 1.0 | Richard_Sseruwagi | 0.0 | 0.0 | 0.517435006028 | 20221027024549 | 20221027110843 | 1.096311878e9 | 248.0 | wikitext | NULL | null |
6.8861875e7 | 3.0 | 83.253.162.209 | 0.0 | 0.0 | 0.742474959398 | 20220521002106 | 20221008154250 | 1.049238116e9 | 2084.0 | wikitext | NULL | null |
6.8861876e7 | 3.0 | 66.44.6.113 | 0.0 | 1.0 | 0.162969264664 | 20220520225610 | 20221008154250 | 1.047585262e9 | 1161.0 | wikitext | NULL | null |
6.8861877e7 | 3.0 | Jitu_Bhardwaj | 0.0 | 1.0 | 0.581860852344 | 20220803125155 | 20220803125154 | 1.047585292e9 | 727.0 | wikitext | NULL | null |
6.8861878e7 | 10.0 | London_Spirit_squad | 0.0 | 0.0 | 0.667231224239 | 20220824164650 | 20220824164650 | 1.106444093e9 | 1780.0 | wikitext | NULL | null |
6.8861879e7 | 0.0 | Meredith_Calhoun | 0.0 | 0.0 | 7.6343032826e-2 | 20221023074722 | 20221010043324 | 1.100207818e9 | 1684.0 | wikitext | NULL | null |
6.886188e7 | 0.0 | Caproni_Transaero | 1.0 | 0.0 | 0.846645442553 | 20221027000854 | 20221027000854 | 1.047586123e9 | 87.0 | wikitext | NULL | null |
6.8861881e7 | 0.0 | Susil_Ranjan_Chattopadhyay | 0.0 | 0.0 | 0.419471357754 | 20221028074243 | 20221028174028 | 1.111419209e9 | 2211.0 | wikitext | NULL | null |
6.8861882e7 | 11.0 | London_Spirit_squad | 0.0 | 1.0 | 0.983301549027 | 20221023135015 | 20221025065153 | 1.047585389e9 | 23.0 | wikitext | NULL | null |
6.8861884e7 | 3.0 | 155.4.98.140 | 0.0 | 1.0 | 0.405219557885 | 20220520202254 | 20221008154250 | 1.047585425e9 | 1172.0 | wikitext | NULL | null |
6.8861887e7 | 1.0 | Susil_Ranjan_Chattopadhyay | 0.0 | 0.0 | 3.7404856018e-2 | 20221021144754 | 20220921193719 | 1.092374048e9 | 131.0 | wikitext | NULL | null |
6.8861888e7 | 3.0 | 2401:4900:599C:EC20:4FE8:D972:CEDF:2767 | 0.0 | 1.0 | 0.311511534435 | 20220520213156 | 20221008154250 | 1.047585576e9 | 1142.0 | wikitext | NULL | null |
6.8861889e7 | 4.0 | Sockpuppet_investigations/CreatorVRXAZ/Archive | 0.0 | 0.0 | 0.470124028531 | 20221024143701 | 20221030074923 | 1.053292145e9 | 8453.0 | wikitext | NULL | null |
6.8861891e7 | 0.0 | Meglio_del_cinema | 1.0 | 1.0 | 0.112435463605 | 20221021221816 | 20221018094248 | 1.047585685e9 | 19.0 | wikitext | NULL | null |
6.8861892e7 | 6.0 | Royole_logo.png | 0.0 | 1.0 | 0.844588284591 | 20221101064103 | 20221101064058 | 1.047585686e9 | 733.0 | wikitext | NULL | null |
6.8861893e7 | 3.0 | M_Noman_Akhtar_jutt | 0.0 | 1.0 | 0.335324713421 | 20221020153739 | 20221020153737 | 1.047585696e9 | 2358.0 | wikitext | NULL | null |
6.8861894e7 | 4.0 | Sockpuppet_investigations/Alaskayoung1/Archive | 0.0 | 1.0 | 0.613849213489 | 20221026145423 | 20221027013921 | 1.047585731e9 | 11736.0 | wikitext | NULL | null |
6.8861895e7 | 2.0 | Rubymhel_Lopez/sandbox | 0.0 | 0.0 | 0.978143661494 | 20220728025149 | 20220728025149 | 1.047586387e9 | 1862.0 | wikitext | NULL | null |
6.8861898e7 | 3.0 | 42.116.116.78 | 0.0 | 1.0 | 0.308417173063 | 20220913101410 | 20220803125157 | 1.04758591e9 | 1549.0 | wikitext | NULL | null |
6.8861899e7 | 3.0 | Annaspencer13 | 0.0 | 0.0 | 4.7991239914e-2 | 20221026145423 | 20221010150718 | 1.067213162e9 | 44860.0 | wikitext | NULL | null |
6.8861901e7 | 0.0 | Age_of_consent_in_Ireland | 1.0 | 1.0 | 0.496797919949 | 20221027165749 | 20221027165747 | 1.047585945e9 | 227.0 | wikitext | NULL | null |
6.8861902e7 | 3.0 | Ac2468 | 0.0 | 0.0 | 0.13607075548 | 20220906235936 | 20221010150719 | 1.101003158e9 | 25373.0 | wikitext | NULL | null |
6.8861903e7 | 1.0 | Mary_Camacho_Torres | 0.0 | 0.0 | 1.8038551388e-2 | 20221023093710 | 20220808033126 | 1.048070187e9 | 331.0 | wikitext | NULL | null |
6.8861904e7 | 3.0 | 2001:8F8:1825:2DA9:1057:4D27:D8C:57E0 | 0.0 | 1.0 | 0.846139371304 | 20220520205936 | 20221008154250 | 1.047586134e9 | 1315.0 | wikitext | NULL | null |
6.8861907e7 | 4.0 | Sockpuppet_investigations/Free1Soul/Archive | 0.0 | 1.0 | 0.432540925413 | 20221024143701 | 20221027013921 | 1.047586243e9 | 2504.0 | wikitext | NULL | null |
6.8861908e7 | 3.0 | 2A02:C7F:9808:A700:31CB:DAB8:BDCB:D98E | 0.0 | 1.0 | 0.287874441687 | 20220520222509 | 20221008154250 | 1.047586271e9 | 991.0 | wikitext | NULL | null |
6.8861911e7 | 0.0 | Caproni_Transaereo | 1.0 | 1.0 | 0.723926190856 | 20221018063514 | 20221018063512 | 1.047586406e9 | 27.0 | wikitext | NULL | null |
6.8861912e7 | 0.0 | Susil_Ranjan_Chatterjee | 1.0 | 1.0 | 8.671320226e-3 | 20221018172851 | 20221018172849 | 1.047586485e9 | 40.0 | wikitext | NULL | null |
6.8861913e7 | 0.0 | Lake_226 | 0.0 | 0.0 | 0.852973109236 | 20221023074722 | 20221018000040 | 1.085377763e9 | 12193.0 | wikitext | NULL | null |
6.8861914e7 | 3.0 | 2409:4073:40F:AD7D:0:0:17BE:38B1 | 0.0 | 1.0 | 0.58369705007 | 20220520214211 | 20221008154250 | 1.047586518e9 | 1158.0 | wikitext | NULL | null |
6.8861917e7 | 2.0 | Printy13/Denotation/Emma_Adriana_Peer_Review | 0.0 | 0.0 | 0.331069636456 | 20221023093710 | 20221003060233 | 1.04785712e9 | 6583.0 | wikitext | NULL | null |
6.8861918e7 | 3.0 | ADDSamuels | 0.0 | 0.0 | 0.943521830492 | 20221026145423 | 20221020153737 | 1.083226345e9 | 6711.0 | wikitext | NULL | null |
6.8861919e7 | 0.0 | Consulate-General_of_the_United_Kingdom,_Osaka | 1.0 | 0.0 | 0.830104407131 | 20221027074318 | 20221027074315 | 1.072946782e9 | 107.0 | wikitext | NULL | null |
6.886192e7 | 1.0 | Consulate-General_of_the_United_Kingdom,_Osaka | 1.0 | 0.0 | 0.485447801272 | 20221023093710 | 20221027074431 | 1.072946794e9 | 126.0 | wikitext | NULL | null |
6.8861921e7 | 3.0 | 2409:4073:212:5C5F:7179:AD1:ACC8:7655 | 0.0 | 1.0 | 0.143783638461 | 20220911065958 | 20220911065957 | 1.047586733e9 | 598.0 | wikitext | NULL | null |
6.8861922e7 | 3.0 | 71.233.44.133 | 0.0 | 1.0 | 0.41699307933 | 20220520233107 | 20221008154250 | 1.047586747e9 | 1156.0 | wikitext | NULL | null |
6.8861923e7 | 0.0 | CC-295_Kingfisher | 1.0 | 1.0 | 0.156389653778 | 20221018062921 | 20221018062920 | 1.047586758e9 | 29.0 | wikitext | NULL | null |
6.8861924e7 | 0.0 | CC-295 | 1.0 | 1.0 | 0.744837481136 | 20221018062921 | 20221018062920 | 1.047586792e9 | 29.0 | wikitext | NULL | null |
6.8861925e7 | 3.0 | Tereza_Rachinhas/TWA | 0.0 | 0.0 | 0.908649320722 | 20211001155634 | 20220929165626 | 1.047593913e9 | 1565.0 | wikitext | NULL | null |
6.8861926e7 | 2.0 | Nc1180lCm/Sample_page | 0.0 | 0.0 | 0.479813485944 | 20221011054852 | 20220728025148 | 1.047587095e9 | 61.0 | wikitext | NULL | null |
6.8861927e7 | 3.0 | 42.111.145.249 | 0.0 | 1.0 | 0.994624008234 | 20220520223345 | 20221008154250 | 1.047586871e9 | 1353.0 | wikitext | NULL | null |
6.8861928e7 | 3.0 | 1lavya28289 | 0.0 | 0.0 | 0.388343274816 | 20220917231312 | 20221010150718 | 1.078892878e9 | 14678.0 | wikitext | NULL | null |
6.8861929e7 | 3.0 | RTR1961 | 0.0 | 0.0 | 0.99895378596 | 20221031194404 | 20221020153741 | 1.049171577e9 | 3839.0 | wikitext | NULL | null |
6.886193e7 | 2.0 | Tereza_Rachinhas/TWA/Earth | 0.0 | 0.0 | 0.609928601472 | 20211001154940 | 20220929165626 | 1.047592683e9 | 1693.0 | wikitext | NULL | null |
6.8861931e7 | 0.0 | Embassy_of_the_State_of_Palestine,_Tokyo | 1.0 | 1.0 | 0.455965169176 | 20221027112856 | 20221027112854 | 1.047586976e9 | 88.0 | wikitext | NULL | null |
6.8861932e7 | 1.0 | Embassy_of_the_State_of_Palestine,_Tokyo | 1.0 | 1.0 | 0.438550505623 | 20221023093710 | 20221027113043 | 1.047586978e9 | 93.0 | wikitext | NULL | null |
6.8861933e7 | 0.0 | Pseudophilautus_munnarensis | 1.0 | 1.0 | 0.48019824697 | 20221018103403 | 20221018103402 | 1.047586979e9 | 76.0 | wikitext | NULL | null |
6.8861934e7 | 3.0 | Javad5351 | 0.0 | 0.0 | 0.566860048009 | 20220917231312 | 20221010150718 | 1.080541924e9 | 6690.0 | wikitext | NULL | null |
6.8861935e7 | 2.0 | MBge1644_2_PRO | 0.0 | 1.0 | 0.341220129777 | 20220728025149 | 20220728025148 | 1.047587011e9 | 81.0 | wikitext | NULL | null |
6.8861937e7 | 0.0 | Embassy_of_the_State_of_Palestine,_Manama | 1.0 | 1.0 | 0.832471659276 | 20221027112856 | 20221027112854 | 1.047587062e9 | 89.0 | wikitext | NULL | null |
6.8861938e7 | 1.0 | Embassy_of_the_State_of_Palestine,_Manama | 1.0 | 1.0 | 0.369152802806 | 20221023093710 | 20221027113042 | 1.047587064e9 | 94.0 | wikitext | NULL | null |
6.8861939e7 | 2.0 | Keith-S2dows/sandbox | 0.0 | 0.0 | 0.730965526507 | 20221023093710 | 20220803125345 | 1.048409694e9 | 147.0 | wikitext | NULL | null |
6.886194e7 | 0.0 | Philautus_munnarensis | 1.0 | 1.0 | 0.274782877886 | 20221018102607 | 20221018102606 | 1.047587079e9 | 76.0 | wikitext | NULL | null |
6.8861941e7 | 0.0 | Embassy_of_the_State_of_Palestine,_Hanoi | 1.0 | 1.0 | 0.61571053089 | 20221027112856 | 20221027112854 | 1.047587142e9 | 88.0 | wikitext | NULL | null |
6.8861942e7 | 1.0 | Embassy_of_the_State_of_Palestine,_Hanoi | 1.0 | 1.0 | 0.536381926203 | 20221023093710 | 20221027113042 | 1.047587146e9 | 93.0 | wikitext | NULL | null |
6.8861943e7 | 4.0 | Sockpuppet_investigations/Sherkohassan/Archive | 0.0 | 1.0 | 0.389762041558 | 20221024143701 | 20221027013921 | 1.047587177e9 | 4793.0 | wikitext | NULL | null |
6.8861944e7 | 3.0 | 49.204.128.208 | 0.0 | 0.0 | 0.752363175792 | 20220803125159 | 20220803125157 | 1.047587703e9 | 585.0 | wikitext | NULL | null |
6.8861945e7 | 0.0 | 2021–22_EuroLeague_Regular_Season | 0.0 | 0.0 | 0.449837602164 | 20221023074722 | 20221029003730 | 1.095308811e9 | 302424.0 | wikitext | NULL | null |
6.8861946e7 | 3.0 | AirportCodeTemplate | 0.0 | 0.0 | 0.328857306603 | 20221026145423 | 20221018143337 | 1.047848297e9 | 6093.0 | wikitext | NULL | null |
6.8861947e7 | 4.0 | Sockpuppet_investigations/Trane007/Archive | 0.0 | 0.0 | 0.881258721024 | 20221031194404 | 20221030074923 | 1.060512974e9 | 15262.0 | wikitext | NULL | null |
6.8861948e7 | 3.0 | 117.216.19.28 | 0.0 | 1.0 | 0.55033049026 | 20220520195746 | 20221008154250 | 1.047587333e9 | 1160.0 | wikitext | NULL | null |
6.8861949e7 | 2.0 | Tereza_Rachinhas | 0.0 | 0.0 | 0.36955742278 | 20220701113736 | 20220929054446 | 1.047599072e9 | 281.0 | wikitext | NULL | null |
6.886195e7 | 4.0 | Sockpuppet_investigations/Andlol17/Archive | 0.0 | 1.0 | 0.208652424958 | 20221031194404 | 20221030074923 | 1.047587372e9 | 5383.0 | wikitext | NULL | null |
6.8861951e7 | 3.0 | Tereza_Rachinhas/TWA/Earth | 0.0 | 0.0 | 4.2618267527e-2 | 20220712205541 | 20220929165626 | 1.047594761e9 | 7253.0 | wikitext | NULL | null |
6.8861952e7 | 3.0 | Parth006 | 0.0 | 1.0 | 0.388742685675 | 20220913101410 | 20220804014400 | 1.047587391e9 | 1159.0 | wikitext | NULL | null |
6.8861953e7 | 3.0 | Aj_indiana | 0.0 | 0.0 | 0.39802279306 | 20221026145423 | 20221010150718 | 1.080751899e9 | 24741.0 | wikitext | NULL | null |
6.8861954e7 | 0.0 | Invasión_de_Bahia_de_Cochinos | 1.0 | 0.0 | 0.720539326591 | 20221029083337 | 20221028133838 | 1.052406473e9 | 110.0 | wikitext | NULL | null |
6.8861955e7 | 0.0 | Hobble_Creek,_Utah | 0.0 | 1.0 | 0.528350052275 | 20221028121640 | 20221028121843 | 1.04758748e9 | 3417.0 | wikitext | NULL | null |
6.8861956e7 | 3.0 | Bayonetofficial | 0.0 | 0.0 | 0.910038885365 | 20221017141659 | 20221030074923 | 1.047619668e9 | 8831.0 | wikitext | NULL | null |
6.8861957e7 | 0.0 | List_of_islands_of_Sint_Maarten | 1.0 | 1.0 | 0.40058629686 | 20221101055734 | 20221018091850 | 1.047587508e9 | 54.0 | wikitext | NULL | null |
6.8861958e7 | 2.0 | Siyabonga7492 | 0.0 | 0.0 | 0.576091394572 | 20220728111157 | 20220728111155 | 1.054999184e9 | 349.0 | wikitext | NULL | null |
6.8861959e7 | 0.0 | The_Crozier_Pharaohs | 0.0 | 0.0 | 6.7074127843e-2 | 20221101064104 | 20221101064213 | 1.082825215e9 | 1891.0 | wikitext | NULL | null |
6.886196e7 | 1.0 | +–=÷x_Tour | 0.0 | 0.0 | 0.964977619774 | 20221021144754 | 20220902204758 | 1.098332963e9 | 1391.0 | wikitext | NULL | null |
6.8861961e7 | 0.0 | RetroCrush | 1.0 | 0.0 | 0.376468999751 | 20221031141824 | 20221031141820 | 1.090991252e9 | 105.0 | wikitext | NULL | null |
6.8861962e7 | 1.0 | List_of_islands_of_Sint_Maarten | 0.0 | 1.0 | 0.165307957322 | 20221021144754 | 20221004085507 | 1.047587599e9 | 54.0 | wikitext | NULL | null |
6.8861963e7 | 1.0 | The_Crozier_Pharaohs | 0.0 | 1.0 | 0.163782544605 | 20221021144754 | 20220828055325 | 1.047587604e9 | 51.0 | wikitext | NULL | null |
6.8861965e7 | 3.0 | Nc1180lCm/Sample_page | 0.0 | 0.0 | 0.776604017024 | 20220803125159 | 20220803125158 | 1.047587881e9 | 16.0 | wikitext | NULL | null |
6.8861966e7 | 3.0 | Sinssine97 | 0.0 | 1.0 | 0.608458681933 | 20220913101410 | 20220804014401 | 1.047587711e9 | 1288.0 | wikitext | NULL | null |
6.8861968e7 | 2.0 | Tereza_Rachinhas/TWA/Earth/2 | 0.0 | 0.0 | 0.676353152135 | 20220611214917 | 20220929165626 | 1.047597217e9 | 22779.0 | wikitext | NULL | null |
6.8861969e7 | 3.0 | Autodidacticthinker | 0.0 | 1.0 | 0.739077358624 | 20220913101410 | 20220803215305 | 1.04758783e9 | 1256.0 | wikitext | NULL | null |
Next, let us check that we got all the data, and there are no corrupted records:
readFromCSV.createOrReplaceTempView("pages")
SELECT * FROM pages WHERE _corrupt_record IS NOT NULL
page_id | page_namespace | page_title | page_is_redirect | page_is_new | page_random | page_touched | page_links_updated | page_latest | page_len | page_content_model | page_lang | _corrupt_record |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7.170164e7 | 0.0 | 104-2,3,(6 | null | null | null | null | null | null | null | null | null | 71701640,0,'104-2,3,(6 |
null | null | 1 | 1.0 | null | 2.0221101041357e13 | 20221028090110 | 1109047991 | 113.0 | null | NULL | null | 7),11',1,1,0.143243519864,'20221101041357','20221028090110',1109047991,113,'wikitext',NULL |
Okay, so, we lost a single row. It is a page that has since been redirected to this little bit of text in the Victoria (Australia) article:
So since the title of the article itself contained the string ),(
, our splitting at that character combo broke the line into two rows, both of which are invalid records. Should be easy enough to deal with - we just need to filter out the two rows that have non-null _corrupt_record
.
Let us now filter down to the data we actually want, and save this to the Delta Lake. First off, only pages in namespace zero are main-wikipedia articles, so we can drop everything outside of it. There are also a bunch of columns containing information we don't care about, so we can skip including those as well.
SELECT page_id, page_title, page_is_redirect, page_is_new AS has_been_edited, page_len, page_content_model, page_lang FROM pages WHERE (page_id IS NOT NULL) AND (page_namespace = 0) AND (page_title IS NOT NULL) AND (_corrupt_record IS NULL)
page_id | page_title | page_is_redirect | has_been_edited | page_len | page_content_model | page_lang |
---|---|---|---|---|---|---|
6.886083e7 | William_Alexander_(architect) | 0.0 | 0.0 | 4098.0 | wikitext | NULL |
6.8860833e7 | 1911_South_Sydney_season | 0.0 | 0.0 | 9240.0 | wikitext | NULL |
6.8860837e7 | Longtail_weasel | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8860841e7 | RTL_Up | 1.0 | 1.0 | 66.0 | wikitext | NULL |
6.8860847e7 | The_Sex_Side_of_Life | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.886085e7 | Facemasks_during_the_Covid-19_pandemic | 1.0 | 1.0 | 53.0 | wikitext | NULL |
6.8860855e7 | List_of_awards_and_nominations_received_by_George_Lucas | 0.0 | 0.0 | 12877.0 | wikitext | NULL |
6.8860859e7 | Second_Chance_Motorsports | 0.0 | 0.0 | 144.0 | wikitext | NULL |
6.8860861e7 | Lenny_Massey | 0.0 | 0.0 | 5170.0 | wikitext | NULL |
6.8860862e7 | 2021–22_EHF_European_League | 0.0 | 0.0 | 26821.0 | wikitext | NULL |
6.8860864e7 | 2021_Asian_Table_Tennis_Championships_–_Women's_team | 0.0 | 0.0 | 10200.0 | wikitext | NULL |
6.8860867e7 | Rina_Fukushi | 0.0 | 0.0 | 2431.0 | wikitext | NULL |
6.8860871e7 | 1979_in_Finland | 0.0 | 0.0 | 2619.0 | wikitext | NULL |
6.8860884e7 | Charlie_Patino | 0.0 | 0.0 | 11964.0 | wikitext | NULL |
6.8860893e7 | Thomas_Beven | 0.0 | 0.0 | 3931.0 | wikitext | NULL |
6.8860897e7 | Tomas_Serra_Olives | 0.0 | 0.0 | 2357.0 | wikitext | NULL |
6.8860898e7 | Charlie_Patiño | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8860903e7 | Tetilla_(sponge) | 0.0 | 0.0 | 5630.0 | wikitext | NULL |
6.8860904e7 | Something_Real_(Phoebe_Snow_album) | 0.0 | 0.0 | 8917.0 | wikitext | NULL |
6.8860905e7 | Luca_Pretolesi | 0.0 | 0.0 | 6932.0 | wikitext | NULL |
6.8860914e7 | Jme_tire | 1.0 | 1.0 | 23.0 | wikitext | NULL |
6.8860916e7 | Doolot_Sydykov | 0.0 | 0.0 | 4332.0 | wikitext | NULL |
6.8860928e7 | Saterfrisian | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8860935e7 | Al_McCoy_(baseball) | 0.0 | 0.0 | 2658.0 | wikitext | NULL |
6.8860936e7 | Ich_bin_weg_(Boro_boro) | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8860938e7 | Ich_bin_weg_(Boro_Boro) | 1.0 | 0.0 | 47.0 | wikitext | NULL |
6.8860943e7 | Ich_bin_weg | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8860953e7 | Yahya_Mahayni | 1.0 | 0.0 | 39.0 | wikitext | NULL |
6.8860957e7 | Barium_ethynediide | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8860963e7 | P-synephrine | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8860977e7 | Blessed_&_Free | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.886098e7 | Early-May_1933_tornado_outbreak_sequence | 1.0 | 1.0 | 106.0 | wikitext | NULL |
6.8861001e7 | Date_of_birth_and_personality | 1.0 | 1.0 | 35.0 | wikitext | NULL |
6.8861003e7 | Karl_Richard_Hanitsch | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8861005e7 | Personality_and_date_of_birth | 1.0 | 1.0 | 35.0 | wikitext | NULL |
6.8861007e7 | 2021–22_Serbian_Cup | 0.0 | 0.0 | 26127.0 | wikitext | NULL |
6.8861013e7 | Siege_of_Kufa | 1.0 | 0.0 | 145.0 | wikitext | NULL |
6.8861024e7 | Candy_Thuzar | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8861032e7 | Just_a_Waste_(PinkPantheress_song) | 1.0 | 0.0 | 36.0 | wikitext | NULL |
6.8861037e7 | La_Vie_d'artiste_(film) | 0.0 | 0.0 | 3611.0 | wikitext | NULL |
6.8861047e7 | US_Embassy_in_Berlin | 1.0 | 1.0 | 78.0 | wikitext | NULL |
6.8861053e7 | Gaualofa | 0.0 | 0.0 | 8798.0 | wikitext | NULL |
6.8861055e7 | Gilberto_García_(chess_player) | 0.0 | 0.0 | 2298.0 | wikitext | NULL |
6.8861064e7 | Andrée_Millar | 0.0 | 0.0 | 7806.0 | wikitext | NULL |
6.8861066e7 | Parliamentary_Office_for_the_Evaluation_of_Scientific_and_Technological_Choices | 0.0 | 0.0 | 23592.0 | wikitext | NULL |
6.8861068e7 | Attracted_to_You_(PinkPantheress_song) | 1.0 | 0.0 | 36.0 | wikitext | NULL |
6.8861073e7 | Nam_Tok_Sai_Yok_Noi_railway_halt | 1.0 | 1.0 | 66.0 | wikitext | NULL |
6.8861078e7 | Sonterra,_Texas | 0.0 | 0.0 | 3323.0 | wikitext | NULL |
6.8861079e7 | 2021–22_Zamalek_SC_(basketball)_season | 0.0 | 0.0 | 60744.0 | wikitext | NULL |
6.886108e7 | The_Work_(album) | 0.0 | 0.0 | 6095.0 | wikitext | NULL |
6.8861081e7 | The_Work_(Rivers_of_Nihil_album) | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8861082e7 | Sonterra | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.8861084e7 | Rivers_of_Nihil_discography | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8861113e7 | Jean_Paul_Hobler | 1.0 | 1.0 | 84.0 | wikitext | NULL |
6.8861121e7 | Listed_buildings_in_Barnsley_(Central_Ward) | 0.0 | 0.0 | 54609.0 | wikitext | NULL |
6.8861128e7 | Tetilla_capillosa | 0.0 | 0.0 | 2973.0 | wikitext | NULL |
6.8861131e7 | (326732)_2003_HB6 | 1.0 | 0.0 | 278.0 | wikitext | NULL |
6.8861134e7 | 2021_Ecuadorian_prison_riot | 1.0 | 0.0 | 50.0 | wikitext | NULL |
6.8861138e7 | Shanna_Swan | 0.0 | 0.0 | 5518.0 | wikitext | NULL |
6.8861154e7 | Funeral_Ceremonies | 0.0 | 0.0 | 5006.0 | wikitext | NULL |
6.8861156e7 | Abdorrasul_Zarrin | 0.0 | 0.0 | 9600.0 | wikitext | NULL |
6.8861158e7 | Banque_du_Peuple | 1.0 | 0.0 | 78.0 | wikitext | NULL |
6.8861159e7 | National_Board_of_Student_Aid_(Sweden) | 1.0 | 1.0 | 99.0 | wikitext | NULL |
6.8861163e7 | Kurdistan_Democratic_Independence_Party_(PASOK) | 0.0 | 0.0 | 2611.0 | wikitext | NULL |
6.8861164e7 | (285571)_2000_PQ9 | 1.0 | 0.0 | 278.0 | wikitext | NULL |
6.8861167e7 | 1951_South_Sydney_season | 0.0 | 0.0 | 12682.0 | wikitext | NULL |
6.886117e7 | Dea_Liane | 1.0 | 0.0 | 39.0 | wikitext | NULL |
6.8861186e7 | Barnabáš_Lacík | 0.0 | 1.0 | 2079.0 | wikitext | NULL |
6.8861201e7 | Alqabas | 1.0 | 1.0 | 69.0 | wikitext | NULL |
6.8861209e7 | Blauw-Wit_Beursbengels | 1.0 | 0.0 | 74.0 | wikitext | NULL |
6.8861211e7 | Petrol_panic | 1.0 | 0.0 | 52.0 | wikitext | NULL |
6.8861221e7 | Nick_McCloud | 0.0 | 0.0 | 5266.0 | wikitext | NULL |
6.8861227e7 | Unification_of_Germany_(1871) | 1.0 | 0.0 | 74.0 | wikitext | NULL |
6.8861231e7 | Santa_Rita_Ranch,_Texas | 0.0 | 0.0 | 3286.0 | wikitext | NULL |
6.8861233e7 | Santa_Rita_Ranch | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8861234e7 | Jimmy_Dean_(baseball) | 0.0 | 0.0 | 2685.0 | wikitext | NULL |
6.8861244e7 | Watthana_Nakhon_railway_station | 0.0 | 0.0 | 1397.0 | wikitext | NULL |
6.8861245e7 | Border_abolitionism | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8861248e7 | Boyfriend_(EP) | 1.0 | 1.0 | 18.0 | wikitext | NULL |
6.8861249e7 | Border_abolition | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.886125e7 | Boyfriend_(CKay_EP) | 1.0 | 1.0 | 18.0 | wikitext | NULL |
6.8861255e7 | Dickie_Moltisanti | 1.0 | 1.0 | 64.0 | wikitext | NULL |
6.8861258e7 | Faustina_Rehuher-Marugg | 1.0 | 0.0 | 57.0 | wikitext | NULL |
6.8861261e7 | Erkin_Tuniyaz | 0.0 | 0.0 | 6115.0 | wikitext | NULL |
6.8861262e7 | Nong_Sang_railway_station | 0.0 | 0.0 | 1364.0 | wikitext | NULL |
6.8861263e7 | Matthew_Smith | 0.0 | 0.0 | 3273.0 | wikitext | NULL |
6.8861267e7 | Caravaggio_(song) | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8861268e7 | Matt_Smith_(disambiguation) | 1.0 | 0.0 | 74.0 | wikitext | NULL |
6.8861269e7 | Government_College_of_Education,_Komarapalayam | 0.0 | 0.0 | 3784.0 | wikitext | NULL |
6.886127e7 | Thomas_Burton_(16th_century_MP) | 0.0 | 0.0 | 4883.0 | wikitext | NULL |
6.8861274e7 | Caravaggio_(1.Cuz_song) | 1.0 | 1.0 | 19.0 | wikitext | NULL |
6.8861276e7 | Berlinia_grandiflora | 0.0 | 0.0 | 2781.0 | wikitext | NULL |
6.8861278e7 | Ban_Dong_Bang_railway_station | 0.0 | 0.0 | 1431.0 | wikitext | NULL |
6.886128e7 | Zhang_Jianmin | 0.0 | 0.0 | 4178.0 | wikitext | NULL |
6.8861283e7 | Deng_Jianjun | 0.0 | 0.0 | 3647.0 | wikitext | NULL |
6.8861286e7 | Michela_De_Rossi | 0.0 | 0.0 | 4008.0 | wikitext | NULL |
6.886129e7 | Mao_Jingwen | 0.0 | 0.0 | 3579.0 | wikitext | NULL |
6.8861293e7 | Prachantakham_railway_station | 0.0 | 0.0 | 1397.0 | wikitext | NULL |
6.8861294e7 | Mennekes_connector | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8861297e7 | Koreatwon,_Flushing | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.886131e7 | Alexandra_Intrator | 1.0 | 1.0 | 39.0 | wikitext | NULL |
6.8861312e7 | Khok_Makok_railway_station | 0.0 | 0.0 | 1388.0 | wikitext | NULL |
6.8861314e7 | Lauren_DiMario | 1.0 | 1.0 | 39.0 | wikitext | NULL |
6.8861317e7 | Johnny_Soprano | 1.0 | 1.0 | 56.0 | wikitext | NULL |
6.8861325e7 | Asclepiadeae | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8861328e7 | Suicide_of_Etika | 1.0 | 0.0 | 19.0 | wikitext | NULL |
6.8861329e7 | Death_and_the_Maiden_(novel) | 0.0 | 0.0 | 1738.0 | wikitext | NULL |
6.8861334e7 | Sterphus_auricaudatus | 0.0 | 0.0 | 1526.0 | wikitext | NULL |
6.8861335e7 | Peter_Heering | 1.0 | 1.0 | 75.0 | wikitext | NULL |
6.8861343e7 | Build-up_(association_football) | 1.0 | 0.0 | 97.0 | wikitext | NULL |
6.8861344e7 | Ban_Pak_Phli_railway_station | 0.0 | 0.0 | 1697.0 | wikitext | NULL |
6.8861349e7 | Diocese_of_the_Romanian_Army | 0.0 | 0.0 | 5009.0 | wikitext | NULL |
6.886135e7 | Michael_and_Alice_Halkias | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861353e7 | Auguste_Gérôme | 0.0 | 0.0 | 5689.0 | wikitext | NULL |
6.8861357e7 | Ban_Sang_railway_station | 0.0 | 0.0 | 1364.0 | wikitext | NULL |
6.886136e7 | Jehiel_Beman | 0.0 | 0.0 | 5038.0 | wikitext | NULL |
6.8861364e7 | Underbart_i_all_misär | 1.0 | 1.0 | 21.0 | wikitext | NULL |
6.8861365e7 | Bolshoy_Yeravna | 0.0 | 0.0 | 4534.0 | wikitext | NULL |
6.8861367e7 | Prachinburi_railway_station | 0.0 | 0.0 | 2222.0 | wikitext | NULL |
6.8861368e7 | Tanja_Gellenthien | 0.0 | 0.0 | 5679.0 | wikitext | NULL |
6.8861369e7 | Bolshoy_Yeravna_Lake | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.886137e7 | Melissa_Malzkuhn | 0.0 | 0.0 | 7541.0 | wikitext | NULL |
6.8861373e7 | Tanja_Jensen | 1.0 | 1.0 | 54.0 | wikitext | NULL |
6.8861376e7 | Mohamed_Shamas | 1.0 | 1.0 | 77.0 | wikitext | NULL |
6.8861382e7 | Bukit_Merah_double_murders | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861384e7 | Fourth_Son_South | 0.0 | 0.0 | 3839.0 | wikitext | NULL |
6.8861387e7 | Two_Point_Campus | 0.0 | 0.0 | 9340.0 | wikitext | NULL |
6.8861389e7 | Angie_Ng_(murder_victim) | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.886139e7 | Naoki_Ishikawa_(photographer) | 0.0 | 0.0 | 20610.0 | wikitext | NULL |
6.8861391e7 | Jacaeber_Kastor | 0.0 | 0.0 | 10114.0 | wikitext | NULL |
6.8861393e7 | Crystal_Poh | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861394e7 | List_of_English_football_transfers_winter_2021–22 | 0.0 | 0.0 | 168980.0 | wikitext | NULL |
6.8861399e7 | James_Winston | 0.0 | 0.0 | 425.0 | wikitext | NULL |
6.8861404e7 | Khlong_Bang_Phra_railway_station | 0.0 | 0.0 | 1475.0 | wikitext | NULL |
6.8861405e7 | Hans_Nylund | 0.0 | 1.0 | 1364.0 | wikitext | NULL |
6.8861409e7 | Anton_Edler_von_Schmid | 0.0 | 0.0 | 7688.0 | wikitext | NULL |
6.8861421e7 | Preng_railway_station | 0.0 | 0.0 | 1541.0 | wikitext | NULL |
6.8861422e7 | Khlong_Udom_Chonlajorn_Halt_railway_station | 1.0 | 1.0 | 49.0 | wikitext | NULL |
6.8861428e7 | Jan_Ørke | 0.0 | 1.0 | 1318.0 | wikitext | NULL |
6.8861436e7 | Jan_Orke | 1.0 | 1.0 | 22.0 | wikitext | NULL |
6.8861438e7 | Rathana_Club | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.886144e7 | 1923_West_Tennessee_State_Normal_football_team | 0.0 | 0.0 | 3809.0 | wikitext | NULL |
6.8861441e7 | Rakhagarhi | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8861442e7 | Manlio_De_Domenico | 0.0 | 0.0 | 11894.0 | wikitext | NULL |
6.8861445e7 | Daniela_Rathana_discography | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8861446e7 | Hans_Saksvik | 0.0 | 1.0 | 1374.0 | wikitext | NULL |
6.8861448e7 | Sarah_Story | 0.0 | 0.0 | 4272.0 | wikitext | NULL |
6.8861454e7 | Recursion_in_natural_languages | 1.0 | 1.0 | 82.0 | wikitext | NULL |
6.8861459e7 | Anton_von_Schmid | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.886146e7 | Sean_Rhyan | 0.0 | 0.0 | 7144.0 | wikitext | NULL |
6.8861463e7 | Epistlar | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8861466e7 | Kåre_Bjørnsen | 0.0 | 0.0 | 1462.0 | wikitext | NULL |
6.8861467e7 | Epistlar_(EP) | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8861472e7 | Kare_Bjornsen | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8861482e7 | Don_Si_Non_railway_station | 0.0 | 0.0 | 3011.0 | wikitext | NULL |
6.8861483e7 | Phil_L._Hudson_Municipal_Airport | 1.0 | 1.0 | 74.0 | wikitext | NULL |
6.8861496e7 | James_Winston_(thespian) | 0.0 | 0.0 | 765.0 | wikitext | NULL |
6.8861498e7 | 2021-22_Serbian_Cup | 1.0 | 1.0 | 178.0 | wikitext | NULL |
6.8861502e7 | 2021-22_EHF_European_League | 1.0 | 1.0 | 202.0 | wikitext | NULL |
6.8861503e7 | Phan_Thong_railway_station | 0.0 | 0.0 | 2992.0 | wikitext | NULL |
6.8861504e7 | Anton_Von_Schmid | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8861507e7 | 2021_World_Wrestling_Championships_–_Men's_freestyle_61_kg | 0.0 | 0.0 | 8763.0 | wikitext | NULL |
6.8861508e7 | Listed_buildings_in_Cudworth,_South_Yorkshire | 0.0 | 0.0 | 3246.0 | wikitext | NULL |
6.886151e7 | Heropanti_2_(2022_film) | 1.0 | 0.0 | 63.0 | wikitext | NULL |
6.8861511e7 | List_of_English_football_transfers_winter_2021-22 | 1.0 | 1.0 | 268.0 | wikitext | NULL |
6.8861514e7 | 2021-22_Liga_IV_Galați | 1.0 | 0.0 | 272.0 | wikitext | NULL |
6.8861516e7 | Wilhelm_Eliassen | 0.0 | 0.0 | 1437.0 | wikitext | NULL |
6.8861518e7 | Tornado_outbreak_sequence_of_May_4-10,_1933 | 1.0 | 1.0 | 250.0 | wikitext | NULL |
6.8861523e7 | Servant_of_the_Mind | 0.0 | 0.0 | 21859.0 | wikitext | NULL |
6.8861525e7 | 2021_Asian_Table_Tennis_Championships_-_Women's_team | 1.0 | 1.0 | 277.0 | wikitext | NULL |
6.8861526e7 | Servant_of_the_Mind_(album) | 1.0 | 0.0 | 33.0 | wikitext | NULL |
6.8861529e7 | Servant_of_the_Mind_(Volbeat_album) | 1.0 | 0.0 | 33.0 | wikitext | NULL |
6.886153e7 | +-=÷x_Tour | 1.0 | 1.0 | 154.0 | wikitext | NULL |
6.8861532e7 | Bang_Phra_railway_station | 0.0 | 0.0 | 3003.0 | wikitext | NULL |
6.8861533e7 | Pucheng-Meizhou_railway | 1.0 | 1.0 | 190.0 | wikitext | NULL |
6.8861536e7 | 2021_World_Wrestling_Championships_-_Men's_freestyle_61_kg | 1.0 | 1.0 | 295.0 | wikitext | NULL |
6.8861545e7 | Kåre_Aasgaard | 0.0 | 0.0 | 1415.0 | wikitext | NULL |
6.8861551e7 | Kare_Aasgaard | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8861552e7 | Ban_Huai_Khwang_railway_station | 0.0 | 0.0 | 3119.0 | wikitext | NULL |
6.8861553e7 | Jaume_Masiá | 1.0 | 1.0 | 73.0 | wikitext | NULL |
6.8861561e7 | Roald_Paulsen | 0.0 | 1.0 | 1343.0 | wikitext | NULL |
6.8861568e7 | Anthonio_Sanjairag | 0.0 | 0.0 | 4105.0 | wikitext | NULL |
6.886157e7 | Tor_Wæhler | 0.0 | 1.0 | 1327.0 | wikitext | NULL |
6.8861575e7 | Mulholland_Drive_(album) | 0.0 | 0.0 | 8628.0 | wikitext | NULL |
6.8861577e7 | Chonburi_railway_station | 0.0 | 0.0 | 3598.0 | wikitext | NULL |
6.8861578e7 | Tor_Waehler | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8861582e7 | 1898_Nebraska_gubernatorial_election | 0.0 | 0.0 | 6402.0 | wikitext | NULL |
6.8861583e7 | Circuit_Laundry | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8861585e7 | Cynanchum_pulchellum | 0.0 | 0.0 | 1238.0 | wikitext | NULL |
6.886159e7 | Svein_Hammerø | 0.0 | 1.0 | 1350.0 | wikitext | NULL |
6.8861593e7 | Svein_Hammero | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8861596e7 | Savage_River_(TV_series) | 0.0 | 0.0 | 11382.0 | wikitext | NULL |
6.8861598e7 | Børge_Josefsen | 0.0 | 1.0 | 1358.0 | wikitext | NULL |
6.88616e7 | Borge_Josefsen | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8861602e7 | The_Dancing_Druids | 0.0 | 0.0 | 1868.0 | wikitext | NULL |
6.8861607e7 | Finn_Vådahl | 0.0 | 1.0 | 1333.0 | wikitext | NULL |
6.8861611e7 | Rutherford_B._Hayes_Presidential_Library_&_Museums | 1.0 | 1.0 | 53.0 | wikitext | NULL |
6.8861615e7 | Finn_Vadahl | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8861617e7 | Oxalis_bifida | 0.0 | 0.0 | 2900.0 | wikitext | NULL |
6.8861627e7 | 2021_AFL_Sydney | 1.0 | 1.0 | 156.0 | wikitext | NULL |
6.886163e7 | Dancing_on_My_Knees | 1.0 | 0.0 | 28.0 | wikitext | NULL |
6.8861632e7 | Melbourne_Welsh_Church | 0.0 | 0.0 | 4587.0 | wikitext | NULL |
6.8861636e7 | Ole_Kristian_Olsen | 0.0 | 1.0 | 1366.0 | wikitext | NULL |
6.8861638e7 | Jarle_Bernhoft_discography | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8861644e7 | SF_Mono | 1.0 | 1.0 | 57.0 | wikitext | NULL |
6.8861648e7 | Impact_of_the_COVID-19_pandemic_on_gridiron_football | 0.0 | 0.0 | 61782.0 | wikitext | NULL |
6.886165e7 | Erik_Karlsen | 0.0 | 0.0 | 1839.0 | wikitext | NULL |
6.8861663e7 | Angie_Ng_Wee_Peng | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861665e7 | The_Art_of_Disappearing | 1.0 | 1.0 | 23.0 | wikitext | NULL |
6.8861667e7 | Crystal_Poh_Shi_Qi | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861669e7 | Women's_Wrestling_Grand_Prize | 1.0 | 0.0 | 123.0 | wikitext | NULL |
6.886167e7 | Rune_Hansen | 0.0 | 0.0 | 1853.0 | wikitext | NULL |
6.8861671e7 | Murders_of_Angie_Ng_and_Crystal_Poh | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8861678e7 | Rachel_David | 0.0 | 0.0 | 9366.0 | wikitext | NULL |
6.8861686e7 | UFC_Fight_Night_199 | 1.0 | 0.0 | 48.0 | wikitext | NULL |
6.8861691e7 | Pa_Sheehy_discography | 1.0 | 1.0 | 35.0 | wikitext | NULL |
6.8861695e7 | Association_of_Polish_Electrical_Engineers | 0.0 | 0.0 | 6602.0 | wikitext | NULL |
6.8861697e7 | While_We_Live | 0.0 | 0.0 | 4140.0 | wikitext | NULL |
6.8861699e7 | The_Polymath | 0.0 | 0.0 | 15716.0 | wikitext | NULL |
6.88617e7 | Joshi_Puroresu_Grand_Prize | 1.0 | 0.0 | 123.0 | wikitext | NULL |
6.8861701e7 | Ground_Controlled_Approach_Squadron_RAF | 1.0 | 1.0 | 100.0 | wikitext | NULL |
6.8861702e7 | Ground_Controlled_Approach_Flight_RAF | 1.0 | 1.0 | 100.0 | wikitext | NULL |
6.8861703e7 | Human_hermaphroditism | 1.0 | 0.0 | 70.0 | wikitext | NULL |
6.8861707e7 | Joshua_Vanneck | 0.0 | 1.0 | 275.0 | wikitext | NULL |
6.8861711e7 | Franz_Schmidt_(serial_killer) | 0.0 | 0.0 | 7866.0 | wikitext | NULL |
6.8861715e7 | PonJola_Coney | 0.0 | 0.0 | 6349.0 | wikitext | NULL |
6.8861722e7 | The_Lathums_discography | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8861723e7 | East_Basin,_Utah | 0.0 | 1.0 | 3712.0 | wikitext | NULL |
6.8861739e7 | 2021_World_Wrestling_Championships_–_Men's_freestyle_125_kg | 0.0 | 0.0 | 6785.0 | wikitext | NULL |
6.8861773e7 | Ida_Bagus_Putra_Manuaba | 0.0 | 0.0 | 4073.0 | wikitext | NULL |
6.8861783e7 | Drina_National_Park | 0.0 | 0.0 | 4738.0 | wikitext | NULL |
6.8861784e7 | Ceriogaster_auricaudatus | 1.0 | 1.0 | 35.0 | wikitext | NULL |
6.8861798e7 | Oleh_Synyehubov | 0.0 | 0.0 | 9731.0 | wikitext | NULL |
6.88618e7 | No._1312_Mobile_Wing_RAF_Regiment | 1.0 | 1.0 | 96.0 | wikitext | NULL |
6.8861801e7 | No._1315_Mobile_Wing_RAF_Regiment | 1.0 | 1.0 | 96.0 | wikitext | NULL |
6.8861803e7 | Nijel_Pack | 0.0 | 0.0 | 8170.0 | wikitext | NULL |
6.8861807e7 | Sienna_Mapelli_Mozzi | 1.0 | 0.0 | 302.0 | wikitext | NULL |
6.8861828e7 | No._2893_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.886183e7 | Parti_Libre_Canada | 1.0 | 0.0 | 107.0 | wikitext | NULL |
6.8861845e7 | 1941_Spring_Hill_Badgers_football_team | 0.0 | 0.0 | 5517.0 | wikitext | NULL |
6.8861848e7 | Adolfo_Infante | 0.0 | 0.0 | 8149.0 | wikitext | NULL |
6.8861849e7 | 2021_UCI_Road_World_Championships_–_Men's_under-23_time_trial | 0.0 | 0.0 | 6687.0 | wikitext | NULL |
6.8861859e7 | Volevo_fare_la_Rockstar | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8861861e7 | Richard_Sseruwagi | 0.0 | 0.0 | 4659.0 | wikitext | NULL |
6.8861863e7 | Volevo_fare_la_rockstar | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8861868e7 | Volevo_fare_la_rockstar_(album) | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8861879e7 | Meredith_Calhoun | 0.0 | 0.0 | 1684.0 | wikitext | NULL |
6.886188e7 | Caproni_Transaero | 1.0 | 0.0 | 87.0 | wikitext | NULL |
6.8861881e7 | Susil_Ranjan_Chattopadhyay | 0.0 | 0.0 | 2211.0 | wikitext | NULL |
6.8861891e7 | Meglio_del_cinema | 1.0 | 1.0 | 19.0 | wikitext | NULL |
6.8861901e7 | Age_of_consent_in_Ireland | 1.0 | 1.0 | 227.0 | wikitext | NULL |
6.8861911e7 | Caproni_Transaereo | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8861912e7 | Susil_Ranjan_Chatterjee | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8861913e7 | Lake_226 | 0.0 | 0.0 | 12193.0 | wikitext | NULL |
6.8861919e7 | Consulate-General_of_the_United_Kingdom,_Osaka | 1.0 | 0.0 | 107.0 | wikitext | NULL |
6.8861923e7 | CC-295_Kingfisher | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.8861924e7 | CC-295 | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.8861931e7 | Embassy_of_the_State_of_Palestine,_Tokyo | 1.0 | 1.0 | 88.0 | wikitext | NULL |
6.8861933e7 | Pseudophilautus_munnarensis | 1.0 | 1.0 | 76.0 | wikitext | NULL |
6.8861937e7 | Embassy_of_the_State_of_Palestine,_Manama | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886194e7 | Philautus_munnarensis | 1.0 | 1.0 | 76.0 | wikitext | NULL |
6.8861941e7 | Embassy_of_the_State_of_Palestine,_Hanoi | 1.0 | 1.0 | 88.0 | wikitext | NULL |
6.8861945e7 | 2021–22_EuroLeague_Regular_Season | 0.0 | 0.0 | 302424.0 | wikitext | NULL |
6.8861954e7 | Invasión_de_Bahia_de_Cochinos | 1.0 | 0.0 | 110.0 | wikitext | NULL |
6.8861955e7 | Hobble_Creek,_Utah | 0.0 | 1.0 | 3417.0 | wikitext | NULL |
6.8861957e7 | List_of_islands_of_Sint_Maarten | 1.0 | 1.0 | 54.0 | wikitext | NULL |
6.8861959e7 | The_Crozier_Pharaohs | 0.0 | 0.0 | 1891.0 | wikitext | NULL |
6.8861961e7 | RetroCrush | 1.0 | 0.0 | 105.0 | wikitext | NULL |
6.8861976e7 | Greater_Turkey | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.8861991e7 | Cyclone_Shaheen | 1.0 | 0.0 | 67.0 | wikitext | NULL |
6.8861999e7 | Thomas_Morita | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8862001e7 | Postmodern_television | 0.0 | 0.0 | 7221.0 | wikitext | NULL |
6.886201e7 | Opaas | 1.0 | 0.0 | 76.0 | wikitext | NULL |
6.8862012e7 | Paul_Quessenberry | 0.0 | 0.0 | 6169.0 | wikitext | NULL |
6.8862017e7 | René_Bochmann | 0.0 | 0.0 | 1679.0 | wikitext | NULL |
6.8862021e7 | NWA_Hard_Times_2 | 0.0 | 0.0 | 18575.0 | wikitext | NULL |
6.8862024e7 | John_Norman_(16th_century_MP) | 0.0 | 0.0 | 6164.0 | wikitext | NULL |
6.8862028e7 | Binaghi | 1.0 | 0.0 | 78.0 | wikitext | NULL |
6.8862037e7 | Frojen | 1.0 | 0.0 | 77.0 | wikitext | NULL |
6.8862041e7 | Volkswagen_ID._Life | 0.0 | 0.0 | 6022.0 | wikitext | NULL |
6.8862047e7 | Shani_Alhassan_Saibu | 0.0 | 0.0 | 949.0 | wikitext | NULL |
6.8862049e7 | RMS_Arabia_(1852) | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8862051e7 | List_of_PDO_products_by_country | 0.0 | 0.0 | 271068.0 | wikitext | NULL |
6.8862059e7 | Siegelaar | 0.0 | 0.0 | 481.0 | wikitext | NULL |
6.8862062e7 | Schins | 1.0 | 0.0 | 86.0 | wikitext | NULL |
6.8862077e7 | Roman_Museum_Remchingen | 0.0 | 0.0 | 4957.0 | wikitext | NULL |
6.8862082e7 | Marie_Therese_Schins | 1.0 | 1.0 | 87.0 | wikitext | NULL |
6.8862083e7 | Marie-Therese_Schins | 1.0 | 1.0 | 60.0 | wikitext | NULL |
6.8862087e7 | Marie_Thérèse_Schins | 1.0 | 1.0 | 64.0 | wikitext | NULL |
6.8862088e7 | Paul_Stanhope | 0.0 | 0.0 | 18199.0 | wikitext | NULL |
6.8862093e7 | NWA_Hard_Times | 0.0 | 0.0 | 3086.0 | wikitext | NULL |
6.88621e7 | 3Φ_power | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8862113e7 | Ducati_350_Sebring | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862119e7 | No._1_Anti-Aircraft_Calibration_Flight_RAF | 1.0 | 1.0 | 34.0 | wikitext | NULL |
6.886212e7 | Jaedon_Descheneau | 0.0 | 0.0 | 1291.0 | wikitext | NULL |
6.8862126e7 | Brazen_Tongue | 0.0 | 0.0 | 1558.0 | wikitext | NULL |
6.8862127e7 | No._1311_Mobile_Wing_RAF_Regiment | 1.0 | 1.0 | 96.0 | wikitext | NULL |
6.8862136e7 | No._2881_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8862138e7 | No._2883_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8862139e7 | No._2895_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8862141e7 | Yeshiva_Toras_Emes_Kamenitz | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8862142e7 | Matzliach_ben_Phinhas_ben_Yitzhaq_ben_Shalma | 0.0 | 0.0 | 2181.0 | wikitext | NULL |
6.8862143e7 | Body_Offering_(novel) | 0.0 | 0.0 | 7338.0 | wikitext | NULL |
6.8862147e7 | Max_(French_magazine) | 0.0 | 0.0 | 2246.0 | wikitext | NULL |
6.8862154e7 | Manlio_de_domenico | 1.0 | 1.0 | 79.0 | wikitext | NULL |
6.8862161e7 | Likambo_Ya_Ngana | 1.0 | 0.0 | 27.0 | wikitext | NULL |
6.8862162e7 | Jacaeber_kastor | 1.0 | 1.0 | 76.0 | wikitext | NULL |
6.8862166e7 | Magazine_Max | 1.0 | 0.0 | 44.0 | wikitext | NULL |
6.886217e7 | Recreational_obfuscation | 1.0 | 1.0 | 61.0 | wikitext | NULL |
6.8862172e7 | Town_of_Bloomsburg | 1.0 | 1.0 | 92.0 | wikitext | NULL |
6.8862176e7 | Asher_ben_Matzliach_ben_Phinhas | 0.0 | 0.0 | 1925.0 | wikitext | NULL |
6.8862177e7 | Dena_G._Hernandez | 0.0 | 0.0 | 1624.0 | wikitext | NULL |
6.8862184e7 | No._2721_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8862185e7 | Phinehas_X_ben_Matzliach_ben_Phinehas | 0.0 | 0.0 | 2029.0 | wikitext | NULL |
6.886219e7 | Hucclecote_(parish) | 0.0 | 0.0 | 1911.0 | wikitext | NULL |
6.8862191e7 | Ontario_Association_of_Art_Galleries | 1.0 | 0.0 | 97.0 | wikitext | NULL |
6.8862195e7 | MŠK_Žilina_Africa_F.C. | 0.0 | 0.0 | 7158.0 | wikitext | NULL |
6.8862199e7 | Amarillo_Badgers | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8862229e7 | Signals_Co-operation_Flight_RAF | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8862235e7 | Myrrha_(short_story) | 0.0 | 0.0 | 1910.0 | wikitext | NULL |
6.8862291e7 | 2006_FIBA_Americas_Under-20_Championship_for_Women | 0.0 | 0.0 | 7143.0 | wikitext | NULL |
6.8862303e7 | Euskotren_3150_series | 0.0 | 0.0 | 6316.0 | wikitext | NULL |
6.8862306e7 | Mountjoy_Prison_Complex | 1.0 | 0.0 | 62.0 | wikitext | NULL |
6.8862315e7 | Nokia_8800_Sirocco_Edition | 1.0 | 0.0 | 98.0 | wikitext | NULL |
6.8862321e7 | Diplomat's_Folly | 0.0 | 0.0 | 1778.0 | wikitext | NULL |
6.8862329e7 | MSK_Zilina_Africa | 1.0 | 0.0 | 38.0 | wikitext | NULL |
6.8862331e7 | MSK_Zilina_Africa_FC | 1.0 | 0.0 | 38.0 | wikitext | NULL |
6.886234e7 | Annagjid_Taylor | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8862341e7 | Deeper_Than_Hair | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8862342e7 | MFG_Austria_–_People_Freedom_Fundamental_Rights | 0.0 | 0.0 | 7940.0 | wikitext | NULL |
6.8862345e7 | No-knock_search_warrant | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8862352e7 | Beatrice_Luigi_Gomez | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862357e7 | Prezi.com | 1.0 | 1.0 | 19.0 | wikitext | NULL |
6.8862367e7 | Heartland_of_America | 1.0 | 1.0 | 39.0 | wikitext | NULL |
6.8862369e7 | EU_initiatives_against_illegal_maritime_activites_in_the_Gulf_of_Guinea | 1.0 | 1.0 | 133.0 | wikitext | NULL |
6.8862375e7 | Jeremy_Stansfield | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8862379e7 | Defense_of_Beijing | 0.0 | 0.0 | 8477.0 | wikitext | NULL |
6.8862392e7 | Darling_(2021_film) | 0.0 | 0.0 | 5752.0 | wikitext | NULL |
6.8862393e7 | Sébastien_Point | 0.0 | 0.0 | 25563.0 | wikitext | NULL |
6.8862397e7 | Amila | 0.0 | 0.0 | 935.0 | wikitext | NULL |
6.8862401e7 | Cumberland_County_Sheriff's_Office | 1.0 | 0.0 | 49.0 | wikitext | NULL |
6.8862408e7 | 2022_Valenzuela_local_elections | 0.0 | 0.0 | 20728.0 | wikitext | NULL |
6.8862409e7 | Electricity_Regulatory_Authority_House | 0.0 | 0.0 | 5993.0 | wikitext | NULL |
6.8862416e7 | Petrus_Pisanus | 0.0 | 0.0 | 16589.0 | wikitext | NULL |
6.8862437e7 | Terpeikiai | 0.0 | 0.0 | 2933.0 | wikitext | NULL |
6.8862438e7 | Shopian,_Jammu_and_Kashmir | 1.0 | 1.0 | 21.0 | wikitext | NULL |
6.8862441e7 | Emberá_Comarca | 1.0 | 1.0 | 84.0 | wikitext | NULL |
6.8862443e7 | C'mon_You_Know | 0.0 | 0.0 | 19264.0 | wikitext | NULL |
6.8862444e7 | Lithium_dioxide | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8862445e7 | C'Mon_You_Know | 1.0 | 0.0 | 28.0 | wikitext | NULL |
6.8862446e7 | Gary_Gomez_(boxer) | 0.0 | 0.0 | 5910.0 | wikitext | NULL |
6.8862447e7 | Nadezhdina,_Aurgazinsky_District,_Republic_of_Bashkortostan | 1.0 | 1.0 | 120.0 | wikitext | NULL |
6.886245e7 | Trieschmann | 0.0 | 0.0 | 290.0 | wikitext | NULL |
6.8862451e7 | Paragonaster | 0.0 | 0.0 | 1176.0 | wikitext | NULL |
6.8862459e7 | C'mon_You_Know_(album) | 1.0 | 0.0 | 28.0 | wikitext | NULL |
6.8862462e7 | C'mon,_You_Know | 1.0 | 0.0 | 28.0 | wikitext | NULL |
6.8862466e7 | 1975_Montana_State_Bobcats_football_team | 0.0 | 0.0 | 3832.0 | wikitext | NULL |
6.8862468e7 | Reduced_NADP | 1.0 | 1.0 | 57.0 | wikitext | NULL |
6.8862471e7 | Lightning_Bug_(band) | 0.0 | 0.0 | 2653.0 | wikitext | NULL |
6.8862472e7 | Basarabka | 1.0 | 1.0 | 24.0 | wikitext | NULL |
6.8862478e7 | Paul_Booker | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862479e7 | 8240th_Army_Unit | 0.0 | 0.0 | 3574.0 | wikitext | NULL |
6.886248e7 | Baćina | 0.0 | 0.0 | 101.0 | wikitext | NULL |
6.8862483e7 | Chimera_(South_Korean_TV_series) | 0.0 | 0.0 | 12008.0 | wikitext | NULL |
6.8862485e7 | Basarabka,_Kazakhstan | 1.0 | 1.0 | 23.0 | wikitext | NULL |
6.8862489e7 | Bessarabka,_Kazakhstan | 1.0 | 1.0 | 23.0 | wikitext | NULL |
6.8862491e7 | Body_Offering_(Novel) | 1.0 | 0.0 | 79.0 | wikitext | NULL |
6.8862492e7 | Camp_Syrets | 1.0 | 1.0 | 39.0 | wikitext | NULL |
6.8862495e7 | Baćina,_Bosnia_and_Herzegovina | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8862497e7 | Jen_Li-yu | 0.0 | 0.0 | 2811.0 | wikitext | NULL |
6.8862501e7 | Herman_Prins_Salomon | 0.0 | 0.0 | 8033.0 | wikitext | NULL |
6.8862507e7 | Maty_(disambiguation) | 1.0 | 0.0 | 46.0 | wikitext | NULL |
6.8862513e7 | Spicy_(CL_song) | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8862514e7 | Walter_Davoine | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.8862515e7 | Domingo_Salvador_Pérez | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8862522e7 | The_Trash_Can_Sinatras_discography | 1.0 | 1.0 | 48.0 | wikitext | NULL |
6.8862526e7 | Barclay_James_Harvest_discography | 0.0 | 0.0 | 26527.0 | wikitext | NULL |
6.8862529e7 | 1977_Montana_State_Bobcats_football_team | 0.0 | 0.0 | 2933.0 | wikitext | NULL |
6.8862536e7 | Nero_(video_game) | 0.0 | 0.0 | 5084.0 | wikitext | NULL |
6.8862551e7 | Boris_Chichkov | 0.0 | 0.0 | 9959.0 | wikitext | NULL |
6.886256e7 | Yoru_no_Kai | 0.0 | 0.0 | 12082.0 | wikitext | NULL |
6.8862568e7 | Tiburtius_Rosd | 0.0 | 0.0 | 8685.0 | wikitext | NULL |
6.886258e7 | Bramma_G | 0.0 | 0.0 | 6108.0 | wikitext | NULL |
6.8862583e7 | Bhamò | 1.0 | 0.0 | 41.0 | wikitext | NULL |
6.8862588e7 | Quicksand_discography | 1.0 | 1.0 | 51.0 | wikitext | NULL |
6.8862595e7 | Eremerus_×_isabellinus | 1.0 | 0.0 | 131.0 | wikitext | NULL |
6.8862597e7 | Eremurus_×isabellinus | 1.0 | 1.0 | 62.0 | wikitext | NULL |
6.8862599e7 | Eremurus_x_isabellinus | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8862602e7 | Grace_Gaustad | 0.0 | 0.0 | 5269.0 | wikitext | NULL |
6.8862603e7 | Jean-Marie_Mokoko | 0.0 | 0.0 | 24521.0 | wikitext | NULL |
6.8862605e7 | Eremurus_isabellinus | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8862626e7 | First_Muslim_civil_war | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8862634e7 | 2021_World_Wrestling_Championships_–_Men's_freestyle_86_kg | 0.0 | 0.0 | 8324.0 | wikitext | NULL |
6.8862636e7 | Adam_Richards_(boxer) | 0.0 | 0.0 | 10053.0 | wikitext | NULL |
6.8862637e7 | NEMSU | 1.0 | 1.0 | 53.0 | wikitext | NULL |
6.8862643e7 | Idol:_The_Coup | 0.0 | 0.0 | 33289.0 | wikitext | NULL |
6.8862647e7 | Cyclone_Gulab-Shaheen | 1.0 | 0.0 | 120.0 | wikitext | NULL |
6.8862652e7 | Hristo_Burmov | 0.0 | 0.0 | 9624.0 | wikitext | NULL |
6.8862655e7 | Spherical_(video_game) | 0.0 | 0.0 | 2483.0 | wikitext | NULL |
6.8862664e7 | Sankara_Is_Not_Dead | 0.0 | 0.0 | 3714.0 | wikitext | NULL |
6.8862667e7 | No._212_Maintenance_Unit_RAF | 1.0 | 1.0 | 81.0 | wikitext | NULL |
6.8862669e7 | 2019_Nigerian_House_of_Representatives_elections_in_Niger_State | 0.0 | 0.0 | 15976.0 | wikitext | NULL |
6.8862675e7 | Edward_Feldman | 0.0 | 0.0 | 219.0 | wikitext | NULL |
6.8862687e7 | Cristina_Amaral | 0.0 | 0.0 | 2962.0 | wikitext | NULL |
6.8862693e7 | U._S._Grant_Home | 1.0 | 1.0 | 58.0 | wikitext | NULL |
6.8862694e7 | 2021–22_EML_season | 0.0 | 0.0 | 7510.0 | wikitext | NULL |
6.8862697e7 | Jack_Connor_(physicist) | 0.0 | 0.0 | 2692.0 | wikitext | NULL |
6.886271e7 | Albany_Mounds | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8862713e7 | Unification_of_Moldavia_with_Wallachia | 1.0 | 1.0 | 51.0 | wikitext | NULL |
6.8862717e7 | Blue_Max:_Aces_of_the_Great_War | 0.0 | 0.0 | 2421.0 | wikitext | NULL |
6.8862719e7 | Unification_of_Wallachia_with_Moldavia | 1.0 | 0.0 | 51.0 | wikitext | NULL |
6.8862724e7 | John_William_Connor | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8862738e7 | Market_hunting | 1.0 | 1.0 | 59.0 | wikitext | NULL |
6.886274e7 | 2nd_Earl_of_Gowrie | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8862742e7 | Alexander_Patrick_Greysteil_Hore-Ruthven | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8862745e7 | Greysteil_Hore-Ruthven | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8862748e7 | Rose_Bowl_100 | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862756e7 | Sparx_(US_band) | 1.0 | 1.0 | 82.0 | wikitext | NULL |
6.8862762e7 | Rubicon_(US_band) | 1.0 | 1.0 | 84.0 | wikitext | NULL |
6.8862769e7 | Fandango_(US_band) | 1.0 | 1.0 | 85.0 | wikitext | NULL |
6.8862772e7 | English_language_arts | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8862773e7 | Baltzar_von_Platen_(1804–1875) | 0.0 | 0.0 | 2501.0 | wikitext | NULL |
6.8862779e7 | Stratego_(video_game) | 0.0 | 0.0 | 5538.0 | wikitext | NULL |
6.886278e7 | Scar_Tissue_(book) | 1.0 | 0.0 | 121.0 | wikitext | NULL |
6.8862784e7 | Satellite_(US_band) | 1.0 | 1.0 | 86.0 | wikitext | NULL |
6.8862787e7 | John_Balmanno | 0.0 | 0.0 | 3275.0 | wikitext | NULL |
6.8862788e7 | The_Wake_(US_band) | 1.0 | 1.0 | 85.0 | wikitext | NULL |
6.8862791e7 | IMO_4685353 | 1.0 | 1.0 | 56.0 | wikitext | NULL |
6.8862792e7 | ANNA | 1.0 | 0.0 | 77.0 | wikitext | NULL |
6.8862794e7 | The_Refreshments_(U.S._band) | 1.0 | 1.0 | 93.0 | wikitext | NULL |
6.8862796e7 | Vietnam_Coast_Guard_ship_CSB_8021 | 1.0 | 1.0 | 186.0 | wikitext | NULL |
6.8862798e7 | Kim_zəngin_olmaq_istəyir?_Milyonların_Şousu | 0.0 | 0.0 | 12563.0 | wikitext | NULL |
6.8862809e7 | The_Eagle's_Nest_(film) | 0.0 | 0.0 | 4285.0 | wikitext | NULL |
6.886281e7 | Dragan_Selo | 0.0 | 1.0 | 3368.0 | wikitext | NULL |
6.8862811e7 | Prima_Donna_(UK_band) | 1.0 | 1.0 | 87.0 | wikitext | NULL |
6.8862823e7 | Codename_Vol._2 | 0.0 | 0.0 | 5467.0 | wikitext | NULL |
6.886283e7 | Maryland_Route_863A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862831e7 | Maryland_State_Highway_863A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862832e7 | Maryland_State_Route_863A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862833e7 | Maryland_863A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862835e7 | MD_863A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862836e7 | Route_863A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862837e7 | Faik_Ozansoy | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.886284e7 | Maryland_Route_868G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862844e7 | Maryland_State_Highway_868G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862848e7 | Maryland_State_Route_868G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862849e7 | Maryland_868G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886285e7 | MD_868G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862851e7 | Route_868G_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862852e7 | Sacred_Heart_Church_(Peterborough,_Ontario) | 0.0 | 0.0 | 3960.0 | wikitext | NULL |
6.8862855e7 | Maryland_Route_870G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862856e7 | Maryland_State_Highway_870G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862857e7 | Battle_of_Pulukunawa | 0.0 | 0.0 | 4796.0 | wikitext | NULL |
6.8862859e7 | Maryland_State_Route_870G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886286e7 | Maryland_870G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862861e7 | MD_870G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862863e7 | Route_870G_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862865e7 | Maryland_Route_871F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862866e7 | Maryland_State_Highway_871F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862867e7 | Maryland_State_Route_871F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862868e7 | Checkmate_(video_game) | 0.0 | 0.0 | 3202.0 | wikitext | NULL |
6.8862871e7 | Maryland_871F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862874e7 | MD_871F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862875e7 | Route_871F_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862879e7 | Maryland_Route_871G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886288e7 | Maryland_State_Highway_871G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862881e7 | Maryland_State_Route_871G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862884e7 | Maryland_871G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862885e7 | MD_871G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886289e7 | Route_871G_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862894e7 | Maryland_Route_872G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862896e7 | Maryland_State_Highway_872G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862898e7 | Así_Nacemos | 1.0 | 0.0 | 87.0 | wikitext | NULL |
6.8862902e7 | Maryland_State_Route_872G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862906e7 | Maryland_872G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862907e7 | MD_872G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886291e7 | Route_872G_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862913e7 | Maryland_Route_874B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862916e7 | Maryland_State_Highway_874B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862918e7 | Maryland_State_Route_874B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886292e7 | Maryland_874B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862921e7 | Sir_Edward_Nevill,_1st_Baronet | 1.0 | 1.0 | 40.0 | wikitext | NULL |
6.8862922e7 | MD_874B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862923e7 | Route_874B_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862927e7 | Maryland_Route_874D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862929e7 | Maryland_State_Highway_874D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862931e7 | Maryland_State_Route_874D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862932e7 | Maryland_874D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862937e7 | MD_874D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862938e7 | Edward_Goldsmith_(Dean_of_Elphin) | 1.0 | 1.0 | 86.0 | wikitext | NULL |
6.886294e7 | Route_874D_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862942e7 | Maryland_Route_874E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862943e7 | Maryland_State_Highway_874E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862946e7 | Dragoton | 1.0 | 1.0 | 46.0 | wikitext | NULL |
6.8862947e7 | Maryland_State_Route_874E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862951e7 | Maryland_874E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862955e7 | MD_874E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862956e7 | Sex_Side_of_Life | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.8862957e7 | Route_874E_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862959e7 | Maryland_Route_877B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862963e7 | Maryland_State_Highway_877B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862965e7 | Maryland_State_Route_877B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862966e7 | Ester_Vázquez_Fernández-Pacheco | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862967e7 | Maryland_877B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862968e7 | MD_877B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862969e7 | Plex_(Google) | 1.0 | 0.0 | 102.0 | wikitext | NULL |
6.886297e7 | Ester_Vazquez | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8862971e7 | Route_877B_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862976e7 | Maryland_Route_879A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862977e7 | Maryland_State_Highway_879A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862979e7 | Maryland_State_Route_879A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886298e7 | Maryland_879A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862982e7 | MD_879A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862986e7 | Route_879A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862987e7 | Maryland_Route_879B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862989e7 | Maryland_State_Highway_879B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862991e7 | Anna_Molberg | 0.0 | 0.0 | 1907.0 | wikitext | NULL |
6.8862993e7 | Maryland_State_Route_879B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862995e7 | Maryland_879B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8862999e7 | MD_879B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863004e7 | Route_879B_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863007e7 | Maryland_Route_879C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863008e7 | Maryland_State_Highway_879C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863012e7 | Maryland_State_Route_879C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863013e7 | Forever_Rich | 0.0 | 0.0 | 1906.0 | wikitext | NULL |
6.8863015e7 | Maryland_879C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863016e7 | Edward_Hinton | 0.0 | 0.0 | 481.0 | wikitext | NULL |
6.8863018e7 | MD_879C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863019e7 | Anna_Irene_Molberg | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.8863021e7 | Route_879C_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863022e7 | Columbus_Neighborhoods | 0.0 | 0.0 | 9994.0 | wikitext | NULL |
6.8863023e7 | Maryland_Route_879D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863024e7 | Jasper_Forest_Park | 1.0 | 1.0 | 75.0 | wikitext | NULL |
6.8863025e7 | Maryland_State_Highway_879D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863028e7 | Maryland_State_Route_879D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863031e7 | Maryland_879D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863033e7 | MD_879D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863035e7 | Route_879D_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863036e7 | Maryland_Route_879E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863038e7 | Maryland_State_Highway_879E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863039e7 | Maryland_State_Route_879E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886304e7 | Beth_medrash | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.8863042e7 | Maryland_879E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863044e7 | MD_879E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863045e7 | Route_879E_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886305e7 | Maryland_State_Route_895 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863053e7 | Maryland_895 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863056e7 | MD_895 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863057e7 | 2021–22_in_Bangladeshi_Football | 0.0 | 0.0 | 7334.0 | wikitext | NULL |
6.8863058e7 | Team_Carinthia | 0.0 | 0.0 | 11123.0 | wikitext | NULL |
6.8863059e7 | Route_895_(Maryland) | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863061e7 | Maryland_Route_899A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863063e7 | Maryland_State_Highway_899A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863065e7 | Maryland_State_Route_899A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863068e7 | Maryland_899A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863069e7 | MD_899A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886307e7 | CYCLOPS_(junction) | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8863072e7 | Route_899A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863074e7 | Dicranopalpus_fraternus | 0.0 | 0.0 | 1141.0 | wikitext | NULL |
6.8863076e7 | 1978_Montana_State_Bobcats_football_team | 0.0 | 0.0 | 3702.0 | wikitext | NULL |
6.8863078e7 | Maryland_State_Route_901 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863079e7 | Maryland_901 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863083e7 | 1963_European_Ladies'_Team_Championship | 0.0 | 0.0 | 11608.0 | wikitext | NULL |
6.886309e7 | MD_901 | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863093e7 | Route_901_(Maryland) | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863096e7 | Edward_Ledwich_(Dean_of_Kildare) | 1.0 | 1.0 | 84.0 | wikitext | NULL |
6.8863098e7 | Maryland_Route_904A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863099e7 | 1976_Delaware_State_Hornets_football_team | 0.0 | 0.0 | 7567.0 | wikitext | NULL |
6.8863102e7 | Maryland_State_Highway_904A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863104e7 | Maryland_State_Route_904A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863105e7 | Maryland_904A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863107e7 | MD_904A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863108e7 | Route_904A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863109e7 | Klaus_Zyciora | 0.0 | 0.0 | 3889.0 | wikitext | NULL |
6.886311e7 | Maryland_Route_904D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863111e7 | Maryland_State_Highway_904D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863112e7 | The_Tourist_(2021_film) | 1.0 | 0.0 | 63.0 | wikitext | NULL |
6.8863113e7 | Maryland_State_Route_904D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863117e7 | Edward_Layton | 0.0 | 0.0 | 216.0 | wikitext | NULL |
6.8863121e7 | Maryland_904D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863122e7 | MD_904D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863123e7 | Route_904D_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863125e7 | Maryland_Route_904F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863129e7 | François_Vérove | 0.0 | 0.0 | 15196.0 | wikitext | NULL |
6.8863131e7 | Maryland_State_Highway_904F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863133e7 | Maryland_State_Route_904F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863136e7 | Maryland_904F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863139e7 | MD_904F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863141e7 | Route_904F_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863143e7 | Maryland_Route_904H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863144e7 | Maryland_State_Highway_904H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863145e7 | Chantal_Youdom | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8863147e7 | Maryland_State_Route_904H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863148e7 | Maryland_904H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863149e7 | MD_904H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863151e7 | Route_904H_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863152e7 | Maryland_Route_904I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863153e7 | François_Verove | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.8863155e7 | Maryland_State_Highway_904I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863158e7 | Maryland_State_Route_904I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863161e7 | Maryland_904I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863163e7 | Francois_Vérove | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.8863164e7 | MD_904I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863165e7 | Vérove | 1.0 | 0.0 | 81.0 | wikitext | NULL |
6.8863166e7 | Route_904I_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863171e7 | Maryland_Route_910B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863173e7 | Maryland_State_Highway_910B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863175e7 | Sterphus_aurifrons | 0.0 | 0.0 | 1048.0 | wikitext | NULL |
6.8863176e7 | Maryland_State_Route_910B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863178e7 | Maryland_910B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863179e7 | MD_910B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886318e7 | Route_910B_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863183e7 | Maryland_Route_910C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863186e7 | Maryland_State_Highway_910C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886319e7 | Maryland_State_Route_910C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863192e7 | Merlon_(disambiguation) | 0.0 | 0.0 | 316.0 | wikitext | NULL |
6.8863193e7 | Maryland_910C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863194e7 | MD_910C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863195e7 | Berezyne,_Odesa_Oblast | 0.0 | 0.0 | 4384.0 | wikitext | NULL |
6.8863196e7 | Route_910C_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863198e7 | Maryland_Route_912A | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863199e7 | Maryland_State_Highway_912A | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863201e7 | Maryland_State_Route_912A | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863206e7 | Maryland_912A | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863207e7 | MD_912A | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863209e7 | Route_912A_(Maryland) | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8863217e7 | King-Lincoln | 1.0 | 1.0 | 38.0 | wikitext | NULL |
6.8863223e7 | Maryland_State_Highway_915A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863226e7 | Maryland_State_Route_915A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863227e7 | Ctenacanthidae | 0.0 | 0.0 | 2028.0 | wikitext | NULL |
6.8863228e7 | 1936–37_NHL_transactions | 0.0 | 0.0 | 8631.0 | wikitext | NULL |
6.8863229e7 | Maryland_915A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886323e7 | MD_915A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863231e7 | Route_915A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863232e7 | Maryland_State_Highway_915H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863233e7 | Maryland_State_Route_915H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863235e7 | Maryland_915H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863237e7 | MD_915H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863238e7 | Route_915H_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863242e7 | Maryland_State_Highway_920J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863244e7 | Maryland_State_Route_920J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863246e7 | Maryland_920J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863248e7 | MD_920J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886325e7 | Medicare_negotiation_of_drug_prices | 1.0 | 1.0 | 87.0 | wikitext | NULL |
6.8863262e7 | 2021-2022_Kalamata_F.C._Season | 1.0 | 0.0 | 91.0 | wikitext | NULL |
6.8863264e7 | Route_920J_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863265e7 | QLD_PGA_Championship | 1.0 | 0.0 | 41.0 | wikitext | NULL |
6.8863266e7 | Maryland_State_Highway_920K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863272e7 | Maryland_State_Route_920K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863273e7 | Maryland_920K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863275e7 | MD_920K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863277e7 | Route_920K_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886328e7 | Maryland_State_Highway_920L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863281e7 | No_such_thing_as_a_dumb_question | 1.0 | 1.0 | 77.0 | wikitext | NULL |
6.8863282e7 | Maryland_State_Route_920L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863283e7 | Maryland_920L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863284e7 | Pablo_Dabezies | 0.0 | 0.0 | 1585.0 | wikitext | NULL |
6.8863285e7 | Paul_Dabezies | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8863286e7 | MD_920L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863288e7 | 2021–2022_Kalamata_F.C._season | 1.0 | 1.0 | 91.0 | wikitext | NULL |
6.8863289e7 | Route_920L_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863291e7 | Maryland_State_Highway_920M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863293e7 | Maryland_State_Route_920M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863294e7 | Table_Mountain_Facility | 1.0 | 0.0 | 88.0 | wikitext | NULL |
6.8863296e7 | Maryland_920M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863298e7 | John_K._Kruschke | 0.0 | 0.0 | 22217.0 | wikitext | NULL |
6.8863299e7 | MD_920M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.88633e7 | Poke_It_Out_(song) | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8863302e7 | Route_920M_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863306e7 | Maryland_State_Highway_920N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863308e7 | National_Center_for_Science_and_Engineering_Statistics | 0.0 | 0.0 | 29945.0 | wikitext | NULL |
6.886331e7 | Sienna_Elizabeth_Mapelli_Mozzi | 1.0 | 0.0 | 45.0 | wikitext | NULL |
6.8863311e7 | Maryland_State_Route_920N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863312e7 | Edward_Monckton_(MP) | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8863313e7 | Poke_It_Out_(Playboi_Carti_song) | 1.0 | 0.0 | 93.0 | wikitext | NULL |
6.8863319e7 | Maryland_920N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886332e7 | Sterphus_batesi | 0.0 | 0.0 | 1545.0 | wikitext | NULL |
6.8863321e7 | MD_920N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863322e7 | Route_920N_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863323e7 | Maryland_State_Highway_920O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863327e7 | Maryland_State_Route_920O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863332e7 | Maryland_920O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863333e7 | MD_920O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863335e7 | Poke_It_Out_(Playboi_Carti_and_Nicki_Minaj_song) | 1.0 | 1.0 | 240.0 | wikitext | NULL |
6.8863336e7 | Route_920O_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863337e7 | Maryland_State_Highway_920P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863338e7 | Maryland_State_Route_920P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886334e7 | Maryland_920P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863343e7 | MD_920P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863344e7 | Route_920P_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863345e7 | Maryland_State_Highway_920Q | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863346e7 | Maryland_State_Route_920Q | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863347e7 | Maryland_920Q | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863349e7 | MD_920Q | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863351e7 | Eisenhower_boom | 1.0 | 1.0 | 39.0 | wikitext | NULL |
6.8863353e7 | Route_920Q_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863354e7 | Maryland_State_Highway_920R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863355e7 | Maryland_State_Route_920R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863357e7 | FolarIIn | 1.0 | 0.0 | 48.0 | wikitext | NULL |
6.8863358e7 | Maryland_920R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886336e7 | MD_920R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863361e7 | Route_920R_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863363e7 | Yoshishige_Saitō | 0.0 | 0.0 | 24817.0 | wikitext | NULL |
6.8863365e7 | Maryland_State_Highway_920S | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863367e7 | Maryland_State_Route_920S | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863368e7 | Maryland_920S | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863369e7 | Spinifex_littoreus | 0.0 | 0.0 | 2616.0 | wikitext | NULL |
6.8863371e7 | MD_920S | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863372e7 | Route_920S_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863373e7 | Maryland_State_Highway_920T | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863374e7 | Maryland_State_Route_920T | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863376e7 | Maryland_920T | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863377e7 | Jean-Michel_Kibushi_Ndjate_Wooto | 0.0 | 0.0 | 6515.0 | wikitext | NULL |
6.8863378e7 | MD_920T | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863379e7 | Route_920T_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886338e7 | Donga_bonga | 1.0 | 1.0 | 73.0 | wikitext | NULL |
6.8863383e7 | Maryland_Route_921A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863384e7 | Maryland_State_Highway_921A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863387e7 | Maryland_State_Route_921A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863389e7 | Maryland_921A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863391e7 | MD_921A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863392e7 | Route_921A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863393e7 | Maryland_Route_921B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863394e7 | Maryland_State_Highway_921B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863396e7 | Lincoln_(CDP),_Vermont | 0.0 | 1.0 | 3714.0 | wikitext | NULL |
6.8863397e7 | Maryland_State_Route_921B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863399e7 | Maryland_921B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.88634e7 | Addai-Sebo | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8863402e7 | MD_921B | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863404e7 | Maralixibat | 1.0 | 1.0 | 81.0 | wikitext | NULL |
6.8863406e7 | Route_921B_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863407e7 | Maryland_Route_921C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863408e7 | SpaceStation_Gaming | 1.0 | 1.0 | 80.0 | wikitext | NULL |
6.886341e7 | Maryland_State_Highway_921C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863411e7 | Maryland_State_Route_921C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863412e7 | Maryland_921C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863413e7 | MD_921C | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863414e7 | Route_921C_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863415e7 | Maryland_Route_921D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863416e7 | Maryland_State_Highway_921D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863417e7 | Maryland_State_Route_921D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863418e7 | Timothy_Mark_Hely_Hutchinson | 1.0 | 0.0 | 32.0 | wikitext | NULL |
6.8863419e7 | Maryland_921D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886342e7 | MD_921D | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863422e7 | Route_921D_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863423e7 | Timothy_Hely_Hutchinson | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8863427e7 | Maryland_Route_921E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863428e7 | Maryland_State_Highway_921E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863432e7 | Maryland_State_Route_921E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863433e7 | Michael_A.Sussmann | 1.0 | 0.0 | 53.0 | wikitext | NULL |
6.8863435e7 | Maryland_921E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863436e7 | MD_921E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863437e7 | Route_921E_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863439e7 | Montana_Department_of_Environmental_Quality | 0.0 | 0.0 | 1684.0 | wikitext | NULL |
6.8863442e7 | Maryland_Route_921F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863444e7 | Maryland_State_Highway_921F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863446e7 | Maryland_State_Route_921F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863448e7 | John_P._Badger | 0.0 | 0.0 | 6250.0 | wikitext | NULL |
6.8863449e7 | Maryland_921F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886345e7 | MD_921F | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863452e7 | Michael_A._Sussmann | 1.0 | 0.0 | 58.0 | wikitext | NULL |
6.8863453e7 | Route_921F_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863454e7 | Maryland_Route_921G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863455e7 | Maryland_State_Highway_921G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863456e7 | Maryland_State_Route_921G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863457e7 | Maryland_921G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863458e7 | MD_921G | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863459e7 | Route_921G_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863461e7 | Maryland_Route_921H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863464e7 | Edward_Rush | 0.0 | 0.0 | 312.0 | wikitext | NULL |
6.8863466e7 | Gutai_group | 1.0 | 1.0 | 82.0 | wikitext | NULL |
6.8863472e7 | Arvid_Taube | 0.0 | 0.0 | 3928.0 | wikitext | NULL |
6.8863473e7 | Maryland_State_Highway_921H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863475e7 | Maryland_State_Route_921H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863477e7 | Maryland_921H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863479e7 | MD_921H | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886348e7 | Xscape_(Don_Toliver_song) | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8863481e7 | Route_921H_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863483e7 | Maryland_Route_921I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863485e7 | Maryland_State_Highway_921I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863486e7 | Maryland_State_Route_921I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863487e7 | Maryland_921I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863489e7 | MD_921I | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886349e7 | Route_921I_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863491e7 | Maryland_Route_921J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863492e7 | Maryland_State_Highway_921J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863493e7 | Island_Hall | 0.0 | 0.0 | 4142.0 | wikitext | NULL |
6.8863494e7 | Maryland_State_Route_921J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863496e7 | Maryland_921J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863497e7 | BDO_British_Open | 1.0 | 1.0 | 81.0 | wikitext | NULL |
6.8863499e7 | Le_Grele | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.8863501e7 | MD_921J | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863503e7 | Route_921J_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863505e7 | Maryland_Route_921K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863508e7 | Maryland_State_Highway_921K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863513e7 | Maryland_State_Route_921K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863515e7 | Maryland_921K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863517e7 | MD_921K | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863519e7 | Route_921K_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863522e7 | Maryland_Route_921L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863524e7 | Maryland_State_Highway_921L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863527e7 | Maryland_State_Route_921L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886353e7 | Maryland_921L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863533e7 | MD_921L | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863534e7 | Route_921L_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863535e7 | Maryland_Route_921M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863537e7 | Maryland_State_Highway_921M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863538e7 | The_Beaker_Girls | 0.0 | 0.0 | 11298.0 | wikitext | NULL |
6.8863539e7 | Maryland_State_Route_921M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863541e7 | Maryland_921M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863542e7 | MD_921M | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863543e7 | Tocado | 1.0 | 0.0 | 95.0 | wikitext | NULL |
6.8863544e7 | Route_921M_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863547e7 | Maryland_Route_921N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863548e7 | Maryland_State_Highway_921N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863549e7 | Maryland_State_Route_921N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863551e7 | Maryland_921N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863552e7 | MD_921N | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863554e7 | Route_921N_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863556e7 | Maryland_Route_921O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863561e7 | Maryland_State_Highway_921O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863563e7 | Maryland_State_Route_921O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863565e7 | Maryland_921O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863568e7 | MD_921O | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.886357e7 | Route_921O_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863573e7 | Maryland_Route_921P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863574e7 | Maryland_State_Highway_921P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863575e7 | Maryland_State_Route_921P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863576e7 | Edward_Rath | 0.0 | 1.0 | 199.0 | wikitext | NULL |
6.8863577e7 | Maryland_921P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863578e7 | MD_921P | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863579e7 | Route_921P_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863581e7 | Maryland_Route_921R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863582e7 | Maryland_State_Highway_921R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863583e7 | Maryland_State_Route_921R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863585e7 | Maryland_921R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863586e7 | MD_921R | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863587e7 | Peter_Antonovich_Devier | 1.0 | 1.0 | 73.0 | wikitext | NULL |
6.8863591e7 | Route_921R_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863596e7 | Maryland_Route_922E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863598e7 | Maryland_State_Highway_922E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.88636e7 | Maryland_State_Route_922E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863602e7 | Maryland_922E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863604e7 | MD_922E | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863606e7 | Route_922E_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863607e7 | Maryland_State_Highway_927A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863608e7 | Maryland_State_Route_927A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863609e7 | Edward_Pugh | 0.0 | 0.0 | 342.0 | wikitext | NULL |
6.8863612e7 | Maryland_927A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863615e7 | MD_927A | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863616e7 | Route_927A_(Maryland) | 1.0 | 1.0 | 89.0 | wikitext | NULL |
6.8863621e7 | Alphonso_Cox | 0.0 | 0.0 | 2254.0 | wikitext | NULL |
6.8863623e7 | Melvin_Coleman | 0.0 | 0.0 | 2363.0 | wikitext | NULL |
6.8863631e7 | Harry_Catto | 0.0 | 0.0 | 2032.0 | wikitext | NULL |
6.8863635e7 | Dallas_Carter_(baseball) | 0.0 | 0.0 | 2072.0 | wikitext | NULL |
6.8863638e7 | Nana_Kwame_Ampadu | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8863648e7 | Catch_Me_(Cliff_Richard_song) | 1.0 | 1.0 | 94.0 | wikitext | NULL |
6.8863659e7 | Grete_Wold | 0.0 | 0.0 | 1826.0 | wikitext | NULL |
6.8863664e7 | Dell_Boomi | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863678e7 | Rafael_Pinheiro | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.886368e7 | Nina_Skorupska | 0.0 | 0.0 | 6465.0 | wikitext | NULL |
6.8863685e7 | Hira_Umer | 0.0 | 0.0 | 4062.0 | wikitext | NULL |
6.886369e7 | J._Harper_Smith_Mansion | 0.0 | 0.0 | 2848.0 | wikitext | NULL |
6.8863694e7 | George_Washington_Albright | 1.0 | 1.0 | 32.0 | wikitext | NULL |
6.8863698e7 | Edward_Römer | 0.0 | 1.0 | 205.0 | wikitext | NULL |
6.8863699e7 | Edward_Romer | 1.0 | 1.0 | 26.0 | wikitext | NULL |
6.8863714e7 | WHOOP_(company) | 0.0 | 0.0 | 16113.0 | wikitext | NULL |
6.8863722e7 | 2021_World_Wrestling_Championships_–_Men's_freestyle_74_kg | 0.0 | 0.0 | 9078.0 | wikitext | NULL |
6.8863729e7 | Block_E_(Minneapolis) | 1.0 | 1.0 | 79.0 | wikitext | NULL |
6.8863732e7 | New_Haven_(CDP),_Vermont | 0.0 | 1.0 | 3416.0 | wikitext | NULL |
6.8863736e7 | Pat_Walker_(philanthropist) | 0.0 | 0.0 | 6376.0 | wikitext | NULL |
6.8863741e7 | Nancy_Berliner | 0.0 | 0.0 | 4675.0 | wikitext | NULL |
6.8863743e7 | Lemme_Find_Out | 1.0 | 1.0 | 45.0 | wikitext | NULL |
6.8863755e7 | Harbin_Songbei_Yiteng_F.C. | 1.0 | 1.0 | 41.0 | wikitext | NULL |
6.8863762e7 | 2021_Asian_Table_Tennis_Championships_–_Men's_singles | 0.0 | 0.0 | 49278.0 | wikitext | NULL |
6.8863775e7 | Nelson_Gill | 0.0 | 0.0 | 3588.0 | wikitext | NULL |
6.8863781e7 | 2021_Asian_Table_Tennis_Championships_–_Women's_singles | 0.0 | 0.0 | 34043.0 | wikitext | NULL |
6.8863784e7 | South_Lincoln,_Vermont | 0.0 | 1.0 | 3535.0 | wikitext | NULL |
6.8863786e7 | Missouri_Auditor | 1.0 | 1.0 | 38.0 | wikitext | NULL |
6.8863794e7 | South_Lincoln | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8863799e7 | Neverland_II | 1.0 | 1.0 | 50.0 | wikitext | NULL |
6.8863806e7 | Never_Land_II | 1.0 | 1.0 | 50.0 | wikitext | NULL |
6.886382e7 | 2021_Asian_Table_Tennis_Championships_–_Men's_doubles | 0.0 | 0.0 | 26706.0 | wikitext | NULL |
6.8863833e7 | Veliko_Rujište | 1.0 | 1.0 | 22.0 | wikitext | NULL |
6.8863839e7 | 2021_Asian_Table_Tennis_Championships_–_Women's_doubles | 0.0 | 0.0 | 19644.0 | wikitext | NULL |
6.8863843e7 | W246DT | 1.0 | 1.0 | 18.0 | wikitext | NULL |
6.8863852e7 | Markus_Schagerl | 0.0 | 0.0 | 6084.0 | wikitext | NULL |
6.8863859e7 | Grau-du-Roi | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.886386e7 | Ctenacanthida | 1.0 | 1.0 | 59.0 | wikitext | NULL |
6.8863862e7 | Delfina_Entrecanales | 0.0 | 0.0 | 17427.0 | wikitext | NULL |
6.8863864e7 | Mulholland_Drive_(Eyedress_Album) | 1.0 | 1.0 | 85.0 | wikitext | NULL |
6.8863872e7 | 2021_Asian_Table_Tennis_Championships_–_Mixed_doubles | 0.0 | 0.0 | 20779.0 | wikitext | NULL |
6.8863874e7 | Nuutti_Lintamo | 0.0 | 0.0 | 2384.0 | wikitext | NULL |
6.8863877e7 | Nuuti_Lintamo | 1.0 | 1.0 | 27.0 | wikitext | NULL |
6.8863884e7 | 王八盒子 | 1.0 | 1.0 | 61.0 | wikitext | NULL |
6.8863892e7 | King_Cobra_(DC_Comics) | 1.0 | 1.0 | 56.0 | wikitext | NULL |
6.8863896e7 | Sulo_Salo | 0.0 | 1.0 | 1625.0 | wikitext | NULL |
6.8863897e7 | Want_It_All_(Burna_Boy_song) | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.88639e7 | 歪把子 | 1.0 | 1.0 | 74.0 | wikitext | NULL |
6.8863908e7 | Want_It_All_(Burna_Boy_and_Polo_G_song) | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.886392e7 | Mpho_Moerane | 0.0 | 0.0 | 8359.0 | wikitext | NULL |
6.8863923e7 | Lauri_Taipale | 0.0 | 1.0 | 1652.0 | wikitext | NULL |
6.8863929e7 | Tom_Hutchinson_(disambiguation) | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.886393e7 | Tom_Hutchison_(disambiguation) | 1.0 | 1.0 | 29.0 | wikitext | NULL |
6.8863937e7 | Paavo_Virtanen | 0.0 | 0.0 | 2342.0 | wikitext | NULL |
6.886394e7 | José_Roberto_Figueroa | 1.0 | 1.0 | 88.0 | wikitext | NULL |
6.8863954e7 | Erick_Fú_Lanza | 1.0 | 1.0 | 70.0 | wikitext | NULL |
6.8863962e7 | Tim_Hutchinson_(disambiguation) | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.8863963e7 | Timothy_Hutchinson_(disambiguation) | 1.0 | 0.0 | 59.0 | wikitext | NULL |
6.8863972e7 | APM_line_(Guangzhou_Metro) | 1.0 | 1.0 | 61.0 | wikitext | NULL |
6.886398e7 | APM_Line_(Guangzhou_Metro) | 1.0 | 1.0 | 61.0 | wikitext | NULL |
6.8863985e7 | Matteo_Calamai | 0.0 | 0.0 | 5518.0 | wikitext | NULL |
6.8863995e7 | Sadau_Por.Pisitchet | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8863999e7 | Oğuzhan_Asiltürk | 0.0 | 0.0 | 9187.0 | wikitext | NULL |
6.8864009e7 | Suadao_Por.Pisitchet | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8864037e7 | Fife_Witches_Trail | 0.0 | 0.0 | 6024.0 | wikitext | NULL |
6.886404e7 | Sangharsh_aur_Vijay | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8864042e7 | Mark_Tildesley_(production_designer) | 0.0 | 0.0 | 3361.0 | wikitext | NULL |
6.886405e7 | Gët_Busy | 1.0 | 1.0 | 18.0 | wikitext | NULL |
6.8864052e7 | Islamic_Emirate_of_Afghanistan_(2021–present) | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8864061e7 | Get_Busy_(Yeat_song) | 1.0 | 1.0 | 18.0 | wikitext | NULL |
6.8864063e7 | Istituto_Nazionale_di_Fisica_Nucleara | 1.0 | 0.0 | 73.0 | wikitext | NULL |
6.8864069e7 | Up_2_Me | 1.0 | 0.0 | 22.0 | wikitext | NULL |
6.8864075e7 | Thomas_Wainwright_(Stoke_footballer) | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8864084e7 | Fiona_Hukula | 0.0 | 0.0 | 4511.0 | wikitext | NULL |
6.8864106e7 | Andrea_Domenico_Di_Liberto | 1.0 | 1.0 | 31.0 | wikitext | NULL |
6.8864111e7 | USPS_Board_of_Directors | 1.0 | 1.0 | 68.0 | wikitext | NULL |
6.8864121e7 | Dick_Clark_Architecture | 1.0 | 1.0 | 84.0 | wikitext | NULL |
6.8864122e7 | Fall_Braun | 1.0 | 1.0 | 71.0 | wikitext | NULL |
6.8864129e7 | Pankeyevo | 0.0 | 0.0 | 7285.0 | wikitext | NULL |
6.8864137e7 | Richard_Yarde-Buller,_4th_Baron_Churston | 0.0 | 0.0 | 10052.0 | wikitext | NULL |
6.8864141e7 | Private_and_public_schools_in_China | 1.0 | 1.0 | 75.0 | wikitext | NULL |
6.8864146e7 | Richard_Francis_Roger_Yarde-Buller,_4th_Baron_Churston | 1.0 | 1.0 | 54.0 | wikitext | NULL |
6.8864151e7 | La_Sepultura_Biosphere_Reserve | 0.0 | 0.0 | 5373.0 | wikitext | NULL |
6.8864152e7 | 1982_Montana_State_Bobcats_football_team | 0.0 | 0.0 | 6314.0 | wikitext | NULL |
6.8864154e7 | Harper's_Bazaar_Arabia | 1.0 | 1.0 | 54.0 | wikitext | NULL |
6.8864155e7 | Hadi_Manafi | 0.0 | 0.0 | 1721.0 | wikitext | NULL |
6.8864157e7 | Star_Engine | 1.0 | 1.0 | 73.0 | wikitext | NULL |
6.886418e7 | Our_Young_Man | 0.0 | 0.0 | 2541.0 | wikitext | NULL |
6.8864181e7 | 2021-22_in_Bangladeshi_Football | 1.0 | 1.0 | 214.0 | wikitext | NULL |
6.8864183e7 | 2021-22_Kalamata_F.C._season | 1.0 | 1.0 | 205.0 | wikitext | NULL |
6.8864186e7 | Chris_Conn-Clarke | 0.0 | 0.0 | 11232.0 | wikitext | NULL |
6.8864188e7 | 2021_UCI_Road_World_Championships_-_Men's_under-23_time_trial | 1.0 | 1.0 | 304.0 | wikitext | NULL |
6.886419e7 | 2021-22_EuroLeague_Regular_Season | 1.0 | 1.0 | 220.0 | wikitext | NULL |
6.8864191e7 | MFG_-_Austria_People_-_Freedom_-_Fundamental_Rights | 1.0 | 0.0 | 368.0 | wikitext | NULL |
6.8864193e7 | Islamic_Emirate_of_Afghanistan_(2021-present) | 1.0 | 1.0 | 300.0 | wikitext | NULL |
6.8864194e7 | 2021-2022_Kalamata_F.C._season | 1.0 | 1.0 | 274.0 | wikitext | NULL |
6.8864195e7 | SLFL | 1.0 | 1.0 | 37.0 | wikitext | NULL |
6.8864198e7 | 2021_Asian_Table_Tennis_Championships_-_Women's_singles | 1.0 | 1.0 | 286.0 | wikitext | NULL |
6.88642e7 | 2021–22_Ligue_Magnus_season | 0.0 | 0.0 | 24260.0 | wikitext | NULL |
6.8864202e7 | Kick_II | 0.0 | 0.0 | 17135.0 | wikitext | NULL |
6.8864206e7 | 2021_Asian_Table_Tennis_Championships_-_Mixed_doubles | 1.0 | 1.0 | 280.0 | wikitext | NULL |
6.8864208e7 | 2021_Asian_Table_Tennis_Championships_-_Men's_singles | 1.0 | 1.0 | 280.0 | wikitext | NULL |
6.886421e7 | Armenian_Weightlifting_Federation | 0.0 | 0.0 | 2201.0 | wikitext | NULL |
6.8864218e7 | Amine_Linganzi_Koumba | 1.0 | 1.0 | 28.0 | wikitext | NULL |
6.8864223e7 | Charlton_Abbots | 0.0 | 0.0 | 3057.0 | wikitext | NULL |
6.8864224e7 | Kathleen_Krekels | 0.0 | 0.0 | 1380.0 | wikitext | NULL |
6.8864227e7 | Piecemeal_(cyborg) | 1.0 | 1.0 | 59.0 | wikitext | NULL |
6.8864228e7 | 2021_Asian_Table_Tennis_Championships_-_Men's_doubles | 1.0 | 1.0 | 280.0 | wikitext | NULL |
6.8864231e7 | 2021_World_Wrestling_Championships_-_Men's_freestyle_125_kg | 1.0 | 1.0 | 298.0 | wikitext | NULL |
6.8864232e7 | 2021_Asian_Table_Tennis_Championships_-_Women's_doubles | 1.0 | 1.0 | 286.0 | wikitext | NULL |
6.8864233e7 | Voldemars_Irbe | 1.0 | 1.0 | 79.0 | wikitext | NULL |
6.8864234e7 | 2021_World_Wrestling_Championships_-_Men's_freestyle_86_kg | 1.0 | 1.0 | 295.0 | wikitext | NULL |
6.8864236e7 | 2021-22_EML_season | 1.0 | 1.0 | 175.0 | wikitext | NULL |
6.8864237e7 | 2021_World_Wrestling_Championships_-_Men's_freestyle_74_kg | 1.0 | 1.0 | 295.0 | wikitext | NULL |
6.8864239e7 | 2021-22_Ligue_Magnus_season | 1.0 | 1.0 | 202.0 | wikitext | NULL |
6.8864249e7 | Avicennia_resinifera | 1.0 | 1.0 | 30.0 | wikitext | NULL |
6.8864253e7 | Suzanne_Anderson | 0.0 | 0.0 | 5511.0 | wikitext | NULL |
6.8864254e7 | Evgheni_Gorodețchi | 0.0 | 0.0 | 2587.0 | wikitext | NULL |
6.8864259e7 | Charlie_Hancock | 0.0 | 0.0 | 2114.0 | wikitext | NULL |
6.8864261e7 | Hadamard_test | 1.0 | 1.0 | 49.0 | wikitext | NULL |
6.8864264e7 | Fred_Hicks_(baseball) | 0.0 | 0.0 | 1879.0 | wikitext | NULL |
6.8864266e7 | Elbert_Hall | 0.0 | 0.0 | 2025.0 | wikitext | NULL |
6.8864272e7 | Infrastructure_as_Software | 1.0 | 0.0 | 35.0 | wikitext | NULL |
6.8864294e7 | Daniel_Ben_Murphy | 1.0 | 1.0 | 50.0 | wikitext | NULL |
6.8864297e7 | Rosa_'Jens_Munk' | 0.0 | 0.0 | 5435.0 | wikitext | NULL |
6.8864328e7 | Glycan_nomenclature | 0.0 | 0.0 | 20614.0 | wikitext | NULL |
6.886433e7 | 2021_Qualico_Mixed_Doubles_Classic | 0.0 | 0.0 | 30698.0 | wikitext | NULL |
6.8864336e7 | \"Granatieri_di_Sardegna\" | 1.0 | 1.0 | 57.0 | wikitext | NULL |
6.8864342e7 | Luchy_Donalds | 0.0 | 0.0 | 4976.0 | wikitext | NULL |
6.8864344e7 | Manuela_Van_Werde | 0.0 | 0.0 | 2807.0 | wikitext | NULL |
6.8864345e7 | List_of_editiones_principes_in_languages_other_than_Latin_or_Greek | 0.0 | 0.0 | 24846.0 | wikitext | NULL |
6.8864346e7 | Silver_in_the_money_system | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8864355e7 | Fjellanger_Widerøe | 1.0 | 0.0 | 72.0 | wikitext | NULL |
6.886436e7 | Price_ratio_between_gold_and_silver | 1.0 | 0.0 | 37.0 | wikitext | NULL |
6.8864361e7 | Cory_Johnson_(basketball,_born_1988) | 1.0 | 1.0 | 86.0 | wikitext | NULL |
6.8864369e7 | No._2953_Squadron_RAF_Regiment | 1.0 | 1.0 | 104.0 | wikitext | NULL |
6.8864376e7 | Speculative_investment | 1.0 | 1.0 | 25.0 | wikitext | NULL |
6.8864379e7 | Mchawcha | 0.0 | 0.0 | 1157.0 | wikitext | NULL |
6.8864383e7 | Souren_Melikian | 0.0 | 0.0 | 8104.0 | wikitext | NULL |
6.8864384e7 | Cody_White | 0.0 | 0.0 | 264.0 | wikitext | NULL |
6.8864386e7 | Freethinkers_of_America | 1.0 | 1.0 | 34.0 | wikitext | NULL |
6.8864396e7 | Consolidation_of_wealth | 1.0 | 1.0 | 36.0 | wikitext | NULL |
6.8864397e7 | Eugen_Gorodețchi | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8864398e7 | Cecil_Johnson_(baseball) | 0.0 | 0.0 | 2277.0 | wikitext | NULL |
6.88644e7 | Chris_Naggar | 0.0 | 0.0 | 6727.0 | wikitext | NULL |
6.8864402e7 | Sonny_Boy_Jeffries | 0.0 | 0.0 | 2068.0 | wikitext | NULL |
6.8864404e7 | Cody_Thompson | 0.0 | 0.0 | 132.0 | wikitext | NULL |
6.8864406e7 | Evgheni_Gorodeţchi | 1.0 | 1.0 | 33.0 | wikitext | NULL |
6.8864413e7 | 36_officers_problem | 1.0 | 1.0 | 75.0 | wikitext | NULL |
val rowsToSave = spark.sql("SELECT page_id, page_title, page_is_redirect, page_is_new AS has_been_edited, page_len, page_content_model, page_lang FROM pages WHERE (page_id IS NOT NULL) AND (page_namespace = 0) AND (page_title IS NOT NULL) AND (_corrupt_record IS NULL)")
rowsToSave.write.saveAsTable("enwiki_page")
rowsToSave: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 5 more fields]
Loading of the Wikipedia data
This is very nearly just a copy of the 02 notebook that loaded the pages.
As a first step, we download the .sql file:
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
FileUtils.copyURLToFile(new URL("https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pagelinks.sql.gz"), new File("/tmp/enwiki-latest-pagelinks.sql.gz"))
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Having done this, we first unzip the file, and then move the file from local storage to the DBFS:
gzip -d /tmp/enwiki-latest-pagelinks.sql.gz
mv file:/tmp/enwiki-latest-pagelinks.sql /enwiki-latest-pagelinks.sql
res1: Boolean = true
Having gotten the data onto the DBFS, we can now read it into Spark:
val rawSQLdump = spark.read.textFile("/enwiki-latest-pagelinks.sql")
rawSQLdump: org.apache.spark.sql.Dataset[String] = [value: string]
The first forty lines are setting up the database, then we get a lot of very long INSERT INTO lines with many many entries being inserted.
println(rawSQLdump.take(40).mkString("\n"))
-- MySQL dump 10.19 Distrib 10.3.34-MariaDB, for debian-linux-gnu (x86_64)
--
-- Host: db1106 Database: enwiki
-- ------------------------------------------------------
-- Server version 10.4.25-MariaDB-log
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `pagelinks`
--
DROP TABLE IF EXISTS `pagelinks`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `pagelinks` (
`pl_from` int(8) unsigned NOT NULL DEFAULT 0,
`pl_namespace` int(11) NOT NULL DEFAULT 0,
`pl_title` varbinary(255) NOT NULL DEFAULT '',
`pl_from_namespace` int(11) NOT NULL DEFAULT 0,
PRIMARY KEY (`pl_from`,`pl_namespace`,`pl_title`),
KEY `pl_namespace` (`pl_namespace`,`pl_title`,`pl_from`),
KEY `pl_backlinks_namespace` (`pl_from_namespace`,`pl_namespace`,`pl_title`,`pl_from`)
) ENGINE=InnoDB DEFAULT CHARSET=binary ROW_FORMAT=COMPRESSED;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `pagelinks`
--
/*!40000 ALTER TABLE `pagelinks` DISABLE KEYS */;
The remaining rows look something like this, except much much longer:
println(rawSQLdump.take(41)(40).substring(0,106) + ",...," + rawSQLdump.take(41)(40).substring(rawSQLdump.take(41)(40).length()-42,rawSQLdump.take(41)(40).length()))
INSERT INTO `pagelinks` VALUES (586,0,'!',0),(4748,0,'!',0),(9773,0,'!',0),(15019,0,'!',0),(15154,0,'!',0),...,(64264744,0,'\'Abd_al-Haqq_al-Dehlawi',0);
Next up, let us strip out the INSERT INTO
bit and the initial and final parentheses, then split at each ),(
, so that we get each entry as its own string.
val pageDataRows = rawSQLdump.filter(x => x.startsWith("INSERT INTO"))
.flatMap(x => x.substring(32, x.length()-2).split("""\),\("""))
pageDataRows: org.apache.spark.sql.Dataset[String] = [value: string]
So now our data looks like this:
println(pageDataRows.take(10).mkString("\n"))
586,0,'!',0
4748,0,'!',0
9773,0,'!',0
15019,0,'!',0
15154,0,'!',0
25213,0,'!',0
73634,0,'!',0
193891,0,'!',0
410443,0,'!',0
533706,0,'!',0
With a heckuva lot of rows - 1.48 billion, to be particular.
pageDataRows.count()
The above looks a whole lot like a CSV file, doesn't it? Let's write it to file as such. Note that we write it as text instead of as CSV because our data is in the format of a single string per row.
pageDataRows.toDF().write.mode("overwrite").text("/WikipediaData/enwiki-pagelinks.csv")
Now we want to read this back in, but with the right schema and column names and so on. So we start by creating the schema. In order to be sure that all the rows got parsed correctly, we add an extra column named _corrupt_record
, which will get the raw CSV text whenever it couldn't be parsed right, and otherwise be set to NULL.
import org.apache.spark.sql.types._
// Start by creating a case class of a row entry:
case class WikiPageLink(pl_from:Int,
pl_namespace:Int,
pl_title:String,
pl_from_namespace:Int)
// then we generate a schema object from the case class: (code copypasted from here: https://sparkbyexamples.com/spark/convert-case-class-to-spark-schema/)
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
val pageSchema = ScalaReflection.schemaFor[WikiPageLink].dataType.asInstanceOf[StructType].add("_corrupt_record", StringType, true)
import org.apache.spark.sql.types._
defined class WikiPageLink
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
pageSchema: org.apache.spark.sql.types.StructType = StructType(StructField(pl_from,IntegerType,false),StructField(pl_namespace,IntegerType,false),StructField(pl_title,StringType,true),StructField(pl_from_namespace,IntegerType,false),StructField(_corrupt_record,StringType,true))
Then we read it back in with the schema we just created:
val readFromCSV = spark.read
.options(Map("quote" -> "'", "mode" -> "PERMISSIVE", "columnNameOfCorruptRecord" -> "_corrupt_record"))
.schema(pageSchema)
.csv("/WikipediaData/enwiki-pagelinks.csv")
readFromCSV: org.apache.spark.sql.DataFrame = [pl_from: int, pl_namespace: int ... 3 more fields]
Let's have a look at what we just created:
display(readFromCSV)
pl_from | pl_namespace | pl_title | pl_from_namespace |
---|---|---|---|
6.2036177e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2036214e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2044245e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2044286e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2044799e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2044969e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2045091e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2045917e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2046017e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2046144e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2046198e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2046286e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2050182e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2050468e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2052923e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2053001e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2053086e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2053582e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2054277e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2054373e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.205447e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2054863e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2054926e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.205505e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2055493e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2055914e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2061079e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2065101e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2069857e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2070489e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2070509e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2070906e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.207097e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.20722e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2072539e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2072666e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2074281e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2074669e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2074726e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2080468e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2081011e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2081481e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2081692e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2081905e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2083035e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2085589e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2086399e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2086635e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.208665e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2089168e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2089206e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.20939e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2095774e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098617e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098663e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098696e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098732e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.209879e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098856e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2098946e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099048e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099056e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099092e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099425e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099468e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099557e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099599e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.209967e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099703e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099713e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2099782e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.209993e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2100389e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2101217e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2101317e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2103796e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2104062e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2104545e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.210551e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2111121e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2111432e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2111607e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.211293e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2112989e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2113555e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2113799e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2113972e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114422e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114573e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114632e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114692e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.211474e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114771e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2114897e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2115054e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2115672e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2117407e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2117442e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.21217e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2123268e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2131095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.213484e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2134949e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2135004e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2135333e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.213541e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2135858e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2135931e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2135984e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2136991e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2137571e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2137796e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2140651e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2140938e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2141518e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2143495e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2143563e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2143817e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2143889e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2144019e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2145232e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.214547e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.214645e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.214948e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2150355e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2151715e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.215186e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2151999e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2152086e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2152256e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2152322e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2152384e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2152442e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2154164e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2155835e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.215897e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2159682e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2159752e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2160675e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2161033e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2161299e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216162e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2161724e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216258e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2162762e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216295e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163647e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163687e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163759e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163788e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163818e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216386e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.21639e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163913e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163927e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163948e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2163988e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164003e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164015e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216433e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164343e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164353e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216436e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164373e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164382e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164393e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164402e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.216441e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2164511e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2167693e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2167903e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2168116e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2168195e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2168872e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2168913e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2170502e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2170877e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2170879e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2170933e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2170936e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171121e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171549e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.217163e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171642e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171706e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171765e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2171863e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.217205e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172159e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172205e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172283e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172389e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172464e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172573e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172597e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172725e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172813e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172865e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172897e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172935e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2172989e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2173028e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.217306e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.21731e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2173123e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2173153e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2173196e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.217323e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2173263e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2176015e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2176129e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2176194e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2177337e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2178095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2178243e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.217832e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2178719e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2178928e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2179015e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2179326e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2180958e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2181066e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.218395e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2183986e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2184727e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2186836e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2186894e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2187303e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.218752e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2187685e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2188235e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2188283e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.21884e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.218861e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2188694e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2188718e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2188941e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2189009e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2189168e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2193341e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194142e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194242e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194307e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194456e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194613e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2194637e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2195422e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2195524e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.21956e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2195668e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2195768e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2199813e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2204155e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2204345e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2204425e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2205079e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2205614e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2210958e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2211498e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2211705e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2211894e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2212015e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2212137e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2212778e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2212866e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2213202e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2213275e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2213347e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2213555e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.221392e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2213931e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2214024e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2214112e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.221425e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2215832e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2215881e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.221595e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2217255e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2218048e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.222004e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.222071e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2229784e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2229826e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2229862e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2229899e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2230108e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2230135e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.223025e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2230399e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2230451e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2230797e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2231001e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2231059e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.223115e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2231201e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2232027e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2235181e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2235333e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2235455e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2235666e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2236061e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2236297e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2236565e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2239144e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2239451e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2239844e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2244764e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2246181e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.225089e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2253477e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2261303e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2272463e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2275322e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2281698e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2284085e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2284222e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2284712e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2287673e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2288302e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2288802e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2297204e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2297366e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2307669e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2307743e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.230782e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2308234e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2309564e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2309637e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2310585e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.231071e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2313177e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2316691e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2317687e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2317914e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2318912e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2319124e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2322857e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2323477e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.232448e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2324532e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2324645e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2325397e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2326365e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2330206e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2330404e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2330664e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2333083e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2334174e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2334256e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2334384e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2335636e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2335883e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2336051e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2336109e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2338257e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2338387e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2338682e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2339377e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2344777e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.234554e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2345563e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2345601e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2347346e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.234978e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2350632e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2357172e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.23574e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2358695e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2358736e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364006e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364041e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364044e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364053e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364067e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364187e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2364977e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2365328e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2368796e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2369285e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.237035e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2371517e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2375402e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2379106e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2379984e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2380312e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.238056e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2380708e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2380793e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2381673e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2385844e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2386315e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2386388e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2386554e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2388143e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2395914e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2398036e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2400002e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2401377e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2401676e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2404506e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2405116e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2405172e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.240529e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2406087e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2409152e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2409231e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2410886e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2410965e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2411698e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2415848e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2416007e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2416114e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2416423e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2416528e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2418796e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2422274e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2425091e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2431838e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2431946e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2434872e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.243492e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2436162e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2445694e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2459264e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2459304e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2459337e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2459444e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2460211e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2460339e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2460574e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2460673e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2460723e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2463241e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2463646e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2463715e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2464783e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.246862e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2470666e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.247199e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2472529e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2473276e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2473342e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2475982e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2476041e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2476161e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2476387e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2476721e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.247685e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2477254e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2477352e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.247941e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2479521e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2482549e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2483853e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2488131e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2488166e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2488635e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2490408e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2495164e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2495357e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2495526e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.249602e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2496155e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2500824e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2501449e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2501531e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2504919e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2505329e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2506889e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2509759e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2512986e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2513698e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2513996e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2522033e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2522624e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2523417e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2526631e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2527573e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2527669e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2527793e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.252812e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2528665e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2528831e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2528907e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2533977e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2534117e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.253486e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2534947e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2535021e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2535638e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2535818e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2536549e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2536622e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2536782e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2536904e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2537086e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2541046e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2542635e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2542698e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.254582e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2545995e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2556044e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2556061e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2556099e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2558572e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2558688e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2560677e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2563831e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2564095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2568356e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2576099e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2576267e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2576425e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2576515e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577144e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577265e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577286e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577554e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577815e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2577848e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2578051e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2578278e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2578533e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2579027e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2579272e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2579452e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2580442e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.258046e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2580537e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2580571e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2580882e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2582836e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2582894e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2583407e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2584017e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2587786e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2587887e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2587916e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2587978e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2588549e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2589175e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2589573e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2592082e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2592225e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2601066e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2611738e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2614511e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2626123e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2626196e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2626501e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2627915e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2627962e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2635592e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2638915e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2638995e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2641809e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2642895e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2643194e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2643341e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2643575e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2643915e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2644923e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2645048e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2646033e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.265111e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2651207e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2653981e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2656339e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2659627e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.266065e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2660714e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2673041e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2674073e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2674163e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2680243e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2680789e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2683929e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690561e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.269064e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690652e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690697e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690727e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690767e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690788e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690865e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2690932e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2691179e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2691254e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2691303e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2691409e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2691686e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2692416e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.269317e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2693287e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2693357e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.269337e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2693468e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2693509e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2693559e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2694345e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.269445e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2695119e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2697022e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2698246e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2698799e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2698894e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2699054e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2699591e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2699711e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2703459e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2703494e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2703781e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2708798e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2709171e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2709426e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2713761e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2714388e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2714518e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2714798e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2715854e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2716579e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2718484e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.271928e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2720386e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2720967e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2721142e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2722766e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2723908e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2726863e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2729967e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.273468e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2734821e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2738571e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.273894e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2738949e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2742254e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2746457e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2746591e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2746669e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2746915e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2748398e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2752497e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2755418e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2767525e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2775776e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2776248e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2779156e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2779349e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2779713e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2781605e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.278168e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2782009e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2784541e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2786095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2789005e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2790463e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2790711e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2790908e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2791738e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2792002e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.279517e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2795288e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2795797e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2800284e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2803337e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2803736e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2806031e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2806797e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2807267e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.280738e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2807845e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2811054e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2811235e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2811319e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2812287e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2812397e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2812853e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2815197e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2822007e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2824859e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2836552e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2843915e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2844438e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2847306e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2847474e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2847933e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2848061e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2849973e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2850068e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2850903e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2852274e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2857833e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2859288e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2861525e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2866245e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2866357e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2869266e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2870398e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2872276e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2872325e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2873241e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2873531e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2889498e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2889748e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.289088e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2890956e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2894998e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2895056e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2898732e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899131e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899236e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899379e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899525e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899596e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2899913e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2901023e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.2908188e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.29124e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3003098e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3056728e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3057132e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3058546e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3059049e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3059331e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3078427e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3078459e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.307852e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3085186e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3087321e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3087809e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3087837e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3096493e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3096542e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3096592e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3096613e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3096791e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.311111e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3111221e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.31115e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3111545e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3112185e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3112258e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3123519e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3140215e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3150174e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3161308e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3167014e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.316872e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3169256e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.317328e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3177783e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3180645e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3180837e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3188717e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3188921e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3192912e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.320764e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3215887e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3222608e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.322461e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3224673e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3224717e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3231502e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3258578e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3282112e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3305181e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3314197e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3314504e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3317863e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3318389e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3322095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.333911e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3351964e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3352117e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.337381e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3385251e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3385907e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3386441e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3386704e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3386945e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3412729e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3413734e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3443706e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3448903e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3501904e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3502074e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3504817e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.351109e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3512499e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3512602e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3514844e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3563784e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3564e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3564163e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3577755e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3578006e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3593748e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3606027e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3628205e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3629457e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.363085e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3631035e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3637526e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3637776e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3639938e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.364467e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3644853e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3679843e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3689515e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3695289e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3695374e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3695481e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3695664e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3695797e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3698672e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3705563e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3707005e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3718966e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3756453e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.375777e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3764861e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3769667e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3769881e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3770038e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3770207e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3770453e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3770669e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3777467e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3777661e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3778187e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3778334e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3778532e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3781431e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3838151e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3838443e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3839485e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.383956e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3840957e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3841971e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3847397e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3847647e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3850422e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3917517e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3929664e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3961862e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3976794e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3987742e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.3989178e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4008552e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4008611e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4008833e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4008875e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.401402e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4015677e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4015781e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4015903e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4019433e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.401959e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4034742e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4046691e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4067721e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4068464e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4102926e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4104553e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4105402e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4134296e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4217329e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4236832e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4239638e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4241037e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4251479e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4278606e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4312821e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4343754e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4344409e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4348852e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4349939e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4354229e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4370325e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4404804e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4405546e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4463946e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4478676e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4481751e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4529484e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4529666e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.455931e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4584933e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4591432e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4591642e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4592307e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4624637e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4629651e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4644226e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.467493e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.46941e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4694537e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4736255e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.475503e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4771575e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4788277e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4793721e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.479463e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.479503e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4797497e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4949375e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4962243e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4962898e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4963057e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.496391e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.4966555e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5010303e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5030539e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5068485e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.515201e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5154145e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.515438e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5171059e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5174391e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5174723e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5175265e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5179432e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5184551e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5185545e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5233034e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5243131e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5244864e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5245521e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.524588e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5298314e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5303719e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5308354e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5365394e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5366797e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5369386e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5372016e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.541149e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5420509e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5421334e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5425845e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5426861e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5428361e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5428841e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.542951e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5433482e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5434624e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5436186e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5437285e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5437888e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5438014e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5438434e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5442824e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5442948e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.544437e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5445079e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5445322e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5445549e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5485445e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5498384e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5503167e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5506379e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5513411e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.552545e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.553197e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5534025e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5551324e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5551493e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5577638e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5636571e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5638115e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5657305e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5668538e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5672345e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5672874e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5701318e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5701504e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5738593e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5738822e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5738971e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5739085e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5747567e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5766576e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5768071e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5777999e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5801215e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5817875e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5836178e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.584045e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5856791e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5876171e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5901597e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5905107e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5912095e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5919596e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5922111e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5922411e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5979588e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.59799e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.5979982e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
6.6026034e7 | 0.0 | National_Register_of_Historic_Places_listings_in_Louisiana | 0.0 |
Now, let us check that we have no corrupted records:
readFromCSV.createOrReplaceTempView("pagelinks")
SELECT * FROM pagelinks WHERE _corrupt_record IS NOT NULL
pl_from | pl_namespace | pl_title | pl_from_namespace | _corrupt_record |
---|---|---|---|---|
3.9650412e7 | 4.0 | Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA | null | 39650412,4,'Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA |
null | 4.0 | null | null | Regd.No._–_DRFS/152)',4 |
3.9650412e7 | 5.0 | Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA | null | 39650412,5,'Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA |
null | 4.0 | null | null | Regd.No._–_DRFS/152)',4 |
3.9651844e7 | 5.0 | Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA | null | 39651844,5,'Articles_for_creation/SANCHAR_NIGAM_ASSOCIATION_OF_TELECOM_TECHNICAL_ASSISTANTS_(SNATTA |
null | 3.0 | null | null | Regd.No._–_DRFS/152)',3 |
4.0435962e7 | 0.0 | Bhongir_(Lok_Sabha_constituency | null | 40435962,0,'Bhongir_(Lok_Sabha_constituency |
null | 2.0 | null | null | Assembly_constituency)',2 |
4.3661887e7 | 0.0 | Bhongir_(Lok_Sabha_constituency | null | 43661887,0,'Bhongir_(Lok_Sabha_constituency |
null | 2.0 | null | null | Assembly_constituency)',2 |
2.2480556e7 | 1.0 | Jessica_Smith_(12 | null | 22480556,1,'Jessica_Smith_(12 |
null | 3.0 | null | null | backing_singer/actress)',3 |
4.3712571e7 | 2.0 | Enlisted_USAF_(ret | null | 43712571,2,'Enlisted_USAF_(ret |
null | 2.0 | null | null | DAV)',2 |
2.2480556e7 | 0.0 | Jessica_Smith_(12 | null | 22480556,0,'Jessica_Smith_(12 |
null | 3.0 | null | null | backing_singer/actress)',3 |
On the scale of 1.48 billion rows, having sixteen bad rows is basically the same as zero. We've only lost eight edges in our graph, and none of them are actually between main-namespace articles, only between talk pages and files and such.
So, let us take this data, remove the corrupt rows and rows with data we don't care about, and save the data to Delta Lake. Only rows with plnamespace and plfrom_namespace both equal to zero are links between main Wikipedia articles - the other namespaces are things like user talk pages or image pages and so on.
SELECT pl_from, pl_title FROM pagelinks WHERE (pl_from IS NOT NULL) AND (pl_namespace = 0) AND (pl_title IS NOT NULL) AND (pl_from_namespace = 0) AND (_corrupt_record IS NULL)
pl_from | pl_title |
---|---|
6.2036177e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2036214e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2044245e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2044286e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2044799e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2044969e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2045091e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2045917e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2046017e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2046144e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2046198e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2046286e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2050182e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2050468e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2052923e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2053001e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2053086e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2053582e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2054277e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2054373e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.205447e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2054863e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2054926e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.205505e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2055493e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2055914e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2061079e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2065101e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2069857e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2070489e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2070509e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2070906e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.207097e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.20722e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2072539e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2072666e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2074281e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2074669e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2074726e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2080468e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2081011e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2081481e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2081692e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2081905e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2083035e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2085589e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2086399e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2086635e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.208665e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2089168e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2089206e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.20939e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2095774e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098617e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098663e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098696e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098732e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.209879e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098856e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2098946e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099048e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099056e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099092e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099425e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099468e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099557e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099599e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.209967e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099703e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099713e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2099782e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.209993e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2100389e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2101217e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2101317e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2103796e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2104062e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2104545e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.210551e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2111121e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2111432e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2111607e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.211293e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2112989e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2113555e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2113799e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2113972e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114422e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114573e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114632e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114692e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.211474e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114771e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2114897e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2115054e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2115672e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2117407e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2117442e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.21217e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2123268e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2131095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.213484e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2134949e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2135004e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2135333e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.213541e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2135858e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2135931e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2135984e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2136991e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2137571e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2137796e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2140651e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2140938e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2141518e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2143495e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2143563e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2143817e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2143889e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2144019e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2145232e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.214547e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.214645e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.214948e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2150355e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2151715e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.215186e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2151999e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2152086e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2152256e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2152322e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2152384e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2152442e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2154164e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2155835e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.215897e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2159682e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2159752e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2160675e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2161033e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2161299e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216162e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2161724e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216258e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2162762e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216295e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163647e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163687e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163759e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163788e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163818e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216386e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.21639e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163913e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163927e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163948e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2163988e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164003e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164015e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216433e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164343e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164353e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216436e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164373e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164382e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164393e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164402e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.216441e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2164511e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2167693e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2167903e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2168116e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2168195e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2168872e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2168913e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2170502e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2170877e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2170879e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2170933e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2170936e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171121e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171549e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.217163e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171642e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171706e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171765e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2171863e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.217205e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172159e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172205e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172283e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172389e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172464e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172573e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172597e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172725e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172813e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172865e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172897e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172935e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2172989e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2173028e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.217306e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.21731e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2173123e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2173153e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2173196e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.217323e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2173263e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2176015e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2176129e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2176194e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2177337e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2178095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2178243e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.217832e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2178719e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2178928e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2179015e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2179326e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2180958e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2181066e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.218395e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2183986e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2184727e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2186836e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2186894e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2187303e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.218752e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2187685e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2188235e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2188283e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.21884e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.218861e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2188694e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2188718e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2188941e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2189009e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2189168e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2193341e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194142e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194242e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194307e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194456e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194613e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2194637e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2195422e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2195524e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.21956e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2195668e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2195768e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2199813e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2204155e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2204345e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2204425e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2205079e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2205614e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2210958e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2211498e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2211705e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2211894e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2212015e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2212137e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2212778e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2212866e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2213202e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2213275e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2213347e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2213555e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.221392e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2213931e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2214024e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2214112e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.221425e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2215832e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2215881e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.221595e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2217255e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2218048e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.222004e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.222071e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2229784e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2229826e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2229862e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2229899e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2230108e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2230135e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.223025e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2230399e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2230451e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2230797e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2231001e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2231059e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.223115e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2231201e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2232027e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2235181e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2235333e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2235455e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2235666e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2236061e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2236297e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2236565e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2239144e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2239451e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2239844e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2244764e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2246181e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.225089e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2253477e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2261303e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2272463e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2275322e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2281698e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2284085e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2284222e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2284712e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2287673e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2288302e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2288802e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2297204e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2297366e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2307669e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2307743e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.230782e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2308234e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2309564e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2309637e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2310585e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.231071e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2313177e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2316691e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2317687e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2317914e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2318912e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2319124e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2322857e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2323477e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.232448e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2324532e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2324645e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2325397e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2326365e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2330206e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2330404e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2330664e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2333083e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2334174e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2334256e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2334384e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2335636e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2335883e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2336051e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2336109e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2338257e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2338387e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2338682e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2339377e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2344777e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.234554e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2345563e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2345601e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2347346e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.234978e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2350632e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2357172e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.23574e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2358695e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2358736e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364006e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364041e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364044e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364053e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364067e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364187e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2364977e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2365328e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2368796e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2369285e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.237035e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2371517e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2375402e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2379106e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2379984e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2380312e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.238056e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2380708e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2380793e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2381673e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2385844e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2386315e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2386388e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2386554e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2388143e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2395914e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2398036e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2400002e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2401377e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2401676e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2404506e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2405116e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2405172e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.240529e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2406087e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2409152e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2409231e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2410886e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2410965e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2411698e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2415848e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2416007e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2416114e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2416423e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2416528e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2418796e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2422274e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2425091e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2431838e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2431946e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2434872e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.243492e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2436162e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2445694e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2459264e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2459304e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2459337e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2459444e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2460211e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2460339e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2460574e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2460673e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2460723e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2463241e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2463646e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2463715e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2464783e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.246862e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2470666e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.247199e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2472529e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2473276e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2473342e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2475982e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2476041e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2476161e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2476387e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2476721e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.247685e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2477254e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2477352e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.247941e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2479521e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2482549e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2483853e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2488131e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2488166e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2488635e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2490408e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2495164e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2495357e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2495526e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.249602e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2496155e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2500824e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2501449e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2501531e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2504919e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2505329e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2506889e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2509759e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2512986e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2513698e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2513996e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2522033e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2522624e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2523417e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2526631e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2527573e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2527669e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2527793e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.252812e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2528665e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2528831e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2528907e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2533977e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2534117e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.253486e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2534947e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2535021e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2535638e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2535818e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2536549e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2536622e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2536782e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2536904e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2537086e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2541046e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2542635e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2542698e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.254582e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2545995e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2556044e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2556061e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2556099e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2558572e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2558688e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2560677e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2563831e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2564095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2568356e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2576099e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2576267e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2576425e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2576515e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577144e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577265e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577286e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577554e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577815e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2577848e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2578051e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2578278e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2578533e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2579027e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2579272e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2579452e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2580442e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.258046e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2580537e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2580571e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2580882e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2582836e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2582894e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2583407e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2584017e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2587786e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2587887e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2587916e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2587978e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2588549e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2589175e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2589573e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2592082e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2592225e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2601066e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2611738e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2614511e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2626123e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2626196e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2626501e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2627915e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2627962e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2635592e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2638915e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2638995e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2641809e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2642895e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2643194e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2643341e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2643575e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2643915e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2644923e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2645048e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2646033e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.265111e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2651207e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2653981e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2656339e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2659627e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.266065e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2660714e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2673041e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2674073e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2674163e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2680243e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2680789e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2683929e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690561e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.269064e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690652e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690697e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690727e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690767e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690788e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690865e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2690932e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2691179e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2691254e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2691303e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2691409e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2691686e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2692416e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.269317e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2693287e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2693357e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.269337e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2693468e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2693509e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2693559e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2694345e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.269445e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2695119e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2697022e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2698246e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2698799e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2698894e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2699054e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2699591e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2699711e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2703459e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2703494e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2703781e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2708798e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2709171e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2709426e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2713761e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2714388e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2714518e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2714798e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2715854e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2716579e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2718484e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.271928e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2720386e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2720967e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2721142e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2722766e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2723908e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2726863e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2729967e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.273468e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2734821e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2738571e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.273894e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2738949e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2742254e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2746457e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2746591e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2746669e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2746915e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2748398e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2752497e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2755418e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2767525e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2775776e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2776248e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2779156e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2779349e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2779713e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2781605e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.278168e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2782009e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2784541e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2786095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2789005e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2790463e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2790711e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2790908e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2791738e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2792002e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.279517e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2795288e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2795797e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2800284e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2803337e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2803736e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2806031e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2806797e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2807267e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.280738e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2807845e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2811054e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2811235e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2811319e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2812287e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2812397e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2812853e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2815197e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2822007e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2824859e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2836552e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2843915e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2844438e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2847306e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2847474e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2847933e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2848061e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2849973e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2850068e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2850903e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2852274e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2857833e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2859288e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2861525e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2866245e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2866357e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2869266e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2870398e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2872276e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2872325e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2873241e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2873531e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2889498e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2889748e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.289088e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2890956e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2894998e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2895056e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2898732e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899131e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899236e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899379e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899525e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899596e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2899913e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2901023e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.2908188e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.29124e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3003098e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3056728e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3057132e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3058546e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3059049e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3059331e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3078427e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3078459e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.307852e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3085186e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3087321e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3087809e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3087837e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3096493e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3096542e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3096592e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3096613e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3096791e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.311111e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3111221e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.31115e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3111545e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3112185e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3112258e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3123519e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3140215e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3150174e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3161308e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3167014e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.316872e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3169256e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.317328e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3177783e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3180645e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3180837e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3188717e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3188921e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3192912e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.320764e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3215887e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3222608e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.322461e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3224673e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3224717e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3231502e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3258578e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3282112e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3305181e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3314197e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3314504e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3317863e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3318389e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3322095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.333911e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3351964e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3352117e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.337381e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3385251e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3385907e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3386441e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3386704e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3386945e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3412729e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3413734e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3443706e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3448903e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3501904e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3502074e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3504817e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.351109e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3512499e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3512602e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3514844e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3563784e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3564e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3564163e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3577755e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3578006e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3593748e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3606027e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3628205e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3629457e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.363085e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3631035e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3637526e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3637776e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3639938e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.364467e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3644853e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3679843e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3689515e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3695289e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3695374e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3695481e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3695664e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3695797e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3698672e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3705563e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3707005e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3718966e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3756453e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.375777e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3764861e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3769667e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3769881e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3770038e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3770207e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3770453e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3770669e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3777467e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3777661e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3778187e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3778334e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3778532e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3781431e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3838151e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3838443e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3839485e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.383956e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3840957e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3841971e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3847397e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3847647e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3850422e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3917517e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3929664e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3961862e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3976794e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3987742e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.3989178e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4008552e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4008611e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4008833e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4008875e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.401402e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4015677e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4015781e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4015903e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4019433e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.401959e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4034742e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4046691e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4067721e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4068464e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4102926e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4104553e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4105402e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4134296e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4217329e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4236832e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4239638e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4241037e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4251479e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4278606e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4312821e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4343754e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4344409e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4348852e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4349939e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4354229e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4370325e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4404804e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4405546e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4463946e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4478676e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4481751e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4529484e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4529666e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.455931e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4584933e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4591432e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4591642e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4592307e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4624637e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4629651e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4644226e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.467493e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.46941e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4694537e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4736255e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.475503e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4771575e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4788277e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4793721e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.479463e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.479503e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4797497e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4949375e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4962243e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4962898e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4963057e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.496391e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.4966555e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5010303e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5030539e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5068485e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.515201e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5154145e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.515438e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5171059e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5174391e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5174723e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5175265e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5179432e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5184551e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5185545e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5233034e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5243131e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5244864e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5245521e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.524588e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5298314e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5303719e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5308354e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5365394e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5366797e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5369386e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5372016e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.541149e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5420509e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5421334e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5425845e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5426861e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5428361e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5428841e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.542951e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5433482e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5434624e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5436186e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5437285e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5437888e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5438014e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5438434e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5442824e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5442948e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.544437e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5445079e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5445322e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5445549e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5485445e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5498384e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5503167e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5506379e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5513411e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.552545e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.553197e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5534025e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5551324e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5551493e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5577638e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5636571e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5638115e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5657305e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5668538e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5672345e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5672874e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5701318e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5701504e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5738593e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5738822e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5738971e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5739085e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5747567e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5766576e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5768071e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5777999e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5801215e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5817875e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5836178e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.584045e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5856791e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5876171e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5901597e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5905107e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5912095e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5919596e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5922111e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5922411e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5979588e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.59799e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.5979982e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
6.6026034e7 | National_Register_of_Historic_Places_listings_in_Louisiana |
val rowsToSave = spark.sql("SELECT pl_from, pl_title FROM pagelinks WHERE (pl_from IS NOT NULL) AND (pl_namespace = 0) AND (pl_title IS NOT NULL) AND (pl_from_namespace = 0) AND (_corrupt_record IS NULL)")
rowsToSave.write.saveAsTable("enwiki_pagelinks")
rowsToSave: org.apache.spark.sql.DataFrame = [pl_from: int, pl_title: string]
Loading of the Wikipedia data
This is very nearly just a copy of the 02 notebook that loaded the pages.
As a first step, we download the .sql file:
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
FileUtils.copyURLToFile(new URL("https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-categorylinks.sql.gz"), new File("/tmp/enwiki-latest-categorylinks.sql.gz"))
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Having done this, we first unzip the file, and then move the file from local storage to the DBFS:
gzip -d /tmp/enwiki-latest-categorylinks.sql.gz
mv file:/tmp/enwiki-latest-categorylinks.sql /enwiki-latest-categorylinks.sql
res1: Boolean = true
Having gotten the data onto the DBFS, we can now read it into Spark:
val rawSQLdump = spark.read.textFile("/enwiki-latest-categorylinks.sql")
rawSQLdump: org.apache.spark.sql.Dataset[String] = [value: string]
The first fortyfour lines are setting up the database, then we get a lot of very long INSERT INTO lines with many many entries being inserted.
println(rawSQLdump.take(44).mkString("\n"))
-- MySQL dump 10.19 Distrib 10.3.34-MariaDB, for debian-linux-gnu (x86_64)
--
-- Host: db1106 Database: enwiki
-- ------------------------------------------------------
-- Server version 10.4.25-MariaDB-log
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `categorylinks`
--
DROP TABLE IF EXISTS `categorylinks`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `categorylinks` (
`cl_from` int(8) unsigned NOT NULL DEFAULT 0,
`cl_to` varbinary(255) NOT NULL DEFAULT '',
`cl_sortkey` varbinary(230) NOT NULL DEFAULT '',
`cl_timestamp` timestamp NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),
`cl_sortkey_prefix` varbinary(255) NOT NULL DEFAULT '',
`cl_collation` varbinary(32) NOT NULL DEFAULT '',
`cl_type` enum('page','subcat','file') NOT NULL DEFAULT 'page',
PRIMARY KEY (`cl_from`,`cl_to`),
KEY `cl_timestamp` (`cl_to`,`cl_timestamp`),
KEY `cl_sortkey` (`cl_to`,`cl_type`,`cl_sortkey`,`cl_from`),
KEY `cl_collation_ext` (`cl_collation`,`cl_to`,`cl_type`,`cl_from`)
) ENGINE=InnoDB DEFAULT CHARSET=binary ROW_FORMAT=COMPRESSED;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `categorylinks`
--
/*!40000 ALTER TABLE `categorylinks` DISABLE KEYS */;
The remaining rows look something like this, except much much longer:
println(rawSQLdump.take(45)(44).substring(0,254) + ",...," + rawSQLdump.take(45)(44).substring(rawSQLdump.take(45)(44).length() - 135, rawSQLdump.take(45)(44).length()))
INSERT INTO `categorylinks` VALUES (10,'Redirects_from_moves','*..2NN:,@2.FBHRP:D6ܽ�','2014-10-26 04:50:23','','uca-default-u-kn','page'),(10,'Redirects_with_old_history','*..2NN:,@2.FBHRP:D6ܽ�','2010-08-26 22:38:36','','uca-default-u-kn','page'),...,(1038,'Wikipedia_articles_needing_clarification_from_November_2017','**L8RN\n� ','2017-11-08 17:52:14','','uca-default-u-kn','page');
Next up, let us strip out the INSERT INTO
bit and the initial and final parentheses, then split at each ),(
, so that we get each entry as its own string.
val pageDataRows = rawSQLdump.filter(x => x.startsWith("INSERT INTO"))
.flatMap(x => x.substring(36, x.length()-2).split("""\),\("""))
pageDataRows: org.apache.spark.sql.Dataset[String] = [value: string]
So now our data looks like this:
println(pageDataRows.take(10).mkString("\n"))
10,'Redirects_from_moves','*..2NN:,@2.FBHRP:D6ܽ�','2014-10-26 04:50:23','','uca-default-u-kn','page'
10,'Redirects_with_old_history','*..2NN:,@2.FBHRP:D6ܽ�','2010-08-26 22:38:36','','uca-default-u-kn','page'
10,'Unprintworthy_redirects','*..2NN:,@2.FBHRP:D6ܽ�','2010-08-26 22:38:36','','uca-default-u-kn','page'
12,'Anarchism','*D*L.8:NB��','2020-01-23 13:27:44',' ','uca-default-u-kn','page'
12,'Anti-capitalism','*D*L.8:NB\r�','2020-01-23 13:27:44','','uca-default-u-kn','page'
12,'Anti-fascism','*D*L.8:NB\r�','2020-01-23 13:27:44','','uca-default-u-kn','page'
12,'Articles_containing_French-language_text','*D*L.8:NB\r�','2020-01-23 13:27:44','','uca-default-u-kn','page'
12,'Articles_containing_Spanish-language_text','*D*L.8:NB\r�','2020-01-23 13:27:44','','uca-default-u-kn','page'
12,'Articles_prone_to_spam_from_November_2014','*D*L.8:NB\r�','2020-01-23 13:27:44','','uca-default-u-kn','page'
12,'Articles_with_BNE_identifiers','*D*L.8:NB\r�','2021-08-29 20:33:32','','uca-default-u-kn','page'
With quite a lot of rows - 181 million, to be particular.
pageDataRows.count()
res15: Long = 181884985
The above looks a whole lot like a CSV file, doesn't it? Let's write it to file as such. Note that we write it as text instead of as CSV because our data is in the format of a single string per row.
pageDataRows.toDF().write.mode("overwrite").text("/WikipediaData/enwiki-categorylinks.csv")
Now we want to read this back in, but with the right schema and column names and so on. So we start by creating the schema. So we start by creating the schema. In order to be sure that all the rows got parsed correctly, we add an extra column named _corrupt_record
, which will get the raw CSV text whenever it couldn't be parsed right, and otherwise be set to NULL.
import org.apache.spark.sql.types._
// Start by creating a case class of a row entry:
case class WikiCategoryLink(cl_from:Int,
cl_to:String,
cl_sortkey:String,
cl_timestamp:String,
cl_sortkey_prefix:String,
cl_collation:String,
cl_type:String)
// then we generate a schema object from the case class: (code copypasted from here: https://sparkbyexamples.com/spark/convert-case-class-to-spark-schema/)
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
val pageSchema = ScalaReflection.schemaFor[WikiCategoryLink].dataType.asInstanceOf[StructType].add("_corrupt_record", StringType, true)
import org.apache.spark.sql.types._
defined class WikiCategoryLink
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
pageSchema: org.apache.spark.sql.types.StructType = StructType(StructField(cl_from,IntegerType,false),StructField(cl_to,StringType,true),StructField(cl_sortkey,StringType,true),StructField(cl_timestamp,StringType,true),StructField(cl_sortkey_prefix,StringType,true),StructField(cl_collation,StringType,true),StructField(cl_type,StringType,true),StructField(_corrupt_record,StringType,true))
Then we read it back in with the schema we just created:
val readFromCSV = spark.read
.options(Map("quote" -> "'", "mode" -> "PERMISSIVE", "columnNameOfCorruptRecord" -> "_corrupt_record"))
.schema(pageSchema)
.csv("/WikipediaData/enwiki-categorylinks.csv")
readFromCSV: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 6 more fields]
Let's have a look at what we just created:
display(readFromCSV)
cl_from | cl_to | cl_sortkey | cl_timestamp | cl_sortkey_prefix | cl_collation | cl_type |
---|---|---|---|---|---|---|
10.0 | Redirects_from_moves | *..2NN:,@2.FBHRP:D6ܽ� | 2014-10-26 04:50:23 | null | uca-default-u-kn | page |
10.0 | Redirects_with_old_history | *..2NN:,@2.FBHRP:D6ܽ� | 2010-08-26 22:38:36 | null | uca-default-u-kn | page |
10.0 | Unprintworthy_redirects | *..2NN:,@2.FBHRP:D6ܽ� | 2010-08-26 22:38:36 | null | uca-default-u-kn | page |
12.0 | Anarchism | *D*L.8:NB�� | 2020-01-23 13:27:44 | uca-default-u-kn | page | |
12.0 | Anti-capitalism | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Anti-fascism | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Articles_containing_French-language_text | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Articles_containing_Spanish-language_text | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Articles_prone_to_spam_from_November_2014 | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Articles_with_BNE_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_BNF_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_EMU_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_FAST_identifiers | *D*L.8:NB\r� | 2022-10-11 09:10:41 | null | uca-default-u-kn | page |
12.0 | Articles_with_GND_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_HDS_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_J9U_identifiers | *D*L.8:NB\r� | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
12.0 | Articles_with_LCCN_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_LNB_identifiers | *D*L.8:NB\r� | 2022-10-10 10:08:24 | null | uca-default-u-kn | page |
12.0 | Articles_with_NDL_identifiers | *D*L.8:NB\r� | 2022-10-10 09:50:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_NKC_identifiers | *D*L.8:NB\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
12.0 | Articles_with_SUDOC_identifiers | *D*L.8:NB\r� | 2022-10-11 08:43:54 | null | uca-default-u-kn | page |
12.0 | Articles_with_short_description | *D*L.8:NB\r� | 2020-10-08 06:51:49 | null | uca-default-u-kn | page |
12.0 | Economic_ideologies | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Far-left_politics | *D*L.8:NB\r� | 2022-01-28 19:04:36 | null | uca-default-u-kn | page |
12.0 | Good_articles | *D*L.8:NB\r� | 2020-10-08 06:51:49 | null | uca-default-u-kn | page |
12.0 | Left-wing_politics | *D*L.8:NB\r� | 2020-08-06 12:43:19 | null | uca-default-u-kn | page |
12.0 | Libertarian_socialism | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Libertarianism | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Political_culture | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Political_ideologies | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Political_movements | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Short_description_matches_Wikidata | *D*L.8:NB\r� | 2020-10-08 06:51:49 | null | uca-default-u-kn | page |
12.0 | Social_theories | *D*L.8:NB\r� | 2020-01-23 13:27:44 | null | uca-default-u-kn | page |
12.0 | Socialism | *D*L.8:NB\r� | 2020-11-21 21:31:32 | null | uca-default-u-kn | page |
12.0 | Use_British_English_from_August_2021 | *D*L.8:NB\r� | 2021-08-11 06:52:48 | null | uca-default-u-kn | page |
12.0 | Use_dmy_dates_from_August_2021 | *D*L.8:NB\r� | 2021-08-11 06:52:48 | null | uca-default-u-kn | page |
12.0 | Wikipedia_indefinitely_semi-protected_pages | *D*L.8:NB*D*L.8:NBܽ� | 2021-03-17 03:39:19 | Anarchism | uca-default-u-kn | page |
13.0 | Redirects_with_old_history | *468*D:NP*D8:NPFLZܼ�\n | 2007-04-19 22:12:13 | null | uca-default-u-kn | page |
13.0 | Unprintworthy_redirects | *468*D:NP*D8:NPFLZܼ�\n | 2006-09-08 04:15:52 | null | uca-default-u-kn | page |
14.0 | Redirects_with_old_history | *468*D:NP*D62F6L*H8Zܼ� | 2007-04-19 22:12:13 | null | uca-default-u-kn | page |
14.0 | Unprintworthy_redirects | *468*D:NP*D62F6L*H8Zܼ� | 2006-09-08 04:15:36 | null | uca-default-u-kn | page |
15.0 | Redirects_with_old_history | *468*D:NP*DH2FH@2ܼ� | 2007-04-19 22:12:13 | null | uca-default-u-kn | page |
15.0 | Unprintworthy_redirects | *468*D:NP*DH2FH@2ܼ� | 2006-09-08 04:15:11 | null | uca-default-u-kn | page |
18.0 | Redirects_with_old_history | *468*D:NP*D.FBBRD:.*P:FDNܼ� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
18.0 | Unprintworthy_redirects | *468*D:NP*D.FBBRD:.*P:FDNܼ� | 2006-09-08 04:14:42 | null | uca-default-u-kn | page |
19.0 | Redirects_with_old_history | *468*D:NP*DPL*DNHFLP*P:FDNܼ� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
19.0 | Unprintworthy_redirects | *468*D:NP*DPL*DNHFLP*P:FDNܼ� | 2006-09-08 04:14:07 | null | uca-default-u-kn | page |
20.0 | Redirects_from_moves | *468*D:NP*DB:@:P*LZܼ� | 2022-06-14 10:44:25 | null | uca-default-u-kn | page |
20.0 | Redirects_with_old_history | *468*D:NP*DB:@:P*LZܼ� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
20.0 | Unprintworthy_redirects | *468*D:NP*DB:@:P*LZܼ� | 2006-09-08 04:13:27 | null | uca-default-u-kn | page |
21.0 | Redirects_with_old_history | *468*D:NP*DPL*DND*P:FD*@:NNR2N\"ܼܺ� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
21.0 | Unprintworthy_redirects | *468*D:NP*DPL*DND*P:FD*@:NNR2N\"ܼܺ� | 2006-04-01 12:08:42 | null | uca-default-u-kn | page |
23.0 | Redirects_with_old_history | *NN:NP:T2P2.8DF@F6Zܾ�\r | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
23.0 | Unprintworthy_redirects | *NN:NP:T2P2.8DF@F6Zܾ�\r | 2006-09-08 04:17:00 | null | uca-default-u-kn | page |
24.0 | Redirects_with_old_history | *BF2,F:0P*X*ܿ� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
24.0 | Unprintworthy_redirects | *BF2,F:0P*X*ܿ� | 2006-09-08 04:17:51 | null | uca-default-u-kn | page |
25.0 | 1910s_neologisms | *RP:NB\n� | 2020-11-05 23:24:50 | null | uca-default-u-kn | page |
25.0 | Fully_protected_redirects | *RP:NB\n� | 2022-06-25 02:15:53 | null | uca-default-u-kn | page |
25.0 | Redirects_connected_to_a_Wikidata_item | *RP:NB\n� | 2022-06-29 03:56:42 | null | uca-default-u-kn | page |
25.0 | Redirects_from_alternative_names | *RP:NB\n� | 2022-06-25 02:15:53 | null | uca-default-u-kn | page |
25.0 | Redirects_from_merges | *RP:NB\n� | 2022-06-25 02:15:53 | null | uca-default-u-kn | page |
25.0 | Semi-protected_redirects | *RP:NB\n� | 2022-06-25 02:15:53 | null | uca-default-u-kn | page |
25.0 | Wikipedia_indefinitely_move-protected_pages | *RP:NB*RP:NB��� | 2013-08-30 03:22:57 | Autism | uca-default-u-kn | page |
25.0 | Wikipedia_indefinitely_semi-protected_pages | *RP:NB*RP:NB��� | 2013-08-30 03:22:57 | Autism | uca-default-u-kn | page |
27.0 | Redirects_with_old_history | *@,*D:*8:NPFLZ���\n | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
27.0 | Unprintworthy_redirects | *@,*D:*8:NPFLZ���\n | 2006-09-08 04:18:56 | null | uca-default-u-kn | page |
29.0 | Redirects_with_old_history | *@,*D:*H2FH@2��� | 2007-04-19 22:12:14 | null | uca-default-u-kn | page |
29.0 | Unprintworthy_redirects | *@,*D:*H2FH@2��� | 2006-09-08 04:17:12 | null | uca-default-u-kn | page |
30.0 | Redirects_with_old_history | *NV2B*ZP8:D>������� | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
30.0 | Unprintworthy_redirects | *NV2B*ZP8:D>������� | 2006-09-08 04:19:17 | null | uca-default-u-kn | page |
35.0 | Redirects_with_old_history | *@,*D:*6FT2LDB2DP���\r | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
35.0 | Unprintworthy_redirects | *@,*D:*6FT2LDB2DP���\r | 2006-09-08 04:19:45 | null | uca-default-u-kn | page |
36.0 | Redirects_with_old_history | *@,*D:*2.FDFBZ���\n | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
36.0 | Unprintworthy_redirects | *@,*D:*2.FDFBZ���\n | 2006-09-08 04:19:59 | null | uca-default-u-kn | page |
39.0 | 1760s_neologisms | *@,20F\n� | 2020-11-05 23:18:57 | null | uca-default-u-kn | page |
39.0 | All_articles_with_failed_verification | *@,20F\n� | 2020-01-30 15:59:17 | null | uca-default-u-kn | page |
39.0 | All_articles_with_unsourced_statements | *@,20F\n� | 2022-05-13 04:12:29 | null | uca-default-u-kn | page |
39.0 | Articles_with_BNF_identifiers | *@,20F\n� | 2021-08-29 20:33:31 | null | uca-default-u-kn | page |
39.0 | Articles_with_FAST_identifiers | *@,20F\n� | 2021-08-29 20:33:31 | null | uca-default-u-kn | page |
39.0 | Articles_with_GND_identifiers | *@,20F\n� | 2021-08-29 20:33:31 | null | uca-default-u-kn | page |
39.0 | Articles_with_J9U_identifiers | *@,20F\n� | 2022-02-21 19:07:46 | null | uca-default-u-kn | page |
39.0 | Articles_with_LCCN_identifiers | *@,20F\n� | 2021-08-29 20:33:31 | null | uca-default-u-kn | page |
39.0 | Articles_with_failed_verification_from_January_2020 | *@,20F\n� | 2020-01-30 15:59:17 | null | uca-default-u-kn | page |
39.0 | Articles_with_short_description | *@,20F\n� | 2020-06-06 08:10:44 | null | uca-default-u-kn | page |
39.0 | Articles_with_unsourced_statements_from_January_2018 | *@,20F\n� | 2022-05-13 04:12:29 | null | uca-default-u-kn | page |
39.0 | Articles_with_unsourced_statements_from_November_2013 | *@,20F\n� | 2022-05-13 04:12:29 | null | uca-default-u-kn | page |
39.0 | CS1_errors:_missing_periodical | *@,20F\n� | 2019-09-03 13:15:11 | null | uca-default-u-kn | page |
39.0 | Climate_change_feedbacks | *@,20F\n� | 2020-04-17 09:47:32 | null | uca-default-u-kn | page |
39.0 | Climate_forcing | *@,20F\n� | 2010-09-28 15:22:44 | null | uca-default-u-kn | page |
39.0 | Climatology | *@,20F\n� | 2010-09-28 15:22:44 | null | uca-default-u-kn | page |
39.0 | Electromagnetic_radiation | *@,20F\n� | 2010-09-28 15:22:44 | null | uca-default-u-kn | page |
39.0 | Land_surface_effects_on_climate | *@,20F\n� | 2016-05-19 00:49:27 | null | uca-default-u-kn | page |
39.0 | Pages_using_div_col_with_small_parameter | *@,20F\n� | 2017-05-22 15:26:01 | null | uca-default-u-kn | page |
39.0 | Radiation | *@,20F\n� | 2011-12-15 17:28:04 | null | uca-default-u-kn | page |
39.0 | Radiometry | *@,20F\n� | 2010-09-28 15:22:44 | null | uca-default-u-kn | page |
39.0 | Scattering,_absorption_and_radiative_transfer_(optics) | *@,20F\n� | 2010-09-28 15:22:44 | null | uca-default-u-kn | page |
39.0 | Short_description_is_different_from_Wikidata | *@,20F\n� | 2022-02-23 06:44:31 | null | uca-default-u-kn | page |
39.0 | Use_dmy_dates_from_September_2019 | *@,20F\n� | 2019-09-10 22:57:12 | null | uca-default-u-kn | page |
39.0 | Webarchive_template_wayback_links | *@,20F\n� | 2022-10-06 00:13:39 | null | uca-default-u-kn | page |
40.0 | Redirects_with_old_history | *4LF*N:*P:.@*D6R*62N����� | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
40.0 | Unprintworthy_redirects | *4LF*N:*P:.@*D6R*62N����� | 2006-09-08 04:20:21 | null | uca-default-u-kn | page |
42.0 | Redirects_from_misspellings | *LP:4:.*@@*D6R*62Nܾ� | 2006-02-11 16:19:58 | null | uca-default-u-kn | page |
42.0 | Redirects_from_moves | *LP:4:.*@@*D6R*62Nܾ� | 2014-03-06 23:34:01 | null | uca-default-u-kn | page |
42.0 | Redirects_with_old_history | *LP:4:.*@@*D6R*62Nܾ� | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
42.0 | Unprintworthy_redirects | *LP:4:.*@@*D6R*62Nܾ� | 2006-02-11 16:19:58 | null | uca-default-u-kn | page |
46.0 | Redirects_with_old_history | *,*.RN\n��� | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
46.0 | Unprintworthy_redirects | *,*.RN\n��� | 2006-04-01 12:10:40 | null | uca-default-u-kn | page |
47.0 | Redirects_with_old_history | *,*@FD2��� | 2007-04-19 22:12:15 | null | uca-default-u-kn | page |
47.0 | Unprintworthy_redirects | *,*@FD2��� | 2006-04-01 12:11:10 | null | uca-default-u-kn | page |
48.0 | Redirects_with_old_history | *,,*0:02N\rܿ� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
48.0 | Unprintworthy_redirects | *,,*0:02N\rܿ� | 2006-04-01 12:11:35 | null | uca-default-u-kn | page |
49.0 | Redirects_with_old_history | *,,2NN\n��� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
49.0 | Unprintworthy_redirects | *,,2NN\n��� | 2006-04-01 12:12:10 | null | uca-default-u-kn | page |
50.0 | Redirects_with_old_history | *,,2T:@@24L*D.2ܾ� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
50.0 | Unprintworthy_redirects | *,,2T:@@24L*D.2ܾ� | 2006-09-08 04:21:11 | null | uca-default-u-kn | page |
51.0 | Redirects_with_old_history | *,,2Z ��� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
51.0 | Unprintworthy_redirects | *,,2Z ��� | 2006-04-01 12:12:39 | null | uca-default-u-kn | page |
52.0 | Redirects_with_old_history | *,,FP ��� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
52.0 | Unprintworthy_redirects | *,,FP ��� | 2006-04-01 12:13:02 | null | uca-default-u-kn | page |
53.0 | Redirects_from_plurals | *,,L2T:*P:FDN� | 2006-09-08 04:21:35 | null | uca-default-u-kn | page |
53.0 | Unprintworthy_redirects | *,,L2T:*P:FDN� | 2006-09-08 04:21:35 | null | uca-default-u-kn | page |
54.0 | Redirects_with_old_history | *P@*NN8LR6620��� | 2007-04-19 22:12:16 | null | uca-default-u-kn | page |
54.0 | Unprintworthy_redirects | *P@*NN8LR6620��� | 2006-09-08 04:21:52 | null | uca-default-u-kn | page |
56.0 | Redirects_with_old_history | *LP:4:.:*@@*D6R*62Nܽ� | 2007-04-19 22:12:39 | null | uca-default-u-kn | page |
56.0 | Unprintworthy_redirects | *LP:4:.:*@@*D6R*62Nܽ� | 2006-03-01 00:56:11 | null | uca-default-u-kn | page |
58.0 | Redirects_with_old_history | *P@*NN8LR6620.8*L*.P2LN��ܿ�\r | 2007-04-19 22:12:40 | null | uca-default-u-kn | page |
58.0 | Unprintworthy_redirects | *P@*NN8LR6620.8*L*.P2LN��ܿ�\r | 2006-09-08 04:12:22 | null | uca-default-u-kn | page |
59.0 | Redirects_with_old_history | *P@*NN8LR6620.FBH*D:2N\Z��ܿ� | 2007-04-19 22:12:41 | null | uca-default-u-kn | page |
59.0 | Unprintworthy_redirects | *P@*NN8LR6620.FBH*D:2N\Z��ܿ� | 2006-09-08 04:12:37 | null | uca-default-u-kn | page |
60.0 | Redirects_from_phrases | *Z2LNBRN:.HR,@:N8:D6.FBH*DZ����ܽ�\n | 2014-02-28 11:32:56 | null | uca-default-u-kn | page |
60.0 | Redirects_with_old_history | *Z2LNBRN:.HR,@:N8:D6.FBH*DZ����ܽ�\n | 2007-04-19 22:12:41 | null | uca-default-u-kn | page |
60.0 | Unprintworthy_redirects | *Z2LNBRN:.HR,@:N8:D6.FBH*DZ����ܽ�\n | 2006-09-08 04:22:20 | null | uca-default-u-kn | page |
128.0 | All_WikiProject_Trains_pages | *P@*NN8LR6620��� | 2021-07-05 00:30:47 | null | uca-default-u-kn | page |
128.0 | All_Wikipedia_B-Class_vital_articles | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | All_Wikipedia_level-5_vital_articles | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | All_Wikipedia_vital_articles | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | All_Wikipedia_vital_articles_in_Art | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | B-Class_Libertarianism_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | B-Class_Philosophy_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | B-Class_Women_writers_articles | *P@*NN8LR6620��� | 2020-05-09 01:21:22 | null | uca-default-u-kn | page |
128.0 | B-Class_novel_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | B-Class_philosophical_literature_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | B-Class_politics_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | B-Class_rail_transport_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | High-importance_Libertarianism_articles | *P@*NN8LR6620��� | 2010-02-17 17:43:27 | null | uca-default-u-kn | page |
128.0 | High-importance_Women_writers_articles | *P@*NN8LR6620��� | 2020-09-17 19:44:26 | null | uca-default-u-kn | page |
128.0 | High-importance_novel_articles | *P@*NN8LR6620��� | 2014-01-07 07:41:08 | null | uca-default-u-kn | page |
128.0 | Low-importance_politics_articles | *P@*NN8LR6620��� | 2012-09-30 23:04:01 | null | uca-default-u-kn | page |
128.0 | Low-importance_rail_transport_articles | *P@*NN8LR6620��� | 2011-04-21 11:32:41 | null | uca-default-u-kn | page |
128.0 | Mid-importance_Philosophy_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | Mid-importance_philosophical_literature_articles | *P@*NN8LR6620��� | 2015-04-27 07:38:07 | null | uca-default-u-kn | page |
128.0 | Pages_in_the_Wikipedia_Top_25_Report | *P@*NN8LR6620��� | 2022-05-09 12:08:39 | null | uca-default-u-kn | page |
128.0 | Philosophical_literature_task_force_articles | *P@*NN8LR6620��� | 2010-06-17 23:27:15 | null | uca-default-u-kn | page |
128.0 | WikiProject_Libertarianism_articles | *P@*NN8LR6620��� | 2021-01-19 15:54:28 | null | uca-default-u-kn | page |
128.0 | WikiProject_Novels_articles | *P@*NN8LR6620��� | 2020-05-05 20:27:08 | null | uca-default-u-kn | page |
128.0 | WikiProject_Politics_articles | *P@*NN8LR6620��� | 2011-10-05 21:33:45 | null | uca-default-u-kn | page |
128.0 | WikiProject_Women_articles | *P@*NN8LR6620��� | 2020-05-09 01:21:22 | null | uca-default-u-kn | page |
128.0 | WikiProject_Women_writers_articles | *P@*NN8LR6620��� | 2020-05-09 01:21:22 | null | uca-default-u-kn | page |
128.0 | Wikipedia_B-Class_level-5_vital_articles | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | Wikipedia_B-Class_vital_articles_in_Art | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
128.0 | Wikipedia_level-5_vital_articles_in_Art | *P@*NN8LR6620��� | 2018-06-10 00:04:46 | null | uca-default-u-kn | page |
241.0 | Redirects_with_old_history | *4L:.*D*B2L:.*DH2FH@2��ܿ� | 2007-04-19 22:12:41 | null | uca-default-u-kn | page |
241.0 | Unprintworthy_redirects | *4L:.*D*B2L:.*DH2FH@2��ܿ� | 2006-09-08 04:22:44 | null | uca-default-u-kn | page |
242.0 | Redirects_with_old_history | *0F@48:P@2L��� | 2008-08-29 05:11:22 | null | uca-default-u-kn | page |
242.0 | Unprintworthy_redirects | *0F@48:P@2L��� | 2008-08-29 05:11:22 | null | uca-default-u-kn | page |
247.0 | Redirects_with_old_history | *,2.20*L:*DN���\n | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
247.0 | Unprintworthy_redirects | *,2.20*L:*DN���\n | 2006-09-08 04:25:34 | null | uca-default-u-kn | page |
248.0 | Redirects_with_old_history | *,2@��� | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
248.0 | Unprintworthy_redirects | *,2@��� | 2006-04-01 12:14:32 | null | uca-default-u-kn | page |
249.0 | Redirects_with_old_history | *,2DN,2L662LB*DZܾ�\n | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
249.0 | Unprintworthy_redirects | *,2DN,2L662LB*DZܾ�\n | 2006-09-08 04:27:53 | null | uca-default-u-kn | page |
251.0 | Redirects_with_old_history | *,2L022DNFRP80*>FP*ܿ��� | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
251.0 | Unprintworthy_redirects | *,2L022DNFRP80*>FP*ܿ��� | 2006-09-08 04:28:17 | null | uca-default-u-kn | page |
254.0 | Redirects_with_old_history | *LP8RL>F2NP@2L��� | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
254.0 | Unprintworthy_redirects | *LP8RL>F2NP@2L��� | 2006-09-08 05:20:29 | null | uca-default-u-kn | page |
255.0 | Redirects_with_old_history | *ZDL*D0��� | 2007-04-19 22:12:51 | null | uca-default-u-kn | page |
255.0 | Unprintworthy_redirects | *ZDL*D0��� | 2006-09-08 04:11:59 | null | uca-default-u-kn | page |
256.0 | Redirects_with_old_history | *@2X*D02LP826L2*Pܾ��� | 2008-08-29 05:12:34 | null | uca-default-u-kn | page |
256.0 | Unprintworthy_redirects | *@2X*D02LP826L2*Pܾ��� | 2008-08-29 05:12:34 | null | uca-default-u-kn | page |
258.0 | Redirects_with_old_history | *D.8FL*62*@*N>*ܾ� | 2007-09-28 08:04:40 | null | uca-default-u-kn | page |
258.0 | Unprintworthy_redirects | *D.8FL*62*@*N>*ܾ� | 2007-09-28 08:04:40 | null | uca-default-u-kn | page |
259.0 | Redirects_with_old_history | *L6RB2DP4FLBNܿ� | 2007-09-28 08:04:52 | null | uca-default-u-kn | page |
259.0 | Unprintworthy_redirects | *L6RB2DP4FLBNܿ� | 2007-09-28 08:04:52 | null | uca-default-u-kn | page |
260.0 | Redirects_with_old_history | *L6RB2DPN4FLP822X:NP2D.2F46F0!ܾ����ܾ��� | 2008-08-29 05:12:40 | null | uca-default-u-kn | page |
260.0 | Unprintworthy_redirects | *L6RB2DPN4FLP822X:NP2D.2F46F0!ܾ����ܾ��� | 2008-08-29 05:12:40 | null | uca-default-u-kn | page |
263.0 | Redirects_with_old_history | *D*L.8Z��� | 2014-10-15 09:05:32 | null | uca-default-u-kn | page |
263.0 | Unprintworthy_redirects | *D*L.8Z��� | 2010-05-30 18:53:52 | null | uca-default-u-kn | page |
264.0 | Redirects_with_old_history | *N.::*LP��� | 2007-09-28 08:05:33 | null | uca-default-u-kn | page |
264.0 | Unprintworthy_redirects | *N.::*LP��� | 2007-09-28 08:05:33 | null | uca-default-u-kn | page |
269.0 | Redirects_with_old_history | *.*02BZ*V*L0N��� | 2007-09-28 08:07:26 | null | uca-default-u-kn | page |
269.0 | Unprintworthy_redirects | *.*02BZ*V*L0N��� | 2007-09-28 08:07:26 | null | uca-default-u-kn | page |
270.0 | Redirects_with_old_history | *.*02BZ*V*L0N\n�,2NPH:.PRL2�������\n | 2007-09-28 08:07:50 | null | uca-default-u-kn | page |
270.0 | Unprintworthy_redirects | *.*02BZ*V*L0N\n�,2NPH:.PRL2�������\n | 2007-09-28 08:07:50 | null | uca-default-u-kn | page |
271.0 | Redirects_with_old_history | *RNPL:*@*D6R*62��� | 2007-08-21 23:39:23 | null | uca-default-u-kn | page |
271.0 | Unprintworthy_redirects | *RNPL:*@*D6R*62��� | 2007-08-21 23:39:23 | null | uca-default-u-kn | page |
272.0 | Redirects_with_old_history | *.*02B:.2@:P:NBܿ�\n | 2007-09-28 08:08:12 | null | uca-default-u-kn | page |
272.0 | Unprintworthy_redirects | *.*02B:.2@:P:NBܿ�\n | 2007-09-28 08:08:12 | null | uca-default-u-kn | page |
274.0 | Redirects_with_old_history | *X:FBF4.8F:.2����� | 2007-09-28 08:09:22 | null | uca-default-u-kn | page |
274.0 | Unprintworthy_redirects | *X:FBF4.8F:.2����� | 2007-09-28 08:09:22 | null | uca-default-u-kn | page |
276.0 | Redirects_with_old_history | *B2L:.*D4FFP,*@@ܿ� | 2007-09-28 08:09:32 | null | uca-default-u-kn | page |
276.0 | Unprintworthy_redirects | *B2L:.*D4FFP,*@@ܿ� | 2007-09-28 08:09:32 | null | uca-default-u-kn | page |
278.0 | Avoided_double_redirects | *B2L:.*��� | 2020-12-04 18:10:23 | null | uca-default-u-kn | page |
278.0 | Redirects_from_miscapitalisations | *B2L:.*��� | 2020-07-20 02:22:13 | null | uca-default-u-kn | page |
278.0 | Redirects_with_history | *B2L:.*��� | 2020-08-04 04:05:54 | null | uca-default-u-kn | page |
278.0 | Redirects_with_old_history | *B2L:.*��� | 2020-08-04 04:05:54 | null | uca-default-u-kn | page |
278.0 | Unprintworthy_redirects | *B2L:.*��� | 2017-09-27 22:16:34 | null | uca-default-u-kn | page |
279.0 | Redirects_with_old_history | *DD*>FRLD:>FT*���\r | 2007-04-19 22:12:52 | null | uca-default-u-kn | page |
279.0 | Unprintworthy_redirects | *DD*>FRLD:>FT*���\r | 2006-08-13 17:44:52 | null | uca-default-u-kn | page |
280.0 | Redirects_with_old_history | *D0FLL*��� | 2007-04-19 22:12:52 | null | uca-default-u-kn | page |
280.0 | Unprintworthy_redirects | *D0FLL*��� | 2007-02-02 17:35:02 | null | uca-default-u-kn | page |
287.0 | Redirects_with_old_history | *RNPLF*N:*P:.@*D6R*62N\Z����� | 2007-09-28 08:09:54 | null | uca-default-u-kn | page |
287.0 | Unprintworthy_redirects | *RNPLF*N:*P:.@*D6R*62N\Z����� | 2007-09-28 08:09:54 | null | uca-default-u-kn | page |
289.0 | Redirects_from_miscapitalisations | *.PL2NN2N\rܿ� | 2019-07-23 13:13:34 | null | uca-default-u-kn | page |
289.0 | Unprintworthy_redirects | *.PL2NN2N\rܿ� | 2006-12-04 05:14:47 | null | uca-default-u-kn | page |
290.0 | Articles_with_J9U_identifiers | *� | 2022-08-10 05:52:00 | null | uca-default-u-kn | page |
290.0 | Articles_with_LCCN_identifiers | *� | 2022-08-10 05:52:00 | null | uca-default-u-kn | page |
290.0 | Articles_with_hAudio_microformats | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Articles_with_short_description | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | CS1:_long_volume_value | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | CS1_French-language_sources_(fr) | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | CS1_Portuguese-language_sources_(pt) | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Commons_link_from_Wikidata | *� | 2022-08-10 05:52:00 | null | uca-default-u-kn | page |
290.0 | ISO_basic_Latin_letters | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Short_description_is_different_from_Wikidata | *� | 2022-10-12 06:10:54 | null | uca-default-u-kn | page |
290.0 | Use_dmy_dates_from_November_2019 | *� | 2022-08-18 18:31:53 | null | uca-default-u-kn | page |
290.0 | Vowel_letters | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_a_citation_from_Collier's_Encyclopedia | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_a_citation_from_The_American_Cyclopaedia | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_a_citation_from_The_American_Cyclopaedia_with_a_Wikisource_reference | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_a_citation_from_the_1911_Encyclopaedia_Britannica_with_Wikisource_reference | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_citation_to_the_NSRW | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_articles_incorporating_citation_to_the_NSRW_with_an_wstitle_parameter | *� | 2022-08-09 21:12:32 | null | uca-default-u-kn | page |
290.0 | Wikipedia_semi-protected_pages | **��� | 2022-08-29 17:40:18 | A | uca-default-u-kn | page |
291.0 | Redirects_with_old_history | *D*L.8F.*H:P*@:NB���\r | 2007-09-28 08:10:06 | null | uca-default-u-kn | page |
291.0 | Unprintworthy_redirects | *D*L.8F.*H:P*@:NB���\r | 2007-09-28 08:10:06 | null | uca-default-u-kn | page |
293.0 | Redirects_with_old_history | *D*L.8F.*H:P*@:NPN��� | 2007-09-28 08:10:15 | null | uca-default-u-kn | page |
293.0 | Unprintworthy_redirects | *D*L.8F.*H:P*@:NPN��� | 2007-09-28 08:10:15 | null | uca-default-u-kn | page |
296.0 | Redirects_with_old_history | *.PL2NN2NNܾ� | 2007-04-19 22:12:52 | null | uca-default-u-kn | page |
296.0 | Unprintworthy_redirects | *.PL2NN2NNܾ� | 2006-12-04 05:14:47 | null | uca-default-u-kn | page |
299.0 | Redirects_with_old_history | *D*B2L:.*D:DH*L:N��ܿ��� | 2007-09-28 08:11:32 | null | uca-default-u-kn | page |
299.0 | Unprintworthy_redirects | *D*B2L:.*D:DH*L:N��ܿ��� | 2007-09-28 08:11:32 | null | uca-default-u-kn | page |
301.0 | Redirects_with_old_history | *RPFBFLH8:NB��� | 2007-09-28 08:11:44 | null | uca-default-u-kn | page |
301.0 | Unprintworthy_redirects | *RPFBFLH8:NB��� | 2007-09-28 08:11:44 | null | uca-default-u-kn | page |
302.0 | Redirects_with_old_history | *.P:FD4:@B��� | 2007-09-28 08:11:53 | null | uca-default-u-kn | page |
302.0 | Unprintworthy_redirects | *.P:FD4:@B��� | 2007-09-28 08:11:53 | null | uca-default-u-kn | page |
303.0 | 1819_establishments_in_the_United_States | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Alabama | *@*,*B*\r��\n | 2021-09-04 12:52:01 | uca-default-u-kn | page | |
303.0 | All_articles_containing_potentially_dated_statements | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | All_articles_to_be_expanded | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | All_articles_with_unsourced_statements | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_containing_Alabama-language_text | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_containing_Choctaw-language_text | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_containing_French-language_text | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_containing_Latin-language_text | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_containing_Spanish-language_text | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_containing_potentially_dated_statements_from_2010 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_containing_potentially_dated_statements_from_2011 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_containing_potentially_dated_statements_from_2015 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_containing_potentially_dated_statements_from_2018 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_containing_potentially_dated_statements_from_May_2021 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_to_be_expanded_from_March_2017 | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_using_small_message_boxes | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_with_BNE_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_BNF_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_Curlie_links | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Articles_with_GND_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_ISNI_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_J9U_identifiers | *@*,*B*�\n | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
303.0 | Articles_with_LCCN_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_MusicBrainz_area_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_NARA_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_NDL_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_NKC_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_NLA_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_SELIBR_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_SNAC-ID_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_SUDOC_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_VIAF_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_WORLDCATID_identifiers | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Articles_with_short_description | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_December_2014 | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_January_2021 | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_March_2017 | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_March_2022 | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_May_2022 | *@*,*B*�\n | 2022-05-13 04:39:58 | null | uca-default-u-kn | page |
303.0 | Articles_with_unsourced_statements_from_October_2022 | *@*,*B*�\n | 2022-10-27 17:13:52 | null | uca-default-u-kn | page |
303.0 | CS1_maint:_others | *@*,*B*�\n | 2022-08-01 14:17:51 | null | uca-default-u-kn | page |
303.0 | Contiguous_United_States | *@*,*B*�\n | 2021-11-13 10:46:22 | null | uca-default-u-kn | page |
303.0 | Coordinates_on_Wikidata | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Pages_using_Sister_project_links_with_default_search | T*@*,*B*\r��\n | 2021-10-27 22:26:43 | v | uca-default-u-kn | page |
303.0 | Pages_using_Sister_project_links_with_hidden_wikidata | TFZ*@*,*B*��\n | 2021-10-27 22:26:43 | voy | uca-default-u-kn | page |
303.0 | Pages_using_infobox_settlement_with_no_coordinates | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Pages_using_infobox_settlement_with_possible_motto_list | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Pages_using_infobox_settlement_with_possible_nickname_list | *@*,*B*�\n | 2022-01-15 19:13:24 | null | uca-default-u-kn | page |
303.0 | Pages_using_the_Kartographer_extension | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Pages_with_non-numeric_formatnum_arguments | *@*,*B*�\n | 2021-10-27 22:26:43 | null | uca-default-u-kn | page |
303.0 | Short_description_is_different_from_Wikidata | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Southern_United_States | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | States_and_territories_established_in_1819 | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | States_of_the_Confederate_States_of_America | *@*,*B*�\n | 2022-07-08 06:25:28 | null | uca-default-u-kn | page |
303.0 | States_of_the_Gulf_Coast_of_the_United_States | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | States_of_the_United_States | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | U.S._states_with_multiple_time_zones | *@*,*B*�\n | 2021-09-04 12:52:01 | null | uca-default-u-kn | page |
303.0 | Use_mdy_dates_from_September_2020 | *@*,*B*�\n | 2021-10-27 22:29:52 | null | uca-default-u-kn | page |
303.0 | Webarchive_template_wayback_links | *@*,*B*�\n | 2019-02-23 11:38:32 | null | uca-default-u-kn | page |
303.0 | Wikipedia_indefinitely_move-protected_pages | *@*,*B**@*,*B*ܿ�\n | 2021-10-27 22:29:52 | Alabama | uca-default-u-kn | page |
303.0 | Wikipedia_indefinitely_semi-protected_pages | *@*,*B**@*,*B*ܿ�\n | 2022-03-17 02:53:24 | Alabama | uca-default-u-kn | page |
304.0 | Redirects_with_old_history | *4L:.*\n��� | 2008-08-29 05:09:56 | null | uca-default-u-kn | page |
304.0 | Unprintworthy_redirects | *4L:.*\n��� | 2008-08-29 05:09:56 | null | uca-default-u-kn | page |
305.0 | Achaean_Leaders | *.8:@@2N*.8:@@2Nܾ� | 2019-04-07 03:47:31 | Achilles | uca-default-u-kn | page |
305.0 | Achilles | *.8:@@2N�� | 2020-05-29 23:05:29 | uca-default-u-kn | page | |
305.0 | Articles_containing_Ancient_Greek_(to_1453)-language_text | *.8:@@2N*.8:@@2Nܾ� | 2020-09-30 11:04:38 | Achilles | uca-default-u-kn | page |
305.0 | Articles_containing_Greek-language_text | *.8:@@2N*.8:@@2Nܾ� | 2020-12-18 02:28:59 | Achilles | uca-default-u-kn | page |
305.0 | Articles_containing_Latin-language_text | *.8:@@2N*.8:@@2Nܾ� | 2020-12-18 02:28:59 | Achilles | uca-default-u-kn | page |
305.0 | Articles_containing_Russian-language_text | *.8:@@2N*.8:@@2Nܾ� | 2022-01-29 21:27:39 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_FAST_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_GND_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_German-language_sources_(de) | *.8:@@2N*.8:@@2Nܾ� | 2022-06-01 17:28:40 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_J9U_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2022-09-06 04:08:21 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_LCCN_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_NKC_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_SUDOC_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_VIAF_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_WORLDCATID_identifiers | *.8:@@2N*.8:@@2Nܾ� | 2021-08-29 20:33:31 | Achilles | uca-default-u-kn | page |
305.0 | Articles_with_short_description | *.8:@@2N*.8:@@2Nܾ� | 2019-05-10 17:55:06 | Achilles | uca-default-u-kn | page |
305.0 | Commons_category_link_is_on_Wikidata | *.8:@@2N*.8:@@2Nܾ� | 2018-11-21 19:19:05 | Achilles | uca-default-u-kn | page |
305.0 | Deeds_of_Apollo | *.8:@@2N*.8:@@2Nܾ� | 2021-05-28 23:39:08 | Achilles | uca-default-u-kn | page |
305.0 | Demigods_in_classical_mythology | *.8:@@2N*.8:@@2Nܾ� | 2021-01-26 08:20:23 | Achilles | uca-default-u-kn | page |
305.0 | Fictional_LGBT_characters_in_literature | *.8:@@2N*.8:@@2Nܾ� | 2022-08-28 23:23:18 | Achilles | uca-default-u-kn | page |
305.0 | Greek_mythological_heroes | *.8:@@2N*.8:@@2Nܾ� | 2019-05-06 13:33:20 | Achilles | uca-default-u-kn | page |
305.0 | Kings_of_the_Myrmidons | *.8:@@2N*.8:@@2Nܾ� | 2018-06-06 01:59:42 | Achilles | uca-default-u-kn | page |
305.0 | LGBT_themes_in_Greek_mythology | *.8:@@2N*.8:@@2Nܾ� | 2021-02-22 20:24:32 | Achilles | uca-default-u-kn | page |
305.0 | Medea | *.8:@@2N*.8:@@2Nܾ� | 2021-11-28 16:14:46 | Achilles | uca-default-u-kn | page |
305.0 | Metamorphoses_characters | *.8:@@2N*.8:@@2Nܾ� | 2021-01-14 20:02:01 | Achilles | uca-default-u-kn | page |
305.0 | Mythological_rapists | *.8:@@2N*.8:@@2Nܾ� | 2020-11-10 11:22:14 | Achilles | uca-default-u-kn | page |
305.0 | Short_description_matches_Wikidata | *.8:@@2N*.8:@@2Nܾ� | 2020-08-16 17:27:37 | Achilles | uca-default-u-kn | page |
305.0 | Source_attribution | *.8:@@2N� | 2021-10-12 14:56:03 | null | uca-default-u-kn | page |
305.0 | Thessalians_in_the_Trojan_War | *.8:@@2N*.8:@@2Nܾ� | 2018-06-06 01:59:42 | Achilles | uca-default-u-kn | page |
305.0 | Use_dmy_dates_from_April_2020 | *.8:@@2N*.8:@@2Nܾ� | 2020-04-26 15:48:17 | Achilles | uca-default-u-kn | page |
305.0 | Webarchive_template_wayback_links | *.8:@@2N� | 2018-06-06 01:59:42 | null | uca-default-u-kn | page |
306.0 | Redirects_with_old_history | *HH@:20NP*P:NP:.N���\r | 2007-09-28 08:12:23 | null | uca-default-u-kn | page |
306.0 | Unprintworthy_redirects | *HH@:20NP*P:NP:.N���\r | 2007-09-28 08:12:23 | null | uca-default-u-kn | page |
307.0 | 1809_births | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | 1865_deaths | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | 1865_murders_in_the_United_States | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-08-31 12:23:38 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | 19th-century_American_politicians | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | 19th-century_presidents_of_the_United_States | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-04-14 04:43:19 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | AC_with_37_elements | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-02-21 19:07:43 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Abraham_Lincoln | *,L*8*B@:D.F@D�ܿ�\n | 2016-01-29 11:54:22 | uca-default-u-kn | page | |
307.0 | All_Wikipedia_articles_written_in_American_English | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-09-18 18:53:36 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_abolitionists | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-10-12 12:05:55 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_colonization_movement | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2018-12-08 15:18:51 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_lawyers_admitted_to_the_practice_of_law_by_reading_law | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2017-07-15 19:35:02 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_military_personnel_of_the_Indian_Wars | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-04-09 10:49:51 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_militia_officers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-04-09 10:53:02 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_nationalists | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2020-12-19 06:15:56 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_people_of_English_descent | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_political_party_founders | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-05-16 17:00:10 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | American_surveyors | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-09-08 18:06:18 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_BIBSYS_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_BNC_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_BNE_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_BNF_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_BPN_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_CANTICN_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-03-09 13:28:31 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_CINII_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_DTBIO_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-02-21 19:07:43 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_FAST_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_GND_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_ISNI_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_Internet_Archive_links | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-07-19 23:13:45 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_J9U_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-02-21 19:07:43 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_KULTURNAV_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_LCCN_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_LNB_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_LibriVox_links | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-07-19 23:13:45 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_MusicBrainz_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NARA_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NCL_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NDL_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NKC_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NLA_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NLG_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NLK_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NSK_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_NTA_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_PLWABN_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_Project_Gutenberg_links | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-02-16 17:55:37 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_RERO_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_RSL_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_SELIBR_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_SNAC-ID_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_SUDOC_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_Trove_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_ULAN_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_USCongress_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_VIAF_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_VcBA_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_WORLDCATID_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_multiple_identifiers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-29 20:33:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Articles_with_short_description | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-09-18 18:53:36 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Assassinated_heads_of_state | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-04-29 20:15:13 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Assassinated_presidents_of_the_United_States | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-04-14 04:36:19 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Burials_at_Oak_Ridge_Cemetery | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | CS1:_Julian–Gregorian_uncertainty | *,L*8*B@:D.F@Dܿ�\n | 2022-08-01 13:53:30 | null | uca-default-u-kn | page |
307.0 | CS1_maint:_url-status | *,L*8*B@:D.F@Dܿ�\n | 2022-08-01 13:53:30 | null | uca-default-u-kn | page |
307.0 | Candidates_in_the_1860_United_States_presidential_election | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-07-11 08:52:43 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Candidates_in_the_1864_United_States_presidential_election | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2019-07-11 08:53:01 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Good_articles | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-12-31 14:29:27 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Hall_of_Fame_for_Great_Americans_inductees | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Illinois_Central_Railroad_people | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2017-05-25 01:12:25 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Illinois_Republicans | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Illinois_lawyers | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Illinois_postmasters | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-08 23:01:55 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Lincoln_family | *,L*8*B*,L*8*B@:D.F@Dܿܿ�\n | 2016-01-29 11:54:22 | Abraham | uca-default-u-kn | page |
307.0 | Male_murder_victims | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-07-08 03:56:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Members_of_the_Illinois_House_of_Representatives | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Pages_using_Sister_project_links_with_hidden_wikidata | 0*,L*8*B@:D.F@D�ܿ�\n | 2020-12-28 20:00:04 | d | uca-default-u-kn | page |
307.0 | Pages_using_multiple_image_with_auto_scaled_images | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2020-09-28 05:56:06 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_associated_with_the_assassination_of_Abraham_Lincoln | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-08-21 00:38:15 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_from_Coles_County,_Illinois | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_from_LaRue_County,_Kentucky | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_from_Macon_County,_Illinois | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_from_Spencer_County,_Indiana | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_murdered_in_Washington,_D.C. | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_of_Illinois_in_the_American_Civil_War | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | People_with_mood_disorders | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Politicians_from_Springfield,_Illinois | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Presidents_of_the_United_States | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Republican_Party_(United_States)_presidential_nominees | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2016-01-29 11:54:22 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Republican_Party_presidents_of_the_United_States | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-04-14 04:53:44 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Short_description_matches_Wikidata | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-10-08 15:51:33 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Union_(American_Civil_War)_political_leaders | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-08-04 08:30:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Use_American_English_from_July_2020 | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-12-31 14:29:27 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Use_mdy_dates_from_May_2022 | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-05-30 06:21:56 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Webarchive_template_wayback_links | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2021-08-24 02:21:04 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Whig_Party_members_of_the_United_States_House_of_Representatives_from_Illinois | @:D.F@D*,L*8*B*,L*8*B@:D.F@D$ܾܿܿ�\n | 2022-07-11 00:50:32 | Lincoln, Abraham | uca-default-u-kn | page |
307.0 | Wikipedia_indefinitely_move-protected_pages | *,L*8*B@:D.F@D*,L*8*B@:D.F@D#ܿܿܿ�\n | 2021-08-20 09:16:21 | Abraham Lincoln | uca-default-u-kn | page |
307.0 | Wikipedia_indefinitely_semi-protected_pages | *,L*8*B@:D.F@D*,L*8*B@:D.F@D#ܿܿܿ�\n | 2021-12-31 14:29:27 | Abraham Lincoln | uca-default-u-kn | page |
308.0 | 322_BC_deaths | *L:NPFP@2\r� | 2016-05-10 21:34:57 | null | uca-default-u-kn | page |
308.0 | 384_BC_births | *L:NPFP@2\r� | 2016-05-10 21:34:57 | null | uca-default-u-kn | page |
308.0 | 4th-century_BC_mathematicians | *L:NPFP@2\r� | 2021-04-22 01:11:56 | null | uca-default-u-kn | page |
308.0 | 4th-century_BC_philosophers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | 4th-century_BC_writers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | AC_with_38_elements | *L:NPFP@2\r� | 2022-04-06 12:22:19 | null | uca-default-u-kn | page |
308.0 | Academic_philosophers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Acting_theorists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_biologists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_cosmologists | *L:NPFP@2\r� | 2021-06-28 09:26:38 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_economists | *L:NPFP@2\r� | 2020-02-23 15:44:10 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_epistemologists | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_ethicists | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_logicians | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_mathematicians | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_metaphilosophers | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_metaphysicians | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_philosophers | *L:NPFP@2\r� | 2020-02-26 05:38:55 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_philosophers_of_art | *L:NPFP@2\r� | 2021-12-15 11:30:58 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_philosophers_of_language | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_philosophers_of_mind | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_physicists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_political_philosophers | *L:NPFP@2\r� | 2016-12-14 22:12:57 | null | uca-default-u-kn | page |
308.0 | Ancient_Greek_political_refugees | *L:NPFP@2\r� | 2022-08-11 11:20:02 | null | uca-default-u-kn | page |
308.0 | Ancient_Stagirites | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ancient_literary_critics | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Aphorists | *L:NPFP@2\r� | 2019-12-19 12:05:06 | null | uca-default-u-kn | page |
308.0 | Aristotelian_philosophers | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Aristotelianism | \n�*L:NPFP@2�� | 2019-12-19 12:05:06 | * | uca-default-u-kn | page |
308.0 | Aristotle | *L:NPFP@2�� | 2020-05-29 20:29:22 | uca-default-u-kn | page | |
308.0 | Articles_containing_Ancient_Greek_(to_1453)-language_text | *L:NPFP@2\r� | 2020-09-30 11:04:38 | null | uca-default-u-kn | page |
308.0 | Articles_incorporating_a_citation_from_the_1913_Catholic_Encyclopedia_with_Wikisource_reference | *L:NPFP@2\r� | 2016-05-22 19:47:12 | null | uca-default-u-kn | page |
308.0 | Articles_with_BIBSYS_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_BNC_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_BNE_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_BNF_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_BNMM_identifiers | *L:NPFP@2\r� | 2022-04-06 12:22:19 | null | uca-default-u-kn | page |
308.0 | Articles_with_CANTICN_identifiers | *L:NPFP@2\r� | 2022-03-09 13:28:31 | null | uca-default-u-kn | page |
308.0 | Articles_with_CINII_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_DTBIO_identifiers | *L:NPFP@2\r� | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
308.0 | Articles_with_FAST_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_French-language_sources_(fr) | *L:NPFP@2\r� | 2019-11-20 16:51:35 | null | uca-default-u-kn | page |
308.0 | Articles_with_GND_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_Greek-language_sources_(el) | *L:NPFP@2\r� | 2019-11-20 16:51:35 | null | uca-default-u-kn | page |
308.0 | Articles_with_ICCU_identifiers | *L:NPFP@2\r� | 2022-02-21 02:24:33 | null | uca-default-u-kn | page |
308.0 | Articles_with_ISNI_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_Internet_Archive_links | *L:NPFP@2\r� | 2016-07-19 23:16:25 | null | uca-default-u-kn | page |
308.0 | Articles_with_Internet_Encyclopedia_of_Philosophy_links | *L:NPFP@2\r� | 2019-09-23 12:56:07 | null | uca-default-u-kn | page |
308.0 | Articles_with_J9U_identifiers | *L:NPFP@2\r� | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
308.0 | Articles_with_LCCN_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_LNB_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_LibriVox_links | *L:NPFP@2\r� | 2016-07-19 23:05:44 | null | uca-default-u-kn | page |
308.0 | Articles_with_MATHSN_identifiers | *L:NPFP@2\r� | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
308.0 | Articles_with_MusicBrainz_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NDL_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NKC_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NLA_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NLG_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NLK_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NSK_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_NTA_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_Open_Library_links | *L:NPFP@2\r� | 2016-07-19 23:27:55 | null | uca-default-u-kn | page |
308.0 | Articles_with_PLWABN_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_Project_Gutenberg_links | *L:NPFP@2\r� | 2016-07-19 23:27:55 | null | uca-default-u-kn | page |
308.0 | Articles_with_RERO_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_RISM_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_RSL_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_SELIBR_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_SNAC-ID_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_SUDOC_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_TDVİA_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_Trove_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_ULAN_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_VIAF_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_VcBA_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_WORLDCATID_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_ZBMATH_identifiers | *L:NPFP@2\r� | 2022-02-21 19:07:42 | null | uca-default-u-kn | page |
308.0 | Articles_with_hCards | *L:NPFP@2\r� | 2019-12-04 12:37:58 | null | uca-default-u-kn | page |
308.0 | Articles_with_multiple_identifiers | *L:NPFP@2\r� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
308.0 | Articles_with_short_description | *L:NPFP@2\r� | 2019-12-04 12:37:58 | null | uca-default-u-kn | page |
308.0 | Attic_Greek_writers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | CS1:_long_volume_value | *L:NPFP@2\r� | 2019-01-19 11:24:39 | null | uca-default-u-kn | page |
308.0 | CS1_French-language_sources_(fr) | *L:NPFP@2\r� | 2018-05-12 08:55:24 | null | uca-default-u-kn | page |
308.0 | Critical_thinking | *L:NPFP@2\r� | 2019-04-09 21:07:39 | null | uca-default-u-kn | page |
308.0 | Cultural_critics | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Founders_of_philosophical_traditions | *L:NPFP@2\r� | 2019-06-20 10:29:04 | null | uca-default-u-kn | page |
308.0 | Good_articles | *L:NPFP@2\r� | 2019-12-04 12:37:58 | null | uca-default-u-kn | page |
308.0 | Greek_geologists | *L:NPFP@2\r� | 2021-11-18 22:59:06 | null | uca-default-u-kn | page |
308.0 | Greek_male_writers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Greek_meteorologists | *L:NPFP@2\r� | 2016-04-28 04:27:07 | null | uca-default-u-kn | page |
308.0 | Greek_social_commentators | *L:NPFP@2\r� | 2021-09-08 22:12:40 | null | uca-default-u-kn | page |
308.0 | Humor_researchers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Irony_theorists | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Metic_philosophers_in_Classical_Athens | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Moral_philosophers | *L:NPFP@2\r� | 2018-12-30 16:12:40 | null | uca-default-u-kn | page |
308.0 | Natural_philosophers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Ontologists | *L:NPFP@2\r� | 2019-12-19 12:05:06 | null | uca-default-u-kn | page |
308.0 | Open_Library_ID_different_from_Wikidata | *L:NPFP@2\r� | 2016-09-25 01:26:30 | null | uca-default-u-kn | page |
308.0 | Pages_using_Sister_project_links_with_default_search | T*L:NPFP@2�� | 2020-12-25 13:16:35 | v | uca-default-u-kn | page |
308.0 | Pages_using_Sister_project_links_with_hidden_wikidata | N*L:NPFP@2�� | 2020-12-25 13:16:35 | s | uca-default-u-kn | page |
308.0 | Peripatetic_philosophers | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Philosophers_and_tutors_of_Alexander_the_Great | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_ancient_Chalcidice | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_culture | *L:NPFP@2\r� | 2018-12-30 16:12:40 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_education | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_ethics_and_morality | *L:NPFP@2\r� | 2018-12-30 16:12:40 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_history | *L:NPFP@2\r� | 2019-12-19 12:05:06 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_law | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_literature | *L:NPFP@2\r� | 2018-12-30 16:12:40 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_logic | *L:NPFP@2\r� | 2019-01-06 13:16:32 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_love | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_psychology | *L:NPFP@2\r� | 2020-04-17 11:28:45 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_science | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_sexuality | *L:NPFP@2\r� | 2020-04-17 11:29:35 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_technology | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Philosophers_of_time | *L:NPFP@2\r� | 2021-11-18 11:06:31 | null | uca-default-u-kn | page |
308.0 | Philosophical_logic | *L:NPFP@2\r� | 2018-12-30 16:12:40 | null | uca-default-u-kn | page |
308.0 | Philosophical_theists | *L:NPFP@2\r� | 2020-05-10 19:25:09 | null | uca-default-u-kn | page |
308.0 | Philosophy_academics | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Philosophy_writers | *L:NPFP@2\r� | 2019-01-06 13:16:32 | null | uca-default-u-kn | page |
308.0 | Rhetoric_theorists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Short_description_matches_Wikidata | *L:NPFP@2\r� | 2022-05-11 13:07:01 | null | uca-default-u-kn | page |
308.0 | Social_critics | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Social_philosophers | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Students_of_Plato | *L:NPFP@2\r� | 2021-04-09 21:15:43 | null | uca-default-u-kn | page |
308.0 | Trope_theorists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Use_Oxford_spelling_from_March_2020 | *L:NPFP@2\r� | 2020-03-09 20:19:40 | null | uca-default-u-kn | page |
308.0 | Use_dmy_dates_from_March_2022 | *L:NPFP@2\r� | 2022-03-08 15:49:17 | null | uca-default-u-kn | page |
308.0 | Virtue_ethicists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
308.0 | Virtue_ethics | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Webarchive_template_wayback_links | *L:NPFP@2\r� | 2020-03-09 20:22:14 | null | uca-default-u-kn | page |
308.0 | Western_culture | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Western_philosophy | *L:NPFP@2\r� | 2019-01-06 15:05:34 | null | uca-default-u-kn | page |
308.0 | Wikipedia_articles_incorporating_the_template_Lives_of_the_Eminent_Philosophers | *L:NPFP@2\r� | 2016-05-22 19:47:12 | null | uca-default-u-kn | page |
308.0 | Wikipedia_indefinitely_semi-protected_pages | *L:NPFP@2*L:NPFP@2ܽ� | 2019-12-04 12:37:58 | Aristotle | uca-default-u-kn | page |
308.0 | Zoologists | *L:NPFP@2\r� | 2015-09-22 14:47:02 | null | uca-default-u-kn | page |
309.0 | 1928_compositions | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2010-11-30 01:47:46 | American In Paris, An | uca-default-u-kn | page |
309.0 | All_articles_needing_additional_references | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 23:15:12 | American In Paris, An | uca-default-u-kn | page |
309.0 | All_articles_with_specifically_marked_weasel-worded_phrases | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 23:24:08 | American In Paris, An | uca-default-u-kn | page |
309.0 | All_articles_with_unsourced_statements | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2018-12-11 19:01:21 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_needing_additional_references_from_July_2021 | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 23:15:12 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_GND_identifiers | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-08-29 20:33:32 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_International_Music_Score_Library_Project_links | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2016-07-10 05:19:59 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_J9U_identifiers | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2022-02-21 19:07:45 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_LCCN_identifiers | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-08-29 20:33:32 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_MusicBrainz_work_identifiers | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-08-29 20:33:32 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_VIAF_identifiers | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-08-29 20:33:32 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_short_description | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2020-05-08 23:09:25 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_specifically_marked_weasel-worded_phrases_from_July_2021 | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 23:24:08 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_unsourced_quotes | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 00:27:53 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_unsourced_statements_from_December_2018 | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2022-05-13 04:12:36 | American In Paris, An | uca-default-u-kn | page |
309.0 | Articles_with_unsourced_statements_from_July_2021 | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2021-07-17 20:41:53 | American In Paris, An | uca-default-u-kn | page |
309.0 | Commons_category_link_is_on_Wikidata | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2019-07-27 05:03:52 | American In Paris, An | uca-default-u-kn | page |
309.0 | Compositions_by_George_Gershwin | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2010-11-30 01:47:46 | American In Paris, An | uca-default-u-kn | page |
309.0 | Grammy_Hall_of_Fame_Award_recipients | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2010-11-30 01:47:46 | American In Paris, An | uca-default-u-kn | page |
309.0 | Music_about_Paris | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2012-05-16 20:30:43 | American In Paris, An | uca-default-u-kn | page |
309.0 | Music_commissioned_by_the_New_York_Philharmonic | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2016-04-24 00:23:45 | American In Paris, An | uca-default-u-kn | page |
309.0 | Pages_using_multiple_image_with_auto_scaled_images | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2020-11-13 23:28:58 | American In Paris, An | uca-default-u-kn | page |
309.0 | Pages_using_the_Score_extension | *D*B2L:.*D:DH*L:N��ܻ� | 2022-04-25 17:11:25 | null | uca-default-u-kn | page |
309.0 | Short_description_matches_Wikidata | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2020-08-16 17:27:37 | American In Paris, An | uca-default-u-kn | page |
309.0 | Symphonic_poems | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2010-11-30 01:47:46 | American In Paris, An | uca-default-u-kn | page |
309.0 | Use_mdy_dates_from_December_2018 | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2018-12-12 11:11:39 | American In Paris, An | uca-default-u-kn | page |
309.0 | Webarchive_template_other_archives | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2018-05-29 04:38:42 | American In Paris, An | uca-default-u-kn | page |
309.0 | Wikipedia_articles_needing_page_number_citations_from_December_2019 | *D*B2L:.*D:DH*L:N��ܻ� | 2019-12-10 23:55:59 | null | uca-default-u-kn | page |
309.0 | Works_with_IMSLP_links | *B2L:.*D:DH*L:N*D*D*B2L:.*D:DH*L:N%\rܾ��������ܻ� | 2016-12-04 15:03:24 | American In Paris, An | uca-default-u-kn | page |
316.0 | Academy_Awards | ,2NPHLF0R.P:FD02N:6D*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%\"��ܼ��ܿܽ��ܼ� | 2018-04-13 18:50:24 | Best Production Design | uca-default-u-kn | page |
316.0 | Articles_with_short_description | *.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%%ܿܽ��ܼ��ܿܽ��ܼ� | 2022-03-12 18:42:42 | Academy Award for Best Production Design | uca-default-u-kn | page |
316.0 | Awards_for_best_art_direction | *.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%%ܿܽ��ܼ��ܿܽ��ܼ� | 2018-04-13 18:50:24 | Academy Award for Best Production Design | uca-default-u-kn | page |
316.0 | Best_Art_Direction_Academy_Award_winners | \n�*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%\r�ܿܽ��ܼ� | 2009-06-18 07:04:03 | * | uca-default-u-kn | page |
316.0 | Short_description_matches_Wikidata | *.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%%ܿܽ��ܼ��ܿܽ��ܼ� | 2022-03-12 18:42:42 | Academy Award for Best Production Design | uca-default-u-kn | page |
316.0 | Use_mdy_dates_from_June_2013 | *.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D*.*02BZ*V*L04FL,2NPHLF0R.P:FD02N:6D%%ܿܽ��ܼ��ܿܽ��ܼ� | 2018-04-13 18:50:24 | Academy Award for Best Production Design | uca-default-u-kn | page |
324.0 | 1929_establishments_in_California | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | Academy_Awards | *.*02BZ*V*L0N�ܿ� | 2020-02-27 22:42:03 | uca-default-u-kn | page | |
324.0 | All_Wikipedia_articles_written_in_American_English | *.*02BZ*V*L0Nܿ� | 2020-10-30 19:02:06 | null | uca-default-u-kn | page |
324.0 | All_Wikipedia_neutral_point_of_view_disputes | *.*02BZ*V*L0Nܿ� | 2022-01-20 21:29:25 | null | uca-default-u-kn | page |
324.0 | All_articles_containing_potentially_dated_statements | *.*02BZ*V*L0Nܿ� | 2018-11-14 14:32:24 | null | uca-default-u-kn | page |
324.0 | All_articles_needing_additional_references | *.*02BZ*V*L0Nܿ� | 2021-03-04 07:56:59 | null | uca-default-u-kn | page |
324.0 | All_articles_that_may_have_off-topic_sections | *.*02BZ*V*L0Nܿ� | 2022-10-08 04:34:48 | null | uca-default-u-kn | page |
324.0 | All_articles_with_dead_external_links | *.*02BZ*V*L0Nܿ� | 2022-03-09 01:18:45 | null | uca-default-u-kn | page |
324.0 | All_articles_with_unsourced_statements | *.*02BZ*V*L0Nܿ� | 2022-10-19 20:03:01 | null | uca-default-u-kn | page |
324.0 | American_annual_television_specials | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | American_film_awards | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | American_live_television_shows | *.*02BZ*V*L0Nܿ� | 2020-07-05 06:55:50 | null | uca-default-u-kn | page |
324.0 | Annual_events_in_Los_Angeles_County,_California | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | Articles_containing_potentially_dated_statements_from_2018 | *.*02BZ*V*L0Nܿ� | 2018-11-14 14:32:24 | null | uca-default-u-kn | page |
324.0 | Articles_needing_additional_references_from_March_2021 | *.*02BZ*V*L0Nܿ� | 2021-03-04 07:56:59 | null | uca-default-u-kn | page |
324.0 | Articles_with_BNF_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_FAST_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_GND_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_J9U_identifiers | *.*02BZ*V*L0Nܿ� | 2022-02-21 19:07:46 | null | uca-default-u-kn | page |
324.0 | Articles_with_LCCN_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_MusicBrainz_series_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_NARA_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_NDL_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_NKC_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_SUDOC_identifiers | *.*02BZ*V*L0Nܿ� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
324.0 | Articles_with_dead_external_links_from_March_2022 | *.*02BZ*V*L0Nܿ� | 2022-03-09 01:18:45 | null | uca-default-u-kn | page |
324.0 | Articles_with_multiple_identifiers | *.*02BZ*V*L0Nܿ� | 2022-05-16 14:46:33 | null | uca-default-u-kn | page |
324.0 | Articles_with_permanently_dead_external_links | *.*02BZ*V*L0Nܿ� | 2022-03-09 01:18:45 | null | uca-default-u-kn | page |
324.0 | Articles_with_short_description | *.*02BZ*V*L0Nܿ� | 2020-10-30 19:02:06 | null | uca-default-u-kn | page |
324.0 | Articles_with_unsourced_statements_from_August_2022 | *.*02BZ*V*L0Nܿ� | 2022-10-19 20:03:01 | null | uca-default-u-kn | page |
324.0 | Articles_with_unsourced_statements_from_December_2021 | *.*02BZ*V*L0Nܿ� | 2022-10-19 20:03:01 | null | uca-default-u-kn | page |
324.0 | Awards_established_in_1929 | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | CS1_maint:_url-status | *.*02BZ*V*L0Nܿ� | 2022-08-01 14:03:42 | null | uca-default-u-kn | page |
324.0 | Cinema_of_Southern_California | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | Commons_category_link_from_Wikidata | *.*02BZ*V*L0Nܿ� | 2021-05-31 14:52:58 | null | uca-default-u-kn | page |
324.0 | Culture_of_Hollywood,_Los_Angeles | *.*02BZ*V*L0Nܿ� | 2022-07-23 22:01:15 | null | uca-default-u-kn | page |
324.0 | Events_in_Los_Angeles | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | Official_website_different_in_Wikidata_and_Wikipedia | *.*02BZ*V*L0Nܿ� | 2022-04-14 22:43:53 | null | uca-default-u-kn | page |
324.0 | Pages_using_the_EasyTimeline_extension | *.*02BZ*V*L0Nܿ� | 2020-09-19 08:36:46 | null | uca-default-u-kn | page |
324.0 | Performing_arts_trophies | *.*02BZ*V*L0Nܿ� | 2020-02-27 22:42:03 | null | uca-default-u-kn | page |
324.0 | Short_description_matches_Wikidata | *.*02BZ*V*L0Nܿ� | 2022-08-17 15:20:40 | null | uca-default-u-kn | page |
324.0 | Use_American_English_from_December_2019 | *.*02BZ*V*L0Nܿ� | 2020-10-30 19:02:06 | null | uca-default-u-kn | page |
324.0 | Use_mdy_dates_from_March_2020 | *.*02BZ*V*L0Nܿ� | 2020-10-30 19:02:06 | null | uca-default-u-kn | page |
324.0 | Wikipedia_articles_that_may_have_off-topic_sections_from_March_2022 | *.*02BZ*V*L0Nܿ� | 2022-10-08 04:34:48 | null | uca-default-u-kn | page |
324.0 | Wikipedia_indefinitely_move-protected_pages | *.*02BZ*V*L0N*.*02BZ*V*L0N!ܿ��ܿ� | 2020-10-30 19:02:06 | Academy Awards | uca-default-u-kn | page |
324.0 | Wikipedia_neutral_point_of_view_disputes_from_April_2016 | *.*02BZ*V*L0Nܿ� | 2022-01-20 21:29:25 | null | uca-default-u-kn | page |
325.0 | Redirects_from_other_capitalisations | *.P:FD4:@B��� | 2007-09-28 08:27:52 | null | uca-default-u-kn | page |
325.0 | Unprintworthy_redirects | *.P:FD4:@B��� | 2007-09-28 08:27:52 | null | uca-default-u-kn | page |
330.0 | 1990s_Spanish_films | *.PL:RN�\n | 2022-09-27 11:25:01 | null | uca-default-u-kn | page |
330.0 | 1997_drama_films | *.PL:RN�\n | 2020-05-08 13:29:47 | null | uca-default-u-kn | page |
330.0 | 1997_films | *.PL:RN�\n | 2015-12-22 01:14:18 | null | uca-default-u-kn | page |
330.0 | Articles_with_short_description | *.PL:RN�\n | 2021-05-15 21:34:34 | null | uca-default-u-kn | page |
330.0 | CS1_Spanish-language_sources_(es) | *.PL:RN�\n | 2022-08-01 14:06:03 | null | uca-default-u-kn | page |
330.0 | Catalan-language_films | *.PL:RN�\n | 2006-12-12 13:20:20 | null | uca-default-u-kn | page |
330.0 | Films_directed_by_Ventura_Pons | *.PL:RN�\n | 2009-05-23 10:26:56 | null | uca-default-u-kn | page |
330.0 | Films_set_in_Barcelona | *.PL:RN�\n | 2011-08-31 14:51:08 | null | uca-default-u-kn | page |
330.0 | IMDb_ID_same_as_Wikidata | *.PL:RN�\n | 2022-06-16 11:19:18 | null | uca-default-u-kn | page |
330.0 | Official_website_different_in_Wikidata_and_Wikipedia | *.PL:RN�\n | 2019-07-14 09:39:37 | null | uca-default-u-kn | page |
330.0 | Short_description_is_different_from_Wikidata | *.PL:RN�\n | 2021-05-15 21:34:34 | null | uca-default-u-kn | page |
330.0 | Spanish_drama_films | *.PL:RN�\n | 2020-05-08 13:29:47 | null | uca-default-u-kn | page |
330.0 | Template_film_date_with_1_release_date | *.PL:RN�\n | 2020-04-03 02:08:25 | null | uca-default-u-kn | page |
330.0 | Use_dmy_dates_from_March_2021 | *.PL:RN�\n | 2021-03-17 16:43:34 | null | uca-default-u-kn | page |
332.0 | 1986_children's_books | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2017-05-16 04:35:21 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Alphabet_books | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2016-08-14 01:21:33 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Articles_with_short_description | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2021-08-30 01:18:23 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Australian_children's_books | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2016-08-14 01:21:33 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Picture_books_by_Graeme_Base | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2016-08-14 01:21:33 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Puffin_Books_books | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2021-02-04 10:29:32 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Puzzle_books | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2016-08-14 01:21:33 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Short_description_matches_Wikidata | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2021-08-30 01:18:23 | Animalia (Book) | uca-default-u-kn | page |
332.0 | Use_dmy_dates_from_June_2013 | *D:B*@:* �,FF> �*D:B*@:* �,FF> �#ܽ��� | 2016-08-14 01:21:33 | Animalia (Book) | uca-default-u-kn | page |
334.0 | All_articles_containing_potentially_dated_statements | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-05-15 03:41:41 | null | uca-default-u-kn | page |
334.0 | Articles_containing_French-language_text | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-05-15 03:41:41 | null | uca-default-u-kn | page |
334.0 | Articles_containing_potentially_dated_statements_from_January_2017 | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-05-15 03:41:41 | null | uca-default-u-kn | page |
334.0 | Articles_with_EMU_identifiers | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
334.0 | Articles_with_short_description | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2019-06-06 18:45:30 | null | uca-default-u-kn | page |
334.0 | Short_description_is_different_from_Wikidata | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-10-02 15:33:24 | null | uca-default-u-kn | page |
334.0 | Time_scales | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2007-06-16 21:23:19 | null | uca-default-u-kn | page |
334.0 | Use_British_English_from_April_2020 | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2020-09-02 08:12:25 | null | uca-default-u-kn | page |
334.0 | Use_dmy_dates_from_August_2022 | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-08-02 00:55:23 | null | uca-default-u-kn | page |
334.0 | Wikipedia_articles_needing_clarification_from_April_2020 | :DP2LD*P:FD*@*PFB:.P:B2ܹ��� | 2022-05-15 03:41:41 | null | uca-default-u-kn | page |
336.0 | Altruism | *@PLR:NB�� | 2015-11-12 18:53:47 | uca-default-u-kn | page | |
336.0 | Articles_with_BNE_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_BNF_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_EMU_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_GND_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_J9U_identifiers | *@PLR:NB� | 2022-02-21 19:07:46 | null | uca-default-u-kn | page |
336.0 | Articles_with_LCCN_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_NDL_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_NKC_identifiers | *@PLR:NB� | 2021-08-29 20:33:32 | null | uca-default-u-kn | page |
336.0 | Articles_with_short_description | *@PLR:NB� | 2019-08-08 21:07:19 | null | uca-default-u-kn | page |
336.0 | Auguste_Comte | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Commons_category_link_from_Wikidata | *@PLR:NB� | 2019-08-24 23:41:10 | null | uca-default-u-kn | page |
336.0 | Defence_mechanisms | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Interpersonal_relationships | *@PLR:NB� | 2016-09-04 06:07:48 | null | uca-default-u-kn | page |
336.0 | Moral_psychology | *@PLR:NB� | 2019-04-15 10:40:49 | null | uca-default-u-kn | page |
336.0 | Morality | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Philanthropy | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Short_description_matches_Wikidata | *@PLR:NB� | 2020-08-16 17:27:37 | null | uca-default-u-kn | page |
336.0 | Social_philosophy | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Use_dmy_dates_from_May_2020 | *@PLR:NB� | 2020-05-26 19:48:30 | null | uca-default-u-kn | page |
336.0 | Virtue | *@PLR:NB� | 2015-11-12 18:53:47 | null | uca-default-u-kn | page |
336.0 | Webarchive_template_wayback_links | *@PLR:NB� | 2017-12-01 13:23:33 | null | uca-default-u-kn | page |
338.0 | Redirects_with_old_history | *RPFL*.:D6��� | 2007-09-28 08:28:44 | null | uca-default-u-kn | page |
338.0 | Unprintworthy_redirects | *RPFL*.:D6��� | 2007-09-28 08:28:44 | null | uca-default-u-kn | page |
339.0 | 1905_births | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 1982_deaths | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_American_dramatists_and_playwrights | L*D0*ZD*ZDL*D0������� | 2014-10-22 10:07:31 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_American_novelists | L*D0*ZD*ZDL*D0������� | 2013-04-28 04:38:13 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_American_philosophers | L*D0*ZD*ZDL*D0������� | 2017-04-09 05:24:17 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_American_screenwriters | L*D0*ZD*ZDL*D0������� | 2021-06-20 20:20:26 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_American_women_writers | L*D0*ZD*ZDL*D0������� | 2017-07-21 20:12:00 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_Russian_philosophers | L*D0*ZD*ZDL*D0������� | 2018-02-28 02:03:22 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_atheists | L*D0*ZD*ZDL*D0������� | 2017-06-29 14:48:06 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_essayists | L*D0*ZD*ZDL*D0������� | 2019-02-05 14:12:02 | Rand, Ayn | uca-default-u-kn | page |
339.0 | 20th-century_pseudonymous_writers | L*D0*ZD*ZDL*D0������� | 2021-07-31 03:53:04 | Rand, Ayn | uca-default-u-kn | page |
339.0 | AC_with_31_elements | L*D0*ZD*ZDL*D0������� | 2022-03-06 22:57:28 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Activists_from_New_York_(state) | L*D0*ZD*ZDL*D0������� | 2017-08-08 19:54:55 | Rand, Ayn | uca-default-u-kn | page |
339.0 | All_articles_containing_potentially_dated_statements | L*D0*ZD*ZDL*D0������� | 2018-09-29 00:52:57 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_abortion-rights_activists | L*D0*ZD*ZDL*D0������� | 2019-05-25 11:44:17 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_anti-communists | L*D0*ZD*ZDL*D0������� | 2021-02-01 22:24:10 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_anti-fascists | L*D0*ZD*ZDL*D0������� | 2018-04-07 02:27:29 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_atheist_writers | L*D0*ZD*ZDL*D0������� | 2019-09-30 21:09:34 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_essayists | L*D0*ZD*ZDL*D0������� | 2013-08-02 05:37:00 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_ethicists | L*D0*ZD*ZDL*D0������� | 2013-02-01 08:14:27 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_people_of_Russian-Jewish_descent | L*D0*ZD*ZDL*D0������� | 2015-11-20 22:18:35 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_political_activists | L*D0*ZD*ZDL*D0������� | 2016-07-27 06:28:04 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_political_philosophers | L*D0*ZD*ZDL*D0������� | 2019-10-26 09:23:13 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_science_fiction_writers | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_secularists | L*D0*ZD*ZDL*D0������� | 2016-09-22 13:03:45 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_activists | L*D0*ZD*ZDL*D0������� | 2016-07-27 06:23:13 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_dramatists_and_playwrights | L*D0*ZD*ZDL*D0������� | 2014-10-15 04:51:25 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_essayists | L*D0*ZD*ZDL*D0������� | 2016-09-04 08:31:22 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_novelists | L*D0*ZD*ZDL*D0������� | 2013-01-02 21:48:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_philosophers | L*D0*ZD*ZDL*D0������� | 2013-10-25 19:57:45 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_women_screenwriters | L*D0*ZD*ZDL*D0������� | 2014-09-05 18:23:09 | Rand, Ayn | uca-default-u-kn | page |
339.0 | American_writers_of_Russian_descent | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Aristotelian_philosophers | L*D0*ZD*ZDL*D0������� | 2018-05-04 21:57:26 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_containing_Hebrew-language_text | *ZDL*D0��� | 2022-09-19 06:57:04 | null | uca-default-u-kn | page |
339.0 | Articles_containing_Russian-language_text | *ZDL*D0��� | 2022-03-13 00:42:34 | null | uca-default-u-kn | page |
339.0 | Articles_containing_potentially_dated_statements_from_2020 | L*D0*ZD*ZDL*D0������� | 2022-07-30 21:43:28 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_BIBSYS_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_BNE_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_BNF_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_CANTICN_identifiers | L*D0*ZD*ZDL*D0������� | 2022-03-09 13:28:31 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_CINII_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Curlie_links | L*D0*ZD*ZDL*D0������� | 2018-02-12 16:46:52 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_DTBIO_identifiers | L*D0*ZD*ZDL*D0������� | 2022-02-21 19:07:43 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_FAST_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_GND_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_ICCU_identifiers | L*D0*ZD*ZDL*D0������� | 2022-03-06 22:57:28 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_ISNI_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Internet_Archive_links | L*D0*ZD*ZDL*D0������� | 2016-07-19 23:15:39 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Internet_Encyclopedia_of_Philosophy_links | L*D0*ZD*ZDL*D0������� | 2019-09-23 12:56:07 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_J9U_identifiers | L*D0*ZD*ZDL*D0������� | 2022-02-21 19:07:43 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_LCCN_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_LNB_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_LibriVox_links | L*D0*ZD*ZDL*D0������� | 2016-07-19 23:06:42 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_MusicBrainz_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NDL_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NKC_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NLA_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NLG_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NLK_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NSK_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_NTA_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Open_Library_links | L*D0*ZD*ZDL*D0������� | 2016-07-19 23:30:04 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_PLWABN_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Project_Gutenberg_links | L*D0*ZD*ZDL*D0������� | 2016-07-19 23:30:04 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_RERO_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_SELIBR_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_SNAC-ID_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_SUDOC_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_Trove_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_ULAN_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_VIAF_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_VcBA_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_WORLDCATID_identifiers | L*D0*ZD*ZDL*D0������� | 2021-08-29 20:33:33 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Articles_with_short_description | L*D0*ZD*ZDL*D0������� | 2020-02-13 07:05:37 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Atheist_philosophers | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Atheists_from_the_Russian_Empire | L*D0*ZD*ZDL*D0������� | 2022-10-03 06:32:50 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Ayn_Rand | *ZDL*D0���� | 2014-08-05 11:30:10 | uca-default-u-kn | page | |
339.0 | Burials_at_Kensico_Cemetery | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Critics_of_Christianity | L*D0*ZD*ZDL*D0������� | 2022-02-16 06:12:17 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Critics_of_Marxism | L*D0*ZD*ZDL*D0������� | 2017-01-26 13:21:42 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Dramatists_and_playwrights_from_the_Russian_Empire | L*D0*ZD*ZDL*D0������� | 2022-10-03 06:49:25 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Epistemologists | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Exophonic_writers | L*D0*ZD*ZDL*D0������� | 2017-10-17 08:46:03 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Female_critics_of_feminism | L*D0*ZD*ZDL*D0������� | 2017-12-25 23:29:09 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Good_articles | L*D0*ZD*ZDL*D0������� | 2020-02-13 07:05:37 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_American_activists | L*D0*ZD*ZDL*D0������� | 2022-07-30 18:00:25 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_American_atheists | L*D0*ZD*ZDL*D0������� | 2022-02-19 10:16:22 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_American_dramatists_and_playwrights | L*D0*ZD*ZDL*D0������� | 2015-11-20 22:18:35 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_American_novelists | L*D0*ZD*ZDL*D0������� | 2015-11-20 22:18:35 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_anti-communists | L*D0*ZD*ZDL*D0������� | 2019-04-16 23:22:59 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_anti-fascists | L*D0*ZD*ZDL*D0������� | 2019-02-12 01:52:28 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_philosophers | L*D0*ZD*ZDL*D0������� | 2015-11-20 22:18:35 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jewish_women_writers | L*D0*ZD*ZDL*D0������� | 2015-11-20 22:18:35 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Jews_from_the_Russian_Empire | L*D0*ZD*ZDL*D0������� | 2022-09-26 11:11:14 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Metaphysicians | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Novelists_from_New_York_(state) | L*D0*ZD*ZDL*D0������� | 2018-02-10 17:22:22 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Objectivists | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | People_with_acquired_American_citizenship | L*D0*ZD*ZDL*D0������� | 2016-08-12 20:05:20 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Philosophers_from_New_York_(state) | L*D0*ZD*ZDL*D0������� | 2017-08-01 09:48:22 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Political_philosophers | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Pseudonymous_women_writers | L*D0*ZD*ZDL*D0������� | 2018-05-28 13:27:19 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Saint_Petersburg_State_University_alumni | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Screenwriters_from_New_York_(state) | L*D0*ZD*ZDL*D0������� | 2018-10-28 01:25:42 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Short_description_matches_Wikidata | L*D0*ZD*ZDL*D0������� | 2022-09-16 16:34:28 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Social_critics | L*D0*ZD*ZDL*D0������� | 2022-02-16 06:12:17 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Soviet_emigrants_to_the_United_States | L*D0*ZD*ZDL*D0������� | 2013-08-06 03:33:42 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Use_mdy_dates_from_July_2022 | L*D0*ZD*ZDL*D0������� | 2022-07-10 12:25:42 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Women_science_fiction_and_fantasy_writers | L*D0*ZD*ZDL*D0������� | 2012-11-12 04:28:54 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Writers_from_New_York_City | L*D0*ZD*ZDL*D0������� | 2013-04-29 07:43:45 | Rand, Ayn | uca-default-u-kn | page |
339.0 | Writers_from_Saint_Petersburg | L*D0*ZD*ZDL*D0������� | 2014-04-03 21:22:10 | Rand, Ayn | uca-default-u-kn | page |
340.0 | 1947_births | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | 20th-century_French_mathematicians | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | 21st-century_French_mathematicians | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | All_articles_to_be_expanded | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_needing_translation_from_French_Wikipedia | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_to_be_expanded_from_September_2020 | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_using_small_message_boxes | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_BIBSYS_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_BNF_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_DBLP_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-08-03 13:01:37 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_GND_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_Google_Scholar_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-07-28 17:15:49 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_ISNI_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_J9U_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-07-27 01:53:15 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_LCCN_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_LNB_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_MATHSN_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_MGP_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_NDL_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_NKC_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_NTA_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_PLWABN_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_SNAC-ID_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_SUDOC_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_Trove_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_VIAF_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_WORLDCATID_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_ZBMATH_identifiers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_hCards | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Articles_with_short_description | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Clay_Research_Award_recipients | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Collège_de_France_faculty | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Differential_geometers | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Fields_Medalists | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Foreign_Members_of_the_Russian_Academy_of_Sciences | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Foreign_associates_of_the_National_Academy_of_Sciences | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Institute_for_Advanced_Study_visiting_scholars | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Living_people | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Mathematical_analysts | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Members_of_the_French_Academy_of_Sciences | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Members_of_the_Norwegian_Academy_of_Science_and_Letters | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Members_of_the_Royal_Danish_Academy_of_Sciences_and_Letters | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Short_description_is_different_from_Wikidata | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Use_dmy_dates_from_April_2020 | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | Vanderbilt_University_faculty | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
340.0 | École_Normale_Supérieure_alumni | .FDD2N*@*:D*@*:D.FDD2Nܿ����� | 2022-03-18 08:23:30 | Connes, Alain | uca-default-u-kn | page |
344.0 | 1885_births | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | 1981_deaths | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | 20th-century_American_male_writers | 0V*D*@@*D*@@*D0V*D\Z������� | 2020-05-18 03:44:47 | Dwan, Allan | uca-default-u-kn | page |
344.0 | 20th-century_American_screenwriters | 0V*D*@@*D*@@*D0V*D\Z������� | 2020-08-04 01:18:57 | Dwan, Allan | uca-default-u-kn | page |
344.0 | All_Wikipedia_articles_written_in_American_English | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-06-11 18:37:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | American_film_directors | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | American_film_producers | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | American_male_screenwriters | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_BNE_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_BNF_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_DTBIO_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2022-02-21 19:07:44 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_FAST_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_GND_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_ISNI_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_J9U_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2022-07-30 22:07:24 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_LCCN_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_NKC_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_NLK_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_NTA_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_PLWABN_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_SNAC-ID_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_SUDOC_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_Trove_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_VIAF_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_WORLDCATID_identifiers | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-08-29 20:33:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_hCards | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Articles_with_short_description | 0V*D*@@*D*@@*D0V*D\Z������� | 2019-09-24 15:33:22 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Burials_at_San_Fernando_Mission_Cemetery | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Canadian_emigrants_to_the_United_States | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Commons_category_link_is_on_Wikidata | 0V*D*@@*D*@@*D0V*D\Z������� | 2018-11-21 19:19:58 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Film_directors_from_Toronto | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Pages_using_infobox_person_with_multiple_spouses | 0V*D*@@*D*@@*D0V*D\Z������� | 2022-01-20 02:34:26 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Short_description_is_different_from_Wikidata | 0V*D*@@*D*@@*D0V*D\Z������� | 2020-09-27 22:32:44 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Use_American_English_from_June_2021 | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-06-11 18:37:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Use_mdy_dates_from_June_2021 | 0V*D*@@*D*@@*D0V*D\Z������� | 2021-06-11 18:37:32 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Western_(genre)_film_directors | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
344.0 | Writers_from_Toronto | 0V*D*@@*D*@@*D0V*D\Z������� | 2015-09-27 23:05:33 | Dwan, Allan | uca-default-u-kn | page |
347.0 | Redirects_with_old_history | *@62L:*\n�H2FH@2ܿ� | 2007-12-22 10:56:42 | null | uca-default-u-kn | page |
347.0 | Unprintworthy_redirects | *@62L:*\n�H2FH@2ܿ� | 2007-12-22 10:56:42 | null | uca-default-u-kn | page |
353.0 | Redirects_with_old_history | *@62L:*\n�PL*DND*P:FD*@:NNR2N ܹܿ� | 2007-12-22 10:57:36 | null | uca-default-u-kn | page |
353.0 | Unprintworthy_redirects | *@62L:*\n�PL*DND*P:FD*@:NNR2N ܹܿ� | 2007-12-22 10:57:36 | null | uca-default-u-kn | page |
354.0 | All_Wikipedia_C-Class_vital_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | All_Wikipedia_level-3_vital_articles | *@62L:*�\n | 2021-07-15 08:28:56 | null | uca-default-u-kn | page |
354.0 | All_Wikipedia_vital_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | All_Wikipedia_vital_articles_in_Geography | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | B-Class_Africa_articles | *@62L:*�\n | 2021-03-06 02:29:31 | null | uca-default-u-kn | page |
354.0 | B-Class_Algeria_articles | *@62L:*�\n | 2021-03-06 02:29:31 | null | uca-default-u-kn | page |
354.0 | B-Class_Arab_world_articles | *@62L:*�\n | 2021-03-06 02:29:31 | null | uca-default-u-kn | page |
354.0 | B-Class_country_articles | *@62L:*�\n | 2021-06-29 14:51:56 | null | uca-default-u-kn | page |
354.0 | C-Class_Version_1.0_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Delisted_good_articles | *@62L:*�\n | 2020-06-21 00:30:34 | null | uca-default-u-kn | page |
354.0 | Former_good_article_nominees | *@62L:**@62L:*ܿ�\n | 2020-06-21 00:30:34 | Algeria | uca-default-u-kn | page |
354.0 | Geography_Version_1.0_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Mid-importance_Version_1.0_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Selected_anniversaries_articles | *@62L:*�\n | 2021-06-29 14:51:56 | null | uca-default-u-kn | page |
354.0 | Top-importance_Africa_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Top-importance_Algeria_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Top-importance_Arab_world_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_accessibility | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_coverage_and_accuracy | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_grammar | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_referencing_and_citation | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_structure | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_needing_attention_to_supporting_materials | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Version_1.0_articles_with_incomplete_B-Class_checklists | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | WikiProject_Africa_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | WikiProject_Algeria_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | WikiProject_Arab_world_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | WikiProject_Countries_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Wikipedia_C-Class_level-3_vital_articles | *@62L:*�\n | 2021-07-15 08:28:56 | null | uca-default-u-kn | page |
354.0 | Wikipedia_C-Class_vital_articles_in_Geography | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Wikipedia_CD_Selection | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Wikipedia_Version_1.0_articles | *@62L:*�\n | 2019-08-30 14:56:56 | null | uca-default-u-kn | page |
354.0 | Wikipedia_level-3_vital_articles_in_Geography | *@62L:*�\n | 2021-07-15 08:28:56 | null | uca-default-u-kn | page |
358.0 | 1962_establishments_in_Africa | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | 1962_establishments_in_Algeria | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Algeria | *@62L:*\r��\n | 2022-08-25 13:14:54 | uca-default-u-kn | page | |
358.0 | All_articles_lacking_reliable_references | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | All_articles_with_unsourced_statements | *@62L:*�\n | 2020-09-16 13:13:58 | null | uca-default-u-kn | page |
358.0 | Arab_republics | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | Arabic-speaking_countries_and_territories | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | Articles_containing_Algerian_Arabic-language_text | *@62L:*�\n | 2022-10-20 21:01:42 | null | uca-default-u-kn | page |
358.0 | Articles_containing_Arabic-language_text | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | Articles_containing_French-language_text | *@62L:*�\n | 2020-12-15 04:28:45 | null | uca-default-u-kn | page |
358.0 | Articles_containing_explicitly_cited_English-language_text | *@62L:*�\n | 2022-10-05 16:01:27 | null | uca-default-u-kn | page |
358.0 | Articles_lacking_reliable_references_from_February_2013 | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | Articles_lacking_reliable_references_from_June_2021 | *@62L:*�\n | 2022-09-30 12:15:24 | null | uca-default-u-kn | page |
358.0 | Articles_lacking_reliable_references_from_November_2018 | *@62L:*�\n | 2018-11-03 11:34:40 | null | uca-default-u-kn | page |
358.0 | Articles_with_Arabic-language_sources_(ar) | *@62L:*�\n | 2022-01-28 09:10:56 | null | uca-default-u-kn | page |
358.0 | Articles_with_BIBSYS_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_BNE_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_BNF_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_Curlie_links | *@62L:*�\n | 2022-01-28 09:10:56 | null | uca-default-u-kn | page |
358.0 | Articles_with_EMU_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_FAST_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_French-language_sources_(fr) | *@62L:*�\n | 2022-01-28 09:10:56 | null | uca-default-u-kn | page |
358.0 | Articles_with_GND_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_HDS_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_ISNI_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_J9U_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_LCCN_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_MusicBrainz_area_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_NARA_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_NDL_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_NKC_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_NLA_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_RERO_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_SUDOC_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_TDVİA_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_Trove_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_VIAF_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_VcBA_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_WORLDCATID_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_excerpts | *@62L:*�\n | 2020-05-17 16:28:35 | null | uca-default-u-kn | page |
358.0 | Articles_with_hAudio_microformats | *@62L:*�\n | 2022-10-20 21:01:42 | null | uca-default-u-kn | page |
358.0 | Articles_with_multiple_identifiers | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_short_description | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Articles_with_text_in_Berber_languages | *@62L:*�\n | 2022-10-20 21:01:42 | null | uca-default-u-kn | page |
358.0 | Articles_with_unsourced_statements_from_February_2021 | *@62L:*�\n | 2021-10-11 17:06:21 | null | uca-default-u-kn | page |
358.0 | Articles_with_unsourced_statements_from_July_2022 | *@62L:*�\n | 2022-07-08 19:31:42 | null | uca-default-u-kn | page |
358.0 | Articles_with_unsourced_statements_from_March_2021 | *@62L:*�\n | 2021-08-09 14:23:12 | null | uca-default-u-kn | page |
358.0 | Berber-speaking_countries_and_territories | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
358.0 | CS1:_Julian–Gregorian_uncertainty | *@62L:*�\n | 2022-08-01 14:40:10 | null | uca-default-u-kn | page |
358.0 | CS1_Arabic-language_sources_(ar) | *@62L:*�\n | 2022-08-01 14:40:10 | null | uca-default-u-kn | page |
358.0 | CS1_French-language_sources_(fr) | *@62L:*�\n | 2022-08-01 14:40:10 | null | uca-default-u-kn | page |
358.0 | CS1_Spanish-language_sources_(es) | *@62L:*�\n | 2022-08-01 14:40:10 | null | uca-default-u-kn | page |
358.0 | Coordinates_on_Wikidata | *@62L:*�\n | 2022-08-25 13:14:54 | null | uca-default-u-kn | page |
358.0 | Countries_in_Africa | *@62L:*�\n | 2022-05-23 01:13:11 | null | uca-default-u-kn | page |
358.0 | French-speaking_countries_and_territories | *@62L:*�\n | 2018-05-01 19:36:47 | null | uca-default-u-kn | page |
The cl_sortkey
column is supposed to look like that - it is somehow used in sorting the categories a page is in, so it is just a string (or prefix of a string, usually) that will sort in the same order as the actual name of the category. So it is not a column we need to make use of.
Let us now check if we got any corrupt records:
readFromCSV.createOrReplaceTempView("categorylinks")
SELECT * FROM categorylinks WHERE _corrupt_record IS NOT NULL
No corrupt records! Excellent.
Finally, let us save this data to the Delta Lake, after having removed columns we don't care about.
SELECT cl_from, cl_to, cl_type FROM categorylinks WHERE (cl_from IS NOT NULL) AND (cl_to IS NOT NULL) AND (cl_type IS NOT NULL) AND (_corrupt_record IS NULL)
cl_from | cl_to | cl_type |
---|---|---|
6782105.0 | Mid-importance_U.S._road_transport_articles | page |
6782105.0 | Oklahoma_articles_without_listas_parameter | page |
6782105.0 | Oklahoma_road_transport_articles | page |
6782105.0 | Wikipedia_CD_Selection-GAs | page |
6782105.0 | Wikipedia_good_articles | page |
6782106.0 | Comics_articles_needing_attention_to_coverage_and_accuracy | page |
6782106.0 | Comics_articles_needing_attention_to_grammar | page |
6782106.0 | Comics_articles_needing_attention_to_referencing_and_citation | page |
6782106.0 | Comics_articles_needing_attention_to_structure | page |
6782106.0 | Comics_articles_needing_attention_to_supporting_materials | page |
6782106.0 | Comics_articles_with_incomplete_B-Class_checklists | page |
6782106.0 | Low-importance_Comics_articles | page |
6782106.0 | Start-Class_Comics_articles | page |
6782106.0 | Start-Class_Comics_articles_of_Low-importance | page |
6782106.0 | WikiProject_Comics_articles | page |
6782109.0 | Redirects_from_other_capitalisations | page |
6782109.0 | Unprintworthy_redirects | page |
6782117.0 | All_Wikipedia_articles_written_in_Indian_English | page |
6782117.0 | All_articles_needing_additional_references | page |
6782117.0 | All_set_index_articles | page |
6782117.0 | Articles_needing_additional_references_from_July_2014 | page |
6782117.0 | Articles_with_short_description | page |
6782117.0 | Bahun | page |
6782117.0 | Ethnic_groups_in_Nepal | page |
6782117.0 | Indian_surnames | page |
6782117.0 | Khas_surnames | page |
6782117.0 | Nepali-language_surnames | page |
6782117.0 | Occupational_surnames | page |
6782117.0 | Short_description_is_different_from_Wikidata | page |
6782117.0 | Surnames | page |
6782117.0 | Use_Indian_English_from_October_2019 | page |
6782121.0 | Film_articles_with_one_associated_task_force | page |
6782121.0 | Filmmaking_task_force_articles | page |
6782121.0 | Stub-Class_film_articles | page |
6782121.0 | Stub-Class_filmmaking_articles | page |
6782121.0 | WikiProject_Film_articles | page |
6782123.0 | All_article_disambiguation_pages | page |
6782123.0 | All_disambiguation_pages | page |
6782123.0 | Disambiguation_pages | page |
6782123.0 | Disambiguation_pages_with_short_descriptions | page |
6782123.0 | Short_description_is_different_from_Wikidata | page |
6782126.0 | Commons_category_link_is_on_Wikidata | page |
6782126.0 | County_routes_in_Suffolk_County,_New_York | page |
6782128.0 | Redirects_connected_to_a_Wikidata_item | page |
6782129.0 | All_articles_with_dead_external_links | page |
6782129.0 | Articles_with_ISNI_identifiers | page |
6782129.0 | Articles_with_dead_external_links_from_July_2021 | page |
6782129.0 | Articles_with_short_description | page |
6782129.0 | Coordinates_on_Wikidata | page |
6782129.0 | Foundation_schools_in_Hampshire | page |
6782129.0 | Infobox_mapframe_without_OSM_relation_ID_on_Wikidata | page |
6782129.0 | Pages_using_the_Kartographer_extension | page |
6782129.0 | Secondary_schools_in_Hampshire | page |
6782129.0 | Short_description_is_different_from_Wikidata | page |
6782129.0 | Use_dmy_dates_from_January_2020 | page |
6782129.0 | Webarchive_template_wayback_links | page |
6782129.0 | Whitchurch,_Hampshire | page |
6782130.0 | Articles_with_unassessed_etymologies | page |
6782130.0 | Articles_with_unknown-importance_etymologies | page |
6782130.0 | Etymology_Task_Force_etymologies | page |
6782130.0 | Low-importance_English_Language_articles | page |
6782130.0 | Low-importance_Linguistics_articles | page |
6782130.0 | Start-Class_English_Language_articles | page |
6782130.0 | Start-Class_Linguistics_articles | page |
6782130.0 | WikiProject_English_Language_articles | page |
6782130.0 | WikiProject_Linguistics_articles | page |
6782131.0 | List-Class_Comics_articles | page |
6782131.0 | List-Class_Comics_articles_of_Low-importance | page |
6782131.0 | List-Class_List_articles | page |
6782131.0 | List-Class_Years_articles | page |
6782131.0 | List-Class_Years_articles_of_Low-importance | page |
6782131.0 | Low-importance_Comics_articles | page |
6782131.0 | Low-importance_List_articles | page |
6782131.0 | Low-importance_Years_articles | page |
6782131.0 | WikiProject_Comics_articles | page |
6782131.0 | WikiProject_Lists_articles | page |
6782133.0 | All_article_disambiguation_pages | page |
6782133.0 | All_disambiguation_pages | page |
6782133.0 | Disambiguation_pages | page |
6782133.0 | Disambiguation_pages_with_short_descriptions | page |
6782133.0 | Short_description_is_different_from_Wikidata | page |
6782134.0 | All_WikiProject_Canada_pages | page |
6782134.0 | NA-importance_Canada-related_articles | page |
6782134.0 | NA-importance_Ontario_articles | page |
6782134.0 | Redirect-Class_Canada-related_articles | page |
6782134.0 | Redirect-Class_Ontario_articles | page |
6782144.0 | All_Wikipedia_B-Class_vital_articles | page |
6782144.0 | All_Wikipedia_level-4_vital_articles | page |
6782144.0 | All_Wikipedia_vital_articles | page |
6782144.0 | All_Wikipedia_vital_articles_in_Science | page |
6782144.0 | B-Class_Geology_articles | page |
6782144.0 | High-importance_B-Class_Geology_articles | page |
6782144.0 | High-importance_Geology_articles | page |
6782144.0 | WikiProject_Geology_articles | page |
6782144.0 | Wikipedia_B-Class_level-4_vital_articles | page |
6782144.0 | Wikipedia_B-Class_vital_articles_in_Science | page |
6782144.0 | Wikipedia_level-4_vital_articles_in_Science | page |
6782157.0 | All_non-free_logos | file |
6782157.0 | All_non-free_media | file |
6782157.0 | Completed_non-free_use_rationale_logo_transclusions | file |
6782157.0 | Files_with_no_machine-readable_author | file |
6782157.0 | Noindexed_pages | file |
6782157.0 | Software_logos | file |
6782157.0 | Wikipedia_non-free_files_with_NFUR_stated | file |
6782157.0 | Wikipedia_non-free_files_with_valid_backlink | file |
6782160.0 | 2000s_alternative_metal_album_stubs | page |
6782160.0 | 2001_debut_albums | page |
6782160.0 | Album_articles_lacking_alt_text_for_covers | page |
6782160.0 | All_articles_needing_additional_references | page |
6782160.0 | All_stub_articles | page |
6782160.0 | Articles_needing_additional_references_from_September_2016 | page |
6782160.0 | Articles_with_MusicBrainz_release_group_identifiers | page |
6782160.0 | Articles_with_hAudio_microformats | page |
6782160.0 | Articles_with_short_description | page |
6782160.0 | Short_description_is_different_from_Wikidata | page |
6782160.0 | Systematic_(band)_albums | page |
6782168.0 | All_articles_needing_additional_references | page |
6782168.0 | All_stub_articles | page |
6782168.0 | Articles_needing_additional_references_from_April_2022 | page |
6782168.0 | Articles_with_short_description | page |
6782168.0 | Communities_in_Halifax,_Nova_Scotia | page |
6782168.0 | Coordinates_on_Wikidata | page |
6782168.0 | Halifax_County,_Nova_Scotia_geography_stubs | page |
6782168.0 | Short_description_is_different_from_Wikidata | page |
6782169.0 | All_non-free_logos | file |
6782169.0 | All_non-free_media | file |
6782169.0 | German_football_logos | file |
6782169.0 | Noindexed_pages | file |
6782169.0 | Wikipedia_non-free_files_with_NFUR_stated | file |
6782169.0 | Wikipedia_non-free_files_with_valid_backlink | file |
6782171.0 | Albums_by_artist | subcat |
6782171.0 | Drum_and_bass_albums | subcat |
6782171.0 | Electronic_dance_music_albums_by_Japanese_artists | subcat |
6782171.0 | House_music_albums_by_Japanese_artists | subcat |
6782171.0 | Jazz_albums_by_Japanese_artists | subcat |
6782171.0 | Set_categories | subcat |
6782171.0 | Shibuya-kei_albums | subcat |
6782171.0 | Synth-pop_albums_by_Japanese_artists | subcat |
6782171.0 | Trip_hop_albums_by_Japanese_artists | subcat |
6782176.0 | 1887_establishments_in_Ireland | page |
6782176.0 | All_Wikipedia_articles_written_in_Hiberno-English | page |
6782176.0 | All_articles_lacking_reliable_references | page |
6782176.0 | All_articles_with_a_promotional_tone | page |
6782176.0 | Articles_lacking_reliable_references_from_March_2008 | page |
6782176.0 | Articles_with_a_promotional_tone_from_February_2017 | page |
6782176.0 | Articles_with_multiple_maintenance_issues | page |
6782176.0 | Coordinates_not_on_Wikidata | page |
6782176.0 | Gaelic_Athletic_Association_clubs_established_in_1887 | page |
6782176.0 | Gaelic_football_clubs_in_County_Clare | page |
6782176.0 | Gaelic_games_clubs_in_County_Clare | page |
6782176.0 | Hurling_clubs_in_County_Clare | page |
6782176.0 | Pages_using_the_Kartographer_extension | page |
6782176.0 | Use_Hiberno-English_from_August_2020 | page |
6782176.0 | Use_dmy_dates_from_August_2020 | page |
6782178.0 | 1994_debut_albums | page |
6782178.0 | Album_articles_lacking_alt_text_for_covers | page |
6782178.0 | Albums_recorded_at_Chung_King_Studios | page |
6782178.0 | Articles_with_MusicBrainz_release_group_identifiers | page |
6782178.0 | Articles_with_hAudio_microformats | page |
6782178.0 | Articles_with_short_description | page |
6782178.0 | CS1_Japanese-language_sources_(ja) | page |
6782178.0 | Elektra_Records_albums | page |
6782178.0 | Short_description_is_different_from_Wikidata | page |
6782178.0 | Towa_Tei_albums | page |
6782178.0 | Track_listings_that_use_the_collapsed_parameter | page |
6782179.0 | Album_covers | file |
6782179.0 | All_non-free_media | file |
6782179.0 | Arcade_Fire_album_covers | file |
6782179.0 | Files_with_no_machine-readable_author | file |
6782179.0 | Noindexed_pages | file |
6782179.0 | Wikipedia_non-free_files_with_NFUR_stated | file |
6782179.0 | Wikipedia_non-free_files_with_valid_backlink | file |
6782182.0 | Communities_in_Russell,_Ontario | page |
6782192.0 | All_article_disambiguation_pages | page |
6782192.0 | All_disambiguation_pages | page |
6782192.0 | Disambiguation_pages | page |
6782192.0 | Disambiguation_pages_with_short_descriptions | page |
6782192.0 | Short_description_is_different_from_Wikidata | page |
6782193.0 | 1981_British_television_episodes | page |
6782193.0 | All_articles_with_unsourced_statements | page |
6782193.0 | Articles_with_short_description | page |
6782193.0 | Articles_with_unsourced_statements_from_August_2019 | page |
6782193.0 | BBC_episode_ID_same_as_Wikidata | page |
6782193.0 | Only_Fools_and_Horses_(series_1)_episodes | page |
6782193.0 | Pages_using_infobox_television_episode_with_image-related_values_without_an_image | page |
6782193.0 | Short_description_is_different_from_Wikidata | page |
6782193.0 | Television_episode_articles_with_short_description_and_disambiguated_page_names | page |
6782193.0 | Television_episode_articles_with_short_description_for_single_episodes | page |
6782193.0 | Use_dmy_dates_from_November_2020 | page |
6782199.0 | Biography_articles_of_living_people | page |
6782199.0 | Low-importance_Australia_articles | page |
6782199.0 | Low-importance_Australian_music_articles | page |
6782199.0 | Low-importance_biography_(musicians)_articles | page |
6782199.0 | Musicians_work_group_articles | page |
6782199.0 | Noindexed_pages | page |
6782199.0 | Stub-Class_Australia_articles | page |
6782199.0 | Stub-Class_Australian_music_articles | page |
6782199.0 | Stub-Class_biography_(musicians)_articles | page |
6782199.0 | Stub-Class_biography_articles | page |
6782199.0 | Unassessed_electronic_music_articles | page |
6782199.0 | Unknown-importance_electronic_music_articles | page |
6782199.0 | WikiProject_Australia_articles | page |
6782199.0 | WikiProject_Australian_music_articles | page |
6782199.0 | WikiProject_Biography_articles | page |
6782199.0 | WikiProject_Electronic_music_articles | page |
6782210.0 | Communities_in_Russell,_Ontario | page |
6782212.0 | American_cinema_task_force_articles | page |
6782212.0 | Film_articles_with_one_associated_task_force | page |
6782212.0 | Start-Class_American_cinema_articles | page |
6782212.0 | Start-Class_film_articles | page |
6782212.0 | Start-Class_television_articles | page |
6782212.0 | Unknown-importance_television_articles | page |
6782212.0 | WikiProject_Film_articles | page |
6782212.0 | WikiProject_Television_articles | page |
6782220.0 | 1888_births | page |
6782220.0 | 1970_deaths | page |
6782220.0 | 20th-century_Scottish_businesspeople | page |
6782220.0 | Anglo-Persian_Oil_Company | page |
6782220.0 | British_businesspeople_in_the_oil_industry | page |
6782220.0 | Burials_at_Putney_Vale_Cemetery | page |
6782220.0 | CS1:_Julian–Gregorian_uncertainty | page |
6782220.0 | Chairmen_of_BP | page |
6782220.0 | Commanders_of_the_Order_of_the_British_Empire | page |
6782220.0 | Hereditary_barons_created_by_Elizabeth_II | page |
6782220.0 | Pages_containing_London_Gazette_template_with_parameter_supp_set_to_y | page |
6782220.0 | Use_dmy_dates_from_January_2012 | page |
6782220.0 | Wikipedia_articles_needing_page_number_citations_from_February_2013 | page |
6782221.0 | Biography_articles_of_living_people | page |
6782221.0 | Low-importance_Australia_articles | page |
6782221.0 | Low-importance_Australian_music_articles | page |
6782221.0 | Musicians_work_group_articles | page |
6782221.0 | Noindexed_pages | page |
6782221.0 | Start-Class_Australia_articles | page |
6782221.0 | Start-Class_Australian_music_articles | page |
6782221.0 | Start-Class_biography_(musicians)_articles | page |
6782221.0 | Start-Class_biography_articles | page |
6782221.0 | Unknown-importance_biography_(musicians)_articles | page |
6782221.0 | WikiProject_Australia_articles | page |
6782221.0 | WikiProject_Australian_music_articles | page |
6782221.0 | WikiProject_Biography_articles | page |
6782227.0 | Redirects_from_other_capitalisations | page |
6782227.0 | Unprintworthy_redirects | page |
6782229.0 | AC_with_0_elements | page |
6782229.0 | Articles_with_short_description | page |
6782229.0 | Coordinates_on_Wikidata | page |
6782229.0 | Infobox_mapframe_without_OSM_relation_ID_on_Wikidata | page |
6782229.0 | Pages_using_the_Kartographer_extension | page |
6782229.0 | Public_high_schools_in_New_York_(state) | page |
6782229.0 | Schools_in_Onondaga_County,_New_York | page |
6782229.0 | Short_description_is_different_from_Wikidata | page |
6782229.0 | Syracuse_City_School_District | page |
6782238.0 | 1940_births | page |
6782238.0 | 2011_deaths | page |
6782238.0 | All_articles_covered_by_WikiProject_Wikify | page |
6782238.0 | All_articles_with_bare_URLs_for_citations | page |
6782238.0 | American_electrical_engineers | page |
6782238.0 | American_technology_writers | page |
6782238.0 | Analog_electronics_engineers | page |
6782238.0 | Articles_covered_by_WikiProject_Wikify_from_August_2022 | page |
6782238.0 | Articles_needing_cleanup_from_August_2022 | page |
6782238.0 | Articles_with_BNF_identifiers | page |
6782238.0 | Articles_with_ISNI_identifiers | page |
6782238.0 | Articles_with_J9U_identifiers | page |
6782238.0 | Articles_with_LCCN_identifiers | page |
6782238.0 | Articles_with_NKC_identifiers | page |
6782238.0 | Articles_with_PLWABN_identifiers | page |
6782238.0 | Articles_with_SUDOC_identifiers | page |
6782238.0 | Articles_with_Trove_identifiers | page |
6782238.0 | Articles_with_VIAF_identifiers | page |
6782238.0 | Articles_with_WORLDCATID_identifiers | page |
6782238.0 | Articles_with_bare_URLs_for_citations_from_August_2022 | page |
6782238.0 | Articles_with_hCards | page |
6782238.0 | CS1_errors:_missing_periodical | page |
6782238.0 | CS1_maint:_bot:_original_URL_status_unknown | page |
6782238.0 | Engineers_from_Connecticut | page |
6782238.0 | Integrated_circuits | page |
6782238.0 | MIT_School_of_Engineering_alumni | page |
6782238.0 | Northfield_Mount_Hermon_School_alumni | page |
6782238.0 | People_from_Rockville,_Connecticut | page |
6782238.0 | Road_incident_deaths_in_California | page |
6782249.0 | All_free_media | file |
6782249.0 | Copy_to_Wikimedia_Commons_(bot-assessed) | file |
6782249.0 | Creative_Commons_Attribution_2.5_files | file |
6782249.0 | Files_with_no_machine-readable_author | file |
6782249.0 | Files_with_no_machine-readable_description | file |
6782249.0 | Files_with_no_machine-readable_source | file |
6782249.0 | Hidden_templates_using_styles | file |
6782249.0 | Wikipedia_orphaned_files | file |
6782253.0 | 1848_births | page |
6782253.0 | 1899_deaths | page |
6782253.0 | Articles_containing_Japanese-language_text | page |
6782253.0 | Articles_with_FAST_identifiers | page |
6782253.0 | Articles_with_ISNI_identifiers | page |
6782253.0 | Articles_with_LCCN_identifiers | page |
6782253.0 | Articles_with_NDL_identifiers | page |
6782253.0 | Articles_with_VIAF_identifiers | page |
6782253.0 | Articles_with_WORLDCATID_identifiers | page |
6782253.0 | Articles_with_short_description | page |
6782253.0 | Japanese_generals | page |
6782253.0 | Japanese_military_personnel_of_the_First_Sino-Japanese_War | page |
6782253.0 | Kazoku | page |
6782253.0 | Military_strategists | page |
6782253.0 | People_from_Satsuma_Domain | page |
6782253.0 | People_of_Meiji-period_Japan | page |
6782253.0 | People_of_the_Boshin_War | page |
6782253.0 | Shimazu_retainers | page |
6782253.0 | Short_description_is_different_from_Wikidata | page |
6782257.0 | Redirects_from_other_capitalisations | page |
6782257.0 | Unprintworthy_redirects | page |
6782260.0 | Redirects_from_misspellings | page |
6782260.0 | Unprintworthy_redirects | page |
6782263.0 | Asian_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782263.0 | Asian_military_history_task_force_articles | page |
6782263.0 | C-Class_Asian_military_history_articles | page |
6782263.0 | C-Class_Japan-related_articles | page |
6782263.0 | C-Class_Japanese_military_history_articles | page |
6782263.0 | C-Class_biography_(military)_articles | page |
6782263.0 | C-Class_biography_articles | page |
6782263.0 | C-Class_military_history_articles | page |
6782263.0 | Japanese_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782263.0 | Japanese_military_history_task_force_articles | page |
6782263.0 | Low-importance_Japan-related_articles | page |
6782263.0 | Low-importance_biography_(military)_articles | page |
6782263.0 | Military_biography_articles_needing_attention_to_referencing_and_citation | page |
6782263.0 | Military_biography_work_group_articles | page |
6782263.0 | Military_history_articles_needing_attention_only_to_referencing_and_citation | page |
6782263.0 | Military_history_articles_needing_attention_to_referencing_and_citation | page |
6782263.0 | WikiProject_Biography_articles | page |
6782263.0 | WikiProject_Japan_articles | page |
6782265.0 | Articles_containing_Russian-language_text | page |
6782265.0 | Articles_with_Russian-language_sources_(ru) | page |
6782265.0 | Articles_with_short_description | page |
6782265.0 | Coordinates_on_Wikidata | page |
6782265.0 | Railway_stations_in_Russia_opened_in_2006 | page |
6782265.0 | Saint_Petersburg_Metro_stations | page |
6782265.0 | Short_description_is_different_from_Wikidata | page |
6782271.0 | All_free_media | file |
6782271.0 | Copy_to_Wikimedia_Commons_(bot-assessed) | file |
6782271.0 | Creative_Commons_Attribution-ShareAlike_3.0_files | file |
6782271.0 | GFDL_files_with_disclaimers | file |
6782271.0 | Hidden_templates_using_styles | file |
6782271.0 | Self-published_work | file |
6782271.0 | Wikipedia_files_tagged_as_own_work | file |
6782271.0 | Wikipedia_license_migration_completed | file |
6782282.0 | All_fictional_character_redirects | page |
6782282.0 | Marvel_Comics_character_redirects_to_lists | page |
6782291.0 | Disambiguation_categories | subcat |
6782292.0 | Redirects_from_misspellings | page |
6782292.0 | Unprintworthy_redirects | page |
6782296.0 | All_article_disambiguation_pages | page |
6782296.0 | All_disambiguation_pages | page |
6782296.0 | Disambiguation_pages | page |
6782296.0 | Disambiguation_pages_with_short_descriptions | page |
6782296.0 | Short_description_is_different_from_Wikidata | page |
6782300.0 | All_articles_lacking_sources | page |
6782300.0 | All_stub_articles | page |
6782300.0 | Articles_lacking_sources_from_April_2021 | page |
6782300.0 | Articles_with_short_description | page |
6782300.0 | Coordinates_on_Wikidata | page |
6782300.0 | Democratic_Republic_of_the_Congo_geography_stubs | page |
6782300.0 | Populated_places_in_Kongo_Central | page |
6782300.0 | Short_description_matches_Wikidata | page |
6782305.0 | Low-importance_chess_articles | page |
6782305.0 | San_Francisco_Bay_Area_task_force_articles | page |
6782305.0 | Stub-Class_chess_articles | page |
6782305.0 | Stub-Class_chess_articles_of_Low-importance | page |
6782305.0 | Unassessed_California_articles | page |
6782305.0 | Unassessed_San_Francisco_Bay_Area_articles | page |
6782305.0 | Unknown-importance_California_articles | page |
6782305.0 | Unknown-importance_San_Francisco_Bay_Area_articles | page |
6782305.0 | WikiProject_California_articles | page |
6782305.0 | WikiProject_Chess_articles | page |
6782306.0 | 1917_births | page |
6782306.0 | 2001_deaths | page |
6782306.0 | All_stub_articles | page |
6782306.0 | Articles_with_short_description | page |
6782306.0 | Foreign_ministers_of_Nigeria | page |
6782306.0 | Nigerian_politician_stubs | page |
6782306.0 | Short_description_matches_Wikidata | page |
6782311.0 | Articles_created_or_improved_during_WikiProject_United_States'_50,000_Challenge | page |
6782311.0 | Eastern_Washington_task_force_articles | page |
6782311.0 | Engineering_and_technology_good_articles | page |
6782311.0 | GA-Class_Eastern_Washington_task_force_articles | page |
6782311.0 | GA-Class_Featured_topics_articles | page |
6782311.0 | GA-Class_Road_transport_articles | page |
6782311.0 | GA-Class_U.S._road_transport_articles | page |
6782311.0 | GA-Class_United_States_articles | page |
6782311.0 | GA-Class_United_States_articles_of_Low-importance | page |
6782311.0 | GA-Class_Washington_articles | page |
6782311.0 | GA-Class_Washington_road_transport_articles | page |
6782311.0 | Low-importance_Featured_topics_articles | page |
6782311.0 | Low-importance_United_States_articles | page |
6782311.0 | Low-importance_Washington_articles | page |
6782311.0 | Mid-importance_Road_transport_articles | page |
6782311.0 | Mid-importance_U.S._road_transport_articles | page |
6782311.0 | Mid-importance_Washington_road_transport_articles | page |
6782311.0 | Unknown-importance_Eastern_Washington_task_force_articles | page |
6782311.0 | Washington_road_transport_articles | page |
6782311.0 | WikiProject_United_States_articles | page |
6782311.0 | WikiProject_Washington_articles | page |
6782311.0 | Wikipedia_CD_Selection-GAs | page |
6782311.0 | Wikipedia_featured_topics_Washington_State_Route_24_good_content | page |
6782311.0 | Wikipedia_good_articles | page |
6782311.0 | Wikipedia_requested_photographs_of_roads_in_Washington | page |
6782312.0 | All_free_media | file |
6782312.0 | Creative_Commons_Attribution_2.5_files | file |
6782312.0 | Files_with_no_machine-readable_author | file |
6782312.0 | Files_with_no_machine-readable_description | file |
6782312.0 | Files_with_no_machine-readable_source | file |
6782312.0 | Userspace_files | file |
6782312.0 | Wikipedia_files_of_no_use_beyond_Wikipedia | file |
6782316.0 | B-Class_Cleveland_articles | page |
6782316.0 | B-Class_Green_Bay_Packers_articles | page |
6782316.0 | B-Class_National_Football_League_articles | page |
6782316.0 | B-Class_Ohio_articles | page |
6782316.0 | B-Class_Pennsylvania_State_University_articles | page |
6782316.0 | B-Class_United_States_articles | page |
6782316.0 | B-Class_United_States_articles_of_Low-importance | page |
6782316.0 | B-Class_biography_(sports_and_games)_articles | page |
6782316.0 | B-Class_biography_articles | page |
6782316.0 | B-Class_college_basketball_articles | page |
6782316.0 | B-Class_college_football_articles | page |
6782316.0 | Low-importance_Ohio_articles | page |
6782316.0 | Low-importance_United_States_articles | page |
6782316.0 | Low-importance_college_basketball_articles | page |
6782316.0 | Low-importance_college_football_articles | page |
6782316.0 | Mid-importance_Pennsylvania_State_University_articles | page |
6782316.0 | Sports_and_games_work_group_articles | page |
6782316.0 | Top-importance_Green_Bay_Packers_articles | page |
6782316.0 | Top-importance_National_Football_League_articles | page |
6782316.0 | Unknown-importance_Cleveland_articles | page |
6782316.0 | Unknown-importance_biography_(sports_and_games)_articles | page |
6782316.0 | WikiProject_Biography_articles | page |
6782316.0 | WikiProject_Cleveland_articles | page |
6782316.0 | WikiProject_College_basketball_articles | page |
6782316.0 | WikiProject_College_football_articles | page |
6782316.0 | WikiProject_Green_Bay_Packers_articles | page |
6782316.0 | WikiProject_National_Football_League_articles | page |
6782316.0 | WikiProject_Ohio_articles | page |
6782316.0 | WikiProject_Pennsylvania_State_University_articles | page |
6782316.0 | WikiProject_United_States_articles | page |
6782317.0 | Unassessed_Technology_articles | page |
6782317.0 | WikiProject_Technology_articles | page |
6782325.0 | Album_covers | file |
6782325.0 | All_non-free_media | file |
6782325.0 | Arcade_Fire_album_covers | file |
6782325.0 | Files_with_no_machine-readable_author | file |
6782325.0 | Files_with_no_machine-readable_description | file |
6782325.0 | Files_with_no_machine-readable_source | file |
6782325.0 | Noindexed_pages | file |
6782325.0 | Wikipedia_non-free_files_with_NFUR_stated | file |
6782326.0 | Redirects_connected_to_a_Wikidata_item | page |
6782326.0 | Redirects_to_list_entries | page |
6782331.0 | 1827_establishments_in_Scotland | page |
6782331.0 | All_articles_needing_additional_references | page |
6782331.0 | All_articles_with_specifically_marked_weasel-worded_phrases | page |
6782331.0 | All_articles_with_unsourced_statements | page |
6782331.0 | All_articles_with_vague_or_ambiguous_time | page |
6782331.0 | Articles_needing_additional_references_from_March_2013 | page |
6782331.0 | Articles_with_hProducts | page |
6782331.0 | Articles_with_hRecipes | page |
6782331.0 | Articles_with_specifically_marked_weasel-worded_phrases_from_June_2012 | page |
6782331.0 | Articles_with_unsourced_statements_from_February_2014 | page |
6782331.0 | Articles_with_unsourced_statements_from_June_2012 | page |
6782331.0 | Articles_with_unsourced_statements_from_May_2012 | page |
6782331.0 | Blended_Scotch_whisky | page |
6782331.0 | British_companies_established_in_1827 | page |
6782331.0 | Companies_based_in_West_Dunbartonshire | page |
6782331.0 | Dumbarton | page |
6782331.0 | Food_and_drink_companies_established_in_1827 | page |
6782331.0 | Pernod_Ricard_brands | page |
6782331.0 | Scottish_brands | page |
6782331.0 | Use_dmy_dates_from_November_2019 | page |
6782331.0 | Vague_or_ambiguous_time_from_March_2013 | page |
6782336.0 | Articles_with_'species'_microformats | page |
6782336.0 | Articles_with_short_description | page |
6782336.0 | Commons_link_is_on_Wikidata | page |
6782336.0 | Flora_of_Europe | page |
6782336.0 | Flora_of_Greenland | page |
6782336.0 | Flora_of_Russia | page |
6782336.0 | Flora_of_Siberia | page |
6782336.0 | Flora_of_South_Australia | page |
6782336.0 | Flora_of_Turkey | page |
6782336.0 | Flora_of_Ukraine | page |
6782336.0 | Galium | page |
6782336.0 | Plants_described_in_1768 | page |
6782336.0 | Short_description_matches_Wikidata | page |
6782336.0 | Taxa_named_by_Philip_Miller | page |
6782336.0 | Taxonbars_with_25–29_taxon_IDs | page |
6782337.0 | Redirects_from_other_capitalisations | page |
6782337.0 | Unprintworthy_redirects | page |
6782339.0 | User_en-3 | page |
6782339.0 | User_es-2 | page |
6782339.0 | User_fr-N | page |
6782339.0 | User_it-2 | page |
6782339.0 | Wikipedians_in_Belgium | page |
6782340.0 | 1946_births | page |
6782340.0 | 2021_deaths | page |
6782340.0 | 20th-century_Indian_engineers | page |
6782340.0 | Articles_with_NKC_identifiers | page |
6782340.0 | Articles_with_SUDOC_identifiers | page |
6782340.0 | Articles_with_VIAF_identifiers | page |
6782340.0 | Articles_with_WorldCat-VIAF_identifiers | page |
6782340.0 | Articles_with_hCards | page |
6782340.0 | Articles_with_short_description | page |
6782340.0 | Deaths_from_the_COVID-19_pandemic_in_India | page |
6782340.0 | Fellows_of_The_National_Academy_of_Sciences,_India | page |
6782340.0 | Fellows_of_the_Indian_Academy_of_Sciences | page |
6782340.0 | Fellows_of_the_Indian_National_Academy_of_Engineering | page |
6782340.0 | IIT_Kharagpur_alumni | page |
6782340.0 | Indian_metallurgists | page |
6782340.0 | Recipients_of_the_Padma_Shri_in_science_&_engineering | page |
6782340.0 | Recipients_of_the_Shanti_Swarup_Bhatnagar_Award_in_Engineering_Science | page |
6782340.0 | Short_description_is_different_from_Wikidata | page |
6782340.0 | Use_dmy_dates_from_May_2021 | page |
6782341.0 | Low-importance_River_articles | page |
6782341.0 | Stub-Class_Montana_articles | page |
6782341.0 | Stub-Class_River_articles | page |
6782341.0 | Unknown-importance_Montana_articles | page |
6782341.0 | WikiProject_Montana_articles | page |
6782343.0 | Unprintworthy_redirects | page |
6782344.0 | All_WikiProject_Ships_pages | page |
6782344.0 | C-Class_European_military_history_articles | page |
6782344.0 | C-Class_German_military_history_articles | page |
6782344.0 | C-Class_Russian,_Soviet_and_CIS_military_history_articles | page |
6782344.0 | C-Class_Ships_articles | page |
6782344.0 | C-Class_World_War_II_articles | page |
6782344.0 | C-Class_maritime_warfare_articles | page |
6782344.0 | C-Class_military_history_articles | page |
6782344.0 | European_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | European_military_history_task_force_articles | page |
6782344.0 | German_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | German_military_history_task_force_articles | page |
6782344.0 | Maritime_warfare_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | Maritime_warfare_task_force_articles | page |
6782344.0 | Mid-importance_Ukraine_articles | page |
6782344.0 | Military_history_articles_needing_attention_only_to_referencing_and_citation | page |
6782344.0 | Military_history_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | Russian,_Soviet_and_CIS_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | Russian,_Soviet_and_CIS_military_history_task_force_articles | page |
6782344.0 | Selected_anniversaries_(August_2005) | page |
6782344.0 | Selected_anniversaries_(August_2006) | page |
6782344.0 | Selected_anniversaries_(August_2007) | page |
6782344.0 | Selected_anniversaries_(August_2008) | page |
6782344.0 | Selected_anniversaries_(August_2009) | page |
6782344.0 | Selected_anniversaries_(August_2010) | page |
6782344.0 | Selected_anniversaries_articles | page |
6782344.0 | Ships_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | Start-Class_Ukraine_articles | page |
6782344.0 | Unassessed_Shipwreck_articles | page |
6782344.0 | Unknown-importance_Shipwreck_articles | page |
6782344.0 | WikiProject_Ukraine_articles | page |
6782344.0 | World_War_II_articles_needing_attention_to_referencing_and_citation | page |
6782344.0 | World_War_II_task_force_articles | page |
6782348.0 | All_stub_articles | page |
6782348.0 | Articles_with_SUDOC_identifiers | page |
6782348.0 | Articles_with_short_description | page |
6782348.0 | Bantu_language_stubs | page |
6782348.0 | Language_articles_citing_Ethnologue_18 | page |
6782348.0 | Language_articles_with_old_Ethnologue_18_speaker_data | page |
6782348.0 | Languages_of_the_Democratic_Republic_of_the_Congo | page |
6782348.0 | Pages_containing_links_to_subscription-only_content | page |
6782348.0 | Short_description_is_different_from_Wikidata | page |
6782348.0 | Tetela_languages | page |
6782354.0 | Articles_using_KML_from_Wikidata | page |
6782354.0 | CS1:_Julian–Gregorian_uncertainty | page |
6782354.0 | Commons_category_link_is_on_Wikidata | page |
6782354.0 | Infobox_road_instances_in_Virginia | page |
6782354.0 | State_highways_in_Virginia | page |
6782354.0 | Transportation_in_Buchanan_County,_Virginia | page |
6782354.0 | Transportation_in_Dickenson_County,_Virginia | page |
6782354.0 | Transportation_in_Russell_County,_Virginia | page |
6782354.0 | Transportation_in_Washington_County,_Virginia | page |
6782355.0 | Redirects_from_initialisms | page |
6782355.0 | Redirects_from_moves | page |
6782355.0 | Redirects_from_stock_symbols | page |
6782355.0 | Unprintworthy_redirects | page |
6782357.0 | American_Civil_War_articles_needing_attention_to_referencing_and_citation | page |
6782357.0 | American_Civil_War_task_force_articles | page |
6782357.0 | C-Class_American_Civil_War_articles | page |
6782357.0 | C-Class_American_Old_West_articles | page |
6782357.0 | C-Class_Indiana_articles | page |
6782357.0 | C-Class_Kentucky_articles | page |
6782357.0 | C-Class_Louisville_articles | page |
6782357.0 | C-Class_North_American_military_history_articles | page |
6782357.0 | C-Class_United_States_articles | page |
6782357.0 | C-Class_United_States_articles_of_Mid-importance | page |
6782357.0 | C-Class_United_States_military_history_articles | page |
6782357.0 | C-Class_biography_(military)_articles | page |
6782357.0 | C-Class_biography_articles | page |
6782357.0 | C-Class_military_history_articles | page |
6782357.0 | Low-importance_biography_(military)_articles | page |
6782357.0 | Mid-importance_American_Old_West_articles | page |
6782357.0 | Mid-importance_Indiana_articles | page |
6782357.0 | Mid-importance_Kentucky_articles | page |
6782357.0 | Mid-importance_Louisville_articles | page |
6782357.0 | Mid-importance_United_States_articles | page |
6782357.0 | Military_biography_articles_needing_attention_to_referencing_and_citation | page |
6782357.0 | Military_biography_work_group_articles | page |
6782357.0 | Military_history_articles_needing_attention_only_to_referencing_and_citation | page |
6782357.0 | Military_history_articles_needing_attention_to_referencing_and_citation | page |
6782357.0 | North_American_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782357.0 | North_American_military_history_task_force_articles | page |
6782357.0 | United_States_military_history_articles_needing_attention_to_referencing_and_citation | page |
6782357.0 | United_States_military_history_task_force_articles | page |
6782357.0 | WikiProject_American_Old_West_articles | page |
6782357.0 | WikiProject_Biography_articles | page |
6782357.0 | WikiProject_Indiana_articles | page |
6782357.0 | WikiProject_Kentucky_articles | page |
6782357.0 | WikiProject_Louisville_articles | page |
6782357.0 | WikiProject_United_States_articles | page |
6782358.0 | 1916_births | page |
6782358.0 | 1995_deaths | page |
6782358.0 | All_articles_lacking_reliable_references | page |
6782358.0 | Articles_lacking_reliable_references_from_November_2021 | page |
6782358.0 | Articles_with_specifically_marked_weasel-worded_phrases_from_November_2021 | page |
6782358.0 | Foreign_ministers_of_Nigeria | page |
6782365.0 | Unprintworthy_redirects | page |
6782381.0 | Engineering_and_technology_good_articles | page |
6782381.0 | GA-Class_Road_transport_articles | page |
6782381.0 | GA-Class_U.S._road_transport_articles | page |
6782381.0 | GA-Class_United_States_articles | page |
6782381.0 | GA-Class_United_States_articles_of_Low-importance | page |
6782381.0 | GA-Class_Washington_articles | page |
6782381.0 | GA-Class_Washington_road_transport_articles | page |
6782381.0 | Low-importance_United_States_articles | page |
6782381.0 | Low-importance_Washington_articles | page |
6782381.0 | Mid-importance_Road_transport_articles | page |
6782381.0 | Mid-importance_U.S._road_transport_articles | page |
6782381.0 | Mid-importance_Washington_road_transport_articles | page |
6782381.0 | Washington_road_transport_articles | page |
6782381.0 | WikiProject_United_States_articles | page |
6782381.0 | WikiProject_Washington_articles | page |
6782381.0 | Wikipedia_CD_Selection-GAs | page |
6782381.0 | Wikipedia_good_articles | page |
6782390.0 | All_article_disambiguation_pages | page |
6782390.0 | All_disambiguation_pages | page |
6782390.0 | Disambiguation_pages | page |
6782390.0 | Disambiguation_pages_with_short_descriptions | page |
6782390.0 | Short_description_is_different_from_Wikidata | page |
6782394.0 | Exercise_equipment | page |
6782395.0 | Articles_with_BNF_identifiers | page |
6782395.0 | Articles_with_SUDOC_identifiers | page |
6782395.0 | Articles_with_VIAF_identifiers | page |
6782395.0 | Articles_with_WORLDCATID_identifiers | page |
6782395.0 | Articles_with_short_description | page |
6782395.0 | Coordinates_on_Wikidata | page |
6782395.0 | Former_commune_communities_of_Vosges | page |
6782395.0 | Pages_using_infobox_settlement_with_no_coordinates | page |
6782395.0 | Pages_using_infobox_settlement_with_no_map | page |
6782395.0 | Pages_with_non-numeric_formatnum_arguments | page |
6782395.0 | Short_description_is_different_from_Wikidata | page |
6782398.0 | 1997_albums | page |
6782398.0 | Album_articles_lacking_alt_text_for_covers | page |
6782398.0 | Albums_recorded_at_Chung_King_Studios | page |
6782398.0 | Albums_recorded_at_MSR_Studios | page |
6782398.0 | Articles_with_MusicBrainz_release_group_identifiers | page |
6782398.0 | Articles_with_hAudio_microformats | page |
6782398.0 | Articles_with_short_description | page |
6782398.0 | CS1_German-language_sources_(de) | page |
6782398.0 | CS1_Japanese-language_sources_(ja) | page |
6782398.0 | CS1_maint:_others_in_cite_AV_media_(notes) | page |
6782398.0 | East_West_Records_albums | page |
6782398.0 | Elektra_Records_albums | page |
6782398.0 | Museums_in_popular_culture | page |
6782398.0 | Short_description_is_different_from_Wikidata | page |
6782398.0 | Towa_Tei_albums | page |
6782402.0 | All_stub_articles | page |
6782402.0 | Articles_with_'species'_microformats | page |
6782402.0 | Articles_with_short_description | page |
6782402.0 | Commons_category_link_is_on_Wikidata | page |
6782402.0 | Flora_of_Argentina | page |
6782402.0 | Flora_of_Europe | page |
6782402.0 | Flora_of_New_Zealand | page |
6782402.0 | Flora_of_Norfolk_Island | page |
6782402.0 | Flora_of_Russia | page |
6782402.0 | Flora_of_Siberia | page |
6782402.0 | Flora_of_Uruguay | page |
6782402.0 | Galium | page |
6782402.0 | Plants_described_in_1753 | page |
6782402.0 | Rubioideae_stubs | page |
6782402.0 | Short_description_matches_Wikidata | page |
6782402.0 | Taxa_named_by_Carl_Linnaeus | page |
6782402.0 | Taxonbars_with_30–34_taxon_IDs | page |
6782407.0 | 1954_births | page |
6782407.0 | Alumni_of_Christ's_College,_Cambridge | page |
6782407.0 | Articles_with_short_description | page |
6782407.0 | Commanders_of_the_Order_of_the_British_Empire | page |
6782407.0 | Directors_of_George_Weston_Limited | page |
6782407.0 | English_chief_executives | page |
6782407.0 | English_publishers_(people) | page |
6782407.0 | Financial_Times_people | page |
6782407.0 | Living_people | page |
6782407.0 | Short_description_matches_Wikidata | page |
6782407.0 | Use_British_English_from_February_2015 | page |
6782407.0 | Use_dmy_dates_from_February_2015 | page |
6782411.0 | 1996_German_television_series_debuts | page |
6782411.0 | 2005_German_television_series_endings | page |
6782411.0 | German-language_television_shows | page |
6782411.0 | German_comedy_television_series | page |
6782411.0 | IMDb_ID_same_as_Wikidata | page |
6782411.0 | RTL_(German_TV_channel)_original_programming | page |
6782411.0 | Use_dmy_dates_from_July_2013 | page |
6782416.0 | 1979_debut_singles | page |
6782416.0 | 1979_songs | page |
6782416.0 | 1980_singles | page |
6782416.0 | 1997_singles | page |
6782416.0 | 2006_singles | page |
6782416.0 | All_Around_the_World_Productions_singles | page |
6782416.0 | Articles_with_MusicBrainz_work_identifiers | page |
6782416.0 | Articles_with_hAudio_microformats | page |
6782416.0 | Articles_with_multiple_identifiers | page |
6782416.0 | Articles_with_short_description | page |
6782416.0 | CS1_Dutch-language_sources_(nl) | page |
6782416.0 | CS1_French-language_sources_(fr) | page |
6782416.0 | CS1_German-language_sources_(de) | page |
6782416.0 | CS1_maint:_others_in_cite_AV_media_(notes) | page |
6782416.0 | Carrere_Records_singles | page |
6782416.0 | Certification_Table_Entry_usages_for_France | page |
6782416.0 | Certification_Table_Entry_usages_for_United_Kingdom | page |
6782416.0 | N-Trance_songs | page |
6782416.0 | Number-one_singles_in_Norway | page |
6782416.0 | Ottawan_songs | page |
6782416.0 | Pages_using_certification_Table_Entry_with_sales_figures | page |
6782416.0 | Pages_using_certification_Table_Entry_with_sales_footnote | page |
6782416.0 | Short_description_matches_Wikidata | page |
6782416.0 | Singlechart_called_without_artist | page |
6782416.0 | Singlechart_called_without_song | page |
6782416.0 | Singlechart_usages_for_Austria | page |
6782416.0 | Singlechart_usages_for_Dutch100 | page |
6782416.0 | Singlechart_usages_for_Dutch40 | page |
6782416.0 | Singlechart_usages_for_Finland | page |
6782416.0 | Singlechart_usages_for_Flanders | page |
6782416.0 | Singlechart_usages_for_France | page |
6782416.0 | Singlechart_usages_for_Ireland2 | page |
6782416.0 | Singlechart_usages_for_Norway | page |
6782416.0 | Singlechart_usages_for_Scotland | page |
6782416.0 | Singlechart_usages_for_Switzerland | page |
6782416.0 | Singlechart_usages_for_UK | page |
6782416.0 | Singlechart_usages_for_UKdance | page |
6782416.0 | Singlechart_usages_for_United_Kingdom | page |
6782416.0 | Singlechart_usages_for_West_Germany | page |
6782416.0 | Songs_about_disco | page |
6782416.0 | Songs_written_by_Daniel_Vangarde | page |
6782416.0 | Songs_written_by_Jean_Kluger | page |
6782416.0 | Universal_Music_Group_singles | page |
6782416.0 | Use_dmy_dates_from_December_2013 | page |
6782419.0 | Shared_IP_addresses_from_educational_institutions | page |
6782421.0 | 1926_births | page |
6782421.0 | 2012_deaths | page |
6782421.0 | All_BLP_articles_lacking_sources | page |
6782421.0 | All_stub_articles | page |
6782421.0 | Alumni_of_the_University_of_Glasgow | page |
6782421.0 | Articles_with_short_description | page |
6782421.0 | BLP_articles_lacking_sources_from_November_2010 | page |
6782421.0 | CMS_Grammar_School,_Lagos_alumni | page |
6782421.0 | EngvarB_from_July_2022 | page |
6782421.0 | Foreign_ministers_of_Nigeria | page |
6782421.0 | International_Olympic_Committee_members | page |
6782421.0 | Nigerian_generals | page |
6782421.0 | Nigerian_military_doctors | page |
6782421.0 | Nigerian_politician_stubs | page |
6782421.0 | People_from_Kaduna | page |
6782421.0 | Short_description_matches_Wikidata | page |
6782421.0 | Use_dmy_dates_from_July_2022 | page |
6782421.0 | Yoruba_physicians | page |
6782421.0 | Yoruba_politicians | page |
6782422.0 | 1990_establishments_in_Uttar_Pradesh | page |
6782422.0 | All_Wikipedia_articles_written_in_Indian_English | page |
6782422.0 | All_articles_with_bare_URLs_for_citations | page |
6782422.0 | Articles_with_PDF_format_bare_URLs_for_citations | page |
6782422.0 | Articles_with_bare_URLs_for_citations_from_June_2022 | page |
6782422.0 | Articles_with_short_description | page |
6782422.0 | Development_finance_institutions | page |
6782422.0 | Financial_services_companies_of_India | page |
6782422.0 | Government_agencies_established_in_1990 | page |
6782422.0 | Microfinance_in_India | page |
6782422.0 | Short_description_is_different_from_Wikidata | page |
6782422.0 | Small-scale_industry_in_India | page |
6782422.0 | Use_Indian_English_from_January_2016 | page |
6782422.0 | Use_dmy_dates_from_January_2016 | page |
6782422.0 | Wikipedia_articles_with_possible_conflicts_of_interest_from_June_2018 | page |
6782423.0 | 1945_births | page |
6782423.0 | All_articles_with_unsourced_statements | page |
6782423.0 | Articles_with_unsourced_statements_from_December_2017 | page |
6782423.0 | CS1_maint:_bot:_original_URL_status_unknown | page |
6782423.0 | Living_people | page |
6782423.0 | Mayors_of_places_in_New_Jersey | page |
6782423.0 | People_from_Brooklyn | page |
6782423.0 | People_from_Fanwood,_New_Jersey | page |
6782423.0 | Saint_Elizabeth_University_alumni | page |
6782423.0 | Women_mayors_of_places_in_New_Jersey | page |
6782430.0 | 1930s_sailboat_type_designs | page |
6782430.0 | All_Wikipedia_articles_written_in_American_English | page |
6782430.0 | Articles_with_short_description | page |
6782430.0 | Commons_category_link_from_Wikidata | page |
6782430.0 | Keelboats | page |
6782430.0 | Sailboat_type_designs_by_C._Raymond_Hunt_Associates | page |
6782430.0 | Sailboat_types_built_by_Cape_Cod_Shipbuilding | page |
6782430.0 | Sailboat_types_built_by_George_Lawley_&_Son | page |
6782430.0 | Sailboat_types_built_by_Graves_Yacht_Yard | page |
6782430.0 | Sailboat_types_built_by_New_Holland_Marine_Group | page |
6782430.0 | Sailboat_types_built_by_W._D._Schock_Corp | page |
6782430.0 | Sailing_yachts | page |
6782430.0 | Short_description_matches_Wikidata | page |
6782430.0 | Two-person_sailboats | page |
6782430.0 | Use_American_English_from_November_2020 | page |
6782430.0 | Use_dmy_dates_from_November_2020 | page |
6782436.0 | Printworthy_redirects | page |
6782436.0 | Redirects_from_alternative_scientific_names_of_plants | page |
6782441.0 | AC_with_0_elements | page |
6782441.0 | All_articles_with_unsourced_statements | page |
6782441.0 | Articles_with_short_description | page |
6782441.0 | Articles_with_unsourced_statements_from_December_2019 | page |
6782441.0 | Climate_change_organizations_based_in_the_United_States | page |
6782441.0 | Organizations_established_in_2019 | page |
6782441.0 | Short_description_matches_Wikidata | page |
6782445.0 | Printworthy_redirects | page |
6782445.0 | Redirects_to_scientific_names_of_plants | page |
6782446.0 | Wikipedians_who_use_RC_script | page |
6782447.0 | 1927_births | page |
6782447.0 | 2005_deaths | page |
6782447.0 | 20th-century_Nigerian_medical_doctors | page |
6782447.0 | Ahmadu_Bello_University_faculty | page |
6782447.0 | Alumni_of_the_University_of_Liverpool | page |
6782447.0 | Alumni_of_the_University_of_London | page |
6782447.0 | CS1_maint:_url-status | page |
6782447.0 | Foreign_ministers_of_Nigeria | page |
6782447.0 | National_Party_of_Nigeria_politicians | page |
6782447.0 | Nigerian_Christians | page |
6782447.0 | Nigerian_expatriate_academics_in_the_United_States | page |
6782447.0 | People_from_Kaduna_State | page |
6782447.0 | Permanent_Representatives_of_Nigeria_to_the_United_Nations | page |
6782447.0 | University_of_Ibadan_alumni | page |
6782447.0 | University_of_Lagos_faculty | page |
6782447.0 | University_of_Rochester_faculty | page |
6782450.0 | Printworthy_redirects | page |
6782450.0 | Redirects_to_scientific_names_of_plants | page |
6782452.0 | Apache_httpd_modules | page |
6782452.0 | Articles_with_underscores_in_the_title | page |
6782457.0 | All_Wikipedia_articles_written_in_American_English | page |
6782457.0 | Articles_with_short_description | page |
6782457.0 | Coordinates_on_Wikidata | page |
6782457.0 | New_Jersey_District_Factor_Group_FG | page |
6782457.0 | School_districts_in_Monmouth_County,_New_Jersey | page |
6782457.0 | Short_description_matches_Wikidata | page |
6782457.0 | Use_American_English_from_June_2020 | page |
6782457.0 | Use_mdy_dates_from_June_2020 | page |
6782457.0 | West_Long_Branch,_New_Jersey | page |
6782460.0 | All_BLP_articles_lacking_sources | page |
6782460.0 | All_articles_covered_by_WikiProject_Wikify | page |
6782460.0 | All_articles_with_bare_URLs_for_citations | page |
6782460.0 | Articles_containing_Arabic-language_text | page |
6782460.0 | Articles_covered_by_WikiProject_Wikify_from_September_2022 | page |
6782460.0 | Articles_needing_cleanup_from_September_2022 | page |
6782460.0 | Articles_with_ISNI_identifiers | page |
6782460.0 | Articles_with_J9U_identifiers | page |
6782460.0 | Articles_with_LCCN_identifiers | page |
6782460.0 | Articles_with_VIAF_identifiers | page |
6782460.0 | Articles_with_WORLDCATID_identifiers | page |
6782460.0 | Articles_with_bare_URLs_for_citations_from_September_2022 | page |
6782460.0 | Articles_with_short_description | page |
6782460.0 | BLP_articles_lacking_sources_from_February_2014 | page |
6782460.0 | Living_people | page |
6782460.0 | Palestinian_Christians | page |
6782460.0 | Palestinian_activists | page |
6782460.0 | People_from_Beit_Sahour | page |
6782460.0 | Short_description_is_different_from_Wikidata | page |
6782460.0 | YMCA_leaders | page |
6782460.0 | Year_of_birth_missing_(living_people) | page |
6782467.0 | All_articles_lacking_reliable_references | page |
6782467.0 | All_stub_articles | page |
6782467.0 | Articles_lacking_reliable_references_from_July_2008 | page |
6782467.0 | Bluegrass_music | page |
6782467.0 | Music_festivals_in_California | page |
6782467.0 | Music_organization_stubs | page |
6782467.0 | Music_organizations_based_in_the_United_States | page |
6782467.0 | Organizations_based_in_San_Francisco | page |
6782470.0 | All_articles_needing_additional_references | page |
6782470.0 | All_articles_with_unsourced_statements | page |
6782470.0 | Articles_needing_additional_references_from_May_2013 | page |
6782470.0 | Articles_with_unsourced_statements_from_January_2014 | page |
6782470.0 | Civil_procedure | page |
6782470.0 | Forensic_psychology | page |
6782470.0 | Juries | page |
6782470.0 | Psychological_methodology | page |
6782470.0 | Sociology_of_law | page |
6782470.0 | Webarchive_template_wayback_links | page |
6782473.0 | 1981_establishments_in_Alberta | page |
6782473.0 | All_articles_lacking_in-text_citations | page |
6782473.0 | Articles_lacking_in-text_citations_from_February_2013 | page |
6782473.0 | Articles_with_short_description | page |
6782473.0 | Commons_link_is_the_pagename | page |
6782473.0 | Foreign_policy_and_strategy_think_tanks | page |
6782473.0 | Short_description_matches_Wikidata | page |
6782473.0 | Think_tanks_established_in_1981 | page |
6782473.0 | University_of_Calgary | page |
6782474.0 | 1929_births | page |
6782474.0 | 20th-century_Indian_judges | page |
6782474.0 | 20th-century_Indian_lawyers | page |
6782474.0 | AC_with_0_elements | page |
6782474.0 | All_Wikipedia_articles_written_in_Indian_English | page |
6782474.0 | Articles_with_short_description | page |
6782474.0 | CS1_maint:_archived_copy_as_title | page |
6782474.0 | Chief_justices_of_India | page |
6782474.0 | Judges_of_the_Karnataka_High_Court | page |
6782474.0 | Karnataka_politicians | page |
6782474.0 | Living_people | page |
6782474.0 | Madhva_Brahmins | page |
6782474.0 | Recipients_of_the_Padma_Vibhushan_in_public_affairs | page |
6782474.0 | Recipients_of_the_Rajyotsava_Award_2014 | page |
6782474.0 | Short_description_matches_Wikidata | page |
6782474.0 | Telugu_people | page |
6782474.0 | University_Law_College,_Bangalore_University_alumni | page |
6782474.0 | University_of_Mysore_alumni | page |
6782474.0 | Use_Indian_English_from_August_2015 | page |
6782474.0 | Use_dmy_dates_from_August_2015 | page |
6782474.0 | Webarchive_template_wayback_links | page |
6782477.0 | C-Class_Higher_education_articles | page |
6782477.0 | C-Class_Hospital_articles | page |
6782477.0 | C-Class_New_York_(state)_articles | page |
6782477.0 | C-Class_Western_New_York_articles | page |
6782477.0 | Low-importance_Western_New_York_articles | page |
6782477.0 | Mid-importance_Hospital_articles | page |
6782477.0 | Unknown-importance_New_York_(state)_articles | page |
6782477.0 | WikiProject_Higher_education_articles | page |
6782477.0 | WikiProject_Hospitals_articles | page |
6782477.0 | WikiProject_Western_New_York | page |
6782478.0 | Shared_IP_addresses_from_educational_institutions | page |
6782479.0 | All_stub_articles | page |
6782479.0 | Catholic_University_of_America | page |
6782479.0 | Christian_studies_book_stubs | page |
6782479.0 | Oriental_Orthodoxy | page |
6782479.0 | Oriental_Orthodoxy_stubs | page |
6782479.0 | Publications_of_patristic_texts | page |
6782479.0 | Semitic_language_stubs | page |
6782479.0 | Series_of_books | page |
6782479.0 | Texts_in_Syriac | page |
6782484.0 | Redirects_from_songs | page |
6782484.0 | Redirects_to_sections | page |
6782484.0 | Unprintworthy_redirects | page |
6782488.0 | Avoided_double_redirects | page |
6782488.0 | Redirects_from_unnecessary_disambiguation | page |
6782488.0 | Unprintworthy_redirects | page |
6782493.0 | Album_covers | file |
6782493.0 | All_non-free_media | file |
6782493.0 | Big_Black_album_covers | file |
6782493.0 | Files_with_no_machine-readable_author | file |
6782493.0 | Noindexed_pages | file |
6782493.0 | Wikipedia_non-free_files_with_NFUR_stated | file |
6782493.0 | Wikipedia_non-free_files_with_valid_backlink | file |
6782496.0 | 2000_AD_comic_strips | page |
6782496.0 | All_stub_articles | page |
6782496.0 | British_comics | page |
6782496.0 | British_comics_stubs | page |
6782496.0 | Comics_by_John_Wagner | page |
6782496.0 | Judge_Dredd_characters | page |
6782496.0 | Use_dmy_dates_from_September_2019 | page |
6782502.0 | All_WikiProject_Molecular_Biology_articles | page |
6782502.0 | Low-importance_chemicals_articles | page |
6782502.0 | Mid-importance_Genetics_articles | page |
6782502.0 | Mid-importance_MCB_articles | page |
6782502.0 | Stub-Class_Genetics_articles | page |
6782502.0 | Stub-Class_MCB_articles | page |
6782502.0 | Stub-Class_Molecular_Biology_articles | page |
6782502.0 | Stub-Class_chemicals_articles | page |
6782502.0 | Unknown-importance_Molecular_Biology_articles | page |
6782502.0 | WikiProject_Genetics_articles | page |
6782502.0 | WikiProject_Molecular_and_Cellular_Biology_articles | page |
6782503.0 | Redirects_from_songs | page |
6782503.0 | Unprintworthy_redirects | page |
6782506.0 | All_free_media | file |
6782506.0 | Copy_to_Wikimedia_Commons_(bot-assessed) | file |
6782506.0 | Files_with_no_machine-readable_author | file |
6782506.0 | Files_with_no_machine-readable_description | file |
6782506.0 | Files_with_no_machine-readable_source | file |
6782506.0 | Hidden_templates_using_styles | file |
6782506.0 | Images_in_the_public_domain_in_the_United_States | file |
6782506.0 | Public_domain_art | file |
6782506.0 | Wikipedia_orphaned_files | file |
6782508.0 | All_free_media | file |
6782508.0 | Copy_to_Wikimedia_Commons_(bot-assessed) | file |
6782508.0 | Creative_Commons_Attribution-ShareAlike_3.0_files | file |
6782508.0 | Files_with_no_machine-readable_author | file |
6782508.0 | Files_with_no_machine-readable_description | file |
6782508.0 | Files_with_no_machine-readable_source | file |
6782508.0 | GFDL_files_with_disclaimers | file |
6782508.0 | Hidden_templates_using_styles | file |
6782508.0 | Self-published_work | file |
6782508.0 | Wikipedia_license_migration_completed | file |
6782508.0 | Wikipedia_orphaned_files | file |
6782513.0 | 1969_births | page |
6782513.0 | All_articles_with_dead_external_links | page |
6782513.0 | American_football_wide_receivers | page |
6782513.0 | Arizona_Cardinals_players | page |
6782513.0 | Articles_with_dead_external_links_from_March_2021 | page |
6782513.0 | Articles_with_short_description | page |
6782513.0 | Infobox_NFL_biography_articles_with_old_NFL.com_URL | page |
6782513.0 | Living_people | page |
6782513.0 | Miami_Dolphins_players | page |
val rowsToSave = spark.sql("SELECT cl_from, cl_to, cl_type FROM categorylinks WHERE (cl_from IS NOT NULL) AND (cl_to IS NOT NULL) AND (cl_type IS NOT NULL) AND (_corrupt_record IS NULL)")
rowsToSave.write.saveAsTable("enwiki_categorylinks")
rowsToSave: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 1 more field]
Loading of the Wikipedia data
This is very nearly just a copy of the 02 notebook that loaded the pages.
As a first step, we download the .sql file:
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
FileUtils.copyURLToFile(new URL("https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-category.sql.gz"), new File("/tmp/enwiki-latest-category.sql.gz"))
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Having done this, we first unzip the file, and then move the file from local storage to the DBFS:
gzip -d /tmp/enwiki-latest-category.sql.gz
mv file:/tmp/enwiki-latest-category.sql /enwiki-latest-category.sql
res1: Boolean = true
Having gotten the data onto the DBFS, we can now read it into Spark:
val rawSQLdump = spark.read.textFile("/enwiki-latest-category.sql")
rawSQLdump: org.apache.spark.sql.Dataset[String] = [value: string]
The first fortyone lines are setting up the database, then we get a lot of very long INSERT INTO lines with many many entries being inserted.
println(rawSQLdump.take(41).mkString("\n"))
-- MySQL dump 10.19 Distrib 10.3.34-MariaDB, for debian-linux-gnu (x86_64)
--
-- Host: db1106 Database: enwiki
-- ------------------------------------------------------
-- Server version 10.4.25-MariaDB-log
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Table structure for table `category`
--
DROP TABLE IF EXISTS `category`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`cat_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`cat_title` varbinary(255) NOT NULL DEFAULT '',
`cat_pages` int(11) NOT NULL DEFAULT 0,
`cat_subcats` int(11) NOT NULL DEFAULT 0,
`cat_files` int(11) NOT NULL DEFAULT 0,
PRIMARY KEY (`cat_id`),
UNIQUE KEY `cat_title` (`cat_title`),
KEY `cat_pages` (`cat_pages`)
) ENGINE=InnoDB AUTO_INCREMENT=248914087 DEFAULT CHARSET=binary ROW_FORMAT=COMPRESSED;
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `category`
--
/*!40000 ALTER TABLE `category` DISABLE KEYS */;
The remaining rows look something like this, except much much longer:
println(rawSQLdump.take(42)(41).substring(0,244) + ",...," + rawSQLdump.take(42)(41).substring(rawSQLdump.take(42)(41).length()-81, rawSQLdump.take(42)(41).length()))
INSERT INTO `category` VALUES (2,'Unprintworthy_redirects',1545623,20,0),(3,'Computer_storage_devices',89,11,0),(7,'Unknown-importance_Animation_articles',279,21,0),(8,'Low-importance_Animation_articles',14235,21,0),(9,'Vietnam_stubs',303,10,0),...,(33807,'440s',18,16,0),(33808,'440s_BC',16,13,0),(33809,'440s_BC_births',16,1,0);
Next up, let us strip out the INSERT INTO
bit and the initial and final parentheses, then split at each ),(
, so that we get each entry as its own string.
val pageDataRows = rawSQLdump.filter(x => x.startsWith("INSERT INTO"))
.flatMap(x => x.substring(31, x.length()-2).split("""\),\("""))
pageDataRows: org.apache.spark.sql.Dataset[String] = [value: string]
So now our data looks like this:
println(pageDataRows.take(10).mkString("\n"))
2,'Unprintworthy_redirects',1545623,20,0
3,'Computer_storage_devices',89,11,0
7,'Unknown-importance_Animation_articles',279,21,0
8,'Low-importance_Animation_articles',14235,21,0
9,'Vietnam_stubs',303,10,0
10,'Rivers_of_Vietnam',103,3,0
12,'All_articles_with_unsourced_statements',472556,0,0
14,'Wikipedia_articles_needing_clarification',195,195,0
15,'Articles_needing_additional_references_from_January_2008',1237,0,0
16,'Comedy',96,29,0
This table is of quite modest size - only 2.2 million rows.
pageDataRows.count()
res18: Long = 2207725
The above looks a whole lot like a CSV file, doesn't it? Let's write it to file as such. Note that we write it as text instead of as CSV because our data is in the format of a single string per row.
pageDataRows.toDF().write.mode("overwrite").text("/WikipediaData/enwiki-category.csv")
Now we want to read this back in, but with the right schema and column names and so on. So we start by creating the schema. In order to be sure that all the rows got parsed correctly, we add an extra column named _corrupt_record
, which will get the raw CSV text whenever it couldn't be parsed right, and otherwise be set to NULL.
import org.apache.spark.sql.types._
// Start by creating a case class of a row entry:
case class WikiCategory(cat_id:Int,
cat_title:String,
cat_pages:Int,
cat_subcats:Int,
cat_files:Int)
// then we generate a schema object from the case class: (code copypasted from here: https://sparkbyexamples.com/spark/convert-case-class-to-spark-schema/)
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
val pageSchema = ScalaReflection.schemaFor[WikiCategory].dataType.asInstanceOf[StructType].add("_corrupt_record", StringType, true)
import org.apache.spark.sql.types._
defined class WikiCategory
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.types.StructType
pageSchema: org.apache.spark.sql.types.StructType = StructType(StructField(cat_id,IntegerType,false),StructField(cat_title,StringType,true),StructField(cat_pages,IntegerType,false),StructField(cat_subcats,IntegerType,false),StructField(cat_files,IntegerType,false),StructField(_corrupt_record,StringType,true))
Then we read it back in with the schema we just created:
val readFromCSV = spark.read
.options(Map("quote" -> "'", "mode" -> "PERMISSIVE", "columnNameOfCorruptRecord" -> "_corrupt_record"))
.schema(pageSchema)
.csv("/WikipediaData/enwiki-category.csv")
readFromCSV: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 4 more fields]
Let's have a look at what we just created:
display(readFromCSV)
cat_id | cat_title | cat_pages | cat_subcats | cat_files | _corrupt_record |
---|---|---|---|---|---|
2.0 | Unprintworthy_redirects | 1545623.0 | 20.0 | 0.0 | null |
3.0 | Computer_storage_devices | 89.0 | 11.0 | 0.0 | null |
7.0 | Unknown-importance_Animation_articles | 279.0 | 21.0 | 0.0 | null |
8.0 | Low-importance_Animation_articles | 14235.0 | 21.0 | 0.0 | null |
9.0 | Vietnam_stubs | 303.0 | 10.0 | 0.0 | null |
10.0 | Rivers_of_Vietnam | 103.0 | 3.0 | 0.0 | null |
12.0 | All_articles_with_unsourced_statements | 472556.0 | 0.0 | 0.0 | null |
14.0 | Wikipedia_articles_needing_clarification | 195.0 | 195.0 | 0.0 | null |
15.0 | Articles_needing_additional_references_from_January_2008 | 1237.0 | 0.0 | 0.0 | null |
16.0 | Comedy | 96.0 | 29.0 | 0.0 | null |
17.0 | Sociolinguistics | 255.0 | 30.0 | 0.0 | null |
18.0 | Figures_of_speech | 132.0 | 13.0 | 0.0 | null |
20.0 | NASCAR_teams | 130.0 | 3.0 | 0.0 | null |
21.0 | Muhammad_Ali | 19.0 | 4.0 | 0.0 | null |
22.0 | Politics_and_government_work_group_articles | 236015.0 | 4.0 | 0.0 | null |
23.0 | Wikipedia_requested_photographs_of_politicians_and_government-people | 11918.0 | 1.0 | 0.0 | null |
24.0 | Stub-Class_biography_(politics_and_government)_articles | 123773.0 | 0.0 | 0.0 | null |
26.0 | Stub-Class_biography_articles | 1039170.0 | 10.0 | 0.0 | null |
27.0 | Unassessed_biography_articles | 47285.0 | 10.0 | 0.0 | null |
29.0 | High-importance_Animation_articles | 279.0 | 21.0 | 0.0 | null |
31.0 | AfD_debates | 479.0 | 12.0 | 0.0 | null |
32.0 | Articles_with_unsourced_statements | 200.0 | 194.0 | 0.0 | null |
35.0 | Self-published_work | 106467.0 | 1.0 | 106465.0 | null |
36.0 | Geography | 102.0 | 37.0 | 0.0 | null |
37.0 | Images_without_source | 0.0 | 0.0 | 0.0 | null |
38.0 | Candidates_for_speedy_deletion | 17.0 | 2.0 | 0.0 | null |
40.0 | All_non-free_media | 711706.0 | 1.0 | 711705.0 | null |
41.0 | Wikipedia_requested_photographs_of_sportspeople | 15123.0 | 1.0 | 0.0 | null |
42.0 | Thirty_Years'_War | 57.0 | 9.0 | 0.0 | null |
44.0 | African-American_history | 80.0 | 33.0 | 1.0 | null |
46.0 | History_of_Alabama | 76.0 | 29.0 | 0.0 | null |
47.0 | Groups_of_World_War_II | 32.0 | 1.0 | 0.0 | null |
48.0 | Congressional_Gold_Medal_recipients | 425.0 | 3.0 | 7.0 | null |
49.0 | United_States_Army_officers | 3642.0 | 18.0 | 0.0 | null |
50.0 | Tuskegee_University | 27.0 | 7.0 | 0.0 | null |
51.0 | Military_units_and_formations_of_the_United_States_in_World_War_II | 15.0 | 7.0 | 0.0 | null |
52.0 | People_from_Tuskegee,_Alabama | 56.0 | 2.0 | 0.0 | null |
53.0 | Tuskegee_Airmen | 156.0 | 0.0 | 0.0 | null |
54.0 | Chinese_Methodists | 12.0 | 3.0 | 0.0 | null |
55.0 | Chinese_Protestants | 34.0 | 15.0 | 0.0 | null |
56.0 | Shel_Silverstein_songs | 6.0 | 0.0 | 0.0 | null |
57.0 | Articles_lacking_sources | 209.0 | 207.0 | 0.0 | null |
58.0 | All_articles_lacking_sources | 135448.0 | 0.0 | 0.0 | null |
59.0 | Radio_stations_in_Saskatchewan | 41.0 | 7.0 | 0.0 | null |
60.0 | Western_Canada_radio_station_stubs | 24.0 | 4.0 | 0.0 | null |
61.0 | Saskatchewan_stubs | 94.0 | 5.0 | 0.0 | null |
62.0 | Multi-level_marketing | 6.0 | 2.0 | 0.0 | null |
64.0 | Filipino_Wikipedians | 725.0 | 3.0 | 0.0 | null |
65.0 | Wikipedians_interested_in_mapmaking | 318.0 | 0.0 | 0.0 | null |
66.0 | Wikipedians_interested_in_maps | 1245.0 | 1.0 | 0.0 | null |
67.0 | Wikipedians_who_listen_to_world_music | 294.0 | 4.0 | 0.0 | null |
68.0 | Wikipedians_interested_in_architecture | 997.0 | 2.0 | 0.0 | null |
69.0 | Wikipedians_interested_in_art | 997.0 | 17.0 | 0.0 | null |
70.0 | Wikipedian_ballroom_dancers | 84.0 | 0.0 | 0.0 | null |
71.0 | Wikipedian_dancers | 290.0 | 5.0 | 0.0 | null |
72.0 | Brasília | 17.0 | 12.0 | 0.0 | null |
74.0 | Sligo | 0.0 | 0.0 | 0.0 | null |
75.0 | Puerto_Rican_people | 31.0 | 29.0 | 0.0 | null |
77.0 | WikiProject_Canadian_communities_articles | 2.0 | 2.0 | 0.0 | null |
78.0 | B-Class_Canadian_communities_articles | 139.0 | 0.0 | 0.0 | null |
79.0 | Mid-importance_Canadian_communities_articles | 3425.0 | 0.0 | 0.0 | null |
81.0 | Importance_or_significance_not_asserted_pages_for_speedy_deletion | 0.0 | 0.0 | 0.0 | null |
82.0 | The_Taming_of_the_Shrew | 8.0 | 1.0 | 0.0 | null |
83.0 | Edwards_County,_Kansas | 10.0 | 4.0 | 0.0 | null |
86.0 | Unknown-importance_Olympics_articles | 18779.0 | 0.0 | 0.0 | null |
87.0 | WikiProject_Olympics_articles | 191404.0 | 2.0 | 0.0 | null |
88.0 | Stub-Class_Canadian_communities_articles | 8334.0 | 0.0 | 0.0 | null |
89.0 | Articles_lacking_sources_from_December_2007 | 428.0 | 0.0 | 0.0 | null |
90.0 | Kingston,_Jamaica | 29.0 | 9.0 | 0.0 | null |
94.0 | Wikipedians_interested_in_Japanese_mythology | 40.0 | 1.0 | 0.0 | null |
95.0 | WikiProject_Japanese_mythology_members | 21.0 | 0.0 | 0.0 | null |
96.0 | WikiProject_Statistics_members | 111.0 | 0.0 | 0.0 | null |
98.0 | 1978 | 44.0 | 37.0 | 0.0 | null |
102.0 | Musicians_work_group_articles | 163180.0 | 4.0 | 0.0 | null |
103.0 | Wikipedia_requested_photographs_of_musicians | 12467.0 | 0.0 | 0.0 | null |
104.0 | Start-Class_biography_(musicians)_articles | 69851.0 | 0.0 | 0.0 | null |
106.0 | Musicians_work_group_articles_needing_infoboxes | 1277.0 | 0.0 | 0.0 | null |
107.0 | Biography_articles_without_infoboxes | 23294.0 | 9.0 | 0.0 | null |
108.0 | Start-Class_biography_articles | 667451.0 | 10.0 | 0.0 | null |
109.0 | Punk_song_stubs | 68.0 | 0.0 | 0.0 | null |
111.0 | Planetary_nebulae | 125.0 | 1.0 | 0.0 | null |
112.0 | Methane | 52.0 | 3.0 | 0.0 | null |
113.0 | Economy_of_Russia | 93.0 | 22.0 | 0.0 | null |
114.0 | Climate_of_Texas | 7.0 | 0.0 | 0.0 | null |
115.0 | Transport_in_Burma | 0.0 | 0.0 | 0.0 | null |
116.0 | Townships_in_Kansas | 817.0 | 2.0 | 0.0 | null |
117.0 | Kansas_geography_stubs | 1027.0 | 6.0 | 0.0 | null |
118.0 | Series_of_children's_books | 662.0 | 84.0 | 0.0 | null |
121.0 | List-Class_Animation_articles | 1556.0 | 8.0 | 0.0 | null |
122.0 | Start-Class_Animation_articles | 7387.0 | 8.0 | 0.0 | null |
123.0 | Wikipedia_references_cleanup | 169.0 | 166.0 | 0.0 | null |
125.0 | Theorists | 20.0 | 18.0 | 0.0 | null |
126.0 | National_lower_houses | 116.0 | 27.0 | 0.0 | null |
127.0 | Spoken_articles | 1665.0 | 0.0 | 0.0 | null |
128.0 | United_States_House_of_Representatives | 57.0 | 11.0 | 0.0 | null |
129.0 | People_by_nationality | 246.0 | 246.0 | 0.0 | null |
130.0 | WikiProject_Molecular_and_Cellular_Biology | 17.0 | 7.0 | 0.0 | null |
131.0 | Primate_stubs | 44.0 | 3.0 | 0.0 | null |
132.0 | Old_World_monkeys | 10.0 | 3.0 | 0.0 | null |
133.0 | Fauna_of_Thailand | 17.0 | 7.0 | 0.0 | null |
134.0 | Fighter_aircraft | 88.0 | 54.0 | 0.0 | null |
135.0 | Transport_in_Croatia | 14.0 | 12.0 | 0.0 | null |
136.0 | Requests_for_unblock | 93.0 | 4.0 | 0.0 | null |
137.0 | Volcanic_belts | 35.0 | 10.0 | 0.0 | null |
139.0 | Transport_in_Denmark | 25.0 | 18.0 | 0.0 | null |
140.0 | 2000s_single_stubs | 819.0 | 1.0 | 0.0 | null |
141.0 | Canaan | 60.0 | 11.0 | 0.0 | null |
142.0 | Women_writers | 12.0 | 11.0 | 0.0 | null |
143.0 | Start-Class_biography_(military)_articles | 43358.0 | 0.0 | 0.0 | null |
144.0 | Military_biography_work_group_articles | 83368.0 | 5.0 | 0.0 | null |
145.0 | Biography_articles_with_listas_parameter | 0.0 | 0.0 | 0.0 | null |
147.0 | Stub-Class_biography_(military)_articles | 20981.0 | 0.0 | 0.0 | null |
150.0 | Medieval_literature | 292.0 | 27.0 | 0.0 | null |
152.0 | Transport_in_Lithuania | 14.0 | 13.0 | 0.0 | null |
154.0 | Stub-Class_Animation_articles | 4161.0 | 8.0 | 0.0 | null |
156.0 | Articles_for_deletion | 551.0 | 1.0 | 0.0 | null |
157.0 | All_articles_to_be_expanded | 70437.0 | 0.0 | 0.0 | null |
159.0 | Wikipedian_college_students | 1401.0 | 1.0 | 0.0 | null |
160.0 | Images_lacking_a_description | 0.0 | 0.0 | 0.0 | null |
161.0 | Uploader_unsure_of_copyright_status | 5.0 | 1.0 | 4.0 | null |
164.0 | All_images_with_unknown_copyright_status | 0.0 | 0.0 | 0.0 | null |
165.0 | Attack_pages_for_speedy_deletion | 0.0 | 0.0 | 0.0 | null |
167.0 | Vietnamese_Confucianists | 41.0 | 0.0 | 0.0 | null |
169.0 | Transport_in_Mauritius | 11.0 | 8.0 | 0.0 | null |
170.0 | Mountain_biking | 49.0 | 15.0 | 0.0 | null |
171.0 | 1939_births | 10840.0 | 0.0 | 0.0 | null |
172.0 | Articles_lacking_sources_from_March_2008 | 645.0 | 0.0 | 0.0 | null |
173.0 | Living_people | 1049898.0 | 2.0 | 0.0 | null |
175.0 | Transport_in_Mozambique | 15.0 | 9.0 | 0.0 | null |
176.0 | Lists_of_railway_stations_in_the_United_Kingdom | 27.0 | 1.0 | 0.0 | null |
177.0 | North_America | 29.0 | 21.0 | 0.0 | null |
178.0 | Non-fiction_writers | 20.0 | 12.0 | 0.0 | null |
180.0 | Solid-state_computer_storage_media | 59.0 | 1.0 | 0.0 | null |
181.0 | USB | 95.0 | 1.0 | 0.0 | null |
182.0 | Subdivisions_of_Kosovo | 7.0 | 4.0 | 0.0 | null |
184.0 | Articles_needing_additional_references_from_June_2007 | 603.0 | 0.0 | 0.0 | null |
188.0 | Commonwealth_of_Nations | 65.0 | 25.0 | 0.0 | null |
189.0 | Political_history_of_Australia | 88.0 | 20.0 | 0.0 | null |
190.0 | Political_history_of_Canada | 128.0 | 31.0 | 0.0 | null |
191.0 | Political_history_of_the_United_Kingdom | 160.0 | 64.0 | 0.0 | null |
192.0 | Stub-Class_biography_(musicians)_articles | 60830.0 | 0.0 | 0.0 | null |
193.0 | Odonata | 17.0 | 8.0 | 0.0 | null |
194.0 | Companies_based_in_Vancouver | 220.0 | 9.0 | 0.0 | null |
196.0 | Video_game_developers | 73.0 | 14.0 | 0.0 | null |
197.0 | History_of_the_Kurds | 0.0 | 0.0 | 0.0 | null |
198.0 | Torchwood_episodes | 37.0 | 1.0 | 0.0 | null |
199.0 | Federal_assistance_in_the_United_States | 81.0 | 5.0 | 0.0 | null |
200.0 | Nutrition | 204.0 | 28.0 | 9.0 | null |
202.0 | United_States_Department_of_Agriculture | 304.0 | 6.0 | 0.0 | null |
203.0 | Transport_in_the_Cayman_Islands | 6.0 | 5.0 | 0.0 | null |
204.0 | All_pages_needing_cleanup | 34785.0 | 5.0 | 0.0 | null |
206.0 | Military_of_the_United_Kingdom | 127.0 | 60.0 | 2.0 | null |
207.0 | Start-Class_Canadian_communities_articles | 4008.0 | 0.0 | 0.0 | null |
209.0 | Food_and_drink_stubs | 14.0 | 14.0 | 0.0 | null |
210.0 | Moons | 39.0 | 17.0 | 1.0 | null |
211.0 | Miscellaneous_pages_for_deletion | 3.0 | 0.0 | 0.0 | null |
212.0 | 1733_establishments | 10.0 | 10.0 | 0.0 | null |
213.0 | 1776_disestablishments | 10.0 | 7.0 | 0.0 | null |
214.0 | British_North_America | 63.0 | 13.0 | 0.0 | null |
216.0 | Former_British_colonies | 11.0 | 8.0 | 0.0 | null |
217.0 | History_of_Georgia_(U.S._state) | 108.0 | 41.0 | 0.0 | null |
218.0 | Thirteen_Colonies | 28.0 | 8.0 | 0.0 | null |
219.0 | Wehrmacht | 63.0 | 12.0 | 0.0 | null |
220.0 | Precambrian | 14.0 | 7.0 | 0.0 | null |
221.0 | Start-Class_United_States_military_history_articles | 30836.0 | 0.0 | 0.0 | null |
222.0 | United_States_military_history_task_force_articles | 74074.0 | 3.0 | 0.0 | null |
223.0 | Start-Class_American_Civil_War_articles | 6567.0 | 0.0 | 0.0 | null |
224.0 | American_Civil_War_task_force_articles | 13078.0 | 3.0 | 0.0 | null |
225.0 | Start-Class_military_history_articles | 100531.0 | 2.0 | 0.0 | null |
226.0 | Military_history_articles_with_incomplete_B-Class_checklists | 0.0 | 0.0 | 0.0 | null |
227.0 | Literature_stubs | 132.0 | 24.0 | 0.0 | null |
228.0 | Transport_in_the_Netherlands_Antilles | 3.0 | 2.0 | 0.0 | null |
230.0 | Top_Gear | 39.0 | 3.0 | 0.0 | null |
231.0 | Wikipedia_cleanup | 41.0 | 20.0 | 0.0 | null |
232.0 | Stubs | 1.0 | 0.0 | 0.0 | null |
233.0 | Articles_needing_additional_references_from_September_2007 | 729.0 | 0.0 | 0.0 | null |
235.0 | Transport_in_Vanuatu | 7.0 | 5.0 | 0.0 | null |
236.0 | Sumer | 53.0 | 13.0 | 0.0 | null |
237.0 | Sumerian_cities | 33.0 | 6.0 | 0.0 | null |
239.0 | New_York_City_Department_of_Education | 36.0 | 3.0 | 0.0 | null |
240.0 | Screenshots_of_television | 16234.0 | 24.0 | 16210.0 | null |
241.0 | Al_Gore | 49.0 | 4.0 | 0.0 | null |
243.0 | American_male_singers | 1474.0 | 15.0 | 0.0 | null |
244.0 | Pakistani_names | 103.0 | 8.0 | 0.0 | null |
246.0 | Punjabi_tribes | 168.0 | 16.0 | 0.0 | null |
247.0 | Edina,_Minnesota | 15.0 | 3.0 | 0.0 | null |
249.0 | Agriculture | 140.0 | 42.0 | 0.0 | null |
250.0 | Molecular_physics | 90.0 | 10.0 | 0.0 | null |
251.0 | Wikipedia_controversial_topics | 3500.0 | 3.0 | 0.0 | null |
253.0 | Sony_Computer_Entertainment | 0.0 | 0.0 | 0.0 | null |
254.0 | Redirects_from_merges | 58346.0 | 4.0 | 0.0 | null |
256.0 | Leicester_City_F.C. | 28.0 | 9.0 | 2.0 | null |
257.0 | English_football_club_stubs | 88.0 | 2.0 | 0.0 | null |
258.0 | Bosnian_and_Herzegovinian_sportspeople | 0.0 | 0.0 | 0.0 | null |
259.0 | Bosnia_and_Herzegovina_sportspeople | 11.0 | 8.0 | 0.0 | null |
260.0 | Articles_that_include_images_for_deletion | 2.0 | 2.0 | 0.0 | null |
261.0 | Logging | 87.0 | 8.0 | 0.0 | null |
263.0 | Great_Western_Railway_locomotives | 191.0 | 12.0 | 0.0 | null |
265.0 | Chinese_Confucianists | 105.0 | 2.0 | 0.0 | null |
266.0 | Copyright_violations_for_speedy_deletion | 0.0 | 0.0 | 0.0 | null |
267.0 | Articles_lacking_sources_from_February_2008 | 426.0 | 0.0 | 0.0 | null |
268.0 | Ben_10 | 31.0 | 2.0 | 0.0 | null |
269.0 | Dessert_stubs | 538.0 | 2.0 | 0.0 | null |
270.0 | Cookies | 134.0 | 6.0 | 0.0 | null |
271.0 | Republican_Party_(United_States)_organizations | 85.0 | 4.0 | 0.0 | null |
273.0 | Biography_articles_of_living_people | 1099347.0 | 1.0 | 0.0 | null |
274.0 | Politics_and_government_work_group_articles_needing_infoboxes | 4394.0 | 0.0 | 0.0 | null |
275.0 | Biography_articles_without_listas_parameter | 333.0 | 0.0 | 0.0 | null |
278.0 | Ceramic_materials | 130.0 | 5.0 | 0.0 | null |
279.0 | 1980s_novel_stubs | 392.0 | 10.0 | 0.0 | null |
280.0 | Novel_stubs | 100.0 | 37.0 | 0.0 | null |
281.0 | Water_parks | 31.0 | 5.0 | 0.0 | null |
282.0 | Special_Operations_Executive | 63.0 | 3.0 | 0.0 | null |
283.0 | Theories | 66.0 | 11.0 | 0.0 | null |
284.0 | Greece | 20.0 | 16.0 | 0.0 | null |
285.0 | Wikipedians_interested_in_video_games | 1772.0 | 22.0 | 0.0 | null |
287.0 | Wikipedians_interested_in_law | 1300.0 | 11.0 | 0.0 | null |
288.0 | Wikipedians_interested_in_law_enforcement | 19.0 | 3.0 | 0.0 | null |
289.0 | Wikipedians_interested_in_politics | 3351.0 | 33.0 | 0.0 | null |
290.0 | Wikipedians_with_JD_degrees | 179.0 | 0.0 | 0.0 | null |
292.0 | 2008_albums | 3063.0 | 11.0 | 0.0 | null |
293.0 | Articles_needing_additional_references_from_February_2008 | 1058.0 | 0.0 | 0.0 | null |
294.0 | Political_science_terms | 0.0 | 0.0 | 0.0 | null |
295.0 | Political_theories | 333.0 | 53.0 | 0.0 | null |
296.0 | Politics_of_Scotland | 98.0 | 25.0 | 0.0 | null |
298.0 | Articles_with_topics_of_unclear_notability | 179.0 | 179.0 | 0.0 | null |
300.0 | Arctic_Monkeys | 14.0 | 5.0 | 0.0 | null |
301.0 | American_businesspeople | 1313.0 | 20.0 | 0.0 | null |
302.0 | National_Basketball_Association_executives | 119.0 | 5.0 | 0.0 | null |
304.0 | San_Antonio_Spurs | 25.0 | 9.0 | 0.0 | null |
305.0 | Seattle_SuperSonics | 21.0 | 9.0 | 0.0 | null |
306.0 | Year_of_birth_missing_(living_people) | 148543.0 | 0.0 | 0.0 | null |
307.0 | People_from_Chaco_Province | 12.0 | 5.0 | 0.0 | null |
308.0 | Argentine_footballers | 5842.0 | 4.0 | 0.0 | null |
310.0 | Arsenal_de_Sarandí_footballers | 345.0 | 0.0 | 0.0 | null |
311.0 | Cienciano_footballers | 180.0 | 0.0 | 0.0 | null |
312.0 | Ayyubid_dynasty | 16.0 | 8.0 | 0.0 | null |
313.0 | Goldfish_breeds | 28.0 | 0.0 | 0.0 | null |
314.0 | WikiProject_Chad_articles | 2471.0 | 2.0 | 0.0 | null |
315.0 | Stub-Class_Chad_articles | 946.0 | 0.0 | 0.0 | null |
316.0 | Unknown-importance_Chad_articles | 958.0 | 0.0 | 0.0 | null |
317.0 | Stub-Class_Africa_articles | 59570.0 | 2.0 | 0.0 | null |
318.0 | Unknown-importance_Africa_articles | 40366.0 | 2.0 | 0.0 | null |
319.0 | Stub-Class_African_military_history_articles | 1052.0 | 0.0 | 0.0 | null |
320.0 | African_military_history_task_force_articles | 8328.0 | 2.0 | 0.0 | null |
321.0 | Stub-Class_military_history_articles | 25029.0 | 2.0 | 0.0 | null |
322.0 | Structure_of_the_Earth | 67.0 | 9.0 | 0.0 | null |
323.0 | Electromagnetic_spectrum | 40.0 | 10.0 | 0.0 | null |
324.0 | Waves | 104.0 | 12.0 | 0.0 | null |
326.0 | Latin_language | 80.0 | 20.0 | 0.0 | null |
327.0 | Ancient_languages | 26.0 | 17.0 | 0.0 | null |
328.0 | Fusional_languages | 43.0 | 7.0 | 0.0 | null |
329.0 | Languages_of_Italy | 43.0 | 11.0 | 0.0 | null |
330.0 | Languages_of_Vatican_City | 7.0 | 2.0 | 0.0 | null |
331.0 | Latino-Faliscan_languages | 8.0 | 2.0 | 0.0 | null |
332.0 | All_That | 19.0 | 3.0 | 0.0 | null |
333.0 | The_War_of_the_Worlds | 9.0 | 2.0 | 0.0 | null |
336.0 | Anime_and_manga_characters_with_superhuman_strength | 109.0 | 1.0 | 0.0 | null |
337.0 | Anime_and_manga_martial_artists | 0.0 | 0.0 | 0.0 | null |
339.0 | English_women_writers | 414.0 | 7.0 | 0.0 | null |
340.0 | Semi-protected_templates | 0.0 | 0.0 | 0.0 | null |
341.0 | User_warning_templates | 331.0 | 8.0 | 0.0 | null |
342.0 | New_Zealand_Confucianists | 1.0 | 0.0 | 0.0 | null |
343.0 | Free-to-air | 61.0 | 0.0 | 0.0 | null |
344.0 | 2008_deaths | 8528.0 | 4.0 | 0.0 | null |
345.0 | Album_covers | 194252.0 | 4.0 | 194247.0 | null |
346.0 | Rhine_basin | 65.0 | 48.0 | 0.0 | null |
347.0 | Valdosta,_Georgia | 18.0 | 3.0 | 0.0 | null |
348.0 | National_Invitation_Tournament | 92.0 | 2.0 | 0.0 | null |
349.0 | Ghosts | 83.0 | 4.0 | 0.0 | null |
350.0 | Aer_Lingus | 12.0 | 1.0 | 2.0 | null |
351.0 | Deuteromycota | 11.0 | 0.0 | 0.0 | null |
352.0 | Fascism | 87.0 | 23.0 | 0.0 | null |
353.0 | 2006_Atlantic_hurricane_season | 12.0 | 0.0 | 0.0 | null |
354.0 | New_Zealand_people_by_religion | 14.0 | 14.0 | 0.0 | null |
355.0 | Confucianists_by_nationality | 10.0 | 10.0 | 0.0 | null |
356.0 | .NET_programming_languages | 36.0 | 1.0 | 0.0 | null |
357.0 | English_early_modern_theatre_companies | 23.0 | 1.0 | 0.0 | null |
358.0 | All_articles_proposed_for_deletion | 153.0 | 0.0 | 0.0 | null |
360.0 | Brand_name_food_products_stubs | 419.0 | 0.0 | 0.0 | null |
361.0 | Brand_name_snack_foods | 183.0 | 20.0 | 0.0 | null |
364.0 | Certification_marks | 93.0 | 5.0 | 0.0 | null |
365.0 | Energy_in_the_United_States | 78.0 | 18.0 | 0.0 | null |
366.0 | Product_certification | 58.0 | 8.0 | 0.0 | null |
367.0 | United_States_Environmental_Protection_Agency | 89.0 | 4.0 | 0.0 | null |
368.0 | United_States_environmental_law | 0.0 | 0.0 | 0.0 | null |
370.0 | South_Africa_geography_stubs | 52.0 | 11.0 | 0.0 | null |
371.0 | Capitals_in_Europe | 107.0 | 55.0 | 0.0 | null |
372.0 | Capitals_in_Asia | 129.0 | 58.0 | 0.0 | null |
375.0 | Uncategorized_pages | 744.0 | 3.0 | 0.0 | null |
376.0 | Slovakia | 18.0 | 15.0 | 0.0 | null |
377.0 | Monroe,_Louisiana | 17.0 | 5.0 | 0.0 | null |
378.0 | Croatian_football_biography_stubs | 150.0 | 5.0 | 0.0 | null |
379.0 | 1958_births | 14421.0 | 0.0 | 0.0 | null |
380.0 | Croatian_footballers | 1680.0 | 4.0 | 0.0 | null |
382.0 | 1982_FIFA_World_Cup_players | 526.0 | 0.0 | 0.0 | null |
385.0 | Cercle_Brugge_K.S.V._players | 373.0 | 0.0 | 0.0 | null |
386.0 | All_articles_needing_copy_edit | 1925.0 | 0.0 | 0.0 | null |
387.0 | Articles_lacking_reliable_references_from_August_2007 | 111.0 | 0.0 | 0.0 | null |
388.0 | Articles_that_need_to_differentiate_between_fact_and_fiction | 194.0 | 194.0 | 0.0 | null |
390.0 | DC_Comics_titles | 477.0 | 27.0 | 0.0 | null |
391.0 | Teen_Titans | 9.0 | 4.0 | 0.0 | null |
393.0 | Articles_that_need_to_be_wikified | 0.0 | 0.0 | 0.0 | null |
394.0 | Articles_with_peacock_terms | 156.0 | 156.0 | 0.0 | null |
395.0 | Screen_actor_stubs | 34.0 | 10.0 | 0.0 | null |
396.0 | Gang_films | 4.0 | 4.0 | 0.0 | null |
398.0 | Elk_County,_Kansas | 11.0 | 6.0 | 0.0 | null |
399.0 | G8 | 0.0 | 0.0 | 0.0 | null |
400.0 | Materialism | 55.0 | 10.0 | 0.0 | null |
401.0 | Buenos_Aires | 53.0 | 19.0 | 2.0 | null |
402.0 | Administrative_backlog | 18.0 | 6.0 | 0.0 | null |
403.0 | Stub-Class_United_States_military_history_articles | 6719.0 | 0.0 | 0.0 | null |
404.0 | Stub-Class_American_Civil_War_articles | 1761.0 | 0.0 | 0.0 | null |
405.0 | Candidates_for_speedy_deletion_by_user | 1.0 | 1.0 | 0.0 | null |
406.0 | Star_Fleet_Universe | 14.0 | 1.0 | 0.0 | null |
407.0 | Star_Trek_templates | 44.0 | 1.0 | 0.0 | null |
408.0 | Wikipedia_templates_for_deletion | 0.0 | 0.0 | 0.0 | null |
410.0 | Articles_lacking_sources_from_March_2007 | 555.0 | 0.0 | 0.0 | null |
411.0 | Rivers_of_Ecuador | 88.0 | 2.0 | 0.0 | null |
412.0 | Rivers_of_Peru | 130.0 | 3.0 | 0.0 | null |
414.0 | Bosnian_and_Herzegovinian_martial_artists | 0.0 | 0.0 | 0.0 | null |
415.0 | Bosnia_and_Herzegovina_martial_artists | 11.0 | 11.0 | 0.0 | null |
416.0 | School_districts_in_Georgia_(U.S._state) | 188.0 | 3.0 | 3.0 | null |
417.0 | Columbia_County,_Georgia | 9.0 | 6.0 | 0.0 | null |
419.0 | Radio_stations_in_Montana | 262.0 | 8.0 | 0.0 | null |
420.0 | Radio_station_logos | 7732.0 | 3.0 | 7729.0 | null |
421.0 | Elephants | 69.0 | 16.0 | 0.0 | null |
422.0 | Fauna_of_Angola | 14.0 | 3.0 | 0.0 | null |
423.0 | Fauna_of_Burkina_Faso | 9.0 | 3.0 | 0.0 | null |
424.0 | Fauna_of_Ethiopia | 46.0 | 5.0 | 0.0 | null |
425.0 | Fauna_of_Namibia | 37.0 | 5.0 | 0.0 | null |
426.0 | Fauna_of_South_Africa | 72.0 | 8.0 | 0.0 | null |
427.0 | Fauna_of_Sudan | 11.0 | 5.0 | 0.0 | null |
428.0 | Fauna_of_Tanzania | 83.0 | 5.0 | 0.0 | null |
429.0 | Fauna_of_West_Africa | 20.0 | 20.0 | 0.0 | null |
430.0 | Fauna_of_Zambia | 51.0 | 4.0 | 0.0 | null |
431.0 | Fauna_of_the_Democratic_Republic_of_the_Congo | 28.0 | 4.0 | 0.0 | null |
432.0 | Fauna_of_the_Republic_of_the_Congo | 63.0 | 3.0 | 0.0 | null |
433.0 | Fauna_of_the_Sahara | 39.0 | 2.0 | 0.0 | null |
434.0 | Mammals_of_Africa | 78.0 | 23.0 | 0.0 | null |
435.0 | Mammals_of_Kenya | 108.0 | 0.0 | 0.0 | null |
437.0 | Vulnerable_species | 15.0 | 10.0 | 0.0 | null |
438.0 | Australia_stubs | 290.0 | 26.0 | 0.0 | null |
439.0 | United_States_government_images | 1073.0 | 18.0 | 1055.0 | null |
441.0 | Economy_of_Poland | 43.0 | 24.0 | 0.0 | null |
442.0 | Terminator:_The_Sarah_Connor_Chronicles | 7.0 | 3.0 | 0.0 | null |
443.0 | All_dead-end_pages | 1.0 | 0.0 | 0.0 | null |
445.0 | Country_radio_stations_in_the_United_States | 1414.0 | 6.0 | 0.0 | null |
446.0 | Missoula_County,_Montana | 15.0 | 6.0 | 0.0 | null |
447.0 | Montana_radio_station_stubs | 159.0 | 0.0 | 0.0 | null |
449.0 | Republika_Srpska | 32.0 | 17.0 | 0.0 | null |
450.0 | Subdivisions_of_Bosnia_and_Herzegovina | 13.0 | 7.0 | 0.0 | null |
452.0 | WikiProject_Radio_Stations | 4.0 | 2.0 | 0.0 | null |
453.0 | Stub-Class_Montana_articles | 2752.0 | 0.0 | 0.0 | null |
454.0 | History_of_North_America | 74.0 | 35.0 | 0.0 | null |
455.0 | Flora_of_Cambodia | 102.0 | 3.0 | 0.0 | null |
456.0 | Post-apocalyptic_fiction | 48.0 | 16.0 | 0.0 | null |
458.0 | Low-importance_plant_articles | 81288.0 | 1.0 | 0.0 | null |
461.0 | Albinism | 18.0 | 5.0 | 0.0 | null |
462.0 | American_college_basketball_templates | 33.0 | 3.0 | 0.0 | null |
463.0 | Acronyms | 64.0 | 3.0 | 0.0 | null |
465.0 | Anti-communism | 143.0 | 31.0 | 0.0 | null |
469.0 | Cold_War_treaties | 121.0 | 39.0 | 0.0 | null |
470.0 | Foreign_relations_of_the_Soviet_Union | 163.0 | 36.0 | 0.0 | null |
471.0 | International_military_organizations | 39.0 | 6.0 | 0.0 | null |
473.0 | Military_alliances | 17.0 | 2.0 | 0.0 | null |
475.0 | NATO | 64.0 | 19.0 | 0.0 | null |
476.0 | Organisations_based_in_Belgium | 30.0 | 12.0 | 1.0 | null |
477.0 | Organizations_established_in_1949 | 155.0 | 15.0 | 0.0 | null |
478.0 | Supraorganizations | 101.0 | 19.0 | 0.0 | null |
479.0 | Wikipedia_articles_in_need_of_updating | 175.0 | 175.0 | 0.0 | null |
480.0 | Serial_killer_films | 21.0 | 9.0 | 0.0 | null |
481.0 | Country_radio_stations_in_Canada | 128.0 | 0.0 | 0.0 | null |
482.0 | Hentai | 28.0 | 9.0 | 0.0 | null |
483.0 | Mid-importance_Mountain_articles | 2455.0 | 0.0 | 0.0 | null |
484.0 | Low-importance_Mountain_articles | 29415.0 | 0.0 | 0.0 | null |
485.0 | Autobiographical_articles | 169.0 | 169.0 | 0.0 | null |
490.0 | Surenos | 0.0 | 0.0 | 0.0 | null |
491.0 | The_Bold_and_the_Beautiful | 4.0 | 2.0 | 0.0 | null |
492.0 | Tragulidae | 0.0 | 0.0 | 0.0 | null |
493.0 | Polish_language | 49.0 | 17.0 | 0.0 | null |
495.0 | 2007_singles | 2012.0 | 1.0 | 0.0 | null |
497.0 | Sum_41_songs | 39.0 | 0.0 | 0.0 | null |
498.0 | Thrones | 20.0 | 1.0 | 0.0 | null |
499.0 | Trinidadian_and_Tobagonian_martial_artists | 0.0 | 0.0 | 0.0 | null |
500.0 | Trinidad_and_Tobago_martial_artists | 9.0 | 9.0 | 0.0 | null |
501.0 | Algiers | 30.0 | 14.0 | 0.0 | null |
502.0 | Unassessed_biography_(musicians)_articles | 4828.0 | 0.0 | 0.0 | null |
504.0 | Food_ingredient_stubs | 142.0 | 1.0 | 0.0 | null |
505.0 | 1863_births | 3169.0 | 0.0 | 0.0 | null |
506.0 | 1900_deaths | 1969.0 | 2.0 | 0.0 | null |
507.0 | American_folklore | 286.0 | 31.0 | 0.0 | null |
508.0 | Disasters_in_Mississippi | 7.0 | 4.0 | 0.0 | null |
509.0 | People_from_Missouri | 111.0 | 13.0 | 0.0 | null |
510.0 | People_in_rail_transport | 22.0 | 14.0 | 0.0 | null |
512.0 | Railway_accidents_in_the_United_States | 0.0 | 0.0 | 0.0 | null |
513.0 | Canadian_indie_rock_groups | 354.0 | 0.0 | 0.0 | null |
516.0 | Swindon_Town_F.C. | 28.0 | 7.0 | 9.0 | null |
520.0 | 2006_albums | 3202.0 | 11.0 | 0.0 | null |
522.0 | Stillste_Stund_albums | 6.0 | 0.0 | 0.0 | null |
524.0 | Start-Class_language_articles | 3627.0 | 0.0 | 0.0 | null |
526.0 | Maximum_Ride | 10.0 | 0.0 | 0.0 | null |
527.0 | Biography_(musicians)_articles_by_quality | 20.0 | 18.0 | 0.0 | null |
530.0 | Habits | 34.0 | 5.0 | 0.0 | null |
531.0 | Personal_development | 112.0 | 19.0 | 0.0 | null |
532.0 | Self | 83.0 | 12.0 | 0.0 | null |
535.0 | G-Unit_Records_albums | 12.0 | 1.0 | 0.0 | null |
536.0 | G-Unit_albums | 7.0 | 0.0 | 0.0 | null |
537.0 | Carthage | 70.0 | 10.0 | 0.0 | null |
538.0 | 1936_births | 10149.0 | 0.0 | 0.0 | null |
539.0 | 2002_deaths | 6800.0 | 4.0 | 0.0 | null |
540.0 | American_children's_writers | 2006.0 | 12.0 | 0.0 | null |
541.0 | Antioch_College_alumni | 263.0 | 0.0 | 0.0 | null |
543.0 | Edgar_Award_winners | 395.0 | 1.0 | 0.0 | null |
544.0 | Laura_Ingalls_Wilder_Medal_winners | 21.0 | 0.0 | 0.0 | null |
545.0 | MacArthur_Fellows | 1068.0 | 0.0 | 0.0 | null |
546.0 | Newbery_Medal_winners | 95.0 | 0.0 | 0.0 | null |
547.0 | People_from_Yellow_Springs,_Ohio | 46.0 | 0.0 | 0.0 | null |
550.0 | Available_translators_in_Wikipedia | 175.0 | 167.0 | 0.0 | null |
551.0 | Translators_pt-en | 111.0 | 0.0 | 0.0 | null |
552.0 | University_of_Ottawa | 45.0 | 5.0 | 2.0 | null |
555.0 | All_orphaned_articles | 80822.0 | 0.0 | 0.0 | null |
556.0 | Articles_lacking_reliable_references_from_March_2008 | 352.0 | 0.0 | 0.0 | null |
557.0 | American_screen_actor,_1920s_birth_stubs | 67.0 | 0.0 | 0.0 | null |
558.0 | YouTube_videos | 5.0 | 5.0 | 0.0 | null |
559.0 | YouTube | 93.0 | 11.0 | 0.0 | null |
560.0 | Wikipedia_style_guidelines | 6.0 | 2.0 | 0.0 | null |
561.0 | Austrian_literature | 34.0 | 14.0 | 0.0 | null |
562.0 | Austrian_novels | 51.0 | 9.0 | 0.0 | null |
563.0 | Naruto_characters | 20.0 | 1.0 | 0.0 | null |
564.0 | Ancient_Roman_people_stubs | 454.0 | 2.0 | 0.0 | null |
565.0 | Ancient_Roman_women | 10.0 | 10.0 | 0.0 | null |
566.0 | Kosher_food | 68.0 | 11.0 | 0.0 | null |
569.0 | Companies_based_in_Redmond,_Washington | 29.0 | 1.0 | 0.0 | null |
570.0 | Companies_established_in_1889 | 17.0 | 15.0 | 0.0 | null |
572.0 | Companies_listed_on_the_Frankfurt_Stock_Exchange | 107.0 | 1.0 | 0.0 | null |
573.0 | Companies_listed_on_the_Tokyo_Stock_Exchange | 571.0 | 32.0 | 0.0 | null |
574.0 | Companies_of_Japan | 35.0 | 25.0 | 0.0 | null |
575.0 | Entertainment_Software_Association | 7.0 | 1.0 | 0.0 | null |
577.0 | Nintendo | 58.0 | 22.0 | 0.0 | null |
578.0 | Video_game_publishers | 627.0 | 56.0 | 0.0 | null |
584.0 | Coastal_cities | 0.0 | 0.0 | 0.0 | null |
585.0 | Comarques_of_the_Valencian_Community | 73.0 | 36.0 | 0.0 | null |
586.0 | Former_national_capitals | 110.0 | 26.0 | 0.0 | null |
588.0 | Port_cities_and_towns_in_Spain | 4.0 | 3.0 | 0.0 | null |
589.0 | Port_cities_of_the_Mediterranean_Sea | 31.0 | 23.0 | 0.0 | null |
590.0 | Roman_sites_in_Spain | 67.0 | 7.0 | 0.0 | null |
592.0 | Valencia | 22.0 | 13.0 | 1.0 | null |
593.0 | WikiProject_Geography_of_Canada_articles | 2.0 | 2.0 | 0.0 | null |
594.0 | B-Class_Geography_of_Canada_articles | 246.0 | 0.0 | 0.0 | null |
595.0 | Mid-importance_Geography_of_Canada_articles | 3851.0 | 0.0 | 0.0 | null |
596.0 | B-Class_Canada-related_articles | 2623.0 | 0.0 | 0.0 | null |
597.0 | Mid-importance_Canada-related_articles | 12819.0 | 0.0 | 0.0 | null |
598.0 | Good_article_nominees | 547.0 | 6.0 | 0.0 | null |
601.0 | Psychological_theories | 202.0 | 14.0 | 0.0 | null |
603.0 | Unassessed_rail_transport_articles | 2197.0 | 6.0 | 0.0 | null |
604.0 | Unknown-importance_rail_transport_articles | 8466.0 | 3.0 | 0.0 | null |
605.0 | Unassessed_UK_Railways_articles | 20.0 | 0.0 | 0.0 | null |
606.0 | Unknown-importance_UK_Railways_articles | 132.0 | 0.0 | 0.0 | null |
607.0 | Rail_transport_articles_needing_images | 0.0 | 0.0 | 0.0 | null |
608.0 | Bangladesh | 23.0 | 19.0 | 0.0 | null |
609.0 | Guelph,_Ontario | 0.0 | 0.0 | 0.0 | null |
610.0 | 1981_births | 16452.0 | 0.0 | 0.0 | null |
612.0 | African-American_actors | 49.0 | 5.0 | 0.0 | null |
613.0 | African-American_singers | 14.0 | 9.0 | 0.0 | null |
614.0 | American_Idol_participants | 389.0 | 1.0 | 0.0 | null |
616.0 | American_dance_musicians | 545.0 | 2.0 | 0.0 | null |
617.0 | American_film_actors | 70.0 | 9.0 | 0.0 | null |
618.0 | American_rhythm_and_blues_singers | 433.0 | 5.0 | 0.0 | null |
619.0 | BAFTA_winners_(people) | 278.0 | 27.0 | 0.0 | null |
620.0 | Best_Supporting_Actress_Academy_Award_winners | 86.0 | 1.0 | 0.0 | null |
621.0 | Best_Supporting_Actress_Golden_Globe_(film)_winners | 76.0 | 1.0 | 0.0 | null |
623.0 | Shared_IP_addresses | 0.0 | 0.0 | 0.0 | null |
624.0 | Articles_lacking_reliable_references_from_January_2008 | 231.0 | 0.0 | 0.0 | null |
625.0 | Wikipedia_introduction_cleanup | 162.0 | 162.0 | 0.0 | null |
626.0 | WikiProject_Museums_members | 76.0 | 0.0 | 0.0 | null |
630.0 | Suez_Canal | 59.0 | 5.0 | 0.0 | null |
631.0 | Arts_and_entertainment_work_group_articles | 182819.0 | 8.0 | 0.0 | null |
632.0 | Wikipedia_requested_photographs_of_artists_and_entertainers | 14069.0 | 2.0 | 0.0 | null |
633.0 | Stub-Class_biography_(arts_and_entertainment)_articles | 74012.0 | 0.0 | 0.0 | null |
636.0 | Chinese_words_and_phrases | 173.0 | 13.0 | 0.0 | null |
637.0 | Condiments | 147.0 | 19.0 | 0.0 | null |
638.0 | Indonesian_words_and_phrases | 50.0 | 2.0 | 0.0 | null |
639.0 | Malay_words_and_phrases | 38.0 | 0.0 | 0.0 | null |
640.0 | Tomato_products | 13.0 | 2.0 | 0.0 | null |
641.0 | Golfers_by_nationality | 87.0 | 87.0 | 0.0 | null |
642.0 | Trinidadian_and_Tobagonian_sportspeople | 0.0 | 0.0 | 0.0 | null |
643.0 | Botanical_gardens_in_North_Carolina | 28.0 | 1.0 | 0.0 | null |
645.0 | People_from_Lima | 440.0 | 1.0 | 0.0 | null |
646.0 | Sporting_Cristal_footballers | 319.0 | 0.0 | 0.0 | null |
647.0 | Racing_de_Santander_footballers | 0.0 | 0.0 | 0.0 | null |
648.0 | Philippines_geography_stubs | 512.0 | 7.0 | 0.0 | null |
649.0 | Stub-Class_Evolutionary_biology_articles | 138.0 | 0.0 | 0.0 | null |
650.0 | Low-importance_Evolutionary_biology_articles | 616.0 | 0.0 | 0.0 | null |
651.0 | WikiProject_Evolutionary_biology_articles | 1370.0 | 4.0 | 0.0 | null |
652.0 | Continents | 44.0 | 21.0 | 0.0 | null |
653.0 | Regions_of_the_Americas | 22.0 | 16.0 | 0.0 | null |
654.0 | MicroProse | 7.0 | 2.0 | 0.0 | null |
655.0 | MicroProse_games | 111.0 | 3.0 | 0.0 | null |
656.0 | Companies_established_in_1982 | 114.0 | 21.0 | 0.0 | null |
657.0 | 1953_births | 14062.0 | 0.0 | 0.0 | null |
658.0 | American_poets | 257.0 | 24.0 | 0.0 | null |
659.0 | Children's_writers | 23.0 | 13.0 | 0.0 | null |
661.0 | People_from_Fresno,_California | 154.0 | 6.0 | 0.0 | null |
662.0 | University_of_California,_Riverside_faculty | 196.0 | 0.0 | 0.0 | null |
663.0 | Writers_of_young_adult_literature | 31.0 | 6.0 | 0.0 | null |
664.0 | Exopedianist_Wikipedians | 191.0 | 0.0 | 0.0 | null |
665.0 | Immediatist_Wikipedians | 108.0 | 0.0 | 0.0 | null |
666.0 | Incrementalist_Wikipedians | 137.0 | 0.0 | 0.0 | null |
667.0 | Separatist_Wikipedians | 35.0 | 0.0 | 0.0 | null |
668.0 | Structurist_Wikipedians | 160.0 | 0.0 | 0.0 | null |
669.0 | Led_Zeppelin | 40.0 | 9.0 | 0.0 | null |
671.0 | Firelighting | 23.0 | 7.0 | 0.0 | null |
674.0 | 2003_novels | 154.0 | 16.0 | 0.0 | null |
675.0 | Fantasy_novels | 35.0 | 13.0 | 0.0 | null |
677.0 | Young_adult_novels | 82.0 | 11.0 | 0.0 | null |
679.0 | Yosemite_National_Park | 128.0 | 7.0 | 0.0 | null |
680.0 | Peru_international_footballers | 425.0 | 4.0 | 0.0 | null |
681.0 | Jewish_boxers | 129.0 | 1.0 | 0.0 | null |
682.0 | Wikipedia_requested_photographs_of_military-people | 8707.0 | 0.0 | 0.0 | null |
683.0 | Champ_Car | 36.0 | 12.0 | 0.0 | null |
684.0 | Botanist_stubs | 303.0 | 4.0 | 0.0 | null |
685.0 | Articles_to_be_merged | 27.0 | 27.0 | 0.0 | null |
686.0 | Articles_lacking_sources_from_September_2007 | 209.0 | 0.0 | 0.0 | null |
687.0 | History_of_Pakistan | 230.0 | 17.0 | 0.0 | null |
688.0 | History_of_Sindh | 139.0 | 17.0 | 0.0 | null |
691.0 | Ancient_Greek_theatre | 84.0 | 9.0 | 0.0 | null |
692.0 | Ancient_Greek_dramatists_and_playwrights | 101.0 | 5.0 | 0.0 | null |
693.0 | DC_Comics_superhero_teams | 134.0 | 11.0 | 0.0 | null |
696.0 | Redundant_infobox_title_param | 2396.0 | 0.0 | 0.0 | null |
697.0 | History_of_Sudan | 122.0 | 28.0 | 0.0 | null |
698.0 | Articles_needing_additional_references_from_May_2007 | 515.0 | 0.0 | 0.0 | null |
699.0 | WikiProject_Jazz_articles | 33101.0 | 7.0 | 0.0 | null |
700.0 | YMCA | 42.0 | 5.0 | 0.0 | null |
701.0 | Geology_stubs | 540.0 | 17.0 | 0.0 | null |
703.0 | Singaporean_Confucianists | 3.0 | 0.0 | 0.0 | null |
704.0 | WikiProject_Articles_for_creation_participants | 0.0 | 0.0 | 0.0 | null |
705.0 | 2000s_heavy_metal_album_stubs | 616.0 | 7.0 | 0.0 | null |
706.0 | Articles_needing_additional_references_from_March_2008 | 1140.0 | 0.0 | 0.0 | null |
707.0 | American_Idol | 32.0 | 8.0 | 0.0 | null |
708.0 | Start-Class_biography_(arts_and_entertainment)_articles | 75457.0 | 0.0 | 0.0 | null |
710.0 | One_Life_to_Live_characters | 101.0 | 3.0 | 0.0 | null |
711.0 | One_Life_to_Live | 23.0 | 2.0 | 0.0 | null |
712.0 | Single_stubs | 11.0 | 9.0 | 0.0 | null |
713.0 | Peruvian_footballers | 782.0 | 4.0 | 0.0 | null |
714.0 | Peruvian_football_biography_stubs | 184.0 | 4.0 | 0.0 | null |
716.0 | Science_stubs | 197.0 | 27.0 | 0.0 | null |
717.0 | Wikipedia_articles_needing_context | 124.0 | 124.0 | 0.0 | null |
718.0 | Khazars | 38.0 | 8.0 | 0.0 | null |
719.0 | Singaporean_people_by_religion | 10.0 | 10.0 | 0.0 | null |
721.0 | 2003_disestablishments | 26.0 | 24.0 | 0.0 | null |
722.0 | Aaliyah | 10.0 | 5.0 | 0.0 | null |
723.0 | The_Rolling_Stones | 57.0 | 10.0 | 1.0 | null |
724.0 | Energy_templates | 35.0 | 6.0 | 0.0 | null |
725.0 | Template-Class_Environment_articles | 139.0 | 0.0 | 0.0 | null |
726.0 | WikiProject_Environment | 26.0 | 8.0 | 0.0 | null |
727.0 | Speakers_of_the_United_States_House_of_Representatives | 62.0 | 5.0 | 0.0 | null |
728.0 | Wonder_Woman | 23.0 | 6.0 | 0.0 | null |
729.0 | 1873_births | 3865.0 | 0.0 | 0.0 | null |
730.0 | 1944_deaths | 5083.0 | 2.0 | 0.0 | null |
731.0 | French_physicists | 290.0 | 17.0 | 0.0 | null |
732.0 | French_scientist_stubs | 298.0 | 5.0 | 0.0 | null |
733.0 | The_Pendragon_Adventure | 10.0 | 0.0 | 0.0 | null |
734.0 | Singapore | 19.0 | 16.0 | 0.0 | null |
735.0 | English_musical_groups | 17.0 | 10.0 | 0.0 | null |
737.0 | Food_law | 94.0 | 12.0 | 0.0 | null |
738.0 | Jewish_law_and_rituals | 126.0 | 28.0 | 3.0 | null |
739.0 | 2008_songs | 2618.0 | 0.0 | 0.0 | null |
741.0 | 2008_singles | 1981.0 | 1.0 | 0.0 | null |
742.0 | Construction_and_civil_engineering_companies_of_the_United_States | 268.0 | 5.0 | 0.0 | null |
743.0 | Turtles | 22.0 | 16.0 | 0.0 | null |
746.0 | Districts_of_Cardiff | 37.0 | 4.0 | 0.0 | null |
747.0 | Villages_in_Cardiff | 12.0 | 2.0 | 0.0 | null |
748.0 | 1968_births | 14982.0 | 0.0 | 0.0 | null |
749.0 | People_from_Essex | 272.0 | 53.0 | 0.0 | null |
750.0 | American_rappers | 248.0 | 8.0 | 0.0 | null |
752.0 | Mid-importance_Animation_articles | 1100.0 | 21.0 | 0.0 | null |
754.0 | All_articles_with_dead_external_links | 259712.0 | 0.0 | 0.0 | null |
756.0 | Wikipedia_external_links_cleanup | 110.0 | 110.0 | 0.0 | null |
757.0 | Rugs_and_carpets | 92.0 | 13.0 | 0.0 | null |
759.0 | Little_Britain_characters | 3.0 | 1.0 | 0.0 | null |
760.0 | Independence_movements | 195.0 | 51.0 | 0.0 | null |
761.0 | Grayslake,_Illinois | 8.0 | 1.0 | 0.0 | null |
762.0 | User_en | 5066.0 | 27.0 | 0.0 | null |
763.0 | Australia | 19.0 | 15.0 | 0.0 | null |
764.0 | Radio-frequency_identification | 130.0 | 6.0 | 0.0 | null |
765.0 | Neptune | 23.0 | 5.0 | 0.0 | null |
766.0 | Cold_War_weapons_by_country | 12.0 | 11.0 | 0.0 | null |
767.0 | Weapons_of_the_United_States | 40.0 | 24.0 | 0.0 | null |
768.0 | Companies_established_in_2005 | 186.0 | 19.0 | 0.0 | null |
769.0 | Video_game_company_stubs | 118.0 | 20.0 | 0.0 | null |
770.0 | Giza_Plateau | 29.0 | 0.0 | 0.0 | null |
771.0 | 1990s_action_films | 203.0 | 25.0 | 0.0 | null |
772.0 | 1996_films | 1490.0 | 19.0 | 0.0 | null |
774.0 | American_films | 33.0 | 32.0 | 0.0 | null |
775.0 | English-language_films | 335.0 | 143.0 | 0.0 | null |
776.0 | Estudios_Churubusco_films | 40.0 | 0.0 | 0.0 | null |
778.0 | Romantic_drama_films | 8.0 | 7.0 | 0.0 | null |
780.0 | Teen_romance_films | 9.0 | 7.0 | 0.0 | null |
782.0 | Protected_areas_of_India | 27.0 | 12.0 | 0.0 | null |
783.0 | People_from_Morelia | 57.0 | 1.0 | 0.0 | null |
784.0 | Loire-Atlantique_geography_stubs | 247.0 | 0.0 | 0.0 | null |
785.0 | Pays-de-la-Loire_geography_stubs | 34.0 | 5.0 | 0.0 | null |
786.0 | Sexual_selection | 60.0 | 1.0 | 0.0 | null |
787.0 | Ecology | 356.0 | 32.0 | 0.0 | null |
788.0 | Mating_systems | 26.0 | 5.0 | 0.0 | null |
789.0 | Reproduction | 89.0 | 12.0 | 0.0 | null |
790.0 | Mating | 45.0 | 5.0 | 0.0 | null |
791.0 | The_Veronicas | 10.0 | 3.0 | 0.0 | null |
792.0 | PSV_Eindhoven | 25.0 | 8.0 | 3.0 | null |
793.0 | Unión_de_Santa_Fe_footballers | 349.0 | 0.0 | 0.0 | null |
795.0 | 1893_births | 5370.0 | 0.0 | 0.0 | null |
796.0 | 1967_deaths | 4630.0 | 2.0 | 0.0 | null |
798.0 | Brooklyn_Robins_players | 237.0 | 0.0 | 0.0 | null |
799.0 | St._Louis_Cardinals_players | 1912.0 | 1.0 | 0.0 | null |
800.0 | Chicago_Cubs_players | 1958.0 | 3.0 | 0.0 | null |
801.0 | Major_League_Baseball_coaches | 23.0 | 10.0 | 0.0 | null |
802.0 | Minor_league_baseball_managers | 2250.0 | 67.0 | 0.0 | null |
803.0 | Baseball_shortstop_stubs | 155.0 | 1.0 | 0.0 | null |
804.0 | Portsmouth_F.C. | 20.0 | 8.0 | 0.0 | null |
805.0 | Roman_Catholic_Archdiocese_of_Detroit | 98.0 | 6.0 | 0.0 | null |
806.0 | Skateboarding | 64.0 | 13.0 | 0.0 | null |
807.0 | Expatriate_footballers_in_Argentina | 1504.0 | 1.0 | 0.0 | null |
808.0 | Brighton_&_Hove_Albion_F.C. | 24.0 | 9.0 | 1.0 | null |
809.0 | AFC_Cup | 6.0 | 5.0 | 0.0 | null |
810.0 | Unassessed_Baseball_articles | 654.0 | 1.0 | 0.0 | null |
811.0 | Unknown-importance_Baseball_articles | 8053.0 | 1.0 | 0.0 | null |
812.0 | WikiProject_Baseball_articles | 84678.0 | 6.0 | 0.0 | null |
813.0 | Microbiology | 176.0 | 23.0 | 0.0 | null |
815.0 | Protista | 15.0 | 2.0 | 0.0 | null |
816.0 | Wikipedia_basic_information | 81.0 | 6.0 | 0.0 | null |
817.0 | Articles_with_dead_external_links | 173.0 | 171.0 | 0.0 | null |
818.0 | All_articles_with_broken_or_outdated_citations | 160.0 | 0.0 | 0.0 | null |
821.0 | My_Chemical_Romance | 10.0 | 5.0 | 0.0 | null |
822.0 | Rongorongo | 29.0 | 1.0 | 14.0 | null |
823.0 | 2000s_song_stubs | 146.0 | 7.0 | 0.0 | null |
824.0 | 1891_births | 5295.0 | 0.0 | 0.0 | null |
825.0 | 1964_deaths | 4346.0 | 2.0 | 0.0 | null |
826.0 | Chicago_White_Sox_players | 1840.0 | 1.0 | 0.0 | null |
830.0 | Baseball_center_fielder_stubs | 49.0 | 0.0 | 0.0 | null |
831.0 | Dance-pop_songs | 659.0 | 34.0 | 0.0 | null |
832.0 | Nicole_Scherzinger_songs | 30.0 | 0.0 | 0.0 | null |
835.0 | Self-reference | 29.0 | 5.0 | 0.0 | null |
836.0 | Articles_needing_additional_references | 205.0 | 204.0 | 0.0 | null |
837.0 | 1961_births | 14715.0 | 0.0 | 0.0 | null |
841.0 | Olympic_footballers_of_Yugoslavia | 172.0 | 0.0 | 0.0 | null |
842.0 | Footballers_at_the_1984_Summer_Olympics | 268.0 | 0.0 | 0.0 | null |
843.0 | Olympic_bronze_medalists_for_Yugoslavia | 90.0 | 0.0 | 0.0 | null |
844.0 | Croatian_football_managers | 307.0 | 1.0 | 0.0 | null |
845.0 | High-importance_Green_Bay_Packers_articles | 166.0 | 0.0 | 0.0 | null |
846.0 | Unknown-importance_Green_Bay_Packers_articles | 2.0 | 0.0 | 0.0 | null |
847.0 | Thompson-Nicola_Regional_District | 23.0 | 3.0 | 0.0 | null |
849.0 | American_tennis_coaches | 205.0 | 2.0 | 0.0 | null |
850.0 | Postcolonialism | 69.0 | 9.0 | 0.0 | null |
851.0 | Sexual_fetishism | 109.0 | 11.0 | 0.0 | null |
853.0 | Buildings_and_structures_in_the_San_Francisco_Bay_Area | 26.0 | 22.0 | 0.0 | null |
854.0 | Lighthouses_in_California | 20.0 | 5.0 | 0.0 | null |
856.0 | Construction_and_civil_engineering_companies_by_country | 69.0 | 69.0 | 0.0 | null |
858.0 | Trinidad_and_Tobago_sportspeople | 11.0 | 11.0 | 0.0 | null |
860.0 | Screenshots_of_films | 5083.0 | 8.0 | 5075.0 | null |
861.0 | San_Jose_Earthquakes | 28.0 | 9.0 | 1.0 | null |
862.0 | 1964_births | 15643.0 | 0.0 | 0.0 | null |
863.0 | Swedish_curlers | 7.0 | 7.0 | 0.0 | null |
864.0 | Winter_Olympics_medalists | 5.0 | 5.0 | 0.0 | null |
865.0 | Curlers_at_the_1998_Winter_Olympics | 77.0 | 0.0 | 0.0 | null |
866.0 | Olympic_bronze_medalists_for_Sweden | 466.0 | 0.0 | 0.0 | null |
867.0 | Curling_biography_stubs | 173.0 | 17.0 | 0.0 | null |
868.0 | Swedish_Olympic_medalist_stubs | 544.0 | 1.0 | 0.0 | null |
869.0 | Winter_Olympic_medalist_stubs | 234.0 | 10.0 | 0.0 | null |
870.0 | County_Meath | 31.0 | 17.0 | 0.0 | null |
871.0 | Articles_with_limited_geographic_scope | 204.0 | 204.0 | 0.0 | null |
872.0 | USA-centric | 0.0 | 0.0 | 0.0 | null |
873.0 | Father_Ted_characters | 3.0 | 0.0 | 0.0 | null |
874.0 | Universitario_de_Deportes_footballers | 0.0 | 0.0 | 0.0 | null |
876.0 | Cantonese-language_films | 83.0 | 6.0 | 0.0 | null |
877.0 | Exploitation_films | 50.0 | 17.0 | 0.0 | null |
878.0 | Erotic_thriller_films | 5.0 | 4.0 | 0.0 | null |
879.0 | Articles_lacking_sources_from_January_2008 | 492.0 | 0.0 | 0.0 | null |
880.0 | Sweeteners | 0.0 | 0.0 | 0.0 | null |
881.0 | Japanese_Confucianists | 38.0 | 0.0 | 0.0 | null |
882.0 | High-importance_constructed_language_articles | 37.0 | 0.0 | 0.0 | null |
883.0 | Mid-importance_constructed_language_articles | 127.0 | 0.0 | 0.0 | null |
884.0 | Croix_de_guerre_recipients | 0.0 | 0.0 | 0.0 | null |
885.0 | British_Army_personnel_of_World_War_I | 5783.0 | 5.0 | 0.0 | null |
887.0 | Trinidadian_and_Tobagonian_cyclists | 0.0 | 0.0 | 0.0 | null |
888.0 | Trinidad_and_Tobago_cyclists | 5.0 | 4.0 | 0.0 | null |
890.0 | Kushiel's_Legacy | 7.0 | 0.0 | 0.0 | null |
891.0 | Construction_and_civil_engineering_companies | 15.0 | 10.0 | 0.0 | null |
893.0 | Moldova | 19.0 | 16.0 | 0.0 | null |
895.0 | Wikipedians_interested_in_environmental_science | 1.0 | 0.0 | 0.0 | null |
896.0 | Novels_by_Mika_Waltari | 12.0 | 0.0 | 0.0 | null |
897.0 | Finnish_novels | 9.0 | 9.0 | 0.0 | null |
898.0 | Construction | 196.0 | 38.0 | 0.0 | null |
899.0 | Vienna | 22.0 | 18.0 | 0.0 | null |
900.0 | Palau | 21.0 | 16.0 | 0.0 | null |
903.0 | Church_stubs | 26.0 | 13.0 | 0.0 | null |
904.0 | Missouri_stubs | 188.0 | 7.0 | 0.0 | null |
908.0 | 2006_EPs | 339.0 | 1.0 | 0.0 | null |
909.0 | Albums | 42.0 | 32.0 | 0.0 | null |
912.0 | Baseball_third_baseman_stubs | 168.0 | 1.0 | 0.0 | null |
913.0 | 2005_disestablishments | 29.0 | 25.0 | 0.0 | null |
915.0 | Companies_established_in_1971 | 19.0 | 17.0 | 0.0 | null |
916.0 | Defunct_companies_of_the_United_States | 66.0 | 8.0 | 0.0 | null |
918.0 | Viacom | 0.0 | 0.0 | 0.0 | null |
919.0 | Viacom_subsidiaries | 0.0 | 0.0 | 0.0 | null |
921.0 | Spoken_Wikipedia_requests | 748.0 | 0.0 | 0.0 | null |
922.0 | 1978_FIFA_World_Cup | 24.0 | 8.0 | 0.0 | null |
923.0 | Wikipedia_protected_edit_requests | 0.0 | 0.0 | 0.0 | null |
924.0 | Tibet | 80.0 | 28.0 | 0.0 | null |
925.0 | Nebraska_stubs | 222.0 | 5.0 | 0.0 | null |
927.0 | Delaware_State_University | 5.0 | 2.0 | 0.0 | null |
928.0 | 2008_EPs | 387.0 | 1.0 | 0.0 | null |
929.0 | Suspension_bridges | 43.0 | 5.0 | 0.0 | null |
930.0 | English_rappers | 12.0 | 5.0 | 0.0 | null |
931.0 | 1989_births | 17929.0 | 0.0 | 0.0 | null |
932.0 | Palm_stubs | 357.0 | 3.0 | 0.0 | null |
934.0 | Child_actors_by_nationality | 65.0 | 65.0 | 0.0 | null |
935.0 | Stealth_aircraft | 82.0 | 2.0 | 0.0 | null |
938.0 | Actors_and_filmmakers_work_group_articles | 92464.0 | 3.0 | 0.0 | null |
939.0 | B-Class_Oklahoma_articles | 292.0 | 1.0 | 0.0 | null |
940.0 | B-Class_biography_(actors_and_filmmakers)_articles | 1677.0 | 0.0 | 0.0 | null |
941.0 | B-Class_biography_articles | 31430.0 | 11.0 | 0.0 | null |
943.0 | Mid-importance_Oklahoma_articles | 1139.0 | 0.0 | 0.0 | null |
945.0 | Cigarette_rolling_papers | 17.0 | 0.0 | 0.0 | null |
946.0 | Brand_name_products_stubs | 433.0 | 1.0 | 0.0 | null |
948.0 | Anti-Catholicism | 44.0 | 10.0 | 0.0 | null |
949.0 | Religious_persecution | 63.0 | 25.0 | 0.0 | null |
950.0 | Comic_book_covers | 710.0 | 40.0 | 669.0 | null |
951.0 | Non-free_comic_images | 7856.0 | 30.0 | 7826.0 | null |
952.0 | Fair_use_character_artwork | 1254.0 | 3.0 | 1251.0 | null |
953.0 | Music_managers | 24.0 | 1.0 | 0.0 | null |
954.0 | Start-Class_Disney_articles | 1891.0 | 6.0 | 0.0 | null |
955.0 | Unassessed_Disney_articles | 16.0 | 6.0 | 0.0 | null |
956.0 | Egypt_stubs | 169.0 | 9.0 | 0.0 | null |
957.0 | 2007_EPs | 330.0 | 1.0 | 0.0 | null |
958.0 | Incomplete_lists | 182.0 | 182.0 | 0.0 | null |
959.0 | Christianity_and_other_religions | 34.0 | 14.0 | 0.0 | null |
960.0 | Judeo-Christian_topics | 25.0 | 3.0 | 0.0 | null |
961.0 | Judaism_and_other_religions | 22.0 | 11.0 | 0.0 | null |
962.0 | Christian_and_Jewish_interfaith_topics | 0.0 | 0.0 | 0.0 | null |
964.0 | American_rock_singers | 1407.0 | 8.0 | 0.0 | null |
965.0 | American_heavy_metal_singers | 338.0 | 1.0 | 0.0 | null |
966.0 | Novels_by_author | 0.0 | 0.0 | 0.0 | null |
967.0 | Italian_novels | 23.0 | 10.0 | 0.0 | null |
968.0 | 1965_births | 14963.0 | 0.0 | 0.0 | null |
969.0 | Accuracy_disputes_from_March_2008 | 29.0 | 1.0 | 0.0 | null |
970.0 | Chinese_Muslims | 68.0 | 9.0 | 0.0 | null |
972.0 | WikiProject_Czech_Republic_articles | 5.0 | 5.0 | 0.0 | null |
973.0 | Unassessed_Czech_Republic_articles | 9.0 | 0.0 | 0.0 | null |
974.0 | Unknown-importance_Czech_Republic_articles | 859.0 | 0.0 | 0.0 | null |
977.0 | Lighthouses_in_the_San_Francisco_Bay_Area | 13.0 | 1.0 | 0.0 | null |
979.0 | Stub-Class_New_Mexico_articles | 2322.0 | 0.0 | 0.0 | null |
980.0 | Unassessed_New_Mexico_articles | 306.0 | 0.0 | 0.0 | null |
981.0 | Man | 1.0 | 0.0 | 0.0 | null |
984.0 | 1955_births | 14266.0 | 0.0 | 0.0 | null |
985.0 | Deportivo_de_La_Coruña_players | 407.0 | 2.0 | 0.0 | null |
986.0 | Footballers_at_the_1980_Summer_Olympics | 263.0 | 0.0 | 0.0 | null |
987.0 | Judaism | 26.0 | 25.0 | 0.0 | null |
988.0 | Child_singers_by_nationality | 56.0 | 56.0 | 0.0 | null |
989.0 | Wikis | 80.0 | 8.0 | 0.0 | null |
990.0 | B-Class_Disney_articles | 188.0 | 6.0 | 0.0 | null |
991.0 | Military_aviation_task_force_articles | 32140.0 | 2.0 | 0.0 | null |
992.0 | Military_memorials_and_cemeteries_task_force_articles | 3045.0 | 2.0 | 0.0 | null |
993.0 | British_military_history_task_force_articles | 49788.0 | 2.0 | 0.0 | null |
994.0 | Unassessed_military_history_articles | 3.0 | 1.0 | 0.0 | null |
995.0 | Unassessed_aviation_articles | 144.0 | 0.0 | 0.0 | null |
996.0 | WikiProject_Aviation_articles | 75018.0 | 8.0 | 0.0 | null |
997.0 | Khmer_Rouge | 45.0 | 7.0 | 0.0 | null |
999.0 | Television_stubs | 106.0 | 19.0 | 0.0 | null |
1001.0 | Historic_preservation | 122.0 | 11.0 | 0.0 | null |
1002.0 | National_Register_of_Historic_Places_stubs | 9.0 | 7.0 | 0.0 | null |
1003.0 | Children_by_nationality | 97.0 | 97.0 | 0.0 | null |
1004.0 | Men | 70.0 | 35.0 | 0.0 | null |
1006.0 | Anarchists_by_nationality | 61.0 | 61.0 | 0.0 | null |
1007.0 | Novels_by_Kaari_Utrio | 27.0 | 0.0 | 0.0 | null |
1009.0 | Alphabetic_writing_systems | 0.0 | 0.0 | 0.0 | null |
1010.0 | Japanese_Christians | 88.0 | 14.0 | 0.0 | null |
1011.0 | Move_protected | 0.0 | 0.0 | 0.0 | null |
1013.0 | American_television_composers | 363.0 | 1.0 | 0.0 | null |
1015.0 | Upcoming_video_games | 141.0 | 2.0 | 0.0 | null |
1016.0 | Eyeshield_21_characters | 3.0 | 0.0 | 0.0 | null |
1017.0 | Irish-Americans | 0.0 | 0.0 | 0.0 | null |
1018.0 | Nickel | 26.0 | 5.0 | 0.0 | null |
1019.0 | Communists_by_nationality | 154.0 | 154.0 | 0.0 | null |
1021.0 | Mexican_Spanish | 12.0 | 2.0 | 0.0 | null |
1022.0 | 1987_births | 17411.0 | 0.0 | 0.0 | null |
1023.0 | Boston_Bruins_players | 1051.0 | 1.0 | 0.0 | null |
1024.0 | Finnish_ice_hockey_players | 69.0 | 6.0 | 0.0 | null |
1025.0 | Ilves_players | 314.0 | 1.0 | 0.0 | null |
1027.0 | Providence_Bruins_players | 518.0 | 0.0 | 0.0 | null |
1028.0 | Toronto_Maple_Leafs_draft_picks | 307.0 | 0.0 | 0.0 | null |
1030.0 | 1967_births | 14705.0 | 0.0 | 0.0 | null |
1031.0 | Ancient_Near_East_stubs | 115.0 | 4.0 | 0.0 | null |
1032.0 | Middle_Eastern_history_stubs | 320.0 | 6.0 | 0.0 | null |
1033.0 | Stub-Class_chemicals_articles | 10758.0 | 0.0 | 0.0 | null |
1034.0 | Low-importance_chemicals_articles | 17092.0 | 0.0 | 0.0 | null |
1035.0 | Unassessed_chemicals_articles | 47.0 | 0.0 | 0.0 | null |
1036.0 | Unknown-importance_chemicals_articles | 63.0 | 0.0 | 0.0 | null |
1038.0 | Tennessee_Registered_Historic_Place_stubs | 4.0 | 3.0 | 0.0 | null |
1039.0 | 1953_short_stories | 89.0 | 0.0 | 0.0 | null |
1040.0 | 1951_short_stories | 38.0 | 0.0 | 0.0 | null |
1041.0 | German_people | 46.0 | 38.0 | 0.0 | null |
1042.0 | Redundant_images_for_speedy_deletion | 0.0 | 0.0 | 0.0 | null |
1043.0 | Polynesia | 34.0 | 25.0 | 0.0 | null |
1044.0 | Invasive_species | 33.0 | 7.0 | 0.0 | null |
1045.0 | Code_Geass | 14.0 | 3.0 | 0.0 | null |
1046.0 | AfD_debates_(Biographical) | 176.0 | 0.0 | 0.0 | null |
1047.0 | Requests_for_unblock-auto | 1.0 | 0.0 | 0.0 | null |
1048.0 | Colombian_culture | 90.0 | 34.0 | 0.0 | null |
1049.0 | Mid-importance_chemicals_articles | 2158.0 | 0.0 | 0.0 | null |
1051.0 | European_composer_stubs | 378.0 | 19.0 | 0.0 | null |
1053.0 | National_Basketball_Association | 42.0 | 18.0 | 0.0 | null |
1055.0 | Pedophilia | 34.0 | 9.0 | 0.0 | null |
1056.0 | Semi-protected_against_vandalism | 0.0 | 0.0 | 0.0 | null |
1058.0 | Low-importance_Ireland_articles | 60479.0 | 16.0 | 0.0 | null |
1059.0 | Start-Class_biography_(politics_and_government)_articles | 77421.0 | 0.0 | 0.0 | null |
1061.0 | Unknown-importance_Ireland_articles | 16.0 | 14.0 | 0.0 | null |
1062.0 | Start-Class_military_memorials_and_cemeteries_articles | 1163.0 | 0.0 | 0.0 | null |
1063.0 | Lists_of_people_by_occupation | 163.0 | 52.0 | 0.0 | null |
1064.0 | Occupations | 66.0 | 17.0 | 0.0 | null |
1065.0 | English_actors | 42.0 | 14.0 | 0.0 | null |
1066.0 | Fullmetal_Alchemist_images | 11.0 | 1.0 | 10.0 | null |
1067.0 | Football_at_the_2008_Summer_Olympics | 7.0 | 4.0 | 0.0 | null |
1068.0 | Year_of_birth_unknown | 23249.0 | 2.0 | 0.0 | null |
1069.0 | 1537_deaths | 132.0 | 1.0 | 0.0 | null |
1071.0 | High-importance_chemicals_articles | 322.0 | 0.0 | 0.0 | null |
1072.0 | British_libertarians | 46.0 | 3.0 | 0.0 | null |
1073.0 | Libertarians_by_nationality | 36.0 | 36.0 | 0.0 | null |
1074.0 | U.C._Sampdoria | 13.0 | 7.0 | 0.0 | null |
1076.0 | Hayate_the_Combat_Butler | 16.0 | 1.0 | 2.0 | null |
1078.0 | Solano_County,_California | 19.0 | 12.0 | 0.0 | null |
1079.0 | The_Suite_Life_of_Zack_&_Cody | 10.0 | 1.0 | 4.0 | null |
1080.0 | South_Korean_Christians | 52.0 | 8.0 | 0.0 | null |
1081.0 | Images_of_Ukraine | 39.0 | 3.0 | 36.0 | null |
1082.0 | PD-UA-exempt | 12.0 | 0.0 | 12.0 | null |
1083.0 | American_football_coach_stubs | 255.0 | 1.0 | 0.0 | null |
1084.0 | College_football_coaches_first_appointed_in_the_2000s_stubs | 158.0 | 0.0 | 0.0 | null |
1085.0 | Gibson_County,_Indiana | 15.0 | 8.0 | 0.0 | null |
1087.0 | British_Army_personnel_of_World_War_II | 3817.0 | 10.0 | 0.0 | null |
1088.0 | British_military_personnel_killed_in_World_War_I | 1093.0 | 3.0 | 0.0 | null |
1089.0 | British_films | 41.0 | 41.0 | 0.0 | null |
1090.0 | 1980s_drama_films | 41.0 | 38.0 | 0.0 | null |
1091.0 | Romance_films | 30.0 | 20.0 | 0.0 | null |
1092.0 | Start-Class_chemicals_articles | 5594.0 | 0.0 | 0.0 | null |
1093.0 | Bosnia_and_Herzegovina_footballers | 1080.0 | 4.0 | 0.0 | null |
1094.0 | FK_Sarajevo_players | 353.0 | 0.0 | 0.0 | null |
1095.0 | VfB_Stuttgart_players | 456.0 | 1.0 | 0.0 | null |
1097.0 | Accuracy_disputes | 181.0 | 180.0 | 0.0 | null |
1098.0 | Stub-Class_Album_articles | 84178.0 | 0.0 | 0.0 | null |
1100.0 | WikiProject_Albums_articles | 380100.0 | 5.0 | 0.0 | null |
1101.0 | Contemporary_Christian_work_group_articles | 38.0 | 4.0 | 0.0 | null |
1102.0 | Stub-Class_Contemporary_Christian_articles | 9.0 | 0.0 | 0.0 | null |
1104.0 | Stub-Class_Christian_music_articles | 1904.0 | 0.0 | 0.0 | null |
1105.0 | Low-importance_Christian_music_articles | 3263.0 | 0.0 | 0.0 | null |
1106.0 | Electric_power_transmission_systems | 25.0 | 6.0 | 0.0 | null |
1107.0 | Liechtenstein | 18.0 | 15.0 | 0.0 | null |
1108.0 | Ivy_League | 35.0 | 23.0 | 0.0 | null |
1109.0 | Colombia_international_footballers | 465.0 | 3.0 | 0.0 | null |
1110.0 | América_de_Cali_footballers | 392.0 | 0.0 | 0.0 | null |
1111.0 | Independiente_Santa_Fe_footballers | 314.0 | 0.0 | 0.0 | null |
1113.0 | Piacenza_Calcio_players | 0.0 | 0.0 | 0.0 | null |
1114.0 | Sport_Boys_footballers | 227.0 | 0.0 | 0.0 | null |
1115.0 | Nazi_concentration_camps | 41.0 | 9.0 | 0.0 | null |
1121.0 | B-Class_core_topic_articles | 6.0 | 0.0 | 0.0 | null |
1122.0 | B-Class_taxonomic_articles | 34.0 | 0.0 | 0.0 | null |
1125.0 | Natural_sciences_Version_0.7_articles | 166.0 | 0.0 | 0.0 | null |
1126.0 | Top-importance_plant_articles | 79.0 | 2.0 | 0.0 | null |
1127.0 | Top-importance_taxonomic_articles | 25.0 | 0.0 | 0.0 | null |
1128.0 | Wikipedia_CD_Selection | 2405.0 | 2.0 | 0.0 | null |
1130.0 | Socialists_by_nationality | 192.0 | 192.0 | 0.0 | null |
1131.0 | French_hip_hop | 5.0 | 3.0 | 0.0 | null |
1132.0 | Drama_films | 22.0 | 17.0 | 0.0 | null |
1133.0 | Stub-Class_Museums_articles | 5634.0 | 0.0 | 0.0 | null |
1134.0 | Stub-Class_maritime_warfare_articles | 3629.0 | 0.0 | 0.0 | null |
1135.0 | Maritime_warfare_task_force_articles | 74239.0 | 2.0 | 0.0 | null |
1136.0 | Stub-Class_military_memorials_and_cemeteries_articles | 294.0 | 0.0 | 0.0 | null |
1137.0 | Stub-Class_Ships_articles | 8491.0 | 0.0 | 0.0 | null |
1143.0 | Unknown-importance_Doctor_Who_articles | 1.0 | 0.0 | 0.0 | null |
1144.0 | World | 48.0 | 29.0 | 0.0 | null |
1145.0 | Screenshots_of_music_videos | 1927.0 | 1.0 | 1926.0 | null |
1146.0 | Ayumi_Hamasaki | 10.0 | 3.0 | 0.0 | null |
1147.0 | Wales | 31.0 | 28.0 | 0.0 | null |
1148.0 | Dartmouth_College_alumni | 1604.0 | 5.0 | 0.0 | null |
1149.0 | Southern_United_States | 81.0 | 38.0 | 0.0 | null |
1150.0 | 1925_births | 8900.0 | 0.0 | 0.0 | null |
1151.0 | 1985_deaths | 5335.0 | 2.0 | 0.0 | null |
1153.0 | St._Louis_Browns_players | 773.0 | 1.0 | 0.0 | null |
1154.0 | Baltimore_Orioles_players | 1186.0 | 1.0 | 0.0 | null |
1155.0 | Cleveland_Indians_players | 1714.0 | 0.0 | 0.0 | null |
1156.0 | Philadelphia_Phillies_players | 2075.0 | 2.0 | 0.0 | null |
1158.0 | People_from_Howard_County,_Maryland | 49.0 | 11.0 | 0.0 | null |
1159.0 | Baseball_second_baseman_stubs | 127.0 | 1.0 | 0.0 | null |
1160.0 | American_Confucianists | 5.0 | 0.0 | 0.0 | null |
1161.0 | Stub-Class_football_articles | 208027.0 | 20.0 | 0.0 | null |
1163.0 | Mid-importance_football_in_Italy_articles | 3011.0 | 0.0 | 0.0 | null |
1164.0 | Stub-Class_football_in_Italy_articles | 7863.0 | 0.0 | 0.0 | null |
1166.0 | Mid-importance_football_in_Argentina_articles | 3011.0 | 0.0 | 0.0 | null |
1167.0 | Stub-Class_football_in_Argentina_articles | 5422.0 | 0.0 | 0.0 | null |
1168.0 | Mid-importance_football_articles | 51236.0 | 3.0 | 0.0 | null |
1172.0 | Articles_with_weasel_words | 172.0 | 172.0 | 0.0 | null |
1173.0 | Dungeons_&_Dragons_articles_that_need_to_differentiate_between_fact_and_fiction | 12.0 | 0.0 | 0.0 | null |
1175.0 | User_pt | 577.0 | 11.0 | 0.0 | null |
1176.0 | User_pt-5 | 79.0 | 0.0 | 0.0 | null |
1177.0 | 1974_births | 14847.0 | 0.0 | 0.0 | null |
1178.0 | Unassessed_chemistry_articles | 0.0 | 0.0 | 0.0 | null |
1179.0 | Unknown-importance_chemistry_articles | 0.0 | 0.0 | 0.0 | null |
1180.0 | Heat_waves | 10.0 | 3.0 | 0.0 | null |
1181.0 | Fullerton,_California | 23.0 | 10.0 | 0.0 | null |
1182.0 | Climate_of_Minnesota | 6.0 | 0.0 | 0.0 | null |
1183.0 | Unassessed_African_diaspora_articles | 482.0 | 0.0 | 0.0 | null |
1184.0 | Unknown-importance_African_diaspora_articles | 3609.0 | 0.0 | 0.0 | null |
1185.0 | Wikipedia_requested_photographs | 14339.0 | 4.0 | 0.0 | null |
1186.0 | 2008 | 61.0 | 42.0 | 0.0 | null |
1187.0 | AfD_debates_(Science_and_technology) | 24.0 | 0.0 | 0.0 | null |
1188.0 | Musical_film_stubs | 561.0 | 6.0 | 0.0 | null |
1190.0 | Automatically_assessed_biography_(military)_articles | 487.0 | 0.0 | 0.0 | null |
1191.0 | Automatically_assessed_biography_articles | 201629.0 | 9.0 | 0.0 | null |
1192.0 | German_history_stubs | 570.0 | 6.0 | 0.0 | null |
1193.0 | Articles_lacking_in-text_citations | 196.0 | 195.0 | 0.0 | null |
1194.0 | 1980_births | 15963.0 | 0.0 | 0.0 | null |
1195.0 | American_spree_killers | 125.0 | 0.0 | 0.0 | null |
1196.0 | Northern_Illinois_University_alumni | 213.0 | 1.0 | 0.0 | null |
1197.0 | Polish-Americans | 0.0 | 0.0 | 0.0 | null |
1198.0 | People_from_Elk_Grove_Village,_Illinois | 19.0 | 0.0 | 0.0 | null |
1199.0 | Suicides_by_firearm_in_the_United_States | 9.0 | 3.0 | 0.0 | null |
1200.0 | B-Class_France_articles | 2174.0 | 2.0 | 0.0 | null |
1202.0 | Mid-importance_Peru_articles | 642.0 | 0.0 | 0.0 | null |
1203.0 | Unknown-importance_Peru_articles | 3726.0 | 0.0 | 0.0 | null |
1204.0 | Assassinated_people_by_nationality | 151.0 | 151.0 | 0.0 | null |
1206.0 | Royal_Navy_ship_names | 2408.0 | 1.0 | 0.0 | null |
1209.0 | Delaware | 30.0 | 25.0 | 0.0 | null |
1210.0 | Slough | 31.0 | 10.0 | 0.0 | null |
1211.0 | Family_Feud | 29.0 | 0.0 | 0.0 | null |
1212.0 | WikiProject_Queen | 5.0 | 1.0 | 0.0 | null |
1217.0 | Stub-Class_Baseball_articles | 24370.0 | 1.0 | 0.0 | null |
1218.0 | Sports_and_games_work_group_articles | 647903.0 | 3.0 | 0.0 | null |
1219.0 | Unassessed_biography_(sports_and_games)_articles | 5124.0 | 0.0 | 0.0 | null |
1221.0 | Perth,_Western_Australia | 34.0 | 17.0 | 0.0 | null |
1222.0 | Wikipedia_rollback_feature | 41.0 | 2.0 | 0.0 | null |
1223.0 | Ball_games | 259.0 | 45.0 | 0.0 | null |
1224.0 | First_Nations_culture | 112.0 | 32.0 | 0.0 | null |
1225.0 | Lacrosse | 23.0 | 19.0 | 0.0 | null |
1226.0 | Sports_rules_and_regulations | 85.0 | 10.0 | 0.0 | null |
1227.0 | Team_sports | 255.0 | 69.0 | 0.0 | null |
1228.0 | Ship_articles_needing_infobox_conversion | 0.0 | 0.0 | 0.0 | null |
1229.0 | Vietnamese_Roman_Catholics | 67.0 | 6.0 | 0.0 | null |
1231.0 | Brisbane | 44.0 | 18.0 | 0.0 | null |
1232.0 | Fossils | 56.0 | 23.0 | 0.0 | null |
1233.0 | East_River | 56.0 | 4.0 | 0.0 | null |
1234.0 | New_York_City_Subway | 32.0 | 15.0 | 0.0 | null |
1235.0 | Railway_tunnels_in_New_York_City | 0.0 | 0.0 | 0.0 | null |
1236.0 | New_York_City_transportation_stubs | 22.0 | 2.0 | 0.0 | null |
1239.0 | Canadian_engineers | 150.0 | 21.0 | 0.0 | null |
1240.0 | University_of_Ottawa_alumni | 441.0 | 2.0 | 0.0 | null |
1241.0 | Royal_Military_College_of_Canada_people | 12.0 | 3.0 | 0.0 | null |
1242.0 | Pilates | 12.0 | 0.0 | 0.0 | null |
1243.0 | Articles_lacking_reliable_references_from_September_2007 | 120.0 | 0.0 | 0.0 | null |
1244.0 | Articles_lacking_sources_from_November_2007 | 327.0 | 0.0 | 0.0 | null |
1245.0 | Torchwood_characters | 19.0 | 0.0 | 0.0 | null |
1246.0 | Doctor_Who_races | 31.0 | 3.0 | 0.0 | null |
1247.0 | Stand-up_comedians | 14.0 | 1.0 | 0.0 | null |
1248.0 | Dallas,_Texas | 0.0 | 0.0 | 0.0 | null |
1249.0 | Indian_folklore | 149.0 | 19.0 | 0.0 | null |
1250.0 | Indian_monarchs | 57.0 | 31.0 | 0.0 | null |
1251.0 | Samoa_stubs | 75.0 | 4.0 | 0.0 | null |
1252.0 | United_States_history_stubs | 375.0 | 5.0 | 0.0 | null |
1253.0 | FA-Class_Firearms_articles | 1.0 | 0.0 | 0.0 | null |
1254.0 | FA-Class_Russia_articles | 86.0 | 5.0 | 0.0 | null |
1256.0 | FA-Class_military_history_articles | 1377.0 | 2.0 | 0.0 | null |
1258.0 | FA-Class_weaponry_articles | 43.0 | 0.0 | 0.0 | null |
1259.0 | Military_history_articles_used_on_portals | 179.0 | 0.0 | 0.0 | null |
1262.0 | Top-importance_Russia_articles | 1153.0 | 11.0 | 0.0 | null |
1263.0 | Weaponry_task_force_articles | 11494.0 | 2.0 | 0.0 | null |
1264.0 | WikiProject_Firearms | 23.0 | 6.0 | 0.0 | null |
1265.0 | 2000_albums | 2084.0 | 11.0 | 0.0 | null |
1266.0 | Booz_Allen_Hamilton | 7.0 | 1.0 | 0.0 | null |
1268.0 | Unassessed_Iowa_articles | 175.0 | 0.0 | 0.0 | null |
1269.0 | Unknown-importance_Iowa_articles | 765.0 | 0.0 | 0.0 | null |
1270.0 | WikiProject_Iowa | 16.0 | 5.0 | 0.0 | null |
1271.0 | Oklahoma_stubs | 134.0 | 7.0 | 0.0 | null |
1272.0 | Southern_United_States_building_and_structure_stubs | 26.0 | 24.0 | 0.0 | null |
1273.0 | Free_Software_Foundation | 32.0 | 2.0 | 0.0 | null |
1274.0 | Evolution | 95.0 | 8.0 | 0.0 | null |
1275.0 | Metabolism | 270.0 | 16.0 | 0.0 | null |
1276.0 | Origin_of_life | 77.0 | 4.0 | 0.0 | null |
1277.0 | Album_articles_with_non-standard_infoboxes | 2.0 | 0.0 | 0.0 | null |
1278.0 | 1993 | 48.0 | 39.0 | 0.0 | null |
1279.0 | Start-Class_District_of_Columbia_articles | 3463.0 | 0.0 | 0.0 | null |
1280.0 | Stub-Class_District_of_Columbia_articles | 3262.0 | 0.0 | 0.0 | null |
1281.0 | Toms_River,_New_Jersey | 36.0 | 4.0 | 0.0 | null |
1282.0 | Sports | 55.0 | 48.0 | 0.0 | null |
1283.0 | American_actors | 116.0 | 17.0 | 0.0 | null |
1284.0 | Sport_in_Indonesia | 56.0 | 28.0 | 0.0 | null |
1285.0 | Confucianism | 29.0 | 15.0 | 0.0 | null |
1286.0 | Knights_of_the_Round_Table | 45.0 | 0.0 | 0.0 | null |
1287.0 | Ambient_musicians | 237.0 | 3.0 | 0.0 | null |
1289.0 | Recent_deaths | 3.0 | 0.0 | 0.0 | null |
1290.0 | Milky_Way_Galaxy | 0.0 | 0.0 | 0.0 | null |
1291.0 | Comics_articles_needing_issue_citations | 1030.0 | 0.0 | 0.0 | null |
1294.0 | Hungary | 18.0 | 16.0 | 0.0 | null |
Next, let us check that we don't have any corrupt records:
readFromCSV.createOrReplaceTempView("categories")
SELECT * FROM categories WHERE _corrupt_record IS NOT NULL
Query returned no results - all our data appears to have been read in correctly.
Let us finally write all this data to the Delta Lake instead of having it sit in a CSV.
SELECT cat_id, cat_title, cat_pages, cat_subcats, cat_files FROM categories WHERE _corrupt_record IS NULL
cat_id | cat_title | cat_pages | cat_subcats | cat_files |
---|---|---|---|---|
2.0 | Unprintworthy_redirects | 1545623.0 | 20.0 | 0.0 |
3.0 | Computer_storage_devices | 89.0 | 11.0 | 0.0 |
7.0 | Unknown-importance_Animation_articles | 279.0 | 21.0 | 0.0 |
8.0 | Low-importance_Animation_articles | 14235.0 | 21.0 | 0.0 |
9.0 | Vietnam_stubs | 303.0 | 10.0 | 0.0 |
10.0 | Rivers_of_Vietnam | 103.0 | 3.0 | 0.0 |
12.0 | All_articles_with_unsourced_statements | 472556.0 | 0.0 | 0.0 |
14.0 | Wikipedia_articles_needing_clarification | 195.0 | 195.0 | 0.0 |
15.0 | Articles_needing_additional_references_from_January_2008 | 1237.0 | 0.0 | 0.0 |
16.0 | Comedy | 96.0 | 29.0 | 0.0 |
17.0 | Sociolinguistics | 255.0 | 30.0 | 0.0 |
18.0 | Figures_of_speech | 132.0 | 13.0 | 0.0 |
20.0 | NASCAR_teams | 130.0 | 3.0 | 0.0 |
21.0 | Muhammad_Ali | 19.0 | 4.0 | 0.0 |
22.0 | Politics_and_government_work_group_articles | 236015.0 | 4.0 | 0.0 |
23.0 | Wikipedia_requested_photographs_of_politicians_and_government-people | 11918.0 | 1.0 | 0.0 |
24.0 | Stub-Class_biography_(politics_and_government)_articles | 123773.0 | 0.0 | 0.0 |
26.0 | Stub-Class_biography_articles | 1039170.0 | 10.0 | 0.0 |
27.0 | Unassessed_biography_articles | 47285.0 | 10.0 | 0.0 |
29.0 | High-importance_Animation_articles | 279.0 | 21.0 | 0.0 |
31.0 | AfD_debates | 479.0 | 12.0 | 0.0 |
32.0 | Articles_with_unsourced_statements | 200.0 | 194.0 | 0.0 |
35.0 | Self-published_work | 106467.0 | 1.0 | 106465.0 |
36.0 | Geography | 102.0 | 37.0 | 0.0 |
37.0 | Images_without_source | 0.0 | 0.0 | 0.0 |
38.0 | Candidates_for_speedy_deletion | 17.0 | 2.0 | 0.0 |
40.0 | All_non-free_media | 711706.0 | 1.0 | 711705.0 |
41.0 | Wikipedia_requested_photographs_of_sportspeople | 15123.0 | 1.0 | 0.0 |
42.0 | Thirty_Years'_War | 57.0 | 9.0 | 0.0 |
44.0 | African-American_history | 80.0 | 33.0 | 1.0 |
46.0 | History_of_Alabama | 76.0 | 29.0 | 0.0 |
47.0 | Groups_of_World_War_II | 32.0 | 1.0 | 0.0 |
48.0 | Congressional_Gold_Medal_recipients | 425.0 | 3.0 | 7.0 |
49.0 | United_States_Army_officers | 3642.0 | 18.0 | 0.0 |
50.0 | Tuskegee_University | 27.0 | 7.0 | 0.0 |
51.0 | Military_units_and_formations_of_the_United_States_in_World_War_II | 15.0 | 7.0 | 0.0 |
52.0 | People_from_Tuskegee,_Alabama | 56.0 | 2.0 | 0.0 |
53.0 | Tuskegee_Airmen | 156.0 | 0.0 | 0.0 |
54.0 | Chinese_Methodists | 12.0 | 3.0 | 0.0 |
55.0 | Chinese_Protestants | 34.0 | 15.0 | 0.0 |
56.0 | Shel_Silverstein_songs | 6.0 | 0.0 | 0.0 |
57.0 | Articles_lacking_sources | 209.0 | 207.0 | 0.0 |
58.0 | All_articles_lacking_sources | 135448.0 | 0.0 | 0.0 |
59.0 | Radio_stations_in_Saskatchewan | 41.0 | 7.0 | 0.0 |
60.0 | Western_Canada_radio_station_stubs | 24.0 | 4.0 | 0.0 |
61.0 | Saskatchewan_stubs | 94.0 | 5.0 | 0.0 |
62.0 | Multi-level_marketing | 6.0 | 2.0 | 0.0 |
64.0 | Filipino_Wikipedians | 725.0 | 3.0 | 0.0 |
65.0 | Wikipedians_interested_in_mapmaking | 318.0 | 0.0 | 0.0 |
66.0 | Wikipedians_interested_in_maps | 1245.0 | 1.0 | 0.0 |
67.0 | Wikipedians_who_listen_to_world_music | 294.0 | 4.0 | 0.0 |
68.0 | Wikipedians_interested_in_architecture | 997.0 | 2.0 | 0.0 |
69.0 | Wikipedians_interested_in_art | 997.0 | 17.0 | 0.0 |
70.0 | Wikipedian_ballroom_dancers | 84.0 | 0.0 | 0.0 |
71.0 | Wikipedian_dancers | 290.0 | 5.0 | 0.0 |
72.0 | Brasília | 17.0 | 12.0 | 0.0 |
74.0 | Sligo | 0.0 | 0.0 | 0.0 |
75.0 | Puerto_Rican_people | 31.0 | 29.0 | 0.0 |
77.0 | WikiProject_Canadian_communities_articles | 2.0 | 2.0 | 0.0 |
78.0 | B-Class_Canadian_communities_articles | 139.0 | 0.0 | 0.0 |
79.0 | Mid-importance_Canadian_communities_articles | 3425.0 | 0.0 | 0.0 |
81.0 | Importance_or_significance_not_asserted_pages_for_speedy_deletion | 0.0 | 0.0 | 0.0 |
82.0 | The_Taming_of_the_Shrew | 8.0 | 1.0 | 0.0 |
83.0 | Edwards_County,_Kansas | 10.0 | 4.0 | 0.0 |
86.0 | Unknown-importance_Olympics_articles | 18779.0 | 0.0 | 0.0 |
87.0 | WikiProject_Olympics_articles | 191404.0 | 2.0 | 0.0 |
88.0 | Stub-Class_Canadian_communities_articles | 8334.0 | 0.0 | 0.0 |
89.0 | Articles_lacking_sources_from_December_2007 | 428.0 | 0.0 | 0.0 |
90.0 | Kingston,_Jamaica | 29.0 | 9.0 | 0.0 |
94.0 | Wikipedians_interested_in_Japanese_mythology | 40.0 | 1.0 | 0.0 |
95.0 | WikiProject_Japanese_mythology_members | 21.0 | 0.0 | 0.0 |
96.0 | WikiProject_Statistics_members | 111.0 | 0.0 | 0.0 |
98.0 | 1978 | 44.0 | 37.0 | 0.0 |
102.0 | Musicians_work_group_articles | 163180.0 | 4.0 | 0.0 |
103.0 | Wikipedia_requested_photographs_of_musicians | 12467.0 | 0.0 | 0.0 |
104.0 | Start-Class_biography_(musicians)_articles | 69851.0 | 0.0 | 0.0 |
106.0 | Musicians_work_group_articles_needing_infoboxes | 1277.0 | 0.0 | 0.0 |
107.0 | Biography_articles_without_infoboxes | 23294.0 | 9.0 | 0.0 |
108.0 | Start-Class_biography_articles | 667451.0 | 10.0 | 0.0 |
109.0 | Punk_song_stubs | 68.0 | 0.0 | 0.0 |
111.0 | Planetary_nebulae | 125.0 | 1.0 | 0.0 |
112.0 | Methane | 52.0 | 3.0 | 0.0 |
113.0 | Economy_of_Russia | 93.0 | 22.0 | 0.0 |
114.0 | Climate_of_Texas | 7.0 | 0.0 | 0.0 |
115.0 | Transport_in_Burma | 0.0 | 0.0 | 0.0 |
116.0 | Townships_in_Kansas | 817.0 | 2.0 | 0.0 |
117.0 | Kansas_geography_stubs | 1027.0 | 6.0 | 0.0 |
118.0 | Series_of_children's_books | 662.0 | 84.0 | 0.0 |
121.0 | List-Class_Animation_articles | 1556.0 | 8.0 | 0.0 |
122.0 | Start-Class_Animation_articles | 7387.0 | 8.0 | 0.0 |
123.0 | Wikipedia_references_cleanup | 169.0 | 166.0 | 0.0 |
125.0 | Theorists | 20.0 | 18.0 | 0.0 |
126.0 | National_lower_houses | 116.0 | 27.0 | 0.0 |
127.0 | Spoken_articles | 1665.0 | 0.0 | 0.0 |
128.0 | United_States_House_of_Representatives | 57.0 | 11.0 | 0.0 |
129.0 | People_by_nationality | 246.0 | 246.0 | 0.0 |
130.0 | WikiProject_Molecular_and_Cellular_Biology | 17.0 | 7.0 | 0.0 |
131.0 | Primate_stubs | 44.0 | 3.0 | 0.0 |
132.0 | Old_World_monkeys | 10.0 | 3.0 | 0.0 |
133.0 | Fauna_of_Thailand | 17.0 | 7.0 | 0.0 |
134.0 | Fighter_aircraft | 88.0 | 54.0 | 0.0 |
135.0 | Transport_in_Croatia | 14.0 | 12.0 | 0.0 |
136.0 | Requests_for_unblock | 93.0 | 4.0 | 0.0 |
137.0 | Volcanic_belts | 35.0 | 10.0 | 0.0 |
139.0 | Transport_in_Denmark | 25.0 | 18.0 | 0.0 |
140.0 | 2000s_single_stubs | 819.0 | 1.0 | 0.0 |
141.0 | Canaan | 60.0 | 11.0 | 0.0 |
142.0 | Women_writers | 12.0 | 11.0 | 0.0 |
143.0 | Start-Class_biography_(military)_articles | 43358.0 | 0.0 | 0.0 |
144.0 | Military_biography_work_group_articles | 83368.0 | 5.0 | 0.0 |
145.0 | Biography_articles_with_listas_parameter | 0.0 | 0.0 | 0.0 |
147.0 | Stub-Class_biography_(military)_articles | 20981.0 | 0.0 | 0.0 |
150.0 | Medieval_literature | 292.0 | 27.0 | 0.0 |
152.0 | Transport_in_Lithuania | 14.0 | 13.0 | 0.0 |
154.0 | Stub-Class_Animation_articles | 4161.0 | 8.0 | 0.0 |
156.0 | Articles_for_deletion | 551.0 | 1.0 | 0.0 |
157.0 | All_articles_to_be_expanded | 70437.0 | 0.0 | 0.0 |
159.0 | Wikipedian_college_students | 1401.0 | 1.0 | 0.0 |
160.0 | Images_lacking_a_description | 0.0 | 0.0 | 0.0 |
161.0 | Uploader_unsure_of_copyright_status | 5.0 | 1.0 | 4.0 |
164.0 | All_images_with_unknown_copyright_status | 0.0 | 0.0 | 0.0 |
165.0 | Attack_pages_for_speedy_deletion | 0.0 | 0.0 | 0.0 |
167.0 | Vietnamese_Confucianists | 41.0 | 0.0 | 0.0 |
169.0 | Transport_in_Mauritius | 11.0 | 8.0 | 0.0 |
170.0 | Mountain_biking | 49.0 | 15.0 | 0.0 |
171.0 | 1939_births | 10840.0 | 0.0 | 0.0 |
172.0 | Articles_lacking_sources_from_March_2008 | 645.0 | 0.0 | 0.0 |
173.0 | Living_people | 1049898.0 | 2.0 | 0.0 |
175.0 | Transport_in_Mozambique | 15.0 | 9.0 | 0.0 |
176.0 | Lists_of_railway_stations_in_the_United_Kingdom | 27.0 | 1.0 | 0.0 |
177.0 | North_America | 29.0 | 21.0 | 0.0 |
178.0 | Non-fiction_writers | 20.0 | 12.0 | 0.0 |
180.0 | Solid-state_computer_storage_media | 59.0 | 1.0 | 0.0 |
181.0 | USB | 95.0 | 1.0 | 0.0 |
182.0 | Subdivisions_of_Kosovo | 7.0 | 4.0 | 0.0 |
184.0 | Articles_needing_additional_references_from_June_2007 | 603.0 | 0.0 | 0.0 |
188.0 | Commonwealth_of_Nations | 65.0 | 25.0 | 0.0 |
189.0 | Political_history_of_Australia | 88.0 | 20.0 | 0.0 |
190.0 | Political_history_of_Canada | 128.0 | 31.0 | 0.0 |
191.0 | Political_history_of_the_United_Kingdom | 160.0 | 64.0 | 0.0 |
192.0 | Stub-Class_biography_(musicians)_articles | 60830.0 | 0.0 | 0.0 |
193.0 | Odonata | 17.0 | 8.0 | 0.0 |
194.0 | Companies_based_in_Vancouver | 220.0 | 9.0 | 0.0 |
196.0 | Video_game_developers | 73.0 | 14.0 | 0.0 |
197.0 | History_of_the_Kurds | 0.0 | 0.0 | 0.0 |
198.0 | Torchwood_episodes | 37.0 | 1.0 | 0.0 |
199.0 | Federal_assistance_in_the_United_States | 81.0 | 5.0 | 0.0 |
200.0 | Nutrition | 204.0 | 28.0 | 9.0 |
202.0 | United_States_Department_of_Agriculture | 304.0 | 6.0 | 0.0 |
203.0 | Transport_in_the_Cayman_Islands | 6.0 | 5.0 | 0.0 |
204.0 | All_pages_needing_cleanup | 34785.0 | 5.0 | 0.0 |
206.0 | Military_of_the_United_Kingdom | 127.0 | 60.0 | 2.0 |
207.0 | Start-Class_Canadian_communities_articles | 4008.0 | 0.0 | 0.0 |
209.0 | Food_and_drink_stubs | 14.0 | 14.0 | 0.0 |
210.0 | Moons | 39.0 | 17.0 | 1.0 |
211.0 | Miscellaneous_pages_for_deletion | 3.0 | 0.0 | 0.0 |
212.0 | 1733_establishments | 10.0 | 10.0 | 0.0 |
213.0 | 1776_disestablishments | 10.0 | 7.0 | 0.0 |
214.0 | British_North_America | 63.0 | 13.0 | 0.0 |
216.0 | Former_British_colonies | 11.0 | 8.0 | 0.0 |
217.0 | History_of_Georgia_(U.S._state) | 108.0 | 41.0 | 0.0 |
218.0 | Thirteen_Colonies | 28.0 | 8.0 | 0.0 |
219.0 | Wehrmacht | 63.0 | 12.0 | 0.0 |
220.0 | Precambrian | 14.0 | 7.0 | 0.0 |
221.0 | Start-Class_United_States_military_history_articles | 30836.0 | 0.0 | 0.0 |
222.0 | United_States_military_history_task_force_articles | 74074.0 | 3.0 | 0.0 |
223.0 | Start-Class_American_Civil_War_articles | 6567.0 | 0.0 | 0.0 |
224.0 | American_Civil_War_task_force_articles | 13078.0 | 3.0 | 0.0 |
225.0 | Start-Class_military_history_articles | 100531.0 | 2.0 | 0.0 |
226.0 | Military_history_articles_with_incomplete_B-Class_checklists | 0.0 | 0.0 | 0.0 |
227.0 | Literature_stubs | 132.0 | 24.0 | 0.0 |
228.0 | Transport_in_the_Netherlands_Antilles | 3.0 | 2.0 | 0.0 |
230.0 | Top_Gear | 39.0 | 3.0 | 0.0 |
231.0 | Wikipedia_cleanup | 41.0 | 20.0 | 0.0 |
232.0 | Stubs | 1.0 | 0.0 | 0.0 |
233.0 | Articles_needing_additional_references_from_September_2007 | 729.0 | 0.0 | 0.0 |
235.0 | Transport_in_Vanuatu | 7.0 | 5.0 | 0.0 |
236.0 | Sumer | 53.0 | 13.0 | 0.0 |
237.0 | Sumerian_cities | 33.0 | 6.0 | 0.0 |
239.0 | New_York_City_Department_of_Education | 36.0 | 3.0 | 0.0 |
240.0 | Screenshots_of_television | 16234.0 | 24.0 | 16210.0 |
241.0 | Al_Gore | 49.0 | 4.0 | 0.0 |
243.0 | American_male_singers | 1474.0 | 15.0 | 0.0 |
244.0 | Pakistani_names | 103.0 | 8.0 | 0.0 |
246.0 | Punjabi_tribes | 168.0 | 16.0 | 0.0 |
247.0 | Edina,_Minnesota | 15.0 | 3.0 | 0.0 |
249.0 | Agriculture | 140.0 | 42.0 | 0.0 |
250.0 | Molecular_physics | 90.0 | 10.0 | 0.0 |
251.0 | Wikipedia_controversial_topics | 3500.0 | 3.0 | 0.0 |
253.0 | Sony_Computer_Entertainment | 0.0 | 0.0 | 0.0 |
254.0 | Redirects_from_merges | 58346.0 | 4.0 | 0.0 |
256.0 | Leicester_City_F.C. | 28.0 | 9.0 | 2.0 |
257.0 | English_football_club_stubs | 88.0 | 2.0 | 0.0 |
258.0 | Bosnian_and_Herzegovinian_sportspeople | 0.0 | 0.0 | 0.0 |
259.0 | Bosnia_and_Herzegovina_sportspeople | 11.0 | 8.0 | 0.0 |
260.0 | Articles_that_include_images_for_deletion | 2.0 | 2.0 | 0.0 |
261.0 | Logging | 87.0 | 8.0 | 0.0 |
263.0 | Great_Western_Railway_locomotives | 191.0 | 12.0 | 0.0 |
265.0 | Chinese_Confucianists | 105.0 | 2.0 | 0.0 |
266.0 | Copyright_violations_for_speedy_deletion | 0.0 | 0.0 | 0.0 |
267.0 | Articles_lacking_sources_from_February_2008 | 426.0 | 0.0 | 0.0 |
268.0 | Ben_10 | 31.0 | 2.0 | 0.0 |
269.0 | Dessert_stubs | 538.0 | 2.0 | 0.0 |
270.0 | Cookies | 134.0 | 6.0 | 0.0 |
271.0 | Republican_Party_(United_States)_organizations | 85.0 | 4.0 | 0.0 |
273.0 | Biography_articles_of_living_people | 1099347.0 | 1.0 | 0.0 |
274.0 | Politics_and_government_work_group_articles_needing_infoboxes | 4394.0 | 0.0 | 0.0 |
275.0 | Biography_articles_without_listas_parameter | 333.0 | 0.0 | 0.0 |
278.0 | Ceramic_materials | 130.0 | 5.0 | 0.0 |
279.0 | 1980s_novel_stubs | 392.0 | 10.0 | 0.0 |
280.0 | Novel_stubs | 100.0 | 37.0 | 0.0 |
281.0 | Water_parks | 31.0 | 5.0 | 0.0 |
282.0 | Special_Operations_Executive | 63.0 | 3.0 | 0.0 |
283.0 | Theories | 66.0 | 11.0 | 0.0 |
284.0 | Greece | 20.0 | 16.0 | 0.0 |
285.0 | Wikipedians_interested_in_video_games | 1772.0 | 22.0 | 0.0 |
287.0 | Wikipedians_interested_in_law | 1300.0 | 11.0 | 0.0 |
288.0 | Wikipedians_interested_in_law_enforcement | 19.0 | 3.0 | 0.0 |
289.0 | Wikipedians_interested_in_politics | 3351.0 | 33.0 | 0.0 |
290.0 | Wikipedians_with_JD_degrees | 179.0 | 0.0 | 0.0 |
292.0 | 2008_albums | 3063.0 | 11.0 | 0.0 |
293.0 | Articles_needing_additional_references_from_February_2008 | 1058.0 | 0.0 | 0.0 |
294.0 | Political_science_terms | 0.0 | 0.0 | 0.0 |
295.0 | Political_theories | 333.0 | 53.0 | 0.0 |
296.0 | Politics_of_Scotland | 98.0 | 25.0 | 0.0 |
298.0 | Articles_with_topics_of_unclear_notability | 179.0 | 179.0 | 0.0 |
300.0 | Arctic_Monkeys | 14.0 | 5.0 | 0.0 |
301.0 | American_businesspeople | 1313.0 | 20.0 | 0.0 |
302.0 | National_Basketball_Association_executives | 119.0 | 5.0 | 0.0 |
304.0 | San_Antonio_Spurs | 25.0 | 9.0 | 0.0 |
305.0 | Seattle_SuperSonics | 21.0 | 9.0 | 0.0 |
306.0 | Year_of_birth_missing_(living_people) | 148543.0 | 0.0 | 0.0 |
307.0 | People_from_Chaco_Province | 12.0 | 5.0 | 0.0 |
308.0 | Argentine_footballers | 5842.0 | 4.0 | 0.0 |
310.0 | Arsenal_de_Sarandí_footballers | 345.0 | 0.0 | 0.0 |
311.0 | Cienciano_footballers | 180.0 | 0.0 | 0.0 |
312.0 | Ayyubid_dynasty | 16.0 | 8.0 | 0.0 |
313.0 | Goldfish_breeds | 28.0 | 0.0 | 0.0 |
314.0 | WikiProject_Chad_articles | 2471.0 | 2.0 | 0.0 |
315.0 | Stub-Class_Chad_articles | 946.0 | 0.0 | 0.0 |
316.0 | Unknown-importance_Chad_articles | 958.0 | 0.0 | 0.0 |
317.0 | Stub-Class_Africa_articles | 59570.0 | 2.0 | 0.0 |
318.0 | Unknown-importance_Africa_articles | 40366.0 | 2.0 | 0.0 |
319.0 | Stub-Class_African_military_history_articles | 1052.0 | 0.0 | 0.0 |
320.0 | African_military_history_task_force_articles | 8328.0 | 2.0 | 0.0 |
321.0 | Stub-Class_military_history_articles | 25029.0 | 2.0 | 0.0 |
322.0 | Structure_of_the_Earth | 67.0 | 9.0 | 0.0 |
323.0 | Electromagnetic_spectrum | 40.0 | 10.0 | 0.0 |
324.0 | Waves | 104.0 | 12.0 | 0.0 |
326.0 | Latin_language | 80.0 | 20.0 | 0.0 |
327.0 | Ancient_languages | 26.0 | 17.0 | 0.0 |
328.0 | Fusional_languages | 43.0 | 7.0 | 0.0 |
329.0 | Languages_of_Italy | 43.0 | 11.0 | 0.0 |
330.0 | Languages_of_Vatican_City | 7.0 | 2.0 | 0.0 |
331.0 | Latino-Faliscan_languages | 8.0 | 2.0 | 0.0 |
332.0 | All_That | 19.0 | 3.0 | 0.0 |
333.0 | The_War_of_the_Worlds | 9.0 | 2.0 | 0.0 |
336.0 | Anime_and_manga_characters_with_superhuman_strength | 109.0 | 1.0 | 0.0 |
337.0 | Anime_and_manga_martial_artists | 0.0 | 0.0 | 0.0 |
339.0 | English_women_writers | 414.0 | 7.0 | 0.0 |
340.0 | Semi-protected_templates | 0.0 | 0.0 | 0.0 |
341.0 | User_warning_templates | 331.0 | 8.0 | 0.0 |
342.0 | New_Zealand_Confucianists | 1.0 | 0.0 | 0.0 |
343.0 | Free-to-air | 61.0 | 0.0 | 0.0 |
344.0 | 2008_deaths | 8528.0 | 4.0 | 0.0 |
345.0 | Album_covers | 194252.0 | 4.0 | 194247.0 |
346.0 | Rhine_basin | 65.0 | 48.0 | 0.0 |
347.0 | Valdosta,_Georgia | 18.0 | 3.0 | 0.0 |
348.0 | National_Invitation_Tournament | 92.0 | 2.0 | 0.0 |
349.0 | Ghosts | 83.0 | 4.0 | 0.0 |
350.0 | Aer_Lingus | 12.0 | 1.0 | 2.0 |
351.0 | Deuteromycota | 11.0 | 0.0 | 0.0 |
352.0 | Fascism | 87.0 | 23.0 | 0.0 |
353.0 | 2006_Atlantic_hurricane_season | 12.0 | 0.0 | 0.0 |
354.0 | New_Zealand_people_by_religion | 14.0 | 14.0 | 0.0 |
355.0 | Confucianists_by_nationality | 10.0 | 10.0 | 0.0 |
356.0 | .NET_programming_languages | 36.0 | 1.0 | 0.0 |
357.0 | English_early_modern_theatre_companies | 23.0 | 1.0 | 0.0 |
358.0 | All_articles_proposed_for_deletion | 153.0 | 0.0 | 0.0 |
360.0 | Brand_name_food_products_stubs | 419.0 | 0.0 | 0.0 |
361.0 | Brand_name_snack_foods | 183.0 | 20.0 | 0.0 |
364.0 | Certification_marks | 93.0 | 5.0 | 0.0 |
365.0 | Energy_in_the_United_States | 78.0 | 18.0 | 0.0 |
366.0 | Product_certification | 58.0 | 8.0 | 0.0 |
367.0 | United_States_Environmental_Protection_Agency | 89.0 | 4.0 | 0.0 |
368.0 | United_States_environmental_law | 0.0 | 0.0 | 0.0 |
370.0 | South_Africa_geography_stubs | 52.0 | 11.0 | 0.0 |
371.0 | Capitals_in_Europe | 107.0 | 55.0 | 0.0 |
372.0 | Capitals_in_Asia | 129.0 | 58.0 | 0.0 |
375.0 | Uncategorized_pages | 744.0 | 3.0 | 0.0 |
376.0 | Slovakia | 18.0 | 15.0 | 0.0 |
377.0 | Monroe,_Louisiana | 17.0 | 5.0 | 0.0 |
378.0 | Croatian_football_biography_stubs | 150.0 | 5.0 | 0.0 |
379.0 | 1958_births | 14421.0 | 0.0 | 0.0 |
380.0 | Croatian_footballers | 1680.0 | 4.0 | 0.0 |
382.0 | 1982_FIFA_World_Cup_players | 526.0 | 0.0 | 0.0 |
385.0 | Cercle_Brugge_K.S.V._players | 373.0 | 0.0 | 0.0 |
386.0 | All_articles_needing_copy_edit | 1925.0 | 0.0 | 0.0 |
387.0 | Articles_lacking_reliable_references_from_August_2007 | 111.0 | 0.0 | 0.0 |
388.0 | Articles_that_need_to_differentiate_between_fact_and_fiction | 194.0 | 194.0 | 0.0 |
390.0 | DC_Comics_titles | 477.0 | 27.0 | 0.0 |
391.0 | Teen_Titans | 9.0 | 4.0 | 0.0 |
393.0 | Articles_that_need_to_be_wikified | 0.0 | 0.0 | 0.0 |
394.0 | Articles_with_peacock_terms | 156.0 | 156.0 | 0.0 |
395.0 | Screen_actor_stubs | 34.0 | 10.0 | 0.0 |
396.0 | Gang_films | 4.0 | 4.0 | 0.0 |
398.0 | Elk_County,_Kansas | 11.0 | 6.0 | 0.0 |
399.0 | G8 | 0.0 | 0.0 | 0.0 |
400.0 | Materialism | 55.0 | 10.0 | 0.0 |
401.0 | Buenos_Aires | 53.0 | 19.0 | 2.0 |
402.0 | Administrative_backlog | 18.0 | 6.0 | 0.0 |
403.0 | Stub-Class_United_States_military_history_articles | 6719.0 | 0.0 | 0.0 |
404.0 | Stub-Class_American_Civil_War_articles | 1761.0 | 0.0 | 0.0 |
405.0 | Candidates_for_speedy_deletion_by_user | 1.0 | 1.0 | 0.0 |
406.0 | Star_Fleet_Universe | 14.0 | 1.0 | 0.0 |
407.0 | Star_Trek_templates | 44.0 | 1.0 | 0.0 |
408.0 | Wikipedia_templates_for_deletion | 0.0 | 0.0 | 0.0 |
410.0 | Articles_lacking_sources_from_March_2007 | 555.0 | 0.0 | 0.0 |
411.0 | Rivers_of_Ecuador | 88.0 | 2.0 | 0.0 |
412.0 | Rivers_of_Peru | 130.0 | 3.0 | 0.0 |
414.0 | Bosnian_and_Herzegovinian_martial_artists | 0.0 | 0.0 | 0.0 |
415.0 | Bosnia_and_Herzegovina_martial_artists | 11.0 | 11.0 | 0.0 |
416.0 | School_districts_in_Georgia_(U.S._state) | 188.0 | 3.0 | 3.0 |
417.0 | Columbia_County,_Georgia | 9.0 | 6.0 | 0.0 |
419.0 | Radio_stations_in_Montana | 262.0 | 8.0 | 0.0 |
420.0 | Radio_station_logos | 7732.0 | 3.0 | 7729.0 |
421.0 | Elephants | 69.0 | 16.0 | 0.0 |
422.0 | Fauna_of_Angola | 14.0 | 3.0 | 0.0 |
423.0 | Fauna_of_Burkina_Faso | 9.0 | 3.0 | 0.0 |
424.0 | Fauna_of_Ethiopia | 46.0 | 5.0 | 0.0 |
425.0 | Fauna_of_Namibia | 37.0 | 5.0 | 0.0 |
426.0 | Fauna_of_South_Africa | 72.0 | 8.0 | 0.0 |
427.0 | Fauna_of_Sudan | 11.0 | 5.0 | 0.0 |
428.0 | Fauna_of_Tanzania | 83.0 | 5.0 | 0.0 |
429.0 | Fauna_of_West_Africa | 20.0 | 20.0 | 0.0 |
430.0 | Fauna_of_Zambia | 51.0 | 4.0 | 0.0 |
431.0 | Fauna_of_the_Democratic_Republic_of_the_Congo | 28.0 | 4.0 | 0.0 |
432.0 | Fauna_of_the_Republic_of_the_Congo | 63.0 | 3.0 | 0.0 |
433.0 | Fauna_of_the_Sahara | 39.0 | 2.0 | 0.0 |
434.0 | Mammals_of_Africa | 78.0 | 23.0 | 0.0 |
435.0 | Mammals_of_Kenya | 108.0 | 0.0 | 0.0 |
437.0 | Vulnerable_species | 15.0 | 10.0 | 0.0 |
438.0 | Australia_stubs | 290.0 | 26.0 | 0.0 |
439.0 | United_States_government_images | 1073.0 | 18.0 | 1055.0 |
441.0 | Economy_of_Poland | 43.0 | 24.0 | 0.0 |
442.0 | Terminator:_The_Sarah_Connor_Chronicles | 7.0 | 3.0 | 0.0 |
443.0 | All_dead-end_pages | 1.0 | 0.0 | 0.0 |
445.0 | Country_radio_stations_in_the_United_States | 1414.0 | 6.0 | 0.0 |
446.0 | Missoula_County,_Montana | 15.0 | 6.0 | 0.0 |
447.0 | Montana_radio_station_stubs | 159.0 | 0.0 | 0.0 |
449.0 | Republika_Srpska | 32.0 | 17.0 | 0.0 |
450.0 | Subdivisions_of_Bosnia_and_Herzegovina | 13.0 | 7.0 | 0.0 |
452.0 | WikiProject_Radio_Stations | 4.0 | 2.0 | 0.0 |
453.0 | Stub-Class_Montana_articles | 2752.0 | 0.0 | 0.0 |
454.0 | History_of_North_America | 74.0 | 35.0 | 0.0 |
455.0 | Flora_of_Cambodia | 102.0 | 3.0 | 0.0 |
456.0 | Post-apocalyptic_fiction | 48.0 | 16.0 | 0.0 |
458.0 | Low-importance_plant_articles | 81288.0 | 1.0 | 0.0 |
461.0 | Albinism | 18.0 | 5.0 | 0.0 |
462.0 | American_college_basketball_templates | 33.0 | 3.0 | 0.0 |
463.0 | Acronyms | 64.0 | 3.0 | 0.0 |
465.0 | Anti-communism | 143.0 | 31.0 | 0.0 |
469.0 | Cold_War_treaties | 121.0 | 39.0 | 0.0 |
470.0 | Foreign_relations_of_the_Soviet_Union | 163.0 | 36.0 | 0.0 |
471.0 | International_military_organizations | 39.0 | 6.0 | 0.0 |
473.0 | Military_alliances | 17.0 | 2.0 | 0.0 |
475.0 | NATO | 64.0 | 19.0 | 0.0 |
476.0 | Organisations_based_in_Belgium | 30.0 | 12.0 | 1.0 |
477.0 | Organizations_established_in_1949 | 155.0 | 15.0 | 0.0 |
478.0 | Supraorganizations | 101.0 | 19.0 | 0.0 |
479.0 | Wikipedia_articles_in_need_of_updating | 175.0 | 175.0 | 0.0 |
480.0 | Serial_killer_films | 21.0 | 9.0 | 0.0 |
481.0 | Country_radio_stations_in_Canada | 128.0 | 0.0 | 0.0 |
482.0 | Hentai | 28.0 | 9.0 | 0.0 |
483.0 | Mid-importance_Mountain_articles | 2455.0 | 0.0 | 0.0 |
484.0 | Low-importance_Mountain_articles | 29415.0 | 0.0 | 0.0 |
485.0 | Autobiographical_articles | 169.0 | 169.0 | 0.0 |
490.0 | Surenos | 0.0 | 0.0 | 0.0 |
491.0 | The_Bold_and_the_Beautiful | 4.0 | 2.0 | 0.0 |
492.0 | Tragulidae | 0.0 | 0.0 | 0.0 |
493.0 | Polish_language | 49.0 | 17.0 | 0.0 |
495.0 | 2007_singles | 2012.0 | 1.0 | 0.0 |
497.0 | Sum_41_songs | 39.0 | 0.0 | 0.0 |
498.0 | Thrones | 20.0 | 1.0 | 0.0 |
499.0 | Trinidadian_and_Tobagonian_martial_artists | 0.0 | 0.0 | 0.0 |
500.0 | Trinidad_and_Tobago_martial_artists | 9.0 | 9.0 | 0.0 |
501.0 | Algiers | 30.0 | 14.0 | 0.0 |
502.0 | Unassessed_biography_(musicians)_articles | 4828.0 | 0.0 | 0.0 |
504.0 | Food_ingredient_stubs | 142.0 | 1.0 | 0.0 |
505.0 | 1863_births | 3169.0 | 0.0 | 0.0 |
506.0 | 1900_deaths | 1969.0 | 2.0 | 0.0 |
507.0 | American_folklore | 286.0 | 31.0 | 0.0 |
508.0 | Disasters_in_Mississippi | 7.0 | 4.0 | 0.0 |
509.0 | People_from_Missouri | 111.0 | 13.0 | 0.0 |
510.0 | People_in_rail_transport | 22.0 | 14.0 | 0.0 |
512.0 | Railway_accidents_in_the_United_States | 0.0 | 0.0 | 0.0 |
513.0 | Canadian_indie_rock_groups | 354.0 | 0.0 | 0.0 |
516.0 | Swindon_Town_F.C. | 28.0 | 7.0 | 9.0 |
520.0 | 2006_albums | 3202.0 | 11.0 | 0.0 |
522.0 | Stillste_Stund_albums | 6.0 | 0.0 | 0.0 |
524.0 | Start-Class_language_articles | 3627.0 | 0.0 | 0.0 |
526.0 | Maximum_Ride | 10.0 | 0.0 | 0.0 |
527.0 | Biography_(musicians)_articles_by_quality | 20.0 | 18.0 | 0.0 |
530.0 | Habits | 34.0 | 5.0 | 0.0 |
531.0 | Personal_development | 112.0 | 19.0 | 0.0 |
532.0 | Self | 83.0 | 12.0 | 0.0 |
535.0 | G-Unit_Records_albums | 12.0 | 1.0 | 0.0 |
536.0 | G-Unit_albums | 7.0 | 0.0 | 0.0 |
537.0 | Carthage | 70.0 | 10.0 | 0.0 |
538.0 | 1936_births | 10149.0 | 0.0 | 0.0 |
539.0 | 2002_deaths | 6800.0 | 4.0 | 0.0 |
540.0 | American_children's_writers | 2006.0 | 12.0 | 0.0 |
541.0 | Antioch_College_alumni | 263.0 | 0.0 | 0.0 |
543.0 | Edgar_Award_winners | 395.0 | 1.0 | 0.0 |
544.0 | Laura_Ingalls_Wilder_Medal_winners | 21.0 | 0.0 | 0.0 |
545.0 | MacArthur_Fellows | 1068.0 | 0.0 | 0.0 |
546.0 | Newbery_Medal_winners | 95.0 | 0.0 | 0.0 |
547.0 | People_from_Yellow_Springs,_Ohio | 46.0 | 0.0 | 0.0 |
550.0 | Available_translators_in_Wikipedia | 175.0 | 167.0 | 0.0 |
551.0 | Translators_pt-en | 111.0 | 0.0 | 0.0 |
552.0 | University_of_Ottawa | 45.0 | 5.0 | 2.0 |
555.0 | All_orphaned_articles | 80822.0 | 0.0 | 0.0 |
556.0 | Articles_lacking_reliable_references_from_March_2008 | 352.0 | 0.0 | 0.0 |
557.0 | American_screen_actor,_1920s_birth_stubs | 67.0 | 0.0 | 0.0 |
558.0 | YouTube_videos | 5.0 | 5.0 | 0.0 |
559.0 | YouTube | 93.0 | 11.0 | 0.0 |
560.0 | Wikipedia_style_guidelines | 6.0 | 2.0 | 0.0 |
561.0 | Austrian_literature | 34.0 | 14.0 | 0.0 |
562.0 | Austrian_novels | 51.0 | 9.0 | 0.0 |
563.0 | Naruto_characters | 20.0 | 1.0 | 0.0 |
564.0 | Ancient_Roman_people_stubs | 454.0 | 2.0 | 0.0 |
565.0 | Ancient_Roman_women | 10.0 | 10.0 | 0.0 |
566.0 | Kosher_food | 68.0 | 11.0 | 0.0 |
569.0 | Companies_based_in_Redmond,_Washington | 29.0 | 1.0 | 0.0 |
570.0 | Companies_established_in_1889 | 17.0 | 15.0 | 0.0 |
572.0 | Companies_listed_on_the_Frankfurt_Stock_Exchange | 107.0 | 1.0 | 0.0 |
573.0 | Companies_listed_on_the_Tokyo_Stock_Exchange | 571.0 | 32.0 | 0.0 |
574.0 | Companies_of_Japan | 35.0 | 25.0 | 0.0 |
575.0 | Entertainment_Software_Association | 7.0 | 1.0 | 0.0 |
577.0 | Nintendo | 58.0 | 22.0 | 0.0 |
578.0 | Video_game_publishers | 627.0 | 56.0 | 0.0 |
584.0 | Coastal_cities | 0.0 | 0.0 | 0.0 |
585.0 | Comarques_of_the_Valencian_Community | 73.0 | 36.0 | 0.0 |
586.0 | Former_national_capitals | 110.0 | 26.0 | 0.0 |
588.0 | Port_cities_and_towns_in_Spain | 4.0 | 3.0 | 0.0 |
589.0 | Port_cities_of_the_Mediterranean_Sea | 31.0 | 23.0 | 0.0 |
590.0 | Roman_sites_in_Spain | 67.0 | 7.0 | 0.0 |
592.0 | Valencia | 22.0 | 13.0 | 1.0 |
593.0 | WikiProject_Geography_of_Canada_articles | 2.0 | 2.0 | 0.0 |
594.0 | B-Class_Geography_of_Canada_articles | 246.0 | 0.0 | 0.0 |
595.0 | Mid-importance_Geography_of_Canada_articles | 3851.0 | 0.0 | 0.0 |
596.0 | B-Class_Canada-related_articles | 2623.0 | 0.0 | 0.0 |
597.0 | Mid-importance_Canada-related_articles | 12819.0 | 0.0 | 0.0 |
598.0 | Good_article_nominees | 547.0 | 6.0 | 0.0 |
601.0 | Psychological_theories | 202.0 | 14.0 | 0.0 |
603.0 | Unassessed_rail_transport_articles | 2197.0 | 6.0 | 0.0 |
604.0 | Unknown-importance_rail_transport_articles | 8466.0 | 3.0 | 0.0 |
605.0 | Unassessed_UK_Railways_articles | 20.0 | 0.0 | 0.0 |
606.0 | Unknown-importance_UK_Railways_articles | 132.0 | 0.0 | 0.0 |
607.0 | Rail_transport_articles_needing_images | 0.0 | 0.0 | 0.0 |
608.0 | Bangladesh | 23.0 | 19.0 | 0.0 |
609.0 | Guelph,_Ontario | 0.0 | 0.0 | 0.0 |
610.0 | 1981_births | 16452.0 | 0.0 | 0.0 |
612.0 | African-American_actors | 49.0 | 5.0 | 0.0 |
613.0 | African-American_singers | 14.0 | 9.0 | 0.0 |
614.0 | American_Idol_participants | 389.0 | 1.0 | 0.0 |
616.0 | American_dance_musicians | 545.0 | 2.0 | 0.0 |
617.0 | American_film_actors | 70.0 | 9.0 | 0.0 |
618.0 | American_rhythm_and_blues_singers | 433.0 | 5.0 | 0.0 |
619.0 | BAFTA_winners_(people) | 278.0 | 27.0 | 0.0 |
620.0 | Best_Supporting_Actress_Academy_Award_winners | 86.0 | 1.0 | 0.0 |
621.0 | Best_Supporting_Actress_Golden_Globe_(film)_winners | 76.0 | 1.0 | 0.0 |
623.0 | Shared_IP_addresses | 0.0 | 0.0 | 0.0 |
624.0 | Articles_lacking_reliable_references_from_January_2008 | 231.0 | 0.0 | 0.0 |
625.0 | Wikipedia_introduction_cleanup | 162.0 | 162.0 | 0.0 |
626.0 | WikiProject_Museums_members | 76.0 | 0.0 | 0.0 |
630.0 | Suez_Canal | 59.0 | 5.0 | 0.0 |
631.0 | Arts_and_entertainment_work_group_articles | 182819.0 | 8.0 | 0.0 |
632.0 | Wikipedia_requested_photographs_of_artists_and_entertainers | 14069.0 | 2.0 | 0.0 |
633.0 | Stub-Class_biography_(arts_and_entertainment)_articles | 74012.0 | 0.0 | 0.0 |
636.0 | Chinese_words_and_phrases | 173.0 | 13.0 | 0.0 |
637.0 | Condiments | 147.0 | 19.0 | 0.0 |
638.0 | Indonesian_words_and_phrases | 50.0 | 2.0 | 0.0 |
639.0 | Malay_words_and_phrases | 38.0 | 0.0 | 0.0 |
640.0 | Tomato_products | 13.0 | 2.0 | 0.0 |
641.0 | Golfers_by_nationality | 87.0 | 87.0 | 0.0 |
642.0 | Trinidadian_and_Tobagonian_sportspeople | 0.0 | 0.0 | 0.0 |
643.0 | Botanical_gardens_in_North_Carolina | 28.0 | 1.0 | 0.0 |
645.0 | People_from_Lima | 440.0 | 1.0 | 0.0 |
646.0 | Sporting_Cristal_footballers | 319.0 | 0.0 | 0.0 |
647.0 | Racing_de_Santander_footballers | 0.0 | 0.0 | 0.0 |
648.0 | Philippines_geography_stubs | 512.0 | 7.0 | 0.0 |
649.0 | Stub-Class_Evolutionary_biology_articles | 138.0 | 0.0 | 0.0 |
650.0 | Low-importance_Evolutionary_biology_articles | 616.0 | 0.0 | 0.0 |
651.0 | WikiProject_Evolutionary_biology_articles | 1370.0 | 4.0 | 0.0 |
652.0 | Continents | 44.0 | 21.0 | 0.0 |
653.0 | Regions_of_the_Americas | 22.0 | 16.0 | 0.0 |
654.0 | MicroProse | 7.0 | 2.0 | 0.0 |
655.0 | MicroProse_games | 111.0 | 3.0 | 0.0 |
656.0 | Companies_established_in_1982 | 114.0 | 21.0 | 0.0 |
657.0 | 1953_births | 14062.0 | 0.0 | 0.0 |
658.0 | American_poets | 257.0 | 24.0 | 0.0 |
659.0 | Children's_writers | 23.0 | 13.0 | 0.0 |
661.0 | People_from_Fresno,_California | 154.0 | 6.0 | 0.0 |
662.0 | University_of_California,_Riverside_faculty | 196.0 | 0.0 | 0.0 |
663.0 | Writers_of_young_adult_literature | 31.0 | 6.0 | 0.0 |
664.0 | Exopedianist_Wikipedians | 191.0 | 0.0 | 0.0 |
665.0 | Immediatist_Wikipedians | 108.0 | 0.0 | 0.0 |
666.0 | Incrementalist_Wikipedians | 137.0 | 0.0 | 0.0 |
667.0 | Separatist_Wikipedians | 35.0 | 0.0 | 0.0 |
668.0 | Structurist_Wikipedians | 160.0 | 0.0 | 0.0 |
669.0 | Led_Zeppelin | 40.0 | 9.0 | 0.0 |
671.0 | Firelighting | 23.0 | 7.0 | 0.0 |
674.0 | 2003_novels | 154.0 | 16.0 | 0.0 |
675.0 | Fantasy_novels | 35.0 | 13.0 | 0.0 |
677.0 | Young_adult_novels | 82.0 | 11.0 | 0.0 |
679.0 | Yosemite_National_Park | 128.0 | 7.0 | 0.0 |
680.0 | Peru_international_footballers | 425.0 | 4.0 | 0.0 |
681.0 | Jewish_boxers | 129.0 | 1.0 | 0.0 |
682.0 | Wikipedia_requested_photographs_of_military-people | 8707.0 | 0.0 | 0.0 |
683.0 | Champ_Car | 36.0 | 12.0 | 0.0 |
684.0 | Botanist_stubs | 303.0 | 4.0 | 0.0 |
685.0 | Articles_to_be_merged | 27.0 | 27.0 | 0.0 |
686.0 | Articles_lacking_sources_from_September_2007 | 209.0 | 0.0 | 0.0 |
687.0 | History_of_Pakistan | 230.0 | 17.0 | 0.0 |
688.0 | History_of_Sindh | 139.0 | 17.0 | 0.0 |
691.0 | Ancient_Greek_theatre | 84.0 | 9.0 | 0.0 |
692.0 | Ancient_Greek_dramatists_and_playwrights | 101.0 | 5.0 | 0.0 |
693.0 | DC_Comics_superhero_teams | 134.0 | 11.0 | 0.0 |
696.0 | Redundant_infobox_title_param | 2396.0 | 0.0 | 0.0 |
697.0 | History_of_Sudan | 122.0 | 28.0 | 0.0 |
698.0 | Articles_needing_additional_references_from_May_2007 | 515.0 | 0.0 | 0.0 |
699.0 | WikiProject_Jazz_articles | 33101.0 | 7.0 | 0.0 |
700.0 | YMCA | 42.0 | 5.0 | 0.0 |
701.0 | Geology_stubs | 540.0 | 17.0 | 0.0 |
703.0 | Singaporean_Confucianists | 3.0 | 0.0 | 0.0 |
704.0 | WikiProject_Articles_for_creation_participants | 0.0 | 0.0 | 0.0 |
705.0 | 2000s_heavy_metal_album_stubs | 616.0 | 7.0 | 0.0 |
706.0 | Articles_needing_additional_references_from_March_2008 | 1140.0 | 0.0 | 0.0 |
707.0 | American_Idol | 32.0 | 8.0 | 0.0 |
708.0 | Start-Class_biography_(arts_and_entertainment)_articles | 75457.0 | 0.0 | 0.0 |
710.0 | One_Life_to_Live_characters | 101.0 | 3.0 | 0.0 |
711.0 | One_Life_to_Live | 23.0 | 2.0 | 0.0 |
712.0 | Single_stubs | 11.0 | 9.0 | 0.0 |
713.0 | Peruvian_footballers | 782.0 | 4.0 | 0.0 |
714.0 | Peruvian_football_biography_stubs | 184.0 | 4.0 | 0.0 |
716.0 | Science_stubs | 197.0 | 27.0 | 0.0 |
717.0 | Wikipedia_articles_needing_context | 124.0 | 124.0 | 0.0 |
718.0 | Khazars | 38.0 | 8.0 | 0.0 |
719.0 | Singaporean_people_by_religion | 10.0 | 10.0 | 0.0 |
721.0 | 2003_disestablishments | 26.0 | 24.0 | 0.0 |
722.0 | Aaliyah | 10.0 | 5.0 | 0.0 |
723.0 | The_Rolling_Stones | 57.0 | 10.0 | 1.0 |
724.0 | Energy_templates | 35.0 | 6.0 | 0.0 |
725.0 | Template-Class_Environment_articles | 139.0 | 0.0 | 0.0 |
726.0 | WikiProject_Environment | 26.0 | 8.0 | 0.0 |
727.0 | Speakers_of_the_United_States_House_of_Representatives | 62.0 | 5.0 | 0.0 |
728.0 | Wonder_Woman | 23.0 | 6.0 | 0.0 |
729.0 | 1873_births | 3865.0 | 0.0 | 0.0 |
730.0 | 1944_deaths | 5083.0 | 2.0 | 0.0 |
731.0 | French_physicists | 290.0 | 17.0 | 0.0 |
732.0 | French_scientist_stubs | 298.0 | 5.0 | 0.0 |
733.0 | The_Pendragon_Adventure | 10.0 | 0.0 | 0.0 |
734.0 | Singapore | 19.0 | 16.0 | 0.0 |
735.0 | English_musical_groups | 17.0 | 10.0 | 0.0 |
737.0 | Food_law | 94.0 | 12.0 | 0.0 |
738.0 | Jewish_law_and_rituals | 126.0 | 28.0 | 3.0 |
739.0 | 2008_songs | 2618.0 | 0.0 | 0.0 |
741.0 | 2008_singles | 1981.0 | 1.0 | 0.0 |
742.0 | Construction_and_civil_engineering_companies_of_the_United_States | 268.0 | 5.0 | 0.0 |
743.0 | Turtles | 22.0 | 16.0 | 0.0 |
746.0 | Districts_of_Cardiff | 37.0 | 4.0 | 0.0 |
747.0 | Villages_in_Cardiff | 12.0 | 2.0 | 0.0 |
748.0 | 1968_births | 14982.0 | 0.0 | 0.0 |
749.0 | People_from_Essex | 272.0 | 53.0 | 0.0 |
750.0 | American_rappers | 248.0 | 8.0 | 0.0 |
752.0 | Mid-importance_Animation_articles | 1100.0 | 21.0 | 0.0 |
754.0 | All_articles_with_dead_external_links | 259712.0 | 0.0 | 0.0 |
756.0 | Wikipedia_external_links_cleanup | 110.0 | 110.0 | 0.0 |
757.0 | Rugs_and_carpets | 92.0 | 13.0 | 0.0 |
759.0 | Little_Britain_characters | 3.0 | 1.0 | 0.0 |
760.0 | Independence_movements | 195.0 | 51.0 | 0.0 |
761.0 | Grayslake,_Illinois | 8.0 | 1.0 | 0.0 |
762.0 | User_en | 5066.0 | 27.0 | 0.0 |
763.0 | Australia | 19.0 | 15.0 | 0.0 |
764.0 | Radio-frequency_identification | 130.0 | 6.0 | 0.0 |
765.0 | Neptune | 23.0 | 5.0 | 0.0 |
766.0 | Cold_War_weapons_by_country | 12.0 | 11.0 | 0.0 |
767.0 | Weapons_of_the_United_States | 40.0 | 24.0 | 0.0 |
768.0 | Companies_established_in_2005 | 186.0 | 19.0 | 0.0 |
769.0 | Video_game_company_stubs | 118.0 | 20.0 | 0.0 |
770.0 | Giza_Plateau | 29.0 | 0.0 | 0.0 |
771.0 | 1990s_action_films | 203.0 | 25.0 | 0.0 |
772.0 | 1996_films | 1490.0 | 19.0 | 0.0 |
774.0 | American_films | 33.0 | 32.0 | 0.0 |
775.0 | English-language_films | 335.0 | 143.0 | 0.0 |
776.0 | Estudios_Churubusco_films | 40.0 | 0.0 | 0.0 |
778.0 | Romantic_drama_films | 8.0 | 7.0 | 0.0 |
780.0 | Teen_romance_films | 9.0 | 7.0 | 0.0 |
782.0 | Protected_areas_of_India | 27.0 | 12.0 | 0.0 |
783.0 | People_from_Morelia | 57.0 | 1.0 | 0.0 |
784.0 | Loire-Atlantique_geography_stubs | 247.0 | 0.0 | 0.0 |
785.0 | Pays-de-la-Loire_geography_stubs | 34.0 | 5.0 | 0.0 |
786.0 | Sexual_selection | 60.0 | 1.0 | 0.0 |
787.0 | Ecology | 356.0 | 32.0 | 0.0 |
788.0 | Mating_systems | 26.0 | 5.0 | 0.0 |
789.0 | Reproduction | 89.0 | 12.0 | 0.0 |
790.0 | Mating | 45.0 | 5.0 | 0.0 |
791.0 | The_Veronicas | 10.0 | 3.0 | 0.0 |
792.0 | PSV_Eindhoven | 25.0 | 8.0 | 3.0 |
793.0 | Unión_de_Santa_Fe_footballers | 349.0 | 0.0 | 0.0 |
795.0 | 1893_births | 5370.0 | 0.0 | 0.0 |
796.0 | 1967_deaths | 4630.0 | 2.0 | 0.0 |
798.0 | Brooklyn_Robins_players | 237.0 | 0.0 | 0.0 |
799.0 | St._Louis_Cardinals_players | 1912.0 | 1.0 | 0.0 |
800.0 | Chicago_Cubs_players | 1958.0 | 3.0 | 0.0 |
801.0 | Major_League_Baseball_coaches | 23.0 | 10.0 | 0.0 |
802.0 | Minor_league_baseball_managers | 2250.0 | 67.0 | 0.0 |
803.0 | Baseball_shortstop_stubs | 155.0 | 1.0 | 0.0 |
804.0 | Portsmouth_F.C. | 20.0 | 8.0 | 0.0 |
805.0 | Roman_Catholic_Archdiocese_of_Detroit | 98.0 | 6.0 | 0.0 |
806.0 | Skateboarding | 64.0 | 13.0 | 0.0 |
807.0 | Expatriate_footballers_in_Argentina | 1504.0 | 1.0 | 0.0 |
808.0 | Brighton_&_Hove_Albion_F.C. | 24.0 | 9.0 | 1.0 |
809.0 | AFC_Cup | 6.0 | 5.0 | 0.0 |
810.0 | Unassessed_Baseball_articles | 654.0 | 1.0 | 0.0 |
811.0 | Unknown-importance_Baseball_articles | 8053.0 | 1.0 | 0.0 |
812.0 | WikiProject_Baseball_articles | 84678.0 | 6.0 | 0.0 |
813.0 | Microbiology | 176.0 | 23.0 | 0.0 |
815.0 | Protista | 15.0 | 2.0 | 0.0 |
816.0 | Wikipedia_basic_information | 81.0 | 6.0 | 0.0 |
817.0 | Articles_with_dead_external_links | 173.0 | 171.0 | 0.0 |
818.0 | All_articles_with_broken_or_outdated_citations | 160.0 | 0.0 | 0.0 |
821.0 | My_Chemical_Romance | 10.0 | 5.0 | 0.0 |
822.0 | Rongorongo | 29.0 | 1.0 | 14.0 |
823.0 | 2000s_song_stubs | 146.0 | 7.0 | 0.0 |
824.0 | 1891_births | 5295.0 | 0.0 | 0.0 |
825.0 | 1964_deaths | 4346.0 | 2.0 | 0.0 |
826.0 | Chicago_White_Sox_players | 1840.0 | 1.0 | 0.0 |
830.0 | Baseball_center_fielder_stubs | 49.0 | 0.0 | 0.0 |
831.0 | Dance-pop_songs | 659.0 | 34.0 | 0.0 |
832.0 | Nicole_Scherzinger_songs | 30.0 | 0.0 | 0.0 |
835.0 | Self-reference | 29.0 | 5.0 | 0.0 |
836.0 | Articles_needing_additional_references | 205.0 | 204.0 | 0.0 |
837.0 | 1961_births | 14715.0 | 0.0 | 0.0 |
841.0 | Olympic_footballers_of_Yugoslavia | 172.0 | 0.0 | 0.0 |
842.0 | Footballers_at_the_1984_Summer_Olympics | 268.0 | 0.0 | 0.0 |
843.0 | Olympic_bronze_medalists_for_Yugoslavia | 90.0 | 0.0 | 0.0 |
844.0 | Croatian_football_managers | 307.0 | 1.0 | 0.0 |
845.0 | High-importance_Green_Bay_Packers_articles | 166.0 | 0.0 | 0.0 |
846.0 | Unknown-importance_Green_Bay_Packers_articles | 2.0 | 0.0 | 0.0 |
847.0 | Thompson-Nicola_Regional_District | 23.0 | 3.0 | 0.0 |
849.0 | American_tennis_coaches | 205.0 | 2.0 | 0.0 |
850.0 | Postcolonialism | 69.0 | 9.0 | 0.0 |
851.0 | Sexual_fetishism | 109.0 | 11.0 | 0.0 |
853.0 | Buildings_and_structures_in_the_San_Francisco_Bay_Area | 26.0 | 22.0 | 0.0 |
854.0 | Lighthouses_in_California | 20.0 | 5.0 | 0.0 |
856.0 | Construction_and_civil_engineering_companies_by_country | 69.0 | 69.0 | 0.0 |
858.0 | Trinidad_and_Tobago_sportspeople | 11.0 | 11.0 | 0.0 |
860.0 | Screenshots_of_films | 5083.0 | 8.0 | 5075.0 |
861.0 | San_Jose_Earthquakes | 28.0 | 9.0 | 1.0 |
862.0 | 1964_births | 15643.0 | 0.0 | 0.0 |
863.0 | Swedish_curlers | 7.0 | 7.0 | 0.0 |
864.0 | Winter_Olympics_medalists | 5.0 | 5.0 | 0.0 |
865.0 | Curlers_at_the_1998_Winter_Olympics | 77.0 | 0.0 | 0.0 |
866.0 | Olympic_bronze_medalists_for_Sweden | 466.0 | 0.0 | 0.0 |
867.0 | Curling_biography_stubs | 173.0 | 17.0 | 0.0 |
868.0 | Swedish_Olympic_medalist_stubs | 544.0 | 1.0 | 0.0 |
869.0 | Winter_Olympic_medalist_stubs | 234.0 | 10.0 | 0.0 |
870.0 | County_Meath | 31.0 | 17.0 | 0.0 |
871.0 | Articles_with_limited_geographic_scope | 204.0 | 204.0 | 0.0 |
872.0 | USA-centric | 0.0 | 0.0 | 0.0 |
873.0 | Father_Ted_characters | 3.0 | 0.0 | 0.0 |
874.0 | Universitario_de_Deportes_footballers | 0.0 | 0.0 | 0.0 |
876.0 | Cantonese-language_films | 83.0 | 6.0 | 0.0 |
877.0 | Exploitation_films | 50.0 | 17.0 | 0.0 |
878.0 | Erotic_thriller_films | 5.0 | 4.0 | 0.0 |
879.0 | Articles_lacking_sources_from_January_2008 | 492.0 | 0.0 | 0.0 |
880.0 | Sweeteners | 0.0 | 0.0 | 0.0 |
881.0 | Japanese_Confucianists | 38.0 | 0.0 | 0.0 |
882.0 | High-importance_constructed_language_articles | 37.0 | 0.0 | 0.0 |
883.0 | Mid-importance_constructed_language_articles | 127.0 | 0.0 | 0.0 |
884.0 | Croix_de_guerre_recipients | 0.0 | 0.0 | 0.0 |
885.0 | British_Army_personnel_of_World_War_I | 5783.0 | 5.0 | 0.0 |
887.0 | Trinidadian_and_Tobagonian_cyclists | 0.0 | 0.0 | 0.0 |
888.0 | Trinidad_and_Tobago_cyclists | 5.0 | 4.0 | 0.0 |
890.0 | Kushiel's_Legacy | 7.0 | 0.0 | 0.0 |
891.0 | Construction_and_civil_engineering_companies | 15.0 | 10.0 | 0.0 |
893.0 | Moldova | 19.0 | 16.0 | 0.0 |
895.0 | Wikipedians_interested_in_environmental_science | 1.0 | 0.0 | 0.0 |
896.0 | Novels_by_Mika_Waltari | 12.0 | 0.0 | 0.0 |
897.0 | Finnish_novels | 9.0 | 9.0 | 0.0 |
898.0 | Construction | 196.0 | 38.0 | 0.0 |
899.0 | Vienna | 22.0 | 18.0 | 0.0 |
900.0 | Palau | 21.0 | 16.0 | 0.0 |
903.0 | Church_stubs | 26.0 | 13.0 | 0.0 |
904.0 | Missouri_stubs | 188.0 | 7.0 | 0.0 |
908.0 | 2006_EPs | 339.0 | 1.0 | 0.0 |
909.0 | Albums | 42.0 | 32.0 | 0.0 |
912.0 | Baseball_third_baseman_stubs | 168.0 | 1.0 | 0.0 |
913.0 | 2005_disestablishments | 29.0 | 25.0 | 0.0 |
915.0 | Companies_established_in_1971 | 19.0 | 17.0 | 0.0 |
916.0 | Defunct_companies_of_the_United_States | 66.0 | 8.0 | 0.0 |
918.0 | Viacom | 0.0 | 0.0 | 0.0 |
919.0 | Viacom_subsidiaries | 0.0 | 0.0 | 0.0 |
921.0 | Spoken_Wikipedia_requests | 748.0 | 0.0 | 0.0 |
922.0 | 1978_FIFA_World_Cup | 24.0 | 8.0 | 0.0 |
923.0 | Wikipedia_protected_edit_requests | 0.0 | 0.0 | 0.0 |
924.0 | Tibet | 80.0 | 28.0 | 0.0 |
925.0 | Nebraska_stubs | 222.0 | 5.0 | 0.0 |
927.0 | Delaware_State_University | 5.0 | 2.0 | 0.0 |
928.0 | 2008_EPs | 387.0 | 1.0 | 0.0 |
929.0 | Suspension_bridges | 43.0 | 5.0 | 0.0 |
930.0 | English_rappers | 12.0 | 5.0 | 0.0 |
931.0 | 1989_births | 17929.0 | 0.0 | 0.0 |
932.0 | Palm_stubs | 357.0 | 3.0 | 0.0 |
934.0 | Child_actors_by_nationality | 65.0 | 65.0 | 0.0 |
935.0 | Stealth_aircraft | 82.0 | 2.0 | 0.0 |
938.0 | Actors_and_filmmakers_work_group_articles | 92464.0 | 3.0 | 0.0 |
939.0 | B-Class_Oklahoma_articles | 292.0 | 1.0 | 0.0 |
940.0 | B-Class_biography_(actors_and_filmmakers)_articles | 1677.0 | 0.0 | 0.0 |
941.0 | B-Class_biography_articles | 31430.0 | 11.0 | 0.0 |
943.0 | Mid-importance_Oklahoma_articles | 1139.0 | 0.0 | 0.0 |
945.0 | Cigarette_rolling_papers | 17.0 | 0.0 | 0.0 |
946.0 | Brand_name_products_stubs | 433.0 | 1.0 | 0.0 |
948.0 | Anti-Catholicism | 44.0 | 10.0 | 0.0 |
949.0 | Religious_persecution | 63.0 | 25.0 | 0.0 |
950.0 | Comic_book_covers | 710.0 | 40.0 | 669.0 |
951.0 | Non-free_comic_images | 7856.0 | 30.0 | 7826.0 |
952.0 | Fair_use_character_artwork | 1254.0 | 3.0 | 1251.0 |
953.0 | Music_managers | 24.0 | 1.0 | 0.0 |
954.0 | Start-Class_Disney_articles | 1891.0 | 6.0 | 0.0 |
955.0 | Unassessed_Disney_articles | 16.0 | 6.0 | 0.0 |
956.0 | Egypt_stubs | 169.0 | 9.0 | 0.0 |
957.0 | 2007_EPs | 330.0 | 1.0 | 0.0 |
958.0 | Incomplete_lists | 182.0 | 182.0 | 0.0 |
959.0 | Christianity_and_other_religions | 34.0 | 14.0 | 0.0 |
960.0 | Judeo-Christian_topics | 25.0 | 3.0 | 0.0 |
961.0 | Judaism_and_other_religions | 22.0 | 11.0 | 0.0 |
962.0 | Christian_and_Jewish_interfaith_topics | 0.0 | 0.0 | 0.0 |
964.0 | American_rock_singers | 1407.0 | 8.0 | 0.0 |
965.0 | American_heavy_metal_singers | 338.0 | 1.0 | 0.0 |
966.0 | Novels_by_author | 0.0 | 0.0 | 0.0 |
967.0 | Italian_novels | 23.0 | 10.0 | 0.0 |
968.0 | 1965_births | 14963.0 | 0.0 | 0.0 |
969.0 | Accuracy_disputes_from_March_2008 | 29.0 | 1.0 | 0.0 |
970.0 | Chinese_Muslims | 68.0 | 9.0 | 0.0 |
972.0 | WikiProject_Czech_Republic_articles | 5.0 | 5.0 | 0.0 |
973.0 | Unassessed_Czech_Republic_articles | 9.0 | 0.0 | 0.0 |
974.0 | Unknown-importance_Czech_Republic_articles | 859.0 | 0.0 | 0.0 |
977.0 | Lighthouses_in_the_San_Francisco_Bay_Area | 13.0 | 1.0 | 0.0 |
979.0 | Stub-Class_New_Mexico_articles | 2322.0 | 0.0 | 0.0 |
980.0 | Unassessed_New_Mexico_articles | 306.0 | 0.0 | 0.0 |
981.0 | Man | 1.0 | 0.0 | 0.0 |
984.0 | 1955_births | 14266.0 | 0.0 | 0.0 |
985.0 | Deportivo_de_La_Coruña_players | 407.0 | 2.0 | 0.0 |
986.0 | Footballers_at_the_1980_Summer_Olympics | 263.0 | 0.0 | 0.0 |
987.0 | Judaism | 26.0 | 25.0 | 0.0 |
988.0 | Child_singers_by_nationality | 56.0 | 56.0 | 0.0 |
989.0 | Wikis | 80.0 | 8.0 | 0.0 |
990.0 | B-Class_Disney_articles | 188.0 | 6.0 | 0.0 |
991.0 | Military_aviation_task_force_articles | 32140.0 | 2.0 | 0.0 |
992.0 | Military_memorials_and_cemeteries_task_force_articles | 3045.0 | 2.0 | 0.0 |
993.0 | British_military_history_task_force_articles | 49788.0 | 2.0 | 0.0 |
994.0 | Unassessed_military_history_articles | 3.0 | 1.0 | 0.0 |
995.0 | Unassessed_aviation_articles | 144.0 | 0.0 | 0.0 |
996.0 | WikiProject_Aviation_articles | 75018.0 | 8.0 | 0.0 |
997.0 | Khmer_Rouge | 45.0 | 7.0 | 0.0 |
999.0 | Television_stubs | 106.0 | 19.0 | 0.0 |
1001.0 | Historic_preservation | 122.0 | 11.0 | 0.0 |
1002.0 | National_Register_of_Historic_Places_stubs | 9.0 | 7.0 | 0.0 |
1003.0 | Children_by_nationality | 97.0 | 97.0 | 0.0 |
1004.0 | Men | 70.0 | 35.0 | 0.0 |
1006.0 | Anarchists_by_nationality | 61.0 | 61.0 | 0.0 |
1007.0 | Novels_by_Kaari_Utrio | 27.0 | 0.0 | 0.0 |
1009.0 | Alphabetic_writing_systems | 0.0 | 0.0 | 0.0 |
1010.0 | Japanese_Christians | 88.0 | 14.0 | 0.0 |
1011.0 | Move_protected | 0.0 | 0.0 | 0.0 |
1013.0 | American_television_composers | 363.0 | 1.0 | 0.0 |
1015.0 | Upcoming_video_games | 141.0 | 2.0 | 0.0 |
1016.0 | Eyeshield_21_characters | 3.0 | 0.0 | 0.0 |
1017.0 | Irish-Americans | 0.0 | 0.0 | 0.0 |
1018.0 | Nickel | 26.0 | 5.0 | 0.0 |
1019.0 | Communists_by_nationality | 154.0 | 154.0 | 0.0 |
1021.0 | Mexican_Spanish | 12.0 | 2.0 | 0.0 |
1022.0 | 1987_births | 17411.0 | 0.0 | 0.0 |
1023.0 | Boston_Bruins_players | 1051.0 | 1.0 | 0.0 |
1024.0 | Finnish_ice_hockey_players | 69.0 | 6.0 | 0.0 |
1025.0 | Ilves_players | 314.0 | 1.0 | 0.0 |
1027.0 | Providence_Bruins_players | 518.0 | 0.0 | 0.0 |
1028.0 | Toronto_Maple_Leafs_draft_picks | 307.0 | 0.0 | 0.0 |
1030.0 | 1967_births | 14705.0 | 0.0 | 0.0 |
1031.0 | Ancient_Near_East_stubs | 115.0 | 4.0 | 0.0 |
1032.0 | Middle_Eastern_history_stubs | 320.0 | 6.0 | 0.0 |
1033.0 | Stub-Class_chemicals_articles | 10758.0 | 0.0 | 0.0 |
1034.0 | Low-importance_chemicals_articles | 17092.0 | 0.0 | 0.0 |
1035.0 | Unassessed_chemicals_articles | 47.0 | 0.0 | 0.0 |
1036.0 | Unknown-importance_chemicals_articles | 63.0 | 0.0 | 0.0 |
1038.0 | Tennessee_Registered_Historic_Place_stubs | 4.0 | 3.0 | 0.0 |
1039.0 | 1953_short_stories | 89.0 | 0.0 | 0.0 |
1040.0 | 1951_short_stories | 38.0 | 0.0 | 0.0 |
1041.0 | German_people | 46.0 | 38.0 | 0.0 |
1042.0 | Redundant_images_for_speedy_deletion | 0.0 | 0.0 | 0.0 |
1043.0 | Polynesia | 34.0 | 25.0 | 0.0 |
1044.0 | Invasive_species | 33.0 | 7.0 | 0.0 |
1045.0 | Code_Geass | 14.0 | 3.0 | 0.0 |
1046.0 | AfD_debates_(Biographical) | 176.0 | 0.0 | 0.0 |
1047.0 | Requests_for_unblock-auto | 1.0 | 0.0 | 0.0 |
1048.0 | Colombian_culture | 90.0 | 34.0 | 0.0 |
1049.0 | Mid-importance_chemicals_articles | 2158.0 | 0.0 | 0.0 |
1051.0 | European_composer_stubs | 378.0 | 19.0 | 0.0 |
1053.0 | National_Basketball_Association | 42.0 | 18.0 | 0.0 |
1055.0 | Pedophilia | 34.0 | 9.0 | 0.0 |
1056.0 | Semi-protected_against_vandalism | 0.0 | 0.0 | 0.0 |
1058.0 | Low-importance_Ireland_articles | 60479.0 | 16.0 | 0.0 |
1059.0 | Start-Class_biography_(politics_and_government)_articles | 77421.0 | 0.0 | 0.0 |
1061.0 | Unknown-importance_Ireland_articles | 16.0 | 14.0 | 0.0 |
1062.0 | Start-Class_military_memorials_and_cemeteries_articles | 1163.0 | 0.0 | 0.0 |
1063.0 | Lists_of_people_by_occupation | 163.0 | 52.0 | 0.0 |
1064.0 | Occupations | 66.0 | 17.0 | 0.0 |
1065.0 | English_actors | 42.0 | 14.0 | 0.0 |
1066.0 | Fullmetal_Alchemist_images | 11.0 | 1.0 | 10.0 |
1067.0 | Football_at_the_2008_Summer_Olympics | 7.0 | 4.0 | 0.0 |
1068.0 | Year_of_birth_unknown | 23249.0 | 2.0 | 0.0 |
1069.0 | 1537_deaths | 132.0 | 1.0 | 0.0 |
1071.0 | High-importance_chemicals_articles | 322.0 | 0.0 | 0.0 |
1072.0 | British_libertarians | 46.0 | 3.0 | 0.0 |
1073.0 | Libertarians_by_nationality | 36.0 | 36.0 | 0.0 |
1074.0 | U.C._Sampdoria | 13.0 | 7.0 | 0.0 |
1076.0 | Hayate_the_Combat_Butler | 16.0 | 1.0 | 2.0 |
1078.0 | Solano_County,_California | 19.0 | 12.0 | 0.0 |
1079.0 | The_Suite_Life_of_Zack_&_Cody | 10.0 | 1.0 | 4.0 |
1080.0 | South_Korean_Christians | 52.0 | 8.0 | 0.0 |
1081.0 | Images_of_Ukraine | 39.0 | 3.0 | 36.0 |
1082.0 | PD-UA-exempt | 12.0 | 0.0 | 12.0 |
1083.0 | American_football_coach_stubs | 255.0 | 1.0 | 0.0 |
1084.0 | College_football_coaches_first_appointed_in_the_2000s_stubs | 158.0 | 0.0 | 0.0 |
1085.0 | Gibson_County,_Indiana | 15.0 | 8.0 | 0.0 |
1087.0 | British_Army_personnel_of_World_War_II | 3817.0 | 10.0 | 0.0 |
1088.0 | British_military_personnel_killed_in_World_War_I | 1093.0 | 3.0 | 0.0 |
1089.0 | British_films | 41.0 | 41.0 | 0.0 |
1090.0 | 1980s_drama_films | 41.0 | 38.0 | 0.0 |
1091.0 | Romance_films | 30.0 | 20.0 | 0.0 |
1092.0 | Start-Class_chemicals_articles | 5594.0 | 0.0 | 0.0 |
1093.0 | Bosnia_and_Herzegovina_footballers | 1080.0 | 4.0 | 0.0 |
1094.0 | FK_Sarajevo_players | 353.0 | 0.0 | 0.0 |
1095.0 | VfB_Stuttgart_players | 456.0 | 1.0 | 0.0 |
1097.0 | Accuracy_disputes | 181.0 | 180.0 | 0.0 |
1098.0 | Stub-Class_Album_articles | 84178.0 | 0.0 | 0.0 |
1100.0 | WikiProject_Albums_articles | 380100.0 | 5.0 | 0.0 |
1101.0 | Contemporary_Christian_work_group_articles | 38.0 | 4.0 | 0.0 |
1102.0 | Stub-Class_Contemporary_Christian_articles | 9.0 | 0.0 | 0.0 |
1104.0 | Stub-Class_Christian_music_articles | 1904.0 | 0.0 | 0.0 |
1105.0 | Low-importance_Christian_music_articles | 3263.0 | 0.0 | 0.0 |
1106.0 | Electric_power_transmission_systems | 25.0 | 6.0 | 0.0 |
1107.0 | Liechtenstein | 18.0 | 15.0 | 0.0 |
1108.0 | Ivy_League | 35.0 | 23.0 | 0.0 |
1109.0 | Colombia_international_footballers | 465.0 | 3.0 | 0.0 |
1110.0 | América_de_Cali_footballers | 392.0 | 0.0 | 0.0 |
1111.0 | Independiente_Santa_Fe_footballers | 314.0 | 0.0 | 0.0 |
1113.0 | Piacenza_Calcio_players | 0.0 | 0.0 | 0.0 |
1114.0 | Sport_Boys_footballers | 227.0 | 0.0 | 0.0 |
1115.0 | Nazi_concentration_camps | 41.0 | 9.0 | 0.0 |
1121.0 | B-Class_core_topic_articles | 6.0 | 0.0 | 0.0 |
1122.0 | B-Class_taxonomic_articles | 34.0 | 0.0 | 0.0 |
1125.0 | Natural_sciences_Version_0.7_articles | 166.0 | 0.0 | 0.0 |
1126.0 | Top-importance_plant_articles | 79.0 | 2.0 | 0.0 |
1127.0 | Top-importance_taxonomic_articles | 25.0 | 0.0 | 0.0 |
1128.0 | Wikipedia_CD_Selection | 2405.0 | 2.0 | 0.0 |
1130.0 | Socialists_by_nationality | 192.0 | 192.0 | 0.0 |
1131.0 | French_hip_hop | 5.0 | 3.0 | 0.0 |
1132.0 | Drama_films | 22.0 | 17.0 | 0.0 |
1133.0 | Stub-Class_Museums_articles | 5634.0 | 0.0 | 0.0 |
1134.0 | Stub-Class_maritime_warfare_articles | 3629.0 | 0.0 | 0.0 |
1135.0 | Maritime_warfare_task_force_articles | 74239.0 | 2.0 | 0.0 |
1136.0 | Stub-Class_military_memorials_and_cemeteries_articles | 294.0 | 0.0 | 0.0 |
1137.0 | Stub-Class_Ships_articles | 8491.0 | 0.0 | 0.0 |
1143.0 | Unknown-importance_Doctor_Who_articles | 1.0 | 0.0 | 0.0 |
1144.0 | World | 48.0 | 29.0 | 0.0 |
1145.0 | Screenshots_of_music_videos | 1927.0 | 1.0 | 1926.0 |
1146.0 | Ayumi_Hamasaki | 10.0 | 3.0 | 0.0 |
1147.0 | Wales | 31.0 | 28.0 | 0.0 |
1148.0 | Dartmouth_College_alumni | 1604.0 | 5.0 | 0.0 |
1149.0 | Southern_United_States | 81.0 | 38.0 | 0.0 |
1150.0 | 1925_births | 8900.0 | 0.0 | 0.0 |
1151.0 | 1985_deaths | 5335.0 | 2.0 | 0.0 |
1153.0 | St._Louis_Browns_players | 773.0 | 1.0 | 0.0 |
1154.0 | Baltimore_Orioles_players | 1186.0 | 1.0 | 0.0 |
1155.0 | Cleveland_Indians_players | 1714.0 | 0.0 | 0.0 |
1156.0 | Philadelphia_Phillies_players | 2075.0 | 2.0 | 0.0 |
1158.0 | People_from_Howard_County,_Maryland | 49.0 | 11.0 | 0.0 |
1159.0 | Baseball_second_baseman_stubs | 127.0 | 1.0 | 0.0 |
1160.0 | American_Confucianists | 5.0 | 0.0 | 0.0 |
1161.0 | Stub-Class_football_articles | 208027.0 | 20.0 | 0.0 |
1163.0 | Mid-importance_football_in_Italy_articles | 3011.0 | 0.0 | 0.0 |
1164.0 | Stub-Class_football_in_Italy_articles | 7863.0 | 0.0 | 0.0 |
1166.0 | Mid-importance_football_in_Argentina_articles | 3011.0 | 0.0 | 0.0 |
1167.0 | Stub-Class_football_in_Argentina_articles | 5422.0 | 0.0 | 0.0 |
1168.0 | Mid-importance_football_articles | 51236.0 | 3.0 | 0.0 |
1172.0 | Articles_with_weasel_words | 172.0 | 172.0 | 0.0 |
1173.0 | Dungeons_&_Dragons_articles_that_need_to_differentiate_between_fact_and_fiction | 12.0 | 0.0 | 0.0 |
1175.0 | User_pt | 577.0 | 11.0 | 0.0 |
1176.0 | User_pt-5 | 79.0 | 0.0 | 0.0 |
1177.0 | 1974_births | 14847.0 | 0.0 | 0.0 |
1178.0 | Unassessed_chemistry_articles | 0.0 | 0.0 | 0.0 |
1179.0 | Unknown-importance_chemistry_articles | 0.0 | 0.0 | 0.0 |
1180.0 | Heat_waves | 10.0 | 3.0 | 0.0 |
1181.0 | Fullerton,_California | 23.0 | 10.0 | 0.0 |
1182.0 | Climate_of_Minnesota | 6.0 | 0.0 | 0.0 |
1183.0 | Unassessed_African_diaspora_articles | 482.0 | 0.0 | 0.0 |
1184.0 | Unknown-importance_African_diaspora_articles | 3609.0 | 0.0 | 0.0 |
1185.0 | Wikipedia_requested_photographs | 14339.0 | 4.0 | 0.0 |
1186.0 | 2008 | 61.0 | 42.0 | 0.0 |
1187.0 | AfD_debates_(Science_and_technology) | 24.0 | 0.0 | 0.0 |
1188.0 | Musical_film_stubs | 561.0 | 6.0 | 0.0 |
1190.0 | Automatically_assessed_biography_(military)_articles | 487.0 | 0.0 | 0.0 |
1191.0 | Automatically_assessed_biography_articles | 201629.0 | 9.0 | 0.0 |
1192.0 | German_history_stubs | 570.0 | 6.0 | 0.0 |
1193.0 | Articles_lacking_in-text_citations | 196.0 | 195.0 | 0.0 |
1194.0 | 1980_births | 15963.0 | 0.0 | 0.0 |
1195.0 | American_spree_killers | 125.0 | 0.0 | 0.0 |
1196.0 | Northern_Illinois_University_alumni | 213.0 | 1.0 | 0.0 |
1197.0 | Polish-Americans | 0.0 | 0.0 | 0.0 |
1198.0 | People_from_Elk_Grove_Village,_Illinois | 19.0 | 0.0 | 0.0 |
1199.0 | Suicides_by_firearm_in_the_United_States | 9.0 | 3.0 | 0.0 |
1200.0 | B-Class_France_articles | 2174.0 | 2.0 | 0.0 |
1202.0 | Mid-importance_Peru_articles | 642.0 | 0.0 | 0.0 |
1203.0 | Unknown-importance_Peru_articles | 3726.0 | 0.0 | 0.0 |
1204.0 | Assassinated_people_by_nationality | 151.0 | 151.0 | 0.0 |
1206.0 | Royal_Navy_ship_names | 2408.0 | 1.0 | 0.0 |
1209.0 | Delaware | 30.0 | 25.0 | 0.0 |
1210.0 | Slough | 31.0 | 10.0 | 0.0 |
1211.0 | Family_Feud | 29.0 | 0.0 | 0.0 |
1212.0 | WikiProject_Queen | 5.0 | 1.0 | 0.0 |
1217.0 | Stub-Class_Baseball_articles | 24370.0 | 1.0 | 0.0 |
1218.0 | Sports_and_games_work_group_articles | 647903.0 | 3.0 | 0.0 |
1219.0 | Unassessed_biography_(sports_and_games)_articles | 5124.0 | 0.0 | 0.0 |
1221.0 | Perth,_Western_Australia | 34.0 | 17.0 | 0.0 |
1222.0 | Wikipedia_rollback_feature | 41.0 | 2.0 | 0.0 |
1223.0 | Ball_games | 259.0 | 45.0 | 0.0 |
1224.0 | First_Nations_culture | 112.0 | 32.0 | 0.0 |
1225.0 | Lacrosse | 23.0 | 19.0 | 0.0 |
1226.0 | Sports_rules_and_regulations | 85.0 | 10.0 | 0.0 |
1227.0 | Team_sports | 255.0 | 69.0 | 0.0 |
1228.0 | Ship_articles_needing_infobox_conversion | 0.0 | 0.0 | 0.0 |
1229.0 | Vietnamese_Roman_Catholics | 67.0 | 6.0 | 0.0 |
1231.0 | Brisbane | 44.0 | 18.0 | 0.0 |
1232.0 | Fossils | 56.0 | 23.0 | 0.0 |
1233.0 | East_River | 56.0 | 4.0 | 0.0 |
1234.0 | New_York_City_Subway | 32.0 | 15.0 | 0.0 |
1235.0 | Railway_tunnels_in_New_York_City | 0.0 | 0.0 | 0.0 |
1236.0 | New_York_City_transportation_stubs | 22.0 | 2.0 | 0.0 |
1239.0 | Canadian_engineers | 150.0 | 21.0 | 0.0 |
1240.0 | University_of_Ottawa_alumni | 441.0 | 2.0 | 0.0 |
1241.0 | Royal_Military_College_of_Canada_people | 12.0 | 3.0 | 0.0 |
1242.0 | Pilates | 12.0 | 0.0 | 0.0 |
1243.0 | Articles_lacking_reliable_references_from_September_2007 | 120.0 | 0.0 | 0.0 |
1244.0 | Articles_lacking_sources_from_November_2007 | 327.0 | 0.0 | 0.0 |
1245.0 | Torchwood_characters | 19.0 | 0.0 | 0.0 |
1246.0 | Doctor_Who_races | 31.0 | 3.0 | 0.0 |
1247.0 | Stand-up_comedians | 14.0 | 1.0 | 0.0 |
1248.0 | Dallas,_Texas | 0.0 | 0.0 | 0.0 |
1249.0 | Indian_folklore | 149.0 | 19.0 | 0.0 |
1250.0 | Indian_monarchs | 57.0 | 31.0 | 0.0 |
1251.0 | Samoa_stubs | 75.0 | 4.0 | 0.0 |
1252.0 | United_States_history_stubs | 375.0 | 5.0 | 0.0 |
1253.0 | FA-Class_Firearms_articles | 1.0 | 0.0 | 0.0 |
1254.0 | FA-Class_Russia_articles | 86.0 | 5.0 | 0.0 |
1256.0 | FA-Class_military_history_articles | 1377.0 | 2.0 | 0.0 |
1258.0 | FA-Class_weaponry_articles | 43.0 | 0.0 | 0.0 |
1259.0 | Military_history_articles_used_on_portals | 179.0 | 0.0 | 0.0 |
1262.0 | Top-importance_Russia_articles | 1153.0 | 11.0 | 0.0 |
1263.0 | Weaponry_task_force_articles | 11494.0 | 2.0 | 0.0 |
1264.0 | WikiProject_Firearms | 23.0 | 6.0 | 0.0 |
1265.0 | 2000_albums | 2084.0 | 11.0 | 0.0 |
1266.0 | Booz_Allen_Hamilton | 7.0 | 1.0 | 0.0 |
1268.0 | Unassessed_Iowa_articles | 175.0 | 0.0 | 0.0 |
1269.0 | Unknown-importance_Iowa_articles | 765.0 | 0.0 | 0.0 |
1270.0 | WikiProject_Iowa | 16.0 | 5.0 | 0.0 |
1271.0 | Oklahoma_stubs | 134.0 | 7.0 | 0.0 |
1272.0 | Southern_United_States_building_and_structure_stubs | 26.0 | 24.0 | 0.0 |
1273.0 | Free_Software_Foundation | 32.0 | 2.0 | 0.0 |
1274.0 | Evolution | 95.0 | 8.0 | 0.0 |
1275.0 | Metabolism | 270.0 | 16.0 | 0.0 |
1276.0 | Origin_of_life | 77.0 | 4.0 | 0.0 |
1277.0 | Album_articles_with_non-standard_infoboxes | 2.0 | 0.0 | 0.0 |
1278.0 | 1993 | 48.0 | 39.0 | 0.0 |
1279.0 | Start-Class_District_of_Columbia_articles | 3463.0 | 0.0 | 0.0 |
1280.0 | Stub-Class_District_of_Columbia_articles | 3262.0 | 0.0 | 0.0 |
1281.0 | Toms_River,_New_Jersey | 36.0 | 4.0 | 0.0 |
1282.0 | Sports | 55.0 | 48.0 | 0.0 |
1283.0 | American_actors | 116.0 | 17.0 | 0.0 |
1284.0 | Sport_in_Indonesia | 56.0 | 28.0 | 0.0 |
1285.0 | Confucianism | 29.0 | 15.0 | 0.0 |
1286.0 | Knights_of_the_Round_Table | 45.0 | 0.0 | 0.0 |
1287.0 | Ambient_musicians | 237.0 | 3.0 | 0.0 |
1289.0 | Recent_deaths | 3.0 | 0.0 | 0.0 |
1290.0 | Milky_Way_Galaxy | 0.0 | 0.0 | 0.0 |
1291.0 | Comics_articles_needing_issue_citations | 1030.0 | 0.0 | 0.0 |
1294.0 | Hungary | 18.0 | 16.0 | 0.0 |
val rowsToSave = spark.sql("SELECT cat_id, cat_title, cat_pages, cat_subcats, cat_files FROM categories WHERE _corrupt_record IS NULL")
rowsToSave.write.saveAsTable("enwiki_category")
rowsToSave: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 3 more fields]
Removing redirects
In this notebook, we remove all pages marked as redirects, and replace links to redirects with direct links.
First, we just look at the structure of our data:
SELECT * FROM enwiki_graph_edges
src | dst | src_title | dst_title |
---|---|---|---|
1088.0 | 4.144269e7 | Azerbaijani_Armed_Forces | Corps_of_Drums |
1088.0 | 5.8693917e7 | Azerbaijani_Armed_Forces | Foreign_Intelligence_Service_(Azerbaijan) |
1088.0 | 2648922.0 | Azerbaijani_Armed_Forces | Hydroelectric_power_station |
1088.0 | 34252.0 | Azerbaijani_Armed_Forces | Republic_of_Yemen_Armed_Forces |
1088.0 | 1036235.0 | Azerbaijani_Armed_Forces | Zand_dynasty |
1088.0 | 2.0823682e7 | Azerbaijani_Armed_Forces | Rovnag_Abdullayev |
1088.0 | 2.3916399e7 | Azerbaijani_Armed_Forces | Sport_in_Azerbaijan |
1088.0 | 3.6945373e7 | Azerbaijani_Armed_Forces | Theatre_in_Azerbaijan |
1088.0 | 17760.0 | Azerbaijani_Armed_Forces | Lao_People's_Armed_Forces |
1088.0 | 6.6150419e7 | Azerbaijani_Armed_Forces | 3rd_Army_Corps_(Azerbaijan) |
1088.0 | 3457.0 | Azerbaijani_Armed_Forces | Belarus |
1088.0 | 1.1505052e7 | Azerbaijani_Armed_Forces | National_Hero_of_Azerbaijan |
1088.0 | 897352.0 | Azerbaijani_Armed_Forces | Singapore_Armed_Forces |
1088.0 | 6.5910946e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Sugovushan_Medal |
1088.0 | 523670.0 | Azerbaijani_Armed_Forces | List_of_states_with_limited_recognition |
1088.0 | 3.0314065e7 | Azerbaijani_Armed_Forces | Najmeddin_Sadikov |
1088.0 | 4.3202421e7 | Azerbaijani_Armed_Forces | The_Land_of_Fire |
1088.0 | 6.6065854e7 | Azerbaijani_Armed_Forces | Baku_Victory_Parade_of_2020 |
1088.0 | 3434750.0 | Azerbaijani_Armed_Forces | United_States |
1088.0 | 3.9140285e7 | Azerbaijani_Armed_Forces | 23rd_Guards_Motor_Rifle_Division |
1088.0 | 5.7562858e7 | Azerbaijani_Armed_Forces | Elta |
1088.0 | 5306394.0 | Azerbaijani_Armed_Forces | Haditha,_Iraq |
1088.0 | 1.4305018e7 | Azerbaijani_Armed_Forces | Islamic_Republic_of_Iran_Armed_Forces |
1088.0 | 7150805.0 | Azerbaijani_Armed_Forces | National_parks_of_Azerbaijan |
1088.0 | 3295318.0 | Azerbaijani_Armed_Forces | Patrol_craft |
1088.0 | 1340560.0 | Azerbaijani_Armed_Forces | Treaty_of_Turkmenchay |
1088.0 | 698454.0 | Azerbaijani_Armed_Forces | Azerbaijanis |
1088.0 | 9322682.0 | Azerbaijani_Armed_Forces | Karabakh |
1088.0 | 1908551.0 | Azerbaijani_Armed_Forces | Aid |
1088.0 | 5122310.0 | Azerbaijani_Armed_Forces | March_Days |
1088.0 | 2.3538754e7 | Azerbaijani_Armed_Forces | Wayback_Machine |
1088.0 | 6.1170719e7 | Azerbaijani_Armed_Forces | Azerbaijani_Army_100th_anniversary_medal |
1088.0 | 380320.0 | Azerbaijani_Armed_Forces | MiG-25 |
1088.0 | 21330.0 | Azerbaijani_Armed_Forces | Nepalese_Armed_Forces |
1088.0 | 25682.0 | Azerbaijani_Armed_Forces | Red_Army |
1088.0 | 5.2597609e7 | Azerbaijani_Armed_Forces | Swietochowski,_Tadeusz |
1088.0 | 1711234.0 | Azerbaijani_Armed_Forces | United_States_European_Command |
1088.0 | 5.0021902e7 | Azerbaijani_Armed_Forces | 2016_Nagorno-Karabakh_conflict |
1088.0 | 1.1288692e7 | Azerbaijani_Armed_Forces | 7th_Guards_Army |
1088.0 | 6.5911067e7 | Azerbaijani_Armed_Forces | Brave_Warrior_Medal |
1088.0 | 6922486.0 | Azerbaijani_Armed_Forces | Extreme_points_of_Azerbaijan |
1088.0 | 19115.0 | Azerbaijani_Armed_Forces | Malaysian_Armed_Forces |
1088.0 | 6.8977021e7 | Azerbaijani_Armed_Forces | Wedding_tradition_in_Azerbaijan |
1088.0 | 3.8429228e7 | Azerbaijani_Armed_Forces | Yevgenya_class_minesweeper |
1088.0 | 6.4718117e7 | Azerbaijani_Armed_Forces | List_of_modern_equipment_of_the_Azerbaijani_Air_Force |
1088.0 | 774820.0 | Azerbaijani_Armed_Forces | List_of_Azerbaijanis |
1088.0 | 6.5939927e7 | Azerbaijani_Armed_Forces | Nakhchivan_Separate_Combined_Arms_Army |
1088.0 | 6.8702564e7 | Azerbaijani_Armed_Forces | Non-Aligned_Movement |
1088.0 | 2867590.0 | Azerbaijani_Armed_Forces | Royal_Cambodian_Armed_Forces |
1088.0 | 1.2835793e7 | Azerbaijani_Armed_Forces | Azerbaijani_cuisine |
1088.0 | 2.1634642e7 | Azerbaijani_Armed_Forces | Novruz_in_Azerbaijan |
1088.0 | 1127085.0 | Azerbaijani_Armed_Forces | Stockholm_International_Peace_Research_Institute |
1088.0 | 6.7122586e7 | Azerbaijani_Armed_Forces | 777th_Special_Forces_Regiment |
1088.0 | 2.2576829e7 | Azerbaijani_Armed_Forces | Agriculture_in_Azerbaijan |
1088.0 | 1081.0 | Azerbaijani_Armed_Forces | Economy_of_Azerbaijan |
1088.0 | 3764215.0 | Azerbaijani_Armed_Forces | Prime_Minister_of_Azerbaijan |
1088.0 | 877164.0 | Azerbaijani_Armed_Forces | Arran_(Caucasus) |
1088.0 | 67538.0 | Azerbaijani_Armed_Forces | Australian_Defence_Force |
1088.0 | 8371628.0 | Azerbaijani_Armed_Forces | Battle_of_Baku |
1088.0 | 7427466.0 | Azerbaijani_Armed_Forces | Petya-class_frigate |
1088.0 | 25709.0 | Azerbaijani_Armed_Forces | Russian_Armed_Forces |
1088.0 | 7105996.0 | Azerbaijani_Armed_Forces | State_reserves_of_Azerbaijan |
1088.0 | 2.1376046e7 | Azerbaijani_Armed_Forces | Wehrmacht |
1088.0 | 6.1912686e7 | Azerbaijani_Armed_Forces | \"95th_Anniversary_of_the_Armed_Forces_of_Azerbaijan_(1918–2013)\"_Medal |
1088.0 | 6.4334706e7 | Azerbaijani_Armed_Forces | Azerbaijan_Higher_Naval_Academy |
1088.0 | 7077602.0 | Azerbaijani_Armed_Forces | Environment_of_Azerbaijan |
1088.0 | 865389.0 | Azerbaijani_Armed_Forces | International_Crisis_Group |
1088.0 | 7095335.0 | Azerbaijani_Armed_Forces | Climate_of_Azerbaijan |
1088.0 | 6.5910824e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Shusha_Medal |
1088.0 | 1887429.0 | Azerbaijani_Armed_Forces | IISS |
1088.0 | 2.5278391e7 | Azerbaijani_Armed_Forces | List_of_protected_areas_of_Azerbaijan |
1088.0 | 5215751.0 | Azerbaijani_Armed_Forces | Multi-National_Force_–_Iraq |
1088.0 | 1.4465664e7 | Azerbaijani_Armed_Forces | Absheron_Peninsula |
1088.0 | 3.363915e7 | Azerbaijani_Armed_Forces | Azerbaijani_tea_culture |
1088.0 | 31730.0 | Azerbaijani_Armed_Forces | British_Armed_Forces |
1088.0 | 7105894.0 | Azerbaijani_Armed_Forces | Flora_of_Azerbaijan |
1088.0 | 68253.0 | Azerbaijani_Armed_Forces | List_of_sovereign_states |
1088.0 | 1.7935711e7 | Azerbaijani_Armed_Forces | Shirvanshah |
1088.0 | 7.0393652e7 | Azerbaijani_Armed_Forces | 641st_Special_Warfare_Naval_Unit |
1088.0 | 2152685.0 | Azerbaijani_Armed_Forces | Cypriot_National_Guard |
1088.0 | 3.6926008e7 | Azerbaijani_Armed_Forces | For_military_services_medal |
1088.0 | 182664.0 | Azerbaijani_Armed_Forces | Surface-to-air_missile |
1088.0 | 6.6149221e7 | Azerbaijani_Armed_Forces | 1st_Army_Corps_(Azerbaijan) |
1088.0 | 7150649.0 | Azerbaijani_Armed_Forces | Environmental_issues_in_Azerbaijan |
1088.0 | 6.5910861e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Lachin_Medal |
1088.0 | 1.0287296e7 | Azerbaijani_Armed_Forces | Otokar_Cobra |
1088.0 | 3.84555e7 | Azerbaijani_Armed_Forces | Safavid_Iran |
1088.0 | 6.72382e7 | Azerbaijani_Armed_Forces | Chief_of_the_General_Staff_(Azerbaijan) |
1088.0 | 339643.0 | Azerbaijani_Armed_Forces | Flag_of_Azerbaijan |
1088.0 | 6.6096407e7 | Azerbaijani_Armed_Forces | Heydar_Aliyev_Military_Lyceum |
1088.0 | 3.5252903e7 | Azerbaijani_Armed_Forces | Nuclear_Non-Proliferation_Treaty |
1088.0 | 5844475.0 | Azerbaijani_Armed_Forces | Palestinian_National_Security_Forces |
1088.0 | 1.1125639e7 | Azerbaijani_Armed_Forces | Turkey |
1088.0 | 187660.0 | Azerbaijani_Armed_Forces | Yakovlev |
1088.0 | 3.9780666e7 | Azerbaijani_Armed_Forces | History_of_the_name_Azerbaijan |
1088.0 | 6.6058582e7 | Azerbaijani_Armed_Forces | Hero_of_the_Patriotic_War |
1088.0 | 19279.0 | Azerbaijani_Armed_Forces | Mongolian_Armed_Forces |
1088.0 | 6.1609086e7 | Azerbaijani_Armed_Forces | Bronze_and_Iron_Age_in_Azerbaijan |
1088.0 | 4.7845161e7 | Azerbaijani_Armed_Forces | Nakhchivan_Airport |
1088.0 | 9874605.0 | Azerbaijani_Armed_Forces | Turkish_Air_Force_Academy |
1088.0 | 5.6441648e7 | Azerbaijani_Armed_Forces | Mughan_culture |
1088.0 | 368530.0 | Azerbaijani_Armed_Forces | Partnership_for_Peace |
1088.0 | 16650.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Kazakhstan |
1088.0 | 2409969.0 | Azerbaijani_Armed_Forces | Azerbaijan_Democratic_Republic |
1088.0 | 1.1886584e7 | Azerbaijani_Armed_Forces | Baku_Air_Defence_Army |
1088.0 | 3.5527299e7 | Azerbaijani_Armed_Forces | For_Heroism_Medal |
1088.0 | 6.5910757e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Aghdam_Medal |
1088.0 | 6.5910908e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Zangilan_Medal |
1088.0 | 7171338.0 | Azerbaijani_Armed_Forces | Indian_Armed_Forces |
1088.0 | 5.1886693e7 | Azerbaijani_Armed_Forces | S-300_(missile) |
1088.0 | 2884207.0 | Azerbaijani_Armed_Forces | Advanced_Research_and_Assessment_Group |
1088.0 | 2.0024921e7 | Azerbaijani_Armed_Forces | Armenian-occupied_territories_surrounding_Nagorno-Karabakh |
1088.0 | 408283.0 | Azerbaijani_Armed_Forces | Azerbaijani_Popular_Front_Party |
1088.0 | 6.5910929e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Khojavend_Medal |
1088.0 | 1.1623685e7 | Azerbaijani_Armed_Forces | Freedom_Support_Act |
1088.0 | 27019.0 | Azerbaijani_Armed_Forces | South_Korea |
1088.0 | 6.5624452e7 | Azerbaijani_Armed_Forces | 2016_Nagorno-Karabakh_clashes |
1088.0 | 2.3597901e7 | Azerbaijani_Armed_Forces | Azadliq_Square,_Baku |
1088.0 | 6131588.0 | Azerbaijani_Armed_Forces | Petroleum_industry_in_Azerbaijan |
1088.0 | 6.631834e7 | Azerbaijani_Armed_Forces | Second_Karabakh_War |
1088.0 | 1.156279e7 | Azerbaijani_Armed_Forces | Second_World_War |
1088.0 | 6.5911124e7 | Azerbaijani_Armed_Forces | For_Services_in_the_Rear_in_the_Patriotic_War_Medal |
1088.0 | 2.1659771e7 | Azerbaijani_Armed_Forces | Military_history_of_Azerbaijan |
1088.0 | 3.8392125e7 | Azerbaijani_Armed_Forces | Sonya_class_minesweeper |
1088.0 | 5.7836785e7 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
1088.0 | 30116.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Tajikistan |
1088.0 | 612372.0 | Azerbaijani_Armed_Forces | Midget_submarine |
1088.0 | 2.7167856e7 | Azerbaijani_Armed_Forces | Azerbaijani_Air_Force |
1088.0 | 15166.0 | Azerbaijani_Armed_Forces | Infantry_fighting_vehicle |
1088.0 | 7015198.0 | Azerbaijani_Armed_Forces | LGBT_rights_in_Azerbaijan |
1088.0 | 68932.0 | Azerbaijani_Armed_Forces | Bangladesh_Armed_Forces |
1088.0 | 1115368.0 | Azerbaijani_Armed_Forces | Maldives_National_Defence_Force |
1088.0 | 8417589.0 | Azerbaijani_Armed_Forces | Sallarid_dynasty |
1088.0 | 5321.0 | Azerbaijani_Armed_Forces | Czech_Republic |
1088.0 | 67638.0 | Azerbaijani_Armed_Forces | Demographics_of_Azerbaijan |
1088.0 | 1.1776466e7 | Azerbaijani_Armed_Forces | Ethnic_minorities_in_Azerbaijan |
1088.0 | 5.3412468e7 | Azerbaijani_Armed_Forces | Military_ranks_of_Azerbaijan |
1088.0 | 457051.0 | Azerbaijani_Armed_Forces | National_emblem_of_Azerbaijan |
1088.0 | 2.3290453e7 | Azerbaijani_Armed_Forces | Peacekeeping_forces_of_Azerbaijan |
1088.0 | 4.4208502e7 | Azerbaijani_Armed_Forces | SA-3_Goa |
1088.0 | 6.6404258e7 | Azerbaijani_Armed_Forces | Azerbaijani_Red_Army |
1088.0 | 6.614052e7 | Azerbaijani_Armed_Forces | Karim_Valiyev |
1088.0 | 6.2201975e7 | Azerbaijani_Armed_Forces | Nakhchivan_culture |
1088.0 | 5.4147626e7 | Azerbaijani_Armed_Forces | State_Security_Service_(Azerbaijan) |
1088.0 | 161087.0 | Azerbaijani_Armed_Forces | Timor_Leste_Defence_Force |
1088.0 | 6.6016112e7 | Azerbaijani_Armed_Forces | Memorial_Day_(Azerbaijan) |
1088.0 | 3.1854531e7 | Azerbaijani_Armed_Forces | Namer_(vehicle) |
1088.0 | 30095.0 | Azerbaijani_Armed_Forces | Republic_of_China_Armed_Forces |
1088.0 | 4.3825422e7 | Azerbaijani_Armed_Forces | S-200_Angara/Vega/Dubna |
1088.0 | 2.3408142e7 | Azerbaijani_Armed_Forces | Sri_Lanka_Armed_Forces |
1088.0 | 6.6317677e7 | Azerbaijani_Armed_Forces | YARASA_Special_Forces |
1088.0 | 6.5451828e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_War |
1088.0 | 6.9447715e7 | Azerbaijani_Armed_Forces | 402nd_Rifle_Division |
1088.0 | 5.224123e7 | Azerbaijani_Armed_Forces | Borders_of_Azerbaijan |
1088.0 | 6.5910916e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Fuzuli_Medal |
1088.0 | 27027.0 | Azerbaijani_Armed_Forces | Republic_of_Korea_Armed_Forces |
1088.0 | 1.0942678e7 | Azerbaijani_Armed_Forces | Samedbey_Mehmandarov |
1088.0 | 30205.0 | Azerbaijani_Armed_Forces | Turkish_Armed_Forces |
1088.0 | 1.2339349e7 | Azerbaijani_Armed_Forces | Architecture_of_Azerbaijan |
1088.0 | 6.6286297e7 | Azerbaijani_Armed_Forces | Karam_Mustafayev |
1088.0 | 26295.0 | Azerbaijani_Armed_Forces | Russian_Civil_War |
1088.0 | 16702.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Kyrgyz_Republic |
1088.0 | 539716.0 | Azerbaijani_Armed_Forces | Landing_craft |
1088.0 | 2.3269917e7 | Azerbaijani_Armed_Forces | Military_of_Azerbaijan |
1088.0 | 7193518.0 | Azerbaijani_Armed_Forces | Special_Forces_Command_(Turkey) |
1088.0 | 192825.0 | Azerbaijani_Armed_Forces | Azerbaijani_language |
1088.0 | 194200.0 | Azerbaijani_Armed_Forces | International_Security_Assistance_Force |
1088.0 | 2.0222257e7 | Azerbaijani_Armed_Forces | MKEK |
1088.0 | 21133.0 | Azerbaijani_Armed_Forces | NATO |
1088.0 | 2.5131731e7 | Azerbaijani_Armed_Forces | Azerbaijani_Army |
1088.0 | 2.9149908e7 | Azerbaijani_Armed_Forces | Coat_of_arms_of_Azerbaijan |
1088.0 | 1.6569312e7 | Azerbaijani_Armed_Forces | Education_in_Azerbaijan |
1088.0 | 22489.0 | Azerbaijani_Armed_Forces | Oklahoma |
1088.0 | 4059749.0 | Azerbaijani_Armed_Forces | Artsakh_Defence_Army |
1088.0 | 8696322.0 | Azerbaijani_Armed_Forces | Azerbaijan_National_Academy_of_Sciences |
1088.0 | 4941797.0 | Azerbaijani_Armed_Forces | Azerbaijani_Land_Forces |
1088.0 | 188675.0 | Azerbaijani_Armed_Forces | Baltic_states |
1088.0 | 3.0322746e7 | Azerbaijani_Armed_Forces | General_Staff_of_Azerbaijani_Armed_Forces |
1088.0 | 2785204.0 | Azerbaijani_Armed_Forces | Japan_Self-Defense_Forces |
1088.0 | 4.5541218e7 | Azerbaijani_Armed_Forces | 295th_Motor_Rifle_Division |
1088.0 | 1.8838818e7 | Azerbaijani_Armed_Forces | Bibiheybət |
1088.0 | 5.5095974e7 | Azerbaijani_Armed_Forces | Healthcare_in_Azerbaijan |
1088.0 | 20282.0 | Azerbaijani_Armed_Forces | Mechanized_infantry |
1088.0 | 3.7721373e7 | Azerbaijani_Armed_Forces | Medicine_in_Azerbaijan |
1088.0 | 20394.0 | Azerbaijani_Armed_Forces | Tatmadaw |
1088.0 | 4.2543864e7 | Azerbaijani_Armed_Forces | United_States_Air_Forces_in_Europe |
1088.0 | 4.0963939e7 | Azerbaijani_Armed_Forces | Zakir_Hasanov |
1088.0 | 2.3207828e7 | Azerbaijani_Armed_Forces | Azerbaijan_Defense_Industry |
1088.0 | 1.1670391e7 | Azerbaijani_Armed_Forces | Gabala_Radar_Station |
1088.0 | 2.8087409e7 | Azerbaijani_Armed_Forces | Khosrov_bey_Sultanov |
1088.0 | 343356.0 | Azerbaijani_Armed_Forces | List_of_cities_in_Azerbaijan |
1088.0 | 1.7967625e7 | Azerbaijani_Armed_Forces | Mineral_industry_of_Azerbaijan |
1088.0 | 6.59111e7 | Azerbaijani_Armed_Forces | Participant_of_the_Patriotic_War_Medal |
1088.0 | 66890.0 | Azerbaijani_Armed_Forces | People's_Liberation_Army |
1088.0 | 4247739.0 | Azerbaijani_Armed_Forces | U.S._Navy_SEALs |
1088.0 | 2.8017536e7 | Azerbaijani_Armed_Forces | Valeh_Barshadli |
1088.0 | 2563036.0 | Azerbaijani_Armed_Forces | Hazi_Aslanov |
1088.0 | 381496.0 | Azerbaijani_Armed_Forces | JF-17 |
1088.0 | 493727.0 | Azerbaijani_Armed_Forces | Aero_L-39_Albatros |
1088.0 | 6.7120883e7 | Azerbaijani_Armed_Forces | Armenian_Army |
1088.0 | 401606.0 | Azerbaijani_Armed_Forces | Index_of_Azerbaijan-related_articles |
1088.0 | 1.1169023e7 | Azerbaijani_Armed_Forces | Ministry_of_Defence_Industry_of_Azerbaijan |
1088.0 | 5.829427e7 | Azerbaijani_Armed_Forces | Mountains_of_Azerbaijan |
1088.0 | 638594.0 | Azerbaijani_Armed_Forces | Non-belligerent |
1088.0 | 3.2945088e7 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Azerbaijan |
1088.0 | 31750.0 | Azerbaijani_Armed_Forces | Ukraine |
1088.0 | 380322.0 | Azerbaijani_Armed_Forces | Il-76 |
1088.0 | 1492960.0 | Azerbaijani_Armed_Forces | Nakhchivan_(city) |
1088.0 | 6.2087908e7 | Azerbaijani_Armed_Forces | Russo-Persian_War_(1804–13) |
1088.0 | 6446390.0 | Azerbaijani_Armed_Forces | State_Partnership_Program |
1088.0 | 905795.0 | Azerbaijani_Armed_Forces | Treaty_of_Gulistan |
1088.0 | 5424688.0 | Azerbaijani_Armed_Forces | Jordanian_Armed_Forces |
1088.0 | 956689.0 | Azerbaijani_Armed_Forces | Kura–Araxes_culture |
1088.0 | 5024972.0 | Azerbaijani_Armed_Forces | Operation_Edelweiss |
1088.0 | 3.6369933e7 | Azerbaijani_Armed_Forces | Orders,_decorations,_and_medals_of_Azerbaijan |
1088.0 | 412390.0 | Azerbaijani_Armed_Forces | Administrative_divisions_of_Azerbaijan |
1088.0 | 30215.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Turkmenistan |
1088.0 | 5.0716679e7 | Azerbaijani_Armed_Forces | Nasosnaya_(air_base) |
1088.0 | 25194.0 | Azerbaijani_Armed_Forces | Qatar_Armed_Forces |
1088.0 | 3206857.0 | Azerbaijani_Armed_Forces | Religion_in_Azerbaijan |
1088.0 | 3.5663369e7 | Azerbaijani_Armed_Forces | Sitalchay_Military_Airbase |
1088.0 | 3.8938602e7 | Azerbaijani_Armed_Forces | \"For_Faultless_Service\"_medal |
1088.0 | 2.1288922e7 | Azerbaijani_Armed_Forces | Azerbaijan_during_World_War_II |
1088.0 | 1.0927351e7 | Azerbaijani_Armed_Forces | Azerbaijani_National_Guard |
1088.0 | 4020775.0 | Azerbaijani_Armed_Forces | First_Nagorno-Karabakh_War |
1088.0 | 5.515162e7 | Azerbaijani_Armed_Forces | ISSN_(identifier) |
1088.0 | 14532.0 | Azerbaijani_Armed_Forces | Italy |
1088.0 | 1986639.0 | Azerbaijani_Armed_Forces | Languages_of_Azerbaijan |
1088.0 | 4.1471871e7 | Azerbaijani_Armed_Forces | List_of_lakes_of_Azerbaijan |
1088.0 | 4363966.0 | Azerbaijani_Armed_Forces | History_of_Azerbaijan |
1088.0 | 65220.0 | Azerbaijani_Armed_Forces | Nagorno-Karabakh |
1088.0 | 27276.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Saudi_Arabia |
1088.0 | 4566.0 | Azerbaijani_Armed_Forces | Baku |
1088.0 | 40195.0 | Azerbaijani_Armed_Forces | Telecommunications_in_Azerbaijan |
1088.0 | 6.7538996e7 | Azerbaijani_Armed_Forces | Şəmkir |
1088.0 | 1151523.0 | Azerbaijani_Armed_Forces | Azerbaijani_manat |
1088.0 | 213497.0 | Azerbaijani_Armed_Forces | Caucasian_Albania |
1088.0 | 6.5910879e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Kalbajar_Medal |
1088.0 | 5245787.0 | Azerbaijani_Armed_Forces | GUAM |
1088.0 | 6.7667374e7 | Azerbaijani_Armed_Forces | Kara_Koyunlu |
1088.0 | 1.8933221e7 | Azerbaijani_Armed_Forces | Royal_Brunei_Armed_Forces |
1088.0 | 31841.0 | Azerbaijani_Armed_Forces | United_Arab_Emirates_Armed_Forces |
1088.0 | 1.0927815e7 | Azerbaijani_Armed_Forces | Caspian_Guard_Initiative |
1088.0 | 1.9653787e7 | Azerbaijani_Armed_Forces | Caspian_Sea |
1088.0 | 3.4048567e7 | Azerbaijani_Armed_Forces | Marauder_(vehicle) |
1088.0 | 5.5829912e7 | Azerbaijani_Armed_Forces | Natural_resources_of_Azerbaijan |
1088.0 | 7115553.0 | Azerbaijani_Armed_Forces | Barda,_Azerbaijan |
1088.0 | 6.7740154e7 | Azerbaijani_Armed_Forces | Jane's_Information_Group |
1088.0 | 3.0455197e7 | Azerbaijani_Armed_Forces | Khojaly–Gadabay_culture |
1088.0 | 1519005.0 | Azerbaijani_Armed_Forces | Sultan_of_Oman's_Armed_Forces |
1088.0 | 3.1030978e7 | Azerbaijani_Armed_Forces | Azerbaijani_mythology |
1088.0 | 3.0322787e7 | Azerbaijani_Armed_Forces | Chief_of_General_Staff_of_Azerbaijani_Armed_Forces |
1088.0 | 46530.0 | Azerbaijani_Armed_Forces | Human_Rights_Watch |
1088.0 | 2.1447694e7 | Azerbaijani_Armed_Forces | List_of_companies_of_Azerbaijan |
1088.0 | 3.7897147e7 | Azerbaijani_Armed_Forces | National_symbols_of_Azerbaijan |
1088.0 | 4.5061575e7 | Azerbaijani_Armed_Forces | Qajar_Iran |
1088.0 | 873945.0 | Azerbaijani_Armed_Forces | Soviet_Air_Defence_Forces |
1088.0 | 877787.0 | Azerbaijani_Armed_Forces | Azerbaijani_literature |
1088.0 | 3708.0 | Azerbaijani_Armed_Forces | Brussels |
1088.0 | 214529.0 | Azerbaijani_Armed_Forces | Dependent_territory |
1088.0 | 5.5049264e7 | Azerbaijani_Armed_Forces | ISBN_(identifier) |
1088.0 | 9282173.0 | Azerbaijani_Armed_Forces | Israel |
1088.0 | 1.2085342e7 | Azerbaijani_Armed_Forces | Khanates_of_the_Caucasus |
1088.0 | 1.9374465e7 | Azerbaijani_Armed_Forces | Xətai_raion |
1088.0 | 3.3949683e7 | Azerbaijani_Armed_Forces | Air_Force_Day |
1088.0 | 6.0544953e7 | Azerbaijani_Armed_Forces | Azerbaijan_Higher_Military_Academy |
1088.0 | 79745.0 | Azerbaijani_Armed_Forces | Cluster_munition |
1088.0 | 21263.0 | Azerbaijani_Armed_Forces | Korean_People's_Army |
1088.0 | 2.2462867e7 | Azerbaijani_Armed_Forces | Soviet_Ground_Forces |
1088.0 | 382302.0 | Azerbaijani_Armed_Forces | Su-25 |
1088.0 | 1322733.0 | Azerbaijani_Armed_Forces | Black_January |
1088.0 | 3.5450533e7 | Azerbaijani_Armed_Forces | Day_of_the_Armed_Forces_of_Azerbaijan |
1088.0 | 309778.0 | Azerbaijani_Armed_Forces | Music_of_Azerbaijan |
1088.0 | 30136.0 | Azerbaijani_Armed_Forces | Royal_Thai_Armed_Forces |
1088.0 | 26748.0 | Azerbaijani_Armed_Forces | Switzerland |
1088.0 | 7469136.0 | Azerbaijani_Armed_Forces | Vietnam_People's_Armed_Forces |
1088.0 | 2.3207385e7 | Azerbaijani_Armed_Forces | Azerbaijan_Navy |
1088.0 | 6367906.0 | Azerbaijani_Armed_Forces | Azerbaijani_dances |
1088.0 | 704623.0 | Azerbaijani_Armed_Forces | CIA |
1088.0 | 3.7265091e7 | Azerbaijani_Armed_Forces | Caspian_Sea_Flotilla |
1088.0 | 2071240.0 | Azerbaijani_Armed_Forces | Culture_of_Azerbaijan |
1088.0 | 7761715.0 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Georgia |
1088.0 | 6.6176862e7 | Azerbaijani_Armed_Forces | 2nd_Army_Corps_(Azerbaijan) |
1088.0 | 6.5787844e7 | Azerbaijani_Armed_Forces | Battle_of_Shusha_(2020) |
1088.0 | 16692.0 | Azerbaijani_Armed_Forces | Kuwait_Military_Forces |
1088.0 | 7940585.0 | Azerbaijani_Armed_Forces | Aq_Qoyunlu |
1088.0 | 5042916.0 | Azerbaijani_Armed_Forces | Canada |
1088.0 | 510603.0 | Azerbaijani_Armed_Forces | Jane's_Fighting_Ships |
1088.0 | 6.5431221e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_war |
1088.0 | 661551.0 | Azerbaijani_Armed_Forces | Ganja,_Azerbaijan |
1088.0 | 2.6217562e7 | Azerbaijani_Armed_Forces | History_of_Azerbaijani_animation |
1088.0 | 4562230.0 | Azerbaijani_Armed_Forces | Oklahoma_National_Guard |
1088.0 | 6.7228635e7 | Azerbaijani_Armed_Forces | Rovshan_Akbarov |
1088.0 | 8486749.0 | Azerbaijani_Armed_Forces | Russian_Space_Forces |
1088.0 | 382305.0 | Azerbaijani_Armed_Forces | Su-24 |
1088.0 | 3.5482625e7 | Azerbaijani_Armed_Forces | Armavir_Radar_Station |
1088.0 | 404448.0 | Azerbaijani_Armed_Forces | Azerbaijan_Soviet_Socialist_Republic |
1088.0 | 2.1653069e7 | Azerbaijani_Armed_Forces | Geology_of_Azerbaijan |
1088.0 | 4.0503488e7 | Azerbaijani_Armed_Forces | List_of_equipment_of_the_Azerbaijani_Land_Forces |
1088.0 | 408284.0 | Azerbaijani_Armed_Forces | List_of_political_parties_in_Azerbaijan |
1088.0 | 2.8119649e7 | Azerbaijani_Armed_Forces | Special_Purpose_Police_Unit |
1088.0 | 31717.0 | Azerbaijani_Armed_Forces | United_Kingdom |
1088.0 | 1.1447628e7 | Azerbaijani_Armed_Forces | Abkhazian_Armed_Forces |
1088.0 | 5731277.0 | Azerbaijani_Armed_Forces | Fauna_of_Azerbaijan |
1088.0 | 2.2765442e7 | Azerbaijani_Armed_Forces | Ilham_Aliyev |
1088.0 | 542300.0 | Azerbaijani_Armed_Forces | Ilkhanate |
1088.0 | 5.5284726e7 | Azerbaijani_Armed_Forces | Judiciary_of_Azerbaijan |
1088.0 | 3.4024533e7 | Azerbaijani_Armed_Forces | Leyla-Tepe_culture |
1088.0 | 4674848.0 | Azerbaijani_Armed_Forces | Russo-Persian_War_(1826–1828) |
1088.0 | 2.6964606e7 | Azerbaijani_Armed_Forces | Austria |
1088.0 | 6.4611227e7 | Azerbaijani_Armed_Forces | Azerbaijani_Air_and_Air_Defence_Force |
1088.0 | 6.698864e7 | Azerbaijani_Armed_Forces | Caves_of_Azerbaijan |
1088.0 | 1.8846287e7 | Azerbaijani_Armed_Forces | Jabrayil |
1088.0 | 7.18581e7 | Azerbaijani_Armed_Forces | Kyurdamir_Air_Base |
1088.0 | 3.0927438e7 | Azerbaijani_Armed_Forces | Achaemenid_Empire |
1088.0 | 6.5910935e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Jabrayil_Medal |
1088.0 | 162017.0 | Azerbaijani_Armed_Forces | Rayon |
1088.0 | 5366487.0 | Azerbaijani_Armed_Forces | Human_rights_in_Azerbaijan |
1088.0 | 1.1356544e7 | Azerbaijani_Armed_Forces | Law_enforcement_in_Azerbaijan |
1088.0 | 9609093.0 | Azerbaijani_Armed_Forces | Beylagan_(city) |
1088.0 | 519489.0 | Azerbaijani_Armed_Forces | Eastern_Front_(World_War_II) |
1088.0 | 1087.0 | Azerbaijani_Armed_Forces | Foreign_relations_of_Azerbaijan |
1088.0 | 1.1197435e7 | Azerbaijani_Armed_Forces | Maciej_Sulkiewicz |
1088.0 | 938372.0 | Azerbaijani_Armed_Forces | President_of_Azerbaijan |
1088.0 | 32817.0 | Azerbaijani_Armed_Forces | Vladimir_Putin |
1088.0 | 2.6157272e7 | Azerbaijani_Armed_Forces | Azerbaijani_art |
1088.0 | 2.7172367e7 | Azerbaijani_Armed_Forces | Azerbaijani_folklore |
1088.0 | 385358.0 | Azerbaijani_Armed_Forces | Nakhchivan_Autonomous_Republic |
1088.0 | 214413.0 | Azerbaijani_Armed_Forces | Armenian_diaspora |
1088.0 | 6.591061e7 | Azerbaijani_Armed_Forces | Hero_of_the_Patriotic_War_Medal |
1088.0 | 123503.0 | Azerbaijani_Armed_Forces | MiG-21 |
1088.0 | 3.3570513e7 | Azerbaijani_Armed_Forces | Russians_in_Azerbaijan |
1088.0 | 7.1286679e7 | Azerbaijani_Armed_Forces | Shulaveri-Shomu_culture |
1088.0 | 3.3872653e7 | Azerbaijani_Armed_Forces | Jar-Burial_Culture |
1088.0 | 7174933.0 | Azerbaijani_Armed_Forces | List_of_countries_with_nuclear_weapons |
1088.0 | 3.0323393e7 | Azerbaijani_Armed_Forces | Minister_of_Defense_(Azerbaijan) |
1088.0 | 6.5804585e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_ceasefire_agreement |
1088.0 | 7.03133e7 | Azerbaijani_Armed_Forces | 223rd_Rifle_Division |
1088.0 | 6.6185091e7 | Azerbaijani_Armed_Forces | 4th_Army_Corps_(Azerbaijan) |
1088.0 | 2.5137672e7 | Azerbaijani_Armed_Forces | Energy_in_Azerbaijan |
1088.0 | 4.1349212e7 | Azerbaijani_Armed_Forces | Minesweeper_(ship) |
1088.0 | 67639.0 | Azerbaijani_Armed_Forces | Politics_of_Azerbaijan |
1088.0 | 1.9376957e7 | Azerbaijani_Armed_Forces | Sanqacal |
1088.0 | 27318.0 | Azerbaijani_Armed_Forces | Singapore |
1088.0 | 1.7416221e7 | Azerbaijani_Armed_Forces | South_Africa |
1088.0 | 32927.0 | Azerbaijani_Armed_Forces | World_War_II |
1088.0 | 5639884.0 | Azerbaijani_Armed_Forces | Armenian–Azerbaijani_war_(1918–1920) |
1088.0 | 7107998.0 | Azerbaijani_Armed_Forces | Bodies_of_water_of_Azerbaijan |
1088.0 | 5843419.0 | Azerbaijani_Armed_Forces | France |
1088.0 | 877182.0 | Azerbaijani_Armed_Forces | Shirvan |
1088.0 | 6.0555433e7 | Azerbaijani_Armed_Forces | War_College_of_the_Azerbaijani_Armed_Forces |
1088.0 | 802.0 | Azerbaijani_Armed_Forces | Ankara |
1088.0 | 23369.0 | Azerbaijani_Armed_Forces | Pakistan_Armed_Forces |
1088.0 | 4501200.0 | Azerbaijani_Armed_Forces | Parthian_Empire |
1088.0 | 4.190231e7 | Azerbaijani_Armed_Forces | Special_Forces_of_Azerbaijan |
1088.0 | 3.1022059e7 | Azerbaijani_Armed_Forces | State_Oil_Company_of_Azerbaijan_Republic |
1088.0 | 7.1994248e7 | Azerbaijani_Armed_Forces | Defense_Forces_of_Georgia |
1088.0 | 2.7911049e7 | Azerbaijani_Armed_Forces | Ministry_of_Defence_(Azerbaijan) |
1088.0 | 1.2975707e7 | Azerbaijani_Armed_Forces | Safar_Abiyev |
1088.0 | 26779.0 | Azerbaijani_Armed_Forces | Soviet_Union |
1088.0 | 6.1362503e7 | Azerbaijani_Armed_Forces | Stone_Age_in_Azerbaijan |
1088.0 | 1492790.0 | Azerbaijani_Armed_Forces | Shusha |
1088.0 | 31975.0 | Azerbaijani_Armed_Forces | United_States_Department_of_State |
1088.0 | 6.6016006e7 | Azerbaijani_Armed_Forces | Victory_Day_(Azerbaijan) |
1088.0 | 6064651.0 | Azerbaijani_Armed_Forces | Eldiguzids |
1088.0 | 6.5911037e7 | Azerbaijani_Armed_Forces | For_Distinction_in_Battle_Medal |
1088.0 | 14939.0 | Azerbaijani_Armed_Forces | Intercontinental_ballistic_missile |
1088.0 | 1.9360365e7 | Azerbaijani_Armed_Forces | North_Atlantic_Treaty_Organization |
1088.0 | 6.4783403e7 | Azerbaijani_Armed_Forces | 396th_Rifle_Division |
1088.0 | 6.9019186e7 | Azerbaijani_Armed_Forces | 416th_Rifle_Division_(Soviet_Union) |
1088.0 | 2.2469823e7 | Azerbaijani_Armed_Forces | Azerbaijani_peacekeeping_forces |
1088.0 | 3.5079877e7 | Azerbaijani_Armed_Forces | Azerbaijani_traditional_clothing |
1088.0 | 5043324.0 | Azerbaijani_Armed_Forces | Iraq_War |
1088.0 | 4627429.0 | Azerbaijani_Armed_Forces | Iraqi_Armed_Forces |
1088.0 | 1.905571e7 | Azerbaijani_Armed_Forces | Jebrayil |
1088.0 | 1.3969214e7 | Azerbaijani_Armed_Forces | Main_Agency_of_Missiles_and_Artillery_of_the_Ministry_of_Defense_of_the_Russian_Federation |
1088.0 | 6040932.0 | Azerbaijani_Armed_Forces | Security_Forces_Command |
1088.0 | 31861.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Uzbekistan |
1088.0 | 7658483.0 | Azerbaijani_Armed_Forces | Section_907 |
1088.0 | 19076.0 | Azerbaijani_Armed_Forces | Macao_Garrison |
1088.0 | 6.4207973e7 | Azerbaijani_Armed_Forces | Media_of_Azerbaijan |
1088.0 | 182309.0 | Azerbaijani_Armed_Forces | MiG-29 |
1088.0 | 59510.0 | Azerbaijani_Armed_Forces | Russians |
1088.0 | 2.8096514e7 | Azerbaijani_Armed_Forces | Jamshid_Nakhchivanski_Military_Lyceum |
1088.0 | 3.2850702e7 | Azerbaijani_Armed_Forces | List_of_World_Heritage_Sites_in_Azerbaijan |
1088.0 | 6.3975362e7 | Azerbaijani_Armed_Forces | OC_Media |
1088.0 | 2.023768e7 | Azerbaijani_Armed_Forces | Russian_Ministry_of_Defence |
1088.0 | 6672192.0 | Azerbaijani_Armed_Forces | Sajid_dynasty |
1088.0 | 4941803.0 | Azerbaijani_Armed_Forces | Azerbaijani_Navy |
1088.0 | 5876413.0 | Azerbaijani_Armed_Forces | Sasanian_Empire |
1088.0 | 2.3575502e7 | Azerbaijani_Armed_Forces | Tourism_in_Azerbaijan |
1088.0 | 1.0934404e7 | Azerbaijani_Armed_Forces | Wildlife_of_Azerbaijan |
1088.0 | 1097.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Armenia |
1088.0 | 23448.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Philippines |
1088.0 | 4380486.0 | Azerbaijani_Armed_Forces | Armenian–Tatar_massacres_of_1905–1907 |
1088.0 | 407062.0 | Azerbaijani_Armed_Forces | Azərbaycan_marşı |
1088.0 | 2.3465971e7 | Azerbaijani_Armed_Forces | Government_of_Azerbaijan |
1088.0 | 7877570.0 | Azerbaijani_Armed_Forces | Individual_Partnership_Action_Plan |
1088.0 | 5.5289023e7 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Armenia |
1088.0 | 4788086.0 | Azerbaijani_Armed_Forces | Azerbaijan_Medical_University |
1088.0 | 5.415509e7 | Azerbaijani_Armed_Forces | State_Service_for_Mobilization_and_Conscription_of_Azerbaijan |
1088.0 | 1.9079143e7 | Azerbaijani_Armed_Forces | Armed_Forces_of_South_Ossetia |
1088.0 | 2.3207406e7 | Azerbaijani_Armed_Forces | Azerbaijan_Border_Guard |
1088.0 | 2.1189576e7 | Azerbaijani_Armed_Forces | Azerbaijani_rug |
1088.0 | 5.5636355e7 | Azerbaijani_Armed_Forces | Baku_Higher_All-Arms_Command_School |
1088.0 | 25391.0 | Azerbaijani_Armed_Forces | Russia |
1088.0 | 40196.0 | Azerbaijani_Armed_Forces | Transport_in_Azerbaijan |
1088.0 | 4764461.0 | Azerbaijani_Armed_Forces | World_War_I |
1088.0 | 6.6828259e7 | Azerbaijani_Armed_Forces | Afsharid_Iran |
1088.0 | 6.5910891e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Gubadly_Medal |
1088.0 | 3249318.0 | Azerbaijani_Armed_Forces | Shaddadids |
1088.0 | 6.7101223e7 | Azerbaijani_Armed_Forces | Training_and_Education_Center_of_the_Armed_Forces |
1088.0 | 1.3427826e7 | Azerbaijani_Armed_Forces | Cabinet_of_Azerbaijan |
1088.0 | 1.0927665e7 | Azerbaijani_Armed_Forces | Internal_Troops_of_Azerbaijan |
1088.0 | 39237.0 | Azerbaijani_Armed_Forces | Israel_Defense_Forces |
1088.0 | 5.7994574e7 | Azerbaijani_Armed_Forces | Military_Band_Service_of_the_Armed_Forces_of_Azerbaijan |
1088.0 | 7.0680595e7 | Azerbaijani_Armed_Forces | 227th_Rifle_Division |
1088.0 | 2192452.0 | Azerbaijani_Armed_Forces | 4th_Army_(Soviet_Union) |
1088.0 | 2.3411067e7 | Azerbaijani_Armed_Forces | Ganja_Air_Base |
1088.0 | 581195.0 | Azerbaijani_Armed_Forces | Copyright_status_of_works_by_the_federal_government_of_the_United_States |
1088.0 | 7077806.0 | Azerbaijani_Armed_Forces | Orography_of_Azerbaijan |
1088.0 | 1177214.0 | Azerbaijani_Armed_Forces | Pennon |
1088.0 | 740508.0 | Azerbaijani_Armed_Forces | Republic_of_Azerbaijan |
1088.0 | 917076.0 | Azerbaijani_Armed_Forces | Ayaz_Mutallibov |
1088.0 | 213173.0 | Azerbaijani_Armed_Forces | Conscripts |
1088.0 | 1082.0 | Azerbaijani_Armed_Forces | Geography_of_Azerbaijan |
1088.0 | 9526432.0 | Azerbaijani_Armed_Forces | MRAP |
1088.0 | 386742.0 | Azerbaijani_Armed_Forces | SA-2 |
1088.0 | 6.4343188e7 | Azerbaijani_Armed_Forces | Azerbaijan_High_Military_Aviation_School |
1088.0 | 69007.0 | Azerbaijani_Armed_Forces | Military_of_Bhutan |
1088.0 | 1.9859966e7 | Azerbaijani_Armed_Forces | Nasosnaya_Air_Base |
1088.0 | 1022955.0 | Azerbaijani_Armed_Forces | Supreme_Soviet_of_the_USSR |
1088.0 | 6.7262853e7 | Azerbaijani_Armed_Forces | Ali-Agha_Shikhlinski |
1088.0 | 1351138.0 | Azerbaijani_Armed_Forces | Elections_in_Azerbaijan |
1088.0 | 14650.0 | Azerbaijani_Armed_Forces | Indonesian_National_Armed_Forces |
1088.0 | 6.6168931e7 | Azerbaijani_Armed_Forces | Marine_Infantry_of_Azerbaijan |
1088.0 | 1300375.0 | Azerbaijani_Armed_Forces | Treaty_on_Conventional_Armed_Forces_in_Europe |
1088.0 | 1.8947898e7 | Azerbaijani_Armed_Forces | Amnesty_International |
1088.0 | 746.0 | Azerbaijani_Armed_Forces | Azerbaijan |
1088.0 | 1.9859938e7 | Azerbaijani_Armed_Forces | Baku_Kala_Air_Base |
1088.0 | 1610018.0 | Azerbaijani_Armed_Forces | Hong_Kong_Garrison |
1088.0 | 1478175.0 | Azerbaijani_Armed_Forces | Public_holidays_in_Azerbaijan |
1088.0 | 69328.0 | Azerbaijani_Armed_Forces | United_Arab_Emirates |
1088.0 | 1.0928518e7 | Azerbaijani_Armed_Forces | Azerbaijani_Coast_Guard |
1088.0 | 4016533.0 | Azerbaijani_Armed_Forces | National_Assembly_(Azerbaijan) |
1088.0 | 1.9510878e7 | Azerbaijani_Armed_Forces | Sitalcay |
1088.0 | 7.1403487e7 | Azerbaijani_Armed_Forces | State_Border_Service_(Azerbaijan) |
1088.0 | 1.0254803e7 | Azerbaijani_Armed_Forces | Cinema_of_Azerbaijan |
1088.0 | 17779.0 | Azerbaijani_Armed_Forces | Lebanese_Armed_Forces |
1088.0 | 5.9921988e7 | Azerbaijani_Armed_Forces | Metallurgy_in_Azerbaijan |
1088.0 | 27479.0 | Azerbaijani_Armed_Forces | Syrian_Armed_Forces |
1088.0 | 6.7613776e7 | Azerbaijani_Armed_Forces | TecSAR |
1088.0 | 4116970.0 | Azerbaijani_Armed_Forces | Central_Bank_of_Azerbaijan |
1088.0 | 400853.0 | Azerbaijani_Armed_Forces | Hero_of_the_Soviet_Union |
1088.0 | 1.6278429e7 | Azerbaijani_Armed_Forces | Outline_of_Azerbaijan |
1088.0 | 1.3634062e7 | Azerbaijani_Armed_Forces | Constitution_of_Azerbaijan |
1088.0 | 7.1858151e7 | Azerbaijani_Armed_Forces | Dollyar_Air_Base |
1088.0 | 2.812722e7 | Azerbaijani_Armed_Forces | List_of_earthquakes_in_Azerbaijan |
1088.0 | 23235.0 | Azerbaijani_Armed_Forces | Pakistan |
1088.0 | 1049084.0 | Azerbaijani_Armed_Forces | U.S._National_Guard |
1088.0 | 6.1912815e7 | Azerbaijani_Armed_Forces | \"90th_Anniversary_of_the_Armed_Forces_of_Azerbaijan_(1918–2008)\"_Medal |
1088.0 | 67658.0 | Azerbaijani_Armed_Forces | Bahrain_Defence_Force |
1238.0 | 44975.0 | Atomic_bomb | Phrase |
1238.0 | 21785.0 | Atomic_bomb | Nuclear_weapon |
1342.0 | 1400.0 | A.D | Anno_Domini |
1580.0 | 1.8935551e7 | Alcidamas | Public_domain |
1580.0 | 168260.0 | Alcidamas | Isocrates |
1580.0 | 99665.0 | Alcidamas | Friedrich_Blass |
1580.0 | 6.3435015e7 | Alcidamas | JSTOR_(identifier) |
1580.0 | 1.5103874e7 | Alcidamas | Contest_of_Homer_and_Hesiod |
1580.0 | 22537.0 | Alcidamas | Odysseus |
1580.0 | 2093019.0 | Alcidamas | Palamedes_(mythology) |
1580.0 | 6.371749e7 | Alcidamas | VIAF_(identifier) |
1580.0 | 30059.0 | Alcidamas | Troy |
1580.0 | 2.6273281e7 | Alcidamas | Messenia_(ancient_region) |
1580.0 | 1216.0 | Alcidamas | Athens |
1580.0 | 6771651.0 | Alcidamas | Teubner |
1580.0 | 5.5049264e7 | Alcidamas | ISBN_(identifier) |
1580.0 | 72624.0 | Alcidamas | Encyclopædia_Britannica_Eleventh_Edition |
1580.0 | 6.3826803e7 | Alcidamas | ISNI_(identifier) |
1580.0 | 2.4392429e7 | Alcidamas | Commentaria_in_Aristotelem_Graeca |
1580.0 | 49646.0 | Alcidamas | Sophist |
1580.0 | 11887.0 | Alcidamas | Greek_language |
1580.0 | 6.3717472e7 | Alcidamas | SUDOC_(identifier) |
1580.0 | 13621.0 | Alcidamas | Hadrian |
1580.0 | 1692816.0 | Alcidamas | Rhetoric_(Aristotle) |
1580.0 | 308.0 | Alcidamas | Aristotle |
1580.0 | 100109.0 | Alcidamas | John_Pentland_Mahaffy |
1580.0 | 5.5017667e7 | Alcidamas | Muse |
1580.0 | 6.5715134e7 | Alcidamas | RERO_(identifier) |
1580.0 | 25447.0 | Alcidamas | Rhetoric |
1580.0 | 1715161.0 | Alcidamas | Aeolis |
1580.0 | 4682035.0 | Alcidamas | Martin_Litchfield_West |
1580.0 | 22022.0 | Alcidamas | Nietzsche |
1580.0 | 4633006.0 | Alcidamas | Elaea_(Aeolis) |
1580.0 | 66540.0 | Alcidamas | Ancient_Greece |
1580.0 | 98394.0 | Alcidamas | Gorgias |
1645.0 | 3.7091344e7 | Ibn_al-Haytham | Al-Harith_ibn_Kalada |
1645.0 | 3.5633616e7 | Ibn_al-Haytham | Gholamhossein_Ebrahimi_Dinani |
1645.0 | 3022468.0 | Ibn_al-Haytham | Qalb |
1645.0 | 1.6424083e7 | Ibn_al-Haytham | 59239_Alhazen |
1645.0 | 5089990.0 | Ibn_al-Haytham | Ahmad_al-Buni |
1645.0 | 482939.0 | Ibn_al-Haytham | Al-Hakim_bi-Amr_Allah |
1645.0 | 2.7361247e7 | Ibn_al-Haytham | Al-Kharaqī |
1645.0 | 4.9712277e7 | Ibn_al-Haytham | Al-Ruhawi |
1645.0 | 5.6447306e7 | Ibn_al-Haytham | Alam_al-Din_al-Hanafi |
1645.0 | 51518.0 | Ibn_al-Haytham | Dam |
1645.0 | 1602822.0 | Ibn_al-Haytham | Haji_Bektash_Veli |
1645.0 | 1467830.0 | Ibn_al-Haytham | Ibn_Hazm |
1645.0 | 14810.0 | Ibn_al-Haytham | Islamic_calendar |
1645.0 | 1.3861753e7 | Ibn_al-Haytham | Said_al-Andalusi |
1645.0 | 1917134.0 | Ibn_al-Haytham | Sultan_Ali_Khorasani |
1645.0 | 30503.0 | Ibn_al-Haytham | Theology |
1645.0 | 5.2932896e7 | Ibn_al-Haytham | Abd_al-Latif_al-Baghdadi_(medieval_writer) |
1645.0 | 1134.0 | Ibn_al-Haytham | Analysis |
1645.0 | 6.9094489e7 | Ibn_al-Haytham | Fakhr_al-Din_al-Akhlati |
1645.0 | 3.2144014e7 | Ibn_al-Haytham | Ibn_Hamza_al-Maghribi |
1645.0 | 272074.0 | Ibn_al-Haytham | Ibn_Taymiyyah |
1645.0 | 14533.0 | Ibn_al-Haytham | India |
1645.0 | 5.613996e7 | Ibn_al-Haytham | Khoja_Akhmet_Yassawi |
1645.0 | 24714.0 | Ibn_al-Haytham | Precession |
1645.0 | 23979.0 | Ibn_al-Haytham | Ptolemy |
1645.0 | 1102000.0 | Ibn_al-Haytham | Shen_Kuo |
1645.0 | 207547.0 | Ibn_al-Haytham | Thābit_ibn_Qurra |
1645.0 | 7.2112001e7 | Ibn_al-Haytham | Abdollah_ibn_Bukhtishu |
1645.0 | 196242.0 | Ibn_al-Haytham | Averroism |
1645.0 | 1864889.0 | Ibn_al-Haytham | Cosmology |
1645.0 | 302794.0 | Ibn_al-Haytham | Depth_perception |
1645.0 | 1.6770522e7 | Ibn_al-Haytham | Fathullah_Shirazi |
1645.0 | 2.8645073e7 | Ibn_al-Haytham | Ibn_al-Yasamin |
1645.0 | 142601.0 | Ibn_al-Haytham | John_Peckham |
1645.0 | 5762980.0 | Ibn_al-Haytham | Nisba_(onomastics) |
1645.0 | 6.2773262e7 | Ibn_al-Haytham | Sadr_al-Shari'a_al-Asghar |
1645.0 | 1741183.0 | Ibn_al-Haytham | Yaʿqūb_ibn_Ṭāriq |
1645.0 | 64203.0 | Ibn_al-Haytham | Zaragoza |
1645.0 | 1.171752e7 | Ibn_al-Haytham | Al-Khazini |
1645.0 | 5916.0 | Ibn_al-Haytham | Circumference |
1645.0 | 3.1562722e7 | Ibn_al-Haytham | Ibn_al-Tilmidh |
1645.0 | 86820.0 | Ibn_al-Haytham | Khalid_ibn_Abd_al‐Malik_al‐Marwarrudhi |
1645.0 | 4.8575985e7 | Ibn_al-Haytham | Lune_(mathematics) |
1645.0 | 21527.0 | Ibn_al-Haytham | Number_theory |
1645.0 | 1.1712287e7 | Ibn_al-Haytham | Riaz_Ahmed_Gohar_Shahi |
1645.0 | 145242.0 | Ibn_al-Haytham | The_Canon_of_Medicine |
1645.0 | 2.3797577e7 | Ibn_al-Haytham | The_Daily_Telegraph |
1645.0 | 3304608.0 | Ibn_al-Haytham | Astronomy_in_the_medieval_Islamic_world |
1645.0 | 3.9292005e7 | Ibn_al-Haytham | Ibn_Hindu |
1645.0 | 2.7578404e7 | Ibn_al-Haytham | Ibn_al‐Ha'im_al‐Ishbili |
1645.0 | 3.8205689e7 | Ibn_al-Haytham | Latinization_of_names |
1645.0 | 22483.0 | Ibn_al-Haytham | Optics |
1645.0 | 7151472.0 | Ibn_al-Haytham | Peter_M._Neumann |
1645.0 | 3364761.0 | Ibn_al-Haytham | Ray_(optics) |
1645.0 | 3144227.0 | Ibn_al-Haytham | Sufi_philosophy |
1645.0 | 3335703.0 | Ibn_al-Haytham | Al-Samawal_al-Maghribi |
1645.0 | 791.0 | Ibn_al-Haytham | Asteroid |
1645.0 | 1104592.0 | Ibn_al-Haytham | Ibn_Tufail |
1645.0 | 15513.0 | Ibn_al-Haytham | Islamic_eschatology |
1645.0 | 63140.0 | Ibn_al-Haytham | Jabir_ibn_Hayyan |
1645.0 | 80135.0 | Ibn_al-Haytham | Rutgers_University |
1645.0 | 2042347.0 | Ibn_al-Haytham | Zakariya_al-Qazwini |
1645.0 | 414271.0 | Ibn_al-Haytham | Abū_Isḥāq_Ibrāhīm_al-Zarqālī |
1645.0 | 4385475.0 | Ibn_al-Haytham | Ancient_Greek_astronomy |
1645.0 | 3.6143542e7 | Ibn_al-Haytham | Ibn_al-Majdi |
1645.0 | 5496025.0 | Ibn_al-Haytham | Ilm_(Arabic) |
1645.0 | 175040.0 | Ibn_al-Haytham | Al-Farabi |
1645.0 | 2.2341957e7 | Ibn_al-Haytham | Ali_al-Ridha |
1645.0 | 1778258.0 | Ibn_al-Haytham | Alī_ibn_Ahmad_al-Nasawī |
1645.0 | 4831143.0 | Ibn_al-Haytham | Ancient_Greek_medicine |
1645.0 | 157898.0 | Ibn_al-Haytham | Eye |
1645.0 | 1782358.0 | Ibn_al-Haytham | Ibn_Abi_Sadiq |
1645.0 | 6328738.0 | Ibn_al-Haytham | Ibn_Mu'adh_al-Jayyani |
1645.0 | 5.6793125e7 | Ibn_al-Haytham | Ibn_al‐Raqqam |
1645.0 | 23231.0 | Ibn_al-Haytham | Parabola |
1645.0 | 7211548.0 | Ibn_al-Haytham | Predestination_in_Islam |
1645.0 | 44328.0 | Ibn_al-Haytham | Ulugh_Beg |
1645.0 | 2.3538754e7 | Ibn_al-Haytham | Wayback_Machine |
1645.0 | 2.8635358e7 | Ibn_al-Haytham | Abu_Muqri_Mohammed_al-Battiwi |
1645.0 | 59861.0 | Ibn_al-Haytham | Experiment |
1645.0 | 2231772.0 | Ibn_al-Haytham | Ibn_Sahl_(mathematician) |
1645.0 | 1.7940058e7 | Ibn_al-Haytham | Mohsen_Fayz_Kashani |
1645.0 | 2160807.0 | Ibn_al-Haytham | Muhammad_ibn_Zakariya_al-Razi |
1645.0 | 2.5343863e7 | Ibn_al-Haytham | Nur_al-Din_Bimaristan |
1645.0 | 192520.0 | Ibn_al-Haytham | Tawhid |
1645.0 | 439770.0 | Ibn_al-Haytham | Abu_Nasr_Mansur |
1645.0 | 4158200.0 | Ibn_al-Haytham | Asabiyyah |
1645.0 | 236674.0 | Ibn_al-Haytham | Ayurveda |
1645.0 | 380406.0 | Ibn_al-Haytham | Comparative_psychology |
1645.0 | 13450.0 | Ibn_al-Haytham | Hebrew_language |
1645.0 | 8066479.0 | Ibn_al-Haytham | Maslaha |
1645.0 | 2042612.0 | Ibn_al-Haytham | Masʽud_ibn_Muhammad_Sijzi |
1645.0 | 19323.0 | Ibn_al-Haytham | Middle_East |
1645.0 | 53497.0 | Ibn_al-Haytham | Optical_illusion |
1645.0 | 1189485.0 | Ibn_al-Haytham | Abu_al-Wafa'_Buzjani |
1645.0 | 1.0879533e7 | Ibn_al-Haytham | Aja'ib_al-Makhluqat |
1645.0 | 355643.0 | Ibn_al-Haytham | Al-Andalus |
1645.0 | 4.3402124e7 | Ibn_al-Haytham | Commentary_on_Anatomy_in_Avicenna's_Canon |
1645.0 | 8451005.0 | Ibn_al-Haytham | Haji_Bayram_Veli |
1645.0 | 1.0082768e7 | Ibn_al-Haytham | Hockney–Falco_thesis |
1645.0 | 2.6634144e7 | Ibn_al-Haytham | Ibn_Sina_Academy_of_Medieval_Medicine_and_Sciences |
1645.0 | 1741520.0 | Ibn_al-Haytham | Kamāl_al-Dīn_al-Fārisī |
1645.0 | 3.2078146e7 | Ibn_al-Haytham | Muhammad_ibn_Aslam_Al-Ghafiqi |
1645.0 | 2042047.0 | Ibn_al-Haytham | Burhan-ud-din_Kermani |
1645.0 | 6596725.0 | Ibn_al-Haytham | Equatorium |
1645.0 | 5553121.0 | Ibn_al-Haytham | Latin_translations_of_the_12th_century |
1645.0 | 21664.0 | Ibn_al-Haytham | Nebula |
1645.0 | 4.7324624e7 | Ibn_al-Haytham | Sadr_ad-Din_Dashtaki |
1645.0 | 1.0536691e7 | Ibn_al-Haytham | Thabit_ibn_Qurra |
1645.0 | 2428.0 | Ibn_al-Haytham | Analog_computer |
1645.0 | 1.1453823e7 | Ibn_al-Haytham | Byzantine_science |
1645.0 | 6.7975278e7 | Ibn_al-Haytham | History_of_science_in_the_Renaissance |
1645.0 | 166162.0 | Ibn_al-Haytham | Islamic_philosophy |
1645.0 | 5290954.0 | Ibn_al-Haytham | Abu_al-Bayan_ibn_al-Mudawwar |
1645.0 | 2045119.0 | Ibn_al-Haytham | Abu_al-Hakam_al-Kirmani |
1645.0 | 2.8208073e7 | Ibn_al-Haytham | Afdal_al-Din_Kashani |
1645.0 | 2643686.0 | Ibn_al-Haytham | Aga_Khan_University |
1645.0 | 174410.0 | Ibn_al-Haytham | Armillary_sphere |
1645.0 | 383129.0 | Ibn_al-Haytham | Celestial_spheres |
1645.0 | 48167.0 | Ibn_al-Haytham | Congruence_relation |
1645.0 | 244588.0 | Ibn_al-Haytham | Heliocentrism |
1645.0 | 4.7787936e7 | Ibn_al-Haytham | Schema_for_horizontal_dials |
1645.0 | 1.3224789e7 | Ibn_al-Haytham | Sextant_(astronomy) |
1645.0 | 1253603.0 | Ibn_al-Haytham | Abu_Ma'shar_al-Balkhi |
1645.0 | 1782729.0 | Ibn_al-Haytham | Al-Mahani |
1645.0 | 1587482.0 | Ibn_al-Haytham | Al-Qabisi |
1645.0 | 1.1089309e7 | Ibn_al-Haytham | Al-Ḥajjāj_ibn_Yūsuf_ibn_Maṭar |
1645.0 | 1271962.0 | Ibn_al-Haytham | Billiard_table |
1645.0 | 1.1828715e7 | Ibn_al-Haytham | Book_of_Optics |
1645.0 | 5286621.0 | Ibn_al-Haytham | Ephraim_ibn_al-Za'faran |
1645.0 | 3.0864628e7 | Ibn_al-Haytham | European_science_in_the_Middle_Ages |
1645.0 | 719601.0 | Ibn_al-Haytham | MIT_Press |
1645.0 | 1.3692155e7 | Ibn_al-Haytham | Philosophy |
1645.0 | 3.5216988e7 | Ibn_al-Haytham | Rajab_Ali_Tabrizi |
1645.0 | 39420.0 | Ibn_al-Haytham | Right_triangle |
1645.0 | 2538627.0 | Ibn_al-Haytham | Yusuf_al-Mu'taman_ibn_Hud |
1645.0 | 2.8820168e7 | Ibn_al-Haytham | Abd_al-Rahman_al-Jadiri |
1645.0 | 1767004.0 | Ibn_al-Haytham | Abu_Mansur_Muwaffaq |
1645.0 | 1.9217647e7 | Ibn_al-Haytham | Abul_Qasim_ibn_Mohammed_al-Ghassani |
1645.0 | 1741220.0 | Ibn_al-Haytham | Bukhtishu |
1645.0 | 3.2142292e7 | Ibn_al-Haytham | Ibrahim_ibn_Baks |
1645.0 | 1782585.0 | Ibn_al-Haytham | Jabril_ibn_Bukhtishu |
1645.0 | 2527706.0 | Ibn_al-Haytham | Mir_Damad |
1645.0 | 2984836.0 | Ibn_al-Haytham | Ophthalmology_in_the_medieval_Islamic_world |
1645.0 | 22308.0 | Ibn_al-Haytham | Oxford |
1645.0 | 50585.0 | Ibn_al-Haytham | Philadelphia |
1645.0 | 1.9883086e7 | Ibn_al-Haytham | Philip_Sherrard |
1645.0 | 230250.0 | Ibn_al-Haytham | The_Ascent_of_Man |
1645.0 | 1964954.0 | Ibn_al-Haytham | University_of_Chicago_Press |
1645.0 | 3.4781942e7 | Ibn_al-Haytham | Abd_al‐Wajid |
1645.0 | 1766622.0 | Ibn_al-Haytham | Abolfadl_Harawi |
1645.0 | 6.082025e7 | Ibn_al-Haytham | Al-Hawi |
1645.0 | 665027.0 | Ibn_al-Haytham | Fourth_power |
1645.0 | 2.3568467e7 | Ibn_al-Haytham | Rashidun_al-Suri |
1645.0 | 4647532.0 | Ibn_al-Haytham | Shams_al-Din_Abu_Abd_Allah_al-Khalili |
1645.0 | 2.4712247e7 | Ibn_al-Haytham | Ya'ish_ibn_Ibrahim_al-Umawi |
1645.0 | 3861353.0 | Ibn_al-Haytham | Babylonian_mathematics |
1645.0 | 1.7365905e7 | Ibn_al-Haytham | Dawūd_al-Qayṣarī |
1645.0 | 6.0347068e7 | Ibn_al-Haytham | Jalaladdin_Davani |
1645.0 | 18836.0 | Ibn_al-Haytham | Middle_Ages |
1645.0 | 3022453.0 | Ibn_al-Haytham | Nafs |
1645.0 | 5186903.0 | Ibn_al-Haytham | Tusi_couple |
1645.0 | 2674.0 | Ibn_al-Haytham | Abd_al-Latif_al-Baghdadi |
1645.0 | 4849234.0 | Ibn_al-Haytham | Encyclopedia_of_the_Brethren_of_Purity |
1645.0 | 9239.0 | Ibn_al-Haytham | Europe |
1645.0 | 150257.0 | Ibn_al-Haytham | Feigned_madness |
1645.0 | 577201.0 | Ibn_al-Haytham | Frithjof_Schuon |
1645.0 | 2.6482067e7 | Ibn_al-Haytham | Kepler |
1645.0 | 17730.0 | Ibn_al-Haytham | Latin |
1645.0 | 145845.0 | Ibn_al-Haytham | Paraboloid |
1645.0 | 25525.0 | Ibn_al-Haytham | René_Descartes |
1645.0 | 884495.0 | Ibn_al-Haytham | Bibliothèque_nationale |
1645.0 | 86728.0 | Ibn_al-Haytham | Bodleian_Library |
1645.0 | 3515519.0 | Ibn_al-Haytham | Lambert_quadrilateral |
1645.0 | 3.3383114e7 | Ibn_al-Haytham | Muhammad_ibn_Abi_Bakr_al‐Farisi |
1645.0 | 201359.0 | Ibn_al-Haytham | Squaring_the_circle |
1645.0 | 1.854116e7 | Ibn_al-Haytham | Abū_Rayhān_al-Bīrūnī |
1645.0 | 804218.0 | Ibn_al-Haytham | Astronomical_clock |
1645.0 | 6.3434964e7 | Ibn_al-Haytham | CiteSeerX_(identifier) |
1645.0 | 316410.0 | Ibn_al-Haytham | Compass_rose |
1645.0 | 9417.0 | Ibn_al-Haytham | Euclidean_geometry |
1645.0 | 8232680.0 | Ibn_al-Haytham | Ibn_al-Jazzar |
1645.0 | 2742403.0 | Ibn_al-Haytham | Mathematical_Association |
1645.0 | 3.1327881e7 | Ibn_al-Haytham | Na'im_ibn_Musa |
1645.0 | 25948.0 | Ibn_al-Haytham | Refraction |
1645.0 | 3.2309672e7 | Ibn_al-Haytham | Abd_al-Razzaq_Lahiji |
1645.0 | 192230.0 | Ibn_al-Haytham | Almanac |
1645.0 | 2426527.0 | Ibn_al-Haytham | Ibn_al-Nafis |
1645.0 | 1.3433019e7 | Ibn_al-Haytham | Intromission_theory |
1645.0 | 1.1011952e7 | Ibn_al-Haytham | Kamal_al-Din_al-Farisi |
1645.0 | 94721.0 | Ibn_al-Haytham | Robert_Grosseteste |
1645.0 | 645208.0 | Ibn_al-Haytham | Equant |
1645.0 | 7.1175005e7 | Ibn_al-Haytham | Mahmud_Hudayi |
1645.0 | 1.5233821e7 | Ibn_al-Haytham | Psychology_in_the_medieval_Islamic_world |
1645.0 | 2.1691805e7 | Ibn_al-Haytham | Serapion_the_Younger |
1645.0 | 7627.0 | Ibn_al-Haytham | The_Canterbury_Tales |
1645.0 | 7.1370184e7 | Ibn_al-Haytham | Ali_ibn_Yusuf_al-Ilaqi |
1645.0 | 102182.0 | Ibn_al-Haytham | Celestial_mechanics |
1645.0 | 2695116.0 | Ibn_al-Haytham | Contemporary_Islamic_philosophy |
1645.0 | 6733941.0 | Ibn_al-Haytham | Friedrich_Risner |
1645.0 | 12326.0 | Ibn_al-Haytham | Galen |
1645.0 | 1232660.0 | Ibn_al-Haytham | Syed_Muhammad_Naquib_al-Attas |
1645.0 | 5.5495903e7 | Ibn_al-Haytham | 1001_Inventions |
1645.0 | 1.0730931e7 | Ibn_al-Haytham | Al-Mu'taman_ibn_Hud |
1645.0 | 1174529.0 | Ibn_al-Haytham | Al-Tasrif |
1645.0 | 4.3350725e7 | Ibn_al-Haytham | Euclid–Euler_theorem |
1645.0 | 360726.0 | Ibn_al-Haytham | Planisphere |
1645.0 | 6.0782023e7 | Ibn_al-Haytham | Shmuel_Sambursky |
1645.0 | 2.1800807e7 | Ibn_al-Haytham | Zakhireye_Khwarazmshahi |
1645.0 | 3.2111866e7 | Ibn_al-Haytham | Ibn_Abi_Ramtha_al-Tamimi |
1645.0 | 6.3435015e7 | Ibn_al-Haytham | JSTOR_(identifier) |
1645.0 | 6.1571532e7 | Ibn_al-Haytham | Lens_(optics) |
1645.0 | 39098.0 | Ibn_al-Haytham | Physical_law |
1645.0 | 7.1245601e7 | Ibn_al-Haytham | Shahab_al-Din_Yahya_ibn_Habash_Suhrawardi |
1645.0 | 2.4923294e7 | Ibn_al-Haytham | Ulugh_Beg_Observatory |
1645.0 | 1.3728826e7 | Ibn_al-Haytham | Abu_al-Hassan_al-Amiri |
1645.0 | 3394642.0 | Ibn_al-Haytham | Dioptra |
1645.0 | 4.3947436e7 | Ibn_al-Haytham | Huihui_Lifa |
1645.0 | 2781944.0 | Ibn_al-Haytham | Indian_astronomy |
1645.0 | 5.9899089e7 | Ibn_al-Haytham | Motion_(physics) |
1645.0 | 21244.0 | Ibn_al-Haytham | Nile |
1645.0 | 1.0621204e7 | Ibn_al-Haytham | Sabuncuoğlu_Şerafeddin |
1645.0 | 1418949.0 | Ibn_al-Haytham | Springer_Science+Business_Media |
1645.0 | 27680.0 | Ibn_al-Haytham | Supernova |
1645.0 | 60919.0 | Ibn_al-Haytham | University_of_London |
1645.0 | 5719662.0 | Ibn_al-Haytham | A._I._Sabra |
1645.0 | 2.2883647e7 | Ibn_al-Haytham | Abu_Ali_al-Khayyat |
1645.0 | 1759881.0 | Ibn_al-Haytham | Abu_Ja'far_al-Khazin |
1645.0 | 1739664.0 | Ibn_al-Haytham | Al-Karaji |
1645.0 | 1.3956265e7 | Ibn_al-Haytham | Ancient_Iranian_medicine |
1645.0 | 47474.0 | Ibn_al-Haytham | Aperture |
1645.0 | 221461.0 | Ibn_al-Haytham | Hevelius |
1645.0 | 6.7610731e7 | Ibn_al-Haytham | Hussam_al-Din_al-Jarrahi |
1645.0 | 2163566.0 | Ibn_al-Haytham | Nafi_ibn_al-Harith |
1645.0 | 1.3401485e7 | Ibn_al-Haytham | Selenographia |
1645.0 | 2.755431e7 | Ibn_al-Haytham | Abu_Jafar_ibn_Harun_al-Turjali |
1645.0 | 353215.0 | Ibn_al-Haytham | Al-Zahrawi |
1645.0 | 39316.0 | Ibn_al-Haytham | Compass |
1645.0 | 241528.0 | Ibn_al-Haytham | Jacob_Bronowski |
1645.0 | 3.9127918e7 | Ibn_al-Haytham | Mohammed_ibn_Abdun_al-Jabali |
1645.0 | 204511.0 | Ibn_al-Haytham | Scientific_skepticism |
1645.0 | 5.4447016e7 | Ibn_al-Haytham | Victor_J._Katz |
1645.0 | 2.3442952e7 | Ibn_al-Haytham | Yang_Guangxian |
1645.0 | 1560514.0 | Ibn_al-Haytham | Ahmad_ibn_Yusuf |
1645.0 | 8230922.0 | Ibn_al-Haytham | Hamid_al-Din_al-Kirmani |
1645.0 | 6785051.0 | Ibn_al-Haytham | History_of_trigonometry |
1645.0 | 5.7151342e7 | Ibn_al-Haytham | Ibn_Ishaq_al-Tunisi |
1645.0 | 1.5515167e7 | Ibn_al-Haytham | Ibn_al-Kattani |
1645.0 | 1830000.0 | Ibn_al-Haytham | Inundation |
1645.0 | 3035257.0 | Ibn_al-Haytham | Masarjawaih |
1645.0 | 6.4652504e7 | Ibn_al-Haytham | Zaynab_al-Awadiya |
1645.0 | 2.2848684e7 | Ibn_al-Haytham | Abu_Sulayman_Sijistani |
1645.0 | 2.1508913e7 | Ibn_al-Haytham | Abu_ul-Ala_Shirazi |
1645.0 | 3.107765e7 | Ibn_al-Haytham | G._J._Toomer |
1645.0 | 209717.0 | Ibn_al-Haytham | Madrasa |
1645.0 | 3304216.0 | Ibn_al-Haytham | Mathematics_in_the_medieval_Islamic_world |
1645.0 | 251713.0 | Ibn_al-Haytham | Qibla |
1645.0 | 25532.0 | Ibn_al-Haytham | Renaissance |
1645.0 | 2042154.0 | Ibn_al-Haytham | Shaykh_Muhammad_ibn_Thaleb |
1645.0 | 3225840.0 | Ibn_al-Haytham | Sublunary_sphere |
1645.0 | 7724903.0 | Ibn_al-Haytham | Ali_ibn_Ridwan |
1645.0 | 4396171.0 | Ibn_al-Haytham | Earth's_rotation |
1645.0 | 12787.0 | Ibn_al-Haytham | Geoffrey_Chaucer |
1645.0 | 1492381.0 | Ibn_al-Haytham | Ibn_Al-Thahabi |
1645.0 | 23253.0 | Ibn_al-Haytham | Parallax |
1645.0 | 1.9594028e7 | Ibn_al-Haytham | Theoretical_physics |
1645.0 | 5.3090162e7 | Ibn_al-Haytham | Yahya_ibn_Abi_Mansur |
1645.0 | 2.7579858e7 | Ibn_al-Haytham | Abu_al-Salt |
1645.0 | 3.5777337e7 | Ibn_al-Haytham | Cosmos:_A_Spacetime_Odyssey |
1645.0 | 4512160.0 | Ibn_al-Haytham | Flooding |
1645.0 | 1.4973076e7 | Ibn_al-Haytham | Medical_Renaissance |
1645.0 | 6.1415405e7 | Ibn_al-Haytham | Muhammad_Husayn_Tabataba'i |
1645.0 | 1.6593123e7 | Ibn_al-Haytham | Nader_El-Bizri |
1645.0 | 5290740.0 | Ibn_al-Haytham | Sa'ad_al-Dawla |
1645.0 | 982540.0 | Ibn_al-Haytham | Taqi_ad-Din_Muhammad_ibn_Ma'ruf |
1645.0 | 5.549544e7 | Ibn_al-Haytham | Alhazen_(disambiguation) |
1645.0 | 2.4464339e7 | Ibn_al-Haytham | Arab |
1645.0 | 2.8700369e7 | Ibn_al-Haytham | Ibn_Ghazi_al-Miknasi |
1645.0 | 199169.0 | Ibn_al-Haytham | Ibn_Khaldun |
1645.0 | 1.9018638e7 | Ibn_al-Haytham | Islamic_mathematics |
1645.0 | 18079.0 | Ibn_al-Haytham | Leonardo_da_Vinci |
1645.0 | 2.7405151e7 | Ibn_al-Haytham | Muhammad_al-Rudani |
1645.0 | 6.7427596e7 | Ibn_al-Haytham | Qadi_Mir_Husayn_al-Maybudi |
1645.0 | 4.0311818e7 | Ibn_al-Haytham | Roger_Highfield |
1645.0 | 207174.0 | Ibn_al-Haytham | Triangulation |
1645.0 | 1782310.0 | Ibn_al-Haytham | Abu_Said_Gorgani |
1645.0 | 6.4988709e7 | Ibn_al-Haytham | Buyid_Emirate |
1645.0 | 2227778.0 | Ibn_al-Haytham | Catoptrics |
1645.0 | 438004.0 | Ibn_al-Haytham | Psychophysics |
1645.0 | 5.3082933e7 | Ibn_al-Haytham | Abu_al-Hasan_al-Ahwazi |
1645.0 | 7718539.0 | Ibn_al-Haytham | Al-'Adudi_Hospital |
1645.0 | 3.1076646e7 | Ibn_al-Haytham | Al_Achsasi_al_Mouakket |
1645.0 | 1.0923902e7 | Ibn_al-Haytham | Dream_Pool_Essays |
1645.0 | 3467826.0 | Ibn_al-Haytham | House_of_Knowledge |
1645.0 | 1.327905e7 | Ibn_al-Haytham | Ibn_Butlan |
1645.0 | 5741464.0 | Ibn_al-Haytham | Ibn_al-Baytar |
1645.0 | 685895.0 | Ibn_al-Haytham | René_Guénon |
1645.0 | 2.3477491e7 | Ibn_al-Haytham | Sadr_al-Din_al-Qunawi |
1645.0 | 1768580.0 | Ibn_al-Haytham | Sharaf_al-Din_al-Tusi |
1645.0 | 2.4703916e7 | Ibn_al-Haytham | Sullam_al-sama' |
1645.0 | 1245987.0 | Ibn_al-Haytham | Ziauddin_Sardar |
1645.0 | 91173.0 | Ibn_al-Haytham | Axial_tilt |
1645.0 | 9770.0 | Ibn_al-Haytham | Eclipse |
1645.0 | 152827.0 | Ibn_al-Haytham | Han_Chinese |
1645.0 | 18365.0 | Ibn_al-Haytham | Luminance |
1645.0 | 1.3352174e7 | Ibn_al-Haytham | Quadrant_(instrument) |
1645.0 | 2.7375401e7 | Ibn_al-Haytham | Sanad_ibn_Ali |
1645.0 | 4391548.0 | Ibn_al-Haytham | Sinān_ibn_al-Fatḥ |
1645.0 | 8656923.0 | Ibn_al-Haytham | Ahmad_Fardid |
1645.0 | 4.9107555e7 | Ibn_al-Haytham | Al-Furqan_Islamic_Heritage_Foundation |
1645.0 | 5.2173672e7 | Ibn_al-Haytham | Al-Mubashshir_ibn_Fatik |
1645.0 | 5.3090036e7 | Ibn_al-Haytham | Al-Wabkanawi |
1645.0 | 2375470.0 | Ibn_al-Haytham | Cleomedes |
1645.0 | 1627160.0 | Ibn_al-Haytham | Linda_Hall_Library |
1645.0 | 1.7944118e7 | Ibn_al-Haytham | Physics_in_the_medieval_Islamic_world |
1645.0 | 23313.0 | Ibn_al-Haytham | Piri_Reis |
1645.0 | 2014775.0 | Ibn_al-Haytham | Qutb_al-Din_al-Shirazi |
1645.0 | 2.1786641e7 | Ibn_al-Haytham | UNESCO |
1645.0 | 78209.0 | Ibn_al-Haytham | Abu_Bakr_al-Razi |
1645.0 | 1822259.0 | Ibn_al-Haytham | Hakim-e-Gilani |
1645.0 | 1.0228966e7 | Ibn_al-Haytham | Jabir_ibn_Aflah |
1645.0 | 3335321.0 | Ibn_al-Haytham | Shams_al-Din_al-Samarqandi |
1645.0 | 6.8869871e7 | Ibn_al-Haytham | Ahi_Evren |
1645.0 | 172394.0 | Ibn_al-Haytham | Georg_von_Peuerbach |
1645.0 | 294211.0 | Ibn_al-Haytham | Globe |
1645.0 | 3302534.0 | Ibn_al-Haytham | List_of_Muslim_philosophers |
1645.0 | 1741105.0 | Ibn_al-Haytham | Muḥammad_ibn_Ibrāhīm_al-Fazārī |
1645.0 | 985414.0 | Ibn_al-Haytham | Nasir_al-Din_Nasir_Hunzai |
1645.0 | 6.3434832e7 | Ibn_al-Haytham | PMC_(identifier) |
1645.0 | 16433.0 | Ibn_al-Haytham | Rumi |
1645.0 | 1840548.0 | Ibn_al-Haytham | Zayn-e-Attar |
1645.0 | 5286542.0 | Ibn_al-Haytham | Abu_Hafsa_Yazid |
1645.0 | 2627738.0 | Ibn_al-Haytham | History_of_optics |
1645.0 | 165834.0 | Ibn_al-Haytham | Ijtihad |
1645.0 | 658084.0 | Ibn_al-Haytham | Magnifying_glass |
1645.0 | 2909851.0 | Ibn_al-Haytham | Trepidation |
1645.0 | 5438833.0 | Ibn_al-Haytham | 'Abd_al-Hamīd_ibn_Turk |
1645.0 | 1792709.0 | Ibn_al-Haytham | Abu_Zayd_al-Balkhi |
1645.0 | 1.8716923e7 | Ibn_al-Haytham | Algebra |
1645.0 | 3430980.0 | Ibn_al-Haytham | Carl_Brockelmann |
1645.0 | 421135.0 | Ibn_al-Haytham | Giambattista_della_Porta |
1645.0 | 3.2100257e7 | Ibn_al-Haytham | Ibn_Abi_al-Ashʿath |
1645.0 | 5.4285532e7 | Ibn_al-Haytham | Ibn_al-Samh |
1645.0 | 3.7487758e7 | Ibn_al-Haytham | Mitsubishi_Electric_Research_Laboratories |
1645.0 | 564579.0 | Ibn_al-Haytham | Rashid_al-Din_Hamadani |
1645.0 | 233636.0 | Ibn_al-Haytham | Spherical_Earth |
1645.0 | 6.371749e7 | Ibn_al-Haytham | VIAF_(identifier) |
1645.0 | 146607.0 | Ibn_al-Haytham | Al-Ghazali |
1645.0 | 8878908.0 | Ibn_al-Haytham | De_Gradibus |
1645.0 | 1.6847243e7 | Ibn_al-Haytham | Egyptian_astronomy |
1645.0 | 9550030.0 | Ibn_al-Haytham | History_of_algebra |
1645.0 | 7227242.0 | Ibn_al-Haytham | Ibn_Masarra |
1645.0 | 1.4950599e7 | Ibn_al-Haytham | Ibn_al-Khatib |
1645.0 | 1848052.0 | Ibn_al-Haytham | Indian_mathematics |
1645.0 | 6387453.0 | Ibn_al-Haytham | Reza_Davari_Ardakani |
1645.0 | 26833.0 | Ibn_al-Haytham | Scientific_method |
1645.0 | 192176.0 | Ibn_al-Haytham | Shura |
1645.0 | 561852.0 | Ibn_al-Haytham | Süleymaniye_Mosque |
1645.0 | 1068209.0 | Ibn_al-Haytham | Toledan_Tables |
1645.0 | 1.3632955e7 | Ibn_al-Haytham | Yusuf_ibn_Ismail_al-Kutubi |
1645.0 | 1253591.0 | Ibn_al-Haytham | Abu'l-Barakāt_al-Baghdādī |
1645.0 | 271975.0 | Ibn_al-Haytham | Al-Biruni |
1645.0 | 8367660.0 | Ibn_al-Haytham | Apertures |
1645.0 | 171177.0 | Ibn_al-Haytham | Early_Islamic_philosophy |
1645.0 | 42764.0 | Ibn_al-Haytham | Hagia_Sophia |
1645.0 | 1835859.0 | Ibn_al-Haytham | Husayni_Isfahani |
1645.0 | 200354.0 | Ibn_al-Haytham | Ibn_Arabi |
1645.0 | 1275987.0 | Ibn_al-Haytham | Moon_illusion |
1645.0 | 1.9469852e7 | Ibn_al-Haytham | Plane_(mathematics) |
1645.0 | 34238.0 | Ibn_al-Haytham | Yunus_Emre |
1645.0 | 1.1436522e7 | Ibn_al-Haytham | Zij |
1645.0 | 1019879.0 | Ibn_al-Haytham | Alhazen_(crater) |
1645.0 | 257242.0 | Ibn_al-Haytham | Apollonius_of_Perga |
1645.0 | 57580.0 | Ibn_al-Haytham | Basra |
1645.0 | 2.4893445e7 | Ibn_al-Haytham | Book_of_the_Ten_Treatises_of_the_Eye |
1645.0 | 143608.0 | Ibn_al-Haytham | Deferent_and_epicycle |
1645.0 | 5.5808289e7 | Ibn_al-Haytham | Janus_(journal) |
1645.0 | 1.0780372e7 | Ibn_al-Haytham | Muhammad_Baqir_Yazdi |
1645.0 | 1766702.0 | Ibn_al-Haytham | Nazif_ibn_Yumn |
1645.0 | 4.8253059e7 | Ibn_al-Haytham | Salat |
1645.0 | 1696685.0 | Ibn_al-Haytham | Tacuinum_Sanitatis |
1645.0 | 1766764.0 | Ibn_al-Haytham | Abu_Sahl_al-Quhi |
1645.0 | 4.8934192e7 | Ibn_al-Haytham | Angle_of_incidence_(optics) |
1645.0 | 19001.0 | Ibn_al-Haytham | Microsoft |
1645.0 | 2042257.0 | Ibn_al-Haytham | Nakhshabi |
1645.0 | 3011287.0 | Ibn_al-Haytham | Open_Library |
1645.0 | 22939.0 | Ibn_al-Haytham | Physics |
1645.0 | 9306125.0 | Ibn_al-Haytham | Abdollah_Javadi-Amoli |
1645.0 | 3.2183825e7 | Ibn_al-Haytham | Abu_Hatim_Ahmad_ibn_Hamdan_al-Razi |
1645.0 | 2458898.0 | Ibn_al-Haytham | Ahmad_Sirhindi |
1645.0 | 2.2795725e7 | Ibn_al-Haytham | Al-Dakhwar |
1645.0 | 1783041.0 | Ibn_al-Haytham | Albubather |
1645.0 | 73199.0 | Ibn_al-Haytham | Cambridge_University_Press |
1645.0 | 423682.0 | Ibn_al-Haytham | Hydraulic_empire |
1645.0 | 603273.0 | Ibn_al-Haytham | Magnification |
1645.0 | 1897836.0 | Ibn_al-Haytham | Ossolineum |
1645.0 | 267542.0 | Ibn_al-Haytham | Science_in_the_medieval_Islamic_world |
1645.0 | 145227.0 | Ibn_al-Haytham | The_Book_of_Healing |
1645.0 | 1.2654431e7 | Ibn_al-Haytham | Al-Birjandi |
1645.0 | 1.9008673e7 | Ibn_al-Haytham | Conic_section |
1645.0 | 14220.0 | Ibn_al-Haytham | History_of_mathematics |
1645.0 | 1.1410402e7 | Ibn_al-Haytham | Joseph_ben_Judah_of_Ceuta |
1645.0 | 1.5077184e7 | Ibn_al-Haytham | Peace_in_Islamic_philosophy |
1645.0 | 822045.0 | Ibn_al-Haytham | Qiyas |
1645.0 | 427971.0 | Ibn_al-Haytham | Specific_gravity |
1645.0 | 5453536.0 | Ibn_al-Haytham | Zij-i_Ilkhani |
1645.0 | 5.515162e7 | Ibn_al-Haytham | ISSN_(identifier) |
1645.0 | 1.7140872e7 | Ibn_al-Haytham | Ibn_Shuayb |
1645.0 | 6.3434916e7 | Ibn_al-Haytham | OCLC_(identifier) |
1645.0 | 3.1526932e7 | Ibn_al-Haytham | Ya'qub_ibn_Ishaq_al-Israili |
1645.0 | 5962454.0 | Ibn_al-Haytham | Zij-i_Sultani |
1645.0 | 1.1104921e7 | Ibn_al-Haytham | 'Aql |
1645.0 | 271979.0 | Ibn_al-Haytham | Abu_Hanifa_Dinawari |
1645.0 | 2.0088875e7 | Ibn_al-Haytham | Abu_al-Abbas_Iranshahri |
1645.0 | 3.6885885e7 | Ibn_al-Haytham | Adab_al-Tabib |
1645.0 | 3.8674159e7 | Ibn_al-Haytham | Dawud_al-Antaki |
1645.0 | 3.5570756e7 | Ibn_al-Haytham | Ibn_Adlan |
1645.0 | 429918.0 | Ibn_al-Haytham | Ja'far_al-Sadiq |
1645.0 | 1.2940349e7 | Ibn_al-Haytham | Mariner's_astrolabe |
1645.0 | 3.6922314e7 | Ibn_al-Haytham | Mohammed_Abed_al-Jabri |
1645.0 | 2.3536548e7 | Ibn_al-Haytham | Perception_(journal) |
1645.0 | 6.6426206e7 | Ibn_al-Haytham | American_Mathematical_Monthly |
1645.0 | 6012554.0 | Ibn_al-Haytham | Cosmology_in_medieval_Islam |
1645.0 | 3263095.0 | Ibn_al-Haytham | Ehmedê_Xanî |
1645.0 | 1002657.0 | Ibn_al-Haytham | Nasir_Khusraw |
1645.0 | 1782879.0 | Ibn_al-Haytham | Shapur_ibn_Sahl |
1645.0 | 6.5425437e7 | Ibn_al-Haytham | Aayon_Ibn_Aayon |
1645.0 | 2882418.0 | Ibn_al-Haytham | Abraham_Maimonides |
1645.0 | 1740968.0 | Ibn_al-Haytham | Al-Fadl_ibn_Naubakht |
1645.0 | 1786.0 | Ibn_al-Haytham | Arabic_numerals |
1645.0 | 42127.0 | Ibn_al-Haytham | Christiaan_Huygens |
1645.0 | 1741027.0 | Ibn_al-Haytham | Ibrāhīm_al-Fazārī |
1645.0 | 305465.0 | Ibn_al-Haytham | Lens_(anatomy) |
1645.0 | 693465.0 | Ibn_al-Haytham | Muhammad_Baqir_al-Sadr |
1645.0 | 2.7358708e7 | Ibn_al-Haytham | Principles_of_Hindu_Reckoning |
1645.0 | 72907.0 | Ibn_al-Haytham | Sundial |
1645.0 | 2.1280496e7 | Ibn_al-Haytham | Visual_perception |
1645.0 | 4.3756445e7 | Ibn_al-Haytham | Al-Isfizari |
1645.0 | 2.3817094e7 | Ibn_al-Haytham | Bahmanyār |
1645.0 | 6886.0 | Ibn_al-Haytham | Chicago |
1645.0 | 6220.0 | Ibn_al-Haytham | Circle |
1645.0 | 3655571.0 | Ibn_al-Haytham | Eastern_Arabic_numerals |
1645.0 | 607777.0 | Ibn_al-Haytham | Epicycles |
1645.0 | 1840730.0 | Ibn_al-Haytham | Muhammad_ibn_Yusuf_al-Harawi |
1645.0 | 5.262552e7 | Ibn_al-Haytham | Nomanul_Haq |
1645.0 | 2848164.0 | Ibn_al-Haytham | Nur_ad-Din_al-Bitruji |
1645.0 | 983450.0 | Ibn_al-Haytham | Traditionalist_School_(perennialism) |
1645.0 | 5.3083061e7 | Ibn_al-Haytham | Abu_Ishaq_al-Kubunani |
1645.0 | 5.6430943e7 | Ibn_al-Haytham | Ammar_al-Mawsili |
1645.0 | 9264.0 | Ibn_al-Haytham | Ecliptic |
1645.0 | 2806585.0 | Ibn_al-Haytham | Islamic_metaphysics |
1645.0 | 2137015.0 | Ibn_al-Haytham | Mahmoud_Shabestari |
1645.0 | 1741293.0 | Ibn_al-Haytham | Mashallah_ibn_Athari |
1645.0 | 424304.0 | Ibn_al-Haytham | Pierre_Duhem |
1645.0 | 193513.0 | Ibn_al-Haytham | Science_(journal) |
1645.0 | 5.2933884e7 | Ibn_al-Haytham | Abu'l-Hasan_Bayhaqi |
1645.0 | 3.1562331e7 | Ibn_al-Haytham | Al-Kashkari |
1645.0 | 5280356.0 | Ibn_al-Haytham | Ibn_Sab'in |
1645.0 | 998087.0 | Ibn_al-Haytham | Ibn_Yunus |
1645.0 | 5.6795161e7 | Ibn_al-Haytham | Ibn_al-A'lam |
1645.0 | 1845906.0 | Ibn_al-Haytham | Jaghmini |
1645.0 | 4.2199619e7 | Ibn_al-Haytham | Schools_of_Islamic_theology |
1645.0 | 1086231.0 | Ibn_al-Haytham | Al-Abbās_ibn_Said_al-Jawharī |
1645.0 | 607963.0 | Ibn_al-Haytham | Al-Farghani |
1645.0 | 982595.0 | Ibn_al-Haytham | Constantinople_observatory_of_Taqi_ad-Din |
1645.0 | 5.5049264e7 | Ibn_al-Haytham | ISBN_(identifier) |
1645.0 | 4.5124222e7 | Ibn_al-Haytham | Kitāb_al-Manāẓir |
1645.0 | 6548181.0 | Ibn_al-Haytham | Ma_Yize |
1645.0 | 6.281435e7 | Ibn_al-Haytham | Muwaqqit |
1645.0 | 2042316.0 | Ibn_al-Haytham | Nurbakhshi |
1645.0 | 23666.0 | Ibn_al-Haytham | Prime_number |
1645.0 | 2.3649689e7 | Ibn_al-Haytham | Shadow_square |
1645.0 | 1782185.0 | Ibn_al-Haytham | Zayn_al-Din_Gorgani |
1645.0 | 928.0 | Ibn_al-Haytham | Axiom |
1645.0 | 3.833419e7 | Ibn_al-Haytham | Bruges |
1645.0 | 11114.0 | Ibn_al-Haytham | Fiqh |
1645.0 | 2.9688374e7 | Ibn_al-Haytham | Galileo_Galilei |
1645.0 | 2618724.0 | Ibn_al-Haytham | John_L._Esposito |
1645.0 | 1.8426568e7 | Ibn_al-Haytham | NASA |
1645.0 | 5.7398059e7 | Ibn_al-Haytham | Najm_al‐Din_al‐Misri |
1645.0 | 5.1317367e7 | Ibn_al-Haytham | Nastulus |
1645.0 | 202444.0 | Ibn_al-Haytham | Ummah |
1645.0 | 272065.0 | Ibn_al-Haytham | Al-Kindi |
1645.0 | 2.2509814e7 | Ibn_al-Haytham | Al-Qifti |
1645.0 | 6.5419249e7 | Ibn_al-Haytham | Ali_ibn_Khalaf |
1645.0 | 283120.0 | Ibn_al-Haytham | American_Philosophical_Society |
1645.0 | 47836.0 | Ibn_al-Haytham | Averroes |
1645.0 | 8425211.0 | Ibn_al-Haytham | Dictionary_of_Scientific_Biography |
1645.0 | 3143150.0 | Ibn_al-Haytham | History_of_scientific_method |
1645.0 | 6.5706161e7 | Ibn_al-Haytham | Ibn_Abi_Usaibia |
1645.0 | 2.7578277e7 | Ibn_al-Haytham | Ibn_al-Kammad |
1645.0 | 464693.0 | Ibn_al-Haytham | Mathworld |
1645.0 | 144553.0 | Ibn_al-Haytham | Projectile |
1645.0 | 3871014.0 | Ibn_al-Haytham | Rainbow |
1645.0 | 1.4835428e7 | Ibn_al-Haytham | Temporal_finitism |
1645.0 | 2232040.0 | Ibn_al-Haytham | Abu_'Ubayd_al-Juzjani |
1645.0 | 6.0311724e7 | Ibn_al-Haytham | Ibn_al-Haytham_(disambiguation) |
1645.0 | 5.0833301e7 | Ibn_al-Haytham | John_Shannon_Hendrix |
1645.0 | 1279787.0 | Ibn_al-Haytham | Lawrence_Erlbaum_Associates |
1645.0 | 5.5049266e7 | Ibn_al-Haytham | PMID_(identifier) |
1645.0 | 1.4386742e7 | Ibn_al-Haytham | Tabula_Rogeriana |
1645.0 | 1.6926318e7 | Ibn_al-Haytham | Equatorial_ring |
1645.0 | 6330034.0 | Ibn_al-Haytham | Eutychius_of_Alexandria |
SELECT * FROM enwiki_page
page_id | page_title | page_is_redirect | has_been_edited | page_len | page_content_model | page_lang |
---|---|---|---|---|---|---|
10.0 | AccessibleComputing | 1.0 | 0.0 | 111.0 | wikitext | NULL |
12.0 | Anarchism | 0.0 | 0.0 | 108971.0 | wikitext | NULL |
13.0 | AfghanistanHistory | 1.0 | 0.0 | 90.0 | wikitext | NULL |
14.0 | AfghanistanGeography | 1.0 | 0.0 | 92.0 | wikitext | NULL |
15.0 | AfghanistanPeople | 1.0 | 0.0 | 95.0 | wikitext | NULL |
18.0 | AfghanistanCommunications | 1.0 | 0.0 | 97.0 | wikitext | NULL |
19.0 | AfghanistanTransportations | 1.0 | 0.0 | 113.0 | wikitext | NULL |
20.0 | AfghanistanMilitary | 1.0 | 0.0 | 154.0 | wikitext | NULL |
21.0 | AfghanistanTransnationalIssues | 1.0 | 0.0 | 101.0 | wikitext | NULL |
23.0 | AssistiveTechnology | 1.0 | 0.0 | 88.0 | wikitext | NULL |
24.0 | AmoeboidTaxa | 1.0 | 0.0 | 74.0 | wikitext | NULL |
25.0 | Autism | 1.0 | 0.0 | 150.0 | wikitext | NULL |
27.0 | AlbaniaHistory | 1.0 | 0.0 | 86.0 | wikitext | NULL |
29.0 | AlbaniaPeople | 1.0 | 0.0 | 91.0 | wikitext | NULL |
30.0 | AsWeMayThink | 1.0 | 0.0 | 84.0 | wikitext | NULL |
35.0 | AlbaniaGovernment | 1.0 | 0.0 | 87.0 | wikitext | NULL |
36.0 | AlbaniaEconomy | 1.0 | 0.0 | 86.0 | wikitext | NULL |
39.0 | Albedo | 0.0 | 0.0 | 61598.0 | wikitext | NULL |
40.0 | AfroAsiaticLanguages | 1.0 | 0.0 | 89.0 | wikitext | NULL |
42.0 | ArtificalLanguages | 1.0 | 0.0 | 160.0 | wikitext | NULL |
46.0 | AbacuS | 1.0 | 0.0 | 74.0 | wikitext | NULL |
47.0 | AbalonE | 1.0 | 0.0 | 75.0 | wikitext | NULL |
48.0 | AbbadideS | 1.0 | 0.0 | 83.0 | wikitext | NULL |
49.0 | AbbesS | 1.0 | 0.0 | 74.0 | wikitext | NULL |
50.0 | AbbevilleFrance | 1.0 | 0.0 | 77.0 | wikitext | NULL |
51.0 | AbbeY | 1.0 | 0.0 | 73.0 | wikitext | NULL |
52.0 | AbboT | 1.0 | 0.0 | 73.0 | wikitext | NULL |
53.0 | Abbreviations | 1.0 | 0.0 | 77.0 | wikitext | NULL |
54.0 | AtlasShrugged | 1.0 | 0.0 | 84.0 | wikitext | NULL |
56.0 | ArtificialLanguages | 1.0 | 0.0 | 88.0 | wikitext | NULL |
58.0 | AtlasShruggedCharacters | 1.0 | 0.0 | 101.0 | wikitext | NULL |
59.0 | AtlasShruggedCompanies | 1.0 | 0.0 | 82.0 | wikitext | NULL |
60.0 | AyersMusicPublishingCompany | 1.0 | 0.0 | 100.0 | wikitext | NULL |
241.0 | AfricanAmericanPeople | 1.0 | 0.0 | 85.0 | wikitext | NULL |
242.0 | AdolfHitler | 1.0 | 0.0 | 80.0 | wikitext | NULL |
247.0 | AbeceDarians | 1.0 | 0.0 | 79.0 | wikitext | NULL |
248.0 | AbeL | 1.0 | 0.0 | 81.0 | wikitext | NULL |
249.0 | AbensbergGermany | 1.0 | 0.0 | 77.0 | wikitext | NULL |
251.0 | AberdeenSouthDakota | 1.0 | 0.0 | 90.0 | wikitext | NULL |
254.0 | ArthurKoestler | 1.0 | 0.0 | 83.0 | wikitext | NULL |
255.0 | AynRand | 1.0 | 0.0 | 76.0 | wikitext | NULL |
256.0 | AlexanderTheGreat | 1.0 | 0.0 | 87.0 | wikitext | NULL |
258.0 | AnchorageAlaska | 1.0 | 0.0 | 85.0 | wikitext | NULL |
259.0 | ArgumentForms | 1.0 | 0.0 | 80.0 | wikitext | NULL |
260.0 | ArgumentsForTheExistenceOfGod | 1.0 | 0.0 | 84.0 | wikitext | NULL |
263.0 | AnarchY | 1.0 | 0.0 | 75.0 | wikitext | NULL |
264.0 | AsciiArt | 1.0 | 0.0 | 77.0 | wikitext | NULL |
269.0 | AcademyAwards | 1.0 | 0.0 | 82.0 | wikitext | NULL |
270.0 | AcademyAwards/BestPicture | 1.0 | 0.0 | 115.0 | wikitext | NULL |
271.0 | AustriaLanguage | 1.0 | 0.0 | 83.0 | wikitext | NULL |
272.0 | AcademicElitism | 1.0 | 0.0 | 75.0 | wikitext | NULL |
274.0 | AxiomOfChoice | 1.0 | 0.0 | 83.0 | wikitext | NULL |
276.0 | AmericanFootball | 1.0 | 0.0 | 85.0 | wikitext | NULL |
278.0 | AmericA | 1.0 | 0.0 | 173.0 | wikitext | NULL |
279.0 | AnnaKournikova | 1.0 | 0.0 | 83.0 | wikitext | NULL |
280.0 | AndorrA | 1.0 | 0.0 | 75.0 | wikitext | NULL |
287.0 | AustroAsiaticLanguages | 1.0 | 0.0 | 91.0 | wikitext | NULL |
289.0 | ActresseS | 1.0 | 0.0 | 109.0 | wikitext | NULL |
290.0 | A | 0.0 | 0.0 | 30290.0 | wikitext | NULL |
291.0 | AnarchoCapitalism | 1.0 | 0.0 | 86.0 | wikitext | NULL |
293.0 | AnarchoCapitalists | 1.0 | 0.0 | 86.0 | wikitext | NULL |
296.0 | ActressesS | 1.0 | 0.0 | 83.0 | wikitext | NULL |
299.0 | AnAmericanInParis | 1.0 | 0.0 | 88.0 | wikitext | NULL |
301.0 | AutoMorphism | 1.0 | 0.0 | 80.0 | wikitext | NULL |
302.0 | ActionFilm | 1.0 | 0.0 | 79.0 | wikitext | NULL |
303.0 | Alabama | 0.0 | 0.0 | 226818.0 | wikitext | NULL |
304.0 | AfricA | 1.0 | 0.0 | 115.0 | wikitext | NULL |
305.0 | Achilles | 0.0 | 0.0 | 77348.0 | wikitext | NULL |
306.0 | AppliedStatistics | 1.0 | 0.0 | 78.0 | wikitext | NULL |
307.0 | Abraham_Lincoln | 0.0 | 0.0 | 197343.0 | wikitext | NULL |
308.0 | Aristotle | 0.0 | 0.0 | 158506.0 | wikitext | NULL |
309.0 | An_American_in_Paris | 0.0 | 0.0 | 24243.0 | wikitext | NULL |
316.0 | Academy_Award_for_Best_Production_Design | 0.0 | 0.0 | 99157.0 | wikitext | NULL |
324.0 | Academy_Awards | 0.0 | 0.0 | 149454.0 | wikitext | NULL |
325.0 | Action_Film | 1.0 | 0.0 | 56.0 | wikitext | NULL |
330.0 | Actrius | 0.0 | 0.0 | 6542.0 | wikitext | NULL |
332.0 | Animalia_(book) | 0.0 | 0.0 | 6920.0 | wikitext | NULL |
334.0 | International_Atomic_Time | 0.0 | 0.0 | 15202.0 | wikitext | NULL |
336.0 | Altruism | 0.0 | 0.0 | 77534.0 | wikitext | NULL |
338.0 | AutoRacing | 1.0 | 0.0 | 79.0 | wikitext | NULL |
339.0 | Ayn_Rand | 0.0 | 0.0 | 88464.0 | wikitext | NULL |
340.0 | Alain_Connes | 0.0 | 0.0 | 9175.0 | wikitext | NULL |
344.0 | Allan_Dwan | 0.0 | 0.0 | 13381.0 | wikitext | NULL |
347.0 | Algeria/People | 1.0 | 0.0 | 89.0 | wikitext | NULL |
353.0 | Algeria/Transnational_Issues | 1.0 | 0.0 | 94.0 | wikitext | NULL |
358.0 | Algeria | 0.0 | 0.0 | 173692.0 | wikitext | NULL |
359.0 | List_of_Atlas_Shrugged_characters | 0.0 | 0.0 | 33550.0 | wikitext | NULL |
369.0 | Topics_of_note_in_Atlas_Shrugged | 1.0 | 0.0 | 28.0 | wikitext | NULL |
569.0 | Anthropology | 0.0 | 0.0 | 108674.0 | wikitext | NULL |
572.0 | Agricultural_science | 0.0 | 0.0 | 13186.0 | wikitext | NULL |
573.0 | Alchemy | 0.0 | 0.0 | 97130.0 | wikitext | NULL |
579.0 | Alien | 0.0 | 0.0 | 6689.0 | wikitext | NULL |
580.0 | Astronomer | 0.0 | 0.0 | 8573.0 | wikitext | NULL |
583.0 | Ameboid_stage | 1.0 | 0.0 | 20.0 | wikitext | NULL |
586.0 | ASCII | 0.0 | 0.0 | 107367.0 | wikitext | NULL |
589.0 | Ashmore_And_Cartier_Islands | 1.0 | 0.0 | 106.0 | wikitext | NULL |
590.0 | Austin_(disambiguation) | 0.0 | 0.0 | 2455.0 | wikitext | NULL |
593.0 | Animation | 0.0 | 0.0 | 69580.0 | wikitext | NULL |
594.0 | Apollo | 0.0 | 0.0 | 211059.0 | wikitext | NULL |
595.0 | Andre_Agassi | 0.0 | 0.0 | 135589.0 | wikitext | NULL |
596.0 | Artificial_languages | 1.0 | 0.0 | 69.0 | wikitext | NULL |
597.0 | Austroasiatic_languages | 0.0 | 0.0 | 58664.0 | wikitext | NULL |
598.0 | Afro-asiatic_languages | 1.0 | 0.0 | 100.0 | wikitext | NULL |
599.0 | Afroasiatic_languages | 0.0 | 0.0 | 69265.0 | wikitext | NULL |
600.0 | Andorra | 0.0 | 0.0 | 133270.0 | wikitext | NULL |
609.0 | Andorra/Transnational_issues | 1.0 | 0.0 | 135.0 | wikitext | NULL |
612.0 | Arithmetic_mean | 0.0 | 0.0 | 13635.0 | wikitext | NULL |
615.0 | American_Football_Conference | 0.0 | 0.0 | 22184.0 | wikitext | NULL |
617.0 | Albert_Gore | 1.0 | 0.0 | 75.0 | wikitext | NULL |
618.0 | AnEnquiryConcerningHumanUnderstanding | 1.0 | 0.0 | 109.0 | wikitext | NULL |
620.0 | Animal_Farm | 0.0 | 0.0 | 77545.0 | wikitext | NULL |
621.0 | Amphibian | 0.0 | 0.0 | 156204.0 | wikitext | NULL |
622.0 | Albert_Arnold_Gore/Criticisms | 1.0 | 0.0 | 21.0 | wikitext | NULL |
624.0 | Alaska | 0.0 | 0.0 | 172107.0 | wikitext | NULL |
626.0 | Auteur_Theory_Film | 1.0 | 0.0 | 20.0 | wikitext | NULL |
627.0 | Agriculture | 0.0 | 0.0 | 163082.0 | wikitext | NULL |
628.0 | Aldous_Huxley | 0.0 | 0.0 | 57618.0 | wikitext | NULL |
629.0 | Abstract_Algebra | 1.0 | 0.0 | 95.0 | wikitext | NULL |
630.0 | Ada | 0.0 | 0.0 | 3813.0 | wikitext | NULL |
632.0 | Aberdeen_(disambiguation) | 0.0 | 0.0 | 7276.0 | wikitext | NULL |
633.0 | Algae | 0.0 | 0.0 | 90619.0 | wikitext | NULL |
634.0 | Analysis_of_variance | 0.0 | 0.0 | 55132.0 | wikitext | NULL |
635.0 | ANOVA | 1.0 | 0.0 | 86.0 | wikitext | NULL |
639.0 | Alkane | 0.0 | 0.0 | 73113.0 | wikitext | NULL |
640.0 | Appellate_procedure_in_the_United_States | 0.0 | 0.0 | 27615.0 | wikitext | NULL |
642.0 | Answer_(law) | 0.0 | 0.0 | 2765.0 | wikitext | NULL |
643.0 | Appellate_court | 0.0 | 0.0 | 11978.0 | wikitext | NULL |
644.0 | Arithmetic_and_logic_unit | 1.0 | 0.0 | 35.0 | wikitext | NULL |
648.0 | Actress | 1.0 | 0.0 | 125.0 | wikitext | NULL |
649.0 | Arraignment | 0.0 | 0.0 | 10523.0 | wikitext | NULL |
651.0 | America_the_Beautiful | 0.0 | 0.0 | 29339.0 | wikitext | NULL |
653.0 | Assistive_technology | 0.0 | 0.0 | 63308.0 | wikitext | NULL |
654.0 | Accessible_computing | 1.0 | 0.0 | 36.0 | wikitext | NULL |
655.0 | Abacus | 0.0 | 0.0 | 50940.0 | wikitext | NULL |
656.0 | Acid | 0.0 | 0.0 | 47523.0 | wikitext | NULL |
657.0 | Asphalt | 0.0 | 0.0 | 95749.0 | wikitext | NULL |
659.0 | American_National_Standards_Institute | 0.0 | 0.0 | 18089.0 | wikitext | NULL |
661.0 | Argument_(disambiguation) | 0.0 | 0.0 | 1710.0 | wikitext | NULL |
662.0 | Apollo_11 | 0.0 | 0.0 | 184198.0 | wikitext | NULL |
663.0 | Apollo_8 | 0.0 | 0.0 | 95526.0 | wikitext | NULL |
664.0 | Astronaut | 0.0 | 0.0 | 80670.0 | wikitext | NULL |
665.0 | A_Modest_Proposal | 0.0 | 0.0 | 24728.0 | wikitext | NULL |
666.0 | Alkali_metal | 0.0 | 0.0 | 217024.0 | wikitext | NULL |
668.0 | Argument_form | 1.0 | 0.0 | 26.0 | wikitext | NULL |
669.0 | Allotrope | 1.0 | 0.0 | 80.0 | wikitext | NULL |
670.0 | Alphabet | 0.0 | 0.0 | 48050.0 | wikitext | NULL |
673.0 | Atomic_number | 0.0 | 0.0 | 14031.0 | wikitext | NULL |
674.0 | Anatomy | 0.0 | 0.0 | 77631.0 | wikitext | NULL |
675.0 | Affirming_the_consequent | 0.0 | 0.0 | 6242.0 | wikitext | NULL |
676.0 | Andrei_Tarkovsky | 0.0 | 0.0 | 74800.0 | wikitext | NULL |
677.0 | Ambiguity | 0.0 | 0.0 | 31221.0 | wikitext | NULL |
678.0 | Abel | 0.0 | 0.0 | 10386.0 | wikitext | NULL |
679.0 | Animal_(disambiguation) | 0.0 | 0.0 | 8673.0 | wikitext | NULL |
680.0 | Aardvark | 0.0 | 0.0 | 36644.0 | wikitext | NULL |
681.0 | Aardwolf | 0.0 | 0.0 | 24478.0 | wikitext | NULL |
682.0 | Adobe | 0.0 | 0.0 | 28066.0 | wikitext | NULL |
683.0 | Adventure | 0.0 | 0.0 | 9292.0 | wikitext | NULL |
686.0 | Amaltheia | 1.0 | 0.0 | 34.0 | wikitext | NULL |
687.0 | Analysis_of_Variance | 1.0 | 0.0 | 66.0 | wikitext | NULL |
689.0 | Asia | 0.0 | 0.0 | 119487.0 | wikitext | NULL |
690.0 | Aruba | 0.0 | 0.0 | 77354.0 | wikitext | NULL |
691.0 | Articles_of_Confederation | 0.0 | 0.0 | 73929.0 | wikitext | NULL |
693.0 | Archaeology/Broch | 1.0 | 0.0 | 71.0 | wikitext | NULL |
694.0 | Asia_Minor_(disambiguation) | 0.0 | 0.0 | 520.0 | wikitext | NULL |
696.0 | Aa_River | 1.0 | 0.0 | 108.0 | wikitext | NULL |
698.0 | Atlantic_Ocean | 0.0 | 0.0 | 114989.0 | wikitext | NULL |
700.0 | Arthur_Schopenhauer | 0.0 | 0.0 | 165600.0 | wikitext | NULL |
701.0 | Angola | 0.0 | 0.0 | 156923.0 | wikitext | NULL |
704.0 | Demographics_of_Angola | 0.0 | 0.0 | 33803.0 | wikitext | NULL |
705.0 | Politics_of_Angola | 0.0 | 0.0 | 15087.0 | wikitext | NULL |
706.0 | Economy_of_Angola | 0.0 | 0.0 | 45452.0 | wikitext | NULL |
708.0 | Transport_in_Angola | 0.0 | 0.0 | 4083.0 | wikitext | NULL |
709.0 | Angolan_Armed_Forces | 0.0 | 0.0 | 25218.0 | wikitext | NULL |
710.0 | Foreign_relations_of_Angola | 0.0 | 0.0 | 28022.0 | wikitext | NULL |
711.0 | Albert_Sidney_Johnston | 0.0 | 0.0 | 53655.0 | wikitext | NULL |
713.0 | Android_(robot) | 0.0 | 0.0 | 30791.0 | wikitext | NULL |
717.0 | Alberta | 0.0 | 0.0 | 165138.0 | wikitext | NULL |
727.0 | Astronomy/History | 1.0 | 0.0 | 86.0 | wikitext | NULL |
728.0 | List_of_anthropologists | 0.0 | 0.0 | 8657.0 | wikitext | NULL |
731.0 | Astronomy_and_Astrophysics/History | 1.0 | 1.0 | 86.0 | wikitext | NULL |
734.0 | Actinopterygii | 0.0 | 0.0 | 41677.0 | wikitext | NULL |
735.0 | Al_Gore/Criticisms | 1.0 | 0.0 | 73.0 | wikitext | NULL |
736.0 | Albert_Einstein | 0.0 | 0.0 | 210170.0 | wikitext | NULL |
737.0 | Afghanistan | 0.0 | 0.0 | 310005.0 | wikitext | NULL |
738.0 | Albania | 0.0 | 0.0 | 277109.0 | wikitext | NULL |
740.0 | Allah | 0.0 | 0.0 | 49185.0 | wikitext | NULL |
742.0 | Algorithms_(journal) | 0.0 | 0.0 | 3748.0 | wikitext | NULL |
743.0 | Antigua_And_Barbuda | 1.0 | 0.0 | 79.0 | wikitext | NULL |
746.0 | Azerbaijan | 0.0 | 0.0 | 236389.0 | wikitext | NULL |
748.0 | Amateur_astronomy | 0.0 | 0.0 | 36867.0 | wikitext | NULL |
749.0 | Astronomers_and_Astrophysicists | 1.0 | 0.0 | 24.0 | wikitext | NULL |
751.0 | Aikido | 0.0 | 0.0 | 57246.0 | wikitext | NULL |
752.0 | Art | 0.0 | 0.0 | 121171.0 | wikitext | NULL |
755.0 | Albania/History | 1.0 | 0.0 | 84.0 | wikitext | NULL |
758.0 | Albania/Transnational_Issues | 1.0 | 0.0 | 134.0 | wikitext | NULL |
759.0 | Albania/People | 1.0 | 0.0 | 89.0 | wikitext | NULL |
763.0 | Albania/Foreign_relations | 1.0 | 0.0 | 134.0 | wikitext | NULL |
764.0 | Agnostida | 0.0 | 0.0 | 8134.0 | wikitext | NULL |
765.0 | Abortion | 0.0 | 0.0 | 194359.0 | wikitext | NULL |
766.0 | Abstract_(law) | 0.0 | 0.0 | 2292.0 | wikitext | NULL |
767.0 | A.E._van_Vogt | 1.0 | 0.0 | 28.0 | wikitext | NULL |
771.0 | American_Revolutionary_War | 0.0 | 0.0 | 308703.0 | wikitext | NULL |
772.0 | Ampere | 0.0 | 0.0 | 15813.0 | wikitext | NULL |
775.0 | Algorithm | 0.0 | 0.0 | 113862.0 | wikitext | NULL |
777.0 | Annual_plant | 0.0 | 0.0 | 6058.0 | wikitext | NULL |
779.0 | Anthophyta | 0.0 | 0.0 | 3135.0 | wikitext | NULL |
780.0 | Atlas_(disambiguation) | 0.0 | 0.0 | 11221.0 | wikitext | NULL |
782.0 | Mouthwash | 0.0 | 0.0 | 65648.0 | wikitext | NULL |
783.0 | Alexander_the_Great | 0.0 | 0.0 | 227366.0 | wikitext | NULL |
784.0 | Alfred_Korzybski | 0.0 | 0.0 | 14772.0 | wikitext | NULL |
785.0 | Asteroids_(video_game) | 0.0 | 0.0 | 48246.0 | wikitext | NULL |
786.0 | Asparagales | 0.0 | 0.0 | 89674.0 | wikitext | NULL |
787.0 | Alismatales | 0.0 | 0.0 | 13634.0 | wikitext | NULL |
788.0 | Apiales | 0.0 | 0.0 | 7627.0 | wikitext | NULL |
789.0 | Asterales | 0.0 | 0.0 | 11669.0 | wikitext | NULL |
791.0 | Asteroid | 0.0 | 0.0 | 155686.0 | wikitext | NULL |
794.0 | Allocution | 0.0 | 0.0 | 3884.0 | wikitext | NULL |
795.0 | Affidavit | 0.0 | 0.0 | 10052.0 | wikitext | NULL |
798.0 | Aries_(constellation) | 0.0 | 0.0 | 50994.0 | wikitext | NULL |
799.0 | Aquarius_(constellation) | 0.0 | 0.0 | 36019.0 | wikitext | NULL |
800.0 | Anime | 0.0 | 0.0 | 104726.0 | wikitext | NULL |
801.0 | Asterism | 0.0 | 0.0 | 357.0 | wikitext | NULL |
802.0 | Ankara | 0.0 | 0.0 | 125716.0 | wikitext | NULL |
803.0 | Arabic | 0.0 | 0.0 | 174116.0 | wikitext | NULL |
807.0 | AlbaniaCommunications | 1.0 | 0.0 | 97.0 | wikitext | NULL |
808.0 | Alfred_Hitchcock | 0.0 | 0.0 | 179231.0 | wikitext | NULL |
809.0 | Anaconda | 0.0 | 0.0 | 8537.0 | wikitext | NULL |
813.0 | Afghanistan/History | 1.0 | 0.0 | 88.0 | wikitext | NULL |
814.0 | Afghanistan/Geography | 1.0 | 0.0 | 90.0 | wikitext | NULL |
815.0 | Afghanistan/Government | 1.0 | 0.0 | 114.0 | wikitext | NULL |
816.0 | Afghanistan/People | 1.0 | 0.0 | 93.0 | wikitext | NULL |
817.0 | Afghanistan/Economy | 1.0 | 0.0 | 88.0 | wikitext | NULL |
818.0 | Afghanistan/Communications | 1.0 | 0.0 | 114.0 | wikitext | NULL |
820.0 | Afghanistan/Military | 1.0 | 0.0 | 155.0 | wikitext | NULL |
821.0 | Afghanistan/Transnational_Issues | 1.0 | 0.0 | 98.0 | wikitext | NULL |
822.0 | Afghanistan_(1911_Encyclopedia) | 1.0 | 0.0 | 25.0 | wikitext | NULL |
824.0 | Altaic_languages | 0.0 | 0.0 | 63972.0 | wikitext | NULL |
825.0 | Austrian_German | 0.0 | 0.0 | 21521.0 | wikitext | NULL |
832.0 | Austria/Transnational_issues | 1.0 | 0.0 | 94.0 | wikitext | NULL |
839.0 | Anglican_Church | 1.0 | 0.0 | 25.0 | wikitext | NULL |
840.0 | Axiom_of_choice | 0.0 | 0.0 | 58996.0 | wikitext | NULL |
841.0 | Attila | 0.0 | 0.0 | 65626.0 | wikitext | NULL |
842.0 | Aegean_Sea | 0.0 | 0.0 | 47828.0 | wikitext | NULL |
843.0 | A_Clockwork_Orange_(novel) | 0.0 | 0.0 | 55097.0 | wikitext | NULL |
844.0 | Amsterdam | 0.0 | 0.0 | 196002.0 | wikitext | NULL |
846.0 | Museum_of_Work | 0.0 | 0.0 | 7122.0 | wikitext | NULL |
848.0 | Audi | 0.0 | 0.0 | 147456.0 | wikitext | NULL |
849.0 | Aircraft | 0.0 | 0.0 | 63371.0 | wikitext | NULL |
851.0 | Alfred_Nobel | 0.0 | 0.0 | 33680.0 | wikitext | NULL |
852.0 | Alexander_Graham_Bell | 0.0 | 0.0 | 143315.0 | wikitext | NULL |
854.0 | Anatolia | 0.0 | 0.0 | 72850.0 | wikitext | NULL |
855.0 | Abiotic_factors | 1.0 | 0.0 | 31.0 | wikitext | NULL |
856.0 | Apple_Inc. | 0.0 | 0.0 | 296242.0 | wikitext | NULL |
857.0 | Aberdeenshire | 0.0 | 0.0 | 33434.0 | wikitext | NULL |
858.0 | AU | 1.0 | 0.0 | 127.0 | wikitext | NULL |
859.0 | Aztlan_Underground | 0.0 | 0.0 | 7876.0 | wikitext | NULL |
860.0 | Aland | 1.0 | 0.0 | 93.0 | wikitext | NULL |
863.0 | American_Civil_War | 0.0 | 0.0 | 252499.0 | wikitext | NULL |
864.0 | Andy_Warhol | 0.0 | 0.0 | 159393.0 | wikitext | NULL |
868.0 | Alp_Arslan | 0.0 | 0.0 | 27066.0 | wikitext | NULL |
869.0 | American_Film_Institute | 0.0 | 0.0 | 23405.0 | wikitext | NULL |
872.0 | Akira_Kurosawa | 0.0 | 0.0 | 108667.0 | wikitext | NULL |
873.0 | Ancient_civilization | 1.0 | 0.0 | 95.0 | wikitext | NULL |
874.0 | Ancient_Egypt | 0.0 | 0.0 | 141823.0 | wikitext | NULL |
875.0 | Analog_Brothers | 0.0 | 0.0 | 3787.0 | wikitext | NULL |
876.0 | Motor_neuron_disease | 0.0 | 0.0 | 22719.0 | wikitext | NULL |
877.0 | Abjad | 0.0 | 0.0 | 22953.0 | wikitext | NULL |
878.0 | Abugida | 0.0 | 0.0 | 44096.0 | wikitext | NULL |
880.0 | ABBA | 0.0 | 0.0 | 143023.0 | wikitext | NULL |
881.0 | Allegiance | 0.0 | 0.0 | 15801.0 | wikitext | NULL |
882.0 | Absolute_majority | 1.0 | 0.0 | 121.0 | wikitext | NULL |
885.0 | Altenberg | 0.0 | 0.0 | 1824.0 | wikitext | NULL |
887.0 | MessagePad | 0.0 | 0.0 | 47725.0 | wikitext | NULL |
888.0 | A._E._van_Vogt | 0.0 | 0.0 | 51988.0 | wikitext | NULL |
890.0 | Anna_Kournikova | 0.0 | 0.0 | 55901.0 | wikitext | NULL |
891.0 | Accountancy | 1.0 | 0.0 | 24.0 | wikitext | NULL |
892.0 | Alfons_Maria_Jakob | 0.0 | 0.0 | 5267.0 | wikitext | NULL |
894.0 | Agnosticism | 0.0 | 0.0 | 72756.0 | wikitext | NULL |
896.0 | Argon | 0.0 | 0.0 | 40086.0 | wikitext | NULL |
897.0 | Arsenic | 0.0 | 0.0 | 127483.0 | wikitext | NULL |
898.0 | Antimony | 0.0 | 0.0 | 60686.0 | wikitext | NULL |
899.0 | Actinium | 0.0 | 0.0 | 39951.0 | wikitext | NULL |
900.0 | Americium | 0.0 | 0.0 | 77374.0 | wikitext | NULL |
901.0 | Astatine | 0.0 | 0.0 | 81700.0 | wikitext | NULL |
902.0 | Atom | 0.0 | 0.0 | 125779.0 | wikitext | NULL |
903.0 | Arable_land | 0.0 | 0.0 | 17047.0 | wikitext | NULL |
904.0 | Aluminium | 0.0 | 0.0 | 138626.0 | wikitext | NULL |
905.0 | Advanced_Chemistry | 0.0 | 0.0 | 12704.0 | wikitext | NULL |
907.0 | Awk | 1.0 | 0.0 | 82.0 | wikitext | NULL |
908.0 | AgoraNomic | 1.0 | 0.0 | 19.0 | wikitext | NULL |
909.0 | Anglican_Communion | 0.0 | 0.0 | 67308.0 | wikitext | NULL |
910.0 | Arne_Kaijser | 0.0 | 0.0 | 2754.0 | wikitext | NULL |
911.0 | Archipelago | 0.0 | 0.0 | 7267.0 | wikitext | NULL |
914.0 | Author | 0.0 | 0.0 | 20404.0 | wikitext | NULL |
915.0 | Andrey_Markov | 0.0 | 0.0 | 10528.0 | wikitext | NULL |
918.0 | Anti-semitism | 1.0 | 0.0 | 91.0 | wikitext | NULL |
919.0 | Anti-semitic | 1.0 | 0.0 | 47.0 | wikitext | NULL |
921.0 | Angst | 0.0 | 0.0 | 7030.0 | wikitext | NULL |
922.0 | Anxiety | 0.0 | 0.0 | 92522.0 | wikitext | NULL |
923.0 | A.A._Milne | 1.0 | 0.0 | 25.0 | wikitext | NULL |
924.0 | A._A._Milne | 0.0 | 0.0 | 43901.0 | wikitext | NULL |
925.0 | Asociación_Alumni | 0.0 | 0.0 | 5890.0 | wikitext | NULL |
926.0 | Alumna | 1.0 | 0.0 | 80.0 | wikitext | NULL |
928.0 | Axiom | 0.0 | 0.0 | 35579.0 | wikitext | NULL |
929.0 | Alpha | 0.0 | 0.0 | 11696.0 | wikitext | NULL |
930.0 | Alvin_Toffler | 0.0 | 0.0 | 31422.0 | wikitext | NULL |
931.0 | The_Amazing_Spider-Man | 0.0 | 0.0 | 86345.0 | wikitext | NULL |
933.0 | AM | 0.0 | 0.0 | 4055.0 | wikitext | NULL |
935.0 | Automated_Alice/XII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
936.0 | Automated_Alice/XI | 1.0 | 0.0 | 49.0 | wikitext | NULL |
937.0 | Automated_Alice/X | 1.0 | 0.0 | 49.0 | wikitext | NULL |
938.0 | Automated_Alice/IX | 1.0 | 0.0 | 49.0 | wikitext | NULL |
939.0 | Automated_Alice/VIII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
940.0 | Automated_Alice/VI | 1.0 | 0.0 | 49.0 | wikitext | NULL |
941.0 | Automated_Alice/VII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
942.0 | Automated_Alice/V | 1.0 | 0.0 | 49.0 | wikitext | NULL |
943.0 | Automated_Alice/IV | 1.0 | 0.0 | 49.0 | wikitext | NULL |
944.0 | Automated_Alice/II | 1.0 | 0.0 | 49.0 | wikitext | NULL |
945.0 | Automated_Alice/I | 1.0 | 0.0 | 49.0 | wikitext | NULL |
946.0 | Automated_Alice/III | 1.0 | 0.0 | 49.0 | wikitext | NULL |
951.0 | Antigua_and_Barbuda | 0.0 | 0.0 | 69608.0 | wikitext | NULL |
953.0 | Azincourt | 0.0 | 0.0 | 7304.0 | wikitext | NULL |
954.0 | Albert_Speer | 0.0 | 0.0 | 74955.0 | wikitext | NULL |
956.0 | Asteraceae | 0.0 | 0.0 | 52348.0 | wikitext | NULL |
957.0 | Apiaceae | 0.0 | 0.0 | 19443.0 | wikitext | NULL |
958.0 | Axon | 0.0 | 0.0 | 56358.0 | wikitext | NULL |
959.0 | Agma | 1.0 | 0.0 | 32.0 | wikitext | NULL |
960.0 | Aramaic_alphabet | 0.0 | 0.0 | 39545.0 | wikitext | NULL |
963.0 | Arguments_for_the_existence_of_God | 1.0 | 0.0 | 30.0 | wikitext | NULL |
966.0 | American_shot | 0.0 | 0.0 | 2475.0 | wikitext | NULL |
967.0 | Acute_disseminated_encephalomyelitis | 0.0 | 0.0 | 49156.0 | wikitext | NULL |
969.0 | Ataxia | 0.0 | 0.0 | 51374.0 | wikitext | NULL |
970.0 | AmbientCalculusOnline | 1.0 | 0.0 | 84.0 | wikitext | NULL |
972.0 | Abdul_Alhazred | 1.0 | 0.0 | 453.0 | wikitext | NULL |
973.0 | A_priori_and_a_posterior_knowledge | 1.0 | 0.0 | 39.0 | wikitext | NULL |
974.0 | Ada_Lovelace | 0.0 | 0.0 | 81872.0 | wikitext | NULL |
975.0 | AmbientCalculiOnline | 1.0 | 0.0 | 84.0 | wikitext | NULL |
980.0 | August_Derleth | 0.0 | 0.0 | 36081.0 | wikitext | NULL |
981.0 | Alps | 0.0 | 0.0 | 97011.0 | wikitext | NULL |
982.0 | A_priori_and_a_posteriori_knowledge | 1.0 | 0.0 | 39.0 | wikitext | NULL |
983.0 | Albert_Camus | 0.0 | 0.0 | 60082.0 | wikitext | NULL |
984.0 | Agatha_Christie | 0.0 | 0.0 | 157622.0 | wikitext | NULL |
986.0 | The_Plague_(novel) | 0.0 | 0.0 | 33756.0 | wikitext | NULL |
988.0 | Applied_ethics | 0.0 | 0.0 | 10125.0 | wikitext | NULL |
991.0 | Absolute_value | 0.0 | 0.0 | 25672.0 | wikitext | NULL |
993.0 | Analog_signal | 0.0 | 0.0 | 4898.0 | wikitext | NULL |
994.0 | Arecales | 0.0 | 0.0 | 3408.0 | wikitext | NULL |
1000.0 | Hercule_Poirot | 0.0 | 0.0 | 70455.0 | wikitext | NULL |
1002.0 | Miss_Marple | 0.0 | 0.0 | 31513.0 | wikitext | NULL |
1004.0 | April | 0.0 | 0.0 | 32330.0 | wikitext | NULL |
1005.0 | August | 0.0 | 0.0 | 29903.0 | wikitext | NULL |
1006.0 | Aaron | 0.0 | 0.0 | 45188.0 | wikitext | NULL |
1008.0 | April_6 | 0.0 | 0.0 | 53142.0 | wikitext | NULL |
1009.0 | April_12 | 0.0 | 0.0 | 52633.0 | wikitext | NULL |
1010.0 | April_15 | 0.0 | 0.0 | 50663.0 | wikitext | NULL |
1011.0 | April_30 | 0.0 | 0.0 | 48202.0 | wikitext | NULL |
1012.0 | August_22 | 0.0 | 0.0 | 44190.0 | wikitext | NULL |
1013.0 | August_27 | 0.0 | 0.0 | 47372.0 | wikitext | NULL |
1014.0 | Alcohol_(chemistry) | 0.0 | 0.0 | 34841.0 | wikitext | NULL |
1016.0 | Achill_Island | 0.0 | 0.0 | 39863.0 | wikitext | NULL |
1017.0 | Allen_Ginsberg | 0.0 | 0.0 | 108507.0 | wikitext | NULL |
1018.0 | Algebraically_closed_field | 0.0 | 0.0 | 12639.0 | wikitext | NULL |
1019.0 | August_6 | 0.0 | 0.0 | 44883.0 | wikitext | NULL |
1020.0 | Anatoly_Karpov | 0.0 | 0.0 | 44732.0 | wikitext | NULL |
1021.0 | Aspect_ratio | 0.0 | 0.0 | 5699.0 | wikitext | NULL |
1022.0 | Auto_racing | 0.0 | 0.0 | 49738.0 | wikitext | NULL |
1023.0 | Anarcho-capitalism | 0.0 | 0.0 | 135375.0 | wikitext | NULL |
1026.0 | Anarcho-capitalists | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1027.0 | August_9 | 0.0 | 0.0 | 48531.0 | wikitext | NULL |
1028.0 | Aristophanes | 0.0 | 0.0 | 68860.0 | wikitext | NULL |
1029.0 | Albert_Schweitzer | 0.0 | 0.0 | 80267.0 | wikitext | NULL |
1030.0 | Austrian_School | 0.0 | 0.0 | 71838.0 | wikitext | NULL |
1032.0 | Abscess | 0.0 | 0.0 | 32103.0 | wikitext | NULL |
1035.0 | Aal | 1.0 | 0.0 | 94.0 | wikitext | NULL |
1036.0 | Aalborg_Municipality | 0.0 | 0.0 | 13463.0 | wikitext | NULL |
1038.0 | Aarhus | 0.0 | 0.0 | 205789.0 | wikitext | NULL |
1043.0 | Northern_cavefish | 0.0 | 0.0 | 2625.0 | wikitext | NULL |
1046.0 | Abatement | 0.0 | 0.0 | 1133.0 | wikitext | NULL |
1049.0 | Amateur | 0.0 | 0.0 | 15459.0 | wikitext | NULL |
1051.0 | Alexis_Carrel | 0.0 | 0.0 | 38802.0 | wikitext | NULL |
1055.0 | All_Souls'_Day | 0.0 | 0.0 | 36190.0 | wikitext | NULL |
1057.0 | Anatole_France | 0.0 | 0.0 | 16387.0 | wikitext | NULL |
1058.0 | André_Gide | 0.0 | 0.0 | 32483.0 | wikitext | NULL |
1059.0 | Applied_statistics | 1.0 | 0.0 | 192.0 | wikitext | NULL |
1061.0 | Analysis_of_variance/Random_effects_models | 1.0 | 0.0 | 123.0 | wikitext | NULL |
1062.0 | Analysis_of_variance/Degrees_of_freedom | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1063.0 | Algorithms_for_calculating_variance | 0.0 | 0.0 | 30844.0 | wikitext | NULL |
1064.0 | Almond | 0.0 | 0.0 | 65298.0 | wikitext | NULL |
1069.0 | Demographics_of_Antigua_and_Barbuda | 0.0 | 0.0 | 15988.0 | wikitext | NULL |
1070.0 | Politics_of_Antigua_and_Barbuda | 0.0 | 0.0 | 10381.0 | wikitext | NULL |
1072.0 | Telecommunications_in_Antigua_and_Barbuda | 0.0 | 0.0 | 5634.0 | wikitext | NULL |
1074.0 | Antigua_and_Barbuda_Defence_Force | 0.0 | 0.0 | 6978.0 | wikitext | NULL |
1075.0 | Antigua_and_Barbuda/Transnational_issues | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1078.0 | Antisemitism | 0.0 | 0.0 | 146605.0 | wikitext | NULL |
1081.0 | Economy_of_Azerbaijan | 0.0 | 0.0 | 60281.0 | wikitext | NULL |
1082.0 | Geography_of_Azerbaijan | 0.0 | 0.0 | 14609.0 | wikitext | NULL |
1083.0 | Azerbaijan/People | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1085.0 | Azerbaijan/Communications | 1.0 | 0.0 | 98.0 | wikitext | NULL |
1087.0 | Foreign_relations_of_Azerbaijan | 0.0 | 0.0 | 106467.0 | wikitext | NULL |
1088.0 | Azerbaijani_Armed_Forces | 0.0 | 0.0 | 86941.0 | wikitext | NULL |
1089.0 | Azerbaijan/Foreign_relations | 1.0 | 0.0 | 97.0 | wikitext | NULL |
1091.0 | Geography_of_Armenia | 0.0 | 0.0 | 9701.0 | wikitext | NULL |
1092.0 | Demographics_of_Armenia | 0.0 | 0.0 | 53608.0 | wikitext | NULL |
1093.0 | Politics_of_Armenia | 0.0 | 0.0 | 22632.0 | wikitext | NULL |
1094.0 | Economy_of_Armenia | 0.0 | 0.0 | 139777.0 | wikitext | NULL |
1096.0 | Transport_in_Armenia | 0.0 | 0.0 | 17734.0 | wikitext | NULL |
1097.0 | Armed_Forces_of_Armenia | 0.0 | 0.0 | 65462.0 | wikitext | NULL |
1098.0 | Foreign_relations_of_Armenia | 0.0 | 0.0 | 166725.0 | wikitext | NULL |
1105.0 | Argentina/Transnational_issues | 1.0 | 0.0 | 138.0 | wikitext | NULL |
1108.0 | Argentina/Foreign_relations | 1.0 | 0.0 | 138.0 | wikitext | NULL |
1109.0 | Geography_of_American_Samoa | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1110.0 | Demographics_of_American_Samoa | 0.0 | 0.0 | 13354.0 | wikitext | NULL |
1111.0 | Politics_of_American_Samoa | 0.0 | 0.0 | 5605.0 | wikitext | NULL |
1112.0 | Economy_of_American_Samoa | 0.0 | 0.0 | 6915.0 | wikitext | NULL |
1114.0 | Transportation_in_American_Samoa | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1116.0 | American_Samoa/Military | 1.0 | 0.0 | 80.0 | wikitext | NULL |
1123.0 | Australia/Transnational_issues | 1.0 | 0.0 | 96.0 | wikitext | NULL |
1129.0 | August_13 | 0.0 | 0.0 | 47062.0 | wikitext | NULL |
1130.0 | Avicenna | 0.0 | 0.0 | 114907.0 | wikitext | NULL |
1132.0 | The_Ashes | 0.0 | 0.0 | 92557.0 | wikitext | NULL |
1134.0 | Analysis | 0.0 | 0.0 | 21855.0 | wikitext | NULL |
1135.0 | Abner_Doubleday | 0.0 | 0.0 | 28685.0 | wikitext | NULL |
1136.0 | America's_National_Game | 0.0 | 0.0 | 1519.0 | wikitext | NULL |
1140.0 | Amplitude_modulation | 0.0 | 0.0 | 33937.0 | wikitext | NULL |
1141.0 | Augustin-Jean_Fresnel | 0.0 | 0.0 | 207403.0 | wikitext | NULL |
1143.0 | Abbot | 0.0 | 0.0 | 34498.0 | wikitext | NULL |
1144.0 | Ardipithecus | 0.0 | 0.0 | 31777.0 | wikitext | NULL |
1146.0 | Assembly_line | 0.0 | 0.0 | 34686.0 | wikitext | NULL |
1148.0 | Adelaide | 0.0 | 0.0 | 165131.0 | wikitext | NULL |
1151.0 | AK47 | 1.0 | 0.0 | 84.0 | wikitext | NULL |
1152.0 | Alan_Garner | 0.0 | 0.0 | 41348.0 | wikitext | NULL |
1153.0 | Amhrann_na_bhFiann | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1154.0 | August_2 | 0.0 | 0.0 | 49532.0 | wikitext | NULL |
1155.0 | Atlantic_(disambiguation) | 0.0 | 0.0 | 4980.0 | wikitext | NULL |
1158.0 | Algebraic_number | 0.0 | 0.0 | 12611.0 | wikitext | NULL |
1160.0 | Automorphism | 0.0 | 0.0 | 11771.0 | wikitext | NULL |
1162.0 | Accordion | 0.0 | 0.0 | 66013.0 | wikitext | NULL |
1164.0 | Artificial_intelligence | 0.0 | 0.0 | 220426.0 | wikitext | NULL |
1166.0 | Afro_Celt_Sound_System | 0.0 | 0.0 | 22290.0 | wikitext | NULL |
1167.0 | Ancient_philosophy | 0.0 | 0.0 | 29750.0 | wikitext | NULL |
1168.0 | Anaximander | 0.0 | 0.0 | 56067.0 | wikitext | NULL |
1169.0 | APL | 0.0 | 0.0 | 2536.0 | wikitext | NULL |
1170.0 | Architect | 0.0 | 0.0 | 27793.0 | wikitext | NULL |
1171.0 | Abbreviation | 0.0 | 0.0 | 32641.0 | wikitext | NULL |
1174.0 | Aphrodite | 0.0 | 0.0 | 141174.0 | wikitext | NULL |
1175.0 | April_1 | 0.0 | 0.0 | 49325.0 | wikitext | NULL |
1176.0 | Antisymmetric_relation | 0.0 | 0.0 | 4327.0 | wikitext | NULL |
1177.0 | Aleister_Crowley | 0.0 | 0.0 | 128082.0 | wikitext | NULL |
1178.0 | Afterlife | 0.0 | 0.0 | 114450.0 | wikitext | NULL |
1181.0 | Astrometry | 0.0 | 0.0 | 18156.0 | wikitext | NULL |
1182.0 | Athena | 0.0 | 0.0 | 117909.0 | wikitext | NULL |
1183.0 | Amber_Diceless_Roleplaying_Game | 0.0 | 0.0 | 22788.0 | wikitext | NULL |
1184.0 | Athene_(disambiguation) | 0.0 | 0.0 | 1038.0 | wikitext | NULL |
1186.0 | AphexTwin | 1.0 | 0.0 | 78.0 | wikitext | NULL |
1187.0 | Alloy | 0.0 | 0.0 | 39789.0 | wikitext | NULL |
1189.0 | Articles_of_Faith | 1.0 | 0.0 | 75.0 | wikitext | NULL |
1190.0 | Alternative_history | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1192.0 | Artistic_revolution | 0.0 | 0.0 | 9302.0 | wikitext | NULL |
1193.0 | Agrarianism | 0.0 | 0.0 | 45044.0 | wikitext | NULL |
1194.0 | Atomic | 0.0 | 0.0 | 1655.0 | wikitext | NULL |
1195.0 | Allotropes | 1.0 | 0.0 | 42.0 | wikitext | NULL |
1196.0 | Angle | 0.0 | 0.0 | 50252.0 | wikitext | NULL |
1197.0 | Asa | 0.0 | 0.0 | 1718.0 | wikitext | NULL |
1198.0 | Acoustics | 0.0 | 0.0 | 38399.0 | wikitext | NULL |
1199.0 | Angle_tribe | 1.0 | 0.0 | 20.0 | wikitext | NULL |
1200.0 | Atomic_physics | 0.0 | 0.0 | 9168.0 | wikitext | NULL |
1201.0 | American_Sign_Language | 0.0 | 0.0 | 66042.0 | wikitext | NULL |
1202.0 | Applet | 0.0 | 0.0 | 8698.0 | wikitext | NULL |
1203.0 | Alternate_history | 0.0 | 0.0 | 72917.0 | wikitext | NULL |
1205.0 | Atomic_orbitals | 1.0 | 0.0 | 79.0 | wikitext | NULL |
1206.0 | Atomic_orbital | 0.0 | 0.0 | 83171.0 | wikitext | NULL |
1207.0 | Amino_acid | 0.0 | 0.0 | 105700.0 | wikitext | NULL |
1208.0 | Alan_Turing | 0.0 | 0.0 | 139444.0 | wikitext | NULL |
1209.0 | Area | 0.0 | 0.0 | 45136.0 | wikitext | NULL |
1210.0 | Astronomical_unit | 0.0 | 0.0 | 54620.0 | wikitext | NULL |
1212.0 | Artist | 0.0 | 0.0 | 7688.0 | wikitext | NULL |
1213.0 | Actaeon | 0.0 | 0.0 | 27501.0 | wikitext | NULL |
1214.0 | Anglicanism | 0.0 | 0.0 | 144236.0 | wikitext | NULL |
1216.0 | Athens | 0.0 | 0.0 | 181240.0 | wikitext | NULL |
1217.0 | Anguilla | 0.0 | 0.0 | 60587.0 | wikitext | NULL |
1220.0 | Anguilla/Transnational_issues | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1221.0 | Anguilla/Military | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1223.0 | Telecommunications_in_Anguilla | 0.0 | 0.0 | 4827.0 | wikitext | NULL |
1227.0 | Ashmore_and_Cartier_Islands | 0.0 | 0.0 | 17896.0 | wikitext | NULL |
1228.0 | Ashmore_and_Cartier_Islands/Geography | 1.0 | 0.0 | 118.0 | wikitext | NULL |
1229.0 | Ashmore_and_Cartier_Islands/People | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1230.0 | Ashmore_and_Cartier_Islands/Government | 1.0 | 0.0 | 119.0 | wikitext | NULL |
1231.0 | Ashmore_and_Cartier_Islands/Transportation | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1232.0 | Ashmore_and_Cartier_Islands/Economy | 1.0 | 0.0 | 130.0 | wikitext | NULL |
1233.0 | Ashmore_and_Cartier_Islands/Military | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1234.0 | Acoustic_theory | 0.0 | 0.0 | 11785.0 | wikitext | NULL |
1235.0 | Alexander_Mackenzie_(politician) | 0.0 | 0.0 | 31828.0 | wikitext | NULL |
1238.0 | Atomic_bomb | 1.0 | 0.0 | 103.0 | wikitext | NULL |
1239.0 | Ashoka | 0.0 | 0.0 | 145168.0 | wikitext | NULL |
1241.0 | American_(word) | 0.0 | 0.0 | 45428.0 | wikitext | NULL |
1242.0 | Ada_(programming_language) | 0.0 | 0.0 | 57549.0 | wikitext | NULL |
1245.0 | Alpha_ray | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1246.0 | Alfonso_Aráu | 1.0 | 0.0 | 26.0 | wikitext | NULL |
1247.0 | Alfonso_Cuarón | 0.0 | 0.0 | 27492.0 | wikitext | NULL |
1252.0 | Arianism | 0.0 | 0.0 | 80978.0 | wikitext | NULL |
1254.0 | August_1 | 0.0 | 0.0 | 52683.0 | wikitext | NULL |
1255.0 | Astronomical_Units | 1.0 | 0.0 | 130.0 | wikitext | NULL |
1256.0 | Antoninus_Pius | 0.0 | 0.0 | 71848.0 | wikitext | NULL |
1259.0 | August_3 | 0.0 | 0.0 | 42085.0 | wikitext | NULL |
1260.0 | Advanced_Encryption_Standard | 0.0 | 0.0 | 48743.0 | wikitext | NULL |
1261.0 | April_26 | 0.0 | 0.0 | 46939.0 | wikitext | NULL |
1262.0 | Argot | 1.0 | 0.0 | 181.0 | wikitext | NULL |
1264.0 | Anisotropy | 0.0 | 0.0 | 20704.0 | wikitext | NULL |
1267.0 | Alpha_decay | 0.0 | 0.0 | 18823.0 | wikitext | NULL |
1268.0 | AI | 1.0 | 0.0 | 157.0 | wikitext | NULL |
1270.0 | Extreme_poverty | 0.0 | 0.0 | 59250.0 | wikitext | NULL |
1271.0 | Analytical_Engine | 0.0 | 0.0 | 39177.0 | wikitext | NULL |
1273.0 | Augustus | 0.0 | 0.0 | 144918.0 | wikitext | NULL |
1274.0 | Geography_of_Antarctica | 0.0 | 0.0 | 22878.0 | wikitext | NULL |
1276.0 | Economy_of_Antarctica | 1.0 | 0.0 | 243.0 | wikitext | NULL |
1277.0 | Government_of_Antarctica | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1279.0 | Transport_in_Antarctica | 0.0 | 0.0 | 11873.0 | wikitext | NULL |
1280.0 | Military_of_Antarctica | 1.0 | 0.0 | 48.0 | wikitext | NULL |
1285.0 | Geography_of_Alabama | 0.0 | 0.0 | 15547.0 | wikitext | NULL |
1286.0 | List_of_governors_of_Alabama | 0.0 | 0.0 | 60829.0 | wikitext | NULL |
1288.0 | Apocrypha | 0.0 | 0.0 | 60465.0 | wikitext | NULL |
1290.0 | Antartic_Treaty | 1.0 | 0.0 | 129.0 | wikitext | NULL |
1291.0 | Antarctic_Treaty_System | 0.0 | 0.0 | 42723.0 | wikitext | NULL |
1292.0 | Algernon_Swinburne | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1293.0 | Alfred_Lawson | 0.0 | 0.0 | 16942.0 | wikitext | NULL |
1295.0 | ALCS | 1.0 | 0.0 | 49.0 | wikitext | NULL |
1297.0 | Apocrypha/Tanakh | 1.0 | 0.0 | 78.0 | wikitext | NULL |
1298.0 | Ames,_Iowa | 0.0 | 0.0 | 55406.0 | wikitext | NULL |
1299.0 | Abbadides | 1.0 | 0.0 | 29.0 | wikitext | NULL |
1300.0 | Abalone | 0.0 | 0.0 | 63093.0 | wikitext | NULL |
1301.0 | Abbess | 0.0 | 0.0 | 13449.0 | wikitext | NULL |
1302.0 | Human_abdomen | 1.0 | 0.0 | 90.0 | wikitext | NULL |
1303.0 | Abdominal_surgery | 0.0 | 0.0 | 7650.0 | wikitext | NULL |
1304.0 | Abduction | 0.0 | 0.0 | 2669.0 | wikitext | NULL |
1305.0 | Abensberg | 0.0 | 0.0 | 16290.0 | wikitext | NULL |
1306.0 | Arminianism | 0.0 | 0.0 | 82187.0 | wikitext | NULL |
1307.0 | The_Alan_Parsons_Project | 0.0 | 0.0 | 21560.0 | wikitext | NULL |
1309.0 | Almost_all | 0.0 | 0.0 | 25415.0 | wikitext | NULL |
1311.0 | Ada_Byron's_notes_on_the_analytical_engine | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1312.0 | Augustine | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1313.0 | Aromatic_compound | 0.0 | 0.0 | 12131.0 | wikitext | NULL |
1315.0 | Abbey | 0.0 | 0.0 | 30916.0 | wikitext | NULL |
1316.0 | Annales_school | 0.0 | 0.0 | 37725.0 | wikitext | NULL |
1317.0 | Antimatter | 0.0 | 0.0 | 74559.0 | wikitext | NULL |
1321.0 | Antonio_Gaudi/Sagrada_Familia | 1.0 | 0.0 | 82.0 | wikitext | NULL |
1322.0 | Casa_Batlló | 0.0 | 0.0 | 23318.0 | wikitext | NULL |
1324.0 | Park_Güell | 0.0 | 0.0 | 15495.0 | wikitext | NULL |
1325.0 | Casa_Milà | 0.0 | 0.0 | 39346.0 | wikitext | NULL |
1327.0 | Antiparticle | 0.0 | 0.0 | 20321.0 | wikitext | NULL |
1328.0 | A.D. | 1.0 | 0.0 | 80.0 | wikitext | NULL |
1331.0 | Arabian_Prince | 0.0 | 0.0 | 12794.0 | wikitext | NULL |
1332.0 | August_7 | 0.0 | 0.0 | 55009.0 | wikitext | NULL |
1333.0 | August_8 | 0.0 | 0.0 | 49211.0 | wikitext | NULL |
1334.0 | April_16 | 0.0 | 0.0 | 54925.0 | wikitext | NULL |
1335.0 | Associative_property | 0.0 | 0.0 | 25928.0 | wikitext | NULL |
1336.0 | The_Apache_Software_Foundation | 0.0 | 0.0 | 11890.0 | wikitext | NULL |
1338.0 | Americans_with_Disabilities_Act_of_1990 | 0.0 | 0.0 | 89286.0 | wikitext | NULL |
1339.0 | Americans_with_Disabilities_Act_of_1990/Findings_and_Purposes | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1340.0 | Americans_with_Disabilities_Act_of_1990/Definitions | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1341.0 | Americans_with_Disabilities_Act_of_1990/Title_III | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1342.0 | A.D | 1.0 | 0.0 | 82.0 | wikitext | NULL |
1344.0 | Apple_I | 0.0 | 0.0 | 44379.0 | wikitext | NULL |
1345.0 | Apache_webserver | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1346.0 | Apatosaurus | 0.0 | 0.0 | 90670.0 | wikitext | NULL |
1347.0 | Allosaurus | 0.0 | 0.0 | 121497.0 | wikitext | NULL |
1348.0 | AK-47 | 0.0 | 0.0 | 141766.0 | wikitext | NULL |
1349.0 | Atanasoff–Berry_computer | 0.0 | 0.0 | 23497.0 | wikitext | NULL |
1354.0 | Andes | 0.0 | 0.0 | 54780.0 | wikitext | NULL |
1355.0 | Anderida | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1356.0 | Ancylopoda | 0.0 | 0.0 | 2358.0 | wikitext | NULL |
1358.0 | Anchor | 0.0 | 0.0 | 52859.0 | wikitext | NULL |
1359.0 | Anbar_(town) | 0.0 | 0.0 | 12631.0 | wikitext | NULL |
1360.0 | Anazarbus | 0.0 | 0.0 | 17119.0 | wikitext | NULL |
1361.0 | Anagram | 0.0 | 0.0 | 33706.0 | wikitext | NULL |
1362.0 | Anadyr_(river) | 0.0 | 0.0 | 7337.0 | wikitext | NULL |
1363.0 | André-Marie_Ampère | 0.0 | 0.0 | 20216.0 | wikitext | NULL |
1365.0 | Ammonia | 0.0 | 0.0 | 148235.0 | wikitext | NULL |
1366.0 | Amethyst | 0.0 | 0.0 | 27267.0 | wikitext | NULL |
1367.0 | Albertosaurus | 0.0 | 0.0 | 58698.0 | wikitext | NULL |
1368.0 | Assembly_language | 0.0 | 0.0 | 90003.0 | wikitext | NULL |
1369.0 | Ambrosia | 0.0 | 0.0 | 12915.0 | wikitext | NULL |
1370.0 | Ambrose | 0.0 | 0.0 | 103100.0 | wikitext | NULL |
1371.0 | Ambracia | 0.0 | 0.0 | 6319.0 | wikitext | NULL |
1372.0 | Amber | 0.0 | 0.0 | 59547.0 | wikitext | NULL |
1373.0 | Amalaric | 0.0 | 0.0 | 5878.0 | wikitext | NULL |
1374.0 | Alphorn | 0.0 | 0.0 | 12956.0 | wikitext | NULL |
1376.0 | Army | 0.0 | 0.0 | 30058.0 | wikitext | NULL |
1380.0 | Alligatoridae | 0.0 | 0.0 | 20628.0 | wikitext | NULL |
1383.0 | Alder | 0.0 | 0.0 | 23813.0 | wikitext | NULL |
1384.0 | Amos_Bronson_Alcott | 0.0 | 0.0 | 51959.0 | wikitext | NULL |
1386.0 | Arachnophobia | 0.0 | 0.0 | 16131.0 | wikitext | NULL |
1387.0 | Alabaster | 0.0 | 0.0 | 31341.0 | wikitext | NULL |
1389.0 | Ahab | 0.0 | 0.0 | 16568.0 | wikitext | NULL |
1391.0 | ASIC_(disambiguation) | 0.0 | 0.0 | 1189.0 | wikitext | NULL |
1392.0 | Dasyproctidae | 0.0 | 0.0 | 4787.0 | wikitext | NULL |
1394.0 | Algol | 0.0 | 0.0 | 32666.0 | wikitext | NULL |
1395.0 | Amazing_Grace | 0.0 | 0.0 | 64133.0 | wikitext | NULL |
1397.0 | AOL | 0.0 | 0.0 | 104064.0 | wikitext | NULL |
1399.0 | ADHD | 1.0 | 0.0 | 154.0 | wikitext | NULL |
1400.0 | Anno_Domini | 0.0 | 0.0 | 31355.0 | wikitext | NULL |
1404.0 | AV | 0.0 | 0.0 | 3210.0 | wikitext | NULL |
1406.0 | Amino_group | 1.0 | 0.0 | 19.0 | wikitext | NULL |
1407.0 | Antony_van_Leeuwenhook | 1.0 | 0.0 | 98.0 | wikitext | NULL |
1408.0 | Alcuin | 0.0 | 0.0 | 41674.0 | wikitext | NULL |
1409.0 | Angilbert | 0.0 | 0.0 | 7855.0 | wikitext | NULL |
1410.0 | Antony_van_Leeuwenhoek | 1.0 | 0.0 | 102.0 | wikitext | NULL |
1412.0 | Amine | 0.0 | 0.0 | 32725.0 | wikitext | NULL |
1415.0 | Adrian_I | 1.0 | 0.0 | 27.0 | wikitext | NULL |
1416.0 | April_29 | 0.0 | 0.0 | 52049.0 | wikitext | NULL |
1417.0 | August_14 | 0.0 | 0.0 | 94093.0 | wikitext | NULL |
1418.0 | Absolute_zero | 0.0 | 0.0 | 36868.0 | wikitext | NULL |
1419.0 | Adiabatic_process | 0.0 | 0.0 | 40636.0 | wikitext | NULL |
1422.0 | Amide | 0.0 | 0.0 | 21607.0 | wikitext | NULL |
1423.0 | Animism | 0.0 | 0.0 | 68318.0 | wikitext | NULL |
1425.0 | Antonio_Vivaldi | 0.0 | 0.0 | 42116.0 | wikitext | NULL |
1426.0 | Adrian_II | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1428.0 | Adrian | 0.0 | 0.0 | 45416.0 | wikitext | NULL |
1429.0 | Adrian_IV | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1433.0 | Aare | 0.0 | 0.0 | 13942.0 | wikitext | NULL |
1434.0 | Abgar | 1.0 | 0.0 | 21.0 | wikitext | NULL |
1435.0 | Abbotsford,_Scottish_Borders | 0.0 | 0.0 | 15773.0 | wikitext | NULL |
1436.0 | Abraham | 0.0 | 0.0 | 73358.0 | wikitext | NULL |
1437.0 | Abraxas | 0.0 | 0.0 | 46069.0 | wikitext | NULL |
1438.0 | Absalom | 0.0 | 0.0 | 32027.0 | wikitext | NULL |
1439.0 | Abydos | 0.0 | 0.0 | 534.0 | wikitext | NULL |
1440.0 | Abydos,_Egypt | 0.0 | 0.0 | 30139.0 | wikitext | NULL |
1441.0 | Abydos_(Hellespont) | 0.0 | 0.0 | 33933.0 | wikitext | NULL |
1442.0 | August_15 | 0.0 | 0.0 | 58362.0 | wikitext | NULL |
1445.0 | Acacia_sensu_lato | 0.0 | 0.0 | 37833.0 | wikitext | NULL |
1446.0 | Acapulco | 0.0 | 0.0 | 93594.0 | wikitext | NULL |
1448.0 | August_16 | 0.0 | 0.0 | 51549.0 | wikitext | NULL |
1449.0 | Alan_Kay | 0.0 | 0.0 | 23914.0 | wikitext | NULL |
1451.0 | APL_(programming_language) | 0.0 | 0.0 | 97258.0 | wikitext | NULL |
1453.0 | ALGOL | 0.0 | 0.0 | 37077.0 | wikitext | NULL |
1456.0 | AWK | 0.0 | 0.0 | 39479.0 | wikitext | NULL |
1457.0 | Alzheimers_disease | 1.0 | 0.0 | 97.0 | wikitext | NULL |
1459.0 | Ascorbic_Acid | 1.0 | 0.0 | 75.0 | wikitext | NULL |
1460.0 | Asgard | 0.0 | 0.0 | 16979.0 | wikitext | NULL |
1461.0 | Apollo_program | 0.0 | 0.0 | 151235.0 | wikitext | NULL |
1466.0 | Assault | 0.0 | 0.0 | 47559.0 | wikitext | NULL |
1476.0 | Australian_Prime_Ministers | 1.0 | 0.0 | 41.0 | wikitext | NULL |
1478.0 | Álfheimr | 0.0 | 0.0 | 2831.0 | wikitext | NULL |
1482.0 | Ask_and_Embla | 0.0 | 0.0 | 12669.0 | wikitext | NULL |
1484.0 | Alabama_River | 0.0 | 0.0 | 7724.0 | wikitext | NULL |
1485.0 | Alain_de_Lille | 0.0 | 0.0 | 15501.0 | wikitext | NULL |
1486.0 | Alemanni | 0.0 | 0.0 | 45699.0 | wikitext | NULL |
1488.0 | NYSE_American | 0.0 | 0.0 | 28351.0 | wikitext | NULL |
1490.0 | August_17 | 0.0 | 0.0 | 50297.0 | wikitext | NULL |
1491.0 | August_12 | 0.0 | 0.0 | 49007.0 | wikitext | NULL |
1494.0 | Alfred_Russel_Wallace | 0.0 | 0.0 | 116378.0 | wikitext | NULL |
1495.0 | Australian_Labor_Party | 0.0 | 0.0 | 97028.0 | wikitext | NULL |
1496.0 | August_18 | 0.0 | 0.0 | 46431.0 | wikitext | NULL |
1497.0 | August_19 | 0.0 | 0.0 | 52053.0 | wikitext | NULL |
1499.0 | August_21 | 0.0 | 0.0 | 42670.0 | wikitext | NULL |
1500.0 | Dodo_(Alice's_Adventures_in_Wonderland) | 0.0 | 0.0 | 7678.0 | wikitext | NULL |
1501.0 | Lory_(disambiguation) | 0.0 | 0.0 | 773.0 | wikitext | NULL |
1502.0 | Eaglet_(Alice's_Adventures_in_Wonderland) | 1.0 | 0.0 | 170.0 | wikitext | NULL |
1504.0 | Albert | 0.0 | 0.0 | 3010.0 | wikitext | NULL |
1505.0 | Albert_I | 0.0 | 0.0 | 1247.0 | wikitext | NULL |
1506.0 | Albert_II | 0.0 | 0.0 | 1483.0 | wikitext | NULL |
1507.0 | Albert_III | 0.0 | 0.0 | 653.0 | wikitext | NULL |
1508.0 | Albert_Alcibiades,_Margrave_of_Brandenburg-Kulmbach | 0.0 | 0.0 | 6485.0 | wikitext | NULL |
1509.0 | Albert_the_Bear | 0.0 | 0.0 | 10108.0 | wikitext | NULL |
1511.0 | Albert_I_of_Hapsburg | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1513.0 | Albert_of_Brandenburg | 0.0 | 0.0 | 11903.0 | wikitext | NULL |
1514.0 | Albert,_Duke_of_Prussia | 0.0 | 0.0 | 21034.0 | wikitext | NULL |
1515.0 | Albert_III,_Elector_of_Saxony | 1.0 | 0.0 | 40.0 | wikitext | NULL |
1516.0 | Albert_the_Degenerate | 1.0 | 0.0 | 44.0 | wikitext | NULL |
1517.0 | Albert_Of_Aix | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1519.0 | August_25 | 0.0 | 0.0 | 50492.0 | wikitext | NULL |
1520.0 | Aachen | 0.0 | 0.0 | 98165.0 | wikitext | NULL |
1523.0 | Agate | 0.0 | 0.0 | 18500.0 | wikitext | NULL |
1525.0 | Aspirin | 0.0 | 0.0 | 148374.0 | wikitext | NULL |
1526.0 | Abner | 0.0 | 0.0 | 19935.0 | wikitext | NULL |
1527.0 | Ahmed_I | 0.0 | 0.0 | 30959.0 | wikitext | NULL |
1528.0 | Ahmed_II | 0.0 | 0.0 | 11022.0 | wikitext | NULL |
1529.0 | Ahmed_III | 0.0 | 0.0 | 36489.0 | wikitext | NULL |
1530.0 | Ainu_people | 0.0 | 0.0 | 160302.0 | wikitext | NULL |
1533.0 | Aix-la-Chapelle | 1.0 | 0.0 | 81.0 | wikitext | NULL |
1535.0 | Acorn_(fruit_of_the_oak_tree) | 1.0 | 0.0 | 19.0 | wikitext | NULL |
1536.0 | Acropolis | 0.0 | 0.0 | 14773.0 | wikitext | NULL |
1537.0 | Acupuncture | 0.0 | 0.0 | 198975.0 | wikitext | NULL |
1538.0 | Adder | 0.0 | 0.0 | 760.0 | wikitext | NULL |
1539.0 | Adirondacks | 1.0 | 0.0 | 95.0 | wikitext | NULL |
1540.0 | Aeneas | 0.0 | 0.0 | 34834.0 | wikitext | NULL |
1541.0 | April_13 | 0.0 | 0.0 | 43196.0 | wikitext | NULL |
1542.0 | Amaranth | 0.0 | 0.0 | 49948.0 | wikitext | NULL |
1543.0 | Agapanthus_africanus | 0.0 | 0.0 | 7739.0 | wikitext | NULL |
1544.0 | Agamemnon | 0.0 | 0.0 | 42460.0 | wikitext | NULL |
1545.0 | Aga_Khan_I | 0.0 | 0.0 | 15317.0 | wikitext | NULL |
1546.0 | Aga_Khan_III | 0.0 | 0.0 | 32478.0 | wikitext | NULL |
1547.0 | Agasias | 0.0 | 0.0 | 391.0 | wikitext | NULL |
1548.0 | Alexander_Agassiz | 0.0 | 0.0 | 17766.0 | wikitext | NULL |
1549.0 | Agathon | 0.0 | 0.0 | 8125.0 | wikitext | NULL |
1550.0 | Agesilaus_II | 0.0 | 0.0 | 42002.0 | wikitext | NULL |
1551.0 | Agis | 0.0 | 0.0 | 953.0 | wikitext | NULL |
1552.0 | Antonio_Agliardi | 0.0 | 0.0 | 6867.0 | wikitext | NULL |
1553.0 | Agnes_of_Merania | 0.0 | 0.0 | 3839.0 | wikitext | NULL |
1556.0 | Agrippina_the_Elder | 0.0 | 0.0 | 43683.0 | wikitext | NULL |
1557.0 | Agrippina_the_Younger | 0.0 | 0.0 | 44097.0 | wikitext | NULL |
1558.0 | American_Chinese_cuisine | 0.0 | 0.0 | 54573.0 | wikitext | NULL |
1559.0 | Ahenobarbus | 0.0 | 0.0 | 526.0 | wikitext | NULL |
1560.0 | Ahmad_Shah_Durrani | 0.0 | 0.0 | 51488.0 | wikitext | NULL |
1561.0 | Aidan_of_Dalriada | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1563.0 | Arthur_Aikin | 0.0 | 0.0 | 5886.0 | wikitext | NULL |
1564.0 | Ailanthus | 0.0 | 0.0 | 4778.0 | wikitext | NULL |
1565.0 | Aimoin | 0.0 | 0.0 | 2661.0 | wikitext | NULL |
1566.0 | Akkadian_Empire | 0.0 | 0.0 | 83572.0 | wikitext | NULL |
1567.0 | Ajax_the_Lesser | 0.0 | 0.0 | 15739.0 | wikitext | NULL |
1568.0 | Ajax_the_Great | 0.0 | 0.0 | 18066.0 | wikitext | NULL |
1569.0 | Ajax | 0.0 | 0.0 | 5793.0 | wikitext | NULL |
1570.0 | Alaric_I | 0.0 | 0.0 | 47986.0 | wikitext | NULL |
1571.0 | Alaric_II | 0.0 | 0.0 | 9417.0 | wikitext | NULL |
1572.0 | Albategnius | 1.0 | 0.0 | 24.0 | wikitext | NULL |
1573.0 | Albertus_Magnus | 0.0 | 0.0 | 44055.0 | wikitext | NULL |
1575.0 | Alboin | 0.0 | 0.0 | 53199.0 | wikitext | NULL |
1576.0 | Afonso_de_Albuquerque | 0.0 | 0.0 | 62412.0 | wikitext | NULL |
1577.0 | Alcaeus_of_Mytilene | 0.0 | 0.0 | 29351.0 | wikitext | NULL |
1578.0 | Alcamenes | 0.0 | 0.0 | 3848.0 | wikitext | NULL |
1579.0 | Alcmene | 0.0 | 0.0 | 13642.0 | wikitext | NULL |
1580.0 | Alcidamas | 0.0 | 0.0 | 5568.0 | wikitext | NULL |
1581.0 | Aldine_Press | 0.0 | 0.0 | 22393.0 | wikitext | NULL |
1583.0 | Ealdred_(archbishop_of_York) | 0.0 | 0.0 | 42133.0 | wikitext | NULL |
1585.0 | Alexander_I_of_Epirus | 0.0 | 0.0 | 5238.0 | wikitext | NULL |
1586.0 | Alexander_Balas | 0.0 | 0.0 | 21296.0 | wikitext | NULL |
1587.0 | Alexander_of_Pherae | 0.0 | 0.0 | 10046.0 | wikitext | NULL |
1588.0 | Alexander_II_of_Epirus | 0.0 | 0.0 | 5666.0 | wikitext | NULL |
1589.0 | Alexander_Jagiellon | 0.0 | 0.0 | 9403.0 | wikitext | NULL |
1592.0 | Alexander_III_of_Russia | 0.0 | 0.0 | 67769.0 | wikitext | NULL |
1593.0 | Alexander_I_of_Scotland | 0.0 | 0.0 | 10986.0 | wikitext | NULL |
1594.0 | Alexander_II_of_Scotland | 0.0 | 0.0 | 12643.0 | wikitext | NULL |
1595.0 | Alexander_I_of_Serbia | 0.0 | 0.0 | 15334.0 | wikitext | NULL |
1596.0 | Alexander_III_of_Scotland | 0.0 | 0.0 | 19966.0 | wikitext | NULL |
1597.0 | Alexander_of_Greece_(disambiguation) | 0.0 | 0.0 | 444.0 | wikitext | NULL |
1599.0 | Alexander_of_Aphrodisias | 0.0 | 0.0 | 23192.0 | wikitext | NULL |
1600.0 | Severus_Alexander | 0.0 | 0.0 | 38183.0 | wikitext | NULL |
1601.0 | Alexander | 0.0 | 0.0 | 29504.0 | wikitext | NULL |
1602.0 | Alexander_I | 0.0 | 0.0 | 1105.0 | wikitext | NULL |
1603.0 | Alexander_II | 0.0 | 0.0 | 901.0 | wikitext | NULL |
1604.0 | Alexander_III | 0.0 | 0.0 | 948.0 | wikitext | NULL |
1605.0 | Alexander_Aetolus | 0.0 | 0.0 | 4109.0 | wikitext | NULL |
1606.0 | Alexander_Jannaeus | 0.0 | 0.0 | 19806.0 | wikitext | NULL |
1607.0 | Alexander_IV | 0.0 | 0.0 | 367.0 | wikitext | NULL |
1608.0 | Alexander_V | 0.0 | 0.0 | 223.0 | wikitext | NULL |
1609.0 | Alexander_VI | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1610.0 | Alexander_VII | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1611.0 | Alexander_VIII | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1612.0 | Alexandrists | 0.0 | 0.0 | 1609.0 | wikitext | NULL |
1613.0 | Alexios_I_Komnenos | 0.0 | 0.0 | 38469.0 | wikitext | NULL |
1614.0 | Alexis_(poet) | 0.0 | 0.0 | 10392.0 | wikitext | NULL |
1615.0 | Alexios_II_Komnenos | 0.0 | 0.0 | 9228.0 | wikitext | NULL |
1616.0 | Alexios_III_Angelos | 0.0 | 0.0 | 13836.0 | wikitext | NULL |
1617.0 | Alexios_V_Doukas | 0.0 | 0.0 | 17897.0 | wikitext | NULL |
1620.0 | Alexei_Petrovich,_Tsarevich_of_Russia | 0.0 | 0.0 | 15686.0 | wikitext | NULL |
1623.0 | Andrew_Jackson | 0.0 | 0.0 | 179696.0 | wikitext | NULL |
1624.0 | Andrew_Johnson | 0.0 | 0.0 | 124793.0 | wikitext | NULL |
1625.0 | Aleksandr_Solzhenitsyn | 0.0 | 0.0 | 118674.0 | wikitext | NULL |
1626.0 | Aleksandr_Isaevich_Solzhenitsyn | 1.0 | 0.0 | 36.0 | wikitext | NULL |
1627.0 | Aberdeen | 0.0 | 0.0 | 147083.0 | wikitext | NULL |
1628.0 | August_23 | 0.0 | 0.0 | 49176.0 | wikitext | NULL |
1629.0 | August_24 | 0.0 | 0.0 | 54501.0 | wikitext | NULL |
1633.0 | Antipope | 0.0 | 0.0 | 32370.0 | wikitext | NULL |
1634.0 | Aquaculture | 0.0 | 0.0 | 125421.0 | wikitext | NULL |
1635.0 | Kolmogorov_complexity | 0.0 | 0.0 | 41353.0 | wikitext | NULL |
1636.0 | Antoine_de_Saint-Exupery | 1.0 | 0.0 | 125.0 | wikitext | NULL |
1637.0 | Hymn_to_Proserpine | 0.0 | 0.0 | 2710.0 | wikitext | NULL |
1638.0 | The_Triumph_of_Time | 0.0 | 0.0 | 1751.0 | wikitext | NULL |
1639.0 | April_28 | 0.0 | 0.0 | 42485.0 | wikitext | NULL |
1640.0 | Alfred_the_Great | 0.0 | 0.0 | 121065.0 | wikitext | NULL |
1641.0 | Alfred_Ernest_Albert | 1.0 | 0.0 | 51.0 | wikitext | NULL |
1642.0 | Alessandro_Algardi | 0.0 | 0.0 | 14639.0 | wikitext | NULL |
1643.0 | Alger_of_Liège | 0.0 | 0.0 | 3139.0 | wikitext | NULL |
1644.0 | Algiers | 0.0 | 0.0 | 70559.0 | wikitext | NULL |
1645.0 | Ibn_al-Haytham | 0.0 | 0.0 | 120924.0 | wikitext | NULL |
1647.0 | Alessandro_Allori | 0.0 | 0.0 | 9650.0 | wikitext | NULL |
1649.0 | Almoravid_dynasty | 0.0 | 0.0 | 83925.0 | wikitext | NULL |
1650.0 | Aloe | 0.0 | 0.0 | 21387.0 | wikitext | NULL |
1651.0 | Alured_of_Berkeley | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1652.0 | Alyattes | 0.0 | 0.0 | 40930.0 | wikitext | NULL |
1653.0 | Age_of_consent | 0.0 | 0.0 | 56722.0 | wikitext | NULL |
1654.0 | Alypius_of_Antioch | 0.0 | 0.0 | 1756.0 | wikitext | NULL |
1655.0 | Amalasuintha | 0.0 | 0.0 | 11115.0 | wikitext | NULL |
1656.0 | Amalric_of_Bena | 0.0 | 0.0 | 6659.0 | wikitext | NULL |
1657.0 | Afonso_I_of_Portugal | 0.0 | 0.0 | 32525.0 | wikitext | NULL |
1658.0 | Afonso_II_of_Portugal | 0.0 | 0.0 | 9807.0 | wikitext | NULL |
1659.0 | Afonso_III_of_Portugal | 0.0 | 0.0 | 12744.0 | wikitext | NULL |
1660.0 | Afonso_IV_of_Portugal | 0.0 | 0.0 | 14233.0 | wikitext | NULL |
1661.0 | Afonso_V_of_Portugal | 0.0 | 0.0 | 19540.0 | wikitext | NULL |
1662.0 | Afonso_VI_of_Portugal | 0.0 | 0.0 | 8372.0 | wikitext | NULL |
1663.0 | Alphonso_I_of_Spain | 0.0 | 0.0 | 539.0 | wikitext | NULL |
1664.0 | Alfonso_II_of_Asturias | 0.0 | 0.0 | 5949.0 | wikitext | NULL |
1669.0 | Amarasimha | 0.0 | 0.0 | 3546.0 | wikitext | NULL |
1672.0 | Alphonso_VIII_of_Spain | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1673.0 | Alfonso_IX_of_Spain | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1676.0 | Alfonso_XII | 0.0 | 0.0 | 27559.0 | wikitext | NULL |
1677.0 | Alfonso_XIII | 0.0 | 0.0 | 67834.0 | wikitext | NULL |
1678.0 | Alphonsus_a_Sancta_Maria | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1679.0 | Alfonso_the_Battler | 0.0 | 0.0 | 27719.0 | wikitext | NULL |
1680.0 | Amaryllis | 0.0 | 0.0 | 17681.0 | wikitext | NULL |
1682.0 | Amasis_I | 1.0 | 0.0 | 22.0 | wikitext | NULL |
1683.0 | Alfonso_III_of_Aragon | 0.0 | 0.0 | 5951.0 | wikitext | NULL |
1684.0 | Alfonso_IV_of_Aragon | 0.0 | 0.0 | 9985.0 | wikitext | NULL |
1685.0 | Amasis_II | 0.0 | 0.0 | 17642.0 | wikitext | NULL |
1686.0 | Alfonso_V_of_Aragon | 0.0 | 0.0 | 22331.0 | wikitext | NULL |
1687.0 | Amathus | 0.0 | 0.0 | 17228.0 | wikitext | NULL |
1688.0 | Alphons | 0.0 | 0.0 | 11520.0 | wikitext | NULL |
1689.0 | Alfonso_I | 0.0 | 0.0 | 620.0 | wikitext | NULL |
1690.0 | Amati | 0.0 | 0.0 | 9132.0 | wikitext | NULL |
1691.0 | Alfonso_II | 0.0 | 0.0 | 504.0 | wikitext | NULL |
1692.0 | Alfonso_III | 0.0 | 0.0 | 320.0 | wikitext | NULL |
1694.0 | Alfonso_IV | 0.0 | 0.0 | 232.0 | wikitext | NULL |
1695.0 | Amazons | 0.0 | 0.0 | 72183.0 | wikitext | NULL |
1696.0 | Alfonso_V | 0.0 | 0.0 | 200.0 | wikitext | NULL |
1697.0 | Ambergris | 0.0 | 0.0 | 20295.0 | wikitext | NULL |
1698.0 | Ambiorix | 0.0 | 0.0 | 11792.0 | wikitext | NULL |
1699.0 | Alfonso_VI | 1.0 | 0.0 | 128.0 | wikitext | NULL |
1700.0 | August_Wilhelm_Ambros | 0.0 | 0.0 | 3510.0 | wikitext | NULL |
1701.0 | Amazon_River | 0.0 | 0.0 | 101421.0 | wikitext | NULL |
1702.0 | Alfred_of_Beverley | 0.0 | 0.0 | 3400.0 | wikitext | NULL |
1703.0 | Alphonso_VII | 1.0 | 0.0 | 46.0 | wikitext | NULL |
1704.0 | Alphonso_VIII | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1705.0 | Alphonso_IX | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1706.0 | Alphonso_X | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1707.0 | Alphonso_XI | 1.0 | 0.0 | 35.0 | wikitext | NULL |
1708.0 | Alphonso_XII | 1.0 | 0.0 | 25.0 | wikitext | NULL |
1709.0 | Alphonso_XIII | 1.0 | 0.0 | 26.0 | wikitext | NULL |
1710.0 | April_22 | 0.0 | 0.0 | 35182.0 | wikitext | NULL |
1711.0 | August_31 | 0.0 | 0.0 | 45180.0 | wikitext | NULL |
1714.0 | Autpert_Ambrose | 0.0 | 0.0 | 1669.0 | wikitext | NULL |
1715.0 | Abu_Bakr | 0.0 | 0.0 | 70130.0 | wikitext | NULL |
1716.0 | Ambrose_Traversari | 0.0 | 0.0 | 8920.0 | wikitext | NULL |
1717.0 | Ambrosians | 0.0 | 0.0 | 7217.0 | wikitext | NULL |
1718.0 | Ambrosiaster | 0.0 | 0.0 | 12639.0 | wikitext | NULL |
1719.0 | Ambrosius_Aurelianus | 0.0 | 0.0 | 47081.0 | wikitext | NULL |
1722.0 | Ammon | 0.0 | 0.0 | 28089.0 | wikitext | NULL |
1723.0 | Ammonius_Hermiae | 0.0 | 0.0 | 10918.0 | wikitext | NULL |
1724.0 | Ammonius_Saccas | 0.0 | 0.0 | 19454.0 | wikitext | NULL |
1726.0 | Book_of_Amos | 0.0 | 0.0 | 14545.0 | wikitext | NULL |
1727.0 | Amphipolis | 0.0 | 0.0 | 25676.0 | wikitext | NULL |
1728.0 | Amram | 0.0 | 0.0 | 10144.0 | wikitext | NULL |
1729.0 | Amyntas_I_of_Macedon | 0.0 | 0.0 | 5010.0 | wikitext | NULL |
1730.0 | Amyntas_III_of_Macedon | 0.0 | 0.0 | 8817.0 | wikitext | NULL |
1732.0 | Anacharsis | 0.0 | 0.0 | 10183.0 | wikitext | NULL |
1733.0 | Anacreon_(poet) | 1.0 | 0.0 | 22.0 | wikitext | NULL |
1734.0 | Anah | 0.0 | 0.0 | 16082.0 | wikitext | NULL |
1735.0 | Ānanda | 0.0 | 0.0 | 126619.0 | wikitext | NULL |
1737.0 | Anaxagoras | 0.0 | 0.0 | 25323.0 | wikitext | NULL |
1738.0 | Anaxarchus | 0.0 | 0.0 | 4932.0 | wikitext | NULL |
1740.0 | Ancyra_(planthopper) | 0.0 | 0.0 | 3357.0 | wikitext | NULL |
1742.0 | Anastasius_I | 0.0 | 0.0 | 271.0 | wikitext | NULL |
1743.0 | Anastasius_II | 0.0 | 0.0 | 271.0 | wikitext | NULL |
1744.0 | Anastasius_III | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1745.0 | Anastasius_IV | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1746.0 | Anaximenes_of_Lampsacus | 0.0 | 0.0 | 9465.0 | wikitext | NULL |
1747.0 | Anastasius | 0.0 | 0.0 | 4795.0 | wikitext | NULL |
1748.0 | Anaximenes_of_Miletus | 0.0 | 0.0 | 24822.0 | wikitext | NULL |
1749.0 | Ancus_Marcius | 0.0 | 0.0 | 12201.0 | wikitext | NULL |
1750.0 | Andaman_Islands | 0.0 | 0.0 | 51900.0 | wikitext | NULL |
1751.0 | Alexander_Anderson_(mathematician) | 0.0 | 0.0 | 6103.0 | wikitext | NULL |
1752.0 | Andocides | 0.0 | 0.0 | 12142.0 | wikitext | NULL |
1754.0 | Andrea_Andreani | 0.0 | 0.0 | 7733.0 | wikitext | NULL |
1755.0 | Andrew_II_of_Hungary | 0.0 | 0.0 | 60429.0 | wikitext | NULL |
1756.0 | An_Enquiry_Concerning_Human_Understanding | 0.0 | 0.0 | 24073.0 | wikitext | NULL |
1758.0 | André_de_Longjumeau | 0.0 | 0.0 | 8241.0 | wikitext | NULL |
1759.0 | Andriscus | 0.0 | 0.0 | 25446.0 | wikitext | NULL |
1760.0 | Andronikos_III_Palaiologos | 0.0 | 0.0 | 15960.0 | wikitext | NULL |
1761.0 | Andronikos_II_Palaiologos | 0.0 | 0.0 | 21319.0 | wikitext | NULL |
1762.0 | Andronikos_I_Komnenos | 0.0 | 0.0 | 26966.0 | wikitext | NULL |
1763.0 | Andronicus_of_Cyrrhus | 0.0 | 0.0 | 2105.0 | wikitext | NULL |
1764.0 | Andronicus_of_Rhodes | 0.0 | 0.0 | 3687.0 | wikitext | NULL |
1765.0 | Andronicus | 0.0 | 0.0 | 2282.0 | wikitext | NULL |
1766.0 | Asteroid_Belt | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1767.0 | Ammianus_Marcellinus | 0.0 | 0.0 | 22026.0 | wikitext | NULL |
1768.0 | ALICE | 1.0 | 0.0 | 171.0 | wikitext | NULL |
1769.0 | An_Enquiry_Concerning_Human_Understanding/Text | 1.0 | 0.0 | 55.0 | wikitext | NULL |
1770.0 | Apollo_13 | 0.0 | 0.0 | 116154.0 | wikitext | NULL |
1771.0 | Apollo_Program | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1772.0 | Arthritus | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1773.0 | Apollo_7 | 0.0 | 0.0 | 59737.0 | wikitext | NULL |
1774.0 | Apollo_9 | 0.0 | 0.0 | 59547.0 | wikitext | NULL |
1775.0 | Applied_discrete_math | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1776.0 | Arthritis | 0.0 | 0.0 | 60256.0 | wikitext | NULL |
1777.0 | April_2 | 0.0 | 0.0 | 50691.0 | wikitext | NULL |
1778.0 | Acetylene | 0.0 | 0.0 | 43280.0 | wikitext | NULL |
1779.0 | Alfred | 0.0 | 0.0 | 1890.0 | wikitext | NULL |
1781.0 | August_28 | 0.0 | 0.0 | 46125.0 | wikitext | NULL |
1786.0 | Arabic_numerals | 0.0 | 0.0 | 31303.0 | wikitext | NULL |
1787.0 | April_9 | 0.0 | 0.0 | 55129.0 | wikitext | NULL |
1788.0 | ABM | 0.0 | 0.0 | 1563.0 | wikitext | NULL |
1789.0 | Apuleius | 0.0 | 0.0 | 21943.0 | wikitext | NULL |
1790.0 | Alexander_Selkirk | 0.0 | 0.0 | 30796.0 | wikitext | NULL |
1791.0 | Anti-ballistic_missile | 0.0 | 0.0 | 88548.0 | wikitext | NULL |
1793.0 | August_29 | 0.0 | 0.0 | 47528.0 | wikitext | NULL |
1794.0 | August_30 | 0.0 | 0.0 | 44669.0 | wikitext | NULL |
1797.0 | Acre | 0.0 | 0.0 | 35055.0 | wikitext | NULL |
1799.0 | ATP | 0.0 | 0.0 | 2186.0 | wikitext | NULL |
1800.0 | Adenosine_triphosphate | 0.0 | 0.0 | 44099.0 | wikitext | NULL |
1802.0 | Ægir | 0.0 | 0.0 | 19706.0 | wikitext | NULL |
1805.0 | Antibiotic | 0.0 | 0.0 | 142427.0 | wikitext | NULL |
1806.0 | Arnold_Schwarzenegger | 0.0 | 0.0 | 225011.0 | wikitext | NULL |
1807.0 | ASA | 0.0 | 0.0 | 4995.0 | wikitext | NULL |
1809.0 | Aquinas | 1.0 | 0.0 | 99.0 | wikitext | NULL |
1810.0 | Actium | 0.0 | 0.0 | 3562.0 | wikitext | NULL |
1811.0 | Amide_hydrolysis | 1.0 | 0.0 | 68.0 | wikitext | NULL |
1812.0 | Amway | 0.0 | 0.0 | 106066.0 | wikitext | NULL |
1814.0 | Adam_Smith | 0.0 | 0.0 | 107560.0 | wikitext | NULL |
1821.0 | Antoine_Laurent_Lavoisier | 1.0 | 0.0 | 85.0 | wikitext | NULL |
1822.0 | Antoine_Lavoisier | 0.0 | 0.0 | 75434.0 | wikitext | NULL |
1824.0 | A_roll | 1.0 | 0.0 | 21.0 | wikitext | NULL |
1825.0 | Hermann_Kolbe | 0.0 | 0.0 | 16697.0 | wikitext | NULL |
1826.0 | April_18 | 0.0 | 0.0 | 33597.0 | wikitext | NULL |
1827.0 | April_23 | 0.0 | 0.0 | 46616.0 | wikitext | NULL |
1828.0 | Amitabh_Bachchan | 0.0 | 0.0 | 127861.0 | wikitext | NULL |
1830.0 | Air_Pollution | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1831.0 | Antarctic-Environmental_Protocol | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1832.0 | Allomorph | 0.0 | 0.0 | 8722.0 | wikitext | NULL |
1833.0 | American_bias | 1.0 | 0.0 | 27.0 | wikitext | NULL |
1834.0 | Allophone | 0.0 | 0.0 | 24419.0 | wikitext | NULL |
1835.0 | Affix | 0.0 | 0.0 | 11897.0 | wikitext | NULL |
1837.0 | Allegory | 0.0 | 0.0 | 28072.0 | wikitext | NULL |
1838.0 | Amazon_river | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1839.0 | Allotropy | 0.0 | 0.0 | 23378.0 | wikitext | NULL |
1840.0 | Agathocles_of_Syracuse | 0.0 | 0.0 | 14651.0 | wikitext | NULL |
1841.0 | Economy_of_Alberta | 0.0 | 0.0 | 96497.0 | wikitext | NULL |
1842.0 | Augustin-Louis_Cauchy | 0.0 | 0.0 | 42923.0 | wikitext | NULL |
1844.0 | Archimedes | 0.0 | 0.0 | 99429.0 | wikitext | NULL |
1845.0 | Alternative_medicine | 0.0 | 0.0 | 202195.0 | wikitext | NULL |
1847.0 | Archimedean_solid | 0.0 | 0.0 | 26171.0 | wikitext | NULL |
1851.0 | Antiprism | 0.0 | 0.0 | 18676.0 | wikitext | NULL |
1852.0 | Ancient_Greeks | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1853.0 | Natural_history_of_Africa | 0.0 | 0.0 | 7885.0 | wikitext | NULL |
1854.0 | Geography_of_Africa | 0.0 | 0.0 | 37335.0 | wikitext | NULL |
1855.0 | Africa/History | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1857.0 | Approval_voting | 0.0 | 0.0 | 67712.0 | wikitext | NULL |
1858.0 | Aromatic_hydrocarbon | 1.0 | 0.0 | 183.0 | wikitext | NULL |
1859.0 | Arizona_State_University | 0.0 | 0.0 | 190519.0 | wikitext | NULL |
1862.0 | April_14 | 0.0 | 0.0 | 60593.0 | wikitext | NULL |
1864.0 | Astoria,_Oregon | 0.0 | 0.0 | 71881.0 | wikitext | NULL |
1866.0 | Alarums_and_Excursions | 0.0 | 0.0 | 8592.0 | wikitext | NULL |
1869.0 | Alfred_Jarry | 0.0 | 0.0 | 18108.0 | wikitext | NULL |
1870.0 | Amalric | 0.0 | 0.0 | 3036.0 | wikitext | NULL |
1871.0 | Amalric_of_Jerusalem | 0.0 | 0.0 | 18148.0 | wikitext | NULL |
1872.0 | Aimery_of_Cyprus | 0.0 | 0.0 | 30136.0 | wikitext | NULL |
1873.0 | Anthemius_of_Tralles | 0.0 | 0.0 | 5750.0 | wikitext | NULL |
1874.0 | Absalon | 0.0 | 0.0 | 16050.0 | wikitext | NULL |
1875.0 | Adhemar_of_Le_Puy | 0.0 | 0.0 | 10074.0 | wikitext | NULL |
1876.0 | Adhemar_de_Chabannes | 1.0 | 0.0 | 103.0 | wikitext | NULL |
1877.0 | Albigenses | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1878.0 | Alphonse,_Count_of_Poitiers | 0.0 | 0.0 | 9075.0 | wikitext | NULL |
1879.0 | Alfonso_Jordan | 0.0 | 0.0 | 9688.0 | wikitext | NULL |
1880.0 | Ambroise | 0.0 | 0.0 | 3356.0 | wikitext | NULL |
1881.0 | Art_Deco | 0.0 | 0.0 | 148950.0 | wikitext | NULL |
1884.0 | ASCII_art | 0.0 | 0.0 | 53155.0 | wikitext | NULL |
1885.0 | Autoerotic_asphyxiation | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1887.0 | Alexius | 0.0 | 0.0 | 2739.0 | wikitext | NULL |
1889.0 | Ban_on_assault_rifles | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1890.0 | American_English | 0.0 | 0.0 | 78621.0 | wikitext | NULL |
1893.0 | Albert_Spalding | 0.0 | 0.0 | 22801.0 | wikitext | NULL |
1894.0 | Africa_Alphabet | 0.0 | 0.0 | 3512.0 | wikitext | NULL |
1896.0 | Acquire | 0.0 | 0.0 | 8701.0 | wikitext | NULL |
1897.0 | Australian_English | 0.0 | 0.0 | 70859.0 | wikitext | NULL |
1902.0 | American_Airlines_Flight_77 | 0.0 | 0.0 | 85249.0 | wikitext | NULL |
1903.0 | American_Airlines_flight_77 | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1904.0 | American_Airlines_flight_11 | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1905.0 | Ambush | 0.0 | 0.0 | 16289.0 | wikitext | NULL |
1906.0 | Astronomical_aberration | 1.0 | 0.0 | 36.0 | wikitext | NULL |
1908.0 | Abzyme | 0.0 | 0.0 | 6959.0 | wikitext | NULL |
1909.0 | Adaptive_radiation | 0.0 | 0.0 | 37579.0 | wikitext | NULL |
1910.0 | Agarose_gel_electrophoresis | 0.0 | 0.0 | 34925.0 | wikitext | NULL |
1911.0 | Allele | 0.0 | 0.0 | 16991.0 | wikitext | NULL |
1912.0 | Ampicillin | 0.0 | 0.0 | 35148.0 | wikitext | NULL |
1913.0 | Annealing | 0.0 | 0.0 | 460.0 | wikitext | NULL |
1914.0 | Antimicrobial_resistance | 0.0 | 0.0 | 150266.0 | wikitext | NULL |
1915.0 | Antigen | 0.0 | 0.0 | 19203.0 | wikitext | NULL |
1916.0 | Autosome | 0.0 | 0.0 | 11003.0 | wikitext | NULL |
1919.0 | Antwerp_(disambiguation) | 0.0 | 0.0 | 651.0 | wikitext | NULL |
1920.0 | Aquila | 0.0 | 0.0 | 3896.0 | wikitext | NULL |
1921.0 | Al-Qaeda | 0.0 | 0.0 | 284997.0 | wikitext | NULL |
1923.0 | Alessandro_Volta | 0.0 | 0.0 | 26430.0 | wikitext | NULL |
1924.0 | Argo_Navis | 0.0 | 0.0 | 13465.0 | wikitext | NULL |
1925.0 | Andromeda_(mythology) | 0.0 | 0.0 | 43392.0 | wikitext | NULL |
1926.0 | Antlia | 0.0 | 0.0 | 32732.0 | wikitext | NULL |
1927.0 | Ara_(constellation) | 0.0 | 0.0 | 29562.0 | wikitext | NULL |
1928.0 | Auriga | 0.0 | 0.0 | 754.0 | wikitext | NULL |
1930.0 | Arkansas | 0.0 | 0.0 | 153605.0 | wikitext | NULL |
1931.0 | Atmosphere_(disambiguation) | 0.0 | 0.0 | 2260.0 | wikitext | NULL |
1933.0 | Apus | 0.0 | 0.0 | 28135.0 | wikitext | NULL |
1934.0 | Abadan,_Iran | 0.0 | 0.0 | 36915.0 | wikitext | NULL |
1935.0 | Attorney | 0.0 | 0.0 | 508.0 | wikitext | NULL |
1936.0 | Astronomical_Unit | 1.0 | 0.0 | 96.0 | wikitext | NULL |
1937.0 | Alexander_Fleming | 0.0 | 0.0 | 69600.0 | wikitext | NULL |
1938.0 | Andrew_Carnegie | 0.0 | 0.0 | 113066.0 | wikitext | NULL |
1939.0 | Approximant | 0.0 | 0.0 | 27181.0 | wikitext | NULL |
1940.0 | Astronomer_Royal | 0.0 | 0.0 | 7100.0 | wikitext | NULL |
1941.0 | Aeon | 0.0 | 0.0 | 7544.0 | wikitext | NULL |
1942.0 | Airline | 0.0 | 0.0 | 102615.0 | wikitext | NULL |
1943.0 | Australian_Democrats | 0.0 | 0.0 | 58049.0 | wikitext | NULL |
1944.0 | Australian_Capital_Territory | 0.0 | 0.0 | 106817.0 | wikitext | NULL |
1946.0 | Unit_of_alcohol | 0.0 | 0.0 | 20027.0 | wikitext | NULL |
1947.0 | Aotus | 0.0 | 0.0 | 506.0 | wikitext | NULL |
SELECT * FROM enwiki_redirect
rd_from | rd_title |
---|---|
10.0 | Computer_accessibility |
13.0 | History_of_Afghanistan |
14.0 | Geography_of_Afghanistan |
15.0 | Demographics_of_Afghanistan |
18.0 | Communications_in_Afghanistan |
19.0 | Transport_in_Afghanistan |
20.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
21.0 | Foreign_relations_of_Afghanistan |
23.0 | Assistive_technology |
24.0 | Amoeba |
25.0 | Autism_spectrum |
27.0 | History_of_Albania |
29.0 | Demographics_of_Albania |
30.0 | As_We_May_Think |
35.0 | Politics_of_Albania |
36.0 | Economy_of_Albania |
40.0 | Afroasiatic_languages |
42.0 | Constructed_language |
46.0 | Abacus |
47.0 | Abalone |
48.0 | Abbadid_dynasty |
49.0 | Abbess |
50.0 | Abbeville |
51.0 | Abbey |
52.0 | Abbot |
53.0 | Abbreviation |
54.0 | Atlas_Shrugged |
56.0 | Constructed_language |
58.0 | List_of_Atlas_Shrugged_characters |
59.0 | Atlas_Shrugged |
60.0 | Atlas_Shrugged |
241.0 | African_Americans |
242.0 | Adolf_Hitler |
247.0 | Abecedarian |
248.0 | Cain_and_Abel |
249.0 | Abensberg |
251.0 | Aberdeen,_South_Dakota |
254.0 | Arthur_Koestler |
255.0 | Ayn_Rand |
256.0 | Alexander_the_Great |
258.0 | Anchorage,_Alaska |
259.0 | Logical_form |
260.0 | Existence_of_God |
263.0 | Anarchy |
264.0 | ASCII_art |
269.0 | Academy_Awards |
270.0 | Academy_Award_for_Best_Picture |
271.0 | Austrian_German |
272.0 | Elitism |
274.0 | Axiom_of_choice |
276.0 | American_football |
278.0 | United_States |
279.0 | Anna_Kournikova |
280.0 | Andorra |
287.0 | Austroasiatic_languages |
289.0 | Lists_of_actors |
291.0 | Anarcho-capitalism |
293.0 | Anarcho-capitalism |
296.0 | Lists_of_actors |
299.0 | An_American_in_Paris |
301.0 | Automorphism |
302.0 | Action_film |
304.0 | Africa |
306.0 | Statistics |
325.0 | Action_film |
338.0 | Auto_racing |
347.0 | Demographics_of_Algeria |
353.0 | Foreign_relations_of_Algeria |
369.0 | Atlas_Shrugged |
583.0 | Amoeba |
589.0 | Ashmore_and_Cartier_Islands |
596.0 | Artificial_language |
598.0 | Afroasiatic_languages |
609.0 | Foreign_relations_of_Andorra |
617.0 | Al_Gore |
618.0 | An_Enquiry_Concerning_Human_Understanding |
622.0 | Al_Gore |
626.0 | Auteur |
629.0 | Abstract_algebra |
635.0 | Analysis_of_variance |
644.0 | Arithmetic_logic_unit |
648.0 | Actor |
654.0 | Computer_accessibility |
668.0 | Logical_form |
669.0 | Allotropy |
686.0 | Amalthea_(mythology) |
687.0 | Analysis_of_variance |
693.0 | Broch |
696.0 | AA |
727.0 | History_of_astronomy |
731.0 | History_of_astronomy |
735.0 | Al_Gore |
743.0 | Antigua_and_Barbuda |
749.0 | Astronomer |
755.0 | History_of_Albania |
758.0 | Foreign_relations_of_Albania |
759.0 | Demographics_of_Albania |
763.0 | Foreign_relations_of_Albania |
767.0 | A._E._van_Vogt |
807.0 | Telecommunications_in_Albania |
813.0 | History_of_Afghanistan |
814.0 | Geography_of_Afghanistan |
815.0 | Government_of_the_Islamic_Emirate_of_Afghanistan |
816.0 | Demographics_of_Afghanistan |
817.0 | Economy_of_Afghanistan |
818.0 | Communications_in_Afghanistan |
820.0 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
821.0 | Foreign_relations_of_Afghanistan |
822.0 | Afghanistan |
832.0 | Foreign_relations_of_Austria |
839.0 | Anglicanism |
855.0 | Abiotic_component |
858.0 | Au |
860.0 | Åland |
873.0 | Civilization |
882.0 | Supermajority |
891.0 | Accounting |
907.0 | AWK |
908.0 | Nomic |
918.0 | Antisemitism |
919.0 | Antisemitism |
923.0 | A._A._Milne |
926.0 | Alumni |
935.0 | Automated_Alice |
936.0 | Automated_Alice |
937.0 | Automated_Alice |
938.0 | Automated_Alice |
939.0 | Automated_Alice |
940.0 | Automated_Alice |
941.0 | Automated_Alice |
942.0 | Automated_Alice |
943.0 | Automated_Alice |
944.0 | Automated_Alice |
945.0 | Automated_Alice |
946.0 | Automated_Alice |
959.0 | Voiced_velar_nasal |
963.0 | Existence_of_God |
970.0 | Ambient_calculus |
972.0 | Necronomicon |
973.0 | A_priori_and_a_posteriori |
975.0 | Ambient_calculus |
982.0 | A_priori_and_a_posteriori |
1026.0 | Anarcho-capitalism |
1035.0 | AAL |
1059.0 | Statistics |
1061.0 | Analysis_of_variance |
1062.0 | Analysis_of_variance |
1075.0 | Foreign_relations_of_Antigua_and_Barbuda |
1083.0 | Demographics_of_Azerbaijan |
1085.0 | Telecommunications_in_Azerbaijan |
1089.0 | Foreign_relations_of_Azerbaijan |
1105.0 | Foreign_relations_of_Argentina |
1108.0 | Foreign_relations_of_Argentina |
1109.0 | American_Samoa |
1114.0 | American_Samoa |
1116.0 | American_Samoa |
1123.0 | Foreign_relations_of_Australia |
1151.0 | AK-47 |
1153.0 | Amhrán_na_bhFiann |
1186.0 | Aphex_Twin |
1189.0 | Creed |
1190.0 | Alternate_history |
1195.0 | Allotropy |
1199.0 | Angles |
1205.0 | Atomic_orbital |
1220.0 | Anguilla |
1221.0 | Anguilla |
1228.0 | Ashmore_and_Cartier_Islands |
1229.0 | Ashmore_and_Cartier_Islands |
1230.0 | Ashmore_and_Cartier_Islands |
1231.0 | Ashmore_and_Cartier_Islands |
1232.0 | Ashmore_and_Cartier_Islands |
1233.0 | Ashmore_and_Cartier_Islands |
1238.0 | Nuclear_weapon |
1245.0 | Alpha_particle |
1246.0 | Alfonso_Arau |
1255.0 | Astronomical_unit |
1262.0 | Cant_(language) |
1268.0 | Artificial_intelligence |
1276.0 | Antarctica |
1277.0 | Antarctic_Treaty_System |
1280.0 | Military_activity_in_the_Antarctic |
1290.0 | Antarctic_Treaty_System |
1292.0 | Algernon_Charles_Swinburne |
1295.0 | American_League_Championship_Series |
1297.0 | Hebrew_Bible |
1299.0 | Abbadid_dynasty |
1302.0 | Abdomen |
1311.0 | Ada_Lovelace |
1312.0 | Augustine_of_Hippo |
1321.0 | Sagrada_Família |
1328.0 | Anno_Domini |
1339.0 | Americans_with_Disabilities_Act_of_1990 |
1340.0 | Americans_with_Disabilities_Act_of_1990 |
1341.0 | Americans_with_Disabilities_Act_of_1990 |
1342.0 | Anno_Domini |
1345.0 | Apache_HTTP_Server |
1355.0 | Anderitum |
1399.0 | Attention_deficit_hyperactivity_disorder |
1406.0 | Amine |
1407.0 | Antonie_van_Leeuwenhoek |
1410.0 | Antonie_van_Leeuwenhoek |
1415.0 | Pope_Adrian_I |
1426.0 | Pope_Adrian_II |
1429.0 | Pope_Adrian_IV |
1434.0 | Abgar_V |
1457.0 | Alzheimer's_disease |
1459.0 | Vitamin_C |
1476.0 | Prime_Minister_of_Australia |
1502.0 | List_of_minor_characters_in_the_Alice_series |
1511.0 | Albert_I_of_Germany |
1515.0 | Albert_III,_Duke_of_Saxony |
1516.0 | Albert_II,_Margrave_of_Meissen |
1517.0 | Albert_of_Aix |
1533.0 | Aachen |
1535.0 | Acorn |
1539.0 | Adirondack_Mountains |
1561.0 | Áedán_mac_Gabráin |
1572.0 | Al-Battani |
1609.0 | Pope_Alexander_VI |
1610.0 | Pope_Alexander_VII |
1611.0 | Pope_Alexander_VIII |
1626.0 | Aleksandr_Solzhenitsyn |
1636.0 | Antoine_de_Saint-Exupéry |
1641.0 | Alfred,_Duke_of_Saxe-Coburg_and_Gotha |
1651.0 | Alfred_of_Beverley |
1672.0 | Alfonso_VIII_of_Castile |
1673.0 | Alfonso_IX_of_León |
1678.0 | Alfonso_de_Cartagena |
1682.0 | Ahmose_I |
1699.0 | Alfonso_VI_of_León_and_Castile |
1703.0 | Alfonso_VII_of_León_and_Castile |
1704.0 | Alfonso_VIII_of_Castile |
1705.0 | Alfonso_IX_of_León |
1706.0 | Alfonso_X_of_Castile |
1707.0 | Alfonso_XI_of_Castile |
1708.0 | Alfonso_XII |
1709.0 | Alfonso_XIII |
1733.0 | Anacreon |
1744.0 | Pope_Anastasius_III |
1745.0 | Pope_Anastasius_IV |
1766.0 | Asteroid_belt |
1768.0 | Alice |
1769.0 | An_Enquiry_Concerning_Human_Understanding |
1771.0 | Apollo_program |
1772.0 | Arthritis |
1775.0 | Discrete_mathematics |
1809.0 | Thomas_Aquinas |
1811.0 | Hydrolysis |
1821.0 | Antoine_Lavoisier |
1824.0 | Footage |
1830.0 | Air_pollution |
1831.0 | Protocol_on_Environmental_Protection_to_the_Antarctic_Treaty |
1833.0 | Americentrism |
1838.0 | Amazon_River |
1852.0 | Ancient_Greece |
1855.0 | History_of_Africa |
1858.0 | Aromatic_compound |
1876.0 | Adémar_de_Chabannes |
1877.0 | Catharism |
1885.0 | Erotic_asphyxiation |
1889.0 | Assault_weapons_ban |
1903.0 | American_Airlines_Flight_77 |
1904.0 | American_Airlines_Flight_11 |
1906.0 | Aberration_(astronomy) |
1936.0 | Astronomical_unit |
1952.0 | Industry_Standard_Architecture |
1959.0 | Telephone_exchange |
1972.0 | Aviation |
1976.0 | Adomnán |
1978.0 | Assassin_(disambiguation) |
1982.0 | Alice |
1984.0 | Arab_world |
1993.0 | Alan_Ayckbourn |
2001.0 | Al-Qaeda |
2002.0 | Argumentum_ad_populum |
2005.0 | Addiction |
2008.0 | Al-Qaeda |
2043.0 | Anti-Americanism |
2050.0 | Archaeology |
2051.0 | Anarchism |
2058.0 | Atheism |
2071.0 | Afro_Celt_Sound_System |
2073.0 | Andrew_Jackson |
2074.0 | Andrew_Jackson |
2079.0 | Autumnal_equinox |
2090.0 | Albert_of_Hohenzollern |
2095.0 | Parapsychology |
2128.0 | Los_Angeles_Angels |
2132.0 | Ara_Pacis |
2145.0 | Catharism |
2146.0 | Aleksandr_Solzhenitsyn |
2149.0 | Armour |
2153.0 | Elitism |
2164.0 | Peremptory_plea |
2165.0 | Peremptory_plea |
2188.0 | Accident_(philosophy) |
2190.0 | Alternate_history |
2203.0 | Religion_in_Poland |
2206.0 | Ampere |
2211.0 | Folklore_of_the_United_States |
2213.0 | Modus_ponens |
2220.0 | Acts_of_the_Apostles |
2223.0 | Slaughterhouse |
2227.0 | Argumentum_a_fortiori |
2228.0 | Ad_hominem |
2249.0 | Amplification |
2258.0 | Anglicanism |
2260.0 | Analog_Science_Fiction_and_Fact |
2261.0 | Analog_Science_Fiction_and_Fact |
2262.0 | Analog_Science_Fiction_and_Fact |
2264.0 | Heptarchy |
2269.0 | Asynchronous_Transfer_Mode |
2271.0 | Asymmetric_digital_subscriber_line |
2280.0 | Giant_panda |
2281.0 | Arctic_fox |
2285.0 | Tank_destroyer |
2290.0 | Indigenous_peoples |
2295.0 | Arhat |
2297.0 | Springbok |
2298.0 | Blue_crane |
2302.0 | Aramaic |
2306.0 | AT&T |
2320.0 | Audio_codec |
2324.0 | All_Saints'_Day |
2351.0 | HIV/AIDS |
2354.0 | Outline_of_archaeology |
2367.0 | HIV/AIDS |
2379.0 | Binary_relation |
2404.0 | Aon_(company) |
2419.0 | Alloy |
2432.0 | Albrecht_III_Achilles,_Elector_of_Brandenburg |
2446.0 | Appalachian_dulcimer |
2462.0 | Anti-globalization_movement |
2464.0 | Anti-globalization_movement |
2468.0 | Aaron's_rod |
2469.0 | AB |
2478.0 | Barada |
2479.0 | Manama |
2486.0 | Chrysoberyl |
2489.0 | Abandon |
2492.0 | Anal_sex |
2495.0 | Aurochs |
2496.0 | Etiology |
2520.0 | Addition |
2523.0 | Alien |
2525.0 | Al_Jazeera |
2527.0 | Ruhollah_Khomeini |
2533.0 | Alphorn |
2535.0 | AW |
2537.0 | Analog_Science_Fiction_and_Fact |
2549.0 | Analog_Science_Fiction_and_Fact |
2561.0 | List_of_federal_political_scandals_in_the_United_States |
2565.0 | Albert,_Duke_of_Prussia |
2567.0 | Academy_Awards |
2568.0 | Apsis |
2569.0 | Apsis |
2571.0 | Rope_(film) |
2572.0 | Arianism |
2595.0 | Atlas_(computer) |
2599.0 | AA |
2600.0 | Aaron's_rod |
2601.0 | Abandon |
2603.0 | Abaris_the_Hyperborean |
2612.0 | Abbo_of_Fleury |
2615.0 | Charles_Farrar_Browne |
2631.0 | Ælfric |
2636.0 | Accounting |
2638.0 | ACID |
2643.0 | Ajax_the_Lesser |
2644.0 | Ajax_the_Great |
2647.0 | American_Indians |
2648.0 | Abandon |
2649.0 | Abandonment_(legal) |
2650.0 | Abandonment_(legal) |
2651.0 | Abandonment_(legal) |
2652.0 | Nuisance_abatement |
2653.0 | Abatement |
2655.0 | Abatement |
2656.0 | Abatement |
2657.0 | Abatement |
2658.0 | Abatement_(heraldry) |
2659.0 | American_Revolutionary_War |
2664.0 | Affirmation_(law) |
2675.0 | Abd_al-Rahman |
2682.0 | Abdul_Qadir |
2683.0 | Abdelaziz_of_Morocco |
2688.0 | Pneumatic_motor |
2697.0 | Abraham_ibn_Ezra |
2711.0 | Aberdeenshire_(historic) |
2713.0 | Aberdyfi |
2725.0 | Aesthetics |
2746.0 | Same-sex_relationship |
2751.0 | The_Angry_Brigade |
2760.0 | Arab_(disambiguation) |
2765.0 | Anatomical_Therapeutic_Chemical_Classification_System |
2768.0 | Antiarrhythmic_agent |
2771.0 | Air_conditioning |
2774.0 | Alfred_Kinsey |
2775.0 | Auto_racing |
2776.0 | Antisemitism |
2789.0 | James_Tiptree_Jr. |
2793.0 | Application_software |
2804.0 | Application_firewall |
2808.0 | Nuclear_weapon |
2821.0 | Set_theory |
2828.0 | Abipón |
2831.0 | Abkhazia |
2842.0 | Bohr_model |
2855.0 | Latin_American_Integration_Association |
2863.0 | AT&T |
2872.0 | Arthur,_Prince_of_Wales |
2880.0 | Anti-ballistic_missile |
2888.0 | Amorphous_solid |
2897.0 | Indigenous_peoples_of_Arizona |
2898.0 | Abdul_Rashid_Dostum |
2903.0 | The_Diary_of_a_Young_Girl |
2904.0 | Kabylia |
2912.0 | Archaeoastronomy |
2914.0 | French_hip_hop |
2915.0 | Gh_hip_hop |
2918.0 | Argument_from_ignorance |
2922.0 | AIM_(software) |
2929.0 | Armillary_sphere |
2937.0 | Algemeen_Nijmeegs_Studentenblad |
2951.0 | Louis_Althusser |
2969.0 | Aurora |
2970.0 | Aurora |
2971.0 | Abstraction_(computer_science) |
2977.0 | American_Sign_Language |
2993.0 | Amputation |
2996.0 | HMS_Ark_Royal |
2998.0 | Acceleration |
3000.0 | AD_Police_Files |
3005.0 | Apadravya |
3006.0 | Ampallang |
3008.0 | Albinism |
3009.0 | Analcime |
3023.0 | Archimedes'_screw |
3024.0 | Multiplication |
3033.0 | Antenna_(radio) |
3039.0 | Shadrach,_Meshach,_and_Abednego |
3041.0 | Acanthocephala |
3042.0 | Alcobaça |
3051.0 | Clan_McDuck |
3057.0 | List_of_Donald_Duck_universe_characters |
3059.0 | Athlon |
3062.0 | Duck_family_(Disney) |
3063.0 | Asperger_syndrome |
3066.0 | Authoritarianism |
3086.0 | İskenderun |
3099.0 | AbiWord |
3106.0 | AirPort |
3114.0 | Amiga_500 |
3126.0 | Ahriman |
3136.0 | Concept |
3139.0 | Apostle_(disambiguation) |
3154.0 | Fairchild_Republic_A-10_Thunderbolt_II |
3156.0 | Albrecht_Dürer |
3163.0 | Anthroposophy |
3164.0 | Evidence_of_common_descent |
3166.0 | A.C._Milan |
3180.0 | Anomaly |
3182.0 | Avenger |
3187.0 | Agglutination |
3190.0 | Ascending_chain_condition |
3197.0 | A._E._Housman |
3208.0 | Antidepressant |
3210.0 | Alexander_Rutskoy |
3215.0 | Multivibrator |
3219.0 | Actor |
3220.0 | Artificial_intelligence |
3223.0 | Ai |
3227.0 | Azores |
3230.0 | Relative_atomic_mass |
3232.0 | Anthropic_principle |
3247.0 | Roman_Catholic_Archdiocese_for_the_Military_Services,_USA |
3248.0 | Archaeopteryx |
3254.0 | Amuck! |
3260.0 | Line_Islands |
3264.0 | Aborigine |
3276.0 | Antiterrorism_and_Effective_Death_Penalty_Act_of_1996 |
3280.0 | Bomis |
3281.0 | Biblical_hermeneutics |
3282.0 | Baltic_Sea |
3283.0 | Ballroom_dance |
3284.0 | Biology |
3288.0 | Bill_Clinton |
3290.0 | Biblical_canon |
3298.0 | The_Buddha |
3299.0 | Bijection,_injection_and_surjection |
3300.0 | Buddhism |
3303.0 | Baltimore_Ravens |
3307.0 | Aaron |
3311.0 | List_of_business_schools_in_Asia |
3317.0 | The_Birth_of_a_Nation |
3318.0 | Boethius |
3320.0 | Mental_event |
3322.0 | Business_school |
3323.0 | Britney_Spears |
3326.0 | Baby_One_More_Time |
3327.0 | Binomial_distribution |
3329.0 | Binomial_distribution |
3330.0 | Biochemistry |
3342.0 | Germany |
3344.0 | Basic |
3346.0 | Robert_Byrd |
3349.0 | Business_school |
3366.0 | Commonwealth_of_Nations |
3369.0 | Board_game |
3373.0 | Outline_of_biology |
3407.0 | Baruch_Spinoza |
3409.0 | Ontology |
3413.0 | Batch_processing |
3418.0 | Basil |
3424.0 | BBC_Radio_1 |
3425.0 | BBC_Online |
3433.0 | Visual_impairment |
3445.0 | Alcohol_intoxication |
3448.0 | Steer_wrestling |
3480.0 | Royal_Bahamas_Defence_Force |
3481.0 | Foreign_relations_of_the_Bahamas |
3484.0 | Bahrain |
3492.0 | Baker_Island |
3493.0 | Baker_Island |
3494.0 | Baker_Island |
3496.0 | Baker_Island |
3509.0 | Foreign_relations_of_Bangladesh |
3510.0 | Foreign_relations_of_Bangladesh |
3519.0 | Foreign_relations_of_Barbados |
3522.0 | Bassas_da_India |
3524.0 | Bassas_da_India |
3527.0 | Bassas_da_India |
3529.0 | Bassas_da_India |
3539.0 | Telecommunications_in_Belarus |
3548.0 | Foreign_relations_of_Belgium |
3549.0 | Belgium |
3550.0 | Foreign_relations_of_Belgium |
3551.0 | Belgium |
3578.0 | Bermuda |
3587.0 | Bhutan |
3600.0 | Cultural_depictions_of_blindness |
3619.0 | Botswana_Defence_Force |
3622.0 | Bouvet_Island |
3623.0 | Bouvet_Island |
3624.0 | Bouvet_Island |
3625.0 | Bouvet_Island |
3626.0 | Bouvet_Island |
3627.0 | Bouvet_Island |
3628.0 | Bouvet_Island |
3640.0 | British_Indian_Ocean_Territory |
3641.0 | British_Indian_Ocean_Territory |
3642.0 | British_Indian_Ocean_Territory |
3643.0 | British_Indian_Ocean_Territory |
3644.0 | British_Indian_Ocean_Territory |
3645.0 | British_Indian_Ocean_Territory |
3646.0 | British_Indian_Ocean_Territory |
3647.0 | British_Indian_Ocean_Territory |
3656.0 | British_Virgin_Islands |
3686.0 | Geography_of_Myanmar |
3689.0 | Economy_of_Myanmar |
3690.0 | Telecommunications_in_Myanmar |
3723.0 | BSE |
3726.0 | Breakdancing |
3732.0 | Bhangra |
3737.0 | Baptists |
3739.0 | BSD_licenses |
3762.0 | Länder |
3763.0 | Bavaria |
3767.0 | Bundeskanzler |
3770.0 | Cabinet_of_Germany |
3773.0 | Der_Blaue_Reiter |
3781.0 | Mumbai |
3790.0 | Bodybuilding |
3791.0 | Bryan_MacLean |
3796.0 | Biblical_canon |
3803.0 | Strike_zone |
3804.0 | Slugging_percentage |
3818.0 | Babel_fish |
3820.0 | Mental_event |
3824.0 | Babel_fish |
3830.0 | Bryce_Canyon_National_Park |
3831.0 | Encyclopædia_Britannica |
3847.0 | Taste |
3855.0 | Origins_of_baseball |
3871.0 | Substance_theory |
3879.0 | Statistics |
3913.0 | Binary_operation |
3920.0 | The_Beatles |
3922.0 | Road_bicycle |
3934.0 | Baby_boom |
3935.0 | Buddhism |
3966.0 | Border_Gateway_Protocol |
3972.0 | Cycling |
3991.0 | BITS |
3994.0 | Benoit_Mandelbrot |
4003.0 | Pierre_Beaumarchais |
4014.0 | Bipolar_disorder |
4021.0 | Common_Era |
4022.0 | Common_Era |
4025.0 | BC |
4026.0 | Buckminster_Fuller |
4034.0 | Encyclopædia_Britannica_Eleventh_Edition |
4038.0 | Banach–Tarski_paradox |
4040.0 | BC |
4090.0 | Bitwise_operation |
4105.0 | Outline_of_biochemistry |
4122.0 | B-roll |
4126.0 | Ballroom_dance |
4129.0 | CIM-10_Bomarc |
4151.0 | Brainfuck |
4167.0 | Utility_knife |
4174.0 | Six_Degrees_of_Kevin_Bacon |
4186.0 | Bacteriostatic_agent |
4201.0 | Francesco_Borromini |
4212.0 | Bolsheviks |
4215.0 | Brian_De_Palma |
4221.0 | North_American_B-25_Mitchell |
4222.0 | Berry_Berenson |
4226.0 | Brewster's_angle |
4238.0 | The_Bronx |
4252.0 | Baháʼí_Faith |
4253.0 | Red_Army_Faction |
4265.0 | Titius–Bode_law |
4268.0 | The_Boston_Globe |
4272.0 | Elbląg |
4273.0 | Elbląg |
4275.0 | Gdańsk |
4276.0 | Oder |
4290.0 | Buddhism |
4291.0 | Buddhism |
4303.0 | University_of_Brighton |
4328.0 | Bohemia |
4336.0 | Bosnia_and_Herzegovina |
4412.0 | Binary_Synchronous_Communications |
4415.0 | ETA_(separatist_group) |
4426.0 | Brownian_motion |
4428.0 | Bacillus_thuringiensis |
4435.0 | Baltic_languages |
4439.0 | Baptists |
4464.0 | Book_of_Zechariah |
4466.0 | Black_Sox_Scandal |
4486.0 | Buckminsterfullerene |
4509.0 | GNU_Free_Documentation_License |
4521.0 | Bubble_sort |
4523.0 | Bipolar_disorder |
4530.0 | Blue_screen |
4562.0 | Pub |
4564.0 | Bitter_(beer) |
4586.0 | Greek_fire |
4590.0 | Brachycephaly |
4593.0 | Battleship_(game) |
4597.0 | Beryl |
4599.0 | Boleslaus_I |
4600.0 | Bolesław_III_Wrymouth |
4605.0 | Battle_of_the_Nile |
4612.0 | Bird |
4623.0 | Great_Britain_and_Ireland |
4632.0 | Monarchy_of_the_United_Kingdom |
4634.0 | Bombardier |
4655.0 | Alliance_90/The_Greens |
4656.0 | Shogun |
4657.0 | Arbitration |
4663.0 | Basil_of_Caesarea |
4666.0 | C*-algebra |
4678.0 | Computer_font |
4696.0 | Prime_Minister_of_the_United_Kingdom |
4697.0 | List_of_United_Kingdom_general_elections |
4703.0 | Bob_Dylan |
4716.0 | Bohemia |
4720.0 | Epistle_to_the_Hebrews |
4740.0 | International_Bureau_of_Weights_and_Measures |
4747.0 | Blu_Tack |
4750.0 | Bodhidharma |
4773.0 | Balfour_Declaration |
4784.0 | Normal_distribution |
4790.0 | German_Navy |
4798.0 | Bronze_Age |
4799.0 | Bicameral_mentality |
4808.0 | Arbitrary-precision_arithmetic |
4812.0 | Battle_of_Świecino |
4830.0 | Bohr_model |
4837.0 | Befehlshaber_der_U-Boote |
4844.0 | Symmetry_in_biology |
4846.0 | Symmetry_in_biology |
4853.0 | Wrocław |
4855.0 | Basso_continuo |
4889.0 | Semi-trailer_truck |
4891.0 | Ballet |
4901.0 | Daiquiri |
4903.0 | Boson |
4919.0 | Bipolar_II_disorder |
4920.0 | October_Revolution |
4923.0 | List_of_Bubblegum_Crisis_characters |
4932.0 | Basal_body_temperature |
4938.0 | Branch_predictor |
4939.0 | Gambling |
4954.0 | Battle_of_Świecino |
4962.0 | Batting_average_(baseball) |
4977.0 | Battle_of_Adrianople |
4984.0 | Battle_of_Adrianople |
4985.0 | Battle_of_the_Ardennes |
4998.0 | Operation_Aphrodite |
5010.0 | Mexican_tetra |
5012.0 | The_Adventures_of_Brisco_County,_Jr. |
5017.0 | The_Book_of_Counted_Sorrows |
5018.0 | Anal_sex |
5022.0 | B._F._Skinner |
5044.0 | Beast_of_Bodmin_Moor |
5054.0 | List_of_sovereign_states |
5055.0 | Computing |
5056.0 | Software |
5057.0 | Common_sense |
5058.0 | Celtic_music |
5060.0 | List_of_sovereign_states |
5061.0 | List_of_sovereign_states |
5062.0 | List_of_sovereign_states |
5063.0 | List_of_sovereign_states |
5064.0 | List_of_sovereign_states |
5065.0 | List_of_sovereign_states |
5066.0 | COBOL |
5067.0 | Christianity |
5068.0 | List_of_sovereign_states |
5069.0 | List_of_sovereign_states |
5070.0 | List_of_sovereign_states |
5071.0 | List_of_sovereign_states |
5072.0 | Country |
5073.0 | List_of_sovereign_states |
5074.0 | List_of_sovereign_states |
5075.0 | List_of_sovereign_states |
5076.0 | List_of_sovereign_states |
5077.0 | List_of_sovereign_states |
5078.0 | List_of_sovereign_states |
5079.0 | List_of_sovereign_states |
5080.0 | List_of_sovereign_states |
5081.0 | List_of_sovereign_states |
5082.0 | List_of_sovereign_states |
5085.0 | Berlin |
5088.0 | List_of_sovereign_states |
5089.0 | Cantor_set |
5093.0 | Cold_War |
5097.0 | Cryptography |
5098.0 | Cryptography |
5099.0 | Cryptanalysis |
5100.0 | Code |
5101.0 | Encryption |
5103.0 | Charleston |
5104.0 | Consequentialism |
5105.0 | On_the_Consolation_of_Philosophy |
5107.0 | Regress_argument |
5110.0 | Consciousness |
5112.0 | Charlie_Chaplin |
5115.0 | Khmer_language |
5120.0 | Chordate |
5121.0 | Combinatorics |
5122.0 | Constellation |
5123.0 | Cognitive_therapy |
5125.0 | Category_theory |
5126.0 | Summary_statistics |
5128.0 | Comedy_film |
5129.0 | Cult_film |
5130.0 | List_of_sovereign_states |
5133.0 | Charlize_Theron |
5137.0 | Cluster_sampling |
5138.0 | Cumulative_distribution_function |
5140.0 | Comedy_film |
5141.0 | Cult_film |
5143.0 | Cryptography |
5146.0 | Hash_function |
5149.0 | Computer_hardware |
5167.0 | Central_tendency |
5168.0 | Checkers |
5173.0 | Probability_distribution |
5181.0 | Continent |
5182.0 | Constitution |
5186.0 | List_of_sovereign_states |
5198.0 | Canadian_Armed_Forces |
5202.0 | List_of_cities_in_Canada |
5206.0 | Algorithmic_art |
5208.0 | List_of_sovereign_states |
5209.0 | The_World_Factbook |
5210.0 | C._S._Lewis |
5220.0 | Complex_number |
5227.0 | Chessboard |
5231.0 | Old_World_monkey |
5238.0 | List_of_sovereign_states |
5239.0 | Countable_set |
5242.0 | Ciliate |
5258.0 | Computer_data_storage |
5264.0 | Computer_monitor |
5283.0 | Cryptomonad |
5287.0 | Classical_music |
5289.0 | Card_game |
5290.0 | Casino_game |
5291.0 | PC_game |
5292.0 | Collectible_card_game |
5297.0 | Character_(computing) |
5303.0 | Conic_section |
5310.0 | Computer_hardware |
5318.0 | Time-sharing |
5319.0 | Computer_multitasking |
5341.0 | List_of_sovereign_states |
5343.0 | Constitution_of_Canada |
5345.0 | Colloid |
5356.0 | Cancer_cluster |
5359.0 | Collectible_card_game |
5365.0 | Ichthys |
5369.0 | Birth_control |
5392.0 | Coriander |
5393.0 | Coriander |
5396.0 | Chris_Morris |
5400.0 | List_of_sovereign_states |
5410.0 | Poales |
5414.0 | Wargame |
5418.0 | Capitalism |
5419.0 | Computer |
5423.0 | Cross-examination |
5425.0 | Class_conflict |
5426.0 | Compression |
5435.0 | Royal_Cambodian_Armed_Forces |
5441.0 | C_(programming_language) |
5442.0 | Constructed_language |
5444.0 | Regress_argument |
5445.0 | Class_conflict |
5457.0 | Civilization_(video_game) |
5476.0 | Cayman_Islands |
5501.0 | Christmas_Island |
5502.0 | Christmas_Island |
5503.0 | Christmas_Island |
5504.0 | Christmas_Island |
5505.0 | Christmas_Island |
5506.0 | Christmas_Island |
5507.0 | Christmas_Island |
5508.0 | Christmas_Island |
5511.0 | Clipperton_Island |
5512.0 | Clipperton_Island |
5513.0 | Clipperton_Island |
5514.0 | Clipperton_Island |
5515.0 | Clipperton_Island |
5516.0 | Clipperton_Island |
5517.0 | Clipperton_Island |
5518.0 | Clipperton_Island |
5521.0 | Cocos_(Keeling)_Islands |
5522.0 | Cocos_(Keeling)_Islands |
5524.0 | Cocos_(Keeling)_Islands |
5525.0 | Cocos_(Keeling)_Islands |
5526.0 | Cocos_(Keeling)_Islands |
5527.0 | Cocos_(Keeling)_Islands |
5528.0 | Cocos_(Keeling)_Islands |
5542.0 | Coral_Sea_Islands |
5543.0 | Coral_Sea_Islands |
5544.0 | Coral_Sea_Islands |
5545.0 | Coral_Sea_Islands |
5546.0 | Coral_Sea_Islands |
5547.0 | Coral_Sea_Islands |
5548.0 | Coral_Sea_Islands |
5549.0 | Coral_Sea_Islands |
5601.0 | Cypriot_National_Guard |
5604.0 | Czech_Republic |
5607.0 | Demographics_of_the_Czech_Republic |
5608.0 | Politics_of_the_Czech_Republic |
5612.0 | Army_of_the_Czech_Republic |
5613.0 | Foreign_relations_of_the_Czech_Republic |
5616.0 | Creutzfeldt–Jakob_disease |
5618.0 | A_Clockwork_Orange |
5620.0 | Stroke |
5628.0 | Compiler |
5631.0 | Gruyère_cheese |
5632.0 | Cheese_Shop_sketch |
5634.0 | List_of_decades,_centuries,_and_millennia |
5650.0 | Comet |
5652.0 | Computer_network |
5677.0 | Cerebrospinal_fluid |
5680.0 | Chief_executive_officer |
5683.0 | Trade_fair |
5687.0 | University_of_Cambridge |
5731.0 | Capitalism |
5737.0 | Cross-cutting |
5741.0 | Monetary_policy |
5746.0 | Hash_function |
5747.0 | Key_(cryptography) |
5753.0 | Sexual_intercourse |
5764.0 | Charlie_Chaplin |
5773.0 | Carroll_O'Connor |
5780.0 | Chaco_Culture_National_Historical_Park |
5788.0 | Cretaceous–Paleogene_extinction_event |
5792.0 | Probability_distribution |
5798.0 | Closeted |
5799.0 | Coming_out |
5801.0 | Ecumenical_council |
5802.0 | Council_of_Trent |
5803.0 | Second_Vatican_Council |
5842.0 | Foreign_relations_of_Colombia |
5852.0 | Foreign_relations_of_the_Czech_Republic |
5856.0 | Holy_Roman_Empire |
5870.0 | Comics |
5871.0 | Tachycardia |
5875.0 | Jargon |
5877.0 | CORAL |
5880.0 | Comment_(computer_programming) |
5900.0 | Megacorporation |
5908.0 | Counterpoint |
5911.0 | Continuum_hypothesis |
5913.0 | Catalysis |
5915.0 | Catalysis |
5924.0 | Christian_eschatology |
5925.0 | Color |
5953.0 | Claude_Monet |
5960.0 | Genetic_code |
5968.0 | Computer_music |
5975.0 | Call_of_Cthulhu_(role-playing_game) |
5978.0 | Kyoto_Protocol |
5983.0 | Computer_science |
6012.0 | Church–Turing_thesis |
6017.0 | Cruise_missile |
6018.0 | Call_of_Cthulhu |
6022.0 | Cell_biology |
6030.0 | Chronic_fatigue_syndrome |
6031.0 | Chronic_fatigue_syndrome |
6032.0 | Chronic_fatigue_syndrome |
6033.0 | Chronic_fatigue_syndrome |
6037.0 | Continuous_function |
6043.0 | Critical_point_(thermodynamics) |
6053.0 | CE |
6054.0 | CE |
6055.0 | CD-ROM |
6063.0 | Cartoonist |
6065.0 | Sine_and_cosine |
6067.0 | Common_Lisp |
6070.0 | Orange_(colour) |
6071.0 | Black |
6074.0 | Orange_(colour) |
6076.0 | Cyan |
6077.0 | Black |
6078.0 | White |
6086.0 | Cauchy_sequence |
6087.0 | Nicolaus_Copernicus |
6089.0 | Creationism |
6098.0 | Carolingian_Renaissance |
6142.0 | Cardinal_number |
6150.0 | Blanching_(cooking) |
6178.0 | Cardinal |
6179.0 | Buddhist_cuisine |
6190.0 | Five-spice_powder |
6196.0 | Self-replicating_machine |
6197.0 | Self-replicating_machine |
6202.0 | London_Convention_on_the_Prevention_of_Marine_Pollution_by_Dumping_of_Wastes_and_Other_Matter |
6204.0 | Ramsar_Convention |
6219.0 | Claudio_Monteverdi |
6223.0 | Comics |
6228.0 | List_of_ancient_Celtic_peoples_and_tribes |
6236.0 | Champagne_socialist |
6240.0 | Celtic_languages |
6242.0 | Glossary_of_climbing_terms |
6243.0 | Cascade_Range |
6263.0 | Charles_Darwin |
6266.0 | Climate_change |
6269.0 | Wipe_(transition) |
6278.0 | Banach_space |
6287.0 | Lists_of_cities_by_country |
6302.0 | Classical_element |
6307.0 | Aether_(classical_element) |
6311.0 | College_football |
6345.0 | Central_dogma_of_molecular_biology |
6348.0 | Medal_of_Honor |
6368.0 | Chōshū |
6461.0 | Wuxing_(Chinese_philosophy) |
6464.0 | Mobile_phone |
6470.0 | Computational_linguistics |
6500.0 | Lists_of_universities_and_colleges |
6502.0 | Clean_Air_Act_(United_States) |
6510.0 | Color_space |
6515.0 | Lists_of_atheists |
6522.0 | Chief_executive_officer |
6524.0 | Clam_dip |
6531.0 | Chinese_cuisine |
6553.0 | Context-free_grammar |
6554.0 | Computer_graphics |
6564.0 | Conjunction_elimination |
6573.0 | Widewuto |
6581.0 | Musique_concrète |
6594.0 | Casimir_IV_Jagiellon |
6595.0 | Computer_vision |
6605.0 | Citric_acid_cycle |
6609.0 | Stork |
6622.0 | Coelenterata |
6625.0 | Catholic_Church |
6646.0 | List_of_ancient_Germanic_peoples |
6657.0 | Catholic_Church |
6668.0 | Mousse |
6676.0 | Consociationalism |
6685.0 | Coca-Cola |
6699.0 | Plato |
6709.0 | Tree_(data_structure) |
6712.0 | Compressor |
6714.0 | Comic_book |
6726.0 | Antisemitism_in_Christianity |
6737.0 | Dhole |
6738.0 | Red_wolf |
6740.0 | Coyote |
Let's turn these redirect table entries into the same format as the edge links - that is, with an article ID both for the source and the destination:
val redirectsWithDstID = spark.sql("""SELECT enwiki_redirect.rd_from AS src,
enwiki_page.page_id AS dst,
enwiki_redirect.rd_title AS dst_title
FROM enwiki_redirect INNER JOIN enwiki_page
ON enwiki_redirect.rd_title = enwiki_page.page_title""")
redirectsWithDstID.createOrReplaceTempView("redirectsWithDstID")
val redirectsWithIDs = spark.sql("""SELECT redirectsWithDstID.src,
redirectsWithDstID.dst,
enwiki_page.page_title AS src_title,
redirectsWithDstID.dst_title
FROM redirectsWithDstID INNER JOIN enwiki_page
ON enwiki_page.page_id = redirectsWithDstID.src""")
display(redirectsWithIDs)
src | dst | src_title | dst_title |
---|---|---|---|
53.0 | 1171.0 | Abbreviations | Abbreviation |
251.0 | 2709.0 | AberdeenSouthDakota | Aberdeen,_South_Dakota |
255.0 | 339.0 | AynRand | Ayn_Rand |
296.0 | 184552.0 | ActressesS | Lists_of_actors |
858.0 | 2710.0 | AU | Au |
918.0 | 1078.0 | Anti-semitism | Antisemitism |
939.0 | 1.8950736e7 | Automated_Alice/VIII | Automated_Alice |
970.0 | 1.8934564e7 | AmbientCalculusOnline | Ambient_calculus |
1199.0 | 2136.0 | Angle_tribe | Angles |
1238.0 | 21785.0 | Atomic_bomb | Nuclear_weapon |
1339.0 | 1338.0 | Americans_with_Disabilities_Act_of_1990/Findings_and_Purposes | Americans_with_Disabilities_Act_of_1990 |
1342.0 | 1400.0 | A.D | Anno_Domini |
1533.0 | 1520.0 | Aix-la-Chapelle | Aachen |
1561.0 | 192974.0 | Aidan_of_Dalriada | Áedán_mac_Gabráin |
1699.0 | 69607.0 | Alfonso_VI | Alfonso_VI_of_León_and_Castile |
1745.0 | 23834.0 | Anastasius_IV | Pope_Anastasius_IV |
1766.0 | 47264.0 | Asteroid_Belt | Asteroid_belt |
1903.0 | 1902.0 | American_Airlines_flight_77 | American_Airlines_Flight_77 |
1959.0 | 2.6668156e7 | Automatic_telephone_exchange | Telephone_exchange |
2249.0 | 186151.0 | Amplify | Amplification |
2261.0 | 1.8932608e7 | Analog_Magazine | Analog_Science_Fiction_and_Fact |
2479.0 | 20481.0 | Al-Manamah | Manama |
2525.0 | 4.8370461e7 | AlJazeera | Al_Jazeera |
2572.0 | 1252.0 | Arians | Arianism |
2655.0 | 1046.0 | Abatement_in_litigation | Abatement |
2656.0 | 1046.0 | Abatement_of_false_lights | Abatement |
2659.0 | 771.0 | American_war_of_independence | American_Revolutionary_War |
2711.0 | 1514856.0 | Aberdeenshire/Aberdeenshire1911 | Aberdeenshire_(historic) |
2771.0 | 7221088.0 | Air_conditioner | Air_conditioning |
2776.0 | 1078.0 | Anti-Semite | Antisemitism |
2821.0 | 27553.0 | Axiomatic_Set_Theory | Set_theory |
2888.0 | 2889.0 | Amorphous | Amorphous_solid |
2914.0 | 53185.0 | African_rap_in_France | French_hip_hop |
2971.0 | 60491.0 | Abstraction_in_object-oriented_programming | Abstraction_(computer_science) |
2996.0 | 14292.0 | Ark_Royal | HMS_Ark_Royal |
3000.0 | 2284718.0 | A.D._Police:_Dead_End_City | AD_Police_Files |
3008.0 | 4.5105839e7 | Albino | Albinism |
3042.0 | 2.4737268e7 | Alcobaca | Alcobaça |
3062.0 | 77548.0 | Abner_Duck | Duck_family_(Disney) |
3220.0 | 1164.0 | A.I. | Artificial_intelligence |
3425.0 | 638514.0 | BBC/Online | BBC_Online |
3790.0 | 4360.0 | BodyBuilding | Bodybuilding |
3796.0 | 2.7857492e7 | Books_of_the_Bible | Biblical_canon |
3913.0 | 3948.0 | BinaryOperation | Binary_operation |
4126.0 | 3332.0 | Ballroom_dancing | Ballroom_dance |
4167.0 | 4168.0 | Box-cutter_knives | Utility_knife |
4186.0 | 153831.0 | Bacteriostat | Bacteriostatic_agent |
4291.0 | 3267529.0 | Buddhists | Buddhism |
4415.0 | 9926.0 | Basque_Fatherland_and_Liberty | ETA_(separatist_group) |
4612.0 | 3410.0 | Birds | Bird |
4697.0 | 2.5767603e7 | United_Kingdom_general_election | List_of_United_Kingdom_general_elections |
4773.0 | 4820.0 | Balfour_declaration | Balfour_Declaration |
4798.0 | 4620.0 | Bronze_age | Bronze_Age |
4799.0 | 2181792.0 | Bicameral_mind | Bicameral_mentality |
4923.0 | 1.3682978e7 | Boomeroid | List_of_Bubblegum_Crisis_characters |
5055.0 | 5213.0 | ComputinG | Computing |
5061.0 | 68253.0 | CountriesN | List_of_sovereign_states |
5071.0 | 68253.0 | CountriesK | List_of_sovereign_states |
5074.0 | 68253.0 | CountriesH | List_of_sovereign_states |
5100.0 | 5225.0 | CodE | Code |
5110.0 | 5664.0 | ConsciousNess | Consciousness |
5140.0 | 5644.0 | Comedy_Film | Comedy_film |
5173.0 | 23543.0 | Continuous_Random_Variable | Probability_distribution |
5287.0 | 6668778.0 | Classical_Music | Classical_music |
5345.0 | 5346.0 | Colloids | Colloid |
5457.0 | 6259.0 | Civilization/video_game | Civilization_(video_game) |
5513.0 | 5510.0 | Clipperton_Island/People | Clipperton_Island |
5518.0 | 5510.0 | Clipperton_Island/Military | Clipperton_Island |
5527.0 | 5520.0 | Transport_in_the_Cocos_(Keeling)_Islands | Cocos_(Keeling)_Islands |
5543.0 | 5541.0 | Coral_Sea_Islands/Geography | Coral_Sea_Islands |
5803.0 | 28134.0 | Catholicism/Second_Vatican_Council | Second_Vatican_Council |
6142.0 | 6173.0 | Cardinal_numbers | Cardinal_number |
6204.0 | 195228.0 | Convention_on_Wetlands_of_International_Importance_Especially_As_Waterfowl_Habitat | Ramsar_Convention |
6266.0 | 5042951.0 | Climate_Change | Climate_change |
6500.0 | 5252.0 | Colleges_and_universities/OldList | Lists_of_universities_and_colleges |
6622.0 | 1779159.0 | Coelenterates | Coelenterata |
6737.0 | 8626.0 | Cuon_alpinus | Dhole |
6741.0 | 4269567.0 | Canis_familiaris | Dog |
6864.0 | 1484989.0 | Chromosome_walking | Primer_walking |
6937.0 | 13998.0 | Containment_hierarchy | Hierarchy |
6953.0 | 150211.0 | Chang_San-feng | Zhang_Sanfeng |
7098.0 | 53133.0 | COPPA | Children's_Online_Privacy_Protection_Act |
7417.0 | 7411.0 | Constitution_of_Canada/1867_V_Provincial_Constitutions | Constitution_of_Canada |
7644.0 | 4930.0 | Colin_Fulcher | Barney_Bubbles |
7666.0 | 7655.0 | Clay_math_prize | Clay_Mathematics_Institute |
7726.0 | 15129.0 | Cow_story | You_have_two_cows |
7744.0 | 3359456.0 | Cell_incubator | Incubator_(culture) |
7880.0 | 8495.0 | DataSeT | Data_set |
7987.0 | 4009259.0 | Defensive_team | American_football_positions |
8105.0 | 13883.0 | Data_compression/Huffman_coding | Huffman_coding |
8423.0 | 5936580.0 | DragonMagazine | Dragon_Magazine |
8665.0 | 7888.0 | D.W._Griffith | D._W._Griffith |
8755.0 | 20018.0 | Distance_function | Metric_space |
8803.0 | 816386.0 | Danewerk | Danevirke |
8911.0 | 8900.0 | Discriminatory | Discrimination |
8924.0 | 8968.0 | Devanagiri | Devanagari |
8928.0 | 8930.0 | Denis_Arkadievich_Kaufman | Dziga_Vertov |
8977.0 | 39289.0 | Design_by_Contract | Design_by_contract |
9006.0 | 8778.0 | Daniel_Ortega_Saavedra | Daniel_Ortega |
9097.0 | 8968.0 | Devangari_alphabet | Devanagari |
9181.0 | 9223.0 | EconomicS | Economics |
9182.0 | 9700.0 | EdwinAustinAbbey | Edwin_Austin_Abbey |
9293.0 | 9454.0 | Establishing_Shot | Establishing_shot |
9416.0 | 9407.0 | Europa_Island/Transnational_issues | Europa_Island |
9435.0 | 61069.0 | Frederic_Henry | A_Farewell_to_Arms |
9465.0 | 1890.0 | English_language/American_English | American_English |
10022.0 | 51791.0 | E.163 | E.164 |
10143.0 | 125412.0 | East_Brunswick | East_Brunswick,_New_Jersey |
10532.0 | 2.3976719e7 | FootBall | Football |
10558.0 | 10869.0 | FrequencyProbability | Frequentist_probability |
10567.0 | 226981.0 | FiniteMathematics | Finite_mathematics |
10587.0 | 2672356.0 | Film_Techniques | Cinematic_techniques |
10605.0 | 10844.0 | FrenchMaterialism | French_materialism |
10611.0 | 2518541.0 | Film_History/Russia | Cinema_of_Russia |
10745.0 | 10737.0 | French_Polynesia/Military | French_Polynesia |
10768.0 | 10724.0 | Military_of_French_Guiana | French_Armed_Forces |
10840.0 | 11012.0 | FORTH | Forth_(programming_language) |
11014.0 | 11379.0 | Famous_Scotsmen | List_of_Scots |
11106.0 | 11125.0 | Francesco_Boromini | Francesco_Borromini |
11316.0 | 10890.0 | Fundamental_forces | Fundamental_interaction |
11450.0 | 2.6526175e7 | Friedrich_II | Frederick_II |
11482.0 | 11059.0 | Five_pillars_of_Islam | Five_Pillars_of_Islam |
11487.0 | 1.89336e7 | File_Formats | File_format |
11500.0 | 11501.0 | Federated_States_of_Micronesia/Transport | Transportation_in_the_Federated_States_of_Micronesia |
11578.0 | 4.9417917e7 | Facism | Fascism_(disambiguation) |
11808.0 | 11807.0 | Ferromagnetic | Ferromagnetism |
11858.0 | 1.8723138e7 | Games | Game |
11897.0 | 13236.0 | GNU/HURD | GNU_Hurd |
11911.0 | 25475.0 | Games/RolePlaying | Role-playing_game |
11912.0 | 2.6654282e7 | Games/TradingCard | Collectible_card_game |
11936.0 | 13224.0 | Germany/History | History_of_Germany |
12006.0 | 570227.0 | Godzilla_on_Monster_Island | Godzilla_vs._Gigan |
12085.0 | 7607314.0 | Military_of_Gibraltar | Gibraltar |
12169.0 | 12166.0 | Demographics_of_Guernsey | Guernsey |
12210.0 | 11985.0 | Graffiti_art | Graffiti |
12238.0 | 12024.0 | General_Relativity | General_relativity |
12530.0 | 38579.0 | Gravitational_interaction | Gravity |
12626.0 | 12612.0 | General_Aviation | General_aviation |
12757.0 | 1.8938782e7 | GNU_Free_Documentation_License/Secondary_sections | GNU_Free_Documentation_License |
13170.0 | 11830.0 | GT40 | Ford_GT40 |
13188.0 | 13207.0 | HecTor | Hector |
13368.0 | 51429.0 | HyperReal_numbers | Hyperreal_number |
13500.0 | 2.3191617e7 | Typed_link | Link_relation |
13504.0 | 31353.0 | Hitch_Hikers_Guide_to_the_Galaxy | The_Hitchhiker's_Guide_to_the_Galaxy |
13720.0 | 3.354326e7 | Higher_Criticism. | Historical_criticism |
13745.0 | 14045.0 | Humprey_Bogart | Humphrey_Bogart |
13751.0 | 2.366126e7 | Heterozygote | Zygosity |
13832.0 | 13834.0 | Hello_world | \"Hello,_World!\"_program |
13916.0 | 59701.0 | Harry_Potter/Broom | Broom |
13997.0 | 41821.0 | Hierarchical_tree_structure | Tree_structure |
14044.0 | 13509.0 | Howard_Philips_Lovecraft | H._P._Lovecraft |
14075.0 | 54033.0 | Horse_Breed | List_of_horse_breeds |
14284.0 | 549333.0 | Hemochromatosis | Iron_overload |
14332.0 | 88412.0 | Haenir | Hœnir |
14514.0 | 15049.0 | IndianapolisColts | Indianapolis_Colts |
14525.0 | 194373.0 | Independents | Independent |
14556.0 | 2.2393474e7 | Input/Output_Device | Input/output |
14770.0 | 14727.0 | Military_of_the_Isle_of_Man | Isle_of_Man |
14771.0 | 1.13051e7 | Isle_of_Man/Transnational_issues | External_relations_of_the_Isle_of_Man |
14846.0 | 2.3430752e7 | I.R.S. | Internal_Revenue_Service |
15003.0 | 1.856704e7 | Mental_deficiency | Intellectual_disability |
15026.0 | 19048.0 | Inertial_mass | Mass |
15060.0 | 15059.0 | Isaac_Bonewits_laws_of_magic | Isaac_Bonewits |
15157.0 | 15459.0 | ICD-CM | International_Classification_of_Diseases |
15162.0 | 5144840.0 | Intel_Pentium | Pentium |
15173.0 | 6037917.0 | Islamic | Islam |
15202.0 | 13998.0 | Immediate_subordinate | Hierarchy |
15348.0 | 519280.0 | Intelligent | Intelligence |
15557.0 | 62699.0 | JapanConstitution/ChapterOne | Constitution_of_Japan |
15558.0 | 62699.0 | JapanConstitution/ChapterTwo | Constitution_of_Japan |
15594.0 | 1095706.0 | JesusChrist | Jesus |
15727.0 | 15724.0 | Juan_de_Nova_Island/People | Juan_de_Nova_Island |
15840.0 | 23805.0 | John_Paul_II | Pope_John_Paul_II |
15957.0 | 16509.0 | Jeanne_of_Arc | Joan_of_Arc |
16503.0 | 31411.0 | Jake_McDuck | Clan_McDuck |
16532.0 | 452493.0 | Flow_through_nozzles | De_Laval_nozzle |
16601.0 | 16616.0 | KingCrimson | King_Crimson |
16706.0 | 12235.0 | Kokturks | Göktürks |
16798.0 | 16796.0 | Kuiper_Belt | Kuiper_belt |
16819.0 | 230961.0 | K-12_School | K–12 |
16924.0 | 2.0647197e7 | K56flex | Modem |
17008.0 | 27069.0 | Kierkegaard | Søren_Kierkegaard |
17036.0 | 327489.0 | Kimberley_Classic | Pale_lager |
17074.0 | 17073.0 | Kanchenjuna | Kangchenjunga |
17113.0 | 2201563.0 | Keyed_sequential_data_set | Key_Sequenced_Data_Set |
17223.0 | 379671.0 | K_and_R | The_C_Programming_Language |
17225.0 | 6021.0 | K_and_R_C | C_(programming_language) |
17347.0 | 25927.0 | Kurchatovium | Rutherfordium |
17437.0 | 7953994.0 | Karine_A | Karine_A_affair |
17438.0 | 16959.0 | Katyusha_rockets | Katyusha_rocket_launcher |
17508.0 | 17514.0 | LatviA | Latvia |
17525.0 | 17627.0 | LiberaL | Liberal |
17613.0 | 17615.0 | Lewis_and_Clark | Lewis_and_Clark_Expedition |
17678.0 | 2226.0 | Logical_fallacy/Ad_Hominem | Ad_hominem |
17679.0 | 39057.0 | Logical_fallacy/Straw_Man | Straw_man |
17708.0 | 244629.0 | Law_of_physics | Scientific_law |
17751.0 | 18496.0 | Loveparade | Love_Parade |
17969.0 | 17972.0 | Louis_the_pious | Louis_the_Pious |
18105.0 | 251399.0 | Large-scale_structure_of_the_Cosmos | Observable_universe |
18107.0 | 9767.0 | Lords_Supper | Eucharist |
18174.0 | 12634.0 | List_of_Greek_islands | List_of_islands_of_Greece |
18296.0 | 10972.0 | Loding | Fenrir |
18405.0 | 543568.0 | Lorentz_invariance | Lorentz_covariance |
18502.0 | 18499.0 | Leftists | Left-wing_politics |
18660.0 | 17626.0 | Labour_union | Trade_union |
18741.0 | 18887.0 | MetaPhilosophy | Metaphilosophy |
18746.0 | 18859.0 | MichigaN | Michigan |
18750.0 | 20087.0 | ModularArithmetic | Modular_arithmetic |
18782.0 | 19325.0 | MonIsm | Monism |
18818.0 | 1.3675377e7 | MetaWiki | History_of_wikis |
18827.0 | 18887.0 | Meta-Philosophy | Metaphilosophy |
18860.0 | 19447.0 | MathematicalGroup | Group_(mathematics) |
18944.0 | 4.2796964e7 | Methodological_naturalism | Naturalism_(philosophy) |
19317.0 | 19318.0 | Marylin_Monroe | Marilyn_Monroe |
19335.0 | 19338.0 | Mountain_Range | Mountain_range |
19480.0 | 18866.0 | Macbeth/Act_III_Scene_v | Macbeth |
19685.0 | 2.4698694e7 | Mythology | Myth |
19915.0 | 18984.0 | Mongol | Mongols |
19949.0 | 10585.0 | Mastigophora | Flagellate |
20020.0 | 20640.0 | MacOS_X | MacOS |
20052.0 | 18830.0 | Magic_the_Gathering | Magic:_The_Gathering |
20058.0 | 19999.0 | Microprogram. | Microcode |
20135.0 | 4.3423305e7 | Marines_(disambiguation) | Marine |
20163.0 | 200877.0 | Maze_generation_algorthims | Maze_generation_algorithm |
20382.0 | 8609564.0 | Marsh_USA | Marsh_McLennan |
20409.0 | 20408.0 | Marie_Sklodowska-Curie | Marie_Curie |
20425.0 | 20426.0 | Metonic | Metonic_cycle |
20473.0 | 20474.0 | Mohs_hardness_scale | Mohs_scale_of_mineral_hardness |
20490.0 | 88003.0 | Menstrual | Menstrual_cycle |
20506.0 | 233403.0 | Medieval_siege_weaponry | Siege_engine |
20519.0 | 5643937.0 | Mathematics_of_musical_scales | Music_and_mathematics |
20554.0 | 204504.0 | Millenia | Millennium |
20982.0 | 3189.0 | Minimum_condition | Ascending_chain_condition |
21016.0 | 1.858223e7 | Marsh_Gas | Methane |
21077.0 | 2.615557e7 | NuPedia | Nupedia |
21116.0 | 5.6571945e7 | NASCAR_Championship | NASCAR_Cup_Series |
21126.0 | 8210131.0 | New_York_(U.S._state) | New_York_(state) |
21130.0 | 21211.0 | NFL | National_Football_League |
21528.0 | 5591552.0 | Nintendo_Gameboy | Game_Boy |
21603.0 | 7851.0 | Nuclear_Test_Ban | Comprehensive_Nuclear-Test-Ban_Treaty |
21700.0 | 21699.0 | Ninevah | Nineveh |
21884.0 | 21523.0 | Neural_nets | Artificial_neural_network |
21909.0 | 3.1045316e7 | Nazis | Nazism |
22064.0 | 39807.0 | Nature_versus_nurture_debate | Nature_versus_nurture |
22215.0 | 1.8842359e7 | Oceans | Ocean |
22364.0 | 453372.0 | Object_orientation | Object |
22414.0 | 22362.0 | Ordered_pairs | Ordered_pair |
22432.0 | 22433.0 | Orang_utan | Orangutan |
22502.0 | 3009731.0 | O_Sensei | Sensei |
22521.0 | 72335.0 | Onanism | Onan |
22845.0 | 23486.0 | PhilZimmermann | Phil_Zimmermann |
22857.0 | 24113.0 | PresidentOfTheUnitedStates | President_of_the_United_States |
22884.0 | 7576966.0 | PierreDeFermat | Pierre_de_Fermat |
22917.0 | 23289.0 | Persistence_of_Vision | Persistence_of_vision |
23086.0 | 2.1431937e7 | Poker_equipment | Glossary_of_poker_terms |
23120.0 | 2.4527593e7 | Straight_flush | List_of_poker_hands |
23136.0 | 75691.0 | No_limit_(poker) | Betting_in_poker |
23215.0 | 6675.0 | Political_conservative | Conservatism |
23271.0 | 1583825.0 | Paper,_Scissor,_Stone | Paper,_Scissors,_Stone |
23286.0 | 23005.0 | Philip_K._Dick/The_Galactic_Pot_Healer | Philip_K._Dick |
23455.0 | 23450.0 | Pitcairn_Islands/Economy | Pitcairn_Islands |
23457.0 | 23450.0 | Transportation_on_the_Pitcairn_Islands | Pitcairn_Islands |
23487.0 | 468436.0 | PSTN | Public_switched_telephone_network |
23523.0 | 1368.0 | Programming_language/assembly | Assembly_language |
23581.0 | 23276.0 | Philosophers | Philosopher |
23609.0 | 217578.0 | Phases | Phase |
23993.0 | 1886819.0 | Prelude_In_G_Major | G_major |
24128.0 | 2.7643777e7 | Physics_instrumentation | Measuring_instrument |
24200.0 | 9233734.0 | Parc | PARC |
24299.0 | 24324.0 | PLO | Palestine_Liberation_Organization |
24504.0 | 23745.0 | Pokemon | Pokémon |
24526.0 | 22986.0 | Political | Politics |
24719.0 | 238253.0 | Pornografic_film | Pornographic_film |
25092.0 | 3.3434315e7 | PR_Watch | Center_for_Media_and_Democracy |
25168.0 | 25169.0 | Quentin_Tarrantino | Quentin_Tarantino |
25196.0 | 480513.0 | Cities_of_Qatar | List_of_cities_in_Qatar |
25355.0 | 25410.0 | RhodeIsland | Rhode_Island |
25512.0 | 210339.0 | Rap_music/Bass | Miami_bass |
25627.0 | 86772.0 | History_of_Reunion | Réunion |
25909.0 | 25389.0 | Robert_A_Heinlein | Robert_A._Heinlein |
26070.0 | 28506.0 | Rocket_propulsion | Spacecraft_propulsion |
26087.0 | 1.933731e7 | Rodentia | Rodent |
26120.0 | 25475.0 | Role_playing_game | Role-playing_game |
26165.0 | 9775.0 | Rough_ER | Endoplasmic_reticulum |
26178.0 | 162321.0 | Rest_mass | Invariant_mass |
26258.0 | 26306.0 | RnF | Radon_difluoride |
26528.0 | 7706.0 | Rectangular_coordinate_system | Cartesian_coordinate_system |
26548.0 | 26547.0 | Rugby_Union_Five_Nations_Championship/Results | Six_Nations_Championship |
26623.0 | 27159.0 | SherlockHolmes | Sherlock_Holmes |
26635.0 | 162255.0 | SwingDance | Swing_(dance) |
26636.0 | 26787.0 | ScienceFiction | Science_fiction |
26729.0 | 63780.0 | Sporangia | Sporangium |
26778.0 | 26915.0 | SapirWhorfHypothesis | Linguistic_relativity |
26796.0 | 1.7157886e7 | StarTrek | Star_Trek |
26801.0 | 2.8222625e7 | Sega_hardware | Sega |
27030.0 | 27022.0 | South_Korea/Language | Demographics_of_South_Korea |
27039.0 | 191302.0 | Swedish_municipality | Municipalities_of_Sweden |
27780.0 | 27616.0 | Sun/Sunspot | Sunspot |
27938.0 | 27939.0 | Stockholm/history | History_of_Stockholm |
27966.0 | 11041.0 | Saussure,_Ferdinand_de | Ferdinand_de_Saussure |
27974.0 | 43948.0 | Star_Formation | Star_formation |
28124.0 | 30644.0 | Stranglers/Golden_Brown | Golden_Brown |
28298.0 | 30320.0 | The_Strand_(Band) | Sex_Pistols |
28315.0 | 28314.0 | SNES | Super_Nintendo_Entertainment_System |
28331.0 | 894164.0 | Stubs | Stub |
28346.0 | 59173.0 | Superego | Id,_ego_and_super-ego |
28497.0 | 3.3103292e7 | Sputnik_program | List_of_spacecraft_called_Sputnik |
28836.0 | 28837.0 | Siege_towers | Siege_tower |
28883.0 | 41676.0 | Saturated | Saturation |
28905.0 | 1708335.0 | Sanger_method | Sanger_sequencing |
29061.0 | 5564386.0 | Suffix_morpheme | Suffix |
29117.0 | 14337.0 | Sexual_practices | Human_sexual_activity |
29194.0 | 13861.0 | Southamptonshire | Hampshire |
29220.0 | 29219.0 | Stone_age | Stone_Age |
29225.0 | 1.1993966e7 | Schnorkel | Submarine_snorkel |
29566.0 | 11757.0 | Sacramento_class_support_ship | Fast_combat_support_ship |
29653.0 | 29660.0 | State_Terrorism | State_terrorism |
29714.0 | 9302.0 | TheExistenceOfPhysicalObjects | Existence |
29719.0 | 30104.0 | TheProblemOfEvil | Problem_of_evil |
29744.0 | 29932.0 | The_Origin_of_Species/Chapter_10 | On_the_Origin_of_Species |
29746.0 | 29932.0 | The_Origin_of_Species/Chapter_12 | On_the_Origin_of_Species |
29791.0 | 24022.0 | Therapy/Physical | Physical_therapy |
29894.0 | 292279.0 | The_Simpsons/Elizabeth_Hoover | List_of_recurring_The_Simpsons_characters |
29997.0 | 1338.0 | The_Americans_with_Disabilites_Act_of_1990/Definitions | Americans_with_Disabilities_Act_of_1990 |
30105.0 | 1.5247542e7 | The_rationality_of_atheism | Atheism |
30183.0 | 30178.0 | Tromelin_Island/Economy | Tromelin_Island |
30218.0 | 642023.0 | Turks_and_Caicos_Islands/History | History_of_the_Turks_and_Caicos_Islands |
30219.0 | 30217.0 | Turks_and_Caicos_Islands/Geography | Turks_and_Caicos_Islands |
30238.0 | 1.1081176e7 | Mind-body_problem | Mind–body_problem |
30438.0 | 30439.0 | Totalitarian | Totalitarianism |
30626.0 | 34558.0 | Twentieth_Century | 20th_century |
30880.0 | 182444.0 | Thermoplasticity | Thermoplastic |
30970.0 | 923188.0 | The_play | Play |
31254.0 | 77634.0 | The_Junior_Woodchucks | Junior_Woodchucks |
31345.0 | 6896054.0 | Tabulating_Computing_Recording_Corporation | Computing-Tabulating-Recording_Company |
31380.0 | 49508.0 | The_Valkyrie | Die_Walküre |
31689.0 | 32022.0 | United_States/Economy | Economy_of_the_United_States |
31694.0 | 1.8618239e7 | United_States/States | U.S._state |
31763.0 | 4738483.0 | Delegates_of_American_Samoa_to_the_United_States_Congress | American_Samoa's_at-large_congressional_district |
31873.0 | 3434750.0 | USA | United_States |
31912.0 | 31641.0 | UseMod | UseModWiki |
31951.0 | 5741224.0 | Alternative_words_for_American | Demonyms_for_the_United_States |
31987.0 | 2.343106e7 | UCS-16 | Universal_Coded_Character_Set |
32102.0 | 31737.0 | U.S._Supreme_Court | Supreme_Court_of_the_United_States |
32109.0 | 54412.0 | Unicycling | Unicycle |
32246.0 | 1.7349325e7 | US_Marines | United_States_Marine_Corps |
32309.0 | 957.0 | Umbelliferae | Apiaceae |
32670.0 | 32669.0 | Vodun | West_African_Vodun |
32672.0 | 28736.0 | Velocity_of_light | Speed_of_light |
32860.0 | 4764461.0 | WorldWarOne | World_War_I |
32866.0 | 32908.0 | WarsaW | Warsaw |
32871.0 | 5042765.0 | WhatIsGod | God |
33141.0 | 33139.0 | World_wide_web | World_Wide_Web |
33197.0 | 33189.0 | Military_of_Wake_Island | Wake_Island |
33200.0 | 33199.0 | History_of_Wallis_and_Futuna | Wallis_and_Futuna |
33437.0 | 2.0541773e7 | Wind_generator | Wind_turbine |
33484.0 | 6669354.0 | Worms/Full_Wormage | Worms_(1995_video_game) |
34029.0 | 6669354.0 | Worms_computer_games/Roper | Worms_(1995_video_game) |
34509.0 | 9810476.0 | Zombie_(folklore) | Zombie |
35536.0 | 11378.0 | 1_Corinthians | First_Epistle_to_the_Corinthians |
35554.0 | 202611.0 | 3100_BC | 31st_century_BC |
35571.0 | 42682.0 | 1674_BC | 1670s_BC |
35626.0 | 30964.0 | 3_John | Third_Epistle_of_John |
35947.0 | 203673.0 | 1_E+10_m² | Orders_of_magnitude_(area) |
35950.0 | 203673.0 | 1_E+12_m² | Orders_of_magnitude_(area) |
35951.0 | 203673.0 | 1_E+7_m² | Orders_of_magnitude_(area) |
35982.0 | 203433.0 | 1_metre | Orders_of_magnitude_(length) |
35988.0 | 203433.0 | 1e5_m | Orders_of_magnitude_(length) |
36074.0 | 203433.0 | 1_micrometre | Orders_of_magnitude_(length) |
36100.0 | 203451.0 | 1_E-43_s | Orders_of_magnitude_(time) |
36106.0 | 203451.0 | 1_E38_s | Orders_of_magnitude_(time) |
36108.0 | 203451.0 | 1_E14_s | Orders_of_magnitude_(time) |
36143.0 | 26873.0 | 1_E7_s | Second |
36154.0 | 36156.0 | 1_E-4_s | Microsecond |
36155.0 | 36156.0 | 1_E-5_s | Microsecond |
36222.0 | 4940.0 | List_of_20th_century_brass_instrumentalists | Brass_instrument |
36580.0 | 104909.0 | Dauphin_Island | Dauphin_Island,_Alabama |
36706.0 | 8718425.0 | Circumsission | Circumcision |
36709.0 | 18271.0 | Lamberghini | Lamborghini |
36846.0 | 36845.0 | Jean_Henri_Dunant | Henry_Dunant |
36966.0 | 30983.0 | Testerone | Testosterone |
37006.0 | 2667451.0 | Sorcerers_apprentice_mode | Sorcerer's_Apprentice_Syndrome |
37116.0 | 31898.0 | UNFCCC | United_Nations_Framework_Convention_on_Climate_Change |
37195.0 | 71949.0 | Tok_Pisin_language | Tok_Pisin |
37210.0 | 3679017.0 | Shichi_Narabe | Domino_(card_game) |
37215.0 | 76029.0 | Duckburg | Donald_Duck_universe |
37251.0 | 37287.0 | Scooby_Doo | Scooby-Doo |
37343.0 | 3.7980916e7 | Monarchist | Monarchism |
37372.0 | 220872.0 | Diez_y_Seis_de_Septiembre | Cry_of_Dolores |
37415.0 | 34341.0 | Years | Year |
37482.0 | 64083.0 | Junkfood | Junk_food |
37497.0 | 37496.0 | Englishman's_knot | Fisherman's_knot |
37498.0 | 37496.0 | Waterman's_knot | Fisherman's_knot |
37679.0 | 26847.0 | Socialist | Socialism |
37705.0 | 2.1566765e7 | South_Asian_History | South_Asia |
37768.0 | 37767.0 | Badge_collecting | Patch_collecting |
37788.0 | 1.8932365e7 | Bono_Act | Copyright_Term_Extension_Act |
37790.0 | 1.8932365e7 | CTEA | Copyright_Term_Extension_Act |
37818.0 | 5314.0 | Charlimagne | Charlemagne |
37820.0 | 5314.0 | Charlamaine | Charlemagne |
38004.0 | 32817.0 | Vladimir_V._Putin | Vladimir_Putin |
38111.0 | 18934.0 | Prophet_Muhammad | Muhammad |
38146.0 | 38145.0 | LANL | Los_Alamos_National_Laboratory |
38159.0 | 4087869.0 | Radlab | Rad_Lab |
38220.0 | 38214.0 | The_Illuminatus_Trilogy | The_Illuminatus!_Trilogy |
38395.0 | 30359.0 | Tiber_river | Tiber |
38451.0 | 39378.0 | Distances | Distance |
38456.0 | 23195.0 | Crude_oil | Petroleum |
38544.0 | 32037.0 | Ursula_LeGuin | Ursula_K._Le_Guin |
38562.0 | 2.8469166e7 | H_Bar | H-bar |
38621.0 | 663861.0 | Private_IP_address | Private_network |
38704.0 | 11457.0 | Beato_Angelico | Fra_Angelico |
38758.0 | 82898.0 | Dolby_AC-3 | Dolby_Digital |
38806.0 | 38826.0 | Wenceslas_IV_the_Drunkard | Wenceslaus_IV_of_Bohemia |
38850.0 | 6099.0 | Carboxyl_group | Carboxylic_acid |
38928.0 | 248189.0 | Gaia_Hypothesis | Gaia_hypothesis |
38946.0 | 540154.0 | Banana,_Congo | Banana,_Democratic_Republic_of_the_Congo |
38991.0 | 203433.0 | 1e25_m | Orders_of_magnitude_(length) |
39016.0 | 4477.0 | Beach_Boys | The_Beach_Boys |
39037.0 | 43125.0 | Dowding | Hugh_Dowding |
39067.0 | 231495.0 | Coherent | Coherence |
39121.0 | 67762.0 | Holy_Innocents | Massacre_of_the_Innocents |
39153.0 | 217373.0 | Miljopartiet | Green_Party_(Sweden) |
39161.0 | 21289.0 | Nautical_miles | Nautical_mile |
39167.0 | 9843028.0 | Arms_(disambiguation) | Arms |
39259.0 | 5.6538779e7 | Henry_Mustin | Henry_C._Mustin |
39433.0 | 39432.0 | Stephen_A._Cook | Stephen_Cook |
39513.0 | 1.4944095e7 | 1345_(summary) | 1345 |
39671.0 | 39669.0 | Dengue_hemorrhagic_fever | Dengue_fever |
39716.0 | 39715.0 | Fertile_crescent | Fertile_Crescent |
39788.0 | 27931.0 | Pretty_Soldier_Sailor_Moon | Sailor_Moon |
39827.0 | 39825.0 | Project_Matterhorn | Princeton_Plasma_Physics_Laboratory |
39867.0 | 2756109.0 | Petrus_peregrinus | Petrus_Peregrinus_de_Maricourt |
40391.0 | 9707.0 | Pauling_scale | Electronegativity |
40496.0 | 60970.0 | Londons | London_(disambiguation) |
40585.0 | 33291.0 | WYSIAYG | WYSIWYG |
40736.0 | 41586.0 | Attenuation_constant | Propagation_constant |
40739.0 | 4011838.0 | Audible_ringing_tone | Ringing_tone |
40824.0 | 6968491.0 | Busy_hour | Busy-hour_call_attempts |
40889.0 | 7143.0 | Code-division | Code-division_multiple_access |
40945.0 | 5258912.0 | Conductive_coupling | Direct_coupling |
41006.0 | 234654.0 | Decollimation | Collimated_beam |
41011.0 | 41296.0 | Dejitterizer | Jitter |
41065.0 | 4254345.0 | Doubly_clad_fiber | Double-clad_fiber |
41114.0 | 3055674.0 | Equilibrium_length | Equilibrium_mode_distribution |
41141.0 | 271708.0 | Far-field_region | Near_and_far_field |
41399.0 | 25767.0 | Near_real-time | Real-time_computing |
41575.0 | 41107.0 | Pre-emphasis_network | Emphasis_(telecommunications) |
41647.0 | 41176.0 | Reframing_time | Frame_synchronization |
41704.0 | 202094.0 | Signal_processing_gain | Process_gain |
41738.0 | 1.8675102e7 | Standard_test_tone | Reference_tone |
41751.0 | 604831.0 | Store-and-forward_switching_center | Store_and_forward |
41768.0 | 28738.0 | Synchronizing | Synchronization |
41772.0 | 573528.0 | System_lifecycle | Systems_development_life_cycle |
41780.0 | 15476.0 | TCP/IP_Suite | Internet_protocol_suite |
41788.0 | 182745.0 | Thermal_noise | Johnson–Nyquist_noise |
41814.0 | 3.6254613e7 | Transmit_flow_control | Flow_control |
41838.0 | 2103451.0 | UPT_environment | Universal_Personal_Telecommunications |
41911.0 | 1177329.0 | Second_market | Secondary_market |
42033.0 | 26743.0 | Freudian | Sigmund_Freud |
42102.0 | 4764461.0 | 1st_World_War | World_War_I |
42119.0 | 42120.0 | Ras_Tafari | Haile_Selassie |
42129.0 | 7490861.0 | Tape_storage | Magnetic-tape_data_storage |
42381.0 | 42380.0 | Pennywhistle | Tin_whistle |
42430.0 | 1920222.0 | Electric_fencing | Electric_fence |
42533.0 | 1.8934701e7 | History_of_Bouvet_Island | Bouvet_Island |
42589.0 | 1.0518745e7 | Capet-Anjou | Capetian_House_of_Anjou |
42666.0 | 1.3108745e7 | Zerg | Races_of_StarCraft |
42733.0 | 53160.0 | Q_ship | Q-ship |
42824.0 | 2251.0 | Accusative | Accusative_case |
42988.0 | 2.3141006e7 | Orcs | Orc |
43072.0 | 4750452.0 | Umlauts | Umlaut |
43212.0 | 378598.0 | Urochordata | Tunicate |
43239.0 | 1.1604567e7 | 2001_U.S._Attack_on_the_Taliban/Timeline_January_2002 | 2002_in_Afghanistan |
43286.0 | 43284.0 | Java_RMI | Java_remote_method_invocation |
43302.0 | 287939.0 | Rogue-o-matic | Rog-O-Matic |
43419.0 | 44828.0 | Roman_hills | Seven_hills_of_Rome |
43458.0 | 491301.0 | Jin_dynasty | Jin |
43588.0 | 43589.0 | Fluorspar | Fluorite |
43891.0 | 203875.0 | 1_E-14_kg | Orders_of_magnitude_(mass) |
43943.0 | 43942.0 | Petri-dish | Petri_dish |
43953.0 | 2.7104735e7 | Speed_trap | Speed_limit_enforcement |
44111.0 | 1.0743994e7 | Foley_artist | Foley_(filmmaking) |
44123.0 | 42975.0 | Hubble_Constant | Hubble's_law |
44141.0 | 6.0160417e7 | Medieval_Climate_Optimum | Medieval_Warm_Period |
44407.0 | 44406.0 | Zarathushtra | Zoroaster |
44522.0 | 58439.0 | Transformational-Generative_Grammar | Transformational_grammar |
44595.0 | 2.1504235e7 | Actors_and_actresses | Actor |
44913.0 | 8504.0 | Dublin,_Ireland | Dublin |
44964.0 | 2815865.0 | Thwaites_Ice_Tongue | Thwaites_Glacier |
45011.0 | 2.1347057e7 | UNIX-like | Unix-like |
45054.0 | 18081.0 | Liverpudlian | Liverpool |
45111.0 | 42686.0 | 1606_BC | 1600s_BC_(decade) |
45151.0 | 144144.0 | Curly_brace_family | List_of_programming_languages_by_type |
45215.0 | 26791.0 | Satirical | Satire |
45398.0 | 3157936.0 | Australopethicines | Australopithecine |
45615.0 | 247725.0 | Augustus_III | Augustus_III_of_Poland |
45731.0 | 18947.0 | Meters | Metre |
45781.0 | 37803.0 | Cubist | Cubism |
46011.0 | 6784.0 | Citizen | Citizenship |
46166.0 | 38404.0 | Classless_routing | Classless_Inter-Domain_Routing |
46420.0 | 2.2228064e7 | Parkinson's_Disease | Parkinson's_disease |
46448.0 | 870329.0 | War_and_Peace_in_Russia,_1796-1825 | History_of_Russia_(1796–1855) |
46491.0 | 570856.0 | Hippocratic_corpus | Hippocratic_Corpus |
46506.0 | 849.0 | Heavier_than_air_flight | Aircraft |
46546.0 | 468436.0 | Public_Switched_Telephone_network | Public_switched_telephone_network |
46579.0 | 22468.0 | Usama_bin_laden | Osama_bin_Laden |
46586.0 | 22468.0 | Usama_Binladin | Osama_bin_Laden |
46685.0 | 870354.0 | Russian_Foreign_Affairs_after_the_Crimean_War | History_of_Russia_(1855–1892) |
46708.0 | 850127.0 | List_of_Senators_and_Representatives_of_Ohio | United_States_congressional_delegations_from_Ohio |
46739.0 | 46704.0 | CBTPA | Consumer_Broadband_and_Digital_Television_Promotion_Act |
46781.0 | 2776501.0 | Optical_astronomy | Visible-light_astronomy |
46801.0 | 46795.0 | Mono_lake | Mono_Lake |
46887.0 | 46884.0 | Japanese-American_relocation | Internment_of_Japanese_Americans |
46952.0 | 31975.0 | US_State_Department | United_States_Department_of_State |
46974.0 | 1.9344515e7 | Guardian_newspaper | The_Guardian |
47097.0 | 2376155.0 | Unknown_DJ | The_Unknown_DJ |
47116.0 | 16890.0 | NuqneH | Klingon_language |
47231.0 | 2396933.0 | Lares_(Roman_deities) | Lares |
47238.0 | 47235.0 | Psyche_(asteroid) | 16_Psyche |
47250.0 | 1.9003265e7 | Planet_Neptune | Neptune |
47252.0 | 44469.0 | Planet_Pluto | Pluto |
47268.0 | 3007285.0 | Navaho | Navajo |
47283.0 | 910926.0 | Topological_subspace | Subspace_topology |
47302.0 | 158974.0 | Stock_brokers | Stockbroker |
47457.0 | 31990.0 | Ultraviolet_energy | Ultraviolet |
47573.0 | 53782.0 | Mackinaw_trout | Lake_trout |
47597.0 | 3338.0 | Bronx_County,_New_York | The_Bronx |
47655.0 | 45207.0 | Satellite_communications | Communications_satellite |
47664.0 | 102671.0 | Dassault | Dassault_Group |
47666.0 | 200128.0 | BAe_Systems | BAE_Systems |
47753.0 | 47752.0 | Domesday_book | Domesday_Book |
47983.0 | 12448.0 | Ganges_river | Ganges |
47987.0 | 155534.0 | ARP | Arp |
47989.0 | 12293.0 | Graphical_Computer | Graphical_user_interface |
48174.0 | 30731.0 | Argument_from_design | Teleological_argument |
48206.0 | 233403.0 | Medieval_siege_weapon | Siege_engine |
48254.0 | 6172.0 | Cantor_dust | Cantor_set |
48599.0 | 554469.0 | Rock_strata | Stratum |
48659.0 | 1.2800642e7 | Skunk_Weed | Skunk_weed |
48871.0 | 48863.0 | Freshwater_sunfish | Centrarchidae |
48942.0 | 2.3994165e7 | Retrograde_orbit | Retrograde_and_prograde_motion |
49094.0 | 133295.0 | Tactical_Shooter | Tactical_shooter |
49101.0 | 34199.0 | Chinese_chess | Xiangqi |
49182.0 | 26514.0 | Roald_Hoffman | Roald_Hoffmann |
49267.0 | 3942.0 | Bijective | Bijection |
49429.0 | 330206.0 | Differentiable | Differentiable_function |
49442.0 | 866991.0 | Grand_conjunction | Great_conjunction |
49712.0 | 41551.0 | Quadrature_phase-shift_keying | Phase-shift_keying |
49713.0 | 29048.0 | Single-sideband_emission | Single-sideband_modulation |
49807.0 | 1242956.0 | Gross_national_product_(finance) | Gross_national_income |
49809.0 | 36218.0 | 2010_-_Odyssey_Two | 2010:_Odyssey_Two |
49869.0 | 4.0124159e7 | Umayad_dynasty | Umayyad_dynasty |
49963.0 | 50637.0 | Giant_redwood | Sequoiadendron_giganteum |
50155.0 | 4.1249202e7 | Italian_Red_Brigade | Red_Brigades |
50320.0 | 1.5092842e7 | Credit_money | Credit_theory_of_money |
50343.0 | 3.0865437e7 | Ranching | Ranch |
50359.0 | 2.5454239e7 | Masculinism | Masculism |
50417.0 | 15532.0 | Integral_calculus | Integral |
50483.0 | 70117.0 | Flood_plain | Floodplain |
50546.0 | 2.7310655e7 | Card_Captor_Sakura | Cardcaptor_Sakura |
50792.0 | 50795.0 | TIE_Advanced | TIE_fighter |
50954.0 | 26428.0 | Rosetta_stone | Rosetta_Stone |
51071.0 | 101336.0 | High-temperature_superconductor | High-temperature_superconductivity |
51214.0 | 188773.0 | Offroad_cycling | Mountain_biking |
51321.0 | 37699.0 | East_Asian_history | History_of_East_Asia |
51373.0 | 51563.0 | The_Luzhin_Defense | The_Luzhin_Defence |
51415.0 | 41997.0 | Twin_prime_conjecture | Twin_prime |
51501.0 | 1.3915586e7 | Rolling_barrage | Barrage_(artillery) |
51536.0 | 7016168.0 | IBM_Token_ring | Token_Ring |
51571.0 | 50347.0 | Multivariate_gaussian_distribution | Multivariate_normal_distribution |
51750.0 | 51758.0 | Terceet | Tercet |
51820.0 | 51822.0 | Allegany_River | Allegheny_River |
51979.0 | 34276.0 | October_war | Yom_Kippur_War |
51994.0 | 31627.0 | Dorpat | Tartu |
52195.0 | 49710.0 | 2120s_BC | 22nd_century_BC |
52218.0 | 3.1195579e7 | TGZ_(disambiguation) | TGZ |
52297.0 | 9736652.0 | Temporal_masking | Auditory_masking |
52559.0 | 33833.0 | W_Quine | Willard_Van_Orman_Quine |
52573.0 | 19738.0 | Metrisable_space | Metrizable_space |
52643.0 | 52642.0 | Van_de_Graff_generator | Van_de_Graaff_generator |
52670.0 | 47646.0 | Hippy | Hippie |
52697.0 | 7530.0 | Cro-Hook | Cro-hook |
52712.0 | 52711.0 | Leonardo_di_Caprio | Leonardo_DiCaprio |
52829.0 | 8769.0 | Dutch_west_india_company | Dutch_West_India_Company |
52984.0 | 52983.0 | Hot_sand_frying | Hot_salt_frying |
53158.0 | 3609782.0 | Naval_warfare_tactic | Naval_tactics |
53168.0 | 29475.0 | S-3_viking | Lockheed_S-3_Viking |
53172.0 | 188641.0 | Green_movement | Green_politics |
53381.0 | 3684625.0 | Periods_of_architecture | History_of_architecture |
53449.0 | 495383.0 | Probabalistic_algorithm | Randomized_algorithm |
53845.0 | 2936.0 | Alaskan_Panhandle | Southeast_Alaska |
53871.0 | 53869.0 | Wa-Tho-Huck | Jim_Thorpe |
53872.0 | 53869.0 | Bright_Path | Jim_Thorpe |
53957.0 | 34625.0 | Fourteenth_Century | 14th_century |
53963.0 | 1.8938115e7 | Twenty-first_Century | 21st_century |
53969.0 | 16227.0 | Jerome_David_Kern | Jerome_Kern |
53976.0 | 3010.0 | Alan_Lerner | Alan_Jay_Lerner |
54046.0 | 167109.0 | Bramble_fruit | Bramble |
54264.0 | 4372722.0 | Peoples_Republic_of_China/History | History_of_the_People's_Republic_of_China |
54272.0 | 37770.0 | Sevilla | Seville |
54282.0 | 34002.0 | William_ODwyer | William_O'Dwyer |
54321.0 | 16774.0 | Karl_Donitz | Karl_Dönitz |
54624.0 | 20270.0 | MC68000 | Motorola_68000 |
54642.0 | 8166749.0 | Gas-electric_hybrid_engine | Hybrid_electric_vehicle |
54823.0 | 27085.0 | Star_Trek/Chakotay | Chakotay |
54844.0 | 27075.0 | Star_Trek/ENT_Episode_List | List_of_Star_Trek:_Enterprise_episodes |
54880.0 | 4.4946818e7 | Wu_Hu_barbarians | Wu_Hu |
54984.0 | 54980.0 | Adirondack_mountain | Adirondack_Mountains |
55035.0 | 763392.0 | Battle_of_red_Cliffs | Battle_of_Red_Cliffs |
55131.0 | 18390.0 | Lavrentii_Beria | Lavrentiy_Beria |
55197.0 | 55196.0 | Adula_Alps | Lepontine_Alps |
55198.0 | 1185102.0 | The_Alps_of_Bavaria,_the_Vorarlberg,_and_Salzburg | Northern_Limestone_Alps |
55219.0 | 2.1591425e7 | Modified_Newtonian_Dynamics | Modified_Newtonian_dynamics |
55237.0 | 55236.0 | Compton_effect | Compton_scattering |
55272.0 | 9421.0 | Helsingor | Helsingør |
55398.0 | 1010280.0 | Disk_file_systems | File_system |
55547.0 | 55546.0 | Hawley-Smoot_Tariff | Smoot–Hawley_Tariff_Act |
55550.0 | 55556.0 | Humphrey_Hawkins_Full_Employment_Act | Humphrey–Hawkins_Full_Employment_Act |
55647.0 | 54481.0 | Apron_shoulder_straps | Apron |
55701.0 | 55546.0 | Smoot-Hawley_tariff | Smoot–Hawley_Tariff_Act |
55704.0 | 55706.0 | Dick_Whittington | Richard_Whittington |
55748.0 | 1615034.0 | Underwood_Tariff | Revenue_Act_of_1913 |
55863.0 | 55856.0 | Linz,_Austria | Linz |
55879.0 | 19058.0 | Munich,_Germany | Munich |
56022.0 | 5702.0 | The_Chunnel | Channel_Tunnel |
56204.0 | 1571082.0 | Cat_bus | Catbus |
56211.0 | 1.9283913e7 | Poverty_line_in_the_United_States | Poverty_in_the_United_States |
56281.0 | 1.8950885e7 | BBC_Microcomputer | BBC_Micro |
56297.0 | 21287.0 | Nuremberg,_Germany | Nuremberg |
56337.0 | 53949.0 | Colobus_monkey | Black-and-white_colobus |
56351.0 | 626718.0 | Yoga_Sutras | Yoga_Sutras_of_Patanjali |
56387.0 | 54943.0 | Cultural_relativsm | Cultural_relativism |
56468.0 | 17867.0 | London,_United_Kingdom | London |
56490.0 | 1021884.0 | Örnsköldsvik,_Sweden | Örnsköldsvik |
56493.0 | 1.8950508e7 | Aalesund | Ålesund |
56496.0 | 56495.0 | Bergen,_Belgium | Mons |
56640.0 | 27414.0 | Sri_Lanka/Government | Politics_of_Sri_Lanka |
56674.0 | 30112.0 | Tajikistan/Government | Politics_of_Tajikistan |
56687.0 | 56680.0 | Harare,_Zimbabwe | Harare |
56741.0 | 33225.0 | Western_Sahara/Economy | Economy_of_Western_Sahara |
56768.0 | 33189.0 | Wake_Island/People | Wake_Island |
56769.0 | 33189.0 | Wake_Island/Geography | Wake_Island |
56781.0 | 32135.0 | U.S._Virgin_Islands/Military | United_States_Virgin_Islands |
56840.0 | 56622.0 | Basseterre,_Saint_Kitts_and_Nevis | Basseterre |
57039.0 | 57040.0 | Malé,_Maldives | Malé |
57058.0 | 57061.0 | Niamey,_Niger | Niamey |
57100.0 | 19242.0 | Moldova/Geography | Geography_of_Moldova |
57126.0 | 21344.0 | New_Caledonia/Geography | Geography_of_New_Caledonia |
57133.0 | 19283.0 | Montserrat/Geography | Geography_of_Montserrat |
57178.0 | 19356.0 | Psychiatric_disorder | Mental_disorder |
57202.0 | 34743.0 | Third_Century | 3rd_century |
57271.0 | 3682.0 | Burkina_Faso/Transportation | Transport_in_Burkina_Faso |
57278.0 | 2589714.0 | Milky_Way_galaxy | Milky_Way |
57298.0 | 30143.0 | Togo/Economy | Economy_of_Togo |
57306.0 | 69593.0 | Gambia/Economy | Economy_of_the_Gambia |
57436.0 | 14676.0 | Ireland/People | Demographics_of_the_Republic_of_Ireland |
57464.0 | 11812.0 | F-35 | Lockheed_Martin_F-35_Lightning_II |
57566.0 | 37368.0 | RQ-1_Predator_UAV | General_Atomics_MQ-1_Predator |
57693.0 | 5750.0 | Cognitive_behaviour_therapy | Cognitive_behavioral_therapy |
57752.0 | 57762.0 | Psychiatric_drug | Psychiatric_medication |
57754.0 | 4531.0 | Bi-polar_disorder | Bipolar_disorder |
57786.0 | 1721361.0 | Stevedore's_knot | Stevedore_knot |
57919.0 | 2.8030968e7 | Q_Gospel | Q_source |
57984.0 | 681745.0 | Hawaiian_people | Native_Hawaiians |
58054.0 | 4143721.0 | Kentucky_counties | List_of_counties_in_Kentucky |
58082.0 | 10669.0 | Famous_football_player | Football_player |
58125.0 | 1.6285821e7 | United_Kingdom/Basic_Topics | Outline_of_the_United_Kingdom |
58196.0 | 51550.0 | Zip_code | ZIP_Code |
58431.0 | 1.8024177e7 | Retro-choir | Retroquire |
58513.0 | 2.3139208e7 | Middle-Earth | Middle-earth |
58718.0 | 1.3336661e7 | Presidant | President |
58850.0 | 22148.0 | Niccolo_Tartaglia | Niccolò_Fontana_Tartaglia |
58853.0 | 170104.0 | Juniperus | Juniper |
58876.0 | 727401.0 | Don_Manuel_Ruiz_Zorilla | Manuel_Ruiz_Zorrilla |
58905.0 | 203548.0 | Frailing | Clawhammer |
58914.0 | 26347.0 | Soviet_submarine_K-141 | Russian_submarine_Kursk_(K-141) |
58985.0 | 1528346.0 | Totally_bounded | Totally_bounded_space |
59081.0 | 59076.0 | U-553 | German_submarine_U-553 |
59086.0 | 1.0454705e7 | U-155 | German_submarine_U-155 |
59142.0 | 59352.0 | Solidus_(punctuation) | Slash_(punctuation) |
59178.0 | 29452.0 | Staatsicherheit | Stasi |
59345.0 | 2664203.0 | Period_(rhetoric) | Periodic_sentence |
59460.0 | 59465.0 | Lord_Jeffrey_Amherst | Jeffery_Amherst,_1st_Baron_Amherst |
59487.0 | 53254.0 | Nuragici_people | History_of_Sardinia |
59496.0 | 59483.0 | Carl_Scheele | Carl_Wilhelm_Scheele |
59522.0 | 2.7716891e7 | Hom-set | Morphism |
59547.0 | 59405.0 | Coterminal | Initial_and_terminal_objects |
59555.0 | 60635.0 | Oral_glucose_tolerance_test | Glucose_tolerance_test |
59562.0 | 320733.0 | Impedance_mismatch | Impedance_matching |
59647.0 | 1.7322723e7 | Pornographic_actress | Pornographic_film_actor |
59663.0 | 63578.0 | Terrorist_group | List_of_designated_terrorist_groups |
59667.0 | 10013.0 | Evidence_based_medicine | Evidence-based_medicine |
59724.0 | 1.8963787e7 | Cation | Ion |
59754.0 | 59748.0 | The_Bored_of_the_Rings | Bored_of_the_Rings |
59838.0 | 83516.0 | Robert_Heinlein/Universe | Orphans_of_the_Sky |
59839.0 | 83516.0 | Universe_(short_story_by_Robert_Heinlein) | Orphans_of_the_Sky |
59878.0 | 59877.0 | Molar_gas_constant | Gas_constant |
59910.0 | 50744.0 | Star_Wars,_Episode_VI_-_Return_of_the_Jedi | Return_of_the_Jedi |
60055.0 | 60056.0 | Mission_Santa_Bárbara | Mission_Santa_Barbara |
60081.0 | 60082.0 | Mission_San_Rafael_Arcangel | Mission_San_Rafael_Arcángel |
60243.0 | 411523.0 | Triton_VX | List_of_Intel_chipsets |
60276.0 | 348300.0 | Personal_video_recorder | Digital_video_recorder |
60277.0 | 251485.0 | Battle_of_the_Ironclads | Battle_of_Hampton_Roads |
60382.0 | 1.1519542e7 | A_Sharp | A-sharp |
60474.0 | 78261.0 | Asynchronous_Balanced_Mode | High-Level_Data_Link_Control |
60623.0 | 20155.0 | Marcus_Aurelius_Antoninus | Marcus_Aurelius |
60683.0 | 63392.0 | Reality_enforcement | Consensus_reality |
60718.0 | 203875.0 | 1_E-21_kg | Orders_of_magnitude_(mass) |
60769.0 | 60766.0 | Tractricoid | Pseudosphere |
60853.0 | 45063.0 | Abelian_categories | Abelian_category |
60893.0 | 3.6026428e7 | Realist | Realism |
61242.0 | 34740.0 | Eighth_century | 8th_century |
61250.0 | 34644.0 | Twelveth_century | 12th_century |
61330.0 | 1842.0 | Augustin_Cauchy | Augustin-Louis_Cauchy |
61449.0 | 21383.0 | Federal_Republic_of_Nigeria | Nigeria |
61453.0 | 27288.0 | Republic_of_Seychelles | Seychelles |
61477.0 | 61476.0 | Convergence_radius | Radius_of_convergence |
62015.0 | 9072.0 | Jacques_Louis_David | Jacques-Louis_David |
62150.0 | 2089569.0 | Mare's_tail | Marestail |
62434.0 | 18831.0 | Mathematical | Mathematics |
62478.0 | 37998.0 | Francois_Mitterand | François_Mitterrand |
62562.0 | 464082.0 | Theodebald | Theudebald |
62606.0 | 66789.0 | Alfonso_X | Alfonso_X_of_Castile |
62752.0 | 18538.0 | Lansing | Lansing,_Michigan |
62771.0 | 62743.0 | 1400_BC | 1400s_BC_(decade) |
62780.0 | 39248.0 | Colimit | Limit_(category_theory) |
62791.0 | 33265.0 | Winston_churchhill | Winston_Churchill |
62880.0 | 15221.0 | 80188 | Intel_80188 |
62989.0 | 2023036.0 | John_the_Divine | John_of_Patmos |
63066.0 | 13259.0 | Startsida | Home_page |
63111.0 | 9272073.0 | Stock_option | Option_(finance) |
63152.0 | 6322.0 | Conuropsis | Carolina_parakeet |
63220.0 | 63879.0 | IPO | Initial_public_offering |
63255.0 | 19496.0 | Mah_Jong | Mahjong |
63345.0 | 29294.0 | S/360 | IBM_System/360 |
63346.0 | 40642.0 | NeXTStep | NeXTSTEP |
63592.0 | 2110202.0 | Tsarina_Alexandra | Alexandra_Feodorovna |
63696.0 | 19042.0 | Metals | Metal |
63964.0 | 2068329.0 | Athelas | List_of_fictional_plants |
64021.0 | 64020.0 | Multiprocessor | Multiprocessing |
64121.0 | 64087.0 | Type_designer | Type_design |
64166.0 | 16710.0 | 10_kroner | Krone |
64170.0 | 16710.0 | 10_krones | Krone |
64230.0 | 42120.0 | Haile_Sellassie | Haile_Selassie |
64536.0 | 19222.0 | Mexico/History | History_of_Mexico |
64550.0 | 3610.0 | Bosnia_and_Herzegovina/Military | Armed_Forces_of_Bosnia_and_Herzegovina |
64551.0 | 3611.0 | Bosnia_and_Herzegovina/Transnational_issues | Foreign_relations_of_Bosnia_and_Herzegovina |
64555.0 | 1.8950915e7 | Belarus/Economy | Economy_of_Belarus |
64593.0 | 49401.0 | Meeting_hall | Hall |
64622.0 | 12736.0 | German_poets | List_of_German-language_poets |
64628.0 | 23517.0 | Polish_poets | List_of_Polish-language_poets |
64768.0 | 20003.0 | Three_tier_architecture | Multitier_architecture |
64798.0 | 35509.0 | 51_forth | 51-FORTH |
64800.0 | 35510.0 | 56_kbit/s | 56_kbit/s_line |
64822.0 | 292279.0 | Lunchlady_Doris | List_of_recurring_The_Simpsons_characters |
64838.0 | 20325.0 | 68060 | Motorola_68060 |
64842.0 | 20324.0 | 68LC040 | Motorola_68040 |
64859.0 | 292279.0 | Disco_Stu_(The_Simpsons) | List_of_recurring_The_Simpsons_characters |
64874.0 | 292279.0 | Doctor_Marvin_Monroe | List_of_recurring_The_Simpsons_characters |
64896.0 | 292279.0 | Dr._Julius_Hibbert | List_of_recurring_The_Simpsons_characters |
65055.0 | 8039.0 | Transnational_issues_of_Denmark | Foreign_relations_of_Denmark |
65110.0 | 19527.0 | Mao_Tse-Tung | Mao_Zedong |
65112.0 | 65113.0 | Lee_Ao | Li_Ao |
65168.0 | 2438208.0 | Little_Rascals | Our_Gang |
65251.0 | 704.0 | Angola/People | Demographics_of_Angola |
65296.0 | 237407.0 | Teleri | Sundering_of_the_Elves |
65300.0 | 237407.0 | Nandor_(Middle-earth) | Sundering_of_the_Elves |
65333.0 | 16697.0 | Kyrgyzstan/People | Demographics_of_Kyrgyzstan |
65353.0 | 19122.0 | Maldives/Economy | Economy_of_Maldives |
65445.0 | 381862.0 | Werewolf_novels | Werewolf_fiction |
65454.0 | 23190.0 | Playing_card/Cut | Cut_(cards) |
65587.0 | 63876.0 | History_of_the_United_States_of_America | History_of_the_United_States |
65618.0 | 65616.0 | British_comedian | List_of_British_comedians |
65657.0 | 12228.0 | Gurps | GURPS |
65764.0 | 37527.0 | Alfa-Romeo | Alfa_Romeo |
65766.0 | 30302.0 | Tardis | TARDIS |
65823.0 | 292279.0 | Snake_Jailbird | List_of_recurring_The_Simpsons_characters |
65824.0 | 2.4536543e7 | Eukaryotic | Eukaryote |
65895.0 | 1343597.0 | Energy_(electrical) | Electrical_energy |
65904.0 | 50591.0 | US_Postal_Service | United_States_Postal_Service |
65932.0 | 219042.0 | Electronic_power_supply | Power_supply |
66021.0 | 27281.0 | Senegal/People | Demographics_of_Senegal |
66026.0 | 27286.0 | Senegal/Military | Armed_Forces_of_Senegal |
66132.0 | 17835.0 | Luxembourg/Communications | Telecommunications_in_Luxembourg |
66138.0 | 65827.0 | Silicones | Silicone |
66155.0 | 379788.0 | Pummelo | Pomelo |
66166.0 | 241132.0 | LAMP | Lamp |
66226.0 | 66225.0 | Curtis_E._LeMay | Curtis_LeMay |
66246.0 | 43970.0 | Bomb_calorimeter | Calorimeter |
66280.0 | 43970.0 | Modulating_differential_scanning_calorimeter | Calorimeter |
66433.0 | 3.0206738e7 | Chronic_obstructive_lung_disease | Chronic_obstructive_pulmonary_disease |
66435.0 | 11749.0 | Famous_chess_players | List_of_chess_players |
66500.0 | 442294.0 | Psionic | Psionics |
66532.0 | 2.9983143e7 | Fern-allies | Fern_ally |
66590.0 | 3.6674345e7 | Computer_services | Information_technology |
66667.0 | 154450.0 | Samuel_Clemens | Mark_Twain |
66751.0 | 9379.0 | Eritrea/People | Demographics_of_Eritrea |
66755.0 | 9385.0 | Eritrea/Transnational_issues | Foreign_relations_of_Eritrea |
66760.0 | 23239.0 | Peoples_Republic_of_China/Government | Politics_of_China |
66766.0 | 23244.0 | Peoples_Republic_of_China/Transnational_issues | Foreign_relations_of_China |
66800.0 | 1324.0 | Antonio_Gaudi/Park_Guell | Park_Güell |
66826.0 | 21162.0 | Netherlands_Antilles/Military | Netherlands_Armed_Forces |
66828.0 | 21338.0 | Netherlands_Antilles/Communications | Telecommunications_in_Curaçao |
66830.0 | 21335.0 | Netherlands_Antilles/People | Demographics_of_the_Netherlands_Antilles |
67086.0 | 42005.0 | Software_collaborative_tool | Collaborative_software |
67089.0 | 46875.0 | Puff_paste | Puff_pastry |
67107.0 | 31858.0 | Uzbekistan/Economy | Economy_of_Uzbekistan |
67110.0 | 31862.0 | Uzbekistan/Transnational_issues | Foreign_relations_of_Uzbekistan |
67169.0 | 19876.0 | Motor_cycle | Motorcycle |
67223.0 | 268516.0 | Cost,_insurance_and_freight | Incoterms |
67277.0 | 67670.0 | Sweden/Government | Politics_of_Sweden |
67278.0 | 10703.0 | Faroe_Islands/Communications | Telecommunications_in_the_Faroe_Islands |
67294.0 | 67293.0 | Valery_Borzov | Valeriy_Borzov |
67361.0 | 367498.0 | Pseudo-fossils | Pseudofossil |
67439.0 | 3.6303581e7 | Family_film | Children's_film |
67532.0 | 1222540.0 | Federal_Government_of_Australia | Australian_Government |
67550.0 | 2.3661208e7 | Transnational_issues_of_Austria | Foreign_relations_of_Austria |
67552.0 | 67551.0 | Geography_of_Bahamas | Geography_of_the_Bahamas |
67569.0 | 23422.0 | Paraguay/Geography | Geography_of_Paraguay |
67574.0 | 23429.0 | Paraguay/Transnational_issues | Foreign_relations_of_Paraguay |
67595.0 | 1.895057e7 | Brazil/People | Demographics_of_Brazil |
67667.0 | 293288.0 | Tuskegee_Institute | Tuskegee_University |
67734.0 | 46663.0 | Simon_and_Garfunkel/Bookends | Bookends_(album) |
67833.0 | 68260.0 | Stock_Market_Crash_of_2002 | Stock_market_downturn_of_2002 |
67846.0 | 7397.0 | Color-blind | Color_blindness |
67942.0 | 67941.0 | Cassini_program | Cassini–Huygens |
68087.0 | 67965.0 | Ginkgoopsida | Ginkgoales |
68095.0 | 53058.0 | T3_space | Regular_space |
68098.0 | 48629.0 | T5_space | Normal_space |
68135.0 | 2.3535509e7 | N_SYNC | NSYNC |
68174.0 | 19183.0 | Mauritania/Government | Politics_of_Mauritania |
68218.0 | 19527.0 | Mao_Tsetung | Mao_Zedong |
68266.0 | 68206.0 | Central_Dogma | Central_dogma_of_molecular_biology |
68341.0 | 33767.0 | Corel_WordPerfect_Office | WordPerfect |
68708.0 | 30957.0 | Tuatha_Dé_Danaan | Tuatha_Dé_Danann |
68866.0 | 3.5795589e7 | Winefat | History_of_the_wine_press |
69165.0 | 1.5398943e7 | Tammuz_(mythology) | Dumuzid |
69333.0 | 24313.0 | Mythical_island | Phantom_island |
69395.0 | 1.7277937e7 | Quarries_(biblical) | Zedekiah's_Cave |
69481.0 | 69480.0 | VHF | Very_high_frequency |
69564.0 | 4458.0 | Prophecies_of_Habakkuk | Book_of_Habakkuk |
69601.0 | 2400868.0 | Tribes_of_Israel | Twelve_Tribes_of_Israel |
70005.0 | 28632.0 | Seventh-Day_Adventist | Seventh-day_Adventist_Church |
70252.0 | 3007720.0 | Maranon | Marañón |
70283.0 | 31353.0 | Hitch_Hiker's_Guide_to_the_Galaxy | The_Hitchhiker's_Guide_to_the_Galaxy |
70293.0 | 37398.0 | Disney_Corporation | The_Walt_Disney_Company |
70491.0 | 32388.0 | Victoria_BC | Victoria,_British_Columbia |
70573.0 | 591253.0 | Kirchhoffs_Current_Law | Kirchhoff's_circuit_laws |
70660.0 | 2300261.0 | Show_me_love | Show_Me_Love |
70719.0 | 8409.0 | List_of_notorious_Dictators | Dictator |
70895.0 | 437887.0 | Audio_editing | Audio_editing_software |
70901.0 | 4.0582739e7 | Department_of_Labor | Ministry_of_Labour |
70906.0 | 70904.0 | Department_of_the_Interior | United_States_Department_of_the_Interior |
70918.0 | 70919.0 | U.S._Department_of_Education | United_States_Department_of_Education |
71007.0 | 70959.0 | Maui_(island) | Maui |
71091.0 | 2670130.0 | Peter_Gandy_(author) | The_Jesus_Mysteries |
71151.0 | 30162.0 | Tonga/Government | Politics_of_Tonga |
71283.0 | 25929.0 | Regiomontan | Regiomontanus |
71528.0 | 71511.0 | Celtic_Metal | Celtic_metal |
71613.0 | 348917.0 | IBM_PC_AT | IBM_Personal_Computer/AT |
71852.0 | 1274.0 | Antarctica/Geography | Geography_of_Antarctica |
71854.0 | 27342.0 | Slovenia/Government | Politics_of_Slovenia |
71902.0 | 2.5739013e7 | Y2k | Year_2000_problem |
71905.0 | 47387.0 | William_III_of_Orange | William_III_of_England |
71995.0 | 63171.0 | Star_Wars/Yoda | Yoda |
72050.0 | 16653.0 | Kenya/History | History_of_Kenya |
72075.0 | 884135.0 | Creation_Spirituality | Matthew_Fox_(priest) |
72484.0 | 261472.0 | Alexandretta,_Syria | İskenderun |
72514.0 | 9335.0 | Ecuador/History | History_of_Ecuador |
72545.0 | 33703.0 | Sir_Walter_Raleigh | Walter_Raleigh |
72610.0 | 70243.0 | United_States_Commerce_Department | United_States_Department_of_Commerce |
72627.0 | 2.5754129e7 | Platonic_ideal | Theory_of_forms |
72642.0 | 23395.0 | Panama/Government | Politics_of_Panama |
72681.0 | 2.6378017e7 | Olympic_baseball_medalists | List_of_Olympic_medalists_in_baseball |
72912.0 | 203875.0 | 1e-31_kg | Orders_of_magnitude_(mass) |
72937.0 | 77548.0 | Goostave_Gander | Duck_family_(Disney) |
72938.0 | 203433.0 | 1e-6_m | Orders_of_magnitude_(length) |
72941.0 | 203875.0 | 1e-13_kg | Orders_of_magnitude_(mass) |
72981.0 | 203875.0 | 1e-1_kg | Orders_of_magnitude_(mass) |
72996.0 | 203875.0 | 1e0_kg | Orders_of_magnitude_(mass) |
73048.0 | 18030.0 | LR(0)_parser | LR_parser |
73052.0 | 3.7260549e7 | Moroland | Bangsamoro |
73053.0 | 73056.0 | LR(1)_parser | Canonical_LR_parser |
73091.0 | 185843.0 | End_of_the_world_(religion) | End_time |
73185.0 | 46539.0 | Non-government_organisation | Non-governmental_organization |
73305.0 | 9234237.0 | Csar | CSAR |
73320.0 | 9370.0 | Equatorial_Guinea/Government | Politics_of_Equatorial_Guinea |
73407.0 | 22216.0 | O_Brother,_Where_Art_Thou | O_Brother,_Where_Art_Thou? |
73470.0 | 36104.0 | 1e-9_s | Nanosecond |
73480.0 | 203875.0 | 1e3_kg | Orders_of_magnitude_(mass) |
73547.0 | 27443.0 | Svalbard/Geography | Geography_of_Svalbard |
73862.0 | 27463.0 | Switzerland/People | Demographics_of_Switzerland |
73878.0 | 31846.0 | Uruguay/People | Demographics_of_Uruguay |
74058.0 | 10763.0 | French_Guiana/People | Demographics_of_French_Guiana |
74073.0 | 27231.0 | Saint_Vincent_and_the_Grenadines/People | Demographics_of_Saint_Vincent_and_the_Grenadines |
74122.0 | 203875.0 | 1e9_kg | Orders_of_magnitude_(mass) |
74214.0 | 3144.0 | A_Dolls_House | A_Doll's_House |
74295.0 | 3613.0 | Botswana/Geography | Geography_of_Botswana |
74303.0 | 5429.0 | Cambodia/Geography | Geography_of_Cambodia |
74312.0 | 5480.0 | Central_African_Republic/Geography | Geography_of_the_Central_African_Republic |
74484.0 | 2829402.0 | I_Ching_hexagram_32 | List_of_hexagrams_of_the_I_Ching |
74528.0 | 2018532.0 | Ratface | List_of_Donald_Duck_universe_characters |
74556.0 | 58906.0 | Glands | Gland |
74757.0 | 12029.0 | Gabon/Geography | Geography_of_Gabon |
74814.0 | 65835.0 | The_Beatles/Please_Please_Me | Please_Please_Me |
74880.0 | 16699.0 | Kyrgyzstan/Economy | Economy_of_Kyrgyzstan |
74898.0 | 1.9283139e7 | Lithuania/Economy | Economy_of_Lithuania |
75070.0 | 70381.0 | The_Teheran_Conference | Tehran_Conference |
75341.0 | 10789.0 | Film_history/Poland | Cinema_of_Poland |
75617.0 | 578952.0 | .Net | .net_(disambiguation) |
75620.0 | 403357.0 | Absolute_path | Path_(computing) |
75699.0 | 75698.0 | Texas_hold'em | Texas_hold_'em |
75757.0 | 32706.0 | Vancouver,_British_Columbia,_Canada | Vancouver |
75842.0 | 47398.0 | Orchestrator | Orchestration |
75872.0 | 20414.0 | Maas_River | Meuse |
75962.0 | 361082.0 | Flags_of_the_world | Gallery_of_sovereign_state_flags |
76066.0 | 61338.0 | Addend | Addition |
76432.0 | 58095.0 | La_Pérouse | La_Perouse |
76493.0 | 30096.0 | Taiwan/Transnational_issues | Foreign_relations_of_Taiwan |
76530.0 | 8103499.0 | Government_of_Angola | Cabinet_of_Angola |
76636.0 | 2018532.0 | Chisel_McSue | List_of_Donald_Duck_universe_characters |
76662.0 | 3743660.0 | Botswana/Military | Botswana_Defence_Force |
76680.0 | 3683.0 | Burkina_Faso/Military | Burkina_Faso_Armed_Forces |
76689.0 | 3701.0 | Burundi/Military | National_Defence_Force_(Burundi) |
76739.0 | 5482.0 | Government_of_Central_African_Republic | Politics_of_the_Central_African_Republic |
76751.0 | 76723.0 | Toll_House_cookie | Chocolate_chip_cookie |
76756.0 | 6003.0 | Comoros/Government | Politics_of_the_Comoros |
76965.0 | 5851.0 | Czech_Republic/Transportation | Transport_in_the_Czech_Republic |
76974.0 | 12063.0 | Georgia/Communications | Telecommunications_in_Georgia_(country) |
76982.0 | 8044.0 | Djibouti/Government | Politics_of_Djibouti |
76983.0 | 8059.0 | Dominica/Transnational_issues | Foreign_relations_of_Dominica |
77011.0 | 9343.0 | Ecuador/Transnational_issues | Foreign_relations_of_Ecuador |
77028.0 | 9393.0 | Estonia/Transportation | Transport_in_Estonia |
77029.0 | 1.8917889e7 | Estonia/Military | Estonian_Defence_Forces |
77034.0 | 9373.0 | Equatorial_Guinea/Transportation | Transport_in_Equatorial_Guinea |
77064.0 | 19086.0 | Macedonia/Military | Army_of_North_Macedonia |
77088.0 | 11934.0 | Germany/Transnational_Issues | Foreign_relations_of_Germany |
77132.0 | 2.155468e7 | Movie_director | Film_director |
77210.0 | 12202.0 | Guyana/Transportation | Transport_in_Guyana |
77225.0 | 1.010083e7 | Acis | Acis_and_Galatea |
77422.0 | 2192581.0 | Pepin_III | Pepin_the_Short |
77471.0 | 77470.0 | Persa | Perse |
77479.0 | 7171338.0 | India/Military | Indian_Armed_Forces |
77503.0 | 5.0913538e7 | Government_of_Iran | Government_of_the_Islamic_Republic_of_Iran |
77530.0 | 15664.0 | Government_of_Jamaica | Politics_of_Jamaica |
77701.0 | 78332.0 | Ishtar | Inanna |
77706.0 | 60973.0 | List_of_places_and_things_named_Oxford | Oxford_(disambiguation) |
77778.0 | 3.9686851e7 | Sassanians | Sasanian_dynasty |
77790.0 | 36937.0 | Network_television | Television_broadcasting |
77912.0 | 160634.0 | Gildor_Inglorion | Finrod_Felagund |
77913.0 | 8203.0 | Deutchland_Uber_Alles | Deutschlandlied |
77939.0 | 33653.0 | Wheel_of_the_year | Wheel_of_the_Year |
77943.0 | 221226.0 | Midsummer_(neopagan) | Midsummer |
78046.0 | 16692.0 | Kuwait/Military | Kuwait_Military_Forces |
78060.0 | 77747.0 | Philip_K._Dick/We_Can_Remember_It_For_You_Wholesale | We_Can_Remember_It_for_You_Wholesale |
78064.0 | 23282.0 | Philip_K._Dick/Ubik | Ubik |
78105.0 | 2.7619007e7 | Ha-Mossad_le-Modiin_ule-Tafkidim_Meyuhadim | Mossad |
78113.0 | 17790.0 | Lesotho/Transnational_issues | Foreign_relations_of_Lesotho |
78120.0 | 17800.0 | Liberia/Transnational_issues | Foreign_relations_of_Liberia |
78272.0 | 73525.0 | Baudila | Totila |
78319.0 | 23624.0 | Procopius_of_Caesarea | Procopius |
78408.0 | 78404.0 | Aglauros | Aglaurus |
78485.0 | 10141.0 | The_Erinyes | Erinyes |
78538.0 | 78535.0 | The_Aloadae | Aloadae |
78603.0 | 19118.0 | Maldives/History | History_of_the_Maldives |
78604.0 | 19121.0 | Politics_of_Maldives | Politics_of_the_Maldives |
78615.0 | 19133.0 | Communications_of_Mali | Telecommunications_in_Mali |
78622.0 | 34374.0 | Yugoslavia/Communications | Telecommunications_in_Serbia |
78628.0 | 33226.0 | Western_Sahara/Communications | Telecommunications_in_Western_Sahara |
78645.0 | 32459.0 | Venezuela/Transportation | Transport_in_Venezuela |
78671.0 | 19183.0 | Government_of_Mauritania | Politics_of_Mauritania |
78700.0 | 31828.0 | Ukraine/Government | Politics_of_Ukraine |
78706.0 | 56756.0 | Government_of_Uganda | Politics_of_Uganda |
78735.0 | 2.0598392e7 | Priapos | Priapus |
78742.0 | 84597.0 | Oeno | Oenotropae |
78786.0 | 23037.0 | Punk_band | Punk_rock |
78820.0 | 76616.0 | Ma_Beagle | Beagle_Boys |
78931.0 | 78926.0 | Diktynna | Britomartis |
78993.0 | 78130.0 | Maximum_flow_minimum_cut_theorem | Max-flow_min-cut_theorem |
79002.0 | 79000.0 | Thisbe | Pyramus_and_Thisbe |
79049.0 | 21387.0 | Government_of_Nigeria | Federal_government_of_Nigeria |
79061.0 | 57620.0 | Transnational_issues_of_Norway | Foreign_relations_of_Norway |
79188.0 | 2.6289316e7 | Chronology_of_Babylonia_and_Assyria | Chronology_of_the_ancient_Near_East |
79212.0 | 64663.0 | Graiae | Graeae |
79248.0 | 44026.0 | History_of_the_United_States_National_Security_Council_1969–1974 | United_States_National_Security_Council |
79257.0 | 44026.0 | History_of_the_United_States_National_Security_Council_1993–present | United_States_National_Security_Council |
79332.0 | 79328.0 | Balios | Balius_and_Xanthus |
79350.0 | 79352.0 | Zetes | Boreads |
79358.0 | 5551335.0 | Bromios | Bromius |
79531.0 | 2.9033435e7 | Centimani | Hecatoncheires |
79550.0 | 80626.0 | Kerukes | Kerykes |
79730.0 | 6.5442834e7 | Toll_booth | Tollbooth |
79763.0 | 49728.0 | San_Francisco_County,_California | San_Francisco |
79776.0 | 1.9344515e7 | The_Guardian_newspaper | The_Guardian |
79798.0 | 8618262.0 | The_Herald-Sun | The_Herald-Sun_(Durham,_North_Carolina) |
79832.0 | 1853.0 | Africa/Ecology | Natural_history_of_Africa |
80033.0 | 398878.0 | Terry_Pratchett/The_Luggage | Rincewind |
80133.0 | 180370.0 | Herophile | Sibyl |
80198.0 | 15941.0 | Jean_Jacques_Rousseau | Jean-Jacques_Rousseau |
Now, we need to find every sequence of edges where the first is to a redirect page, and the second is a redirect link. In theory this could be done as a motif finding operation, but that is painfully slow, since it would first find all sequences of three vertices, and only then filter by the edge type being correct for the second edge. So we instead do it in a more "low-tech" way, just using an inner join on our tables - this will save us an absolute ton of time, since we don't compute any paths that aren't of the required type. Doing it with motif finding takes at least ten minutes (that is when it threw an error because my laptop went to sleep), doing it with SQL takes one minute.
redirectsWithIDs.createOrReplaceTempView("redirectsWithIDs")
val twoStepRedirects = spark.sql("""SELECT enwiki_graph_edges.src AS artA,
enwiki_graph_edges.src_title AS artA_title,
redirectsWithIDs.src AS artB,
redirectsWithIDs.src_title AS artB_title,
redirectsWithIDs.dst AS artC,
redirectsWithIDs.dst_title AS artC_title
FROM redirectsWithIDs INNER JOIN enwiki_graph_edges
ON enwiki_graph_edges.dst = redirectsWithIDs.src""")
display(twoStepRedirects)
artA | artA_title | artB | artB_title | artC | artC_title |
---|---|---|---|---|---|
297471.0 | Eisteddfod | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
601370.0 | John_Anderson,_1st_Viscount_Waverley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1024759.0 | Rudolf_Peierls | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1320240.0 | Tom_Dowd | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7375431.0 | USS_Ernest_G._Small | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2469074e7 | Association_of_Los_Alamos_Scientists | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
183897.0 | Empire_of_Japan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6123917.0 | Up_An'_Atom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6554732e7 | Timeline_of_World_War_II_(1942) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0692824e7 | Ed_Westcott | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.8615077e7 | June_1964 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.2547084e7 | Oscar_Seborer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6526133e7 | Bane_in_other_media | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
42297.0 | San_Luis_Valley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
652623.0 | Otto_Robert_Frisch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
797178.0 | First_Chief_Directorate | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4081032e7 | USS_Gasconade_(APA-85) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8482492e7 | Outline_of_United_States_history | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.966217e7 | George_A._Seitz | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
92357.0 | Military | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.7250838e7 | Critical_Mass:_America's_Race_to_Build_the_Atomic_Bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.7607721e7 | John_Coster-Mullen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2201.0 | Aage_Bohr | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
65828.0 | Smithsonian_Institution | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1680490.0 | USS_Appalachian | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.2160508e7 | Paul_W._Tibbets_IV | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0040664e7 | Allied_leaders_of_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.6526313e7 | Harley_A._Wilhelm | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
261240.0 | Shōwa_era | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
537403.0 | Paul_Frees | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
838989.0 | Code_(cryptography) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1115774.0 | USS_Apogon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0848236e7 | USS_Sphinx_(ARL-24) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.1379813e7 | The_Birdmen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1363385.0 | Signal_Intelligence_Service | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3449141.0 | Symphony_No._6_(Vaughan_Williams) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4974066.0 | Xavras_Wyżryn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5223996.0 | 1948_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8294561.0 | Confucius_Shrine,_Nagasaki | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.920738e7 | Avro_720 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
292758.0 | William_Higinbotham | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
477701.0 | Two-Face | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1403906.0 | Windscale_fire | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2349470.0 | James_Otsuka | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5978572e7 | University_of_Cambridge | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5802041e7 | A._Carl_Helmholz | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.2581711e7 | Soviet_Storm:_World_War_II_in_the_East | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.5526137e7 | Enola_Gay:_The_Men,_the_Mission,_the_Atomic_Bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1111596.0 | Madge_Blake | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1306229.0 | Carl_Friedrich_von_Weizsäcker | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4772073.0 | Empire_of_Vietnam | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5021154.0 | Ishfaq_Ahmad_Khan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1097549e7 | Luke_the_Spook | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.2949834e7 | Einstein_for_Beginners | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
62866.0 | United_States_Department_of_Energy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
240152.0 | Alfred_Lee_Loomis | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1903533.0 | Basque_diaspora | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2160008.0 | 76th_United_States_Congress | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2428994.0 | Cockcroft–Walton_generator | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5327576.0 | Warning_from_Space | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8855773.0 | Allied_technological_cooperation_during_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2760938e7 | Demon_core | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4366709e7 | Ernest_B._Price | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0113243e7 | Belgian_Congo_in_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
30592.0 | Partial_Nuclear_Test_Ban_Treaty | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
112176.0 | Metropolis_(comics) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
194596.0 | Ore_Mountains | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
426461.0 | Sidney_H._Liebson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
841522.0 | Yoshio_Nishina | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1217440.0 | Soviet_atomic_bomb_project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6310137e7 | List_of_shipwrecks_in_1957 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6570384e7 | Stuart_R._Schram | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.5315074e7 | Expedition_Unknown | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3378.0 | Beryllium | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
432000.0 | Arthur_Compton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080765e7 | USS_Appling | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9351012e7 | Pietro_Leoni | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3296431e7 | Science_and_technology_in_Italy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7013146e7 | Trevor_Gardner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.1484554e7 | Tinian_Naval_Base | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3257492.0 | Reiji_Nagakawa | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2428286e7 | Strategic_Air_Command_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5613512e7 | Cheng_Kaijia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.9985187e7 | Sceptre_(fusion_reactor) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
427073.0 | USS_Stickleback_(SS-415) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
608055.0 | John_Llewellin,_1st_Baron_Llewellin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4380587.0 | Nuclear_explosion | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0318387e7 | Varian_Associates | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6266461e7 | Montreal_Laboratory | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.4298484e7 | September_1966 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.0060916e7 | USS_Van_Valkenburgh | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6818144.0 | 1945_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7088427e7 | Night_Raid_1931 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0417329e7 | John_Lansdale_Jr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3059018e7 | Calutron_Girls | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1328236.0 | 2004_Indian_Ocean_earthquake_and_tsunami | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3339809.0 | Field_coil | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3348816.0 | Frederick_Ashworth | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4439096e7 | Joan_Curran | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0384446e7 | Gokoku_Shrine | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
735622.0 | The_High_Crusade | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3916305.0 | Deaths_in_June_2006 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2166535e7 | Donald_J._Hughes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566564.0 | 1949_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
867074.0 | Leonid_Govorov | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3343228e7 | Western_Pipe_and_Steel_Company | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9164498e7 | Karl_Z._Morgan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1781954e7 | October_1976 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.447651e7 | Journals_of_Ayn_Rand | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3576433e7 | Sniper_Elite | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2453923.0 | History_of_science_fiction_films | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0865251e7 | George_Racey_Jordan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.729417e7 | United_States_Naval_Construction_Battalion_flame_thrower_tanks | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
126063.0 | Belen,_New_Mexico | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8401396e7 | Invention_in_Canada | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3006249e7 | Benson_House_(Wading_River,_New_York) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.541407e7 | USS_Bowditch_(AG-30) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
365245.0 | William_O._Douglas | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
652326.0 | Rupert_Allason | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1864987.0 | USS_Greene_(DD-266) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2086313.0 | USS_Ingraham_(DD-694) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3214426.0 | Kermit_Beahan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3557640.0 | For_Want_of_a_Nail_(novel) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3673785.0 | S-50_(Manhattan_Project) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4906534.0 | History_of_mass_spectrometry | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.9272639e7 | Russell_and_Sigurd_Varian | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.4820476e7 | Undercover:_Operation_Wintersun | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.9557816e7 | Harley_D._Nygren | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6181241e7 | Zero_Hour_(2013_TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.5021252e7 | Connie_Frazer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
14532.0 | Italy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
731119.0 | George_B._Pegram | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2248081.0 | USS_Gilliam_(APA-57) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2833957.0 | USS_Lowry | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3468036e7 | History_of_weapons | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6406928e7 | Alfred_Starbird | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
106424.0 | North_Korea_and_weapons_of_mass_destruction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
168223.0 | Theodore_Hall | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1044264.0 | Pacific_Air_Forces | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6343677.0 | Pumpkin_bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0306321e7 | Harvard_John_A._Paulson_School_of_Engineering_and_Applied_Sciences | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7659587e7 | Donald_William_Kerst | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0020033e7 | Alternate_Presidents | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.901736e7 | January_2016_North_Korean_nuclear_test | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.9055953e7 | List_of_people_from_Cedar_Rapids,_Iowa | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566574.0 | 1955_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
944651.0 | William_Shawn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1087061.0 | Jimmy_Quillen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1116326.0 | Uravan,_Colorado | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4546304.0 | Wendover_Air_Force_Base | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8107496.0 | Tsunami_bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4793906e7 | Terrestrial_Physics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
21785.0 | Nuclear_weapon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2978641.0 | Landing_Craft_Assault | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1148129e7 | Dayton_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
221380.0 | Nagasaki_Prefecture | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7008903.0 | The_White_Negro | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
41976.0 | Franco_Rasetti | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
904771.0 | Seal_of_the_President_of_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1130207.0 | Boeing_B-29_Superfortress_variants | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1508301.0 | Futures_studies | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1434966e7 | History_of_the_bikini | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2784489.0 | Floyd_Schmoe | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2884514.0 | Stephane_Groueff | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1496875e7 | USS_LST-661 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2785531e7 | Daniel_Klute | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2375459e7 | List_of_American_Restoration_episodes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.5585051e7 | Empire_State_Building_in_popular_culture | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.1351682e7 | List_of_existing_technologies_predicted_in_science_fiction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4868.0 | B._F._Skinner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
236130.0 | Waukesha,_Wisconsin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
543695.0 | USS_Perkins_(DD-877) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1641423.0 | Alfred_Sturtevant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2878196.0 | Pelindaba | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.480743e7 | 1950_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.9637836e7 | Mysteries_at_the_Monument | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8289969e7 | January_1955 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.7844172e7 | Windscale_Piles | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
495005.0 | Jim_Sanborn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8805287e7 | 1964_in_China | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.3437266e7 | Shunichi_Yamashita | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.7370993e7 | Angus_Ewan_Cameron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
343960.0 | Heavy_bomber | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
610255.0 | 1939_in_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
640709.0 | Firestorm_(character) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
744371.0 | Kirtland_Air_Force_Base | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1309813.0 | The_Dark_Frontier | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8573725e7 | Cosmic_bomb_(phrase) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8750896e7 | Eric_Craven_Gregory | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0046202e7 | Harold_Hamm | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
51981.0 | List_of_planned_cities | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
419026.0 | Bayview–Hunters_Point,_San_Francisco | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
614477.0 | The_Crimson_Ghost | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2589068.0 | James_L._Cate | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5223800.0 | 1947_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5701828.0 | Martin_Stein | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8424612.0 | Tom_Sachs | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4741699e7 | Critical_Assembly | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
469583.0 | Pickett's_Charge | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1109287.0 | Jacob_A._Marinsky | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1162701.0 | Talia_al_Ghul | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1163830.0 | Lydia_Millet | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5058589e7 | Ben_Bruce_Blakeney | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0485345e7 | 2011_in_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
202643.0 | Agnes_Moorehead | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
284020.0 | Angels_in_Neon_Genesis_Evangelion | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
311260.0 | Thomas_Walker_(naval_officer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5428681e7 | USS_Rockwall_(APA-230) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6672111e7 | Harvesting_lightning_energy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
98553.0 | Red_Skull | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
147983.0 | Preliminary_Design_of_an_Experimental_World-Circling_Spaceship | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
891446.0 | Alfred_O._C._Nier | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1988966.0 | Gregory_Breit | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2697091.0 | Timeline_of_the_Manhattan_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3823666.0 | Haigerloch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0303348e7 | USS_Orca_(AVP-49) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.816252e7 | History_of_American_comics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8219053e7 | July_1955 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566571.0 | 1952_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0455469e7 | Honkawa_Elementary_School_Peace_Museum | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0486122e7 | History_of_the_University_of_California,_Berkeley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2380985e7 | Church_of_St_Editha,_Tamworth | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.380756e7 | Genius_(American_TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
115068.0 | Fort_Thomas,_Kentucky | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
380013.0 | The_Time_Ships | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
481491.0 | RAF_Transport_Command | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
587916.0 | Hunters_Point_Naval_Shipyard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
890736.0 | Emory_River | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1182927.0 | Social_stratification | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0018206e7 | First_Into_Nagasaki | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5074645e7 | Lords_of_the_Psychon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0041779e7 | Nuclear_ethics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.4222969e7 | Katie_Ardill | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.1523278e7 | Leslie_Wolfe | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
18166.0 | List_of_agnostics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
189945.0 | USS_Nevada_(BB-36) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
383813.0 | Nuclear_and_radiation_accidents_and_incidents | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1449144.0 | List_of_Ig_Nobel_Prize_winners | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4004485e7 | Political_views_of_Albert_Einstein | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
151055.0 | Oak_Ridge,_Tennessee | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
518249.0 | USS_Tuna_(SS-203) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1248476.0 | Troy_H._Middleton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1673736.0 | Sociology_of_the_history_of_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.9085527e7 | Alexander_Langsdorf_Jr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
19346.0 | March_1 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
151196.0 | Acute_radiation_syndrome | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3592651.0 | List_of_shipwrecks_in_1946 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0827425e7 | USS_Bayfield | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8443325e7 | Haywood_S._Hansell | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6357760.0 | Dragon_(Cussler_novel) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080827e7 | USS_Bladen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4727747e7 | Wilhelm_Ohnesorge | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5070335e7 | Political_Science_(song) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
31282.0 | Truncated_icosahedron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
34614.0 | 1939 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1222318.0 | Sapienza_University_of_Rome | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1793.0 | August_29 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
21210.0 | Niels_Bohr | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
186324.0 | USS_Thompson_(DD-627) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
243020.0 | Louis_A._Johnson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
422293.0 | USS_Sailfish_(SS-192) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
763708.0 | Herman_Goldstine | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5273932.0 | USS_Panamint_(AGC-13) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5559770.0 | History_of_New_Mexico | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1310622e7 | USS_Gunston_Hall_(LSD-5) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.425853e7 | Civil_Defence_Ireland | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4272303e7 | Carolinium | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.9157112e7 | 1950–51_Ashes_series | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.969082e7 | Military_history_of_Jewish_Americans | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.975373e7 | Berkeley_Piano_Club | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
188123.0 | USS_Bairoko | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1185988.0 | Alberto_Moravia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.1637581e7 | Canada–Democratic_Republic_of_the_Congo_relations | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3719379e7 | Timeline_of_the_20th_century | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
21277.0 | Neptunium | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
485200.0 | Lexington-class_aircraft_carrier | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1003982.0 | Dual-use_technology | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1069520.0 | List_of_people_from_New_York_City | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4444436.0 | Francis_Simon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
47595.0 | Manchuria | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
170365.0 | History_of_Tristan_da_Cunha | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7816236e7 | List_of_people_considered_father_or_mother_of_a_scientific_field | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.6539426e7 | Red_Joan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.5710792e7 | Casaba-Howitzer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
75977.0 | List_of_inventors | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
242883.0 | History_of_nuclear_weapons | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
841565.0 | James_L._Tuck | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7636187.0 | Richard_Kenney_(poet) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8968304.0 | Hakushima_Station_(Hiroden) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.713328e7 | Atomic_veteran | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9011847e7 | USS_Mispillion_(AO-105) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0777269e7 | Jane_Hamilton_Hall | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.1053117e7 | Project_Y | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
34631.0 | 1946 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
61207.0 | Potsdam_Declaration | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1291485.0 | Situational_ethics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8084518e7 | ARA_Suboficial_Castillo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.2933627e7 | List_of_monsters_in_Marvel_Comics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
206082.0 | USS_West_Virginia_(BB-48) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
252881.0 | Operation_Downfall | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1118396.0 | Chicago_Pile-1 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2614007.0 | Office_of_Censorship | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0168394e7 | Jennet_Conant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.9086313e7 | Perhapsatron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.1191171e7 | McAllister_Hull | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.898596e7 | Johnstown_flood_of_1977 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.5514071e7 | Alberto_Thompson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
157288.0 | Tamworth,_Staffordshire | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1615727.0 | Hiroshima_mon_amour | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4051468.0 | Plutonium-238 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4110093.0 | X-10_Graphite_Reactor | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5640532.0 | VFW_VAK_191B | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0230427e7 | Outliers_(book) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0885401e7 | The_Plutonium_Files | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
207714.0 | USS_Independence_(CVL-22) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080813e7 | USS_Banner_(APA-60) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5045707e7 | The_War_of_the_Worlds_(1953_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3182077e7 | Timeline_of_the_Harry_S._Truman_presidency | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
177595.0 | Glenn_L._Martin_Company | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
269040.0 | History_of_the_United_States_(1945–1964) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
296724.0 | Lamar_Alexander | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3978499.0 | Brave_New_World_(role-playing_game) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0655215e7 | Fukuromachi_Elementary_School_Peace_Museum | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1803775e7 | Spontaneous_Combustion_(film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
31743.0 | Uranium | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6000024e7 | Let's_Go_All_the_Way_(song) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8182.0 | Dwight_D._Eisenhower | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
46825.0 | Otto_Hahn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
76402.0 | Twelve_O'Clock_High | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
471660.0 | Nâzım_Hikmet | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566575.0 | 1956_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
947310.0 | United_States_Department_of_Energy_national_laboratories | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1074739.0 | Seth_Neddermeyer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1210990.0 | Calutron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3686782.0 | USS_Weeden_(DE-797) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4548723.0 | Frank_A._Armstrong | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
30395.0 | Tennessee | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
381797.0 | James_Franck | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2184963e7 | History_of_St._Louis_(1905–1980) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.741841e7 | Edith_Warner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
56359.0 | Leo_Szilard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1041429.0 | Harry_Daghlian | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1067258.0 | Global_Garden | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2149724.0 | Doctor_Atomic | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.8702523e7 | List_of_fictional_United_States_presidencies_of_historical_figures_(P–R) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
698908.0 | Tube_Alloys | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1185584.0 | Melba_Phillips | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2455295.0 | Nô_(film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5595604e7 | Military_history | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
611806.0 | John_Dill | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1626768.0 | Massachusetts_Museum_of_Contemporary_Art | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2908928.0 | MAUD_Committee | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2988445.0 | Einstein–Szilard_letter | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8793967.0 | Apocrypha_(The_X-Files) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7635462e7 | List_of_atheists_in_science_and_technology | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
32310.0 | Lockheed_U-2 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
420888.0 | USS_Tautog_(SS-199) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1543748.0 | Stephen_Toulmin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2390573.0 | Stan-hattan_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4538945.0 | Presidency_of_Dwight_D._Eisenhower | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9743605.0 | From_Hell_It_Came | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.100775e7 | Shudo_Junior_and_Senior_High_School | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.6058792e7 | RAF_Lakenheath_nuclear_weapons_accidents | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.0939397e7 | List_of_yard_and_district_craft_of_the_United_States_Navy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566201.0 | 1946_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4109863.0 | Gump_(song) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.5688415e7 | 1949_in_the_Soviet_Union | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.77489e7 | Harnekop_Nuclear_Bunker | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.6447473e7 | The_Cyclotron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.9527094e7 | AMES_Type_85 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
241681.0 | Terence_McKenna | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1169762.0 | Freedom_Fighters_(video_game) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
100462.0 | Defense_Intelligence_Agency | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7128122.0 | List_of_The_Waltons_episodes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1511888e7 | Thomas_Allibone | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4656403e7 | USS_Tillamook_(ATA-192) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4950378e7 | Walter_Kauzmann | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6594219e7 | USS_Oak_Hill_(LSD-7) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4137423e7 | Charles_B._Winstead | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.3980914e7 | United_States_war_plans_(1945–1950) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2957941.0 | Marman_clamp | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3666971.0 | Stainsby_Festival | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5429164e7 | USS_Bollinger_(APA-234) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8026101e7 | Arnold_Anderson_(scientist) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5942972e7 | Polaris_(UK_nuclear_programme) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.2018264e7 | British_hydrogen_bomb_programme | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
21649.0 | New_Mexico | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4199790.0 | J._Ernest_Wilkins_Jr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5112421.0 | I_Melt_with_You | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.5904463e7 | The_Troubleshooters_(1959_TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1366782.0 | Eugene_Dooman | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4548588.0 | East_vs._West:_Berlin_1948 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5047394.0 | USAAF_unit_identification_aircraft_markings | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7915163e7 | E._Alison_Kay | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9862015e7 | A_Game_for_the_Living | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2087293e7 | William_Shurcliff | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.4266507e7 | Ross_Gunn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.740317e7 | Josephine_Herrick | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
307267.0 | Max_Frisch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
352564.0 | John_Cockcroft | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
371973.0 | 1917_in_Canada | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2095669.0 | Nuclear_weapons_of_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2428261.0 | Tryokhgorny | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.186025e7 | Oscar_F._Perdomo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2789033e7 | Margo_Lane | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8385871e7 | Cosmic_Ray_(film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.780791e7 | Eldorado_Radium_Silver_Express | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
274718.0 | Far_East_Air_Force_(Royal_Air_Force) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2273655.0 | Anatoli_Yatskov | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3545701e7 | List_of_National_Historic_Landmarks_in_New_York_City | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080845e7 | USS_Bracken | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
31748.0 | Ultra | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
227156.0 | Tinian | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9263047.0 | Ernie_Schroeder | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
186234.0 | David_Bohm | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3318378.0 | Pisa_University_System | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
350452.0 | Kettering | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1614761.0 | Headington_Shark | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0875609e7 | Ralph_Austin_Bard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5770596e7 | 10_Things_You_Don't_Know_About | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
907194.0 | Mohammad_Hatta | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1010930.0 | Kenneth_McKellar_(politician) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1840164.0 | Via_Panisperna_boys | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3383351e7 | Modulated_neutron_initiator | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8932654e7 | Koyaanisqatsi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
283846.0 | Culture_of_Italy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1176777.0 | Science_and_technology_in_the_Soviet_Union | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5097628.0 | Above_and_Beyond_(1952_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6860985.0 | USS_Turner_(DD-834) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9009865.0 | Salinas_Peak | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1450446e7 | List_of_shipwrecks_in_1948 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
355106.0 | Röyksopp | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0373265e7 | Timeline_of_the_North_Korean_nuclear_program | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5743474e7 | William_Duthie_Morgan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
16326.0 | John_W._Campbell | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
22054.0 | Nuclear_fission | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
185853.0 | Hans_Bethe | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
335761.0 | Seto_Inland_Sea | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
504387.0 | List_of_people_from_Nebraska | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566563.0 | 1947_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1346709.0 | Frank_Spedding | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4096976.0 | Nostradamus_in_popular_culture | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9424050.0 | The_Day_the_Fish_Came_Out | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5436286e7 | Hispanics_in_the_United_States_Marine_Corps | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0684157e7 | Two_Bombs,_One_Satellite | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
803611.0 | Lewis_Strauss | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2505538.0 | GURPS_Alternate_Earths | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7955348.0 | Université_de_Montréal | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4928506e7 | February_1960 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5712799e7 | Chagai-II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566569.0 | 1950_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2781821.0 | Aqueous_homogeneous_reactor | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4708774.0 | Dominique_Lorentz | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2014603e7 | Operation_Passage_to_Freedom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2471253e7 | The_Second_World_War_(book_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080965e7 | USS_Crittenden_(APA-77) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8401364e7 | Natural_scientific_research_in_Canada | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.7577491e7 | Yoshio_Shigezono | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.888259e7 | Arthur_V._Peterson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
124989.0 | Mahwah,_New_Jersey | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
209935.0 | University_of_Birmingham | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3267235.0 | Gareth_Cook | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0406914e7 | Robert_Brode | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
214043.0 | Hiroshima_Peace_Memorial | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
340801.0 | Arlington_Hall | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.343171e7 | 97th_Operations_Group | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.9213292e7 | Buck_Rogers | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8586398e7 | SS-GB_(TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3392.0 | British_Columbia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
199511.0 | Paul_Tibbets | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566572.0 | 1953_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
958549.0 | List_of_University_of_California,_Berkeley_faculty | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5260518.0 | The_Towers_of_Silence | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6754432.0 | RAF_Grafton_Underwood | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.6792968e7 | Peer_de_Silva | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
285651.0 | Jonathan_Pollard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1627304.0 | Michihiko_Hachiya | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.6365449e7 | November_1950 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
18597.0 | Little_Boy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
37782.0 | Edward_Teller | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3904585e7 | Roger_Bourke_White | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.054518e7 | Ames_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4807261e7 | 1946_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
127269.0 | Cutchogue,_New_York | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
410215.0 | Sam_Rayburn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
608261.0 | First_Quebec_Conference | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3384048.0 | WASH-740 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4859933.0 | Eugene_Pallette | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6438468e7 | Alternative_versions_of_Joker | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6638928e7 | List_of_Jewish_atheists_and_agnostics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.9029604e7 | De_Avonturen_van_Pa_Pinkelman | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1141498.0 | USS_Parche_(SS-384) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4037583.0 | Laurence_Dworet | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2802425e7 | John_T._Hayward | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.4309803e7 | Mind_at_the_End_of_Its_Tether | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.8383891e7 | Walter_M._Robertson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
295100.0 | The_Great_Artiste | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
713949.0 | Baltimore_City_College | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
894522.0 | Fu_Foundation_School_of_Engineering_and_Applied_Science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1762066.0 | Franck_Report | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6124046.0 | Big_Stink_(aircraft) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8037469.0 | The_Pirate_(short_story) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
16518.0 | John_Adams_(composer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2681988.0 | Steagles | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5780650.0 | Worldwar:_Striking_the_Balance | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.1819273e7 | Chemical_weapons_and_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
376433.0 | Gunbarrel_Highway | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.404778e7 | Battle_Beneath_the_Earth | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
26787.0 | Science_fiction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566278.0 | 1945_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
949556.0 | USS_Skipjack_(SS-184) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2327916.0 | Pavel_Sudoplatov | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7246788.0 | Monster_Squad | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3670898e7 | Science_in_science_fiction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8802741e7 | USS_Basilan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
584985.0 | List_of_Harvard_University_people | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4017673.0 | RAF_Polebrook | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0966108e7 | Noel_Gayler | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.7811234e7 | Radium_Mine | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3851902e7 | Blue_Light_(TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
746591.0 | List_of_Columbia_University_people | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2887573.0 | Robert_Meeropol | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3497076.0 | Truman_(1995_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4305070.0 | History_of_Western_civilization | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4653534.0 | Military_history_of_the_United_States_during_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.250021e7 | Joseph_George_Davidson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8648253e7 | I_Saw_It | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7138667e7 | Paul_Olum | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1586498.0 | Y-12_National_Security_Complex | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5382389.0 | 1952_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9236337.0 | USS_Barrow | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
284008.0 | Peace_symbols | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1834663.0 | Bruno_Pontecorvo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6600382e7 | 1960_in_France | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5025014e7 | Chase_Brass_and_Copper_Company | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3227851.0 | USS_Walter_X._Young_(APD-131) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5422186.0 | Arthur_Widmer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5991505.0 | The_Shadow_(1994_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7860719.0 | Alexander_Sachs | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8603896e7 | Air_Power_(TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1202989.0 | El_Malpais_National_Monument | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8798023.0 | Leon_Davidson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.885462e7 | North_American_P-51_Mustang_variants | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.9690539e7 | October_1964 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7475.0 | CANDU_reactor | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
57977.0 | Mad_scientist | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
74641.0 | George_Gamow | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
76796.0 | History_of_the_People's_Republic_of_China_(1949–1976) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
255198.0 | Notorious_(1946_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566570.0 | 1951_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
590219.0 | Robert_R._Wilson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
635378.0 | Boeing_B-50_Superfortress | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
725910.0 | George_Paget_Thomson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4563051.0 | 509th_Bomb_Wing | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0291182e7 | Swiatecki_bomb_slip | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0521574e7 | Raemer_Schreiber | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
645510.0 | Len_Beadell | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3010948e7 | Most_Dangerous_Man_Alive | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
59503.0 | Bioaccumulation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
156512.0 | University_of_Liverpool | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5448406e7 | Deadline_(science_fiction_story) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.7192205e7 | Teck_Cominco_smelter | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
563950.0 | Coesite | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4331044.0 | List_of_World_War_II_films | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0931083e7 | 147th_Regiment_(United_States) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.2715001e7 | Michael_D._Gordin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.9316616e7 | Military_Intelligence_Bureau | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
34604.0 | 1949 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
894309.0 | The_Beast_from_20,000_Fathoms | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
915493.0 | Robert | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1051266.0 | Ash_Wednesday_bushfires | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4891267e7 | Ye_Qisun | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.6734588e7 | Harold_G._Bowen_Sr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.7577492e7 | Minoru_Yamamoto | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
151876.0 | Bulgarians | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2587870.0 | History_of_Washington_(state) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3128713.0 | People's_Liberation_Army_Rocket_Force | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.034096e7 | Timeline_of_the_nuclear_program_of_Iran | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5106061e7 | Barry_Goldwater_1964_presidential_campaign | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4814676e7 | 1995_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.8115177e7 | Stewart_Menaul | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
459254.0 | Dogfight | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1630495.0 | Norman_Cousins | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2095158.0 | Downtown_Las_Vegas | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4364523.0 | Fission_products_(by_element) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5053802.0 | Reprieve_(album) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1458432e7 | Take_It_So_Hard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4877182e7 | Samuel_Curran | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8260456e7 | Golden_Days_(novel) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.2130966e7 | List_of_modern_obelisks | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3607564e7 | Type_B_ship | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4394952.0 | Thomas_Ferebee | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1477953e7 | USS_Sioux_(AT-75) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8649025e7 | Jacob_Bigeleisen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0399438e7 | Fulmer_Research_Institute | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
366224.0 | Anchor_telephone_exchange | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
864141.0 | Prentice_Cooper | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
920062.0 | Special_Bulletin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4989316e7 | Aircraft_in_fiction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
173857.0 | Harvard_Mark_I | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
304427.0 | Abdus_Salam | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1225199.0 | Henry_DeWolf_Smyth | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1986557.0 | Invasion,_U.S.A._(1952_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4885883.0 | William_G._Windrich | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9031869.0 | High_and_low_politics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2233947e7 | Riazuddin_(physicist) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8886184e7 | Karl_K._Darrow | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2044512e7 | Shuntaro_Hida | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
396703.0 | John_Hasbrouck_Van_Vleck | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
839581.0 | Charles_Sweeney | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
916752.0 | Shelby_Foote | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.558561e7 | Southbridge,_Massachusetts | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
299543.0 | The_Fourth_Protocol | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1242120.0 | GURPS_Technomancer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1906796.0 | Yves_Rocard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4490386.0 | Sniper_Elite_(video_game) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.1795239e7 | John_R._Huizenga | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
29365.0 | Synthetic_element | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2548934.0 | Frisch–Peierls_memorandum | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3744153.0 | Charles_D._Neff | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4645143e7 | Goodbye_California | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3358285e7 | Middlesex_Sampling_Plant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0343428e7 | Aaron_Novick | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.1968585e7 | RDS-3 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.7873336e7 | Gerhard_Dickel | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
199804.0 | Science_and_technology_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9710670.0 | List_of_Sliders_characters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8815826e7 | USS_Avery_Island | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.5351286e7 | Buoyant_Billions | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
157173.0 | Last_Year_at_Marienbad | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9376664e7 | Rhydymwyn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
197870.0 | Chūgoku_region | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1430753.0 | Glendale,_Queens | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1711682e7 | James_C._Marshall | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2343369e7 | Yukawa_Institute_for_Theoretical_Physics | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0355866e7 | The_Catcher_Was_a_Spy_(film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
655444.0 | Satish_Kumar | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1616268e7 | Kenneth_Hubbard | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.8900893e7 | Westinghouse_Lamp_Plant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.4282331e7 | Wolfenstein_II:_The_New_Colossus | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
10979.0 | Franklin_D._Roosevelt | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
157241.0 | Edwin_McMillan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4395936.0 | Harrie_Massey | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3800803e7 | Uranium_hydride_bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7550552e7 | Władysław_Świątecki_(inventor) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
71469.0 | Barn_(unit) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.201155e7 | USS_Wharton_(AP-7) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6450276e7 | Lynde_D._McCormick | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5031314e7 | Frank_W._Bubb_Sr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6693409e7 | Albert_G._Mumma | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.4936329e7 | 2017_Barcelona_attacks | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.7009377e7 | Ron_Robin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.8101625e7 | Paul_F._Kerr | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1121111.0 | HMS_Tracker | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2073714.0 | Daniel_Pedoe | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.770163e7 | Oppenheimer_security_hearing | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8927159e7 | Federal_Reserve_Bank_Building_(Seattle) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1136451.0 | Philip_Klutznick | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1762770.0 | The_Japan_That_Can_Say_No | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1850366.0 | John_E._Rankin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7484707e7 | Five_(1951_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.3595815e7 | Union_of_Australian_Women | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.4074888e7 | USS_LST-911 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
207545.0 | Ronald_Knox | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
566217.0 | 1948_in_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1478613.0 | Vemork | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8426318.0 | Four_Pillars_of_Destiny | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080945e7 | USS_Cortland_(APA-75) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4214337e7 | Project-706 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.2274342e7 | 159th_Liaison_Squadron | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
331795.0 | Kon-Tiki_expedition | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3624019e7 | Hunter_(1977_TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
49814.0 | USS_Salt_Lake_City | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
458829.0 | North_American_AJ_Savage | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2246401.0 | Kenneth_Bainbridge | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3431902.0 | USS_Stack | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5699083.0 | Survival_Under_Atomic_Attack | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6932508.0 | Pacific_Vortex! | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1496437e7 | USS_LST-545 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5881941e7 | Suippes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8459715e7 | Oscar_D'Agostino | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.5640974e7 | April_1958 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.6170003e7 | African-American_scientists_and_technicians_on_the_Manhattan_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8524.0 | Deuterium | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
797121.0 | Powel_Crosley_Jr. | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0673649e7 | Robert_Cornog | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7834.0 | Chain_reaction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
14875.0 | Iowa_State_University | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5231726.0 | 1940_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.9382758e7 | Dowding_system | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.5541387e7 | Japanese_submarine_Ha-204 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
614502.0 | 1941_in_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1584322.0 | Scuttling | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3632184.0 | George_Economou_(Manhattan_Project) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7650738.0 | John_Rowlands_(RAF_officer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1388754e7 | List_of_Eastern_Bloc_agents_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1135461e7 | Vance_Bourjaily | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.7756905e7 | Red_Barbarian | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.4780239e7 | Exercise_Ardent | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
225214.0 | Timeline_of_United_States_history_(1930–1949) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
752468.0 | 10th_Division_(Australia) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8740320.0 | 1950_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2858697e7 | List_of_The_Hardy_Boys_characters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1611268e7 | List_of_shipwrecks_in_1951 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2701269e7 | Muhammad_Hafeez_Qureshi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7004687e7 | John_D._Craig | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
151018.0 | North_Augusta,_South_Carolina | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
428792.0 | Michael_Frayn | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1096465.0 | Radio_Yerevan_jokes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0784195e7 | London_Letters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.7441105e7 | Alan_Herries_Wilson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.406565e7 | Ralph_Landau | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.2573493e7 | High_Explosive_Research | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
65001.0 | Gamera | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3192836.0 | Naval_history_of_Japan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3874749.0 | Devil's_Planet | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6992045.0 | 1945_(Gingrich_and_Forstchen_novel) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1384035e7 | Yutaka_Yaguchi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3140913e7 | One_Ring | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.0350501e7 | List_of_Silicon_Valley_characters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
34550.0 | 1964 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1588017.0 | Minor_characters_in_Bloom_County | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4831178.0 | Civil_defense_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9443576.0 | Claus_Helberg | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.758355e7 | Hugh_Bradner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2443672e7 | USS_Varuna_(AGP-5) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.1589599e7 | Attack_on_Yokosuka | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.4794861e7 | Project_Nobska | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3469248e7 | Robert_Lyster_Thornton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
365519.0 | Victory_over_Japan_Day | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3618428.0 | David_Lawrence_(publisher) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3491749e7 | USS_Rockingham_(APA-229) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8218304e7 | July_1946 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
32767.0 | Vannevar_Bush | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
560402.0 | Fang_Lizhi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3676851.0 | Eugene_Rabinowitch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4126534.0 | Charles_Wilson,_1st_Baron_Moran | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4385677.0 | How_Not_to_Be_Seen_sketch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9365369.0 | Leona_Woods | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9986683.0 | Army_Service_Forces | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
63794.0 | Impact_event | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2346523.0 | Morris_R._Jeppson | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6156759.0 | Mark_(designation) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
125944.0 | Alamogordo,_New_Mexico | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2933431.0 | USS_Mayrant_(DD-402) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3005313.0 | Sergey_Kurnakov | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4308762.0 | List_of_Sin_City_characters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
25523.0 | Richard_Feynman | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
343445.0 | Qian_Xuesen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2395137.0 | Surrender_of_Japan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3761256.0 | Roy_Pinney | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5320361.0 | List_of_Batman:_The_Animated_Series_episodes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9504718.0 | Happy_Nation_(song) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6310812e7 | List_of_shipwrecks_in_1952 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1211197e7 | Grasshoppers_(Cavallette) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1816179e7 | Union_Prayer_Book | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
146971.0 | Green_Goddess | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
207089.0 | USS_Arkansas_(BB-33) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
515922.0 | Judith_Miller | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
972784.0 | Military_aviation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5489058e7 | List_of_battlecruisers_of_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
34624.0 | 1945 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6478244.0 | Little_Green_Men_(Star_Trek:_Deep_Space_Nine) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2939865e7 | Charlotte_Serber | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.0441714e7 | Lindsay_Helmholz | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1155121.0 | USS_Niagara_(APA-87) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2719824e7 | USS_Aucilla | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0516946e7 | Lawrence_E._Glendenin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1356997.0 | Vermont_C._Royster | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1374482.0 | Urakami | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2149708.0 | Did_Six_Million_Really_Die? | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9676404.0 | Nguyễn_Chí_Thiện | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3391948e7 | Gustave_Reininger | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4038372e7 | Bismuth_phosphate_process | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1951235.0 | Metallurgical_Laboratory | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3093327.0 | Caesium-137 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.7626644e7 | Frances_V._Harbour | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.4322758e7 | Edward_P._Ney | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3764346e7 | AI_Mark_VIII_radar | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3331078e7 | List_of_Operational_Requirements_for_nuclear_weapons | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.1487212e7 | Allen_F._Donovan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1197121.0 | USS_Pilotfish_(SS-386) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1643572.0 | José_Leite_Lopes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3818583.0 | HMH-361 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5987636.0 | USS_Trefoil_(IX-149) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2768472e7 | USS_Enoree_(AO-69) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
206657.0 | USS_Shangri-La | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1791662.0 | William_Penney,_Baron_Penney | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0707567e7 | Clinton_Engineer_Works | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.3355228e7 | Latin_music | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
155558.0 | Sandia_National_Laboratories | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
310004.0 | Ronald_W._Clark | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
490588.0 | Bernard_T._Feld | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2742737e7 | The_\"Fish\"_Cheer/I-Feel-Like-I'm-Fixin'-to-Die_Rag | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0390062e7 | M._S._Factory,_Valley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3779882e7 | Robert_von_Ezdorf | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
448716.0 | William_D._Leahy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1056809.0 | Yoshito_Matsushige | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1125711.0 | Operation_Hurricane | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6976884.0 | Battlefield_Earth_(novel) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8663924.0 | 1955_in_the_United_Kingdom | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2536016e7 | Hispanic_Americans_in_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
17845.0 | Letter_(message) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
33496.0 | Weapon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
164329.0 | Avro_Lancaster | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2933554.0 | USS_Trippe_(DD-403) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6123978.0 | Laggin'_Dragon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1637189.0 | William_L._Clayton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3774164.0 | USS_Geneva_(APA-86) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5521547.0 | Danish_Americans | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4065418e7 | Non-stick_surface | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7978606e7 | A_Thousand_Suns | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.764875e7 | David_B._Nicodemus | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.8890803e7 | Norman_Hilberry | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
22133.0 | Nuclear_chain_reaction | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3226839.0 | George_Silk | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3528759.0 | History_of_Halifax,_Nova_Scotia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7174639.0 | Insertion_time | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.8012103e7 | The_Untold_History_of_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.310898e7 | Kaj_Aage_Gunnar_Strand | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
10264.0 | Enrico_Fermi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
66057.0 | DuMont_Television_Network | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
495585.0 | Taiyō_o_Nusunda_Otoko | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4827066.0 | Paul_Norris | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1252250.0 | Godzilla,_Mothra_and_King_Ghidorah:_Giant_Monsters_All-Out_Attack | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1607173.0 | George_L._Harrison | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.4806977e7 | 1939_in_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
11493.0 | Fallout_shelter | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
206221.0 | Henry_H._Arnold | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2063689.0 | Arthur_Jeffrey_Dempster | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3648687.0 | Shinkolobwe | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0727293e7 | Iccho_Itoh | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2819734e7 | List_of_people_considered_father_or_mother_of_a_field | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3093845e7 | Noriaki_Tsuchimoto | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3990103e7 | Box_Car_Racer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.1957579e7 | British_contribution_to_the_Manhattan_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.977474e7 | Deaths_in_March_2000 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
63335.0 | Childhood's_End | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
898162.0 | List_of_fictional_monarchs_of_real_countries | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8224295.0 | A4200_road | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9087090.0 | Astral_Doors | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3674069e7 | Hippocratic_Oath_for_scientists | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5256987e7 | Kirill_Tolpygo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.2952515e7 | Charles_L._Carpenter | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
179512.0 | Jumping_the_shark | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
203279.0 | USS_Saratoga_(CV-3) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
396733.0 | Val_Logsdon_Fitch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
507859.0 | Louis_Slotin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
594037.0 | Special_Relationship | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
597900.0 | Saunders-Roe_SR.53 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080927e7 | USS_Cleburne_(APA-73) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.4565427e7 | James_C._Keck | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
193367.0 | USS_Salt_Lake_City_(CA-25) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
999864.0 | Trinity_(video_game) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4920194.0 | Frederick_Hurten_Rhead | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5807387.0 | List_of_Jesuits | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.255528e7 | June_1959 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0488736e7 | The_Second_World_War_(book) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.5111069e7 | The_Man_in_the_High_Castle_(TV_series) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4162206.0 | Fort_Halstead | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3065014e7 | Top_Cottage | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.2802349e7 | Naval_history_of_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2509392.0 | GURPS_Infinite_Worlds | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5372973.0 | History_of_St._Louis | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2124633e7 | USS_Tills | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5795138e7 | List_of_World_War_II_science_fiction,_fantasy,_and_horror_films | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.7564195e7 | Lester_Skaggs | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.6933294e7 | Bombing_of_Tokyo_(10_March_1945) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1107368.0 | Langdon_Warner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1217460.0 | Scuola_Normale_Superiore_di_Pisa | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2268250.0 | Mark_Muir_Mills | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0984126e7 | Seabees_in_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.1913329e7 | Munir_Ahmad_Khan | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.8619803e7 | The_Cyborg_and_the_Sorcerers | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8695418e7 | Curious_Notions | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.9051028e7 | List_of_fictional_presidents_of_the_United_States_(G–H) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2639754.0 | William_Deakin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1759466e7 | Jacob_Beser | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.2815847e7 | Day_One_(1989_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
128452.0 | Cavendish_Laboratory | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
587693.0 | William_Sterling_Parsons | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2276037.0 | Padre_Island | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0944233e7 | Charles_McNider | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
879501.0 | Norwegian_heavy_water_sabotage | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.271696e7 | USS_Chilton_(APA-38) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.6555042e7 | Timeline_of_World_War_II_(1945–1991) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.7661638e7 | Ray_Lawrence_(record_producer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
97830.0 | Nuclear_technology | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7305060.0 | USS_Mender | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1388411.0 | Copenhagen_(play) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1964078.0 | Crash_Dive | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3372435.0 | Charles_Christian_Lauritsen | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3698050.0 | Hans_Rosbaud | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6728339.0 | Raymond_R._Schumacher | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8340706.0 | Killers_from_Space | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.0853791e7 | War_against_the_potato_beetle | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.4496752e7 | Arnold_Wolfers | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.6724944e7 | August_1945 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2522233.0 | USCGC_Bramble_(WLB-392) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2696902.0 | P._Y._Saeki | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5674470.0 | Fireworks_by_Grucci | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5710347e7 | 515th_Parachute_Infantry_Regiment_(United_States) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6801864e7 | Kon-Tiki_(2012_film) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.0525886e7 | Hydrogen_isotope_biogeochemistry | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
516918.0 | Jose_P._Laurel | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.7354728e7 | Chemical_Warfare_Service:_Flame_Tank_Group_Seabees | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7729.0 | Captain_America | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
307257.0 | Roscoe_H._Hillenkoetter | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1016442.0 | Manuela_Santiago_Collazo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2317416.0 | Coffee_Talk_(Saturday_Night_Live) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2875647.0 | Energy–momentum_relation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4714516.0 | Laser_weapon | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8589876e7 | First_Yank_into_Tokyo | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8783048e7 | Nuclear_Secrets | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.9464762e7 | Herbert_Durkin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
19603.0 | Manhattan_Project | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
39038.0 | Hanford_Site | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
39040.0 | Ernest_Lawrence | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
423366.0 | Jacob_Viner | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
711853.0 | Joe_Kieyoomia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.1443761e7 | Mikhail_Pervukhin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
406017.0 | Balance_of_terror | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
777174.0 | Big_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1312930.0 | Wrong_Is_Right | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2777254.0 | Helge_Jung | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6346748.0 | Manhattan_Project_(song) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5.3343304e7 | Arthur_David_Torlesse | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
177729.0 | Zeppo_Marx | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
355000.0 | James_B._Conant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
951124.0 | Auric_Goldfinger | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3048699.0 | Moist_desquamation | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8892305.0 | 2002_Eastern_Mediterranean_event | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.0694704e7 | Theta_pinch | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
39034.0 | J._Robert_Oppenheimer | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4061738.0 | Thomas_Farrell_(United_States_Army_officer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.9283873e7 | 1950 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0526307e7 | Charles_D._Coryell | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7.1664437e7 | Liu_Yunbin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
315710.0 | Mark_Oliphant | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1015331.0 | Bat_bomb | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1261101.0 | Oliver_Wendell_Jones | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.6618104e7 | The_Manhattan_Projects | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
342826.0 | 1940_in_science | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1083070.0 | Arnold_Potts | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.349352e7 | USS_Bland | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8306543e7 | Jessie_Stevenson_Kovalenko_Medal | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
129652.0 | Oakwood,_Montgomery_County,_Ohio | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
401225.0 | The_City_on_the_Edge_of_Forever | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
507796.0 | HMS_Uganda_(66) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
518003.0 | USS_Searaven_(SS-196) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.602142e7 | Mari_Gorman | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.2115877e7 | Tsutomu_Yamaguchi | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.8061808e7 | William_L._Uanna | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5554068e7 | Leonard_Peter_Schultz | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.926546e7 | Edwin_Flavell_(RAF_officer) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
116691.0 | North_Adams,_Massachusetts | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8826410.0 | USS_Braxton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080915e7 | USS_Carteret_(APA-70) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.0981692e7 | Ted_Doyle | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
60540.0 | Leslie_Groves | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
326834.0 | Patrick_Blackett | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
441642.0 | Operation_Grapple | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2391828.0 | Claude_Eatherly | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4884462.0 | Hammer_&_Sickle | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8339779.0 | Breeds_There_a_Man...? | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.3446366e7 | Ukrainians_in_Russia | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4049029e7 | George_Koval | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080852e7 | USS_Briscoe_(APA-65) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.5899369e7 | Robie_Macauley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.3916699e7 | Strategic_Computing_Initiative | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
6.4011351e7 | Discovery_of_nuclear_fission | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
31922.0 | University_of_California,_Berkeley | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
102915.0 | Jack_Parsons | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
712716.0 | NERVA | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
730450.0 | Deutsche_Physik | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2252464.0 | Alexander_Scourby | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2594225.0 | Samuel_King_Allison | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2599915.0 | Leonid_Kvasnikov | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
8080591.0 | List_of_World_War_II_military_operations | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.0246099e7 | United_Nations_Security_Council_Resolution_1747 | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.1561403e7 | USS_Pelican_(AMS-32) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4080997e7 | USS_Fallon_(APA-81) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
363992.0 | 1950s_in_film | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
416813.0 | University_of_Minnesota | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.4410346e7 | Max_Bodenstein | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.0785562e7 | Western_Military_Academy | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
5987775.0 | USS_Quartz_(IX-150) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
7852575.0 | Ernest_Titterton | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9210780.0 | List_of_The_Six_Million_Dollar_Man_episodes | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
9938573.0 | Isaak_Kikoin | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1.8985287e7 | Culture_of_the_United_States | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.5670368e7 | List_of_Sigma_Nu_brothers | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
924954.0 | The_Heroes_of_Telemark | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
326225.0 | Technology_during_World_War_II | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1109514.0 | USS_Trepang_(SS-412) | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
1822400.0 | List_of_American_University_people | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
2.6255671e7 | Moshi_Monsters | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
3.5802855e7 | Properties_of_metals,_metalloids_and_nonmetals | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
4.5461344e7 | Eric_Burhop | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
244749.0 | Chelyabinsk | 1238.0 | Atomic_bomb | 21785.0 | Nuclear_weapon |
Now we create our new table of edges, where we drop all edges to redirects and add in the direct edges instead.
twoStepRedirects.createOrReplaceTempView("twoStepRedirects")
SELECT enwiki_graph_edges.src,
enwiki_graph_edges.src_title,
enwiki_graph_edges.dst,
enwiki_graph_edges.dst_title,
0 AS shortenedRedirect
FROM enwiki_graph_edges INNER JOIN enwiki_page ON enwiki_page.page_id = enwiki_graph_edges.dst
WHERE enwiki_page.page_is_redirect = 0
UNION ALL
SELECT twoStepRedirects.artA AS src,
twoStepRedirects.artA_title AS src_title,
twoStepRedirects.artC AS dst,
twoStepRedirects.artC_title AS dst_title,
1 AS shortenedRedirect
FROM twoStepRedirects
src | src_title | dst | dst_title |
---|---|---|---|
3.0322746e7 | General_Staff_of_Azerbaijani_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.8849049e7 | Aşağı_Ağcakənd | 1088.0 | Azerbaijani_Armed_Forces |
412390.0 | Administrative_divisions_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.2576829e7 | Agriculture_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6041396e7 | Namig_Islamzadeh | 1088.0 | Azerbaijani_Armed_Forces |
5.7836785e7 | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan | 1088.0 | Azerbaijani_Armed_Forces |
31730.0 | British_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
31861.0 | Armed_Forces_of_the_Republic_of_Uzbekistan | 1088.0 | Azerbaijani_Armed_Forces |
67538.0 | Australian_Defence_Force | 1088.0 | Azerbaijani_Armed_Forces |
1492872.0 | Qakh_District | 1088.0 | Azerbaijani_Armed_Forces |
3.2945088e7 | Red_Army_invasion_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4526380.0 | Ministry_of_National_Security_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.0314065e7 | Najmeddin_Sadikov | 1088.0 | Azerbaijani_Armed_Forces |
1.1447628e7 | Abkhazian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.0187921e7 | Samir_Kachayev | 1088.0 | Azerbaijani_Armed_Forces |
12065.0 | Defence_Forces_of_Georgia | 1088.0 | Azerbaijani_Armed_Forces |
5731277.0 | Fauna_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
17769.0 | Latvian_National_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5.9230903e7 | Yevgeny_Karlov | 1088.0 | Azerbaijani_Armed_Forces |
12126.0 | Military_of_Greenland | 1088.0 | Azerbaijani_Armed_Forces |
2.1490379e7 | Rail_Rzayev | 1088.0 | Azerbaijani_Armed_Forces |
288188.0 | Bundeswehr | 1088.0 | Azerbaijani_Armed_Forces |
2.4777268e7 | Armed_Forces_of_Transnistria | 1088.0 | Azerbaijani_Armed_Forces |
1.2339349e7 | Architecture_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
30116.0 | Armed_Forces_of_the_Republic_of_Tajikistan | 1088.0 | Azerbaijani_Armed_Forces |
69007.0 | Military_of_Bhutan | 1088.0 | Azerbaijani_Armed_Forces |
2867590.0 | Royal_Cambodian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6040932.0 | Security_Forces_Command | 1088.0 | Azerbaijani_Armed_Forces |
5.5095974e7 | Healthcare_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.2197952e7 | List_of_Azerbaijani_flags | 1088.0 | Azerbaijani_Armed_Forces |
3.051115e7 | Azerbaijani_Flag_Order | 1088.0 | Azerbaijani_Armed_Forces |
6.5910706e7 | Zafar_Order | 1088.0 | Azerbaijani_Armed_Forces |
5949758.0 | Land_mine_situation_in_Nagorno-Karabakh | 1088.0 | Azerbaijani_Armed_Forces |
6.5625767e7 | 2020_Ghazanchetsots_Cathedral_shelling | 1088.0 | Azerbaijani_Armed_Forces |
1492928.0 | Tovuz_District | 1088.0 | Azerbaijani_Armed_Forces |
1.8849026e7 | Gülüstan,_Goranboy | 1088.0 | Azerbaijani_Armed_Forces |
3.5079877e7 | Azerbaijani_traditional_clothing | 1088.0 | Azerbaijani_Armed_Forces |
5.7994574e7 | Military_Band_Service_of_the_Armed_Forces_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.013264e7 | 1920_Ganja_revolt | 1088.0 | Azerbaijani_Armed_Forces |
2.2612236e7 | 2008_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
7.1744547e7 | September_2022_Armenia–Azerbaijan_clashes | 1088.0 | Azerbaijani_Armed_Forces |
2.4315452e7 | List_of_people_from_Baku | 1088.0 | Azerbaijani_Armed_Forces |
5.6000989e7 | Tsarist_officers_in_the_Red_Army | 1088.0 | Azerbaijani_Armed_Forces |
161087.0 | Timor_Leste_Defence_Force | 1088.0 | Azerbaijani_Armed_Forces |
27346.0 | Slovenian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.1169023e7 | Ministry_of_Defence_Industry_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.9331755e7 | Task_Force_ALBA | 1088.0 | Azerbaijani_Armed_Forces |
5.9607179e7 | Fakhraddin_Najafov | 1088.0 | Azerbaijani_Armed_Forces |
34252.0 | Republic_of_Yemen_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1478175.0 | Public_holidays_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
32425.0 | Military_in_Vatican_City | 1088.0 | Azerbaijani_Armed_Forces |
67639.0 | Politics_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1274140.0 | Islam_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6499801e7 | Tarlan_Aliyarbayov | 1088.0 | Azerbaijani_Armed_Forces |
3.3284721e7 | List_of_massacres_of_Armenians | 1088.0 | Azerbaijani_Armed_Forces |
5.7265128e7 | Baykar | 1088.0 | Azerbaijani_Armed_Forces |
6.5605916e7 | 2020_bombardment_of_Stepanakert | 1088.0 | Azerbaijani_Armed_Forces |
914180.0 | Stepanakert | 1088.0 | Azerbaijani_Armed_Forces |
6.6168931e7 | Marine_Infantry_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.572327e7 | EXTRA_artillery_rocket_system | 1088.0 | Azerbaijani_Armed_Forces |
39237.0 | Israel_Defense_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.7127135e7 | Commander_of_the_Navy_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
10724.0 | French_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
19269.0 | Public_Services_(Monaco) | 1088.0 | Azerbaijani_Armed_Forces |
27468.0 | Swiss_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
343356.0 | List_of_cities_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.7721373e7 | Medicine_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.5829912e7 | Natural_resources_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
32384.0 | People's_Army_of_Vietnam | 1088.0 | Azerbaijani_Armed_Forces |
21263.0 | Korean_People's_Army | 1088.0 | Azerbaijani_Armed_Forces |
3206857.0 | Religion_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4.2626991e7 | Commission_on_Combating_Corruption | 1088.0 | Azerbaijani_Armed_Forces |
6.614052e7 | Karim_Valiyev | 1088.0 | Azerbaijani_Armed_Forces |
6.3734783e7 | Azerbaijan_in_antiquity | 1088.0 | Azerbaijani_Armed_Forces |
562798.0 | Defence_Forces_(Ireland) | 1088.0 | Azerbaijani_Armed_Forces |
1.7888556e7 | Corps_of_drums | 1088.0 | Azerbaijani_Armed_Forces |
6.022641e7 | Beyler_Agayev | 1088.0 | Azerbaijani_Armed_Forces |
10715.0 | Finnish_Defence_Forces | 1088.0 | Azerbaijani_Armed_Forces |
30136.0 | Royal_Thai_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
2.9435352e7 | Yavar_Jamalov | 1088.0 | Azerbaijani_Armed_Forces |
36398.0 | 2020s | 1088.0 | Azerbaijani_Armed_Forces |
6.57206e7 | STM_Kargu | 1088.0 | Azerbaijani_Armed_Forces |
6.5805089e7 | 2020–2021_Armenian_protests | 1088.0 | Azerbaijani_Armed_Forces |
1.8918691e7 | Farukh | 1088.0 | Azerbaijani_Armed_Forces |
3.8023365e7 | List_of_Azerbaijani_generals | 1088.0 | Azerbaijani_Armed_Forces |
6.6359386e7 | Subhan_Jabrayilov | 1088.0 | Azerbaijani_Armed_Forces |
7311197.0 | Azerbaijan–Turkey_relations | 1088.0 | Azerbaijani_Armed_Forces |
2.2469823e7 | Azerbaijani_peacekeeping_forces | 1088.0 | Azerbaijani_Armed_Forces |
6.1609086e7 | Bronze_and_Iron_Age_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.7911049e7 | Ministry_of_Defence_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
2.8119649e7 | Special_Purpose_Police_Unit | 1088.0 | Azerbaijani_Armed_Forces |
4.3807767e7 | Ilyas_Ismayilli | 1088.0 | Azerbaijani_Armed_Forces |
1081.0 | Economy_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3537.0 | Armed_Forces_of_Belarus | 1088.0 | Azerbaijani_Armed_Forces |
698454.0 | Azerbaijanis | 1088.0 | Azerbaijani_Armed_Forces |
4788086.0 | Azerbaijan_Medical_University | 1088.0 | Azerbaijani_Armed_Forces |
6.235848e7 | Air_and_Coastal_Defense_Command | 1088.0 | Azerbaijani_Armed_Forces |
6.3900274e7 | Shushi_Liberation_Day | 1088.0 | Azerbaijani_Armed_Forces |
401606.0 | Index_of_Azerbaijan-related_articles | 1088.0 | Azerbaijani_Armed_Forces |
4941803.0 | Azerbaijani_Navy | 1088.0 | Azerbaijani_Armed_Forces |
6.3098671e7 | Poverty_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
7.1288138e7 | History_of_the_Azerbaijani_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
19115.0 | Malaysian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
309778.0 | Music_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.5699078e7 | Armenia–Iraq_relations | 1088.0 | Azerbaijani_Armed_Forces |
58145.0 | Cossacks | 1088.0 | Azerbaijani_Armed_Forces |
68951.0 | Belgian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.2357499e7 | Royal_Thai_Naval_Air_Division | 1088.0 | Azerbaijani_Armed_Forces |
6.6185091e7 | 4th_Army_Corps_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
4116970.0 | Central_Bank_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4380486.0 | Armenian–Tatar_massacres_of_1905–1907 | 1088.0 | Azerbaijani_Armed_Forces |
6415919.0 | Maraga_massacre | 1088.0 | Azerbaijani_Armed_Forces |
7171338.0 | Indian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
2.339895e7 | Romanian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.0017617e7 | Military_parades_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2693748.0 | December_1993 | 1088.0 | Azerbaijani_Armed_Forces |
1.0927351e7 | Azerbaijani_National_Guard | 1088.0 | Azerbaijani_Armed_Forces |
6.5514952e7 | Hikmat_Mirzayev | 1088.0 | Azerbaijani_Armed_Forces |
40196.0 | Transport_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1074631.0 | Common_Security_and_Defence_Policy | 1088.0 | Azerbaijani_Armed_Forces |
8626193.0 | Gurgen_Dalibaltayan | 1088.0 | Azerbaijani_Armed_Forces |
1.8933221e7 | Royal_Brunei_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
2.3408142e7 | Sri_Lanka_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.5921759e7 | Babak_Samidli | 1088.0 | Azerbaijani_Armed_Forces |
3197492.0 | Rovshan_Javadov | 1088.0 | Azerbaijani_Armed_Forces |
6922486.0 | Extreme_points_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.614834e7 | Freedom_of_religion_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.9079143e7 | Armed_Forces_of_South_Ossetia | 1088.0 | Azerbaijani_Armed_Forces |
2.8096514e7 | Jamshid_Nakhchivanski_Military_Lyceum | 1088.0 | Azerbaijani_Armed_Forces |
1.8846257e7 | Cocuq_Mərcanlı | 1088.0 | Azerbaijani_Armed_Forces |
2.8037194e7 | Dadash_Rzayev | 1088.0 | Azerbaijani_Armed_Forces |
4.41739e7 | Military_activity_of_the_Islamic_State | 1088.0 | Azerbaijani_Armed_Forces |
5.8641561e7 | Isgender_Aznaurov | 1088.0 | Azerbaijani_Armed_Forces |
6.6297159e7 | Ramiz_Gasimov | 1088.0 | Azerbaijani_Armed_Forces |
20394.0 | Tatmadaw | 1088.0 | Azerbaijani_Armed_Forces |
36397.0 | 2010s | 1088.0 | Azerbaijani_Armed_Forces |
27276.0 | Armed_Forces_of_Saudi_Arabia | 1088.0 | Azerbaijani_Armed_Forces |
1222633.0 | Royal_Thai_Navy | 1088.0 | Azerbaijani_Armed_Forces |
4695860.0 | Nagorno-Karabakh_conflict | 1088.0 | Azerbaijani_Armed_Forces |
2.5137672e7 | Energy_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6176862e7 | 2nd_Army_Corps_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
6.8603785e7 | Ramiz_Tahirov | 1088.0 | Azerbaijani_Armed_Forces |
40195.0 | Telecommunications_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.4890635e7 | 1993–2016_military_reforms_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5581.0 | Armed_Forces_of_Croatia | 1088.0 | Azerbaijani_Armed_Forces |
19248.0 | Armed_Forces_of_the_Republic_of_Moldova | 1088.0 | Azerbaijani_Armed_Forces |
2.1864529e7 | Aeronautics_Defense_Orbiter | 1088.0 | Azerbaijani_Armed_Forces |
6.641496e7 | Babak_Alakbarov | 1088.0 | Azerbaijani_Armed_Forces |
6.8233981e7 | 2020_bombardment_of_Martuni | 1088.0 | Azerbaijani_Armed_Forces |
21162.0 | Netherlands_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5.8621677e7 | Naig_Yusifov | 1088.0 | Azerbaijani_Armed_Forces |
5366487.0 | Human_rights_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
9519693.0 | Participants_in_Operation_Enduring_Freedom | 1088.0 | Azerbaijani_Armed_Forces |
2.3916399e7 | Sport_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.4496251e7 | Barak_8 | 1088.0 | Azerbaijani_Armed_Forces |
6.7243383e7 | Intigam_Asgarli | 1088.0 | Azerbaijani_Armed_Forces |
19279.0 | Mongolian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
669244.0 | War_college | 1088.0 | Azerbaijani_Armed_Forces |
1.328078e7 | Arayik_Harutyunyan | 1088.0 | Azerbaijani_Armed_Forces |
6.1170719e7 | Azerbaijani_Army_100th_anniversary_medal | 1088.0 | Azerbaijani_Armed_Forces |
6.5848493e7 | Samir_Safarov | 1088.0 | Azerbaijani_Armed_Forces |
27479.0 | Syrian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.3427826e7 | Cabinet_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.8846258e7 | Şəybəy | 1088.0 | Azerbaijani_Armed_Forces |
3.7014386e7 | Talish-Mughan_culture | 1088.0 | Azerbaijani_Armed_Forces |
6.6328752e7 | 2020_Azerbaijani_protests | 1088.0 | Azerbaijani_Armed_Forces |
6.6677371e7 | Operation_Kalbajar | 1088.0 | Azerbaijani_Armed_Forces |
7.1844164e7 | Death_of_Anush_Apetyan | 1088.0 | Azerbaijani_Armed_Forces |
2.1447694e7 | List_of_companies_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.1659771e7 | Military_history_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4.0153898e7 | Polish_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
4.2424746e7 | Rasul_Chunayev | 1088.0 | Azerbaijani_Armed_Forces |
6.767076e7 | Tofig_Aghahuseynov | 1088.0 | Azerbaijani_Armed_Forces |
1230371.0 | Royal_Thai_Army | 1088.0 | Azerbaijani_Armed_Forces |
1.5721449e7 | Azerbaijan–European_Union_relations | 1088.0 | Azerbaijani_Armed_Forces |
6.5743443e7 | Yashar_Hasanov | 1088.0 | Azerbaijani_Armed_Forces |
291026.0 | List_of_battles_in_the_21st_century | 1088.0 | Azerbaijani_Armed_Forces |
1.8918966e7 | Hadrut | 1088.0 | Azerbaijani_Armed_Forces |
1.3634062e7 | Constitution_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.2503385e7 | Armed_Forces_of_the_Republic_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.035997e7 | Hidayat_Rustamov | 1088.0 | Azerbaijani_Armed_Forces |
6.5922276e7 | Madagiz_offensive | 1088.0 | Azerbaijani_Armed_Forces |
4318954.0 | Azerbaijani_Air_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.716738e7 | Azerbaijan_Military | 1088.0 | Azerbaijani_Armed_Forces |
5.3412468e7 | Military_ranks_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.6759971e7 | Conscription_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6279185e7 | Anar_Aliyev | 1088.0 | Azerbaijani_Armed_Forces |
2.3269917e7 | Military_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.836273e7 | Garachay | 1088.0 | Azerbaijani_Armed_Forces |
5.415509e7 | State_Service_for_Mobilization_and_Conscription_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.9387862e7 | Yavar_Aliyev | 1088.0 | Azerbaijani_Armed_Forces |
6.579868e7 | 2020_Russian_Mil_Mi-24_shootdown | 1088.0 | Azerbaijani_Armed_Forces |
339643.0 | Flag_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5424688.0 | Jordanian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5650950.0 | Zoroastrianism_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.1353482e7 | Albert_Agarunov | 1088.0 | Azerbaijani_Armed_Forces |
4.3454993e7 | Armed_forces_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1151523.0 | Azerbaijani_manat | 1088.0 | Azerbaijani_Armed_Forces |
5444617.0 | Armed_Forces_of_Montenegro | 1088.0 | Azerbaijani_Armed_Forces |
8038.0 | Danish_Defence | 1088.0 | Azerbaijani_Armed_Forces |
27335.0 | Slovak_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
544668.0 | Ismail_I | 1088.0 | Azerbaijani_Armed_Forces |
3.0135122e7 | Immigration_to_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.6193899e7 | 2018_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1097.0 | Armed_Forces_of_Armenia | 1088.0 | Azerbaijani_Armed_Forces |
7077806.0 | Orography_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.0003869e7 | Elman_Huseynov | 1088.0 | Azerbaijani_Armed_Forces |
27256.0 | Sammarinese_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
67638.0 | Demographics_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.5561994e7 | Zaur_Rzayev | 1088.0 | Azerbaijani_Armed_Forces |
1351138.0 | Elections_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.0825064e7 | Baháʼí_Faith_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
13431.0 | Hungarian_Defence_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5122310.0 | March_Days | 1088.0 | Azerbaijani_Armed_Forces |
1.8270723e7 | Sotk | 1088.0 | Azerbaijani_Armed_Forces |
6.883363e7 | Azerbaijan_in_the_Council_of_Europe | 1088.0 | Azerbaijani_Armed_Forces |
1322733.0 | Black_January | 1088.0 | Azerbaijani_Armed_Forces |
3.7897147e7 | National_symbols_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
25709.0 | Russian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.5613218e7 | Casualties_of_the_2020_Nagorno-Karabakh_war | 1088.0 | Azerbaijani_Armed_Forces |
6.6258543e7 | Zaur_Guliyev | 1088.0 | Azerbaijani_Armed_Forces |
2.3575502e7 | Tourism_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.807413e7 | 2010_in_Europe | 1088.0 | Azerbaijani_Armed_Forces |
5.8483543e7 | Yusif_Akhundzade | 1088.0 | Azerbaijani_Armed_Forces |
6.6101111e7 | Kanan_Seyidov | 1088.0 | Azerbaijani_Armed_Forces |
2.5131731e7 | Azerbaijani_Army | 1088.0 | Azerbaijani_Armed_Forces |
6.377299e7 | Pornography_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6040794e7 | Aghamir_Sultanov | 1088.0 | Azerbaijani_Armed_Forces |
2073962.0 | ASQ | 1088.0 | Azerbaijani_Armed_Forces |
1.8882652e7 | Seysulan | 1088.0 | Azerbaijani_Armed_Forces |
2.1634642e7 | Novruz_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.7958605e7 | Eldar_Mammadov | 1088.0 | Azerbaijani_Armed_Forces |
5.3929862e7 | Syrian_Special_Mission_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.6221176e7 | Victory_Banner_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
19086.0 | Army_of_North_Macedonia | 1088.0 | Azerbaijani_Armed_Forces |
4016533.0 | National_Assembly_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
6.672858e7 | Shahin_Allahyarov | 1088.0 | Azerbaijani_Armed_Forces |
1.0927665e7 | Internal_Troops_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
7.059512e7 | Matin_Karimli | 1088.0 | Azerbaijani_Armed_Forces |
3674.0 | Bulgarian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
17779.0 | Lebanese_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
7370911.0 | History_of_the_Jews_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.6084354e7 | Women_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4.000345e7 | 1995_Azerbaijani_coup_d'état_attempt | 1088.0 | Azerbaijani_Armed_Forces |
6.2009022e7 | Elshad_Akhadov | 1088.0 | Azerbaijani_Armed_Forces |
6.4398676e7 | Azerbaijani_National_Army | 1088.0 | Azerbaijani_Armed_Forces |
1.2975707e7 | Safar_Abiyev | 1088.0 | Azerbaijani_Armed_Forces |
3.6945373e7 | Theatre_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.9601754e7 | Saudi_Arabian_Military_Forces | 1088.0 | Azerbaijani_Armed_Forces |
17837.0 | Luxembourg_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.8271586e7 | Yeraskh | 1088.0 | Azerbaijani_Armed_Forces |
4.1427083e7 | 2014_in_aviation | 1088.0 | Azerbaijani_Armed_Forces |
16959.0 | Katyusha_rocket_launcher | 1088.0 | Azerbaijani_Armed_Forces |
1.7967625e7 | Mineral_industry_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.741215e7 | Military_Trophy_Park_(Baku) | 1088.0 | Azerbaijani_Armed_Forces |
5463765.0 | List_of_military_clothing_camouflage_patterns | 1088.0 | Azerbaijani_Armed_Forces |
5.9101736e7 | Hafiz_Bakhshaliyev | 1088.0 | Azerbaijani_Armed_Forces |
5.9921988e7 | Metallurgy_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
14650.0 | Indonesian_National_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6389332.0 | Military_history_of_Scotland | 1088.0 | Azerbaijani_Armed_Forces |
6.5986628e7 | Kazakh_sultanate | 1088.0 | Azerbaijani_Armed_Forces |
23369.0 | Pakistan_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
877164.0 | Arran_(Caucasus) | 1088.0 | Azerbaijani_Armed_Forces |
3.0321796e7 | Nuraddin_Sadigov | 1088.0 | Azerbaijani_Armed_Forces |
404448.0 | Azerbaijan_Soviet_Socialist_Republic | 1088.0 | Azerbaijani_Armed_Forces |
6.6096694e7 | Ilham_Mehdiyev | 1088.0 | Azerbaijani_Armed_Forces |
5.0235358e7 | Kyaram_Sloyan | 1088.0 | Azerbaijani_Armed_Forces |
5.863037e7 | Chingiz_Gurbanov | 1088.0 | Azerbaijani_Armed_Forces |
746.0 | Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
40207.0 | Albanian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
7150649.0 | Environmental_issues_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.0078221e7 | Elchin_Guliyev | 1088.0 | Azerbaijani_Armed_Forces |
6.9847606e7 | Battle_of_Yalama | 1088.0 | Azerbaijani_Armed_Forces |
5.9608408e7 | Igor_Vladimirovich_Makeyev | 1088.0 | Azerbaijani_Armed_Forces |
21330.0 | Nepalese_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.416948e7 | Elnur_M._Allahverdiyev | 1088.0 | Azerbaijani_Armed_Forces |
5844475.0 | Palestinian_National_Security_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.6150419e7 | 3rd_Army_Corps_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
12116.0 | Hellenic_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1492937.0 | Khojavend_District | 1088.0 | Azerbaijani_Armed_Forces |
4941797.0 | Azerbaijani_Land_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.6344907e7 | 811th_Lachin_Alpine_Rifle_Regiment | 1088.0 | Azerbaijani_Armed_Forces |
2.7172367e7 | Azerbaijani_folklore | 1088.0 | Azerbaijani_Armed_Forces |
6.4563867e7 | Polad_Hashimov | 1088.0 | Azerbaijani_Armed_Forces |
6.6101738e7 | Zaur_Nudiraliyev | 1088.0 | Azerbaijani_Armed_Forces |
774820.0 | List_of_Azerbaijanis | 1088.0 | Azerbaijani_Armed_Forces |
3764215.0 | Prime_Minister_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.8109579e7 | Jamshid_Nakhchivanski | 1088.0 | Azerbaijani_Armed_Forces |
4.2799055e7 | Armed_Forces_of_Ukraine | 1088.0 | Azerbaijani_Armed_Forces |
3.9315722e7 | Swisscoy | 1088.0 | Azerbaijani_Armed_Forces |
6.5898802e7 | Gorkhmaz_Eyvazov | 1088.0 | Azerbaijani_Armed_Forces |
2.8209104e7 | Mubariz_Ibrahimov | 1088.0 | Azerbaijani_Armed_Forces |
6.5787844e7 | Battle_of_Shusha_(2020) | 1088.0 | Azerbaijani_Armed_Forces |
2.1189576e7 | Azerbaijani_rug | 1088.0 | Azerbaijani_Armed_Forces |
7772957.0 | Christianity_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.8846225e7 | Böyük_Mərcanlı | 1088.0 | Azerbaijani_Armed_Forces |
6.1912815e7 | \"90th_Anniversary_of_the_Armed_Forces_of_Azerbaijan_(1918–2008)\"_Medal | 1088.0 | Azerbaijani_Armed_Forces |
6.6138118e7 | Haydar_Piriyev | 1088.0 | Azerbaijani_Armed_Forces |
2.0876674e7 | Rafael_Aghayev | 1088.0 | Azerbaijani_Armed_Forces |
2.3896354e7 | Christianity_in_the_21st_century | 1088.0 | Azerbaijani_Armed_Forces |
2.8024426e7 | Mammadrafi_Mammadov | 1088.0 | Azerbaijani_Armed_Forces |
5.5843237e7 | Azerbaijan–NATO_relations | 1088.0 | Azerbaijani_Armed_Forces |
6.5904472e7 | Ilgar_Mirzayev | 1088.0 | Azerbaijani_Armed_Forces |
14705.0 | Italian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
877182.0 | Shirvan | 1088.0 | Azerbaijani_Armed_Forces |
2.8017509e7 | Valeh_Barshadly | 1088.0 | Azerbaijani_Armed_Forces |
6.4718117e7 | List_of_modern_equipment_of_the_Azerbaijani_Air_Force | 1088.0 | Azerbaijani_Armed_Forces |
51387.0 | 2016 | 1088.0 | Azerbaijani_Armed_Forces |
2785204.0 | Japan_Self-Defense_Forces | 1088.0 | Azerbaijani_Armed_Forces |
8620021.0 | Australian_Defence_Organisation | 1088.0 | Azerbaijani_Armed_Forces |
1.4338552e7 | List_of_military_special_forces_units | 1088.0 | Azerbaijani_Armed_Forces |
5.8424551e7 | Valeh_Muslumov | 1088.0 | Azerbaijani_Armed_Forces |
806090.0 | Qara_Qoyunlu | 1088.0 | Azerbaijani_Armed_Forces |
5.224123e7 | Borders_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.0459344e7 | Anatoly_Nikolayevich_Davidovich | 1088.0 | Azerbaijani_Armed_Forces |
6.5948171e7 | 641st_Naval_Special_Operations_Brigade | 1088.0 | Azerbaijani_Armed_Forces |
1437631.0 | Armed_Forces_of_Malta | 1088.0 | Azerbaijani_Armed_Forces |
2.8048362e7 | Shahin_Musayev | 1088.0 | Azerbaijani_Armed_Forces |
68932.0 | Bangladesh_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
3.035175e7 | Azerbaijani_military | 1088.0 | Azerbaijani_Armed_Forces |
5.0529206e7 | Robert_Abajyan | 1088.0 | Azerbaijani_Armed_Forces |
6.6305663e7 | Ramiz_Jafarov | 1088.0 | Azerbaijani_Armed_Forces |
4.8268769e7 | Day_of_Restoration_of_Independence_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
6.6149221e7 | 1st_Army_Corps_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
16692.0 | Kuwait_Military_Forces | 1088.0 | Azerbaijani_Armed_Forces |
757750.0 | Norwegian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5.357506e7 | Corruption_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3308803.0 | Goris | 1088.0 | Azerbaijani_Armed_Forces |
5639884.0 | Armenian–Azerbaijani_war_(1918–1920) | 1088.0 | Azerbaijani_Armed_Forces |
7095335.0 | Climate_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
8386163.0 | Armen_Sarkissian | 1088.0 | Azerbaijani_Armed_Forces |
1.0934404e7 | Wildlife_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.0198993e7 | Nadir_Aliyev | 1088.0 | Azerbaijani_Armed_Forces |
1.0500625e7 | Mikael_Harutyunyan | 1088.0 | Azerbaijani_Armed_Forces |
1.6348707e7 | Military_of_England | 1088.0 | Azerbaijani_Armed_Forces |
3.2850702e7 | List_of_World_Heritage_Sites_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.9847781e7 | Battle_of_Kurdamir | 1088.0 | Azerbaijani_Armed_Forces |
2.3290269e7 | Istiglal_anti-materiel_rifle | 1088.0 | Azerbaijani_Armed_Forces |
5.0021902e7 | 2016_Nagorno-Karabakh_conflict | 1088.0 | Azerbaijani_Armed_Forces |
7.0696138e7 | Noyemberyan_District | 1088.0 | Azerbaijani_Armed_Forces |
25194.0 | Qatar_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
3.9626995e7 | Armasuisse | 1088.0 | Azerbaijani_Armed_Forces |
4.190231e7 | Special_Forces_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2152685.0 | Cypriot_National_Guard | 1088.0 | Azerbaijani_Armed_Forces |
1.8846287e7 | Jabrayil | 1088.0 | Azerbaijani_Armed_Forces |
6.7782661e7 | Zigana_(pistol) | 1088.0 | Azerbaijani_Armed_Forces |
6131588.0 | Petroleum_industry_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.6664048e7 | Dzhokhar_Dudayev_Battalion | 1088.0 | Azerbaijani_Armed_Forces |
6.1689141e7 | Agil_Mammadov_(soldier) | 1088.0 | Azerbaijani_Armed_Forces |
6.7094659e7 | 701st_Motorized_Rifle_Brigade | 1088.0 | Azerbaijani_Armed_Forces |
5.9633726e7 | Matlab_Guliyev | 1088.0 | Azerbaijani_Armed_Forces |
4059749.0 | Artsakh_Defence_Army | 1088.0 | Azerbaijani_Armed_Forces |
4.9718489e7 | Samra_Rahimli | 1088.0 | Azerbaijani_Armed_Forces |
6.640573e7 | Faig_Gasimov | 1088.0 | Azerbaijani_Armed_Forces |
3.1126572e7 | Ibad_Huseynov | 1088.0 | Azerbaijani_Armed_Forces |
5.8506289e7 | Raguf_Orujov | 1088.0 | Azerbaijani_Armed_Forces |
16650.0 | Armed_Forces_of_the_Republic_of_Kazakhstan | 1088.0 | Azerbaijani_Armed_Forces |
7105996.0 | State_reserves_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2.6157272e7 | Azerbaijani_art | 1088.0 | Azerbaijani_Armed_Forces |
4.0389354e7 | ASAN_service | 1088.0 | Azerbaijani_Armed_Forces |
6.5369178e7 | List_of_caves_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6229889e7 | Rustam_Gasparyan | 1088.0 | Azerbaijani_Armed_Forces |
956689.0 | Kura–Araxes_culture | 1088.0 | Azerbaijani_Armed_Forces |
1.0927815e7 | Caspian_Guard_Initiative | 1088.0 | Azerbaijani_Armed_Forces |
19076.0 | Macao_Garrison | 1088.0 | Azerbaijani_Armed_Forces |
30095.0 | Republic_of_China_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
7107998.0 | Bodies_of_water_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
7429325.0 | Hinduism_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.5488239e7 | Hikmat_Hasanov | 1088.0 | Azerbaijani_Armed_Forces |
6.6065854e7 | Baku_Victory_Parade_of_2020 | 1088.0 | Azerbaijani_Armed_Forces |
6.7101223e7 | Training_and_Education_Center_of_the_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6939602.0 | Battle_of_Shusha_(1992) | 1088.0 | Azerbaijani_Armed_Forces |
4.6847468e7 | Vali_bey_Yadigarov | 1088.0 | Azerbaijani_Armed_Forces |
6.5676927e7 | Aras_Valley_campaign | 1088.0 | Azerbaijani_Armed_Forces |
3.4024533e7 | Leyla-Tepe_culture | 1088.0 | Azerbaijani_Armed_Forces |
3.9653948e7 | List_of_years_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.0555433e7 | War_College_of_the_Azerbaijani_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
6.4529517e7 | July_2020_Armenian–Azerbaijani_clashes | 1088.0 | Azerbaijani_Armed_Forces |
2.805727e7 | Chingiz_Ildyrym | 1088.0 | Azerbaijani_Armed_Forces |
5.9606287e7 | Anvar_Arazov | 1088.0 | Azerbaijani_Armed_Forces |
3.9354729e7 | Red_Cross_service | 1088.0 | Azerbaijani_Armed_Forces |
1115368.0 | Maldives_National_Defence_Force | 1088.0 | Azerbaijani_Armed_Forces |
2251178.0 | Singapore_Armed_Forces_Best_Unit_Competition | 1088.0 | Azerbaijani_Armed_Forces |
2.8013699e7 | Ministry_of_Internal_Affairs_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
2.8027854e7 | Vahid_Musayev | 1088.0 | Azerbaijani_Armed_Forces |
6.5431221e7 | 2020_Nagorno-Karabakh_war | 1088.0 | Azerbaijani_Armed_Forces |
877787.0 | Azerbaijani_literature | 1088.0 | Azerbaijani_Armed_Forces |
3.0335881e7 | Rufat_Amirov | 1088.0 | Azerbaijani_Armed_Forces |
5.9232802e7 | Mazahir_Rustamov | 1088.0 | Azerbaijani_Armed_Forces |
6.6096991e7 | Zaur_Javanshir | 1088.0 | Azerbaijani_Armed_Forces |
6.6286297e7 | Karam_Mustafayev | 1088.0 | Azerbaijani_Armed_Forces |
17760.0 | Lao_People's_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
408284.0 | List_of_political_parties_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.9338836e7 | Spiez_Laboratory | 1088.0 | Azerbaijani_Armed_Forces |
6.0486441e7 | Kanan_Yusif-zada | 1088.0 | Azerbaijani_Armed_Forces |
7.0595126e7 | Shoragel_sultanate | 1088.0 | Azerbaijani_Armed_Forces |
2.1653069e7 | Geology_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.5925026e7 | 2nd_Commando_Brigade_(Turkey) | 1088.0 | Azerbaijani_Armed_Forces |
5853.0 | Army_of_the_Czech_Republic | 1088.0 | Azerbaijani_Armed_Forces |
4363966.0 | History_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
56966.0 | Portuguese_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
30215.0 | Armed_Forces_of_Turkmenistan | 1088.0 | Azerbaijani_Armed_Forces |
104985.0 | List_of_events_named_massacres | 1088.0 | Azerbaijani_Armed_Forces |
6.3564471e7 | Deaths_in_June_1993 | 1088.0 | Azerbaijani_Armed_Forces |
6.4398883e7 | Nakhchivan_Garrison | 1088.0 | Azerbaijani_Armed_Forces |
3610.0 | Armed_Forces_of_Bosnia_and_Herzegovina | 1088.0 | Azerbaijani_Armed_Forces |
7388232.0 | MOIK_Baku | 1088.0 | Azerbaijani_Armed_Forces |
1.1273902e7 | Multi-National_Force_West | 1088.0 | Azerbaijani_Armed_Forces |
1.1670391e7 | Gabala_Radar_Station | 1088.0 | Azerbaijani_Armed_Forces |
6.0131111e7 | Ruslan_Muradov | 1088.0 | Azerbaijani_Armed_Forces |
1.5860804e7 | Mass_media_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4.4412408e7 | 2014_Armenian_Mil_Mi-24_shootdown | 1088.0 | Azerbaijani_Armed_Forces |
5.7728678e7 | 2018_Armenian–Azerbaijani_clashes | 1088.0 | Azerbaijani_Armed_Forces |
1.1197435e7 | Maciej_Sulkiewicz | 1088.0 | Azerbaijani_Armed_Forces |
3.0455197e7 | Khojaly–Gadabay_culture | 1088.0 | Azerbaijani_Armed_Forces |
192825.0 | Azerbaijani_language | 1088.0 | Azerbaijani_Armed_Forces |
1.4305018e7 | Islamic_Republic_of_Iran_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
2.4533988e7 | Allahverdi_Bagirov | 1088.0 | Azerbaijani_Armed_Forces |
2.5278391e7 | List_of_protected_areas_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
20182.0 | Military_history_of_Afghanistan | 1088.0 | Azerbaijani_Armed_Forces |
4.4075958e7 | Nabat_(film) | 1088.0 | Azerbaijani_Armed_Forces |
6.7135415e7 | Commander_of_the_Air_Force_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
6.7666835e7 | 2021–2022_Armenia–Azerbaijan_border_crisis | 1088.0 | Azerbaijani_Armed_Forces |
67658.0 | Bahrain_Defence_Force | 1088.0 | Azerbaijani_Armed_Forces |
6.4209873e7 | Shamshadil | 1088.0 | Azerbaijani_Armed_Forces |
1.8846305e7 | Quycaq | 1088.0 | Azerbaijani_Armed_Forces |
6.2509106e7 | 2010s_in_political_history | 1088.0 | Azerbaijani_Armed_Forces |
5569221.0 | Shulaveri–Shomu_culture | 1088.0 | Azerbaijani_Armed_Forces |
6367906.0 | Azerbaijani_dances | 1088.0 | Azerbaijani_Armed_Forces |
1.6278429e7 | Outline_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.1362503e7 | Stone_Age_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.3805278e7 | 2013_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5.9357147e7 | Hikmet_Nazarli | 1088.0 | Azerbaijani_Armed_Forces |
1.2835793e7 | Azerbaijani_cuisine | 1088.0 | Azerbaijani_Armed_Forces |
2.8084481e7 | Tahir_Aliyev | 1088.0 | Azerbaijani_Armed_Forces |
2.9069593e7 | List_of_heads_of_state_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.9311132e7 | Swissint | 1088.0 | Azerbaijani_Armed_Forces |
6.6545755e7 | Gunduz_Safarli | 1088.0 | Azerbaijani_Armed_Forces |
7015198.0 | LGBT_rights_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.6607024e7 | AF_Holding | 1088.0 | Azerbaijani_Armed_Forces |
5.938745e7 | Sergei_Senyuskin | 1088.0 | Azerbaijani_Armed_Forces |
6.6404258e7 | Azerbaijani_Red_Army | 1088.0 | Azerbaijani_Armed_Forces |
938372.0 | President_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.7167197e7 | Azeri_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5.7937775e7 | Aliyar_Aliyev | 1088.0 | Azerbaijani_Armed_Forces |
6.0392656e7 | Ilgar_Ismailov | 1088.0 | Azerbaijani_Armed_Forces |
1519005.0 | Sultan_of_Oman's_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
2.3797951e7 | List_of_countries_by_number_of_military_and_paramilitary_personnel | 1088.0 | Azerbaijani_Armed_Forces |
6.6496992e7 | Fuzuli_International_Airport | 1088.0 | Azerbaijani_Armed_Forces |
4.3480308e7 | Media_freedom_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
23448.0 | Armed_Forces_of_the_Philippines | 1088.0 | Azerbaijani_Armed_Forces |
2697610.0 | Jermuk | 1088.0 | Azerbaijani_Armed_Forces |
17827.0 | Lithuanian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
462640.0 | Chief_of_staff | 1088.0 | Azerbaijani_Armed_Forces |
4.0503488e7 | List_of_equipment_of_the_Azerbaijani_Land_Forces | 1088.0 | Azerbaijani_Armed_Forces |
27027.0 | Republic_of_Korea_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
3.5450533e7 | Day_of_the_Armed_Forces_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.0092014e7 | Deaths_in_March_1995 | 1088.0 | Azerbaijani_Armed_Forces |
16702.0 | Armed_Forces_of_the_Kyrgyz_Republic | 1088.0 | Azerbaijani_Armed_Forces |
30205.0 | Turkish_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
897352.0 | Singapore_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
5.9597765e7 | Tahir_Hasanov | 1088.0 | Azerbaijani_Armed_Forces |
1.6569312e7 | Education_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
21133.0 | NATO | 1088.0 | Azerbaijani_Armed_Forces |
1.1356544e7 | Law_enforcement_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.5815949e7 | Arif_Pasha | 1088.0 | Azerbaijani_Armed_Forces |
6.6475944e7 | Khudayar_Yusifzade | 1088.0 | Azerbaijani_Armed_Forces |
1.2085342e7 | Khanates_of_the_Caucasus | 1088.0 | Azerbaijani_Armed_Forces |
1087.0 | Foreign_relations_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1622783.0 | Silk_Way_Airlines | 1088.0 | Azerbaijani_Armed_Forces |
2.031521e7 | Xudaverdili | 1088.0 | Azerbaijani_Armed_Forces |
6.6356955e7 | Wind_Unit | 1088.0 | Azerbaijani_Armed_Forces |
6.9527474e7 | Armenian_prisoners_of_the_2020_Nagorno-Karabakh_war | 1088.0 | Azerbaijani_Armed_Forces |
51396.0 | 2020 | 1088.0 | Azerbaijani_Armed_Forces |
1986639.0 | Languages_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.9653787e7 | Caspian_Sea | 1088.0 | Azerbaijani_Armed_Forces |
3.3162574e7 | Abdulhamid_bey_Gaytabashi | 1088.0 | Azerbaijani_Armed_Forces |
5.8757841e7 | Rovshan_Rzayev | 1088.0 | Azerbaijani_Armed_Forces |
2071240.0 | Culture_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.6369933e7 | Orders,_decorations,_and_medals_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
4.8708538e7 | Azerbaijan_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
64586.0 | Defence_of_Iceland | 1088.0 | Azerbaijani_Armed_Forces |
7077602.0 | Environment_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
2409969.0 | Azerbaijan_Democratic_Republic | 1088.0 | Azerbaijani_Armed_Forces |
5.8423883e7 | Nofal_Guliyev | 1088.0 | Azerbaijani_Armed_Forces |
5.9661079e7 | Israfil_Shahverdiyev | 1088.0 | Azerbaijani_Armed_Forces |
6.5686536e7 | Lachin_offensive | 1088.0 | Azerbaijani_Armed_Forces |
31841.0 | United_Arab_Emirates_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
7145213.0 | List_of_militaries_by_country | 1088.0 | Azerbaijani_Armed_Forces |
1.8917889e7 | Estonian_Defence_Forces | 1088.0 | Azerbaijani_Armed_Forces |
34669.0 | 1992 | 1088.0 | Azerbaijani_Armed_Forces |
4.1471871e7 | List_of_lakes_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
5427517.0 | Department_of_Defence_(Australia) | 1088.0 | Azerbaijani_Armed_Forces |
1.1776466e7 | Ethnic_minorities_in_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
3.8212231e7 | Drone_warfare | 1088.0 | Azerbaijani_Armed_Forces |
3932850.0 | Spanish_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
3.8072822e7 | June_1918 | 1088.0 | Azerbaijani_Armed_Forces |
1082.0 | Geography_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.6016112e7 | Memorial_Day_(Azerbaijan) | 1088.0 | Azerbaijani_Armed_Forces |
67549.0 | Austrian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.4836618e7 | TecSAR-1 | 1088.0 | Azerbaijani_Armed_Forces |
5.6408207e7 | Nshan_Topouzian | 1088.0 | Azerbaijani_Armed_Forces |
20311.0 | Military_academy | 1088.0 | Azerbaijani_Armed_Forces |
26895.0 | Swedish_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1.7167243e7 | Armed_Forces_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
8355037.0 | Vardenis | 1088.0 | Azerbaijani_Armed_Forces |
3.949525e7 | Timeline_of_modern_Armenian_history | 1088.0 | Azerbaijani_Armed_Forces |
6.3475155e7 | National_Army_of_the_Azerbaijan_Democratic_Republic | 1088.0 | Azerbaijani_Armed_Forces |
1.0254803e7 | Cinema_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
1.0927369e7 | State_Border_Service | 1088.0 | Azerbaijani_Armed_Forces |
2.9957491e7 | Altay_Mehdiyev | 1088.0 | Azerbaijani_Armed_Forces |
3.0524746e7 | Shah_Ismail_Order | 1088.0 | Azerbaijani_Armed_Forces |
6.5459244e7 | Operation_Horadiz | 1088.0 | Azerbaijani_Armed_Forces |
381170.0 | Serbian_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
1100953.0 | Khachkar | 1088.0 | Azerbaijani_Armed_Forces |
7150805.0 | National_parks_of_Azerbaijan | 1088.0 | Azerbaijani_Armed_Forces |
6.2428178e7 | Vagif_Gurbanov | 1088.0 | Azerbaijani_Armed_Forces |
6.4702581e7 | Medal_\"For_services_in_the_field_of_military_cooperation\" | 1088.0 | Azerbaijani_Armed_Forces |
6.5834115e7 | Fariz_Najafov | 1088.0 | Azerbaijani_Armed_Forces |
6.7228635e7 | Rovshan_Akbarov | 1088.0 | Azerbaijani_Armed_Forces |
4627429.0 | Iraqi_Armed_Forces | 1088.0 | Azerbaijani_Armed_Forces |
3.309651e7 | Habib_Bey_Salimov | 1088.0 | Azerbaijani_Armed_Forces |
2.8046216e7 | Tajaddin_Mehdiyev | 1088.0 | Azerbaijani_Armed_Forces |
3.2636241e7 | Jebrail_uezd | 1088.0 | Azerbaijani_Armed_Forces |
3.8938602e7 | \"For_Faultless_Service\"_medal | 1088.0 | Azerbaijani_Armed_Forces |
6.6083612e7 | Tehran_Mansimov | 1088.0 | Azerbaijani_Armed_Forces |
5612659.0 | List_of_coups_and_coup_attempts | 1088.0 | Azerbaijani_Armed_Forces |
6.0544953e7 | Azerbaijan_Higher_Military_Academy | 1088.0 | Azerbaijani_Armed_Forces |
4.1723946e7 | List_of_aircraft_of_the_Royal_Thai_Air_Force | 1088.0 | Azerbaijani_Armed_Forces |
6.7122586e7 | 777th_Special_Forces_Regiment | 1088.0 | Azerbaijani_Armed_Forces |
743896.0 | Timeline_of_Western_philosophers | 1580.0 | Alcidamas |
1036228.0 | Alcidamas_of_Elaea | 1580.0 | Alcidamas |
1232997.0 | Oikonomos | 1580.0 | Alcidamas |
5.7442757e7 | Critheïs | 1580.0 | Alcidamas |
291170.0 | Pythagoreanism | 1580.0 | Alcidamas |
13633.0 | Homer | 1580.0 | Alcidamas |
2.2877693e7 | Orpheus | 1580.0 | Alcidamas |
4.747118e7 | Slavery_in_ancient_Greece | 1580.0 | Alcidamas |
3.5139015e7 | Alkidamas | 1580.0 | Alcidamas |
98394.0 | Gorgias | 1580.0 | Alcidamas |
472876.0 | List_of_ancient_Greeks | 1580.0 | Alcidamas |
1.3405274e7 | Aleus | 1580.0 | Alcidamas |
78976.0 | Telephus | 1580.0 | Alcidamas |
6.6441371e7 | Index_of_ancient_Greece-related_articles | 1580.0 | Alcidamas |
1965077.0 | Slavery_in_antiquity | 1580.0 | Alcidamas |
3476868.0 | Nauplius_(mythology) | 1580.0 | Alcidamas |
3.5139025e7 | Alkidamas_of_Elaea | 1580.0 | Alcidamas |
6.8859938e7 | List_of_editiones_principes_in_Greek | 1580.0 | Alcidamas |
1065085.0 | Chilon_of_Sparta | 1580.0 | Alcidamas |
1.5103874e7 | Contest_of_Homer_and_Hesiod | 1580.0 | Alcidamas |
6508591.0 | Auge | 1580.0 | Alcidamas |
13700.0 | Hesiod | 1580.0 | Alcidamas |
80585.0 | Aerope | 1580.0 | Alcidamas |
4854673.0 | List_of_Trojan_War_characters | 1580.0 | Alcidamas |
5.7293774e7 | List_of_pre-modern_Arab_scientists_and_scholars | 1645.0 | Ibn_al-Haytham |
1408.0 | Alcuin | 1645.0 | Ibn_al-Haytham |
95429.0 | Bonaventure | 1645.0 | Ibn_al-Haytham |
358484.0 | Girard_Desargues | 1645.0 | Ibn_al-Haytham |
1778440.0 | 'Ubayd_Allah_ibn_Bakhtishu | 1645.0 | Ibn_al-Haytham |
2364264.0 | Ibn_al-Rawandi | 1645.0 | Ibn_al-Haytham |
2848164.0 | Nur_ad-Din_al-Bitruji | 1645.0 | Ibn_al-Haytham |
1766908.0 | 'Ali_ibn_al-'Abbas_al-Majusi | 1645.0 | Ibn_al-Haytham |
3013733.0 | Ibn_Abi_Usaybi'a | 1645.0 | Ibn_al-Haytham |
3335321.0 | Shams_al-Din_al-Samarqandi | 1645.0 | Ibn_al-Haytham |
4072182.0 | What_the_Ancients_Did_for_Us | 1645.0 | Ibn_al-Haytham |
1.0712582e7 | Sinan_ibn_Thabit | 1645.0 | Ibn_al-Haytham |
3.1562331e7 | Al-Kashkari | 1645.0 | Ibn_al-Haytham |
735136.0 | Ibn_Zuhr | 1645.0 | Ibn_al-Haytham |
1.5309628e7 | Muhammad_Ali_Astarabadi | 1645.0 | Ibn_al-Haytham |
536739.0 | Avempace | 1645.0 | Ibn_al-Haytham |
6.6960791e7 | Ibn_Habib | 1645.0 | Ibn_al-Haytham |
34875.0 | 1000s_(decade) | 1645.0 | Ibn_al-Haytham |
3.7933637e7 | List_of_English_words_of_Arabic_origin_(A-B) | 1645.0 | Ibn_al-Haytham |
4617851.0 | Bab_(Shia_Islam) | 1645.0 | Ibn_al-Haytham |
2.8412183e7 | Projector | 1645.0 | Ibn_al-Haytham |
4.069588e7 | Ibn_al-Adami | 1645.0 | Ibn_al-Haytham |
9117159.0 | Sahl_ibn_Bishr | 1645.0 | Ibn_al-Haytham |
2.6185766e7 | Masawaih_al-Mardini | 1645.0 | Ibn_al-Haytham |
10606.0 | Factorial | 1645.0 | Ibn_al-Haytham |
2.1492554e7 | Anselm_of_Canterbury | 1645.0 | Ibn_al-Haytham |
4.7787936e7 | Schema_for_horizontal_dials | 1645.0 | Ibn_al-Haytham |
6.024167e7 | Abraham_of_Toledo | 1645.0 | Ibn_al-Haytham |
5962454.0 | Zij-i_Sultani | 1645.0 | Ibn_al-Haytham |
4.3756445e7 | Al-Isfizari | 1645.0 | Ibn_al-Haytham |
1.2775341e7 | Ibn_Al-Haytham | 1645.0 | Ibn_al-Haytham |
3.6143542e7 | Ibn_al-Majdi | 1645.0 | Ibn_al-Haytham |
2012352.0 | Allamah_Al-Hilli | 1645.0 | Ibn_al-Haytham |
2984836.0 | Ophthalmology_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
23670.0 | Perfect_number | 1645.0 | Ibn_al-Haytham |
73664.0 | Astrolabe | 1645.0 | Ibn_al-Haytham |
299138.0 | Giles_of_Rome | 1645.0 | Ibn_al-Haytham |
2042491.0 | Yuhanna_ibn_Bukhtishu | 1645.0 | Ibn_al-Haytham |
7325366.0 | Timeline_of_telescope_technology | 1645.0 | Ibn_al-Haytham |
2163566.0 | Nafi_ibn_al-Harith | 1645.0 | Ibn_al-Haytham |
2937325.0 | List_of_Muslim_theologians | 1645.0 | Ibn_al-Haytham |
2.5009227e7 | Abu_Ali_al-Hasan_ibn_al-Hasan_ibn_al-Haytham | 1645.0 | Ibn_al-Haytham |
2674.0 | Abd_al-Latif_al-Baghdadi | 1645.0 | Ibn_al-Haytham |
2.1208262e7 | Western_culture | 1645.0 | Ibn_al-Haytham |
6.2773262e7 | Sadr_al-Shari'a_al-Asghar | 1645.0 | Ibn_al-Haytham |
2042194.0 | Al-Nagawri | 1645.0 | Ibn_al-Haytham |
3304216.0 | Mathematics_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
2.2795725e7 | Al-Dakhwar | 1645.0 | Ibn_al-Haytham |
323592.0 | Nicolaus_Copernicus | 1645.0 | Ibn_al-Haytham |
1766735.0 | Al-Isfahani | 1645.0 | Ibn_al-Haytham |
9204283.0 | List_of_Latinised_names | 1645.0 | Ibn_al-Haytham |
44328.0 | Ulugh_Beg | 1645.0 | Ibn_al-Haytham |
171177.0 | Early_Islamic_philosophy | 1645.0 | Ibn_al-Haytham |
172466.0 | Jean_Buridan | 1645.0 | Ibn_al-Haytham |
7.1768723e7 | Jan_Cornets_De_Groot | 1645.0 | Ibn_al-Haytham |
227323.0 | Wilson's_theorem | 1645.0 | Ibn_al-Haytham |
1822322.0 | Muhammad_ibn_Mahmud_Amuli | 1645.0 | Ibn_al-Haytham |
5290740.0 | Sa'ad_al-Dawla | 1645.0 | Ibn_al-Haytham |
1.9804384e7 | Maulana_Azad_Library | 1645.0 | Ibn_al-Haytham |
4.8407889e7 | The_Physicist | 1645.0 | Ibn_al-Haytham |
768566.0 | List_of_important_publications_in_physics | 1645.0 | Ibn_al-Haytham |
2.757938e7 | Ibn_al-Saffar | 1645.0 | Ibn_al-Haytham |
2.7579858e7 | Abu_al-Salt | 1645.0 | Ibn_al-Haytham |
3.9292005e7 | Ibn_Hindu | 1645.0 | Ibn_al-Haytham |
1782310.0 | Abu_Said_Gorgani | 1645.0 | Ibn_al-Haytham |
1.1091123e7 | Ibn_Jazla | 1645.0 | Ibn_al-Haytham |
3.4629603e7 | Shams_al-Din_al-Khafri | 1645.0 | Ibn_al-Haytham |
26833.0 | Scientific_method | 1645.0 | Ibn_al-Haytham |
27680.0 | Supernova | 1645.0 | Ibn_al-Haytham |
506138.0 | Ali_ibn_Sahl_Rabban_al-Tabari | 1645.0 | Ibn_al-Haytham |
958988.0 | History_of_astrology | 1645.0 | Ibn_al-Haytham |
5453536.0 | Zij-i_Ilkhani | 1645.0 | Ibn_al-Haytham |
34566.0 | 1040 | 1645.0 | Ibn_al-Haytham |
1613042.0 | Ibn_al_Haythen | 1645.0 | Ibn_al-Haytham |
1782585.0 | Jabril_ibn_Bukhtishu | 1645.0 | Ibn_al-Haytham |
2.1490957e7 | Thomas_Aquinas | 1645.0 | Ibn_al-Haytham |
22939.0 | Physics | 1645.0 | Ibn_al-Haytham |
146607.0 | Al-Ghazali | 1645.0 | Ibn_al-Haytham |
416776.0 | Timeline_of_algorithms | 1645.0 | Ibn_al-Haytham |
746117.0 | History_of_calculus | 1645.0 | Ibn_al-Haytham |
2.4924385e7 | Al_Hazen | 1645.0 | Ibn_al-Haytham |
1.4951467e7 | Ali_Qushji | 1645.0 | Ibn_al-Haytham |
4.8407877e7 | Al-Misri | 1645.0 | Ibn_al-Haytham |
5.3083061e7 | Abu_Ishaq_al-Kubunani | 1645.0 | Ibn_al-Haytham |
23289.0 | Persistence_of_vision | 1645.0 | Ibn_al-Haytham |
195684.0 | Boethius | 1645.0 | Ibn_al-Haytham |
1767004.0 | Abu_Mansur_Muwaffaq | 1645.0 | Ibn_al-Haytham |
5186903.0 | Tusi_couple | 1645.0 | Ibn_al-Haytham |
1492381.0 | Ibn_Al-Thahabi | 1645.0 | Ibn_al-Haytham |
1840730.0 | Muhammad_ibn_Yusuf_al-Harawi | 1645.0 | Ibn_al-Haytham |
1104605.0 | Isaac_Israeli_ben_Solomon | 1645.0 | Ibn_al-Haytham |
1822442.0 | Aqsara'i | 1645.0 | Ibn_al-Haytham |
1.9217647e7 | Abul_Qasim_ibn_Mohammed_al-Ghassani | 1645.0 | Ibn_al-Haytham |
7898478.0 | Jamal_ad-Din_Bukhari | 1645.0 | Ibn_al-Haytham |
8128856.0 | Eye_movement_in_reading | 1645.0 | Ibn_al-Haytham |
8878908.0 | De_Gradibus | 1645.0 | Ibn_al-Haytham |
23604.0 | Photography | 1645.0 | Ibn_al-Haytham |
34645.0 | 11th_century | 1645.0 | Ibn_al-Haytham |
593659.0 | Nicole_Oresme | 1645.0 | Ibn_al-Haytham |
2042316.0 | Nurbakhshi | 1645.0 | Ibn_al-Haytham |
615926.0 | Timeline_of_scientific_experiments | 1645.0 | Ibn_al-Haytham |
1841939.0 | Muhammad_ibn_Yusuf_al-Ilaqi | 1645.0 | Ibn_al-Haytham |
1855317.0 | Theodoric_of_Freiberg | 1645.0 | Ibn_al-Haytham |
3.2142292e7 | Ibrahim_ibn_Baks | 1645.0 | Ibn_al-Haytham |
1485.0 | Alain_de_Lille | 1645.0 | Ibn_al-Haytham |
191295.0 | Aswan_Dam | 1645.0 | Ibn_al-Haytham |
4849167.0 | Brethren_of_Purity | 1645.0 | Ibn_al-Haytham |
5.210954e7 | Al-Tamimi,_the_physician | 1645.0 | Ibn_al-Haytham |
715596.0 | Ptolemy_(name) | 1645.0 | Ibn_al-Haytham |
2041938.0 | Mansur_ibn_Ilyas | 1645.0 | Ibn_al-Haytham |
3.3642424e7 | Nasir_al-Din_al-Tusi | 1645.0 | Ibn_al-Haytham |
5.3090488e7 | Haseb-i_Tabari | 1645.0 | Ibn_al-Haytham |
145242.0 | The_Canon_of_Medicine | 1645.0 | Ibn_al-Haytham |
4644443.0 | Al-Hazen | 1645.0 | Ibn_al-Haytham |
1.0553199e7 | Jamshīd_al-Kāshī | 1645.0 | Ibn_al-Haytham |
1.0714039e7 | Ibn_al-Haitham | 1645.0 | Ibn_al-Haytham |
33426.0 | Wave–particle_duality | 1645.0 | Ibn_al-Haytham |
1731800.0 | Triquetrum_(astronomy) | 1645.0 | Ibn_al-Haytham |
1.327905e7 | Ibn_Butlan | 1645.0 | Ibn_al-Haytham |
4.6587853e7 | Khafi_Alayee | 1645.0 | Ibn_al-Haytham |
5.1317367e7 | Nastulus | 1645.0 | Ibn_al-Haytham |
1830204.0 | List_of_Iraqis | 1645.0 | Ibn_al-Haytham |
2479369.0 | Abu_Kamil | 1645.0 | Ibn_al-Haytham |
6.5419249e7 | Ali_ibn_Khalaf | 1645.0 | Ibn_al-Haytham |
1793021.0 | Ahmad_ibn_Farrokh | 1645.0 | Ibn_al-Haytham |
1917134.0 | Sultan_Ali_Khorasani | 1645.0 | Ibn_al-Haytham |
3.4504565e7 | Crowding | 1645.0 | Ibn_al-Haytham |
3.5767797e7 | Nizam_al-Din_al-Nisapuri | 1645.0 | Ibn_al-Haytham |
4.2421061e7 | Hiding_in_the_Light | 1645.0 | Ibn_al-Haytham |
3.8261744e7 | 'Abd_al-'Aziz_al-Wafa'i | 1645.0 | Ibn_al-Haytham |
5.7398059e7 | Najm_al‐Din_al‐Misri | 1645.0 | Ibn_al-Haytham |
81609.0 | Pinhole_camera | 1645.0 | Ibn_al-Haytham |
4.7149691e7 | Yusuf_al-Khuri | 1645.0 | Ibn_al-Haytham |
5.4285532e7 | Ibn_al-Samh | 1645.0 | Ibn_al-Haytham |
2.755431e7 | Abu_Jafar_ibn_Harun_al-Turjali | 1645.0 | Ibn_al-Haytham |
1285108.0 | Ibn_al-Shatir | 1645.0 | Ibn_al-Haytham |
2.3247759e7 | List_of_philosophers_of_science | 1645.0 | Ibn_al-Haytham |
29544.0 | Scientific_Revolution | 1645.0 | Ibn_al-Haytham |
2042205.0 | Najib_ad-Din_Samarqandi | 1645.0 | Ibn_al-Haytham |
1.8973446e7 | Geometry | 1645.0 | Ibn_al-Haytham |
83754.0 | Geocentric_model | 1645.0 | Ibn_al-Haytham |
1.2742387e7 | Al_Hazan | 1645.0 | Ibn_al-Haytham |
380406.0 | Comparative_psychology | 1645.0 | Ibn_al-Haytham |
4.0695634e7 | Al-Adami | 1645.0 | Ibn_al-Haytham |
272065.0 | Al-Kindi | 1645.0 | Ibn_al-Haytham |
1768580.0 | Sharaf_al-Din_al-Tusi | 1645.0 | Ibn_al-Haytham |
2600270.0 | Timeline_of_Polish_science_and_technology | 1645.0 | Ibn_al-Haytham |
8406253.0 | Astrology_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
1.0279126e7 | Aristotelian_physics | 1645.0 | Ibn_al-Haytham |
1.3861753e7 | Said_al-Andalusi | 1645.0 | Ibn_al-Haytham |
173378.0 | Anselm_of_Laon | 1645.0 | Ibn_al-Haytham |
8064048.0 | Abu'l-Hasan_ibn_Ali_al-Qalasadi | 1645.0 | Ibn_al-Haytham |
56153.0 | Ophthalmology | 1645.0 | Ibn_al-Haytham |
246612.0 | Iraqi_dinar | 1645.0 | Ibn_al-Haytham |
1741105.0 | Muḥammad_ibn_Ibrāhīm_al-Fazārī | 1645.0 | Ibn_al-Haytham |
6.5164199e7 | Abd_El_Razzaq_Al-Jazaïri | 1645.0 | Ibn_al-Haytham |
18031.0 | Leon_Battista_Alberti | 1645.0 | Ibn_al-Haytham |
38737.0 | Cosmos | 1645.0 | Ibn_al-Haytham |
1.0029198e7 | List_of_structural_engineers | 1645.0 | Ibn_al-Haytham |
7256533.0 | Islamic_attitudes_towards_science | 1645.0 | Ibn_al-Haytham |
2.1800807e7 | Zakhireye_Khwarazmshahi | 1645.0 | Ibn_al-Haytham |
3.2144014e7 | Ibn_Hamza_al-Maghribi | 1645.0 | Ibn_al-Haytham |
5.1310315e7 | Al-ʻIjliyyah | 1645.0 | Ibn_al-Haytham |
982540.0 | Taqi_ad-Din_Muhammad_ibn_Ma'ruf | 1645.0 | Ibn_al-Haytham |
19445.0 | Maimonides | 1645.0 | Ibn_al-Haytham |
267542.0 | Science_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
271979.0 | Abu_Hanifa_Dinawari | 1645.0 | Ibn_al-Haytham |
1782879.0 | Shapur_ibn_Sahl | 1645.0 | Ibn_al-Haytham |
3663691.0 | Hering's_law_of_equal_innervation | 1645.0 | Ibn_al-Haytham |
2.3649689e7 | Shadow_square | 1645.0 | Ibn_al-Haytham |
50416.0 | Differential_calculus | 1645.0 | Ibn_al-Haytham |
74844.0 | Glasses | 1645.0 | Ibn_al-Haytham |
1766793.0 | Al-Sijzi | 1645.0 | Ibn_al-Haytham |
1.3632955e7 | Yusuf_ibn_Ismail_al-Kutubi | 1645.0 | Ibn_al-Haytham |
36281.0 | 1088 | 1645.0 | Ibn_al-Haytham |
477316.0 | List_of_theoretical_physicists | 1645.0 | Ibn_al-Haytham |
1.0444102e7 | Science_and_technology_of_the_Song_dynasty | 1645.0 | Ibn_al-Haytham |
3.3461884e7 | Ishaq_ibn_Hunayn | 1645.0 | Ibn_al-Haytham |
3.6102244e7 | Sharaf_al-Zaman_al-Marwazi | 1645.0 | Ibn_al-Haytham |
4.6781843e7 | Abu_Bakr_Rabee_Ibn_Ahmad_Al-Akhawyni_Bokhari | 1645.0 | Ibn_al-Haytham |
3035257.0 | Masarjawaih | 1645.0 | Ibn_al-Haytham |
3.5777337e7 | Cosmos:_A_Spacetime_Odyssey | 1645.0 | Ibn_al-Haytham |
26700.0 | Science | 1645.0 | Ibn_al-Haytham |
2042154.0 | Shaykh_Muhammad_ibn_Thaleb | 1645.0 | Ibn_al-Haytham |
2596746.0 | Newton_disc | 1645.0 | Ibn_al-Haytham |
2.4712631e7 | Abu_Ali_al-Haitam | 1645.0 | Ibn_al-Haytham |
2.4893445e7 | Book_of_the_Ten_Treatises_of_the_Eye | 1645.0 | Ibn_al-Haytham |
673618.0 | Michael_Scot | 1645.0 | Ibn_al-Haytham |
6328738.0 | Ibn_Mu'adh_al-Jayyani | 1645.0 | Ibn_al-Haytham |
1.0137505e7 | List_of_people_on_banknotes | 1645.0 | Ibn_al-Haytham |
4.9712277e7 | Al-Ruhawi | 1645.0 | Ibn_al-Haytham |
2185.0 | Arabs | 1645.0 | Ibn_al-Haytham |
6037917.0 | Islam | 1645.0 | Ibn_al-Haytham |
94721.0 | Robert_Grosseteste | 1645.0 | Ibn_al-Haytham |
1367068.0 | Judeo-Islamic_philosophies_(800–1400) | 1645.0 | Ibn_al-Haytham |
11953.0 | History_of_geometry | 1645.0 | Ibn_al-Haytham |
32502.0 | Vacuum | 1645.0 | Ibn_al-Haytham |
323646.0 | Wilson_prime | 1645.0 | Ibn_al-Haytham |
1997.0 | Algebraic_geometry | 1645.0 | Ibn_al-Haytham |
3393371.0 | Hindu–Arabic_numeral_system | 1645.0 | Ibn_al-Haytham |
1.6593123e7 | Nader_El-Bizri | 1645.0 | Ibn_al-Haytham |
5.3090036e7 | Al-Wabkanawi | 1645.0 | Ibn_al-Haytham |
1086231.0 | Al-Abbās_ibn_Said_al-Jawharī | 1645.0 | Ibn_al-Haytham |
3.0274023e7 | Aswan_Low_Dam | 1645.0 | Ibn_al-Haytham |
4.6527701e7 | Treatise_on_Light | 1645.0 | Ibn_al-Haytham |
353215.0 | Al-Zahrawi | 1645.0 | Ibn_al-Haytham |
4647532.0 | Shams_al-Din_Abu_Abd_Allah_al-Khalili | 1645.0 | Ibn_al-Haytham |
3.8674159e7 | Dawud_al-Antaki | 1645.0 | Ibn_al-Haytham |
519400.0 | Ibn_Al-Haitham | 1645.0 | Ibn_al-Haytham |
1782729.0 | Al-Mahani | 1645.0 | Ibn_al-Haytham |
5788461.0 | History_of_science_policy | 1645.0 | Ibn_al-Haytham |
9320723.0 | Islam_in_England | 1645.0 | Ibn_al-Haytham |
7.192672e7 | List_of_post-classical_physicians | 1645.0 | Ibn_al-Haytham |
1.1828715e7 | Book_of_Optics | 1645.0 | Ibn_al-Haytham |
86820.0 | Khalid_ibn_Abd_al‐Malik_al‐Marwarrudhi | 1645.0 | Ibn_al-Haytham |
2341370.0 | List_of_motifs_on_banknotes | 1645.0 | Ibn_al-Haytham |
2.5009201e7 | Abū_ʿAlī_al-Ḥasan_ibn_al-Ḥasan_ibn_al-Haytham | 1645.0 | Ibn_al-Haytham |
982595.0 | Constantinople_observatory_of_Taqi_ad-Din | 1645.0 | Ibn_al-Haytham |
4385475.0 | Ancient_Greek_astronomy | 1645.0 | Ibn_al-Haytham |
1.2765677e7 | Da'ud_Abu_al-Fadl | 1645.0 | Ibn_al-Haytham |
1.9594028e7 | Theoretical_physics | 1645.0 | Ibn_al-Haytham |
971922.0 | Contrast_effect | 1645.0 | Ibn_al-Haytham |
2.0936837e7 | Anatomy_Charts_of_the_Arabs | 1645.0 | Ibn_al-Haytham |
52202.0 | Magic_square | 1645.0 | Ibn_al-Haytham |
3729.0 | Burning_glass | 1645.0 | Ibn_al-Haytham |
251713.0 | Qibla | 1645.0 | Ibn_al-Haytham |
1406909.0 | The_Compendious_Book_on_Calculation_by_Completion_and_Balancing | 1645.0 | Ibn_al-Haytham |
1589482.0 | Abu-Mahmud_Khojandi | 1645.0 | Ibn_al-Haytham |
2042430.0 | Qumri | 1645.0 | Ibn_al-Haytham |
2882418.0 | Abraham_Maimonides | 1645.0 | Ibn_al-Haytham |
3.1327881e7 | Na'im_ibn_Musa | 1645.0 | Ibn_al-Haytham |
2041982.0 | Al-Shahrazuri | 1645.0 | Ibn_al-Haytham |
439770.0 | Abu_Nasr_Mansur | 1645.0 | Ibn_al-Haytham |
482939.0 | Al-Hakim_bi-Amr_Allah | 1645.0 | Ibn_al-Haytham |
1822259.0 | Hakim-e-Gilani | 1645.0 | Ibn_al-Haytham |
1.3692155e7 | Philosophy | 1645.0 | Ibn_al-Haytham |
35174.0 | 960s | 1645.0 | Ibn_al-Haytham |
1784072.0 | Atmospheric_refraction | 1645.0 | Ibn_al-Haytham |
1778305.0 | Kushyar_Gilani | 1645.0 | Ibn_al-Haytham |
2042576.0 | Amin_al-Din_Rashid_al-Din_Vatvat | 1645.0 | Ibn_al-Haytham |
2231772.0 | Ibn_Sahl_(mathematician) | 1645.0 | Ibn_al-Haytham |
519403.0 | Ibn_al-haitham | 1645.0 | Ibn_al-Haytham |
2.2351023e7 | Shia_Islam_in_the_Indian_subcontinent | 1645.0 | Ibn_al-Haytham |
3.9389024e7 | Abu_ali_al-Hasan_ibn_al-Hasan_ibn_al-Haytham | 1645.0 | Ibn_al-Haytham |
6.281435e7 | Muwaqqit | 1645.0 | Ibn_al-Haytham |
2122.0 | Astrology | 1645.0 | Ibn_al-Haytham |
1.0228966e7 | Jabir_ibn_Aflah | 1645.0 | Ibn_al-Haytham |
1.1089309e7 | Al-Ḥajjāj_ibn_Yūsuf_ibn_Maṭar | 1645.0 | Ibn_al-Haytham |
58775.0 | Timeline_of_electromagnetism_and_classical_optics | 1645.0 | Ibn_al-Haytham |
9550030.0 | History_of_algebra | 1645.0 | Ibn_al-Haytham |
1.0082768e7 | Hockney–Falco_thesis | 1645.0 | Ibn_al-Haytham |
5.3090162e7 | Yahya_ibn_Abi_Mansur | 1645.0 | Ibn_al-Haytham |
360726.0 | Planisphere | 1645.0 | Ibn_al-Haytham |
1766939.0 | Al-Natili | 1645.0 | Ibn_al-Haytham |
1766840.0 | Al-Saghani | 1645.0 | Ibn_al-Haytham |
2042257.0 | Nakhshabi | 1645.0 | Ibn_al-Haytham |
7718539.0 | Al-'Adudi_Hospital | 1645.0 | Ibn_al-Haytham |
2.7375401e7 | Sanad_ibn_Ali | 1645.0 | Ibn_al-Haytham |
1291656.0 | Early_modern_period | 1645.0 | Ibn_al-Haytham |
1.1133782e7 | Halazen | 1645.0 | Ibn_al-Haytham |
3.2100257e7 | Ibn_Abi_al-Ashʿath | 1645.0 | Ibn_al-Haytham |
1130.0 | Avicenna | 1645.0 | Ibn_al-Haytham |
29266.0 | Relationship_between_religion_and_science | 1645.0 | Ibn_al-Haytham |
2.1508913e7 | Abu_ul-Ala_Shirazi | 1645.0 | Ibn_al-Haytham |
4.8407883e7 | Al-Miṣrī | 1645.0 | Ibn_al-Haytham |
145227.0 | The_Book_of_Healing | 1645.0 | Ibn_al-Haytham |
5.6430943e7 | Ammar_al-Mawsili | 1645.0 | Ibn_al-Haytham |
2.6571896e7 | Medieval_philosophy | 1645.0 | Ibn_al-Haytham |
37232.0 | Fermat's_principle | 1645.0 | Ibn_al-Haytham |
5719662.0 | A._I._Sabra | 1645.0 | Ibn_al-Haytham |
92550.0 | Omar_Khayyam | 1645.0 | Ibn_al-Haytham |
1.8878165e7 | Al-Hassan_ibn_al-Haitham | 1645.0 | Ibn_al-Haytham |
58610.0 | Non-Euclidean_geometry | 1645.0 | Ibn_al-Haytham |
3032314.0 | History_of_the_camera | 1645.0 | Ibn_al-Haytham |
2.8700369e7 | Ibn_Ghazi_al-Miknasi | 1645.0 | Ibn_al-Haytham |
3.6920393e7 | History_of_experiments | 1645.0 | Ibn_al-Haytham |
207547.0 | Thābit_ibn_Qurra | 1645.0 | Ibn_al-Haytham |
3447151.0 | Scientific_demonstration | 1645.0 | Ibn_al-Haytham |
2426527.0 | Ibn_al-Nafis | 1645.0 | Ibn_al-Haytham |
1.4642431e7 | Alhaitham | 1645.0 | Ibn_al-Haytham |
2.5343863e7 | Nur_al-Din_Bimaristan | 1645.0 | Ibn_al-Haytham |
5.1518592e7 | Alhazen | 1645.0 | Ibn_al-Haytham |
1782819.0 | Al-Nayrizi | 1645.0 | Ibn_al-Haytham |
5438833.0 | 'Abd_al-Hamīd_ibn_Turk | 1645.0 | Ibn_al-Haytham |
6143364.0 | Alhacen | 1645.0 | Ibn_al-Haytham |
3.7464286e7 | Peter_Abelard | 1645.0 | Ibn_al-Haytham |
649861.0 | Muhammad_ibn_Musa_al-Khwarizmi | 1645.0 | Ibn_al-Haytham |
2.7361247e7 | Al-Kharaqī | 1645.0 | Ibn_al-Haytham |
25879.0 | Roger_Bacon | 1645.0 | Ibn_al-Haytham |
61626.0 | Gersonides | 1645.0 | Ibn_al-Haytham |
8868835.0 | Ibn_Haitham | 1645.0 | Ibn_al-Haytham |
1.9374361e7 | Timeline_of_calculus_and_mathematical_analysis | 1645.0 | Ibn_al-Haytham |
47836.0 | Averroes | 1645.0 | Ibn_al-Haytham |
998087.0 | Ibn_Yunus | 1645.0 | Ibn_al-Haytham |
2.4703916e7 | Sullam_al-sama' | 1645.0 | Ibn_al-Haytham |
5.4421139e7 | Muhammad_al-Baghdadi | 1645.0 | Ibn_al-Haytham |
3099132.0 | Kerala_school_of_astronomy_and_mathematics | 1645.0 | Ibn_al-Haytham |
2.7405151e7 | Muhammad_al-Rudani | 1645.0 | Ibn_al-Haytham |
23666.0 | Prime_number | 1645.0 | Ibn_al-Haytham |
58953.0 | Timeline_of_telescopes,_observatories,_and_observing_technology | 1645.0 | Ibn_al-Haytham |
1.4642325e7 | Ibn_alhaitham | 1645.0 | Ibn_al-Haytham |
1.9337543e7 | Ibn_Alhazen | 1645.0 | Ibn_al-Haytham |
160930.0 | Lorenzo_Ghiberti | 1645.0 | Ibn_al-Haytham |
1253603.0 | Abu_Ma'shar_al-Balkhi | 1645.0 | Ibn_al-Haytham |
1.171752e7 | Al-Khazini | 1645.0 | Ibn_al-Haytham |
47220.0 | 965 | 1645.0 | Ibn_al-Haytham |
86822.0 | Ali_ibn_Isa_al-Asturlabi | 1645.0 | Ibn_al-Haytham |
1741027.0 | Ibrāhīm_al-Fazārī | 1645.0 | Ibn_al-Haytham |
3304608.0 | Astronomy_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
2.8779877e7 | Atmospheric_optics | 1645.0 | Ibn_al-Haytham |
1778258.0 | Alī_ibn_Ahmad_al-Nasawī | 1645.0 | Ibn_al-Haytham |
2592962.0 | Octant_(instrument) | 1645.0 | Ibn_al-Haytham |
1.0879533e7 | Aja'ib_al-Makhluqat | 1645.0 | Ibn_al-Haytham |
1.2654431e7 | Al-Birjandi | 1645.0 | Ibn_al-Haytham |
1.3083487e7 | Baha'_al-din_al-'Amili | 1645.0 | Ibn_al-Haytham |
1.6352e7 | Al-Haytham | 1645.0 | Ibn_al-Haytham |
20545.0 | Mirror | 1645.0 | Ibn_al-Haytham |
21527.0 | Number_theory | 1645.0 | Ibn_al-Haytham |
22915.0 | Planet | 1645.0 | Ibn_al-Haytham |
503345.0 | High_Middle_Ages | 1645.0 | Ibn_al-Haytham |
5553121.0 | Latin_translations_of_the_12th_century | 1645.0 | Ibn_al-Haytham |
3.2078146e7 | Muhammad_ibn_Aslam_Al-Ghafiqi | 1645.0 | Ibn_al-Haytham |
36283.0 | 1011 | 1645.0 | Ibn_al-Haytham |
3.7091792e7 | Ibn_Uthal | 1645.0 | Ibn_al-Haytham |
69677.0 | Ramon_Llull | 1645.0 | Ibn_al-Haytham |
241291.0 | Hyperbolic_geometry | 1645.0 | Ibn_al-Haytham |
1766622.0 | Abolfadl_Harawi | 1645.0 | Ibn_al-Haytham |
1422050.0 | Timeline_of_Middle_Eastern_history | 1645.0 | Ibn_al-Haytham |
5367777.0 | Abu_Sa'id_al-Afif | 1645.0 | Ibn_al-Haytham |
8477832.0 | Sibt_al-Maridini | 1645.0 | Ibn_al-Haytham |
3.1076646e7 | Al_Achsasi_al_Mouakket | 1645.0 | Ibn_al-Haytham |
6330034.0 | Eutychius_of_Alexandria | 1645.0 | Ibn_al-Haytham |
223124.0 | List_of_geographers | 1645.0 | Ibn_al-Haytham |
1766764.0 | Abu_Sahl_al-Quhi | 1645.0 | Ibn_al-Haytham |
6785051.0 | History_of_trigonometry | 1645.0 | Ibn_al-Haytham |
655002.0 | Philosophy_of_space_and_time | 1645.0 | Ibn_al-Haytham |
1082384.0 | John_Scotus_Eriugena | 1645.0 | Ibn_al-Haytham |
8284152.0 | Bimaristan | 1645.0 | Ibn_al-Haytham |
33617.0 | William_of_Ockham | 1645.0 | Ibn_al-Haytham |
519404.0 | Ibn_al-haytham | 1645.0 | Ibn_al-Haytham |
3871014.0 | Rainbow | 1645.0 | Ibn_al-Haytham |
6.1768389e7 | Encyclopædia_Meysari | 1645.0 | Ibn_al-Haytham |
7660879.0 | List_of_inventions_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
1.3672511e7 | Ibn_al-Hayham | 1645.0 | Ibn_al-Haytham |
1.5515167e7 | Ibn_al-Kattani | 1645.0 | Ibn_al-Haytham |
23979.0 | Ptolemy | 1645.0 | Ibn_al-Haytham |
78209.0 | Abu_Bakr_al-Razi | 1645.0 | Ibn_al-Haytham |
1778150.0 | Ahmad_Nahavandi | 1645.0 | Ibn_al-Haytham |
1835859.0 | Husayni_Isfahani | 1645.0 | Ibn_al-Haytham |
6.4652504e7 | Zaynab_al-Awadiya | 1645.0 | Ibn_al-Haytham |
383129.0 | Celestial_spheres | 1645.0 | Ibn_al-Haytham |
771589.0 | Roscellinus | 1645.0 | Ibn_al-Haytham |
1741220.0 | Bukhtishu | 1645.0 | Ibn_al-Haytham |
2.4923294e7 | Ulugh_Beg_Observatory | 1645.0 | Ibn_al-Haytham |
4.1652083e7 | List_of_scientific_demonstrations | 1645.0 | Ibn_al-Haytham |
1766960.0 | Abu_al-Hasan_al-Tabari | 1645.0 | Ibn_al-Haytham |
2232040.0 | Abu_'Ubayd_al-Juzjani | 1645.0 | Ibn_al-Haytham |
2.3812041e7 | Critique_of_Ptolemy | 1645.0 | Ibn_al-Haytham |
2.8005345e7 | Sadid_al-Din_al-Kazaruni | 1645.0 | Ibn_al-Haytham |
2.9310437e7 | Ibn_Juljul | 1645.0 | Ibn_al-Haytham |
3.3327375e7 | Ibn_al‐Haytham | 1645.0 | Ibn_al-Haytham |
14021.0 | History_of_astronomy | 1645.0 | Ibn_al-Haytham |
1782358.0 | Ibn_Abi_Sadiq | 1645.0 | Ibn_al-Haytham |
4391548.0 | Sinān_ibn_al-Fatḥ | 1645.0 | Ibn_al-Haytham |
1.1468771e7 | Qāḍī_Zāda_al-Rūmī | 1645.0 | Ibn_al-Haytham |
5.7151342e7 | Ibn_Ishaq_al-Tunisi | 1645.0 | Ibn_al-Haytham |
6.7610731e7 | Hussam_al-Din_al-Jarrahi | 1645.0 | Ibn_al-Haytham |
2.3568467e7 | Rashidun_al-Suri | 1645.0 | Ibn_al-Haytham |
13758.0 | History_of_physics | 1645.0 | Ibn_al-Haytham |
257242.0 | Apollonius_of_Perga | 1645.0 | Ibn_al-Haytham |
1.4642321e7 | Ibn_al_haitham | 1645.0 | Ibn_al-Haytham |
4621330.0 | Banū_Mūsā | 1645.0 | Ibn_al-Haytham |
1.0780372e7 | Muhammad_Baqir_Yazdi | 1645.0 | Ibn_al-Haytham |
2.1691772e7 | Yahya_ibn_Sarafyun | 1645.0 | Ibn_al-Haytham |
1.1436522e7 | Zij | 1645.0 | Ibn_al-Haytham |
1.5927465e7 | The_Remaining_Signs_of_Past_Centuries | 1645.0 | Ibn_al-Haytham |
5.2758716e7 | Ibn_Tumlus | 1645.0 | Ibn_al-Haytham |
2933164.0 | List_of_scientists_in_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
4.8407865e7 | Al-Basri | 1645.0 | Ibn_al-Haytham |
7.0318183e7 | Polynomials_calculating_sums_of_powers_of_arithmetic_progressions | 1645.0 | Ibn_al-Haytham |
2287216.0 | Meanings_of_minor_planet_names:_59001–60000 | 1645.0 | Ibn_al-Haytham |
1.1133779e7 | Alazen | 1645.0 | Ibn_al-Haytham |
23633.0 | List_of_physicists | 1645.0 | Ibn_al-Haytham |
49856.0 | Abbasid_Caliphate | 1645.0 | Ibn_al-Haytham |
317238.0 | Book_of_Fixed_Stars | 1645.0 | Ibn_al-Haytham |
8868818.0 | Ibn_Haytham | 1645.0 | Ibn_al-Haytham |
1786.0 | Arabic_numerals | 1645.0 | Ibn_al-Haytham |
181918.0 | Bernard_of_Chartres | 1645.0 | Ibn_al-Haytham |
271975.0 | Al-Biruni | 1645.0 | Ibn_al-Haytham |
1560514.0 | Ahmad_ibn_Yusuf | 1645.0 | Ibn_al-Haytham |
6012554.0 | Cosmology_in_medieval_Islam | 1645.0 | Ibn_al-Haytham |
2.0956167e7 | Al-Hassan_Ibn_al-Haytham | 1645.0 | Ibn_al-Haytham |
2.6499076e7 | Rufaida_Al-Aslamia | 1645.0 | Ibn_al-Haytham |
5.3082933e7 | Abu_al-Hasan_al-Ahwazi | 1645.0 | Ibn_al-Haytham |
1.2868203e7 | Geography_and_cartography_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
5.3839589e7 | Abu_Ali_Hasan_Ibn_al-Haitham | 1645.0 | Ibn_al-Haytham |
36161.0 | 1080s | 1645.0 | Ibn_al-Haytham |
8510733.0 | Muhyi_al-Din_al-Maghribi | 1645.0 | Ibn_al-Haytham |
4.7027397e7 | The_Complete_Book_of_the_Medical_Art | 1645.0 | Ibn_al-Haytham |
2042347.0 | Zakariya_al-Qazwini | 1645.0 | Ibn_al-Haytham |
4890385.0 | Abu_Ali_al-Hasan_ibn_al-Haytham | 1645.0 | Ibn_al-Haytham |
2881.0 | Alexander_of_Hales | 1645.0 | Ibn_al-Haytham |
3335703.0 | Al-Samawal_al-Maghribi | 1645.0 | Ibn_al-Haytham |
1.1356099e7 | Ibn_al-Heitham | 1645.0 | Ibn_al-Haytham |
1.7944118e7 | Physics_in_the_medieval_Islamic_world | 1645.0 | Ibn_al-Haytham |
2.2883647e7 | Abu_Ali_al-Khayyat | 1645.0 | Ibn_al-Haytham |
3.1562722e7 | Ibn_al-Tilmidh | 1645.0 | Ibn_al-Haytham |
1.0713305e7 | Abu_Mansur_al-Baghdadi | 1645.0 | Ibn_al-Haytham |
1.3224789e7 | Sextant_(astronomy) | 1645.0 | Ibn_al-Haytham |
4.8407869e7 | Al-Baṣrī | 1645.0 | Ibn_al-Haytham |
9264.0 | Ecliptic | 1645.0 | Ibn_al-Haytham |
2042240.0 | Najm_al-Din_Mahmud_ibn_Ilyas_al-Shirazi | 1645.0 | Ibn_al-Haytham |
14220.0 | History_of_mathematics | 1645.0 | Ibn_al-Haytham |
1101492.0 | Hunayn_ibn_Ishaq | 1645.0 | Ibn_al-Haytham |
59861.0 | Experiment | 1645.0 | Ibn_al-Haytham |
1914053.0 | Mu'ayyad_al-Din_al-Urdi | 1645.0 | Ibn_al-Haytham |
6328758.0 | Ibrahim_ibn_Sinan | 1645.0 | Ibn_al-Haytham |
1842746.0 | Horopter | 1645.0 | Ibn_al-Haytham |
3143150.0 | History_of_scientific_method | 1645.0 | Ibn_al-Haytham |
6844954.0 | William_of_Auvergne | 1645.0 | Ibn_al-Haytham |
1.7140872e7 | Ibn_Shuayb | 1645.0 | Ibn_al-Haytham |
3.2077839e7 | Ali_ibn_Isa_al-Kahhal | 1645.0 | Ibn_al-Haytham |
5.2173672e7 | Al-Mubashshir_ibn_Fatik | 1645.0 | Ibn_al-Haytham |
1741520.0 | Kamāl_al-Dīn_al-Fārisī | 1645.0 | Ibn_al-Haytham |
3515519.0 | Lambert_quadrilateral | 1645.0 | Ibn_al-Haytham |
414271.0 | Abū_Isḥāq_Ibrāhīm_al-Zarqālī | 1645.0 | Ibn_al-Haytham |
48193.0 | Camera_obscura | 1645.0 | Ibn_al-Haytham |
564579.0 | Rashid_al-Din_Hamadani | 1645.0 | Ibn_al-Haytham |
5088630.0 | Ibn_al-Haithem | 1645.0 | Ibn_al-Haytham |
2.2509814e7 | Al-Qifti | 1645.0 | Ibn_al-Haytham |
14400.0 | History_of_science | 1645.0 | Ibn_al-Haytham |
5553546.0 | Toledo_School_of_Translators | 1645.0 | Ibn_al-Haytham |
8465426.0 | Maragheh_observatory | 1645.0 | Ibn_al-Haytham |
1.2680597e7 | List_of_people_with_craters_of_the_Moon_named_after_them | 1645.0 | Ibn_al-Haytham |
3.2111438e7 | Abu_al-Majd_ibn_Abi_al-Hakam | 1645.0 | Ibn_al-Haytham |
3.7091344e7 | Al-Harith_ibn_Kalada | 1645.0 | Ibn_al-Haytham |
5.6795161e7 | Ibn_al-A'lam | 1645.0 | Ibn_al-Haytham |
1174529.0 | Al-Tasrif | 1645.0 | Ibn_al-Haytham |
1759881.0 | Abu_Ja'far_al-Khazin | 1645.0 | Ibn_al-Haytham |
6134187.0 | History_of_mathematical_notation | 1645.0 | Ibn_al-Haytham |
56978.0 | Song_dynasty | 1645.0 | Ibn_al-Haytham |
3.083974e7 | Cavalieri's_quadrature_formula | 1645.0 | Ibn_al-Haytham |
1782511.0 | Habash_al-Hasib_al-Marwazi | 1645.0 | Ibn_al-Haytham |
2.0407945e7 | Ibn_al-Wafid | 1645.0 | Ibn_al-Haytham |
6.0325936e7 | Historical_models_of_the_Solar_System | 1645.0 | Ibn_al-Haytham |
4849234.0 | Encyclopedia_of_the_Brethren_of_Purity | 1645.0 | Ibn_al-Haytham |
val allEdgesShortenedRedirects = spark.sql("""
SELECT enwiki_graph_edges.src,
enwiki_graph_edges.src_title,
enwiki_graph_edges.dst,
enwiki_graph_edges.dst_title,
0 AS shortenedRedirect
FROM enwiki_graph_edges INNER JOIN enwiki_page ON enwiki_page.page_id = enwiki_graph_edges.dst
WHERE enwiki_page.page_is_redirect = 0
UNION ALL
SELECT twoStepRedirects.artA AS src,
twoStepRedirects.artA_title AS src_title,
twoStepRedirects.artC AS dst,
twoStepRedirects.artC_title AS dst_title,
1 AS shortenedRedirect
FROM twoStepRedirects
""")
allEdgesShortenedRedirects.createOrReplaceTempView("allEdges")
allEdgesShortenedRedirects: org.apache.spark.sql.DataFrame = [src: int, src_title: string ... 3 more fields]
SELECT count(src) FROM allEdges WHERE shortenedRedirect = 0
count(src) |
---|
5.47063067e8 |
allEdgesShortenedRedirects.write.saveAsTable("enwiki_graph_edges_shortenedredirects")
SELECT count(src) FROM enwiki_graph_edges_shortenedredirects
count(src) |
---|
6.07780945e8 |
Creating the graph of Wikipedia articles
The problem here is that the pagelinks table does not contain pairs of IDs, but rather IDs of the source of the link and titles of the destination of the link. So we need to do a join between it and the pages table to get the data in the format we want.
SELECT * FROM enwiki_page
page_id | page_title | page_is_redirect | has_been_edited | page_len | page_content_model | page_lang |
---|---|---|---|---|---|---|
10.0 | AccessibleComputing | 1.0 | 0.0 | 111.0 | wikitext | NULL |
12.0 | Anarchism | 0.0 | 0.0 | 108971.0 | wikitext | NULL |
13.0 | AfghanistanHistory | 1.0 | 0.0 | 90.0 | wikitext | NULL |
14.0 | AfghanistanGeography | 1.0 | 0.0 | 92.0 | wikitext | NULL |
15.0 | AfghanistanPeople | 1.0 | 0.0 | 95.0 | wikitext | NULL |
18.0 | AfghanistanCommunications | 1.0 | 0.0 | 97.0 | wikitext | NULL |
19.0 | AfghanistanTransportations | 1.0 | 0.0 | 113.0 | wikitext | NULL |
20.0 | AfghanistanMilitary | 1.0 | 0.0 | 154.0 | wikitext | NULL |
21.0 | AfghanistanTransnationalIssues | 1.0 | 0.0 | 101.0 | wikitext | NULL |
23.0 | AssistiveTechnology | 1.0 | 0.0 | 88.0 | wikitext | NULL |
24.0 | AmoeboidTaxa | 1.0 | 0.0 | 74.0 | wikitext | NULL |
25.0 | Autism | 1.0 | 0.0 | 150.0 | wikitext | NULL |
27.0 | AlbaniaHistory | 1.0 | 0.0 | 86.0 | wikitext | NULL |
29.0 | AlbaniaPeople | 1.0 | 0.0 | 91.0 | wikitext | NULL |
30.0 | AsWeMayThink | 1.0 | 0.0 | 84.0 | wikitext | NULL |
35.0 | AlbaniaGovernment | 1.0 | 0.0 | 87.0 | wikitext | NULL |
36.0 | AlbaniaEconomy | 1.0 | 0.0 | 86.0 | wikitext | NULL |
39.0 | Albedo | 0.0 | 0.0 | 61598.0 | wikitext | NULL |
40.0 | AfroAsiaticLanguages | 1.0 | 0.0 | 89.0 | wikitext | NULL |
42.0 | ArtificalLanguages | 1.0 | 0.0 | 160.0 | wikitext | NULL |
46.0 | AbacuS | 1.0 | 0.0 | 74.0 | wikitext | NULL |
47.0 | AbalonE | 1.0 | 0.0 | 75.0 | wikitext | NULL |
48.0 | AbbadideS | 1.0 | 0.0 | 83.0 | wikitext | NULL |
49.0 | AbbesS | 1.0 | 0.0 | 74.0 | wikitext | NULL |
50.0 | AbbevilleFrance | 1.0 | 0.0 | 77.0 | wikitext | NULL |
51.0 | AbbeY | 1.0 | 0.0 | 73.0 | wikitext | NULL |
52.0 | AbboT | 1.0 | 0.0 | 73.0 | wikitext | NULL |
53.0 | Abbreviations | 1.0 | 0.0 | 77.0 | wikitext | NULL |
54.0 | AtlasShrugged | 1.0 | 0.0 | 84.0 | wikitext | NULL |
56.0 | ArtificialLanguages | 1.0 | 0.0 | 88.0 | wikitext | NULL |
58.0 | AtlasShruggedCharacters | 1.0 | 0.0 | 101.0 | wikitext | NULL |
59.0 | AtlasShruggedCompanies | 1.0 | 0.0 | 82.0 | wikitext | NULL |
60.0 | AyersMusicPublishingCompany | 1.0 | 0.0 | 100.0 | wikitext | NULL |
241.0 | AfricanAmericanPeople | 1.0 | 0.0 | 85.0 | wikitext | NULL |
242.0 | AdolfHitler | 1.0 | 0.0 | 80.0 | wikitext | NULL |
247.0 | AbeceDarians | 1.0 | 0.0 | 79.0 | wikitext | NULL |
248.0 | AbeL | 1.0 | 0.0 | 81.0 | wikitext | NULL |
249.0 | AbensbergGermany | 1.0 | 0.0 | 77.0 | wikitext | NULL |
251.0 | AberdeenSouthDakota | 1.0 | 0.0 | 90.0 | wikitext | NULL |
254.0 | ArthurKoestler | 1.0 | 0.0 | 83.0 | wikitext | NULL |
255.0 | AynRand | 1.0 | 0.0 | 76.0 | wikitext | NULL |
256.0 | AlexanderTheGreat | 1.0 | 0.0 | 87.0 | wikitext | NULL |
258.0 | AnchorageAlaska | 1.0 | 0.0 | 85.0 | wikitext | NULL |
259.0 | ArgumentForms | 1.0 | 0.0 | 80.0 | wikitext | NULL |
260.0 | ArgumentsForTheExistenceOfGod | 1.0 | 0.0 | 84.0 | wikitext | NULL |
263.0 | AnarchY | 1.0 | 0.0 | 75.0 | wikitext | NULL |
264.0 | AsciiArt | 1.0 | 0.0 | 77.0 | wikitext | NULL |
269.0 | AcademyAwards | 1.0 | 0.0 | 82.0 | wikitext | NULL |
270.0 | AcademyAwards/BestPicture | 1.0 | 0.0 | 115.0 | wikitext | NULL |
271.0 | AustriaLanguage | 1.0 | 0.0 | 83.0 | wikitext | NULL |
272.0 | AcademicElitism | 1.0 | 0.0 | 75.0 | wikitext | NULL |
274.0 | AxiomOfChoice | 1.0 | 0.0 | 83.0 | wikitext | NULL |
276.0 | AmericanFootball | 1.0 | 0.0 | 85.0 | wikitext | NULL |
278.0 | AmericA | 1.0 | 0.0 | 173.0 | wikitext | NULL |
279.0 | AnnaKournikova | 1.0 | 0.0 | 83.0 | wikitext | NULL |
280.0 | AndorrA | 1.0 | 0.0 | 75.0 | wikitext | NULL |
287.0 | AustroAsiaticLanguages | 1.0 | 0.0 | 91.0 | wikitext | NULL |
289.0 | ActresseS | 1.0 | 0.0 | 109.0 | wikitext | NULL |
290.0 | A | 0.0 | 0.0 | 30290.0 | wikitext | NULL |
291.0 | AnarchoCapitalism | 1.0 | 0.0 | 86.0 | wikitext | NULL |
293.0 | AnarchoCapitalists | 1.0 | 0.0 | 86.0 | wikitext | NULL |
296.0 | ActressesS | 1.0 | 0.0 | 83.0 | wikitext | NULL |
299.0 | AnAmericanInParis | 1.0 | 0.0 | 88.0 | wikitext | NULL |
301.0 | AutoMorphism | 1.0 | 0.0 | 80.0 | wikitext | NULL |
302.0 | ActionFilm | 1.0 | 0.0 | 79.0 | wikitext | NULL |
303.0 | Alabama | 0.0 | 0.0 | 226818.0 | wikitext | NULL |
304.0 | AfricA | 1.0 | 0.0 | 115.0 | wikitext | NULL |
305.0 | Achilles | 0.0 | 0.0 | 77348.0 | wikitext | NULL |
306.0 | AppliedStatistics | 1.0 | 0.0 | 78.0 | wikitext | NULL |
307.0 | Abraham_Lincoln | 0.0 | 0.0 | 197343.0 | wikitext | NULL |
308.0 | Aristotle | 0.0 | 0.0 | 158506.0 | wikitext | NULL |
309.0 | An_American_in_Paris | 0.0 | 0.0 | 24243.0 | wikitext | NULL |
316.0 | Academy_Award_for_Best_Production_Design | 0.0 | 0.0 | 99157.0 | wikitext | NULL |
324.0 | Academy_Awards | 0.0 | 0.0 | 149454.0 | wikitext | NULL |
325.0 | Action_Film | 1.0 | 0.0 | 56.0 | wikitext | NULL |
330.0 | Actrius | 0.0 | 0.0 | 6542.0 | wikitext | NULL |
332.0 | Animalia_(book) | 0.0 | 0.0 | 6920.0 | wikitext | NULL |
334.0 | International_Atomic_Time | 0.0 | 0.0 | 15202.0 | wikitext | NULL |
336.0 | Altruism | 0.0 | 0.0 | 77534.0 | wikitext | NULL |
338.0 | AutoRacing | 1.0 | 0.0 | 79.0 | wikitext | NULL |
339.0 | Ayn_Rand | 0.0 | 0.0 | 88464.0 | wikitext | NULL |
340.0 | Alain_Connes | 0.0 | 0.0 | 9175.0 | wikitext | NULL |
344.0 | Allan_Dwan | 0.0 | 0.0 | 13381.0 | wikitext | NULL |
347.0 | Algeria/People | 1.0 | 0.0 | 89.0 | wikitext | NULL |
353.0 | Algeria/Transnational_Issues | 1.0 | 0.0 | 94.0 | wikitext | NULL |
358.0 | Algeria | 0.0 | 0.0 | 173692.0 | wikitext | NULL |
359.0 | List_of_Atlas_Shrugged_characters | 0.0 | 0.0 | 33550.0 | wikitext | NULL |
369.0 | Topics_of_note_in_Atlas_Shrugged | 1.0 | 0.0 | 28.0 | wikitext | NULL |
569.0 | Anthropology | 0.0 | 0.0 | 108674.0 | wikitext | NULL |
572.0 | Agricultural_science | 0.0 | 0.0 | 13186.0 | wikitext | NULL |
573.0 | Alchemy | 0.0 | 0.0 | 97130.0 | wikitext | NULL |
579.0 | Alien | 0.0 | 0.0 | 6689.0 | wikitext | NULL |
580.0 | Astronomer | 0.0 | 0.0 | 8573.0 | wikitext | NULL |
583.0 | Ameboid_stage | 1.0 | 0.0 | 20.0 | wikitext | NULL |
586.0 | ASCII | 0.0 | 0.0 | 107367.0 | wikitext | NULL |
589.0 | Ashmore_And_Cartier_Islands | 1.0 | 0.0 | 106.0 | wikitext | NULL |
590.0 | Austin_(disambiguation) | 0.0 | 0.0 | 2455.0 | wikitext | NULL |
593.0 | Animation | 0.0 | 0.0 | 69580.0 | wikitext | NULL |
594.0 | Apollo | 0.0 | 0.0 | 211059.0 | wikitext | NULL |
595.0 | Andre_Agassi | 0.0 | 0.0 | 135589.0 | wikitext | NULL |
596.0 | Artificial_languages | 1.0 | 0.0 | 69.0 | wikitext | NULL |
597.0 | Austroasiatic_languages | 0.0 | 0.0 | 58664.0 | wikitext | NULL |
598.0 | Afro-asiatic_languages | 1.0 | 0.0 | 100.0 | wikitext | NULL |
599.0 | Afroasiatic_languages | 0.0 | 0.0 | 69265.0 | wikitext | NULL |
600.0 | Andorra | 0.0 | 0.0 | 133270.0 | wikitext | NULL |
609.0 | Andorra/Transnational_issues | 1.0 | 0.0 | 135.0 | wikitext | NULL |
612.0 | Arithmetic_mean | 0.0 | 0.0 | 13635.0 | wikitext | NULL |
615.0 | American_Football_Conference | 0.0 | 0.0 | 22184.0 | wikitext | NULL |
617.0 | Albert_Gore | 1.0 | 0.0 | 75.0 | wikitext | NULL |
618.0 | AnEnquiryConcerningHumanUnderstanding | 1.0 | 0.0 | 109.0 | wikitext | NULL |
620.0 | Animal_Farm | 0.0 | 0.0 | 77545.0 | wikitext | NULL |
621.0 | Amphibian | 0.0 | 0.0 | 156204.0 | wikitext | NULL |
622.0 | Albert_Arnold_Gore/Criticisms | 1.0 | 0.0 | 21.0 | wikitext | NULL |
624.0 | Alaska | 0.0 | 0.0 | 172107.0 | wikitext | NULL |
626.0 | Auteur_Theory_Film | 1.0 | 0.0 | 20.0 | wikitext | NULL |
627.0 | Agriculture | 0.0 | 0.0 | 163082.0 | wikitext | NULL |
628.0 | Aldous_Huxley | 0.0 | 0.0 | 57618.0 | wikitext | NULL |
629.0 | Abstract_Algebra | 1.0 | 0.0 | 95.0 | wikitext | NULL |
630.0 | Ada | 0.0 | 0.0 | 3813.0 | wikitext | NULL |
632.0 | Aberdeen_(disambiguation) | 0.0 | 0.0 | 7276.0 | wikitext | NULL |
633.0 | Algae | 0.0 | 0.0 | 90619.0 | wikitext | NULL |
634.0 | Analysis_of_variance | 0.0 | 0.0 | 55132.0 | wikitext | NULL |
635.0 | ANOVA | 1.0 | 0.0 | 86.0 | wikitext | NULL |
639.0 | Alkane | 0.0 | 0.0 | 73113.0 | wikitext | NULL |
640.0 | Appellate_procedure_in_the_United_States | 0.0 | 0.0 | 27615.0 | wikitext | NULL |
642.0 | Answer_(law) | 0.0 | 0.0 | 2765.0 | wikitext | NULL |
643.0 | Appellate_court | 0.0 | 0.0 | 11978.0 | wikitext | NULL |
644.0 | Arithmetic_and_logic_unit | 1.0 | 0.0 | 35.0 | wikitext | NULL |
648.0 | Actress | 1.0 | 0.0 | 125.0 | wikitext | NULL |
649.0 | Arraignment | 0.0 | 0.0 | 10523.0 | wikitext | NULL |
651.0 | America_the_Beautiful | 0.0 | 0.0 | 29339.0 | wikitext | NULL |
653.0 | Assistive_technology | 0.0 | 0.0 | 63308.0 | wikitext | NULL |
654.0 | Accessible_computing | 1.0 | 0.0 | 36.0 | wikitext | NULL |
655.0 | Abacus | 0.0 | 0.0 | 50940.0 | wikitext | NULL |
656.0 | Acid | 0.0 | 0.0 | 47523.0 | wikitext | NULL |
657.0 | Asphalt | 0.0 | 0.0 | 95749.0 | wikitext | NULL |
659.0 | American_National_Standards_Institute | 0.0 | 0.0 | 18089.0 | wikitext | NULL |
661.0 | Argument_(disambiguation) | 0.0 | 0.0 | 1710.0 | wikitext | NULL |
662.0 | Apollo_11 | 0.0 | 0.0 | 184198.0 | wikitext | NULL |
663.0 | Apollo_8 | 0.0 | 0.0 | 95526.0 | wikitext | NULL |
664.0 | Astronaut | 0.0 | 0.0 | 80670.0 | wikitext | NULL |
665.0 | A_Modest_Proposal | 0.0 | 0.0 | 24728.0 | wikitext | NULL |
666.0 | Alkali_metal | 0.0 | 0.0 | 217024.0 | wikitext | NULL |
668.0 | Argument_form | 1.0 | 0.0 | 26.0 | wikitext | NULL |
669.0 | Allotrope | 1.0 | 0.0 | 80.0 | wikitext | NULL |
670.0 | Alphabet | 0.0 | 0.0 | 48050.0 | wikitext | NULL |
673.0 | Atomic_number | 0.0 | 0.0 | 14031.0 | wikitext | NULL |
674.0 | Anatomy | 0.0 | 0.0 | 77631.0 | wikitext | NULL |
675.0 | Affirming_the_consequent | 0.0 | 0.0 | 6242.0 | wikitext | NULL |
676.0 | Andrei_Tarkovsky | 0.0 | 0.0 | 74800.0 | wikitext | NULL |
677.0 | Ambiguity | 0.0 | 0.0 | 31221.0 | wikitext | NULL |
678.0 | Abel | 0.0 | 0.0 | 10386.0 | wikitext | NULL |
679.0 | Animal_(disambiguation) | 0.0 | 0.0 | 8673.0 | wikitext | NULL |
680.0 | Aardvark | 0.0 | 0.0 | 36644.0 | wikitext | NULL |
681.0 | Aardwolf | 0.0 | 0.0 | 24478.0 | wikitext | NULL |
682.0 | Adobe | 0.0 | 0.0 | 28066.0 | wikitext | NULL |
683.0 | Adventure | 0.0 | 0.0 | 9292.0 | wikitext | NULL |
686.0 | Amaltheia | 1.0 | 0.0 | 34.0 | wikitext | NULL |
687.0 | Analysis_of_Variance | 1.0 | 0.0 | 66.0 | wikitext | NULL |
689.0 | Asia | 0.0 | 0.0 | 119487.0 | wikitext | NULL |
690.0 | Aruba | 0.0 | 0.0 | 77354.0 | wikitext | NULL |
691.0 | Articles_of_Confederation | 0.0 | 0.0 | 73929.0 | wikitext | NULL |
693.0 | Archaeology/Broch | 1.0 | 0.0 | 71.0 | wikitext | NULL |
694.0 | Asia_Minor_(disambiguation) | 0.0 | 0.0 | 520.0 | wikitext | NULL |
696.0 | Aa_River | 1.0 | 0.0 | 108.0 | wikitext | NULL |
698.0 | Atlantic_Ocean | 0.0 | 0.0 | 114989.0 | wikitext | NULL |
700.0 | Arthur_Schopenhauer | 0.0 | 0.0 | 165600.0 | wikitext | NULL |
701.0 | Angola | 0.0 | 0.0 | 156923.0 | wikitext | NULL |
704.0 | Demographics_of_Angola | 0.0 | 0.0 | 33803.0 | wikitext | NULL |
705.0 | Politics_of_Angola | 0.0 | 0.0 | 15087.0 | wikitext | NULL |
706.0 | Economy_of_Angola | 0.0 | 0.0 | 45452.0 | wikitext | NULL |
708.0 | Transport_in_Angola | 0.0 | 0.0 | 4083.0 | wikitext | NULL |
709.0 | Angolan_Armed_Forces | 0.0 | 0.0 | 25218.0 | wikitext | NULL |
710.0 | Foreign_relations_of_Angola | 0.0 | 0.0 | 28022.0 | wikitext | NULL |
711.0 | Albert_Sidney_Johnston | 0.0 | 0.0 | 53655.0 | wikitext | NULL |
713.0 | Android_(robot) | 0.0 | 0.0 | 30791.0 | wikitext | NULL |
717.0 | Alberta | 0.0 | 0.0 | 165138.0 | wikitext | NULL |
727.0 | Astronomy/History | 1.0 | 0.0 | 86.0 | wikitext | NULL |
728.0 | List_of_anthropologists | 0.0 | 0.0 | 8657.0 | wikitext | NULL |
731.0 | Astronomy_and_Astrophysics/History | 1.0 | 1.0 | 86.0 | wikitext | NULL |
734.0 | Actinopterygii | 0.0 | 0.0 | 41677.0 | wikitext | NULL |
735.0 | Al_Gore/Criticisms | 1.0 | 0.0 | 73.0 | wikitext | NULL |
736.0 | Albert_Einstein | 0.0 | 0.0 | 210170.0 | wikitext | NULL |
737.0 | Afghanistan | 0.0 | 0.0 | 310005.0 | wikitext | NULL |
738.0 | Albania | 0.0 | 0.0 | 277109.0 | wikitext | NULL |
740.0 | Allah | 0.0 | 0.0 | 49185.0 | wikitext | NULL |
742.0 | Algorithms_(journal) | 0.0 | 0.0 | 3748.0 | wikitext | NULL |
743.0 | Antigua_And_Barbuda | 1.0 | 0.0 | 79.0 | wikitext | NULL |
746.0 | Azerbaijan | 0.0 | 0.0 | 236389.0 | wikitext | NULL |
748.0 | Amateur_astronomy | 0.0 | 0.0 | 36867.0 | wikitext | NULL |
749.0 | Astronomers_and_Astrophysicists | 1.0 | 0.0 | 24.0 | wikitext | NULL |
751.0 | Aikido | 0.0 | 0.0 | 57246.0 | wikitext | NULL |
752.0 | Art | 0.0 | 0.0 | 121171.0 | wikitext | NULL |
755.0 | Albania/History | 1.0 | 0.0 | 84.0 | wikitext | NULL |
758.0 | Albania/Transnational_Issues | 1.0 | 0.0 | 134.0 | wikitext | NULL |
759.0 | Albania/People | 1.0 | 0.0 | 89.0 | wikitext | NULL |
763.0 | Albania/Foreign_relations | 1.0 | 0.0 | 134.0 | wikitext | NULL |
764.0 | Agnostida | 0.0 | 0.0 | 8134.0 | wikitext | NULL |
765.0 | Abortion | 0.0 | 0.0 | 194359.0 | wikitext | NULL |
766.0 | Abstract_(law) | 0.0 | 0.0 | 2292.0 | wikitext | NULL |
767.0 | A.E._van_Vogt | 1.0 | 0.0 | 28.0 | wikitext | NULL |
771.0 | American_Revolutionary_War | 0.0 | 0.0 | 308703.0 | wikitext | NULL |
772.0 | Ampere | 0.0 | 0.0 | 15813.0 | wikitext | NULL |
775.0 | Algorithm | 0.0 | 0.0 | 113862.0 | wikitext | NULL |
777.0 | Annual_plant | 0.0 | 0.0 | 6058.0 | wikitext | NULL |
779.0 | Anthophyta | 0.0 | 0.0 | 3135.0 | wikitext | NULL |
780.0 | Atlas_(disambiguation) | 0.0 | 0.0 | 11221.0 | wikitext | NULL |
782.0 | Mouthwash | 0.0 | 0.0 | 65648.0 | wikitext | NULL |
783.0 | Alexander_the_Great | 0.0 | 0.0 | 227366.0 | wikitext | NULL |
784.0 | Alfred_Korzybski | 0.0 | 0.0 | 14772.0 | wikitext | NULL |
785.0 | Asteroids_(video_game) | 0.0 | 0.0 | 48246.0 | wikitext | NULL |
786.0 | Asparagales | 0.0 | 0.0 | 89674.0 | wikitext | NULL |
787.0 | Alismatales | 0.0 | 0.0 | 13634.0 | wikitext | NULL |
788.0 | Apiales | 0.0 | 0.0 | 7627.0 | wikitext | NULL |
789.0 | Asterales | 0.0 | 0.0 | 11669.0 | wikitext | NULL |
791.0 | Asteroid | 0.0 | 0.0 | 155686.0 | wikitext | NULL |
794.0 | Allocution | 0.0 | 0.0 | 3884.0 | wikitext | NULL |
795.0 | Affidavit | 0.0 | 0.0 | 10052.0 | wikitext | NULL |
798.0 | Aries_(constellation) | 0.0 | 0.0 | 50994.0 | wikitext | NULL |
799.0 | Aquarius_(constellation) | 0.0 | 0.0 | 36019.0 | wikitext | NULL |
800.0 | Anime | 0.0 | 0.0 | 104726.0 | wikitext | NULL |
801.0 | Asterism | 0.0 | 0.0 | 357.0 | wikitext | NULL |
802.0 | Ankara | 0.0 | 0.0 | 125716.0 | wikitext | NULL |
803.0 | Arabic | 0.0 | 0.0 | 174116.0 | wikitext | NULL |
807.0 | AlbaniaCommunications | 1.0 | 0.0 | 97.0 | wikitext | NULL |
808.0 | Alfred_Hitchcock | 0.0 | 0.0 | 179231.0 | wikitext | NULL |
809.0 | Anaconda | 0.0 | 0.0 | 8537.0 | wikitext | NULL |
813.0 | Afghanistan/History | 1.0 | 0.0 | 88.0 | wikitext | NULL |
814.0 | Afghanistan/Geography | 1.0 | 0.0 | 90.0 | wikitext | NULL |
815.0 | Afghanistan/Government | 1.0 | 0.0 | 114.0 | wikitext | NULL |
816.0 | Afghanistan/People | 1.0 | 0.0 | 93.0 | wikitext | NULL |
817.0 | Afghanistan/Economy | 1.0 | 0.0 | 88.0 | wikitext | NULL |
818.0 | Afghanistan/Communications | 1.0 | 0.0 | 114.0 | wikitext | NULL |
820.0 | Afghanistan/Military | 1.0 | 0.0 | 155.0 | wikitext | NULL |
821.0 | Afghanistan/Transnational_Issues | 1.0 | 0.0 | 98.0 | wikitext | NULL |
822.0 | Afghanistan_(1911_Encyclopedia) | 1.0 | 0.0 | 25.0 | wikitext | NULL |
824.0 | Altaic_languages | 0.0 | 0.0 | 63972.0 | wikitext | NULL |
825.0 | Austrian_German | 0.0 | 0.0 | 21521.0 | wikitext | NULL |
832.0 | Austria/Transnational_issues | 1.0 | 0.0 | 94.0 | wikitext | NULL |
839.0 | Anglican_Church | 1.0 | 0.0 | 25.0 | wikitext | NULL |
840.0 | Axiom_of_choice | 0.0 | 0.0 | 58996.0 | wikitext | NULL |
841.0 | Attila | 0.0 | 0.0 | 65626.0 | wikitext | NULL |
842.0 | Aegean_Sea | 0.0 | 0.0 | 47828.0 | wikitext | NULL |
843.0 | A_Clockwork_Orange_(novel) | 0.0 | 0.0 | 55097.0 | wikitext | NULL |
844.0 | Amsterdam | 0.0 | 0.0 | 196002.0 | wikitext | NULL |
846.0 | Museum_of_Work | 0.0 | 0.0 | 7122.0 | wikitext | NULL |
848.0 | Audi | 0.0 | 0.0 | 147456.0 | wikitext | NULL |
849.0 | Aircraft | 0.0 | 0.0 | 63371.0 | wikitext | NULL |
851.0 | Alfred_Nobel | 0.0 | 0.0 | 33680.0 | wikitext | NULL |
852.0 | Alexander_Graham_Bell | 0.0 | 0.0 | 143315.0 | wikitext | NULL |
854.0 | Anatolia | 0.0 | 0.0 | 72850.0 | wikitext | NULL |
855.0 | Abiotic_factors | 1.0 | 0.0 | 31.0 | wikitext | NULL |
856.0 | Apple_Inc. | 0.0 | 0.0 | 296242.0 | wikitext | NULL |
857.0 | Aberdeenshire | 0.0 | 0.0 | 33434.0 | wikitext | NULL |
858.0 | AU | 1.0 | 0.0 | 127.0 | wikitext | NULL |
859.0 | Aztlan_Underground | 0.0 | 0.0 | 7876.0 | wikitext | NULL |
860.0 | Aland | 1.0 | 0.0 | 93.0 | wikitext | NULL |
863.0 | American_Civil_War | 0.0 | 0.0 | 252499.0 | wikitext | NULL |
864.0 | Andy_Warhol | 0.0 | 0.0 | 159393.0 | wikitext | NULL |
868.0 | Alp_Arslan | 0.0 | 0.0 | 27066.0 | wikitext | NULL |
869.0 | American_Film_Institute | 0.0 | 0.0 | 23405.0 | wikitext | NULL |
872.0 | Akira_Kurosawa | 0.0 | 0.0 | 108667.0 | wikitext | NULL |
873.0 | Ancient_civilization | 1.0 | 0.0 | 95.0 | wikitext | NULL |
874.0 | Ancient_Egypt | 0.0 | 0.0 | 141823.0 | wikitext | NULL |
875.0 | Analog_Brothers | 0.0 | 0.0 | 3787.0 | wikitext | NULL |
876.0 | Motor_neuron_disease | 0.0 | 0.0 | 22719.0 | wikitext | NULL |
877.0 | Abjad | 0.0 | 0.0 | 22953.0 | wikitext | NULL |
878.0 | Abugida | 0.0 | 0.0 | 44096.0 | wikitext | NULL |
880.0 | ABBA | 0.0 | 0.0 | 143023.0 | wikitext | NULL |
881.0 | Allegiance | 0.0 | 0.0 | 15801.0 | wikitext | NULL |
882.0 | Absolute_majority | 1.0 | 0.0 | 121.0 | wikitext | NULL |
885.0 | Altenberg | 0.0 | 0.0 | 1824.0 | wikitext | NULL |
887.0 | MessagePad | 0.0 | 0.0 | 47725.0 | wikitext | NULL |
888.0 | A._E._van_Vogt | 0.0 | 0.0 | 51988.0 | wikitext | NULL |
890.0 | Anna_Kournikova | 0.0 | 0.0 | 55901.0 | wikitext | NULL |
891.0 | Accountancy | 1.0 | 0.0 | 24.0 | wikitext | NULL |
892.0 | Alfons_Maria_Jakob | 0.0 | 0.0 | 5267.0 | wikitext | NULL |
894.0 | Agnosticism | 0.0 | 0.0 | 72756.0 | wikitext | NULL |
896.0 | Argon | 0.0 | 0.0 | 40086.0 | wikitext | NULL |
897.0 | Arsenic | 0.0 | 0.0 | 127483.0 | wikitext | NULL |
898.0 | Antimony | 0.0 | 0.0 | 60686.0 | wikitext | NULL |
899.0 | Actinium | 0.0 | 0.0 | 39951.0 | wikitext | NULL |
900.0 | Americium | 0.0 | 0.0 | 77374.0 | wikitext | NULL |
901.0 | Astatine | 0.0 | 0.0 | 81700.0 | wikitext | NULL |
902.0 | Atom | 0.0 | 0.0 | 125779.0 | wikitext | NULL |
903.0 | Arable_land | 0.0 | 0.0 | 17047.0 | wikitext | NULL |
904.0 | Aluminium | 0.0 | 0.0 | 138626.0 | wikitext | NULL |
905.0 | Advanced_Chemistry | 0.0 | 0.0 | 12704.0 | wikitext | NULL |
907.0 | Awk | 1.0 | 0.0 | 82.0 | wikitext | NULL |
908.0 | AgoraNomic | 1.0 | 0.0 | 19.0 | wikitext | NULL |
909.0 | Anglican_Communion | 0.0 | 0.0 | 67308.0 | wikitext | NULL |
910.0 | Arne_Kaijser | 0.0 | 0.0 | 2754.0 | wikitext | NULL |
911.0 | Archipelago | 0.0 | 0.0 | 7267.0 | wikitext | NULL |
914.0 | Author | 0.0 | 0.0 | 20404.0 | wikitext | NULL |
915.0 | Andrey_Markov | 0.0 | 0.0 | 10528.0 | wikitext | NULL |
918.0 | Anti-semitism | 1.0 | 0.0 | 91.0 | wikitext | NULL |
919.0 | Anti-semitic | 1.0 | 0.0 | 47.0 | wikitext | NULL |
921.0 | Angst | 0.0 | 0.0 | 7030.0 | wikitext | NULL |
922.0 | Anxiety | 0.0 | 0.0 | 92522.0 | wikitext | NULL |
923.0 | A.A._Milne | 1.0 | 0.0 | 25.0 | wikitext | NULL |
924.0 | A._A._Milne | 0.0 | 0.0 | 43901.0 | wikitext | NULL |
925.0 | Asociación_Alumni | 0.0 | 0.0 | 5890.0 | wikitext | NULL |
926.0 | Alumna | 1.0 | 0.0 | 80.0 | wikitext | NULL |
928.0 | Axiom | 0.0 | 0.0 | 35579.0 | wikitext | NULL |
929.0 | Alpha | 0.0 | 0.0 | 11696.0 | wikitext | NULL |
930.0 | Alvin_Toffler | 0.0 | 0.0 | 31422.0 | wikitext | NULL |
931.0 | The_Amazing_Spider-Man | 0.0 | 0.0 | 86345.0 | wikitext | NULL |
933.0 | AM | 0.0 | 0.0 | 4055.0 | wikitext | NULL |
935.0 | Automated_Alice/XII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
936.0 | Automated_Alice/XI | 1.0 | 0.0 | 49.0 | wikitext | NULL |
937.0 | Automated_Alice/X | 1.0 | 0.0 | 49.0 | wikitext | NULL |
938.0 | Automated_Alice/IX | 1.0 | 0.0 | 49.0 | wikitext | NULL |
939.0 | Automated_Alice/VIII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
940.0 | Automated_Alice/VI | 1.0 | 0.0 | 49.0 | wikitext | NULL |
941.0 | Automated_Alice/VII | 1.0 | 0.0 | 49.0 | wikitext | NULL |
942.0 | Automated_Alice/V | 1.0 | 0.0 | 49.0 | wikitext | NULL |
943.0 | Automated_Alice/IV | 1.0 | 0.0 | 49.0 | wikitext | NULL |
944.0 | Automated_Alice/II | 1.0 | 0.0 | 49.0 | wikitext | NULL |
945.0 | Automated_Alice/I | 1.0 | 0.0 | 49.0 | wikitext | NULL |
946.0 | Automated_Alice/III | 1.0 | 0.0 | 49.0 | wikitext | NULL |
951.0 | Antigua_and_Barbuda | 0.0 | 0.0 | 69608.0 | wikitext | NULL |
953.0 | Azincourt | 0.0 | 0.0 | 7304.0 | wikitext | NULL |
954.0 | Albert_Speer | 0.0 | 0.0 | 74955.0 | wikitext | NULL |
956.0 | Asteraceae | 0.0 | 0.0 | 52348.0 | wikitext | NULL |
957.0 | Apiaceae | 0.0 | 0.0 | 19443.0 | wikitext | NULL |
958.0 | Axon | 0.0 | 0.0 | 56358.0 | wikitext | NULL |
959.0 | Agma | 1.0 | 0.0 | 32.0 | wikitext | NULL |
960.0 | Aramaic_alphabet | 0.0 | 0.0 | 39545.0 | wikitext | NULL |
963.0 | Arguments_for_the_existence_of_God | 1.0 | 0.0 | 30.0 | wikitext | NULL |
966.0 | American_shot | 0.0 | 0.0 | 2475.0 | wikitext | NULL |
967.0 | Acute_disseminated_encephalomyelitis | 0.0 | 0.0 | 49156.0 | wikitext | NULL |
969.0 | Ataxia | 0.0 | 0.0 | 51374.0 | wikitext | NULL |
970.0 | AmbientCalculusOnline | 1.0 | 0.0 | 84.0 | wikitext | NULL |
972.0 | Abdul_Alhazred | 1.0 | 0.0 | 453.0 | wikitext | NULL |
973.0 | A_priori_and_a_posterior_knowledge | 1.0 | 0.0 | 39.0 | wikitext | NULL |
974.0 | Ada_Lovelace | 0.0 | 0.0 | 81872.0 | wikitext | NULL |
975.0 | AmbientCalculiOnline | 1.0 | 0.0 | 84.0 | wikitext | NULL |
980.0 | August_Derleth | 0.0 | 0.0 | 36081.0 | wikitext | NULL |
981.0 | Alps | 0.0 | 0.0 | 97011.0 | wikitext | NULL |
982.0 | A_priori_and_a_posteriori_knowledge | 1.0 | 0.0 | 39.0 | wikitext | NULL |
983.0 | Albert_Camus | 0.0 | 0.0 | 60082.0 | wikitext | NULL |
984.0 | Agatha_Christie | 0.0 | 0.0 | 157622.0 | wikitext | NULL |
986.0 | The_Plague_(novel) | 0.0 | 0.0 | 33756.0 | wikitext | NULL |
988.0 | Applied_ethics | 0.0 | 0.0 | 10125.0 | wikitext | NULL |
991.0 | Absolute_value | 0.0 | 0.0 | 25672.0 | wikitext | NULL |
993.0 | Analog_signal | 0.0 | 0.0 | 4898.0 | wikitext | NULL |
994.0 | Arecales | 0.0 | 0.0 | 3408.0 | wikitext | NULL |
1000.0 | Hercule_Poirot | 0.0 | 0.0 | 70455.0 | wikitext | NULL |
1002.0 | Miss_Marple | 0.0 | 0.0 | 31513.0 | wikitext | NULL |
1004.0 | April | 0.0 | 0.0 | 32330.0 | wikitext | NULL |
1005.0 | August | 0.0 | 0.0 | 29903.0 | wikitext | NULL |
1006.0 | Aaron | 0.0 | 0.0 | 45188.0 | wikitext | NULL |
1008.0 | April_6 | 0.0 | 0.0 | 53142.0 | wikitext | NULL |
1009.0 | April_12 | 0.0 | 0.0 | 52633.0 | wikitext | NULL |
1010.0 | April_15 | 0.0 | 0.0 | 50663.0 | wikitext | NULL |
1011.0 | April_30 | 0.0 | 0.0 | 48202.0 | wikitext | NULL |
1012.0 | August_22 | 0.0 | 0.0 | 44190.0 | wikitext | NULL |
1013.0 | August_27 | 0.0 | 0.0 | 47372.0 | wikitext | NULL |
1014.0 | Alcohol_(chemistry) | 0.0 | 0.0 | 34841.0 | wikitext | NULL |
1016.0 | Achill_Island | 0.0 | 0.0 | 39863.0 | wikitext | NULL |
1017.0 | Allen_Ginsberg | 0.0 | 0.0 | 108507.0 | wikitext | NULL |
1018.0 | Algebraically_closed_field | 0.0 | 0.0 | 12639.0 | wikitext | NULL |
1019.0 | August_6 | 0.0 | 0.0 | 44883.0 | wikitext | NULL |
1020.0 | Anatoly_Karpov | 0.0 | 0.0 | 44732.0 | wikitext | NULL |
1021.0 | Aspect_ratio | 0.0 | 0.0 | 5699.0 | wikitext | NULL |
1022.0 | Auto_racing | 0.0 | 0.0 | 49738.0 | wikitext | NULL |
1023.0 | Anarcho-capitalism | 0.0 | 0.0 | 135375.0 | wikitext | NULL |
1026.0 | Anarcho-capitalists | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1027.0 | August_9 | 0.0 | 0.0 | 48531.0 | wikitext | NULL |
1028.0 | Aristophanes | 0.0 | 0.0 | 68860.0 | wikitext | NULL |
1029.0 | Albert_Schweitzer | 0.0 | 0.0 | 80267.0 | wikitext | NULL |
1030.0 | Austrian_School | 0.0 | 0.0 | 71838.0 | wikitext | NULL |
1032.0 | Abscess | 0.0 | 0.0 | 32103.0 | wikitext | NULL |
1035.0 | Aal | 1.0 | 0.0 | 94.0 | wikitext | NULL |
1036.0 | Aalborg_Municipality | 0.0 | 0.0 | 13463.0 | wikitext | NULL |
1038.0 | Aarhus | 0.0 | 0.0 | 205789.0 | wikitext | NULL |
1043.0 | Northern_cavefish | 0.0 | 0.0 | 2625.0 | wikitext | NULL |
1046.0 | Abatement | 0.0 | 0.0 | 1133.0 | wikitext | NULL |
1049.0 | Amateur | 0.0 | 0.0 | 15459.0 | wikitext | NULL |
1051.0 | Alexis_Carrel | 0.0 | 0.0 | 38802.0 | wikitext | NULL |
1055.0 | All_Souls'_Day | 0.0 | 0.0 | 36190.0 | wikitext | NULL |
1057.0 | Anatole_France | 0.0 | 0.0 | 16387.0 | wikitext | NULL |
1058.0 | André_Gide | 0.0 | 0.0 | 32483.0 | wikitext | NULL |
1059.0 | Applied_statistics | 1.0 | 0.0 | 192.0 | wikitext | NULL |
1061.0 | Analysis_of_variance/Random_effects_models | 1.0 | 0.0 | 123.0 | wikitext | NULL |
1062.0 | Analysis_of_variance/Degrees_of_freedom | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1063.0 | Algorithms_for_calculating_variance | 0.0 | 0.0 | 30844.0 | wikitext | NULL |
1064.0 | Almond | 0.0 | 0.0 | 65298.0 | wikitext | NULL |
1069.0 | Demographics_of_Antigua_and_Barbuda | 0.0 | 0.0 | 15988.0 | wikitext | NULL |
1070.0 | Politics_of_Antigua_and_Barbuda | 0.0 | 0.0 | 10381.0 | wikitext | NULL |
1072.0 | Telecommunications_in_Antigua_and_Barbuda | 0.0 | 0.0 | 5634.0 | wikitext | NULL |
1074.0 | Antigua_and_Barbuda_Defence_Force | 0.0 | 0.0 | 6978.0 | wikitext | NULL |
1075.0 | Antigua_and_Barbuda/Transnational_issues | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1078.0 | Antisemitism | 0.0 | 0.0 | 146605.0 | wikitext | NULL |
1081.0 | Economy_of_Azerbaijan | 0.0 | 0.0 | 60281.0 | wikitext | NULL |
1082.0 | Geography_of_Azerbaijan | 0.0 | 0.0 | 14609.0 | wikitext | NULL |
1083.0 | Azerbaijan/People | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1085.0 | Azerbaijan/Communications | 1.0 | 0.0 | 98.0 | wikitext | NULL |
1087.0 | Foreign_relations_of_Azerbaijan | 0.0 | 0.0 | 106467.0 | wikitext | NULL |
1088.0 | Azerbaijani_Armed_Forces | 0.0 | 0.0 | 86941.0 | wikitext | NULL |
1089.0 | Azerbaijan/Foreign_relations | 1.0 | 0.0 | 97.0 | wikitext | NULL |
1091.0 | Geography_of_Armenia | 0.0 | 0.0 | 9701.0 | wikitext | NULL |
1092.0 | Demographics_of_Armenia | 0.0 | 0.0 | 53608.0 | wikitext | NULL |
1093.0 | Politics_of_Armenia | 0.0 | 0.0 | 22632.0 | wikitext | NULL |
1094.0 | Economy_of_Armenia | 0.0 | 0.0 | 139777.0 | wikitext | NULL |
1096.0 | Transport_in_Armenia | 0.0 | 0.0 | 17734.0 | wikitext | NULL |
1097.0 | Armed_Forces_of_Armenia | 0.0 | 0.0 | 65462.0 | wikitext | NULL |
1098.0 | Foreign_relations_of_Armenia | 0.0 | 0.0 | 166725.0 | wikitext | NULL |
1105.0 | Argentina/Transnational_issues | 1.0 | 0.0 | 138.0 | wikitext | NULL |
1108.0 | Argentina/Foreign_relations | 1.0 | 0.0 | 138.0 | wikitext | NULL |
1109.0 | Geography_of_American_Samoa | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1110.0 | Demographics_of_American_Samoa | 0.0 | 0.0 | 13354.0 | wikitext | NULL |
1111.0 | Politics_of_American_Samoa | 0.0 | 0.0 | 5605.0 | wikitext | NULL |
1112.0 | Economy_of_American_Samoa | 0.0 | 0.0 | 6915.0 | wikitext | NULL |
1114.0 | Transportation_in_American_Samoa | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1116.0 | American_Samoa/Military | 1.0 | 0.0 | 80.0 | wikitext | NULL |
1123.0 | Australia/Transnational_issues | 1.0 | 0.0 | 96.0 | wikitext | NULL |
1129.0 | August_13 | 0.0 | 0.0 | 47062.0 | wikitext | NULL |
1130.0 | Avicenna | 0.0 | 0.0 | 114907.0 | wikitext | NULL |
1132.0 | The_Ashes | 0.0 | 0.0 | 92557.0 | wikitext | NULL |
1134.0 | Analysis | 0.0 | 0.0 | 21855.0 | wikitext | NULL |
1135.0 | Abner_Doubleday | 0.0 | 0.0 | 28685.0 | wikitext | NULL |
1136.0 | America's_National_Game | 0.0 | 0.0 | 1519.0 | wikitext | NULL |
1140.0 | Amplitude_modulation | 0.0 | 0.0 | 33937.0 | wikitext | NULL |
1141.0 | Augustin-Jean_Fresnel | 0.0 | 0.0 | 207403.0 | wikitext | NULL |
1143.0 | Abbot | 0.0 | 0.0 | 34498.0 | wikitext | NULL |
1144.0 | Ardipithecus | 0.0 | 0.0 | 31777.0 | wikitext | NULL |
1146.0 | Assembly_line | 0.0 | 0.0 | 34686.0 | wikitext | NULL |
1148.0 | Adelaide | 0.0 | 0.0 | 165131.0 | wikitext | NULL |
1151.0 | AK47 | 1.0 | 0.0 | 84.0 | wikitext | NULL |
1152.0 | Alan_Garner | 0.0 | 0.0 | 41348.0 | wikitext | NULL |
1153.0 | Amhrann_na_bhFiann | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1154.0 | August_2 | 0.0 | 0.0 | 49532.0 | wikitext | NULL |
1155.0 | Atlantic_(disambiguation) | 0.0 | 0.0 | 4980.0 | wikitext | NULL |
1158.0 | Algebraic_number | 0.0 | 0.0 | 12611.0 | wikitext | NULL |
1160.0 | Automorphism | 0.0 | 0.0 | 11771.0 | wikitext | NULL |
1162.0 | Accordion | 0.0 | 0.0 | 66013.0 | wikitext | NULL |
1164.0 | Artificial_intelligence | 0.0 | 0.0 | 220426.0 | wikitext | NULL |
1166.0 | Afro_Celt_Sound_System | 0.0 | 0.0 | 22290.0 | wikitext | NULL |
1167.0 | Ancient_philosophy | 0.0 | 0.0 | 29750.0 | wikitext | NULL |
1168.0 | Anaximander | 0.0 | 0.0 | 56067.0 | wikitext | NULL |
1169.0 | APL | 0.0 | 0.0 | 2536.0 | wikitext | NULL |
1170.0 | Architect | 0.0 | 0.0 | 27793.0 | wikitext | NULL |
1171.0 | Abbreviation | 0.0 | 0.0 | 32641.0 | wikitext | NULL |
1174.0 | Aphrodite | 0.0 | 0.0 | 141174.0 | wikitext | NULL |
1175.0 | April_1 | 0.0 | 0.0 | 49325.0 | wikitext | NULL |
1176.0 | Antisymmetric_relation | 0.0 | 0.0 | 4327.0 | wikitext | NULL |
1177.0 | Aleister_Crowley | 0.0 | 0.0 | 128082.0 | wikitext | NULL |
1178.0 | Afterlife | 0.0 | 0.0 | 114450.0 | wikitext | NULL |
1181.0 | Astrometry | 0.0 | 0.0 | 18156.0 | wikitext | NULL |
1182.0 | Athena | 0.0 | 0.0 | 117909.0 | wikitext | NULL |
1183.0 | Amber_Diceless_Roleplaying_Game | 0.0 | 0.0 | 22788.0 | wikitext | NULL |
1184.0 | Athene_(disambiguation) | 0.0 | 0.0 | 1038.0 | wikitext | NULL |
1186.0 | AphexTwin | 1.0 | 0.0 | 78.0 | wikitext | NULL |
1187.0 | Alloy | 0.0 | 0.0 | 39789.0 | wikitext | NULL |
1189.0 | Articles_of_Faith | 1.0 | 0.0 | 75.0 | wikitext | NULL |
1190.0 | Alternative_history | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1192.0 | Artistic_revolution | 0.0 | 0.0 | 9302.0 | wikitext | NULL |
1193.0 | Agrarianism | 0.0 | 0.0 | 45044.0 | wikitext | NULL |
1194.0 | Atomic | 0.0 | 0.0 | 1655.0 | wikitext | NULL |
1195.0 | Allotropes | 1.0 | 0.0 | 42.0 | wikitext | NULL |
1196.0 | Angle | 0.0 | 0.0 | 50252.0 | wikitext | NULL |
1197.0 | Asa | 0.0 | 0.0 | 1718.0 | wikitext | NULL |
1198.0 | Acoustics | 0.0 | 0.0 | 38399.0 | wikitext | NULL |
1199.0 | Angle_tribe | 1.0 | 0.0 | 20.0 | wikitext | NULL |
1200.0 | Atomic_physics | 0.0 | 0.0 | 9168.0 | wikitext | NULL |
1201.0 | American_Sign_Language | 0.0 | 0.0 | 66042.0 | wikitext | NULL |
1202.0 | Applet | 0.0 | 0.0 | 8698.0 | wikitext | NULL |
1203.0 | Alternate_history | 0.0 | 0.0 | 72917.0 | wikitext | NULL |
1205.0 | Atomic_orbitals | 1.0 | 0.0 | 79.0 | wikitext | NULL |
1206.0 | Atomic_orbital | 0.0 | 0.0 | 83171.0 | wikitext | NULL |
1207.0 | Amino_acid | 0.0 | 0.0 | 105700.0 | wikitext | NULL |
1208.0 | Alan_Turing | 0.0 | 0.0 | 139444.0 | wikitext | NULL |
1209.0 | Area | 0.0 | 0.0 | 45136.0 | wikitext | NULL |
1210.0 | Astronomical_unit | 0.0 | 0.0 | 54620.0 | wikitext | NULL |
1212.0 | Artist | 0.0 | 0.0 | 7688.0 | wikitext | NULL |
1213.0 | Actaeon | 0.0 | 0.0 | 27501.0 | wikitext | NULL |
1214.0 | Anglicanism | 0.0 | 0.0 | 144236.0 | wikitext | NULL |
1216.0 | Athens | 0.0 | 0.0 | 181240.0 | wikitext | NULL |
1217.0 | Anguilla | 0.0 | 0.0 | 60587.0 | wikitext | NULL |
1220.0 | Anguilla/Transnational_issues | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1221.0 | Anguilla/Military | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1223.0 | Telecommunications_in_Anguilla | 0.0 | 0.0 | 4827.0 | wikitext | NULL |
1227.0 | Ashmore_and_Cartier_Islands | 0.0 | 0.0 | 17896.0 | wikitext | NULL |
1228.0 | Ashmore_and_Cartier_Islands/Geography | 1.0 | 0.0 | 118.0 | wikitext | NULL |
1229.0 | Ashmore_and_Cartier_Islands/People | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1230.0 | Ashmore_and_Cartier_Islands/Government | 1.0 | 0.0 | 119.0 | wikitext | NULL |
1231.0 | Ashmore_and_Cartier_Islands/Transportation | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1232.0 | Ashmore_and_Cartier_Islands/Economy | 1.0 | 0.0 | 130.0 | wikitext | NULL |
1233.0 | Ashmore_and_Cartier_Islands/Military | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1234.0 | Acoustic_theory | 0.0 | 0.0 | 11785.0 | wikitext | NULL |
1235.0 | Alexander_Mackenzie_(politician) | 0.0 | 0.0 | 31828.0 | wikitext | NULL |
1238.0 | Atomic_bomb | 1.0 | 0.0 | 103.0 | wikitext | NULL |
1239.0 | Ashoka | 0.0 | 0.0 | 145168.0 | wikitext | NULL |
1241.0 | American_(word) | 0.0 | 0.0 | 45428.0 | wikitext | NULL |
1242.0 | Ada_(programming_language) | 0.0 | 0.0 | 57549.0 | wikitext | NULL |
1245.0 | Alpha_ray | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1246.0 | Alfonso_Aráu | 1.0 | 0.0 | 26.0 | wikitext | NULL |
1247.0 | Alfonso_Cuarón | 0.0 | 0.0 | 27492.0 | wikitext | NULL |
1252.0 | Arianism | 0.0 | 0.0 | 80978.0 | wikitext | NULL |
1254.0 | August_1 | 0.0 | 0.0 | 52683.0 | wikitext | NULL |
1255.0 | Astronomical_Units | 1.0 | 0.0 | 130.0 | wikitext | NULL |
1256.0 | Antoninus_Pius | 0.0 | 0.0 | 71848.0 | wikitext | NULL |
1259.0 | August_3 | 0.0 | 0.0 | 42085.0 | wikitext | NULL |
1260.0 | Advanced_Encryption_Standard | 0.0 | 0.0 | 48743.0 | wikitext | NULL |
1261.0 | April_26 | 0.0 | 0.0 | 46939.0 | wikitext | NULL |
1262.0 | Argot | 1.0 | 0.0 | 181.0 | wikitext | NULL |
1264.0 | Anisotropy | 0.0 | 0.0 | 20704.0 | wikitext | NULL |
1267.0 | Alpha_decay | 0.0 | 0.0 | 18823.0 | wikitext | NULL |
1268.0 | AI | 1.0 | 0.0 | 157.0 | wikitext | NULL |
1270.0 | Extreme_poverty | 0.0 | 0.0 | 59250.0 | wikitext | NULL |
1271.0 | Analytical_Engine | 0.0 | 0.0 | 39177.0 | wikitext | NULL |
1273.0 | Augustus | 0.0 | 0.0 | 144918.0 | wikitext | NULL |
1274.0 | Geography_of_Antarctica | 0.0 | 0.0 | 22878.0 | wikitext | NULL |
1276.0 | Economy_of_Antarctica | 1.0 | 0.0 | 243.0 | wikitext | NULL |
1277.0 | Government_of_Antarctica | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1279.0 | Transport_in_Antarctica | 0.0 | 0.0 | 11873.0 | wikitext | NULL |
1280.0 | Military_of_Antarctica | 1.0 | 0.0 | 48.0 | wikitext | NULL |
1285.0 | Geography_of_Alabama | 0.0 | 0.0 | 15547.0 | wikitext | NULL |
1286.0 | List_of_governors_of_Alabama | 0.0 | 0.0 | 60829.0 | wikitext | NULL |
1288.0 | Apocrypha | 0.0 | 0.0 | 60465.0 | wikitext | NULL |
1290.0 | Antartic_Treaty | 1.0 | 0.0 | 129.0 | wikitext | NULL |
1291.0 | Antarctic_Treaty_System | 0.0 | 0.0 | 42723.0 | wikitext | NULL |
1292.0 | Algernon_Swinburne | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1293.0 | Alfred_Lawson | 0.0 | 0.0 | 16942.0 | wikitext | NULL |
1295.0 | ALCS | 1.0 | 0.0 | 49.0 | wikitext | NULL |
1297.0 | Apocrypha/Tanakh | 1.0 | 0.0 | 78.0 | wikitext | NULL |
1298.0 | Ames,_Iowa | 0.0 | 0.0 | 55406.0 | wikitext | NULL |
1299.0 | Abbadides | 1.0 | 0.0 | 29.0 | wikitext | NULL |
1300.0 | Abalone | 0.0 | 0.0 | 63093.0 | wikitext | NULL |
1301.0 | Abbess | 0.0 | 0.0 | 13449.0 | wikitext | NULL |
1302.0 | Human_abdomen | 1.0 | 0.0 | 90.0 | wikitext | NULL |
1303.0 | Abdominal_surgery | 0.0 | 0.0 | 7650.0 | wikitext | NULL |
1304.0 | Abduction | 0.0 | 0.0 | 2669.0 | wikitext | NULL |
1305.0 | Abensberg | 0.0 | 0.0 | 16290.0 | wikitext | NULL |
1306.0 | Arminianism | 0.0 | 0.0 | 82187.0 | wikitext | NULL |
1307.0 | The_Alan_Parsons_Project | 0.0 | 0.0 | 21560.0 | wikitext | NULL |
1309.0 | Almost_all | 0.0 | 0.0 | 25415.0 | wikitext | NULL |
1311.0 | Ada_Byron's_notes_on_the_analytical_engine | 1.0 | 0.0 | 86.0 | wikitext | NULL |
1312.0 | Augustine | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1313.0 | Aromatic_compound | 0.0 | 0.0 | 12131.0 | wikitext | NULL |
1315.0 | Abbey | 0.0 | 0.0 | 30916.0 | wikitext | NULL |
1316.0 | Annales_school | 0.0 | 0.0 | 37725.0 | wikitext | NULL |
1317.0 | Antimatter | 0.0 | 0.0 | 74559.0 | wikitext | NULL |
1321.0 | Antonio_Gaudi/Sagrada_Familia | 1.0 | 0.0 | 82.0 | wikitext | NULL |
1322.0 | Casa_Batlló | 0.0 | 0.0 | 23318.0 | wikitext | NULL |
1324.0 | Park_Güell | 0.0 | 0.0 | 15495.0 | wikitext | NULL |
1325.0 | Casa_Milà | 0.0 | 0.0 | 39346.0 | wikitext | NULL |
1327.0 | Antiparticle | 0.0 | 0.0 | 20321.0 | wikitext | NULL |
1328.0 | A.D. | 1.0 | 0.0 | 80.0 | wikitext | NULL |
1331.0 | Arabian_Prince | 0.0 | 0.0 | 12794.0 | wikitext | NULL |
1332.0 | August_7 | 0.0 | 0.0 | 55009.0 | wikitext | NULL |
1333.0 | August_8 | 0.0 | 0.0 | 49211.0 | wikitext | NULL |
1334.0 | April_16 | 0.0 | 0.0 | 54925.0 | wikitext | NULL |
1335.0 | Associative_property | 0.0 | 0.0 | 25928.0 | wikitext | NULL |
1336.0 | The_Apache_Software_Foundation | 0.0 | 0.0 | 11890.0 | wikitext | NULL |
1338.0 | Americans_with_Disabilities_Act_of_1990 | 0.0 | 0.0 | 89286.0 | wikitext | NULL |
1339.0 | Americans_with_Disabilities_Act_of_1990/Findings_and_Purposes | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1340.0 | Americans_with_Disabilities_Act_of_1990/Definitions | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1341.0 | Americans_with_Disabilities_Act_of_1990/Title_III | 1.0 | 0.0 | 73.0 | wikitext | NULL |
1342.0 | A.D | 1.0 | 0.0 | 82.0 | wikitext | NULL |
1344.0 | Apple_I | 0.0 | 0.0 | 44379.0 | wikitext | NULL |
1345.0 | Apache_webserver | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1346.0 | Apatosaurus | 0.0 | 0.0 | 90670.0 | wikitext | NULL |
1347.0 | Allosaurus | 0.0 | 0.0 | 121497.0 | wikitext | NULL |
1348.0 | AK-47 | 0.0 | 0.0 | 141766.0 | wikitext | NULL |
1349.0 | Atanasoff–Berry_computer | 0.0 | 0.0 | 23497.0 | wikitext | NULL |
1354.0 | Andes | 0.0 | 0.0 | 54780.0 | wikitext | NULL |
1355.0 | Anderida | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1356.0 | Ancylopoda | 0.0 | 0.0 | 2358.0 | wikitext | NULL |
1358.0 | Anchor | 0.0 | 0.0 | 52859.0 | wikitext | NULL |
1359.0 | Anbar_(town) | 0.0 | 0.0 | 12631.0 | wikitext | NULL |
1360.0 | Anazarbus | 0.0 | 0.0 | 17119.0 | wikitext | NULL |
1361.0 | Anagram | 0.0 | 0.0 | 33706.0 | wikitext | NULL |
1362.0 | Anadyr_(river) | 0.0 | 0.0 | 7337.0 | wikitext | NULL |
1363.0 | André-Marie_Ampère | 0.0 | 0.0 | 20216.0 | wikitext | NULL |
1365.0 | Ammonia | 0.0 | 0.0 | 148235.0 | wikitext | NULL |
1366.0 | Amethyst | 0.0 | 0.0 | 27267.0 | wikitext | NULL |
1367.0 | Albertosaurus | 0.0 | 0.0 | 58698.0 | wikitext | NULL |
1368.0 | Assembly_language | 0.0 | 0.0 | 90003.0 | wikitext | NULL |
1369.0 | Ambrosia | 0.0 | 0.0 | 12915.0 | wikitext | NULL |
1370.0 | Ambrose | 0.0 | 0.0 | 103100.0 | wikitext | NULL |
1371.0 | Ambracia | 0.0 | 0.0 | 6319.0 | wikitext | NULL |
1372.0 | Amber | 0.0 | 0.0 | 59547.0 | wikitext | NULL |
1373.0 | Amalaric | 0.0 | 0.0 | 5878.0 | wikitext | NULL |
1374.0 | Alphorn | 0.0 | 0.0 | 12956.0 | wikitext | NULL |
1376.0 | Army | 0.0 | 0.0 | 30058.0 | wikitext | NULL |
1380.0 | Alligatoridae | 0.0 | 0.0 | 20628.0 | wikitext | NULL |
1383.0 | Alder | 0.0 | 0.0 | 23813.0 | wikitext | NULL |
1384.0 | Amos_Bronson_Alcott | 0.0 | 0.0 | 51959.0 | wikitext | NULL |
1386.0 | Arachnophobia | 0.0 | 0.0 | 16131.0 | wikitext | NULL |
1387.0 | Alabaster | 0.0 | 0.0 | 31341.0 | wikitext | NULL |
1389.0 | Ahab | 0.0 | 0.0 | 16568.0 | wikitext | NULL |
1391.0 | ASIC_(disambiguation) | 0.0 | 0.0 | 1189.0 | wikitext | NULL |
1392.0 | Dasyproctidae | 0.0 | 0.0 | 4787.0 | wikitext | NULL |
1394.0 | Algol | 0.0 | 0.0 | 32666.0 | wikitext | NULL |
1395.0 | Amazing_Grace | 0.0 | 0.0 | 64133.0 | wikitext | NULL |
1397.0 | AOL | 0.0 | 0.0 | 104064.0 | wikitext | NULL |
1399.0 | ADHD | 1.0 | 0.0 | 154.0 | wikitext | NULL |
1400.0 | Anno_Domini | 0.0 | 0.0 | 31355.0 | wikitext | NULL |
1404.0 | AV | 0.0 | 0.0 | 3210.0 | wikitext | NULL |
1406.0 | Amino_group | 1.0 | 0.0 | 19.0 | wikitext | NULL |
1407.0 | Antony_van_Leeuwenhook | 1.0 | 0.0 | 98.0 | wikitext | NULL |
1408.0 | Alcuin | 0.0 | 0.0 | 41674.0 | wikitext | NULL |
1409.0 | Angilbert | 0.0 | 0.0 | 7855.0 | wikitext | NULL |
1410.0 | Antony_van_Leeuwenhoek | 1.0 | 0.0 | 102.0 | wikitext | NULL |
1412.0 | Amine | 0.0 | 0.0 | 32725.0 | wikitext | NULL |
1415.0 | Adrian_I | 1.0 | 0.0 | 27.0 | wikitext | NULL |
1416.0 | April_29 | 0.0 | 0.0 | 52049.0 | wikitext | NULL |
1417.0 | August_14 | 0.0 | 0.0 | 94093.0 | wikitext | NULL |
1418.0 | Absolute_zero | 0.0 | 0.0 | 36868.0 | wikitext | NULL |
1419.0 | Adiabatic_process | 0.0 | 0.0 | 40636.0 | wikitext | NULL |
1422.0 | Amide | 0.0 | 0.0 | 21607.0 | wikitext | NULL |
1423.0 | Animism | 0.0 | 0.0 | 68318.0 | wikitext | NULL |
1425.0 | Antonio_Vivaldi | 0.0 | 0.0 | 42116.0 | wikitext | NULL |
1426.0 | Adrian_II | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1428.0 | Adrian | 0.0 | 0.0 | 45416.0 | wikitext | NULL |
1429.0 | Adrian_IV | 1.0 | 0.0 | 28.0 | wikitext | NULL |
1433.0 | Aare | 0.0 | 0.0 | 13942.0 | wikitext | NULL |
1434.0 | Abgar | 1.0 | 0.0 | 21.0 | wikitext | NULL |
1435.0 | Abbotsford,_Scottish_Borders | 0.0 | 0.0 | 15773.0 | wikitext | NULL |
1436.0 | Abraham | 0.0 | 0.0 | 73358.0 | wikitext | NULL |
1437.0 | Abraxas | 0.0 | 0.0 | 46069.0 | wikitext | NULL |
1438.0 | Absalom | 0.0 | 0.0 | 32027.0 | wikitext | NULL |
1439.0 | Abydos | 0.0 | 0.0 | 534.0 | wikitext | NULL |
1440.0 | Abydos,_Egypt | 0.0 | 0.0 | 30139.0 | wikitext | NULL |
1441.0 | Abydos_(Hellespont) | 0.0 | 0.0 | 33933.0 | wikitext | NULL |
1442.0 | August_15 | 0.0 | 0.0 | 58362.0 | wikitext | NULL |
1445.0 | Acacia_sensu_lato | 0.0 | 0.0 | 37833.0 | wikitext | NULL |
1446.0 | Acapulco | 0.0 | 0.0 | 93594.0 | wikitext | NULL |
1448.0 | August_16 | 0.0 | 0.0 | 51549.0 | wikitext | NULL |
1449.0 | Alan_Kay | 0.0 | 0.0 | 23914.0 | wikitext | NULL |
1451.0 | APL_(programming_language) | 0.0 | 0.0 | 97258.0 | wikitext | NULL |
1453.0 | ALGOL | 0.0 | 0.0 | 37077.0 | wikitext | NULL |
1456.0 | AWK | 0.0 | 0.0 | 39479.0 | wikitext | NULL |
1457.0 | Alzheimers_disease | 1.0 | 0.0 | 97.0 | wikitext | NULL |
1459.0 | Ascorbic_Acid | 1.0 | 0.0 | 75.0 | wikitext | NULL |
1460.0 | Asgard | 0.0 | 0.0 | 16979.0 | wikitext | NULL |
1461.0 | Apollo_program | 0.0 | 0.0 | 151235.0 | wikitext | NULL |
1466.0 | Assault | 0.0 | 0.0 | 47559.0 | wikitext | NULL |
1476.0 | Australian_Prime_Ministers | 1.0 | 0.0 | 41.0 | wikitext | NULL |
1478.0 | Álfheimr | 0.0 | 0.0 | 2831.0 | wikitext | NULL |
1482.0 | Ask_and_Embla | 0.0 | 0.0 | 12669.0 | wikitext | NULL |
1484.0 | Alabama_River | 0.0 | 0.0 | 7724.0 | wikitext | NULL |
1485.0 | Alain_de_Lille | 0.0 | 0.0 | 15501.0 | wikitext | NULL |
1486.0 | Alemanni | 0.0 | 0.0 | 45699.0 | wikitext | NULL |
1488.0 | NYSE_American | 0.0 | 0.0 | 28351.0 | wikitext | NULL |
1490.0 | August_17 | 0.0 | 0.0 | 50297.0 | wikitext | NULL |
1491.0 | August_12 | 0.0 | 0.0 | 49007.0 | wikitext | NULL |
1494.0 | Alfred_Russel_Wallace | 0.0 | 0.0 | 116378.0 | wikitext | NULL |
1495.0 | Australian_Labor_Party | 0.0 | 0.0 | 97028.0 | wikitext | NULL |
1496.0 | August_18 | 0.0 | 0.0 | 46431.0 | wikitext | NULL |
1497.0 | August_19 | 0.0 | 0.0 | 52053.0 | wikitext | NULL |
1499.0 | August_21 | 0.0 | 0.0 | 42670.0 | wikitext | NULL |
1500.0 | Dodo_(Alice's_Adventures_in_Wonderland) | 0.0 | 0.0 | 7678.0 | wikitext | NULL |
1501.0 | Lory_(disambiguation) | 0.0 | 0.0 | 773.0 | wikitext | NULL |
1502.0 | Eaglet_(Alice's_Adventures_in_Wonderland) | 1.0 | 0.0 | 170.0 | wikitext | NULL |
1504.0 | Albert | 0.0 | 0.0 | 3010.0 | wikitext | NULL |
1505.0 | Albert_I | 0.0 | 0.0 | 1247.0 | wikitext | NULL |
1506.0 | Albert_II | 0.0 | 0.0 | 1483.0 | wikitext | NULL |
1507.0 | Albert_III | 0.0 | 0.0 | 653.0 | wikitext | NULL |
1508.0 | Albert_Alcibiades,_Margrave_of_Brandenburg-Kulmbach | 0.0 | 0.0 | 6485.0 | wikitext | NULL |
1509.0 | Albert_the_Bear | 0.0 | 0.0 | 10108.0 | wikitext | NULL |
1511.0 | Albert_I_of_Hapsburg | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1513.0 | Albert_of_Brandenburg | 0.0 | 0.0 | 11903.0 | wikitext | NULL |
1514.0 | Albert,_Duke_of_Prussia | 0.0 | 0.0 | 21034.0 | wikitext | NULL |
1515.0 | Albert_III,_Elector_of_Saxony | 1.0 | 0.0 | 40.0 | wikitext | NULL |
1516.0 | Albert_the_Degenerate | 1.0 | 0.0 | 44.0 | wikitext | NULL |
1517.0 | Albert_Of_Aix | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1519.0 | August_25 | 0.0 | 0.0 | 50492.0 | wikitext | NULL |
1520.0 | Aachen | 0.0 | 0.0 | 98165.0 | wikitext | NULL |
1523.0 | Agate | 0.0 | 0.0 | 18500.0 | wikitext | NULL |
1525.0 | Aspirin | 0.0 | 0.0 | 148374.0 | wikitext | NULL |
1526.0 | Abner | 0.0 | 0.0 | 19935.0 | wikitext | NULL |
1527.0 | Ahmed_I | 0.0 | 0.0 | 30959.0 | wikitext | NULL |
1528.0 | Ahmed_II | 0.0 | 0.0 | 11022.0 | wikitext | NULL |
1529.0 | Ahmed_III | 0.0 | 0.0 | 36489.0 | wikitext | NULL |
1530.0 | Ainu_people | 0.0 | 0.0 | 160302.0 | wikitext | NULL |
1533.0 | Aix-la-Chapelle | 1.0 | 0.0 | 81.0 | wikitext | NULL |
1535.0 | Acorn_(fruit_of_the_oak_tree) | 1.0 | 0.0 | 19.0 | wikitext | NULL |
1536.0 | Acropolis | 0.0 | 0.0 | 14773.0 | wikitext | NULL |
1537.0 | Acupuncture | 0.0 | 0.0 | 198975.0 | wikitext | NULL |
1538.0 | Adder | 0.0 | 0.0 | 760.0 | wikitext | NULL |
1539.0 | Adirondacks | 1.0 | 0.0 | 95.0 | wikitext | NULL |
1540.0 | Aeneas | 0.0 | 0.0 | 34834.0 | wikitext | NULL |
1541.0 | April_13 | 0.0 | 0.0 | 43196.0 | wikitext | NULL |
1542.0 | Amaranth | 0.0 | 0.0 | 49948.0 | wikitext | NULL |
1543.0 | Agapanthus_africanus | 0.0 | 0.0 | 7739.0 | wikitext | NULL |
1544.0 | Agamemnon | 0.0 | 0.0 | 42460.0 | wikitext | NULL |
1545.0 | Aga_Khan_I | 0.0 | 0.0 | 15317.0 | wikitext | NULL |
1546.0 | Aga_Khan_III | 0.0 | 0.0 | 32478.0 | wikitext | NULL |
1547.0 | Agasias | 0.0 | 0.0 | 391.0 | wikitext | NULL |
1548.0 | Alexander_Agassiz | 0.0 | 0.0 | 17766.0 | wikitext | NULL |
1549.0 | Agathon | 0.0 | 0.0 | 8125.0 | wikitext | NULL |
1550.0 | Agesilaus_II | 0.0 | 0.0 | 42002.0 | wikitext | NULL |
1551.0 | Agis | 0.0 | 0.0 | 953.0 | wikitext | NULL |
1552.0 | Antonio_Agliardi | 0.0 | 0.0 | 6867.0 | wikitext | NULL |
1553.0 | Agnes_of_Merania | 0.0 | 0.0 | 3839.0 | wikitext | NULL |
1556.0 | Agrippina_the_Elder | 0.0 | 0.0 | 43683.0 | wikitext | NULL |
1557.0 | Agrippina_the_Younger | 0.0 | 0.0 | 44097.0 | wikitext | NULL |
1558.0 | American_Chinese_cuisine | 0.0 | 0.0 | 54573.0 | wikitext | NULL |
1559.0 | Ahenobarbus | 0.0 | 0.0 | 526.0 | wikitext | NULL |
1560.0 | Ahmad_Shah_Durrani | 0.0 | 0.0 | 51488.0 | wikitext | NULL |
1561.0 | Aidan_of_Dalriada | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1563.0 | Arthur_Aikin | 0.0 | 0.0 | 5886.0 | wikitext | NULL |
1564.0 | Ailanthus | 0.0 | 0.0 | 4778.0 | wikitext | NULL |
1565.0 | Aimoin | 0.0 | 0.0 | 2661.0 | wikitext | NULL |
1566.0 | Akkadian_Empire | 0.0 | 0.0 | 83572.0 | wikitext | NULL |
1567.0 | Ajax_the_Lesser | 0.0 | 0.0 | 15739.0 | wikitext | NULL |
1568.0 | Ajax_the_Great | 0.0 | 0.0 | 18066.0 | wikitext | NULL |
1569.0 | Ajax | 0.0 | 0.0 | 5793.0 | wikitext | NULL |
1570.0 | Alaric_I | 0.0 | 0.0 | 47986.0 | wikitext | NULL |
1571.0 | Alaric_II | 0.0 | 0.0 | 9417.0 | wikitext | NULL |
1572.0 | Albategnius | 1.0 | 0.0 | 24.0 | wikitext | NULL |
1573.0 | Albertus_Magnus | 0.0 | 0.0 | 44055.0 | wikitext | NULL |
1575.0 | Alboin | 0.0 | 0.0 | 53199.0 | wikitext | NULL |
1576.0 | Afonso_de_Albuquerque | 0.0 | 0.0 | 62412.0 | wikitext | NULL |
1577.0 | Alcaeus_of_Mytilene | 0.0 | 0.0 | 29351.0 | wikitext | NULL |
1578.0 | Alcamenes | 0.0 | 0.0 | 3848.0 | wikitext | NULL |
1579.0 | Alcmene | 0.0 | 0.0 | 13642.0 | wikitext | NULL |
1580.0 | Alcidamas | 0.0 | 0.0 | 5568.0 | wikitext | NULL |
1581.0 | Aldine_Press | 0.0 | 0.0 | 22393.0 | wikitext | NULL |
1583.0 | Ealdred_(archbishop_of_York) | 0.0 | 0.0 | 42133.0 | wikitext | NULL |
1585.0 | Alexander_I_of_Epirus | 0.0 | 0.0 | 5238.0 | wikitext | NULL |
1586.0 | Alexander_Balas | 0.0 | 0.0 | 21296.0 | wikitext | NULL |
1587.0 | Alexander_of_Pherae | 0.0 | 0.0 | 10046.0 | wikitext | NULL |
1588.0 | Alexander_II_of_Epirus | 0.0 | 0.0 | 5666.0 | wikitext | NULL |
1589.0 | Alexander_Jagiellon | 0.0 | 0.0 | 9403.0 | wikitext | NULL |
1592.0 | Alexander_III_of_Russia | 0.0 | 0.0 | 67769.0 | wikitext | NULL |
1593.0 | Alexander_I_of_Scotland | 0.0 | 0.0 | 10986.0 | wikitext | NULL |
1594.0 | Alexander_II_of_Scotland | 0.0 | 0.0 | 12643.0 | wikitext | NULL |
1595.0 | Alexander_I_of_Serbia | 0.0 | 0.0 | 15334.0 | wikitext | NULL |
1596.0 | Alexander_III_of_Scotland | 0.0 | 0.0 | 19966.0 | wikitext | NULL |
1597.0 | Alexander_of_Greece_(disambiguation) | 0.0 | 0.0 | 444.0 | wikitext | NULL |
1599.0 | Alexander_of_Aphrodisias | 0.0 | 0.0 | 23192.0 | wikitext | NULL |
1600.0 | Severus_Alexander | 0.0 | 0.0 | 38183.0 | wikitext | NULL |
1601.0 | Alexander | 0.0 | 0.0 | 29504.0 | wikitext | NULL |
1602.0 | Alexander_I | 0.0 | 0.0 | 1105.0 | wikitext | NULL |
1603.0 | Alexander_II | 0.0 | 0.0 | 901.0 | wikitext | NULL |
1604.0 | Alexander_III | 0.0 | 0.0 | 948.0 | wikitext | NULL |
1605.0 | Alexander_Aetolus | 0.0 | 0.0 | 4109.0 | wikitext | NULL |
1606.0 | Alexander_Jannaeus | 0.0 | 0.0 | 19806.0 | wikitext | NULL |
1607.0 | Alexander_IV | 0.0 | 0.0 | 367.0 | wikitext | NULL |
1608.0 | Alexander_V | 0.0 | 0.0 | 223.0 | wikitext | NULL |
1609.0 | Alexander_VI | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1610.0 | Alexander_VII | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1611.0 | Alexander_VIII | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1612.0 | Alexandrists | 0.0 | 0.0 | 1609.0 | wikitext | NULL |
1613.0 | Alexios_I_Komnenos | 0.0 | 0.0 | 38469.0 | wikitext | NULL |
1614.0 | Alexis_(poet) | 0.0 | 0.0 | 10392.0 | wikitext | NULL |
1615.0 | Alexios_II_Komnenos | 0.0 | 0.0 | 9228.0 | wikitext | NULL |
1616.0 | Alexios_III_Angelos | 0.0 | 0.0 | 13836.0 | wikitext | NULL |
1617.0 | Alexios_V_Doukas | 0.0 | 0.0 | 17897.0 | wikitext | NULL |
1620.0 | Alexei_Petrovich,_Tsarevich_of_Russia | 0.0 | 0.0 | 15686.0 | wikitext | NULL |
1623.0 | Andrew_Jackson | 0.0 | 0.0 | 179696.0 | wikitext | NULL |
1624.0 | Andrew_Johnson | 0.0 | 0.0 | 124793.0 | wikitext | NULL |
1625.0 | Aleksandr_Solzhenitsyn | 0.0 | 0.0 | 118674.0 | wikitext | NULL |
1626.0 | Aleksandr_Isaevich_Solzhenitsyn | 1.0 | 0.0 | 36.0 | wikitext | NULL |
1627.0 | Aberdeen | 0.0 | 0.0 | 147083.0 | wikitext | NULL |
1628.0 | August_23 | 0.0 | 0.0 | 49176.0 | wikitext | NULL |
1629.0 | August_24 | 0.0 | 0.0 | 54501.0 | wikitext | NULL |
1633.0 | Antipope | 0.0 | 0.0 | 32370.0 | wikitext | NULL |
1634.0 | Aquaculture | 0.0 | 0.0 | 125421.0 | wikitext | NULL |
1635.0 | Kolmogorov_complexity | 0.0 | 0.0 | 41353.0 | wikitext | NULL |
1636.0 | Antoine_de_Saint-Exupery | 1.0 | 0.0 | 125.0 | wikitext | NULL |
1637.0 | Hymn_to_Proserpine | 0.0 | 0.0 | 2710.0 | wikitext | NULL |
1638.0 | The_Triumph_of_Time | 0.0 | 0.0 | 1751.0 | wikitext | NULL |
1639.0 | April_28 | 0.0 | 0.0 | 42485.0 | wikitext | NULL |
1640.0 | Alfred_the_Great | 0.0 | 0.0 | 121065.0 | wikitext | NULL |
1641.0 | Alfred_Ernest_Albert | 1.0 | 0.0 | 51.0 | wikitext | NULL |
1642.0 | Alessandro_Algardi | 0.0 | 0.0 | 14639.0 | wikitext | NULL |
1643.0 | Alger_of_Liège | 0.0 | 0.0 | 3139.0 | wikitext | NULL |
1644.0 | Algiers | 0.0 | 0.0 | 70559.0 | wikitext | NULL |
1645.0 | Ibn_al-Haytham | 0.0 | 0.0 | 120924.0 | wikitext | NULL |
1647.0 | Alessandro_Allori | 0.0 | 0.0 | 9650.0 | wikitext | NULL |
1649.0 | Almoravid_dynasty | 0.0 | 0.0 | 83925.0 | wikitext | NULL |
1650.0 | Aloe | 0.0 | 0.0 | 21387.0 | wikitext | NULL |
1651.0 | Alured_of_Berkeley | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1652.0 | Alyattes | 0.0 | 0.0 | 40930.0 | wikitext | NULL |
1653.0 | Age_of_consent | 0.0 | 0.0 | 56722.0 | wikitext | NULL |
1654.0 | Alypius_of_Antioch | 0.0 | 0.0 | 1756.0 | wikitext | NULL |
1655.0 | Amalasuintha | 0.0 | 0.0 | 11115.0 | wikitext | NULL |
1656.0 | Amalric_of_Bena | 0.0 | 0.0 | 6659.0 | wikitext | NULL |
1657.0 | Afonso_I_of_Portugal | 0.0 | 0.0 | 32525.0 | wikitext | NULL |
1658.0 | Afonso_II_of_Portugal | 0.0 | 0.0 | 9807.0 | wikitext | NULL |
1659.0 | Afonso_III_of_Portugal | 0.0 | 0.0 | 12744.0 | wikitext | NULL |
1660.0 | Afonso_IV_of_Portugal | 0.0 | 0.0 | 14233.0 | wikitext | NULL |
1661.0 | Afonso_V_of_Portugal | 0.0 | 0.0 | 19540.0 | wikitext | NULL |
1662.0 | Afonso_VI_of_Portugal | 0.0 | 0.0 | 8372.0 | wikitext | NULL |
1663.0 | Alphonso_I_of_Spain | 0.0 | 0.0 | 539.0 | wikitext | NULL |
1664.0 | Alfonso_II_of_Asturias | 0.0 | 0.0 | 5949.0 | wikitext | NULL |
1669.0 | Amarasimha | 0.0 | 0.0 | 3546.0 | wikitext | NULL |
1672.0 | Alphonso_VIII_of_Spain | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1673.0 | Alfonso_IX_of_Spain | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1676.0 | Alfonso_XII | 0.0 | 0.0 | 27559.0 | wikitext | NULL |
1677.0 | Alfonso_XIII | 0.0 | 0.0 | 67834.0 | wikitext | NULL |
1678.0 | Alphonsus_a_Sancta_Maria | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1679.0 | Alfonso_the_Battler | 0.0 | 0.0 | 27719.0 | wikitext | NULL |
1680.0 | Amaryllis | 0.0 | 0.0 | 17681.0 | wikitext | NULL |
1682.0 | Amasis_I | 1.0 | 0.0 | 22.0 | wikitext | NULL |
1683.0 | Alfonso_III_of_Aragon | 0.0 | 0.0 | 5951.0 | wikitext | NULL |
1684.0 | Alfonso_IV_of_Aragon | 0.0 | 0.0 | 9985.0 | wikitext | NULL |
1685.0 | Amasis_II | 0.0 | 0.0 | 17642.0 | wikitext | NULL |
1686.0 | Alfonso_V_of_Aragon | 0.0 | 0.0 | 22331.0 | wikitext | NULL |
1687.0 | Amathus | 0.0 | 0.0 | 17228.0 | wikitext | NULL |
1688.0 | Alphons | 0.0 | 0.0 | 11520.0 | wikitext | NULL |
1689.0 | Alfonso_I | 0.0 | 0.0 | 620.0 | wikitext | NULL |
1690.0 | Amati | 0.0 | 0.0 | 9132.0 | wikitext | NULL |
1691.0 | Alfonso_II | 0.0 | 0.0 | 504.0 | wikitext | NULL |
1692.0 | Alfonso_III | 0.0 | 0.0 | 320.0 | wikitext | NULL |
1694.0 | Alfonso_IV | 0.0 | 0.0 | 232.0 | wikitext | NULL |
1695.0 | Amazons | 0.0 | 0.0 | 72183.0 | wikitext | NULL |
1696.0 | Alfonso_V | 0.0 | 0.0 | 200.0 | wikitext | NULL |
1697.0 | Ambergris | 0.0 | 0.0 | 20295.0 | wikitext | NULL |
1698.0 | Ambiorix | 0.0 | 0.0 | 11792.0 | wikitext | NULL |
1699.0 | Alfonso_VI | 1.0 | 0.0 | 128.0 | wikitext | NULL |
1700.0 | August_Wilhelm_Ambros | 0.0 | 0.0 | 3510.0 | wikitext | NULL |
1701.0 | Amazon_River | 0.0 | 0.0 | 101421.0 | wikitext | NULL |
1702.0 | Alfred_of_Beverley | 0.0 | 0.0 | 3400.0 | wikitext | NULL |
1703.0 | Alphonso_VII | 1.0 | 0.0 | 46.0 | wikitext | NULL |
1704.0 | Alphonso_VIII | 1.0 | 0.0 | 37.0 | wikitext | NULL |
1705.0 | Alphonso_IX | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1706.0 | Alphonso_X | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1707.0 | Alphonso_XI | 1.0 | 0.0 | 35.0 | wikitext | NULL |
1708.0 | Alphonso_XII | 1.0 | 0.0 | 25.0 | wikitext | NULL |
1709.0 | Alphonso_XIII | 1.0 | 0.0 | 26.0 | wikitext | NULL |
1710.0 | April_22 | 0.0 | 0.0 | 35182.0 | wikitext | NULL |
1711.0 | August_31 | 0.0 | 0.0 | 45180.0 | wikitext | NULL |
1714.0 | Autpert_Ambrose | 0.0 | 0.0 | 1669.0 | wikitext | NULL |
1715.0 | Abu_Bakr | 0.0 | 0.0 | 70130.0 | wikitext | NULL |
1716.0 | Ambrose_Traversari | 0.0 | 0.0 | 8920.0 | wikitext | NULL |
1717.0 | Ambrosians | 0.0 | 0.0 | 7217.0 | wikitext | NULL |
1718.0 | Ambrosiaster | 0.0 | 0.0 | 12639.0 | wikitext | NULL |
1719.0 | Ambrosius_Aurelianus | 0.0 | 0.0 | 47081.0 | wikitext | NULL |
1722.0 | Ammon | 0.0 | 0.0 | 28089.0 | wikitext | NULL |
1723.0 | Ammonius_Hermiae | 0.0 | 0.0 | 10918.0 | wikitext | NULL |
1724.0 | Ammonius_Saccas | 0.0 | 0.0 | 19454.0 | wikitext | NULL |
1726.0 | Book_of_Amos | 0.0 | 0.0 | 14545.0 | wikitext | NULL |
1727.0 | Amphipolis | 0.0 | 0.0 | 25676.0 | wikitext | NULL |
1728.0 | Amram | 0.0 | 0.0 | 10144.0 | wikitext | NULL |
1729.0 | Amyntas_I_of_Macedon | 0.0 | 0.0 | 5010.0 | wikitext | NULL |
1730.0 | Amyntas_III_of_Macedon | 0.0 | 0.0 | 8817.0 | wikitext | NULL |
1732.0 | Anacharsis | 0.0 | 0.0 | 10183.0 | wikitext | NULL |
1733.0 | Anacreon_(poet) | 1.0 | 0.0 | 22.0 | wikitext | NULL |
1734.0 | Anah | 0.0 | 0.0 | 16082.0 | wikitext | NULL |
1735.0 | Ānanda | 0.0 | 0.0 | 126619.0 | wikitext | NULL |
1737.0 | Anaxagoras | 0.0 | 0.0 | 25323.0 | wikitext | NULL |
1738.0 | Anaxarchus | 0.0 | 0.0 | 4932.0 | wikitext | NULL |
1740.0 | Ancyra_(planthopper) | 0.0 | 0.0 | 3357.0 | wikitext | NULL |
1742.0 | Anastasius_I | 0.0 | 0.0 | 271.0 | wikitext | NULL |
1743.0 | Anastasius_II | 0.0 | 0.0 | 271.0 | wikitext | NULL |
1744.0 | Anastasius_III | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1745.0 | Anastasius_IV | 1.0 | 0.0 | 32.0 | wikitext | NULL |
1746.0 | Anaximenes_of_Lampsacus | 0.0 | 0.0 | 9465.0 | wikitext | NULL |
1747.0 | Anastasius | 0.0 | 0.0 | 4795.0 | wikitext | NULL |
1748.0 | Anaximenes_of_Miletus | 0.0 | 0.0 | 24822.0 | wikitext | NULL |
1749.0 | Ancus_Marcius | 0.0 | 0.0 | 12201.0 | wikitext | NULL |
1750.0 | Andaman_Islands | 0.0 | 0.0 | 51900.0 | wikitext | NULL |
1751.0 | Alexander_Anderson_(mathematician) | 0.0 | 0.0 | 6103.0 | wikitext | NULL |
1752.0 | Andocides | 0.0 | 0.0 | 12142.0 | wikitext | NULL |
1754.0 | Andrea_Andreani | 0.0 | 0.0 | 7733.0 | wikitext | NULL |
1755.0 | Andrew_II_of_Hungary | 0.0 | 0.0 | 60429.0 | wikitext | NULL |
1756.0 | An_Enquiry_Concerning_Human_Understanding | 0.0 | 0.0 | 24073.0 | wikitext | NULL |
1758.0 | André_de_Longjumeau | 0.0 | 0.0 | 8241.0 | wikitext | NULL |
1759.0 | Andriscus | 0.0 | 0.0 | 25446.0 | wikitext | NULL |
1760.0 | Andronikos_III_Palaiologos | 0.0 | 0.0 | 15960.0 | wikitext | NULL |
1761.0 | Andronikos_II_Palaiologos | 0.0 | 0.0 | 21319.0 | wikitext | NULL |
1762.0 | Andronikos_I_Komnenos | 0.0 | 0.0 | 26966.0 | wikitext | NULL |
1763.0 | Andronicus_of_Cyrrhus | 0.0 | 0.0 | 2105.0 | wikitext | NULL |
1764.0 | Andronicus_of_Rhodes | 0.0 | 0.0 | 3687.0 | wikitext | NULL |
1765.0 | Andronicus | 0.0 | 0.0 | 2282.0 | wikitext | NULL |
1766.0 | Asteroid_Belt | 1.0 | 0.0 | 92.0 | wikitext | NULL |
1767.0 | Ammianus_Marcellinus | 0.0 | 0.0 | 22026.0 | wikitext | NULL |
1768.0 | ALICE | 1.0 | 0.0 | 171.0 | wikitext | NULL |
1769.0 | An_Enquiry_Concerning_Human_Understanding/Text | 1.0 | 0.0 | 55.0 | wikitext | NULL |
1770.0 | Apollo_13 | 0.0 | 0.0 | 116154.0 | wikitext | NULL |
1771.0 | Apollo_Program | 1.0 | 0.0 | 93.0 | wikitext | NULL |
1772.0 | Arthritus | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1773.0 | Apollo_7 | 0.0 | 0.0 | 59737.0 | wikitext | NULL |
1774.0 | Apollo_9 | 0.0 | 0.0 | 59547.0 | wikitext | NULL |
1775.0 | Applied_discrete_math | 1.0 | 0.0 | 34.0 | wikitext | NULL |
1776.0 | Arthritis | 0.0 | 0.0 | 60256.0 | wikitext | NULL |
1777.0 | April_2 | 0.0 | 0.0 | 50691.0 | wikitext | NULL |
1778.0 | Acetylene | 0.0 | 0.0 | 43280.0 | wikitext | NULL |
1779.0 | Alfred | 0.0 | 0.0 | 1890.0 | wikitext | NULL |
1781.0 | August_28 | 0.0 | 0.0 | 46125.0 | wikitext | NULL |
1786.0 | Arabic_numerals | 0.0 | 0.0 | 31303.0 | wikitext | NULL |
1787.0 | April_9 | 0.0 | 0.0 | 55129.0 | wikitext | NULL |
1788.0 | ABM | 0.0 | 0.0 | 1563.0 | wikitext | NULL |
1789.0 | Apuleius | 0.0 | 0.0 | 21943.0 | wikitext | NULL |
1790.0 | Alexander_Selkirk | 0.0 | 0.0 | 30796.0 | wikitext | NULL |
1791.0 | Anti-ballistic_missile | 0.0 | 0.0 | 88548.0 | wikitext | NULL |
1793.0 | August_29 | 0.0 | 0.0 | 47528.0 | wikitext | NULL |
1794.0 | August_30 | 0.0 | 0.0 | 44669.0 | wikitext | NULL |
1797.0 | Acre | 0.0 | 0.0 | 35055.0 | wikitext | NULL |
1799.0 | ATP | 0.0 | 0.0 | 2186.0 | wikitext | NULL |
1800.0 | Adenosine_triphosphate | 0.0 | 0.0 | 44099.0 | wikitext | NULL |
1802.0 | Ægir | 0.0 | 0.0 | 19706.0 | wikitext | NULL |
1805.0 | Antibiotic | 0.0 | 0.0 | 142427.0 | wikitext | NULL |
1806.0 | Arnold_Schwarzenegger | 0.0 | 0.0 | 225011.0 | wikitext | NULL |
1807.0 | ASA | 0.0 | 0.0 | 4995.0 | wikitext | NULL |
1809.0 | Aquinas | 1.0 | 0.0 | 99.0 | wikitext | NULL |
1810.0 | Actium | 0.0 | 0.0 | 3562.0 | wikitext | NULL |
1811.0 | Amide_hydrolysis | 1.0 | 0.0 | 68.0 | wikitext | NULL |
1812.0 | Amway | 0.0 | 0.0 | 106066.0 | wikitext | NULL |
1814.0 | Adam_Smith | 0.0 | 0.0 | 107560.0 | wikitext | NULL |
1821.0 | Antoine_Laurent_Lavoisier | 1.0 | 0.0 | 85.0 | wikitext | NULL |
1822.0 | Antoine_Lavoisier | 0.0 | 0.0 | 75434.0 | wikitext | NULL |
1824.0 | A_roll | 1.0 | 0.0 | 21.0 | wikitext | NULL |
1825.0 | Hermann_Kolbe | 0.0 | 0.0 | 16697.0 | wikitext | NULL |
1826.0 | April_18 | 0.0 | 0.0 | 33597.0 | wikitext | NULL |
1827.0 | April_23 | 0.0 | 0.0 | 46616.0 | wikitext | NULL |
1828.0 | Amitabh_Bachchan | 0.0 | 0.0 | 127861.0 | wikitext | NULL |
1830.0 | Air_Pollution | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1831.0 | Antarctic-Environmental_Protocol | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1832.0 | Allomorph | 0.0 | 0.0 | 8722.0 | wikitext | NULL |
1833.0 | American_bias | 1.0 | 0.0 | 27.0 | wikitext | NULL |
1834.0 | Allophone | 0.0 | 0.0 | 24419.0 | wikitext | NULL |
1835.0 | Affix | 0.0 | 0.0 | 11897.0 | wikitext | NULL |
1837.0 | Allegory | 0.0 | 0.0 | 28072.0 | wikitext | NULL |
1838.0 | Amazon_river | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1839.0 | Allotropy | 0.0 | 0.0 | 23378.0 | wikitext | NULL |
1840.0 | Agathocles_of_Syracuse | 0.0 | 0.0 | 14651.0 | wikitext | NULL |
1841.0 | Economy_of_Alberta | 0.0 | 0.0 | 96497.0 | wikitext | NULL |
1842.0 | Augustin-Louis_Cauchy | 0.0 | 0.0 | 42923.0 | wikitext | NULL |
1844.0 | Archimedes | 0.0 | 0.0 | 99429.0 | wikitext | NULL |
1845.0 | Alternative_medicine | 0.0 | 0.0 | 202195.0 | wikitext | NULL |
1847.0 | Archimedean_solid | 0.0 | 0.0 | 26171.0 | wikitext | NULL |
1851.0 | Antiprism | 0.0 | 0.0 | 18676.0 | wikitext | NULL |
1852.0 | Ancient_Greeks | 1.0 | 0.0 | 91.0 | wikitext | NULL |
1853.0 | Natural_history_of_Africa | 0.0 | 0.0 | 7885.0 | wikitext | NULL |
1854.0 | Geography_of_Africa | 0.0 | 0.0 | 37335.0 | wikitext | NULL |
1855.0 | Africa/History | 1.0 | 0.0 | 31.0 | wikitext | NULL |
1857.0 | Approval_voting | 0.0 | 0.0 | 67712.0 | wikitext | NULL |
1858.0 | Aromatic_hydrocarbon | 1.0 | 0.0 | 183.0 | wikitext | NULL |
1859.0 | Arizona_State_University | 0.0 | 0.0 | 190519.0 | wikitext | NULL |
1862.0 | April_14 | 0.0 | 0.0 | 60593.0 | wikitext | NULL |
1864.0 | Astoria,_Oregon | 0.0 | 0.0 | 71881.0 | wikitext | NULL |
1866.0 | Alarums_and_Excursions | 0.0 | 0.0 | 8592.0 | wikitext | NULL |
1869.0 | Alfred_Jarry | 0.0 | 0.0 | 18108.0 | wikitext | NULL |
1870.0 | Amalric | 0.0 | 0.0 | 3036.0 | wikitext | NULL |
1871.0 | Amalric_of_Jerusalem | 0.0 | 0.0 | 18148.0 | wikitext | NULL |
1872.0 | Aimery_of_Cyprus | 0.0 | 0.0 | 30136.0 | wikitext | NULL |
1873.0 | Anthemius_of_Tralles | 0.0 | 0.0 | 5750.0 | wikitext | NULL |
1874.0 | Absalon | 0.0 | 0.0 | 16050.0 | wikitext | NULL |
1875.0 | Adhemar_of_Le_Puy | 0.0 | 0.0 | 10074.0 | wikitext | NULL |
1876.0 | Adhemar_de_Chabannes | 1.0 | 0.0 | 103.0 | wikitext | NULL |
1877.0 | Albigenses | 1.0 | 0.0 | 23.0 | wikitext | NULL |
1878.0 | Alphonse,_Count_of_Poitiers | 0.0 | 0.0 | 9075.0 | wikitext | NULL |
1879.0 | Alfonso_Jordan | 0.0 | 0.0 | 9688.0 | wikitext | NULL |
1880.0 | Ambroise | 0.0 | 0.0 | 3356.0 | wikitext | NULL |
1881.0 | Art_Deco | 0.0 | 0.0 | 148950.0 | wikitext | NULL |
1884.0 | ASCII_art | 0.0 | 0.0 | 53155.0 | wikitext | NULL |
1885.0 | Autoerotic_asphyxiation | 1.0 | 0.0 | 33.0 | wikitext | NULL |
1887.0 | Alexius | 0.0 | 0.0 | 2739.0 | wikitext | NULL |
1889.0 | Ban_on_assault_rifles | 1.0 | 0.0 | 74.0 | wikitext | NULL |
1890.0 | American_English | 0.0 | 0.0 | 78621.0 | wikitext | NULL |
1893.0 | Albert_Spalding | 0.0 | 0.0 | 22801.0 | wikitext | NULL |
1894.0 | Africa_Alphabet | 0.0 | 0.0 | 3512.0 | wikitext | NULL |
1896.0 | Acquire | 0.0 | 0.0 | 8701.0 | wikitext | NULL |
1897.0 | Australian_English | 0.0 | 0.0 | 70859.0 | wikitext | NULL |
1902.0 | American_Airlines_Flight_77 | 0.0 | 0.0 | 85249.0 | wikitext | NULL |
1903.0 | American_Airlines_flight_77 | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1904.0 | American_Airlines_flight_11 | 1.0 | 0.0 | 106.0 | wikitext | NULL |
1905.0 | Ambush | 0.0 | 0.0 | 16289.0 | wikitext | NULL |
1906.0 | Astronomical_aberration | 1.0 | 0.0 | 36.0 | wikitext | NULL |
1908.0 | Abzyme | 0.0 | 0.0 | 6959.0 | wikitext | NULL |
1909.0 | Adaptive_radiation | 0.0 | 0.0 | 37579.0 | wikitext | NULL |
1910.0 | Agarose_gel_electrophoresis | 0.0 | 0.0 | 34925.0 | wikitext | NULL |
1911.0 | Allele | 0.0 | 0.0 | 16991.0 | wikitext | NULL |
1912.0 | Ampicillin | 0.0 | 0.0 | 35148.0 | wikitext | NULL |
1913.0 | Annealing | 0.0 | 0.0 | 460.0 | wikitext | NULL |
1914.0 | Antimicrobial_resistance | 0.0 | 0.0 | 150266.0 | wikitext | NULL |
1915.0 | Antigen | 0.0 | 0.0 | 19203.0 | wikitext | NULL |
1916.0 | Autosome | 0.0 | 0.0 | 11003.0 | wikitext | NULL |
1919.0 | Antwerp_(disambiguation) | 0.0 | 0.0 | 651.0 | wikitext | NULL |
1920.0 | Aquila | 0.0 | 0.0 | 3896.0 | wikitext | NULL |
1921.0 | Al-Qaeda | 0.0 | 0.0 | 284997.0 | wikitext | NULL |
1923.0 | Alessandro_Volta | 0.0 | 0.0 | 26430.0 | wikitext | NULL |
1924.0 | Argo_Navis | 0.0 | 0.0 | 13465.0 | wikitext | NULL |
1925.0 | Andromeda_(mythology) | 0.0 | 0.0 | 43392.0 | wikitext | NULL |
1926.0 | Antlia | 0.0 | 0.0 | 32732.0 | wikitext | NULL |
1927.0 | Ara_(constellation) | 0.0 | 0.0 | 29562.0 | wikitext | NULL |
1928.0 | Auriga | 0.0 | 0.0 | 754.0 | wikitext | NULL |
1930.0 | Arkansas | 0.0 | 0.0 | 153605.0 | wikitext | NULL |
1931.0 | Atmosphere_(disambiguation) | 0.0 | 0.0 | 2260.0 | wikitext | NULL |
1933.0 | Apus | 0.0 | 0.0 | 28135.0 | wikitext | NULL |
1934.0 | Abadan,_Iran | 0.0 | 0.0 | 36915.0 | wikitext | NULL |
1935.0 | Attorney | 0.0 | 0.0 | 508.0 | wikitext | NULL |
1936.0 | Astronomical_Unit | 1.0 | 0.0 | 96.0 | wikitext | NULL |
1937.0 | Alexander_Fleming | 0.0 | 0.0 | 69600.0 | wikitext | NULL |
1938.0 | Andrew_Carnegie | 0.0 | 0.0 | 113066.0 | wikitext | NULL |
1939.0 | Approximant | 0.0 | 0.0 | 27181.0 | wikitext | NULL |
1940.0 | Astronomer_Royal | 0.0 | 0.0 | 7100.0 | wikitext | NULL |
1941.0 | Aeon | 0.0 | 0.0 | 7544.0 | wikitext | NULL |
1942.0 | Airline | 0.0 | 0.0 | 102615.0 | wikitext | NULL |
1943.0 | Australian_Democrats | 0.0 | 0.0 | 58049.0 | wikitext | NULL |
1944.0 | Australian_Capital_Territory | 0.0 | 0.0 | 106817.0 | wikitext | NULL |
1946.0 | Unit_of_alcohol | 0.0 | 0.0 | 20027.0 | wikitext | NULL |
1947.0 | Aotus | 0.0 | 0.0 | 506.0 | wikitext | NULL |
SELECT * FROM enwiki_pagelinks
pl_from | pl_title |
---|---|
586.0 | ! |
4748.0 | ! |
9773.0 | ! |
15019.0 | ! |
15154.0 | ! |
25213.0 | ! |
73634.0 | ! |
193891.0 | ! |
410443.0 | ! |
533706.0 | ! |
709621.0 | ! |
1009486.0 | ! |
1028188.0 | ! |
1497620.0 | ! |
2176354.0 | ! |
2875276.0 | ! |
2988645.0 | ! |
2997032.0 | ! |
5583438.0 | ! |
7712754.0 | ! |
8014193.0 | ! |
9969569.0 | ! |
1.1646457e7 | ! |
2.0481393e7 | ! |
2.3738382e7 | ! |
2.3752827e7 | ! |
3.3983238e7 | ! |
3.5557493e7 | ! |
3.5678765e7 | ! |
3.6502793e7 | ! |
3.6502908e7 | ! |
3.6718267e7 | ! |
3.6727183e7 | ! |
3.9243558e7 | ! |
4.9729654e7 | ! |
4.9785516e7 | ! |
5.2386027e7 | ! |
5.3292599e7 | ! |
5.3299882e7 | ! |
5.4882724e7 | ! |
5.6493039e7 | ! |
5.6530611e7 | ! |
5.8602386e7 | ! |
6.4296319e7 | ! |
6.4296679e7 | ! |
6.4298324e7 | ! |
6.4303526e7 | ! |
6.4304487e7 | ! |
6.4304859e7 | ! |
6.4306528e7 | ! |
6.4317073e7 | ! |
6.5250805e7 | ! |
6.7807842e7 | ! |
6.9085407e7 | ! |
3122689.0 | !! |
3.6372278e7 | !! |
3.7523807e7 | !! |
6.4970549e7 | !! |
6.9838477e7 | !! |
29631.0 | !!! |
156725.0 | !!! |
160813.0 | !!! |
249465.0 | !!! |
489290.0 | !!! |
672928.0 | !!! |
870667.0 | !!! |
892349.0 | !!! |
901827.0 | !!! |
929155.0 | !!! |
1187358.0 | !!! |
1327495.0 | !!! |
1383670.0 | !!! |
1422621.0 | !!! |
1446971.0 | !!! |
1562008.0 | !!! |
1803975.0 | !!! |
1841347.0 | !!! |
1864793.0 | !!! |
2061699.0 | !!! |
2064029.0 | !!! |
2499584.0 | !!! |
2521006.0 | !!! |
2529102.0 | !!! |
2556962.0 | !!! |
2574560.0 | !!! |
2650393.0 | !!! |
2661940.0 | !!! |
3017040.0 | !!! |
3088530.0 | !!! |
3140017.0 | !!! |
3175585.0 | !!! |
3259409.0 | !!! |
3346915.0 | !!! |
3682260.0 | !!! |
3710182.0 | !!! |
3768982.0 | !!! |
3795068.0 | !!! |
3892398.0 | !!! |
4228780.0 | !!! |
4230986.0 | !!! |
4325400.0 | !!! |
4423918.0 | !!! |
4639959.0 | !!! |
4651779.0 | !!! |
4833246.0 | !!! |
5107684.0 | !!! |
5170915.0 | !!! |
5217991.0 | !!! |
5376913.0 | !!! |
5376970.0 | !!! |
5520551.0 | !!! |
5601992.0 | !!! |
5682659.0 | !!! |
5731714.0 | !!! |
5778215.0 | !!! |
6121002.0 | !!! |
6503693.0 | !!! |
6759788.0 | !!! |
6775048.0 | !!! |
7007982.0 | !!! |
7712754.0 | !!! |
8408135.0 | !!! |
8526330.0 | !!! |
8641726.0 | !!! |
8826071.0 | !!! |
8827555.0 | !!! |
8995368.0 | !!! |
8996838.0 | !!! |
9122789.0 | !!! |
9379703.0 | !!! |
9430578.0 | !!! |
1.0065458e7 | !!! |
1.0445239e7 | !!! |
1.072866e7 | !!! |
1.1392087e7 | !!! |
1.1487589e7 | !!! |
1.1650703e7 | !!! |
1.1876529e7 | !!! |
1.1892025e7 | !!! |
1.2022833e7 | !!! |
1.2034059e7 | !!! |
1.2285819e7 | !!! |
1.2493136e7 | !!! |
1.2723219e7 | !!! |
1.4172091e7 | !!! |
1.4919682e7 | !!! |
1.5090486e7 | !!! |
1.5304347e7 | !!! |
1.5859335e7 | !!! |
1.5890347e7 | !!! |
1.5954434e7 | !!! |
1.595458e7 | !!! |
1.6229931e7 | !!! |
1.6255431e7 | !!! |
1.6512875e7 | !!! |
1.6778941e7 | !!! |
1.7103326e7 | !!! |
1.7420068e7 | !!! |
1.8003176e7 | !!! |
1.8390192e7 | !!! |
1.8619515e7 | !!! |
1.8636003e7 | !!! |
1.8636054e7 | !!! |
1.8636092e7 | !!! |
1.8696414e7 | !!! |
1.8737189e7 | !!! |
1.9066899e7 | !!! |
2.0086687e7 | !!! |
2.0300047e7 | !!! |
2.0716056e7 | !!! |
2.1154965e7 | !!! |
2.1407209e7 | !!! |
2.145896e7 | !!! |
2.2315047e7 | !!! |
2.231548e7 | !!! |
2.2315646e7 | !!! |
2.2633081e7 | !!! |
2.3959807e7 | !!! |
2.4415283e7 | !!! |
2.4908254e7 | !!! |
2.498476e7 | !!! |
2.5014178e7 | !!! |
2.511837e7 | !!! |
2.5374304e7 | !!! |
2.545695e7 | !!! |
2.6123781e7 | !!! |
2.6165239e7 | !!! |
2.6780719e7 | !!! |
2.7379556e7 | !!! |
2.7473711e7 | !!! |
2.8165414e7 | !!! |
2.8674277e7 | !!! |
2.9186098e7 | !!! |
2.961224e7 | !!! |
3.0986944e7 | !!! |
3.1723723e7 | !!! |
3.1724092e7 | !!! |
3.202114e7 | !!! |
3.2186212e7 | !!! |
3.2619765e7 | !!! |
3.2641102e7 | !!! |
3.4552784e7 | !!! |
3.567167e7 | !!! |
3.6697766e7 | !!! |
3.6761353e7 | !!! |
3.696597e7 | !!! |
3.7362323e7 | !!! |
3.7630071e7 | !!! |
3.7923211e7 | !!! |
3.8406427e7 | !!! |
3.8806848e7 | !!! |
3.9012088e7 | !!! |
3.9176924e7 | !!! |
3.9256216e7 | !!! |
3.9401265e7 | !!! |
3.9531543e7 | !!! |
3.977729e7 | !!! |
3.9777297e7 | !!! |
4.0022038e7 | !!! |
4.1342025e7 | !!! |
4.2536918e7 | !!! |
4.2707174e7 | !!! |
4.3394637e7 | !!! |
4.4266185e7 | !!! |
4.678769e7 | !!! |
4.7607988e7 | !!! |
4.8248953e7 | !!! |
4.8293807e7 | !!! |
4.8552162e7 | !!! |
4.855237e7 | !!! |
4.8560521e7 | !!! |
4.8566356e7 | !!! |
4.8689499e7 | !!! |
4.868958e7 | !!! |
4.8933914e7 | !!! |
4.9315716e7 | !!! |
4.9406756e7 | !!! |
4.9407234e7 | !!! |
4.9407404e7 | !!! |
4.981616e7 | !!! |
5.0574403e7 | !!! |
5.0891665e7 | !!! |
5.1361206e7 | !!! |
5.1844288e7 | !!! |
5.2158729e7 | !!! |
5.2346864e7 | !!! |
5.2819334e7 | !!! |
5.307149e7 | !!! |
5.3610624e7 | !!! |
5.4079834e7 | !!! |
5.4878882e7 | !!! |
5.5029148e7 | !!! |
5.506693e7 | !!! |
5.6943199e7 | !!! |
5.7507041e7 | !!! |
5.8113181e7 | !!! |
5.9827819e7 | !!! |
6.062445e7 | !!! |
6.108289e7 | !!! |
6.1082894e7 | !!! |
6.1145741e7 | !!! |
6.1207813e7 | !!! |
6.3431023e7 | !!! |
6.467883e7 | !!! |
6.6505205e7 | !!! |
6.6543566e7 | !!! |
6.7540713e7 | !!! |
6.824059e7 | !!! |
6.849781e7 | !!! |
6.9837696e7 | !!! |
7.0155429e7 | !!! |
7.0801843e7 | !!! |
7.1396246e7 | !!! |
7.1631033e7 | !!! |
5.9812511e7 | !!!!!!! |
73633.0 | !!!Fuck_You!!! |
1.5054837e7 | !!!Fuck_You!!! |
1.8887751e7 | !!!Fuck_You!!! |
4874908.0 | !!!Fuck_You!!!_And_Then_Some |
73633.0 | !!!Fuck_You!!!_and_Then_Some |
1714408.0 | !!!Fuck_You!!!_and_Then_Some |
2279860.0 | !!!Fuck_You!!!_and_Then_Some |
4419353.0 | !!!Fuck_You!!!_and_Then_Some |
4795294.0 | !!!Fuck_You!!!_and_Then_Some |
4821686.0 | !!!Fuck_You!!!_and_Then_Some |
4821958.0 | !!!Fuck_You!!!_and_Then_Some |
4822043.0 | !!!Fuck_You!!!_and_Then_Some |
4822097.0 | !!!Fuck_You!!!_and_Then_Some |
4822160.0 | !!!Fuck_You!!!_and_Then_Some |
4822278.0 | !!!Fuck_You!!!_and_Then_Some |
4822680.0 | !!!Fuck_You!!!_and_Then_Some |
4822771.0 | !!!Fuck_You!!!_and_Then_Some |
4822811.0 | !!!Fuck_You!!!_and_Then_Some |
4822877.0 | !!!Fuck_You!!!_and_Then_Some |
4838341.0 | !!!Fuck_You!!!_and_Then_Some |
4838420.0 | !!!Fuck_You!!!_and_Then_Some |
4838427.0 | !!!Fuck_You!!!_and_Then_Some |
4838455.0 | !!!Fuck_You!!!_and_Then_Some |
4874806.0 | !!!Fuck_You!!!_and_Then_Some |
4874908.0 | !!!Fuck_You!!!_and_Then_Some |
7752239.0 | !!!Fuck_You!!!_and_Then_Some |
1.3116556e7 | !!!Fuck_You!!!_and_Then_Some |
1.3765875e7 | !!!Fuck_You!!!_and_Then_Some |
1.5054837e7 | !!!Fuck_You!!!_and_Then_Some |
1.7098999e7 | !!!Fuck_You!!!_and_Then_Some |
1.7994602e7 | !!!Fuck_You!!!_and_Then_Some |
1.8015235e7 | !!!Fuck_You!!!_and_Then_Some |
1.8887751e7 | !!!Fuck_You!!!_and_Then_Some |
2.4597182e7 | !!!Fuck_You!!!_and_Then_Some |
2.4935972e7 | !!!Fuck_You!!!_and_Then_Some |
3.2039313e7 | !!!Fuck_You!!!_and_Then_Some |
3.3795133e7 | !!!Fuck_You!!!_and_Then_Some |
3.4474643e7 | !!!Fuck_You!!!_and_Then_Some |
4.2214776e7 | !!!Fuck_You!!!_and_Then_Some |
4.7345482e7 | !!!Fuck_You!!!_and_Then_Some |
5.1317297e7 | !!!Fuck_You!!!_and_Then_Some |
5.9183886e7 | !!!Fuck_You!!!_and_Then_Some |
6.9357868e7 | !!!Fuck_You!!!_and_Then_Some |
839177.0 | !!!_(Chk_Chk_Chk) |
2.0877341e7 | !!!_(Chk_Chk_Chk) |
4.3394637e7 | !!!_(Chk_Chk_Chk) |
160813.0 | !!!_(album) |
600744.0 | !!!_(album) |
2061699.0 | !!!_(album) |
8526330.0 | !!!_(album) |
1.8636054e7 | !!!_(album) |
1.8636092e7 | !!!_(album) |
2.5014178e7 | !!!_(album) |
2.8165414e7 | !!!_(album) |
3.9256216e7 | !!!_(album) |
4.7607988e7 | !!!_(album) |
4.981616e7 | !!!_(album) |
5.4079834e7 | !!!_(album) |
5.5029148e7 | !!!_(album) |
5.9827823e7 | !!!_(album) |
6.1082894e7 | !!!_(album) |
6.2535569e7 | !!!_(album) |
64486.0 | !!!_(disambiguation) |
600744.0 | !!!_(disambiguation) |
3632887.0 | !!!_(disambiguation) |
34096.0 | !!Destroy-Oh-Boy!! |
1496283.0 | !!Destroy-Oh-Boy!! |
2094965.0 | !!Destroy-Oh-Boy!! |
3632887.0 | !!_(chess) |
64486.0 | !!_(disambiguation) |
513844.0 | !!_(disambiguation) |
1.0328596e7 | !!_(disambiguation) |
3.3983238e7 | !!_(disambiguation) |
3.6727183e7 | !!_(disambiguation) |
3.8325787e7 | !!_(disambiguation) |
3.8935418e7 | !!_(disambiguation) |
5.2386027e7 | !!_(disambiguation) |
5.4274255e7 | !!_(disambiguation) |
5.5029148e7 | !!_(disambiguation) |
5.6493039e7 | !!_(disambiguation) |
5.6933521e7 | !!_(disambiguation) |
321544.0 | !? |
6.3965892e7 | !?_(Interesting_move) |
3044053.0 | !Action_Pact! |
9215179.0 | !Action_Pact! |
9403888.0 | !Action_Pact! |
1.1070614e7 | !Action_Pact! |
1.4001932e7 | !Action_Pact! |
1.7856182e7 | !Action_Pact! |
3.4773988e7 | !Action_Pact! |
3.7033186e7 | !Action_Pact! |
4.4282787e7 | !Action_Pact! |
5.5045555e7 | !Action_Pact! |
1.5011654e7 | !Adios_Amigos! |
2.6271209e7 | !Aiboforcen |
1040059.0 | !Arriba!_La_Pachanga |
5.5077702e7 | !Arriba!_La_Pachanga |
6.2965631e7 | !Arriba!_La_Pachanga |
173252.0 | !Bang |
155498.0 | !Bang! |
173252.0 | !Bang! |
690109.0 | !Bang! |
988580.0 | !Bang! |
1849655.0 | !Bang! |
1850860.0 | !Bang! |
1862295.0 | !Bang! |
5613194.0 | !Bang! |
6621175.0 | !Bang! |
8087559.0 | !Bang! |
1.269431e7 | !Bang! |
2.5607521e7 | !Bang! |
2.8744821e7 | !Bang! |
2.8746611e7 | !Bang! |
3.6518066e7 | !Bang! |
4.5076236e7 | !Bang!_TV |
4.8205117e7 | !Basher! |
6.7023296e7 | !CHISPAS! |
7012185.0 | !Deladap |
4.6247647e7 | !Earshot |
4.6253059e7 | !Earshot |
4.6393469e7 | !Earshot |
1899931.0 | !GAG! |
503582.0 | !Hero |
911225.0 | !Hero |
1117064.0 | !Hero |
1728645.0 | !Hero |
3087409.0 | !Hero |
3097848.0 | !Hero |
3450282.0 | !Hero |
3949731.0 | !Hero |
4157367.0 | !Hero |
4438337.0 | !Hero |
4712860.0 | !Hero |
4883544.0 | !Hero |
4898519.0 | !Hero |
4907736.0 | !Hero |
4908085.0 | !Hero |
4908252.0 | !Hero |
4975664.0 | !Hero |
5014482.0 | !Hero |
5237825.0 | !Hero |
5789395.0 | !Hero |
5989816.0 | !Hero |
6085747.0 | !Hero |
6091629.0 | !Hero |
6360184.0 | !Hero |
6893310.0 | !Hero |
6921823.0 | !Hero |
6922190.0 | !Hero |
7995710.0 | !Hero |
9137556.0 | !Hero |
1.0970381e7 | !Hero |
2.008878e7 | !Hero |
2.0088862e7 | !Hero |
3.0449357e7 | !Hero |
6.5552176e7 | !Hero |
6.5701093e7 | !Hero |
6.9211469e7 | !Hero |
6.9792174e7 | !Hero |
6.9792329e7 | !Hero |
503582.0 | !Hero_(album) |
1716986.0 | !Hero_(album) |
1921683.0 | !Hero_(album) |
3733202.0 | !Hero_(album) |
5237825.0 | !Hero_(album) |
8146995.0 | !Hero_(album) |
1.6172526e7 | !Hero_(album) |
1.8123767e7 | !Hero_(album) |
3.5316173e7 | !Hero_(album) |
5.5091212e7 | !Hero_(album) |
5.5091285e7 | !Hero_(album) |
5.5268925e7 | !Hero_(album) |
6.0979706e7 | !Hero_(album) |
3382.0 | !Hola! |
2045920.0 | !K7 |
2064250.0 | !K7 |
3454968.0 | !K7 |
4197500.0 | !K7 |
4256812.0 | !K7 |
6003572.0 | !K7 |
7364759.0 | !K7 |
8247858.0 | !K7 |
9430578.0 | !K7 |
1.0549801e7 | !K7 |
1.4180074e7 | !K7 |
1.4180629e7 | !K7 |
2.2760608e7 | !K7 |
2.3955937e7 | !K7 |
2.4963982e7 | !K7 |
2.729066e7 | !K7 |
3.2734551e7 | !K7 |
3.4842976e7 | !K7 |
3.5068216e7 | !K7 |
3.6314898e7 | !K7 |
3.9466206e7 | !K7 |
4.9270332e7 | !K7 |
5.2868923e7 | !K7 |
171825.0 | !K7_Music |
2519038.0 | !K7_Music |
2874618.0 | !K7_Music |
3625902.0 | !K7_Music |
7217550.0 | !K7_Music |
8922345.0 | !K7_Music |
1.6808894e7 | !K7_Music |
1.8948956e7 | !K7_Music |
1.9230476e7 | !K7_Music |
2.2060609e7 | !K7_Music |
3.5766674e7 | !K7_Music |
6.9450992e7 | !K7_Music |
26039.0 | !K7_Records |
555201.0 | !K7_Records |
819619.0 | !K7_Records |
1345544.0 | !K7_Records |
1587683.0 | !K7_Records |
1587883.0 | !K7_Records |
2045720.0 | !K7_Records |
2099896.0 | !K7_Records |
2619240.0 | !K7_Records |
3145699.0 | !K7_Records |
3482276.0 | !K7_Records |
3705525.0 | !K7_Records |
3730404.0 | !K7_Records |
4652159.0 | !K7_Records |
6613393.0 | !K7_Records |
7722622.0 | !K7_Records |
1.2534796e7 | !K7_Records |
1.9325516e7 | !K7_Records |
2.3443987e7 | !K7_Records |
2.45383e7 | !K7_Records |
2.8054841e7 | !K7_Records |
3.202114e7 | !K7_Records |
3.7194622e7 | !K7_Records |
3.9158395e7 | !K7_Records |
4.4635834e7 | !K7_Records |
4.4846813e7 | !K7_Records |
4.7196566e7 | !K7_Records |
4.8212426e7 | !K7_Records |
6.4987247e7 | !K7_Records |
3191850.0 | !Ka-Boom¡_Estudio |
2.4685254e7 | !Karas_Region |
5.9581449e7 | !Karas_Region |
447008.0 | !Kheis_Local_Municipality |
668766.0 | !Kheis_Local_Municipality |
3602150.0 | !Kheis_Local_Municipality |
4039678.0 | !Kheis_Local_Municipality |
4940174.0 | !Kheis_Local_Municipality |
1.4888082e7 | !Kheis_Local_Municipality |
1.6455546e7 | !Kheis_Local_Municipality |
1.8981559e7 | !Kheis_Local_Municipality |
2.1479761e7 | !Kheis_Local_Municipality |
2.2158133e7 | !Kheis_Local_Municipality |
2.4178869e7 | !Kheis_Local_Municipality |
2.6513401e7 | !Kheis_Local_Municipality |
3.0209956e7 | !Kheis_Local_Municipality |
3.0210406e7 | !Kheis_Local_Municipality |
3.0241218e7 | !Kheis_Local_Municipality |
3.0254618e7 | !Kheis_Local_Municipality |
3.0321534e7 | !Kheis_Local_Municipality |
3.4773828e7 | !Kheis_Local_Municipality |
3.477392e7 | !Kheis_Local_Municipality |
3.477696e7 | !Kheis_Local_Municipality |
3.4785572e7 | !Kheis_Local_Municipality |
3.4785949e7 | !Kheis_Local_Municipality |
3.4785957e7 | !Kheis_Local_Municipality |
3.6081936e7 | !Kheis_Local_Municipality |
3.6841224e7 | !Kheis_Local_Municipality |
4.0001939e7 | !Kheis_Local_Municipality |
4.0091659e7 | !Kheis_Local_Municipality |
4.0352602e7 | !Kheis_Local_Municipality |
4.0440224e7 | !Kheis_Local_Municipality |
4.1295714e7 | !Kheis_Local_Municipality |
4.6292286e7 | !Kheis_Local_Municipality |
4.7080308e7 | !Kheis_Local_Municipality |
5.0781996e7 | !Kheis_Local_Municipality |
5.5137495e7 | !Kheis_Local_Municipality |
5.5143403e7 | !Kheis_Local_Municipality |
5.5144551e7 | !Kheis_Local_Municipality |
6.0925074e7 | !Kheis_Local_Municipality |
7.0333648e7 | !Kheis_Local_Municipality |
3.0254618e7 | !Kheis_Local_Municipality_elections |
6.9394817e7 | !Kheis_Local_Municipality_elections |
7.0292153e7 | !Kheis_Local_Municipality_elections |
7.0292295e7 | !Kheis_Local_Municipality_elections |
7.0333617e7 | !Kheis_Local_Municipality_elections |
7.0337955e7 | !Kheis_Local_Municipality_elections |
7.0337977e7 | !Kheis_Local_Municipality_elections |
7.0344395e7 | !Kheis_Local_Municipality_elections |
7.0344424e7 | !Kheis_Local_Municipality_elections |
7.0345364e7 | !Kheis_Local_Municipality_elections |
7.0351705e7 | !Kheis_Local_Municipality_elections |
7.0408226e7 | !Kheis_Local_Municipality_elections |
7.0408771e7 | !Kheis_Local_Municipality_elections |
7.0507872e7 | !Kheis_Local_Municipality_elections |
7.0507907e7 | !Kheis_Local_Municipality_elections |
7.0507968e7 | !Kheis_Local_Municipality_elections |
7.0544366e7 | !Kheis_Local_Municipality_elections |
7.0544416e7 | !Kheis_Local_Municipality_elections |
7.0544779e7 | !Kheis_Local_Municipality_elections |
7.0551674e7 | !Kheis_Local_Municipality_elections |
7.0551867e7 | !Kheis_Local_Municipality_elections |
7.0551907e7 | !Kheis_Local_Municipality_elections |
7.0565113e7 | !Kheis_Local_Municipality_elections |
7.0565152e7 | !Kheis_Local_Municipality_elections |
7.0565273e7 | !Kheis_Local_Municipality_elections |
7.056534e7 | !Kheis_Local_Municipality_elections |
4.3198829e7 | !Kheis_Municipality |
1554563.0 | !Kora |
2.2334799e7 | !Kora |
1336693.0 | !Kora_Wars |
4062928.0 | !Kora_Wars |
4820901.0 | !Kora_Wars |
2.2334799e7 | !Kora_language |
68982.0 | !Kung |
325618.0 | !Kung |
1318175.0 | !Kung |
1586039.0 | !Kung |
2341373.0 | !Kung |
3375586.0 | !Kung |
3508393.0 | !Kung |
4923690.0 | !Kung |
6687339.0 | !Kung |
1.0638871e7 | !Kung |
1.1548185e7 | !Kung |
2.3266996e7 | !Kung |
3.8830844e7 | !Kung |
4.3349537e7 | !Kung |
4.9050655e7 | !Kung |
5.5868925e7 | !Kung |
391097.0 | !Kung_San |
3656651.0 | !Kung_San |
2.7664456e7 | !Kung_San |
17333.0 | !Kung_language |
21292.0 | !Kung_language |
22980.0 | !Kung_language |
87801.0 | !Kung_language |
167473.0 | !Kung_language |
247700.0 | !Kung_language |
261237.0 | !Kung_language |
313628.0 | !Kung_language |
364060.0 | !Kung_language |
450794.0 | !Kung_language |
524853.0 | !Kung_language |
524854.0 | !Kung_language |
616333.0 | !Kung_language |
1383618.0 | !Kung_language |
2609070.0 | !Kung_language |
3288888.0 | !Kung_language |
3656651.0 | !Kung_language |
5391206.0 | !Kung_language |
9895473.0 | !Kung_language |
1.1403668e7 | !Kung_language |
1.1871524e7 | !Kung_language |
2.0173128e7 | !Kung_language |
2.5537629e7 | !Kung_language |
2.7164415e7 | !Kung_language |
3.4338728e7 | !Kung_language |
9992.0 | !Kung_languages |
151336.0 | !Kung_languages |
364060.0 | !Kung_languages |
453953.0 | !Kung_languages |
453979.0 | !Kung_languages |
453991.0 | !Kung_languages |
1210028.0 | !Kung_languages |
2303025.0 | !Kung_languages |
2319716.0 | !Kung_languages |
2407996.0 | !Kung_languages |
2609977.0 | !Kung_languages |
4697698.0 | !Kung_languages |
6145891.0 | !Kung_languages |
9959546.0 | !Kung_languages |
1.0455944e7 | !Kung_languages |
1.2883888e7 | !Kung_languages |
1.387966e7 | !Kung_languages |
1.5214566e7 | !Kung_languages |
1.7764754e7 | !Kung_languages |
3.1485302e7 | !Kung_languages |
3.4173762e7 | !Kung_languages |
3.9214513e7 | !Kung_languages |
3.9214938e7 | !Kung_languages |
3.9215665e7 | !Kung_languages |
3.9249762e7 | !Kung_languages |
3.9673059e7 | !Kung_languages |
4.0515986e7 | !Kung_languages |
6.0292402e7 | !Kung_languages |
6.8165414e7 | !Kung_languages |
6.8167777e7 | !Kung_languages |
561726.0 | !Kung_mythology |
5388.0 | !Kung_people |
9992.0 | !Kung_people |
15474.0 | !Kung_people |
22860.0 | !Kung_people |
102262.0 | !Kung_people |
215509.0 | !Kung_people |
552168.0 | !Kung_people |
641840.0 | !Kung_people |
816362.0 | !Kung_people |
1227748.0 | !Kung_people |
3121665.0 | !Kung_people |
3239479.0 | !Kung_people |
4148032.0 | !Kung_people |
5227591.0 | !Kung_people |
6299108.0 | !Kung_people |
6618605.0 | !Kung_people |
7264431.0 | !Kung_people |
1.3280233e7 | !Kung_people |
1.3285831e7 | !Kung_people |
1.7200325e7 | !Kung_people |
2.0290838e7 | !Kung_people |
2.3221293e7 | !Kung_people |
2.6451793e7 | !Kung_people |
2.6854262e7 | !Kung_people |
3.8905381e7 | !Kung_people |
4.9182508e7 | !Kung_people |
87801.0 | !Kweiten-ta-Ken |
87801.0 | !Kweiten-ta-ǀǀKen |
317886.0 | !Kweiten-ta-ǀǀKen |
712892.0 | !Kweiten-ta-ǀǀKen |
3288888.0 | !Kweiten-ta-ǀǀKen |
9895473.0 | !Kweiten-ta-ǀǀKen |
3.7361147e7 | !Kweiten_ta_//ken |
17333.0 | !Kwi_language |
1.3219614e7 | !Les |
2.2918304e7 | !Mayday¡ |
1955672.0 | !Oka_Tokat |
2222598.0 | !Oka_Tokat |
3720524.0 | !Oka_Tokat |
3784152.0 | !Oka_Tokat |
5526638.0 | !Oka_Tokat |
7235964.0 | !Oka_Tokat |
7360687.0 | !Oka_Tokat |
8127304.0 | !Oka_Tokat |
8500474.0 | !Oka_Tokat |
8917884.0 | !Oka_Tokat |
9497214.0 | !Oka_Tokat |
1.2453883e7 | !Oka_Tokat |
1.2474872e7 | !Oka_Tokat |
1.3712471e7 | !Oka_Tokat |
1.6059647e7 | !Oka_Tokat |
1.6083903e7 | !Oka_Tokat |
1.6498971e7 | !Oka_Tokat |
2.1551816e7 | !Oka_Tokat |
2.2976571e7 | !Oka_Tokat |
2.3353652e7 | !Oka_Tokat |
2.3568338e7 | !Oka_Tokat |
2.3711745e7 | !Oka_Tokat |
2.576427e7 | !Oka_Tokat |
3.1928345e7 | !Oka_Tokat |
3.437659e7 | !Oka_Tokat |
3.5978874e7 | !Oka_Tokat |
3.8307891e7 | !Oka_Tokat |
3.8519079e7 | !Oka_Tokat |
3.8721976e7 | !Oka_Tokat |
3.8740597e7 | !Oka_Tokat |
3.8925613e7 | !Oka_Tokat |
3.9070026e7 | !Oka_Tokat |
3.9799916e7 | !Oka_Tokat |
4.1067896e7 | !Oka_Tokat |
4.1344723e7 | !Oka_Tokat |
4.1572046e7 | !Oka_Tokat |
4.258094e7 | !Oka_Tokat |
4.3271848e7 | !Oka_Tokat |
4.4210193e7 | !Oka_Tokat |
4.4354474e7 | !Oka_Tokat |
4.7091754e7 | !Oka_Tokat |
4.7754955e7 | !Oka_Tokat |
5.064316e7 | !Oka_Tokat |
5.4502138e7 | !Oka_Tokat |
6.3943912e7 | !Oka_Tokat |
6.5715741e7 | !Oka_Tokat |
6.8457421e7 | !Oka_Tokat |
7.1389693e7 | !Oka_Tokat |
1210028.0 | !Ora_language |
5.3108404e7 | !Ora_people |
8199349.0 | !Oye_Esteban! |
2322480.0 | !PAUS3 |
7847796.0 | !PAUS3 |
4.7876909e7 | !PAUS3 |
901742.0 | !Que_viva_la_musica! |
3.9115606e7 | !Que_viva_la_musica! |
1248325.0 | !Shin_Chan:_Flipa_en_colores! |
6653.0 | !Uriǁ’aekua |
373641.0 | !WOWOW! |
1759656.0 | !WOWOW! |
1.0570502e7 | !WOWOW! |
1.4408717e7 | !WOWOW! |
2.0140534e7 | !WOWOW! |
2.9055465e7 | !WOWOW! |
3.1869291e7 | !WOWOW! |
4.963566e7 | !WOWOW! |
34350.0 | !Women_Art_Revolution |
98957.0 | !Women_Art_Revolution |
153926.0 | !Women_Art_Revolution |
238326.0 | !Women_Art_Revolution |
309846.0 | !Women_Art_Revolution |
311615.0 | !Women_Art_Revolution |
420777.0 | !Women_Art_Revolution |
476217.0 | !Women_Art_Revolution |
512045.0 | !Women_Art_Revolution |
570145.0 | !Women_Art_Revolution |
584664.0 | !Women_Art_Revolution |
604117.0 | !Women_Art_Revolution |
621018.0 | !Women_Art_Revolution |
703371.0 | !Women_Art_Revolution |
764030.0 | !Women_Art_Revolution |
783731.0 | !Women_Art_Revolution |
904930.0 | !Women_Art_Revolution |
933512.0 | !Women_Art_Revolution |
1090517.0 | !Women_Art_Revolution |
1104576.0 | !Women_Art_Revolution |
1110133.0 | !Women_Art_Revolution |
1246709.0 | !Women_Art_Revolution |
1423146.0 | !Women_Art_Revolution |
1544909.0 | !Women_Art_Revolution |
1548731.0 | !Women_Art_Revolution |
1577589.0 | !Women_Art_Revolution |
1605832.0 | !Women_Art_Revolution |
1673775.0 | !Women_Art_Revolution |
1686995.0 | !Women_Art_Revolution |
1788279.0 | !Women_Art_Revolution |
1870977.0 | !Women_Art_Revolution |
2171817.0 | !Women_Art_Revolution |
2225246.0 | !Women_Art_Revolution |
2332995.0 | !Women_Art_Revolution |
2468856.0 | !Women_Art_Revolution |
2508428.0 | !Women_Art_Revolution |
2600313.0 | !Women_Art_Revolution |
2626651.0 | !Women_Art_Revolution |
2870025.0 | !Women_Art_Revolution |
3075695.0 | !Women_Art_Revolution |
3083317.0 | !Women_Art_Revolution |
3083872.0 | !Women_Art_Revolution |
3139082.0 | !Women_Art_Revolution |
3207413.0 | !Women_Art_Revolution |
3207655.0 | !Women_Art_Revolution |
3251080.0 | !Women_Art_Revolution |
3257715.0 | !Women_Art_Revolution |
3324292.0 | !Women_Art_Revolution |
3367162.0 | !Women_Art_Revolution |
3487779.0 | !Women_Art_Revolution |
3510891.0 | !Women_Art_Revolution |
3639548.0 | !Women_Art_Revolution |
4029639.0 | !Women_Art_Revolution |
4843444.0 | !Women_Art_Revolution |
4943835.0 | !Women_Art_Revolution |
5237837.0 | !Women_Art_Revolution |
5296735.0 | !Women_Art_Revolution |
5341253.0 | !Women_Art_Revolution |
5441158.0 | !Women_Art_Revolution |
5929235.0 | !Women_Art_Revolution |
5958428.0 | !Women_Art_Revolution |
5958918.0 | !Women_Art_Revolution |
5964167.0 | !Women_Art_Revolution |
5967032.0 | !Women_Art_Revolution |
6025441.0 | !Women_Art_Revolution |
6062357.0 | !Women_Art_Revolution |
6062759.0 | !Women_Art_Revolution |
6320392.0 | !Women_Art_Revolution |
6727570.0 | !Women_Art_Revolution |
6814223.0 | !Women_Art_Revolution |
7365243.0 | !Women_Art_Revolution |
7606126.0 | !Women_Art_Revolution |
7624796.0 | !Women_Art_Revolution |
7634036.0 | !Women_Art_Revolution |
7779578.0 | !Women_Art_Revolution |
7780000.0 | !Women_Art_Revolution |
8010624.0 | !Women_Art_Revolution |
8320171.0 | !Women_Art_Revolution |
8723702.0 | !Women_Art_Revolution |
8938738.0 | !Women_Art_Revolution |
9994165.0 | !Women_Art_Revolution |
1.0033919e7 | !Women_Art_Revolution |
1.0467222e7 | !Women_Art_Revolution |
1.0997115e7 | !Women_Art_Revolution |
1.1044549e7 | !Women_Art_Revolution |
1.1571844e7 | !Women_Art_Revolution |
1.1922944e7 | !Women_Art_Revolution |
1.2590877e7 | !Women_Art_Revolution |
1.4263353e7 | !Women_Art_Revolution |
1.499971e7 | !Women_Art_Revolution |
1.6262412e7 | !Women_Art_Revolution |
1.635418e7 | !Women_Art_Revolution |
1.6864608e7 | !Women_Art_Revolution |
1.7140025e7 | !Women_Art_Revolution |
1.7144223e7 | !Women_Art_Revolution |
1.8041205e7 | !Women_Art_Revolution |
1.8190768e7 | !Women_Art_Revolution |
1.8584072e7 | !Women_Art_Revolution |
1.8895392e7 | !Women_Art_Revolution |
2.0382258e7 | !Women_Art_Revolution |
2.2053497e7 | !Women_Art_Revolution |
2.4633688e7 | !Women_Art_Revolution |
2.4966052e7 | !Women_Art_Revolution |
2.6746723e7 | !Women_Art_Revolution |
2.6775679e7 | !Women_Art_Revolution |
2.7569626e7 | !Women_Art_Revolution |
2.8145279e7 | !Women_Art_Revolution |
2.8336165e7 | !Women_Art_Revolution |
2.865032e7 | !Women_Art_Revolution |
3.1000159e7 | !Women_Art_Revolution |
3.1025072e7 | !Women_Art_Revolution |
3.1217457e7 | !Women_Art_Revolution |
3.2192717e7 | !Women_Art_Revolution |
3.2224512e7 | !Women_Art_Revolution |
3.222481e7 | !Women_Art_Revolution |
3.2381705e7 | !Women_Art_Revolution |
3.2726935e7 | !Women_Art_Revolution |
3.2983293e7 | !Women_Art_Revolution |
3.3096698e7 | !Women_Art_Revolution |
3.3244298e7 | !Women_Art_Revolution |
3.4313454e7 | !Women_Art_Revolution |
3.4329777e7 | !Women_Art_Revolution |
3.489663e7 | !Women_Art_Revolution |
3.5522968e7 | !Women_Art_Revolution |
3.5798892e7 | !Women_Art_Revolution |
3.6609348e7 | !Women_Art_Revolution |
3.6620963e7 | !Women_Art_Revolution |
3.6710267e7 | !Women_Art_Revolution |
3.6836715e7 | !Women_Art_Revolution |
3.7880276e7 | !Women_Art_Revolution |
3.7892711e7 | !Women_Art_Revolution |
3.8737833e7 | !Women_Art_Revolution |
3.8769205e7 | !Women_Art_Revolution |
3.92278e7 | !Women_Art_Revolution |
3.9307755e7 | !Women_Art_Revolution |
3.9623516e7 | !Women_Art_Revolution |
3.9637647e7 | !Women_Art_Revolution |
4.0384325e7 | !Women_Art_Revolution |
4.0454162e7 | !Women_Art_Revolution |
4.0851576e7 | !Women_Art_Revolution |
4.0968093e7 | !Women_Art_Revolution |
4.1189906e7 | !Women_Art_Revolution |
4.160635e7 | !Women_Art_Revolution |
4.1654366e7 | !Women_Art_Revolution |
4.181221e7 | !Women_Art_Revolution |
4.1812283e7 | !Women_Art_Revolution |
4.1813613e7 | !Women_Art_Revolution |
4.1955805e7 | !Women_Art_Revolution |
4.2261534e7 | !Women_Art_Revolution |
4.2351781e7 | !Women_Art_Revolution |
4.2534246e7 | !Women_Art_Revolution |
4.2552874e7 | !Women_Art_Revolution |
4.2622068e7 | !Women_Art_Revolution |
4.2796539e7 | !Women_Art_Revolution |
4.2879461e7 | !Women_Art_Revolution |
4.2886934e7 | !Women_Art_Revolution |
4.3036442e7 | !Women_Art_Revolution |
4.371949e7 | !Women_Art_Revolution |
4.56049e7 | !Women_Art_Revolution |
4.5635805e7 | !Women_Art_Revolution |
4.6185928e7 | !Women_Art_Revolution |
4.6903191e7 | !Women_Art_Revolution |
4.7303084e7 | !Women_Art_Revolution |
4.7705423e7 | !Women_Art_Revolution |
4.8736855e7 | !Women_Art_Revolution |
4.9595632e7 | !Women_Art_Revolution |
4.9651273e7 | !Women_Art_Revolution |
4.9651914e7 | !Women_Art_Revolution |
4.9653051e7 | !Women_Art_Revolution |
5.2704891e7 | !Women_Art_Revolution |
5.3454432e7 | !Women_Art_Revolution |
5.3631933e7 | !Women_Art_Revolution |
5.3933938e7 | !Women_Art_Revolution |
5.6752589e7 | !Women_Art_Revolution |
5.9974067e7 | !Women_Art_Revolution |
6.4577622e7 | !Women_Art_Revolution |
6.4907515e7 | !Women_Art_Revolution |
6.8072601e7 | !Women_Art_Revolution |
6.8228244e7 | !Women_Art_Revolution |
6.8229346e7 | !Women_Art_Revolution |
6.8340058e7 | !Women_Art_Revolution |
6.9627747e7 | !Women_Art_Revolution |
6.9840155e7 | !Women_Art_Revolution |
6.9966187e7 | !Women_Art_Revolution |
6.9971066e7 | !Women_Art_Revolution |
43492.0 | !Wowow! |
143570.0 | !Wowow! |
145606.0 | !Wowow! |
277812.0 | !Wowow! |
308392.0 | !Wowow! |
584739.0 | !Wowow! |
597785.0 | !Wowow! |
643525.0 | !Wowow! |
1451373.0 | !Wowow! |
1586277.0 | !Wowow! |
1613892.0 | !Wowow! |
1778942.0 | !Wowow! |
2217738.0 | !Wowow! |
2930511.0 | !Wowow! |
3076713.0 | !Wowow! |
3180565.0 | !Wowow! |
4034653.0 | !Wowow! |
6171459.0 | !Wowow! |
6852388.0 | !Wowow! |
7135479.0 | !Wowow! |
7325676.0 | !Wowow! |
9062463.0 | !Wowow! |
9268023.0 | !Wowow! |
9278679.0 | !Wowow! |
1.0043098e7 | !Wowow! |
1.1089239e7 | !Wowow! |
1.3442201e7 | !Wowow! |
1.5008004e7 | !Wowow! |
1.5065487e7 | !Wowow! |
1.796197e7 | !Wowow! |
1.8743234e7 | !Wowow! |
1.9415992e7 | !Wowow! |
2.0140534e7 | !Wowow! |
2.2388425e7 | !Wowow! |
2.4481226e7 | !Wowow! |
2.5878053e7 | !Wowow! |
2.7499303e7 | !Wowow! |
2.8637104e7 | !Wowow! |
2.8668067e7 | !Wowow! |
2.9055465e7 | !Wowow! |
3.1869291e7 | !Wowow! |
3.3418768e7 | !Wowow! |
3.4547132e7 | !Wowow! |
3.8781885e7 | !Wowow! |
3.8968881e7 | !Wowow! |
3.8975533e7 | !Wowow! |
4.0855562e7 | !Wowow! |
4.8426345e7 | !Wowow! |
5.1707855e7 | !Wowow! |
5.3476625e7 | !Wowow! |
5.8755622e7 | !Wowow! |
val edgesNoSrcTitle = spark.sql("""SELECT enwiki_pagelinks.pl_from AS src,
enwiki_page.page_id AS dst,
enwiki_pagelinks.pl_title AS dst_title
FROM enwiki_page INNER JOIN enwiki_pagelinks
ON enwiki_pagelinks.pl_title = enwiki_page.page_title""")
edgesNoSrcTitle.createOrReplaceTempView("edges_no_src_title")
val edges = spark.sql("""SELECT edges_no_src_title.src,
edges_no_src_title.dst,
enwiki_page.page_title AS src_title,
edges_no_src_title.dst_title
FROM edges_no_src_title INNER JOIN enwiki_page
ON enwiki_page.page_id = edges_no_src_title.src""")
display(edges)
src | dst | src_title | dst_title |
---|---|---|---|
1088.0 | 3.1030978e7 | Azerbaijani_Armed_Forces | Azerbaijani_mythology |
1088.0 | 3.0322787e7 | Azerbaijani_Armed_Forces | Chief_of_General_Staff_of_Azerbaijani_Armed_Forces |
1088.0 | 46530.0 | Azerbaijani_Armed_Forces | Human_Rights_Watch |
1088.0 | 2.1447694e7 | Azerbaijani_Armed_Forces | List_of_companies_of_Azerbaijan |
1088.0 | 3.7897147e7 | Azerbaijani_Armed_Forces | National_symbols_of_Azerbaijan |
1088.0 | 4.5061575e7 | Azerbaijani_Armed_Forces | Qajar_Iran |
1088.0 | 873945.0 | Azerbaijani_Armed_Forces | Soviet_Air_Defence_Forces |
1088.0 | 774820.0 | Azerbaijani_Armed_Forces | List_of_Azerbaijanis |
1088.0 | 6.5939927e7 | Azerbaijani_Armed_Forces | Nakhchivan_Separate_Combined_Arms_Army |
1088.0 | 6.8702564e7 | Azerbaijani_Armed_Forces | Non-Aligned_Movement |
1088.0 | 2867590.0 | Azerbaijani_Armed_Forces | Royal_Cambodian_Armed_Forces |
1088.0 | 4.144269e7 | Azerbaijani_Armed_Forces | Corps_of_Drums |
1088.0 | 5.8693917e7 | Azerbaijani_Armed_Forces | Foreign_Intelligence_Service_(Azerbaijan) |
1088.0 | 2648922.0 | Azerbaijani_Armed_Forces | Hydroelectric_power_station |
1088.0 | 34252.0 | Azerbaijani_Armed_Forces | Republic_of_Yemen_Armed_Forces |
1088.0 | 1036235.0 | Azerbaijani_Armed_Forces | Zand_dynasty |
1088.0 | 1.3427826e7 | Azerbaijani_Armed_Forces | Cabinet_of_Azerbaijan |
1088.0 | 1.0927665e7 | Azerbaijani_Armed_Forces | Internal_Troops_of_Azerbaijan |
1088.0 | 39237.0 | Azerbaijani_Armed_Forces | Israel_Defense_Forces |
1088.0 | 5.7994574e7 | Azerbaijani_Armed_Forces | Military_Band_Service_of_the_Armed_Forces_of_Azerbaijan |
1088.0 | 2.6157272e7 | Azerbaijani_Armed_Forces | Azerbaijani_art |
1088.0 | 2.7172367e7 | Azerbaijani_Armed_Forces | Azerbaijani_folklore |
1088.0 | 385358.0 | Azerbaijani_Armed_Forces | Nakhchivan_Autonomous_Republic |
1088.0 | 7.0680595e7 | Azerbaijani_Armed_Forces | 227th_Rifle_Division |
1088.0 | 2192452.0 | Azerbaijani_Armed_Forces | 4th_Army_(Soviet_Union) |
1088.0 | 2.3411067e7 | Azerbaijani_Armed_Forces | Ganja_Air_Base |
1088.0 | 6.6149221e7 | Azerbaijani_Armed_Forces | 1st_Army_Corps_(Azerbaijan) |
1088.0 | 7150649.0 | Azerbaijani_Armed_Forces | Environmental_issues_in_Azerbaijan |
1088.0 | 6.5910861e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Lachin_Medal |
1088.0 | 1.0287296e7 | Azerbaijani_Armed_Forces | Otokar_Cobra |
1088.0 | 3.84555e7 | Azerbaijani_Armed_Forces | Safavid_Iran |
1088.0 | 6.6150419e7 | Azerbaijani_Armed_Forces | 3rd_Army_Corps_(Azerbaijan) |
1088.0 | 3457.0 | Azerbaijani_Armed_Forces | Belarus |
1088.0 | 1.1505052e7 | Azerbaijani_Armed_Forces | National_Hero_of_Azerbaijan |
1088.0 | 897352.0 | Azerbaijani_Armed_Forces | Singapore_Armed_Forces |
1088.0 | 3.3872653e7 | Azerbaijani_Armed_Forces | Jar-Burial_Culture |
1088.0 | 7174933.0 | Azerbaijani_Armed_Forces | List_of_countries_with_nuclear_weapons |
1088.0 | 3.0323393e7 | Azerbaijani_Armed_Forces | Minister_of_Defense_(Azerbaijan) |
1088.0 | 1492790.0 | Azerbaijani_Armed_Forces | Shusha |
1088.0 | 31975.0 | Azerbaijani_Armed_Forces | United_States_Department_of_State |
1088.0 | 6.6016006e7 | Azerbaijani_Armed_Forces | Victory_Day_(Azerbaijan) |
1088.0 | 16650.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Kazakhstan |
1088.0 | 2409969.0 | Azerbaijani_Armed_Forces | Azerbaijan_Democratic_Republic |
1088.0 | 1.1886584e7 | Azerbaijani_Armed_Forces | Baku_Air_Defence_Army |
1088.0 | 3.5527299e7 | Azerbaijani_Armed_Forces | For_Heroism_Medal |
1088.0 | 6.5910757e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Aghdam_Medal |
1088.0 | 6.5910908e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Zangilan_Medal |
1088.0 | 7171338.0 | Azerbaijani_Armed_Forces | Indian_Armed_Forces |
1088.0 | 5.1886693e7 | Azerbaijani_Armed_Forces | S-300_(missile) |
1088.0 | 877164.0 | Azerbaijani_Armed_Forces | Arran_(Caucasus) |
1088.0 | 67538.0 | Azerbaijani_Armed_Forces | Australian_Defence_Force |
1088.0 | 8371628.0 | Azerbaijani_Armed_Forces | Battle_of_Baku |
1088.0 | 7427466.0 | Azerbaijani_Armed_Forces | Petya-class_frigate |
1088.0 | 25709.0 | Azerbaijani_Armed_Forces | Russian_Armed_Forces |
1088.0 | 7105996.0 | Azerbaijani_Armed_Forces | State_reserves_of_Azerbaijan |
1088.0 | 2.1376046e7 | Azerbaijani_Armed_Forces | Wehrmacht |
1088.0 | 6.1912686e7 | Azerbaijani_Armed_Forces | \"95th_Anniversary_of_the_Armed_Forces_of_Azerbaijan_(1918–2013)\"_Medal |
1088.0 | 6.4718117e7 | Azerbaijani_Armed_Forces | List_of_modern_equipment_of_the_Azerbaijani_Air_Force |
1088.0 | 5.0021902e7 | Azerbaijani_Armed_Forces | 2016_Nagorno-Karabakh_conflict |
1088.0 | 1.1288692e7 | Azerbaijani_Armed_Forces | 7th_Guards_Army |
1088.0 | 6.5911067e7 | Azerbaijani_Armed_Forces | Brave_Warrior_Medal |
1088.0 | 6922486.0 | Azerbaijani_Armed_Forces | Extreme_points_of_Azerbaijan |
1088.0 | 19115.0 | Azerbaijani_Armed_Forces | Malaysian_Armed_Forces |
1088.0 | 6.8977021e7 | Azerbaijani_Armed_Forces | Wedding_tradition_in_Azerbaijan |
1088.0 | 3.8429228e7 | Azerbaijani_Armed_Forces | Yevgenya_class_minesweeper |
1088.0 | 6.6176862e7 | Azerbaijani_Armed_Forces | 2nd_Army_Corps_(Azerbaijan) |
1088.0 | 6.5787844e7 | Azerbaijani_Armed_Forces | Battle_of_Shusha_(2020) |
1088.0 | 16692.0 | Azerbaijani_Armed_Forces | Kuwait_Military_Forces |
1088.0 | 5.7836785e7 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Islamic_Emirate_of_Afghanistan |
1088.0 | 30116.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Tajikistan |
1088.0 | 612372.0 | Azerbaijani_Armed_Forces | Midget_submarine |
1088.0 | 1322733.0 | Azerbaijani_Armed_Forces | Black_January |
1088.0 | 3.5450533e7 | Azerbaijani_Armed_Forces | Day_of_the_Armed_Forces_of_Azerbaijan |
1088.0 | 309778.0 | Azerbaijani_Armed_Forces | Music_of_Azerbaijan |
1088.0 | 30136.0 | Azerbaijani_Armed_Forces | Royal_Thai_Armed_Forces |
1088.0 | 26748.0 | Azerbaijani_Armed_Forces | Switzerland |
1088.0 | 7469136.0 | Azerbaijani_Armed_Forces | Vietnam_People's_Armed_Forces |
1088.0 | 2.8096514e7 | Azerbaijani_Armed_Forces | Jamshid_Nakhchivanski_Military_Lyceum |
1088.0 | 3.2850702e7 | Azerbaijani_Armed_Forces | List_of_World_Heritage_Sites_in_Azerbaijan |
1088.0 | 6.3975362e7 | Azerbaijani_Armed_Forces | OC_Media |
1088.0 | 2.023768e7 | Azerbaijani_Armed_Forces | Russian_Ministry_of_Defence |
1088.0 | 6672192.0 | Azerbaijani_Armed_Forces | Sajid_dynasty |
1088.0 | 1908551.0 | Azerbaijani_Armed_Forces | Aid |
1088.0 | 5122310.0 | Azerbaijani_Armed_Forces | March_Days |
1088.0 | 2.3538754e7 | Azerbaijani_Armed_Forces | Wayback_Machine |
1088.0 | 4941803.0 | Azerbaijani_Armed_Forces | Azerbaijani_Navy |
1088.0 | 5876413.0 | Azerbaijani_Armed_Forces | Sasanian_Empire |
1088.0 | 2.3575502e7 | Azerbaijani_Armed_Forces | Tourism_in_Azerbaijan |
1088.0 | 1.0934404e7 | Azerbaijani_Armed_Forces | Wildlife_of_Azerbaijan |
1088.0 | 6.72382e7 | Azerbaijani_Armed_Forces | Chief_of_the_General_Staff_(Azerbaijan) |
1088.0 | 339643.0 | Azerbaijani_Armed_Forces | Flag_of_Azerbaijan |
1088.0 | 6.6096407e7 | Azerbaijani_Armed_Forces | Heydar_Aliyev_Military_Lyceum |
1088.0 | 3.5252903e7 | Azerbaijani_Armed_Forces | Nuclear_Non-Proliferation_Treaty |
1088.0 | 5844475.0 | Azerbaijani_Armed_Forces | Palestinian_National_Security_Forces |
1088.0 | 1.1125639e7 | Azerbaijani_Armed_Forces | Turkey |
1088.0 | 187660.0 | Azerbaijani_Armed_Forces | Yakovlev |
1088.0 | 6.6828259e7 | Azerbaijani_Armed_Forces | Afsharid_Iran |
1088.0 | 6.5910891e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Gubadly_Medal |
1088.0 | 3249318.0 | Azerbaijani_Armed_Forces | Shaddadids |
1088.0 | 6.7101223e7 | Azerbaijani_Armed_Forces | Training_and_Education_Center_of_the_Armed_Forces |
1088.0 | 6.5804585e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_ceasefire_agreement |
1088.0 | 7.03133e7 | Azerbaijani_Armed_Forces | 223rd_Rifle_Division |
1088.0 | 6.6185091e7 | Azerbaijani_Armed_Forces | 4th_Army_Corps_(Azerbaijan) |
1088.0 | 2.5137672e7 | Azerbaijani_Armed_Forces | Energy_in_Azerbaijan |
1088.0 | 4.1349212e7 | Azerbaijani_Armed_Forces | Minesweeper_(ship) |
1088.0 | 67639.0 | Azerbaijani_Armed_Forces | Politics_of_Azerbaijan |
1088.0 | 1.9376957e7 | Azerbaijani_Armed_Forces | Sanqacal |
1088.0 | 27318.0 | Azerbaijani_Armed_Forces | Singapore |
1088.0 | 1.7416221e7 | Azerbaijani_Armed_Forces | South_Africa |
1088.0 | 32927.0 | Azerbaijani_Armed_Forces | World_War_II |
1088.0 | 7095335.0 | Azerbaijani_Armed_Forces | Climate_of_Azerbaijan |
1088.0 | 6.5910824e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Shusha_Medal |
1088.0 | 1887429.0 | Azerbaijani_Armed_Forces | IISS |
1088.0 | 2.5278391e7 | Azerbaijani_Armed_Forces | List_of_protected_areas_of_Azerbaijan |
1088.0 | 5215751.0 | Azerbaijani_Armed_Forces | Multi-National_Force_–_Iraq |
1088.0 | 5.6441648e7 | Azerbaijani_Armed_Forces | Mughan_culture |
1088.0 | 368530.0 | Azerbaijani_Armed_Forces | Partnership_for_Peace |
1088.0 | 2.0823682e7 | Azerbaijani_Armed_Forces | Rovnag_Abdullayev |
1088.0 | 2.3916399e7 | Azerbaijani_Armed_Forces | Sport_in_Azerbaijan |
1088.0 | 3.6945373e7 | Azerbaijani_Armed_Forces | Theatre_in_Azerbaijan |
1088.0 | 7.0393652e7 | Azerbaijani_Armed_Forces | 641st_Special_Warfare_Naval_Unit |
1088.0 | 2152685.0 | Azerbaijani_Armed_Forces | Cypriot_National_Guard |
1088.0 | 3.6926008e7 | Azerbaijani_Armed_Forces | For_military_services_medal |
1088.0 | 182664.0 | Azerbaijani_Armed_Forces | Surface-to-air_missile |
1088.0 | 6.4343188e7 | Azerbaijani_Armed_Forces | Azerbaijan_High_Military_Aviation_School |
1088.0 | 69007.0 | Azerbaijani_Armed_Forces | Military_of_Bhutan |
1088.0 | 1.9859966e7 | Azerbaijani_Armed_Forces | Nasosnaya_Air_Base |
1088.0 | 1022955.0 | Azerbaijani_Armed_Forces | Supreme_Soviet_of_the_USSR |
1088.0 | 6.5451828e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_War |
1088.0 | 6.9447715e7 | Azerbaijani_Armed_Forces | 402nd_Rifle_Division |
1088.0 | 5.224123e7 | Azerbaijani_Armed_Forces | Borders_of_Azerbaijan |
1088.0 | 6.5910916e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Fuzuli_Medal |
1088.0 | 27027.0 | Azerbaijani_Armed_Forces | Republic_of_Korea_Armed_Forces |
1088.0 | 1.0942678e7 | Azerbaijani_Armed_Forces | Samedbey_Mehmandarov |
1088.0 | 30205.0 | Azerbaijani_Armed_Forces | Turkish_Armed_Forces |
1088.0 | 6.1609086e7 | Azerbaijani_Armed_Forces | Bronze_and_Iron_Age_in_Azerbaijan |
1088.0 | 4.7845161e7 | Azerbaijani_Armed_Forces | Nakhchivan_Airport |
1088.0 | 9874605.0 | Azerbaijani_Armed_Forces | Turkish_Air_Force_Academy |
1088.0 | 5639884.0 | Azerbaijani_Armed_Forces | Armenian–Azerbaijani_war_(1918–1920) |
1088.0 | 7107998.0 | Azerbaijani_Armed_Forces | Bodies_of_water_of_Azerbaijan |
1088.0 | 5843419.0 | Azerbaijani_Armed_Forces | France |
1088.0 | 877182.0 | Azerbaijani_Armed_Forces | Shirvan |
1088.0 | 6.0555433e7 | Azerbaijani_Armed_Forces | War_College_of_the_Azerbaijani_Armed_Forces |
1088.0 | 1.9079143e7 | Azerbaijani_Armed_Forces | Armed_Forces_of_South_Ossetia |
1088.0 | 2.3207406e7 | Azerbaijani_Armed_Forces | Azerbaijan_Border_Guard |
1088.0 | 2.1189576e7 | Azerbaijani_Armed_Forces | Azerbaijani_rug |
1088.0 | 5.5636355e7 | Azerbaijani_Armed_Forces | Baku_Higher_All-Arms_Command_School |
1088.0 | 25391.0 | Azerbaijani_Armed_Forces | Russia |
1088.0 | 40196.0 | Azerbaijani_Armed_Forces | Transport_in_Azerbaijan |
1088.0 | 4764461.0 | Azerbaijani_Armed_Forces | World_War_I |
1088.0 | 6.5911124e7 | Azerbaijani_Armed_Forces | For_Services_in_the_Rear_in_the_Patriotic_War_Medal |
1088.0 | 2.1659771e7 | Azerbaijani_Armed_Forces | Military_history_of_Azerbaijan |
1088.0 | 3.8392125e7 | Azerbaijani_Armed_Forces | Sonya_class_minesweeper |
1088.0 | 493727.0 | Azerbaijani_Armed_Forces | Aero_L-39_Albatros |
1088.0 | 6.7120883e7 | Azerbaijani_Armed_Forces | Armenian_Army |
1088.0 | 401606.0 | Azerbaijani_Armed_Forces | Index_of_Azerbaijan-related_articles |
1088.0 | 1.1169023e7 | Azerbaijani_Armed_Forces | Ministry_of_Defence_Industry_of_Azerbaijan |
1088.0 | 5.829427e7 | Azerbaijani_Armed_Forces | Mountains_of_Azerbaijan |
1088.0 | 638594.0 | Azerbaijani_Armed_Forces | Non-belligerent |
1088.0 | 3.2945088e7 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Azerbaijan |
1088.0 | 31750.0 | Azerbaijani_Armed_Forces | Ukraine |
1088.0 | 1.4465664e7 | Azerbaijani_Armed_Forces | Absheron_Peninsula |
1088.0 | 3.363915e7 | Azerbaijani_Armed_Forces | Azerbaijani_tea_culture |
1088.0 | 31730.0 | Azerbaijani_Armed_Forces | British_Armed_Forces |
1088.0 | 7105894.0 | Azerbaijani_Armed_Forces | Flora_of_Azerbaijan |
1088.0 | 68253.0 | Azerbaijani_Armed_Forces | List_of_sovereign_states |
1088.0 | 1.7935711e7 | Azerbaijani_Armed_Forces | Shirvanshah |
1088.0 | 1.2835793e7 | Azerbaijani_Armed_Forces | Azerbaijani_cuisine |
1088.0 | 2.1634642e7 | Azerbaijani_Armed_Forces | Novruz_in_Azerbaijan |
1088.0 | 1127085.0 | Azerbaijani_Armed_Forces | Stockholm_International_Peace_Research_Institute |
1088.0 | 6.6058582e7 | Azerbaijani_Armed_Forces | Hero_of_the_Patriotic_War |
1088.0 | 19279.0 | Azerbaijani_Armed_Forces | Mongolian_Armed_Forces |
1088.0 | 6.6404258e7 | Azerbaijani_Armed_Forces | Azerbaijani_Red_Army |
1088.0 | 6.614052e7 | Azerbaijani_Armed_Forces | Karim_Valiyev |
1088.0 | 6.2201975e7 | Azerbaijani_Armed_Forces | Nakhchivan_culture |
1088.0 | 5.4147626e7 | Azerbaijani_Armed_Forces | State_Security_Service_(Azerbaijan) |
1088.0 | 161087.0 | Azerbaijani_Armed_Forces | Timor_Leste_Defence_Force |
1088.0 | 5321.0 | Azerbaijani_Armed_Forces | Czech_Republic |
1088.0 | 67638.0 | Azerbaijani_Armed_Forces | Demographics_of_Azerbaijan |
1088.0 | 1.1776466e7 | Azerbaijani_Armed_Forces | Ethnic_minorities_in_Azerbaijan |
1088.0 | 5.3412468e7 | Azerbaijani_Armed_Forces | Military_ranks_of_Azerbaijan |
1088.0 | 457051.0 | Azerbaijani_Armed_Forces | National_emblem_of_Azerbaijan |
1088.0 | 2.3290453e7 | Azerbaijani_Armed_Forces | Peacekeeping_forces_of_Azerbaijan |
1088.0 | 4.4208502e7 | Azerbaijani_Armed_Forces | SA-3_Goa |
1088.0 | 3.3949683e7 | Azerbaijani_Armed_Forces | Air_Force_Day |
1088.0 | 6.0544953e7 | Azerbaijani_Armed_Forces | Azerbaijan_Higher_Military_Academy |
1088.0 | 79745.0 | Azerbaijani_Armed_Forces | Cluster_munition |
1088.0 | 21263.0 | Azerbaijani_Armed_Forces | Korean_People's_Army |
1088.0 | 2.2462867e7 | Azerbaijani_Armed_Forces | Soviet_Ground_Forces |
1088.0 | 382302.0 | Azerbaijani_Armed_Forces | Su-25 |
1088.0 | 6.4334706e7 | Azerbaijani_Armed_Forces | Azerbaijan_Higher_Naval_Academy |
1088.0 | 7077602.0 | Azerbaijani_Armed_Forces | Environment_of_Azerbaijan |
1088.0 | 865389.0 | Azerbaijani_Armed_Forces | International_Crisis_Group |
1088.0 | 1.8947898e7 | Azerbaijani_Armed_Forces | Amnesty_International |
1088.0 | 746.0 | Azerbaijani_Armed_Forces | Azerbaijan |
1088.0 | 1.9859938e7 | Azerbaijani_Armed_Forces | Baku_Kala_Air_Base |
1088.0 | 1610018.0 | Azerbaijani_Armed_Forces | Hong_Kong_Garrison |
1088.0 | 1478175.0 | Azerbaijani_Armed_Forces | Public_holidays_in_Azerbaijan |
1088.0 | 69328.0 | Azerbaijani_Armed_Forces | United_Arab_Emirates |
1088.0 | 3.9780666e7 | Azerbaijani_Armed_Forces | History_of_the_name_Azerbaijan |
1088.0 | 6.7122586e7 | Azerbaijani_Armed_Forces | 777th_Special_Forces_Regiment |
1088.0 | 2.2576829e7 | Azerbaijani_Armed_Forces | Agriculture_in_Azerbaijan |
1088.0 | 1081.0 | Azerbaijani_Armed_Forces | Economy_of_Azerbaijan |
1088.0 | 3764215.0 | Azerbaijani_Armed_Forces | Prime_Minister_of_Azerbaijan |
1088.0 | 27276.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Saudi_Arabia |
1088.0 | 4566.0 | Azerbaijani_Armed_Forces | Baku |
1088.0 | 40195.0 | Azerbaijani_Armed_Forces | Telecommunications_in_Azerbaijan |
1088.0 | 6.7538996e7 | Azerbaijani_Armed_Forces | Şəmkir |
1088.0 | 2.5131731e7 | Azerbaijani_Armed_Forces | Azerbaijani_Army |
1088.0 | 2.9149908e7 | Azerbaijani_Armed_Forces | Coat_of_arms_of_Azerbaijan |
1088.0 | 1.6569312e7 | Azerbaijani_Armed_Forces | Education_in_Azerbaijan |
1088.0 | 22489.0 | Azerbaijani_Armed_Forces | Oklahoma |
1088.0 | 2.7167856e7 | Azerbaijani_Armed_Forces | Azerbaijani_Air_Force |
1088.0 | 15166.0 | Azerbaijani_Armed_Forces | Infantry_fighting_vehicle |
1088.0 | 7015198.0 | Azerbaijani_Armed_Forces | LGBT_rights_in_Azerbaijan |
1088.0 | 7.1994248e7 | Azerbaijani_Armed_Forces | Defense_Forces_of_Georgia |
1088.0 | 2.7911049e7 | Azerbaijani_Armed_Forces | Ministry_of_Defence_(Azerbaijan) |
1088.0 | 1.2975707e7 | Azerbaijani_Armed_Forces | Safar_Abiyev |
1088.0 | 26779.0 | Azerbaijani_Armed_Forces | Soviet_Union |
1088.0 | 6.1362503e7 | Azerbaijani_Armed_Forces | Stone_Age_in_Azerbaijan |
1088.0 | 17760.0 | Azerbaijani_Armed_Forces | Lao_People's_Armed_Forces |
1088.0 | 192825.0 | Azerbaijani_Armed_Forces | Azerbaijani_language |
1088.0 | 194200.0 | Azerbaijani_Armed_Forces | International_Security_Assistance_Force |
1088.0 | 2.0222257e7 | Azerbaijani_Armed_Forces | MKEK |
1088.0 | 21133.0 | Azerbaijani_Armed_Forces | NATO |
1088.0 | 4116970.0 | Azerbaijani_Armed_Forces | Central_Bank_of_Azerbaijan |
1088.0 | 400853.0 | Azerbaijani_Armed_Forces | Hero_of_the_Soviet_Union |
1088.0 | 1.6278429e7 | Azerbaijani_Armed_Forces | Outline_of_Azerbaijan |
1088.0 | 2.1288922e7 | Azerbaijani_Armed_Forces | Azerbaijan_during_World_War_II |
1088.0 | 1.0927351e7 | Azerbaijani_Armed_Forces | Azerbaijani_National_Guard |
1088.0 | 4020775.0 | Azerbaijani_Armed_Forces | First_Nagorno-Karabakh_War |
1088.0 | 5.515162e7 | Azerbaijani_Armed_Forces | ISSN_(identifier) |
1088.0 | 14532.0 | Azerbaijani_Armed_Forces | Italy |
1088.0 | 1986639.0 | Azerbaijani_Armed_Forces | Languages_of_Azerbaijan |
1088.0 | 4.1471871e7 | Azerbaijani_Armed_Forces | List_of_lakes_of_Azerbaijan |
1088.0 | 917076.0 | Azerbaijani_Armed_Forces | Ayaz_Mutallibov |
1088.0 | 213173.0 | Azerbaijani_Armed_Forces | Conscripts |
1088.0 | 1082.0 | Azerbaijani_Armed_Forces | Geography_of_Azerbaijan |
1088.0 | 9526432.0 | Azerbaijani_Armed_Forces | MRAP |
1088.0 | 386742.0 | Azerbaijani_Armed_Forces | SA-2 |
1088.0 | 412390.0 | Azerbaijani_Armed_Forces | Administrative_divisions_of_Azerbaijan |
1088.0 | 30215.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Turkmenistan |
1088.0 | 5.0716679e7 | Azerbaijani_Armed_Forces | Nasosnaya_(air_base) |
1088.0 | 25194.0 | Azerbaijani_Armed_Forces | Qatar_Armed_Forces |
1088.0 | 3206857.0 | Azerbaijani_Armed_Forces | Religion_in_Azerbaijan |
1088.0 | 3.5663369e7 | Azerbaijani_Armed_Forces | Sitalchay_Military_Airbase |
1088.0 | 3.8938602e7 | Azerbaijani_Armed_Forces | \"For_Faultless_Service\"_medal |
1088.0 | 6.7262853e7 | Azerbaijani_Armed_Forces | Ali-Agha_Shikhlinski |
1088.0 | 1351138.0 | Azerbaijani_Armed_Forces | Elections_in_Azerbaijan |
1088.0 | 14650.0 | Azerbaijani_Armed_Forces | Indonesian_National_Armed_Forces |
1088.0 | 6.6168931e7 | Azerbaijani_Armed_Forces | Marine_Infantry_of_Azerbaijan |
1088.0 | 1300375.0 | Azerbaijani_Armed_Forces | Treaty_on_Conventional_Armed_Forces_in_Europe |
1088.0 | 31861.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Republic_of_Uzbekistan |
1088.0 | 7658483.0 | Azerbaijani_Armed_Forces | Section_907 |
1088.0 | 1.0927815e7 | Azerbaijani_Armed_Forces | Caspian_Guard_Initiative |
1088.0 | 1.9653787e7 | Azerbaijani_Armed_Forces | Caspian_Sea |
1088.0 | 3.4048567e7 | Azerbaijani_Armed_Forces | Marauder_(vehicle) |
1088.0 | 5.5829912e7 | Azerbaijani_Armed_Forces | Natural_resources_of_Azerbaijan |
1088.0 | 877787.0 | Azerbaijani_Armed_Forces | Azerbaijani_literature |
1088.0 | 3708.0 | Azerbaijani_Armed_Forces | Brussels |
1088.0 | 214529.0 | Azerbaijani_Armed_Forces | Dependent_territory |
1088.0 | 5.5049264e7 | Azerbaijani_Armed_Forces | ISBN_(identifier) |
1088.0 | 9282173.0 | Azerbaijani_Armed_Forces | Israel |
1088.0 | 1.2085342e7 | Azerbaijani_Armed_Forces | Khanates_of_the_Caucasus |
1088.0 | 1.9374465e7 | Azerbaijani_Armed_Forces | Xətai_raion |
1088.0 | 4059749.0 | Azerbaijani_Armed_Forces | Artsakh_Defence_Army |
1088.0 | 8696322.0 | Azerbaijani_Armed_Forces | Azerbaijan_National_Academy_of_Sciences |
1088.0 | 4941797.0 | Azerbaijani_Armed_Forces | Azerbaijani_Land_Forces |
1088.0 | 188675.0 | Azerbaijani_Armed_Forces | Baltic_states |
1088.0 | 3.0322746e7 | Azerbaijani_Armed_Forces | General_Staff_of_Azerbaijani_Armed_Forces |
1088.0 | 2785204.0 | Azerbaijani_Armed_Forces | Japan_Self-Defense_Forces |
1088.0 | 16702.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Kyrgyz_Republic |
1088.0 | 539716.0 | Azerbaijani_Armed_Forces | Landing_craft |
1088.0 | 2.3269917e7 | Azerbaijani_Armed_Forces | Military_of_Azerbaijan |
1088.0 | 7193518.0 | Azerbaijani_Armed_Forces | Special_Forces_Command_(Turkey) |
1088.0 | 1.3634062e7 | Azerbaijani_Armed_Forces | Constitution_of_Azerbaijan |
1088.0 | 7.1858151e7 | Azerbaijani_Armed_Forces | Dollyar_Air_Base |
1088.0 | 2.812722e7 | Azerbaijani_Armed_Forces | List_of_earthquakes_in_Azerbaijan |
1088.0 | 23235.0 | Azerbaijani_Armed_Forces | Pakistan |
1088.0 | 1049084.0 | Azerbaijani_Armed_Forces | U.S._National_Guard |
1088.0 | 6.1912815e7 | Azerbaijani_Armed_Forces | \"90th_Anniversary_of_the_Armed_Forces_of_Azerbaijan_(1918–2008)\"_Medal |
1088.0 | 698454.0 | Azerbaijani_Armed_Forces | Azerbaijanis |
1088.0 | 9322682.0 | Azerbaijani_Armed_Forces | Karabakh |
1088.0 | 802.0 | Azerbaijani_Armed_Forces | Ankara |
1088.0 | 23369.0 | Azerbaijani_Armed_Forces | Pakistan_Armed_Forces |
1088.0 | 4501200.0 | Azerbaijani_Armed_Forces | Parthian_Empire |
1088.0 | 4.190231e7 | Azerbaijani_Armed_Forces | Special_Forces_of_Azerbaijan |
1088.0 | 3.1022059e7 | Azerbaijani_Armed_Forces | State_Oil_Company_of_Azerbaijan_Republic |
1088.0 | 380322.0 | Azerbaijani_Armed_Forces | Il-76 |
1088.0 | 1492960.0 | Azerbaijani_Armed_Forces | Nakhchivan_(city) |
1088.0 | 6.2087908e7 | Azerbaijani_Armed_Forces | Russo-Persian_War_(1804–13) |
1088.0 | 6446390.0 | Azerbaijani_Armed_Forces | State_Partnership_Program |
1088.0 | 905795.0 | Azerbaijani_Armed_Forces | Treaty_of_Gulistan |
1088.0 | 6.6016112e7 | Azerbaijani_Armed_Forces | Memorial_Day_(Azerbaijan) |
1088.0 | 3.1854531e7 | Azerbaijani_Armed_Forces | Namer_(vehicle) |
1088.0 | 30095.0 | Azerbaijani_Armed_Forces | Republic_of_China_Armed_Forces |
1088.0 | 4.3825422e7 | Azerbaijani_Armed_Forces | S-200_Angara/Vega/Dubna |
1088.0 | 2.3408142e7 | Azerbaijani_Armed_Forces | Sri_Lanka_Armed_Forces |
1088.0 | 6.6317677e7 | Azerbaijani_Armed_Forces | YARASA_Special_Forces |
1088.0 | 1.0254803e7 | Azerbaijani_Armed_Forces | Cinema_of_Azerbaijan |
1088.0 | 17779.0 | Azerbaijani_Armed_Forces | Lebanese_Armed_Forces |
1088.0 | 5.9921988e7 | Azerbaijani_Armed_Forces | Metallurgy_in_Azerbaijan |
1088.0 | 27479.0 | Azerbaijani_Armed_Forces | Syrian_Armed_Forces |
1088.0 | 6.7613776e7 | Azerbaijani_Armed_Forces | TecSAR |
1088.0 | 1.2339349e7 | Azerbaijani_Armed_Forces | Architecture_of_Azerbaijan |
1088.0 | 6.6286297e7 | Azerbaijani_Armed_Forces | Karam_Mustafayev |
1088.0 | 26295.0 | Azerbaijani_Armed_Forces | Russian_Civil_War |
1088.0 | 5424688.0 | Azerbaijani_Armed_Forces | Jordanian_Armed_Forces |
1088.0 | 956689.0 | Azerbaijani_Armed_Forces | Kura–Araxes_culture |
1088.0 | 5024972.0 | Azerbaijani_Armed_Forces | Operation_Edelweiss |
1088.0 | 3.6369933e7 | Azerbaijani_Armed_Forces | Orders,_decorations,_and_medals_of_Azerbaijan |
1088.0 | 2.6964606e7 | Azerbaijani_Armed_Forces | Austria |
1088.0 | 6.4611227e7 | Azerbaijani_Armed_Forces | Azerbaijani_Air_and_Air_Defence_Force |
1088.0 | 6.698864e7 | Azerbaijani_Armed_Forces | Caves_of_Azerbaijan |
1088.0 | 1.8846287e7 | Azerbaijani_Armed_Forces | Jabrayil |
1088.0 | 7.18581e7 | Azerbaijani_Armed_Forces | Kyurdamir_Air_Base |
1088.0 | 7115553.0 | Azerbaijani_Armed_Forces | Barda,_Azerbaijan |
1088.0 | 6.7740154e7 | Azerbaijani_Armed_Forces | Jane's_Information_Group |
1088.0 | 3.0455197e7 | Azerbaijani_Armed_Forces | Khojaly–Gadabay_culture |
1088.0 | 1519005.0 | Azerbaijani_Armed_Forces | Sultan_of_Oman's_Armed_Forces |
1088.0 | 581195.0 | Azerbaijani_Armed_Forces | Copyright_status_of_works_by_the_federal_government_of_the_United_States |
1088.0 | 7077806.0 | Azerbaijani_Armed_Forces | Orography_of_Azerbaijan |
1088.0 | 1177214.0 | Azerbaijani_Armed_Forces | Pennon |
1088.0 | 740508.0 | Azerbaijani_Armed_Forces | Republic_of_Azerbaijan |
1088.0 | 1.0928518e7 | Azerbaijani_Armed_Forces | Azerbaijani_Coast_Guard |
1088.0 | 4016533.0 | Azerbaijani_Armed_Forces | National_Assembly_(Azerbaijan) |
1088.0 | 1.9510878e7 | Azerbaijani_Armed_Forces | Sitalcay |
1088.0 | 7.1403487e7 | Azerbaijani_Armed_Forces | State_Border_Service_(Azerbaijan) |
1088.0 | 5366487.0 | Azerbaijani_Armed_Forces | Human_rights_in_Azerbaijan |
1088.0 | 1.1356544e7 | Azerbaijani_Armed_Forces | Law_enforcement_in_Azerbaijan |
1088.0 | 214413.0 | Azerbaijani_Armed_Forces | Armenian_diaspora |
1088.0 | 6.591061e7 | Azerbaijani_Armed_Forces | Hero_of_the_Patriotic_War_Medal |
1088.0 | 123503.0 | Azerbaijani_Armed_Forces | MiG-21 |
1088.0 | 3.3570513e7 | Azerbaijani_Armed_Forces | Russians_in_Azerbaijan |
1088.0 | 7.1286679e7 | Azerbaijani_Armed_Forces | Shulaveri-Shomu_culture |
1088.0 | 4.5541218e7 | Azerbaijani_Armed_Forces | 295th_Motor_Rifle_Division |
1088.0 | 1.8838818e7 | Azerbaijani_Armed_Forces | Bibiheybət |
1088.0 | 5.5095974e7 | Azerbaijani_Armed_Forces | Healthcare_in_Azerbaijan |
1088.0 | 20282.0 | Azerbaijani_Armed_Forces | Mechanized_infantry |
1088.0 | 3.7721373e7 | Azerbaijani_Armed_Forces | Medicine_in_Azerbaijan |
1088.0 | 20394.0 | Azerbaijani_Armed_Forces | Tatmadaw |
1088.0 | 4.2543864e7 | Azerbaijani_Armed_Forces | United_States_Air_Forces_in_Europe |
1088.0 | 4.0963939e7 | Azerbaijani_Armed_Forces | Zakir_Hasanov |
1088.0 | 2.8119649e7 | Azerbaijani_Armed_Forces | Special_Purpose_Police_Unit |
1088.0 | 31717.0 | Azerbaijani_Armed_Forces | United_Kingdom |
1088.0 | 6064651.0 | Azerbaijani_Armed_Forces | Eldiguzids |
1088.0 | 6.5911037e7 | Azerbaijani_Armed_Forces | For_Distinction_in_Battle_Medal |
1088.0 | 14939.0 | Azerbaijani_Armed_Forces | Intercontinental_ballistic_missile |
1088.0 | 1.9360365e7 | Azerbaijani_Armed_Forces | North_Atlantic_Treaty_Organization |
1088.0 | 1097.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_Armenia |
1088.0 | 23448.0 | Azerbaijani_Armed_Forces | Armed_Forces_of_the_Philippines |
1088.0 | 4380486.0 | Azerbaijani_Armed_Forces | Armenian–Tatar_massacres_of_1905–1907 |
1088.0 | 407062.0 | Azerbaijani_Armed_Forces | Azərbaycan_marşı |
1088.0 | 2.3465971e7 | Azerbaijani_Armed_Forces | Government_of_Azerbaijan |
1088.0 | 7877570.0 | Azerbaijani_Armed_Forces | Individual_Partnership_Action_Plan |
1088.0 | 5.5289023e7 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Armenia |
1088.0 | 6.4783403e7 | Azerbaijani_Armed_Forces | 396th_Rifle_Division |
1088.0 | 6.9019186e7 | Azerbaijani_Armed_Forces | 416th_Rifle_Division_(Soviet_Union) |
1088.0 | 2.2469823e7 | Azerbaijani_Armed_Forces | Azerbaijani_peacekeeping_forces |
1088.0 | 3.5079877e7 | Azerbaijani_Armed_Forces | Azerbaijani_traditional_clothing |
1088.0 | 5043324.0 | Azerbaijani_Armed_Forces | Iraq_War |
1088.0 | 4627429.0 | Azerbaijani_Armed_Forces | Iraqi_Armed_Forces |
1088.0 | 1.905571e7 | Azerbaijani_Armed_Forces | Jebrayil |
1088.0 | 1.3969214e7 | Azerbaijani_Armed_Forces | Main_Agency_of_Missiles_and_Artillery_of_the_Ministry_of_Defense_of_the_Russian_Federation |
1088.0 | 6040932.0 | Azerbaijani_Armed_Forces | Security_Forces_Command |
1088.0 | 1151523.0 | Azerbaijani_Armed_Forces | Azerbaijani_manat |
1088.0 | 213497.0 | Azerbaijani_Armed_Forces | Caucasian_Albania |
1088.0 | 6.5910879e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Kalbajar_Medal |
1088.0 | 5245787.0 | Azerbaijani_Armed_Forces | GUAM |
1088.0 | 6.7667374e7 | Azerbaijani_Armed_Forces | Kara_Koyunlu |
1088.0 | 1.8933221e7 | Azerbaijani_Armed_Forces | Royal_Brunei_Armed_Forces |
1088.0 | 31841.0 | Azerbaijani_Armed_Forces | United_Arab_Emirates_Armed_Forces |
1088.0 | 68932.0 | Azerbaijani_Armed_Forces | Bangladesh_Armed_Forces |
1088.0 | 1115368.0 | Azerbaijani_Armed_Forces | Maldives_National_Defence_Force |
1088.0 | 8417589.0 | Azerbaijani_Armed_Forces | Sallarid_dynasty |
1088.0 | 6.5431221e7 | Azerbaijani_Armed_Forces | 2020_Nagorno-Karabakh_war |
1088.0 | 661551.0 | Azerbaijani_Armed_Forces | Ganja,_Azerbaijan |
1088.0 | 2.6217562e7 | Azerbaijani_Armed_Forces | History_of_Azerbaijani_animation |
1088.0 | 4562230.0 | Azerbaijani_Armed_Forces | Oklahoma_National_Guard |
1088.0 | 6.7228635e7 | Azerbaijani_Armed_Forces | Rovshan_Akbarov |
1088.0 | 8486749.0 | Azerbaijani_Armed_Forces | Russian_Space_Forces |
1088.0 | 382305.0 | Azerbaijani_Armed_Forces | Su-24 |
1088.0 | 7940585.0 | Azerbaijani_Armed_Forces | Aq_Qoyunlu |
1088.0 | 5042916.0 | Azerbaijani_Armed_Forces | Canada |
1088.0 | 510603.0 | Azerbaijani_Armed_Forces | Jane's_Fighting_Ships |
1088.0 | 1.1447628e7 | Azerbaijani_Armed_Forces | Abkhazian_Armed_Forces |
1088.0 | 5731277.0 | Azerbaijani_Armed_Forces | Fauna_of_Azerbaijan |
1088.0 | 2.2765442e7 | Azerbaijani_Armed_Forces | Ilham_Aliyev |
1088.0 | 542300.0 | Azerbaijani_Armed_Forces | Ilkhanate |
1088.0 | 5.5284726e7 | Azerbaijani_Armed_Forces | Judiciary_of_Azerbaijan |
1088.0 | 3.4024533e7 | Azerbaijani_Armed_Forces | Leyla-Tepe_culture |
1088.0 | 4674848.0 | Azerbaijani_Armed_Forces | Russo-Persian_War_(1826–1828) |
1088.0 | 2.3207828e7 | Azerbaijani_Armed_Forces | Azerbaijan_Defense_Industry |
1088.0 | 1.1670391e7 | Azerbaijani_Armed_Forces | Gabala_Radar_Station |
1088.0 | 2.8087409e7 | Azerbaijani_Armed_Forces | Khosrov_bey_Sultanov |
1088.0 | 343356.0 | Azerbaijani_Armed_Forces | List_of_cities_in_Azerbaijan |
1088.0 | 1.7967625e7 | Azerbaijani_Armed_Forces | Mineral_industry_of_Azerbaijan |
1088.0 | 6.59111e7 | Azerbaijani_Armed_Forces | Participant_of_the_Patriotic_War_Medal |
1088.0 | 66890.0 | Azerbaijani_Armed_Forces | People's_Liberation_Army |
1088.0 | 4247739.0 | Azerbaijani_Armed_Forces | U.S._Navy_SEALs |
1088.0 | 2.8017536e7 | Azerbaijani_Armed_Forces | Valeh_Barshadli |
1088.0 | 9609093.0 | Azerbaijani_Armed_Forces | Beylagan_(city) |
1088.0 | 519489.0 | Azerbaijani_Armed_Forces | Eastern_Front_(World_War_II) |
1088.0 | 1087.0 | Azerbaijani_Armed_Forces | Foreign_relations_of_Azerbaijan |
1088.0 | 1.1197435e7 | Azerbaijani_Armed_Forces | Maciej_Sulkiewicz |
1088.0 | 938372.0 | Azerbaijani_Armed_Forces | President_of_Azerbaijan |
1088.0 | 32817.0 | Azerbaijani_Armed_Forces | Vladimir_Putin |
1088.0 | 6.5624452e7 | Azerbaijani_Armed_Forces | 2016_Nagorno-Karabakh_clashes |
1088.0 | 2.3597901e7 | Azerbaijani_Armed_Forces | Azadliq_Square,_Baku |
1088.0 | 6131588.0 | Azerbaijani_Armed_Forces | Petroleum_industry_in_Azerbaijan |
1088.0 | 6.631834e7 | Azerbaijani_Armed_Forces | Second_Karabakh_War |
1088.0 | 1.156279e7 | Azerbaijani_Armed_Forces | Second_World_War |
1088.0 | 2884207.0 | Azerbaijani_Armed_Forces | Advanced_Research_and_Assessment_Group |
1088.0 | 2.0024921e7 | Azerbaijani_Armed_Forces | Armenian-occupied_territories_surrounding_Nagorno-Karabakh |
1088.0 | 408283.0 | Azerbaijani_Armed_Forces | Azerbaijani_Popular_Front_Party |
1088.0 | 6.5910929e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Khojavend_Medal |
1088.0 | 1.1623685e7 | Azerbaijani_Armed_Forces | Freedom_Support_Act |
1088.0 | 27019.0 | Azerbaijani_Armed_Forces | South_Korea |
1088.0 | 2.3207385e7 | Azerbaijani_Armed_Forces | Azerbaijan_Navy |
1088.0 | 6367906.0 | Azerbaijani_Armed_Forces | Azerbaijani_dances |
1088.0 | 704623.0 | Azerbaijani_Armed_Forces | CIA |
1088.0 | 3.7265091e7 | Azerbaijani_Armed_Forces | Caspian_Sea_Flotilla |
1088.0 | 2071240.0 | Azerbaijani_Armed_Forces | Culture_of_Azerbaijan |
1088.0 | 7761715.0 | Azerbaijani_Armed_Forces | Red_Army_invasion_of_Georgia |
1088.0 | 19076.0 | Azerbaijani_Armed_Forces | Macao_Garrison |
1088.0 | 6.4207973e7 | Azerbaijani_Armed_Forces | Media_of_Azerbaijan |
1088.0 | 182309.0 | Azerbaijani_Armed_Forces | MiG-29 |
1088.0 | 59510.0 | Azerbaijani_Armed_Forces | Russians |
1088.0 | 4363966.0 | Azerbaijani_Armed_Forces | History_of_Azerbaijan |
1088.0 | 65220.0 | Azerbaijani_Armed_Forces | Nagorno-Karabakh |
1088.0 | 6.1170719e7 | Azerbaijani_Armed_Forces | Azerbaijani_Army_100th_anniversary_medal |
1088.0 | 380320.0 | Azerbaijani_Armed_Forces | MiG-25 |
1088.0 | 21330.0 | Azerbaijani_Armed_Forces | Nepalese_Armed_Forces |
1088.0 | 25682.0 | Azerbaijani_Armed_Forces | Red_Army |
1088.0 | 5.2597609e7 | Azerbaijani_Armed_Forces | Swietochowski,_Tadeusz |
1088.0 | 1711234.0 | Azerbaijani_Armed_Forces | United_States_European_Command |
1088.0 | 6.5910946e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Sugovushan_Medal |
1088.0 | 523670.0 | Azerbaijani_Armed_Forces | List_of_states_with_limited_recognition |
1088.0 | 3.0314065e7 | Azerbaijani_Armed_Forces | Najmeddin_Sadikov |
1088.0 | 4.3202421e7 | Azerbaijani_Armed_Forces | The_Land_of_Fire |
1088.0 | 6.6065854e7 | Azerbaijani_Armed_Forces | Baku_Victory_Parade_of_2020 |
1088.0 | 3434750.0 | Azerbaijani_Armed_Forces | United_States |
1088.0 | 3.9140285e7 | Azerbaijani_Armed_Forces | 23rd_Guards_Motor_Rifle_Division |
1088.0 | 5.7562858e7 | Azerbaijani_Armed_Forces | Elta |
1088.0 | 5306394.0 | Azerbaijani_Armed_Forces | Haditha,_Iraq |
1088.0 | 1.4305018e7 | Azerbaijani_Armed_Forces | Islamic_Republic_of_Iran_Armed_Forces |
1088.0 | 7150805.0 | Azerbaijani_Armed_Forces | National_parks_of_Azerbaijan |
1088.0 | 3295318.0 | Azerbaijani_Armed_Forces | Patrol_craft |
1088.0 | 1340560.0 | Azerbaijani_Armed_Forces | Treaty_of_Turkmenchay |
1088.0 | 2563036.0 | Azerbaijani_Armed_Forces | Hazi_Aslanov |
1088.0 | 381496.0 | Azerbaijani_Armed_Forces | JF-17 |
1088.0 | 3.5482625e7 | Azerbaijani_Armed_Forces | Armavir_Radar_Station |
1088.0 | 404448.0 | Azerbaijani_Armed_Forces | Azerbaijan_Soviet_Socialist_Republic |
1088.0 | 2.1653069e7 | Azerbaijani_Armed_Forces | Geology_of_Azerbaijan |
1088.0 | 4.0503488e7 | Azerbaijani_Armed_Forces | List_of_equipment_of_the_Azerbaijani_Land_Forces |
1088.0 | 408284.0 | Azerbaijani_Armed_Forces | List_of_political_parties_in_Azerbaijan |
1088.0 | 3.0927438e7 | Azerbaijani_Armed_Forces | Achaemenid_Empire |
1088.0 | 6.5910935e7 | Azerbaijani_Armed_Forces | For_the_Liberation_of_Jabrayil_Medal |
1088.0 | 162017.0 | Azerbaijani_Armed_Forces | Rayon |
1088.0 | 67658.0 | Azerbaijani_Armed_Forces | Bahrain_Defence_Force |
1088.0 | 4788086.0 | Azerbaijani_Armed_Forces | Azerbaijan_Medical_University |
1088.0 | 5.415509e7 | Azerbaijani_Armed_Forces | State_Service_for_Mobilization_and_Conscription_of_Azerbaijan |
1238.0 | 44975.0 | Atomic_bomb | Phrase |
1238.0 | 21785.0 | Atomic_bomb | Nuclear_weapon |
1342.0 | 1400.0 | A.D | Anno_Domini |
1580.0 | 6.5715134e7 | Alcidamas | RERO_(identifier) |
1580.0 | 13621.0 | Alcidamas | Hadrian |
1580.0 | 6.3435015e7 | Alcidamas | JSTOR_(identifier) |
1580.0 | 5.5017667e7 | Alcidamas | Muse |
1580.0 | 22022.0 | Alcidamas | Nietzsche |
1580.0 | 99665.0 | Alcidamas | Friedrich_Blass |
1580.0 | 168260.0 | Alcidamas | Isocrates |
1580.0 | 22537.0 | Alcidamas | Odysseus |
1580.0 | 2093019.0 | Alcidamas | Palamedes_(mythology) |
1580.0 | 1715161.0 | Alcidamas | Aeolis |
1580.0 | 4682035.0 | Alcidamas | Martin_Litchfield_West |
1580.0 | 4633006.0 | Alcidamas | Elaea_(Aeolis) |
1580.0 | 1216.0 | Alcidamas | Athens |
1580.0 | 5.5049264e7 | Alcidamas | ISBN_(identifier) |
1580.0 | 1.8935551e7 | Alcidamas | Public_domain |
1580.0 | 2.6273281e7 | Alcidamas | Messenia_(ancient_region) |
1580.0 | 1.5103874e7 | Alcidamas | Contest_of_Homer_and_Hesiod |
1580.0 | 66540.0 | Alcidamas | Ancient_Greece |
1580.0 | 98394.0 | Alcidamas | Gorgias |
1580.0 | 6771651.0 | Alcidamas | Teubner |
1580.0 | 25447.0 | Alcidamas | Rhetoric |
1580.0 | 49646.0 | Alcidamas | Sophist |
1580.0 | 6.3717472e7 | Alcidamas | SUDOC_(identifier) |
1580.0 | 6.371749e7 | Alcidamas | VIAF_(identifier) |
1580.0 | 1692816.0 | Alcidamas | Rhetoric_(Aristotle) |
1580.0 | 308.0 | Alcidamas | Aristotle |
1580.0 | 72624.0 | Alcidamas | Encyclopædia_Britannica_Eleventh_Edition |
1580.0 | 6.3826803e7 | Alcidamas | ISNI_(identifier) |
1580.0 | 11887.0 | Alcidamas | Greek_language |
1580.0 | 100109.0 | Alcidamas | John_Pentland_Mahaffy |
1580.0 | 30059.0 | Alcidamas | Troy |
1580.0 | 2.4392429e7 | Alcidamas | Commentaria_in_Aristotelem_Graeca |
1645.0 | 5.2933884e7 | Ibn_al-Haytham | Abu'l-Hasan_Bayhaqi |
1645.0 | 3.1562331e7 | Ibn_al-Haytham | Al-Kashkari |
1645.0 | 5280356.0 | Ibn_al-Haytham | Ibn_Sab'in |
1645.0 | 998087.0 | Ibn_al-Haytham | Ibn_Yunus |
1645.0 | 5.6795161e7 | Ibn_al-Haytham | Ibn_al-A'lam |
1645.0 | 1845906.0 | Ibn_al-Haytham | Jaghmini |
1645.0 | 4.2199619e7 | Ibn_al-Haytham | Schools_of_Islamic_theology |
1645.0 | 2042047.0 | Ibn_al-Haytham | Burhan-ud-din_Kermani |
1645.0 | 6596725.0 | Ibn_al-Haytham | Equatorium |
1645.0 | 5553121.0 | Ibn_al-Haytham | Latin_translations_of_the_12th_century |
1645.0 | 21664.0 | Ibn_al-Haytham | Nebula |
1645.0 | 4.7324624e7 | Ibn_al-Haytham | Sadr_ad-Din_Dashtaki |
1645.0 | 1.0536691e7 | Ibn_al-Haytham | Thabit_ibn_Qurra |
1645.0 | 3.7091344e7 | Ibn_al-Haytham | Al-Harith_ibn_Kalada |
1645.0 | 3.5633616e7 | Ibn_al-Haytham | Gholamhossein_Ebrahimi_Dinani |
1645.0 | 3022468.0 | Ibn_al-Haytham | Qalb |
1645.0 | 5334607.0 | Ibn_al-Haytham | Africa |
1645.0 | 4849167.0 | Ibn_al-Haytham | Brethren_of_Purity |
1645.0 | 2710259.0 | Ibn_al-Haytham | Jonah_ibn_Janah |
1645.0 | 1973599.0 | Ibn_al-Haytham | Martin_Lings |
1645.0 | 6.5715134e7 | Ibn_al-Haytham | RERO_(identifier) |
1645.0 | 3.7489481e7 | Ibn_al-Haytham | Transactions_of_the_American_Philosophical_Society |
1645.0 | 5.1215718e7 | Ibn_al-Haytham | Witelo |
1645.0 | 1.2765677e7 | Ibn_al-Haytham | Da'ud_Abu_al-Fadl |
1645.0 | 1591728.0 | Ibn_al-Haytham | Emission_theory_(vision) |
1645.0 | 13758.0 | Ibn_al-Haytham | History_of_physics |
1645.0 | 5.0899261e7 | Ibn_al-Haytham | Ibrahim_ibn_Said_al-Sahli |
1645.0 | 6.4412472e7 | Ibn_al-Haytham | Qazi_Sa’id_Qumi |
1645.0 | 9117159.0 | Ibn_al-Haytham | Sahl_ibn_Bishr |
1645.0 | 1766908.0 | Ibn_al-Haytham | 'Ali_ibn_al-'Abbas_al-Majusi |
1645.0 | 4.7317789e7 | Ibn_al-Haytham | 1001_Inventions_and_the_World_of_Ibn_Al-Haytham |
1645.0 | 5367777.0 | Ibn_al-Haytham | Abu_Sa'id_al-Afif |
1645.0 | 506138.0 | Ibn_al-Haytham | Ali_ibn_Sahl_Rabban_al-Tabari |
1645.0 | 317238.0 | Ibn_al-Haytham | Book_of_Fixed_Stars |
1645.0 | 14400.0 | Ibn_al-Haytham | History_of_science |
1645.0 | 1070221.0 | Ibn_al-Haytham | Human_eye |
1645.0 | 14909.0 | Ibn_al-Haytham | Inertia |
1645.0 | 7898478.0 | Ibn_al-Haytham | Jamal_ad-Din_Bukhari |
1645.0 | 482938.0 | Ibn_al-Haytham | Medieval_medicine_of_Western_Europe |
1645.0 | 4.6320983e7 | Ibn_al-Haytham | Shah_Waliullah_Dehlawi |
1645.0 | 1593115.0 | Ibn_al-Haytham | Shams_Tabrizi |
1645.0 | 32127.0 | Ibn_al-Haytham | University_of_Chicago |
1645.0 | 884495.0 | Ibn_al-Haytham | Bibliothèque_nationale |
1645.0 | 86728.0 | Ibn_al-Haytham | Bodleian_Library |
1645.0 | 3515519.0 | Ibn_al-Haytham | Lambert_quadrilateral |
1645.0 | 3.3383114e7 | Ibn_al-Haytham | Muhammad_ibn_Abi_Bakr_al‐Farisi |
1645.0 | 201359.0 | Ibn_al-Haytham | Squaring_the_circle |
1645.0 | 7.2112001e7 | Ibn_al-Haytham | Abdollah_ibn_Bukhtishu |
1645.0 | 196242.0 | Ibn_al-Haytham | Averroism |
1645.0 | 1864889.0 | Ibn_al-Haytham | Cosmology |
1645.0 | 302794.0 | Ibn_al-Haytham | Depth_perception |
1645.0 | 1.6770522e7 | Ibn_al-Haytham | Fathullah_Shirazi |
1645.0 | 2.8645073e7 | Ibn_al-Haytham | Ibn_al-Yasamin |
1645.0 | 142601.0 | Ibn_al-Haytham | John_Peckham |
1645.0 | 5762980.0 | Ibn_al-Haytham | Nisba_(onomastics) |
1645.0 | 6.2773262e7 | Ibn_al-Haytham | Sadr_al-Shari'a_al-Asghar |
1645.0 | 1741183.0 | Ibn_al-Haytham | Yaʿqūb_ibn_Ṭāriq |
1645.0 | 64203.0 | Ibn_al-Haytham | Zaragoza |
1645.0 | 4.6781843e7 | Ibn_al-Haytham | Abu_Bakr_Rabee_Ibn_Ahmad_Al-Akhawyni_Bokhari |
1645.0 | 6.469612e7 | Ibn_al-Haytham | Al-Badi'_al-Asturlabi |
1645.0 | 3510457.0 | Ibn_al-Haytham | Hadi_Sabzavari |
1645.0 | 13771.0 | Ibn_al-Haytham | Hellenistic_civilization |
1645.0 | 420409.0 | Ibn_al-Haytham | Jami |
1645.0 | 1.3226237e7 | Ibn_al-Haytham | Mural_instrument |
1645.0 | 2042430.0 | Ibn_al-Haytham | Qumri |
1645.0 | 33603.0 | Ibn_al-Haytham | Wrocław |
1645.0 | 1.0713305e7 | Ibn_al-Haytham | Abu_Mansur_al-Baghdadi |
1645.0 | 5.3368843e7 | Ibn_al-Haytham | Al-Ashraf_Umar_II |
1645.0 | 179645.0 | Ibn_al-Haytham | Ash'ari |
1645.0 | 5.3093385e7 | Ibn_al-Haytham | Athīr_al-Dīn_al-Abharī |
1645.0 | 2666097.0 | Ibn_al-Haytham | Ayn_al-Quzat_Hamadani |
1645.0 | 4621330.0 | Ibn_al-Haytham | Banū_Mūsā |
1645.0 | 1524517.0 | Ibn_al-Haytham | Chinese_astronomy |
1645.0 | 4.2421061e7 | Ibn_al-Haytham | Hiding_in_the_Light |
1645.0 | 929147.0 | Ibn_al-Haytham | Moonlight |
1645.0 | 8510733.0 | Ibn_al-Haytham | Muhyi_al-Din_al-Maghribi |
1645.0 | 22989.0 | Ibn_al-Haytham | Paris |
1645.0 | 3.2111866e7 | Ibn_al-Haytham | Ibn_Abi_Ramtha_al-Tamimi |
1645.0 | 6.3435015e7 | Ibn_al-Haytham | JSTOR_(identifier) |
1645.0 | 6.1571532e7 | Ibn_al-Haytham | Lens_(optics) |
1645.0 | 39098.0 | Ibn_al-Haytham | Physical_law |
1645.0 | 7.1245601e7 | Ibn_al-Haytham | Shahab_al-Din_Yahya_ibn_Habash_Suhrawardi |
1645.0 | 2.4923294e7 | Ibn_al-Haytham | Ulugh_Beg_Observatory |
1645.0 | 1253603.0 | Ibn_al-Haytham | Abu_Ma'shar_al-Balkhi |
1645.0 | 1782729.0 | Ibn_al-Haytham | Al-Mahani |
1645.0 | 1587482.0 | Ibn_al-Haytham | Al-Qabisi |
1645.0 | 1.1089309e7 | Ibn_al-Haytham | Al-Ḥajjāj_ibn_Yūsuf_ibn_Maṭar |
1645.0 | 1271962.0 | Ibn_al-Haytham | Billiard_table |
1645.0 | 1.1828715e7 | Ibn_al-Haytham | Book_of_Optics |
1645.0 | 5286621.0 | Ibn_al-Haytham | Ephraim_ibn_al-Za'faran |
1645.0 | 3.0864628e7 | Ibn_al-Haytham | European_science_in_the_Middle_Ages |
1645.0 | 719601.0 | Ibn_al-Haytham | MIT_Press |
1645.0 | 1.3692155e7 | Ibn_al-Haytham | Philosophy |
1645.0 | 3.5216988e7 | Ibn_al-Haytham | Rajab_Ali_Tabrizi |
1645.0 | 39420.0 | Ibn_al-Haytham | Right_triangle |
1645.0 | 2538627.0 | Ibn_al-Haytham | Yusuf_al-Mu'taman_ibn_Hud |
1645.0 | 1189485.0 | Ibn_al-Haytham | Abu_al-Wafa'_Buzjani |
1645.0 | 1.0879533e7 | Ibn_al-Haytham | Aja'ib_al-Makhluqat |
1645.0 | 355643.0 | Ibn_al-Haytham | Al-Andalus |
1645.0 | 4.3402124e7 | Ibn_al-Haytham | Commentary_on_Anatomy_in_Avicenna's_Canon |
1645.0 | 8451005.0 | Ibn_al-Haytham | Haji_Bayram_Veli |
1645.0 | 1.0082768e7 | Ibn_al-Haytham | Hockney–Falco_thesis |
1645.0 | 2.6634144e7 | Ibn_al-Haytham | Ibn_Sina_Academy_of_Medieval_Medicine_and_Sciences |
1645.0 | 1741520.0 | Ibn_al-Haytham | Kamāl_al-Dīn_al-Fārisī |
1645.0 | 3.2078146e7 | Ibn_al-Haytham | Muhammad_ibn_Aslam_Al-Ghafiqi |
1645.0 | 439770.0 | Ibn_al-Haytham | Abu_Nasr_Mansur |
1645.0 | 4158200.0 | Ibn_al-Haytham | Asabiyyah |
1645.0 | 236674.0 | Ibn_al-Haytham | Ayurveda |
1645.0 | 380406.0 | Ibn_al-Haytham | Comparative_psychology |
1645.0 | 13450.0 | Ibn_al-Haytham | Hebrew_language |
1645.0 | 8066479.0 | Ibn_al-Haytham | Maslaha |
1645.0 | 2042612.0 | Ibn_al-Haytham | Masʽud_ibn_Muhammad_Sijzi |
1645.0 | 19323.0 | Ibn_al-Haytham | Middle_East |
1645.0 | 53497.0 | Ibn_al-Haytham | Optical_illusion |
1645.0 | 1.6926318e7 | Ibn_al-Haytham | Equatorial_ring |
1645.0 | 6330034.0 | Ibn_al-Haytham | Eutychius_of_Alexandria |
1645.0 | 12558.0 | Ibn_al-Haytham | Galaxy |
1645.0 | 2.1854422e7 | Ibn_al-Haytham | Lune_of_Hippocrates |
1645.0 | 1.0827654e7 | Ibn_al-Haytham | Mir_Fendereski |
1645.0 | 20545.0 | Ibn_al-Haytham | Mirror |
1645.0 | 1.5309628e7 | Ibn_al-Haytham | Muhammad_Ali_Astarabadi |
1645.0 | 48334.0 | Ibn_al-Haytham | Retina |
1645.0 | 3450546.0 | Ibn_al-Haytham | Sufi_metaphysics |
1645.0 | 2.1691772e7 | Ibn_al-Haytham | Yahya_ibn_Sarafyun |
1645.0 | 1560514.0 | Ibn_al-Haytham | Ahmad_ibn_Yusuf |
1645.0 | 8230922.0 | Ibn_al-Haytham | Hamid_al-Din_al-Kirmani |
1645.0 | 6785051.0 | Ibn_al-Haytham | History_of_trigonometry |
1645.0 | 5.7151342e7 | Ibn_al-Haytham | Ibn_Ishaq_al-Tunisi |
1645.0 | 1.5515167e7 | Ibn_al-Haytham | Ibn_al-Kattani |
1645.0 | 1830000.0 | Ibn_al-Haytham | Inundation |
1645.0 | 3035257.0 | Ibn_al-Haytham | Masarjawaih |
1645.0 | 6.4652504e7 | Ibn_al-Haytham | Zaynab_al-Awadiya |
1645.0 | 272065.0 | Ibn_al-Haytham | Al-Kindi |
1645.0 | 2.2509814e7 | Ibn_al-Haytham | Al-Qifti |
1645.0 | 6.5419249e7 | Ibn_al-Haytham | Ali_ibn_Khalaf |
1645.0 | 283120.0 | Ibn_al-Haytham | American_Philosophical_Society |
1645.0 | 47836.0 | Ibn_al-Haytham | Averroes |
1645.0 | 8425211.0 | Ibn_al-Haytham | Dictionary_of_Scientific_Biography |
1645.0 | 3143150.0 | Ibn_al-Haytham | History_of_scientific_method |
1645.0 | 6.5706161e7 | Ibn_al-Haytham | Ibn_Abi_Usaibia |
1645.0 | 2.7578277e7 | Ibn_al-Haytham | Ibn_al-Kammad |
1645.0 | 464693.0 | Ibn_al-Haytham | Mathworld |
1645.0 | 144553.0 | Ibn_al-Haytham | Projectile |
1645.0 | 3871014.0 | Ibn_al-Haytham | Rainbow |
1645.0 | 1.4835428e7 | Ibn_al-Haytham | Temporal_finitism |
1645.0 | 3.5861222e7 | Ibn_al-Haytham | Abū_al‐ʿUqūl |
1645.0 | 274751.0 | Ibn_al-Haytham | Al-Azhar_University |
1645.0 | 803.0 | Ibn_al-Haytham | Arabic |
1645.0 | 5839243.0 | Ibn_al-Haytham | Flooding_of_the_Nile |
1645.0 | 3013733.0 | Ibn_al-Haytham | Ibn_Abi_Usaybi'a |
1645.0 | 2.0407945e7 | Ibn_al-Haytham | Ibn_al-Wafid |
1645.0 | 2589714.0 | Ibn_al-Haytham | Milky_Way |
1645.0 | 1972777.0 | Ibn_al-Haytham | Neil_deGrasse_Tyson |
1645.0 | 1.0712582e7 | Ibn_al-Haytham | Sinan_ibn_Thabit |
1645.0 | 175040.0 | Ibn_al-Haytham | Al-Farabi |
1645.0 | 2.2341957e7 | Ibn_al-Haytham | Ali_al-Ridha |
1645.0 | 1778258.0 | Ibn_al-Haytham | Alī_ibn_Ahmad_al-Nasawī |
1645.0 | 4831143.0 | Ibn_al-Haytham | Ancient_Greek_medicine |
1645.0 | 157898.0 | Ibn_al-Haytham | Eye |
1645.0 | 1782358.0 | Ibn_al-Haytham | Ibn_Abi_Sadiq |
1645.0 | 6328738.0 | Ibn_al-Haytham | Ibn_Mu'adh_al-Jayyani |
1645.0 | 5.6793125e7 | Ibn_al-Haytham | Ibn_al‐Raqqam |
1645.0 | 23231.0 | Ibn_al-Haytham | Parabola |
1645.0 | 7211548.0 | Ibn_al-Haytham | Predestination_in_Islam |
1645.0 | 44328.0 | Ibn_al-Haytham | Ulugh_Beg |
1645.0 | 2.3538754e7 | Ibn_al-Haytham | Wayback_Machine |
1645.0 | 1740825.0 | Ibn_al-Haytham | Athir_al-Din_al-Abhari |
1645.0 | 536739.0 | Ibn_al-Haytham | Avempace |
1645.0 | 577287.0 | Ibn_al-Haytham | Buyid_dynasty |
1645.0 | 92550.0 | Ibn_al-Haytham | Omar_Khayyam |
1645.0 | 1.854116e7 | Ibn_al-Haytham | Abū_Rayhān_al-Bīrūnī |
1645.0 | 804218.0 | Ibn_al-Haytham | Astronomical_clock |
1645.0 | 6.3434964e7 | Ibn_al-Haytham | CiteSeerX_(identifier) |
1645.0 | 316410.0 | Ibn_al-Haytham | Compass_rose |
1645.0 | 9417.0 | Ibn_al-Haytham | Euclidean_geometry |
1645.0 | 8232680.0 | Ibn_al-Haytham | Ibn_al-Jazzar |
1645.0 | 2742403.0 | Ibn_al-Haytham | Mathematical_Association |
1645.0 | 3.1327881e7 | Ibn_al-Haytham | Na'im_ibn_Musa |
1645.0 | 25948.0 | Ibn_al-Haytham | Refraction |
1645.0 | 1766960.0 | Ibn_al-Haytham | Abu_al-Hasan_al-Tabari |
1645.0 | 3393371.0 | Ibn_al-Haytham | Hindu–Arabic_numeral_system |
1645.0 | 1162119.0 | Ibn_al-Haytham | Mohammed_Arkoun |
1645.0 | 1099413.0 | Ibn_al-Haytham | Orbital_eccentricity |
1645.0 | 1015358.0 | Ibn_al-Haytham | Vitello |
1645.0 | 2041982.0 | Ibn_al-Haytham | Al-Shahrazuri |
1645.0 | 1720221.0 | Ibn_al-Haytham | Alfonsine_tables |
1645.0 | 1.1048781e7 | Ibn_al-Haytham | Charles_M._Falco |
1645.0 | 6.3562501e7 | Ibn_al-Haytham | Hossein_Nasr |
1645.0 | 17902.0 | Ibn_al-Haytham | Leonhard_Euler |
1645.0 | 7.1598945e7 | Ibn_al-Haytham | National_Library_of_the_Argentine_Republic |
1645.0 | 23670.0 | Ibn_al-Haytham | Perfect_number |
1645.0 | 1.5927465e7 | Ibn_al-Haytham | The_Remaining_Signs_of_Past_Centuries |
1645.0 | 1461001.0 | Ibn_al-Haytham | University_of_al-Qarawiyyin |
1645.0 | 3.4781942e7 | Ibn_al-Haytham | Abd_al‐Wajid |
1645.0 | 1766622.0 | Ibn_al-Haytham | Abolfadl_Harawi |
1645.0 | 6.082025e7 | Ibn_al-Haytham | Al-Hawi |
1645.0 | 665027.0 | Ibn_al-Haytham | Fourth_power |
1645.0 | 2.3568467e7 | Ibn_al-Haytham | Rashidun_al-Suri |
1645.0 | 4647532.0 | Ibn_al-Haytham | Shams_al-Din_Abu_Abd_Allah_al-Khalili |
1645.0 | 2.4712247e7 | Ibn_al-Haytham | Ya'ish_ibn_Ibrahim_al-Umawi |
1645.0 | 5.5495903e7 | Ibn_al-Haytham | 1001_Inventions |
1645.0 | 1.0730931e7 | Ibn_al-Haytham | Al-Mu'taman_ibn_Hud |
1645.0 | 1174529.0 | Ibn_al-Haytham | Al-Tasrif |
1645.0 | 4.3350725e7 | Ibn_al-Haytham | Euclid–Euler_theorem |
1645.0 | 360726.0 | Ibn_al-Haytham | Planisphere |
1645.0 | 6.0782023e7 | Ibn_al-Haytham | Shmuel_Sambursky |
1645.0 | 2.1800807e7 | Ibn_al-Haytham | Zakhireye_Khwarazmshahi |
1645.0 | 1.6424083e7 | Ibn_al-Haytham | 59239_Alhazen |
1645.0 | 5089990.0 | Ibn_al-Haytham | Ahmad_al-Buni |
1645.0 | 482939.0 | Ibn_al-Haytham | Al-Hakim_bi-Amr_Allah |
1645.0 | 2.7361247e7 | Ibn_al-Haytham | Al-Kharaqī |
1645.0 | 4.9712277e7 | Ibn_al-Haytham | Al-Ruhawi |
1645.0 | 5.6447306e7 | Ibn_al-Haytham | Alam_al-Din_al-Hanafi |
1645.0 | 51518.0 | Ibn_al-Haytham | Dam |
1645.0 | 1602822.0 | Ibn_al-Haytham | Haji_Bektash_Veli |
1645.0 | 1467830.0 | Ibn_al-Haytham | Ibn_Hazm |
1645.0 | 14810.0 | Ibn_al-Haytham | Islamic_calendar |
1645.0 | 1.3861753e7 | Ibn_al-Haytham | Said_al-Andalusi |
1645.0 | 1917134.0 | Ibn_al-Haytham | Sultan_Ali_Khorasani |
1645.0 | 30503.0 | Ibn_al-Haytham | Theology |
1645.0 | 2674.0 | Ibn_al-Haytham | Abd_al-Latif_al-Baghdadi |
1645.0 | 4849234.0 | Ibn_al-Haytham | Encyclopedia_of_the_Brethren_of_Purity |
1645.0 | 9239.0 | Ibn_al-Haytham | Europe |
1645.0 | 150257.0 | Ibn_al-Haytham | Feigned_madness |
1645.0 | 577201.0 | Ibn_al-Haytham | Frithjof_Schuon |
1645.0 | 2.6482067e7 | Ibn_al-Haytham | Kepler |
1645.0 | 17730.0 | Ibn_al-Haytham | Latin |
1645.0 | 145845.0 | Ibn_al-Haytham | Paraboloid |
1645.0 | 25525.0 | Ibn_al-Haytham | René_Descartes |
1645.0 | 2042576.0 | Ibn_al-Haytham | Amin_al-Din_Rashid_al-Din_Vatvat |
1645.0 | 361897.0 | Ibn_al-Haytham | Astrophysics |
1645.0 | 1.3083487e7 | Ibn_al-Haytham | Baha'_al-din_al-'Amili |
1645.0 | 17939.0 | Ibn_al-Haytham | Light |
1645.0 | 1731800.0 | Ibn_al-Haytham | Triquetrum_(astronomy) |
1645.0 | 5.3082933e7 | Ibn_al-Haytham | Abu_al-Hasan_al-Ahwazi |
1645.0 | 7718539.0 | Ibn_al-Haytham | Al-'Adudi_Hospital |
1645.0 | 3.1076646e7 | Ibn_al-Haytham | Al_Achsasi_al_Mouakket |
1645.0 | 1.0923902e7 | Ibn_al-Haytham | Dream_Pool_Essays |
1645.0 | 3467826.0 | Ibn_al-Haytham | House_of_Knowledge |
1645.0 | 1.327905e7 | Ibn_al-Haytham | Ibn_Butlan |
1645.0 | 5741464.0 | Ibn_al-Haytham | Ibn_al-Baytar |
1645.0 | 685895.0 | Ibn_al-Haytham | René_Guénon |
1645.0 | 2.3477491e7 | Ibn_al-Haytham | Sadr_al-Din_al-Qunawi |
1645.0 | 1768580.0 | Ibn_al-Haytham | Sharaf_al-Din_al-Tusi |
1645.0 | 2.4703916e7 | Ibn_al-Haytham | Sullam_al-sama' |
1645.0 | 1245987.0 | Ibn_al-Haytham | Ziauddin_Sardar |
1645.0 | 7.1370184e7 | Ibn_al-Haytham | Ali_ibn_Yusuf_al-Ilaqi |
1645.0 | 102182.0 | Ibn_al-Haytham | Celestial_mechanics |
1645.0 | 2695116.0 | Ibn_al-Haytham | Contemporary_Islamic_philosophy |
1645.0 | 6733941.0 | Ibn_al-Haytham | Friedrich_Risner |
1645.0 | 12326.0 | Ibn_al-Haytham | Galen |
1645.0 | 1232660.0 | Ibn_al-Haytham | Syed_Muhammad_Naquib_al-Attas |
1645.0 | 5676618.0 | Ibn_al-Haytham | Al-Mawrid |
1645.0 | 1130.0 | Ibn_al-Haytham | Avicenna |
1645.0 | 1.4918546e7 | Ibn_al-Haytham | Avicennism |
1645.0 | 4536514.0 | Ibn_al-Haytham | Babylonian_astronomy |
1645.0 | 432591.0 | Ibn_al-Haytham | CNRS |
1645.0 | 1.5820227e7 | Ibn_al-Haytham | History_of_Science_and_Technology_in_China |
1645.0 | 2041938.0 | Ibn_al-Haytham | Mansur_ibn_Ilyas |
1645.0 | 2412780.0 | Ibn_al-Haytham | Sic |
1645.0 | 8768926.0 | Ibn_al-Haytham | Aguilonius |
1645.0 | 8284152.0 | Ibn_al-Haytham | Bimaristan |
1645.0 | 6293.0 | Ibn_al-Haytham | Cairo |
1645.0 | 326595.0 | Ibn_al-Haytham | Fakhr_al-Din_al-Razi |
1645.0 | 2.1573591e7 | Ibn_al-Haytham | Islamic_geometric_patterns |
1645.0 | 389418.0 | Ibn_al-Haytham | John_Pecham |
1645.0 | 4.5387547e7 | Ibn_al-Haytham | Physics_in_medieval_Islam |
1645.0 | 2226012.0 | Ibn_al-Haytham | Shambhala_Publications |
1645.0 | 2.755431e7 | Ibn_al-Haytham | Abu_Jafar_ibn_Harun_al-Turjali |
1645.0 | 353215.0 | Ibn_al-Haytham | Al-Zahrawi |
1645.0 | 39316.0 | Ibn_al-Haytham | Compass |
1645.0 | 241528.0 | Ibn_al-Haytham | Jacob_Bronowski |
1645.0 | 3.9127918e7 | Ibn_al-Haytham | Mohammed_ibn_Abdun_al-Jabali |
1645.0 | 204511.0 | Ibn_al-Haytham | Scientific_skepticism |
1645.0 | 5.4447016e7 | Ibn_al-Haytham | Victor_J._Katz |
1645.0 | 2.3442952e7 | Ibn_al-Haytham | Yang_Guangxian |
1645.0 | 1019879.0 | Ibn_al-Haytham | Alhazen_(crater) |
1645.0 | 257242.0 | Ibn_al-Haytham | Apollonius_of_Perga |
1645.0 | 57580.0 | Ibn_al-Haytham | Basra |
1645.0 | 2.4893445e7 | Ibn_al-Haytham | Book_of_the_Ten_Treatises_of_the_Eye |
1645.0 | 143608.0 | Ibn_al-Haytham | Deferent_and_epicycle |
1645.0 | 5.5808289e7 | Ibn_al-Haytham | Janus_(journal) |
1645.0 | 1.0780372e7 | Ibn_al-Haytham | Muhammad_Baqir_Yazdi |
1645.0 | 1766702.0 | Ibn_al-Haytham | Nazif_ibn_Yumn |
1645.0 | 4.8253059e7 | Ibn_al-Haytham | Salat |
1645.0 | 1696685.0 | Ibn_al-Haytham | Tacuinum_Sanitatis |
1645.0 | 3861353.0 | Ibn_al-Haytham | Babylonian_mathematics |
1645.0 | 1.7365905e7 | Ibn_al-Haytham | Dawūd_al-Qayṣarī |
1645.0 | 6.0347068e7 | Ibn_al-Haytham | Jalaladdin_Davani |
1645.0 | 18836.0 | Ibn_al-Haytham | Middle_Ages |
1645.0 | 3022453.0 | Ibn_al-Haytham | Nafs |
1645.0 | 5186903.0 | Ibn_al-Haytham | Tusi_couple |
1645.0 | 2428.0 | Ibn_al-Haytham | Analog_computer |
1645.0 | 1.1453823e7 | Ibn_al-Haytham | Byzantine_science |
1645.0 | 6.7975278e7 | Ibn_al-Haytham | History_of_science_in_the_Renaissance |
1645.0 | 166162.0 | Ibn_al-Haytham | Islamic_philosophy |
1645.0 | 645208.0 | Ibn_al-Haytham | Equant |
1645.0 | 7.1175005e7 | Ibn_al-Haytham | Mahmud_Hudayi |
1645.0 | 1.5233821e7 | Ibn_al-Haytham | Psychology_in_the_medieval_Islamic_world |
1645.0 | 2.1691805e7 | Ibn_al-Haytham | Serapion_the_Younger |
1645.0 | 7627.0 | Ibn_al-Haytham | The_Canterbury_Tales |
1645.0 | 5.549544e7 | Ibn_al-Haytham | Alhazen_(disambiguation) |
1645.0 | 2.4464339e7 | Ibn_al-Haytham | Arab |
1645.0 | 2.8700369e7 | Ibn_al-Haytham | Ibn_Ghazi_al-Miknasi |
1645.0 | 199169.0 | Ibn_al-Haytham | Ibn_Khaldun |
1645.0 | 1.9018638e7 | Ibn_al-Haytham | Islamic_mathematics |
1645.0 | 18079.0 | Ibn_al-Haytham | Leonardo_da_Vinci |
1645.0 | 2.7405151e7 | Ibn_al-Haytham | Muhammad_al-Rudani |
1645.0 | 6.7427596e7 | Ibn_al-Haytham | Qadi_Mir_Husayn_al-Maybudi |
1645.0 | 4.0311818e7 | Ibn_al-Haytham | Roger_Highfield |
1645.0 | 207174.0 | Ibn_al-Haytham | Triangulation |
1645.0 | 2.7579858e7 | Ibn_al-Haytham | Abu_al-Salt |
1645.0 | 3.5777337e7 | Ibn_al-Haytham | Cosmos:_A_Spacetime_Odyssey |
1645.0 | 4512160.0 | Ibn_al-Haytham | Flooding |
1645.0 | 1.4973076e7 | Ibn_al-Haytham | Medical_Renaissance |
1645.0 | 6.1415405e7 | Ibn_al-Haytham | Muhammad_Husayn_Tabataba'i |
1645.0 | 1.6593123e7 | Ibn_al-Haytham | Nader_El-Bizri |
1645.0 | 5290740.0 | Ibn_al-Haytham | Sa'ad_al-Dawla |
1645.0 | 982540.0 | Ibn_al-Haytham | Taqi_ad-Din_Muhammad_ibn_Ma'ruf |
1645.0 | 928.0 | Ibn_al-Haytham | Axiom |
1645.0 | 3.833419e7 | Ibn_al-Haytham | Bruges |
1645.0 | 11114.0 | Ibn_al-Haytham | Fiqh |
1645.0 | 2.9688374e7 | Ibn_al-Haytham | Galileo_Galilei |
1645.0 | 2618724.0 | Ibn_al-Haytham | John_L._Esposito |
1645.0 | 1.8426568e7 | Ibn_al-Haytham | NASA |
1645.0 | 5.7398059e7 | Ibn_al-Haytham | Najm_al‐Din_al‐Misri |
1645.0 | 5.1317367e7 | Ibn_al-Haytham | Nastulus |
1645.0 | 202444.0 | Ibn_al-Haytham | Ummah |
1645.0 | 2.8820168e7 | Ibn_al-Haytham | Abd_al-Rahman_al-Jadiri |
1645.0 | 1767004.0 | Ibn_al-Haytham | Abu_Mansur_Muwaffaq |
1645.0 | 1.9217647e7 | Ibn_al-Haytham | Abul_Qasim_ibn_Mohammed_al-Ghassani |
1645.0 | 1741220.0 | Ibn_al-Haytham | Bukhtishu |
1645.0 | 3.2142292e7 | Ibn_al-Haytham | Ibrahim_ibn_Baks |
1645.0 | 1782585.0 | Ibn_al-Haytham | Jabril_ibn_Bukhtishu |
1645.0 | 2527706.0 | Ibn_al-Haytham | Mir_Damad |
1645.0 | 2984836.0 | Ibn_al-Haytham | Ophthalmology_in_the_medieval_Islamic_world |
1645.0 | 22308.0 | Ibn_al-Haytham | Oxford |
1645.0 | 50585.0 | Ibn_al-Haytham | Philadelphia |
1645.0 | 1.9883086e7 | Ibn_al-Haytham | Philip_Sherrard |
1645.0 | 230250.0 | Ibn_al-Haytham | The_Ascent_of_Man |
1645.0 | 1964954.0 | Ibn_al-Haytham | University_of_Chicago_Press |
1645.0 | 262757.0 | Ibn_al-Haytham | Abd_al-Rahman_al-Sufi |
1645.0 | 2.8622697e7 | Ibn_al-Haytham | Ahmad_ibn_Munim_al-Abdari |
1645.0 | 86822.0 | Ibn_al-Haytham | Ali_ibn_Isa_al-Asturlabi |
1645.0 | 2.8977437e7 | Ibn_al-Haytham | Fouad_Zakariyya |
1645.0 | 5.3090488e7 | Ibn_al-Haytham | Haseb-i_Tabari |
1645.0 | 3.6545044e7 | Ibn_al-Haytham | Ibn_Jumayʿ |
1645.0 | 9001042.0 | Ibn_al-Haytham | Islamic_ethics |
1645.0 | 18957.0 | Ibn_al-Haytham | Medicine |
1645.0 | 5.4421139e7 | Ibn_al-Haytham | Muhammad_al-Baghdadi |
1645.0 | 63098.0 | Ibn_al-Haytham | Optic_chiasm |
1645.0 | 2.8005345e7 | Ibn_al-Haytham | Sadid_al-Din_al-Kazaruni |
1645.0 | 28246.0 | Ibn_al-Haytham | Sufism |
1645.0 | 3.2309672e7 | Ibn_al-Haytham | Abd_al-Razzaq_Lahiji |
1645.0 | 192230.0 | Ibn_al-Haytham | Almanac |
1645.0 | 2426527.0 | Ibn_al-Haytham | Ibn_al-Nafis |
1645.0 | 1.3433019e7 | Ibn_al-Haytham | Intromission_theory |
1645.0 | 1.1011952e7 | Ibn_al-Haytham | Kamal_al-Din_al-Farisi |
1645.0 | 94721.0 | Ibn_al-Haytham | Robert_Grosseteste |
1645.0 | 5290954.0 | Ibn_al-Haytham | Abu_al-Bayan_ibn_al-Mudawwar |
1645.0 | 2045119.0 | Ibn_al-Haytham | Abu_al-Hakam_al-Kirmani |
1645.0 | 2.8208073e7 | Ibn_al-Haytham | Afdal_al-Din_Kashani |
1645.0 | 2643686.0 | Ibn_al-Haytham | Aga_Khan_University |
1645.0 | 174410.0 | Ibn_al-Haytham | Armillary_sphere |
1645.0 | 383129.0 | Ibn_al-Haytham | Celestial_spheres |
1645.0 | 48167.0 | Ibn_al-Haytham | Congruence_relation |
1645.0 | 244588.0 | Ibn_al-Haytham | Heliocentrism |
1645.0 | 4.7787936e7 | Ibn_al-Haytham | Schema_for_horizontal_dials |
1645.0 | 1.3224789e7 | Ibn_al-Haytham | Sextant_(astronomy) |
1645.0 | 6.6426206e7 | Ibn_al-Haytham | American_Mathematical_Monthly |
1645.0 | 6012554.0 | Ibn_al-Haytham | Cosmology_in_medieval_Islam |
1645.0 | 3263095.0 | Ibn_al-Haytham | Ehmedê_Xanî |
1645.0 | 1002657.0 | Ibn_al-Haytham | Nasir_Khusraw |
1645.0 | 1782879.0 | Ibn_al-Haytham | Shapur_ibn_Sahl |
1645.0 | 6.8869871e7 | Ibn_al-Haytham | Ahi_Evren |
1645.0 | 172394.0 | Ibn_al-Haytham | Georg_von_Peuerbach |
1645.0 | 294211.0 | Ibn_al-Haytham | Globe |
1645.0 | 3302534.0 | Ibn_al-Haytham | List_of_Muslim_philosophers |
1645.0 | 1741105.0 | Ibn_al-Haytham | Muḥammad_ibn_Ibrāhīm_al-Fazārī |
1645.0 | 985414.0 | Ibn_al-Haytham | Nasir_al-Din_Nasir_Hunzai |
1645.0 | 6.3434832e7 | Ibn_al-Haytham | PMC_(identifier) |
1645.0 | 16433.0 | Ibn_al-Haytham | Rumi |
1645.0 | 1840548.0 | Ibn_al-Haytham | Zayn-e-Attar |
1645.0 | 2.2848684e7 | Ibn_al-Haytham | Abu_Sulayman_Sijistani |
1645.0 | 2.1508913e7 | Ibn_al-Haytham | Abu_ul-Ala_Shirazi |
1645.0 | 3.107765e7 | Ibn_al-Haytham | G._J._Toomer |
1645.0 | 209717.0 | Ibn_al-Haytham | Madrasa |
1645.0 | 3304216.0 | Ibn_al-Haytham | Mathematics_in_the_medieval_Islamic_world |
1645.0 | 251713.0 | Ibn_al-Haytham | Qibla |
1645.0 | 25532.0 | Ibn_al-Haytham | Renaissance |
1645.0 | 2042154.0 | Ibn_al-Haytham | Shaykh_Muhammad_ibn_Thaleb |
1645.0 | 3225840.0 | Ibn_al-Haytham | Sublunary_sphere |
1645.0 | 2.757938e7 | Ibn_al-Haytham | Ibn_al-Saffar |
1645.0 | 3.3642424e7 | Ibn_al-Haytham | Nasir_al-Din_al-Tusi |
1645.0 | 1979016.0 | Ibn_al-Haytham | Routledge_Encyclopedia_of_Philosophy |
1645.0 | 5.2932896e7 | Ibn_al-Haytham | Abd_al-Latif_al-Baghdadi_(medieval_writer) |
1645.0 | 1134.0 | Ibn_al-Haytham | Analysis |
1645.0 | 6.9094489e7 | Ibn_al-Haytham | Fakhr_al-Din_al-Akhlati |
1645.0 | 3.2144014e7 | Ibn_al-Haytham | Ibn_Hamza_al-Maghribi |
1645.0 | 272074.0 | Ibn_al-Haytham | Ibn_Taymiyyah |
1645.0 | 14533.0 | Ibn_al-Haytham | India |
1645.0 | 5.613996e7 | Ibn_al-Haytham | Khoja_Akhmet_Yassawi |
1645.0 | 24714.0 | Ibn_al-Haytham | Precession |
1645.0 | 23979.0 | Ibn_al-Haytham | Ptolemy |
1645.0 | 1102000.0 | Ibn_al-Haytham | Shen_Kuo |
1645.0 | 207547.0 | Ibn_al-Haytham | Thābit_ibn_Qurra |
1645.0 | 78209.0 | Ibn_al-Haytham | Abu_Bakr_al-Razi |
1645.0 | 1822259.0 | Ibn_al-Haytham | Hakim-e-Gilani |
1645.0 | 1.0228966e7 | Ibn_al-Haytham | Jabir_ibn_Aflah |
1645.0 | 3335321.0 | Ibn_al-Haytham | Shams_al-Din_al-Samarqandi |
1645.0 | 195520.0 | Ibn_al-Haytham | Civil_engineer |
1645.0 | 244107.0 | Ibn_al-Haytham | Euclid's_Elements |
1645.0 | 15532.0 | Ibn_al-Haytham | Integral |
1645.0 | 3.7477763e7 | Ibn_al-Haytham | Islamic_Golden_Age |
1645.0 | 7.1778387e7 | Ibn_al-Haytham | Mathematics_in_medieval_Islam |
1645.0 | 5.5496341e7 | Ibn_al-Haytham | Medieval_Iraq |
1645.0 | 2042394.0 | Ibn_al-Haytham | Miskawayh |
1645.0 | 1914053.0 | Ibn_al-Haytham | Mu'ayyad_al-Din_al-Urdi |
1645.0 | 1822322.0 | Ibn_al-Haytham | Muhammad_ibn_Mahmud_Amuli |
1645.0 | 8477832.0 | Ibn_al-Haytham | Sibt_al-Maridini |
1645.0 | 1.2224008e7 | Ibn_al-Haytham | Sufi_psychology |
1645.0 | 31880.0 | Ibn_al-Haytham | Universe |
1645.0 | 305136.0 | Ibn_al-Haytham | Visual_system |
1645.0 | 5.515162e7 | Ibn_al-Haytham | ISSN_(identifier) |
1645.0 | 1.7140872e7 | Ibn_al-Haytham | Ibn_Shuayb |
1645.0 | 6.3434916e7 | Ibn_al-Haytham | OCLC_(identifier) |
1645.0 | 3.1526932e7 | Ibn_al-Haytham | Ya'qub_ibn_Ishaq_al-Israili |
1645.0 | 5962454.0 | Ibn_al-Haytham | Zij-i_Sultani |
1645.0 | 365397.0 | Ibn_al-Haytham | Clarendon_Press |
1645.0 | 9247.0 | Ibn_al-Haytham | Epistemology |
1645.0 | 2603901.0 | Ibn_al-Haytham | Mostafa_Malekian |
1645.0 | 3.3731493e7 | Ibn_al-Haytham | Parallel_postulate |
1645.0 | 2.6499076e7 | Ibn_al-Haytham | Rufaida_Al-Aslamia |
1645.0 | 1.2654431e7 | Ibn_al-Haytham | Al-Birjandi |
1645.0 | 1.9008673e7 | Ibn_al-Haytham | Conic_section |
1645.0 | 14220.0 | Ibn_al-Haytham | History_of_mathematics |
1645.0 | 1.1410402e7 | Ibn_al-Haytham | Joseph_ben_Judah_of_Ceuta |
1645.0 | 1.5077184e7 | Ibn_al-Haytham | Peace_in_Islamic_philosophy |
1645.0 | 822045.0 | Ibn_al-Haytham | Qiyas |
1645.0 | 427971.0 | Ibn_al-Haytham | Specific_gravity |
1645.0 | 5453536.0 | Ibn_al-Haytham | Zij-i_Ilkhani |
1645.0 | 3663691.0 | Ibn_al-Haytham | Hering's_law_of_equal_innervation |
1645.0 | 4.069588e7 | Ibn_al-Haytham | Ibn_al-Adami |
1645.0 | 25879.0 | Ibn_al-Haytham | Roger_Bacon |
1645.0 | 6088.0 | Ibn_al-Haytham | Common_Era |
1645.0 | 2611765.0 | Ibn_al-Haytham | Henry_Corbin |
1645.0 | 3.9959331e7 | Ibn_al-Haytham | Ibn_al-Akfani |
1645.0 | 1.0409314e7 | Ibn_al-Haytham | List_of_Arabic_star_names |
1645.0 | 1.1468771e7 | Ibn_al-Haytham | Qāḍī_Zāda_al-Rūmī |
1645.0 | 3.3668326e7 | Ibn_al-Haytham | Semnan_(city) |
1645.0 | 4.3756445e7 | Ibn_al-Haytham | Al-Isfizari |
1645.0 | 2.3817094e7 | Ibn_al-Haytham | Bahmanyār |
1645.0 | 6886.0 | Ibn_al-Haytham | Chicago |
1645.0 | 6220.0 | Ibn_al-Haytham | Circle |
1645.0 | 3655571.0 | Ibn_al-Haytham | Eastern_Arabic_numerals |
1645.0 | 607777.0 | Ibn_al-Haytham | Epicycles |
1645.0 | 1840730.0 | Ibn_al-Haytham | Muhammad_ibn_Yusuf_al-Harawi |
1645.0 | 5.262552e7 | Ibn_al-Haytham | Nomanul_Haq |
1645.0 | 2848164.0 | Ibn_al-Haytham | Nur_ad-Din_al-Bitruji |
1645.0 | 983450.0 | Ibn_al-Haytham | Traditionalist_School_(perennialism) |
1645.0 | 1086231.0 | Ibn_al-Haytham | Al-Abbās_ibn_Said_al-Jawharī |
1645.0 | 607963.0 | Ibn_al-Haytham | Al-Farghani |
1645.0 | 982595.0 | Ibn_al-Haytham | Constantinople_observatory_of_Taqi_ad-Din |
1645.0 | 5.5049264e7 | Ibn_al-Haytham | ISBN_(identifier) |
1645.0 | 4.5124222e7 | Ibn_al-Haytham | Kitāb_al-Manāẓir |
1645.0 | 6548181.0 | Ibn_al-Haytham | Ma_Yize |
1645.0 | 6.281435e7 | Ibn_al-Haytham | Muwaqqit |
1645.0 | 2042316.0 | Ibn_al-Haytham | Nurbakhshi |
1645.0 | 23666.0 | Ibn_al-Haytham | Prime_number |
1645.0 | 2.3649689e7 | Ibn_al-Haytham | Shadow_square |
1645.0 | 1782185.0 | Ibn_al-Haytham | Zayn_al-Din_Gorgani |
1645.0 | 5286542.0 | Ibn_al-Haytham | Abu_Hafsa_Yazid |
1645.0 | 2627738.0 | Ibn_al-Haytham | History_of_optics |
1645.0 | 165834.0 | Ibn_al-Haytham | Ijtihad |
1645.0 | 658084.0 | Ibn_al-Haytham | Magnifying_glass |
1645.0 | 2909851.0 | Ibn_al-Haytham | Trepidation |
1645.0 | 8656923.0 | Ibn_al-Haytham | Ahmad_Fardid |
1645.0 | 4.9107555e7 | Ibn_al-Haytham | Al-Furqan_Islamic_Heritage_Foundation |
1645.0 | 5.2173672e7 | Ibn_al-Haytham | Al-Mubashshir_ibn_Fatik |
1645.0 | 5.3090036e7 | Ibn_al-Haytham | Al-Wabkanawi |
1645.0 | 2375470.0 | Ibn_al-Haytham | Cleomedes |
1645.0 | 1627160.0 | Ibn_al-Haytham | Linda_Hall_Library |
1645.0 | 1.7944118e7 | Ibn_al-Haytham | Physics_in_the_medieval_Islamic_world |
1645.0 | 23313.0 | Ibn_al-Haytham | Piri_Reis |
1645.0 | 2014775.0 | Ibn_al-Haytham | Qutb_al-Din_al-Shirazi |
1645.0 | 2.1786641e7 | Ibn_al-Haytham | UNESCO |
1645.0 | 426368.0 | Ibn_al-Haytham | Abu'l-Hasan_al-Uqlidisi |
1645.0 | 1180080.0 | Ibn_al-Haytham | Addison-Wesley |
1645.0 | 56176.0 | Ibn_al-Haytham | Fatimid_Caliphate |
1645.0 | 5460963.0 | Ibn_al-Haytham | George_Saliba |
1645.0 | 3.5575543e7 | Ibn_al-Haytham | Ibn_al-Durayhim |
1645.0 | 19445.0 | Ibn_al-Haytham | Maimonides |
1645.0 | 8465426.0 | Ibn_al-Haytham | Maragheh_observatory |
1645.0 | 4704776.0 | Ibn_al-Haytham | Motilal_Banarsidass |
1645.0 | 2.578541e7 | Ibn_al-Haytham | Taha_Abdurrahman |
1645.0 | 6.5715159e7 | Ibn_al-Haytham | Trove_(identifier) |
1645.0 | 6.2261939e7 | Ibn_al-Haytham | Vizier_(Abbasid_Caliphate) |
1645.0 | 414271.0 | Ibn_al-Haytham | Abū_Isḥāq_Ibrāhīm_al-Zarqālī |
1645.0 | 4385475.0 | Ibn_al-Haytham | Ancient_Greek_astronomy |
1645.0 | 3.6143542e7 | Ibn_al-Haytham | Ibn_al-Majdi |
1645.0 | 5496025.0 | Ibn_al-Haytham | Ilm_(Arabic) |
1645.0 | 612068.0 | Ibn_al-Haytham | Alfred_Molina |
1645.0 | 3.2077839e7 | Ibn_al-Haytham | Ali_ibn_Isa_al-Kahhal |
edges.write.saveAsTable("enwiki_graph_edges")
import org.graphframes.GraphFrame
val vertices = spark.sql("SELECT page_id AS id, page_title, page_len FROM enwiki_page")
val g = GraphFrame(vertices, edges)
val outDegrees = g.outDegrees
display(outDegrees)
id | outDegree |
---|---|
251.0 | 3.0 |
580.0 | 126.0 |
737.0 | 1439.0 |
808.0 | 909.0 |
858.0 | 1.0 |
897.0 | 635.0 |
1088.0 | 462.0 |
1143.0 | 690.0 |
1238.0 | 2.0 |
1270.0 | 91.0 |
1303.0 | 47.0 |
1322.0 | 196.0 |
1339.0 | 3.0 |
1342.0 | 1.0 |
1395.0 | 182.0 |
1460.0 | 238.0 |
1507.0 | 11.0 |
1580.0 | 32.0 |
1645.0 | 827.0 |
1650.0 | 184.0 |
1699.0 | 1.0 |
1884.0 | 179.0 |
1896.0 | 205.0 |
1903.0 | 1.0 |
1959.0 | 1.0 |
1975.0 | 350.0 |
1990.0 | 1206.0 |
2025.0 | 88.0 |
2122.0 | 716.0 |
2142.0 | 202.0 |
2235.0 | 65.0 |
2393.0 | 421.0 |
2443.0 | 210.0 |
2525.0 | 2.0 |
2563.0 | 276.0 |
2572.0 | 1.0 |
2580.0 | 5.0 |
2659.0 | 1.0 |
2711.0 | 1.0 |
2776.0 | 2.0 |
2821.0 | 1.0 |
2866.0 | 97.0 |
2923.0 | 311.0 |
2996.0 | 1.0 |
2999.0 | 318.0 |
3000.0 | 1.0 |
3089.0 | 87.0 |
3175.0 | 81.0 |
3220.0 | 1.0 |
3226.0 | 636.0 |
3352.0 | 769.0 |
3698.0 | 228.0 |
3794.0 | 804.0 |
3796.0 | 1.0 |
3876.0 | 342.0 |
3986.0 | 1596.0 |
3997.0 | 537.0 |
4078.0 | 706.0 |
4101.0 | 166.0 |
4158.0 | 96.0 |
4186.0 | 1.0 |
4190.0 | 12.0 |
4219.0 | 9.0 |
4364.0 | 366.0 |
4391.0 | 1307.0 |
4489.0 | 448.0 |
4519.0 | 147.0 |
4900.0 | 28.0 |
4937.0 | 23.0 |
5071.0 | 1.0 |
5074.0 | 1.0 |
5173.0 | 1.0 |
5287.0 | 1.0 |
5300.0 | 507.0 |
5308.0 | 44.0 |
5345.0 | 1.0 |
5482.0 | 201.0 |
5518.0 | 3.0 |
5803.0 | 1.0 |
6266.0 | 1.0 |
6336.0 | 128.0 |
6357.0 | 165.0 |
6361.0 | 27.0 |
6466.0 | 1180.0 |
6559.0 | 344.0 |
6597.0 | 129.0 |
6598.0 | 858.0 |
6620.0 | 161.0 |
6622.0 | 1.0 |
6623.0 | 576.0 |
6654.0 | 1338.0 |
6773.0 | 732.0 |
7066.0 | 53.0 |
7098.0 | 5.0 |
7120.0 | 320.0 |
7253.0 | 20.0 |
7387.0 | 694.0 |
7417.0 | 1.0 |
7530.0 | 27.0 |
7554.0 | 477.0 |
7644.0 | 1.0 |
7833.0 | 71.0 |
7850.0 | 83.0 |
7880.0 | 1.0 |
7993.0 | 10.0 |
8086.0 | 11.0 |
8105.0 | 3.0 |
8222.0 | 723.0 |
8389.0 | 537.0 |
8407.0 | 251.0 |
8592.0 | 577.0 |
8650.0 | 94.0 |
8743.0 | 494.0 |
8779.0 | 601.0 |
8803.0 | 1.0 |
8911.0 | 3.0 |
8924.0 | 3.0 |
8928.0 | 1.0 |
8932.0 | 14.0 |
9071.0 | 19.0 |
9182.0 | 1.0 |
9383.0 | 115.0 |
9454.0 | 176.0 |
9465.0 | 3.0 |
9946.0 | 208.0 |
10081.0 | 440.0 |
10121.0 | 4.0 |
10462.0 | 185.0 |
10468.0 | 174.0 |
10623.0 | 853.0 |
10703.0 | 144.0 |
10745.0 | 3.0 |
10768.0 | 1.0 |
10798.0 | 58.0 |
10862.0 | 826.0 |
11025.0 | 1027.0 |
11033.0 | 1928.0 |
11141.0 | 976.0 |
11146.0 | 731.0 |
11316.0 | 1.0 |
11317.0 | 9.0 |
11393.0 | 546.0 |
11458.0 | 112.0 |
11500.0 | 1.0 |
11748.0 | 746.0 |
11800.0 | 33.0 |
11858.0 | 1.0 |
11936.0 | 1.0 |
12006.0 | 1.0 |
12027.0 | 616.0 |
12366.0 | 320.0 |
12367.0 | 183.0 |
12393.0 | 627.0 |
12471.0 | 1849.0 |
12611.0 | 129.0 |
12626.0 | 1.0 |
12799.0 | 553.0 |
12998.0 | 119.0 |
13009.0 | 1105.0 |
13060.0 | 151.0 |
13188.0 | 1.0 |
13207.0 | 222.0 |
13289.0 | 1292.0 |
13465.0 | 337.0 |
13483.0 | 458.0 |
13601.0 | 14.0 |
13623.0 | 275.0 |
13648.0 | 11.0 |
13832.0 | 2.0 |
13910.0 | 275.0 |
13916.0 | 1.0 |
14075.0 | 1.0 |
14148.0 | 481.0 |
14315.0 | 70.0 |
14324.0 | 23.0 |
14423.0 | 441.0 |
14465.0 | 149.0 |
14514.0 | 1.0 |
14536.0 | 225.0 |
14570.0 | 272.0 |
14832.0 | 119.0 |
14837.0 | 219.0 |
14958.0 | 637.0 |
14997.0 | 41.0 |
15003.0 | 1.0 |
15004.0 | 55.0 |
15100.0 | 333.0 |
15162.0 | 1.0 |
15173.0 | 3.0 |
15207.0 | 65.0 |
15254.0 | 253.0 |
15382.0 | 5.0 |
15447.0 | 185.0 |
15538.0 | 118.0 |
15575.0 | 917.0 |
15604.0 | 590.0 |
15655.0 | 732.0 |
15727.0 | 3.0 |
15790.0 | 1122.0 |
15846.0 | 1039.0 |
15957.0 | 1.0 |
15967.0 | 659.0 |
16224.0 | 716.0 |
16283.0 | 110.0 |
16339.0 | 712.0 |
16386.0 | 40.0 |
16500.0 | 355.0 |
16503.0 | 1.0 |
16534.0 | 27.0 |
16680.0 | 28.0 |
16791.0 | 38.0 |
16861.0 | 352.0 |
16916.0 | 17.0 |
16924.0 | 1.0 |
17008.0 | 2.0 |
17044.0 | 235.0 |
17077.0 | 732.0 |
17193.0 | 469.0 |
17223.0 | 1.0 |
17437.0 | 1.0 |
17679.0 | 3.0 |
17688.0 | 166.0 |
17708.0 | 1.0 |
17712.0 | 6.0 |
17751.0 | 1.0 |
17753.0 | 457.0 |
17754.0 | 243.0 |
17775.0 | 308.0 |
17783.0 | 218.0 |
17809.0 | 604.0 |
17837.0 | 624.0 |
18024.0 | 408.0 |
18043.0 | 505.0 |
18051.0 | 242.0 |
18201.0 | 553.0 |
18221.0 | 97.0 |
18382.0 | 448.0 |
18467.0 | 67.0 |
18502.0 | 1.0 |
18539.0 | 395.0 |
18595.0 | 1208.0 |
18746.0 | 3.0 |
18838.0 | 1208.0 |
18866.0 | 539.0 |
18884.0 | 68.0 |
18902.0 | 145.0 |
18944.0 | 1.0 |
18956.0 | 305.0 |
19021.0 | 625.0 |
19023.0 | 133.0 |
19079.0 | 482.0 |
19131.0 | 266.0 |
19161.0 | 217.0 |
19165.0 | 191.0 |
19200.0 | 525.0 |
19204.0 | 167.0 |
19206.0 | 366.0 |
19325.0 | 1023.0 |
19351.0 | 1103.0 |
19499.0 | 938.0 |
19530.0 | 894.0 |
19553.0 | 658.0 |
19614.0 | 116.0 |
19669.0 | 407.0 |
19683.0 | 40.0 |
19758.0 | 846.0 |
19868.0 | 23.0 |
19873.0 | 239.0 |
19886.0 | 523.0 |
19962.0 | 80.0 |
20020.0 | 3.0 |
20029.0 | 45.0 |
20052.0 | 1.0 |
20134.0 | 884.0 |
20135.0 | 1.0 |
20170.0 | 451.0 |
20268.0 | 298.0 |
20382.0 | 1.0 |
20396.0 | 1314.0 |
20398.0 | 202.0 |
20425.0 | 2.0 |
20473.0 | 1.0 |
20481.0 | 438.0 |
20497.0 | 96.0 |
20506.0 | 1.0 |
20596.0 | 179.0 |
20624.0 | 18.0 |
20683.0 | 242.0 |
20735.0 | 241.0 |
21058.0 | 500.0 |
21116.0 | 2.0 |
21220.0 | 21.0 |
21296.0 | 219.0 |
21394.0 | 65.0 |
21558.0 | 19.0 |
21700.0 | 1.0 |
21761.0 | 1062.0 |
21938.0 | 116.0 |
22097.0 | 17.0 |
22107.0 | 1016.0 |
22346.0 | 182.0 |
22373.0 | 74.0 |
22412.0 | 80.0 |
22521.0 | 1.0 |
22555.0 | 1063.0 |
22609.0 | 51.0 |
22684.0 | 27.0 |
22951.0 | 77.0 |
22990.0 | 77.0 |
23015.0 | 354.0 |
23086.0 | 1.0 |
23136.0 | 1.0 |
23144.0 | 6.0 |
23193.0 | 183.0 |
23267.0 | 1297.0 |
23271.0 | 1.0 |
23336.0 | 126.0 |
23364.0 | 746.0 |
23367.0 | 392.0 |
23439.0 | 523.0 |
23455.0 | 4.0 |
23523.0 | 3.0 |
23607.0 | 7.0 |
23658.0 | 703.0 |
23706.0 | 57.0 |
24171.0 | 433.0 |
24200.0 | 1.0 |
24347.0 | 752.0 |
24354.0 | 901.0 |
24355.0 | 823.0 |
24504.0 | 2.0 |
24630.0 | 1389.0 |
24663.0 | 372.0 |
24664.0 | 159.0 |
24690.0 | 41.0 |
24719.0 | 1.0 |
24873.0 | 149.0 |
24985.0 | 251.0 |
25203.0 | 306.0 |
25638.0 | 402.0 |
25639.0 | 526.0 |
25686.0 | 606.0 |
26087.0 | 3.0 |
26178.0 | 1.0 |
26200.0 | 74.0 |
26544.0 | 21.0 |
26623.0 | 1.0 |
26769.0 | 2482.0 |
26787.0 | 1137.0 |
26801.0 | 1.0 |
27030.0 | 3.0 |
27118.0 | 389.0 |
27129.0 | 371.0 |
27214.0 | 300.0 |
27255.0 | 198.0 |
27261.0 | 111.0 |
27266.0 | 181.0 |
27466.0 | 353.0 |
27480.0 | 671.0 |
27609.0 | 174.0 |
27709.0 | 244.0 |
27760.0 | 121.0 |
27856.0 | 196.0 |
27888.0 | 97.0 |
27966.0 | 1.0 |
27974.0 | 1.0 |
27977.0 | 738.0 |
28024.0 | 325.0 |
28124.0 | 1.0 |
28146.0 | 1098.0 |
28170.0 | 153.0 |
28298.0 | 1.0 |
28526.0 | 372.0 |
28577.0 | 55.0 |
28584.0 | 117.0 |
28664.0 | 41.0 |
28836.0 | 1.0 |
28883.0 | 3.0 |
28893.0 | 28.0 |
29054.0 | 57.0 |
29109.0 | 414.0 |
29177.0 | 697.0 |
29194.0 | 1.0 |
29225.0 | 1.0 |
29228.0 | 133.0 |
29285.0 | 47.0 |
29305.0 | 968.0 |
29483.0 | 195.0 |
29566.0 | 1.0 |
29630.0 | 111.0 |
29719.0 | 3.0 |
29744.0 | 1.0 |
29811.0 | 538.0 |
29834.0 | 313.0 |
29894.0 | 1.0 |
29942.0 | 482.0 |
29950.0 | 37.0 |
29993.0 | 12.0 |
29997.0 | 1.0 |
30183.0 | 3.0 |
30330.0 | 136.0 |
30361.0 | 372.0 |
30525.0 | 27.0 |
30617.0 | 134.0 |
30632.0 | 242.0 |
30654.0 | 273.0 |
30802.0 | 912.0 |
30903.0 | 429.0 |
30970.0 | 1.0 |
30988.0 | 1309.0 |
31035.0 | 627.0 |
31161.0 | 460.0 |
31236.0 | 255.0 |
31261.0 | 44.0 |
31275.0 | 186.0 |
31285.0 | 223.0 |
31350.0 | 617.0 |
31352.0 | 63.0 |
31380.0 | 3.0 |
31435.0 | 295.0 |
31447.0 | 33.0 |
31528.0 | 28.0 |
31689.0 | 1.0 |
31759.0 | 367.0 |
31763.0 | 1.0 |
31834.0 | 748.0 |
31912.0 | 1.0 |
31928.0 | 878.0 |
31951.0 | 1.0 |
32102.0 | 1.0 |
32291.0 | 86.0 |
32304.0 | 539.0 |
32445.0 | 130.0 |
32460.0 | 372.0 |
32525.0 | 103.0 |
32622.0 | 668.0 |
32648.0 | 35.0 |
32680.0 | 400.0 |
32786.0 | 387.0 |
32871.0 | 3.0 |
33118.0 | 550.0 |
33221.0 | 603.0 |
33437.0 | 1.0 |
33550.0 | 1325.0 |
33569.0 | 68.0 |
33607.0 | 202.0 |
33717.0 | 21.0 |
33868.0 | 33.0 |
34029.0 | 1.0 |
34061.0 | 257.0 |
34197.0 | 747.0 |
34488.0 | 196.0 |
34494.0 | 343.0 |
34569.0 | 683.0 |
34591.0 | 400.0 |
34602.0 | 1570.0 |
34611.0 | 665.0 |
34650.0 | 844.0 |
34697.0 | 471.0 |
34713.0 | 873.0 |
34742.0 | 402.0 |
34759.0 | 298.0 |
34870.0 | 381.0 |
34878.0 | 253.0 |
35044.0 | 716.0 |
35071.0 | 420.0 |
35094.0 | 122.0 |
35142.0 | 360.0 |
35184.0 | 87.0 |
35235.0 | 472.0 |
35351.0 | 267.0 |
35361.0 | 83.0 |
35371.0 | 88.0 |
35399.0 | 121.0 |
35450.0 | 125.0 |
35632.0 | 133.0 |
35654.0 | 131.0 |
35689.0 | 86.0 |
35694.0 | 116.0 |
35702.0 | 133.0 |
35713.0 | 120.0 |
35794.0 | 101.0 |
35800.0 | 413.0 |
35820.0 | 430.0 |
35868.0 | 111.0 |
35912.0 | 159.0 |
35927.0 | 172.0 |
35947.0 | 1.0 |
35950.0 | 1.0 |
35982.0 | 1.0 |
35988.0 | 1.0 |
36066.0 | 228.0 |
36069.0 | 179.0 |
36098.0 | 148.0 |
36106.0 | 1.0 |
36131.0 | 155.0 |
36155.0 | 1.0 |
36192.0 | 136.0 |
36224.0 | 458.0 |
36312.0 | 127.0 |
36347.0 | 164.0 |
36355.0 | 135.0 |
36706.0 | 1.0 |
36783.0 | 160.0 |
36819.0 | 451.0 |
36982.0 | 46.0 |
37006.0 | 1.0 |
37015.0 | 1043.0 |
37146.0 | 257.0 |
37195.0 | 1.0 |
37215.0 | 1.0 |
37251.0 | 3.0 |
37297.0 | 369.0 |
37307.0 | 456.0 |
37355.0 | 22.0 |
37409.0 | 727.0 |
37482.0 | 1.0 |
37526.0 | 142.0 |
37657.0 | 18.0 |
37669.0 | 369.0 |
37768.0 | 1.0 |
37788.0 | 1.0 |
37818.0 | 1.0 |
37832.0 | 146.0 |
37864.0 | 237.0 |
38146.0 | 1.0 |
38150.0 | 266.0 |
38152.0 | 771.0 |
38153.0 | 109.0 |
38220.0 | 1.0 |
38297.0 | 27.0 |
38298.0 | 213.0 |
38311.0 | 27.0 |
38395.0 | 1.0 |
38422.0 | 826.0 |
38436.0 | 17.0 |
38562.0 | 1.0 |
38581.0 | 391.0 |
38607.0 | 460.0 |
38611.0 | 454.0 |
38615.0 | 71.0 |
38621.0 | 1.0 |
38651.0 | 379.0 |
38656.0 | 401.0 |
38707.0 | 644.0 |
38730.0 | 127.0 |
38758.0 | 1.0 |
38806.0 | 1.0 |
38910.0 | 75.0 |
39153.0 | 1.0 |
39161.0 | 1.0 |
39217.0 | 282.0 |
39432.0 | 202.0 |
39433.0 | 1.0 |
39513.0 | 1.0 |
39582.0 | 1326.0 |
39597.0 | 340.0 |
39671.0 | 1.0 |
39742.0 | 85.0 |
39788.0 | 1.0 |
39827.0 | 1.0 |
39867.0 | 1.0 |
39977.0 | 152.0 |
40011.0 | 197.0 |
40021.0 | 182.0 |
40132.0 | 385.0 |
40256.0 | 20.0 |
40261.0 | 219.0 |
40335.0 | 555.0 |
40386.0 | 16.0 |
40439.0 | 279.0 |
40515.0 | 566.0 |
40677.0 | 33.0 |
40687.0 | 14.0 |
40824.0 | 1.0 |
40893.0 | 41.0 |
40900.0 | 13.0 |
41037.0 | 21.0 |
41085.0 | 92.0 |
41126.0 | 7.0 |
41141.0 | 2.0 |
41175.0 | 11.0 |
41265.0 | 10.0 |
41409.0 | 47.0 |
41496.0 | 7.0 |
41575.0 | 1.0 |
41696.0 | 3.0 |
41704.0 | 1.0 |
41751.0 | 1.0 |
41887.0 | 271.0 |
41890.0 | 385.0 |
41913.0 | 13.0 |
41988.0 | 42.0 |
42102.0 | 1.0 |
42348.0 | 7.0 |
42373.0 | 143.0 |
42468.0 | 180.0 |
42635.0 | 421.0 |
42754.0 | 292.0 |
42834.0 | 123.0 |
42942.0 | 189.0 |
43103.0 | 41.0 |
43108.0 | 1521.0 |
43109.0 | 732.0 |
43270.0 | 132.0 |
43302.0 | 1.0 |
43307.0 | 112.0 |
43359.0 | 1003.0 |
43527.0 | 463.0 |
43588.0 | 1.0 |
43741.0 | 86.0 |
43852.0 | 4.0 |
43921.0 | 254.0 |
43935.0 | 214.0 |
43938.0 | 20.0 |
44022.0 | 74.0 |
44141.0 | 1.0 |
44205.0 | 419.0 |
44321.0 | 13.0 |
44437.0 | 394.0 |
44595.0 | 1.0 |
44596.0 | 262.0 |
44653.0 | 295.0 |
44740.0 | 917.0 |
44776.0 | 1121.0 |
44822.0 | 359.0 |
44884.0 | 22.0 |
45011.0 | 1.0 |
45054.0 | 1.0 |
45127.0 | 362.0 |
45151.0 | 1.0 |
45307.0 | 39.0 |
45615.0 | 1.0 |
45621.0 | 582.0 |
45622.0 | 145.0 |
45630.0 | 14.0 |
45634.0 | 36.0 |
45731.0 | 2.0 |
45769.0 | 197.0 |
45978.0 | 4.0 |
46030.0 | 5.0 |
46209.0 | 236.0 |
46448.0 | 2.0 |
46491.0 | 1.0 |
46608.0 | 76.0 |
46781.0 | 1.0 |
46818.0 | 136.0 |
46943.0 | 122.0 |
46952.0 | 1.0 |
47013.0 | 254.0 |
47084.0 | 53.0 |
47217.0 | 134.0 |
47231.0 | 1.0 |
47268.0 | 1.0 |
47283.0 | 1.0 |
47300.0 | 343.0 |
47496.0 | 6.0 |
47497.0 | 1796.0 |
47501.0 | 31.0 |
47573.0 | 1.0 |
47622.0 | 434.0 |
47671.0 | 478.0 |
47711.0 | 170.0 |
47753.0 | 1.0 |
47766.0 | 17.0 |
48206.0 | 1.0 |
48254.0 | 1.0 |
48308.0 | 222.0 |
48316.0 | 55.0 |
48398.0 | 399.0 |
48510.0 | 575.0 |
48686.0 | 90.0 |
48711.0 | 657.0 |
48780.0 | 802.0 |
48838.0 | 33.0 |
48880.0 | 40.0 |
48942.0 | 1.0 |
49101.0 | 1.0 |
49171.0 | 280.0 |
49197.0 | 703.0 |
49308.0 | 366.0 |
49331.0 | 266.0 |
49429.0 | 3.0 |
49503.0 | 303.0 |
49607.0 | 101.0 |
49662.0 | 401.0 |
49668.0 | 63.0 |
49686.0 | 218.0 |
49696.0 | 959.0 |
49699.0 | 720.0 |
49814.0 | 13.0 |
49855.0 | 1070.0 |
49869.0 | 1.0 |
50021.0 | 238.0 |
50202.0 | 21.0 |
50223.0 | 118.0 |
50309.0 | 198.0 |
50320.0 | 1.0 |
50343.0 | 1.0 |
50546.0 | 1.0 |
50732.0 | 69.0 |
50792.0 | 1.0 |
50803.0 | 140.0 |
50847.0 | 238.0 |
50954.0 | 1.0 |
50963.0 | 571.0 |
51022.0 | 229.0 |
51086.0 | 32.0 |
51123.0 | 381.0 |
51142.0 | 113.0 |
51388.0 | 13.0 |
51393.0 | 6.0 |
51415.0 | 1.0 |
51640.0 | 55.0 |
51801.0 | 439.0 |
51914.0 | 274.0 |
52100.0 | 112.0 |
52507.0 | 567.0 |
52670.0 | 2.0 |
52675.0 | 78.0 |
52697.0 | 1.0 |
52987.0 | 161.0 |
53056.0 | 202.0 |
53092.0 | 25.0 |
53098.0 | 146.0 |
53158.0 | 1.0 |
53168.0 | 1.0 |
53172.0 | 1.0 |
53299.0 | 212.0 |
53338.0 | 251.0 |
53340.0 | 623.0 |
53528.0 | 332.0 |
53576.0 | 210.0 |
53620.0 | 119.0 |
53630.0 | 272.0 |
53741.0 | 555.0 |
53963.0 | 3.0 |
54172.0 | 215.0 |
54231.0 | 98.0 |
54264.0 | 3.0 |
54448.0 | 195.0 |
54551.0 | 104.0 |
54769.0 | 329.0 |
54844.0 | 3.0 |
54958.0 | 130.0 |
54980.0 | 899.0 |
54984.0 | 1.0 |
54989.0 | 265.0 |
55013.0 | 440.0 |
55197.0 | 1.0 |
55202.0 | 314.0 |
55265.0 | 357.0 |
55272.0 | 2.0 |
55279.0 | 155.0 |
55283.0 | 127.0 |
55363.0 | 72.0 |
55498.0 | 43.0 |
55539.0 | 271.0 |
55547.0 | 1.0 |
55879.0 | 1.0 |
56022.0 | 1.0 |
56096.0 | 149.0 |
56110.0 | 108.0 |
56168.0 | 831.0 |
56203.0 | 81.0 |
56204.0 | 1.0 |
56259.0 | 663.0 |
56297.0 | 1.0 |
56350.0 | 106.0 |
56465.0 | 394.0 |
56490.0 | 1.0 |
56502.0 | 752.0 |
56617.0 | 395.0 |
56640.0 | 3.0 |
56680.0 | 519.0 |
56687.0 | 1.0 |
56741.0 | 1.0 |
56768.0 | 4.0 |
56840.0 | 1.0 |
56941.0 | 293.0 |
56943.0 | 231.0 |
56987.0 | 208.0 |
57020.0 | 434.0 |
57039.0 | 1.0 |
57178.0 | 1.0 |
57201.0 | 494.0 |
57202.0 | 3.0 |
57306.0 | 3.0 |
57370.0 | 171.0 |
57693.0 | 1.0 |
57754.0 | 1.0 |
57771.0 | 454.0 |
57877.0 | 669.0 |
57955.0 | 304.0 |
57984.0 | 1.0 |
58039.0 | 659.0 |
58072.0 | 14.0 |
58196.0 | 1.0 |
58305.0 | 379.0 |
58513.0 | 1.0 |
58665.0 | 56.0 |
58797.0 | 3.0 |
58811.0 | 207.0 |
58850.0 | 1.0 |
58905.0 | 1.0 |
59086.0 | 1.0 |
59115.0 | 58.0 |
59345.0 | 1.0 |
59355.0 | 232.0 |
59384.0 | 35.0 |
59411.0 | 315.0 |
59487.0 | 1.0 |
59663.0 | 1.0 |
59667.0 | 1.0 |
59680.0 | 48.0 |
59724.0 | 3.0 |
59748.0 | 365.0 |
59754.0 | 1.0 |
59832.0 | 69.0 |
59896.0 | 487.0 |
59990.0 | 457.0 |
60001.0 | 91.0 |
60068.0 | 113.0 |
60455.0 | 123.0 |
60562.0 | 933.0 |
60769.0 | 1.0 |
60835.0 | 590.0 |
60917.0 | 61.0 |
60962.0 | 27.0 |
60964.0 | 213.0 |
61051.0 | 183.0 |
61202.0 | 56.0 |
61230.0 | 235.0 |
61242.0 | 3.0 |
61250.0 | 1.0 |
61313.0 | 11.0 |
61330.0 | 1.0 |
61344.0 | 472.0 |
61501.0 | 260.0 |
61682.0 | 75.0 |
61745.0 | 456.0 |
61793.0 | 106.0 |
61867.0 | 240.0 |
61972.0 | 251.0 |
62015.0 | 2.0 |
62090.0 | 32.0 |
62107.0 | 563.0 |
62172.0 | 18.0 |
62398.0 | 597.0 |
62400.0 | 619.0 |
62458.0 | 73.0 |
62462.0 | 366.0 |
62478.0 | 3.0 |
62606.0 | 1.0 |
62740.0 | 133.0 |
62780.0 | 1.0 |
62880.0 | 1.0 |
63087.0 | 278.0 |
63106.0 | 265.0 |
63111.0 | 1.0 |
63145.0 | 252.0 |
63152.0 | 3.0 |
63172.0 | 538.0 |
63255.0 | 1.0 |
63345.0 | 2.0 |
63469.0 | 479.0 |
63557.0 | 59.0 |
63574.0 | 42.0 |
63964.0 | 3.0 |
64067.0 | 383.0 |
64121.0 | 1.0 |
64354.0 | 27.0 |
64519.0 | 30.0 |
64536.0 | 3.0 |
64593.0 | 1.0 |
64628.0 | 1.0 |
64648.0 | 238.0 |
64822.0 | 2.0 |
64859.0 | 2.0 |
64989.0 | 32.0 |
65009.0 | 238.0 |
65104.0 | 153.0 |
65220.0 | 425.0 |
65251.0 | 3.0 |
65300.0 | 2.0 |
65305.0 | 282.0 |
65308.0 | 1119.0 |
65313.0 | 200.0 |
65353.0 | 3.0 |
65408.0 | 383.0 |
65454.0 | 1.0 |
65486.0 | 83.0 |
65618.0 | 1.0 |
65686.0 | 303.0 |
65726.0 | 27.0 |
65771.0 | 58.0 |
65867.0 | 138.0 |
65905.0 | 260.0 |
65974.0 | 270.0 |
66077.0 | 276.0 |
66132.0 | 3.0 |
66166.0 | 1.0 |
66400.0 | 56.0 |
66463.0 | 465.0 |
66613.0 | 110.0 |
66751.0 | 3.0 |
66755.0 | 3.0 |
66828.0 | 3.0 |
67050.0 | 187.0 |
67068.0 | 33.0 |
67086.0 | 1.0 |
67089.0 | 1.0 |
67225.0 | 57.0 |
67231.0 | 25.0 |
67278.0 | 3.0 |
67294.0 | 1.0 |
67376.0 | 642.0 |
67439.0 | 1.0 |
67492.0 | 373.0 |
67574.0 | 3.0 |
67618.0 | 82.0 |
67782.0 | 522.0 |
67865.0 | 68.0 |
68037.0 | 5.0 |
68047.0 | 193.0 |
68064.0 | 189.0 |
68078.0 | 283.0 |
68090.0 | 455.0 |
68098.0 | 1.0 |
68135.0 | 1.0 |
68202.0 | 583.0 |
68386.0 | 44.0 |
68485.0 | 903.0 |
68544.0 | 20.0 |
68575.0 | 156.0 |
68579.0 | 17.0 |
68592.0 | 144.0 |
68609.0 | 9.0 |
68610.0 | 145.0 |
68672.0 | 573.0 |
68678.0 | 7.0 |
68804.0 | 120.0 |
69035.0 | 387.0 |
69042.0 | 12.0 |
69247.0 | 18.0 |
69279.0 | 126.0 |
69333.0 | 1.0 |
69340.0 | 39.0 |
69352.0 | 47.0 |
69385.0 | 88.0 |
69478.0 | 35.0 |
69481.0 | 1.0 |
69595.0 | 217.0 |
69601.0 | 1.0 |
69637.0 | 28.0 |
69743.0 | 144.0 |
70097.0 | 134.0 |
70109.0 | 93.0 |
70252.0 | 2.0 |
70322.0 | 947.0 |
70442.0 | 45.0 |
70508.0 | 331.0 |
70844.0 | 209.0 |
70895.0 | 1.0 |
71283.0 | 1.0 |
71454.0 | 327.0 |
71468.0 | 24.0 |
71510.0 | 319.0 |
71571.0 | 488.0 |
71580.0 | 86.0 |
71821.0 | 624.0 |
71984.0 | 78.0 |
71995.0 | 1.0 |
72232.0 | 186.0 |
72387.0 | 42.0 |
72546.0 | 4.0 |
72578.0 | 38.0 |
72610.0 | 1.0 |
72758.0 | 765.0 |
72785.0 | 183.0 |
72912.0 | 1.0 |
72938.0 | 1.0 |
72941.0 | 1.0 |
72981.0 | 1.0 |
72996.0 | 1.0 |
73041.0 | 180.0 |
73048.0 | 1.0 |
73091.0 | 1.0 |
73305.0 | 1.0 |
73341.0 | 35.0 |
73352.0 | 576.0 |
73452.0 | 142.0 |
73470.0 | 1.0 |
73797.0 | 270.0 |
73878.0 | 3.0 |
73900.0 | 57.0 |
74009.0 | 354.0 |
74058.0 | 3.0 |
74097.0 | 344.0 |
74264.0 | 665.0 |
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
Article Graph Exploration
In this notebook, the graph consisting of all Wikipedia articles and their connections through links will be explored. The purpose of this notebook is to answer the following questions: * How big is the graph in terms of - Nodes, i.e. articles? - Edges, i.e. links? * How dense is the graph? * Which articles have the highest - degree? - in/out degree? * What can be said about the article length - mean? - median? - quantiles? - distribution?
Load Data
The first step is to locate the data we use to build the article graph, which was created in the preprocessing notebooks for pages, pageLinks, categoryTables, categoryLinks, and redirects. They are the tables below beginning with 'enwiki_'.
display(spark.sql("SHOW TABLES"))
Next we read the tables with data regarding articles and categories in order to first create the nodes and their attributes. The columns are:
dfPages:
page_id: Unique integer identifyer
page_title: Page title
page_is_redirect: 1 if yes, 0 if no
has_been_edited: 1 if revised at l. once, 0 if not
page_len: source text size
page_content_model: Format, e.g. 'wikitext', 'JavaScript'
page_lang: Language
dfCategory
cat_id: Unique identifyer
cat_title Category title
cat_pages: # of Pages
cat_subcats: # of Subcategories
cat_files: # of Files
dfCategoryLinks:
cl_from: page_id of link source
cl_to: page_title of link destination
cl_type: file/page/subcat
Note: Not all categories have a 'pageid' which prompts the existence of the 'catid'.
val dfPages = spark.sql("SELECT * FROM enwiki_page") // Read pages table
val dfCategory = spark.sql("SELECT * FROM enwiki_category") // Read categories table
val dfCategoryLinks = spark.sql("SELECT * FROM enwiki_categorylinks") // Read links between articles/categories and categories
dfPages: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 5 more fields]
dfCategory: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 3 more fields]
dfCategoryLinks: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 1 more field]
We join the dataframes and drop all nodes that are redirect pages.
// Join pages with category information
val dfArticlesCat = dfPages
// remove all redirects:
.filter(col("page_is_redirect")===0)
//Select only links to pages:
.join(dfCategoryLinks.filter(col("cl_type")==="page"),
col("page_id")===col("cl_from"),
"left")
dfArticlesCat: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 8 more fields]
// Group on article and aggregate the categories as a set per article:
val dfArticlesCatGrouped = dfArticlesCat.groupBy("page_id","page_title","page_len").agg(collect_set(col("cl_to")))
dfArticlesCatGrouped: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 2 more fields]
Finally we store this as our vertex dataframe, now with the followign columns.
dfVertex:
id: page_id
page_title: Title
page_len: Size of source text
categories: Set of categories the page belongs to
val dfVertex = dfArticlesCatGrouped.withColumnRenamed("page_id", "id").withColumnRenamed("collect_set(cl_to)", "categories")
dfVertex.cache()
dfVertex: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 2 more fields]
res8: dfVertex.type = [id: int, page_title: string ... 2 more fields]
The next step is to collect the edge data. Here we use a processed dataset of links which has been enriched by merging redirects into direct links (see notebook 06redirectRemoval) and only save the source/destionation 'pageid's from it.
dfEdgeLinks: (in cell 13)
src: page_id of source
src_title: title of source
dst: page_id of destination
dst_title: Title of destination
shortenedRedirect: Whether notebook 05 made changes
val dfEdgeLinks = spark.sql("SELECT * FROM enwiki_graph_edges_shortenedredirects") // Download the edges w.o. redirects
val dfEdges = dfEdgeLinks.select("src", "dst")
dfEdgeLinks: org.apache.spark.sql.DataFrame = [src: int, src_title: string ... 3 more fields]
dfEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
Further, to avoid edges pointing towards nodes that do not exist we use two joins to filter out edges pointing towards nodes outside of our graph.
Since graphframes does not remove edges between non-existing vertices automatically, we do this manually through joins. This is done in two steps where we first remove edges where the source does not exist, and then remove edges where the destination does not exist. (The "inner" join removes non-matching rows.)
val filteredEdges = dfEdgeLinks.join(dfVertex,
col("src")===dfVertex.col("id"), "inner")
.select("src", "dst")
.join(dfVertex,
col("dst")===dfVertex.col("id"), "inner").select("src","dst")
filteredEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
val dfEdges = filteredEdges
dfEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
Finally we can create our GraphFrame using the vertex and edge dataframes created prior.
// Create the full graph from the non-redirect articles and the the filtered edges
val g = GraphFrame(dfVertex, dfEdges).cache()
g: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 2 more fields], e:[src: int, dst: int])
Graph Exploration
Lets look at some key attributes of the graph to get a simple understanding of its size, density and nodes.
In summary, we have the following (cells 20-26). |Attribute| Value | |---------|-----------| |Articles | 6569604 | |Links | 607780945 | |Average inDegree | 94.5 | |Average outDegree | 36.1 |
-
The distribution of the number of in- and out-degrees is heavily skewed towards "small" values. 98\% of the articles have an inDegree under 4000 while the maximum is 1,4M.
-
In cell 27, we see that the outliers for inDegree are pages explaining commonly used identifyers, such as ISBN (liked to with each ISBN-number) and Geograpiccoordinatesystem (linked to e.g. every time a location has coordinates). The first non-identifyer entry is United_States at seventh place with inDegree 463812.
-
The outDegree-liers (see what I did there?) we see in cell 28 are lists/indices of articles/categories in a given category, e.g. IndexofSingapore-related_articles (which has a whopping 12441 links, shown in cell 29) and Listofbirdsbycommon_name
(10980) as well as chronological lists, e.g. 1998infilm (5333). The first non-list article is OutlineofIslam in place 90 with 3853 links.
// In total full graph
val noNodes = g.vertices.count
val noEdges = g.edges.count
val density = noEdges / noNodes
noNodes: Long = 6569604
noEdges: Long = 607780945
density: Long = 92
// Average degree (in + out)
g.degrees.select(avg("degree")).show()
+-----------------+
| avg(degree)|
+-----------------+
|72.12373072701943|
+-----------------+
display(g.degrees)
id | degree |
---|---|
3997.0 | 3066.0 |
24354.0 | 4277.0 |
383675.0 | 827.0 |
526941.0 | 94.0 |
1044976.0 | 44.0 |
2580748.0 | 143.0 |
2777190.0 | 55.0 |
3335116.0 | 981.0 |
3906873.0 | 318.0 |
4171885.0 | 442.0 |
5527838.0 | 1.0 |
5773466.0 | 432.0 |
1.0448803e7 | 9.0 |
1.3900404e7 | 160.0 |
1.4723395e7 | 572.0 |
1.8791403e7 | 59.0 |
2.2814939e7 | 383.0 |
3.8738601e7 | 1.0 |
4.9844865e7 | 51.0 |
5.2701891e7 | 496.0 |
5.272196e7 | 995.0 |
5.2724058e7 | 971.0 |
6.9363482e7 | 3562.0 |
85332.0 | 754.0 |
2484503.0 | 593.0 |
1299663.0 | 938.0 |
1528448.0 | 871.0 |
3.568145e7 | 698.0 |
3.5702813e7 | 694.0 |
4.7862306e7 | 2814.0 |
18051.0 | 907.0 |
581422.0 | 152.0 |
2735971.0 | 575.0 |
6744757.0 | 1931.0 |
6762807.0 | 214.0 |
7820803.0 | 443.0 |
7946810.0 | 234.0 |
1.2248345e7 | 318.0 |
1.2743502e7 | 34.0 |
1.28778e7 | 152.0 |
2.3610877e7 | 202.0 |
3.4663596e7 | 26.0 |
4.0125689e7 | 169.0 |
4.4118511e7 | 620.0 |
4.6306198e7 | 112.0 |
5.399198e7 | 178.0 |
5.4531811e7 | 293.0 |
5.7149547e7 | 15.0 |
6.0188959e7 | 13.0 |
6.3363388e7 | 22.0 |
6.465077e7 | 344.0 |
11141.0 | 2064.0 |
15790.0 | 2241.0 |
15846.0 | 2126.0 |
19530.0 | 1978.0 |
28146.0 | 2165.0 |
42468.0 | 239.0 |
1.8828259e7 | 143.0 |
1.9157323e7 | 254.0 |
2.6328957e7 | 224.0 |
4.8503188e7 | 212.0 |
30903.0 | 1098.0 |
1247265.0 | 420.0 |
2.2396088e7 | 382.0 |
343134.0 | 2588.0 |
2080614.0 | 56.0 |
5.4576363e7 | 76.0 |
7.0582827e7 | 1.0 |
72758.0 | 9371.0 |
2188048.0 | 905.0 |
7744446.0 | 403.0 |
1.5000856e7 | 1439.0 |
1.5137812e7 | 1970.0 |
2.3329907e7 | 1242.0 |
5.0760135e7 | 432.0 |
2.8387935e7 | 521.0 |
1.497893e7 | 154.0 |
1.8814781e7 | 722.0 |
2.8212195e7 | 151.0 |
2.907822e7 | 304.0 |
3.2197081e7 | 455.0 |
4.7917953e7 | 385.0 |
5.5455444e7 | 288.0 |
5.5960908e7 | 136.0 |
6.6241271e7 | 296.0 |
7360355.0 | 669.0 |
1.4582319e7 | 105.0 |
5.8265866e7 | 16.0 |
13289.0 | 5210.0 |
13623.0 | 1532.0 |
105796.0 | 2895.0 |
611323.0 | 749.0 |
923896.0 | 207.0 |
1026468.0 | 218.0 |
2352987.0 | 2299.0 |
2569830.0 | 24.0 |
3072809.0 | 1586.0 |
4238857.0 | 476.0 |
8518977.0 | 168.0 |
1.4250638e7 | 54.0 |
1.7405545e7 | 51.0 |
1.7990997e7 | 1502.0 |
3.0555928e7 | 32.0 |
3.8759326e7 | 27.0 |
3.9269714e7 | 418.0 |
3.9817572e7 | 248.0 |
5.1907848e7 | 69.0 |
5.8427038e7 | 58.0 |
6.8021038e7 | 131.0 |
6.8072188e7 | 85.0 |
6.9618014e7 | 14.0 |
513940.0 | 25.0 |
1568873.0 | 1099.0 |
1.1421308e7 | 313.0 |
1.1421636e7 | 583.0 |
1.1485448e7 | 28.0 |
1.3629231e7 | 28.0 |
3.6847774e7 | 43.0 |
4.2291886e7 | 285.0 |
4.7490223e7 | 136.0 |
7.1302651e7 | 45.0 |
57020.0 | 737.0 |
265366.0 | 1941.0 |
359796.0 | 214.0 |
381549.0 | 1443.0 |
385313.0 | 6293.0 |
474711.0 | 1032.0 |
1636908.0 | 1638.0 |
1781570.0 | 30.0 |
5657142.0 | 1.0 |
6994405.0 | 59.0 |
8992253.0 | 191.0 |
1.0039332e7 | 1410.0 |
1.7861685e7 | 88.0 |
2.4806426e7 | 877.0 |
3.3024752e7 | 422.0 |
3.6977363e7 | 160.0 |
3.8194253e7 | 262.0 |
6.9073234e7 | 46.0 |
42373.0 | 298.0 |
78478.0 | 2526.0 |
895795.0 | 119.0 |
2.7634189e7 | 52.0 |
3.5939115e7 | 54.0 |
7.0523411e7 | 294.0 |
244629.0 | 1270.0 |
35071.0 | 733.0 |
35820.0 | 630.0 |
33569.0 | 147.0 |
6.8859854e7 | 688.0 |
48510.0 | 1273.0 |
404260.0 | 1019.0 |
1723528.0 | 325.0 |
3463650.0 | 459.0 |
8659009.0 | 57.0 |
9690865.0 | 52.0 |
1.8017259e7 | 60.0 |
2.7732133e7 | 788.0 |
2.958062e7 | 27.0 |
5.6837511e7 | 347.0 |
6.9995899e7 | 7.0 |
314843.0 | 2022.0 |
4.1108958e7 | 73.0 |
5.9491801e7 | 30.0 |
2865984.0 | 2791.0 |
8385838.0 | 130.0 |
6.9455241e7 | 574.0 |
12027.0 | 10336.0 |
409244.0 | 343.0 |
67492.0 | 412.0 |
215987.0 | 1081.0 |
3.8282692e7 | 46.0 |
61051.0 | 432.0 |
7.1437197e7 | 66.0 |
870055.0 | 18.0 |
911953.0 | 460.0 |
2.4548881e7 | 41.0 |
2.4703336e7 | 19.0 |
3.1011767e7 | 1235.0 |
4.3255834e7 | 277.0 |
6.3917914e7 | 43.0 |
5.9968539e7 | 426.0 |
962892.0 | 200.0 |
1.8493456e7 | 1.0 |
2.654171e7 | 442.0 |
7089085.0 | 49.0 |
1.3589583e7 | 89.0 |
4.6361261e7 | 17.0 |
393186.0 | 424.0 |
407209.0 | 25.0 |
627911.0 | 46.0 |
1524978.0 | 108.0 |
1547709.0 | 341.0 |
1647594.0 | 783.0 |
3032922.0 | 112.0 |
3036685.0 | 87.0 |
3037250.0 | 104.0 |
3347119.0 | 109.0 |
3509797.0 | 113.0 |
5938173.0 | 483.0 |
6235429.0 | 79.0 |
6924226.0 | 811.0 |
1.3779783e7 | 97.0 |
1.4950057e7 | 834.0 |
1.6429569e7 | 270.0 |
1.6441169e7 | 103.0 |
1.6466045e7 | 112.0 |
1.6468371e7 | 109.0 |
1.6469394e7 | 104.0 |
1.6477296e7 | 409.0 |
1.6631995e7 | 113.0 |
1.6632509e7 | 112.0 |
1.6632916e7 | 107.0 |
1.666896e7 | 107.0 |
2.369687e7 | 258.0 |
2.875552e7 | 275.0 |
2.91442e7 | 42.0 |
3.3730185e7 | 144.0 |
3.7642408e7 | 178.0 |
3.9865767e7 | 300.0 |
4.1475853e7 | 146.0 |
4.4876972e7 | 205.0 |
4.6432162e7 | 16.0 |
5.1140376e7 | 269.0 |
5.5992133e7 | 13.0 |
5.7227015e7 | 885.0 |
6.4779748e7 | 11.0 |
2172566.0 | 152.0 |
1.4353566e7 | 346.0 |
2.1497558e7 | 60.0 |
3.5209118e7 | 74.0 |
38153.0 | 193.0 |
65220.0 | 1785.0 |
147280.0 | 532.0 |
297114.0 | 939.0 |
426303.0 | 258.0 |
521582.0 | 270.0 |
566521.0 | 100.0 |
752544.0 | 696.0 |
882285.0 | 2037.0 |
1131396.0 | 48.0 |
1178536.0 | 496.0 |
1527740.0 | 90.0 |
1840840.0 | 359.0 |
1954702.0 | 436.0 |
2564737.0 | 386.0 |
2956898.0 | 275.0 |
3200152.0 | 624.0 |
3381537.0 | 214.0 |
3749707.0 | 67.0 |
5879761.0 | 203.0 |
6008449.0 | 554.0 |
6163866.0 | 100.0 |
6273921.0 | 58.0 |
7151984.0 | 45.0 |
8015452.0 | 100.0 |
1.0063201e7 | 1088.0 |
1.1979107e7 | 548.0 |
1.3185094e7 | 36.0 |
1.7627213e7 | 33454.0 |
1.9004376e7 | 131.0 |
1.9258837e7 | 96.0 |
1.9286616e7 | 80.0 |
1.9819054e7 | 178.0 |
2.0137979e7 | 76.0 |
2.0240666e7 | 47.0 |
2.0778386e7 | 1368.0 |
2.0892299e7 | 107.0 |
2.2179527e7 | 344.0 |
2.2620252e7 | 2390.0 |
2.3334799e7 | 235.0 |
2.3957023e7 | 17.0 |
2.4126182e7 | 411.0 |
2.4192395e7 | 17.0 |
2.4890561e7 | 343.0 |
2.5781883e7 | 180.0 |
2.5914678e7 | 49.0 |
2.7274222e7 | 632.0 |
2.7715801e7 | 41.0 |
2.7731272e7 | 406.0 |
2.8746529e7 | 70.0 |
2.8771788e7 | 318.0 |
2.9410367e7 | 2133.0 |
3.0809026e7 | 338.0 |
3.127299e7 | 175.0 |
3.1942099e7 | 2055.0 |
3.2059638e7 | 107.0 |
3.4750899e7 | 416.0 |
3.553545e7 | 371.0 |
3.5648102e7 | 287.0 |
3.6052985e7 | 363.0 |
3.6076762e7 | 569.0 |
3.6703624e7 | 1952.0 |
4.0923833e7 | 770.0 |
4.1566359e7 | 60.0 |
4.2007024e7 | 700.0 |
4.2066493e7 | 126.0 |
4.4023809e7 | 236.0 |
4.4369451e7 | 243.0 |
4.5574569e7 | 15.0 |
4.6584901e7 | 190.0 |
4.6941689e7 | 107.0 |
4.7281635e7 | 28.0 |
4.7387583e7 | 24.0 |
4.7611377e7 | 76.0 |
4.8699559e7 | 138.0 |
4.9506527e7 | 396.0 |
5.2192435e7 | 341.0 |
5.2217865e7 | 119.0 |
5.2291471e7 | 144.0 |
5.3656594e7 | 209.0 |
5.8305463e7 | 421.0 |
5.883202e7 | 548.0 |
5.9885872e7 | 19.0 |
6.010041e7 | 1391.0 |
6.0211295e7 | 668.0 |
6.0367555e7 | 339.0 |
6.0727429e7 | 240.0 |
6.1333939e7 | 238.0 |
6.2664637e7 | 3008.0 |
6.8416031e7 | 18.0 |
6.8548353e7 | 160.0 |
6.8872066e7 | 97.0 |
6.9079971e7 | 50.0 |
195642.0 | 764.0 |
1.1162609e7 | 1251.0 |
3.7736283e7 | 10.0 |
1098309.0 | 535.0 |
1088.0 | 1274.0 |
1645.0 | 1574.0 |
2122.0 | 3760.0 |
2142.0 | 270.0 |
2866.0 | 428.0 |
3175.0 | 246.0 |
3794.0 | 2542.0 |
4101.0 | 265.0 |
4519.0 | 443.0 |
5300.0 | 3362.0 |
6336.0 | 231.0 |
6357.0 | 750.0 |
6466.0 | 19090.0 |
6620.0 | 348.0 |
6654.0 | 9858.0 |
7253.0 | 21.0 |
7554.0 | 1325.0 |
7833.0 | 102.0 |
8389.0 | 4010.0 |
8592.0 | 1746.0 |
10623.0 | 20955.0 |
11033.0 | 5011.0 |
11458.0 | 301.0 |
11748.0 | 1077.0 |
12799.0 | 3361.0 |
14570.0 | 585.0 |
14832.0 | 840.0 |
15447.0 | 856.0 |
16339.0 | 4013.0 |
16386.0 | 109.0 |
16861.0 | 1497.0 |
17753.0 | 675.0 |
18024.0 | 862.0 |
18866.0 | 3452.0 |
19079.0 | 1522.0 |
19553.0 | 2745.0 |
20497.0 | 208.0 |
20683.0 | 1015.0 |
20735.0 | 777.0 |
22097.0 | 95.0 |
22346.0 | 765.0 |
22373.0 | 217.0 |
23015.0 | 4497.0 |
23336.0 | 1019.0 |
23364.0 | 1256.0 |
24171.0 | 1260.0 |
24347.0 | 1104.0 |
24663.0 | 1227.0 |
26623.0 | 1.0 |
27760.0 | 213.0 |
28024.0 | 671.0 |
28170.0 | 501.0 |
28664.0 | 135.0 |
29054.0 | 167.0 |
29228.0 | 319.0 |
29285.0 | 180.0 |
29834.0 | 724.0 |
30361.0 | 914.0 |
30654.0 | 1713.0 |
31035.0 | 1978.0 |
31236.0 | 702.0 |
31261.0 | 371.0 |
32460.0 | 748.0 |
34061.0 | 1405.0 |
34759.0 | 436.0 |
35351.0 | 327.0 |
35361.0 | 103.0 |
35689.0 | 112.0 |
35694.0 | 160.0 |
35912.0 | 196.0 |
36131.0 | 242.0 |
36224.0 | 618.0 |
36355.0 | 164.0 |
37146.0 | 822.0 |
37307.0 | 2164.0 |
38311.0 | 34.0 |
38422.0 | 1622.0 |
39432.0 | 459.0 |
40011.0 | 256.0 |
40335.0 | 5063.0 |
40515.0 | 1342.0 |
41409.0 | 116.0 |
41890.0 | 1486.0 |
41988.0 | 53.0 |
42635.0 | 1533.0 |
42834.0 | 267.0 |
43103.0 | 73.0 |
43527.0 | 1148.0 |
43935.0 | 466.0 |
44022.0 | 101.0 |
44437.0 | 789.0 |
44596.0 | 526.0 |
44822.0 | 1056.0 |
45307.0 | 105.0 |
46943.0 | 255.0 |
47084.0 | 58.0 |
47217.0 | 169.0 |
47711.0 | 354.0 |
48398.0 | 839.0 |
49308.0 | 581.0 |
49331.0 | 570.0 |
49855.0 | 5927.0 |
50223.0 | 293.0 |
51123.0 | 3620.0 |
55265.0 | 728.0 |
55283.0 | 262.0 |
56110.0 | 176.0 |
56680.0 | 4850.0 |
56987.0 | 425.0 |
57201.0 | 1327.0 |
57370.0 | 1635.0 |
58305.0 | 979.0 |
58665.0 | 98.0 |
59355.0 | 275.0 |
59384.0 | 45.0 |
59990.0 | 1028.0 |
63087.0 | 709.0 |
63106.0 | 824.0 |
65408.0 | 605.0 |
65867.0 | 265.0 |
67376.0 | 2325.0 |
67782.0 | 1537.0 |
68090.0 | 2882.0 |
68202.0 | 4870.0 |
68610.0 | 301.0 |
69042.0 | 16.0 |
69352.0 | 89.0 |
70097.0 | 267.0 |
71510.0 | 909.0 |
74775.0 | 444.0 |
74820.0 | 40.0 |
74836.0 | 216.0 |
74904.0 | 183.0 |
75039.0 | 730.0 |
75122.0 | 1079.0 |
75149.0 | 2067.0 |
76143.0 | 234.0 |
76885.0 | 736.0 |
77234.0 | 41.0 |
79220.0 | 164.0 |
80332.0 | 2409.0 |
80579.0 | 1001.0 |
82730.0 | 1.0 |
83250.0 | 1253.0 |
84018.0 | 306.0 |
85321.0 | 969.0 |
86082.0 | 278.0 |
87338.0 | 629.0 |
87462.0 | 628.0 |
87656.0 | 31.0 |
89056.0 | 514.0 |
89537.0 | 456.0 |
89844.0 | 1194.0 |
89878.0 | 383.0 |
90461.0 | 1374.0 |
90550.0 | 61.0 |
91141.0 | 322.0 |
91367.0 | 912.0 |
91446.0 | 1235.0 |
91784.0 | 539.0 |
91785.0 | 583.0 |
91937.0 | 1583.0 |
92080.0 | 581.0 |
92644.0 | 53.0 |
93341.0 | 1030.0 |
93407.0 | 578.0 |
93486.0 | 341.0 |
93948.0 | 1150.0 |
94377.0 | 1824.0 |
94695.0 | 925.0 |
94819.0 | 713.0 |
94950.0 | 824.0 |
95080.0 | 710.0 |
95476.0 | 82.0 |
95715.0 | 652.0 |
95940.0 | 716.0 |
95994.0 | 853.0 |
96044.0 | 376.0 |
96224.0 | 2086.0 |
96488.0 | 43.0 |
97004.0 | 1420.0 |
97092.0 | 1106.0 |
97218.0 | 3415.0 |
99168.0 | 579.0 |
99239.0 | 62.0 |
99454.0 | 1036.0 |
99861.0 | 174.0 |
100274.0 | 478.0 |
100446.0 | 132.0 |
100800.0 | 75.0 |
100986.0 | 913.0 |
101055.0 | 957.0 |
101094.0 | 1011.0 |
101627.0 | 1019.0 |
102119.0 | 204.0 |
102793.0 | 507.0 |
102960.0 | 854.0 |
103011.0 | 422.0 |
103357.0 | 357.0 |
103902.0 | 726.0 |
104688.0 | 243.0 |
105153.0 | 322.0 |
105536.0 | 115.0 |
106535.0 | 655.0 |
106544.0 | 1206.0 |
106724.0 | 466.0 |
106783.0 | 282.0 |
107032.0 | 97.0 |
107536.0 | 404.0 |
108221.0 | 251.0 |
108460.0 | 121.0 |
108560.0 | 380.0 |
108806.0 | 1437.0 |
109050.0 | 102.0 |
109068.0 | 322.0 |
109172.0 | 103.0 |
109608.0 | 474.0 |
109613.0 | 482.0 |
109622.0 | 1064.0 |
109800.0 | 71.0 |
109909.0 | 291.0 |
110081.0 | 125.0 |
110682.0 | 94.0 |
110904.0 | 157.0 |
111300.0 | 193.0 |
111381.0 | 188.0 |
111515.0 | 164.0 |
112020.0 | 123.0 |
112971.0 | 118.0 |
113000.0 | 107.0 |
114206.0 | 374.0 |
114503.0 | 190.0 |
114851.0 | 148.0 |
115528.0 | 78.0 |
115741.0 | 129.0 |
116259.0 | 184.0 |
116312.0 | 655.0 |
117500.0 | 129.0 |
117987.0 | 70.0 |
117994.0 | 328.0 |
118185.0 | 288.0 |
118989.0 | 180.0 |
119432.0 | 252.0 |
119517.0 | 104.0 |
119813.0 | 99.0 |
120706.0 | 179.0 |
120861.0 | 154.0 |
120899.0 | 143.0 |
120988.0 | 123.0 |
121749.0 | 497.0 |
121763.0 | 475.0 |
121854.0 | 202.0 |
122128.0 | 211.0 |
122334.0 | 126.0 |
122484.0 | 117.0 |
122555.0 | 194.0 |
124411.0 | 115.0 |
124647.0 | 421.0 |
124743.0 | 342.0 |
124798.0 | 183.0 |
124861.0 | 141.0 |
124967.0 | 470.0 |
125052.0 | 490.0 |
126365.0 | 1427.0 |
126373.0 | 225.0 |
127109.0 | 202.0 |
127147.0 | 164.0 |
127444.0 | 98.0 |
128131.0 | 85.0 |
128367.0 | 89.0 |
128389.0 | 119.0 |
128589.0 | 91.0 |
128935.0 | 216.0 |
129153.0 | 875.0 |
129345.0 | 320.0 |
129791.0 | 890.0 |
130003.0 | 118.0 |
130062.0 | 505.0 |
130544.0 | 278.0 |
130557.0 | 257.0 |
130995.0 | 198.0 |
131213.0 | 320.0 |
131811.0 | 677.0 |
131931.0 | 116.0 |
132171.0 | 183.0 |
132318.0 | 260.0 |
133018.0 | 327.0 |
133153.0 | 241.0 |
133160.0 | 281.0 |
133524.0 | 194.0 |
133577.0 | 141.0 |
133590.0 | 193.0 |
133730.0 | 326.0 |
134138.0 | 413.0 |
134205.0 | 126.0 |
134607.0 | 103.0 |
134748.0 | 120.0 |
134924.0 | 351.0 |
135000.0 | 95.0 |
135027.0 | 95.0 |
135267.0 | 102.0 |
135423.0 | 230.0 |
135533.0 | 183.0 |
135867.0 | 162.0 |
135965.0 | 272.0 |
135976.0 | 2295.0 |
136625.0 | 296.0 |
136631.0 | 86.0 |
136924.0 | 201.0 |
137124.0 | 157.0 |
137193.0 | 1680.0 |
137377.0 | 264.0 |
137501.0 | 158.0 |
137793.0 | 490.0 |
138920.0 | 300.0 |
139024.0 | 130.0 |
139128.0 | 135.0 |
139335.0 | 269.0 |
139379.0 | 169.0 |
139469.0 | 164.0 |
139535.0 | 162.0 |
139747.0 | 197.0 |
139830.0 | 131.0 |
140021.0 | 219.0 |
140081.0 | 75.0 |
140541.0 | 191.0 |
143432.0 | 695.0 |
143737.0 | 8894.0 |
144475.0 | 345.0 |
144685.0 | 105.0 |
145095.0 | 1575.0 |
145203.0 | 83.0 |
145504.0 | 372.0 |
146411.0 | 683.0 |
147711.0 | 1528.0 |
147958.0 | 1058.0 |
150822.0 | 527.0 |
150843.0 | 174.0 |
150956.0 | 361.0 |
151960.0 | 714.0 |
152004.0 | 796.0 |
154034.0 | 364.0 |
154202.0 | 337.0 |
155251.0 | 940.0 |
155350.0 | 312.0 |
155510.0 | 33.0 |
156363.0 | 2191.0 |
156365.0 | 428.0 |
157384.0 | 236.0 |
157426.0 | 1219.0 |
158803.0 | 136.0 |
160009.0 | 363.0 |
160235.0 | 417.0 |
160767.0 | 207.0 |
160820.0 | 50.0 |
161295.0 | 377.0 |
162260.0 | 77.0 |
162296.0 | 1902.0 |
162321.0 | 437.0 |
162473.0 | 261.0 |
164603.0 | 1082.0 |
166150.0 | 174.0 |
166194.0 | 3158.0 |
166735.0 | 226.0 |
167071.0 | 704.0 |
167316.0 | 1091.0 |
168654.0 | 772.0 |
168987.0 | 756.0 |
169588.0 | 238.0 |
170542.0 | 1.0 |
170846.0 | 725.0 |
170948.0 | 1769.0 |
171723.0 | 1548.0 |
172015.0 | 842.0 |
172959.0 | 1150.0 |
173059.0 | 305.0 |
173691.0 | 1033.0 |
174229.0 | 663.0 |
175197.0 | 243.0 |
175201.0 | 213.0 |
175229.0 | 266.0 |
175233.0 | 302.0 |
175394.0 | 105.0 |
175634.0 | 8347.0 |
175702.0 | 1832.0 |
175738.0 | 231.0 |
176152.0 | 207.0 |
176213.0 | 174.0 |
176826.0 | 331.0 |
177496.0 | 1075.0 |
178254.0 | 75.0 |
178564.0 | 437.0 |
178576.0 | 334.0 |
179115.0 | 1015.0 |
179749.0 | 572.0 |
180155.0 | 1099.0 |
181399.0 | 206.0 |
182237.0 | 1102.0 |
182678.0 | 395.0 |
182945.0 | 2065.0 |
183275.0 | 480.0 |
183955.0 | 898.0 |
184096.0 | 277.0 |
184483.0 | 450.0 |
184976.0 | 490.0 |
185513.0 | 84.0 |
186588.0 | 37.0 |
187027.0 | 302.0 |
188488.0 | 684.0 |
188644.0 | 386.0 |
188834.0 | 11277.0 |
188986.0 | 283.0 |
189182.0 | 389.0 |
189488.0 | 282.0 |
190227.0 | 697.0 |
191350.0 | 19.0 |
191933.0 | 610.0 |
192401.0 | 135.0 |
192545.0 | 979.0 |
192952.0 | 14.0 |
194034.0 | 2062.0 |
195291.0 | 124.0 |
195367.0 | 399.0 |
196013.0 | 1.0 |
196290.0 | 862.0 |
197588.0 | 333.0 |
198800.0 | 530.0 |
202253.0 | 12.0 |
203592.0 | 309.0 |
203894.0 | 174.0 |
204839.0 | 476.0 |
204974.0 | 532.0 |
205013.0 | 1535.0 |
205392.0 | 105.0 |
206351.0 | 734.0 |
206719.0 | 879.0 |
207103.0 | 881.0 |
210661.0 | 1059.0 |
210744.0 | 2955.0 |
212007.0 | 454.0 |
212504.0 | 379.0 |
213270.0 | 1181.0 |
213483.0 | 391.0 |
213516.0 | 556.0 |
214547.0 | 194.0 |
214719.0 | 78.0 |
214739.0 | 373.0 |
216619.0 | 313.0 |
216635.0 | 243.0 |
216854.0 | 316.0 |
216941.0 | 288.0 |
217119.0 | 778.0 |
219514.0 | 171.0 |
219523.0 | 190.0 |
219558.0 | 60.0 |
221858.0 | 298.0 |
222543.0 | 839.0 |
222556.0 | 581.0 |
225359.0 | 386.0 |
227161.0 | 202.0 |
229071.0 | 584.0 |
229254.0 | 461.0 |
230513.0 | 318.0 |
230596.0 | 1.0 |
231287.0 | 490.0 |
231350.0 | 304.0 |
232043.0 | 18.0 |
232643.0 | 472.0 |
233567.0 | 1560.0 |
233799.0 | 382.0 |
234892.0 | 322.0 |
234983.0 | 33.0 |
236532.0 | 40.0 |
236636.0 | 721.0 |
236893.0 | 78.0 |
237019.0 | 5152.0 |
237504.0 | 11506.0 |
238193.0 | 1289.0 |
239148.0 | 154.0 |
240376.0 | 297.0 |
241236.0 | 765.0 |
241533.0 | 148.0 |
242832.0 | 69.0 |
243022.0 | 447.0 |
244128.0 | 306.0 |
244597.0 | 133.0 |
245390.0 | 1189.0 |
246703.0 | 231.0 |
246728.0 | 1443.0 |
246944.0 | 76.0 |
247396.0 | 473.0 |
247653.0 | 297.0 |
250336.0 | 954.0 |
251316.0 | 293.0 |
251353.0 | 237.0 |
252206.0 | 238.0 |
253769.0 | 752.0 |
255040.0 | 214.0 |
255247.0 | 480.0 |
255394.0 | 73.0 |
256092.0 | 449.0 |
256425.0 | 1276.0 |
256830.0 | 245.0 |
258032.0 | 516.0 |
259633.0 | 190.0 |
259849.0 | 248.0 |
260195.0 | 130.0 |
260726.0 | 399.0 |
260819.0 | 163.0 |
261168.0 | 306.0 |
262597.0 | 518.0 |
265189.0 | 1215.0 |
265240.0 | 45.0 |
265769.0 | 236.0 |
266215.0 | 997.0 |
266617.0 | 645.0 |
268622.0 | 1127.0 |
270981.0 | 783.0 |
271109.0 | 1102.0 |
272094.0 | 141.0 |
273285.0 | 215601.0 |
273916.0 | 720.0 |
274468.0 | 439.0 |
274848.0 | 1063.0 |
275204.0 | 452.0 |
276399.0 | 69.0 |
276436.0 | 3662.0 |
277349.0 | 116.0 |
277404.0 | 572.0 |
282396.0 | 563.0 |
283975.0 | 2679.0 |
284489.0 | 253.0 |
284944.0 | 987.0 |
286323.0 | 408.0 |
286699.0 | 3.0 |
287568.0 | 823.0 |
290513.0 | 193.0 |
291112.0 | 1614.0 |
292080.0 | 362.0 |
292083.0 | 1735.0 |
292297.0 | 70.0 |
292608.0 | 1.0 |
292708.0 | 1694.0 |
293418.0 | 108.0 |
294136.0 | 593.0 |
295286.0 | 772.0 |
296688.0 | 1.0 |
297391.0 | 354.0 |
298705.0 | 1882.0 |
300474.0 | 1.0 |
300539.0 | 741.0 |
300825.0 | 1713.0 |
301798.0 | 691.0 |
302825.0 | 403.0 |
303632.0 | 327.0 |
306504.0 | 4396.0 |
308075.0 | 956.0 |
308619.0 | 366.0 |
308930.0 | 611.0 |
310155.0 | 1.0 |
310436.0 | 278.0 |
310514.0 | 254.0 |
310547.0 | 881.0 |
310950.0 | 484.0 |
311192.0 | 443.0 |
311544.0 | 105.0 |
312383.0 | 144.0 |
313148.0 | 285.0 |
314115.0 | 150.0 |
316184.0 | 353.0 |
317828.0 | 209.0 |
318168.0 | 254.0 |
319698.0 | 532.0 |
319884.0 | 1745.0 |
320408.0 | 1008.0 |
320632.0 | 146.0 |
320680.0 | 637.0 |
321560.0 | 1600.0 |
321932.0 | 709.0 |
322355.0 | 714.0 |
323084.0 | 566.0 |
323181.0 | 508.0 |
323599.0 | 1.0 |
324091.0 | 2364.0 |
325102.0 | 23.0 |
325894.0 | 548.0 |
326538.0 | 6398.0 |
328324.0 | 231.0 |
328529.0 | 244.0 |
328989.0 | 405.0 |
329607.0 | 137.0 |
330299.0 | 263.0 |
330799.0 | 695.0 |
333479.0 | 1542.0 |
335442.0 | 612.0 |
336694.0 | 2959.0 |
338090.0 | 567.0 |
338512.0 | 452.0 |
338757.0 | 496.0 |
340002.0 | 1754.0 |
340950.0 | 265.0 |
342305.0 | 2216.0 |
342902.0 | 572.0 |
343353.0 | 599.0 |
343570.0 | 819.0 |
343903.0 | 1138.0 |
343960.0 | 1068.0 |
344048.0 | 414.0 |
344070.0 | 135.0 |
344507.0 | 81.0 |
346809.0 | 300.0 |
346916.0 | 135.0 |
347258.0 | 222.0 |
347352.0 | 1887.0 |
347379.0 | 402.0 |
347775.0 | 324.0 |
348799.0 | 2470.0 |
348851.0 | 50.0 |
350399.0 | 1014.0 |
350569.0 | 340.0 |
350570.0 | 343.0 |
351267.0 | 286.0 |
351369.0 | 142.0 |
352674.0 | 316.0 |
352731.0 | 314.0 |
353742.0 | 82.0 |
354686.0 | 143.0 |
355377.0 | 346.0 |
355477.0 | 1706.0 |
356454.0 | 322.0 |
356543.0 | 1240.0 |
357220.0 | 991.0 |
358095.0 | 1126.0 |
359354.0 | 224.0 |
360246.0 | 331.0 |
360668.0 | 21.0 |
361204.0 | 20.0 |
362827.0 | 221.0 |
362829.0 | 453.0 |
366447.0 | 399.0 |
366610.0 | 563.0 |
367125.0 | 184.0 |
367456.0 | 125.0 |
370123.0 | 398.0 |
371545.0 | 455.0 |
373118.0 | 1477.0 |
373721.0 | 341.0 |
374216.0 | 554.0 |
375375.0 | 1767.0 |
375623.0 | 908.0 |
376168.0 | 279.0 |
376270.0 | 116.0 |
376563.0 | 131.0 |
376576.0 | 111.0 |
377210.0 | 494.0 |
377372.0 | 189.0 |
377515.0 | 558.0 |
378053.0 | 1193.0 |
378262.0 | 255.0 |
378310.0 | 290.0 |
380922.0 | 1280.0 |
382614.0 | 61.0 |
383876.0 | 529.0 |
384788.0 | 149.0 |
384959.0 | 248.0 |
385152.0 | 27.0 |
386689.0 | 306.0 |
386707.0 | 232.0 |
386888.0 | 203.0 |
390373.0 | 446.0 |
390569.0 | 884.0 |
392119.0 | 141.0 |
// Average in-degree
g.inDegrees.select(avg("inDegree")).show()
+-----------------+
| avg(inDegree)|
+-----------------+
|94.53287118924774|
+-----------------+
display(g.inDegrees)
id | inDegree |
---|---|
1143.0 | 3691.0 |
1270.0 | 517.0 |
1322.0 | 185.0 |
1650.0 | 421.0 |
2393.0 | 2066.0 |
3352.0 | 12195.0 |
4391.0 | 972.0 |
6559.0 | 36.0 |
7387.0 | 1964.0 |
8222.0 | 572.0 |
8407.0 | 566.0 |
9454.0 | 256.0 |
10798.0 | 49.0 |
10862.0 | 613.0 |
11025.0 | 1071.0 |
11393.0 | 2397.0 |
11800.0 | 14.0 |
12393.0 | 115.0 |
12998.0 | 94.0 |
13009.0 | 1586.0 |
13060.0 | 278.0 |
13207.0 | 844.0 |
13483.0 | 1452.0 |
13601.0 | 2.0 |
13648.0 | 1.0 |
13910.0 | 20.0 |
14837.0 | 617.0 |
14997.0 | 91.0 |
15207.0 | 296.0 |
15655.0 | 21944.0 |
16283.0 | 231.0 |
16534.0 | 36.0 |
16791.0 | 69.0 |
17044.0 | 518.0 |
17775.0 | 627.0 |
17783.0 | 197.0 |
17809.0 | 175.0 |
18221.0 | 16.0 |
18382.0 | 840.0 |
19868.0 | 7.0 |
20029.0 | 36.0 |
20134.0 | 5935.0 |
20398.0 | 203.0 |
21058.0 | 766.0 |
22609.0 | 46.0 |
22684.0 | 28.0 |
23144.0 | 5.0 |
25203.0 | 583.0 |
25638.0 | 340.0 |
27214.0 | 166.0 |
27266.0 | 164.0 |
29109.0 | 483.0 |
29177.0 | 1565.0 |
29630.0 | 179.0 |
29942.0 | 635.0 |
30330.0 | 623.0 |
30525.0 | 61.0 |
30617.0 | 316.0 |
31285.0 | 327.0 |
31350.0 | 1301.0 |
31834.0 | 342.0 |
32648.0 | 7.0 |
32680.0 | 845.0 |
33607.0 | 1457.0 |
34197.0 | 4213.0 |
34488.0 | 256.0 |
34569.0 | 1164.0 |
34602.0 | 2066.0 |
34611.0 | 1268.0 |
34697.0 | 263.0 |
34713.0 | 474.0 |
35044.0 | 58.0 |
35399.0 | 27.0 |
35632.0 | 36.0 |
35794.0 | 24.0 |
36192.0 | 62.0 |
36347.0 | 35.0 |
37409.0 | 2593.0 |
37657.0 | 4.0 |
38297.0 | 12.0 |
38607.0 | 170.0 |
39742.0 | 101.0 |
39977.0 | 74.0 |
41126.0 | 1.0 |
41496.0 | 3.0 |
41696.0 | 5.0 |
41913.0 | 146.0 |
43938.0 | 8.0 |
44205.0 | 758.0 |
44884.0 | 4.0 |
46818.0 | 697.0 |
48316.0 | 47.0 |
48838.0 | 61.0 |
48880.0 | 42.0 |
49503.0 | 344.0 |
49686.0 | 314.0 |
50847.0 | 341.0 |
51022.0 | 318.0 |
51640.0 | 124.0 |
52100.0 | 163.0 |
52987.0 | 704.0 |
53056.0 | 1107.0 |
53528.0 | 752.0 |
54172.0 | 404.0 |
54448.0 | 443.0 |
54551.0 | 73.0 |
54958.0 | 993.0 |
54989.0 | 584.0 |
55013.0 | 549.0 |
55498.0 | 43.0 |
55539.0 | 351.0 |
56168.0 | 1704.0 |
56259.0 | 942.0 |
56617.0 | 855.0 |
56943.0 | 173.0 |
57955.0 | 357.0 |
58811.0 | 218.0 |
59680.0 | 12.0 |
60001.0 | 1689.0 |
60068.0 | 127.0 |
60964.0 | 217.0 |
61202.0 | 18.0 |
61344.0 | 1923.0 |
62172.0 | 3.0 |
62740.0 | 341.0 |
63469.0 | 825.0 |
64648.0 | 1826.0 |
65104.0 | 181.0 |
65305.0 | 609.0 |
67231.0 | 1008.0 |
67618.0 | 126.0 |
67865.0 | 92.0 |
68078.0 | 335.0 |
68592.0 | 15.0 |
68678.0 | 3.0 |
69247.0 | 6.0 |
69385.0 | 129.0 |
71821.0 | 3983.0 |
72785.0 | 116.0 |
74097.0 | 1056.0 |
74411.0 | 676.0 |
74854.0 | 9.0 |
74948.0 | 2.0 |
75515.0 | 702.0 |
75877.0 | 184.0 |
75979.0 | 4.0 |
76366.0 | 573.0 |
77352.0 | 2290.0 |
77488.0 | 194.0 |
78023.0 | 8250.0 |
79130.0 | 91.0 |
79791.0 | 244.0 |
82498.0 | 126.0 |
82516.0 | 2.0 |
84275.0 | 865.0 |
84720.0 | 5.0 |
84936.0 | 991.0 |
85748.0 | 1928.0 |
86206.0 | 1.0 |
86406.0 | 80.0 |
89044.0 | 296.0 |
90446.0 | 436.0 |
90692.0 | 452.0 |
90891.0 | 16.0 |
91084.0 | 730.0 |
91473.0 | 390.0 |
91516.0 | 453.0 |
93112.0 | 476.0 |
93431.0 | 1074.0 |
93487.0 | 2.0 |
93645.0 | 327.0 |
94274.0 | 130.0 |
94284.0 | 67.0 |
94642.0 | 502.0 |
95701.0 | 314.0 |
95707.0 | 361.0 |
96382.0 | 2.0 |
96706.0 | 520.0 |
96978.0 | 1138.0 |
97385.0 | 269.0 |
97435.0 | 7.0 |
97682.0 | 528.0 |
98521.0 | 1714.0 |
98654.0 | 186.0 |
101604.0 | 345.0 |
102282.0 | 315.0 |
102775.0 | 3340.0 |
103751.0 | 28.0 |
103767.0 | 387.0 |
103918.0 | 2.0 |
104909.0 | 218.0 |
105086.0 | 104.0 |
105673.0 | 40.0 |
106346.0 | 308.0 |
107118.0 | 41.0 |
107401.0 | 717.0 |
107820.0 | 153.0 |
108159.0 | 123.0 |
108223.0 | 263.0 |
108249.0 | 183.0 |
108500.0 | 37.0 |
108976.0 | 415.0 |
109035.0 | 120.0 |
109450.0 | 379.0 |
109517.0 | 39.0 |
109546.0 | 89.0 |
109859.0 | 46.0 |
110168.0 | 226.0 |
110203.0 | 27.0 |
110512.0 | 112.0 |
110639.0 | 1031.0 |
110643.0 | 56.0 |
110842.0 | 83.0 |
110938.0 | 83.0 |
111940.0 | 52.0 |
112032.0 | 40.0 |
112265.0 | 103.0 |
112269.0 | 58.0 |
112796.0 | 55.0 |
113812.0 | 34.0 |
114128.0 | 53.0 |
114339.0 | 52.0 |
114680.0 | 427.0 |
114859.0 | 43.0 |
115150.0 | 32.0 |
116183.0 | 187.0 |
116255.0 | 89.0 |
116707.0 | 121.0 |
116786.0 | 360.0 |
117385.0 | 74.0 |
119079.0 | 71.0 |
119125.0 | 1178.0 |
119641.0 | 106.0 |
119777.0 | 60.0 |
120029.0 | 83.0 |
120095.0 | 532.0 |
120275.0 | 73.0 |
120293.0 | 49.0 |
120315.0 | 149.0 |
120422.0 | 45.0 |
120638.0 | 36.0 |
121434.0 | 38.0 |
121746.0 | 227.0 |
121855.0 | 86.0 |
122494.0 | 50.0 |
122936.0 | 49.0 |
123032.0 | 46.0 |
123291.0 | 72.0 |
124208.0 | 28.0 |
124432.0 | 359.0 |
124642.0 | 188.0 |
124680.0 | 35.0 |
125412.0 | 606.0 |
125540.0 | 158.0 |
126309.0 | 105.0 |
126446.0 | 62.0 |
126622.0 | 115.0 |
126982.0 | 67.0 |
127092.0 | 147.0 |
127440.0 | 44.0 |
127933.0 | 58.0 |
128243.0 | 82.0 |
128325.0 | 4422.0 |
128345.0 | 1504.0 |
128346.0 | 1280.0 |
128353.0 | 1194.0 |
129488.0 | 37.0 |
129632.0 | 65.0 |
129726.0 | 76.0 |
130013.0 | 40.0 |
130418.0 | 28.0 |
130437.0 | 27.0 |
131430.0 | 151.0 |
131479.0 | 90.0 |
131506.0 | 1111.0 |
131530.0 | 327.0 |
131757.0 | 152.0 |
132165.0 | 78.0 |
132973.0 | 76.0 |
133198.0 | 67.0 |
134873.0 | 24.0 |
135066.0 | 98.0 |
135137.0 | 33.0 |
135309.0 | 34.0 |
135337.0 | 26.0 |
135520.0 | 101.0 |
135704.0 | 109.0 |
135843.0 | 59.0 |
135846.0 | 44.0 |
135883.0 | 61.0 |
136030.0 | 30.0 |
136045.0 | 200.0 |
136180.0 | 304.0 |
136545.0 | 68.0 |
136943.0 | 59.0 |
137087.0 | 92.0 |
137235.0 | 69.0 |
137352.0 | 116.0 |
138437.0 | 302.0 |
139240.0 | 57.0 |
139255.0 | 47.0 |
139288.0 | 54.0 |
139459.0 | 69.0 |
139563.0 | 68.0 |
139564.0 | 72.0 |
140017.0 | 79.0 |
140165.0 | 32.0 |
140287.0 | 3901.0 |
140299.0 | 520.0 |
141499.0 | 6.0 |
141564.0 | 4.0 |
143196.0 | 418.0 |
143407.0 | 5.0 |
144317.0 | 87.0 |
145184.0 | 48.0 |
145206.0 | 167.0 |
145249.0 | 201.0 |
145527.0 | 834.0 |
145732.0 | 166.0 |
145892.0 | 348.0 |
146483.0 | 21.0 |
146731.0 | 89.0 |
149014.0 | 557.0 |
149063.0 | 2.0 |
149290.0 | 348.0 |
149344.0 | 1099.0 |
150112.0 | 3.0 |
150793.0 | 193.0 |
151299.0 | 210.0 |
152018.0 | 473.0 |
153014.0 | 170.0 |
153465.0 | 1262.0 |
153737.0 | 30.0 |
155300.0 | 2.0 |
155547.0 | 953.0 |
158782.0 | 75.0 |
158834.0 | 638.0 |
159433.0 | 3174.0 |
160370.0 | 73.0 |
160979.0 | 1179.0 |
161791.0 | 261.0 |
161948.0 | 5.0 |
162798.0 | 122.0 |
163118.0 | 3003.0 |
164143.0 | 1376.0 |
165684.0 | 375.0 |
166547.0 | 11.0 |
167868.0 | 22.0 |
168269.0 | 1150.0 |
168308.0 | 529.0 |
168375.0 | 475.0 |
168902.0 | 687.0 |
169073.0 | 134.0 |
169717.0 | 381.0 |
171070.0 | 78.0 |
171272.0 | 1311.0 |
171528.0 | 1075.0 |
171754.0 | 168.0 |
174181.0 | 670.0 |
174247.0 | 101.0 |
175750.0 | 81.0 |
176233.0 | 66.0 |
176751.0 | 275.0 |
178343.0 | 10.0 |
178462.0 | 223.0 |
181226.0 | 812.0 |
181343.0 | 113.0 |
182011.0 | 183.0 |
184215.0 | 289.0 |
184607.0 | 64.0 |
185127.0 | 509.0 |
185271.0 | 67.0 |
185578.0 | 39.0 |
186704.0 | 246.0 |
188040.0 | 30.0 |
191506.0 | 224.0 |
193410.0 | 54.0 |
193965.0 | 1216.0 |
194292.0 | 413.0 |
197207.0 | 38.0 |
197753.0 | 21.0 |
198568.0 | 117.0 |
199049.0 | 9.0 |
201120.0 | 350.0 |
201484.0 | 160.0 |
202687.0 | 3365.0 |
203949.0 | 73.0 |
204157.0 | 503.0 |
204223.0 | 25.0 |
205098.0 | 767.0 |
205427.0 | 107.0 |
207007.0 | 49.0 |
208072.0 | 461.0 |
208382.0 | 366.0 |
210133.0 | 480.0 |
210350.0 | 147.0 |
210918.0 | 1.0 |
211077.0 | 66.0 |
213595.0 | 213.0 |
213731.0 | 148.0 |
213839.0 | 10.0 |
214801.0 | 842.0 |
215073.0 | 208.0 |
215422.0 | 4.0 |
215741.0 | 301.0 |
215902.0 | 96.0 |
218425.0 | 375.0 |
219157.0 | 191.0 |
219506.0 | 119.0 |
220118.0 | 988.0 |
220409.0 | 193.0 |
220443.0 | 444.0 |
221642.0 | 1935.0 |
221800.0 | 4.0 |
222550.0 | 75.0 |
224110.0 | 131.0 |
224209.0 | 7.0 |
225464.0 | 113.0 |
225903.0 | 310.0 |
226065.0 | 156.0 |
228735.0 | 270.0 |
228845.0 | 1210.0 |
229519.0 | 78.0 |
229520.0 | 1399.0 |
230343.0 | 151.0 |
232942.0 | 510.0 |
233264.0 | 253.0 |
234671.0 | 610.0 |
234948.0 | 1.0 |
238417.0 | 68.0 |
238978.0 | 159.0 |
239403.0 | 8.0 |
239704.0 | 403.0 |
240436.0 | 61.0 |
241041.0 | 117.0 |
241052.0 | 199.0 |
241131.0 | 234.0 |
241513.0 | 30.0 |
241607.0 | 188.0 |
242218.0 | 41.0 |
242758.0 | 17.0 |
244225.0 | 369.0 |
244396.0 | 2.0 |
246160.0 | 297.0 |
246328.0 | 440.0 |
247187.0 | 31.0 |
248061.0 | 85.0 |
248084.0 | 13.0 |
250022.0 | 2233.0 |
250856.0 | 520.0 |
250937.0 | 165.0 |
251015.0 | 19.0 |
251176.0 | 338.0 |
251821.0 | 14.0 |
252487.0 | 373.0 |
253174.0 | 1484.0 |
254926.0 | 4.0 |
255514.0 | 293.0 |
255613.0 | 48.0 |
257219.0 | 463.0 |
257231.0 | 92.0 |
258274.0 | 63.0 |
260310.0 | 173.0 |
262290.0 | 2.0 |
264918.0 | 918.0 |
265901.0 | 628.0 |
266301.0 | 100.0 |
266920.0 | 643.0 |
269545.0 | 261.0 |
269839.0 | 175.0 |
271783.0 | 3.0 |
275092.0 | 2243.0 |
275908.0 | 64.0 |
276661.0 | 492.0 |
276997.0 | 446.0 |
277829.0 | 176.0 |
285090.0 | 141.0 |
286001.0 | 222.0 |
286367.0 | 5.0 |
288137.0 | 502.0 |
289821.0 | 52.0 |
293226.0 | 410.0 |
294288.0 | 91.0 |
294326.0 | 316.0 |
295046.0 | 144.0 |
295050.0 | 213.0 |
295194.0 | 33.0 |
296071.0 | 898.0 |
296472.0 | 17.0 |
297129.0 | 2488.0 |
300040.0 | 64.0 |
300152.0 | 2.0 |
300472.0 | 89.0 |
301839.0 | 618.0 |
302395.0 | 272.0 |
303439.0 | 132.0 |
304131.0 | 120.0 |
304253.0 | 609.0 |
304290.0 | 1.0 |
305376.0 | 252.0 |
306724.0 | 1031.0 |
307267.0 | 538.0 |
307801.0 | 2.0 |
308100.0 | 6.0 |
308913.0 | 4.0 |
309306.0 | 147.0 |
310108.0 | 78.0 |
312072.0 | 220.0 |
312252.0 | 198.0 |
312341.0 | 3.0 |
312989.0 | 691.0 |
313481.0 | 152.0 |
315015.0 | 199.0 |
315685.0 | 122.0 |
316095.0 | 547.0 |
317022.0 | 831.0 |
317602.0 | 10.0 |
319709.0 | 28.0 |
320300.0 | 29.0 |
320853.0 | 662.0 |
322269.0 | 886.0 |
322340.0 | 41.0 |
322603.0 | 3.0 |
323237.0 | 170.0 |
323465.0 | 3.0 |
325615.0 | 178.0 |
325956.0 | 116.0 |
326495.0 | 354.0 |
328674.0 | 121.0 |
329252.0 | 139.0 |
329436.0 | 94.0 |
331009.0 | 2.0 |
331337.0 | 271.0 |
332124.0 | 671.0 |
332348.0 | 100.0 |
332491.0 | 83.0 |
332738.0 | 111.0 |
332748.0 | 58.0 |
332841.0 | 3.0 |
333011.0 | 123.0 |
333487.0 | 86.0 |
333735.0 | 38.0 |
333965.0 | 49.0 |
334463.0 | 415.0 |
335014.0 | 117.0 |
336338.0 | 24.0 |
336911.0 | 654.0 |
337426.0 | 221.0 |
337536.0 | 1042.0 |
337691.0 | 549.0 |
338274.0 | 30.0 |
340039.0 | 541.0 |
341018.0 | 122.0 |
341822.0 | 38.0 |
344140.0 | 4686.0 |
346760.0 | 122.0 |
347092.0 | 713.0 |
347673.0 | 117.0 |
349640.0 | 49.0 |
349909.0 | 79.0 |
350614.0 | 333.0 |
351036.0 | 302.0 |
351372.0 | 244.0 |
352564.0 | 633.0 |
353025.0 | 182.0 |
353649.0 | 348.0 |
354234.0 | 176.0 |
355659.0 | 478.0 |
356014.0 | 56.0 |
357672.0 | 604.0 |
358176.0 | 2062.0 |
358896.0 | 93.0 |
360268.0 | 334.0 |
361053.0 | 250.0 |
362399.0 | 232.0 |
363278.0 | 206.0 |
363548.0 | 42.0 |
365238.0 | 169.0 |
367537.0 | 33.0 |
368227.0 | 534.0 |
371388.0 | 238.0 |
371942.0 | 134.0 |
371973.0 | 393.0 |
372912.0 | 182.0 |
373421.0 | 5.0 |
373595.0 | 4.0 |
373870.0 | 1203.0 |
374542.0 | 7.0 |
375597.0 | 135.0 |
375743.0 | 1295.0 |
377207.0 | 98.0 |
378179.0 | 237.0 |
379376.0 | 104.0 |
380175.0 | 238.0 |
380858.0 | 45.0 |
381099.0 | 370.0 |
381379.0 | 50.0 |
382208.0 | 6.0 |
382443.0 | 936.0 |
383017.0 | 216.0 |
383378.0 | 75.0 |
383996.0 | 220.0 |
384011.0 | 127.0 |
384368.0 | 794.0 |
385057.0 | 72.0 |
386112.0 | 124.0 |
387060.0 | 212.0 |
387618.0 | 415.0 |
387996.0 | 44.0 |
390498.0 | 112.0 |
390503.0 | 782.0 |
391167.0 | 2772.0 |
392103.0 | 234.0 |
392696.0 | 441.0 |
393174.0 | 527.0 |
393509.0 | 6.0 |
395889.0 | 438.0 |
396543.0 | 154.0 |
396732.0 | 745.0 |
398035.0 | 70.0 |
398558.0 | 683.0 |
399596.0 | 3.0 |
400641.0 | 1054.0 |
400719.0 | 335.0 |
400848.0 | 36.0 |
401119.0 | 133.0 |
401805.0 | 438.0 |
404171.0 | 1069.0 |
404304.0 | 308.0 |
405130.0 | 240.0 |
406071.0 | 4.0 |
406782.0 | 211.0 |
408352.0 | 499.0 |
409680.0 | 391.0 |
409932.0 | 233.0 |
412343.0 | 1772.0 |
412712.0 | 3.0 |
414602.0 | 66.0 |
415164.0 | 6.0 |
416328.0 | 786.0 |
417044.0 | 932.0 |
417547.0 | 530.0 |
417821.0 | 143.0 |
418465.0 | 1.0 |
418595.0 | 354.0 |
419952.0 | 171.0 |
420378.0 | 69.0 |
421656.0 | 583.0 |
422431.0 | 525.0 |
422583.0 | 2.0 |
422631.0 | 164.0 |
422886.0 | 1075.0 |
423393.0 | 86.0 |
423986.0 | 651.0 |
425716.0 | 310.0 |
425733.0 | 255.0 |
426178.0 | 358.0 |
427168.0 | 177.0 |
427245.0 | 757.0 |
428608.0 | 261.0 |
428742.0 | 172.0 |
431710.0 | 10.0 |
431765.0 | 142.0 |
432150.0 | 41.0 |
432943.0 | 638.0 |
434707.0 | 125.0 |
436021.0 | 52.0 |
436371.0 | 7.0 |
436553.0 | 1113.0 |
436650.0 | 16.0 |
436943.0 | 334.0 |
437812.0 | 229.0 |
439198.0 | 117.0 |
439619.0 | 3.0 |
441181.0 | 45.0 |
442270.0 | 189.0 |
443267.0 | 7.0 |
444422.0 | 567.0 |
445863.0 | 123.0 |
446274.0 | 395.0 |
447860.0 | 6.0 |
447922.0 | 289.0 |
448201.0 | 249.0 |
448766.0 | 242.0 |
448991.0 | 265.0 |
451717.0 | 671.0 |
452226.0 | 1407.0 |
452438.0 | 8.0 |
454149.0 | 32.0 |
457055.0 | 12201.0 |
457346.0 | 510.0 |
459502.0 | 19.0 |
460539.0 | 159.0 |
460575.0 | 8.0 |
461529.0 | 46.0 |
462946.0 | 177.0 |
463701.0 | 18690.0 |
464001.0 | 450.0 |
465341.0 | 670.0 |
465616.0 | 299.0 |
466611.0 | 256.0 |
466647.0 | 33.0 |
467305.0 | 171.0 |
467649.0 | 217.0 |
468677.0 | 171.0 |
470160.0 | 7.0 |
470742.0 | 361.0 |
471158.0 | 173.0 |
471573.0 | 225.0 |
471912.0 | 255.0 |
472377.0 | 91.0 |
473514.0 | 102.0 |
475029.0 | 214.0 |
475452.0 | 1096.0 |
475477.0 | 55.0 |
476081.0 | 3.0 |
477082.0 | 194.0 |
477170.0 | 190.0 |
477989.0 | 84.0 |
478847.0 | 131.0 |
478909.0 | 88.0 |
481856.0 | 205.0 |
481931.0 | 85.0 |
482001.0 | 90.0 |
483745.0 | 212.0 |
484685.0 | 10.0 |
486247.0 | 26.0 |
487239.0 | 2.0 |
487318.0 | 191.0 |
488171.0 | 8.0 |
488836.0 | 356.0 |
489073.0 | 2.0 |
489370.0 | 336.0 |
491474.0 | 37.0 |
492477.0 | 37.0 |
493435.0 | 644.0 |
493920.0 | 36.0 |
494156.0 | 153.0 |
494581.0 | 1486.0 |
496065.0 | 211.0 |
497935.0 | 65.0 |
498094.0 | 11.0 |
498397.0 | 116.0 |
498538.0 | 1873.0 |
499060.0 | 42.0 |
499192.0 | 5.0 |
501594.0 | 124.0 |
501802.0 | 196.0 |
501990.0 | 91.0 |
502390.0 | 6.0 |
502403.0 | 50.0 |
502742.0 | 349.0 |
504035.0 | 979.0 |
504250.0 | 348.0 |
504256.0 | 343.0 |
504273.0 | 221.0 |
504375.0 | 541.0 |
504596.0 | 43.0 |
505463.0 | 72.0 |
505743.0 | 4.0 |
505820.0 | 537.0 |
507563.0 | 552.0 |
507926.0 | 7.0 |
508737.0 | 206.0 |
510112.0 | 246.0 |
510774.0 | 84.0 |
511383.0 | 3.0 |
512977.0 | 183.0 |
514897.0 | 297.0 |
514899.0 | 1.0 |
515122.0 | 172.0 |
516324.0 | 277.0 |
516538.0 | 94.0 |
517132.0 | 70.0 |
517915.0 | 52.0 |
521089.0 | 69.0 |
521173.0 | 66.0 |
522192.0 | 152.0 |
523171.0 | 767.0 |
526013.0 | 47.0 |
529780.0 | 827.0 |
530691.0 | 1268.0 |
531772.0 | 261.0 |
532098.0 | 5.0 |
532353.0 | 197.0 |
532740.0 | 9.0 |
533201.0 | 115.0 |
533777.0 | 73.0 |
533851.0 | 475.0 |
534937.0 | 4.0 |
536521.0 | 597.0 |
537345.0 | 56.0 |
537694.0 | 212.0 |
537715.0 | 283.0 |
540083.0 | 1141.0 |
540333.0 | 796.0 |
540627.0 | 18.0 |
541270.0 | 225.0 |
542948.0 | 225.0 |
543474.0 | 122.0 |
544776.0 | 488.0 |
547452.0 | 2241.0 |
548154.0 | 9.0 |
548451.0 | 128.0 |
548779.0 | 132.0 |
549480.0 | 46.0 |
549513.0 | 113.0 |
549710.0 | 30.0 |
550604.0 | 109.0 |
552426.0 | 202.0 |
554584.0 | 8.0 |
554664.0 | 259.0 |
558056.0 | 90.0 |
558934.0 | 128.0 |
559316.0 | 2.0 |
560508.0 | 124.0 |
560718.0 | 113.0 |
560768.0 | 146.0 |
560879.0 | 122.0 |
560941.0 | 48.0 |
561455.0 | 86.0 |
561551.0 | 31.0 |
562299.0 | 112.0 |
563982.0 | 392.0 |
564655.0 | 233.0 |
564827.0 | 209.0 |
566199.0 | 2.0 |
568119.0 | 15.0 |
569237.0 | 82.0 |
569522.0 | 3.0 |
570792.0 | 140.0 |
570856.0 | 125.0 |
571042.0 | 17.0 |
571639.0 | 129.0 |
571953.0 | 496.0 |
572731.0 | 105.0 |
573470.0 | 244.0 |
574382.0 | 201.0 |
574499.0 | 82.0 |
574614.0 | 418.0 |
574687.0 | 59.0 |
575879.0 | 2.0 |
575948.0 | 24.0 |
576265.0 | 55.0 |
576764.0 | 5.0 |
577980.0 | 137.0 |
579730.0 | 1052.0 |
580819.0 | 1.0 |
585858.0 | 313.0 |
585935.0 | 7.0 |
588168.0 | 61.0 |
591134.0 | 254.0 |
591549.0 | 17.0 |
591722.0 | 588.0 |
592016.0 | 490.0 |
594242.0 | 48.0 |
594590.0 | 570.0 |
596911.0 | 673.0 |
597264.0 | 1794.0 |
600315.0 | 86.0 |
600579.0 | 1.0 |
602144.0 | 67.0 |
602315.0 | 95.0 |
602532.0 | 118.0 |
602684.0 | 28.0 |
603334.0 | 1.0 |
603336.0 | 141.0 |
603590.0 | 3.0 |
605113.0 | 262.0 |
606476.0 | 195.0 |
606833.0 | 33.0 |
608636.0 | 74.0 |
609523.0 | 320.0 |
609904.0 | 240.0 |
610062.0 | 2.0 |
611595.0 | 53.0 |
611913.0 | 37.0 |
612918.0 | 360.0 |
613633.0 | 123.0 |
614058.0 | 219.0 |
614275.0 | 25.0 |
615262.0 | 125.0 |
615847.0 | 124.0 |
616268.0 | 859.0 |
618314.0 | 24.0 |
618642.0 | 2.0 |
619315.0 | 302.0 |
619750.0 | 522.0 |
619984.0 | 20.0 |
620957.0 | 129.0 |
621230.0 | 11.0 |
621616.0 | 31.0 |
622187.0 | 18.0 |
622423.0 | 100.0 |
625251.0 | 56.0 |
626557.0 | 341.0 |
627759.0 | 576.0 |
628363.0 | 317.0 |
629041.0 | 10.0 |
629870.0 | 230.0 |
631299.0 | 45.0 |
633147.0 | 2.0 |
634513.0 | 77.0 |
635438.0 | 5.0 |
636774.0 | 19.0 |
637270.0 | 52.0 |
637374.0 | 533.0 |
638109.0 | 403.0 |
640389.0 | 90.0 |
640809.0 | 182.0 |
641442.0 | 26.0 |
642324.0 | 167.0 |
642696.0 | 54.0 |
643128.0 | 38.0 |
644366.0 | 9.0 |
644688.0 | 175.0 |
644779.0 | 221.0 |
648056.0 | 1214.0 |
648470.0 | 915.0 |
649009.0 | 121.0 |
650160.0 | 35.0 |
654219.0 | 2318.0 |
656074.0 | 1.0 |
656178.0 | 96.0 |
656222.0 | 29.0 |
656706.0 | 1255.0 |
659002.0 | 450.0 |
661077.0 | 87.0 |
662584.0 | 216.0 |
662851.0 | 177.0 |
664903.0 | 5.0 |
665239.0 | 454.0 |
666734.0 | 9.0 |
667371.0 | 525.0 |
669373.0 | 182.0 |
670701.0 | 6.0 |
672572.0 | 181.0 |
673160.0 | 308.0 |
673673.0 | 282.0 |
674751.0 | 65.0 |
674934.0 | 295.0 |
676823.0 | 15.0 |
679133.0 | 10.0 |
681813.0 | 77.0 |
683982.0 | 6.0 |
685337.0 | 6.0 |
685448.0 | 876.0 |
685552.0 | 93.0 |
686137.0 | 41.0 |
689617.0 | 430.0 |
690915.0 | 500.0 |
691878.0 | 4.0 |
692352.0 | 162.0 |
692791.0 | 24.0 |
693125.0 | 32.0 |
693977.0 | 29.0 |
694277.0 | 35.0 |
694740.0 | 798.0 |
696502.0 | 132.0 |
696606.0 | 301.0 |
696656.0 | 535.0 |
697656.0 | 295.0 |
699027.0 | 9.0 |
701239.0 | 55.0 |
702659.0 | 143.0 |
705243.0 | 289.0 |
705526.0 | 303.0 |
706407.0 | 21.0 |
707203.0 | 97.0 |
708004.0 | 45.0 |
708428.0 | 7.0 |
709058.0 | 11.0 |
710050.0 | 1525.0 |
712475.0 | 80.0 |
713598.0 | 25.0 |
713640.0 | 162.0 |
713760.0 | 341.0 |
714896.0 | 537.0 |
715070.0 | 165.0 |
715217.0 | 225.0 |
717926.0 | 13.0 |
719508.0 | 392.0 |
719978.0 | 58.0 |
720168.0 | 39.0 |
722201.0 | 4.0 |
722475.0 | 45.0 |
723419.0 | 7.0 |
724381.0 | 85.0 |
724820.0 | 131.0 |
725111.0 | 112.0 |
725846.0 | 5.0 |
726938.0 | 23.0 |
728517.0 | 29.0 |
728705.0 | 175.0 |
729093.0 | 12.0 |
730132.0 | 9.0 |
730822.0 | 19.0 |
731740.0 | 390.0 |
732577.0 | 25.0 |
733930.0 | 29.0 |
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(g.degrees)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView803ee1d")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView803ee1d) ,min_max AS (SELECT `degree`,(SELECT MAX(`degree`) FROM q) `target_column_max`,(SELECT MIN(`degree`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `degree`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 300 `step` FROM min_max) SELECT IF(ISNULL(`degree`),NULL,LEAST(WIDTH_BUCKET(`degree`,`min_value`,`max_value`,300),300)) `degree_BIN`,FIRST(`min_value` + ((IF(ISNULL(`degree`),NULL,LEAST(WIDTH_BUCKET(`degree`,`min_value`,`max_value`,300),300)) - 1) * `step`)) `degree_BIN_LOWER_BOUND`,FIRST(`step`) `degree_BIN_STEP`,COUNT(`degree`) `COUNT` FROM histogram_meta GROUP BY `degree_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView803ee1d")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
// Average out-degree
g.outDegrees.select(avg("outDegree")).show()
+-----------------+
| avg(outDegree)|
+-----------------+
|36.06275549331961|
+-----------------+
display(g.outDegrees)
id | outDegree |
---|---|
415295.0 | 168.0 |
1423075.0 | 12.0 |
1.4588403e7 | 257.0 |
1.6477296e7 | 254.0 |
1821508.0 | 283.0 |
38422.0 | 826.0 |
885771.0 | 110.0 |
1219340.0 | 421.0 |
1645.0 | 827.0 |
1.0228966e7 | 323.0 |
1.1089309e7 | 297.0 |
2.2812876e7 | 255.0 |
4.8503188e7 | 115.0 |
6.829176e7 | 426.0 |
268622.0 | 355.0 |
1129601.0 | 163.0 |
3.1469655e7 | 108.0 |
3.4787877e7 | 50.0 |
1515726.0 | 309.0 |
2956898.0 | 239.0 |
188488.0 | 169.0 |
1488264.0 | 228.0 |
7502362.0 | 218.0 |
162296.0 | 547.0 |
526941.0 | 65.0 |
2.2648747e7 | 267.0 |
1776082.0 | 569.0 |
2309648.0 | 152.0 |
2752810.0 | 208.0 |
5738975.0 | 286.0 |
6745265.0 | 292.0 |
2.1099282e7 | 383.0 |
2.3972061e7 | 1.0 |
2.9899042e7 | 1109.0 |
4.7115212e7 | 241.0 |
5.2348002e7 | 85.0 |
5.6434139e7 | 525.0 |
6.8906308e7 | 179.0 |
67376.0 | 642.0 |
514006.0 | 100.0 |
870928.0 | 436.0 |
1586332.0 | 63.0 |
7284396.0 | 357.0 |
8192325.0 | 122.0 |
2.3753579e7 | 127.0 |
2.6519707e7 | 437.0 |
3.0139976e7 | 669.0 |
3.6524166e7 | 20.0 |
3.7678014e7 | 428.0 |
4.0452915e7 | 206.0 |
4.3359275e7 | 15.0 |
4.6938655e7 | 83.0 |
5.1052358e7 | 457.0 |
5.2715102e7 | 23.0 |
5.2730779e7 | 15.0 |
6.8128916e7 | 107.0 |
6.9051934e7 | 77.0 |
8592.0 | 577.0 |
476548.0 | 233.0 |
1.320224e7 | 12.0 |
173059.0 | 161.0 |
4.1173622e7 | 237.0 |
3.1515612e7 | 217.0 |
3.5455251e7 | 166.0 |
103902.0 | 388.0 |
188834.0 | 769.0 |
1926240.0 | 234.0 |
2103368.0 | 182.0 |
2188048.0 | 606.0 |
3063510.0 | 723.0 |
3546338.0 | 140.0 |
1.2689594e7 | 35.0 |
2.0876254e7 | 128.0 |
2.4642604e7 | 99.0 |
4.5364376e7 | 17.0 |
4.7267734e7 | 406.0 |
4.8231358e7 | 694.0 |
5.8331921e7 | 300.0 |
6.6455589e7 | 787.0 |
6466.0 | 1180.0 |
43935.0 | 214.0 |
1.1310691e7 | 129.0 |
3225985.0 | 109.0 |
15846.0 | 1039.0 |
164603.0 | 444.0 |
323084.0 | 351.0 |
6198744.0 | 138.0 |
2.0238168e7 | 1269.0 |
5.2563183e7 | 14.0 |
143737.0 | 277.0 |
171723.0 | 706.0 |
237019.0 | 925.0 |
300825.0 | 518.0 |
385313.0 | 640.0 |
413073.0 | 260.0 |
1022960.0 | 190.0 |
1055571.0 | 337.0 |
1335935.0 | 70.0 |
1907741.0 | 1129.0 |
2568262.0 | 135.0 |
2662089.0 | 129.0 |
2701542.0 | 80.0 |
2735971.0 | 292.0 |
2834157.0 | 113.0 |
3151933.0 | 152.0 |
3662282.0 | 131.0 |
3836992.0 | 88.0 |
4581810.0 | 140.0 |
5572300.0 | 245.0 |
5590614.0 | 105.0 |
5803447.0 | 123.0 |
9060536.0 | 171.0 |
1.2369322e7 | 24.0 |
1.7556259e7 | 132.0 |
2.0840639e7 | 236.0 |
2.5223952e7 | 387.0 |
2.5340857e7 | 408.0 |
2.6444169e7 | 272.0 |
2.6912066e7 | 737.0 |
2.7294375e7 | 203.0 |
2.8034822e7 | 37.0 |
3.075865e7 | 69.0 |
3.2189993e7 | 45.0 |
3.3478994e7 | 379.0 |
3.4240971e7 | 434.0 |
3.7467237e7 | 122.0 |
3.9449587e7 | 547.0 |
4.1941194e7 | 227.0 |
4.2474208e7 | 501.0 |
4.3973295e7 | 69.0 |
4.4209881e7 | 68.0 |
4.5076922e7 | 122.0 |
4.7469008e7 | 272.0 |
4.8675674e7 | 96.0 |
5.1427632e7 | 54.0 |
5.2505413e7 | 67.0 |
5.5084805e7 | 81.0 |
5.6296165e7 | 124.0 |
5.8308126e7 | 41.0 |
6.0603911e7 | 2135.0 |
6.4357378e7 | 568.0 |
6.4504315e7 | 526.0 |
6.6332401e7 | 106.0 |
4953963.0 | 87.0 |
399735.0 | 898.0 |
5645664.0 | 97.0 |
3.0874241e7 | 211.0 |
3.9320724e7 | 121.0 |
3.966069e7 | 471.0 |
5.9993595e7 | 320.0 |
6.3041167e7 | 83.0 |
1.3016057e7 | 43.0 |
6.2701997e7 | 399.0 |
243022.0 | 135.0 |
1138189.0 | 296.0 |
8850418.0 | 120.0 |
5.3095247e7 | 104.0 |
5.4288473e7 | 138.0 |
2.942e7 | 62.0 |
3.1433025e7 | 28.0 |
3.2801696e7 | 329.0 |
564996.0 | 409.0 |
5984655.0 | 118.0 |
6270639.0 | 67.0 |
8405617.0 | 84.0 |
3.8078804e7 | 752.0 |
9101110.0 | 380.0 |
2.8729822e7 | 152.0 |
3.3778906e7 | 22.0 |
4.0202881e7 | 126.0 |
4.0349364e7 | 127.0 |
276436.0 | 1596.0 |
1681220.0 | 397.0 |
2.6260602e7 | 293.0 |
2.7536113e7 | 1.0 |
2.0778386e7 | 490.0 |
24347.0 | 752.0 |
439650.0 | 739.0 |
3873186.0 | 294.0 |
9550267.0 | 302.0 |
5.5158653e7 | 534.0 |
1.2164716e7 | 458.0 |
6.5924729e7 | 113.0 |
11141.0 | 976.0 |
15790.0 | 1122.0 |
19530.0 | 894.0 |
28146.0 | 1098.0 |
35820.0 | 430.0 |
2.5678877e7 | 103.0 |
49308.0 | 366.0 |
167071.0 | 216.0 |
559572.0 | 29.0 |
958971.0 | 299.0 |
1368886.0 | 21.0 |
1.5429072e7 | 348.0 |
2.389211e7 | 101.0 |
2.9451855e7 | 18.0 |
3.237948e7 | 206.0 |
4.901959e7 | 16.0 |
5.0016782e7 | 15.0 |
156363.0 | 470.0 |
1574128.0 | 153.0 |
6405128.0 | 324.0 |
2.8173346e7 | 412.0 |
2.8523058e7 | 399.0 |
343134.0 | 1021.0 |
1.2862317e7 | 572.0 |
441584.0 | 304.0 |
1550943.0 | 310.0 |
2802647.0 | 83.0 |
5502442.0 | 276.0 |
5503022.0 | 278.0 |
5509486.0 | 274.0 |
8672100.0 | 1.0 |
1.2480106e7 | 195.0 |
1.2990186e7 | 47.0 |
2.0309786e7 | 50.0 |
2.1958877e7 | 754.0 |
2.7819429e7 | 204.0 |
4.0515139e7 | 60.0 |
4.6856482e7 | 48.0 |
5.5159079e7 | 13.0 |
18866.0 | 539.0 |
7.1958607e7 | 31.0 |
351369.0 | 74.0 |
5140924.0 | 31.0 |
68202.0 | 583.0 |
509779.0 | 139.0 |
550422.0 | 547.0 |
871796.0 | 397.0 |
2498753.0 | 41.0 |
3921649.0 | 223.0 |
3936762.0 | 123.0 |
4877470.0 | 115.0 |
5248376.0 | 65.0 |
5813421.0 | 165.0 |
6137208.0 | 123.0 |
6310856.0 | 111.0 |
6318789.0 | 46.0 |
6716087.0 | 92.0 |
6716361.0 | 82.0 |
7266347.0 | 598.0 |
7763524.0 | 83.0 |
7778418.0 | 38.0 |
7809287.0 | 44.0 |
7872614.0 | 105.0 |
7899119.0 | 71.0 |
7903825.0 | 63.0 |
7913530.0 | 100.0 |
7917523.0 | 44.0 |
7918098.0 | 46.0 |
8075116.0 | 56.0 |
8075258.0 | 56.0 |
8075307.0 | 55.0 |
9054715.0 | 159.0 |
1.0913301e7 | 17.0 |
1.3810067e7 | 228.0 |
1.8446368e7 | 108.0 |
1.9165559e7 | 127.0 |
1.997149e7 | 40.0 |
2.0014525e7 | 35.0 |
2.0294228e7 | 24.0 |
2.0341054e7 | 33.0 |
2.0515428e7 | 28.0 |
2.0758603e7 | 32.0 |
2.2450173e7 | 126.0 |
2.3519635e7 | 88.0 |
2.3957751e7 | 325.0 |
2.7846289e7 | 73.0 |
3.0223416e7 | 141.0 |
3.0268044e7 | 137.0 |
3.0926856e7 | 637.0 |
3.0965494e7 | 632.0 |
3.1984196e7 | 36.0 |
3.2281209e7 | 136.0 |
3.3110291e7 | 141.0 |
3.3256354e7 | 774.0 |
4.5504768e7 | 168.0 |
4.5695467e7 | 39.0 |
4.9151368e7 | 248.0 |
4.9749249e7 | 107.0 |
5.2467559e7 | 104.0 |
5.3085969e7 | 31.0 |
5.4157633e7 | 40.0 |
5.5781425e7 | 72.0 |
5.5854652e7 | 387.0 |
5.6530307e7 | 220.0 |
5.733475e7 | 307.0 |
5.7913592e7 | 211.0 |
5.8907764e7 | 305.0 |
6.102231e7 | 136.0 |
6.4589877e7 | 36.0 |
6.6223553e7 | 29.0 |
6.760169e7 | 20.0 |
6.8265437e7 | 192.0 |
6.9187423e7 | 122.0 |
1.4211841e7 | 1.0 |
761292.0 | 535.0 |
1013659.0 | 500.0 |
1704446.0 | 32.0 |
1866464.0 | 340.0 |
1907717.0 | 132.0 |
2154804.0 | 526.0 |
2568574.0 | 186.0 |
2743650.0 | 66.0 |
4851597.0 | 182.0 |
7613573.0 | 112.0 |
7935644.0 | 810.0 |
9408939.0 | 485.0 |
1.0095304e7 | 43.0 |
1.1979107e7 | 361.0 |
1.2508951e7 | 14.0 |
1.4486253e7 | 27.0 |
1.625894e7 | 89.0 |
1.6321994e7 | 26.0 |
1.9437772e7 | 105.0 |
1.9937765e7 | 33.0 |
2.0656951e7 | 156.0 |
2.438898e7 | 43.0 |
2.6108187e7 | 274.0 |
2.6719404e7 | 43.0 |
2.7984685e7 | 28.0 |
2.8097046e7 | 45.0 |
2.9474697e7 | 195.0 |
3.0102024e7 | 218.0 |
3.0746523e7 | 15.0 |
3.146604e7 | 441.0 |
3.1905754e7 | 17.0 |
3.3743217e7 | 27.0 |
3.5226968e7 | 72.0 |
3.6281191e7 | 132.0 |
3.7168977e7 | 341.0 |
3.7221001e7 | 92.0 |
3.750528e7 | 8.0 |
3.860385e7 | 85.0 |
3.9028189e7 | 4.0 |
3.9689e7 | 13.0 |
4.2341789e7 | 201.0 |
4.7143428e7 | 62.0 |
4.7370009e7 | 276.0 |
4.7945338e7 | 32.0 |
4.9072034e7 | 20.0 |
4.9169559e7 | 38.0 |
4.9642551e7 | 107.0 |
5.0648923e7 | 77.0 |
5.1467184e7 | 28.0 |
5.2660471e7 | 76.0 |
5.4460351e7 | 11.0 |
5.4488624e7 | 56.0 |
5.4579514e7 | 119.0 |
5.6311947e7 | 150.0 |
5.6348151e7 | 32.0 |
6.0727429e7 | 205.0 |
6.2079651e7 | 765.0 |
6.2499558e7 | 325.0 |
6.277709e7 | 36.0 |
6.2841642e7 | 36.0 |
6.4652328e7 | 117.0 |
6.4988511e7 | 19.0 |
6.5529946e7 | 16.0 |
6.6393156e7 | 54.0 |
6.8607891e7 | 31.0 |
6.9169235e7 | 169.0 |
8876929.0 | 720.0 |
1.4496904e7 | 80.0 |
2.3329907e7 | 943.0 |
2.0225783e7 | 273.0 |
2352987.0 | 698.0 |
1.4533431e7 | 392.0 |
1558717.0 | 251.0 |
2666510.0 | 636.0 |
7154148.0 | 797.0 |
1919377.0 | 191.0 |
3885619.0 | 27.0 |
2.1018883e7 | 60.0 |
2.5548229e7 | 16.0 |
352633.0 | 16.0 |
6831930.0 | 116.0 |
7001959.0 | 131.0 |
7065466.0 | 8.0 |
7352800.0 | 106.0 |
7900775.0 | 34.0 |
7901741.0 | 41.0 |
7917496.0 | 40.0 |
7921244.0 | 32.0 |
1.0011982e7 | 119.0 |
1.583696e7 | 340.0 |
2.1641437e7 | 333.0 |
2.59941e7 | 463.0 |
2.6361288e7 | 93.0 |
2.7846415e7 | 71.0 |
3.0826845e7 | 146.0 |
3.095863e7 | 616.0 |
3.2918059e7 | 103.0 |
3.3403565e7 | 589.0 |
4.2024949e7 | 327.0 |
4.5505713e7 | 168.0 |
291112.0 | 725.0 |
1096019.0 | 286.0 |
1403376.0 | 223.0 |
1897562.0 | 392.0 |
4655521.0 | 134.0 |
6605995.0 | 274.0 |
1.8002411e7 | 146.0 |
3.0175461e7 | 87.0 |
3.3739539e7 | 28.0 |
3.4940971e7 | 702.0 |
3.8190666e7 | 25.0 |
3.8364694e7 | 139.0 |
4.2415715e7 | 19.0 |
4.6665667e7 | 27.0 |
4.7644402e7 | 330.0 |
4.9040329e7 | 18.0 |
5.2121447e7 | 45.0 |
5.2470428e7 | 14.0 |
5.481938e7 | 43.0 |
5.5165618e7 | 12.0 |
5.58692e7 | 19.0 |
5.782147e7 | 90.0 |
5.9536992e7 | 235.0 |
6.0627065e7 | 22.0 |
6.3208422e7 | 19.0 |
6.6888837e7 | 170.0 |
6.8724737e7 | 26.0 |
7.0950111e7 | 48.0 |
7.0961308e7 | 9.0 |
42635.0 | 421.0 |
204839.0 | 264.0 |
1.4096078e7 | 281.0 |
2.3119675e7 | 1.0 |
3.2419458e7 | 105.0 |
10623.0 | 853.0 |
1092824.0 | 421.0 |
9449088.0 | 712.0 |
3.6187635e7 | 575.0 |
6.0841302e7 | 301.0 |
1647594.0 | 536.0 |
13289.0 | 1292.0 |
32460.0 | 372.0 |
314843.0 | 1390.0 |
360246.0 | 148.0 |
920820.0 | 662.0 |
1575603.0 | 242.0 |
1646993.0 | 20.0 |
2313170.0 | 61.0 |
4554716.0 | 1241.0 |
5443045.0 | 86.0 |
6742350.0 | 487.0 |
1.0476707e7 | 93.0 |
1.21573e7 | 97.0 |
1.58812e7 | 13.0 |
3.3742907e7 | 79.0 |
3.3759699e7 | 99.0 |
4.7945621e7 | 43.0 |
23364.0 | 746.0 |
34759.0 | 298.0 |
2304832.0 | 199.0 |
6.9177994e7 | 222.0 |
244629.0 | 523.0 |
355377.0 | 137.0 |
421135.0 | 85.0 |
533484.0 | 767.0 |
682743.0 | 31.0 |
1746403.0 | 69.0 |
7062457.0 | 58.0 |
2.164597e7 | 18.0 |
2.2122416e7 | 236.0 |
2.7264038e7 | 13.0 |
3.2752045e7 | 17.0 |
4.83936e7 | 319.0 |
67492.0 | 373.0 |
215987.0 | 480.0 |
6.3632458e7 | 299.0 |
130995.0 | 128.0 |
415982.0 | 250.0 |
545905.0 | 352.0 |
632101.0 | 279.0 |
973234.0 | 141.0 |
981727.0 | 185.0 |
1061979.0 | 134.0 |
1154761.0 | 228.0 |
1442414.0 | 145.0 |
1794480.0 | 99.0 |
2292741.0 | 271.0 |
2726972.0 | 75.0 |
5038301.0 | 121.0 |
5966054.0 | 190.0 |
5981541.0 | 81.0 |
6354335.0 | 20.0 |
7081790.0 | 32.0 |
9751042.0 | 41.0 |
1.0129388e7 | 73.0 |
1.0608677e7 | 350.0 |
1.1623165e7 | 37.0 |
1.2363563e7 | 24.0 |
1.3301776e7 | 64.0 |
1.595736e7 | 109.0 |
1.7686401e7 | 180.0 |
1.7695129e7 | 178.0 |
1.8599736e7 | 42.0 |
2.0020202e7 | 80.0 |
2.0625567e7 | 103.0 |
2.1231448e7 | 71.0 |
2.2179435e7 | 62.0 |
2.2559903e7 | 249.0 |
2.3285621e7 | 73.0 |
2.3434847e7 | 65.0 |
2.4736829e7 | 84.0 |
2.4763523e7 | 16.0 |
2.5549919e7 | 123.0 |
2.6354297e7 | 284.0 |
2.7199111e7 | 40.0 |
2.7881617e7 | 185.0 |
3.0641223e7 | 22.0 |
3.0978798e7 | 301.0 |
3.1392787e7 | 109.0 |
3.2022661e7 | 54.0 |
3.2233776e7 | 47.0 |
3.243988e7 | 64.0 |
3.2447744e7 | 56.0 |
3.2448157e7 | 57.0 |
3.3120504e7 | 21.0 |
3.332487e7 | 56.0 |
3.3424383e7 | 131.0 |
3.4064335e7 | 58.0 |
3.4166782e7 | 57.0 |
3.5058119e7 | 573.0 |
3.6895298e7 | 33.0 |
3.7497896e7 | 447.0 |
3.7590697e7 | 248.0 |
3.8842589e7 | 41.0 |
3.9520419e7 | 182.0 |
3.9787091e7 | 23.0 |
4.0307437e7 | 176.0 |
4.0776916e7 | 87.0 |
4.1508036e7 | 24.0 |
4.2535121e7 | 18.0 |
4.4221825e7 | 185.0 |
4.453879e7 | 198.0 |
4.8055432e7 | 200.0 |
4.8375321e7 | 542.0 |
4.8894564e7 | 517.0 |
4.9872552e7 | 27.0 |
5.0998621e7 | 55.0 |
5.1297783e7 | 113.0 |
5.247648e7 | 17.0 |
5.2658082e7 | 356.0 |
5.3068331e7 | 43.0 |
5.330118e7 | 76.0 |
5.8859695e7 | 114.0 |
6.0990075e7 | 678.0 |
6.1231563e7 | 7.0 |
6.1462793e7 | 33.0 |
6.222217e7 | 169.0 |
6.5004967e7 | 58.0 |
6.5353439e7 | 479.0 |
6.6269902e7 | 518.0 |
6.627824e7 | 532.0 |
6.6479418e7 | 60.0 |
6.9122918e7 | 183.0 |
7.024368e7 | 45.0 |
383876.0 | 219.0 |
531611.0 | 538.0 |
1630712.0 | 22.0 |
4034249.0 | 210.0 |
4.784758e7 | 31.0 |
4.9844865e7 | 45.0 |
5.8900873e7 | 36.0 |
6.704034e7 | 16.0 |
6.7943922e7 | 20.0 |
20735.0 | 241.0 |
24171.0 | 433.0 |
40011.0 | 197.0 |
40335.0 | 555.0 |
44822.0 | 359.0 |
47217.0 | 134.0 |
74775.0 | 152.0 |
97092.0 | 410.0 |
154034.0 | 165.0 |
160235.0 | 111.0 |
175702.0 | 391.0 |
319698.0 | 275.0 |
340002.0 | 603.0 |
342902.0 | 123.0 |
374216.0 | 160.0 |
671174.0 | 225.0 |
673653.0 | 171.0 |
699197.0 | 655.0 |
994029.0 | 68.0 |
1183638.0 | 285.0 |
1400535.0 | 423.0 |
1588837.0 | 131.0 |
1718119.0 | 234.0 |
1721233.0 | 61.0 |
1841135.0 | 26.0 |
1861111.0 | 39.0 |
1929336.0 | 193.0 |
2038199.0 | 70.0 |
2241717.0 | 41.0 |
2529371.0 | 305.0 |
2592474.0 | 57.0 |
2907450.0 | 23.0 |
3071452.0 | 55.0 |
3087480.0 | 27.0 |
3165047.0 | 224.0 |
3200152.0 | 415.0 |
3232923.0 | 30.0 |
3345025.0 | 29.0 |
3653877.0 | 77.0 |
3811318.0 | 137.0 |
3862844.0 | 31.0 |
3863609.0 | 29.0 |
4413840.0 | 18.0 |
4757354.0 | 299.0 |
5287742.0 | 526.0 |
5420919.0 | 147.0 |
5596091.0 | 153.0 |
6015395.0 | 127.0 |
6095318.0 | 291.0 |
6448765.0 | 28.0 |
6754467.0 | 149.0 |
6779194.0 | 165.0 |
6834818.0 | 172.0 |
6843865.0 | 124.0 |
6881233.0 | 111.0 |
7160805.0 | 61.0 |
7537224.0 | 24.0 |
8368507.0 | 45.0 |
8422890.0 | 81.0 |
8893475.0 | 474.0 |
8928238.0 | 62.0 |
1.0190604e7 | 31.0 |
1.0377013e7 | 25.0 |
1.1503852e7 | 27.0 |
1.2005179e7 | 67.0 |
1.2143519e7 | 37.0 |
1.2232008e7 | 85.0 |
1.297899e7 | 88.0 |
1.3303127e7 | 12.0 |
1.3394077e7 | 55.0 |
1.3413545e7 | 44.0 |
1.4672429e7 | 6.0 |
1.5583843e7 | 26.0 |
1.6283651e7 | 28.0 |
1.8379838e7 | 3.0 |
1.8505136e7 | 68.0 |
1.8634057e7 | 109.0 |
1.8890528e7 | 201.0 |
2.1152944e7 | 13.0 |
2.1250216e7 | 31.0 |
2.1447249e7 | 51.0 |
2.179692e7 | 254.0 |
2.2524305e7 | 322.0 |
2.2762485e7 | 9.0 |
2.2799307e7 | 29.0 |
2.3169912e7 | 6.0 |
2.3687632e7 | 17.0 |
2.3703618e7 | 145.0 |
2.3827065e7 | 5.0 |
2.3982962e7 | 16.0 |
2.3984893e7 | 18.0 |
2.4316287e7 | 127.0 |
2.5150404e7 | 33.0 |
2.5641551e7 | 346.0 |
2.6221276e7 | 20.0 |
2.6575702e7 | 30.0 |
2.707978e7 | 10.0 |
2.7532381e7 | 62.0 |
2.9045703e7 | 53.0 |
2.9410367e7 | 736.0 |
3.0493221e7 | 27.0 |
3.1156076e7 | 32.0 |
3.1298192e7 | 15.0 |
3.2462568e7 | 10.0 |
3.3273218e7 | 545.0 |
3.355878e7 | 21.0 |
3.3945012e7 | 38.0 |
3.4701539e7 | 240.0 |
3.5096782e7 | 32.0 |
3.6115878e7 | 37.0 |
3.6218551e7 | 97.0 |
3.6606021e7 | 21.0 |
3.7187971e7 | 31.0 |
3.7488495e7 | 6.0 |
3.7512886e7 | 340.0 |
3.7759077e7 | 21.0 |
3.8403664e7 | 86.0 |
3.8411226e7 | 34.0 |
3.8889198e7 | 68.0 |
3.9147505e7 | 56.0 |
3.955628e7 | 105.0 |
3.9696064e7 | 246.0 |
3.9765543e7 | 18.0 |
4.0031037e7 | 151.0 |
4.0646001e7 | 24.0 |
4.0910697e7 | 64.0 |
4.208598e7 | 145.0 |
4.2185777e7 | 46.0 |
4.3110988e7 | 78.0 |
4.4293253e7 | 148.0 |
4.4366746e7 | 102.0 |
4.5315702e7 | 31.0 |
4.5647992e7 | 61.0 |
4.6574177e7 | 5.0 |
4.6796082e7 | 14.0 |
4.6846791e7 | 486.0 |
4.7276783e7 | 6.0 |
4.7293792e7 | 11.0 |
5.0577233e7 | 76.0 |
5.1143643e7 | 60.0 |
5.1361707e7 | 178.0 |
5.1529113e7 | 18.0 |
5.2458453e7 | 14.0 |
5.355579e7 | 43.0 |
5.3684615e7 | 17.0 |
5.4468681e7 | 37.0 |
5.4498207e7 | 182.0 |
5.4513563e7 | 63.0 |
5.758488e7 | 21.0 |
5.7790158e7 | 110.0 |
5.7941344e7 | 366.0 |
5.8117752e7 | 9.0 |
5.9106894e7 | 178.0 |
5.9645657e7 | 38.0 |
5.9662089e7 | 73.0 |
6.0438132e7 | 122.0 |
6.0540862e7 | 109.0 |
6.0580583e7 | 77.0 |
6.0633908e7 | 27.0 |
6.1303345e7 | 220.0 |
6.1362145e7 | 74.0 |
6.2978948e7 | 40.0 |
6.3525133e7 | 82.0 |
6.3542383e7 | 213.0 |
6.3615543e7 | 142.0 |
6.3744788e7 | 8.0 |
6.3839634e7 | 55.0 |
6.4180683e7 | 95.0 |
6.5791337e7 | 160.0 |
6.6146081e7 | 63.0 |
6.628958e7 | 3.0 |
6.6770247e7 | 23.0 |
6.7080072e7 | 489.0 |
6.8072188e7 | 75.0 |
6.871422e7 | 41.0 |
6.8859854e7 | 686.0 |
6.9028239e7 | 180.0 |
6.962667e7 | 40.0 |
6.9685401e7 | 17.0 |
7.0345668e7 | 4.0 |
7.1807809e7 | 49.0 |
1.6886223e7 | 58.0 |
3226175.0 | 250.0 |
8664418.0 | 345.0 |
1.2790772e7 | 110.0 |
1.3491216e7 | 135.0 |
3.6703624e7 | 773.0 |
4.1492309e7 | 230.0 |
6.2641159e7 | 198.0 |
674147.0 | 1.0 |
3339856.0 | 204.0 |
1701156.0 | 111.0 |
4028744.0 | 167.0 |
9144002.0 | 137.0 |
1.7644273e7 | 290.0 |
2.3803028e7 | 50.0 |
3.1908875e7 | 104.0 |
3.1942099e7 | 1937.0 |
3.3983606e7 | 35.0 |
3.9297511e7 | 55.0 |
4.0778748e7 | 84.0 |
4.3180885e7 | 130.0 |
5.3450632e7 | 40.0 |
5.5667174e7 | 60.0 |
5.5824762e7 | 71.0 |
5.6242636e7 | 32.0 |
5.637255e7 | 34.0 |
5.652791e7 | 45.0 |
6.44148e7 | 65.0 |
6.5846699e7 | 209.0 |
4.1941879e7 | 165.0 |
105796.0 | 661.0 |
1.7990997e7 | 770.0 |
3794.0 | 804.0 |
24354.0 | 901.0 |
1806126.0 | 57.0 |
6914308.0 | 277.0 |
2.3191701e7 | 336.0 |
324091.0 | 543.0 |
584739.0 | 251.0 |
1203653.0 | 17.0 |
2074122.0 | 148.0 |
2123449.0 | 474.0 |
5804783.0 | 103.0 |
1.5105877e7 | 29.0 |
1.573294e7 | 252.0 |
626785.0 | 120.0 |
18051.0 | 242.0 |
206719.0 | 475.0 |
274848.0 | 527.0 |
318168.0 | 127.0 |
1187636.0 | 23.0 |
1887018.0 | 448.0 |
3099109.0 | 11.0 |
3447164.0 | 28.0 |
3746004.0 | 441.0 |
6762807.0 | 202.0 |
7139808.0 | 222.0 |
7946810.0 | 116.0 |
8478881.0 | 358.0 |
9119140.0 | 301.0 |
1.0026282e7 | 39.0 |
1.0068059e7 | 16.0 |
1.0953591e7 | 121.0 |
1.2248345e7 | 164.0 |
1.2472175e7 | 52.0 |
1.28778e7 | 112.0 |
2.0540733e7 | 64.0 |
2.0583202e7 | 65.0 |
2.2439159e7 | 71.0 |
2.2612021e7 | 44.0 |
2.3610877e7 | 124.0 |
2.7181478e7 | 52.0 |
2.773852e7 | 18.0 |
2.7802935e7 | 27.0 |
2.9066482e7 | 308.0 |
2.9525709e7 | 20.0 |
3.171213e7 | 90.0 |
3.2619987e7 | 56.0 |
3.4748036e7 | 47.0 |
3.6544756e7 | 642.0 |
3.8716794e7 | 30.0 |
3.9488759e7 | 1.0 |
4.0125689e7 | 96.0 |
4.0953796e7 | 7.0 |
4.0971691e7 | 36.0 |
4.4326781e7 | 35.0 |
4.6306198e7 | 81.0 |
4.8746733e7 | 15.0 |
5.093464e7 | 78.0 |
5.399198e7 | 104.0 |
5.5679491e7 | 9.0 |
5.713068e7 | 19.0 |
5.9178251e7 | 359.0 |
5.9619351e7 | 196.0 |
6.173013e7 | 40.0 |
6.465077e7 | 190.0 |
6.5090656e7 | 411.0 |
6.97505e7 | 32.0 |
7.0060648e7 | 10.0 |
205013.0 | 580.0 |
1947770.0 | 1.0 |
3.3032159e7 | 40.0 |
3.9972056e7 | 119.0 |
4.4801986e7 | 575.0 |
57020.0 | 434.0 |
1202260.0 | 243.0 |
1.3186755e7 | 208.0 |
1.9317885e7 | 255.0 |
5.870981e7 | 1.0 |
1903597.0 | 262.0 |
8187093.0 | 45.0 |
1.1851392e7 | 114.0 |
2.4311963e7 | 136.0 |
4.9147779e7 | 54.0 |
4104968.0 | 203.0 |
9648456.0 | 139.0 |
1.854149e7 | 374.0 |
4462484.0 | 124.0 |
633241.0 | 396.0 |
2003525.0 | 108.0 |
2.4969173e7 | 102.0 |
5858078.0 | 1008.0 |
6341057.0 | 46.0 |
2.5706207e7 | 19.0 |
6.2477733e7 | 116.0 |
167316.0 | 33.0 |
706454.0 | 17.0 |
2029502.0 | 45.0 |
8895114.0 | 58.0 |
9000576.0 | 80.0 |
2.6912985e7 | 10.0 |
2.7374393e7 | 14.0 |
3.448731e7 | 35.0 |
3.4732262e7 | 234.0 |
3.7191948e7 | 3.0 |
4.407359e7 | 14.0 |
6.1246414e7 | 112.0 |
6.2767513e7 | 19.0 |
7554.0 | 477.0 |
11033.0 | 1928.0 |
3355139.0 | 9.0 |
5637239.0 | 39.0 |
8639963.0 | 10.0 |
1.2666378e7 | 1.0 |
1.6767062e7 | 57.0 |
2.0699244e7 | 703.0 |
2.0927257e7 | 466.0 |
2.1509764e7 | 477.0 |
2.3003429e7 | 605.0 |
2.3640384e7 | 12.0 |
2.4976967e7 | 38.0 |
3.0253216e7 | 26.0 |
3.1194057e7 | 46.0 |
3.3692462e7 | 16.0 |
3.8793749e7 | 28.0 |
4.270149e7 | 17.0 |
5.2117669e7 | 102.0 |
5.2663949e7 | 15.0 |
5.6611024e7 | 13.0 |
5.74351e7 | 17.0 |
5.9191532e7 | 10.0 |
390373.0 | 179.0 |
418147.0 | 243.0 |
1557461.0 | 181.0 |
2846431.0 | 234.0 |
5.331922e7 | 12.0 |
6.4216879e7 | 38.0 |
6.4655068e7 | 34.0 |
4643400.0 | 322.0 |
4.2371992e7 | 236.0 |
4.8624307e7 | 18.0 |
5.2745729e7 | 370.0 |
5.7285036e7 | 18.0 |
35071.0 | 420.0 |
4.8219103e7 | 349.0 |
4.7012996e7 | 562.0 |
5518088.0 | 97.0 |
3232804.0 | 321.0 |
256830.0 | 105.0 |
313148.0 | 226.0 |
1038913.0 | 32.0 |
1465291.0 | 231.0 |
2383439.0 | 836.0 |
3456988.0 | 277.0 |
4604825.0 | 225.0 |
8515253.0 | 633.0 |
8681365.0 | 39.0 |
1.0918325e7 | 31.0 |
1.9869016e7 | 312.0 |
3.5151866e7 | 524.0 |
3.5365868e7 | 80.0 |
5.829949e7 | 138.0 |
6.1703459e7 | 41.0 |
2792578.0 | 52.0 |
5168923.0 | 254.0 |
6734985.0 | 359.0 |
1.8247265e7 | 1192.0 |
147280.0 | 332.0 |
166160.0 | 36.0 |
1.6805551e7 | 206.0 |
1.9176731e7 | 86.0 |
6.6195979e7 | 1.0 |
4097515.0 | 61.0 |
1.3246731e7 | 47.0 |
204974.0 | 226.0 |
1957152.0 | 90.0 |
1.0053201e7 | 94.0 |
3.4348569e7 | 1541.0 |
4.1542506e7 | 820.0 |
4.7281845e7 | 474.0 |
5.4939014e7 | 1085.0 |
5.4939205e7 | 430.0 |
375375.0 | 772.0 |
745107.0 | 210.0 |
3976426.0 | 320.0 |
1.2415488e7 | 140.0 |
5.8735564e7 | 123.0 |
6.632638e7 | 481.0 |
1483064.0 | 70.0 |
2.2253234e7 | 154.0 |
8238688.0 | 79.0 |
1.1543374e7 | 36.0 |
1.2224059e7 | 490.0 |
1.3492454e7 | 933.0 |
6.0578068e7 | 266.0 |
6.781975e7 | 1372.0 |
1765281.0 | 285.0 |
1.6096578e7 | 218.0 |
1.7004063e7 | 62.0 |
2.228941e7 | 61.0 |
2.4931991e7 | 59.0 |
6.2664637e7 | 2596.0 |
1617520.0 | 24.0 |
2.1231964e7 | 142.0 |
2.9714573e7 | 115.0 |
3.1205078e7 | 43.0 |
3.7763802e7 | 116.0 |
5.160308e7 | 17.0 |
6.3045081e7 | 68.0 |
343570.0 | 350.0 |
1066848.0 | 81.0 |
2452360.0 | 182.0 |
3675155.0 | 65.0 |
2.269203e7 | 21.0 |
2.2773422e7 | 393.0 |
2.8253567e7 | 206.0 |
3.1176966e7 | 693.0 |
3.1351322e7 | 186.0 |
3.1861665e7 | 88.0 |
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(g.inDegrees)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksViewa10e7f7")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksViewa10e7f7) ,min_max AS (SELECT `inDegree`,(SELECT MAX(`inDegree`) FROM q) `target_column_max`,(SELECT MIN(`inDegree`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `inDegree`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 300 `step` FROM min_max) SELECT IF(ISNULL(`inDegree`),NULL,LEAST(WIDTH_BUCKET(`inDegree`,`min_value`,`max_value`,300),300)) `inDegree_BIN`,FIRST(`min_value` + ((IF(ISNULL(`inDegree`),NULL,LEAST(WIDTH_BUCKET(`inDegree`,`min_value`,`max_value`,300),300)) - 1) * `step`)) `inDegree_BIN_LOWER_BOUND`,FIRST(`step`) `inDegree_BIN_STEP`,COUNT(`inDegree`) `COUNT` FROM histogram_meta GROUP BY `inDegree_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksViewa10e7f7")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
inDegree_BIN | inDegree_BIN_LOWER_BOUND | inDegree_BIN_STEP | COUNT |
---|---|---|---|
7.0 | 27603.0 | 4600.333333333333 | 136.0 |
39.0 | 174813.66666666666 | 4600.333333333333 | 1.0 |
6.0 | 23002.666666666664 | 4600.333333333333 | 107.0 |
9.0 | 36803.666666666664 | 4600.333333333333 | 49.0 |
27.0 | 119609.66666666666 | 4600.333333333333 | 1.0 |
5.0 | 18402.333333333332 | 4600.333333333333 | 203.0 |
1.0 | 1.0 | 4600.333333333333 | 6424767.0 |
96.0 | 437032.6666666666 | 4600.333333333333 | 1.0 |
3.0 | 9201.666666666666 | 4600.333333333333 | 707.0 |
12.0 | 50604.666666666664 | 4600.333333333333 | 19.0 |
8.0 | 32203.333333333332 | 4600.333333333333 | 57.0 |
11.0 | 46004.33333333333 | 4600.333333333333 | 20.0 |
2.0 | 4601.333333333333 | 4600.333333333333 | 2683.0 |
4.0 | 13802.0 | 4600.333333333333 | 344.0 |
13.0 | 55205.0 | 4600.333333333333 | 18.0 |
15.0 | 64405.666666666664 | 4600.333333333333 | 12.0 |
20.0 | 87407.33333333333 | 4600.333333333333 | 5.0 |
47.0 | 211616.3333333333 | 4600.333333333333 | 2.0 |
26.0 | 115009.33333333333 | 4600.333333333333 | 5.0 |
22.0 | 96608.0 | 4600.333333333333 | 5.0 |
43.0 | 193215.0 | 4600.333333333333 | 3.0 |
63.0 | 285221.6666666666 | 4600.333333333333 | 2.0 |
33.0 | 147211.66666666666 | 4600.333333333333 | 4.0 |
10.0 | 41404.0 | 4600.333333333333 | 35.0 |
35.0 | 156412.3333333333 | 4600.333333333333 | 6.0 |
14.0 | 59805.33333333333 | 4600.333333333333 | 7.0 |
23.0 | 101208.33333333333 | 4600.333333333333 | 4.0 |
259.0 | 1186887.0 | 4600.333333333333 | 1.0 |
16.0 | 69006.0 | 4600.333333333333 | 20.0 |
19.0 | 82807.0 | 4600.333333333333 | 14.0 |
25.0 | 110409.0 | 4600.333333333333 | 5.0 |
56.0 | 253019.3333333333 | 4600.333333333333 | 1.0 |
49.0 | 220817.0 | 4600.333333333333 | 1.0 |
18.0 | 78206.66666666666 | 4600.333333333333 | 9.0 |
59.0 | 266820.3333333333 | 4600.333333333333 | 1.0 |
300.0 | 1375500.6666666665 | 4600.333333333333 | 1.0 |
40.0 | 179414.0 | 4600.333333333333 | 2.0 |
31.0 | 138011.0 | 4600.333333333333 | 2.0 |
79.0 | 358827.0 | 4600.333333333333 | 1.0 |
17.0 | 73606.33333333333 | 4600.333333333333 | 8.0 |
114.0 | 519838.6666666666 | 4600.333333333333 | 1.0 |
91.0 | 414031.0 | 4600.333333333333 | 2.0 |
87.0 | 395629.6666666666 | 4600.333333333333 | 1.0 |
28.0 | 124209.99999999999 | 4600.333333333333 | 3.0 |
120.0 | 547440.6666666666 | 4600.333333333333 | 1.0 |
44.0 | 197815.3333333333 | 4600.333333333333 | 2.0 |
36.0 | 161012.66666666666 | 4600.333333333333 | 1.0 |
54.0 | 243818.66666666666 | 4600.333333333333 | 1.0 |
55.0 | 248418.99999999997 | 4600.333333333333 | 1.0 |
73.0 | 331225.0 | 4600.333333333333 | 1.0 |
60.0 | 271420.6666666666 | 4600.333333333333 | 1.0 |
37.0 | 165613.0 | 4600.333333333333 | 2.0 |
46.0 | 207016.0 | 4600.333333333333 | 1.0 |
24.0 | 105808.66666666666 | 4600.333333333333 | 4.0 |
106.0 | 483035.99999999994 | 4600.333333333333 | 1.0 |
67.0 | 303623.0 | 4600.333333333333 | 1.0 |
41.0 | 184014.3333333333 | 4600.333333333333 | 1.0 |
77.0 | 349626.3333333333 | 4600.333333333333 | 1.0 |
202.0 | 924667.9999999999 | 4600.333333333333 | 1.0 |
51.0 | 230017.66666666666 | 4600.333333333333 | 2.0 |
101.0 | 460034.3333333333 | 4600.333333333333 | 1.0 |
75.0 | 340425.6666666666 | 4600.333333333333 | 1.0 |
32.0 | 142611.3333333333 | 4600.333333333333 | 1.0 |
21.0 | 92007.66666666666 | 4600.333333333333 | 3.0 |
48.0 | 216216.66666666666 | 4600.333333333333 | 1.0 |
64.0 | 289822.0 | 4600.333333333333 | 1.0 |
78.0 | 354226.6666666666 | 4600.333333333333 | 1.0 |
98.0 | 446233.3333333333 | 4600.333333333333 | 1.0 |
// Top in
display(g.inDegrees.join(g.vertices.withColumnRenamed("id", "v_id"), col("id")===col("v_id"), "left").orderBy(desc("inDegree")))
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(g.outDegrees)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView1bd969d")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView1bd969d) ,min_max AS (SELECT `outDegree`,(SELECT MAX(`outDegree`) FROM q) `target_column_max`,(SELECT MIN(`outDegree`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `outDegree`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 300 `step` FROM min_max) SELECT IF(ISNULL(`outDegree`),NULL,LEAST(WIDTH_BUCKET(`outDegree`,`min_value`,`max_value`,300),300)) `outDegree_BIN`,FIRST(`min_value` + ((IF(ISNULL(`outDegree`),NULL,LEAST(WIDTH_BUCKET(`outDegree`,`min_value`,`max_value`,300),300)) - 1) * `step`)) `outDegree_BIN_LOWER_BOUND`,FIRST(`step`) `outDegree_BIN_STEP`,COUNT(`outDegree`) `COUNT` FROM histogram_meta GROUP BY `outDegree_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView1bd969d")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
outDegree_BIN | outDegree_BIN_LOWER_BOUND | outDegree_BIN_STEP | COUNT |
---|---|---|---|
26.0 | 1037.6666666666667 | 41.46666666666667 | 2166.0 |
29.0 | 1162.0666666666666 | 41.46666666666667 | 1013.0 |
65.0 | 2654.866666666667 | 41.46666666666667 | 28.0 |
19.0 | 747.4000000000001 | 41.46666666666667 | 6522.0 |
54.0 | 2198.7333333333336 | 41.46666666666667 | 51.0 |
22.0 | 871.8000000000001 | 41.46666666666667 | 4277.0 |
7.0 | 249.8 | 41.46666666666667 | 134610.0 |
34.0 | 1369.4 | 41.46666666666667 | 1166.0 |
43.0 | 1742.6000000000001 | 41.46666666666667 | 186.0 |
32.0 | 1286.4666666666667 | 41.46666666666667 | 1117.0 |
31.0 | 1245.0 | 41.46666666666667 | 1076.0 |
39.0 | 1576.7333333333333 | 41.46666666666667 | 581.0 |
25.0 | 996.2 | 41.46666666666667 | 2143.0 |
6.0 | 208.33333333333334 | 41.46666666666667 | 180244.0 |
58.0 | 2364.6 | 41.46666666666667 | 37.0 |
107.0 | 4396.466666666667 | 41.46666666666667 | 2.0 |
9.0 | 332.73333333333335 | 41.46666666666667 | 73016.0 |
27.0 | 1079.1333333333334 | 41.46666666666667 | 2546.0 |
52.0 | 2115.8 | 41.46666666666667 | 62.0 |
17.0 | 664.4666666666667 | 41.46666666666667 | 11795.0 |
41.0 | 1659.6666666666667 | 41.46666666666667 | 259.0 |
28.0 | 1120.6000000000001 | 41.46666666666667 | 1308.0 |
33.0 | 1327.9333333333334 | 41.46666666666667 | 1615.0 |
88.0 | 3608.6000000000004 | 41.46666666666667 | 3.0 |
5.0 | 166.86666666666667 | 41.46666666666667 | 257782.0 |
1.0 | 1.0 | 41.46666666666667 | 1.3808876e7 |
10.0 | 374.20000000000005 | 41.46666666666667 | 52366.0 |
44.0 | 1784.0666666666668 | 41.46666666666667 | 148.0 |
61.0 | 2489.0 | 41.46666666666667 | 28.0 |
3.0 | 83.93333333333334 | 41.46666666666667 | 595738.0 |
37.0 | 1493.8000000000002 | 41.46666666666667 | 611.0 |
12.0 | 457.1333333333333 | 41.46666666666667 | 33173.0 |
55.0 | 2240.2000000000003 | 41.46666666666667 | 44.0 |
74.0 | 3028.0666666666666 | 41.46666666666667 | 10.0 |
8.0 | 291.26666666666665 | 41.46666666666667 | 93927.0 |
11.0 | 415.6666666666667 | 41.46666666666667 | 42598.0 |
49.0 | 1991.4 | 41.46666666666667 | 81.0 |
35.0 | 1410.8666666666668 | 41.46666666666667 | 800.0 |
2.0 | 42.46666666666667 | 41.46666666666667 | 1063177.0 |
4.0 | 125.4 | 41.46666666666667 | 359448.0 |
13.0 | 498.6 | 41.46666666666667 | 28593.0 |
36.0 | 1452.3333333333335 | 41.46666666666667 | 669.0 |
75.0 | 3069.5333333333333 | 41.46666666666667 | 12.0 |
18.0 | 705.9333333333334 | 41.46666666666667 | 10640.0 |
14.0 | 540.0666666666667 | 41.46666666666667 | 21160.0 |
21.0 | 830.3333333333334 | 41.46666666666667 | 5358.0 |
15.0 | 581.5333333333333 | 41.46666666666667 | 18867.0 |
38.0 | 1535.2666666666667 | 41.46666666666667 | 483.0 |
82.0 | 3359.8 | 41.46666666666667 | 9.0 |
30.0 | 1203.5333333333333 | 41.46666666666667 | 2022.0 |
42.0 | 1701.1333333333334 | 41.46666666666667 | 196.0 |
90.0 | 3691.5333333333333 | 41.46666666666667 | 1.0 |
23.0 | 913.2666666666667 | 41.46666666666667 | 3022.0 |
46.0 | 1867.0 | 41.46666666666667 | 114.0 |
20.0 | 788.8666666666667 | 41.46666666666667 | 8177.0 |
86.0 | 3525.666666666667 | 41.46666666666667 | 7.0 |
60.0 | 2447.5333333333333 | 41.46666666666667 | 24.0 |
40.0 | 1618.2 | 41.46666666666667 | 354.0 |
16.0 | 623.0 | 41.46666666666667 | 15615.0 |
53.0 | 2157.266666666667 | 41.46666666666667 | 55.0 |
47.0 | 1908.4666666666667 | 41.46666666666667 | 106.0 |
24.0 | 954.7333333333333 | 41.46666666666667 | 2567.0 |
50.0 | 2032.8666666666668 | 41.46666666666667 | 87.0 |
84.0 | 3442.7333333333336 | 41.46666666666667 | 8.0 |
95.0 | 3898.866666666667 | 41.46666666666667 | 3.0 |
71.0 | 2903.666666666667 | 41.46666666666667 | 14.0 |
51.0 | 2074.3333333333335 | 41.46666666666667 | 67.0 |
67.0 | 2737.8 | 41.46666666666667 | 19.0 |
48.0 | 1949.9333333333334 | 41.46666666666667 | 76.0 |
123.0 | 5059.933333333333 | 41.46666666666667 | 1.0 |
66.0 | 2696.3333333333335 | 41.46666666666667 | 11.0 |
78.0 | 3193.9333333333334 | 41.46666666666667 | 8.0 |
45.0 | 1825.5333333333333 | 41.46666666666667 | 116.0 |
57.0 | 2323.133333333333 | 41.46666666666667 | 35.0 |
62.0 | 2530.4666666666667 | 41.46666666666667 | 17.0 |
56.0 | 2281.666666666667 | 41.46666666666667 | 38.0 |
59.0 | 2406.0666666666666 | 41.46666666666667 | 30.0 |
300.0 | 12399.533333333335 | 41.46666666666667 | 1.0 |
93.0 | 3815.9333333333334 | 41.46666666666667 | 6.0 |
91.0 | 3733.0 | 41.46666666666667 | 6.0 |
113.0 | 4645.266666666666 | 41.46666666666667 | 1.0 |
94.0 | 3857.4 | 41.46666666666667 | 5.0 |
83.0 | 3401.266666666667 | 41.46666666666667 | 2.0 |
77.0 | 3152.4666666666667 | 41.46666666666667 | 3.0 |
145.0 | 5972.200000000001 | 41.46666666666667 | 1.0 |
108.0 | 4437.933333333333 | 41.46666666666667 | 5.0 |
76.0 | 3111.0 | 41.46666666666667 | 9.0 |
98.0 | 4023.266666666667 | 41.46666666666667 | 3.0 |
63.0 | 2571.9333333333334 | 41.46666666666667 | 9.0 |
80.0 | 3276.866666666667 | 41.46666666666667 | 4.0 |
69.0 | 2820.7333333333336 | 41.46666666666667 | 9.0 |
81.0 | 3318.3333333333335 | 41.46666666666667 | 8.0 |
73.0 | 2986.6000000000004 | 41.46666666666667 | 9.0 |
68.0 | 2779.266666666667 | 41.46666666666667 | 15.0 |
192.0 | 7921.133333333334 | 41.46666666666667 | 1.0 |
265.0 | 10948.2 | 41.46666666666667 | 1.0 |
70.0 | 2862.2000000000003 | 41.46666666666667 | 18.0 |
111.0 | 4562.333333333334 | 41.46666666666667 | 2.0 |
110.0 | 4520.866666666667 | 41.46666666666667 | 3.0 |
72.0 | 2945.1333333333337 | 41.46666666666667 | 5.0 |
102.0 | 4189.133333333333 | 41.46666666666667 | 3.0 |
64.0 | 2613.4 | 41.46666666666667 | 17.0 |
105.0 | 4313.533333333334 | 41.46666666666667 | 1.0 |
121.0 | 4977.0 | 41.46666666666667 | 1.0 |
119.0 | 4894.066666666667 | 41.46666666666667 | 3.0 |
132.0 | 5433.133333333333 | 41.46666666666667 | 2.0 |
171.0 | 7050.333333333334 | 41.46666666666667 | 1.0 |
92.0 | 3774.4666666666667 | 41.46666666666667 | 1.0 |
97.0 | 3981.8 | 41.46666666666667 | 2.0 |
99.0 | 4064.7333333333336 | 41.46666666666667 | 1.0 |
193.0 | 7962.6 | 41.46666666666667 | 1.0 |
122.0 | 5018.466666666667 | 41.46666666666667 | 2.0 |
100.0 | 4106.2 | 41.46666666666667 | 2.0 |
134.0 | 5516.066666666667 | 41.46666666666667 | 2.0 |
133.0 | 5474.6 | 41.46666666666667 | 2.0 |
168.0 | 6925.933333333333 | 41.46666666666667 | 1.0 |
116.0 | 4769.666666666667 | 41.46666666666667 | 4.0 |
87.0 | 3567.1333333333337 | 41.46666666666667 | 5.0 |
104.0 | 4272.066666666667 | 41.46666666666667 | 3.0 |
89.0 | 3650.0666666666666 | 41.46666666666667 | 3.0 |
106.0 | 4355.0 | 41.46666666666667 | 1.0 |
103.0 | 4230.6 | 41.46666666666667 | 1.0 |
124.0 | 5101.400000000001 | 41.46666666666667 | 1.0 |
101.0 | 4147.666666666667 | 41.46666666666667 | 2.0 |
137.0 | 5640.466666666667 | 41.46666666666667 | 1.0 |
135.0 | 5557.533333333334 | 41.46666666666667 | 1.0 |
114.0 | 4686.733333333334 | 41.46666666666667 | 1.0 |
125.0 | 5142.866666666667 | 41.46666666666667 | 1.0 |
156.0 | 6428.333333333334 | 41.46666666666667 | 1.0 |
85.0 | 3484.2000000000003 | 41.46666666666667 | 2.0 |
117.0 | 4811.133333333333 | 41.46666666666667 | 3.0 |
127.0 | 5225.8 | 41.46666666666667 | 1.0 |
109.0 | 4479.400000000001 | 41.46666666666667 | 2.0 |
120.0 | 4935.533333333334 | 41.46666666666667 | 3.0 |
148.0 | 6096.6 | 41.46666666666667 | 1.0 |
138.0 | 5681.933333333333 | 41.46666666666667 | 1.0 |
79.0 | 3235.4 | 41.46666666666667 | 2.0 |
163.0 | 6718.6 | 41.46666666666667 | 1.0 |
128.0 | 5267.266666666667 | 41.46666666666667 | 1.0 |
200.0 | 8252.866666666667 | 41.46666666666667 | 1.0 |
126.0 | 5184.333333333334 | 41.46666666666667 | 1.0 |
129.0 | 5308.733333333334 | 41.46666666666667 | 1.0 |
187.0 | 7713.8 | 41.46666666666667 | 1.0 |
// Top out
display(g.outDegrees.join(g.vertices.withColumnRenamed("id", "v_id"), col("id")===col("v_id"), "left").orderBy(desc("outDegree")))
Article Length
Let's investigate how the article length is distributed among our articles.
g.vertices.stat.approxQuantile("page_len", Array(0.05, 0.25, 0.5, 0.75, 0.95), 0.001)
res14: Array[Double] = Array(580.0, 2023.0, 4081.0, 8439.0, 28182.0)
g.vertices.select(avg("page_len")).show()
+---------------+
| avg(page_len)|
+---------------+
|8293.8936494498|
+---------------+
display(g.vertices.select("page_len"))
page_len |
---|
86941.0 |
5568.0 |
120924.0 |
115389.0 |
12611.0 |
17355.0 |
5259.0 |
38155.0 |
61828.0 |
62649.0 |
38990.0 |
2384.0 |
57987.0 |
21803.0 |
27194.0 |
198759.0 |
9089.0 |
172360.0 |
1662.0 |
47303.0 |
14090.0 |
971.0 |
4632.0 |
169316.0 |
105966.0 |
156265.0 |
177759.0 |
54296.0 |
424.0 |
10782.0 |
137001.0 |
63095.0 |
40450.0 |
264505.0 |
121471.0 |
8092.0 |
22569.0 |
8227.0 |
52833.0 |
42277.0 |
62474.0 |
4967.0 |
96274.0 |
78185.0 |
57940.0 |
17730.0 |
112409.0 |
44000.0 |
53513.0 |
78610.0 |
75626.0 |
7026.0 |
24164.0 |
36906.0 |
3406.0 |
4767.0 |
16041.0 |
2702.0 |
76185.0 |
29857.0 |
117407.0 |
86565.0 |
6261.0 |
46002.0 |
4653.0 |
44923.0 |
33528.0 |
55134.0 |
31150.0 |
14723.0 |
4809.0 |
17732.0 |
22165.0 |
8481.0 |
53434.0 |
1407.0 |
100642.0 |
71493.0 |
91061.0 |
55922.0 |
15800.0 |
8519.0 |
9670.0 |
11078.0 |
117407.0 |
20558.0 |
9834.0 |
8856.0 |
34566.0 |
11584.0 |
16240.0 |
828.0 |
1689.0 |
2176.0 |
3576.0 |
22336.0 |
5414.0 |
8191.0 |
19019.0 |
4026.0 |
36712.0 |
40056.0 |
18284.0 |
3975.0 |
69627.0 |
14955.0 |
7473.0 |
56872.0 |
1114.0 |
41953.0 |
10707.0 |
40574.0 |
3313.0 |
16932.0 |
6772.0 |
108340.0 |
4863.0 |
16788.0 |
27906.0 |
536.0 |
33058.0 |
1304.0 |
55316.0 |
21424.0 |
31966.0 |
6411.0 |
15958.0 |
3234.0 |
4133.0 |
5898.0 |
10265.0 |
10529.0 |
33569.0 |
2946.0 |
12829.0 |
100752.0 |
38065.0 |
28503.0 |
2915.0 |
43896.0 |
50029.0 |
12009.0 |
85513.0 |
40699.0 |
40597.0 |
50299.0 |
21296.0 |
8165.0 |
19394.0 |
211.0 |
3991.0 |
7444.0 |
34557.0 |
17988.0 |
4756.0 |
35496.0 |
7347.0 |
7698.0 |
3557.0 |
66764.0 |
7089.0 |
35823.0 |
14252.0 |
52288.0 |
68443.0 |
51457.0 |
79542.0 |
4388.0 |
1900.0 |
771.0 |
5775.0 |
3094.0 |
3538.0 |
40383.0 |
62299.0 |
5359.0 |
31708.0 |
36713.0 |
2061.0 |
51232.0 |
9065.0 |
20431.0 |
381.0 |
19631.0 |
23096.0 |
21190.0 |
25552.0 |
25678.0 |
3468.0 |
21816.0 |
4339.0 |
123989.0 |
50578.0 |
542.0 |
2070.0 |
6313.0 |
1317.0 |
16064.0 |
52020.0 |
2253.0 |
18599.0 |
19678.0 |
2166.0 |
1785.0 |
3286.0 |
11638.0 |
1533.0 |
305.0 |
603.0 |
25255.0 |
43071.0 |
13327.0 |
12814.0 |
44854.0 |
3004.0 |
7003.0 |
18902.0 |
26401.0 |
16602.0 |
17765.0 |
37280.0 |
15341.0 |
6965.0 |
3397.0 |
24126.0 |
15098.0 |
6319.0 |
35873.0 |
57201.0 |
35103.0 |
16613.0 |
15966.0 |
17097.0 |
4526.0 |
17074.0 |
21651.0 |
15540.0 |
26756.0 |
20229.0 |
567.0 |
4037.0 |
14709.0 |
26060.0 |
195320.0 |
4475.0 |
3841.0 |
47061.0 |
1307.0 |
26553.0 |
8528.0 |
6089.0 |
15722.0 |
8293.0 |
38335.0 |
28969.0 |
5341.0 |
6014.0 |
29568.0 |
24832.0 |
8254.0 |
82947.0 |
15982.0 |
24720.0 |
7334.0 |
14318.0 |
29016.0 |
28710.0 |
14171.0 |
9269.0 |
6231.0 |
10473.0 |
11717.0 |
10699.0 |
15017.0 |
22907.0 |
7032.0 |
6144.0 |
9902.0 |
6482.0 |
6594.0 |
19723.0 |
8664.0 |
9944.0 |
12773.0 |
10026.0 |
12124.0 |
9504.0 |
10355.0 |
10915.0 |
8269.0 |
9090.0 |
9796.0 |
14310.0 |
13117.0 |
14501.0 |
9341.0 |
15254.0 |
8610.0 |
17384.0 |
6275.0 |
7687.0 |
6628.0 |
30788.0 |
8020.0 |
6722.0 |
11623.0 |
8178.0 |
6380.0 |
5645.0 |
5638.0 |
9931.0 |
7236.0 |
9015.0 |
6887.0 |
6875.0 |
10986.0 |
11966.0 |
8478.0 |
11753.0 |
7348.0 |
20381.0 |
9062.0 |
10244.0 |
9353.0 |
28933.0 |
50720.0 |
1362.0 |
55198.0 |
7846.0 |
8771.0 |
10039.0 |
6385.0 |
8714.0 |
7469.0 |
14301.0 |
9091.0 |
11872.0 |
35367.0 |
14423.0 |
28495.0 |
8722.0 |
15986.0 |
8364.0 |
13590.0 |
16633.0 |
8121.0 |
6248.0 |
4809.0 |
7665.0 |
9787.0 |
1865.0 |
8437.0 |
12962.0 |
25309.0 |
10112.0 |
7001.0 |
20535.0 |
6545.0 |
10141.0 |
7627.0 |
7370.0 |
11776.0 |
11764.0 |
11462.0 |
12081.0 |
9872.0 |
19964.0 |
11728.0 |
10282.0 |
6216.0 |
64400.0 |
7086.0 |
8345.0 |
15993.0 |
7301.0 |
53588.0 |
12599.0 |
10846.0 |
11848.0 |
6566.0 |
5816.0 |
5418.0 |
5570.0 |
7174.0 |
5826.0 |
6273.0 |
5463.0 |
7728.0 |
6791.0 |
5977.0 |
15656.0 |
259.0 |
413.0 |
569.0 |
294.0 |
32140.0 |
28137.0 |
24624.0 |
6210.0 |
1511.0 |
49948.0 |
4345.0 |
10520.0 |
8305.0 |
20756.0 |
46116.0 |
113713.0 |
57673.0 |
26200.0 |
11685.0 |
19442.0 |
15059.0 |
35001.0 |
502.0 |
50865.0 |
3502.0 |
395.0 |
58041.0 |
1789.0 |
18824.0 |
16139.0 |
3426.0 |
55368.0 |
16728.0 |
296.0 |
3496.0 |
39387.0 |
2642.0 |
22336.0 |
23834.0 |
754.0 |
11230.0 |
6849.0 |
12547.0 |
1667.0 |
14058.0 |
5753.0 |
12810.0 |
104769.0 |
13511.0 |
34301.0 |
1195.0 |
55677.0 |
6732.0 |
10032.0 |
3105.0 |
5519.0 |
29027.0 |
26567.0 |
8196.0 |
716.0 |
37370.0 |
33476.0 |
18493.0 |
21384.0 |
115545.0 |
35094.0 |
33002.0 |
47932.0 |
28529.0 |
90217.0 |
21499.0 |
4321.0 |
3544.0 |
7804.0 |
4196.0 |
3217.0 |
81726.0 |
15917.0 |
2244.0 |
2315.0 |
3263.0 |
14447.0 |
32884.0 |
3787.0 |
18962.0 |
29811.0 |
23024.0 |
22909.0 |
3392.0 |
45118.0 |
5033.0 |
43079.0 |
15396.0 |
43370.0 |
5850.0 |
24839.0 |
3061.0 |
41492.0 |
22860.0 |
4467.0 |
2091.0 |
4868.0 |
8944.0 |
545.0 |
49090.0 |
13183.0 |
74223.0 |
5583.0 |
16009.0 |
11204.0 |
24422.0 |
28965.0 |
1781.0 |
23675.0 |
20736.0 |
33718.0 |
1863.0 |
91613.0 |
12149.0 |
53562.0 |
8057.0 |
21450.0 |
39828.0 |
33821.0 |
23032.0 |
947.0 |
8333.0 |
3511.0 |
13780.0 |
55981.0 |
32994.0 |
207563.0 |
7162.0 |
10945.0 |
43949.0 |
37245.0 |
26962.0 |
51005.0 |
37157.0 |
18409.0 |
59756.0 |
45065.0 |
69395.0 |
4693.0 |
13091.0 |
3825.0 |
22170.0 |
13456.0 |
1824.0 |
4429.0 |
6408.0 |
15441.0 |
9328.0 |
37592.0 |
2723.0 |
3481.0 |
3241.0 |
1399.0 |
6121.0 |
22331.0 |
39520.0 |
3880.0 |
13024.0 |
22400.0 |
6277.0 |
25150.0 |
2258.0 |
34755.0 |
15566.0 |
26905.0 |
8551.0 |
29365.0 |
34409.0 |
2089.0 |
1790.0 |
6631.0 |
24897.0 |
16242.0 |
1389.0 |
14802.0 |
5957.0 |
6175.0 |
1167.0 |
469.0 |
3164.0 |
7327.0 |
12023.0 |
121752.0 |
34813.0 |
29153.0 |
15713.0 |
2258.0 |
22267.0 |
11242.0 |
15589.0 |
9573.0 |
69239.0 |
4259.0 |
4743.0 |
10192.0 |
10258.0 |
57235.0 |
63166.0 |
9103.0 |
44583.0 |
3275.0 |
11520.0 |
33974.0 |
6503.0 |
53062.0 |
9796.0 |
5646.0 |
11178.0 |
63555.0 |
12514.0 |
35561.0 |
5177.0 |
104162.0 |
22283.0 |
27376.0 |
19164.0 |
11028.0 |
11687.0 |
22060.0 |
8401.0 |
16697.0 |
7274.0 |
4661.0 |
7289.0 |
43769.0 |
895.0 |
29680.0 |
2722.0 |
24594.0 |
16087.0 |
111583.0 |
69187.0 |
1960.0 |
99885.0 |
4338.0 |
16637.0 |
42759.0 |
5941.0 |
60957.0 |
339.0 |
3043.0 |
5783.0 |
778.0 |
30466.0 |
22937.0 |
5117.0 |
219501.0 |
6541.0 |
35160.0 |
44590.0 |
58257.0 |
17554.0 |
14585.0 |
2668.0 |
28360.0 |
8993.0 |
5963.0 |
1517.0 |
27599.0 |
5077.0 |
49248.0 |
42634.0 |
31828.0 |
4293.0 |
32185.0 |
4656.0 |
18784.0 |
805.0 |
44147.0 |
36405.0 |
10354.0 |
94434.0 |
17827.0 |
4506.0 |
26473.0 |
81794.0 |
46684.0 |
5123.0 |
1867.0 |
71227.0 |
2886.0 |
34310.0 |
7828.0 |
11293.0 |
53794.0 |
570.0 |
7279.0 |
3651.0 |
16654.0 |
18787.0 |
19197.0 |
14399.0 |
10040.0 |
546.0 |
1635.0 |
6840.0 |
1726.0 |
8640.0 |
132652.0 |
863.0 |
6480.0 |
1612.0 |
16009.0 |
7802.0 |
1017.0 |
5691.0 |
59045.0 |
44829.0 |
19493.0 |
7004.0 |
55445.0 |
9197.0 |
13745.0 |
6699.0 |
2252.0 |
52103.0 |
11909.0 |
45349.0 |
375.0 |
53952.0 |
2107.0 |
3349.0 |
7896.0 |
33003.0 |
3713.0 |
14178.0 |
11488.0 |
20329.0 |
11356.0 |
5515.0 |
2757.0 |
1495.0 |
29548.0 |
510.0 |
54063.0 |
15997.0 |
3220.0 |
658.0 |
52690.0 |
824.0 |
11081.0 |
5518.0 |
22245.0 |
63189.0 |
3807.0 |
3273.0 |
9443.0 |
39710.0 |
6991.0 |
13289.0 |
98421.0 |
1176.0 |
5007.0 |
18134.0 |
4834.0 |
31384.0 |
5227.0 |
5895.0 |
15761.0 |
2543.0 |
20588.0 |
6587.0 |
17590.0 |
36354.0 |
19461.0 |
12282.0 |
11587.0 |
2497.0 |
26862.0 |
16963.0 |
89518.0 |
9189.0 |
29521.0 |
15390.0 |
1660.0 |
11311.0 |
41979.0 |
6616.0 |
4664.0 |
58948.0 |
25197.0 |
219.0 |
8133.0 |
68319.0 |
9305.0 |
46752.0 |
100054.0 |
38925.0 |
10094.0 |
13583.0 |
30069.0 |
1323.0 |
783.0 |
998.0 |
7384.0 |
22884.0 |
3170.0 |
10742.0 |
16055.0 |
8078.0 |
10789.0 |
212.0 |
11396.0 |
21062.0 |
67535.0 |
50200.0 |
1442.0 |
69889.0 |
38239.0 |
10184.0 |
9695.0 |
19737.0 |
5689.0 |
3823.0 |
19788.0 |
21812.0 |
26977.0 |
22227.0 |
8211.0 |
45296.0 |
25097.0 |
3829.0 |
19888.0 |
20820.0 |
7333.0 |
6624.0 |
1209.0 |
108022.0 |
290.0 |
25581.0 |
9059.0 |
11898.0 |
11659.0 |
4458.0 |
12470.0 |
5099.0 |
70807.0 |
3350.0 |
43713.0 |
43268.0 |
11720.0 |
14523.0 |
324.0 |
5366.0 |
431.0 |
465.0 |
11339.0 |
115809.0 |
36155.0 |
5968.0 |
5082.0 |
63377.0 |
9278.0 |
36571.0 |
4516.0 |
318.0 |
19866.0 |
111092.0 |
37460.0 |
28674.0 |
3204.0 |
9988.0 |
27599.0 |
29355.0 |
333.0 |
753.0 |
3666.0 |
1759.0 |
10588.0 |
13193.0 |
4861.0 |
87053.0 |
26398.0 |
3004.0 |
27430.0 |
945.0 |
3601.0 |
68748.0 |
14247.0 |
8017.0 |
11177.0 |
6571.0 |
4441.0 |
33388.0 |
1500.0 |
28858.0 |
3239.0 |
16171.0 |
4806.0 |
1406.0 |
14285.0 |
73158.0 |
12391.0 |
4119.0 |
16723.0 |
19112.0 |
29345.0 |
212.0 |
25138.0 |
12283.0 |
18024.0 |
10837.0 |
36690.0 |
17195.0 |
43582.0 |
24178.0 |
13292.0 |
7843.0 |
2177.0 |
6375.0 |
10509.0 |
4757.0 |
11504.0 |
59280.0 |
7060.0 |
5121.0 |
2315.0 |
89752.0 |
23532.0 |
51273.0 |
24154.0 |
14152.0 |
4119.0 |
1078.0 |
6102.0 |
2056.0 |
72668.0 |
14675.0 |
19250.0 |
1817.0 |
957.0 |
9529.0 |
23480.0 |
7884.0 |
954.0 |
4271.0 |
60652.0 |
10475.0 |
8777.0 |
6621.0 |
5721.0 |
51755.0 |
19014.0 |
440.0 |
297.0 |
13154.0 |
5589.0 |
24075.0 |
93080.0 |
102952.0 |
10979.0 |
5478.0 |
25977.0 |
4147.0 |
7994.0 |
2283.0 |
961.0 |
924.0 |
20816.0 |
25980.0 |
31789.0 |
1928.0 |
218.0 |
5723.0 |
45525.0 |
1657.0 |
436.0 |
18102.0 |
10979.0 |
12182.0 |
5338.0 |
5946.0 |
3016.0 |
13929.0 |
52769.0 |
15070.0 |
51218.0 |
25844.0 |
5029.0 |
6132.0 |
4332.0 |
9764.0 |
383.0 |
2824.0 |
1225.0 |
68512.0 |
18102.0 |
20566.0 |
20326.0 |
23321.0 |
3225.0 |
30191.0 |
2747.0 |
15956.0 |
26082.0 |
14169.0 |
407.0 |
1111.0 |
19046.0 |
11357.0 |
13603.0 |
25304.0 |
1555.0 |
19244.0 |
display(g.vertices.filter(col("page_len")<200000L).select("page_len"))
page_len |
---|
86941.0 |
5568.0 |
120924.0 |
115389.0 |
12611.0 |
17355.0 |
5259.0 |
38155.0 |
61828.0 |
62649.0 |
38990.0 |
2384.0 |
57987.0 |
21803.0 |
27194.0 |
198759.0 |
9089.0 |
172360.0 |
1662.0 |
47303.0 |
14090.0 |
971.0 |
4632.0 |
169316.0 |
105966.0 |
156265.0 |
177759.0 |
54296.0 |
424.0 |
10782.0 |
137001.0 |
63095.0 |
40450.0 |
121471.0 |
8092.0 |
22569.0 |
8227.0 |
52833.0 |
42277.0 |
62474.0 |
4967.0 |
96274.0 |
78185.0 |
57940.0 |
17730.0 |
112409.0 |
44000.0 |
53513.0 |
78610.0 |
75626.0 |
7026.0 |
24164.0 |
36906.0 |
3406.0 |
4767.0 |
16041.0 |
2702.0 |
76185.0 |
29857.0 |
117407.0 |
86565.0 |
6261.0 |
46002.0 |
4653.0 |
44923.0 |
33528.0 |
55134.0 |
31150.0 |
14723.0 |
4809.0 |
17732.0 |
22165.0 |
8481.0 |
53434.0 |
1407.0 |
100642.0 |
71493.0 |
91061.0 |
55922.0 |
15800.0 |
8519.0 |
9670.0 |
11078.0 |
117407.0 |
20558.0 |
9834.0 |
8856.0 |
34566.0 |
11584.0 |
16240.0 |
828.0 |
1689.0 |
2176.0 |
3576.0 |
22336.0 |
5414.0 |
8191.0 |
19019.0 |
4026.0 |
36712.0 |
40056.0 |
18284.0 |
3975.0 |
69627.0 |
14955.0 |
7473.0 |
56872.0 |
1114.0 |
41953.0 |
10707.0 |
40574.0 |
3313.0 |
16932.0 |
6772.0 |
108340.0 |
4863.0 |
16788.0 |
27906.0 |
536.0 |
33058.0 |
1304.0 |
55316.0 |
21424.0 |
31966.0 |
6411.0 |
15958.0 |
3234.0 |
4133.0 |
5898.0 |
10265.0 |
10529.0 |
33569.0 |
2946.0 |
12829.0 |
100752.0 |
38065.0 |
28503.0 |
2915.0 |
43896.0 |
50029.0 |
12009.0 |
85513.0 |
40699.0 |
40597.0 |
50299.0 |
21296.0 |
8165.0 |
19394.0 |
211.0 |
3991.0 |
7444.0 |
34557.0 |
17988.0 |
4756.0 |
35496.0 |
7347.0 |
7698.0 |
3557.0 |
66764.0 |
7089.0 |
35823.0 |
14252.0 |
52288.0 |
68443.0 |
51457.0 |
79542.0 |
4388.0 |
1900.0 |
771.0 |
5775.0 |
3094.0 |
3538.0 |
40383.0 |
62299.0 |
5359.0 |
31708.0 |
36713.0 |
2061.0 |
51232.0 |
9065.0 |
20431.0 |
381.0 |
19631.0 |
23096.0 |
21190.0 |
25552.0 |
25678.0 |
3468.0 |
21816.0 |
4339.0 |
123989.0 |
50578.0 |
542.0 |
2070.0 |
6313.0 |
1317.0 |
16064.0 |
52020.0 |
2253.0 |
18599.0 |
19678.0 |
2166.0 |
1785.0 |
3286.0 |
11638.0 |
1533.0 |
305.0 |
603.0 |
25255.0 |
43071.0 |
13327.0 |
12814.0 |
44854.0 |
3004.0 |
7003.0 |
18902.0 |
26401.0 |
16602.0 |
17765.0 |
37280.0 |
15341.0 |
6965.0 |
3397.0 |
24126.0 |
15098.0 |
6319.0 |
35873.0 |
57201.0 |
35103.0 |
16613.0 |
15966.0 |
17097.0 |
4526.0 |
17074.0 |
21651.0 |
15540.0 |
26756.0 |
20229.0 |
567.0 |
4037.0 |
14709.0 |
26060.0 |
195320.0 |
4475.0 |
3841.0 |
47061.0 |
1307.0 |
26553.0 |
8528.0 |
6089.0 |
15722.0 |
8293.0 |
38335.0 |
28969.0 |
5341.0 |
6014.0 |
29568.0 |
24832.0 |
8254.0 |
82947.0 |
15982.0 |
24720.0 |
7334.0 |
14318.0 |
29016.0 |
28710.0 |
14171.0 |
9269.0 |
6231.0 |
10473.0 |
11717.0 |
10699.0 |
15017.0 |
22907.0 |
7032.0 |
6144.0 |
9902.0 |
6482.0 |
6594.0 |
19723.0 |
8664.0 |
9944.0 |
12773.0 |
10026.0 |
12124.0 |
9504.0 |
10355.0 |
10915.0 |
8269.0 |
9090.0 |
9796.0 |
14310.0 |
13117.0 |
14501.0 |
9341.0 |
15254.0 |
8610.0 |
17384.0 |
6275.0 |
7687.0 |
6628.0 |
30788.0 |
8020.0 |
6722.0 |
11623.0 |
8178.0 |
6380.0 |
5645.0 |
5638.0 |
9931.0 |
7236.0 |
9015.0 |
6887.0 |
6875.0 |
10986.0 |
11966.0 |
8478.0 |
11753.0 |
7348.0 |
20381.0 |
9062.0 |
10244.0 |
9353.0 |
28933.0 |
50720.0 |
1362.0 |
55198.0 |
7846.0 |
8771.0 |
10039.0 |
6385.0 |
8714.0 |
7469.0 |
14301.0 |
9091.0 |
11872.0 |
35367.0 |
14423.0 |
28495.0 |
8722.0 |
15986.0 |
8364.0 |
13590.0 |
16633.0 |
8121.0 |
6248.0 |
4809.0 |
7665.0 |
9787.0 |
1865.0 |
8437.0 |
12962.0 |
25309.0 |
10112.0 |
7001.0 |
20535.0 |
6545.0 |
10141.0 |
7627.0 |
7370.0 |
11776.0 |
11764.0 |
11462.0 |
12081.0 |
9872.0 |
19964.0 |
11728.0 |
10282.0 |
6216.0 |
64400.0 |
7086.0 |
8345.0 |
15993.0 |
7301.0 |
53588.0 |
12599.0 |
10846.0 |
11848.0 |
6566.0 |
5816.0 |
5418.0 |
5570.0 |
7174.0 |
5826.0 |
6273.0 |
5463.0 |
7728.0 |
6791.0 |
5977.0 |
15656.0 |
259.0 |
413.0 |
569.0 |
294.0 |
32140.0 |
28137.0 |
24624.0 |
6210.0 |
1511.0 |
49948.0 |
4345.0 |
10520.0 |
8305.0 |
20756.0 |
46116.0 |
113713.0 |
57673.0 |
26200.0 |
11685.0 |
19442.0 |
15059.0 |
35001.0 |
502.0 |
50865.0 |
3502.0 |
395.0 |
58041.0 |
1789.0 |
18824.0 |
16139.0 |
3426.0 |
55368.0 |
16728.0 |
296.0 |
3496.0 |
39387.0 |
2642.0 |
22336.0 |
23834.0 |
754.0 |
11230.0 |
6849.0 |
12547.0 |
1667.0 |
14058.0 |
5753.0 |
12810.0 |
104769.0 |
13511.0 |
34301.0 |
1195.0 |
55677.0 |
6732.0 |
10032.0 |
3105.0 |
5519.0 |
29027.0 |
26567.0 |
8196.0 |
716.0 |
37370.0 |
33476.0 |
18493.0 |
21384.0 |
115545.0 |
35094.0 |
33002.0 |
47932.0 |
28529.0 |
90217.0 |
21499.0 |
4321.0 |
3544.0 |
7804.0 |
4196.0 |
3217.0 |
81726.0 |
15917.0 |
2244.0 |
2315.0 |
3263.0 |
14447.0 |
32884.0 |
3787.0 |
18962.0 |
29811.0 |
23024.0 |
22909.0 |
3392.0 |
45118.0 |
5033.0 |
43079.0 |
15396.0 |
43370.0 |
5850.0 |
24839.0 |
3061.0 |
41492.0 |
22860.0 |
4467.0 |
2091.0 |
4868.0 |
8944.0 |
545.0 |
49090.0 |
13183.0 |
74223.0 |
5583.0 |
16009.0 |
11204.0 |
24422.0 |
28965.0 |
1781.0 |
23675.0 |
20736.0 |
33718.0 |
1863.0 |
91613.0 |
12149.0 |
53562.0 |
8057.0 |
21450.0 |
39828.0 |
33821.0 |
23032.0 |
947.0 |
8333.0 |
3511.0 |
13780.0 |
55981.0 |
32994.0 |
7162.0 |
10945.0 |
43949.0 |
37245.0 |
26962.0 |
51005.0 |
37157.0 |
18409.0 |
59756.0 |
45065.0 |
69395.0 |
4693.0 |
13091.0 |
3825.0 |
22170.0 |
13456.0 |
1824.0 |
4429.0 |
6408.0 |
15441.0 |
9328.0 |
37592.0 |
2723.0 |
3481.0 |
3241.0 |
1399.0 |
6121.0 |
22331.0 |
39520.0 |
3880.0 |
13024.0 |
22400.0 |
6277.0 |
25150.0 |
2258.0 |
34755.0 |
15566.0 |
26905.0 |
8551.0 |
29365.0 |
34409.0 |
2089.0 |
1790.0 |
6631.0 |
24897.0 |
16242.0 |
1389.0 |
14802.0 |
5957.0 |
6175.0 |
1167.0 |
469.0 |
3164.0 |
7327.0 |
12023.0 |
121752.0 |
34813.0 |
29153.0 |
15713.0 |
2258.0 |
22267.0 |
11242.0 |
15589.0 |
9573.0 |
69239.0 |
4259.0 |
4743.0 |
10192.0 |
10258.0 |
57235.0 |
63166.0 |
9103.0 |
44583.0 |
3275.0 |
11520.0 |
33974.0 |
6503.0 |
53062.0 |
9796.0 |
5646.0 |
11178.0 |
63555.0 |
12514.0 |
35561.0 |
5177.0 |
104162.0 |
22283.0 |
27376.0 |
19164.0 |
11028.0 |
11687.0 |
22060.0 |
8401.0 |
16697.0 |
7274.0 |
4661.0 |
7289.0 |
43769.0 |
895.0 |
29680.0 |
2722.0 |
24594.0 |
16087.0 |
111583.0 |
69187.0 |
1960.0 |
99885.0 |
4338.0 |
16637.0 |
42759.0 |
5941.0 |
60957.0 |
339.0 |
3043.0 |
5783.0 |
778.0 |
30466.0 |
22937.0 |
5117.0 |
6541.0 |
35160.0 |
44590.0 |
58257.0 |
17554.0 |
14585.0 |
2668.0 |
28360.0 |
8993.0 |
5963.0 |
1517.0 |
27599.0 |
5077.0 |
49248.0 |
42634.0 |
31828.0 |
4293.0 |
32185.0 |
4656.0 |
18784.0 |
805.0 |
44147.0 |
36405.0 |
10354.0 |
94434.0 |
17827.0 |
4506.0 |
26473.0 |
81794.0 |
46684.0 |
5123.0 |
1867.0 |
71227.0 |
2886.0 |
34310.0 |
7828.0 |
11293.0 |
53794.0 |
570.0 |
7279.0 |
3651.0 |
16654.0 |
18787.0 |
19197.0 |
14399.0 |
10040.0 |
546.0 |
1635.0 |
6840.0 |
1726.0 |
8640.0 |
132652.0 |
863.0 |
6480.0 |
1612.0 |
16009.0 |
7802.0 |
1017.0 |
5691.0 |
59045.0 |
44829.0 |
19493.0 |
7004.0 |
55445.0 |
9197.0 |
13745.0 |
6699.0 |
2252.0 |
52103.0 |
11909.0 |
45349.0 |
375.0 |
53952.0 |
2107.0 |
3349.0 |
7896.0 |
33003.0 |
3713.0 |
14178.0 |
11488.0 |
20329.0 |
11356.0 |
5515.0 |
2757.0 |
1495.0 |
29548.0 |
510.0 |
54063.0 |
15997.0 |
3220.0 |
658.0 |
52690.0 |
824.0 |
11081.0 |
5518.0 |
22245.0 |
63189.0 |
3807.0 |
3273.0 |
9443.0 |
39710.0 |
6991.0 |
13289.0 |
98421.0 |
1176.0 |
5007.0 |
18134.0 |
4834.0 |
31384.0 |
5227.0 |
5895.0 |
15761.0 |
2543.0 |
20588.0 |
6587.0 |
17590.0 |
36354.0 |
19461.0 |
12282.0 |
11587.0 |
2497.0 |
26862.0 |
16963.0 |
89518.0 |
9189.0 |
29521.0 |
15390.0 |
1660.0 |
11311.0 |
41979.0 |
6616.0 |
4664.0 |
58948.0 |
25197.0 |
219.0 |
8133.0 |
68319.0 |
9305.0 |
46752.0 |
100054.0 |
38925.0 |
10094.0 |
13583.0 |
30069.0 |
1323.0 |
783.0 |
998.0 |
7384.0 |
22884.0 |
3170.0 |
10742.0 |
16055.0 |
8078.0 |
10789.0 |
212.0 |
11396.0 |
21062.0 |
67535.0 |
50200.0 |
1442.0 |
69889.0 |
38239.0 |
10184.0 |
9695.0 |
19737.0 |
5689.0 |
3823.0 |
19788.0 |
21812.0 |
26977.0 |
22227.0 |
8211.0 |
45296.0 |
25097.0 |
3829.0 |
19888.0 |
20820.0 |
7333.0 |
6624.0 |
1209.0 |
108022.0 |
290.0 |
25581.0 |
9059.0 |
11898.0 |
11659.0 |
4458.0 |
12470.0 |
5099.0 |
70807.0 |
3350.0 |
43713.0 |
43268.0 |
11720.0 |
14523.0 |
324.0 |
5366.0 |
431.0 |
465.0 |
11339.0 |
115809.0 |
36155.0 |
5968.0 |
5082.0 |
63377.0 |
9278.0 |
36571.0 |
4516.0 |
318.0 |
19866.0 |
111092.0 |
37460.0 |
28674.0 |
3204.0 |
9988.0 |
27599.0 |
29355.0 |
333.0 |
753.0 |
3666.0 |
1759.0 |
10588.0 |
13193.0 |
4861.0 |
87053.0 |
26398.0 |
3004.0 |
27430.0 |
945.0 |
3601.0 |
68748.0 |
14247.0 |
8017.0 |
11177.0 |
6571.0 |
4441.0 |
33388.0 |
1500.0 |
28858.0 |
3239.0 |
16171.0 |
4806.0 |
1406.0 |
14285.0 |
73158.0 |
12391.0 |
4119.0 |
16723.0 |
19112.0 |
29345.0 |
212.0 |
25138.0 |
12283.0 |
18024.0 |
10837.0 |
36690.0 |
17195.0 |
43582.0 |
24178.0 |
13292.0 |
7843.0 |
2177.0 |
6375.0 |
10509.0 |
4757.0 |
11504.0 |
59280.0 |
7060.0 |
5121.0 |
2315.0 |
89752.0 |
23532.0 |
51273.0 |
24154.0 |
14152.0 |
4119.0 |
1078.0 |
6102.0 |
2056.0 |
72668.0 |
14675.0 |
19250.0 |
1817.0 |
957.0 |
9529.0 |
23480.0 |
7884.0 |
954.0 |
4271.0 |
60652.0 |
10475.0 |
8777.0 |
6621.0 |
5721.0 |
51755.0 |
19014.0 |
440.0 |
297.0 |
13154.0 |
5589.0 |
24075.0 |
93080.0 |
102952.0 |
10979.0 |
5478.0 |
25977.0 |
4147.0 |
7994.0 |
2283.0 |
961.0 |
924.0 |
20816.0 |
25980.0 |
31789.0 |
1928.0 |
218.0 |
5723.0 |
45525.0 |
1657.0 |
436.0 |
18102.0 |
10979.0 |
12182.0 |
5338.0 |
5946.0 |
3016.0 |
13929.0 |
52769.0 |
15070.0 |
51218.0 |
25844.0 |
5029.0 |
6132.0 |
4332.0 |
9764.0 |
383.0 |
2824.0 |
1225.0 |
68512.0 |
18102.0 |
20566.0 |
20326.0 |
23321.0 |
3225.0 |
30191.0 |
2747.0 |
15956.0 |
26082.0 |
14169.0 |
407.0 |
1111.0 |
19046.0 |
11357.0 |
13603.0 |
25304.0 |
1555.0 |
19244.0 |
6370.0 |
27496.0 |
38696.0 |
Quite heavy tailed distribution, it is probably a good idea to specify some cut-off value in terms of page length to avoid lookin at very short articles.
Summary
Summarizing the exploration we can conclude that the graph: * consists of over 6M vertices, i.e. articles, * consists of over 600M edges, i.e. links between pages, * is fairly dense, with an edge to vertex ratio close to 100, * has an average degree of around 72, * has a much higher average in-degree than out degree (95 vs 36), meaning that the average article has more articles pointing into it than out. * consists of a lot of short articles, and to reduce the amount of nodes we have to work with it might be a good idea to filter out some shoerter articles.
Further, looking at the distributions of the in/out-degrees we see that the distributions have long tails, indicating that there are some articles with really high degrees which increase the average.
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(g.vertices.select("page_len"))
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksViewa99e330")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksViewa99e330) ,min_max AS (SELECT `page_len`,(SELECT MAX(`page_len`) FROM q) `target_column_max`,(SELECT MIN(`page_len`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `page_len`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 100 `step` FROM min_max) SELECT IF(ISNULL(`page_len`),NULL,LEAST(WIDTH_BUCKET(`page_len`,`min_value`,`max_value`,100),100)) `page_len_BIN`,FIRST(`min_value` + ((IF(ISNULL(`page_len`),NULL,LEAST(WIDTH_BUCKET(`page_len`,`min_value`,`max_value`,100),100)) - 1) * `step`)) `page_len_BIN_LOWER_BOUND`,FIRST(`step`) `page_len_BIN_STEP`,COUNT(`page_len`) `COUNT` FROM histogram_meta GROUP BY `page_len_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksViewa99e330")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
page_len_BIN | page_len_BIN_LOWER_BOUND | page_len_BIN_STEP | COUNT |
---|---|---|---|
29.0 | 180024.88 | 6429.46 | 1050.0 |
26.0 | 160736.5 | 6429.46 | 980.0 |
65.0 | 411485.44 | 6429.46 | 22.0 |
19.0 | 115730.28 | 6429.46 | 2892.0 |
22.0 | 135018.66 | 6429.46 | 1852.0 |
7.0 | 38576.76 | 6429.46 | 46077.0 |
34.0 | 212172.18 | 6429.46 | 352.0 |
43.0 | 270037.32 | 6429.46 | 150.0 |
32.0 | 199313.26 | 6429.46 | 499.0 |
25.0 | 154307.04 | 6429.46 | 1163.0 |
6.0 | 32147.3 | 6429.46 | 68570.0 |
72.0 | 456491.66 | 6429.46 | 5.0 |
9.0 | 51435.68 | 6429.46 | 24048.0 |
27.0 | 167165.96 | 6429.46 | 946.0 |
51.0 | 321473.0 | 6429.46 | 78.0 |
17.0 | 102871.36 | 6429.46 | 4027.0 |
41.0 | 257178.4 | 6429.46 | 192.0 |
33.0 | 205742.72 | 6429.46 | 438.0 |
28.0 | 173595.42 | 6429.46 | 919.0 |
5.0 | 25717.84 | 6429.46 | 109202.0 |
1.0 | 0.0 | 6429.46 | 4367869.0 |
10.0 | 57865.14 | 6429.46 | 18762.0 |
44.0 | 276466.78 | 6429.46 | 122.0 |
3.0 | 12858.92 | 6429.46 | 412198.0 |
12.0 | 70724.06 | 6429.46 | 11388.0 |
8.0 | 45006.22 | 6429.46 | 33233.0 |
49.0 | 308614.08 | 6429.46 | 90.0 |
11.0 | 64294.6 | 6429.46 | 14416.0 |
35.0 | 218601.64 | 6429.46 | 361.0 |
2.0 | 6429.46 | 6429.46 | 1211372.0 |
4.0 | 19288.38 | 6429.46 | 194706.0 |
13.0 | 77153.52 | 6429.46 | 9188.0 |
36.0 | 225031.1 | 6429.46 | 276.0 |
18.0 | 109300.82 | 6429.46 | 3339.0 |
14.0 | 83582.98 | 6429.46 | 7223.0 |
21.0 | 128589.2 | 6429.46 | 2083.0 |
59.0 | 372908.68 | 6429.46 | 33.0 |
15.0 | 90012.44 | 6429.46 | 5812.0 |
38.0 | 237890.02 | 6429.46 | 268.0 |
30.0 | 186454.34 | 6429.46 | 767.0 |
42.0 | 263607.86 | 6429.46 | 171.0 |
23.0 | 141448.12 | 6429.46 | 1561.0 |
20.0 | 122159.74 | 6429.46 | 2373.0 |
60.0 | 379338.14 | 6429.46 | 36.0 |
40.0 | 250748.94 | 6429.46 | 221.0 |
16.0 | 96441.9 | 6429.46 | 4861.0 |
45.0 | 282896.24 | 6429.46 | 122.0 |
24.0 | 147877.58 | 6429.46 | 1358.0 |
31.0 | 192883.8 | 6429.46 | 579.0 |
39.0 | 244319.48 | 6429.46 | 214.0 |
56.0 | 353620.3 | 6429.46 | 48.0 |
37.0 | 231460.56 | 6429.46 | 282.0 |
55.0 | 347190.84 | 6429.46 | 65.0 |
46.0 | 289325.7 | 6429.46 | 103.0 |
54.0 | 340761.38 | 6429.46 | 50.0 |
57.0 | 360049.76 | 6429.46 | 42.0 |
53.0 | 334331.92 | 6429.46 | 54.0 |
50.0 | 315043.54 | 6429.46 | 58.0 |
52.0 | 327902.46 | 6429.46 | 60.0 |
61.0 | 385767.6 | 6429.46 | 34.0 |
70.0 | 443632.74 | 6429.46 | 5.0 |
63.0 | 398626.52 | 6429.46 | 20.0 |
67.0 | 424344.36 | 6429.46 | 11.0 |
64.0 | 405055.98 | 6429.46 | 18.0 |
47.0 | 295755.16 | 6429.46 | 102.0 |
58.0 | 366479.22000000003 | 6429.46 | 34.0 |
66.0 | 417914.9 | 6429.46 | 13.0 |
69.0 | 437203.28 | 6429.46 | 9.0 |
68.0 | 430773.82 | 6429.46 | 7.0 |
48.0 | 302184.62 | 6429.46 | 80.0 |
62.0 | 392197.06 | 6429.46 | 19.0 |
80.0 | 507927.34 | 6429.46 | 2.0 |
76.0 | 482209.5 | 6429.46 | 3.0 |
79.0 | 501497.88 | 6429.46 | 2.0 |
77.0 | 488638.96 | 6429.46 | 1.0 |
71.0 | 450062.2 | 6429.46 | 4.0 |
88.0 | 559363.02 | 6429.46 | 2.0 |
82.0 | 520786.26 | 6429.46 | 1.0 |
87.0 | 552933.56 | 6429.46 | 2.0 |
78.0 | 495068.42 | 6429.46 | 1.0 |
74.0 | 469350.58 | 6429.46 | 2.0 |
73.0 | 462921.12 | 6429.46 | 2.0 |
92.0 | 585080.86 | 6429.46 | 1.0 |
83.0 | 527215.72 | 6429.46 | 1.0 |
81.0 | 514356.8 | 6429.46 | 1.0 |
100.0 | 636516.54 | 6429.46 | 1.0 |
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(g.vertices.filter(col("page_len")<200000L).select("page_len"))
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView284eaf3")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView284eaf3) ,min_max AS (SELECT `page_len`,(SELECT MAX(`page_len`) FROM q) `target_column_max`,(SELECT MIN(`page_len`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `page_len`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 100 `step` FROM min_max) SELECT IF(ISNULL(`page_len`),NULL,LEAST(WIDTH_BUCKET(`page_len`,`min_value`,`max_value`,100),100)) `page_len_BIN`,FIRST(`min_value` + ((IF(ISNULL(`page_len`),NULL,LEAST(WIDTH_BUCKET(`page_len`,`min_value`,`max_value`,100),100)) - 1) * `step`)) `page_len_BIN_LOWER_BOUND`,FIRST(`step`) `page_len_BIN_STEP`,COUNT(`page_len`) `COUNT` FROM histogram_meta GROUP BY `page_len_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView284eaf3")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
page_len_BIN | page_len_BIN_LOWER_BOUND | page_len_BIN_STEP | COUNT |
---|---|---|---|
29.0 | 55999.72 | 1999.99 | 6755.0 |
26.0 | 49999.75 | 1999.99 | 8890.0 |
65.0 | 127999.36 | 1999.99 | 770.0 |
19.0 | 35999.82 | 1999.99 | 19211.0 |
54.0 | 105999.47 | 1999.99 | 1250.0 |
22.0 | 41999.79 | 1999.99 | 13294.0 |
7.0 | 11999.94 | 1999.99 | 192036.0 |
77.0 | 151999.24 | 1999.99 | 423.0 |
34.0 | 65999.67 | 1999.99 | 4585.0 |
50.0 | 97999.51 | 1999.99 | 1560.0 |
94.0 | 185999.07 | 1999.99 | 318.0 |
57.0 | 111999.44 | 1999.99 | 972.0 |
43.0 | 83999.58 | 1999.99 | 2450.0 |
32.0 | 61999.69 | 1999.99 | 5292.0 |
31.0 | 59999.7 | 1999.99 | 5973.0 |
39.0 | 75999.62 | 1999.99 | 3178.0 |
98.0 | 193999.03 | 1999.99 | 181.0 |
25.0 | 47999.76 | 1999.99 | 10036.0 |
95.0 | 187999.06 | 1999.99 | 255.0 |
71.0 | 139999.3 | 1999.99 | 543.0 |
6.0 | 9999.95 | 1999.99 | 272972.0 |
68.0 | 133999.33 | 1999.99 | 562.0 |
72.0 | 141999.29 | 1999.99 | 486.0 |
87.0 | 171999.14 | 1999.99 | 281.0 |
58.0 | 113999.43000000001 | 1999.99 | 965.0 |
9.0 | 15999.92 | 1999.99 | 109741.0 |
27.0 | 51999.74 | 1999.99 | 8025.0 |
63.0 | 123999.38 | 1999.99 | 739.0 |
56.0 | 109999.45 | 1999.99 | 1119.0 |
51.0 | 99999.5 | 1999.99 | 1487.0 |
17.0 | 31999.84 | 1999.99 | 24589.0 |
41.0 | 79999.6 | 1999.99 | 2720.0 |
28.0 | 53999.73 | 1999.99 | 7320.0 |
33.0 | 63999.68 | 1999.99 | 4901.0 |
88.0 | 173999.13 | 1999.99 | 301.0 |
5.0 | 7999.96 | 1999.99 | 394233.0 |
1.0 | 0.0 | 1999.99 | 1617667.0 |
96.0 | 189999.05 | 1999.99 | 185.0 |
10.0 | 17999.91 | 1999.99 | 86644.0 |
85.0 | 167999.16 | 1999.99 | 296.0 |
48.0 | 93999.53 | 1999.99 | 1734.0 |
67.0 | 131999.34 | 1999.99 | 605.0 |
100.0 | 197999.01 | 1999.99 | 173.0 |
44.0 | 85999.57 | 1999.99 | 2202.0 |
61.0 | 119999.4 | 1999.99 | 903.0 |
3.0 | 3999.98 | 1999.99 | 981693.0 |
37.0 | 71999.64 | 1999.99 | 3624.0 |
83.0 | 163999.18 | 1999.99 | 289.0 |
12.0 | 21999.89 | 1999.99 | 56040.0 |
55.0 | 107999.46 | 1999.99 | 1161.0 |
74.0 | 145999.27 | 1999.99 | 452.0 |
8.0 | 13999.93 | 1999.99 | 142679.0 |
62.0 | 121999.39 | 1999.99 | 781.0 |
11.0 | 19999.9 | 1999.99 | 69460.0 |
49.0 | 95999.52 | 1999.99 | 1597.0 |
35.0 | 67999.66 | 1999.99 | 4255.0 |
2.0 | 1999.99 | 1999.99 | 1613295.0 |
66.0 | 129999.35 | 1999.99 | 649.0 |
76.0 | 149999.25 | 1999.99 | 417.0 |
4.0 | 5999.97 | 1999.99 | 609216.0 |
92.0 | 181999.09 | 1999.99 | 323.0 |
13.0 | 23999.88 | 1999.99 | 46732.0 |
36.0 | 69999.65 | 1999.99 | 3921.0 |
75.0 | 147999.26 | 1999.99 | 432.0 |
78.0 | 153999.23 | 1999.99 | 410.0 |
18.0 | 33999.83 | 1999.99 | 21783.0 |
69.0 | 135999.32 | 1999.99 | 591.0 |
14.0 | 25999.87 | 1999.99 | 39087.0 |
21.0 | 39999.8 | 1999.99 | 14759.0 |
59.0 | 115999.42 | 1999.99 | 917.0 |
15.0 | 27999.86 | 1999.99 | 33318.0 |
81.0 | 159999.2 | 1999.99 | 355.0 |
38.0 | 73999.63 | 1999.99 | 3413.0 |
97.0 | 191999.04 | 1999.99 | 202.0 |
73.0 | 143999.28 | 1999.99 | 505.0 |
30.0 | 57999.71 | 1999.99 | 6316.0 |
42.0 | 81999.59 | 1999.99 | 2639.0 |
90.0 | 177999.11000000002 | 1999.99 | 284.0 |
23.0 | 43999.78 | 1999.99 | 12173.0 |
46.0 | 89999.55 | 1999.99 | 1915.0 |
20.0 | 37999.81 | 1999.99 | 16727.0 |
70.0 | 137999.31 | 1999.99 | 602.0 |
99.0 | 195999.02 | 1999.99 | 156.0 |
60.0 | 117999.41 | 1999.99 | 887.0 |
40.0 | 77999.61 | 1999.99 | 3012.0 |
16.0 | 29999.85 | 1999.99 | 28576.0 |
64.0 | 125999.37 | 1999.99 | 687.0 |
91.0 | 179999.1 | 1999.99 | 284.0 |
47.0 | 91999.54 | 1999.99 | 1833.0 |
53.0 | 103999.48 | 1999.99 | 1277.0 |
45.0 | 87999.56 | 1999.99 | 2041.0 |
24.0 | 45999.77 | 1999.99 | 10758.0 |
52.0 | 101999.49 | 1999.99 | 1301.0 |
79.0 | 155999.22 | 1999.99 | 376.0 |
80.0 | 157999.21 | 1999.99 | 300.0 |
82.0 | 161999.19 | 1999.99 | 297.0 |
86.0 | 169999.15 | 1999.99 | 290.0 |
84.0 | 165999.17 | 1999.99 | 301.0 |
93.0 | 183999.08 | 1999.99 | 374.0 |
89.0 | 175999.12 | 1999.99 | 281.0 |
Full Graph Analysis
In this notebook we will analyze the Graph created and explored in the notebook 08_explorationArticleGraph
, with the slight change that in this analysis we only consider the 25% of articles with the longest pages. We do this to reduce the size of the graph, since we found that the run times got unreasonably long when using the full graph.
The following areas will be analyzed in this notebook: 1. Graph size and density for the reduced graph 2. Existence of leaf/source nodes in the graph 3. Connected Components 4. Shortest Paths (Maybe a game here...) 5. BFS 6. Unidirected vs bidirected edges
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
Starting by re-creating the Wiki GraphFrame.
val dfPages = spark.sql("SELECT * FROM enwiki_page") // Read pages data
val dfCategory = spark.sql("SELECT * FROM enwiki_category") // Read categories
val dfCategoryLinks = spark.sql("SELECT * FROM enwiki_categorylinks") // Read links between articles/categories and categories
dfPages: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 5 more fields]
dfCategory: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 3 more fields]
dfCategoryLinks: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 1 more field]
// Join pages with category information
val dfArticlesCat = dfPages.filter(col("page_is_redirect")===0) // remove all redirects
.join(dfCategoryLinks.filter(col("cl_type")==="page"), col("page_id")===col("cl_from"), "left")
dfArticlesCat: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 8 more fields]
// Group on article and aggregate the categories as a set per article
val dfArticlesCatGrouped = dfArticlesCat.groupBy("page_id","page_title","page_len").agg(collect_set(col("cl_to")))
dfArticlesCatGrouped: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 2 more fields]
val dfVertex = dfArticlesCatGrouped.withColumnRenamed("page_id", "id").withColumnRenamed("collect_set(cl_to)", "categories").select("id", "page_title","page_len")
dfVertex: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 1 more field]
val dfEdgeLinks = spark.sql("SELECT * FROM enwiki_graph_edges_shortenedredirects") // Download the edges w.o. redirects
dfEdgeLinks: org.apache.spark.sql.DataFrame = [src: int, src_title: string ... 3 more fields]
// Since graphframes does not remove edges between non existing edges automatically, we do this manually thru joins
// This is done in 2 steps where we 1st remove edges where the source does not exist
// Secondly we remove edges where the destination does not exist
val filteredEdges = dfEdgeLinks.join(dfVertex,
col("src")===dfVertex.col("id"), "inner")
.select("src", "dst")
.join(dfVertex,
col("dst")===dfVertex.col("id"), "inner").select("src","dst")
filteredEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
val dfEdges = filteredEdges
dfEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
// Create the full graph from the non-redirect articles and the the filtered edges
val gFull = GraphFrame(dfVertex, dfEdges)
gFull: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
Let us reduce the graph size based on longer articles. Recall that we thought it would be a good idea to use some quantile value as a cut-off for the page length.
// Use the approxQuantile method to quiclky get an estimate of the quantiles
dfVertex.stat.approxQuantile("page_len", Array(0.5, 0.75, 0.95), 0.005)
res7: Array[Double] = Array(4082.0, 8417.0, 28170.0)
Lets use the 0.75 quantile, then we only consider the top 25% longest articles.
// Create a reduced graph where we only condsider longer articles
val gRed = gFull.filterVertices(col("page_len")>=8417L).dropIsolatedVertices()
gRed: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
Some examples of articles below. Here Astronomer
has a page length of 8573, which is fairly close to the cut-off, lets look at that article.
// Look at some examples
gRed.vertices.take(10)
res8: Array[org.apache.spark.sql.Row] = Array([580,Astronomer,8573], [633,Algae,90619], [673,Atomic_number,14031], [737,Afghanistan,310005], [799,Aquarius_(constellation),36019], [808,Alfred_Hitchcock,179231], [857,Aberdeenshire,33434], [897,Arsenic,127483], [898,Antimony,60686], [974,Ada_Lovelace,81872])
As one can see, this is still a fairly short article, so we will consider this threshold as not beeing too restrictive.
Let's look at the size of this reduced graph to see what happened as we removed the shorter articles.
// In reduced graph
val noNodes = gRed.vertices.count
val noEdges = gRed.edges.count
val density = noEdges / noNodes
noNodes: Long = 1652126
noEdges: Long = 206275015
density: Long = 124
// Let's use reduced size
val g = gRed
g: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
gFull.unpersist
dfVertex.unpersist
res8: dfVertex.type = [id: int, page_title: string ... 1 more field]
Terminal Nodes and Root Nodes
Do we have any leaf nodes, i.e. nodes without any outgoing links, or root nodes without any incoming links?
// what is the min number of incoming and outgoing edges?
val minOut = g.outDegrees.select(min("outDegree"))
val minIn = g.inDegrees.select(min("inDegree"))
println(minOut.show())
println(minIn.show())
+--------------+
|min(outDegree)|
+--------------+
| 1|
+--------------+
()
+-------------+
|min(inDegree)|
+-------------+
| 1|
+-------------+
()
minOut: org.apache.spark.sql.DataFrame = [min(outDegree): int]
minIn: org.apache.spark.sql.DataFrame = [min(inDegree): int]
Ok so we neither have any source nodes nor leaf nodes since the minimum in/out degree is 1 and not 0.
val leafNodes = g.outDegrees.filter(col("outDegree")===1).select("id")
leafNodes.distinct.count()
leafNodes: org.apache.spark.sql.DataFrame = [id: int]
res31: Long = 462
val rootNodes = g.inDegrees.filter(col("inDegree")===1).select("id")
rootNodes.distinct.count()
rootNodes: org.apache.spark.sql.DataFrame = [id: int]
res33: Long = 49074
How many nodes do we have in intersection?
rootNodes.join(leafNodes, rootNodes.col("id")===leafNodes.col("id")).count()
res35: Long = 110
def pruneLeafNodes(graph: GraphFrame, depth: Int, maxDepth: Int) : GraphFrame = {
println("Current Depth: %d".format(depth))
var leafNodes = graph.outDegrees.filter(col("outDegree")===0).select("id")
println("Current number of leaf nodes: %d".format(leafNodes.distinct.count()))
var prunedG = graph.filterVertices(!col("id").isin(leafNodes))
if (depth == maxDepth) {
return prunedG
}
else {
pruneLeafNodes(prunedG, depth + 1, maxDepth)
}
}
pruneLeafNodes: (graph: org.graphframes.GraphFrame, depth: Int, maxDepth: Int)org.graphframes.GraphFrame
def pruneRootNodes(graph: GraphFrame, depth: Int, maxDepth: Int) : GraphFrame = {
println("Current Depth: %d".format(depth))
var leafNodes = graph.inDegrees.filter(col("inDegree")===0).select("id")
println("Current number of root nodes: %d".format(leafNodes.distinct.count()))
var prunedG = graph.filterVertices(!col("id").isin(leafNodes))
if (depth == maxDepth) {
return prunedG
}
else {
pruneLeafNodes(prunedG, depth + 1, maxDepth)
}
}
pruneRootNodes: (graph: org.graphframes.GraphFrame, depth: Int, maxDepth: Int)org.graphframes.GraphFrame
Connected Components
Now let us also try out some of the built-in algorithms of GraphFrames, starting with Connected Components. Connected components searches a graph for structures of nodes connected to each other through paths. If it finds that some nodes are not able to reach eachother through some path, the nodes are placed in different components. More about this can be read at the page linked below.
// Please work for once...
val result = g.connectedComponents.setAlgorithm("graphx").run()
result.select("id", "component").orderBy("component").show()
+----+---------+
| id|component|
+----+---------+
| 316| 12|
| 738| 12|
| 789| 12|
| 825| 12|
| 856| 12|
| 897| 12|
|1164| 12|
|1267| 12|
|1307| 12|
|1346| 12|
|1437| 12|
|1453| 12|
|1514| 12|
|1545| 12|
|1570| 12|
|1623| 12|
|1629| 12|
|1698| 12|
|1761| 12|
|1762| 12|
+----+---------+
only showing top 20 rows
result: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 2 more fields]
// How many connected components do we have?
result.select("component").distinct.count
res39: Long = 2
// OK how many articles do we have in each component?
result.groupBy("component").count().show()
+---------+-------+
|component| count|
+---------+-------+
| 12|1652125|
| 11516425| 1|
+---------+-------+
Ok, so all articles except 1 ends up in the same component. What article is that?
result.withColumnRenamed("id", "idComp").join(gRed.vertices, col("idComp")===col("id")).filter(col("component")===11516425L).show()
+--------+------------+--------+---------+--------+------------+--------+
| idComp| page_title|page_len|component| id| page_title|page_len|
+--------+------------+--------+---------+--------+------------+--------+
|11516425|Mohammadabad| 18652| 11516425|11516425|Mohammadabad| 18652|
+--------+------------+--------+---------+--------+------------+--------+
This page only links to short pages, which will not be included in the graph.
One can also look at Strongly Connected Components, where directionality also matters when determining wether a set of nodes can reach another set. However this was not done in this project.
Shortest Paths
We performed some analysis on the shortest paths from all nodes to some landmark nodes. In this analysis we look at some quantile values of the distance from all nodes to one, to get a sense of the diameter of the graph. To get a more accurate measure of this diameter, one should probably sample a large sample of nodes, and the take an average over the maximum distance for all of the landmark nodes, however when testing this with only 10 landmark nodes we ran in to problems with the runtime. Further, we came up with a small game based on the shortest distances, which we perhaps will have time to play during the presentation.
Lets just pick one arbitrary article on wikipedia, say Lord Voldemort.
g.vertices.filter(col("page_title").rlike("Voldemort")).show()
+--------+--------------------+--------+
| id| page_title|page_len|
+--------+--------------------+--------+
|12294600|Voldemort_Can't_S...| 11987|
| 45106| Lord_Voldemort| 69962|
|54184819|Voldemort:_Origin...| 12304|
+--------+--------------------+--------+
Running shortest paths on this landmark, we are able to retrieve the distances from every node to our landmark.
spark.catalog.clearCache() // clear the cache, seems like this helped when the cluster was under a lot of stress
val articleId = 45106L
val results = g.shortestPaths.landmarks(Seq(articleId)).run()
results.select("id", "distances").sample(0.000001).show()
+----+------------+
| id| distances|
+----+------------+
|9425|{45106 -> 3}|
+----+------------+
articleId: Long = 45106
results: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 2 more fields]
// Look ath the schema
results.printSchema
root
|-- id: integer (nullable = true)
|-- page_title: string (nullable = true)
|-- page_len: integer (nullable = true)
|-- distances: map (nullable = true)
| |-- key: long
| |-- value: integer (valueContainsNull = false)
// Write the results to a parquet file so we don't have to redo this all the time when the cluster dies
results.write.parquet("WikipediaData/shortestPathsLV.parquet")
val dfPaths = spark.read.parquet("/WikipediaData/shortestPathsLV.parquet")
dfPaths: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 2 more fields]
// Check the schema and compare with above to make sure everything worked
dfPaths.printSchema
root
|-- id: integer (nullable = true)
|-- page_title: string (nullable = true)
|-- page_len: integer (nullable = true)
|-- distances: map (nullable = true)
| |-- key: long
| |-- value: integer (valueContainsNull = true)
// Get the distances only
val dfD = dfPaths.select("distances").withColumn("dist", col("distances").getItem(articleId))
dfD: org.apache.spark.sql.DataFrame = [distances: map<bigint,int>, dist: int]
Now, what is the longest distance from this node to any node in the graph? This should give us an idea of how "deep" or "shallow" the graph is. If the longest distance is not that big, it means that our graph is really shallow.
dfD.select(max("dist")).show()
+---------+
|max(dist)|
+---------+
| 5|
+---------+
This seems pretty shallow, only 5 clicks from Lord Voldemort and you could reach any article on Wikipedia.
// Let's also look at some quantiles of the distance for good measure.
dfD.stat.approxQuantile("dist", Array(0.5, 0.75, 0.95), 0.001)
res40: Array[Double] = Array(3.0, 4.0, 4.0)
The idea was to do this in a more rigorous fashion, where we randomly sample say 100 articles and for each of said aritcles repeat the procedure above. However, since the cluster seemed to be under a lot of stress, and this was a fairly resource intense analysis, we deicded to not pursue this further.
GAME TIME We have created a game notebook where we have hidden the name of the true landmark, the name of the notebook is 13_gameNotebook
. Clone the notebook, run the code cells with hidden code (don't view the code cell, that is cheating ;) ). Based on the returned distance, try to figure out what the true landmark is. Good luck...
Below is an example with the same landmark as above.
// This function retrieves the distance to the landmark node for a guess given by the user.
def computeDistanceToTarget(guess: String, distanceDf: org.apache.spark.sql.DataFrame) : Unit = {
val guessRow = distanceDf.filter(col("page_title")===guess)
if (guessRow.isEmpty) {
return println("Guess not in articles...Try again")
}
val distance = guessRow.select("distances.%s".format(45106L)).collect()(0)(0)
println("Distance from %s to target is %s".format(guess, distance))
}
computeDistanceToTarget: (guess: String, distanceDf: org.apache.spark.sql.DataFrame)Unit
// This should be 1...
computeDistanceToTarget("Harry_Potter", dfPaths)
Distance from Harry_Potter to target is 1
computeDistanceToTarget("Bay_City,_Texas", dfPaths)
Distance from Bay_City,_Texas to target is 3
computeDistanceToTarget("Jesus", dfPaths)
Distance from Jesus to target is 3
BFS
Finally, the last GraphFrames algorithm we tried out in the analysis of the article graph was BFS(Breadth-first search). BFS finds the shortest path(s) from one vertex (or a set of vertices) to another vertex (or a set of vertices).
displayHTML(frameIt("https://en.wikipedia.org/wiki/Breadth-first_search", 500))
// TRY OUT CHANGEING MAXPATH PARAM TO SEE IF IT SPEEDS UP
val paths = g.bfs.fromExpr("page_title = 'Lord_Voldemort'").toExpr("page_title = 'Thanksgiving_after_Communion'").run()
paths.show()
+--------------------+-----------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| from| e0| v1| e1| v2| e2| to|
+--------------------+-----------------+--------------------+--------------------+--------------------+--------------------+--------------------+
|{45106, Lord_Vold...| {45106, 2731583}|{2731583, Adolf_H...| {2731583, 56371}|{56371, Mass_(lit...| {56371, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 17867}|{17867, London, 3...| {17867, 18974659}|{18974659, Englis...|{18974659, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 87334}|{87334, Prophecy,...| {87334, 730118}|{730118, Prayer_t...| {730118, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 738}|{738, Albania, 27...| {738, 5596099}|{5596099, Catholi...| {5596099, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 17867}|{17867, London, 3...| {17867, 5955}|{5955, Church_of_...| {5955, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 1645518}|{1645518, Massach...| {1645518, 5955}|{5955, Church_of_...| {5955, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...|{45106, 11927837}|{11927837, Religi...| {11927837, 5955}|{5955, Church_of_...| {5955, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...|{45106, 21244171}|{21244171, Gentry...| {21244171, 21541}|{21541, Nicene_Cr...| {21541, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...|{45106, 19119938}|{19119938, Holly,...| {19119938, 5223729}|{5223729, Blood_o...| {5223729, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...|{45106, 60495569}|{60495569, Harry_...|{60495569, 19280748}|{19280748, Episco...|{19280748, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 1645518}|{1645518, Massach...| {1645518, 19280748}|{19280748, Episco...|{19280748, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 3414021}|{3414021, George_...| {3414021, 19280748}|{19280748, Episco...|{19280748, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 45936}|{45936, Spirit_po...| {45936, 9767}|{9767, Eucharist,...| {9767, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 87334}|{87334, Prophecy,...| {87334, 46398}|{46398, Rosary, 6...| {46398, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 29798}|{29798, The_Lord_...| {29798, 65427}|{65427, Plainsong...| {65427, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 87334}|{87334, Prophecy,...| {87334, 30869117}|{30869117, Latin_...|{30869117, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 738}|{738, Albania, 27...| {738, 30869117}|{30869117, Latin_...|{30869117, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...|{45106, 13425800}|{13425800, War_on...|{13425800, 30869117}|{30869117, Latin_...|{30869117, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 52847}|{52847, Children'...| {52847, 18494}|{18494, Lord's_Pr...| {18494, 12999830}|{12999830, Thanks...|
|{45106, Lord_Vold...| {45106, 738}|{738, Albania, 27...| {738, 347105}|{347105, Mother_T...| {347105, 12999830}|{12999830, Thanks...|
+--------------------+-----------------+--------------------+--------------------+--------------------+--------------------+--------------------+
only showing top 20 rows
paths: org.apache.spark.sql.DataFrame = [from: struct<id: int, page_title: string ... 1 more field>, e0: struct<src: int, dst: int> ... 5 more fields]
displayHTML(frameIt("https://en.wikipedia.org/wiki/Lord_Voldemort", 500))
This was quite slow as you can see from the runtime, we can speed it up by specifying the maxPathLength
which governs how many many edges the algorithm is alowed to travel before it should have reached its destination.
// THIS JUST KEPT CRASHING....
// val paths = g.bfs.fromExpr("page_title = 'Lord_Voldemort'").toExpr("page_title = 'Thanksgiving_after_Communion'").maxPathLength(5).run()
// paths.show()
Hopefully this was faster.
Finding bidirected edges
How common are bi-directed edges? We check this using motifs.
val motifGraph = g.find("(a) - [e1] -> (b) ; (b) - [e2] -> (a)") // Find pairs of nodes pointing to each other
val totalCount = motifGraph.count()/2L // Divide by 2 since every row will be a duplicate
motifGraph: org.apache.spark.sql.DataFrame = [a: struct<id: int, page_title: string ... 1 more field>, e1: struct<src: int, dst: int> ... 2 more fields]
totalCount: Long = 50566122
Interesting, about 25% of edges...
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
Motif Search and Case study: Wallenberg Family
In this notebook we are studying how well connected our funders are according to wikipedia, we use this to study the processing of graphframes on subgraphs
Creating the GraphFrame
The graphframe is created following the same procedure as that of the full graph.
val dfPages = spark.sql("SELECT * FROM enwiki_page")
val dfCategory = spark.sql("SELECT * FROM enwiki_category")
val dfCategoryLinks = spark.sql("SELECT * FROM enwiki_categorylinks")
dfPages: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 5 more fields]
dfCategory: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 3 more fields]
dfCategoryLinks: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 1 more field]
val dfArticlesCat = dfPages.filter(col("page_is_redirect")===0)
.join(dfCategoryLinks.filter(col("cl_type")==="page"), col("page_id")===col("cl_from"), "left")
dfArticlesCat: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 8 more fields]
val dfArticlesCatGrouped = dfArticlesCat.groupBy("page_id","page_title").agg(collect_set(col("cl_to")))
dfArticlesCatGrouped: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 1 more field]
val dfVertex = dfArticlesCatGrouped.withColumnRenamed("page_id", "id").withColumnRenamed("collect_set(cl_to)", "categories")
dfVertex: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 1 more field]
val dfEdgeLinks = spark.sql("SELECT * FROM enwiki_graph_edges_shortenedredirects")
val dfEdges = dfEdgeLinks.select("src", "dst")
dfEdgeLinks: org.apache.spark.sql.DataFrame = [src: int, src_title: string ... 3 more fields]
dfEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
val g = GraphFrame(dfVertex, dfEdges)
g.cache()
g: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
res6: g.type = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
Motif Finding
This method looks for substructures along the GraphFrame object which we can then filter on. We use this to study the behaviour both on the full dataset and on a smaller dataset containing all articles with swedish-language text (9176 articles)
val motif = g.find("(a) - [e] -> (b)")
val subgraph = motif.filter(array_contains(col("a.categories"), "Articles_containing_Swedish-language_text")).filter(array_contains(col("b.categories"), "Articles_containing_Swedish-language_text"))
subgraph.cache()
motif: org.apache.spark.sql.DataFrame = [a: struct<id: int, page_title: string ... 1 more field>, e: struct<src: int, dst: int> ... 1 more field]
subgraph: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: int, page_title: string ... 1 more field>, e: struct<src: int, dst: int> ... 1 more field]
res7: subgraph.type = [a: struct<id: int, page_title: string ... 1 more field>, e: struct<src: int, dst: int> ... 1 more field]
We use a filter first looking at all edges that have their destination at the wallenberg family page.
val exampleMotif = motif.filter(motif("e.dst")===1193699)
exampleMotif: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: int, page_title: string ... 1 more field>, e: struct<src: int, dst: int> ... 1 more field]
display(exampleMotif)
val WallenbergTo = motif.filter(motif("e.src")===1193699)
display(WallenbergTo)
We observe here that the second query was significantly faster than the first; the reason is that is due to Spark's lazy evaluation. As such, the first time that the motif is called to display the processing of all the millions of edges are processed and evaluated, whereas in the second case it simply used the graph from memory and filtered the edges. We repeat the first query to see the actual speed of filtering for the motif.
display(exampleMotif)
As we can see, even without explicitly putting the motif in cache, this second attempt was executed one order of magnitude faster than the the first.
val subgraphWallenbergFrom = subgraph.filter(motif("e.dst")===1193699)
display(subgraphWallenbergFrom)
val subgraphWallenbergTo = subgraph.filter(motif("e.src")===1193699)
display(subgraphWallenbergTo)
Note: During testing cmd 21 was as fast as 2s [no image of this execution exist], implying that the actual runtime of these queries are very dependent on cluster usage at the time.
//val exampleMotifDistanceTwo = g.find("(a) - [e] -> (b); (b) - [e2] -> (c); !(a) - [] ->(c)")
//val twoFromWallenberg = exampleMotifDistanceTwo.filter(exampleMotifDistanceTwo("e.src")===1193699)
//twoFromWallenberg.count()
While we wanted to show a measure of the numerical explosion for any node when going from a neighbour to just the vertices 2 links away, there was never an instance of the query that terminated. This query went for as long as 25 hours without processing all edges.
Discussion
Graphframes is a versatile tool for scaleable analysis of graphs that return results in SQL and DataFrame formats, which are easily interpreted. We did encounter some interesting observations that we summarize below. * The WikiData dump contain more links in the data than could be found in the body text of article, such as the information boxes, but sometimes also all articles in shared categories. Relationships that we manually could not verify were present in our graph. * Under these rules, the data is denser than expected, and every topic is close to each other, the most common distances between any two arbitrary topics being 2-3. * Studying motifs of a graph with this data with length >=2 was very difficult. * Leaf pruning algorithms did not return any useful results as there are next to none, if any articles without links to other articles. * Comparing methods for computational runtime of finding different paths provided to be impossible on the course cluster as the allocated processing power was volatile and subject to number of people who were using the cluster at the same time.
Conclusion
Some closing thoughts after working with the Wikipedia data for quite some time is that the Graph was a lot harder to process than what was initially expected. The size and density made it difficult to investigate all of the fields we initially planned. For instance, something we thought would be interesting before we started was to run label propagation for community detection on the graph, and then compare the found communities to the categories. However, we were sadly not able to get label propagation working on even the reduced graph.
Future Work
Some suggestions regarding future work are:
- Comparing the English Wikipedia we have analyzed now a different language, such as Swedish and look for
- General differences in the analysis we performed on the English Wikipedia
- Missing articles
- Missing links
- Running pagerank on both and comparing the top scorers
- Performing a more rigorous analysis of the depth of the graph, not just looking at one node but a larger sample
- Using a larger cluster in order to:
- Analyze the full graph and not just the longer articles considered in this project
- Running label propagation and compare communities to categories
- Using GraphX instead of GraphFrames to see whether we can achieve faster run-times
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
Game Setup
This notebook just creates the dataframe required to run the game in XX_gameNotebook
. Below cell creates a GraphFrame the same way as in notebook 09_fullGraphAnalysis
.
// Run this to get the graphframe
val dfPages = spark.sql("SELECT * FROM enwiki_page")
val dfCategory = spark.sql("SELECT * FROM enwiki_category")
val dfCategoryLinks = spark.sql("SELECT * FROM enwiki_categorylinks")
val dfArticlesCat = dfPages.filter(col("page_is_redirect")===0)
.join(dfCategoryLinks.filter(col("cl_type")==="page"), col("page_id")===col("cl_from"), "left")
val dfArticlesCatGrouped = dfArticlesCat.groupBy("page_id","page_title","page_len").agg(collect_set(col("cl_to")))
val dfVertex = dfArticlesCatGrouped.withColumnRenamed("page_id", "id").withColumnRenamed("collect_set(cl_to)", "categories").select("id", "page_title","page_len")
dfVertex
val dfEdgeLinks = spark.sql("SELECT * FROM enwiki_graph_edges_shortenedredirects")
val filteredEdges = dfEdgeLinks.join(dfVertex,
col("src")===dfVertex.col("id"), "inner")
.select("src", "dst")
.join(dfVertex,
col("dst")===dfVertex.col("id"), "inner").select("src","dst")
val dfEdges = filteredEdges
val gFull = GraphFrame(dfVertex, dfEdges)
val gRed = gFull.filterVertices(col("page_len")>=8417L).dropIsolatedVertices()
val g = gRed
dfPages: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 5 more fields]
dfCategory: org.apache.spark.sql.DataFrame = [cat_id: int, cat_title: string ... 3 more fields]
dfCategoryLinks: org.apache.spark.sql.DataFrame = [cl_from: int, cl_to: string ... 1 more field]
dfArticlesCat: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 8 more fields]
dfArticlesCatGrouped: org.apache.spark.sql.DataFrame = [page_id: int, page_title: string ... 2 more fields]
dfVertex: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 1 more field]
dfEdgeLinks: org.apache.spark.sql.DataFrame = [src: int, src_title: string ... 3 more fields]
filteredEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
dfEdges: org.apache.spark.sql.DataFrame = [src: int, dst: int]
gFull: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
gRed: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
g: org.graphframes.GraphFrame = GraphFrame(v:[id: int, page_title: string ... 1 more field], e:[src: int, dst: int])
Now the cell below is hidden, please don't view it since the correct answer for the game is there. What happens in the cell is that shortest paths is permored on the graph, with the target node as or landmark.
Finally we just write the dataframe with the shortest paths to a parquet file in dbfs which we can just download when we play the game.
results.write.parquet("WikipediaData/shortestPathsGameSetup.parquet")
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
GAME TIME!
Try to get as close as possible to the target page, or even figure out which it is!
Instructions
- Clone this notebook
- Run the cells below to download the data and define the function
- Provide the function with you guesses and try to come as close(or far) to the target as possible!
NOTE:
The guesses need to exactly match the page name according to Wikipedia. The easiest way to find this name for an article is to just google the article, and then paste the last part of the url as a guess. For instance, if your guess is "List of Saint Seiya Episode.G characters", you would use the guess List_of_Saint_Seiya_Episode.G_characters
since the URL to the article on Wikipedia is https://en.wikipedia.org/wiki/List_of_Saint_Seiya_Episode.G_characters
.
val results = spark.read.parquet("/WikipediaData/shortestPathsGameSetup.parquet")
results: org.apache.spark.sql.DataFrame = [id: int, page_title: string ... 2 more fields]
Don't look at the dataframe results
or the cell below, since that would give you the answer and sort of ruin the experience ;)
def computeDistanceToTarget(guess: String, distanceDf: org.apache.spark.sql.DataFrame) : Unit = {
val guessRow = distanceDf.filter(col("page_title")===guess)
if (guessRow.isEmpty) {
return println("Guess not in articles...Try again")
}
val distance = guessRow.select("distances.%s".format(articleId)).collect()(0)(0)
println("Distance from %s to target is %s".format(guess, distance))
}
computeDistanceToTarget: (guess: String, distanceDf: org.apache.spark.sql.DataFrame)Unit
// use the function
computeDistanceToTarget("List_of_Saint_Seiya_Episode.G_characters", results)
Distance from List_of_Saint_Seiya_Episode.G_characters to target is 3
computeDistanceToTarget("Planthopper", results)
Distance from Planthopper to target is 3
computeDistanceToTarget("Styringomyia", results)
Distance from Styringomyia to target is 3
Visual Question Answering using Transformers
Project members:
- Ehsan Doostmohammadi, Linköping University
- Hariprasath Govindarajan, Linköping University
Task Description
Visual Question Answering (VQA) is the task of understanding a given image and answering questions in natural language based on the image. This is a challenging task as it requires reasoning about two different data modalities (text and image) in conjunction. An additional challenge is to generate an answer to the question in natural language. Such a system enables multimodal interaction with humans and one useful application is in assistive technologies for visually challenged individuals. A general framework to solve this task involves the following steps:
- Image feature extraction
- Question feature extraction
- Relating and combining image and question features
- Answer generation
However, for this project, we simplify this problem by only considering yes/no type questions. This removes the need to train an answer generation model and the VQA task can be simply posed as a binary classification problem as follows:
- Image feature extraction
- Question feature extraction
- Classifier to predict yes/no answer
The classifier performs the task of relating the image and the question to predict the most appropriate answer. A mathematical formulation of the task is:
Given an image \(x\), a question \(q\) and answer \(a \in {0, 1}\), the task is to learn a model to predict the correct answer choice \(a = f(x, q ; \theta)\), with model parameters \(\theta\).
Dataset
For this task, we use the VQA (Visual Question Answering) v1.0 dataset (https://visualqa.org/) [1]. This dataset was first introduced at the VQA Challenge at CVPR 2016 and it is used as a standard benchmark dataset for the VQA task. This dataset uses selected images from the COCO dataset [6] and each image can have multiple related questions. We pick the subset of the dataset that contains yes/no type questions. Then, we obtain a dataset that consists of 63317 training images and 30612 validation images. In total, there are 95302 questions in the training set and 45478 questions in the validation set. Below, we visualize a few examples from the training dataset.
/dbfs/ml/VQA
#Uncomment and run these commands to download and unzip the dataset
#!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Train_mscoco.zip
#!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Train_mscoco.zip
#!wget -nc http://images.cocodataset.org/zips/train2014.zip
#!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Val_mscoco.zip
#!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Val_mscoco.zip
#!wget -nc http://images.cocodataset.org/zips/val2014.zip
#!unzip -qq '*.zip'
#!ls train2014 | wc -l
#!ls val2014 | wc -l
from collections import namedtuple
import json
import matplotlib.pyplot as plt
import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
VQAVisualizationExample = namedtuple('VQAVisualizationExample', [
'question_txt',
'answer_txt',
'img'
])
class VQADataset(Dataset):
def __init__(self, data_dir="/dbfs/ml/VQA/", data_split="train"):
self.data_split = data_split
self.data_dir = data_dir
# Get ready the text
if self.data_split=="train":
self.questions = json.load(open(os.path.join(self.data_dir, 'MultipleChoice_mscoco_train2014_questions.json')))['questions']
self.answers = json.load(open(os.path.join(self.data_dir, 'mscoco_train2014_annotations.json')))['annotations']
else:
self.questions = json.load(open(os.path.join(self.data_dir, 'MultipleChoice_mscoco_val2014_questions.json')))['questions']
self.answers = json.load(open(os.path.join(self.data_dir, 'mscoco_val2014_annotations.json')))['annotations']
self.yesno_indices = [i for i, a in enumerate(self.answers) if a["answer_type"] == "yes/no"]
self.questions = [self.questions[i] for i in self.yesno_indices]
self.answers = [self.answers[i] for i in self.yesno_indices]
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
question = self.questions[idx]
answer = self.answers[idx]
assert question['question_id'] == answer['question_id']
question_txt = question['question']
answer_txt = answer['multiple_choice_answer']
img_id = question['image_id']
img = Image.open(os.path.join(self.data_dir, f'{self.data_split}2014/COCO_{self.data_split}2014_{img_id:012}.jpg'))
return VQAVisualizationExample(question_txt, answer_txt, img)
vqa_ds = VQADataset(data_split="train")
# Visualize few examples from the dataset
n_examples = 10
example_ids = [0, 8, 100, 200, 300, 400, 500, 600, 800, 1000]
fig, ax = plt.subplots(n_examples//2, 2, figsize=(30, 40))
for k in range(n_examples):
j = 0 if k%2==0 else 1
i = k // 2
example = vqa_ds[example_ids[k]]
question_txt = example.question_txt
correct_answer = example.answer_txt
ax[i][j].imshow(example.img)
_ = ax[i][j].set_xticks([])
_ = ax[i][j].set_yticks([])
_ = ax[i][j].set_title(f"Question: {question_txt}, \nCorrect answer: {correct_answer}", fontsize=14)
Solution Idea
We follow the following steps to solve this task:
- Image feature extraction
- Question feature extraction
- Classifier to pick the correct answer
Given an image \(x\), a question \(q\) and answer \(a \in {0, 1}\), the VQA model can be formulated as a classifier \(p = h(g_v(x), g_l(q))\), where \(p\) is the probability of the answer being "yes", \(p = P(a=1|x, q)\). Here, \(g_l(\cdot)\) is the text feature extractor and \(g_v\) is the visual feature extractor. The answer \(a\) is predicted as \(a = \mathcal{1}_{p>0.5}\).
Inspired by the recent advances in the usage of Transformers in both vision and language representation learning, we use Transformer architectures to extract image and text features. Particularly, self-supervised pretraining on large unlabeled datasets have been shown to transfer well to new tasks. Sometimes, these self-supervised representations even surpass fully supervised training on the specific task, especially when limited labeled data is available. Hence, we choose to use publicly available self-supervised and pre-trained Transformer models for the feature extractors. For the image feature extractor, we use the Small Vision Transformer (ViT-Small/16) [5] pre-trained using DINO self-supervised learning method [2]. For the text feature extractor that is used to extract features for the questions, we use the ALBERT model [3], which is a computationally efficient version of BERT [4].
The Transformer feature extractors output a set of feature vectors for each pair of question and image. The feature extractors themselves are kept frozen and are not trained. We add a small trainable interaction module and allows the image and text features to interact and extract a combined set of features that is useful for answering the question. These features are processed using a 2-layer MLP to get the final classification prediction. The flowchart of our method is shown in the figure below.
Results
We implemented the training of our model using the distributed data parallel method with Pytorch and Horovod. This can leverage multiple GPUs to perform scalable training of deep learning models. On the yes/no VQA task, we achieve an accuracy of 65.75 % on the validation dataset. Considering that we use a simple setup with few trainable parameters, the achieved performance looks reasonable. Deeper and more complicated interaction between the image and text features can be beneficial to improve the results. We observed that using 2 worker nodes led to an almost 2x speed-up. Distributing the data over more GPU nodes is a straightforward method to achieve faster training.
References
[1] Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., & Parikh, D. (2017). Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6904-6913).
[2] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A. (2021). Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9650-9660).
[3] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019, September). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations.
[4] Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT (pp. 4171-4186).
[5] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020, September). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference on Learning Representations.
[6] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
/dbfs/ml/VQA
!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Train_mscoco.zip
!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Train_mscoco.zip
!wget -nc http://images.cocodataset.org/zips/train2014.zip
!unzip -qqn '*.zip'
!ls train2014 | wc -l
/dbfs/ml/VQA
!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Val_mscoco.zip
!wget -nc https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Val_mscoco.zip
!wget -nc http://images.cocodataset.org/zips/val2014.zip
!unzip -qqn '*Val*.zip'
!unzip -qqn 'val*.zip'
!ls val2014 | wc -l
# Imports
from collections import namedtuple
from functools import partial
import json
from tqdm.notebook import tqdm
import numpy as np
import os
from pathlib import Path
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertModel
from transformers import ViTFeatureExtractor, ViTModel
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from PIL import Image
import horovod.torch as hvd
from sparkdl import HorovodRunner
def collator_f(batch, txt_tokenizer):
txt = [ex['txt'] for ex in batch]
encoded_txt = txt_tokenizer(txt, padding=True, return_tensors="pt", return_attention_mask=True)
label = torch.FloatTensor([ex['label'] for ex in batch])
encoded_img = {'pixel_values': torch.stack([ex['encoded_img']['pixel_values'][0] for ex in batch])}
return {'txt': txt, 'encoded_txt': encoded_txt, 'label': label, 'encoded_img': encoded_img}
# Dataset class in Pytorch
class VQADatset(Dataset):
def __init__(self, txt_tokenizer, data_split="train"):
# Loading the tokenizer and image feature extractor
self.txt_tokenizer = txt_tokenizer
self.img_feat_extractor = ViTFeatureExtractor.from_pretrained('facebook/dino-vits16')
self.data_split = data_split
# Get ready the text
if self.data_split=="train":
self.questions = json.load(open('/dbfs/ml/VQA/MultipleChoice_mscoco_train2014_questions.json'))['questions']
self.answers = json.load(open('/dbfs/ml/VQA/mscoco_train2014_annotations.json'))['annotations']
else:
self.questions = json.load(open('/dbfs/ml/VQA/MultipleChoice_mscoco_val2014_questions.json'))['questions']
self.answers = json.load(open('/dbfs/ml/VQA/mscoco_val2014_annotations.json'))['annotations']
# Filter yes/no type questions
self.yesno_indices = [i for i, a in enumerate(self.answers) if a["answer_type"] == "yes/no"]
self.questions = [self.questions[i] for i in self.yesno_indices]
self.answers = [self.answers[i] for i in self.yesno_indices]
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
question = self.questions[idx]
answer = self.answers[idx]
assert question['question_id'] == answer['question_id']
txt = question['question']
assert len(question['multiple_choices']) == 18
label = 1 if answer['multiple_choice_answer'] == "yes" else 0
img_id = question['image_id']
img = Image.open(f'/dbfs/ml/VQA/{self.data_split}2014/COCO_{self.data_split}2014_{img_id:012}.jpg')
try:
encoded_img = self.img_feat_extractor(images=img, return_tensors="pt")
except:
encoded_img = self.img_feat_extractor(images=img.convert('RGB'), return_tensors="pt")
return {'txt': txt, 'encoded_txt': '', 'label': label, 'encoded_img': encoded_img}
# Overall VQA model that predicts yes/no outputs
class VQAModel(torch.nn.Module):
def __init__(self, d_model: int=384, nhead: int=6, d_hid: int=384, nlayers: int=1, n_class: int=1):
super(VQAModel, self).__init__()
# Loading the encoders
self.albert = AlbertModel.from_pretrained("albert-base-v2")
self.vit = ViTModel.from_pretrained('facebook/dino-vits16', add_pooling_layer=False)
# Freeze them
self.vit.eval()
self.albert.eval()
for param in self.albert.parameters():
param.requires_grad = False
for param in self.vit.parameters():
param.requires_grad = False
# A linear layer to map Albert to ViT size
self.linear_map = torch.nn.Sequential(torch.nn.Linear(768, d_hid), torch.nn.GELU())
self.linear_map_img = torch.nn.Sequential(torch.nn.Linear(d_hid, d_hid), torch.nn.GELU())
# The multimodal transformer block
encoder_layer = TransformerEncoderLayer(d_model, nhead, d_hid)
self.transformer_encoder = TransformerEncoder(encoder_layer, nlayers)
# A linear layer for classification
self.linear_cls = torch.nn.Sequential(torch.nn.Linear(4*d_hid, d_hid//4), torch.nn.GELU(), torch.nn.Linear(d_hid//4, n_class), torch.nn.GELU())
def set_eval(self):
self.linear_map.eval()
self.linear_map_img.eval()
self.transformer_encoder.eval()
self.linear_cls.eval()
def set_train(self):
self.linear_map.train()
self.linear_map_img.train()
self.transformer_encoder.train()
self.linear_cls.train()
def forward(self, encoded_txt, encoded_img):
txt_out = self.albert(**encoded_txt).last_hidden_state
txt_out = self.linear_map(txt_out)
img_out = self.vit(**encoded_img).last_hidden_state
img_out = self.linear_map_img(img_out)
txt_img = torch.cat((txt_out, img_out), dim=-2)
txt_img = self.transformer_encoder(txt_img)
attention_mask = encoded_txt.attention_mask[:, 1:].unsqueeze(-1)
txt_img_features = torch.cat([txt_img[:,0], txt_img[:,txt_out.shape[1]],
torch.sum(txt_img[:, 1:txt_out.shape[1]] * attention_mask, dim=-2) / torch.sum(attention_mask, dim=-2),
torch.mean(txt_img[:, txt_out.shape[1]:], dim=-2)], dim=-1)
pred = self.linear_cls(txt_img_features)
return pred
Training
We train the model with a batch size of 256 and learning rate of 1e-5 (Aadam) for 24 epochs.
It roughly takes 1 hour to train the model for one epoch.
Parallelization
We use Horovod to distribute the training on multiple GPUs. Using Horovod we can train on single-GPU, multiple-GPUs, or even multiple hosts without any further code changes.
Horovod can achieve ~90% scaling efficiency.
Using Horovod requires only minimal code changes. Including:
-
Scaling the batch size:
lr=1e-5 * hvd.size()
-
Wrap the optimizer in
hvd.DistributedOptimizer
. The distributed optimizer delegates gradient computation to the original optimizer, averages gradients, and then applies those averaged gradients. -
Modify the code to save checkpoints only on worker 0 to prevent other workers from corrupting them. (
hvd.rank() != 0
) -
Partition dataset among workers using DistributedSampler:
train_sampler = torch.utils.data.distributed.DistributedSampler
def train_one_epoch(model, optimizer, criterion, data_loader, epoch, device):
losses = []
pred_labels = []
true_labels = []
for i, batch in enumerate(data_loader):
if i % 25 == 0:
print(f'Train: {int(i*100/len(data_loader))}%')
encoded_txt = batch['encoded_txt'].to(device)
encoded_img = {'pixel_values': batch['encoded_img']['pixel_values'].to(device)}
optimizer.zero_grad()
pred = model(encoded_txt, encoded_img)
pred_labels.append((pred.reshape(-1).detach().cpu() > 0.0).long())
true_labels.append(batch['label'])
loss = criterion(pred.reshape(-1), batch['label'].to(device))
loss.backward()
optimizer.step()
losses.append(loss.item())
accuracy = np.mean(torch.cat(pred_labels).numpy() == torch.cat(true_labels).numpy())
return np.mean(losses), accuracy
def validate(model, data_loader, device):
pred_labels = []
true_labels = []
with torch.no_grad():
for i, batch in enumerate(data_loader):
if i % 25 == 0:
print(f'Val: {int(i*100/len(data_loader))}%')
encoded_txt = batch['encoded_txt'].to(device)
encoded_img = {'pixel_values': batch['encoded_img']['pixel_values'].to(device)}
pred = model(encoded_txt, encoded_img)
pred_labels.append((pred.reshape(-1).detach().cpu() > 0.0).long())
true_labels.append(batch['label'])
accuracy = np.mean(torch.cat(pred_labels).numpy() == torch.cat(true_labels).numpy())
return accuracy
def train(use_horovod=True):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
if use_horovod:
hvd.init()
if torch.cuda.is_available():
torch.cuda.set_device(hvd.local_rank())
txt_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
train_vqa_ds = VQADatset(txt_tokenizer, data_split="train")
val_vqa_ds = VQADatset(txt_tokenizer, data_split="val")
collator = partial(collator_f, txt_tokenizer=txt_tokenizer)
output_dir = "/dbfs/ml/VQA/outputs_dist/"
resume_from_checkpoint = os.path.join(output_dir, "checkpoint_0.pth")
model = VQAModel()
n_epochs = 50
start_epoch = 0
if os.path.exists(resume_from_checkpoint):
state_dict = torch.load(resume_from_checkpoint)
model.load_state_dict(state_dict["state_dict"])
start_epoch = state_dict["epoch"]
print(f"Model checkpoint state loaded from {resume_from_checkpoint}")
if use_horovod:
from torch.utils.data.distributed import DistributedSampler
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5 * hvd.size())
if os.path.exists(resume_from_checkpoint):
optimizer.load_state_dict(state_dict["optimizer"])
for p in optimizer.param_groups[0]["params"]:
p.to(device)
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
train_sampler = DistributedSampler(train_vqa_ds, num_replicas=hvd.size(), rank=hvd.rank())
train_vqa_dl = DataLoader(train_vqa_ds, batch_size=256, shuffle=False, collate_fn=collator, num_workers=4, sampler=train_sampler)
val_sampler = DistributedSampler(val_vqa_ds, num_replicas=hvd.size(), rank=hvd.rank())
val_vqa_dl = DataLoader(val_vqa_ds, batch_size=256, shuffle=False, collate_fn=collator, num_workers=4, sampler=val_sampler)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
if os.path.exists(resume_from_checkpoint):
optimizer.load_state_dict(state_dict["optimizer"])
for p in optimizer.param_groups[0]["params"]:
p.to(device)
train_vqa_dl = DataLoader(train_vqa_ds, batch_size=1024, shuffle=True, collate_fn=collator, num_workers=8)
val_vqa_dl = DataLoader(val_vqa_ds, batch_size=1024, shuffle=False, collate_fn=collator, num_workers=8)
model.to(device)
criterion = torch.nn.BCEWithLogitsLoss()
for epoch in range(start_epoch, n_epochs):
if (use_horovod and hvd.rank() == 0) or not use_horovod:
print(f'Epoch: {epoch+1}')
model.set_train()
epoch_loss, epoch_accuracy = train_one_epoch(model, optimizer, criterion, train_vqa_dl, epoch, device)
model.set_eval()
train_accuracy = epoch_accuracy
val_accuracy = validate(model, val_vqa_dl, device)
log_stats = {"train_loss": epoch_loss, "train_accuracy": train_accuracy, "val_accuracy": val_accuracy}
if (use_horovod and hvd.rank() == 0) or not use_horovod:
save_dict = {
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"train_accuracy": train_accuracy,
"val_accuracy": val_accuracy,
"loss": epoch_loss
}
torch.save(save_dict, os.path.join(output_dir, f"checkpoint_{epoch}.pth"))
print(f"Epoch={epoch}, Loss={epoch_loss}, Train Accuracy={train_accuracy}, Val Accuracy={val_accuracy}")
def main(use_horovod=True, np=1):
if use_horovod:
hr = HorovodRunner(np=np, driver_log_verbosity='all')
hr.run(train)
else:
train(use_horovod=False)
# Traing model using Horovod
main(use_horovod=True)
# Possible to run with multiple worker nodes. We ran it for 1 epoch just to verify.
main(use_horovod=True, np=2)
#%cd /dbfs/ml/VQA
# !ls /dbfs/ml/VQA/outputs
!ls /dbfs/ml/VQA/outputs_dist
Other methods for parallelization or scalability
-
Pytorch's Data Parallel or Distributed Data Parallel (DDP): Very simialr to Horovod in implementation
-
Pytorch's Fully Sharded Data Parallel (FSDP):
- In DDP the model weights and optimizer states are replicated across all workers.
- FSDP is a type of data parallelism that shards model parameters, optimizer states and gradients across DDP ranks.
- This makes the training of some very large models feasible and helps to fit larger models or batch sizes for our training job.
- Parallelformers (by Huggingface): Currently only for inference.
from parallelformers import parallelize
parallelize(model, num_gpus=2, fp16=True, verbose='detail')
In this section, we visualize the training progress of our VQA model. We saved checkpoints containing some training statistics and model parameters. We process the checkpoints in a distributed and scalable manner using Pyspark and visualize the results. Then, we load the checkpoint that produced the best validation accuracy. We implemented an inference function that uses Horovod to perform inference in a distributed manner. We visualize a few examples of our model predictions to see where it predicted correctly and where it failed.
import torch
import os
import matplotlib.pyplot as plt
from collections import namedtuple
from functools import partial, update_wrapper
import json
from tqdm.notebook import tqdm
import numpy as np
import os
from pathlib import Path
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertModel
from transformers import ViTFeatureExtractor, ViTModel
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from PIL import Image
import horovod.torch as hvd
from sparkdl import HorovodRunner
checkpoints_dir = "/dbfs/ml/VQA/outputs/"
def get_stats_from_checkpoint(checkpoint_path):
state_dict = torch.load(checkpoint_path, map_location="cpu")
return {'epoch': [state_dict['epoch'],], 'train_accuracy': [100*state_dict['train_accuracy'],],
'val_accuracy': [100*state_dict['val_accuracy'],], 'loss': [state_dict['loss'],]}
rdd = sc.parallelize(list(range(50)))
train_stats = rdd.map(lambda x: os.path.join(checkpoints_dir, f"checkpoint_{x}.pth"))
train_stats = train_stats.filter(lambda x: os.path.exists(x))
train_stats = train_stats.map(lambda x: get_stats_from_checkpoint(x))
train_stats = train_stats.reduce(lambda x, y: {"epoch": x["epoch"] + y["epoch"],
"train_accuracy": x["train_accuracy"] + y["train_accuracy"],
"val_accuracy": x["val_accuracy"] + y["val_accuracy"],
"loss": x["loss"] + y["loss"]})
train_stats
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
best_val_accuracy = np.max(train_stats["val_accuracy"])
best_epoch = train_stats["epoch"][np.argmax(train_stats["val_accuracy"])]
_ = ax.plot(train_stats["epoch"], train_stats["train_accuracy"])
_ = ax.plot(train_stats["epoch"], train_stats["val_accuracy"])
_ = ax.legend(["Training", "Validation"])
_ = ax.set_xlabel("Epoch")
_ = ax.set_ylabel("Accuracy")
_ = ax.set_title("VQA model accuracy")
print(f"Best validation accuracy of {best_val_accuracy} was reached at epoch {best_epoch}")
best_epoch = 13
best_checkpoint_path = f"/dbfs/ml/VQA/outputs/checkpoint_{best_epoch-1}.pth"
state_dict = torch.load(best_checkpoint_path, map_location="cpu")
print(f"Loaded best checkpoint from epoch {state_dict['epoch']}, observed validation accuracy = {state_dict['val_accuracy']}")
def collator_f(batch, txt_tokenizer):
txt = [ex['txt'] for ex in batch]
encoded_txt = txt_tokenizer(txt, padding=True, return_tensors="pt", return_attention_mask=True)
label = torch.FloatTensor([ex['label'] for ex in batch])
encoded_img = {'pixel_values': torch.stack([ex['encoded_img']['pixel_values'][0] for ex in batch])}
return {'txt': txt, 'encoded_txt': encoded_txt, 'label': label, 'encoded_img': encoded_img}
class VQADatset(Dataset):
def __init__(self, txt_tokenizer, data_split="train"):
# Loading the tokenizer and image feature extractor
self.txt_tokenizer = txt_tokenizer
self.img_feat_extractor = ViTFeatureExtractor.from_pretrained('facebook/dino-vits16')
self.data_split = data_split
# Get ready the text
if self.data_split=="train":
self.questions = json.load(open('/dbfs/ml/VQA/MultipleChoice_mscoco_train2014_questions.json'))['questions']
self.answers = json.load(open('/dbfs/ml/VQA/mscoco_train2014_annotations.json'))['annotations']
else:
self.questions = json.load(open('/dbfs/ml/VQA/MultipleChoice_mscoco_val2014_questions.json'))['questions']
self.answers = json.load(open('/dbfs/ml/VQA/mscoco_val2014_annotations.json'))['annotations']
self.yesno_indices = [i for i, a in enumerate(self.answers) if a["answer_type"] == "yes/no"]
self.questions = [self.questions[i] for i in self.yesno_indices]
self.answers = [self.answers[i] for i in self.yesno_indices]
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
question = self.questions[idx]
answer = self.answers[idx]
assert question['question_id'] == answer['question_id']
txt = question['question']
assert len(question['multiple_choices']) == 18
label = 1 if answer['multiple_choice_answer'] == "yes" else 0
img_id = question['image_id']
img = Image.open(f'/dbfs/ml/VQA/{self.data_split}2014/COCO_{self.data_split}2014_{img_id:012}.jpg')
try:
encoded_img = self.img_feat_extractor(images=img, return_tensors="pt")
except:
encoded_img = self.img_feat_extractor(images=img.convert('RGB'), return_tensors="pt")
return {'txt': txt, 'encoded_txt': '', 'label': label, 'encoded_img': encoded_img}
class VQAModel(torch.nn.Module):
def __init__(self, d_model: int=384, nhead: int=6, d_hid: int=384, nlayers: int=1, n_class: int=1):
super(VQAModel, self).__init__()
# Loading the encoders
self.albert = AlbertModel.from_pretrained("albert-base-v2")
self.vit = ViTModel.from_pretrained('facebook/dino-vits16', add_pooling_layer=False)
# Freeze them
self.vit.eval()
self.albert.eval()
for param in self.albert.parameters():
param.requires_grad = False
for param in self.vit.parameters():
param.requires_grad = False
# A linear layer to map Albert to ViT size
self.linear_map = torch.nn.Sequential(torch.nn.Linear(768, d_hid), torch.nn.GELU())
self.linear_map_img = torch.nn.Sequential(torch.nn.Linear(d_hid, d_hid), torch.nn.GELU())
# The multimodal transformer block
encoder_layer = TransformerEncoderLayer(d_model, nhead, d_hid)
self.transformer_encoder = TransformerEncoder(encoder_layer, nlayers)
# A linear layer for classification
self.linear_cls = torch.nn.Sequential(torch.nn.Linear(4*d_hid, d_hid//4), torch.nn.GELU(), torch.nn.Linear(d_hid//4, n_class), torch.nn.GELU())
def set_eval(self):
self.linear_map.eval()
self.linear_map_img.eval()
self.transformer_encoder.eval()
self.linear_cls.eval()
def set_train(self):
self.linear_map.train()
self.linear_map_img.train()
self.transformer_encoder.train()
self.linear_cls.train()
def forward(self, encoded_txt, encoded_img):
txt_out = self.albert(**encoded_txt).last_hidden_state
txt_out = self.linear_map(txt_out)
img_out = self.vit(**encoded_img).last_hidden_state
img_out = self.linear_map_img(img_out)
txt_img = torch.cat((txt_out, img_out), dim=-2)
txt_img = self.transformer_encoder(txt_img)
attention_mask = encoded_txt.attention_mask[:, 1:].unsqueeze(-1)
txt_img_features = torch.cat([txt_img[:,0], txt_img[:,txt_out.shape[1]],
torch.sum(txt_img[:, 1:txt_out.shape[1]] * attention_mask, dim=-2) / torch.sum(attention_mask, dim=-2),
torch.mean(txt_img[:, txt_out.shape[1]:], dim=-2)], dim=-1)
pred = self.linear_cls(txt_img_features)
return pred
# Load best model for inference
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
txt_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = VQAModel()
msg = model.load_state_dict(state_dict["state_dict"])
model.eval()
print(f"Model loaded successfully. {msg}")
def predict(model, data_loader, device):
pred_labels = []
true_labels = []
with torch.no_grad():
for i, batch in enumerate(data_loader):
if i % 25 == 0:
print(f'Val: {int(i*100/len(data_loader))}%')
encoded_txt = batch['encoded_txt'].to(device)
encoded_img = {'pixel_values': batch['encoded_img']['pixel_values'].to(device)}
pred = model(encoded_txt, encoded_img)
pred_labels.append((pred.reshape(-1).detach().cpu() > 0.0).long())
true_labels.append(batch['label'])
pred_labels = torch.cat(pred_labels).numpy()
true_labels = torch.cat(true_labels).numpy()
return pred_labels, true_labels
def inference(best_epoch, use_horovod=True):
output_dir = "/dbfs/ml/VQA/outputs/predictions/"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
if use_horovod:
hvd.init()
if torch.cuda.is_available():
torch.cuda.set_device(hvd.local_rank())
txt_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
dataset = VQADatset(txt_tokenizer, data_split="val")
collator = partial(collator_f, txt_tokenizer=txt_tokenizer)
best_checkpoint_path = f"/dbfs/ml/VQA/outputs/checkpoint_{best_epoch-1}.pth"
state_dict = torch.load(best_checkpoint_path, map_location="cpu")
model = VQAModel()
model.load_state_dict(state_dict["state_dict"])
model.to(device)
model.eval()
if use_horovod:
from torch.utils.data.distributed import DistributedSampler
vqa_sampler = DistributedSampler(dataset, num_replicas=hvd.size(), rank=hvd.rank())
vqa_dl = DataLoader(dataset, batch_size=256, shuffle=False, collate_fn=collator, num_workers=4, sampler=vqa_sampler)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
else:
vqa_dl = DataLoader(dataset, batch_size=256, shuffle=False, collate_fn=collator, num_workers=4)
pred_labels, true_labels = predict(model, vqa_dl, device)
if (use_horovod and hvd.rank() == 0) or not use_horovod:
np.save(os.path.join(output_dir, f"pred_labels.npy"), pred_labels)
np.save(os.path.join(output_dir, f"true_labels.npy"), true_labels)
def main_inference(use_horovod=True, np=1):
if use_horovod:
hr = HorovodRunner(np=np, driver_log_verbosity='all')
hr.run(lambda: inference(best_epoch=13, use_horovod=True))
else:
train(use_horovod=False)
# Run distributed inference using Horovod
main_inference()
In this section, we visualize a few examples showing where the model succeeds and fails.
A general observation regarding the results is that the model works resonably well at answering questions related to objects in the image. This makes sense as the visual feature extractors are known to perform well at object classification and segmentation tasks.
The model often fails at higher-order reasoning about images (for example, the model does not know that elephants visit a large pond when they are likely thirsty) and commonsense knowledge (like whether children like teddy bears).
inference_dir = "/dbfs/ml/VQA/outputs/predictions/"
pred_labels = np.load(os.path.join(inference_dir, "pred_labels.npy"))
true_labels = np.load(os.path.join(inference_dir, "true_labels.npy"))
txt_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
dataset = VQADatset(txt_tokenizer, data_split="val")
true_positives = np.where((pred_labels==1) & (true_labels == pred_labels))[0]
false_positives = np.where((pred_labels==1) & (true_labels != pred_labels))[0]
true_negatives = np.where((pred_labels==0) & (true_labels == pred_labels))[0]
false_negatives = np.where((pred_labels==0) & (true_labels != pred_labels))[0]
# randomly choose 4 examples in each category
true_positives = true_positives[np.array([0,1,5,3])]
false_positives = false_positives[np.array([0,1,2,3])]
true_negatives = true_negatives[np.array([7,1,2,3])]
false_negatives = false_negatives[np.array([7,1,2,3])]
Scalable Analysis of a Massive Knowledge Graph
Project members:
- Filip Cornell, KTH
- Yifei Jin, KTH
- Joel Oskarsson, LiU
- Tianyi Zho, KTH
Introduction
The aim of this project is to demonstrate how scalable data mining can be performed for massive knowledge graphs. We utilize multiple techniques to extract patterns from knowledge graphs, but focus in particular on the use of motif mining. The dataset used is the ogbl-wikikg2 knowledge graph, which contains entities and relations from the Wikidata knowledge base.
Dataset
Wikidata is an online knowledge base that can be openly edited by anyone. Most people interact with Wikidata mainly through the parts of it used in Wikipedia, but Wikidata also extends past information found in Wikipedia pages.
The ogbl-wikikg2 is a knowledge graph built from relations found in Wikidata. It contains 2,500,604 nodes, corresponding to different entities in the knowledge base, and 17,137,181 directed edges, corresponding to relations between the entitites. There are in total 535 unique relations and each edge in the graph corresponds to one of these relations. If we re-use an example found in the dataset description, there is an edge (relation) of type citizen of
from the node (entity) Geoffrey Hinton
to the node (entity) Canada
. Another example of a small knowledge graph is given below.

By Jayarathina - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37135596
We work with the "training" subgraph. In the raw data the entities and relations are only identified with a unique id number, but the dataset also comes with textual names and short descriptions of all entitites and relations.
We will make use of the GraphFrames package in order to efficiently work with the graph. GraphFrames allows operation that work directly on the network representation and on Dataframes containing all nodes and edges. We will utilize this dual-representation throughout the project.
Motif mining
Motifs are (typically small) reocurring subgraphs in some larger graph. The occurence of such patterns is often interesting to study in order to study the larger graph. An incredibly simple motif would be that of just two nodes connected by an edge, (A) --> (B)
. If we count the number of times this motif occurs in a graph we will surely end up with just the number of edges in the graph (not very interesting). If we instead think of a motif corresponding to directed cycles of some length \(n\) ((A) --> (B) --> ... --> (A)
), finding the occurences of these motifs in the graph is far more interesting. As will be shown throughout our notebooks, many tasks can be tackled by methods that use motif mining at its core. This type of data mining can give valueable insights about the knowledge graph and its entities.
The problem of finding motifs has been well studied in the scientific litterature (see for example and). GraphFrames comes with its own efficient implementation of motif finding through the graphframes/docs/_site/api/scala/org/graphframes/GraphFrame.html via find(pattern:String):org.apache.spark.sql.DataFrame and find method
. This method takes as input a string describing the motif pattern to be found. For example graph.find("(a)-[r]->(b)")
looks for all edges and returns a dataframe with the different values of a
, b
and r
found.
This notebook
This first notebook describes how we load the data from a server into the databricks distributed file storage. The full dataset is stored as a zip-file so we then have to extract it and locate the files of interest.
// Start by importing some useful packages
import org.apache.spark.ml._
import org.apache.spark.ml.feature._
import org.apache.spark.sql.DataFrame
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import org.apache.spark.ml._
import org.apache.spark.ml.feature._
import org.apache.spark.sql.DataFrame
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions._
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
import java.net.URL
import java.io.File
import org.apache.commons.io.FileUtils
Now, copy the dataset from the server where it is stored.
// Copy dataset from the server where it is stored
FileUtils.copyURLToFile(new URL("http://snap.stanford.edu/ogb/data/linkproppred/wikikg-v2.zip"), new File("/tmp/wikikg-v2.zip"))
unzip /tmp/wikikg-v2.zip
cp -r file:///databricks/driver/wikikg-v2 dbfs:///wikikg-v2
res1: Boolean = true
Now we should have the data on disk. Let's load it into a spark dataframe and display some of it to make sure it looks as we expect.
val df = spark.read.option("sep", ",").csv("dbfs:///wikikg-v2/original/train_2015.csv.gz")
df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
df.take(3)
res1: Array[org.apache.spark.sql.Row] = Array([Q8016027,P166,Q12177413], [Q6986100,P106,Q82955], [Q231256,P31,Q5])
display(df)
_c0 | _c1 | _c2 |
---|---|---|
Q8016027 | P166 | Q12177413 |
Q6986100 | P106 | Q82955 |
Q231256 | P31 | Q5 |
Q14086213 | P27 | Q29 |
Q4134811 | P31 | Q16521 |
Q1396316 | P27 | Q30 |
Q15378563 | P106 | Q1281618 |
Q16205843 | P31 | Q5 |
Q16661298 | P21 | Q6581097 |
Q4662361 | P21 | Q6581097 |
Q966926 | P161 | Q1520157 |
Q3067464 | P1412 | Q397 |
Q6309309 | P106 | Q2526255 |
Q3447470 | P47 | Q3451352 |
Q7736291 | P57 | Q1526143 |
Q19317886 | P180 | Q20460 |
Q977232 | P735 | Q19819760 |
Q515552 | P1344 | Q840654 |
Q5939586 | P735 | Q2190619 |
Q16854393 | P31 | Q5 |
Q7730688 | P264 | Q202585 |
Q548803 | P21 | Q6581097 |
Q2964983 | P31 | Q5 |
Q825080 | P21 | Q6581097 |
Q5337564 | P21 | Q6581097 |
Q508214 | P21 | Q6581097 |
Q7880918 | P106 | Q82955 |
Q630446 | P463 | Q674715 |
Q9652 | P17 | Q30 |
Q2076002 | P20 | Q370131 |
Q3166748 | P39 | Q3044918 |
Q4466355 | P171 | Q4479361 |
Q16007300 | P27 | Q183 |
Q10284786 | P21 | Q6581097 |
Q774732 | P495 | Q30 |
Q5497015 | P31 | Q5 |
Q11716562 | P735 | Q1679656 |
Q3417253 | P735 | Q18186323 |
Q1688718 | P641 | Q32112 |
Q2306219 | P31 | Q34442 |
Q10647157 | P105 | Q34740 |
Q7316144 | P264 | Q6693968 |
Q17610406 | P31 | Q4167836 |
Q1218313 | P161 | Q727086 |
Q6513697 | P69 | Q7895785 |
Q6418548 | P50 | Q931105 |
Q1059119 | P155 | Q744320 |
Q7788716 | P31 | Q5 |
Q780951 | P144 | Q655296 |
Q5232826 | P108 | Q49210 |
Q3158937 | P27 | Q142 |
Q835566 | P463 | Q684415 |
Q4755089 | P735 | Q18177321 |
Q2285451 | P21 | Q6581097 |
Q8073207 | P155 | Q5979066 |
Q3991336 | P272 | Q179200 |
Q1351354 | P735 | Q15277251 |
Q15132021 | P166 | Q178473 |
Q2637771 | P735 | Q18105736 |
Q16137 | P150 | Q101628 |
Q19009324 | P31 | Q79007 |
Q172696 | P17 | Q159 |
Q5180906 | P735 | Q2671794 |
Q3178861 | P735 | Q2563703 |
Q504421 | P27 | Q145 |
Q4131195 | P166 | Q185493 |
Q943194 | P54 | Q81888 |
Q3623735 | P161 | Q3972409 |
Q9303561 | P21 | Q6581072 |
Q3920445 | P54 | Q5324397 |
Q558817 | P27 | Q183 |
Q17345057 | P669 | Q19639657 |
Q5932255 | P69 | Q1247373 |
Q6370576 | P21 | Q6581097 |
Q3520331 | P161 | Q2959515 |
Q3704450 | P161 | Q2323644 |
Q508335 | P106 | Q482980 |
Q5294185 | P607 | Q362 |
Q4722203 | P31 | Q5 |
Q1511958 | P27 | Q183 |
Q4316095 | P31 | Q5 |
Q3418881 | P54 | Q192890 |
Q865986 | P31 | Q5 |
Q1794279 | P31 | Q5 |
Q3502702 | P161 | Q2818919 |
Q3521026 | P31 | Q24862 |
Q3918700 | P19 | Q2280 |
Q9389678 | P735 | Q16282870 |
Q3260285 | P19 | Q1479 |
Q5701959 | P106 | Q12912932 |
Q5920916 | P69 | Q49088 |
Q1587600 | P735 | Q1587364 |
Q3876042 | P27 | Q145 |
Q17113349 | P102 | Q190219 |
Q2234084 | P105 | Q34740 |
Q7407726 | P27 | Q664 |
Q698967 | P166 | Q16787486 |
Q14913235 | P682 | Q14818120 |
Q3174252 | P106 | Q11063 |
Q1648793 | P106 | Q4964182 |
Q17610634 | P276 | Q937679 |
Q1874649 | P39 | Q18887908 |
Q2049982 | P106 | Q33999 |
Q6828159 | P69 | Q458393 |
Q737544 | P31 | Q3863 |
Q6406769 | P19 | Q1741 |
Q101976 | P106 | Q177220 |
Q4908234 | P21 | Q6581097 |
Q4795427 | P21 | Q6581097 |
Q119477 | P106 | Q4964182 |
Q2756109 | P27 | Q142 |
Q2000255 | P123 | Q861799 |
Q4783363 | P123 | Q122741 |
Q1291457 | P19 | Q47611 |
Q6197083 | P19 | Q2559651 |
Q1055332 | P136 | Q2975633 |
Q5649107 | P19 | Q54349 |
Q2166440 | P19 | Q1874 |
Q18638756 | P735 | Q923 |
Q3986885 | P495 | Q30 |
Q17291504 | P669 | Q2681969 |
Q1486 | P190 | Q174 |
Q1374461 | P54 | Q729560 |
Q6250566 | P19 | Q18125 |
Q560613 | P106 | Q49757 |
Q2174633 | P47 | Q3452571 |
Q5544717 | P106 | Q81096 |
Q5658939 | P106 | Q937857 |
Q6457069 | P61 | Q983620 |
Q11084438 | P17 | Q148 |
Q15971283 | P27 | Q222 |
Q17395516 | P276 | Q2694686 |
Q11364927 | P734 | Q16877751 |
Q18121831 | P31 | Q4167836 |
Q2922552 | P31 | Q24862 |
Q2390657 | P31 | Q5 |
Q11977111 | P735 | Q6979750 |
Q725452 | P54 | Q1056948 |
Q3084069 | P106 | Q639669 |
Q328074 | P106 | Q33999 |
Q17341508 | P186 | Q287 |
Q19248873 | P156 | Q19248875 |
Q6205678 | P106 | Q860918 |
Q275637 | P27 | Q794 |
Q3159906 | P735 | Q941049 |
Q6247971 | P106 | Q42973 |
Q207265 | P17 | Q213 |
Q1468927 | P27 | Q29 |
Q4422738 | P31 | Q5 |
Q4661693 | P123 | Q671855 |
Q3039230 | P31 | Q783794 |
Q6646324 | P155 | Q5007829 |
Q7052677 | P106 | Q6625963 |
Q1449121 | P21 | Q6581097 |
Q1609104 | P166 | Q17412908 |
Q1305581 | P106 | Q2306091 |
Q124102 | P19 | Q78 |
Q16983652 | P21 | Q6581097 |
Q1079353 | P19 | Q240071 |
Q15071428 | P136 | Q1344 |
Q17594823 | P131 | Q1101 |
Q9353218 | P31 | Q5 |
Q16552876 | P31 | Q15416 |
Q4739661 | P21 | Q6581072 |
Q6488439 | P161 | Q4901125 |
Q1199120 | P150 | Q10864925 |
Q1582596 | P19 | Q554051 |
Q15993231 | P106 | Q40348 |
Q11622672 | P31 | Q5 |
Q3526704 | P106 | Q82955 |
Q163898 | P58 | Q1356749 |
Q3275776 | P136 | Q179700 |
Q525301 | P27 | Q36 |
Q216750 | P20 | Q100 |
Q16988469 | P106 | Q330679 |
Q15431276 | P166 | Q10905276 |
Q7457298 | P344 | Q3057187 |
Q76125 | P19 | Q1794 |
Q6648 | P31 | Q577 |
Q1438771 | P19 | Q268219 |
Q17397396 | P669 | Q18956977 |
Q944922 | P21 | Q6581097 |
Q78475 | P20 | Q1741 |
Q8263992 | P106 | Q43845 |
Q231904 | P31 | Q484170 |
Q1797274 | P31 | Q1149652 |
Q16221351 | P21 | Q6581097 |
Q648663 | P196 | Q2179 |
Q4919349 | P175 | Q469901 |
Q7041772 | P57 | Q2582445 |
Q731938 | P31 | Q783794 |
Q741624 | P31 | Q5 |
Q91413 | P47 | Q82704 |
Q2965386 | P106 | Q13415036 |
Q1200098 | P39 | Q29182 |
Q19255461 | P131 | Q1025079 |
Q5407804 | P735 | Q545971 |
Q1599704 | P21 | Q6581097 |
Q9221193 | P31 | Q4167836 |
Q733722 | P162 | Q925604 |
Q7620527 | P108 | Q174710 |
Q6459314 | P137 | Q1092839 |
Q17446036 | P669 | Q18951829 |
Q827351 | P106 | Q82955 |
Q1603600 | P27 | Q40 |
Q19358358 | P607 | Q362 |
Q1630416 | P156 | Q3468482 |
Q2645470 | P735 | Q3480335 |
Q14519610 | P20 | Q84125 |
Q4513020 | P21 | Q6581097 |
Q12165429 | P735 | Q830350 |
Q686132 | P197 | Q657879 |
Q3852094 | P106 | Q2004963 |
Q2888251 | P195 | Q3329787 |
Q4017905 | P27 | Q38 |
Q363400 | P106 | Q28389 |
Q5672439 | P27 | Q145 |
Q6221909 | P108 | Q210175 |
Q1530053 | P161 | Q1243049 |
Q969302 | P735 | Q16799105 |
Q17811548 | P735 | Q2260734 |
Q438272 | P161 | Q3315571 |
Q17319464 | P669 | Q19293809 |
Q1904546 | P106 | Q11774891 |
Q1361315 | P106 | Q937857 |
Q69060 | P31 | Q748149 |
Q11461955 | P102 | Q232595 |
Q17373950 | P1435 | Q916333 |
Q128434 | P735 | Q18534268 |
Q1357974 | P735 | Q18028491 |
Q99270 | P102 | Q7320 |
Q3099087 | P20 | Q90 |
Q5078636 | P106 | Q193391 |
Q1066528 | P1412 | Q150 |
Q1683377 | P106 | Q2306091 |
Q265641 | P21 | Q6581072 |
Q3142763 | P31 | Q5 |
Q17120059 | P31 | Q5 |
Q2504707 | P735 | Q18515951 |
Q15193 | P166 | Q15831432 |
Q682102 | P65 | Q191684 |
Q291906 | P735 | Q391321 |
Q3523004 | P161 | Q3122043 |
Q7575854 | P161 | Q7920794 |
Q742370 | P20 | Q259497 |
Q2326570 | P54 | Q1974241 |
Q15427472 | P161 | Q1521718 |
Q16106519 | P21 | Q6581097 |
Q566094 | P1412 | Q188 |
Q16264118 | P19 | Q80011 |
Q11728505 | P21 | Q6581097 |
Q3544837 | P31 | Q5 |
Q17464572 | P1435 | Q916333 |
Q121203 | P17 | Q843 |
Q2597650 | P86 | Q494596 |
Q2384009 | P19 | Q146530 |
Q3262309 | P27 | Q142 |
Q4746747 | P106 | Q19595175 |
Q478841 | P47 | Q477575 |
Q3807782 | P735 | Q18609696 |
Q7306161 | P155 | Q4597077 |
Q788536 | P105 | Q35409 |
Q1343410 | P150 | Q11060628 |
Q1224020 | P106 | Q1234713 |
Q7323977 | P21 | Q6581097 |
Q18666175 | P360 | Q5 |
Q11328839 | P264 | Q1062659 |
Q150939 | P17 | Q20 |
Q325621 | P57 | Q960868 |
Q4023328 | P734 | Q17041572 |
Q5233147 | P31 | Q5 |
Q7759503 | P155 | Q7318993 |
Q1758653 | P19 | Q2865 |
Q701977 | P272 | Q122865 |
Q95394 | P27 | Q183 |
Q9648 | P85 | Q40807 |
Q14537090 | P31 | Q13406463 |
Q3814258 | P106 | Q674426 |
Q15992967 | P735 | Q15921732 |
Q2263892 | P61 | Q3849346 |
Q17542119 | P27 | Q142 |
Q16025645 | P39 | Q382617 |
Q823819 | P21 | Q6581097 |
Q7860058 | P106 | Q33999 |
Q82644 | P47 | Q103244 |
Q6170242 | P39 | Q18524027 |
Q359568 | P463 | Q83172 |
Q1262649 | P463 | Q320642 |
Q5399381 | P735 | Q1474085 |
Q14133684 | P17 | Q148 |
Q6525755 | P27 | Q16 |
Q1894107 | P27 | Q183 |
Q1629775 | P27 | Q183 |
Q1398238 | P735 | Q220546 |
Q13426472 | P131 | Q13415446 |
Q19247919 | P156 | Q19247920 |
Q3903206 | P735 | Q3903143 |
Q3588560 | P735 | Q13426635 |
Q15446966 | P106 | Q36834 |
Q6097775 | P106 | Q937857 |
Q5254991 | P106 | Q33999 |
Q818132 | P20 | Q139427 |
Q1626597 | P287 | Q15112244 |
Q2613276 | P155 | Q6420067 |
Q2351637 | P19 | Q28441 |
Q116480 | P31 | Q506240 |
Q6027756 | P31 | Q783794 |
Q11533372 | P734 | Q4342082 |
Q499613 | P97 | Q521109 |
Q1426 | P1344 | Q8558 |
Q5730360 | P31 | Q5 |
Q4800264 | P108 | Q129421 |
Q249665 | P31 | Q484170 |
Q1724331 | P150 | Q860644 |
Q1197991 | P150 | Q14342442 |
Q3766136 | P106 | Q42973 |
Q9388019 | P166 | Q15715250 |
Q1037672 | P166 | Q705153 |
Q5563183 | P106 | Q82955 |
Q1111239 | P21 | Q6581097 |
Q616023 | P19 | Q1486 |
Q17291276 | P17 | Q55 |
Q7348773 | P106 | Q82955 |
Q18882921 | P816 | Q18882866 |
Q2572455 | P19 | Q2833 |
Q3613084 | P155 | Q3824028 |
Q149126 | P155 | Q6423276 |
Q596209 | P27 | Q142 |
Q279418 | P21 | Q6581072 |
Q3709228 | P131 | Q494192 |
Q4307556 | P19 | Q997029 |
Q4656085 | P840 | Q84 |
Q1584631 | P39 | Q17521638 |
Q372013 | P21 | Q6581097 |
Q889831 | P31 | Q5 |
Q1745654 | P21 | Q6581097 |
Q109783 | P106 | Q81096 |
Q1605886 | P6 | Q14033950 |
Q403878 | P735 | Q1173883 |
Q5163513 | P735 | Q679755 |
Q7340283 | P21 | Q6581097 |
Q18177861 | P170 | Q148475 |
Q1478712 | P31 | Q34442 |
Q19404255 | P138 | Q131219 |
Q375068 | P40 | Q1337618 |
Q1181198 | P676 | Q1744 |
Q1884989 | P106 | Q82955 |
Q3081458 | P27 | Q142 |
Q132901 | P61 | Q11821 |
Q1391931 | P937 | Q2795 |
Q4059527 | P31 | Q5 |
Q1359405 | P19 | Q37320 |
Q5370568 | P155 | Q7760164 |
Q208359 | P21 | Q6581097 |
Q19912648 | P31 | Q3305213 |
Q906411 | P31 | Q123705 |
Q13423282 | P31 | Q3464665 |
Q3804432 | P106 | Q937857 |
Q7237271 | P106 | Q2526255 |
Q17604628 | P131 | Q9822 |
Q4364374 | P272 | Q179200 |
Q3960601 | P69 | Q168756 |
Q819749 | P31 | Q5 |
Q17319044 | P31 | Q5 |
Q10930013 | P131 | Q1196382 |
Q15989863 | P27 | Q664 |
Q720009 | P27 | Q30 |
Q3048716 | P166 | Q12201378 |
Q10786394 | P105 | Q34740 |
Q1527178 | P31 | Q5 |
Q120041 | P27 | Q183 |
Q14075875 | P31 | Q5 |
Q2423299 | P106 | Q189290 |
Q10320251 | P21 | Q6581072 |
Q155079 | P31 | Q5 |
Q1603068 | P364 | Q1860 |
Q1731462 | P19 | Q671781 |
Q2150454 | P400 | Q188642 |
Q1351098 | P19 | Q53896 |
Q3012302 | P641 | Q542 |
Q664009 | P527 | Q12887 |
Q3046920 | P908 | Q14915512 |
Q15069394 | P31 | Q5 |
Q17301153 | P17 | Q55 |
Q13571305 | P1383 | Q2716879 |
Q17499932 | P161 | Q1399112 |
Q506414 | P20 | Q495 |
Q99288 | P21 | Q6581097 |
Q18769445 | P527 | Q17461811 |
Q16232245 | P31 | Q5 |
Q4668973 | P39 | Q18691526 |
Q988388 | P31 | Q3957 |
Q2276063 | P264 | Q1430474 |
Q5661768 | P31 | Q5 |
Q7472016 | P31 | Q3863 |
Q1237655 | P39 | Q29182 |
Q318017 | P9 | Q3850456 |
Q1397830 | P150 | Q22210 |
Q2647423 | P106 | Q1930187 |
Q1462855 | P102 | Q455038 |
Q2327467 | P19 | Q6596 |
Q3090678 | P22 | Q1890878 |
Q3133282 | P131 | Q494011 |
Q2321113 | P197 | Q2059086 |
Q5006455 | P69 | Q13371 |
Q1110084 | P31 | Q226730 |
Q6218956 | P106 | Q2066131 |
Q1849651 | P138 | Q2786563 |
Q443067 | P27 | Q16 |
Q17173279 | P19 | Q3616 |
Q7009812 | P155 | Q7534753 |
Q946349 | P31 | Q5 |
Q2373513 | P39 | Q19360355 |
Q6132938 | P735 | Q677191 |
Q543710 | P27 | Q183 |
Q27504 | P31 | Q5 |
Q3010810 | P276 | Q2796641 |
Q467927 | P734 | Q15080511 |
Q14655016 | P106 | Q33999 |
Q4001087 | P272 | Q3614072 |
Q782490 | P155 | Q637139 |
Q15982647 | P463 | Q618537 |
Q5497133 | P106 | Q1930187 |
Q28740 | P509 | Q188874 |
Q7755958 | P449 | Q216108 |
Q1203831 | P161 | Q1364909 |
Q4813173 | P31 | Q14762205 |
Q3484349 | P21 | Q6581097 |
Q3492843 | P286 | Q7299749 |
Q2924930 | P54 | Q298267 |
Q736695 | P161 | Q3380016 |
Q891363 | P20 | Q255802 |
Q952045 | P106 | Q1281618 |
Q2562617 | P106 | Q211346 |
Q18334968 | P735 | Q1985538 |
Q3294004 | P106 | Q1930187 |
Q1326980 | P19 | Q2807 |
Q2293972 | P915 | Q65 |
Q4514816 | P31 | Q5 |
Q5944753 | P27 | Q29 |
Q7638177 | P264 | Q917561 |
Q670245 | P31 | Q484170 |
Q108666 | P740 | Q84 |
Q6787306 | P27 | Q258 |
Q1675399 | P156 | Q1634438 |
Q1863550 | P735 | Q1795088 |
Q71790 | P31 | Q5 |
Q7621505 | P175 | Q259429 |
Q17306266 | P641 | Q5372 |
Q6110588 | P735 | Q18028597 |
Q456467 | P161 | Q470260 |
Q2856948 | P495 | Q142 |
Q106730 | P20 | Q496056 |
Q260344 | P21 | Q6581072 |
Q392696 | P162 | Q59259 |
Q6172174 | P31 | Q5 |
Q826906 | P27 | Q183 |
Q3080822 | P106 | Q36180 |
Q4329399 | P161 | Q106743 |
Q2052882 | P734 | Q1688722 |
Q1165070 | P31 | Q484170 |
Q5267608 | P20 | Q40738 |
Q364635 | P27 | Q183 |
Q2562063 | P106 | Q3387717 |
Q17597620 | P1435 | Q916333 |
Q3588330 | P27 | Q142 |
Q16210084 | P735 | Q4925477 |
Q18844876 | P279 | Q725 |
Q5298546 | P69 | Q1399299 |
Q15710824 | P467 | Q2458227 |
Q1200481 | P31 | Q1289426 |
Q2982896 | P31 | Q483453 |
Q980257 | P161 | Q719529 |
Q98605 | P31 | Q5 |
Q10436799 | P735 | Q18402099 |
Q172381 | P735 | Q4927589 |
Q1412278 | P84 | Q12174873 |
Q12012136 | P735 | Q8079337 |
Q1068361 | P31 | Q43183 |
Q3099503 | P735 | Q19793321 |
Q616668 | P131 | Q1725768 |
Q12890820 | P31 | Q5 |
Q2897825 | P31 | Q5 |
Q1561551 | P19 | Q4120832 |
Q7794480 | P31 | Q5 |
Q15436770 | P27 | Q183 |
Q16979881 | P27 | Q145 |
Q251931 | P500 | Q42880 |
Q2003245 | P47 | Q1001647 |
Q5389676 | P21 | Q6581097 |
Q17610179 | P156 | Q17610330 |
Q167540 | P735 | Q14371254 |
Q716134 | P31 | Q5 |
Q92937 | P31 | Q5 |
Q708788 | P27 | Q183 |
Q1072227 | P21 | Q6581097 |
Q1453347 | P31 | Q5 |
Q363049 | P106 | Q2526255 |
Q1788523 | P27 | Q183 |
Q1097677 | P106 | Q2066131 |
Q1618378 | P31 | Q5 |
Q4772624 | P21 | Q6581097 |
Q796898 | P279 | Q1022125 |
Q7597634 | P735 | Q17862013 |
Q13945591 | P31 | Q12808966 |
Q17491796 | P31 | Q3305213 |
Q6137778 | P735 | Q677191 |
Q1365502 | P19 | Q3777 |
Q14240356 | P27 | Q183 |
Q2371597 | P131 | Q235297 |
Q362790 | P21 | Q6581097 |
Q1581704 | P734 | Q8157228 |
Q3767701 | P21 | Q6581097 |
Q1756968 | P131 | Q302778 |
Q4643245 | P179 | Q2744 |
Q1468795 | P31 | Q5 |
Q372888 | P1066 | Q658109 |
Q2159505 | P735 | Q13564349 |
Q3142278 | P437 | Q633454 |
Q2078606 | P54 | Q170703 |
Q15456735 | P27 | Q183 |
Q4773154 | P31 | Q5 |
Q3610189 | P21 | Q6581097 |
Q18619597 | P186 | Q4259259 |
Q1432671 | P31 | Q11424 |
Q6184062 | P119 | Q252312 |
Q1637939 | P161 | Q230424 |
Q15073944 | P971 | Q516405 |
Q1901634 | P108 | Q154804 |
Q3588525 | P119 | Q1092107 |
Q365909 | P108 | Q186285 |
Q1613120 | P108 | Q152171 |
Q3809209 | P108 | Q49112 |
Q7034144 | P31 | Q16521 |
Q152480 | P27 | Q28 |
Q11779798 | P27 | Q36 |
Q1909669 | P102 | Q49768 |
Q5553032 | P31 | Q5 |
Q4143281 | P131 | Q7677 |
Q3959252 | P31 | Q5 |
Q5928071 | P31 | Q5 |
Q10513187 | P21 | Q6581097 |
Q16225870 | P735 | Q18245781 |
Q18352608 | P108 | Q622664 |
Q1315907 | P495 | Q30 |
Q2993591 | P20 | Q157246 |
Q10401493 | P31 | Q16521 |
Q1612701 | P735 | Q1158570 |
Q267106 | P1344 | Q8415 |
Q5543762 | P69 | Q7055270 |
Q2790698 | P31 | Q641226 |
Q6251982 | P21 | Q6581097 |
Q526300 | P54 | Q19593 |
Q18402350 | P106 | Q486748 |
Q5361279 | P27 | Q30 |
Q1023602 | P17 | Q142 |
Q12351891 | P1412 | Q143 |
Q729416 | P31 | Q482994 |
Q69792 | P19 | Q1726 |
Q335059 | P937 | Q646980 |
Q378893 | P27 | Q739 |
Q10354246 | P31 | Q5 |
Q2130002 | P47 | Q1300392 |
Q3026655 | P106 | Q14089670 |
Q19359691 | P361 | Q19220658 |
Q1650174 | P27 | Q30 |
Q321122 | P69 | Q258464 |
Q6519747 | P69 | Q219563 |
Q6790850 | P31 | Q5 |
Q191156 | P105 | Q334460 |
Q3243531 | P21 | Q6581072 |
Q19655965 | P138 | Q150747 |
Q1554558 | P27 | Q145 |
Q586589 | P162 | Q6758665 |
Q879932 | P735 | Q364753 |
Q1512168 | P161 | Q234581 |
Q2285321 | P21 | Q6581072 |
Q1717030 | P39 | Q17344251 |
Q433728 | P69 | Q258464 |
Q2355147 | P31 | Q34442 |
Q2875177 | P9 | Q13427665 |
Q14129509 | P27 | Q29 |
Q1126256 | P150 | Q2113624 |
Q361550 | P27 | Q183 |
Q3633077 | P161 | Q6807665 |
Q14077770 | P364 | Q1860 |
Q17099809 | P21 | Q6581097 |
Q2813614 | P166 | Q2547676 |
Q18758936 | P360 | Q5 |
Q19242427 | P155 | Q19242425 |
Q879921 | P27 | Q30 |
Q45250 | P166 | Q16336085 |
Q556844 | P21 | Q6581072 |
Q11445861 | P39 | Q17506823 |
Q19468639 | P17 | Q55 |
Q1724511 | P150 | Q200041 |
Q1318697 | P105 | Q34740 |
Q4864032 | P54 | Q849315 |
Q16266468 | P155 | Q16746473 |
Q3278502 | P17 | Q142 |
Q333808 | P20 | Q320378 |
Q745505 | P19 | Q326879 |
Q10857434 | P39 | Q19803234 |
Q93023 | P106 | Q36180 |
Q1176842 | P178 | Q1889419 |
Q2945030 | P123 | Q1371744 |
Q254243 | P31 | Q484170 |
Q3260689 | P166 | Q11593374 |
Q5986988 | P54 | Q1128631 |
Q18774690 | P17 | Q55 |
Q787672 | P106 | Q639669 |
Q156300 | P509 | Q12152 |
Q1746124 | P735 | Q4927128 |
Q1536603 | P361 | Q2239885 |
Q4123384 | P27 | Q159 |
Q14945515 | P31 | Q5 |
Q4919827 | P69 | Q486156 |
Q2900832 | P641 | Q542 |
Q123846 | P27 | Q183 |
Q5082576 | P69 | Q1149089 |
Q2652245 | P21 | Q6581097 |
Q265050 | P17 | Q17 |
Q3092343 | P19 | Q90 |
Q6534502 | P682 | Q14878786 |
Q1620131 | P19 | Q497200 |
Q2154721 | P31 | Q5 |
Q8057631 | P361 | Q1658029 |
Q18147747 | P527 | Q325648 |
Q6883161 | P159 | Q35765 |
Q599510 | P279 | Q862597 |
Q3247743 | P161 | Q2929411 |
Q3361 | P150 | Q836607 |
Q4766504 | P735 | Q558067 |
Q2915712 | P31 | Q188509 |
Q3791066 | P161 | Q1179412 |
Q5820724 | P21 | Q6581097 |
Q11379 | P279 | Q35120 |
Q764578 | P22 | Q573424 |
Q1587049 | P108 | Q32120 |
Q1432423 | P27 | Q183 |
Q1544298 | P108 | Q122453 |
Q3387066 | P21 | Q6581097 |
Q12771789 | P21 | Q6581097 |
Q110146 | P1344 | Q8558 |
Q12176843 | P735 | Q617272 |
Q7441460 | P27 | Q30 |
Q13815768 | P106 | Q855091 |
Q7287753 | P106 | Q16145150 |
Q3545150 | P19 | Q11434728 |
Q1298397 | P527 | Q19273492 |
Q114172 | P106 | Q36180 |
Q7980788 | P175 | Q7729259 |
Q3767590 | P106 | Q201788 |
Q3349229 | P21 | Q6581072 |
Q530033 | P106 | Q937857 |
Q17334994 | P1204 | Q1693 |
Q49351 | P119 | Q1574424 |
Q3204923 | P161 | Q3085009 |
Q11512722 | P156 | Q11449940 |
Q584535 | P54 | Q912247 |
Q395755 | P19 | Q2044 |
Q275960 | P86 | Q2121109 |
Q7350769 | P21 | Q6581097 |
Q1222145 | P166 | Q10905334 |
Q3090265 | P1343 | Q17166797 |
Q7612227 | P19 | Q128114 |
Q3521378 | P735 | Q19803513 |
Q309459 | P31 | Q11424 |
Q2486115 | P17 | Q30 |
Q1356727 | P19 | Q1489 |
Q6186526 | P735 | Q2227398 |
Q3002796 | P31 | Q5 |
Q3823896 | P58 | Q1343394 |
Q4792831 | P27 | Q16 |
Q4306855 | P19 | Q898 |
Q418099 | P735 | Q4700926 |
Q5088940 | P264 | Q183387 |
Q109290 | P108 | Q681250 |
Q3452529 | P17 | Q142 |
Q1989101 | P69 | Q215539 |
Q1227732 | P31 | Q5 |
Q4483063 | P735 | Q15731576 |
Q5483119 | P1344 | Q8544 |
Q1516684 | P31 | Q3918 |
Q1852242 | P21 | Q6581097 |
Q138591 | P21 | Q6581097 |
Q4087615 | P27 | Q30 |
Q6709245 | P27 | Q30 |
Q14910640 | P31 | Q16521 |
Q325973 | P20 | Q220 |
Q4275847 | P21 | Q6581097 |
Q21376 | P131 | Q2150573 |
Q723491 | P175 | Q286596 |
Q799817 | P39 | Q29182 |
Q5081265 | P21 | Q6581097 |
Q3309191 | P27 | Q142 |
Q1961283 | P27 | Q142 |
Q199644 | P21 | Q6581097 |
Q763242 | P19 | Q625091 |
Q4666319 | P21 | Q6581097 |
Q232789 | P54 | Q2739 |
Q5112591 | P31 | Q659103 |
Q660030 | P17 | Q142 |
Q6461262 | P196 | Q2179 |
Q591809 | P39 | Q29182 |
Q5776365 | P156 | Q5776449 |
Q3169038 | P171 | Q140435 |
Q4138699 | P27 | Q41 |
Q1520732 | P161 | Q93957 |
Q3083977 | P1412 | Q397 |
Q2040986 | P105 | Q7432 |
Q18710362 | P171 | Q6544822 |
Q3127840 | P735 | Q668885 |
Q6242151 | P21 | Q6581097 |
Q12022481 | P19 | Q270704 |
Q41079 | P150 | Q571219 |
Q1578559 | P21 | Q6581097 |
Q6124922 | P27 | Q30 |
Q11884465 | P21 | Q6581097 |
Q17495989 | P186 | Q4259259 |
Q1505686 | P102 | Q49763 |
Q123057 | P735 | Q19264720 |
Q3236684 | P69 | Q3047595 |
Q5518466 | P31 | Q482994 |
Q111258 | P21 | Q6581097 |
Q7340315 | P21 | Q6581097 |
Q14634026 | P162 | Q1522276 |
Q3158480 | P27 | Q142 |
Q1578490 | P106 | Q635734 |
Q3384862 | P937 | Q90 |
Q1212630 | P161 | Q2004024 |
Q15040646 | P176 | Q463261 |
Q16097054 | P21 | Q6581097 |
Q5448544 | P54 | Q371136 |
Q7082998 | P106 | Q82955 |
Q1862750 | P735 | Q2658970 |
Q5708659 | P264 | Q557632 |
Q1912743 | P21 | Q6581097 |
Q76624 | P21 | Q6581097 |
Q12286383 | P161 | Q12279836 |
Q3839964 | P27 | Q38 |
Q14512358 | P31 | Q16521 |
Q807487 | P106 | Q13365117 |
Q2865080 | P31 | Q5 |
Q627861 | P156 | Q712744 |
Q3105726 | P735 | Q1675463 |
Q1440286 | P31 | Q5 |
Q2410737 | P197 | Q2229953 |
Q17490971 | P186 | Q296955 |
Q392783 | P161 | Q235278 |
Q904686 | P21 | Q6581072 |
Q1579823 | P31 | Q5 |
Q351426 | P31 | Q5 |
Q1727278 | P131 | Q701072 |
Q641445 | P17 | Q35 |
Q517824 | P21 | Q6581097 |
Q2061133 | P106 | Q42603 |
Q3068 | P150 | Q653380 |
Q7688610 | P400 | Q23882 |
Q4864522 | P54 | Q205033 |
Q9001319 | P509 | Q29496 |
Q5152881 | P155 | Q7755601 |
Q1668661 | P31 | Q5 |
Q2436828 | P17 | Q30 |
Q3776054 | P161 | Q289020 |
Q1705061 | P21 | Q6581097 |
Q5726326 | P19 | Q861627 |
Q7135261 | P27 | Q668 |
Q18211541 | P735 | Q2102316 |
Q19243435 | P31 | Q21199 |
Q232323 | P53 | Q852111 |
Q3059538 | P106 | Q42973 |
Q4164772 | P166 | Q403569 |
Q5806128 | P106 | Q483501 |
Q148356 | P65 | Q191684 |
Q2425611 | P735 | Q18115390 |
Q4811406 | P27 | Q20 |
Q5873935 | P31 | Q16521 |
Q3833180 | P54 | Q1538348 |
Q718029 | P27 | Q55 |
Q12353687 | P735 | Q4925623 |
Q17439083 | P17 | Q55 |
Q1045289 | P27 | Q38 |
Q4728548 | P175 | Q254748 |
Q3726042 | P735 | Q16908530 |
Q586650 | P106 | Q482980 |
Q6223036 | P27 | Q408 |
Q1054560 | P21 | Q6581097 |
Q1634253 | P735 | Q839387 |
Q7793136 | P735 | Q18002322 |
Q5550671 | P607 | Q362 |
Q1704544 | P20 | Q1715 |
Q3629978 | P19 | Q174234 |
Q439776 | P27 | Q884 |
Q5240782 | P106 | Q12299841 |
Q1780852 | P19 | Q485253 |
Q2639899 | P944 | Q13011 |
Q3706766 | P27 | Q38 |
Q978042 | P21 | Q6581097 |
Q55007 | P131 | Q16120 |
Q495287 | P54 | Q2565016 |
Q1716692 | P21 | Q6581097 |
Q3166201 | P21 | Q6581097 |
Q10856433 | P21 | Q6581097 |
Q722653 | P54 | Q194116 |
Q1387025 | P27 | Q30 |
Q561504 | P106 | Q81096 |
Q950911 | P106 | Q170790 |
Q164527 | P17 | Q213 |
Q143644 | P21 | Q6581097 |
Q1438437 | P479 | Q178805 |
Q1022 | P150 | Q727750 |
Q389355 | P421 | Q6655 |
Q2093520 | P509 | Q8454 |
Q5045254 | P131 | Q694 |
Q3100008 | P413 | Q2270380 |
Q6272552 | P21 | Q6581097 |
Q597975 | P27 | Q30 |
Q2062480 | P21 | Q6581072 |
Q6943701 | P161 | Q705477 |
Q1601980 | P21 | Q6581072 |
Q2097256 | P106 | Q13382576 |
Q5504856 | P19 | Q124539 |
Q1085538 | P196 | Q2179 |
Q1101218 | P106 | Q1028181 |
Q6846492 | P735 | Q361309 |
Q696695 | P735 | Q750186 |
Q2039114 | P20 | Q1741 |
Q3185034 | P106 | Q783906 |
Q6239051 | P166 | Q2427600 |
Q728989 | P178 | Q739711 |
Q5386205 | P54 | Q1148233 |
Q24276 | P131 | Q228 |
Q3441558 | P21 | Q6581097 |
Q3390565 | P47 | Q3450641 |
Q4175945 | P156 | Q4175753 |
Q15427472 | P161 | Q90760 |
Q7697274 | P31 | Q16521 |
Q5314616 | P241 | Q1752901 |
Q11630108 | P175 | Q266852 |
Q2060744 | P735 | Q2117521 |
Q19249212 | P155 | Q19249211 |
Q631546 | P190 | Q566156 |
Q581128 | P21 | Q6581097 |
Q573817 | P166 | Q315026 |
Q6286364 | P735 | Q471788 |
Q1900652 | P31 | Q5 |
Q259961 | P27 | Q145 |
Q1352925 | P21 | Q6581097 |
Q2481005 | P31 | Q5 |
Q11550152 | P31 | Q5 |
Q2307428 | P136 | Q860626 |
Q1215771 | P106 | Q15059856 |
Q28003 | P138 | Q981207 |
Q531718 | P25 | Q269815 |
Q15432782 | P31 | Q5 |
Q4009559 | P180 | Q35500 |
Q11338028 | P264 | Q8194234 |
Q12795307 | P31 | Q5 |
Q489111 | P19 | Q2807 |
Q956947 | P641 | Q328716 |
Q3340483 | P735 | Q7029481 |
Q8364922 | P17 | Q20 |
Q3177608 | P21 | Q6581097 |
Q13635614 | P19 | Q7880 |
Q1638132 | P21 | Q6581097 |
Q8017253 | P21 | Q6581097 |
Q1147949 | P136 | Q1057172 |
Q1442905 | P31 | Q5 |
Q4441393 | P27 | Q212 |
Q3167699 | P27 | Q142 |
Q88914 | P20 | Q1741 |
Q1825280 | P106 | Q1028181 |
Q3267066 | P106 | Q11774891 |
Q4953897 | P21 | Q6581097 |
Q1448741 | P31 | Q5 |
Q3377600 | P19 | Q3549 |
Q361297 | P106 | Q2462658 |
Q1019463 | P166 | Q2727598 |
Q2486041 | P16 | Q1852230 |
Q7078743 | P31 | Q134556 |
Q3838578 | P27 | Q38 |
Q6907590 | P57 | Q311219 |
Q7569036 | P364 | Q1860 |
Q3084582 | P106 | Q250867 |
Q336912 | P106 | Q42603 |
Q1174833 | P106 | Q16267607 |
Q77452 | P131 | Q1165 |
Q4054640 | P20 | Q9248 |
Q4061138 | P19 | Q2801 |
Q5537133 | P31 | Q5 |
Q5978761 | P175 | Q2248393 |
Q1726422 | P27 | Q39 |
Q16217373 | P27 | Q30 |
Q212642 | P17 | Q142 |
Q918881 | P17 | Q16 |
Q17595057 | P31 | Q18762207 |
Q5372051 | P735 | Q18121477 |
Q7148414 | P31 | Q571 |
Q5575620 | P735 | Q18404297 |
Q5233173 | P106 | Q40348 |
Q44902 | P27 | Q142 |
Q6638165 | P156 | Q6641129 |
Q756861 | P21 | Q6581072 |
Q5795789 | P106 | Q82955 |
Q17616366 | P31 | Q41176 |
Q2285273 | P735 | Q634916 |
Q2374013 | P31 | Q16970 |
Q14598336 | P166 | Q17231624 |
Q3557606 | P40 | Q561201 |
Q15971609 | P36 | Q19566 |
Q1458664 | P735 | Q14038597 |
Q66378 | P17 | Q39 |
Q5666275 | P31 | Q5 |
Q5944327 | P21 | Q6581097 |
Q7562956 | P735 | Q18201529 |
Q1399879 | P106 | Q11774891 |
Q2505482 | P127 | Q568743 |
Q15434159 | P102 | Q49763 |
Q62125 | P17 | Q183 |
Q14086244 | P106 | Q82955 |
Q6792807 | P21 | Q6581097 |
Q3430946 | P106 | Q17486376 |
Q1595237 | P31 | Q5 |
Q362146 | P735 | Q1795260 |
Q731499 | P741 | Q3039938 |
Q5362464 | P39 | Q18654736 |
Q11153932 | P27 | Q399 |
Q1601853 | P108 | Q1051840 |
Q1527054 | P735 | Q2190619 |
Q16018600 | P607 | Q362 |
Q590842 | P735 | Q1343668 |
Q1659531 | P161 | Q445044 |
Q2927024 | P31 | Q5 |
Q1560877 | P131 | Q597 |
Q2930282 | P161 | Q2389393 |
Q5149087 | P156 | Q6875448 |
Q15065337 | P27 | Q34266 |
Q7044683 | P264 | Q2338889 |
Q1063846 | P31 | Q5 |
Q5909022 | P106 | Q36834 |
Q371748 | P131 | Q53711 |
Q4863959 | P31 | Q5 |
Q845844 | P190 | Q67249 |
Q11896452 | P735 | Q3817554 |
Q936816 | P553 | Q918 |
Q4944147 | P175 | Q2557820 |
Q6512983 | P54 | Q48925 |
Q1697265 | P27 | Q183 |
Q170978 | P31 | Q8148 |
Q6557797 | P102 | Q216082 |
Q1753406 | P175 | Q2808 |
Q3613930 | P106 | Q611644 |
Q6762241 | P735 | Q18760860 |
Q1219363 | P161 | Q358990 |
Q2910096 | P27 | Q801 |
Q15352 | P150 | Q15937 |
Q4832644 | P1344 | Q8567 |
Q4965165 | P106 | Q3282637 |
Q7448399 | P21 | Q6581097 |
Q2015910 | P31 | Q1201493 |
Q5284862 | P21 | Q6581097 |
Q5377936 | P123 | Q2744153 |
Q5076344 | P21 | Q6581097 |
Q908693 | P69 | Q49112 |
Q5230765 | P27 | Q408 |
Q3172593 | P106 | Q14972848 |
Q2304393 | P136 | Q1443316 |
Q6833784 | P21 | Q6581097 |
Q3741059 | P21 | Q6581097 |
Q19912132 | P195 | Q160236 |
Q10719196 | P138 | Q1355965 |
Q15635799 | P186 | Q40089 |
Q1727931 | P21 | Q6581097 |
Q2083880 | P136 | Q270948 |
Q6312220 | P166 | Q12201526 |
Q718825 | P54 | Q796179 |
Q1687119 | P31 | Q5 |
Q4758280 | P69 | Q499510 |
Q1152657 | P162 | Q259593 |
Q1170303 | P27 | Q30 |
Q1468017 | P27 | Q183 |
Q15447020 | P20 | Q1709 |
Q2337200 | P27 | Q183 |
Q350799 | P27 | Q25 |
Q868577 | P21 | Q6581072 |
Q3360690 | P31 | Q11424 |
Q3903015 | P106 | Q82955 |
Q7917352 | P102 | Q2399535 |
Q5087189 | P106 | Q488205 |
Q1005361 | P495 | Q17 |
Q5106495 | P21 | Q6581097 |
Q1460419 | P27 | Q36 |
Q7828851 | P479 | Q273140 |
Q13452 | P6 | Q14076448 |
Q3807354 | P106 | Q937857 |
Q3450538 | P47 | Q3451069 |
Q7472058 | P61 | Q735603 |
Q15069001 | P166 | Q185493 |
Q5509758 | P175 | Q546573 |
Looks good! The main part of the dataset is now in databricks.
Fetching the descriptions
The original data did not contain any text descriptions of the different entities and relations. In order to perform interesting analysis of the knowledge graph we had to fetch textual descriptions and associat them with the data. The following script can be used to fetch textual descriptions for the different entities in the graph.
NOTE: The script was not run on the actual cluster, but on a local server. The descriptions were then uploaded to the databricks cluster, but we include this part for the sake of completion. If it is of interest it should be straightforward to run the same thing on the Databricks cluster.
import pandas as pd
from wikidata.client import Client # Make sure wikidata is installed
from tqdm import tqdm
from collections import defaultdict
import requests # Make sure requests is installed
import time
import urllib # Make sure urllib is installed
TIMEOUT = 0.5
BATCHSIZE = 400
# Prioritize english as language, then swedish
LANGUAGE_PRIORITY = dict([(x.lower(), i) if x.lower()[:2] != "en" else (x.lower(),0) for i, x in enumerate(["EN", "EN-CA", "EN-GB", "EN-AU", "SV", "DE", "ES", "PT", "PT-BR", "NL", "IT", "FR", "ZH", "JA", "AR", "RU", "EL"])])
SERVICEURL = "https://query.wikidata.org/sparql"
def batchfetch_WD(query, ids, which_ones : str = ["label", "description"]):
r = requests.get(SERVICEURL, params={'query': query}, headers={'Accept': 'application/sparql-results+json'})
if r.status_code == 429:
time.sleep(TIMEOUT)
return batchfetch_WD(query, ids, which_ones=which_ones)
data = r.json()['results']['bindings']
ret = defaultdict(dict)
for res_entry in data:
idx = res_entry['id']['value'].split("/")[-1]
if "label" not in ret[id]:
ret[idx]["label"] = []
if "description" not in ret[id]:
ret[idx]["description"] = []
for which in which_ones:
if which in res_entry:
ret[idx][which].append((res_entry[which]["xml:lang"][:2], res_entry[which]['value']))
for id in ret:
for which in which_ones:
if len(ret[id][which]) == 0:
ret[id][which] = "Unknown"
else:
ret[id][which] = sorted(ret[id][which], key=lambda x: LANGUAGE_PRIORITY[x[0].lower()])[0][1]
nullresp = []
for id in ids:
if id not in ret:
nullresp.append(id)
return ret, nullresp
df = pd.read_csv("dataset/ogbl_wikikg2/original/train_2015.csv.gz",header=None)
df.columns = ["head", "relation", "tail"]
unique_entities = sorted(set(df['head'].unique()).union(set(df['tail'].unique())))
unique_relations = sorted(set(df['relation'].unique()))
client = Client()
res = defaultdict(dict)
if args.skip_rels is False:
for rel in tqdm(unique_relations):
try:
rel = client.get(rel, load=True)
res[rel.id]["label"] = rel.label
res[rel.id]["description"] = rel.description
except urllib.error.HTTPError:
res[rel]["label"] = "Unknown"
res[rel]["description"] = "Unknown"
df = pd.DataFrame.from_dict(res, orient='index')
df.to_csv("relation_descriptions.csv")
res = defaultdict(dict)
with open("entity_descriptions_buffer.csv", "w+") as f:
f.write("id,label,description\n")
for entitites in tqdm(range(0, len(unique_entities), BATCHSIZE)):
ids = unique_entities[entitites:(entitites + BATCHSIZE)]
query = ["wd:" + ids[i] for i in range(len(ids))]
query = " ".join(query)
query = '''SELECT distinct * WHERE { VALUES ?id {''' + query + '''} ?id rdfs:label ?label . FILTER (langMatches( lang(?label), "EN" ) ) ?id schema:description ?description FILTER (langMatches( lang(?description), "EN" ) || langMatches( lang(?description), "SV" ) || langMatches( lang(?description), "PT") ) } '''
try:
results, nullresponse = batchfetch_WD(query, ids)
for result in results:
res[result]["label"] = results[result]["label"]
res[result]["description"] = results[result]["description"]
f.write("{},{},{}\n".format(result, results[result]["label"], results[result]["description"]))
for id in nullresponse:
res[id]["label"] = "Unknown"
res[id]["description"] = "Unknown"
f.write("{},{},{}\n".format(id, f"Unknown_{id}", f"Unknown_{id}"))
except:
for id in ids:
f.write("{},{},{}\n".format(id, "Error", "Error"))
df = pd.DataFrame.from_dict(res, orient='index')
df.to_csv("dbfs:///wikikg-v2/wikientities_descriptions.csv")
Load Wiki data
This short notebook loads the Wiki dataset into a GraphFrames dataframe. It is mostly a utility, that can be executed from other notebooks using the %run
command.
// Imports
import spark.implicits._
import org.graphframes._
import spark.implicits._
import org.graphframes._
// Read data into datatframe (can take a couple minutes)
val df = spark.read.option("sep", ",").csv("dbfs:///wikikg-v2/original/train_2015.csv.gz")
df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
// Rename the columns to src, rel and dst
val list = List("src", "rel", "dst")
val edgesDF = df.toDF(list:_*)
list: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
// Get the descriptions instead of the entity ids
// This helps us get a more interpretable view of the data since we can then
// see which entities we are actually working with.
var df1 = spark.sql("select entid, IF(label = 'Unknown', entid, label) as label, IF(description = 'Unknown', entid, description) as description from `entities_descriptions_1_csv`")
val entdescdf = df1.toDF()
df1: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
entdescdf: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
import spark.implicits._
val mergedDf = edgesDF.as("d1").join(entdescdf.select("entid","label").as("d2"), ($"d1.src" === $"d2.entid"))
val list = List("src", "rel", "dst", "srcentid", "srclabel")
val mergedDF = mergedDf.toDF(list:_*)
import spark.implicits._
mergedDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
list: List[String] = List(src, rel, dst, srcentid, srclabel)
mergedDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
val mergedDf2 = mergedDF.as("d1").join(entdescdf.select("entid","label").as("d2"), ($"d1.dst" === $"d2.entid"))
val list2 = List("src", "rel", "dst", "srcentid", "srclabel", "dstentid", "dstlabel")
val mergedDF2 = mergedDf2.toDF(list2:_*)
// Load the names of the different relations
val rel_name_df = spark.read.option("sep", ",").csv("dbfs:/FileStore/tables/relation_descriptions.csv")
//rel_name_df.show()
val list3 = List("relid", "label", "description")
val relnamedf = rel_name_df.toDF(list3:_*)
val finalDf = mergedDF2.as("d1").join(relnamedf.select("relid","label").as("d2"), ($"d1.rel" === $"d2.relid"))
val list4 = List("src", "rel", "dst", "srcentid", "srclabel", "dstentid", "dstlabel", "relid", "rellabel")
val finalDF = finalDf.toDF(list4:_*).select("srclabel", "rellabel", "dstlabel")
val edgesDF_ = finalDF.select("srclabel", "rellabel", "dstlabel")
val list5 = List("src", "rel", "dst")
val edgesDF = edgesDF_.toDF(list5:_*)
mergedDf2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
list2: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel)
mergedDF2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
rel_name_df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list3: List[String] = List(relid, label, description)
relnamedf: org.apache.spark.sql.DataFrame = [relid: string, label: string ... 1 more field]
finalDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 7 more fields]
list4: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel, relid, rellabel)
finalDF: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
edgesDF_: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
list5: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
// From https://stackoverflow.com/questions/57513292/how-to-make-graphframe-from-edge-dataframe-only
val verticesDf = edgesDF.select("src").union(edgesDF.select("dst")).distinct().withColumnRenamed("src", "id")
val graph = GraphFrame(verticesDf,edgesDF)
verticesDf: org.apache.spark.sql.DataFrame = [id: string]
graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string], e:[src: string, dst: string ... 1 more field])
Exploring the WikiKG90Mv2 dataset
In this notebook we do some initial data exploration and visualization to get a feeling for the Wiki knowledge graph that we are working with. We start by loading the graph.
./02_load_data
import spark.implicits._
import org.graphframes._
df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
We will start our exploration by computing some basic graph properties.
df1: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
entdescdf: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
import spark.implicits._
mergedDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
list: List[String] = List(src, rel, dst, srcentid, srclabel)
mergedDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
val nNodes = graph.vertices.count
val nEdges = graph.edges.count
val density = nEdges.toFloat / (nNodes * (nNodes-1)) // Measure of density for directed graph, fraction of possible edges present
print(s"The graph has ${nNodes} nodes and ${nEdges} edges. This corresponds to a density of ${density}.\n")
The graph has 2317717 nodes and 16109182 edges. This corresponds to a density of 2.998837E-6.
nNodes: Long = 2317717
nEdges: Long = 16109182
density: Float = 2.998837E-6
mergedDf2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
list2: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel)
mergedDF2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
rel_name_df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list3: List[String] = List(relid, label, description)
relnamedf: org.apache.spark.sql.DataFrame = [relid: string, label: string ... 1 more field]
finalDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 7 more fields]
list4: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel, relid, rellabel)
finalDF: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
edgesDF_: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
list5: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
The graph is indeed massive, but the low density shows that it is also incredibly sparse. For a knowledge graph this level of sparsity is to be expected, as most concepts are not directly related.
Node Degrees
Next let's investigate the distribution (histograms) of node degrees in the graph. Since we have a directed graph we consider in- and out-degrees separately.
verticesDf: org.apache.spark.sql.DataFrame = [id: string]
graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string], e:[src: string, dst: string ... 1 more field])
val inDegrees = graph.inDegrees
val outDegrees = graph.outDegrees
val degrees = inDegrees.join(outDegrees, "id").cache()
display(degrees)
id | inDegree | outDegree |
---|---|---|
& Yet & Yet | 2.0 | 5.0 |
(10499) 1986 RN5 | 2.0 | 6.0 |
(11058) 1991 PN10 | 2.0 | 6.0 |
(117404) 2005 AC9 | 1.0 | 5.0 |
(13020) 1988 PW2 | 1.0 | 5.0 |
(136198) 2003 UJ296 | 1.0 | 5.0 |
(15141) 2000 EP106 | 2.0 | 4.0 |
(15683) 1981 EX25 | 2.0 | 6.0 |
(16307) 7569 P-L | 2.0 | 8.0 |
(16467) 1990 FD3 | 2.0 | 6.0 |
(17383) 1981 EE12 | 2.0 | 6.0 |
(20188) 1997 AC18 | 2.0 | 6.0 |
(20671) 1999 UX48 | 2.0 | 5.0 |
(20927) 1126 T-1 | 2.0 | 8.0 |
(21340) 1997 CS19 | 2.0 | 6.0 |
(21944) 1999 VA118 | 2.0 | 6.0 |
(21996) 1999 XP31 | 2.0 | 6.0 |
(22133) 2000 UO56 | 2.0 | 6.0 |
(22288) 1988 TR2 | 2.0 | 6.0 |
(22313) 1991 GP3 | 2.0 | 6.0 |
(22511) 1997 YC10 | 2.0 | 6.0 |
(22726) 1998 SZ72 | 2.0 | 6.0 |
(22755) 1998 WO9 | 2.0 | 6.0 |
(23299) 2001 AP9 | 2.0 | 6.0 |
(23723) 1998 HG40 | 2.0 | 6.0 |
(24205) 1999 XC48 | 2.0 | 6.0 |
(24831) 1995 SX4 | 2.0 | 6.0 |
(25571) 1999 XP195 | 2.0 | 6.0 |
(257203) 2008 RW122 | 2.0 | 6.0 |
(25831) 2000 DH111 | 2.0 | 6.0 |
(26030) 6004 P-L | 2.0 | 8.0 |
(26094) 1988 NU | 2.0 | 6.0 |
(26476) 2000 AK185 | 2.0 | 6.0 |
(27142) 1998 XG61 | 2.0 | 6.0 |
(27242) 1999 TN219 | 2.0 | 5.0 |
(27484) 2000 GN94 | 2.0 | 6.0 |
(28247) 1999 BP3 | 2.0 | 6.0 |
(28404) 1999 TQ5 | 2.0 | 7.0 |
(28463) 2000 AG168 | 2.0 | 5.0 |
(28580) 2000 EJ104 | 2.0 | 6.0 |
(28804) 2000 HC81 | 2.0 | 6.0 |
(28960) 2001 DZ81 | 2.0 | 6.0 |
(29000) 2607 P-L | 2.0 | 8.0 |
(29022) 6630 P-L | 2.0 | 8.0 |
(29387) 1996 JC6 | 2.0 | 6.0 |
(29505) 1997 WV44 | 2.0 | 6.0 |
(30466) 2000 OP14 | 2.0 | 6.0 |
(30611) 2627 P-L | 2.0 | 8.0 |
(30644) 6601 P-L | 2.0 | 8.0 |
(30689) 4318 T-2 | 2.0 | 8.0 |
(30845) 1991 PQ3 | 2.0 | 6.0 |
(30896) 1993 FX26 | 2.0 | 6.0 |
(31148) 1997 UO8 | 2.0 | 6.0 |
(31259) 1998 EB3 | 2.0 | 6.0 |
(31394) 1998 YX9 | 2.0 | 7.0 |
(31497) 1999 CW61 | 2.0 | 6.0 |
(31554) 1999 EJ2 | 2.0 | 6.0 |
(31732) 1999 JB71 | 2.0 | 6.0 |
(32382) 2000 QE187 | 2.0 | 6.0 |
(32543) 2001 QL11 | 2.0 | 6.0 |
(32791) 1989 TQ2 | 2.0 | 6.0 |
(34242) 2000 QD100 | 2.0 | 6.0 |
(343976) 2011 LC21 | 1.0 | 5.0 |
(34712) 2001 ON103 | 2.0 | 6.0 |
(34931) 6621 P-L | 2.0 | 8.0 |
(35035) 1981 ER29 | 2.0 | 6.0 |
(35051) 1981 ED47 | 2.0 | 6.0 |
(35166) 1993 QD8 | 2.0 | 6.0 |
(35182) 1993 US1 | 2.0 | 6.0 |
(35224) 1995 BN1 | 2.0 | 6.0 |
(35253) 1996 AB7 | 2.0 | 6.0 |
(35480) 1998 FN5 | 2.0 | 5.0 |
(35743) 1999 GP29 | 2.0 | 6.0 |
(35803) 1999 JT40 | 2.0 | 6.0 |
(36050) 1999 RE18 | 2.0 | 6.0 |
(36481) 2000 QU30 | 2.0 | 6.0 |
(37085) 2000 UO63 | 2.0 | 6.0 |
(37160) 2000 WR5 | 2.0 | 6.0 |
(37427) 2001 YJ82 | 2.0 | 6.0 |
(37438) 2599 P-L | 2.0 | 8.0 |
(37581) 1990 SU15 | 2.0 | 6.0 |
(37697) 1995 YW4 | 2.0 | 6.0 |
(38113) 1999 JB30 | 2.0 | 6.0 |
(38403) 1999 RU197 | 2.0 | 6.0 |
(38620) 2000 AQ186 | 2.0 | 6.0 |
(39099) 2000 WS12 | 2.0 | 5.0 |
(39298) 2001 FV132 | 2.0 | 5.0 |
(39431) 5178 T-2 | 2.0 | 8.0 |
(46556) 1991 FU3 | 1.0 | 5.0 |
(58167) 1990 QM3 | 1.0 | 5.0 |
(65225) 2002 EK44 | 1.0 | 5.0 |
(6861) 1991 FA3 | 2.0 | 6.0 |
(70304) 1999 RE133 | 1.0 | 5.0 |
(73077) 2002 GT4 | 2.0 | 6.0 |
(73262) 2002 JK47 | 2.0 | 6.0 |
(73289) 2002 JW64 | 2.0 | 6.0 |
(73291) 2002 JG65 | 2.0 | 6.0 |
(73335) 2002 JN110 | 2.0 | 6.0 |
(73344) 2002 JT119 | 2.0 | 6.0 |
(73455) 2002 NT36 | 2.0 | 6.0 |
(73550) 2003 PG9 | 2.0 | 6.0 |
(73881) 1997 CD22 | 2.0 | 6.0 |
(73924) 1997 MN3 | 2.0 | 6.0 |
(74054) 1998 JT4 | 2.0 | 6.0 |
(74411) 1999 AE5 | 2.0 | 6.0 |
(76834) 2000 SA244 | 1.0 | 5.0 |
(7951) 1992 WC2 | 2.0 | 6.0 |
(82293) 2001 KJ38 | 2.0 | 6.0 |
(82321) 2001 KE69 | 2.0 | 6.0 |
(82945) 2001 QN117 | 2.0 | 6.0 |
(9343) 1991 PO11 | 2.0 | 6.0 |
(9575) 1989 BW1 | 2.0 | 6.0 |
...With the Spirit of a Traffic Jam... | 1.0 | 4.0 |
07 | 1.0 | 4.0 |
1090 | 4.0 | 8.0 |
10970 de Zeeuw | 2.0 | 8.0 |
10th Anniversary Album | 2.0 | 5.0 |
11 bit studios | 3.0 | 3.0 |
11055 Honduras | 2.0 | 6.0 |
11087 Yamasakimakoto | 2.0 | 7.0 |
1110 Jaroslawa | 2.0 | 6.0 |
11152 Oomine | 2.0 | 6.0 |
11365 NASA | 1.0 | 5.0 |
11581 Philipdejager | 2.0 | 6.0 |
1159 | 4.0 | 9.0 |
11773 Schouten | 2.0 | 9.0 |
11th Golden Globe Awards | 2.0 | 3.0 |
12161 Avienius | 2.0 | 9.0 |
13226 Soulié | 2.0 | 7.0 |
1328 SH | 1.0 | 1.0 |
1436 | 4.0 | 8.0 |
14424 Laval | 2.0 | 7.0 |
14499 Satotoshio | 2.0 | 7.0 |
1512 | 4.0 | 8.0 |
15506 Preygel | 2.0 | 6.0 |
1572 | 5.0 | 8.0 |
15th Canadian Parliament | 2.0 | 3.0 |
16077 Arayhamilton | 2.0 | 6.0 |
16090 Lukaszewski | 2.0 | 6.0 |
1820 Lohmann | 2.0 | 6.0 |
18294 Rudenko | 2.0 | 6.0 |
1865 Cerberus | 2.0 | 7.0 |
18699 Quigley | 1.0 | 5.0 |
1892 Wimbledon Championships – gentlemen's singles | 2.0 | 4.0 |
1897 in film | 2.0 | 4.0 |
1898 Paris–Roubaix | 2.0 | 3.0 |
19 Fortuna | 2.0 | 8.0 |
1910 Finnish football championship | 2.0 | 5.0 |
1922 U.S. National Championships | 2.0 | 3.0 |
1929 Wimbledon Championships – men's singles | 2.0 | 4.0 |
1930 Bulgarian State Football Championship | 2.0 | 4.0 |
1932 NFL season | 2.0 | 4.0 |
1936 Tour de France | 3.0 | 4.0 |
1941 Úrvalsdeild | 2.0 | 6.0 |
19425 Nicholasrapp | 2.0 | 6.0 |
1946 FA Cup Final | 4.0 | 10.0 |
1947–48 Serie B | 2.0 | 5.0 |
1949–50 Austrian football championship | 2.0 | 5.0 |
1951–52 Belgian First Division | 2.0 | 4.0 |
1956–57 Eredivisie | 1.0 | 5.0 |
1959–60 A PFG | 2.0 | 4.0 |
1965 Southeast Asian Peninsular Games | 2.0 | 3.0 |
1968–69 Czechoslovak First League | 2.0 | 4.0 |
1970s | 14.0 | 5.0 |
1971–72 European Cup Winners' Cup | 2.0 | 3.0 |
1972 US Open | 6.0 | 4.0 |
1980 Fischer-Grand Prix | 2.0 | 3.0 |
1984 Argentine Primera División | 2.0 | 4.0 |
1984 U.S. Pro Indoor | 2.0 | 3.0 |
1987 IAAF World Indoor Championships | 6.0 | 4.0 |
1987–88 Japan Soccer League | 2.0 | 3.0 |
1992–93 Danish Superliga | 2.0 | 6.0 |
1992–93 Scottish Premier Division | 2.0 | 3.0 |
1993 IAAF World Cross Country Championships | 2.0 | 4.0 |
1993 IAAF World Half Marathon Championships | 1.0 | 3.0 |
1993 RCA Championships | 2.0 | 4.0 |
1994 Formula One World Championship | 2.0 | 4.0 |
2000 FIFA Club World Championship | 1.0 | 2.0 |
2000 US Open – women's doubles | 3.0 | 5.0 |
2002 World Allround Speed Skating Championships | 3.0 | 11.0 |
2004 Hopman Cup | 2.0 | 6.0 |
2004 Torneo di Viareggio | 2.0 | 3.0 |
2007 China Open | 1.0 | 2.0 |
2007 Vuelta a España | 2.0 | 4.0 |
2008 DFS Classic | 2.0 | 6.0 |
2010 PTT Pattaya Open | 2.0 | 5.0 |
2010–11 Primera Divisió | 2.0 | 3.0 |
2010–11 Slovenian PrvaLiga | 2.0 | 4.0 |
2012–13 Russian Premier League | 2.0 | 4.0 |
2013 BB&T Atlanta Open | 1.0 | 3.0 |
2013 Internazionali BNL d'Italia | 4.0 | 5.0 |
2014 Australian Open – men's singles | 1.0 | 3.0 |
2014 European Men's Handball Championship | 1.0 | 21.0 |
20536 Tracicarter | 2.0 | 6.0 |
2069 | 4.0 | 8.0 |
2088 | 4.0 | 7.0 |
21.00: Eros Live World Tour 2009/2010 | 2.0 | 3.0 |
210432 Dietmarhopp | 1.0 | 5.0 |
2136 | 4.0 | 7.0 |
2162 | 2.0 | 5.0 |
21856 Heathermaria | 2.0 | 6.0 |
2294 | 2.0 | 4.0 |
23011 Petach | 2.0 | 6.0 |
23133 Rishinbehl | 2.0 | 6.0 |
23213 Ameliachang | 2.0 | 6.0 |
23769 Russellbabb | 2.0 | 6.0 |
23773 Sarugaku | 2.0 | 6.0 |
24249 Bobbiolson | 2.0 | 5.0 |
24318 Vivianlee | 2.0 | 6.0 |
25417 Coquillette | 2.0 | 6.0 |
2545 Verbiest | 2.0 | 6.0 |
25620 Jayaprakash | 2.0 | 6.0 |
25925 Jamesfenska | 2.0 | 6.0 |
25931 Peterhu | 2.0 | 6.0 |
26283 Oswalt | 2.0 | 6.0 |
2640 Hällström | 2.0 | 7.0 |
27277 Pattybrown | 2.0 | 6.0 |
2823 van der Laan | 2.0 | 9.0 |
28644 Michaelzhang | 2.0 | 6.0 |
28800 Speth | 2.0 | 6.0 |
28823 Archibald | 2.0 | 6.0 |
2904 | 2.0 | 4.0 |
29132 Bradpitt | 2.0 | 6.0 |
29438 Zhengjia | 2.0 | 6.0 |
296 | 4.0 | 8.0 |
29880 Andytran | 2.0 | 6.0 |
30211 Sheilah | 2.0 | 6.0 |
30241 Donnamower | 2.0 | 6.0 |
30441 Curly | 2.0 | 7.0 |
31491 Demessie | 2.0 | 6.0 |
31823 Viète | 2.0 | 7.0 |
3210 | 2.0 | 4.0 |
32428 Peterlangley | 2.0 | 6.0 |
32807 Quarenghi | 2.0 | 7.0 |
3338 Richter | 2.0 | 7.0 |
3370 Kohsai | 2.0 | 7.0 |
3414 | 2.0 | 4.0 |
34220 Pelagiamajoni | 2.0 | 6.0 |
34258 Pentland | 2.0 | 6.0 |
34273 Franklynwang | 2.0 | 6.0 |
34696 Risoldi | 2.0 | 7.0 |
34846 Vincent | 2.0 | 6.0 |
35403 Latimer | 2.0 | 6.0 |
3589 Loyola | 2.0 | 6.0 |
3606 | 2.0 | 4.0 |
3792 Preston | 2.0 | 7.0 |
38 Leda | 2.0 | 7.0 |
3846 Hazel | 2.0 | 6.0 |
3862 Agekian | 2.0 | 6.0 |
3959 | 2.0 | 4.0 |
3rd Rock from the Sun, season 2 | 2.0 | 5.0 |
3rd: Love Escalation! | 2.0 | 5.0 |
4032 | 2.0 | 5.0 |
40mm grenade | 8.0 | 1.0 |
4108 Rakos | 2.0 | 8.0 |
4218 AM | 2.0 | 3.0 |
431 Nephele | 2.0 | 7.0 |
4419 Allancook | 2.0 | 6.0 |
4494 Marimo | 2.0 | 6.0 |
4578 Kurashiki | 2.0 | 7.0 |
467 | 4.0 | 9.0 |
4686 Maisica | 2.0 | 6.0 |
475 Ocllo | 2.0 | 6.0 |
4821 | 2.0 | 4.0 |
4937 | 2.0 | 5.0 |
5009 Sethos | 2.0 | 9.0 |
5058 AM | 1.0 | 2.0 |
5198 AM | 1.0 | 2.0 |
5325 | 2.0 | 4.0 |
5483 AM | 2.0 | 3.0 |
5497 Sararussell | 2.0 | 6.0 |
54th Berlin International Film Festival | 3.0 | 3.0 |
5645 | 2.0 | 4.0 |
5671 Chanal | 2.0 | 5.0 |
5705 AM | 2.0 | 3.0 |
5736 Sanford | 2.0 | 6.0 |
5925 | 2.0 | 4.0 |
6056 Donatello | 2.0 | 9.0 |
6164 Gerhardmüller | 2.0 | 6.0 |
618 Elfriede | 2.0 | 6.0 |
6194 | 2.0 | 4.0 |
6207 Bourvil | 2.0 | 7.0 |
6240 | 2.0 | 4.0 |
6613 | 2.0 | 5.0 |
6731 | 2.0 | 4.0 |
675 | 4.0 | 8.0 |
691 | 4.0 | 9.0 |
7252 | 2.0 | 4.0 |
7273 | 2.0 | 4.0 |
7620 Willaert | 2.0 | 9.0 |
7711 | 2.0 | 4.0 |
7762 | 2.0 | 4.0 |
7796 Járacimrman | 2.0 | 7.0 |
78125 Salimbeni | 1.0 | 4.0 |
7901 Konnai | 2.0 | 6.0 |
7960 Condorcet | 2.0 | 7.0 |
8284 Cranach | 2.0 | 7.0 |
829 | 4.0 | 10.0 |
8304 | 2.0 | 4.0 |
8433 | 2.0 | 4.0 |
8579 Hieizan | 2.0 | 7.0 |
8599 Riparia | 2.0 | 9.0 |
8930 Kubota | 2.0 | 6.0 |
8999 Tashadunn | 2.0 | 6.0 |
9009 | 2.0 | 5.0 |
9030 | 2.0 | 4.0 |
9147 Kourakuen | 2.0 | 7.0 |
9225 Daiki | 2.0 | 6.0 |
924 Toni | 2.0 | 6.0 |
9346 Fernandel | 2.0 | 7.0 |
9583 | 2.0 | 4.0 |
9586 | 2.0 | 4.0 |
9945 Karinaxavier | 2.0 | 6.0 |
9993 | 2.0 | 4.0 |
A Country Lad | 1.0 | 20.0 |
A Drink Before the War | 1.0 | 7.0 |
A Looking in View | 1.0 | 4.0 |
A New Day Yesterday | 1.0 | 5.0 |
A Night on the Town | 4.0 | 10.0 |
A Nod Is As Good As a Wink... to a Blind Horse | 2.0 | 5.0 |
A Violinist and a Flutist Playing Music together (The Musicians) | 1.0 | 7.0 |
A Winter Haunting | 1.0 | 7.0 |
A Winter Romance | 2.0 | 3.0 |
A Young Person's Guide to King Crimson | 2.0 | 7.0 |
A man dancing with a dog | 1.0 | 7.0 |
A. D. German Warehouse | 1.0 | 5.0 |
A.O. Segerberg | 9.0 | 5.0 |
ABCC6 | 2.0 | 5.0 |
AVN Hall of Fame | 280.0 | 4.0 |
Abaurregaina/Abaurrea Alta | 3.0 | 7.0 |
Abbaye de Buzay | 2.0 | 3.0 |
Abby Elliott | 2.0 | 6.0 |
Abner | 46.0 | 7.0 |
Abo-shinnō | 4.0 | 6.0 |
Abram Room | 3.0 | 12.0 |
Abram van Rijckevorsel | 1.0 | 6.0 |
Ace Attorney | 9.0 | 19.0 |
Ache Records | 2.0 | 2.0 |
Adam Williams | 13.0 | 23.0 |
Adele Astaire | 5.0 | 15.0 |
Adolf Svoboda | 1.0 | 10.0 |
Adolf von Blome | 1.0 | 8.0 |
Adrian Carmack | 1.0 | 6.0 |
Adriean Videanu | 1.0 | 7.0 |
Adèle Reinhardt | 4.0 | 4.0 |
Adélard Godbout | 1.0 | 11.0 |
Afraid of Sunlight | 1.0 | 6.0 |
African Cookbook | 1.0 | 4.0 |
Afshan Azad | 2.0 | 8.0 |
Agatha Christie's Poirot, season 12 | 2.0 | 5.0 |
Agawam | 1.0 | 3.0 |
Agda Helin | 2.0 | 4.0 |
Agnes of Baden | 1.0 | 6.0 |
Agnes of Kuenring | 2.0 | 5.0 |
Agnieszka Sitek | 1.0 | 5.0 |
Aimo | 32.0 | 1.0 |
Ain't Nothin' Like Me | 2.0 | 5.0 |
Ainaro Municipality | 7.0 | 8.0 |
Ainult unustamiseks | 1.0 | 3.0 |
Airbus A319 | 3.0 | 5.0 |
Aitkin | 1.0 | 5.0 |
Akademie-Verlag | 1.0 | 3.0 |
Akhil Reed Amar | 1.0 | 7.0 |
Akimi Yoshida | 4.0 | 9.0 |
Akinobu Uraka | 1.0 | 7.0 |
Akinori Iwamura | 1.0 | 7.0 |
Al Jahra SC | 4.0 | 4.0 |
Al Santos | 3.0 | 17.0 |
Al-Khayzuran | 3.0 | 5.0 |
Aladrén | 3.0 | 7.0 |
Alan Garner | 5.0 | 25.0 |
Alan Mills | 1.0 | 19.0 |
Alan Morinis | 1.0 | 6.0 |
Alaungpaya | 6.0 | 13.0 |
Albert Cossery | 2.0 | 10.0 |
Albert Duquesne | 2.0 | 3.0 |
Albert Fennell | 7.0 | 3.0 |
Albert Lindhagen | 6.0 | 16.0 |
Albert Rueprecht | 16.0 | 7.0 |
Albertine disparue | 3.0 | 8.0 |
Alcyonidiidae | 1.0 | 3.0 |
Alejandro Goic | 3.0 | 12.0 |
Alejandro Matas Britos | 1.0 | 5.0 |
Alejandro Portero Igual | 1.0 | 6.0 |
Aleksandr Boyarsky | 1.0 | 8.0 |
Alena Procházková | 1.0 | 9.0 |
Ales | 63.0 | 15.0 |
Alexander Fehling | 6.0 | 6.0 |
Alexander Moissi | 2.0 | 11.0 |
Alexandra Powers | 6.0 | 6.0 |
Alexandre Bertrand | 4.0 | 14.0 |
Alexandre Falguière's grave | 1.0 | 6.0 |
Alexandre-François Desportes | 1.0 | 8.0 |
Alfons X | 2.0 | 6.0 |
Alfonso Cassini | 33.0 | 7.0 |
Alfonso II d'Este | 2.0 | 8.0 |
Alfonso XI of Castile | 12.0 | 20.0 |
Alfred Horatio Belo | 1.0 | 6.0 |
Alfred Meyer | 1.0 | 29.0 |
Alfred Zeisler | 14.0 | 9.0 |
Alfred, Hereditary Prince of Saxe-Coburg and Gotha | 4.0 | 11.0 |
Alice Pike Barney | 3.0 | 9.0 |
Alice and Bob | 2.0 | 7.0 |
All Ceylon Tamil Congress | 3.0 | 3.0 |
All of Me (Boy Oh Boy) | 1.0 | 4.0 |
Allaire | 9.0 | 10.0 |
Allan Kardec's tomb | 1.0 | 9.0 |
Alligny-en-Morvan | 2.0 | 4.0 |
Allis-Chalmers | 1.0 | 3.0 |
Allison Anders | 9.0 | 9.0 |
Almbach | 1.0 | 4.0 |
Alpirsbach | 12.0 | 5.0 |
Alseno | 14.0 | 12.0 |
Altavilla Irpina | 14.0 | 13.0 |
Altenkirchen | 27.0 | 14.0 |
Amable | 3.0 | 8.0 |
Amanda Walsh | 8.0 | 6.0 |
Amanojaku | 1.0 | 5.0 |
Amaryllis | 5.0 | 20.0 |
Amazing | 14.0 | 45.0 |
Amazon basin | 2.0 | 12.0 |
Ameinias of Athens | 4.0 | 7.0 |
American Idol, season 4 | 2.0 | 4.0 |
Amiens railway station | 4.0 | 13.0 |
Ammergau Alps | 1.0 | 3.0 |
Amongst Women | 1.0 | 4.0 |
Amor y rock and roll | 2.0 | 5.0 |
Ampleforth College | 123.0 | 1.0 |
Amstenrade Castle: brick wall southwest of the gate to the vegetable garden | 1.0 | 6.0 |
Amulet | 3.0 | 9.0 |
Anastasia of Serbia | 4.0 | 9.0 |
Andrea Ahmann | 1.0 | 7.0 |
Andrea Costantini | 4.0 | 7.0 |
Andrew Dasburg | 1.0 | 10.0 |
Andrew Divoff | 24.0 | 7.0 |
Andrew Wells | 1.0 | 8.0 |
Andriy Bandera | 4.0 | 9.0 |
Andronikos II of Trebizond | 4.0 | 7.0 |
András Fricsay | 3.0 | 6.0 |
André Forcier | 8.0 | 8.0 |
André Hazes | 4.0 | 11.0 |
André-Paul Antoine | 8.0 | 11.0 |
Andrés Cuevas González | 1.0 | 4.0 |
Angels & Stars | 3.0 | 8.0 |
Angels' Story | 1.0 | 4.0 |
Anima Rossa | 2.0 | 6.0 |
Animetal Marathon V | 2.0 | 5.0 |
Anisogammaridae | 8.0 | 3.0 |
Anita Gillette | 8.0 | 8.0 |
Anita Laurenzi | 2.0 | 5.0 |
Ann Rinaldi | 7.0 | 5.0 |
Annalena | 6.0 | 1.0 |
Annaram | 1.0 | 4.0 |
Anne Goursaud | 3.0 | 7.0 |
Anne of Lorraine, duchess of Aumale | 5.0 | 9.0 |
Annie Degroote | 2.0 | 6.0 |
Annie Dufresne | 3.0 | 6.0 |
Annie Rosar | 31.0 | 8.0 |
Anodyne | 1.0 | 9.0 |
Anpyeong station | 1.0 | 4.0 |
Ans Kremer | 6.0 | 5.0 |
Anthonie Verstraelen | 1.0 | 8.0 |
Anthonio | 2.0 | 4.0 |
Anthony Andrews | 14.0 | 9.0 |
Anthony I, Count of Ligny | 4.0 | 8.0 |
Antipater of Tarsus | 3.0 | 6.0 |
Antoine Balpêtré | 40.0 | 9.0 |
Antonin Lovrier | 1.0 | 8.0 |
Antonio Rey González | 1.0 | 6.0 |
Antrenas | 3.0 | 5.0 |
Antwerp | 1992.0 | 61.0 |
António Lobo Antunes | 1.0 | 11.0 |
Anushka Sharma | 8.0 | 9.0 |
Anything but Mine | 2.0 | 6.0 |
Anyue County | 71.0 | 72.0 |
Anywhere Is | 2.0 | 6.0 |
Apart | 2.0 | 13.0 |
Aphrodite Terra quadrangle | 1.0 | 3.0 |
Apinae | 18.0 | 3.0 |
Apodi | 2.0 | 3.0 |
Apphia Yu | 1.0 | 4.0 |
April Grace | 12.0 | 6.0 |
Arabella Figg | 1.0 | 5.0 |
Araglas | 2.0 | 6.0 |
Aragonese Party | 2.0 | 5.0 |
Arales | 2.0 | 3.0 |
Araruama | 5.0 | 3.0 |
Arava | 1.0 | 5.0 |
Arbourse | 1.0 | 4.0 |
Archettes | 2.0 | 4.0 |
Archibald Primrose, 5th Earl of Rosebery | 2.0 | 13.0 |
Are Hilstad | 1.0 | 5.0 |
Argente | 1.0 | 5.0 |
Argenton | 2.0 | 3.0 |
Aristobulus of Chalcis | 2.0 | 4.0 |
Arizona Combat Sports | 6.0 | 1.0 |
Arkhangelsk Governorate | 7.0 | 4.0 |
Arlersteeg | 1.0 | 4.0 |
Arlington, Vermont | 4.0 | 3.0 |
Arne Mattsson | 10.0 | 8.0 |
Arnes | 6.0 | 9.0 |
Arnold Pinnock | 5.0 | 6.0 |
Arres | 5.0 | 8.0 |
Art Zoyd | 4.0 | 1.0 |
Artaxerxes I of Persia | 4.0 | 7.0 |
Artur Olech | 1.0 | 11.0 |
Arturo de Córdova | 19.0 | 8.0 |
Arzacq-Arraziguet | 3.0 | 4.0 |
As Neves | 1.0 | 4.0 |
Asakusa | 20.0 | 3.0 |
Asian Dreamer | 2.0 | 5.0 |
Asiya bint Muzahim | 1.0 | 4.0 |
Assigny | 5.0 | 8.0 |
Assis Brasil | 1.0 | 4.0 |
Associated Artists Productions | 2.0 | 2.0 |
Associação Desportiva Bahia de Feira | 2.0 | 4.0 |
Astronaute | 3.0 | 6.0 |
Atiqah Hasiholan | 3.0 | 5.0 |
Auburn High School | 5.0 | 3.0 |
Auchy-la-Montagne | 1.0 | 4.0 |
Audiophiles | 2.0 | 9.0 |
Audouin Dollfus | 1.0 | 7.0 |
Audun-le-Roman | 8.0 | 13.0 |
Augustus the Younger, Duke of Brunswick-Lüneburg | 8.0 | 20.0 |
Austin M. Purves, Jr. | 2.0 | 6.0 |
Autonomous University of Santo Domingo | 25.0 | 1.0 |
Aventignan | 2.0 | 5.0 |
Avex Group | 205.0 | 6.0 |
Aviron Bayonnais FC | 6.0 | 3.0 |
Avondance | 2.0 | 4.0 |
Awala-Yalimapo | 2.0 | 4.0 |
Axintele | 3.0 | 9.0 |
Ayacucho Department, San Luis | 1.0 | 3.0 |
Azalea | 2.0 | 3.0 |
Azzo | 8.0 | 1.0 |
Azé | 2.0 | 4.0 |
BGM | 3.0 | 10.0 |
Baba Saad | 2.0 | 6.0 |
Babasónica Electrónica | 2.0 | 3.0 |
Baby by Me | 2.0 | 9.0 |
Babylon Squared | 2.0 | 6.0 |
Bacchus and Ariadne | 4.0 | 103.0 |
Back for More | 3.0 | 9.0 |
Bad Feilnbach | 8.0 | 3.0 |
Bahawalnagar District | 1.0 | 2.0 |
Baikonur Cosmodrome | 8.0 | 2.0 |
Bairo | 7.0 | 8.0 |
Bakit Baligtad Magbasa ng Libro ang mga Pilipino? | 2.0 | 7.0 |
Balige | 1.0 | 3.0 |
Ballesteros | 1.0 | 4.0 |
Bang Nai Si | 1.0 | 3.0 |
Bangalore | 286.0 | 12.0 |
Banksy | 3.0 | 13.0 |
Banlung | 1.0 | 4.0 |
Banquet | 4.0 | 10.0 |
Banquet of Squad D of the Crossbow Civic Guards, „The Braspenning Banquet“ | 1.0 | 4.0 |
Bantega | 2.0 | 4.0 |
Bar-le-Duc | 77.0 | 9.0 |
Barbara Adolph | 8.0 | 6.0 |
Barbara London | 1.0 | 14.0 |
Barges | 2.0 | 8.0 |
Barjac | 19.0 | 24.0 |
Barnt Green | 3.0 | 4.0 |
Bartolini Salimbeni Annunciation | 1.0 | 10.0 |
Basiliscus | 1.0 | 7.0 |
Bastiaan | 21.0 | 1.0 |
Batmobile | 1.0 | 3.0 |
Battle of Austerlitz | 13.0 | 3.0 |
Battle of Five Armies | 8.0 | 11.0 |
Battle of Singapore | 6.0 | 1.0 |
Bay of Islands | 3.0 | 4.0 |
Baños de Tajo | 4.0 | 8.0 |
Be Ready Boys: Appalachia to Abilene | 2.0 | 5.0 |
Beata Schimscheiner | 1.0 | 5.0 |
Beatriz Michelena | 2.0 | 9.0 |
Beaumont-de-Lomagne | 7.0 | 5.0 |
Beechcraft Musketeer | 2.0 | 3.0 |
Beer for My Horses | 2.0 | 20.0 |
Before I Go to Sleep | 1.0 | 23.0 |
Beijing Sport University F.C. | 8.0 | 3.0 |
Belarusian Orthodox Church | 2.0 | 7.0 |
Belle Plaine | 7.0 | 9.0 |
Belleisle-class ironclad | 2.0 | 5.0 |
Belmontet | 1.0 | 4.0 |
Belvoir Castle | 6.0 | 4.0 |
Benagéber | 3.0 | 6.0 |
Benas | 2.0 | 1.0 |
Benedikt Gollhardt | 1.0 | 5.0 |
Benedito Leite | 1.0 | 3.0 |
Benigembla | 6.0 | 9.0 |
Benito Sagredo | 1.0 | 4.0 |
Benny Beimer | 5.0 | 15.0 |
Benson Records | 14.0 | 1.0 |
Benxi | 11.0 | 11.0 |
Beorn (DNB00) | 1.0 | 4.0 |
Beppe Cardile | 1.0 | 7.0 |
Berg bei Rohrbach | 3.0 | 4.0 |
Bernadette Paaßen | 2.0 | 5.0 |
Bernard of Świdnica | 11.0 | 13.0 |
Bernd Förster | 1.0 | 15.0 |
Bernward | 16.0 | 1.0 |
Bertelsmann | 17.0 | 12.0 |
Berville | 4.0 | 5.0 |
Bessarabia | 18.0 | 1.0 |
Bethlehem Sparrows Point Shipyard | 3.0 | 2.0 |
Beuvillers | 8.0 | 14.0 |
Bever | 14.0 | 20.0 |
Beverley Callard | 1.0 | 5.0 |
Bhim Singh Rana | 1.0 | 5.0 |
Biebrich, Rhineland Palatinate | 2.0 | 3.0 |
Big Pokey | 1.0 | 4.0 |
Bill Bergson Lives Dangerously | 2.0 | 37.0 |
Bill Chott | 3.0 | 4.0 |
Bill Mason | 7.0 | 12.0 |
Bill Williams | 22.0 | 46.0 |
Billy Breathes | 1.0 | 4.0 |
Billy Wirth | 7.0 | 6.0 |
Bilthoven railway station | 2.0 | 6.0 |
Bingcun | 1.0 | 3.0 |
Bingen | 5.0 | 6.0 |
Binnenweg | 23.0 | 35.0 |
Birmingham Railway Carriage and Wagon Company | 4.0 | 4.0 |
Bisignano | 19.0 | 15.0 |
Bize | 4.0 | 9.0 |
Bjørg Tingstad | 1.0 | 4.0 |
Black Moses | 1.0 | 4.0 |
Blandford-Blenheim | 2.0 | 3.0 |
Blattodea | 8.0 | 4.0 |
Blazon Stone | 2.0 | 5.0 |
Blincourt | 1.0 | 4.0 |
Blood Promise | 2.0 | 14.0 |
Bloodletting & Miraculous Cures | 1.0 | 5.0 |
Blue Nile | 2.0 | 9.0 |
Blue Ribbon | 3.0 | 3.0 |
Blue Suede Shoes | 1.0 | 5.0 |
Bluffton | 5.0 | 6.0 |
Blythewood | 1.0 | 3.0 |
Blåsut metro station | 2.0 | 8.0 |
Bmp8a | 2.0 | 5.0 |
Bob Stephenson | 7.0 | 32.0 |
Bobby Andrews | 4.0 | 6.0 |
Bobby Roth | 20.0 | 7.0 |
Bodil Steensen-Leth | 1.0 | 5.0 |
Boeing 737 Next Generation | 62.0 | 5.0 |
Bogy | 6.0 | 12.0 |
Boldklubben 1913 | 1.0 | 4.0 |
Bolesławiec | 37.0 | 7.0 |
Bom Jesus do Norte, Espírito Santo | 1.0 | 3.0 |
Book of Angels | 1.0 | 3.0 |
Boris Isaković | 16.0 | 5.0 |
Borkowski | 9.0 | 2.0 |
Borough of Manhattan Community College | 1.0 | 4.0 |
Borrazópolis | 1.0 | 3.0 |
Borsoniidae | 9.0 | 3.0 |
Boršov nad Vltavou | 7.0 | 10.0 |
Botiza | 3.0 | 9.0 |
Boualem Sansal | 1.0 | 8.0 |
Boulin | 2.0 | 5.0 |
Boyd Morgan | 4.0 | 10.0 |
Bradford Dillman | 38.0 | 8.0 |
Break a Dawn | 2.0 | 4.0 |
Brendan James | 5.0 | 12.0 |
Brian Does Hollywood | 2.0 | 5.0 |
Brian Freeman | 1.0 | 13.0 |
Brian Harold Mason | 2.0 | 13.0 |
Brian Michael Bendis | 1.0 | 8.0 |
Brian Tyler | 8.0 | 16.0 |
Brian in Love | 2.0 | 4.0 |
Britta | 85.0 | 1.0 |
Brockham | 1.0 | 5.0 |
Broekland | 1.0 | 4.0 |
Brothers & Sisters, season 3 | 2.0 | 5.0 |
Brotton | 1.0 | 2.0 |
Bruce County | 16.0 | 11.0 |
Bruce Degen | 3.0 | 4.0 |
Bruno Hübner | 16.0 | 15.0 |
Bruno Wolkowitch | 13.0 | 8.0 |
Bryan Gregory | 1.0 | 6.0 |
Bud Powell's Moods | 1.0 | 4.0 |
Bughea de Sus | 3.0 | 9.0 |
Bumble Bees | 1.0 | 4.0 |
Burgemeester van Rijnsingel | 3.0 | 4.0 |
Burning Bridges | 7.0 | 25.0 |
Bussloo | 1.0 | 3.0 |
By | 2.0 | 5.0 |
Byl jednou jeden král… | 1.0 | 7.0 |
Bárbara Lennie | 2.0 | 6.0 |
Bélarga | 3.0 | 5.0 |
Bérault | 2.0 | 7.0 |
C# | 13.0 | 6.0 |
C-130R Hercules | 1.0 | 7.0 |
C-3PO | 2.0 | 7.0 |
C.F. União de Coimbra | 2.0 | 3.0 |
CD34 molecule | 1.0 | 32.0 |
Cabinet Schmidt III | 2.0 | 4.0 |
Cabral Ibacka | 1.0 | 6.0 |
Cadaqués | 10.0 | 7.0 |
Cajamarca | 28.0 | 30.0 |
Calanca | 15.0 | 22.0 |
Calatorao | 1.0 | 5.0 |
Caldana | 2.0 | 4.0 |
Californium | 21.0 | 9.0 |
Caminha | 4.0 | 4.0 |
Camminghastraat | 6.0 | 4.0 |
Campeonato Sul-Mato-Grossense | 1.0 | 3.0 |
Campo Marzio | 1.0 | 4.0 |
Can Can/Promise You | 2.0 | 4.0 |
Can It Be All So Simple | 2.0 | 5.0 |
Canadian County | 5.0 | 5.0 |
Capayán Department | 1.0 | 3.0 |
Cappel | 6.0 | 12.0 |
Cappelle sul Tavo | 7.0 | 10.0 |
Capurso | 15.0 | 11.0 |
Capvern | 3.0 | 5.0 |
Carabaya Province | 1.0 | 3.0 |
Caracal | 7.0 | 13.0 |
Carbonia | 32.0 | 17.0 |
Carbost | 1.0 | 6.0 |
Carita Holmström | 1.0 | 9.0 |
Carl Craig | 2.0 | 9.0 |
Carl Spitzweg | 7.0 | 10.0 |
Carl-Herbert Dieden | 2.0 | 5.0 |
Carla Bartheel | 1.0 | 8.0 |
Carmen Franco, 1st Duchess of Franco | 6.0 | 12.0 |
Caroline Munro | 14.0 | 8.0 |
Carsten Sieling | 1.0 | 11.0 |
Casalabriva | 2.0 | 3.0 |
Castaneda | 7.0 | 11.0 |
Castellcir | 9.0 | 12.0 |
Castelldefels railway station | 2.0 | 4.0 |
Castello d'Agogna | 6.0 | 9.0 |
Castelnau-de-Montmiral | 3.0 | 4.0 |
Castelnuovo di Val di Cecina | 13.0 | 10.0 |
Castelu | 3.0 | 9.0 |
Castle Rising | 1.0 | 5.0 |
Category:2010s in the United Kingdom | 10.0 | 3.0 |
Category:April 29, 2010 | 2.0 | 5.0 |
Category:August 26, 2008 | 2.0 | 5.0 |
Category:British Islands | 1.0 | 3.0 |
Category:Brown algae | 1.0 | 2.0 |
Category:Deaths in Bentivoglio | 1.0 | 4.0 |
Category:Deaths in Borgo Tossignano | 1.0 | 4.0 |
Category:Deaths in Cantù | 1.0 | 4.0 |
Category:Deaths in Carcare | 1.0 | 4.0 |
Category:Deaths in Castel Ritaldi | 1.0 | 4.0 |
Category:Deaths in Chiari, Lombardy | 1.0 | 4.0 |
Category:Deaths in Clusone | 1.0 | 4.0 |
Category:Deaths in Coeur d'Alene | 1.0 | 4.0 |
Category:Deaths in Dießen am Ammersee | 1.0 | 4.0 |
Category:Deaths in Don Benito | 1.0 | 4.0 |
Category:Deaths in Douai | 1.0 | 4.0 |
Category:Deaths in Framura | 1.0 | 4.0 |
Category:Deaths in Gabrovo | 1.0 | 4.0 |
Category:Deaths in Garlasco | 1.0 | 4.0 |
Category:Deaths in Governorate of Livonia | 1.0 | 4.0 |
Category:Deaths in Kirkkonummi | 1.0 | 4.0 |
Category:Deaths in Ksar el-Kebir | 1.0 | 4.0 |
Category:Deaths in Kyzylorda Province | 1.0 | 4.0 |
Category:Deaths in Königs Wusterhausen | 1.0 | 4.0 |
Category:Deaths in Lake Havasu City | 1.0 | 4.0 |
Category:Deaths in Lorenzago di Cadore | 1.0 | 4.0 |
Category:Deaths in Lyons-la-Forêt | 1.0 | 4.0 |
Category:Deaths in Manchester | 1.0 | 4.0 |
Category:Deaths in Mukacheve Raion | 1.0 | 4.0 |
Category:Deaths in Nanping | 1.0 | 4.0 |
Category:Deaths in Oristano | 1.0 | 4.0 |
Category:Deaths in Rolampont | 1.0 | 4.0 |
Category:Deaths in Sondika | 1.0 | 4.0 |
Category:Deaths in Struga | 1.0 | 4.0 |
Category:Deaths in Toano | 1.0 | 4.0 |
Category:Deaths in Vitoria-Gasteiz | 1.0 | 4.0 |
Category:February 16, 2008 | 2.0 | 5.0 |
Category:February 9, 2015 | 2.0 | 5.0 |
Category:Fictional mammals | 2.0 | 2.0 |
Category:Films set in Lebanon | 1.0 | 4.0 |
Category:Films set in Marseille | 1.0 | 4.0 |
Category:Films shot in Bahrain | 2.0 | 5.0 |
Category:Films shot in Melun | 1.0 | 4.0 |
Category:Films shot in Philadelphia | 2.0 | 5.0 |
Category:Films shot in Potenza | 1.0 | 4.0 |
Category:Films shot in Rio Grande do Sul | 1.0 | 4.0 |
Category:Films shot in San Diego | 2.0 | 5.0 |
Category:Films shot in South Dakota | 2.0 | 5.0 |
Category:Films shot in Trentino-South Tyrol | 1.0 | 4.0 |
Category:Jordanian people | 1.0 | 4.0 |
Category:July 30, 2008 | 2.0 | 5.0 |
Category:June 29, 2010 | 2.0 | 5.0 |
Category:March 16, 2011 | 2.0 | 5.0 |
Category:March 28, 2006 | 2.0 | 5.0 |
Category:May 10, 2005 | 2.0 | 5.0 |
Category:October 18, 2005 | 2.0 | 5.0 |
Category:People from Michalovce | 1.0 | 4.0 |
Category:People from Sigulda | 1.0 | 4.0 |
Category:September 20, 2010 | 2.0 | 5.0 |
Category:Two and a Half Men characters | 1.0 | 4.0 |
Catherine Sutherland | 2.0 | 6.0 |
Catshuis | 2.0 | 7.0 |
Cattle in a Meadow | 1.0 | 4.0 |
Caucasus Mountains | 9.0 | 6.0 |
Caught You | 2.0 | 5.0 |
Cayo Lara | 1.0 | 9.0 |
Cazevieille | 2.0 | 5.0 |
Cedrasco | 6.0 | 9.0 |
Ceillac | 9.0 | 11.0 |
Celeste Cid | 1.0 | 6.0 |
Central Bible College | 1.0 | 2.0 |
Cergy-Pontoise University | 1.0 | 3.0 |
Certosa di Pavia railway station | 1.0 | 5.0 |
Cestona | 4.0 | 5.0 |
Ceyssac | 1.0 | 4.0 |
Ceyzérieu | 12.0 | 13.0 |
Chajiao Subdistrict, Guangzhou | 1.0 | 3.0 |
Chaltyr | 2.0 | 4.0 |
Chambolle-Musigny | 3.0 | 6.0 |
Chameyrat | 8.0 | 10.0 |
Chandi | 2.0 | 2.0 |
Chandni | 3.0 | 18.0 |
Chandra Wilson | 5.0 | 8.0 |
Changdong Town | 1.0 | 3.0 |
Changli | 1.0 | 3.0 |
Changli County | 17.0 | 19.0 |
Chantraines | 2.0 | 5.0 |
Chapelle-Royale | 1.0 | 4.0 |
Charles Berkeley, 2nd Earl of Berkeley | 7.0 | 17.0 |
Charles Planat | 1.0 | 11.0 |
Charles Wellford Leavitt | 2.0 | 7.0 |
Charles William, Duke of Saxe-Meiningen | 4.0 | 15.0 |
Charles, Prince of Rochefort | 3.0 | 5.0 |
Charlevoix-Est Regional County Municipality | 8.0 | 8.0 |
Charlotte Chaffanjon | 1.0 | 10.0 |
Charlotte Desmares | 1.0 | 11.0 |
Charnay | 6.0 | 8.0 |
Chauvigny | 8.0 | 8.0 |
Chauvincourt-Provemont | 2.0 | 4.0 |
Cheech & Chong | 11.0 | 5.0 |
Chelsea Girl | 2.0 | 7.0 |
Chemin de Fer du Blanc-Argent | 5.0 | 3.0 |
Chen Yannian | 1.0 | 5.0 |
Chesnois-Auboncourt | 7.0 | 11.0 |
Chicago VIII | 2.0 | 5.0 |
Chikuhei Nakajima | 1.0 | 5.0 |
Chimney's Afire | 1.0 | 4.0 |
Chintila | 1.0 | 6.0 |
Chiry-Ourscamp | 3.0 | 4.0 |
Chitonina | 3.0 | 4.0 |
Chloranthaceae | 4.0 | 6.0 |
Chlothar I | 20.0 | 26.0 |
Chorzów Batory | 6.0 | 3.0 |
Chouain | 6.0 | 9.0 |
Chris Ofili | 1.0 | 10.0 |
Chris Petersen | 2.0 | 17.0 |
Chris Thomas | 4.0 | 30.0 |
Christ Church Nichola Town Parish | 1.0 | 3.0 |
Christiaen Jansz van Bieselingen | 1.0 | 7.0 |
Christian Décamps | 1.0 | 8.0 |
Christian Erickson | 2.0 | 6.0 |
Christian Lorenz | 1.0 | 8.0 |
Christian Pikes | 2.0 | 5.0 |
Christian Schramm | 1.0 | 7.0 |
Christian Stolte | 5.0 | 6.0 |
Christine Carère | 16.0 | 7.0 |
Christine Haas | 2.0 | 5.0 |
Christoph Ahlhaus | 2.0 | 10.0 |
Christoph Schönborn | 1.0 | 18.0 |
Christoph Zrenner | 1.0 | 5.0 |
Christopher Cornford | 4.0 | 6.0 |
Christopher Hewett | 4.0 | 8.0 |
Christopher Monger | 3.0 | 7.0 |
Chromatics | 3.0 | 2.0 |
Chrzanów County | 6.0 | 9.0 |
Chuck Versus the Role Models | 2.0 | 5.0 |
Church Minshull | 1.0 | 5.0 |
Château d'Haroué | 2.0 | 6.0 |
Château de Monte-Cristo | 1.0 | 7.0 |
Château de Passy-les-Tours | 1.0 | 4.0 |
Châteaubourg | 10.0 | 12.0 |
Châteauneuf-Miravail | 8.0 | 11.0 |
Châteauneuf-Val-de-Bargis | 3.0 | 5.0 |
Ciego de Ávila | 4.0 | 2.0 |
Cikarang railway station | 2.0 | 5.0 |
Cikudapateuh railway station | 2.0 | 4.0 |
Cinema Bizarre | 6.0 | 1.0 |
Cinzia De Carolis | 10.0 | 7.0 |
Cirrus | 2.0 | 5.0 |
Cis, Trentino | 5.0 | 8.0 |
City College of New York | 475.0 | 5.0 |
City of Cockburn | 4.0 | 6.0 |
City of Ljubuški | 1.0 | 2.0 |
City of Matlosana | 3.0 | 4.0 |
City of Zavidovići | 2.0 | 3.0 |
Clansayes | 1.0 | 3.0 |
Clap Yo Hands | 2.0 | 5.0 |
Claude Lamoral, 3rd Prince of Ligne | 3.0 | 11.0 |
Claude Santelli | 1.0 | 7.0 |
Claude-Jean Philippe | 3.0 | 9.0 |
Claudio Pizarro | 1.0 | 12.0 |
Claus Friedrich von Reden | 1.0 | 7.0 |
Claville | 2.0 | 4.0 |
Clement Hurd | 4.0 | 6.0 |
Clockwork | 1.0 | 12.0 |
Clown Prince | 1.0 | 4.0 |
Club Juan Aurich | 38.0 | 5.0 |
Clémence Bretécher | 2.0 | 6.0 |
Coccinellidae | 36.0 | 3.0 |
Coccotremataceae | 1.0 | 3.0 |
Cocullo | 8.0 | 11.0 |
Codogno | 61.0 | 15.0 |
Cogullada | 1.0 | 3.0 |
Colorado College | 17.0 | 3.0 |
Colubridae | 22.0 | 4.0 |
Commander of the Order of Leopold II | 52.0 | 1.0 |
Comrat | 10.0 | 5.0 |
Concertación | 1.0 | 3.0 |
Condette | 2.0 | 4.0 |
Condoto | 2.0 | 3.0 |
Conrad II, Count of Oldenburg | 3.0 | 8.0 |
Consort Qi | 5.0 | 9.0 |
Conspiritus | 1.0 | 3.0 |
Constantin Melnik | 1.0 | 10.0 |
Conti di Ceccano | 4.0 | 2.0 |
Corbola | 9.0 | 9.0 |
Corbère | 7.0 | 11.0 |
Cornelia Stuyvesant Vanderbilt | 4.0 | 8.0 |
Corrado Guarducci | 21.0 | 6.0 |
Corre | 1.0 | 5.0 |
Corvera de Toranzo | 1.0 | 4.0 |
Cory Monteith | 4.0 | 11.0 |
Cosmere | 6.0 | 2.0 |
Countess Claudine Rhédey von Kis-Rhéde | 2.0 | 8.0 |
Countess Ermesinde II, Countess of Luxembourg | 6.0 | 9.0 |
Craig Pearce | 4.0 | 6.0 |
Criminal Minds, season 4 | 2.0 | 5.0 |
Crimson and Clover | 2.0 | 5.0 |
Criquetot-sur-Ouville | 2.0 | 3.0 |
Crisis | 7.0 | 59.0 |
Crocefieschi | 7.0 | 9.0 |
Cross Over | 2.0 | 12.0 |
Crusade | 6.0 | 34.0 |
Cybernetic Dreams of Pi | 1.0 | 3.0 |
Cyrillaceae | 1.0 | 5.0 |
César Herráiz Pujol | 1.0 | 5.0 |
Cézan | 1.0 | 4.0 |
Côtière | 1.0 | 1.0 |
D.S. | 1.0 | 5.0 |
DNA repair-deficiency disorder | 1.0 | 1.0 |
Da Nang | 8.0 | 6.0 |
Dactylopodida | 2.0 | 3.0 |
Daisy Campbell | 2.0 | 4.0 |
Dalbe Station | 2.0 | 4.0 |
Dan Le Sac | 1.0 | 4.0 |
Daniel Conley | 2.0 | 8.0 |
Daniel Day-Lewis | 33.0 | 18.0 |
Daniel Isăilă | 1.0 | 6.0 |
Daniel Lupi | 6.0 | 3.0 |
Dans un autre monde | 2.0 | 7.0 |
Dantivarman | 2.0 | 5.0 |
Daphné Roulier | 2.0 | 5.0 |
Dario D'Ambrosio | 1.0 | 7.0 |
Darren Jeffries | 1.0 | 5.0 |
Dashboard Confessional | 8.0 | 2.0 |
Date Muratomi | 2.0 | 5.0 |
Dava Sobel | 1.0 | 11.0 |
Dave Brown | 2.0 | 112.0 |
David Mills | 3.0 | 55.0 |
David Valcin | 1.0 | 4.0 |
Davyd Sviatoslavich | 5.0 | 7.0 |
De Gregori | 2.0 | 5.0 |
De Mi Puño y Letra | 1.0 | 4.0 |
DeRuyter | 2.0 | 3.0 |
Dean Edwards | 1.0 | 29.0 |
Dear Miss Lonelyhearts | 1.0 | 6.0 |
Decade of Decadence | 2.0 | 3.0 |
Decas | 2.0 | 4.0 |
Deeper, Deeper, Deeper Still | 2.0 | 6.0 |
Delia Fiallo | 2.0 | 5.0 |
Delmark Records | 8.0 | 3.0 |
Denis Lazure | 1.0 | 12.0 |
Denise Clair | 5.0 | 6.0 |
Der Tunnel | 2.0 | 3.0 |
Derbidae | 98.0 | 3.0 |
Derrick O'Connor | 14.0 | 6.0 |
Destination Berlin | 2.0 | 4.0 |
Devrim Evin | 1.0 | 5.0 |
Diana Hardcastle | 1.0 | 4.0 |
Dianne Buckner | 1.0 | 5.0 |
Dihydrofolate reductase | 1.0 | 10.0 |
Dilys Laye | 2.0 | 6.0 |
Dimitrios Vranopoulos | 1.0 | 9.0 |
Dimítris Kókkinos | 1.0 | 4.0 |
Diocese of Haderslev | 4.0 | 2.0 |
Dirk Oldenburg | 1.0 | 8.0 |
Disraeli | 1.0 | 34.0 |
Dissing+Weitling | 1.0 | 5.0 |
District of Alaska | 5.0 | 4.0 |
Dmitry Vasilyevich | 1.0 | 4.0 |
Do It | 4.0 | 8.0 |
Dobrinsky District | 2.0 | 3.0 |
Doctor P | 1.0 | 5.0 |
Dodești | 3.0 | 9.0 |
Dogville | 1.0 | 36.0 |
We can note that most nodes have quite low in- and out-degrees, but a few nodes stand out. Some nodes have up to 900 out-degree and some over 1 million in-degree! This high in-degree is expected, as these nodes mainly correspond to descriptions of other entities. We can verify that the nodes with highest in-degrees do themselves not have significantly high out-degrees.
display(degrees.sort($"inDegree".desc))
id | inDegree | outDegree |
---|---|---|
human | 1521012.0 | 20.0 |
male | 1277099.0 | 6.0 |
United States of America | 281936.0 | 174.0 |
female | 235329.0 | 6.0 |
politician | 223963.0 | 3.0 |
Germany | 205497.0 | 272.0 |
France | 178816.0 | 132.0 |
association football player | 129414.0 | 5.0 |
Netherlands | 115585.0 | 98.0 |
taxon | 114543.0 | 3.0 |
actor | 110153.0 | 3.0 |
Italy | 99514.0 | 226.0 |
genus | 99476.0 | 2.0 |
United Kingdom | 82023.0 | 73.0 |
film | 75652.0 | 3.0 |
English | 55215.0 | 10.0 |
Rijksmonument | 54183.0 | 2.0 |
People's Republic of China | 52849.0 | 106.0 |
album | 52191.0 | 4.0 |
writer | 51369.0 | 4.0 |
author | 50638.0 | 2.0 |
journalist | 44990.0 | 3.0 |
Canada | 43389.0 | 152.0 |
painter | 42688.0 | 4.0 |
Russia | 42317.0 | 210.0 |
French | 41775.0 | 12.0 |
asteroid | 41446.0 | 2.0 |
single | 39820.0 | 4.0 |
Paris | 39791.0 | 255.0 |
asteroid belt | 39051.0 | 2.0 |
Sweden | 37293.0 | 113.0 |
association football | 36644.0 | 4.0 |
singer | 36142.0 | 3.0 |
composer | 36132.0 | 5.0 |
Spain | 32922.0 | 72.0 |
Japan | 32825.0 | 91.0 |
sportsperson | 32713.0 | 4.0 |
commune of France | 32480.0 | 7.0 |
Poland | 30725.0 | 90.0 |
Soviet Union | 30483.0 | 52.0 |
Austria | 30315.0 | 73.0 |
Australia | 29186.0 | 167.0 |
Norway | 28945.0 | 86.0 |
Switzerland | 28801.0 | 72.0 |
John | 26314.0 | 68.0 |
painting | 25980.0 | 6.0 |
UTC+01:00 | 25664.0 | 1.0 |
lawyer | 23193.0 | 5.0 |
Priest | 22874.0 | 39.0 |
Book | 22553.0 | 6.0 |
baseball player | 22223.0 | 4.0 |
Brazil | 21923.0 | 231.0 |
Berlin | 21839.0 | 121.0 |
Democratic Party | 21099.0 | 94.0 |
film director | 20997.0 | 5.0 |
Moscow | 20802.0 | 113.0 |
Belgium | 20442.0 | 70.0 |
India | 20407.0 | 92.0 |
oil paint | 19848.0 | 3.0 |
township in China | 19561.0 | 2.0 |
historian | 19522.0 | 4.0 |
street | 19369.0 | 2.0 |
ice hockey player | 18802.0 | 4.0 |
musician | 18760.0 | 3.0 |
video game | 18637.0 | 6.0 |
Finland | 18554.0 | 65.0 |
poet | 18284.0 | 3.0 |
New York City | 18242.0 | 79.0 |
Republican Party | 18053.0 | 22.0 |
Architect | 18023.0 | 7.0 |
Rome | 17014.0 | 90.0 |
Argentina | 16694.0 | 75.0 |
Catholicism | 16466.0 | 1.0 |
engineer | 16224.0 | 3.0 |
diplomat | 16221.0 | 4.0 |
World War I | 16198.0 | 10.0 |
Order of Lenin | 15971.0 | 3.0 |
screenwriter | 15462.0 | 4.0 |
World War II | 15347.0 | 3.0 |
single-player video game | 15224.0 | 1.0 |
basketball player | 15173.0 | 5.0 |
Wikimedia category | 15121.0 | 13.0 |
Czech Republic | 15046.0 | 86.0 |
Canvas | 14968.0 | 14.0 |
Vienna | 14665.0 | 91.0 |
Q14371254 | 14538.0 | 13.0 |
Harvard University | 14468.0 | 5.0 |
member of the French National Assembly | 13798.0 | 4.0 |
London | 13631.0 | 105.0 |
Lincoln Near-Earth Asteroid Research | 12993.0 | 3.0 |
MIT Lincoln Laboratory | 12986.0 | 2.0 |
Robert | 12613.0 | 59.0 |
Road | 12489.0 | 9.0 |
township of the People's Republic of China | 12486.0 | 4.0 |
Romania | 12135.0 | 85.0 |
village | 11973.0 | 3.0 |
railway station | 11905.0 | 5.0 |
Iran | 11900.0 | 67.0 |
sculptor | 11643.0 | 3.0 |
Mexico | 11600.0 | 104.0 |
judge | 11367.0 | 5.0 |
Amsterdam | 11290.0 | 147.0 |
James | 11078.0 | 24.0 |
David | 11047.0 | 179.0 |
Charles | 11009.0 | 42.0 |
gridiron football player | 10941.0 | 4.0 |
United States representative | 10898.0 | 5.0 |
Greece | 10847.0 | 70.0 |
military officer | 10736.0 | 3.0 |
New Zealand | 10681.0 | 56.0 |
mayor | 10641.0 | 6.0 |
Spanish | 10640.0 | 11.0 |
theologian | 10595.0 | 3.0 |
Rijksmuseum | 10589.0 | 18.0 |
Paul | 10558.0 | 107.0 |
Q18002322 | 10335.0 | 16.0 |
Peter | 10234.0 | 62.0 |
house | 10221.0 | 2.0 |
Denmark | 10182.0 | 126.0 |
British Army | 10163.0 | 6.0 |
city | 10146.0 | 7.0 |
Hero of the Soviet Union | 10080.0 | 4.0 |
natural number | 10003.0 | 2.0 |
novelist | 9961.0 | 3.0 |
Munich | 9815.0 | 177.0 |
silent film | 9733.0 | 1.0 |
novel | 9701.0 | 3.0 |
Member of Parliament in the United Kingdom | 9671.0 | 4.0 |
German | 9652.0 | 17.0 |
George | 9643.0 | 88.0 |
guitar | 9614.0 | 2.0 |
Nordisk familjebok | 9578.0 | 2.0 |
church | 9524.0 | 14.0 |
doctorate | 9405.0 | 1.0 |
conductor | 9361.0 | 4.0 |
Russian Empire | 9317.0 | 10.0 |
2012 Summer Olympics | 9246.0 | 17.0 |
2008 Summer Olympics | 9125.0 | 9.0 |
Michael | 9122.0 | 102.0 |
Saint Petersburg | 9117.0 | 121.0 |
building | 9103.0 | 1.0 |
J-pop | 9067.0 | 1.0 |
physician | 9015.0 | 3.0 |
mathematician | 8993.0 | 3.0 |
economist | 8948.0 | 7.0 |
Los Angeles | 8893.0 | 61.0 |
short film | 8871.0 | 3.0 |
Social Democratic Party of Germany | 8833.0 | 26.0 |
jurist | 8832.0 | 3.0 |
bishop | 8672.0 | 7.0 |
photographer | 8583.0 | 4.0 |
Order of the Red Star | 8386.0 | 4.0 |
municipality of Germany | 8385.0 | 4.0 |
Hungary | 8352.0 | 61.0 |
8320.0 | 16.0 | |
drama film | 8226.0 | 3.0 |
cricketer | 8220.0 | 4.0 |
Milan | 8132.0 | 113.0 |
comune of Italy | 8101.0 | 5.0 |
Richard | 8080.0 | 31.0 |
rugby union player | 8021.0 | 4.0 |
place of death | 8021.0 | 3.0 |
Film producer | 8016.0 | 3.0 |
philosopher | 7964.0 | 4.0 |
2004 Summer Olympics | 7756.0 | 8.0 |
jazz | 7744.0 | 1.0 |
Ukraine | 7707.0 | 71.0 |
singer-songwriter | 7698.0 | 3.0 |
translator | 7606.0 | 5.0 |
Hans | 7595.0 | 42.0 |
episode | 7569.0 | 4.0 |
Joseph | 7542.0 | 91.0 |
physicist | 7534.0 | 3.0 |
Hamburg | 7451.0 | 64.0 |
Order of the Patriotic War 1st class | 7424.0 | 2.0 |
Nazi Party | 7401.0 | 13.0 |
family | 7401.0 | 7.0 |
South Africa | 7385.0 | 57.0 |
association football club | 7383.0 | 5.0 |
Turkey | 7195.0 | 123.0 |
sport cyclist | 7100.0 | 3.0 |
entrepreneur | 7096.0 | 4.0 |
Q12808966 | 7071.0 | 2.0 |
Karl | 7070.0 | 11.0 |
Indonesia | 7034.0 | 74.0 |
Jean | 7007.0 | 49.0 |
Order of the Red Banner | 6902.0 | 3.0 |
goalkeeper | 6884.0 | 22.0 |
Wikimedia list article | 6847.0 | 2.0 |
multiplayer game | 6807.0 | 1.0 |
Musée d'Orsay | 6776.0 | 12.0 |
Artist | 6624.0 | 5.0 |
2000 Summer Olympics | 6618.0 | 10.0 |
Italian | 6612.0 | 6.0 |
human settlement | 6605.0 | 1.0 |
Johann | 6586.0 | 25.0 |
England | 6583.0 | 20.0 |
Christian Democratic Union | 6485.0 | 36.0 |
species | 6475.0 | 3.0 |
opera singer | 6405.0 | 3.0 |
mayor of a place in France | 6351.0 | 4.0 |
Portugal | 6316.0 | 55.0 |
television presenter | 6281.0 | 4.0 |
South Korea | 6248.0 | 51.0 |
municipality of the Czech Republic | 6195.0 | 6.0 |
linguist | 6186.0 | 3.0 |
music educator | 6183.0 | 3.0 |
East Germany | 6156.0 | 45.0 |
José | 6154.0 | 12.0 |
Microsoft Windows | 6129.0 | 12.0 |
Australian rules football player | 6054.0 | 5.0 |
Guggenheim Fellowship | 5980.0 | 2.0 |
Q13564349 | 5956.0 | 16.0 |
Royal Society | 5867.0 | 2.0 |
botanist | 5862.0 | 3.0 |
chemist | 5823.0 | 3.0 |
Henry | 5810.0 | 47.0 |
Tokyo | 5766.0 | 110.0 |
1996 Summer Olympics | 5710.0 | 8.0 |
Prague | 5585.0 | 183.0 |
Pierre | 5561.0 | 23.0 |
rural settlement of Russia | 5543.0 | 3.0 |
tennis player | 5489.0 | 4.0 |
Chile | 5405.0 | 41.0 |
Louis | 5393.0 | 25.0 |
musical group | 5391.0 | 2.0 |
United States Navy | 5383.0 | 6.0 |
Knight of the Legion of Honour | 5375.0 | 4.0 |
pianist | 5242.0 | 3.0 |
Daniel | 5200.0 | 66.0 |
myocardial infarction | 5158.0 | 3.0 |
Walter | 5125.0 | 19.0 |
educationist | 5096.0 | 3.0 |
University of Michigan | 5084.0 | 3.0 |
musicologist | 5056.0 | 3.0 |
Nicholas | 5055.0 | 36.0 |
even number | 5000.0 | 2.0 |
odd number | 5000.0 | 2.0 |
river | 4971.0 | 3.0 |
archaeologist | 4961.0 | 6.0 |
Yale University | 4921.0 | 4.0 |
Carl | 4906.0 | 11.0 |
Naples | 4899.0 | 61.0 |
anthropologist | 4895.0 | 3.0 |
Leipzig | 4889.0 | 32.0 |
Senator of the French Fifth Republic | 4862.0 | 5.0 |
Frank | 4854.0 | 50.0 |
Florence | 4854.0 | 100.0 |
company | 4829.0 | 7.0 |
portrait | 4825.0 | 5.0 |
seiyū | 4823.0 | 2.0 |
Budapest | 4823.0 | 78.0 |
Vladimir | 4814.0 | 27.0 |
Alexander | 4804.0 | 134.0 |
municipality of Spain | 4800.0 | 7.0 |
Chicago | 4779.0 | 125.0 |
town | 4745.0 | 5.0 |
rugby league player | 4740.0 | 4.0 |
Ireland | 4736.0 | 76.0 |
Fellow of the Royal Society | 4722.0 | 2.0 |
1992 Summer Olympics | 4694.0 | 8.0 |
Edward | 4691.0 | 21.0 |
Metropolitan Museum of Art | 4689.0 | 6.0 |
Dresden | 4676.0 | 66.0 |
Smith | 4630.0 | 26.0 |
art historian | 4621.0 | 3.0 |
voice actor | 4595.0 | 3.0 |
athletics | 4575.0 | 3.0 |
Martin | 4540.0 | 60.0 |
teacher | 4530.0 | 7.0 |
male given name | 4520.0 | 3.0 |
landscape art | 4496.0 | 4.0 |
soldier | 4494.0 | 18.0 |
television series season | 4454.0 | 3.0 |
Model | 4422.0 | 3.0 |
Friedrich | 4408.0 | 8.0 |
Central European Time | 4405.0 | 2.0 |
Palomar Observatory | 4395.0 | 3.0 |
Columbia University | 4366.0 | 6.0 |
Japanese | 4353.0 | 6.0 |
Israel | 4309.0 | 100.0 |
Franz | 4300.0 | 38.0 |
Christian | 4299.0 | 52.0 |
Albert | 4288.0 | 32.0 |
Ivan | 4243.0 | 24.0 |
pop music | 4243.0 | 2.0 |
Member of Parliament in the Parliament of England | 4239.0 | 4.0 |
songwriter | 4215.0 | 3.0 |
Wilhelm | 4202.0 | 11.0 |
rock music | 4200.0 | 3.0 |
monument historique classé | 4167.0 | 2.0 |
monotypic taxon | 4157.0 | 2.0 |
Cologne | 4112.0 | 58.0 |
Officer's Cross of the Order of Merit of the Federal Republic of Germany | 4105.0 | 2.0 |
Thailand | 4096.0 | 102.0 |
archbishop | 4090.0 | 3.0 |
Member of the European Parliament (MEP) | 4079.0 | 3.0 |
astronomer | 4076.0 | 3.0 |
member of the House of Commons of Canada | 4069.0 | 5.0 |
kecamatan | 4060.0 | 4.0 |
canton of France (until 2015) | 4026.0 | 5.0 |
publisher | 4006.0 | 6.0 |
monument historique inscrit | 3997.0 | 2.0 |
Stuttgart | 3974.0 | 64.0 |
1988 Summer Olympics | 3947.0 | 12.0 |
Juan | 3943.0 | 13.0 |
Antonio | 3943.0 | 12.0 |
Philippines | 3932.0 | 47.0 |
Montreal | 3928.0 | 66.0 |
film actor | 3923.0 | 3.0 |
Mark | 3917.0 | 26.0 |
Q13365117 | 3916.0 | 4.0 |
Frankfurt am Main | 3914.0 | 74.0 |
Alfred | 3913.0 | 11.0 |
playwright | 3903.0 | 3.0 |
Arthur | 3899.0 | 93.0 |
Cross of the Order of Merit of the Federal Republic of Germany | 3874.0 | 2.0 |
Heinrich | 3851.0 | 25.0 |
Q13382286 | 3823.0 | 4.0 |
Conservative Party | 3811.0 | 30.0 |
Moscow State University | 3800.0 | 52.0 |
fencer | 3793.0 | 3.0 |
member of the German Bundestag | 3792.0 | 4.0 |
Order of the Patriotic War 2nd class | 3788.0 | 2.0 |
Turin | 3738.0 | 56.0 |
Giovanni | 3736.0 | 44.0 |
comedy film | 3725.0 | 4.0 |
television program | 3717.0 | 3.0 |
Georg | 3713.0 | 29.0 |
Svensk uppslagsbok | 3698.0 | 3.0 |
Maria | 3690.0 | 96.0 |
wood | 3679.0 | 4.0 |
University of California, Berkeley | 3677.0 | 3.0 |
Venice | 3672.0 | 122.0 |
Josef | 3659.0 | 14.0 |
Metro station | 3654.0 | 2.0 |
University of Tokyo | 3631.0 | 2.0 |
Islam | 3619.0 | 2.0 |
Otto | 3611.0 | 25.0 |
Buenos Aires | 3600.0 | 133.0 |
farmhouse | 3594.0 | 7.0 |
Madrid | 3594.0 | 113.0 |
cultural property | 3573.0 | 1.0 |
Princeton University | 3573.0 | 6.0 |
Hindi | 3549.0 | 7.0 |
horror film | 3537.0 | 3.0 |
television series | 3534.0 | 3.0 |
explorer | 3525.0 | 3.0 |
Columbia Records | 3457.0 | 5.0 |
song | 3454.0 | 1.0 |
basketball coach | 3447.0 | 3.0 |
Labour Party | 3446.0 | 44.0 |
sculpture | 3444.0 | 2.0 |
Mary | 3424.0 | 120.0 |
Commander of the Order of the British Empire | 3415.0 | 6.0 |
Warsaw | 3410.0 | 69.0 |
Opera | 3381.0 | 53.0 |
woman | 3374.0 | 4.0 |
Jacques | 3358.0 | 18.0 |
Ernst | 3334.0 | 17.0 |
civil parish | 3315.0 | 4.0 |
Hero of Socialist Labour | 3310.0 | 3.0 |
Washington, D.C. | 3299.0 | 47.0 |
subdivision of Russia | 3292.0 | 10.0 |
Zürich | 3275.0 | 137.0 |
Croix de guerre 1914–1918 | 3274.0 | 4.0 |
Hermann | 3263.0 | 15.0 |
Tom | 3263.0 | 12.0 |
Mike | 3261.0 | 28.0 |
Bill | 3243.0 | 12.0 |
athletics competitor | 3238.0 | 4.0 |
science fiction | 3221.0 | 4.0 |
François | 3220.0 | 25.0 |
University of Wisconsin–Madison | 3220.0 | 2.0 |
Basketball | 3215.0 | 30.0 |
Bulgaria | 3214.0 | 68.0 |
municipality seat | 3213.0 | 2.0 |
Serbia | 3208.0 | 46.0 |
chess player | 3202.0 | 4.0 |
year | 3180.0 | 5.0 |
Q12809484 | 3170.0 | 1.0 |
Kyiv | 3169.0 | 68.0 |
Stanford University | 3165.0 | 5.0 |
Johannes | 3150.0 | 45.0 |
Q10905276 | 3149.0 | 2.0 |
Curculionidae | 3136.0 | 4.0 |
Giuseppe | 3132.0 | 12.0 |
1972 Summer Olympics | 3126.0 | 9.0 |
piano | 3122.0 | 2.0 |
Père Lachaise Cemetery | 3116.0 | 12.0 |
Q17489143 | 3111.0 | 1.0 |
1984 Summer Olympics | 3105.0 | 7.0 |
North Brabant | 3096.0 | 83.0 |
Stockholm | 3093.0 | 36.0 |
psychologist | 3092.0 | 4.0 |
California | 3083.0 | 190.0 |
German Academy of Sciences Leopoldina | 3081.0 | 9.0 |
Documentary film | 3066.0 | 3.0 |
professor | 3058.0 | 5.0 |
Medal "For the Victory over Germany in the Great Patriotic War 1941–1945" | 3055.0 | 1.0 |
Uruguay | 3052.0 | 56.0 |
radio personality | 3048.0 | 4.0 |
volleyball player | 3034.0 | 4.0 |
Cornell University | 3029.0 | 5.0 |
Philadelphia | 3016.0 | 50.0 |
Carlos | 3004.0 | 56.0 |
Colombia | 2987.0 | 65.0 |
Jack | 2980.0 | 68.0 |
guitarist | 2976.0 | 3.0 |
Eton College | 2975.0 | 13.0 |
Officer of the Order of the British Empire | 2973.0 | 4.0 |
Hanover | 2971.0 | 33.0 |
Rudolf | 2968.0 | 7.0 |
baronet | 2964.0 | 2.0 |
illustrator | 2946.0 | 4.0 |
Chris | 2945.0 | 9.0 |
action film | 2925.0 | 3.0 |
homosexuality | 2917.0 | 1.0 |
given name | 2914.0 | 7.0 |
Samuel | 2913.0 | 25.0 |
Rotterdam | 2910.0 | 88.0 |
Esperanto | 2905.0 | 11.0 |
badminton player | 2902.0 | 4.0 |
Q16735927 | 2898.0 | 2.0 |
Joe | 2896.0 | 44.0 |
Anna | 2886.0 | 127.0 |
Henri | 2882.0 | 37.0 |
Andrew | 2881.0 | 60.0 |
Belarus | 2865.0 | 65.0 |
Greeks | 2864.0 | 1.0 |
commune of Romania | 2861.0 | 4.0 |
Harry | 2851.0 | 16.0 |
Brussels | 2850.0 | 53.0 |
Jones | 2832.0 | 27.0 |
suicide | 2823.0 | 2.0 |
University of Chicago | 2817.0 | 5.0 |
Wikimedia disambiguation page | 2808.0 | 7.0 |
Genoa | 2802.0 | 46.0 |
librarian | 2794.0 | 4.0 |
Jim | 2791.0 | 21.0 |
Williams | 2780.0 | 1.0 |
member of parliament | 2779.0 | 3.0 |
Royal Navy | 2773.0 | 10.0 |
Cuba | 2752.0 | 70.0 |
André | 2752.0 | 29.0 |
Esperantist | 2734.0 | 3.0 |
television actor | 2733.0 | 2.0 |
1976 Summer Olympics | 2732.0 | 8.0 |
soprano | 2729.0 | 2.0 |
Brown | 2726.0 | 3.0 |
Patrick | 2721.0 | 33.0 |
member of the Chamber of Representatives of Belgium | 2718.0 | 4.0 |
Bob | 2712.0 | 15.0 |
New York University | 2695.0 | 4.0 |
San Francisco | 2694.0 | 153.0 |
Q19622166 | 2684.0 | 3.0 |
Rijksmonument complex | 2683.0 | 2.0 |
member of the Chamber of Deputies of the Italian Republic | 2682.0 | 4.0 |
Biblioteca Museu Víctor Balaguer | 2682.0 | 3.0 |
Order of the Badge of Honour | 2681.0 | 2.0 |
banker | 2679.0 | 4.0 |
Slovenia | 2669.0 | 33.0 |
sociologist | 2667.0 | 3.0 |
Middelburg | 2665.0 | 32.0 |
2014 Winter Olympics | 2658.0 | 4.0 |
Francisco | 2652.0 | 44.0 |
New York | 2646.0 | 75.0 |
romantic comedy | 2646.0 | 3.0 |
Socialist Unity Party of Germany | 2645.0 | 9.0 |
Düsseldorf | 2640.0 | 63.0 |
Massachusetts Institute of Technology | 2638.0 | 6.0 |
female given name | 2636.0 | 3.0 |
Francesco | 2626.0 | 43.0 |
university | 2614.0 | 4.0 |
man | 2613.0 | 4.0 |
Estonia | 2610.0 | 49.0 |
Steve | 2610.0 | 39.0 |
Q19595175 | 2610.0 | 3.0 |
Cerambycidae | 2597.0 | 4.0 |
Slovakia | 2595.0 | 53.0 |
Knight's Cross of the Iron Cross | 2582.0 | 3.0 |
Legionnaire of Legion of Merit | 2570.0 | 1.0 |
Athens | 2561.0 | 102.0 |
Wolfgang | 2547.0 | 3.0 |
Andreas | 2546.0 | 33.0 |
Mario | 2538.0 | 47.0 |
National Academy of Sciences | 2534.0 | 2.0 |
sports season of a sports club | 2534.0 | 2.0 |
field hockey player | 2531.0 | 5.0 |
Toronto | 2527.0 | 45.0 |
swimmer | 2516.0 | 3.0 |
Scotland | 2507.0 | 37.0 |
Officer of the Legion of Honour | 2499.0 | 5.0 |
university teacher | 2494.0 | 6.0 |
Tehran | 2492.0 | 47.0 |
rugby player | 2491.0 | 4.0 |
Anton | 2487.0 | 26.0 |
Victor | 2481.0 | 73.0 |
Malaysia | 2476.0 | 44.0 |
cinematographer | 2474.0 | 4.0 |
Lyon | 2470.0 | 50.0 |
2010 Winter Olympics | 2468.0 | 13.0 |
Bologna | 2464.0 | 40.0 |
cadastral populated place in the Netherlands | 2461.0 | 2.0 |
Johnson | 2456.0 | 4.0 |
Bremen | 2454.0 | 61.0 |
record producer | 2453.0 | 4.0 |
municipality of Switzerland | 2450.0 | 5.0 |
member of the Reichstag of the German Empire | 2449.0 | 4.0 |
Francis | 2444.0 | 65.0 |
political party | 2424.0 | 1.0 |
Saxophone | 2421.0 | 3.0 |
Q13156709 | 2419.0 | 5.0 |
person | 2417.0 | 2.0 |
Manuel | 2417.0 | 24.0 |
Brooklyn | 2416.0 | 39.0 |
jazz musician | 2411.0 | 3.0 |
Trinity College | 2409.0 | 15.0 |
Medal of Honor | 2409.0 | 41.0 |
Roger | 2409.0 | 14.0 |
Michel | 2406.0 | 22.0 |
Croatia | 2405.0 | 55.0 |
Computer scientist | 2401.0 | 4.0 |
Member of the Chamber of Deputies of Mexico | 2392.0 | 3.0 |
1968 Summer Olympics | 2389.0 | 7.0 |
University of Toronto | 2388.0 | 3.0 |
The Hague | 2380.0 | 40.0 |
zoologist | 2370.0 | 3.0 |
member of the Parliament of Norway | 2362.0 | 5.0 |
municipality of Austria | 2362.0 | 4.0 |
Royal Swedish Academy of Sciences | 2348.0 | 9.0 |
Peru | 2346.0 | 66.0 |
thriller | 2346.0 | 3.0 |
Russian | 2340.0 | 5.0 |
Stalin Prize | 2339.0 | 4.0 |
religious painting | 2334.0 | 3.0 |
Wrocław | 2333.0 | 21.0 |
Herbert | 2331.0 | 17.0 |
Brian | 2327.0 | 5.0 |
romance film | 2327.0 | 3.0 |
Liberal Party of Canada | 2324.0 | 5.0 |
announcer | 2321.0 | 2.0 |
Copenhagen | 2315.0 | 25.0 |
La Silla Observatory | 2315.0 | 6.0 |
member of the Lok Sabha | 2308.0 | 4.0 |
biologist | 2307.0 | 3.0 |
Stephen | 2306.0 | 66.0 |
Marseille | 2302.0 | 89.0 |
Communist Party of Germany | 2300.0 | 12.0 |
Bonn | 2298.0 | 27.0 |
Werner | 2290.0 | 14.0 |
1980 Summer Olympics | 2284.0 | 7.0 |
Tom Gehrels | 2282.0 | 9.0 |
Adam | 2281.0 | 80.0 |
Latin | 2279.0 | 4.0 |
University of California, Los Angeles | 2278.0 | 2.0 |
Fritz | 2278.0 | 17.0 |
Ingrid van Houten-Groeneveld | 2269.0 | 9.0 |
murder | 2269.0 | 3.0 |
Cornelis Johannes van Houten | 2268.0 | 8.0 |
University of Vienna | 2262.0 | 6.0 |
Boston | 2258.0 | 66.0 |
tenor | 2248.0 | 1.0 |
Q15277251 | 2228.0 | 8.0 |
Ortsteil | 2228.0 | 3.0 |
Lithuania | 2218.0 | 48.0 |
Utrecht | 2218.0 | 69.0 |
University of Edinburgh | 2217.0 | 4.0 |
Georges | 2215.0 | 36.0 |
television film | 2210.0 | 2.0 |
Knight of the Order of Polonia Restituta | 2210.0 | 1.0 |
RCA Records, Inc. | 2208.0 | 4.0 |
Order of the October Revolution | 2207.0 | 1.0 |
Harvard Law School | 2207.0 | 4.0 |
Wilson | 2202.0 | 61.0 |
August | 2193.0 | 64.0 |
cardinal | 2190.0 | 4.0 |
Australian Labor Party | 2188.0 | 5.0 |
Groningen | 2175.0 | 87.0 |
Centre Party | 2173.0 | 23.0 |
family name | 2169.0 | 6.0 |
PlayStation 2 | 2165.0 | 8.0 |
Luis | 2163.0 | 17.0 |
Noctuidae | 2162.0 | 4.0 |
American Civil War | 2162.0 | 10.0 |
University of Göttingen | 2161.0 | 4.0 |
1964 Summer Olympics | 2152.0 | 7.0 |
Bernard | 2143.0 | 28.0 |
2010 Asian Games | 2136.0 | 7.0 |
Rio de Janeiro | 2134.0 | 159.0 |
Sydney | 2127.0 | 34.0 |
science fiction film | 2124.0 | 4.0 |
Oslo | 2112.0 | 51.0 |
Latvia | 2111.0 | 152.0 |
Luxembourg | 2111.0 | 110.0 |
Barcelona | 2111.0 | 86.0 |
Q17412908 | 2109.0 | 2.0 |
Basel | 2108.0 | 17.0 |
Museum of Modern Art | 2108.0 | 4.0 |
Ludwig | 2107.0 | 43.0 |
Marie | 2104.0 | 60.0 |
Kevin | 2100.0 | 6.0 |
Johan | 2093.0 | 37.0 |
Bavarian Order of Merit | 2090.0 | 4.0 |
record label | 2089.0 | 4.0 |
racing driver | 2082.0 | 2.0 |
member of the House of Representatives of the Netherlands | 2064.0 | 4.0 |
musical film | 2062.0 | 3.0 |
1960 Summer Olympics | 2062.0 | 7.0 |
Kurt | 2059.0 | 4.0 |
University of Oxford | 2056.0 | 4.0 |
Egypt | 2055.0 | 58.0 |
Tony | 2043.0 | 45.0 |
Eric Walter Elst | 2041.0 | 6.0 |
Bronze Star Medal | 2039.0 | 3.0 |
Atlantic Records | 2036.0 | 6.0 |
1952 Summer Olympics | 2034.0 | 8.0 |
comedy drama | 2034.0 | 3.0 |
live album | 2028.0 | 1.0 |
Nigeria | 2027.0 | 68.0 |
Epic Records | 2025.0 | 5.0 |
Carlo | 2020.0 | 11.0 |
tuberculosis | 1998.0 | 2.0 |
Claude | 1996.0 | 20.0 |
Heidelberg | 1994.0 | 40.0 |
Antwerp | 1992.0 | 61.0 |
crime film | 1989.0 | 3.0 |
Simon | 1973.0 | 51.0 |
Commander of the Legion of Honour | 1970.0 | 5.0 |
choreographer | 1969.0 | 3.0 |
Bruno | 1963.0 | 99.0 |
Least Concern | 1963.0 | 1.0 |
Alan | 1960.0 | 5.0 |
Q13217683 | 1959.0 | 5.0 |
Q17744604 | 1957.0 | 1.0 |
Luigi | 1956.0 | 8.0 |
René | 1950.0 | 15.0 |
Nuremberg | 1949.0 | 86.0 |
2006 Winter Olympics | 1947.0 | 9.0 |
Europe | 1946.0 | 30.0 |
saint | 1946.0 | 3.0 |
municipality of Brazil | 1942.0 | 4.0 |
Andrea | 1939.0 | 70.0 |
protein | 1938.0 | 1.0 |
UTC+02:00 | 1938.0 | 1.0 |
Palermo | 1937.0 | 61.0 |
Maurice | 1936.0 | 45.0 |
Ancient Rome | 1927.0 | 57.0 |
Anthony | 1925.0 | 46.0 |
Warner Bros. Records | 1925.0 | 4.0 |
Gerhard | 1921.0 | 21.0 |
psychiatrist | 1918.0 | 4.0 |
Stefan | 1916.0 | 25.0 |
Kitt Peak National Observatory | 1915.0 | 3.0 |
pornographic actor | 1913.0 | 2.0 |
Member of Parliament of Great Britain | 1912.0 | 3.0 |
stadium | 1909.0 | 3.0 |
Roberto | 1909.0 | 14.0 |
Fred | 1905.0 | 43.0 |
Academy of Sciences of the USSR | 1898.0 | 4.0 |
Philippe | 1897.0 | 27.0 |
Norwegian Labour Party | 1893.0 | 5.0 |
Spacewatch | 1890.0 | 5.0 |
motorcycle rider | 1888.0 | 3.0 |
fictional character | 1886.0 | 7.0 |
computer keyboard | 1885.0 | 3.0 |
Frederick | 1881.0 | 39.0 |
house mouse | 1880.0 | 4.0 |
USSR State Prize | 1874.0 | 2.0 |
1936 Summer Olympics | 1874.0 | 8.0 |
University of Southern California | 1869.0 | 5.0 |
alpine skier | 1863.0 | 3.0 |
Marco | 1852.0 | 20.0 |
Mexico City | 1848.0 | 61.0 |
Western film | 1847.0 | 4.0 |
Purple Heart | 1846.0 | 9.0 |
Marc | 1844.0 | 21.0 |
2006 Asian Games | 1844.0 | 6.0 |
Hong Kong | 1844.0 | 55.0 |
colonel | 1843.0 | 11.0 |
Anderson Mesa Station | 1842.0 | 3.0 |
Istanbul | 1842.0 | 98.0 |
Gustav | 1841.0 | 16.0 |
dancer | 1841.0 | 5.0 |
Armenia | 1833.0 | 63.0 |
Malayalam | 1828.0 | 3.0 |
public art | 1826.0 | 2.0 |
Müller | 1826.0 | 24.0 |
fantasy | 1823.0 | 2.0 |
member of the Parliament of Finland | 1821.0 | 2.0 |
Member of the Order of the British Empire | 1821.0 | 4.0 |
businessperson | 1817.0 | 3.0 |
theatrical director | 1808.0 | 3.0 |
University of Cambridge | 1808.0 | 4.0 |
Philadelphia Phillies | 1805.0 | 4.0 |
1948 Summer Olympics | 1803.0 | 7.0 |
Klaus | 1802.0 | 12.0 |
Arlington National Cemetery | 1802.0 | 6.0 |
EMI | 1801.0 | 8.0 |
Socialist Party | 1801.0 | 48.0 |
American Academy of Arts and Sciences | 1799.0 | 3.0 |
Haarlem | 1798.0 | 22.0 |
Novodevichy Cemetery | 1797.0 | 7.0 |
municipal district | 1795.0 | 3.0 |
Leeuwarden | 1792.0 | 37.0 |
Georgia | 1788.0 | 283.0 |
fictional human | 1785.0 | 3.0 |
Freiburg im Breisgau | 1775.0 | 35.0 |
University of Warsaw | 1774.0 | 2.0 |
Karlsruhe | 1767.0 | 69.0 |
right-handedness | 1763.0 | 2.0 |
1924 Summer Olympics | 1759.0 | 6.0 |
Pedro | 1758.0 | 29.0 |
member of the Wisconsin State Assembly | 1751.0 | 4.0 |
CD-ROM | 1743.0 | 1.0 |
Pittsburgh Pirates | 1742.0 | 6.0 |
Capitol Records | 1741.0 | 5.0 |
Ludwig Maximilian University of Munich | 1738.0 | 8.0 |
Tour de France | 1733.0 | 110.0 |
St. Louis Cardinals | 1727.0 | 6.0 |
Yakov | 1727.0 | 19.0 |
surgeon | 1726.0 | 4.0 |
Helsinki | 1721.0 | 29.0 |
Miller | 1715.0 | 6.0 |
political scientist | 1713.0 | 3.0 |
castle | 1711.0 | 17.0 |
Christopher | 1710.0 | 40.0 |
Geneva | 1708.0 | 35.0 |
University of Bonn | 1706.0 | 5.0 |
Social Democratic Party of Austria | 1704.0 | 6.0 |
Alex | 1702.0 | 9.0 |
Schutzstaffel | 1701.0 | 10.0 |
Benjamin | 1701.0 | 71.0 |
ski jumper | 1701.0 | 3.0 |
Chicago Cubs | 1697.0 | 5.0 |
Riga | 1695.0 | 42.0 |
autobiographer | 1692.0 | 3.0 |
University of Minnesota | 1691.0 | 3.0 |
Texas Department of Transportation | 1690.0 | 1.0 |
Gabriel | 1689.0 | 43.0 |
Q17781726 | 1684.0 | 5.0 |
Lübeck | 1684.0 | 31.0 |
shooting guard | 1683.0 | 1.0 |
Iceland | 1677.0 | 64.0 |
Tim | 1674.0 | 60.0 |
Adolf | 1674.0 | 12.0 |
Alberto | 1673.0 | 19.0 |
abbot | 1670.0 | 3.0 |
Dublin | 1669.0 | 35.0 |
University of Paris | 1668.0 | 3.0 |
biathlete | 1665.0 | 5.0 |
Philip | 1662.0 | 53.0 |
violin | 1654.0 | 1.0 |
Hugo | 1651.0 | 56.0 |
Heinz | 1650.0 | 23.0 |
University of Tübingen | 1647.0 | 9.0 |
Gary | 1647.0 | 13.0 |
Algeria | 1646.0 | 75.0 |
University College London | 1640.0 | 4.0 |
Anne | 1639.0 | 28.0 |
classical philologist | 1638.0 | 3.0 |
Order of Honour | 1637.0 | 3.0 |
sport shooter | 1636.0 | 3.0 |
Dave | 1636.0 | 52.0 |
fantasy film | 1628.0 | 4.0 |
Emil | 1628.0 | 7.0 |
judoka | 1627.0 | 4.0 |
tennis | 1626.0 | 4.0 |
1956 Summer Olympics | 1626.0 | 7.0 |
Minsk | 1626.0 | 68.0 |
Scott | 1625.0 | 16.0 |
1912 Summer Olympics | 1624.0 | 5.0 |
registered immobile cultural heritage of Slovenia | 1622.0 | 1.0 |
classical music | 1621.0 | 1.0 |
Chicago White Sox | 1618.0 | 6.0 |
1920 Olympics | 1618.0 | 6.0 |
Santiago | 1616.0 | 97.0 |
Leipzig University | 1615.0 | 6.0 |
Bern | 1611.0 | 38.0 |
Free Democratic Party | 1608.0 | 14.0 |
Green Bay Packers | 1608.0 | 6.0 |
ROM cartridge | 1598.0 | 1.0 |
Companion of the Order of the Bath | 1597.0 | 5.0 |
member of the Reichstag of the Weimar Republic | 1596.0 | 5.0 |
Xbox 360 | 1594.0 | 6.0 |
São Paulo | 1593.0 | 80.0 |
PlayStation 3 | 1593.0 | 6.0 |
University of Oslo | 1590.0 | 3.0 |
University of Pennsylvania | 1588.0 | 13.0 |
Strasbourg | 1584.0 | 24.0 |
Maastricht | 1584.0 | 23.0 |
Lentapedia | 1584.0 | 3.0 |
DOS | 1580.0 | 1.0 |
Jonathan | 1574.0 | 19.0 |
Washington Commanders | 1574.0 | 5.0 |
United States Military Academy | 1574.0 | 6.0 |
rural municipality of Poland | 1573.0 | 4.0 |
Barbara | 1572.0 | 84.0 |
Jorge | 1572.0 | 23.0 |
Q17535155 | 1571.0 | 4.0 |
philologist | 1571.0 | 4.0 |
AV idol | 1570.0 | 5.0 |
bridge | 1569.0 | 3.0 |
Distinguished Flying Cross | 1564.0 | 5.0 |
Ben | 1564.0 | 39.0 |
Brown University | 1560.0 | 4.0 |
organist | 1558.0 | 4.0 |
Q17320547 | 1557.0 | 3.0 |
Institutional Revolutionary Party | 1556.0 | 5.0 |
Dictionary of Art Historians | 1556.0 | 1.0 |
Q17456783 | 1552.0 | 2.0 |
disc jockey | 1551.0 | 2.0 |
Tübingen | 1551.0 | 38.0 |
Göttingen | 1549.0 | 14.0 |
point guard | 1548.0 | 1.0 |
order | 1547.0 | 14.0 |
center | 1546.0 | 1.0 |
Don | 1545.0 | 59.0 |
Distinguished Service Order | 1544.0 | 3.0 |
ship class | 1542.0 | 2.0 |
Dan | 1540.0 | 7.0 |
award | 1535.0 | 1.0 |
Nicolas | 1534.0 | 8.0 |
Austrian People's Party | 1534.0 | 8.0 |
Raymond | 1533.0 | 23.0 |
2002 Winter Olympics | 1532.0 | 8.0 |
Ernest | 1531.0 | 5.0 |
Belgrade | 1531.0 | 32.0 |
Ian | 1529.0 | 22.0 |
trumpet | 1529.0 | 2.0 |
Korean War | 1528.0 | 3.0 |
power forward | 1527.0 | 1.0 |
Erich | 1523.0 | 7.0 |
Erik | 1523.0 | 23.0 |
University of Illinois system | 1523.0 | 2.0 |
Graz | 1521.0 | 39.0 |
Geometridae | 1520.0 | 4.0 |
genre painting | 1520.0 | 3.0 |
Kiel | 1518.0 | 37.0 |
Venezuela | 1516.0 | 65.0 |
Essanay Studios | 1514.0 | 2.0 |
Julius | 1513.0 | 14.0 |
Rostock | 1509.0 | 25.0 |
Liberal Democratic Party | 1507.0 | 30.0 |
member of the Ontario Provincial Parliament | 1506.0 | 6.0 |
platform game | 1505.0 | 2.0 |
sprinter | 1505.0 | 4.0 |
compilation album | 1502.0 | 1.0 |
Polish United Workers' Party | 1500.0 | 5.0 |
Antoine | 1500.0 | 25.0 |
mangaka | 1497.0 | 4.0 |
Halle (Saale) | 1496.0 | 16.0 |
Braunschweig | 1496.0 | 19.0 |
Virgin Records | 1495.0 | 3.0 |
municipality of the Philippines | 1488.0 | 3.0 |
Appletons' Cyclopædia of American Biography | 1488.0 | 1.0 |
Odessa | 1488.0 | 55.0 |
Elizabeth | 1486.0 | 88.0 |
Military Cross | 1485.0 | 2.0 |
Donald | 1482.0 | 1.0 |
1482.0 | 19.0 | |
Q17590876 | 1482.0 | 2.0 |
twin | 1481.0 | 4.0 |
civil engineer | 1480.0 | 3.0 |
comic strip | 1479.0 | 1.0 |
lung cancer | 1477.0 | 10.0 |
xkcd | 1472.0 | 4.0 |
Swedish Social Democratic Party | 1471.0 | 6.0 |
stroke | 1471.0 | 2.0 |
speed skater | 1470.0 | 3.0 |
United States Air Force | 1468.0 | 61.0 |
Order "For Merit to the Fatherland" IV class | 1465.0 | 3.0 |
action game | 1465.0 | 2.0 |
Creative Commons Attribution-NonCommercial | 1464.0 | 4.0 |
Randall Munroe | 1463.0 | 11.0 |
Legion of Honour | 1461.0 | 8.0 |
Miguel | 1457.0 | 18.0 |
Breda | 1457.0 | 45.0 |
Johns Hopkins University | 1456.0 | 5.0 |
Eduard | 1455.0 | 9.0 |
small forward | 1454.0 | 1.0 |
Darmstadt | 1452.0 | 48.0 |
Fernando | 1451.0 | 20.0 |
Marcel | 1448.0 | 9.0 |
county of China | 1447.0 | 2.0 |
Pietro | 1444.0 | 22.0 |
association football venue | 1444.0 | 2.0 |
Lisbon | 1443.0 | 110.0 |
Knight Commander of the Order of the Bath | 1443.0 | 6.0 |
Manhattan | 1441.0 | 54.0 |
island | 1439.0 | 2.0 |
ambassador | 1437.0 | 3.0 |
Pilot | 1434.0 | 351.0 |
1928 Summer Olympics | 1433.0 | 6.0 |
Conservative Party of Norway | 1432.0 | 5.0 |
baritone | 1431.0 | 2.0 |
Sturmabteilung | 1426.0 | 7.0 |
Polydor Records | 1423.0 | 5.0 |
Jeff | 1421.0 | 27.0 |
Royal Air Force | 1416.0 | 5.0 |
Bernhard | 1412.0 | 9.0 |
Helmut | 1411.0 | 3.0 |
Department of Paintings of the Louvre | 1409.0 | 5.0 |
Indian National Congress | 1405.0 | 4.0 |
Cicadellidae | 1405.0 | 3.0 |
Padua | 1405.0 | 37.0 |
Northwestern University | 1400.0 | 3.0 |
Kazakhstan | 1399.0 | 51.0 |
comics artist | 1396.0 | 7.0 |
position | 1394.0 | 2.0 |
's-Hertogenbosch | 1390.0 | 24.0 |
Ken | 1389.0 | 21.0 |
Ohio State University | 1387.0 | 5.0 |
Guy | 1386.0 | 59.0 |
Melbourne | 1384.0 | 30.0 |
BBC | 1382.0 | 8.0 |
Stockholm Municipality | 1382.0 | 29.0 |
deputy of Chile | 1382.0 | 3.0 |
rural municipality of Austria | 1380.0 | 3.0 |
University of Texas at Austin | 1378.0 | 4.0 |
Paraguay | 1377.0 | 47.0 |
Liberal Party | 1375.0 | 78.0 |
Mainz | 1375.0 | 36.0 |
member of the State Senate of New York | 1374.0 | 4.0 |
video game industry | 1374.0 | 1.0 |
Matt | 1369.0 | 7.0 |
New Orleans | 1368.0 | 49.0 |
scientist | 1365.0 | 4.0 |
London School of Economics and Political Science | 1365.0 | 5.0 |
Member of the Swiss National Council | 1365.0 | 5.0 |
film editor | 1363.0 | 2.0 |
Pneumonia | 1362.0 | 6.0 |
Baltimore | 1360.0 | 28.0 |
Paolo | 1359.0 | 19.0 |
J. | 1359.0 | 2.0 |
comic book album | 1355.0 | 2.0 |
member of the Hellenic Parliament | 1355.0 | 5.0 |
Kyoto University | 1352.0 | 3.0 |
Münster | 1352.0 | 39.0 |
comedian | 1347.0 | 3.0 |
neck gable building | 1344.0 | 1.0 |
Detroit | 1341.0 | 34.0 |
catholic bishop | 1340.0 | 3.0 |
2002 Asian Games | 1340.0 | 4.0 |
Stanley Cup | 1338.0 | 4.0 |
profession | 1337.0 | 1.0 |
Carabidae | 1333.0 | 3.0 |
Ralph | 1332.0 | 5.0 |
Ferdinand | 1330.0 | 28.0 |
St. Louis | 1328.0 | 43.0 |
North Rhine-Westphalia | 1325.0 | 28.0 |
Jupiter trojan | 1325.0 | 1.0 |
Bordeaux | 1317.0 | 40.0 |
Q1248362 | 1316.0 | 3.0 |
Bucharest | 1314.0 | 41.0 |
presenter | 1312.0 | 2.0 |
Rabbi | 1311.0 | 2.0 |
Alkmaar | 1310.0 | 27.0 |
class A Swiss cultural property of national significance | 1305.0 | 3.0 |
member of the Pennsylvania House of Representatives | 1303.0 | 3.0 |
Short story | 1302.0 | 4.0 |
German Archaeological Institute | 1301.0 | 4.0 |
Harold | 1301.0 | 18.0 |
Jason | 1301.0 | 25.0 |
mountain | 1300.0 | 3.0 |
musher | 1300.0 | 4.0 |
sports video game | 1299.0 | 2.0 |
Kenya | 1297.0 | 33.0 |
archivist | 1294.0 | 3.0 |
Kanagawa Prefecture | 1290.0 | 35.0 |
New Jersey | 1290.0 | 22.0 |
Jimmy | 1289.0 | 23.0 |
Toulouse | 1287.0 | 40.0 |
Edinburgh | 1286.0 | 29.0 |
Heidelberg University | 1286.0 | 11.0 |
essayist | 1285.0 | 3.0 |
Crimean Astrophysical Observatory | 1283.0 | 3.0 |
Silver Star | 1280.0 | 19.0 |
rural district of Iran | 1277.0 | 3.0 |
Azerbaijan | 1276.0 | 100.0 |
Billy | 1271.0 | 63.0 |
Tbilisi | 1270.0 | 32.0 |
Würzburg | 1269.0 | 108.0 |
Leo | 1267.0 | 22.0 |
member of the Swedish Riksdag | 1266.0 | 4.0 |
Texas | 1266.0 | 70.0 |
Asia | 1265.0 | 33.0 |
Montevideo | 1265.0 | 32.0 |
farmer | 1263.0 | 9.0 |
inventor | 1262.0 | 3.0 |
Landrat | 1261.0 | 1.0 |
Sofia | 1258.0 | 51.0 |
Christoph | 1257.0 | 14.0 |
Matthew | 1257.0 | 18.0 |
French Academy of Sciences | 1256.0 | 4.0 |
Jürgen | 1253.0 | 8.0 |
Joachim | 1253.0 | 27.0 |
Lars | 1251.0 | 6.0 |
paleontologist | 1251.0 | 4.0 |
Nice | 1250.0 | 69.0 |
display(degrees.sort($"outDegree".desc))
id | inDegree | outDegree |
---|---|---|
statue of Sacred Heart of Jesus Christ | 515.0 | 2161.0 |
Molenstraat | 7.0 | 1288.0 |
Molenweg | 50.0 | 1178.0 |
Pas-de-Calais | 917.0 | 911.0 |
Wilhelminastraat | 39.0 | 883.0 |
Moselle | 897.0 | 882.0 |
Aisne | 881.0 | 835.0 |
Kerkstraat | 728.0 | 833.0 |
John Smith | 9.0 | 820.0 |
Madonna and Child | 610.0 | 816.0 |
Central District | 801.0 | 705.0 |
Seine-et-Oise | 705.0 | 703.0 |
Self-portrait | 341.0 | 698.0 |
Meurthe | 689.0 | 697.0 |
Bezirk Lothringen | 686.0 | 693.0 |
Dorpsstraat | 569.0 | 681.0 |
Eikenlaan | 4.0 | 679.0 |
Nord-Pas-de-Calais | 22.0 | 668.0 |
Prins Bernhardstraat | 5.0 | 624.0 |
John Williams | 32.0 | 608.0 |
Emmastraat | 18.0 | 588.0 |
Meurthe-et-Moselle | 587.0 | 585.0 |
Venus and Adonis | 4.0 | 576.0 |
John Brown | 7.0 | 570.0 |
Haute-Garonne | 564.0 | 557.0 |
Hautes-Pyrénées | 620.0 | 555.0 |
Vosges | 586.0 | 551.0 |
Raadhuisstraat | 96.0 | 550.0 |
Bas-Rhin | 553.0 | 549.0 |
Calvados | 600.0 | 548.0 |
Manche | 559.0 | 542.0 |
Doubs | 524.0 | 531.0 |
Pyrénées-Atlantiques | 528.0 | 525.0 |
Dordogne | 532.0 | 524.0 |
Seine-et-Marne | 534.0 | 522.0 |
Orne | 522.0 | 521.0 |
Eure | 523.0 | 521.0 |
Haut-Rhin | 553.0 | 520.0 |
Unterelsaß | 502.0 | 509.0 |
Portrait of a man | 24.0 | 507.0 |
Portrait of a Man | 13.0 | 491.0 |
Self-Portrait | 17.0 | 481.0 |
Saône-et-Loire | 513.0 | 476.0 |
Yonne | 476.0 | 475.0 |
John Taylor | 10.0 | 471.0 |
Adoration of the Magi | 153.0 | 465.0 |
Untitled | 24.0 | 459.0 |
Haute-Marne | 453.0 | 450.0 |
Ain | 457.0 | 449.0 |
John Anderson | 56.0 | 440.0 |
John Wilson | 2.0 | 437.0 |
Raadhuisplein | 41.0 | 436.0 |
Bernhardstraat | 1.0 | 430.0 |
Les Misérables | 26.0 | 428.0 |
William Smith | 44.0 | 427.0 |
Portrait of a Woman | 18.0 | 424.0 |
Wilhelminalaan | 14.0 | 394.0 |
Virgin and Child | 11.0 | 388.0 |
George Smith | 1.0 | 379.0 |
Ille-et-Vilaine | 377.0 | 377.0 |
The Three Musketeers | 17.0 | 377.0 |
Loire | 437.0 | 372.0 |
Upper Alsace | 365.0 | 367.0 |
Landscape | 236.0 | 366.0 |
Hérault | 374.0 | 362.0 |
David Smith | 11.0 | 362.0 |
Stationsplein | 25.0 | 358.0 |
Annunciation | 255.0 | 354.0 |
Home | 77.0 | 353.0 |
Pilot | 1434.0 | 351.0 |
Kerkplein | 216.0 | 350.0 |
Allier | 348.0 | 347.0 |
Cleopatra | 94.0 | 345.0 |
De Hoop | 2.0 | 343.0 |
Hoofdstraat | 312.0 | 339.0 |
The Death of Cleopatra | 6.0 | 337.0 |
John Jones | 3.0 | 334.0 |
Province of Turin | 331.0 | 332.0 |
Rhône | 406.0 | 330.0 |
John Martin | 14.0 | 323.0 |
David Brown | 25.0 | 317.0 |
John Moore | 6.0 | 316.0 |
Korenbloemstraat | 1.0 | 315.0 |
Li Shi | 279.0 | 314.0 |
Ottův slovník naučný | 1.0 | 313.0 |
Bathsheba | 43.0 | 313.0 |
Markt | 458.0 | 311.0 |
Crucifixion | 34.0 | 311.0 |
John Campbell | 5.0 | 309.0 |
Nederlands Hervormde Kerk | 2.0 | 305.0 |
Prins Bernhardlaan | 2.0 | 303.0 |
James Brown | 115.0 | 302.0 |
Angel | 417.0 | 293.0 |
Hamlet | 44.0 | 289.0 |
Thomas Smith | 3.0 | 289.0 |
Merelstraat | 7.0 | 288.0 |
Live | 129.0 | 287.0 |
David Williams | 5.0 | 286.0 |
Creuse | 309.0 | 284.0 |
Georgia | 1788.0 | 283.0 |
John Murray | 42.0 | 281.0 |
James Wilson | 10.0 | 281.0 |
John Scott | 2.0 | 278.0 |
John Davis | 58.0 | 277.0 |
Yvelines | 283.0 | 277.0 |
George Brown | 2.0 | 276.0 |
John Davies | 1.0 | 275.0 |
Germany | 205497.0 | 272.0 |
Koningin Julianastraat | 3.0 | 270.0 |
John Harris | 7.0 | 268.0 |
Resurrection | 24.0 | 267.0 |
James Smith | 5.0 | 265.0 |
Province of Cuneo | 259.0 | 263.0 |
Province of Bergamo | 256.0 | 260.0 |
John Walker | 10.0 | 260.0 |
Robert Williams | 16.0 | 260.0 |
The Annunciation | 4.0 | 260.0 |
John White | 6.0 | 259.0 |
The Three Graces | 4.0 | 259.0 |
David Jones | 11.0 | 259.0 |
Madonna with child | 3.0 | 256.0 |
Paris | 39791.0 | 255.0 |
Love | 101.0 | 255.0 |
Thomas Williams | 2.0 | 249.0 |
Greatest Hits | 68.0 | 246.0 |
Paul Smith | 6.0 | 245.0 |
Portrait of a woman | 13.0 | 245.0 |
The Adoration of the Magi | 7.0 | 245.0 |
John Bell | 3.0 | 241.0 |
John Hill | 4.0 | 240.0 |
Haute-Corse | 245.0 | 239.0 |
Loire-Atlantique | 301.0 | 238.0 |
William Williams | 3.0 | 238.0 |
Victoria | 1169.0 | 237.0 |
Alice in Wonderland | 3.0 | 236.0 |
Bone morphogenetic protein 4 | 2.0 | 233.0 |
Brazil | 21923.0 | 231.0 |
Trentino | 228.0 | 230.0 |
Destiny | 27.0 | 230.0 |
John Carter | 11.0 | 229.0 |
Michael Smith | 6.0 | 227.0 |
John Young | 13.0 | 227.0 |
Sint-Martinuskerk | 5.0 | 227.0 |
Italy | 99514.0 | 226.0 |
John Evans | 4.0 | 225.0 |
John Gray | 12.0 | 223.0 |
Twilight | 35.0 | 223.0 |
Pietà | 44.0 | 223.0 |
Li Yu | 191.0 | 222.0 |
John Baker | 23.0 | 222.0 |
Colin Campbell | 56.0 | 221.0 |
Still Life | 15.0 | 221.0 |
John Richardson | 23.0 | 221.0 |
Province of Brescia | 218.0 | 219.0 |
John Fraser | 18.0 | 218.0 |
John Hall | 4.0 | 218.0 |
Alpes-de-Haute-Provence | 217.0 | 217.0 |
John Roberts | 5.0 | 216.0 |
Evangelical Church | 4.0 | 216.0 |
Robert Smith | 42.0 | 214.0 |
Chris Smith | 8.0 | 213.0 |
Napoléon | 48.0 | 213.0 |
Pandora | 22.0 | 213.0 |
Cinderella | 30.0 | 213.0 |
Rio Grande do Sul | 241.0 | 213.0 |
Essonne | 209.0 | 213.0 |
George Wilson | 1.0 | 213.0 |
Tarn-et-Garonne | 227.0 | 212.0 |
David Wilson | 3.0 | 211.0 |
John Jackson | 3.0 | 211.0 |
Life | 47.0 | 210.0 |
Adam and Eve | 11.0 | 210.0 |
Russia | 42317.0 | 210.0 |
Leda and the Swan | 19.0 | 209.0 |
John Rogers | 9.0 | 209.0 |
Mike Smith | 2.0 | 209.0 |
James Walker | 4.0 | 208.0 |
Danaë | 28.0 | 208.0 |
Mary Magdalene | 191.0 | 208.0 |
Steve Smith | 4.0 | 207.0 |
Li Yi | 175.0 | 207.0 |
St. Martin | 10.0 | 207.0 |
John Ward | 3.0 | 207.0 |
James Anderson | 31.0 | 206.0 |
John Lewis | 6.0 | 205.0 |
Forever | 46.0 | 205.0 |
Alice | 770.0 | 205.0 |
Province of Pavia | 200.0 | 204.0 |
Carmen | 464.0 | 204.0 |
Treasure Island | 16.0 | 204.0 |
Hervormde kerk | 1.0 | 203.0 |
Province of Alessandria | 200.0 | 203.0 |
Salome | 56.0 | 203.0 |
Val-d'Oise | 206.0 | 203.0 |
Fibroblast growth factor receptor 2 | 2.0 | 202.0 |
Lozère | 206.0 | 200.0 |
Venus and Cupid | 3.0 | 200.0 |
Irenelaan | 1.0 | 200.0 |
John Kennedy | 4.0 | 199.0 |
The Count of Monte Cristo | 4.0 | 198.0 |
Li Jing | 163.0 | 198.0 |
Hervormde Kerk | 2.0 | 197.0 |
John Murphy | 2.0 | 197.0 |
John Robinson | 19.0 | 196.0 |
Lucy | 497.0 | 196.0 |
Molenlaan | 10.0 | 195.0 |
Hero | 34.0 | 194.0 |
Paul Williams | 20.0 | 194.0 |
SMAD family member 3 | 2.0 | 194.0 |
Susanna and the Elders | 34.0 | 193.0 |
William Thompson | 3.0 | 191.0 |
Paradise | 32.0 | 191.0 |
Believe | 45.0 | 190.0 |
Madonna with Child | 3.0 | 190.0 |
California | 3083.0 | 190.0 |
John Phillips | 21.0 | 189.0 |
John Hughes | 55.0 | 187.0 |
Robert Campbell | 2.0 | 186.0 |
Hautes-Alpes | 185.0 | 186.0 |
Friends | 71.0 | 186.0 |
James Stewart | 92.0 | 186.0 |
William Walker | 3.0 | 185.0 |
William Stewart | 4.0 | 184.0 |
Phoenix | 377.0 | 183.0 |
Prague | 5585.0 | 183.0 |
Richard Smith | 2.0 | 183.0 |
Romeo and Juliet | 19.0 | 182.0 |
Oliver Twist | 19.0 | 182.0 |
Province of Como | 178.0 | 182.0 |
The Hunchback of Notre Dame | 13.0 | 181.0 |
Alpes-Maritimes | 185.0 | 181.0 |
Aurora | 144.0 | 181.0 |
One | 46.0 | 181.0 |
Michael Johnson | 13.0 | 180.0 |
Vondelstraat | 1.0 | 179.0 |
John Simpson | 2.0 | 179.0 |
The Kiss | 11.0 | 179.0 |
John Ross | 2.0 | 179.0 |
David | 11047.0 | 179.0 |
David Davies | 3.0 | 178.0 |
John Russell | 43.0 | 178.0 |
Munich | 9815.0 | 177.0 |
Richard Jones | 1.0 | 177.0 |
Lady Godiva | 20.0 | 176.0 |
Monster | 55.0 | 176.0 |
New South Wales | 662.0 | 176.0 |
John Thompson | 7.0 | 176.0 |
Marconistraat | 1.0 | 175.0 |
Anna Karenina | 10.0 | 175.0 |
Jack Smith | 8.0 | 175.0 |
Voorstraat | 547.0 | 175.0 |
The Birth of Venus | 6.0 | 175.0 |
United States of America | 281936.0 | 174.0 |
Peter Brown | 11.0 | 174.0 |
The Stranger | 15.0 | 173.0 |
Gloria | 257.0 | 173.0 |
John Clarke | 9.0 | 172.0 |
John Parker | 1.0 | 172.0 |
Janus kinase 2 | 2.0 | 171.0 |
Julius Caesar | 30.0 | 171.0 |
Inferno | 22.0 | 170.0 |
John Adams | 16.0 | 170.0 |
Bone morphogenetic protein 2 | 2.0 | 170.0 |
Province of Salerno | 167.0 | 169.0 |
Mark Smith | 6.0 | 169.0 |
Poststraat | 53.0 | 168.0 |
John Edwards | 6.0 | 168.0 |
Schoolstraat | 89.0 | 168.0 |
David Lewis | 30.0 | 168.0 |
Chris Jones | 8.0 | 168.0 |
Tom Jones | 12.0 | 167.0 |
Australia | 29186.0 | 167.0 |
Mark Williams | 26.0 | 166.0 |
Shine | 42.0 | 166.0 |
Province of Cosenza | 161.0 | 165.0 |
Lindenstraße | 82.0 | 165.0 |
David Johnson | 7.0 | 165.0 |
Dawn | 101.0 | 165.0 |
Gold | 28.0 | 164.0 |
Free | 52.0 | 164.0 |
Koningin Wilhelminastraat | 9.0 | 164.0 |
Andromeda | 51.0 | 163.0 |
Passion | 27.0 | 163.0 |
Evolution | 32.0 | 162.0 |
Michael Jackson | 185.0 | 162.0 |
Li Qi | 132.0 | 162.0 |
The Hound of the Baskervilles | 8.0 | 161.0 |
David Thomas | 11.0 | 161.0 |
Sonic hedgehog | 1.0 | 161.0 |
Stationsstraat | 100.0 | 161.0 |
Together | 33.0 | 160.0 |
Nana | 132.0 | 160.0 |
Ivan Ivanov | 20.0 | 160.0 |
Shanghai | 602.0 | 160.0 |
Rio de Janeiro | 2134.0 | 159.0 |
Paul Martin | 29.0 | 159.0 |
Love Story | 15.0 | 159.0 |
Nieuwstraat | 259.0 | 159.0 |
John Watson | 6.0 | 159.0 |
Beautiful | 29.0 | 159.0 |
Hans Müller | 5.0 | 158.0 |
Macbeth | 9.0 | 158.0 |
Go | 29.0 | 158.0 |
Hans Schmidt | 2.0 | 158.0 |
Li Xun | 146.0 | 158.0 |
The Flight into Egypt | 5.0 | 158.0 |
Hope | 97.0 | 158.0 |
Bill Smith | 1.0 | 158.0 |
The Baptism of Christ | 5.0 | 158.0 |
Coronation of the Virgin | 13.0 | 157.0 |
The Awakening | 19.0 | 157.0 |
Walter Müller | 13.0 | 156.0 |
Death of Cleopatra | 2.0 | 156.0 |
Catenin (cadherin associated protein), beta 1 | 1.0 | 156.0 |
Steve Jones | 10.0 | 156.0 |
Chris Brown | 73.0 | 156.0 |
John Marshall | 9.0 | 156.0 |
David Lee | 3.0 | 156.0 |
Province of Varese | 153.0 | 155.0 |
The Last Days of Pompeii | 1.0 | 155.0 |
Camille | 496.0 | 155.0 |
Robert Brown | 27.0 | 155.0 |
Lincoln | 360.0 | 154.0 |
Parc naturel régional des marais du Cotentin et du Bessin | 2.0 | 154.0 |
Hoofdweg | 168.0 | 153.0 |
Fantômas | 5.0 | 153.0 |
San Francisco | 2694.0 | 153.0 |
Superman | 24.0 | 153.0 |
First Love | 10.0 | 153.0 |
Mike Williams | 15.0 | 153.0 |
Michael Collins | 21.0 | 153.0 |
Hercules | 39.0 | 153.0 |
Robert Anderson | 18.0 | 153.0 |
Batman | 87.0 | 152.0 |
Fury | 19.0 | 152.0 |
Bahia | 201.0 | 152.0 |
Canada | 43389.0 | 152.0 |
Madonna and child | 5.0 | 152.0 |
Latvia | 2111.0 | 152.0 |
Washington County | 200.0 | 151.0 |
Adoration of the Shepherds | 6.0 | 151.0 |
Diana | 499.0 | 151.0 |
The Phantom of the Opera | 4.0 | 151.0 |
province of Milan | 149.0 | 150.0 |
Desire | 17.0 | 150.0 |
Buenos Aires Province | 173.0 | 149.0 |
Koningin Wilhelminalaan | 17.0 | 149.0 |
Province of Udine | 144.0 | 149.0 |
Blue | 42.0 | 148.0 |
Paul Johnson | 2.0 | 148.0 |
James Martin | 3.0 | 148.0 |
Alive | 29.0 | 148.0 |
The Raven | 26.0 | 148.0 |
Amsterdam | 11290.0 | 147.0 |
Interleukin 6 | 2.0 | 147.0 |
Dr. Jekyll and Mr. Hyde | 1.0 | 147.0 |
Summer | 27.0 | 147.0 |
Scream | 27.0 | 147.0 |
Phosphatase and tensin homolog | 2.0 | 146.0 |
Brian Smith | 3.0 | 145.0 |
Reclining Figure | 42.0 | 145.0 |
A Christmas Carol | 34.0 | 144.0 |
Li Shu | 130.0 | 144.0 |
Rage | 33.0 | 144.0 |
Mike Jones | 17.0 | 143.0 |
Tom Johnson | 1.0 | 143.0 |
Atlantis | 51.0 | 143.0 |
John Wood | 27.0 | 143.0 |
Venus and Mars | 4.0 | 143.0 |
Jane Eyre | 5.0 | 143.0 |
Nude | 16.0 | 143.0 |
Rudolf Müller | 1.0 | 142.0 |
Mark Jones | 9.0 | 142.0 |
Robert Wilson | 8.0 | 141.0 |
Time | 36.0 | 141.0 |
Beauty and the Beast | 18.0 | 141.0 |
William White | 7.0 | 141.0 |
Fred Smith | 2.0 | 141.0 |
Face to Face | 35.0 | 140.0 |
Uganda | 613.0 | 140.0 |
Charles Brown | 1.0 | 140.0 |
John Thomas | 9.0 | 139.0 |
David Campbell | 6.0 | 139.0 |
Johannes Müller | 1.0 | 139.0 |
Reunion | 20.0 | 139.0 |
Heartbeat | 19.0 | 139.0 |
I Love You | 28.0 | 139.0 |
Interleukin 1 beta | 2.0 | 139.0 |
Crash | 26.0 | 139.0 |
The Game | 51.0 | 139.0 |
Teenage Mutant Ninja Turtles | 11.0 | 138.0 |
Sahara | 24.0 | 138.0 |
Dracula | 18.0 | 138.0 |
Independence Day | 16.0 | 138.0 |
catenin beta 1 | 1.0 | 137.0 |
Madonna | 219.0 | 137.0 |
The Crucifixion | 4.0 | 137.0 |
Heaven | 33.0 | 137.0 |
Zürich | 3275.0 | 137.0 |
Exodus | 36.0 | 137.0 |
George Jones | 105.0 | 136.0 |
Mother | 14.0 | 136.0 |
Richard Wagner | 33.0 | 136.0 |
Inside Out | 29.0 | 136.0 |
Kidnapped | 6.0 | 136.0 |
Spring | 17.0 | 136.0 |
Venus | 163.0 | 135.0 |
transforming growth factor beta 1 | 1.0 | 135.0 |
The Fugitive | 16.0 | 135.0 |
Alexander | 4804.0 | 134.0 |
Joan of Arc | 44.0 | 134.0 |
Bill Brown | 16.0 | 134.0 |
Flashback | 16.0 | 134.0 |
Secrets | 25.0 | 134.0 |
Paul Miller | 3.0 | 134.0 |
Prey | 15.0 | 134.0 |
Titanic | 2.0 | 134.0 |
Rush | 78.0 | 134.0 |
The Trap | 4.0 | 134.0 |
John James | 9.0 | 133.0 |
Tom Brown | 17.0 | 133.0 |
Buenos Aires | 3600.0 | 133.0 |
Bill Miller | 9.0 | 133.0 |
Province of Rome | 131.0 | 133.0 |
Santa Catarina | 153.0 | 133.0 |
Dreams | 22.0 | 132.0 |
Province of Vicenza | 132.0 | 132.0 |
France | 178816.0 | 132.0 |
Noli me tangere | 16.0 | 132.0 |
Candy | 18.0 | 132.0 |
Bill Johnson | 2.0 | 132.0 |
Orange | 324.0 | 132.0 |
Stay | 38.0 | 132.0 |
South Tyrol | 142.0 | 131.0 |
Star Trek | 37.0 | 131.0 |
The Merry Widow | 2.0 | 131.0 |
David Lloyd | 3.0 | 131.0 |
Richard Williams | 7.0 | 131.0 |
Fire | 25.0 | 131.0 |
Postweg | 11.0 | 131.0 |
Werner Müller | 1.0 | 130.0 |
Charles Smith | 1.0 | 130.0 |
Li Zhen | 90.0 | 130.0 |
Heroes | 118.0 | 130.0 |
L'Arlésienne | 5.0 | 130.0 |
Erb-b2 receptor tyrosine kinase 2 | 2.0 | 130.0 |
Robin Hood | 36.0 | 130.0 |
Fibroblast growth factor receptor 1 | 2.0 | 130.0 |
Freedom | 36.0 | 130.0 |
Hoogstraat | 214.0 | 130.0 |
John Armstrong | 1.0 | 129.0 |
Don Quixote | 13.0 | 129.0 |
Province of Avellino | 125.0 | 129.0 |
Rijksweg | 76.0 | 129.0 |
Animal | 17.0 | 129.0 |
Cell division cycle 42 | 2.0 | 129.0 |
Casino Royale | 4.0 | 129.0 |
James White | 5.0 | 129.0 |
John Fitzgerald | 1.0 | 129.0 |
Richard Johnson | 50.0 | 129.0 |
Empire | 14.0 | 128.0 |
3 | 38.0 | 128.0 |
Robert Taylor | 88.0 | 128.0 |
Province of Asti | 125.0 | 128.0 |
Tony Smith | 7.0 | 128.0 |
Transforming growth factor, beta 1 | 1.0 | 128.0 |
Province of Cremona | 125.0 | 128.0 |
William Allen | 1.0 | 128.0 |
SMAD family member 2 | 2.0 | 128.0 |
Chris Johnson | 1.0 | 127.0 |
Martin Luther | 67.0 | 127.0 |
Nová Ves | 68.0 | 127.0 |
Magic | 35.0 | 127.0 |
Anna | 2886.0 | 127.0 |
Paul Jones | 27.0 | 127.0 |
Alone | 24.0 | 127.0 |
Andrew Wilson | 3.0 | 127.0 |
SMAD family member 4 | 2.0 | 127.0 |
Madame Bovary | 3.0 | 127.0 |
George Washington | 33.0 | 127.0 |
Rain | 46.0 | 127.0 |
Pride | 18.0 | 126.0 |
Florida | 949.0 | 126.0 |
Sleeping Beauty | 8.0 | 126.0 |
Humboldt University of Berlin | 480.0 | 126.0 |
Night | 7.0 | 126.0 |
William Miller | 4.0 | 126.0 |
The River | 24.0 | 126.0 |
Ulice | 1.0 | 126.0 |
Richard Taylor | 7.0 | 126.0 |
B cell leukemia/lymphoma 2 | 1.0 | 126.0 |
Denmark | 10182.0 | 126.0 |
Li Ji | 96.0 | 126.0 |
Paraná | 154.0 | 125.0 |
John Grant | 11.0 | 125.0 |
Olympia | 73.0 | 125.0 |
Touch | 41.0 | 125.0 |
John O'Neill | 1.0 | 125.0 |
Smile | 27.0 | 125.0 |
The Promise | 10.0 | 125.0 |
Chicago | 4779.0 | 125.0 |
The Return | 18.0 | 124.0 |
Transformation related protein 53 | 1.0 | 124.0 |
Around the World in 80 Days | 1.0 | 124.0 |
The Truth | 11.0 | 124.0 |
Stationsweg | 90.0 | 124.0 |
Gordon Brown | 8.0 | 124.0 |
Saint George and the Dragon | 50.0 | 124.0 |
Michael Müller | 2.0 | 124.0 |
Faust | 23.0 | 124.0 |
Bone morphogenetic protein 7 | 2.0 | 124.0 |
Mark Johnson | 43.0 | 124.0 |
John Doyle | 6.0 | 124.0 |
Sint-Lambertuskerk | 3.0 | 124.0 |
The Holy Family | 3.0 | 124.0 |
Ambachtstraat | 2.0 | 124.0 |
Turkey | 7195.0 | 123.0 |
James Jones | 6.0 | 123.0 |
Jimmy Smith | 24.0 | 123.0 |
Richard Wilson | 22.0 | 123.0 |
St. Peter und Paul | 3.0 | 123.0 |
Province of L'Aquila | 124.0 | 123.0 |
Fear | 13.0 | 123.0 |
David Bell | 1.0 | 123.0 |
Gareth Davies | 3.0 | 123.0 |
Black and White | 6.0 | 123.0 |
Solo | 12.0 | 122.0 |
Wuthering Heights | 21.0 | 122.0 |
John Black | 6.0 | 122.0 |
Peter Pan | 6.0 | 122.0 |
Redemption | 19.0 | 122.0 |
Halloween | 34.0 | 122.0 |
Fearless | 18.0 | 122.0 |
Crush | 21.0 | 122.0 |
Venice | 3672.0 | 122.0 |
Portrait of a Lady | 3.0 | 122.0 |
The Source | 5.0 | 122.0 |
Mitogen-activated protein kinase 14 | 2.0 | 121.0 |
John Howard | 38.0 | 121.0 |
Tony Brown | 1.0 | 121.0 |
Ceará | 118.0 | 121.0 |
Berlin | 21839.0 | 121.0 |
The Turning Point | 3.0 | 121.0 |
William Watson | 8.0 | 121.0 |
No Man's Land | 12.0 | 121.0 |
The Letter | 8.0 | 121.0 |
Hell | 15.0 | 121.0 |
Portrait of a Young Man | 2.0 | 121.0 |
Vengeance | 10.0 | 121.0 |
Holiday | 16.0 | 121.0 |
Saint Petersburg | 9117.0 | 121.0 |
Justice | 14.0 | 121.0 |
Pinocchio | 6.0 | 121.0 |
European Union | 117.0 | 120.0 |
Koningin Julianalaan | 1.0 | 120.0 |
Rijksstraatweg | 184.0 | 120.0 |
Sunshine | 28.0 | 120.0 |
Little Women | 3.0 | 120.0 |
Everything | 26.0 | 120.0 |
David Miller | 31.0 | 120.0 |
Mary | 3424.0 | 120.0 |
Sherlock Holmes | 23.0 | 120.0 |
Underground | 17.0 | 120.0 |
John Hunter | 1.0 | 119.0 |
John Sullivan | 7.0 | 119.0 |
Obsession | 13.0 | 119.0 |
The Judgment of Paris | 2.0 | 119.0 |
The Great Gatsby | 9.0 | 119.0 |
Laura | 1063.0 | 119.0 |
Sappho | 9.0 | 119.0 |
Saint Sebastian | 34.0 | 119.0 |
Forkhead box P3 | 2.0 | 119.0 |
Larry Smith | 11.0 | 119.0 |
A Tale of Two Cities | 5.0 | 119.0 |
Winter | 67.0 | 119.0 |
Harry Potter and the Philosopher's Stone | 4.0 | 118.0 |
William Russell | 79.0 | 118.0 |
Ras homolog family member A | 2.0 | 118.0 |
Drive | 16.0 | 118.0 |
Gravity | 27.0 | 118.0 |
Julia | 803.0 | 118.0 |
The Adoration of the Shepherds | 8.0 | 117.0 |
Crime and Punishment | 3.0 | 117.0 |
Michael Brown | 3.0 | 117.0 |
Wanted | 7.0 | 117.0 |
The Chase | 14.0 | 117.0 |
Ecce Homo | 14.0 | 117.0 |
Sanctuary | 35.0 | 117.0 |
Marie Antoinette | 24.0 | 117.0 |
Spellbound | 6.0 | 117.0 |
Heat | 11.0 | 117.0 |
Province of Messina | 115.0 | 117.0 |
Frankenstein | 19.0 | 117.0 |
Flora | 127.0 | 117.0 |
Province of Caserta | 113.0 | 117.0 |
John Ferguson | 1.0 | 116.0 |
William Hamilton | 1.0 | 116.0 |
Brother's Keeper | 3.0 | 116.0 |
John King | 7.0 | 116.0 |
John Graham | 3.0 | 116.0 |
A Midsummer Night's Dream | 10.0 | 116.0 |
Great Expectations | 8.0 | 115.0 |
The Bridge | 12.0 | 115.0 |
Chris Williams | 7.0 | 115.0 |
Gary Smith | 2.0 | 115.0 |
Province of Padua | 112.0 | 115.0 |
Vladimir Smirnov | 7.0 | 115.0 |
Province of Chieti | 113.0 | 115.0 |
John Hamilton | 14.0 | 115.0 |
Still life | 11.0 | 115.0 |
Andrew Miller | 12.0 | 115.0 |
Sonic hedgehog signaling molecule | 1.0 | 115.0 |
John Ellis | 1.0 | 115.0 |
Li Xian | 105.0 | 115.0 |
Eva | 1075.0 | 115.0 |
North Macedonia | 766.0 | 114.0 |
Lille metropolis | 135.0 | 114.0 |
Rac family small GTPase 1 | 2.0 | 114.0 |
One Love | 34.0 | 114.0 |
James Williams | 6.0 | 114.0 |
King Kong | 4.0 | 114.0 |
province of Potenza | 111.0 | 114.0 |
Brian Johnson | 8.0 | 114.0 |
The Collection | 29.0 | 114.0 |
tumor protein p53 | 1.0 | 114.0 |
Raadhuislaan | 6.0 | 114.0 |
John Harvey | 8.0 | 114.0 |
Firefly | 42.0 | 114.0 |
Quartet | 12.0 | 114.0 |
Otto Schmidt | 5.0 | 114.0 |
Wonderland | 13.0 | 114.0 |
Otto Meyer | 6.0 | 114.0 |
Brothers | 11.0 | 114.0 |
Godzilla | 9.0 | 114.0 |
Nemesis | 20.0 | 114.0 |
Uranus | 77.0 | 113.0 |
Pygmalion and Galatea | 2.0 | 113.0 |
Moscow | 20802.0 | 113.0 |
Milan | 8132.0 | 113.0 |
Taxi | 21.0 | 113.0 |
James Hamilton | 6.0 | 113.0 |
Enigma | 33.0 | 113.0 |
Madrid | 3594.0 | 113.0 |
Victory | 19.0 | 113.0 |
Midnight | 6.0 | 113.0 |
Sweden | 37293.0 | 113.0 |
Calreticulin | 2.0 | 112.0 |
Dave Brown | 2.0 | 112.0 |
Guilty | 25.0 | 112.0 |
Province of Verona | 107.0 | 112.0 |
Charlie Brown | 5.0 | 112.0 |
The Gift | 24.0 | 112.0 |
The Ten Commandments | 1.0 | 112.0 |
Marco Polo | 14.0 | 112.0 |
Boomerang | 6.0 | 112.0 |
Butterfly | 44.0 | 111.0 |
Crossroads | 10.0 | 111.0 |
Lost | 158.0 | 111.0 |
X | 39.0 | 111.0 |
Li Mou | 98.0 | 111.0 |
Ride | 17.0 | 111.0 |
Tony Martin | 29.0 | 111.0 |
Bad Company | 12.0 | 111.0 |
Out of the Blue | 13.0 | 111.0 |
John Spencer | 19.0 | 111.0 |
Winter Landscape | 6.0 | 111.0 |
Princess Changshan | 91.0 | 111.0 |
Karl Fischer | 25.0 | 111.0 |
Kerkpad | 52.0 | 111.0 |
The Island | 3.0 | 111.0 |
Eclipse | 19.0 | 111.0 |
Bob Smith | 1.0 | 111.0 |
CD36 molecule | 2.0 | 111.0 |
Jim Brown | 29.0 | 111.0 |
Bliss | 9.0 | 111.0 |
Tour de France | 1733.0 | 110.0 |
Revolution | 25.0 | 110.0 |
Lisbon | 1443.0 | 110.0 |
Luxembourg | 2111.0 | 110.0 |
George Martin | 60.0 | 110.0 |
Tokyo | 5766.0 | 110.0 |
William Davies | 5.0 | 110.0 |
The Spoilers | 4.0 | 110.0 |
Peter Schneider | 10.0 | 110.0 |
Quo Vadis | 3.0 | 110.0 |
John Cale | 209.0 | 110.0 |
Orpheus | 27.0 | 110.0 |
Paired box 6 | 2.0 | 110.0 |
Madonna and Child with Saints | 1.0 | 110.0 |
Dorpstraat | 84.0 | 109.0 |
Caveolin 3 | 2.0 | 109.0 |
John Lloyd | 11.0 | 109.0 |
Jack White | 40.0 | 109.0 |
Truth | 15.0 | 109.0 |
Home Sweet Home | 6.0 | 109.0 |
Tom Sawyer | 8.0 | 109.0 |
The Intruder | 2.0 | 109.0 |
Ophelia | 15.0 | 109.0 |
Q17144373 | 1.0 | 109.0 |
Molière | 9.0 | 109.0 |
Robert Johnson | 7.0 | 109.0 |
Frank Williams | 5.0 | 109.0 |
Hermann Müller | 1.0 | 109.0 |
David James | 6.0 | 109.0 |
Always | 19.0 | 109.0 |
Charles Williams | 16.0 | 108.0 |
Jupiter | 145.0 | 108.0 |
Franklin County | 146.0 | 108.0 |
Seine | 304.0 | 108.0 |
John Hayes | 6.0 | 108.0 |
Rembrandt | 241.0 | 108.0 |
John Ryan | 2.0 | 108.0 |
Würzburg | 1269.0 | 108.0 |
Richard Müller | 4.0 | 108.0 |
The Scapegoat | 3.0 | 108.0 |
Territoire de Belfort | 105.0 | 107.0 |
The Last Supper | 8.0 | 107.0 |
Torenstraat | 87.0 | 107.0 |
Peter Jones | 7.0 | 107.0 |
Paul | 10558.0 | 107.0 |
Happiness | 20.0 | 107.0 |
BCL2 apoptosis regulator | 1.0 | 107.0 |
Henry Williams | 4.0 | 107.0 |
James Young | 79.0 | 107.0 |
Vendetta | 8.0 | 107.0 |
Mike Johnson | 3.0 | 106.0 |
Province of Treviso | 101.0 | 106.0 |
Frozen | 16.0 | 106.0 |
2013 Bilderberg Conference | 2.0 | 106.0 |
St. Peter | 17.0 | 106.0 |
Black Widow | 6.0 | 106.0 |
Crucifixion of Christ | 6.0 | 106.0 |
People's Republic of China | 52849.0 | 106.0 |
Down to Earth | 13.0 | 106.0 |
Uncle Tom's Cabin | 4.0 | 106.0 |
Seven | 24.0 | 106.0 |
Sam Smith | 5.0 | 106.0 |
Valencia | 544.0 | 106.0 |
John Collins | 2.0 | 106.0 |
Bill White | 1.0 | 105.0 |
Province of Lecce | 101.0 | 105.0 |
Jason Smith | 2.0 | 105.0 |
Asylum | 10.0 | 105.0 |
Waterloo | 102.0 | 105.0 |
Broken | 17.0 | 105.0 |
Jeff Smith | 26.0 | 105.0 |
Province of Reggio Calabria | 100.0 | 105.0 |
Peter Jackson | 59.0 | 105.0 |
Prins Willem-Alexanderstraat | 1.0 | 105.0 |
Michael Green | 5.0 | 105.0 |
Lola | 108.0 | 105.0 |
Captain Blood | 2.0 | 105.0 |
Tomorrow | 23.0 | 105.0 |
London | 13631.0 | 105.0 |
Aquaporin 1 | 2.0 | 105.0 |
Helen of Troy | 21.0 | 105.0 |
Lincoln County | 90.0 | 104.0 |
Washington | 562.0 | 104.0 |
William Gibson | 35.0 | 104.0 |
Jim Miller | 1.0 | 104.0 |
George Baker | 22.0 | 104.0 |
Memories | 15.0 | 104.0 |
Scott Smith | 14.0 | 104.0 |
Thor | 154.0 | 104.0 |
The Message | 15.0 | 104.0 |
Echo | 76.0 | 104.0 |
The Key | 6.0 | 104.0 |
Virus | 10.0 | 104.0 |
William Johnson | 2.0 | 104.0 |
Mexico | 11600.0 | 104.0 |
Ring | 64.0 | 103.0 |
Revenge | 24.0 | 103.0 |
John Morris | 6.0 | 103.0 |
Bobby Brown | 23.0 | 103.0 |
Runaway | 16.0 | 103.0 |
Max Weber | 14.0 | 103.0 |
The Trial | 3.0 | 103.0 |
Scott Brown | 1.0 | 103.0 |
Billy Taylor | 7.0 | 103.0 |
Molendijk | 47.0 | 103.0 |
Stars | 19.0 | 103.0 |
John Stewart | 14.0 | 103.0 |
Bacchus and Ariadne | 4.0 | 103.0 |
Breathe | 27.0 | 103.0 |
Jealousy | 12.0 | 103.0 |
Province of Naples | 102.0 | 103.0 |
David Taylor | 1.0 | 103.0 |
John Foster | 2.0 | 103.0 |
Self portrait | 7.0 | 103.0 |
Steve Johnson | 4.0 | 102.0 |
Athens | 2561.0 | 102.0 |
Michael Williams | 21.0 | 102.0 |
Thailand | 4096.0 | 102.0 |
Province of Frosinone | 100.0 | 102.0 |
Reckless | 6.0 | 102.0 |
Nativity | 5.0 | 102.0 |
Li Tan | 89.0 | 102.0 |
The Lost World | 8.0 | 102.0 |
Still Life with Flowers | 6.0 | 102.0 |
She | 16.0 | 102.0 |
Superstar | 12.0 | 102.0 |
Michael | 9122.0 | 102.0 |
John Morgan | 10.0 | 102.0 |
Richard III | 6.0 | 102.0 |
James Miller | 5.0 | 102.0 |
Steve Brown | 1.0 | 102.0 |
Summertime | 16.0 | 102.0 |
Spider-Man | 8.0 | 102.0 |
Valentine | 103.0 | 101.0 |
Breathless | 9.0 | 101.0 |
Sugar | 10.0 | 101.0 |
Head of a Woman | 1.0 | 101.0 |
Stella | 199.0 | 101.0 |
Province of Vercelli | 97.0 | 101.0 |
Music | 20.0 | 101.0 |
You | 30.0 | 101.0 |
The Raising of Lazarus | 3.0 | 101.0 |
Eric Johnson | 14.0 | 101.0 |
Thomas Wilson | 1.0 | 101.0 |
The Hole | 4.0 | 101.0 |
Hans Weber | 1.0 | 101.0 |
Colorado | 374.0 | 101.0 |
Reflections | 21.0 | 101.0 |
William Hunter | 2.0 | 101.0 |
Roma | 32.0 | 101.0 |
Blood Brothers | 13.0 | 101.0 |
Liu Yan | 65.0 | 101.0 |
Apolipoprotein B | 2.0 | 100.0 |
Bern-Mittelland administrative district | 98.0 | 100.0 |
The Hunter | 6.0 | 100.0 |
Red | 249.0 | 100.0 |
GeGeGe no Kitarō | 1.0 | 100.0 |
Ich bin ein Star – Holt mich hier raus! | 95.0 | 100.0 |
Province of Lecco | 97.0 | 100.0 |
Israel | 4309.0 | 100.0 |
The Singles | 22.0 | 100.0 |
Azerbaijan | 1276.0 | 100.0 |
Demons | 19.0 | 100.0 |
Faith | 67.0 | 100.0 |
St. Laurentius | 2.0 | 100.0 |
Florence | 4854.0 | 100.0 |
Ben Jones | 1.0 | 100.0 |
Unity | 145.0 | 100.0 |
Change | 34.0 | 100.0 |
Li Sui | 90.0 | 100.0 |
Michael Wilson | 11.0 | 100.0 |
Madonna of Humility | 3.0 | 100.0 |
Huntingtin | 2.0 | 100.0 |
Wings | 52.0 | 99.0 |
Casablanca | 396.0 | 99.0 |
Li Xuan | 90.0 | 99.0 |
Alfred Schmidt | 16.0 | 99.0 |
Antony and Cleopatra | 1.0 | 99.0 |
Li Wan | 87.0 | 99.0 |
The Good Life | 12.0 | 99.0 |
Bruno | 1963.0 | 99.0 |
Province of Novara | 95.0 | 99.0 |
Insomnia | 15.0 | 99.0 |
Charles Martin | 2.0 | 99.0 |
Adenosine A1 receptor | 2.0 | 99.0 |
The Scarlet Letter | 2.0 | 99.0 |
Fanny | 201.0 | 99.0 |
The Visitor | 10.0 | 99.0 |
David Hall | 2.0 | 99.0 |
Li County | 92.0 | 99.0 |
Ken Jones | 2.0 | 99.0 |
Romance | 35.0 | 99.0 |
Q4611255 | 98.0 | 99.0 |
Lucky | 23.0 | 99.0 |
Paul Robinson | 1.0 | 99.0 |
Conan the Barbarian | 105.0 | 99.0 |
Once Upon a Time | 79.0 | 98.0 |
Richard Martin | 16.0 | 98.0 |
equestrian statue of Joan of Arc | 9.0 | 98.0 |
The Prince and the Pauper | 7.0 | 98.0 |
Underworld | 42.0 | 98.0 |
Max Müller | 1.0 | 98.0 |
Mitogen-activated protein kinase 9 | 2.0 | 98.0 |
San Antonio | 490.0 | 98.0 |
Gerhard Fischer | 2.0 | 98.0 |
Slatina | 71.0 | 98.0 |
Istanbul | 1842.0 | 98.0 |
Netherlands | 115585.0 | 98.0 |
Remember Me | 19.0 | 98.0 |
Adam Smith | 4.0 | 98.0 |
Princess Yanguo | 84.0 | 98.0 |
Girl | 191.0 | 98.0 |
Carrie | 103.0 | 98.0 |
Child's Play | 3.0 | 98.0 |
Gone | 17.0 | 98.0 |
Province of Oristano | 93.0 | 98.0 |
M | 10.0 | 98.0 |
John Thomson | 4.0 | 98.0 |
Princess Shouchun | 86.0 | 98.0 |
The Wall | 11.0 | 98.0 |
Ali | 58.0 | 98.0 |
Trinity | 165.0 | 98.0 |
Arizona | 337.0 | 98.0 |
Taken | 6.0 | 98.0 |
Cyrano de Bergerac | 3.0 | 98.0 |
Pygmalion | 16.0 | 97.0 |
Spartacus | 13.0 | 97.0 |
Hans Meyer | 31.0 | 97.0 |
Hello | 28.0 | 97.0 |
Tonight | 26.0 | 97.0 |
Endgame | 8.0 | 97.0 |
Forkhead box C2 | 2.0 | 97.0 |
Legend | 10.0 | 97.0 |
John Henderson | 7.0 | 97.0 |
Coming Home | 14.0 | 97.0 |
Andrew Brown | 1.0 | 97.0 |
The Circle | 14.0 | 97.0 |
Freital | 87.0 | 97.0 |
Penitent Magdalene | 64.0 | 97.0 |
Matt Smith | 11.0 | 97.0 |
Santiago | 1616.0 | 97.0 |
Georg Müller | 3.0 | 97.0 |
Winston Churchill | 30.0 | 97.0 |
Napoleon | 133.0 | 97.0 |
Fame | 6.0 | 97.0 |
Alan Smith | 1.0 | 97.0 |
Mission: Impossible | 16.0 | 97.0 |
William Robertson | 1.0 | 97.0 |
John O'Brien | 2.0 | 97.0 |
Bloodline | 13.0 | 96.0 |
Maria | 3690.0 | 96.0 |
Autumn | 19.0 | 96.0 |
Dangerous | 13.0 | 96.0 |
David Watson | 1.0 | 96.0 |
Caravaggio | 139.0 | 96.0 |
Ernst Meyer | 7.0 | 96.0 |
Tattoo | 16.0 | 96.0 |
Accident | 5.0 | 96.0 |
Kevin Smith | 51.0 | 96.0 |
Brink | 67.0 | 96.0 |
Eve | 183.0 | 96.0 |
Restless | 15.0 | 96.0 |
John Kerr | 13.0 | 96.0 |
province of Campobasso | 91.0 | 96.0 |
Vladimir Popov | 2.0 | 96.0 |
Samson and Delilah | 1.0 | 96.0 |
Journey to the Center of the Earth | 1.0 | 95.0 |
The Storm | 3.0 | 95.0 |
Chris Taylor | 13.0 | 95.0 |
Someday | 28.0 | 95.0 |
Three | 16.0 | 95.0 |
Jim Smith | 1.0 | 95.0 |
The True Benjamin Franklin | 17.0 | 95.0 |
William Marshall | 44.0 | 95.0 |
The Miracle | 7.0 | 95.0 |
John Douglas | 15.0 | 95.0 |
Goiás | 114.0 | 95.0 |
Jefferson County | 144.0 | 95.0 |
Bethlehem | 167.0 | 95.0 |
Déjà Vu | 7.0 | 95.0 |
Chris Martin | 12.0 | 95.0 |
The Abduction of Europa | 4.0 | 95.0 |
Saint Jerome | 3.0 | 95.0 |
Doris | 373.0 | 95.0 |
Changes | 24.0 | 95.0 |
Earth | 72.0 | 95.0 |
Maya | 158.0 | 95.0 |
Fireworks | 14.0 | 95.0 |
After Hours | 21.0 | 94.0 |
John Lynch | 37.0 | 94.0 |
The Last of the Mohicans | 11.0 | 94.0 |
Miracle | 23.0 | 94.0 |
Democratic Party | 21099.0 | 94.0 |
Homecoming | 18.0 | 94.0 |
Edward Jones | 2.0 | 94.0 |
Daybreak | 12.0 | 94.0 |
Henry Johnson | 1.0 | 94.0 |
Masquerade | 10.0 | 94.0 |
Brian Jones | 4.0 | 94.0 |
Emperor Taizong of Tang | 86.0 | 94.0 |
The Virgin and Child | 2.0 | 94.0 |
Jacques Martin | 44.0 | 94.0 |
Miami | 874.0 | 94.0 |
Show Boat | 3.0 | 94.0 |
Iron Man | 9.0 | 94.0 |
Trouble | 23.0 | 94.0 |
The Fall of Man | 1.0 | 94.0 |
Metropolis | 27.0 | 94.0 |
Sunrise | 39.0 | 94.0 |
Another World | 11.0 | 94.0 |
John Clark | 12.0 | 94.0 |
The Prisoner of Zenda | 2.0 | 93.0 |
Province of Palermo | 90.0 | 93.0 |
Lolita | 49.0 | 93.0 |
Trust | 14.0 | 93.0 |
I Want You | 23.0 | 93.0 |
Youth | 3.0 | 93.0 |
Pure | 20.0 | 93.0 |
Henry Jones | 23.0 | 93.0 |
Lucretia | 24.0 | 93.0 |
David Copperfield | 5.0 | 93.0 |
Josef Müller | 1.0 | 93.0 |
John McCarthy | 1.0 | 93.0 |
George Thompson | 2.0 | 93.0 |
John Ball | 3.0 | 93.0 |
Some closer inspection gives the explanation to the high in-degrees. The top entitites are things like "human", "male", "female" and "politican". It makes sense that many entities would satisfy relations such as "entity is human" or "entity is femmale", resulting in the high in-degrees. Interestingly, we note that the in-degree for "male" is over 5 times higher than that of "female", indicating a high gender discrepancy in terms of the people represented in the dataset. We also find the entity "United States of Amerika" very high in the list, which is likely due to many other entities being physically in or in other ways related to America. A bit further down other countries and territories can be found, such as "Germany" and "Italy".
The entities with highest out-degrees show no obvious interpretation. We find a diverse mix of streets, buildings, people, books and other things. Our hypothesis is that these are simply items that someone has chosen to add much information about in the Wikidata knowledge base, resulting in high out-degrees.
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val inDegrees = graph.inDegrees
val outDegrees = graph.outDegrees
val degrees = inDegrees.join(outDegrees, "id").cache()
display(degrees)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksViewb40e4bb")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksViewb40e4bb) ,min_max AS (SELECT `outDegree`,(SELECT MAX(`outDegree`) FROM q) `target_column_max`,(SELECT MIN(`outDegree`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `outDegree`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 300 `step` FROM min_max) SELECT IF(ISNULL(`outDegree`),NULL,LEAST(WIDTH_BUCKET(`outDegree`,`min_value`,`max_value`,300),300)) `outDegree_BIN`,FIRST(`min_value` + ((IF(ISNULL(`outDegree`),NULL,LEAST(WIDTH_BUCKET(`outDegree`,`min_value`,`max_value`,300),300)) - 1) * `step`)) `outDegree_BIN_LOWER_BOUND`,FIRST(`step`) `outDegree_BIN_STEP`,COUNT(`outDegree`) `COUNT` FROM histogram_meta GROUP BY `outDegree_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksViewb40e4bb")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
Edge Relations
Let us now take a look at the edges, and corresponding relations. We can count and histogram the different relations associated with edges as:
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val inDegrees = graph.inDegrees
val outDegrees = graph.outDegrees
val degrees = inDegrees.join(outDegrees, "id").cache()
display(degrees)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView30dd7fb")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView30dd7fb) ,min_max AS (SELECT `inDegree`,(SELECT MAX(`inDegree`) FROM q) `target_column_max`,(SELECT MIN(`inDegree`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `inDegree`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 300 `step` FROM min_max) SELECT IF(ISNULL(`inDegree`),NULL,LEAST(WIDTH_BUCKET(`inDegree`,`min_value`,`max_value`,300),300)) `inDegree_BIN`,FIRST(`min_value` + ((IF(ISNULL(`inDegree`),NULL,LEAST(WIDTH_BUCKET(`inDegree`,`min_value`,`max_value`,300),300)) - 1) * `step`)) `inDegree_BIN_LOWER_BOUND`,FIRST(`step`) `inDegree_BIN_STEP`,COUNT(`inDegree`) `COUNT` FROM histogram_meta GROUP BY `inDegree_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView30dd7fb")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val topTenTypes = typeCounts.limit(10)
//val typeFiltered = joinedTypes.join(topTenTypes, joinedTypes.col("type") === topTenTypes.col("type"), "inner")
val typeFiltered = joinedTypes.join(topTenTypes, List("type"), "inner")
display(typeFiltered)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView6239619")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView6239619) SELECT `inDegree`,`outDegree`,`type` FROM q"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView6239619")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
val relCounts = graph.edges.groupBy("rel").count().cache() // Cahce to reuse later
display(relCounts)
rel | count |
---|---|
godparent | 22.0 |
interaction | 49.0 |
part of | 61969.0 |
molecular function | 9159.0 |
disease transmission process | 1.0 |
place served by transport hub | 64.0 |
playing hand | 2263.0 |
IUCN protected areas category | 1453.0 |
topic's main Wikimedia portal | 620.0 |
family name | 94463.0 |
parent astronomical body | 498.0 |
general manager | 4.0 |
end cause | 2.0 |
shares border with | 204230.0 |
mushroom cap shape | 793.0 |
based on | 5856.0 |
present in work | 4068.0 |
public holiday | 258.0 |
separated from | 23.0 |
filmography | 47.0 |
standards body | 22.0 |
represented by | 13.0 |
honorific suffix | 4.0 |
track gauge | 856.0 |
guest of honor | 2.0 |
topic's main category | 1397.0 |
writing system | 481.0 |
sexual orientation | 3020.0 |
industry | 2765.0 |
father | 43248.0 |
given name version for other gender | 254.0 |
academic minor | 1.0 |
applies to jurisdiction | 912.0 |
worshipped by | 245.0 |
crystal system | 369.0 |
performer | 93406.0 |
business division | 231.0 |
place of burial | 31215.0 |
influenced by | 310.0 |
this taxon is source of | 48.0 |
discovery method | 20.0 |
fictional universe described in | 84.0 |
developer | 14445.0 |
head of state | 676.0 |
notation | 3.0 |
PEGI rating | 2758.0 |
depicts | 55770.0 |
currency | 607.0 |
ESRB rating | 3292.0 |
binding of software library | 1.0 |
replaced synonym (for nom. nov.) | 9.0 |
crystal habit | 1.0 |
armament | 2156.0 |
fictional or mythical analog of | 156.0 |
basic form of government | 518.0 |
electoral district | 6.0 |
producer | 41151.0 |
shape | 75.0 |
taxon synonym | 173.0 |
highest judicial authority | 26.0 |
located in or next to body of water | 841.0 |
replaced by | 717.0 |
part of the series | 24395.0 |
Eight Banner register | 173.0 |
after a work by | 1.0 |
measured physical quantity | 24.0 |
interleaves with | 28.0 |
participant | 9805.0 |
narrative location | 16782.0 |
lake on watercourse | 72.0 |
recorded at studio or venue | 94.0 |
place of origin (Switzerland) | 1705.0 |
transport network | 13744.0 |
capital of | 215.0 |
official language | 2957.0 |
list related to category | 124.0 |
airline alliance | 135.0 |
avionics | 62.0 |
location of landing | 10.0 |
collection | 27772.0 |
characters | 2827.0 |
donated by | 62.0 |
film editor | 887.0 |
executive producer | 152.0 |
chivalric order | 1.0 |
structure replaced by | 32.0 |
owner of | 14.0 |
presynaptic connection | 1.0 |
has part(s) | 32359.0 |
located in the administrative territorial entity | 404421.0 |
employer | 79779.0 |
hair color | 382.0 |
sponsor | 52.0 |
chairperson | 2389.0 |
cathedral | 24.0 |
place of birth | 680780.0 |
lyrics by | 3742.0 |
has seal, badge, or sigil | 2.0 |
located on street | 40345.0 |
instance of | 2558406.0 |
subclass of | 47185.0 |
structural engineer | 361.0 |
exclave of | 90.0 |
points/goal scored by | 69.0 |
named after | 21854.0 |
mother house | 220.0 |
maintained by | 12932.0 |
officially opened by | 135.0 |
rector | 205.0 |
country of origin | 70182.0 |
medical condition | 3463.0 |
carries scientific instrument | 4.0 |
original combination | 205.0 |
CPU | 440.0 |
airline hub | 484.0 |
has facet polytope | 849.0 |
site of astronomical discovery | 38087.0 |
licensed to broadcast to | 32.0 |
consecrator | 91.0 |
instrumentation | 79.0 |
prosecutor | 4.0 |
category related to list | 124.0 |
has vertex figure | 3.0 |
handedness | 686.0 |
medical examination | 29.0 |
Code of nomenclature | 750.0 |
list of characters | 2.0 |
composer | 4556.0 |
encoded by | 1903.0 |
allegiance | 232.0 |
main building contractor | 422.0 |
organizer | 273.0 |
translator | 330.0 |
occupant | 5114.0 |
represents | 4.0 |
contributing factor of | 1.0 |
place of death | 324923.0 |
political alignment | 43.0 |
programmer | 87.0 |
solved by | 2.0 |
relative | 1800.0 |
legislated by | 66.0 |
physically interacts with | 4.0 |
member of sports team | 339865.0 |
director | 79861.0 |
category's main topic | 1009.0 |
category of associated people | 842.0 |
introduced feature | 2.0 |
spouse | 31456.0 |
author | 31882.0 |
basin country | 148.0 |
sex or gender | 1512569.0 |
position played on team / speciality | 13048.0 |
codomain | 6.0 |
located in/on physical feature | 4245.0 |
foundational text | 37.0 |
choreographer | 3.0 |
director of photography | 26666.0 |
powered by | 1108.0 |
language of work or name | 8963.0 |
patron saint | 1186.0 |
record label | 89527.0 |
pendant of | 168.0 |
list of works | 8.0 |
from narrative universe | 3615.0 |
proved by | 7.0 |
position held | 221291.0 |
diocese | 2560.0 |
ortholog | 1850.0 |
home port | 96.0 |
endemic to | 289.0 |
lifestyle | 510.0 |
docking port | 1.0 |
category combines topics | 22906.0 |
day in year for periodic occurrence | 204.0 |
conferred by | 347.0 |
postsynaptic connection | 1.0 |
cover art by | 174.0 |
has pet | 8.0 |
archives at | 437.0 |
game mode | 22321.0 |
diplomatic relation | 582.0 |
found in taxon | 3891.0 |
office held by head of government | 1904.0 |
IUCN conservation status | 3532.0 |
sport | 57137.0 |
Wikimedia portal's main topic | 622.0 |
native language | 4158.0 |
has contributing factor | 9.0 |
family | 6276.0 |
child astronomical body | 426.0 |
country of citizenship | 1260348.0 |
mother | 17271.0 |
adjacent station | 25394.0 |
location of creation | 1005.0 |
companion of | 24.0 |
central bank/issuer | 31.0 |
imported from Wikimedia project | 700.0 |
noble title | 3966.0 |
replaces | 528.0 |
has facility | 84.0 |
Unknown | 101919.0 |
inflows | 300.0 |
cause of death | 22861.0 |
inspired by | 325.0 |
designed by | 2862.0 |
student of | 2231.0 |
location of formation | 463.0 |
readable file format | 23.0 |
commissioned by | 475.0 |
has natural reservoir | 2.0 |
overlies | 77.0 |
religion or worldview | 26968.0 |
has immediate cause | 26.0 |
target | 14.0 |
coat of arms | 56.0 |
ethnic group | 8278.0 |
programmed in | 676.0 |
input device | 4549.0 |
statement is subject of | 156.0 |
country for sport | 18.0 |
origin of the watercourse | 151.0 |
captain | 17.0 |
used by | 18.0 |
list of episodes | 3.0 |
voice actor | 1124.0 |
main regulatory text | 156.0 |
capital | 14397.0 |
academic degree | 20284.0 |
source of energy | 122.0 |
minor planet group | 41241.0 |
contains settlement | 5981.0 |
founded by | 3641.0 |
surface played on | 362.0 |
member of | 59565.0 |
librettist | 246.0 |
tracklist | 663.0 |
activating neurotransmitter | 2.0 |
instruction set | 15.0 |
review score by | 1.0 |
notable work | 15863.0 |
lake outflow | 291.0 |
has quality | 40.0 |
taxon rank | 118537.0 |
tributary | 358.0 |
official residence | 183.0 |
constellation | 357.0 |
continent | 4025.0 |
follows | 173742.0 |
valid in period | 18.0 |
script directionality | 1.0 |
feast day | 631.0 |
stipe character | 628.0 |
terminus location | 664.0 |
discoverer or inventor | 50122.0 |
head coach | 2150.0 |
distribution format | 10388.0 |
movement | 8837.0 |
said to be the same as | 15180.0 |
applies to part | 11.0 |
office contested | 23.0 |
terminus | 2557.0 |
owned by | 22260.0 |
manifestation of | 11.0 |
charge | 3.0 |
edition or translation of | 673.0 |
speaker | 7.0 |
definition domain | 5.0 |
mouth of the watercourse | 4643.0 |
field of work | 7997.0 |
launch contractor | 4.0 |
student | 583.0 |
architectural style | 6956.0 |
Fach | 241.0 |
central bank | 7.0 |
proxy | 10.0 |
plaintiff | 2.0 |
addressee | 5.0 |
scheduled service destination | 65.0 |
possible treatment | 4.0 |
cast member | 554674.0 |
educated at | 249966.0 |
described by source | 27746.0 |
chief operating officer | 4.0 |
immediate cause of | 1.0 |
curator | 3.0 |
ancestral home | 117.0 |
determination method | 3.0 |
workshop of | 1.0 |
decays to | 4180.0 |
home venue | 3688.0 |
item operated | 2692.0 |
connecting line | 6901.0 |
space tug | 7.0 |
category for people who died here | 8029.0 |
natural reservoir of | 1.0 |
software engine | 1986.0 |
candidate | 161.0 |
approved by | 14.0 |
soundtrack release | 32.0 |
voice type | 8814.0 |
fuel system | 1.0 |
copyright license | 2673.0 |
commemorates | 63.0 |
depicted by | 49.0 |
illustrator | 1544.0 |
catalog | 97.0 |
kinship to subject | 2.0 |
has use | 3254.0 |
architect | 7108.0 |
enclave within | 140.0 |
parent taxon | 113406.0 |
residence | 3718.0 |
has subsidiary | 295.0 |
honorific prefix | 113.0 |
defendant | 2.0 |
crosses | 1392.0 |
country | 412626.0 |
brand | 25.0 |
IMA status and/or rank | 590.0 |
shooting handedness | 7.0 |
headquarters location | 6228.0 |
editor | 512.0 |
torch lit by | 47.0 |
distributed by | 1294.0 |
has edition or translation | 1106.0 |
CERO rating | 1301.0 |
home world | 16.0 |
category for films shot at this location | 1184.0 |
league | 6067.0 |
color | 526.0 |
encodes | 1902.0 |
original language of film or TV show | 84080.0 |
doctoral advisor | 632.0 |
spore print color | 688.0 |
top-level Internet domain | 23.0 |
located on linear feature | 5.0 |
mascot | 18.0 |
discography | 28.0 |
defender | 1.0 |
dedicated to | 290.0 |
USK rating | 1637.0 |
award received | 257410.0 |
penalty | 174.0 |
GSRR rating | 3.0 |
opposite of | 1418.0 |
topic's main template | 2.0 |
NATO code for grade | 19.0 |
radio format | 3.0 |
unveiled by | 5.0 |
filming location | 12856.0 |
port of registry | 39.0 |
afflicts | 21.0 |
template has topic | 3.0 |
military rank | 4735.0 |
territory claimed by | 34.0 |
partially coincident with | 571.0 |
flag | 83.0 |
point group | 79.0 |
winner | 954.0 |
destination point | 99.0 |
stock exchange | 944.0 |
child | 60412.0 |
engine configuration | 273.0 |
parent of this hybrid, breed, or cultivar | 6.0 |
convicted of | 1611.0 |
space group | 395.0 |
category for people born here | 296.0 |
stated in | 35.0 |
space launch vehicle | 312.0 |
tonality | 183.0 |
oath made by | 67.0 |
diplomatic mission sent | 184.0 |
referee | 87.0 |
location | 76268.0 |
is pollinated by | 1.0 |
eye color | 728.0 |
foods traditionally associated | 4.0 |
of | 4.0 |
is pollinator of | 1.0 |
guidance system | 156.0 |
vice-county | 1.0 |
production company | 23046.0 |
natural product of taxon | 48.0 |
family name identical to this given name | 349.0 |
GUI toolkit or framework | 92.0 |
twinning | 4.0 |
party chief representative | 22.0 |
motto | 3.0 |
military casualty classification | 7.0 |
member of political party | 168715.0 |
hymenium attachment | 851.0 |
connecting service | 1156.0 |
tempo marking | 10.0 |
symptoms and signs | 53.0 |
vessel class | 1486.0 |
ammunition | 383.0 |
language regulatory body | 29.0 |
depends on software | 7.0 |
undercarriage | 72.0 |
input set | 3.0 |
taxonomic type | 302.0 |
military branch | 25210.0 |
judge | 1.0 |
primary destinations | 68.0 |
including | 10.0 |
head of government | 7886.0 |
type of orbit | 281.0 |
given name | 1301107.0 |
located in time zone | 34076.0 |
structure replaces | 9.0 |
officeholder | 143.0 |
cause of destruction | 52.0 |
blood type | 20.0 |
participant in | 135521.0 |
list of monuments | 3738.0 |
work location | 41606.0 |
vehicle | 288.0 |
dual to | 256.0 |
executive body | 36.0 |
astronaut mission | 327.0 |
legal form | 331.0 |
religious order | 1884.0 |
direction | 1.0 |
located on astronomical body | 116.0 |
name day | 1065.0 |
mineral fracture | 5.0 |
made from material | 49794.0 |
doctoral student | 250.0 |
heritage designation | 72356.0 |
appointed by | 246.0 |
unmarried partner | 887.0 |
product or material produced | 341.0 |
exhibition history | 805.0 |
place of publication | 919.0 |
is a list of | 16723.0 |
professorship | 71.0 |
operating system | 1139.0 |
platform | 33170.0 |
academic thesis | 15.0 |
instrument | 24534.0 |
languages spoken, written or signed | 56928.0 |
type of electrification | 3.0 |
genre | 179105.0 |
biological process | 24780.0 |
anthem | 287.0 |
manner of death | 3343.0 |
affiliation | 180.0 |
route of administration | 53.0 |
cleavage | 54.0 |
significant event | 5934.0 |
academic major | 33.0 |
contains the administrative territorial entity | 146870.0 |
cell component | 9811.0 |
asteroid spectral type | 370.0 |
parent club | 54.0 |
highest point | 205.0 |
temporal range start | 46.0 |
EC enzyme classification | 1.0 |
temporal range end | 46.0 |
asteroid family | 81.0 |
hymenium type | 950.0 |
Lagrangian point | 17.0 |
interchange station | 75.0 |
legislative body | 478.0 |
start point | 104.0 |
streak color | 45.0 |
significant drug interaction | 1747.0 |
killed by | 306.0 |
has effect | 20.0 |
basionym | 203.0 |
main subject | 14726.0 |
political ideology | 2407.0 |
partner in business or sport | 5.0 |
wing configuration | 486.0 |
screenwriter | 47927.0 |
type of variable star | 8.0 |
mushroom ecological type | 914.0 |
fossil found in this unit | 5.0 |
field of this occupation | 947.0 |
successful candidate | 579.0 |
measurement scale | 8.0 |
dan/kyu rank | 5.0 |
twinned administrative body | 38104.0 |
occupation | 1639330.0 |
has cause | 59.0 |
crew member(s) | 1853.0 |
Digital Rights Management system | 14.0 |
edibility | 567.0 |
bodies of water basin category | 38.0 |
published in | 1062.0 |
original broadcaster | 4153.0 |
location of discovery | 182.0 |
director / manager | 656.0 |
presenter | 912.0 |
theme music | 9.0 |
GHS signal word | 1.0 |
MPA film rating | 6.0 |
manufacturer | 6381.0 |
chromosome | 1915.0 |
takes place in fictional universe | 378.0 |
product certification | 103.0 |
lowest point | 1.0 |
authority | 1.0 |
followed by | 173563.0 |
contributor to the creative work or subject | 902.0 |
category of people buried here | 12.0 |
printed by | 12.0 |
website account on | 11716.0 |
drafted by | 62.0 |
nominated for | 1377.0 |
writable file format | 21.0 |
conflict | 45775.0 |
exemplar of | 39.0 |
chief executive officer | 295.0 |
coolant | 230.0 |
publisher | 29948.0 |
canonization status | 2611.0 |
creator | 30054.0 |
facet of | 1739.0 |
commander of (DEPRECATED) | 49.0 |
parent organization | 535.0 |
driving side | 8.0 |
operator | 11512.0 |
underlies | 80.0 |
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val relCounts = graph.edges.groupBy("rel").count().cache()
display(relCounts)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView66cd446")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView66cd446) ,min_max AS (SELECT `count`,(SELECT MAX(`count`) FROM q) `target_column_max`,(SELECT MIN(`count`) FROM q) `target_column_min` FROM q) ,histogram_meta AS (SELECT `count`,`target_column_min` `min_value`,IF(`target_column_max` = `target_column_min`,`target_column_max` + 1,`target_column_max`) `max_value`,(`target_column_max` - `target_column_min`) / 100 `step` FROM min_max) SELECT IF(ISNULL(`count`),NULL,LEAST(WIDTH_BUCKET(`count`,`min_value`,`max_value`,100),100)) `count_BIN`,FIRST(`min_value` + ((IF(ISNULL(`count`),NULL,LEAST(WIDTH_BUCKET(`count`,`min_value`,`max_value`,100),100)) - 1) * `step`)) `count_BIN_LOWER_BOUND`,FIRST(`step`) `count_BIN_STEP`,COUNT(`count`) `COUNT` FROM histogram_meta GROUP BY `count_BIN`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView66cd446")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
Also for relations we can see that some occur millions of times, whereas some only a few times. The most common relation is unsurprisingly "instance of", which really can be applied to every single entity. Next we find a set of relations that are applicable to most humans, including things like "occupation", "sex or gender" and "country of citizenship". From this exploration it has become clear that a large portion of the knowledge graph is concerned with people. Another large portion seems focused on geographic and political entities, such as countries and territories. We note that relations that relate to these, such as "located in the administrative territorial entity" and "shares border with" are also prevalent in the dataset. Relations that occur only once or a few times are as expected highly specific. This includes things like "GHS signal word" and "is pollinated by".
We can also check if the graph contains any self-loops, i.e. edges where the source and destination nodes are the same.
val selfLoops = graph.edges.filter("src == dst").cache()
val selfLoopRels = selfLoops.groupBy("rel").count()
display(selfLoopRels)
rel | count |
---|---|
part of | 232.0 |
based on | 1602.0 |
father | 476.0 |
performer | 1208.0 |
depicts | 511.0 |
has part(s) | 605.0 |
located in the administrative territorial entity | 4118.0 |
subclass of | 115.0 |
instance of | 265.0 |
named after | 516.0 |
capital | 3236.0 |
contains settlement | 3087.0 |
follows | 117.0 |
said to be the same as | 86.0 |
edition or translation of | 66.0 |
connecting line | 10.0 |
country | 265.0 |
encodes | 8.0 |
child | 468.0 |
family name identical to this given name | 287.0 |
given name | 714.0 |
contains the administrative territorial entity | 251.0 |
main subject | 162.0 |
twinned administrative body | 166.0 |
followed by | 123.0 |
shares border with | 59.0 |
topic's main category | 1.0 |
part of the series | 767.0 |
narrative location | 40.0 |
characters | 32.0 |
located on street | 24.0 |
category's main topic | 1.0 |
located in/on physical feature | 29.0 |
pendant of | 6.0 |
imported from Wikimedia project | 32.0 |
soundtrack release | 11.0 |
has edition or translation | 66.0 |
color | 6.0 |
made from material | 1.0 |
ortholog | 21.0 |
headquarters location | 17.0 |
territory claimed by | 2.0 |
family name | 25.0 |
inspired by | 23.0 |
tracklist | 34.0 |
producer | 16.0 |
capital of | 14.0 |
cast member | 16.0 |
catalog | 1.0 |
replaced by | 8.0 |
author | 9.0 |
dual to | 42.0 |
record label | 5.0 |
Unknown | 69.0 |
interchange station | 3.0 |
relative | 56.0 |
location | 57.0 |
place of burial | 9.0 |
place of birth | 11.0 |
statement is subject of | 4.0 |
movement | 3.0 |
parent taxon | 19.0 |
developer | 17.0 |
occupant | 5.0 |
director | 2.0 |
described by source | 14.0 |
present in work | 26.0 |
mouth of the watercourse | 2.0 |
publisher | 11.0 |
participant | 2.0 |
dedicated to | 7.0 |
opposite of | 23.0 |
creator | 7.0 |
stock exchange | 2.0 |
screenwriter | 5.0 |
mother house | 1.0 |
presenter | 4.0 |
writing system | 9.0 |
encoded by | 7.0 |
is a list of | 5.0 |
genre | 297.0 |
Wikimedia portal's main topic | 1.0 |
employer | 4.0 |
killed by | 4.0 |
spouse | 4.0 |
mother | 12.0 |
notable work | 7.0 |
contributor to the creative work or subject | 1.0 |
lyrics by | 4.0 |
replaces | 7.0 |
published in | 4.0 |
owned by | 9.0 |
parent astronomical body | 2.0 |
from narrative universe | 1.0 |
conflict | 1.0 |
located in or next to body of water | 8.0 |
has facility | 1.0 |
point group | 1.0 |
software engine | 6.0 |
readable file format | 1.0 |
student of | 2.0 |
member of | 2.0 |
founded by | 7.0 |
location of creation | 4.0 |
parent organization | 1.0 |
child astronomical body | 2.0 |
fictional or mythical analog of | 4.0 |
filming location | 9.0 |
home venue | 1.0 |
owner of | 1.0 |
website account on | 1.0 |
operator | 2.0 |
underlies | 1.0 |
feast day | 1.0 |
topic's main Wikimedia portal | 1.0 |
place of death | 2.0 |
structure replaced by | 1.0 |
depicted by | 8.0 |
commissioned by | 1.0 |
taxon synonym | 1.0 |
political ideology | 3.0 |
has use | 2.0 |
shape | 1.0 |
sport | 1.0 |
partially coincident with | 2.0 |
programmed in | 1.0 |
country of origin | 2.0 |
home world | 1.0 |
composer | 3.0 |
manufacturer | 2.0 |
decays to | 2.0 |
facet of | 2.0 |
conferred by | 1.0 |
terminus | 2.0 |
copyright license | 1.0 |
collection | 1.0 |
display(selfLoops)
src | rel | dst |
---|---|---|
Adam Strzembosz | father | Adam Strzembosz |
Ancient Carthage | country | Ancient Carthage |
Bangkalan | located in the administrative territorial entity | Bangkalan |
Barnim | named after | Barnim |
Bereni | capital | Bereni |
Bereni | contains settlement | Bereni |
Birchiș | contains settlement | Birchiș |
Birchiș | capital | Birchiș |
Blăjani | capital | Blăjani |
Blăjani | contains settlement | Blăjani |
Buck | family name identical to this given name | Buck |
Copălău | located in the administrative territorial entity | Copălău |
Cozieni | located in the administrative territorial entity | Cozieni |
Curtișoara | located in the administrative territorial entity | Curtișoara |
Cârligele | located in the administrative territorial entity | Cârligele |
D'Arcy Power | father | D'Arcy Power |
Dance or Die | performer | Dance or Die |
Dongen | located in the administrative territorial entity | Dongen |
Dăești | located in the administrative territorial entity | Dăești |
Evanescence | performer | Evanescence |
Francis Windebank | child | Francis Windebank |
Giroc | contains settlement | Giroc |
Giroc | capital | Giroc |
Gottfried Kinkel | child | Gottfried Kinkel |
Gura Caliței | capital | Gura Caliței |
Gura Caliței | contains settlement | Gura Caliței |
Hama | located in the administrative territorial entity | Hama |
Heerenveen | contains settlement | Heerenveen |
Heerenveen | named after | Heerenveen |
Holes | based on | Holes |
How I Live Now | based on | How I Live Now |
James Watt | father | James Watt |
Jilava | located in the administrative territorial entity | Jilava |
Kapong | located in the administrative territorial entity | Kapong |
Lucie | performer | Lucie |
Maj | given name | Maj |
Mathilukal | based on | Mathilukal |
Michael Rose | performer | Michael Rose |
Mitreni | located in the administrative territorial entity | Mitreni |
Morărești | capital | Morărești |
Morărești | contains settlement | Morărești |
Măceșu de Sus | contains settlement | Măceșu de Sus |
Măceșu de Sus | capital | Măceșu de Sus |
Măgești | located in the administrative territorial entity | Măgești |
Măieruș | capital | Măieruș |
Măieruș | contains settlement | Măieruș |
Mărgăritești | contains settlement | Mărgăritești |
Mărgăritești | capital | Mărgăritești |
Ocna de Fier | located in the administrative territorial entity | Ocna de Fier |
Paradiso | contains the administrative territorial entity | Paradiso |
Piet Aalberse | child | Piet Aalberse |
Pitești | located in the administrative territorial entity | Pitești |
Poiana Mare | located in the administrative territorial entity | Poiana Mare |
Pointed Torso | part of the series | Pointed Torso |
Pointed Torso | part of the series | Pointed Torso |
Reclining Figure: Hand | has part(s) | Reclining Figure: Hand |
Rodrigo y Gabriela | notable work | Rodrigo y Gabriela |
Runcu | contains settlement | Runcu |
Runcu | capital | Runcu |
Răchitova | contains settlement | Răchitova |
Răchitova | capital | Răchitova |
Saraiu | contains settlement | Saraiu |
Saraiu | capital | Saraiu |
Seine | named after | Seine |
Slobozia | capital | Slobozia |
Slobozia | contains settlement | Slobozia |
Spytkowice, Nowy Targ County | located in the administrative territorial entity | Spytkowice, Nowy Targ County |
Sânmihaiu Român | located in the administrative territorial entity | Sânmihaiu Român |
Săucești | located in the administrative territorial entity | Săucești |
The Front Page | based on | The Front Page |
The Host | based on | The Host |
The Youngbloods | performer | The Youngbloods |
Two Piece Reclining Figure No. 4 | has part(s) | Two Piece Reclining Figure No. 4 |
Uncle Tom's Cabin | based on | Uncle Tom's Cabin |
Uncle Tom's Cabin | based on | Uncle Tom's Cabin |
Urmeniș | capital | Urmeniș |
Urmeniș | contains settlement | Urmeniș |
Vetiș | capital | Vetiș |
Vetiș | contains settlement | Vetiș |
Vurpăr | contains settlement | Vurpăr |
Vurpăr | capital | Vurpăr |
Vădăstrița | located in the administrative territorial entity | Vădăstrița |
Wilhelm Solheim | father | Wilhelm Solheim |
Xiong Yan | father | Xiong Yan |
regular tridecagon | dual to | regular tridecagon |
After 7 | performer | After 7 |
Ambroise Paré | depicts | Ambroise Paré |
Apeldoorn | capital | Apeldoorn |
Apeldoorn | contains settlement | Apeldoorn |
Arsène Lupin | characters | Arsène Lupin |
Arsène Lupin | characters | Arsène Lupin |
Arsène Lupin | characters | Arsène Lupin |
Banjar | located in the administrative territorial entity | Banjar |
Barbie | part of the series | Barbie |
Barbie | part of the series | Barbie |
Bee Season | based on | Bee Season |
Black Alien | part of | Black Alien |
Black Christmas | based on | Black Christmas |
Boroaia | capital | Boroaia |
Boroaia | contains settlement | Boroaia |
Boston | narrative location | Boston |
Boston | twinned administrative body | Boston |
Brebu Nou | located in the administrative territorial entity | Brebu Nou |
Buești | contains settlement | Buești |
Buești | capital | Buești |
Bârsa | capital | Bârsa |
Bârsa | contains settlement | Bârsa |
Carl Cederström | father | Carl Cederström |
Chicago | narrative location | Chicago |
Chicago | narrative location | Chicago |
Chicago | located in the administrative territorial entity | Chicago |
Chicago | located in the administrative territorial entity | Chicago |
Chicago | narrative location | Chicago |
Chicago | located in the administrative territorial entity | Chicago |
Cloppenburg | capital | Cloppenburg |
Cloppenburg | contains the administrative territorial entity | Cloppenburg |
Cordun | contains settlement | Cordun |
Cordun | capital | Cordun |
Coroisânmărtin | located in the administrative territorial entity | Coroisânmărtin |
Darth Plagueis | characters | Darth Plagueis |
Days of the New | performer | Days of the New |
Days of the New | followed by | Days of the New |
Days of the New | performer | Days of the New |
Doom | part of the series | Doom |
Doom | part of the series | Doom |
Doom | based on | Doom |
Double Oval | has part(s) | Double Oval |
Drăgănești | contains settlement | Drăgănești |
Drăgănești | capital | Drăgănești |
Dumești | contains settlement | Dumești |
Dumești | capital | Dumești |
Durnești | capital | Durnești |
Durnești | contains settlement | Durnești |
Eighteen Visions | performer | Eighteen Visions |
Ernest Tubb | performer | Ernest Tubb |
European Champions Cup 2013 | followed by | European Champions Cup 2013 |
Flight of the Conchords | performer | Flight of the Conchords |
Flight of the Conchords | performer | Flight of the Conchords |
Francesco Barberini | relative | Francesco Barberini |
Freising | contains the administrative territorial entity | Freising |
Fărcășești | contains settlement | Fărcășești |
Fărcășești | capital | Fărcășești |
Hănțești | located in the administrative territorial entity | Hănțești |
King Lear | inspired by | King Lear |
Large Two Forms | has part(s) | Large Two Forms |
Lehliu Gară | located in the administrative territorial entity | Lehliu Gară |
Leiria | located in the administrative territorial entity | Leiria |
Loon op Zand | contains settlement | Loon op Zand |
Louis Armand | named after | Louis Armand |
Lozna | contains settlement | Lozna |
Lozna | capital | Lozna |
Luxembourg | country | Luxembourg |
Luxembourg | country | Luxembourg |
MAN Truck & Bus | parent organization | MAN Truck & Bus |
Mae Sai | located in the administrative territorial entity | Mae Sai |
Mae Sai | located in the administrative territorial entity | Mae Sai |
Marcos | given name | Marcos |
Min Buri | located in the administrative territorial entity | Min Buri |
Mogoșani | located in the administrative territorial entity | Mogoșani |
Moțăței | located in the administrative territorial entity | Moțăței |
Naomi | given name | Naomi |
Naughty by Nature | performer | Naughty by Nature |
Odo | given name | Odo |
Odorheiu Secuiesc | located in the administrative territorial entity | Odorheiu Secuiesc |
Oscar | given name | Oscar |
Peyton Place | based on | Peyton Place |
Plăieșii de Jos | located in the administrative territorial entity | Plăieșii de Jos |
Provița de Jos | located in the administrative territorial entity | Provița de Jos |
Păușești | contains settlement | Păușești |
Păușești | capital | Păușești |
Quicksilver Messenger Service | performer | Quicksilver Messenger Service |
Reclining Figure: Angles | has part(s) | Reclining Figure: Angles |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Reclining Figure: Hand | part of the series | Reclining Figure: Hand |
Red House Painters | performer | Red House Painters |
Red House Painters | performer | Red House Painters |
Richard Hoare | relative | Richard Hoare |
Rowan | family name identical to this given name | Rowan |
Rowan | has part(s) | Rowan |
Roșiori | located in the administrative territorial entity | Roșiori |
Rusănești | located in the administrative territorial entity | Rusănești |
Sai Mun | contains the administrative territorial entity | Sai Mun |
Schinnen | contains settlement | Schinnen |
Section de recherches, season 6 | followed by | Section de recherches, season 6 |
Sighetu Marmației | contains settlement | Sighetu Marmației |
Sighetu Marmației | capital | Sighetu Marmației |
Someș-Odorhei | contains settlement | Someș-Odorhei |
Someș-Odorhei | capital | Someș-Odorhei |
Spencer Gore | child | Spencer Gore |
The Black Adder | follows | The Black Adder |
The Bourne Ultimatum | based on | The Bourne Ultimatum |
The Fifth Element | based on | The Fifth Element |
The Hunger | based on | The Hunger |
Toby | given name | Toby |
Tristania | performer | Tristania |
Ulysses | based on | Ulysses |
Van Halen | performer | Van Halen |
Vânători | located in the administrative territorial entity | Vânători |
William Penn | father | William Penn |
Zvoriștea | contains settlement | Zvoriștea |
Zvoriștea | capital | Zvoriștea |
Șelimbăr | contains settlement | Șelimbăr |
Șelimbăr | capital | Șelimbăr |
Alexia | performer | Alexia |
American Recordings | record label | American Recordings |
Andrew | family name identical to this given name | Andrew |
Anina | located in the administrative territorial entity | Anina |
Antonin | given name | Antonin |
Ariceștii Zeletin | contains settlement | Ariceștii Zeletin |
Ariceștii Zeletin | capital | Ariceștii Zeletin |
Asti | named after | Asti |
Beliu | capital | Beliu |
Beliu | contains settlement | Beliu |
Bodoc | located in the administrative territorial entity | Bodoc |
Callianassa | named after | Callianassa |
Catalina Mk. II | based on | Catalina Mk. II |
Ceamurlia de Jos | located in the administrative territorial entity | Ceamurlia de Jos |
Chirnogeni | located in the administrative territorial entity | Chirnogeni |
Cleveland | twinned administrative body | Cleveland |
Curaçao | country | Curaçao |
Cutting the Stone | based on | Cutting the Stone |
Death of a Salesman | based on | Death of a Salesman |
Delești | contains settlement | Delești |
Delești | capital | Delești |
Demmin | located in the administrative territorial entity | Demmin |
Dudley | located in the administrative territorial entity | Dudley |
Eddie Kendricks | performer | Eddie Kendricks |
Egerton | family name identical to this given name | Egerton |
Egerton | has part(s) | Egerton |
Emile Verhaeren | depicts | Emile Verhaeren |
F7 | ortholog | F7 |
Fyodor Tyutchev | child | Fyodor Tyutchev |
Havelterberg | named after | Havelterberg |
Izvoarele | contains settlement | Izvoarele |
Izvoarele | capital | Izvoarele |
Jacob Bicker | father | Jacob Bicker |
Jean-Thomas Taschereau | child | Jean-Thomas Taschereau |
Kantang | located in the administrative territorial entity | Kantang |
Kantang | contains the administrative territorial entity | Kantang |
Kari Diesen | mother | Kari Diesen |
Leyte | located in the administrative territorial entity | Leyte |
Lucerne | located in the administrative territorial entity | Lucerne |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mary Magdalene | depicts | Mary Magdalene |
Mest | performer | Mest |
Mihail Kogălniceanu | located in the administrative territorial entity | Mihail Kogălniceanu |
Mitsuhei Obuchi | father | Mitsuhei Obuchi |
Moldovenești | capital | Moldovenești |
Moldovenești | contains settlement | Moldovenești |
Negrești | contains settlement | Negrești |
Negrești | capital | Negrești |
Negrești-Oaș | located in the administrative territorial entity | Negrești-Oaș |
Ngawi | capital | Ngawi |
Osica de Sus | located in the administrative territorial entity | Osica de Sus |
Ovidiu | contains settlement | Ovidiu |
Ovidiu | capital | Ovidiu |
Parța | located in the administrative territorial entity | Parța |
Perieni | contains settlement | Perieni |
Perieni | capital | Perieni |
Perry Como | performer | Perry Como |
Planet of the Apes | based on | Planet of the Apes |
Planet of the Apes | based on | Planet of the Apes |
Podoleni | located in the administrative territorial entity | Podoleni |
Poienile Izei | located in the administrative territorial entity | Poienile Izei |
Roșiori | located in the administrative territorial entity | Roșiori |
Ryan O'Shaughnessy | performer | Ryan O'Shaughnessy |
Râmnicelu | located in the administrative territorial entity | Râmnicelu |
Saint-Martin-d'Oney | located in the administrative territorial entity | Saint-Martin-d'Oney |
Salzburg | capital | Salzburg |
Salzburg | contains the administrative territorial entity | Salzburg |
Samuel Alken | child | Samuel Alken |
The Anonymous Venetian | based on | The Anonymous Venetian |
The Fox and the Hound | based on | The Fox and the Hound |
The Spy Who Came in from the Cold | based on | The Spy Who Came in from the Cold |
The Wannadies | performer | The Wannadies |
The Warriors | based on | The Warriors |
Unna | located in the administrative territorial entity | Unna |
Valea Salciei | contains settlement | Valea Salciei |
Valea Salciei | capital | Valea Salciei |
Victor Cousin | depicts | Victor Cousin |
Walter | given name | Walter |
Walter | given name | Walter |
Working Model for Sheep Piece | has part(s) | Working Model for Sheep Piece |
X-COM | part of the series | X-COM |
Știubieni | capital | Știubieni |
Știubieni | contains settlement | Știubieni |
Achilles | named after | Achilles |
Aita Mare | capital | Aita Mare |
Aita Mare | contains settlement | Aita Mare |
Ariceștii Rahtivani | contains settlement | Ariceștii Rahtivani |
Ariceștii Rahtivani | capital | Ariceștii Rahtivani |
Basilan | located in/on physical feature | Basilan |
Blandt kløver og sopp | followed by | Blandt kløver og sopp |
Boardwalk Empire | part of the series | Boardwalk Empire |
Boeing Aircraft Cutaways | has edition or translation | Boeing Aircraft Cutaways |
Bonifacio | given name | Bonifacio |
Borșa | located in the administrative territorial entity | Borșa |
Breakaway | part of | Breakaway |
Brodina | located in the administrative territorial entity | Brodina |
Cajvana | located in the administrative territorial entity | Cajvana |
Chiojdeni | contains settlement | Chiojdeni |
Chiojdeni | capital | Chiojdeni |
Cicănești | located in the administrative territorial entity | Cicănești |
Ciohorăni | contains settlement | Ciohorăni |
Ciohorăni | capital | Ciohorăni |
Clannad | performer | Clannad |
Comana | located in the administrative territorial entity | Comana |
Crețeni | located in the administrative territorial entity | Crețeni |
Critters | has part(s) | Critters |
Cârța | located in the administrative territorial entity | Cârța |
Dagmar Andrtová-Voňková | performer | Dagmar Andrtová-Voňková |
Dan Makham Tia | located in the administrative territorial entity | Dan Makham Tia |
De Hoogt | located on street | De Hoogt |
Densuș | contains settlement | Densuș |
Densuș | capital | Densuș |
Dezna | located in the administrative territorial entity | Dezna |
Disentis | located in the administrative territorial entity | Disentis |
Dumitra | capital | Dumitra |
Dumitra | contains settlement | Dumitra |
Durnești | located in the administrative territorial entity | Durnești |
Elton John | performer | Elton John |
Endor | parent astronomical body | Endor |
Footloose | based on | Footloose |
Francis Newbery | relative | Francis Newbery |
Gherăești | contains settlement | Gherăești |
Gherăești | capital | Gherăești |
Glodeni | located in the administrative territorial entity | Glodeni |
Gran Turismo | part of the series | Gran Turismo |
Gran Turismo | part of the series | Gran Turismo |
Granma | named after | Granma |
Griva | performer | Griva |
Groningen | contains the administrative territorial entity | Groningen |
Groningen | located in the administrative territorial entity | Groningen |
Grumăzești | capital | Grumăzești |
Grumăzești | contains settlement | Grumăzești |
Gérard Audran | depicts | Gérard Audran |
Head of a Girl | has part(s) | Head of a Girl |
Henry | family name identical to this given name | Henry |
Henry | has part(s) | Henry |
Iepurești | located in the administrative territorial entity | Iepurești |
Indiana Jones | from narrative universe | Indiana Jones |
Jagged Alliance | part of the series | Jagged Alliance |
James Davidson | child | James Davidson |
John Randolph | child | John Randolph |
K2 | performer | K2 |
Langeoog | located in the administrative territorial entity | Langeoog |
Laos | country | Laos |
Lightning Bolt | performer | Lightning Bolt |
Margina | capital | Margina |
Margina | contains settlement | Margina |
Midori | given name | Midori |
Mihăileni | contains settlement | Mihăileni |
Mihăileni | capital | Mihăileni |
Mogoșani | contains settlement | Mogoșani |
Mogoșani | capital | Mogoșani |
Murder on the Orient Express | based on | Murder on the Orient Express |
Naidăș | located in the administrative territorial entity | Naidăș |
Nils Bouveng | father | Nils Bouveng |
Ono | has part(s) | Ono |
Phoebe | given name | Phoebe |
Phoenix | followed by | Phoenix |
Pomi | located in the administrative territorial entity | Pomi |
Quidam | performer | Quidam |
Racovița | contains settlement | Racovița |
Racovița | capital | Racovița |
Reclining Figure No. 4 | part of the series | Reclining Figure No. 4 |
Reclining Figure No. 4 | part of the series | Reclining Figure No. 4 |
Reclining Figure No. 4 | part of the series | Reclining Figure No. 4 |
Robert Walpole | child | Robert Walpole |
Roberto Murolo e la sua chitarra | followed by | Roberto Murolo e la sua chitarra |
Roth | contains the administrative territorial entity | Roth |
Roșia | contains settlement | Roșia |
Roșia | capital | Roșia |
Roșiori | located in the administrative territorial entity | Roșiori |
Răchiți | contains settlement | Răchiți |
Răchiți | capital | Răchiți |
Sai Noi | contains the administrative territorial entity | Sai Noi |
Samir | given name | Samir |
Samir | given name | Samir |
Spanțov | located in the administrative territorial entity | Spanțov |
Star Ocean | part of the series | Star Ocean |
Stolniceni-Prăjescu | located in the administrative territorial entity | Stolniceni-Prăjescu |
Sărulești | located in the administrative territorial entity | Sărulești |
Tambacounda | located in the administrative territorial entity | Tambacounda |
The Archers | performer | The Archers |
The Empire of Lights | part of | The Empire of Lights |
The It Girl | part of the series | The It Girl |
The U.S. vs. John Lennon | soundtrack release | The U.S. vs. John Lennon |
Tulcea | contains settlement | Tulcea |
Tulcea | capital | Tulcea |
Type 63 | conflict | Type 63 |
Tâmboești | capital | Tâmboești |
Tâmboești | contains settlement | Tâmboești |
Upright Motive No. 7 | has part(s) | Upright Motive No. 7 |
Venlo | located in the administrative territorial entity | Venlo |
Veracruz | located in the administrative territorial entity | Veracruz |
Vânători | located in the administrative territorial entity | Vânători |
Vătava | contains settlement | Vătava |
Vătava | capital | Vătava |
Walter Devereux | child | Walter Devereux |
William Goforth | child | William Goforth |
XIII | based on | XIII |
Your Face Sounds Familiar | based on | Your Face Sounds Familiar |
Zapovit | edition or translation of | Zapovit |
Zapovit | edition or translation of | Zapovit |
Zapovit | edition or translation of | Zapovit |
Însurăței | located in the administrative territorial entity | Însurăței |
A Simple Plan | based on | A Simple Plan |
Battle of Grunwald | depicts | Battle of Grunwald |
Blijdorp | named after | Blijdorp |
Bogda | located in the administrative territorial entity | Bogda |
Bolboși | located in the administrative territorial entity | Bolboși |
Bonded by Blood | named after | Bonded by Blood |
Boss Hog | performer | Boss Hog |
Bosse | named after | Bosse |
Bror Cederström | child | Bror Cederström |
Brădești | located in the administrative territorial entity | Brădești |
Bung Khla | located in the administrative territorial entity | Bung Khla |
Béla Bartók | child | Béla Bartók |
Béla Bartók | relative | Béla Bartók |
Chrysomela | parent taxon | Chrysomela |
Cosmești | contains settlement | Cosmești |
Cosmești | capital | Cosmești |
Cudalbi | contains settlement | Cudalbi |
Cudalbi | capital | Cudalbi |
Donny Hathaway | performer | Donny Hathaway |
Dragodana | located in the administrative territorial entity | Dragodana |
Foundiougne Department | located in the administrative territorial entity | Foundiougne Department |
František Schneider | child | František Schneider |
François Coppée | depicts | François Coppée |
George Bacon Wood | described by source | George Bacon Wood |
Gurasada | capital | Gurasada |
Gurasada | contains settlement | Gurasada |
Hansel and Gretel | based on | Hansel and Gretel |
Hansel and Gretel | based on | Hansel and Gretel |
John Denver | performer | John Denver |
Kendal | located in the administrative territorial entity | Kendal |
Large Standing Figure: Knife Edge | has part(s) | Large Standing Figure: Knife Edge |
Livada | capital | Livada |
Livada | contains settlement | Livada |
Mariachi El Bronx | followed by | Mariachi El Bronx |
Martina von Schwerin | child | Martina von Schwerin |
Mauritius | country | Mauritius |
Meiningen | twinned administrative body | Meiningen |
Mica | located in the administrative territorial entity | Mica |
Molly Hatchet | performer | Molly Hatchet |
Nanning van Foreest | father | Nanning van Foreest |
Ocnița | contains settlement | Ocnița |
Ocnița | capital | Ocnița |
Peregu Mare | contains settlement | Peregu Mare |
Peregu Mare | capital | Peregu Mare |
Podoleni | capital | Podoleni |
Podoleni | contains settlement | Podoleni |
Priboieni | capital | Priboieni |
Priboieni | contains settlement | Priboieni |
Prigor | capital | Prigor |
Prigor | contains settlement | Prigor |
Rembang | capital | Rembang |
SOCOM U.S. Navy SEALs | part of the series | SOCOM U.S. Navy SEALs |
Santa Claus | depicts | Santa Claus |
Slatina | located in the administrative territorial entity | Slatina |
Soest | located in the administrative territorial entity | Soest |
The Aggrolites | performer | The Aggrolites |
The Great Gatsby | based on | The Great Gatsby |
The Great Gatsby | based on | The Great Gatsby |
The Great Gatsby | based on | The Great Gatsby |
The Great Gatsby | based on | The Great Gatsby |
The Great Gatsby | based on | The Great Gatsby |
The Raven | edition or translation of | The Raven |
The Raven | edition or translation of | The Raven |
The Raven | based on | The Raven |
The Raven | edition or translation of | The Raven |
The Virgin Suicides | based on | The Virgin Suicides |
Triage | based on | Triage |
Veghel | capital | Veghel |
Veghel | contains settlement | Veghel |
Vișinești | located in the administrative territorial entity | Vișinești |
Walter Gropius | father | Walter Gropius |
Woking | located in the administrative territorial entity | Woking |
iPad | subclass of | iPad |
Șendriceni | contains settlement | Șendriceni |
Șendriceni | capital | Șendriceni |
Adjud | located in the administrative territorial entity | Adjud |
Aninoasa | capital | Aninoasa |
Aninoasa | contains settlement | Aninoasa |
Annabel | given name | Annabel |
Annabel | family name | Annabel |
Arnulf | given name | Arnulf |
Arnulf | given name | Arnulf |
Assis Chateaubriand | named after | Assis Chateaubriand |
Batu | located in the administrative territorial entity | Batu |
Berghin | located in the administrative territorial entity | Berghin |
Black Stone Cherry | performer | Black Stone Cherry |
Brădești | capital | Brădești |
Brădești | contains settlement | Brădești |
Bucșani | contains settlement | Bucșani |
Bucșani | capital | Bucșani |
Bud Spencer Blues Explosion | performer | Bud Spencer Blues Explosion |
Bălilești | located in the administrative territorial entity | Bălilești |
Cameroon | country | Cameroon |
Catalina | located in the administrative territorial entity | Catalina |
Catane | located in the administrative territorial entity | Catane |
Catherine of Bosnia | mother | Catherine of Bosnia |
Chișlaz | contains settlement | Chișlaz |
Chișlaz | capital | Chișlaz |
Ciceu-Mihăiești | located in the administrative territorial entity | Ciceu-Mihăiești |
Colonești | located in the administrative territorial entity | Colonești |
Coțofenii din Față | located in the administrative territorial entity | Coțofenii din Față |
Cârjiți | located in the administrative territorial entity | Cârjiți |
Dalton | family name identical to this given name | Dalton |
Damage | based on | Damage |
Day of Fire | performer | Day of Fire |
Dobreni | located in the administrative territorial entity | Dobreni |
Double Indemnity | based on | Double Indemnity |
Draped Reclining Mother and Baby | has part(s) | Draped Reclining Mother and Baby |
Eclipse of Reason | has edition or translation | Eclipse of Reason |
Eddie Santiago | performer | Eddie Santiago |
Ende | located in the administrative territorial entity | Ende |
Filipeștii de Târg | located in the administrative territorial entity | Filipeștii de Târg |
František Veselý | child | František Veselý |
Frumoasa | contains settlement | Frumoasa |
Frumoasa | capital | Frumoasa |
Gura Padinii | contains settlement | Gura Padinii |
Gura Padinii | capital | Gura Padinii |
Gyeongjeon Line | connecting line | Gyeongjeon Line |
Hans von Matt | child | Hans von Matt |
Henri, Prince of Condé | child | Henri, Prince of Condé |
Highway 1 | has part(s) | Highway 1 |
Hopârta | capital | Hopârta |
Hopârta | contains settlement | Hopârta |
Hypnos | performer | Hypnos |
Hălmăgel | capital | Hălmăgel |
Hălmăgel | contains settlement | Hălmăgel |
Ideciu de Jos | located in the administrative territorial entity | Ideciu de Jos |
Jeremiasz | given name | Jeremiasz |
Lady Chatterley's Lover | based on | Lady Chatterley's Lover |
Lajes do Pico | located in the administrative territorial entity | Lajes do Pico |
Land of the Lost | based on | Land of the Lost |
Laprida | capital | Laprida |
Large Spindle Piece | has part(s) | Large Spindle Piece |
Laslea | located in the administrative territorial entity | Laslea |
Like a Prayer | part of | Like a Prayer |
Limburg | shares border with | Limburg |
Lorenzo | family name identical to this given name | Lorenzo |
Luci | family name identical to this given name | Luci |
Lunca | capital | Lunca |
Lunca | contains settlement | Lunca |
Mayke | given name | Mayke |
Movila Miresii | contains settlement | Movila Miresii |
Movila Miresii | capital | Movila Miresii |
Mârșani | located in the administrative territorial entity | Mârșani |
Negri | located in the administrative territorial entity | Negri |
Neighbours from Hell | part of | Neighbours from Hell |
Oarja | capital | Oarja |
Oarja | contains settlement | Oarja |
Ocna Șugatag | located in the administrative territorial entity | Ocna Șugatag |
Osasco | twinned administrative body | Osasco |
Parava | located in the administrative territorial entity | Parava |
Parava | contains settlement | Parava |
Parava | capital | Parava |
Pierre | family name identical to this given name | Pierre |
Prundu Bârgăului | located in the administrative territorial entity | Prundu Bârgăului |
Raging Speedhorn | performer | Raging Speedhorn |
Republic of Texas | country | Republic of Texas |
Scărișoara | located in the administrative territorial entity | Scărișoara |
Singing in the Twins Wonderland | follows | Singing in the Twins Wonderland |
Stoicănești | located in the administrative territorial entity | Stoicănești |
Strangers on a Train | based on | Strangers on a Train |
Sânnicolau Mare | located in the administrative territorial entity | Sânnicolau Mare |
Tegernsee | located in the administrative territorial entity | Tegernsee |
The Rover Boys on the Ocean | edition or translation of | The Rover Boys on the Ocean |
The Shadows | performer | The Shadows |
The Sum of All Fears | based on | The Sum of All Fears |
Three Men in a Boat | based on | Three Men in a Boat |
Three Piece Reclining Figure: Draped | has part(s) | Three Piece Reclining Figure: Draped |
Thutmose | given name | Thutmose |
Thutmose | given name | Thutmose |
Tilișca | contains settlement | Tilișca |
Tilișca | capital | Tilișca |
Tim Finn | performer | Tim Finn |
Tomești | located in the administrative territorial entity | Tomești |
Tulgheș | capital | Tulgheș |
Tulgheș | contains settlement | Tulgheș |
Unirea | located in the administrative territorial entity | Unirea |
Vorkuta | located in the administrative territorial entity | Vorkuta |
Văleni | located in the administrative territorial entity | Văleni |
Wyns | location | Wyns |
Ziduri | capital | Ziduri |
Ziduri | contains settlement | Ziduri |
Șag | located in the administrative territorial entity | Șag |
Țuglui | capital | Țuglui |
Țuglui | contains settlement | Țuglui |
Aleșd | located in the administrative territorial entity | Aleșd |
Alimpești | located in the administrative territorial entity | Alimpești |
Amaru | capital | Amaru |
Amaru | contains settlement | Amaru |
Armavir | twinned administrative body | Armavir |
Augustin | located in the administrative territorial entity | Augustin |
Bad Dürkheim | located in the administrative territorial entity | Bad Dürkheim |
Barabbas | based on | Barabbas |
Bengkulu | located in the administrative territorial entity | Bengkulu |
Biliran | contains the administrative territorial entity | Biliran |
Bucecea | contains settlement | Bucecea |
Bucecea | capital | Bucecea |
Bucu | located in the administrative territorial entity | Bucu |
Bârna | capital | Bârna |
Bârna | contains settlement | Bârna |
Cheap Trick | performer | Cheap Trick |
Cheap Trick | performer | Cheap Trick |
Churwalden | located in the administrative territorial entity | Churwalden |
Circe | depicts | Circe |
Crișcior | contains settlement | Crișcior |
Crișcior | capital | Crișcior |
Cugir | located in the administrative territorial entity | Cugir |
Căpâlnița | contains settlement | Căpâlnița |
Căpâlnița | capital | Căpâlnița |
Danube | named after | Danube |
Denis | family name identical to this given name | Denis |
Die Ärzte | performer | Die Ärzte |
Die Ärzte | performer | Die Ärzte |
Dobromir | capital | Dobromir |
Dobromir | contains settlement | Dobromir |
Ender's Game | based on | Ender's Game |
Erstein | located in the administrative territorial entity | Erstein |
Falkenstein | twinned administrative body | Falkenstein |
Farébersviller | located in the administrative territorial entity | Farébersviller |
Forlorn River | based on | Forlorn River |
Frank Lampard | father | Frank Lampard |
Gods and Generals | based on | Gods and Generals |
Graveyard Shift | based on | Graveyard Shift |
Hat Yai | contains the administrative territorial entity | Hat Yai |
Heerde | located in the administrative territorial entity | Heerde |
Heleșteni | contains settlement | Heleșteni |
Heleșteni | capital | Heleșteni |
Heleșteni | located in the administrative territorial entity | Heleșteni |
Hoot | tracklist | Hoot |
I Am Legend | based on | I Am Legend |
Jake Bugg | performer | Jake Bugg |
Jake Bugg | named after | Jake Bugg |
James Franklin Alexander | main subject | James Franklin Alexander |
John Taylor | child | John Taylor |
Kingdom of Great Britain | country | Kingdom of Great Britain |
Lam Plai Mat | located in the administrative territorial entity | Lam Plai Mat |
Leu | located in the administrative territorial entity | Leu |
Linda Davis | performer | Linda Davis |
Lisa | capital | Lisa |
Lisa | contains settlement | Lisa |
Malnaș | contains settlement | Malnaș |
Malnaș | capital | Malnaș |
Manasia | located in the administrative territorial entity | Manasia |
Maxwell | given name | Maxwell |
Maya | given name | Maya |
Miguel de Bragança | father | Miguel de Bragança |
Moreno | given name | Moreno |
Nanning van Foreest | father | Nanning van Foreest |
Oncești | capital | Oncești |
Oncești | contains settlement | Oncești |
Poienarii Burchii | located in the administrative territorial entity | Poienarii Burchii |
Postal | part of the series | Postal |
Prem | given name | Prem |
Pădureni | capital | Pădureni |
Pădureni | contains settlement | Pădureni |
Regis | family name identical to this given name | Regis |
Repedea | contains settlement | Repedea |
Repedea | capital | Repedea |
Ruth | characters | Ruth |
Răcășdia | contains settlement | Răcășdia |
Răcășdia | capital | Răcășdia |
Saint Barbara | depicts | Saint Barbara |
Saint Barbara | depicts | Saint Barbara |
Saint Barbara | depicts | Saint Barbara |
Say Anything | performer | Say Anything |
Sponge Cola | performer | Sponge Cola |
Sucevița | located in the administrative territorial entity | Sucevița |
Super Mario Bros. | based on | Super Mario Bros. |
Super Monkey Ball | part of the series | Super Monkey Ball |
São Paulo | capital | São Paulo |
Săcălășeni | capital | Săcălășeni |
Săcălășeni | contains settlement | Săcălășeni |
The Postman Always Rings Twice | based on | The Postman Always Rings Twice |
The Postman Always Rings Twice | based on | The Postman Always Rings Twice |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure No. 1 | part of the series | Three Piece Reclining Figure No. 1 |
Three Piece Reclining Figure: Draped | has part(s) | Three Piece Reclining Figure: Draped |
Thung Chang | contains the administrative territorial entity | Thung Chang |
Thung Chang | named after | Thung Chang |
Tomești | contains settlement | Tomești |
Tomești | capital | Tomești |
Tone | has part(s) | Tone |
Tracy Lawrence | performer | Tracy Lawrence |
Two Piece Reclining Figure No. 9 | has part(s) | Two Piece Reclining Figure No. 9 |
Vâlcelele | capital | Vâlcelele |
Vâlcelele | contains settlement | Vâlcelele |
Wade | family name identical to this given name | Wade |
Wandong | located in the administrative territorial entity | Wandong |
Winterswijk | capital | Winterswijk |
Winterswijk | contains settlement | Winterswijk |
tellurium | subclass of | tellurium |
Șirna | located in the administrative territorial entity | Șirna |
Baotou–Lanzhou railway | connecting line | Baotou–Lanzhou railway |
Bernard Palissy | depicts | Bernard Palissy |
Bernd Rosemeyer | child | Bernd Rosemeyer |
Bârghiș | located in the administrative territorial entity | Bârghiș |
CYP1A2 | encodes | CYP1A2 |
Cartel | performer | Cartel |
Cernavodă | located in the administrative territorial entity | Cernavodă |
Charles | said to be the same as | Charles |
Charles | given name | Charles |
Chiojdeanca | located in the administrative territorial entity | Chiojdeanca |
Călmățuiu | located in the administrative territorial entity | Călmățuiu |
Cănești | contains settlement | Cănești |
Cănești | capital | Cănești |
Căpușu Mare | capital | Căpușu Mare |
Căpușu Mare | contains settlement | Căpușu Mare |
David Stierncrona | child | David Stierncrona |
Djibouti | contains the administrative territorial entity | Djibouti |
Djibouti | named after | Djibouti |
Djibouti | capital | Djibouti |
Dobroteasa | contains settlement | Dobroteasa |
Dobroteasa | capital | Dobroteasa |
Domenico Modugno | followed by | Domenico Modugno |
Donald Tusk | father | Donald Tusk |
Family Group | has part(s) | Family Group |
Family Group | has part(s) | Family Group |
Gura Ocniței | located in the administrative territorial entity | Gura Ocniței |
Gustaf Petrén | father | Gustaf Petrén |
Gârbovi | located in the administrative territorial entity | Gârbovi |
Henry | subclass of | Henry |
Henry | part of | Henry |
Ina | part of | Ina |
James Dickson | child | James Dickson |
Jordan | country | Jordan |
Karanganyar | capital | Karanganyar |
Kendal | capital | Kendal |
Kiyevskaya | has part(s) | Kiyevskaya |
Livezi | located in the administrative territorial entity | Livezi |
Luna Sea | performer | Luna Sea |
Madagascar | country | Madagascar |
Mao: A Life | edition or translation of | Mao: A Life |
Martin Luther | main subject | Martin Luther |
Maxime Lalanne | depicts | Maxime Lalanne |
Meseșenii de Jos | contains settlement | Meseșenii de Jos |
Meseșenii de Jos | capital | Meseșenii de Jos |
Montesquieu | depicts | Montesquieu |
Montesquieu | depicts | Montesquieu |
Nojorid | capital | Nojorid |
Nojorid | contains settlement | Nojorid |
Ohaba Lungă | contains settlement | Ohaba Lungă |
Ohaba Lungă | capital | Ohaba Lungă |
Out | based on | Out |
Oval with Points | has part(s) | Oval with Points |
Phoenix | follows | Phoenix |
Pietroasa | located in the administrative territorial entity | Pietroasa |
Prejmer | capital | Prejmer |
Prejmer | contains settlement | Prejmer |
Prince Henry of Prussia | child | Prince Henry of Prussia |
Psamathe | named after | Psamathe |
Pungești | capital | Pungești |
Pungești | contains settlement | Pungești |
Reghin | located in the administrative territorial entity | Reghin |
Rochdale | located in the administrative territorial entity | Rochdale |
Rolando | given name | Rolando |
Rosalie | given name | Rosalie |
Sandy | given name | Sandy |
Sillery | twinned administrative body | Sillery |
The Flight of the Phoenix | based on | The Flight of the Phoenix |
The Prisoner of Chillon | based on | The Prisoner of Chillon |
The Sound of Music | part of | The Sound of Music |
Three Standing Figures | has part(s) | Three Standing Figures |
Tulca | contains settlement | Tulca |
Tulca | capital | Tulca |
Târgu Secuiesc | contains settlement | Târgu Secuiesc |
Târgu Secuiesc | capital | Târgu Secuiesc |
Valea Argovei | capital | Valea Argovei |
Valea Argovei | contains settlement | Valea Argovei |
Vărădia de Mureș | capital | Vărădia de Mureș |
Vărădia de Mureș | contains settlement | Vărădia de Mureș |
Wille | family name identical to this given name | Wille |
William Barrowby | father | William Barrowby |
region of Malta | instance of | region of Malta |
Șieu-Măgheruș | capital | Șieu-Măgheruș |
Șieu-Măgheruș | contains settlement | Șieu-Măgheruș |
Agostino | family name identical to this given name | Agostino |
Aristide Briand | depicts | Aristide Briand |
Bantul | located in the administrative territorial entity | Bantul |
Battlestar Galactica | based on | Battlestar Galactica |
Boghicea | capital | Boghicea |
Boghicea | contains settlement | Boghicea |
Brett Dennen | performer | Brett Dennen |
Bridget Jones: The Edge of Reason | based on | Bridget Jones: The Edge of Reason |
Bucecea | located in the administrative territorial entity | Bucecea |
Bulbucata | located in the administrative territorial entity | Bulbucata |
Butea | located in the administrative territorial entity | Butea |
Băbana | capital | Băbana |
Băbana | contains settlement | Băbana |
Capitoline Wolf | based on | Capitoline Wolf |
Charles De Geer | father | Charles De Geer |
Chatuchak | located in the administrative territorial entity | Chatuchak |
Cireșu | located in the administrative territorial entity | Cireșu |
Club Bangaz | follows | Club Bangaz |
Council of Orange | followed by | Council of Orange |
Cuca | contains settlement | Cuca |
Cuca | capital | Cuca |
Ditrău | contains settlement | Ditrău |
Ditrău | capital | Ditrău |
Doctor Zhivago | based on | Doctor Zhivago |
Dragomirești | contains settlement | Dragomirești |
Dragomirești | capital | Dragomirești |
Edvard Petrén | father | Edvard Petrén |
Emmi | given name | Emmi |
Farah | located in the administrative territorial entity | Farah |
Fuyuan | contains the administrative territorial entity | Fuyuan |
Gers | named after | Gers |
Greg Lake | performer | Greg Lake |
Grădinari | located in the administrative territorial entity | Grădinari |
Guglielmo | given name | Guglielmo |
Huedin | located in the administrative territorial entity | Huedin |
Jan van Goyen | named after | Jan van Goyen |
Jawbox | performer | Jawbox |
Jiří Kvita | child | Jiří Kvita |
Johan | participant | Johan |
Johan Willem Frisokazerne | part of | Johan Willem Frisokazerne |
Johannes Olearius | child | Johannes Olearius |
John Walter | father | John Walter |
József Kautzky | child | József Kautzky |
Lesquin | located in the administrative territorial entity | Lesquin |
Love Story | follows | Love Story |
Lunca de Jos | located in the administrative territorial entity | Lunca de Jos |
Lycus | father | Lycus |
Manfred Mann's Earth Band | performer | Manfred Mann's Earth Band |
Mehadia | capital | Mehadia |
Mehadia | contains settlement | Mehadia |
Money in the Bank | followed by | Money in the Bank |
Money in the Bank | follows | Money in the Bank |
Moquegua | capital | Moquegua |
Negrești | contains settlement | Negrești |
Negrești | capital | Negrești |
Nenciulești | capital | Nenciulești |
Nenciulești | contains settlement | Nenciulești |
Noemi | given name | Noemi |
Ocoliș | capital | Ocoliș |
Ocoliș | contains settlement | Ocoliș |
Putineiu | located in the administrative territorial entity | Putineiu |
Pyu city-states | capital | Pyu city-states |
Pătârlagele | contains settlement | Pătârlagele |
Pătârlagele | capital | Pătârlagele |
Ready | based on | Ready |
Samuel Lewis | father | Samuel Lewis |
Satchinez | located in the administrative territorial entity | Satchinez |
Schitu | contains settlement | Schitu |
Schitu | capital | Schitu |
Seaca | located in the administrative territorial entity | Seaca |
Shadowrun | part of the series | Shadowrun |
Shadowrun | based on | Shadowrun |
Shadowrun | part of the series | Shadowrun |
Shadowrun | part of the series | Shadowrun |
Shadowrun | part of the series | Shadowrun |
Stejaru | located in the administrative territorial entity | Stejaru |
Stăuceni | located in the administrative territorial entity | Stăuceni |
Susan | given name | Susan |
Săcălaz | located in the administrative territorial entity | Săcălaz |
Telciu | located in the administrative territorial entity | Telciu |
The Cross and the Switchblade | based on | The Cross and the Switchblade |
The Last Dictatorship in Europe. Belarus under Lukashenko | edition or translation of | The Last Dictatorship in Europe. Belarus under Lukashenko |
The Moon and Sixpence | based on | The Moon and Sixpence |
The Three Stooges | based on | The Three Stooges |
Tuttlingen | located in the administrative territorial entity | Tuttlingen |
Vârciorog | located in the administrative territorial entity | Vârciorog |
Vârfu Câmpului | located in the administrative territorial entity | Vârfu Câmpului |
Vărădia de Mureș | located in the administrative territorial entity | Vărădia de Mureș |
William Watson | child | William Watson |
Wonosobo | capital | Wonosobo |
Abraham des Amorie van der Hoeven | child | Abraham des Amorie van der Hoeven |
Altenglan | headquarters location | Altenglan |
Amara | contains settlement | Amara |
Amara | capital | Amara |
Angélica | followed by | Angélica |
Angélica | follows | Angélica |
Atlantis | narrative location | Atlantis |
Aurich | located in the administrative territorial entity | Aurich |
Band | capital | Band |
Band | contains settlement | Band |
Bechet | contains settlement | Bechet |
Bechet | capital | Bechet |
Beclean | located in the administrative territorial entity | Beclean |
Besa | given name | Besa |
Bozovici | located in the administrative territorial entity | Bozovici |
Brusturoasa | capital | Brusturoasa |
Brusturoasa | contains settlement | Brusturoasa |
Bujoreni | capital | Bujoreni |
Bujoreni | contains settlement | Bujoreni |
Băilești | contains settlement | Băilești |
Băilești | capital | Băilești |
Cașin | located in the administrative territorial entity | Cașin |
Chilia Veche | contains settlement | Chilia Veche |
Chilia Veche | capital | Chilia Veche |
Coesfeld | located in the administrative territorial entity | Coesfeld |
Corbasca | contains settlement | Corbasca |
Corbasca | capital | Corbasca |
Coșereni | contains settlement | Coșereni |
Coșereni | capital | Coșereni |
Cut | capital | Cut |
Cut | contains settlement | Cut |
Căpleni | located in the administrative territorial entity | Căpleni |
Daredevil | present in work | Daredevil |
Dobrin | located in the administrative territorial entity | Dobrin |
Dudești | located in the administrative territorial entity | Dudești |
Dumbrăvești | contains settlement | Dumbrăvești |
Dumbrăvești | capital | Dumbrăvești |
Ednita Nazario | performer | Ednita Nazario |
Edward Henry Bernhard | owned by | Edward Henry Bernhard |
Facing New York | performer | Facing New York |
Fatherland | based on | Fatherland |
Feldru | contains settlement | Feldru |
Feldru | capital | Feldru |
Filipeștii de Pădure | located in the administrative territorial entity | Filipeștii de Pădure |
Francis Scott | child | Francis Scott |
Garmisch-Partenkirchen | located in the administrative territorial entity | Garmisch-Partenkirchen |
Gemenele | located in the administrative territorial entity | Gemenele |
Goes | capital | Goes |
Grover Cleveland | depicts | Grover Cleveland |
Gura Râului | contains settlement | Gura Râului |
Gura Râului | capital | Gura Râului |
Hangu | contains settlement | Hangu |
Hangu | capital | Hangu |
John of Brienne | father | John of Brienne |
Kaiserslautern | shares border with | Kaiserslautern |
Kandahar | capital | Kandahar |
Kleinpolderplein | partially coincident with | Kleinpolderplein |
Kumphawapi | contains the administrative territorial entity | Kumphawapi |
Lat Krabang | contains the administrative territorial entity | Lat Krabang |
Le Bourget | depicts | Le Bourget |
Lovrin | located in the administrative territorial entity | Lovrin |
Mardi Gras | depicts | Mardi Gras |
Mario Losada | father | Mario Losada |
Martin | has part(s) | Martin |
Mongolian | writing system | Mongolian |
Moțăței | contains settlement | Moțăței |
Moțăței | capital | Moțăței |
Mălini | capital | Mălini |
Mălini | contains settlement | Mălini |
Nana | based on | Nana |
Nămoloasa | contains settlement | Nămoloasa |
Nămoloasa | capital | Nămoloasa |
Otto Hess | father | Otto Hess |
Plesoiu | located in the administrative territorial entity | Plesoiu |
Podeni | located in the administrative territorial entity | Podeni |
Poienile de sub Munte | located in the administrative territorial entity | Poienile de sub Munte |
Pringsewu | capital | Pringsewu |
Pucioasa | located in the administrative territorial entity | Pucioasa |
Raffaele | family name identical to this given name | Raffaele |
Rădăuți-Prut | located in the administrative territorial entity | Rădăuți-Prut |
Războieni | contains settlement | Războieni |
Sangkha | capital | Sangkha |
Sergio | family name identical to this given name | Sergio |
Sfântu Gheorghe | contains settlement | Sfântu Gheorghe |
Sfântu Gheorghe | capital | Sfântu Gheorghe |
Slobozia Mândra | located in the administrative territorial entity | Slobozia Mândra |
Stolnici | contains settlement | Stolnici |
Stolnici | capital | Stolnici |
Stâlpeni | located in the administrative territorial entity | Stâlpeni |
Sânsimion | located in the administrative territorial entity | Sânsimion |
Săcădat | contains settlement | Săcădat |
Săcădat | capital | Săcădat |
Tanacu | capital | Tanacu |
Tanacu | contains settlement | Tanacu |
The Wayward Bus | based on | The Wayward Bus |
Third Day | performer | Third Day |
Third Day | performer | Third Day |
Tormac | located in the administrative territorial entity | Tormac |
Verena | given name | Verena |
William Hazlitt | father | William Hazlitt |
Zuidhorn | named after | Zuidhorn |
Șimian | contains settlement | Șimian |
Șimian | capital | Șimian |
Abra | given name | Abra |
All Quiet on the Western Front | based on | All Quiet on the Western Front |
Anna Pavlova | depicts | Anna Pavlova |
Avrămeni | contains settlement | Avrămeni |
Avrămeni | capital | Avrămeni |
Avrămești | capital | Avrămești |
Avrămești | contains settlement | Avrămești |
Indeed it does, but not many. Most of these are for a few specific relations and many seem to come from errors in the knowledge graph. Some of these are legitimmate, for example it is valid to say that country A is "located in the administrative territorial entity" of country A. Others are clearly erroneous, like the edges denoting people as their own father. A few are not wrong but add no real information, for example the self-loops with the relation "said to be the same as".
Instance Type of Nodes
The most common relation "instance of" is of particular interest. It denotes the basic type each node/entity belongs to. The cell below will count how many nodes exist of each instance type sort these to find the most common types in the data.
// Count the number of times each node type occurs
val instanceRels = graph.edges.filter("rel == 'instance of'")
val joinedTypes = degrees.join(instanceRels, degrees("id") === instanceRels("src"), "leftouter").select($"id", $"inDegree", $"outDegree", ($"dst").as("type")).cache()
val typeCounts = joinedTypes.groupBy("type").count().filter($"type" =!= "null").sort($"count".desc)
display(typeCounts)
type | count |
---|---|
human | 251915.0 |
album | 49063.0 |
asteroid | 40573.0 |
single | 38372.0 |
commune of France | 32436.0 |
township in China | 19553.0 |
street | 16483.0 |
Wikimedia category | 14602.0 |
taxon | 14226.0 |
film | 13894.0 |
Book | 13403.0 |
township of the People's Republic of China | 12472.0 |
natural number | 9994.0 |
railway station | 9798.0 |
city | 9451.0 |
painting | 9373.0 |
village | 8205.0 |
comune of Italy | 8098.0 |
municipality of Germany | 8005.0 |
episode | 7374.0 |
Q12808966 | 7066.0 |
association football club | 7049.0 |
municipality of the Czech Republic | 6192.0 |
Wikimedia list article | 5847.0 |
musical group | 5011.0 |
odd number | 4999.0 |
even number | 4999.0 |
human settlement | 4885.0 |
male given name | 4475.0 |
television series season | 4398.0 |
town | 4352.0 |
municipality of Spain | 4117.0 |
canton of France (until 2015) | 4023.0 |
company | 3972.0 |
municipality seat | 3213.0 |
Q12809484 | 3168.0 |
video game | 3133.0 |
Metro station | 3123.0 |
year | 3079.0 |
song | 2898.0 |
commune of Romania | 2861.0 |
given name | 2860.0 |
Q19622166 | 2643.0 |
Wikimedia disambiguation page | 2613.0 |
female given name | 2602.0 |
subdivision of Russia | 2513.0 |
municipality of Switzerland | 2436.0 |
sports season of a sports club | 2415.0 |
university | 2352.0 |
cadastral populated place in the Netherlands | 2348.0 |
municipality of Austria | 2348.0 |
river | 2274.0 |
political party | 2247.0 |
sculpture | 2179.0 |
church | 2177.0 |
family name | 2091.0 |
Ortsteil | 2062.0 |
record label | 2036.0 |
live album | 2000.0 |
municipality of Brazil | 1735.0 |
rural municipality of Poland | 1568.0 |
television series | 1566.0 |
municipality of the Philippines | 1488.0 |
comic strip | 1472.0 |
compilation album | 1454.0 |
county of China | 1447.0 |
award | 1425.0 |
rural municipality of Austria | 1378.0 |
municipal district | 1376.0 |
civil parish | 1339.0 |
comic book album | 1319.0 |
profession | 1308.0 |
association football venue | 1255.0 |
position | 1238.0 |
prime number | 1230.0 |
fictional character | 1187.0 |
town in the United States | 1180.0 |
television program | 1155.0 |
stadium | 1143.0 |
video game developer | 1078.0 |
ethnic township | 1077.0 |
ship class | 1038.0 |
silent film | 1010.0 |
tambon | 959.0 |
fictional human | 929.0 |
district of China | 872.0 |
market municipality | 851.0 |
railway line | 845.0 |
island | 828.0 |
basketball team | 816.0 |
monotypic taxon | 815.0 |
organization | 812.0 |
amphoe | 787.0 |
house | 782.0 |
short film | 758.0 |
extended play | 756.0 |
district of Iran | 755.0 |
rural settlement of Russia | 720.0 |
Barn | 696.0 |
building | 682.0 |
Q2590631 | 679.0 |
city of Japan | 648.0 |
Road | 637.0 |
version, edition, or translation | 635.0 |
neighbourhood | 632.0 |
art museum | 629.0 |
rock group | 628.0 |
Wikipedia:Portal | 604.0 |
urban-rural municipality of Poland | 602.0 |
municipality with town privileges in the Czech Republic | 602.0 |
square | 593.0 |
museum | 587.0 |
local municipality of Quebec | 581.0 |
municipality of Belgium | 575.0 |
bridge | 567.0 |
television film | 563.0 |
cemetery | 558.0 |
car model | 557.0 |
buurtschap | 553.0 |
twin | 539.0 |
Q15410431 | 526.0 |
census-designated place in the United States | 525.0 |
aircraft model | 519.0 |
UNESCO World Heritage Site | 513.0 |
events in a specific year or time period | 513.0 |
municipality | 512.0 |
poem | 500.0 |
Gemarkung | 496.0 |
association football league | 493.0 |
district of India | 491.0 |
aircraft family | 478.0 |
Dutch municipality | 466.0 |
historical country | 455.0 |
castle | 445.0 |
manga | 440.0 |
place with town rights and privileges | 436.0 |
municipality section | 434.0 |
municipality of Norway | 429.0 |
villa | 421.0 |
battle | 417.0 |
mountain | 415.0 |
film production company | 410.0 |
former municipality of Switzerland | 407.0 |
raion of Ukraine | 405.0 |
kecamatan | 392.0 |
Pokémon species | 391.0 |
Ortsbezirk of Germany | 389.0 |
hamlet | 384.0 |
municipality of Finland | 380.0 |
urban area in Sweden | 376.0 |
carriage house | 373.0 |
Counties of Iran | 372.0 |
language | 371.0 |
frazione | 371.0 |
municipality of Sweden | 369.0 |
point in time with respect to recurrent timeframe | 366.0 |
farmhouse | 366.0 |
video game series | 366.0 |
regency of Indonesia | 365.0 |
county-level city | 364.0 |
sports venue | 359.0 |
local government area of Australia | 354.0 |
garden | 352.0 |
publisher | 344.0 |
quarter | 344.0 |
arrondissement of France | 344.0 |
work | 342.0 |
district of Germany | 341.0 |
sports club | 340.0 |
château | 340.0 |
service apartment | 338.0 |
cathedral | 332.0 |
department of Argentina | 331.0 |
avenue | 329.0 |
capital city | 329.0 |
constituent locality | 326.0 |
ice hockey team | 323.0 |
Architectural structure | 322.0 |
fence | 321.0 |
Q17143521 | 321.0 |
literary work | 320.0 |
powiat of Poland | 318.0 |
submarine class | 313.0 |
town of Japan | 304.0 |
lake | 303.0 |
Casemate | 298.0 |
music genre | 290.0 |
railway stop | 288.0 |
municipality of Portugal | 285.0 |
municipality of Slovakia | 279.0 |
cities of Ukraine | 279.0 |
town in Hungary | 277.0 |
book series | 276.0 |
prefecture-level city | 274.0 |
walkway | 266.0 |
Q18752456 | 265.0 |
New England town | 264.0 |
miasteczko | 263.0 |
freguesia of Portugal | 260.0 |
geographical feature | 259.0 |
airport | 258.0 |
urban-type settlement | 257.0 |
noble family | 257.0 |
suburb | 255.0 |
fictional astronomical object in the Serenityverse | 255.0 |
letter | 250.0 |
county of Texas | 249.0 |
district of Turkey | 249.0 |
school | 249.0 |
men in Tolkien's legendarium | 249.0 |
mountain range | 248.0 |
rapid transit railway line | 247.0 |
cultural property | 245.0 |
abbey | 245.0 |
urban municipality of Poland | 238.0 |
commune of Chile | 235.0 |
borough of Pennsylvania | 233.0 |
decade | 232.0 |
clergy house | 232.0 |
ship type | 230.0 |
cabinet | 229.0 |
county seat | 228.0 |
local municipality | 228.0 |
engine model | 227.0 |
big city | 227.0 |
sovereign state | 220.0 |
posyolok | 219.0 |
statue of Sacred Heart of Jesus Christ | 218.0 |
urban settlement in Russia | 218.0 |
town in Romania | 218.0 |
administrative territorial entity of the People's Republic of China | 217.0 |
Q3409027 | 213.0 |
television station | 212.0 |
district | 211.0 |
anime | 211.0 |
palace | 204.0 |
observatory | 203.0 |
residential building | 203.0 |
baseball team | 202.0 |
Q14943515 | 202.0 |
province of Peru | 195.0 |
Q15916867 | 195.0 |
district of Afghanistan | 194.0 |
international airport | 193.0 |
Election | 192.0 |
remix album | 190.0 |
village in the United States | 187.0 |
literary award | 187.0 |
stream | 187.0 |
order | 182.0 |
geographic region | 180.0 |
room | 179.0 |
district of Hungary | 175.0 |
sports team | 170.0 |
ward of Japan | 169.0 |
dead end street | 169.0 |
municipality of Bulgaria | 168.0 |
million city | 168.0 |
Municipalities of Estonia | 168.0 |
Dynasty | 167.0 |
miniseries | 166.0 |
monastery | 166.0 |
men's singles | 166.0 |
government agency | 164.0 |
Q14752149 | 164.0 |
anime television program | 164.0 |
national association football team | 164.0 |
protected area | 163.0 |
airline | 163.0 |
non-metropolitan district | 162.0 |
skyscraper | 161.0 |
municipality of Greece | 161.0 |
language family | 161.0 |
Q16423655 | 161.0 |
Q2200223 | 161.0 |
musical composition | 159.0 |
county of Georgia | 159.0 |
wizard in the Harry Potter universe | 159.0 |
diocese | 155.0 |
municipality of Colombia | 155.0 |
unincorporated community in the United States | 155.0 |
trilogy | 153.0 |
national museum | 153.0 |
fictional moon | 152.0 |
animated film | 150.0 |
district of Algeria | 150.0 |
legislative term | 150.0 |
windmill | 147.0 |
national sports team | 147.0 |
big district town | 146.0 |
country | 145.0 |
college | 145.0 |
deity | 145.0 |
duo | 141.0 |
Opera | 140.0 |
triangular number | 140.0 |
barangay | 140.0 |
Q14934048 | 140.0 |
biographical article | 140.0 |
aerospace manufacturer | 139.0 |
novel | 138.0 |
wall | 138.0 |
currency | 137.0 |
high school | 137.0 |
national anthem | 136.0 |
newspaper | 136.0 |
partido of Buenos Aires | 135.0 |
US Open | 134.0 |
human spaceflight | 134.0 |
Pokémon evolutionary line | 133.0 |
Q13516667 | 133.0 |
Belgian municipality with the title of city | 132.0 |
playing card | 132.0 |
law school | 131.0 |
garden square | 129.0 |
ethnic group | 129.0 |
business | 128.0 |
commune of Algeria | 128.0 |
bay | 128.0 |
fountain | 128.0 |
Wimbledon Championships | 128.0 |
gardener house | 127.0 |
motorcycle | 127.0 |
archipelago | 126.0 |
municipality of Slovenia | 126.0 |
cultural heritage site in Slovenia | 126.0 |
film series | 126.0 |
deme | 124.0 |
studio album | 124.0 |
Chemical element | 122.0 |
fictional location | 120.0 |
administrative territorial entity of Ukraine | 120.0 |
historic house museum | 119.0 |
magazine | 119.0 |
district of Belarus | 119.0 |
shed | 119.0 |
Chemical compound | 118.0 |
township of New Jersey | 117.0 |
school building | 117.0 |
sculpture series | 117.0 |
film studio | 116.0 |
boulevard | 116.0 |
autonomous county | 116.0 |
film genre | 115.0 |
park | 115.0 |
sumu | 114.0 |
French Open | 114.0 |
air force | 113.0 |
sibling duo | 113.0 |
Conflict | 113.0 |
municipalities and cities of Serbia | 113.0 |
district of Uganda | 112.0 |
military museum | 112.0 |
kabushiki gaisha | 112.0 |
county of Kentucky | 111.0 |
department of France | 111.0 |
Nemzeti Bajnokság I | 111.0 |
Superhero | 111.0 |
Q3685430 | 111.0 |
Archdiocese | 111.0 |
Paris–Roubaix | 111.0 |
Urban park | 110.0 |
municipality of Latvia | 110.0 |
sports league | 110.0 |
engine family | 109.0 |
province of Italy | 109.0 |
play | 108.0 |
Khwaeng | 107.0 |
water deity | 107.0 |
concept | 107.0 |
county of Missouri | 106.0 |
village of Wisconsin | 105.0 |
hospital | 105.0 |
armed forces | 103.0 |
thoroughfare | 103.0 |
municipiu of Romania | 103.0 |
Tour de France | 103.0 |
Australian Open | 103.0 |
rural district of Iran | 102.0 |
Q17468533 | 102.0 |
municipality of Denmark | 102.0 |
Besta deild karla | 102.0 |
city of the United States | 101.0 |
Davis Cup | 101.0 |
war | 100.0 |
square number | 100.0 |
World Congress of Esperanto | 100.0 |
Architectural style | 100.0 |
pronic number | 99.0 |
navy | 99.0 |
fourth-class city | 99.0 |
voluntary association | 99.0 |
locality | 98.0 |
natural satellite | 98.0 |
London Underground station | 98.0 |
art school | 98.0 |
Giro d'Italia | 97.0 |
county of North Carolina | 97.0 |
county of Illinois | 97.0 |
gate building | 97.0 |
category A listed building | 97.0 |
rugby union team | 97.0 |
district of Austria | 95.0 |
county of Iowa | 95.0 |
military rank | 95.0 |
county of Virginia | 94.0 |
Provinces of Bolivia | 94.0 |
activity | 93.0 |
literary genre | 93.0 |
unisex given name | 93.0 |
county of Tennessee | 93.0 |
Craft | 93.0 |
article | 93.0 |
bicameral legislature | 92.0 |
noble title | 92.0 |
county of Indiana | 92.0 |
musical ensemble | 92.0 |
married couple | 91.0 |
arch bridge | 91.0 |
subdistrict of the German Democratic Republic | 91.0 |
Q3559083 | 91.0 |
terrace of houses | 90.0 |
Esperanto organisation | 90.0 |
county of Kansas | 89.0 |
airplane | 89.0 |
city of the Philippines | 89.0 |
municipality of Luxembourg | 89.0 |
county of Ohio | 88.0 |
arena | 88.0 |
road bridge | 88.0 |
art movement | 88.0 |
canal | 88.0 |
First Professional Football League | 88.0 |
handball team | 87.0 |
historic district in the United States | 87.0 |
orangery | 86.0 |
SAT Congress | 86.0 |
regional county municipality | 86.0 |
S-Bahn station | 86.0 |
municipality of Mexico | 86.0 |
family | 85.0 |
Academy Awards ceremony | 85.0 |
warehouse | 85.0 |
city of Indonesia | 85.0 |
Q1391143 | 84.0 |
Q15070223 | 84.0 |
fictional planet | 84.0 |
academy of sciences | 83.0 |
destroyed building or structure | 83.0 |
fresco | 83.0 |
municipality of North Macedonia | 83.0 |
subdistrict administrative organization | 83.0 |
residential community of the People's Republic of China | 83.0 |
archaeological site | 82.0 |
Maltese Premier League | 82.0 |
centered triangular number | 82.0 |
fencepost | 82.0 |
county of Mississippi | 81.0 |
administrative quarter of Paris | 81.0 |
pentagonal number | 81.0 |
octagonal number | 81.0 |
UCI Road World Championships | 81.0 |
province of Turkey | 81.0 |
port settlement | 81.0 |
province of Thailand | 80.0 |
video game genre | 80.0 |
province of the Philippines | 80.0 |
transport route | 80.0 |
municipality of Croatia | 80.0 |
Q16054233 | 80.0 |
office building | 79.0 |
English country house | 79.0 |
communist party | 79.0 |
district of Slovakia | 79.0 |
operating system | 79.0 |
county of Nebraska | 78.0 |
chapel | 78.0 |
aspect of history | 78.0 |
city gate | 78.0 |
formation | 78.0 |
locomotive class | 78.0 |
county of Oklahoma | 77.0 |
county of Minnesota | 77.0 |
architectural heritage monument in North Rhine-Westphalia | 77.0 |
public university | 77.0 |
political party in Spain | 77.0 |
work of art | 77.0 |
religious text | 76.0 |
Q15632166 | 76.0 |
Genre | 76.0 |
station square | 76.0 |
tram stop | 76.0 |
tournament | 76.0 |
Liga Portugal | 76.0 |
districts of the Czech Republic | 76.0 |
governorate | 76.0 |
commune of Benin | 75.0 |
reservoir | 75.0 |
FA Cup Final | 75.0 |
county of Arkansas | 75.0 |
drama television series | 75.0 |
tennis tournament | 75.0 |
Parish church | 74.0 |
Short story | 74.0 |
community college | 73.0 |
grave | 73.0 |
Q18756633 | 73.0 |
bastion | 72.0 |
township of Pennsylvania | 72.0 |
Wikimedia template | 72.0 |
county of Wisconsin | 72.0 |
Century | 72.0 |
Q13460939 | 71.0 |
centered square number | 71.0 |
drawing | 71.0 |
Argentine Primera División | 71.0 |
sundial | 70.0 |
Q19311591 | 70.0 |
statue | 70.0 |
Middle-earth elf | 70.0 |
International Youth Congress of Esperanto | 70.0 |
hexagonal number | 70.0 |
rathaus | 70.0 |
Danish Superliga | 69.0 |
Czechoslovak First League | 69.0 |
animation studio | 69.0 |
constellation | 69.0 |
army | 69.0 |
Q17143371 | 68.0 |
sled dog racing | 68.0 |
Public company | 68.0 |
basilica | 68.0 |
American football team | 68.0 |
architectural firm | 68.0 |
Q15974311 | 68.0 |
free software | 68.0 |
county of Michigan | 67.0 |
television channel | 67.0 |
girl group | 67.0 |
gracht | 67.0 |
county of Alabama | 67.0 |
county of Pennsylvania | 67.0 |
website | 67.0 |
county of Florida | 67.0 |
shipyard | 67.0 |
gazebo | 67.0 |
Q1092563 | 66.0 |
Venice Film Festival | 66.0 |
Cartridge | 66.0 |
city with powiat rights | 66.0 |
county of South Dakota | 66.0 |
Vuelta a España | 66.0 |
Cannes Film Festival | 66.0 |
rural municipality of Sweden and Finland | 66.0 |
Avenue | 66.0 |
painting series | 65.0 |
Valley | 65.0 |
discipline | 65.0 |
Olympic sporting event | 65.0 |
district of Japan | 65.0 |
chapter | 65.0 |
fictional universe | 65.0 |
Q19689753 | 65.0 |
Q15966903 | 65.0 |
District of Bangladesh | 64.0 |
media franchise | 64.0 |
single entity of population | 64.0 |
heptagonal number | 63.0 |
academic degree | 63.0 |
theatre | 63.0 |
Eastern Orthodox church | 63.0 |
art collection | 63.0 |
centered pentagonal number | 63.0 |
island group | 63.0 |
county of Colorado | 63.0 |
Q15099348 | 63.0 |
Q3666499 | 62.0 |
group of fictional characters | 62.0 |
Berlin International Film Festival | 62.0 |
group of humans | 62.0 |
National heritage site | 62.0 |
peninsula | 61.0 |
village-level division in China | 61.0 |
research institute | 61.0 |
Q10868922 | 61.0 |
district of Azerbaijan | 61.0 |
seminary | 61.0 |
curtain wall | 61.0 |
ship | 61.0 |
council of Asturies | 60.0 |
World Allround Speed Skating Championships for Men | 60.0 |
fictional country | 60.0 |
animated series | 60.0 |
identical twins | 60.0 |
Eurovision Song Contest | 60.0 |
military academy | 60.0 |
subdistrict municipality | 60.0 |
Q3201814 | 60.0 |
civil town of Wisconsin | 60.0 |
public holiday | 60.0 |
radio station | 60.0 |
Wightman Cup | 59.0 |
Memphis Open | 59.0 |
province of Vietnam | 59.0 |
holding company | 59.0 |
Sea | 59.0 |
county of New York | 59.0 |
municipality of Cuba | 59.0 |
controlled-access highway | 59.0 |
Districts of Kazakhstan | 59.0 |
decentralized municipal entity | 59.0 |
municipality of Puerto Rico | 58.0 |
local council of Malta | 58.0 |
tower | 58.0 |
Japan Open Tennis Championships | 58.0 |
centered hexagonal number | 58.0 |
programming language | 58.0 |
David di Donatello | 58.0 |
Nereids | 58.0 |
flag | 57.0 |
county of California | 57.0 |
state | 57.0 |
factory | 57.0 |
unicameralism | 57.0 |
Eredivisie | 57.0 |
pier | 57.0 |
Comics | 57.0 |
district of Peru | 56.0 |
Norse mythical character | 56.0 |
Vice-county | 56.0 |
architectural heritage monument | 55.0 |
star | 55.0 |
polder | 55.0 |
parliament | 55.0 |
ministry | 55.0 |
installation art | 54.0 |
Hobbit | 54.0 |
higher education institution | 54.0 |
stanitsa | 54.0 |
province of Chile | 54.0 |
Q687312 | 54.0 |
county of West Virginia | 54.0 |
railway company | 53.0 |
courage award | 53.0 |
national park | 53.0 |
women's singles | 53.0 |
nonagonal number | 53.0 |
Billie Jean King Cup | 53.0 |
United Kingdom general election | 53.0 |
Q14846918 | 53.0 |
aircraft crash | 53.0 |
island nation | 53.0 |
parish of Louisiana | 53.0 |
destroyer | 53.0 |
road number | 52.0 |
list of rijkswegen | 52.0 |
banner | 52.0 |
calendar date | 52.0 |
Spanish provinces | 52.0 |
Canadian Open | 52.0 |
centered heptagonal number | 52.0 |
music school | 52.0 |
urban area in Norway | 51.0 |
county of Montana | 51.0 |
British Academy of Film and Television Arts | 51.0 |
watercourse | 51.0 |
Extrasolar planet | 51.0 |
administrative territorial entity | 51.0 |
liberal arts college in the United States | 51.0 |
private university | 50.0 |
centered octagonal number | 50.0 |
grand ensemble | 50.0 |
barracks | 50.0 |
decagonal number | 50.0 |
automobile manufacturer | 50.0 |
Q3088847 | 50.0 |
Q2559925 | 50.0 |
Q15618652 | 50.0 |
Fußball-Bundesliga | 50.0 |
library | 50.0 |
transport company | 50.0 |
expedition to the International Space Station | 50.0 |
Süper Lig | 50.0 |
U.S. state | 50.0 |
village of Japan | 49.0 |
unorganized area of Canada | 49.0 |
taxonomic rank | 49.0 |
Q649434 | 49.0 |
townhouse | 49.0 |
women's doubles | 49.0 |
brand | 49.0 |
district of Pakistan | 48.0 |
Soviet Top League | 48.0 |
Amstel Gold Race | 48.0 |
general election | 48.0 |
Thesaban Mueang | 48.0 |
legislature of a U.S. state | 48.0 |
Prefecture of Japan | 48.0 |
Q1852178 | 48.0 |
Eliteserien | 48.0 |
Q17268368 | 48.0 |
recurring tournament | 48.0 |
Stadtbezirk | 48.0 |
Revolutionary section of Paris | 48.0 |
airbase | 47.0 |
supervillain | 47.0 |
oblasts of Russia | 47.0 |
designated spa town | 47.0 |
district capital | 47.0 |
landlocked country | 47.0 |
centered nonagonal number | 47.0 |
hotel | 47.0 |
province of Algeria | 47.0 |
Q15634531 | 47.0 |
eingetragener Verein | 46.0 |
business school | 46.0 |
Cincinnati Masters | 46.0 |
Miss France | 46.0 |
name | 46.0 |
dwarves in Tolkien's legendarium | 46.0 |
mutant | 46.0 |
Q3292203 | 46.0 |
Monte-Carlo Masters | 46.0 |
Italian Open | 46.0 |
Courtyard | 46.0 |
Military organization | 46.0 |
county of South Carolina | 45.0 |
province of Burkina Faso | 45.0 |
dodecagonal number | 45.0 |
Washington Open | 45.0 |
district municipality | 45.0 |
Q18759150 | 45.0 |
Q2160811 | 45.0 |
district of Prussia | 45.0 |
college town | 45.0 |
list of municipalities of Albania | 45.0 |
centered decagonal number | 45.0 |
Q1687964 | 44.0 |
art gallery | 44.0 |
Q17299692 | 44.0 |
district of Moscow | 44.0 |
scientific journal | 44.0 |
district of Uzbekistan | 44.0 |
Q1192195 | 44.0 |
workshop | 44.0 |
color | 44.0 |
Drama school | 44.0 |
fictional river | 43.0 |
nonprofit organization | 43.0 |
county of North Dakota | 43.0 |
Q17301072 | 43.0 |
strait | 43.0 |
comarca of Catalonia | 43.0 |
Barcelona Open | 43.0 |
retaining wall | 43.0 |
water pump | 43.0 |
station building | 43.0 |
Iditarod Trail Sled Dog Race | 43.0 |
dzielnica | 43.0 |
international organization | 43.0 |
județ | 42.0 |
May | 42.0 |
university press | 42.0 |
WTA Tour | 42.0 |
core city of Japan | 42.0 |
César Award | 42.0 |
Paris Masters | 42.0 |
ancient city | 42.0 |
aircraft class | 42.0 |
Indian Wells Masters | 42.0 |
lower house | 41.0 |
star number | 41.0 |
proprietary software | 41.0 |
January | 41.0 |
squadron | 41.0 |
main stream | 41.0 |
borough | 41.0 |
Q18779194 | 41.0 |
Q18762207 | 40.0 |
recurring sporting event | 40.0 |
neighbourhood of Buenos Aires | 40.0 |
foundation | 40.0 |
term of the Canadian federal parliament | 40.0 |
medical specialty | 40.0 |
March | 40.0 |
Han surname | 40.0 |
building complex | 40.0 |
February | 40.0 |
independent city | 40.0 |
special city of Japan | 40.0 |
stock exchange | 40.0 |
smartphone model | 40.0 |
fort | 40.0 |
medical school | 39.0 |
Milan – San Remo | 39.0 |
historical motorcycle manufacturer | 39.0 |
millennium | 39.0 |
hill | 39.0 |
April | 39.0 |
department of Cameroon | 39.0 |
industrial sector | 39.0 |
political organization | 39.0 |
subdistrict of the canton of Graubünden | 39.0 |
video game console | 39.0 |
city district | 39.0 |
June | 39.0 |
Erste Bank Open | 39.0 |
Q16522751 | 39.0 |
Low German house | 39.0 |
rural municipality of Canada | 39.0 |
World Athletics Cross Country Championships | 39.0 |
county of Washington | 39.0 |
old town | 39.0 |
Wheel arrangement | 39.0 |
county of Idaho | 38.0 |
county | 38.0 |
December | 38.0 |
subdistrict of the canton of Ticino | 38.0 |
private mansion | 38.0 |
hay barrack | 38.0 |
goddess | 38.0 |
tetrahedral number | 38.0 |
fictional pony | 38.0 |
November | 38.0 |
FIBA EuroBasket | 38.0 |
upper house | 38.0 |
Buddhist text | 37.0 |
United Nations Security Council resolution | 37.0 |
museum ship | 37.0 |
clade | 37.0 |
republic | 37.0 |
Q18752578 | 37.0 |
July | 37.0 |
Municipalities of Venezuela | 37.0 |
October | 37.0 |
dissolved municipality of Japan | 37.0 |
district of Albania | 37.0 |
World Military Cup | 37.0 |
isotope of tellurium | 37.0 |
light cruiser | 37.0 |
university building | 37.0 |
title of honor | 37.0 |
August | 36.0 |
note | 36.0 |
state of Nigeria | 36.0 |
comic book series | 36.0 |
mansion | 36.0 |
college of the University of Oxford | 36.0 |
municipality of Iceland | 36.0 |
woodcut print | 36.0 |
Advocacy group | 36.0 |
pastel | 36.0 |
Stuttgart Open | 36.0 |
territorial authority of New Zealand | 36.0 |
natural landscape | 35.0 |
district of Nepal | 35.0 |
wine producing locality | 35.0 |
autocannon | 35.0 |
county of Oregon | 35.0 |
archaeological culture | 35.0 |
Q17518866 | 35.0 |
game engine | 35.0 |
primary area | 35.0 |
political coalition | 35.0 |
September | 35.0 |
racing automobile | 35.0 |
high-rise building | 35.0 |
monument | 35.0 |
Q2555200 | 35.0 |
Papal conclave | 34.0 |
Q2280652 | 34.0 |
Ice Hockey World Championships | 34.0 |
residential area | 34.0 |
medieval battle | 34.0 |
sibling group | 34.0 |
Q2316398 | 34.0 |
Foreign Office | 34.0 |
manuscript | 34.0 |
province of Indonesia | 34.0 |
series of creative works | 34.0 |
Q17372500 | 34.0 |
World Allround Speed Skating Championships | 34.0 |
Q766277 | 34.0 |
statistical neighborhood of Zürich | 34.0 |
sutra | 34.0 |
province of Afghanistan | 34.0 |
Moscow International Film Festival | 34.0 |
educational institution | 34.0 |
Q18779123 | 34.0 |
administrative territorial entity of Germany | 34.0 |
London borough | 34.0 |
lycée | 34.0 |
stone bridge | 34.0 |
rugby league team | 34.0 |
Tour of Flanders | 34.0 |
Soyuz-TM | 33.0 |
Faroe Islands Premier League | 33.0 |
bakehouse | 33.0 |
twinning | 33.0 |
presidential election | 33.0 |
fictional organization | 33.0 |
Okeanid | 33.0 |
lower-tier municipality | 33.0 |
space probe | 33.0 |
rapid transit | 33.0 |
television pilot | 33.0 |
quarter of Hamburg | 33.0 |
Q15623573 | 33.0 |
Q18523902 | 33.0 |
Summer Olympic Games | 33.0 |
Q1394653 | 33.0 |
railway bridge | 33.0 |
fictional taxon | 33.0 |
state of Mexico | 32.0 |
war memorial | 32.0 |
event | 32.0 |
list of districts and neighborhoods of Los Angeles | 32.0 |
Yukon Quest | 32.0 |
major regional center | 32.0 |
province of Iran | 32.0 |
encyclopaedia | 32.0 |
Q606986 | 32.0 |
water tower | 32.0 |
military cemetery | 32.0 |
Boston Society of Film Critics | 32.0 |
prison | 32.0 |
Mexican Open | 32.0 |
isotope of silver | 32.0 |
concert hall | 32.0 |
government | 32.0 |
artist collective | 32.0 |
Scottish council area | 32.0 |
Q15068450 | 32.0 |
Q1321542 | 32.0 |
baseball venue | 32.0 |
Q17272482 | 32.0 |
Centralbahnhof | 32.0 |
provincial city | 32.0 |
Category:December 2010 events | 31.0 |
Miami Open | 31.0 |
Category:March 2008 events | 31.0 |
Category:May 2011 events | 31.0 |
liberal arts college | 31.0 |
province of the Dominican Republic | 31.0 |
Category:August 2006 events | 31.0 |
Q9615454 | 31.0 |
social networking service | 31.0 |
Q15272960 | 31.0 |
Category:August 2008 events | 31.0 |
fictional battle | 31.0 |
Q9420592 | 31.0 |
Category:January 2006 events | 31.0 |
Category:January 2011 events | 31.0 |
Q9676942 | 31.0 |
Category:August 2005 events | 31.0 |
Category:May 2005 events | 31.0 |
Q9512666 | 31.0 |
Category:July 2010 events | 31.0 |
home computer | 31.0 |
Q9676937 | 31.0 |
fortress | 31.0 |
government organization | 31.0 |
Q9569288 | 31.0 |
amusement park | 31.0 |
Christian minister | 31.0 |
Category:August 2010 events | 31.0 |
Category:July 2011 events | 31.0 |
Category:January 2015 events | 31.0 |
isotope of caesium | 31.0 |
Category:January 2008 events | 31.0 |
Q9676945 | 31.0 |
Q9617364 | 31.0 |
Category:March 2010 events | 31.0 |
Golden Raspberry Awards | 31.0 |
Q9615446 | 31.0 |
city in the state of New York | 31.0 |
Category:October 2010 events | 31.0 |
Q9617371 | 31.0 |
Q1377841 | 31.0 |
Vikings | 31.0 |
county of New Mexico | 31.0 |
Category:May 2010 events | 31.0 |
fortified town | 31.0 |
Category:July 2005 events | 31.0 |
Political parties in Russia | 31.0 |
Category:May 2008 events | 31.0 |
aviation museum | 31.0 |
human-made geographic feature | 31.0 |
Departments of Colombia | 31.0 |
Q9569278 | 31.0 |
kinship | 31.0 |
Q9512652 | 31.0 |
Q9512656 | 31.0 |
Q736812 | 31.0 |
Category:March 2011 events | 31.0 |
Category:July 2008 events | 31.0 |
isotope of thallium | 30.0 |
Q1208453 | 30.0 |
television network | 30.0 |
Category:September 2005 events | 30.0 |
As expected we find some large, general categories at the top. In particular "human", which supports our hypothesis that much of the knowledge graph is concerned with people. Interestingly we also find two music-related types in the top: "album" and "single".
We can use these types to investigate trends in in- and out-degree for specific node types. The cell below finds the top 10 types and filters the dataframe with node-degrees to only contain these. We then create a scatter-plot for a subset of the data.
val topTenTypes = typeCounts.limit(10)
val typeFiltered = joinedTypes.join(topTenTypes, List("type"), "inner")
display(typeFiltered)
type | id | inDegree | outDegree | count |
---|---|---|---|---|
album | & Yet & Yet | 2.0 | 5.0 | 49063.0 |
asteroid | (10499) 1986 RN5 | 2.0 | 6.0 | 40573.0 |
asteroid | (11058) 1991 PN10 | 2.0 | 6.0 | 40573.0 |
asteroid | (117404) 2005 AC9 | 1.0 | 5.0 | 40573.0 |
asteroid | (13020) 1988 PW2 | 1.0 | 5.0 | 40573.0 |
asteroid | (136198) 2003 UJ296 | 1.0 | 5.0 | 40573.0 |
asteroid | (15141) 2000 EP106 | 2.0 | 4.0 | 40573.0 |
asteroid | (15683) 1981 EX25 | 2.0 | 6.0 | 40573.0 |
asteroid | (16307) 7569 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (16467) 1990 FD3 | 2.0 | 6.0 | 40573.0 |
asteroid | (17383) 1981 EE12 | 2.0 | 6.0 | 40573.0 |
asteroid | (20188) 1997 AC18 | 2.0 | 6.0 | 40573.0 |
asteroid | (20671) 1999 UX48 | 2.0 | 5.0 | 40573.0 |
asteroid | (20927) 1126 T-1 | 2.0 | 8.0 | 40573.0 |
asteroid | (21340) 1997 CS19 | 2.0 | 6.0 | 40573.0 |
asteroid | (21944) 1999 VA118 | 2.0 | 6.0 | 40573.0 |
asteroid | (21996) 1999 XP31 | 2.0 | 6.0 | 40573.0 |
asteroid | (22133) 2000 UO56 | 2.0 | 6.0 | 40573.0 |
asteroid | (22288) 1988 TR2 | 2.0 | 6.0 | 40573.0 |
asteroid | (22313) 1991 GP3 | 2.0 | 6.0 | 40573.0 |
asteroid | (22511) 1997 YC10 | 2.0 | 6.0 | 40573.0 |
asteroid | (22726) 1998 SZ72 | 2.0 | 6.0 | 40573.0 |
asteroid | (22755) 1998 WO9 | 2.0 | 6.0 | 40573.0 |
asteroid | (23299) 2001 AP9 | 2.0 | 6.0 | 40573.0 |
asteroid | (23723) 1998 HG40 | 2.0 | 6.0 | 40573.0 |
asteroid | (24205) 1999 XC48 | 2.0 | 6.0 | 40573.0 |
asteroid | (24831) 1995 SX4 | 2.0 | 6.0 | 40573.0 |
asteroid | (25571) 1999 XP195 | 2.0 | 6.0 | 40573.0 |
asteroid | (257203) 2008 RW122 | 2.0 | 6.0 | 40573.0 |
asteroid | (25831) 2000 DH111 | 2.0 | 6.0 | 40573.0 |
asteroid | (26030) 6004 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (26094) 1988 NU | 2.0 | 6.0 | 40573.0 |
asteroid | (26476) 2000 AK185 | 2.0 | 6.0 | 40573.0 |
asteroid | (27142) 1998 XG61 | 2.0 | 6.0 | 40573.0 |
asteroid | (27242) 1999 TN219 | 2.0 | 5.0 | 40573.0 |
asteroid | (27484) 2000 GN94 | 2.0 | 6.0 | 40573.0 |
asteroid | (28247) 1999 BP3 | 2.0 | 6.0 | 40573.0 |
asteroid | (28404) 1999 TQ5 | 2.0 | 7.0 | 40573.0 |
asteroid | (28463) 2000 AG168 | 2.0 | 5.0 | 40573.0 |
asteroid | (28580) 2000 EJ104 | 2.0 | 6.0 | 40573.0 |
asteroid | (28804) 2000 HC81 | 2.0 | 6.0 | 40573.0 |
asteroid | (28960) 2001 DZ81 | 2.0 | 6.0 | 40573.0 |
asteroid | (29000) 2607 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (29022) 6630 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (29387) 1996 JC6 | 2.0 | 6.0 | 40573.0 |
asteroid | (29505) 1997 WV44 | 2.0 | 6.0 | 40573.0 |
asteroid | (30466) 2000 OP14 | 2.0 | 6.0 | 40573.0 |
asteroid | (30611) 2627 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (30644) 6601 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (30689) 4318 T-2 | 2.0 | 8.0 | 40573.0 |
asteroid | (30845) 1991 PQ3 | 2.0 | 6.0 | 40573.0 |
asteroid | (30896) 1993 FX26 | 2.0 | 6.0 | 40573.0 |
asteroid | (31148) 1997 UO8 | 2.0 | 6.0 | 40573.0 |
asteroid | (31259) 1998 EB3 | 2.0 | 6.0 | 40573.0 |
asteroid | (31394) 1998 YX9 | 2.0 | 7.0 | 40573.0 |
asteroid | (31497) 1999 CW61 | 2.0 | 6.0 | 40573.0 |
asteroid | (31554) 1999 EJ2 | 2.0 | 6.0 | 40573.0 |
asteroid | (31732) 1999 JB71 | 2.0 | 6.0 | 40573.0 |
asteroid | (32382) 2000 QE187 | 2.0 | 6.0 | 40573.0 |
asteroid | (32543) 2001 QL11 | 2.0 | 6.0 | 40573.0 |
asteroid | (32791) 1989 TQ2 | 2.0 | 6.0 | 40573.0 |
asteroid | (34242) 2000 QD100 | 2.0 | 6.0 | 40573.0 |
asteroid | (343976) 2011 LC21 | 1.0 | 5.0 | 40573.0 |
asteroid | (34712) 2001 ON103 | 2.0 | 6.0 | 40573.0 |
asteroid | (34931) 6621 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (35035) 1981 ER29 | 2.0 | 6.0 | 40573.0 |
asteroid | (35051) 1981 ED47 | 2.0 | 6.0 | 40573.0 |
asteroid | (35166) 1993 QD8 | 2.0 | 6.0 | 40573.0 |
asteroid | (35182) 1993 US1 | 2.0 | 6.0 | 40573.0 |
asteroid | (35224) 1995 BN1 | 2.0 | 6.0 | 40573.0 |
asteroid | (35253) 1996 AB7 | 2.0 | 6.0 | 40573.0 |
asteroid | (35480) 1998 FN5 | 2.0 | 5.0 | 40573.0 |
asteroid | (35743) 1999 GP29 | 2.0 | 6.0 | 40573.0 |
asteroid | (35803) 1999 JT40 | 2.0 | 6.0 | 40573.0 |
asteroid | (36050) 1999 RE18 | 2.0 | 6.0 | 40573.0 |
asteroid | (36481) 2000 QU30 | 2.0 | 6.0 | 40573.0 |
asteroid | (37085) 2000 UO63 | 2.0 | 6.0 | 40573.0 |
asteroid | (37160) 2000 WR5 | 2.0 | 6.0 | 40573.0 |
asteroid | (37427) 2001 YJ82 | 2.0 | 6.0 | 40573.0 |
asteroid | (37438) 2599 P-L | 2.0 | 8.0 | 40573.0 |
asteroid | (37581) 1990 SU15 | 2.0 | 6.0 | 40573.0 |
asteroid | (37697) 1995 YW4 | 2.0 | 6.0 | 40573.0 |
asteroid | (38113) 1999 JB30 | 2.0 | 6.0 | 40573.0 |
asteroid | (38403) 1999 RU197 | 2.0 | 6.0 | 40573.0 |
asteroid | (38620) 2000 AQ186 | 2.0 | 6.0 | 40573.0 |
asteroid | (39099) 2000 WS12 | 2.0 | 5.0 | 40573.0 |
asteroid | (39298) 2001 FV132 | 2.0 | 5.0 | 40573.0 |
asteroid | (39431) 5178 T-2 | 2.0 | 8.0 | 40573.0 |
asteroid | (46556) 1991 FU3 | 1.0 | 5.0 | 40573.0 |
asteroid | (58167) 1990 QM3 | 1.0 | 5.0 | 40573.0 |
asteroid | (65225) 2002 EK44 | 1.0 | 5.0 | 40573.0 |
asteroid | (6861) 1991 FA3 | 2.0 | 6.0 | 40573.0 |
asteroid | (70304) 1999 RE133 | 1.0 | 5.0 | 40573.0 |
asteroid | (73077) 2002 GT4 | 2.0 | 6.0 | 40573.0 |
asteroid | (73262) 2002 JK47 | 2.0 | 6.0 | 40573.0 |
asteroid | (73289) 2002 JW64 | 2.0 | 6.0 | 40573.0 |
asteroid | (73291) 2002 JG65 | 2.0 | 6.0 | 40573.0 |
asteroid | (73335) 2002 JN110 | 2.0 | 6.0 | 40573.0 |
asteroid | (73344) 2002 JT119 | 2.0 | 6.0 | 40573.0 |
asteroid | (73455) 2002 NT36 | 2.0 | 6.0 | 40573.0 |
asteroid | (73550) 2003 PG9 | 2.0 | 6.0 | 40573.0 |
asteroid | (73881) 1997 CD22 | 2.0 | 6.0 | 40573.0 |
asteroid | (73924) 1997 MN3 | 2.0 | 6.0 | 40573.0 |
asteroid | (74054) 1998 JT4 | 2.0 | 6.0 | 40573.0 |
asteroid | (74411) 1999 AE5 | 2.0 | 6.0 | 40573.0 |
asteroid | (76834) 2000 SA244 | 1.0 | 5.0 | 40573.0 |
asteroid | (7951) 1992 WC2 | 2.0 | 6.0 | 40573.0 |
asteroid | (82293) 2001 KJ38 | 2.0 | 6.0 | 40573.0 |
asteroid | (82321) 2001 KE69 | 2.0 | 6.0 | 40573.0 |
asteroid | (82945) 2001 QN117 | 2.0 | 6.0 | 40573.0 |
asteroid | (9343) 1991 PO11 | 2.0 | 6.0 | 40573.0 |
asteroid | (9575) 1989 BW1 | 2.0 | 6.0 | 40573.0 |
album | ...With the Spirit of a Traffic Jam... | 1.0 | 4.0 | 49063.0 |
album | 07 | 1.0 | 4.0 | 49063.0 |
asteroid | 10970 de Zeeuw | 2.0 | 8.0 | 40573.0 |
album | 10th Anniversary Album | 2.0 | 5.0 | 49063.0 |
asteroid | 11055 Honduras | 2.0 | 6.0 | 40573.0 |
asteroid | 11087 Yamasakimakoto | 2.0 | 7.0 | 40573.0 |
asteroid | 1110 Jaroslawa | 2.0 | 6.0 | 40573.0 |
asteroid | 11152 Oomine | 2.0 | 6.0 | 40573.0 |
asteroid | 11365 NASA | 1.0 | 5.0 | 40573.0 |
asteroid | 11581 Philipdejager | 2.0 | 6.0 | 40573.0 |
asteroid | 11773 Schouten | 2.0 | 9.0 | 40573.0 |
asteroid | 12161 Avienius | 2.0 | 9.0 | 40573.0 |
asteroid | 13226 Soulié | 2.0 | 7.0 | 40573.0 |
asteroid | 14424 Laval | 2.0 | 7.0 | 40573.0 |
asteroid | 14499 Satotoshio | 2.0 | 7.0 | 40573.0 |
asteroid | 15506 Preygel | 2.0 | 6.0 | 40573.0 |
asteroid | 16077 Arayhamilton | 2.0 | 6.0 | 40573.0 |
asteroid | 16090 Lukaszewski | 2.0 | 6.0 | 40573.0 |
asteroid | 1820 Lohmann | 2.0 | 6.0 | 40573.0 |
asteroid | 18294 Rudenko | 2.0 | 6.0 | 40573.0 |
asteroid | 1865 Cerberus | 2.0 | 7.0 | 40573.0 |
asteroid | 18699 Quigley | 1.0 | 5.0 | 40573.0 |
asteroid | 19 Fortuna | 2.0 | 8.0 | 40573.0 |
asteroid | 19425 Nicholasrapp | 2.0 | 6.0 | 40573.0 |
asteroid | 20536 Tracicarter | 2.0 | 6.0 | 40573.0 |
asteroid | 210432 Dietmarhopp | 1.0 | 5.0 | 40573.0 |
asteroid | 21856 Heathermaria | 2.0 | 6.0 | 40573.0 |
asteroid | 23011 Petach | 2.0 | 6.0 | 40573.0 |
asteroid | 23133 Rishinbehl | 2.0 | 6.0 | 40573.0 |
asteroid | 23213 Ameliachang | 2.0 | 6.0 | 40573.0 |
asteroid | 23769 Russellbabb | 2.0 | 6.0 | 40573.0 |
asteroid | 23773 Sarugaku | 2.0 | 6.0 | 40573.0 |
asteroid | 24249 Bobbiolson | 2.0 | 5.0 | 40573.0 |
asteroid | 24318 Vivianlee | 2.0 | 6.0 | 40573.0 |
asteroid | 25417 Coquillette | 2.0 | 6.0 | 40573.0 |
asteroid | 2545 Verbiest | 2.0 | 6.0 | 40573.0 |
asteroid | 25620 Jayaprakash | 2.0 | 6.0 | 40573.0 |
asteroid | 25925 Jamesfenska | 2.0 | 6.0 | 40573.0 |
asteroid | 25931 Peterhu | 2.0 | 6.0 | 40573.0 |
asteroid | 26283 Oswalt | 2.0 | 6.0 | 40573.0 |
asteroid | 2640 Hällström | 2.0 | 7.0 | 40573.0 |
asteroid | 27277 Pattybrown | 2.0 | 6.0 | 40573.0 |
asteroid | 2823 van der Laan | 2.0 | 9.0 | 40573.0 |
asteroid | 28644 Michaelzhang | 2.0 | 6.0 | 40573.0 |
asteroid | 28800 Speth | 2.0 | 6.0 | 40573.0 |
asteroid | 28823 Archibald | 2.0 | 6.0 | 40573.0 |
asteroid | 29132 Bradpitt | 2.0 | 6.0 | 40573.0 |
asteroid | 29438 Zhengjia | 2.0 | 6.0 | 40573.0 |
asteroid | 29880 Andytran | 2.0 | 6.0 | 40573.0 |
asteroid | 30211 Sheilah | 2.0 | 6.0 | 40573.0 |
asteroid | 30241 Donnamower | 2.0 | 6.0 | 40573.0 |
asteroid | 30441 Curly | 2.0 | 7.0 | 40573.0 |
asteroid | 31491 Demessie | 2.0 | 6.0 | 40573.0 |
asteroid | 31823 Viète | 2.0 | 7.0 | 40573.0 |
asteroid | 32428 Peterlangley | 2.0 | 6.0 | 40573.0 |
asteroid | 32807 Quarenghi | 2.0 | 7.0 | 40573.0 |
asteroid | 3338 Richter | 2.0 | 7.0 | 40573.0 |
asteroid | 3370 Kohsai | 2.0 | 7.0 | 40573.0 |
asteroid | 34220 Pelagiamajoni | 2.0 | 6.0 | 40573.0 |
asteroid | 34258 Pentland | 2.0 | 6.0 | 40573.0 |
asteroid | 34273 Franklynwang | 2.0 | 6.0 | 40573.0 |
asteroid | 34696 Risoldi | 2.0 | 7.0 | 40573.0 |
asteroid | 34846 Vincent | 2.0 | 6.0 | 40573.0 |
asteroid | 35403 Latimer | 2.0 | 6.0 | 40573.0 |
asteroid | 3589 Loyola | 2.0 | 6.0 | 40573.0 |
asteroid | 3792 Preston | 2.0 | 7.0 | 40573.0 |
asteroid | 38 Leda | 2.0 | 7.0 | 40573.0 |
asteroid | 3846 Hazel | 2.0 | 6.0 | 40573.0 |
asteroid | 3862 Agekian | 2.0 | 6.0 | 40573.0 |
album | 3rd: Love Escalation! | 2.0 | 5.0 | 49063.0 |
asteroid | 4108 Rakos | 2.0 | 8.0 | 40573.0 |
asteroid | 431 Nephele | 2.0 | 7.0 | 40573.0 |
asteroid | 4419 Allancook | 2.0 | 6.0 | 40573.0 |
asteroid | 4494 Marimo | 2.0 | 6.0 | 40573.0 |
asteroid | 4578 Kurashiki | 2.0 | 7.0 | 40573.0 |
asteroid | 4686 Maisica | 2.0 | 6.0 | 40573.0 |
asteroid | 475 Ocllo | 2.0 | 6.0 | 40573.0 |
asteroid | 5009 Sethos | 2.0 | 9.0 | 40573.0 |
asteroid | 5497 Sararussell | 2.0 | 6.0 | 40573.0 |
asteroid | 5671 Chanal | 2.0 | 5.0 | 40573.0 |
asteroid | 5736 Sanford | 2.0 | 6.0 | 40573.0 |
asteroid | 6056 Donatello | 2.0 | 9.0 | 40573.0 |
asteroid | 6164 Gerhardmüller | 2.0 | 6.0 | 40573.0 |
asteroid | 618 Elfriede | 2.0 | 6.0 | 40573.0 |
asteroid | 6207 Bourvil | 2.0 | 7.0 | 40573.0 |
asteroid | 7620 Willaert | 2.0 | 9.0 | 40573.0 |
asteroid | 7796 Járacimrman | 2.0 | 7.0 | 40573.0 |
asteroid | 78125 Salimbeni | 1.0 | 4.0 | 40573.0 |
asteroid | 7901 Konnai | 2.0 | 6.0 | 40573.0 |
asteroid | 7960 Condorcet | 2.0 | 7.0 | 40573.0 |
asteroid | 8284 Cranach | 2.0 | 7.0 | 40573.0 |
asteroid | 8579 Hieizan | 2.0 | 7.0 | 40573.0 |
asteroid | 8599 Riparia | 2.0 | 9.0 | 40573.0 |
asteroid | 8930 Kubota | 2.0 | 6.0 | 40573.0 |
asteroid | 8999 Tashadunn | 2.0 | 6.0 | 40573.0 |
asteroid | 9147 Kourakuen | 2.0 | 7.0 | 40573.0 |
asteroid | 9225 Daiki | 2.0 | 6.0 | 40573.0 |
asteroid | 924 Toni | 2.0 | 6.0 | 40573.0 |
asteroid | 9346 Fernandel | 2.0 | 7.0 | 40573.0 |
asteroid | 9945 Karinaxavier | 2.0 | 6.0 | 40573.0 |
single | A Looking in View | 1.0 | 4.0 | 38372.0 |
album | A New Day Yesterday | 1.0 | 5.0 | 49063.0 |
album | A Night on the Town | 4.0 | 10.0 | 49063.0 |
album | A Night on the Town | 4.0 | 10.0 | 49063.0 |
album | A Nod Is As Good As a Wink... to a Blind Horse | 2.0 | 5.0 | 49063.0 |
album | A Winter Romance | 2.0 | 3.0 | 49063.0 |
human | A.O. Segerberg | 9.0 | 5.0 | 251915.0 |
human | Abby Elliott | 2.0 | 6.0 | 251915.0 |
human | Abo-shinnō | 4.0 | 6.0 | 251915.0 |
human | Abram Room | 3.0 | 12.0 | 251915.0 |
human | Abram van Rijckevorsel | 1.0 | 6.0 | 251915.0 |
film | Ace Attorney | 9.0 | 19.0 | 13894.0 |
human | Adam Williams | 13.0 | 23.0 | 251915.0 |
human | Adam Williams | 13.0 | 23.0 | 251915.0 |
human | Adam Williams | 13.0 | 23.0 | 251915.0 |
human | Adele Astaire | 5.0 | 15.0 | 251915.0 |
human | Adolf Svoboda | 1.0 | 10.0 | 251915.0 |
human | Adolf von Blome | 1.0 | 8.0 | 251915.0 |
human | Adrian Carmack | 1.0 | 6.0 | 251915.0 |
human | Adriean Videanu | 1.0 | 7.0 | 251915.0 |
human | Adèle Reinhardt | 4.0 | 4.0 | 251915.0 |
human | Adélard Godbout | 1.0 | 11.0 | 251915.0 |
album | Afraid of Sunlight | 1.0 | 6.0 | 49063.0 |
album | African Cookbook | 1.0 | 4.0 | 49063.0 |
human | Afshan Azad | 2.0 | 8.0 | 251915.0 |
human | Agda Helin | 2.0 | 4.0 | 251915.0 |
human | Agnes of Baden | 1.0 | 6.0 | 251915.0 |
human | Agnes of Kuenring | 2.0 | 5.0 | 251915.0 |
human | Agnieszka Sitek | 1.0 | 5.0 | 251915.0 |
album | Ain't Nothin' Like Me | 2.0 | 5.0 | 49063.0 |
album | Ainult unustamiseks | 1.0 | 3.0 | 49063.0 |
human | Akhil Reed Amar | 1.0 | 7.0 | 251915.0 |
human | Akimi Yoshida | 4.0 | 9.0 | 251915.0 |
human | Akinobu Uraka | 1.0 | 7.0 | 251915.0 |
human | Akinori Iwamura | 1.0 | 7.0 | 251915.0 |
human | Al Santos | 3.0 | 17.0 | 251915.0 |
human | Al Santos | 3.0 | 17.0 | 251915.0 |
human | Al-Khayzuran | 3.0 | 5.0 | 251915.0 |
human | Alan Garner | 5.0 | 25.0 | 251915.0 |
human | Alan Garner | 5.0 | 25.0 | 251915.0 |
human | Alan Garner | 5.0 | 25.0 | 251915.0 |
human | Alan Mills | 1.0 | 19.0 | 251915.0 |
human | Alan Mills | 1.0 | 19.0 | 251915.0 |
human | Alan Mills | 1.0 | 19.0 | 251915.0 |
human | Alan Morinis | 1.0 | 6.0 | 251915.0 |
human | Alaungpaya | 6.0 | 13.0 | 251915.0 |
human | Albert Cossery | 2.0 | 10.0 | 251915.0 |
human | Albert Duquesne | 2.0 | 3.0 | 251915.0 |
human | Albert Fennell | 7.0 | 3.0 | 251915.0 |
human | Albert Lindhagen | 6.0 | 16.0 | 251915.0 |
human | Albert Rueprecht | 16.0 | 7.0 | 251915.0 |
human | Alejandro Goic | 3.0 | 12.0 | 251915.0 |
human | Alejandro Goic | 3.0 | 12.0 | 251915.0 |
human | Alejandro Matas Britos | 1.0 | 5.0 | 251915.0 |
human | Alejandro Portero Igual | 1.0 | 6.0 | 251915.0 |
human | Aleksandr Boyarsky | 1.0 | 8.0 | 251915.0 |
human | Alena Procházková | 1.0 | 9.0 | 251915.0 |
human | Alexander Fehling | 6.0 | 6.0 | 251915.0 |
human | Alexander Moissi | 2.0 | 11.0 | 251915.0 |
human | Alexandra Powers | 6.0 | 6.0 | 251915.0 |
human | Alexandre Bertrand | 4.0 | 14.0 | 251915.0 |
human | Alexandre-François Desportes | 1.0 | 8.0 | 251915.0 |
human | Alfonso Cassini | 33.0 | 7.0 | 251915.0 |
human | Alfonso II d'Este | 2.0 | 8.0 | 251915.0 |
human | Alfonso XI of Castile | 12.0 | 20.0 | 251915.0 |
human | Alfred Horatio Belo | 1.0 | 6.0 | 251915.0 |
human | Alfred Meyer | 1.0 | 29.0 | 251915.0 |
human | Alfred Meyer | 1.0 | 29.0 | 251915.0 |
human | Alfred Meyer | 1.0 | 29.0 | 251915.0 |
human | Alfred Zeisler | 14.0 | 9.0 | 251915.0 |
human | Alfred, Hereditary Prince of Saxe-Coburg and Gotha | 4.0 | 11.0 | 251915.0 |
human | Alice Pike Barney | 3.0 | 9.0 | 251915.0 |
single | All of Me (Boy Oh Boy) | 1.0 | 4.0 | 38372.0 |
commune of France | Allaire | 9.0 | 10.0 | 32436.0 |
commune of France | Alligny-en-Morvan | 2.0 | 4.0 | 32436.0 |
human | Allison Anders | 9.0 | 9.0 | 251915.0 |
human | Amable | 3.0 | 8.0 | 251915.0 |
human | Amanda Walsh | 8.0 | 6.0 | 251915.0 |
single | Amanojaku | 1.0 | 5.0 | 38372.0 |
single | Amaryllis | 5.0 | 20.0 | 38372.0 |
taxon | Amaryllis | 5.0 | 20.0 | 14226.0 |
taxon | Amaryllis | 5.0 | 20.0 | 14226.0 |
album | Amaryllis | 5.0 | 20.0 | 49063.0 |
album | Amaryllis | 5.0 | 20.0 | 49063.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
single | Amazing | 14.0 | 45.0 | 38372.0 |
album | Amazing | 14.0 | 45.0 | 49063.0 |
album | Amazing | 14.0 | 45.0 | 49063.0 |
human | Ameinias of Athens | 4.0 | 7.0 | 251915.0 |
album | Amor y rock and roll | 2.0 | 5.0 | 49063.0 |
single | Amulet | 3.0 | 9.0 | 38372.0 |
human | Anastasia of Serbia | 4.0 | 9.0 | 251915.0 |
human | Andrea Ahmann | 1.0 | 7.0 | 251915.0 |
human | Andrea Costantini | 4.0 | 7.0 | 251915.0 |
human | Andrew Dasburg | 1.0 | 10.0 | 251915.0 |
human | Andrew Divoff | 24.0 | 7.0 | 251915.0 |
human | Andriy Bandera | 4.0 | 9.0 | 251915.0 |
human | Andronikos II of Trebizond | 4.0 | 7.0 | 251915.0 |
human | András Fricsay | 3.0 | 6.0 | 251915.0 |
human | André Forcier | 8.0 | 8.0 | 251915.0 |
human | André Hazes | 4.0 | 11.0 | 251915.0 |
human | André-Paul Antoine | 8.0 | 11.0 | 251915.0 |
human | Andrés Cuevas González | 1.0 | 4.0 | 251915.0 |
single | Angels & Stars | 3.0 | 8.0 | 38372.0 |
single | Angels' Story | 1.0 | 4.0 | 38372.0 |
single | Anima Rossa | 2.0 | 6.0 | 38372.0 |
album | Animetal Marathon V | 2.0 | 5.0 | 49063.0 |
taxon | Anisogammaridae | 8.0 | 3.0 | 14226.0 |
human | Anita Gillette | 8.0 | 8.0 | 251915.0 |
human | Anita Laurenzi | 2.0 | 5.0 | 251915.0 |
human | Ann Rinaldi | 7.0 | 5.0 | 251915.0 |
human | Anne Goursaud | 3.0 | 7.0 | 251915.0 |
human | Anne of Lorraine, duchess of Aumale | 5.0 | 9.0 | 251915.0 |
human | Annie Degroote | 2.0 | 6.0 | 251915.0 |
human | Annie Dufresne | 3.0 | 6.0 | 251915.0 |
human | Annie Rosar | 31.0 | 8.0 | 251915.0 |
album | Anodyne | 1.0 | 9.0 | 49063.0 |
human | Ans Kremer | 6.0 | 5.0 | 251915.0 |
human | Anthonie Verstraelen | 1.0 | 8.0 | 251915.0 |
single | Anthonio | 2.0 | 4.0 | 38372.0 |
human | Anthony Andrews | 14.0 | 9.0 | 251915.0 |
human | Anthony I, Count of Ligny | 4.0 | 8.0 | 251915.0 |
human | Antipater of Tarsus | 3.0 | 6.0 | 251915.0 |
human | Antoine Balpêtré | 40.0 | 9.0 | 251915.0 |
human | Antonin Lovrier | 1.0 | 8.0 | 251915.0 |
human | Antonio Rey González | 1.0 | 6.0 | 251915.0 |
commune of France | Antrenas | 3.0 | 5.0 | 32436.0 |
human | António Lobo Antunes | 1.0 | 11.0 | 251915.0 |
human | Anushka Sharma | 8.0 | 9.0 | 251915.0 |
single | Anything but Mine | 2.0 | 6.0 | 38372.0 |
single | Anywhere Is | 2.0 | 6.0 | 38372.0 |
film | Apart | 2.0 | 13.0 | 13894.0 |
album | Apart | 2.0 | 13.0 | 49063.0 |
taxon | Apinae | 18.0 | 3.0 | 14226.0 |
human | Apphia Yu | 1.0 | 4.0 | 251915.0 |
human | April Grace | 12.0 | 6.0 | 251915.0 |
taxon | Arales | 2.0 | 3.0 | 14226.0 |
commune of France | Arbourse | 1.0 | 4.0 | 32436.0 |
commune of France | Archettes | 2.0 | 4.0 | 32436.0 |
human | Archibald Primrose, 5th Earl of Rosebery | 2.0 | 13.0 | 251915.0 |
human | Are Hilstad | 1.0 | 5.0 | 251915.0 |
commune of France | Argenton | 2.0 | 3.0 | 32436.0 |
human | Aristobulus of Chalcis | 2.0 | 4.0 | 251915.0 |
street | Arlersteeg | 1.0 | 4.0 | 16483.0 |
human | Arne Mattsson | 10.0 | 8.0 | 251915.0 |
human | Arnold Pinnock | 5.0 | 6.0 | 251915.0 |
human | Artaxerxes I of Persia | 4.0 | 7.0 | 251915.0 |
human | Artur Olech | 1.0 | 11.0 | 251915.0 |
human | Arturo de Córdova | 19.0 | 8.0 | 251915.0 |
commune of France | Arzacq-Arraziguet | 3.0 | 4.0 | 32436.0 |
album | Asian Dreamer | 2.0 | 5.0 | 49063.0 |
human | Asiya bint Muzahim | 1.0 | 4.0 | 251915.0 |
commune of France | Assigny | 5.0 | 8.0 | 32436.0 |
human | Atiqah Hasiholan | 3.0 | 5.0 | 251915.0 |
commune of France | Auchy-la-Montagne | 1.0 | 4.0 | 32436.0 |
human | Audouin Dollfus | 1.0 | 7.0 | 251915.0 |
commune of France | Audun-le-Roman | 8.0 | 13.0 | 32436.0 |
human | Augustus the Younger, Duke of Brunswick-Lüneburg | 8.0 | 20.0 | 251915.0 |
human | Austin M. Purves, Jr. | 2.0 | 6.0 | 251915.0 |
commune of France | Aventignan | 2.0 | 5.0 | 32436.0 |
commune of France | Avondance | 2.0 | 4.0 | 32436.0 |
commune of France | Awala-Yalimapo | 2.0 | 4.0 | 32436.0 |
taxon | Azalea | 2.0 | 3.0 | 14226.0 |
commune of France | Azé | 2.0 | 4.0 | 32436.0 |
single | BGM | 3.0 | 10.0 | 38372.0 |
album | BGM | 3.0 | 10.0 | 49063.0 |
human | Baba Saad | 2.0 | 6.0 | 251915.0 |
single | Baby by Me | 2.0 | 9.0 | 38372.0 |
album | Back for More | 3.0 | 9.0 | 49063.0 |
album | Back for More | 3.0 | 9.0 | 49063.0 |
human | Banksy | 3.0 | 13.0 | 251915.0 |
single | Banquet | 4.0 | 10.0 | 38372.0 |
album | Banquet | 4.0 | 10.0 | 49063.0 |
commune of France | Bar-le-Duc | 77.0 | 9.0 | 32436.0 |
human | Barbara Adolph | 8.0 | 6.0 | 251915.0 |
human | Barbara London | 1.0 | 14.0 | 251915.0 |
human | Barbara London | 1.0 | 14.0 | 251915.0 |
commune of France | Barges | 2.0 | 8.0 | 32436.0 |
commune of France | Barges | 2.0 | 8.0 | 32436.0 |
commune of France | Barjac | 19.0 | 24.0 | 32436.0 |
commune of France | Barjac | 19.0 | 24.0 | 32436.0 |
commune of France | Barjac | 19.0 | 24.0 | 32436.0 |
taxon | Basiliscus | 1.0 | 7.0 | 14226.0 |
human | Basiliscus | 1.0 | 7.0 | 251915.0 |
album | Be Ready Boys: Appalachia to Abilene | 2.0 | 5.0 | 49063.0 |
human | Beata Schimscheiner | 1.0 | 5.0 | 251915.0 |
human | Beatriz Michelena | 2.0 | 9.0 | 251915.0 |
commune of France | Beaumont-de-Lomagne | 7.0 | 5.0 | 32436.0 |
single | Beer for My Horses | 2.0 | 20.0 | 38372.0 |
film | Beer for My Horses | 2.0 | 20.0 | 13894.0 |
film | Before I Go to Sleep | 1.0 | 23.0 | 13894.0 |
commune of France | Belmontet | 1.0 | 4.0 | 32436.0 |
human | Benedikt Gollhardt | 1.0 | 5.0 | 251915.0 |
human | Benito Sagredo | 1.0 | 4.0 | 251915.0 |
human | Beppe Cardile | 1.0 | 7.0 | 251915.0 |
human | Bernadette Paaßen | 2.0 | 5.0 | 251915.0 |
human | Bernard of Świdnica | 11.0 | 13.0 | 251915.0 |
human | Bernd Förster | 1.0 | 15.0 | 251915.0 |
commune of France | Berville | 4.0 | 5.0 | 32436.0 |
commune of France | Beuvillers | 8.0 | 14.0 | 32436.0 |
commune of France | Beuvillers | 8.0 | 14.0 | 32436.0 |
human | Beverley Callard | 1.0 | 5.0 | 251915.0 |
human | Bhim Singh Rana | 1.0 | 5.0 | 251915.0 |
human | Big Pokey | 1.0 | 4.0 | 251915.0 |
film | Bill Bergson Lives Dangerously | 2.0 | 37.0 | 13894.0 |
film | Bill Bergson Lives Dangerously | 2.0 | 37.0 | 13894.0 |
human | Bill Chott | 3.0 | 4.0 | 251915.0 |
human | Bill Mason | 7.0 | 12.0 | 251915.0 |
human | Bill Mason | 7.0 | 12.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
human | Bill Williams | 22.0 | 46.0 | 251915.0 |
album | Billy Breathes | 1.0 | 4.0 | 49063.0 |
human | Billy Wirth | 7.0 | 6.0 | 251915.0 |
township in China | Bingcun | 1.0 | 3.0 | 19553.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
street | Binnenweg | 23.0 | 35.0 | 16483.0 |
commune of France | Bize | 4.0 | 9.0 | 32436.0 |
commune of France | Bize | 4.0 | 9.0 | 32436.0 |
human | Bjørg Tingstad | 1.0 | 4.0 | 251915.0 |
album | Black Moses | 1.0 | 4.0 | 49063.0 |
taxon | Blattodea | 8.0 | 4.0 | 14226.0 |
album | Blazon Stone | 2.0 | 5.0 | 49063.0 |
commune of France | Blincourt | 1.0 | 4.0 | 32436.0 |
single | Blue Suede Shoes | 1.0 | 5.0 | 38372.0 |
human | Bob Stephenson | 7.0 | 32.0 | 251915.0 |
human | Bob Stephenson | 7.0 | 32.0 | 251915.0 |
human | Bob Stephenson | 7.0 | 32.0 | 251915.0 |
human | Bob Stephenson | 7.0 | 32.0 | 251915.0 |
human | Bobby Andrews | 4.0 | 6.0 | 251915.0 |
human | Bobby Roth | 20.0 | 7.0 | 251915.0 |
human | Bodil Steensen-Leth | 1.0 | 5.0 | 251915.0 |
commune of France | Bogy | 6.0 | 12.0 | 32436.0 |
human | Bogy | 6.0 | 12.0 | 251915.0 |
album | Book of Angels | 1.0 | 3.0 | 49063.0 |
human | Boris Isaković | 16.0 | 5.0 | 251915.0 |
taxon | Borsoniidae | 9.0 | 3.0 | 14226.0 |
human | Boualem Sansal | 1.0 | 8.0 | 251915.0 |
commune of France | Boulin | 2.0 | 5.0 | 32436.0 |
human | Boyd Morgan | 4.0 | 10.0 | 251915.0 |
human | Bradford Dillman | 38.0 | 8.0 | 251915.0 |
album | Break a Dawn | 2.0 | 4.0 | 49063.0 |
human | Brendan James | 5.0 | 12.0 | 251915.0 |
album | Brendan James | 5.0 | 12.0 | 49063.0 |
human | Brian Freeman | 1.0 | 13.0 | 251915.0 |
human | Brian Freeman | 1.0 | 13.0 | 251915.0 |
human | Brian Harold Mason | 2.0 | 13.0 | 251915.0 |
human | Brian Michael Bendis | 1.0 | 8.0 | 251915.0 |
human | Brian Tyler | 8.0 | 16.0 | 251915.0 |
human | Brian Tyler | 8.0 | 16.0 | 251915.0 |
human | Bruce Degen | 3.0 | 4.0 | 251915.0 |
human | Bruno Hübner | 16.0 | 15.0 | 251915.0 |
human | Bruno Hübner | 16.0 | 15.0 | 251915.0 |
human | Bruno Wolkowitch | 13.0 | 8.0 | 251915.0 |
human | Bryan Gregory | 1.0 | 6.0 | 251915.0 |
album | Bud Powell's Moods | 1.0 | 4.0 | 49063.0 |
single | Bumble Bees | 1.0 | 4.0 | 38372.0 |
street | Burgemeester van Rijnsingel | 3.0 | 4.0 | 16483.0 |
single | Burning Bridges | 7.0 | 25.0 | 38372.0 |
album | Burning Bridges | 7.0 | 25.0 | 49063.0 |
album | Burning Bridges | 7.0 | 25.0 | 49063.0 |
album | Burning Bridges | 7.0 | 25.0 | 49063.0 |
commune of France | By | 2.0 | 5.0 | 32436.0 |
film | Byl jednou jeden král… | 1.0 | 7.0 | 13894.0 |
human | Bárbara Lennie | 2.0 | 6.0 | 251915.0 |
commune of France | Bélarga | 3.0 | 5.0 | 32436.0 |
human | Cabral Ibacka | 1.0 | 6.0 | 251915.0 |
taxon | Cajamarca | 28.0 | 30.0 | 14226.0 |
street | Camminghastraat | 6.0 | 4.0 | 16483.0 |
single | Can Can/Promise You | 2.0 | 4.0 | 38372.0 |
single | Can It Be All So Simple | 2.0 | 5.0 | 38372.0 |
commune of France | Cappel | 6.0 | 12.0 | 32436.0 |
commune of France | Capvern | 3.0 | 5.0 | 32436.0 |
taxon | Caracal | 7.0 | 13.0 | 14226.0 |
human | Carita Holmström | 1.0 | 9.0 | 251915.0 |
human | Carl Craig | 2.0 | 9.0 | 251915.0 |
human | Carl Spitzweg | 7.0 | 10.0 | 251915.0 |
human | Carl-Herbert Dieden | 2.0 | 5.0 | 251915.0 |
human | Carla Bartheel | 1.0 | 8.0 | 251915.0 |
human | Carmen Franco, 1st Duchess of Franco | 6.0 | 12.0 | 251915.0 |
human | Caroline Munro | 14.0 | 8.0 | 251915.0 |
human | Carsten Sieling | 1.0 | 11.0 | 251915.0 |
commune of France | Casalabriva | 2.0 | 3.0 | 32436.0 |
commune of France | Castelnau-de-Montmiral | 3.0 | 4.0 | 32436.0 |
Wikimedia category | Category:2010s in the United Kingdom | 10.0 | 3.0 | 14602.0 |
Wikimedia category | Category:April 29, 2010 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:August 26, 2008 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:British Islands | 1.0 | 3.0 | 14602.0 |
Wikimedia category | Category:Brown algae | 1.0 | 2.0 | 14602.0 |
Wikimedia category | Category:Deaths in Bentivoglio | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Borgo Tossignano | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Cantù | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Carcare | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Castel Ritaldi | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Chiari, Lombardy | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Clusone | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Coeur d'Alene | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Dießen am Ammersee | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Don Benito | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Douai | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Framura | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Gabrovo | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Garlasco | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Governorate of Livonia | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Kirkkonummi | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Ksar el-Kebir | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Kyzylorda Province | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Königs Wusterhausen | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Lake Havasu City | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Lorenzago di Cadore | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Lyons-la-Forêt | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Manchester | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Mukacheve Raion | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Nanping | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Oristano | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Rolampont | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Sondika | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Struga | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Toano | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Deaths in Vitoria-Gasteiz | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:February 16, 2008 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:February 9, 2015 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Fictional mammals | 2.0 | 2.0 | 14602.0 |
Wikimedia category | Category:Films set in Lebanon | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Films set in Marseille | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Films shot in Bahrain | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Films shot in Melun | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Films shot in Philadelphia | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Films shot in Potenza | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Films shot in Rio Grande do Sul | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Films shot in San Diego | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Films shot in South Dakota | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Films shot in Trentino-South Tyrol | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:Jordanian people | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:July 30, 2008 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:June 29, 2010 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:March 16, 2011 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:March 28, 2006 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:May 10, 2005 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:October 18, 2005 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:People from Michalovce | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:People from Sigulda | 1.0 | 4.0 | 14602.0 |
Wikimedia category | Category:September 20, 2010 | 2.0 | 5.0 | 14602.0 |
Wikimedia category | Category:Two and a Half Men characters | 1.0 | 4.0 | 14602.0 |
human | Catherine Sutherland | 2.0 | 6.0 | 251915.0 |
album | Caught You | 2.0 | 5.0 | 49063.0 |
human | Cayo Lara | 1.0 | 9.0 | 251915.0 |
commune of France | Cazevieille | 2.0 | 5.0 | 32436.0 |
commune of France | Ceillac | 9.0 | 11.0 | 32436.0 |
human | Celeste Cid | 1.0 | 6.0 | 251915.0 |
commune of France | Ceyssac | 1.0 | 4.0 | 32436.0 |
commune of France | Ceyzérieu | 12.0 | 13.0 | 32436.0 |
commune of France | Chambolle-Musigny | 3.0 | 6.0 | 32436.0 |
commune of France | Chameyrat | 8.0 | 10.0 | 32436.0 |
human | Chandni | 3.0 | 18.0 | 251915.0 |
film | Chandni | 3.0 | 18.0 | 13894.0 |
human | Chandra Wilson | 5.0 | 8.0 | 251915.0 |
township in China | Changdong Town | 1.0 | 3.0 | 19553.0 |
commune of France | Chantraines | 2.0 | 5.0 | 32436.0 |
commune of France | Chapelle-Royale | 1.0 | 4.0 | 32436.0 |
human | Charles Berkeley, 2nd Earl of Berkeley | 7.0 | 17.0 | 251915.0 |
human | Charles Planat | 1.0 | 11.0 | 251915.0 |
human | Charles Wellford Leavitt | 2.0 | 7.0 | 251915.0 |
human | Charles William, Duke of Saxe-Meiningen | 4.0 | 15.0 | 251915.0 |
human | Charles, Prince of Rochefort | 3.0 | 5.0 | 251915.0 |
human | Charlotte Chaffanjon | 1.0 | 10.0 | 251915.0 |
human | Charlotte Desmares | 1.0 | 11.0 | 251915.0 |
commune of France | Charnay | 6.0 | 8.0 | 32436.0 |
commune of France | Charnay | 6.0 | 8.0 | 32436.0 |
commune of France | Chauvigny | 8.0 | 8.0 | 32436.0 |
commune of France | Chauvincourt-Provemont | 2.0 | 4.0 | 32436.0 |
album | Chelsea Girl | 2.0 | 7.0 | 49063.0 |
human | Chen Yannian | 1.0 | 5.0 | 251915.0 |
commune of France | Chesnois-Auboncourt | 7.0 | 11.0 | 32436.0 |
album | Chicago VIII | 2.0 | 5.0 | 49063.0 |
human | Chikuhei Nakajima | 1.0 | 5.0 | 251915.0 |
album | Chimney's Afire | 1.0 | 4.0 | 49063.0 |
human | Chintila | 1.0 | 6.0 | 251915.0 |
commune of France | Chiry-Ourscamp | 3.0 | 4.0 | 32436.0 |
taxon | Chitonina | 3.0 | 4.0 | 14226.0 |
taxon | Chloranthaceae | 4.0 | 6.0 | 14226.0 |
human | Chlothar I | 20.0 | 26.0 | 251915.0 |
commune of France | Chouain | 6.0 | 9.0 | 32436.0 |
human | Chris Ofili | 1.0 | 10.0 | 251915.0 |
human | Chris Petersen | 2.0 | 17.0 | 251915.0 |
human | Chris Petersen | 2.0 | 17.0 | 251915.0 |
human | Chris Petersen | 2.0 | 17.0 | 251915.0 |
human | Chris Thomas | 4.0 | 30.0 | 251915.0 |
human | Chris Thomas | 4.0 | 30.0 | 251915.0 |
human | Chris Thomas | 4.0 | 30.0 | 251915.0 |
human | Chris Thomas | 4.0 | 30.0 | 251915.0 |
human | Christiaen Jansz van Bieselingen | 1.0 | 7.0 | 251915.0 |
human | Christian Décamps | 1.0 | 8.0 | 251915.0 |
human | Christian Erickson | 2.0 | 6.0 | 251915.0 |
human | Christian Lorenz | 1.0 | 8.0 | 251915.0 |
human | Christian Pikes | 2.0 | 5.0 | 251915.0 |
human | Christian Schramm | 1.0 | 7.0 | 251915.0 |
human | Christian Stolte | 5.0 | 6.0 | 251915.0 |
human | Christine Carère | 16.0 | 7.0 | 251915.0 |
human | Christine Haas | 2.0 | 5.0 | 251915.0 |
human | Christoph Ahlhaus | 2.0 | 10.0 | 251915.0 |
human | Christoph Schönborn | 1.0 | 18.0 | 251915.0 |
human | Christoph Zrenner | 1.0 | 5.0 | 251915.0 |
human | Christopher Cornford | 4.0 | 6.0 | 251915.0 |
human | Christopher Hewett | 4.0 | 8.0 | 251915.0 |
human | Christopher Monger | 3.0 | 7.0 | 251915.0 |
commune of France | Châteaubourg | 10.0 | 12.0 | 32436.0 |
commune of France | Châteaubourg | 10.0 | 12.0 | 32436.0 |
commune of France | Châteauneuf-Miravail | 8.0 | 11.0 | 32436.0 |
commune of France | Châteauneuf-Val-de-Bargis | 3.0 | 5.0 | 32436.0 |
human | Cinzia De Carolis | 10.0 | 7.0 | 251915.0 |
album | Cirrus | 2.0 | 5.0 | 49063.0 |
commune of France | Clansayes | 1.0 | 3.0 | 32436.0 |
single | Clap Yo Hands | 2.0 | 5.0 | 38372.0 |
human | Claude Lamoral, 3rd Prince of Ligne | 3.0 | 11.0 | 251915.0 |
human | Claude Santelli | 1.0 | 7.0 | 251915.0 |
human | Claude-Jean Philippe | 3.0 | 9.0 | 251915.0 |
human | Claudio Pizarro | 1.0 | 12.0 | 251915.0 |
human | Claus Friedrich von Reden | 1.0 | 7.0 | 251915.0 |
commune of France | Claville | 2.0 | 4.0 | 32436.0 |
human | Clement Hurd | 4.0 | 6.0 | 251915.0 |
single | Clockwork | 1.0 | 12.0 | 38372.0 |
single | Clown Prince | 1.0 | 4.0 | 38372.0 |
human | Clémence Bretécher | 2.0 | 6.0 | 251915.0 |
taxon | Coccinellidae | 36.0 | 3.0 | 14226.0 |
taxon | Coccotremataceae | 1.0 | 3.0 | 14226.0 |
taxon | Colubridae | 22.0 | 4.0 | 14226.0 |
commune of France | Condette | 2.0 | 4.0 | 32436.0 |
human | Conrad II, Count of Oldenburg | 3.0 | 8.0 | 251915.0 |
human | Consort Qi | 5.0 | 9.0 | 251915.0 |
album | Conspiritus | 1.0 | 3.0 | 49063.0 |
human | Constantin Melnik | 1.0 | 10.0 | 251915.0 |
commune of France | Corbère | 7.0 | 11.0 | 32436.0 |
human | Cornelia Stuyvesant Vanderbilt | 4.0 | 8.0 | 251915.0 |
human | Corrado Guarducci | 21.0 | 6.0 | 251915.0 |
commune of France | Corre | 1.0 | 5.0 | 32436.0 |
human | Cory Monteith | 4.0 | 11.0 | 251915.0 |
human | Countess Claudine Rhédey von Kis-Rhéde | 2.0 | 8.0 | 251915.0 |
human | Countess Ermesinde II, Countess of Luxembourg | 6.0 | 9.0 | 251915.0 |
human | Craig Pearce | 4.0 | 6.0 | 251915.0 |
single | Crimson and Clover | 2.0 | 5.0 | 38372.0 |
commune of France | Criquetot-sur-Ouville | 2.0 | 3.0 | 32436.0 |
single | Crisis | 7.0 | 59.0 | 38372.0 |
film | Crisis | 7.0 | 59.0 | 13894.0 |
film | Crisis | 7.0 | 59.0 | 13894.0 |
album | Crisis | 7.0 | 59.0 | 49063.0 |
single | Cross Over | 2.0 | 12.0 | 38372.0 |
album | Crusade | 6.0 | 34.0 | 49063.0 |
album | Cybernetic Dreams of Pi | 1.0 | 3.0 | 49063.0 |
taxon | Cyrillaceae | 1.0 | 5.0 | 14226.0 |
human | César Herráiz Pujol | 1.0 | 5.0 | 251915.0 |
commune of France | Cézan | 1.0 | 4.0 | 32436.0 |
taxon | Dactylopodida | 2.0 | 3.0 | 14226.0 |
human | Daisy Campbell | 2.0 | 4.0 | 251915.0 |
human | Dan Le Sac | 1.0 | 4.0 | 251915.0 |
human | Daniel Conley | 2.0 | 8.0 | 251915.0 |
human | Daniel Day-Lewis | 33.0 | 18.0 | 251915.0 |
human | Daniel Isăilă | 1.0 | 6.0 | 251915.0 |
human | Daniel Lupi | 6.0 | 3.0 | 251915.0 |
single | Dans un autre monde | 2.0 | 7.0 | 38372.0 |
human | Dantivarman | 2.0 | 5.0 | 251915.0 |
human | Daphné Roulier | 2.0 | 5.0 | 251915.0 |
human | Dario D'Ambrosio | 1.0 | 7.0 | 251915.0 |
human | Darren Jeffries | 1.0 | 5.0 | 251915.0 |
human | Date Muratomi | 2.0 | 5.0 | 251915.0 |
human | Dava Sobel | 1.0 | 11.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | Dave Brown | 2.0 | 112.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Mills | 3.0 | 55.0 | 251915.0 |
human | David Valcin | 1.0 | 4.0 | 251915.0 |
human | Davyd Sviatoslavich | 5.0 | 7.0 | 251915.0 |
album | De Gregori | 2.0 | 5.0 | 49063.0 |
album | De Mi Puño y Letra | 1.0 | 4.0 | 49063.0 |
human | Dean Edwards | 1.0 | 29.0 | 251915.0 |
human | Dean Edwards | 1.0 | 29.0 | 251915.0 |
human | Dean Edwards | 1.0 | 29.0 | 251915.0 |
album | Dear Miss Lonelyhearts | 1.0 | 6.0 | 49063.0 |
album | Decade of Decadence | 2.0 | 3.0 | 49063.0 |
human | Delia Fiallo | 2.0 | 5.0 | 251915.0 |
human | Denis Lazure | 1.0 | 12.0 | 251915.0 |
human | Denise Clair | 5.0 | 6.0 | 251915.0 |
human | Derrick O'Connor | 14.0 | 6.0 | 251915.0 |
album | Destination Berlin | 2.0 | 4.0 | 49063.0 |
human | Devrim Evin | 1.0 | 5.0 | 251915.0 |
human | Diana Hardcastle | 1.0 | 4.0 | 251915.0 |
human | Dianne Buckner | 1.0 | 5.0 | 251915.0 |
human | Dilys Laye | 2.0 | 6.0 | 251915.0 |
human | Dimitrios Vranopoulos | 1.0 | 9.0 | 251915.0 |
human | Dimítris Kókkinos | 1.0 | 4.0 | 251915.0 |
human | Dirk Oldenburg | 1.0 | 8.0 | 251915.0 |
film | Disraeli | 1.0 | 34.0 | 13894.0 |
human | Dmitry Vasilyevich | 1.0 | 4.0 | 251915.0 |
single | Do It | 4.0 | 8.0 | 38372.0 |
human | Doctor P | 1.0 | 5.0 | 251915.0 |
film | Dogville | 1.0 | 36.0 | 13894.0 |
human | Dominic Hawksley | 1.0 | 4.0 | 251915.0 |
human | Dominique Lapierre | 4.0 | 11.0 | 251915.0 |
commune of France | Doméliers | 1.0 | 4.0 | 32436.0 |
single | Don Alfonso | 2.0 | 6.0 | 38372.0 |
human | Don Haig | 1.0 | 7.0 | 251915.0 |
human | Don Pardo | 1.0 | 10.0 | 251915.0 |
single | Don't Forget to Dance | 1.0 | 3.0 | 38372.0 |
human | Donald Calthrop | 21.0 | 8.0 | 251915.0 |
human | Donald Dell | 1.0 | 10.0 | 251915.0 |
township in China | Donggang | 25.0 | 29.0 | 19553.0 |
human | Doraid Liddawi | 5.0 | 3.0 | 251915.0 |
human | Dorothy Adams | 36.0 | 7.0 | 251915.0 |
human | Dot Farley | 26.0 | 7.0 | 251915.0 |
human | Doud Eisenhower | 2.0 | 6.0 | 251915.0 |
commune of France | Doudeauville-en-Vexin | 2.0 | 4.0 | 32436.0 |
album | Drive Like Jehu | 3.0 | 7.0 | 49063.0 |
human | Drogo, Duke of Brittany | 4.0 | 7.0 | 251915.0 |
street | Ds. Germsweg | 1.0 | 4.0 | 16483.0 |
street | Dubbele Buurt | 10.0 | 6.0 | 16483.0 |
street | Dubbele Buurt | 10.0 | 6.0 | 16483.0 |
human | Duke Alexander of Württemberg | 20.0 | 41.0 | 251915.0 |
human | Duke Alexander of Württemberg | 20.0 | 41.0 | 251915.0 |
human | Duke Alexander of Württemberg | 20.0 | 41.0 | 251915.0 |
human | Duke Xi of Lu | 6.0 | 8.0 | 251915.0 |
album | Duo Live in Concert | 2.0 | 5.0 | 49063.0 |
album | Duotones | 2.0 | 5.0 | 49063.0 |
commune of France | Duras | 6.0 | 3.0 | 32436.0 |
commune of France | Duravel | 3.0 | 4.0 | 32436.0 |
human | Dustin Moskovitz | 2.0 | 8.0 | 251915.0 |
human | Dylan Jones | 1.0 | 6.0 | 251915.0 |
single | Dónde Irán | 1.0 | 4.0 | 38372.0 |
album | E.L.E. (Extinction Level Event): The Final World Front | 2.0 | 6.0 | 49063.0 |
single | Easter | 14.0 | 19.0 | 38372.0 |
album | Easter | 14.0 | 19.0 | 49063.0 |
album | Easter | 14.0 | 19.0 | 49063.0 |
commune of France | Eaux-Puiseaux | 5.0 | 8.0 | 32436.0 |
taxon | Echiteae | 5.0 | 4.0 | 14226.0 |
human | Ed Marinaro | 2.0 | 10.0 | 251915.0 |
human | Edgar Fruitier | 4.0 | 8.0 | 251915.0 |
human | Edmund Beaufort, 2nd Duke of Somerset | 13.0 | 22.0 | 251915.0 |
human | Edmund Burns | 27.0 | 7.0 | 251915.0 |
human | Edred of England | 11.0 | 21.0 | 251915.0 |
human | Edward Herbert, 3rd Baron Herbert of Chirbury | 1.0 | 4.0 | 251915.0 |
human | Edward Warschilka | 1.0 | 8.0 | 251915.0 |
human | Edwin H. Land | 1.0 | 14.0 | 251915.0 |
human | Edwin Ward Moore | 1.0 | 5.0 | 251915.0 |
street | Eemstein | 4.0 | 4.0 | 16483.0 |
street | Eindweg | 1.0 | 4.0 | 16483.0 |
album | El nuevo Rolando Alarcón | 2.0 | 5.0 | 49063.0 |
human | Eldar Rønning | 1.0 | 10.0 | 251915.0 |
taxon | Eleutherodactylus juanchoi | 1.0 | 4.0 | 14226.0 |
taxon | Eligmodontus | 1.0 | 3.0 | 14226.0 |
human | Elizabeth of Carinthia, Queen of Germany | 16.0 | 23.0 | 251915.0 |
human | Ella Purnell | 1.0 | 6.0 | 251915.0 |
street | Elzenlaan | 4.0 | 8.0 | 16483.0 |
street | Elzenlaan | 4.0 | 8.0 | 16483.0 |
human | Emel Sayın | 1.0 | 6.0 | 251915.0 |
human | Emiliana Perina | 1.0 | 5.0 | 251915.0 |
human | Emily Rutherfurd | 1.0 | 8.0 | 251915.0 |
human | Emmanuel Gradi | 2.0 | 5.0 | 251915.0 |
human | Empress Dowager Fujiwara no Ishi | 2.0 | 4.0 | 251915.0 |
commune of France | Encausse | 1.0 | 4.0 | 32436.0 |
album | EndSerenading | 1.0 | 2.0 | 49063.0 |
human | Engelbrekt Engelbrektsson | 2.0 | 6.0 | 251915.0 |
human | Enrico Pieranunzi | 1.0 | 10.0 | 251915.0 |
human | Entissar Amer | 1.0 | 4.0 | 251915.0 |
taxon | Equidae | 4.0 | 4.0 | 14226.0 |
human | Erica Johnson Debeljak | 1.0 | 5.0 | 251915.0 |
human | Erica Lancaster | 1.0 | 5.0 | 251915.0 |
human | Erika Stiska | 5.0 | 6.0 | 251915.0 |
human | Ernesta Bittanti Battisti | 2.0 | 9.0 | 251915.0 |
human | Ernst Franz Karl von Gemmingen | 3.0 | 6.0 | 251915.0 |
human | Ernst Marboe | 1.0 | 7.0 | 251915.0 |
human | Ernst Stückelberg | 1.0 | 9.0 | 251915.0 |
human | Ernst Waldow | 34.0 | 7.0 | 251915.0 |
human | Eros Galbiati | 5.0 | 6.0 | 251915.0 |
film | Escape from the Planet of the Apes | 2.0 | 31.0 | 13894.0 |
commune of France | Esquièze-Sère | 2.0 | 5.0 | 32436.0 |
commune of France | Estal | 1.0 | 4.0 | 32436.0 |
commune of France | Estrée | 2.0 | 4.0 | 32436.0 |
human | Ethan Phillips | 174.0 | 8.0 | 251915.0 |
human | Ethan Vogt | 3.0 | 8.0 | 251915.0 |
taxon | Euchaetidae | 2.0 | 3.0 | 14226.0 |
human | Eugene Kaspersky | 2.0 | 11.0 | 251915.0 |
human | Eugenio Lopez III | 1.0 | 10.0 | 251915.0 |
human | Eva Cassidy | 5.0 | 12.0 | 251915.0 |
human | Eva-Maria Hofmann | 1.0 | 5.0 | 251915.0 |
human | Evelyn De Morgan | 3.0 | 12.0 | 251915.0 |
street | Eversweg | 2.0 | 3.0 | 16483.0 |
human | Ewout Genemans | 1.0 | 9.0 | 251915.0 |
album | Extremist Makeover | 1.0 | 3.0 | 49063.0 |
human | Ezra F. Kysor | 2.0 | 8.0 | 251915.0 |
album | FH1 | 1.0 | 4.0 | 49063.0 |
human | Fairfield Porter | 1.0 | 8.0 | 251915.0 |
album | Fallen Is Babylon | 2.0 | 5.0 | 49063.0 |
single | Fantastic future | 1.0 | 5.0 | 38372.0 |
human | Faye | 35.0 | 6.0 | 251915.0 |
street | Fazantstraat | 1.0 | 4.0 | 16483.0 |
human | Federico Barón | 1.0 | 5.0 | 251915.0 |
human | Felix Gonzalez Ares | 1.0 | 5.0 | 251915.0 |
township in China | Fengshan | 1.0 | 3.0 | 19553.0 |
human | Ferenc Komlóssy | 1.0 | 11.0 | 251915.0 |
human | Ferenc Komlóssy | 1.0 | 11.0 | 251915.0 |
album | Festival Session | 1.0 | 4.0 | 49063.0 |
human | Fifi Young | 2.0 | 6.0 | 251915.0 |
human | Filippo Pedrini | 1.0 | 6.0 | 251915.0 |
album | First Under the Wire | 2.0 | 5.0 | 49063.0 |
film | Flesh and Bone | 3.0 | 29.0 | 13894.0 |
album | Flesh and Bone | 3.0 | 29.0 | 49063.0 |
album | Flesh and Bone | 3.0 | 29.0 | 49063.0 |
human | Fleur Lise Heuet | 2.0 | 5.0 | 251915.0 |
human | Florencio Varela | 3.0 | 12.0 | 251915.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
single | Flower | 25.0 | 77.0 | 38372.0 |
album | Flower | 25.0 | 77.0 | 49063.0 |
album | Four in Blue | 1.0 | 4.0 | 49063.0 |
human | Francesc Colomé Tenas | 1.0 | 5.0 | 251915.0 |
human | Francesca Braggiotti | 4.0 | 8.0 | 251915.0 |
human | Francesco Cabras | 3.0 | 6.0 | 251915.0 |
human | Francesco Malcom | 5.0 | 7.0 | 251915.0 |
human | Francesco Mandelli | 11.0 | 8.0 | 251915.0 |
human | Francis Charles Philips | 1.0 | 8.0 | 251915.0 |
human | Francisco Compes Martinez | 1.0 | 5.0 | 251915.0 |
human | Francisco Jesús Hidalgo Pérez | 1.0 | 5.0 | 251915.0 |
human | Francisco Lopez del Pozo | 1.0 | 5.0 | 251915.0 |
human | Frankie Chan | 5.0 | 8.0 | 251915.0 |
human | Franz Anton Schubert | 1.0 | 9.0 | 251915.0 |
human | Franz Ernst | 1.0 | 15.0 | 251915.0 |
human | Franz Ernst | 1.0 | 15.0 | 251915.0 |
human | François Barberousse | 2.0 | 6.0 | 251915.0 |
human | François-Henri Pinault | 3.0 | 13.0 | 251915.0 |
album | Frecuencia Continental | 2.0 | 5.0 | 49063.0 |
human | Frederick Barton Maurice | 2.0 | 19.0 | 251915.0 |
human | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym | 1.0 | 7.0 | 251915.0 |
street | Friedesemolen | 1.0 | 4.0 | 16483.0 |
human | Friedrich Günther, Prince of Schwarzburg-Rudolstadt | 4.0 | 9.0 | 251915.0 |
human | Friedrich Wilhelm Schnitzler | 1.0 | 11.0 | 251915.0 |
human | Fritz Thyssen | 6.0 | 16.0 | 251915.0 |
human | Frédéric Bazille | 14.0 | 10.0 | 251915.0 |
album | Fuck with Fire | 1.0 | 3.0 | 49063.0 |
human | Fujiwara no Kaneko/Kaishi | 4.0 | 8.0 | 251915.0 |
human | Fujiwara no Kinsue | 9.0 | 13.0 | 251915.0 |
human | Fujiwara no Sawako | 7.0 | 9.0 | 251915.0 |
human | Fushimi-no-miya Kunisuke-shinnō | 4.0 | 8.0 | 251915.0 |
single | Futari | 6.0 | 17.0 | 38372.0 |
single | Futari | 6.0 | 17.0 | 38372.0 |
single | Futari | 6.0 | 17.0 | 38372.0 |
human | Félix Fries | 2.0 | 3.0 | 251915.0 |
human | Gabe Sachs | 4.0 | 2.0 | 251915.0 |
commune of France | Gabrias | 2.0 | 5.0 | 32436.0 |
human | Gabriel Ferra Martorell | 1.0 | 5.0 | 251915.0 |
human | Gabrielle Christian | 1.0 | 7.0 | 251915.0 |
commune of France | Gaillon | 37.0 | 8.0 | 32436.0 |
human | Gale Storm | 11.0 | 6.0 | 251915.0 |
taxon | Galegeae | 10.0 | 3.0 | 14226.0 |
taxon | Gammaherpesvirinae | 4.0 | 3.0 | 14226.0 |
single | Gangsta Rap Made Me Do It | 1.0 | 4.0 | 38372.0 |
township in China | Gaogezhuang | 1.0 | 3.0 | 19553.0 |
human | Gary Chaw | 3.0 | 11.0 | 251915.0 |
human | Gary Tarn | 4.0 | 7.0 | 251915.0 |
human | Gebhard of Supplinburg | 2.0 | 4.0 | 251915.0 |
street | Geert Wolter Smitweg | 1.0 | 4.0 | 16483.0 |
human | Gene Sheldon | 9.0 | 8.0 | 251915.0 |
single | Generation Wild | 3.0 | 9.0 | 38372.0 |
album | Generation Wild | 3.0 | 9.0 | 49063.0 |
human | Geoffrey James | 1.0 | 12.0 | 251915.0 |
human | Geoffrey James | 1.0 | 12.0 | 251915.0 |
taxon | Geohintonia mexicana | 1.0 | 4.0 | 14226.0 |
human | Georg Abraham Schneider | 1.0 | 12.0 | 251915.0 |
human | Georg Hackl | 1.0 | 13.0 | 251915.0 |
human | Georg von Arco | 2.0 | 14.0 | 251915.0 |
human | George Lamond | 4.0 | 5.0 | 251915.0 |
human | George Osborne | 3.0 | 12.0 | 251915.0 |
human | George, Emperor of Trebizond | 4.0 | 7.0 | 251915.0 |
human | Georges Chamarat | 77.0 | 9.0 | 251915.0 |
human | Georges Mathieu | 1.0 | 19.0 | 251915.0 |
human | Georges Mathieu | 1.0 | 19.0 | 251915.0 |
human | Georges Rouget | 1.0 | 14.0 | 251915.0 |
human | Georgi Kadurin | 4.0 | 4.0 | 251915.0 |
human | Georgia Groome | 4.0 | 6.0 | 251915.0 |
human | Georgie Ripper | 3.0 | 6.0 | 251915.0 |
human | Gerald Gladstone | 1.0 | 16.0 | 251915.0 |
human | Gerald Gladstone | 1.0 | 16.0 | 251915.0 |
human | Geraldine Chaplin | 101.0 | 18.0 | 251915.0 |
human | Gerard I, Count of Guelders | 2.0 | 5.0 | 251915.0 |
human | Gerard II, Count of Wassenberg | 3.0 | 6.0 | 251915.0 |
human | Gerd Höfer | 1.0 | 8.0 | 251915.0 |
album | German Engines | 1.0 | 4.0 | 49063.0 |
human | Gerrit Kruize | 1.0 | 11.0 | 251915.0 |
human | Gertrud Bredel | 1.0 | 6.0 | 251915.0 |
human | Gianluca Maria Tavarelli | 7.0 | 6.0 | 251915.0 |
human | Gianni Nanfa | 1.0 | 6.0 | 251915.0 |
human | Gianni Rivera | 1.0 | 19.0 | 251915.0 |
human | Gilbert Monckton, 2nd Viscount Monckton of Brenchley | 2.0 | 12.0 | 251915.0 |
human | Gino Talamo | 7.0 | 8.0 | 251915.0 |
human | Giorgio Vasari | 10.0 | 23.0 | 251915.0 |
human | Giovanna Lenzi | 15.0 | 8.0 | 251915.0 |
human | Giovanni Battista Cipriani | 3.0 | 6.0 | 251915.0 |
human | Giovanni de Gamerra | 1.0 | 7.0 | 251915.0 |
single | Girl Friend | 2.0 | 7.0 | 38372.0 |
single | Girl Friend | 2.0 | 7.0 | 38372.0 |
human | Giulia Gam | 2.0 | 5.0 | 251915.0 |
human | Giuseppe Tartini | 1.0 | 10.0 | 251915.0 |
taxon | Glyptopleura | 1.0 | 3.0 | 14226.0 |
single | Gold on the Ceiling | 1.0 | 4.0 | 38372.0 |
taxon | Goldfish | 1.0 | 4.0 | 14226.0 |
street | Goltziusstraat | 6.0 | 8.0 | 16483.0 |
street | Goltziusstraat | 6.0 | 8.0 | 16483.0 |
commune of France | Gond-Pontouvre | 11.0 | 12.0 | 32436.0 |
human | Gonzalo Sarrigoitia Oregui | 1.0 | 5.0 | 251915.0 |
single | Good Time (Jin Akanishi song) | 1.0 | 4.0 | 38372.0 |
single | Goodbye in Her Eyes | 1.0 | 4.0 | 38372.0 |
album | Got It on My Mind | 1.0 | 4.0 | 49063.0 |
street | Graaf van Burenstraat | 1.0 | 3.0 | 16483.0 |
human | Grace Zaring Stone | 1.0 | 5.0 | 251915.0 |
human | Graham Edwards | 4.0 | 13.0 | 251915.0 |
human | Graham Edwards | 4.0 | 13.0 | 251915.0 |
human | Grand Duchess Tatiana Nikolaevna of Russia | 7.0 | 19.0 | 251915.0 |
human | Grand Duke Nicholas Constantinovich of Russia | 7.0 | 10.0 | 251915.0 |
commune of France | Grandvaux | 3.0 | 8.0 | 32436.0 |
album | Greatest Hits Encore | 2.0 | 5.0 | 49063.0 |
human | Gregorio Rodriguez Lopez | 1.0 | 5.0 | 251915.0 |
human | Grimes | 4.0 | 9.0 | 251915.0 |
album | Grinding Stone | 1.0 | 4.0 | 49063.0 |
single | Growing Up | 3.0 | 22.0 | 38372.0 |
album | Growing Up | 3.0 | 22.0 | 49063.0 |
album | Growing Up | 3.0 | 22.0 | 49063.0 |
commune of France | Gréolières | 9.0 | 12.0 | 32436.0 |
township in China | Guandu | 1.0 | 3.0 | 19553.0 |
human | Guy Carbonneau | 1.0 | 10.0 | 251915.0 |
human | Guy Fithen | 1.0 | 5.0 | 251915.0 |
human | Guy de Binos | 2.0 | 4.0 | 251915.0 |
human | Guè | 1.0 | 6.0 | 251915.0 |
human | Gérard Filippelli | 16.0 | 6.0 | 251915.0 |
human | Götz Otto | 14.0 | 7.0 | 251915.0 |
human | H. F. Maltby | 3.0 | 5.0 | 251915.0 |
commune of France | Hacqueville | 2.0 | 4.0 | 32436.0 |
human | Hale Soygazi | 5.0 | 6.0 | 251915.0 |
human | Hans Frank | 1.0 | 28.0 | 251915.0 |
human | Hans Frank | 1.0 | 28.0 | 251915.0 |
human | Hans Frank | 1.0 | 28.0 | 251915.0 |
human | Hans Gerhard Creutzfeldt | 1.0 | 11.0 | 251915.0 |
human | Hans Olof Ahnlund | 1.0 | 4.0 | 251915.0 |
human | Hans Rausing | 5.0 | 12.0 | 251915.0 |
human | Hans Rudolf Rahn | 6.0 | 14.0 | 251915.0 |
human | Hans Rudolf Rahn | 6.0 | 14.0 | 251915.0 |
single | Happy? | 6.0 | 15.0 | 38372.0 |
album | Happy? | 6.0 | 15.0 | 49063.0 |
album | Happy? | 6.0 | 15.0 | 49063.0 |
human | Harriet Adams | 1.0 | 10.0 | 251915.0 |
commune of France | Haudonville | 3.0 | 5.0 | 32436.0 |
human | Hawise of Brittany | 3.0 | 9.0 | 251915.0 |
human | Hayden Rorke | 25.0 | 9.0 | 251915.0 |
human | He Xiangning | 1.0 | 6.0 | 251915.0 |
In the scatter plot we can see humans spread out widely over the two degree axis. We also see some other patterns:
- Films tend to have low in-degree, but higher out-degree. This corresponds to information being stored about the films, but not many other entities referencing the films.
- Taxons (taxonomical groups in biology) tend to have low out-degree, but higher in-degree. This is a bit harder to interpret, but is likely because many biological entities reference these as groups they belong to.
Symmetric Relations
Let's now start with a small example of basic motif mining. Here we try to find out to what extent the different edge relations are symmetric. We first find the subgraphs matching the motif "(a)-[r1]->(b); (b)-[r2]->(a)"
, filter for those where the edge relation is the same and count how many such 2-cycles exist for each relations. We then compute how large fraction of the total edges are part of such motifs. This indicates if a relation is symmetric in general.
val twoCycles = graph.find("(a)-[r1]->(b); (b)-[r2]->(a)")
val symCycles = twoCycles.filter("r1.rel == r2.rel")
val symCounts = symCycles.select("r1.src", "r1.rel", "r1.dst").groupBy("rel").count().cache()
display(symCounts)
rel | count |
---|---|
part of | 506.0 |
family name | 27.0 |
parent astronomical body | 2.0 |
topic's main Wikimedia portal | 1.0 |
shares border with | 204711.0 |
based on | 3932.0 |
present in work | 30.0 |
separated from | 2.0 |
writing system | 9.0 |
topic's main category | 1.0 |
father | 926.0 |
given name version for other gender | 258.0 |
performer | 1492.0 |
place of burial | 9.0 |
influenced by | 4.0 |
developer | 17.0 |
depicts | 1757.0 |
fictional or mythical analog of | 4.0 |
producer | 18.0 |
shape | 1.0 |
taxon synonym | 59.0 |
located in or next to body of water | 8.0 |
replaced by | 10.0 |
part of the series | 2407.0 |
interleaves with | 28.0 |
narrative location | 54.0 |
participant | 10.0 |
capital of | 14.0 |
characters | 46.0 |
collection | 1.0 |
structure replaced by | 1.0 |
owner of | 1.0 |
has part(s) | 2095.0 |
located in the administrative territorial entity | 5688.0 |
employer | 4.0 |
chairperson | 28.0 |
lyrics by | 4.0 |
place of birth | 11.0 |
subclass of | 185.0 |
instance of | 45937.0 |
located on street | 24.0 |
named after | 678.0 |
mother house | 1.0 |
country of origin | 2.0 |
encoded by | 7.0 |
composer | 3.0 |
occupant | 5.0 |
place of death | 2.0 |
relative | 874.0 |
director | 2.0 |
category's main topic | 1.0 |
spouse | 31112.0 |
author | 9.0 |
located in/on physical feature | 29.0 |
pendant of | 214.0 |
record label | 5.0 |
from narrative universe | 1.0 |
ortholog | 1863.0 |
conferred by | 1.0 |
diplomatic relation | 58.0 |
Wikimedia portal's main topic | 1.0 |
sport | 1.0 |
child astronomical body | 2.0 |
adjacent station | 24278.0 |
mother | 18.0 |
companion of | 24.0 |
location of creation | 4.0 |
imported from Wikimedia project | 32.0 |
replaces | 7.0 |
has facility | 1.0 |
Unknown | 89075.0 |
inspired by | 27.0 |
student of | 2.0 |
readable file format | 1.0 |
commissioned by | 1.0 |
statement is subject of | 8.0 |
programmed in | 1.0 |
origin of the watercourse | 2.0 |
capital | 4274.0 |
contains settlement | 4105.0 |
founded by | 75.0 |
member of | 34.0 |
tracklist | 34.0 |
notable work | 7.0 |
tributary | 2.0 |
lake outflow | 10.0 |
follows | 737.0 |
feast day | 1.0 |
discoverer or inventor | 4.0 |
movement | 3.0 |
said to be the same as | 14782.0 |
terminus | 128.0 |
owned by | 13.0 |
edition or translation of | 134.0 |
mouth of the watercourse | 16.0 |
student | 6.0 |
scheduled service destination | 6.0 |
cast member | 22.0 |
described by source | 16.0 |
connecting line | 12.0 |
decays to | 2.0 |
home venue | 1.0 |
software engine | 6.0 |
soundtrack release | 11.0 |
depicted by | 14.0 |
copyright license | 1.0 |
catalog | 1.0 |
architect | 6.0 |
has use | 2.0 |
parent taxon | 21.0 |
residence | 2.0 |
country | 283.0 |
headquarters location | 17.0 |
has edition or translation | 132.0 |
home world | 1.0 |
color | 6.0 |
encodes | 8.0 |
doctoral advisor | 2.0 |
dedicated to | 7.0 |
opposite of | 1405.0 |
filming location | 9.0 |
territory claimed by | 2.0 |
partially coincident with | 482.0 |
point group | 1.0 |
winner | 280.0 |
stock exchange | 2.0 |
child | 934.0 |
location | 63.0 |
family name identical to this given name | 301.0 |
given name | 1054.0 |
dual to | 254.0 |
made from material | 1.0 |
unmarried partner | 650.0 |
is a list of | 11.0 |
genre | 50149.0 |
affiliation | 2.0 |
contains the administrative territorial entity | 291.0 |
interchange station | 59.0 |
significant drug interaction | 1404.0 |
killed by | 10.0 |
main subject | 4274.0 |
partner in business or sport | 4.0 |
political ideology | 9.0 |
screenwriter | 5.0 |
twinned administrative body | 38504.0 |
crew member(s) | 2.0 |
published in | 4.0 |
presenter | 4.0 |
manufacturer | 4.0 |
followed by | 755.0 |
contributor to the creative work or subject | 25.0 |
website account on | 1.0 |
conflict | 1.0 |
chief executive officer | 4.0 |
publisher | 11.0 |
creator | 17.0 |
facet of | 6.0 |
parent organization | 1.0 |
operator | 2.0 |
underlies | 1.0 |
val symCountsRenamed = symCounts.select(($"rel").as("symRel"), ($"count").as("symCount"))
val relCountsRenamed = relCounts.select(($"rel").as("totRel"), ($"count").as("totalCount"))
val joinedCounts = symCountsRenamed.join(relCountsRenamed, symCountsRenamed("symRel") === relCountsRenamed("totRel"), "inner")
val symFractionDf = joinedCounts.select(($"symRel").as("rel"), ($"symCount"/$"totalCount").as("symFraction")) // Compute #relation is symmetric / #relation occurs
display(symFractionDf)
rel | symFraction |
---|---|
part of | 8.165373009085188e-3 |
topic's main Wikimedia portal | 1.6129032258064516e-3 |
family name | 2.85826196500217e-4 |
parent astronomical body | 4.016064257028112e-3 |
shares border with | 1.002355187778485 |
based on | 0.671448087431694 |
present in work | 7.374631268436578e-3 |
separated from | 8.695652173913043e-2 |
topic's main category | 7.158196134574087e-4 |
writing system | 1.8711018711018712e-2 |
father | 2.1411394746577876e-2 |
given name version for other gender | 1.015748031496063 |
performer | 1.5973277947883432e-2 |
place of burial | 2.8832292167227293e-4 |
influenced by | 1.2903225806451613e-2 |
developer | 1.176877812391831e-3 |
depicts | 3.150439304285458e-2 |
fictional or mythical analog of | 2.564102564102564e-2 |
producer | 4.3741342859225776e-4 |
shape | 1.3333333333333334e-2 |
taxon synonym | 0.34104046242774566 |
located in or next to body of water | 9.512485136741973e-3 |
replaced by | 1.394700139470014e-2 |
part of the series | 9.866775978684157e-2 |
interleaves with | 1.0 |
participant | 1.0198878123406426e-3 |
narrative location | 3.2177332856632105e-3 |
capital of | 6.511627906976744e-2 |
collection | 3.600748955782803e-5 |
characters | 1.627166607711355e-2 |
structure replaced by | 3.125e-2 |
owner of | 7.142857142857142e-2 |
has part(s) | 6.474242096480114e-2 |
located in the administrative territorial entity | 1.4064551544059285e-2 |
employer | 5.0138507627320475e-5 |
chairperson | 1.1720385098367517e-2 |
place of birth | 1.6157936484620582e-5 |
lyrics by | 1.0689470871191875e-3 |
located on street | 5.948692526955013e-4 |
instance of | 1.7955320617603306e-2 |
subclass of | 3.920737522517749e-3 |
named after | 3.1024068820353252e-2 |
mother house | 4.545454545454545e-3 |
country of origin | 2.8497335499130832e-5 |
composer | 6.584723441615452e-4 |
encoded by | 3.6784025223331584e-3 |
occupant | 9.777082518576457e-4 |
place of death | 6.155304487524737e-6 |
relative | 0.4855555555555556 |
director | 2.504351310401823e-5 |
category's main topic | 9.910802775024777e-4 |
spouse | 0.9890640895218719 |
author | 2.822909478702716e-4 |
located in/on physical feature | 6.831566548881037e-3 |
record label | 5.584907346387124e-5 |
pendant of | 1.2738095238095237 |
from narrative universe | 2.7662517289073305e-4 |
ortholog | 1.007027027027027 |
conferred by | 2.881844380403458e-3 |
diplomatic relation | 9.965635738831616e-2 |
sport | 1.7501793933878222e-5 |
Wikimedia portal's main topic | 1.607717041800643e-3 |
child astronomical body | 4.694835680751174e-3 |
mother | 1.0422094841063053e-3 |
adjacent station | 0.9560526108529573 |
location of creation | 3.980099502487562e-3 |
companion of | 1.0 |
imported from Wikimedia project | 4.5714285714285714e-2 |
replaces | 1.3257575757575758e-2 |
has facility | 1.1904761904761904e-2 |
Unknown | 0.8739783553606295 |
inspired by | 8.307692307692308e-2 |
student of | 8.964589870013447e-4 |
readable file format | 4.3478260869565216e-2 |
commissioned by | 2.105263157894737e-3 |
programmed in | 1.4792899408284023e-3 |
statement is subject of | 5.128205128205128e-2 |
origin of the watercourse | 1.3245033112582781e-2 |
capital | 0.2968674029311662 |
contains settlement | 0.6863400769102157 |
founded by | 2.0598736610821202e-2 |
member of | 5.708050029379669e-4 |
tracklist | 5.128205128205128e-2 |
notable work | 4.412784466998676e-4 |
lake outflow | 3.436426116838488e-2 |
tributary | 5.58659217877095e-3 |
follows | 4.241921930218369e-3 |
feast day | 1.584786053882726e-3 |
discoverer or inventor | 7.9805275128686e-5 |
movement | 3.394817245671608e-4 |
said to be the same as | 0.9737812911725955 |
terminus | 5.0058662495111456e-2 |
owned by | 5.840071877807727e-4 |
edition or translation of | 0.19910846953937592 |
mouth of the watercourse | 3.4460478139134183e-3 |
student | 1.0291595197255575e-2 |
scheduled service destination | 9.230769230769231e-2 |
cast member | 3.966293714866751e-5 |
described by source | 5.766596986953074e-4 |
decays to | 4.784688995215311e-4 |
home venue | 2.7114967462039046e-4 |
connecting line | 1.738878423416896e-3 |
software engine | 3.0211480362537764e-3 |
soundtrack release | 0.34375 |
copyright license | 3.741114852225963e-4 |
depicted by | 0.2857142857142857 |
catalog | 1.0309278350515464e-2 |
has use | 6.146281499692685e-4 |
architect | 8.441193021947102e-4 |
parent taxon | 1.851753875456325e-4 |
residence | 5.379236148466917e-4 |
country | 6.858511097216365e-4 |
headquarters location | 2.7296082209377005e-3 |
has edition or translation | 0.11934900542495479 |
home world | 6.25e-2 |
color | 1.1406844106463879e-2 |
encodes | 4.206098843322818e-3 |
doctoral advisor | 3.1645569620253164e-3 |
dedicated to | 2.413793103448276e-2 |
opposite of | 0.9908321579689704 |
filming location | 7.000622277535781e-4 |
territory claimed by | 5.8823529411764705e-2 |
partially coincident with | 0.8441330998248686 |
point group | 1.2658227848101266e-2 |
winner | 0.29350104821802936 |
stock exchange | 2.11864406779661e-3 |
child | 1.5460504535522744e-2 |
location | 8.260345098861908e-4 |
family name identical to this given name | 0.8624641833810889 |
given name | 8.100794169887642e-4 |
dual to | 0.9921875 |
made from material | 2.0082740892477006e-5 |
unmarried partner | 0.7328072153325818 |
is a list of | 6.577767147042994e-4 |
genre | 0.27999776667318055 |
affiliation | 1.1111111111111112e-2 |
contains the administrative territorial entity | 1.9813440457547493e-3 |
interchange station | 0.7866666666666666 |
significant drug interaction | 0.8036634230108758 |
killed by | 3.2679738562091505e-2 |
main subject | 0.29023495857666715 |
political ideology | 3.739094308267553e-3 |
partner in business or sport | 0.8 |
screenwriter | 1.0432532810315688e-4 |
twinned administrative body | 1.0104975855553222 |
crew member(s) | 1.0793308148947653e-3 |
published in | 3.766478342749529e-3 |
presenter | 4.3859649122807015e-3 |
manufacturer | 6.268609935746748e-4 |
followed by | 4.350005473516821e-3 |
contributor to the creative work or subject | 2.771618625277162e-2 |
website account on | 8.535336292249915e-5 |
conflict | 2.184598580010923e-5 |
chief executive officer | 1.3559322033898305e-2 |
publisher | 3.6730332576465877e-4 |
creator | 5.656484993678046e-4 |
facet of | 3.4502587694077054e-3 |
parent organization | 1.869158878504673e-3 |
operator | 1.7373175816539263e-4 |
underlies | 1.25e-2 |
Inspecting these results we can see that the relations with highest symmetry in the graph match our intuition for symmetric relations. We here find things like "opposite of", "companion of" and "unmarried partner".
A few entries seem to show the fraction of symmetrical edges as higher than 1. We believe that this is caused by duplicate edge entries in the original graph.
Analysing the different types of relations
In this notebook we look at the relations in terms of their multiplicities. We are interested in grouping the relationships based on if they go from one or many entitites (1/M) to one or many other entitites. This gives us the four categories:
- 1-1: Which relations have a 1-1 correspondence, e.g., "married to"?
- 1-M: Which relations have 1-M, e.g., "is birthplace of"?
- M-1: Which relations have M-1, e.g., "is born in city"?
- M-M: Which relations are many-to-many, e.g., "classmates"?
To do this analysis we work with the dataframe containing the edges of the graph. The pattern (?-M), relations to many entitites, can be detected by finding some set of edge with the same source entity and relation. This means that the source entity has this relation to multipl other entities, and this relation can in general be ?-M. In a similar way the pattern (M-?) can be found by finding edges with the same relation and destination entity. To then classify each relation into the four categories it is enough to consider which of the two patterns above the relation matches. For example, if it matches none of them it is a 1-1 relation. Below we perform this computation.
./02_load_data
val srcRelGrp = graph.edges.groupBy("src","rel").count() // Count how many times each combination of source entity and relation occurs
val relSrcGrp = graph.edges.groupBy("rel", "dst").count() // Same for combinations of relation and destination entity
srcRelGrp: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
relSrcGrp: org.apache.spark.sql.DataFrame = [rel: string, dst: string ... 1 more field]
import spark.implicits._
import org.graphframes._
// Find the maximum times such combinations occur for each relation
val rel_max_srcgrp = relSrcGrp.groupBy("rel").max()
val rel_max_dstgrp = srcRelGrp.groupBy("rel").max()
rel_max_srcgrp: org.apache.spark.sql.DataFrame = [rel: string, max(count): bigint]
rel_max_dstgrp: org.apache.spark.sql.DataFrame = [rel: string, max(count): bigint]
df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
// Join into one dataframe
val jointrel = rel_max_dstgrp.join(rel_max_srcgrp,rel_max_dstgrp("rel") === rel_max_srcgrp("rel"), "inner")
val newColumns = Seq("rel","src_count","rel","dst_count")
val rel_count_src_dst = jointrel.toDF(newColumns:_*)
jointrel: org.apache.spark.sql.DataFrame = [rel: string, max(count): bigint ... 2 more fields]
newColumns: Seq[String] = List(rel, src_count, rel, dst_count)
rel_count_src_dst: org.apache.spark.sql.DataFrame = [rel: string, src_count: bigint ... 2 more fields]
df1: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
entdescdf: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
import spark.implicits._
mergedDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
list: List[String] = List(src, rel, dst, srcentid, srclabel)
mergedDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
display(rel_count_src_dst)
rel | src_count | rel | dst_count |
---|---|---|---|
godparent | 2.0 | godparent | 1.0 |
part of | 33.0 | part of | 1461.0 |
molecular function | 47.0 | molecular function | 947.0 |
playing hand | 3.0 | playing hand | 1318.0 |
place served by transport hub | 2.0 | place served by transport hub | 3.0 |
family name | 104.0 | family name | 4629.0 |
topic's main Wikimedia portal | 2.0 | topic's main Wikimedia portal | 6.0 |
parent astronomical body | 2.0 | parent astronomical body | 50.0 |
shares border with | 76.0 | shares border with | 76.0 |
based on | 27.0 | based on | 150.0 |
present in work | 46.0 | present in work | 441.0 |
filmography | 12.0 | filmography | 2.0 |
public holiday | 15.0 | public holiday | 25.0 |
topic's main category | 37.0 | topic's main category | 40.0 |
sexual orientation | 2.0 | sexual orientation | 2902.0 |
writing system | 4.0 | writing system | 256.0 |
father | 13.0 | father | 69.0 |
given name version for other gender | 3.0 | given name version for other gender | 3.0 |
industry | 13.0 | industry | 1370.0 |
applies to jurisdiction | 28.0 | applies to jurisdiction | 54.0 |
worshipped by | 3.0 | worshipped by | 192.0 |
performer | 60.0 | performer | 140.0 |
business division | 37.0 | business division | 4.0 |
place of burial | 5.0 | place of burial | 3043.0 |
influenced by | 10.0 | influenced by | 7.0 |
this taxon is source of | 2.0 | this taxon is source of | 4.0 |
fictional universe described in | 11.0 | fictional universe described in | 4.0 |
developer | 9.0 | developer | 499.0 |
head of state | 23.0 | head of state | 42.0 |
notation | 1.0 | notation | 1.0 |
depicts | 692.0 | depicts | 3303.0 |
currency | 23.0 | currency | 67.0 |
ESRB rating | 3.0 | ESRB rating | 1086.0 |
replaced synonym (for nom. nov.) | 1.0 | replaced synonym (for nom. nov.) | 1.0 |
fictional or mythical analog of | 2.0 | fictional or mythical analog of | 2.0 |
armament | 14.0 | armament | 162.0 |
basic form of government | 6.0 | basic form of government | 61.0 |
producer | 17.0 | producer | 397.0 |
shape | 1.0 | shape | 28.0 |
taxon synonym | 16.0 | taxon synonym | 2.0 |
highest judicial authority | 2.0 | highest judicial authority | 2.0 |
located in or next to body of water | 5.0 | located in or next to body of water | 38.0 |
replaced by | 10.0 | replaced by | 9.0 |
part of the series | 55.0 | part of the series | 577.0 |
measured physical quantity | 2.0 | measured physical quantity | 3.0 |
interleaves with | 3.0 | interleaves with | 3.0 |
participant | 106.0 | participant | 36.0 |
narrative location | 11.0 | narrative location | 1904.0 |
recorded at studio or venue | 7.0 | recorded at studio or venue | 21.0 |
lake on watercourse | 6.0 | lake on watercourse | 2.0 |
place of origin (Switzerland) | 4.0 | place of origin (Switzerland) | 75.0 |
transport network | 16.0 | transport network | 844.0 |
list related to category | 1.0 | list related to category | 1.0 |
official language | 24.0 | official language | 1327.0 |
capital of | 6.0 | capital of | 2.0 |
avionics | 5.0 | avionics | 6.0 |
collection | 80.0 | collection | 5290.0 |
characters | 53.0 | characters | 71.0 |
donated by | 3.0 | donated by | 3.0 |
film editor | 8.0 | film editor | 29.0 |
executive producer | 10.0 | executive producer | 28.0 |
structure replaced by | 2.0 | structure replaced by | 2.0 |
has part(s) | 103.0 | has part(s) | 432.0 |
located in the administrative territorial entity | 258.0 | located in the administrative territorial entity | 7237.0 |
employer | 11.0 | employer | 3198.0 |
sponsor | 7.0 | sponsor | 2.0 |
chairperson | 20.0 | chairperson | 31.0 |
place of birth | 25.0 | place of birth | 14404.0 |
lyrics by | 6.0 | lyrics by | 174.0 |
located on street | 47.0 | located on street | 726.0 |
instance of | 439.0 | instance of | 1510474.0 |
subclass of | 12.0 | subclass of | 1930.0 |
points/goal scored by | 6.0 | points/goal scored by | 2.0 |
structural engineer | 2.0 | structural engineer | 53.0 |
exclave of | 3.0 | exclave of | 3.0 |
named after | 258.0 | named after | 545.0 |
officially opened by | 3.0 | officially opened by | 5.0 |
mother house | 4.0 | mother house | 14.0 |
maintained by | 10.0 | maintained by | 845.0 |
country of origin | 19.0 | country of origin | 27099.0 |
rector | 119.0 | rector | 2.0 |
medical condition | 5.0 | medical condition | 918.0 |
original combination | 1.0 | original combination | 1.0 |
CPU | 2.0 | CPU | 119.0 |
airline hub | 11.0 | airline hub | 10.0 |
has facet polytope | 4.0 | has facet polytope | 208.0 |
consecrator | 3.0 | consecrator | 6.0 |
site of astronomical discovery | 2.0 | site of astronomical discovery | 12986.0 |
licensed to broadcast to | 1.0 | licensed to broadcast to | 3.0 |
category related to list | 1.0 | category related to list | 1.0 |
has vertex figure | 1.0 | has vertex figure | 1.0 |
encoded by | 2.0 | encoded by | 2.0 |
composer | 6.0 | composer | 202.0 |
main building contractor | 2.0 | main building contractor | 61.0 |
allegiance | 3.0 | allegiance | 27.0 |
translator | 3.0 | translator | 19.0 |
organizer | 3.0 | organizer | 66.0 |
occupant | 10.0 | occupant | 102.0 |
represents | 1.0 | represents | 1.0 |
place of death | 15.0 | place of death | 17262.0 |
solved by | 2.0 | solved by | 1.0 |
programmer | 2.0 | programmer | 17.0 |
relative | 9.0 | relative | 6.0 |
legislated by | 1.0 | legislated by | 25.0 |
physically interacts with | 2.0 | physically interacts with | 1.0 |
member of sports team | 55.0 | member of sports team | 1795.0 |
director | 51.0 | director | 543.0 |
category's main topic | 3.0 | category's main topic | 4.0 |
category of associated people | 2.0 | category of associated people | 1.0 |
spouse | 22.0 | spouse | 22.0 |
author | 85.0 | author | 1462.0 |
sex or gender | 106.0 | sex or gender | 1277035.0 |
basin country | 22.0 | basin country | 12.0 |
position played on team / speciality | 7.0 | position played on team / speciality | 1682.0 |
codomain | 1.0 | codomain | 4.0 |
located in/on physical feature | 11.0 | located in/on physical feature | 321.0 |
foundational text | 3.0 | foundational text | 6.0 |
director of photography | 23.0 | director of photography | 423.0 |
powered by | 4.0 | powered by | 184.0 |
language of work or name | 35.0 | language of work or name | 1722.0 |
patron saint | 5.0 | patron saint | 54.0 |
record label | 40.0 | record label | 3454.0 |
pendant of | 8.0 | pendant of | 8.0 |
from narrative universe | 3.0 | from narrative universe | 982.0 |
position held | 33.0 | position held | 13796.0 |
diocese | 5.0 | diocese | 122.0 |
ortholog | 2.0 | ortholog | 2.0 |
endemic to | 4.0 | endemic to | 44.0 |
lifestyle | 2.0 | lifestyle | 326.0 |
home port | 2.0 | home port | 6.0 |
category combines topics | 4.0 | category combines topics | 8018.0 |
day in year for periodic occurrence | 14.0 | day in year for periodic occurrence | 4.0 |
conferred by | 3.0 | conferred by | 13.0 |
postsynaptic connection | 1.0 | postsynaptic connection | 1.0 |
cover art by | 2.0 | cover art by | 10.0 |
archives at | 4.0 | archives at | 87.0 |
diplomatic relation | 133.0 | diplomatic relation | 94.0 |
office held by head of government | 12.0 | office held by head of government | 1594.0 |
Wikimedia portal's main topic | 6.0 | Wikimedia portal's main topic | 2.0 |
native language | 3.0 | native language | 1340.0 |
sport | 18.0 | sport | 36409.0 |
country of citizenship | 80.0 | country of citizenship | 215882.0 |
family | 10.0 | family | 168.0 |
child astronomical body | 49.0 | child astronomical body | 2.0 |
adjacent station | 12.0 | adjacent station | 11.0 |
mother | 6.0 | mother | 60.0 |
location of creation | 7.0 | location of creation | 116.0 |
companion of | 2.0 | companion of | 2.0 |
imported from Wikimedia project | 16.0 | imported from Wikimedia project | 249.0 |
central bank/issuer | 2.0 | central bank/issuer | 2.0 |
noble title | 3.0 | noble title | 2956.0 |
replaces | 9.0 | replaces | 5.0 |
Unknown | 269.0 | Unknown | 810.0 |
cause of death | 5.0 | cause of death | 5153.0 |
inspired by | 5.0 | inspired by | 10.0 |
inflows | 20.0 | inflows | 6.0 |
student of | 9.0 | student of | 80.0 |
designed by | 6.0 | designed by | 27.0 |
location of formation | 2.0 | location of formation | 21.0 |
readable file format | 4.0 | readable file format | 4.0 |
commissioned by | 3.0 | commissioned by | 14.0 |
overlies | 2.0 | overlies | 3.0 |
religion or worldview | 9.0 | religion or worldview | 16455.0 |
coat of arms | 2.0 | coat of arms | 8.0 |
ethnic group | 3.0 | ethnic group | 2853.0 |
statement is subject of | 6.0 | statement is subject of | 16.0 |
programmed in | 6.0 | programmed in | 194.0 |
origin of the watercourse | 2.0 | origin of the watercourse | 9.0 |
country for sport | 2.0 | country for sport | 6.0 |
voice actor | 20.0 | voice actor | 70.0 |
main regulatory text | 3.0 | main regulatory text | 82.0 |
capital | 7.0 | capital | 28.0 |
academic degree | 4.0 | academic degree | 9389.0 |
source of energy | 6.0 | source of energy | 16.0 |
contains settlement | 52.0 | contains settlement | 7.0 |
founded by | 16.0 | founded by | 10.0 |
member of | 48.0 | member of | 5863.0 |
librettist | 5.0 | librettist | 12.0 |
tracklist | 27.0 | tracklist | 3.0 |
activating neurotransmitter | 1.0 | activating neurotransmitter | 2.0 |
instruction set | 2.0 | instruction set | 8.0 |
review score by | 1.0 | review score by | 1.0 |
notable work | 49.0 | notable work | 38.0 |
lake outflow | 2.0 | lake outflow | 6.0 |
tributary | 19.0 | tributary | 2.0 |
constellation | 5.0 | constellation | 22.0 |
continent | 5.0 | continent | 1809.0 |
official residence | 2.0 | official residence | 18.0 |
taxon rank | 3.0 | taxon rank | 99472.0 |
has quality | 6.0 | has quality | 4.0 |
follows | 52.0 | follows | 50.0 |
valid in period | 5.0 | valid in period | 2.0 |
feast day | 3.0 | feast day | 6.0 |
movement | 12.0 | movement | 1542.0 |
head coach | 38.0 | head coach | 6.0 |
discoverer or inventor | 5.0 | discoverer or inventor | 12992.0 |
terminus location | 4.0 | terminus location | 11.0 |
distribution format | 7.0 | distribution format | 1743.0 |
said to be the same as | 31.0 | said to be the same as | 31.0 |
applies to part | 2.0 | applies to part | 1.0 |
owned by | 18.0 | owned by | 845.0 |
terminus | 11.0 | terminus | 35.0 |
edition or translation of | 15.0 | edition or translation of | 12.0 |
definition domain | 1.0 | definition domain | 1.0 |
field of work | 29.0 | field of work | 619.0 |
mouth of the watercourse | 6.0 | mouth of the watercourse | 72.0 |
student | 14.0 | student | 5.0 |
architectural style | 26.0 | architectural style | 706.0 |
central bank | 1.0 | central bank | 1.0 |
Fach | 3.0 | Fach | 111.0 |
scheduled service destination | 51.0 | scheduled service destination | 3.0 |
cast member | 282.0 | cast member | 347.0 |
educated at | 18.0 | educated at | 11262.0 |
described by source | 13.0 | described by source | 9578.0 |
ancestral home | 2.0 | ancestral home | 6.0 |
connecting line | 14.0 | connecting line | 144.0 |
home venue | 6.0 | home venue | 12.0 |
decays to | 10.0 | decays to | 12.0 |
item operated | 51.0 | item operated | 102.0 |
category for people who died here | 4.0 | category for people who died here | 2.0 |
software engine | 6.0 | software engine | 251.0 |
candidate | 11.0 | candidate | 4.0 |
soundtrack release | 8.0 | soundtrack release | 2.0 |
copyright license | 8.0 | copyright license | 1462.0 |
depicted by | 3.0 | depicted by | 3.0 |
commemorates | 2.0 | commemorates | 3.0 |
illustrator | 5.0 | illustrator | 57.0 |
kinship to subject | 1.0 | kinship to subject | 1.0 |
architect | 13.0 | architect | 155.0 |
has use | 7.0 | has use | 412.0 |
enclave within | 3.0 | enclave within | 3.0 |
parent taxon | 7.0 | parent taxon | 3135.0 |
residence | 9.0 | residence | 98.0 |
has subsidiary | 9.0 | has subsidiary | 2.0 |
defendant | 1.0 | defendant | 1.0 |
country | 258.0 | country | 84551.0 |
crosses | 3.0 | crosses | 82.0 |
shooting handedness | 1.0 | shooting handedness | 4.0 |
headquarters location | 13.0 | headquarters location | 171.0 |
torch lit by | 6.0 | torch lit by | 1.0 |
editor | 18.0 | editor | 9.0 |
has edition or translation | 12.0 | has edition or translation | 166.0 |
distributed by | 4.0 | distributed by | 91.0 |
home world | 2.0 | home world | 5.0 |
category for films shot at this location | 2.0 | category for films shot at this location | 1.0 |
league | 8.0 | league | 107.0 |
color | 11.0 | color | 104.0 |
encodes | 2.0 | encodes | 2.0 |
original language of film or TV show | 22.0 | original language of film or TV show | 53297.0 |
doctoral advisor | 4.0 | doctoral advisor | 14.0 |
spore print color | 1.0 | spore print color | 280.0 |
top-level Internet domain | 3.0 | top-level Internet domain | 6.0 |
mascot | 1.0 | mascot | 2.0 |
discography | 1.0 | discography | 1.0 |
dedicated to | 4.0 | dedicated to | 17.0 |
award received | 34.0 | award received | 15971.0 |
opposite of | 3.0 | opposite of | 3.0 |
radio format | 1.0 | radio format | 1.0 |
filming location | 14.0 | filming location | 1040.0 |
military rank | 10.0 | military rank | 1834.0 |
territory claimed by | 4.0 | territory claimed by | 6.0 |
partially coincident with | 21.0 | partially coincident with | 24.0 |
point group | 2.0 | point group | 12.0 |
flag | 1.0 | flag | 8.0 |
winner | 18.0 | winner | 26.0 |
destination point | 2.0 | destination point | 17.0 |
stock exchange | 5.0 | stock exchange | 407.0 |
child | 69.0 | child | 14.0 |
engine configuration | 1.0 | engine configuration | 79.0 |
parent of this hybrid, breed, or cultivar | 2.0 | parent of this hybrid, breed, or cultivar | 1.0 |
convicted of | 4.0 | convicted of | 1460.0 |
space group | 5.0 | space group | 89.0 |
category for people born here | 3.0 | category for people born here | 2.0 |
tonality | 2.0 | tonality | 18.0 |
diplomatic mission sent | 2.0 | diplomatic mission sent | 92.0 |
oath made by | 3.0 | oath made by | 1.0 |
referee | 7.0 | referee | 4.0 |
location | 256.0 | location | 5283.0 |
eye color | 2.0 | eye color | 223.0 |
production company | 9.0 | production company | 1511.0 |
family name identical to this given name | 3.0 | family name identical to this given name | 3.0 |
natural product of taxon | 4.0 | natural product of taxon | 2.0 |
member of political party | 11.0 | member of political party | 21072.0 |
connecting service | 13.0 | connecting service | 182.0 |
vessel class | 4.0 | vessel class | 61.0 |
ammunition | 9.0 | ammunition | 49.0 |
language regulatory body | 3.0 | language regulatory body | 3.0 |
taxonomic type | 1.0 | taxonomic type | 3.0 |
military branch | 10.0 | military branch | 10147.0 |
including | 4.0 | including | 1.0 |
primary destinations | 16.0 | primary destinations | 4.0 |
head of government | 90.0 | head of government | 9.0 |
given name | 106.0 | given name | 26120.0 |
blood type | 1.0 | blood type | 9.0 |
officeholder | 12.0 | officeholder | 2.0 |
located in time zone | 13.0 | located in time zone | 25664.0 |
cause of destruction | 2.0 | cause of destruction | 10.0 |
list of monuments | 7.0 | list of monuments | 2.0 |
work location | 14.0 | work location | 3944.0 |
participant in | 36.0 | participant in | 9207.0 |
dual to | 2.0 | dual to | 2.0 |
executive body | 2.0 | executive body | 12.0 |
astronaut mission | 8.0 | astronaut mission | 3.0 |
legal form | 3.0 | legal form | 85.0 |
religious order | 4.0 | religious order | 1168.0 |
name day | 3.0 | name day | 5.0 |
made from material | 134.0 | made from material | 19846.0 |
doctoral student | 16.0 | doctoral student | 2.0 |
heritage designation | 60.0 | heritage designation | 53050.0 |
appointed by | 2.0 | appointed by | 29.0 |
unmarried partner | 8.0 | unmarried partner | 8.0 |
exhibition history | 28.0 | exhibition history | 37.0 |
product or material produced | 21.0 | product or material produced | 17.0 |
is a list of | 5.0 | is a list of | 8357.0 |
professorship | 3.0 | professorship | 21.0 |
languages spoken, written or signed | 10.0 | languages spoken, written or signed | 31379.0 |
operating system | 13.0 | operating system | 204.0 |
platform | 30.0 | platform | 5894.0 |
place of publication | 9.0 | place of publication | 126.0 |
instrument | 19.0 | instrument | 9593.0 |
genre | 216.0 | genre | 9431.0 |
biological process | 205.0 | biological process | 257.0 |
manner of death | 3.0 | manner of death | 2643.0 |
affiliation | 3.0 | affiliation | 47.0 |
anthem | 2.0 | anthem | 52.0 |
significant event | 11.0 | significant event | 815.0 |
contains the administrative territorial entity | 902.0 | contains the administrative territorial entity | 26.0 |
cell component | 38.0 | cell component | 649.0 |
asteroid spectral type | 2.0 | asteroid spectral type | 143.0 |
parent club | 4.0 | parent club | 6.0 |
highest point | 2.0 | highest point | 4.0 |
temporal range start | 1.0 | temporal range start | 4.0 |
asteroid family | 1.0 | asteroid family | 24.0 |
start point | 2.0 | start point | 18.0 |
legislative body | 3.0 | legislative body | 96.0 |
significant drug interaction | 42.0 | significant drug interaction | 44.0 |
killed by | 5.0 | killed by | 27.0 |
has effect | 2.0 | has effect | 1.0 |
main subject | 51.0 | main subject | 1564.0 |
political ideology | 19.0 | political ideology | 248.0 |
basionym | 1.0 | basionym | 8.0 |
partner in business or sport | 1.0 | partner in business or sport | 1.0 |
screenwriter | 65.0 | screenwriter | 191.0 |
successful candidate | 12.0 | successful candidate | 12.0 |
field of this occupation | 3.0 | field of this occupation | 12.0 |
twinned administrative body | 98.0 | twinned administrative body | 98.0 |
occupation | 137.0 | occupation | 223411.0 |
has cause | 5.0 | has cause | 2.0 |
crew member(s) | 10.0 | crew member(s) | 148.0 |
published in | 3.0 | published in | 212.0 |
original broadcaster | 7.0 | original broadcaster | 385.0 |
presenter | 24.0 | presenter | 11.0 |
director / manager | 36.0 | director / manager | 4.0 |
location of discovery | 3.0 | location of discovery | 7.0 |
theme music | 1.0 | theme music | 1.0 |
manufacturer | 11.0 | manufacturer | 160.0 |
takes place in fictional universe | 5.0 | takes place in fictional universe | 83.0 |
chromosome | 2.0 | chromosome | 98.0 |
followed by | 50.0 | followed by | 52.0 |
contributor to the creative work or subject | 311.0 | contributor to the creative work or subject | 8.0 |
printed by | 2.0 | printed by | 2.0 |
website account on | 24.0 | website account on | 8317.0 |
conflict | 10.0 | conflict | 16039.0 |
exemplar of | 3.0 | exemplar of | 8.0 |
chief executive officer | 10.0 | chief executive officer | 2.0 |
publisher | 9.0 | publisher | 757.0 |
creator | 83.0 | creator | 908.0 |
facet of | 2.0 | facet of | 124.0 |
commander of (DEPRECATED) | 5.0 | commander of (DEPRECATED) | 5.0 |
parent organization | 5.0 | parent organization | 12.0 |
operator | 34.0 | operator | 1045.0 |
underlies | 3.0 | underlies | 3.0 |
interaction | 4.0 | interaction | 17.0 |
IUCN protected areas category | 3.0 | IUCN protected areas category | 508.0 |
standards body | 2.0 | standards body | 11.0 |
represented by | 2.0 | represented by | 8.0 |
crystal system | 2.0 | crystal system | 182.0 |
discovery method | 1.0 | discovery method | 8.0 |
Eight Banner register | 2.0 | Eight Banner register | 55.0 |
location of landing | 1.0 | location of landing | 3.0 |
hair color | 1.0 | hair color | 138.0 |
cathedral | 2.0 | cathedral | 2.0 |
prosecutor | 3.0 | prosecutor | 1.0 |
medical examination | 5.0 | medical examination | 7.0 |
docking port | 1.0 | docking port | 1.0 |
game mode | 9.0 | game mode | 15220.0 |
IUCN conservation status | 1.0 | IUCN conservation status | 1963.0 |
found in taxon | 4.0 | found in taxon | 1985.0 |
has contributing factor | 3.0 | has contributing factor | 1.0 |
has facility | 7.0 | has facility | 15.0 |
has immediate cause | 2.0 | has immediate cause | 7.0 |
input device | 5.0 | input device | 1881.0 |
list of episodes | 1.0 | list of episodes | 2.0 |
office contested | 1.0 | office contested | 6.0 |
charge | 2.0 | charge | 1.0 |
manifestation of | 1.0 | manifestation of | 2.0 |
chief operating officer | 1.0 | chief operating officer | 1.0 |
space tug | 1.0 | space tug | 4.0 |
honorific prefix | 3.0 | honorific prefix | 52.0 |
IMA status and/or rank | 3.0 | IMA status and/or rank | 294.0 |
brand | 1.0 | brand | 22.0 |
CERO rating | 2.0 | CERO rating | 659.0 |
topic's main template | 1.0 | topic's main template | 1.0 |
port of registry | 3.0 | port of registry | 7.0 |
afflicts | 7.0 | afflicts | 5.0 |
space launch vehicle | 1.0 | space launch vehicle | 45.0 |
stated in | 6.0 | stated in | 3.0 |
of | 1.0 | of | 2.0 |
guidance system | 2.0 | guidance system | 35.0 |
GUI toolkit or framework | 4.0 | GUI toolkit or framework | 35.0 |
twinning | 2.0 | twinning | 1.0 |
party chief representative | 5.0 | party chief representative | 2.0 |
structure replaces | 1.0 | structure replaces | 1.0 |
vehicle | 2.0 | vehicle | 42.0 |
academic thesis | 2.0 | academic thesis | 1.0 |
route of administration | 4.0 | route of administration | 18.0 |
academic major | 2.0 | academic major | 4.0 |
temporal range end | 2.0 | temporal range end | 4.0 |
hymenium type | 1.0 | hymenium type | 707.0 |
interchange station | 3.0 | interchange station | 3.0 |
streak color | 1.0 | streak color | 25.0 |
wing configuration | 2.0 | wing configuration | 252.0 |
bodies of water basin category | 1.0 | bodies of water basin category | 17.0 |
MPA film rating | 1.0 | MPA film rating | 6.0 |
category of people buried here | 1.0 | category of people buried here | 1.0 |
drafted by | 1.0 | drafted by | 9.0 |
writable file format | 5.0 | writable file format | 4.0 |
nominated for | 2.0 | nominated for | 377.0 |
mushroom cap shape | 1.0 | mushroom cap shape | 516.0 |
separated from | 2.0 | separated from | 2.0 |
track gauge | 3.0 | track gauge | 640.0 |
academic minor | 1.0 | academic minor | 1.0 |
instrumentation | 13.0 | instrumentation | 18.0 |
contributing factor of | 1.0 | contributing factor of | 1.0 |
political alignment | 2.0 | political alignment | 8.0 |
has pet | 1.0 | has pet | 2.0 |
minor planet group | 2.0 | minor planet group | 39042.0 |
stipe character | 1.0 | stipe character | 450.0 |
voice type | 4.0 | voice type | 2719.0 |
catalog | 2.0 | catalog | 50.0 |
USK rating | 4.0 | USK rating | 473.0 |
penalty | 1.0 | penalty | 112.0 |
military casualty classification | 1.0 | military casualty classification | 5.0 |
symptoms and signs | 8.0 | symptoms and signs | 6.0 |
depends on software | 1.0 | depends on software | 2.0 |
located on astronomical body | 1.0 | located on astronomical body | 40.0 |
canonization status | 4.0 | canonization status | 1925.0 |
general manager | 2.0 | general manager | 1.0 |
chivalric order | 1.0 | chivalric order | 1.0 |
owner of | 4.0 | owner of | 2.0 |
carries scientific instrument | 1.0 | carries scientific instrument | 1.0 |
list of works | 3.0 | list of works | 1.0 |
captain | 2.0 | captain | 3.0 |
speaker | 2.0 | speaker | 1.0 |
proxy | 7.0 | proxy | 1.0 |
possible treatment | 2.0 | possible treatment | 1.0 |
natural reservoir of | 1.0 | natural reservoir of | 1.0 |
approved by | 3.0 | approved by | 5.0 |
fuel system | 1.0 | fuel system | 1.0 |
located on linear feature | 1.0 | located on linear feature | 1.0 |
input set | 1.0 | input set | 3.0 |
undercarriage | 1.0 | undercarriage | 27.0 |
type of variable star | 2.0 | type of variable star | 2.0 |
dan/kyu rank | 1.0 | dan/kyu rank | 5.0 |
edibility | 1.0 | edibility | 185.0 |
lowest point | 1.0 | lowest point | 1.0 |
Code of nomenclature | 1.0 | Code of nomenclature | 737.0 |
choreographer | 1.0 | choreographer | 1.0 |
has natural reservoir | 1.0 | has natural reservoir | 1.0 |
target | 3.0 | target | 2.0 |
addressee | 2.0 | addressee | 1.0 |
unveiled by | 2.0 | unveiled by | 1.0 |
NATO code for grade | 2.0 | NATO code for grade | 3.0 |
is pollinator of | 1.0 | is pollinator of | 1.0 |
honorific suffix | 1.0 | honorific suffix | 1.0 |
after a work by | 1.0 | after a work by | 1.0 |
airline alliance | 2.0 | airline alliance | 59.0 |
handedness | 3.0 | handedness | 444.0 |
introduced feature | 1.0 | introduced feature | 1.0 |
used by | 2.0 | used by | 2.0 |
immediate cause of | 1.0 | immediate cause of | 1.0 |
Digital Rights Management system | 1.0 | Digital Rights Management system | 13.0 |
GHS signal word | 1.0 | GHS signal word | 1.0 |
PEGI rating | 4.0 | PEGI rating | 779.0 |
list of characters | 1.0 | list of characters | 1.0 |
proved by | 2.0 | proved by | 2.0 |
script directionality | 1.0 | script directionality | 1.0 |
workshop of | 1.0 | workshop of | 1.0 |
is pollinated by | 1.0 | is pollinated by | 1.0 |
Lagrangian point | 1.0 | Lagrangian point | 7.0 |
fossil found in this unit | 2.0 | fossil found in this unit | 2.0 |
measurement scale | 3.0 | measurement scale | 4.0 |
coolant | 1.0 | coolant | 138.0 |
electoral district | 1.0 | electoral district | 2.0 |
curator | 1.0 | curator | 2.0 |
GSRR rating | 1.0 | GSRR rating | 3.0 |
vice-county | 1.0 | vice-county | 1.0 |
crystal habit | 1.0 | crystal habit | 1.0 |
surface played on | 3.0 | surface played on | 188.0 |
foods traditionally associated | 2.0 | foods traditionally associated | 1.0 |
tempo marking | 1.0 | tempo marking | 6.0 |
type of orbit | 1.0 | type of orbit | 269.0 |
mushroom ecological type | 2.0 | mushroom ecological type | 587.0 |
launch contractor | 1.0 | launch contractor | 2.0 |
motto | 1.0 | motto | 2.0 |
hymenium attachment | 2.0 | hymenium attachment | 322.0 |
mineral fracture | 1.0 | mineral fracture | 5.0 |
end cause | 1.0 | end cause | 1.0 |
guest of honor | 2.0 | guest of honor | 1.0 |
defender | 1.0 | defender | 1.0 |
authority | 1.0 | authority | 1.0 |
product certification | 2.0 | product certification | 47.0 |
determination method | 1.0 | determination method | 3.0 |
template has topic | 1.0 | template has topic | 1.0 |
judge | 1.0 | judge | 1.0 |
cleavage | 1.0 | cleavage | 50.0 |
presynaptic connection | 1.0 | presynaptic connection | 1.0 |
binding of software library | 1.0 | binding of software library | 1.0 |
EC enzyme classification | 1.0 | EC enzyme classification | 1.0 |
direction | 1.0 | direction | 1.0 |
type of electrification | 1.0 | type of electrification | 3.0 |
driving side | 1.0 | driving side | 4.0 |
disease transmission process | 1.0 | disease transmission process | 1.0 |
has seal, badge, or sigil | 1.0 | has seal, badge, or sigil | 2.0 |
plaintiff | 1.0 | plaintiff | 1.0 |
mergedDf2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
list2: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel)
mergedDF2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
rel_name_df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list3: List[String] = List(relid, label, description)
relnamedf: org.apache.spark.sql.DataFrame = [relid: string, label: string ... 1 more field]
finalDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 7 more fields]
list4: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel, relid, rellabel)
finalDF: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
edgesDF_: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
list5: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
verticesDf: org.apache.spark.sql.DataFrame = [id: string]
graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string], e:[src: string, dst: string ... 1 more field])
import org.apache.spark.sql.functions.udf
// Here we define a function to perform the final classification into our 4 groups
def decide_reltype(t1 : Long, t2 : Long): String = {
if (t1 == 1 && t2 > 1) {
return "1-M"
} else if (t1 > 1 && t2 > 1) {
return "M-M"
} else if (t1 == 1 && t2 == 1) {
return "1-1"
} else {
return "M-1"
}
}
// Apply function to dataframe
val rel_type = udf(decide_reltype _)
val class_df =rel_count_src_dst.withColumn("relationType", rel_type($"src_count", $"dst_count")).cache()
import org.apache.spark.sql.functions.udf
decide_reltype: (t1: Long, t2: Long)String
rel_type: org.apache.spark.sql.expressions.UserDefinedFunction = SparkUserDefinedFunction($Lambda$9916/1066546511@2e14664a,StringType,List(Some(class[value[0]: bigint]), Some(class[value[0]: bigint])),Some(class[value[0]: string]),None,true,true)
class_df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [rel: string, src_count: bigint ... 3 more fields]
display(class_df)
rel | src_count | rel | dst_count | relationType |
---|---|---|---|---|
godparent | 2.0 | godparent | 1.0 | M-1 |
interaction | 4.0 | interaction | 17.0 | M-M |
disease transmission process | 1.0 | disease transmission process | 1.0 | 1-1 |
molecular function | 47.0 | molecular function | 947.0 | M-M |
part of | 33.0 | part of | 1461.0 | M-M |
IUCN protected areas category | 3.0 | IUCN protected areas category | 508.0 | M-M |
place served by transport hub | 2.0 | place served by transport hub | 3.0 | M-M |
playing hand | 3.0 | playing hand | 1318.0 | M-M |
family name | 104.0 | family name | 4629.0 | M-M |
general manager | 2.0 | general manager | 1.0 | M-1 |
parent astronomical body | 2.0 | parent astronomical body | 50.0 | M-M |
topic's main Wikimedia portal | 2.0 | topic's main Wikimedia portal | 6.0 | M-M |
end cause | 1.0 | end cause | 1.0 | 1-1 |
mushroom cap shape | 1.0 | mushroom cap shape | 516.0 | 1-M |
shares border with | 76.0 | shares border with | 76.0 | M-M |
based on | 27.0 | based on | 150.0 | M-M |
filmography | 12.0 | filmography | 2.0 | M-M |
present in work | 46.0 | present in work | 441.0 | M-M |
public holiday | 15.0 | public holiday | 25.0 | M-M |
separated from | 2.0 | separated from | 2.0 | M-M |
honorific suffix | 1.0 | honorific suffix | 1.0 | 1-1 |
represented by | 2.0 | represented by | 8.0 | M-M |
standards body | 2.0 | standards body | 11.0 | M-M |
guest of honor | 2.0 | guest of honor | 1.0 | M-1 |
track gauge | 3.0 | track gauge | 640.0 | M-M |
sexual orientation | 2.0 | sexual orientation | 2902.0 | M-M |
topic's main category | 37.0 | topic's main category | 40.0 | M-M |
writing system | 4.0 | writing system | 256.0 | M-M |
academic minor | 1.0 | academic minor | 1.0 | 1-1 |
father | 13.0 | father | 69.0 | M-M |
given name version for other gender | 3.0 | given name version for other gender | 3.0 | M-M |
industry | 13.0 | industry | 1370.0 | M-M |
applies to jurisdiction | 28.0 | applies to jurisdiction | 54.0 | M-M |
crystal system | 2.0 | crystal system | 182.0 | M-M |
worshipped by | 3.0 | worshipped by | 192.0 | M-M |
business division | 37.0 | business division | 4.0 | M-M |
performer | 60.0 | performer | 140.0 | M-M |
discovery method | 1.0 | discovery method | 8.0 | 1-M |
influenced by | 10.0 | influenced by | 7.0 | M-M |
place of burial | 5.0 | place of burial | 3043.0 | M-M |
this taxon is source of | 2.0 | this taxon is source of | 4.0 | M-M |
PEGI rating | 4.0 | PEGI rating | 779.0 | M-M |
developer | 9.0 | developer | 499.0 | M-M |
fictional universe described in | 11.0 | fictional universe described in | 4.0 | M-M |
head of state | 23.0 | head of state | 42.0 | M-M |
notation | 1.0 | notation | 1.0 | 1-1 |
ESRB rating | 3.0 | ESRB rating | 1086.0 | M-M |
binding of software library | 1.0 | binding of software library | 1.0 | 1-1 |
currency | 23.0 | currency | 67.0 | M-M |
depicts | 692.0 | depicts | 3303.0 | M-M |
crystal habit | 1.0 | crystal habit | 1.0 | 1-1 |
replaced synonym (for nom. nov.) | 1.0 | replaced synonym (for nom. nov.) | 1.0 | 1-1 |
armament | 14.0 | armament | 162.0 | M-M |
basic form of government | 6.0 | basic form of government | 61.0 | M-M |
fictional or mythical analog of | 2.0 | fictional or mythical analog of | 2.0 | M-M |
electoral district | 1.0 | electoral district | 2.0 | 1-M |
producer | 17.0 | producer | 397.0 | M-M |
shape | 1.0 | shape | 28.0 | 1-M |
highest judicial authority | 2.0 | highest judicial authority | 2.0 | M-M |
taxon synonym | 16.0 | taxon synonym | 2.0 | M-M |
located in or next to body of water | 5.0 | located in or next to body of water | 38.0 | M-M |
replaced by | 10.0 | replaced by | 9.0 | M-M |
Eight Banner register | 2.0 | Eight Banner register | 55.0 | M-M |
after a work by | 1.0 | after a work by | 1.0 | 1-1 |
part of the series | 55.0 | part of the series | 577.0 | M-M |
interleaves with | 3.0 | interleaves with | 3.0 | M-M |
measured physical quantity | 2.0 | measured physical quantity | 3.0 | M-M |
lake on watercourse | 6.0 | lake on watercourse | 2.0 | M-M |
narrative location | 11.0 | narrative location | 1904.0 | M-M |
participant | 106.0 | participant | 36.0 | M-M |
recorded at studio or venue | 7.0 | recorded at studio or venue | 21.0 | M-M |
place of origin (Switzerland) | 4.0 | place of origin (Switzerland) | 75.0 | M-M |
transport network | 16.0 | transport network | 844.0 | M-M |
capital of | 6.0 | capital of | 2.0 | M-M |
list related to category | 1.0 | list related to category | 1.0 | 1-1 |
official language | 24.0 | official language | 1327.0 | M-M |
airline alliance | 2.0 | airline alliance | 59.0 | M-M |
avionics | 5.0 | avionics | 6.0 | M-M |
location of landing | 1.0 | location of landing | 3.0 | 1-M |
characters | 53.0 | characters | 71.0 | M-M |
collection | 80.0 | collection | 5290.0 | M-M |
donated by | 3.0 | donated by | 3.0 | M-M |
chivalric order | 1.0 | chivalric order | 1.0 | 1-1 |
executive producer | 10.0 | executive producer | 28.0 | M-M |
film editor | 8.0 | film editor | 29.0 | M-M |
owner of | 4.0 | owner of | 2.0 | M-M |
presynaptic connection | 1.0 | presynaptic connection | 1.0 | 1-1 |
structure replaced by | 2.0 | structure replaced by | 2.0 | M-M |
has part(s) | 103.0 | has part(s) | 432.0 | M-M |
employer | 11.0 | employer | 3198.0 | M-M |
hair color | 1.0 | hair color | 138.0 | 1-M |
located in the administrative territorial entity | 258.0 | located in the administrative territorial entity | 7237.0 | M-M |
sponsor | 7.0 | sponsor | 2.0 | M-M |
cathedral | 2.0 | cathedral | 2.0 | M-M |
chairperson | 20.0 | chairperson | 31.0 | M-M |
has seal, badge, or sigil | 1.0 | has seal, badge, or sigil | 2.0 | 1-M |
lyrics by | 6.0 | lyrics by | 174.0 | M-M |
place of birth | 25.0 | place of birth | 14404.0 | M-M |
exclave of | 3.0 | exclave of | 3.0 | M-M |
instance of | 439.0 | instance of | 1510474.0 | M-M |
located on street | 47.0 | located on street | 726.0 | M-M |
points/goal scored by | 6.0 | points/goal scored by | 2.0 | M-M |
structural engineer | 2.0 | structural engineer | 53.0 | M-M |
subclass of | 12.0 | subclass of | 1930.0 | M-M |
named after | 258.0 | named after | 545.0 | M-M |
maintained by | 10.0 | maintained by | 845.0 | M-M |
mother house | 4.0 | mother house | 14.0 | M-M |
officially opened by | 3.0 | officially opened by | 5.0 | M-M |
country of origin | 19.0 | country of origin | 27099.0 | M-M |
rector | 119.0 | rector | 2.0 | M-M |
carries scientific instrument | 1.0 | carries scientific instrument | 1.0 | 1-1 |
medical condition | 5.0 | medical condition | 918.0 | M-M |
CPU | 2.0 | CPU | 119.0 | M-M |
original combination | 1.0 | original combination | 1.0 | 1-1 |
airline hub | 11.0 | airline hub | 10.0 | M-M |
has facet polytope | 4.0 | has facet polytope | 208.0 | M-M |
consecrator | 3.0 | consecrator | 6.0 | M-M |
instrumentation | 13.0 | instrumentation | 18.0 | M-M |
licensed to broadcast to | 1.0 | licensed to broadcast to | 3.0 | 1-M |
prosecutor | 3.0 | prosecutor | 1.0 | M-1 |
site of astronomical discovery | 2.0 | site of astronomical discovery | 12986.0 | M-M |
category related to list | 1.0 | category related to list | 1.0 | 1-1 |
handedness | 3.0 | handedness | 444.0 | M-M |
has vertex figure | 1.0 | has vertex figure | 1.0 | 1-1 |
Code of nomenclature | 1.0 | Code of nomenclature | 737.0 | 1-M |
list of characters | 1.0 | list of characters | 1.0 | 1-1 |
medical examination | 5.0 | medical examination | 7.0 | M-M |
allegiance | 3.0 | allegiance | 27.0 | M-M |
composer | 6.0 | composer | 202.0 | M-M |
encoded by | 2.0 | encoded by | 2.0 | M-M |
main building contractor | 2.0 | main building contractor | 61.0 | M-M |
organizer | 3.0 | organizer | 66.0 | M-M |
translator | 3.0 | translator | 19.0 | M-M |
contributing factor of | 1.0 | contributing factor of | 1.0 | 1-1 |
occupant | 10.0 | occupant | 102.0 | M-M |
represents | 1.0 | represents | 1.0 | 1-1 |
place of death | 15.0 | place of death | 17262.0 | M-M |
political alignment | 2.0 | political alignment | 8.0 | M-M |
programmer | 2.0 | programmer | 17.0 | M-M |
solved by | 2.0 | solved by | 1.0 | M-1 |
legislated by | 1.0 | legislated by | 25.0 | 1-M |
physically interacts with | 2.0 | physically interacts with | 1.0 | M-1 |
relative | 9.0 | relative | 6.0 | M-M |
director | 51.0 | director | 543.0 | M-M |
member of sports team | 55.0 | member of sports team | 1795.0 | M-M |
category of associated people | 2.0 | category of associated people | 1.0 | M-1 |
category's main topic | 3.0 | category's main topic | 4.0 | M-M |
introduced feature | 1.0 | introduced feature | 1.0 | 1-1 |
author | 85.0 | author | 1462.0 | M-M |
basin country | 22.0 | basin country | 12.0 | M-M |
position played on team / speciality | 7.0 | position played on team / speciality | 1682.0 | M-M |
sex or gender | 106.0 | sex or gender | 1277035.0 | M-M |
spouse | 22.0 | spouse | 22.0 | M-M |
codomain | 1.0 | codomain | 4.0 | 1-M |
choreographer | 1.0 | choreographer | 1.0 | 1-1 |
foundational text | 3.0 | foundational text | 6.0 | M-M |
located in/on physical feature | 11.0 | located in/on physical feature | 321.0 | M-M |
director of photography | 23.0 | director of photography | 423.0 | M-M |
language of work or name | 35.0 | language of work or name | 1722.0 | M-M |
powered by | 4.0 | powered by | 184.0 | M-M |
patron saint | 5.0 | patron saint | 54.0 | M-M |
list of works | 3.0 | list of works | 1.0 | M-1 |
pendant of | 8.0 | pendant of | 8.0 | M-M |
record label | 40.0 | record label | 3454.0 | M-M |
from narrative universe | 3.0 | from narrative universe | 982.0 | M-M |
proved by | 2.0 | proved by | 2.0 | M-M |
diocese | 5.0 | diocese | 122.0 | M-M |
position held | 33.0 | position held | 13796.0 | M-M |
docking port | 1.0 | docking port | 1.0 | 1-1 |
endemic to | 4.0 | endemic to | 44.0 | M-M |
home port | 2.0 | home port | 6.0 | M-M |
lifestyle | 2.0 | lifestyle | 326.0 | M-M |
ortholog | 2.0 | ortholog | 2.0 | M-M |
category combines topics | 4.0 | category combines topics | 8018.0 | M-M |
day in year for periodic occurrence | 14.0 | day in year for periodic occurrence | 4.0 | M-M |
conferred by | 3.0 | conferred by | 13.0 | M-M |
postsynaptic connection | 1.0 | postsynaptic connection | 1.0 | 1-1 |
cover art by | 2.0 | cover art by | 10.0 | M-M |
has pet | 1.0 | has pet | 2.0 | 1-M |
archives at | 4.0 | archives at | 87.0 | M-M |
game mode | 9.0 | game mode | 15220.0 | M-M |
diplomatic relation | 133.0 | diplomatic relation | 94.0 | M-M |
IUCN conservation status | 1.0 | IUCN conservation status | 1963.0 | 1-M |
found in taxon | 4.0 | found in taxon | 1985.0 | M-M |
office held by head of government | 12.0 | office held by head of government | 1594.0 | M-M |
Wikimedia portal's main topic | 6.0 | Wikimedia portal's main topic | 2.0 | M-M |
has contributing factor | 3.0 | has contributing factor | 1.0 | M-1 |
native language | 3.0 | native language | 1340.0 | M-M |
sport | 18.0 | sport | 36409.0 | M-M |
child astronomical body | 49.0 | child astronomical body | 2.0 | M-M |
country of citizenship | 80.0 | country of citizenship | 215882.0 | M-M |
family | 10.0 | family | 168.0 | M-M |
adjacent station | 12.0 | adjacent station | 11.0 | M-M |
companion of | 2.0 | companion of | 2.0 | M-M |
location of creation | 7.0 | location of creation | 116.0 | M-M |
mother | 6.0 | mother | 60.0 | M-M |
central bank/issuer | 2.0 | central bank/issuer | 2.0 | M-M |
imported from Wikimedia project | 16.0 | imported from Wikimedia project | 249.0 | M-M |
noble title | 3.0 | noble title | 2956.0 | M-M |
has facility | 7.0 | has facility | 15.0 | M-M |
replaces | 9.0 | replaces | 5.0 | M-M |
Unknown | 269.0 | Unknown | 810.0 | M-M |
cause of death | 5.0 | cause of death | 5153.0 | M-M |
inflows | 20.0 | inflows | 6.0 | M-M |
inspired by | 5.0 | inspired by | 10.0 | M-M |
designed by | 6.0 | designed by | 27.0 | M-M |
location of formation | 2.0 | location of formation | 21.0 | M-M |
readable file format | 4.0 | readable file format | 4.0 | M-M |
student of | 9.0 | student of | 80.0 | M-M |
commissioned by | 3.0 | commissioned by | 14.0 | M-M |
has natural reservoir | 1.0 | has natural reservoir | 1.0 | 1-1 |
coat of arms | 2.0 | coat of arms | 8.0 | M-M |
has immediate cause | 2.0 | has immediate cause | 7.0 | M-M |
overlies | 2.0 | overlies | 3.0 | M-M |
religion or worldview | 9.0 | religion or worldview | 16455.0 | M-M |
target | 3.0 | target | 2.0 | M-M |
ethnic group | 3.0 | ethnic group | 2853.0 | M-M |
input device | 5.0 | input device | 1881.0 | M-M |
programmed in | 6.0 | programmed in | 194.0 | M-M |
statement is subject of | 6.0 | statement is subject of | 16.0 | M-M |
captain | 2.0 | captain | 3.0 | M-M |
country for sport | 2.0 | country for sport | 6.0 | M-M |
list of episodes | 1.0 | list of episodes | 2.0 | 1-M |
origin of the watercourse | 2.0 | origin of the watercourse | 9.0 | M-M |
used by | 2.0 | used by | 2.0 | M-M |
main regulatory text | 3.0 | main regulatory text | 82.0 | M-M |
voice actor | 20.0 | voice actor | 70.0 | M-M |
academic degree | 4.0 | academic degree | 9389.0 | M-M |
capital | 7.0 | capital | 28.0 | M-M |
minor planet group | 2.0 | minor planet group | 39042.0 | M-M |
source of energy | 6.0 | source of energy | 16.0 | M-M |
contains settlement | 52.0 | contains settlement | 7.0 | M-M |
founded by | 16.0 | founded by | 10.0 | M-M |
surface played on | 3.0 | surface played on | 188.0 | M-M |
librettist | 5.0 | librettist | 12.0 | M-M |
member of | 48.0 | member of | 5863.0 | M-M |
activating neurotransmitter | 1.0 | activating neurotransmitter | 2.0 | 1-M |
tracklist | 27.0 | tracklist | 3.0 | M-M |
instruction set | 2.0 | instruction set | 8.0 | M-M |
review score by | 1.0 | review score by | 1.0 | 1-1 |
constellation | 5.0 | constellation | 22.0 | M-M |
continent | 5.0 | continent | 1809.0 | M-M |
has quality | 6.0 | has quality | 4.0 | M-M |
lake outflow | 2.0 | lake outflow | 6.0 | M-M |
notable work | 49.0 | notable work | 38.0 | M-M |
official residence | 2.0 | official residence | 18.0 | M-M |
taxon rank | 3.0 | taxon rank | 99472.0 | M-M |
tributary | 19.0 | tributary | 2.0 | M-M |
follows | 52.0 | follows | 50.0 | M-M |
script directionality | 1.0 | script directionality | 1.0 | 1-1 |
valid in period | 5.0 | valid in period | 2.0 | M-M |
feast day | 3.0 | feast day | 6.0 | M-M |
stipe character | 1.0 | stipe character | 450.0 | 1-M |
discoverer or inventor | 5.0 | discoverer or inventor | 12992.0 | M-M |
distribution format | 7.0 | distribution format | 1743.0 | M-M |
head coach | 38.0 | head coach | 6.0 | M-M |
movement | 12.0 | movement | 1542.0 | M-M |
terminus location | 4.0 | terminus location | 11.0 | M-M |
applies to part | 2.0 | applies to part | 1.0 | M-1 |
office contested | 1.0 | office contested | 6.0 | 1-M |
said to be the same as | 31.0 | said to be the same as | 31.0 | M-M |
charge | 2.0 | charge | 1.0 | M-1 |
manifestation of | 1.0 | manifestation of | 2.0 | 1-M |
owned by | 18.0 | owned by | 845.0 | M-M |
terminus | 11.0 | terminus | 35.0 | M-M |
definition domain | 1.0 | definition domain | 1.0 | 1-1 |
edition or translation of | 15.0 | edition or translation of | 12.0 | M-M |
speaker | 2.0 | speaker | 1.0 | M-1 |
field of work | 29.0 | field of work | 619.0 | M-M |
launch contractor | 1.0 | launch contractor | 2.0 | 1-M |
mouth of the watercourse | 6.0 | mouth of the watercourse | 72.0 | M-M |
Fach | 3.0 | Fach | 111.0 | M-M |
architectural style | 26.0 | architectural style | 706.0 | M-M |
central bank | 1.0 | central bank | 1.0 | 1-1 |
plaintiff | 1.0 | plaintiff | 1.0 | 1-1 |
proxy | 7.0 | proxy | 1.0 | M-1 |
student | 14.0 | student | 5.0 | M-M |
addressee | 2.0 | addressee | 1.0 | M-1 |
possible treatment | 2.0 | possible treatment | 1.0 | M-1 |
scheduled service destination | 51.0 | scheduled service destination | 3.0 | M-M |
cast member | 282.0 | cast member | 347.0 | M-M |
chief operating officer | 1.0 | chief operating officer | 1.0 | 1-1 |
described by source | 13.0 | described by source | 9578.0 | M-M |
educated at | 18.0 | educated at | 11262.0 | M-M |
immediate cause of | 1.0 | immediate cause of | 1.0 | 1-1 |
ancestral home | 2.0 | ancestral home | 6.0 | M-M |
curator | 1.0 | curator | 2.0 | 1-M |
determination method | 1.0 | determination method | 3.0 | 1-M |
workshop of | 1.0 | workshop of | 1.0 | 1-1 |
connecting line | 14.0 | connecting line | 144.0 | M-M |
decays to | 10.0 | decays to | 12.0 | M-M |
home venue | 6.0 | home venue | 12.0 | M-M |
item operated | 51.0 | item operated | 102.0 | M-M |
space tug | 1.0 | space tug | 4.0 | 1-M |
category for people who died here | 4.0 | category for people who died here | 2.0 | M-M |
natural reservoir of | 1.0 | natural reservoir of | 1.0 | 1-1 |
approved by | 3.0 | approved by | 5.0 | M-M |
candidate | 11.0 | candidate | 4.0 | M-M |
fuel system | 1.0 | fuel system | 1.0 | 1-1 |
software engine | 6.0 | software engine | 251.0 | M-M |
soundtrack release | 8.0 | soundtrack release | 2.0 | M-M |
voice type | 4.0 | voice type | 2719.0 | M-M |
commemorates | 2.0 | commemorates | 3.0 | M-M |
copyright license | 8.0 | copyright license | 1462.0 | M-M |
depicted by | 3.0 | depicted by | 3.0 | M-M |
catalog | 2.0 | catalog | 50.0 | M-M |
illustrator | 5.0 | illustrator | 57.0 | M-M |
kinship to subject | 1.0 | kinship to subject | 1.0 | 1-1 |
architect | 13.0 | architect | 155.0 | M-M |
enclave within | 3.0 | enclave within | 3.0 | M-M |
has use | 7.0 | has use | 412.0 | M-M |
defendant | 1.0 | defendant | 1.0 | 1-1 |
has subsidiary | 9.0 | has subsidiary | 2.0 | M-M |
honorific prefix | 3.0 | honorific prefix | 52.0 | M-M |
parent taxon | 7.0 | parent taxon | 3135.0 | M-M |
residence | 9.0 | residence | 98.0 | M-M |
IMA status and/or rank | 3.0 | IMA status and/or rank | 294.0 | M-M |
brand | 1.0 | brand | 22.0 | 1-M |
country | 258.0 | country | 84551.0 | M-M |
crosses | 3.0 | crosses | 82.0 | M-M |
shooting handedness | 1.0 | shooting handedness | 4.0 | 1-M |
editor | 18.0 | editor | 9.0 | M-M |
headquarters location | 13.0 | headquarters location | 171.0 | M-M |
torch lit by | 6.0 | torch lit by | 1.0 | M-1 |
CERO rating | 2.0 | CERO rating | 659.0 | M-M |
distributed by | 4.0 | distributed by | 91.0 | M-M |
has edition or translation | 12.0 | has edition or translation | 166.0 | M-M |
home world | 2.0 | home world | 5.0 | M-M |
category for films shot at this location | 2.0 | category for films shot at this location | 1.0 | M-1 |
color | 11.0 | color | 104.0 | M-M |
league | 8.0 | league | 107.0 | M-M |
encodes | 2.0 | encodes | 2.0 | M-M |
original language of film or TV show | 22.0 | original language of film or TV show | 53297.0 | M-M |
doctoral advisor | 4.0 | doctoral advisor | 14.0 | M-M |
spore print color | 1.0 | spore print color | 280.0 | 1-M |
located on linear feature | 1.0 | located on linear feature | 1.0 | 1-1 |
top-level Internet domain | 3.0 | top-level Internet domain | 6.0 | M-M |
mascot | 1.0 | mascot | 2.0 | 1-M |
defender | 1.0 | defender | 1.0 | 1-1 |
discography | 1.0 | discography | 1.0 | 1-1 |
USK rating | 4.0 | USK rating | 473.0 | M-M |
dedicated to | 4.0 | dedicated to | 17.0 | M-M |
GSRR rating | 1.0 | GSRR rating | 3.0 | 1-M |
award received | 34.0 | award received | 15971.0 | M-M |
penalty | 1.0 | penalty | 112.0 | 1-M |
NATO code for grade | 2.0 | NATO code for grade | 3.0 | M-M |
opposite of | 3.0 | opposite of | 3.0 | M-M |
radio format | 1.0 | radio format | 1.0 | 1-1 |
topic's main template | 1.0 | topic's main template | 1.0 | 1-1 |
unveiled by | 2.0 | unveiled by | 1.0 | M-1 |
afflicts | 7.0 | afflicts | 5.0 | M-M |
filming location | 14.0 | filming location | 1040.0 | M-M |
port of registry | 3.0 | port of registry | 7.0 | M-M |
template has topic | 1.0 | template has topic | 1.0 | 1-1 |
military rank | 10.0 | military rank | 1834.0 | M-M |
territory claimed by | 4.0 | territory claimed by | 6.0 | M-M |
flag | 1.0 | flag | 8.0 | 1-M |
partially coincident with | 21.0 | partially coincident with | 24.0 | M-M |
point group | 2.0 | point group | 12.0 | M-M |
destination point | 2.0 | destination point | 17.0 | M-M |
winner | 18.0 | winner | 26.0 | M-M |
stock exchange | 5.0 | stock exchange | 407.0 | M-M |
child | 69.0 | child | 14.0 | M-M |
engine configuration | 1.0 | engine configuration | 79.0 | 1-M |
parent of this hybrid, breed, or cultivar | 2.0 | parent of this hybrid, breed, or cultivar | 1.0 | M-1 |
convicted of | 4.0 | convicted of | 1460.0 | M-M |
space group | 5.0 | space group | 89.0 | M-M |
category for people born here | 3.0 | category for people born here | 2.0 | M-M |
space launch vehicle | 1.0 | space launch vehicle | 45.0 | 1-M |
stated in | 6.0 | stated in | 3.0 | M-M |
diplomatic mission sent | 2.0 | diplomatic mission sent | 92.0 | M-M |
oath made by | 3.0 | oath made by | 1.0 | M-1 |
referee | 7.0 | referee | 4.0 | M-M |
tonality | 2.0 | tonality | 18.0 | M-M |
location | 256.0 | location | 5283.0 | M-M |
is pollinated by | 1.0 | is pollinated by | 1.0 | 1-1 |
eye color | 2.0 | eye color | 223.0 | M-M |
foods traditionally associated | 2.0 | foods traditionally associated | 1.0 | M-1 |
is pollinator of | 1.0 | is pollinator of | 1.0 | 1-1 |
of | 1.0 | of | 2.0 | 1-M |
guidance system | 2.0 | guidance system | 35.0 | M-M |
vice-county | 1.0 | vice-county | 1.0 | 1-1 |
GUI toolkit or framework | 4.0 | GUI toolkit or framework | 35.0 | M-M |
family name identical to this given name | 3.0 | family name identical to this given name | 3.0 | M-M |
natural product of taxon | 4.0 | natural product of taxon | 2.0 | M-M |
production company | 9.0 | production company | 1511.0 | M-M |
twinning | 2.0 | twinning | 1.0 | M-1 |
party chief representative | 5.0 | party chief representative | 2.0 | M-M |
military casualty classification | 1.0 | military casualty classification | 5.0 | 1-M |
motto | 1.0 | motto | 2.0 | 1-M |
hymenium attachment | 2.0 | hymenium attachment | 322.0 | M-M |
member of political party | 11.0 | member of political party | 21072.0 | M-M |
connecting service | 13.0 | connecting service | 182.0 | M-M |
tempo marking | 1.0 | tempo marking | 6.0 | 1-M |
symptoms and signs | 8.0 | symptoms and signs | 6.0 | M-M |
ammunition | 9.0 | ammunition | 49.0 | M-M |
language regulatory body | 3.0 | language regulatory body | 3.0 | M-M |
vessel class | 4.0 | vessel class | 61.0 | M-M |
depends on software | 1.0 | depends on software | 2.0 | 1-M |
input set | 1.0 | input set | 3.0 | 1-M |
undercarriage | 1.0 | undercarriage | 27.0 | 1-M |
judge | 1.0 | judge | 1.0 | 1-1 |
military branch | 10.0 | military branch | 10147.0 | M-M |
taxonomic type | 1.0 | taxonomic type | 3.0 | 1-M |
including | 4.0 | including | 1.0 | M-1 |
primary destinations | 16.0 | primary destinations | 4.0 | M-M |
head of government | 90.0 | head of government | 9.0 | M-M |
type of orbit | 1.0 | type of orbit | 269.0 | 1-M |
blood type | 1.0 | blood type | 9.0 | 1-M |
cause of destruction | 2.0 | cause of destruction | 10.0 | M-M |
given name | 106.0 | given name | 26120.0 | M-M |
located in time zone | 13.0 | located in time zone | 25664.0 | M-M |
officeholder | 12.0 | officeholder | 2.0 | M-M |
structure replaces | 1.0 | structure replaces | 1.0 | 1-1 |
list of monuments | 7.0 | list of monuments | 2.0 | M-M |
participant in | 36.0 | participant in | 9207.0 | M-M |
work location | 14.0 | work location | 3944.0 | M-M |
vehicle | 2.0 | vehicle | 42.0 | M-M |
dual to | 2.0 | dual to | 2.0 | M-M |
executive body | 2.0 | executive body | 12.0 | M-M |
astronaut mission | 8.0 | astronaut mission | 3.0 | M-M |
direction | 1.0 | direction | 1.0 | 1-1 |
legal form | 3.0 | legal form | 85.0 | M-M |
located on astronomical body | 1.0 | located on astronomical body | 40.0 | 1-M |
religious order | 4.0 | religious order | 1168.0 | M-M |
mineral fracture | 1.0 | mineral fracture | 5.0 | 1-M |
name day | 3.0 | name day | 5.0 | M-M |
doctoral student | 16.0 | doctoral student | 2.0 | M-M |
made from material | 134.0 | made from material | 19846.0 | M-M |
appointed by | 2.0 | appointed by | 29.0 | M-M |
heritage designation | 60.0 | heritage designation | 53050.0 | M-M |
unmarried partner | 8.0 | unmarried partner | 8.0 | M-M |
exhibition history | 28.0 | exhibition history | 37.0 | M-M |
product or material produced | 21.0 | product or material produced | 17.0 | M-M |
academic thesis | 2.0 | academic thesis | 1.0 | M-1 |
instrument | 19.0 | instrument | 9593.0 | M-M |
is a list of | 5.0 | is a list of | 8357.0 | M-M |
languages spoken, written or signed | 10.0 | languages spoken, written or signed | 31379.0 | M-M |
operating system | 13.0 | operating system | 204.0 | M-M |
place of publication | 9.0 | place of publication | 126.0 | M-M |
platform | 30.0 | platform | 5894.0 | M-M |
professorship | 3.0 | professorship | 21.0 | M-M |
type of electrification | 1.0 | type of electrification | 3.0 | 1-M |
genre | 216.0 | genre | 9431.0 | M-M |
affiliation | 3.0 | affiliation | 47.0 | M-M |
anthem | 2.0 | anthem | 52.0 | M-M |
biological process | 205.0 | biological process | 257.0 | M-M |
cleavage | 1.0 | cleavage | 50.0 | 1-M |
manner of death | 3.0 | manner of death | 2643.0 | M-M |
route of administration | 4.0 | route of administration | 18.0 | M-M |
academic major | 2.0 | academic major | 4.0 | M-M |
significant event | 11.0 | significant event | 815.0 | M-M |
asteroid spectral type | 2.0 | asteroid spectral type | 143.0 | M-M |
cell component | 38.0 | cell component | 649.0 | M-M |
contains the administrative territorial entity | 902.0 | contains the administrative territorial entity | 26.0 | M-M |
highest point | 2.0 | highest point | 4.0 | M-M |
parent club | 4.0 | parent club | 6.0 | M-M |
EC enzyme classification | 1.0 | EC enzyme classification | 1.0 | 1-1 |
temporal range start | 1.0 | temporal range start | 4.0 | 1-M |
Lagrangian point | 1.0 | Lagrangian point | 7.0 | 1-M |
asteroid family | 1.0 | asteroid family | 24.0 | 1-M |
hymenium type | 1.0 | hymenium type | 707.0 | 1-M |
temporal range end | 2.0 | temporal range end | 4.0 | M-M |
interchange station | 3.0 | interchange station | 3.0 | M-M |
legislative body | 3.0 | legislative body | 96.0 | M-M |
start point | 2.0 | start point | 18.0 | M-M |
streak color | 1.0 | streak color | 25.0 | 1-M |
significant drug interaction | 42.0 | significant drug interaction | 44.0 | M-M |
has effect | 2.0 | has effect | 1.0 | M-1 |
killed by | 5.0 | killed by | 27.0 | M-M |
basionym | 1.0 | basionym | 8.0 | 1-M |
main subject | 51.0 | main subject | 1564.0 | M-M |
partner in business or sport | 1.0 | partner in business or sport | 1.0 | 1-1 |
political ideology | 19.0 | political ideology | 248.0 | M-M |
wing configuration | 2.0 | wing configuration | 252.0 | M-M |
mushroom ecological type | 2.0 | mushroom ecological type | 587.0 | M-M |
screenwriter | 65.0 | screenwriter | 191.0 | M-M |
type of variable star | 2.0 | type of variable star | 2.0 | M-M |
fossil found in this unit | 2.0 | fossil found in this unit | 2.0 | M-M |
dan/kyu rank | 1.0 | dan/kyu rank | 5.0 | 1-M |
field of this occupation | 3.0 | field of this occupation | 12.0 | M-M |
measurement scale | 3.0 | measurement scale | 4.0 | M-M |
successful candidate | 12.0 | successful candidate | 12.0 | M-M |
occupation | 137.0 | occupation | 223411.0 | M-M |
twinned administrative body | 98.0 | twinned administrative body | 98.0 | M-M |
has cause | 5.0 | has cause | 2.0 | M-M |
Digital Rights Management system | 1.0 | Digital Rights Management system | 13.0 | 1-M |
crew member(s) | 10.0 | crew member(s) | 148.0 | M-M |
bodies of water basin category | 1.0 | bodies of water basin category | 17.0 | 1-M |
edibility | 1.0 | edibility | 185.0 | 1-M |
published in | 3.0 | published in | 212.0 | M-M |
original broadcaster | 7.0 | original broadcaster | 385.0 | M-M |
GHS signal word | 1.0 | GHS signal word | 1.0 | 1-1 |
MPA film rating | 1.0 | MPA film rating | 6.0 | 1-M |
director / manager | 36.0 | director / manager | 4.0 | M-M |
location of discovery | 3.0 | location of discovery | 7.0 | M-M |
presenter | 24.0 | presenter | 11.0 | M-M |
theme music | 1.0 | theme music | 1.0 | 1-1 |
authority | 1.0 | authority | 1.0 | 1-1 |
chromosome | 2.0 | chromosome | 98.0 | M-M |
lowest point | 1.0 | lowest point | 1.0 | 1-1 |
manufacturer | 11.0 | manufacturer | 160.0 | M-M |
product certification | 2.0 | product certification | 47.0 | M-M |
takes place in fictional universe | 5.0 | takes place in fictional universe | 83.0 | M-M |
followed by | 50.0 | followed by | 52.0 | M-M |
category of people buried here | 1.0 | category of people buried here | 1.0 | 1-1 |
contributor to the creative work or subject | 311.0 | contributor to the creative work or subject | 8.0 | M-M |
printed by | 2.0 | printed by | 2.0 | M-M |
website account on | 24.0 | website account on | 8317.0 | M-M |
drafted by | 1.0 | drafted by | 9.0 | 1-M |
nominated for | 2.0 | nominated for | 377.0 | M-M |
writable file format | 5.0 | writable file format | 4.0 | M-M |
conflict | 10.0 | conflict | 16039.0 | M-M |
exemplar of | 3.0 | exemplar of | 8.0 | M-M |
chief executive officer | 10.0 | chief executive officer | 2.0 | M-M |
coolant | 1.0 | coolant | 138.0 | 1-M |
canonization status | 4.0 | canonization status | 1925.0 | M-M |
publisher | 9.0 | publisher | 757.0 | M-M |
commander of (DEPRECATED) | 5.0 | commander of (DEPRECATED) | 5.0 | M-M |
creator | 83.0 | creator | 908.0 | M-M |
facet of | 2.0 | facet of | 124.0 | M-M |
driving side | 1.0 | driving side | 4.0 | 1-M |
parent organization | 5.0 | parent organization | 12.0 | M-M |
operator | 34.0 | operator | 1045.0 | M-M |
underlies | 3.0 | underlies | 3.0 | M-M |
// Count how many times each relation type occurs
val res = class_df.groupBy("relationType").count()
display(res)
relationType | count |
---|---|
1-M | 59.0 |
M-M | 386.0 |
1-1 | 55.0 |
M-1 | 25.0 |
We can see that the majority of relations are of the type M-M, which is indeed the most general category. While the results are quite noisy, we can find some intuitive examples in the list. For example, relations like "shape" and "mushroom cap shape" are 1-M, showing that most entities are assigned a single unique shape. The M-1 category sadly lacks relations with many source entities. We can still find a few relations that intuitively fit in this category. An example is "academic thesis", since typically the author of a thesis is only one person but one person can author multiple theses.
A possible weakness of this approach for classifying the relations is that it is enough that a "?-M" or "M-?" relationship exist for one entity in order to classify the entire relation as such. One way to improve on this could be to set a threshold, requiring the pattern to be found for more than one entity in order to draw the conclusion for the relation in general. Setting such a threshold is however non-trivial and would surely require taking into account the prevalence of each relation among the edges. On the other hand, any formal definition of a 1-M relation requires only one single entity to satisfy it in order for the relation itself to belong to this group. By this reasoning the only correct way to choose a threshold is at one entity. In the end the question boils down to how noisy we believe the data to be.
Relationship Analysis using Motif Search
In this notebook we utilize motif search in order to uncover significant relationship patterns in the knowledge graph.
import spark.implicits._
import org.graphframes._
Preprocessing
We start by loading variables from previous notebooks. An additional column is also added, denoting if each edge is symmetric.
df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
./02_load_data
// Some imports
import sqlContext.implicits._ // for $""
import org.apache.spark.sql.functions._ // for `when`
list: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
val twoCycles = graph.find("(a)-[r1]->(b); (b)-[r2]->(a)")
// IF r1 === r2, Label rel as relSym
val twoCycles_w_sym = twoCycles.withColumn("relSym", when($"r1"("rel") === $"r2"("rel"), "Sym").otherwise("UnSym"))
twoCycles: org.apache.spark.sql.DataFrame = [a: struct<id: string>, r1: struct<src: string, rel: string ... 1 more field> ... 2 more fields]
import sqlContext.implicits._
import org.apache.spark.sql.functions._
twoCycles_w_sym: org.apache.spark.sql.DataFrame = [a: struct<id: string>, r1: struct<src: string, rel: string ... 1 more field> ... 3 more fields]
df1: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
entdescdf: org.apache.spark.sql.DataFrame = [entid: string, label: string ... 1 more field]
val symtype = twoCycles_w_sym.filter(twoCycles_w_sym("relSym") === "Sym").select("r1.rel","relSym").groupBy("rel").count().cache()
val list_sym= symtype.select("rel").map(f=>f.getString(0)).collect.toList
val edgesDF_w_sym = edgesDF.withColumn("relSym", when($"rel".isin(list_sym: _*), "Sym").otherwise("UnSym"))
symtype: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [rel: string, count: bigint]
list_sym: List[String] = List(part of, family name, topic's main Wikimedia portal, parent astronomical body, shares border with, based on, present in work, separated from, writing system, topic's main category, given name version for other gender, father, performer, place of burial, influenced by, developer, depicts, fictional or mythical analog of, producer, shape, taxon synonym, located in or next to body of water, replaced by, part of the series, interleaves with, narrative location, participant, capital of, characters, collection, owner of, structure replaced by, has part(s), located in the administrative territorial entity, employer, chairperson, place of birth, lyrics by, subclass of, instance of, located on street, named after, mother house, country of origin, encoded by, composer, occupant, place of death, relative, director, category's main topic, spouse, author, located in/on physical feature, pendant of, record label, from narrative universe, ortholog, conferred by, diplomatic relation, Wikimedia portal's main topic, sport, child astronomical body, adjacent station, location of creation, mother, companion of, imported from Wikimedia project, has facility, replaces, Unknown, inspired by, student of, readable file format, commissioned by, programmed in, statement is subject of, origin of the watercourse, capital, contains settlement, founded by, member of, tracklist, lake outflow, notable work, tributary, follows, feast day, movement, discoverer or inventor, said to be the same as, terminus, owned by, edition or translation of, mouth of the watercourse, student, scheduled service destination, described by source, cast member, connecting line, home venue, decays to, soundtrack release, software engine, depicted by, copyright license, catalog, architect, has use, parent taxon, residence, country, headquarters location, has edition or translation, home world, color, encodes, doctoral advisor, dedicated to, opposite of, filming location, territory claimed by, partially coincident with, point group, winner, stock exchange, child, location, family name identical to this given name, given name, dual to, made from material, unmarried partner, is a list of, genre, affiliation, contains the administrative territorial entity, interchange station, significant drug interaction, killed by, main subject, partner in business or sport, political ideology, screenwriter, twinned administrative body, crew member(s), published in, presenter, manufacturer, followed by, contributor to the creative work or subject, website account on, conflict, chief executive officer, publisher, creator, facet of, parent organization, operator, underlies)
edgesDF_w_sym: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 2 more fields]
display(edgesDF_w_sym)
src | rel | dst | relSym |
---|---|---|---|
Alfred Hauptmann | place of death | Boston | Sym |
David Louis Band | place of birth | Boston | Sym |
John Boyle O'Reilly | place of death | Boston | Sym |
James Seanor | place of birth | Boston | Sym |
Aerosmith | location of formation | Boston | UnSym |
Michael Joseph McEttrick | place of death | Boston | Sym |
Eduardo Catalano | place of death | Boston | Sym |
Tristram Dalton | place of death | Boston | Sym |
Turk Van Lake | place of birth | Boston | Sym |
Sherman Miles | place of death | Boston | Sym |
James Abercrombie | place of death | Boston | Sym |
Derek B. Miller | place of birth | Boston | Sym |
Nerine Kidd | place of birth | Boston | Sym |
Kenza Tazi | place of birth | Boston | Sym |
Q16580475 | place of birth | Boston | Sym |
Charles Pomeroy Parker | place of birth | Boston | Sym |
Christiana Carteaux Bannister | residence | Boston | Sym |
Proctor L. Dougherty | place of birth | Boston | Sym |
Larry Goldings | place of birth | Boston | Sym |
Lillie P. Bliss | place of birth | Boston | Sym |
Amos Clark, Jr. | place of death | Boston | Sym |
Taipei | twinned administrative body | Boston | Sym |
John E. Rexine | place of birth | Boston | Sym |
Thomas Hutchinson | place of birth | Boston | Sym |
Tip O'Neill | place of death | Boston | Sym |
Emily Greene Balch | place of birth | Boston | Sym |
Robert Alfred Theobald | place of death | Boston | Sym |
Robert Semple | place of birth | Boston | Sym |
Walter Gilbert | place of birth | Boston | Sym |
John G. Palfrey | place of birth | Boston | Sym |
Tom Jennings | place of birth | Boston | Sym |
A Drink Before the War | narrative location | Boston | Sym |
Robert Wahlberg | place of birth | Boston | Sym |
Susan Delano McKelvey | place of death | Boston | Sym |
Charles Sweeney | place of death | Boston | Sym |
Carolina Barco | place of birth | Boston | Sym |
Yehuda Krinsky | place of birth | Boston | Sym |
Christopher Edley, Jr. | place of birth | Boston | Sym |
Edward M. Kennedy Jr. | place of birth | Boston | Sym |
Abbott Lawrence | place of death | Boston | Sym |
John Quelch | place of death | Boston | Sym |
Albert Sauveur | place of death | Boston | Sym |
Matthew Sullivan | place of birth | Boston | Sym |
Predator | narrative location | Boston | Sym |
Thurston Hall | place of birth | Boston | Sym |
William Troy | place of birth | Boston | Sym |
Charles Henry Turner | place of death | Boston | Sym |
Douglas Tybor Durig | place of birth | Boston | Sym |
John William McCormack | place of birth | Boston | Sym |
Jennifer Jostyn | place of birth | Boston | Sym |
William C. Durant | place of birth | Boston | Sym |
George Cabot | place of death | Boston | Sym |
Marianne Leone Cooper | place of birth | Boston | Sym |
Mario Grossi | place of death | Boston | Sym |
Sib Hashian | place of birth | Boston | Sym |
Susan Minot | place of birth | Boston | Sym |
Mikhail Danilov | place of death | Boston | Sym |
Lexi Love | place of birth | Boston | Sym |
John M. Flynn | place of birth | Boston | Sym |
Rita Hester | place of death | Boston | Sym |
Nathaniel Carl Goodwin | place of birth | Boston | Sym |
Isabella Stewart Gardner | place of death | Boston | Sym |
Washington Allston | work location | Boston | UnSym |
Richard Sears | place of death | Boston | Sym |
Richard Sears | place of birth | Boston | Sym |
Meg Rosoff | place of birth | Boston | Sym |
Andras Angyal | place of death | Boston | Sym |
Anthony Shriver | place of birth | Boston | Sym |
Austin Edward Ford | place of birth | Boston | Sym |
Barbara McMartin | place of birth | Boston | Sym |
Benjamin Edes | place of death | Boston | Sym |
Boston City Council | applies to jurisdiction | Boston | UnSym |
Henry Marsh | place of birth | Boston | Sym |
Charles Henry Davis | place of birth | Boston | Sym |
Charles R. Codman | place of death | Boston | Sym |
Charles R. Codman | place of birth | Boston | Sym |
Charles Sawyer Russell | place of birth | Boston | Sym |
Charles W. Bailey | place of birth | Boston | Sym |
Chrystal Herne | place of death | Boston | Sym |
Gretchen Merrill | place of birth | Boston | Sym |
Crystal Bird Fauset | residence | Boston | Sym |
Lawrence Whitney | place of death | Boston | Sym |
Dave "Chico" Ryan | place of death | Boston | Sym |
David Herbert Donald | place of death | Boston | Sym |
David Shiner | place of birth | Boston | Sym |
Frank Knox | place of birth | Boston | Sym |
Francis Woodman Cleaves | place of birth | Boston | Sym |
Arthur Berger | place of death | Boston | Sym |
Bill Holland | place of birth | Boston | Sym |
Richard Cushing | place of death | Boston | Sym |
Richard Cushing | place of birth | Boston | Sym |
Gene Wood | place of death | Boston | Sym |
William Monahan | place of birth | Boston | Sym |
James D. Morgan | place of birth | Boston | Sym |
Padua | twinned administrative body | Boston | Sym |
Joe Chiccarelli | place of birth | Boston | Sym |
Richard Armitage | place of birth | Boston | Sym |
John Gibson | place of birth | Boston | Sym |
John Marston | place of birth | Boston | Sym |
Joseph Henry Beale | place of birth | Boston | Sym |
Erna Lazarus | place of birth | Boston | Sym |
Peter Abrahams | place of birth | Boston | Sym |
Lucianne Goldberg | place of birth | Boston | Sym |
Bill Laimbeer | place of birth | Boston | Sym |
Paul Coyne | place of birth | Boston | Sym |
Percy Jewett Burrell | place of birth | Boston | Sym |
Frank Synott | place of death | Boston | Sym |
Eric Griffin | place of birth | Boston | Sym |
Rebecca Eaton | place of birth | Boston | Sym |
Richard Saltonstall Greenough | place of birth | Boston | Sym |
Robert Cowdin | place of death | Boston | Sym |
Robert Rimmer | place of birth | Boston | Sym |
Sara Wilford | place of birth | Boston | Sym |
Sheanon Williams | place of birth | Boston | Sym |
Category:Films set in Boston | category combines topics | Boston | UnSym |
Chris Cormier | place of birth | Boston | Sym |
The Holder of the World | narrative location | Boston | Sym |
Therese Murray | place of birth | Boston | Sym |
Thomas G. Kelley | place of birth | Boston | Sym |
Thomas Savage | place of death | Boston | Sym |
Ernst Badian | place of death | Boston | Sym |
Wadsworth Harris | place of birth | Boston | Sym |
Wallace Tripp | place of birth | Boston | Sym |
William Cooper Nell | place of death | Boston | Sym |
William Cooper Nell | place of birth | Boston | Sym |
Richard von Mises | place of death | Boston | Sym |
David Ignatius Walsh | place of death | Boston | Sym |
Borah Bergman | place of death | Boston | Sym |
Luis T. Romero | place of death | Boston | Sym |
Henry Gilman | place of birth | Boston | Sym |
John Ciardi | place of birth | Boston | Sym |
Peter MacKenzie | place of birth | Boston | Sym |
Carl McKinley | place of death | Boston | Sym |
Charles Edward Adams | place of birth | Boston | Sym |
Brian Fair | place of birth | Boston | Sym |
Mario Corti | residence | Boston | Sym |
Georg Klemperer | place of death | Boston | Sym |
Frances Wayne | place of death | Boston | Sym |
Frances Wayne | place of birth | Boston | Sym |
Edward Norton | place of birth | Boston | Sym |
Jimmy McHugh | place of birth | Boston | Sym |
John L. Blake | place of birth | Boston | Sym |
Sylvia Plath | residence | Boston | Sym |
Sylvia Plath | place of birth | Boston | Sym |
George Underwood | place of death | Boston | Sym |
William Billings | place of birth | Boston | Sym |
William Billings | place of death | Boston | Sym |
Terrayne Crawford | place of birth | Boston | Sym |
Boston Consulting Group | headquarters location | Boston | Sym |
Frederick Wiseman | place of birth | Boston | Sym |
William Stimpson | place of birth | Boston | Sym |
Financial District | located in the administrative territorial entity | Boston | Sym |
Frederic Woodman Root | place of birth | Boston | Sym |
Horace Brooks | place of birth | Boston | Sym |
Richard J. Kerry | place of death | Boston | Sym |
Lisa Niver Rajna | place of birth | Boston | Sym |
George Harrington | place of birth | Boston | Sym |
James MacGregor Burns | place of birth | Boston | Sym |
Harrison Henry Atwood | place of death | Boston | Sym |
James G. Maguire | place of birth | Boston | Sym |
Edgar Allan Poe | place of birth | Boston | Sym |
Joe Maneri | place of death | Boston | Sym |
Sean Gullette | place of birth | Boston | Sym |
Frederick Stevens | place of birth | Boston | Sym |
William Perkins Babcock | place of birth | Boston | Sym |
Eric S. Raymond | place of birth | Boston | Sym |
Henry Way Kendall | place of birth | Boston | Sym |
Norma Farber | place of birth | Boston | Sym |
Robert Joseph Banks | place of birth | Boston | Sym |
Rodman Philbrick | place of birth | Boston | Sym |
Allison Janney | place of birth | Boston | Sym |
Christopher Allport | place of birth | Boston | Sym |
Eric Turner | place of birth | Boston | Sym |
Evan Dando | place of birth | Boston | Sym |
Lawrence Joseph Riley | place of birth | Boston | Sym |
Barbara Delinsky | place of birth | Boston | Sym |
Kristin Cashore | place of birth | Boston | Sym |
Kristin Cashore | work location | Boston | UnSym |
William James Sidis | place of death | Boston | Sym |
Melbourne | twinned administrative body | Boston | Sym |
John Singleton Copley | place of birth | Boston | Sym |
Joseph Badger | place of death | Boston | Sym |
Kate Collins | place of birth | Boston | Sym |
Abigail Johnson | residence | Boston | Sym |
William Hill Brown | place of birth | Boston | Sym |
Ted Drury | place of birth | Boston | Sym |
Marc Ferrari | place of birth | Boston | Sym |
Kenneth O'Donnell | place of death | Boston | Sym |
Rich Hill | place of birth | Boston | Sym |
Increase Sumner | place of death | Boston | Sym |
Ricky Ford | place of birth | Boston | Sym |
Charles Devens | place of death | Boston | Sym |
George Jung | place of birth | Boston | Sym |
T. J. Thyne | place of birth | Boston | Sym |
Courtney Eldridge | place of birth | Boston | Sym |
Ian Biederman | place of birth | Boston | Sym |
Jimmy Flynn | place of birth | Boston | Sym |
Aidan Mitchell | place of birth | Boston | Sym |
Guinevere Turner | place of birth | Boston | Sym |
Jeanie MacPherson | place of birth | Boston | Sym |
Henry Brooks Adams | place of birth | Boston | Sym |
Susanna Rowson | place of death | Boston | Sym |
Anita Shreve | work location | Boston | UnSym |
Alan Trefler | place of birth | Boston | Sym |
Alexander Bradley | place of birth | Boston | Sym |
Alexander Leaf | place of death | Boston | Sym |
Alicyn Packard | place of birth | Boston | Sym |
Beals Coleman Wright | place of birth | Boston | Sym |
Andrei Zelevinsky | place of death | Boston | Sym |
Carmen Filpi | place of birth | Boston | Sym |
Caspar Crowninshield | place of birth | Boston | Sym |
Caspar Crowninshield | place of death | Boston | Sym |
William Hickling Prescott | place of death | Boston | Sym |
Elihu Yale | place of birth | Boston | Sym |
Craig Ross, Jr. | place of birth | Boston | Sym |
Daniel Lothrop | place of death | Boston | Sym |
David Barstow | place of birth | Boston | Sym |
Dick Kazmaier | place of death | Boston | Sym |
Janet Tashjian | place of birth | Boston | Sym |
Emma Nutt | place of birth | Boston | Sym |
Faith Salie | place of birth | Boston | Sym |
Frank Newcomb | place of birth | Boston | Sym |
Freeman Gill | place of birth | Boston | Sym |
Geoff Edgers | place of birth | Boston | Sym |
George D. Murray | place of birth | Boston | Sym |
George W. Casey, Sr. | place of birth | Boston | Sym |
Henry A. Miley, Jr. | place of birth | Boston | Sym |
John Andrew Sullivan | place of birth | Boston | Sym |
Samuel Dexter | place of birth | Boston | Sym |
Joe Gould | place of birth | Boston | Sym |
James Fowle Baldwin | place of death | Boston | Sym |
Jerry Williams | place of death | Boston | Sym |
John Andrew Barnes III | place of birth | Boston | Sym |
John Frykman | place of birth | Boston | Sym |
Jonathan Sewall | place of birth | Boston | Sym |
Archibald Thompson Davison | place of birth | Boston | Sym |
George Peter Alexander Healy | place of birth | Boston | Sym |
Lea Wait | place of birth | Boston | Sym |
Margaret Green Draper | place of birth | Boston | Sym |
Mark Goulston | place of birth | Boston | Sym |
Mary Lou Clements-Mann | place of birth | Boston | Sym |
Melvin Johnson | place of birth | Boston | Sym |
Michael DeSisto | place of death | Boston | Sym |
Michael DeSisto | place of birth | Boston | Sym |
Moses Roper | place of death | Boston | Sym |
Nathaniel S. Keith | place of birth | Boston | Sym |
Norman Foster | place of birth | Boston | Sym |
Arthur Duffey | place of death | Boston | Sym |
Minor White | place of death | Boston | Sym |
Paul Van Doren | place of birth | Boston | Sym |
Chris Burden | place of birth | Boston | Sym |
Patrick Renna | place of birth | Boston | Sym |
Augustus Addison Gould | place of death | Boston | Sym |
William Henry Lewis | place of death | Boston | Sym |
George P. Wetmore | place of death | Boston | Sym |
Kenny Wormald | place of birth | Boston | Sym |
L Peter Deutsch | place of birth | Boston | Sym |
Edwin O'Connor | place of death | Boston | Sym |
Justin Winsor | place of birth | Boston | Sym |
Catherine Filene Shouse | place of birth | Boston | Sym |
The Dante Club | narrative location | Boston | Sym |
Charles Francis Adams, Jr. | place of birth | Boston | Sym |
Richard Evans Schultes | place of death | Boston | Sym |
Richard Evans Schultes | place of birth | Boston | Sym |
Lorna Thayer | place of birth | Boston | Sym |
Frank Stanton | place of death | Boston | Sym |
Kerin O'Keefe | place of birth | Boston | Sym |
Joey Oakes Palfrey | place of birth | Boston | Sym |
Andrejs Zeidaks | place of death | Boston | Sym |
Robert Charles Winthrop | place of death | Boston | Sym |
Robert Charles Winthrop | place of birth | Boston | Sym |
Frederick G. Katzmann | place of death | Boston | Sym |
Frederick G. Katzmann | place of birth | Boston | Sym |
Phil Rasmussen | place of birth | Boston | Sym |
Gerry Studds | place of death | Boston | Sym |
Jason Chen | place of birth | Boston | Sym |
Roger Adams | place of birth | Boston | Sym |
Mark Leibovich | place of birth | Boston | Sym |
Q15987713 | place of birth | Boston | Sym |
Mark Wahlberg | place of birth | Boston | Sym |
Harold J. Greene | place of birth | Boston | Sym |
Joseph E. Levine | place of birth | Boston | Sym |
On Beauty | narrative location | Boston | Sym |
Lawrence J. Hogan | place of birth | Boston | Sym |
Daniel Dennett | place of birth | Boston | Sym |
John Boswell | place of birth | Boston | Sym |
A Case of Need | narrative location | Boston | Sym |
William F. Sharpe | place of birth | Boston | Sym |
Alex Cobb | place of birth | Boston | Sym |
Brian Noonan | place of birth | Boston | Sym |
Charles Codman | place of birth | Boston | Sym |
Richard N. Goodwin | place of birth | Boston | Sym |
Benjamin Franklin | place of birth | Boston | Sym |
William Stowell | place of birth | Boston | Sym |
Bill Collins | place of birth | Boston | Sym |
Makanda Ken McIntyre | place of birth | Boston | Sym |
Edwin Richards | place of birth | Boston | Sym |
Edwin Lord Weeks | place of birth | Boston | Sym |
Russ Lee | place of birth | Boston | Sym |
Frank Dayton | place of birth | Boston | Sym |
Thomas Dudley | place of death | Boston | Sym |
James Fitzgerald | place of birth | Boston | Sym |
Gone, Baby, Gone | narrative location | Boston | Sym |
Dana Barros | place of birth | Boston | Sym |
Richard Mayo | place of birth | Boston | Sym |
Ned Dowd | place of birth | Boston | Sym |
Armand Van Helden | place of birth | Boston | Sym |
Helen McCloy | place of death | Boston | Sym |
Terri Lyne Carrington | work location | Boston | UnSym |
Anatole Broyard | place of death | Boston | Sym |
Bob Backus | place of birth | Boston | Sym |
Bob Durgin | place of birth | Boston | Sym |
James Bryant Conant | place of birth | Boston | Sym |
Curt Conway | place of birth | Boston | Sym |
Claudia Rueda | work location | Boston | UnSym |
David Evans | place of death | Boston | Sym |
Francis E. Kelly | place of birth | Boston | Sym |
George Heyliger | place of birth | Boston | Sym |
George Melville Baker | residence | Boston | Sym |
Gladys Walton | place of birth | Boston | Sym |
Henry Hendrickson | place of death | Boston | Sym |
Jamie Denbo | place of birth | Boston | Sym |
Jamie Turndorf | place of birth | Boston | Sym |
Jed Prouty | place of birth | Boston | Sym |
John D. Harvey | place of birth | Boston | Sym |
Leonard Chadwick | place of death | Boston | Sym |
Louis Kronberg | place of birth | Boston | Sym |
Carroll Quigley | place of birth | Boston | Sym |
Oliver Winchester | place of birth | Boston | Sym |
Shadow Fox | narrative location | Boston | Sym |
The Namesake | narrative location | Boston | Sym |
Thomas Finneran | place of birth | Boston | Sym |
Thomas Cushing | place of death | Boston | Sym |
Károly Bartha | place of death | Boston | Sym |
William Emerson | place of death | Boston | Sym |
William Sweeney | place of birth | Boston | Sym |
Boylston Street | located in the administrative territorial entity | Boston | Sym |
Josiah P. Cooke | place of birth | Boston | Sym |
Saul Rosenzweig | place of birth | Boston | Sym |
Theodore Lyman | place of birth | Boston | Sym |
Humberto Sousa Medeiros | place of death | Boston | Sym |
Noah Bean | place of birth | Boston | Sym |
Burton Pike | place of birth | Boston | Sym |
Charles Bulfinch | place of death | Boston | Sym |
Charles Bulfinch | place of birth | Boston | Sym |
Chuckie Taylor | place of birth | Boston | Sym |
Boston Marathon bombings | located in the administrative territorial entity | Boston | Sym |
Milt Raskin | place of birth | Boston | Sym |
Patrick Ewing, Jr. | place of birth | Boston | Sym |
Edith Fellows | place of birth | Boston | Sym |
James Pierpont | place of birth | Boston | Sym |
Mianne Palfrey | place of birth | Boston | Sym |
Jill Tasker | place of birth | Boston | Sym |
Hugh S. Legaré | place of death | Boston | Sym |
Henry E. Dixey | place of birth | Boston | Sym |
John Smith | place of birth | Boston | Sym |
Gerry Connolly | place of birth | Boston | Sym |
Hugo Rossi | place of birth | Boston | Sym |
Godfrey Lowell Cabot | place of death | Boston | Sym |
Godfrey Lowell Cabot | place of birth | Boston | Sym |
Timothy Davis | place of death | Boston | Sym |
Thomas Gamaliel Bradford | place of birth | Boston | Sym |
Henry Pickering Bowditch | place of death | Boston | Sym |
Henry Pickering Bowditch | place of birth | Boston | Sym |
Madeleine M. Joullié | residence | Boston | Sym |
Joanne Simpson | place of birth | Boston | Sym |
John Henry Willcox | place of death | Boston | Sym |
Busty Heart | place of birth | Boston | Sym |
Lawrence Berk | place of birth | Boston | Sym |
Max Bondy | place of death | Boston | Sym |
Baruch Marzel | place of birth | Boston | Sym |
Peleg Coffin, Jr. | place of death | Boston | Sym |
Peter A. Garland | place of birth | Boston | Sym |
Tabitha St. Germain | place of birth | Boston | Sym |
Allan H. Meltzer | place of birth | Boston | Sym |
Felix Wolfes | place of death | Boston | Sym |
William P. Murphy Jr. | place of birth | Boston | Sym |
Geraldine Ferraro | place of death | Boston | Sym |
Susan Bottomly | place of birth | Boston | Sym |
Anne Dudek | place of birth | Boston | Sym |
Edith Nourse Rogers | place of death | Boston | Sym |
Thomas D. Eliot | place of birth | Boston | Sym |
Paul Stanton | place of birth | Boston | Sym |
Al Vega | place of death | Boston | Sym |
Albert Smith | place of death | Boston | Sym |
Eric Francis MacKenzie | place of birth | Boston | Sym |
Michael McDowell | place of death | Boston | Sym |
Jack Levine | place of birth | Boston | Sym |
Donald Schön | place of birth | Boston | Sym |
Dorothy Loudon | place of birth | Boston | Sym |
Manny Delcarmen | place of birth | Boston | Sym |
John Pitcairn | place of death | Boston | Sym |
Eugene Braunwald | work location | Boston | UnSym |
Joseph Grew | place of birth | Boston | Sym |
Seán McKiernan | place of birth | Boston | Sym |
Darren Turcotte | place of birth | Boston | Sym |
Steven Van Zandt | place of birth | Boston | Sym |
Ruby Braff | place of birth | Boston | Sym |
Jane Cowl | place of birth | Boston | Sym |
Elliott H. Lieb | place of birth | Boston | Sym |
Fran Sheehan | place of birth | Boston | Sym |
Edwin Percy Whipple | place of death | Boston | Sym |
John Cunniff | place of birth | Boston | Sym |
Brenda Frazier | place of death | Boston | Sym |
Jonas Wood | place of birth | Boston | Sym |
Henry Jacob Bigelow | place of birth | Boston | Sym |
Henry Jacob Bigelow | work location | Boston | UnSym |
Feliks Roziner | place of death | Boston | Sym |
Eugene Foss | place of death | Boston | Sym |
Alvan Tufts Fuller | place of death | Boston | Sym |
Alvan Tufts Fuller | place of birth | Boston | Sym |
Jane Toppan | place of birth | Boston | Sym |
Jasmine Guy | place of birth | Boston | Sym |
William M. Butler | place of death | Boston | Sym |
Joseph Francis Maguire | place of birth | Boston | Sym |
Abby May | place of birth | Boston | Sym |
Madeline Miller | place of birth | Boston | Sym |
Albert Bushnell Hart | place of death | Boston | Sym |
Angeliki Laiou | place of death | Boston | Sym |
Anne Nagel | place of birth | Boston | Sym |
Arthur L. Andrews | place of birth | Boston | Sym |
Benny Rubin | place of birth | Boston | Sym |
Julius Adams Stratton | place of death | Boston | Sym |
Ceremony | narrative location | Boston | Sym |
Cogan's Trade | narrative location | Boston | Sym |
Colonial Air Transport | headquarters location | Boston | Sym |
Donald Foley | place of birth | Boston | Sym |
Eddie Hurley | place of death | Boston | Sym |
Elizabeth Brater | place of birth | Boston | Sym |
Eric Loren | place of birth | Boston | Sym |
Ethan Vogt | place of birth | Boston | Sym |
Franklin S. Nickerson | place of death | Boston | Sym |
William Steig | place of death | Boston | Sym |
Whitey Bulger | place of birth | Boston | Sym |
Raymond Griffith | place of birth | Boston | Sym |
Hosea Ballou | place of death | Boston | Sym |
Walter Gropius | place of death | Boston | Sym |
Theodore Robert Dudley | place of birth | Boston | Sym |
Jimmy Brogan | place of birth | Boston | Sym |
John Elliott Cowdin | place of birth | Boston | Sym |
John Sullivan Dwight | place of birth | Boston | Sym |
Joshua Loring | place of birth | Boston | Sym |
Samuel Sewall | place of death | Boston | Sym |
Kempster Blanchard Miller | place of birth | Boston | Sym |
Leon Adams | place of birth | Boston | Sym |
Samuel Turell Armstrong | place of death | Boston | Sym |
Maud Howe Elliott | place of birth | Boston | Sym |
Richard Fletcher | place of death | Boston | Sym |
Miles Browning | place of death | Boston | Sym |
Muriel Rahn | place of birth | Boston | Sym |
Nancy Glass | place of birth | Boston | Sym |
Nathaniel Jeremiah Bradlee | place of birth | Boston | Sym |
Roger Manvell | place of death | Boston | Sym |
Richard Olney | place of death | Boston | Sym |
Oliver O'Brien | place of birth | Boston | Sym |
Paul M. English | place of birth | Boston | Sym |
Albert-László Barabási | work location | Boston | UnSym |
Richard Bellingham | place of death | Boston | Sym |
Carolyn Bertozzi | place of birth | Boston | Sym |
Stephanie Braxton | place of birth | Boston | Sym |
Stephen Ratcliffe | place of birth | Boston | Sym |
The Astonishing Life of Octavian Nothing, Traitor to the Nation, Volume I: The Pox Party | narrative location | Boston | Sym |
The Last Hurrah | narrative location | Boston | Sym |
Vail Bloom | place of birth | Boston | Sym |
Norman Levinson | place of death | Boston | Sym |
Belly | location of formation | Boston | UnSym |
Anthony Quinn | place of death | Boston | Sym |
Christopher Gore | place of birth | Boston | Sym |
Leonard Wood | place of death | Boston | Sym |
James Bowdoin | place of birth | Boston | Sym |
James Bowdoin | place of death | Boston | Sym |
Category:Deaths in Boston, Lincolnshire | category combines topics | Boston | UnSym |
Jon Kleinberg | place of birth | Boston | Sym |
Thomas Bulfinch | place of death | Boston | Sym |
Dorchester | located in the administrative territorial entity | Boston | Sym |
Charlie Holmes | place of birth | Boston | Sym |
Christopher Wool | place of birth | Boston | Sym |
Leonora Bilger | place of birth | Boston | Sym |
Danny Draven | place of birth | Boston | Sym |
David Evans | place of birth | Boston | Sym |
Kiara Muhammad | place of birth | Boston | Sym |
Q11884045 | place of birth | Boston | Sym |
The Surgeon | narrative location | Boston | Sym |
Prince Sadruddin Aga Khan | place of death | Boston | Sym |
Markus Fritsch | work location | Boston | UnSym |
Dyer Lum | place of death | Boston | Sym |
Joseph Hall | place of death | Boston | Sym |
Samuel Parkman Tuckerman | place of birth | Boston | Sym |
Elbridge Ross | place of birth | Boston | Sym |
Polly Palfrey | place of birth | Boston | Sym |
Harry L. Shapiro | place of birth | Boston | Sym |
George Richardson Proctor | place of birth | Boston | Sym |
Hermann Hoerlin | place of death | Boston | Sym |
John Parker Boyd | place of death | Boston | Sym |
Mark Andrew Green | place of birth | Boston | Sym |
John Campbell | place of death | Boston | Sym |
Mikloš Schwalb | place of death | Boston | Sym |
Caroline Coolidge Cushman Ticknor | place of birth | Boston | Sym |
Manhattan Transfer | place of publication | Boston | UnSym |
James Henigan | place of birth | Boston | Sym |
James A. Gallivan | place of birth | Boston | Sym |
Karl Gerhardt | place of birth | Boston | Sym |
Tony Gaffney | place of birth | Boston | Sym |
J. Gill | located in the administrative territorial entity | Boston | Sym |
Leslie H. Martinson | place of birth | Boston | Sym |
Philip Hale | place of death | Boston | Sym |
Richard France | place of birth | Boston | Sym |
Royall Tyler | place of birth | Boston | Sym |
William Fly | place of death | Boston | Sym |
Mary Dyer | place of death | Boston | Sym |
Madeline Kahn | place of birth | Boston | Sym |
William Barton Rogers | place of death | Boston | Sym |
Harriet Quimby | place of death | Boston | Sym |
Frank Robbins | place of birth | Boston | Sym |
Q257073 | located in the administrative territorial entity | Boston | Sym |
William Sowden Sims | place of death | Boston | Sym |
Walter Powers | place of birth | Boston | Sym |
Williamina Fleming | place of death | Boston | Sym |
Angelina Weld Grimké | place of birth | Boston | Sym |
James Taylor | place of birth | Boston | Sym |
William Mason | place of birth | Boston | Sym |
Liam Waite | place of birth | Boston | Sym |
Francis Amasa Walker | place of birth | Boston | Sym |
Francis Amasa Walker | place of death | Boston | Sym |
James Hewitt | place of death | Boston | Sym |
Dennis Miller Bunker | place of death | Boston | Sym |
Loïs Mailou Jones | place of birth | Boston | Sym |
Mickey Roach | place of birth | Boston | Sym |
Dorothy Iannone | place of birth | Boston | Sym |
Sarah Sze | place of birth | Boston | Sym |
Oliver Wendell Holmes | place of birth | Boston | Sym |
Cotton Mather | place of death | Boston | Sym |
Cotton Mather | place of birth | Boston | Sym |
James Crafts | place of birth | Boston | Sym |
Thomas William Parsons | place of birth | Boston | Sym |
Francis Boott | place of birth | Boston | Sym |
Lev Lazarevitsj Goldin | place of death | Boston | Sym |
Joseph R. Levenson | place of birth | Boston | Sym |
Barbara Mullen | place of birth | Boston | Sym |
George Goldthwaite | place of birth | Boston | Sym |
Damon Santostefano | place of birth | Boston | Sym |
Robert F. Bradford | place of birth | Boston | Sym |
Robert F. Bradford | place of death | Boston | Sym |
Charles F. Hurley | place of death | Boston | Sym |
Solomon Trestin | place of death | Boston | Sym |
Sarah Kemble Knight | place of birth | Boston | Sym |
Henry Oliver Hansen | place of birth | Boston | Sym |
Cell | narrative location | Boston | Sym |
Alfred Browning Parker | place of birth | Boston | Sym |
Amy Farrington | place of birth | Boston | Sym |
Benjamin Byron Davis | place of birth | Boston | Sym |
Billie Lawless | place of birth | Boston | Sym |
Museum of Fine Arts Boston | located in the administrative territorial entity | Boston | Sym |
Faneuil Hall | located in the administrative territorial entity | Boston | Sym |
Brian Christie | place of birth | Boston | Sym |
Cameron McRae Winslow | place of death | Boston | Sym |
Carl Alpert | place of birth | Boston | Sym |
Maribel Owen | place of birth | Boston | Sym |
Connie Martinson | place of birth | Boston | Sym |
Courtney Fathom Sell | place of birth | Boston | Sym |
George Bonhag | place of birth | Boston | Sym |
David B. Cohen | place of birth | Boston | Sym |
Wendell Phillips | place of death | Boston | Sym |
Wendell Phillips | place of birth | Boston | Sym |
Rachel Bissex | place of birth | Boston | Sym |
Edward H. Gibson | place of birth | Boston | Sym |
Edward Lawrence Logan | place of death | Boston | Sym |
Elliot Koffman | place of birth | Boston | Sym |
Fannie Hillsmith | place of birth | Boston | Sym |
Frederick T. Moore, Jr. | place of birth | Boston | Sym |
Nathan Appleton | place of death | Boston | Sym |
Geoffrey Sayre-McCord | place of birth | Boston | Sym |
George D. Nye | place of death | Boston | Sym |
George Willis | place of birth | Boston | Sym |
Henry Simmons Frieze | place of birth | Boston | Sym |
Howard Bryant | place of birth | Boston | Sym |
Tom Barrasso | place of birth | Boston | Sym |
Jack Germond | place of birth | Boston | Sym |
James G. Carr | place of birth | Boston | Sym |
John C. Cremony | place of birth | Boston | Sym |
John Weiss | place of birth | Boston | Sym |
Jonathan Jackson | place of birth | Boston | Sym |
Jonathan Jackson | place of death | Boston | Sym |
Joseph Francis Scott | place of birth | Boston | Sym |
Laura Poitras | place of birth | Boston | Sym |
Lauren Elliott | place of birth | Boston | Sym |
Liam Madden | place of birth | Boston | Sym |
Elisha Collier | place of birth | Boston | Sym |
Elisha Collier | place of death | Boston | Sym |
Christian Wolff | work location | Boston | UnSym |
Lois Ayres | place of birth | Boston | Sym |
Marie Cosindas | place of birth | Boston | Sym |
Matt the Knife | place of birth | Boston | Sym |
Paul-Henri Campbell | place of birth | Boston | Sym |
Michael Gould | place of birth | Boston | Sym |
Suki Schorer | place of birth | Boston | Sym |
Nathaniel Taylor | place of birth | Boston | Sym |
Arthur Fiedler | place of birth | Boston | Sym |
Peter Bent Brigham | place of death | Boston | Sym |
Peter E. Costello | place of birth | Boston | Sym |
Rebecca Housel | place of birth | Boston | Sym |
Roland Merullo | place of birth | Boston | Sym |
Gregory Maguire | work location | Boston | UnSym |
Samuel M. Pook | place of birth | Boston | Sym |
Stephen Dunham | place of birth | Boston | Sym |
Thomas H. Dunham | place of birth | Boston | Sym |
Hanns Sachs | place of death | Boston | Sym |
Walter R. Mansfield | place of birth | Boston | Sym |
William H. Blanchard | place of birth | Boston | Sym |
William S. Bennet II | place of death | Boston | Sym |
Brian Duffy | place of birth | Boston | Sym |
Harry Dexter White | place of birth | Boston | Sym |
Richard M. Karp | place of birth | Boston | Sym |
Eugene O'Neill | place of death | Boston | Sym |
Gregory Deyermenjian | place of birth | Boston | Sym |
Samuel Eliot Morison | place of birth | Boston | Sym |
Samuel Eliot Morison | place of death | Boston | Sym |
Caleb Blood Smith | place of birth | Boston | Sym |
Charles William Eliot | place of birth | Boston | Sym |
David Walton | place of birth | Boston | Sym |
Horace Mann Junior | place of birth | Boston | Sym |
Susan Paul | place of birth | Boston | Sym |
Susan Paul | place of death | Boston | Sym |
David Gilbarg | place of birth | Boston | Sym |
Hugh Parker Guiler | place of birth | Boston | Sym |
Kenneth W. Dam | place of birth | Boston | Sym |
Emanuel Ondříček | place of death | Boston | Sym |
Leonardo Ciampa | place of birth | Boston | Sym |
Nat Hentoff | place of birth | Boston | Sym |
Samuel Wendell Williston | place of birth | Boston | Sym |
George Ticknor | place of birth | Boston | Sym |
Frank Morey | place of birth | Boston | Sym |
Robert F. McDermott | place of birth | Boston | Sym |
Uzo Aduba | place of birth | Boston | Sym |
George Holden Tinkham | place of birth | Boston | Sym |
Shearjashub Bourne | place of death | Boston | Sym |
Lucy Toulmin Smith | place of birth | Boston | Sym |
Henry Vaughan | place of death | Boston | Sym |
Leonard Nimoy | place of birth | Boston | Sym |
Richard Hodgson | place of death | Boston | Sym |
Chin Feng | place of death | Boston | Sym |
John Neagle | place of birth | Boston | Sym |
Joseph Henry O'Neil | place of death | Boston | Sym |
Harry Beal Torrey | place of birth | Boston | Sym |
William Thompson Sedgwick | place of death | Boston | Sym |
John Paine | place of birth | Boston | Sym |
Charles Green Bush | place of birth | Boston | Sym |
Richard Bowditch Wigglesworth | place of death | Boston | Sym |
Richard Bowditch Wigglesworth | place of birth | Boston | Sym |
Roslindale | located in the administrative territorial entity | Boston | Sym |
Pauline Whittier | place of birth | Boston | Sym |
William S. McNary | place of death | Boston | Sym |
Alfred Charles Hobbs | place of birth | Boston | Sym |
Lauren Koslow | place of birth | Boston | Sym |
Lillian Roth | place of birth | Boston | Sym |
Robert Morss Lovett | place of birth | Boston | Sym |
Tracy Bonham | place of birth | Boston | Sym |
Abbott Handerson Thayer | place of birth | Boston | Sym |
Bobby Brown | place of birth | Boston | Sym |
Donnie Wahlberg | place of birth | Boston | Sym |
Misha Collins | place of birth | Boston | Sym |
Sheldon Adelson | place of birth | Boston | Sym |
Tyler Faith | place of birth | Boston | Sym |
Quincy Shaw | place of birth | Boston | Sym |
Dick Dale | place of birth | Boston | Sym |
Zodiac | narrative location | Boston | Sym |
Babe Paley | place of birth | Boston | Sym |
Barry Goudreau | place of birth | Boston | Sym |
Isador Coriat | place of death | Boston | Sym |
Arthur Blake | place of death | Boston | Sym |
Arthur Blake | place of birth | Boston | Sym |
Alex Grasshoff | place of birth | Boston | Sym |
Q3796516 | place of death | Boston | Sym |
Paul McGonagle | place of death | Boston | Sym |
Wayne Turner | place of birth | Boston | Sym |
Charles Edward Horn | place of death | Boston | Sym |
Q4531342 | place of death | Boston | Sym |
Q4531342 | place of birth | Boston | Sym |
Helena Koželuhová | place of death | Boston | Sym |
Michelle Thomas | place of birth | Boston | Sym |
Arlene Francis | place of birth | Boston | Sym |
Allan Crite | place of death | Boston | Sym |
Andrea Robbins | place of birth | Boston | Sym |
Lewis C. Cantley | work location | Boston | UnSym |
Carl Frederick Burke | place of death | Boston | Sym |
Harold Hitz Burton | place of birth | Boston | Sym |
Charles Russell Lowell | place of birth | Boston | Sym |
David John Scannell | place of birth | Boston | Sym |
John Thomas | place of birth | Boston | Sym |
Edward D. Townsend | place of birth | Boston | Sym |
George Russell | place of death | Boston | Sym |
Elizabeth Boott | place of birth | Boston | Sym |
Krister Stendahl | place of death | Boston | Sym |
Richard Rust | place of birth | Boston | Sym |
Franklin W. Smith | place of birth | Boston | Sym |
George Aiken | place of birth | Boston | Sym |
George Eustis, Sr. | place of birth | Boston | Sym |
F. Holland Day | place of birth | Boston | Sym |
Alan Douglas | place of birth | Boston | Sym |
Carl Mydans | place of birth | Boston | Sym |
J. Carter Brown | place of death | Boston | Sym |
Jane F. Barry | place of birth | Boston | Sym |
John E. Kerrigan | place of death | Boston | Sym |
John Wilson | place of death | Boston | Sym |
Joseph P. Lash | place of death | Boston | Sym |
Joshua Hall Bates | place of birth | Boston | Sym |
Vladimir Dedijer | place of death | Boston | Sym |
James Q. Wilson | place of death | Boston | Sym |
Laura E. Richards | place of birth | Boston | Sym |
Louis Jean Heydt | place of death | Boston | Sym |
Man Gone Down | narrative location | Boston | Sym |
Michelle Citron | place of birth | Boston | Sym |
John Amaechi | place of birth | Boston | Sym |
Peter Gammons | place of birth | Boston | Sym |
Peter Haskell | place of birth | Boston | Sym |
Piper Kerman | place of birth | Boston | Sym |
Risa Lavizzo-Mourey | residence | Boston | Sym |
Susan Butcher | place of birth | Boston | Sym |
Samuel Gardner Drake | place of death | Boston | Sym |
Samuel P. Spear | place of birth | Boston | Sym |
Suffolk University Law School | located in the administrative territorial entity | Boston | Sym |
Augustus Peabody Gardner | place of birth | Boston | Sym |
North End | located in the administrative territorial entity | Boston | Sym |
William Dana Orcutt | place of death | Boston | Sym |
William J. A. Bailey | place of birth | Boston | Sym |
Cariddi Nardulli | place of birth | Boston | Sym |
Charles B. Cory | place of birth | Boston | Sym |
Charles Francis Adams IV | place of birth | Boston | Sym |
Lloyd Wheaton Bowers | place of death | Boston | Sym |
Marian Hooper Adams | place of birth | Boston | Sym |
James Reese Europe | place of death | Boston | Sym |
E. J. Dionne | place of birth | Boston | Sym |
Looking Backward | narrative location | Boston | Sym |
Ella Lola | place of birth | Boston | Sym |
Category:Films shot in Boston | category combines topics | Boston | UnSym |
Erwin Griswold | place of death | Boston | Sym |
Joseph Pilato | place of birth | Boston | Sym |
Stanisław Barańczak | place of death | Boston | Sym |
John Patrick Higgins | place of birth | Boston | Sym |
John Patrick Higgins | place of death | Boston | Sym |
John Schuck | place of birth | Boston | Sym |
Richard Herd | place of birth | Boston | Sym |
Francis Condon | place of death | Boston | Sym |
Mark O'Brien | place of birth | Boston | Sym |
Fred F. Sears | place of birth | Boston | Sym |
William Moore | place of birth | Boston | Sym |
Willard MacGregor | place of birth | Boston | Sym |
George V. Brown | place of birth | Boston | Sym |
Iron Lore Entertainment | headquarters location | Boston | Sym |
Gisele Bündchen | residence | Boston | Sym |
The Handmaid's Tale | narrative location | Boston | Sym |
Boston subway system | located in the administrative territorial entity | Boston | Sym |
Edwin May | place of birth | Boston | Sym |
Winston L. Prouty | place of death | Boston | Sym |
James T. Bates | place of birth | Boston | Sym |
Thomas Barbour | place of death | Boston | Sym |
Jerry Gray | place of birth | Boston | Sym |
John A. Keliher | place of birth | Boston | Sym |
John A. Keliher | place of death | Boston | Sym |
John Locke | place of death | Boston | Sym |
John W. Candler | place of birth | Boston | Sym |
Samuel Sewall | place of birth | Boston | Sym |
Karl Viëtor | place of death | Boston | Sym |
Billy Yule | place of birth | Boston | Sym |
Lev Shvarts | residence | Boston | Sym |
A Recommendation of Inoculation: According to Baron Dimsdale's Method | place of publication | Boston | UnSym |
An Appeal in Favor of that Class of Americans Called Africans | place of publication | Boston | UnSym |
Jared Diamond | place of birth | Boston | Sym |
Richard E. Byrd | place of death | Boston | Sym |
Samuel Adams | place of death | Boston | Sym |
Samuel Adams | place of birth | Boston | Sym |
Roger Hale Sheaffe | place of birth | Boston | Sym |
William Farnum | place of birth | Boston | Sym |
Patricia Cornwell | work location | Boston | UnSym |
Stephen A. Emery | place of death | Boston | Sym |
Sekondi-Takoradi | twinned administrative body | Boston | Sym |
Priscilla Morrill | place of birth | Boston | Sym |
Watermelon Slim | place of birth | Boston | Sym |
Judith Merril | place of birth | Boston | Sym |
Oneohtrix Point Never | place of birth | Boston | Sym |
Myles Kennedy | place of birth | Boston | Sym |
James Cutler Dunn Parker | place of birth | Boston | Sym |
Bill Wilson | place of birth | Boston | Sym |
George Adams Leland | place of death | Boston | Sym |
George Adams Leland | place of birth | Boston | Sym |
Anatoly Zhabotinsky | place of death | Boston | Sym |
Jude | place of birth | Boston | Sym |
Theodore Sedgwick | place of death | Boston | Sym |
Morton Prince | place of death | Boston | Sym |
Morton Prince | place of birth | Boston | Sym |
Jonathan Sass | work location | Boston | UnSym |
Dave Lambert | place of birth | Boston | Sym |
Maxime Bôcher | place of birth | Boston | Sym |
Roland Hayes | place of death | Boston | Sym |
George Patton IV | place of birth | Boston | Sym |
Tara VanDerveer | place of birth | Boston | Sym |
Josiah Quincy II | place of birth | Boston | Sym |
Greg Johnston | place of birth | Boston | Sym |
Jack Nance | place of birth | Boston | Sym |
Gilbert Stuart | place of death | Boston | Sym |
Haifa | twinned administrative body | Boston | Sym |
Leonard Craske | place of death | Boston | Sym |
Q4340904 | place of birth | Boston | Sym |
Henry Gardner | place of birth | Boston | Sym |
James Remar | place of birth | Boston | Sym |
James Thomas Fields | place of death | Boston | Sym |
Lucy Stone | place of death | Boston | Sym |
Chris Nilan | place of birth | Boston | Sym |
Peter Guralnick | place of birth | Boston | Sym |
Caroline Zhang | place of birth | Boston | Sym |
Alexander Hill Everett | place of birth | Boston | Sym |
Mason Hammond | place of birth | Boston | Sym |
Ann Smith Franklin | place of birth | Boston | Sym |
Anthony J. Carson | place of birth | Boston | Sym |
Anthony J. Carson | place of death | Boston | Sym |
Anthony T. Shtogren | place of birth | Boston | Sym |
Benjamin Arthur Quarles | place of birth | Boston | Sym |
Bill Gillis | place of birth | Boston | Sym |
Blanche Ring | place of birth | Boston | Sym |
Bradford Hill | place of birth | Boston | Sym |
Carl Greenberg | place of birth | Boston | Sym |
Carlos Castillo | place of birth | Boston | Sym |
David Lindsay-Abaire | place of birth | Boston | Sym |
Eliza Lee Cabot Follen | place of birth | Boston | Sym |
Erastus Brigham Bigelow | place of death | Boston | Sym |
Gene Lavanchy | place of birth | Boston | Sym |
George Ferguson | place of birth | Boston | Sym |
Henry N. Cobb | place of birth | Boston | Sym |
Henry Percival Dodge | place of birth | Boston | Sym |
Antoine Joseph Jobin | place of birth | Boston | Sym |
Jack Concannon | place of birth | Boston | Sym |
John Ancrum Winslow | place of death | Boston | Sym |
John F. Kelly | place of birth | Boston | Sym |
John Henning | place of death | Boston | Sym |
John Howard | residence | Boston | Sym |
John Howard | place of birth | Boston | Sym |
John R. Tunis | place of birth | Boston | Sym |
Joseph W. Revere | place of birth | Boston | Sym |
Kahlil Gibran | place of birth | Boston | Sym |
Kahlil Gibran | place of death | Boston | Sym |
Helen Johns | place of birth | Boston | Sym |
Q6627105 | place of death | Boston | Sym |
Louise Brigham | place of birth | Boston | Sym |
Mary Ann Vincent | place of death | Boston | Sym |
Mather Byles | place of birth | Boston | Sym |
Maud Wood Park | place of birth | Boston | Sym |
Richard N. Frye | place of death | Boston | Sym |
Samantha Runnion | place of birth | Boston | Sym |
Barry Newman | place of birth | Boston | Sym |
Ben Bradlee | place of birth | Boston | Sym |
William M. Evarts | place of birth | Boston | Sym |
Owlchemy Labs | located in the administrative territorial entity | Boston | Sym |
Coma | narrative location | Boston | Sym |
Roland Winters | place of birth | Boston | Sym |
Samantha Logan | place of birth | Boston | Sym |
Samuel Schafler | place of death | Boston | Sym |
Sidney Topol | place of birth | Boston | Sym |
Small Vices | narrative location | Boston | Sym |
Q761940 | place of death | Boston | Sym |
William Healey Dall | place of birth | Boston | Sym |
Thomas Harcourt | place of birth | Boston | Sym |
Thomas Kilby Smith | place of birth | Boston | Sym |
Arthur Casagrande | place of death | Boston | Sym |
Vincent Dethier | place of birth | Boston | Sym |
William Bradford Turner | place of birth | Boston | Sym |
Charles A. Dinarello | place of birth | Boston | Sym |
John Lewis Bates | place of death | Boston | Sym |
George von Lengerke Meyer | place of birth | Boston | Sym |
George von Lengerke Meyer | place of death | Boston | Sym |
John McCarthy | place of birth | Boston | Sym |
Ezio Levi | place of death | Boston | Sym |
John Bardeen | place of death | Boston | Sym |
Jeffrey Davidow | place of birth | Boston | Sym |
John Michael Higgins | place of birth | Boston | Sym |
Edward Franklin Bland | place of death | Boston | Sym |
Rudolph Nissen | work location | Boston | UnSym |
Charles J. McCarthy | place of birth | Boston | Sym |
Eugene Roche | place of birth | Boston | Sym |
Sandy Saddler | place of birth | Boston | Sym |
Eddie Collins | place of death | Boston | Sym |
Edward Tuckerman | place of birth | Boston | Sym |
School of the Museum of Fine Arts, Boston | located in the administrative territorial entity | Boston | Sym |
Mario Cantone | place of birth | Boston | Sym |
Albert Vincent Casey | place of birth | Boston | Sym |
Jaki Byard | place of death | Boston | Sym |
John Conness | place of death | Boston | Sym |
Nicky Jam | place of birth | Boston | Sym |
Fitz-John Winthrop | place of death | Boston | Sym |
John Charles Phillips | place of birth | Boston | Sym |
Lew Rockwell | place of birth | Boston | Sym |
Roman Jakobson | place of death | Boston | Sym |
Harold Ross | place of death | Boston | Sym |
Robert Benjamin Lewis | residence | Boston | Sym |
Herbert Gidney | place of birth | Boston | Sym |
Samuel L. Crocker | place of death | Boston | Sym |
Howard Johnson | place of birth | Boston | Sym |
Jonathan Kale | place of birth | Boston | Sym |
Jane Colman Turell | place of birth | Boston | Sym |
John Davenport | place of death | Boston | Sym |
Joseph Abraham Zilber | place of birth | Boston | Sym |
Joseph Tuckerman | place of birth | Boston | Sym |
Leone Lane | place of birth | Boston | Sym |
Mike Coppola | place of death | Boston | Sym |
Anita Fuentes | place of birth | Boston | Sym |
William Wallace Morland | place of death | Boston | Sym |
Paul X. Kelley | place of birth | Boston | Sym |
Willard Van Orman Quine | place of death | Boston | Sym |
Richard Reeve Baxter | place of death | Boston | Sym |
Mortal Fear | narrative location | Boston | Sym |
Cid Corman | place of birth | Boston | Sym |
Medina Dixon | place of birth | Boston | Sym |
Frank Ross | place of birth | Boston | Sym |
Blanchard Ryan | place of birth | Boston | Sym |
Rosemary Kennedy | place of birth | Boston | Sym |
William Gilson Farlow | place of birth | Boston | Sym |
Joseph John Ruocco | place of birth | Boston | Sym |
Marron Curtis Fort | place of birth | Boston | Sym |
Big Shug | place of birth | Boston | Sym |
Francisco Goldman | place of birth | Boston | Sym |
Gaston Chérau | place of death | Boston | Sym |
James Henry Emerton | place of death | Boston | Sym |
Kevin Chapman | place of birth | Boston | Sym |
Bud Blake | place of death | Boston | Sym |
William L. Shirer | place of death | Boston | Sym |
Bob Elliott | place of birth | Boston | Sym |
Michael Ryan | place of birth | Boston | Sym |
Thomas Curtis | place of birth | Boston | Sym |
Leon Tuck | place of death | Boston | Sym |
Oscar Brodney | place of birth | Boston | Sym |
Chico Scimone | place of birth | Boston | Sym |
Christopher Seider | place of death | Boston | Sym |
John Winthrop the Younger | place of death | Boston | Sym |
Marc Kirschner | work location | Boston | UnSym |
Charles Francis Adams III | place of death | Boston | Sym |
Borden Parker Bowne | place of death | Boston | Sym |
Béla Böszörményi-Nagy | place of death | Boston | Sym |
David B. Zilberman | place of death | Boston | Sym |
Joasaph | place of death | Boston | Sym |
Joasaph | place of birth | Boston | Sym |
Robert Cormier | place of death | Boston | Sym |
Rudolʹf Olʹshevskiĭ | place of death | Boston | Sym |
Robert Walthour | place of death | Boston | Sym |
Roy Haynes | place of birth | Boston | Sym |
Lynne Cox | place of birth | Boston | Sym |
Ada Adini | place of birth | Boston | Sym |
Amos Lawrence | place of death | Boston | Sym |
Ann Bauer | place of birth | Boston | Sym |
B. O. Flower | place of death | Boston | Sym |
George Wein | place of birth | Boston | Sym |
Carla DeSantis Black | place of birth | Boston | Sym |
Frank E. Guernsey | place of death | Boston | Sym |
Dan Barry | place of birth | Boston | Sym |
Dan Barry | place of death | Boston | Sym |
Dana Bullen | place of birth | Boston | Sym |
Daniel White | place of death | Boston | Sym |
George Nolfi | place of birth | Boston | Sym |
Joe Boyd | place of birth | Boston | Sym |
Donna Loren | place of birth | Boston | Sym |
Elizabeth Stuart Phelps Ward | place of birth | Boston | Sym |
Ellen Sturgis Hooper | place of birth | Boston | Sym |
Fudge Mabeta | place of birth | Boston | Sym |
Jon Foster | place of birth | Boston | Sym |
George Dickson | place of birth | Boston | Sym |
George Lyman Kittredge | place of birth | Boston | Sym |
Henry Whitney Bellows | place of birth | Boston | Sym |
Anton Leader | place of birth | Boston | Sym |
Warren Rudman | place of birth | Boston | Sym |
Jess Nevins | place of birth | Boston | Sym |
John Calvin Stevens | place of birth | Boston | Sym |
John Keefe | place of birth | Boston | Sym |
John Rock | place of death | Boston | Sym |
Kelly Lange | place of birth | Boston | Sym |
Stephen Greenblatt | place of birth | Boston | Sym |
Lenny Baker | place of birth | Boston | Sym |
Max Blumenthal | place of birth | Boston | Sym |
Nancy Garden | place of birth | Boston | Sym |
Paul Shapiro | place of birth | Boston | Sym |
Elliot Richardson | place of death | Boston | Sym |
Elliot Richardson | place of birth | Boston | Sym |
Q7323156 | place of birth | Boston | Sym |
Rob Morris | place of birth | Boston | Sym |
Samuel Crowther | place of death | Boston | Sym |
Seth Williams | place of death | Boston | Sym |
Albert Lord | place of birth | Boston | Sym |
Susan Hale | place of birth | Boston | Sym |
Massachusetts | capital | Boston | Sym |
Shirley Clarke | place of death | Boston | Sym |
Thomas G. Stevenson | place of birth | Boston | Sym |
Annisa Pohan | place of birth | Boston | Sym |
Edward Everett Hale | place of birth | Boston | Sym |
Wally Peterson | place of birth | Boston | Sym |
William Dummer | place of birth | Boston | Sym |
William Warren | place of death | Boston | Sym |
Thomas Bailey Aldrich | place of death | Boston | Sym |
Jerry Colonna | place of birth | Boston | Sym |
Brooks Adams | place of death | Boston | Sym |
Jonathan Roberts | place of birth | Boston | Sym |
Janet Auchincloss Rutherfurd | place of death | Boston | Sym |
Charles Bass | place of birth | Boston | Sym |
Charles Loring Jackson | place of birth | Boston | Sym |
import spark.implicits._
mergedDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
list: List[String] = List(src, rel, dst, srcentid, srclabel)
mergedDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 3 more fields]
Motif finding for relationship analysis
In this notebook, we are interested in motif finding for link prediction in a large scale knowledge graph. In particular, we explore the WikiKG dataset which is a directed graph containing 2,500,604 nodes, 16,109,182 edges and 535 relations. Given a motif \(M\) which contains \(n\) nodes and \(m\) edges, we are intereted in the super-motifs of \(M\) which contain \(n\) nodes and \(m+1\) edges. We would expect that finding frequent super-motifs of \(M\) would give insight for link prediction.
Problem Definition
Given a graph \(G=(V,E)\), let \(T^{(n,m)}\) T_nm
denote a set of motifs with \(n\) nodes and \(m\) edges and \(N(T_i^{(n,m)})\) N_T_nm_i
be the number of subgraphs in \(G\) defined by motifs \(T_i^{(n,m)}\) T_nm_i
. \(D(T_i^{(n,m)})\) D_T_nm_i
is the number of induced subgraphs defined by motifs \(T_i^{(n,m)}\) in \(G\).
In particular, we are interested in finding motifs with 3 nodes in graph, which are commonly called triads.
Since we are only interested in motifs with 3 nodes here, we set n=3 and simplify our notation as \(T^{(m)}\). \(T={\cup_{k=1}^6 T^{(k)}}\) denotes the set of all possible motifs with 3 nodes and \(|T|=64\). Here we give the problem 1 we are interested in:
Problem 1: Given a motif \(T_i^{(k)}\in T^{(k)}\), we could construct a subset \(T'^{(k+1)} \subset T^{(k+1)}\) by adding a non-existent edge into \(T_i^{(k)}\). For each motif \(t_j \in T'^{(k+1)}\), we define the significance score of \(t_i\) w.r.t \(T_i^{(k)}\) as following:
\[ S(t_j,T_i^{(k)}) = \frac{N(t_j)}{N(T_i^{(k)}) - D(T_i^{(k)})}. \]
Our goal is to find significant motifs in \(T'^{(k+1)}\) according to significance scores.
Lemma 1: Given a motif \(T_i^{(k)}\in T^{(k)}\) and corresponding \(T'^{(k+1)}\), we have:
\[ \sum_{j=1}^{|T'^{(k+1)}|} S(t_j,T_i^{(k)}) = 1 \]
Proof: It is obvious that \(T_i^{(k)}\) is a sub-motif for all motifs in \(T'^{(k+1)}\), when we compute \(N(T_i^{(k)})\) without \(D(T_i^{(k)})\), the number is exactly the summation of \(N(t_j)\).
According to problem 1 and lemma 1, we could get the significance score distribution of \(T'^{(k+1)}\) given motif \(T_i^{(k)}\). We could easily compute this distribution for all motifs in \(T\). This gives us insight of significant motifs for link recommendation or prediction tasks.
Motifs of 3 nodes
In this section, we show all possible motifs with three nodes and give a example of our problem. The following table shows the number of motifs with same edges. Fig. 1 visualize all possible motifs. Following our definition and we take motif 7 in Fig. 1 as a example. \(T_i^{(2)}\) denote motif 7 which contians 2 edges. Now we are interest to find set of its super-motif \(T'^{(k+1)} =\)[8,15,23,39]. If we only consider connected type. Motifs [1,2,3,5,6,9,17,19,33,41] in figure 1 will be ignored. | edges | motifs | super-motifs set| | ---- | ---- | -----| | 0 | 1 | 6*1 | | 1 | 6 | 5 *6 | | 2 | 15 | 4 *15 | | 3 | 20 | 3 *20 | | 4 | 15 | 2 *15 | | 5 | 6 | 1 *6 | | 6 | 1 | 0 |
![]() |
---|
Fig. 1 Motifs with 3 nodes |
To summerize, our problem formulate in the following bipartiet graph: || |:--:| |Fig. 3 Summerize Bipartite View of 2-hop Motif to its 3-hop Super-graph |
mergedDf2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
list2: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel)
mergedDF2: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 5 more fields]
rel_name_df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 1 more field]
list3: List[String] = List(relid, label, description)
relnamedf: org.apache.spark.sql.DataFrame = [relid: string, label: string ... 1 more field]
finalDf: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 7 more fields]
list4: List[String] = List(src, rel, dst, srcentid, srclabel, dstentid, dstlabel, relid, rellabel)
finalDF: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
edgesDF_: org.apache.spark.sql.DataFrame = [srclabel: string, rellabel: string ... 1 more field]
list5: List[String] = List(src, rel, dst)
edgesDF: org.apache.spark.sql.DataFrame = [src: string, rel: string ... 1 more field]
verticesDf: org.apache.spark.sql.DataFrame = [id: string]
graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string], e:[src: string, dst: string ... 1 more field])
Case Study:Motif 7 and its Super Motifs
Now we focus on motif 7 and its corresponding super motif set. To be specific, we have \(T_7^{(2)}\) and \(T'^{(3)} = [T_0^{(3)}, T_1^{(3)}, T_2^{(3)}, T_3^{(3)} ]\). Fig. 2 shows motif 7 and its super motifs. - We find the motifs in the graph and count these to see the most significant motifs in the super-motif set. In this phase, we ignore relationship type and only look at graph structure information defined by motifs. - Then we dive into different motifs by limiting edge relationship. For example, given motif ["(a)-[spouse]->(b); (b)-[child]->(c)"]
, what kind of relationship should we write for r3
in [a-[r3]->c]
? It is likely that r3
is child
, based on the statistical information that we get from motif counting. We can get the probability distribution of super motifs conditioned on the relationships. This give us reliable guesses for missing edges.
![]() |
---|
Fig. 2 Motif 7 followed by its 4 super motifs |
// example: Motif 7 and its super motif sets. Our goal is to find significant relations between these.
val motif_7 = "(a)-[r1]->(b); (b)-[r2]->(c)"
val motif_7_super_motifs = List("(a)-[r1]->(b); (b)-[r2]->(c); (c)-[r3]->(a)","(a)-[r1]->(b); (b)-[r2]->(c); (a)-[r3]->(c)", "(a)-[r1]->(b); (b)-[r2]->(c); (c)-[r3]->(b)", "(a)-[r1]->(b); (b)-[r2]->(c); (b)-[r3]->(a)")
motif_7: String = (a)-[r1]->(b); (b)-[r2]->(c)
motif_7_super_motifs: List[String] = List((a)-[r1]->(b); (b)-[r2]->(c); (c)-[r3]->(a), (a)-[r1]->(b); (b)-[r2]->(c); (a)-[r3]->(c), (a)-[r1]->(b); (b)-[r2]->(c); (c)-[r3]->(b), (a)-[r1]->(b); (b)-[r2]->(c); (b)-[r3]->(a))
Section 1: Significant motif finding
We now find these different motifs showed in Fig. 2. Following the case study question that we want to answer, we first give the significance of these 5 motifs in our knowladges graph. First of all, we generate subgraphs defined by these 5 motifs.
// Find motif 7
val motif_7_result = graph.find(motif_7).select($"a.id".as("a"), $"r1.rel".as("r1"), $"b.id".as("b"), $"r2.rel".as("r2"), $"c.id".as("c"))
motif_7_result: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 3 more fields]
motif_7_super_motif_0: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 3 more fields]
motif_7_super_motif_1: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 3 more fields]
motif_7_super_motif_2: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 3 more fields]
motif_7_super_motif_3: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 3 more fields]
// Find the 4 types of super-motifs to motif 7
val motif_7_super_motif_0 = graph.find(motif_7_super_motifs(0)).select($"a.id".as("a"), $"r1.rel".as("r1"), $"b.id".as("b"), $"r2.rel".as("r2"), $"c.id".as("c"),$"r3.rel".as("r3"))
val motif_7_super_motif_1 = graph.find(motif_7_super_motifs(1)).select($"a.id".as("a"), $"r1.rel".as("r1"), $"b.id".as("b"), $"r2.rel".as("r2"), $"c.id".as("c"),$"r3.rel".as("r3"))
val motif_7_super_motif_2 = graph.find(motif_7_super_motifs(2)).select($"a.id".as("a"), $"r1.rel".as("r1"), $"b.id".as("b"), $"r2.rel".as("r2"), $"c.id".as("c"),$"r3.rel".as("r3"))
val motif_7_super_motif_3 = graph.find(motif_7_super_motifs(3)).select($"a.id".as("a"), $"r1.rel".as("r1"), $"b.id".as("b"), $"r2.rel".as("r2"), $"c.id".as("c"),$"r3.rel".as("r3"))
motif_7_super_motif_0: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 4 more fields]
motif_7_super_motif_1: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 4 more fields]
motif_7_super_motif_2: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 4 more fields]
motif_7_super_motif_3: org.apache.spark.sql.DataFrame = [a: string, r1: string ... 4 more fields]
Here is a quick look of our motif 7 subgraph shown in graph frame. The are only 2 relationships in this motif. We may want to look at those tow realationships.
// Here we look at some examples from our motif finding results
val motif_7_result_head = motif_7_result.head(100)
display(motif_7_result_head)
a | r1 | b | r2 | c |
---|---|---|---|---|
& Yet & Yet | followed by | Winter Hymn Country Hymn Secret Hymn | follows | & Yet & Yet |
You, You're a History in Rust | follows | Winter Hymn Country Hymn Secret Hymn | follows | & Yet & Yet |
& Yet & Yet | follows | Goodbye Enemy Airship the Landlord Is Dead | followed by | & Yet & Yet |
(10499) 1986 RN5 | followed by | 10500 Nishi-koen | follows | (10499) 1986 RN5 |
10501 Ardmacha | follows | 10500 Nishi-koen | follows | (10499) 1986 RN5 |
(10499) 1986 RN5 | follows | 10498 Bobgent | followed by | (10499) 1986 RN5 |
(10497) 1986 RQ | followed by | 10498 Bobgent | followed by | (10499) 1986 RN5 |
(11058) 1991 PN10 | follows | (11057) 1991 NL | followed by | (11058) 1991 PN10 |
11056 Volland | followed by | (11057) 1991 NL | followed by | (11058) 1991 PN10 |
(11058) 1991 PN10 | followed by | 11059 Nulliusinverba | follows | (11058) 1991 PN10 |
(11060) 1991 RA13 | follows | 11059 Nulliusinverba | follows | (11058) 1991 PN10 |
(117404) 2005 AC9 | follows | (117403) 2005 AO8 | followed by | (117404) 2005 AC9 |
(13020) 1988 PW2 | followed by | (13021) 1988 RY5 | follows | (13020) 1988 PW2 |
(13022) 1988 RL9 | follows | (13021) 1988 RY5 | follows | (13020) 1988 PW2 |
Atë | mother | Eris | follows | (136198) 2003 UJ296 |
(136198) 2003 UJ296 | followed by | Eris | follows | (136198) 2003 UJ296 |
(136200) 2003 VS5 | follows | Eris | follows | (136198) 2003 UJ296 |
The Nuptials of Thetis and Peleus | depicts | Eris | follows | (136198) 2003 UJ296 |
Iliad | characters | Eris | follows | (136198) 2003 UJ296 |
Dysnomia | parent astronomical body | Eris | follows | (136198) 2003 UJ296 |
Eris | named after | Eris | follows | (136198) 2003 UJ296 |
Erebos | child | Eris | follows | (136198) 2003 UJ296 |
Judgement of Paris | characters | Eris | follows | (136198) 2003 UJ296 |
Apple of Discord | owned by | Eris | follows | (136198) 2003 UJ296 |
Hera | child astronomical body | Eris | follows | (136198) 2003 UJ296 |
Nyx | child | Eris | follows | (136198) 2003 UJ296 |
(15141) 2000 EP106 | followed by | (15142) 2000 EF108 | follows | (15141) 2000 EP106 |
(15143) 2000 EX108 | follows | (15142) 2000 EF108 | follows | (15141) 2000 EP106 |
(15141) 2000 EP106 | follows | (15140) 2000 EB97 | followed by | (15141) 2000 EP106 |
15139 Connormcarty | followed by | (15140) 2000 EB97 | followed by | (15141) 2000 EP106 |
(15683) 1981 EX25 | follows | (15682) 1981 EB25 | followed by | (15683) 1981 EX25 |
(15681) 1981 ES17 | followed by | (15682) 1981 EB25 | followed by | (15683) 1981 EX25 |
(15683) 1981 EX25 | followed by | (15684) 1981 ED28 | follows | (15683) 1981 EX25 |
(15685) 1981 EU33 | follows | (15684) 1981 ED28 | follows | (15683) 1981 EX25 |
(16307) 7569 P-L | followed by | (16308) 7627 P-L | follows | (16307) 7569 P-L |
(16309) 9054 P-L | follows | (16308) 7627 P-L | follows | (16307) 7569 P-L |
(16307) 7569 P-L | follows | (16306) 6797 P-L | followed by | (16307) 7569 P-L |
(16305) 6707 P-L | followed by | (16306) 6797 P-L | followed by | (16307) 7569 P-L |
(16467) 1990 FD3 | followed by | (16468) 1990 HW1 | follows | (16467) 1990 FD3 |
(16470) 1990 OM2 | follows | (16468) 1990 HW1 | follows | (16467) 1990 FD3 |
(16469) 1990 KR | follows | (16468) 1990 HW1 | follows | (16467) 1990 FD3 |
(16467) 1990 FD3 | follows | 16466 Piyashiriyama | followed by | (16467) 1990 FD3 |
16465 Basilrowe | followed by | 16466 Piyashiriyama | followed by | (16467) 1990 FD3 |
(17383) 1981 EE12 | followed by | (17384) 1981 EM12 | follows | (17383) 1981 EE12 |
(17385) 1981 EU13 | follows | (17384) 1981 EM12 | follows | (17383) 1981 EE12 |
(17383) 1981 EE12 | follows | (17382) 1981 EH11 | followed by | (17383) 1981 EE12 |
(17381) 1981 EC11 | followed by | (17382) 1981 EH11 | followed by | (17383) 1981 EE12 |
(20188) 1997 AC18 | follows | 20187 Janapittichová | followed by | (20188) 1997 AC18 |
(20186) 1997 AD8 | followed by | 20187 Janapittichová | followed by | (20188) 1997 AC18 |
(20188) 1997 AC18 | followed by | (20189) 1997 BS2 | follows | (20188) 1997 AC18 |
(20190) 1997 BZ2 | follows | (20189) 1997 BS2 | follows | (20188) 1997 AC18 |
(20671) 1999 UX48 | follows | (20670) 1999 UA46 | followed by | (20671) 1999 UX48 |
(20669) 1999 UO13 | followed by | (20670) 1999 UA46 | followed by | (20671) 1999 UX48 |
(20671) 1999 UX48 | followed by | (20672) 1999 UU50 | follows | (20671) 1999 UX48 |
20673 Janelle | follows | (20672) 1999 UU50 | follows | (20671) 1999 UX48 |
(20927) 1126 T-1 | follows | (20926) 1101 T-1 | followed by | (20927) 1126 T-1 |
(20925) 9596 P-L | followed by | (20926) 1101 T-1 | followed by | (20927) 1126 T-1 |
(20927) 1126 T-1 | followed by | (20928) 2024 T-1 | follows | (20927) 1126 T-1 |
(20929) 2050 T-1 | follows | (20928) 2024 T-1 | follows | (20927) 1126 T-1 |
(21340) 1997 CS19 | followed by | (21341) 1997 CV19 | follows | (21340) 1997 CS19 |
(21342) 1997 CS28 | follows | (21341) 1997 CV19 | follows | (21340) 1997 CS19 |
(21340) 1997 CS19 | follows | (21339) 1997 CL1 | followed by | (21340) 1997 CS19 |
(21338) 1997 CZ | followed by | (21339) 1997 CL1 | followed by | (21340) 1997 CS19 |
(21944) 1999 VA118 | follows | (21943) 1999 VG114 | followed by | (21944) 1999 VA118 |
21942 Subramanian | followed by | (21943) 1999 VG114 | followed by | (21944) 1999 VA118 |
(21946) 1999 VD138 | follows | 21945 Kleshchonok | follows | (21944) 1999 VA118 |
(21944) 1999 VA118 | followed by | 21945 Kleshchonok | follows | (21944) 1999 VA118 |
(21994) 1999 XU26 | followed by | (21995) 1999 XL29 | followed by | (21996) 1999 XP31 |
(21996) 1999 XP31 | follows | (21995) 1999 XL29 | followed by | (21996) 1999 XP31 |
(21996) 1999 XP31 | followed by | (21997) 1999 XP36 | follows | (21996) 1999 XP31 |
(21998) 1999 XH37 | follows | (21997) 1999 XP36 | follows | (21996) 1999 XP31 |
(22133) 2000 UO56 | follows | 22132 Merkley | followed by | (22133) 2000 UO56 |
(22131) 2000 UK4 | followed by | 22132 Merkley | followed by | (22133) 2000 UO56 |
(22133) 2000 UO56 | followed by | 22134 Kirian | follows | (22133) 2000 UO56 |
(22135) 2000 UA100 | follows | 22134 Kirian | follows | (22133) 2000 UO56 |
(22286) 1988 BO3 | followed by | (22287) 1988 RL12 | followed by | (22288) 1988 TR2 |
(22288) 1988 TR2 | follows | (22287) 1988 RL12 | followed by | (22288) 1988 TR2 |
(22288) 1988 TR2 | followed by | (22289) 1988 XV1 | follows | (22288) 1988 TR2 |
(22290) 1989 AO | follows | (22289) 1988 XV1 | follows | (22288) 1988 TR2 |
(22313) 1991 GP3 | followed by | (22314) 1991 GV3 | follows | (22313) 1991 GP3 |
(22315) 1991 GA4 | follows | (22314) 1991 GV3 | follows | (22313) 1991 GP3 |
(22313) 1991 GP3 | follows | 22312 Kelly | followed by | (22313) 1991 GP3 |
(22311) 1991 EF2 | followed by | 22312 Kelly | followed by | (22313) 1991 GP3 |
(22511) 1997 YC10 | follows | (22510) 1997 YV7 | followed by | (22511) 1997 YC10 |
(22509) 1997 YY2 | followed by | (22510) 1997 YV7 | followed by | (22511) 1997 YC10 |
(22511) 1997 YC10 | followed by | 22512 Cannat | follows | (22511) 1997 YC10 |
(22513) 1998 BX32 | follows | 22512 Cannat | follows | (22511) 1997 YC10 |
(22726) 1998 SZ72 | followed by | (22727) 1998 SV82 | follows | (22726) 1998 SZ72 |
(22728) 1998 SH106 | follows | (22727) 1998 SV82 | follows | (22726) 1998 SZ72 |
(22726) 1998 SZ72 | follows | 22725 Drabble | followed by | (22726) 1998 SZ72 |
22724 Byatt | followed by | 22725 Drabble | followed by | (22726) 1998 SZ72 |
(22755) 1998 WO9 | followed by | 22756 Manpreetkaur | follows | (22755) 1998 WO9 |
22757 Klimcak | follows | 22756 Manpreetkaur | follows | (22755) 1998 WO9 |
(22753) 1998 WT | followed by | 22754 Olympus | followed by | (22755) 1998 WO9 |
(22755) 1998 WO9 | follows | 22754 Olympus | followed by | (22755) 1998 WO9 |
(23299) 2001 AP9 | follows | 23298 Loewenstein | followed by | (23299) 2001 AP9 |
(23297) 2001 AX3 | followed by | 23298 Loewenstein | followed by | (23299) 2001 AP9 |
(23299) 2001 AP9 | followed by | (23300) 2001 AE16 | follows | (23299) 2001 AP9 |
(23301) 2001 AO16 | follows | (23300) 2001 AE16 | follows | (23299) 2001 AP9 |
(23723) 1998 HG40 | follows | 23722 Gulak | followed by | (23723) 1998 HG40 |
Next, we group our results for motif 7 based on the relations r1
or r2
. This allows us to find the most common relations that are part of this type of motif.
val motif_7_result_r1_count = motif_7_result.select("a", "r1", "b").groupBy("r1").count().cache()
val motif_7_result_r2_count = motif_7_result.select("b", "r2", "c").groupBy("r2").count().cache()
motif_7_result_r1_count: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [r1: string, count: bigint]
motif_7_result_r2_count: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [r2: string, count: bigint]
// group by relationship r1
display(motif_7_result_r1_count)
r1 | count |
---|---|
godparent | 387.0 |
interaction | 60.0 |
part of | 622865.0 |
molecular function | 2340.0 |
disease transmission process | 1.0 |
place served by transport hub | 2196.0 |
IUCN protected areas category | 1961.0 |
playing hand | 3034.0 |
family name | 1044442.0 |
parent astronomical body | 22346.0 |
topic's main Wikimedia portal | 1480.0 |
general manager | 39.0 |
end cause | 10.0 |
shares border with | 3080167.0 |
mushroom cap shape | 793.0 |
based on | 364327.0 |
present in work | 148960.0 |
public holiday | 5157.0 |
separated from | 353.0 |
filmography | 810.0 |
represented by | 28.0 |
standards body | 71.0 |
honorific suffix | 15.0 |
track gauge | 856.0 |
guest of honor | 9.0 |
topic's main category | 3150.0 |
writing system | 975.0 |
sexual orientation | 3022.0 |
father | 687219.0 |
given name version for other gender | 6046.0 |
industry | 5518.0 |
academic minor | 2.0 |
applies to jurisdiction | 56509.0 |
worshipped by | 715.0 |
crystal system | 738.0 |
performer | 1217956.0 |
business division | 878.0 |
place of burial | 183930.0 |
influenced by | 6656.0 |
this taxon is source of | 202.0 |
discovery method | 1.0 |
developer | 77162.0 |
head of state | 12768.0 |
fictional universe described in | 2945.0 |
notation | 15.0 |
PEGI rating | 5516.0 |
depicts | 846648.0 |
currency | 1724.0 |
ESRB rating | 26876.0 |
binding of software library | 9.0 |
replaced synonym (for nom. nov.) | 25.0 |
crystal habit | 4.0 |
armament | 10992.0 |
fictional or mythical analog of | 1454.0 |
basic form of government | 976.0 |
electoral district | 141.0 |
producer | 494100.0 |
shape | 190.0 |
taxon synonym | 688.0 |
highest judicial authority | 89.0 |
located in or next to body of water | 10820.0 |
replaced by | 11253.0 |
part of the series | 595455.0 |
after a work by | 3.0 |
Eight Banner register | 184.0 |
interleaves with | 175.0 |
measured physical quantity | 52.0 |
participant | 153472.0 |
narrative location | 1627832.0 |
recorded at studio or venue | 2012.0 |
lake on watercourse | 463.0 |
place of origin (Switzerland) | 33739.0 |
transport network | 35572.0 |
capital of | 5617.0 |
official language | 36493.0 |
list related to category | 503.0 |
airline alliance | 180.0 |
location of landing | 506.0 |
avionics | 95.0 |
characters | 56344.0 |
donated by | 989.0 |
collection | 250866.0 |
film editor | 7057.0 |
executive producer | 1559.0 |
chivalric order | 9.0 |
owner of | 149.0 |
structure replaced by | 253.0 |
presynaptic connection | 2.0 |
has part(s) | 363444.0 |
employer | 394686.0 |
located in the administrative territorial entity | 2.3447488e7 |
sponsor | 717.0 |
hair color | 535.0 |
chairperson | 29005.0 |
cathedral | 225.0 |
lyrics by | 88336.0 |
place of birth | 2.8623339e7 |
has seal, badge, or sigil | 2.0 |
instance of | 3.471216e7 |
subclass of | 154124.0 |
exclave of | 5468.0 |
located on street | 2223754.0 |
points/goal scored by | 2003.0 |
structural engineer | 1342.0 |
named after | 427528.0 |
officially opened by | 2829.0 |
maintained by | 27341.0 |
mother house | 1451.0 |
country of origin | 9998909.0 |
rector | 3017.0 |
medical condition | 6407.0 |
carries scientific instrument | 10.0 |
original combination | 819.0 |
CPU | 1147.0 |
airline hub | 2286.0 |
has facet polytope | 8046.0 |
licensed to broadcast to | 1875.0 |
site of astronomical discovery | 119486.0 |
prosecutor | 30.0 |
consecrator | 1157.0 |
instrumentation | 138.0 |
category related to list | 615.0 |
handedness | 1133.0 |
has vertex figure | 8.0 |
list of characters | 5.0 |
medical examination | 45.0 |
Code of nomenclature | 1537.0 |
composer | 64860.0 |
allegiance | 12869.0 |
encoded by | 10188.0 |
main building contractor | 1171.0 |
translator | 3841.0 |
organizer | 1176.0 |
occupant | 25235.0 |
represents | 14.0 |
contributing factor of | 2.0 |
place of death | 1.9865752e7 |
programmer | 1407.0 |
political alignment | 89.0 |
solved by | 149.0 |
relative | 24498.0 |
physically interacts with | 123.0 |
legislated by | 393.0 |
member of sports team | 1760165.0 |
director | 900553.0 |
category's main topic | 8369.0 |
category of associated people | 3418.0 |
introduced feature | 7.0 |
spouse | 418373.0 |
author | 461088.0 |
basin country | 16283.0 |
position played on team / speciality | 25790.0 |
sex or gender | 9074570.0 |
codomain | 30.0 |
located in/on physical feature | 46616.0 |
foundational text | 180.0 |
choreographer | 34.0 |
director of photography | 261046.0 |
language of work or name | 84672.0 |
powered by | 4324.0 |
patron saint | 35642.0 |
record label | 450540.0 |
pendant of | 10402.0 |
list of works | 28.0 |
from narrative universe | 13393.0 |
proved by | 100.0 |
position held | 897393.0 |
diocese | 4308.0 |
ortholog | 10120.0 |
endemic to | 10712.0 |
home port | 2222.0 |
docking port | 9.0 |
lifestyle | 1996.0 |
category combines topics | 300475.0 |
day in year for periodic occurrence | 968.0 |
conferred by | 5348.0 |
postsynaptic connection | 2.0 |
cover art by | 2057.0 |
has pet | 325.0 |
archives at | 3049.0 |
game mode | 22829.0 |
diplomatic relation | 61797.0 |
IUCN conservation status | 14497.0 |
office held by head of government | 10774.0 |
found in taxon | 47330.0 |
Wikimedia portal's main topic | 34395.0 |
native language | 38380.0 |
has contributing factor | 150.0 |
sport | 293584.0 |
child astronomical body | 8602.0 |
country of citizenship | 1.80850058e8 |
family | 20472.0 |
mother | 239203.0 |
location of creation | 97324.0 |
adjacent station | 190088.0 |
companion of | 107.0 |
imported from Wikimedia project | 4214.0 |
central bank/issuer | 84.0 |
noble title | 8504.0 |
replaces | 7747.0 |
has facility | 90.0 |
Unknown | 2465679.0 |
inspired by | 9971.0 |
inflows | 2183.0 |
cause of death | 72797.0 |
location of formation | 23429.0 |
student of | 29803.0 |
designed by | 28465.0 |
readable file format | 54.0 |
commissioned by | 9336.0 |
has natural reservoir | 38.0 |
religion or worldview | 44069.0 |
target | 192.0 |
coat of arms | 183.0 |
overlies | 385.0 |
has immediate cause | 83.0 |
ethnic group | 26345.0 |
programmed in | 17753.0 |
statement is subject of | 1026.0 |
input device | 9035.0 |
origin of the watercourse | 1056.0 |
captain | 231.0 |
used by | 182.0 |
country for sport | 827.0 |
list of episodes | 10.0 |
voice actor | 8453.0 |
main regulatory text | 596.0 |
capital | 197920.0 |
source of energy | 186.0 |
academic degree | 80057.0 |
minor planet group | 81207.0 |
founded by | 54180.0 |
contains settlement | 60037.0 |
surface played on | 373.0 |
member of | 291252.0 |
librettist | 4271.0 |
tracklist | 11621.0 |
activating neurotransmitter | 6.0 |
instruction set | 26.0 |
review score by | 9.0 |
notable work | 399637.0 |
lake outflow | 2163.0 |
tributary | 3801.0 |
official residence | 7595.0 |
constellation | 5101.0 |
has quality | 100.0 |
continent | 110433.0 |
taxon rank | 303187.0 |
follows | 1824692.0 |
valid in period | 104.0 |
script directionality | 2.0 |
feast day | 3017.0 |
stipe character | 628.0 |
head coach | 23985.0 |
discoverer or inventor | 278949.0 |
terminus location | 14912.0 |
movement | 28901.0 |
distribution format | 13328.0 |
said to be the same as | 286045.0 |
applies to part | 214.0 |
office contested | 95.0 |
owned by | 242459.0 |
terminus | 22471.0 |
charge | 3.0 |
manifestation of | 104.0 |
speaker | 137.0 |
edition or translation of | 11470.0 |
definition domain | 28.0 |
field of work | 30362.0 |
mouth of the watercourse | 61347.0 |
launch contractor | 23.0 |
student | 7505.0 |
central bank | 22.0 |
architectural style | 18895.0 |
plaintiff | 22.0 |
proxy | 26.0 |
Fach | 651.0 |
addressee | 117.0 |
scheduled service destination | 511.0 |
possible treatment | 7.0 |
cast member | 5682274.0 |
educated at | 1332170.0 |
described by source | 85045.0 |
chief operating officer | 41.0 |
immediate cause of | 10.0 |
ancestral home | 3392.0 |
curator | 24.0 |
workshop of | 47.0 |
item operated | 20634.0 |
home venue | 21474.0 |
connecting line | 58433.0 |
decays to | 17669.0 |
space tug | 9.0 |
category for people who died here | 32184.0 |
natural reservoir of | 5.0 |
candidate | 2446.0 |
software engine | 27978.0 |
soundtrack release | 828.0 |
voice type | 13717.0 |
approved by | 75.0 |
fuel system | 2.0 |
commemorates | 1491.0 |
depicted by | 1649.0 |
copyright license | 11137.0 |
illustrator | 15471.0 |
catalog | 118.0 |
kinship to subject | 18.0 |
architect | 79355.0 |
enclave within | 4874.0 |
has use | 6855.0 |
residence | 194480.0 |
parent taxon | 391549.0 |
has subsidiary | 1483.0 |
defendant | 33.0 |
honorific prefix | 589.0 |
country | 5.0991007e7 |
crosses | 57355.0 |
brand | 234.0 |
shooting handedness | 21.0 |
IMA status and/or rank | 594.0 |
headquarters location | 296339.0 |
torch lit by | 522.0 |
editor | 5258.0 |
distributed by | 12535.0 |
has edition or translation | 11700.0 |
CERO rating | 2602.0 |
home world | 93.0 |
category for films shot at this location | 5336.0 |
color | 2656.0 |
league | 13052.0 |
encodes | 66512.0 |
original language of film or TV show | 785073.0 |
doctoral advisor | 10093.0 |
spore print color | 1740.0 |
located on linear feature | 43.0 |
top-level Internet domain | 58.0 |
mascot | 96.0 |
discography | 93.0 |
defender | 14.0 |
dedicated to | 7876.0 |
USK rating | 3274.0 |
award received | 892473.0 |
penalty | 713.0 |
GSRR rating | 3.0 |
opposite of | 7109.0 |
unveiled by | 112.0 |
radio format | 8.0 |
topic's main template | 6.0 |
NATO code for grade | 46.0 |
filming location | 1078307.0 |
port of registry | 1664.0 |
template has topic | 8.0 |
afflicts | 163.0 |
territory claimed by | 2548.0 |
military rank | 32814.0 |
partially coincident with | 6041.0 |
flag | 289.0 |
point group | 176.0 |
winner | 16083.0 |
destination point | 1889.0 |
stock exchange | 4063.0 |
child | 778453.0 |
engine configuration | 906.0 |
parent of this hybrid, breed, or cultivar | 20.0 |
convicted of | 4550.0 |
space group | 848.0 |
category for people born here | 1179.0 |
stated in | 141.0 |
space launch vehicle | 1480.0 |
diplomatic mission sent | 30261.0 |
oath made by | 717.0 |
referee | 1150.0 |
tonality | 668.0 |
location | 1029798.0 |
is pollinated by | 4.0 |
is pollinator of | 4.0 |
of | 33.0 |
eye color | 2570.0 |
foods traditionally associated | 9.0 |
guidance system | 73.0 |
vice-county | 8.0 |
family name identical to this given name | 7612.0 |
production company | 97665.0 |
natural product of taxon | 245.0 |
GUI toolkit or framework | 645.0 |
twinning | 54.0 |
party chief representative | 335.0 |
military casualty classification | 14.0 |
motto | 10.0 |
member of political party | 4170474.0 |
connecting service | 10155.0 |
tempo marking | 6.0 |
symptoms and signs | 142.0 |
vessel class | 9823.0 |
ammunition | 1194.0 |
language regulatory body | 90.0 |
depends on software | 110.0 |
undercarriage | 102.0 |
input set | 6.0 |
military branch | 216736.0 |
taxonomic type | 1028.0 |
judge | 8.0 |
primary destinations | 2407.0 |
including | 30.0 |
head of government | 60129.0 |
type of orbit | 281.0 |
given name | 3.4471771e7 |
located in time zone | 38748.0 |
officeholder | 1951.0 |
cause of destruction | 264.0 |
blood type | 883.0 |
structure replaces | 50.0 |
participant in | 1830137.0 |
work location | 2624677.0 |
list of monuments | 15407.0 |
vehicle | 6851.0 |
dual to | 1922.0 |
executive body | 69.0 |
located on astronomical body | 9403.0 |
religious order | 4772.0 |
astronaut mission | 3619.0 |
legal form | 1046.0 |
direction | 2.0 |
name day | 4662.0 |
made from material | 320499.0 |
doctoral student | 3965.0 |
appointed by | 2483.0 |
unmarried partner | 14354.0 |
heritage designation | 149532.0 |
exhibition history | 7263.0 |
product or material produced | 1208.0 |
platform | 220849.0 |
place of publication | 88378.0 |
operating system | 10530.0 |
is a list of | 186870.0 |
instrument | 48170.0 |
languages spoken, written or signed | 623083.0 |
professorship | 296.0 |
academic thesis | 147.0 |
type of electrification | 3.0 |
genre | 1396262.0 |
anthem | 2096.0 |
manner of death | 6556.0 |
biological process | 1428.0 |
affiliation | 534.0 |
route of administration | 54.0 |
cleavage | 54.0 |
significant event | 15717.0 |
academic major | 85.0 |
contains the administrative territorial entity | 1114194.0 |
cell component | 2809.0 |
asteroid spectral type | 740.0 |
highest point | 1071.0 |
parent club | 579.0 |
temporal range start | 204.0 |
EC enzyme classification | 1.0 |
temporal range end | 200.0 |
asteroid family | 225.0 |
legislative body | 1182.0 |
interchange station | 690.0 |
start point | 1294.0 |
streak color | 110.0 |
significant drug interaction | 55768.0 |
killed by | 4294.0 |
has effect | 70.0 |
main subject | 531419.0 |
political ideology | 4237.0 |
basionym | 632.0 |
partner in business or sport | 38.0 |
wing configuration | 970.0 |
screenwriter | 568384.0 |
type of variable star | 10.0 |
mushroom ecological type | 310.0 |
fossil found in this unit | 17.0 |
successful candidate | 12076.0 |
field of this occupation | 2892.0 |
measurement scale | 9.0 |
twinned administrative body | 858371.0 |
occupation | 7455371.0 |
has cause | 219.0 |
crew member(s) | 23079.0 |
Digital Rights Management system | 2.0 |
bodies of water basin category | 42.0 |
edibility | 752.0 |
published in | 6356.0 |
original broadcaster | 18572.0 |
presenter | 8500.0 |
location of discovery | 3767.0 |
director / manager | 7641.0 |
theme music | 66.0 |
MPA film rating | 6.0 |
manufacturer | 35883.0 |
takes place in fictional universe | 1663.0 |
chromosome | 7494.0 |
product certification | 246.0 |
lowest point | 5.0 |
authority | 4.0 |
followed by | 1815007.0 |
contributor to the creative work or subject | 9071.0 |
category of people buried here | 48.0 |
printed by | 86.0 |
website account on | 179867.0 |
drafted by | 541.0 |
nominated for | 2083.0 |
writable file format | 44.0 |
conflict | 275777.0 |
exemplar of | 314.0 |
chief executive officer | 3449.0 |
coolant | 1306.0 |
publisher | 145065.0 |
canonization status | 8537.0 |
facet of | 39801.0 |
creator | 514986.0 |
commander of (DEPRECATED) | 365.0 |
parent organization | 5070.0 |
driving side | 36.0 |
operator | 121860.0 |
underlies | 402.0 |
// group by relationship r2
display(motif_7_result_r2_count)
r2 | count |
---|---|
godparent | 551.0 |
interaction | 54.0 |
part of | 4741168.0 |
molecular function | 12258.0 |
disease transmission process | 5.0 |
place served by transport hub | 68.0 |
IUCN protected areas category | 425.0 |
playing hand | 837.0 |
family name | 256450.0 |
topic's main Wikimedia portal | 2079099.0 |
parent astronomical body | 29513.0 |
general manager | 801.0 |
end cause | 1.0 |
shares border with | 2.6060585e7 |
mushroom cap shape | 77.0 |
present in work | 467178.0 |
separated from | 132546.0 |
based on | 123556.0 |
public holiday | 7522346.0 |
filmography | 231.0 |
represented by | 167.0 |
standards body | 75.0 |
track gauge | 8208.0 |
writing system | 167311.0 |
topic's main category | 458912.0 |
sexual orientation | 11668.0 |
father | 535101.0 |
given name version for other gender | 217267.0 |
industry | 48204.0 |
academic minor | 1.0 |
applies to jurisdiction | 13062.0 |
crystal system | 208.0 |
worshipped by | 7481.0 |
performer | 1728333.0 |
business division | 8457.0 |
place of burial | 141940.0 |
discovery method | 15.0 |
influenced by | 11092.0 |
this taxon is source of | 618.0 |
developer | 72282.0 |
head of state | 7913360.0 |
fictional universe described in | 4874.0 |
notation | 1.0 |
PEGI rating | 12235.0 |
depicts | 1387481.0 |
currency | 2764070.0 |
ESRB rating | 13297.0 |
binding of software library | 2.0 |
replaced synonym (for nom. nov.) | 32.0 |
basic form of government | 2850751.0 |
fictional or mythical analog of | 7203.0 |
armament | 189484.0 |
producer | 776936.0 |
shape | 468.0 |
taxon synonym | 258.0 |
highest judicial authority | 852804.0 |
located in or next to body of water | 523159.0 |
replaced by | 17631.0 |
part of the series | 306561.0 |
Eight Banner register | 1158.0 |
interleaves with | 94.0 |
measured physical quantity | 85.0 |
participant | 517165.0 |
narrative location | 572771.0 |
lake on watercourse | 1450.0 |
recorded at studio or venue | 249.0 |
place of origin (Switzerland) | 838.0 |
transport network | 1467.0 |
capital of | 141501.0 |
official language | 2355530.0 |
list related to category | 280.0 |
airline alliance | 282.0 |
avionics | 78.0 |
location of landing | 49.0 |
collection | 339283.0 |
characters | 65305.0 |
donated by | 7957.0 |
film editor | 13633.0 |
executive producer | 6566.0 |
structure replaced by | 48.0 |
owner of | 521.0 |
presynaptic connection | 1.0 |
has part(s) | 3786348.0 |
located in the administrative territorial entity | 7812739.0 |
employer | 43680.0 |
sponsor | 372.0 |
hair color | 615.0 |
chairperson | 728771.0 |
cathedral | 198.0 |
place of birth | 1515216.0 |
lyrics by | 75142.0 |
has seal, badge, or sigil | 57.0 |
instance of | 4.3158326e7 |
subclass of | 1.3403928e7 |
located on street | 71534.0 |
points/goal scored by | 254.0 |
exclave of | 1565.0 |
structural engineer | 459.0 |
named after | 2948169.0 |
officially opened by | 106869.0 |
maintained by | 4279.0 |
mother house | 330.0 |
rector | 228910.0 |
country of origin | 1239819.0 |
medical condition | 18329.0 |
carries scientific instrument | 1.0 |
CPU | 11419.0 |
original combination | 2.0 |
airline hub | 792.0 |
has facet polytope | 3487.0 |
consecrator | 199.0 |
site of astronomical discovery | 72687.0 |
instrumentation | 212.0 |
licensed to broadcast to | 50.0 |
prosecutor | 12.0 |
category related to list | 144.0 |
has vertex figure | 19.0 |
handedness | 847.0 |
Code of nomenclature | 5662.0 |
medical examination | 8601.0 |
list of characters | 126.0 |
composer | 108325.0 |
encoded by | 2628.0 |
main building contractor | 401.0 |
allegiance | 22298.0 |
organizer | 21253.0 |
translator | 4409.0 |
occupant | 7665.0 |
contributing factor of | 8.0 |
place of death | 756384.0 |
political alignment | 35283.0 |
programmer | 170.0 |
relative | 15680.0 |
legislated by | 495.0 |
physically interacts with | 2.0 |
director | 1439132.0 |
member of sports team | 351150.0 |
category's main topic | 5559.0 |
category of associated people | 2042670.0 |
introduced feature | 1.0 |
spouse | 470287.0 |
author | 466960.0 |
basin country | 3692.0 |
position played on team / speciality | 9414.0 |
sex or gender | 2944832.0 |
codomain | 141.0 |
located in/on physical feature | 143447.0 |
foundational text | 109188.0 |
choreographer | 3.0 |
director of photography | 605118.0 |
language of work or name | 731055.0 |
powered by | 6892.0 |
patron saint | 912064.0 |
record label | 2000525.0 |
pendant of | 2870.0 |
list of works | 971.0 |
from narrative universe | 1571531.0 |
position held | 288946.0 |
diocese | 8396.0 |
ortholog | 5116.0 |
endemic to | 16.0 |
home port | 113.0 |
docking port | 3.0 |
lifestyle | 25972.0 |
category combines topics | 24235.0 |
day in year for periodic occurrence | 1082.0 |
conferred by | 23087.0 |
postsynaptic connection | 1.0 |
cover art by | 628.0 |
has pet | 51.0 |
archives at | 11846.0 |
game mode | 84751.0 |
diplomatic relation | 4.4051385e7 |
IUCN conservation status | 1523886.0 |
office held by head of government | 1080817.0 |
found in taxon | 8817.0 |
Wikimedia portal's main topic | 116347.0 |
sport | 445305.0 |
has contributing factor | 50844.0 |
native language | 20546.0 |
family | 89832.0 |
country of citizenship | 2229897.0 |
child astronomical body | 54182.0 |
adjacent station | 226486.0 |
mother | 321571.0 |
location of creation | 4904.0 |
companion of | 47.0 |
noble title | 8533.0 |
imported from Wikimedia project | 4234.0 |
central bank/issuer | 246.0 |
replaces | 447289.0 |
has facility | 47.0 |
Unknown | 2604805.0 |
inspired by | 3852.0 |
cause of death | 154996.0 |
inflows | 2005.0 |
designed by | 13978.0 |
student of | 24839.0 |
location of formation | 32078.0 |
readable file format | 10.0 |
commissioned by | 39011.0 |
has natural reservoir | 82.0 |
overlies | 188.0 |
religion or worldview | 152937.0 |
has immediate cause | 36036.0 |
target | 219.0 |
coat of arms | 346868.0 |
ethnic group | 35483.0 |
statement is subject of | 2059.0 |
input device | 15672.0 |
programmed in | 59612.0 |
origin of the watercourse | 1742.0 |
used by | 16.0 |
captain | 2424.0 |
list of episodes | 317.0 |
country for sport | 25.0 |
voice actor | 18504.0 |
main regulatory text | 353866.0 |
capital | 2848928.0 |
academic degree | 5956.0 |
source of energy | 2242.0 |
minor planet group | 78310.0 |
founded by | 438286.0 |
contains settlement | 681520.0 |
surface played on | 2107.0 |
member of | 3.1759551e7 |
librettist | 7227.0 |
tracklist | 7634.0 |
activating neurotransmitter | 2.0 |
instruction set | 48.0 |
notable work | 160939.0 |
lake outflow | 778.0 |
official residence | 3851.0 |
taxon rank | 1776295.0 |
constellation | 408.0 |
tributary | 9333.0 |
continent | 2419170.0 |
has quality | 1.0701135e7 |
follows | 3040603.0 |
valid in period | 263.0 |
script directionality | 10.0 |
feast day | 40296.0 |
stipe character | 76.0 |
head coach | 218783.0 |
movement | 124667.0 |
discoverer or inventor | 121844.0 |
terminus location | 2021.0 |
distribution format | 47723.0 |
said to be the same as | 9065306.0 |
office contested | 37.0 |
applies to part | 9.0 |
owned by | 119250.0 |
manifestation of | 114.0 |
terminus | 17519.0 |
charge | 8.0 |
edition or translation of | 2358.0 |
speaker | 15.0 |
definition domain | 141.0 |
mouth of the watercourse | 32667.0 |
field of work | 48890.0 |
launch contractor | 81.0 |
student | 4451.0 |
architectural style | 31529.0 |
proxy | 34.0 |
Fach | 124.0 |
central bank | 173730.0 |
plaintiff | 4.0 |
scheduled service destination | 309.0 |
possible treatment | 10.0 |
cast member | 1.0345768e7 |
described by source | 1843084.0 |
educated at | 363415.0 |
chief operating officer | 12.0 |
immediate cause of | 1.0 |
ancestral home | 1051.0 |
workshop of | 24.0 |
curator | 11.0 |
home venue | 264714.0 |
item operated | 63479.0 |
connecting line | 107413.0 |
decays to | 5181.0 |
category for people who died here | 2815365.0 |
natural reservoir of | 46.0 |
software engine | 11180.0 |
candidate | 166.0 |
soundtrack release | 519.0 |
voice type | 19888.0 |
approved by | 712.0 |
fuel system | 1.0 |
depicted by | 6020.0 |
commemorates | 117.0 |
copyright license | 91215.0 |
illustrator | 5192.0 |
catalog | 96.0 |
kinship to subject | 1.0 |
architect | 37212.0 |
enclave within | 66543.0 |
has use | 23103.0 |
residence | 17141.0 |
parent taxon | 1789187.0 |
has subsidiary | 8794.0 |
honorific prefix | 15988.0 |
defendant | 4.0 |
country | 1.0152451e7 |
crosses | 479.0 |
brand | 23.0 |
IMA status and/or rank | 319.0 |
shooting handedness | 5.0 |
headquarters location | 680210.0 |
editor | 1569.0 |
torch lit by | 152041.0 |
has edition or translation | 8669.0 |
distributed by | 5092.0 |
home world | 430.0 |
CERO rating | 6321.0 |
category for films shot at this location | 2329804.0 |
league | 275919.0 |
color | 32602.0 |
encodes | 5170.0 |
original language of film or TV show | 1612805.0 |
doctoral advisor | 887.0 |
spore print color | 78.0 |
located on linear feature | 627.0 |
top-level Internet domain | 116326.0 |
mascot | 821.0 |
discography | 1043.0 |
dedicated to | 4726.0 |
USK rating | 10150.0 |
penalty | 34.0 |
award received | 699291.0 |
GSRR rating | 4.0 |
opposite of | 1597841.0 |
NATO code for grade | 3119.0 |
topic's main template | 71.0 |
filming location | 324652.0 |
port of registry | 951.0 |
afflicts | 261.0 |
template has topic | 4.0 |
military rank | 9508.0 |
territory claimed by | 2296.0 |
partially coincident with | 4800.0 |
flag | 1234139.0 |
point group | 508.0 |
destination point | 1524.0 |
winner | 10219.0 |
stock exchange | 20031.0 |
child | 911159.0 |
engine configuration | 856.0 |
convicted of | 2729.0 |
space group | 225.0 |
category for people born here | 249937.0 |
space launch vehicle | 1991.0 |
stated in | 1418.0 |
oath made by | 170014.0 |
referee | 119.0 |
diplomatic mission sent | 36.0 |
tonality | 197.0 |
location | 1149436.0 |
is pollinated by | 1.0 |
eye color | 1042.0 |
foods traditionally associated | 178.0 |
is pollinator of | 67.0 |
of | 4.0 |
guidance system | 628.0 |
vice-county | 1.0 |
production company | 466469.0 |
family name identical to this given name | 375792.0 |
natural product of taxon | 503.0 |
twinning | 93.0 |
GUI toolkit or framework | 129.0 |
party chief representative | 148894.0 |
motto | 3146.0 |
military casualty classification | 1.0 |
member of political party | 80459.0 |
hymenium attachment | 76.0 |
connecting service | 2655.0 |
tempo marking | 11.0 |
symptoms and signs | 14016.0 |
ammunition | 854.0 |
vessel class | 191296.0 |
language regulatory body | 60816.0 |
undercarriage | 146.0 |
depends on software | 2.0 |
taxonomic type | 1991.0 |
military branch | 33679.0 |
primary destinations | 1082.0 |
including | 533.0 |
head of government | 2.097501e7 |
type of orbit | 905.0 |
given name | 2159055.0 |
officeholder | 1433.0 |
located in time zone | 8916094.0 |
cause of destruction | 128.0 |
blood type | 86.0 |
structure replaces | 8.0 |
work location | 38584.0 |
list of monuments | 455881.0 |
participant in | 253039.0 |
vehicle | 818.0 |
dual to | 1584.0 |
executive body | 370094.0 |
astronaut mission | 1727.0 |
religious order | 21054.0 |
legal form | 4137.0 |
located on astronomical body | 4443.0 |
direction | 2.0 |
name day | 616503.0 |
mineral fracture | 8.0 |
made from material | 639572.0 |
doctoral student | 1256.0 |
heritage designation | 186537.0 |
unmarried partner | 22377.0 |
appointed by | 3699.0 |
exhibition history | 3885.0 |
product or material produced | 1295.0 |
platform | 161409.0 |
place of publication | 3589.0 |
languages spoken, written or signed | 84500.0 |
is a list of | 58294.0 |
operating system | 21158.0 |
instrument | 76181.0 |
professorship | 205.0 |
academic thesis | 17.0 |
type of electrification | 27.0 |
genre | 2492115.0 |
biological process | 33428.0 |
anthem | 1796154.0 |
affiliation | 1385.0 |
manner of death | 10253.0 |
route of administration | 253.0 |
cleavage | 18.0 |
significant event | 2998137.0 |
academic major | 52.0 |
contains the administrative territorial entity | 7.031694e7 |
cell component | 13454.0 |
asteroid spectral type | 778.0 |
highest point | 1745576.0 |
parent club | 3465.0 |
EC enzyme classification | 1.0 |
temporal range start | 1521114.0 |
asteroid family | 182.0 |
temporal range end | 98.0 |
hymenium type | 79.0 |
Lagrangian point | 172.0 |
start point | 1537.0 |
legislative body | 2070222.0 |
interchange station | 289.0 |
streak color | 76.0 |
significant drug interaction | 53605.0 |
killed by | 45114.0 |
has effect | 55.0 |
main subject | 303607.0 |
political ideology | 753247.0 |
basionym | 155.0 |
partner in business or sport | 11.0 |
wing configuration | 1171.0 |
screenwriter | 1185229.0 |
mushroom ecological type | 79.0 |
type of variable star | 14.0 |
successful candidate | 570.0 |
field of this occupation | 1534486.0 |
measurement scale | 5.0 |
dan/kyu rank | 4.0 |
twinned administrative body | 1.4735592e7 |
occupation | 3669876.0 |
has cause | 3024.0 |
crew member(s) | 4734.0 |
Digital Rights Management system | 76.0 |
bodies of water basin category | 315.0 |
edibility | 24.0 |
published in | 41681.0 |
original broadcaster | 88870.0 |
presenter | 5134.0 |
director / manager | 48800.0 |
location of discovery | 867.0 |
theme music | 94.0 |
MPA film rating | 206.0 |
GHS signal word | 37.0 |
manufacturer | 225984.0 |
authority | 19.0 |
chromosome | 5169.0 |
takes place in fictional universe | 5388.0 |
product certification | 165.0 |
lowest point | 60.0 |
followed by | 2042796.0 |
contributor to the creative work or subject | 7702.0 |
category of people buried here | 62258.0 |
printed by | 23.0 |
website account on | 204386.0 |
nominated for | 59232.0 |
drafted by | 39.0 |
writable file format | 8.0 |
conflict | 63995.0 |
chief executive officer | 8154.0 |
coolant | 724.0 |
publisher | 285796.0 |
canonization status | 74473.0 |
creator | 413719.0 |
facet of | 5117.0 |
commander of (DEPRECATED) | 56.0 |
parent organization | 17347.0 |
driving side | 208429.0 |
operator | 240029.0 |
underlies | 196.0 |
// Display some examples
display(motif_7_result)
We can note that a large amount of the motif matches found in the graph are related to countries or other administrative regsions. This is quite intuitive if we think of the exact configuration of motif 7. Almost all entities have some relation to a country/region, such as being located or born in. A country/region also has many relationships to information stored about it. Based on the results above, a likely combination of relations would be r1="country of citizenship"
and r2="diplomatic relation"
, which matches this intuition.
We now progress to count all of these motifs, allowing us to infer the likely super-motif from motif 7.
// get motif count for motif and corresponding super motif set.
val motif_7_count = motif_7_result.count()
motif_7_count: Long = 461186877
// We omit it here as it takes long time to run, the result is reported from another notebook we wrote.
// val motif_7_super_motif_0_count = motif_7_super_motif_0.cache().count()
// val motif_7_super_motif_1_count = motif_7_super_motif_1.cache().count()
// val motif_7_super_motif_2_count = motif_7_super_motif_2.cache().count()
// val motif_7_super_motif_3_count = motif_7_super_motif_3.cache().count()
val motif_7_super_motif_0_count = 82327906
val motif_7_super_motif_1_count = 200080767
val motif_7_super_motif_2_count = 430486542
val motif_7_super_motif_3_count = 437699609
// List(82327906, 200080767, 430486542, 437699609)
println(motif_7_count," ",motif_7_super_motif_0_count, " ", motif_7_super_motif_1_count," ", motif_7_super_motif_2_count, " ",motif_7_super_motif_3_count)
(461186877, ,82327906, ,200080767, ,430486542, ,437699609)
motif_7_super_motif_0_count: Int = 82327906
motif_7_super_motif_1_count: Int = 200080767
motif_7_super_motif_2_count: Int = 430486542
motif_7_super_motif_3_count: Int = 437699609
import spark.implicits._
val motif_count_list = Seq(("motif_7",461186877),("super_motif_0",82327906),("super_motif_1",200080767),("super_motif_2",430486542),("super_motif_3",437699609))
val motif_count_df = motif_count_list.toDF()
display(motif_count_df)
_1 | _2 |
---|---|
motif_7 | 4.61186877e8 |
super_motif_0 | 8.2327906e7 |
super_motif_1 | 2.00080767e8 |
super_motif_2 | 4.30486542e8 |
super_motif_3 | 4.37699609e8 |
![]() |
---|
Fig. 4 Summerize Bipartite View of Motif 7 to its 3-hop Super-graph |
From these results we can see that the super-motifs 2 and 3 above (corresponding to motifs 8 and 23 in Fig. 1) are far more likely than super-motifs 0 and 1, for the base-motif 7. In particular the super-motif 0 is not found many times. It should be noted that one instance of motif 7 can have multiple super-motifs of both the same or different types. This means that we should not expect the super-motif counts to add up to the count for motif 7.
Section 2: Relationship mining based on motifs
Now we dive in to the motif mining with relationship type constraints. First, we look relationships in motif 7 when we set one of the two relationship. This will help us to find significant relationships conditioned on the given relationship and structural information. - For motif 7, we have three nodes a,b,c
and two edges a-[r1]->b, b-[r2]->c
. This motif shows a chain relationship and would be helpful to reveal indirect relationship. For example, if we are interest in c
and try to figure out causality. We would explore this motif to get all information. For example, if c
is a famous person, then who is c
's parents and what kind of information links to them? We could set r2=child
to find this information in the graph.
// What are likely values for r1 when r2 is child?
val motif_7_r2Child = motif_7_result.filter("r2=='child'")
display(motif_7_r2Child)
a | r1 | b | r2 | c |
---|---|---|---|---|
Takaoka-shinnō | father | Emperor Heizei | child | Abo-shinnō |
Abo-shinnō | father | Emperor Heizei | child | Abo-shinnō |
Fujiwara no Otomuro | child | Emperor Heizei | child | Abo-shinnō |
Sugawara-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Kazurahara-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Q11623232 | spouse | Emperor Heizei | child | Abo-shinnō |
Fuse-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Asahara-naishinnō | spouse | Emperor Heizei | child | Abo-shinnō |
Asahara-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Emperor Kanmu | child | Emperor Heizei | child | Abo-shinnō |
Ōyake-naishinnō | spouse | Emperor Heizei | child | Abo-shinnō |
Ōyake-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Kōzu-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Asuka-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Iyo-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Koshi-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Q11614402 | Unknown | Emperor Heizei | child | Abo-shinnō |
Emperor Junna | Unknown | Emperor Heizei | child | Abo-shinnō |
Ate-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Fujii-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Nakano-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Emperor Saga | Unknown | Emperor Heizei | child | Abo-shinnō |
Ōhara-naishinnō | father | Emperor Heizei | child | Abo-shinnō |
Sami-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Ito-naishinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Kose-shinnō | father | Emperor Heizei | child | Abo-shinnō |
Kaya-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Manta-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Sakamoto-shinnō | Unknown | Emperor Heizei | child | Abo-shinnō |
Adele Astaire | mother | Ann Astaire | child | Adele Astaire |
Fritz Austerlitz | spouse | Ann Astaire | child | Adele Astaire |
Fred Astaire | mother | Ann Astaire | child | Adele Astaire |
Adele Astaire | father | Fritz Austerlitz | child | Adele Astaire |
Ann Astaire | spouse | Fritz Austerlitz | child | Adele Astaire |
Fred Astaire | father | Fritz Austerlitz | child | Adele Astaire |
Rudolf VI, Margrave of Baden | child | Bernard I, Margrave of Baden-Baden | child | Agnes of Baden |
Agnes of Baden | father | Bernard I, Margrave of Baden-Baden | child | Agnes of Baden |
Jacob, Margrave of Baden-Baden | father | Bernard I, Margrave of Baden-Baden | child | Agnes of Baden |
Aleksandr Boyarsky | father | Sergey Boyarsky | child | Aleksandr Boyarsky |
Nikolai Boyarskiy | Unknown | Sergey Boyarsky | child | Aleksandr Boyarsky |
Q4095521 | child | Sergey Boyarsky | child | Aleksandr Boyarsky |
Mikhail Boyarsky | father | Sergey Boyarsky | child | Aleksandr Boyarsky |
Alexandre Bertrand | father | Alexandre Jacques François Bertrand | child | Alexandre Bertrand |
Joseph Louis François Bertrand | father | Alexandre Jacques François Bertrand | child | Alexandre Bertrand |
Alfonso II d'Este | father | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Rodrigo of Aragon | Unknown | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Lucrezia Borgia | child | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Anna of Este | father | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Renee of France | spouse | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Alfonso I d'Este, Duke of Ferrara | child | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Alfonso II d'Este | mother | Renee of France | child | Alfonso II d'Este |
Charles Orlando, Dauphin of France | Unknown | Renee of France | child | Alfonso II d'Este |
Ercole II d'Este, Duke of Ferrara | spouse | Renee of France | child | Alfonso II d'Este |
Anna of Este | mother | Renee of France | child | Alfonso II d'Este |
Anne of Brittany | child | Renee of France | child | Alfonso II d'Este |
Claude of France | Unknown | Renee of France | child | Alfonso II d'Este |
Louis XII of France | child | Renee of France | child | Alfonso II d'Este |
Isabella of Castile, Queen of Aragon | Unknown | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Alfonso XI of Castile | follows | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Alfonso XI of Castile | father | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Sancho IV of León and Castile | followed by | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Sancho IV of León and Castile | child | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Beatrice of Castile II | Unknown | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Peter of Castile, Lord of Cameros | Unknown | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Eleanor of Castile II | father | Ferdinand IV of Castile | child | Alfonso XI of Castile |
María de Molinillo | child | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Constance of Portugal | spouse | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Alfonso XI of Castile | mother | Constance of Portugal | child | Alfonso XI of Castile |
Ferdinand IV of Castile | spouse | Constance of Portugal | child | Alfonso XI of Castile |
Elizabeth of Aragon | child | Constance of Portugal | child | Alfonso XI of Castile |
Afonso of Portugal | child | Constance of Portugal | child | Alfonso XI of Castile |
Eleanor of Castile II | mother | Constance of Portugal | child | Alfonso XI of Castile |
Isabella of Portugal | Unknown | Constance of Portugal | child | Alfonso XI of Castile |
Violante Manuel | child | Constance of Portugal | child | Alfonso XI of Castile |
Afonso IV of Portugal | Unknown | Constance of Portugal | child | Alfonso XI of Castile |
Denis I of Portugal | child | Constance of Portugal | child | Alfonso XI of Castile |
Queen Victoria | child | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alfred, Hereditary Prince of Saxe-Coburg and Gotha | father | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Edward VII | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Louise, Duchess of Argyll | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Beatrice of the United Kingdom | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duchess Maria Alexandrovna of Russia | spouse | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Alexandra of Saxe-Coburg and Gotha | father | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Albert, Prince Consort | child | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Ernest II, Duke of Saxe-Coburg and Gotha | followed by | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Beatrice of Saxe-Coburg and Gotha | father | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Prince Arthur, Duke of Connaught and Strathearn | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Helena of the United Kingdom | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Charles Edward, Duke of Saxe-Coburg and Gotha | follows | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Victoria Melita of Saxe-Coburg and Gotha | father | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Queen Marie of Romania | father | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Alice of the United Kingdom | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Prince Leopold, Duke of Albany | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Victoria, Princess Royal | Unknown | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Gerzog Edinburgski | named after | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alfred, Hereditary Prince of Saxe-Coburg and Gotha | mother | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Empress Maria Alexandrovna of Russia | child | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duke Vladimir Alexandrovich of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alexander II of Russia | child | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duke Alexei Alexandrovich of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Nicholas Alexandrovich, Tsarevich of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Catherine Yurievskaya | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alfred I, Duke of Saxe-Coburg and Gotha | spouse | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Alexandra of Saxe-Coburg and Gotha | mother | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Beatrice of Saxe-Coburg and Gotha | mother | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duke Sergei Alexandrovich of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alexander III of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Princess Victoria Melita of Saxe-Coburg and Gotha | mother | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Queen Marie of Romania | mother | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duke Paul Alexandrovich of Russia | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Olga Alexandrovna Yurievskaya | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Georgy Yuryevsky | Unknown | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Ameinias of Athens | father | Euphorion of Eleusis | child | Ameinias of Athens |
Aeschylus' sister | father | Euphorion of Eleusis | child | Ameinias of Athens |
Cynaegirus | father | Euphorion of Eleusis | child | Ameinias of Athens |
Aeschylus | father | Euphorion of Eleusis | child | Ameinias of Athens |
Andronikos II of Trebizond | father | Manuel I of Trebizond | child | Andronikos II of Trebizond |
George, Emperor of Trebizond | father | Manuel I of Trebizond | child | Andronikos II of Trebizond |
John II of Trebizond | father | Manuel I of Trebizond | child | Andronikos II of Trebizond |
Rusudan of Georgia, Empress of Trebizond | spouse | Manuel I of Trebizond | child | Andronikos II of Trebizond |
Alexios I of Trebizond | child | Manuel I of Trebizond | child | Andronikos II of Trebizond |
Theodora of Trebizond | father | Manuel I of Trebizond | child | Andronikos II of Trebizond |
John I of Trebizond | Unknown | Manuel I of Trebizond | child | Andronikos II of Trebizond |
Irene Syrikaina | spouse | Manuel I of Trebizond | child | Andronikos II of Trebizond |
Anna Xylaloe | spouse | Manuel I of Trebizond | child | Andronikos II of Trebizond |
André-Paul Antoine | father | André Antoine | child | André-Paul Antoine |
The Earth | director | André Antoine | child | André-Paul Antoine |
rue André-Antoine | named after | André Antoine | child | André-Paul Antoine |
Parliament of Wallonia | chairperson | André Antoine | child | André-Paul Antoine |
Anne of Lorraine, duchess of Aumale | father | Charles of Lorraine, duke of Aumale | child | Anne of Lorraine, duchess of Aumale |
Claude of Lorraine, duke of Aumale | child | Charles of Lorraine, duke of Aumale | child | Anne of Lorraine, duchess of Aumale |
Anthony I, Count of Ligny | mother | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Q442085 | mother | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Jeanne de Béthune, Viscountess of Meaux | child | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Robert of Bar, Count of Marle and Soissons | child | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Peter II, Count of Saint-Pol | mother | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Louis de Luxembourg, Count of Saint-Pol | spouse | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Anthony I, Count of Ligny | father | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Q442085 | father | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Peter II, Count of Saint-Pol | father | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Jeanne de Bar, Countess of Marle and Soissons | spouse | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Thibaud of Luxembourg | Unknown | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Peter I, Count of Saint-Pol | child | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Margherita del Balzo | child | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Marie of Savoy, Countess of Saint-Pol | spouse | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Jacques of Luxembourg | Unknown | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Jacquetta of Luxembourg | Unknown | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Q10338210 | father | Q10311027 | child | António Lobo Antunes |
António Lobo Antunes | father | Q10311027 | child | António Lobo Antunes |
João Lobo Antunes | father | Q10311027 | child | António Lobo Antunes |
Manuel Lobo Antunes | father | Q10311027 | child | António Lobo Antunes |
Araglas | father | Aragorn I | child | Araglas |
Aravir | child | Aragorn I | child | Araglas |
Aristobulus of Chalcis | father | Herod of Chalcis | child | Aristobulus of Chalcis |
Agrippa I | Unknown | Herod of Chalcis | child | Aristobulus of Chalcis |
Aristobulus IV | child | Herod of Chalcis | child | Aristobulus of Chalcis |
Atossa | child | Xerxes I | child | Artaxerxes I of Persia |
Q15784143 | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Artaxerxes I of Persia | father | Xerxes I | child | Artaxerxes I of Persia |
Abrocomes | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Q16022999 | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Artazostre | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Ariabignes | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Q11860548 | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Q11906699 | Unknown | Xerxes I | child | Artaxerxes I of Persia |
Darius I of Persia | child | Xerxes I | child | Artaxerxes I of Persia |
Augustus the Younger, Duke of Brunswick-Lüneburg | mother | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Maurice, Duke of Saxe-Lauenburg | Unknown | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Magnus II, Duke of Saxe-Lauenburg | Unknown | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Julius Ernst, Duke of Brunswick-Dannenberg | mother | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Francis I, Duke of Saxe-Lauenburg | child | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Henry, Duke of Brunswick-Dannenberg | spouse | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Sibylle of Saxony | child | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Ursula of Saxe-Lauenburg | spouse | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Augustus the Younger, Duke of Brunswick-Lüneburg | father | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Ernest I, Duke of Brunswick-Lüneburg | child | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Julius Ernst, Duke of Brunswick-Dannenberg | father | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Sophie of Mecklenburg-Schwerin | child | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Austin M. Purves, Jr. | father | Austin Montgomery Purves | child | Austin M. Purves, Jr. |
The Gardener | owned by | Austin Montgomery Purves | child | Austin M. Purves, Jr. |
Betsey P. C. Purves | spouse | Austin Montgomery Purves | child | Austin M. Purves, Jr. |
Austin M. Purves, Jr. | mother | Betsey P. C. Purves | child | Austin M. Purves, Jr. |
The Gardener | owned by | Betsey P. C. Purves | child | Austin M. Purves, Jr. |
Austin Montgomery Purves | spouse | Betsey P. C. Purves | child | Austin M. Purves, Jr. |
Benny Beimer | father | Hans Beimer | child | Benny Beimer |
Klaus Beimer | father | Hans Beimer | child | Benny Beimer |
Sophie Ziegler | father | Hans Beimer | child | Benny Beimer |
Anna Ziegler | spouse | Hans Beimer | child | Benny Beimer |
Helga Beimer | spouse | Hans Beimer | child | Benny Beimer |
Marion Beimer | father | Hans Beimer | child | Benny Beimer |
Hans Beimer | spouse | Helga Beimer | child | Benny Beimer |
Benny Beimer | mother | Helga Beimer | child | Benny Beimer |
Klaus Beimer | mother | Helga Beimer | child | Benny Beimer |
Lea Starck | relative | Helga Beimer | child | Benny Beimer |
Marion Beimer | mother | Helga Beimer | child | Benny Beimer |
Erich Schiller | spouse | Helga Beimer | child | Benny Beimer |
Bolko II of Ziębice | father | Bolko I the Strict | child | Bernard of Świdnica |
Bernard of Świdnica | father | Bolko I the Strict | child | Bernard of Świdnica |
Q394781 | Unknown | Bolko I the Strict | child | Bernard of Świdnica |
Beatrice of Brandenburg | spouse | Bolko I the Strict | child | Bernard of Świdnica |
Hedwig of Anhalt | child | Bolko I the Strict | child | Bernard of Świdnica |
Henry V, Duke of Legnica | Unknown | Bolko I the Strict | child | Bernard of Świdnica |
Bolesław II Rogatka | child | Bolko I the Strict | child | Bernard of Świdnica |
Henry I of Jawor | father | Bolko I the Strict | child | Bernard of Świdnica |
Beatrice of Silesia | father | Bolko I the Strict | child | Bernard of Świdnica |
Bolko II of Ziębice | mother | Beatrice of Brandenburg | child | Bernard of Świdnica |
Bernard of Świdnica | mother | Beatrice of Brandenburg | child | Bernard of Świdnica |
Bolko I the Strict | spouse | Beatrice of Brandenburg | child | Bernard of Świdnica |
Otto V, Margrave of Brandenburg-Salzwedel | child | Beatrice of Brandenburg | child | Bernard of Świdnica |
Casimir of Koźle | mother | Beatrice of Brandenburg | child | Bernard of Świdnica |
Władysław of Bytom | spouse | Beatrice of Brandenburg | child | Bernard of Świdnica |
Henry I of Jawor | mother | Beatrice of Brandenburg | child | Bernard of Świdnica |
Beatrice of Silesia | mother | Beatrice of Brandenburg | child | Bernard of Świdnica |
Carl-Herbert Dieden | father | Herbert Dieden | child | Carl-Herbert Dieden |
Berthold Dieden | child | Herbert Dieden | child | Carl-Herbert Dieden |
Thorborg Wehtje | spouse | Herbert Dieden | child | Carl-Herbert Dieden |
Carl-Herbert Dieden | mother | Thorborg Wehtje | child | Carl-Herbert Dieden |
Herbert Dieden | spouse | Thorborg Wehtje | child | Carl-Herbert Dieden |
Ernst Wehtje | child | Thorborg Wehtje | child | Carl-Herbert Dieden |
Carmen Franco, 1st Duchess of Franco | father | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Nicolás Franco Salgado-Araújo | child | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Caudillo | cast member | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Pilar Bahamonde y Pardo de Andrade | child | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Statue of Francisco Franco | dedicated to | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
María del Carmen Polo Martínez-Valdés | spouse | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
People's Party | chairperson | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Franco, ese hombre | cast member | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Carmen Franco, 1st Duchess of Franco | mother | María del Carmen Polo Martínez-Valdés | child | Carmen Franco, 1st Duchess of Franco |
Francisco Franco | spouse | María del Carmen Polo Martínez-Valdés | child | Carmen Franco, 1st Duchess of Franco |
Charles Berkeley, 2nd Earl of Berkeley | father | George Berkeley, 1st Earl of Berkeley | child | Charles Berkeley, 2nd Earl of Berkeley |
Charles William, Duke of Saxe-Meiningen | mother | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
George I | mother | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Princess Charlotte of Saxe-Meiningen | mother | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Anton Ulrich, Duke of Saxe-Meiningen | spouse | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
William, Landgrave of Hesse-Philippsthal | Unknown | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Caroline Christine of Saxe-Eisenach | child | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Charles I, Landgrave of Hesse-Philippsthal | child | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Princess Louise of Saxe-Meiningen | mother | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Charles William, Duke of Saxe-Meiningen | father | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Charles William, Duke of Saxe-Meiningen | follows | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
George I | father | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Bernhard I | child | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Princess Charlotte Amalie of Hesse-Philippsthal | spouse | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Princess Charlotte of Saxe-Meiningen | father | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Princess Louise of Saxe-Meiningen | father | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Elisabeth Eleonore of Brunswick-Wolfenbüttel | child | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Charles, Prince of Rochefort | father | Charles III, Prince of Guéméné | child | Charles, Prince of Rochefort |
Hercule Mériadec, Prince of Guéméné | father | Charles III, Prince of Guéméné | child | Charles, Prince of Rochefort |
Charlotte Chaffanjon | father | Philippe Chaffanjon | child | Charlotte Chaffanjon |
Arnaud Chaffanjon | child | Philippe Chaffanjon | child | Charlotte Chaffanjon |
Chen Yannian | father | Chen Duxiu | child | Chen Yannian |
Chinese Communist Party | founded by | Chen Duxiu | child | Chen Yannian |
Chen Qiaonian | father | Chen Duxiu | child | Chen Yannian |
Guntram Pauli | given name | Guntram | child | Chlothar I |
Chlothar I | child | Guntram | child | Chlothar I |
Chlothar I | father | Guntram | child | Chlothar I |
Guntram Blaser | given name | Guntram | child | Chlothar I |
Chilperic I | Unknown | Guntram | child | Chlothar I |
Guntram Weissenberger | given name | Guntram | child | Chlothar I |
Chram | Unknown | Guntram | child | Chlothar I |
Guntram Vesper | given name | Guntram | child | Chlothar I |
Guntram Schneider | given name | Guntram | child | Chlothar I |
Sigebert I | Unknown | Guntram | child | Chlothar I |
Guntram Franke | given name | Guntram | child | Chlothar I |
Guntram Koch | given name | Guntram | child | Chlothar I |
Guntram Lesch | given name | Guntram | child | Chlothar I |
Guntram Hecht | given name | Guntram | child | Chlothar I |
Guntram Lins | given name | Guntram | child | Chlothar I |
Guntram Hämmerle | given name | Guntram | child | Chlothar I |
Guntram Plangg | given name | Guntram | child | Chlothar I |
Guntram Saladin | given name | Guntram | child | Chlothar I |
Guntram Pflaum | given name | Guntram | child | Chlothar I |
Guntram Fischer | given name | Guntram | child | Chlothar I |
Guntram Brattia | given name | Guntram | child | Chlothar I |
Guntram Schulze-Wegener | given name | Guntram | child | Chlothar I |
Guntram Wolff | given name | Guntram | child | Chlothar I |
Guntram Altnöder | given name | Guntram | child | Chlothar I |
Charibert I | Unknown | Guntram | child | Chlothar I |
Ingund | child | Guntram | child | Chlothar I |
Guntram Palm | given name | Guntram | child | Chlothar I |
Guntram Schernthaner | given name | Guntram | child | Chlothar I |
Guntram | given name | Guntram | child | Chlothar I |
Guntram Gärtner | given name | Guntram | child | Chlothar I |
Guntram Wolf | given name | Guntram | child | Chlothar I |
Theuderic I | Unknown | Clotilde | child | Chlothar I |
Clotilde Kleeberg | given name | Clotilde | child | Chlothar I |
Chlothar I | mother | Clotilde | child | Chlothar I |
Chlothar I | Unknown | Clotilde | child | Chlothar I |
Clotilde Marghieri | given name | Clotilde | child | Chlothar I |
Clotilde Borella | given name | Clotilde | child | Chlothar I |
Clotilde Barto | given name | Clotilde | child | Chlothar I |
Clotilde Kainerstorfer | given name | Clotilde | child | Chlothar I |
Q3681202 | given name | Clotilde | child | Chlothar I |
Clotilde Hesme | given name | Clotilde | child | Chlothar I |
Clotilde Coulombe | given name | Clotilde | child | Chlothar I |
Clotilde Leal-Lopez | given name | Clotilde | child | Chlothar I |
Chilperic II of Burgundy | child | Clotilde | child | Chlothar I |
Clotilde Legrand | given name | Clotilde | child | Chlothar I |
Clotilde Joano | given name | Clotilde | child | Chlothar I |
Clotilde Tambroni | given name | Clotilde | child | Chlothar I |
Clotilde Graves | given name | Clotilde | child | Chlothar I |
Clotilde Fasolis | given name | Clotilde | child | Chlothar I |
Saint Clotilde | depicts | Clotilde | child | Chlothar I |
Clotilde de Vaux | given name | Clotilde | child | Chlothar I |
Clotilde Dissard | given name | Clotilde | child | Chlothar I |
Childebert I | mother | Clotilde | child | Chlothar I |
Childebert I | Unknown | Clotilde | child | Chlothar I |
Q2979700 | given name | Clotilde | child | Chlothar I |
Clotilde de Bayser | given name | Clotilde | child | Chlothar I |
Clotilde | mother | Clotilde | child | Chlothar I |
Clotilde | given name | Clotilde | child | Chlothar I |
Clotilde | given name | Clotilde | child | Chlothar I |
Clotilde | child | Clotilde | child | Chlothar I |
Clovis I | spouse | Clotilde | child | Chlothar I |
Clovis I | child | Clotilde | child | Chlothar I |
Chlodomer | mother | Clotilde | child | Chlothar I |
Chlodomer | Unknown | Clotilde | child | Chlothar I |
Clotilde von Derp | given name | Clotilde | child | Chlothar I |
Clotilde Muñoz Cañada | given name | Clotilde | child | Chlothar I |
Clotilde Flaugère | given name | Clotilde | child | Chlothar I |
Clotilde Mollet | given name | Clotilde | child | Chlothar I |
Clotilde González de Fernández | given name | Clotilde | child | Chlothar I |
Amalaric | spouse | Clotilde | child | Chlothar I |
Clotilde Nyssens | given name | Clotilde | child | Chlothar I |
Sainte-Clotilde Church | named after | Clotilde | child | Chlothar I |
Clotilde Guillén de Rezzano | given name | Clotilde | child | Chlothar I |
Marie Clotilde of France | given name | Clotilde | child | Chlothar I |
Clotilde Vautier | given name | Clotilde | child | Chlothar I |
Clotilde Niragira | given name | Clotilde | child | Chlothar I |
Clotilde Dunant | given name | Clotilde | child | Chlothar I |
Clotilde de Surville | given name | Clotilde | child | Chlothar I |
Clotilde Rosa | given name | Clotilde | child | Chlothar I |
Clotilde Leguil | given name | Clotilde | child | Chlothar I |
Clotilde de Marelle | given name | Clotilde | child | Chlothar I |
Clotilde Arias | given name | Clotilde | child | Chlothar I |
Q18336217 | given name | Clotilde | child | Chlothar I |
Maria Serafina del Sacro Cuore | given name | Clotilde | child | Chlothar I |
Clotilde Valter | given name | Clotilde | child | Chlothar I |
Clotilde Courau | given name | Clotilde | child | Chlothar I |
Clotilde Dusoulier | given name | Clotilde | child | Chlothar I |
Q15471919 | given name | Clotilde | child | Chlothar I |
Archduchess Clotilde, Archduchess Joseph Karl of Austria | given name | Clotilde | child | Chlothar I |
Clotilde Sabatino | given name | Clotilde | child | Chlothar I |
Clotilde De Spirito | given name | Clotilde | child | Chlothar I |
Clotilde Rullaud | given name | Clotilde | child | Chlothar I |
Theuderic I | father | Clovis I | child | Chlothar I |
Chlothar I | follows | Clovis I | child | Chlothar I |
Chlothar I | father | Clovis I | child | Chlothar I |
Basina of Thuringia | child | Clovis I | child | Chlothar I |
Childeric I | followed by | Clovis I | child | Chlothar I |
Childeric I | child | Clovis I | child | Chlothar I |
Childebert I | father | Clovis I | child | Chlothar I |
Clotilde | spouse | Clovis I | child | Chlothar I |
Clotilde | father | Clovis I | child | Chlothar I |
Chlodomer | father | Clovis I | child | Chlothar I |
Chlodomer | follows | Clovis I | child | Chlothar I |
Audofleda | Unknown | Clovis I | child | Chlothar I |
Christopher Cornford | father | F. M. Cornford | child | Christopher Cornford |
John Cornford | father | F. M. Cornford | child | Christopher Cornford |
Christopher Cornford | mother | Frances Cornford | child | Christopher Cornford |
John Cornford | mother | Frances Cornford | child | Christopher Cornford |
Francis Darwin | child | Frances Cornford | child | Christopher Cornford |
Lamoral, 1st Prince of Ligne | child | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Claude Lamoral, 3rd Prince of Ligne | father | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Louise of Lorraine | spouse | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Albert Henri of Ligne | father | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Anna Maria van Melun | child | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Claude Lamoral, 3rd Prince of Ligne | mother | Louise of Lorraine | child | Claude Lamoral, 3rd Prince of Ligne |
Florent de Ligne | spouse | Louise of Lorraine | child | Claude Lamoral, 3rd Prince of Ligne |
Henry III of France | spouse | Louise of Lorraine | child | Claude Lamoral, 3rd Prince of Ligne |
Nicolas of Lorraine, Duke of Mercœur | child | Louise of Lorraine | child | Claude Lamoral, 3rd Prince of Ligne |
Clement Hurd | father | Richard Melancthon Hurd | child | Clement Hurd |
Conrad II, Count of Oldenburg | father | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
Christian V, Count of Oldenburg | father | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
John II of Oldenburg | child | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
Christian IV, Count of Oldenburg | Unknown | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
John III, Count of Oldenburg | Unknown | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
Constantin Melnik | mother | Tatiana Botkina | child | Constantin Melnik |
Gleb Botkin | Unknown | Tatiana Botkina | child | Constantin Melnik |
Eugene Botkin | child | Tatiana Botkina | child | Constantin Melnik |
Olga Botkina | child | Tatiana Botkina | child | Constantin Melnik |
Cornelius Vanderbilt II | Unknown | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Cornelia Stuyvesant Vanderbilt | father | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Edith Vanderbilt | spouse | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
William Henry Vanderbilt | child | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Frederick William Vanderbilt | Unknown | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
William Kissam Vanderbilt I | Unknown | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Cornelia Stuyvesant Vanderbilt | mother | Edith Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
George Washington Vanderbilt | spouse | Edith Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Ermesinde of Luxembourg, Countess of Namur | child | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Godfrey I, Count of Namur | child | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Countess Ermesinde II, Countess of Luxembourg | father | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Laurette of Flanders | spouse | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Alice of Namur | Unknown | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Daniel Day-Lewis | father | Cecil Day-Lewis | child | Daniel Day-Lewis |
The Otterbury Incident | author | Cecil Day-Lewis | child | Daniel Day-Lewis |
Jill Balcon | spouse | Cecil Day-Lewis | child | Daniel Day-Lewis |
Tamasin Day-Lewis | father | Cecil Day-Lewis | child | Daniel Day-Lewis |
This Man Must Die | screenwriter | Cecil Day-Lewis | child | Daniel Day-Lewis |
Daniel Day-Lewis | mother | Jill Balcon | child | Daniel Day-Lewis |
Saraband for Dead Lovers | cast member | Jill Balcon | child | Daniel Day-Lewis |
Tamasin Day-Lewis | mother | Jill Balcon | child | Daniel Day-Lewis |
Cecil Day-Lewis | spouse | Jill Balcon | child | Daniel Day-Lewis |
Dantivarman | father | Nandivarman II | child | Dantivarman |
Date Muratomi | father | Q11380800 | child | Date Muratomi |
Davyd Sviatoslavich | father | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Wyszesława of Kyiv | father | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Vsevolod I of Kyiv | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Anastasia of Kyiv | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Anne of Kyiv | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Ingegerd Olofsdotter of Sweden | child | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Igor Yaroslavich | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Iziaslav I of Kyiv | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Gleb Svyatoslavich | father | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Elisiv of Kyiv | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Yaroslav the Wise | child | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Oleg I of Chernigov | father | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Agatha, wife of Edward the Exile | Unknown | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Dwight D. Eisenhower | spouse | Mamie Eisenhower | child | Doud Eisenhower |
John Eisenhower | mother | Mamie Eisenhower | child | Doud Eisenhower |
Doud Eisenhower | mother | Mamie Eisenhower | child | Doud Eisenhower |
Nazi Concentration Camps | cast member | Dwight D. Eisenhower | child | Doud Eisenhower |
John Eisenhower | father | Dwight D. Eisenhower | child | Doud Eisenhower |
Doud Eisenhower | father | Dwight D. Eisenhower | child | Doud Eisenhower |
The True Glory | cast member | Dwight D. Eisenhower | child | Doud Eisenhower |
The Shock Doctrine | cast member | Dwight D. Eisenhower | child | Doud Eisenhower |
Hôtel Mignot | occupant | Dwight D. Eisenhower | child | Doud Eisenhower |
1952 United States presidential election | successful candidate | Dwight D. Eisenhower | child | Doud Eisenhower |
Mamie Eisenhower | spouse | Dwight D. Eisenhower | child | Doud Eisenhower |
Nuremberg | cast member | Dwight D. Eisenhower | child | Doud Eisenhower |
1956 United States presidential election | successful candidate | Dwight D. Eisenhower | child | Doud Eisenhower |
United States of America | head of government | Dwight D. Eisenhower | child | Doud Eisenhower |
avenue du Général-Eisenhower | named after | Dwight D. Eisenhower | child | Doud Eisenhower |
Superstar: The Life and Times of Andy Warhol | cast member | Dwight D. Eisenhower | child | Doud Eisenhower |
USS Dwight D. Eisenhower | named after | Dwight D. Eisenhower | child | Doud Eisenhower |
Roscille of Anjou | spouse | Alan II, Duke of Brittany | child | Drogo, Duke of Brittany |
Drogo, Duke of Brittany | father | Alan II, Duke of Brittany | child | Drogo, Duke of Brittany |
Guerech, Duke of Brittany | father | Alan II, Duke of Brittany | child | Drogo, Duke of Brittany |
Hoël I, Duke of Brittany | father | Alan II, Duke of Brittany | child | Drogo, Duke of Brittany |
Adelaide of Blois | spouse | Alan II, Duke of Brittany | child | Drogo, Duke of Brittany |
Alan II, Duke of Brittany | spouse | Adelaide of Blois | child | Drogo, Duke of Brittany |
Drogo, Duke of Brittany | mother | Adelaide of Blois | child | Drogo, Duke of Brittany |
Fulk II, Count of Anjou | spouse | Adelaide of Blois | child | Drogo, Duke of Brittany |
Duke Alexander of Württemberg | mother | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Duchess Elisabeth Alexandrine of Württemberg | mother | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Duchess Amelia of Württemberg | mother | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Mary of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Princess Amalie of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Karl Ludwig of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Duchess Maria Dorothea of Württemberg | mother | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Princess Karoline of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Prince Karl of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Pauline Therese of Württemberg | mother | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | spouse | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Caroline of Orange-Nassau | child | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Princess Wilhelmine Luise of Nassau-Weilburg | Unknown | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Charles Christian of Nassau-Weilburg | child | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Margravine Philippine of Brandenburg-Schwedt | Unknown | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duchess Frederica of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Maria Feodorovna | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | spouse | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duchess Elisabeth of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Margravine Elisabeth Louise of Brandenburg-Schwedt | Unknown | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duke William Frederick Philip of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Frederick William, Margrave of Brandenburg-Schwedt | child | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Princess Sophia Dorothea of Prussia | child | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Frederick I of Württemberg | mother | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | Unknown | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Elisabeth Alexandrine of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Amelia of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | spouse | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Frederica of Württemberg | Unknown | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Maria Dorothea of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Elisabeth of Württemberg | Unknown | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Adam of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Pauline Therese of Württemberg | father | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | Unknown | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Frederick I of Württemberg | Unknown | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Maria Wirtemberska | spouse | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Philipp of Württemberg | father | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Princess Marie of France | spouse | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Countess Claudine Rhédey von Kis-Rhéde | spouse | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | father | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duchess Amelia of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duchess Frederica of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duchess Elisabeth of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Princess Antoinette of Saxe-Coburg-Saalfeld | spouse | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Pauline Therese of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Francis, Duke of Teck | father | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duchess Marie of Württemberg | father | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Frederick I of Württemberg | Unknown | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Frederica of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Maria Feodorovna | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | spouse | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Elisabeth of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Princess Marie Auguste of Thurn and Taxis | child | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duchess Auguste Elisabeth of Württemberg | Unknown | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke William Frederick Philip of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Frederick I of Württemberg | father | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Charles Alexander, Duke of Württemberg | child | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | mother | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | spouse | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Leopold I of Belgium | Unknown | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Countess Augusta Reuss of Ebersdorf | child | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Francis, Duke of Saxe-Coburg-Saalfeld | child | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Duchess Marie of Württemberg | mother | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Duke Xi of Lu | mother | Q15942023 | child | Duke Xi of Lu |
Q622873 | spouse | Q15942023 | child | Duke Xi of Lu |
Q15007995 | spouse | Q622873 | child | Duke Xi of Lu |
Duke Xi of Lu | father | Q622873 | child | Duke Xi of Lu |
Q16603347 | spouse | Q622873 | child | Duke Xi of Lu |
Q3698897 | Unknown | Q622873 | child | Duke Xi of Lu |
Q16603369 | spouse | Q622873 | child | Duke Xi of Lu |
Q6377655 | father | Q622873 | child | Duke Xi of Lu |
Q625186 | father | Q622873 | child | Duke Xi of Lu |
Q625182 | father | Q622873 | child | Duke Xi of Lu |
Wen Jiang | child | Q622873 | child | Duke Xi of Lu |
Q15942023 | spouse | Q622873 | child | Duke Xi of Lu |
Q3727273 | Unknown | Q622873 | child | Duke Xi of Lu |
Q10912819 | Unknown | Q622873 | child | Duke Xi of Lu |
Duke Huan of Lu | child | Q622873 | child | Duke Xi of Lu |
Edmund Holland, 4th Earl of Kent | Unknown | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Joan Holland | Unknown | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas of Lancaster, 1st Duke of Clarence | spouse | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Holland, Countess of Salisbury | Unknown | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Beaufort, Count of Perche | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Henry Beaufort, 2nd Earl of Somerset | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Devon | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Holland, 1st Duke of Surrey | Unknown | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | spouse | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Holland, 2nd Earl of Kent | child | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Alice Holland, Countess of Kent | child | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Joan Beaufort | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Duke of Somerset | mother | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Elizabeth of Lancaster, Duchess of Exeter | Unknown | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Beaufort, Count of Perche | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Swynford | Unknown | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
House of Beaufort | founded by | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Henry Beaufort, 2nd Earl of Somerset | follows | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Henry Beaufort, 2nd Earl of Somerset | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Katherine Swynford | child | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Catherine of Lancaster | Unknown | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Devon | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Henry IV of England | Unknown | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John of Gaunt | child | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Joan Beaufort | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | spouse | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Duke of Somerset | father | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Philippa of Lancaster | Unknown | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Edred of England | mother | Eadgifu of Kent | child | Edred of England |
Edmund I of England | mother | Eadgifu of Kent | child | Edred of England |
Eadburh of Winchester | mother | Eadgifu of Kent | child | Edred of England |
Edward the Elder | spouse | Eadgifu of Kent | child | Edred of England |
Edred of England | father | Edward the Elder | child | Edred of England |
Ecgwynn | spouse | Edward the Elder | child | Edred of England |
Alfred the Great | followed by | Edward the Elder | child | Edred of England |
Alfred the Great | child | Edward the Elder | child | Edred of England |
Edmund I of England | father | Edward the Elder | child | Edred of England |
Ælfthryth, Countess of Flanders | Unknown | Edward the Elder | child | Edred of England |
Eadgifu of Wessex | father | Edward the Elder | child | Edred of England |
Eadburh of Winchester | father | Edward the Elder | child | Edred of England |
Edwin, son of Edward the Elder | father | Edward the Elder | child | Edred of England |
Æthelflæd | Unknown | Edward the Elder | child | Edred of England |
Ælfflæd, wife of Edward the Elder | spouse | Edward the Elder | child | Edred of England |
Ælfweard of Wessex | follows | Edward the Elder | child | Edred of England |
Ælfweard of Wessex | father | Edward the Elder | child | Edred of England |
Æthelstan | father | Edward the Elder | child | Edred of England |
Æthelstan | follows | Edward the Elder | child | Edred of England |
Eadgyth | father | Edward the Elder | child | Edred of England |
Æthelweard | Unknown | Edward the Elder | child | Edred of England |
Ælfwynn | followed by | Edward the Elder | child | Edred of England |
Ealhswith | child | Edward the Elder | child | Edred of England |
Eadgifu of Kent | spouse | Edward the Elder | child | Edred of England |
Edward Herbert, 3rd Baron Herbert of Chirbury | father | Richard Herbert, 2nd Baron Herbert of Chirbury | child | Edward Herbert, 3rd Baron Herbert of Chirbury |
Edward Herbert, 1st Baron Herbert of Cherbury | child | Richard Herbert, 2nd Baron Herbert of Chirbury | child | Edward Herbert, 3rd Baron Herbert of Chirbury |
Elizabeth of Carinthia, Queen of Germany | mother | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Otto III, Duke of Carinthia | mother | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Agnes of the Palatinate | child | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Agnes von Görz und Tirol | mother | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Henry of Bohemia | mother | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Otto IV or II Wittelsbach | child | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Conradin | mother | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Conrad IV of Germany | spouse | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard | spouse | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Schuster | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard I, Count of Gorizia | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Schmidt-Degenhard | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | father | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard I, Count of Gorizia-Tyrol | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard I, Count of Gorizia-Tyrol | child | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Edwin Mayer | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Werra-Meißner-Kreis | contains the administrative territorial entity | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Saint Meinhard | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Starostik | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Zanger | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard II, Count of Gorizia | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Elisabeth of Bavaria, Queen of Germany | spouse | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Otto III, Duke of Carinthia | father | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Füllner | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Agnes von Görz und Tirol | father | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Henry of Bohemia | father | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Prill | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Puhl | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard von Gerkan | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Glanz | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard V, Count of Gorizia | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard III, Count of Gorizia-Tyrol | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Michael Moser | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard von Schönberg | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Uentz | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard of Neuhaus | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Hemp | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Hilf | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Erlacher | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Adler | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Ade | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Jacoby | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard von Zallinger | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Plesken | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard VI of Gorizia | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Ciresa | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhardt Schomberg, 3rd Duke of Schomberg | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Hoffmann | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Miegel | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard von Pfaundler | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Meinhard Nehmer | given name | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Ernst Franz Karl von Gemmingen | father | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Karl Ludwig Dietrich von Gemmingen | Unknown | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Johann Dietrich von Gemmingen | child | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Ernst von Gemmingen | Unknown | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Ernst von Gemmingen-Hornberg | child | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Amalie von Gemmingen | Unknown | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Eugenio Lopez III | father | Eugenio Lopez, Jr. | child | Eugenio Lopez III |
Eugenio Lopez, Sr. | child | Eugenio Lopez, Jr. | child | Eugenio Lopez III |
Filippo Pedrini | father | Domenico Pedrini | child | Filippo Pedrini |
François-Henri Pinault | father | François Pinault | child | François-Henri Pinault |
Kering | founded by | François Pinault | child | François-Henri Pinault |
Fashion! | cast member | François Pinault | child | François-Henri Pinault |
Frederick Barton Maurice | father | John Frederick Maurice | child | Frederick Barton Maurice |
Frederick Denison Maurice | child | John Frederick Maurice | child | Frederick Barton Maurice |
Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym | father | Victor I, Prince of Anhalt-Bernburg-Schaumburg-Hoym | child | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym |
Victoria Charlotte of Anhalt-Zeitz-Hoym | father | Victor I, Prince of Anhalt-Bernburg-Schaumburg-Hoym | child | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym |
Charles Louis, Prince of Anhalt-Bernburg-Schaumburg-Hoym | father | Victor I, Prince of Anhalt-Bernburg-Schaumburg-Hoym | child | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym |
Lebrecht, Prince of Anhalt-Zeitz-Hoym | child | Victor I, Prince of Anhalt-Bernburg-Schaumburg-Hoym | child | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym |
Friedrich Günther, Prince of Schwarzburg-Rudolstadt | mother | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Leopold of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Albert, Prince of Schwarzburg-Rudolstadt | mother | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Landgravine Auguste of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Louis Frederick II, Prince of Schwarzburg-Rudolstadt | spouse | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Frederick V, Landgrave of Hesse-Homburg | child | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Gustav, Landgrave of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Landgravine Amalie of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Ferdinand, Landgrave of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Princess Maria Anna of Hesse-Homburg | Unknown | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Landgravine Caroline of Hesse-Darmstadt | child | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Friedrich Günther, Prince of Schwarzburg-Rudolstadt | father | Louis Frederick II, Prince of Schwarzburg-Rudolstadt | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Albert, Prince of Schwarzburg-Rudolstadt | father | Louis Frederick II, Prince of Schwarzburg-Rudolstadt | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Frederick Charles, Prince of Schwarzburg-Rudolstadt | child | Louis Frederick II, Prince of Schwarzburg-Rudolstadt | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Caroline of Hesse-Homburg | spouse | Louis Frederick II, Prince of Schwarzburg-Rudolstadt | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Fritz Thyssen | father | August Thyssen | child | Fritz Thyssen |
Heinrich, Baron Thyssen-Bornemisza de Kászon | father | August Thyssen | child | Fritz Thyssen |
August Thyssen junior | father | August Thyssen | child | Fritz Thyssen |
Joseph Thyssen | Unknown | August Thyssen | child | Fritz Thyssen |
Friedrich Thyssen | child | August Thyssen | child | Fritz Thyssen |
Hedwig Thyssen | father | August Thyssen | child | Fritz Thyssen |
Fujiwara no Kaneko/Kaishi | father | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Kinsue | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Q13368464 | child | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Q11458686 | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Kaneie | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Anshi | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Q15838940 | father | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Takamitsu | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Tamemitsu | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Yoshikane | father | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Ainomiya | Unknown | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Morosuke | child | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Yoshitaka | father | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Kinsue | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Kanshi | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q13368464 | spouse | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q11458686 | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Gashi-naishinnō | spouse | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Kaneie | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Kōshi-naishinnō | spouse | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Anshi | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Morotada | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Kinshi-naishinnō | spouse | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q11623222 | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Kanemichi | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Takamitsu | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Tadahira | child | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Saneyori | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Tamemitsu | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Kishi | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Fujiwara no Koretada | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Ainomiya | father | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q11623226 | Unknown | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q11623418 | father | Fujiwara no Fusatsugu | child | Fujiwara no Sawako |
Fujiwara no Sawako | father | Fujiwara no Fusatsugu | child | Fujiwara no Sawako |
Q18325897 | father | Fujiwara no Fusatsugu | child | Fujiwara no Sawako |
Q11623346 | child | Fujiwara no Fusatsugu | child | Fujiwara no Sawako |
Fushimi-no-miya Kunisuke-shinnō | father | Q11381086 | child | Fushimi-no-miya Kunisuke-shinnō |
Q11381099 | child | Q11381086 | child | Fushimi-no-miya Kunisuke-shinnō |
Andronikos II of Trebizond | father | Manuel I of Trebizond | child | George, Emperor of Trebizond |
George, Emperor of Trebizond | father | Manuel I of Trebizond | child | George, Emperor of Trebizond |
John II of Trebizond | father | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Rusudan of Georgia, Empress of Trebizond | spouse | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Alexios I of Trebizond | child | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Theodora of Trebizond | father | Manuel I of Trebizond | child | George, Emperor of Trebizond |
John I of Trebizond | Unknown | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Irene Syrikaina | spouse | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Anna Xylaloe | spouse | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Eugene Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Eugene O'Neill | child | Oona O'Neill | child | Geraldine Chaplin |
Geraldine Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Michael Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Charlie Chaplin | spouse | Oona O'Neill | child | Geraldine Chaplin |
Josephine Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Victoria Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Christopher Chaplin | mother | Oona O'Neill | child | Geraldine Chaplin |
Agnes Boulton | child | Oona O'Neill | child | Geraldine Chaplin |
Eugene Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
By the Sea | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
By the Sea | director | Charlie Chaplin | child | Geraldine Chaplin |
By the Sea | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Geraldine Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
The Star Boarder | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Star Boarder | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Recreation | director | Charlie Chaplin | child | Geraldine Chaplin |
Recreation | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Recreation | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Tramp | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Tramp | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Tramp | director | Charlie Chaplin | child | Geraldine Chaplin |
The Adventurer | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Adventurer | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Adventurer | director | Charlie Chaplin | child | Geraldine Chaplin |
The Chaplin Revue | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Chaplin Revue | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Chaplin Revue | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Chaplin Revue | director | Charlie Chaplin | child | Geraldine Chaplin |
Zander the Great | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Rink | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Rink | director | Charlie Chaplin | child | Geraldine Chaplin |
The Rink | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Rink | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Michael Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
Statue of Charlie Chaplin | depicts | Charlie Chaplin | child | Geraldine Chaplin |
A Woman | director | Charlie Chaplin | child | Geraldine Chaplin |
A Woman | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Woman | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Face on the Bar Room Floor | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Face on the Bar Room Floor | director | Charlie Chaplin | child | Geraldine Chaplin |
The Face on the Bar Room Floor | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Gold Rush | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Gold Rush | composer | Charlie Chaplin | child | Geraldine Chaplin |
The Gold Rush | director | Charlie Chaplin | child | Geraldine Chaplin |
The Gold Rush | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Gold Rush | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Camille | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Making a Living | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Laughing Gas | director | Charlie Chaplin | child | Geraldine Chaplin |
Laughing Gas | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Laughing Gas | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Burlesque on Carmen | director | Charlie Chaplin | child | Geraldine Chaplin |
Burlesque on Carmen | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Burlesque on Carmen | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
His Musical Career | director | Charlie Chaplin | child | Geraldine Chaplin |
His Musical Career | cast member | Charlie Chaplin | child | Geraldine Chaplin |
His Musical Career | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Tutto il mondo ride | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Little Tramp | main subject | Charlie Chaplin | child | Geraldine Chaplin |
The Champion | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Champion | director | Charlie Chaplin | child | Geraldine Chaplin |
The Champion | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Caught in the Rain | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Caught in the Rain | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Caught in the Rain | director | Charlie Chaplin | child | Geraldine Chaplin |
The Cure | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Cure | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Cure | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Cure | director | Charlie Chaplin | child | Geraldine Chaplin |
Paulette Goddard | spouse | Charlie Chaplin | child | Geraldine Chaplin |
Triple Trouble | director | Charlie Chaplin | child | Geraldine Chaplin |
Triple Trouble | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Triple Trouble | cast member | Charlie Chaplin | child | Geraldine Chaplin |
30 Years of Fun | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Fireman | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Fireman | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Fireman | director | Charlie Chaplin | child | Geraldine Chaplin |
Between Showers | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Between Showers | cast member | Charlie Chaplin | child | Geraldine Chaplin |
One A.M. | cast member | Charlie Chaplin | child | Geraldine Chaplin |
One A.M. | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
One A.M. | producer | Charlie Chaplin | child | Geraldine Chaplin |
One A.M. | director | Charlie Chaplin | child | Geraldine Chaplin |
The Professor | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Professor | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Professor | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Professor | director | Charlie Chaplin | child | Geraldine Chaplin |
Lita Grey | spouse | Charlie Chaplin | child | Geraldine Chaplin |
Nickelodeon Days | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Oona O'Neill | spouse | Charlie Chaplin | child | Geraldine Chaplin |
Work | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Work | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Work | director | Charlie Chaplin | child | Geraldine Chaplin |
Behind the Screen | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Behind the Screen | director | Charlie Chaplin | child | Geraldine Chaplin |
Behind the Screen | cast member | Charlie Chaplin | child | Geraldine Chaplin |
His Regeneration | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Property Man | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Property Man | director | Charlie Chaplin | child | Geraldine Chaplin |
The Property Man | cast member | Charlie Chaplin | child | Geraldine Chaplin |
City Lights | director | Charlie Chaplin | child | Geraldine Chaplin |
City Lights | cast member | Charlie Chaplin | child | Geraldine Chaplin |
City Lights | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The New Janitor | director | Charlie Chaplin | child | Geraldine Chaplin |
The New Janitor | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The New Janitor | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Wheeler Dryden | Unknown | Charlie Chaplin | child | Geraldine Chaplin |
Zelig | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Day's Pleasure | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Day's Pleasure | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Day's Pleasure | director | Charlie Chaplin | child | Geraldine Chaplin |
Mabel's Busy Day | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Mabel's Busy Day | director | Charlie Chaplin | child | Geraldine Chaplin |
Days of Thrills and Laughter | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Thief Catcher | cast member | Charlie Chaplin | child | Geraldine Chaplin |
In the Park | cast member | Charlie Chaplin | child | Geraldine Chaplin |
In the Park | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
In the Park | director | Charlie Chaplin | child | Geraldine Chaplin |
Shoulder Arms | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Shoulder Arms | director | Charlie Chaplin | child | Geraldine Chaplin |
Shoulder Arms | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Jitney Elopement | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Jitney Elopement | director | Charlie Chaplin | child | Geraldine Chaplin |
A Jitney Elopement | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Souls for Sale | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Night in the Show | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Night in the Show | director | Charlie Chaplin | child | Geraldine Chaplin |
A Night in the Show | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Josephine Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
Irwin Corey | influenced by | Charlie Chaplin | child | Geraldine Chaplin |
His New Job | cast member | Charlie Chaplin | child | Geraldine Chaplin |
His New Job | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
His New Job | director | Charlie Chaplin | child | Geraldine Chaplin |
The Film Parade | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Victoria Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
A King in New York | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A King in New York | director | Charlie Chaplin | child | Geraldine Chaplin |
A King in New York | producer | Charlie Chaplin | child | Geraldine Chaplin |
A King in New York | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Essanay-Chaplin Revue of 1916 | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Essanay-Chaplin Revue of 1916 | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Essanay-Chaplin Revue of 1916 | director | Charlie Chaplin | child | Geraldine Chaplin |
The Essanay-Chaplin Revue of 1916 | producer | Charlie Chaplin | child | Geraldine Chaplin |
A Busy Day | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Busy Day | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Busy Day | director | Charlie Chaplin | child | Geraldine Chaplin |
Christopher Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
Sunnyside | director | Charlie Chaplin | child | Geraldine Chaplin |
Sunnyside | producer | Charlie Chaplin | child | Geraldine Chaplin |
Sunnyside | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Sunnyside | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
His Trysting Place | director | Charlie Chaplin | child | Geraldine Chaplin |
His Trysting Place | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
His Trysting Place | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Introducing Charlie Chaplin | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Idle Class | director | Charlie Chaplin | child | Geraldine Chaplin |
The Idle Class | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Idle Class | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Masquerader | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Masquerader | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Masquerader | director | Charlie Chaplin | child | Geraldine Chaplin |
Police | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Police | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Police | director | Charlie Chaplin | child | Geraldine Chaplin |
A Woman of Paris | producer | Charlie Chaplin | child | Geraldine Chaplin |
A Woman of Paris | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Woman of Paris | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Woman of Paris | director | Charlie Chaplin | child | Geraldine Chaplin |
His Prehistoric Past | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
His Prehistoric Past | director | Charlie Chaplin | child | Geraldine Chaplin |
His Prehistoric Past | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Count | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Count | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Count | director | Charlie Chaplin | child | Geraldine Chaplin |
The Count | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Eternal Jew | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Caught in a Cabaret | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Caught in a Cabaret | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Pay Day | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Pay Day | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Pay Day | director | Charlie Chaplin | child | Geraldine Chaplin |
Charles Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
Shanghaied | director | Charlie Chaplin | child | Geraldine Chaplin |
Shanghaied | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Shanghaied | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Tillie's Punctured Romance | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Her Friend the Bandit | director | Charlie Chaplin | child | Geraldine Chaplin |
Her Friend the Bandit | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Her Friend the Bandit | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Tango Tangles | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Tango Tangles | cast member | Charlie Chaplin | child | Geraldine Chaplin |
MGM's Big Parade of Comedy | cast member | Charlie Chaplin | child | Geraldine Chaplin |
3623 Chaplin | named after | Charlie Chaplin | child | Geraldine Chaplin |
Cruel, Cruel Love | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Cruel, Cruel Love | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Seeing Stars | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Modern Times | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Modern Times | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Modern Times | director | Charlie Chaplin | child | Geraldine Chaplin |
Monsieur Verdoux | director | Charlie Chaplin | child | Geraldine Chaplin |
Monsieur Verdoux | producer | Charlie Chaplin | child | Geraldine Chaplin |
Monsieur Verdoux | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Monsieur Verdoux | cast member | Charlie Chaplin | child | Geraldine Chaplin |
United Artists Corporation | founded by | Charlie Chaplin | child | Geraldine Chaplin |
His Favourite Pastime | cast member | Charlie Chaplin | child | Geraldine Chaplin |
His Favourite Pastime | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Chaplin: A Life | main subject | Charlie Chaplin | child | Geraldine Chaplin |
Limelight | director | Charlie Chaplin | child | Geraldine Chaplin |
Limelight | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Limelight | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Limelight | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Vagabond | director | Charlie Chaplin | child | Geraldine Chaplin |
The Vagabond | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Vagabond | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Vagabond | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Show People | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Ça c'est du cinéma | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Bank | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Bank | director | Charlie Chaplin | child | Geraldine Chaplin |
The Bank | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Sydney Chaplin | Unknown | Charlie Chaplin | child | Geraldine Chaplin |
Sydney Chaplin | father | Charlie Chaplin | child | Geraldine Chaplin |
Mabel's Married Life | director | Charlie Chaplin | child | Geraldine Chaplin |
Mabel's Married Life | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Mabel's Married Life | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Mildred Harris | spouse | Charlie Chaplin | child | Geraldine Chaplin |
The Floorwalker | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Floorwalker | director | Charlie Chaplin | child | Geraldine Chaplin |
The Floorwalker | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Floorwalker | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Those Love Pangs | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Those Love Pangs | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Those Love Pangs | director | Charlie Chaplin | child | Geraldine Chaplin |
The Great Dictator | composer | Charlie Chaplin | child | Geraldine Chaplin |
The Great Dictator | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Great Dictator | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Great Dictator | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Pawnshop | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Pawnshop | director | Charlie Chaplin | child | Geraldine Chaplin |
The Pawnshop | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Pawnshop | producer | Charlie Chaplin | child | Geraldine Chaplin |
The Rounders | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Rounders | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Rounders | director | Charlie Chaplin | child | Geraldine Chaplin |
A Film Johnnie | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Knockout | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Knockout | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
The Fatal Mallet | cast member | Charlie Chaplin | child | Geraldine Chaplin |
The Fatal Mallet | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Countess from Hong Kong | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
A Countess from Hong Kong | director | Charlie Chaplin | child | Geraldine Chaplin |
A Countess from Hong Kong | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Dog's Life | director | Charlie Chaplin | child | Geraldine Chaplin |
A Dog's Life | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Dog's Life | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Charles Chaplin Sr. | child | Charlie Chaplin | child | Geraldine Chaplin |
When Comedy Was King | cast member | Charlie Chaplin | child | Geraldine Chaplin |
A Woman of the Sea | producer | Charlie Chaplin | child | Geraldine Chaplin |
Gentlemen of Nerve | director | Charlie Chaplin | child | Geraldine Chaplin |
Gentlemen of Nerve | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Gentlemen of Nerve | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Dough and Dynamite | screenwriter | Charlie Chaplin | child | Geraldine Chaplin |
Dough and Dynamite | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Dough and Dynamite | director | Charlie Chaplin | child | Geraldine Chaplin |
Twenty Minutes of Love | cast member | Charlie Chaplin | child | Geraldine Chaplin |
Twenty Minutes of Love | director | Charlie Chaplin | child | Geraldine Chaplin |
val motif_7_r1Child = motif_7_result.filter("r1=='child'")
display(motif_7_r1Child)
a | r1 | b | r2 | c |
---|---|---|---|---|
Erebos | child | Eris | follows | (136198) 2003 UJ296 |
Nyx | child | Eris | follows | (136198) 2003 UJ296 |
Jan Maurits Quinkhard | child | Julius Henricus Quinkhard | notable work | A Violinist and a Flutist Playing Music together (The Musicians) |
Bob Armstrong | child | Brad Armstrong | award received | AVN Hall of Fame |
Q3122261 | child | Guy II de Laval-Rais | place of burial | Abbaye de Buzay |
Emperor Heizei | child | Takaoka-shinnō | Unknown | Abo-shinnō |
Emperor Heizei | child | Ōhara-naishinnō | Unknown | Abo-shinnō |
Emperor Heizei | child | Kose-shinnō | Unknown | Abo-shinnō |
Fujiwara no Otomuro | child | Emperor Heizei | child | Abo-shinnō |
Emperor Kanmu | child | Emperor Heizei | child | Abo-shinnō |
Ann Astaire | child | Fred Astaire | Unknown | Adele Astaire |
Fritz Austerlitz | child | Fred Astaire | Unknown | Adele Astaire |
Rudolf VI, Margrave of Baden | child | Bernard I, Margrave of Baden-Baden | child | Agnes of Baden |
Agnes of Kuenring | child | Nicholas I of Bohemia | mother | Agnes of Kuenring |
Ottokar II of Bohemia | child | Nicholas I of Bohemia | mother | Agnes of Kuenring |
Agnes of Kuenring | child | Q5361410 | mother | Agnes of Kuenring |
Ottokar II of Bohemia | child | Q5361410 | mother | Agnes of Kuenring |
Al-Khayzuran | child | Harun al-Rashid | mother | Al-Khayzuran |
Al-Mahdi | child | Harun al-Rashid | mother | Al-Khayzuran |
Al-Khayzuran | child | Al-Hadi | mother | Al-Khayzuran |
Al-Mahdi | child | Al-Hadi | mother | Al-Khayzuran |
Al-Mansur | child | Al-Mahdi | spouse | Al-Khayzuran |
Alaungpaya | child | Naungdawgyi | follows | Alaungpaya |
Alaungpaya | child | Naungdawgyi | father | Alaungpaya |
Yun San | child | Naungdawgyi | follows | Alaungpaya |
Yun San | child | Naungdawgyi | father | Alaungpaya |
Alaungpaya | child | Bodawpaya | father | Alaungpaya |
Yun San | child | Bodawpaya | father | Alaungpaya |
Taninganway Min | child | Mahadhammaraza Dipadi | followed by | Alaungpaya |
Alaungpaya | child | Hsinbyushin | father | Alaungpaya |
Yun San | child | Hsinbyushin | father | Alaungpaya |
Albert Lindhagen | child | Carl Lindhagen | father | Albert Lindhagen |
Albert Lindhagen | child | Arthur Lindhagen | father | Albert Lindhagen |
Albert Lindhagen | child | Anna Lindhagen | father | Albert Lindhagen |
Q4095521 | child | Sergey Boyarsky | child | Aleksandr Boyarsky |
Alexandre Bertrand | child | Henry Bertrand | father | Alexandre Bertrand |
Alexandre Jacques François Bertrand | child | Joseph Louis François Bertrand | Unknown | Alexandre Bertrand |
Lucrezia Borgia | child | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Alfonso I d'Este, Duke of Ferrara | child | Ercole II d'Este, Duke of Ferrara | child | Alfonso II d'Este |
Anne of Brittany | child | Renee of France | child | Alfonso II d'Este |
Louis XII of France | child | Renee of France | child | Alfonso II d'Este |
Beatrice of Castile | child | Maria of Portugal | spouse | Alfonso XI of Castile |
Beatrice of Castile II | child | Maria of Portugal | spouse | Alfonso XI of Castile |
Afonso III of Portugal | child | Maria of Portugal | spouse | Alfonso XI of Castile |
Afonso IV of Portugal | child | Maria of Portugal | spouse | Alfonso XI of Castile |
Alfonso XI of Castile | child | Pedro I of Castile | father | Alfonso XI of Castile |
Alfonso XI of Castile | child | Pedro I of Castile | follows | Alfonso XI of Castile |
Maria of Portugal | child | Pedro I of Castile | father | Alfonso XI of Castile |
Maria of Portugal | child | Pedro I of Castile | follows | Alfonso XI of Castile |
Alfonso XI of Castile | child | Sancho Alfonso, 1st Count of Alburquerque | father | Alfonso XI of Castile |
Eleanor de Guzmán | child | Sancho Alfonso, 1st Count of Alburquerque | father | Alfonso XI of Castile |
Sancho IV of León and Castile | child | Ferdinand IV of Castile | followed by | Alfonso XI of Castile |
Sancho IV of León and Castile | child | Ferdinand IV of Castile | child | Alfonso XI of Castile |
María de Molinillo | child | Ferdinand IV of Castile | followed by | Alfonso XI of Castile |
María de Molinillo | child | Ferdinand IV of Castile | child | Alfonso XI of Castile |
Alfonso XI of Castile | child | Fadrique Alfonso, Lord of Haro | father | Alfonso XI of Castile |
Eleanor de Guzmán | child | Fadrique Alfonso, Lord of Haro | father | Alfonso XI of Castile |
Alfonso XI of Castile | child | Henry II of Castile | father | Alfonso XI of Castile |
Eleanor de Guzmán | child | Henry II of Castile | father | Alfonso XI of Castile |
Ferdinand IV of Castile | child | Eleanor of Castile II | Unknown | Alfonso XI of Castile |
Constance of Portugal | child | Eleanor of Castile II | Unknown | Alfonso XI of Castile |
Alfonso XI of Castile | child | Tello de Castilla, Lord of Aguilar de Campoo | father | Alfonso XI of Castile |
Eleanor de Guzmán | child | Tello de Castilla, Lord of Aguilar de Campoo | father | Alfonso XI of Castile |
Constance of Aragon | child | Constanza Manuel | spouse | Alfonso XI of Castile |
Don Juan Manuel | child | Constanza Manuel | spouse | Alfonso XI of Castile |
Elizabeth of Aragon | child | Constance of Portugal | child | Alfonso XI of Castile |
Afonso of Portugal | child | Constance of Portugal | child | Alfonso XI of Castile |
Violante Manuel | child | Constance of Portugal | child | Alfonso XI of Castile |
Denis I of Portugal | child | Constance of Portugal | child | Alfonso XI of Castile |
Queen Victoria | child | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Albert, Prince Consort | child | Alfred I, Duke of Saxe-Coburg and Gotha | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duchess Maria Alexandrovna of Russia | child | Princess Beatrice of Saxe-Coburg and Gotha | Unknown | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alfred I, Duke of Saxe-Coburg and Gotha | child | Princess Beatrice of Saxe-Coburg and Gotha | Unknown | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Empress Maria Alexandrovna of Russia | child | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alexander II of Russia | child | Grand Duchess Maria Alexandrovna of Russia | child | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Grand Duchess Maria Alexandrovna of Russia | child | Princess Victoria Melita of Saxe-Coburg and Gotha | Unknown | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alfred I, Duke of Saxe-Coburg and Gotha | child | Princess Victoria Melita of Saxe-Coburg and Gotha | Unknown | Alfred, Hereditary Prince of Saxe-Coburg and Gotha |
Alice Pike Barney | child | Laura Clifford Barney | mother | Alice Pike Barney |
Alice Pike Barney | child | Natalie Clifford Barney | mother | Alice Pike Barney |
John George I, Duke of Saxe-Eisenach | child | Friederike Elisabeth of Saxe-Eisenach | place of birth | Altenkirchen |
Johannetta of Sayn-Wittgenstein | child | Friederike Elisabeth of Saxe-Eisenach | place of birth | Altenkirchen |
Euphorion of Eleusis | child | Aeschylus | Unknown | Ameinias of Athens |
Euphorion of Eleusis | child | Cynaegirus | Unknown | Ameinias of Athens |
Euphorion of Eleusis | child | Aeschylus' sister | Unknown | Ameinias of Athens |
Francis Wogan Festing | child | Matthew Festing | educated at | Ampleforth College |
Bernard Fitzalan-Howard, 3rd Baron Howard of Glossop | child | Lord Michael Fitzalan-Howard | educated at | Ampleforth College |
Mona Fitzalan-Howard, 11th Baroness Beaumont | child | Lord Michael Fitzalan-Howard | educated at | Ampleforth College |
Queen Mamohato of Lesotho | child | Letsie III of Lesotho | educated at | Ampleforth College |
Moshoeshoe II of Lesotho | child | Letsie III of Lesotho | educated at | Ampleforth College |
Bernard Fitzalan-Howard, 3rd Baron Howard of Glossop | child | Miles Fitzalan-Howard, 17th Duke of Norfolk | educated at | Ampleforth College |
Mona Fitzalan-Howard, 11th Baroness Beaumont | child | Miles Fitzalan-Howard, 17th Duke of Norfolk | educated at | Ampleforth College |
Arthur Peel, 2nd Earl Peel | child | William Peel, 3rd Earl Peel | educated at | Ampleforth College |
Gaetano Polidori | child | John William Polidori | educated at | Ampleforth College |
Prince Félix, Prince Consort of Luxembourg | child | Jean I, Grand Duke of Luxembourg | educated at | Ampleforth College |
Charlotte I, Grand Duchess of Luxembourg | child | Jean I, Grand Duke of Luxembourg | educated at | Ampleforth College |
Ann Parker Bowles | child | Andrew Parker Bowles | educated at | Ampleforth College |
Bernard van Cutsem | child | Hugh van Cutsem | educated at | Ampleforth College |
Agustín I of México | child | Agustín Jerónimo de Iturbide y Huarte | educated at | Ampleforth College |
Ana María de México | child | Agustín Jerónimo de Iturbide y Huarte | educated at | Ampleforth College |
Dermot de Trafford | child | John de Trafford | educated at | Ampleforth College |
Miles Fitzalan-Howard, 17th Duke of Norfolk | child | Edward Fitzalan-Howard, 18th Duke of Norfolk | educated at | Ampleforth College |
Anne Fitzalan-Howard, Duchess of Norfolk | child | Edward Fitzalan-Howard, 18th Duke of Norfolk | educated at | Ampleforth College |
Anastasia of Serbia | child | Saint Sava | mother | Anastasia of Serbia |
Stefan Nemanja | child | Saint Sava | mother | Anastasia of Serbia |
Anastasia of Serbia | child | Vukan Nemanjić of Serbia | mother | Anastasia of Serbia |
Stefan Nemanja | child | Vukan Nemanjić of Serbia | mother | Anastasia of Serbia |
Zavida | child | Stefan Nemanja | spouse | Anastasia of Serbia |
Anastasia of Serbia | child | Stefan the First-Crowned | mother | Anastasia of Serbia |
Stefan Nemanja | child | Stefan the First-Crowned | mother | Anastasia of Serbia |
Andriy Bandera | child | Oleksandr Bandera | father | Andriy Bandera |
Q553274 | child | Oleksandr Bandera | father | Andriy Bandera |
Andriy Bandera | child | Vasyl Bandera | father | Andriy Bandera |
Q553274 | child | Vasyl Bandera | father | Andriy Bandera |
Andriy Bandera | child | Stepan Bandera | father | Andriy Bandera |
Q553274 | child | Stepan Bandera | father | Andriy Bandera |
Manuel I of Trebizond | child | John II of Trebizond | Unknown | Andronikos II of Trebizond |
Rusudan of Georgia, Empress of Trebizond | child | Theodora of Trebizond | Unknown | Andronikos II of Trebizond |
Manuel I of Trebizond | child | Theodora of Trebizond | Unknown | Andronikos II of Trebizond |
Manuel I of Trebizond | child | George, Emperor of Trebizond | Unknown | Andronikos II of Trebizond |
Alexios I of Trebizond | child | Manuel I of Trebizond | child | Andronikos II of Trebizond |
André Hazes | child | André Hazes jr. | father | André Hazes |
Q1915754 | child | André Hazes jr. | father | André Hazes |
André Hazes | child | Roxeanne Hazes | father | André Hazes |
Q1915754 | child | Roxeanne Hazes | father | André Hazes |
André-Paul Antoine | child | Jacques Antoine | father | André-Paul Antoine |
Claude of Lorraine, duke of Aumale | child | Charles of Lorraine, duke of Aumale | child | Anne of Lorraine, duchess of Aumale |
Anne of Lorraine, duchess of Aumale | child | Henri II, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Henri I | child | Henri II, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Anne of Lorraine, duchess of Aumale | child | Louis I, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Henri I | child | Louis I, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Jacques, Duke of Nemours | child | Henri I | spouse | Anne of Lorraine, duchess of Aumale |
Anna of Este | child | Henri I | spouse | Anne of Lorraine, duchess of Aumale |
Anne of Lorraine, duchess of Aumale | child | Charles Amadeus, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Henri I | child | Charles Amadeus, Duke of Nemours | mother | Anne of Lorraine, duchess of Aumale |
Anthony I, Count of Ligny | child | Charles I, Count of Ligny | father | Anthony I, Count of Ligny |
Jeanne de Béthune, Viscountess of Meaux | child | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Robert of Bar, Count of Marle and Soissons | child | Jeanne de Bar, Countess of Marle and Soissons | child | Anthony I, Count of Ligny |
Peter I, Count of Saint-Pol | child | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Margherita del Balzo | child | Louis de Luxembourg, Count of Saint-Pol | child | Anthony I, Count of Ligny |
Jeanne de Bar, Countess of Marle and Soissons | child | Q442085 | Unknown | Anthony I, Count of Ligny |
Louis de Luxembourg, Count of Saint-Pol | child | Q442085 | Unknown | Anthony I, Count of Ligny |
Antoon I Keldermans | child | Rombout II Keldermans | place of death | Antwerp |
Jan Rubens | child | Peter Paul Rubens | place of death | Antwerp |
Maria Pypelinckx | child | Peter Paul Rubens | place of death | Antwerp |
Pieter Verbrugghen I | child | Pieter Verbrugghen II | place of birth | Antwerp |
Pieter Verbrugghen I | child | Pieter Verbrugghen II | place of death | Antwerp |
Adriaen van Nieulandt the younger | child | Willem van Nieulandt II | place of birth | Antwerp |
Jan Brueghel the Younger | child | Abraham Brueghel | place of birth | Antwerp |
Charlotte of Bourbon | child | Countess Charlotte Flandrina of Nassau | place of birth | Antwerp |
William the Silent | child | Countess Charlotte Flandrina of Nassau | place of birth | Antwerp |
Jan Wellens de Cock | child | Hieronymus Cock | place of death | Antwerp |
Jan Wellens de Cock | child | Hieronymus Cock | place of birth | Antwerp |
Lambert van Noort | child | Adam van Noort | place of death | Antwerp |
Lambert van Noort | child | Adam van Noort | place of birth | Antwerp |
Johannes Canter | child | Jacob Canter | work location | Antwerp |
Floris IV, Count of Holland | child | Floris de Voogd | place of death | Antwerp |
Matilda of Brabant | child | Floris de Voogd | place of death | Antwerp |
Nikolaus Leopold, 1st Prince of Salm-Salm | child | Ludwig Carl Otto, 2nd Prince of Salm-Salm | place of birth | Antwerp |
Lodewijk Elzevir | child | Matthijs Elsevier | place of birth | Antwerp |
Jan Pieter van Baurscheit the Elder | child | Jan Pieter van Baurscheit the Younger | place of birth | Antwerp |
Jan Philip van Thielen | child | Maria Theresa van Thielen | place of death | Antwerp |
Hieronymous Francken III | child | Constantijn Francken | place of death | Antwerp |
Hieronymous Francken III | child | Constantijn Francken | place of birth | Antwerp |
Jan de Wael I | child | Cornelis de Wael | place of birth | Antwerp |
Gerard Walschap | child | Carla Walschap | place of birth | Antwerp |
Edward de Vere, 17th Earl of Oxford | child | Henry de Vere, 18th Earl of Oxford | place of death | Antwerp |
Jan de Wael I | child | Lucas de Wael | place of death | Antwerp |
Jan de Wael I | child | Lucas de Wael | place of birth | Antwerp |
Franchois Fransz. Hals van Mechelen | child | Frans Hals | place of birth | Antwerp |
Adriaentje van Geertenryck | child | Frans Hals | place of birth | Antwerp |
Jan Brueghel the Elder | child | Jan Brueghel the Younger | place of birth | Antwerp |
Jan Brueghel the Elder | child | Jan Brueghel the Younger | place of death | Antwerp |
Charlotte of Bourbon | child | Countess Emilia Antwerpiana of Nassau | place of birth | Antwerp |
William the Silent | child | Countess Emilia Antwerpiana of Nassau | place of birth | Antwerp |
Arthur Cornette | child | Arthur Hendrik Cornette | place of birth | Antwerp |
Lucas Franchoys the Elder | child | Peter Franchoys | work location | Antwerp |
David Rijckaert (II) | child | David Ryckaert III | place of birth | Antwerp |
David Rijckaert (II) | child | David Ryckaert III | place of death | Antwerp |
Pieter Neefs the Elder | child | Pieter Neefs the Younger | place of birth | Antwerp |
Joseph-Mayer Cahen d'Anvers | child | Louis Raphaël Cahen d'Anvers | place of birth | Antwerp |
Charlotte of Bourbon | child | Countess Charlotte Brabantina of Nassau | place of birth | Antwerp |
William the Silent | child | Countess Charlotte Brabantina of Nassau | place of birth | Antwerp |
Harmen Jansz Muller | child | Jan Harmensz. Muller | work location | Antwerp |
Julien Schoenaerts | child | Matthias Schoenaerts | place of birth | Antwerp |
Maurice Hagemans | child | Paul Hagemans | place of birth | Antwerp |
Charles-André Dupin | child | Charles Dupin | work location | Antwerp |
Pieter Casteels II | child | Pieter Casteels III | place of birth | Antwerp |
Jan Brueghel the Younger | child | Q6149715 | place of birth | Antwerp |
Jan Bernard de Vriendt | child | Albrecht De Vriendt | place of death | Antwerp |
Jan Davidsz. de Heem | child | Cornelis de Heem | place of death | Antwerp |
Q16853570 | child | Abraham van den Hecken | place of birth | Antwerp |
Jan Davidsz. de Heem | child | Jan Jansz. de Heem | place of birth | Antwerp |
Dan Van Severen | child | Maarten van Severen | place of birth | Antwerp |
Pieter Brueghel the Elder | child | Pieter Breughel the Younger | place of death | Antwerp |
Pieter Verbrugghen I | child | Hendrik Frans Verbruggen | place of birth | Antwerp |
Pieter Verbrugghen I | child | Hendrik Frans Verbruggen | place of death | Antwerp |
David Teniers the Elder | child | David Teniers the Younger | place of birth | Antwerp |
Henri Lambert | child | Léon Lambert | place of birth | Antwerp |
Jacob de Gheyn I | child | Jacob de Gheyn II | place of birth | Antwerp |
Jan Wellens de Cock | child | Matthys Cock | place of birth | Antwerp |
Jan Wellens de Cock | child | Matthys Cock | place of death | Antwerp |
Agnes of Burgundy | child | Isabella of Bourbon | place of death | Antwerp |
Charles I | child | Isabella of Bourbon | place of death | Antwerp |
Pieter Pourbus | child | Frans Pourbus the Elder | place of death | Antwerp |
Frans Pourbus the Elder | child | Frans Pourbus the Younger | place of birth | Antwerp |
Cornelis Floris I | child | Cornelis Floris II | place of birth | Antwerp |
Cornelis Floris I | child | Cornelis Floris II | place of death | Antwerp |
Roger Lukaku | child | Jordan Lukaku | place of birth | Antwerp |
Frederik Bouttats the Younger | child | Philibert Bouttats | place of birth | Antwerp |
David Teniers the Younger | child | David Teniers III | place of birth | Antwerp |
Hendrik van Steenwijk I | child | Hendrik van Steenwijk II | place of birth | Antwerp |
Hugo Schiltz | child | Willem-Frederik Schiltz | place of birth | Antwerp |
Jan Josef Horemans the Elder | child | Jan Josef Horemans the Younger | place of birth | Antwerp |
Artus Wolffort | child | Jan Baptist Wolfaerts | place of birth | Antwerp |
Artus Wolffort | child | Jan Baptist Wolfaerts | place of death | Antwerp |
Leonard Nolens | child | David Nolens | place of birth | Antwerp |
Edward III of England | child | Lionel of Antwerp, 1st Duke of Clarence | place of birth | Antwerp |
Philippa of Hainault | child | Lionel of Antwerp, 1st Duke of Clarence | place of birth | Antwerp |
Erasmus Quellinus II | child | Jan Erasmus Quellinus | place of birth | Antwerp |
Jan Brueghel the Elder | child | Ambrosius Brueghel | place of death | Antwerp |
Jan Brueghel the Elder | child | Ambrosius Brueghel | place of birth | Antwerp |
Pieter Brueghel the Elder | child | Jan Brueghel the Elder | place of death | Antwerp |
Louis, Duke of Montpensier | child | Charlotte of Bourbon | place of death | Antwerp |
Jacqueline de Longwy | child | Charlotte of Bourbon | place of death | Antwerp |
Frans Francken III | child | Hieronymous Francken III | place of death | Antwerp |
Frans Francken III | child | Hieronymous Francken III | place of birth | Antwerp |
Erasmus Quellinus the Elder | child | Erasmus Quellinus II | work location | Antwerp |
Erasmus Quellinus the Elder | child | Erasmus Quellinus II | place of birth | Antwerp |
Erasmus Quellinus the Elder | child | Erasmus Quellinus II | place of death | Antwerp |
Jos Gevers | child | Mart Gevers | place of birth | Antwerp |
Charlotte of Bourbon | child | Countess Catharina Belgica of Nassau | place of birth | Antwerp |
William the Silent | child | Countess Catharina Belgica of Nassau | place of birth | Antwerp |
Beatrice of Baden | child | Sabina, Duchess of Bavaria | place of death | Antwerp |
John II, Count Palatine of Simmern | child | Sabina, Duchess of Bavaria | place of death | Antwerp |
Erasmus Quellinus the Elder | child | Artus Quellinus the Elder | place of death | Antwerp |
Erasmus Quellinus the Elder | child | Artus Quellinus the Elder | place of birth | Antwerp |
Philip Roettiers | child | Joseph Roettiers | place of birth | Antwerp |
Suzanne Lilar | child | Françoise Mallet-Joris | place of birth | Antwerp |
Albert Lilar | child | Françoise Mallet-Joris | place of birth | Antwerp |
John Roettiers | child | Norbert Roettiers | place of birth | Antwerp |
Jacob van der Does | child | Simon van der Does | place of death | Antwerp |
Araglas | child | Arahad I | father | Araglas |
Aravir | child | Aragorn I | child | Araglas |
Aristobulus IV | child | Herod of Chalcis | child | Aristobulus of Chalcis |
Herod II | child | Salome | spouse | Aristobulus of Chalcis |
Herod the Great | child | Salome | spouse | Aristobulus of Chalcis |
Herodias | child | Salome | spouse | Aristobulus of Chalcis |
Atossa | child | Xerxes I | child | Artaxerxes I of Persia |
Darius I of Persia | child | Xerxes I | child | Artaxerxes I of Persia |
Artaxerxes I of Persia | child | Xerxes II | father | Artaxerxes I of Persia |
Artaxerxes I of Persia | child | Darius II | father | Artaxerxes I of Persia |
Artaxerxes I of Persia | child | Sogdianus of Persia | father | Artaxerxes I of Persia |
Augustus the Younger, Duke of Brunswick-Lüneburg | child | Rudolph Augustus, Duke of Brunswick-Lüneburg | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Dorothea of Anhalt-Zerbst | child | Rudolph Augustus, Duke of Brunswick-Lüneburg | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Francis I, Duke of Saxe-Lauenburg | child | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Sibylle of Saxony | child | Ursula of Saxe-Lauenburg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Augustus the Younger, Duke of Brunswick-Lüneburg | child | Anthony Ulrich, Duke of Brunswick-Wolfenbüttel | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Dorothea of Anhalt-Zerbst | child | Anthony Ulrich, Duke of Brunswick-Wolfenbüttel | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Rudolph, Prince of Anhalt-Zerbst | child | Dorothea of Anhalt-Zerbst | spouse | Augustus the Younger, Duke of Brunswick-Lüneburg |
Dorothea Hedwig of Brunswick-Wolfenbüttel | child | Dorothea of Anhalt-Zerbst | spouse | Augustus the Younger, Duke of Brunswick-Lüneburg |
Ernest I, Duke of Brunswick-Lüneburg | child | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Sophie of Mecklenburg-Schwerin | child | Henry, Duke of Brunswick-Dannenberg | child | Augustus the Younger, Duke of Brunswick-Lüneburg |
Margaret Elizabeth of Mecklenburg | child | Duchess Elisabeth Sophie of Mecklenburg | spouse | Augustus the Younger, Duke of Brunswick-Lüneburg |
John Albert II, Duke of Mecklenburg | child | Duchess Elisabeth Sophie of Mecklenburg | spouse | Augustus the Younger, Duke of Brunswick-Lüneburg |
Augustus the Younger, Duke of Brunswick-Lüneburg | child | Q6330519 | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Duchess Elisabeth Sophie of Mecklenburg | child | Q6330519 | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Augustus the Younger, Duke of Brunswick-Lüneburg | child | Ferdinand Albert I, Duke of Brunswick-Lüneburg | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Duchess Elisabeth Sophie of Mecklenburg | child | Ferdinand Albert I, Duke of Brunswick-Lüneburg | father | Augustus the Younger, Duke of Brunswick-Lüneburg |
Azzo VI of Este | child | Azzo VII d'Este | given name | Azzo |
Galeazzo I Visconti | child | Azzone Visconti | given name | Azzo |
Herman I, Count Palatine of Lotharingia | child | Ezzo, Count Palatine of Lotharingia | given name | Azzo |
Q15710776 | child | Hans-Reinhard Müller | place of death | Bad Feilnbach |
Marga Müller | child | Hans-Reinhard Müller | place of death | Bad Feilnbach |
Emperor Horikawa | child | Toba | capital | Balige |
Empress Dowager Fujiwara no Ishi | child | Toba | capital | Balige |
T Paramasiva Iyer | child | T. P. Kailasam | place of death | Bangalore |
T Paramasiva Iyer | child | T. P. Kailasam | place of birth | Bangalore |
Jayachamarajendra Wadiyar | child | Srikantadatta Narasimharaja Wadiyar | place of death | Bangalore |
Tripura Sundari Ammani | child | Srikantadatta Narasimharaja Wadiyar | place of death | Bangalore |
Nicholas Roerich | child | Svetoslav Roerich | place of death | Bangalore |
Helena Roerich | child | Svetoslav Roerich | place of death | Bangalore |
François Marie of Lorraine, prince of Lillebonne | child | Charles of Lorraine, prince of Commercy | place of birth | Bar-le-Duc |
Claude of Lorraine, duke of Guise | child | Francis of Lorraine, duke of Guise | place of birth | Bar-le-Duc |
Antoinette de Bourbon | child | Francis of Lorraine, duke of Guise | place of birth | Bar-le-Duc |
Philippa of Guelders | child | Louis, Count of Vaudémont | place of birth | Bar-le-Duc |
René II | child | Louis, Count of Vaudémont | place of birth | Bar-le-Duc |
Claude of Lorraine, duke of Guise | child | Mary of Lorraine | place of birth | Bar-le-Duc |
Antoinette de Bourbon | child | Mary of Lorraine | place of birth | Bar-le-Duc |
Theodoric I, Count of Montbéliard | child | Étienne de Bar | place of birth | Bar-le-Duc |
Philippa of Guelders | child | Antoine, Duke of Lorraine | place of death | Bar-le-Duc |
Philippa of Guelders | child | Antoine, Duke of Lorraine | place of birth | Bar-le-Duc |
René II | child | Antoine, Duke of Lorraine | place of death | Bar-le-Duc |
René II | child | Antoine, Duke of Lorraine | place of birth | Bar-le-Duc |
Philippa of Guelders | child | Jean, Cardinal of Lorraine | place of birth | Bar-le-Duc |
René II | child | Jean, Cardinal of Lorraine | place of birth | Bar-le-Duc |
Antoine, Duke of Lorraine | child | Nicolas of Lorraine, Duke of Mercœur | place of birth | Bar-le-Duc |
Renée of Bourbon | child | Nicolas of Lorraine, Duke of Mercœur | place of birth | Bar-le-Duc |
Henry III, Duke of Brabant | child | John I | place of death | Bar-le-Duc |
Adelaide of Burgundy | child | John I | place of death | Bar-le-Duc |
Henry Borwin II, Lord of Mecklenburg | child | John I | place of death | Bar-le-Duc |
Dís | child | Fíli | significant event | Battle of Five Armies |
Q15285164 | child | Bilbo Baggins | conflict | Battle of Five Armies |
Belladonna Took | child | Bilbo Baggins | conflict | Battle of Five Armies |
Dís | child | Kíli | significant event | Battle of Five Armies |
Fundin | child | Dwalin | significant event | Battle of Five Armies |
Hans Beimer | child | Klaus Beimer | Unknown | Benny Beimer |
Helga Beimer | child | Klaus Beimer | Unknown | Benny Beimer |
Hans Beimer | child | Marion Beimer | Unknown | Benny Beimer |
Helga Beimer | child | Marion Beimer | Unknown | Benny Beimer |
Yan Wan | child | Li Xin | place of birth | Benxi |
Li Gao | child | Li Xin | place of birth | Benxi |
Emperor Xianzong of Tang | child | Li Xin | place of birth | Benxi |
Li Tai | child | Li Xin | place of birth | Benxi |
Princess Dowager Yin | child | Li Xin | place of birth | Benxi |
Ulf the Earl | child | Beorn Estrithson | described by source | Beorn (DNB00) |
Bernard of Świdnica | child | Bolko II the Small | father | Bernard of Świdnica |
Kunigunde of Poland | child | Bolko II the Small | father | Bernard of Świdnica |
Bernard of Świdnica | child | Henry II, Duke of Świdnica | father | Bernard of Świdnica |
Kunigunde of Poland | child | Henry II, Duke of Świdnica | father | Bernard of Świdnica |
Hedwig of Anhalt | child | Bolko I the Strict | child | Bernard of Świdnica |
Bolesław II Rogatka | child | Bolko I the Strict | child | Bernard of Świdnica |
Beatrice of Brandenburg | child | Casimir of Koźle | Unknown | Bernard of Świdnica |
Władysław of Bytom | child | Casimir of Koźle | Unknown | Bernard of Świdnica |
Otto V, Margrave of Brandenburg-Salzwedel | child | Beatrice of Brandenburg | child | Bernard of Świdnica |
Bernard of Świdnica | child | Q6031496 | father | Bernard of Świdnica |
Kunigunde of Poland | child | Q6031496 | father | Bernard of Świdnica |
Bernard of Świdnica | child | Constance of Świdnica | father | Bernard of Świdnica |
Kunigunde of Poland | child | Constance of Świdnica | father | Bernard of Świdnica |
Bolko I the Strict | child | Henry I of Jawor | Unknown | Bernard of Świdnica |
Beatrice of Brandenburg | child | Henry I of Jawor | Unknown | Bernard of Świdnica |
Bolko I the Strict | child | Beatrice of Silesia | Unknown | Bernard of Świdnica |
Beatrice of Brandenburg | child | Beatrice of Silesia | Unknown | Bernard of Świdnica |
Władysław I the Elbow-high | child | Kunigunde of Poland | spouse | Bernard of Świdnica |
Hedwig of Kalisz | child | Kunigunde of Poland | spouse | Bernard of Świdnica |
Bolko I the Strict | child | Bolko II of Ziębice | Unknown | Bernard of Świdnica |
Beatrice of Brandenburg | child | Bolko II of Ziębice | Unknown | Bernard of Świdnica |
Liz Mohn | child | Brigitte Mohn | employer | Bertelsmann |
Reinhard Mohn | child | Brigitte Mohn | employer | Bertelsmann |
Q19930436 | child | Carl von Salis | place of origin (Switzerland) | Bever |
Anna-Greta Leijon | child | Britta Lejon | given name | Britta |
Berthold Dieden | child | Herbert Dieden | child | Carl-Herbert Dieden |
Ernst Wehtje | child | Thorborg Wehtje | child | Carl-Herbert Dieden |
Nicolás Franco Salgado-Araújo | child | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Pilar Bahamonde y Pardo de Andrade | child | Francisco Franco | child | Carmen Franco, 1st Duchess of Franco |
Carmen Franco, 1st Duchess of Franco | child | Francisco Franco, 2nd Lord of Meirás | mother | Carmen Franco, 1st Duchess of Franco |
Cristóbal Martínez-Bordiú, 10th Marquis of Villaverde | child | Francisco Franco, 2nd Lord of Meirás | mother | Carmen Franco, 1st Duchess of Franco |
Carmen Franco, 1st Duchess of Franco | child | Carmen Martínez-Bordiú | follows | Carmen Franco, 1st Duchess of Franco |
Carmen Franco, 1st Duchess of Franco | child | Carmen Martínez-Bordiú | mother | Carmen Franco, 1st Duchess of Franco |
Cristóbal Martínez-Bordiú, 10th Marquis of Villaverde | child | Carmen Martínez-Bordiú | follows | Carmen Franco, 1st Duchess of Franco |
Cristóbal Martínez-Bordiú, 10th Marquis of Villaverde | child | Carmen Martínez-Bordiú | mother | Carmen Franco, 1st Duchess of Franco |
Joan I of Navarre | child | Isabella of France | place of death | Castle Rising |
Philip IV of France | child | Isabella of France | place of death | Castle Rising |
Pieter Symonsz Potter | child | Paulus Potter | notable work | Cattle in a Meadow |
Charles Berkeley, 2nd Earl of Berkeley | child | Henry Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Catherine Manners, Duchess of Rutland | child | Henry Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Berkeley, 2nd Earl of Berkeley | child | Elizabeth Germain | father | Charles Berkeley, 2nd Earl of Berkeley |
Catherine Manners, Duchess of Rutland | child | Elizabeth Germain | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Berkeley, 2nd Earl of Berkeley | child | Q15627553 | father | Charles Berkeley, 2nd Earl of Berkeley |
Catherine Manners, Duchess of Rutland | child | Q15627553 | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Berkeley, 2nd Earl of Berkeley | child | Mary Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Catherine Manners, Duchess of Rutland | child | Mary Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Berkeley, 2nd Earl of Berkeley | child | James Berkeley, 3rd Earl of Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Berkeley, 2nd Earl of Berkeley | child | George Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Catherine Manners, Duchess of Rutland | child | George Berkeley | father | Charles Berkeley, 2nd Earl of Berkeley |
Charles Planat | child | Oscar Planat | father | Charles Planat |
Princess Charlotte Amalie of Hesse-Philippsthal | child | George I | follows | Charles William, Duke of Saxe-Meiningen |
Princess Charlotte Amalie of Hesse-Philippsthal | child | George I | Unknown | Charles William, Duke of Saxe-Meiningen |
Anton Ulrich, Duke of Saxe-Meiningen | child | George I | follows | Charles William, Duke of Saxe-Meiningen |
Anton Ulrich, Duke of Saxe-Meiningen | child | George I | Unknown | Charles William, Duke of Saxe-Meiningen |
Caroline Christine of Saxe-Eisenach | child | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Charles I, Landgrave of Hesse-Philippsthal | child | Princess Charlotte Amalie of Hesse-Philippsthal | child | Charles William, Duke of Saxe-Meiningen |
Bernhard I | child | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Elisabeth Eleonore of Brunswick-Wolfenbüttel | child | Anton Ulrich, Duke of Saxe-Meiningen | child | Charles William, Duke of Saxe-Meiningen |
Charles, Prince of Rochefort | child | Charles Jules Armand of Rohan, Prince of Rochefort | father | Charles, Prince of Rochefort |
Charles III, Prince of Guéméné | child | Hercule Mériadec, Prince of Guéméné | Unknown | Charles, Prince of Rochefort |
Arnaud Chaffanjon | child | Philippe Chaffanjon | child | Charlotte Chaffanjon |
Charlotte Desmares | child | Angélique de Froissy | mother | Charlotte Desmares |
Philippe, Duke of Orléans, Regent of France | child | Angélique de Froissy | mother | Charlotte Desmares |
Chintila | child | Tulga | father | Chintila |
Wacho | child | Waldrada | spouse | Chlothar I |
Chlothar I | child | Charibert I | father | Chlothar I |
Ingund | child | Charibert I | father | Chlothar I |
Bertachar | child | Radegund | spouse | Chlothar I |
Chlothar I | child | Chram | father | Chlothar I |
Chlothar I | child | Sigebert I | father | Chlothar I |
Ingund | child | Sigebert I | father | Chlothar I |
Clotilde | child | Chlodomer | followed by | Chlothar I |
Clotilde | child | Chlodomer | Unknown | Chlothar I |
Clovis I | child | Chlodomer | followed by | Chlothar I |
Clovis I | child | Chlodomer | Unknown | Chlothar I |
Chlothar I | child | Guntram | child | Chlothar I |
Chlothar I | child | Guntram | father | Chlothar I |
Ingund | child | Guntram | child | Chlothar I |
Ingund | child | Guntram | father | Chlothar I |
Baderic | child | Ingund | spouse | Chlothar I |
Sigebert I | child | Ingund | spouse | Chlothar I |
Brunhilda of Austrasia | child | Ingund | spouse | Chlothar I |
Chlothar I | child | Chilperic I | father | Chlothar I |
Aregund | child | Chilperic I | father | Chlothar I |
Clotilde | child | Childebert I | Unknown | Chlothar I |
Clovis I | child | Childebert I | Unknown | Chlothar I |
Chilperic II of Burgundy | child | Clotilde | child | Chlothar I |
Chilperic II of Burgundy | child | Clotilde | Unknown | Chlothar I |
Clotilde | child | Clotilde | child | Chlothar I |
Clotilde | child | Clotilde | Unknown | Chlothar I |
Clovis I | child | Clotilde | child | Chlothar I |
Clovis I | child | Clotilde | Unknown | Chlothar I |
Basina of Thuringia | child | Clovis I | child | Chlothar I |
Basina of Thuringia | child | Clovis I | followed by | Chlothar I |
Childeric I | child | Clovis I | child | Chlothar I |
Childeric I | child | Clovis I | followed by | Chlothar I |
Chlothar I | child | Chlothsind | father | Chlothar I |
Ingund | child | Chlothsind | father | Chlothar I |
Clovis I | child | Theuderic I | Unknown | Chlothar I |
Christopher Cornford | child | Adam Cornford | father | Christopher Cornford |
F. M. Cornford | child | John Cornford | Unknown | Christopher Cornford |
Frances Cornford | child | John Cornford | Unknown | Christopher Cornford |
Francis Darwin | child | Frances Cornford | child | Christopher Cornford |
William Gibson | child | William Gibson | educated at | City College of New York |
William Gibson | child | William Gibson | educated at | City College of New York |
Lamoral, 1st Prince of Ligne | child | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Anna Maria van Melun | child | Florent de Ligne | child | Claude Lamoral, 3rd Prince of Ligne |
Nicolas of Lorraine, Duke of Mercœur | child | Louise of Lorraine | child | Claude Lamoral, 3rd Prince of Ligne |
Florent de Ligne | child | Albert Henri of Ligne | Unknown | Claude Lamoral, 3rd Prince of Ligne |
Claus Friedrich von Reden | child | Friedrich Otto Burchard von Reden | father | Claus Friedrich von Reden |
Lawrence Kadoorie, Baron Kadoorie | child | Michael Kadoorie | award received | Commander of the Order of Leopold II |
Q18545049 | child | David Montgomery, 2nd Viscount Montgomery of Alamein | award received | Commander of the Order of Leopold II |
Omer Coppens | child | Willy Coppens | award received | Commander of the Order of Leopold II |
Conrad I, Count of Oldenburg | child | Christian V, Count of Oldenburg | Unknown | Conrad II, Count of Oldenburg |
Conrad II, Count of Oldenburg | child | Maurice II, Count of Oldenburg | father | Conrad II, Count of Oldenburg |
John II of Oldenburg | child | Conrad I, Count of Oldenburg | child | Conrad II, Count of Oldenburg |
Kangxi Emperor | child | Yongzheng Emperor | spouse | Consort Qi |
Empress Xiaogongren | child | Yongzheng Emperor | spouse | Consort Qi |
Consort Qi | child | Hongshi | mother | Consort Qi |
Yongzheng Emperor | child | Hongshi | mother | Consort Qi |
Consort Qi | child | Q7733546 | mother | Consort Qi |
Yongzheng Emperor | child | Q7733546 | mother | Consort Qi |
Consort Qi | child | Q7720407 | mother | Consort Qi |
Yongzheng Emperor | child | Q7720407 | mother | Consort Qi |
Consort Qi | child | Q7720330 | mother | Consort Qi |
Yongzheng Emperor | child | Q7720330 | mother | Consort Qi |
Eugene Botkin | child | Tatiana Botkina | child | Constantin Melnik |
Olga Botkina | child | Tatiana Botkina | child | Constantin Melnik |
Vala Mal Doran | child | Adria | shares border with | Corbola |
William Henry Vanderbilt | child | George Washington Vanderbilt | child | Cornelia Stuyvesant Vanderbilt |
Cornelia Stuyvesant Vanderbilt | child | William Amherst Vanderbilt Cecil | mother | Cornelia Stuyvesant Vanderbilt |
Cornelia Stuyvesant Vanderbilt | child | George Henry Vanderbilt Cecil | mother | Cornelia Stuyvesant Vanderbilt |
Duke Alexander of Württemberg | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Louis, Duke of Württemberg | child | Duke Alexander of Württemberg | spouse | Countess Claudine Rhédey von Kis-Rhéde |
Countess Claudine Rhédey von Kis-Rhéde | child | Francis, Duke of Teck | mother | Countess Claudine Rhédey von Kis-Rhéde |
Duke Alexander of Württemberg | child | Francis, Duke of Teck | mother | Countess Claudine Rhédey von Kis-Rhéde |
Reginald II, Count of Bar | child | Theobald I, Count of Bar | spouse | Countess Ermesinde II, Countess of Luxembourg |
Countess Ermesinde II, Countess of Luxembourg | child | Gerard I of Durbuy | mother | Countess Ermesinde II, Countess of Luxembourg |
Waleran III, Duke of Limburg | child | Gerard I of Durbuy | mother | Countess Ermesinde II, Countess of Luxembourg |
Countess Ermesinde II, Countess of Luxembourg | child | Henry V, Count of Luxembourg | mother | Countess Ermesinde II, Countess of Luxembourg |
Waleran III, Duke of Limburg | child | Henry V, Count of Luxembourg | mother | Countess Ermesinde II, Countess of Luxembourg |
Countess Ermesinde II, Countess of Luxembourg | child | Catherine of Limburg | mother | Countess Ermesinde II, Countess of Luxembourg |
Waleran III, Duke of Limburg | child | Catherine of Limburg | mother | Countess Ermesinde II, Countess of Luxembourg |
Ermesinde of Luxembourg, Countess of Namur | child | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Godfrey I, Count of Namur | child | Henry IV, Count of Luxembourg | child | Countess Ermesinde II, Countess of Luxembourg |
Henry III, Duke of Limburg | child | Waleran III, Duke of Limburg | spouse | Countess Ermesinde II, Countess of Luxembourg |
Frederick I, Margrave of Brandenburg-Ansbach | child | George | follows | Crisis |
Sophia Jagiellon, Margravine of Brandenburg-Ansbach | child | George | follows | Crisis |
Constantine the Great | child | George | follows | Crisis |
Inge Morath | child | Rebecca Miller | spouse | Daniel Day-Lewis |
Arthur Miller | child | Rebecca Miller | spouse | Daniel Day-Lewis |
Dantivarman | child | Nandivarman III | father | Dantivarman |
Date Muratomi | child | Date Muramasa | father | Date Muratomi |
Sviatoslav II of Kiev | child | Wyszesława of Kyiv | Unknown | Davyd Sviatoslavich |
Sviatoslav II of Kiev | child | Gleb Svyatoslavich | Unknown | Davyd Sviatoslavich |
Sviatoslav III of Kyiv | child | Gleb Svyatoslavich | Unknown | Davyd Sviatoslavich |
Maria of Polotsk | child | Gleb Svyatoslavich | Unknown | Davyd Sviatoslavich |
Ingegerd Olofsdotter of Sweden | child | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Yaroslav the Wise | child | Sviatoslav II of Kiev | child | Davyd Sviatoslavich |
Sviatoslav II of Kiev | child | Oleg I of Chernigov | Unknown | Davyd Sviatoslavich |
Davyd Sviatoslavich | child | Iziaslav III of Kyiv | father | Davyd Sviatoslavich |
Denis Lazure | child | Gabrielle Lazure | father | Denis Lazure |
Dimitrios Vranopoulos | child | Q18575084 | father | Dimitrios Vranopoulos |
Beatrice of Rethel | child | Constance | child astronomical body | Disraeli |
Roger II of Sicily | child | Constance | child astronomical body | Disraeli |
Dmitry Vasilyevich | child | Sofya Dmitriyevna | father | Dmitry Vasilyevich |
Drey'auc | child | Rya'c | mother | Drey'auc |
Teal'c | child | Rya'c | mother | Drey'auc |
Alan II, Duke of Brittany | child | Guerech, Duke of Brittany | Unknown | Drogo, Duke of Brittany |
Q6677631 | child | Guerech, Duke of Brittany | Unknown | Drogo, Duke of Brittany |
Alan II, Duke of Brittany | child | Hoël I, Duke of Brittany | Unknown | Drogo, Duke of Brittany |
Q6677631 | child | Hoël I, Duke of Brittany | Unknown | Drogo, Duke of Brittany |
Eduard Bagritsky | child | Vsevolod Bagritski | place of death | Dubovik |
Q4446177 | child | Vsevolod Bagritski | place of death | Dubovik |
Caroline of Orange-Nassau | child | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Charles Christian of Nassau-Weilburg | child | Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg |
Frederick William, Margrave of Brandenburg-Schwedt | child | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Princess Sophia Dorothea of Prussia | child | Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Louis, Duke of Württemberg | Unknown | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Louis, Duke of Württemberg | child | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Louis, Duke of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Frederick I of Württemberg | Unknown | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Frederick I of Württemberg | Unknown | Duke Alexander of Württemberg |
Princess Marie of France | child | Duke Philipp of Württemberg | father | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Duke Philipp of Württemberg | father | Duke Alexander of Württemberg |
Maria Amalia of Naples and Sicily | child | Princess Marie of France | spouse | Duke Alexander of Württemberg |
Louis Philippe I | child | Princess Marie of France | spouse | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | child | Duchess Amelia of Württemberg | Unknown | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | child | Duchess Amelia of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | child | Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | child | Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Eugen of Württemberg | child | Duke Eugen of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duchess Elisabeth of Württemberg | Unknown | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duchess Elisabeth of Württemberg | Unknown | Duke Alexander of Württemberg |
Duchess Rosa, Duchess of Württemberg | child | Duchess Elisabeth of Württemberg | Unknown | Duke Alexander of Württemberg |
Philipp Albrecht, Duke of Württemberg | child | Duchess Elisabeth of Württemberg | Unknown | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | child | Duke Alexander of Württemberg | child | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | child | Duke Alexander of Württemberg | father | Duke Alexander of Württemberg |
Duke Friedrich II Eugen, Duke of Württemberg | child | Duchess Frederica of Württemberg | Unknown | Duke Alexander of Württemberg |
Margravine Friederike of Brandenburg-Schwedt | child | Duchess Frederica of Württemberg | Unknown | Duke Alexander of Württemberg |
Princess Marie Auguste of Thurn and Taxis | child | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Charles Alexander, Duke of Württemberg | child | Duke Friedrich II Eugen, Duke of Württemberg | child | Duke Alexander of Württemberg |
Countess Augusta Reuss of Ebersdorf | child | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Countess Augusta Reuss of Ebersdorf | child | Princess Antoinette of Saxe-Coburg-Saalfeld | spouse | Duke Alexander of Württemberg |
Francis, Duke of Saxe-Coburg-Saalfeld | child | Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duke Alexander of Württemberg |
Francis, Duke of Saxe-Coburg-Saalfeld | child | Princess Antoinette of Saxe-Coburg-Saalfeld | spouse | Duke Alexander of Württemberg |
Henriette of Nassau-Weilburg | child | Pauline Therese of Württemberg | Unknown | Duke Alexander of Württemberg |
Louis, Duke of Württemberg | child | Pauline Therese of Württemberg | Unknown | Duke Alexander of Württemberg |
Countess Claudine Rhédey von Kis-Rhéde | child | Francis, Duke of Teck | father | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Francis, Duke of Teck | father | Duke Alexander of Württemberg |
Duke Alexander of Württemberg | child | Duchess Marie of Württemberg | father | Duke Alexander of Württemberg |
Princess Antoinette of Saxe-Coburg-Saalfeld | child | Duchess Marie of Württemberg | father | Duke Alexander of Württemberg |
Duke Xi of Lu | child | Q626363 | father | Duke Xi of Lu |
Wen Jiang | child | Q622873 | child | Duke Xi of Lu |
Duke Huan of Lu | child | Q622873 | child | Duke Xi of Lu |
Q622873 | child | Q6377655 | Unknown | Duke Xi of Lu |
Q16603347 | child | Q625186 | Unknown | Duke Xi of Lu |
Q622873 | child | Q625186 | Unknown | Duke Xi of Lu |
Q16603369 | child | Q625182 | Unknown | Duke Xi of Lu |
Q622873 | child | Q625182 | Unknown | Duke Xi of Lu |
Guy Aldonce I de Durfort | child | Jacques Henri de Durfort de Duras | place of birth | Duras |
Guy Aldonce I de Durfort | child | Guy Aldonce de Durfort de Lorges | place of birth | Duras |
Edmund Beaufort, 2nd Duke of Somerset | child | John Beaufort, Marquess of Dorset | father | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Beauchamp | child | John Beaufort, Marquess of Dorset | father | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | child | Margaret Beaufort, Countess of Devon | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | child | Margaret Beaufort, Countess of Devon | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | child | Margaret Beaufort, Countess of Stafford | father | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Beauchamp | child | Margaret Beaufort, Countess of Stafford | father | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | child | Eleanor Beaufort | father | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Beauchamp | child | Eleanor Beaufort | father | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | child | Thomas Beaufort, Count of Perche | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | child | Thomas Beaufort, Count of Perche | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Thomas Holland, 2nd Earl of Kent | child | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Alice Holland, Countess of Kent | child | Margaret Beaufort, Countess of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | child | Henry Beaufort, 3rd Duke of Somerset | father | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Beauchamp | child | Henry Beaufort, 3rd Duke of Somerset | father | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | child | Henry Beaufort, 2nd Earl of Somerset | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | child | Henry Beaufort, 2nd Earl of Somerset | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Edmund Beaufort, 2nd Duke of Somerset | child | Edmund Beaufort, 4th Duke of Somerset | father | Edmund Beaufort, 2nd Duke of Somerset |
Eleanor Beauchamp | child | Edmund Beaufort, 4th Duke of Somerset | father | Edmund Beaufort, 2nd Duke of Somerset |
Katherine Swynford | child | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John of Gaunt | child | John Beaufort, 1st Earl of Somerset | child | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | child | Joan Beaufort | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | child | Joan Beaufort | Unknown | Edmund Beaufort, 2nd Duke of Somerset |
John Beaufort, 1st Earl of Somerset | child | John Beaufort, 1st Duke of Somerset | followed by | Edmund Beaufort, 2nd Duke of Somerset |
Margaret Beaufort, Countess of Somerset | child | John Beaufort, 1st Duke of Somerset | followed by | Edmund Beaufort, 2nd Duke of Somerset |
Orithyia | child | Cleopatra | cast member | Edmund Burns |
Cleopatra VI of Egypt | child | Cleopatra | cast member | Edmund Burns |
Ptolemy XII Auletes | child | Cleopatra | cast member | Edmund Burns |
Boreas | child | Cleopatra | cast member | Edmund Burns |
Ecgwynn | child | Æthelstan | Unknown | Edred of England |
Edward the Elder | child | Æthelstan | Unknown | Edred of England |
Edward the Elder | child | Edmund I of England | Unknown | Edred of England |
Edward the Elder | child | Edmund I of England | followed by | Edred of England |
Eadgifu of Kent | child | Edmund I of England | Unknown | Edred of England |
Eadgifu of Kent | child | Edmund I of England | followed by | Edred of England |
Edward the Elder | child | Eadgifu of Wessex | Unknown | Edred of England |
Ælfflæd, wife of Edward the Elder | child | Eadgifu of Wessex | Unknown | Edred of England |
Edward the Elder | child | Eadburh of Winchester | Unknown | Edred of England |
Eadgifu of Kent | child | Eadburh of Winchester | Unknown | Edred of England |
Edward the Elder | child | Eadgyth | Unknown | Edred of England |
Ælfflæd, wife of Edward the Elder | child | Eadgyth | Unknown | Edred of England |
Edward the Elder | child | Edwin, son of Edward the Elder | Unknown | Edred of England |
Ælfflæd, wife of Edward the Elder | child | Edwin, son of Edward the Elder | Unknown | Edred of England |
Edmund I of England | child | Eadwig | follows | Edred of England |
Ælfgifu of Shaftesbury | child | Eadwig | follows | Edred of England |
Alfred the Great | child | Edward the Elder | child | Edred of England |
Ealhswith | child | Edward the Elder | child | Edred of England |
Edward the Elder | child | Ælfweard of Wessex | Unknown | Edred of England |
Ælfflæd, wife of Edward the Elder | child | Ælfweard of Wessex | Unknown | Edred of England |
Edward Herbert, 1st Baron Herbert of Cherbury | child | Richard Herbert, 2nd Baron Herbert of Chirbury | child | Edward Herbert, 3rd Baron Herbert of Chirbury |
Edward Warschilka | child | Edward A. Warschilka | father | Edward Warschilka |
Leopold I, Duke of Austria | child | Agnes of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Agnes of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Agnes of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Q634058 | child | Agnes of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Elisabeth of Bavaria, Queen of Germany | child | Agnes von Görz und Tirol | Unknown | Elizabeth of Carinthia, Queen of Germany |
Meinhard | child | Agnes von Görz und Tirol | Unknown | Elizabeth of Carinthia, Queen of Germany |
Elisabeth of Bavaria, Queen of Germany | child | Henry of Bohemia | Unknown | Elizabeth of Carinthia, Queen of Germany |
Vladislaus I | child | Henry of Bohemia | Unknown | Elizabeth of Carinthia, Queen of Germany |
Richeza of Berg | child | Henry of Bohemia | Unknown | Elizabeth of Carinthia, Queen of Germany |
Meinhard | child | Henry of Bohemia | Unknown | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Albert II, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Albert II, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Agnes of the Palatinate | child | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Otto IV or II Wittelsbach | child | Elisabeth of Bavaria, Queen of Germany | child | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Frederick the Fair | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Frederick the Fair | mother | Elizabeth of Carinthia, Queen of Germany |
Elisabeth of Bavaria, Queen of Germany | child | Conradin | Unknown | Elizabeth of Carinthia, Queen of Germany |
Conrad IV of Germany | child | Conradin | Unknown | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Elisabeth of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Elisabeth of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Maria of Austria, Holy Roman Empress | child | Elisabeth of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Maximilian II, Holy Roman Emperor | child | Elisabeth of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Leopold I, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Leopold I, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Catherine of Austria, Duchess of Calabria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Catherine of Austria, Duchess of Calabria | mother | Elizabeth of Carinthia, Queen of Germany |
Meinhard I, Count of Gorizia-Tyrol | child | Meinhard | child | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Otto, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Otto, Duke of Austria | mother | Elizabeth of Carinthia, Queen of Germany |
Rudolph I of Germany | child | Albert I of Germany | spouse | Elizabeth of Carinthia, Queen of Germany |
Gertrude of Hohenberg | child | Albert I of Germany | spouse | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Anne of Austria, Margravine of Brandenburg | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Anne of Austria, Margravine of Brandenburg | mother | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Rudolf I of Bohemia | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Rudolf I of Bohemia | mother | Elizabeth of Carinthia, Queen of Germany |
Elizabeth of Carinthia, Queen of Germany | child | Henry the Friendly | mother | Elizabeth of Carinthia, Queen of Germany |
Albert I of Germany | child | Henry the Friendly | mother | Elizabeth of Carinthia, Queen of Germany |
Emperor Horikawa | child | Toba | mother | Empress Dowager Fujiwara no Ishi |
Empress Dowager Fujiwara no Ishi | child | Toba | mother | Empress Dowager Fujiwara no Ishi |
Emperor Shirakawa | child | Emperor Horikawa | spouse | Empress Dowager Fujiwara no Ishi |
Fujiwara no Kenshi | child | Emperor Horikawa | spouse | Empress Dowager Fujiwara no Ishi |
Ernesta Bittanti Battisti | child | Gigino Battisti | mother | Ernesta Bittanti Battisti |
Cesare Battisti | child | Gigino Battisti | mother | Ernesta Bittanti Battisti |
Johann Dietrich von Gemmingen | child | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Ernst von Gemmingen-Hornberg | child | Ludwig von Gemmingen | child | Ernst Franz Karl von Gemmingen |
Ernst Franz Karl von Gemmingen | child | Q15629169 | father | Ernst Franz Karl von Gemmingen |
Ernst Franz Karl von Gemmingen | child | Q15629168 | father | Ernst Franz Karl von Gemmingen |
Oceanus | child | Nemesis | cast member | Ethan Phillips |
Erebos | child | Nemesis | cast member | Ethan Phillips |
Nyx | child | Nemesis | cast member | Ethan Phillips |
Tethys | child | Nemesis | cast member | Ethan Phillips |
Eugenio Lopez, Sr. | child | Eugenio Lopez, Jr. | child | Eugenio Lopez III |
Julius Caesar | child | Julia | performer | Eurythmics |
Cornelia | child | Julia | performer | Eurythmics |
Zeus | child | Helen of Troy | creator | Evelyn De Morgan |
Leda | child | Helen of Troy | creator | Evelyn De Morgan |
Dick Mackey | child | Lance Mackey | residence | Fairbanks |
Christian Bohr | child | Niels Bohr | award received | Faraday Lectureship Prize |
Ellen Bohr | child | Niels Bohr | award received | Faraday Lectureship Prize |
Finn Aamodt | child | Kjetil André Aamodt | award received | Fearnley award |
Gunvald Berger | child | Tore Berger | award received | Fearnley award |
Pedro Rousseff | child | Dilma Rousseff | educated at | Federal University of Rio Grande do Sul |
Dilma Jane da Silva | child | Dilma Rousseff | educated at | Federal University of Rio Grande do Sul |
Shunzhi Emperor | child | Fuquan | contains the administrative territorial entity | Fengshan |
Ferenc Komlóssy | child | Ida Kövérné Komlóssy | father | Ferenc Komlóssy |
Ernst von Weizsäcker | child | Richard von Weizsäcker | award received | Four Freedoms Award |
Wilhelmina of the Netherlands | child | Juliana of the Netherlands | award received | Four Freedoms Award |
Duke Henry of Mecklenburg-Schwerin | child | Juliana of the Netherlands | award received | Four Freedoms Award |
Franz Anton Schubert | child | François Schubert | father | Franz Anton Schubert |
Frederick Denison Maurice | child | John Frederick Maurice | child | Frederick Barton Maurice |
Frederick Barton Maurice | child | Joan Robinson | father | Frederick Barton Maurice |
Lebrecht, Prince of Anhalt-Zeitz-Hoym | child | Victor I, Prince of Anhalt-Bernburg-Schaumburg-Hoym | child | Frederick, Prince of Anhalt-Bernburg-Schaumburg-Hoym |
Friedrich Günther, Prince of Schwarzburg-Rudolstadt | child | Sizzo, Prince of Schwarzburg | father | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Frederick V, Landgrave of Hesse-Homburg | child | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Landgravine Caroline of Hesse-Darmstadt | child | Caroline of Hesse-Homburg | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Frederick Charles, Prince of Schwarzburg-Rudolstadt | child | Louis Frederick II, Prince of Schwarzburg-Rudolstadt | child | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Frederick, Hereditary Prince of Anhalt-Dessau | child | Auguste of Anhalt-Dessau | spouse | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Landgravine Amalie of Hesse-Homburg | child | Auguste of Anhalt-Dessau | spouse | Friedrich Günther, Prince of Schwarzburg-Rudolstadt |
Friedrich Wilhelm Schnitzler | child | Frank Christoph Schnitzler | father | Friedrich Wilhelm Schnitzler |
Frigg | child | Baldur | mother | Frigg |
Odin | child | Baldur | mother | Frigg |
Frigg | child | Bragi | mother | Frigg |
Odin | child | Bragi | mother | Frigg |
Bestla | child | Odin | spouse | Frigg |
Borr | child | Odin | spouse | Frigg |
Frigg | child | Hermod | mother | Frigg |
Frigga | child | Hermod | mother | Frigg |
Odin | child | Hermod | mother | Frigg |
Frigg | child | Hodhr | mother | Frigg |
Odin | child | Hodhr | mother | Frigg |
Friedrich Thyssen | child | August Thyssen | child | Fritz Thyssen |
August Thyssen | child | Heinrich, Baron Thyssen-Bornemisza de Kászon | Unknown | Fritz Thyssen |
August Thyssen | child | August Thyssen junior | Unknown | Fritz Thyssen |
August Thyssen | child | Hedwig Thyssen | Unknown | Fritz Thyssen |
Fritz Thyssen | child | Anita Countess Zichy-Thyssen | father | Fritz Thyssen |
Amélie Thyssen | child | Anita Countess Zichy-Thyssen | father | Fritz Thyssen |
Frédéric de Nucingen | child | Q15679956 | father | Frédéric de Nucingen |
Delphine de Nucingen | child | Q15679956 | father | Frédéric de Nucingen |
Fujiwara no Kaneko/Kaishi | child | Emperor Kazan | mother | Fujiwara no Kaneko/Kaishi |
Emperor Reizei | child | Emperor Kazan | mother | Fujiwara no Kaneko/Kaishi |
Fujiwara no Koretada | child | Q15838940 | Unknown | Fujiwara no Kaneko/Kaishi |
Q13368464 | child | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Morosuke | child | Fujiwara no Koretada | child | Fujiwara no Kaneko/Kaishi |
Fujiwara no Anshi | child | Emperor Reizei | spouse | Fujiwara no Kaneko/Kaishi |
Murakami | child | Emperor Reizei | spouse | Fujiwara no Kaneko/Kaishi |
Fujiwara no Morosuke | child | Fujiwara no Takamitsu | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Fujiwara no Tamemitsu | Unknown | Fujiwara no Kinsue |
Q13368464 | child | Fujiwara no Koretada | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Fujiwara no Koretada | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Ainomiya | Unknown | Fujiwara no Kinsue |
Gashi-naishinnō | child | Q11458686 | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Q11458686 | Unknown | Fujiwara no Kinsue |
Q13368464 | child | Fujiwara no Kaneie | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Fujiwara no Kaneie | Unknown | Fujiwara no Kinsue |
Q13368464 | child | Fujiwara no Anshi | Unknown | Fujiwara no Kinsue |
Fujiwara no Morosuke | child | Fujiwara no Anshi | Unknown | Fujiwara no Kinsue |
Fujiwara no Kinsue | child | Q13309228 | father | Fujiwara no Kinsue |
Fujiwara no Tadahira | child | Fujiwara no Morosuke | child | Fujiwara no Kinsue |
Q11623346 | child | Fujiwara no Fusatsugu | child | Fujiwara no Sawako |
Fujiwara no Fusatsugu | child | Q11623418 | Unknown | Fujiwara no Sawako |
Fujiwara no Sawako | child | Muneyasu-shinnō | mother | Fujiwara no Sawako |
Ninmyō | child | Muneyasu-shinnō | mother | Fujiwara no Sawako |
Fujiwara no Sawako | child | Kōkō | mother | Fujiwara no Sawako |
Ninmyō | child | Kōkō | mother | Fujiwara no Sawako |
Fujiwara no Sawako | child | Saneyasu-shinnō | mother | Fujiwara no Sawako |
Ninmyō | child | Saneyasu-shinnō | mother | Fujiwara no Sawako |
Tachibana no Kachiko | child | Ninmyō | spouse | Fujiwara no Sawako |
Emperor Saga | child | Ninmyō | spouse | Fujiwara no Sawako |
Fujiwara no Fusatsugu | child | Q18325897 | Unknown | Fujiwara no Sawako |
Fushimi-no-miya Kunisuke-shinnō | child | Q11381085 | father | Fushimi-no-miya Kunisuke-shinnō |
Q11381099 | child | Q11381086 | child | Fushimi-no-miya Kunisuke-shinnō |
Fushimi-no-miya Kunisuke-shinnō | child | Q11381093 | father | Fushimi-no-miya Kunisuke-shinnō |
Fushimi-no-miya Kunisuke-shinnō | child | Sonchō-hosshinnō | father | Fushimi-no-miya Kunisuke-shinnō |
Henriette Catherine de Joyeuse | child | Marie de Bourbon, Duchess of Montpensier | place of birth | Gaillon |
Henri, Duke of Montpensier | child | Marie de Bourbon, Duchess of Montpensier | place of birth | Gaillon |
Jor-El | child | Superman | performer | Gary Chaw |
Lara Lor-Van | child | Superman | performer | Gary Chaw |
Jonathan Kent | child | Superman | performer | Gary Chaw |
Martha Kent | child | Superman | performer | Gary Chaw |
Gertrude of Haldensleben | child | Q2098190 | spouse | Gebhard of Supplinburg |
Gebhard of Supplinburg | child | Lothair III | father | Gebhard of Supplinburg |
Q2098190 | child | Lothair III | father | Gebhard of Supplinburg |
Georg Abraham Schneider | child | Maschinka Schneider | father | Georg Abraham Schneider |
Q17122437 | child | Konstanz von Heineccius | relative | Georg von Arco |
Manuel I of Trebizond | child | John II of Trebizond | Unknown | George, Emperor of Trebizond |
Rusudan of Georgia, Empress of Trebizond | child | Theodora of Trebizond | Unknown | George, Emperor of Trebizond |
Manuel I of Trebizond | child | Theodora of Trebizond | Unknown | George, Emperor of Trebizond |
Manuel I of Trebizond | child | Andronikos II of Trebizond | Unknown | George, Emperor of Trebizond |
Alexios I of Trebizond | child | Manuel I of Trebizond | child | George, Emperor of Trebizond |
Philip II of Macedon | child | Alexander the Great | cast member | Georges Chamarat |
Olympias | child | Alexander the Great | cast member | Georges Chamarat |
Eugene O'Neill | child | Oona O'Neill | child | Geraldine Chaplin |
Agnes Boulton | child | Oona O'Neill | child | Geraldine Chaplin |
Oona O'Neill | child | Victoria Chaplin | Unknown | Geraldine Chaplin |
Charlie Chaplin | child | Victoria Chaplin | Unknown | Geraldine Chaplin |
Oona O'Neill | child | Josephine Chaplin | Unknown | Geraldine Chaplin |
Charlie Chaplin | child | Josephine Chaplin | Unknown | Geraldine Chaplin |
Geraldine Chaplin | child | Oona Castilla Chaplin | mother | Geraldine Chaplin |
Oona O'Neill | child | Eugene Chaplin | Unknown | Geraldine Chaplin |
Charlie Chaplin | child | Eugene Chaplin | Unknown | Geraldine Chaplin |
Oona O'Neill | child | Michael Chaplin | Unknown | Geraldine Chaplin |
Charlie Chaplin | child | Michael Chaplin | Unknown | Geraldine Chaplin |
Oona O'Neill | child | Christopher Chaplin | Unknown | Geraldine Chaplin |
Charlie Chaplin | child | Christopher Chaplin | Unknown | Geraldine Chaplin |
Charles Chaplin Sr. | child | Charlie Chaplin | child | Geraldine Chaplin |
Hannah Chaplin | child | Charlie Chaplin | child | Geraldine Chaplin |
Gerard I, Count of Guelders | child | Gerard II, Count of Guelders | father | Gerard I, Count of Guelders |
Gerard II, Count of Wassenberg | child | Q2549628 | child | Gerard I, Count of Guelders |
Gerard II, Count of Wassenberg | child | Theodoric, Count of Guelders | father | Gerard II, Count of Wassenberg |
Gerard II, Count of Wassenberg | child | Q2549628 | father | Gerard II, Count of Wassenberg |
Gilbert Monckton, 2nd Viscount Monckton of Brenchley | child | Christopher Monckton, 3rd Viscount Monckton of Brenchley | father | Gilbert Monckton, 2nd Viscount Monckton of Brenchley |
Francesco Cenci | child | Beatrice Cenci | cast member | Gino Talamo |
Marcus Valerius Messalla Barbatus | child | Messalina | cast member | Gino Talamo |
Domitia Lepida Minor | child | Messalina | cast member | Gino Talamo |
Alexandra Feodorovna | child | Alexei Nikolaevich, Tsarevich of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Nicholas II of Russia | child | Alexei Nikolaevich, Tsarevich of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Nicholas II of Russia | child | Grand Duchess Maria Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Nicholas I of Russia | child | Grand Duchess Maria Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Alexandra Feodorovna | child | Grand Duchess Maria Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Alexandra Feodorovna | child | Grand Duchess Maria Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Alexandra Feodorovna | child | Grand Duchess Olga Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Nicholas II of Russia | child | Grand Duchess Olga Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Ludwig IV, Grand Duke of Hesse | child | Alexandra Feodorovna | child | Grand Duchess Tatiana Nikolaevna of Russia |
Frederick William III of Prussia | child | Alexandra Feodorovna | child | Grand Duchess Tatiana Nikolaevna of Russia |
Princess Alice of the United Kingdom | child | Alexandra Feodorovna | child | Grand Duchess Tatiana Nikolaevna of Russia |
Louise of Mecklenburg-Strelitz | child | Alexandra Feodorovna | child | Grand Duchess Tatiana Nikolaevna of Russia |
Maria Feodorovna (Dagmar of Denmark) | child | Nicholas II of Russia | child | Grand Duchess Tatiana Nikolaevna of Russia |
Alexander III of Russia | child | Nicholas II of Russia | child | Grand Duchess Tatiana Nikolaevna of Russia |
Alexandra Feodorovna | child | Grand Duchess Anastasia Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Nicholas II of Russia | child | Grand Duchess Anastasia Nikolaevna of Russia | Unknown | Grand Duchess Tatiana Nikolaevna of Russia |
Duchess Amelia of Württemberg | child | Princess Alexandra of Saxe-Altenburg | child | Grand Duke Nicholas Constantinovich of Russia |
Joseph, Duke of Saxe-Altenburg | child | Princess Alexandra of Saxe-Altenburg | child | Grand Duke Nicholas Constantinovich of Russia |
Princess Alexandra of Saxe-Altenburg | child | Grand Duke Vyacheslav Constantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Grand Duke Konstantin Nikolayevich of Russia | child | Grand Duke Vyacheslav Constantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Grand Duke Konstantin Nikolayevich of Russia | child | Grand Princess Vera Constantinovna of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Princess Alexandra of Saxe-Altenburg | child | Grand Princess Vera Constantinovna of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Grand Duke Konstantin Nikolayevich of Russia | child | Grand Duke Konstantin Konstantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Princess Alexandra of Saxe-Altenburg | child | Grand Duke Konstantin Konstantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Grand Duke Konstantin Nikolayevich of Russia | child | Olga Constantinovna of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Princess Alexandra of Saxe-Altenburg | child | Olga Constantinovna of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Alexandra Feodorovna | child | Grand Duke Konstantin Nikolayevich of Russia | child | Grand Duke Nicholas Constantinovich of Russia |
Nicholas I of Russia | child | Grand Duke Konstantin Nikolayevich of Russia | child | Grand Duke Nicholas Constantinovich of Russia |
Grand Duke Konstantin Nikolayevich of Russia | child | Grand Duke Dimitri Constantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Princess Alexandra of Saxe-Altenburg | child | Grand Duke Dimitri Constantinovich of Russia | Unknown | Grand Duke Nicholas Constantinovich of Russia |
Kari Niinistö | child | Ville Niinistö | member of political party | Green League |
Hamlin Garland | child | Mary Isabel Garland | place of birth | Hamlin Garland House |
Zulime Taft | child | Mary Isabel Garland | place of birth | Hamlin Garland House |
Bernhard Rudolf Abeken | child | Hermann Abeken | place of death | Hanover |
Otto von Blome | child | Gustav Blome | place of birth | Hanover |
Christian Ludwig August von Arnswaldt | child | Karl von Arnswaldt | work location | Hanover |
Christian Ludwig August von Arnswaldt | child | Karl von Arnswaldt | place of death | Hanover |
Bern Carrière | child | Mathieu Carrière | place of birth | Hanover |
Kurt Christoph von Königsmarck | child | Philip Christoph von Königsmarck | place of death | Hanover |
Maria Kristina Wrangel | child | Philip Christoph von Königsmarck | place of death | Hanover |
Princess Charlotte of Prussia | child | Princess Feodora of Saxe-Meiningen | place of birth | Hanover |
Bernhard III, Duke of Saxe-Meiningen | child | Princess Feodora of Saxe-Meiningen | place of birth | Hanover |
Countess Adelaide of Lippe-Biesterfeld | child | Princess Feodora of Saxe-Meiningen | place of birth | Hanover |
Prince Friedrich of Saxe-Meiningen | child | Princess Feodora of Saxe-Meiningen | place of birth | Hanover |
Rudolf von Bennigsen | child | Q354766 | place of death | Hanover |
Auguste Viktoria of Schleswig-Holstein | child | Viktoria Luise, Duchess Consort of Brunswick | place of death | Hanover |
Wilhelm II, German Emperor | child | Viktoria Luise, Duchess Consort of Brunswick | place of death | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Frederica of Mecklenburg-Strelitz | place of birth | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Frederica of Mecklenburg-Strelitz | place of death | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | Frederica of Mecklenburg-Strelitz | place of birth | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | Frederica of Mecklenburg-Strelitz | place of death | Hanover |
George I of Great Britain | child | George II of Great Britain | place of birth | Hanover |
Sophia Dorothea of Celle | child | George II of Great Britain | place of birth | Hanover |
Princess Marie Anne of Saxe-Altenburg | child | Wolrad, Prince of Schaumburg-Lippe | place of death | Hanover |
Georg, Prince of Schaumburg-Lippe | child | Wolrad, Prince of Schaumburg-Lippe | place of death | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Duke Charles of Mecklenburg | place of birth | Hanover |
Landgravine Charlotte of Hesse-Darmstadt | child | Duke Charles of Mecklenburg | place of birth | Hanover |
Sophia of Hanover | child | George I of Great Britain | place of birth | Hanover |
Ernest Augustus, Elector of Brunswick-Lüneburg | child | George I of Great Britain | place of birth | Hanover |
Princess Augusta of Hesse-Kassel | child | Prince George, Duke of Cambridge | place of birth | Hanover |
Prince Adolphus, Duke of Cambridge | child | Prince George, Duke of Cambridge | place of birth | Hanover |
Detlef Thierig | child | Bettina Thierig | place of birth | Hanover |
Melusine von der Schulenburg, Duchess of Kendal | child | Melusina von der Schulenburg, Countess of Walsingham | place of birth | Hanover |
George I of Great Britain | child | Melusina von der Schulenburg, Countess of Walsingham | place of birth | Hanover |
Alois Hitler | child | Angela Hitler | place of death | Hanover |
Caroline of Ansbach | child | Frederick, Prince of Wales | place of birth | Hanover |
George II of Great Britain | child | Frederick, Prince of Wales | place of birth | Hanover |
Amalie von Wallmoden, Countess of Yarmouth | child | Johann Ludwig, Reichsgraf von Wallmoden-Gimborn | place of death | Hanover |
Amalie von Wallmoden, Countess of Yarmouth | child | Johann Ludwig, Reichsgraf von Wallmoden-Gimborn | place of birth | Hanover |
George II, Prince of Anhalt-Dessau | child | Johann Ludwig, Reichsgraf von Wallmoden-Gimborn | place of death | Hanover |
George II, Prince of Anhalt-Dessau | child | Johann Ludwig, Reichsgraf von Wallmoden-Gimborn | place of birth | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Duchess Charlotte Georgine of Mecklenburg-Strelitz | place of birth | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | Duchess Charlotte Georgine of Mecklenburg-Strelitz | place of birth | Hanover |
Johann Philipp Conrad Falcke | child | Ernst Friedrich Hector Falcke | place of death | Hanover |
Princess Augusta of Hesse-Kassel | child | Princess Augusta of Cambridge | place of birth | Hanover |
Prince Adolphus, Duke of Cambridge | child | Princess Augusta of Cambridge | place of birth | Hanover |
Prince George William of Hesse-Darmstadt | child | Landgravine Charlotte of Hesse-Darmstadt | place of death | Hanover |
Countess Maria Louise Albertine of Leiningen-Falkenburg-Dagsburg | child | Landgravine Charlotte of Hesse-Darmstadt | place of death | Hanover |
Carl Christoph Lüntzel | child | Alfred Lüntzel | place of death | Hanover |
Charlotte of Mecklenburg-Strelitz | child | Ernst August I of Hanover | place of death | Hanover |
George III of Great Britain | child | Ernst August I of Hanover | place of death | Hanover |
Rudolf von Bennigsen | child | Adolf von Bennigsen | place of death | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Louise of Mecklenburg-Strelitz | place of birth | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | Louise of Mecklenburg-Strelitz | place of birth | Hanover |
Georg Karl Theodor Oldekop | child | Iwan Oldekop | place of birth | Hanover |
Georg Karl Theodor Oldekop | child | Iwan Oldekop | place of death | Hanover |
George V of Hanover | child | Princess Friederike, Baroness of Pawel-Rammingen | place of birth | Hanover |
Marie of Saxe-Altenburg | child | Princess Friederike, Baroness of Pawel-Rammingen | place of birth | Hanover |
Benedict von Bremer | child | Friedrich Franz Dietrich von Bremer | place of birth | Hanover |
Benedict von Bremer | child | Friedrich Franz Dietrich von Bremer | place of death | Hanover |
Carl Lichtenberg | child | Georg Justus Lichtenberg | place of death | Hanover |
Carl Lichtenberg | child | Georg Justus Lichtenberg | place of birth | Hanover |
Christian Friedrich Stromeyer | child | Louis Stromeyer | place of death | Hanover |
Christian Friedrich Stromeyer | child | Louis Stromeyer | place of birth | Hanover |
George I of Great Britain | child | Sophia Dorothea of Hanover | place of birth | Hanover |
Sophia Dorothea of Celle | child | Sophia Dorothea of Hanover | place of birth | Hanover |
Friedrich Wilhelm Brande | child | August Brande | place of death | Hanover |
Friedrich Wilhelm Brande | child | August Brande | place of birth | Hanover |
Georg Heinrich Bacmeister | child | Georg Bacmeister | place of birth | Hanover |
Heinrich Wendland | child | Hermann Wendland | place of death | Hanover |
Heinrich Wendland | child | Hermann Wendland | place of birth | Hanover |
Heinrich Wendland | child | Hermann Wendland | work location | Hanover |
Werner Adolph von Haxthausen | child | August von Haxthausen | place of death | Hanover |
Georg Ernst Friedrich Hoppenstedt | child | August Hoppenstedt | place of birth | Hanover |
Princess Ortrud of Schleswig-Holstein-Sonderburg-Glücksburg | child | Prince Heinrich of Hanover | place of birth | Hanover |
Ernst August, Prince of Hanover | child | Prince Heinrich of Hanover | place of birth | Hanover |
Attila Hörbiger | child | Elisabeth Orth | place of birth | Hanover |
Paula Wessely | child | Elisabeth Orth | place of birth | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | Duchess Therese of Mecklenburg-Strelitz | place of birth | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | Duchess Therese of Mecklenburg-Strelitz | place of birth | Hanover |
Ernst August I, Duke of Brunswick | child | Ernst August, Prince of Hanover | place of birth | Hanover |
Princess Ortrud of Schleswig-Holstein-Sonderburg-Glücksburg | child | Ernst August, Prince of Hanover | place of birth | Hanover |
Viktoria Luise, Duchess Consort of Brunswick | child | Ernst August, Prince of Hanover | place of birth | Hanover |
Ernst August, Prince of Hanover | child | Ernst August, Prince of Hanover | place of birth | Hanover |
Franz von Meding | child | Ernst von Meding | place of birth | Hanover |
Nathan Marcus Adler | child | Hermann Adler | place of birth | Hanover |
Princess Augusta of Hesse-Kassel | child | Princess Mary Adelaide of Cambridge | place of birth | Hanover |
Prince Adolphus, Duke of Cambridge | child | Princess Mary Adelaide of Cambridge | place of birth | Hanover |
Otto von Bismarck | child | Wilhelm von Bismarck | work location | Hanover |
Johanna von Puttkamer | child | Wilhelm von Bismarck | work location | Hanover |
Frederick V of the Palatinate | child | Sophia of Hanover | place of death | Hanover |
Elizabeth Stuart, Queen of Bohemia | child | Sophia of Hanover | place of death | Hanover |
George V of Hanover | child | Prince Ernest Augustus, 3rd Duke of Cumberland and Teviotdale | place of birth | Hanover |
Marie of Saxe-Altenburg | child | Prince Ernest Augustus, 3rd Duke of Cumberland and Teviotdale | place of birth | Hanover |
Karl von Arnswaldt | child | August von Arnswaldt | place of death | Hanover |
Karl von Arnswaldt | child | August von Arnswaldt | place of birth | Hanover |
Caroline of Ansbach | child | Anne, Princess Royal and Princess of Orange | place of birth | Hanover |
George II of Great Britain | child | Anne, Princess Royal and Princess of Orange | place of birth | Hanover |
Ernst August Rumann | child | August Heinrich Rumann | place of death | Hanover |
Ernst August Rumann | child | August Heinrich Rumann | place of birth | Hanover |
Anne Eleonore of Hesse-Darmstadt | child | Ernest Augustus, Elector of Brunswick-Lüneburg | place of death | Hanover |
George, Duke of Brunswick-Lüneburg | child | Ernest Augustus, Elector of Brunswick-Lüneburg | place of death | Hanover |
Charles II, Grand Duke of Mecklenburg-Strelitz | child | George, Grand Duke of Mecklenburg-Strelitz | place of birth | Hanover |
Landgravine Friederike of Hesse-Darmstadt | child | George, Grand Duke of Mecklenburg-Strelitz | place of birth | Hanover |
John Frederick, Duke of Brunswick-Lüneburg | child | Charlotte Felicitas of Brunswick-Lüneburg | place of birth | Hanover |
Benedicta Henrietta of the Palatinate | child | Charlotte Felicitas of Brunswick-Lüneburg | place of birth | Hanover |
George V of Hanover | child | Princess Marie of Hanover | place of birth | Hanover |
Marie of Saxe-Altenburg | child | Princess Marie of Hanover | place of birth | Hanover |
Hans Grisebach | child | August Grisebach | place of birth | Hanover |
Karl August Devrient | child | Max Devrient | place of birth | Hanover |
Heinrich Wilhelm Hahn | child | Heinrich Wilhelm Hahn | work location | Hanover |
Heinrich Wilhelm Hahn | child | Heinrich Wilhelm Hahn | place of birth | Hanover |
Heinrich Wilhelm Hahn | child | Heinrich Wilhelm Hahn | place of death | Hanover |
Heinrich Wilhelm Hahn | child | Heinrich Wilhelm Hahn | place of death | Hanover |
Heinrich Wilhelm Hahn | child | Heinrich Wilhelm Hahn | work location | Hanover |
Charlotte Buff | child | August Kestner | place of birth | Hanover |
Johann Christian Kestner | child | August Kestner | place of birth | Hanover |
Johann Ludwig Gebhardi | child | Ludwig Albrecht Gebhardi | place of death | Hanover |
Princess Marie of Saxe-Altenburg | child | Prince Joachim Albert of Prussia | place of birth | Hanover |
Prince Albert of Prussia | child | Prince Joachim Albert of Prussia | place of birth | Hanover |
Carl Hugenberg | child | Alfred Hugenberg | place of birth | Hanover |
Prince George William of Hesse-Darmstadt | child | Landgravine Friederike of Hesse-Darmstadt | place of death | Hanover |
Countess Maria Louise Albertine of Leiningen-Falkenburg-Dagsburg | child | Landgravine Friederike of Hesse-Darmstadt | place of death | Hanover |
Georg Hellmesberger | child | Georg Hellmesberger | place of death | Hanover |
Wilhelm Plog | child | Jobst Plog | place of birth | Hanover |
Sophia of Hanover | child | Sophia Charlotte of Hanover | place of death | Hanover |
Ernest Augustus, Elector of Brunswick-Lüneburg | child | Sophia Charlotte of Hanover | place of death | Hanover |
Georg Friedrich von Wehrs | child | August von Wehrs | place of birth | Hanover |
Georg Friedrich von Wehrs | child | August von Wehrs | place of death | Hanover |
Olof Ahnlund | child | Nils Ahnlund | child | Hans Olof Ahnlund |
Hans Rausing | child | Lisbet Rausing | father | Hans Rausing |
Hans Rausing | child | Hans Kristian Rausing | father | Hans Rausing |
Hans Rausing | child | Sigrid Rausing | father | Hans Rausing |
Hans Rudolf Rahn | child | Hans Heinrich Rahn | Unknown | Hans Rudolf Rahn |
Hans Rudolf Rahn | child | Hans Heinrich Rahn | father | Hans Rudolf Rahn |
Hans Rudolf Rahn | child | Hans Rudolf Rahn | child | Hans Rudolf Rahn |
Hans Rudolf Rahn | child | Hans Rudolf Rahn | father | Hans Rudolf Rahn |
Hoel II, Duke of Brittany | child | Alan IV | child | Hawise of Brittany |
Hawise, Duchess of Brittany | child | Alan IV | child | Hawise of Brittany |
Fulk IV, Count of Anjou | child | Ermengarde of Anjou | child | Hawise of Brittany |
Clementia of Burgundy | child | Baldwin VII, Count of Flanders | spouse | Hawise of Brittany |
Robert II | child | Baldwin VII, Count of Flanders | spouse | Hawise of Brittany |
He Xiangning | child | Liao Chengzhi | mother | He Xiangning |
Liao Zhongkai | child | Liao Chengzhi | mother | He Xiangning |
Heinrich Curschmann | child | Hans Curschmann | father | Heinrich Curschmann |
Heinrich Curschmann | child | Fritz Curschmann | father | Heinrich Curschmann |
Hans Kohl | child | Helmut Kohl | given name | Helmut |
Hans Kohl | child | Helmut Kohl | given name | Helmut |
Cäcilie Kohl | child | Helmut Kohl | given name | Helmut |
Cäcilie Kohl | child | Helmut Kohl | given name | Helmut |
Hayum Salomon Goldschmidt | child | Benedict Hayum Salomon Goldschmidt | Unknown | Henriette Goldschmidt |
Henriette Goldschmidt | child | Juliette Fould | mother | Henriette Goldschmidt |
Achille Fould | child | Juliette Fould | mother | Henriette Goldschmidt |
Beer Léon Fould | child | Achille Fould | spouse | Henriette Goldschmidt |
Q15060149 | child | Achille Fould | spouse | Henriette Goldschmidt |
Q15059279 | child | Achille Fould | spouse | Henriette Goldschmidt |
Q15060035 | child | Achille Fould | spouse | Henriette Goldschmidt |
Adolphe-Ernest Fould | child | Achille Fould | spouse | Henriette Goldschmidt |
Henriette Goldschmidt | child | Adolphe-Ernest Fould | mother | Henriette Goldschmidt |
Achille Fould | child | Adolphe-Ernest Fould | mother | Henriette Goldschmidt |
Henriette Goldschmidt | child | Gustave Fould | mother | Henriette Goldschmidt |
Achille Fould | child | Gustave Fould | mother | Henriette Goldschmidt |
Frances Hyde, Countess of Clarendon | child | Laurence Hyde, 1st Earl of Rochester | Unknown | Henry Hyde, 2nd Earl of Clarendon |
Edward Hyde, 1st Earl of Clarendon | child | Laurence Hyde, 1st Earl of Rochester | Unknown | Henry Hyde, 2nd Earl of Clarendon |
Frances Hyde, Countess of Clarendon | child | Anne, Duchess of York | Unknown | Henry Hyde, 2nd Earl of Clarendon |
Edward Hyde, 1st Earl of Clarendon | child | Anne, Duchess of York | Unknown | Henry Hyde, 2nd Earl of Clarendon |
Henry X | child | Henry the Lion | father | Henry X |
Gertrude of Süpplingenburg | child | Henry the Lion | father | Henry X |
Welf I | child | Henry IX, Duke of Bavaria | child | Henry X |
Judith of Flanders, Countess of Northumbria | child | Henry IX, Duke of Bavaria | child | Henry X |
Henry IX, Duke of Bavaria | child | Judith of Bavaria, Duchess of Swabia | Unknown | Henry X |
Wulfhilde of Saxony | child | Judith of Bavaria, Duchess of Swabia | Unknown | Henry X |
Lothair III | child | Gertrude of Süpplingenburg | spouse | Henry X |
Richenza of Northeim | child | Gertrude of Süpplingenburg | spouse | Henry X |
Sophia of Hungary | child | Wulfhilde of Saxony | child | Henry X |
Magnus | child | Wulfhilde of Saxony | child | Henry X |
Bruno von François | child | Curt von François | Unknown | Hermann von François |
Karl François | child | Bruno von François | child | Hermann von François |
Christoph, Duke of Württemberg | child | Dorothea Maria of Württemberg | place of death | Hilpoltstein |
Anna Maria of Brandenburg-Ansbach | child | Dorothea Maria of Württemberg | place of death | Hilpoltstein |
Philip Louis, Count Palatine of Neuburg | child | John Frederick, Count Palatine of Sulzbach-Hilpoltstein | place of death | Hilpoltstein |
Anna of Cleves | child | John Frederick, Count Palatine of Sulzbach-Hilpoltstein | place of death | Hilpoltstein |
Tekla Justyna Chopin | child | Frédéric Chopin | place of burial | Holy Cross Church |
Nicolas Chopin | child | Frédéric Chopin | place of burial | Holy Cross Church |
Hongzhou | child | Q7720969 | father | Hongzhou |
Qianlong Emperor | child | Q7720969 | father | Hongzhou |
Kangxi Emperor | child | Yongzheng Emperor | child | Hongzhou |
Empress Xiaogongren | child | Yongzheng Emperor | child | Hongzhou |
Hongzhou | child | Q7720925 | father | Hongzhou |
Yongzheng Emperor | child | Qianlong Emperor | Unknown | Hongzhou |
Empress Xiaoshengxian | child | Qianlong Emperor | Unknown | Hongzhou |
Ulrich Dürrenmatt | child | Reinhold Dürrenmatt | Unknown | Hugo Dürrenmatt |
Second, we look at the super motif 1 of motif 7, as we show it is significant in the set. Then we would ask; if we set r2
and r3
as child
, what happend with r1
? To consider a more specific case, we take \(T_1^{(3)}\) as an example, namely the [(a)-[r1]->(b); (b)-[r2]->(c); (a)-[r3]->(c)]
motif. This motif can be explained in different ways by assignning meaningful relationships. A general question for this motif is that if a
and b
have a relationship with common node c
, what is the relationship between a
and b
? To be more concrete, we could ask if c
is child of a
and b
, what is the relationship of a
and b
? - Then we set r2="child"
and r3="child"
to be the same type of relationship. And we would expect that r1=spouse
since if c
is child of a
and b
, then likely they are spouse
or unmarried partner
.
// We look at super motif 1 and to limit r2 r3 as child. so we suppose that r1 be spouse.
val motif_7_super_motif_1_r2Child_r3Child = motif_7_super_motif_1.filter("r2=='child' and r3=='child'")
display(motif_7_super_motif_1_r2Child_r3Child)
a | r1 | b | r2 | c | r3 |
---|---|---|---|---|---|
"Weird Al" Yankovic | performer | "Weird Al" Yankovic | child | Nina Yankovic | child |
"Weird Al" Yankovic | spouse | Suzanne Yankovic | child | Nina Yankovic | child |
Adelaide of Waldeck | spouse | Simon I, Lord of Lippe | child | Bernard V, Lord of Lippe | child |
Agatha, wife of Edward the Exile | spouse | Edward the Exile | child | Edgar Ætheling | child |
Agnes of Germany | spouse | Leopold III, Margrave of Austria | child | Agnes of Babenberg | child |
Albert I, Duke of Bavaria | spouse | Margaret of Brieg | child | Margaret of Bavaria | child |
Alexandra of Lithuania | spouse | Siemowit IV | child | Władysław I of Masovia | child |
Alfonso X of Castile and Leon | spouse | Violant of Aragon | child | Berengaria of Castile, Lady of Guadalajara | child |
Alfonso d'Aragona | spouse | Juana Folch de Cardona y Manrique de Lara | child | Joana II d'Empúries | child |
Alice Sommerlath | spouse | Walther Sommerlath | child | Queen Silvia of Sweden | child |
Alix of Clermont | spouse | William of Dendermonde | child | John of Dampierre | child |
Amaury III de Montfort | spouse | Agnès de Garlande | child | Amaury IV de Montfort | child |
Anna Kostka | spouse | Aleksander Ostrogski | child | Zofia Ostrogska | child |
Anne of Burgundy, Countess of Savoy | spouse | Amadeus IV, Count of Savoy | child | Beatrice of Savoy, Marchioness of Saluzzo | child |
Anne of Savoy | spouse | Frederick IV of Naples | child | Charlotte of Naples | child |
Antoine of Lorraine, Count of Vaudémont | spouse | Marie, Countess of Harcourt | child | Jean of Lorraine, Count of Harcourt and Aumale | child |
Antonella Bechi Piaggio | spouse | Umberto Agnelli | child | Giovanni Alberto Agnelli | child |
Antonia Kidman | spouse | Angus Hawley | child | Sybella Hawley | child |
Ari Behn | spouse | Princess Märtha Louise of Norway | child | Emma Behn | child |
Augusta of Denmark | spouse | John Adolf, Duke of Schleswig-Holstein-Gottorp | child | Q5298231 | child |
Baldwin V, Count of Hainaut | spouse | Margaret I, Countess of Flanders | child | Yolanda of Flanders | child |
Betty Washington Lewis | spouse | Fielding Lewis | child | Lawrence Lewis | child |
Béatrice de Saône | spouse | Joscelin II | child | Agnes of Courtenay | child |
Catherine Henriette de Bourbon | spouse | Charles II of Lorraine, Duke of Elbeuf | child | François Marie of Lorraine, prince of Lillebonne | child |
Catherine I of Russia | spouse | Peter the Great | child | Pyotr Petrovich | child |
Charles | spouse | Louise of Savoy | child | Margaret of Valois-Angoulême | child |
Charles | said to be the same as | Charles | child | Margaret of Valois-Angoulême | child |
Charles | given name | Charles | child | Margaret of Valois-Angoulême | child |
Charles | family name identical to this given name | Charles | child | Margaret of Valois-Angoulême | child |
Charles Augustus, Hereditary Grand Duke of Saxe-Weimar-Eisenach | spouse | Baroness Elisabeth of Wangenheim-Winterstein | child | Michael-Benedikt of Saxe-Weimar-Eisenach | child |
Charles Edward, Duke of Saxe-Coburg and Gotha | spouse | Princess Victoria Adelaide of Schleswig-Holstein | child | Prince Hubertus of Saxe-Coburg and Gotha | child |
Charles I | spouse | Agnes of Burgundy | child | Isabella of Bourbon | child |
Charles III, Prince of Monaco | spouse | Antoinette de Mérode | child | Albert I, Prince of Monaco | child |
Charles, 6th Prince of Löwenstein-Wertheim-Rosenberg | spouse | Princess Sophie of Liechtenstein | child | Princess Maria Theresa of Löwenstein-Wertheim-Rosenberg | child |
Christian X of Denmark | spouse | Queen Alexandrine of Denmark | child | Prince Knud of Denmark | child |
Claude Bowes-Lyon, 14th Earl of Strathmore and Kinghorne | spouse | Cecilia Bowes-Lyon, Countess of Strathmore and Kinghorne | child | Fergus Bowes-Lyon | child |
Claude Chabrol | spouse | Stéphane Audran | child | Thomas Chabrol | child |
Claude of Valois | spouse | Charles III, Duke of Lorraine | child | Charles of Lorraine | child |
Claës Uggla | spouse | Madeleine Uggla | child | Magnus Uggla | child |
Consort Rong | spouse | Kangxi Emperor | child | Q7362099 | child |
David Ben-Gurion | spouse | Paula Ben-Gurion | child | Amos Ben-Gurion | child |
Debsirindra | spouse | Mongkut | child | Bhanurangsi Savangwongse | child |
Diane Cilento | spouse | Sean Connery | child | Jason Connery | child |
Duke Zhuang II of Wey | spouse | Q16603353 | child | Q10941190 | child |
Ebba Eriksdotter Vasa | spouse | Erik Abrahamsson | child | Martha Leijonhufvud | child |
Ebbe Gustaf Bring | spouse | Ulla Bring | child | Ernst Bring | child |
Edward Reynolds | child | Edward Reynolds | child | Edward Reynolds | child |
Edward Reynolds | father | Edward Reynolds | child | Edward Reynolds | child |
Einar Ralf | spouse | Anna-Beth Dahl | child | Klas Ralf | child |
Eleonore Juliane of Brandenburg-Ansbach | spouse | Frederick Charles, Duke of Württemberg-Winnental | child | Frederick Louis of Württemberg-Winnental | child |
Elisabeth Järnefelt | spouse | August Aleksander Järnefelt | child | Aino Sibelius | child |
Elizabeth Lyon, Countess of Strathmore | spouse | John Lyon, 4th Earl of Strathmore and Kinghorne | child | Charles Lyon, 6th Earl of Strathmore and Kinghorne | child |
Elvira of Leon | spouse | Roger II of Sicily | child | Roger III, Duke of Apulia | child |
Emperor Renzong of Song | spouse | Zhaojie guifei | child | Zhao Xin | child |
Emperor Shenzong of Song | spouse | Empress Qinsheng | child | Princess Zhouguozhang | child |
Emperor Yuan of Liang | spouse | Princess Xu Zhaopei | child | Q15924467 | child |
Emperor Zhenzong of Song | spouse | Empress Guo | child | Zhao You | child |
Empress Dowager Xiaozhuang | spouse | Hong Taiji | child | State Princess Yongmu | child |
Empress Mimakihime | spouse | Sujin | child | Princess Chichitsukuyamatohime | child |
Engelbert I, Count of Berg | spouse | Margaret of Guelders | child | Adolf VI, Count of Berg | child |
Ernest I, Duke of Saxe-Gotha | spouse | Princess Elisabeth Sophie of Saxe-Altenburg | child | Henry, Duke of Saxe-Römhild | child |
Eva Wehtje | spouse | Adolf H. Lundin | child | Lukas Lundin | child |
Fedyr K. Boiko | spouse | Yaryna Boiko | child | Q12083566 | child |
Ferdinand II of the Two Sicilies | spouse | Archduchess Maria Theresa of Austria-Teschen | child | Prince Pasquale, Count of Bari | child |
Ferdinando I de' Medici | spouse | Christina of Lorraine | child | Cosimo II de' Medici | child |
Flora Call Disney | spouse | Elias Disney | child | Walt Disney | child |
Floris II, Count of Holland | spouse | Gertrud of Lorraine | child | Dirk VI, Count of Holland | child |
Forrest Mars | father | Franklin Clarence Mars | child | Forrest Mars | child |
Forrest Mars | child | Forrest Mars | child | Forrest Mars | child |
Forrest Mars | father | Forrest Mars | child | Forrest Mars | child |
Frederick Henry, Margrave of Brandenburg-Schwedt | spouse | Leopoldine Marie of Anhalt-Dessau | child | Louise of Brandenburg-Schwedt | child |
Frederick I of Liegnitz | spouse | Ludmila of Poděbrady | child | John II of Legnica | child |
Frederick I, Elector of Brandenburg | spouse | Elisabeth of Bavaria, Electress of Brandenburg | child | Albrecht III Achilles, Elector of Brandenburg | child |
Frederick Louis, Hereditary Grand Duke of Mecklenburg-Schwerin | spouse | Grand Duchess Elena Pavlovna of Russia | child | Duchess Marie Louise of Mecklenburg-Schwerin | child |
Frederick William, Grand Duke of Mecklenburg-Strelitz | spouse | Princess Augusta of Cambridge | child | Adolphus Frederick V, Grand Duke of Mecklenburg-Strelitz | child |
Friedrich Wilhelm, Prince of Hohenzollern | spouse | Princess Margarita, Princess of Hohenzollern | child | Karl Friedrich, Prince of Hohenzollern | child |
Frigga | spouse | Odin | child | Thor | child |
Frigga | spouse | Odin | child | Thor | child |
Geoffrey I, Count of Anjou | spouse | Adele of Meaux | child | Ermengarde-Gerberga of Anjou | child |
Geoffrey Plantagenet, Count of Anjou | spouse | Matida i of england and normady | child | Geoffrey, Count of Nantes | child |
George II, Prince of Waldeck and Pyrmont | spouse | Princess Emma of Anhalt-Bernburg-Schaumburg-Hoym | child | George Victor, Prince of Waldeck and Pyrmont | child |
George Lascelles, 7th Earl of Harewood | spouse | Marion Stein | child | David Lascelles, 8th Earl of Harewood | child |
George Victor, Prince of Waldeck and Pyrmont | spouse | Princess Helena of Nassau | child | Friedrich, Prince of Waldeck and Pyrmont | child |
Gordan Mihić | spouse | Vera Čukić | child | Ivana Mihić | child |
Gustaf Fredrik Bonde | child | Carl Bonde | child | Carl Bonde | child |
Guy III, Count of Saint-Pol | spouse | Matilda of Brabant, Countess of Artois | child | Hugh II, Count of Blois | child |
Hans Stormoen | spouse | Lill Egede Nissen | child | Hans Marius Stormoen | child |
Helan Yueshi | spouse | Wu Shun | child | Helan Minzhi | child |
Henriette de Verninac | spouse | Raymond de Verninac-Saint-Maur | child | Charles de Verninac | child |
Henry IV of France | spouse | Gabrielle d'Estrées | child | Catherine Henriette de Bourbon | child |
Henry IV of France | spouse | Marie de' Medici | child | Louis XIII of France | child |
Hercule Mériadec, Duke of Rohan-Rohan | spouse | Anne Geneviève de Lévis | child | Louise de Rohan | child |
Herman II | spouse | Agnes of Austria, Queen of Hungary | child | Bernhard von Spanheim | child |
Hoel II, Duke of Brittany | spouse | Hawise, Duchess of Brittany | child | Alan IV | child |
Honoré III, Prince of Monaco | spouse | Maria Caterina Brignole | child | Prince Joseph of Monaco | child |
Hugh I, Count of Vermandois | spouse | Adelaide, Countess of Vermandois | child | Elizabeth of Vermandois, Countess of Leicester | child |
Irene Kantakouzene | spouse | Đurađ Branković | child | Lazar Branković | child |
Isabella, Princess of Taranto | spouse | Ferdinand I of Naples | child | Eleanor of Naples, Duchess of Ferrara | child |
Jacoba Bicker | spouse | Pieter de Graeff | child | Cornelis de Graeff II | child |
James Potter | spouse | Lily Potter | child | Harry Potter | child |
Joachim II Hector, Elector of Brandenburg | spouse | Magdalena of Saxony | child | John George, Elector of Brandenburg | child |
Joan II of Dreux | spouse | Louis I of Thouars | child | Margaret of Thouars | child |
Joan of Ponthieu, Dame of Epernon | spouse | John VI of Vendôme | child | Catherine of Vendôme | child |
Johann VI, Count of Nassau-Dillenburg | spouse | Johannetta of Sayn-Wittgenstein | child | John Louis of Nassau-Hadamar | child |
John II, Count Palatine of Simmern | spouse | Beatrice of Baden | child | Sabina, Duchess of Bavaria | child |
John IV of Portugal | spouse | Luisa de Guzmán | child | Peter II of Portugal | child |
John Patteson | child | John Patteson | child | John Patteson | child |
John Patteson | father | John Patteson | child | John Patteson | child |
John Seymour | spouse | Margery Wentworth | child | Thomas Seymour, 1st Baron Seymour of Sudeley | child |
John Seymour | father | John Seymour | child | Thomas Seymour, 1st Baron Seymour of Sudeley | child |
John Seymour | child | John Seymour | child | Thomas Seymour, 1st Baron Seymour of Sudeley | child |
Kangxi Emperor | spouse | Consort Rong | child | Q7362099 | child |
Kangxi Emperor | spouse | Q7354149 | child | Yunsi | child |
Krzysztof Radziwiłł | father | Krzysztof Mikołaj Radziwiłł | child | Janusz Radziwiłł | child |
Laertes | spouse | Anticlea | child | Ctimene | child |
Laura Spelman Rockefeller | spouse | John D. Rockefeller | child | Edith Rockefeller McCormick | child |
Lazar Hrebeljanović | spouse | Milica Hrebeljanović | child | Olivera Despina | child |
Leopold III, Duke of Austria | spouse | Viridis Visconti | child | Frederick IV, Duke of Austria | child |
Loki | Unknown | Odin | child | Váli | child |
Loki | spouse | Sigyn | child | Váli | child |
Louis VIII of France | spouse | Blanche of Castile | child | Louis IX of France | child |
Louis, Grand Dauphin | spouse | Maria Anna Victoria of Bavaria | child | Charles of France, Duke of Berry | child |
Louise-Anne Adnot | spouse | Albert-Ernest Carrier-Belleuse | child | Q19335812 | child |
Lyana Calvesi | spouse | Eddy Ottoz | child | Laurent Ottoz | child |
Léon Daudet | spouse | Jeanne Hugo | child | Charles Daudet | child |
Margaret Babthorpe | spouse | Henry Cholmley | child | Barbara Cholmley | child |
Margravine Louise Charlotte of Brandenburg | spouse | Jacob Kettler | child | Frederick Casimir Kettler | child |
Maria Beatrice, Duchess Consort of Modena | spouse | Francis IV | child | Archduke Ferdinand Karl Viktor of Austria-Este | child |
Maria de Lara | spouse | Charles II, Count of Alençon | child | Pierre II, Count of Alençon | child |
Maria de Luna | spouse | Martin of Aragon | child | Martin I of Sicily | child |
Maud of Savoy | spouse | Afonso I of Portugal | child | Urraca of Portugal | child |
Maximinus Thrax | spouse | Q272625 | child | Gaius Julius Verus Maximus | child |
Michelle Tisseyre | spouse | Pierre Tisseyre | child | Charles Tisseyre | child |
Mildred Mehle | spouse | Edvin Adolphson | child | Kristina Adolphson | child |
Mladen III Šubić of Bribir | spouse | Jelena Nemanjić Šubić | child | Katarina Šubić | child |
Nambui | spouse | Kublai Khan | child | Q7072624 | child |
Nereus | child | Doris | child | Q12899837 | child |
Nereus | spouse | Doris | child | Q12899837 | child |
Nicolai Wergeland | spouse | Alette Dorothea Wergeland | child | Henrik Wergeland | child |
Nobuko Kan | spouse | Naoto Kan | child | Shinjirō Kan | child |
Oscar I of Sweden | spouse | Josephine of Leuchtenberg | child | Charles XV of Sweden | child |
Owen Tudor | spouse | Catherine of Valois | child | Jasper Tudor | child |
Peter Wallenberg | child | Peter Wallenberg | child | Peter Wallenberg | child |
Peter Wallenberg | father | Peter Wallenberg | child | Peter Wallenberg | child |
Peter Wallenberg | father | Marcus Wallenberg | child | Peter Wallenberg | child |
Petronilla of Aquitaine | spouse | Ralph I, Count of Vermandois | child | Eleanor, Countess of Vermandois | child |
Philip I, Duke of Pomerania | child | Bogislaw XIII, Duke of Pomerania | child | Anna of Pomerania | child |
Philip I, Duke of Pomerania | spouse | Maria of Saxony, Duchess of Pomerania | child | Anna of Pomerania | child |
Philippe II de Croÿ | spouse | Anna of Lorraine | child | Charles Philippe de Croÿ, Marquis d’Havré | child |
Plamen Oresharski | spouse | Elka Georgieva | child | Desislav Oresharski | child |
Porthaon | spouse | Q19681428 | child | Agrius | child |
Poseidon | named after | Poseidon | child | Proteus | child |
Priam | child | Cassandra | child | Troilus | child |
Priam | spouse | Hecuba | child | Troilus | child |
Prince Leopold, Prince of Hohenzollern | spouse | Infanta Antónia, Princess of Hohenzollern | child | Prince Wilhelm, Prince of Hohenzollern | child |
Prince Louis Charles of Prussia | spouse | Frederica of Mecklenburg-Strelitz | child | Princess Frederica Wilhelmina of Prussia | child |
Princess Feodora, Princess of Hohenlohe-Langenburg | spouse | Ernst I, Prince of Hohenlohe-Langenburg | child | Princess Feodora of Hohenlohe-Langenburg | child |
Princess Maria Antonia of the Two Sicilies | spouse | Leopold II, Grand Duke of Tuscany | child | Archduchess Maria Isabella, Countess of Trapani | child |
Princess Pauline of Württemberg | spouse | Wilhelm I, Duke of Nassau | child | Prince Nikolaus Wilhelm of Nassau | child |
Q10946529 | spouse | Q10439991 | child | Shi Chonggui | child |
Q11123850 | spouse | Q8255101 | child | Q11124129 | child |
Q11654929 | spouse | Maeda Toshimasa | child | Maeda Toshiie | child |
Q15144015 | spouse | Ferdinand-Marie Bayard de la Vingtrie | child | Ferdinand-Jean Bayard de la Vingtrie | child |
Q17276545 | spouse | Ernest Gugenheim | child | Michel Gugenheim | child |
Q1878378 | spouse | Q2194303 | child | Jan II van Cortenbach | child |
Q2683876 | spouse | Q2986172 | child | Q4341425 | child |
Q8249149 | spouse | Duke Wu of Zheng | child | Duke Zhuang of Zheng | child |
Robert E. Lee | spouse | Mary Anna Custis Lee | child | George Washington Custis Lee | child |
Robert I, Duke of Parma | spouse | Infanta Maria Antonia of Portugal | child | Prince René of Bourbon-Parma | child |
Robert Isner | spouse | Karen Isner | child | Jordan Isner | child |
Roger II of Sicily | spouse | Beatrice of Rethel | child | Constance | child |
Roland Cubitt, 3rd Baron Ashcombe | spouse | Sonia Cubitt, Baroness Ashcombe | child | Rosalind Cubitt | child |
Roland Giraud | spouse | Maaike Jansen | child | Géraldine Gassler | child |
Sam Marx | spouse | Minnie Marx | child | Zeppo Marx | child |
Soběslav I, Duke of Bohemia | spouse | Adelaide of Hungary | child | Soběslav II, Duke of Bohemia | child |
Stateira | spouse | Artaxerxes II of Persia | child | Atossa | child |
Stefan Nemanja | spouse | Anastasia of Serbia | child | Saint Sava | child |
Stephen I, Duke of Bavaria | spouse | Jutta of Schweidnitz | child | Otto VI or IV, Duke of Bavaria | child |
Uranus | named after | Uranus | child | Mimas | child |
Uranus | spouse | Gaia | child | Mimas | child |
Uranus | mother | Gaia | child | Mimas | child |
Victoria Aitken | spouse | Charles Spencer, 9th Earl Spencer | child | Q16233591 | child |
Wife of Dausprungas | spouse | Dausprungas | child | Tautvilas | child |
William Louis of Nassau-Saarbrücken | spouse | Anna Amalia of Baden-Durlach | child | Walrad of Nassau-Usingen | child |
Wulfhilde of Saxony | spouse | Henry IX, Duke of Bavaria | child | Judith of Bavaria, Duchess of Swabia | child |
Wyatt Emory Cooper | spouse | Gloria Vanderbilt | child | Anderson Cooper | child |
Xu Wen | spouse | Q17038340 | child | Xu Zhizheng | child |
Yolande Palaeologina of Montferrat | spouse | Aymon, Count of Savoy | child | Bianca of Savoy | child |
Yolande of Aragon | spouse | Louis II of Naples | child | René of Anjou | child |
Šárka Štembergová-Kratochvílová | spouse | Jiří Kratochvíl | child | Zora Kratochvílová | child |
Abu Talib ibn ‘Abd al-Muttalib | spouse | Fatimah bint Asad | child | Aqeel ibn Abi Talib | child |
Adelaide, Countess of Vermandois | spouse | Hugh I, Count of Vermandois | child | Ralph I, Count of Vermandois | child |
Agnes of France, Duchess of Burgundy | spouse | Robert II of Burgundy | child | Margaret of Burgundy | child |
Ahmose-Nefertari | Unknown | Ahmose I | child | Amenhotep I | child |
Alexander Suvorov | spouse | Varvara Suvorova | child | Arkadi Suvorov | child |
Alexandra Feodorovna | spouse | Nicholas II of Russia | child | Grand Duchess Tatiana Nikolaevna of Russia | child |
Alfred I, Duke of Saxe-Coburg and Gotha | spouse | Grand Duchess Maria Alexandrovna of Russia | child | Queen Marie of Romania | child |
Alice of Normandy | spouse | Reginald I, Count of Burgundy | child | William I, Count of Burgundy | child |
Anna Komnene Angelina | spouse | Theodore I Laskaris | child | Sophia Eudokia Laskarina | child |
Anne FitzMaurice | spouse | Thomas FitzMaurice, 1st Earl of Kerry | child | John Petty, 1st Earl of Shelburne | child |
Anne d'Arpajon | spouse | Philippe de Noailles | child | Louis Marie Antoine de Noailles | child |
Anne of Cyprus | spouse | Duke Ludovico I, Duke of Savoy | child | Louis of Cyprus | child |
Ano | spouse | Jeroboam I | child | Abijah | child |
Archduchess Louise of Austria | spouse | Friedrich August III of Saxony | child | Georg, Crown Prince of Saxony | child |
Archduchess Margarete Sophie of Austria | spouse | Albrecht, Duke of Württemberg | child | Duke Carl Alexander of Württemberg | child |
Ashikaga Takauji | spouse | Akahashi Tōshi | child | Ashikaga Yoshiakira | child |
Ashot I of Armenia | spouse | Katranide I | child | Sahak Bagratuni | child |
Athamas | spouse | Nephele | child | Helle | child |
Augusta Anastasia of Lithuania | spouse | Simeon of Moscow | child | Vasilisa Simeonovna | child |
Barend Cornelis Koekkoek | spouse | Elise Thérèse Koekkoek-Daiwaille | child | Adèle Koekkoek | child |
Benoît Chassériau | spouse | Q17310879 | child | Q13422510 | child |
Birger Persson | spouse | Ingeborg Bengtsdotter | child | Katarina Birgersdotter | child |
Boreas | depicts | Boreas | child | Aurai | child |
Carl Wilhelm Linder | spouse | Anna Ulrika Maria Wallenberg | child | Q19587260 | child |
Catherine de' Medici | depicts | Catherine de' Medici | child | Margaret of Valois | child |
Catherine de' Medici | spouse | Henry II of France | child | Margaret of Valois | child |
Catherine of Brunswick-Lüneburg | spouse | Frederick I | child | Catherine of Saxony, Electress of Brandenburg | child |
Charles I, Duke of Brunswick-Wolfenbüttel | spouse | Princess Philippine Charlotte of Prussia | child | Elisabeth Christine of Brunswick-Wolfenbüttel, Crown Princess of Prussia | child |
Charles II, Archduke of Austria | spouse | Maria Anna of Bavaria | child | Princess Maria Christina I, Princess of Transylvania | child |
Corazon Aquino | spouse | Benigno Aquino Jr. | child | Kris Aquino | child |
Countess Elisabeth of Leuchtenberg | spouse | Johann VI, Count of Nassau-Dillenburg | child | Mary of Nassau-Dillenburg | child |
Drogo Baggins | spouse | Primula Brandybuck | child | Frodo Baggins | child |
Edmund of Langley, 1st Duke of York | spouse | Isabella of Castile, Duchess of York | child | Edward of Norwich, 2nd Duke of York | child |
Edward IV of England | spouse | Elizabeth Woodville | child | Catherine of York | child |
Eleanor of Alburquerque | spouse | Ferdinand I of Aragon | child | John II of Aragon | child |
Elisabeth of France | spouse | Philip IV of Spain | child | Maria Theresa of Spain | child |
Emperor Gaozong of Tang | spouse | Consort Xiao | child | Li Xiayu | child |
Emperor Taiwu of Northern Wei | spouse | Q8253766 | child | Tuoba Huang | child |
Emperor Taizu of Jin | spouse | Empress Qinxian | child | Wanyan Elu | child |
Empress Dowager Xiao Wenshou | spouse | Liu Qiao | child | Liu Daolian | child |
Empress Xu | spouse | Yongle Emperor | child | Princess Yong'an | child |
Erik Sparre af Sundby | spouse | Sophia Wrede | child | Axel Wrede Sparre | child |
Ernest Leopold, Landgrave of Hesse-Rotenburg | spouse | Countess Eleonore of Löwenstein-Wertheim-Rochefort | child | Joseph, Hereditary Prince of Hesse-Rotenburg | child |
Ernest of Saxony | spouse | Elisabeth of Bavaria, Electress of Saxony | child | Margaret of Saxony, Duchess of Brunswick-Lüneburg | child |
Ernst Norée | spouse | Lia Norée | child | Sture Norée | child |
Eshin-ni | spouse | Shinran | child | Zenran | child |
Ferdinand Albert II, Duke of Brunswick-Wolfenbüttel | spouse | Princess Antoinette of Brunswick-Wolfenbüttel | child | Duke Louis Ernest of Brunswick-Lüneburg | child |
Flavia Julia Constantia | spouse | Licinius | child | Licinius II | child |
Francis I of France | spouse | Claude of France | child | Charles II de Valois, Duke of Orléans | child |
Francis I, Holy Roman Emperor | spouse | Maria Theresa of Austria | child | Archduchess Maria Elisabeth of Austria | child |
Francis I, Holy Roman Emperor | spouse | Maria Theresa of Austria | child | Archduchess Maria Elisabeth of Austria | child |
Francis I, Holy Roman Emperor | spouse | Maria Theresa of Austria | child | Archduchess Maria Elisabeth of Austria | child |
Francis I, Holy Roman Emperor | spouse | Maria Theresa of Austria | child | Archduchess Maria Elisabeth of Austria | child |
Frederick I | spouse | Catherine of Brunswick-Lüneburg | child | Frederick II | child |
Germanicus | spouse | Agrippina the Elder | child | Julia Drusilla | child |
Germanicus | child | Caligula | child | Julia Drusilla | child |
Gina Alajar | spouse | Michael de Mesa | child | Geoff Eigenmann | child |
Godwin, Earl of Wessex | spouse | Gytha Thorkelsdóttir | child | Harold Godwinson | child |
Grand Duke Konstantin Nikolayevich of Russia | spouse | Princess Alexandra of Saxe-Altenburg | child | Grand Duke Dimitri Constantinovich of Russia | child |
Gustave Fould | spouse | Valérie Simonin | child | Consuelo Fould | child |
Guy | spouse | Matilda of Béthune | child | John of Flanders | child |
Guy | given name | Guy | child | John of Flanders | child |
Guy | family name identical to this given name | Guy | child | John of Flanders | child |
Heinrich XXII, Prince Reuss of Greiz | spouse | Princess Ida of Schaumburg-Lippe | child | Empress Hermine of Germany | child |
Henry IV | spouse | Catherine of Mecklenburg | child | Sidonie of Saxony | child |
Honoré I, Lord of Monaco | spouse | Isabella Grimaldi | child | Hercule, Lord of Monaco | child |
Hōjō Ujimasa | spouse | Ōbai-in | child | Ōta Gengorō | child |
Ichijō | spouse | Fujiwara no Teishi | child | Shūshi-naishinnō | child |
Ichijō | family name | Ichijō | child | Shūshi-naishinnō | child |
Isabella of Castile, Duchess of York | spouse | Edmund of Langley, 1st Duke of York | child | Edward of Norwich, 2nd Duke of York | child |
Jackie Stallone | child | Frank Stallone | child | Frank Stallone | child |
Jerzy Sebastian Lubomirski | Unknown | Konstancja Lubomirska | child | Hieronim Augustyn Lubomirski | child |
Jerzy Sebastian Lubomirski | spouse | Konstancja Lubomirska | child | Hieronim Augustyn Lubomirski | child |
John Adolf, Duke of Schleswig-Holstein-Gottorp | spouse | Augusta of Denmark | child | Frederick III, Duke of Schleswig-Holstein-Gottorp | child |
John Bethune | child | John Bethune | child | Donald Bethune | child |
John Bethune | father | John Bethune | child | Donald Bethune | child |
John D. Rockefeller Jr. | spouse | Abigail Greene Aldrich | child | Abby Rockefeller Mauzé | child |
John George II, Prince of Anhalt-Dessau | spouse | Countess Henriette Catherine of Nassau | child | Princess Henriëtte Amalia of Anhalt-Dessau | child |
John Hunyadi | spouse | Erzsébet Szilágyi | child | Ladislaus Hunyadi | child |
John Philip II, Wild- and Rhinegrave of Salm-Dhaun | spouse | Anna Catherine of Nassau-Ottweiler | child | Christian Otto, Wild- and Rhinegrave of Salm-Dhaun | child |
John the Fearless | spouse | Margaret of Bavaria | child | Agnes of Burgundy | child |
Judith of Babenberg | spouse | William V, Marquess of Montferrat | child | Azalaïs of Montferrat | child |
Julius, Duke of Brunswick-Lüneburg | spouse | Hedwig of Brandenburg, Duchess of Brunswick-Wolfenbüttel | child | Dorothea Augusta of Braunschweig-Wolfenbüttel | child |
Lady Wu | spouse | Sun Jian | child | Sun Kuang | child |
Leo II | spouse | Keran, Queen of Armenia | child | Isabella of Armenia, Princess of Tyre | child |
Lizinka Dyrssen | spouse | Wilhelm Dyrssen | child | Gustaf Dyrssen | child |
Léonie Gilmour | unmarried partner | Yone Noguchi | child | Isamu Noguchi | child |
Magdalena Sibylle of Saxe-Weissenfels | spouse | Frederick I of Saxe-Gotha-Altenburg | child | Fredericka of Saxe-Gotha-Altenburg | child |
Margaret I, Countess of Flanders | spouse | Baldwin V, Count of Hainaut | child | Isabella of Hainault | child |
Maria Caterina Farnese | spouse | Francesco I d'Este, Duke of Modena | child | Isabella d'Este, Duchess of Parma | child |
Maria I van Hulsberg | spouse | Q1861164 | child | Q2579126 | child |
Maria Palaiologina | spouse | Stephen Uroš III Dečanski of Serbia | child | Simeon Uroš | child |
Marichen Altenburg | spouse | Knud Ibsen | child | Hedvig Ibsen | child |
Matilda FitzRoy, Duchess of Brittany | spouse | Conan III, Duke of Brittany | child | Bertha, Duchess of Brittany | child |
Matilda, Countess of Rethel | spouse | Odo of Vitry | child | Ithier I, Count of Rethel | child |
Michael J. Fox | spouse | Tracy Pollan | child | Schuyler Fox | child |
Miroslava of Pomerania | spouse | Niklot I, Count of Schwerin | child | Q3329944 | child |
Nicholas Hastings | child | Ralph Hastings | child | Ralph Hastings | child |
Nicolas Sarkozy | spouse | Marie-Dominique Culioli | child | Jean Sarkozy | child |
Oceanus | Unknown | Tethys | child | Clytie | child |
Oceanus | spouse | Tethys | child | Clytie | child |
Oswald van Keppel | spouse | Anna van Keppel | child | Arnold van Keppel, 1st Earl of Albemarle | child |
Otte Brahe | spouse | Beate Clausdatter Bille | child | Axel Ottesen Brahe | child |
Otto III, Margrave of Brandenburg | spouse | Beatrice of Bohemia | child | John III, Margrave of Brandenburg-Salzwedel | child |
Pandion II | child | Lycus | child | Lycus | child |
Philip | spouse | Berenice I of Egypt | child | Magas of Cyrene | child |
Philip | given name | Philip | child | Magas of Cyrene | child |
Philip III of Spain | spouse | Margaret of Austria, Queen of Spain | child | Maria Anna of Spain | child |
Pieter Pietersz the Elder | spouse | Magdalena Pietersz | child | Pieter Pietersz II | child |
Pontus | mother | Gaia | child | Telchines | child |
Pontus | Unknown | Uranus | child | Telchines | child |
Praxithea | spouse | Erechtheus | child | Creusa | child |
Prince Ferdinando, Duke of Castro | spouse | Chantal de Chevron-Villette | child | Prince Carlo, Duke of Castro | child |
Prince Richard, Duke of Gloucester | spouse | Birgitte, Duchess of Gloucester | child | Alexander Windsor, Earl of Ulster | child |
Princess Duan | spouse | Murong Chui | child | Q11074098 | child |
Princess Louise Amelie of Baden | spouse | Gustav, Prince of Vasa | child | Carola of Vasa | child |
Princess Marie of Baden | spouse | Friedrich Wilhelm I, Duke of Brunswick | child | Karl II, Duke of Brunswick | child |
Princess Victoria, Duchess of Kent and Strathearn | spouse | Prince Edward, Duke of Kent and Strathearn | child | Queen Victoria | child |
Q15272727 | spouse | Q15272723 | child | Andromeda Tonks | child |
Q15290663 | spouse | Giovanni Maddaloni | child | Giuseppe Maddaloni | child |
Q15838912 | spouse | Q15838914 | child | Q15839290 | child |
Q16889788 | spouse | Sotiris Charalambis | child | Anastasios S. Charalambis | child |
Q1915754 | spouse | André Hazes | child | Roxeanne Hazes | child |
Q8262928 | spouse | Emperor Wen of Liu Song | child | Liu Xiuren | child |
Regina, Crown Princess of Austria | spouse | Otto von Habsburg | child | Georg of Austria | child |
Reinhard von Gemmingen-Hornberg | child | Reinhard von Gemmingen-Hornberg | child | Wolfgang von Gemmingen | child |
Reinhard von Gemmingen-Hornberg | father | Reinhard von Gemmingen-Hornberg | child | Wolfgang von Gemmingen | child |
Ruth Roche, Baroness Fermoy | spouse | Maurice Roche, 4th Baron Fermoy | child | Frances Shand Kydd | child |
Siemowit IV | spouse | Alexandra of Lithuania | child | Q2583137 | child |
Simone d'Andlau | spouse | Adrien Albert Marie de Mun | child | Bertrand de Mun | child |
Sophie of Mecklenburg-Güstrow | spouse | Frederick II of Denmark | child | Anne of Denmark | child |
Sophie of Pomerania, Duchess of Mecklenburg | spouse | Magnus II, Duke of Mecklenburg | child | Eric II, Duke of Mecklenburg | child |
Stephen III, Duke of Bavaria | spouse | Taddea Visconti | child | Isabeau of Bavaria | child |
Sylvaine Llodra | spouse | Michel Llodra | child | Michaël Llodra | child |
Tamaki | spouse | Maeda Toshitsune | child | Q11397442 | child |
Tokiwa Gozen | spouse | Q11352833 | child | Q11352830 | child |
Urraca Garcés of Pamplona | spouse | William II Sánchez of Gascony | child | Sancho VI William of Gascony | child |
Uther Pendragon | spouse | Igraine | child | King Arthur | child |
Vlasta Hilská | spouse | Václav Hilský | child | Martin Hilský | child |
William James Almon | spouse | Rebecca Byles | child | William Bruce Almon | child |
William Randolph | spouse | Mary Isham | child | John Randolph | child |
William Randolph | child | John Randolph | child | John Randolph | child |
William Randolph | child | Richard Randolph | child | John Randolph | child |
William VII of Montpellier | spouse | Matilda of Burgundy | child | William VIII of Montpellier | child |
William, Duke of Saxe-Weimar | spouse | Eleonore Dorothea of Anhalt-Dessau | child | John George I, Duke of Saxe-Eisenach | child |
Zaifeng, Prince Chun | spouse | Youlan | child | Puyi | child |
Zhao Ting | spouse | Q8258349 | child | Zhao Jing | child |
Árpád | given name | Árpád | child | Jelek | child |
Æthelred the Unready | spouse | Ælfgifu of York | child | Eadwig Ætheling | child |
Afonso I | spouse | Beatriz Pereira de Alvim | child | Fernando I, Duke of Braganza | child |
Agathocles of Pella | child | Lysimachus | child | Philip | child |
Agnes of Hohenstaufen | spouse | Henry V, Count Palatine of the Rhine | child | Agnes of the Palatinate | child |
Agnès II, Countess of Nevers | spouse | Guy III of Saint-Pol | child | Yolande of Châtillon | child |
Agrippina the Elder | spouse | Germanicus | child | Julia Livilla | child |
Albert the Bear | spouse | Sophie of Winzenburg | child | Herman I, Count of Weimar-Orlamünde | child |
Aldona of Lithuania | spouse | Casimir III the Great | child | Cunigunde of Poland | child |
Alexandra of Druck | spouse | Andrew Olshansky | child | Sophia of Halshany | child |
Angrboða | said to be the same as | Gullveig | child | Jörmungandr | child |
Anna Durward | spouse | Colbán, Earl of Fife | child | Donnchadh III, Earl of Fife | child |
Anna of Brunswick-Grubenhagen-Einbeck | spouse | Albert III, Duke of Bavaria | child | Albert IV, Duke of Bavaria | child |
Anna of Hesse | spouse | Wolfgang, Count Palatine of Zweibrücken | child | Charles I, Count Palatine of Zweibrücken-Birkenfeld | child |
Anne Henriette of Bavaria | spouse | Henri Jules, Prince of Condé | child | Marie Thérèse de Bourbon | child |
Anne de Bourbon | spouse | Louis VII, Duke of Bavaria | child | Louis VIII, Duke of Bavaria | child |
Antiochus IV of Commagene | follows | Antiochus III of Commagene | child | Julia Iotapa | child |
Antiochus IV of Commagene | father | Antiochus III of Commagene | child | Julia Iotapa | child |
Antiochus IV of Commagene | spouse | Julia Iotapa | child | Julia Iotapa | child |
Antiochus IV of Commagene | Unknown | Julia Iotapa | child | Julia Iotapa | child |
Antiochus IV of Commagene | child | Julia Iotapa | child | Julia Iotapa | child |
Antiochus IV of Commagene | mother | Iotapa of Commagene | child | Julia Iotapa | child |
Archduke Ferdinand Karl Viktor of Austria-Este | spouse | Archduchess Elisabeth Franziska of Austria | child | Maria Theresa of Austria-Este | child |
Arnold IV, Count of Loon | spouse | Q2246040 | child | John I, Count of Loon | child |
Aurangzeb | spouse | Dilras Banu | child | Sultan Muhammad Akbar | child |
Aymer, Count of Angoulême | spouse | Alice of Courtenay | child | Isabella of Angoulême | child |
Baldwin V, Count of Hainaut | spouse | Margaret I, Countess of Flanders | child | Henry of Flanders | child |
Beatrice II, Countess of Burgundy | spouse | Otto I | child | Beatrix of Andechs-Merania | child |
Beatrice of Albon | spouse | Hugh III, Duke of Burgundy | child | Anne of Burgundy, Countess of Savoy | child |
Berengar I, Count of Sulzbach | spouse | Adelheid of Wolfratshausen | child | Matilda of Sulzbach | child |
Bernard-Henri Lévy | spouse | Q16738134 | child | Justine Lévy | child |
Bertha of Kent | spouse | Æthelberht | child | Eadbald of Kent | child |
Bifukumon'in no Kaga | spouse | Fujiwara no Toshinari | child | Fujiwara no Teika | child |
Blanche of Brittany | spouse | Philippe d'Artois | child | Robert III of Artois | child |
Börte | spouse | Genghis Khan | child | Tümelün | child |
Casimir I, Duke of Cieszyn | spouse | Eufemia of Masovia | child | Siemowit of Cieszyn | child |
Constance of Wrocław | spouse | Casimir I of Kuyavia | child | Leszek II the Black | child |
Countess Juliane of Nassau-Siegen | spouse | Maurice, Landgrave of Hesse-Kassel | child | Agnes of Hesse-Kassel | child |
Doris | father | Nereus | child | Eucrante | child |
Doris | spouse | Nereus | child | Eucrante | child |
Doris | given name | Doris | child | Eucrante | child |
Doris | mother | Doris | child | Eucrante | child |
Doris | child | Doris | child | Eucrante | child |
Duchess Helene in Bavaria | spouse | Maximilian Anton, Hereditary Prince of Thurn and Taxis | child | Princess Louise of Thurn and Taxis | child |
Elizabeth Hoby | spouse | Thomas Hoby | child | Edward Hoby | child |
Emma Darwin | spouse | Charles Darwin | child | Charles Waring Darwin | child |
Emperor Gaozong of Tang | spouse | Wu Zetian | child | Princess Taiping | child |
Emperor Ruizong of Tang | spouse | Empress Liu | child | Princess Daiguo | child |
Emperor Wu of Han | spouse | Lady Gouyi | child | Emperor Zhao of Han | child |
Emperor Yingzong of Song | spouse | Empress Gao | child | Princess Weiguo Chugo Dazhang | child |
Emperor Zhezong of Song | spouse | Empress Liu | child | Q11076140 | child |
Emperor Zhezong of Song | spouse | Empress Liu | child | Q15920271 | child |
Empress Nara | spouse | Qianlong Emperor | child | Q7824775 | child |
Empress Xiaogongren | spouse | Kangxi Emperor | child | Yongzheng Emperor | child |
Eudamidas I | spouse | Arachidamia | child | Archidamus IV | child |
Eudoxia of Kiev | spouse | Mieszko III the Old | child | Mieszko the Younger | child |
Euphemia of Sweden | spouse | Duke Albrecht II, Duke of Mecklenburg | child | Henry III, Duke of Mecklenburg | child |
Felicia-Matilda of Mayenne | spouse | Hugh II, Duke of Burgundy | child | Sibylla of Burgundy | child |
Ferdinand I of the Two Sicilies | spouse | Maria Carolina of Austria | child | Maria Anna of Naples and Sicily | child |
Flann Sinna | spouse | Gormlaith ingen Flann mac Conaing | child | Gormflaith ingen Flann Sinna | child |
Florence Barakat | spouse | Fred Barakat | child | Amy Cook | child |
Folke Algotsson | spouse | Ingrid Svantepolksdotter | child | Knut Folkesson | child |
Frederick II, Duke of Saxe-Gotha-Altenburg | spouse | Princess Magdalena Augusta of Anhalt-Zerbst | child | Prince John August of Saxe-Gotha-Altenburg | child |
Frederick II, Landgrave of Hesse-Homburg | spouse | Louise Elisabeth of Courland | child | Hedwig Luise of Hesse-Homburg | child |
Fushimi-no-miya Yoshihito-Shinnō | spouse | Haruko | child | Q11381083 | child |
Georg Donatus, Hereditary Grand Duke of Hesse | spouse | Princess Cecilie of Greece and Denmark | child | Prince Ludwig of Hesse and by Rhine | child |
George Mountbatten, 2nd Marquess of Milford Haven | spouse | Nadejda Mountbatten, Marchioness of Milford Haven | child | David Mountbatten, 3rd Marquess of Milford Haven | child |
George Villiers | spouse | Mary Villiers, Countess of Buckingham | child | Susan Feilding, Countess of Denbigh | child |
Gerberga of Saxony | spouse | Louis IV of France | child | Lothair of France | child |
Gilbert, Count of Montpensier | spouse | Clara Gonzaga | child | Louise de Bourbon, Duchess of Montpensier | child |
Giuseppe Garibaldi | Unknown | Giuseppe Garibaldi | child | Manlio Garibaldi | child |
Giuseppe Garibaldi | Unknown | Giuseppe Garibaldi | child | Manlio Garibaldi | child |
Giuseppe Garibaldi | spouse | Francesca Armosino | child | Manlio Garibaldi | child |
Godfrey I, Count of Louvain | spouse | Clementia of Burgundy | child | Joscelin of Louvain | child |
Grand Duchess Kira Kirillovna of Russia | spouse | Louis Ferdinand, Prince of Prussia | child | Princess Marie Cécile of Prussia | child |
Guntheuc | spouse | Chlodomer | child | Clodoald | child |
Gustavo Yankelevich | spouse | María Cristina De Giacomi | child | Tomás Yankelevich | child |
Heinrich VII, Prince Reuss of Köstritz | spouse | Princess Marie Alexandrine of Saxe-Weimar-Eisenach | child | Prince Heinrich XXXIII Reuss of Köstritz | child |
Hetepheres I | Unknown | Sneferu | child | Princess Hetepheres | child |
Hetepheres I | spouse | Sneferu | child | Princess Hetepheres | child |
Hiroko-joō | spouse | Suzaku | child | Masako-naishinnō | child |
Infanta Maria Francisca of Portugal | spouse | Carlos de Borbón y Borbón-Parma | child | Carlos Luis de Borbón y Bragança | child |
Infanta Maria of Guimarães | spouse | Alexander Farnese | child | Ranuccio I Farnese | child |
Iotapa of Emesa | spouse | Sampsiceramus II | child | Sohaemus of Emesa | child |
Isabella d'Este | spouse | Francesco II Gonzaga, Marquess of Mantua | child | Ercole Gonzaga | child |
Isabella of England | spouse | Frederick II, Holy Roman Emperor | child | Margaret of Sicily | child |
Isabella, Countess of Vertus | spouse | Gian Galeazzo Visconti | child | Valentina Visconti, Duchess of Orléans | child |
Isabelle of Luxembourg | spouse | Guy | child | Guy of Namur | child |
James Dickson | father | James Dickson | child | James Jameson Dickson | child |
James Dickson | child | James Dickson | child | James Jameson Dickson | child |
Joan II of Navarre | spouse | Philip III of Navarre | child | Charles II of Navarre | child |
Johan Glüsing Plesner | spouse | Karen Cathrine Hind | child | Knud Plesner | child |
John Parke Custis | spouse | Eleanor Calvert | child | Eleanor Parke Custis Lewis | child |
John the younger | spouse | Elisabeth of Brunswick-Grubenhagen | child | Elisabeth of Schleswig-Holstein-Sonderburg | child |
Josiah Wedgwood | father | Josiah Wedgwood | child | Francis Wedgwood | child |
Josiah Wedgwood | child | Josiah Wedgwood | child | Francis Wedgwood | child |
Joséphine of Lorraine | spouse | Victor Amadeus II, Prince of Carignano | child | Charles Emmanuel, Prince of Carignano | child |
Juan Núñez III de Lara | spouse | María Díaz II de Haro | child | Nuño Díaz de Haro, Lord of Lara | child |
Katherine Godwin | spouse | Mills E. Godwin | child | Becky Godwin | child |
King Francisco of Spain | spouse | Isabel II of Spain | child | Infanta María de la Paz of Spain | child |
King Zhuangxiang of Qin | spouse | Queen Dowager Zhao | child | Qin Shi Huangdi | child |
Leah | spouse | Jacob | child | Dinah | child |
Liu | spouse | Emperor Xuanzong of Tang | child | Li Cong | child |
Liu | family name | Liu | child | Li Cong | child |
Lorens Faxe | father | Lorens Faxe | child | Adolf Faxe | child |
Lorens Faxe | child | Lorens Faxe | child | Adolf Faxe | child |
Louis-Félix-Joseph Le Loup de Sancy | spouse | Charlotte de Rolland | child | Q15147873 | child |
Magnus III of Sweden | mother | Ingeborg Eriksdotter of Sweden | child | Valdemar | child |
Magnus III of Sweden | father | Birger Jarl | child | Valdemar | child |
Magnus III of Sweden | spouse | Hedwig of Holstein | child | Valdemar | child |
Mahmud II | spouse | Bezmiâlem Sultan | child | Abdülmecid I | child |
Marcus Antonius | spouse | Julia | child | Antonia | child |
Marcus Antonius | child | Mark Antony | child | Antonia | child |
Margaret of Austria, Queen of Spain | spouse | Philip III of Spain | child | Infante Carlos of Spain | child |
Margaret of Blois | spouse | Otto I, Count of Burgundy | child | Beatrice II, Countess of Burgundy | child |
Margaret of Britain | spouse | Alain IX de Rohan | child | Catherine de Rohan | child |
Margaret of Geneva | spouse | Thomas I, Count of Savoy | child | Peter II, Count of Savoy | child |
Maria Luisa of Parma | spouse | Charles IV of Spain | child | Carlota Joaquina of Spain | child |
Maria Luisa of Spain | spouse | Leopold II, Holy Roman Emperor | child | Archduke Rainer Joseph of Austria | child |
Marie Walewska | unmarried partner | Napoleon | child | Alexandre Colonna-Walewski | child |
Marie of Brabant, Queen of France | spouse | Philip III of France | child | Margaret of France | child |
Martina Clason | spouse | Lars Knutsson | child | Filippa Knutsson | child |
Matilda of Carinthia | spouse | Theobald II of Champagne | child | Stephen I of Sancerre | child |
Matthew Macfadyen | spouse | Keeley Hawes | child | Maggie Macfadyen | child |
Maximilian de Beauharnais, 3rd Duke of Leuchtenberg | spouse | Grand Duchess Maria Nikolaevna of Russia | child | George Maximilianovich, 6th Duke of Leuchtenberg | child |
Mehmed III | spouse | Handan Sultan | child | Mustafa I | child |
Meredith Grey | spouse | Derek Shepherd | child | Derek Bailey Shepherd | child |
Milton Friedman | spouse | Rose Friedman | child | David D. Friedman | child |
Nonia Celsa | spouse | Macrinus | child | Diadumenian | child |
Oleh Blokhin | spouse | Irina Deriugina | child | Ireesha | child |
Pablo Picasso | unmarried partner | Marie-Thérèse Walter | child | Maya Widmaier-Picasso | child |
Philip William, Elector Palatine | spouse | Landgravine Elisabeth Amalie of Hesse-Darmstadt | child | Alexander Sigismund von der Pfalz-Neuburg | child |
Prince Paul of Württemberg | spouse | Princess Charlotte of Saxe-Hildburghausen | child | Princess Charlotte of Württemberg | child |
Princess Dorothea of Schleswig-Holstein-Sonderburg-Beck | spouse | George Frederick Charles, Margrave of Brandenburg-Bayreuth | child | Margravine Sophie Christine of Brandenburg-Bayreuth | child |
Princess Isabelle of Orléans | spouse | Prince Jean d’Orléans | child | Henri d’Orléans | child |
Princess Louise of Saxe-Meiningen | spouse | Adolph, Landgrave of Hesse-Philippsthal-Barchfeld | child | Charles, Landgrave of Hesse-Philippsthal-Barchfeld | child |
Q11623631 | spouse | Q11623536 | child | Fujiwara no Akisue | child |
Q13417663 | spouse | Hamazasp IV Mamikonian | child | Q13417670 | child |
Q15111563 | spouse | Alphonse Mucha | child | Jiří Mucha | child |
Q15935553 | spouse | Q15935559 | child | Uli Hoeneß | child |
Q18108218 | spouse | Gaston Mayer | child | Pierre Gaston-Mayer | child |
Q19683586 | spouse | Lew Sapieha | child | Jan Stanisław Sapieha | child |
Q5298231 | spouse | Joachim Ernest, Duke of Schleswig-Holstein-Sonderburg-Plön | child | Duke Bernhard of Schleswig-Holstein-Sonderburg-Plön | child |
Q622873 | spouse | Q15942023 | child | Duke Xi of Lu | child |
Q632553 | spouse | Q15955456 | child | Duke Huan of Lu | child |
Q8253918 | spouse | Emperor Wu of Liang | child | Xiao Tong | child |
Queen Victoria | spouse | Albert, Prince Consort | child | Alfred I, Duke of Saxe-Coburg and Gotha | child |
Ramesses IV | spouse | Duatentopet | child | Ramesses V | child |
Ramesses IV | Unknown | Duatentopet | child | Ramesses V | child |
Richeza of Poland, Queen of Castile | spouse | Alfonso VII | child | Q5860449 | child |
Rotrude of Trier | spouse | Charles Martel | child | Hiltrud | child |
Rudolph I of Germany | spouse | Gertrude of Hohenberg | child | Judith of Habsburg | child |
Sancho I of Portugal | spouse | Dulce of Aragon | child | Berengaria of Portugal | child |
Sibylla of Armenia | spouse | Bohemond VI of Antioch | child | Lucia, Countess of Tripoli | child |
Soběslav I, Duke of Bohemia | spouse | Adelaide of Hungary | child | Maria of Bohemia | child |
Sosipatra | spouse | Eustathius of Cappadocia | child | Antoninus | child |
Stanislav Neumann | child | Stanislav Neumann | child | Stanislav Kostka Neumann | child |
Stanislav Neumann | father | Stanislav Neumann | child | Stanislav Kostka Neumann | child |
Taksi | spouse | Empress Xuan | child | Q6668004 | child |
Tethys | named after | Tethys | child | Aethra | child |
Tethys | spouse | Oceanus | child | Aethra | child |
Tethys | Unknown | Oceanus | child | Aethra | child |
Tethys | spouse | Oceanus | child | Eidyia | child |
Tethys | Unknown | Oceanus | child | Eidyia | child |
Tethys | named after | Tethys | child | Eidyia | child |
Theodosius I | spouse | Aelia Flaccilla | child | Arcadius | child |
Toba | spouse | Fujiwara no Tamako | child | Go-Shirakawa | child |
Ulrich, Duke of Mecklenburg | spouse | Elizabeth of Denmark, Duchess of Mecklenburg | child | Sophie of Mecklenburg-Güstrow | child |
Victoria Aitken | spouse | Charles Spencer, 9th Earl Spencer | child | Lady Amelia Spencer | child |
Vittorio Veltroni | spouse | Ivanka Kotnik | child | Walter Veltroni | child |
Watartum | spouse | Ur-Nammu | child | Ennirgalanna | child |
Xiao Tong | spouse | Empress Dowager Gong | child | Emperor Xuan of Western Liang | child |
Yoshiko-joō | spouse | Tokugawa Nariaki | child | Tokugawa Yoshinobu | child |
Yura | spouse | Shimazu Narioki | child | Shimazu Hisamitsu | child |
Yuya Uchida | spouse | Kirin Kiki | child | Yayako Uchida | child |
Adelinde of Aquitaine | spouse | Acfred I of Carcassonne | child | Acfred, Duke of Aquitaine | child |
Afonso of Portugal | father | Afonso of Portugal | child | Infanta Maria, Lady of Menezes and Orduña | child |
Afonso of Portugal | child | Afonso of Portugal | child | Infanta Maria, Lady of Menezes and Orduña | child |
Afonso of Portugal | spouse | Violante Manuel | child | Infanta Maria, Lady of Menezes and Orduña | child |
Afonso of Portugal | mother | Violante Manuel | child | Infanta Maria, Lady of Menezes and Orduña | child |
Agnes Campbell | spouse | James MacDonald, 6th of Dunnyveg | child | Ranald MacDonald of Smerby | child |
Agnes of Rochlitz | spouse | Berthold IV, Duke of Merania | child | Gertrude of Merania | child |
Agnes of the Palatinate | spouse | Otto IV or II Wittelsbach | child | Louis II, Duke of Bavaria | child |
Alexander Keiller | child | James Keiller | child | James Keiller | child |
Alexios III of Trebizond | spouse | Theodora Kantakouzene | child | Manuel III of Trebizond | child |
Alfonso VIII | spouse | Eleanor of England, Queen of Castile | child | Eleanor of Castile | child |
Alice of Namur | spouse | Baldwin IV, Count of Hainaut | child | Laurence de Hainaut | child |
Amyntas IV of Macedon | spouse | Cynane | child | Eurydice II of Macedon | child |
Andromeda | depicts | Perseus | child | Gorgophone | child |
Andromeda | spouse | Perseus | child | Gorgophone | child |
Andromeda | depicts | Perseus | child | Gorgophone | child |
Andromeda | named after | Andromeda | child | Gorgophone | child |
Andromeda | depicts | Andromeda | child | Gorgophone | child |
Andromeda | depicts | Andromeda | child | Gorgophone | child |
Andromeda | depicts | Andromeda | child | Gorgophone | child |
Andromeda | named after | Andromeda | child | Gorgophone | child |
Andromeda | depicts | Andromeda | child | Gorgophone | child |
Andromeda | depicts | Andromeda | child | Gorgophone | child |
Anna Széles | spouse | Florin Piersic | child | Q15150980 | child |
Anna of Brunswick-Grubenhagen-Einbeck | spouse | Albert III, Duke of Bavaria | child | Margaret of Bavaria, Marchioness of Mantua | child |
Anni Swan | spouse | Otto Manninen | child | Antero Manninen | child |
Ansa, Queen of the Lombards | spouse | Desiderius | child | Adalgis | child |
Archduchess Marie Henriette of Austria | spouse | Leopold II of Belgium | child | Princess Clémentine, Princess Napoléon | child |
Archduke Joseph Francis of Austria | spouse | Princess Anna of Saxony | child | Archduke Joseph Árpád of Austria | child |
Aristomenis Kontogouris | spouse | Viktoria Sisinis | child | Filippos Kontogouris | child |
Baldwin V, Count of Flanders | spouse | Adela of France | child | Baldwin VI, Count of Flanders | child |
Barbara of Cilli | spouse | Sigismund | child | Elizabeth of Luxembourg | child |
Ben no menoto | spouse | Q11623082 | child | Q11623647 | child |
Berengar I, Count of Sulzbach | spouse | Adelheid of Wolfratshausen | child | Gebhard III, Count of Sulzbach | child |
Betty Ehrenborg | spouse | Johan August Posse | child | Hedvig Posse | child |
Casimir Dudevant | spouse | George Sand | child | Maurice Sand | child |
Catherine of Brunswick-Wolfenbüttel, Margravine of Brandenburg-Küstrin | spouse | John, Margrave of Brandenburg-Küstrin | child | Catherine of Brandenburg-Küstrin | child |
Catherine of Courtenay | spouse | Charles of Valois | child | Joan of Valois, Countess of Beaumont | child |
Catherine of Sweden, Countess Palatine of Kleeburg | spouse | John Casimir, Count Palatine of Kleeburg | child | Adolph John I, Count Palatine of Kleeburg | child |
Chai Shao | spouse | Princess Pingyang | child | Q10350884 | child |
Charles I, Duke of Brunswick-Wolfenbüttel | spouse | Princess Philippine Charlotte of Prussia | child | Charles William Ferdinand, Duke of Brunswick-Wolfenbüttel | child |
Charles I, Margrave of Baden-Baden | spouse | Catherine of Austria | child | Q105951 | child |
Charles, Prince of Soubise | spouse | Anne Marie Louise de La Tour d'Auvergne | child | Charlotte de Rohan | child |
Charlotte de Rolland | spouse | Louis-Félix-Joseph Le Loup de Sancy | child | Q15147873 | child |
Chiang Chao-tsung | spouse | Wang Caiyu | child | Chiang Kai-shek | child |
Chlothar II | spouse | Bertrude | child | Dagobert I | child |
Christine of Saxony | spouse | Philip I | child | Philip II, Landgrave of Hesse-Rheinfels | child |
Cicero | spouse | Terentia | child | Cicero Minor | child |
Cicero | located in the administrative territorial entity | Cicero | child | Cicero Minor | child |
Count Christian of Rosenborg | spouse | Karin Lüttichau | child | Count Valdemar of Rosenborg | child |
Countess Palatine Hedwig Elisabeth of Neuburg | spouse | James Louis Sobieski | child | Maria Clementina Sobieska | child |
Countess Palatine Helena of Simmern | spouse | Philip III, Count of Hanau-Münzenberg | child | Dorothea of Hanau-Münzenberg | child |
Einar Gerhardsen | spouse | Werna Gerhardsen | child | Truls Gerhardsen | child |
Eleanor of Anjou, Queen of Sicily | spouse | Frederick III of Sicily | child | Constance of Sicily, Queen of Cyprus | child |
Eleanor of Aquitaine | spouse | Henry II of England | child | William IX, Count of Poitiers | child |
Eleonore Juliane of Brandenburg-Ansbach | spouse | Frederick Charles, Duke of Württemberg-Winnental | child | Charles Alexander, Duke of Württemberg | child |
Elizabeth Somerset, Countess of Worcester | spouse | Edward Somerset, 4th Earl of Worcester | child | Lady Blanche Arundell | child |
Elizabeth of Luxembourg | spouse | Albert II of Germany | child | Ladislaus the Posthumous | child |
Elizabeth of York, Duchess of Suffolk | spouse | John de la Pole, 2nd Duke of Suffolk | child | Richard de la Pole | child |
Emperor Meiji | spouse | Sono Sachiko | child | Teruhito, Prince Mitsu | child |
Empress Wang | spouse | Emperor Dezong of Tang | child | Emperor Shunzong of Tang | child |
Empress Wang | child | Empress Wang | child | Emperor Shunzong of Tang | child |
Empress Wang | mother | Empress Wang | child | Emperor Shunzong of Tang | child |
Empress Zhenyi | spouse | Wanyan Zongyao | child | Emperor Shizong of Jin | child |
Erik A. Nielsen | spouse | Margrete Auken | child | Ida Auken | child |
Erik Eriksson | child | Erik Eriksson | child | Karl Eriksson | child |
Erik Eriksson | father | Erik Eriksson | child | Karl Eriksson | child |
Erik Eriksson | spouse | Anna Karlsdotter | child | Karl Eriksson | child |
Ermengarde of Tours | spouse | Lothair I | child | Charles of Provence | child |
Ermenilda of Ely | spouse | Wulfhere of Mercia | child | Coenred of Mercia | child |
Finn Jarel Sæle | spouse | Anita Apelthun Sæle | child | Finn Ørjan Sæle | child |
Frances Bland | spouse | John Randolph | child | John Randolph of Roanoke | child |
Francis II, Duke of Saxe-Lauenburg | spouse | Maria of Brunswick-Lüneburg | child | Julius Henry, Duke of Saxe-Lauenburg | child |
Francis Russell, 9th Duke of Bedford | spouse | Elizabeth Russell, Duchess of Bedford | child | George Russell, 10th Duke of Bedford | child |
Francis, Duke of Saxe-Coburg-Saalfeld | spouse | Countess Augusta Reuss of Ebersdorf | child | Prince Ferdinand of Saxe-Coburg and Gotha | child |
Frederick Charles, Duke of Württemberg-Winnental | spouse | Eleonore Juliane of Brandenburg-Ansbach | child | Christiane Charlotte of Württemberg-Winnental | child |
Gaia | named after | Gaia | child | Koios | child |
Gaia | child | Uranus | child | Koios | child |
Gaia | spouse | Uranus | child | Koios | child |
Genmei | spouse | Prince Kusakabe | child | Genshō | child |
Genmei | Unknown | Prince Kusakabe | child | Genshō | child |
George Gordon, 2nd Earl of Huntly | spouse | Annabella of Scotland | child | Alexander Gordon, 3rd Earl of Huntly | child |
George III of Georgia | spouse | Burdukhan of Alania | child | Rusudan, daughter of George III of Georgia | child |
Gladys Heyman | spouse | Gösta Nystroem | child | Liliane Nystroem | child |
Grover Cleveland | depicts | Grover Cleveland | child | Ruth Cleveland | child |
Gunnar Myrdal | spouse | Alva Myrdal | child | Kaj Fölster | child |
Gustav Krupp von Bohlen und Halbach | spouse | Bertha Krupp | child | Irmgard Eilenstein | child |
Gösta Nystroem | spouse | Gladys Heyman | child | Liliane Nystroem | child |
Henri Chabot | spouse | Marguerite, Duchess of Rohan | child | Louis, Duke of Rohan | child |
Henry of Schweinfurt | spouse | Gerberga | child | Burchard II | child |
Herman II, Lord of Lippe | spouse | Oda of Tecklenburg | child | Heilwig of Lippe | child |
Ilari Paatso | spouse | Liisa Paatso | child | Rinna Paatso | child |
Irfan Ali | spouse | Fatima bint Amr | child | Harith ibn ‘Abd al-Muttalib | child |
Jacob Kettler | spouse | Margravine Louise Charlotte of Brandenburg | child | Louise Elisabeth of Courland | child |
Jaime Lannister | Unknown | Cersei Lannister | child | Tommen Baratheon | child |
Jiandi | spouse | Emperor Kù | child | Xie of Shang | child |
Jiří Kratochvíl | spouse | Šárka Štembergová-Kratochvílová | child | Zora Kratochvílová | child |
Jochen Dieckmann | spouse | Bärbel Dieckmann | child | Christoph Dieckmann | child |
John Henry, Margrave of Moravia | spouse | Margaret of Opava | child | Elizabeth of Moravia | child |
José Batlle y Ordóñez | spouse | Matilde Pacheco | child | Lorenzo Batlle Pacheco | child |
Judith of Bohemia | spouse | Władysław I Herman | child | Bolesław III Wrymouth | child |
József Esterházy | child | József Esterházy | child | Nikolaus I, Prince Esterházy | child |
József Esterházy | father | József Esterházy | child | Nikolaus I, Prince Esterházy | child |
Khadija bint Khuwaylid | spouse | Muhammad | child | Zainab bint Muhammad | child |
Kushige Takako | spouse | Emperor Go-Mizunoo | child | Go-Sai | child |
Lanassa | spouse | Pyrrhus | child | Alexandros II of Epirus | child |
Landgravine Amalie of Hesse-Darmstadt | spouse | Charles Louis, Hereditary Prince of Baden | child | Elizabeth Alexeievna (Louise of Baden) | child |
Landgravine Elisabeth Amalie of Hesse-Darmstadt | spouse | Philip William, Elector Palatine | child | Frederick Wilhelm von Pfalz-Neuburg | child |
Landgravine Maria Eleonore of Hesse-Rotenburg | spouse | Theodore Eustace, Count Palatine of Sulzbach | child | Anne Christine of Sulzbach | child |
Leonidas II | spouse | Q15217091 | child | Chilonis | child |
Louis IX of France | child | Philip III of France | child | Louis of France | child |
Louis IX of France | spouse | Margaret of Provence | child | Louis of France | child |
Louise Augustine Salbigothon Crozat de Thiers | spouse | Victor-François, 2nd duc de Broglie | child | Maurice-Jean de Broglie | child |
Léon Fould | spouse | Prascovie Thérèse Ephrussi | child | Eugène Fould | child |
Manuel Mamikonian | child | Hmayeak Mamikonian | child | Artases Mamikonian | child |
Margaret Beaufort, Countess of Somerset | spouse | John Beaufort, 1st Earl of Somerset | child | Margaret Beaufort, Countess of Devon | child |
Margaret of Opava | spouse | John Henry, Margrave of Moravia | child | Jobst of Moravia | child |
Marie Armande de La Trémoille | spouse | Emmanuel Théodose de La Tour d'Auvergne | child | Frédéric Maurice Casimir de La Tour d'Auvergne | child |
Marie of Brabant | spouse | Amadeus V | child | Beatrice of Savoy | child |
Marie of Prussia | spouse | Maximilian II of Bavaria | child | Otto of Bavaria | child |
Marjorie, Countess of Carrick | spouse | Robert de Brus, 6th Lord of Annandale | child | Christina Bruce | child |
Mark Fiennes | spouse | Jennifer Lash | child | Magnus Fiennes | child |
Mary of Guelders | spouse | James II of Scotland | child | Margaret Stewart | child |
Masaaki Hachisuka | spouse | Hachisuka Fudeko | child | Masauji Hachisuka | child |
Mirabella Took | spouse | Gorbadoc Brandybuck | child | Saradas Brandybuck | child |
Mnemosyne | named after | Mnemosyne | child | Melpomene | child |
Moshe Dayan | spouse | Ruth Dayan | child | Assi Dayan | child |
Murakami | spouse | Fujiwara no Anshi | child | Hoshi-naishinnō | child |
Oda of Saxony | spouse | Gerard of Metz | child | Oda of Metz | child |
Ozzy Osbourne | spouse | Sharon Osbourne | child | Kelly Osbourne | child |
Pablo Picasso | unmarried partner | Françoise Gilot | child | Claude Picasso | child |
Paul McCartney | spouse | Linda McCartney | child | Stella McCartney | child |
Pavlos Bakoyannis | spouse | Dora Bakoyannis | child | Kostas Bakoyannis | child |
Philip III, Count of Hanau-Münzenberg | spouse | Countess Palatine Helena of Simmern | child | Philip Louis I, Count of Hanau-Münzenberg | child |
Philip Louis, Count Palatine of Neuburg | spouse | Anna of Cleves | child | Countess Palatine Anna Maria of Neuburg | child |
Philip William, Elector Palatine | spouse | Landgravine Elisabeth Amalie of Hesse-Darmstadt | child | Maria Anna of Neuburg | child |
Philippe, Duke of Orléans | spouse | Elizabeth Charlotte, Princess Palatine | child | Philippe, Duke of Orléans, Regent of France | child |
Pierre Renoir | spouse | Véra Sergine | child | Claude Renoir | child |
Pierre Renoir | father | Pierre-Auguste Renoir | child | Claude Renoir | child |
Pierre Renoir | mother | Aline Charigot | child | Claude Renoir | child |
Prince Félix, Prince Consort of Luxembourg | spouse | Charlotte I, Grand Duchess of Luxembourg | child | Princess Alix of Luxembourg | child |
Prince Thomas, Duke of Genoa | spouse | Princess Isabella of Bavaria | child | Prince Adalberto, Duke of Bergamo | child |
Prince Thomas, Duke of Genoa | spouse | Princess Isabella of Bavaria | child | Prince Eugenio, 5th Duke of Genoa | child |
Princess Helena Sverkersdotter of Sweden | spouse | Sune Folkesson | child | Catherine of Ymseborg | child |
Q15622160 | spouse | Q15622162 | child | Q15622169 | child |
Q15649260 | spouse | Humphrey of Hauteville | child | Abelard of Hauteville | child |
Q15901208 | spouse | Q15901228 | child | Harald Slott-Møller | child |
Q19746211 | spouse | Gustaf von Dardel | child | Jean-Jacques von Dardel | child |
Q5959014 | spouse | Q6072130 | child | Aberforth Dumbledore | child |
Q8249260 | spouse | King Jing of Zhou | child | Q10941173 | child |
Q8255974 | spouse | Li Siyuan | child | Li Congrong | child |
Queen Marie of Romania | spouse | Ferdinand I of Romania | child | Prince Nicolae of Romania | child |
Queen Sofía of Spain | spouse | Juan Carlos I of Spain | child | Infanta Elena, Duchess of Lugo | child |
Rafi-ush-Shan | mother | Q15401909 | child | Shah Jahan II | child |
Ralph de Neville, 1st Earl of Westmorland | spouse | Joan Beaufort, Countess of Westmorland | child | Robert Neville | child |
Reinhard II, Count of Hanau | spouse | Catherine of Nassau-Beilstein | child | Philip I, Count of Hanau-Lichtenberg | child |
Richard, 1st Earl of Cornwall | spouse | Isabel Marshal | child | Henry of Almain | child |
Roland Bonaparte | spouse | Marie-Félix Blanc | child | Marie Bonaparte | child |
Rörik Tordsson | child | Rörik Tordsson | child | Rörik Tordsson | child |
Rörik Tordsson | father | Tord Bonde | child | Rörik Tordsson | child |
Salomon Kraft | spouse | Gudrun Weibull | child | Katarina Kraft | child |
Sandro Calvesi | spouse | Gabre Gabric | child | Lyana Calvesi | child |
Sharman Macdonald | spouse | Will Knightley | child | Keira Knightley | child |
Siemowit IV | spouse | Alexandra of Lithuania | child | Siemowit V of Masovia | child |
Stefano Canzio | spouse | Teresa Garibaldi | child | Q15293064 | child |
Vulcan | home world | Vulcan | child | Caeculus | child |
Vulcan | contains settlement | Vulcan | child | Caeculus | child |
Vulcan | capital | Vulcan | child | Caeculus | child |
Vulcan | located in the administrative territorial entity | Vulcan | child | Caeculus | child |
Vulcan | contains settlement | Vulcan | child | Caeculus | child |
Vulcan | capital | Vulcan | child | Caeculus | child |
Vulcan | located in the administrative territorial entity | Vulcan | child | Caeculus | child |
Wenche Foss | spouse | Thomas Stang | child | Fabian Stang | child |
Wilhelmine of Prussia, Queen of the Netherlands | spouse | William I of the Netherlands | child | Princess Marianne of the Netherlands | child |
William Russell, Lord Russell | spouse | Rachel Russell, Baroness Russell | child | Wriothesley Russell, 2nd Duke of Bedford | child |
Yanagi Sōetsu | spouse | Yanagi Kaneko | child | Munetami Yanagi | child |
Yaroslav the Wise | spouse | Ingegerd Olofsdotter of Sweden | child | Iziaslav I of Kyiv | child |
Zaifeng, Prince Chun | spouse | Youlan | child | Jin Yunying | child |
Ælfflæd, wife of Edward the Elder | spouse | Edward the Elder | child | Eadgyth | child |
Ada de Warenne | spouse | Henry of Scotland | child | Ada of Huntingdon | child |
Adolph John I, Count Palatine of Kleeburg | spouse | Elsa Elisabeth Brahe | child | Catherine of Pfalz-Zweibrücken | child |
Adriana Back van Asten | spouse | Wolfert van Brederode | child | Reinoud IV van Brederode | child |
Agnes of Poitou | spouse | Henry III | child | Adelheid II van Franken | child |
Agrippina the Elder | spouse | Germanicus | child | Nero Caesar | child |
Albrecht III Achilles, Elector of Brandenburg | spouse | Anna of Saxony, Electress of Brandenburg | child | Siegmund, Margrave of Bayreuth | child |
Alfred I, Duke of Saxe-Coburg and Gotha | spouse | Grand Duchess Maria Alexandrovna of Russia | child | Princess Victoria Melita of Saxe-Coburg and Gotha | child |
Anastasia of Greater Poland | spouse | Bogusław I, Duke of Pomerania | child | Casimir II, Duke of Pomerania | child |
Angelitha Wass | unmarried partner | Louis II of Hungary | child | János Wass | child |
Anna of Cleves | spouse | Philip Louis, Count Palatine of Neuburg | child | Countess Palatine Anna Maria of Neuburg | child |
Astrid of Sweden | spouse | Leopold III of Belgium | child | Baudouin I of Belgium | child |
Augustus, Grand Duke of Oldenburg | spouse | Princess Cecilia of Sweden | child | Duke Elimar of Oldenburg | child |
Bao Si | spouse | King You of Zhou | child | Bofu | child |
Barbara Brecht-Schall | spouse | Ekkehard Schall | child | Johanna Schall | child |
Barbara Lubomirska | spouse | Jerzy Sebastian Lubomirski | child | Anna Krystyna Lubomirska | child |
Benjamin Boutet de Monvel | spouse | Q19799652 | child | Louis-Maurice Boutet de Monvel | child |
Bernard VII, Count of Armagnac | spouse | Bonne of Berry | child | John IV, Count of Armagnac | child |
Bernard-François Balzac | spouse | Anne-Charlotte-Laure Sallambier | child | Laure Surville | child |
Bertolt Brecht | spouse | Marianne Zoff | child | Hanne Hiob | child |
Blanca de La Cerda y Lara | spouse | Don Juan Manuel | child | Juana Manuel | child |
Bolesław II of Masovia | spouse | Gaudemunda of Lithuania | child | Trojden I, Duke of Masovia | child |
Carole Bouquet | spouse | Jean-Pierre Rassam | child | Dimitri Rassam | child |
Casimir I of Opole | spouse | Viola, Duchess of Opole | child | Vladislaus I of Opole | child |
Catherine I of Russia | spouse | Peter the Great | child | Anna Petrovna of Russia | child |
Catherine of Saxe-Lauenburg, Duchess of Mecklenburg | spouse | John IV, Duke of Mecklenburg | child | Henry IV, Duke of Mecklenburg | child |
Charlemagne | spouse | Himiltrude | child | Pepin the Hunchback | child |
Charles Ingalls | spouse | Caroline Ingalls | child | Mary Ingalls | child |
Charles Matton | spouse | Sylvie Matton | child | Léonard Matton | child |
Charlotte Aglaé d'Orléans | spouse | Francesco III d'Este, Duke of Modena | child | Maria Teresa Felicitas d'Este | child |
Christian, Margrave of Brandenburg-Bayreuth | spouse | Marie of Prussia, Margravine of Brandenburg-Bayreuth | child | Margravine Magdalene Sibylle of Brandenburg-Bayreuth | child |
Claudia de' Medici | spouse | Leopold V, Archduke of Austria | child | Archduchess Isabella Clara of Austria | child |
Constance of France, Princess of Antioch | spouse | Bohemond I of Antioch | child | Bohemond II of Antioch | child |
Countess Emilie Juliane of Barby-Mühlingen | spouse | Albert Anton, Prince of Schwarzburg-Rudolstadt | child | Louis Frederick I, Prince of Schwarzburg-Rudolstadt | child |
Dorothea of Denmark, Duchess of Brunswick-Lüneburg | spouse | William the Younger, Duke of Brunswick-Lüneburg | child | Dorothea of Brunswick-Lüneburg | child |
Dr. Brief | spouse | Panchy | child | Bulma | child |
Duke Xian of Jin | spouse | Li Ji | child | Xiqi | child |
Duncan II of Scotland | spouse | Ethelreda, daughter of Gospatric | child | William fitz Duncan | child |
Eddie Fisher | spouse | Connie Stevens | child | Joely Fisher | child |
Edouard Louis Dubufe | spouse | Juliette Dubufe | child | Guillaume Dubufe | child |
Edward IV of England | spouse | Elizabeth Woodville | child | Bridget of York | child |
Edward the Elder | spouse | Eadgifu of Kent | child | Eadburh of Winchester | child |
Elvira of Castile | spouse | Raymond IV, Count of Toulouse | child | Alphonse Jourdain | child |
Emperor Shenzong of Song | spouse | Princess Linxian | child | Princess Xingguo | child |
Emperor Suzong of Tang | spouse | Wei Shi | child | Q11131308 | child |
Emperor Taizu of Jin | spouse | Empress Guangyi | child | Wanyan Zonggan | child |
Empress Mingda | spouse | Emperor Huizong of Song | child | Q16075402 | child |
Euphrosyne of Opole | spouse | Casimir I of Kuyavia | child | Casimir II of Łęczyca | child |
Fabian Wrede | child | Fabian Wrede | child | Carl Casper Wrede | child |
Fabian Wrede | father | Fabian Wrede | child | Carl Casper Wrede | child |
Ferdinand I of Bulgaria | spouse | Princess Marie Louise of Bourbon-Parma | child | Boris III of Bulgaria | child |
Ferdinando I, Duke of Parma | spouse | Archduchess Maria Amalia of Austria | child | Princess Maria Antonia of Parma | child |
Francis I of the Two Sicilies | spouse | Maria Isabella of Spain | child | Princess Maria Amalia of the Two Sicilies | child |
Francis II, Holy Roman Emperor | child | Archduke Franz Karl of Austria | child | Archduchess Maria Anna of Austria | child |
Francis II, Holy Roman Emperor | spouse | Maria Theresa of Naples and Sicily | child | Archduchess Maria Anna of Austria | child |
Frederika Louisa of Hesse-Darmstadt | spouse | Friedrich Wilhelm II of Prussia | child | Frederick William III of Prussia | child |
Fruela I of Asturias | spouse | Munia of Álava | child | Alfonso II of Asturias | child |
Germanicus | spouse | Agrippina the Elder | child | Caligula | child |
Gisela of Burgundy | spouse | Henry II, Duke of Bavaria | child | Bruno of Augsburg | child |
Grand Duchess Xenia Alexandrovna of Russia | spouse | Grand Duke Alexander Mikhailovich of Russia | child | Prince Vasili Alexandrovich of Russia | child |
Guifré el Pilós | spouse | Guinidilda, Countess of Barcelona | child | Miró II of Cerdanya | child |
Gunnar Auken | spouse | Kirsten Auken | child | Margrete Auken | child |
Gunnar Lagergren | spouse | Q4960527 | child | Nane Annan | child |
Gustav von Wangenheim | spouse | Inge von Wangenheim | child | Friedel von Wangenheim | child |
Guyote van IJsselstein | spouse | John I, Lord of Egmond | child | Baerte van Egmond | child |
Harald III of Norway | spouse | Tora Torbergsdatter | child | Olaf III of Norway | child |
Henri, Count of Paris | spouse | Duchess Marie Thérèse of Württemberg | child | Princess Marie, Princess Gundakar of Liechtenstein | child |
Henry II of Navarre | spouse | Margaret of Valois-Angoulême | child | Jeanne d'Albret | child |
Henry, Margrave of Frisia | spouse | Gertrude of Brunswick | child | Richenza of Northeim | child |
Hermann Göring | spouse | Emmy Göring | child | Edda Göring | child |
Hong Taiji | spouse | Empress Dowager Xiaozhuang | child | State Princess Yongmu | child |
Hugh I of Le Puiset | spouse | Alice of Montlhéry | child | Erhard III. von Le Puiset | child |
Ibrahim I | spouse | Saliha Dilaşub Sultan | child | Suleiman II | child |
Imperial Noble Consort Gongshun | spouse | Jiaqing Emperor of Qing | child | Q8114691 | child |
Jacques I, Prince of Monaco | follows | Louise Hippolyte I, Princess of Monaco | child | Honoré III, Prince of Monaco | child |
Jacques I, Prince of Monaco | spouse | Louise Hippolyte I, Princess of Monaco | child | Honoré III, Prince of Monaco | child |
James Edward Doyle | spouse | Ruth Bachhuber Doyle | child | Jim Doyle | child |
Janus of Cyprus | spouse | Charlotte de Bourbon | child | Anne of Cyprus | child |
Jean-François de Bourgoing | spouse | Q3291567 | child | Paul-Charles-Amable de Bourgoing | child |
Jennifer Lash | spouse | Mark Fiennes | child | Joseph Fiennes | child |
Jens Adolf Jerichau | spouse | Elisabeth Baumann | child | Thorald Jerichau | child |
Johanna Torkildsdotter Brahe | spouse | Q6151661 | child | Q5584524 | child |
Johannetta of Sayn-Wittgenstein | spouse | John George I, Duke of Saxe-Eisenach | child | Princess Eleonore Erdmuthe of Saxe-Eisenach | child |
John Bethune | child | John Bethune | child | John Bethune | child |
John Bethune | father | John Bethune | child | John Bethune | child |
John George, Elector of Brandenburg | spouse | Elisabeth of Anhalt | child | George Albert II, Margrave of Brandenburg | child |
John of Beaumont | spouse | Margaret of Soissons | child | Jeanne of Hainault | child |
John the Fearless | spouse | Margaret of Bavaria | child | Philip the Good | child |
John, Constable of Portugal | spouse | Isabella of Braganza, Lady of Reguengos de Monsaraz | child | Infanta Beatrice, Duchess of Viseu | child |
Jos Valentijn | spouse | Haitske Pijlman | child | Rikst Valentijn | child |
Julia the Elder | spouse | Marcus Vipsanius Agrippa | child | Gaius Caesar | child |
Juno | depicts | Juno | child | Mars | child |
Karel Kalista | spouse | Ludmila Želenská | child | Jana Prachařová | child |
Karoline of Wartensleben | spouse | Ernest II, Count of Lippe-Biesterfeld | child | Countess Adelaide of Lippe-Biesterfeld | child |
Kateryna Y. Boiko | spouse | Q17331653 | child | Kateryna G. Krasytska | child |
Kerstin Bernadotte | spouse | Carl Johan Bernadotte | child | Monica Bonde | child |
King Xiaowen of Qin | spouse | Q8249116 | child | King Zhuangxiang of Qin | child |
Kōjun | spouse | Hirohito | child | Atsuko Ikeda | child |
Kōjun | spouse | Hirohito | child | Sachiko, Princess Hisa | child |
Leo Penn | spouse | Eileen Ryan | child | Sean Penn | child |
Leopold III, Duke of Anhalt-Dessau | spouse | Louise of Brandenburg-Schwedt | child | Frederick, Hereditary Prince of Anhalt-Dessau | child |
Lewis Hallam | child | Lewis Hallam | child | Lewis Hallam | child |
Lewis Hallam | father | Lewis Hallam | child | Lewis Hallam | child |
Liu Yan | Unknown | Liu Yan | child | Liu Zhang | child |
Liu Yan | Unknown | Liu Yan | child | Liu Zhang | child |
Louis Auguste, Duke of Maine | spouse | Louise Bénédicte de Bourbon | child | Louis Charles, Count of Eu | child |
Louis, Prince of Condé | spouse | Louise Françoise de Bourbon | child | Charles, Count of Charolais | child |
Louise Félicité de Brehan | spouse | Emmanuel-Armand de Richelieu, duc d'Aiguillon | child | Innocente-Aglaé de Vignerot du Plessis | child |
Louise Le Peletier de Rosanbo | spouse | Hervé Clérel de Tocqueville | child | Alexis de Tocqueville | child |
Louise of Mecklenburg-Strelitz | spouse | Frederick William III of Prussia | child | Princess Louise of Prussia | child |
Louise of Mecklenburg-Strelitz | child | Wilhelm I of Germany | child | Princess Louise of Prussia | child |
Ludmilla of Poland | spouse | Frederick I, Duke of Lorraine | child | Cunigunda of Lorraine | child |
Lyudmila Yanukovych | spouse | Viktor Zolotoi Baton Yanukovych | child | Viktor Yanukovych | child |
Maeda Toshitsune | spouse | Tamaki | child | Q11397442 | child |
Magdalene of Brandenburg | spouse | Louis V, Landgrave of Hesse-Darmstadt | child | Juliana of Hesse-Darmstadt | child |
Marcus Wallenberg | child | Peter Wallenberg | child | Jacob Wallenberg | child |
Marcus Wallenberg | child | Marcus Wallenberg | child | Jacob Wallenberg | child |
Marcus Wallenberg | father | Marcus Wallenberg | child | Jacob Wallenberg | child |
Marcus Wallenberg | child | Marcus Wallenberg | child | Jacob Wallenberg | child |
Marcus Wallenberg | father | Marcus Wallenberg | child | Jacob Wallenberg | child |
Margaret Leijonhufvud | spouse | Gustav I of Sweden | child | Princess Elizabeth of Sweden | child |
Margaret of Artois | spouse | Louis, Count of Évreux | child | Marguerite d'Évreux | child |
Maria Amalia of Naples and Sicily | spouse | Louis Philippe I | child | Henri d'Orléans, Duke of Aumale | child |
Maria Feodorovna | spouse | Paul I of Russia | child | Nicholas I of Russia | child |
Maria Picasso y López | spouse | José Ruiz y Blasco | child | Pablo Picasso | child |
Maria Pypelinckx | spouse | Jan Rubens | child | Peter Paul Rubens | child |
Marie Katharina of Brunswick-Dannenberg | spouse | Adolf Frederick I, Duke of Mecklenburg | child | Frederick, Duke of Mecklenburg-Grabow | child |
Marie Le Peletier de Rosanbo | spouse | Charles Marie de Mac-Mahon | child | Charles Henri de Mac-Mahon | child |
Mary Shakespeare | spouse | John Shakespeare | child | William Shakespeare | child |
Menotti Garibaldi | spouse | Q15292946 | child | Q15292965 | child |
Miklós Horthy | child | Miklós Horthy | child | István Horthy | child |
Miklós Horthy | father | Miklós Horthy | child | István Horthy | child |
Mirjana Marković | spouse | Slobodan Milošević | child | Marko Milošević | child |
Natalya Arinbasarova | spouse | Andrei Konchalovsky | child | Yegor Konchalovsky | child |
Olena Pchilka | spouse | Petro Kosach | child | Mykhailo Kosach | child |
Paul I of Greece | spouse | Frederica of Hanover | child | Constantine II | child |
Pauline de Galard de Brassac de Béarn | spouse | Albert, 4th duc de Broglie | child | Henri Amédée de Broglie | child |
Persida Nenadović | spouse | Alexander Karađorđević, Prince of Serbia | child | Peter I of Serbia | child |
Priam | spouse | Hecuba | child | Paris | child |
Prince Maximilian, Margrave of Baden | spouse | Princess Valerie, Margravine of Baden | child | Bernhard, Hereditary Prince of Baden | child |
Princess Maria Clotilde of Savoy | spouse | Napoléon Joseph Charles Paul Bonaparte | child | Victor, Prince Napoléon | child |
Princess Salimah Aga Khan | spouse | Aga Khan IV | child | Prince Hussain Aga Khan | child |
Q12872583 | spouse | Q16658618 | child | Q16658605 | child |
Q15291073 | spouse | Q15291074 | child | Maria Antonietta Berlusconi | child |
Q15955716 | spouse | Duke Jing of Qi | child | An Ruzi | child |
Q16603351 | spouse | Chu Zhanzhi | child | Q15712390 | child |
Q16853839 | spouse | Gelo, son of Hiero II | child | Hieronymus of Syracuse | child |
Q17313479 | spouse | Patrick Lovato | child | Demi Lovato | child |
Q1915754 | spouse | André Hazes | child | André Hazes jr. | child |
Q19368854 | spouse | Ferdinand Lefèvre | child | Amédée Lefèvre-Pontalis | child |
Ragnétrude | spouse | Dagobert I | child | Sigebert III | child |
Safiye Sultan | spouse | Murad III | child | Mehmed III | child |
Safiyyah bint ‘Abd al-Muttalib | spouse | Awwam ibn Khuwaylid | child | Zubayr ibn al-Awam | child |
Sibilla Sormella | unmarried partner | Frederick III of Sicily | child | Alfonso Fadrique d'Aragona, Count of Malta | child |
Sibylla of Anhalt | spouse | Frederick I, Duke of Württemberg | child | Julius Frederick, Duke of Württemberg-Weiltingen | child |
Sophia Tolstaya | spouse | Leo Tolstoy | child | Lev Lvovich Tolstoy | child |
Stefano Canzio | spouse | Teresa Garibaldi | child | Q15293072 | child |
Sybille of Bâgé | spouse | Amadeus V | child | Agnes of Savoy | child |
Taddeo Barberini | relative | Camilla Barbadori | child | Carlo Barberini | child |
Taddeo Barberini | spouse | Anna Colonna | child | Carlo Barberini | child |
Theodor Pištěk | father | Theodor Pištěk | child | Theodor Pištěk | child |
Theodor Pištěk | child | Theodor Pištěk | child | Theodor Pištěk | child |
Theodor Pištěk | child | Jan Pištěk | child | Theodor Pištěk | child |
Theodor Pištěk | relative | Jan Pištěk | child | Theodor Pištěk | child |
Theodor Pištěk | father | Jan Pištěk | child | Theodor Pištěk | child |
Theodora Angelina, Duchess of Austria | spouse | Leopold VI, Duke of Austria | child | Gertrud von Babenberg | child |
Tokugawa Yoshimune | father | Tokugawa Mitsusada | child | Tokugawa Yorimoto | child |
Triton | named after | Triton | child | Pallas | child |
Tuoba Huang | spouse | Consort Yujiulü | child | Emperor Wencheng of Northern Wei | child |
Urraca Fernández | spouse | Ordoño III of León | child | Bermudo II of León | child |
Varvara Suvorova | spouse | Alexander Suvorov | child | Arkadi Suvorov | child |
Vasiliki Botsaris | spouse | Christos Antonopoulos | child | Q16889879 | child |
Vittorio De Sica | spouse | María Mercader | child | Manuel De Sica | child |
Wang Yuanji | spouse | Sima Zhao | child | Emperor Wu of Jin | child |
Wartislaw VII, Duke of Pomerania | spouse | Maria of Mecklenburg-Schwerin | child | Eric of Pomerania | child |
William Spencer | child | John Spencer | child | John Spencer | child |
Xue Guan | spouse | Q4310073 | child | Q10513994 | child |
Abu Sufyan ibn Harb | spouse | Hind bint Utbah | child | Muawiyah I | child |
Adolf III of the Marck | spouse | Margaret of Jülich | child | Gerhard, Count of Mark | child |
Aikaterini Cornaro | spouse | James II of Cyprus | child | James III of Cyprus | child |
Alexander Duff, 1st Duke of Fife | spouse | Louise, Princess Royal | child | Maud Carnegie, Countess of Southesk | child |
Anna Antoinetta Gyllenborg | spouse | Carl Ehrensvärd | child | Carl Fredrik Ehrensvärd | child |
Anna Diogenissa | spouse | Uroš I of Rascia | child | Beloš Vukanović | child |
Anna of Brunswick-Lüneburg | spouse | Frederick IV, Duke of Austria | child | Sigismund, Archduke of Austria | child |
Anna of Veldenz | spouse | Charles II, Margrave of Baden-Durlach | child | Ernest Frederick, Margrave of Baden-Durlach | child |
Antonio Machado Álvarez | spouse | Q16889078 | child | Q16889153 | child |
Archduchess Dorothea, Hereditary Grand Duchess of Tuscany | spouse | Archduke Gottfried, Hereditary Grand Duke of Tuscany | child | Archduke Leopold Franz of Austria | child |
Aud Egede-Nissen | spouse | Georg Alexander | child | Georg Richter | child |
Augusta of Schleswig-Holstein-Sonderburg-Glücksburg | spouse | Ernest Günther, Duke of Schleswig-Holstein-Sonderburg-Augustenburg | child | Frederick William, Duke of Schleswig-Holstein-Sonderburg-Augustenburg | child |
Augustine Washington | spouse | Mary Ball Washington | child | George Washington | child |
Beate Clausdatter Bille | spouse | Otte Brahe | child | Tycho Brahe | child |
Berengaria of Barcelona | spouse | Alfonso VII | child | Garcia of Castile | child |
Berengaria of Portugal | spouse | Valdemar II of Denmark | child | Eric IV of Denmark | child |
Blythe Danner | spouse | Bruce Paltrow | child | Jake Paltrow | child |
Cao Jun | Unknown | Cao Jun | child | Q5251345 | child |
Caroline of Ansbach | spouse | George II of Great Britain | child | Princess Mary of Great Britain | child |
Cecily Neville, Duchess of York | child | Edward IV of England | child | Margaret of York | child |
Cecily Neville, Duchess of York | spouse | Richard of York, 3rd Duke of York | child | Margaret of York | child |
Charles, Duke of Brittany | spouse | Joan, Duchess of Brittany | child | John I of Blois-Châtillon | child |
Charles, Prince of Wales | spouse | Diana, Princess of Wales | child | Prince William, Duke of Cornwall and Cambridge | child |
Charlie Chaplin | mother | Hannah Chaplin | child | Sydney Chaplin | child |
Charlie Chaplin | spouse | Lita Grey | child | Sydney Chaplin | child |
Charlie Chaplin | father | Charles Chaplin Sr. | child | Sydney Chaplin | child |
Claudia de' Medici | spouse | Leopold V, Archduke of Austria | child | Maria Leopoldine of Austria | child |
Cleopatra I Syra | spouse | Ptolemy V Epiphanes | child | Cleopatra II of Egypt | child |
Constance of Aragon | spouse | Frederick II, Holy Roman Emperor | child | Henry (VII) of Germany | child |
Countess Adelaide of Lippe-Biesterfeld | spouse | Prince Friedrich of Saxe-Meiningen | child | Adelaide of Saxe-Meiningen | child |
Courtney Love | spouse | Kurt Cobain | child | Frances Bean Cobain | child |
Cunigunda of Lorraine | spouse | Waleran III, Duke of Limburg | child | Waleran of Monschau | child |
Dragana of Serbia | spouse | Ivan Shishman of Bulgaria | child | Fruzhin | child |
Duchess Magdalene Sibylle of Prussia | spouse | Johann Georg I, Elector of Saxony | child | Magdalene Sibylle of Saxony | child |
Eino Jurkka | spouse | Emmi Jurkka | child | Jussi Jurkka | child |
Ekaterina Andreevna Ushakova | spouse | Pyotr Chernyshyov | child | Princesse Moustache | child |
Elizabeth Percy, Duchess of Northumberland | spouse | Hugh Percy, 1st Duke of Northumberland | child | Algernon Percy, 1st Earl of Beverley | child |
Elizabeth of Denmark, Electress of Brandenburg | spouse | Joachim I Nestor, Elector of Brandenburg | child | Elisabeth of Brandenburg, Duchess of Brunswick-Calenberg-Göttingen | child |
Empress Dowager Yaonian Yanmujin | spouse | Yelü Sala | child | Emperor Taizu of Liao | child |
Empress Quan | spouse | Emperor Duzong of Song | child | Q16075317 | child |
Ernst Thälmann | spouse | Rosa Thälmann | child | Irma Thälmann | child |
Estrid of the Obotrites | spouse | Olof Skötkonung | child | Ingegerd Olofsdotter of Sweden | child |
Estêvão da Gama | named after | Estêvão da Gama | child | Vasco da Gama | child |
Eugen Skjønberg | spouse | Henny Skjønberg | child | Espen Skjønberg | child |
Fausta | given name | Fausta | child | Constans | child |
Ferdinand I of Romania | spouse | Queen Marie of Romania | child | Princess Ileana of Romania | child |
Ferdinand-Marie Bayard de la Vingtrie | spouse | Q15144015 | child | Ferdinand-Jean Bayard de la Vingtrie | child |
Frances Ellen Work | spouse | James Roche, 3rd Baron Fermoy | child | Maurice Roche, 4th Baron Fermoy | child |
Frederika Louisa of Hesse-Darmstadt | spouse | Friedrich Wilhelm II of Prussia | child | Princess Augusta of Prussia | child |
Fujiwara no Kenshi | spouse | Sanjō | child | Teishi-naishinnō | child |
Fumihito, Prince Akishino | spouse | Kiko, Crown Princess Akishino | child | Princess Kako of Akishino | child |
Gao Zhaorong | spouse | Emperor Xiaowen of Northern Wei | child | Q10889772 | child |
Garsende of Bigorre | spouse | Bernard-Roger, Count of Bigorre | child | Bernard II of Bigorre | child |
George H. W. Bush | spouse | Barbara Bush | child | George W. Bush | child |
George Nevill, 4th Baron Bergavenny | spouse | Margaret Fenne | child | Thomas Nevill | child |
George Windsor, Earl of St Andrews | spouse | Sylvana Windsor, Countess of St Andrews | child | Edward Windsor, Lord Downpatrick | child |
Georges Hollande | spouse | Nicole Tribert | child | François Hollande | child |
Gerhard Hund | spouse | Juliane Hund | child | Barbara Hund | child |
Go-Suzaku | spouse | Q15726368 | child | Masako-naishinnō | child |
Gustaf Dalström | spouse | Kata Dalström | child | Ruth Stjernstedt | child |
Guy | spouse | Matilda of Béthune | child | Philip of Chieti | child |
Guy | given name | Guy | child | Philip of Chieti | child |
Guy | family name identical to this given name | Guy | child | Philip of Chieti | child |
Hedwig Sophie of Brandenburg | spouse | William VI, Landgrave of Hesse-Kassel | child | William VII, Landgrave of Hesse-Kassel | child |
Henry Howard, Earl of Surrey | spouse | Frances Howard, Countess of Surrey | child | Henry Howard, 1st Earl of Northampton | child |
Henry II of France | spouse | Catherine de' Medici | child | Louis of Valois | child |
Henry II, Duke of Bavaria | spouse | Gisela of Burgundy | child | Henry II, Holy Roman Emperor | child |
Honoré Charles Reille | spouse | Victoire Thècle Masséna | child | André-Charles-Victor Reille | child |
Hugh II, Duke of Burgundy | spouse | Felicia-Matilda of Mayenne | child | Matilda of Burgundy | child |
Imagawa Ujichika | spouse | Jukei-ni | child | Imagawa Ujiteru | child |
Imperial Noble Consort Zhuangshun | spouse | Daoguang Emperor | child | Yihui | child |
Ingeborg Bengtsdotter | spouse | Birger Persson | child | Israel Birgersson | child |
Isabella of Braganza | spouse | Infante Edward, 4th Duke of Guimarães | child | Infanta Maria of Guimarães | child |
Ivan III of Russia | spouse | Sophia Palaiologina | child | Helena of Moscow | child |
Jan III van Montfoort | spouse | Charlotte van Brederode | child | Q4551264 | child |
Jan Kostka | spouse | Zofia Odrowąż | child | Anna Kostka | child |
Joaquín Primo de Rivera y Pérez de Acal | spouse | Q19898706 | child | José Primo de Rivera | child |
John IV of Portugal | spouse | Luisa de Guzmán | child | Queen Catherine of England | child |
Jules Breton | spouse | Élodie Breton | child | Virginie Demont-Breton | child |
Juliana of Stolberg | spouse | William I, Count of Nassau-Siegen | child | Magdalena of Nassau-Dillenburg | child |
Julie London | spouse | Bobby Troup | child | Reese Troup | child |
Julie London | performer | Julie London | child | Reese Troup | child |
Kan'in-no-miya Sukehito-shinnō | spouse | Ōe Iwashiro | child | Emperor Kōkaku | child |
King You of Zhou | spouse | Queen Shen | child | King Ping of Zhou | child |
Kitsuno | child | Toku-hime | child | Toku-hime | child |
Kyōgoku Takayoshi | spouse | Kyōgoku Maria | child | Kyōgoku Takatsugu | child |
Lady Yang | spouse | Wu Shihuo | child | Wu Shun | child |
Lasse Berghagen | spouse | Lill-Babs | child | Malin Berghagen | child |
Leon Trotsky | spouse | Natalia Sedova | child | Sergei Sedov | child |
Leopold III, Margrave of Austria | spouse | Agnes of Germany | child | Judith of Babenberg | child |
Linda Lee Cadwell | spouse | Bruce Lee | child | Shannon Lee | child |
Linda McCartney | spouse | Paul McCartney | child | Mary McCartney | child |
Liu Yan | Unknown | Liu Yan | child | Q16075376 | child |
Liu Yan | Unknown | Liu Yan | child | Q16075376 | child |
Louis Charles de Lévis | spouse | Madame de Ventadour | child | Anne Geneviève de Lévis | child |
Louis I of Vaud | spouse | Jeanne of Montfort | child | Q3262252 | child |
Louis, Dauphin of France | spouse | Maria Josepha of Saxony, Dauphine of France | child | Princess Marie Zéphyrine of France | child |
Lucius Licinius Murena | father | Lucius Licinius Murena | child | Lucius Licinius Murena | child |
Lucius Licinius Murena | child | Lucius Licinius Murena | child | Lucius Licinius Murena | child |
Lucrezia Landriani | unmarried partner | Galeazzo Maria Sforza | child | Caterina Sforza | child |
Luitpold, Margrave of Bavaria | spouse | Cunigunde of Swabia | child | Arnulf, Duke of Bavaria | child |
Lysimachus | child | Lysimachus | child | Arsinoe I | child |
Lysimachus | father | Lysimachus | child | Arsinoe I | child |
Lysimachus | spouse | Nicaea of Macedon | child | Arsinoe I | child |
Léon Daudet | spouse | Marthe Daudet | child | Philippe Daudet | child |
Maddalena Visconti | spouse | Frederick | child | Henry XVI, Duke of Bavaria | child |
Madeleine Lerolle | spouse | Henry Lerolle | child | Q17580692 | child |
Mao Yichang | spouse | Wen Qimei | child | Mao Zetan | child |
Margaret, Countess of Tyrol | spouse | Louis V, Duke of Bavaria | child | Meinhard III, Count of Gorizia-Tyrol | child |
Maria Caterina Brignole | spouse | Honoré III, Prince of Monaco | child | Honoré IV, Prince of Monaco | child |
Maria Josepha of Austria | spouse | Augustus III of Poland | child | Frederick Christian, Elector of Saxony | child |
Marie of Champagne | spouse | Odo II, Duke of Burgundy | child | Hugh III, Duke of Burgundy | child |
Marie of Prussia | spouse | Maximilian II of Bavaria | child | Ludwig II of Bavaria | child |
Martin I of Sicily | unmarried partner | Agatuccia Pesce | child | Yolande of Aragon, Countess of Niebla | child |
Mathilda Gelhaar | spouse | Fredrik Gelhaar | child | Wilhelmina Gelhaar | child |
Maximilian I, Elector of Bavaria | spouse | Archduchess Maria Anna of Austria | child | Maximilian Philipp Hieronymus, Duke of Bavaria-Leuchtenberg | child |
Mollie Arvelle Bays | spouse | Robert C. Carter | child | A. P. Carter | child |
Morgase Trakand | spouse | Taringail Damodred | child | Gawyn Trakand | child |
Moyna Macgill | spouse | Edgar Lansbury | child | Bruce Lansbury | child |
Nicholas Roerich | spouse | Helena Roerich | child | George de Roerich | child |
Odo I, Duke of Burgundy | spouse | Sibylla of Burgundy, Duchess of Burgundy | child | Florine of Burgundy | child |
Oghul Qaimish | spouse | Güyük Khan | child | Naqu | child |
Padmé Amidala | spouse | Anakin Skywalker | child | Luke Skywalker | child |
Per Brahe the Elder | child | Magnus Brahe | child | Ebba Brahe | child |
Peter, Duke of Schleswig-Holstein | spouse | Marie Alix, Duchess of Schleswig-Holstein | child | Christoph | child |
Prince Friedrich Karl of Prussia | spouse | Princess Maria Anna of Anhalt-Dessau | child | Prince Friedrich Leopold of Prussia | child |
Prince Friedrich of Hesse-Kassel | spouse | Caroline of Nassau-Usingen | child | Prince William of Hesse-Kassel | child |
Prince Wilhelm of Prussia | spouse | Princess Maria Anna of Hesse-Homburg | child | Princess Elisabeth of Prussia | child |
Princess Luise of Anhalt-Bernburg | spouse | Prince Frederick of Prussia | child | Prince George of Prussia | child |
Princess Maria Cristina of Bourbon-Two Sicilies | spouse | Archduke Peter Ferdinand, Hereditary Grand Duke of Tuscany | child | Archduke Gottfried, Hereditary Grand Duke of Tuscany | child |
Princess Maria Elisabeth of Bavaria | spouse | Prince Pedro Henrique, Head of the Imperial House of Brazil | child | Prince Eudes of Brazil | child |
Princess Zorka of Montenegro | spouse | Peter I of Serbia | child | Alexander I of Yugoslavia | child |
Q11755950 | spouse | Krzysztof Stanisław Zawisza | child | Barbara Radziwiłł | child |
According to the result, we here visualize the motifs that we found:
val example_r1_group_by = motif_7_super_motif_1_r2Child_r3Child.groupBy("r1").count().cache()
display(example_r1_group_by)
r1 | count |
---|---|
part of | 4.0 |
family name | 17.0 |
parent astronomical body | 1.0 |
based on | 34.0 |
present in work | 14.0 |
father | 1639.0 |
performer | 33.0 |
depicts | 240.0 |
part of the series | 5.0 |
participant | 1.0 |
characters | 8.0 |
has part(s) | 8.0 |
located in the administrative territorial entity | 12.0 |
employer | 4.0 |
place of birth | 3.0 |
subclass of | 5.0 |
named after | 301.0 |
relative | 70.0 |
spouse | 29080.0 |
child astronomical body | 1.0 |
mother | 423.0 |
Unknown | 514.0 |
inspired by | 2.0 |
student of | 1.0 |
capital | 9.0 |
contains settlement | 9.0 |
founded by | 1.0 |
follows | 84.0 |
said to be the same as | 19.0 |
owned by | 10.0 |
edition or translation of | 2.0 |
cast member | 5.0 |
country | 1.0 |
has edition or translation | 2.0 |
home world | 1.0 |
opposite of | 6.0 |
child | 2070.0 |
family name identical to this given name | 57.0 |
given name | 322.0 |
unmarried partner | 176.0 |
killed by | 8.0 |
main subject | 10.0 |
screenwriter | 1.0 |
followed by | 79.0 |
creator | 2.0 |
As expected, the relation "spouse" is very common. We do also find other relations that might be less expected. Most of these can be explained by noise in the graph.
val motif_7_super_motif_1_r1student_r2Child_r3Child = motif_7_super_motif_1_r2Child_r3Child.filter("r1='student of'")
display(motif_7_super_motif_1_r1student_r2Child_r3Child)
a | r1 | b | r2 | c | r3 |
---|---|---|---|---|---|
Marco Vecellio | student of | Titian | child | Tizianello | child |
This is a example that we could find it is strange, here a
and b
are not what we expected relation and there are only 1 entry in our dataset. This is very wierd.
displayHTML("https://en.wikipedia.org/wiki/Marco_Vecellio")
https://en.wikipedia.org/wiki/Marco_Vecellio
displayHTML("https://en.wikipedia.org/wiki/Titian")
https://en.wikipedia.org/wiki/Titian
displayHTML("https://it.wikipedia.org/wiki/Tizianello")
https://it.wikipedia.org/wiki/Tizianello
val motif_7_super_motif_1_r1relative_r2Child_r3Child = motif_7_super_motif_1_r2Child_r3Child.filter("r1='relative'")
display(motif_7_super_motif_1_r1relative_r2Child_r3Child)
a | r1 | b | r2 | c | r3 |
---|---|---|---|---|---|
Taddeo Barberini | relative | Camilla Barbadori | child | Carlo Barberini | child |
Theodor Pištěk | relative | Jan Pištěk | child | Theodor Pištěk | child |
Cornelius Gurlitt | relative | Cornelius Gurlitt | child | Wilibald Gurlitt | child |
Camilla Barbadori | relative | Taddeo Barberini | child | Carlo Barberini | child |
Charles Darwin | relative | Emma Darwin | child | Leonard Darwin | child |
Winston Churchill | relative | Winston Churchill | child | John Churchill, 1st Duke of Marlborough | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Gottfried Heinrich Bach | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Johann Christian Bach | child |
Frederick Christian, Elector of Saxony | relative | Maria Antonia of Bavaria | child | Maximilian, Crown Prince of Saxony | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Béla Bartók | child |
Frances Jones | relative | Guy Carleton Jones | child | Alfred Gilpin Jones | child |
Winston Churchill | relative | Winston Churchill | child | Mary Soames | child |
Winston Churchill | relative | Winston Churchill | child | Marigold Churchill | child |
Paul Belmondo | relative | Paul Belmondo | child | Jean-Paul Belmondo | child |
Paul Belmondo | relative | Paul Belmondo | child | Jean-Paul Belmondo | child |
Aldo Montano | relative | Aldo Montano | child | Mario Aldo Montano | child |
Aldo Montano | relative | Aldo Montano | child | Mario Aldo Montano | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Elisabeth Juliana Friderica Bach | child |
Cornelius Gurlitt | relative | Cornelius Gurlitt | child | Cornelia Gurlitt | child |
Frederick Christian, Elector of Saxony | relative | Maria Antonia of Bavaria | child | Maria Amalia of Saxony | child |
Béla Bartók | relative | Béla Bartók | child | Péter Bartók | child |
Béla Bartók | relative | Béla Bartók | child | Péter Bartók | child |
Valentina Visconti, Duchess of Orléans | relative | Louis I, Duke of Orléans | child | John, Count of Angoulême | child |
Pietro Badoglio | relative | Pietro Badoglio | child | Q5458090 | child |
Pietro Badoglio | relative | Pietro Badoglio | child | Q5458090 | child |
Charles Darwin | relative | Emma Darwin | child | George Howard Darwin | child |
Matsura Chikashi | relative | Matsura Chikashi | child | Matsura Sadamu | child |
Nikolaos Rokas | relative | Nikolaos Rokas | child | Konstantinos Rokas | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Johann Christoph Friedrich Bach | child |
Cyprian Godebski | relative | Cyprian Godebski | child | Franciszek Ksawery Godebski | child |
Cyprian Godebski | relative | Cyprian Godebski | child | Franciszek Ksawery Godebski | child |
Winston Churchill | relative | Winston Churchill | child | Sarah Churchill | child |
Valentina Visconti, Duchess of Orléans | relative | Louis I, Duke of Orléans | child | Charles, Duke of Orléans | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Johann Gottfried Bernhard Bach | child |
Caterina Visconti | relative | Gian Galeazzo Visconti | child | Filippo Maria Visconti | child |
Charles Darwin | relative | Emma Darwin | child | Horace Darwin | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Carl Philipp Emanuel Bach | child |
Matsudaira Yasumoto | relative | Tokugawa Ieyasu | child | Matsudaira Tadayoshi | child |
Guy Carleton Jones | relative | Frances Jones | child | Alfred Gilpin Jones | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Catharina Dorothea Bach | child |
Charles Darwin | relative | Emma Darwin | child | Henrietta Darwin | child |
Charles Darwin | relative | Emma Darwin | child | Anne Darwin | child |
Charles Darwin | relative | Emma Darwin | child | William Erasmus Darwin | child |
Caterina Visconti | relative | Gian Galeazzo Visconti | child | Gian Maria Visconti | child |
Valentina Visconti, Duchess of Orléans | relative | Louis I, Duke of Orléans | child | Marguerite, Countess of Vertus | child |
Frederick Christian, Elector of Saxony | relative | Maria Antonia of Bavaria | child | Anthony of Saxony | child |
Winston Churchill | relative | Winston Churchill | child | Arabella Churchill | child |
Winston Churchill | relative | Winston Churchill | child | Randolph Churchill | child |
Cyprian Godebski | relative | Cyprian Godebski | child | Misia Sert | child |
Cyprian Godebski | relative | Cyprian Godebski | child | Misia Sert | child |
Winston Churchill | relative | Winston Churchill | child | George Churchill | child |
Christopher Gadsden | relative | Christopher Gadsden | child | Phillip Gadsden | child |
Frederick Christian, Elector of Saxony | relative | Maria Antonia of Bavaria | child | Frederick Augustus I of Saxony | child |
Johann Sebastian Bach | relative | Johann Sebastian Bach | child | Wilhelm Friedemann Bach | child |
Gian Galeazzo Visconti | relative | Caterina Visconti | child | Gian Maria Visconti | child |
Charles Darwin | relative | Emma Darwin | child | Francis Darwin | child |
Marco Vecellio | relative | Titian | child | Tizianello | child |
Charles Darwin | relative | Emma Darwin | child | Charles Waring Darwin | child |
Cornelius Gurlitt | relative | Cornelius Gurlitt | child | Hildebrand Gurlitt | child |
Winston Churchill | relative | Winston Churchill | child | Diana Churchill | child |
Paul Belmondo | relative | Paul Belmondo | child | Alain Belmondo | child |
Paul Belmondo | relative | Paul Belmondo | child | Alain Belmondo | child |
Gian Galeazzo Visconti | relative | Caterina Visconti | child | Filippo Maria Visconti | child |
Conclusion
This case study shows how we could find significant structural infomations, interpretable and helps to screen out potentially noisy data in our dataset. Which helps the downstream applications.
// d3 package from notebook
package d3
// We use a package object so that we can define top level classes like Edge that need to be used in other cells
// This was modified by Ivan Sadikov to make sure it is compatible the latest databricks notebook
import org.apache.spark.sql._
import com.databricks.backend.daemon.driver.EnhancedRDDFunctions.displayHTML
case class Edge(src: String, dest: String, count: Long)
case class Node(name: String)
case class Link(source: Int, target: Int, value: Long)
case class Graph(nodes: Seq[Node], links: Seq[Link])
object graphs {
// val sqlContext = SQLContext.getOrCreate(org.apache.spark.SparkContext.getOrCreate()) /// fix
val sqlContext = SparkSession.builder().getOrCreate().sqlContext
import sqlContext.implicits._
def force(clicks: Dataset[Edge], height: Int = 100, width: Int = 960): Unit = {
val data = clicks.collect()
val nodes = (data.map(_.src) ++ data.map(_.dest)).map(_.replaceAll("_", " ")).toSet.toSeq.map(Node)
val links = data.map { t =>
Link(nodes.indexWhere(_.name == t.src.replaceAll("_", " ")), nodes.indexWhere(_.name == t.dest.replaceAll("_", " ")), t.count / 20 + 1)
}
showGraph(height, width, Seq(Graph(nodes, links)).toDF().toJSON.first())
}
/**
* Displays a force directed graph using d3
* input: {"nodes": [{"name": "..."}], "links": [{"source": 1, "target": 2, "value": 0}]}
*/
def showGraph(height: Int, width: Int, graph: String): Unit = {
displayHTML(s"""
<style>
.node_circle {
stroke: #777;
stroke-width: 1.3px;
}
.node_label {
pointer-events: none;
}
.link {
stroke: #777;
stroke-opacity: .2;
}
.node_count {
stroke: #777;
stroke-width: 1.0px;
fill: #999;
}
text.legend {
font-family: Verdana;
font-size: 13px;
fill: #000;
}
.node text {
font-family: "Helvetica Neue","Helvetica","Arial",sans-serif;
font-size: 17px;
font-weight: 200;
}
</style>
<div id="clicks-graph">
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var graph = $graph;
var width = $width,
height = $height;
var color = d3.scale.category20();
var force = d3.layout.force()
.charge(-700)
.linkDistance(180)
.size([width, height]);
var svg = d3.select("#clicks-graph").append("svg")
.attr("width", width)
.attr("height", height);
force
.nodes(graph.nodes)
.links(graph.links)
.start();
var link = svg.selectAll(".link")
.data(graph.links)
.enter().append("line")
.attr("class", "link")
.style("stroke-width", function(d) { return Math.sqrt(d.value); });
var node = svg.selectAll(".node")
.data(graph.nodes)
.enter().append("g")
.attr("class", "node")
.call(force.drag);
node.append("circle")
.attr("r", 10)
.style("fill", function (d) {
if (d.name.startsWith("other")) { return color(1); } else { return color(2); };
})
node.append("text")
.attr("dx", 10)
.attr("dy", ".35em")
.text(function(d) { return d.name });
//Now we are giving the SVGs co-ordinates - the force layout is generating the co-ordinates which this code is using to update the attributes of the SVG elements
force.on("tick", function () {
link.attr("x1", function (d) {
return d.source.x;
})
.attr("y1", function (d) {
return d.source.y;
})
.attr("x2", function (d) {
return d.target.x;
})
.attr("y2", function (d) {
return d.target.y;
});
d3.selectAll("circle").attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
d3.selectAll("text").attr("x", function (d) {
return d.x;
})
.attr("y", function (d) {
return d.y;
});
});
</script>
</div>
""")
}
def help() = {
displayHTML("""
<p>
Produces a force-directed graph given a collection of edges of the following form:</br>
<tt><font color="#a71d5d">case class</font> <font color="#795da3">Edge</font>(<font color="#ed6a43">src</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">dest</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">count</font>: <font color="#a71d5d">Long</font>)</tt>
</p>
<p>Usage:<br/>
<tt><font color="#a71d5d">import</font> <font color="#ed6a43">d3._</font></tt><br/>
<tt><font color="#795da3">graphs.force</font>(</br>
<font color="#ed6a43">height</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">width</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">clicks</font>: <font color="#795da3">Dataset</font>[<font color="#795da3">Edge</font>])</tt>
</p>""")
}
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
val motif_7_super_motif_0_r1student_r2student = motif_7_super_motif_0.filter("r1=='student' and r3=='student'").cache()
display(motif_7_super_motif_1_r2partner_r3partner.head(10000))
display(motif_7_super_motif_1)
val test = spark.emptyDataFrame
val test = test.unionByName(graph.find("(a)-[r1]->(b); (b)-[r2]->(c)"), true);
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
// group by relationship r1
display(motif_7_result_r1_count)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView425c049")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView425c049) SELECT `r1`,SUM(`count`) `column_37e8684e23` FROM q GROUP BY `r1`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView425c049")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
// group by relationship r2
display(motif_7_result_r2_count)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksViewffe3307")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksViewffe3307) SELECT `r2`,`count` FROM q"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksViewffe3307")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
display(motif_7_result)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView54870da")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView54870da) SELECT 1 FROM q GROUP BY GROUPING SETS (())"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView54870da")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
import spark.implicits._
val motif_count_list = Seq(("motif_7",461186877),("super_motif_0",82327906),("super_motif_1",200080767),("super_motif_2",430486542),("super_motif_3",437699609))
val motif_count_df = motif_count_list.toDF()
display(motif_count_df)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView2b59b67")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView2b59b67) SELECT `_1`,SUM(`_2`) `column_37e8684e21` FROM q GROUP BY `_1`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView2b59b67")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val motif_7_r2Child = motif_7_result.filter("r2=='child'")
display(motif_7_r2Child)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView5a694cf")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView5a694cf) SELECT `r1`,COUNT(`r1`) `column_37e8684e6` FROM q GROUP BY `r1`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView5a694cf")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
r1 | column_37e8684e6 |
---|---|
family name | 6984.0 |
father | 173695.0 |
performer | 5475.0 |
head of state | 843.0 |
depicts | 9620.0 |
producer | 5059.0 |
characters | 873.0 |
has part(s) | 676.0 |
employer | 237.0 |
named after | 11037.0 |
relative | 1302.0 |
director | 5604.0 |
spouse | 48055.0 |
author | 4037.0 |
mother | 63712.0 |
adjacent station | 39.0 |
Unknown | 96082.0 |
commissioned by | 810.0 |
founded by | 1504.0 |
follows | 5800.0 |
said to be the same as | 1500.0 |
owned by | 1714.0 |
cast member | 38309.0 |
architect | 606.0 |
editor | 23.0 |
child | 62528.0 |
family name identical to this given name | 58.0 |
given name | 331572.0 |
unmarried partner | 723.0 |
screenwriter | 4574.0 |
followed by | 5260.0 |
publisher | 40.0 |
creator | 8059.0 |
based on | 102.0 |
participant | 773.0 |
donated by | 81.0 |
chairperson | 227.0 |
lyrics by | 907.0 |
officially opened by | 264.0 |
replaces | 32.0 |
student of | 383.0 |
voice actor | 10.0 |
commemorates | 62.0 |
head of government | 278.0 |
main subject | 473.0 |
successful candidate | 333.0 |
presenter | 23.0 |
influenced by | 60.0 |
subclass of | 73.0 |
composer | 450.0 |
allegiance | 47.0 |
patron saint | 212.0 |
child astronomical body | 273.0 |
notable work | 224.0 |
discoverer or inventor | 97.0 |
speaker | 6.0 |
student | 157.0 |
illustrator | 30.0 |
officeholder | 56.0 |
director / manager | 47.0 |
parent astronomical body | 1765.0 |
collection | 14.0 |
rector | 13.0 |
translator | 48.0 |
parent taxon | 74.0 |
winner | 35.0 |
academic thesis | 5.0 |
killed by | 177.0 |
part of | 78.0 |
present in work | 1361.0 |
given name version for other gender | 27.0 |
occupant | 77.0 |
director of photography | 496.0 |
librettist | 46.0 |
candidate | 44.0 |
dedicated to | 122.0 |
contains the administrative territorial entity | 143.0 |
place of birth | 1479.0 |
place of death | 562.0 |
category combines topics | 40.0 |
capital | 49.0 |
place of burial | 9.0 |
licensed to broadcast to | 7.0 |
head coach | 27.0 |
field of work | 1.0 |
appointed by | 121.0 |
occupation | 7.0 |
main building contractor | 2.0 |
located in the administrative territorial entity | 206.0 |
location | 4.0 |
twinned administrative body | 46.0 |
addressee | 20.0 |
has edition or translation | 5.0 |
narrative location | 7.0 |
ethnic group | 5.0 |
contains settlement | 12.0 |
home world | 1.0 |
developer | 66.0 |
powered by | 18.0 |
cause of destruction | 6.0 |
contributor to the creative work or subject | 55.0 |
shares border with | 113.0 |
item operated | 3.0 |
manufacturer | 19.0 |
film editor | 13.0 |
family | 73.0 |
opposite of | 6.0 |
genre | 269.0 |
torch lit by | 4.0 |
inspired by | 21.0 |
part of the series | 188.0 |
residence | 4.0 |
headquarters location | 16.0 |
mouth of the watercourse | 19.0 |
doctoral advisor | 35.0 |
unveiled by | 11.0 |
doctoral student | 17.0 |
production company | 26.0 |
sponsor | 13.0 |
organizer | 2.0 |
chief executive officer | 7.0 |
operator | 4.0 |
instance of | 165.0 |
record label | 70.0 |
constellation | 51.0 |
designed by | 86.0 |
terminus location | 1.0 |
edition or translation of | 7.0 |
Wikimedia portal's main topic | 9.0 |
location of creation | 2.0 |
tributary | 1.0 |
crosses | 3.0 |
godparent | 10.0 |
cover art by | 8.0 |
country of citizenship | 162.0 |
terminus | 2.0 |
armament | 1.0 |
crew member(s) | 15.0 |
field of this occupation | 3.0 |
replaced by | 4.0 |
conferred by | 1.0 |
award received | 3.0 |
member of sports team | 24.0 |
fictional or mythical analog of | 1.0 |
points/goal scored by | 2.0 |
member of | 22.0 |
category's main topic | 1.0 |
fictional universe described in | 3.0 |
facet of | 5.0 |
executive producer | 1.0 |
work location | 12.0 |
located on astronomical body | 80.0 |
kinship to subject | 1.0 |
party chief representative | 3.0 |
ancestral home | 1.0 |
oath made by | 1.0 |
filming location | 63.0 |
basin country | 1.0 |
position held | 1.0 |
diplomatic relation | 4.0 |
country | 95.0 |
diplomatic mission sent | 1.0 |
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
// We look at supper motif 1 and to limit r2 r3 as child. so we suppose that r1 be spouse.
val motif_7_super_motif_1_r2Child_r3Child = motif_7_super_motif_1.filter("r2=='child' and r3=='child'")
display(motif_7_super_motif_1_r2Child_r3Child)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksViewfc816c8")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksViewfc816c8) SELECT `r1`,COUNT(`r1`) `column_37e8684e11` FROM q GROUP BY `r1`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksViewfc816c8")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
val example_r1_group_by = motif_7_super_motif_1_r2Child_r3Child.groupBy("r1").count().cache()
display(example_r1_group_by)
if (dfs.length > 0) {
dbutils.data.summarize(dfs(0))
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
}
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
<span role="button"></span>
<paper-menu-button id="menuButton" vertical-align="[[verticalAlign]]" horizontal-align="[[horizontalAlign]]" dynamic-align="[[dynamicAlign]]" vertical-offset="[[_computeMenuVerticalOffset(noLabelFloat, verticalOffset)]]" disabled="[[disabled]]" no-animations="[[noAnimations]]" on-iron-select="_onIronSelect" on-iron-deselect="_onIronDeselect" opened="{{opened}}" close-on-activate="" allow-outside-scroll="[[allowOutsideScroll]]" restore-focus-on-close="[[restoreFocusOnClose]]">
<div class="dropdown-trigger" slot="dropdown-trigger">
<paper-ripple></paper-ripple>
<paper-input type="text" invalid="[[invalid]]" readonly="" disabled="[[disabled]]" value="[[value]]" placeholder="[[placeholder]]" error-message="[[errorMessage]]" always-float-label="[[alwaysFloatLabel]]" no-label-float="[[noLabelFloat]]" label="[[label]]">
<iron-icon icon="paper-dropdown-menu:arrow-drop-down" suffix="" slot="suffix"></iron-icon>
</paper-input>
</div>
<slot id="content" name="dropdown-content" slot="dropdown-content"></slot>
</paper-menu-button>
var dfsLen = 0;
{
var dfs = Array[Any]()
implicit def display(df: Any) {
dfs = dfs :+ df
}
// run user code
val example_r1_group_by = motif_7_super_motif_1_r2Child_r3Child.groupBy("r1").count().cache()
display(example_r1_group_by)
if (dfs.length > 0) {
val userGenerateDf = dfs(0).asInstanceOf[org.apache.spark.sql.DataFrame]
userGenerateDf.createOrReplaceTempView("DatabricksView4cb1335")
}
dfsLen = dfs.length
}
if (dfsLen > 0) {
try {
display(sql("""WITH q AS (select * from DatabricksView4cb1335) SELECT `r1`,COUNT(`count`) `column_37e8684e17` FROM q GROUP BY `r1`"""))
} finally {
// cleaning up the view helps us not pollute the name space
spark.sql("drop view if exists DatabricksView4cb1335")
}
} else {
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
}
Personalized PageRank coordinates
Something we aimed to develop during this project was pagerank vector coordinates to determine the predictive power of these. However, as we ran into constant issues with the server, scala and our approach, we ultimately decided to go with another package and still run these vectors.
The idea of PageRank coordinates is simple; in a Knowledge Graph, having a coordinate system in which the entities live can be highly useful. How these are decided is however not trivial.
PageRank does however have a problem; on a directed graph, PageRank can land into "sinkholes", i.e., nodes with no out-going nodes. In Knowledge Graphs, as we have previously seen, most relations are not bidirectional. However, as relations do have semantical meaning in both directions (i.e., the inverse of a relation) it is plausible to make the graph undirected, and develop our coordinates using undirected edges.
We can develop both sets of pagerank vectors and then examine these independently.
NOTE: As we ran into so many issues with Scala, we ultimately ran this investigation using a pytorch package.
import pandas as pd
import torch
from torch_ppr import personalized_page_rank
df = pd.read_csv("/home/filco306/knowledge-graphs-repository/ogb-competition/ogb-competition/dataset/ogbl_wikikg2/original/train_2015.csv.gz", header=None)
df.columns = ["head", "relation", "tail"]
df.head()
entdescs = pd.read_csv("/home/filco306/knowledge-graphs-repository/ogb-competition/ogb-competition/entities_descriptions.csv")
entdescs.columns = ["id", "label", "description"]
reldescs = pd.read_csv("/home/filco306/knowledge-graphs-repository/ogb-competition/ogb-competition/relation_descriptions.csv")
reldescs.columns = ["id", "label", "description"]
entdescs.loc[((entdescs["label"] == "Unknown") | (entdescs["label"] == "Error")), "label"] = "Unknown" + entdescs.loc[entdescs["label"] == "Unknown"]["id"]
reldescs.loc[reldescs["label"] == "Unknown", "label"] = "Unknown" + reldescs.loc[reldescs["label"] == "Unknown"]["id"]
anchors = torch.randint(0, len(entdescs), size=(100,))
heads = torch.tensor(df["head"].map(entdescs[["id"]].reset_index().set_index("id")["index"]))
tails = torch.tensor(df["tail"].map(entdescs[["id"]].reset_index().set_index("id")["index"]))
edge_index = torch.cat((heads.view(1,-1), tails.view(1,-1)), dim=0)
adj = torch.sparse_coo_tensor(edge_index, torch.ones(edge_index.shape[1]), (len(entdescs), len(entdescs)))
res = personalized_page_rank(edge_index=edge_index, indices=anchors)
import torch_ppr
from typing import Optional
import logging
def validate_adjacency(adj: torch.Tensor, n: Optional[int] = None, rtol: float = 1.0e-01):
"""
Validate the page-rank adjacency matrix.
In particular, the method checks that
- the shape is ``(n, n)``
- the row-sum is ``1``
:param adj: shape: ``(n, n)``
the adjacency matrix
:param n:
the number of nodes
:param rtol:
the tolerance for checking the sum is close to 1.0
:raises ValueError:
if the adjacency matrix is invalid
"""
# check dtype
if not torch.is_floating_point(adj):
if adj.shape[0] == 2 and adj.shape[1] != 2:
logging.warning(
"The passed adjacency matrix looks like an edge_index; did you pass it for the wrong parameter?"
)
raise ValueError(
f"Invalid adjacency matrix data type: {adj.dtype}, should be a floating dtype."
)
# check shape
if n is None:
n = adj.shape[0]
if adj.shape != (n, n):
raise ValueError(f"Invalid adjacency matrix shape: {adj.shape}. expected: {(n, n)}")
# check value range
if adj.is_sparse and not adj.is_sparse_csr:
adj = adj.coalesce()
values = adj.values()
if (values < 0.0).any() or (values > 1.0).any():
raise ValueError(
f"Invalid values outside of [0, 1]: min={values.min().item()}, max={values.max().item()}"
)
# check column-sum
if adj.is_sparse and not adj.is_sparse_csr:
adj_sum = torch.sparse.sum(adj, dim=0).to_dense()
else:
# hotfix until torch.sparse.sum is implemented
adj_sum = adj.t() @ torch.ones(adj.shape[0])
exp_sum = torch.ones_like(adj_sum)
mask = adj_sum == 0
if mask.any():
logging.warning(f"Adjacency contains {mask.sum().item()} isolated nodes.")
exp_sum[mask] = 0.0
if not torch.allclose(adj_sum, exp_sum, rtol=rtol):
raise ValueError(
f"Invalid column sum: {adj_sum} (min: {adj_sum.min().item()}, max: {adj_sum.max().item()}). "
f"Expected 1.0 with a relative tolerance of {rtol}.",
)
torch_ppr.utils.validate_adjacency = validate_adjacency # We need to override the tolerance here.
entdescs_w_indexes = entdescs.merge(entdescs["label"].drop_duplicates().reset_index().set_index("label")["index"].reset_index(), on ="label")
df["head"] = df["head"].map(entdescs.set_index("id")["label"])
df["relation"] = df["relation"].map(reldescs.set_index("id")["label"])
df["tail"] = df["tail"].map(entdescs.set_index("id")["label"])
pd.concat([entdescs, pd.DataFrame(res.T.cpu().numpy(), columns = [f"pagerank_{i}" for i in range(len(anchors))])],axis=1).to_csv("dbfs:///wikikg-v2/ppr_anchors.csv", index=False)
res_bidir = personalized_page_rank(edge_index=torch.cat([edge_index, edge_index[[1,0]]],dim=1), indices=anchors)
pd.concat([entdescs, pd.DataFrame(res_bidir.T.cpu().numpy(), columns = [f"pagerank_{i}" for i in range(len(anchors))])],axis=1).to_csv("dbfs:///wikikg-v2/ppr_anchors_bidirectional.csv", index=False)
Entity classification with Personalized PageRank vectors
In this notebook, we are performing classification on the personalized pagerank vectors we created in the previous notebook.
The relation P31
in the Knowledge Graph corresponds to the entity's type. With our pagerank vectors created, we could perform a classification task to determine the predictive power of the the vectors.
Our hypothesis here was that our pageRank coordinates would have a high predictive power as they describe the location of a node in the graph, and that node cluster based on their types.
import pandas as pd
import os
import pyspark
import os
import gc
import numpy as np
from pyspark.ml.linalg import Vectors
from sklearn.manifold import TSNE
from sklearn.linear_model import LogisticRegression as SKLEARNLR
First, read in the data.
df = spark.read.format('csv').options(header='true').load("dbfs:///ppr_anchors_bidirectional.csv")# .toPandas()
vectorColumns = [f"pagerank_{i}" for i in range(100)]
sqlContext.registerDataFrameAsTable(df, "pagerankdf")
from pyspark.sql.functions import col
for col_ in vectorColumns:
df = df.withColumn(col_, col(col_).cast("double"))
df = sqlContext.sql("""SELECT t1.* FROM pagerankdf t1 WHERE t1.pagerank_0 IS NOT NULL AND t1.pagerank_1 IS NOT NULL AND t1.pagerank_2 IS NOT NULL AND t1.pagerank_3 IS NOT NULL AND t1.pagerank_4 IS NOT NULL AND t1.pagerank_5 IS NOT NULL AND t1.pagerank_6 IS NOT NULL AND t1.pagerank_7 IS NOT NULL""")
INSTANCEOFID = "P31"
train = spark.read.format('csv').options(header=None).load("dbfs:///wikikg-v2/original/train_2015.csv.gz")
valid = spark.read.format('csv').options(header=None).load("dbfs:///wikikg-v2/original/valid_2015.csv.gz")
test = spark.read.format('csv').options(header=None).load("dbfs:///wikikg-v2/original/test_2015.csv.gz")
reldescs = spark.read.format('csv').options(header=None).load("dbfs:/FileStore/tables/relation_descriptions.csv")
gc.collect()
Next, we filter out all relations in the training data which is not the instance of class, since this is the only one that we are interested in. We do this for both training, validation and test.
train_ = train.filter(train._c1 == "P31")
test_ = test.filter(test._c1 == "P31")
valid_ = valid.filter(valid._c1 == "P31")
test = valid_.union(test_)
gc.collect()
if isinstance(test, list) is True:
test = spark.createDataFrame(test)
For simplicity, let's just use the top 100 classes here.
from pyspark.sql import SQLContext
sqlContext.registerDataFrameAsTable(test, "testtable")
top_100 = sqlContext.sql(sqlQuery="""SELECT _c2 AS rel, COUNT(*) as freq from testtable GROUP BY _c2 ORDER BY COUNT(*) DESC LIMIT 100""").collect()
top_100 = spark.createDataFrame(top_100)
sqlContext.registerDataFrameAsTable(train_, "traintable")
sqlContext.registerDataFrameAsTable(top_100, "top100")
train = sqlContext.sql(sqlQuery="""SELECT t1._c0 as head, t1._c2 as enttype FROM traintable t1 JOIN top100 t2 WHERE t1._c2 = t2.rel""")
test = sqlContext.sql(sqlQuery="""SELECT t1._c0 as head, t1._c2 as enttype FROM testtable t1 JOIN top100 t2 WHERE t1._c2 = t2.rel""")
# And now, the heavy part.
sqlContext.registerDataFrameAsTable(train, "traintable")
sqlContext.registerDataFrameAsTable(test, "testtable")
sqlContext.registerDataFrameAsTable(df, "vectors")
train_ = sqlContext.sql("""
SELECT t1.head, t1.enttype, t2.* FROM traintable t1 JOIN vectors t2 WHERE t1.head = t2.id
""")
test_ = sqlContext.sql("""
SELECT t1.head, t1.enttype, t2.* FROM testtable t1 JOIN vectors t2 WHERE t1.head = t2.id
""")
Now, let's have a look by visualizing the classes and see if it makes sense. Let's take the test data and import it to pandas.
test_pandas = test_.toPandas()
test_pandas.head()
We need to process the labels and transform them into numbers. Unfortunately, we seemed to have some bug, so we had to filter out some rows in order for it to work.
from sklearn.preprocessing import OrdinalEncoder
ordenc = OrdinalEncoder()
test_pandas["label"] = ordenc.fit_transform(test_pandas[["enttype"]])
leakages = [' Saskatchewan']
for leakage in leakages:
test_pandas = test_pandas.loc[((test_pandas["pagerank_0"] != leakage) & (test_pandas["pagerank_1"] != leakage))]
to_drop = [325, 1509, 9254] # Some bug that some entities experienced inexplicable array shifting.
tsne = TSNE()
vectorColumns = [f"pagerank_{i}" for i in range(1,100)]
vecs = tsne.fit_transform(test_pandas[vectorColumns].drop(to_drop,axis=0))
pd.DataFrame({"x" : vecs[:,0],"y" : vecs[:,1], "c" : test_pandas.drop(to_drop,axis=0)["label"]}).plot.scatter(x="x", y="y", c="c", cmap="viridis")

Now, let's use spark for this, and perform classification with Logistic Regression.
for col_ in vectorColumns:
train_ = train_.withColumn(col_, col(col_).cast("double"))
test_ = test_.withColumn(col_, col(col_).cast("double"))
sqlContext.registerDataFrameAsTable(train_, "pagerankdf")
train_ = sqlContext.sql("""SELECT t1.* FROM pagerankdf t1 WHERE t1.pagerank_0 IS NOT NULL AND t1.pagerank_1 IS NOT NULL AND t1.pagerank_2 IS NOT NULL AND t1.pagerank_3 IS NOT NULL AND t1.pagerank_4 IS NOT NULL AND t1.pagerank_5 IS NOT NULL AND t1.pagerank_6 IS NOT NULL AND t1.pagerank_7 IS NOT NULL""")
sqlContext.registerDataFrameAsTable(test_, "pagerankdf")
test_ = sqlContext.sql("""SELECT t1.* FROM pagerankdf t1 WHERE t1.pagerank_0 IS NOT NULL AND t1.pagerank_1 IS NOT NULL AND t1.pagerank_2 IS NOT NULL AND t1.pagerank_3 IS NOT NULL AND t1.pagerank_4 IS NOT NULL AND t1.pagerank_5 IS NOT NULL AND t1.pagerank_6 IS NOT NULL AND t1.pagerank_7 IS NOT NULL""")
train_.show(5)
train_ = train_.select(*(["enttype"]+vectorColumns)).withColumnRenamed("enttype", "label")
test_ = test_.select(*(["enttype"]+vectorColumns)).withColumnRenamed("enttype", "label")
train_.show(5)
from pyspark.ml.feature import VectorAssembler
# Vectorize.
trainva = VectorAssembler(inputCols=vectorColumns, outputCol="features").transform(train_)
testva = VectorAssembler(inputCols=vectorColumns, outputCol="features").transform(test_)
trainData = trainva.select("label", "features")
testData = testva.select("label", "features")
trainData.show(5)
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import StringIndexer, VectorIndexer
from pyspark.ml import Pipeline
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(trainData)
lr = LogisticRegression(labelCol="indexedLabel",maxIter=10, regParam=0.3, elasticNetParam=0.8)
pipeline = Pipeline(stages=[labelIndexer, lr])
lrModel = pipeline.fit(trainData)
predictions = lrModel.transform(testData)
predictions.select("prediction", "indexedLabel", "features").show(5)
trainPredictions = lrModel.transform(trainData)
# Copied from https://spark.apache.org/docs/2.2.0/ml-classification-regression.html
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(trainPredictions)
print("Train Error = %g " % (1.0 - accuracy))
# Copied from https://spark.apache.org/docs/2.2.0/ml-classification-regression.html
testPredictions = lrModel.transform(testData)
evaluator = MulticlassClassificationEvaluator(
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(testPredictions)
print("Test Error = %g " % (1.0 - accuracy))
# Copied from https://spark.apache.org/docs/2.2.0/ml-classification-regression.html
testPredictions = lrModel.transform(testData)
evaluator = MulticlassClassificationEvaluator(
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(testPredictions.select("indexedLabel", "prediction"))
print("Test Error = %g " % (1.0 - accuracy))
testPredictions.show(5)
Unfortunately, our method does not possess a lot of predictive power. This can be due to a multitude of factors.
- We include all the instance of edges.
- The structure of the graph does not cluster types of nodes together, but rather interacting nodes. This shows the strong importance of roles in a knowledge graph, rather than types being clustered together.
- We do not have enough anchors in our personalized pagerank vectors, leading us to not
Federated Learning for Brain Tumor Segmentation
Project members:
- Jingru Fu - KTH Royal Institute of Technology
- Lidia Kidane - Umeå University
- Romuald Esdras Wandji - Umeå University
Content (→ Presenter)
- Introduction → Jingru
1.1 Federated Learning in medical field
1.2 Brain tumor segmentation
1.3 Hierarchy of presentation and code - System Architecture → Lidia
2.1 Federated learning
2.2 System design
2.3 Distributed Machine Learning vs Federated Learning
2.4 Scalability issue and how we dealt with it - Methodology → Romuald
3.1 Federated Learning
3.2 U-Net Architectures
3.3 Distributed Training - Experiments and Results → Refer to notebooks 01 and 02
Introduction
1. Federated Learning in medical field
-
Reference: The future of digital health with federated learning
-
Federated learning (FL) is a learning paradigm seeking to address the problem of data governance and privacy by training algorithms collaboratively without exchanging the data itself.
a FL aggregation server—the typical FL workflow in which a federation of training nodes receive the global model, resubmit their partially trained models to a central server intermittently for aggregation and then continue training on the consensus model that the server returns. b FL peer to peer—alternative formulation of FL in which each training node exchanges its partially trained models with some or all of its peers and each does its own aggregation. c Centralised training—the general non-FL training workflow in which data acquiring sites donate their data to a central Data Lake from which they and others are able to extract data for local, independent training.
2. Brain tumor segmentation
- Data Description and Visualization
All BraTS multimodal scans are available as NIfTI files (.nii.gz) and describe a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, and were acquired with different clinical protocols and various scanners from multiple (n=19) institutions. The data is collected from this link. All the imaging datasets have been segmented manually, by one to four raters, following the same annotation protocol, and their annotations were approved by experienced neuro-radiologists. Annotations comprise the GD-enhancing tumor (ET — label 4), the peritumoral edema (ED — label 2), and the necrotic and non-enhancing tumor core (NCR/NET — label 1), as described both in the BraTS 2012-2013 TMI paper and in the latest BraTS summarizing paper. The provided data are distributed after their pre-processing, i.e., co-registered to the same anatomical template, interpolated to the same resolution (1 mm^3) and skull-stripped.
- Two modalities (T1Gd and T2-FLAIR) as inputs of the model
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import random
import os
import cv2
import glob
# PIL adds image processing capabilities to your Python interpreter.
import PIL
from PIL import Image, ImageOps
# Shutil module offers high-level operation on a file like a copy, create, and remote operation on the file.
import shutil
# skimage is a collection of algorithms for image processing and computer vision.
from skimage import data
from skimage.util import montage
import skimage.transform as skTrans
from skimage.transform import rotate
from skimage.transform import resize
# NEURAL IMAGING
import nilearn as nl
import nibabel as nib # access a multitude of neuroimaging data formats
# ML Libraries
import keras
import keras.backend as K
from keras.callbacks import CSVLogger
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.utils import plot_model
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard
from tensorflow.keras.layers.experimental import preprocessing
# make numpy printouts easier to read
np.set_printoptions(precision = 3, suppress = True)
import warnings
warnings.filterwarnings('ignore')
# dataset path
train_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/"
valid_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_ValidationData/MICCAI_BraTS2020_ValidationData/"
test_image_flair = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_flair.nii').get_fdata()
test_image_t1 = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t1.nii').get_fdata()
test_image_t1ce = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t1ce.nii').get_fdata()
test_image_t2 = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t2.nii').get_fdata()
test_mask = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_seg.nii').get_fdata()
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(1, 5, figsize = (20, 10))
slice_w = 25
# FLAIR
ax1.imshow(test_image_flair[:,:,test_image_flair.shape[0]//2-slice_w], cmap = 'gray')
ax1.set_title('Image flair')
# T1
ax2.imshow(test_image_t1[:,:,test_image_t1.shape[0]//2-slice_w], cmap = 'gray')
ax2.set_title('Image t1')
# T1CE
ax3.imshow(test_image_t1ce[:,:,test_image_t1ce.shape[0]//2-slice_w], cmap = 'gray')
ax3.set_title('Image t1ce')
# T2
ax4.imshow(test_image_t2[:,:,test_image_t2.shape[0]//2-slice_w], cmap = 'gray')
ax4.set_title('Image t2')
# MASK
ax5.imshow(test_mask[:,:,test_mask.shape[0]//2-slice_w])
ax5.set_title('Mask')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_image_t1[50:-50,:,:]), 90, resize = True), cmap = 'gray')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_mask[50:-50,:,:]), 90, resize = True), cmap = 'gray')
3. Hierarchy of presentation and code
- Presentation
- Federated part → Lidia
- Distributed part → Romuald
- Code: Three trainings have been done:
- Centralised training
- Federated training: Three clients are simulated with unbalanced amounts of data (200 vs 40 vs 9)
- Centralised Single Client Training for client 3
- Federated Training
# list of directories
train_val_directories = [f.path for f in os.scandir(train_data) if f.is_dir()]
# remove BraTS20_Training_355 since it has ill formatted name for seg.nii file
train_val_directories.remove(train_data + 'BraTS20_Training_355')
# function to convert list of paths into IDs
def pathListIntoIDs(dirList):
x = []
for i in range(0, len(dirList)):
x.append(dirList[i][dirList[i].rfind('/')+1:])
return x
ids = pathListIntoIDs(train_val_directories)
# split ids into train+test and validation
train_test_ids, val_ids = train_test_split(ids, test_size = 0.2, random_state = 42)
# split train+test into train and test
train_ids, test_ids = train_test_split(train_test_ids, test_size = 0.15, random_state = 42)
# function to display data distribution
def showDataLayout():
plt.bar(["Train","Valid","Test"],
[len(train_ids), len(val_ids), len(test_ids)], align='center',color=[ 'green','red', 'blue'])
plt.legend()
plt.ylabel('Number of images')
plt.title('Data distribution')
plt.show()
showDataLayout()
# define segmentation areas
SEGMENT_CLASSES = {
0 : 'NOT TUMOR',
1 : 'NECROTIC/CORE', # or NON-ENHANCING TUMOR CORE
2 : 'EDEMA',
3 : 'ENHANCING' # original 4 -> converted into 3 later
}
# there are 155 slices per volume
# to start at 5 and use 145 slices means we will skip the first 5 and last 5
VOLUME_SLICES = 100
VOLUME_START_AT = 22 # first slice of volume that we will include
IMG_SIZE = 128
# override keras sequence DataGenerator class
class DataGenerator(keras.utils.Sequence):
# generates data for Keras
def __init__(self, list_IDs, dim=(IMG_SIZE,IMG_SIZE), batch_size = 1, n_channels = 2, shuffle=True):
# Initialization
self.dim = dim
self.batch_size = batch_size
self.list_IDs = list_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
# denotes the number of batches per epoch
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
# generate one batch of data
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
Batch_ids = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(Batch_ids)
return X, y
def on_epoch_end(self):
# updates indexes after each epoch
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, Batch_ids):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# initialization
X = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, self.n_channels))
y = np.zeros((self.batch_size*VOLUME_SLICES, 240, 240))
Y = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, 4))
# Generate data
for c, i in enumerate(Batch_ids):
case_path = os.path.join(train_data, i)
data_path = os.path.join(case_path, f'{i}_flair.nii');
flair = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_t1ce.nii');
ce = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_seg.nii');
seg = nib.load(data_path).get_fdata()
for j in range(VOLUME_SLICES):
X[j +VOLUME_SLICES*c,:,:,0] = cv2.resize(flair[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
X[j +VOLUME_SLICES*c,:,:,1] = cv2.resize(ce[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
y[j +VOLUME_SLICES*c] = seg[:,:,j+VOLUME_START_AT];
# Generate masks
y[y==4] = 3;
mask = tf.one_hot(y, 4);
Y = tf.image.resize(mask, (IMG_SIZE, IMG_SIZE));
#print("X size = {};\nY size = {}".format(X.shape, Y.shape))
return X/np.max(X), Y
System Architecture
Federated learning (FL)
machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized.
- FL brings the model to where the data lives, train it locally, and only upload the update to the server
- Local data storing and processing with global coordination is made possible by the emerging technology of mobile edge computing(MEC), where edge nodes, such as sensors, home gateways, micro servers, and small cells, are equipped with storage and computation capability.
Advantages
-
Highly efficient use of network bandwidth: less information is required to be transmitted to the cloud.
-
Privacy: with guaranteed privacy, more users will be willing to take part in collaborative model training and so, better inference models are built.
-
Low latency: the latency is much lower than that when decisions are made in the cloud before transmitting them to the end devices which is vital for time critical applications.
Comparison between Distributed Learning (DL) and FL:
Distributed machine learning is a multi-node ML system that improves performance, increases accuracy, and scales to larger input data sizes.
- Synchronous: all workers train over different slices of input data in sync, and aggregating gradients at each step and supported via all-reduce.
- asynchronous training: all workers are independently training over the input data and updating variables asynchronously through parameter server architecture.
Federated Learning protocol VS Traditional parameter server protocol The differences are: - In data center setting, shared storage is usually used, which means the worker machine do not keep persistent data storage on their own, and they fetch data from the shared storage at the beginning of each iteration. - In FL, the data, and thus the loss function, on the different clients may be very heterogeneous, and far from being representative of the joint data.(e.g. the data stored on each client may be highly non-IID) - In FL, the server never keeps track of any individual client information and only uses aggregates to ensure privacy. Because of the high churn in FL setting, only a small subset of the devices are selected by the server in each round.
Scalability
The implementation is scalable based on:
-System resources The federated learning simulation is is based on Tensorflow federated learning framework, can be deployed on set of clusters or a single machine based on the the need.
Distribute training across multiple GPUs and clusters with distributed TensorFlow API.
-Increasing number of clients As number of clients increase, subset of clients are selected to to be part of the model update process.
# function to take in data and return a dictionary with client names as keys and values as data shards
def create_client(data, num_clients, initial = 'client'):
# create a list of client names
client_names = ['{}_{}'.format(initial, i+1) for i in range(num_clients)]
# size of data shard
size = len(data)//num_clients
# create data shard for each client for i in [200, 40, 9] to make it heterogenous
shards = [data[0:200], data[200:240], data[240:249]]
print(len(data),len(shards), len(client_names))
print(len(shards[0]),len(shards[1]),len(shards[2]))
print(shards[0][0])
# number of clients must equal number of shards
assert(len(shards) == len(client_names))
return {client_names[i] : shards[i] for i in range(len(client_names))}
def weight_scaling_factor(data):
return len(data)/len(train_ids)
def scale_model_weights(weight, scalar):
'''function for scaling a models weights'''
weight_final = []
steps = len(weight)
for i in range(steps):
weight_final.append(scalar * weight[i])
return weight_final
def sum_scaled_weights(scaled_weight_list):
'''Return the sum of the listed scaled weights. The is equivalent to scaled avg of the weights'''
avg_grad = list()
#get the average grad accross all client gradients
for grad_list_tuple in zip(*scaled_weight_list):
layer_mean = tf.math.reduce_sum(grad_list_tuple, axis=0)
avg_grad.append(layer_mean)
return avg_grad
# function to evaluate the model on test data and print the current round and metrics
def evaluate_model(data, model, round):
test_generator = DataGenerator(data)
results = model.evaluate(test_generator, batch_size = batch_size, verbose = 1)
loss, accuracy = results[0], results[1]*100
print(f'round: {round} | loss: {loss} | accuracy: {accuracy:.2f}%')
# create clients
clients = create_client(train_ids,3)
valid_generator = DataGenerator(val_ids)
Distributed Training
We opt for distributed training accross each institution to take advantage of the available processing units, and the ultimate goal is to reduce the training time while making faster iteration to reach modeling goals
Here we are interested in Data parallelism which is distributed training category used to improve the efficiency of training the model with massive datasets
The distributed learning process can be summarized as follow: 1. Each GPU performs a forward pass on a different slice of the input data to compute the loss 2. Each GPU compute the gradient based ont he loss functions 3. The gradients are aggregated accross each of the devices, via an All-Reduce algorigm 4. The optimizer updates the weights using the reduced gradient, thereby keeping the devices in sync
An All-Reduce algorithm here is refered to as an operation that reduce a set of arrays on distributed workers into a single array that is distributed back to each of these workers
In distributed training, an additional computation is performed at the end of each training step where all workers exchange with each other the gradients and calculate the average
This approach been implemented using tf.distribute.MirroredStrategy
from Tensorflow
which supports synchronous distributed training on multiple GPUs on one machine. It creates one replica per GPU device. Each variable in the model is mirrored across all the replicas. Together, these variables form a single conceptual variable called MirroredVariable. These variables are kept in sync with each other by applying identical updates.
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
# Losses
from keras_unet_collection import losses
# losses.dice, losses.dice_coef
# dice loss as defined above for 4 classes
def dice_coef_class(y_true, y_pred, smooth=1.0):
class_num = 4
for i in range(class_num):
y_true_f = K.flatten(y_true[:,:,:,i])
y_pred_f = K.flatten(y_pred[:,:,:,i])
intersection = K.sum(y_true_f * y_pred_f)
loss = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
# K.print_tensor(loss, message='loss value for class {} : '.format(SEGMENT_CLASSES[i]))
if i == 0:
total_loss = loss
else:
total_loss = total_loss + loss
total_loss = total_loss / class_num
# K.print_tensor(total_loss, message=' total dice coef: ')
return total_loss
# define per class evaluation of dice coef
# inspired by https://github.com/keras-team/keras/issues/9395
def dice_coef_necrotic(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,1] * y_pred[:,:,:,1]))
return (2. * intersection) / (K.sum(y_true[:,:,:,1]) + K.sum(y_pred[:,:,:,1]) + epsilon) # I dont like squre
def dice_coef_edema(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,2] * y_pred[:,:,:,2]))
return (2. * intersection) / (K.sum(y_true[:,:,:,2]) + K.sum(y_pred[:,:,:,2]) + epsilon)
def dice_coef_enhancing(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,3] * y_pred[:,:,:,3]))
return (2. * intersection) / (K.sum(y_true[:,:,:,3]) + K.sum(y_pred[:,:,:,3]) + epsilon)
# Computing Precision
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
# Computing Sensitivity
def sensitivity(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
# Computing Specificity
def specificity(y_true, y_pred):
true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1)))
possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1)))
return true_negatives / (possible_negatives + K.epsilon())
U-Net Architectures
U-net is a special type of architecture for semantic image segmentation purposes [1], it consists of two main paths namely the encoder and the decoder * The encoder or contracting path: Similar to a regular CNN, it tries to understand the what of the image, it does it by using convolutions and max pooling * The decoder or expansion path: which is responsible to find the where part of the image by applying sequences of up-convolutions and concatenations with features from the corresponding contracting path
The contracting and expansive paths are connected by a series of concatenation and skip connections, which helps to retain spatial information and improve the performance of the network.
# U-NET
def build_unet(inputs, ker_init, dropout):
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(inputs)
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv1)
pool = MaxPooling2D(pool_size=(2, 2))(conv1)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv3)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool4)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv5)
drop5 = Dropout(dropout)(conv5)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(drop5))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv9)
up = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv9))
merge = concatenate([conv1,up], axis = 3)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
conv10 = Conv2D(4, (1,1), activation = 'softmax')(conv)
return Model(inputs = inputs, outputs = conv10)
Federated Learning
Unlinke the centralized learning, in Federated Learning, Institutions do not share their data but instead train a shared model locally and only send model updates to the central server. The server accumulates and aggregates the individual updates to yield a global model and then forwards the new shared parameters to each client for further training. Once the model updates have been applied, they are discarded by the central server as they are only required for enhancing the current global model.
The training process of the Federated Learning system we implemented can be summarized as follow: 1. The collaborator or institution receives the global model updates from the server and locally trains on their local data and sends the local model updates to the central server. 2. The central server receives the local model updates and performs secure aggregation without learning information about any collaborator to yield a global model. 3. The central server forwards the new shared parameters to the collaborators for further training. 4. Go back to 1 for another federated round.
input_layer = Input((IMG_SIZE, IMG_SIZE, 2))
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# add callback for training process
csv_logger = CSVLogger(f'{save_path}training_fl.log', separator=',', append=False)
checkpoint_filepath = f'{save_path}checkpoint_fl'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_accuracy',
mode='max',
save_best_only=True)
callbacks = [
model_checkpoint_callback,
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0.000001, verbose=1),
csv_logger
]
def evaluate_model(data, model):
test_generator = DataGenerator(data)
results = model.evaluate(test_generator, batch_size = 32, verbose = 1)
for i in range(len(results)):
print("Metric_{}={}".format(i, results[i]))
return results
ROUNDS = 3
SELECTED_EACH_ROUND = 1
BATCH_SIZE = 1
EPOCHS_CLIENT = 10
# initialize global model
K.clear_session()
global_model = build_unet(input_layer, 'he_normal', 0.2)
global_model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing]
)
print("Begin Training")
# commence global training loop
for round in range(1, ROUNDS):
print(f'\nRound: {round}')
# get global model's weights
global_weights = global_model.get_weights()
# initial list to collect local model weights after scaling
scaled_local_weight_list = list()
# get client names
client_names= list(clients.keys())
random.shuffle(client_names)
count = 1
# loop through each client and create new local model
for client in client_names:
print(f'Client {count}')
with strategy.scope():
local_model = build_unet(input_layer, 'he_normal', 0.2)
local_model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing])
#set local model weight to the weight of the global model
local_model.set_weights(global_weights)
# get client data and pass it through a data generator
data = DataGenerator(clients[client], batch_size = BATCH_SIZE * strategy.num_replicas_in_sync )
# fit local model with client's data
local_model.fit(data, epochs=EPOCHS_CLIENT, steps_per_epoch = len(data), verbose = 1) #callbacks = callbacks, validation_data = valid_generator)
# scale the model weights and add to list
scaling_factor = weight_scaling_factor(data)
print(f'scaling_factor = {scaling_factor}')
scaled_weights = scale_model_weights(local_model.get_weights(), scaling_factor)
# not adding scaling
scaled_local_weight_list.append(local_model.get_weights()) # Here should be scaled_local_weight_list.append(scaled_weights)??
# scaled_local_weight_list.append(scaled_weights)
# clear session to free memory after each communication round
K.clear_session()
count += 1
#to get the average over all the local model, we simply take the sum of the scaled weights
print('len of scaled_local_weight_list = {}'.format(len(scaled_local_weight_list)))
average_weights = sum_scaled_weights(scaled_local_weight_list)
#update global model
global_model.set_weights(average_weights)
print('\nTraining Done!')
# evaluation
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# load training history
history = pd.read_csv(f'{save_path}training_fl.log', sep = ',', engine = 'python')
acc = history['accuracy']
epoch = range(len(acc))
loss = history['loss']
dice_class = history['dice_coef_class']
dice = history['dice_coef']
mean_iou = history['mean_io_u']
# visualize the training process
f, ax = plt.subplots(1, 5, figsize = (25, 8))
# ACCURACY
ax[0].plot(epoch, acc, 'b', label = 'Training Accuracy')
ax[0].legend()
# LOSS
ax[1].plot(epoch, loss, 'b', label = 'Training Loss')
ax[1].legend()
# CLASS DICE COEFFICIENT
ax[2].plot(epoch, dice_class, 'b', label = 'Training Class Dice Coefficient')
ax[2].legend()
# DICE COEFFICIENT
ax[3].plot(epoch, dice, 'b', label = 'Training Dice Coefficient')
ax[3].legend()
# Mean IoU
ax[4].plot(epoch, mean_iou, 'b', label = 'Training MeanIoU')
ax[4].legend()
plt.show()
Discussion
This experiment is a simulation experiment, which simulates federated learning on a machine and implements the Federated averaging algorithm.
In this project, we investigate the unbalanced scenario of federated learning in which different clients have access to different amounts of data. A total of three clients are set up with significantly different amounts of data, e.g., 400 vs 40 vs 9. First, we tested the same model (a basic U-Net) on one client with nine training data and received a 0.36 DICE score (dicecoefclass). Then we tested if this client would benefit from federated learning. As a result, the DICE score is around 0.63, which represents a 0.3 improvement over 0.36.
Areas for further improvement: - Model: Only a basic U-Net was investigated. In the report, it is also suggested that the performance of federated learning would benefit from more advanced U-Nets; - Modality: Different clients might have different modalities that we could simulate in the further; - Hyperparameters: There are four main hyperparameters in federated learning: the round of federated learning procedure (ROUNDS); the selected client in each round (SELECTEDEACHROUND); the batch size of local training for a single client (BATCHSIZE); the epoch number of local training for a single client (EPOCHSCLIENT). In this project, we only present the result using a single setting: ROUNDS = 5, SELECTEDEACHROUND = 1, BATCHSIZE = 1, and EPOCHSCLIENT = 10. We have also tested other settings using another machine, but the results don't provide more information, so we chose only to present this one. - Other options for implementing federated learning: We also believe that investigating more options for implementing federated learning will be beneficial. We found the following other options to be of interest: Databricks+PyGitHub; TensorFlowFederated(TFF); Flower(PyTorch based); MONAI+NVIDIA: link1, link2; Ray(Pytorch).
[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
This is our baseline for Tumor Segmentation Task. All the code used for this project is modified and derived based on this repo.
-
Note: Please do not rerun the code since training is time-consuming (~4h);
-
Code is tested on tiny-debug-cluster-gpu.
Load Libraries
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import os
import cv2
# glob (short for global) is used to return all file paths that match a specific pattern.
import glob
# PIL adds image processing capabilities to your Python interpreter.
import PIL
import PIL.Image
if not hasattr(PIL.Image, 'Resampling'): # Pillow<9.0
PIL.Image.Resampling = PIL.Image
from PIL import ImageOps
# Shutil module offers high-level operation on a file like a copy, create, and remote operation on the file.
import shutil
# skimage is a collection of algorithms for image processing and computer vision.
from skimage import data
from skimage.util import montage
import skimage.transform as skTrans
from skimage.transform import rotate
from skimage.transform import resize
# NEURAL IMAGING
import nilearn as nl
import nibabel as nib # access a multitude of neuroimaging data formats
import nilearn.plotting as nlplt
# import gif_your_nifti.core as gif2nif
# ML Libraries
# import keras
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import CSVLogger
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.utils import plot_model
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard
from tensorflow.keras.layers.experimental import preprocessing
from ray.train.tensorflow import TensorflowTrainer
from ray import tune
# make numpy printouts easier to read
np.set_printoptions(precision = 3, suppress = True)
import warnings
warnings.filterwarnings('ignore')
All BraTS multimodal scans are available as NIfTI files (.nii.gz) and describe a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, and were acquired with different clinical protocols and various scanners from multiple (n=19) institutions. The data is collected from this link. All the imaging datasets have been segmented manually, by one to four raters, following the same annotation protocol, and their annotations were approved by experienced neuro-radiologists. Annotations comprise the GD-enhancing tumor (ET — label 4), the peritumoral edema (ED — label 2), and the necrotic and non-enhancing tumor core (NCR/NET — label 1), as described both in the BraTS 2012-2013 TMI paper and in the latest BraTS summarizing paper. The provided data are distributed after their pre-processing, i.e., co-registered to the same anatomical template, interpolated to the same resolution (1 mm^3) and skull-stripped.
# dataset path
train_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/"
valid_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_ValidationData/MICCAI_BraTS2020_ValidationData/"
id_img = '369'
test_image_flair = nib.load(train_data + f'BraTS20_Training_{id_img}/BraTS20_Training_{id_img}_flair.nii').get_fdata()
test_image_t1 = nib.load(train_data + f'BraTS20_Training_{id_img}/BraTS20_Training_{id_img}_t1.nii').get_fdata()
test_image_t1ce = nib.load(train_data + f'BraTS20_Training_{id_img}/BraTS20_Training_{id_img}_t1ce.nii').get_fdata()
test_image_t2 = nib.load(train_data + f'BraTS20_Training_{id_img}/BraTS20_Training_{id_img}_t2.nii').get_fdata()
test_mask = nib.load(train_data + f'BraTS20_Training_{id_img}/BraTS20_Training_{id_img}_seg.nii').get_fdata()
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(1, 5, figsize = (20, 10))
slice_w = 25
# FLAIR
ax1.imshow(test_image_flair[:,:,test_image_flair.shape[0]//2-slice_w], cmap = 'gray')
ax1.set_title('Image flair')
# T1
ax2.imshow(test_image_t1[:,:,test_image_t1.shape[0]//2-slice_w], cmap = 'gray')
ax2.set_title('Image t1')
# T1CE
ax3.imshow(test_image_t1ce[:,:,test_image_t1ce.shape[0]//2-slice_w], cmap = 'gray')
ax3.set_title('Image t1ce')
# T2
ax4.imshow(test_image_t2[:,:,test_image_t2.shape[0]//2-slice_w], cmap = 'gray')
ax4.set_title('Image t2')
# MASK
ax5.imshow(test_mask[:,:,test_mask.shape[0]//2-slice_w])
ax5.set_title('Mask')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_image_t1[50:-50,:,:]), 90, resize = True), cmap = 'gray')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_mask[50:-50,:,:]), 90, resize = True), cmap = 'gray')
# list of directories
train_val_directories = [f.path for f in os.scandir(train_data) if f.is_dir()]
# remove BraTS20_Training_355 since it has ill formatted name for seg.nii file
train_val_directories.remove(train_data + 'BraTS20_Training_355')
# function to convert list of paths into IDs
def pathListIntoIDs(dirList):
x = []
for i in range(0, len(dirList)):
x.append(dirList[i][dirList[i].rfind('/')+1:])
return x
ids = pathListIntoIDs(train_val_directories)
# split ids into train+test and validation
train_test_ids, val_ids = train_test_split(ids, test_size = 0.2)
# split train+test into train and test
train_ids, test_ids = train_test_split(train_test_ids, test_size = 0.15)
# function to display data distribution
def showDataLayout():
plt.bar(["Train","Valid","Test"],
[len(train_ids), len(val_ids), len(test_ids)], align='center',color=[ 'green','red', 'blue'])
plt.legend()
plt.ylabel('Number of images')
plt.title('Data distribution')
plt.show()
showDataLayout()
IMG_SIZE = 128
# define segmentation areas
SEGMENT_CLASSES = {
0 : 'NOT TUMOR',
1 : 'NECROTIC/CORE', # or NON-ENHANCING TUMOR CORE
2 : 'EDEMA',
3 : 'ENHANCING' # original 4 -> converted into 3 later
}
# there are 155 slices per volume
# to start at 5 and use 145 slices means we will skip the first 5 and last 5
VOLUME_SLICES = 100
VOLUME_START_AT = 22 # first slice of volume that we will include
# override keras sequence DataGenerator class
class DataGenerator(keras.utils.Sequence):
# generates data for Keras
def __init__(self, list_IDs, dim=(IMG_SIZE,IMG_SIZE), batch_size = 1 , n_channels = 2, shuffle=True):
# Initialization
self.dim = dim
self.batch_size = batch_size
self.list_IDs = list_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
# denotes the number of batches per epoch
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
# generate one batch of data
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
Batch_ids = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(Batch_ids)
return X, y
def on_epoch_end(self):
# updates indexes after each epoch
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, Batch_ids):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# initialization
X = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, self.n_channels))
y = np.zeros((self.batch_size*VOLUME_SLICES, 240, 240))
Y = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, 4))
# Generate data
for c, i in enumerate(Batch_ids):
case_path = os.path.join(train_data, i)
data_path = os.path.join(case_path, f'{i}_flair.nii');
flair = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_t1ce.nii');
ce = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_seg.nii');
seg = nib.load(data_path).get_fdata()
for j in range(VOLUME_SLICES):
X[j +VOLUME_SLICES*c,:,:,0] = cv2.resize(flair[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
X[j +VOLUME_SLICES*c,:,:,1] = cv2.resize(ce[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
y[j +VOLUME_SLICES*c] = seg[:,:,j+VOLUME_START_AT];
# Generate masks
y[y==4] = 3;
mask = tf.one_hot(y, 4);
Y = tf.image.resize(mask, (IMG_SIZE, IMG_SIZE));
return X/np.max(X), Y
training_generator = DataGenerator(train_ids)
valid_generator = DataGenerator(val_ids)
test_generator = DataGenerator(test_ids)
tf.distribute.Strategy is a TensorFlow API to distribute training across multiple GPUs, multiple machines, or TPUs. Using this API, we can distribute our existing models and training code with minimal code changes.
tf.distribute.Strategy has been designed with these key goals in mind:
- Easy to use and support multiple user segments, including researchers, machine learning engineers, etc.
- Provide good performance out of the box.
- Easy switching between strategies.
- You can distribute training using tf.distribute.Strategy with a high-level API like Keras Model.fit, as well as custom training loops (and, in general, any computation using TensorFlow).
In TensorFlow 2.x, we can execute our programs eagerly, or in a graph using tf.function. tf.distribute.Strategy intends to support both these modes of execution, but works best with tf.function. Eager mode is only recommended for debugging purposes and not supported for tf.distribute.TPUStrategy. Although training is the focus of this guide, this API can also be used for distributing evaluation and prediction on different platforms.
tf.distribute.Strategy can be used with very few changes to the code, because the underlying components of TensorFlow have been changed to become strategy-aware. This includes variables, layers, models, optimizers, metrics, summaries, and checkpoints.
tf.distribute.MirroredStrategy supports synchronous distributed training on multiple GPUs on one machine. It creates one replica per GPU device. Each variable in the model is mirrored across all the replicas. Together, these variables form a single conceptual variable called MirroredVariable. These variables are kept in sync with each other by applying identical updates.
Efficient all-reduce algorithms are used to communicate the variable updates across the devices. All-reduce aggregates tensors across all the devices by adding them up, and makes them available on each device. It’s a fused algorithm that is very efficient and can reduce the overhead of synchronization significantly. There are many all-reduce algorithms and implementations available, depending on the type of communication available between devices. By default, it uses the NVIDIA Collective Communication Library (NCCL) as the all-reduce implementation.
Types of strategies
tf.distribute.Strategy intends to cover a number of use cases along different axes. Some of these axes are:
- Synchronous vs asynchronous training: These are two common ways of distributing training with data parallelism. In sync training, all workers train over different slices of input data in sync, and aggregating gradients at each step. In async training, all workers are independently training over the input data and updating variables asynchronously. Typically sync training is supported via all-reduce and async through parameter server architecture.
- Hardware platform: which is good for scaling our training onto multiple GPUs on one machine, or multiple machines in a network (with 0 or more GPUs each), or on Cloud TPUs.
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
# Losses
from keras_unet_collection import losses
# losses.dice, losses.dice_coef
# dice loss as defined above for 4 classes
def dice_coef_class(y_true, y_pred, smooth=1.0):
class_num = 4
for i in range(class_num):
y_true_f = K.flatten(y_true[:,:,:,i])
y_pred_f = K.flatten(y_pred[:,:,:,i])
intersection = K.sum(y_true_f * y_pred_f)
loss = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
# K.print_tensor(loss, message='loss value for class {} : '.format(SEGMENT_CLASSES[i]))
if i == 0:
total_loss = loss
else:
total_loss = total_loss + loss
total_loss = total_loss / class_num
# K.print_tensor(total_loss, message=' total dice coef: ')
return total_loss
# define per class evaluation of dice coef
# inspired by https://github.com/keras-team/keras/issues/9395
def dice_coef_necrotic(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,1] * y_pred[:,:,:,1]))
return (2. * intersection) / (K.sum(y_true[:,:,:,1]) + K.sum(y_pred[:,:,:,1]) + epsilon) # I dont like squre
def dice_coef_edema(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,2] * y_pred[:,:,:,2]))
return (2. * intersection) / (K.sum(y_true[:,:,:,2]) + K.sum(y_pred[:,:,:,2]) + epsilon)
def dice_coef_enhancing(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,3] * y_pred[:,:,:,3]))
return (2. * intersection) / (K.sum(y_true[:,:,:,3]) + K.sum(y_pred[:,:,:,3]) + epsilon)
# Computing Precision
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
# Computing Sensitivity
def sensitivity(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
# Computing Specificity
def specificity(y_true, y_pred):
true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1)))
possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1)))
return true_negatives / (possible_negatives + K.epsilon())
# U-NET
def build_unet(inputs, ker_init, dropout):
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(inputs)
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv1)
pool = MaxPooling2D(pool_size=(2, 2))(conv1)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv3)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool4)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv5)
drop5 = Dropout(dropout)(conv5)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(drop5))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv9)
up = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv9))
merge = concatenate([conv1,up], axis = 3)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
conv10 = Conv2D(4, (1,1), activation = 'softmax')(conv)
return Model(inputs = inputs, outputs = conv10)
input_layer = Input((IMG_SIZE, IMG_SIZE, 2))
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# add callback for training process
csv_logger = CSVLogger(f'{save_path}training_baseline2.log', separator=',', append=False)
checkpoint_filepath = f'{save_path}checkpoint'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_accuracy',
mode='max',
save_best_only=True)
callbacks = [
model_checkpoint_callback,
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0.000001, verbose=1),
csv_logger
]
# TRAIN MODEL
BATCH_SIZE = 1
training_generator = DataGenerator(train_ids, batch_size = BATCH_SIZE * strategy.num_replicas_in_sync )
K.clear_session()
with strategy.scope():
model = build_unet(input_layer, 'he_normal', 0.2)
model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing])
history = model.fit(training_generator,
epochs=30,
steps_per_epoch=len(train_ids),
callbacks= callbacks,
validation_data = valid_generator
)
# save the model
model.save(f"{save_path}model_baseline.h5")
# load trained model
model = build_unet(input_layer, 'he_normal', 0.2)
model.load_weights(checkpoint_filepath)
# load training history
history = pd.read_csv(f"{save_path}training_baseline2.log", sep = ',', engine = 'python')
acc = history['accuracy']
val_acc = history['val_accuracy']
epoch = range(len(acc))
loss = history['loss']
val_loss = history['val_loss']
dice_class = history['dice_coef_class']
val_dice_class = history['val_dice_coef_class']
dice = history['dice_coef']
val_dice = history['val_dice_coef']
mean_iou = history['mean_io_u']
val_mean_iou = history['val_mean_io_u']
# visualize the training process
f, ax = plt.subplots(1, 5, figsize = (25, 8))
# ACCURACY
ax[0].plot(epoch, acc, 'b', label = 'Training Accuracy')
ax[0].plot(epoch, val_acc, 'r', label = 'Validation Accuracy')
ax[0].legend()
# LOSS
ax[1].plot(epoch, loss, 'b', label = 'Training Loss')
ax[1].plot(epoch, val_loss, 'r', label = 'Validation Loss')
ax[1].legend()
# CLASS DICE COEFFICIENT
ax[2].plot(epoch, dice_class, 'b', label = 'Training Class Dice Coefficient')
ax[2].plot(epoch, val_dice_class, 'r', label = 'Validation Class Dice Coefficient')
ax[2].legend()
# DICE COEFFICIENT
ax[3].plot(epoch, dice, 'b', label = 'Training Dice Coefficient')
ax[3].plot(epoch, val_dice, 'r', label = 'Validation Dice Coefficient')
ax[3].legend()
# Mean IoU
ax[4].plot(epoch, mean_iou, 'b', label = 'Training MeanIoU')
ax[4].plot(epoch, val_mean_iou, 'r', label = 'Validation MeanIoU')
ax[4].legend()
plt.show()
def predictByPath(case_path,case):
files = next(os.walk(case_path))[2]
X = np.empty((VOLUME_SLICES, IMG_SIZE, IMG_SIZE, 2))
# y = np.empty((VOLUME_SLICES, IMG_SIZE, IMG_SIZE))
vol_path = os.path.join(case_path, f'BraTS20_Training_{case}_flair.nii');
flair=nib.load(vol_path).get_fdata()
vol_path = os.path.join(case_path, f'BraTS20_Training_{case}_t1ce.nii');
ce=nib.load(vol_path).get_fdata()
# vol_path = os.path.join(case_path, f'BraTS20_Training_{case}_seg.nii');
# seg=nib.load(vol_path).get_fdata()
for j in range(VOLUME_SLICES):
X[j,:,:,0] = cv2.resize(flair[:,:,j+VOLUME_START_AT], (IMG_SIZE,IMG_SIZE))
X[j,:,:,1] = cv2.resize(ce[:,:,j+VOLUME_START_AT], (IMG_SIZE,IMG_SIZE))
# y[j,:,:] = cv2.resize(seg[:,:,j+VOLUME_START_AT], (IMG_SIZE,IMG_SIZE))
# model.evaluate(x=X,y=y[:,:,:,0], callbacks= callbacks)
return model.predict(X/np.max(X), verbose=1)
def showPredictsById(case, start_slice = 60):
path = f"/dbfs/FileStore/tables/BraTS2020/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/BraTS20_Training_{case}"
gt = nib.load(os.path.join(path, f'BraTS20_Training_{case}_seg.nii')).get_fdata()
origImage = nib.load(os.path.join(path, f'BraTS20_Training_{case}_flair.nii')).get_fdata()
p = predictByPath(path, case)
core = p[:,:,:,1]
edema= p[:,:,:,2]
enhancing = p[:,:,:,3]
plt.figure(figsize=(18, 50))
f, axarr = plt.subplots(1,6, figsize = (18, 50))
for i in range(6): # for each image, add brain background
axarr[i].imshow(cv2.resize(origImage[:,:,start_slice+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE)), cmap="gray", interpolation='none')
axarr[0].imshow(cv2.resize(origImage[:,:,start_slice+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE)), cmap="gray")
axarr[0].title.set_text('Original image flair')
curr_gt=cv2.resize(gt[:,:,start_slice+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE), interpolation = cv2.INTER_NEAREST)
axarr[1].imshow(curr_gt, cmap="Reds", interpolation='none', alpha=0.3) # ,alpha=0.3,cmap='Reds'
axarr[1].title.set_text('Ground truth')
axarr[2].imshow(p[start_slice,:,:,1:4], cmap="Reds", interpolation='none', alpha=0.3)
axarr[2].title.set_text('all classes')
axarr[3].imshow(edema[start_slice,:,:], cmap="OrRd", interpolation='none', alpha=0.3)
axarr[3].title.set_text(f'{SEGMENT_CLASSES[1]} predicted')
axarr[4].imshow(core[start_slice,:,], cmap="OrRd", interpolation='none', alpha=0.3)
axarr[4].title.set_text(f'{SEGMENT_CLASSES[2]} predicted')
axarr[5].imshow(enhancing[start_slice,:,], cmap="OrRd", interpolation='none', alpha=0.3)
axarr[5].title.set_text(f'{SEGMENT_CLASSES[3]} predicted')
plt.show()
showPredictsById(case = test_ids[3][-3:])
case = test_ids[4][-3:]
path = f"/dbfs/FileStore/tables/BraTS2020/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/BraTS20_Training_{case}"
# ground truth
gt = nib.load(os.path.join(path, f'BraTS20_Training_{case}_seg.nii')).get_fdata()
p = predictByPath(path, case)
core = p[:, :, :, 1]
edema = p[:, :, :, 2]
enhancing = p[:, :, :, 3]
# slice at
i = 40
eval_class = 2
# use only one class for per class evaluation
gt[gt != eval_class] = 1
resized_gt = cv2.resize(gt[:,:,i+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
plt.figure()
f, axarr = plt.subplots(1,2)
axarr[0].imshow(resized_gt, cmap="gray")
axarr[0].title.set_text('ground truth')
axarr[1].imshow(p[i,:,:,eval_class], cmap="gray")
axarr[1].title.set_text(f'predicted class: {SEGMENT_CLASSES[eval_class]}')
plt.show()
-
Note: Please do not rerun the code since training is time-consuming;
-
Code is tested on tiny-debug-cluster-gpu.
Load Libraries
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import random
import os
import cv2
import glob
# PIL adds image processing capabilities to your Python interpreter.
import PIL
from PIL import Image, ImageOps
# Shutil module offers high-level operation on a file like a copy, create, and remote operation on the file.
import shutil
# skimage is a collection of algorithms for image processing and computer vision.
from skimage import data
from skimage.util import montage
import skimage.transform as skTrans
from skimage.transform import rotate
from skimage.transform import resize
# NEURAL IMAGING
import nilearn as nl
import nibabel as nib # access a multitude of neuroimaging data formats
# ML Libraries
import keras
import keras.backend as K
from keras.callbacks import CSVLogger
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.utils import plot_model
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping, TensorBoard
from tensorflow.keras.layers.experimental import preprocessing
# make numpy printouts easier to read
np.set_printoptions(precision = 3, suppress = True)
import warnings
warnings.filterwarnings('ignore')
# dataset path
train_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/"
valid_data = "/dbfs/FileStore/tables/BraTS2020/BraTS2020_ValidationData/MICCAI_BraTS2020_ValidationData/"
Data Visualization
%md All BraTS multimodal scans are available as NIfTI files (.nii.gz) and describe a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, and were acquired with different clinical protocols and various scanners from multiple (n=19) institutions. The data is collected from this link. All the imaging datasets have been segmented manually, by one to four raters, following the same annotation protocol, and their annotations were approved by experienced neuro-radiologists. Annotations comprise the GD-enhancing tumor (ET — label 4), the peritumoral edema (ED — label 2), and the necrotic and non-enhancing tumor core (NCR/NET — label 1), as described both in the BraTS 2012-2013 TMI paper and in the latest BraTS summarizing paper. The provided data are distributed after their pre-processing, i.e., co-registered to the same anatomical template, interpolated to the same resolution (1 mm^3) and skull-stripped.
test_image_flair = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_flair.nii').get_fdata()
test_image_t1 = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t1.nii').get_fdata()
test_image_t1ce = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t1ce.nii').get_fdata()
test_image_t2 = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_t2.nii').get_fdata()
test_mask = nib.load(train_data + 'BraTS20_Training_001/BraTS20_Training_001_seg.nii').get_fdata()
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(1, 5, figsize = (20, 10))
slice_w = 25
# FLAIR
ax1.imshow(test_image_flair[:,:,test_image_flair.shape[0]//2-slice_w], cmap = 'gray')
ax1.set_title('Image flair')
# T1
ax2.imshow(test_image_t1[:,:,test_image_t1.shape[0]//2-slice_w], cmap = 'gray')
ax2.set_title('Image t1')
# T1CE
ax3.imshow(test_image_t1ce[:,:,test_image_t1ce.shape[0]//2-slice_w], cmap = 'gray')
ax3.set_title('Image t1ce')
# T2
ax4.imshow(test_image_t2[:,:,test_image_t2.shape[0]//2-slice_w], cmap = 'gray')
ax4.set_title('Image t2')
# MASK
ax5.imshow(test_mask[:,:,test_mask.shape[0]//2-slice_w])
ax5.set_title('Mask')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_image_t1[50:-50,:,:]), 90, resize = True), cmap = 'gray')
# skip 50:-50 slices since there is not much to see
fig, ax1 = plt.subplots(1, 1, figsize = (15, 15))
ax1.imshow(rotate(montage(test_mask[50:-50,:,:]), 90, resize = True), cmap = 'gray')
# list of directories
train_val_directories = [f.path for f in os.scandir(train_data) if f.is_dir()]
# remove BraTS20_Training_355 since it has ill formatted name for seg.nii file
train_val_directories.remove(train_data + 'BraTS20_Training_355')
# function to convert list of paths into IDs
def pathListIntoIDs(dirList):
x = []
for i in range(0, len(dirList)):
x.append(dirList[i][dirList[i].rfind('/')+1:])
return x
ids = pathListIntoIDs(train_val_directories)
# split ids into train+test and validation
train_test_ids, val_ids = train_test_split(ids, test_size = 0.2, random_state = 42)
# split train+test into train and test
train_ids, test_ids = train_test_split(train_test_ids, test_size = 0.15, random_state = 42)
# function to display data distribution
def showDataLayout():
plt.bar(["Train","Valid","Test"],
[len(train_ids), len(val_ids), len(test_ids)], align='center',color=[ 'green','red', 'blue'])
plt.legend()
plt.ylabel('Number of images')
plt.title('Data distribution')
plt.show()
showDataLayout()
# define segmentation areas
SEGMENT_CLASSES = {
0 : 'NOT TUMOR',
1 : 'NECROTIC/CORE', # or NON-ENHANCING TUMOR CORE
2 : 'EDEMA',
3 : 'ENHANCING' # original 4 -> converted into 3 later
}
# there are 155 slices per volume
# to start at 5 and use 145 slices means we will skip the first 5 and last 5
VOLUME_SLICES = 100
VOLUME_START_AT = 22 # first slice of volume that we will include
IMG_SIZE = 128
# override keras sequence DataGenerator class
class DataGenerator(keras.utils.Sequence):
# generates data for Keras
def __init__(self, list_IDs, dim=(IMG_SIZE,IMG_SIZE), batch_size = 1, n_channels = 2, shuffle=True):
# Initialization
self.dim = dim
self.batch_size = batch_size
self.list_IDs = list_IDs
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
# denotes the number of batches per epoch
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
# generate one batch of data
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
Batch_ids = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(Batch_ids)
return X, y
def on_epoch_end(self):
# updates indexes after each epoch
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, Batch_ids):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# initialization
X = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, self.n_channels))
y = np.zeros((self.batch_size*VOLUME_SLICES, 240, 240))
Y = np.zeros((self.batch_size*VOLUME_SLICES, *self.dim, 4))
# Generate data
for c, i in enumerate(Batch_ids):
case_path = os.path.join(train_data, i)
data_path = os.path.join(case_path, f'{i}_flair.nii');
flair = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_t1ce.nii');
ce = nib.load(data_path).get_fdata()
data_path = os.path.join(case_path, f'{i}_seg.nii');
seg = nib.load(data_path).get_fdata()
for j in range(VOLUME_SLICES):
X[j +VOLUME_SLICES*c,:,:,0] = cv2.resize(flair[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
X[j +VOLUME_SLICES*c,:,:,1] = cv2.resize(ce[:,:,j+VOLUME_START_AT], (IMG_SIZE, IMG_SIZE));
y[j +VOLUME_SLICES*c] = seg[:,:,j+VOLUME_START_AT];
# Generate masks
y[y==4] = 3;
mask = tf.one_hot(y, 4);
Y = tf.image.resize(mask, (IMG_SIZE, IMG_SIZE));
#print("X size = {};\nY size = {}".format(X.shape, Y.shape))
return X/np.max(X), Y
# function to take in data and return a dictionary with client names as keys and values as data shards
def create_client(data, num_clients, initial = 'client'):
# create a list of client names
client_names = ['{}_{}'.format(initial, i+1) for i in range(num_clients)]
# size of data shard
# size = len(data)//num_clients
# create data shard for each client for i in [200, 40, 9]
shards = [data[0:200], data[200:240], data[240:249]]
print(len(data),len(shards), len(client_names))
print(len(shards[0]),len(shards[1]),len(shards[2]))
print(shards[0][0])
# number of clients must equal number of shards
assert(len(shards) == len(client_names))
return {client_names[i] : shards[i] for i in range(len(client_names))}
def weight_scaling_factor(data):
return len(data)/len(train_ids)
def scale_model_weights(weight, scalar):
'''function for scaling a models weights'''
weight_final = []
steps = len(weight)
for i in range(steps):
weight_final.append(scalar * weight[i])
return weight_final
def sum_scaled_weights(scaled_weight_list):
'''Return the sum of the listed scaled weights. The is equivalent to scaled avg of the weights'''
avg_grad = list()
#get the average grad accross all client gradients
for grad_list_tuple in zip(*scaled_weight_list):
layer_mean = tf.math.reduce_sum(grad_list_tuple, axis=0)
avg_grad.append(layer_mean)
return avg_grad
# function to evaluate the model on test data and print the current round and metrics
def evaluate_model(data, model, round):
test_generator = DataGenerator(data)
results = model.evaluate(test_generator, batch_size = batch_size, verbose = 1)
loss, accuracy = results[0], results[1]*100
print(f'round: {round} | loss: {loss} | accuracy: {accuracy:.2f}%')
# create clients
clients = create_client(train_ids,3)
valid_generator = DataGenerator(val_ids)
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
# Losses
from keras_unet_collection import losses
# losses.dice, losses.dice_coef
# dice loss as defined above for 4 classes
def dice_coef_class(y_true, y_pred, smooth=1.0):
class_num = 4
for i in range(class_num):
y_true_f = K.flatten(y_true[:,:,:,i])
y_pred_f = K.flatten(y_pred[:,:,:,i])
intersection = K.sum(y_true_f * y_pred_f)
loss = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
# K.print_tensor(loss, message='loss value for class {} : '.format(SEGMENT_CLASSES[i]))
if i == 0:
total_loss = loss
else:
total_loss = total_loss + loss
total_loss = total_loss / class_num
# K.print_tensor(total_loss, message=' total dice coef: ')
return total_loss
# define per class evaluation of dice coef
# inspired by https://github.com/keras-team/keras/issues/9395
def dice_coef_necrotic(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,1] * y_pred[:,:,:,1]))
return (2. * intersection) / (K.sum(y_true[:,:,:,1]) + K.sum(y_pred[:,:,:,1]) + epsilon) # I dont like squre
def dice_coef_edema(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,2] * y_pred[:,:,:,2]))
return (2. * intersection) / (K.sum(y_true[:,:,:,2]) + K.sum(y_pred[:,:,:,2]) + epsilon)
def dice_coef_enhancing(y_true, y_pred, epsilon=1e-6):
intersection = K.sum(K.abs(y_true[:,:,:,3] * y_pred[:,:,:,3]))
return (2. * intersection) / (K.sum(y_true[:,:,:,3]) + K.sum(y_pred[:,:,:,3]) + epsilon)
# Computing Precision
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
# Computing Sensitivity
def sensitivity(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
# Computing Specificity
def specificity(y_true, y_pred):
true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1)))
possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1)))
return true_negatives / (possible_negatives + K.epsilon())
# U-NET
def build_unet(inputs, ker_init, dropout):
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(inputs)
conv1 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv1)
pool = MaxPooling2D(pool_size=(2, 2))(conv1)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool)
conv = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv3)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(pool4)
conv5 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv5)
drop5 = Dropout(dropout)(conv5)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(drop5))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv9)
up = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(UpSampling2D(size = (2,2))(conv9))
merge = concatenate([conv1,up], axis = 3)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(merge)
conv = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = ker_init)(conv)
conv10 = Conv2D(4, (1,1), activation = 'softmax')(conv)
return Model(inputs = inputs, outputs = conv10)
input_layer = Input((IMG_SIZE, IMG_SIZE, 2))
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# add callback for training process
csv_logger = CSVLogger(f'{save_path}training_single_client.log', separator=',', append=False)
checkpoint_filepath = f'{save_path}checkpoint_signle_client'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_accuracy',
mode='max',
save_best_only=True)
callbacks = [
model_checkpoint_callback,
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0.000001, verbose=1),
csv_logger
]
# TRAIN MODEL
BATCH_SIZE = 1
K.clear_session()
with strategy.scope():
model = build_unet(input_layer, 'he_normal', 0.2)
model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing]
)
training_generator = DataGenerator(clients[list(clients.keys())[2]], batch_size = BATCH_SIZE * strategy.num_replicas_in_sync)
history = model.fit(training_generator,
epochs=30,
steps_per_epoch=len(training_generator),
callbacks= callbacks,
# validation_data = valid_generator
)
# evaluation
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# load training history
history = pd.read_csv(f"{save_path}training_single_client.log", sep = ',', engine = 'python')
acc = history['accuracy']
epoch = range(len(acc))
loss = history['loss']
dice_class = history['dice_coef_class']
dice = history['dice_coef']
mean_iou = history['mean_io_u']
# visualize the training process
f, ax = plt.subplots(1, 5, figsize = (25, 8))
# ACCURACY
ax[0].plot(epoch, acc, 'b', label = 'Training Accuracy')
ax[0].legend()
# LOSS
ax[1].plot(epoch, loss, 'b', label = 'Training Loss')
ax[1].legend()
# CLASS DICE COEFFICIENT
ax[2].plot(epoch, dice_class, 'b', label = 'Training Class Dice Coefficient')
ax[2].legend()
# DICE COEFFICIENT
ax[3].plot(epoch, dice, 'b', label = 'Training Dice Coefficient')
ax[3].legend()
# Mean IoU
ax[4].plot(epoch, mean_iou, 'b', label = 'Training MeanIoU')
ax[4].legend()
plt.show()
input_layer = Input((IMG_SIZE, IMG_SIZE, 2))
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# add callback for training process
csv_logger = CSVLogger(f'{save_path}training_single_client_1.log', separator=',', append=False)
checkpoint_filepath = f'{save_path}checkpoint_signle_client_1'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_accuracy',
mode='max',
save_best_only=True)
callbacks = [
model_checkpoint_callback,
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0.000001, verbose=1),
csv_logger
]
# TRAIN MODEL
BATCH_SIZE = 1
K.clear_session()
with strategy.scope():
model = build_unet(input_layer, 'he_normal', 0.2)
model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing]
)
training_generator = DataGenerator(clients[list(clients.keys())[0]], batch_size = BATCH_SIZE * strategy.num_replicas_in_sync)
history = model.fit(training_generator,
epochs=30,
steps_per_epoch=len(training_generator),
callbacks= callbacks,
# validation_data = valid_generator
)
# evaluation
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# load training history
history = pd.read_csv(f"{save_path}training_single_client_1.log", sep = ',', engine = 'python')
acc = history['accuracy']
epoch = range(len(acc))
loss = history['loss']
dice_class = history['dice_coef_class']
dice = history['dice_coef']
mean_iou = history['mean_io_u']
# visualize the training process
f, ax = plt.subplots(1, 5, figsize = (25, 8))
# ACCURACY
ax[0].plot(epoch, acc, 'b', label = 'Training Accuracy')
ax[0].legend()
# LOSS
ax[1].plot(epoch, loss, 'b', label = 'Training Loss')
ax[1].legend()
# CLASS DICE COEFFICIENT
ax[2].plot(epoch, dice_class, 'b', label = 'Training Class Dice Coefficient')
ax[2].legend()
# DICE COEFFICIENT
ax[3].plot(epoch, dice, 'b', label = 'Training Dice Coefficient')
ax[3].legend()
# Mean IoU
ax[4].plot(epoch, mean_iou, 'b', label = 'Training MeanIoU')
ax[4].legend()
plt.show()
input_layer = Input((IMG_SIZE, IMG_SIZE, 2))
save_path = "/dbfs/FileStore/tables/BraTS2020/"
# add callback for training process
csv_logger = CSVLogger(f'{save_path}training_fl.log', separator=',', append=False)
checkpoint_filepath = f'{save_path}checkpoint_fl'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_accuracy',
mode='max',
save_best_only=True)
callbacks = [
model_checkpoint_callback,
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0.000001, verbose=1),
csv_logger
]
def evaluate_model(data, model):
test_generator = DataGenerator(data)
results = model.evaluate(test_generator, batch_size = 32, verbose = 1)
for i in range(len(results)):
print("Metric_{}={}".format(i, results[i]))
return results
ROUNDS = 5
SELECTED_EACH_ROUND = 1
BATCH_SIZE = 1
EPOCHS_CLIENT = 10
# initialize global model
K.clear_session()
with strategy.scope():
global_model = build_unet(input_layer, 'he_normal', 0.2)
global_model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing])
print("Begin Training")
# commence global training loop
for round in range(1, ROUNDS+1):
print(f'\nRound: {round}')
# get global model's weights
global_weights = global_model.get_weights()
# initial list to collect local model weights after scaling
scaled_local_weight_list = list()
# get client names
client_names= list(clients.keys())
random.shuffle(client_names)
count = 1
results = []
# results.append(evaluate_model(val_ids, global_model))
results.append(evaluate_model(clients[list(clients.keys())[2]], global_model))
# loop through each client and create new local model
for client in client_names[0:SELECTED_EACH_ROUND]:
print(f'Client {count}')
with strategy.scope():
local_model = build_unet(input_layer, 'he_normal', 0.2)
local_model.compile(
loss = "categorical_crossentropy",
optimizer = keras.optimizers.Adam(learning_rate = 0.001),
metrics = ['accuracy', tf.keras.metrics.MeanIoU(num_classes = 4), dice_coef_class, losses.dice, losses.dice_coef, precision, sensitivity, specificity, dice_coef_necrotic, dice_coef_edema, dice_coef_enhancing])
#set local model weight to the weight of the global model
local_model.set_weights(global_weights)
# get client data and pass it through a data generator
data = DataGenerator(clients[client], batch_size = BATCH_SIZE * trategy.num_replicas_in_sync )
# fit local model with client's data
local_model.fit(data, epochs=EPOCHS_CLIENT, steps_per_epoch = len(data), verbose = 1) #callbacks = callbacks, validation_data = valid_generator)
# scale the model weights and add to list
scaling_factor = weight_scaling_factor(data)
print(f'scaling_factor = {scaling_factor}')
scaled_weights = scale_model_weights(local_model.get_weights(), scaling_factor)
# not adding scaling
scaled_local_weight_list.append(local_model.get_weights()) # Here should be scaled_local_weight_list.append(scaled_weights)??
# scaled_local_weight_list.append(scaled_weights)
# clear session to free memory after each communication round
K.clear_session()
count += 1
#to get the average over all the local model, we simply take the sum of the scaled weights
print('len of scaled_local_weight_list = {}'.format(len(scaled_local_weight_list)))
average_weights = sum_scaled_weights(scaled_local_weight_list)
#update global model
global_model.set_weights(average_weights)
print('\nTraining Done!')
Discussion
This experiment is a simulation experiment, which simulates federated learning on a machine and implements the Federated averaging algorithm.
In this project, we investigate the unbalanced scenario of federated learning in which different clients have access to different amounts of data. A total of three clients are set up with significantly different amounts of data, e.g., 400 vs 40 vs 9. First, we tested the same model (a basic U-Net) on one client with nine training data and received a 0.36 DICE score (dicecoefclass). Then we tested if this client would benefit from federated learning. As a result, the DICE score is around 0.63, which represents a 0.3 improvement over 0.36.
Areas for further improvement: - Model: Only a basic U-Net was investigated. In the report, it is also suggested that the performance of federated learning would benefit from more advanced U-Nets; - Modality: Different clients might have different modalities that we could simulate in the further. - Hyperparameters: There are four main hyperparameters in federated learning: the round of federated learning procedure (ROUNDS); the selected client in each round (SELECTEDEACHROUND); the batch size of local training for a single client (BATCHSIZE); the epoch number of local training for a single client (EPOCHSCLIENT). In this project, we only present the result using a single setting: ROUNDS = 5, SELECTEDEACHROUND = 1, BATCHSIZE = 1, and EPOCHSCLIENT = 10. We have also tested other settings using another machine, but the results don't provide more information, so we chose only to present this one. - Other options for implementing federated learning: We also believe that investigating more options for implementing federated learning will be beneficial. We found the following other options to be of interest: Databricks+PyGitHub; TensorFlowFederated(TFF); Flower(PyTorch based); MONAI+NVIDIA: link1, link2; Ray(Pytorch).
ls /FileStore/tables
path | name | size |
---|---|---|
dbfs:/FileStore/tables/000a_finance_utils.scala | 000a_finance_utils.scala | 2187.0 |
dbfs:/FileStore/tables/BraTS2020/ | BraTS2020/ | 0.0 |
dbfs:/FileStore/tables/GDELT_raw_data.scala | GDELT_raw_data.scala | 3820.0 |
dbfs:/FileStore/tables/LT_accV.parquet | LT_accV.parquet | 365326.0 |
dbfs:/FileStore/tables/LT_time_intervals | LT_time_intervals | 43839.0 |
dbfs:/FileStore/tables/LTaccidents_id_date.parquet | LTaccidents_id_date.parquet | 89266.0 |
dbfs:/FileStore/tables/LTcar_locations-2.csv | LTcar_locations-2.csv | 706938.0 |
dbfs:/FileStore/tables/LTnodes.csv | LTnodes.csv | 587461.0 |
dbfs:/FileStore/tables/UUnodes.csv | UUnodes.csv | 29335.0 |
dbfs:/FileStore/tables/UUways.csv | UUways.csv | 906.0 |
dbfs:/FileStore/tables/WheresCroc_1_2_2.zip | WheresCroc_1_2_2.zip | 22591.0 |
dbfs:/FileStore/tables/albin/ | albin/ | 0.0 |
dbfs:/FileStore/tables/anlociStoUlaOreb.csv | anlociStoUlaOreb.csv | 373172.0 |
dbfs:/FileStore/tables/bcousd_20220512T084217Z_001.zip | bcousd_20220512T084217Z_001.zip | 2.8871314e7 |
dbfs:/FileStore/tables/bitstampUSD_1_min_data_2012_01_01_to_2021_03_31_csv-1.zip | bitstampUSD_1_min_data_2012_01_01_to_2021_03_31_csv-1.zip | 1.05242372e8 |
dbfs:/FileStore/tables/bitstampUSD_1_min_data_2012_01_01_to_2021_03_31_csv.zip | bitstampUSD_1_min_data_2012_01_01_to_2021_03_31_csv.zip | 1.05242372e8 |
dbfs:/FileStore/tables/emptyPagesTable-1.csv | emptyPagesTable-1.csv | 275.0 |
dbfs:/FileStore/tables/emptyPagesTable.csv | emptyPagesTable.csv | 275.0 |
dbfs:/FileStore/tables/errors.txt | errors.txt | 802.0 |
dbfs:/FileStore/tables/events_test.csv | events_test.csv | 447.0 |
dbfs:/FileStore/tables/events_test_albin.csv/ | events_test_albin.csv/ | 0.0 |
dbfs:/FileStore/tables/hd_audio_tar.gz | hd_audio_tar.gz | 3.37342212e8 |
dbfs:/FileStore/tables/lithuania_coordinates_transf_osm_pbf_node.parquet | lithuania_coordinates_transf_osm_pbf_node.parquet | 7.36902938e8 |
dbfs:/FileStore/tables/ltcar_reprojected.csv | ltcar_reprojected.csv | 752891.0 |
dbfs:/FileStore/tables/mpn1000rnd20210902_2.csv | mpn1000rnd20210902_2.csv | 2.7386942e7 |
dbfs:/FileStore/tables/mpn2.bz2 | mpn2.bz2 | 2.0507172e7 |
dbfs:/FileStore/tables/over300all.txt | over300all.txt | 31334.0 |
dbfs:/FileStore/tables/over300all_2.txt | over300all_2.txt | 31334.0 |
dbfs:/FileStore/tables/social_media_usage.csv | social_media_usage.csv | 402147.0 |
dbfs:/FileStore/tables/svwiki-redirects/ | svwiki-redirects/ | 0.0 |
dbfs:/FileStore/tables/voronoi20191213uppsla1st.txt | voronoi20191213uppsla1st.txt | 2613.0 |
dbfs:/FileStore/tables/voronoi20191213uppsla2d.txt | voronoi20191213uppsla2d.txt | 4924.0 |
dbfs:/FileStore/tables/voronoi20191213uppsla3d.txt | voronoi20191213uppsla3d.txt | 7022.0 |
dbfs:/FileStore/tables/voronoiUlaStoOreb_bbox_queen1.txt | voronoiUlaStoOreb_bbox_queen1.txt | 497069.0 |
dbfs:/FileStore/tables/voronoiUlaStoOreb_bbox_queen2.txt | voronoiUlaStoOreb_bbox_queen2.txt | 1046400.0 |
dbfs:/FileStore/tables/voronoiUlaStoOreb_bbox_queen3.txt | voronoiUlaStoOreb_bbox_queen3.txt | 1730809.0 |
dbfs:/FileStore/tables/voronoi_input.csv | voronoi_input.csv | 6857.0 |
ls /FileStore/tables/BraTS2020/
path | name | size |
---|---|---|
dbfs:/FileStore/tables/BraTS2020/BraTS2020_TrainingData/ | BraTS2020_TrainingData/ | 0.0 |
dbfs:/FileStore/tables/BraTS2020/BraTS2020_ValidationData/ | BraTS2020_ValidationData/ | 0.0 |
The data has been uploaded to the dbfs on /FileStore/tables/BraTS2020/ !!
Scalable Bayesian optimization with distributed Gaussian processes and deep kernel learning
Project members:
- Carl Hvarfner, Lund University
- Leonard Papenmeier, Lund University
- Manu Upadhyaya, Lund University
Background
In many practical applications, one is challenged with optimizing functions that are expensive-to-evaluate and whose form is unknown.
One way of dealing with such functions is to learn a surrogate model of it, e.g., by using splines. However, many methods do not give an estimate of uncertainty, i.e., for a given point, it is not clear how confident one is in the surrogate model.
Gaussian processes (GPs) are surrogate models that provide a measure of uncertainty and allow for a exploration-exploitation-based optimization method: Bayesian optimization (BO).
BO chooses new points to evaluate by selecting points that have a high uncertainty and/or a high expected function value.
What did we do
- We implement a scalable algorithm for high-dimensional Bayesian optimization.
- Our implementation maintains arbitrary many GPs in parallel.
- We further train a deep kernel on the aggregated data to improve optimization even further.
Why should anyone care?
You should care because, as shown above, optimization problems such as the ones we assume occur frequently. For example, in ML, BO is commonly used for hyperparameter optimization. When the optimization problem becomes too high-dimensional, the original BO algorithm struggles due to the curse of dimensionality. In such cases, more advanced methods need to be used that require more computational power. If you have a cluster at hand, you need a scalable implementation that distributes the work across multiple nodes. This is what we provide.
Why is this scalable?
Vanilla BO has a data bottleneck: the inference time grows cubically with the number of observations. To circumvent this problem, we use TuRBO, a method that maintains several GPs in parallel, each working on their own data.
The original TuRBO implementation did not actually provide code that can be run in parallel. Our implementation can be distributed on arbitrary many workers where each worker maintains one or more GPs.
- Each GP on a worker is initialized with a standard Matérn kernel.
- After TuRBO finished its run on a worker, the data is aggregated and the DKL is learned.
- The DKL is then used as the kernel for the GPs on, again, several workers.
What are our contributions?
As far as we know, we provide the first Spark implementation of TuRBO. We changed the algorithm where suitable to improve scalability. For example, unlike the original TuRBO implementation, we avoid any communication between the workers during the optimization run. We furthermore use TuRBO with a deep kernel which is an extension of the original TuRBO algorithm. We show an evaluation of our algorithm on two commonly used benchmarks.
Notebook organization
Notebooks 01-04 provide the background of our work:
- 01: Introduction to BO
- 02: Introduction to GPs
- 03: Acquisition function for BO
- 04: Scalable BO with TuRBO and deep kernel learning
Notebooks 05-07 describe our implementation.
Bayesian optimization
The goal of Bayesian optimization (BO) is to solve
\[ \mathbf{x}^* \in \arg \max_{\mathbf{x}\in \mathcal{X}} f(\mathbf{x}), \]
where : - \(f: \mathcal{X} \rightarrow \mathbb{R}\) is the objective function. - \(\mathcal{X} \subseteq\mathbb{R}^{D}\) is a compact constraint set (usually \(\mathcal{X} = [0,1]^D\)). - The objective function \(f\) is expensive-to-evaluate (time or cost) and lacks known special structure - \(f\) is a “black box”. - Typically only function values \(f(x)\) can be sampled; no first- or second-order derivative information - known as “derivative-free” optimization. - Allows samples \(f(x)\) to be obscured by stochastic noise. - The focus is on finding a global rather than local optimum.
Applications
Bayesian optimization has been applied to solve a wide range of problems, including: - learning to rank, - computer graphics and visual design, - robotics, - sensor networks, - automatic algorithm configuration, - automatic machine learning toolboxes, - reinforcement learning, - planning, - visual attention, - architecture configuration in deep learning, - static program analysis, - experimental particle physics, - chemistry, - material design, and - drug development.
Basic algorithm for Bayesian optimization
BO consists of two main components: 1. A model able to calibrate uncertainty of the objective function called the surrogate model, and 2. an acquisition function for deciding where to sample next.
Suppose that the budget is \(N\) function evaluations, typically \(N\leq 1000\).
Roughly speaking, BO algorithms uses the following steps: - Observe \(f\) at \(n_0\) points, \({x_i}{i=1}^{n_0}\), according to an initial space-filling experimental design. - Set \(n = n_0\). - While \(n < N\): - Update the surrogate model of \(f\) using all available data \({x_i}{i=1}^{n}\). - Find next point \(x_{n+1}\) to evaluate by optimizing an acquisition function \(\alpha_n: \mathcal{X} \rightarrow \mathbb{R}\). I.e., \[ x_{n+1} \in \arg \max_{\mathbf{x}\in \mathcal{X}} \alpha_{n}\left(\mathbf{x}\right) \] - Evaluate \(f\) at the next point \(x_{n+1}\). - Increment \(n\) by one.
Return a solution.
Optimizing the acquisition function
- Note that optimizing the objective function \(f\) is replaced by optimizing a sequence of acquisition functions.
- Acquisition function design trades-off between exploration and exploitation.
- Regions in the search space \(\mathcal{X}\) that were not evaluated often get higher priority, and, at the same time, regions with promising function values get high priority.
- The acquisition function is cheap to evaluate.
- First- or second-order derivative information is typically available.
- Standard techniques from nonlinear optimization can be used.
Gaussian processes
Gaussian processes (GPs) are often used to create surrogate models of the expensive-to-evaluate function we wish to optimize.
Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions.
In particular, a Gaussian process is a stochastic process \({f(x)}{x\in\mathcal{X}}\), denoted \(f \sim \mathcal{GP}(\mu{0},k)\), such that given any finite collections of points \(x_{1:n} := (x_1,\ldots,x_n) \in \mathcal{X}^{n}\), it holds that
\[ f(x_{1:n}):=\left(f(x_1),\ldots,f(x_n)\right) \sim \mathcal{N}{n}(\mu{0}(x_{1:n}),\Sigma_{0}(x_{1:n})), \]
where \(\mu_{0}(x_{1:n})\) is defined as
\[ \mu_{0}(x_{1:n}) := (\mu_{0}(x_{1}),\ldots,\mu_{0}(x_{n})) \]
for some function \(\mu_{0}:\mathcal{X} \rightarrow \mathbb{R}\) called the mean function (typically set to zero in Bayesian optimization applications), and where \(\Sigma_{0}(x_{1:n})\in\mathbb{S}^{n}_{+}\) is defined as
\[ [\Sigma_{0}(x_{1:n})]_{i,j} := k(x_i,x_j) \]
for each \(i,j=1,\ldots,n\), where \(k:\mathcal{X}\times\mathcal{X} \rightarrow \mathbb{R}\) is called the kernel function (chosen such that the resulting covariance matrix \(\Sigma_{0}(x_{1:n})\) is positive semidefinite, regardless of the collection of points \(x_{1:n}\) chosen).
Examples of kernal functions
- Power exponential/Gaussian kernel: \(k(x_i,x_j) = \sigma^2 \exp\left(-\frac{\lVert x_i-x_j \rVert^2}{2}\right)\) where \(\sigma>0\).
- Matérn-\(\nu\) kernel: \(k(x_i,x_j) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2\nu} \lVert x_i-x_j \rVert\right)^{\nu}K_{\nu}\left( \sqrt{2\nu} \lVert x_i-x_j \rVert \right)\) where \(\sigma,\nu>0\), \(\Gamma\) is the Gamma function, and \(K_{\nu}\) is the modified Bessel function of the second kind of order \(\nu\).
In both cases, the norm \(\lVert x\rVert\) is defined by \[ \lVert x \rVert^2 = x^{T}L^{-2}x, \]
where \(L = \text{diag}(\ell_1,\ldots,\ell_D) \succ 0\).
Note that the kernal functions introduces hyper-parameters, e.g., \(\ell_{1:D}\) and \(\sigma\) above. These hyper-parameters are found by, e.g., maximizing \(p(f(x_{1:n}) \mid \sigma,\ell_{1:D}, x_{1:n})\) (maximum likelihood estimation) or \(p(\sigma,\ell_{1:D} \mid f(x_{1:n}), x_{1:n})\) (maximum a posteriori estimation).
Why use Gaussian processes?
Properties that make Gaussian distributions easy to work with,
- sums and linear transformations of Gaussians are Gaussian,
- marginal distributions of Gaussians are still Gaussian, and
- conditional distributions of joint Gaussians are still Gaussian,
translate into properties that make Gaussian processes easy to work with.
Moreover, Gaussian processes come equipped with the uncertainty in their prediction!
In particular, suppose we are given observations \(x_{1:n},f(x_{1:n})\) as above. Then the posterior distribution for a test point \(x \in \mathcal{X}\) is given by
\[ f(x) \mid f(x_{1:n}) \sim \mathcal{N}(\mu_{n}(x),\sigma_{n}^{2}(x)), \]
where
\[ \mu_{n}(x) = \Sigma_{0}(x,x_{1:n})\Sigma_{0}(x_{1:n},x_{1:n})^{-1}(f(x_{1:n}) - \mu_{0}(x_{1:n})) + \mu_{0}(x) \]
and
\[ \sigma_{n}^{2}(x) = k(x,x) - \Sigma_{0}(x,x_{1:n})\Sigma_{0}(x_{1:n},x_{1:n})^{-1}\Sigma_{0}(x_{1:n},x), \]
where
\[ \Sigma_{0}(x,x_{1:n}) = [k(x,x_1) \;\ldots\; k(x,x_n)] \]
and
\[ \Sigma_{0}(x_{1:n},x) = [k(x_1,x) \;\ldots\; k(x_n,x)]^{T}. \]
This posterior distribution \(f(x) \mid f(x_{1:n})\) is the surrogate model used in Bayesian optimization!
A visual exploration of Gaussian processes
The following blog post contains a visual introduction to Gaussian processes that compliments the one above.
Acquisition functions
Each acquisition balances exploration-exploitation in a different way. There is no universal best method.
Below we give a few examples of commonly used acquisition functions. These are based on the surrogate models contructed via Gaussian processes described in the previous notebook.
Expected improvement
\[ \alpha_{n}(x) = \mathbb{E}\left[\max(0,f(x)-f_{n}^{\star})\mid x_{1:n},f(x_{1:n})\right] = \max(0,f(x)-f_{n}^{\star}) + \sigma_{n}(x)\phi\left(\frac{\mu_{n}(x)-f_{n}^{\star}}{\sigma_{n}(x)}\right)-\left|\mu_{n}(x)-f_{n}^{\star}\right|\Phi\left(\frac{\mu_{n}(x)-f_{n}^{\star}}{\sigma_{n}(x)}\right), \]
where \(f_{n}^{\star} = \max_{i=1,\ldots,n}f(x_{i})\), and \(\phi\) the probability density function (PDF) and \(\Phi\) the cumulative distribution function (CDF) of the standard normal distribution.
Upper confidence bounds - UCB
\[ \alpha_{n}(x) = \mu_{n}(x) + \beta_{n} \sigma_{n}(x), \] where \(\beta_n\geq0\) is a scaler that explicity lets us balance exploration and exploitation.
Thompson sampling - TS
This is the acquisition function we use in our experiments. \[ \alpha_{n}(x) = g(x), \] where \(g\sim\mathcal{GP}(\mu_n,c_n)\) and \[ c_n(x,y) = k(x,y) - \Sigma_{0}(x,x_{1:n})\Sigma_{0}(x_{1:n},x_{1:n})^{-1}\Sigma_{0}(x_{1:n},y). \] Later when optimizing this acquisition function, two alternatives are: - Sample \(g\) on a finte set of points and find the \(\arg\max\), or - use Fourier features to get a continuous/differentiable sample \(g\) and then optimize. See [Rahimi and B. Recht, 2007].
TS naturally allows for parallel function evaluations by simply drawing multiple posterior samples.
Scalable Bayesian optimization
Batch Bayesian optimization/parallel function evaluations
- Note that in the basic algorithm for Bayesian optimization described in the previous notebook, new points \(x_{n+1}\) are evaluated sequentially.
- Using multiple computing resources allows for obtaining multiple function evaluations at new points \({x_{n+1}^{(1)},\ldots,x_{n+1}^{(q)}}\) in parallel, at each iteration.
- In such a case, the acquisition function needs to be modified to handle batch acquisition of new points \({x_{n+1}^{(1)},\ldots,x_{n+1}^{(q)}}\).
- In our work, we utilize parallel function evaluations as a first way of scalability.
Distributed Gaussian processes via trust regions
GPs are a popular choice for the surrogate model but they have limitations: - They show nice properties and are often sample-efficient. - However, they do not scale well to higher dimensions (large \(D\)) and break down in more than 20-30 dimensions [Frazier, 2018]. - Reason: - They rely on the distance between points which is large in high dimensions. - In particular, large portions of the space receive high uncertainty. - As a result, the algorithm focuses on these regions of the space and makes no progress in a reasonable evaluation budget.
This motivates the design of a collection of local GP models restricted to small regions of the search space called trust regions (TRs). - This scheme was first presented in [Eriksson, et al., 2019] in an algorithm called TuRBO. - In our work, we utilize the same idea of multiple trust regions with its own independent GP surrogate model. - Note that this approach runs multiple trust regions \(\text{TR}_1,\ldots,\text{TR}_m\) in parallel, giving a second way of scalability. - Moreover, its empirically observed in [Eriksson, et al., 2019] that using multiple trust regions allows to optimize in higher dimensions \(D\) compared to nominal methods, giving a third way of scalability.
Importantly: - We change the implementation of TuRBO such that every trust region \(\text{TR}_l\) samples its own batch of new points at each interation. - Leads to more function evaluations, but avoids communication between nodes. This is desirable in a cluster setting.
Trust regions: - Adapte their size/volume to the progress of the local optimization. - Terminate once progress has plateaued.
Once all trust regions have terminated we use deep kernel learning to learn from all the collected data so far to improve the next round of trust regions, as discussed in the next subsection.
Effective representation via deep kernel learning
- Deep kernel learning (DKL) was introduced in [Wilson, et al., 2015].
- Learns a representation of the inputs \(x\) that are more meaningful for the GPs.
- I.e., given a kernel function \(k(x,y)\), the DKL kernel is \(k(\phi(x|\theta),\phi(y|\theta))\) where \(\phi\) is a neural network parametrized by \(\theta\).
- In the likelihood optimization of the GP, \(\theta\) is optimized alongside the other GP hyperparameters.
Final algorithm
- While evaluation budget remains:
- For each trust region \(\text{TR}_l\) in parallel, observe \(f\) at \(n_0\) initial points.
- Parallel foreach trust region \(\text{TR}_l\):
- Run TuRBO until termination
- Aggregate all data so far and (re)train the DKL kernel and use it as the kernel for future local GP surrogate models.
Return a solution.
Our implementation
We packaged our implementation to deal with serialization issues of Spark. Therefore, we show the implementation in markdown cells as the code in the notebooks is quite short and incomprehensible.
Optimization problem
We first define a helper function that projects points from the GP search space \([0,1]^D\) to the actual support of the function \(f\).
from botorch.utils.transforms import unnormalize
def eval_objective(x, fun):
"""This is a helper function we use to unnormalize a point from [0, 1]^D and evaluate it"""
return fun(unnormalize(x, fun.bounds))
We define a generic class for optimization problems.
from abc import ABC, abstractmethod
import torch
import numpy as np
class OptimizationProblem(ABC):
"""
This is an abstract class for generic optimization problems we consider
"""
@abstractmethod
def __init__(self, dim: int):
"""
implemented by subclasses
"""
raise NotImplementedError()
@abstractmethod
def __call__(self, x: torch.Tensor):
"""
implemented by subclasses
"""
raise NotImplementedError()
@abstractmethod
def lb(self) -> np.ndarray:
"""
returns the lower bound of the problem
"""
raise NotImplementedError()
@abstractmethod
def ub(self) -> np.ndarray:
"""
returns the upper bound of the problem
"""
raise NotImplementedError()
@abstractmethod
def dim(self) -> int:
"""
returns the dimensionality of the problem
"""
raise NotImplementedError()
We define the Ackley and Griewank functions as a subclass for OptimizationProblem
:
from botorch.test_functions import Ackley as _Ackley
class Ackley(OptimizationProblem):
def __init__(self, dim: int):
self._dim = dim
self._ackley = _Ackley(dim=dim, negate=True)
def __call__(self, x: torch.Tensor):
return eval_objective(x, self._ackley)
def lb(self) -> np.ndarray:
return self._ackley.bounds[0]
def ub(self) -> np.ndarray:
return self._ackley.bounds[1]
def dim(self) -> int:
return self._dim
class Griewank(OptimizationProblem):
def __init__(self, dim: int):
self._dim = dim
self._griewank = _Griewank(dim=dim, negate=True)
self._name = f'Griewank-{dim}'
def __call__(self, x: torch.Tensor):
return eval_objective(x, self._griewank)
def lb(self) -> np.ndarray:
return self._griewank.bounds[0]
def ub(self) -> np.ndarray:
return self._griewank.bounds[1]
def dim(self) -> int:
return self._dim
TuRBO state
TuRBO is an algorithm for scalable high-dimensional BO. We first define the state of a TuRBO instance:
@dataclass
class TurboState:
dim: int # dimensionality of the search space
batch_size: int # number of parallel function evaluations
length: float = 0.8 # initial TR base length
length_min: float = 0.5 ** 7 # min TR base length
length_max: float = 1.6 # max TR base length
failure_counter: int = 0 # number of times we did not make progress in optimizing the function
failure_tolerance: int = float("nan") # Note: Post-initialized, after more than failure_tolerance failures, we shrink the TR
success_counter: int = 0 # number of times we made progress in optimizing the function
success_tolerance: int = 10 # after that many successes, we increase the TR size
best_value: float = -float("inf") # best value observed
restart_triggered: bool = False # whether we want to restart this TR
def __post_init__(self):
# the failure tolerance increases with the dimensionality of the problem
# and decreases with batch size as batches correspond to parallel
# function evaluations
self.failure_tolerance = math.ceil(
max([4.0 / self.batch_size, float(self.dim) / self.batch_size])
)
Depending on the \(y\)-value of the next point evaluated, we want to update the state;
def update_state(state, y_next):
# if we made progress in optimizing the function
if max(y_next) > state.best_value + 1e-3 * math.fabs(state.best_value):
state.success_counter += 1
state.failure_counter = 0
else:
state.success_counter = 0
state.failure_counter += 1
# if we made state.success_tolerance many progresses
if state.success_counter == state.success_tolerance: # Expand trust region
state.length = min(2.0 * state.length, state.length_max)
state.success_counter = 0
elif state.failure_counter == state.failure_tolerance: # Shrink trust region
state.length /= 2.0
state.failure_counter = 0
state.best_value = max(state.best_value, max(y_next).item())
if state.length < state.length_min:
state.restart_triggered = True
return state
Next, we define the optimize
function of a TurboInstance
:
def optimize(self):
# create a number of initial points by a sobol sequence
x_init = self.get_initial_points()
# evaluate function for initial points
y_init = torch.tensor([self.function(x) for x in x_init])
# maintain tensors of all observations
self.X = torch.cat((self.X, x_init), dim=0)
self.y = torch.cat((self.y, y_init))
# while the trust region isnt too smalle
while not self.state.restart_triggered:
# normalize function values
train_y = (self.y - self.y.mean()) / self.y.std()
# get model for training points (pass points if no deep kernel used, otherwise use deep kernel)
model = self.model(
self.X, train_y.unsqueeze(-1), **self.model_kwargs) if not hasattr(self.model,
'feature_extractor') else self.model
with gpytorch.settings.max_cholesky_size(float("inf")):
# Fit the model if not in deep kernel mode
if not hasattr(self.model, 'feature_extractor'):
mll = self.mll_opt(model.likelihood, model)
fit_gpytorch_torch(mll, options={'disp': False})
# Create a batch
x_next = generate_batch(
state=self.state,
model=model,
X=self.X,
Y=train_y,
batch_size=self.batch_size,
n_candidates=self.n_candidates,
num_restarts=self.num_restarts,
raw_samples=self.raw_samples,
acqf="ts",
)
# evaluate function for new points
y_next = torch.tensor([self.function(x) for x in x_next])
# update state based on new function values
self.state = update_state(self.state, y_next)
# append to local observations
self.X = torch.cat((self.X, x_next), dim=0)
self.y = torch.cat((self.y, y_next), dim=0)
print(
f"{self.identifier}: {len(self.X)}) Best value: {self.state.best_value:.3}, TR length: {self.state.length:.3f}"
)
self.has_run = True
return self.X, self.y
The initial points are simply drawn from a scrambled Sobol sequence:
def get_initial_points(self):
sobol = SobolEngine(dimension=self.dim, scramble=True, seed=self.seed)
X_init = sobol.draw(n=self.n_init)
return X_init
Deep Kernel Model
Next, we define the deep kernel as a kernel that prepends a neural network as a feature extractor. The NN is trained by maximum likelihood.
import gpytorch
import torch
from botorch.models.gpytorch import GPyTorchModel
from gpytorch.distributions import MultivariateNormal
from gpytorch.kernels import MaternKernel, ScaleKernel, GridInterpolationKernel
from gpytorch.means import ConstantMean
from gpytorch.models import ExactGP
from gpytorch.utils.grid import ScaleToBounds
from torch.nn import Linear, ReLU
class FeatureExtractor(torch.nn.Sequential):
'''
The feature extractor for the inputs
'''
def __init__(self, data_dim, layer_depths = None):
super(FeatureExtractor, self).__init__()
self.add_module('linear1', Linear(data_dim, 128))
self.add_module('relu1', ReLU())
self.add_module('linear2', Linear(128, 64))
self.add_module('relu2', ReLU())
self.add_module('linear3', Linear(64, 16))
self.add_module('relu3', ReLU())
self.add_module('linear5', Linear(16, 2))
class DeepKernelGPRegressor(GPyTorchModel, ExactGP):
'''
Custom GP model that first calls the feature extractor and passes the outputs to the actual kernel.
'''
# Freeze everything but the last layer when training locally?
def __init__(self, train_x, train_y, likelihood, architecture):
super(DeepKernelGPRegressor, self).__init__(train_x, train_y, likelihood)
self.mean_module = ConstantMean()
self.covar_module = GridInterpolationKernel(
ScaleKernel(MaternKernel(ard_num_dims=2)),
num_dims=2, grid_size=100
)
self.feature_extractor = architecture
# This module will scale the NN features so that they're nice values
self.scale_to_bounds = ScaleToBounds(-1., 1.)
def __call__(self, *args, **kwargs):
with gpytorch.settings.debug(False):
return super().__call__(*args, **kwargs)
def forward(self, x):
# We're first putting our data through a deep net (feature extractor)
projected_x = self.feature_extractor(x)
projected_x = self.scale_to_bounds(projected_x) # Make the NN values "nice"
mean_x = self.mean_module(projected_x)
covar_x = self.covar_module(projected_x)
return MultivariateNormal(mean_x, covar_x)
Scalable Optimizer
The ScalableOptimizer
maintains multiple TurboInstance
s:
import os
from logging import info
from typing import Optional, Dict
import torch
import tqdm
from botorch.models import SingleTaskGP
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.mlls import ExactMarginalLogLikelihood
from pyspark.sql import SparkSession
from torch import Tensor
from scalable_gps.dkl_model import FeatureExtractor, DeepKernelGPRegressor
from scalable_gps.objective import OptimizationProblem
from scalable_gps.turbo_state import TurboInstance
from scalable_gps.utils import save
class ScalableOptimizer:
def __init__(self,
objective: OptimizationProblem,
outer_iterations: int = 10,
num_parallel: int = 2,
num_total_iterations: int = -1,
batch_size: int = 2,
turbo_kwargs: Optional[Dict] = {},
use_dkl: bool = True,
name: str = 'TurBO-DKL',
save_path: str = os.getcwd(),
seed: int = 0
):
# create spark session if it doesnt exist yet
self.spark = SparkSession.builder.getOrCreate()
self.sc = self.spark.sparkContext
self.batch_size = batch_size
self.num_total_iterations = num_total_iterations
self.num_parallel = num_parallel
self.batch_size = batch_size
self.turbo_kwargs = turbo_kwargs
self.objective = objective
self.dim = objective.dim()
self.outer_iterations = outer_iterations
self.name = name
self.use_dkl = use_dkl
self.save_path = save_path
self.seed = seed
def optimize(self):
# maintain tensors of all observations from all TurboInstances
x_global = torch.empty((0, self.dim))
y_global = torch.empty(0)
# we start with no deep kernel
deep_kernel_model = None
for i_outer in range(self.outer_iterations):
# for each outer iteration, define a list of TurboInstances
info(f"Starting outer iteration {i_outer + 1}")
self.turbo_processes = [
TurboInstance(
batch_size=self.batch_size,
function=self.objective,
model=deep_kernel_model if deep_kernel_model is not None else SingleTaskGP,
identifier=f"TR-{i}",
seed=int(f"{self.seed}{i+1}"))
for i in range(self.num_parallel)
]
# parallelize the list
turbos = self.sc.parallelize(self.turbo_processes)
# define the optimization
res = turbos.map(lambda t: t.optimize())
# and collect the data
data = res.collect()
# append to global observations
x_aggregated = torch.cat([Tensor(proc_data[0])
for proc_data in data], axis=0)
y_aggregated = torch.cat([Tensor(proc_data[1])
for proc_data in data], axis=0)
x_global = torch.cat((x_global, x_aggregated), dim=0)
y_global = torch.cat((y_global, y_aggregated), dim=0)
y_global_normalized = (y_global - y_global.mean()) / y_global.std()
if self.use_dkl:
# train deep kernel
deep_kernel_model = self._train_deepkernel(
x_global, y_global_normalized)
# save optimization results
save(x_global, y_global, self.save_path, self.name, self.objective.name())
def _train_deepkernel(self, X: Tensor, y: Tensor, num_iters: int = 100):
'''
Train a feature extractor (neural net) for the inputs
'''
likelihood = GaussianLikelihood()
feature_extractor = FeatureExtractor(self.objective.dim())
dkl_model = DeepKernelGPRegressor(X, y, likelihood, feature_extractor)
optimizer = torch.optim.Adam([
{'params': dkl_model.feature_extractor.parameters()},
{'params': dkl_model.covar_module.parameters()},
{'params': dkl_model.mean_module.parameters()},
{'params': dkl_model.likelihood.parameters()},
], lr=0.01)
mll = ExactMarginalLogLikelihood(likelihood, dkl_model)
iterator = tqdm.tqdm(range(num_iters))
# on-the-fly SGD - should probably be implemented according to a paper on overfit in DKL
for i in iterator:
# Zero backprop gradients
optimizer.zero_grad()
# Get output from model
output = dkl_model(X)
# Calc loss and backprop derivatives
loss = -mll(output, y)
loss.backward()
iterator.set_postfix(loss=loss.item())
optimizer.step()
return dkl_model
Code notebook
This notebook contains the code that we ran in a notebook, everything else was written as a library (see previous notebook).
from botorch.models import SingleTaskGP
import numpy as np
from scalable_gps.objective import Ackley, Griewank, Rover
from scalable_gps.optimizer import ScalableOptimizer
SAVE_PATH = "/dbfs/FileStore/df/"
objectives = [Ackley(4), Griewank(10)]
for objective in objectives:
for use_dkl in [True, False]:
for rep in range(5):
print(f"Repetition {rep}")
name = "TurBO-DKL" if use_dkl else "TurBO"
turbo_kwargs = {
'model': SingleTaskGP,
}
so = ScalableOptimizer(objective, num_parallel=4, turbo_kwargs={}, name=name, use_dkl=use_dkl, outer_iterations=5, save_path=SAVE_PATH) #<--- This makes the files permanent
so.optimize()
import os
os.listdir("/dbfs/FileStore/df/Griewank-10")
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
basedir = "/dbfs/FileStore/df/"
algo_benchs = {}
for path, subdirs, files in os.walk(basedir):
for name in files:
if "run" in name:
bench = path.split("/")[-2]
algo = path.split("/")[-1]
y = pd.read_csv(os.path.join(path, name)).to_numpy()[:, -1]
y = np.array([max(y[:i]) for i in range(1,len(y)+1)])
if not bench in algo_benchs:
algo_benchs[bench] = {}
if not algo in algo_benchs[bench]:
algo_benchs[bench][algo] = []
algo_benchs[bench][algo].append(y)
fig, axs = plt.subplots(1, len(algo_benchs), )
for i, bench in enumerate(algo_benchs.keys()):
ax = axs[i] if len(algo_benchs)>1 else axs
for algo, y in algo_benchs[bench].items():
minlen = min([len(yy) for yy in y])
y = [yy[:minlen] for yy in y]
mean = np.mean(np.array(y), axis=0)
ax.plot(np.arange(len(mean)), mean, label=algo)
ax.set_title(bench)
ax.legend()
basedir = "/dbfs/FileStore/df/"
algo_benchs = {}
# descend into directories and read function values from files
for path, subdirs, files in os.walk(basedir):
for name in files:
if "run" in name:
bench = path.split("/")[-2]
algo = path.split("/")[-1]
y = pd.read_csv(os.path.join(path, name)).to_numpy()[:, -1]
y = np.array([max(y[:i]) for i in range(1, len(y) + 1)])
if not bench in algo_benchs:
algo_benchs[bench] = {}
if not algo in algo_benchs[bench]:
algo_benchs[bench][algo] = []
algo_benchs[bench][algo].append(y)
# create figure with as many columns as benchmarks
fig, axs = plt.subplots(1, len(algo_benchs), figsize=(10, 5))
# plot the benchmarks
for i, bench in enumerate(algo_benchs.keys()):
ax = axs[i] if len(algo_benchs) > 1 else axs
for algo, y in algo_benchs[bench].items():
# max length for this algorithm on this benchmark
maxlen = max([len(yy) for yy in y])
y = [np.concatenate([yy, np.ones(maxlen - len(yy)) * yy[-1]]) for yy in y]
mean = np.mean(np.array(y), axis=0)
# compute standard error of the mean
std = np.std(y, ddof=1, axis=0) / np.sqrt(len(mean))
ax.plot(np.arange(len(mean)), mean, label=algo, marker="x" if algo == "TurBO" else "^", markevery=50)
ax.fill_between(np.arange(len(std)), mean - std, mean + std, alpha=0.5)
ax.set_ylabel("Regret")
ax.set_xlabel("Number of function evaluations")
ax.set_title(bench)
ax.legend()
plt.tight_layout()
plt.show()
fig.savefig("results.png")
Next, we plot the results
We stored the results to avoid data deletion due to cluster restarts.
Our entire code is available here
Distributed training of the deep kernel
We tried to distribute the learning of the deep kernel (neural network optimization) in a distributed manner. However, we did not succeed in finishing this on time. We argue that our code is still scalable since the training of the neural network is only done once for all trust regions.
For sake of completeness, we provide the code for the distributed training below. It uses sparktorch
which allows for training torch
model with spark
. The code is a method of ScalableOptimizer
:
def _train_deepkernel(self, X: Tensor, y: Tensor, num_iters: int = 100):
likelihood = GaussianLikelihood()
feature_extractor = FeatureExtractor(self.objective.dim())
dkl_model = DeepKernelGPRegressor(X, y, likelihood, feature_extractor)
optimizer = torch.optim.Adam
# make all the parameter generators into lists
parameters = [{'params': [p for p in dkl_model.feature_extractor.parameters()]},
{'params': [
p for p in dkl_model.covar_module.parameters()]},
{'params': [p for p in dkl_model.mean_module.parameters()]},
{'params': [p for p in dkl_model.likelihood.parameters()]},
]
mll = ExactMarginalLogLikelihood(likelihood, dkl_model)
torch_obj = serialize_torch_obj(
model=dkl_model,
# need to return a scalar, returns a vector of inidividual losses
criterion=lambda output, y_train: mll(output, y_train).sum(),
optimizer=optimizer,
lr=1e-3
)
data = self.sc.parallelize(
torch.cat((y.unsqueeze(-1), X), axis=1).detach().numpy().tolist())
df = data.toDF()
vector_assembler = VectorAssembler(
inputCols=df.columns[1:self.dim + 1], outputCol='features')
# Setup features
stm = SparkTorch(
inputCol='features',
labelCol='_1', # this tells SparkTorch to consider the first column as the label column
predictionCol='predictions',
torchObj=torch_obj,
verbose=0,
iters=30,
miniBatch=16
)
print('Training DKL...')
# Can be used in a pipeline and saved.
p = Pipeline(stages=[vector_assembler, stm]).fit(df)
pt_model = p.stages[1].getPytorchModel()
print('Trained.')
return pt_model
Complete code listings
Entire code of TurboInstance
Located in scalable_gps.turbo_state
import math
from dataclasses import dataclass
from typing import Optional, Dict, List
import gpytorch
import torch
from botorch.optim.fit import fit_gpytorch_torch
from gpytorch.likelihoods import Likelihood, GaussianLikelihood
from gpytorch.mlls import MarginalLogLikelihood, ExactMarginalLogLikelihood
from gpytorch.models import ExactGP
from torch import Tensor
from torch.quasirandom import SobolEngine
from scalable_gps.objective import OptimizationProblem
from scalable_gps.turbo_util import generate_batch
class TurboInstance:
def __init__(
self,
batch_size: int,
function: OptimizationProblem,
model: ExactGP,
model_kwargs: Dict = {},
likelihood: Likelihood = GaussianLikelihood,
model_parameters: List[Dict[str, Tensor]] = None,
mll_opt: MarginalLogLikelihood = ExactMarginalLogLikelihood,
n_init: Optional[int] = None,
identifier: str = "",
seed: int = 0
):
self.batch_size = batch_size
self.dim = function.dim()
self.function = function
self.model = model
self.model_kwargs = model_kwargs
self.likelihood = likelihood
self.parameters = model_parameters
self.mll_opt = mll_opt
self.n_init = self.dim if n_init is None else n_init
self.state = TurboState(self.dim, self.batch_size)
self.num_restarts = 10
self.raw_samples = 512
self.n_candidates = min(5000, max(2000, 200 * self.dim))
self.identifier = identifier
self.seed = seed
self.X = torch.empty((0, self.dim))
self.y = torch.empty(0)
self.has_run = False
def get_initial_points(self):
sobol = SobolEngine(dimension=self.dim, scramble=True, seed=self.seed)
X_init = sobol.draw(n=self.n_init)
return X_init
def optimize(self):
x_init = self.get_initial_points()
y_init = torch.tensor([self.function(x) for x in x_init])
self.X = torch.cat((self.X, x_init), dim=0)
self.y = torch.cat((self.y, y_init))
while not self.state.restart_triggered:
train_y = (self.y - self.y.mean()) / self.y.std()
model = self.model(
self.X, train_y.unsqueeze(-1), **self.model_kwargs) if not hasattr(self.model,
'feature_extractor') else self.model
with gpytorch.settings.max_cholesky_size(float("inf")):
# Fit the model
if not hasattr(self.model, 'feature_extractor'):
mll = self.mll_opt(model.likelihood, model)
fit_gpytorch_torch(mll, options={'disp': False})
# Create a batch
x_next = generate_batch(
state=self.state,
model=model,
X=self.X,
Y=train_y,
batch_size=self.batch_size,
n_candidates=self.n_candidates,
num_restarts=self.num_restarts,
raw_samples=self.raw_samples,
acqf="ts",
)
y_next = torch.tensor([self.function(x) for x in x_next])
self.state = update_state(self.state, y_next)
self.X = torch.cat((self.X, x_next), dim=0)
self.y = torch.cat((self.y, y_next), dim=0)
print(
f"{self.identifier}: {len(self.X)}) Best value: {self.state.best_value:.3}, TR length: {self.state.length:.3f}"
)
self.has_run = True
return self.X, self.y
def reset(self):
pass
Entire Code of scalable_gps.turbo_util.py
from warnings import warn
import torch
from botorch.acquisition import qExpectedImprovement
from botorch.generation import MaxPosteriorSampling
from botorch.optim import optimize_acqf
from torch.quasirandom import SobolEngine
def generate_batch(
state,
model, # GP model
X, # Evaluated points on the domain [0, 1]^d
Y, # Function values
batch_size,
n_candidates=None, # Number of candidates for Thompson sampling
num_restarts=10,
raw_samples=512,
acqf="ts", # "ei" or "ts"
):
assert acqf in ("ts", "ei")
assert X.min() >= 0.0 and X.max() <= 1.0 and torch.all(torch.isfinite(Y))
if n_candidates is None:
n_candidates = min(5000, max(2000, 200 * X.shape[-1]))
# Scale the TR to be proportional to the lengthscales
x_center = X[Y.argmax(), :].clone()
try:
weights = model.covar_module.base_kernel.lengthscale.squeeze().detach()
weights = weights / weights.mean()
weights = weights / torch.prod(weights.pow(1.0 / len(weights)))
except:
warn("Could not find base kernel lengthscales, using square TR.")
weights = torch.ones(X.shape[1])
tr_lb = torch.clamp(x_center - weights * state.length / 2.0, 0.0, 1.0)
tr_ub = torch.clamp(x_center + weights * state.length / 2.0, 0.0, 1.0)
if acqf == "ts":
dim = X.shape[-1]
sobol = SobolEngine(dim, scramble=True)
pert = sobol.draw(n_candidates)
pert = tr_lb + (tr_ub - tr_lb) * pert
# Create a perturbation mask
prob_perturb = min(20.0 / dim, 1.0)
mask = (
torch.rand(n_candidates, dim)
<= prob_perturb
)
ind = torch.where(mask.sum(dim=1) == 0)[0]
mask[ind, torch.randint(0, dim - 1, size=(len(ind),), )] = 1
# Create candidate points from the perturbations and the mask
X_cand = x_center.expand(n_candidates, dim).clone()
X_cand[mask] = pert[mask]
# Sample on the candidate points
thompson_sampling = MaxPosteriorSampling(model=model, replacement=False)
with torch.no_grad(): # We don't need gradients when using TS
X_next = thompson_sampling(X_cand, num_samples=batch_size)
elif acqf == "ei":
ei = qExpectedImprovement(model, Y.max(), maximize=True)
X_next, acq_value = optimize_acqf(
ei,
bounds=torch.stack([tr_lb, tr_ub]),
q=batch_size,
num_restarts=num_restarts,
raw_samples=raw_samples,
)
return X_next
def optimize_llhood(model, train_x, train_y, mll, parameters=None, num_steps=50):
model.train()
model.likelihood.train()
if parameters is None:
parameters = [{"params": model.parameters()}]
optimizer = torch.optim.Adam(parameters, lr=0.1)
cum_loss = 0
for _ in range(
num_steps
):
optimizer.zero_grad()
output = model(train_x)
loss = -mll(output, train_y)
cum_loss += loss
loss.backward()
optimizer.step()
Entire code of scalable_gps.utils.py
import os
from os.path import join
import pandas as pd
import torch
def save(X: torch.Tensor, y: torch.Tensor, save_path: str, optimizer_name: str, function_name: str):
if y.ndim == 1:
y = y.unsqueeze(-1)
results_array = torch.cat((X, y), dim=1).detach().numpy()
results_cols = [f'X_i' for i in range(X.shape[1])]
# retrieves the plotting data based on the name of this column - must be called y (or change plotting script)
results_cols.append('y')
result_path = join(join(join(save_path, function_name), optimizer_name))
os.makedirs(result_path, exist_ok=True)
run_index = len(os.listdir(result_path))
results_df = pd.DataFrame(results_array, columns=results_cols)
print(f'Saving run at {result_path}...')
results_df.to_csv(f"{result_path}/run_{run_index}.csv", index=False)
print(f'Saved.')
Summary
In this project, we empirically investigate the claims of a recent paper ZerO Initialization: Initializing Neural Networks with only Zeros and Ones by Jiawei Zhao, Florian Tobias Schaefer, and Anima Anandkumar (hereafter: the authors).
In particular, we will compare the proposed initialisation method to some standard initialization methods (Xavier and Kaiming) while training: - a ResNet-18 on CIFAR-10 (as in the paper), implemented with torchvision and the pytorch lightning library, - a Transformer on WikiText-2 (as in the paper), implemented in plain pytorch, - a denoising diffusion model on CIFAR-10 (a new experiment), implemented with huggingface diffusers.
In all three cases we utilise Horovod's pytorch integration so that our experiments can run across several GPU machines on a cluster. While we do not train particularly large networks as the cluster is somewhat small, the deep learning experiments we consider typically take a long time (even weeks) to carry out in real world scenarios due to the size of the datasets and the depth of the models commonly used. Therefore, multi-GPU training is often used, usually for data parallelism (meaning that the batches are split across several nodes while the model is fully shared) but sometimes also with model parallelism (where the model itself is split across the nodes, e.g., for especially large models). In this project, we only use data parallelism as the models comfortably fit into a single GPU. Since the cluster was shared between all student groups, we only ran the first experiment on multiple GPUs and set the number of worker processes to 1 for the rest.
Background
Standard initialisation techniques
It is a widely known fact that the performance of deep neural networks can heavily depend on what values their weights are initialised to. For example, setting every weight to a constant value (such as 0) before training enforces identical weights throughout training, or may even completely prevent learning due to every gradients being zero.
Therefore, the standard way to initialise neural networks is to randomly sample "small" values around 0 for every weight \(w\):
\[ w \sim \mathcal{U(0-\varepsilon, 0 + \varepsilon)}\ .\]
One of the common methods, called Xavier initialisation, sets \(\varepsilon\) such that
\[ w \sim \mathcal{U\Bigg(-\frac{\sqrt{6}}{\sqrt{n + m}}, -\frac{\sqrt{6}}{\sqrt{n + m}}\Bigg)}\ ,\]
where \(n\) and \(m\) are the size of the layer \(w\) is in, and the size of the next layer, respectively. Another well-known method is the Kaiming or He initialisation, which (reusing the definition of \(n\) from earlier) samples the weights as follows:
\[ w \sim \mathcal{N}\Bigg(0, \frac{2}{n}\Bigg)\ .\]
Deep learning libraries such as Pytorch and Tensorflow automatically apply variants of these two methods.
Drawbacks and the role of BatchNorm
Even though Xavier and He initialisation are widely adopted to this day, research in the past few years has shown that they are not optimal in many scenarios. For example, with the default initialisation strategies, saturating nonlinearities (such as sigmoid or tanh) are often difficult to train with, and lower learning rates must be used in general (Ioffe and Szegedy, 2015) to avoid unstable learning curves.
One way to avoid these problems is to use batch normalisation (Ioffe and Szegedy, 2015), an essential technique that allows one to use larger learning rates (speeding up the training process significantly) and enhances generalisation. However, batch normalisation has several drawbacks: it is computationally expensive; it can limit the expressivity of the model (Karras et al., 2019); and it introduces an undesired (probabilistic) dependency between datapoints of the same batch.
Zhang et al. showed that Fixup initialisation can also eliminate the above problems simply by changing the initialisation slightly. Furthermore, they find that they can match the performance of batch-normalised networks by adding a scalar multiplier and a scalar bias variable in place of the normalisation. For a literature review on similar, more modern initialisation techniques, we refer the reader to the ZerO paper.
Method
The authors propose ZerO initialisation: a fully deterministic technique that fills up the weight matrices with only zeros and ones (or ones and minus ones scaled by a factor). They claim that networks initialised with ZerO can match (even outperform) the performance of networks initialisated with the default methods, and batch normalisation can be replaced with initialisation with the aforementioned scalar variables as well. Additionally, by the virtue of being deterministic, ZerO enables better reproducibility of the training process and the authors report that the method results in low-rank, sparse representations.
Mathematically, ZerO uses two concepts from linear algebra. First, the partial identity matrix \(\mathbf{I}^\star \in \mathbb{R}^{n \times m}\), defined as:
We implement a function that returns the partial identity matrix of a given size:
import torch
from torch import nn
from scipy.linalg import hadamard
import numpy as np
def partial_identity(out_dim, in_dim):
"""Return the partial identity matrix with shape `out_dim` x `in_dim`."""
if out_dim < in_dim:
I = torch.eye(out_dim)
O = torch.zeros(out_dim, (in_dim - out_dim))
return torch.cat((I, O), 1)
elif out_dim == in_dim:
return torch.eye(out_dim)
else:
I = torch.eye(in_dim)
O = torch.zeros((out_dim - in_dim), in_dim)
return torch.cat((I, O), 0)
The second prerequisite concept for ZerO is the Hadamard matrix, which is a matrix consisting of 1 and -1 entries, defined recursively as follows:
with \(\mathbf{H}_0 := 1\).
Note that \(\mathbf{H}\) must be an n-by-n matrix where n is a multiple of two. To construct a Hadamard matrix, we will simply use the scipy library.
from scipy.linalg import hadamard
Now have everything we need to define ZerO initialisation. Below, we show the definition for initialising convolutional layers, but we note that the initialisation can be applied to linear layers in the same manner, disregarding the n
indices.
def zerO_init_conv_layer_(weight):
"""
In-place initialise the given convolutional layer with zerO-init
using the following equation:
---------------------------------
W[:,:,n,n] := c * I_p * H_m * I_p
---------------------------------
where W: out_dim x in_dim x n_filters
I_p: out_dim x m (partial identity)
H_m: m x m (Hadamard matrix)
I_p: m x in_dim (partial identity)
"""
out_dim, in_dim, k = weight.shape[:3]
n = int(np.floor(k / 2))
if out_dim == in_dim:
weight.data[..., n, n] = torch.eye(in_dim)
elif out_dim < in_dim:
weight.data[..., n, n] = partial_identity(out_dim, in_dim).type_as(weight)
else:
m = int(np.ceil(np.log2(out_dim)))
c = 2 ** (-(m - 1) / 2)
H = lambda dim: torch.tensor(hadamard(dim)).type_as(weight)
I = lambda outd, ind: partial_identity(outd, ind).type_as(weight)
# NOTE: scipy's hadamard function differs from the paper's definition
# in that we need to pass 2^m as its size input instead of m
weight.data[..., n, n] = (
c * I(out_dim, 2**m) @ H(2**m) @ I(2**m, in_dim)
)
Experiment 1: ResNet-18 on CIFAR-10
In this notebook, we will compare ZerO with the default initialisation using ResNet-18 and CIFAR-10 in the framework of an image classification task. For this architecture, the authors initialised all convolutional layers (except the last one in in each residual block) with ZerO. We follow the instructions in our implementation below:
from torchvision import models
def create_model(init_mode: str):
"""
The original Torchvision implementation of ResNet-18 was adapted to ImageNet 1k;
we need to change the number of classes to 10,
and change the first convolutional layer to a 3x3 convolution with a stride and padding of 1.
Moreover, the layers should be initialized according to the initialization method requested.
In Torchvision, the default initialization of ResNet-18's convolutional layers is kaiming_uniform_.
"""
model = models.resnet18(weights=None, num_classes=10)
model.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
model.maxpool = nn.Identity()
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.Linear)):
if init_mode == "kaiming":
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif init_mode == "xavier":
nn.init.xavier_uniform_(m.weight)
elif init_mode == "zerO":
nn.init.zeros_(m.weight)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
# default batch normalisation parameters
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Apply ZerO to convolutional layers
if init_mode == "zerO":
for name, layer in model.named_modules():
if isinstance(layer, nn.Conv2d):
# Ignore last conv layer in each residual block
if not name.endswith(".conv2"):
zerO_init_conv_layer_(layer.weight)
return model
Dataset and model wrapper classes
To run the experiments, we need to implement standard boilerplate code for training the model and handling the CIFAR-10 dataset. To this end, we utilise the pytorch lightning framework. Hyperparameters not mentioned by the authors are assumed to be initialised to their default value based on the ResNet paper.
from torchvision import transforms
from torchvision.datasets import CIFAR10
import pytorch_lightning as pl
from torch.utils.data import random_split, DataLoader
import torchmetrics
import torch.nn.functional as F
import time
import horovod as hvd
import datetime
class CIFAR10DataModule(pl.LightningDataModule):
def __init__(
self,
batch_size: int = 256,
data_dir: str = "/dbfs/ml/Group_7/cifar10/",
seed: int = 42,
):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.split = [45000, 5000]
self.seed = seed
# default normalization process for CIFAR-10
self.train_transforms = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])
self.test_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])
def prepare_data(self):
# download dataset
CIFAR10(self.data_dir, train=True, download=True)
CIFAR10(self.data_dir, train=False, download=True)
def setup(self, stage=None):
# Create train/val datasets
if stage == 'fit' or stage is None:
cifar_full_train = CIFAR10(self.data_dir, train=True, transform=self.train_transforms)
self.cifar_train, _ = random_split(cifar_full_train, self.split,
generator=torch.Generator().manual_seed(self.seed))
# The validation dataset uses different transformations so we construct it
# separately, but a proper split is ensured by fixing the random seed
cifar_full_val = CIFAR10(self.data_dir, train=True, transform=self.test_transforms)
_, self.cifar_val = random_split(cifar_full_val, self.split,
generator=torch.Generator().manual_seed(self.seed))
# Create test dataset
if stage == 'test' or stage is None:
self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transforms)
def train_dataloader(self):
return DataLoader(self.cifar_train, batch_size=self.batch_size, shuffle=True, num_workers=4)
def val_dataloader(self):
return DataLoader(self.cifar_val, batch_size=self.batch_size, num_workers=4)
def test_dataloader(self):
return DataLoader(self.cifar_test, batch_size=self.batch_size, num_workers=4)
# ----------------------------------------------------------------------
class LitModel(pl.LightningModule):
"""
A wrapper class for the ResNet model that defines the training- and inference logic.
The `{training|validation|test}_step` methods are called automatically by the Trainer class later.
"""
def __init__(self, model, learning_rate, use_lr_warmup):
super().__init__()
self.model = model
self.learning_rate = learning_rate
self.accuracy = torchmetrics.Accuracy("multiclass", num_classes=10)
self.use_lr_warmup = use_lr_warmup
def forward(self, x):
return F.log_softmax(self.model(x), dim=-1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
# training metrics
preds = torch.argmax(logits, dim=1)
acc = self.accuracy(preds, y)
self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True)
self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True)
# ResNet paper re. LR: "divide it by 10 at 32k and 48k iterations"
# We found that the model can be trained for half the number of iterations
# without a major hit to the accuracy; we apply this change to save time
if self.trainer.global_step == 8_000 or self.trainer.global_step == 12_000:
for g in self.optimizers().param_groups:
g['lr'] /= 10
if self.trainer.global_step % 500 == 0:
print(f"[{datetime.datetime.now()}] Step {self.trainer.global_step}, loss = {loss:.2f}, acc = {acc*100:.2f}")
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
# validation metrics
preds = torch.argmax(logits, dim=1)
acc = self.accuracy(preds, y)
self.log('val_loss', loss)
self.log('val_acc', acc)
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
# test metrics
preds = torch.argmax(logits, dim=1)
acc = self.accuracy(preds, y)
self.log('test_loss', loss)
self.log('test_acc', acc)
return loss
def configure_optimizers(self):
# Default optimizer configuration
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9, weight_decay=0.0001)
# Warmup as suggested by the zerO init paper
if self.use_lr_warmup:
scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.001, total_iters=10)
return [optimizer], [scheduler]
else:
return [optimizer]
Training script
These are 1) a standard pytorch lightning training script that uses the Trainer class; 2) a function that evaluates all three initialisation methods with the given seed.
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar, LearningRateMonitor
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
import datetime
import horovod as hvd
def train(model, datamodule, log_folder, n_steps, do_test: bool = False, use_lr_warmup = False):
model = LitModel(model, learning_rate=0.05, use_lr_warmup=use_lr_warmup)
logger = TensorBoardLogger(log_folder)
# Initialize a trainer
trainer = pl.Trainer(max_steps=n_steps,
strategy="horovod",
accelerator='gpu',
devices=1,
callbacks=[
# We save the best-performing model as measured by the validation accuracy
ModelCheckpoint(monitor='val_acc', mode='max'),
LearningRateMonitor(logging_interval='epoch'),
],
logger=logger,
enable_progress_bar=False
)
# Train the model
trainer.fit(model, datamodule)
if do_test:
# Evaluate the model on the test set
trainer.test(ckpt_path='best', datamodule=datamodule)
return trainer.callback_metrics["test_acc"]
else:
# Evaluate the model on the validation set
trainer.validate(ckpt_path='best', datamodule=datamodule)
return trainer.callback_metrics["val_acc"]
def run(datamodule, seed: int, n_steps: int, do_test: bool):
"""
A single training run for a given seed. Trains and evaluates the ResNet-18 model
with the three initialisation methods on the same random seed.
"""
pl.seed_everything(seed)
torch.manual_seed(seed)
accs = dict()
# Init our model
model = create_model(init_mode="kaiming")
pl.seed_everything(seed)
torch.manual_seed(seed)
accs["kaiming"] = train(model, datamodule, log_folder="/dbfs/ml/Group_7/logs/resnet/kaiming", n_steps=n_steps, do_test=do_test).item()
pl.seed_everything(seed)
torch.manual_seed(seed)
model = create_model(init_mode="xavier")
pl.seed_everything(seed)
torch.manual_seed(seed)
accs["xavier"] = train(model, datamodule, log_folder="/dbfs/ml/Group_7/logs/resnet/xavier", n_steps=n_steps, do_test=do_test).item()
pl.seed_everything(seed)
torch.manual_seed(seed)
model = create_model(init_mode="zero")
pl.seed_everything(seed)
torch.manual_seed(seed)
accs["zero"] = train(model, datamodule, log_folder="/dbfs/ml/Group_7/logs/resnet/zero", n_steps=n_steps, do_test=do_test, use_lr_warmup=True).item()
return accs
Experimental setup
We closely follow the setup of the paper's experiment, with the modification that we only train for 16000 instead of 64000 steps, with the two ResNet LR decays (originally at the 32000th and the 48000th steps) moved proportionally earlier. Training for fewer steps results in a much more efficient training process with only a marginal decrease in the accuracy (at least in the context of comparing intialisations). Furthermore, this change allows us compare the three initialisation methods (Kaiming, Xavier and ZerO) for 5 random seeds.
As described in the paper, we implement a 10 epoch learning rate warmup and we choose a batch size of 128, as the authors do not report the value of this parameter.
import horovod.torch as hvd
from sparkdl import HorovodRunner
import json
def run_horovod_job():
hvd.init()
torch.cuda.set_device(hvd.local_rank())
seeds = [42, 151, 464, 3584, 6846]
for seed in seeds:
print("Random seed used:", seed)
pl.seed_everything(seed)
torch.manual_seed(seed)
dm = CIFAR10DataModule(batch_size=128, data_dir='data-%d'% hvd.rank())
dm.prepare_data()
dm.setup()
print("ZerO Init")
accs = run(dm, seed=seed, n_steps = 16_000, do_test = True)
if hvd.rank() == 0:
print(accs)
with open("results.txt", 'a') as out_file:
out_file.write(f"RANDOM SEED: {seed}")
out_file.write(json.dumps(accs))
hr = HorovodRunner(np=2, driver_log_verbosity='all')
hr.run(run_horovod_job)
tensorboard
%tensorboard --logdir /dbfs/ml/Group_7/logs/resnet/
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 22}
matplotlib.rc('font', **font)
results = {"kaiming" : [0.9012, 0.8938, 0.8936, 0.8908, 0.899],
"xavier" : [0.9278, 0.918, 0.925, 0.9304, 0.9232],
"zero" : [0.9306, 0.9332, 0.9304, 0.9264, 0.9276]}
# Calculate the mean and standard deviation for each method
kaiming_mean = np.mean(results["kaiming"])
kaiming_std = np.std(results["kaiming"])
xavier_mean = np.mean(results["xavier"])
xavier_std = np.std(results["xavier"])
zero_mean = np.mean(results["zero"])
zero_std = np.std(results["zero"])
plt.figure(figsize=[6,10])
# Create the plot
plt.errorbar([1, 2, 3], [kaiming_mean, xavier_mean, zero_mean],
yerr=[kaiming_std, xavier_std, zero_std], fmt='o', color='black',
ecolor='lightgray', elinewidth=10, capsize=20)
plt.xticks([0.5,1,2,3,3.5], ["","kaiming", "xavier", "zero",""])
plt.tight_layout()
# Add labels and show the plot
plt.xlabel("Method")
plt.ylabel("Result")
plt.show()
The results from the paper, for reference:
Conclusion
Despite training for fewer steps, our results are close to the ones presented in the paper (in the form of test error). We found that the models initialised with ZerO perform best on average; the ones initialised with Kaiming are, however, significantly worse than those initialised with Xavier and ZerO, despite them being better than Xavier according to the paper. We further note that ZerO has the lowest std across the three methods, in accordance with the paper's results.
Validating ZerO with Transformers
In the previous notebook, we validated that ZerO indeed outperforms standard initialisation techniques on ResNet-18. But does the method generalise to other architectures?
Transformers are language models that are usually trained on the task of predicting the next word in a corpus. The authors compared the standard initialisation with ZerO when training a small Transformer architecture with different layer counts on the WikiText-2 dataset; the comparison is done using a metric called perplexity:
In this notebook, we try to reproduce these results. The authors stated that they used the Transformer implementation found in Pytorch's examples repository, which we will use as a basis for our implementation.
We begin by downloading the dataset.
install wget
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/train.txt
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/valid.txt
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/test.txt
!rmdir /dbfs/ml/Group_7/wikitext-2/
!mkdir -f /dbfs/ml/Group_7/wikitext-2/
!mv train.txt valid.txt test.txt /dbfs/ml/Group_7/wikitext-2/
Then, we include our implementation of ZerO initialisation, adapted to linear layers.
import torch
from torch import nn
from scipy.linalg import hadamard
import numpy as np
def partial_identity(out_dim, in_dim):
"""Return the partial identity matrix with shape `out_dim` x `in_dim`."""
if out_dim < in_dim:
I = torch.eye(out_dim)
O = torch.zeros(out_dim, (in_dim - out_dim))
return torch.cat((I, O), 1)
elif out_dim == in_dim:
return torch.eye(out_dim)
else:
I = torch.eye(in_dim)
O = torch.zeros((out_dim - in_dim), in_dim)
return torch.cat((I, O), 0)
def zerO_init(weight):
"""
Algorithm 1.
hadamard: c * I_p * H_m * I_p
I_p: out_dim * m
H_m: m * m
I_p: m * in_dim
"""
out_dim, in_dim = weight.shape
device = weight.device
if out_dim == in_dim:
weight.data = torch.eye(in_dim)
elif out_dim < in_dim:
weight.data = partial_identity(out_dim, in_dim).type_as(weight)
else:
m = int(np.ceil(np.log2(out_dim)))
c = 2 ** (-(m - 1) / 2)
H = lambda dim: torch.tensor(hadamard(dim)).type_as(weight)
weight.data = (
c * H(2**m)[:out_dim, :in_dim]
)
weight.data = weight.data.to(device)
Following the authors' instructions, we initialise the query weights \(W_Q\) as identity matrices and key/value weights as null matrcies, while feedforward layers are initialised with ZerO (as in the previous notebook).
def zerO_init_multihead_attention(name, p):
if name.endswith(".q_proj_weight"):
nn.init.eye_(p)
if name.endswith(".k_proj_weight") or name.endswith(".v_proj_weight"):
nn.init.zeros_(p)
def zerO_init_model(model):
for name, p in model.named_parameters():
zerO_init_multihead_attention(name, p)
for name, m in model.named_modules():
if isinstance(m, nn.Linear):
zerO_init(m.weight)
return model
# Modified version of the Pytorch implementation of MultiheadAttention. There will be three separate matrices for queries, keys and values, regardless of dimensionality.
# We need this because the queries should be initialized differently than the keys and values.
from torch.nn import MultiheadAttention
from typing import Optional
from torch.nn.parameter import Parameter
from torch.nn import Linear
# From torch/nn/modules/linear.py
class NonDynamicallyQuantizableLinear(Linear):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
super().__init__(in_features, out_features, bias=bias,
device=device, dtype=dtype)
# Based on torch.nn.MultiheadAttention
class ModifiedMultiheadAttention(MultiheadAttention):
__constants__ = ['batch_first']
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = False # Changed here
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if not self._qkv_same_embed_dim:
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
# Modified version of the Pytorch implementation of TransformerEncoderLayer. It uses the MultiheadAttention class defined above.
from typing import Union, Callable
from torch import Tensor
from torch.nn import Dropout
from torch.nn import Linear
from torch.nn import LayerNorm
from torch.nn import functional as F
from torch.nn import TransformerEncoderLayer
# From torch/nn/modules/transformer.py
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
# Based on torch.nn.TransformerEncoderLayer
class ModifiedTransformerEncoderLayer(TransformerEncoderLayer):
__constants__ = ['batch_first', 'norm_first']
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
device=None, dtype=None, zero_init=False) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(TransformerEncoderLayer, self).__init__()
if zero_init: # Changed here
self.self_attn = ModifiedMultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
else:
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
# We can't test self.activation in forward() in TorchScript,
# so stash some information about it instead.
if activation is F.relu or isinstance(activation, torch.nn.ReLU):
self.activation_relu_or_gelu = 1
elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
self.activation_relu_or_gelu = 2
else:
self.activation_relu_or_gelu = 0
self.activation = activation
As mentioned before, we will use this code repository for the Transformer implementation, just like the authors. However, we port the code to the pytorch lightning framework, therefore the LightningModule
and DataModule
classes, as well the training script, are our contributions.
##### Source: https://github.com/pytorch/examples/tree/main/word_language_model
# data.py
import os
from io import open
import torch
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = []
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class Corpus(object):
def __init__(self, path):
self.dictionary = Dictionary()
self.train = self.tokenize(os.path.join(path, 'train.txt'))
self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
self.test = self.tokenize(os.path.join(path, 'test.txt'))
def tokenize(self, path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Add words to the dictionary
with open(path, 'r', encoding="utf8") as f:
for line in f:
words = line.split() + ['<eos>']
for word in words:
self.dictionary.add_word(word)
# Tokenize file content
with open(path, 'r', encoding="utf8") as f:
idss = []
for line in f:
words = line.split() + ['<eos>']
ids = []
for word in words:
ids.append(self.dictionary.word2idx[word])
idss.append(torch.tensor(ids).type(torch.int64))
ids = torch.cat(idss)
return ids
# model.py (with slight modification to incorporate the changes above)
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
import horovod as hvd
# Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
class PositionalEncoding(nn.Module):
r"""Inject some information about the relative or absolute position of the tokens in the sequence.
The positional encodings have the same dimension as the embeddings, so that the two can be summed.
Here, we use sine and cosine functions of different frequencies.
.. math:
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
r"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(pl.LightningModule):
"""Container module with an encoder, a recurrent or transformer module, and a decoder."""
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.2, learning_rate=20, zero_init=False):
super(TransformerModel, self).__init__()
try:
from torch.nn import TransformerEncoder
except:
raise ImportError('TransformerEncoder module does not exist in PyTorch 1.1 or lower.')
self.learning_rate = learning_rate
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = ModifiedTransformerEncoderLayer(ninp, nhead, nhid, dropout, zero_init=zero_init)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.ntokens = ntoken
self.init_weights()
self.loss = nn.NLLLoss()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
nn.init.uniform_(self.encoder.weight, -initrange, initrange)
nn.init.zeros_(self.decoder.bias)
nn.init.uniform_(self.decoder.weight, -initrange, initrange)
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return F.log_softmax(output, dim=-1)
def training_step(self, batch, batch_idx):
data, target = batch
data.squeeze_(0)
target.squeeze_(0)
output = self(data).view(-1, self.ntokens)
loss = self.loss(output, target)
self.log("train_loss", loss)
if not batch_idx % 965 and hvd.rank() == 0:
print(f"EPOCH {self.trainer.current_epoch} BATCH {batch_idx} LOSS {self.trainer.callback_metrics['train_loss']}")
return loss
def validation_step(self, batch, batch_idx):
data, target = batch
data.squeeze_(0)
target.squeeze_(0)
output = self(data).view(-1, self.ntokens)
loss = self.loss(output, target) * len(data)
self.log("val_loss", loss)
return loss
def validation_epoch_end(self, outs):
val_ppl = torch.exp(torch.sum(torch.tensor(outs)) / (len(self.trainer.datamodule.val_data.data)-1))
print("val_loss_avg", torch.sum(torch.tensor(outs)) / (len(self.trainer.datamodule.val_data.data)-1))
print("val_ppl", torch.exp(torch.sum(torch.tensor(outs)) / (len(self.trainer.datamodule.val_data.data)-1)))
return val_ppl
def test_epoch_end(self, test_losses):
test_ppl = torch.exp(torch.sum(torch.tensor(test_losses)) / (len(self.trainer.datamodule.test_data.data)-1))
self.log("test_ppl", test_ppl)
return test_ppl
def test_step(self, batch, batch_idx):
data, target = batch
data.squeeze_(0)
target.squeeze_(0)
output = self(data).view(-1, self.ntokens)
loss = self.loss(output, target) * len(data)
self.log("test_loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [10], gamma=0.25)
return [optimizer], [scheduler]
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/train.txt
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/valid.txt
!wget https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/test.txt
!mkdir -f /dbfs/ml/Group_7/wikitext-2/
!mv train.txt valid.txt test.txt /dbfs/ml/Group_7/wikitext-2/
Below we implement the data handling and the training/evaluation scripts.
# Modified version of main.py
import shutil
import pytorch_lightning as pl
import time
###############################################################################
# Load data
###############################################################################
# Starting from sequential data, batchify arranges the dataset into columns.
# For instance, with the alphabet as the sequence and batch size 4, we'd get
# ┌ a g m s ┐
# │ b h n t │
# │ c i o u │
# │ d j p v │
# │ e k q w │
# └ f l r x ┘.
# These columns are treated as independent by the model, which means that the
# dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
# batch processing.
import math
class WikiDataset(torch.utils.data.Dataset):
def __init__(self, corpus_data, batch_size, bptt = 35):
self.bptt = bptt
self.data = self.batchify(corpus_data, batch_size)
def batchify(self, data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data
def __getitem__(self, i):
i *= self.bptt
seq_len = min(self.bptt, len(self.data) - 1 - i)
data = self.data[i:i+seq_len]
target = self.data[i+1:i+1+seq_len].view(-1)
return data, target
def __len__(self):
return math.ceil((len(self.data) - 1) / self.bptt)
class WikiDataModule(pl.LightningDataModule):
def __init__(self, train_batch_size, eval_batch_size = 10, bptt = 35, data_dir = "./wikitext-2/"):
super().__init__()
self.corpus = Corpus(data_dir)
self.train_data = WikiDataset(self.corpus.train, train_batch_size, bptt)
self.val_data = WikiDataset(self.corpus.valid, eval_batch_size, bptt)
self.test_data = WikiDataset(self.corpus.test, eval_batch_size, bptt)
self.train_batch_size = train_batch_size
self.eval_batch_size = eval_batch_size
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_data, batch_size=1, num_workers=4)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_data, batch_size=1, num_workers=4)
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_data, batch_size=1, num_workers=4)
###############################################################################
# Build the model
###############################################################################
###############################################################################
# Training code
###############################################################################
def repackage_hidden(h):
"""Wraps hidden states in new Tensors, to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
import os
import wget
import math
def get_batch(source, i):
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len].view(-1)
return data, target
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
output = model(data)
output = output.view(-1, ntokens)
total_loss += len(data) * criterion(output, targets).item()
return total_loss / (len(data_source) - 1)
def train(emsize=200, nhead=2, nhid=200, nlayers=2, dropout=0.2, zero_init=False, max_epochs=20, learning_rate=5):
# Turn on training mode which enables dropout.
start_time = time.time()
if not os.path.isfile("./wikitext-2/train.txt"):
wget.download("https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/train.txt")
wget.download("https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/valid.txt")
wget.download("https://raw.githubusercontent.com/pytorch/examples/main/word_language_model/data/wikitext-2/test.txt")
os.makedirs("wikitext-2")
os.rename("train.txt", "./wikitext-2/train.txt")
os.rename("valid.txt", "./wikitext-2/valid.txt")
os.rename("test.txt", "./wikitext-2/test.txt")
dm = WikiDataModule(train_batch_size=20)
ntokens = len(dm.corpus.dictionary)
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout, learning_rate=learning_rate, zero_init=zero_init)
logger = TensorBoardLogger(save_dir=f"/dbfs/ml/Group_7/logs/transformer/{'zeroinit' if zero_init else 'default'}")
trainer = pl.Trainer(max_epochs=max_epochs,
strategy="horovod",
accelerator='gpu',
num_sanity_val_steps=0,
devices=1,
gradient_clip_val = 0.25,
callbacks=[
# EarlyStopping(monitor="val_acc", min_delta=0.00, patience=3, verbose=False, mode="max"),
# TQDMProgressBar(refresh_rate=10),
ModelCheckpoint(monitor='val_loss', mode='min'),
LearningRateMonitor(logging_interval='epoch'),
],
logger=logger,
enable_progress_bar=False
)
trainer.fit(model, dm)
if hvd.rank() == 0:
trainer.test(ckpt_path='best', datamodule=dm)
test_ppl = trainer.callback_metrics["test_ppl"]
# with open("/dbfs/ml/Group_7/transformer_results.txt", "a") as f:
print(test_ppl)
return test_ppl
import horovod.torch as hvd
from sparkdl import HorovodRunner
import json
numproc = 1
assert numproc in (1,2)
results = []
for nlayers in [2,6,10]:
for use_zero_init in (True, False):
hr = HorovodRunner(np=numproc, driver_log_verbosity='all')
test_perplexity = hr.run(train, nlayers=nlayers, zero_init=use_zero_init, max_epochs=20, learning_rate=5*numproc)
results.append(f"{'[zeroinit]' if use_zero_init else '[default]'} {nlayers} layers: TEST PPL = {test_perplexity}")
with open("/dbfs/ml/Group_7/transformer_results.txt", "w") as f:
f.write("\n".join(results))
!cat /dbfs/ml/Group_7/transformer_results.txt
import horovod.torch as hvd
from sparkdl import HorovodRunner
import json
numproc = 1
assert numproc in (1,2)
for nlayers in [8, 20]:
for use_zero_init in (True, False):
hr = HorovodRunner(np=numproc, driver_log_verbosity='all')
test_perplexity = hr.run(train, nlayers=nlayers, zero_init=use_zero_init, max_epochs=20, learning_rate=5*numproc)
results.append(f"{'[zeroinit]' if use_zero_init else '[default]'} {nlayers} layers: TEST PPL = {test_perplexity}")
with open("/dbfs/ml/Group_7/transformer_results_2.txt", "w") as f:
f.write("\n".join(results))
!cat /dbfs/ml/Group_7/transformer_results_2.txt
Conclusion
The results of our reproduction of the Transformer experiment seem to contradict the claims of the paper. While we found that ZerO performs slightly better than the default initialisation for 2 and 6 layers (i.e., the two smallest networks we considered), the perplexity diverges for 8, 10 and 20 layers. In contrast, the default initialisation only diverges for 20 layers, which suggests that the stability of ZerO needs more investigation.
Applying ZerO to a denosiing diffusion model
Denoising diffusion models are a relatively recent type of deep generative models that have become extremely popular with the rapid advance of text-to-image models such as Stable Diffusion. In this notebook, we train a diffusion model on the CIFAR-10 dataset to unconditionally generate images, closely following this tutorial (which is for a different dataset) and adding horovod support. To fit under our time constraints, we only train for 10 epochs, which means that our models will not converge, but the trends should be clearly visible for the sake of comparison.
The question we investigate here is whether ZerO generalises to this task and architecture.
install datasets diffusers accelerate
As usual, we define the model (CIFAR-10), load the data and set up the training script.
import tqdm
from functools import partialmethod
import datasets
datasets.disable_progress_bar()
tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
# ------------------------------------------------------------------------------------------------------------
from dataclasses import dataclass
import torch
import torch.nn.functional as F
from datasets import load_dataset
from torchvision import transforms
NUM_WORKERS = 1
@dataclass
class TrainingConfig:
image_size = 32 # the generated image resolution
train_batch_size = 32 * NUM_WORKERS
eval_batch_size = 32 # how many images to sample during evaluation
num_epochs = 10 // NUM_WORKERS
gradient_accumulation_steps = 1
learning_rate = 1e-4 * NUM_WORKERS
lr_warmup_steps = 500
save_image_epochs = 5 // NUM_WORKERS
save_model_epochs = 5 // NUM_WORKERS
mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision
output_dir = "/dbfs/ml/Group_7/diffusion"
push_to_hub = False # whether to upload the saved model to the HF Hub
hub_private_repo = False
overwrite_output_dir = True # overwrite the old model when re-running the notebook
seed = 0
dataset_name = "cifar10"
config = TrainingConfig()
preprocess = transforms.Compose(
[
transforms.Resize((config.image_size, config.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["img"]]
return {"images": images}
from diffusers import UNet2DModel
from diffusers import DDPMScheduler
from diffusers.optimization import get_cosine_schedule_with_warmup
import os
def seed_everything(seed: int = 42):
import random, os
import numpy as np
import torch
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
from accelerate import Accelerator
from diffusers import DDPMPipeline
from diffusers.hub_utils import init_git_repo, push_to_hub
from PIL import Image
from tqdm.auto import tqdm
import horovod as hvd
from torch.utils.data.distributed import DistributedSampler
from torch import distributed as dist
def make_grid(images, rows, cols):
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, image in enumerate(images):
grid.paste(image, box=(i % cols * w, i // cols * h))
return grid
def evaluate(config, epoch, pipeline):
# Sample some images from random noise (this is the backward diffusion process).
# The default pipeline output type is `List[PIL.Image]`
images = pipeline(
batch_size=config.eval_batch_size,
generator=torch.manual_seed(config.seed),
).images
# Make a grid out of the images
image_grid = make_grid(images, rows=8, cols=4)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
print(test_dir)
image_grid.save(f"{test_dir}/{epoch:04d}.png")
def train_loop(config, zero_init=False):
seed_everything()
print("Initialising...")
hvd.init()
torch.cuda.set_device(hvd.local_rank())
print(hvd.rank())
print("Loading dataset")
dataset = load_dataset(config.dataset_name, split="train")
dataset.set_transform(transform)
sampler = DistributedSampler(dataset, num_replicas=hvd.size(), rank=hvd.rank(), shuffle=True)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, sampler=sampler, worker_init_fn=seed_everything)
print("Creating model")
model = UNet2DModel(
sample_size=config.image_size, # the target image resolution
in_channels=3, # the number of input channels, 3 for RGB images
out_channels=3, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channes for each UNet block
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"DownBlock2D",
),
up_block_types=(
"UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
if zero_init:
zerO_init_model_(model)
print("Setting up training objects...")
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=config.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * config.num_epochs),
)
# Initialize accelerator and tensorboard logging
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
logging_dir=os.path.join(config.output_dir, "logs"),
)
if accelerator.is_main_process:
if config.push_to_hub:
repo = init_git_repo(config, at_init=True)
accelerator.init_trackers("train_example")
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
global_step = 0
print(config.output_dir)
# Now you train the model
for epoch in range(config.num_epochs):
sampler.set_epoch(epoch)
for step, batch in enumerate(train_dataloader):
clean_images = batch["images"]
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.num_train_timesteps, (bs,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if not step % 200 and accelerator.is_main_process:
print(f"[Epoch {epoch}, {step}/{len(train_dataloader)} steps])", *[str(k) + ": " + str(v) for k,v in logs.items()])
accelerator.log(logs, step=global_step)
global_step += 1
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
evaluate(config, epoch, pipeline)
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
if config.push_to_hub:
push_to_hub(config, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=True)
else:
pipeline.save_pretrained(config.output_dir)
Then, we run the script in a distributed manner with HorovodRunner.
import horovod.torch as hvd
from sparkdl import HorovodRunner
import json
hr = HorovodRunner(np=NUM_WORKERS, driver_log_verbosity='all')
hr.run(train_loop, config=config)
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('/dbfs/ml/Group_7/diffusion/samples/0009.png')
plt.figure(figsize=[10,20])
imgplot = plt.imshow(img)
plt.show()
After this, we define ZerO initialisation for the diffusion model used. We initialise the convolutional layers, the linear layers and the attention modules by taking the corresponding functions from the previous notebooks and applying them on the task in question.
import torch
import torch.nn.functional as F
from datasets import load_dataset
from torchvision import transforms
import numpy as np
from scipy.linalg import hadamard
from torch import nn
def zerO_init_conv_layer_(weight):
"""
In-place initialise the given convolutional layer with zerO-init
using the following equation:
---------------------------------
W[:,:,n,n] := c * I_p * H_m * I_p
---------------------------------
where W: out_dim x in_dim x n_filters
I_p: out_dim x m (partial identity)
H_m: m x m (Hadamard matrix)
I_p: m x in_dim (partial identity)
"""
out_dim, in_dim, k = weight.shape[:3]
n = int(np.floor(k / 2))
if out_dim == in_dim:
weight.data[..., n, n] = torch.eye(in_dim)
elif out_dim < in_dim:
weight.data[..., n, n] = partial_identity(out_dim, in_dim).type_as(weight)
else:
m = int(np.ceil(np.log2(out_dim)))
c = 2 ** (-(m - 1) / 2)
H = lambda dim: torch.tensor(hadamard(dim)).type_as(weight)
I = lambda outd, ind: partial_identity(outd, ind).type_as(weight)
# NOTE: scipy's hadamard function differs from the paper's definition
# in that we need to pass 2^m as its size input instead of m
weight.data[..., n, n] = (
c * I(out_dim, 2**m) @ H(2**m) @ I(2**m, in_dim)
)
def zerO_init_linear(weight):
"""
Algorithm 1.
hadamard: c * I_p * H_m * I_p
I_p: out_dim * m
H_m: m * m
I_p: m * in_dim
"""
out_dim, in_dim = weight.shape
device = weight.device
if out_dim == in_dim:
weight.data = torch.eye(in_dim)
elif out_dim < in_dim:
weight.data = partial_identity(out_dim, in_dim).type_as(weight)
else:
m = int(np.ceil(np.log2(out_dim)))
c = 2 ** (-(m - 1) / 2)
H = lambda dim: torch.tensor(hadamard(dim)).type_as(weight)
weight.data = (
c * H(2**m)[:out_dim, :in_dim]
)
weight.data = weight.data.to(device)
def partial_identity(out_dim, in_dim):
if out_dim < in_dim:
I = torch.eye(out_dim)
O = torch.zeros(out_dim, (in_dim - out_dim))
return torch.cat((I, O), 1)
elif out_dim > in_dim:
I = torch.eye(in_dim)
O = torch.zeros((out_dim - in_dim), in_dim)
return torch.cat((I, O), 0)
else:
return torch.eye(out_dim)
def zerO_init_model_(model):
for m in model.modules():
# Initialize relevant matrices to zero in the beginning:
if isinstance(m, (nn.Conv2d, nn.Linear)):
nn.init.zeros_(m.weight)
for name, m in model.named_modules():
# Linear
if isinstance(m, nn.Linear):
if not name.endswith(".query") and not name.endswith(".key") and not name.endswith(".value"):
zerO_init_linear(m.weight)
# Convolution
elif isinstance(m, nn.Conv2d):
# Ignore last conv layer in each residual block
if not name.endswith(".conv2"):
zerO_init_conv_layer_(m.weight)
# Attention (Q, K, V); K and V are already initialized to null matrices
elif isinstance(m, nn.Linear):
if name.endswith(".query"):
nn.init.eye_(m.weight)
We train the model with this setting as well:
import horovod.torch as hvd
from sparkdl import HorovodRunner
import json
config.output_dir += "_zero_init"
print(config.output_dir)
hr = HorovodRunner(np=NUM_WORKERS, driver_log_verbosity='all')
hr.run(train_loop, config=config, zero_init=True)
Visualising samples halfway through training
Below we visually compare the samples from the default- and the zero-initialised models. We conclude that zero initialisation harms the model a little, as the images tend to have less contrast between the foreground and the background, and also sometimes the objects are less-developed. See the highlighted differences near the end of the notebook. NOTE that the samples are very similar only because we fix the random seed during sampling. If we had not fixed the seed, we would have got completely random samples, making visual comparison quite difficult.
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig, axes = plt.subplots(1,2, figsize=[30,40])
img1 = mpimg.imread('/dbfs/ml/Group_7/diffusion/samples/0004.png')
img2 = mpimg.imread('/dbfs/ml/Group_7/diffusion_zero_init_zero_init/samples/0004.png')
axes[0].imshow(img1)
axes[0].set_title("default")
axes[1].imshow(img2)
axes[1].set_title("zero_init")
plt.show()
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig, axes = plt.subplots(1,2, figsize=[30,40])
img1 = mpimg.imread('/dbfs/ml/Group_7/diffusion/samples/0009.png')
img2 = mpimg.imread('/dbfs/ml/Group_7/diffusion_zero_init_zero_init/samples/0009.png')
axes[0].imshow(img1)
axes[0].set_title("default")
axes[1].imshow(img2)
axes[1].set_title("zero_init")
plt.show()
Difference between the samples
To make comparison easier, we highlight the differences between the samples.
Loss curves
Below we open the tensorboard logs to inspect the training curves. We can see that ZerO is consistently worse than the default initialisation, further corroborating the finding the ZerO is not applicable as an out-of-the-box replacement for default initialisation.
tensorboard
%tensorboard --logdir /dbfs/ml/Group_7/
# To view the logs, please filter for 'diffusion' in the search bar in tensorboard!
Smart Search in Wikipedia
Project members:
- David Mohlin, Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Erik Englesson, Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
- Fereidoon Zangeneh, Division of Robotics, Perception and Learning, KTH Royal Institute of Technology
Introduction
- Swedish Wikipedia is the foruth largest language edition of Wikipedia.
- Nearly 2.600.000 articles.
- Many article titles contain similar keywords.
- A user looking for some information needs to sift through different articles to find the most relevant one.
Problem Definition
- We need a mechanism to suggest the most relevant page(s) to the user based on a query keyword.
Method
- We use PageRank [1] to gauge the importance of different articles.
- Upon entering a query keyword, the highest rated articles are shown to the user.
[1] https://en.wikipedia.org/wiki/PageRank
Input data
Input data available from wikimedia (https://dumps.wikimedia.org) corresponding to the wikipedia data corresponding to the different languages. We chose to use the swedish wikipedia as reference. Data is available as several sql databases.
pages.sql
Schema:
page_id | page_namespace | page_title | pageisredirect |
---|---|---|---|
1 | 0 | Amager | 0 |
2 | 0 | Afrika | 0 |
6 | 0 | April_30 | 1 |
pageid: A globablly unique id for pages pagenamespace: Enumerates the type of page, for example 0:Article, 1:Talk, 2:User etc pagetitle: String corresponding to both url of page and name of page. pageis_redirect: If 1 page will redirect to another page.
pagelinks.sql
Schema: | plfrom | plnamespace | pltitle | plfrom_namespace | |---------|--------------|------------|-------------------| | 494921 | 0 | 'Paris' | 0 | | 550301 | 0 | 'vänstern' | 0 |
plfrom: pageid where the link starts plnamespace: namespace where the link leads to pltitle: Title which the link leads to plfromnamespace: namespace where the link starts
redirects.sql
rd_from | rd_namespace | rd_title | rd_interwiki | rd_fragment |
---|---|---|---|---|
6 | 0 | 30_april | '' | '' |
48 | 0 | Agnosticism | '' | '' |
rdfrom: pageid which gets redirected rdnamespace: Nmespace of the redirection rdtitle: Title which the page redirects to rdinterwiki: If not empty the redirect goes to either wiktionary or another language of wikipedia rdfragment: if redirect goes to subsection of another article
for example here pageid 6, with title April30, redirects to 30_april
Desired output
Pagelinks
Required for pagerank
Output: Key guid → list of guid of outgoing links * Collapse redirects into only page which is redirected to * Both for source and destination links * Convert title and namespace into page id
name→page_id
Required for search * Map possibly redirected title to pageid after resolving redirects. * For example "Danmörk" will map to the pageid for article "Danmark"
page_id→namespace and title
Required for constructing an URL from a page_id
Problems
String format
Most strings are encoded in utf-8. Some older entries from ~2005 are encoded in some iso-8859 variant. For example 'ä' is (sometimes) encoded as the byte 0xe4 in iso-8859, utf-8 expects this to be a prefix for a 3 byte special character, where every following byte in this character start with the bits '10'. This is not the case in these databases.
As a result the .sql file as a whole is not a valid utf-8 document. A solution is to decode it as a iso-8859 document, check if a given string is valid utf-8, then decoding it as such if that is the case
redirects
Redirects can redirect to redirected pages. To find out where a redirect chain ends one need to recursively follow the cycle. Luckily there are no cycles of redirects.
pagelinks
First off: iterwiki links were ignored, if they are to be respected many other wikimedia projects have to be included as well. Secondly: pages link to titles, not to other pages. For example links to unwritten articles are a pagelink, but there is no page with a valid page_id corresponding to this link pagelinks can have a redirected title as destination. namespaces matter: For example 'Sverige' is an entry in namespace 0 (article), 1 (talk), 10 (template), 11 (template talk), 14 (Category) and so on. These pages are not the same. For example "Sverige" (Article) has 240k incoming links, "Sverige" (Template) has 25
import json
def parse_string(data, cur):
if data[cur:cur+4] == 'NULL':
return None, cur+4
start = cur
while True:
cur = data.find('\'',cur+1)
if cur == -1:
raise Exception("end of file when trying to find end of string")
even = True
backward_i = 1
while data[cur-backward_i] == '\\':
even = not(even)
backward_i += 1
if even:
strret = data[start+1:cur]
try:
strret = str(bytes(data[start+1:cur], encoding='iso-8859-1'), encoding='utf-8')
except UnicodeDecodeError:
print(data[start+1:cur])
return strret, cur+1
def parse_int(data, cur, end_char):
if data[cur:cur+4] == 'NULL':
return None, cur+4
cur_new = data.find(end_char, cur+1)
val = int(data[cur:cur_new])
return val, cur_new
def parse_float(data, cur, end_char):
cur_new = data.find(end_char, cur+1)
val = float(data[cur:cur_new])
return val, cur_new
def parse_redirect(data, cur):
types = (int, int, str, str, str)
return parse_entry(data, cur, types)
def parse_redirects():
db_name = 'svwiki-latest-redirect.sql'
insert_start = 'INSERT INTO `redirect` VALUES '
return parse_sql(parse_redirect, db_name, insert_start)
def parse_link_col(data, cur):
types = (int, int, str, int)
return parse_entry(data, cur, types)
def parse_sql(parse_fun, db_name, insert_start):
with open(db_name, 'r', encoding='iso-8859-1') as f:
commands = f.read()
commands = commands.replace('\n', '')
ret = []
cur = 0
lc = len(commands)
while cur < lc:
print('{}%'.format(cur*100/lc))
end_of_command = commands.find(';', cur)
if commands[cur:cur+len(insert_start)] == insert_start:
cur = cur+len(insert_start)
while commands[cur] != ';':
data, cur = parse_fun(commands, cur)
ret.append(data)
if commands[cur] == ',':
cur += 1
else:
break
cur+= 1
elif end_of_command == -1:
break
else:
cur = end_of_command+1
return ret
def parse_links():
db_name = 'svwiki-latest-pagelinks.sql'
insert_start = 'INSERT INTO `pagelinks` VALUES '
return parse_sql(parse_link_col, db_name, insert_start)
def parse_entry(data, cur, types, debug=False):
ret = []
for t in types[:-1]:
if t == int:
v, cur = parse_int(data, cur+1, ',')
ret.append(v)
if t == float:
v, cur = parse_float(data, cur+1, ',')
ret.append(v)
elif t == str:
v, cur = parse_string(data, cur+1)
ret.append(v)
if debug:
print(v)
if types[-1] == int:
v, cur = parse_int(data, cur+1, ')')
ret.append(v)
elif types[-1] == float:
v, cur = parse_float(data, cur+1, ')')
ret.append(v)
elif types[-1] == str:
v, cur = parse_string(data, cur+1)
ret.append(v)
return tuple(ret), cur+1
def parse_page_col(data, cur):
types = (int, int, str, int,int, float, str, str, int, int, str, str)
try:
ret, cur = parse_entry(data, cur, types)
except Exception as e:
print(e)
print(data[cur:cur+1000])
ret, cur = parse_entry(data, cur, types, debug=True)
raise e
return ret, cur
def parse_pages():
db_name = 'svwiki-latest-page.sql'
insert_start = 'INSERT INTO `page` VALUES '
return parse_sql(parse_page_col, db_name, insert_start)
def create_page_to_idx_mapping(pages):
values = [(x[0], x[1]) for x in pages] # id, namespace
values = sorted(values,key=lambda x: (x[1], x[0]))
mapping = {values[i]:i for i in range(len(values))}
return mapping
def create_namespace_title_to_page_mapping(pages, redirects):
plain_name_to_id = {}
for p in pages:
plain_name_to_id[(p[1], p[2])] = p[0]
redirect_map = {}
for r in redirects:
if len(r[3]):
continue # redirects to other wiki, such as other language or wiktionary
try:
dst_page = plain_name_to_id[(r[1], r[2])]
redirect_map[r[0]] = dst_page
except KeyError:
pass
redirect_recursive_removed = {}
for k,v in redirect_map.items():
while v in redirect_map:
v = redirect_map[v]
redirect_recursive_removed[k] = v
title_to_page = {}
page_to_namespace_title = {}
for p in pages:
if p[0] in redirect_recursive_removed:
title_to_page[(p[1], p[2])] = redirect_recursive_removed[p[0]]
else:
page_to_namespace_title[p[0]] = [p[1], p[2]]
title_to_page[(p[1], p[2])] = p[0]
return title_to_page, page_to_namespace_title, redirect_recursive_removed
def check_uniqness(pages):
all_guids = {}
for v in pages:
if v[0] in all_guids:
print(all_guids[v[0]])
print(v)
all_guids[v[0]] = v
def create_link_mapping(pages, links, namespace_title2page, redirect_map, fallback=2):
retdict = {}
for p in pages:
if p[0] in redirect_map:
continue
retdict[p[0]] = set()
for l in links:
if l[0] in redirect_map:
page_id = redirect_map[l[0]]
else:
page_id = l[0]
try:
linklist = retdict[page_id]
except KeyError as e:
print('key error {}'.format(l[0]))
print(l[0] in redirect_map)
continue
try:
res = namespace_title2page[(l[1], l[2])]
linklist.add(res)
except Exception as e:
if fallback == 1:
print('could not resolve')
print(l)
elif fallback == 2:
pass
else:
raise e
retdict_list = {}
for k, v in retdict.items():
retdict_list[k] = list(v)
return retdict_list
def main():
redirects = parse_redirects()
pages = parse_pages()
print('create nt2p')
namespace_title2page, page_to_namespace_title, redirection_map = create_namespace_title_to_page_mapping(pages, redirects)
with open('page_to_namespace_title.json', 'w') as f:
json.dump(page_to_namespace_title, f)
with open('page_to_namespace_title.txt', 'w') as f:
for key, val in data.items():
f.write(f"{key}:{','.join([str(i) for i in val])}\n")
exit(0)
name_to_page = {}
for k, v in namespace_title2page.items():
name_to_page[k[1]] = v
with open('name_to_page.json', 'w') as f:
json.dump(name_to_page, f)
with open('name_to_page.txt', 'w') as f:
for key, val in tqdm(data.items()):
f.write(f"{key}:{val}\n")
links = parse_links()
link_mapping = create_link_mapping(pages, links, namespace_title2page, redirection_map)
print('I will save now')
with open('link_mapping.json', 'w') as f:
json.dump(link_mapping, f)
with open('link_mapping.txt', 'w') as f:
for key, val in tqdm(data.items()):
f.write(f"{key}:{','.join([str(i) for i in val])}\n")
print('link mapping')
if __name__ == '__main__':
main()
Definition
- "The PageRank value of a page reflects the chance that the random surfer will land on that page by clicking on a link."
- "The formula uses a model of a random surfer who reaches their target site after several clicks, then switches to a random page."
displayHTML("https://en.wikipedia.org/wiki/PageRank#Algorithm")
import numpy as np
N = 5
A = np.array([[0, 0, 0, 0, 1],
[1, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0]])
s = np.array([0.5, 1.0, 0.5, 1.0, 1.0])
B = np.array([[0.0, 0.0, 0.0, 0.0, 1.0],
[0.5, 0.0, 0.0, 0.0, 0.0],
[0.5, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.5, 0.0, 0.0],
[0.0, 0.0, 0.5, 1.0, 0.0]])
d = 0.15
M = (1-d) * B + d/float(N)
x = np.ones(N) / float(N)
for i in range(100):
x = M @ x
print("M:", M)
print("Desired result:", x)
Two stages: 1. Sparse matrix vector multiplication 2. Scaling and addition for dampening
np.testing.assert_almost_equal(np.sum(x), 1)
np.testing.assert_almost_equal(B @ x, A @ (x * s))
np.testing.assert_almost_equal(M@x,(A@(x*s))*(1-d) + d/float(N)*np.ones(N))
# Matrix multiplication as combination of columns
A_sparse = [(i, np.where(A[:,i]>0)[0]) for i in range(N)]
print("A:", A)
print("A_sparse:", A_sparse)
# Don't have to store s
print("s:", s)
print("s from A_sparse:", np.array([1.0/len(col) for id, col in A_sparse]))
np.testing.assert_almost_equal(s, np.array([1.0/len(col) for id, col in A_sparse]))
# Do matrix multiplication with this sparse format
x2 = np.ones(N) / float(N)
for i in range(100):
# Step 1: Sparse Matrix Vector Product: A@(x*s)
Axs = np.zeros(N)
for col_id, col in A_sparse:
s = 1.0/len(col)
for row_id in col:
Axs[row_id] += x2[col_id] * s
# Step 2: Scaling and addition for dampening
x2 = Axs * (1-d) + d/float(N)
np.testing.assert_almost_equal(x, x2)
How do we parallelize this?
The sparse matrix vector multiplication (Step 1) can be done in parallel in spark with a map and reduce and the scale and addition (Step 2) for the dampening with a map!
# Do matrix multiplication with this sparse format
x3 = np.ones(N) / float(N)
for i in range(100):
# MAP
row_value = []
for col_id, col in A_sparse:
s = 1.0/len(col)
for row_id in col:
row_value.append((row_id, x3[col_id] * s))
# REDUCE
x3 = np.zeros(N)
for row, value in row_value:
x3[row] += value
# MAP
x3 = x3 * (1-d) + d/float(N)
np.testing.assert_almost_equal(x, x3)
rdd = sc.textFile('/FileStore/tables/link_mapping.txt').cache()
def convert_string_to_int(string):
try:
v = int(string)
return v
except ValueError:
return None
# File format:
# - id_from : id_to1, id_to2, id_to3, ..
# Read it to an RDD of form
# [id_from, [id_to1, id_to2,...] ]
# Some pages do not have out links. For simplicity, we remove these here.
id_to_outgoing_rdd = rdd.map(lambda x: (int(x.split(":")[0]), [convert_string_to_int(v) for v in x.split(":")[1].split(",") if convert_string_to_int(v) != None])).filter(lambda x: len(x[1])>0).cache()
# Look at the data
print(id_to_outgoing_rdd.count())
id_to_outgoing_rdd.take(1)
from operator import add
num_partitions = 10
N = id_to_outgoing_rdd.keys().count()
print("N:", N)
d = 0.15
def map_fn(to_from_rank):
node_from, (node_to_list, rank) = to_from_rank
value = rank / len(node_to_list)
return [(node_to, value) for node_to in node_to_list]
# [(page_id, page_rank)]
rankings = id_to_outgoing_rdd.keys().map(lambda x: (x, 1.0 / float(N))).cache()
# [(page_id, [page_to1, page_to2, ...])]
id_to_outgoing_rdd = id_to_outgoing_rdd.cache()
for i in range(30):
rankings = id_to_outgoing_rdd.join(rankings, num_partitions) \
.flatMap(map_fn) \
.reduceByKey(add) \
.mapValues(lambda x: x * (1-d) + d / float(N))
rankings = rankings.collect()
for i in range(10):
print(rankings[i])
with open('/dbfs/FileStore/tables/page_to_rank.txt', 'w+') as f:
for id, rank in rankings:
f.write(f'{id}:{rank}\n')
When reading the saved resutls there are some corrupted cases where some keys miss any values. We define a function to handle such cases by putting a -1 instead of the expected integer.
def convert_string_to_int(string: str) -> int:
"""Convert a string to integer. Return -1 if input is invalid.
Args:
string: Input string.
Returns:
Input string case as integer.
"""
try:
v = int(string)
return v
except ValueError:
return -1
We reading the mapping of the page links, of which pages a query page links to.
link_mapping = sc.textFile('/FileStore/tables/link_mapping.txt').cache()
link_mapping = link_mapping.map(lambda x: (int(x.split(":")[0]), [convert_string_to_int(v) for v in x.split(":")[1].split(",") if convert_string_to_int(v) != -1])).filter(lambda x: len(x[1])>0).cache()
# (from_page: int, [to_page: int, ...])
We read the mapping of page rankings, of what importance ranking a query page has.
page_to_rank = sc.textFile('/FileStore/tables/page_to_rank.txt')
page_to_rank = page_to_rank.map(lambda x: (int(x.split(":")[0]), float(x.split(":")[1]))).cache()
# (page: int, rank: float)
We read the mapping of page namespaces and titles, of what namespace and title a query page has.
page_to_namespace_title = sc.textFile('/FileStore/tables/page_to_namespace_title.txt')
page_to_namespace_title = page_to_namespace_title.map(lambda x: (int(x.split(":")[0]),
int(x.split(":")[1].split(",")[0]), x.split(":")[1].split(",")[1]
)).cache()
# (page: int, namespace: int, title: str)
We define function that returns the page IDs, whose title matches the query keywords.
from pyspark.rdd import PipelinedRDD
def find_pages(
page_to_namespace_title: PipelinedRDD,
query: str,
search_method: str = "relaxed"
) -> PipelinedRDD:
"""Find the pages in an RRD, whose title matches a query keyword.
Args:
page_to_namespace_title:
RDD that contains 3-tuples of page ID (int), namespace (int), title (str).
query: Query string.
search_method:
Flag for how the search is performed; "literal" finds pages with exact title as the query,
"relaxed" finds pages, whose title contains the query phrase. Both cases are case insensitive.
Returns:
The RDD of page IDs that match the query phrase.
"""
if search_method not in ("literal", "relaxed"):
raise NotImplementedError("Only 'literal' and 'relaxed' search methods are implemented")
if search_method == "literal":
return page_to_namespace_title.filter(lambda x: query.lower() == x[2].lower()).map(lambda x: x[0])
if search_method == "relaxed":
return page_to_namespace_title.filter(lambda x: query.lower() in x[2].lower()).map(lambda x: x[0])
We find the related pages for a given query.
matched_pages = find_pages(page_to_namespace_title, "laser", "relaxed").collect()
print(f"Found {len(matched_pages)} matching articles.")
We find the top n pages according to their PageRank importance for the given query.
n = min(5, len(matched_pages))
top_n_pages = page_to_rank.filter(lambda x: x[0] in matched_pages).takeOrdered(n, key=lambda x: -x[1])
top_n_pages = [v[0] for v in top_n_pages]
We print the titles and the namespaces of the top n pages.
top_n_namespaces_and_titles = page_to_namespace_title.filter(lambda x: x[0] in top_n_pages).map(lambda x: (x[1], x[2])).collect()
print(f"Top {n} search results are:")
for i, (namespace, title) in enumerate(top_n_namespaces_and_titles):
print(f"{i + 1}. {title} in namespace {namespace}")
matched_pages = find_pages(page_to_namespace_title, "gustav", "relaxed").collect()
print(f"Found {len(matched_pages)} matching articles.")
n = min(5, len(matched_pages))
top_n_pages = page_to_rank.filter(lambda x: x[0] in matched_pages).takeOrdered(n, key=lambda x: -x[1])
top_n_pages = [v[0] for v in top_n_pages]
top_n_namespaces_and_titles = page_to_namespace_title.filter(lambda x: x[0] in top_n_pages).map(lambda x: (x[1], x[2])).collect()
print(f"Top {n} search results are:")
for i, (namespace, title) in enumerate(top_n_namespaces_and_titles):
print(f"{i + 1}. {title} in namespace {namespace}")
top_ranked_pages = page_to_rank.takeOrdered(10, key=lambda x: -x[1])
top_ranked_pages = [v[0] for v in top_ranked_pages]
top_ranked_namespaces_and_titles = page_to_namespace_title.filter(lambda x: x[0] in top_ranked_pages).map(lambda x: (x[1], x[2])).collect()
print(f"Top {10} ranked pages results are:")
for i, (namespace, title) in enumerate(top_ranked_namespaces_and_titles):
print(f"{i + 1}. {title} in namespace {namespace}")
Distributed Ensembles for 3D Human Pose Estimation
Project members:
- Hampus Gummesson Svensson, Chalmers University of Technology
- Xixi Liu, Chalmers University of Technology
- Yaroslava Lochman, Chalmers University of Technology
- Erik Wallin, Chalmers University of Technology
Introduction
Our task is to perform 3D human pose estimation in video, where the objective is to predict 3D positions of keypoints from 2D positions in video sequences. Specifically, temporal information including 27 frames is used to make predicitons. To acquire more accurate predicitons, we employ a distributed ensembles of temporal convolutional networks. The temporal convolutional network developed by Pavllo, Dario, et al. [2] is employed. This is done in a setting where both labelled and unlabelled data is available.
Distributed Ensembled Models
Ensembled models refer to training several models independently. During inference, predictions from each model (also called memeber) are aggregated to make the final pediction. They are often used to estimate uncertainty in deep neural networks [1]. In particular, it is used for the estimation of predictive uncertainty including model and data uncertainty. Model uncertainty occurs due to the non-optimal training procedure or insufficient model structure and is reducible. Data uncertainty happens due to the variablity of the real world or the inherent error in measurement systems. It is irreducible. Moreover, ensembled models are also competitive to improve the test accuracy. In this project, we conduct a distributed version of ensembled models to decrease the test error.
In general, there are two types of distributed training including data parallelism and model parallelism.

In our project, we utilize both data parallesim and model parallelism. Teachnically, each memeber/model is distributed and further trained on different worker nodes. Because we use the mean of predicitons of each member, the same test dataset is sent to each worker node and make infererence after training. Furthermore, under the assumption that a huge dataset is availble, the whole training dataset is stored in dirver node and each memeber has access to a subset of traning dataset. Specifically, a constant size of susbset training data is pre-dedefined depending on the the memory space of worker node.
Semi-supervised learning
Anotating data is not only costly but time-consumping, implying that the amount of labeled data is limited in many practical applications. Given a dataset consisting of both unlabeled and labeled instances, semi-supervised learning aims to use both the labeled data and unlabeled data to improve the model performance, compared to just using labeled instances. Specifically, the models is first trained by labebled data. Then the trained model is further utilized to predict pseudo-labels for the unlabeled data, which is incoporated into the training data for further training.
Semi-supervised learning with pseudolabels using an ensemble
One way to obtain pseudo-labels in semi-supervised learning is to use the prediction from an ensemble of supervised models. Specifically, each model is trained independetly on all or a part of the available labeled data. After training, each model makes predictions for the unlabeled instances. The predictions on each instance is then aggregated to provide so called pseudolabels that can be used for supervised training, either training a single model or again an ensemble of models to predict labels of unseen data. There are several ways to aggragate the predictions from each model. We use the mean of predictions from each model as the pseudo-label.
3D Human Pose Estimation
3D human pose estimation involves predicting 3D locations of keypoints,e.g., head, hands and elbows, given 2D locations of these keypoints. 2D locations can be given by a video sequence, while the 3D locations are often provided by a motion capture system. For instance, in the sequence below, we see 2D locations of keypoints to the left and the 3D pose to the right. Provided the 2D locations of keypoints to the left, the task is to predict the true 3D locations to the right, which then can provide the full 3D pose (as seen to the right).
Summary
In this work, * we train a distributed ensemble for 3D human pose estimation in video, where the training data is split up into labeled and unlabeled data. The distributed ensemble is to compute pseudovalues of unlabeled data. We aggregate the prediction of each ensmeble to one single value, that is used for training on labeled and unlabeled data. We incrementally increase the amount of unlabeled data with pseudovalues that is used for training. We use the HumanEva-I dataset [3] for training and evaluation. The mean of predictions from each memeber is taken as the final prediciton. * Further, we conduct experiments and analyze
- how the performance of the distributed ensembled models varies with different number of members in terms of test error;
- how the performance of distributed ensembled mdoel varies while incorportaing the unlabelled data during the training stage.
Licensing
Parts of this code are taken from VideoPose3D repository.
Copyright (c) 2018-present, Facebook, Inc.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
References
[1] Lakshminarayanan, Balaji, et al. " Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles." Neural Information Processing Systems. 2017.
[2] Pavllo, Dario, et al. "3d human pose estimation in video with temporal convolutions and semi-supervised training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
[3] Sigal, Leonid, Alexandru O. Balan, and Michael J. Black. "Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion." International journal of computer vision 87.1 (2010): 4-27.
To train and evaluate our ensembled models for human pose estimation, we decided to use HumanEva-I (or simply HumanEva) dataset. It consists of three subjects performing a set of six pre-defined actions including Walk
, Jog
, Throw/catch
, Gesture
, Box
, and Combo
. The subjects movements were recorded using three synchronized cameras at 60 Hz, and ground-truth 3D motions were simultaneously captured using a commercial motion capture system. In total, there are 56 sequences and approximately 80000 frames. As a human pose model, a 15-joint skeleton was adopted, giving 15 keypoints. Our approach of distributed ensembles can be used for other 3D pose estimation datasets as long as the 2D/3D locations are provided.
The data and future model checkpoints will be loaded under dbfs:/VideoPose3D
.
ls dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised
path | name | size |
---|---|---|
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/1_members_ensemble0_iter0.ckpt | 1_members_ensemble0_iter0.ckpt | 3.4199173e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble0_iter0.ckpt | 2_members_ensemble0_iter0.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble0_iter1.ckpt | 2_members_ensemble0_iter1.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble0_iter2.ckpt | 2_members_ensemble0_iter2.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble0_iter3.ckpt | 2_members_ensemble0_iter3.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble0_iter4.ckpt | 2_members_ensemble0_iter4.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble1_iter0.ckpt | 2_members_ensemble1_iter0.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble1_iter1.ckpt | 2_members_ensemble1_iter1.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble1_iter2.ckpt | 2_members_ensemble1_iter2.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble1_iter3.ckpt | 2_members_ensemble1_iter3.ckpt | 3.4199554e7 |
dbfs:/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/2_members_ensemble1_iter4.ckpt | 2_members_ensemble1_iter4.ckpt | 3.4199554e7 |
We start by loading the data that has been pre-processed by the authors of [1] and [2]. Further down we show how we transform it into the .csv
format, which is well supported by Apache Spark.
First we load the two .npz
files with the 2D and 3D keypoints of the HumanEva dataset, respectively.
pip install pip --upgrade --quiet
pip install gdown --quiet
cd /dbfs/VideoPose3D/humaneva
gdown 1EngBymOjXWPntjfNVaGZhBX7sNCNg9pu # data_2d_humaneva15_gt.npz
gdown 1ErTRudqF8ugAwopL3ieral0YMEtE28Dd # data_3d_humaneva15.npz
data_2d_humaneva15_gt.npz
containspos2d
with 2D keypoint locations of the joints of moving humans in various video sequences. The format is as following:- it is a dictionary with keys corresponding to different subjects:
S1
,S2
, andS3
- since it was pre-split into train-validation data by the dataset authors, the keys we see are
Train/S1
...Valiation/S1
..., however we ignore that split - each subject contains another dictionary with keys corresponding to different actions:
Jog
,Box
,Walking
,Gestures
,ThrowCatch
. - again, since it was pre-split, instead of the full videos we get the chunks of videos,
Jog chunk0
... - for each video, we have three views (
camera
can be0
,1
, or2
), since three cameras were looking at the moving subjects during data collection
- it is a dictionary with keys corresponding to different subjects:
data_3d_humaneva15.npz
containspos3d
which has the same structure aspos2d
, but instead of the 2D keypoint locations, it contains the ground-truth 3D keypoint locations, and also it doesn't have three different views.
We transform the .npz
files into the .csv
files that will be used further when working with RDDs. We split the data into train and test subsets for convenience and make sure that both contain a reasonable portion of data for each subject and each action.
import numpy as np
import pandas as pd
ROOTDIR = '/dbfs/VideoPose3D'
path2d = f'{ROOTDIR}/humaneva/data_2d_humaneva15_gt.npz'
path3d = f'{ROOTDIR}/humaneva/data_3d_humaneva15.npz'
pos2d = np.load(path2d, allow_pickle=True)['positions_2d'].item()
pos3d = np.load(path3d, allow_pickle=True)['positions_3d'].item()
pos_data = []
pos_data_train = []
pos_data_test = []
assert(pos2d.keys() == pos3d.keys())
for subject in pos2d.keys():
print(f'{subject}: {sum([pos2d[subject][action][0].shape[0] for action in pos2d[subject].keys()])} frames in total')
assert(pos2d[subject].keys() == pos3d[subject].keys())
print(list(pos2d[subject].keys()))
# Train-Test split
actions_for_test = [[a for a in pos2d[subject].keys() if action_name in a] for action_name in ['Jog', 'Box', 'Walking', 'Gestures', 'ThrowCatch']]
actions_for_test = [a[1] for a in actions_for_test if len(a)>1]
# Add to full data
for action in pos2d[subject].keys():
for camera in [0,1,2]:
n_frames = pos2d[subject][action][camera].shape[0]
assert(n_frames==pos3d[subject][action].shape[0])
frames = np.hstack([
pos2d[subject][action][camera].reshape(n_frames,-1),
pos3d[subject][action].reshape(n_frames,-1)])
row = [[subject, action, camera, *frame] for frame in frames]
pos_data.extend(row)
# Add to train data
for action in set(pos2d[subject].keys()) - set(actions_for_test):
for camera in [0,1,2]:
n_frames = pos2d[subject][action][camera].shape[0]
assert(n_frames==pos3d[subject][action].shape[0])
frames = np.hstack([
pos2d[subject][action][camera].reshape(n_frames,-1),
pos3d[subject][action].reshape(n_frames,-1)])
row = [[subject, action, camera, *frame] for frame in frames]
pos_data_train.extend(row)
# Add to test data
for action in actions_for_test:
for camera in [0,1,2]:
n_frames = pos2d[subject][action][camera].shape[0]
assert(n_frames==pos3d[subject][action].shape[0])
frames = np.hstack([
pos2d[subject][action][camera].reshape(n_frames,-1),
pos3d[subject][action].reshape(n_frames,-1)])
row = [[subject, action, camera, *frame] for frame in frames]
pos_data_test.extend(row)
print('Creating full dataframe...')
pos_df = pd.DataFrame(pos_data, columns=['Subject','Action','Camera'] + (','.join([f'x{i+1},y{i+1}' for i in range(15)])).split(',') + (','.join([f'X{i+1},Y{i+1},Z{i+1}' for i in range(15)])).split(','))
print('Creating train dataframe...')
pos_df_train = pd.DataFrame(pos_data_train, columns=['Subject','Action','Camera'] + (','.join([f'x{i+1},y{i+1}' for i in range(15)])).split(',') + (','.join([f'X{i+1},Y{i+1},Z{i+1}' for i in range(15)])).split(','))
print('Creating test dataframe...')
pos_df_test = pd.DataFrame(pos_data_test, columns=['Subject','Action','Camera'] + (','.join([f'x{i+1},y{i+1}' for i in range(15)])).split(',') + (','.join([f'X{i+1},Y{i+1},Z{i+1}' for i in range(15)])).split(','))
SAVE = False
if SAVE:
pos_df.to_csv(f'{ROOTDIR}/humaneva/humaneva15.csv')
pos_df_train.to_csv(f'{ROOTDIR}/humaneva/humaneva15_train.csv')
pos_df_test.to_csv(f'{ROOTDIR}/humaneva/humaneva15_test.csv')
print('Done.')
We also experimented with 2D keypoint detections produced by Mask-RCNN, which we load in the cell below.
cd /dbfs/VideoPose3D/humaneva/
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_humaneva15_detectron_pt_coco.npz
We pre-save the skeleton data for HumanEva dataset.
humaneva_skeleton = {
'parents': [-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1],
'joints_left': [2, 3, 4, 8, 9, 10],
'joints_right': [5, 6, 7, 11, 12, 13],
}
np.savez(f'{ROOTDIR}/humaneva/humaneva_skeleton.npz', data=humaneva_skeleton)
Let's plot the first frames of the video sequences in our dataset to understand, what kind of input is expected by the neural network (see more details on that in the next noteook).
from IPython.display import HTML
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import matplotlib as mpl
desc_list = []
pos2d_list = []
for row in pos_df.iterrows():
if row[1].values[2]==0:
desc_list.append(': '.join(row[1].values[:2]) + f' (Cam {row[1].values[2]})')
pos2d_list.append(np.array(row[1].values[3:3+15*2]).reshape(15,2))
pos2d_list = np.array(pos2d_list)
figure, ax = plt.subplots(figsize=(10,10))
ax.axis('equal')
xmin, xmax = pos2d_list[:,:,0].min(), pos2d_list[:,:,0].max()
ymin, ymax = pos2d_list[:,:,1].min(), pos2d_list[:,:,1].max()
def animation_function(i):
ax.clear()
# Setting title as subject + action + camera
ax.set_title(desc_list[i])
# Setting limits for x and y axis
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.invert_yaxis()
# Plotting the 2D keypoints
x = pos2d_list[2*i,:,0]
y = pos2d_list[2*i,:,1]
plt.scatter(x, y)
# Plotting the 2D skeleton
for indices in [np.array([-1, 1, 0]),
np.array([1, 2, 3, 4]),
np.array([1, 5, 6, 7]),
np.array([0, 8, 9, 10]),
np.array([0, 11, 12, 13])]:
plt.plot(x[indices], y[indices], 'b-')
animation = FuncAnimation(figure, animation_function, frames=500)
#Output too big for mdbook. Animation available in Databricks.
#HTML(animation.to_jshtml())
Training Distributed Ensembles for 3D Human Pose Estimation
In this notebook, we provide the necessary code of preparing the RDDs with pose data and creating and training a distributed ensemble of temporal CNNs for 3D pose estimation from the sequences of keypoints which will be described in more details further down.
import numpy as np
import torch
from random import sample, seed
import pyspark.sql.functions as F
from pyspark.sql.types import StructType, StringType, DoubleType, IntegerType, ArrayType
from pyspark.sql import Window
from pyspark.sql.functions import collect_list, size, udf
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.types import BooleanType
from pyspark.sql.functions import udf
from itertools import groupby
from pyspark.rdd import PipelinedRDD
from torch import nn
from pathlib import Path
import os
import matplotlib.pyplot as plt
ROOTDIR = 'VideoPose3D'
humaneva_train_path = f'/{ROOTDIR}/humaneva/humaneva15_train.csv'
humaneva_test_path = f'/{ROOTDIR}/humaneva/humaneva15_test.csv'
def load_data_from_csv(file_location):
"""Load and preprocess HumanEva data
Args:
file_location: file location from which to load the data
Returns:
df: spark DataFrame
"""
file_type = "csv"
infer_schema = "true"
first_row_is_header = False
delimiter = ","
# Prepare a schema with column names+types
schema = StructType() \
.add("Idx",IntegerType(),True) \
.add("Subject",StringType(),True) \
.add("Action",StringType(),True) \
.add("Camera",StringType(),True)
for i in range(15):
schema = schema.add(f"u{i}",DoubleType(),True).add(f"v{i}",DoubleType(),True)
for i in range(15):
schema = schema.add(f"X{i}",DoubleType(),True).add(f"Y{i}",DoubleType(),True).add(f"Z{i}",DoubleType(),True)
# Load the data from file
df = spark.read.csv(file_location, header=True, schema=schema, sep=',')
return df
df_train = load_data_from_csv(humaneva_train_path)
df_test = load_data_from_csv(humaneva_test_path)
Let us take a closer look at df_train
:
display(df_train.head(5))
Here, * (Xi
, Yi
, Zi
) are the 3D coordinates of the i
-th keypoint * (ui
, vi
) are the projected 2D coordinates of the corresponding keypoint * (Subject
, Action
, Camera
) identify the same group of frames for which we will further apply a sliding window approach
Let's plot the distribution of the train data and test data stratified by the action type to ensure we have enough observations in both.
@F.udf(StringType())
def first_word(s, delimeter=' '):
"""Take the first word ouf of the sentence string."""
return s.split(delimeter)[0]
display(df_train.withColumn("ActionType", first_word(df_train['Action'])))
display(df_test.withColumn("ActionType", first_word(df_test['Action'])))
Assembling features and targets
With VectorAssembler, we transoform the 3D keypoints (used as targets) into 45-dimensional vectors [X0
, Y0
, Z0
,...,X14
, Y14
, Z14
] and corresponding projected 2D keypoints (used as features) into 30-dimensional vectors [u0
, v0
,...,u14
, v14
].
df_train = df_train.withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
df_test = df_test.withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
feature_names = []
target_names = []
n_keypoints = 15
for i in range(n_keypoints):
# features correspond to 2D positions
feature_names.append("u{}".format(i))
feature_names.append("v{}".format(i))
# targets correspond to 3D positions
target_names.append("X{}".format(i))
target_names.append("Y{}".format(i))
target_names.append("Z{}".format(i))
# merge u, v into a vector column
feature_assembler = VectorAssembler(inputCols=feature_names, outputCol="features")
# merge X, Y, Z into a vector column
target_assembler = VectorAssembler(inputCols=target_names, outputCol="targets")
def assemble_vectors(df):
df = feature_assembler.transform(df)
df = target_assembler.transform(df)
df = df.drop(*feature_names).drop(*target_names)
return df
df_train_vectors = assemble_vectors(df_train)
df_test_vectors = assemble_vectors(df_test)
Temporal convolutional networks use convolutional layers to slide over the time axis in the input sequences. Dilations are often employed to model long-term temporal relations. In our project, we use a a temporal CNN to predict 3D human pose from a small (27 frames) sequence of 2D keypoints, further referred to as receptive field. An example of such a network with receptive field 9 is shown below.
So, the employed temporal CNN uses the temporal information, in particular, the 3D pose prediction of the current frame depends on several previous frames and several future frames. In case of confusion, how can we use the future frames — with the 27 receptive field we get a 0.2sec lag which is not so bad, but it's also possible to shift the convolutions so that we could use only previous frames for real-time applications. Since the data is provided per frame, to reduce the computational load of data pre-processing in the worker node, we first encapsulate any sequential 27 frames into one feature sequence. Each feature contains the 2D positions of the 15 joints (keypoints). Each feature sequence therefore consists of the 2D positions of 27 frames. The target of a sequence is the 3D pose of the middle frame. This data is used for training and evaluation instead of the individual positions.
receptive_field = 27
w = Window.orderBy("Idx").partitionBy(["Group"]).rowsBetween(Window.currentRow-receptive_field//2, Window.currentRow+receptive_field//2)
def create_receptive_fields(df):
df = df.withColumn("feature_sequence", collect_list("features").over(w))
df = df.withColumn("group_sequence", collect_list("Group").over(w))
df = df.filter(size(df.group_sequence) == receptive_field)
return df
df_train_receptive = create_receptive_fields(df_train_vectors).drop("features")
df_test_receptive = create_receptive_fields(df_test_vectors).drop("features")
Visualisation of receptive field data
display(df_train_receptive)
# seed 0 has been chosen because it gives an ok split in terms of chunk sizes
# split dataset to labeled and unlabeled dataset, which is used in the framerwork of semi-supervised learning
seed(0)
chunks = df_train_receptive.select("Group").distinct().collect()
chunks = [x["Group"] for x in chunks]
num_chunks = len(chunks)
num_unlabeled = int(num_chunks*0.6)
unlabeled_chunks = sample(chunks, num_unlabeled)
labeled_chunks = [x for x in chunks if x not in unlabeled_chunks]
df_train_receptive_unlabeled = df_train_receptive.filter(df_train_receptive.Group.isin(unlabeled_chunks))
df_train_receptive_unlabeled = df_train_receptive_unlabeled.drop("targets")
df_train_receptive_labeled = df_train_receptive.filter(~df_train_receptive.Group.isin(unlabeled_chunks))
Converting dataframes to torch tensors
Here we create RDDs for training and test from the corresponding DataFrames to RDDs. Thereafter, we map the vectors to Tensor enable training using PyTorch.
def toTensorLabeled(x):
fs = x["feature_sequence"]
target = x["targets"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor,dtype=torch.float)
yy = torch.tensor(target,dtype=torch.float)
return xx.view(27, 15, 2), yy.view(1, 15, 3)
def toTensorUnlabeled(x):
fs = x["feature_sequence"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor, dtype=torch.float)
return xx.view(27, 15, 2)
labeled_tensor_rdd = df_train_receptive_labeled.rdd.map(toTensorLabeled)
unlabeled_tensor_rdd = df_train_receptive_unlabeled.rdd.map(toTensorUnlabeled)
test_tensor_rdd = df_test_receptive.rdd.map(toTensorLabeled)
Dataset splits
Here we provide functions for * Train/Test split * Labeled/Unlabeled split * Dataset split for each member. Note that we provide two functions. The one is split_for_ensemble
, which guarantees that each member accesses the unique data. The other is sample_data_for_ensemble
that randomly samples the same size of training data for each memeber meaning that there might be some reused data over different members.
def get_labeled_subset(labeled_tensor_rdd, full_size):
# Data is loaded into driver's memory
data = labeled_tensor_rdd.takeSample(True, full_size)
x, y = zip(*data)
return torch.stack(x), torch.stack(y)
def split_for_ensemble(x,y, n_models, full_size):
'''
Splits data so that each member acesses unique data for training
'''
full_size = x.shape[0]
split_size = full_size//n_models if full_size % n_models == 0 else full_size//n_models + 1
x = torch.split(x, split_size)
y = torch.split(y, split_size)
return list(zip(x, y))
def get_unlabeled_subset(unlabeled_tensor_rdd, full_size):
# Data is loaded into driver's memory
data = unlabeled_tensor_rdd.takeSample(True, full_size)
return torch.stack(data)
def sample_data_for_ensemble(x,y, n_models, subset_size):
'''
Randomly sample a subset of training data
'''
x_ = []
y_ = []
subset_size = np.amin([subset_size, x.size(0)])
for i in range(n_models):
perm = torch.randperm(x.size(0))
idx = perm[:subset_size]
x_.append(x[idx])
y_.append(y[idx])
return list(zip(x_, y_))
class DataSet(torch.utils.data.Dataset):
def __init__(self, pos2D, pos3D):
self.pos2D = pos2D # self.pos2D: B x 27 x 15 * 2
self.pos3D = pos3D # self.pos3D: B x 1 x 15 * 3
def __len__(self):
return self.pos2D.shape[0]
def __getitem__(self, ind):
pos2D = self.pos2D[ind] # pos2D: B x 27 x 15 * 2 -> 27 x 15 * 2
pos3D = self.pos3D[ind] # pos2D: B x 1 x 15 * 3 -> 1 x 15 * 2
return pos2D, pos3D
Temporal CNNs for 3D pose estimation
Here we define the 3D pose estimation model with temporal convolutions. All members of our ensembles use the same model architecture.
class TemporalModelBase(nn.Module):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout, channels):
super().__init__()
# Validate input
for fw in filter_widths:
assert fw % 2 != 0, 'Only odd filter widths are supported'
self.num_joints_in = num_joints_in
self.in_features = in_features
self.num_joints_out = num_joints_out
self.filter_widths = filter_widths
self.drop = nn.Dropout(dropout)
self.relu = nn.ReLU(inplace=True)
self.pad = [ filter_widths[0] // 2 ]
self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
self.shrink = nn.Conv1d(channels, num_joints_out*3, 1)
def set_bn_momentum(self, momentum):
self.expand_bn.momentum = momentum
for bn in self.layers_bn:
bn.momentum = momentum
def forward(self, pos2D):
assert len(pos2D.shape) == 4 # pos2D: B x 27 x 15 x 2
assert pos2D.shape[-2] == self.num_joints_in # 15
assert pos2D.shape[-1] == self.in_features # 2
sz = pos2D.shape[:3] # B x 27 x 15
pos2D = pos2D.view(pos2D.shape[0], pos2D.shape[1], -1) # B x 27 x 15 * 2
pos2D = pos2D.permute(0, 2, 1) # B x 15 * 2 x 27
pos3D = self._forward_blocks(pos2D)
pos3D = pos3D.permute(0, 2, 1)
pos3D = pos3D.view(sz[0], -1, self.num_joints_out, 3)
return pos3D
class TemporalModel(TemporalModelBase):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout=0.25, channels=1024):
"""
Reference 3D pose estimation model with temporal convolutions.Initialize this model.
Arg:
num_joints_in -- number of input joints (i.e. 15 for HumanEva-I)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
dropout -- dropout probability
channels -- number of convolution channels
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in*in_features, channels, filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
next_dilation = filter_widths[0] # 3
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1)*next_dilation // 2) # [1, 3, 9]
layers_conv.append(nn.Conv1d(channels, channels,
filter_widths[i],
dilation=next_dilation,
bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i] # 3, 9, 27
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, pos2D):
# pos2D: B x 15 * 2 x 27
x = self.drop(self.relu(self.expand_bn(self.expand_conv(pos2D)))) # B x 1024 x 25
print(x.shape)
for i in range(len(self.pad) - 1):
pad = self.pad[i+1] # 3, 9
res = x[:, :, pad : x.shape[2] - pad] # B x 1024 x 19, B x 1024 x 1
x = self.drop(self.relu(self.layers_bn[2*i](self.layers_conv[2*i](x)))) # B x 1024 x 19, B x 1024 x 1
x = res + self.drop(self.relu(self.layers_bn[2*i + 1](self.layers_conv[2*i + 1](x))))
pos3D = self.shrink(x) # B x 15*3 x 1
return pos3D
@staticmethod
def from_state_dict(params, hyperparams):
net = TemporalModel(*hyperparams)
net.load_state_dict(params)
return net
Below we define the hyperparameters for the architecture and training
class Args:
num_joints = 15
stride = 1 # temporal length of the prediction to use during training
epochs = 10 # number of training epochs
batch_size = 128 # batch size in terms of predicted frames
dropout = 0.25 # dropout probability
learning_rate = 0.001 # initial learning rate
lr_decay = 0.996 # learning rate decay per epoch
data_augmentation = True # train-time flipping
test_time_augmentation = True # test-time flipping
architecture = '3,3,3' # filter widths separated by comma
channels = 1024 # number of channels in convolution layers
args = Args()
filter_widths = [int(x) for x in args.architecture.split(',')]
receptive_field = np.prod(filter_widths) # model_pos.receptive_field()
print('INFO: Receptive field: {} frames'.format(receptive_field))
pad = (receptive_field - 1) // 2 # Padding on each side
hyperparams = [args.num_joints, 2, args.num_joints, filter_widths, args.dropout, args.channels]
MPJPE Loss
The loss used for training and evaluation is the mean per-joint postion error (MPJPE), which is the mean Euclidean distance between predicted joint postions and ground-truth joint postions
\[ \mathbf{MPJPE}(X^*, X)
\sum_{k=1}^K \frac{|| X_k - X_k^*||_2}{K} \]
where \(X_k \in \mathbb{R}^3\) is the predicted 3D location of the \(k\)-th keypoint and \(X_k^*\) is its corresponding ground-truth 3D location.
def mpjpe(predicted, target):
"""
Mean per-joint position error (i.e. mean Euclidean distance),
often referred to as "Protocol #1" in many papers.
"""
assert predicted.shape == target.shape
return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
__backend_agg_display_orig = display
__backend_agg_dfs = []
def __backend_agg_display_new(df):
__backend_agg_df_modules = ["pandas.core.frame", "databricks.koalas.frame", "pyspark.sql.dataframe", "pyspark.pandas.frame"]
if (type(df).__module__ in __backend_agg_df_modules and type(df).__name__ == 'DataFrame') or isinstance(df, list):
__backend_agg_dfs.append(df)
display = __backend_agg_display_new
def __backend_agg_user_code_fn():
import base64
exec(base64.standard_b64decode("QEYudWRmKFN0cmluZ1R5cGUoKSkKZGVmIGZpcnN0X3dvcmQocywgZGVsaW1ldGVyPScgJyk6CiAgICAiIiJUYWtlIHRoZSBmaXJzdCB3b3JkIG91ZiBvZiB0aGUgc2VudGVuY2Ugc3RyaW5nLiIiIgogICAgcmV0dXJuIHMuc3BsaXQoZGVsaW1ldGVyKVswXQoKZGlzcGxheShkZl90cmFpbi53aXRoQ29sdW1uKCJBY3Rpb25UeXBlIiwgZmlyc3Rfd29yZChkZl90cmFpblsnQWN0aW9uJ10pKSk=").decode())
try:
# run user code
__backend_agg_user_code_fn()
#reset display function
display = __backend_agg_display_orig
if len(__backend_agg_dfs) > 0:
# create a temp view
if hasattr(__backend_agg_dfs[0], "to_spark"):
# koalas dataframe
__backend_agg_dfs[0].to_spark().createOrReplaceTempView("DatabricksViewf358a0c")
elif type(__backend_agg_dfs[0]).__module__ == "pandas.core.frame" or isinstance(__backend_agg_dfs[0], list):
# pandas dataframe
spark.createDataFrame(__backend_agg_dfs[0]).createOrReplaceTempView("DatabricksViewf358a0c")
else:
__backend_agg_dfs[0].createOrReplaceTempView("DatabricksViewf358a0c")
#run backend agg
display(spark.sql("""WITH q AS (select * from DatabricksViewf358a0c) SELECT `ActionType`,COUNT(`Idx`) `column_c7d5d6923` FROM q GROUP BY `ActionType`"""))
else:
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
finally:
spark.sql("drop view if exists DatabricksViewf358a0c")
display = __backend_agg_display_orig
del __backend_agg_display_new
del __backend_agg_display_orig
del __backend_agg_dfs
del __backend_agg_user_code_fn
__backend_agg_display_orig = display
__backend_agg_dfs = []
def __backend_agg_display_new(df):
__backend_agg_df_modules = ["pandas.core.frame", "databricks.koalas.frame", "pyspark.sql.dataframe", "pyspark.pandas.frame"]
if (type(df).__module__ in __backend_agg_df_modules and type(df).__name__ == 'DataFrame') or isinstance(df, list):
__backend_agg_dfs.append(df)
display = __backend_agg_display_new
def __backend_agg_user_code_fn():
import base64
exec(base64.standard_b64decode("ZGlzcGxheShkZl90ZXN0LndpdGhDb2x1bW4oIkFjdGlvblR5cGUiLCBmaXJzdF93b3JkKGRmX3Rlc3RbJ0FjdGlvbiddKSkp").decode())
try:
# run user code
__backend_agg_user_code_fn()
#reset display function
display = __backend_agg_display_orig
if len(__backend_agg_dfs) > 0:
# create a temp view
if hasattr(__backend_agg_dfs[0], "to_spark"):
# koalas dataframe
__backend_agg_dfs[0].to_spark().createOrReplaceTempView("DatabricksViewb1d64fd")
elif type(__backend_agg_dfs[0]).__module__ == "pandas.core.frame" or isinstance(__backend_agg_dfs[0], list):
# pandas dataframe
spark.createDataFrame(__backend_agg_dfs[0]).createOrReplaceTempView("DatabricksViewb1d64fd")
else:
__backend_agg_dfs[0].createOrReplaceTempView("DatabricksViewb1d64fd")
#run backend agg
display(spark.sql("""WITH q AS (select * from DatabricksViewb1d64fd) SELECT `ActionType`,COUNT(`Idx`) `column_542de4915` FROM q GROUP BY `ActionType`"""))
else:
displayHTML("dataframe no longer exists. If you're using dataframe.display(), use display(dataframe) instead.")
finally:
spark.sql("drop view if exists DatabricksViewb1d64fd")
display = __backend_agg_display_orig
del __backend_agg_display_new
del __backend_agg_display_orig
del __backend_agg_dfs
del __backend_agg_user_code_fn
Per-model training-predictions pipelines
The train and prediction models for each member are defined below. Note that Spark enables distribution of these functions on the work node automatically.
def train(params, hyperparams, pos2D, pos3D, args):
"""
A training pipeline that every model in an ensemble performs
Args:
params -- model state dict (initial parameters)
hyperparams -- hyperparameters corresponding to the model architecture
pos2D -- inputs -- 2D receptive fields
pos3D -- targets -- 3D poses
args -- training parameters
Returns:
trained parameters in a model state dict
training loss value
"""
model = TemporalModel.from_state_dict(params, hyperparams)
model.train()
lr = args.learning_rate
lr_decay = args.lr_decay
train_data = DataSet(pos2D, pos3D)
dataloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
opt = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
initial_momentum = 0.1
final_momentum = 0.001
losses_3d_train = []
for epoch in range(args.epochs):
epoch_loss_3d_train = 0
N = 0
for batch in dataloader:
inputs_2d, inputs_3d = batch
if torch.cuda.is_available():
inputs_3d = inputs_3d.cuda()
inputs_2d = inputs_2d.cuda()
model = model.cuda()
inputs_3d[:, :, 0] = 0
# Predict 3D poses
predicted_3d_pos = model(inputs_2d)
# Calcuclate MPJPE loss
loss_3d_pos = mpjpe(predicted_3d_pos, inputs_3d)
epoch_loss_3d_train += inputs_3d.shape[0]*inputs_3d.shape[1] * loss_3d_pos.item()
N += inputs_3d.shape[0]*inputs_3d.shape[1]
loss_total = loss_3d_pos
opt.zero_grad()
loss_total.backward()
# Make one optimization step on batch
opt.step()
losses_3d_train.append(epoch_loss_3d_train / N)
print('[%d] lr %f 3d_train %f' % (
epoch + 1,
lr,
losses_3d_train[-1] * 1000))
# Decay learning rate exponentially
lr *= lr_decay
for param_group in opt.param_groups:
param_group['lr'] *= lr_decay
err = mpjpe(model(pos2D.cuda()), pos3D.cuda())
lossval = float(err.detach().cpu().numpy())
return model.state_dict(), lossval
def predict(params, hyperparams, pos2D):
"""
Inference pipeline that every model in an ensemble performs
Args:
params -- model state dict (initial parameters)
hyperparams -- hyperparameters corresponding to the model architecture
pos2D -- inputs -- 2D receptive fields
"""
model = TemporalModel.from_state_dict(params, hyperparams)
model.eval()
if torch.cuda.is_available():
pos2D = pos2D.cuda()
model.cuda()
return model(pos2D).detach().cpu()
Parallel training
Below we define train_ensemble
which enables the training of ensemble models in parallel. Note that the training is performed in work nodes.
def train_ensemble(n_models, model_params, data, hyperparams):
"""
Args:
n_models -- number of ensemble members
model_params -- list of learnable parameters for each member
data -- a list of training dataset for each member
hyperparams -- hyperparameters corresponding to each member's model architecture (same for all)
"""
model_data = []
args = Args()
assert len(model_params) == n_models
assert len(data) == n_models, f"Lenght mismatch, lenght of data is {len(data)}, while number of models are {n_models}"
for i, (x, y) in enumerate(data):
# Tuples of model parameters, hyperparamers, training data, and arguments for each member.
model_data.append((model_params[i], hyperparams, x, y, args))
# create an RDD with model data
model_data_rdd = sc.parallelize(model_data)
# train each memeber using their own data
models_trained = model_data_rdd.map(lambda t: train(*t))
# send trained models state dicts and loss values to the driver node
models_trained = models_trained.collect()
# x[0] -> trained model paramteres
# x[1] -> trainig loss value
print(f"Training losses: {[x[1] for x in models_trained]}")
return [x[0] for x in models_trained], [x[1] for x in models_trained]
Ensemble-based predictions
Predictions are done on worker nodes.
def ensemble_predictions(models, hyperparams, test_x):
pred_iter = _pred_models_iter(models, hyperparams, test_x)
return pred_iter.map(lambda t: predict(*t))
def ensemble_predictions_reduced(models, hyperparams, test_x, reduce_fn):
return ensemble_predictions(models, hyperparams, test_x).reduce(reduce_fn)
def _pred_models_iter(models, hyperparams, test_x):
if isinstance(models, PipelinedRDD):
return models.map(lambda model: (model, test_x))
elif isinstance(models, list): # our case
models_and_data = [(params, hyperparams, test_x) for params in models]
return sc.parallelize(models_and_data)
else:
raise TypeError("'models' must be an RDD or a list")
def evaluate_avg_on_set(models, hyperparams, dataset, n_models):
predictions_sum = ensemble_predictions_reduced(models, hyperparams, dataset, lambda x, y: x + y) # Tensor output
predictions_avg = predictions_sum/n_models
return predictions_avg
def save_models(models_state_dict, save_models_dir: Path, iter: int, n_member : int) -> None:
"""
Save models after training of iteration
Args:
models_state_dict: list of state dicts of pytorch nn.Module models to be saved
save_models_dir: Path to dir where models are being saved
iter: iteration
n_member: number of members in the current ensemble model
"""
# Create saving path if it does not exist
save_models_dir.mkdir(parents=True, exist_ok=True)
for i_model, model_state_dict in enumerate(models_state_dict):
torch.save(model_state_dict, os.path.join(save_models_dir, f"{n_member}_members_ensemble{i_model}_iter{iter}.ckpt"))
print(f'Saved iter. {iter} to {save_models_dir}')
def save_models_with_results(models_state_dict, train_mpjpes, test_mpjpes, save_models_dir, iter, n_member):
save_models_dir.mkdir(parents=True, exist_ok=True)
for i_model, (model_state_dict, train_mpjpe, test_mpjpe) in \
enumerate(zip(models_state_dict, train_mpjpes, test_mpjpes)):
data = {
'model_state_dict': model_state_dict,
'train_mpjpe': train_mpjpe,
'test_mpjpe': test_mpjpe,
}
torch.save(data, os.path.join(save_models_dir, f"{n_member}_members_ensemble{i_model}_iter{iter}.ckpt"))
print(f'Saved iter. {iter} to {save_models_dir}')
Supervised training
Below we train an ensemble of models, where each model is trained in a distrbuted way. Specifically, each member is trained in a different work node in parallel. The hypothesis is that the prediction should be more accurate than the single model. Moreover, each member is limited to access a subset of the trainining data stored in the driver node. It is a natural idea to send the same fraction of training data to the work node. However, to avoid the scenario that the work node might not have enough space to store the subset of traning data, we set the threshold for the maximum size of the data to be stored in the work node. Pratically, the size of the subset of training data is fixed to be N=1000. We tried up to 11 models in an ensemble.
saved_models_dir = Path(f"/dbfs/{ROOTDIR}/saved_models/humaneva/checkpoints/supervised")
n_models_set = [1, 2, 3, 5, 10]
# collect test data
data_test = test_tensor_rdd.collect()
x_test, y_test = zip(*data_test)
x_test, y_test = torch.stack(x_test).detach(), torch.stack(y_test).detach()
subset_size = 1000 # subset of training data allocated to each work node.
n_iterations = 100
for n_models in n_models_set:
test_mpjpes_supervised = []
train_mpjpes_iteration_supervised = []
total_size = n_models * subset_size
for n_models in n_models_set:
models_supervised = []
# initiate models
for i in range(n_models):
model = TemporalModel(*hyperparams)
models_supervised.append(model.state_dict())
# train using only labeled data
for iteration in range(n_iterations):
x_l, y_l = get_labeled_subset(labeled_tensor_rdd, total_size)
models_supervised, train_mjpes_supervised = train_ensemble(n_models, models_supervised, split_for_ensemble(x_l, y_l,n_models, total_size), hyperparams)
train_mpjpes_iteration_supervised.append(train_mjpes_supervised)
save_models(models_supervised, saved_models_dir, iteration, n_models)
# Ealuate on test set
with torch.no_grad():
test_preds_supervised = evaluate_avg_on_set(models_supervised, hyperparams, x_test, n_models)
test_mpjpe_supervised = mpjpe(test_preds_supervised, y_test)
test_mpjpes_supervised.append(test_mpjpe_supervised)
print("MPJPE for test set (supervised baseline):")
print(test_mpjpes_supervised)
# evaluate on test set
test_mpjpes = []
with torch.no_grad():
test_preds = evaluate_avg_on_set(models_supervised, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
print("MPJPE for test set:")
print(test_mpjpes)
Semi-supervised training
Due to the time and computational limitation, only two ensemble models including the size of memeber is 3 and 5 are conducted.
saved_semisupervised_models_dir = Path(f"/dbfs/{ROOTDIR}/saved_models/humaneva/checkpoints/semi_supervised")
saved_pre_trained_supervised_models_dir = Path(f"/dbfs/{ROOTDIR}/saved_models/humaneva/checkpoints/semi_supervised/pretrained")
subset_size = 500 # it seems that we have some memory issues. Decrease the subset size helps.
start_unlabelled_size = 10
iterations = 100
# collect test data
data_test = test_tensor_rdd.collect()
x_test, y_test = zip(*data_test)
x_test, y_test = torch.stack(x_test).detach(), torch.stack(y_test).detach()
n_models_set =[3, 5]
for n_models in n_models_set:
total_size = n_models * subset_size
################## Initialize models ##################
models_semisupervised = []
for model_idx in range(n_models):
model = TemporalModel(*hyperparams)
models_semisupervised.append(model.state_dict())
print(f"Supervised pre-training of {len(models_semisupervised)} models started")
for iter in range(100):
x_l, y_l = get_labeled_subset(labeled_tensor_rdd, total_size)
models_semisupervised, train_mjpes = train_ensemble(n_models,
models_semisupervised,
sample_data_for_ensemble(x_l, y_l, n_models, subset_size),
hyperparams)
save_models(models_semisupervised,saved_pre_trained_supervised_models_dir, iter,n_models)
################## Semi-supervised training ##################
print(f"Semi-supervised training of {len(models_semisupervised)} models started")
train_mpjpes_iteration = []
test_mpjpes_iteration = []
# train using labeled and unlabeled data
for iter in range(iterations):
# use an adaptive total size for unlabelled dataste
full_size = (iter+1) * start_unlabelled_size
x_ul = get_unlabeled_subset(unlabeled_tensor_rdd, full_size)
# predict unlabeled data
unlabeled_preds = evaluate_avg_on_set(models_semisupervised,
hyperparams,
x_ul,
n_models)
# Random pick a subset of trainning data
x_l, y_l = get_labeled_subset(labeled_tensor_rdd, total_size)
# concat labeled and unlabeled data
x_cc = torch.concat([x_l, x_ul])
y_cc = torch.concat([y_l, unlabeled_preds])
# mix labeled and unlabeled data by shuffling
idx = torch.randperm(x_cc.shape[0])
x_cc, y_cc = x_cc[idx], y_cc[idx]
# train using mix of labeled and pseudolabeled data
models_semisupervised, train_mjpes = train_ensemble(n_models,
models_semisupervised,
split_for_ensemble(x_cc, y_cc, n_models, total_size),
hyperparams)
train_mpjpes_iteration.append(train_mjpes)
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models_semisupervised, hyperparams, x_test, n_models)
test_mpjpes = mpjpe(test_preds, y_test)
test_mpjpes_iteration.append(test_mpjpes)
print(f'Iteration: {iter+1}\ttrain MPJPE: {train_mjpes}\ttest MPJPE: {test_mpjpes}')
save_models(models_semisupervised,
saved_semisupervised_models_dir,
iter,
n_models)
import json
import numpy as np
import torch
from random import sample, seed
import pyspark.sql.functions as F
from pyspark.sql import Window
from pyspark.sql.types import StructType, StringType, DoubleType, IntegerType
from pyspark.sql.functions import collect_list, size, udf
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.types import BooleanType
from pyspark.sql.functions import udf
from itertools import groupby
from pyspark.rdd import PipelinedRDD
from pathlib import Path
import os
import matplotlib.pyplot as plt
ROOTDIR = '/VideoPose3D'
humaneva_train_path = f'{ROOTDIR}/humaneva/humaneva15_train.csv'
humaneva_test_path = f'{ROOTDIR}/humaneva/humaneva15_test.csv'
def load_data_from_csv(file_location):
file_type = "csv"
infer_schema = "true"
first_row_is_header = False
delimiter = ","
schema = StructType() \
.add("Idx",IntegerType(),True) \
.add("Subject",StringType(),True) \
.add("Action",StringType(),True) \
.add("Camera",StringType(),True)
for i in range(15):
schema = schema.add(f"u{i}",DoubleType(),True).add(f"v{i}",DoubleType(),True)
for i in range(15):
schema = schema.add(f"X{i}",DoubleType(),True).add(f"Y{i}",DoubleType(),True).add(f"Z{i}",DoubleType(),True)
# Load the data from file
df = spark.read.csv(file_location, header=True, schema=schema, sep=',')
return df
df_train = load_data_from_csv(humaneva_train_path).withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
df_test = load_data_from_csv(humaneva_test_path).withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
feature_names = []
target_names = []
n_keypoints = 15
for i in range(n_keypoints):
feature_names.append("u{}".format(i))
feature_names.append("v{}".format(i))
target_names.append("X{}".format(i))
target_names.append("Y{}".format(i))
target_names.append("Z{}".format(i))
feature_assembler = VectorAssembler(inputCols=feature_names, outputCol="features")
target_assembler = VectorAssembler(inputCols=target_names, outputCol="targets")
def assemble_vectors(df):
df = feature_assembler.transform(df)
df = target_assembler.transform(df)
df = df.drop(*feature_names).drop(*target_names)
return df
df_train = assemble_vectors(df_train)
df_test = assemble_vectors(df_test)
receptive_field = 27
w = Window.orderBy("Idx").partitionBy(["Group"]).rowsBetween(Window.currentRow-receptive_field//2, Window.currentRow+receptive_field//2)
def create_receptive_fields(df):
df = df.withColumn("feature_sequence", collect_list("features").over(w))
df = df.withColumn("group_sequence", collect_list("Group").over(w))
df = df.filter(size(df.group_sequence) == receptive_field)
return df
df_train_receptive = create_receptive_fields(df_train).drop("features")
df_test_receptive = create_receptive_fields(df_test).drop("features")
seed(0)
chunks = df_train_receptive.select("Group").distinct().collect()
chunks = [x["Group"] for x in chunks]
num_chunks = len(chunks)
num_unlabeled = int(num_chunks*0.6)
unlabeled_chunks = sample(chunks, num_unlabeled)
labeled_chunks = [x for x in chunks if x not in unlabeled_chunks]
df_train_receptive_unlabeled = df_train_receptive.filter(df_train_receptive.Group.isin(unlabeled_chunks))
df_train_receptive_unlabeled = df_train_receptive_unlabeled.drop("targets")
df_train_receptive_labeled = df_train_receptive.filter(~df_train_receptive.Group.isin(unlabeled_chunks))
def toTensorLabeled(x):
fs = x["feature_sequence"]
target = x["targets"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor,dtype=torch.float)
yy = torch.tensor(target,dtype=torch.float)
return xx.view(27, 15, 2), yy.view(1, 15, 3)
def toTensorUnlabeled(x):
fs = x["feature_sequence"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor, dtype=torch.float)
return xx.view(27, 15, 2)
labeled_tensor_rdd = df_train_receptive_labeled.rdd.map(toTensorLabeled)
unlabeled_tensor_rdd = df_train_receptive_unlabeled.rdd.map(toTensorUnlabeled)
test_tensor_rdd = df_test_receptive.rdd.map(toTensorLabeled)
labeled_full_size = labeled_tensor_rdd.count()
unlabeled_full_size = unlabeled_tensor_rdd.count()
test_full_size = test_tensor_rdd.count()
class DataSet(torch.utils.data.Dataset):
def __init__(self, pos2D, pos3D):
self.pos2D = pos2D # self.pos2D: B x 27 x 15 * 2
self.pos3D = pos3D # self.pos3D: B x 1 x 15 * 3
def __len__(self):
return self.pos2D.shape[0]
def __getitem__(self, ind):
pos2D = self.pos2D[ind] # pos2D: B x 27 x 15 * 2 -> 27 x 15 * 2
pos3D = self.pos3D[ind] # pos2D: B x 1 x 15 * 3 -> 1 x 15 * 2
return pos2D, pos3D
data_labeled = labeled_tensor_rdd.takeSample(False, labeled_full_size)
pos2D_labeled, pos3D_labeled = zip(*data_labeled)
pos2D_labeled, pos3D_labeled = torch.stack(pos2D_labeled), torch.stack(pos3D_labeled)
data_test = test_tensor_rdd.takeSample(False, test_full_size)
pos2D_test, pos3D_test = zip(*data_test)
pos2D_test, pos3D_test = torch.stack(pos2D_test), torch.stack(pos3D_test)
from torch import nn
class Args:
num_joints = 15
stride = 1 # temporal length of the prediction to use during training
epochs = 10 # number of training epochs
batch_size = 128 # batch size in terms of predicted frames
dropout = 0.25 # dropout probability
learning_rate = 0.001 # initial learning rate
lr_decay = 0.996 # learning rate decay per epoch
data_augmentation = True # disable train-time flipping
test_time_augmentation = True # disable test-time flipping
architecture = '3,3,3' # filter widths separated by comma
channels = 1024 # number of channels in convolution layers
args = Args()
filter_widths = [int(x) for x in args.architecture.split(',')]
receptive_field = np.prod(filter_widths) # model_pos.receptive_field()
print('INFO: Receptive field: {} frames'.format(receptive_field))
pad = (receptive_field - 1) // 2 # Padding on each side
hyperparams = [args.num_joints, 2, args.num_joints, filter_widths, args.dropout, args.channels]
class TemporalModelBase(nn.Module):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout, channels):
super().__init__()
# Validate input
for fw in filter_widths:
assert fw % 2 != 0, 'Only odd filter widths are supported'
self.num_joints_in = num_joints_in
self.in_features = in_features
self.num_joints_out = num_joints_out
self.filter_widths = filter_widths
self.drop = nn.Dropout(dropout)
self.relu = nn.ReLU(inplace=True)
self.pad = [ filter_widths[0] // 2 ]
self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
self.shrink = nn.Conv1d(channels, num_joints_out*3, 1)
def set_bn_momentum(self, momentum):
self.expand_bn.momentum = momentum
for bn in self.layers_bn:
bn.momentum = momentum
def forward(self, pos2D):
assert len(pos2D.shape) == 4 # pos2D: B x 27 x 15 x 2
assert pos2D.shape[-2] == self.num_joints_in # 15
assert pos2D.shape[-1] == self.in_features # 2
sz = pos2D.shape[:3] # B x 27 x 15
pos2D = pos2D.view(pos2D.shape[0], pos2D.shape[1], -1) # B x 27 x 15 * 2
pos2D = pos2D.permute(0, 2, 1) # B x 15 * 2 x 27
pos3D = self._forward_blocks(pos2D)
pos3D = pos3D.permute(0, 2, 1)
pos3D = pos3D.view(sz[0], -1, self.num_joints_out, 3)
return pos3D
class TemporalModel(TemporalModelBase):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout=0.25, channels=1024):
"""
Reference 3D pose estimation model with temporal convolutions.Initialize this model.
Arg:
num_joints_in -- number of input joints (i.e. 15 for HumanEva-I)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
dropout -- dropout probability
channels -- number of convolution channels
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in*in_features, channels, filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
next_dilation = filter_widths[0] # 3
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1)*next_dilation // 2) # [1, 3, 9]
layers_conv.append(nn.Conv1d(channels, channels,
filter_widths[i],
dilation=next_dilation,
bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i] # 3, 9, 27
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, pos2D):
# pos2D: B x 15 * 2 x 27
x = self.drop(self.relu(self.expand_bn(self.expand_conv(pos2D)))) # B x 1024 x 25
for i in range(len(self.pad) - 1):
pad = self.pad[i+1] # 3, 9
res = x[:, :, pad : x.shape[2] - pad] # B x 1024 x 19, B x 1024 x 1
x = self.drop(self.relu(self.layers_bn[2*i](self.layers_conv[2*i](x)))) # B x 1024 x 19, B x 1024 x 1
x = res + self.drop(self.relu(self.layers_bn[2*i + 1](self.layers_conv[2*i + 1](x))))
pos3D = self.shrink(x) # B x 15*3 x 1
return pos3D
@staticmethod
def from_state_dict(params, hyperparams):
net = TemporalModel(*hyperparams)
net.load_state_dict(params)
return net
def mpjpe(predicted, target):
"""
Mean per-joint position error (i.e. mean Euclidean distance),
often referred to as "Protocol #1" in many papers.
"""
assert predicted.shape == target.shape
return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
def evaluate(models, pos2D, pos3D, args):
for model in models:
model.eval()
with torch.no_grad():
inputs_2d, inputs_3d = pos2D, pos3D
predicted_3d_pos = [model(inputs_2d) for model in models]
predicted_3d_pos = sum(predicted_3d_pos) / len(predicted_3d_pos)
loss_3d = mpjpe(predicted_3d_pos, inputs_3d).item()
N = 1
print(f'\t{loss_3d}')
return loss_3d/N
def get_test_predictions(models, pos2D, args):
for model in models:
model.eval()
with torch.no_grad():
inputs_2d = pos2D
predicted_3d_pos = [model(inputs_2d) for model in models]
return predicted_3d_pos
def eval_ensemble_size(n_members, iters):
test_scores = []
for i in iters:
models = []
for j in range(n_members):
params_path = f'/dbfs/VideoPose3D/saved_models/humaneva/checkpoints/supervised/{n_members}_members_ensemble{j}_iter{i}.ckpt'
params = torch.load(params_path, map_location=torch.device("cpu"))
models.append(TemporalModel.from_state_dict(params, hyperparams))
test_score = evaluate(models, pos2D_test, pos3D_test, args)
test_scores.append(test_score)
return test_scores
def eval_ensemble_size_semi_supervised(n_members, iters):
test_scores = []
for i in iters:
models = []
for j in range(n_members):
params_path = f'/dbfs/VideoPose3D/saved_models/humaneva/checkpoints/semi_supervised/{n_members}_members_ensemble{j}_iter{i}.ckpt'
params = torch.load(params_path) #, map_location=torch.device("cpu")
models.append(TemporalModel.from_state_dict(params, hyperparams))
test_score = evaluate(models, pos2D_test, pos3D_test, args)
test_scores.append(test_score)
return test_scores
x = list(range(0,100,5))
x.append(99)
ensemble_sizes = [1, 2, 3, 5]
#ensemble_sizes = [5]
test_scores_dict = {}
for size in ensemble_sizes:
test_scores_dict[size] = eval_ensemble_size(size, x)
# save results
with open("/dbfs/VideoPose3D/saved_results.txt", "w") as results_file:
results_file.write(json.dumps(test_scores_dict))
Test errors during training for different ensemble sizes
A training iteration here is when the models are trained on a subset of the full data for a number of epochs. Surprisingly, we don't see a clear reduction of test error when increasing the ensemble size. It does however seem that the test errors are slightly more stable with increasing ensemble size.
for size, test_scores in test_scores_dict.items():
plt.plot(x, test_scores, label="Ensemble size: {}".format(size))
plt.ylabel("Test error")
plt.xlabel("Training iterations")
plt.legend()
plt.show()
x = list(range(0,100,5))
x.append(99)
test_scores_dict_loaded = json.load(open("/dbfs/VideoPose3D/saved_results.txt"))
for size, test_scores in test_scores_dict_loaded.items():
plt.plot(x, test_scores, label="Ensemble size: {}".format(size))
plt.ylabel("Test error")
plt.xlabel("Training iterations")
plt.legend()
plt.show()
def get_all_preds(iter_):
ensemble_sizes = [1, 2, 3, 5]
pairs = []
for size in ensemble_sizes:
for i in range(size):
pairs.append((size, i))
models = []
for i,j in pairs:
params_path = "/dbfs/VideoPose3D/saved_models/humaneva/checkpoints/supervised/{}_members_ensemble{}_iter{}.ckpt".format(i,j,iter_)
params = torch.load(params_path, map_location=torch.device("cpu"))
models.append(TemporalModel.from_state_dict(params, hyperparams))
test_preds = get_test_predictions(models, pos2D_test, args)
return test_preds
test_preds = get_all_preds(99)
from random import sample
def eval_last_iteration(test_preds):
n_samples = 30
sizes = np.arange(11)+1
avg_test_errors = []
test_stdvs = []
for size in sizes:
ensemble_errors = []
for s in range(n_samples):
preds_subset = sample(test_preds, k=size)
mean_preds = torch.mean(torch.stack(preds_subset), axis=0)
error = mpjpe(pos3D_test, mean_preds).item()
ensemble_errors.append(error)
avg_test_errors.append(sum(ensemble_errors)/len(ensemble_errors))
test_stdvs.append(np.std(ensemble_errors))
return avg_test_errors, test_stdvs
mean_error, stdvs = eval_last_iteration(test_preds)
Further analysis of test error vs. ensemble size
For a more torough evaluation of how testing error is affected by ensemble size, we evaluate different subsets of the 11 trained models. We evaluate the final models from the end of the trianing runs. The figure shows mean and standard deviations for test errors for ensembles of different sizes. Now we see more clearly that test error is reduced when ensemle sizes are increased. However, the standard deviation for small ensemble sizes are large. That explains why small ensembles can outperform the larger ones.
plt.errorbar(np.arange(11)+1, mean_error, yerr=stdvs, linestyle="none", marker="x")
plt.xlabel("Ensemble size")
plt.ylabel("Test error")
plt.show()
CKPT_DIR = '/dbfs/VideoPose3D/saved_models/humaneva/checkpoints/supervised'
iter_eval = 100
ensemble_sizes = [1, 2, 3, 5]
models = []
for n_models in ensemble_sizes:
for model_i in range(n_models):
models.append(
TemporalModel.from_state_dict(
torch.load(f'{CKPT_DIR}/{n_models}_members_ensemble{model_i}_iter{iter_eval-1}.ckpt',
map_location=torch.device("cpu")), hyperparams))
args = Args()
pos3D_pred = get_test_predictions(models, pos2D_test, args)
def pflat(X):
return X[:-1,:] / X[-1,:]
def homogenize(X):
return np.vstack([X, np.ones((1,X.shape[1]))])
def plot_projected(pos3D_pred_list, pos3D_test, batch):
pos3D_pred = torch.mean(torch.stack(pos3D_pred_list), axis=0)
fig = plt.figure(figsize=(15, 15))
ax = fig.add_subplot(131, projection='3d')
ax2 = [fig.add_subplot(132, projection='3d'), fig.add_subplot(133, projection='3d')]
X_test = homogenize(np.array(pos3D_test[batch, 0]).transpose())
X_pred = homogenize(np.array(pos3D_pred[batch, 0]).transpose())
X_pred_list = [homogenize(np.array(pose[batch, 0]).transpose()) for pose in pos3D_pred_list]
# P = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0]])
# x_test = P @ X_test
# x_test = x_test[:2,:] / x_test[2,:]
# x_pred = P @ X_pred
# x_pred = x_pred[:2,:] / x_pred[2,:]
ax.set_title('Ensemble')
ax.scatter(X_test[0,:], X_test[1,:], X_test[2,:], 'k.')
ax.scatter(X_pred[0,:], X_pred[1,:], X_pred[2,:], 'r.')
for i in range(2):
ax2[i].set_title(f'Model {i}')
ax2[i].scatter(X_test[0,:], X_test[1,:], X_test[2,:], 'k.')
ax2[i].scatter(X_pred_list[i][0,:], X_pred_list[i][1,:], X_pred_list[i][2,:], 'r.')
# Plotting the skeleton
for indices in [np.array([-1, 1, 0]),
np.array([1, 2, 3, 4]),
np.array([1, 5, 6, 7]),
np.array([0, 8, 9, 10]),
np.array([0, 11, 12, 13])]:
ax.plot(X_pred[0,indices], X_pred[1,indices], X_pred[2,indices], 'r-')
ax.plot(X_test[0,indices], X_test[1,indices], X_test[2,indices], 'k-')
for i in range(2):
ax2[i].plot(X_test[0,indices], X_test[1,indices], X_test[2,indices], 'k-')
ax2[i].plot(X_pred_list[i][0,indices], X_pred_list[i][1,indices], X_pred_list[i][2,indices], 'r-')
ax.view_init(elev=20., azim=-35)
for i in range(2):
ax2[i].view_init(elev=20., azim=-35)
plt.show()
pos3D_pred_mean = torch.mean(torch.stack(pos3D_pred), axis=0)
error = mpjpe(pos3D_test, pos3D_pred_mean).item()
for batch_idx in [21, 5, 9]:
plot_projected(pos3D_pred, pos3D_test, batch_idx)
x = list(range(0,100,5))
x.append(99)
ensemble_sizes = [3, 5]
test_scores_dict = {}
for size in ensemble_sizes:
test_scores_dict[size] = eval_ensemble_size_semi_supervised(size, x)
Test errors during training for different ensemble sizes
In our implementation, more unlabeled data is incorporated into the traninig data. It seems that using a limited number of unlabelled data helps. In our case, setting number of iteration to 40 is a proper choice. If too many unlabelled data is incorporated, the performance is degraded.
# save results
ensemble_sizes = [3, 5]
with open("/dbfs/VideoPose3D/semi_supervised_saved_results.txt", "w") as results_file:
results_file.write(json.dumps(test_scores_dict))
for size, test_scores in test_scores_dict.items():
plt.plot(x, test_scores, label="Ensemble size: {}".format(size))
plt.ylabel("Test error")
plt.xlabel("Training iterations")
plt.legend()
plt.show()
x = list(range(0,100,5))
x.append(99)
test_scores_dict_loaded = json.load(open("/dbfs/VideoPose3D/semi_supervised_saved_results.txt"))
for size, test_scores in test_scores_dict_loaded.items():
plt.plot(x, test_scores, label="Ensemble size: {}".format(size))
plt. xlim([0, 40])
plt.ylabel("Test error")
plt.xlabel("Training iterations")
plt.legend()
plt.show()
Discussions
- Simply averaging the prediciton from each ensemble is not good enough. Because the 3D pose predicitons of some models are quite unreasonable and should be ruled out.
- Normalizing the 2D key points.
- Incoporating unlabeled data to re-train the model does not always help a lot.
Distributed ensembles of deep neural networks Here we provide the necessary code for creating and training a distributed ensemble of deep neural networks
Assumptions
- The driver node fits a small subset of the data, but otherwise does not the data not fit on one node
- The model parameters fit in the driver node, and at least one set of model parameters fits on a worker node.
- Test set fits on driver node
- How to aggregate regressed values for each keypoint:
- Average results? Smoothing effect
- Robust mean + discard if the predictions disagree
- Change the model to predict sigma. Use sigma for the weighted mean
TODO
- Can we do the random split of train, into labeled and unlabeled, without collecting. What if the train data is too big to collect, but yes we only collect the group names? Set a train key (labeled/unlabeled) and map by key?
- Do we need to collect test data? Is it possible to just collect test losses? Hecne, doing the test predictions on the workers with the trained models already there.
import numpy as np
import torch
import pyspark.sql.functions as F
from pyspark.sql import Window
from pyspark.sql.functions import collect_list, size, udf
from pyspark.sql.types import BooleanType
from pyspark.sql.functions import udf
from itertools import groupby
#from pyspark.ml import Pipeline
from pyspark.rdd import PipelinedRDD
from pathlib import Path
import os
import matplotlib.pyplot as plt
ls /dbfs/VideoPose3D/humaneva/
from pyspark.sql.types import StructType, StringType, DoubleType, IntegerType
humaneva_train_path = "/VideoPose3D/humaneva/humaneva15_train.csv"
humaneva_test_path = "/VideoPose3D/humaneva/humaneva15_test.csv"
def load_data_from_csv(file_location):
"""Load and preprocess HumanEva data
Args:
file_location: file location from which to load the data
Returns:
df: spark DataFrame
"""
file_type = "csv"
infer_schema = "true"
first_row_is_header = False
delimiter = ","
schema = StructType() \
.add("Idx",IntegerType(),True) \
.add("Subject",StringType(),True) \
.add("Action",StringType(),True) \
.add("Camera",StringType(),True)
for i in range(15):
schema = schema.add(f"u{i}",DoubleType(),True).add(f"v{i}",DoubleType(),True)
for i in range(15):
schema = schema.add(f"X{i}",DoubleType(),True).add(f"Y{i}",DoubleType(),True).add(f"Z{i}",DoubleType(),True)
# Load the data from file
df = spark.read.csv(file_location, header=True, schema=schema, sep=',')
return df
df_train = load_data_from_csv(humaneva_train_path)
df_test = load_data_from_csv(humaneva_test_path)
from pyspark.sql import functions as F
df_train = df_train.withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
df_test = df_test.withColumn("Group", F.concat_ws(', ', "Subject", "Action", "Camera")).drop("Subject", "Action", "Camera")
display(df_train)
from pyspark.ml.feature import VectorAssembler
feature_names = []
target_names = []
n_keypoints = 15
for i in range(n_keypoints):
feature_names.append("u{}".format(i))
feature_names.append("v{}".format(i))
target_names.append("X{}".format(i))
target_names.append("Y{}".format(i))
target_names.append("Z{}".format(i))
feature_assembler = VectorAssembler(inputCols=feature_names, outputCol="features")
target_assembler = VectorAssembler(inputCols=target_names, outputCol="targets")
def assemble_vectors(df):
df = feature_assembler.transform(df)
df = target_assembler.transform(df)
df = df.drop(*feature_names).drop(*target_names)
return df
df_train = assemble_vectors(df_train)
df_test = assemble_vectors(df_test)
receptive_field = 27
w = Window.orderBy("Idx").partitionBy(["Group"]).rowsBetween(Window.currentRow-receptive_field//2, Window.currentRow+receptive_field//2)
def create_receptive_fields(df):
df = df.withColumn("feature_sequence", collect_list("features").over(w))
df = df.withColumn("group_sequence", collect_list("Group").over(w))
df = df.filter(size(df.group_sequence) == receptive_field)
df = df.drop("features")
return df
df_train_receptive = create_receptive_fields(df_train)
df_test_receptive = create_receptive_fields(df_test)
display(df_train_receptive)
Split training set into labeled and unlabeled based on chunks
Since we are exploring in semi-supervised learning, we will have both labeled and unlabeled training data. Therefore, here we randomly split the data, with respect to the group, into an unlabeled and labeled set. To have a realistic semi-supervised setting, we assume that the unlabeled training data is slighly larger than the labeled training data. The targets are droped for the unlabeled training set.
from random import sample, seed
## find right random seed to compensate for the different size of each chunk
seed(0) # seed 0 gives ok split
chunks = df_train_receptive.select("Group").distinct().collect()
chunks = [x["Group"] for x in chunks]
num_chunks = len(chunks)
num_unlabeled = int(num_chunks*0.6)
unlabeled_chunks = sample(chunks, num_unlabeled)
labeled_chunks = [x for x in chunks if x not in unlabeled_chunks]
df_train_receptive_unlabeled = df_train_receptive.filter(df_train_receptive.Group.isin(unlabeled_chunks))
df_train_receptive_unlabeled = df_train_receptive_unlabeled.drop("targets")
df_train_receptive_labeled = df_train_receptive.filter(~df_train_receptive.Group.isin(unlabeled_chunks))
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
udf_all_equal = udf(all_equal, BooleanType())
Define model
Here we define the 3D pose estimation model with temporal convolutions and corresponding hyperparameters. Each ensemble will use this model to train on labeled data (including pseudolabels) and make predictions on unlabeled data.
from torch import nn
class Args:
# Data arguments
num_joints = 15
# Model arguments
stride = 1 # chunk size to use during training
epochs = 10 # 100 # number of training epochs
batch_size = 128 # batch size in terms of predicted frames
dropout = 0.25 # dropout probability
learning_rate = 0.001 # initial learning rate
lr_decay = 0.996 # learning rate decay per epoch
data_augmentation = True # disable train-time flipping
test_time_augmentation = True # disable test-time flipping
architecture = '3,3,3' # filter widths separated by comma
channels = 1024 # number of channels in convolution layers
args = Args()
filter_widths = [int(x) for x in args.architecture.split(',')]
receptive_field = np.prod(filter_widths) # model_pos.receptive_field()
print('INFO: Receptive field: {} frames'.format(receptive_field))
pad = (receptive_field - 1) // 2 # Padding on each side
hyperparams = [args.num_joints, 2, args.num_joints, filter_widths, args.dropout, args.channels]
class TemporalModelBase(nn.Module):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout, channels):
super().__init__()
# Validate input
for fw in filter_widths:
assert fw % 2 != 0, 'Only odd filter widths are supported'
self.num_joints_in = num_joints_in
self.in_features = in_features
self.num_joints_out = num_joints_out
self.filter_widths = filter_widths
self.drop = nn.Dropout(dropout)
self.relu = nn.ReLU(inplace=True)
self.pad = [ filter_widths[0] // 2 ]
self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1)
self.shrink = nn.Conv1d(channels, num_joints_out*3, 1)
def set_bn_momentum(self, momentum):
self.expand_bn.momentum = momentum
for bn in self.layers_bn:
bn.momentum = momentum
def forward(self, pos2D):
assert len(pos2D.shape) == 4 # pos2D: B x 27 x 15 x 2
assert pos2D.shape[-2] == self.num_joints_in # 15
assert pos2D.shape[-1] == self.in_features # 2
sz = pos2D.shape[:3] # B x 27 x 15
pos2D = pos2D.view(pos2D.shape[0], pos2D.shape[1], -1) # B x 27 x 15 * 2
pos2D = pos2D.permute(0, 2, 1) # B x 15 * 2 x 27
pos3D = self._forward_blocks(pos2D)
pos3D = pos3D.permute(0, 2, 1)
pos3D = pos3D.view(sz[0], -1, self.num_joints_out, 3)
return pos3D
class TemporalModel(TemporalModelBase):
def __init__(self, num_joints_in, in_features, num_joints_out,
filter_widths, dropout=0.25, channels=1024):
"""
Reference 3D pose estimation model with temporal convolutions.Initialize this model.
Arg:
num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
in_features -- number of input features for each joint (typically 2 for 2D input)
num_joints_out -- number of output joints (can be different than input)
filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
dropout -- dropout probability
channels -- number of convolution channels
"""
super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, dropout, channels)
self.expand_conv = nn.Conv1d(num_joints_in*in_features, channels, filter_widths[0], bias=False)
layers_conv = []
layers_bn = []
next_dilation = filter_widths[0] # 3
for i in range(1, len(filter_widths)):
self.pad.append((filter_widths[i] - 1)*next_dilation // 2) # [1, 3, 9]
layers_conv.append(nn.Conv1d(channels, channels,
filter_widths[i],
dilation=next_dilation,
bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False))
layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1))
next_dilation *= filter_widths[i] # 3, 9, 27
self.layers_conv = nn.ModuleList(layers_conv)
self.layers_bn = nn.ModuleList(layers_bn)
def _forward_blocks(self, pos2D):
# pos2D: B x 15 * 2 x 27
x = self.drop(self.relu(self.expand_bn(self.expand_conv(pos2D)))) # B x 1024 x 25
for i in range(len(self.pad) - 1):
pad = self.pad[i+1] # 3, 9
res = x[:, :, pad : x.shape[2] - pad] # B x 1024 x 19, B x 1024 x 1
x = self.drop(self.relu(self.layers_bn[2*i](self.layers_conv[2*i](x)))) # B x 1024 x 19, B x 1024 x 1
x = res + self.drop(self.relu(self.layers_bn[2*i + 1](self.layers_conv[2*i + 1](x))))
pos3D = self.shrink(x) # B x 15*3 x 1
return pos3D
@staticmethod
def from_state_dict(params, hyperparams):
net = TemporalModel(*hyperparams)
net.load_state_dict(params)
return net
Loss
Here we define the loss used for training and evaluation.
def mpjpe(predicted, target):
"""
Mean per-joint position error (i.e. mean Euclidean distance),
often referred to as "Protocol #1" in many papers.
"""
assert predicted.shape == target.shape
return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
"""
class DataSet(torch.utils.data.Dataset):
def __init__(self, pos2D, pos3D, receptive_field):
self.pos2D = pos2D # self.pos2D: [N_1 x 15 x 2, ..., N_B x 15 x 2]
self.pos3D = pos3D # self.pos3D: [N_1 x 15 x 3, ..., N_B x 15 x 3]
self.receptive_field = receptive_field
def __len__(self):
return self.x.shape[0]
def __getitem__(self, ind):
pos2D = self.pos2D[ind] # pos2D: N x 15 x 2
pos3D = self.pos3D[ind] # pos3D: N x 15 x 3
i = torch.randint(pos_3d.shape[0] - self.receptive_field + 1, [1])
pos2D_sample = pos2D[i:i+self.receptive_field] # pos2D_sample: 27 x 15 x 2
pos3D_sample = pos3D[i+(self.receptive_field - 1) // 2 ][None] # pos3D_sample: 1 x 15 x 3
return pos2D_sample, pos3D_sample
"""
class DataSet(torch.utils.data.Dataset):
def __init__(self, pos2D, pos3D):
self.pos2D = pos2D # self.pos2D: B x 27 x 15 * 2
self.pos3D = pos3D # self.pos3D: B x 1 x 15 * 3
def __len__(self):
return self.pos2D.shape[0]
def __getitem__(self, ind):
pos2D = self.pos2D[ind] # pos2D: B x 27 x 15 * 2 -> 27 x 15 * 2
pos3D = self.pos3D[ind] # pos2D: B x 1 x 15 * 3 -> 1 x 15 * 2
return pos2D, pos3D
def train(params, hyperparams, data, args):
x,y = zip(*data)
pos2D, pos3D = torch.stack(x), torch.stack(y)
model = TemporalModel.from_state_dict(params, hyperparams)
model.train()
lr = args.learning_rate
lr_decay = args.lr_decay
train_data = DataSet(pos2D, pos3D)
dataloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
opt = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
initial_momentum = 0.1
final_momentum = 0.001
losses_3d_train = []
for epoch in range(args.epochs):
epoch_loss_3d_train = 0
N = 0
for batch in dataloader:
inputs_2d, inputs_3d = batch
if torch.cuda.is_available():
inputs_3d = inputs_3d.cuda()
inputs_2d = inputs_2d.cuda()
model = model.cuda()
inputs_3d[:, :, 0] = 0
# Predict 3D poses
predicted_3d_pos = model(inputs_2d)
# Calcuclate MPJPE loss
loss_3d_pos = mpjpe(predicted_3d_pos, inputs_3d)
epoch_loss_3d_train += inputs_3d.shape[0]*inputs_3d.shape[1] * loss_3d_pos.item()
N += inputs_3d.shape[0]*inputs_3d.shape[1]
loss_total = loss_3d_pos
opt.zero_grad()
loss_total.backward()
# Make one optimization step on batch
opt.step()
losses_3d_train.append(epoch_loss_3d_train / N)
print('[%d] lr %f 3d_train %f' % (
epoch + 1,
lr,
losses_3d_train[-1] * 1000))
# Decay learning rate exponentially
lr *= lr_decay
for param_group in opt.param_groups:
param_group['lr'] *= lr_decay
err = mpjpe(model(pos2D.cuda()), pos3D.cuda())
lossval = float(err.detach().cpu().numpy())
return model.state_dict(), lossval
def predict(params, hyperparams, x):
model = TemporalModel.from_state_dict(params, hyperparams)
model.eval()
if torch.cuda.is_available():
x = x.cuda()
model.cuda()
return model(x).detach().cpu()
"""
# Broadcast hyperparams of models
hyperparams_rdd = sc.broadcast(hyperparams)
model_params = []
for i in range(n_models):
model = TemporalModel(*hyperparams)
model_params.append(model.state_dict())
model_params_rdd = sc.parallelize(model_params)
def train_distributed(model_params, hyperparams):
pass
def train_ensemble_distributed(model_params, data, hyperparams):
pass
for m in len(model_params.count()):
data.mapParitions(lambda k: train_distributed(k, model_params, hyperparams))
"""
def train_ensemble(n_models, model_params, data, hyperparams):
model_data = []
args = Args()
assert model_params.count() == n_models
assert len(data) == n_models, f"Lenght mismatch, lenght of data is {len(data)}, while number of models are {n_models}"
models_trained = model_params.map(lambda t: train(*(t,hyperparams,data, args)))
models_params = models_trained.map(lambda t: t._1)
train_losses = models_trained.map(lambda t: t._2)
print(f"Training losses: {[x[1] for x in models_trained]}")
return models_params, train_losses.collect()
def ensemble_predictions(models, hyperparams, test_x):
pred_iter = _pred_models_iter(models, hyperparams, test_x)
return pred_iter.map(lambda t: predict(*t))
def ensemble_predictions_reduced(models, hyperparams, test_x, reduce_fn):
return ensemble_predictions(models, hyperparams, test_x).reduce(reduce_fn)
def _pred_models_iter(models, hyperparams, test_x):
if isinstance(models, PipelinedRDD):
return models.map(lambda model: (model, test_x))
elif isinstance(models, list): # our case
models_and_data = [(params, hyperparams, test_x) for params in models]
return sc.parallelize(models_and_data)
else:
raise TypeError("'models' must be an RDD or a list")
def evaluate_avg_on_set(models, hyperparams, dataset, n_models):
predictions_sum = ensemble_predictions_reduced(models, hyperparams, dataset, lambda x, y: x + y) # Tensor output
predictions_avg = predictions_sum/n_models
return predictions_avg
display(df_train_receptive_labeled)
### We do not have targets for unlabelled dataset
def toTensorLabeled(x):
fs = x["feature_sequence"]
target = x["targets"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor,dtype=torch.float)
yy = torch.tensor(target,dtype=torch.float)
return xx.view(27, 15, 2), yy.view(1, 15, 3)
def toTensorUnlabeled(x):
fs = x["feature_sequence"]
feature_tensor = []
for f in fs:
feature_tensor.append(f)
xx = torch.tensor(feature_tensor, dtype=torch.float)
return xx.view(27, 15, 2)
labeled_tensor = df_train_receptive_labeled.withColumn("feature_sequence", )
#unlabeled_tensor_rdd = df_train_receptive_unlabeled.rdd.map(toTensorUnlabeled)
#test_tensor_rdd = df_test_receptive.rdd.map(toTensorLabeled)
print(labeled_tensor_rdd.getNumPartitions())
print(unlabeled_tensor_rdd.getNumPartitions())
print(test_tensor_rdd.getNumPartitions())
def save_models(models_state_dict,save_models_dir: Path ,iter: int) -> None:
"""
Save models after training of iteration
Args:
models: list of state dicts of pytorch nn.Module models to be saved
save_models_dir: Path to dir where models are being saved
iter: iteration
"""
# Create saving path if it does not exist
save_models_dir.mkdir(parents=True, exist_ok=True)
for i_model, model in enumerate(models):
torch.save(model, os.path.join(save_models_dir,f"ensemble{i_model}_iter{iter}.ckpt"))
Training loop (for semi-supervised learning)
The hypothesis of training ensemble models in a distributed way is that we coud obtain better label estimation.Sepcifically, the prediction of the test sample is obtained by avergaing the prediciton from each memeber. Therefore, we incoporate th
n_models = 2
subset_size = 1000
total_size = n_models * subset_size
def get_labeled_subset():
# Data is loaded into driver's memory
data = labeled_tensor_rdd.takeSample(False, total_size)
x, y = zip(*data)
return torch.stack(x), torch.stack(y)
def get_unlabeled_subset():
# Data is loaded into driver's memory
data = unlabeled_tensor_rdd.takeSample(False, total_size)
return torch.stack(data)
def split_for_ensemble(x,y):
'''
Splits data so that each member acesses unique data for training
'''
full_size = x.shape[0]
split_size = full_size//n_models +1
x = torch.split(x, split_size)
y = torch.split(y, split_size)
return list(zip(x, y))
# collect test data
data_test = test_tensor_rdd.collect()
x_test, y_test = zip(*data_test)
x_test, y_test = torch.stack(x_test).detach(), torch.stack(y_test).detach()
iterations = 10 # 10
models = []
# initiate models
for i in range(n_models):
model = TemporalModel(*hyperparams)
models.append(model.state_dict())
# Sample a small subset of the labeled data.
# All data is loaded into driver's memory.
x_l, y_l = get_labeled_subset()
print(f"Training distributed ensemble of {len(models)} models")
# train using only labeled data
models = train_ensemble(n_models,
models,
split_for_ensemble(x_l, y_l),
hyperparams)
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
print(f"MPJPE for test set: {test_mpjpe}")
print("Labeled training iteration finished")
test_mpjpes = []
#train_mpjpes_iteration = []
# train using labeled and unlabeled data
for i in range(iterations):
# evaluate on test set
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
x_ul = get_unlabeled_subset()
# predict unlabeled data
unlabeled_preds = evaluate_avg_on_set(models,
hyperparams,
x_ul,
n_models)
# Random pick a subset of trainning data
x_l, y_l = get_labeled_subset()
# concat labeled and unlabeled data
x_cc = torch.concat([x_l, x_ul])
y_cc = torch.concat([y_l, unlabeled_preds])
# mix labeled and unlabeled data by shuffling
idx = torch.randperm(x_cc.shape[0])
x_cc, y_cc = x_cc[idx], y_cc[idx]
print("Running semi-supervised training iteration: {}".format(i+1))
# train using mix of labeled and pseudolabeled data
models = train_ensemble(n_models,
models,
split_for_ensemble(x_cc, y_cc),
hyperparams)
#train_mpjpes_iteration.append(train_mjpes)
saved_models_dir = Path("saved_models/humaneva/checkpoints/semi-supervised")
save_models(models, saved_models_dir,i)
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
print(f"MPJPE for test set: {test_mpjpe}")
%matplotlib inline
fig = plt.figure()
plt.plot(test_mpjpe)
plt.show()
%matplotlib inline
fig = plt.figure()
for i_model, mpjpes in enumerate(zip(*train_mpjpes_list))
plt.plot(mpjpes, label=f"Ensemble {i_model}")
plt.legend()
plt.show()
# evaluate on test set
test_mpjpes=[]
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
print("MPJPE for test set:")
print(test_mpjpes)
Training loop (for supervised baseline)
We first establish the baseline, where the ensemble model is trained in a distrbuted way. Specifcially, each member of the emsemble model is trained in different work node in parallel. Besides, each member is limited to access a subset of the trainining data stored in the driver node. It is a natural idea to send the same fraction of training data to the work node. However, to avoid the scenario that the work node might no have enough space to store the subset of traning data, we set the threshold for the maximum size of the data to be stored in the work node. Pratically, the size of the subset of training data is fixed to be N=1000.
import torch
# optional to do data partition
def get_partitioned_rdd(input_rdd, partition_size=1000):
"""Partition RDD
Args:
input_rdd: RDD to be partitioned
Returns:
Partitioned RDD
"""
return input_rdd.mapPartitions(lambda partition: partition_all(partition_size, partition))
n_models = 10
subset_size = 1000
n_iterations = 1000
total_size = n_models * subset_size
models_supervised = []
# initiate models
for i in range(n_models):
model = TemporalModel(*hyperparams)
models_supervised.append(model.state_dict())
test_mpjpes_supervised = []
train_mpjpes_iteration_supervised
# train using only labeled data
for iteration in range(n_iterations):
x_l, y_l = get_labeled_subset()
models_supervised, train_mjpes_supervised = train_ensemble(n_models, models_supervised, split_for_ensemble(x_l, y_l), hyperparams, n_epochs)
train_mpjpes_iteration_supervised.append(train_mjpes_supervised)
saved_models_dir = Path("saved_models/humaneva/checkpoints/supervised")
save_models(models_supervised, saved_models_dir,epoch)
# Ealuate on test set
with torch.no_grad():
test_preds_supervised = evaluate_avg_on_set(models_supervised, hyperparams, x_test, n_models)
test_mpjpe_supervised = mpjpe(test_preds_supervised, y_test)
test_mpjpes_supervised.append(test_mpjpe_supervised)
print("MPJPE for test set (supervised baseline):")
print(test_mpjpes_supervised)
%matplotlib inline
fig = plt.figure()
plt.plot(test_mpjpe_supervised)
plt.show()
%matplotlib inline
fig = plt.figure()
for i_model, mpjpes in enumerate(zip(*train_mpjpes_list_supervised))
plt.plot(mpjpes, label=f"Ensemble {i_model}")
plt.legend()
plt.show()
To Do
- a figure shows that the test error is further reduced while incorporating the pseudo-labeled data.
%matplotlib inline
fig = plt.figure()
for i_model, mpjpes in enumerate(zip(*train_mpjpes_iteration_supervised)):
plt.plot(mpjpes, label=f"Ensemble {i_model}")
plt.title("Supervised")
plt.xlabel("Iteration")
plt.ylabel("MPJPE train loss")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
Training loop for semi-supervised learning
The hypothesis of training ensemble models in a distributed way is that we coud obtain better target estimation for the unllablelled. Sepcifically, the prediction of the test sample is obtained by avergaing the prediciton from each memeber. Moreover, incoporating the samples with pseudo labels predicted by ensemble models into the training data is expcted to further improve the perfromace becasue more information is contained in the training data.
n_models = 20
subset_size = 1000
total_size = n_models * subset_size
start_unlabelled_size = 100
# collect test data
data_test = test_tensor_rdd.collect()
x_test, y_test = zip(*data_test)
x_test, y_test = torch.stack(x_test).detach(), torch.stack(y_test).detach()
iterations = 10 # 10
models = []
# initiate models
for i in range(n_models):
model = TemporalModel(*hyperparams)
models.append(model.state_dict())
# Sample a small subset of the labeled data.
# All data is loaded into driver's memory.
x_l, y_l = get_labeled_subset(labeled_tensor_rdd, total_size)
print(f"Training distributed ensemble of {len(models)} models")
# train using only labeled data
#models, train_mjpes = train_ensemble(n_models,
#models,
#split_for_ensemble(x_l, y_l,n_models, total_size),
#hyperparams)
models, train_mjpes = train_ensemble(n_models,
models,
sample_data_for_ensemble(x_l, y_l, n_models, subset_size),
hyperparams)
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
print(f"MPJPE for test set: {test_mpjpe}")
print("Labeled training iteration finished")
test_mpjpes = []
train_mpjpes_iteration = []
# train using labeled and unlabeled data
for i in range(iterations):
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
print(f"MPJPE for test set: {test_mpjpe}")
# use an adaptive total size for unlablled dataste
full_size = (i+1)* start_unlabelled_size
x_ul = get_unlabeled_subset(unlabeled_tensor_rdd, full_size)
# predict unlabeled data
unlabeled_preds = evaluate_avg_on_set(models,
hyperparams,
x_ul,
n_models)
# Random pick a subset of trainning data
x_l, y_l = get_labeled_subset(labeled_tensor_rdd, total_size)
# concat labeled and unlabeled data
x_cc = torch.concat([x_l, x_ul])
y_cc = torch.concat([y_l, unlabeled_preds])
# mix labeled and unlabeled data by shuffling
idx = torch.randperm(x_cc.shape[0])
x_cc, y_cc = x_cc[idx], y_cc[idx]
print("Running semi-supervised training iteration: {}".format(i+1))
# train using mix of labeled and pseudolabeled data
#models, train_mjpes = train_ensemble(n_models,
#models,
#split_for_ensemble(x_cc, y_cc, n_models, total_size),
#hyperparams)
models, train_mjpes = train_ensemble(n_models,
models,
sample_data_for_ensemble(x_cc, y_cc, n_models, subset_size),
hyperparams)
train_mpjpes_iteration.append(train_mjpes)
saved_models_dir = Path("/dbfs/VideoPose3D/saved_models/humaneva/checkpoints/semi-supervised")
save_models(models, saved_models_dir,i)
# evaluate on test set
with torch.no_grad():
test_preds = evaluate_avg_on_set(models, hyperparams, x_test, n_models)
test_mpjpe = mpjpe(test_preds, y_test)
test_mpjpes.append(test_mpjpe)
print(f"MPJPE for test set: {test_mpjpe}")
%matplotlib inline
fig = plt.figure()
plt.plot(test_mpjpes)
plt.title("Semi-supervised using pseudotargets")
plt.xlabel("Iteration")
plt.ylabel("MPJPE test loss")
plt.show()
plt.close()
print(len(test_mpjpes))
%matplotlib inline
fig = plt.figure()
for i_model, mpjpes in enumerate(zip(*train_mpjpes_iteration)):
plt.plot(mpjpes, label=f"Ensemble {i_model}")
plt.title("Semi-supervised using pseudotargets")
plt.xlabel("Iteration")
plt.ylabel("MPJPE train loss")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
udf_all_equal = udf(all_equal, BooleanType())
# Broadcast hyperparams of models
hyperparams_rdd = sc.broadcast(hyperparams)
model_params = []
for i in range(n_models):
model = TemporalModel(*hyperparams)
model_params.append(model.state_dict())
model_params_rdd = sc.parallelize(model_params)
def train_distributed(model_params, hyperparams):
pass
def train_ensemble_distributed(model_params, data, hyperparams):
pass
for m in len(model_params.count()):
data.mapParitions(lambda k: train_distributed(k, model_params, hyperparams))
# optional to do data partition
def get_partitioned_rdd(input_rdd, partition_size=1000):
"""Partition RDD
Args:
input_rdd: RDD to be partitioned
Returns:
Partitioned RDD
"""
return input_rdd.mapPartitions(lambda partition: partition_all(partition_size, partition))
def render_animation(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport,
limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0):
"""
Render an animation. The supported output modes are:
-- 'interactive': display an interactive figure
(also works on notebooks if associated with %matplotlib inline)
-- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
-- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
-- 'filename.gif': render and export the animation a gif file (requires imagemagick).
"""
plt.ioff()
fig = plt.figure(figsize=(size*(1 + len(poses)), size))
ax_in = fig.add_subplot(1, 1 + len(poses), 1)
ax_in.get_xaxis().set_visible(False)
ax_in.get_yaxis().set_visible(False)
ax_in.set_axis_off()
ax_in.set_title('Input')
ax_3d = []
lines_3d = []
trajectories = []
radius = 1.7
for index, (title, data) in enumerate(poses.items()):
ax = fig.add_subplot(1, 1 + len(poses), index+2, projection='3d')
ax.view_init(elev=15., azim=azim)
ax.set_xlim3d([-radius/2, radius/2])
ax.set_zlim3d([0, radius])
ax.set_ylim3d([-radius/2, radius/2])
try:
ax.set_aspect('equal')
except NotImplementedError:
ax.set_aspect('auto')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
ax.dist = 7.5
ax.set_title(title) #, pad=35
ax_3d.append(ax)
lines_3d.append([])
trajectories.append(data[:, 0, [0, 1]])
poses = list(poses.values())
# Decode video
if input_video_path is None:
# Black background
all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8')
else:
# Load video using ffmpeg
all_frames = []
for f in read_video(input_video_path, skip=input_video_skip, limit=limit):
all_frames.append(f)
effective_length = min(keypoints.shape[0], len(all_frames))
all_frames = all_frames[:effective_length]
keypoints = keypoints[input_video_skip:] # todo remove
for idx in range(len(poses)):
poses[idx] = poses[idx][input_video_skip:]
if fps is None:
fps = get_fps(input_video_path)
if downsample > 1:
keypoints = downsample_tensor(keypoints, downsample)
all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8')
for idx in range(len(poses)):
poses[idx] = downsample_tensor(poses[idx], downsample)
trajectories[idx] = downsample_tensor(trajectories[idx], downsample)
fps /= downsample
initialized = False
image = None
lines = []
points = None
if limit < 1:
limit = len(all_frames)
else:
limit = min(limit, len(all_frames))
parents = skeleton.parents()
def update_video(i):
nonlocal initialized, image, lines, points
for n, ax in enumerate(ax_3d):
ax.set_xlim3d([-radius/2 + trajectories[n][i, 0], radius/2 + trajectories[n][i, 0]])
ax.set_ylim3d([-radius/2 + trajectories[n][i, 1], radius/2 + trajectories[n][i, 1]])
# Update 2D poses
joints_right_2d = keypoints_metadata['keypoints_symmetry'][1]
colors_2d = np.full(keypoints.shape[1], 'black')
colors_2d[joints_right_2d] = 'red'
if not initialized:
image = ax_in.imshow(all_frames[i], aspect='equal')
for j, j_parent in enumerate(parents):
if j_parent == -1:
continue
if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco':
# Draw skeleton only if keypoints match (otherwise we don't have the parents definition)
lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
[keypoints[i, j, 1], keypoints[i, j_parent, 1]], color='pink'))
col = 'red' if j in skeleton.joints_right() else 'black'
for n, ax in enumerate(ax_3d):
pos = poses[n][i]
lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]],
[pos[j, 1], pos[j_parent, 1]],
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col))
points = ax_in.scatter(*keypoints[i].T, 10, color=colors_2d, edgecolors='white', zorder=10)
initialized = True
else:
image.set_data(all_frames[i])
for j, j_parent in enumerate(parents):
if j_parent == -1:
continue
if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco':
lines[j-1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]],
[keypoints[i, j, 1], keypoints[i, j_parent, 1]])
for n, ax in enumerate(ax_3d):
pos = poses[n][i]
lines_3d[n][j-1][0].set_xdata(np.array([pos[j, 0], pos[j_parent, 0]]))
lines_3d[n][j-1][0].set_ydata(np.array([pos[j, 1], pos[j_parent, 1]]))
lines_3d[n][j-1][0].set_3d_properties(np.array([pos[j, 2], pos[j_parent, 2]]), zdir='z')
points.set_offsets(keypoints[i])
print('{}/{} '.format(i, limit), end='\r')
fig.tight_layout()
anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000/fps, repeat=False)
if output.endswith('.mp4'):
Writer = writers['ffmpeg']
writer = Writer(fps=fps, metadata={}, bitrate=bitrate)
anim.save(output, writer=writer)
elif output.endswith('.gif'):
anim.save(output, dpi=80, writer='imagemagick')
else:
raise ValueError('Unsupported output format (only .mp4 and .gif are supported)')
plt.close()
print('Rendering...')
input_keypoints = keypoints[args.viz_subject][args.viz_action][args.viz_camera].copy()
ground_truth = None
if args.viz_subject in dataset.subjects() and args.viz_action in dataset[args.viz_subject]:
if 'positions_3d' in dataset[args.viz_subject][args.viz_action]:
ground_truth = dataset[args.viz_subject][args.viz_action]['positions_3d'][args.viz_camera].copy()
if ground_truth is None:
print('INFO: this action is unlabeled. Ground truth will not be rendered.')
gen = UnchunkedGenerator(None,
None,
[input_keypoints],
pad=pad,
causal_shift=causal_shift,
augment=args.test_time_augmentation,
kps_left=kps_left,
kps_right=kps_right,
joints_left=joints_left,
joints_right=joints_right)
prediction = evaluate(gen, return_predictions=True)
if model_traj is not None and ground_truth is None:
prediction_traj = evaluate(gen, return_predictions=True, use_trajectory_model=True)
prediction += prediction_traj
if args.viz_export is not None:
print('Exporting joint positions to', args.viz_export)
# Predictions are in camera space
np.save(args.viz_export, prediction)
if args.viz_output is not None:
if ground_truth is not None:
# Reapply trajectory
trajectory = ground_truth[:, :1]
ground_truth[:, 1:] += trajectory
prediction += trajectory
# Invert camera transformation
cam = dataset.cameras()[args.viz_subject][args.viz_camera]
if ground_truth is not None:
prediction = camera_to_world(prediction, R=cam['orientation'], t=cam['translation'])
ground_truth = camera_to_world(ground_truth, R=cam['orientation'], t=cam['translation'])
else:
# If the ground truth is not available, take the camera extrinsic params from a random subject.
# They are almost the same, and anyway, we only need this for visualization purposes.
for subject in dataset.cameras():
if 'orientation' in dataset.cameras()[subject][args.viz_camera]:
rot = dataset.cameras()[subject][args.viz_camera]['orientation']
break
prediction = camera_to_world(prediction, R=rot, t=0)
# We don't have the trajectory, but at least we can rebase the height
prediction[:, :, 2] -= np.min(prediction[:, :, 2])
anim_output = {'Reconstruction': prediction}
if ground_truth is not None and not args.viz_no_ground_truth:
anim_output['Ground truth'] = ground_truth
input_keypoints = image_coordinates(input_keypoints[..., :2], w=cam['res_w'], h=cam['res_h'])
render_animation(input_keypoints, keypoints_metadata, anim_output,
dataset.skeleton(), dataset.fps(), args.viz_bitrate, cam['azimuth'], args.viz_output,
limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
Predicting the load in wireless networks
Project members:
- Sofia Ek, Department of Information Technology, Uppsala University
- Oscar Stenhammar, Network and System Engineering, KTH and Ericsson
Background
Due to the Russian invasion of Ukraine, there is a current global energy crisis all over Europe. Energy prices has gone through the roof causing consumers, as well as industries, to save energy. By saving energy, the energy bill is reduced. For economic reasons industries has been forced to shut down parts of their production line the past months. Another reason for saving energy is to reduce the cost of 1kWh. By lowering the demand, the energy supply will increase. This will force the market to reduce the energy price. To incorporate this, goverments and the EU has put constraints on several industries to surpress the energy consumption. One of these industries are network operators. The constraints might even force them to shut down a few base stations for shorter periods.
With this in mind, how can network operators save energy with minimal impact on end users? This project has been focusing on one solution, to predict the network load. Based on hte predictions of the network load, a decision algorithm could be implemented that could put cells and base stations into sleep mode if the load is expected to be sufficiently low. Sleep functions already exists in 5G networks but are rarely used and could be exploited much further to optimie energy consumptions.

Dataset
- The data is from a network vendor in Europe in an urban environment
- It has been collected in September and October in 2022
- One measurement every 15 minutes, which is a sum of the past 15 minutes.
- There are in total 308 different cells in the dataset
- The dataset contains information about:
- Cell IDs
- Location
- Frequency band
- Throughput volume on the downlink
- Number of active users in each cell.
- The cell ID and the location are anonymized, but the relative location to other cells is still valid.
An example of the first 10 rows of data can be seen below.
# To illustrate the dataset, it is loaded from the next notebook, which fuctionalities will be further explained there.
%run "./01_prepare_data"
df = spark_read_data(True)
Plotting the relative location of the cells:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
sns.set(
context='paper',
font_scale=1,
style='ticks',
rc={
'lines.linewidth': 2,
'figure.figsize': (15,12),
'font.size': 60,
'lines.markersize': 8,
'axes.labelsize': 20,
'xtick.labelsize': 16,
'ytick.labelsize': 16,
'legend.fontsize': 16,
'axes.labelpad': 6
}
)
df_p = df.where(df.rdiTimeStamp == '2022-09-02 00:00:00').toPandas()
df_p.longitude = df_p.longitude - (df_p.longitude.min() + df_p.longitude.max())/2
df_p.latitude = 111*df_p.latitude + np.random.random(len(df_p))/20
df_p.longitude = 111*df_p.longitude + np.random.random(len(df_p))/20
fig, ax = plt.subplots()
sns.scatterplot(data=df_p, x='longitude', y='latitude', hue='locationIndex')
ax.set_xlabel('X-position [km]')
ax.set_ylabel('Y-position [km]')
plt.legend('',frameon=False)
plt.tight_layout()
plt.show()
For one of the cells in the dataset: A plot of the downlink volume (MB) and the number of users during 24 hours.
df_c = df.where(df.cellId == 1).toPandas()
df_d = df_c[df_c['rdiTimeStamp']<'2022-09-02']
df_d = df_d[df_d['rdiTimeStamp']>'2022-08-30']
df_d = df_d.sort_values(['rdiTimeStamp'])
df_d['pmRadioThpVolDl'] = df_d['pmRadioThpVolDl']/8000
df_d['rdiTimeStamp'] = pd.to_datetime(df_d.rdiTimeStamp)
fig, ax = plt.subplots()
sns.lineplot(ax = ax, data=df_d, x='rdiTimeStamp', y='pmRadioThpVolDl', label='Volume')
ax.set_xlabel('Time [mm-dd HH]')
ax.set_ylabel('Downlink volume [MB]')
ax.set_xticklabels(ax.get_xticklabels(), rotation=25)
ax.legend(loc="upper left")
ax1 = ax.twinx()
ax1.plot(df_d['rdiTimeStamp'], df_d['pmActiveUeDlSum'], color='black', label='Users')
ax1.legend(loc="upper right")
ax1.set_ylabel('Number of users')
plt.tight_layout()
plt.show()
Methods
We focus on three methods: 1. Autoregressiv model (AR-model) 2. Long short-term memory (LSTM) 3. Gated Recurrent Unit (GRU)
We try to predict the throughput volume on the downlink, i.e. the variable called pmRadioThpVolDl.
AR-model: This model is used as a baseline and the model is estimated with linear regression. In this case, we filter the data and only focus on one cell at the time. The model is:
\(y(t) = \beta_1 y(t - 1) + \beta_2 y(t - 2) + \beta_3 y(t - 3) + \beta_4 y(t - 96)\), where y is pmRadioThpVolDl.
LSTM and GRU: These recurrent neural network models uses all the data and creates a global model for prediction. The models are built with Keras/Tensorflow and the training is distributed using Horovod.
More details on our setup will come in the following notebooks.
References:
How to setup linear regression with pyspark: https://towardsdatascience.com/building-a-linear-regression-with-pyspark-and-mllib-d065c3ba246a
Tutoial Horovod and Tensorflow: https://learn.microsoft.com/en-us/azure/synapse-analytics/machine-learning/tutorial-horovod-tensorflow
Preparing the data
This notebook is for loading and pre-processing the dataset.
# Reads the data into a dataframe
def spark_read_data(display = False):
# File location and type
file_location = "/FileStore/tables/RDI/total_df0.csv"
file_type = "csv"
# CSV options
infer_schema = "true"
first_row_is_header = "true"
delimiter = ","
# The applied options are for CSV files. For other file types, these will be ignored.
df = spark.read.format(file_type) \
.option("inferSchema", infer_schema) \
.option("header", first_row_is_header) \
.option("sep", delimiter) \
.load(file_location)
df = df.drop("_c0")
if display:
df.show(10)
return df
df = spark_read_data(True)
# Returns a dataframe of the desired timelags for the dataset
def time_shift_data(df, lags, features):
from pyspark.sql import functions as F
from pyspark.sql.window import Window
my_window = Window.partitionBy('cellId').orderBy('rdiTimeStamp')
for i in lags:
for ii in features:
df = df.withColumn(ii+'(t-{})'.format(i), F.lag(ii,i).over(my_window))
df = df.na.drop()
return df
df_shifted = time_shift_data(df, [1, 2], ['pmRadioThpVolDl'])
df_shifted.show(10)
# Min-max scaler for the neural network models (LSTM) and (GRU). Data will be between 0 and 1.
def scale_data_manual(df, columns_to_scale):
mm_coeff = []
i = 0
for col in columns_to_scale:
k = min(df.select(col).collect())[0]
l = max(df.select(col).collect())[0]
df = df.withColumn(col,(df[col]-k)/(l-k))
mm_coeff.append([k, l])
i += 1
return df, mm_coeff
# Inverse min-max scaler for the neural network models (LSTM) and (GRU)
def scale_data_inverse_manual(df, mm_coeff, columns_to_scale = ['cellId', 'locationIndex','freqBand', 'latitude', 'longitude', 'pmRadioThpVolDl', 'pmActiveUeDlSum', 'pmActiveUeUlSum']):
i = 0
for col in columns_to_scale:
df = df.withColumn(col, df[col]*(mm_coeff[i][1]-mm_coeff[i][0])+mm_coeff[i][0])
i += 1
return df
# Normalizes a dataframe in the specified columns for the AR-model (removes the mean)
def normalize(df, columns):
from pyspark.sql.functions import mean
aggExpr = []
for column in columns:
aggExpr.append(mean(df[column]).alias(column))
averages = df.agg(*aggExpr).collect()[0]
selectExpr = ['*']
for column in columns:
selectExpr.append((df[column] - averages[column]).alias('normalized_'+column))
return df.select(selectExpr), averages
# Splits train and test data in the dataset depending on the timestamp of the row (i.e. this is not a random split)
def train_test_split(df, n_train):
from pyspark.sql import functions as f
from pyspark.sql.window import Window
window=Window.orderBy('rdiTimeStamp')
df_temp=df.withColumn('row',f.row_number().over(window))
df_train = df_temp.filter((f.col('row')<=n_train))
df_test = df_temp.filter((f.col('row')>n_train))
df_train = df_train.drop('row')
df_test = df_test.drop('row')
return df_train, df_test
# Constructs the dataset for the distributed model
def get_dataset():
# ##### Setup ########
time_variables = ['pmRadioThpVolDl', 'pmActiveUeDlSum', 'pmActiveUeUlSum']
aux_variables = ['freqBand', 'latitude', 'longitude']
y_variable = 'pmRadioThpVolDl'
columns_to_scale = ['cellId', 'locationIndex','freqBand', 'latitude', 'longitude', 'pmRadioThpVolDl', 'pmActiveUeDlSum', 'pmActiveUeUlSum']
n_time = 3
lags = [x for x in range(1, n_time + 1)]
lags += [4 * 24]
frac_train = 0.7
#############
df = spark_read_data()
df_scaled, mm_coeff = scale_data_manual(df, columns_to_scale)
df_scaled = time_shift_data(df_scaled, lags, time_variables)
n_train = int(df.count() * frac_train)
df_train, df_test = train_test_split(df_scaled, n_train)
time_shifted_variables = ["{}(t-{})".format(x,t) for t in range(1,n_time+1) for x in time_variables]
x_train, x_aux_train, y_train = df_to_array(df_train, time_shifted_variables, aux_variables, y_variable, n_time)
x_test, x_aux_test, y_test = df_to_array(df_test, time_shifted_variables, aux_variables, y_variable, n_time)
return (x_train, x_aux_train, y_train), (x_test, x_aux_test, y_test), df_test, mm_coeff
# Constructs the dataset for the baseline model
def get_dataset_lr(cellId):
from pyspark.ml.feature import VectorAssembler
# ##### Setup ########
time_variable = ['pmRadioThpVolDl']
time_variable_norm = ['normalized_pmRadioThpVolDl']
n_time = 3
lags = [x for x in range(1, n_time + 1)]
lags += [4 * 24]
frac_train = 0.7
#############
df = spark_read_data()
df = df.where(df.cellId == cellId)
df_n, averages = normalize(df, time_variable)
df_shifted = time_shift_data(df_n, lags, time_variable_norm)
n_train = int(df_shifted.count() * frac_train)
df_train, df_test = train_test_split(df_shifted, n_train)
time_shifted_variables = ["{}(t-{})".format(x,t) for t in lags for x in time_variable_norm]
assembler = VectorAssembler(inputCols = time_shifted_variables, outputCol = 'features')
df_train_lr = assembler.transform(df_train)
df_train_lr = df_train_lr.select(['features', 'normalized_pmRadioThpVolDl', 'cellId','rdiTimeStamp'])
df_test_lr = assembler.transform(df_test)
df_test_lr = df_test_lr.select(['features', 'normalized_pmRadioThpVolDl', 'cellId','rdiTimeStamp'])
return df_train_lr, df_test_lr, averages
# Function for retrieving the Horovod rank and size
def get_dataset_rank(train_data, test_data, rank=0, size=1):
x_train, x_aux_train, y_train = train_data
x_test, x_aux_test, y_test = test_data
x_train = x_train[rank::size]
x_aux_train = x_aux_train[rank::size]
y_train = y_train[rank::size]
x_test = x_test[rank::size]
x_aux_test = x_aux_test[rank::size]
y_test = y_test[rank::size]
return (x_train, x_aux_train, y_train), (x_test, x_aux_test, y_test)
# Converts a dataframe of the dataset to a numpy array
def df_to_array(df, time_variables, aux_variables, y_variable, n_time=1, add=0):
import numpy as np
n_row = df.count() + add
x = np.array(df.select(time_variables).collect()).reshape(n_row, n_time, int(len(time_variables)/n_time))
x_aux = np.array(df.select(aux_variables).collect()).reshape(n_row, len(aux_variables))
y = np.array(df.select(y_variable).collect()).reshape(n_row)
x=x.astype(np.float32)
x_aux=x_aux.astype(np.float32)
y=y.astype(np.float32)
return (x, x_aux, y)
# Returns a dataset suitable for plotting
def get_test_dataset(df_test, cellId = -1, add=0):
# ##### Setup ########
time_variables = ['pmRadioThpVolDl', 'pmActiveUeDlSum', 'pmActiveUeUlSum']
aux_variables = ['freqBand', 'latitude', 'longitude']
y_variable = 'pmRadioThpVolDl'
n_time = 3
#############
if cellId > -1:
df_test = df_test.where(df_test.cellId == 1)
time_shifted_variables = ["{}(t-{})".format(x,t) for t in range(1,n_time+1) for x in time_variables]
x_test, x_aux_test, y_test = df_to_array(df_test, time_shifted_variables, aux_variables, y_variable, n_time, add=add)
return (x_test, x_aux_test, y_test)
Baseline model
Creating a baseline model for the machine learning model to compare with. The model is:
\(y(t) = \beta_1 y(t - 1) + \beta_2 y(t - 2) + \beta_3 y(t - 3) + \beta_4 y(t - 96)\), where y is pmRadioThpVolDl or downlink throughput volume.
"./01_prepare_data"
We first train an AR-model using linear regression. This model is only for one of the cells in the network, in this case cellId = 1. We use 70% of the data for training and 30% for testing.
from pyspark.ml.regression import LinearRegression
cellId = 1
# Create a dataset suitable for the AR-model
df_train_lr, df_test_lr, averages = get_dataset_lr(cellId = cellId)
# Train the model
lr = LinearRegression(featuresCol = 'features', labelCol='normalized_pmRadioThpVolDl', fitIntercept=False, maxIter=10, regParam=0.3, elasticNetParam=0.8)
lr_model = lr.fit(df_train_lr)
# Print the coefficients of the model and the RMSE and the r2 of the training data
print("Coefficients: " + str(lr_model.coefficients))
trainingSummary = lr_model.summary
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
The model is now tested.
from pyspark.ml.evaluation import RegressionEvaluator
# Use the test data to test the model
df_test_lr_1 = df_test_lr.where(df_test_lr.cellId == cellId)
lr_predictions = lr_model.transform(df_test_lr_1)
lr_predictions.select("prediction","rdiTimeStamp","normalized_pmRadioThpVolDl","features").show(10)
# Print RMSE and the r2 of the test data
lr_evaluator = RegressionEvaluator(predictionCol="prediction", \
labelCol="normalized_pmRadioThpVolDl",metricName="r2")
print("R2 on test data: %g" % lr_evaluator.evaluate(lr_predictions))
test_result = lr_model.evaluate(df_test_lr)
print("RMSE on test data: %g" % test_result.rootMeanSquaredError)
# Plots the downlink throughput volum (y) of some specified time
def plot_prediction(df_plot, startTime, endTime):
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
matplotlib.rcParams.update({'font.size': 14})
# Filter out the relevant data for the figure
df_plot = df_plot[df_plot['rdiTimeStamp']<endTime]
df_plot = df_plot[df_plot['rdiTimeStamp']>startTime]
df_plot = df_plot.sort_values(['rdiTimeStamp'])
df_plot['pmRadioThpVolDl'] = (df_plot['normalized_pmRadioThpVolDl'] + averages)/8000
df_plot['prediction'] = (df_plot['prediction'] + averages)/8000
df_plot['rdiTimeStamp'] = pd.to_datetime(df_plot.rdiTimeStamp)
# Plot
fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot()
ax.plot(df_plot['rdiTimeStamp'], df_plot['pmRadioThpVolDl'], label='True')
ax.plot(df_plot['rdiTimeStamp'], df_plot['prediction'], label='Prediction')
timeStamps = [df_plot.iloc[i*12]['rdiTimeStamp'] for i in range(int(len(df_plot)/12))]
ax.set_xlabel('Time')
ax.set_ylabel('Downlink volume [MB]')
ax.legend()
ax.set_xticks(timeStamps)
ax.set_xticklabels(timeStamps, rotation=25)
plt.tight_layout()
plt.show()
# Plot the result for two diffrent days
df_plot = lr_predictions.select("prediction","rdiTimeStamp","normalized_pmRadioThpVolDl").toPandas()
plot_prediction(df_plot, '2022-10-13', '2022-10-14')
plot_prediction(df_plot, '2022-10-24', '2022-10-25')
Single machine
Runs the machine learning model on a single machine
./01_prepare_data
# Defines the LSTM model
def get_model(x_shape_1, x_shape_2, x_aux_shape_1):
from tensorflow.keras.layers import Dense, Input, concatenate, LSTM
from tensorflow.keras.models import Model
main_input = Input(shape=(x_shape_1, x_shape_2), name='main_input')
lstm_out = LSTM(50)(main_input)
aux_input = Input(shape=(x_aux_shape_1,), name='aux_input')
x = concatenate([lstm_out, aux_input])
x = Dense(64, activation='relu')(x)
x = Dense(32, activation='relu')(x)
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[main_input, aux_input], outputs=[main_output])
return model
# Defining the training function for a single machine
def train(learning_rate=1.0, epochs=epochs):
from tensorflow import keras
(x_train, x_aux_train, y_train), (x_test, x_aux_test, y_test), df_test = get_dataset()
model = get_model(x_train.shape[1], x_train.shape[2], x_aux_train.shape[1])
# Specify the optimizer
optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer,
loss='mean_squared_error',
metrics=['accuracy'])
model.fit([x_train, x_aux_train], y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=([x_test, x_aux_test], y_test))
return model, df_test
# Setting training parameters
batch_size = 128
epochs = 10
# Train
model, df_test = train(learning_rate=0.001, epochs)
# Test the model
(x_test, x_aux_test, y_test) = get_test_dataset(df_test)
loss, accuracy = model.evaluate([x_test, x_aux_test], y_test, batch_size=batch_size)
print("loss:", loss)
print("accuracy:", accuracy)
Distributed learning
In this notebok, we will train recurrent neural networks in a distributed manner using Horovod runner, in order to predict the load in the network. We start off by loading the first two notebooks so we can acess the data set and compare the RNN to the baseline model.
./01_prepare_data
./02_baseline
# Defines the LSTM model
def get_model_lstm(x_shape_1, x_shape_2, x_aux_shape_1):
from tensorflow.keras.layers import Dense, Input, concatenate, LSTM
from tensorflow.keras.models import Model
main_input = Input(shape=(x_shape_1, x_shape_2), name='main_input')
lstm_out = LSTM(50)(main_input) # One LSTM layer with 50 hidden units
aux_input = Input(shape=(x_aux_shape_1,), name='aux_input')
x = concatenate([lstm_out, aux_input])
x = Dense(64, activation='relu')(x)
x = Dense(32, activation='relu')(x)
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[main_input, aux_input], outputs=[main_output])
return model
# Defines the GRU model
def get_model_gru(x_shape_1, x_shape_2, x_aux_shape_1):
from tensorflow.keras.layers import Dense, Input, concatenate, GRU
from tensorflow.keras.models import Model
main_input = Input(shape=(x_shape_1, x_shape_2), name='main_input')
gru_out = GRU(50)(main_input) # One GRU layer with 50 hidden units
aux_input = Input(shape=(x_aux_shape_1,), name='aux_input')
x = concatenate([gru_out, aux_input])
x = Dense(64, activation='relu')(x)
x = Dense(32, activation='relu')(x)
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[main_input, aux_input], outputs=[main_output])
return model
# Defines the deep GRU model
def get_model_gru_deep(x_shape_1, x_shape_2, x_aux_shape_1):
from tensorflow.keras.layers import Dense, Input, concatenate, GRU
from tensorflow.keras.models import Model
main_input = Input(shape=(x_shape_1, x_shape_2), name='main_input')
gru_1 = GRU(60, return_sequences=True)(main_input)
gru_2 = GRU(60, return_sequences=True)(gru_1) # Two GRU layers with 60 hidden units.
gru_out = GRU(60)(gru_2)
aux_input = Input(shape=(x_aux_shape_1,), name='aux_input')
x = concatenate([gru_out, aux_input])
x = Dense(60, activation='relu')(x)
x = Dense(30, activation='relu')(x)
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[main_input, aux_input], outputs=[main_output])
return model
import os
import time
# Remove any existing checkpoint files
#dbutils.fs.rm(("/ml/RDI/train"), recurse=True)
# Create directory to read and save files.
checkpoint_dir = '/dbfs/ml/RDI/train/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
print(checkpoint_dir)
# Defining the training function using Horovod runner
def train_hvd(get_model, train_data, test_data, checkpoint_path, learning_rate=1.0):
# Import tensorflow modules to each worker
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
import tensorflow as tf
from tensorflow import keras
import horovod.tensorflow.keras as hvd
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
# These steps are skipped on a CPU cluster
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
# Call the get_dataset function you created, this time with the Horovod rank and size
(x_train, x_aux_train, y_train), (x_test, x_aux_test, y_test) = get_dataset_rank(train_data, test_data, hvd.rank(), hvd.size())
model = get_model(x_train.shape[1], x_train.shape[2], x_aux_train.shape[1])
# Adjust learning rate based on number of GPUs
optimizer = keras.optimizers.Adam(learning_rate=learning_rate * hvd.size())
# Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
model.compile(optimizer=optimizer,
loss='mean_squared_error',
metrics=['accuracy'])
# Create a callback to broadcast the initial variable states from rank 0 to all other processes.
# This is required to ensure consistent initialization of all workers when training is started with random weights or restored from a checkpoint.
callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
# Save checkpoints only on worker 0 to prevent conflicts between workers
if hvd.rank() == 0:
callbacks.append(keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only = True))
model.fit([x_train, x_aux_train], y_train,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=2,
validation_data=([x_test, x_aux_test], y_test))
# Loads the dataset
train_data, test_data, df_test, mm_coeff = get_dataset()
# Setting training parameters
from sparkdl import HorovodRunner
batch_size = 128
epochs = 10
learning_rate = 0.001
hr = HorovodRunner(np=2)
# Run training for the LSTM model
checkpoint_path = checkpoint_dir + '/lstm_l3/checkpoint-{epoch}.ckpt'
hr.run(train_hvd, get_model= get_model_lstm, train_data = train_data, test_data = test_data, checkpoint_path=checkpoint_path, learning_rate=learning_rate)
# Run training for the GRU model
checkpoint_path = checkpoint_dir + '/gru_l3/checkpoint-{epoch}.ckpt'
hr.run(train_hvd, get_model=get_model_gru, train_data = train_data, test_data = test_data, checkpoint_path=checkpoint_path, learning_rate=learning_rate)
# Run training for the deep GRU model
checkpoint_path = checkpoint_dir + '/gru_deep_l3/checkpoint-{epoch}.ckpt'
hr.run(train_hvd, get_model=get_model_gru_deep, train_data = train_data, test_data = test_data, checkpoint_path=checkpoint_path, learning_rate=learning_rate)
Evaluation
Now that the models have been trained and saved in the directory, we eil evaluate their performance and compare them to the bsaeline AR model.
import tensorflow as tf
(x_test, x_aux_test, y_test) = test_data
import os
import tensorflow.keras
dir1 = '/dbfs/ml/RDI/train/'
checkpoint_dir = dir1 + os.listdir(dir1)[3] + '/' #using 3 last samples + yesterday
# Evaluate the LSTM model
hvd_model_lstm = get_model_lstm(x_test.shape[1], x_test.shape[2], x_aux_test.shape[1])
hvd_model_lstm.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss='mean_squared_error',
metrics=['accuracy'])
hvd_model_lstm.load_weights(tf.train.latest_checkpoint(os.path.dirname(checkpoint_dir + 'lstm_l3/checkpoint-{epoch}.ckpt')))
loss_lstm, accuracy_lstm = hvd_model_lstm.evaluate([x_test, x_aux_test], y_test, batch_size=batch_size)
print("loaded model loss and accuracy:", loss_lstm, accuracy_lstm)
# Evaluate the GRU model
hvd_model_gru = get_model_gru(x_test.shape[1], x_test.shape[2], x_aux_test.shape[1])
hvd_model_gru.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss='mean_squared_error',
metrics=['accuracy'])
hvd_model_gru.load_weights(tf.train.latest_checkpoint(os.path.dirname(checkpoint_dir + '/gru_l3/checkpoint-{epoch}.ckpt')))
loss_gru, accuracy_gru = hvd_model_gru.evaluate([x_test, x_aux_test], y_test, batch_size=batch_size)
print("loaded model loss and accuracy:", loss_gru, accuracy_gru)
# Evaluate the deep GRU model
hvd_model_gru_deep = get_model_gru_deep(x_test.shape[1], x_test.shape[2], x_aux_test.shape[1])
hvd_model_gru_deep.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss='mean_squared_error',
metrics=['accuracy'])
hvd_model_gru_deep.load_weights(tf.train.latest_checkpoint(os.path.dirname(checkpoint_dir + '/gru_deep_l3/checkpoint-{epoch}.ckpt')))
loss_deep, accuracy_deep = hvd_model_gru_deep.evaluate([x_test, x_aux_test], y_test, batch_size=batch_size)
print("loaded model loss and accuracy:", loss_deep, accuracy_deep)
Plots
To compare all models in an illustrative way, their performance on the test dataset will be plotted.
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
sns.set(
context='paper',
font_scale=1,
style='ticks',
rc={
'lines.linewidth': 2,
'figure.figsize': (15,12),
'font.size': 60,
'lines.markersize': 8,
'axes.labelsize': 20,
'xtick.labelsize': 16,
'ytick.labelsize': 16,
'legend.fontsize': 16,
'axes.labelpad': 6
}
)
from pyspark.sql.functions import round
load_m = mm_coeff[-3][1]
df_test = df_test.withColumn('cellId', df_test['cellId']*(mm_coeff[0][1]-mm_coeff[0][0])+mm_coeff[0][0])
df_test1 = df_test.select("*",round("cellID")).show()
(x_test, x_aux_test, y_test) = get_test_dataset(df_test, cellId=1, add=0)
# A function that plots the true and predicted network load for the models in this project for a specified period of time.
def plot_prediction_04(df_plot, startTime, endTime):
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
matplotlib.rcParams.update({'font.size': 14})
df_plot = df_plot[df_plot['rdiTimeStamp']<endTime]
df_plot = df_plot[df_plot['rdiTimeStamp']>startTime]
df_plot = df_plot.sort_values(['rdiTimeStamp'])
fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot()
ax.plot(df_plot['rdiTimeStamp'], df_plot['pmRadioThpVolDl'], label='True')
ax.plot(df_plot['rdiTimeStamp'], df_plot['prediction'], label='AR')
ax.plot(df_plot['rdiTimeStamp'], df_plot['LSTM'], label='LSTM')
ax.plot(df_plot['rdiTimeStamp'], df_plot['GRU'], label='GRU')
ax.plot(df_plot['rdiTimeStamp'], df_plot['GRU_deep'], label='GRU_deep')
timeStamps = [df_plot.iloc[i*12]['rdiTimeStamp'] for i in range(int(len(df_plot)/12))]
ax.set_xlabel('Time')
ax.set_ylabel('Downlink volume [MB]')
ax.set_xticks(timeStamps)
ax.set_xticklabels(timeStamps, rotation=25)
plt.legend()
plt.tight_layout()
plt.show()
df_plot1 = lr_predictions.select("prediction","rdiTimeStamp","normalized_pmRadioThpVolDl").toPandas()
df_plot1 = df_plot1[67:]
# Converting from bits to MB
yhatl = hvd_model_lstm.predict([x_test, x_aux_test])*load_m/8000
df_plot1['LSTM'] = yhatl
yhatg = hvd_model_gru.predict([x_test, x_aux_test])*load_m/8000
df_plot1['GRU'] = yhatg
yhatg1 = hvd_model_gru_deep.predict([x_test, x_aux_test])*load_m/8000
df_plot1['GRU_deep'] = yhatg1
df_plot1['pmRadioThpVolDl'] = (df_plot1['normalized_pmRadioThpVolDl'] + averages[0])/8000
df_plot1['prediction'] = (df_plot1['prediction'] + averages[0])/8000
df_plot1['rdiTimeStamp'] = pd.to_datetime(df_plot1.rdiTimeStamp)
Plot of the true and predicted network load for October 13th.
plot_prediction_04(df_plot1, '2022-10-13', '2022-10-14')
from sklearn.metrics import mean_squared_error
y_mse_ar = np.sqrt(mean_squared_error(df_plot1['pmRadioThpVolDl'], df_plot1['prediction']))
y_mse_lstm = np.sqrt(mean_squared_error(df_plot1['pmRadioThpVolDl'], df_plot1['LSTM']))
y_mse_gru = np.sqrt(mean_squared_error(df_plot1['pmRadioThpVolDl'], df_plot1['GRU']))
y_mse_gru_deep= np.sqrt(mean_squared_error(df_plot1['pmRadioThpVolDl'], df_plot1['GRU_deep']))
Plot of the RMSE for all models based on the test dataset.
import matplotlib.pyplot as plt
plt.bar(['AR', 'LSTM', 'GRU', 'Deep_GRU'], [y_mse_ar, y_mse_lstm, y_mse_gru, y_mse_gru_deep])
plt.ylabel('RMSE loss [MB]')
plt.show()
Collaborative Filtering in Movie Recommender Systems
Project members:
- Jacob Lindbäck, KTH Royal Institute of Technology
- Rebecka Winqvist, KTH Royal Institute of Technology
- Robert Bereza, KTH Royal Institute of Technology
- Damianos Tranos, KTH Royal Institute of Technology
Collaborative Filtering
A recommender system provides its users with personalized suggestions, based on their previous feedback and ratings. We encounter them frequently in our everyday lives: for example, in streaming services where they are used for movie and music recommendation, and in e-commerce where they are used for product recommendation.
Collaborative filtering is a widely used technique in recommender systems. The technique makes predictions/suggestions (filtering) based on preferences collected from many users (collaborative). In this project, we use a collaborative filtering method for a movie recommender system. Let's start with a simple example.
Assume that we have five users and six movies in our system. We can collect the user ratings in a matrix

in which the rows represent the users, and the columns represent the movies. We call this matrix the user-item interaction matrix or the ratings matrix, and we denote it by \(X\). This matrix actually contains many dependencies, which we will make use of when we predict "missing" ratings.
Example 1 Assume that we have the following ratings matrix

In this case, User 3 has not rated Movie 4. Since all users appear to share the same preferences, it makes sense to guess that User 3 will also give Movie 4 a rating of 3.
Example 2 Assume the following ratings matrix

We want to guess/predict how User 3 will rate Movie 2. We see that User 1 and User 3 seem to have the same preferences. It is therefore safe to assume that User 3 will give Movie 2 a rating of 2.
Matrix Factorization
It is easy to see that as the number of users and items grows, the problem of finding these dependencies or patterns becomes untractable/cumbersome. One way of mitigating this is by introducing so called latent features to characterize the items (movies) being rated, and instead learn/estimate how prevalent these fearures are in each movie, and to what extent each user appreciates a certain feature. In a movie recommender system, features could be e.g. movie genres, movie plots, starring actors or producers.
As an example, let's look at the case where we have two features, denoted by F1 and F2. We can then construct two matrices that tells us how the users rate these features, and how prevalent they are in each movie. We call these matrices, or this information, user factors and item factors, respectively, and denote them by \(U\) and \(V\).

So, for example, if we want to predict/guess how User 1 would rate Movie 1 in this case, we simply take the dot product between the two vectors \[r_{1,1} = \left[ 3 \ 1 \right] \cdot \left[ 1 \ 1 \right]^\top = 4,\]
which we can interpret as how much the user's preferences align with the movie's features, i.e., how likely it is that the user will enjoy the movie. Using this logic, to compute the full ratings matrix, we then take the outer product of the matrices \(U\) and \(V\), i.e., \(X = UV^\top\). This is also visualized in the image below.

This method is known as Matrix Factorization, which is a class of collaborative filtering algorithms. To summarize, the method decomposes the ratings matrix into the product of two lower-dimensional matrices: one representing the user factors, and one representing the item factors. In this way, computing/predciting the full ratings matrix become more memory efficient and computationally cheape, since we now only need to learn/find the item and user factors.
Problem Formulation
Let us now formalize our problem. First, let \(x_{i,j}\) denote the rating user \(i\) has given item/movie \(j\). Further, let \(\Omega\) denote all observed user-item pairs (i.e., which movies have been rated by whom). The collected ratings are represented by the ratings matrix, \(X\).
Our goal/aim is to learn/predict the missing values of \(X\). Using matrix factorization, this corresponds to finding/learning the user and item factors, \(U\) and \(V\), that best describe/represent the collected ratings (the elements of \(X\). That is, we want to minimize the difference (or error) \[ X - UV^\top. \] Since we cannot compute an error/deviation for missing values/ratings, we introduce the masking operator \(P_\Omega\) defined by \[ {P_\Omega(X)}{i,j} = x{i,j} \text{ if } (i,j) \in \Omega, \text{\ \ \ } {P_\Omega(X)}_{i,j} = 0 \text{ otherwise }, \]
and re-formulate the problem as the optimization problem \[ \min_{U \in \mathbb{R}^{n\times k}, V \in \mathbb{R}^{m\times k}} \quad \frac{1}{2}\left\lVert P_\Omega(X - UV^\top) \right\rVert^2_F, \] where \(F\) denotes the Frobenius norm. To facilitate the training/learning, but also to mitigate the risk of overfitting, one typically introduces two regularization terms: \[ \min_{U \in \mathbb{R}^{n\times k}, V \in \mathbb{R}^{m\times k}} \quad \frac{1}{2}\left\lVert P_\Omega(X - UV^\top) \right\rVert^2_F + \frac{\lambda}{2n}\left\lVert U \right\rVert^2_F + \frac{\lambda}{2m}\left\lVert V \right\rVert^2_F.\]
Alternating Least Squares (ALS)
A standard method for solving the Matrix Factorization problem (that is also implemented in Spark currently) is Alternating Least Squares. The method relies on the observation that if we were to fix one of the optimization variables \(U, V\) then the aforementioned optimization problem reduces to a Least Squares problem.
ALS then involves fixing one of the optimization variables at every iteration (in an alternating fashion) and solving the corresponding convex problem using e.g. gradient descent. As an example of how these gradients can be computed, let:
\[ \mathcal{l}(U,V) = \frac{1}{2}\left\lVert P_\Omega(X - UV^\top) \right\rVert^2_F \] denote the loss. Then the gradients w.r.t. to the factor matrices are given by \[ \nabla_U \mathcal{l}(U,V) = -P_\Omega(X-UV^\top)V, \quad \quad \nabla_V \mathcal{l}(U,V) = -P_\Omega^\top(X-UV^\top)U, \] respectively.
Typically, it's impractical to carry out all the matrix operations, due to the sparse nature of the problem. We note that, for one observation \((i,j)\) in \(\Omega\), that data point will only impact the gradients of the \(i\)th row of \(U\) and the \(j\)th row of \(V\), i.e.
\[ \nabla_{u_i} \mathcal{l} += -(x_{ij}-\langle u_i, v_j \rangle)v_j, \quad \quad \nabla_{v_j} \mathcal{l} += -(x_{ij}-\langle u_i, v_j \rangle)u_j \]
where \(u_i\) and \(v_j\) is the \(i\)th and \(j\)th row in \(U\) and \(V\) respectively (here \(+=\) means "add to variable").
Practical Implementation
We illustrate how the data is partitioned with an example. Assume we have collected the ratings matrix:

Assume further that we charactize the items (movies) by three factors: F1, F2 and F3. With six users, six movies and three factors, the userFactor matrix and itemFactor matrix will both be of size \(6\times 3\). See Figure below.

We want to find the optimal elements of these matrices. We do so by minimizing the loss function defined above.
Data Partitioning
To store the large factor matrices \(U\) and \(V\), they are divided up by their rows and distributed in memory across different partitions. To also reduce the communication needed to update \(U\) and \(V\), the rating matrix, which is fixed at all time, is stored in memory structures called OutBlocks and InBlocks. There are four such structures in total, two of each for both items and for users. The userInBlocks contain all the ratings each user needs for its update, partitioned in such a way that the ratings are stored on the same partition as the factor that needs them to update, thus removing the need for communicating the ratings during the optimization. The userOutBlocks simply contain information about (or addresses to) the itemFactors that are necessary to update each block of userFactors. This information is used to, at each iteration, ensure that every userFactor is only communicated exactly those item factors it needs to update, and no more. The corresponding approach is used for itemInBlocks and itemOutBlocks. Note that this way of storing the data stores in total two copies of the rating matrix (one in userInBlocks and one in itemInBlocks), but on the other hand removes the need to communicate any values of the rating matrix during the optimization.
Assume that we split each matrix computation over three partitions each. This is illustrated in the figure below. How the blocks are distributed across partitions can be random, or determined by some specification (i.e., users with even indices on partitions with even indices etc.)

The elements of the ratings matrix are then distributed over these six partitions such that all information necessary to compute a particular factor, \(u_{i,j}\) or \(v_{i,j}\), is stored in the same partition. For instance, to compute user factors \(u_{i,j}\) for \(i\in[1,2], j\in[1,3]\), we only need the ratings from users 1 and 2.

Finally, we also store...

Recall the optimization problem for MF: \[ \min_{U \in \mathbb{R}^{n\times k}, V \in \mathbb{R}^{m\times k}} \quad \frac{1}{2}\left\lVert P_\Omega(X - UV^\top) \right\rVert^2_F + \frac{\lambda}{2n}\left\lVert U \right\rVert^2_F + \frac{\lambda}{2m}\left\lVert V \right\rVert^2_F.\]
This is a non-convex problem, however, its blockwise convex. In fact, minimizing wrt to one block at the time reduces to a least squares problem (main feature used in ALS).
Potential drawbacks of ALS
- Inherently sequential, the computations of the \(U\) blocks cannot start until that of \(V\) is finished, and vice versa.
- One iteration, i.e one \(U\) update followd by a \(V\) update requires querying the data twice, which can be expensive.
Our idea: why not consider gradient-based approaches? These methods typically aren't subject to the same bottlenecks. However,
Drawbacks with gradient based approaches:
- The nonconvexity will slow down the convergence considerably.
- The problem isn't L-smooth globally, only locally. As a consequence, specifying a stepsize apriori is typically difficult.
Another first-order method (that we wanted to implement, but run out of time...) is Bregman-Proximal Gradient Descent. By specifying a particular Bregman-Divergence, one can handle the "non L-smoothness".
Main idea (super briefly):
For gradient descent \[x^{k+1} = x^k - \frac{1}{L} \nabla f(x^k) \iff x^{k+1} = \text{argmin}_x , f(x^k) + \langle \nabla f(x^k), x-x^k \rangle + \frac{L}{2} \Vert x - x^k \Vert^2\]
The quadratic in the optimization problem is majorizing if \(f\) is L-smooth.
For Bregman descent
\[ x^{k+1} = \text{argmin}_x , f(x^k) + \langle \nabla f(x^k), x-x^k \rangle + LD_h(x, x^k)\]
where \(D_h(x, x^k)\) is the Bregman divergence generated by \(h\). The ancillary objective function is majorizing if \(f\) is sk. L-SMAD.
Although the objective of the matrix factorization isn't L-smooth, it is L-SMAD with
\[ h(U,V)= C_1 \bigg( \frac{\Vert U \Vert_F^2 + \Vert V \Vert_F^2}{2}\bigg)^2 + C_2 \bigg( \frac{\Vert U \Vert_F^2 + \Vert V \Vert_F^2}{2}\bigg) \]
This approach was proposed in Neurips 2019 paper Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms by Mahesh Chandra Mukkamala and Peter Ochs https://proceedings.neurips.cc/paper/2019/file/bc7f621451b4f5df308a8e098112185d-Paper.pdf
Creating the Collaborative Filtering (ColFil) object
Almost all our code is used to define one large object. Since our code is based on the ALS-package, large parts of it are well optimized but therefore also quite difficult to read. Therefore, it is best to just run the cell below, and after it we will pick out some of the more relevant parts of the code and explain how they work. To read the following block, it is strongly recommended to use the DataBricks editor that Raaz recommended on Canvas, as it makes it possible to collapse functions and improves readability (it's very very simple to enable).
package org.apache.spark.ml.collaborative_filtering
import org.apache.spark.ml.recommendation._
import java.{util => ju}
import java.io.IOException
import java.util.Locale
import scala.collection.mutable
import scala.reflect.ClassTag
import scala.util.{Sorting, Try}
import scala.util.hashing.byteswap64
import com.google.common.collect.{Ordering => GuavaOrdering}
import org.apache.hadoop.fs.Path
import org.json4s.DefaultFormats
import org.json4s.JsonDSL._
import org.apache.spark.{Partitioner, SparkException}
import org.apache.spark.annotation.Since
import org.apache.spark.internal.Logging
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.BLAS
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.mllib.linalg.CholeskyDecomposition
import org.apache.spark.mllib.optimization.NNLS
import org.apache.spark.rdd.{DeterministicLevel, RDD}
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.Utils
import org.apache.spark.util.collection.{OpenHashMap, OpenHashSet, SortDataFormat, Sorter}
import org.apache.spark.util.random.XORShiftRandom
import com.databricks.service.DBUtils
object ColFil extends DefaultParamsReadable[ALS] with Logging {
/**
* Rating class for better code readability.
*/
case class Rating[@specialized(Int, Long) ID](user: ID, item: ID, rating: Float)
override def load(path: String): ALS = super.load(path)
/**
* Implementation of Collaborative filtering algorithm. Similar to the implementation of the
* ALS algorithm from org.apache.spark.ml.recommendation, therefore the remainder of this comment
* is actually the same as for the train() function for the ALS object.
*
* This implementation of the ALS factorization algorithm partitions the two sets of factors among
* Spark workers so as to reduce network communication by only sending one copy of each factor
* vector to each Spark worker on each iteration, and only if needed. This is achieved by
* precomputing some information about the ratings matrix to determine which users require which
* item factors and vice versa. See the Scaladoc for `InBlock` for a detailed explanation of how
* the precomputation is done.
*
* In addition, since each iteration of calculating the factor matrices depends on the known
* ratings, which are spread across Spark partitions, a naive implementation would incur
* significant network communication overhead between Spark workers, as the ratings RDD would be
* repeatedly shuffled during each iteration. This implementation reduces that overhead by
* performing the shuffling operation up front, precomputing each partition's ratings dependencies
* and duplicating those values to the appropriate workers before starting iterations to solve for
* the factor matrices. See the Scaladoc for `OutBlock` for a detailed explanation of how the
* precomputation is done.
*
* Note that the term "rating block" is a bit of a misnomer, as the ratings are not partitioned by
* contiguous blocks from the ratings matrix but by a hash function on the rating's location in
* the matrix. If it helps you to visualize the partitions, it is easier to think of the term
* "block" as referring to a subset of an RDD containing the ratings rather than a contiguous
* submatrix of the ratings matrix.
*/
def train[ID: ClassTag](
ratings: RDD[Rating[ID]],
rank: Int = 10,
numUserBlocks: Int = 10,
numItemBlocks: Int = 10,
maxIter: Int = 10,
stepSize: Float = 0.1f,
regParam: Double = 0.1, // TODO: DELETE
implicitPrefs: Boolean = false, // TODO: DELETE
alpha: Double = 1.0, // TODO: DELETE
nonnegative: Boolean = false, // TODO: DELETE
intermediateRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK,
finalRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK,
checkpointInterval: Int = 10,
seed: Long = 0L)(
implicit ord: Ordering[ID]): (RDD[(ID, Array[Double])], RDD[(ID, Array[Double])]) = {
// ---------- The following block of code is identical to the ALS class ---------------
require(!ratings.isEmpty(), s"No ratings available from $ratings")
require(intermediateRDDStorageLevel != StorageLevel.NONE,
"Collaborative filtering is not designed to run without persisting intermediate RDDs.")
val sc = ratings.sparkContext
// Precompute the rating dependencies of each partition
val userPart = new ALSPartitioner(numUserBlocks)
val itemPart = new ALSPartitioner(numItemBlocks)
val blockRatings = partitionRatings(ratings, userPart, itemPart)
.persist(intermediateRDDStorageLevel)
val (userInBlocks, userOutBlocks) =
makeBlocks("user", blockRatings, userPart, itemPart, intermediateRDDStorageLevel)
userOutBlocks.count() // materialize blockRatings and user blocks
val swappedBlockRatings = blockRatings.map {
case ((userBlockId, itemBlockId), RatingBlock(userIds, itemIds, localRatings)) =>
((itemBlockId, userBlockId), RatingBlock(itemIds, userIds, localRatings))
}
val (itemInBlocks, itemOutBlocks) =
makeBlocks("item", swappedBlockRatings, itemPart, userPart, intermediateRDDStorageLevel)
itemOutBlocks.count() // materialize item blocks
// Encoders for storing each user/item's partition ID and index within its partition using a
// single integer; used as an optimization
val userLocalIndexEncoder = new LocalIndexEncoder(userPart.numPartitions)
val itemLocalIndexEncoder = new LocalIndexEncoder(itemPart.numPartitions)
// These are the user and item factor matrices that, once trained, are multiplied together to
// estimate the rating matrix. The two matrices are stored in RDDs, partitioned by column such
// that each factor column resides on the same Spark worker as its corresponding user or item.
val seedGen = new XORShiftRandom(seed)
var userFactors = initialize(userInBlocks, rank, seedGen.nextLong())
var itemFactors = initialize(itemInBlocks, rank, seedGen.nextLong())
// val solver = if (nonnegative) new NNLSSolver else new CholeskySolver // DELETE
var previousCheckpointFile: Option[String] = None
var previousUserCheckpointFile: Option[String] = None
val shouldCheckpoint: Int => Boolean = (iter) =>
sc.checkpointDir.isDefined && checkpointInterval != -1 && (iter % checkpointInterval == 0)
val deletePreviousCheckpointFile: () => Unit = () =>
previousCheckpointFile.foreach { file =>
try {
val checkpointFile = new Path(file)
checkpointFile.getFileSystem(sc.hadoopConfiguration).delete(checkpointFile, true)
} catch {
case e: IOException =>
logWarning(s"Cannot delete checkpoint file $file:", e)
}
}
// --------------- This code is different from the ALS class, in part written by us ---------------
var previousCachedItemFactors: Option[RDD[(Int, FactorBlock)]] = None
var previousCachedUserFactors: Option[RDD[(Int, FactorBlock)]] = None
for (iter <- 0 until maxIter) {
val factorTuple = computeFactors(userFactors, itemFactors, userOutBlocks, itemOutBlocks,
userInBlocks, itemInBlocks, rank, regParam, userLocalIndexEncoder, itemLocalIndexEncoder, stepSize)
userFactors = factorTuple._1
itemFactors = factorTuple._2
// This doesn't actually work properly in our case. We have to checkpoint both itemFactors and userFactors
// since we don't alternate, but we haven't managed to figure out how to set up the checkpointing for that case
if (shouldCheckpoint(iter)) {
itemFactors.setName(s"itemFactors-$iter").persist(intermediateRDDStorageLevel)
itemFactors.checkpoint()
itemFactors.count() // checkpoint item factors and cut lineage
itemFactors.cleanShuffleDependencies()
deletePreviousCheckpointFile()
previousCachedItemFactors.foreach(_.unpersist())
previousCheckpointFile = itemFactors.getCheckpointFile
previousCachedItemFactors = Option(itemFactors)
}
}
val userIdAndFactors = userInBlocks
.mapValues(_.srcIds)
.join(userFactors)
.mapPartitions({ items =>
items.flatMap { case (_, (ids, factors)) =>
ids.iterator.zip(factors.iterator)
}
// Preserve the partitioning because IDs are consistent with the partitioners in userInBlocks
// and userFactors.
}, preservesPartitioning = true)
.setName("userFactors")
.persist(finalRDDStorageLevel)
val itemIdAndFactors = itemInBlocks
.mapValues(_.srcIds)
.join(itemFactors)
.mapPartitions({ items =>
items.flatMap { case (_, (ids, factors)) =>
ids.iterator.zip(factors.iterator)
}
}, preservesPartitioning = true)
.setName("itemFactors")
.persist(finalRDDStorageLevel)
if (finalRDDStorageLevel != StorageLevel.NONE) {
userIdAndFactors.count()
userInBlocks.unpersist()
userOutBlocks.unpersist()
itemOutBlocks.unpersist()
blockRatings.unpersist()
itemIdAndFactors.count()
itemFactors.unpersist()
itemInBlocks.unpersist()
}
// ------------------------- A more modern version of the ALS interface is available in the "mllib" package,
// in contrast to the ALS train()-function which resides in the ALS object that is part of the "ml" pacakge.
// This block of code here simply transforms the output of our train()-function so that it works the same way
// as the ALS train()-function from the "mllib" package -----------------------------------------------------
val mllibUserFactors = userIdAndFactors
.mapValues(_.map(_.toDouble))
.setName("users")
.persist(finalRDDStorageLevel)
val mllibItemFactors = itemIdAndFactors
.mapValues(_.map(_.toDouble))
.setName("products")
.persist(finalRDDStorageLevel)
if (finalRDDStorageLevel != StorageLevel.NONE) {
mllibUserFactors.count()
mllibItemFactors.count()
}
(mllibUserFactors, mllibItemFactors)
}
/**
* Factor block that stores factors (Array[Float]) in an Array.
*/
type FactorBlock = Array[Array[Float]]
/**
* A mapping of the columns of the items factor matrix that are needed when calculating each row
* of the users factor matrix, and vice versa.
*
* Specifically, when calculating a user factor vector, since only those columns of the items
* factor matrix that correspond to the items that that user has rated are needed, we can avoid
* having to repeatedly copy the entire items factor matrix to each worker later in the algorithm
* by precomputing these dependencies for all users, storing them in an RDD of `OutBlock`s. The
* items' dependencies on the columns of the users factor matrix is computed similarly.
*
* =Example=
*
* Using the example provided in the `InBlock` Scaladoc, `userOutBlocks` would look like the
* following:
*
* {{{
* userOutBlocks.collect() == Seq(
* 0 -> Array(Array(0, 1), Array(0, 1)),
* 1 -> Array(Array(0), Array(0))
* )
* }}}
*
* Each value in this map-like sequence is of type `Array[Array[Int]]`. The values in the
* inner array are the ranks of the sorted user IDs in that partition; so in the example above,
* `Array(0, 1)` in partition 0 refers to user IDs 0 and 6, since when all unique user IDs in
* partition 0 are sorted, 0 is the first ID and 6 is the second. The position of each inner
* array in its enclosing outer array denotes the partition number to which item IDs map; in the
* example, the first `Array(0, 1)` is in position 0 of its outer array, denoting item IDs that
* map to partition 0.
*
* In summary, the data structure encodes the following information:
*
* * There are ratings with user IDs 0 and 6 (encoded in `Array(0, 1)`, where 0 and 1 are the
* indices of the user IDs 0 and 6 on partition 0) whose item IDs map to partitions 0 and 1
* (represented by the fact that `Array(0, 1)` appears in both the 0th and 1st positions).
*
* * There are ratings with user ID 3 (encoded in `Array(0)`, where 0 is the index of the user
* ID 3 on partition 1) whose item IDs map to partitions 0 and 1 (represented by the fact that
* `Array(0)` appears in both the 0th and 1st positions).
*/
type OutBlock = Array[Array[Int]]
/**
* In-link block for computing user and item factor matrices.
*
* The ALS algorithm partitions the columns of the users factor matrix evenly among Spark workers.
* Since each column of the factor matrix is calculated using the known ratings of the correspond-
* ing user, and since the ratings don't change across iterations, the ALS algorithm preshuffles
* the ratings to the appropriate partitions, storing them in `InBlock` objects.
*
* The ratings shuffled by item ID are computed similarly and also stored in `InBlock` objects.
* Note that this means every rating is stored twice, once as shuffled by user ID and once by item
* ID. This is a necessary tradeoff, since in general a rating will not be on the same worker
* when partitioned by user as by item.
*
* =Example=
*
* Say we have a small collection of eight items to offer the seven users in our application. We
* have some known ratings given by the users, as seen in the matrix below:
*
* {{{
* Items
* 0 1 2 3 4 5 6 7
* +---+---+---+---+---+---+---+---+
* 0 | |0.1| | |0.4| | |0.7|
* +---+---+---+---+---+---+---+---+
* 1 | | | | | | | | |
* +---+---+---+---+---+---+---+---+
* U 2 | | | | | | | | |
* s +---+---+---+---+---+---+---+---+
* e 3 | |3.1| | |3.4| | |3.7|
* r +---+---+---+---+---+---+---+---+
* s 4 | | | | | | | | |
* +---+---+---+---+---+---+---+---+
* 5 | | | | | | | | |
* +---+---+---+---+---+---+---+---+
* 6 | |6.1| | |6.4| | |6.7|
* +---+---+---+---+---+---+---+---+
* }}}
*
* The ratings are represented as an RDD, passed to the `partitionRatings` method as the `ratings`
* parameter:
*
* {{{
* ratings.collect() == Seq(
* Rating(0, 1, 0.1f),
* Rating(0, 4, 0.4f),
* Rating(0, 7, 0.7f),
* Rating(3, 1, 3.1f),
* Rating(3, 4, 3.4f),
* Rating(3, 7, 3.7f),
* Rating(6, 1, 6.1f),
* Rating(6, 4, 6.4f),
* Rating(6, 7, 6.7f)
* )
* }}}
*
* Say that we are using two partitions to calculate each factor matrix:
*
* {{{
* val userPart = new ALSPartitioner(2)
* val itemPart = new ALSPartitioner(2)
* val blockRatings = partitionRatings(ratings, userPart, itemPart)
* }}}
*
* Ratings are mapped to partitions using the user/item IDs modulo the number of partitions. With
* two partitions, ratings with even-valued user IDs are shuffled to partition 0 while those with
* odd-valued user IDs are shuffled to partition 1:
*
* {{{
* userInBlocks.collect() == Seq(
* 0 -> Seq(
* // Internally, the class stores the ratings in a more optimized format than
* // a sequence of `Rating`s, but for clarity we show it as such here.
* Rating(0, 1, 0.1f),
* Rating(0, 4, 0.4f),
* Rating(0, 7, 0.7f),
* Rating(6, 1, 6.1f),
* Rating(6, 4, 6.4f),
* Rating(6, 7, 6.7f)
* ),
* 1 -> Seq(
* Rating(3, 1, 3.1f),
* Rating(3, 4, 3.4f),
* Rating(3, 7, 3.7f)
* )
* )
* }}}
*
* Similarly, ratings with even-valued item IDs are shuffled to partition 0 while those with
* odd-valued item IDs are shuffled to partition 1:
*
* {{{
* itemInBlocks.collect() == Seq(
* 0 -> Seq(
* Rating(0, 4, 0.4f),
* Rating(3, 4, 3.4f),
* Rating(6, 4, 6.4f)
* ),
* 1 -> Seq(
* Rating(0, 1, 0.1f),
* Rating(0, 7, 0.7f),
* Rating(3, 1, 3.1f),
* Rating(3, 7, 3.7f),
* Rating(6, 1, 6.1f),
* Rating(6, 7, 6.7f)
* )
* )
* }}}
*
* @param srcIds src ids (ordered)
* @param dstPtrs dst pointers. Elements in range [dstPtrs(i), dstPtrs(i+1)) of dst indices and
* ratings are associated with srcIds(i).
* @param dstEncodedIndices encoded dst indices
* @param ratings ratings
* @see [[LocalIndexEncoder]]
*/
case class InBlock[@specialized(Int, Long) ID: ClassTag](
srcIds: Array[ID],
dstPtrs: Array[Int],
dstEncodedIndices: Array[Int],
ratings: Array[Float]) {
/** Size of the block. */
def size: Int = ratings.length
require(dstEncodedIndices.length == size)
require(dstPtrs.length == srcIds.length + 1)
}
/**
* Initializes factors randomly given the in-link blocks.
*
* @param inBlocks in-link blocks
* @param rank rank
* @return initialized factor blocks
*/
def initialize[ID](
inBlocks: RDD[(Int, InBlock[ID])],
rank: Int,
seed: Long): RDD[(Int, FactorBlock)] = {
// Choose a unit vector uniformly at random from the unit sphere. This can be done by choosing
// elements distributed as Normal(0,1), and then normalizing.
// This appears to create factorizations that have a slightly better reconstruction
// (<1%) compared picking elements uniformly at random in [0,1].
inBlocks.mapPartitions({ iter =>
iter.map {
case (srcBlockId, inBlock) =>
val random = new XORShiftRandom(byteswap64(seed ^ srcBlockId))
val factors = Array.fill(inBlock.srcIds.length) {
val factor = Array.fill(rank)(random.nextGaussian().toFloat)
val nrm = BLAS.nativeBLAS.snrm2(rank, factor, 1)
BLAS.nativeBLAS.sscal(rank, 1.0f / nrm, factor, 1)
factor
}
(srcBlockId, factors)
}
}, preservesPartitioning = true)
}
/**
* A rating block that contains src IDs, dst IDs, and ratings, stored in primitive arrays.
*/
case class RatingBlock[@specialized(Int, Long) ID: ClassTag](
srcIds: Array[ID],
dstIds: Array[ID],
ratings: Array[Float]) {
/** Size of the block. */
def size: Int = srcIds.length
require(dstIds.length == srcIds.length)
require(ratings.length == srcIds.length)
}
/**
* Builder for [[RatingBlock]]. `mutable.ArrayBuilder` is used to avoid boxing/unboxing.
*/
class RatingBlockBuilder[@specialized(Int, Long) ID: ClassTag]
extends Serializable {
val srcIds = mutable.ArrayBuilder.make[ID]
val dstIds = mutable.ArrayBuilder.make[ID]
val ratings = mutable.ArrayBuilder.make[Float]
var size = 0
/** Adds a rating. */
def add(r: Rating[ID]): this.type = {
size += 1
srcIds += r.user
dstIds += r.item
ratings += r.rating
this
}
/** Merges another [[RatingBlockBuilder]]. */
def merge(other: RatingBlock[ID]): this.type = {
size += other.srcIds.length
srcIds ++= other.srcIds
dstIds ++= other.dstIds
ratings ++= other.ratings
this
}
/** Builds a [[RatingBlock]]. */
def build(): RatingBlock[ID] = {
RatingBlock[ID](srcIds.result(), dstIds.result(), ratings.result())
}
}
/**
* Groups an RDD of [[Rating]]s by the user partition and item partition to which each `Rating`
* maps according to the given partitioners. The returned pair RDD holds the ratings, encoded in
* a memory-efficient format but otherwise unchanged, keyed by the (user partition ID, item
* partition ID) pair.
*
* Performance note: This is an expensive operation that performs an RDD shuffle.
*
* Implementation note: This implementation produces the same result as the following but
* generates fewer intermediate objects:
*d
* {{{
* ratings.map { r =>
* ((srcPart.getPartition(r.user), dstPart.getPartition(r.item)), r)
* }.aggregateByKey(new RatingBlockBuilder)(
* seqOp = (b, r) => b.add(r),
* combOp = (b0, b1) => b0.merge(b1.build()))
* .mapValues(_.build())
* }}}
*
* @param ratings raw ratings
* @param srcPart partitioner for src IDs
* @param dstPart partitioner for dst IDs
* @return an RDD of rating blocks in the form of ((srcBlockId, dstBlockId), ratingBlock)
*/
def partitionRatings[ID: ClassTag](
ratings: RDD[Rating[ID]],
srcPart: Partitioner,
dstPart: Partitioner): RDD[((Int, Int), RatingBlock[ID])] = {
val numPartitions = srcPart.numPartitions * dstPart.numPartitions
ratings.mapPartitions { iter =>
val builders = Array.fill(numPartitions)(new RatingBlockBuilder[ID])
iter.flatMap { r =>
val srcBlockId = srcPart.getPartition(r.user)
val dstBlockId = dstPart.getPartition(r.item)
val idx = srcBlockId + srcPart.numPartitions * dstBlockId
val builder = builders(idx)
builder.add(r)
if (builder.size >= 2048) { // 2048 * (3 * 4) = 24k
builders(idx) = new RatingBlockBuilder
Iterator.single(((srcBlockId, dstBlockId), builder.build()))
} else {
Iterator.empty
}
} ++ {
builders.iterator.zipWithIndex.filter(_._1.size > 0).map { case (block, idx) =>
val srcBlockId = idx % srcPart.numPartitions
val dstBlockId = idx / srcPart.numPartitions
((srcBlockId, dstBlockId), block.build())
}
}
}.groupByKey().mapValues { blocks =>
val builder = new RatingBlockBuilder[ID]
blocks.foreach(builder.merge)
builder.build()
}.setName("ratingBlocks")
}
/**
* Builder for uncompressed in-blocks of (srcId, dstEncodedIndex, rating) tuples.
*
* @param encoder encoder for dst indices
*/
class UncompressedInBlockBuilder[@specialized(Int, Long) ID: ClassTag](
encoder: LocalIndexEncoder)(
implicit ord: Ordering[ID]) {
val srcIds = mutable.ArrayBuilder.make[ID]
val dstEncodedIndices = mutable.ArrayBuilder.make[Int]
val ratings = mutable.ArrayBuilder.make[Float]
/**
* Adds a dst block of (srcId, dstLocalIndex, rating) tuples.
*
* @param dstBlockId dst block ID
* @param srcIds original src IDs
* @param dstLocalIndices dst local indices
* @param ratings ratings
*/
def add(
dstBlockId: Int,
srcIds: Array[ID],
dstLocalIndices: Array[Int],
ratings: Array[Float]): this.type = {
val sz = srcIds.length
require(dstLocalIndices.length == sz)
require(ratings.length == sz)
this.srcIds ++= srcIds
this.ratings ++= ratings
var j = 0
while (j < sz) {
this.dstEncodedIndices += encoder.encode(dstBlockId, dstLocalIndices(j))
j += 1
}
this
}
/** Builds a [[UncompressedInBlock]]. */
def build(): UncompressedInBlock[ID] = {
new UncompressedInBlock(srcIds.result(), dstEncodedIndices.result(), ratings.result())
}
}
/**
* A block of (srcId, dstEncodedIndex, rating) tuples stored in primitive arrays.
*/
class UncompressedInBlock[@specialized(Int, Long) ID: ClassTag](
val srcIds: Array[ID],
val dstEncodedIndices: Array[Int],
val ratings: Array[Float])(
implicit ord: Ordering[ID]) {
/** Size the of block. */
def length: Int = srcIds.length
/**
* Compresses the block into an `InBlock`. The algorithm is the same as converting a sparse
* matrix from coordinate list (COO) format into compressed sparse column (CSC) format.
* Sorting is done using Spark's built-in Timsort to avoid generating too many objects.
*/
def compress(): InBlock[ID] = {
val sz = length
assert(sz > 0, "Empty in-link block should not exist.")
sort()
val uniqueSrcIdsBuilder = mutable.ArrayBuilder.make[ID]
val dstCountsBuilder = mutable.ArrayBuilder.make[Int]
var preSrcId = srcIds(0)
uniqueSrcIdsBuilder += preSrcId
var curCount = 1
var i = 1
while (i < sz) {
val srcId = srcIds(i)
if (srcId != preSrcId) {
uniqueSrcIdsBuilder += srcId
dstCountsBuilder += curCount
preSrcId = srcId
curCount = 0
}
curCount += 1
i += 1
}
dstCountsBuilder += curCount
val uniqueSrcIds = uniqueSrcIdsBuilder.result()
val numUniqueSrdIds = uniqueSrcIds.length
val dstCounts = dstCountsBuilder.result()
val dstPtrs = new Array[Int](numUniqueSrdIds + 1)
var sum = 0
i = 0
while (i < numUniqueSrdIds) {
sum += dstCounts(i)
i += 1
dstPtrs(i) = sum
}
InBlock(uniqueSrcIds, dstPtrs, dstEncodedIndices, ratings)
}
def sort(): Unit = {
val sz = length
// Since there might be interleaved log messages, we insert a unique id for easy pairing.
val sortId = Utils.random.nextInt()
logDebug(s"Start sorting an uncompressed in-block of size $sz. (sortId = $sortId)")
val start = System.nanoTime()
val sorter = new Sorter(new UncompressedInBlockSort[ID])
sorter.sort(this, 0, length, Ordering[KeyWrapper[ID]])
val duration = (System.nanoTime() - start) / 1e9
logDebug(s"Sorting took $duration seconds. (sortId = $sortId)")
}
}
/**
* A wrapper that holds a primitive key.
*
* @see [[UncompressedInBlockSort]]
*/
class KeyWrapper[@specialized(Int, Long) ID: ClassTag](
implicit ord: Ordering[ID]) extends Ordered[KeyWrapper[ID]] {
var key: ID = _
override def compare(that: KeyWrapper[ID]): Int = {
ord.compare(key, that.key)
}
def setKey(key: ID): this.type = {
this.key = key
this
}
}
/**
* [[SortDataFormat]] of [[UncompressedInBlock]] used by [[Sorter]].
*/
class UncompressedInBlockSort[@specialized(Int, Long) ID: ClassTag](
implicit ord: Ordering[ID])
extends SortDataFormat[KeyWrapper[ID], UncompressedInBlock[ID]] {
override def newKey(): KeyWrapper[ID] = new KeyWrapper()
override def getKey(
data: UncompressedInBlock[ID],
pos: Int,
reuse: KeyWrapper[ID]): KeyWrapper[ID] = {
if (reuse == null) {
new KeyWrapper().setKey(data.srcIds(pos))
} else {
reuse.setKey(data.srcIds(pos))
}
}
override def getKey(
data: UncompressedInBlock[ID],
pos: Int): KeyWrapper[ID] = {
getKey(data, pos, null)
}
def swapElements[@specialized(Int, Float) T](
data: Array[T],
pos0: Int,
pos1: Int): Unit = {
val tmp = data(pos0)
data(pos0) = data(pos1)
data(pos1) = tmp
}
override def swap(data: UncompressedInBlock[ID], pos0: Int, pos1: Int): Unit = {
swapElements(data.srcIds, pos0, pos1)
swapElements(data.dstEncodedIndices, pos0, pos1)
swapElements(data.ratings, pos0, pos1)
}
override def copyRange(
src: UncompressedInBlock[ID],
srcPos: Int,
dst: UncompressedInBlock[ID],
dstPos: Int,
length: Int): Unit = {
System.arraycopy(src.srcIds, srcPos, dst.srcIds, dstPos, length)
System.arraycopy(src.dstEncodedIndices, srcPos, dst.dstEncodedIndices, dstPos, length)
System.arraycopy(src.ratings, srcPos, dst.ratings, dstPos, length)
}
override def allocate(length: Int): UncompressedInBlock[ID] = {
new UncompressedInBlock(
new Array[ID](length), new Array[Int](length), new Array[Float](length))
}
override def copyElement(
src: UncompressedInBlock[ID],
srcPos: Int,
dst: UncompressedInBlock[ID],
dstPos: Int): Unit = {
dst.srcIds(dstPos) = src.srcIds(srcPos)
dst.dstEncodedIndices(dstPos) = src.dstEncodedIndices(srcPos)
dst.ratings(dstPos) = src.ratings(srcPos)
}
}
/**
* Creates in-blocks and out-blocks from rating blocks.
*
* @param prefix prefix for in/out-block names
* @param ratingBlocks rating blocks
* @param srcPart partitioner for src IDs
* @param dstPart partitioner for dst IDs
* @return (in-blocks, out-blocks)
*/
def makeBlocks[ID: ClassTag](
prefix: String,
ratingBlocks: RDD[((Int, Int), RatingBlock[ID])],
srcPart: Partitioner,
dstPart: Partitioner,
storageLevel: StorageLevel)(
implicit srcOrd: Ordering[ID]): (RDD[(Int, InBlock[ID])], RDD[(Int, OutBlock)]) = {
val inBlocks = ratingBlocks.map {
case ((srcBlockId, dstBlockId), RatingBlock(srcIds, dstIds, ratings)) =>
// The implementation is a faster version of
// val dstIdToLocalIndex = dstIds.toSet.toSeq.sorted.zipWithIndex.toMap
val start = System.nanoTime()
val dstIdSet = new OpenHashSet[ID](1 << 20)
dstIds.foreach(dstIdSet.add)
val sortedDstIds = new Array[ID](dstIdSet.size)
var i = 0
var pos = dstIdSet.nextPos(0)
while (pos != -1) {
sortedDstIds(i) = dstIdSet.getValue(pos)
pos = dstIdSet.nextPos(pos + 1)
i += 1
}
assert(i == dstIdSet.size)
Sorting.quickSort(sortedDstIds)
val dstIdToLocalIndex = new OpenHashMap[ID, Int](sortedDstIds.length)
i = 0
while (i < sortedDstIds.length) {
dstIdToLocalIndex.update(sortedDstIds(i), i)
i += 1
}
logDebug(
"Converting to local indices took " + (System.nanoTime() - start) / 1e9 + " seconds.")
val dstLocalIndices = dstIds.map(dstIdToLocalIndex.apply)
(srcBlockId, (dstBlockId, srcIds, dstLocalIndices, ratings))
}.groupByKey(new ALSPartitioner(srcPart.numPartitions))
.mapValues { iter =>
val builder =
new UncompressedInBlockBuilder[ID](new LocalIndexEncoder(dstPart.numPartitions))
iter.foreach { case (dstBlockId, srcIds, dstLocalIndices, ratings) =>
builder.add(dstBlockId, srcIds, dstLocalIndices, ratings)
}
builder.build().compress()
}.setName(prefix + "InBlocks")
.persist(storageLevel)
val outBlocks = inBlocks.mapValues { case InBlock(srcIds, dstPtrs, dstEncodedIndices, _) =>
val encoder = new LocalIndexEncoder(dstPart.numPartitions)
val activeIds = Array.fill(dstPart.numPartitions)(mutable.ArrayBuilder.make[Int])
var i = 0
val seen = new Array[Boolean](dstPart.numPartitions)
while (i < srcIds.length) {
var j = dstPtrs(i)
ju.Arrays.fill(seen, false)
while (j < dstPtrs(i + 1)) {
val dstBlockId = encoder.blockId(dstEncodedIndices(j))
if (!seen(dstBlockId)) {
activeIds(dstBlockId) += i // add the local index in this out-block
seen(dstBlockId) = true
}
j += 1
}
i += 1
}
activeIds.map { x =>
x.result()
}
}.setName(prefix + "OutBlocks")
.persist(storageLevel)
(inBlocks, outBlocks)
}
/**
* Compute dst factors by constructing and solving least square problems.
*
* @param srcFactorBlocks src factors
* @param srcOutBlocks src out-blocks
* @param dstInBlocks dst in-blocks
* @param rank rank
* @param regParam regularization constant
* @param srcEncoder encoder for src local indices
* @param implicitPrefs whether to use implicit preference
* @param alpha the alpha constant in the implicit preference formulation
* @param solver solver for least squares problems
* @return dst factors
*/
def computeFactors[ID](
userFactorBlocks: RDD[(Int, FactorBlock)],
itemFactorBlocks: RDD[(Int, FactorBlock)],
userOutBlocks: RDD[(Int, OutBlock)],
itemOutBlocks: RDD[(Int, OutBlock)],
userInBlocks: RDD[(Int, InBlock[ID])],
itemInBlocks: RDD[(Int, InBlock[ID])],
rank: Int,
regParam: Double,
userEncoder: LocalIndexEncoder,
itemEncoder: LocalIndexEncoder,
stepSize: Float,
implicitPrefs: Boolean = false, // TODO: DELETE every reference to implicitPrefs
alpha: Double = 1.0): (RDD[(Int, FactorBlock)], RDD[(Int, FactorBlock)]) = {
val numSrcBlocks = userFactorBlocks.partitions.length
val numDstBlocks = itemFactorBlocks.partitions.length
// val YtY = if (implicitPrefs) Some(computeYtY(userFactorBlocks, rank)) else None // DELETE
val userOut = userOutBlocks.join(userFactorBlocks).flatMap {
case (userBlockId, (userOutBlock, userFactors)) =>
userOutBlock.iterator.zipWithIndex.map { case (activeIndices, itemBlockId) =>
(itemBlockId, (userBlockId, activeIndices.map(idx => userFactors(idx))))
}
}
val itemOut = itemOutBlocks.join(itemFactorBlocks).flatMap {
case (itemBlockId, (itemOutBlock, itemFactors)) =>
itemOutBlock.iterator.zipWithIndex.map { case (activeIndices, userBlockId) =>
(userBlockId, (itemBlockId, activeIndices.map(idx => itemFactors(idx))))
}
}
val mergedUser = userOut.groupByKey(new ALSPartitioner(itemInBlocks.partitions.length))
val mergedItem = itemOut.groupByKey(new ALSPartitioner(userInBlocks.partitions.length))
// SPARK-28927: Nondeterministic RDDs causes inconsistent in/out blocks in case of rerun.
// It can cause runtime error when matching in/out user/item blocks.
val isBlockRDDNondeterministic =
itemInBlocks.outputDeterministicLevel == DeterministicLevel.INDETERMINATE ||
userOutBlocks.outputDeterministicLevel == DeterministicLevel.INDETERMINATE ||
userInBlocks.outputDeterministicLevel == DeterministicLevel.INDETERMINATE ||
itemOutBlocks.outputDeterministicLevel == DeterministicLevel.INDETERMINATE
// NOTE: Potentially confusing naming, itemFactors and userFactors are names of things
// in the same scope as this comment, but below we define a new dummy variable
// userFactors which then has the same name!!!
val itemFactors = itemFactorBlocks.join(itemInBlocks.join(mergedUser)).mapValues {
case (myItemFactors, (InBlock(itemIds, userPtrs, userEncodedIndices, ratings), userFactors)) =>
val sortedSrcFactors = new Array[FactorBlock](numSrcBlocks)
userFactors.foreach { case (userBlockId, factors) =>
sortedSrcFactors(userBlockId) = factors
}
val itemFactors = new Array[Array[Float]](itemIds.length)
var j = 0
// Iterates over all destination ids (factors) in the considered partition
while (j < itemIds.length) {
var i = userPtrs(j)
var numExplicits = 0
var currentItemFactor = myItemFactors(j) // TODO: Also here probably don't need to declare a variable, can just use myItemFactors(j) directly
var gradient = Array.fill(rank)(0f)
// Iterates over all relevant source factors
while (i < userPtrs(j + 1)) {
val encoded = userEncodedIndices(i)
val blockId = userEncoder.blockId(encoded)
val localIndex = userEncoder.localIndex(encoded)
var userFactor: Array[Float] = null
try {
userFactor = sortedSrcFactors(blockId)(localIndex)
} catch {
case a: ArrayIndexOutOfBoundsException if isBlockRDDNondeterministic =>
val errMsg = "A failure detected when matching In/Out blocks of users/items. " +
"Because at least one In/Out block RDD is found to be nondeterministic now, " +
"the issue is probably caused by nondeterministic input data. You can try to " +
"checkpoint training data to make it deterministic. If you do `repartition` + " +
"`sample` or `randomSplit`, you can also try to sort it before `sample` or " +
"`randomSplit` to make it deterministic."
throw new SparkException(errMsg, a)
}
val rating = ratings(i) // TODO: We probably don't need a variable here, since we don't store a copy of ratings(i) in the same way that ALS did, we just use it to compute coeff
var coeff = rating - (userFactor,currentItemFactor).zipped.map(_ * _).sum
var update = userFactor.map(-stepSize*coeff*_)
gradient = (gradient, update).zipped.map(_ + _)
numExplicits += 1
i += 1
}
itemFactors(j) = (currentItemFactor, gradient).zipped.map(_ + _)
j += 1
}
itemFactors
}
val userFactors = userFactorBlocks.join(userInBlocks.join(mergedItem)).mapValues {
case (myUserFactors, (InBlock(userIds, itemPtrs, itemEncodedIndices, ratings), itemFactors)) =>
val sortedDstFactors = new Array[FactorBlock](numDstBlocks)
itemFactors.foreach { case (itemBlockId, factors) =>
sortedDstFactors(itemBlockId) = factors
}
val userFactors = new Array[Array[Float]](userIds.length)
var j = 0
while (j < userIds.length) {
var i = itemPtrs(j)
var numExplicits = 0
var currentUserFactor = myUserFactors(j) // TODO: Also here probably don't need to declare a variable, can just use myItemFactors(j) directly
var gradient = Array.fill(rank)(0f)
while (i < itemPtrs(j + 1)) {
val encoded = itemEncodedIndices(i)
val blockId = itemEncoder.blockId(encoded)
val localIndex = itemEncoder.localIndex(encoded)
var itemFactor: Array[Float] = null
try {
itemFactor = sortedDstFactors(blockId)(localIndex)
} catch {
case a: ArrayIndexOutOfBoundsException if isBlockRDDNondeterministic =>
val errMsg = "A failure detected when matching In/Out blocks of users/items. " +
"Because at least one In/Out block RDD is found to be nondeterministic now, " +
"the issue is probably caused by nondeterministic input data. You can try to " +
"checkpoint training data to make it deterministic. If you do `repartition` + " +
"`sample` or `randomSplit`, you can also try to sort it before `sample` or " +
"`randomSplit` to make it deterministic."
throw new SparkException(errMsg, a)
}
val rating = ratings(i) // TODO: We probably don't need a variable here, since we don't store a copy of ratings(i) in the same way that ALS did, we just use it to compute coeff
var coeff = rating - (currentUserFactor,itemFactor).zipped.map(_ * _).sum
var update = itemFactor.map(-stepSize*coeff*_)
gradient = (gradient, update).zipped.map(_ + _)
numExplicits += 1
i += 1
}
userFactors(j) = (currentUserFactor, gradient).zipped.map(_ + _)
j += 1
}
userFactors
}
return (userFactors, itemFactors)
}
/**
* Encoder for storing (blockId, localIndex) into a single integer.
*
* We use the leading bits (including the sign bit) to store the block id and the rest to store
* the local index. This is based on the assumption that users/items are approximately evenly
* partitioned. With this assumption, we should be able to encode two billion distinct values.
*
* @param numBlocks number of blocks
*/
class LocalIndexEncoder(numBlocks: Int) extends Serializable {
require(numBlocks > 0, s"numBlocks must be positive but found $numBlocks.")
final val numLocalIndexBits =
math.min(java.lang.Integer.numberOfLeadingZeros(numBlocks - 1), 31)
final val localIndexMask = (1 << numLocalIndexBits) - 1
/** Encodes a (blockId, localIndex) into a single integer. */
def encode(blockId: Int, localIndex: Int): Int = {
require(blockId < numBlocks)
require((localIndex & ~localIndexMask) == 0)
(blockId << numLocalIndexBits) | localIndex
}
/** Gets the block id from an encoded index. */
@inline
def blockId(encoded: Int): Int = {
encoded >>> numLocalIndexBits
}
/** Gets the local index from an encoded index. */
@inline
def localIndex(encoded: Int): Int = {
encoded & localIndexMask
}
}
/**
* Partitioner used by ALS. We require that getPartition is a projection. That is, for any key k,
* we have getPartition(getPartition(k)) = getPartition(k). Since the default HashPartitioner
* satisfies this requirement, we simply use a type alias here.
*/
type ALSPartitioner = org.apache.spark.HashPartitioner
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
A closer look at the ColFil object
Let's start at looking at some of the pre-amble (lines 1-3)
package org.apache.spark.ml.collaborative_filtering
import org.apache.spark.ml.recommendation._
The above code cell is a so-called package cell, so we defined a package called collaborative_filtering
, part of org.apache.spark.ml
. Since our code has a lot in common with the ALS class from the package org.apache.spark.ml.recommendation
, we import everything from there so that we only have to change the things that are different for our method. In particular, we replace the ALS-object with an ColFil-object. The only difference between the two objects is that the ColFil object has fewer methods and similar, and a different train()
-function and computeFactors()
-function.
Now, let's look at (lines 99-113)
// Precompute the rating dependencies of each partition
val userPart = new ALSPartitioner(numUserBlocks)
val itemPart = new ALSPartitioner(numItemBlocks)
val blockRatings = partitionRatings(ratings, userPart, itemPart)
.persist(intermediateRDDStorageLevel)
val (userInBlocks, userOutBlocks) =
makeBlocks("user", blockRatings, userPart, itemPart, intermediateRDDStorageLevel)
userOutBlocks.count() // materialize blockRatings and user blocks
val swappedBlockRatings = blockRatings.map {
case ((userBlockId, itemBlockId), RatingBlock(userIds, itemIds, localRatings)) =>
((itemBlockId, userBlockId), RatingBlock(itemIds, userIds, localRatings))
}
val (itemInBlocks, itemOutBlocks) =
makeBlocks("item", swappedBlockRatings, itemPart, userPart, intermediateRDDStorageLevel)
itemOutBlocks.count() // materialize item blocks
This block of code basically rearranges and partitions the data so that it will be more efficient to work this. In particular, it creates the inBlock and outBlock objects that we discussed in the presentation notebook. However, the exact implementation of the InBlock and outBlock objects is more complicated than the examples we gave, since it's more efficient that way. It's not really worth to dive deep into exactly how they are defined unless you, like us, want to extend the ALS class. If you're curious, you can see how the inBlock and outBlock objects are defined on lines 228 and 270 respectively.
The most relevant parts of our code, i.e. those that differ the most from the ALS implementation, can be found in the computeFactors()
-function on line 824. The computeFactors()
-function is called in every iteration of the training. The part that is notably different from the ALS implementation is the code block starting on line 867. However, let's first look at some other parts (parts of lines 841-854)
val userOut = userOutBlocks.join(userFactorBlocks).flatMap {
case (userBlockId, (userOutBlock, userFactors)) =>
userOutBlock.iterator.zipWithIndex.map { case (activeIndices, itemBlockId) =>
(itemBlockId, (userBlockId, activeIndices.map(idx => userFactors(idx))))
}
}
val mergedUser = userOut.groupByKey(new ALSPartitioner(itemInBlocks.partitions.length))
Another key component is the following join
val itemFactors = itemFactorBlocks.join(itemInBlocks.join(mergedUser)).mapValues {
case (myItemFactors, (InBlock(itemIds, userPtrs, userEncodedIndices, ratings), userFactors)) =>
...
... math-stuff ...
...
itemFactor
}
Now, let's look at part of the code deepest within all blocks and loops of the computeFactors()
-function (lines 942-945. Note that gradient
is initialized to zero.)
val rating = ratings(i)
var coeff = rating - (currentUserFactor,itemFactor).zipped.map(_ * _).sum
var update = itemFactor.map(-stepSize*coeff*_)
gradient = (gradient, update).zipped.map(_ + _)
The second line sets coef
by subtracting the inner product of the currently considered userFactor and the updated itemFactor (This inner product could probably have been done using some linear algebra functionality from BLAS or something, but at the time of writing it felt easier to do this way) from the relevant rating. This corresponds to the expression \(x_{ij}-\langle u_i, v_j \rangle\). This coefficient, scaled by the step size of the gradient descent, is then multiplied with the relevant item factor, before it's added to the currently held value of the gradient. This corresponds exactly to the formula \(\nabla_{v_i} \ell \overset{+}{=} -(x_{ij}-\langle u_i, v_j\rangle u_j\).
After that, the corresponding procedure is done to the user factors. Since we do not use an alternating approach, the user factors and item factors can in fact be updated in parallel. However, the data set will have to be queried twice, just as in ALS. Therefore the computational gains might not be that significant.
Using the ColFil object
Now, let us use the ColFil object we have created to actually perform some collaborative filtering
import org.apache.spark.ml.collaborative_filtering.ColFil
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.ml.collaborative_filtering.ColFil.Rating
val ratingsRDD = sc.textFile("/datasets/sds/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: Rating(userId, movieId, rating)
Rating(fields(0).toInt, fields(1).toInt, fields(2).toFloat)
}
val movies = sc.textFile("/datasets/sds/cs100/lab4/data-001/movies.dat").map { line =>
val fields = line.split("::")
// format: (movieId, movieName)
(fields(0).toInt, fields(1))
}.collect.toMap
val Array(trainingRDD, validationRDD, testRDD) = ratingsRDD.randomSplit(Array(0.60, 0.20, 0.20), 0L)
/* This would be used to activate checkpointing, but we never got checkpointing to work for our implementation
dbutils.fs.rm("dbfs:/my_checkpoints/",true)
dbutils.fs.mkdirs("dbfs:/my_checkpoints/")
sc.setCheckpointDir("dbfs:/my_checkpoints")*/
val rank = 10 // Number of "features" of users and movies
val numIterations = 20
val stepSize = 0.0001f // The gradient in gradient descent is scaled with this factor
val (userFactors, itemFactors) = ColFil.train(trainingRDD, rank, 10, 10, numIterations, stepSize, 0.0025)
val colFilModel = new MatrixFactorizationModel(rank, userFactors, itemFactors)
// For small problems, this can be used to print out the entire factor matrices. DO NOT USE FOR LARGE PROBLEMS.
/*
val justUserFactors = userFactors.map({case (ind, factor) => factor})
val justItemFactors = itemFactors.map({case (ind, factor) => factor})
justUserFactors.collect().map(row => println(row.toArray.mkString(" ")))
println("-----------------")
justItemFactors.collect().map(row => println(row.toArray.mkString(" ")))
*/
import org.apache.spark.ml.collaborative_filtering.ColFil
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.ml.collaborative_filtering.ColFil.Rating
rank: Int = 10
numIterations: Int = 20
stepSize: Float = 1.0E-4
userFactors: org.apache.spark.rdd.RDD[(Int, Array[Double])] = users MapPartitionsRDD[12463] at mapValues at <notebook>:209
itemFactors: org.apache.spark.rdd.RDD[(Int, Array[Double])] = products MapPartitionsRDD[12464] at mapValues at <notebook>:213
colFilModel: org.apache.spark.mllib.recommendation.MatrixFactorizationModel = org.apache.spark.mllib.recommendation.MatrixFactorizationModel@127154ff
Let's actually test our model
import org.apache.spark.mllib.recommendation.Rating
// NOTE: There is some annoyance stemming from the fact that Scala (reasonably so) treats the ColFil.Rating-class and the mllib Rating-class as separate classes.
// In this block then, when it's written only "Rating", it means the mllib version is used, while writing "ColFil.Rating" means the ColFil version is used
// Evaluate the model on test data. TODO: Actually separate test and training data
val usersProductsTest = testRDD.map { case ColFil.Rating(user, product, rate) =>
(user, product)
}
// get the predictions on test data
val predictions = colFilModel.predict(usersProductsTest)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
// find the actual ratings and join with predictions
val ratesAndPreds = testRDD.map { case ColFil.Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean()
println("rank and Mean Squared Error for test data = " + rank + " and " + MSE)
rank and Mean Squared Error for test data = 10 and 17.142201953816162
import org.apache.spark.mllib.recommendation.Rating
usersProductsTest: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[2754] at map at command-1708846914807648:4
predictions: org.apache.spark.rdd.RDD[((Int, Int), Double)] = MapPartitionsRDD[2764] at map at command-1708846914807648:10
ratesAndPreds: org.apache.spark.rdd.RDD[((Int, Int), (Float, Double))] = MapPartitionsRDD[2768] at join at command-1708846914807648:17
MSE: Double = 17.142201953816162
Ways forward
- Make checkpointing work to cut lineage.
- Actually implement Bregman Proximal Gradient Descent. Possibly extend it to NNM, and models using implicit preferences.
- Look into novel ways to partition the data that is adapted for first-order methods.
- Implement accelerated versions (CoCain)
Federated Learning Using Horovod
Project members:
- Amandine Caut: Department of Mathematics, Uppsala University
- Ali Dadras: Department of Mathematics and Mathematical Statistics, Umeå University
- Hoomaan Maskan: Department of Mathematics and Mathematical Statistics, Umeå University
- Seyedsaeed Razavikia: Division of network and systems engineering, KTH
Federated Learning
Problem statement
-
Optimization problems over large networks
-
Clients collaborate under the orchestration of a server for finding a good global model without sharing their data.
-
We focus on the Empirical Risk Minimization (ERM) template Indeed, consider the following finite-sum objective function: \[ f(w) = \frac{1}{N} \sum_{i=1}^{N}f_i(w)\] in which \(w\) is the optimization variable, e.g., parameters of a machine learning model, \(N\) is the number of participating devices, \(f_i\) is the local loss function on device i.
Now, assume that there are \(K\) participants (also known as clients) in a federated learning system, with \(\mathcal{D}k\) denoting the dataset owned by thekth participant which \(n_k : = |\mathcal{D}k|\). As a result, the previous equation can be rewritten as \[\min{w\in \mathbb{R}^d} \sum{k=1}^K\frac{n_k}{N}F_k(w) \quad where \quad F_k(w):= \frac{1}{n_k}\sum_{i\in \mathcal{D}k}f_i(w),\] where . When the data points owned by the \(K\) participants are independent and identically distributed (i.i.d), then we have \[ \mathbb{E}{D_k}[F_k(w)] = f(w),\] where the expectation \(\mathbb{E}_{D_k}[\cdot]\) is taken overthe set of data points owned by the \(k\)-th participant. This IID assumption is typically made bydistributed optimization algorithms in deep learning paradigm. If the i.i.d assumption does not hold, which is known as the non-i.i.d setting described above, the loss function \(F_k(\cdot)\) maintained at the \(k\)-th participant could be an arbitrarily bad approximation of the function \(f(\cdot)\).
It is commonly assumed that the coordinator or server has the initial machine learning model, and the participants know the settings of the optimizer. For a typical implementation of distributedgradient descent with a fixed learning rate \(\eta\), in the \(t\)-th round of global model weight update,the \(k\)-th participant computes \[ g_k = \nabla F_k(w_t)\]
the average gradient on its local data points at thecurrent model weight \(w_t\) and the coordinator aggregates these gradients and applies the updateof model weights according to: \[w_{t+1} = w_t - \eta \sum_{k=1}^{N}\frac{n_k}{N}g_k \] where \(\sum_{k=1}^{K}\frac{n_k}{N}g_k = \nabla f(w_t)\), provided that the data points held at different participants are i.i.d. The coordinator can then send the updated model weights \(w_{t+1}\) back to the participants.
FL algorithms
- The server sends the initial global model to all participating devices.
- A subset of devices is selected to compute local models.
- Each selected device learns a local model with its private data.
- Server collects and aggregates all the local models, produces the global model, and sends it back to all participating devices.
- Steps 2 to 4 continue until the desired accuracy is achieved.

Challenges
-
Privacy and security: Federated learning has distinct privacy advantages compared to data center training on persisted data. Holding even an anonymized dataset can still put user privacy at risk via joins with other data.
-
Data heterogeneity: The training data on a given device is usally based on the usage of the user, and hence any particular user’s local dataset will not be representative of the population distribution. Similarly, some users will make much heavier use of the service or app than others, leading to varying amounts of local training data.
-
Communication cost: Mobile devices are frequently offline or on slow or expensive connections
-
Massively distributed: We expect the number of devices participating in an optimization to be much larger than the average number of examples per device.
Our implementation
FedAvg
- Client models: CNN
- Client Optimizer: GD/SGD
- Server: weighted averaging
- Dataset: CIFAR10
Introduction to Horovod
Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. Using Horovod allows us to make distributed deep learning fast and easy to use.
The Horovod goal is to make it easy to take a single-GPU training script and successfully scale it to train across many GPUs in parallel.
This pakage has two important aspects to take in to account. Firstly, we can make our projract or program to be runed in distrbuted manner by adding a minimum modification into the code. Secondly, this modifications can aid the program to be runed way faster because of using distributed resouces. Below is a chart representing the benchmark( we borrowed from link here) that was done on 128 servers with 4 Pascal GPUs each connected by RoCE-capable 25 Gbit/s network:

Horovd supports some of the collective operations in both (Message Passing Interface )MPI and (NVIDIA Collective Communications Library)NCCL. Indeed, Horovod core principles are based on MPI concepts such as size, rank, local rank, allreduce, allgather, broadcast, and alltoall. To better understand theses, consider the following example where training script on 4 servers, each having 4 GPUs. If we run one copy of the program per GPU:
-
Size would be the number of processes, in this case, 16.
-
Rank would be the unique process ID from 0 to 15 (size - 1).
-
Local rank would be the unique process ID within the server from 0 to 3.
Then, we have
- Allreduce : aggregates data among multiple processes and distributes results back to them. Allreduce is oftentimes used to average dense tensors.

horovod.torch.allreduce(tensor, average=None, name=None, compression=<class 'horovod.torch.compression.NoneCompressor'>, op=None, prescale_factor=1.0, postscale_factor=1.0, process_set=<horovod.common.process_sets.ProcessSet object>)
A function that performs asynchronous in-place averaging or summation of the input tensor over all the Horovod processes.
The reduction operation is keyed by the name. If name is not provided, an incremented auto-generated name is used. The tensor type and shape must be the same on all Horovod processes for a given name. The reduction will not start until all processes are ready to send and receive the tensor.
- Allgather : gathers data from all processes on every process. Allgather is usually used to collect values of sparse tensors.
horovod.torch.allgather(tensor, name=None, process_set=<horovod.common.process_sets.ProcessSet object>)
A function that concatenates the input tensor with the same input tensor on all other Horovod processes. The input tensor is not modified.
The concatenation is done on the first dimension, so the corresponding input tensors on the different processes must have the same rank and shape, except for the first dimension, which is allowed to be different.
- Broadcast: broadcasts data from one process, identified by root rank, onto every other process.
horovod.torch.broadcast(tensor, root_rank, name=None, process_set=<horovod.common.process_sets.ProcessSet object>)
A function that broadcasts the input tensor on root rank to the same input tensor on all other Horovod processes. The input tensor is not modified. The broadcast operation is keyed by the name. If name is not provided, an incremented auto-generated name is used. The tensor type and shape must be the same on all Horovod processes for a given name. The broadcast will not start until all processes are ready to send and receive the tensor.
- Reducescatter: aggregates data among multiple processes and scatters the data across them. Reducescatter is used to average dense tensors then split them across processes.
horovod.torch.reducescatter(tensor, name=None, compression=<class 'horovod.torch.compression.NoneCompressor'>, op=<MagicMock name='mock().horovod_reduce_op_average()' id='140066922214416'>, process_set=<horovod.common.process_sets.ProcessSet object>)
A function that performs reduction of the input tensor over all the Horovod processes, then scatters the results across all Horovod processes. The input tensor is not modified.
- Alltoall is an operation to exchange data between all processes. Alltoall may be useful to implement neural networks with advanced architectures that span multiple devices.
horovod.torch.alltoall(tensor, splits=None, name=None, process_set=<horovod.common.process_sets.ProcessSet object>)
A function that scatters slices of the input tensor to all other Horovod processes and returns a tensor of gathered slices from all other Horovod processes. The input tensor is not modified.
Other collective operators
Unfortuntaley, the other existing collective operations are not implemented in Horovod, e.g., Redcue or Ghather which are defined as follows

AdaSum The Adaptive Summation, or AdaSum, is an algorithm for improving distributed data parallel training of Deep Learning models. This improvement can be seen in many ways: reducing the number steps to reach the same accuracy and allowing scale to more training workers without penalizing learning rate and convergence stability. AdaSum can be used with Horovod and PyTorch/TensorFlow. To illustrate, suppose there are two almost-parallel gradients from two different GPUs, g1 and g2, and they need to be reduced as shown in the figure below. The two common practices for reductions are g1+g2, the gray vector, or (g1+g2)/2, the green vector. g1+g2 may cause divergence of the model since it is effectively moving in the direction of g1 or g2 by two times the magnitude of g1 or g2. Therefore, generally (g1+g2)/2 is safer and more desired. Note that (g1+g2)/2 penalizes both the components g1 and g2 equally.

Now consider the two orthogonal gradients g1 and g2 in the figure below. Since g1 and g2 are in two different dimensions and independent of each other, g1+g2 may not cause divergence.

Finally, consider the third scenario where g1 and g2 are neither parallel nor orthogonal as shown in the figure below. In such a case, where taking the sum might cause a divergence, AdaSum controls the effect of the overall gradient update by subtracting half of g1’s projection on g2(pink vector) from g2, subtracting half of g2’s projection on g1 (orange vector) from g1, and summing the two components together.

In a communication system consists nodes having worker GPUs, the communication happens through the CPU because GPUs are not connected by a high speed interconnect like NVLink. In this cases, AdaSum through MPI can be used for both intra-node and inter-node communication.

modification in code is as follows:
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression, backward_passes_per_step = 5, op=hvd.AdaSum)
Federated deep learning training using PyTorch with HorovodRunner for CIFAR10
This notebook illustrates the use of HorovodRunner for Federated training using PyTorch. It first shows how to train a model on a single node, and then shows how to adapt the code using HorovodRunner for federated training. The notebook runs on CPU and GPU clusters.
Requirements
Databricks Runtime 9.1 ML or above with long term support. HorovodRunner is designed to improve model training performance on clusters with multiple processors.
Workers according to the number of resources. Here we used up to 8 workers for parallel computation in CPU cluster and 2 workers in our GPU cluster.
CPU: Databricks 9.1x-cpu-ml-scala2.12 (max 9 workers 72GB-18 cores)
GPU: Databricks 11.3.x-gpu-ml-scala2.12 (max 3 workers 48GB-12 cores)
Set up checkpoint location
The next cell creates a directory for saved checkpoint models. Databricks recommends saving training data under dbfs:/ml
, which maps to file:/dbfs/ml
on driver and worker nodes.
PYTORCH_DIR = '/dbfs/ml/horovod_pytorch'
Prepare single node code
First, create single-node PyTorch code. This is modified from the Horovod PyTorch MNIST Example.
Define a simple convolutional network
Here below a vanilla CCN architecture in order to illustrate our problem. First, we will study federated learning for one node.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from time import time
import os
import matplotlib.pyplot as plt
import numpy as np
import horovod.torch as hvd
from sparkdl import HorovodRunner
#CIFAR10[100, 3, 32, 32]
class Net_CIFAR10(nn.Module):
def __init__(self):
super(Net_CIFAR10, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=5) #convolutional layer 1
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) # convolutional layer 2
self.conv2_drop = nn.Dropout2d() # dropout - layer 3
self.fc1 = nn.Linear(500, 50) # fully connected layer 4
self.fc2 = nn.Linear(50, 10) # fully connected layer 5
def forward(self, x):
#convolution + max pool + activation function with Relu function for layer 1
x = F.relu(F.max_pool2d(self.conv1(x), 2))#dimout=15*15
# convolution + max pool + activation function with Relu function for layer 2
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))#dimout=5*5
# Returns a new tensor with the same data as the self tensor but of a different shape
x = x.view(-1, 500)#25*20=500
# conv + activation function with Relu function for layer 3
x = F.relu(self.fc1(x))
# dropout
x = F.dropout(x, training=self.training)
# final fully connected layer
x = self.fc2(x)
return F.log_softmax(x) # activation function with logarithmic soft max function for layer 5
Configure single node training
Elocal si the number of local updates. If Elocal = 1 it is equivalent to distributate learning.
# Specify training parameters
batch_size = 100
num_epochs = 3 # number of global epoch
momentum = 0.5 # used for the optimizer
log_interval = 100 # used to print the parameters every 100 samples
Elocal = 5 # number of local epoch
Here below the inner loop training for one node.
def train_one_epoch(model, device, data_loader, optimizer, epoch,Elocal):
model.train()
for batch_idx, (data, target) in enumerate(data_loader):
for idx in range(Elocal):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target) # The negative log likelihood loss, used for classification problem
loss.backward()
optimizer.step()
# Printing the training
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(data_loader) * len(data),
100. * batch_idx / len(data_loader), loss.item()))
# Save checkpoint in a filed
def save_checkpoint(log_dir, model, optimizer, epoch):
filepath = log_dir+ '/checkpoint-{epoch}.pth.tar'.format(epoch=epoch)
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state, filepath)
# Load checkpoint saved from the filed
def load_checkpoint(log_dir, epoch=num_epochs):
filepath = log_dir+ '/checkpoint-{epoch}.pth.tar'.format(epoch=epoch)
return torch.load(filepath)
# Creating the directory for saving the checkpoint
def create_log_dir():
log_dir = os.path.join(PYTORCH_DIR, str(time()), 'CIFAR10')
os.makedirs(log_dir)
return log_dir
# Creation of the directory to save the parameters
single_node_log_dir = create_log_dir()
print("Log directory:", single_node_log_dir)
def train(learning_rate, Elocal, model1):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Downloading + preparation of the dataset
train_dataset = datasets.CIFAR10(
'CIFAR10',
train=True,
download=True,
# Normalization + conversion of the dataset to tensor since we use pytorch the input has to be a tensor
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]))
data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# architecture importation
model = model1.to(device)
#stochatic gradient descent optimizer
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
# Evaluation of the training time
time_start=time()
# Training
for epoch in range(1, num_epochs + 1):
train_one_epoch(model, device, data_loader, optimizer, epoch,Elocal)
save_checkpoint(single_node_log_dir, model, optimizer, epoch)
print("---It took %s seconds ---" % (time() - time_start))
# Test phase
def test(log_dir,model1):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
loaded_model = model1.to(device) # architecture importation
checkpoint = load_checkpoint(log_dir) # checkpoint importation
#Loading model for Inference
loaded_model.load_state_dict(checkpoint['model']) # state_dict is a Python dictionary object that maps each layer to its parameter tensor
loaded_model.eval() # set dropout and batch normalization layers to evaluation mode
# loading + preparing the dataset test
test_dataset = datasets.CIFAR10(
'CIFAR10',
train=False,
download=True,
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]))
data_loader = torch.utils.data.DataLoader(test_dataset)
test_loss = 0
for data, target in data_loader:
data, target = data.to(device), target.to(device)
output = loaded_model(data)
test_loss += F.nll_loss(output, target)
test_loss /= len(data_loader.dataset)
print("Average test loss: {}".format(test_loss.item()))
Run the train
function you just created to train a model on the driver node. For comparison, we train both on WASP Cluster 2 and the 11.3 LSTML gpu cluster.
#I (Hoomaan) mistakenly removed the output and then the gpu clusters were unavailable. The good news is that I saved the execution time :).(remove the previous 'dot' to see my lips) It was 60.721 s.
#GPU tiny-debug-cluster-gpu
train(learning_rate=0.001,Elocal=5,model1=Net_CIFAR10())
#CPU WASP Cluster 3-current log is for another cluster thus the executed time is different from previous result.
train(learning_rate=0.001,Elocal=5,model1=Net_CIFAR10())
Load and use the model
test(single_node_log_dir,model1=Net_CIFAR10())
Thus our GPU cluster is much faster than our CPU cluster.
Note that in these simulations we are not concentrating on average loss and only scalability is of our interest.
Migrate to HorovodRunner
HorovodRunner takes a Python method that contains deep learning training code with Horovod hooks. HorovodRunner pickles the method on the driver and distributes it to Spark workers. A Horovod MPI job is embedded as a Spark job using barrier execution mode.
hvd_log_dir = create_log_dir()
print("Log directory:", hvd_log_dir)
def train_hvd(learning_rate,Elocal,model1):
# Initialize Horovod
hvd.init()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == 'cuda':
# Pin GPU to local rank
torch.cuda.set_device(hvd.local_rank())
train_dataset = datasets.CIFAR10(
# Use different root directory for each worker to avoid conflicts
root='data-%d'% hvd.rank(),
train=True,
download=True,
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
)
from torch.utils.data.distributed import DistributedSampler
# Configure the sampler so that each worker gets a distinct sample of the input dataset
train_sampler = DistributedSampler(train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
# Use train_sampler to load a different sample of data on each worker
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
model = model1.to(device)
# The effective batch size in synchronous distributed training is scaled by the number of workers
# Increase learning_rate to compensate for the increased batch size
optimizer = optim.SGD(model.parameters(), lr=learning_rate * hvd.size(), momentum=momentum)
# Wrap the local optimizer with hvd.DistributedOptimizer so that Horovod handles the distributed optimization
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), op=hvd.Adasum)
#1- op=hvd.Adasum not op=hvd.AdaSum.
#2- hvd.Adasum works with powers of 2 number of processors. For other numbers hvd.Sum is implementable.
#3- Horovod can have multiple optimizers for different clients and different number of processors:
# Run on a single client with 4 GPUs: horovodrun -np 4 python train.py
# Run on 4 clients with 4 GPUs each: horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python train.py
# Broadcast initial parameters so all workers start with the same parameters
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
time_start=time()
for epoch in range(1, num_epochs + 1):
train_one_epoch(model, device, train_loader, optimizer, epoch,Elocal)
# Save checkpoints only on worker 0 to prevent conflicts between workers
if hvd.rank() == 0:
save_checkpoint(hvd_log_dir, model, optimizer, epoch)
exe_time = time() - time_start
print("---It took %s seconds ---" % (exe_time))
Note on Learning rate update
Consider a network at iteration \(t\) with weights \(w_t\), and a sequence of \(k\) minibatches \(B_j\) for \(0 ≤ j < k\) each of size \(n\). In this paper they compare the effect of executing \(k\) SGD iterations with small minibatches \(B_j\) and learning rate \(\eta\) versus a single iteration with a large minibatch \(\cup_j B_j\) of size \(kn\) and learning rate \(\widehat{\eta}\). For the SGD update
\[ w_{t+1}=w_t - \eta \frac{1}{n}\sum_{x\in \mathcal{B_j}}\nabla l(x,w_t) \]
after \(k\) iteration we have
\[ w_{t+k}=w_t - \eta \frac{1}{n}\sum_{j<k}\sum_{x\in \mathcal{B_j}}\nabla l(x,w_{j+k}) \]
and for the single step with the large minibatch of sie \(kn\) we have
\[ \widehat{w}{t+1}=w_t - \widehat{\eta} \frac{1}{kn}\sum{j<k}\sum_{x\in \mathcal{B_j}}\nabla l(x,w_t) \]
Now, if we can have \(w_{t+k} \approx \widehat{w_{t+1}}\) if we have \(\nabla l(x,w_{j+k})\approx \nabla l(x,w_t)\) and \(\widehat{\eta}=k\eta\). Though this assumption is strict, but they show in the paper that it does not affect the final result.
Now that you have defined a training function with Horovod, you can use HorovodRunner to distribute the work of training the model.
The HorovodRunner parameter np
sets the number of processes. This example uses a cluster with two workers, each with a single GPU, so set np=2
(If you use np=-1
, HorovodRunner trains using a single process on the driver node). We will perform the training for single worker CPU and GPU and compare the results. Then the number of workers are increased. Also note that
1- AdaSum is not correct and Adasum works. This is in contrast to what is written on Horovod Website,\ 2- Adasum works with power of 2 workers only.
In what follows, we will train our network on CPU processors.
#CPU - WASP Cluster 3
hr = HorovodRunner(np=1,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
test(hvd_log_dir,model1=Net_CIFAR10())
#CPU - WASP Cluster 3
hr = HorovodRunner(np=2,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
test(hvd_log_dir,model1=Net_CIFAR10())
#CPU - WASP Cluster 3
hr = HorovodRunner(np=4,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
test(hvd_log_dir,model1=Net_CIFAR10())
# CPU - WASP Cluster 3
hr = HorovodRunner(np=8,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
test(hvd_log_dir,model1=Net_CIFAR10())
Note that the accuracy heavily depends on the heterogeneity of the data and not the number of clients. Therefore, if the dissipated data does not contain evetry aspect of the whole dataset, the final learning loss will rise.
Summary on CPU Execution Time
Execution time of \(i\)'th worker case is \((E_i)\) and therefore the execution time is \(\max(E_i)\). | Number of Workers | Execution Time(s) | | ----------- | ----------- | | 1 | 336.105 | | 2 | 207.549 | | 4 | 115.372 | | 8 | 75.987 |
Next, GPU processors are considered. Due to unavailability of 4 and 8 worker GPU clusters we skip those cases.
# GPU - 11.3 LSTML - Debug Cluster
hr = HorovodRunner(np=1,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
# GPU - 11.3 LSTML - Debug Cluster
hr = HorovodRunner(np=2,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
# GPU - 11.3 LSTML - Debug Cluster Current run cancelled due to unavailability of workers.
hr = HorovodRunner(np=3,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
# GPU - 11.3 LSTML - Debug Cluster Current run cancelled due to unavailability of workers.
hr = HorovodRunner(np=8,driver_log_verbosity='all')
hr.run(train_hvd, learning_rate = 0.001,Elocal=5,model1=Net_CIFAR10())
test(hvd_log_dir,model1=Net_CIFAR10())
Summary on GPU Execution Time
Execution time of \(i\)'th worker is \((E_i)\) and therefore the execution time is \(\max(E_i)\). | Number of Workers | Execution Time(s) | | ----------- | ----------- | | 1 | 52.84 | | 2 | 41.27 | | 4 | NA | | 8 | NA |
Execution_time=[336.105,207.549,115.372, 75.987]
Execution_time2=[52.84,41.27,0,0]
num_workers=[1,2,4,8]
plt.figure(figsize=(8, 6), dpi=120)
colors=[1,1,1,1]
plt.plot(num_workers,Execution_time,'--o',linewidth=4,markersize=8,label="CPU")
plt.xlabel("Number of Workers")
plt.ylabel("Execution Time")
plt.plot(num_workers,Execution_time2,'--*',alpha=0.5,linewidth=4,markersize=10,label="GPU") # c=colors
plt.legend()
Final Notes
- It is obvious that GPU clusters easily outperform CPU clusters in our case.
- In case of data changes (specifically increase of data) we need to update our optimizer's learning rate. This scenario is already considered by Horovod and the solution is to use elastic Horovod which gives you the possibility to update hvd.size() based on the state of the network. For more information see here
Under the hood, HorovodRunner takes a Python method that contains deep learning training code with Horovod hooks. HorovodRunner pickles the method on the driver and distributes it to Spark workers. A Horovod MPI job is embedded as a Spark job using the barrier execution mode. The first executor collects the IP addresses of all task executors using BarrierTaskContext and triggers a Horovod job using mpirun
. Each Python MPI process loads the pickled user program, deserializes it, and runs it.
For more information, see HorovodRunner API documentation.
Distributed Reinforcement Learning
Project members:
- Johan Edstedt, Linköping University
- Arvi Jonnarth, Linköping University & Husqvarna Group
- Yushan Zhang, Linköping University
Presentation:
Project description
We extend the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) reinforcement learning algorithms from the stable_baselines3
library to make them run in a distributed fashion.
We use Horovod, which is a distributed deep learning training framework that supports several ML libraries, including PyTorch through the horovod.torch
package. But more importantly, it can be run on top of spark using sparkdl.HorovodRunner
. The HorovodRunner launches spark jobs on training functions that implement the Horovod framework. All that is needed to utilize the Horovod framework is to wrap the original torch.optim.Optimizer
optimizer in a horovod.torch.DistributedOptimizer
.
Reinforcement Learning
Definition: Reinforcement Learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. It is a machine learning training method based on rewarding desired behaviors and/or punishing undesired ones. In general, a reinforcement learning agent is able to perceive and interpret its environment, take actions and learn through trial and error.
Environment: Gymnasium, where the classic “agent-environment loop” is implemented. The agent performs some actions in the environment (usually by passing some control inputs to the environment, e.g. torque inputs of motors) and observes how the environment’s state changes. One such action-observation exchange is referred to as a timestep.

Example tasks:
Stable Baselines3
Stable Baselines3 is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the latest major version of Stable Baselines.
Github repository: https://github.com/DLR-RM/stable-baselines3
Paper: https://jmlr.org/papers/volume22/20-1364/20-1364.pdf
PPO:
The Proximal Policy Optimization algorithm combines ideas from A2C (having multiple workers) and TRPO (it uses a trust region to improve the actor).
The main idea is that after an update, the new policy should be not too far from the old policy. For that, ppo uses clipping to avoid too large update.
SAC:
Soft Actor Critic (SAC) Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
SAC is the successor of Soft Q-Learning SQL and incorporates the double Q-learning trick from TD3. A key feature of SAC, and a major difference with common RL algorithms, is that it is trained to maximize a trade-off between expected return and entropy, a measure of randomness in the policy.
Get all necessary imports.
import csv
import gym
import horovod.torch as hvd
import numpy as np
import os
import shutil
import torch as th
import warnings
from datetime import datetime
from gym import spaces
from matplotlib import pyplot as plt
from sparkdl import HorovodRunner
from torch.nn import functional as F
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union
from stable_baselines3 import PPO, SAC
from stable_baselines3.common.buffers import ReplayBuffer
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.noise import ActionNoise
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_parameters_by_name, get_schedule_fn, polyak_update
from stable_baselines3.sac.policies import CnnPolicy, MlpPolicy, MultiInputPolicy, SACPolicy
And global variables
LOG_DIR = '/dbfs/drl_logs'
Distributed Proximal Policy Optimization, DPPO
Theoretical Background
PPO is a reinforcement learning algorithm, which is trained using the following objective (that should be maximized)
\[ L^{\text{CLIP}}(\theta) = \mathbb E_t \big[ \text{min}(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon)A_t) \big], \]
let's go through what this means. First, \(\pi_{\theta}(a_t|s_t)\) is the "policy". This is a neural network that we want to train to estimate the "best" action to take in any given state. Then we have \(r_t(\theta) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)}\), which is the ratio of the probability of the network choosing a certain action, compared to a previous version of the network. Then we have \(A_t = -V(s_t) + r_t + \gamma r_{t+1} ...\) which is the estimated advantage. Intuitively this is how much better the policy performed than expected by the value network V. The inituition is that we want to get as large advantages as possible, and it is especially important when the previous policy was unlikely to have yielded the result. However, we still want the new parameters too not go too far from the old ones. To ensure this we "clip" the ratio. This ensures that the policy network gets no gradients after a certain threshold epsilon. See image below:

Here it is clear that the network will cease getting gradient after improving sufficiently on for all timesteps t. A further detail is that the value network has an additional value loss which is trained to minimize the advantage. The algorithm can be summarized as follows.
- Gather a "dataset" of state action reward pairs, given the current policy. (Hereafter referred to as rollouts)
- Train the policy to maximize advantage while clipping, also train the value network to predict the values for accurate estimation of advantage. (Hereafter training)
Practical Implementation
Looking at the above algorithm it is immediately obvious that the rollouts are embarassingly parallel, since no communication is needed between nodes. However, during training, the parameters of the models are updated according to the optimizer (which requires gradients to be synched between nodes). One further caveat: The stable_baselines3 implementation uses inplace gradient clipping. This is a non-linear operation, which means that the sum of clipped gradients over the nodes is not the same as the clipped summed gradient. Hence we first need to sync (sum) the gradients, and then perform clipping. Horovod by default syncs the gradients at optimizer.step(), however it also permits manual syncing, which we have implemented in the code below. We summarize the communication needed between nodes during rollouts and training in the figure below:

We extend the original PPO
class from stable_baselines3
. We modify the _setup_model
function to wrap the optimizer in a hvd.DistributedOptimizer
. We also had to change the train
function which performs the gradient step. This change was necessary to account for the gradient clipping, which must happen after averaging the gradients across machines.
class DPPO(PPO):
"""
Distributed Proximal Policy Optimization (DPPO)
"""
def _setup_model(self) -> None:
super()._setup_model()
self.policy.optimizer = hvd.DistributedOptimizer(self.policy.optimizer, named_parameters=self.policy.named_parameters())
hvd.broadcast_parameters(self.policy.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self.policy.optimizer, root_rank=0)
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
# Compute current clip range
clip_range = self.clip_range(self._current_progress_remaining)
# Optional: clip range for the value function
if self.clip_range_vf is not None:
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
entropy_losses = []
pg_losses, value_losses = [], []
clip_fractions = []
continue_training = True
# train for n_epochs epochs
for epoch in range(self.n_epochs):
approx_kl_divs = []
# Do a complete pass on the rollout buffer
for rollout_data in self.rollout_buffer.get(self.batch_size):
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = rollout_data.actions.long().flatten()
# Re-sample the noise matrix because the log_std has changed
if self.use_sde:
self.policy.reset_noise(self.batch_size)
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
values = values.flatten()
# Normalize advantage
advantages = rollout_data.advantages
# Normalization does not make sense if mini batchsize == 1, see GH issue #325
if self.normalize_advantage and len(advantages) > 1:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - rollout_data.old_log_prob)
# clipped surrogate loss
policy_loss_1 = advantages * ratio
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
# Logging
pg_losses.append(policy_loss.item())
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
clip_fractions.append(clip_fraction)
if self.clip_range_vf is None:
# No clipping
values_pred = values
else:
# Clip the difference between old and new value
# NOTE: this depends on the reward scaling
values_pred = rollout_data.old_values + th.clamp(
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
)
# Value loss using the TD(gae_lambda) target
value_loss = F.mse_loss(rollout_data.returns, values_pred)
value_losses.append(value_loss.item())
# Entropy loss favor exploration
if entropy is None:
# Approximate entropy when no analytical form
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
entropy_losses.append(entropy_loss.item())
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
# Calculate approximate form of reverse KL Divergence for early stopping
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
# and Schulman blog: http://joschu.net/blog/kl-approx.html
with th.no_grad():
log_ratio = log_prob - rollout_data.old_log_prob
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
approx_kl_divs.append(approx_kl_div)
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
continue_training = False
if self.verbose >= 1:
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
break
# Optimization step
self.policy.optimizer.zero_grad()
loss.backward()
# Need to synch gradients first, to prevent non-linear gradient clipping to happen too early
self.policy.optimizer.synchronize()
# Clip grad norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
# Dont need to sync now.
with self.policy.optimizer.skip_synchronize():
self.policy.optimizer.step()
if not continue_training:
break
self._n_updates += self.n_epochs
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
# Logs
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
self.logger.record("train/loss", loss.item())
self.logger.record("train/explained_variance", explained_var)
if hasattr(self.policy, "log_std"):
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/clip_range", clip_range)
if self.clip_range_vf is not None:
self.logger.record("train/clip_range_vf", clip_range_vf)
Next, we define our distributed training function that Horovod
will run on each process. We make it general since we want to use it for different algorithms. It takes an algorithm class algo
as input. Furthermore, it takes the environment name, type of policy, and the number of time steps, as well as any keyword arguments to be passed to the algorithm class. We do any logging or model saving only on the main process, i.e. rank 0.
def train_hvd(algo, env_name="Pendulum-v1", policy="MlpPolicy", total_timesteps=100_000, **kwargs):
# Initialize Horovod
hvd.init()
# Create environment, model, and run training
env = gym.make(env_name)
# log reward etc. only on the main process by wrapping the environment in a Monior
if hvd.rank() == 0:
env = Monitor(env, os.path.join(LOG_DIR, env_name, algo.__name__ + '-' + str(hvd.size())))
model = algo(policy, env, **kwargs)
model.learn(total_timesteps=total_timesteps, log_interval=1)
# Save model only on process 0
if hvd.rank() == 0:
exp_time = datetime.now().strftime('%Y-%m-%d_%H%M%S')
log_dir = os.path.join(LOG_DIR, exp_time)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# DBFS doesnt support zip, need to create on driver and then move file to DBFS
filename = f'{algo.__name__}_{env_name}.zip'
model.save(filename)
shutil.move(filename, f"{log_dir}/")
env.close()
Single-process PPO
First, let us train a PPO agent in a single process using the original implementation from stable_baselines3
(i.e. not using our DPPO
class or train_hvd
function).
Start with some parameters:
# The environment where to test our distributed PPO algorithm
ppo_env_name = 'CartPole-v1'
#ppo_env_name = 'Pendulum-v1'
#ppo_env_name = 'MountainCarContinuous-v0'
#ppo_env_name = 'BipedalWalker-v3'
# PPO parameters
ppo_total_timesteps = 100_000
ppo_learning_rate = 1e-3 # default: 3e-4
ppo_n_steps = 4096 * 8 # default: 2048
ppo_batch_size = 4096 # default: 64
# How many processes to use for distributed training
ppo_world_sizes = [1, 2, 4, 8]
Train the PPO agent.
# Create a gym environment and wrap it in a Monitor to track the reward
env = gym.make(ppo_env_name)
env = Monitor(env, os.path.join(LOG_DIR, ppo_env_name, 'PPO'))
# Define our PPO agent
model = PPO(
"MlpPolicy",
env,
learning_rate=ppo_learning_rate,
n_steps=ppo_n_steps,
batch_size=ppo_batch_size,
verbose=1)
# Train our agent
model.learn(total_timesteps=ppo_total_timesteps, log_interval=1)
env.close()
Multi-process DPPO
Train our distributed DPPO algorithm for different number of processes (world_size
). To have comparable training settings for different number of processes, we divide the per-process rollout buffer size n_steps
with the number of processes (since the total buffer size will then be the same). We also multiply the learning rate learning_rate
with the number of processes (since the total batch size will be larger). Note that this means that a gradient step for the multi-process case will essentially be equivalent to world_size
number of single-process gradient steps. We will take this into account when plotting the results later to validate that the training settings actually are equivalent.
# Loop over number of processes and do an experiment for each
for world_size in ppo_world_sizes:
# Initialize the HorovodRunner
hr = HorovodRunner(np=world_size, driver_log_verbosity='all')
# Launch the spark job on our training function
hr.run(
train_hvd,
algo = DPPO,
env_name = ppo_env_name,
policy = "MlpPolicy",
total_timesteps = ppo_total_timesteps,
learning_rate = ppo_learning_rate * world_size,
n_steps = ppo_n_steps // world_size,
batch_size = ppo_batch_size,
verbose = 1
)
PPO and DPPO results
We compare the different runs by plotting the reward over per-process training steps, total number of training steps, and wall time. We expect a faster convergence rate for a larger number of processes when looking at the per-process training steps, and the same reward for the same number of total training steps, since these should correspond to the same training setting. We also expect a faster convergence in wall time for more processes. We also compute the speedup for different number of processes.
Define a function to get the logs from a run.
def get_logs(log_file, as_dict=False):
steps, rewards, ep_lengths, times = [], [], [], []
with open(log_file) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for i, row in enumerate(csv_reader):
if i < 2: # skip first two rows (headers)
continue
rewards.append(float(row[0]))
ep_lengths.append(int(row[1]))
times.append(float(row[2]))
steps.append((steps[-1] if len(steps) != 0 else 0) + ep_lengths[-1])
if as_dict:
return {'steps': steps,
'rewards': rewards,
'ep_lengths': ep_lengths,
'times': times}
return steps, rewards, ep_lengths, times
Define a function to plot the reward.
def plot_results(env_name, algo_names, x_axis='steps', num_procs=None, smooth=None):
# Read logs
logs = {}
if isinstance(algo_names, str):
logs[algo_names] = get_logs(os.path.join(LOG_DIR, env_name, f'{algo_names}.monitor.csv'), as_dict=True)
else: # list of str
for algo_name in algo_names:
logs[algo_name] = get_logs(os.path.join(LOG_DIR, env_name, f'{algo_name}.monitor.csv'), as_dict=True)
# Plot reward
for algo_name in algo_names:
# Scale x-axis if number of processes is given
if num_procs is not None:
scale_by_num_proc = num_procs[algo_name]
else:
scale_by_num_proc = 1
# Smooth and plot the reward
reward = logs[algo_name]['rewards']
if smooth is not None:
reward = [reward[0]]*smooth + reward + [reward[-1]]*smooth
reward = np.convolve(reward, [1/(smooth*2 + 1)]*(smooth*2 + 1), mode='valid')
plt.plot(scale_by_num_proc*np.array(logs[algo_name][x_axis]), reward)
plt.legend(algo_names)
plt.title(env_name)
plt.ylabel('reward')
if x_axis == 'times':
if num_procs is not None:
plt.xlabel('total cpu time [s]')
else:
plt.xlabel('wall time [s]')
elif x_axis == 'steps':
if num_procs is not None:
plt.xlabel('total steps')
else:
plt.xlabel('steps per process')
else:
plt.xlabel(x_axis)
plt.gcf().set_size_inches(8, 4)
plt.show()
Define a function to plot the speedup.
def plot_speedup(env_name, runs):
algo_name = runs[0]
# Compute wall time, total steps, and speedup
wall_times = []
total_steps = []
speedups = []
nprocs = []
# Get logs from single-process run
logs1 = get_logs(os.path.join(LOG_DIR, env_name, f'D{algo_name}-1.monitor.csv'), as_dict=True)
wall_time1 = logs1['times'][-1]
total_step1 = logs1['steps'][-1]
# Compute results for each run
for run in runs:
logs = get_logs(os.path.join(LOG_DIR, env_name, f'{run}.monitor.csv'), as_dict=True)
wall_times.append(logs['times'][-1])
total_steps.append(logs['steps'][-1])
if '-' in run:
nprocs.append(int(run.split('-')[1]))
total_steps[-1] *= nprocs[-1]
speedup = wall_time1 / wall_times[-1]
speedup *= total_steps[-1] / total_step1 # adjust for different total steps
speedups.append(round(speedup, 2))
# Print run times and total steps
print('Run times')
for run, wall_time, total_step in zip(runs, wall_times, total_steps):
print(f'{run}: {round(wall_time, 2)} s ({total_step} total steps)')
# Print speedup
print('\nSpeedups')
for speedup, nproc in zip(speedups, nprocs):
print(f'D{algo_name}-{nproc}: {speedup}')
# Plot speedup as a bar plot
x = np.arange(len(speedups)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, speedups, width, label='speedup')
rects2 = ax.bar(x + width/2, nprocs, width, label='ideal')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Speedup')
ax.set_xlabel('Number of processes')
ax.set_title(f'D{algo_name} speedup on {env_name}')
plt.xticks(x, nprocs)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
fig.tight_layout()
plt.show()
Reward plots
Finally, we plot the reward.
ppo_runs = ['PPO'] + [f'DPPO-{ws}' for ws in ppo_world_sizes]
ppo_nprocs = {**{'PPO': 1}, **{f'DPPO-{ws}': ws for ws in ppo_world_sizes}}
plot_results(ppo_env_name, ppo_runs, x_axis='steps', smooth=5)
plot_results(ppo_env_name, ppo_runs, x_axis='steps', num_procs=ppo_nprocs, smooth=5)
plot_results(ppo_env_name, ppo_runs, x_axis='times', smooth=5)
Speedup
Plot the speedup for the different number of processes.
plot_speedup(ppo_env_name, ppo_runs)
GIF
Here is what our trained agent looks like.
Left: Not trained (the environment resets each time the pole falls too low) Right: Trained with PPO
Distributed Soft Actor-Critic, DSAC
SAC is an off-policy reinforcement learning algorithm. The main difference between it and PPO is the following:
- A larger set of networks are used, and they do not share the same optimizer.
- Instead of "rollouts", the agent takes a single "step" in the environment, and immediately updates the weights using a "replay buffer". Note that the algorithm is called an "off-policy algorithm" due to the fact that state action pairs in the replay buffer may have been generated by previous policies, not the current policy.
Regarding point 1., in practice this forces us to wrap multiple optimizers. Furthermore, due to quirks of horovod (see: https://github.com/horovod/horovod/issues/1417), we are forced to sync gradients explicitly after the every backwards pass.
Regarding point 2., SAC alternates between updating a rolling buffer and updating model weights using the buffer. We illustrate this below.

We extend the original SAC
class from stable_baselines3
. Different from DPPO, we modify the __init__
function to wrap multiple optimizers. The wrapping part is a bit different since actor and critic networks may or may not share the feature extractor. Additionally, a third optimizer is used for an entropy coefficient (scalar), which may or may not be used. SAC does not used gradient clipping, but we still needed to modify the train
function to syncronize the actor and critic optimizers between each other.
class DSAC(SAC):
"""
Distributed Soft Actor-Critic (DSAC)
"""
def __init__(
self,
policy,
env,
learning_rate = 3e-4,
buffer_size = 1_000_000, # 1e6
learning_starts = 100,
batch_size = 256,
tau = 0.005,
gamma = 0.99,
train_freq = 1,
gradient_steps = 1,
action_noise = None,
replay_buffer_class = None,
replay_buffer_kwargs = None,
optimize_memory_usage = False,
ent_coef = "auto",
target_update_interval = 1,
target_entropy = "auto",
use_sde = False,
sde_sample_freq = -1,
use_sde_at_warmup = False,
tensorboard_log = None,
create_eval_env = False,
policy_kwargs = None,
verbose = 0,
seed = None,
device = "auto",
_init_setup_model = True,
):
super().__init__(
policy,
env,
learning_rate,
buffer_size,
learning_starts,
batch_size,
tau,
gamma,
train_freq,
gradient_steps,
action_noise,
replay_buffer_class,
replay_buffer_kwargs,
optimize_memory_usage,
ent_coef,
target_update_interval,
target_entropy,
use_sde,
sde_sample_freq,
use_sde_at_warmup,
tensorboard_log,
create_eval_env,
policy_kwargs,
verbose,
seed,
device,
_init_setup_model,
)
# Wrap optimizers in Horovod
# Actor optimizer
self.actor.optimizer = hvd.DistributedOptimizer(self.actor.optimizer, named_parameters=self.actor.named_parameters())
hvd.broadcast_parameters(self.actor.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self.actor.optimizer, root_rank=0)
# Critic optimizer
if self.policy.share_features_extractor:
critic_parameters = [(name, param) for name, param in self.critic.named_parameters() if "features_extractor" not in name]
else: # used by default
critic_parameters = self.critic.named_parameters()
self.critic.optimizer = hvd.DistributedOptimizer(self.critic.optimizer, named_parameters=critic_parameters)
hvd.broadcast_parameters(self.critic.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(self.critic.optimizer, root_rank=0)
# Entropy coefficient optimizer
if self.ent_coef_optimizer is not None:
self.ent_coef_optimizer = hvd.DistributedOptimizer(self.ent_coef_optimizer, named_parameters=[("log_ent_coef", self.log_ent_coef)])
hvd.broadcast_parameters([self.log_ent_coef], root_rank=0)
hvd.broadcast_optimizer_state(self.ent_coef_optimizer, root_rank=0)
# Need to redefine this function to synchronize multiple optimizers
def train(self, gradient_steps: int, batch_size: int = 64) -> None:
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizers learning rate
optimizers = [self.actor.optimizer, self.critic.optimizer]
if self.ent_coef_optimizer is not None:
optimizers += [self.ent_coef_optimizer]
# Update learning rate according to lr schedule
self._update_learning_rate(optimizers)
ent_coef_losses, ent_coefs = [], []
actor_losses, critic_losses = [], []
for gradient_step in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
# We need to sample because `log_std` may have changed between two gradient steps
if self.use_sde:
self.actor.reset_noise()
# Action by the current actor for the sampled state
actions_pi, log_prob = self.actor.action_log_prob(replay_data.observations)
log_prob = log_prob.reshape(-1, 1)
ent_coef_loss = None
if self.ent_coef_optimizer is not None:
# Important: detach the variable from the graph
# so we don't change it with other losses
# see https://github.com/rail-berkeley/softlearning/issues/60
ent_coef = th.exp(self.log_ent_coef.detach())
ent_coef_loss = -(self.log_ent_coef * (log_prob + self.target_entropy).detach()).mean()
ent_coef_losses.append(ent_coef_loss.item())
else:
ent_coef = self.ent_coef_tensor
ent_coefs.append(ent_coef.item())
# Optimize entropy coefficient, also called
# entropy temperature or alpha in the paper
if ent_coef_loss is not None:
self.ent_coef_optimizer.zero_grad()
ent_coef_loss.backward()
self.ent_coef_optimizer.step()
with th.no_grad():
# Select action according to policy
next_actions, next_log_prob = self.actor.action_log_prob(replay_data.next_observations)
# Compute the next Q values: min over all critics targets
next_q_values = th.cat(self.critic_target(replay_data.next_observations, next_actions), dim=1)
next_q_values, _ = th.min(next_q_values, dim=1, keepdim=True)
# add entropy term
next_q_values = next_q_values - ent_coef * next_log_prob.reshape(-1, 1)
# td error + entropy term
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates for each critic network
# using action from the replay buffer
current_q_values = self.critic(replay_data.observations, replay_data.actions)
# Compute critic loss
critic_loss = 0.5 * sum(F.mse_loss(current_q, target_q_values) for current_q in current_q_values)
critic_losses.append(critic_loss.item())
# Optimize the critic
self.critic.optimizer.zero_grad()
critic_loss.backward()
self.critic.optimizer.step()
self.actor.optimizer.synchronize() # <----- diff from original function
# Compute actor loss
# Alternative: actor_loss = th.mean(log_prob - qf1_pi)
# Min over all critic networks
q_values_pi = th.cat(self.critic(replay_data.observations, actions_pi), dim=1)
min_qf_pi, _ = th.min(q_values_pi, dim=1, keepdim=True)
actor_loss = (ent_coef * log_prob - min_qf_pi).mean()
actor_losses.append(actor_loss.item())
# Optimize the actor
self.actor.optimizer.zero_grad()
actor_loss.backward()
self.actor.optimizer.step()
self.critic.optimizer.synchronize() # <----- diff from original function
# Update target networks
if gradient_step % self.target_update_interval == 0:
polyak_update(self.critic.parameters(), self.critic_target.parameters(), self.tau)
# Copy running stats, see GH issue #996
polyak_update(self.batch_norm_stats, self.batch_norm_stats_target, 1.0)
self._n_updates += gradient_steps
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/ent_coef", np.mean(ent_coefs))
self.logger.record("train/actor_loss", np.mean(actor_losses))
self.logger.record("train/critic_loss", np.mean(critic_losses))
if len(ent_coef_losses) > 0:
self.logger.record("train/ent_coef_loss", np.mean(ent_coef_losses))
Single-process SAC
Train a SAC agent in a single process using the original implementation from stable_baselines3
(i.e. not using our DSAC
class or train_hvd
function).
Start with some parameters:
# The environment where to test our distributed SAC algorithm
#sac_env_name = 'CartPole-v1'
sac_env_name = 'Pendulum-v1'
#sac_env_name = 'MountainCarContinuous-v0'
#sac_env_name = 'BipedalWalker-v3'
# SAC parameters
sac_total_timesteps = 10_000
sac_learning_rate = 1e-3 # default: 3e-4
sac_buffer_size = 4096 * 8 # default: 1_000_000
sac_learning_starts = 2048 # default: 100
sac_batch_size = 2048 # default: 256
# How many processes to use for distributed training
sac_world_sizes = [1, 2, 4, 8]
Train the SAC agent.
# Create a gym environment and wrap it in a Monitor to track the reward
env = gym.make(sac_env_name)
env = Monitor(env, os.path.join(LOG_DIR, sac_env_name, 'SAC'))
# Define the SAC agent
model = SAC(
"MlpPolicy",
env,
learning_rate=sac_learning_rate,
buffer_size=sac_buffer_size,
learning_starts=sac_learning_starts,
batch_size=sac_batch_size,
verbose=1)
# Train the agent
model.learn(total_timesteps=sac_total_timesteps, log_interval=1)
env.close()
Multi-process DSAC
Train our distributed DSAC algorithm for different number of processes (world_size
). Againt, to have comparable training settings for different number of processes, we divide the per-process replay buffer size (buffer_size
) with the number of processes, and multiply the learning rate (learning_rate
) with the number of processes. We use the same train_hvd
function as for PPO.
for world_size in sac_world_sizes:
hr = HorovodRunner(np=world_size, driver_log_verbosity='all')
hr.run(
train_hvd,
algo = DSAC,
env_name = sac_env_name,
policy = "MlpPolicy",
total_timesteps = sac_total_timesteps,
learning_rate = sac_learning_rate * world_size,
buffer_size = sac_buffer_size // world_size,
learning_starts = sac_learning_starts // world_size,
batch_size = sac_batch_size,
verbose = 1
)
SAC/DSAC results
We compare the different runs by plotting the reward over per-process training steps, total number of training steps, and wall time.
Reward plots
Plot the reward.
sac_runs = ['SAC'] + [f'DSAC-{ws}' for ws in sac_world_sizes]
sac_nprocs = {**{'SAC': 1}, **{f'DSAC-{ws}': ws for ws in sac_world_sizes}}
plot_results(sac_env_name, sac_runs, x_axis='steps')
plot_results(sac_env_name, sac_runs, x_axis='steps', num_procs=sac_nprocs)
plot_results(sac_env_name, sac_runs, x_axis='times')
Speedup
Plot the speedup for the different number of processes.
plot_speedup(sac_env_name, sac_runs)
GIF
Here is what our trained agent looks like.
Left: Not trained (random policy) Right: Trained with SAC
Conclusions
Reinforcement learning is scalable as we have demonstrated with the two methods PPO and SAC. To increase the scalability, we need to reduce the communications overhead of the gradient syncronizations compared to the inter-process computations. This can be done by either increasing the batch size (together with the learning rate), or by using a larger model. The former increases the number of forward and backward passes per gradient syncronization, while the latter increases the computational cost for each pass.
Earth Observation
Project members:
- Daniel Brunnsåker, Chalmers University of Technology
- Alexander H. Gower, Chalmers University of Technology
- Filip Kronström, Chalmers University of Technology
Background
When fossil fuels are burned, they release large amounts of greenhouse gases and chemicals potentially harmful to human health. Coal is a fossil fuel widely used for energy generation, being responsible for an estimated 30% of the global average temperature increase. Worldwide efforts to phase out coal as a source of power are considered crucial to meeting emissions targets and arresting global temperature rises. Monitoring the levels of generation used by these plants can be a useful way for governments and nations to hold each other to account, as reporting standards and quality vary widely from country to country.
Earth observation data offers powerful approaches for the monitoring av meterological, ecological and environmental changes, and by leveraging the capacity provided by the Sentinel-2 mission, we aim to produce a model which can estimate the power generation of coal fuelled power plants.
Satellite Imaging Dataset
The project is mainly working with two different sources of data, namely multispectral instrument (MSI) data from ESA's Sentinel-2 mission and data on net generation from coal power plants across the US. There are two Sentinel-2 satellites operating tandem, 180 degrees out of phase. The orbit characteristics of the satellites mean that they have global coverage and high revisit times (2-3 days at mid-latitudes), able to cover broad areas during each orbital pass.
The Sentinel-2 Multispectral Instrument (MSI) samples 13 spectral bands: four bands at 10 metres, six bands at 20 metres and three bands at 60 metres spatial resolution. In this work we have limited ourself to the bands available with minimum 20m resolution (those at 10m and 20m). As you can see in the images below, these have coverage over visible light and near infrared (VNIR) and short-wave infrared (SWIR), from Band 2 at 490nm to Band 12 at 2190nm.
ESA provides us with several levels of processing, all of which are outlined below. Processing steps include radiometric corrections (such as interpolation), resampling and generation of masks for clouds, land/water and defective pixels. Image data from processing level 2A (the highest level of processing available for these data) was used to generate the dataset used in this study.
Truth Data
We treated this as a supervised learning task, and the truth data we used is reporting data collected by the EIA (US Energy Information Administration), form EIA-923. This form collects detailed data from power generation plants across the US. The data describe the logistics, productivity and performance of the power-plants, such as:
- Generation
- Fuel consumption
- Fuel receipts and costs
- Fossil fuel stocks
- etc...
We collated data over a large time-period (2012-2022) with the goal of using a small subset of this data for training and validation, and then performing some large-scale prediction. A sample from the EIA-data can be seen in the cell below.
Images taken from the copernicus project overview (https://sentinels.copernicus.eu)
SELECT * FROM net_generation_all_plants_2012_2022 LIMIT 5;
Plant Id | Plant Name | AER_Fuel Type Code | Netgen_January | Netgen_February | Netgen_March | Netgen_April | Netgen_May | Netgen_June | Netgen_July | Netgen_August | Netgen_September | Netgen_October | Netgen_November | Netgen_December | YEAR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0 | Bankhead Dam | HYC | 31492,274 | 21380,92 | 23745,742 | 4837,912 | 4284,588 | 5955,766 | 7091,148 | 10061,239 | 10017,213 | 11576,596 | 11378,155 | 17358,447 | 2012.0 |
3.0 | Barry | NG | 259641 | 241630 | 180631 | 213949 | 262098 | 231680 | 242776 | 251707 | 242342 | 251588 | 211905 | 261126 | 2012.0 |
3.0 | Barry | NG | 474440 | 441241 | 318716 | 380279 | 451059 | 403515 | 425137 | 441375 | 431341 | 454159 | 386138 | 484909 | 2012.0 |
3.0 | Barry | COL | 198083,09 | 126692,21 | 503204,46 | 270922,3 | 209790,94 | 662268,07 | 695764,91 | 648751,77 | 602948,34 | 427607,72 | 495229,57 | 340630,16 | 2012.0 |
3.0 | Barry | NG | 5866,909 | 1909,793 | 12629,54 | 4975,7 | 1752,06 | 11849,931 | 2470,086 | 10200,227 | 17202,661 | 26204,276 | 10804,435 | 31387,839 | 2012.0 |
Method
This project will apply a Convolutional Neural Network (CNN) on the output images produced by the Sentinel 2 satellites, containing data on a multitude of wavelengths, ranging from the visible spectra to infrared. With the overall aim of predicting generated power plant output, and visualizing it holistically as an overview of generation on a pre-defined set of coordinates located all over the US.
Sentinel-2 data acquisition
Below are a set of functions that access the sentinel-2 data through their API (https://apihub.copernicus.eu) using a set of predefined coordinates of coal power plants (derived from EIA). Note that the API is restricted to two parallel downloads.
SENTINEL-2 outputs are available in SENTINEL-SAFE format, which includes image data in JPEG2000 format, quality indicators (e.g. defective pixels mask), auxiliary data and metadata. The SAFE format wraps a folder containing image data in a binary data format and product metadata in XML.
Set up the Sentinel API, apply for account here.
from sentinelsat import SentinelAPI, make_path_filter
import pyspark.pandas as pd
pd.set_option('compute.ops_on_diff_frames', True)
api = SentinelAPI('<USERNAME>', '<PASSWORD>', 'https://apihub.copernicus.eu/apihub', timeout=360000)
Function to query the Sentinel API for product IDs needed to download satellite images. Queries for all products covering coordinates between dates 20210101 and 20221001 from the Sentinel 2 satellite of processing level 2A. Also returns tile names containing provided coordinates.
# function to get product id and metadata for power plant tiles
def product_query(row):
# row: row from dataframe containing Longitude and Latitude columns
# returns [list of product IDs, list of unique satellite tiles containing provided coordinates]
coord = f"POINT({str(row['Longitude'])} {str(row['Latitude'])})"
products = api.query(coord, date=('20210101', '20221001'),
platformname='Sentinel-2', processinglevel='Level-2A')
return [list(products.keys()), list(set([products[p]['title'].split('_')[5] for p in products]))]
Based on coordinates of power plants retrieved from from the power plant data we query for Sentinel product ids, which can are then used to download data. In code below pids is a list of unique (to avoid duplicate downloads) product IDs. pp_tiles is a dataframe linking power plant ids to the satellite tiles they are present in - this is saved as a table for lookups later.
# query for plant locations
df = spark.sql("SELECT Plant_Code, Longitude, Latitude FROM hive_metastore.default.Power_Plants WHERE PrimSource='coal'").to_pandas_on_spark()
# display(df)
# query for sentinel product ids (can only be done for one point at a time)
b = df.apply(product_query, axis=1, result_type='expand')
pids = b[0].explode().drop_duplicates().to_list()
pp_tiles = pd.concat([df['Plant_Code'], b[1]], axis=1)
Downloads the images specified in pids. The files are saved in /dbfs/datasets/2022/group-project-14/raw/
. The provided nodefilter, *[2I][R0]?????
will prevent downloads of files we are not interested in.
Only two downloads per account are possible for the Sentinel API - making this the bottle neck in terms of speed. The downloaded files will be images for several different wavelengths (visible and IR) with sizes around 100x100km, the size of each downloaded product is 300-400Mb.
dest = '/dbfs/datasets/2022/group-project-14/raw/'
api.download_all(pids, directory_path=dest, nodefilter=make_path_filter('*[2I][R0]?????'), checksum=False)
True color image example
Example of a downloaded tile and where the photo was taken

Image processing
This notebook processes the images downloaded from the copernicus-API and extracts the power plants. This is done by cropping the images (128x128) centered around the power plant coordinates and converting them to .bmp in a distributed manner.
Function cropping and saving image centred around specified longitude and latitude. To find the location of the power plant in the image we first need to know where the photo was taken. This information is provided in an XML file provided along with the images. This file contains the eastern and western longitudes and the northern and southern latitudes. This together with the coordinates of the powerplant gives the location of it in the image. A square of ~5x5km around the power plant is cropped out, resized to 128x128 pixels, and then saved to /dbfs/datasets/2022/group-project-14/cropped-par/<TILE-ID>
.
The files downloaded from the Sentinel API are provided according to a Standard Archive Format for Europe (SAFE) file structure where all files but INSPIRE.xml and the R20m images has been filtered out. This function runs the image processing (sequentially) for all images (different wavelengths) for this product.
import os
import xml.etree.ElementTree as ET
import glob
import numpy as np
from PIL import Image
import pathlib
import re
def tile_id_from_SAFE(SAFE_path: str) -> str:
return SAFE_path.split("_")[5]
def crop_images(SAFE_path: str, target_directory: str, lat: float, lon: float, areaSize: float = 0.05, resolution: int = 128, ppid: str = "", tile_id: str = "") -> None:
'''
SAFE_path - file path to SAFE directory
target_directory - directory to save cropped images in
lat - latitude of powerplant
lon - longitude of powerplant
areaSize - parameter to set size of cropped image around powerplant
resolution - resolution of resized cropped image
ppid - powerplant id
tile_id - satellite tile id
'''
# xml file containing metainformation such as where image was taken
tree = ET.parse(os.path.join('/dbfs' + SAFE_path, 'INSPIRE.xml'))
root = tree.getroot()
# eastern longitude
lon1 = float(
root.find(".//{http://www.isotc211.org/2005/gmd}EX_GeographicBoundingBox")
.find("{http://www.isotc211.org/2005/gmd}eastBoundLongitude")
.find("{http://www.isotc211.org/2005/gco}Decimal").text
)
if lon1 > 180:
lon1 -= 360
# western longitude
lon2 = float(
root.find(".//{http://www.isotc211.org/2005/gmd}EX_GeographicBoundingBox")
.find("{http://www.isotc211.org/2005/gmd}westBoundLongitude")
.find("{http://www.isotc211.org/2005/gco}Decimal").text
)
if lon2 > 180:
lon2 -= 360
# northern latitude
lat1 = float(
root.find(".//{http://www.isotc211.org/2005/gmd}EX_GeographicBoundingBox")
.find("{http://www.isotc211.org/2005/gmd}northBoundLatitude")
.find("{http://www.isotc211.org/2005/gco}Decimal").text
)
# southern latitude
lat2 = float(
root.find(".//{http://www.isotc211.org/2005/gmd}EX_GeographicBoundingBox")
.find("{http://www.isotc211.org/2005/gmd}southBoundLatitude")
.find("{http://www.isotc211.org/2005/gco}Decimal").text
)
if lon > 180:
lon -= 360
# coordinates of powerplant
coords = [lat, lon]
def pic_lon(x):
return (x - lon1) / (lon2 - lon1)
def pic_lat(x):
return (x - lat1) / (lat2 - lat1)
# coordinates in 'ratio' of image size
lo = pic_lon(coords[1])
la = pic_lat(coords[0])
# bounding box around power plant
d = areaSize
bb = np.array(
[
[max((lo - d, 0)), max((la - d, 0))],
[min((lo + d, 1)), max((la - d, 0))],
[min((lo + d, 1)), min((la + d, 1))],
[max((lo - d, 0)), min(la + d, 1)],
]
)
for imgfp in pathlib.Path('/dbfs' + SAFE_path).glob('**/*.jp2'):
print("Img fp: ", imgfp)
imgname = str(imgfp).split("/")[-1]
if "_B0" in imgname or "_B1" in imgname:
# ignore if already cropped:
if not os.path.isfile("/dbfs/datasets/2022/group-project-14/cropped/" + os.path.join(tile_id, imgname[:-4]) + "_cropped_{}.bmp".format(ppid)):
print("Target directory: ", target_directory)
print("\Loading: ", os.path.join(SAFE_path, imgfp))
img = Image.open(os.path.join(SAFE_path, imgfp))
bbb = np.round(bb * img.height).astype(int)
box = (bbb[0, 0], bbb[0, 1], bbb[1, 0], bbb[2, 1])
print("\tCropping: ", imgfp)
im3 = img.crop(box).resize((128, 128))
print("\tSaving: ", imgfp)
# because of bug with Pillow and .jp2 images
im3.mode = 'I'
im3.point(lambda i:i*(1./256)).convert('L').save(os.path.join(target_directory, imgname[:-4]) + "_cropped_{}.bmp".format(ppid))
Lookup dictionary for power plants in tiles from table created from query to Sentinel API, as well as coordinates for powerplants.
import pyspark.pandas as pd
pp_lats_lons_df = spark.sql("SELECT Plant_Code, Longitude, Latitude FROM hive_metastore.default.Power_Plants WHERE PrimSource='coal'").to_pandas_on_spark().set_index("Plant_Code")
pp_id_tiles_df = spark.sql("SELECT Plant_Code, tile_ids FROM hive_metastore.default.power_plant_tile_ids_full").to_pandas_on_spark()
tile_id_lookup = {}
for ppid, l in pp_id_tiles_df.set_index("Plant_Code").to_dict()["tile_ids"].items():
for tileid in eval(l):
try:
tile_id_lookup[tileid].append(ppid)
except KeyError:
tile_id_lookup[tileid] = [ppid]
tile_id_lookup
Finding all power plants in image and calls function cropping around power plant coordinates. Calls the crop_images
function above. This function takes one SAFE file as input along with the lookup dictionaries for powerplant locations and powerplant tiles. The crop_images
function will then be called for every power plant found in this image (usually ~1-5 powerplants per tile).
def crop_and_move(SAFE, tile_id_lookup, pp_lats_lons_dict):
'''
SAFE - name of SAFE dir (not entire filepath)
tile_id_lookup - powerplant - tile lookup dictionary
pp_lats_lons_dict - powerplant - coordinates lookup dictionary
'''
print("Processing {}".format(SAFE))
# Get PowerPlant from tile ID
tile_id = tile_id_from_SAFE(os.path.join("/dbfs/datasets/2022/group-project-14/raw/", SAFE))
print("\tTile ID: ", tile_id)
# # Create a directory for this tile if not exist
if not os.path.exists("/dbfs/datasets/2022/group-project-14/cropped-par/" + tile_id + "/"):
os.mkdir("/dbfs/datasets/2022/group-project-14/cropped-par/" + tile_id + "/")
power_plants = tile_id_lookup.get(tile_id)
print("\tPower Plants: ", *power_plants)
for pp_id in power_plants:
# Find Lat, Lon
lon = pp_lats_lons_dict["Longitude"].get(int(pp_id))
lat = pp_lats_lons_dict["Latitude"].get(int(pp_id))
print("SAFE: ", SAFE)
crop_images(
SAFE_path=os.path.join("/datasets/2022/group-project-14/raw/", SAFE),
target_directory="/dbfs/datasets/2022/group-project-14/cropped-par/" + tile_id + "/",
lat=lat, lon=lon, areaSize=0.05, resolution=512, ppid=pp_id,
tile_id=tile_id)
Rdd with SAFE file names. crop_and_move
function is called with map
on this rdd to run processing described above in parallel. In the two functions above everything runs sequentially, but as the number of SAFE directories is what is increasing with more data this is what is most important to run in parallel.
import os
from functools import partial
dbutils.fs.rm("file:///tmp/group-14-cropped-images-par", True)
dbutils.fs.mkdirs("file:///tmp/group-14-cropped-images-par")
p = os.listdir("/dbfs/datasets/2022/group-project-14/raw/")
p = [pp for pp in p if pp.endswith('.SAFE')]
rdd1 = sc.parallelize(p)
fn = partial(crop_and_move, tile_id_lookup=tile_id_lookup, pp_lats_lons_dict=pp_lats_lons_df.to_dict())
rdd1.map(fn).collect()
Example of a cropped image around a power plant in six different bands. Centered around a power plant in Fairbanks North Star, Alaska, of size ~5x5km.
from PIL import Image
import matplotlib.pyplot as plt
def display_image(path, dpi=15):
"""
Description:
Displayes an image
Inputs:
path (str): File path
dpi (int): Your monitor's pixel density
"""
img = Image.open(path)
width, height = img.size
plt.figure(figsize = (width/dpi,height/dpi))
plt.imshow(img, interpolation='nearest', aspect='auto')
paths = ["/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B02_20m_cropped_50711.bmp","/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B03_20m_cropped_50711.bmp","/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B05_20m_cropped_50711.bmp","/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B07_20m_cropped_50711.bmp","/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B11_20m_cropped_50711.bmp","/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B12_20m_cropped_50711.bmp"]
img = Image.open("/dbfs/datasets/2022/group-project-14/cropped/T06WVT/T06WVT_20210417T213521_B02_20m_cropped_50711.bmp")
width, height = img.size
fig, axs = plt.subplots(2, 3, figsize=(width/5,height/7))
for i, p in enumerate(paths):
r = 0 if i < 3 else 1
c = i % 3
img = Image.open(p)
axs[r,c].imshow(img, interpolation='nearest', aspect='auto')
Set up checkpoint locations for training
The next cell creates a directory for saved checkpoint models (for use with horovod later on)
import os
import time
import pyspark.pandas as pd
checkpoint_dir = '/dbfs/datasets/2022/group-project-14/timeline/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
Data preparation & Processing
While the data has already been quite heavily processed, the subsequent cells creates a series of functions that prepares the data for training. Initially, it reads the images and merges the channels/bands (the different wavelengths observed by the Sentinel 2's MSI instrument) and matches them to their corresponding truth-value, in MW, from the EIA-data, matching on month.
The following cell produces a dictionary of the of the net generation in MW, with the key defined as PowerplantID-Date.
#run, initialize the dict so we can get labels
net_gen_data2 = spark.sql("SELECT * FROM net_generation_all_plants_2012_2022 WHERE `AER_Fuel Type Code` = 'COL' ").to_pandas_on_spark()
months = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"]
new_columns = {
"Netgen_{}".format(mnth) : "{:02d}".format(i+1) for i, mnth in enumerate(months)
}
new_columns.update({
"Plant Id" : "ppid"
})
net_gen_data2.rename(columns=new_columns, inplace=True)
net_gen_data2 = net_gen_data2.drop(columns=["Plant Name", "AER_Fuel Type Code"])
net_gen_data2 = net_gen_data2.melt(id_vars=["ppid", "YEAR"], var_name="Month")
net_gen_data2["period"] = net_gen_data2["YEAR"].astype(str) + net_gen_data2["Month"].astype(str)
net_gen_data2["ppid_period"] = net_gen_data2["ppid"].astype(str) + '-' + net_gen_data2["period"].astype(str)
net_gen_data2.head()
gen_lookup_dict = net_gen_data2.set_index('ppid_period').to_dict()['value']
We then define functions to extract the sample metadata (date, plant-id etc.) and paths to the relevant images.
import os
added_keys = set()
file_paths = []
labels = []
dir = '/dbfs/datasets/2022/group-project-14/cropped/'
def get_dp(fn):
'''
fn - filename of a cropped bmlp file
returns: [date (year and month, eg, 202104), power plant id]
'''
tmp = fn[:fn.find('.')].split('_')
return tmp[1].split('T')[0][:-2], tmp[-1]
# goes through all files and saves one filename per image (cropped image of power plant at spedific date)
for tile in os.listdir(dir):
print('tile: ' + tile)
for fn in os.listdir(os.path.join(dir, tile)):
if fn.endswith('.bmp'):
date, plant = get_dp(fn)
key = plant + '-' + date
if key not in added_keys:
added_keys.add(key)
try:
labels.append(float(gen_lookup_dict[key].replace(',', '.')))
file_paths.append(os.path.join(dir, tile, fn))
except KeyError:
print(key + ' missing')
pass
Given below is a histogram of the truth-values used for training (given in MW), to visualize the distribution of the outputs.
plt.figure(figsize=(12, 6), dpi=80)
plt.hist(labels,bins = 40)
plt.xlabel('net generation in MW')
plt.ylabel('Frequency')
Here we define functions to merge the channels, as in this case we are working with a stack of the relevant wavelengths, producing an 8-channel "image".
import numpy as np
import cv2
import os
import re
# image channels we use
channels = ['B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B11', 'B12']
# list of filepaths to one channel per image, returns dataset of shape (n, 128, 128, 8)
def get_merged_image_from_list(fn_list):
'''
fn_list - list of unique filenames containing only one of the channels which will be stacked
returns: stacked dataset of size (n, 128, 128, 8)
'''
ret_data = np.zeros((len(fn_list), 128, 128, 8))
for i, fn in enumerate(fn_list):
ret_data[i, ...] = get_merged_image(fn)
return ret_data
def get_merged_image(orig_fn):
'''
orig_fn - filename of one of the channels which will be stacked
returns: stacked image of size (128, 128, 8)
'''
img = np.zeros((128, 128, 8))
for i, ch in enumerate(channels):
fn = re.sub('B[0-9]{2}', ch, orig_fn)
img[..., i] = cv2.imread(fn, 0)
return img
Data preparation and loading
We then define a dataloader more amenable for use with horovod (and essentially distributing the load of the data with the use of the filepaths), defining both rank (process ID) and size (number of processes). Will create train and test set
def get_dataset(file_paths, labels, rank=0, size=1):
'''
file_paths - list of unique filenames with one file per (to be) stacked image
labels - power plant outputs in the same order as the file_paths
rank - horovod rank
size - horovod size
returns: (x_train, y_train), (x_test, y_test) - x as image dataset of size (n, 128, 128, 8), y as float labels of size (n)
'''
from tensorflow import keras
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(file_paths, labels, test_size=0.1, random_state=42)
x_train = x_train[rank::size]
y_train = y_train[rank::size]
x_test = x_test[rank::size]
y_test = y_test[rank::size]
x_train = get_merged_image_from_list(x_train)
x_test = get_merged_image_from_list(x_test)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
return (x_train, y_train), (x_test, y_test)
Model architecture
The architecture of choice is a, very, standard convolutional neural network, with the following general structure:
def get_model(input_shape):
from tensorflow.keras import models
from tensorflow.keras import layers
model = models.Sequential()
model.add(layers.Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(input_shape[0], input_shape[1], input_shape[2])))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='linear'))
return model
Training in a distributed manner using Horovod.
We then train the model making use of Horovod, which is a distributed deep learning training framework which is compatible with keras and tensorflow (among others)
README: Horovod documentation.
def train_hvd(file_paths, labels, learning_rate=0.001):
# Import tensorflow modules to each worker
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
import tensorflow as tf
from tensorflow import keras
import horovod.tensorflow.keras as hvd
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
# These steps are skipped on a CPU cluster
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
# Call the get_dataset function
(x_train, y_train), (x_test, y_test) = get_dataset(file_paths, labels, hvd.rank(), hvd.size())
x_train = tf.convert_to_tensor(x_train)
x_test = tf.convert_to_tensor(x_test)
y_train = tf.convert_to_tensor(y_train)
y_test = tf.convert_to_tensor(y_test)
model = get_model([128, 128, 8]) #define the model given input-size
# Adjust learning rate based on number of GPUs
optimizer = keras.optimizers.Adadelta(lr=learning_rate * hvd.size())
# Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
#mean squared error as the metric of choice
model.compile(optimizer=optimizer,
loss='mean_squared_error',
metrics=['mean_squared_error'])
callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
if hvd.rank() == 0:
callbacks.append(keras.callbacks.ModelCheckpoint(checkpoint_dir + '/checkpoint-{:02d}.ckpt'.format(epoch), save_weights_only = True))
model.fit(x_train, y_train,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=2,
validation_data=(x_test, y_test))
from sparkdl import HorovodRunner
hr = HorovodRunner(np=2, driver_log_verbosity='all')
hr.run(train_hvd, file_paths=file_paths, labels=labels, learning_rate=0.01)
Prediction
In this notebook, we make predictions on the test-data and visualize it as an overlay over the US.
ls /dbfs/datasets/2022/group-project-14
path | name | size | modificationTime |
---|---|---|---|
dbfs:/dbfs/datasets/2022/group-project-14/cropped/ | cropped/ | 0.0 | 1.670307197074e12 |
import os
import time
import pyspark.pandas as pd
checkpoint_dir = '/dbfs/datasets/2022/group-project-14/timeline/1670283916.4933255'
checkpoints = sorted(list(filter(lambda fp : fp != "", map(lambda fp : ".".join(fp.split(".")[:-1]), os.listdir(checkpoint_dir)))), key=lambda chk : int(chk[11:-5]))
latest_checkpoint = os.path.join(checkpoint_dir, checkpoints[-1])
print('Latest checkpoint: ', latest_checkpoint)
Create a new model which has the same structure as before:
Load the weights from the latest checkpoint:
prediction_model.load_weights(latest_checkpoint)
Following cells reruns the data processing pipeline, providing data for the model predictions, but also power-plant ID's to use as geographic keys.
Visualisation
The ideal application for this system would be some sort of monitoring dashboard for power plants around the world. Below is an example design for such a dashboard, using the predicted generation figures from our model. We use the projection simply for the USA, as this is the only country that we have in our dataset.
Visualised above is the output of the trained CNN, with the dots highlighting the a set of predefined locations of coal power plants, with colour intensity defining the predicted net generation of the power plant.
Conclusions
In this work we use satellite imagery from the Sentinel-2 projects, making use of different wavelengths of visible and infrared spectras to train and predict the net generation output of coal power plants in the United States in a distributed manner. Although in this case, the channels in use are closer to the visible spectra (and low infrared), one could argue that using data from the Sentinel-5 would be much more informative (measurements on atmospheric gases, such as CO2, CO, Methane etc.). Although, the caveat in this case would be that the resolution of the data is highly limiting for the usecase (several kilometers).
Another issue with working with satellite data from the copernicus mission is the difficulty of data acquisition, with access to the data being severely limited. In particular, the tiles provided are huge files and the downloads are rate-limited. Overall this hampered our ability to produce a well-rounded dataset.
There are several key assumptions on which this analysis depends, which we have listed below along with an assessment of their feasibility.
Assumption | Justification | Limitations | Future Mitigation (not in this study) |
---|---|---|---|
Total monthly generation is representative of generation at any one time during that month. | Energy demands do fluctuate, but we assume a lot of these fluctuations are explained by the season. Other extended interruptions in generation, for example maintenance, would be likely to affect generation on timescales close to a month. | At any given time, it could be that the power station is down. Fluctuations in generation could also be happening on shorter timescales than we assumed. | Identify a source of training data with higher time resolution. |
That there is a useable signal in the data generated by the Sentinel-2 satellites | Power plants have a significant effect on their close environment, potentially causing large changes in, among others, thermal profiles of geographical zones | The bandwidths supplied by the Sentinel 2 mission are limited, it is also unsure if they provide sufficient information in and of themselves. The effects on the bands analysed here (mostly UV, visible light and infrared) may dissipate more quickly than effects on the gas column profile around the power plant. | Identify and use features from other satellite measurements. This could include other bands on the EM spectrum frmo the other Sentinel missions or similar missions from other agencies, and their processed outputs in the form of atmospheric gas column concentrations (e.g. methane, carbon monoxide, etc.). |
CONCLUSION and BrIntSuSv
BrIntSuSv := Brainstorming Interaction around:
... hypothetical Algorithms-Machines-Peoples-Planet (AMPsPl) framework for the Scalable Data Science Process
elevator pitches to Mr. M. Wallenberg and the Board to commercially actualise its focus on Sustainable Sverige
This was a pure face-to-face tranmission.
For background and context view introductory lecture and explore introductory module.
Teaching Assistance
-
Thanks to Oskar Åsbrink with partial support from Combient Mix AB at Combient Competence Centre for Data Engineering Sciences, Department of Mathematics, Uppsala University, Uppsala, Sweden.
-
Enjoy a video of young Oskar at the Swedish Open in Rubik's cube
Editors
Here is a list of the editors who have helped improve this book