ScaDaMaLe Course site and book

This code has been migrated to Tensorflow 2 from the original code, but no other changes have been made.

ls 06_LHC
LICENSE README.md data h5 models scripts utils

Get the imports.

import argparse from argparse import Namespace from datetime import datetime import numpy as np import tensorflow as tf import socket import os import sys from sklearn.cluster import KMeans from tqdm import tqdm #Added matplot for accuracy import matplotlib.pyplot as plt np.set_printoptions(edgeitems=1000) from scipy.optimize import linear_sum_assignment BASE_DIR = os.path.join(os.getcwd(), '06_LHC','scripts') #os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, '..', 'models')) sys.path.append(os.path.join(BASE_DIR, '..', 'utils')) import provider import gapnet_classify as MODEL

Get the input parameters. Necessary modifications: - import arguements by a namespace; not by an argument parser - change the data directories appropriately

parserdict = {'max_dim': 3, #help='Dimension of the encoding layer [Default: 3]') 'n_clusters': 3, #help='Number of clusters [Default: 3]') 'gpu': 0, #help='GPU to use [default: GPU 0]') 'model': 'gapnet_clasify', #help='Model name [default: gapnet_classify]') 'log_dir': 'log', #help='Log dir [default: log]') 'num_point': 100, #help='Point Number [default: 100]') 'max_epoch': 100, #help='Epoch to run [default: 200]') 'epochs_pretrain': 10, #help='Epochs to for pretraining [default: 10]') 'batch_size': 1024, #help='Batch Size during training [default: 512]') 'learning_rate': 0.001, #help='Initial learning rate [default: 0.01]') 'momentum': 0.9, #help='Initial momentum [default: 0.9]') 'optimizer': 'adam', #help='adam or momentum [default: adam]') 'decay_step': 500000, #help='Decay step for lr decay [default: 500000]') 'wd': 0.0, #help='Weight Decay [Default: 0.0]') 'decay_rate': 0.5, #help='Decay rate for lr decay [default: 0.5]') 'output_dir': 'train_results', #help='Directory that stores all training logs and trained models') 'data_dir': os.path.join(os.getcwd(),'06_LHC', 'h5'), # '../h5', #help='directory with data [default: hdf5_data]') 'nfeat': 8, #help='Number of features [default: 8]') 'ncat': 20, #help='Number of categories [default: 20]') } FLAGS = Namespace(**parserdict) H5_DIR = FLAGS.data_dir EPOCH_CNT = 0 MAX_PRETRAIN = FLAGS.epochs_pretrain BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point NUM_FEAT = FLAGS.nfeat NUM_CLASSES = FLAGS.ncat MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate # MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model + '.py') LOG_DIR = os.path.join('..', 'logs', FLAGS.log_dir) if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) os.system('cp %s.py %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train_kmeans.py %s' % (LOG_DIR)) # bkp of train procedure BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 LEARNING_RATE_CLIP = 1e-5 HOSTNAME = socket.gethostname() TRAIN_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'train_files_wztop.txt')) TEST_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'test_files_wztop.txt'))

Define the utils functions.

def get_learning_rate(batch): learning_rate = tf.compat.v1.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.compat.v1.train.exponential_decay( BN_INIT_DECAY, batch * BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay

Main training function: - calls the training one epoch - calls the evaluation one epoch - selects the loss and optimizer - save the final model

def train(): with tf.Graph().as_default(): with tf.device('/gpu:' + str(GPU_INDEX)): #ADDED THIS TO RECORD ACCURACY epochs_acc = [] pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, NUM_FEAT) is_training_pl = tf.compat.v1.placeholder(tf.bool, shape=()) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) alpha = tf.compat.v1.placeholder(dtype=tf.float32, shape=()) bn_decay = get_bn_decay(batch) tf.compat.v1.summary.scalar('bn_decay', bn_decay) print("--- Get model and loss") pred, max_pool = MODEL.get_model(pointclouds_pl, is_training=is_training_pl, bn_decay=bn_decay, num_class=NUM_CLASSES, weight_decay=FLAGS.wd, ) class_loss = MODEL.get_focal_loss(pred, labels_pl, NUM_CLASSES) mu = tf.Variable(tf.zeros(shape=(FLAGS.n_clusters, FLAGS.max_dim)), name="mu", trainable=True) # k centroids kmeans_loss, stack_dist = MODEL.get_loss_kmeans(max_pool, mu, FLAGS.max_dim, FLAGS.n_clusters, alpha) full_loss = kmeans_loss + class_loss print("--- Get training operator") # Get training operator learning_rate = get_learning_rate(batch) tf.compat.v1.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.compat.v1.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate) train_op_full = optimizer.minimize(full_loss, global_step=batch) train_op = optimizer.minimize(class_loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.compat.v1.train.Saver() # Create a session config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.compat.v1.Session(config=config) sess.run(tf.compat.v1.global_variables_initializer()) # Add summary writers merged = tf.compat.v1.summary.merge_all() train_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph) # Init variables print("Total number of weights for the model: ", np.sum([np.prod(v.get_shape().as_list()) for v in tf.compat.v1.trainable_variables()])) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'max_pool': max_pool, 'pred': pred, 'alpha': alpha, 'mu': mu, 'stack_dist': stack_dist, 'class_loss': class_loss, 'kmeans_loss': kmeans_loss, 'train_op': train_op, 'train_op_full': train_op_full, 'merged': merged, 'step': batch, 'learning_rate': learning_rate } for epoch in range(MAX_EPOCH): print('\n**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() is_full_training = epoch > MAX_PRETRAIN max_pool = train_one_epoch(sess, ops, train_writer, is_full_training) if epoch == MAX_PRETRAIN: centers = KMeans(n_clusters=FLAGS.n_clusters).fit(np.squeeze(max_pool)) centers = centers.cluster_centers_ sess.run(tf.compat.v1.assign(mu, centers)) #eval_one_epoch(sess, ops, test_writer, is_full_training) #Added this line to record accuracy epoch_acc = eval_one_epoch(sess, ops, test_writer, is_full_training) epochs_acc.append(epoch_acc) if is_full_training: save_path = saver.save(sess, os.path.join(LOG_DIR, 'cluster.ckpt')) else: save_path = saver.save(sess, os.path.join(LOG_DIR, 'model.ckpt')) print("Model saved in file: %s" % save_path) plt.plot(epochs_acc) plt.ylabel('Validation accuracy') plt.xlabel('epochs') plt.show() plt.savefig('single_maching.png')

Training utils.

def get_batch(data, label, start_idx, end_idx): batch_label = label[start_idx:end_idx] batch_data = data[start_idx:end_idx, :, :] return batch_data, batch_label def cluster_acc(y_true, y_pred): """ Calculate clustering accuracy. Require scikit-learn installed """ y_true = y_true.astype(np.int64) D = max(y_pred.max(), y_true.max()) + 1 w = np.zeros((D, D), dtype=np.int64) for i in range(y_pred.size): w[y_pred[i], y_true[i]] += 1 ind = linear_sum_assignment(w.max() - w) ind = np.asarray(ind) ind = np.transpose(ind) return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size

One epoch training and evaluation functions. - loop over all batches in the training (or evaluation) dataloader. - prints training (and evaluation) loss. - switches loss after n=10 epochs. Reason is that the full loss requires an initial guess for the position of the cluster centroids. - prints training (and evaluation) cluster accuracy.

def train_one_epoch(sess, ops, train_writer, is_full_training): """ ops: dict mapping from string to tf ops """ is_training = True train_idxs = np.arange(0, len(TRAIN_FILES)) acc = loss_sum = 0 y_pool = [] for fn in range(len(TRAIN_FILES)): # print('----' + str(fn) + '-----') current_file = os.path.join(H5_DIR, TRAIN_FILES[train_idxs[fn]]) current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file) current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE # num_batches = 5 print(str(datetime.now())) # initialise progress bar process_desc = "TRAINING: Loss {:2.3e}" progress_bar = tqdm(initial=0, leave=True, total=num_batches, desc=process_desc.format(0), position=0) for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx) cur_batch_size = end_idx - start_idx # print(batch_weight) feed_dict = {ops['pointclouds_pl']: batch_data, ops['labels_pl']: batch_label, ops['is_training_pl']: is_training, ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),} if is_full_training: summary, step, _, loss_val, dist, lr = sess.run([ops['merged'], ops['step'], ops['train_op_full'], ops['kmeans_loss'], ops['stack_dist'], ops['learning_rate']], feed_dict=feed_dict) batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]]) cluster_assign = np.zeros((cur_batch_size), dtype=int) for i in range(cur_batch_size): index_closest_cluster = np.argmin(dist[:, i]) cluster_assign[i] = index_closest_cluster acc += cluster_acc(batch_cluster, cluster_assign) else: summary, step, _, loss_val, max_pool, lr = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['class_loss'], ops['max_pool'], ops['learning_rate']], feed_dict=feed_dict) if len(y_pool) == 0: y_pool = np.squeeze(max_pool) else: y_pool = np.concatenate((y_pool, np.squeeze(max_pool)), axis=0) loss_sum += np.mean(loss_val) train_writer.add_summary(summary, step) # Update train bar process_desc.format(loss_val) progress_bar.update(1) progress_bar.close() print('learning rate: %f' % (lr)) print('train mean loss: %f' % (loss_sum / float(num_batches))) print('train clustering accuracy: %f' % (acc / float(num_batches))) return y_pool def eval_one_epoch(sess, ops, test_writer, is_full_training): """ ops: dict mapping from string to tf ops """ global EPOCH_CNT is_training = False test_idxs = np.arange(0, len(TEST_FILES)) # Test on all data: last batch might be smaller than BATCH_SIZE loss_sum = acc = 0 acc_kmeans = 0 for fn in range(len(TEST_FILES)): # print('----' + str(fn) + '-----') current_file = os.path.join(H5_DIR, TEST_FILES[test_idxs[fn]]) current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file) current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // BATCH_SIZE process_desc = "VALIDATION: Loss {:2.3e}" progress_bar = tqdm(initial=0, leave=True, total=num_batches, desc=process_desc.format(0), position=0) # num_batches = 5 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx) cur_batch_size = end_idx - start_idx feed_dict = {ops['pointclouds_pl']: batch_data, ops['is_training_pl']: is_training, ops['labels_pl']: batch_label, ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),} if is_full_training: summary, step, loss_val, max_pool, dist, mu = sess.run([ops['merged'], ops['step'], ops['kmeans_loss'], ops['max_pool'], ops['stack_dist'], ops['mu']], feed_dict=feed_dict) if batch_idx == 0: print("mu: {}".format(mu)) batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]]) cluster_assign = np.zeros((cur_batch_size), dtype=int) for i in range(cur_batch_size): index_closest_cluster = np.argmin(dist[:, i]) cluster_assign[i] = index_closest_cluster acc += cluster_acc(batch_cluster, cluster_assign) else: summary, step, loss_val = sess.run([ops['merged'], ops['step'], ops['class_loss']], feed_dict=feed_dict) test_writer.add_summary(summary, step) loss_sum += np.mean(loss_val) # Update train bar process_desc.format(loss_val) progress_bar.update(1) progress_bar.close() total_loss = loss_sum * 1.0 / float(num_batches) print('test mean loss: %f' % (total_loss)) print('testing clustering accuracy: %f' % (acc / float(num_batches))) #Added this to save accuracy return acc/float(num_batches) EPOCH_CNT += 1

run the training

train()

Result: - We see that the learning on a single machine works. - One epoch takes about 30 minutes - Resulting accuracy lies at about 0.55