Edited by Suparerk Angkawattanawit and Raazesh Sainudiin.
Peer-reviewed by project authors according to these instructions.
Introduction
A total of 22 PhD Student Groups did Projects of their choosing in Scalable Data Science and Distributed Machine Learning, a mandatory course of The WASP Graduate School AI-track in 2020-2021. See ScaDaMaLe Course Pathways to appreciate the pre-requisite modules 000_1 through 000_9 for the union of all 23 projects, including a voluntary one from Masters thesis students.
Best Group Project: The Group Project named MixUp and Generalization by by Olof Zetterqvist, Jimmy Aronsson and Fredrik Hellström of Chalmers University won the Best Group-Project Prize on the basis of peer-review. The prize was donated kindly by the Databricks University Alliance under Rob Reed.
Table of Contents
- The Two Cultures by Daniel Ahlsén, Martin Andersson, Niklas Gunnarsson and Jonathan Styrud.
- Exploring the GQA Scene Graph Dataset Structure and Properties by Adam Dahlgren, Pavlo Melnyk and Emanuel Sanchez Aimar.
- Signed Triads in Social Media by Guangyi Zhang.
- Distributed Linear Algebra by Måns Williamson and Jonatan Vallin.
- Wikipedia analysis using Latent Dirichlet Allocation (LDA) by Axel Berg, Johan Grönqvist and Jens Gulin.
- Unsupervised clustering of particle physics data with distributed training by Karl Bengtsson Bernander, Colin Desmarais, Daniel Gedon and Olga Sunneborn Gudnadottir.
- Motif Finding by Adam Lindhe, Petter Restadh and Francesca Tombari.
- Distributed Ensemble by Amanda Olmin, Amirhossein Ahmadian and Jakob Lindqvist.
- Topic Modeling with SARS-Cov-2 Genome by Hugo Werner and Gizem Çaylak.
- Twitter Streaming Using Geolocation and Emoji Based Sentiment Analysis by Georg Bökman and Rasmus Kjær Høier.
- Anomaly Detection with Iterative Quantile Estimation and T-digest by Alexander Karlsson, Alvin Jin and George Osipov.
- Analysis and Prediction of COVID-19 Data by Chi Zhang, Shuangshuang Chen and Magnus Tarle.
- Genomics Analysis with Glow and Spark by Karin Stacke and Milda Pocoviciute.
- Distributed Combinatorial Bandits by Niklas Åkerblom, Jonas Nordlöf and Emilio Jorge.
- Reinforcement Learning for Intraday Trading by Fabian Sinzinger, Karl Bäckström and Rita Laezza.
- Intrusion Detection by MohamedReza Faridghasemnia, Javad Forough, Quantao Yang and Arman Rahbar.
- Density Estimation via Voronoi Diagrams in High Dimensions by Robert Gieselmann and Vladislav Polianskii.
- Recommender System by Ines De Miranda De Matos Lourenço, Yassir Jedra and Filippo Vannella.
- Fundamental Matrix by Linn Öström, Patrik Persson, Johan Oxenstierna and Alexander Dürr.
- MixUp and Generalization by Olof Zetterqvist, Jimmy Aronsson and Fredrik Hellström.
- Graph Spectral Analysis by Ciwan Ceylan and Hanna Hultin.
- SWAP With DDP by Christos Matsoukas, Emir Konuk, Johan Fredin Haslum and Miquel Marti.
- Distributed Deep Learning by William Anzén and Christian von Koch.
Link to video presentation: https://www.youtube.com/watch?v=NzxBRxheJ9s&feature=youtu.be
- Introduction
This is the final project in the Scalable Data Science and Distributed Machine Learning (6 credits) course. Our aim is to compare and distinguish forum threads from two of the most popular forum sites in Sweden; Familjeliv and Flashback. For this we will use both logisitic regression models and topic modelling. We will compare two different feature approaches using logistic regression; one using word occurencies as our input features and one using more advanced word2vec features. For topic modelling we will use an LDA model and observe the most significant words in each forum.
Project members: - Daniel Ahlsén - Martin Andersson - Niklas Gunnarsson - Jonathan Styrud
- Download data
For this project we use data resources from the swedish research unit Språkbanken (https://spraakbanken.gu.se/)
var root = "dbfs:/datasets/student-project-01"
try{
dbutils.fs.ls(root)
} catch {
case e: java.io.FileNotFoundException => dbutils.fs.mkdirs(root)
}
display(dbutils.fs.ls(root))
var fl_root = "dbfs:/datasets/student-project-01/familjeliv/"
try{
dbutils.fs.ls(fl_root)
} catch {
case e: java.io.FileNotFoundException => dbutils.fs.mkdirs(fl_root)
}
var fb_root = "dbfs:/datasets/student-project-01/flashback/"
try{
dbutils.fs.ls(fb_root)
} catch {
case e: java.io.FileNotFoundException => dbutils.fs.mkdirs(fb_root)
}
display(dbutils.fs.ls(root))
path | name | size |
---|---|---|
dbfs:/datasets/student-project-01/familjeliv/ | familjeliv/ | 0.0 |
dbfs:/datasets/student-project-01/flashback/ | flashback/ | 0.0 |
dbfs:/datasets/student-project-01/stoppord.csv | stoppord.csv | 1936.0 |
dbfs:/datasets/student-project-01/stopwords2.csv | stopwords2.csv | 145866.0 |
dbfs:/datasets/student-project-01/word2vec_model_sex/ | word2vec_model_sex/ | 0.0 |
//[ ] familjeliv-adoption.xml.bz2 2017-07-23 17:39 195M
//[ ] familjeliv-allmanna-ekonomi.xml.bz2 2017-09-18 13:50 838M
//[ ] familjeliv-allmanna-familjeliv.xml.bz2 2017-09-19 15:49 1.1G
//[ ] familjeliv-allmanna-fritid.xml.bz2 2017-09-19 17:30 588M
//[ ] familjeliv-allmanna-husdjur.xml.bz2 2017-09-20 15:31 846M
//[ ] familjeliv-allmanna-hushem.xml.bz2 2017-09-21 12:27 1.3G
//[ ] familjeliv-allmanna-kropp.xml.bz2 2017-09-21 18:41 2.3G
//[ ] familjeliv-allmanna-noje.xml.bz2 2017-09-21 19:57 1.6G
//[ ] familjeliv-allmanna-samhalle.xml.bz2 2017-09-22 03:52 5.0G
//[ ] familjeliv-allmanna-sandladan.xml.bz2 2017-09-22 10:43 778M
//[ ] familjeliv-anglarum.xml.bz2 2017-07-23 18:10 336M
//[ ] familjeliv-expert.xml.bz2 2017-07-20 11:32 142M
//[ ] familjeliv-foralder.xml.bz2 2017-08-04 19:16 10G
//[ ] familjeliv-gravid.xml.bz2 2017-07-15 04:50 7.5G
//[ ] familjeliv-kansliga.xml.bz2 2017-09-05 18:13 14G
//[ ] familjeliv-medlem-allmanna.xml.bz2 2017-07-24 03:47 4.4G
//[ ] familjeliv-medlem-foraldrar.xml.bz2 2017-07-20 22:11 4.5G
//[ ] familjeliv-medlem-planerarbarn.xml.bz2 2017-07-18 15:08 1.9G
//[ ] familjeliv-medlem-vantarbarn.xml.bz2 2017-07-17 08:04 4.5G
//[ ] familjeliv-pappagrupp.xml.bz2 2017-06-28 16:18 38M
//[ ] familjeliv-planerarbarn.xml.bz2 2017-08-28 20:55 2.8G
//[ ] familjeliv-sexsamlevnad.xml.bz2 2017-08-25 16:39 2.3G
//[ ] familjeliv-svartattfabarn.xml.bz2 2017-07-03 07:04 2.6G
//[ ] flashback-dator.xml.bz2 2017-04-06 09:08 4.5G
//[ ] flashback-droger.xml.bz2 2017-04-06 08:59 3.5G
//[ ] flashback-ekonomi.xml.bz2 2017-04-06 10:53 1.2G
//[ ] flashback-flashback.xml.bz2 2017-04-05 18:16 429M
//[ ] flashback-fordon.xml.bz2 2017-04-06 12:00 1.0G
//[ ] flashback-hem.xml.bz2 2017-04-07 03:10 4.6G
//[ ] flashback-kultur.xml.bz2 2017-04-06 22:51 5.5G
//[ ] flashback-livsstil.xml.bz2 2017-04-07 00:11 1.7G
//[ ] flashback-mat.xml.bz2 2017-04-07 08:52 1.0G
//[ ] flashback-ovrigt.xml.bz2 2017-04-07 18:54 1.9G
//[ ] flashback-politik.xml.bz2 2017-04-14 17:06 9.0G
//[ ] flashback-resor.xml.bz2 2017-04-09 15:52 566M
//[ ] flashback-samhalle.xml.bz2 2017-04-12 20:36 8.3G
//[ ] flashback-sex.xml.bz2 2017-04-11 20:32 1.3G
//[ ] flashback-sport.xml.bz2 2017-04-12 22:10 3.3G
//[ ] flashback-vetenskap.xml.bz2 2017-04-14 20:34 5.8G
import sys.process._
val fl_data = Array("familjeliv-allmanna-ekonomi.xml",
"familjeliv-sexsamlevnad.xml")
val fb_data = Array("flashback-ekonomi.xml",
"flashback-sex.xml")
val url = "http://spraakbanken.gu.se/lb/resurser/meningsmangder/"
val tmp_folder_fl = "/tmp/familjeliv/"
val tmp_folder_fb = "/tmp/flashback/"
s"rm -f -r ${tmp_folder_fl}" .!! // Remove tmp folder if exists
s"rm -f -r ${tmp_folder_fb}" .!!
for (name <- fl_data){
try{
dbutils.fs.ls(s"${fl_root}${name}")
println(s"${name} already exists!")
}
catch{
case e: java.io.FileNotFoundException => {
println(s"Downloading ${name} ...")
s"wget -P ${tmp_folder_fl} ${url}${name}.bz2" .!!
println("Unzipping ...")
s"bzip2 -d ${tmp_folder_fl}${name}.bz2" .!!
println("Moving ... ")
val localpath=s"file:${tmp_folder_fl}${name}"
dbutils.fs.mv(localpath, fl_root)
println(s"Done ${name}!")
}
}
}
s"rm -f -r ${tmp_folder_fl}" .!!
for (name <- fb_data){
try{
dbutils.fs.ls(s"${fb_root}${name}")
println(s"${name} already exists!")
}
catch{
case e: java.io.FileNotFoundException => {
println(s"Downloading ${name} ...")
s"wget -P ${tmp_folder_fb} ${url}${name}.bz2" .!!
println("Unzipping ...")
s"bzip2 -d ${tmp_folder_fb}${name}.bz2" .!!
println("Moving ... ")
val localpath=s"file:${tmp_folder_fb}${name}"
dbutils.fs.mv(localpath, fb_root)
println(s"Done ${name}!")
}
}
}
s"rm -f -r ${tmp_folder_fb}" .!!
familjeliv-allmanna-ekonomi.xml already exists!
familjeliv-sexsamlevnad.xml already exists!
flashback-ekonomi.xml already exists!
flashback-sex.xml already exists!
import sys.process._
fl_data: Array[String] = Array(familjeliv-allmanna-ekonomi.xml, familjeliv-sexsamlevnad.xml)
fb_data: Array[String] = Array(flashback-ekonomi.xml, flashback-sex.xml)
url: String = http://spraakbanken.gu.se/lb/resurser/meningsmangder/
tmp_folder_fl: String = /tmp/familjeliv/
tmp_folder_fb: String = /tmp/flashback/
res14: String = ""
- Methods to load data
Preprocessing and loading the relevant data
Each forum comes as an XML-file with the structure given below:
// Data comes in XML-files with the following structure.
/*
<corpus id="familjeliv-adoption">
<forum id="13-242" title="Adoption > Intresserad" url="http://www.familjeliv.
se/forum/13/242">
<thread id="34277335" title="Tips för att välja land" postcount="25" lastpost="2
008-07-08 17:55:14" url="http://www.familjeliv.se/forum/thread/34277335-tips-for
-att-valja-land">
<text datefrom="20080707" dateto="20080707" timefrom="220854" timeto="220854" lix="30.55" ovix="60.74" nk="0.51" id="34284994" username="Miss TN" date="2008-07-07 22:08:54" url="http://www.familjeliv.se/forum/thread/34277335-tips-for-att-valja-land/2#anchor-m16">
<sentence id="bacc55562-baca83a75" _geocontext="|">
<w pos="VB" msd="VB.PRS.AKT" lemma="|känna|" lex="|känna..vb.2|känna..vb.1|" sense="|känna..1:0.522|känna..2:0.313|känna..4:0.158|känna..3:0.006|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="01" dephead="07" deprel="AA">Känner</w>
<w pos="PN" msd="PN.UTR.SIN.DEF.SUB" lemma="|ni|" lex="|ni..pn.1|" sense="|ni..1:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="02" dephead="01" deprel="OO">ni</w>
<w pos="PP" msd="PP" lemma="|för|" lex="|för..pp.1|" sense="|för..1:-1.000|för..5:-1.000|för..6:-1.000|för..7:-1.000|för..9:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="03" dephead="01" deprel="OA">för</w>
<w pos="DT" msd="DT.NEU.SIN.IND" lemma="|en|" lex="|en..al.1|" sense="|den..1:-1.000|en..2:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="04" dephead="06" deprel="DT">ett</w>
<w pos="JJ" msd="JJ.POS.NEU.SIN.IND.NOM" lemma="|låg|" lex="|låg..av.1|" sense="|låg..1:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="05" dephead="06" deprel="AT">lågt</w>
<w pos="NN" msd="NN.NEU.SIN.IND.NOM" lemma="|medgivande|" lex="|medgivande..nn.1|" sense="|medgivande..1:0.595|medgivande..2:0.405|" prefix="|medge..vb.1|mede..nn.1|" suffix="|givande..nn.1|ande..nn.1|" compwf="|medgiv+ande|med+givande|med+giv+ande|" complemgram="|medge..vb.1+ande..nn.1:4.632e-17|mede..nn.1+givande..nn.1:6.075e-27|mede..nn.1+giv..nn.1+ande..nn.1:5.387e-27|mede..nn.1+ge..vb.1+ande..nn.1:1.257e-29|" ref="06" dephead="03" deprel="PA">medgivande</w>
<w pos="VB" msd="VB.PRS.AKT" lemma="|skola|" lex="|skola..vb.2|" sense="|skola..4:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="07" deprel="ROOT">ska</w>
<w pos="PN" msd="PN.UTR.PLU.DEF.SUB" lemma="|ni|" lex="|ni..pn.1|" sense="|ni..1:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="08" dephead="07" deprel="SS">ni</w>
<w pos="AB" msd="AB" lemma="|verkligen|" lex="|verkligen..ab.1|" sense="|verkligen..1:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="09" dephead="07" deprel="MA">verkligen</w>
<w pos="VB" msd="VB.INF.AKT" lemma="|sträva|" lex="|sträva..vb.1|" sense="|sträva..1:-1.000|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="10" dephead="07" deprel="VG">sträva</w>
.
.
.
</sentence>
</text>
</thread>
<thread id="42755312" title="Om vi planerar ett barn om sju år, när ska vi dra igång adoptionsprocessen?" postcount="3" lastpost="2009-04-01 18:39:55" url="http://www.familjeliv.se/forum/thread/42755312-om-vi-planerar-ett-barn-om-sju-ar-nar-ska-vi-dra-igang-adoptionsprocessen">
<text datefrom="20090331" dateto="20090331" timefrom="201724" timeto="201724" lix="27.48" ovix="50.60" nk="0.37" id="42755312" username="alvaereva" date="2009-03-31 20:17:24" url="http://www.familjeliv.se/forum/thread/42755312-om-vi-planerar-ett-barn-om-sju-ar-nar-ska-vi-dra-igang-adoptionsprocessen/1">
<sentence id="bac2ec05f-bace4e647" _geocontext="|">
<w pos="KN" msd="KN" lemma="|" lex="|" sense="|" prefix="|" suffix="|" compwf="|" complemgram="|" ref="01" deprel="ROOT">Som</w>
.
.
.
*/
import org.apache.spark.sql.functions.{col,concat_ws, udf, flatten, explode, collect_list, collect_set, lit}
import org.apache.spark.sql.types.{ ArrayType, StructType, StructField, StringType, IntegerType }
import com.databricks.spark.xml._ // Add the DataFrame.read.xml() method
import org.apache.spark.sql.functions._
def read_xml(file_name: String): org.apache.spark.sql.DataFrame = {
val sentence_schema = StructType(Array(
StructField("w", ArrayType(StringType, true), nullable=true)
))
val text_schema = StructType(Array(
StructField("sentence", ArrayType(sentence_schema), nullable=false)
))
val thread_schema = StructType(Array(
StructField("_id", StringType, nullable = false),
StructField("_title", StringType, nullable = false),
StructField("_url", StringType, nullable = false),
StructField("text", text_schema, nullable=false)
))
val forum_schema = StructType(Array(
StructField("_id", StringType, nullable = false),
StructField("_title", StringType, nullable = false),
StructField("_url", StringType, nullable = false),
StructField("thread", ArrayType(thread_schema), nullable=false)
))
val corpus_schema = StructType(Array(
StructField("_id", StringType, nullable = false),
StructField("forum", forum_schema, nullable=false)
))
spark.read
.option("rowTag", "forum")
.schema(forum_schema)
.xml(file_name)
}
def get_dataset(file_name: String) : org.apache.spark.sql.DataFrame = {
val xml_df = read_xml(file_name)
val ds = xml_df.withColumn("thread", explode($"thread"))
val splitted_name = file_name.split("/")
val forum = splitted_name(splitted_name.size-2)
val corpus = splitted_name(splitted_name.size-1)
val value = udf((arr: Seq[String]) => arr.mkString(","))
ds.select(col("_id") as "forum_id",
col("_title") as "forum_title",
col("thread._id") as "thread_id",
col("thread._title") as "thread_title",
flatten(col("thread.text.sentence.w")) as "w")
.withColumn("w", explode($"w"))
.groupBy("thread_id")
.agg(first("thread_title") as("thread_title"),
collect_list("w") as "w",
first("forum_id") as "forum_id",
first("forum_title") as "forum_title")
.withColumn("w", concat_ws(",",col("w")))
.withColumn("platform", lit(forum))
.withColumn("corpus_id", lit(corpus))
}
import org.apache.spark.sql.functions.{col, concat_ws, udf, flatten, explode, collect_list, collect_set, lit}
import org.apache.spark.sql.types.{ArrayType, StructType, StructField, StringType, IntegerType}
import com.databricks.spark.xml._
import org.apache.spark.sql.functions._
read_xml: (file_name: String)org.apache.spark.sql.DataFrame
get_dataset: (file_name: String)org.apache.spark.sql.DataFrame
def save_df(df: org.apache.spark.sql.DataFrame, filePath:String){
df.write.format("parquet").save(filePath)
}
def load_df(filePath: String): org.apache.spark.sql.DataFrame = {
spark.read.format("parquet").load(filePath)
}
def no_forums(df: org.apache.spark.sql.DataFrame): Long = {
val forums = df.select("forum_title").distinct()
forums.show(false)
forums.count()
}
save_df: (df: org.apache.spark.sql.DataFrame, filePath: String)Unit
load_df: (filePath: String)org.apache.spark.sql.DataFrame
no_forums: (df: org.apache.spark.sql.DataFrame)Long
- Save preprocessed data
var fl_root = "dbfs:/datasets/student-project-01/familjeliv/"
var fb_root = "dbfs:/datasets/student-project-01/flashback/"
val fl_data = Array("familjeliv-allmanna-ekonomi",
"familjeliv-sexsamlevnad")
val fb_data = Array("flashback-ekonomi",
"flashback-sex")
for (name <- fl_data){
try{
println(s"${fb_root}${name}_df")
dbutils.fs.ls(s"${fl_root}${name}_df")
println(s"${name}_df already exists!")
}
catch{
case e: java.io.FileNotFoundException => {
val file_name = s"${fl_root}${name}.xml"
val df = get_dataset(file_name)
val file_path = s"${fl_root}${name}_df"
save_df(df, file_path)
}
}
}
for (name <- fb_data){
try{
println(s"${fb_root}${name}_df")
dbutils.fs.ls(s"${fb_root}${name}_df")
println(s"${name}_df already exists!")
}
catch{
case e: java.io.FileNotFoundException => {
val file_name = s"${fb_root}${name}.xml"
val df = get_dataset(file_name)
val file_path = s"${fb_root}${name}_df"
save_df(df, file_path)
}
}
}
dbfs:/datasets/student-project-01/flashback/familjeliv-allmanna-ekonomi_df
familjeliv-allmanna-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/familjeliv-sexsamlevnad_df
familjeliv-sexsamlevnad_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df
flashback-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-sex_df
flashback-sex_df already exists!
fl_root: String = dbfs:/datasets/student-project-01/familjeliv/
fb_root: String = dbfs:/datasets/student-project-01/flashback/
fl_data: Array[String] = Array(familjeliv-allmanna-ekonomi, familjeliv-sexsamlevnad)
fb_data: Array[String] = Array(flashback-ekonomi, flashback-sex)
/scalable-data-science/000_0-sds-3-x-projects/student-project-01_group-TheTwoCultures/01_load_data
import org.apache.spark.sql.functions.{col, concat_ws, udf, flatten, explode, collect_list, collect_set, lit}
import org.apache.spark.sql.types.{ArrayType, StructType, StructField, StringType, IntegerType}
import com.databricks.spark.xml._
import org.apache.spark.sql.functions._
read_xml: (file_name: String)org.apache.spark.sql.DataFrame
get_dataset: (file_name: String)org.apache.spark.sql.DataFrame
save_df: (df: org.apache.spark.sql.DataFrame, filePath: String)Unit
load_df: (filePath: String)org.apache.spark.sql.DataFrame
no_forums: (df: org.apache.spark.sql.DataFrame)Long
dbfs:/datasets/student-project-01/flashback/familjeliv-allmanna-ekonomi_df
familjeliv-allmanna-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/familjeliv-sexsamlevnad_df
familjeliv-sexsamlevnad_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df
flashback-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-sex_df
flashback-sex_df already exists!
fl_root: String = dbfs:/datasets/student-project-01/familjeliv/
fb_root: String = dbfs:/datasets/student-project-01/flashback/
fl_data: Array[String] = Array(familjeliv-allmanna-ekonomi, familjeliv-sexsamlevnad)
fb_data: Array[String] = Array(flashback-ekonomi, flashback-sex)
var file_name = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-allmanna-ekonomi.xml"
var xml_df = read_xml(file_name).cache()
var df = get_dataset(file_name).cache()
file_name: String = dbfs:/datasets/student-project-01/familjeliv/familjeliv-allmanna-ekonomi.xml
xml_df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [_id: string, _title: string ... 2 more fields]
df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 5 more fields]
xml_df.printSchema()
root
|-- _id: string (nullable = false)
|-- _title: string (nullable = false)
|-- _url: string (nullable = false)
|-- thread: array (nullable = false)
| |-- element: struct (containsNull = true)
| | |-- _id: string (nullable = false)
| | |-- _title: string (nullable = false)
| | |-- _url: string (nullable = false)
| | |-- text: struct (nullable = false)
| | | |-- sentence: array (nullable = false)
| | | | |-- element: struct (containsNull = true)
| | | | | |-- w: array (nullable = true)
| | | | | | |-- element: string (containsNull = true)
xml_df.show(10)
+------+--------------------+--------------------+--------------------+
| _id| _title| _url| thread|
+------+--------------------+--------------------+--------------------+
|19-290|Allmänna rubriker...|http://www.familj...|[[70148929, Frivi...|
|19-290|Allmänna rubriker...|http://www.familj...|[[58302374, Missh...|
|19-290|Allmänna rubriker...|http://www.familj...|[[36330819, Är så...|
|19-290|Allmänna rubriker...|http://www.familj...|[[75852809, Hur k...|
|19-290|Allmänna rubriker...|http://www.familj...|[[42304381, Hej a...|
|19-290|Allmänna rubriker...|http://www.familj...|[[41294375, när p...|
|19-295|Allmänna rubriker...|http://www.familj...|[[47653437, Har v...|
|19-295|Allmänna rubriker...|http://www.familj...|[[75266317, Anmäl...|
|19-295|Allmänna rubriker...|http://www.familj...|[[76559817, Fel a...|
|19-295|Allmänna rubriker...|http://www.familj...|[[62028128, Vad g...|
+------+--------------------+--------------------+--------------------+
only showing top 10 rows
df.printSchema()
root
|-- thread_id: string (nullable = true)
|-- thread_title: string (nullable = true)
|-- w: string (nullable = false)
|-- forum_id: string (nullable = true)
|-- forum_title: string (nullable = true)
|-- platform: string (nullable = false)
|-- corpus_id: string (nullable = false)
display(df)
//Imports
import org.apache.spark.ml.feature.StopWordsRemover
import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.CountVectorizer
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.StopWordsRemover
import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.CountVectorizer
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
- Load the data
/scalable-data-science/000_0-sds-3-x-projects/student-project-01_group-TheTwoCultures/01_load_data
import org.apache.spark.sql.functions.{col, concat_ws, udf, flatten, explode, collect_list, collect_set, lit}
import org.apache.spark.sql.types.{ArrayType, StructType, StructField, StringType, IntegerType}
import com.databricks.spark.xml._
import org.apache.spark.sql.functions._
read_xml: (file_name: String)org.apache.spark.sql.DataFrame
get_dataset: (file_name: String)org.apache.spark.sql.DataFrame
save_df: (df: org.apache.spark.sql.DataFrame, filePath: String)Unit
load_df: (filePath: String)org.apache.spark.sql.DataFrame
no_forums: (df: org.apache.spark.sql.DataFrame)Long
dbfs:/datasets/student-project-01/flashback/familjeliv-allmanna-ekonomi_df
familjeliv-allmanna-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/familjeliv-sexsamlevnad_df
familjeliv-sexsamlevnad_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df
flashback-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-sex_df
flashback-sex_df already exists!
fl_root: String = dbfs:/datasets/student-project-01/familjeliv/
fb_root: String = dbfs:/datasets/student-project-01/flashback/
fl_data: Array[String] = Array(familjeliv-allmanna-ekonomi, familjeliv-sexsamlevnad)
fb_data: Array[String] = Array(flashback-ekonomi, flashback-sex)
//Load dataframes
val file_path_familjeliv = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad_df"
val file_path_flashback = "dbfs:/datasets/student-project-01/flashback/flashback-sex_df"
val df_familjeliv = load_df(file_path_familjeliv)
val df_flashback = load_df(file_path_flashback)
file_path_familjeliv: String = dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad_df
file_path_flashback: String = dbfs:/datasets/student-project-01/flashback/flashback-sex_df
df_familjeliv: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
df_flashback: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
//Extract the text
val df_text_flashback = df_flashback.select("w")
val df_text_familjeliv = df_familjeliv.select("w")
df_text_flashback: org.apache.spark.sql.DataFrame = [w: string]
df_text_familjeliv: org.apache.spark.sql.DataFrame = [w: string]
- Add labels
//Add label columns and make sure that we have exactly the same amount of data from both forums
val df_text_flashback_c = df_text_flashback.withColumn("c", lit(0))
val df_text_familjeliv_c = df_text_familjeliv.orderBy(rand()).limit(df_text_flashback_c.count().toInt).withColumn("c", lit(1))
val df_text_full = df_text_flashback_c.union(df_text_familjeliv_c)
//Check the counts
println(df_text_flashback_c.count())
println(df_text_familjeliv_c.count())
println(df_text_full.count())
56621
56621
113242
df_text_flashback_c: org.apache.spark.sql.DataFrame = [w: string, c: int]
df_text_familjeliv_c: org.apache.spark.sql.DataFrame = [w: string, c: int]
df_text_full: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [w: string, c: int]
- Extract single words
val tokenizer = new RegexTokenizer()
.setPattern("(?U),") // break by whitespace
.setMinTokenLength(5) // Filter away tokens with length < 5
.setInputCol("w") // name of the input column
.setOutputCol("text") // name of the output column
val tokenized_df = tokenizer.transform(df_text_full).select("c", "text")
tokenized_df.show(3, false)
- Remove stopwords
//Stopwordsremover (similar to lda notebook)
val stoppord = sc.textFile("dbfs:/datasets/student-project-01/stoppord.csv").collect()
val stopwordList = Array("bara","lite","finns","vill","samt","inga","även","finns","ganska","också","igen","just","that","with","http","jpg", "kanske","tycker","gillar","bra","000","måste","tjej","tjejer","tjejen","tjejerna","kvinna","kvinnor","kille","killar","killen","män","rätt","män","com","and","html","många","aldrig","www","mpg","avi","wmv","riktigt","känner","väldigt","font","size","mms","2008","2009", "flashback", "familjeliv").union(stoppord).union(StopWordsRemover.loadDefaultStopWords("swedish"))
val remover = new StopWordsRemover()
.setStopWords(stopwordList)
.setInputCol("text")
.setOutputCol("filtered")
//Run the stopwordsremover
val removed_df = remover.transform(tokenized_df).select("c", "filtered")
removed_df: org.apache.spark.sql.DataFrame = [c: int, filtered: array<string>]
- Count words and create vocabulary vector
//Unlimited size vocabulary just to see how much there is
val vectorizerall = new CountVectorizer()
.setInputCol("filtered")
.setOutputCol("features")
.setMinDF(5) // Only count words that occur in at least 5 threadss
.fit(removed_df) // returns CountVectorizerModel
//This is the one we use, limit size of vocabulary
val vectorizer = new CountVectorizer()
.setInputCol("filtered")
.setOutputCol("features")
.setVocabSize(1000) // Size of dictonary
.setMinDF(5) // Only count words that occur in at least 5 threadss
.fit(removed_df) // returns CountVectorizerModel
vectorizerall: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVec_e9a01f8ad0fe, vocabularySize=129204
vectorizer: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVec_9d51ff227f19, vocabularySize=1000
// Let's take a look at the vocabulary
vectorizer.vocabulary
// Count the word frequencies
val tf = vectorizer.transform(removed_df.select("c", "filtered")).select("c", "features").cache()
//Print the feature vector to show what it looks like
tf.take(1).foreach(println)
[0,(1000,[0,4,5,6,12,16,33,34,48,53,56,60,64,66,68,73,83,84,91,100,101,105,107,119,123,125,127,141,143,163,171,201,205,210,212,261,273,302,325,338,341,348,361,367,383,414,424,453,454,491,571,621,632,635,667,684,693,701,829,849,933,981],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,2.0,2.0,1.0,1.0,3.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0])]
tf: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [c: int, features: vector]
- Split data into training and test data
//Train test split
val random_order = tf.orderBy(rand())
val splits = random_order.randomSplit(Array(0.8, 0.2), seed = 1337)
val training = splits(0)
val test = splits(1)
println(training.count())
println(test.count())
90818
22424
random_order: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [c: int, features: vector]
splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = Array([c: int, features: vector], [c: int, features: vector])
training: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [c: int, features: vector]
test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [c: int, features: vector]
- Logistic Regression model
\[P(y = 1) = \frac{1}{1+exp(-\beta X^T)}\]
\[ X = [1,x_1, \dots, x_m], \quad \beta = [\beta_0, \beta_1, ..., \beta_m] \]
where \(x_i\) is occurrence for word \(i\), \(m\) is 1000.
//Logistic regression
val lr = new LogisticRegression()
.setLabelCol("c")
.setMaxIter(100) //Run for 100 iterations (not necessary but let's stay on safe side)
.setRegParam(0.0001) //Just a tiny bit of regularization to avoid overfitting
.setElasticNetParam(0.5) // 50-50 between L1 and L2 loss
// Fit the model
val lrModel = lr.fit(training)
// Print the coefficients and intercept for logistic regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// Check the training progress
lrModel.binarySummary.objectiveHistory.foreach(loss => println(loss))
//Ugly code to lookup maximum and minimum values
var maxarray = Array.ofDim[Double](5,2)
def findmax(idx: Int, value: Double) = {
if (value > maxarray(4)(1)){
maxarray(4)(0) = idx
maxarray(4)(1) = value
maxarray = maxarray.sortBy(- _(1))
}
}
var minarray = Array.ofDim[Double](5,2)
def findmin(idx: Int, value: Double) = {
if (value < minarray(4)(1)){
minarray(4)(0) = idx
minarray(4)(1) = value
minarray = minarray.sortBy(_(1))
}
}
maxarray: Array[Array[Double]] = Array(Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0))
findmax: (idx: Int, value: Double)Unit
minarray: Array[Array[Double]] = Array(Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0), Array(0.0, 0.0))
findmin: (idx: Int, value: Double)Unit
//Let's check which words are considered most important for classification
lrModel.coefficients.foreachActive((idx, value) => findmax(idx, value))
//First check familjeliv
println(maxarray.deep.foreach(println))
println(vectorizer.vocabulary(maxarray(0)(0).toInt))
println(vectorizer.vocabulary(maxarray(1)(0).toInt))
println(vectorizer.vocabulary(maxarray(2)(0).toInt))
println(vectorizer.vocabulary(maxarray(3)(0).toInt))
println(vectorizer.vocabulary(maxarray(4)(0).toInt))
lrModel.coefficients.foreachActive((idx, value) => findmin(idx, value))
//Check for flashback
println(minarray.deep.foreach(println))
println(vectorizer.vocabulary(minarray(0)(0).toInt))
println(vectorizer.vocabulary(minarray(1)(0).toInt))
println(vectorizer.vocabulary(minarray(2)(0).toInt))
println(vectorizer.vocabulary(minarray(3)(0).toInt))
println(vectorizer.vocabulary(minarray(4)(0).toInt))
Array(46.0, 1.8647655096872564)
Array(885.0, 1.275281418044729)
Array(950.0, 1.224376631679196)
Array(380.0, 0.9577079595234373)
Array(32.0, 0.8432880748567715)
()
anonym
förlossningen
maken
sambon
sambo
Array(990.0, -2.2314223680319945)
Array(664.0, -1.8291269454715258)
Array(857.0, -1.4232104863197035)
Array(275.0, -1.3427561053936439)
Array(173.0, -1.1857533047141897)
()
topic
bruden
vafan
brudar
jävligt
- Predict on test data
val predictions = lrModel.transform(test)
predictions.orderBy(rand()).select("c", "prediction", "probability").show(30, false)
+---+----------+-------------------------------------------+
|c |prediction|probability |
+---+----------+-------------------------------------------+
|0 |0.0 |[0.9721401017870042,0.027859898212995764] |
|0 |0.0 |[0.975623998737009,0.02437600126299096] |
|1 |1.0 |[4.6730789993111417E-7,0.9999995326921002] |
|0 |0.0 |[0.933249707175278,0.066750292824722] |
|0 |0.0 |[0.9902085789245901,0.009791421075409966] |
|0 |0.0 |[0.5279677569376853,0.47203224306231467] |
|0 |0.0 |[0.9932461412304279,0.00675385876957205] |
|1 |1.0 |[2.43269453308815E-5,0.9999756730546691] |
|1 |1.0 |[8.266454051870882E-10,0.9999999991733546] |
|0 |0.0 |[0.9997151003194746,2.8489968052548283E-4] |
|1 |0.0 |[0.5514931570249911,0.44850684297500887] |
|0 |0.0 |[0.5858664716477586,0.41413352835224143] |
|1 |1.0 |[0.002100566198113697,0.9978994338018863] |
|1 |1.0 |[0.07917634407205193,0.920823655927948] |
|0 |0.0 |[0.9970675008521647,0.0029324991478353007] |
|0 |0.0 |[0.9999595461915014,4.045380849869759E-5] |
|0 |1.0 |[0.33337692071405434,0.6666230792859457] |
|1 |1.0 |[0.36761800025826114,0.6323819997417389] |
|1 |1.0 |[0.3245585295503879,0.6754414704496121] |
|1 |1.0 |[0.2355899833856519,0.7644100166143482] |
|0 |0.0 |[0.9999999999997755,2.2452150253864004E-13]|
|1 |1.0 |[0.18608690603389255,0.8139130939661074] |
|0 |0.0 |[0.740890026139782,0.25910997386021795] |
|0 |0.0 |[0.963586227883629,0.036413772116371014] |
|1 |1.0 |[0.0021508873399861557,0.9978491126600139] |
|1 |1.0 |[0.3858439417926455,0.6141560582073544] |
|1 |1.0 |[0.4517753939274335,0.5482246060725665] |
|1 |1.0 |[0.02573645474447229,0.9742635452555276] |
|0 |0.0 |[0.8022052550237544,0.19779474497624555] |
|1 |1.0 |[0.042382658471976975,0.9576173415280229] |
+---+----------+-------------------------------------------+
only showing top 30 rows
predictions: org.apache.spark.sql.DataFrame = [c: int, features: vector ... 3 more fields]
//Check auroc value
val evaluator = new BinaryClassificationEvaluator().setLabelCol("c")
evaluator.evaluate(predictions)
evaluator: org.apache.spark.ml.evaluation.BinaryClassificationEvaluator = BinaryClassificationEvaluator: uid=binEval_0812f13ed2be, metricName=areaUnderROC, numBins=1000
res19: Double = 0.928445521562674
Classification using Word2Vec
Word embeddings
Word embeddings map words to vectors of real numbers. Frequency analysis, which we did in a another notebook, is an example of this. There, the 1000 most common words in a collection of text words were mapped to a 1000-dimensional space using one-hot encoding, while the other words were sent to the zero vector. An array of words is mapped to the sum of the one-hot encoded vectors.
A more sophisticated word embedding is Word2Vec, which uses the skip-gram model and hierarchical softmax. The idea is to map words to the vector so that it predicts the other words around it well. We refer to Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality for details.
The practical difference is that Word2Vec maps every word to a non-zero vector, and that the output dimension can be chosen freely. Also, the embedding itself has to be trained before use, using some large collection of words. An array of words is mapped to the average of these words.
This case study uses the sex forums on Flashback and Familjeliv. The aim is to determine which forum a thread comes from by using the resulting word embeddings, using logistic regression.
Preamble
This section loads libraries and imports functions from another notebook.
// import required libraries
import org.apache.spark.ml.feature.{Word2Vec,Word2VecModel}
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.sql.Row
import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{Word2Vec, Word2VecModel}
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.sql.Row
import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
/scalable-data-science/000_0-sds-3-x-projects/student-project-01_group-TheTwoCultures/01_load_data
Loading the data
To extract the data from the .xml-file we use get_dataset().
Scraping the data takes quite some time, so we also supply a second cell that loads saved results.
// process .xml-files
val file_name = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad.xml"
val df = get_dataset(file_name)
val file_name2 = "dbfs:/datasets/student-project-01/flashback/flashback-sex.xml"
val df2 = get_dataset(file_name2)
// paths to saved dataframes
val file_path_familjeliv = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad_df"
val file_path_flashback = "dbfs:/datasets/student-project-01/flashback/flashback-sex_df"
// load saved data frame
val df_familjeliv = load_df(file_path_familjeliv)
val df_flashback = load_df(file_path_flashback)
file_path_familjeliv: String = dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad_df
file_path_flashback: String = dbfs:/datasets/student-project-01/flashback/flashback-sex_df
df_familjeliv: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
df_flashback: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
The dataframes consist of 7 fields: * threadid - a unique numerical signifier for each thread * threadtitle - the title of the thread, set by the person who created it * w - a comma separated string of all posts in a thread * forumid - a numerical forum signifier * forumtitle - name of the forum to which the thread belongs * platform - the platform from which the thread comes (flashback or familjeliv) * corpus_id - the corpus from which the data was gathered
Let's have a look at the dataframes.
display(df_familjeliv)
We add labels and merge the two dataframes.
val df = df_flashback.withColumn("c", lit(0.0)).union(df_familjeliv.withColumn("c", lit(1.0)))
df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 6 more fields]
Preprocessing the data
Next, we must split and clean the text. For this we use Regex Tokenizers. We do not eliminate stop words.
// define the tokenizer
val tokenizer = new RegexTokenizer()
.setPattern("(?U),") // break by commas
.setMinTokenLength(5) // Filter away tokens with length < 5
.setInputCol("w") // name of the input column
.setOutputCol("text") // name of the output column
tokenizer: org.apache.spark.ml.feature.RegexTokenizer = regexTok_f0701eaf4f60
Let's tokenize and check out the result.
// define the thread title tokenizer
val df_tokenized = tokenizer.transform(df)
display(df_tokenized.select("w","text"))
Define and training a Word2Vec model
We use the text from the threads to train the Word2Vec model. First we define the model.
// define the model
val word2Vec = new Word2Vec()
.setInputCol("text")
.setOutputCol("result")
.setVectorSize(200)
.setMinCount(0)
word2Vec: org.apache.spark.ml.feature.Word2Vec = w2v_945abe6fab57
We train the model by fitting it to any dataframe we wish. Here, we use the tokenized one. Training the model takes roughly 2h30m, so we save the result to avoid the hassle of redoing calculations.
// train it
val word2Vec_model = word2Vec.fit(df_tokenized)
// save it
word2Vec_model.save("dbfs:/datasets/student-project-01/word2vec_model_sex")
We can also load a saved model.
// load a saved model
val model = Word2VecModel.load("dbfs:/datasets/student-project-01/word2vec_model_sex")
model: org.apache.spark.ml.feature.Word2VecModel = w2v_854b46dceacc
import org.apache.spark.sql.functions.{col, concat_ws, udf, flatten, explode, collect_list, collect_set, lit}
import org.apache.spark.sql.types.{ArrayType, StructType, StructField, StringType, IntegerType}
import com.databricks.spark.xml._
import org.apache.spark.sql.functions._
read_xml: (file_name: String)org.apache.spark.sql.DataFrame
get_dataset: (file_name: String)org.apache.spark.sql.DataFrame
save_df: (df: org.apache.spark.sql.DataFrame, filePath: String)Unit
load_df: (filePath: String)org.apache.spark.sql.DataFrame
no_forums: (df: org.apache.spark.sql.DataFrame)Long
dbfs:/datasets/student-project-01/flashback/familjeliv-allmanna-ekonomi_df
familjeliv-allmanna-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/familjeliv-sexsamlevnad_df
familjeliv-sexsamlevnad_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df
flashback-ekonomi_df already exists!
dbfs:/datasets/student-project-01/flashback/flashback-sex_df
flashback-sex_df already exists!
fl_root: String = dbfs:/datasets/student-project-01/familjeliv/
fb_root: String = dbfs:/datasets/student-project-01/flashback/
fl_data: Array[String] = Array(familjeliv-allmanna-ekonomi, familjeliv-sexsamlevnad)
fb_data: Array[String] = Array(flashback-ekonomi, flashback-sex)
Embedding using Word2Vec
Let's embedd the text and view the results.
// transform the text using the model
val embedded_text = model.transform(df_tokenized)
embedded_text: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 8 more fields]
Let's have a look!
display(embedded_text.select("c","result","text"))
Classification using Word2Vec
For classification we use logistic regression to compare with results from earlier. First we define the logistic regression model, using the same settings as before.
// Logistic regression
val logreg = new LogisticRegression()
.setLabelCol("c")
.setFeaturesCol("result")
.setMaxIter(100)
.setRegParam(0.0001)
.setElasticNetParam(0.5)
logreg: org.apache.spark.ml.classification.LogisticRegression = logreg_55ef614f783e
The easiest way to do the classification is to gather the tokenizer, Word2Vec and logistic regression into a pipeline.
val pipeline = new Pipeline().setStages(Array(tokenizer, word2Vec, logreg))
pipeline: org.apache.spark.ml.Pipeline = pipeline_2254409a91a2
Split the data into training and test data
val random_order = df.orderBy(rand())
val splits = random_order.randomSplit(Array(0.8, 0.2))
val training = splits(0)
val test = splits(1)
random_order: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 6 more fields]
splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = Array([thread_id: string, thread_title: string ... 6 more fields], [thread_id: string, thread_title: string ... 6 more fields])
training: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 6 more fields]
test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 6 more fields]
Fit the model to the training data. This will take a while, so we make sure to save the result.
// fit the model to the training data
val logreg_model = pipeline.fit(training)
// save the model to filesystem
logreg_model.save("dbfs:/datasets/student-project-01/word2vec_logreg_model")
// load saved model
val loaded_model = PipelineModel.load("dbfs:/datasets/student-project-01/word2vec_logreg_model")
loaded_model: org.apache.spark.ml.PipelineModel = pipeline_25839437fccb
val predictions = loaded_model.transform(test).orderBy(rand())
predictions: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [thread_id: string, thread_title: string ... 11 more fields]
predictions.select("c","prediction","probability").show(30,false)
+---+----------+------------------------------------------+
|c |prediction|probability |
+---+----------+------------------------------------------+
|1.0|1.0 |[0.005855361335036372,0.9941446386649635] |
|1.0|1.0 |[0.2712120894396273,0.7287879105603726] |
|1.0|1.0 |[0.0017886928649958375,0.9982113071350042]|
|1.0|1.0 |[2.263165652125581E-4,0.9997736834347875] |
|0.0|1.0 |[0.42059601285820825,0.5794039871417918] |
|1.0|1.0 |[6.566687042616189E-4,0.9993433312957383] |
|0.0|0.0 |[0.7054463412596114,0.29455365874038864] |
|1.0|1.0 |[0.03103196407369915,0.9689680359263009] |
|0.0|0.0 |[0.9294663779954874,0.07053362200451263] |
|1.0|1.0 |[0.13974006800394764,0.8602599319960523] |
|1.0|1.0 |[0.08228914085494436,0.9177108591450557] |
|0.0|0.0 |[0.9788989176701534,0.021101082329846567] |
|0.0|0.0 |[0.9975070728891363,0.0024929271108637065]|
|1.0|1.0 |[0.0010781075297480556,0.998921892470252] |
|0.0|0.0 |[0.9253825302681451,0.07461746973185476] |
|1.0|1.0 |[0.01751495449884683,0.9824850455011531] |
|1.0|0.0 |[0.9864736560167631,0.013526343983237045] |
|1.0|1.0 |[0.002472519507918196,0.9975274804920817] |
|0.0|0.0 |[0.6174112612306129,0.3825887387693872] |
|0.0|0.0 |[0.7130899106721519,0.2869100893278482] |
|0.0|0.0 |[0.9263664682801233,0.07363353171987672] |
|0.0|0.0 |[0.9561455191484204,0.04385448085157954] |
|0.0|0.0 |[0.5835745861693306,0.41642541383066944] |
|1.0|1.0 |[0.4296249407516458,0.5703750592483542] |
|1.0|1.0 |[0.0032969395487662213,0.9967030604512337]|
|1.0|1.0 |[0.008645133666934816,0.9913548663330651] |
|1.0|1.0 |[4.1492836709996625E-5,0.9999585071632902]|
|0.0|1.0 |[0.43037903982909986,0.5696209601709002] |
|0.0|1.0 |[0.43707897641990706,0.562921023580093] |
|1.0|1.0 |[0.29846393214228517,0.7015360678577148] |
+---+----------+------------------------------------------+
only showing top 30 rows
val evaluator = new BinaryClassificationEvaluator().setLabelCol("c")
evaluator.evaluate(predictions)
evaluator: org.apache.spark.ml.evaluation.BinaryClassificationEvaluator = binEval_0d518432d17a
res13: Double = 0.9499399325125091
An AUCROC of 0.95 is good, but not notably better than the other, conceptually simpler model. More is not always better!
Previously, we classified entire threads. Let's see if it works as well on thread titles.
val df_threads = df.select("c","thread_title").withColumnRenamed("thread_title","w")
val evaluation = loaded_model.transform(df_threads).orderBy(rand())
evaluator.evaluate(evaluation)
df_threads: org.apache.spark.sql.DataFrame = [c: double, w: string]
evaluation: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [c: double, w: string ... 5 more fields]
res14: Double = 0.5261045467524708
This did not work at all. It is essentially equivalent to guessing randomly. Thread titles contain only a few words, so this is not surprising.
Note: the same model was used as for both classifying tasks. Since thread titles were not part of the threads, the entire dataset could conceivably be used for training. Whether or not this would improve results is unclear.
Notebook description
Flashback and Familjeliv are two well-known swedish online forums. Flashback is one of Sweden's most visited websites and has discussions on a wide-range of topics. It is famous for emphasizing freedom of speech and the members citizen journalism on many topics. The online forum Familjeliv, on the other hand, focuses more on questions about pregnancy, children and parenthood (the translation is "Family Life"). Part of the forum is also for more general topics, and this part of Familjeliv is probably more famous than its other parts.
What we want to do in this notebook is analyze the language used in these two, quite different, online forums. An interesting approach we will try here is to do some topic modeling with Latent Dirichlet Allocation (LDA). We know that each discussion forum in our data has multiple subforums, so it would be interesting to see if LDA can accurately pick up these different subforums as different topics, or if it sees other patterns in the threads (the threads are what corresponds to documents in the LDA method). We will also mainly do this with forums that have a correspondence in both Flashback and Familjeliv. For instance, both have forums dedicated to questions regarding economy and also forums discussing topics close to sex and relationships.
This notebook is to a large extent adapted from notebook 034LDA20NewsGroupsSmall.
Downloading the data
Data comes from språkbanken, see notebook 00downloaddata.
/scalable-data-science/000_0-sds-3-x-projects/student-project-01_group-TheTwoCultures/00_download_data
// Here we just import methods from notebook 01_load_data, so we can load our data
%run /scalable-data-science/000_0-sds-3-x-projects/student-project-01_group-TheTwoCultures/01_load_data
LDA Methods
Below we put some of the LDA pipeline, working with MLlib, into a single function called get_lda.
import org.apache.spark.ml.feature.{RegexTokenizer, StopWordsRemover, CountVectorizer}
import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
import org.apache.spark.ml.{Pipeline, PipelineModel, PipelineStage}
import org.apache.spark.sql.types.{ LongType }
import org.apache.spark.ml.linalg.Vector
def get_lda(df: org.apache.spark.sql.DataFrame, // Main function to do LDA
min_token: Int,
vocabSize: Int,
minDF: Int,
numTopics: Int,
maxIter: Int,
stopWords: Array[String]) = {
val corpus_df = df.select("w", "thread_id").withColumn("thread_id",col("thread_id").cast(LongType)) // From the whole dataframe we take out each thread
val tokenizer = new RegexTokenizer()
.setPattern("(?U)[\\W_]+") // break by white space character(s) - try to remove emails and other patterns
.setMinTokenLength(min_token) // Filter away tokens with length < min_token
.setInputCol("w") // name of the input column
.setOutputCol("tokens") // name of the output column
val remover = new StopWordsRemover()
.setStopWords(stopWords)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("filtered")
val tokenized_df = tokenizer.transform(corpus_df) // Removes uninteresting words from each thread
val filtered_df = remover.transform(tokenized_df).select("thread_id","filtered") // Chosing only the filtered threads
val vectorizer = new CountVectorizer() // Creates dictionary and counts the occurences of different words
.setInputCol(remover.getOutputCol)
.setOutputCol("features")
.setVocabSize(vocabSize) // Size of dictonary
.setMinDF(minDF)
.fit(filtered_df) // returns CountVectorizerModel
val lda = new LDA() // Creates LDA Model with some user defined choice of parameters
.setOptimizer(new OnlineLDAOptimizer().setMiniBatchFraction(0.8))
.setK(numTopics)
.setMaxIterations(maxIter)
.setDocConcentration(-1) // use default values
.setTopicConcentration(-1)
val countVectors = vectorizer.transform(filtered_df).select("thread_id", "features")
val lda_countVector = countVectors.map { case Row(id: Long, countVector: Vector) => (id, countVector) }
val lda_countVector_mllib = lda_countVector.map { case (id, vector) => (id, org.apache.spark.mllib.linalg.Vectors.fromML(vector)) }.rdd
val lda_model = lda.run(lda_countVector_mllib)
(lda_model, vectorizer)
}
import org.apache.spark.ml.feature.{RegexTokenizer, StopWordsRemover, CountVectorizer}
import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
import org.apache.spark.ml.{Pipeline, PipelineModel, PipelineStage}
import org.apache.spark.sql.types.LongType
import org.apache.spark.ml.linalg.Vector
get_lda: (df: org.apache.spark.sql.DataFrame, min_token: Int, vocabSize: Int, minDF: Int, numTopics: Int, maxIter: Int, stopWords: Array[String])(org.apache.spark.mllib.clustering.LDAModel, org.apache.spark.ml.feature.CountVectorizerModel)
Stopwords
Stop words are highly relevant to get interesting topics distributions, with not all weight on very common words that do not carry much meaning for a particular topic. To do this we both use collections by others and input words we find meaningless for these particular settings.
wget https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv -O /tmp/stopwords.csv
--2021-01-11 14:30:09-- https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.52.133
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.52.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1936 (1.9K) [text/plain]
Saving to: ‘/tmp/stopwords.csv’
0K . 100% 11.5M=0s
2021-01-11 14:30:09 (11.5 MB/s) - ‘/tmp/stopwords.csv’ saved [1936/1936]
cp file:/tmp/stopwords.csv dbfs:/datasets/student-project-01/stopwords.csv
res24: Boolean = true
//Creating a list with stopwords
import org.apache.spark.ml.feature.StopWordsRemover
val stoppord = sc.textFile("dbfs:/datasets/student-project-01/stopwords.csv").collect()
val stopwordList = Array("bara","lite","finns","vill","samt","inga","även","finns","ganska","också","igen","just","that","with","http","jpg","kanske","tycker","gillar", "bra","the","000","måste","tjej","tjejer","tjejen","tjejerna","kvinna","kvinnor","kille","killar","killen","män","rätt","män","com","and","html","många","aldrig","www","mpg","avi","wmv","fan","förhelvetet","riktigt","känner","väldigt","font","size","mms","2008","2009","95kr","dom","får","ska","kommer","två","vet","mer","pengar","pengarna","göra","fick","tror","andra","helt","kunna","behöver","betala","inget","dock","inget","tack"
).union(stoppord).union(StopWordsRemover.loadDefaultStopWords("swedish")) // In this step we add custom stop words and another premade list of stopwords.
Experiments
Below we we chosen some similar forums from FB and FL. First two regarding economics, and two discussing sex and relationships. Here we run the two economics forums and see how well TDA captures any topic structure.
Here one does not have to use similar forums, but if one is interested in only Flashback forums one could use only those. We could also of course join several of these forums together to try to capture even broader topic distributions
// Loading the forums we will do LDA on.
val file_path_FL = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-allmanna-ekonomi_df"
val file_path_FB = "dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df"
//val file_path_FL = "dbfs:/datasets/student-project-01/familjeliv/familjeliv-sexsamlevnad_df"
//val file_path_FB = "dbfs:/datasets/student-project-01/flashback/flashback-sex_df"
val df_FL = load_df(file_path_FL)
val df_FB = load_df(file_path_FB)
file_path_FL: String = dbfs:/datasets/student-project-01/familjeliv/familjeliv-allmanna-ekonomi_df
file_path_FB: String = dbfs:/datasets/student-project-01/flashback/flashback-ekonomi_df
df_FL: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
df_FB: org.apache.spark.sql.DataFrame = [thread_id: string, thread_title: string ... 5 more fields]
// Dataframes containg a forum from FB.
df_FB.show
// Overview of number of threads in different subforums
df_FL.groupBy($"forum_title").agg(count($"forum_title").as("count")).show(false)
+----------------------------------------------------------+-----+
|forum_title |count|
+----------------------------------------------------------+-----+
|Allmänna rubriker > Ekonomi & juridik > Konsument/Inhandla|26307|
|Allmänna rubriker > Ekonomi & juridik > Familjerätt |1623 |
|Allmänna rubriker > Ekonomi & juridik > Övrigt |1638 |
|Allmänna rubriker > Ekonomi & juridik > Ekonomi |24284|
|Allmänna rubriker > Ekonomi & juridik > Spartips |217 |
|Allmänna rubriker > Ekonomi & juridik > Juridik |3246 |
|Allmänna rubriker > Ekonomi & juridik > Företagande |957 |
|Allmänna rubriker > Ekonomi & juridik > Lån & skulder |1168 |
+----------------------------------------------------------+-----+
df_FB.groupBy($"forum_title").agg(count($"forum_title").as("count")).show(false)
+---------------------------------------------------+-----+
|forum_title |count|
+---------------------------------------------------+-----+
|Ekonomi > Privatekonomi |15154|
|Ekonomi > Bitcoin och andra virtuella valutor |524 |
|Ekonomi > Värdepapper, valutor och råvaror: allmänt|8300 |
|Ekonomi > Fonder |645 |
|Ekonomi > Företagande och företagsekonomi |12139|
|Ekonomi > Nationalekonomi |3114 |
|Ekonomi > Aktier |508 |
|Ekonomi > Ekonomi: övrigt |19308|
|Ekonomi > Offshore och skatteplanering |1567 |
+---------------------------------------------------+-----+
// Set parameters, and perform two different LDAs, one on FB and one on FL
val min_token = 4 // only accept tokens larger or equal to
val vocabSize = 10000 // Size of the vocab dictionary
val minDF = 5 // The minimum number of different documents a term must appear in to be included in the vocabulary
val minTF = 2 // The minimum number of times a term has to appear in a document to be included in the vocabulary
val numTopics_FL = no_forums(df_FL).toInt //4 // Number of topics in LDA model
val numTopics_FB = no_forums(df_FB).toInt
val maxIter = 8 // Maximum number of iterations for LDA model
val stopwords = stopwordList
val (ldaModel_FL, vectorizer_FL) = get_lda(df_FL, min_token, vocabSize, minDF, numTopics_FL, maxIter, stopwords)
val (ldaModel_FB, vectorizer_FB) = get_lda(df_FB, min_token, vocabSize, minDF, numTopics_FB, maxIter, stopwords)
Results
Here we will visualize the most important part of the different topic distributions, both for FB and for FL.
// Here we pick out the most important terms in each topic for FL.
val topicIndices = ldaModel_FL.describeTopics(maxTermsPerTopic = 5)
val vocabList = vectorizer_FL.vocabulary
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$numTopics_FL topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
// Here we pick out the most important terms in each topic for FB.
val topicIndices = ldaModel_FB.describeTopics(maxTermsPerTopic = 5)
val vocabList = vectorizer_FB.vocabulary
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$numTopics_FB topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
// Zip topic terms with topic IDs
val termArray = topics.zipWithIndex
// Transform data into the form (term, probability, topicId)
val termRDD = sc.parallelize(termArray)
val termRDD2 =termRDD.flatMap( (x: (Array[(String, Double)], Int)) => {
val arrayOfTuple = x._1
val topicId = x._2
arrayOfTuple.map(el => (el._1, el._2, topicId))
})
// Create DF with proper column names
val termDF = termRDD2.toDF.withColumnRenamed("_1", "term").withColumnRenamed("_2", "probability").withColumnRenamed("_3", "topicId")
display(termDF)
// Creates JSON data to display topic distribution of forum in FB
val rawJson = termDF.toJSON.collect().mkString(",\n")
displayHTML(s"""
<!DOCTYPE html>
<meta charset="utf-8">
<style>
circle {
fill: rgb(31, 119, 180);
fill-opacity: 0.5;
stroke: rgb(31, 119, 180);
stroke-width: 1px;
}
.leaf circle {
fill: #ff7f0e;
fill-opacity: 1;
}
text {
font: 14px sans-serif;
}
</style>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
var json = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson}
]
}
]
};
var r = 1000,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble = d3.layout.pack()
.sort(null)
.size([r, r])
.padding(1.5);
var vis = d3.select("body").append("svg")
.attr("width", r)
.attr("height", r)
.attr("class", "bubble");
var node = vis.selectAll("g.node")
.data(bubble.nodes(classes(json))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
// Returns a flattened hierarchy containing all leaf nodes under the root.
function classes(root) {
var classes = [];
function recurse(term, node) {
if (node.children) node.children.forEach(function(child) { recurse(node.term, child); });
else classes.push({topicName: node.topicId, className: node.term, value: node.probability});
}
recurse(null, root);
return {children: classes};
}
</script>
""")
// Similar as above but for FL
val topicIndices = ldaModel_FL.describeTopics(maxTermsPerTopic = 6)
val vocabList = vectorizer_FL.vocabulary
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$numTopics_FL topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
// Zip topic terms with topic IDs
val termArray = topics.zipWithIndex
// Transform data into the form (term, probability, topicId)
val termRDD = sc.parallelize(termArray)
val termRDD2 =termRDD.flatMap( (x: (Array[(String, Double)], Int)) => {
val arrayOfTuple = x._1
val topicId = x._2
arrayOfTuple.map(el => (el._1, el._2, topicId))
})
// Create DF with proper column names
val termDF = termRDD2.toDF.withColumnRenamed("_1", "term").withColumnRenamed("_2", "probability").withColumnRenamed("_3", "topicId")
// Create JSON data to display topic distribution of forum in FB
val rawJson = termDF.toJSON.collect().mkString(",\n")
displayHTML(s"""
<!DOCTYPE html>
<meta charset="utf-8">
<style>
circle {
fill: rgb(31, 119, 180);
fill-opacity: 0.5;
stroke: rgb(31, 119, 180);
stroke-width: 1px;
}
.leaf circle {
fill: #ff7f0e;
fill-opacity: 1;
}
text {
font: 14px sans-serif;
}
</style>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
var json = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson}
]
}
]
};
var r = 1000,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble = d3.layout.pack()
.sort(null)
.size([r, r])
.padding(1.5);
var vis = d3.select("body").append("svg")
.attr("width", r)
.attr("height", r)
.attr("class", "bubble");
var node = vis.selectAll("g.node")
.data(bubble.nodes(classes(json))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
// Returns a flattened hierarchy containing all leaf nodes under the root.
function classes(root) {
var classes = [];
function recurse(term, node) {
if (node.children) node.children.forEach(function(child) { recurse(node.term, child); });
else classes.push({topicName: node.topicId, className: node.term, value: node.probability});
}
recurse(null, root);
return {children: classes};
}
</script>
""")
def rawJson(lda_model: org.apache.spark.mllib.clustering.LDAModel, vectorizer: org.apache.spark.ml.feature.CountVectorizerModel): String = {
val topicIndices = lda_model.describeTopics(maxTermsPerTopic = 6)
val vocabList = vectorizer.vocabulary
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$numTopics_FL topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
// Zip topic terms with topic IDs
val termArray = topics.zipWithIndex
// Transform data into the form (term, probability, topicId)
val termRDD = sc.parallelize(termArray)
val termRDD2 =termRDD.flatMap( (x: (Array[(String, Double)], Int)) => {
val arrayOfTuple = x._1
val topicId = x._2
arrayOfTuple.map(el => (el._1, el._2, topicId))
})
// Create DF with proper column names
val termDF = termRDD2.toDF.withColumnRenamed("_1", "term").withColumnRenamed("_2", "probability").withColumnRenamed("_3", "topicId")
// Create JSON data to display topic distribution
termDF.toJSON.collect().mkString(",\n")
}
// Create JSON data to display topic distribution
val rawJson_FL = rawJson(ldaModel_FL, vectorizer_FL)
val rawJson_FB = rawJson(ldaModel_FB, vectorizer_FB)
displayHTML(s"""
<!DOCTYPE html>
<meta charset="utf-8">
<style>
circle {
fill: rgb(31, 119, 180);
fill-opacity: 0.5;
stroke: rgb(31, 119, 180);
stroke-width: 1px;
}
.leaf circle {
fill: #ff7f0e;
fill-opacity: 1;
}
text {
font: 12px sans-serif;
}
</style>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
/////////////////////////////////////////////////////////////////////////////
var json_FL = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson_FL}
]
}
]
};
var r1 = 500,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble1 = d3.layout.pack()
.sort(null)
.size([r1, r1])
.padding(1.5);
var vis1 = d3.select("body").append("svg")
.attr("width", r1)
.attr("height", r1)
.attr("class", "bubble1");
var node = vis1.selectAll("g.node")
.data(bubble1.nodes(classes(json_FL))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
/////////////////////////////////////////////////////////////////////////////
var json_FB = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson_FB}
]
}
]
};
var r2 = 500,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble2 = d3.layout.pack()
.sort(null)
.size([r2, r2])
.padding(1.5);
var vis2 = d3.select("body").append("svg")
.attr("width", r2)
.attr("height", r2)
.attr("class", "bubble1");
var node = vis2.selectAll("g.node")
.data(bubble1.nodes(classes(json_FB))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
/////////////////////////////////////////////////////////////////////////////
// Returns a flattened hierarchy containing all leaf nodes under the root.
function classes(root) {
var classes = [];
function recurse(term, node) {
if (node.children) node.children.forEach(function(child) { recurse(node.term, child); });
else classes.push({topicName: node.topicId, className: node.term, value: node.probability});
}
recurse(null, root);
return {children: classes};
}
</script>
""")
Exploring the GQA Scene Graph Dataset Structure and Properties
Group 2 Project Authors:
- Adam Dahlgren
- Pavlo Melnyk
- Emanuel Sanchez Aimar
Project Goal
This project aims to explore the scene graphs in the Genome Question Answering (GQA) dataset.
-
The structure, properties, and motifs of the ground truth data will be analysed.
-
Our presentation can be found at this video link and our open-source code is in this GitHub repository.
Graph structure
- We want to extract the names of objects we see in the images and use their id's as vertices.
- For one object category, we will have multiple id's and hence multiple vertices. In contrast, one vertex will represent an object category in the merged graph.
- Object attributes are used as part of the vertices (in some graph representations we exploit).
- The edge properties are the names of the relations (provided in JSON-files).
Loading data
- We read the scene graph data as JSON files. Below is the example JSON object given by the GQA website, for scene graph 2407890.
sc = spark.sparkContext
# Had to change weather 'none' to '"none"' for the string to parse
json_example_str = '{"2407890": {"width": 640,"height": 480,"location": "living room","weather": "none","objects": {"271881": {"name": "chair","x": 220,"y": 310,"w": 50,"h": 80,"attributes": ["brown", "wooden", "small"],"relations": {"32452": {"name": "on","object": "275312"},"32452": {"name": "near","object": "279472"}}}}}}'
json_rdd = sc.parallelize([json_example_str])
example_json_df = spark.read.json(json_rdd, multiLine=True)
example_json_df.show()
+--------------------+
| 2407890|
+--------------------+
|[480, living room...|
+--------------------+
example_json_df.first()
Reading JSON files
- Due to issues with the JSON files and how Spark reads them, we need to parse the files using pure Python. Otherwise, we get stuck in a loop and finally crash the driver.
from graphframes import *
import json
# load train and validation graph data:
f_train = open("/dbfs/FileStore/shared_uploads/scenegraph_motifs/train_sceneGraphs.json")
train_scene_data = json.load(f_train)
f_val = open("/dbfs/FileStore/shared_uploads/scenegraph_motifs/val_sceneGraphs.json")
val_scene_data = json.load(f_val)
Parsing graph structure
- We use a Pythonic way to parse the JSON-files and obtain the vertices and edges of the graphs, provided vertex and edge schemas, respectively.
# Pythonic way of doing it, parsing a JSON graph representation.
# Creates vertices with the graph id, object name and id, optionally includes the attibutes
def json_to_vertices_edges(graph_json, scene_graph_id, include_object_attributes=False):
vertices = []
edges = []
obj_id_to_name = {}
vertex_ids = graph_json['objects']
for vertex_id in vertex_ids:
vertex_obj = graph_json['objects'][vertex_id]
name = vertex_obj['name']
vertices_data = [scene_graph_id, vertex_id, name]
if vertex_id not in obj_id_to_name:
obj_id_to_name[vertex_id] = name
if include_object_attributes:
attributes = vertex_obj['attributes']
vertices_data.append(attributes)
vertices.append(tuple(vertices_data))
for relation in vertex_obj['relations']:
src = vertex_id
dst = relation['object']
name = relation['name']
edges.append([src, dst, name])
for i in range(len(edges)):
src_type = obj_id_to_name[edges[i][0]]
dst_type = obj_id_to_name[edges[i][1]]
edges[i].append(src_type)
edges[i].append(dst_type)
return (vertices, edges)
def parse_scene_graphs(scene_graphs_json, vertex_schema, edge_schema):
vertices = []
edges = []
# if vertice_schema has a field for attributes:
include_object_attributes = len(vertex_schema) == 4
for scene_graph_id in scene_graphs_json:
vs, es = json_to_vertices_edges(scene_graphs_json[scene_graph_id], scene_graph_id, include_object_attributes)
vertices += vs
edges += es
vertices = spark.createDataFrame(vertices, vertex_schema)
edges = spark.createDataFrame(edges, edge_schema)
return GraphFrame(vertices, edges)
from pyspark.sql.types import StructType, StructField, ArrayType, IntegerType, StringType
# create schemas for scene graphs:
vertex_schema = StructType([
StructField("graph_id", StringType(), False), StructField("id", StringType(), False), StructField("object_name", StringType(), False)
])
vertex_schema_with_attr = StructType([
StructField("graph_id", StringType(), False),
StructField("id", StringType(), False),
StructField("object_name", StringType(), False),
StructField("attributes", ArrayType(StringType()), True)
])
edge_schema = StructType([
StructField("src", StringType(), False), StructField("dst", StringType(), False), StructField("relation_name", StringType(), False),
StructField("src_type", StringType(), False), StructField("dst_type", StringType(), False)
])
# we will use the length of the vertice schemas to parse the graph from the json files appropriately:
len(vertex_schema), len(vertex_schema_with_attr)
Adding attributes to vertices and types to edges in the graph structure
-
If vertices have attributes, we can get more descriptive answers to our queries like "Objects of type 'person' are 15 times 'next-to' objects of type 'banana' ('yellow', 'small'); 10 times 'next-to' objects of type 'banana' ('green', 'banana')".
-
We can do more interesting queries if the edges disclose what type/name the source and destination has.
-
For instance, it is then possible to group the edges not only by the ID but also by which type of objects they are connected to, answering questions like "How often are objects of type 'person' in the relation 'next-to' with objects of type 'banana'?".
scene_graphs_train = parse_scene_graphs(train_scene_data, vertex_schema_with_attr, edge_schema)
scene_graphs_train_without_attributes = GraphFrame(scene_graphs_train.vertices.select('graph_id', 'id', 'object_name'), scene_graphs_train.edges)
scene_graphs_val = parse_scene_graphs(val_scene_data, vertex_schema_with_attr, edge_schema)
display(scene_graphs_train.vertices)
display(scene_graphs_val.vertices)
display(scene_graphs_train.edges)
display(scene_graphs_val.edges)
# person next-to banana (yellow, small) vs person next-to banana (green)
display(scene_graphs_train.find('(a)-[ab]->(b)').filter("(a.object_name = 'person') and (b.object_name = 'banana')"))
-
The original graph consists of multiple graphs, each representing an image.
-
Number of objects per image (graph):
# grouped_graphs = scene_graphs_train.vertices.groupBy('graph_id')
# display(grouped_graphs.count().sort('count', ascending=False))
print("Graphs/Scenes/Images: {}".format(scene_graphs_train.vertices.select('graph_id').distinct().count()))
print("Objects: {}".format(scene_graphs_train.vertices.count()))
print("Relations: {}".format(scene_graphs_train.edges.count()))
Graphs/Scenes/Images: 74289
Objects: 1231134
Relations: 3795907
display(scene_graphs_train.degrees.sort(["degree"],ascending=[0]).limit(20))
Finding most common attributes
- "Which object characteristics are the most common?"
from pyspark.sql.functions import explode
# the attributes are sequences: we need to split them;
# explode the attributes in the vertices graph:
explodedAttributes = scene_graphs_train.vertices.select("id", "object_name", explode(scene_graphs_train.vertices.attributes).alias("attribute"))
explodedAttributes.printSchema()
display(explodedAttributes)
- Above we see the object-attribute pairs seen in the dataset.
topAttributes = explodedAttributes.groupBy("attribute")
display(topAttributes.count().sort("count", ascending=False))
topAttributes = explodedAttributes.groupBy("attribute")
display(topAttributes.count().sort("count", ascending=False))
-
7 out of the top 10 attributes are colors, where
white
is seen 92659 times, andblack
59617 times. -
We see a long tail-end distribution with only 68 out of a 617 attributes being seen more than a 1000 times in the dataset, and around 300 attributes are seen less than 100 times (e.g.,
breakable
is seen 15 times,wrist
14 times, andimmature
3 times).
topObjects = scene_graphs_train.vertices.groupBy("object_name")
topObjects = topObjects.count()
display(topObjects.sort("count", ascending=False))
display(topObjects.sort("count", ascending=True))
-
Again, we see that a few object types account for most of the occurrences. Interestingly,
man
(31370) andperson
(20218) is seen three and two times more thanwoman
(11355), respectively. Apparently,window
s are really important in this dataset, coming out on top with 35907 occurrences. -
The top 259 object types are seen more than 1000 times, and after 819 objects are seen less than 100 times.
-
Looking at the tail-end of the distribution, we see that
pikachu
is mentioned once, whereas, e.g.,wardrobe
(5) androbot
(8) are rarely seen which was not expected. -
The nature of the GQA dataset suggests its general-purpose applicability. However, the skewed object categories distribution shown above implies otherwise.
Finding most common object pairs
- "What are the most common two adjacent object categories in the graphs?"
topPairs = scene_graphs_train.edges.groupBy("src_type", "dst_type")
display(topPairs.count().sort("count", ascending=False))
topPairs = scene_graphs_train.edges.groupBy("src_type", "relation_name", "dst_type")
display(topPairs.count().sort("count", ascending=False))
-
In the tables above, we see that the most common relations reflect spatial properties such as
to the right of
withwindows
symmetrically related to each other standing for 2 x 28944 occurrences. -
The most common relations are primarily between objects of the same category.
-
The first 'action'-encoding relation is seen in the 15th most common triple
man-wearing-shirt
(5254).
Finding most common relations
-
Could we categorise the edges according to what semantic function they play?
-
For instance, filtering out all spatial relations (
behind
,to the left of
, etc.). -
Suggested categories: spatial, actions, and semantic relations.
topPairs = scene_graphs_train.edges.groupBy("relation_name")
display(topPairs.count().sort("count", ascending=False))
-
The most common relations are spatial, overwhelmingly, with
to the left of
andto the right of
accounting for 1.7 million occurrences each. -
In contrast, the third most common relation
on
is seen "only" 90804 times. Out of the top 30 relations, 23 are spatial. Common actions can be seen as few times as 28, as in the case ofopening
. -
Some of these relations encode both spatial and actions, such as in
sitting on
. -
This shows some ambiguity in how the relation names are chosen, and how this relates to the attributes, such as
sitting
,looking
,lying
, that can also be encoded as object attributes.
- Next, we filter out relations that begin with
to the
,in
,on
,behind of
, orin front of
, in order to bring forth more of the non-spatial relations.
# Also possible to do:
# from pyspark.sql.functions import udf
#from pyspark.sql.types import BooleanType
#filtered_df = spark_df.filter(udf(lambda target: target.startswith('good'),
# BooleanType())(spark_df.target))
topPairs = scene_graphs_train.edges.filter("(relation_name NOT LIKE 'to the%') and (relation_name NOT LIKE '%on') and (relation_name NOT LIKE '%in') and (relation_name NOT LIKE '% of')").groupBy("src_type", "relation_name", "dst_type")
display(topPairs.count().sort("count", ascending=False))
-
In the pie chart above, we see that once we filter out the most common spatial relations, the remainder is dominated by
wearing
and the occasional associativeof
(as in, e.g.,head-of-man
). -
These relations make up almost half of the non-spatial relations.
scene_graphs_train_without_attributes_graphid = GraphFrame(scene_graphs_train_without_attributes.vertices.select('id', 'object_name'), scene_graphs_train_without_attributes.edges)
motifs = scene_graphs_train_without_attributes_graphid.find("(a)-[ab]->(b); (b)-[bc]->(c)").filter("(a.object_name NOT LIKE b.object_name) and (a.object_name NOT LIKE c.object_name)")
display(motifs)
motifs_sorted = motifs.distinct()
display(motifs_sorted)
motifs_sorted.count()
- Find circular motifs, i.e., motifs of type
A -> relation_ab -> B -> relation_bc -> C -> relation_ca -> A
:
circular_motifs = scene_graphs_train.find("(a)-[ab]->(b); (b)-[bc]->(c); (c)-[ca]->(a)")
display(circular_motifs)
circular_motifs.count()
This gives us 7 million cycles of length 3. However, this is most likely dominated by the most common spatial relations. In the cell below, we filter out these spatial relations and count cycles again.
circular_motifs = scene_graphs_train.find("(a)-[ab]->(b); (b)-[bc]->(c); (c)-[ca]->(a)").filter("(ab.relation_name NOT LIKE 'to the%') and (bc.relation_name NOT LIKE 'to the%') and (ca.relation_name NOT LIKE 'to the%') and (ab.relation_name NOT LIKE '% of') and (bc.relation_name NOT LIKE '% of') and (ca.relation_name NOT LIKE '% of')")
display(circular_motifs.select('ab', 'bc', 'ca'))
circular_motifs.count()
- Without the most common spatial relations, we now have a significantly lower amount, 18805, of cycles of length 3.
- Find symmetric motifs, i.e., motifs of type
A -> relation_ab -> B -> relation_ab -> A
:
symmetric_motifs = scene_graphs_train.find("(a)-[ab]->(b); (b)-[ba]->(a)").filter("ab.relation_name LIKE ba.relation_name")
display(symmetric_motifs)
symmetric_motifs.count()
symmetric_motifs = scene_graphs_train.find("(a)-[ab]->(b); (b)-[ba]->(a)").filter("ab.relation_name LIKE ba.relation_name").filter("(ab.relation_name NOT LIKE 'near') and (ab.relation_name NOT LIKE '% of')")
display(symmetric_motifs.select('ab', 'ba'))
symmetric_motifs.count()
-
The symmetric relations that are spatial behave as expected, and removing the most common ones shows that we have 3693 such symmetric relations.
-
However, when looking at the filtered symmetric motifs, we can see examples such as 'boy-wearing-boy' and 'hot dog-wrapped in-hot dog'.
-
These examples of symmetric action relations seem to reflect the expected structure of a scene graph poorly.
-
We assume that this is either an artefact of the human annotations containing noise or that the sought after denseness of the graphs used describing the images creates these kinds of errors.
temp = GraphFrame(scene_graphs_train.vertices.select('graph_id', 'id', 'object_name'), scene_graphs_train.edges)
temp.vertices.write.parquet("/tmp/motif-vertices")
temp.edges.write.parquet("/tmp/motif-edges")
temp = GraphFrame(scene_graphs_val.vertices.select('graph_id', 'id', 'object_name'), scene_graphs_val.edges)#
temp.vertices.write.parquet("/tmp/motif-vertices-val")
temp.edges.write.parquet("/tmp/motif-edges-val")
import org.graphframes.{examples,GraphFrame}
val vertices = sqlContext.read.parquet("/tmp/motif-vertices")
val edges = sqlContext.read.parquet("/tmp/motif-edges")
val rank_graph = GraphFrame(vertices, edges)
import org.graphframes.{examples, GraphFrame}
vertices: org.apache.spark.sql.DataFrame = [graph_id: string, id: string ... 1 more field]
edges: org.apache.spark.sql.DataFrame = [src: string, dst: string ... 3 more fields]
rank_graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string, graph_id: string ... 1 more field], e:[src: string, dst: string ... 3 more fields])
val vertices_val = sqlContext.read.parquet("/tmp/motif-vertices-val")
val edges_val = sqlContext.read.parquet("/tmp/motif-edges-val")
val rank_graph_val = GraphFrame(vertices_val, edges_val)
vertices_val: org.apache.spark.sql.DataFrame = [graph_id: string, id: string ... 1 more field]
edges_val: org.apache.spark.sql.DataFrame = [src: string, dst: string ... 3 more fields]
rank_graph_val: org.graphframes.GraphFrame = GraphFrame(v:[id: string, graph_id: string ... 1 more field], e:[src: string, dst: string ... 3 more fields])
val ranks = rank_graph.pageRank.resetProbability(0.15).tol(0.01).run()
display(ranks.vertices)
#temp = GraphFrame(scene_graphs_train.vertices.select('graph_id', 'id', 'object_name'), scene_graphs_train.edges)
#ranks = temp.pageRank(resetProbability=0.15, tol=0.01)
#display(ranks.vertices)
import org.apache.spark.sql.functions._
val sorted_ranks = ranks.vertices.sort(col("pagerank").desc)
display(sorted_ranks)
val val_graphs_without_attributes = GraphFrame(rank_graph_val.vertices.select("graph_id", "id", "object_name"), rank_graph_val.edges)
val val_ranks = val_graphs_without_attributes.pageRank.resetProbability(0.15).tol(0.01).run()
display(val_ranks.vertices)
val val_sorted_ranks = val_ranks.vertices.sort(col("pagerank").desc)
display(val_sorted_ranks)
val graph_pagerank_sums_objects = ranks.vertices.groupBy("object_name").sum("pagerank")
graph_pagerank_sums_objects.show()
val graph_pagerank_sums_objects_sorted = graph_pagerank_sums_objects.sort(col("sum(pagerank)").desc)
graph_pagerank_sums_objects_sorted: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [object_name: string, sum(pagerank): double]
display(graph_pagerank_sums_objects_sorted)
-
Here, we see that the summed (accumulated) PageRank per object category reflects each object's number of occurrences (see the
topObjects
section). At least for the top 10 in this table. -
This verifies that the most common objects are highly connected with others in their respective scene graphs.
-
We, therefore, conclude that they do not necessarily have a high information gain.
-
A high accumulated PageRank suggests a general nature of objects.
#%scala
val object_count = rank_graph.vertices.groupBy("object_name").count()
display(object_count)
- We now sort by name so that we can perform a join.
val topObjects = object_count.sort(col("object_name").desc)
val graph_pagerank_sums_objects_sorted = graph_pagerank_sums_objects.sort(col("object_name").desc)
display(graph_pagerank_sums_objects_sorted)
val graph_pagerank_joined = graph_pagerank_sums_objects_sorted.join(topObjects, "object_name").withColumn("normalize(pagerank)", col("sum(pagerank)") / col("count"))
display(graph_pagerank_joined.sort(col("normalize(pagerank)").desc))
-
We further normalise the PageRank values, i.e., divide by the number of occurrences per object category in the scenes.
-
We observe that, in contrast to the accumulated PageRank, the normalised values reflect the uniqueness of object categories: the fewer the occurrences, the higher the normalised PageRank.
-
For example,
televisions
occurs only once in the entire dataset. Its corresponding PageRank (accumulated equals normalised in this case) is the highest of all, followed bypizza oven
with 9 occurrences.w sort by name so that we can perform a join.
display(graph_pagerank_joined.sort(col("sum(pagerank)").desc).limit(30))
-
In the above table, we see that the normalised PageRank for the top 30 objects has a different ordering than the summed PageRanks.
-
For example,
pole
has the highest normalised PageRank, and the most common categorywindow
has a lower value. -
An interesting observation is that the objects
ground
andsky
both, relatively, have a significantly lower normalised PageRank, suggesting that a lower PageRank implies a lower semantic information gain. This can be explained by the fact that background objects likesky
are rarely the main focus of an image.
val graph_pagerank_sums = ranks.vertices.groupBy("graph_id").sum("pagerank")
display(graph_pagerank_sums)
val graph_val_pagerank_sums = val_ranks.vertices.groupBy("graph_id").sum("pagerank")
display(graph_val_pagerank_sums)
display(graph_val_pagerank_sums.sort(col("sum(pagerank)").desc))
Merging vertices
-
We use object names (object categories with or without attributes) instead of IDs as vertex identifier to merge all scene graphs (each with its
graph_id
) into one meta-graph. -
This enables us to analyse, e.g., how object types relate to each other in general, and how connected components can be formed based on specific image contexts.
-
The key intuition is that it could allow us to detect connected components representing scene categories such as
traffic
orbathroom
, i.e., meta-understanding of images as a whole.
merged_vertices = scene_graphs_val.vertices.selectExpr('object_name as id', 'attributes as attributes')
display(merged_vertices)
merged_vertices.count()
merged_vertices = merged_vertices.distinct()
display(merged_vertices)
merged_vertices.count()
- We see that there are 22243 unique combinations of objects and attributes.
merged_vertices_without_attributes = merged_vertices.select('id').distinct()
display(merged_vertices_without_attributes)
merged_vertices_without_attributes.count()
merged_edges = scene_graphs_val.edges.selectExpr('src_type as src', 'dst_type as dst', 'relation_name as relation_name')
display(merged_edges)
merged_edges.count()
scene_graphs_merged = GraphFrame(merged_vertices, merged_edges)
# display(scenegraphsmerged.vertices)
display(scene_graphs_merged.edges)
scene_graphs_merged_without_attributes = GraphFrame(merged_vertices_without_attributes, merged_edges)
display(scene_graphs_merged_without_attributes.vertices)
display(scene_graphs_merged_without_attributes.edges)
Computing the Connected Components
-
Here we compute the connected components of the merged scene graphs (one with the object attributes included and the other without).
-
Before merging, the connected components should roughly correspond to the number of scene graphs, as they are made up of at least 1 connected component each.
-
In the merged graphs, we can expect a much smaller set of connected components, and we hypothesize that these could correspond to scene categories (image classes).
sc.setCheckpointDir("/tmp/scene-graph-motifs-connected-components")
connected_components = scene_graphs_merged.connectedComponents()
display(connected_components)
# displays the index of a component for a given object category
components_count = connected_components.groupBy('component')
display(components_count.count().sort("count", ascending=False))
component | count |
---|---|
0.0 | 22221.0 |
5.92705486854e11 | 2.0 |
1.082331758595e12 | 1.0 |
1.88978561028e11 | 1.0 |
2.92057776131e11 | 1.0 |
8.589934595e9 | 1.0 |
4.20906795012e11 | 1.0 |
1.090921693187e12 | 1.0 |
3.35007449088e11 | 1.0 |
8.76173328385e11 | 1.0 |
3.60777252879e11 | 1.0 |
1.657857376265e12 | 1.0 |
2.31928233985e11 | 1.0 |
1.279900254215e12 | 1.0 |
1.013612281856e12 | 1.0 |
1.06515188942e12 | 1.0 |
8.50403524616e11 | 1.0 |
9.44892805124e11 | 1.0 |
1.563368095744e12 | 1.0 |
1.700807049221e12 | 1.0 |
1.606317768704e12 | 1.0 |
1.571958030336e12 | 1.0 |
- The number of connected components for the merged graph with attributes is 22, with the first component containing almost all instances.
We now run the connected components for the merged meta-graph without the attributes.
connected_components_without_attributes = scene_graphs_merged_without_attributes.connectedComponents()
display(connected_components_without_attributes)
components_count = connected_components_without_attributes.groupBy('component')
display(components_count.count().sort("count", ascending=False))
-
These results indicate that the merged graph is too dense due to the generic relations (e.g., the spatial relations 'next-to' et al.) connecting all objects into one big chunk.
-
Removing some of these most occurring relations could show an underlying graph structure that is more interesting.
General discussion
First, we recap the main points of the results of our analysis.
Objects
- Interestingly,
man
(31370) andperson
(20218) is seen three and two times more thanwoman
(11355), respectively. - The nature of the GQA dataset suggests its general-purpose applicability. However, the skewed object categories distribution shown above implies otherwise.
Attributes
- Our analysis of the original dataset shows that a few of the most commonly annotated attributes account for the majority of all annotations.
- Most common attributes are colours,
black
andwhite
being the most common.white
is seen 92659 times, andblack
59617 times. - We suspect that since the dataset is generated using human annotators, many of the less common annotations, such as attributes occurring less than 100 times, are more error-prone and might have a high noise to label ratio.
Relations
- The most common relations are, overwhelmingly, spatial properties with
to the left of
andto the right of
, accounting for 1.7 million occurrences each. - The most common relations are primarily between objects of the same category.
- For instance,
windows
are symmetrically related to each other, making up 2 x 28944 occurrences. - Some of these relations encode both spatial and action relation categories, e.g.,
sitting on
.
PageRank
- Our page rank results mainly reflect the number of occurrences of each object category.
To summarize, we see that GQA still has much room for improvement in terms of the distribution of objects and relations.
The analysis can be further deepened by considering the visual information provided in the dataset, i.e., the images.
By Guangyi Zhang (guaz@kth.se)
Please click HERE to watch the accompanying video.
This project aims to verify the friend-foe motifs in a large-scale signed social network.
A signed network is a graph that contains both positive and negative links. The sign of a link contains rich semantics in different appliations. For example, in a social network, positive links can indicate friendly relationships, while negative ones indicate antagonistic interactions.
In on-line discussion sites such as Slashdot, users can tag other users as “friends” and “foes”. These provide us exemplary datasets to study a online signed network. In this notebook we explore the a dataset from Epinions, which contains up to 119,217 nodes, 841,200 edges, and millions of motifs. Epinions is the trust network of the Epinions product review web site, where users can indicate their trust or distrust of the reviews of others. We analyze the network data in an undirected representation.
References:
Leskovec, Jure, Daniel Huttenlocher, and Jon Kleinberg. "Signed networks in social media." Proceedings of the SIGCHI conference on human factors in computing systems. 2010.
Regarding the motifs, we investigate several interesting triads that are related to structural balance theory in an online social signed network. Structural balance originates in social psychology in the mid-20th-century, and considers the possible ways in which triangles on three individuals can be signed.
Let us explain different types of triads, which is shown in the figure below,
- T3: “the friend of my friend is my friend”
- T1: “the friend of my enemy is my enemy,” “the enemy of my friend is my enemy” and “the enemy of my enemy is my friend”
- T2 and T0: does not quite make sense in social network. For example, two friends of mine are unlikely to be enemy to each other.
Our goal is to compare the numbers of different triads in our appointed dataset.
pwd
/databricks/driver
wget http://snap.stanford.edu/data/soc-sign-epinions.txt.gz
ls -l
total 2924
drwxr-xr-x 2 root root 4096 Jan 1 1970 conf
-rw-r--r-- 1 root root 733 Nov 24 15:24 derby.log
drwxr-xr-x 10 root root 4096 Nov 24 15:24 eventlogs
drwxr-xr-x 2 root root 4096 Nov 24 16:15 ganglia
drwxr-xr-x 2 root root 4096 Nov 24 16:04 logs
-rw-r--r-- 1 root root 2972840 Dec 3 2009 soc-sign-epinions.txt.gz
gunzip soc-sign-epinions.txt.gz
ls -l
total 11000
drwxr-xr-x 2 root root 4096 Jan 1 1970 conf
-rw-r--r-- 1 root root 733 Nov 24 15:24 derby.log
drwxr-xr-x 10 root root 4096 Nov 24 15:24 eventlogs
drwxr-xr-x 2 root root 4096 Nov 24 16:15 ganglia
drwxr-xr-x 2 root root 4096 Nov 24 16:04 logs
-rw-r--r-- 1 root root 11243141 Dec 3 2009 soc-sign-epinions.txt
head soc-sign-epinions.txt
# Directed graph: soc-sign-epinions
# Epinions signed social network
# Nodes: 131828 Edges: 841372
# FromNodeId ToNodeId Sign
0 1 -1
1 128552 -1
2 3 1
4 5 -1
4 155 -1
4 558 1
mkdir -p epinions
mv soc-sign-epinions.txt epinions/
ls -l /dbfs/FileStore
mv epinions /dbfs/FileStore/
total 33
drwxrwxrwx 2 root root 24 May 1 2018 datasets_magellan
drwxrwxrwx 2 root root 4096 Nov 24 11:14 DIGSUM-files
drwxrwxrwx 2 root root 4096 Nov 24 11:14 import-stage
drwxrwxrwx 2 root root 4096 Nov 24 11:14 jars
drwxrwxrwx 2 root root 4096 Nov 24 11:14 plots
drwxrwxrwx 2 root root 4096 Nov 24 11:14 shared_uploads
drwxrwxrwx 2 root root 4096 Nov 24 11:14 simon_temp_files_feel_free_to_delete_any_time
drwxrwxrwx 2 root root 4096 Nov 24 11:14 tables
drwxrwxrwx 2 root root 4096 Nov 24 11:14 timelinesOfInterest
mv: preserving permissions for ‘/dbfs/FileStore/epinions/soc-sign-epinions.txt’: Operation not permitted
mv: preserving permissions for ‘/dbfs/FileStore/epinions’: Operation not permitted
ls /
path | name | size |
---|---|---|
dbfs:/FileStore/ | FileStore/ | 0.0 |
dbfs:/_checkpoint/ | _checkpoint/ | 0.0 |
dbfs:/databricks/ | databricks/ | 0.0 |
dbfs:/databricks-datasets/ | databricks-datasets/ | 0.0 |
dbfs:/databricks-results/ | databricks-results/ | 0.0 |
dbfs:/datasets/ | datasets/ | 0.0 |
dbfs:/digsum-dataframe.csv/ | digsum-dataframe.csv/ | 0.0 |
dbfs:/local_disk0/ | local_disk0/ | 0.0 |
dbfs:/ml/ | ml/ | 0.0 |
dbfs:/mnt/ | mnt/ | 0.0 |
dbfs:/mytmpdir-forUserTimeLine/ | mytmpdir-forUserTimeLine/ | 0.0 |
dbfs:/results/ | results/ | 0.0 |
dbfs:/test/ | test/ | 0.0 |
dbfs:/tmp/ | tmp/ | 0.0 |
dbfs:/tmpdir/ | tmpdir/ | 0.0 |
dbfs:/user/ | user/ | 0.0 |
ls /FileStore
path | name | size |
---|---|---|
dbfs:/FileStore/DIGSUM-files/ | DIGSUM-files/ | 0.0 |
dbfs:/FileStore/datasets_magellan/ | datasets_magellan/ | 0.0 |
dbfs:/FileStore/epinions/ | epinions/ | 0.0 |
dbfs:/FileStore/import-stage/ | import-stage/ | 0.0 |
dbfs:/FileStore/jars/ | jars/ | 0.0 |
dbfs:/FileStore/plots/ | plots/ | 0.0 |
dbfs:/FileStore/shared_uploads/ | shared_uploads/ | 0.0 |
dbfs:/FileStore/simon_temp_files_feel_free_to_delete_any_time/ | simon_temp_files_feel_free_to_delete_any_time/ | 0.0 |
dbfs:/FileStore/tables/ | tables/ | 0.0 |
dbfs:/FileStore/timelinesOfInterest/ | timelinesOfInterest/ | 0.0 |
ls file:/databricks/driver
path | name | size |
---|---|---|
file:/databricks/driver/conf/ | conf/ | 4096.0 |
file:/databricks/driver/logs/ | logs/ | 4096.0 |
file:/databricks/driver/derby.log | derby.log | 733.0 |
file:/databricks/driver/ganglia/ | ganglia/ | 4096.0 |
file:/databricks/driver/eventlogs/ | eventlogs/ | 4096.0 |
//%fs mv file:///databricks/driver/epinions /FileStore/
%fs ls /FileStore/epinions/
path | name | size |
---|---|---|
dbfs:/FileStore/epinions/soc-sign-epinions.txt | soc-sign-epinions.txt | 1.1243141e7 |
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
// This import is needed to use the $-notation
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
import spark.implicits._
var df = spark.read.format("csv")
// .option("header", "true")
.option("inferSchema", "true")
.option("comment", "#")
.option("sep", "\t")
.load("/FileStore/epinions")
df: org.apache.spark.sql.DataFrame = [_c0: int, _c1: int ... 1 more field]
df.count()
res1: Long = 841372
df.rdd.getNumPartitions
res36: Int = 3
df.head(3)
res37: Array[org.apache.spark.sql.Row] = Array([0,1,-1], [1,128552,-1], [2,3,1])
df.printSchema()
root
|-- _c0: integer (nullable = true)
|-- _c1: integer (nullable = true)
|-- _c2: integer (nullable = true)
val newNames = Seq("src", "dst", "rela")
val e = df.toDF(newNames: _*)
newNames: Seq[String] = List(src, dst, rela)
e: org.apache.spark.sql.DataFrame = [src: int, dst: int ... 1 more field]
e.printSchema()
root
|-- src: integer (nullable = true)
|-- dst: integer (nullable = true)
|-- rela: integer (nullable = true)
// Vertex DataFrame
val v = spark.range(1, 131827).toDF("id")
v: org.apache.spark.sql.DataFrame = [id: bigint]
val g = GraphFrame(v, e)
g: org.graphframes.GraphFrame = GraphFrame(v:[id: bigint], e:[src: int, dst: int ... 1 more field])
g.edges.take(3)
res15: Array[org.apache.spark.sql.Row] = Array([0,1,-1], [1,128552,-1], [2,3,1])
// val results = g.triangleCount.run()
We can not make use of the convenient API triangleCount()
because it does not take the sign of edges into consideration. We need to write our own code to find triads.
First, a triad should be undirected, but our graph concists of only directed edges.
One strategy is to keep only bi-direction edges of the same sign. But we need to examine how large is the proportion of edges we will lose.
// Search for pairs of vertices with edges in both directions between them, i.e., find undirected or bidirected edges.
val pair = g.find("(a)-[e1]->(b); (b)-[e2]->(a)")
println(pair.count())
val filtered = pair.filter("e1.rela == e2.rela")
println(filtered.count())
259751
254345
pair: org.apache.spark.sql.DataFrame = [a: struct<id: bigint>, e1: struct<src: int, dst: int ... 1 more field> ... 2 more fields]
filtered: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: bigint>, e1: struct<src: int, dst: int ... 1 more field> ... 2 more fields]
Fortunately, we only lose a very small amount of edges.
It also makes sense for this dataset, because if A trusts B, then it is quite unlikely that B does not trust A.
In order to count different triads, first we have to find all triads.
val triad = g.find("(a)-[eab]->(b); (b)-[eba]->(a); (b)-[ebc]->(c); (c)-[ecb]->(b); (c)-[eca]->(a); (a)-[eac]->(c)")
println(triad.count())
3314925
triad: org.apache.spark.sql.DataFrame = [a: struct<id: bigint>, eab: struct<src: int, dst: int ... 1 more field> ... 7 more fields]
After finding all triads, we find each type by filtering.
val t111 = triad.filter("eab.rela = 1 AND eab.rela = ebc.rela AND ebc.rela = eca.rela")
println(t111.count())
3232357
t111: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: bigint>, eab: struct<src: int, dst: int ... 1 more field> ... 7 more fields]
val t000 = triad.filter("eab.rela = -1 AND eab.rela = ebc.rela AND ebc.rela = eca.rela")
println(t000.count())
1610
t000: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: bigint>, eab: struct<src: int, dst: int ... 1 more field> ... 7 more fields]
val t110 = triad.filter("eab.rela + ebc.rela + eca.rela = 1")
println(t110.count())
62634
t110: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: bigint>, eab: struct<src: int, dst: int ... 1 more field> ... 7 more fields]
val t001 = triad.filter("eab.rela + ebc.rela + eca.rela = -1")
println(t001.count())
18324
t001: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [a: struct<id: bigint>, eab: struct<src: int, dst: int ... 1 more field> ... 7 more fields]
val n111 = t111.count()
val n001 = t001.count()
val n000 = t000.count()
val n110 = t110.count()
val imbalanced = n000 + n110
val balanced = n111 + n001
n111: Long = 3232357
n001: Long = 18324
n000: Long = 1610
n110: Long = 62634
imbalanced: Long = 64244
balanced: Long = 3250681
As we can see, the number of balanced triads overwhelms the number of imbalanced ones, which verifies the effectiveness of structural balance theory.
Some tests about duplicated motifs
val g: GraphFrame = examples.Graphs.friends
g: org.graphframes.GraphFrame = GraphFrame(v:[id: string, name: string ... 1 more field], e:[src: string, dst: string ... 1 more field])
display(g.edges)
src | dst | relationship |
---|---|---|
a | b | friend |
b | c | follow |
c | b | follow |
f | c | follow |
e | f | follow |
e | d | friend |
d | a | friend |
a | e | friend |
val motifs = g.find("(a)-[e]->(b); (b)-[e2]->(a)")
motifs.show()
+----------------+--------------+----------------+--------------+
| a| e| b| e2|
+----------------+--------------+----------------+--------------+
| [b, Bob, 36]|[b, c, follow]|[c, Charlie, 30]|[c, b, follow]|
|[c, Charlie, 30]|[c, b, follow]| [b, Bob, 36]|[b, c, follow]|
+----------------+--------------+----------------+--------------+
motifs: org.apache.spark.sql.DataFrame = [a: struct<id: string, name: string ... 1 more field>, e: struct<src: string, dst: string ... 1 more field> ... 2 more fields]
As shown above, bi-direction edges are reported twice. Therefore, each triad is counted three times. However, this does not matter in our project, because the ratios between different triads remain the same.
Distributed Linear Algebra
** Authors: ** - Måns Williamson - Jonatan Vallin
This project consists of two parts. In the first part we consider the theory and algorithms for distributed singular value decomposition of matrices, whereas in the second part we implement a music recommendation system closely related to low rank matrix factorization.
The video presentation for this project can be found here.
Distributed singular value decomposition
This part of the project deals with distributed singular value decomposition. The singular value decomposition of a real matrix \(A\) is given by \[A= U S V^T,\]
where \(S\) is a diagonal matrix of size \(n\times n\) and \(U\) (\(m\times n\) ) and \(V\) (\(n\times n\)) are real matrices such that \(U^T U =I\) and \(V^T V=I\). (See for example wikipedia , MIT and WolframMathworld ). A standard way of computing this is to first compute the product \(A^T A= VDV^T\). The matrix S is then obtained by taking the square root of the diagonal of \(D\) and finally we obtain \(U\) by computing \(U = AV S^{-1}\).
When one has large matrices and wants to compute the SVD distributed one takes into account the structure of the matrix and choose an algorithm that takes advantage of this.
One particular case is when one wants to compute the singular value decomposition of a so called "tall and skinny" matrix \(A\). This means that the number of rows \(m\) is much larger than the number of columns \(n\). An example of where this is the case is the Audioscrobbler recommender system used by Last.fm . The typicall dataset will be a tall and skinny matrix where each row contains three entries; an identifier for a song, an identifier for a user and a player count (so each row tells us how many times a user has played a song).
We will look at an algorithm in spark for computing the SVD where one make use of the structure of the tall and skinny matrix \(A\). The algorithm has the following steps:
-
It is computationally expensive to compute the product \(A^T A\) so we compute this distributed (map-reduce).
-
\(A^T A\) is of size \(n\times n\) ( \(n\) is small) so we can compute \(V\) and \(S\) locally by computing the eigenvectors and -values of \(A^TA\).
-
We then compute \(U= AVS^{-1}\) as distributed matrix multiplication by broadcasting \(VS^{-1}\) to each partition and compute the multiplication with the rows of \(A\).
In the spark mllib library theres a package for distributed linear algebra (Data Types) and an object that we will use is the IndexedRow-object . This takes two parameters; a vector and an index that indicates on which row of the matrix the index is located. We can then create an RDD in spark of IndexedRow-objects. Below we use the matrix
\[A = \begin{pmatrix} 1 & 2 \\ 3& 4 \\ 0& 0\\0&0 \end{pmatrix} \] to test the algorithm on. We start by creating the matrix as an array of tuples. We then map each partittion (tuple) to a dense vector that we zip with its index (so we have a (vector,index)-tuple) that we use to create an IndexedRow. (It's worth mentioning that there is an implementation of SVD in Spark for RowMatrices - an RDD of rows of a matrix without indices).
//Import the necessary objects:
import org.apache.spark.mllib.linalg.distributed.IndexedRow
import org.apache.spark.mllib.linalg.Matrices
//Create the matrix A above as a dense matrix:
val Amatrix = Matrices.dense(4,2,Array(1,3,0,0,2,4,0,0))
//Zip each row of a with its index and map it to an indexed row object (x._2 is the index and x._1 the array).
//Once we have an IndexedRow r we can get the index and vector by calling r.index and r.vector
val A = sc.parallelize(Amatrix.rowIter.toArray.zipWithIndex.map(x=>new IndexedRow(x._2,x._1)))
A.take(2)
import org.apache.spark.mllib.linalg.distributed.IndexedRow
import org.apache.spark.mllib.linalg.Matrices
Amatrix: org.apache.spark.mllib.linalg.Matrix =
1.0 2.0
3.0 4.0
0.0 0.0
0.0 0.0
A: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.distributed.IndexedRow] = ParallelCollectionRDD[689] at parallelize at command-1767923094594942:13
res0: Array[org.apache.spark.mllib.linalg.distributed.IndexedRow] = Array(IndexedRow(0,[1.0,2.0]), IndexedRow(1,[3.0,4.0]))
The first part of the algorithm that is "expensive" is the computation of the product \(A^T A\) (we compute \(A^T A\) rather than \(A A^T\) since the former has the shape \(n \times n\) which we assume is small enough to fit on a local machine and \(A A^T\) is of size \(m\times m\) ) . We note that \[ \left( A^T A\right){j,k} = \sum{i=1}^m a_{ij} a_{ik}. \]
This means that we can compute \(A^T A\) by mapping a row (say the i:th row) \[a_i = \left(a_{i1}, \dots , a_{in} \right) \]
to all the products of its elements. We thus create a function that takes an IndexedRow \[a_i \] and maps it to key-value pairs \[ ((j,k), a_{ij} a_{ik}), 1\leq j \leq m, 1\leq k \leq n. \]
We then have an key-value RDD of ((Int,Int),Double)-tuples:
import scala.collection.mutable.ArrayBuffer
//Function that maps an indexed row (index,(a_1,...,a_n)) to ((j,k),a_j*a_k), j=1,..,n and k=1,...,n
def f(v: IndexedRow): Array[((Int,Int),Double)]={
var keyvaluepairs = ArrayBuffer[((Int,Int),Double)]()
for(j<-0 to v.vector.size-1){
for(k<-0 to v.vector.size-1){
keyvaluepairs.append(((j,k),v.vector(j)*v.vector(k)))
}
}
keyvaluepairs.toArray
}
//map M to key-value rdd where key =(j,k) and value = a_ij*a_ik.
//We use flatmap since we don't need to keep the row structure.
val keyvalRDD = A.flatMap(row =>f(row))
keyvalRDD.take(5)
We can now perform a reduceByKey-operation (join on \((j,k)\) ) and then sum over\[ ((j,k), a_{ij} a_{ik}) \] for all \(i\) to compute
\[ \left( A^T A\right){j,k} = \sum{i=1}^m a_{ij} a_{ik}. \]
We then have a key-value RDD of ((Int,Int),Double)-tuples, where the value is an entry in the matrix \(A\) and the key indicates on what position in the matrix it is located:
\[\left( (j,k), \left( A^T A\right)_{j,k} \right), 1\leq j \leq m, 1\leq k \leq n.\]
//Sum up all key-value pairs that have the same key (j,k) (corresponts to getting the element of A.T*A on the j:th row and k:th column).
val keyvalSum = keyvalRDD.reduceByKey((x,y)=>x+y)
keyvalSum.take(2)
We now make use of another object in the distributer linear algebra package in spark mllib; MatrixEntry . We map each key-value pair to a MatrixEntry-object (which has a row index, column index and a value). With this we can create a CoordinateMatrix . We can transform this to a RowMatrix that we finally collect.
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
import breeze.linalg.DenseMatrix
//map to matrix entries
val matrix = keyvalSum.map(el => MatrixEntry(el._1._1, el._1._2, el._2))
//Create a CoordinateMatrix
val mat = new CoordinateMatrix(matrix)
//Transform to RowMatrix and collect.
val ATArowmatrix = mat.toRowMatrix().rows.collect()
We now want to calculate the eigen values and eigen vectors of \(A^T A\) (locally) and in order to do this we transform it to a DenseMatrix (from the Breeze linear algebra package):
val m = mat.numRows()
val n = mat.numCols()
//Create an empty DenseMatrix (in which we will store the product A.T*A).
val ATA = DenseMatrix.zeros[Double](m.toInt,n.toInt)
//Each row will be a sparse vector. For each row we iterate over the non-zeros indices (foreachActive) and fill the i:th row of the ATA-matrix.
var i = 0
ATArowmatrix.foreach { vec =>
vec.foreachActive { case (index, value) =>
ATA(i, index) = value
}
i += 1
}
We compute the eigenvalues and eigenvectors. The matrix \(S\) in the SVD is obtained by computing the square root of the eigenvalues and inserting them in a diagonal matrix and the matrix \(V\) are the eigenvectors:
import scala.collection.mutable.ArrayBuffer
import breeze.linalg._, eigSym.EigSym
//lambda is a vector with the eigenvalues of A.T*A and evs the eigenvector matrix.
val EigSym(lambda, evs) = eigSym(ATA)
//det(evs)
val w=lambda.map(x=>if(x >0) Math.sqrt(x) else 0) //square root of eigen values to compute the S matrix.
val S =diag(w)
val V =evs
In the last step we need to compute \[U = AVS^{-1}.\]
Since both \(V\) and \(S^{-1}\) are of size \(n\times n\) (and \(n\) is relatively small) we can compute the product \(VS^{-1}\) locally and then broadcast it to each partition of \(A\) (which is an RDD of IndexedRow).
//Compute the inverse of S.
val Sinv = S.map(x=>if(x==0) 0 else 1/x) //invert the diagonal matrix.
//Compute the product of V and inverse of S.
val M = V*Sinv
//Broadcast to the spark context.
sc.broadcast(M)
We define a function that we can use to multiply an IndexedRow with a DenseMatrix on the left. We use this to map each row of \(A\) to its product with \(VS^{-1}\):
import org.apache.spark.mllib.linalg.distributed.{IndexedRowMatrix}
//Function that multiplies an indexedRow object with a DenseMatrix (from breeze.linalg.DenseMatrix) on the left and returns an Array.
def prod(u: IndexedRow, m: DenseMatrix[Double]): Array[Double]={
var w = ArrayBuffer[Double]()
for(i<-0 to m.cols-1){
var x: Double =0
for(j<-0 to m.rows-1){
x=x+m(j,i)*u.vector(j)
}
w.append(x)
}
w.toArray
}
//COmpute the matrix product by multiplying each indexed row with the Matrix M (and then collect the result)
val Urows =A.map(row => prod(row,M)).collect()
//Create a dense matrix U with the rows.
val U = DenseMatrix(Urows:_*)
Finally we print the product \(USV^T\) and check that it corresponds to \(A\)
//Print the product USV.t to check that it equals A:
println(U*S*V.t)
Music Recommendation System
In general, recommender systems are algorithms designed for suggesting relevant items/products to users. In the last decades they have gained much interest because of the potential of increasing the user experience at the same time as generating more profit to companies. Nowadays, these systems can be found in several well-known services like Netfilx, Amazon, YouTube and Spotify. As an indicator of how valuable these algorithms are for such companies: back in 2006 Netflix announced the open Netflix Prize Competition for the best algorithm to predict users movie ratings based on collected data. The winning team with the best algorithm improving the state-of-the-art performance with at least 10% was promised an award of 1 000 000$. In this notebook we are going to develope a system for recommending musical artists to users given their listening history. We will implement a model related to matrix factorization discussed in the preceeding chapter.
Problem Setting
We let \(U\) be the set containing all \(m\) users and let \(I\) be the set containing all \(n\) available items. Now, we introduce the matrix \(R\in \mathbb{R}^{m \times n}\) with elements \(r{_u}{_i}\) as values encoding possible interactions between users \(u\in U\) and items \(i \in I\). This matrix is often very sparse because of the huge number of possible user-item interactions never observed. Depending on the type of information encoded in the interaction matrix \(R\) one usally refers to either explicit or implicit data.
For explicit data, \(r{_u}{_i}\) contains information directly related to user \(u\)'s preference for item \(i\), e.g movie ratings. In the case of implicit data, \(r{_u}{_i}\) contains indirect information of a user's preference for an item by observing past user behavior. Examples could be the number of times a user played a song or visited a webpage. Note that in the implicit case we are lacking information about items that the user dislikes because e.g if a user of a music service has not played any songs from a particular artist it could either mean that the user simply doesn't like that artist or that the user hasn't encountered that artist before but would potentially like it if the user had discovered the artist.
Given the observations in the interaction matrix \(R\), we would like our model to suggest unseen items relevant to the users.
Collaborative Filtering
Broadly speaking, recommender algorithms can be divided into two categories: content based and collaborative filtering (CF). Here, we will just focus on collaborative filtering which is a technique using patterns of user-item interactions and discarding any additional information about the users or items themselves. It is based on the assumption that if a user similar to you likes an item, then there is a high probability that you also like that particular item. In other words, similar users have similar tastes.
There are different approaches to CF, and we have chosen a laten factor model approach inspired by low-rank SVD factorization of matrices. The aim is to uncover latent features explaining the observed \(r{_u}{_i}\) values. Each user \(u\) is associated to a user-feature vector \(x{_u}\in \mathbb{R}^f\) and similarly each item \(i\) is associated to an item-feature vector \(y{_i} \in \mathbb{R}^f\). Then we want the dot products \(x{_u}^Ty{_i}\) to explain the observed \(r{_u}{_i}\) values. With all user- and item-features at hand in the latent space \(\mathbb{R}^f\) we can estimate a user \(u\)'s preference for an unseen item \(j\) by simply computing \(x{_u}^Ty{_j}\).
We transorm the problem of finding the vectors \(x{_u}, y{_i}\) into a minimization problem as suggested in the paper Collaborative Filtering for Implicit Feedback Datasets. First we introduce the binarized quantitiy \(p{_u}{_i}\) defined by:
\[p_{ui}=\begin{cases}1 \text{ if } r_{ui}>0, \\ 0 \text{ if } r_{ui}=0,\end{cases}\] encoding whether user \(u\) has interacted with and supposedly likes item \(i\). However, our confidence that user \(u\) likes item \(i\) given that \(p{_u}{_i}=1\) should vary with the actual observed \(r{_u}{_i}\) value. As an example, we would be more confident that a user likes an artist he/she has listened to hundreds of times than an artist played by the user only once. Therefore we introduce the confidence \(c{_u}{_i}\):
\[c_{ui}=1+\alpha r_{ui}\],
where \(\alpha\) is a hyperparameter. From the above equation we can see that the confidence for non observed user-item interaction defaults to 1. Now we formulize the minimization problem:
\[\min_{X,Y}\sum_{u\in U,i \in I}c_{ui}(p_{ui}-x_u^Ty_i)^2+\lambda(\sum_{u\in U}||x_u||^2+\sum_{i\in I}||y_i||^2),\] where \(X,Y\) are matrices holding the \(x_u,y_i\) as columns respectively. In addition, we also have a regularization term to avoid overfitting. Notice that this is closely related to regularized low-rank matrix factorization of the matrix \(P\) with \(p{_u}{_i}\) as elements. We want to approximate \(P\approx X^TY\) where both \(X,Y\) have low rank (\(f\)). Because of the weights \(c{_u}{_i}\) we care more about recover entries in \(P\) with high confidence, directly related to the observations.
Dataset
For this application we use a dataset containing user-artist listening information from the online music service Last.fm.
One of the available files contains triplets (userID
artistID
play_count
) describing the number of times a user has played an artist. Another file contains tuples (artistID
name
) mapping the artistID:s to actual artist names. There are a total of 92834 (userID
artistID
play_count
) triplets containing 1892 unique userID
s and 17632 unique artistID
s. Since the observations in the dataset do not contain direct information about artist preferences, this is an implicit dataset as discussed erlier. Based on this dataset we want our model to give artist recommendations to the users.
import spark.implicits._
import org.apache.spark.sql.functions._
import spark.implicits._
import org.apache.spark.sql.functions._
Lets load the data!
// Load the (userID, artistID, play_count) triplets.
val fileName_data="dbfs:/FileStore/tables/project4/hetrec2011-lastfm-2k/user_artists.dat"
val df_raw = spark.read.format("csv").option("header", "true").option("delimiter", "\t").option("inferSchema","true").load(fileName_data).withColumnRenamed("weight","play_count")
df_raw.cache()
df_raw.orderBy(rand()).show(5)
// Load the (artistID, name) tuples.
val fileName_names="dbfs:/FileStore/tables/project4/hetrec2011-lastfm-2k/artists.dat"
val artist_names = spark.read.format("csv").option("header", "true").option("delimiter", "\t").option("inferSchema","true").load(fileName_names).withColumnRenamed("id","artistID").select("artistID","name")
artist_names.cache()
artist_names.show(5)
+------+--------+----------+
|userID|artistID|play_count|
+------+--------+----------+
| 1553| 2478| 171|
| 65| 1858| 254|
| 496| 9| 161|
| 304| 163| 19|
| 747| 507| 626|
+------+--------+----------+
only showing top 5 rows
+--------+-----------------+
|artistID| name|
+--------+-----------------+
| 1| MALICE MIZER|
| 2| Diary of Dreams|
| 3|Carpathian Forest|
| 4| Moi dix Mois|
| 5| Bella Morte|
+--------+-----------------+
only showing top 5 rows
fileName_data: String = dbfs:/FileStore/tables/project4/hetrec2011-lastfm-2k/user_artists.dat
df_raw: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 1 more field]
fileName_names: String = dbfs:/FileStore/tables/project4/hetrec2011-lastfm-2k/artists.dat
artist_names: org.apache.spark.sql.DataFrame = [artistID: int, name: string]
We print some statistics and visualize the raw data.
val n_data = df_raw.count().asInstanceOf[Long].floatValue(); // Number of observations
val n_users = df_raw.agg(countDistinct("userID")).collect()(0)(0).asInstanceOf[Long].floatValue(); // Number of unique users
val n_artists = df_raw.agg(countDistinct("artistID")).collect()(0)(0).asInstanceOf[Long].floatValue(); // Number of unique artists
val sparsity = 1-n_data/(n_users*n_artists) //Sparsity of the data
println("Number of data points: " + n_data)
println("Number of users: " + n_users)
println("Number of artists: " + n_artists)
print("Sparsity:" + sparsity.toString + "\n")
Number of data points: 92834.0
Number of users: 1892.0
Number of artists: 17632.0
Sparsity:0.9972172
n_data: Float = 92834.0
n_users: Float = 1892.0
n_artists: Float = 17632.0
sparsity: Float = 0.9972172
Below we see that the play count variable tends to vary over a large range. From 1 to over 350 000.
display(df_raw.select("play_count"))
display(df_raw.select("play_count").filter($"play_count"<1000))
We count the total plays and number of unique listeners for each artist.
// Compute some statistics for the artists.
val artist_data_raw = df_raw.groupBy("artistID").agg(count("artistID") as "unique_users",
sum("play_count") as "total_plays_artist")
artist_data_raw.sort(desc("total_plays_artist")).join(artist_names,"artistID").show(5) // Top artists based on total plays
artist_data_raw.sort(desc("unique_users")).join(artist_names,"artistID").show(5) // Top artists based on number of unique listener
+--------+------------+------------------+------------------+
|artistID|unique_users|total_plays_artist| name|
+--------+------------+------------------+------------------+
| 289| 522| 2393140| Britney Spears|
| 72| 282| 1301308| Depeche Mode|
| 89| 611| 1291387| Lady Gaga|
| 292| 407| 1058405|Christina Aguilera|
| 498| 399| 963449| Paramore|
+--------+------------+------------------+------------------+
only showing top 5 rows
+--------+------------+------------------+--------------+
|artistID|unique_users|total_plays_artist| name|
+--------+------------+------------------+--------------+
| 89| 611| 1291387| Lady Gaga|
| 289| 522| 2393140|Britney Spears|
| 288| 484| 905423| Rihanna|
| 227| 480| 662116| The Beatles|
| 300| 473| 532545| Katy Perry|
+--------+------------+------------------+--------------+
only showing top 5 rows
artist_data_raw: org.apache.spark.sql.DataFrame = [artistID: int, unique_users: bigint ... 1 more field]
display(artist_data_raw.select("total_plays_artist"))
display(artist_data_raw.select("total_plays_artist").filter($"total_plays_artist"<10000))
display(artist_data_raw.select("unique_users"))
We count the total plays and the number of unique artists each user has listened to.
// Compute statistics for each user.
val user_data_raw = df_raw.groupBy("userID").agg(count("userID") as "unique_artists",
sum("play_count") as "total_plays_user")
user_data_raw.sort(desc("total_plays_user")).show(5) // Show users with most total plays
+------+--------------+----------------+
|userID|unique_artists|total_plays_user|
+------+--------------+----------------+
| 757| 50| 480039|
| 2000| 50| 468409|
| 1418| 50| 416349|
| 1642| 50| 388251|
| 1094| 50| 379125|
+------+--------------+----------------+
only showing top 5 rows
user_data_raw: org.apache.spark.sql.DataFrame = [userID: int, unique_artists: bigint ... 1 more field]
display(user_data_raw.select("total_plays_user"))
Now we join all statistics into a single dataframe.
// Merge all statistics and data into a single dataframe.
val df_joined = df_raw.join(artist_data_raw, "artistID").join(user_data_raw, "userID").join(artist_names,"artistID").select("userID", "artistID","play_count", "name", "unique_artists","unique_users", "total_plays_user","total_plays_artist")
df_joined.show(5)
+------+--------+----------+-------------+--------------+------------+----------------+------------------+
|userID|artistID|play_count| name|unique_artists|unique_users|total_plays_user|total_plays_artist|
+------+--------+----------+-------------+--------------+------------+----------------+------------------+
| 2| 51| 13883| Duran Duran| 50| 111| 168737| 348919|
| 2| 52| 11690| Morcheeba| 50| 23| 168737| 18787|
| 2| 53| 11351| Air| 50| 75| 168737| 44230|
| 2| 54| 10300| Hooverphonic| 50| 18| 168737| 15927|
| 2| 55| 8983|Kylie Minogue| 50| 298| 168737| 449292|
+------+--------+----------+-------------+--------------+------------+----------------+------------------+
only showing top 5 rows
df_joined: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 6 more fields]
Collaborative filtering models suffer from the cold-start problem, meaning they have difficulties in making inference of new users or items. Therefore we will filter out artists with fewer than 20 unique listeners and users that have listened to less than 5 artists.
// Remove artists with less than 20 unique users, and recompute the statistics.
val df_filtered_1 = df_joined.filter($"unique_users">=20).select(df_joined("userID"),df_joined("artistID"),df_joined("play_count"))
val artist_data_1 = df_filtered_1.groupBy("artistID").agg(count("artistID") as "unique_users",
sum("play_count") as "total_plays_artist")
.withColumnRenamed("artistID","artistID_1")
val user_data_1 = df_filtered_1.groupBy("userID").agg(count("userID") as "unique_artists",
sum("play_count") as "total_plays_user")
.withColumnRenamed("userID","userID_1")
val df_joined_filtered_1 = df_filtered_1.join(artist_data_1, artist_data_1("artistID_1")===df_filtered_1("artistID"))
.join(user_data_1, user_data_1("userID_1")===df_filtered_1("userID"))
.select(df_filtered_1("userID"),df_filtered_1("artistID"),df_filtered_1("play_count"),
artist_data_1("unique_users"),artist_data_1("total_plays_artist"),
user_data_1("unique_artists"), user_data_1("total_plays_user"))
// Remove users with less than 5 unique users, and recompute the statistics.
val df_filtered_2 = df_joined_filtered_1.filter($"unique_artists">=5).select(df_filtered_1("userID"),df_filtered_1("artistID"),
df_filtered_1("play_count"))
val artist_data = df_filtered_2.groupBy("artistID").agg(count("artistID") as "unique_users",
sum("play_count") as "total_plays_artist")
.withColumnRenamed("artistID","artistID_2")
val user_data = df_filtered_2.groupBy("userID").agg(count("userID") as "unique_artists",
sum("play_count") as "total_plays_user")
.withColumnRenamed("userID","userID_2")
// Now we collect our new filtered data.
val user_artist_data = df_filtered_2.join(artist_data, artist_data("artistID_2")===df_filtered_2("artistID"))
.join(user_data, user_data("userID_2")===df_filtered_2("userID"))
.select("userID","artistID","play_count","unique_users","total_plays_artist","unique_artists","total_plays_user")
user_artist_data.show(5)
+------+--------+----------+------------+------------------+--------------+----------------+
|userID|artistID|play_count|unique_users|total_plays_artist|unique_artists|total_plays_user|
+------+--------+----------+------------+------------------+--------------+----------------+
| 148| 1118| 214| 62| 53915| 12| 3026|
| 148| 1206| 245| 50| 32827| 12| 3026|
| 148| 206| 214| 83| 36944| 12| 3026|
| 148| 233| 170| 138| 160317| 12| 3026|
| 148| 429| 430| 162| 91740| 12| 3026|
+------+--------+----------+------------+------------------+--------------+----------------+
only showing top 5 rows
df_filtered_1: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 1 more field]
artist_data_1: org.apache.spark.sql.DataFrame = [artistID_1: int, unique_users: bigint ... 1 more field]
user_data_1: org.apache.spark.sql.DataFrame = [userID_1: int, unique_artists: bigint ... 1 more field]
df_joined_filtered_1: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 5 more fields]
df_filtered_2: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 1 more field]
artist_data: org.apache.spark.sql.DataFrame = [artistID_2: int, unique_users: bigint ... 1 more field]
user_data: org.apache.spark.sql.DataFrame = [userID_2: int, unique_artists: bigint ... 1 more field]
user_artist_data: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 5 more fields]
Below we can see that we have reduced the amount of data. The number of users are quite similar as before but the number of artists is significantly reduced indicating there were many artists in the raw data only played by a small fraction of users.
val n_data_new = user_artist_data.count().asInstanceOf[Long].floatValue(); // Number of observations
val n_users_new = user_artist_data.agg(countDistinct("userID")).collect()(0)(0).asInstanceOf[Long].floatValue(); // Number of unique users
val n_artists_new = user_artist_data.agg(countDistinct("artistID")).collect()(0)(0).asInstanceOf[Long].floatValue(); // Number of unique artists
val sparsity_new = 1-n_data/(n_users*n_artists) // Compute the sparsity
println("Number of data points: " + n_data_new)
println("Number of users: " + n_users_new)
println("Number of artists: " + n_artists_new)
print("Sparsity:" + sparsity.toString + "\n")
Number of data points: 53114.0
Number of users: 1819.0
Number of artists: 804.0
Sparsity:0.9972172
n_data_new: Float = 53114.0
n_users_new: Float = 1819.0
n_artists_new: Float = 804.0
sparsity_new: Float = 0.9972172
display(user_artist_data.select("play_count"))
display(artist_data.select("total_plays_artist"))
display(artist_data.select("unique_users"))
The total number of plays are correlated to the number of unique listeners (as expected) as illustrated in the figure below.
display(artist_data)
In the paper mentioned above, the authors suggest scaling the \(r{_u}{_i}\) if the values tends to vary over large range as in our case. They presented a log scaling scheme but after testing different approaches we found that scaling by taking the square root of the observed play counts (thus reducing the range) worked best.
//Scaling the play_counts
val user_artist_data_scaled = user_artist_data
.withColumn("scaled_value", sqrt(col("play_count"))).drop("play_count").withColumnRenamed("scaled_value","play_count")
user_artist_data_scaled.show(5)
+------+--------+------------+------------------+--------------+----------------+------------------+
|userID|artistID|unique_users|total_plays_artist|unique_artists|total_plays_user| play_count|
+------+--------+------------+------------------+--------------+----------------+------------------+
| 148| 436| 124| 88270| 12| 3026| 18.33030277982336|
| 148| 1206| 50| 32827| 12| 3026|15.652475842498529|
| 148| 512| 67| 62933| 12| 3026|15.620499351813308|
| 148| 429| 162| 91740| 12| 3026| 20.73644135332772|
| 148| 1943| 25| 13035| 12| 3026| 17.26267650163207|
+------+--------+------------+------------------+--------------+----------------+------------------+
only showing top 5 rows
user_artist_data_scaled: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 5 more fields]
Plotting the scaled data. We ca see that the range is smaller after the scaling.
display(user_artist_data_scaled.select("play_count"))
display(user_artist_data_scaled.select("play_count"))
We split our scaled dataset into training, validation and test sets.
// Split data into training, validation and test sets.
val Array(training_set, validation_set, test_set) = user_artist_data_scaled.select("userID","artistID","play_count").randomSplit(Array(0.6, 0.2, 0.2))
training_set.cache()
validation_set.cache()
test_set.cache()
training_set: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [userID: int, artistID: int ... 1 more field]
validation_set: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [userID: int, artistID: int ... 1 more field]
test_set: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [userID: int, artistID: int ... 1 more field]
res109: test_set.type = [userID: int, artistID: int ... 1 more field]
Alternating Least Squares
By looking at the minimization problem again, we see that if one of \(X\) and \(Y\) is fixed, the cost function is just quadratic and hence the minimum can be computed easily. Thus, we can alternate between re-computing the user and artist features while holding the other one fixed. It turns out that the over all const function is guaranteed to decrease in each iteration. This procedure is called Alternating Least Squares and is available in Spark. \[\min_{X,Y}\sum_{u\in U,i \in I}c_{ui}(p_{ui}-x_u^Ty_i)^2+\lambda(\sum_{u\in U}||x_u||^2+\sum_{i\in I}||y_i||^2),\]
The solution to the respective quadratic problems are:
\[x_u=(Y^TC^uY+\lambda Id )^{-1}Y^TC^up(u) \quad \forall u\in U,\] \[y_i=(X^TC^iX+\lambda Id )^{-1}X^TC^ip(i) \quad \forall i\in I,\]
where \(C^u, C^i\) are a diagonal matrices with diagonal entries \(c{_u}{_i}\) \(i \in I\) and \(c{_u}{_i}\) \(u \in U\) respectively. The \(p(u)\) and \(p(i)\) are vectors containing all binarized user and artist observations for user \(u\) and artist \(i\) respectively. The computational bottlneck is to compute the \(Y^TC^uY\) (require time \(O(f^2n)\) for each user). However, we can rewrite the product as \(Y^TC^uY=Y^TY+Y^T(C^u-I)Y\) and now we see that the term \(Y^TY\) does not depend on \(u\) and that \((C^u-I)\) will only have a number of non-zero entries equal to the number of artists user \(u\) has interacted with (which is usually much smaller than the total number of artists). Hence, that representation is much more beneficial computationally. A similar approach can be applied to \(X^TC^iX\). The matrix inversions need to be done on matrices of size \(f \times f\) where \(f\) is the dimension of the latent feature space and thus relatively small compared to \(m,n\).
When we have all the user and artist features we can produce a recommendation list of artist for user \(u\) by taking the dot products \(x{_u}^Ty{_i}\) for all artists and arrange them in a list in descending order with respect to these computed values.
Evaluation
One approach to measure the performance of the model would be to measure the RMSE:
\[\sqrt{\frac{1}{\#\text{observations}}\sum_{u, i}(p_{ui}^t-x_u^Ty_i)^2},\] where \(p_{ui}^t\) is the binarized observations from the test set. However, this metric is not very suitable for this particular application since for the zero entries of \(p^t{_u}{_i}\) we don't know if the user dislikes the artist or just hasn't discovered it. In the paper they suggest the mean percentile rank metric:
\[\overline{rank}=\frac{\sum_{u, i}r^t_{ui}rank_{ui}}{\sum_{u, i} r^t_{ui}},\] where \(rank_{ui}\) is the percentile rank of artist \(i\) in the produced recommendation list for user \(u\). Hence if artist \(j\) is in the first place in the list for user \(u\) we get that \(rank{_u}{_j}=0%\) and if it is in the last place we get \(rank{_u}{_j}=100%\). Thus, this metric is an weighted average of the percentiles of the artists the users have listened to. If user \(u\) has listened to artist \(j\) many times we have a large \(r{_u}{_j}\) value, but if the artist is ranked very low in the recommendation list for this user, it will increase the value of \(\overline{rank}\) drastically. If the model instead ranks this artist correctly in the top, the product \(r{_u}{_j}rank{_u}{_j}\) will get small. Hence, low values of \(\overline{rank}\) is desired.
Unfortunately, the \(\overline{rank}\) metric is not implemented in Spark yet, so below we have written our own function for computing it given the ranked artist lists for each user. We also remove an artist from the recommendation list for a user if we have observed that the user listened to that artist in the training data. This eliminates the easy recommendation, that is, recommending the same artists we know that the user has already listened to.
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
// Function for computing the mean rank metric.
// Input:
// - prediction_scores_new: DataFrame with userIDs and corresponding recommendation lists.
// - training_set: DataFrame with observations in training set
// - validation_set: DataFrame with the observations needed for the evaluation of the metric.
// Output: Float corresponind to the mean_rank score.
def eval_model(predictions_scores_new: DataFrame, training_set: DataFrame, validation_set: DataFrame) : Float = {
val predictions_scores = predictions_scores_new.withColumnRenamed("userID","userID_new") // Avoinding duplicate column names.
val recommendations = predictions_scores.withColumn("recommendations", explode($"recommendations")) // Rearrange the recommendation lists.
.select("userID_new","recommendations.artistID", "recommendations.rating")
val recommendations_filtered = recommendations.join(training_set, training_set("userID")===recommendations("userID_new") && training_set("artistID")===recommendations("artistID"), "leftanti") // Erase artists appearing in the training for each user.
// Compute ranking percentiles.
val recommendations_percentiles = recommendations_filtered.withColumn("rank",percent_rank()
.over(Window.partitionBy("userID_new").orderBy(desc("rating"))))
// Store everything in single DataFrame.
val table_data = recommendations_percentiles.join(validation_set, recommendations_percentiles("userID_new")===validation_set("userID") && recommendations_percentiles("artistID")===validation_set("artistID"))
// Compute the sum in the numerator for the metric.
val numerator = table_data.withColumn("ru1rankui", $"rank"*$"play_count"*100.0)
.agg(sum("ru1rankui"))
.collect()(0)(0).asInstanceOf[Double]
// Compute the sum in the denominator for the metric.
val denumerator = table_data.agg(sum("play_count"))
.collect()(0)(0)
.asInstanceOf[Double]
// Compute the mean percentile rank.
val rank_score = numerator/denumerator
rank_score.toFloat
}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
eval_model: (predictions_scores_new: org.apache.spark.sql.DataFrame, training_set: org.apache.spark.sql.DataFrame, validation_set: org.apache.spark.sql.DataFrame)Float
Now we import the ALS module from Spark and start the training. We perform a grid search over the hyper-parameters: the latent dimension \(f\), confidence parameter \(\alpha\) and regularization parameter \(\lambda\). We choose the parameter combinations based on the performance on the validation set.
import org.apache.spark.ml.recommendation.ALS
// Number of iterations in the ALS algorithm
val numIter = 10
val ranks = List(10,50,100,150) // Dimension of latent feature space
val lambdas=List(0.1, 1.0, 2.0) // Regularization parameter
val alphas=List(0.5, 1.0, 5.0) // Confidence parameter
// Loop over all parameter combinations
for ( alpha <- alphas ){
for ( lambda <- lambdas ){
for ( rank <- ranks ){
val als = new ALS()
.setRank(rank)
.setMaxIter(numIter)
.setRegParam(lambda)
.setUserCol("userID")
.setItemCol("artistID")
.setRatingCol("play_count")
.setImplicitPrefs(true) // Indicate we have implicit data
.setAlpha(alpha)
.setNonnegative(true) // Constrain to non-negative values
// Fit the model
val model = als.fit(training_set)
model.setColdStartStrategy("drop") // This is to ensure we handle unseen users or unseen artist saftely during the prediction.
.setUserCol("userID")
.setItemCol("artistID")
// Generate the recommendations
val predictions_scores = model.recommendForUserSubset(validation_set,n_artists_new.toInt)
// Evaluate the model
println("rank=" + rank + ", alpha=" + alpha + ", lambda=" + lambda + ", mean_rank=" + eval_model(predictions_scores, training_set, validation_set))
}
}
}
We get our final model by choosing \(f=150, \alpha=0.5\) and \(\lambda=2.0\) train the model again and evaluating it on the test set. We observe a test error of 7.75 %.
// Retrain the best model.
val numIter_final=10
val rank_final=150
val alpha_final=0.5
val lambda_final=2.0
val als_final = new ALS()
.setRank(rank_final)
.setMaxIter(numIter_final)
.setRegParam(lambda_final)
.setUserCol("userID")
.setItemCol("artistID")
.setRatingCol("play_count")
.setImplicitPrefs(true)
.setAlpha(alpha_final)
.setNonnegative(true)
val model_final = als_final.fit(training_set)
model_final.setColdStartStrategy("drop")
.setUserCol("userID")
.setItemCol("artistID")
// Evaluate on the validation set.
val predictions_scores_val = model_final.recommendForUserSubset(validation_set,n_artists_new.toInt)
println("Validation set: mean_rank=" + eval_model(predictions_scores_val, training_set, validation_set))
// Evaluate on the test set.
val predictions_scores_test = model_final.recommendForUserSubset(test_set,n_artists_new.toInt)
println("Test set: mean_rank=" + eval_model(predictions_scores_val, training_set, test_set))
Validation set: mean_rank=7.7979865
Test set: mean_rank=7.75016
numIter_final: Int = 10
rank_final: Int = 150
alpha_final: Double = 0.5
lambda_final: Double = 2.0
als_final: org.apache.spark.ml.recommendation.ALS = als_f778f6cc23db
model_final: org.apache.spark.ml.recommendation.ALSModel = als_f778f6cc23db
predictions_scores_val: org.apache.spark.sql.DataFrame = [userID: int, recommendations: array<struct<artistID:int,rating:float>>]
predictions_scores_test: org.apache.spark.sql.DataFrame = [userID: int, recommendations: array<struct<artistID:int,rating:float>>]
Model Comparison
We compare our model with two naive ones.
Random Recommendations: First we just produce a ranom recommendation list for each user and evaluate the metric. Note that for a random ranking the expected ranking percentile for an artist would be 50%, expected value of the mean percentile rank should be: \(\mathbb{E}(\overline{rank})=\mathbb{E}(\frac{\sum{_u}{_i}r^t{_u}{_i}rank{_u}{_i}}{\sum{_u}{_i} r^t{_u}{_i}} ) = \frac{\sum{_u}{_i}r^t{_u}{_i}\mathbb{E}(rank{_u}{_i})}{\sum{_u}{_i} r^t{_u}{_i}}= \frac{\sum{_u}{_i}r^t{_u}{_i}\cdot 0.5}{\sum{_u}{_i} r^t{_u}{_i}}=0.5\) for this random model.
case class Rating(artistID: Int, rating: Float) // Simple class for getting the recommendations in suitable form.
// Generating random array of artistIDs.
val random = artist_data.select("artistID_2").distinct().orderBy(rand()).withColumn("idx",monotonically_increasing_id)
.withColumn("rownumber",row_number.over(Window.orderBy(desc("idx")))).drop("idx").sort(desc("rownumber"))
.collect.map(row =>Rating(row.getInt(0),row.getInt(1).toFloat))
val test_users = test_set.select("userID").distinct()
//Append the arrays to DataFrame.
val prediction_scores = user_artist_data.select("userID").distinct().withColumn("recommendations",typedLit(random))
.join(test_users,"userID")
The actual value we get is \(\overline{rank}\approx 50.86 %\) which agrees with the above reasoning.
println("Random_model: mean_rank=" + eval_model(prediction_scores, training_set, test_set))
Random_model: mean_rank=50.860817
Popular Recommendations: We recommend each user the list of artist sorted by the number of total plays in the training dataset. Hence the list with the over all most popular artist will be presented as the recommendations independent of the user. Hence, this is not personalized recommenations.
//Generating arrays of artistIDs w.r.t most plays.
val most_popular = artist_data.select("artistID_2", "total_plays_artist").sort(desc("total_plays_artist"))
.collect.map(row =>Rating(row.getInt(0),row.getLong(1).toFloat))
val test_users = test_set.select("userID").distinct()
//Append the arrays to DataFrame.
val prediction_scores = user_artist_data.select("userID").distinct().withColumn("recommendations",typedLit(most_popular))
.join(test_users,"userID")
For this model we get \(\overline{rank}\approx 24.6 %\) which is better than the random one but much worse than our ALS model that got \(\overline{rank}\approx 7.75 %\)
println("Popular_model: mean_rank=" + eval_model(prediction_scores, training_set, test_set))
Popular_model: mean_rank=24.553421
Below we define one functions for presenting a users top artists based on observations in the train set and recommended undiscovered artists generated by our model.
import org.apache.spark.ml.recommendation.ALSModel
// Function for showing the favorit artists for a given user based on the training set.
// Input:
// - userID: Int, the id of the user.
// - n: Int, number of top artists that should be presented.
// - user_artist_data: DataFrame with observations.
// - artist_names: Dataframe mapping artistIDs to actual artist names
// Output:
// - DataFrame with the users top artists
def userHistory(userID: Int, n: Int, user_artist_data: DataFrame, artist_names: DataFrame): DataFrame = {
// Filter the userID and sort the artists w.r.t the play count. Append the actual artist names.
val data = user_artist_data.filter($"userID"===userID).sort(desc("play_count")).join(artist_names, "artistID")
data.select("userID","artistID","name").show(n)
data.select("userID","artistID","name")
}
// Function for presenting recommended artist for a user.
// Input:
// - Model: ALSModel, the trained model
// - userID: DataFrame, with userID
// - n: Int, number of top artists that should be presented.
// - training_set: DataFrame used during the training.
// - artist_names: Dataframe mapping artistIDs to actual artist names
// Output:
// - DataFrame with the users recommended artists
def recommendToUser(model: ALSModel, userID: DataFrame, n: Int, training_set: DataFrame, artist_names: DataFrame) : DataFrame = {
// Generate recommendations using the model.
val recommendations = model.recommendForUserSubset(userID, n_artists_new.toInt).withColumn("recommendations", explode($"recommendations"))
.select("userID","recommendations.artistID", "recommendations.rating").join(artist_names, "artistID").select("userID","artistID","name","rating")
// Remove possible artists observed in the training set
recommendations.join(training_set,training_set("userID")===recommendations("userID") && training_set("artistID")===recommendations("artistID"),"leftanti")
}
import org.apache.spark.ml.recommendation.ALSModel
userHistory: (userID: Int, n: Int, user_artist_data: org.apache.spark.sql.DataFrame, artist_names: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
recommendToUser: (model: org.apache.spark.ml.recommendation.ALSModel, userID: org.apache.spark.sql.DataFrame, n: Int, training_set: org.apache.spark.sql.DataFrame, artist_names: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
Let's generate some recommenations for a user.
println("Listening history:")
// Print top 5 artists for userID 302
val sub_data = userHistory(302, 5, training_set, artist_names)
// Generate top 5 recommendations of undiscovered artists,
val recommendations = recommendToUser(model_final, sub_data, 5, training_set, artist_names)
println("Recommendations:")
recommendations.show(5)
Listening history:
+------+--------+--------------+
|userID|artistID| name|
+------+--------+--------------+
| 302| 55| Kylie Minogue|
| 302| 89| Lady Gaga|
| 302| 265| Céline Dion|
| 302| 288| Rihanna|
| 302| 299|Jennifer Lopez|
+------+--------+--------------+
only showing top 5 rows
Recommendations:
+------+--------+------------------+----------+
|userID|artistID| name| rating|
+------+--------+------------------+----------+
| 302| 289| Britney Spears|0.88509434|
| 302| 292|Christina Aguilera| 0.8353728|
| 302| 300| Katy Perry| 0.7862937|
| 302| 67| Madonna| 0.7838166|
| 302| 295| Beyoncé|0.76221865|
+------+--------+------------------+----------+
only showing top 5 rows
sub_data: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 1 more field]
recommendations: org.apache.spark.sql.DataFrame = [userID: int, artistID: int ... 2 more fields]
Wikipedia analysis using Latent Dirichlet Allocation (LDA)
Authors: Axel Berg, Johan Grönqvist, Jens Gulin
Completed: 2021-01-13 Edited: 2021-01-25
Introduction
As part of the course assignment to set up a scalable pipeline, we run topic analysis on Wikipedia articles. Latent Dirichlet Allocation (LDA) extracts topics from the corpus and we use those to assign each article to the most covered topic. As a proof-of-concept system, we make a simple recommender system, highlighting the highest scoring articles for the topic as a follow-up of the currently read article.
Although the pipeline is meant to be generalizable, this workbook is not streamlined, but also explores the data. This is to help presentation, and also to support any effort to re-use the pipeline on another data source. If this was an automatic job on a stable data source, the throughput would benefit from removing the intermediate snapshot storage and sample output.
We currently run the pipeline on Swedish Wikipedia. Changing the download and data cleaning slightly, it should work on other sources. Most of the cells are language agnostic, but stopwords and tokenization needs to be adapted to new languages. Swedish Wikipedia is a bit peculiar, having a high number of articles automatically generated from structured data by bots. We discard those articles from the analysis, since their relatively high number and uniform wording skewed the results. The detection of auto-generated articles is thus specific and could be skipped or changed for other languages.
Results
We provide a notebook, primarily in Scala programming language, that can run on a Databricks cluster (7.3 LTS, including Apache Spark 3.0.1, Scala 2.12). Since this was a shared cluster with dynamic scaling, the runtime performance isn't clearly defined, but some notable measures are mentioned for reference. The reference cluster has up to 8 workers, each with 4 CPU and no GPU.
The pipeline works well and the topics produced seems ok. We have done no further qualitative evaluation and no systematic search for optimal hyper-parameters. In regards to runtime performance, the scalable cluster handles the workload in a fair manner and we have not focused on optimization at this point.
There are several potential improvements that are outside of the scope of this project. They include changes to improve execution time and topic quality, as well as use-cases utilizing the created model.
Scope
This notebook exemplifies topic analysis on Swedish Wikipedia. For overview and documentation, the code is divided into sections. Use the outline to navigate to relevant parts. The following stages illustrate the flow of the pipeline.
- Folders and Files
- Prepare language specific stop-word lists.
- Download a data dump of all pages from Wikipedia (compressed XML of current state).
- Clean the data
- Keep only article-space pages not automatically generated by algorithms.
- Filter the XML to extract meta data and raw article text.
- Remove links and other markup-formatting.
- Generate the LDA model
- Remove stopwords
- Train the model
- Analyse the model
- Pick an article and explore its topics.
- Recommend similar articles.
References
- https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
- https://spark.apache.org/docs/latest/api/scala/org/apache/spark/mllib/clustering/LDA.html
- https://dumps.wikimedia.org/svwiki/20201120/
- 034_LDA_20NewsGroupsSmall see notebook
scalable-data-science/000_2-sds-3-x-ml/034_LDA_20NewsGroupSmall
- 034_LDA_20NewsGroupsSmall (link to databricks)
Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Folders and Files
Define variables to make the rest of the notebook more generic.
To allow pipelines running in parallel and to simplify configurability, work is parameterized in a file and folder structure.
To simplify exploration, the data is saved to file as snapshots. This also avoids the need to rerun previous sections in every session.
// Setup Wikipedia source
val lang = "sv"
val freeze_date = "20201120"
val wp_file = s"${lang}wiki-${freeze_date}-pages-articles.xml"
val wp_zip_remote = s"https://dumps.wikimedia.org/${lang}wiki/${freeze_date}/${wp_file}.bz2"
// Stopwords download soure
val stopwords_remote = "https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv"
// Setup base paths for storage
val group = "05_lda" // directory name to separate file structure, allows to run different instances in parallel
val localpath=s"file:/databricks/driver/$group/"
val dir_local = s"$group/"
val dir = s"dbfs:/datasets/$group/"
// Some file names
val stopwords_file = "stopwords.csv"
val stopwords_store = s"${dir}${stopwords_file}"
val wp_store = s"${dir}${wp_file}"
val filtered_articles_store = s"${dir}filtered_articles_${lang}_${freeze_date}"
val lda_countVector_store = s"${dir}lda_countvector_${lang}_${freeze_date}"
val lda_model_store = s"${dir}lda_${lang}_${freeze_date}.model"
lang: String = sv
freeze_date: String = 20201120
wp_file: String = svwiki-20201120-pages-articles.xml
wp_zip_remote: String = https://dumps.wikimedia.org/svwiki/20201120/svwiki-20201120-pages-articles.xml.bz2
stopwords_remote: String = https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv
group: String = 05_lda
localpath: String = file:/databricks/driver/05_lda/
dir_local: String = 05_lda/
dir: String = dbfs:/datasets/05_lda/
stopwords_file: String = stopwords.csv
stopwords_store: String = dbfs:/datasets/05_lda/stopwords.csv
wp_store: String = dbfs:/datasets/05_lda/svwiki-20201120-pages-articles.xml
filtered_articles_store: String = dbfs:/datasets/05_lda/filtered_articles_sv_20201120
lda_countVector_store: String = dbfs:/datasets/05_lda/lda_countvector_sv_20201120
lda_model_store: String = dbfs:/datasets/05_lda/lda_sv_20201120.model
# Just check where local path is
pwd
/databricks/driver
// Run this only to force a clean start
/*
// Delete DBFS store
dbutils.fs.rm(dir,recurse=true)
// Delete local files
import org.apache.commons.io.FileUtils;
import java.io.File;
FileUtils.deleteDirectory(new File(dir_local))
*/
import org.apache.commons.io.FileUtils
import java.io.File
// Prepare DBFS store
dbutils.fs.mkdirs(dir)
display(dbutils.fs.ls(dir))
// Prepare local folder
import org.apache.commons.io.FileUtils;
import java.io.File;
FileUtils.forceMkdir(new File(dir_local));
// Check local files
import sys.process._ // For spawning shell commands
s"ls -l ./ ${dir_local}" !!
warning: there was one feature warning; for details, enable `:setting -feature' or `:replay -feature'
import sys.process._
res19: String =
"./:
total 24
drwxr-xr-x 2 root root 4096 Jan 26 04:22 05_lda
drwxr-xr-x 2 root root 4096 Jan 1 1970 conf
-rw-r--r-- 1 root root 733 Jan 26 03:34 derby.log
drwxr-xr-x 3 root root 4096 Jan 26 03:33 eventlogs
drwxr-xr-x 2 root root 4096 Jan 26 04:15 ganglia
drwxr-xr-x 2 root root 4096 Jan 26 04:03 logs
05_lda/:
total 0
"
We download a list of suitable stopwords from a separate location.
// Download stopwords to store.
val local = s"${dir_local}${stopwords_file}"
val remote = stopwords_remote
try
{
// -nc prevents download if already exist. !! converts wget output to string.
s"wget -nc -O${local} ${remote}" !!
}
catch
{
case e: Throwable => println("Exception: " + e)
}
--2021-01-26 04:23:45-- https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.52.133
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.52.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1936 (1.9K) [text/plain]
Saving to: ‘05_lda/stopwords.csv’
0K . 100% 15.9M=0s
2021-01-26 04:23:45 (15.9 MB/s) - ‘05_lda/stopwords.csv’ saved [1936/1936]
warning: there was one feature warning; for details, enable `:setting -feature' or `:replay -feature'
local: String = 05_lda/stopwords.csv
remote: String = https://raw.githubusercontent.com/peterdalle/svensktext/master/stoppord/stoppord.csv
res20: Any = ""
// Check local stopwords file
s"ls -l ${dir_local}" !!
warning: there was one feature warning; for details, enable `:setting -feature' or `:replay -feature'
res21: String =
"total 4
-rw-r--r-- 1 root root 1936 Jan 26 04:23 stopwords.csv
"
Move stopwords to DBFS
dbutils.fs.cp(localpath + stopwords_file, dir)
res22: Boolean = true
Check that the file exists, and has some contents.
display(dbutils.fs.ls(stopwords_store))
path | name | size |
---|---|---|
dbfs:/datasets/05_lda/stopwords.csv | stopwords.csv | 1936.0 |
Wikipedia downloads are available as compressed files, and language and data is chosen via the name of the file. For a specific date, file share looks like this on Wikimedia.
There are several files, we use "pages-articles". This monolith file requires unpacking on driver node. To allow parallel download and unpacking the multistream may be a better choice.
In the current setup, download takes 6 minutes, extracting takes 10 minutes, moving to DBFS an additional 3 min.
// Download Wikipedia xml to store. -nc prevents overwrite if already exist. !! converts wget output to string.
val local = s"${dir_local}${wp_file}.bz2"
val remote = wp_zip_remote
try
{
s"wget -nc -O${local} ${remote}" !!
}
catch
{
case e: Throwable => println("Exception: " + e)
}
Extract the .xml-file
// Unpack bz2 to xml.
val local = s"${dir_local}${wp_file}.bz2"
try
{
// -d unpack, -k keep source file, -v activate some output. !! converts output to string.
s"bzip2 -dk -f -v ${local}" !!
}
catch
{
case e: Throwable => println("Exception: " + e)
}
05_lda/svwiki-20201120-pages-articles.xml.bz2: done
warning: there was one feature warning; for details, enable `:setting -feature' or `:replay -feature'
local: String = 05_lda/svwiki-20201120-pages-articles.xml.bz2
res27: Any = ""
s"ls ${dir_local}" !!
warning: there was one feature warning; for details, enable `:setting -feature' or `:replay -feature'
res28: String =
"stopwords.csv
svwiki-20201120-pages-articles.xml
svwiki-20201120-pages-articles.xml.bz2
"
Copy file to DBFS cluster
val local = s"${localpath}${wp_file}"
dbutils.fs.cp(local, dir)
local: String = file:/databricks/driver/05_lda/svwiki-20201120-pages-articles.xml
res29: Boolean = true
Verify that we now have an xml file with some contents. Swedish Wikipedia is 18 Gb unpacked.
display(dbutils.fs.ls(wp_store))
path | name | size |
---|---|---|
dbfs:/datasets/05_lda/svwiki-20201120-pages-articles.xml | svwiki-20201120-pages-articles.xml | 1.8963312968e10 |
// Discard the local files no longer needed
import org.apache.commons.io.FileUtils;
import java.io.File;
FileUtils.cleanDirectory(new File(dir_local))
import org.apache.commons.io.FileUtils
import java.io.File
Clean the data
Before we can try to build an LDA model, we need to split the contents into separate pages, and discard anything that is not relevant article content.
In the current setup, loading and filtering takes 4 minutes, cleaning and saving snapshot takes another 6 minutes.
Extracting Pages
The full wikipedia dump is a very large xml files, each page (with meta data) is enclosed in <page> </page>
tags, so we split it into an RDD.
// ---------------spark_import
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
// ----------------xml_loader_import
import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.{ LongWritable, Text }
import com.databricks.spark.xml._
import org.apache.hadoop.conf.Configuration
// ---- Matching
import scala.util.matching.UnanchoredRegex
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.{LongWritable, Text}
import com.databricks.spark.xml._
import org.apache.hadoop.conf.Configuration
import scala.util.matching.UnanchoredRegex
Our function to read the data uses a library call to extract pages into an RDD.
def readWikiDump(sc: SparkContext, file: String) : RDD[String] = {
val conf = new Configuration()
conf.set(XmlInputFormat.START_TAG_KEY, "<page>")
conf.set(XmlInputFormat.END_TAG_KEY, "</page>")
val rdd = sc.newAPIHadoopFile(file,
classOf[XmlInputFormat],
classOf[LongWritable],
classOf[Text],
conf)
rdd.map{case (k,v) => (new String(v.copyBytes()))}
}
readWikiDump: (sc: org.apache.spark.SparkContext, file: String)org.apache.spark.rdd.RDD[String]
We look at a small sample to see that we succeeded in extracting pages, but we see that the pages still contain a lof of uninteresting bits in their text.
// Read the wiki dump
val dump = readWikiDump(sc, wp_store)
val n_wp_pages = dump.count()
dump.take(5)
Before we begin filtering the contents of pages, we want to discard:
- Pages that are redirects, i.e., pages containing a
<redirect_title="...">
tag. - Non-articles, i.e., pages not in namespace 0 (not containing
<ns>0</ns>
). - Any page containing the macro tag stating that it was generated by a robot.
val redirection = "<redirect title=".r
def is_not_redirect(source : String) = { redirection.findFirstIn(source) == None }
val ns0 = "<ns>0</ns>".r
def is_article(source : String) = { ns0.findFirstIn(source) != None }
val autogenerated = "robotskapad|Robotskapad".r
def is_not_autogenerated(source : String) = { autogenerated.findFirstIn(source) == None }
val articles = dump.filter(is_not_redirect).filter(is_article).filter(is_not_autogenerated)
val n_articles = articles.count()
articles.take(5)
Note that we have filtered away around 80% of the pages. Our initial list turned out to be mostly autogenerated articles, and those are not very interesting to our topic analysis pursuits, so better off discarded.
Meta data
Before we clean the xml and markup, we extract the article id and title, as we may want to use them when we analyze the resulting LDA model.
val id_regexp = raw"<id>([0-9]*)</id>".r
def extract_id(source : String) = {
val m = id_regexp.findFirstMatchIn(source).get
m.group(1).toLong
}
val title_regexp = raw"<title>([^\<\>]*)</title>".r
def extract_title(source : String) = {
val m = title_regexp.findFirstMatchIn(source).get
m.group(1)
}
val labelled_articles = articles.map(source => (extract_id(source), extract_title(source), source))
labelled_articles.take(5).map({case(id, title, contents) => title})
id_regexp: scala.util.matching.Regex = <id>([0-9]*)</id>
extract_id: (source: String)Long
title_regexp: scala.util.matching.Regex = <title>([^\<\>]*)</title>
extract_title: (source: String)String
labelled_articles: org.apache.spark.rdd.RDD[(Long, String, String)] = MapPartitionsRDD[1021] at map at command-2629358840275853:13
res11: Array[String] = Array(Amager, Afrika, Amerika, Abbekås, Alingsås)
To break out of the xml structure we perform the following steps:
- Replace html-strings
&
,"
,
,<
and>
by&
, `,
,
<and
>, repsectively. * First the
&, as it's used as the
&in other sequences, e.g.
. * The
<and
>from
<and
>are used in tags. * The
"from
"` is irrelevant, so we drop it entirely.- This is not an exhaustive list, so there may be other
- Remove the following start- and stop-tags, and the contents in between:
- id
- ns
- parentid
- timestamp
- contributor
- comment
- model
- format
- sha1
- We remove any tag, i.e., anything of the form
<A>
for any stringA
. - We remove anything enclosed in double-curly-braces, i.e., anything on the form
{{A}}
for anyA
.
def filter_xml(source : String) = {
val noAmp = raw"&".r.replaceAllIn(source, "&")
val noNbsp = raw" ".r.replaceAllIn(noAmp, " ")
val noQuot = raw""".r.replaceAllIn(noNbsp, "")
val noLt = raw"<".r.replaceAllIn(noQuot, "<")
val noGt = raw">".r.replaceAllIn(noLt, ">")
val tags = Seq("id", "ns", "parentid", "timestamp", "contributor", "comment", "model", "format", "sha1")
var current = noGt
for (tag <- tags) {
val start = s"<$tag>".r
val end = s"</$tag>".r
while (start.findAllIn(current).hasNext) {
val a = start.findAllIn(current).start
val b = end.findAllIn(current).start
val len = current.length
current = current.substring(0, a) + current.substring(b+tag.length+3, current.length)
assert (current.length < len)
}
}
current = raw"<[^<>]*>".r.replaceAllIn(current, "")
// A loop to remove innermost curly braces, then outer such things.
val curly = raw"\{[^\{\}]*\}".r
while (curly.findAllIn(current).hasNext)
{
current = curly.replaceAllIn(current, "")
}
current
}
val filtered_xml = labelled_articles.map({ case(id, title, source) => (id, title, filter_xml(source)) })
filtered_xml.take(5)
The resulting strings contain a lot of markup structure, and we clean it by:
- Removing all
$
and\
, as scala will otherwise try to help us by doing magic to them. - Removing all of the sections "Se även", "Referenser", "Noter", "Källor" and "Externa länkar"
- Remove links:
- Replace unnamed internal links
[[LinkName]]
byLinkName
- Replace named internal links
[[Link|Properties|Name]]
byName
- Replace unnamed internal links again to clean up
- Replace named external links
[Link Name]
byName
- Replace unnamed external links
[Link]
byLink
- Replace unnamed internal links
- Convert all text to lower case
- Remove quotation marks
'
- Remove repeated whitespace, as the obtained results contain a lot of whitespace.
Note: The last line in the cell below incorrectly gets rendered as a string, as the databricks notebook does not realize that (on line 3) the string raw"\"
ends there, but it guesses that \"
is a quoted character and that the string continues to the end of the cell.
def sanitize(source: String) : String = {
val noDollar = source.replaceAllLiterally("$", "")
val noBackSlash = noDollar.replaceAllLiterally(raw"\", "")
noBackSlash
}
val sanitized_xml = filtered_xml.map({case(id, title, source) => (id, title, sanitize(source))})
sanitize: (source: String)String
sanitized_xml: org.apache.spark.rdd.RDD[(Long, String, String)] = MapPartitionsRDD[1026] at map at command-2629358840275860:7
def filterMarkup(source: String) : String = {
// Loop to remove some specific sections
val sections = Seq("Se även", "Referenser", "Noter", "Källor", "Externa länkar")
var current = source
for (section <- sections) {
val regexp = s"[=]+ *$section *[=]+".r
if (regexp.findAllIn(current).hasNext)
{
val a = regexp.findAllIn(current).start
val pre = current.substring(0, a)
var post = current.substring(a, current.length)
post = regexp.replaceAllIn(post, "")
if ("^=".r.findAllIn(post).hasNext) {
val b = "^=".r.findAllIn(post).start
post = post.substring(b, post.length)
}
else {
post = ""
}
current = pre + post
}
}
// Unnamed internal links appear in figure captions, confusing later matching
val noUnnamedInternalLinks = raw"\[\[([^\|\]]*)\]\]".r.replaceAllIn(current, m => m.group(1))
// Loop to remove internal links and their properties
current = noUnnamedInternalLinks
val regexp = raw"\[\[[^\|\[]*\|([^\[\]]*)\]\]".r
while (regexp.findAllIn(current).hasNext) {
val len = current.length
current = regexp.replaceAllIn(current, m => "[[" + m.group(1) + "]]")
assert (current.length < len)
}
val noNamedInternalLinks = current
val noInternalLinks = raw"\[\[([^\]]*)\]\]".r.replaceAllIn(noNamedInternalLinks, m => m.group(1))
val noNamedExternalLinks = raw"\[[^ \[]*\ ([^\]]*)\]".r.replaceAllIn(noInternalLinks, m => m.group(1))
val noExternalLinks = raw"\[([^\]]*)\]".r.replaceAllIn(noNamedExternalLinks, m => m.group(1))
val lowerCase = noExternalLinks.toLowerCase
val noQuoteChars = raw"'".r.replaceAllIn(lowerCase, "")
// Loop to remove double whitespace characters
current = noQuoteChars
val doubleWhitespace = raw"\s(\s)".r
while (doubleWhitespace.findAllIn(current).hasNext) {
current = doubleWhitespace.replaceAllIn(current, m => m.group(1))
}
val noDoubleWhitespace = current
noDoubleWhitespace
}
val filtered = sanitized_xml.map({case (id, title, source) => (id, title, filterMarkup(source))})
filtered.take(2)
Before leaving this section, we may want to save our results, so that the next section can reload it.
// dbutils.fs.rm(filtered_articles_store, recurse=true)
res19: Boolean = true
val outputs = filtered.map({case (id, title, contents) => (id, title.replaceAllLiterally(",", "**COMMA**"), contents.replaceAllLiterally("\n", "**NEWLINE**"))})
outputs.saveAsTextFile(filtered_articles_store);
outputs: org.apache.spark.rdd.RDD[(Long, String, String)] = MapPartitionsRDD[1038] at map at command-4443336225071544:1
We now turn to the spark library for our next set of preparatory steps, and as the library work on dataframes, we do so as well.
Loading previous results
If we want to continue from the result saved at the end of the previous section, we can reload the data here.
val format = "^\\(([^,]*),([^,]*),(.*)\\)$".r
def parse_line(s : String) = {
assert (s(0) == '(')
val firstComma = s.indexOf(",")
val id = s.substring(1, firstComma).toLong
val afterId = s.substring(firstComma+1, s.length)
val nextComma = afterId.indexOf(",")
val title = afterId.substring(0, nextComma)
val contents = afterId.substring(nextComma+1, afterId.length-1)
assert (afterId(afterId.length-1) == ')')
(id, title.replaceAllLiterally("**COMMA**", ","), contents.replaceAllLiterally("**NEWLINE**", "\n"))
}
val filtered = spark.sparkContext.textFile(filtered_articles_store).map(parse_line)
val n_articles = filtered.count()
format: scala.util.matching.Regex = ^\(([^,]*),([^,]*),(.*)\)$
parse_line: (s: String)(Long, String, String)
filtered: org.apache.spark.rdd.RDD[(Long, String, String)] = MapPartitionsRDD[1042] at map at command-4443336225071727:15
n_articles: Long = 813245
DataFrame
The tokenization and stopword removal work on dataframes, so we create one, and look at some samples.
val corpus_df = filtered.toDF("id", "title", "contents")
corpus_df: org.apache.spark.sql.DataFrame = [id: bigint, title: string ... 1 more field]
The command below is the first step that requires all of the above steps to be completed for all the elements in the rdd, and it therefore takes a few minutes.
display(corpus_df.sample(0.0001))
Tokenization
In order to feed the articles into the LDA model, we first need to perform word tokenization. This splits the article into words, each matching the regular expression. In this case we ignore all non-alphabetic characters and only keep words with a minimal length of 4 characters in order to avoid short words that are not relevant to the subject.
import org.apache.spark.ml.feature.RegexTokenizer
// Set params for RegexTokenizer
val tokenizer = new RegexTokenizer()
.setGaps(true) // pattern below identifies non-word alphabet
.setPattern("[^a-zåäö]+") // break word and remove any detected non-word character(s).
.setMinTokenLength(4) // Filter away tokens with length < 4
.setInputCol("contents") // name of the input column
.setOutputCol("tokens") // name of the output column
// Tokenize document
val tokenized_df = tokenizer.transform(corpus_df)
import org.apache.spark.ml.feature.RegexTokenizer
tokenizer: org.apache.spark.ml.feature.RegexTokenizer = RegexTokenizer: uid=regexTok_5d41547188e0, minTokenLength=4, gaps=true, pattern=[^a-zåäö]+, toLowercase=true
tokenized_df: org.apache.spark.sql.DataFrame = [id: bigint, title: string ... 2 more fields]
display(tokenized_df.sample(0.0001))
Remove Stopwords
Next, we remove the stopwords from the article. This should be done iteratively, as the final model might find patterns in words that are not relevant. In our first iteration we found several words being used that were not relevant so we added them to the list of stopwords and repeated the experiment, which lead to better results. This step can be repeated several times in order to improve the model further.
We load the stopwords we downloaded near the beginning of this notebook, and we add some custom stopwords that are relevant to wikipedia pages and articles.
val swedish_stopwords = sc.textFile(stopwords_store).collect()
val wikipedia_stopwords = Array("label", "note", "area", "unit", "type", "mark", "long", "right", "kartposition", "quot", "text", "title", "page", "timestamp", "revision", "name", "username", "sha1", "format", "coord", "left", "center", "align", "region", "nasa", "source", "mouth", "species", "highest", "style", "kategori", "http", "wikipedia", "referenser", "källor", "noter")
// Combine newly identified stopwords to our exising list of stopwords
val stopwords = swedish_stopwords.union(wikipedia_stopwords)
The spark ML library gives us functions to remove stopwords.
import org.apache.spark.ml.feature.StopWordsRemover
val remover = new StopWordsRemover()
.setStopWords(stopwords)
.setInputCol("tokens")
.setOutputCol("filtered")
val filtered_df = remover.transform(tokenized_df)
import org.apache.spark.ml.feature.StopWordsRemover
remover: org.apache.spark.ml.feature.StopWordsRemover = StopWordsRemover: uid=stopWords_ecf00fa02fd5, numStopWords=366, locale=en, caseSensitive=false
filtered_df: org.apache.spark.sql.DataFrame = [id: bigint, title: string ... 3 more fields]
Vector of token counts
The LDA model takes word counts as input, so the next step is to count words that appear in the articles.
There are some hyperparameters to consider here, we focus on two:
- vocabSize - the number of words kept as the vocabulary. The vectorizer will pick the words that appear most frequently in all articles.
- minDF - the minimum number of articles that each word must appear in (i.e. document frequency). Will discard words that are very frequent in a small number of articles, but less frequent in general, and thus not generalizing to a larger topic.
We found that using a vocab size of 10 000 and a minDF of 5 worked well, but these can be experimented with further in order to obtain even better clusterings.
import org.apache.spark.ml.feature.CountVectorizer
val vectorizer = new CountVectorizer()
.setInputCol("filtered")
.setOutputCol("features")
.setVocabSize(10000)
.setMinDF(5) // the minimum number of different documents a term must appear in to be included in the vocabulary.
.fit(filtered_df)
import org.apache.spark.ml.feature.CountVectorizer
vectorizer: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVec_ad38aa4e1641, vocabularySize=10000
Next, we convert the dataframe to an RDD that contains the word counts
import org.apache.spark.ml.linalg.Vector
val countVectors = vectorizer.transform(filtered_df).select("id", "features")
val lda_countVector = countVectors.map { case Row(id: Long, countVector: Vector) => (id, countVector) }
val lda_countVector_mllib = lda_countVector.map { case (id, vector) => (id, org.apache.spark.mllib.linalg.Vectors.fromML(vector)) }.rdd
lda_countVector_mllib.take(1)
import org.apache.spark.ml.linalg.Vector
countVectors: org.apache.spark.sql.DataFrame = [id: bigint, features: vector]
lda_countVector: org.apache.spark.sql.Dataset[(Long, org.apache.spark.ml.linalg.Vector)] = [_1: bigint, _2: vector]
lda_countVector_mllib: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[1088] at rdd at command-4443336225071537:5
res41: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array((1,(10000,[1,2,8,9,15,17,20,26,37,38,39,42,48,50,51,55,64,67,68,71,75,80,81,85,86,94,95,96,106,114,117,118,128,129,140,149,150,156,161,189,195,208,216,297,299,332,336,399,409,427,452,457,459,461,465,535,540,572,603,612,686,739,747,806,849,904,922,983,1002,1013,1037,1081,1128,1167,1170,1175,1272,1274,1295,1334,1374,1387,1474,1578,1593,1602,1707,1750,1764,1792,1835,1852,1927,2022,2027,2114,2182,2268,2358,2612,2726,2766,2929,3316,3386,3415,3468,3486,3588,3593,3634,3693,3735,4156,4184,4335,4339,4470,4579,4675,4691,4851,5046,5083,5118,5186,5355,5653,5712,5801,6051,6080,6140,6751,7381,7491,7602,8758,8892,8944,8990,9148,9185,9375,9416,9737,9779,9870],[7.0,2.0,1.0,3.0,3.0,1.0,1.0,4.0,4.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,3.0,1.0,1.0,1.0,1.0,1.0,5.0,2.0,2.0,1.0,4.0,2.0,1.0,4.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,2.0,2.0,1.0,1.0,1.0,1.0,3.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,4.0,1.0,3.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,2.0,1.0,1.0,1.0,4.0,1.0,1.0,1.0,1.0,2.0,1.0,2.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,3.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0])))
We can also save the countvector file for later use.
println(lda_countVector_store)
// lda_countVector_mllib.saveAsTextFile(lda_countVector_store);
dbfs:/datasets/05_lda/lda_countvector_sv_20201120
Hyper-parameters
It's now time to define our LDA model. We choose the online LDA due to speed and simplicity, altough one could also try using the expectation maximization algorithm here instead.
The online LDA takes two hyperparameters:
- The number of topics to cluster - this should be set to some reasonable number depending on what the purpose of the clustering is. Sometimes we might have a-priori knowledge of what the number of topics ought to be, but for Wikipedia it is not obvious how this parameter should be determined.
- The number of iterations - this can be increased in order to trade off between increased computational time and better clustering.
In this examples, we choose 50 topics since this makes it easy to visualize the results. We use 20 iterations, which yields a reasonable runtime (about 16 minutes).
val numTopics = 50
val maxIterations = 20
numTopics: Int = 50
maxIterations: Int = 20
LDA model
Let's review what the LDA model does.
Illustration of the LDA algorithm (CC BY-SA: https://commons.wikimedia.org/wiki/File:Smoothed_LDA.png)
Explaining the notation, we have:
- \(K\) - number of topics
- \(M\) - number of documents
- \(N_i\) - the number of words per document (different for each document i, of course)
- \(\theta_i\) - the topic distribution for document i
- \(\varphi_k\) - the word distribution for topic k
- \(z_{ij}\) - the topic for the j-th word in document i
- \(w_{ij}\) - the j-th word in document i
- \(\alpha\) - Dirichlet prior on the per-document topic distributions
- \(\beta\) - Dirichlet prior on the per-topic word distribution
When performing online LDA, we are fitting the data to this model by estimating values for \(\alpha\) and \(\beta\) iteratively. First, each word is randomly assigned to a topic. Then, using variational inference, the topics are reassigned in an iterative way using the empirical distributions of words within each document.
This can all be done using spark's built-in LDA optimizer.
import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
val lda = new LDA()
.setOptimizer(new OnlineLDAOptimizer().setMiniBatchFraction(0.8))
.setK(numTopics)
.setMaxIterations(maxIterations)
.setDocConcentration(-1) // use default values
.setTopicConcentration(-1) // use default values
import org.apache.spark.mllib.clustering.{LDA, OnlineLDAOptimizer}
lda: org.apache.spark.mllib.clustering.LDA = org.apache.spark.mllib.clustering.LDA@54e767e2
The next cell is where the magic happens. We invole the disitributed LDA training functionality to obtain the model.
val ldaModel = lda.run(lda_countVector_mllib)
ldaModel: org.apache.spark.mllib.clustering.LDAModel = org.apache.spark.mllib.clustering.LocalLDAModel@5c324bb0
// Save the model to file for later use.
dbutils.fs.rm(lda_model_store, recurse=true)
ldaModel.save(sc, lda_model_store)
We prepare by extracting a few relevant terms per topic, looking them up in the vocabulary.
val maxTermsPerTopic = 8
val topicIndices = ldaModel.describeTopics(maxTermsPerTopic)
val vocabList = vectorizer.vocabulary
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$numTopics topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
Zip topic terms with topic IDs
val termArray = topics.zipWithIndex
// Transform data into the form (term, probability, topicId)
val termRDD = sc.parallelize(termArray)
val termRDD2 = termRDD.flatMap( (x: (Array[(String, Double)], Int) ) => {
val arrayOfTuple = x._1
val topicId = x._2
arrayOfTuple.map(el => (el._1, el._2, topicId))
})
termRDD: org.apache.spark.rdd.RDD[(Array[(String, Double)], Int)] = ParallelCollectionRDD[1881] at parallelize at command-4443336225072171:2
termRDD2: org.apache.spark.rdd.RDD[(String, Double, Int)] = MapPartitionsRDD[1882] at flatMap at command-4443336225072171:3
// Create DF with proper column names
val termDF = termRDD2.toDF.withColumnRenamed("_1", "term").withColumnRenamed("_2", "probability").withColumnRenamed("_3", "topicId")
termDF: org.apache.spark.sql.DataFrame = [term: string, probability: double ... 1 more field]
display(termDF)
Create JSON data
val rawJson = termDF.toJSON.collect().mkString(",\n")
Plot visualization
displayHTML(s"""
<!DOCTYPE html>
<meta charset="utf-8">
<style>
circle {
fill: rgb(31, 119, 180);
fill-opacity: 0.5;
stroke: rgb(31, 119, 180);
stroke-width: 1px;
}
.leaf circle {
fill: #ff7f0e;
fill-opacity: 1;
}
text {
font: 14px sans-serif;
}
</style>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
var json = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson}
]
}
]
};
var r = 1000,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble = d3.layout.pack()
.sort(null)
.size([r, r])
.padding(1.5);
var vis = d3.select("body").append("svg")
.attr("width", r)
.attr("height", r)
.attr("class", "bubble");
var node = vis.selectAll("g.node")
.data(bubble.nodes(classes(json))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
// Returns a flattened hierarchy containing all leaf nodes under the root.
function classes(root) {
var classes = [];
function recurse(term, node) {
if (node.children) node.children.forEach(function(child) { recurse(node.term, child); });
else classes.push({topicName: node.topicId, className: node.term, value: node.probability});
}
recurse(null, root);
return {children: classes};
}
</script>
""")
Finding Articles
If we are reading an article, we can use our LDA model to find other articles on the same topic.
When we created our model earlier, we did it as an LDA
, but we need to be more specific, so we reload it as a LocalLDAModel
.
// Load the model
import org.apache.spark.mllib.clustering.LocalLDAModel
val model = LocalLDAModel.load(sc, lda_model_store)
import org.apache.spark.mllib.clustering.LocalLDAModel
model: org.apache.spark.mllib.clustering.LocalLDAModel = org.apache.spark.mllib.clustering.LocalLDAModel@6067f4d5
// Load the countvector
// val lda_countVector_mllib_loaded = sc.textFile("lda_countvector_sv_20201208") // This doesn't work, need to figure out how to parse the loaded rdd
// print(lda_countVector_mllib_loaded)
We sample some articles.
val numsample = 20
val sample = lda_countVector_mllib.takeSample(false, numsample)
Compute topic distributions, and extract some additional information about them.
val sampleRdd = sc.makeRDD(sample)
val topicDistributions = model.topicDistributions(sampleRdd)
val MLTopics = topicDistributions.map({case(id, vs) => (id, vs.argmax)})
val ids = MLTopics.map({case(id, vs)=>id}).collect()
val selection = filtered.filter({case(id, title, contents) => ids.contains(id)}).map({case(id, title, contents) => (id, title)}).collect()
val allTopicProbs = model.topicDistributions(lda_countVector_mllib)
sampleRdd: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = ParallelCollectionRDD[2329] at makeRDD at command-4443336225072182:1
topicDistributions: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[2330] at map at LDAModel.scala:373
MLTopics: org.apache.spark.rdd.RDD[(Long, Int)] = MapPartitionsRDD[2331] at map at command-4443336225072182:3
ids: Array[Long] = Array(2779114, 226060, 1613204, 4970370, 700470, 636341, 4987605, 766457, 4965484, 82392, 7982574, 7973374, 367933, 1204225, 1225253, 503655, 821159, 8299631, 4684122, 1695311)
selection: Array[(Long, String)] = Array((82392,Senmedeltiden), (226060,Río Verde, San Luis Potosí), (367933,Kontrollsumma), (503655,Adam Kårsnäs), (636341,Live at McCabe's Guitar Shop), (700470,R2-0), (766457,Pakistanska muslimska förbundet - L), (821159,Fisher Athletic FC), (1204225,Financial Institutions Reform, Recovery and Enforcement Act of 1989), (1225253,Gardar), (1613204,Bessan), (1695311,Borneol), (2779114,Sara Branham Matthews), (4684122,Cecil Blachford), (4965484,Riddarsynerätt), (4970370,Kenyaskratthärfågel), (4987605,Rihannas diskografi), (7973374,Ahtisaariplanen), (7982574,James S. Brown), (8299631,Mount Roper))
allTopicProbs: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[2335] at map at LDAModel.scala:373
For each of our selected articles, we can now look for other articles that very strongly belong to the same topic.
for ( (article_id, topic_id) <- MLTopics.collect() ) {
val title = selection.filter({case(id, title) => id == article_id})(0)._2
val topicProbs = allTopicProbs.map({case(id, vs) => (id, vs(topic_id))})
val top5articles = topicProbs.takeOrdered(5)(Ordering[Double].reverse.on(_._2))
val top5ids = top5articles.map(_._1)
val top5titles = filtered.filter({case(id, title, contents) => top5ids.contains(id) }).map({case(id, title, contents) => (title)}).collect
println(s"Top 5 articles on the same topic as ${title}:")
for (t <- top5titles) println(s" * ${t}")
println("")
}
Unsupervised clustering of particle physics data with distributed training
Authors: Karl Bengtsson Bernander, Colin Desmarais, Daniel Gedon, Olga Sunneborn Gudnadottir Video walk-through of the notebooks: https://drive.google.com/file/d/1D6DPETd2qVMpSJOLTRiVPjIdz_-VbNVn/view?usp=sharing
Note
This project was presented at the 25th International Conference on Computing in High-Energy and Nuclear Physics. A public recording of the presentation can be found here.
This notebook contains a short introduction to the collider particle physics needed to understand the data and the model, a short introcution to the method and a short motivation for developing the method. If you want to jump directly to the code, skip to the next notebook!
At the European Organization for Nuclear Research, CERN, the inner workings of particle physics are probed by accelerating particles to close to the speed of light and letting them collide. In the collisions, the energy contained in the colliding particles reforms into new particles, and by studying this process a lot can be learned about their interactions. Several experiments have operated as part of CERN since it was founded in 1955 and as of 2019, a total of 330 petabytes of particle physics data was stored by the organization. By 2030 the volume of the stored data is expected to be of the order of exabytes.
In addition to the disk space needed for such datasets, the experiments also require immense computing resources. These are used for translating the electrical signals of the particle detectors into formats appropriate for data analysis, simulating particle collisions and detectors, and analysing data. Much data processing is parallelized and distributed among machines connected to the Worldwide LHC Computing Grid.
displayHTML("""<iframe width="99%" height="340" src="https://my.matterport.com/show/?m=yYCddcrq6Zj" frameborder="0" allowfullscreen allow="xr-spatial-tracking"></iframe>""")
displayHTML("""<iframe width="99%" height="340" src="https://videos.cern.ch/video/OPEN-VIDEO-2018-041-001" frameborder="0" allowfullscreen allow="xr-spatial-tracking"></iframe>""")
As the datasets collected at CERN get bigger and the effects searched for in data get smaller, the challenge is to find new and more efficient methods to process data. Not surprisingly, machine learning is garnering more and more attention within the experiments, and a lot of machine learning methods have been developed in recent years to do everything from simulating detectors to data analysis. With datasets sometimes on the order of TBs even after preprocessing, however, distributed learning is a valuable tool. In this and the accompanying notebooks we present the UCluster method developed by Mikuni and Canelli for unsupervised clustering of particle physics data. We have adapted the code for use in notebooks and added the functionality of distributed training. The original code and the paper accompanying it can be found below.
Everything around us -- that we can see, touch, and interact with -- is made up of tiny particles called atoms, which in turn are made up of even smaller particles: protons, neutrons and electrons. The protons and neutrons are also made up of even smaller particles -- the quarks. As far as we know, the quarks and the electrons are elementary particles, which means that they cannot be divided further into other particles. These three particles, two quarks and the electron, actually make up everything in our ordinary life. That's not the whole picture, though. Both the quarks and the electron exist in three generations, each generation heavier than the last but sharing the same fundamental nature. These are all matter particles, fermions, which includes also the almost massless neutrinos. In addition there are the force carriers, bosons, which is how the matter particles interact, and the Higgs boson which gives mass to the fermions. These particles and how they interact is contained in the Standard Model of Particle Physics, schematically depicted below:
To create the heavier particles of the Standard model than the ones we are surrounded with daily, we need higher energies. This is because mass and energy are related through Einstein's famous formula \[E=mc^2\] At CERN, The Large Hadron Collider (LHC) gives kinetic energy to protons by accelerating them through a long chain of more and more powerful accelerators. They are then made to collide with each other, and in that collision new particles form using the total energy that the protons had when they collided. At the collision points of the LHC there are particle detectors designed to detect all of the different products of the collision and their properties. Below is a simulation of the CMS detector, one of the two general purpose detectors at the LHC. Going inside the detector, we follow the two protons (in blue) as they collide and produce new particles. The tracks coming out from the collision are made by charged particles, and the rectangles are the different modules of the detector that register a signal as the particles transversed the detector.
displayHTML("""<iframe width="99%" height="340" src="https://videos.cern.ch/video/CERN-VIDEO-2011-192-001" frameborder="0" allowfullscreen allow="xr-spatial-tracking"></iframe>""")
Using sophisticated algorithms developed over decades the collisions are reconstructed from the electric signals from the detector. They determine which types of particles were present in the products of the collision and their kinetic properties, energy and momentum. Some particles need to be reconstructed in several steps, since they decay to other particles before they even reach the detector. The aforementioned quarks decay into sprays of many other particles, and we call this a jet. They are identified by clustering the particles together into a cone, as is shown on the left in the picture below. In some cases, the jet is part of a collimated system of decay products, such as the one shown on the right below. This happens at high energies and is called a boosted system. In that case, resolving individual jets is hard, and so the whole system is made into one "fat jet". In the picture below, a boosted top quark (the only quark that decays before it reaches the detector) decays into a b-quark giving rise to a jet and a W boson that then decays into two quarks that also give rise to jets. ![1] [1]: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTML-vd7DejQvpeHGmpV-CDVOc1yw78luh_YQ&usqp=CAU
Now that we have the particle data background needed, let's try to understand the code and the data we will be working with. Most, if not all, of the algorithms used to reconstruct particles at the large LHC experiments right now are either traditional algorithms without machine learning or supervised machine learning. These methods could have the disadvantage of being biased, however, when it comes to discovering new particles or interactions. A lot of machine learning interested physicists are therefore looking toward unsupervised methods for object (particle) reconstruction and data analysis. One such approach is taken by V. Mikuni and F. Canellia in the 2020 paper, Unsupervised clustering for collider physics.
displayHTML("""<a href="https://arxiv.org/pdf/2010.07106.pdf">
<img border="0" alt="UCluster paper" src="https://paperswithcode.com/static/thumbs/2010.07106.jpg" width="300" height="300">
</a>""")
In the paper, Mikuni and Canelli present UCluster, which is an unsupervised clustering algorithm for particle physics data. In the paper, they apply it to one multiclass classification problem and one anomaly detection problem. In these notebooks, we present only the first.
Jet classification
Given a jet, in the form of a list of particles contained in it and their properties, the task is to match it to the particle it came from. We choose three types of particles that can be reconstructed using fat jets: W bosons, Z bosons and top quarks. The dataset can be found here. We start by preprocessing it to get it on the format we want and throwing away information we don't need. We keep only the names and properties of the constituent particles. The properties include trajectory angles, energy, momentum and distances to center of jet. They are used as input feature in a deep neural graph net, in which each particle is represented by a node. It is pre-trained, and then a clustering step is added, before the whole thing is trained again. The authors report a 81% classification accuracy using the Hungarian method. The clusters formed can be seen below to the right and should be compared to the ground truth shown on the left.
This type of task arises in many particle physics data analyses
Motivation
The type of task described above, in which particles are classified according to which process they come from, is a common one in particle physics data analyses. Whether a new process is searched for or the parameters of an already known process are measured, the analysis boils down to extracting a small signal from a large dataset. Most of the data is easy to get rid of -- if it doesn't contain the particles that the sought after decay produces for example -- but a lot of it becomes a background that needs to be accounted for. In many cases, Monte Carlo simulations exist to accurately enough estimate this background, but in others they don't. In those cases datadriven methods have to be used, which can quickly become a very complicated task if background from more than one process has to be estimated that way. Unsupervised classification could be used directly on data to estimate the background from different processes.
Our contribution
The code we use comes from the UCluster git repository. Our contribution was to add the functionality of training the model in a distributed fashion. To do this, we use the Horovod runner, which necessitated a migration to TensorFlow 2 (from TensorFlow 1).
We start by seeing if the files necessary to run our notebooks are already in the distributed file system
dbutils.fs.ls("dbfs:///FileStore/06_LHC")
res0: Seq[com.databricks.backend.daemon.dbutils.FileInfo] = WrappedArray(FileInfo(dbfs:/FileStore/06_LHC/LICENSE, LICENSE, 1071), FileInfo(dbfs:/FileStore/06_LHC/README.md, README.md, 3150), FileInfo(dbfs:/FileStore/06_LHC/data/, data/, 0), FileInfo(dbfs:/FileStore/06_LHC/h5/, h5/, 0), FileInfo(dbfs:/FileStore/06_LHC/models/, models/, 0), FileInfo(dbfs:/FileStore/06_LHC/scripts/, scripts/, 0), FileInfo(dbfs:/FileStore/06_LHC/utils/, utils/, 0))
Important!
Run the command line above to see if the required files and data are already available in the distributed file system, you should see the following:
Seq[com.databricks.backend.daemon.dbutils.FileInfo] = WrappedArray(FileInfo(dbfs:/FileStore/06LHC/LICENSE, LICENSE, 1071), FileInfo(dbfs:/FileStore/06LHC/README.md, README.md, 3150), FileInfo(dbfs:/FileStore/06LHC/data/, data/, 0), FileInfo(dbfs:/FileStore/06LHC/h5/, h5/, 0), FileInfo(dbfs:/FileStore/06LHC/models/, models/, 0), FileInfo(dbfs:/FileStore/06LHC/scripts/, scripts/, 0), FileInfo(dbfs:/FileStore/06_LHC/utils/, utils/, 0))
If these items appear, then skip most of this notebook, and go to Command Cell 21 to import data to the local driver
We start by installing everything necessary
pip install h5py
We start by preparing a folder on the local driver to process our files
rm -r 06_LHC
mkdir 06_LHC
Now get all necessary files from the project repository on Github
cd 06_LHC
wget https://github.com/dgedon/ProjectParticleClusteringv2/archive/main.zip
unzip main.zip
mv ProjectParticleClusteringv2-main/* .
rm -r ProjectParticleClusteringv2-main/ main.zip
We get the necessarry data (first training, then validation) and untar the file
cd 06_LHC
mkdir data
cd data
wget https://zenodo.org/record/3602254/files/hls4ml_LHCjet_100p_train.tar.gz
#mkdir data
#mv hls4ml_LHCjet_100p_train.tar.gz data
#cd data
tar --no-same-owner -xvf hls4ml_LHCjet_100p_train.tar.gz
cd 06_LHC/data
wget https://zenodo.org/record/3602254/files/hls4ml_LHCjet_100p_val.tar.gz
tar --no-same-owner -xvf hls4ml_LHCjet_100p_val.tar.gz
Now we preprocess the data. This transforms the data somehow in a useful way
cd 06_LHC/scripts
python prepare_data_multi.py --dir ../data/
cd 06_LHC/scripts
python prepare_data_multi.py --dir ../data/ --make_eval
rm -r ../data
Finally move everything onto the distributed file system. All necessary files are stored at FileStore/06_LHC
dbutils.fs.cp ("file:////databricks/driver/06_LHC", "dbfs:///FileStore/06_LHC", recurse=true)
Important (continued from above)
Import files to local driver
Now for future notebooks, run the following command line below to import the files to the local driver. This may take a minute
dbutils.fs.cp("dbfs:///FileStore/06_LHC", "file:////databricks/driver/06_LHC", recurse=true)
res0: Boolean = true
Run the command line below to list the items in the 06_LHC folder. You should see the following:
- LICENSE
- README.md
- h5
- models
- scripts
- utils
ls 06_LHC/
You are now ready to go!
This code has been migrated to Tensorflow 2 from the original code, but no other changes have been made.
ls 06_LHC
LICENSE
README.md
data
h5
models
scripts
utils
Get the imports.
import argparse
from argparse import Namespace
from datetime import datetime
import numpy as np
import tensorflow as tf
import socket
import os
import sys
from sklearn.cluster import KMeans
from tqdm import tqdm
#Added matplot for accuracy
import matplotlib.pyplot as plt
np.set_printoptions(edgeitems=1000)
from scipy.optimize import linear_sum_assignment
BASE_DIR = os.path.join(os.getcwd(), '06_LHC','scripts')
#os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '..', 'models'))
sys.path.append(os.path.join(BASE_DIR, '..', 'utils'))
import provider
import gapnet_classify as MODEL
Get the input parameters. Necessary modifications: - import arguements by a namespace; not by an argument parser - change the data directories appropriately
parserdict = {'max_dim': 3, #help='Dimension of the encoding layer [Default: 3]')
'n_clusters': 3, #help='Number of clusters [Default: 3]')
'gpu': 0, #help='GPU to use [default: GPU 0]')
'model': 'gapnet_clasify', #help='Model name [default: gapnet_classify]')
'log_dir': 'log', #help='Log dir [default: log]')
'num_point': 100, #help='Point Number [default: 100]')
'max_epoch': 100, #help='Epoch to run [default: 200]')
'epochs_pretrain': 10, #help='Epochs to for pretraining [default: 10]')
'batch_size': 1024, #help='Batch Size during training [default: 512]')
'learning_rate': 0.001, #help='Initial learning rate [default: 0.01]')
'momentum': 0.9, #help='Initial momentum [default: 0.9]')
'optimizer': 'adam', #help='adam or momentum [default: adam]')
'decay_step': 500000, #help='Decay step for lr decay [default: 500000]')
'wd': 0.0, #help='Weight Decay [Default: 0.0]')
'decay_rate': 0.5, #help='Decay rate for lr decay [default: 0.5]')
'output_dir': 'train_results', #help='Directory that stores all training logs and trained models')
'data_dir': os.path.join(os.getcwd(),'06_LHC', 'h5'), # '../h5', #help='directory with data [default: hdf5_data]')
'nfeat': 8, #help='Number of features [default: 8]')
'ncat': 20, #help='Number of categories [default: 20]')
}
FLAGS = Namespace(**parserdict)
H5_DIR = FLAGS.data_dir
EPOCH_CNT = 0
MAX_PRETRAIN = FLAGS.epochs_pretrain
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
NUM_FEAT = FLAGS.nfeat
NUM_CLASSES = FLAGS.ncat
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
# MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model + '.py')
LOG_DIR = os.path.join('..', 'logs', FLAGS.log_dir)
if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR)
os.system('cp %s.py %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train_kmeans.py %s' % (LOG_DIR)) # bkp of train procedure
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
LEARNING_RATE_CLIP = 1e-5
HOSTNAME = socket.gethostname()
TRAIN_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'train_files_wztop.txt'))
TEST_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'test_files_wztop.txt'))
Define the utils functions.
def get_learning_rate(batch):
learning_rate = tf.compat.v1.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.compat.v1.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
Main training function: - calls the training one epoch - calls the evaluation one epoch - selects the loss and optimizer - save the final model
def train():
with tf.Graph().as_default():
with tf.device('/gpu:' + str(GPU_INDEX)):
#ADDED THIS TO RECORD ACCURACY
epochs_acc = []
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, NUM_FEAT)
is_training_pl = tf.compat.v1.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
alpha = tf.compat.v1.placeholder(dtype=tf.float32, shape=())
bn_decay = get_bn_decay(batch)
tf.compat.v1.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
pred, max_pool = MODEL.get_model(pointclouds_pl, is_training=is_training_pl,
bn_decay=bn_decay,
num_class=NUM_CLASSES, weight_decay=FLAGS.wd,
)
class_loss = MODEL.get_focal_loss(pred, labels_pl, NUM_CLASSES)
mu = tf.Variable(tf.zeros(shape=(FLAGS.n_clusters, FLAGS.max_dim)), name="mu",
trainable=True) # k centroids
kmeans_loss, stack_dist = MODEL.get_loss_kmeans(max_pool, mu, FLAGS.max_dim,
FLAGS.n_clusters, alpha)
full_loss = kmeans_loss + class_loss
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.compat.v1.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.compat.v1.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
train_op_full = optimizer.minimize(full_loss, global_step=batch)
train_op = optimizer.minimize(class_loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.compat.v1.train.Saver()
# Create a session
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.compat.v1.Session(config=config)
sess.run(tf.compat.v1.global_variables_initializer())
# Add summary writers
merged = tf.compat.v1.summary.merge_all()
train_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
print("Total number of weights for the model: ",
np.sum([np.prod(v.get_shape().as_list()) for v in tf.compat.v1.trainable_variables()]))
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'max_pool': max_pool,
'pred': pred,
'alpha': alpha,
'mu': mu,
'stack_dist': stack_dist,
'class_loss': class_loss,
'kmeans_loss': kmeans_loss,
'train_op': train_op,
'train_op_full': train_op_full,
'merged': merged,
'step': batch,
'learning_rate': learning_rate
}
for epoch in range(MAX_EPOCH):
print('\n**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
is_full_training = epoch > MAX_PRETRAIN
max_pool = train_one_epoch(sess, ops, train_writer, is_full_training)
if epoch == MAX_PRETRAIN:
centers = KMeans(n_clusters=FLAGS.n_clusters).fit(np.squeeze(max_pool))
centers = centers.cluster_centers_
sess.run(tf.compat.v1.assign(mu, centers))
#eval_one_epoch(sess, ops, test_writer, is_full_training)
#Added this line to record accuracy
epoch_acc = eval_one_epoch(sess, ops, test_writer, is_full_training)
epochs_acc.append(epoch_acc)
if is_full_training:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'cluster.ckpt'))
else:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'model.ckpt'))
print("Model saved in file: %s" % save_path)
plt.plot(epochs_acc)
plt.ylabel('Validation accuracy')
plt.xlabel('epochs')
plt.show()
plt.savefig('single_maching.png')
Training utils.
def get_batch(data, label, start_idx, end_idx):
batch_label = label[start_idx:end_idx]
batch_data = data[start_idx:end_idx, :, :]
return batch_data, batch_label
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
"""
y_true = y_true.astype(np.int64)
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_sum_assignment(w.max() - w)
ind = np.asarray(ind)
ind = np.transpose(ind)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
One epoch training and evaluation functions. - loop over all batches in the training (or evaluation) dataloader. - prints training (and evaluation) loss. - switches loss after n=10 epochs. Reason is that the full loss requires an initial guess for the position of the cluster centroids. - prints training (and evaluation) cluster accuracy.
def train_one_epoch(sess, ops, train_writer, is_full_training):
""" ops: dict mapping from string to tf ops """
is_training = True
train_idxs = np.arange(0, len(TRAIN_FILES))
acc = loss_sum = 0
y_pool = []
for fn in range(len(TRAIN_FILES)):
# print('----' + str(fn) + '-----')
current_file = os.path.join(H5_DIR, TRAIN_FILES[train_idxs[fn]])
current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
# num_batches = 5
print(str(datetime.now()))
# initialise progress bar
process_desc = "TRAINING: Loss {:2.3e}"
progress_bar = tqdm(initial=0, leave=True, total=num_batches,
desc=process_desc.format(0),
position=0)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx)
cur_batch_size = end_idx - start_idx
# print(batch_weight)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training,
ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),}
if is_full_training:
summary, step, _, loss_val, dist, lr = sess.run([ops['merged'], ops['step'],
ops['train_op_full'], ops['kmeans_loss'],
ops['stack_dist'], ops['learning_rate']],
feed_dict=feed_dict)
batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc += cluster_acc(batch_cluster, cluster_assign)
else:
summary, step, _, loss_val, max_pool, lr = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['class_loss'],
ops['max_pool'], ops['learning_rate']],
feed_dict=feed_dict)
if len(y_pool) == 0:
y_pool = np.squeeze(max_pool)
else:
y_pool = np.concatenate((y_pool, np.squeeze(max_pool)), axis=0)
loss_sum += np.mean(loss_val)
train_writer.add_summary(summary, step)
# Update train bar
process_desc.format(loss_val)
progress_bar.update(1)
progress_bar.close()
print('learning rate: %f' % (lr))
print('train mean loss: %f' % (loss_sum / float(num_batches)))
print('train clustering accuracy: %f' % (acc / float(num_batches)))
return y_pool
def eval_one_epoch(sess, ops, test_writer, is_full_training):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_FILES))
# Test on all data: last batch might be smaller than BATCH_SIZE
loss_sum = acc = 0
acc_kmeans = 0
for fn in range(len(TEST_FILES)):
# print('----' + str(fn) + '-----')
current_file = os.path.join(H5_DIR, TEST_FILES[test_idxs[fn]])
current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
process_desc = "VALIDATION: Loss {:2.3e}"
progress_bar = tqdm(initial=0, leave=True, total=num_batches,
desc=process_desc.format(0),
position=0)
# num_batches = 5
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx)
cur_batch_size = end_idx - start_idx
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['is_training_pl']: is_training,
ops['labels_pl']: batch_label,
ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),}
if is_full_training:
summary, step, loss_val, max_pool, dist, mu = sess.run([ops['merged'], ops['step'],
ops['kmeans_loss'],
ops['max_pool'], ops['stack_dist'],
ops['mu']],
feed_dict=feed_dict)
if batch_idx == 0:
print("mu: {}".format(mu))
batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc += cluster_acc(batch_cluster, cluster_assign)
else:
summary, step, loss_val = sess.run([ops['merged'], ops['step'],
ops['class_loss']],
feed_dict=feed_dict)
test_writer.add_summary(summary, step)
loss_sum += np.mean(loss_val)
# Update train bar
process_desc.format(loss_val)
progress_bar.update(1)
progress_bar.close()
total_loss = loss_sum * 1.0 / float(num_batches)
print('test mean loss: %f' % (total_loss))
print('testing clustering accuracy: %f' % (acc / float(num_batches)))
#Added this to save accuracy
return acc/float(num_batches)
EPOCH_CNT += 1
run the training
train()
Result: - We see that the learning on a single machine works. - One epoch takes about 30 minutes - Resulting accuracy lies at about 0.55
This notebook extends the TF v2.x code from the single machine notebook 23_ds_single_machine
. The modification are such that the code enables multi-machine training using the horovod framwork.
We will highlight the changes compared the single machine implementation.
First: Check if the data is in local. If not, go to notebook 1_data_and_preprocssing
and download the data from dbfs to local.
ls 06_LHC/
LICENSE
README.md
data
h5
models
scripts
utils
Get the imports.
import argparse
from argparse import Namespace
from datetime import datetime
import numpy as np
import tensorflow as tf
import socket
import os
import sys
from sklearn.cluster import KMeans
from tqdm import tqdm
import h5py
#Added matplot for accuracy
import matplotlib.pyplot as plt
np.set_printoptions(edgeitems=1000)
from scipy.optimize import linear_sum_assignment
BASE_DIR = os.path.join(os.getcwd(), '06_LHC','scripts')
#os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '..', 'models'))
sys.path.append(os.path.join(BASE_DIR, '..', 'utils'))
import provider
import gapnet_classify as MODEL
Get the input parameters.
parserdict = {'max_dim': 3, #help='Dimension of the encoding layer [Default: 3]')
'n_clusters': 3, #help='Number of clusters [Default: 3]')
'gpu': 0, #help='GPU to use [default: GPU 0]')
'model': 'gapnet_clasify', #help='Model name [default: gapnet_classify]')
'log_dir': 'log', #help='Log dir [default: log]')
'num_point': 100, #help='Point Number [default: 100]')
'max_epoch': 100, #help='Epoch to run [default: 200]')
'epochs_pretrain': 20, #help='Epochs to for pretraining [default: 10]')
'batch_size': 1024, #help='Batch Size during training [default: 512]')
'learning_rate': 0.001, #help='Initial learning rate [default: 0.01]')
'momentum': 0.9, #help='Initial momentum [default: 0.9]')
'optimizer': 'adam', #help='adam or momentum [default: adam]')
'decay_step': 500000, #help='Decay step for lr decay [default: 500000]')
'wd': 0.0, #help='Weight Decay [Default: 0.0]')
'decay_rate': 0.5, #help='Decay rate for lr decay [default: 0.5]')
'output_dir': 'train_results', #help='Directory that stores all training logs and trained models')
'data_dir': os.path.join(os.getcwd(),'06_LHC', 'h5'), # '../h5', #help='directory with data [default: hdf5_data]')
'nfeat': 8, #help='Number of features [default: 8]')
'ncat': 20, #help='Number of categories [default: 20]')
}
FLAGS = Namespace(**parserdict)
H5_DIR = FLAGS.data_dir
EPOCH_CNT = 0
MAX_PRETRAIN = FLAGS.epochs_pretrain
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
NUM_FEAT = FLAGS.nfeat
NUM_CLASSES = FLAGS.ncat
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
# MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model + '.py')
LOG_DIR = os.path.join(os.getcwd(), '06_LHC', 'logs', FLAGS.log_dir)
if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR)
os.system('cp %s.py %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train_kmeans.py %s' % (LOG_DIR)) # bkp of train procedure
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
LEARNING_RATE_CLIP = 1e-5
HOSTNAME = socket.gethostname()
TRAIN_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'train_files_wztop.txt'))
TEST_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'test_files_wztop.txt'))
Define the utils functions.
def get_learning_rate(batch):
learning_rate = tf.compat.v1.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.minimum(learning_rate, LEARNING_RATE_CLIP) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.compat.v1.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
Modification: - create checkpoint directory for horovod - directory is user chosen
import os
import time
checkpoint_dir = '/dbfs/databricks/driver/06_LHC/logs/train/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
Create horovod h5 loading function: - not the rank and size is inputed. - rank is the current device id - size is the total number of available GPUs - we split the data in the h5 file for each device.
def load_h5_hvd(h5_filename, rank=0, size=1):
f = h5py.File(h5_filename, 'r')
data = f['data'][rank::size]
label = f['pid'][rank::size]
seg = f['label'][rank::size]
print("loaded {0} events".format(len(data)))
return (data, label, seg)
Main training function. Modifications are: - import packages again. Otherwise single devices may cause problems. - initialise the horovod runner - copy the files from local to each GPU such that they are available for horovod. - scale the learning rate by the number of available devices. - add a horovod specific distributed optimizer. - use hooks for checkpoint saving ever 1000 steps. - switch from a normal TF training session to a monitored training session.
def train_hvd():
import horovod.tensorflow as hvd
import tensorflow as tf
import shutil
# do all the imports here again in order for hvd to work nicely
import horovod.tensorflow as hvd
import argparse, shlex
from datetime import datetime
import numpy as np
import tensorflow as tf
import socket
import os
import sys
from sklearn.cluster import KMeans
from tqdm import tqdm
np.set_printoptions(edgeitems=1000)
from scipy.optimize import linear_sum_assignment
BASE_DIR = os.path.join(os.getcwd(), '06_LHC','scripts')
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '..', 'models'))
sys.path.append(os.path.join(BASE_DIR, '..', 'utils'))
# HOROVOD: initialize Horovod.
hvd.init()
# HOROVOD: Copy files from local to each single GPU directory
src = "/dbfs/FileStore/06_LHC"
dst = os.path.join(os.getcwd(), '06_LHC')
print("Copying data/files to local horovod folder...")
shutil.copytree(src, dst)
print("Done with copying!")
import provider
import gapnet_classify as MODEL
with tf.Graph().as_default():
with tf.device('/gpu:' + str(GPU_INDEX)):
#ADDED THIS TO RECORD ACCURACY
epochs_acc = []
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, NUM_FEAT)
is_training_pl = tf.compat.v1.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
alpha = tf.compat.v1.placeholder(dtype=tf.float32, shape=())
bn_decay = get_bn_decay(batch)
tf.compat.v1.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
pred, max_pool = MODEL.get_model(pointclouds_pl, is_training=is_training_pl,
bn_decay=bn_decay,
num_class=NUM_CLASSES, weight_decay=FLAGS.wd,
)
class_loss = MODEL.get_focal_loss(pred, labels_pl, NUM_CLASSES)
mu = tf.Variable(tf.zeros(shape=(FLAGS.n_clusters, FLAGS.max_dim)), name="mu",
trainable=True) # k centroids
kmeans_loss, stack_dist = MODEL.get_loss_kmeans(max_pool, mu, FLAGS.max_dim,
FLAGS.n_clusters, alpha)
full_loss = kmeans_loss + class_loss
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
# HOROVOD: scale learning rate from hvd dependent number of processes (=hvd.size)
tf.compat.v1.summary.scalar('learning_rate', learning_rate * hvd.size())
if OPTIMIZER == 'momentum':
optimizer = tf.compat.v1.train.MomentumOptimizer(learning_rate * hvd.size(), momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate * hvd.size())
# HOROVOD: add Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
global_step = tf.compat.v1.train.get_or_create_global_step()
train_op_full = optimizer.minimize(full_loss, global_step=global_step) #batch)
train_op = optimizer.minimize(class_loss, global_step=global_step) #batch)
# Add ops to save and restore all the variables.
saver = tf.compat.v1.train.Saver()
# HOROVOD
hooks = [
# Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states
# from rank 0 to all other processes. This is necessary to ensure consistent
# initialization of all workers when training is started with random weights
# or restored from a checkpoint.
hvd.BroadcastGlobalVariablesHook(0),
#checkpoint_dir_mod = checkpoint_dir if hvd.rank() == 0 else None
tf.compat.v1.train.CheckpointSaverHook(checkpoint_dir=checkpoint_dir,
checkpoint_basename='cluster.ckpt',
save_steps=1_000
),
# this one basically prints every n steps the "step" and the "loss". Output is cleaner without
# tf.compat.v1.train.LoggingTensorHook(tensors={'step': global_step, 'loss': full_loss}, every_n_iter=75),
]
# Create a session
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
config.gpu_options.visible_device_list = str(hvd.local_rank())
# global variable initializer must be defined before session definition
init_global_step = tf.compat.v1.global_variables_initializer()
# MonitoredTrainingSession
# takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
#checkpoint_dir_mod = checkpoint_dir if hvd.rank() == 0 else None
sess = tf.compat.v1.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
hooks=hooks,
config=config)
# get one batch_data from the training files in oder to inintialise the session
train_idxs = np.arange(0, len(TRAIN_FILES))
current_file = os.path.join(os.getcwd(), '06_LHC', 'h5', TRAIN_FILES[train_idxs[0]])
current_data, current_label, current_cluster = load_h5_hvd(current_file, hvd.rank(), hvd.size())
batch_data, batch_label = get_batch(current_data, current_label, 0, BATCH_SIZE)
#
feed_dict = {pointclouds_pl: batch_data,
labels_pl: batch_label,
is_training_pl: False,
alpha: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),}
#NOT SO CLEAR THAT init_global_step IS NECESSARY.
sess.run(init_global_step, feed_dict=feed_dict)
# hels with merging: CHANGE THIS IF POSSIBLE
sess.graph._unsafe_unfinalize()
# Add summary writers
merged = tf.compat.v1.summary.merge_all()
train_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.compat.v1.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
print("Total number of weights for the model: ", np.sum([np.prod(v.get_shape().as_list()) for v in tf.compat.v1.trainable_variables()]))
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'max_pool': max_pool,
'pred': pred,
'alpha': alpha,
'mu': mu,
'stack_dist': stack_dist,
'class_loss': class_loss,
'kmeans_loss': kmeans_loss,
'train_op': train_op,
'train_op_full': train_op_full,
'merged': merged,
'step': batch,
'learning_rate': learning_rate
}
for epoch in range(MAX_EPOCH):
print('\n**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
is_full_training = epoch > MAX_PRETRAIN
max_pool = train_one_epoch(sess, ops, train_writer, hvd.rank(), hvd.size(), is_full_training)
if epoch == MAX_PRETRAIN:
centers = KMeans(n_clusters=FLAGS.n_clusters).fit(np.squeeze(max_pool))
centers = centers.cluster_centers_
sess.run(tf.compat.v1.assign(mu, centers))
#eval_one_epoch(sess, ops, test_writer, hvd.rank(), hvd.size(), is_full_training)
#Added these lines to record accuracy
epoch_acc = eval_one_epoch(sess, ops, test_writer, hvd.rank(), hvd.size(), is_full_training)
epochs_acc.append(epoch_acc)
"""if is_full_training:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'cluster.ckpt'))
else:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'model.ckpt'))"""
#print("Model saved in file: %s" % save_path)
return epochs_acc
Training utils.
def get_batch(data, label, start_idx, end_idx):
batch_label = label[start_idx:end_idx]
batch_data = data[start_idx:end_idx, :, :]
return batch_data, batch_label
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
"""
y_true = y_true.astype(np.int64)
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_sum_assignment(w.max() - w)
ind = np.asarray(ind)
ind = np.transpose(ind)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
One epoch training and evaluation functions: - the applicable horovod rank and size is fed into both functions. - use the rank and size to load the correct h5 data. - remove progress bars since progress bars from each device would overlap.
def train_one_epoch(sess, ops, train_writer, hvd_rank, hvd_size, is_full_training):
""" ops: dict mapping from string to tf ops """
is_training = True
train_idxs = np.arange(0, len(TRAIN_FILES))
acc = loss_sum = 0
y_pool = []
for fn in range(len(TRAIN_FILES)):
# print('----' + str(fn) + '-----')
current_file = os.path.join(os.getcwd(), '06_LHC', 'h5', TRAIN_FILES[train_idxs[fn]])
current_data, current_label, current_cluster = load_h5_hvd(current_file, hvd_rank, hvd_size)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
# num_batches = 5
print(str(datetime.now()))
# initialise progress bar
#process_desc = "TRAINING: Loss {:2.3e}"
#progress_bar = tqdm(initial=0, leave=True, total=num_batches,
# desc=process_desc.format(0),
# position=0)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx)
cur_batch_size = end_idx - start_idx
# print(batch_weight)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training,
ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),}
if is_full_training:
summary, step, _, loss_val, dist, lr = sess.run([ops['merged'], ops['step'],
ops['train_op_full'], ops['kmeans_loss'],
ops['stack_dist'], ops['learning_rate']],
feed_dict=feed_dict)
batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc += cluster_acc(batch_cluster, cluster_assign)
else:
summary, step, _, loss_val, max_pool, lr = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['class_loss'],
ops['max_pool'], ops['learning_rate']],
feed_dict=feed_dict)
if len(y_pool) == 0:
y_pool = np.squeeze(max_pool)
else:
y_pool = np.concatenate((y_pool, np.squeeze(max_pool)), axis=0)
loss_sum += np.mean(loss_val)
#train_writer.add_summary(summary, step)
if hvd_rank == 0:
train_writer.add_summary(summary, step)
# Update train bar
#process_desc.format(loss_val)
#progress_bar.update(1)
#progress_bar.close()
print('learning rate: %f' % (lr))
print('train mean loss: %f' % (loss_sum / float(num_batches)))
#if is_full_training:
print('train clustering accuracy: %f' % (acc / float(num_batches)))
return y_pool
def eval_one_epoch(sess, ops, test_writer, hvd_rank, hvd_size, is_full_training):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_FILES))
# Test on all data: last batch might be smaller than BATCH_SIZE
loss_sum = acc = 0
acc_kmeans = 0
for fn in range(len(TEST_FILES)):
# print('----' + str(fn) + '-----')
current_file = os.path.join(os.getcwd(), '06_LHC', 'h5', TEST_FILES[test_idxs[fn]])
current_data, current_label, current_cluster = load_h5_hvd(current_file, hvd_rank, hvd_size)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
"""process_desc = "VALIDATION: Loss {:2.3e}"
progress_bar = tqdm(initial=0, leave=True, total=num_batches,
desc=process_desc.format(0),
position=0)"""
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx)
cur_batch_size = end_idx - start_idx
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['is_training_pl']: is_training,
ops['labels_pl']: batch_label,
ops['alpha']: 2 * (EPOCH_CNT - MAX_PRETRAIN + 1),}
if is_full_training:
summary, step, loss_val, max_pool, dist, mu = sess.run([ops['merged'], ops['step'],
ops['kmeans_loss'],
ops['max_pool'], ops['stack_dist'],
ops['mu']],
feed_dict=feed_dict)
batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc += cluster_acc(batch_cluster, cluster_assign)
else:
summary, step, loss_val = sess.run([ops['merged'], ops['step'],
ops['class_loss']],
feed_dict=feed_dict)
#test_writer.add_summary(summary, step)
if hvd_rank == 0:
test_writer.add_summary(summary, step)
loss_sum += np.mean(loss_val)
"""# Update train bar
process_desc.format(loss_val)
progress_bar.update(1)"""
#progress_bar.close()
total_loss = loss_sum * 1.0 / float(num_batches)
print('test mean loss: %f' % (total_loss))
#if is_full_training:
print('testing clustering accuracy: %f' % (acc / float(num_batches)))
return acc/float(num_batches)
EPOCH_CNT += 1
Run the training: - initialise the Horovod runner with np=2 GPUs. The cluster does not allow more GPUs - run the horovod runner with the given training function.
from sparkdl import HorovodRunner
hr = HorovodRunner(np=2)
epochs_acc=hr.run(train_hvd)
plt.plot(epochs_acc)
plt.ylabel('Validation accuracy')
plt.xlabel('epochs')
plt.show()
plt.savefig('distributed.png')
print(epochs_acc)
Results: - Execution of the command for np=2 GPUs takes 3.39 hours. - Plot below show the validation accuracy vs epoch. - Note that we switch to the full loss after n=10 epochs. - We observe an improvement in the cluster validation set accuracy after around 50 epochs. - Highest cluster validation set accuracy lies at about 68%. - Output of the algorithm is the stored model.
checkpoint_dir
Evaluation
In this notebook we evaluate the trained model on new data. The data has already been downloaded in notebook 11 and is stored in the h5 directory together with the training data. At the end of this notebook we will have the clustering accuracy of the model on this new data.
Import packages needed for the script and set the correct paths
import argparse
from argparse import Namespace
from math import *
import numpy as np
from datetime import datetime
import json
import os, ast
import sys
import socket
from sklearn.cluster import KMeans
np.set_printoptions(edgeitems=1000)
from scipy.optimize import linear_sum_assignment
import h5py
import tensorflow as tf
from tqdm import tqdm
from scipy.optimize import linear_sum_assignment
BASE_DIR = os.path.join(os.getcwd(), '06_LHC','scripts')
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '..', 'models'))
sys.path.append(os.path.join(BASE_DIR, '..', 'utils'))
import provider
import gapnet_classify as MODEL
Default settings
parserdict = {'gpu':0, #help='GPUs to use [default: 0]')
'n_clusters':3,# type=int, default=3, #help='Number of clusters [Default: 3]')
'max_dim':3, #type=int, default=3, #help='Dimension of the encoding layer [Default: 3]')
'log_dir': 'log',#default='log', #help='Log dir [default: log]')
'batch':1024,# type=int, default=512, #help='Batch Size during training [default: 512]')
'num_point':100, # type=int, default=100, #help='Point Number [default: 100]')
'data_dir':'../h5/', #default='../h5', #help='directory with data [default: ../h5]')
'nfeat':8,# type=int, default=8, #help='Number of features [default: 8]')
'ncat':20, # type=int, default=20, #help='Number of categories [default: 20]')
'name': "evaluation", #default="", #help='name of the output file')
'h5_folder':'../h5/', #default="../h5/", #help='folder to store output files')
'full_train':True,# default=False, action='store_true',
#help='load full training results [default: False]')
'checkpoint_folder':'/dbfs/databricks/driver/06_LHC/logs/train/', #help: The folder where the checkpoint is saved. The script
#will retrieved the latest checkpoint created here.
}
FLAGS = Namespace(**parserdict)
#LOG_DIR = os.path.join('..', 'logs', FLAGS.log_dir)
LOG_DIR = os.path.join(os.getcwd(), '06_LHC', 'logs', FLAGS.log_dir)
DATA_DIR = FLAGS.data_dir
H5_DIR = os.path.join(BASE_DIR, DATA_DIR)
H5_OUT = FLAGS.h5_folder
CHECKPOINT_PATH = FLAGS.checkpoint_folder
if not os.path.exists(H5_OUT): os.mkdir(H5_OUT)
Some helper functions
#Calculate the clustering accuracy
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
"""
y_true = y_true.astype(np.int64)
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_sum_assignment(w.max() - w)
ind = np.asarray(ind)
ind = np.transpose(ind)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
# Find the latest checkpoint (the training script saves one every 1000th step)
def find_ckpt(path,base):
files = os.listdir(os.path.join(path,os.listdir(path)[-1]))
s=base+".ckpt-"
ckpts = [r for r in files if s in r]
numbers = [int(r.split('.')[1].split('-')[1]) for r in ckpts]
ckpt = base+'.ckpt-'+str(np.max(numbers))
return os.path.join(path,os.listdir(path)[-1],ckpt)
ls /dbfs/databricks/driver/06_LHC/logs/train/
1608312111.5291479
1608312856.6910331
1608316348.7265332
1608316368.303585
1608316645.5256958
1608317160.1003277
1608317514.0408154
1608317816.3961644
1608545228.287947
1609765453.8899894
1614197922.0756063
1614199473.6461
1614199773.0030868
1614199944.5590024
1614205764.5543048
1614253383.643093
1614266637.6848218
1614283969.6952937
1614352318.071854
1614372841.6587343
1614427683.679712
1614435113.1720457
1614435261.5545285
1614447752.0912156
1614447848.5286212
1614516429.048815
1614516851.6496608
1618854193.501687
Run the evaluation script
NUM_POINT = FLAGS.num_point
BATCH_SIZE = FLAGS.batch
NFEATURES = FLAGS.nfeat
FULL_TRAINING = FLAGS.full_train
NUM_CATEGORIES = FLAGS.ncat
# Only used to get how many parts per categor
print('#### Batch Size : {0}'.format(BATCH_SIZE))
print('#### Point Number: {0}'.format(NUM_POINT))
print('#### Using GPUs: {0}'.format(FLAGS.gpu))
print('### Starting evaluation')
EVALUATE_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'evaluate_files_wztop.txt'))
def eval():
with tf.Graph().as_default():
with tf.device('/gpu:' + str(FLAGS.gpu)):
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, NFEATURES)
batch = tf.Variable(0, trainable=False)
alpha = tf.compat.v1.placeholder(tf.float32, shape=())
is_training_pl = tf.compat.v1.placeholder(tf.bool, shape=())
pred, max_pool = MODEL.get_model(pointclouds_pl, is_training=is_training_pl, num_class=NUM_CATEGORIES)
mu = tf.Variable(tf.zeros(shape=(FLAGS.n_clusters, FLAGS.max_dim)), name="mu",
trainable=False) # k centroids
classify_loss = MODEL.get_focal_loss(pred, labels_pl, NUM_CATEGORIES)
kmeans_loss, stack_dist = MODEL.get_loss_kmeans(max_pool, mu, FLAGS.max_dim,
FLAGS.n_clusters, alpha)
saver = tf.compat.v1.train.Saver()
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.compat.v1.Session(config=config)
if FULL_TRAINING:
#saver.restore(sess, os.path.join(LOG_DIR, 'cluster.ckpt'))
saver.restore(sess, find_ckpt(CHECKPOINT_PATH,'cluster'))
else:
saver.restore(sess, find_ckpt(CHECKPOINT_PATH,'model'))
#saver.restore(sess, os.path.join(LOG_DIR, 'model.ckpt'))
print('model restored')
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'stack_dist': stack_dist,
'kmeans_loss': kmeans_loss,
'pred': pred,
'alpha': alpha,
'max_pool': max_pool,
'is_training_pl': is_training_pl,
'classify_loss': classify_loss, }
eval_one_epoch(sess, ops)
def get_batch(data, label, start_idx, end_idx):
batch_label = label[start_idx:end_idx]
batch_data = data[start_idx:end_idx, :, :]
return batch_data, batch_label
def eval_one_epoch(sess, ops):
is_training = False
eval_idxs = np.arange(0, len(EVALUATE_FILES))
y_val = []
acc = 0
for fn in range(len(EVALUATE_FILES)):
current_file = os.path.join(H5_DIR, EVALUATE_FILES[eval_idxs[fn]])
current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file)
adds = provider.load_add(current_file, ['masses'])
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
# num_batches = 5
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label, start_idx, end_idx)
batch_cluster = current_cluster[start_idx:end_idx]
cur_batch_size = end_idx - start_idx
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['alpha']: 1, # No impact on evaluation,
ops['is_training_pl']: is_training,
}
loss, dist, max_pool = sess.run([ops['kmeans_loss'], ops['stack_dist'],
ops['max_pool']], feed_dict=feed_dict)
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
batch_cluster = np.array([np.where(r == 1)[0][0] for r in current_cluster[start_idx:end_idx]])
if len(y_val) == 0:
y_val = batch_cluster
y_assign = cluster_assign
y_pool = np.squeeze(max_pool)
y_mass = adds['masses'][start_idx:end_idx]
else:
y_val = np.concatenate((y_val, batch_cluster), axis=0)
y_assign = np.concatenate((y_assign, cluster_assign), axis=0)
y_pool = np.concatenate((y_pool, np.squeeze(max_pool)), axis=0)
y_mass = np.concatenate((y_mass, adds['masses'][start_idx:end_idx]), axis=0)
with h5py.File(os.path.join(H5_OUT, '{0}.h5'.format(FLAGS.name)), "w") as fh5:
dset = fh5.create_dataset("pid", data=y_val) # Real jet categories
dset = fh5.create_dataset("label", data=y_assign) # Cluster labeling
dset = fh5.create_dataset("max_pool", data=y_pool)
dset = fh5.create_dataset("masses", data=y_mass)
print("Clustering accuracy is ",cluster_acc(y_val,y_assign))
################################################
if __name__ == '__main__':
eval()
#### Batch Size : 1024
#### Point Number: 100
#### Using GPUs: 0
### Starting evaluation
INFO:tensorflow:Restoring parameters from /dbfs/databricks/driver/06_LHC/logs/train/1614516851.6496608/cluster.ckpt-13000
model restored
loaded 143984 events
loaded 302664 events
loaded 75666 events
Clustering accuracy is 0.5005421075295275
The clustering accuracy for the fully trained model should be output above. In addition, the .h5 file ../h5/evaluate.h5 containing information about true and predicted labels (as well as masses and pooling) has been written. This can be used to make visualizations such as the one in the introduction notebook (taken from the paper).
os.listdir(H5_OUT)
from tsne import bh_sne
import os
Get original code
ls
06_LHC
conf
derby.log
eventlogs
ganglia
logs
#%sh
#wget https://github.com/olgeet/UCluster/archive/refs/heads/master.zip
#unzip master.zip
Unzip and move original code to 06LHCTF1. Copy the entire h5 folder from 06_LHC since it contains already preprocessed h5 files, which have been processed without TF and should be usable with any version.
rm -r 06_LHC_TF1
mkdir 06_LHC_TF1
cd 06_LHC_TF1
mv ../UCluster-master/* .
rm -r ../UCluster-master/ ../master.zip
cp ../06_LHC/h5/* ./h5/
rm: cannot remove '06_LHC_TF1': No such file or directory
ls 06_LHC_TF1/h5
eval_multi_20v_100P.h5
evaluate_files_RD.txt
evaluate_files_b1.txt
evaluate_files_b2.txt
evaluate_files_b3.txt
evaluate_files_gwztop.txt
evaluate_files_wztop.txt
test_files_RD.txt
test_files_b1.txt
test_files_b2.txt
test_files_b3.txt
test_files_gwztop.txt
test_files_wztop.txt
test_multi_20v_100P.h5
train_files_RD.txt
train_files_b1.txt
train_files_b2.txt
train_files_b3.txt
train_files_gwztop.txt
train_files_wztop.txt
train_multi_20v_100P.h5
Imports. Only changed some paths
from argparse import Namespace
import math
import subprocess
from datetime import datetime
import numpy as np
import tensorflow as tf
import socket
import importlib
import os,ast
import sys
from sklearn.cluster import KMeans
import h5py
np.set_printoptions(edgeitems=1000)
from scipy.optimize import linear_sum_assignment
BASE_DIR = os.path.join(os.getcwd(), '06_LHC_TF1','scripts')
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR,'..', 'models'))
sys.path.append(os.path.join(BASE_DIR,'..' ,'utils'))
import provider
import gapnet_classify as MODEL
print(tf.__version__)
1.15.4
Uses Namespace from argparse instead
parserdict = {'max_dim': 3, #help='Dimension of the encoding layer [Default: 3]')
'n_clusters': 3, #help='Number of clusters [Default: 3]')
'gpu': 0, #help='GPU to use [default: GPU 0]')
'model': 'gapnet_clasify', #help='Model name [default: gapnet_classify]')
'log_dir': 'log', #help='Log dir [default: log]')
'num_point': 100, #help='Point Number [default: 100]')
'max_epoch': 100, #help='Epoch to run [default: 200]')
'epochs_pretrain': 20, #help='Epochs to for pretraining [default: 10]')
'batch_size': 1024, #help='Batch Size during training [default: 512]')
'learning_rate': 0.001, #help='Initial learning rate [default: 0.01]')
'momentum': 0.9, #help='Initial momentum [default: 0.9]')
'optimizer': 'adam', #help='adam or momentum [default: adam]')
'decay_step': 500000, #help='Decay step for lr decay [default: 500000]')
'wd': 0.0, #help='Weight Decay [Default: 0.0]')
'decay_rate': 0.5, #help='Decay rate for lr decay [default: 0.5]')
'output_dir': 'train_results', #help='Directory that stores all training logs and trained models')
'data_dir': os.path.join(os.getcwd(),'06_LHC_TF1', 'h5'), # '../h5', #help='directory with data [default: hdf5_data]')
'nfeat': 8, #help='Number of features [default: 8]')
'ncat': 20, #help='Number of categories [default: 20]')
}
FLAGS = Namespace(**parserdict)
H5_DIR = FLAGS.data_dir
EPOCH_CNT = 0
MAX_PRETRAIN = FLAGS.epochs_pretrain
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
NUM_FEAT = FLAGS.nfeat
NUM_CLASSES = FLAGS.ncat
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
# MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model + '.py')
LOG_DIR = os.path.join('..', 'logs', FLAGS.log_dir)
if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR)
os.system('cp %s.py %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train_kmeans.py %s' % (LOG_DIR)) # bkp of train procedure
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
LEARNING_RATE_CLIP = 1e-5
HOSTNAME = socket.gethostname()
TRAIN_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'train_files_wztop.txt'))
TEST_FILES = provider.getDataFiles(os.path.join(H5_DIR, 'test_files_wztop.txt'))
Some helper functions (commented in log_string because FOUT doesn't work for some reason)
def log_string(out_str):
#LOG_FOUT.write(out_str+'\n')
#LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
Main training function (nothing changed)
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT,NUM_FEAT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
alpha = tf.placeholder(dtype=tf.float32, shape=())
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
pred , max_pool = MODEL.get_model(pointclouds_pl, is_training=is_training_pl,
bn_decay=bn_decay,
num_class=NUM_CLASSES, weight_decay=FLAGS.wd,
)
class_loss = MODEL.get_focal_loss(pred, labels_pl,NUM_CLASSES)
mu = tf.Variable(tf.zeros(shape=(FLAGS.n_clusters,FLAGS.max_dim)),name="mu",trainable=True) #k centroids
kmeans_loss, stack_dist= MODEL.get_loss_kmeans(max_pool,mu, FLAGS.max_dim,
FLAGS.n_clusters,alpha)
full_loss = 10*kmeans_loss + class_loss
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op_full = optimizer.minimize(full_loss, global_step=batch)
train_op = optimizer.minimize(class_loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
print("Total number of weights for the model: ",np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl':labels_pl,
'is_training_pl': is_training_pl,
'max_pool':max_pool,
'pred': pred,
'alpha': alpha,
'mu': mu,
'stack_dist':stack_dist,
'class_loss': class_loss,
'kmeans_loss': kmeans_loss,
'train_op': train_op,
'train_op_full': train_op_full,
'merged': merged,
'step': batch,
'learning_rate':learning_rate
}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
is_full_training = epoch > MAX_PRETRAIN
max_pool = train_one_epoch(sess, ops, train_writer,is_full_training)
if epoch == MAX_PRETRAIN:
centers = KMeans(n_clusters=FLAGS.n_clusters).fit(np.squeeze(max_pool))
centers = centers.cluster_centers_
sess.run(tf.assign(mu,centers))
eval_one_epoch(sess, ops, test_writer,is_full_training)
if is_full_training:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'cluster.ckpt'))
else:
save_path = saver.save(sess, os.path.join(LOG_DIR, 'model.ckpt'))
log_string("Model saved in file: %s" % save_path)
Helper functions needed for training (nothing changed)
def get_batch(data,label, start_idx, end_idx):
batch_label = label[start_idx:end_idx]
batch_data = data[start_idx:end_idx,:,:]
return batch_data, batch_label
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
"""
y_true = y_true.astype(np.int64)
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_sum_assignment(w.max() - w)
ind = np.asarray(ind)
ind = np.transpose(ind)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
Train one epoch (nothing changed)
def train_one_epoch(sess, ops, train_writer,is_full_training):
""" ops: dict mapping from string to tf ops """
is_training = True
train_idxs = np.arange(0, len(TRAIN_FILES))
acc = loss_sum = 0
y_pool = []
for fn in range(len(TRAIN_FILES)):
#log_string('----' + str(fn) + '-----')
current_file = os.path.join(H5_DIR,TRAIN_FILES[train_idxs[fn]])
current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
#num_batches = 5
log_string(str(datetime.now()))
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label,start_idx, end_idx)
cur_batch_size = end_idx-start_idx
#print(batch_weight)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training,
ops['alpha']: 2*(EPOCH_CNT-MAX_PRETRAIN+1),
}
if is_full_training:
summary, step, _, loss_val,dist,lr = sess.run([ops['merged'], ops['step'],
ops['train_op_full'], ops['kmeans_loss'],
ops['stack_dist'],ops['learning_rate']
],
feed_dict=feed_dict)
batch_cluster = np.array([np.where(r==1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc+=cluster_acc(batch_cluster,cluster_assign)
else:
summary, step, _, loss_val,max_pool,lr = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['class_loss'],
ops['max_pool'],ops['learning_rate']],
feed_dict=feed_dict)
if len(y_pool)==0:
y_pool=np.squeeze(max_pool)
else:
y_pool=np.concatenate((y_pool,np.squeeze(max_pool)),axis=0)
loss_sum += np.mean(loss_val)
train_writer.add_summary(summary, step)
log_string('learning rate: %f' % (lr))
log_string('train mean loss: %f' % (loss_sum / float(num_batches)))
log_string('train clustering accuracy: %f' % (acc/ float(num_batches)))
return y_pool
Evaluate one epoch (nothing changed)
def eval_one_epoch(sess, ops, test_writer,is_full_training):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_FILES))
# Test on all data: last batch might be smaller than BATCH_SIZE
loss_sum = acc =0
acc_kmeans = 0
for fn in range(len(TEST_FILES)):
#log_string('----' + str(fn) + '-----')
current_file = os.path.join(H5_DIR,TEST_FILES[test_idxs[fn]])
current_data, current_label, current_cluster = provider.load_h5_data_label_seg(current_file)
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
#num_batches = 5
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label = get_batch(current_data, current_label,start_idx, end_idx)
cur_batch_size = end_idx-start_idx
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['is_training_pl']: is_training,
ops['labels_pl']: batch_label,
ops['alpha']: 2*(EPOCH_CNT-MAX_PRETRAIN+1),
}
if is_full_training:
summary, step, loss_val, max_pool,dist,mu= sess.run([ops['merged'], ops['step'],
ops['kmeans_loss'],
ops['max_pool'],ops['stack_dist'],
ops['mu']
],
feed_dict=feed_dict)
if batch_idx==0:
log_string("mu: {}".format(mu))
batch_cluster = np.array([np.where(r==1)[0][0] for r in current_cluster[start_idx:end_idx]])
cluster_assign = np.zeros((cur_batch_size), dtype=int)
for i in range(cur_batch_size):
index_closest_cluster = np.argmin(dist[:, i])
cluster_assign[i] = index_closest_cluster
acc+=cluster_acc(batch_cluster,cluster_assign)
else:
summary, step, loss_val= sess.run([ops['merged'], ops['step'],
ops['class_loss']
],
feed_dict=feed_dict)
test_writer.add_summary(summary, step)
loss_sum += np.mean(loss_val)
total_loss = loss_sum*1.0 / float(num_batches)
log_string('test mean loss: %f' % (total_loss))
log_string('testing clustering accuracy: %f' % (acc / float(num_batches)))
EPOCH_CNT += 1
Running the training (no file written)
# if __name__ == "__main__":
# # log_string('pid: %s'%(str(os.getpid())))
# train()
# # LOG_FOUT.close()
Motif Finding
Finding motifs in graphs is no just fun, it also has applications! Here we study the possibility to use GraphFrames as a tool to be used in practice.
Math tells us that motifs has important implications on the general structure of the graphs. For example, two DAG models are the same if they have the same of two motifs, v-structures and skeletons.
Motif finding in graphframes uses a domain specific language (DSL). Here we mention the restrictions of that language and why another might be desirable. One problem is that more complicated queries are (seemingly) not supported. Our man probem however will be the way we count the motifs. GraphFrames uses motif finding algorithms and returns a list of all found subgraphs. Thus we will quickly run out of memory. More specialized software can preform this counting, but uses highly specialized tools not suitable for general motif finding.
Link to intro video: https://www.youtube.com/watch?v=GFG5MGKxJTs
Project members: - Adam Lindhe - Petter Restadh - Francesca Tombari
First we load the packages we need.
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.graphframes._
Special Graphs
Here we code some usual motifs that are common within graph theory.
/*
** A function counting the number of multiple edges.
*/
def count_mult_edges(input_graph: GraphFrame) = {
input_graph.find("(a)-[e1]->(b); (a)-[e2]->(b)").filter("e1 != e2").count
}
count_mult_edges: (input_graph: org.graphframes.GraphFrame)Long
/*
** A function counting the number of 3-cycles.
*/
def count_3_cycle(input_graph: GraphFrame): Long = {
input_graph.find("(a)-[]->(b); (b)-[]->(c); (c)-[]->(a)").count
}
count_3_cycle: (input_graph: org.graphframes.GraphFrame)Long
/*
** A function counting the number of loop edges.
*/
def count_loop(input_graph: GraphFrame) = {
input_graph.find("(a)-[]->(a)").count
}
count_loop: (input_graph: org.graphframes.GraphFrame)Long
/*
** A function counting the number of bidirected edges.
*/
def count_bidir_edges(input_graph: GraphFrame) = {
input_graph.find("(a)-[]->(b); (b)-[]->(a)").filter("a.id != b.id").count
}
count_bidir_edges: (input_graph: org.graphframes.GraphFrame)Long
Complete graphs
We code the motifs of the simplest complete graphs, we include an edge i->j if i comes before j alphabetically. That is, we code for the edges a->b and a->c but not for c->b. As we will see later the graphs of interest does not contain any loops, thus we do not have to filter the result ensuring that all nodes are distinct.
For simplicial abstract complexes these graphs correspond to the faces. Thus counting them corresponds to finding entries in the f-vector.
/*
** Two functions counting the number of 2- and 4-dimensional faces of a
** simplicial graphical simplex. It is assumed the the input_graph does
** not contain any loops.
*/
def count_K2(input_graph: GraphFrame): Long = { // Should be the same as the number of edges.
input_graph.find("(a)-[]->(b)").count
}
def count_K3(input_graph: GraphFrame): Long = {
input_graph.find("(a)-[]->(b); (a)-[]->(c); (b)-[]->(c)").count
}
def count_K4(input_graph: GraphFrame): Long = {
input_graph.find("(a)-[]->(b); (a)-[]->(c); (a)-[]->(d); (b)-[]->(c); (b)-[]->(d); (c)-[]->(d)").count
}
count_K2: (input_graph: org.graphframes.GraphFrame)Long
count_K3: (input_graph: org.graphframes.GraphFrame)Long
count_K4: (input_graph: org.graphframes.GraphFrame)Long
Application
Here we will see an example where we have done motif fining in a rats brain-network. Here we will also see the restrictions of what we can do without more specialized code.
Read the edges.
/*
** The file edges.csv contains lines on the form "1,5,edge" indicating
** we have an edge from vertex 1 to vertex 5. As we do not care about the
** third entry (i just says "edge") we choose just the two first entries.
*/
val edges = spark.read.format("csv").option("sep",",").load("/FileStore/shared_uploads/petterre@kth.se/edges.csv").withColumnRenamed("_c0", "src").withColumnRenamed("_c1", "dst").select("src", "dst")
edges.count
edges: org.apache.spark.sql.DataFrame = [src: string, dst: string]
res0: Long = 7822274
Get the vertices from the edges.
/*
** For simplicity we read all the nodes from the column "scr". Notice
** that we use the fact that every node is the source of at least one
** edge. Thus we can get the vertices like this.
*/
val vertices = edges.select("src").groupBy("src").count().select("src").sort(desc("src")).withColumnRenamed("src", "id")
vertices.count
vertices: org.apache.spark.sql.DataFrame = [id: string]
res2: Long = 31346
Since every node is the source of another, we are good to go.
/*
** Now we can create out graph of interest.
*/
val rat_brain_graph = GraphFrame(vertices, edges)
rat_brain_graph: org.graphframes.GraphFrame = GraphFrame(v:[id: string], e:[src: string, dst: string])
Graph specifics
As we can see above we have 31,346 vertices and 7,822,274 edges. The adjacancy matrix would be very sparse with only 0.7% of it's entries being 1. Thus it is generally better to store this as a list of edges (as graphframes does) as opposed to an adjacancy matrix. Despite the matrix being sparse, this is a rather dense graph with the average degree of each node being just above 499.
Here we will look closer at some specifics of this graph. Some of these are very important for designing better algorithms.
/*
** As mentioned before, we do not want loops in this graph. Thus we
** call our above function and check whether we have any.
*/
count_loop(rat_brain_graph) // 0
res4: Long = 0
/*
** A very relevant question is if this graph is connected. If it is not
** it would be more efficient to just look at the induvidual components.
** That is not the case.
*/
spark.sparkContext.setCheckpointDir("/FileStore/shared_uploads/petterre@kth.se/")
val rat_brain_graph_connected_components = rat_brain_graph.connectedComponents.run()
rat_brain_graph_connected_components.select("component").describe().show()
+-------+---------+
|summary|component|
+-------+---------+
| count| 31346|
| mean| 0.0|
| stddev| 0.0|
| min| 0|
| max| 0|
+-------+---------+
rat_brain_graph_connected_components: org.apache.spark.sql.DataFrame = [id: string, component: bigint]
/*
** Let us continue to look at some stastistics for this graph. We can
** count the number of 3-cycles.
*/
count_3_cycle(rat_brain_graph) //25 630 728
res7: Long = 25630728
/*
** Let us continue to look at some stastistics for this graph. We can
** count the number of multiple edges.
*/
count_mult_edges(rat_brain_graph) // 0
res8: Long = 0
/*
** Let us continue to look at some stastistics for this graph. We can
** count the number of bidirected edges.
*/
count_bidir_edges(rat_brain_graph) //165 220
res9: Long = 165220
Count complete graphs
Now we will (try to) run the motif finding algorithms and see how they preform.
/*
** First we look after K2. As that is the graph a->b, we expect this to
** be equal to the number of edges, otherwise something is wrong.
*/
count_K2(rat_brain_graph) //7 822 274
res11: Long = 7822274
/*
** Now we find K3. As we will see, this takes a lot of time, longer than
** we want it to. This is because 'find' does a general search algorithm.
** See below for a discussion.
*/
count_K3(rat_brain_graph) //35 976 731
res12: Long = 35976731
//count_K4(rat_brain_graph)
Troubles and fixes
As we saw above finding K3 takes a lot of time, and when running "countK4(ratbraingraph)" we run out of memory. This is because we do not use any of the structure of the graphs. Finding graphical simplicies can be made a lot quicker since we can use the structure of the graph \(K_n\) and the structure of the "ratbrain_graph".
How this can be done quicker can be read in "Computing persistent homology of directed flag complexes" by Daniel Luetgehetmann, Dejan Govc, Jason Smith, and Ran Levi (https://arxiv.org/abs/1906.10458).
This is a direct implementation.
/*
** A implementation of counting cells. It is not parallelized but could be
** if we start collecting the results in a better way.
*/
def count_cells(old_child_set: DataFrame, f_vector: List[Int], edges: DataFrame, cut_of: Int, dim: Int): List[Int] = {
// Make a new f-vector that is mutable
var f_vector_new = f_vector;
// For each new node
for (vert <- old_child_set.collect()){
// Update the f-vector
f_vector_new = f_vector_new.updated(dim, f_vector_new(dim) +1);
// If we have not reached our cut off limit
if (cut_of > dim){
// Find the children of "vert" and find the intersection.
// val child_set = old_child_set.intersect(edges.filter(edges("src") === vert(0)).select("dst"));
// Call this function recursively
f_vector_new = count_cells(old_child_set.intersect(edges.filter(edges("src") === vert(0)).select("dst")), f_vector_new, edges, cut_of, dim+1);
}
}
// Return the f-vector
f_vector_new
}
count_cells: (old_child_set: org.apache.spark.sql.DataFrame, f_vector: List[Int], edges: org.apache.spark.sql.DataFrame, cut_of: Int, dim: Int)List[Int]
This is a parallelized version. Notice that the parallelization is very naive and it starts to many threads.
/*
** Helper function to count_cells_par. Does a component-wise addition.
** Badly written.
*/
def component_addition(a: List[Int], b:List[Int]): List[Int] = {
// Do it the dumb way
List(a(0)+b(0),a(1)+b(1),a(2)+b(2),a(3)+b(3),a(4)+b(4),a(5)+b(5),a(6)+b(6),a(7)+b(7),a(8)+b(8),a(9)+b(9))
}
component_addition: (a: List[Int], b: List[Int])List[Int]
/*
** A parallel (?) implementation of counting cells.
*/
def count_cells_par(old_child_set: DataFrame, edges: DataFrame, cut_of: Int, dim: Int): List[Int] = {
if ((cut_of > dim) && (old_child_set.count > 0)){
return old_child_set.collect().par.map(vert => count_cells_par(old_child_set.intersect(edges.filter(edges("src") === vert(0)).select("dst")), edges, cut_of, dim+1)/* vert_to_f-vector*/).reduce(component_addition(_,_)).updated(dim, 1)
}
else{
return List(0,0,0,0,0,0,0,0,0,0).updated(dim, 1);
}
}
count_cells_par: (old_child_set: org.apache.spark.sql.DataFrame, edges: org.apache.spark.sql.DataFrame, cut_of: Int, dim: Int)List[Int]
Here we implement a version with hopefully better parallelization. It does just one step of parallelization, as oppose to starting to many threads.
/*
** A parallel (?) implementation of counting cells.
*/
def count_cells_opt(old_child_set: DataFrame, edges: DataFrame, cut_of: Int, dim: Int): List[Int] = {
if ((cut_of > dim) && (old_child_set.count > 0)){
return old_child_set.collect().par.map(vert => count_cells_opt_helper(old_child_set.intersect(edges.filter(edges("src") === vert(0)).select("dst")), edges, cut_of, dim+1)/* vert_to_f-vector*/).reduce(component_addition(_,_)).updated(dim, 1)
}
else{
return List(0,0,0,0,0,0,0,0,0,0).updated(dim, 1);
}
}
def count_cells_opt_helper(old_child_set: DataFrame, edges: DataFrame, cut_of: Int, dim: Int): List[Int] = {
if ((cut_of > dim) && (old_child_set.count > 0)){
// The next line should not parallelize the process.
return old_child_set.collect().map(vert => count_cells_par(old_child_set.intersect(edges.filter(edges("src") === vert(0)).select("dst")), edges, cut_of, dim+1)/* vert_to_f-vector*/).reduce(component_addition(_,_)).updated(dim, 1)
}
else{
return List(0,0,0,0,0,0,0,0,0,0).updated(dim, 1);
}
}
count_cells_opt: (old_child_set: org.apache.spark.sql.DataFrame, edges: org.apache.spark.sql.DataFrame, cut_of: Int, dim: Int)List[Int]
count_cells_opt_helper: (old_child_set: org.apache.spark.sql.DataFrame, edges: org.apache.spark.sql.DataFrame, cut_of: Int, dim: Int)List[Int]
GraphFrame calling
Here we have funcions so that we can call the count_cellst directly on a GraphFrame.
/*
** Makes it easier to call "count_cells" on a GraphFrame object. Notice
** that we can get wrong results if the input graph has loops. We recommend
** running "count_loops" to see if that is the case.
*/
def f_vector_of_graphframe(graph: GraphFrame, cut_of: Int): List[Int] = {
var f_vector = List(0,0,0,0,0,0,0,0,0,0);
if (cut_of > 9){
print("Too big cut_of")
f_vector
}
count_cells(graph.vertices.select("id"), f_vector, graph.edges.select("src", "dst"), cut_of, 0);
}
f_vector_of_graphframe: (graph: org.graphframes.GraphFrame, cut_of: Int)List[Int]
/*
** Makes it easier to call "count_cells_par" on a GraphFrame object. Notice
** that we can get wrong results if the input graph has loops. We recommend
** running "count_loops" to see if that is the case.
*/
def f_vector_of_graphframe_par(graph: GraphFrame, cut_of: Int): List[Int] = {
var temp_int = 0;
if (cut_of > 9){
print("Too big cut_of")
temp_int = 9;
}
else{
temp_int = cut_of;
}
count_cells_par(graph.vertices.select("id"), graph.edges.select("src", "dst"), temp_int, 0);
}
f_vector_of_graphframe_par: (graph: org.graphframes.GraphFrame, cut_of: Int)List[Int]
/*
** Makes it easier to call "count_cells_opt" on a GraphFrame object. Notice
** that we can get wrong results if the input graph has loops. We recommend
** running "count_loops" to see if that is the case.
*/
def f_vector_of_graphframe_opt(graph: GraphFrame, cut_of: Int): List[Int] = {
var f_vector = List(0,0,0,0,0,0,0,0,0,0);
if (cut_of > 9){
print("Too big cut_of")
f_vector
}
count_cells_opt(graph.vertices.select("id"), graph.edges.select("src", "dst"), cut_of, 0);
}
f_vector_of_graphframe_opt: (graph: org.graphframes.GraphFrame, cut_of: Int)List[Int]
Example
Let us take a small example that we can run in a fair time and show.
/*
** First we will define a small graph that is manageable by hand. This
** graph encodes for a simplicial complex with f-vector (6, 11, 7, 1).
*/
// Vertex DataFrame
val v = sqlContext.createDataFrame(List(
("a", 1),
("b", 2),
("c", 3),
("d", 4),
("e", 5),
("f", 6)
)).toDF("id", "no")
// Edge DataFrame
val e = sqlContext.createDataFrame(List(
("a", "b"),
("a", "c"),
("b", "c"),
("b", "d"),
("d", "c"),
("b", "e"),
("c", "e"),
("d", "e"),
("a", "f"),
("c", "a"),
("c", "f")
)).toDF("src", "dst")
val g = GraphFrame(v, e);
v: org.apache.spark.sql.DataFrame = [id: string, no: int]
e: org.apache.spark.sql.DataFrame = [src: string, dst: string]
g: org.graphframes.GraphFrame = GraphFrame(v:[id: string, no: int], e:[src: string, dst: string])
f_vector_of_graphframe(g, 5)
res18: List[Int] = List(6, 11, 7, 1, 0, 0, 0, 0, 0, 0)
f_vector_of_graphframe_par(g, 5)
res19: List[Int] = List(1, 6, 11, 7, 1, 0, 0, 0, 0, 0)
f_vector_of_graphframe_opt(g, 5)
res20: List[Int] = List(1, 6, 11, 7, 1, 0, 0, 0, 0, 0)
println(g.vertices.count)
println(count_K2(g))
println(count_K3(g))
println(count_K4(g))
6
11
7
1
//f_vector_of_graphframe_opt(rat_brain_graph, cut_of = 2)
Data Processing
Here we will load the data as it was given to us, as a ".npy" file, and rewrite it in a simpler format. Why we do this is motivated in "Coding_Motifs", subsection "application".
# Load packages
import numpy as np
Read the data as a numpy object (since we got it like that), and save it as a ".csv" since scala can read that.
M = np.load('/dbfs/FileStore/shared_uploads/adlindhe@kth.se/M.npy')
np.savetxt("/dbfs/FileStore/shared_uploads/adlindhe@kth.se/M.csv", M, delimiter=",")
Right now the data is an adjacency matrix of size 31346 times 31346 but only 0.7% of all entries are 1. Thus we would like to save it down as something a little easier to handle. We can read the adjacency matrix directly as a dataframe, but that does not work well with graphframes. Instead we want it as an edgelist.
/*
** Example on how we can read the data.
*/
val Ms = spark.read.format("csv").option("sep",",").option("MaxColumns",40000).load("/FileStore/shared_uploads/adlindhe@kth.se/M.csv")
Thus we rewrite it as a edgelist. Thus we can more easily load it into graphframes.
# Loop over the whole matrix. This takes time (~ 1h).
edges_file = open("/dbfs/FileStore/shared_uploads/petterre@kth.se/edges.csv", "w")
for i in range(len(M)):
for j in range(len(M[i])):
for k in range(M[i][j]):
edges_file.write(str(i) + "," + str(j) + ",edge\n")
edges_file.close()
Look at it to see if it looks ok.
head /dbfs/FileStore/shared_uploads/petterre@kth.se/edges.csv
Ms.cache // cache the DataFrame this time
Ms.count // now after this action, the next count will be fast...
display(Ms)
Intro
In this notebook we create a code-writing program. Coding a specific motif generally makes for very long strings, the length grows as \(n^2\). Thus coding them directly is very inefficient. We solved this problem via a simple program. Here we can simply feed the adjacancy matrix of the motif we want to find, and it gives us the scala code.
import numpy as np
In this funtion we input the adjacancy matrix of the motif we want to find. Then it produces the text of a scala command. Than command can then be copy-pasted into another notebook.
Here we simply go through the adjacancy matrix and fix the string thereafter. In this function the motif we want to find is induced by the graph. Thus each edge is either wanted or forbidden.
loops - Do we care about loops or not.
def matrix_to_string(input_matrix, input_function_name, loops = True):
ret_string = "def " + input_function_name + "(input_graph: GraphFrame) = {\n\tval string_" +input_function_name+ " = \""
filter_string = ""
pos_edges = ""
neg_edges = ""
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
for i in range(len(input_matrix)):
for j in range(len(input_matrix[i])):
if i == j:
if loops and input_matrix[i][j] != 0:
pos_edges += "(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
elif loops:
neg_edges += "!(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
elif input_matrix[i][j] != 0:
pos_edges += "(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
else:
neg_edges += "!(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
if i > j:
filter_string += ".filter(\"" + alphabet[j] + ".id != " + alphabet[i] + ".id\")"
ret_string += pos_edges + neg_edges
ret_string = ret_string[0:-2]
ret_string += "\"\n\tinput_graph.find(g_1)"
ret_string += filter_string
ret_string += ".count\n}\n"
return ret_string
In this funtion we input the signed adjacancy matrix of the motif we want to find. Then it produces the text of a scala command. Than command can then be copy-pasted into another notebook.
Here we simply go through the adjacancy matrix and fix the string thereafter. In this function each edge can either be demanded, forbidden, or allowed. The three states are represented by 1, -1, and all other values.
loops - Do we care about loops or not.
def matrix_to_string_signed(input_matrix, input_function_name):
ret_string = "def " + input_function_name + "(input_graph: GraphFrame) = {\n\tval string_" +input_function_name+ " = \""
filter_string = ""
pos_edges = ""
neg_edges = ""
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
for i in range(len(input_matrix)):
for j in range(len(input_matrix[i])):
if input_matrix[i][j] == 1:
pos_edges += "(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
elif input_matrix[i][j] == -1:
neg_edges += "!(" + alphabet[i] + ")-[]->(" + alphabet[j] + "); "
if i > j:
filter_string += ".filter(\"" + alphabet[j] + ".id != " + alphabet[i] + ".id\")"
ret_string += pos_edges + neg_edges
ret_string = ret_string[0:-2]
ret_string += "\"\n\tinput_graph.find(g_1)"
ret_string += filter_string
ret_string += ".count\n}\n"
return ret_string
Examples
Here is a quick example where we have coded for a "claw". Another name for the claw is a star of size 3, meaning it has 4 vertices.
print(matrix_to_string([[0,0,0,1],[0,0,0,1],[0,0,0,1],[0,0,0,0]], "count_claw", loops = False))
def count_claw(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(d); (b)-[]->(d); (c)-[]->(d); !(a)-[]->(b); !(a)-[]->(c); !(b)-[]->(a); !(b)-[]->(c); !(c)-[]->(a); !(c)-[]->(b); !(d)-[]->(a); !(d)-[]->(b); !(d)-[]->(c)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").filter("a.id != d.id").filter("b.id != d.id").filter("c.id != d.id").count
}
Here we cave coded for a v-structure.
print(matrix_to_string([[0,0,1],[0,0,1],[0,0,0]], "count_v_struc", loops = False))
def count_v_struc(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(c); (b)-[]->(c); !(a)-[]->(b); !(b)-[]->(a); !(c)-[]->(a); !(c)-[]->(b)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").count
}
Counting how many loops
print(matrix_to_string([[1]], "count_loop"))
def count_loop(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(a)"
input_graph.find(g_1).count
}
A very important thing we want to look at is complete graphs.
As these can grow big, we write a function to generate them.
def adj_matrix_complete_graph(size):
adj_matrix = np.zeros((size,size))
for i in range(len(adj_matrix)):
for j in range(i+1, len(adj_matrix[i])):
adj_matrix[i][j] = 1
return adj_matrix
Now we can generate the code of interest.
for i in range(3,7+1):
print(matrix_to_string_signed(adj_matrix_complete_graph(i), "count_K"+str(i)))
def count_K3(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(b); (a)-[]->(c); (b)-[]->(c)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").count
}
def count_K4(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(b); (a)-[]->(c); (a)-[]->(d); (b)-[]->(c); (b)-[]->(d); (c)-[]->(d)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").filter("a.id != d.id").filter("b.id != d.id").filter("c.id != d.id").count
}
def count_K5(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(b); (a)-[]->(c); (a)-[]->(d); (a)-[]->(e); (b)-[]->(c); (b)-[]->(d); (b)-[]->(e); (c)-[]->(d); (c)-[]->(e); (d)-[]->(e)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").filter("a.id != d.id").filter("b.id != d.id").filter("c.id != d.id").filter("a.id != e.id").filter("b.id != e.id").filter("c.id != e.id").filter("d.id != e.id").count
}
def count_K6(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(b); (a)-[]->(c); (a)-[]->(d); (a)-[]->(e); (a)-[]->(f); (b)-[]->(c); (b)-[]->(d); (b)-[]->(e); (b)-[]->(f); (c)-[]->(d); (c)-[]->(e); (c)-[]->(f); (d)-[]->(e); (d)-[]->(f); (e)-[]->(f)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").filter("a.id != d.id").filter("b.id != d.id").filter("c.id != d.id").filter("a.id != e.id").filter("b.id != e.id").filter("c.id != e.id").filter("d.id != e.id").filter("a.id != f.id").filter("b.id != f.id").filter("c.id != f.id").filter("d.id != f.id").filter("e.id != f.id").count
}
def count_K7(input_graph: GraphFrame) = {
val g_1 = "(a)-[]->(b); (a)-[]->(c); (a)-[]->(d); (a)-[]->(e); (a)-[]->(f); (a)-[]->(g); (b)-[]->(c); (b)-[]->(d); (b)-[]->(e); (b)-[]->(f); (b)-[]->(g); (c)-[]->(d); (c)-[]->(e); (c)-[]->(f); (c)-[]->(g); (d)-[]->(e); (d)-[]->(f); (d)-[]->(g); (e)-[]->(f); (e)-[]->(g); (f)-[]->(g)"
input_graph.find(g_1).filter("a.id != b.id").filter("a.id != c.id").filter("b.id != c.id").filter("a.id != d.id").filter("b.id != d.id").filter("c.id != d.id").filter("a.id != e.id").filter("b.id != e.id").filter("c.id != e.id").filter("d.id != e.id").filter("a.id != f.id").filter("b.id != f.id").filter("c.id != f.id").filter("d.id != f.id").filter("e.id != f.id").filter("a.id != g.id").filter("b.id != g.id").filter("c.id != g.id").filter("d.id != g.id").filter("e.id != g.id").filter("f.id != g.id").count
}
Python version: python 3.7
Library dependencies - PySpark - PyTorch - toolz - matplotlib
Introduction
In this project, we create a distributed ensemble of neural networks that we can train and make predictions with in a distributed fashion, and we also apply this model to the out-of-distribution detection problem [2] (detecting inputs that are highly dissimilar from the training data).
Why ensembles?
Ensembles of neural networks - often have better predictive performance than single ensemble members [1] - have shown to provide reliable uncertainty estimates
The latter quality is beneficial in itself but is especially useful when it comes to tasks such as out-of-distribution detection, where a model’s uncertainty estimates can be used to determine if a sample is in-distribution or not. We demonstrate this in the experiments below.
Distributed ensembles
In Spark, it is common to distribute data over several worker nodes. In this way, the same function is performed on several nodes on different parts of the data. The result from each node is then communicated and aggregated to a final function output. Similarily, we can train a neural network (a single ensemble member) in a distributed way by distributing the data that we use to train it. This can for example be done using the built-in MLP and MLPC classes in Pyspark [3]. However, this approach requires continuous communication between nodes to update model weights (possibly at every iteration) since every node keeps its own version of the model weights. The approach therefore scales badly as - the number of model parameters grow (more information to communicate between nodes) - when the complexity of the training algorithm increases, e.g. we wish to use a stochastic training algorithm
In this regard, the communication becomes a bottleneck. Asynchronous updating can reduce the amount of communication, but might also hurt model performance [4].
Considering that the ensemble members are independent models, they never need to communicate during the training phase. Hence, training ensemble members in a way that requires the otherwise independent training processes to integrate or synchronize, would cause unnecessary costs, for example since the training processes all need to communicate through the driver node. The same holds for prediction; no communication is needed between ensemble members except at the very end when the predictions are aggregated.
To avoid unnecessary communication, we distribute the ensemble members and train them on separate worker nodes such that we - are able to train several ensemble members in parallell (limited by the number of nodes in our cluster) and independently - avoid communication between worker nodes
To achieve this, we implement our own training processes below. In addition, we implement our own MLP class with the help of PyTorch. MLP objects and their training data are then distributed on worker nodes using Spark. This is not only to avoid distributing the training data over several nodes during training but also to package the ensemble members in a way that makes it possible for us to send them between the driver and the worker nodes prior to and at the end of training.
from random import randrange
import random
from pathlib import Path
# External libs added to cluster
from pyspark.mllib.random import RandomRDDs
from pyspark.ml.feature import StringIndexer, OneHotEncoder, StandardScaler, VectorAssembler
from pyspark.ml import Pipeline
from pyspark.rdd import PipelinedRDD
from toolz.itertoolz import partition_all
from toolz.itertoolz import cons
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from matplotlib import pyplot as plt
Data
We introduce the functions that we use to load the data for the experiments that we conduct. We split the available training data between ensemble members using sampling with or without replacement. The number of training data points that we can distribute to each ensemble member is only limited by the memory available to each worker node.
TOY DATA
We create a function for generating data consisting of Gaussian clusters. The function takes as input, user defined means and variances for each cluster in the data as well as the total number of observations and a vector of intended class proportions. It also comes with an option to split the final RDD into train and test sets.
We will use this data later on to demonstrate our distributed ensembles framework as well as to generate out-of-distribution data for OOD detection.
def create_gaussian_RDD(means, variances, num_observations, class_proportions, train_test_split=False):
"""Create toy Gaussian classification data
Let C := number of clusters/classes and P := number of data features
Args:
means (np.array[float]): mean vector of shape (C, P)
variances (np.array[float]): vector of variances, shape (C, P)
num_observations (scalar[int]): the total number of observations in the final data set
class_proportions (np.array[float]): vector of class proportions, length C
train_test_split: whether to split the data into train/test sets or not
Returns:
Gaussian data, RDD of tuples (list(features), int(label))
"""
assert means.shape[0] == variances.shape[0]
assert means.shape[1] == variances.shape[1]
assert class_proportions.sum() == 1
num_classes = means.shape[0]
num_features = means.shape[1]
data_rdd = sc.emptyRDD()
for k in range(num_classes):
# Generate standard normal data
class_size = int(num_observations * class_proportions[k])
class_rdd = RandomRDDs.normalVectorRDD(sc, numRows=class_size, numCols=num_features, numPartitions=1) #, seed=123)
# Map to true distribution
class_rdd_transformed = class_rdd.map(lambda v: means[k, :] + (variances[k, :]**0.5) * v)
# Add labels
class_rdd_w_label = class_rdd_transformed.map(lambda v: (v, k))
data_rdd = data_rdd.union(class_rdd_w_label)
# We will shuffle and repartition the data
num_partitions = 10
shuffled_rdd = data_rdd.sortBy(lambda v: randrange(num_observations)).repartition(num_partitions)
final_rdd = shuffled_rdd.map(tuple).map(lambda v: (list(v[0]), int(v[1])))
if train_test_split:
train_rdd, test_rdd = final_rdd.randomSplit(weights=[0.8, 0.2], seed=12)
final_rdd = (train_rdd, test_rdd)
return final_rdd
FIRE WALL DATA
We will also consider some real data. The dataset that we will use consits of traffic from a firewall tracking record. We have accessed it through the UCI Machine Learning repository [4]: https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data.
-
Number of data points: 65,532.
-
Number of features: 11 (all numerical).
-
Number of classes: 4 (allow/deny/drop/reset both).
def load_firewall_data(train_test_split=False,file_location="/FileStore/shared_uploads/amanda.olmin@liu.se/fire_wall_data.csv"):
"""Load and preprocess firewall data
Args:
file_location: file location from which to load the data
train_test_split: whether to split the data into train/test sets or not
Returns:
Firewall data, RDD of tuples (list(features), int(label))
"""
# File location and type
# file_location = "/FileStore/shared_uploads/amanda.olmin@liu.se/fire_wall_data.csv"
file_type = "csv"
# CSV options
infer_schema = "true"
first_row_is_header = "true"
delimiter = ","
# Load the data from file
df = spark.read.format(file_type) \
.option("inferSchema", infer_schema) \
.option("header", first_row_is_header) \
.option("sep", delimiter) \
.load(file_location)
# Preprocess data
col_num = ["Source Port", "Destination Port", "NAT Source Port", "NAT Destination Port", "Bytes", "Bytes Sent", "Bytes Received", "Packets", "Elapsed Time (sec)", "pkts_sent", "pkts_received"]
# Index qualitative variable
indexer = StringIndexer(inputCol = "Action", outputCol = "label")
# Scale numerical features
va = VectorAssembler(inputCols = col_num, outputCol = "numerical_features")
scaler = StandardScaler(inputCol = "numerical_features", outputCol = "features")
# Apply pipeline
pipeline = Pipeline(stages=[indexer, va, scaler])
final_df = pipeline.fit(df).transform(df).select("features", "label")
# Convert to RDD
final_rdd = final_df.rdd.map(tuple).map(lambda v: (list(v[0]), int(v[1])))
if train_test_split:
train_rdd, test_rdd = final_rdd.randomSplit(weights=[0.8, 0.2], seed=12)
final_rdd = (train_rdd, test_rdd)
return final_rdd
** RDD partition **
Below, we provide a function that partitions an RDD. We will use it to distribute data between ensemble members.
def get_partitioned_rdd(input_rdd, partition_size=1000):
"""Partition RDD
Args:
input_rdd: RDD to be partitioned
Returns:
Partitioned RDD
"""
return input_rdd.mapPartitions(lambda partition: partition_all(partition_size, partition))
PyTorch Model
To implement the ensemble members, we first write an ordinary feedforward (MLP) neural network class using PyTorch, which has a Softmax output and Tanh activation functions. The number of layers and neurons in each layer is passed as an argument to the constructor of this class. Moreover, any instance of this network class (parameters and structure) can be easily stored in and loaded from a state dictionary (state_dict) object.
#Feedforward network for classification
class MLP(nn.Module):
def __init__(self,shape):
#shape: number of neurons in each layer (including the input and output layers)
super(MLP,self).__init__()
self.units=nn.ModuleList()
for i in range(len(shape)-1):
self.units.append(nn.Linear(shape[i],shape[i+1]))
self._shape=shape
self._nlayers=len(shape)
def forward(self,x):
y=x
for i,layer in enumerate(self.units):
if i<self._nlayers-2:
y=nn.functional.tanh(layer(y))
else:
y=nn.functional.softmax(layer(y),dim=1)
return y
#constructing an instance of this class based on a state dictionary (network parameters)
@staticmethod
def from_state_dict(state_dict):
net_shape = MLP.shape_from_state_dict(state_dict)
net=MLP(net_shape)
net.load_state_dict(state_dict)
return net
@staticmethod
def shape_from_state_dict(state_dict):
"""Infer MLP layer shapes from state_dict"""
iter_ = iter(state_dict.items())
_, input_size = next(iter_)
bias_tensors = filter(lambda key_val: key_val[0].find("bias") != -1, iter_)
shapes = map(lambda key_val: key_val[1].size(0), bias_tensors)
return list(cons(input_size.size(1), shapes))
Functions for training and testing networks
Here we have some functions that are used to train/test each individual network in the ensemble. The Train function takes the initial weights of a network, trains it on a set of input-taraget data based on stochastic gradient optimization and cross-entropy loss, and returns the state dictionary of the trained network. PyTorch's backpropagation and optimization tools are used to implement this function as usual. The Predict function simply takes the state dictionary corresponding to a network as well as a data point (or batch of data), and returns the output (probabilities) of the network at that point.
We note that Spark can automatically distribute these functions on the nodes, and thus writing them for a distributed ensemble is not basically different from a local setup.
#utility class for pytorch data loader
class DataSet(torch.utils.data.Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return self.x.shape[0]
def __getitem__(self, ind):
x = self.x[ind]
y = self.y[ind]
return x, y
#The main training function (is run on worker nodes)
def Train(net_params,x,y):
#net_params: initial parameters of the feedforward network (state dictionary)
#x,y: training data (pytorch tensors)
n_epochs=100
batchsize=10
net=MLP.from_state_dict(net_params)
train_data = DataSet(x, y)
dataloader = torch.utils.data.DataLoader(train_data, batch_size=batchsize)
opt=optim.Adam(net.parameters())
loss=nn.CrossEntropyLoss()
for i in range(n_epochs):
for batch in dataloader:
opt.zero_grad()
xb,yb=batch
yhat=net(xb)
err=loss(yhat,yb)
err.backward()
opt.step()
err=loss(net(x),y)
lossval=float(err.detach().numpy())
#returns parameters of the trained network and loss
return (net.state_dict(),lossval)
#Get the output of a feedforward network given an input tensor
def Predict(net_params, x):
#net_params: parameters (state dictionary) of the network
#x: input (pytorch tensor)
net = MLP.from_state_dict(net_params)
net.eval()
return net(x)
#Reshaping and converting the tuples stored in a dataset RDD into input and target tensors
def Totensor(d):
#d: the dataset (list of tuples)
x=[v[0] for v in d]
y=[v[1] for v in d]
x=torch.tensor(x,dtype=torch.float)
y=torch.tensor(y,dtype=torch.long)
return (x,y)
def make_prediction(state_dict, x):
print(state_dict)
return Predict(state_dict, x)
Creating an ensemble of networks, and training them in parallel
We now use the class and functions defined above to create an ensemble of feedforward neural networks, and train it in a distributed fashion, where each network is trained on a single worker independently from the other ones. Firstly, several networks are initialized using the MLP class with a random number of hidden layers and neurons, and random initial weights. Using randomness helps to increase the diversity in the ensemble (without which, the outputs of ensemble members could get correlated with each other).
As mentioned before, the training data is partioned into equal size parts, and each of the networks in the ensemble is assigned one part. Since the dataset is assumed to be an RDD (to let it be huge), an iterator object is needed which collects one part of the data RDD (transfers it from the cloud to the driver node) in each call. Note that we here implicitly assume that each part of the data (but not the whole dataset) fits into the memory of a single machine.
After constructing the network object and loading data for each member of the ensemble, the state dictionary of the network and its corresponding training data are packed into a tuple, and appended to a list. The list of state_dict/data tuples is then parallelized to obtain an Spark RDD. We found out that it is difficult to directly put the PyTorch neural network objects in an RDD, apparently becasue Spark does not know by default how to encode these objects and transfer them between nodes. Therefore, we use the state dictionary instead, which contains all the necessary information about a network.
Finally, the network training function (Train defined above) is applied to each element of the model/data RDD, in the form of a map operation. This tells Spark to run the function on each element in parallel (on worker machines) independently.
def train_ensemble(n_models, inputdims, nclasses, max_layers, min_neurons, max_neurons, data_iterator):
"""Constructing and training a distributed ensemble of feedforward networks
Args:
n_models: number of the ensemble memebrs
inputdims: number of features dimesnions
nclasses: number of the classes
max_layers: maximum allowed number of hidden layers for the networks
min_neurons,max_neurons: the valid range for the number of neurons in each hidden layer
data_iterator: a Python iterator over the parts of the training data (one part per each member of the ensemble)
Returns: a list of state dictionaries of the trained networks
"""
# initialization
model_data=[] # pairs of model parameters and their training data
for i in range(n_models):
# pick random number of hidden layers and neurons for each network
nhidden=random.randint(1, max_layers)
shape=[inputdims]
for k in range(nhidden):
shape.append(random.randint(min_neurons, max_neurons))
shape.append(nclasses)
net=MLP(shape)
#fetch the next part of data
d=next(data_iterator)
x=d[0]
y=d[1]
model_data.append((net.state_dict(),x,y))
# distribute the array
model_data_par= sc.parallelize(model_data)
# execute the train function on the worker nodes
models_trained = model_data_par.map(lambda t: Train(*t))
#transfer the trained models and loss values to the driver
models_trained=models_trained.collect()
#print the training loss values
print("training losses:")
print([v[1] for v in models_trained])
# return the state dicts
return [v[0] for v in models_trained]
** Utility functions for saving and loading the ensemble model from the disk **
def save_models_distr(models, dir_, model_names=None):
dir_ = Path(dir_)
dir_.mkdir(exist_ok=True, parents=True)
if model_names is None:
model_names = [f"m{idx}.pt" for idx in range(0, models.count())]
assert len(model_names) == models.count()
model_paths = [dir_ / model_name for model_name in model_names]
model_paths = sc.parallelize(model_paths)
models.zip(model_paths).foreach(lambda dict_and_path: torch.save(*dict_and_path))
def save_models(models, dir_, model_names=None):
dir_ = Path(dir_)
dir_.mkdir(exist_ok=True, parents=True)
if model_names is None:
model_names = [f"m{idx}.pt" for idx in range(0, len(models))]
assert len(model_names) == len(models)
model_paths = [dir_ / model_name for model_name in model_names]
for state_dict, path in zip(models, model_paths):
torch.save(state_dict, path)
def load_models(model_names, dir_):
dir_ = Path(dir_)
model_paths = [dir_ / model_name for model_name in model_names]
state_dicts = [torch.load(path) for path in model_paths]
return sc.parallelize(state_dicts)
Distributed ensembles prediction API
From the training process we get a distributed iterator models
over the trained models. (NB. the train_ensemble
function actually collects the trained models for convenience.) Internally this is an iterator over torch.state_dicts
holding the param's of each model respectively.
There are different ways in which we can do predictions:
-
Distributed predictions with
ens_preds(models, test_x)
, which maps the combined model and test data to predictions for each data point. This iterator can be collected to a list of the predictions for each ensemble member, or further processed in a distributed and functional manner. This is the most flexible variant since it preserves the prediction of every member on every datapoint. It is also the most expensive (if we do collect all the data). -
Reduced/aggregated predictions with
ens_preds_reduced(models, test_x, red_fn)
. Working with an ensemble, we are often concerned with some aggregate of the members' predictions, eg., the average prediction. For this we provide an reducing version ofens_preds
where the user need only supply the reduce functionred_fn
, describing how to combine the predictions of two ensemble members. For instance, if you would like to get the average probability vector of a classifier ensemble for every data point you would use:avg_prob_vecs = ens_preds_reduced(models, x, lambda x, y: (x+y)/2)
Internally, this simply calls
.reduce(red_fn)
on the iterator returned fromens_preds
. This is merely a convenience function. -
Metrics per ensemble member. If the number of test samples is large, we will collect a lot of predictions over the cluster. If we know that we only want an aggregate metric for each member across the whole test data, we use the
ens_metrics
method for aggregation on the worker nodes.avg_acc_per_member = ens_metrics(models, test_input, test_true_labels, <list of metric functions>)
Note that each metric function must be on the form: f: R^(N x D_x) x R^(N) --> T
def ens_preds(models, test_x):
"""Distributed ensemble predictions
Takes a set of models and test data and makes distributed predictions
Let N := number of data points and D_x := the dimension of a single datapoint x
Args:
models (list[state_dict]): set of models represented as a list (state_dict, shape)
test_x (torch.Tensor): Tensor of size (N, D_x)
Returns:
Distributed iterator over the predictions. E.g. an iterator over probability vectors in the case of a classifier ens.
"""
pred_iter = _pred_models_iter(models, test_x)
return pred_iter.map(lambda t: Predict(*t))
def ens_preds_reduced(models, test_x, red_fn):
"""Reduced/aggregated ensemble predictions
Takes a set of models and test data and makes distributed predictions and reduces them with a provided `red_fn`
Let N := number of data points and D_x := the dimension of a single datapoint x
Args:
models (list[state_dict]): set of models represented as a list (state_dict, shape)
test_x (torch.Tensor): Tensor of size (N, D_x)
red_fn function: f: R^D_x x R^D_x --> R^D_x
Returns:
Single reduced/aggregated prediction of the whole ensemble
"""
return ens_preds(models, test_x).reduce(red_fn)
def ens_metrics(models, test_x, test_y, metrics):
"""Distributed ensemble metrics
Takes a set of models and test data, predicts probability vectors and calculates the provided metrics
given true labels `test_y`
Let N := number of data points and D_x := the dimension of a single datapoint x
Args:
models (list[state_dict]): set of models represented as a list (state_dict, shape)
test_x (torch.Tensor): Tensor of size (N, D_x)
test_y (torch.Tensor): Tensor of size (N). NB: hard labels
metrics (list[functions]): List of functions where each funcion f: R^(N x D_x) x R^(N) --> T, where T is a generic output type.
"""
return ens_preds(models, test_x).map(lambda prob_vecs: [metric(prob_vecs, test_y) for metric in metrics])
def _pred_models_iter(models, test_x):
"""Helper function to generate a distributed iterator over models and test data
NB: the same `test_x` is given to all elements in the iterator
Args:
models (list[state_dict]): set of models represented as a list (state_dict, shape)
test_x (torch.Tensor): Tensor of size (N, D_x)
"""
if isinstance(models, PipelinedRDD):
return models.map(lambda model: (model, test_x))
elif isinstance(models, list):
models_and_data = [(params, test_x) for params in models]
return sc.parallelize(models_and_data)
else:
raise TypeError("'models' must be an RDD or a list")
def avg_accuracy(prob_vecs, labels):
"""Example metrics function: average accuracy
Let N := number of data points and C := the number of classes
Args:
prob_vecs (torch.Tensor): Tensor of size (N, C)
labels (torch.Tensor): Tensor of size (N), hard labels, with classes corresponding to indices 0, ..., C-1
Returns:
torch.Tensor: Tensor of size (N), average accuracy over all datapoints.
"""
hard_preds = torch.argmax(prob_vecs, 1)
return (hard_preds == labels).float().mean()
def entropy(prob_vecs):
return - (prob_vecs * torch.log(prob_vecs)).sum(1)
def avg_entropy(prob_vec_1, prob_vec_2):
e_1 = entropy(prob_vec_1)
e_2 = entropy(prob_vec_2)
return (e_1 + e_2)
Application example: Distributed predictions
Let's first demonstrate our distributed ensembles with a simple toy example. We'll create gaussian toy data with three slightly overlapping clusters:
means = np.array([(0, 0), (1,0), (1, 1)])
variances = 0.1 * np.ones((3, 2))
num_observations = 5000
class_proportions = np.array([1/3, 1/3, 1/3])
data_train, data_test = create_gaussian_RDD(means, variances, num_observations, class_proportions, train_test_split=True)
Now we'll create and distributedly train a classifier ensemble and save it to file. This is not necessary, we can -- in fact -- make predictions with the trained ensemble without ever collecting it from the worker nodes, but in most use cases it will be convenient to save the ensemble on disk.
data_iterator=get_partitioned_rdd(data_train).map(Totensor).toLocalIterator()
n_models=5 # ensemble size
inputdims=2 # features dimensions
nclasses=3 # number of classes
max_layers=2
min_neurons=2
max_neurons=5
models_trained = train_ensemble(n_models, inputdims, nclasses, max_layers, min_neurons, max_neurons, data_iterator)
saved_models_dir = Path("saved_models/gaussian")
save_models(models_trained, saved_models_dir)
training losses:
[0.6597320437431335, 0.6314507126808167, 0.6506103277206421, 0.6424266695976257, 0.657072901725769]
Making distributed predictions
With the trained ensemble we can make predictions and calculate metrics, all in a distributed manner.
test_xx, test_yy = Totensor(data_test.collect())
model_names = [f"m{idx}.pt" for idx in range(n_models)]
models = load_models(model_names, saved_models_dir).collect()
avg_prob_vecs = ens_preds_reduced(models, test_xx, lambda x, y: (x+y)/2) # (A single) Average prob. vec for all data points.
avg_acc = ens_metrics(models, test_xx, test_yy, [avg_accuracy]).collect() # Average acc. for each ens. over all data points
print(f"Average accuracy for each ensemble member: {[acc[0].item() for acc in avg_acc]}")
print(f"Average accuracy for the whole ensemble: {avg_accuracy(avg_prob_vecs, test_yy).item()}")
Average accuracy for each ensemble member: [0.9240759015083313, 0.9240759015083313, 0.9160839319229126, 0.9110888838768005, 0.9220778942108154]
Average accuracy for the whole ensemble: 0.9210789203643799
We can also make use of the uncertainty description provided by the ensemble. We'll plot the test data, each point coloured the predicted distribution, which will illustrate the certain predictions with distinct colur and uncertain with muddied colours.
preds = avg_prob_vecs.detach().numpy()
hard_preds = avg_prob_vecs.argmax(1).detach().numpy()
every_nth = 5
train_xx, train_yy = Totensor(data_train.collect())
(fig, (ax_1, ax_2)) = plt.subplots(1, 2)
# For the train data we use the true labels to simulate a completely certain prediction.
color_map = {0: [1, 0 ,0], 1: [0, 1, 0], 2: [0, 0, 1]}
ax_1.scatter(train_xx[:, 0], train_xx[:, 1], c=[color_map[class_.item()] for class_ in train_yy], label="Train")
ax_2.scatter(test_xx[::every_nth, 0], test_xx[::every_nth, 1], c=preds[::every_nth], label="Test")
ax_1.set_title("Train")
ax_2.set_title("Test")
plt.show()
Application example: Out of distribution detection
Our distributed ensemble can be used for out of distribution (OOD) detection. A simple way is to measure the entropy of the combined ensemble prediction; high entropy signals weird data, not seen in the training distribution.
"Real world" out of distribution data can be hard to come by, but a typical example would be images in different contexts. E.g. scenic vistas or pathology scans may share the same feature space but have very different distribution. For the data we have collected, no such OOD set exists, so we will showcase it with an OOD set of gaussian noise. Of course, noise that is very far from the in distribution (ID) data will saturate the classifiers softmax for one element, actually yielding very confident, low entropy, nonsense predictions.
Regardless, let's see how to do this with the distributed ensemble. First, we train it and again, save the trained parameters to file
data_train, data_test = load_firewall_data(True)
data_iterator=get_partitioned_rdd(data_train).map(Totensor).toLocalIterator()
n_models=10
models_trained=train_ensemble(n_models,
inputdims=11,
nclasses=4,
max_layers=4,
min_neurons=5,
max_neurons=15,
data_iterator=data_iterator)
saved_models_dir = Path("saved_models/firewall")
save_models(models_trained, saved_models_dir)
training losses:
[0.7487057447433472, 0.750811755657196, 0.7578539252281189, 0.7506877183914185, 0.7623474597930908, 0.7521470785140991, 0.7517384886741638, 0.7481321692466736, 0.750828742980957, 0.7547193765640259]
def gen_ood_data(test_x, num_samples):
num_test_samples, dim_x = test_x.size()
random_mean = np.random.rand(dim_x).reshape(1, dim_x)
random_cov = np.random.rand(dim_x).reshape(1, dim_x) * 10
ood_x, _ = Totensor(create_gaussian_RDD(random_mean, random_cov, num_test_samples, np.array([1.0]), train_test_split=False).collect())
return ood_x
data = data_test.collect()
batch_size = -1
batch = data[0:batch_size]
test_xx, test_yy = Totensor(batch)
ood_x = gen_ood_data(test_xx, batch_size)
models_p = load_models(model_names, saved_models_dir).collect()
# We can either calculate the average entropy of the ensemble members
avg_entropy_id = ens_preds(models_p, test_xx).map(entropy).reduce(lambda x, y: (x+y)/2).detach().numpy()
avg_entropy_ood = ens_preds(models_p, ood_x).map(entropy).reduce(lambda x, y: (x+y)/2).detach().numpy()
# ... or we the entropy of the average ensemble prediction.
entropy_avg_id = entropy(ens_preds_reduced(models_p, test_xx, lambda x, y: (x+y)/2)).detach().numpy()
entropy_avg_ood = entropy(ens_preds_reduced(models_p, ood_x, lambda x, y: (x+y)/2)).detach().numpy()
# Set entropy measure
entropy_id = avg_entropy_id
entropy_ood = avg_entropy_ood
Comparison of the entropy of the ensemble classifier on in-distribution and OOD data
def entropy_hist(id_, ood, n_bins, upper_x_bound):
(fig, (ax_1, ax_2)) = plt.subplots(2, 1)
_plot_hist(ax_1, id_, n_bins, "ID", "b", upper_x_bound)
_plot_hist(ax_2, ood, n_bins, "OOD", "r", upper_x_bound)
fig.suptitle("Entropy histogram")
ax_2.set_xlabel("entropy")
plt.show()
def _plot_hist(ax, counts, n_bins, label, color, upper_x_bound):
ax.hist(counts, bins=n_bins, label=label, color=color, density=True)
ax.set_xbound(lower = 0.0, upper = upper_x_bound)
ax.set_ylabel("rel freq")
ax.legend()
n_bins = 100
entropy_bound = 0.15
entropy_hist(entropy_id, entropy_ood, n_bins, entropy_bound)
Evaluation of the OOD detection in terms of ROC curve and area under this curve (AUROC)
def is_ood(entropies, cut_off_entropy):
return entropies > cut_off_entropy
def fpr_and_tpr(id_, ood, res):
max_entropy = max(id_.max(), ood.max())
# max_entropy = id_.max()
thresholds = np.arange(0.0, max_entropy, max_entropy / res)
roc = np.array([(fpr(id_, th), tpr(ood, th)) for th in thresholds])
roc = roc[roc[:,0].argsort()]
fprs, tprs = (roc[:, 0], roc[:, 1])
return fprs, tprs
def fpr(id_, th):
id_pred = is_ood(id_, th)
fp = id_pred.sum()
tn = id_pred.shape[0] - fp
return fp / (tn + fp)
def tpr(ood, th):
ood_pred = is_ood(ood, th)
tp = ood_pred.sum()
fn = ood_pred.shape[0] - tp
return tp / (tp + fn)
fpr, tpr = fpr_and_tpr(avg_entropy_id, avg_entropy_ood, res = 100)
(fig, ax) = plt.subplots()
ax.plot(fpr, tpr)
ax.set_xlabel("FPR")
ax.set_ylabel("TPR")
ax.set_title("ROC")
print(f"AUROC: {np.trapz(tpr, fpr)}")
AUROC: 0.6480554090292237
References
[1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in neural information processing systems (pp. 6402-6413).
[2] Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., ... & Snoek, J. (2019). Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems (pp. 13991-14002).
[3] Apache Spark. (2021, 01, 11). Classification and Regression [https://spark.apache.org/docs/latest/ml-classification-regression.html].
[4] Chen, J., Pan, X., Monga, R., Bengio, S., & Jozefowicz, R. (2016). Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981.
[5] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Group Project Authors:
- Hugo Werner
- Gizem Çaylak e-mail
Video link: https://kth.box.com/s/y3jsb9lgp6cll6op15o6z77rchaefh24
Problem description:
SARS-CoV-2 is spreading across the world and as it spreads mutations are occuring. A way to understand the spreading and the mutations is to explore the structure and information hidden in the genome.
Project goal:
The Goal of this project is to explore a SARS-CoV-2 genome dataset and try to predict the origin of a SARS-CoV-2 genome sample.
Data:
We will use publicly available NCBI SARS-CoV-2 genome with their geographic region information.
Geographic region | # | #samples | |
---|---|
Africa | 397 | |
Asia | | 2534 | |
Europe | | 1418 | |
North America | | 26836 |
Oceania | | 13304 |
South America | | 158 | |
Data link: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqTypes=Nucleotide&VirusLineagess=Severe%20acute%20respiratory%20syndrome%20coronavirus%202%20(SARS-CoV-2),%20taxid:2697049
Background:
- Genome: Sequence of nucleotides (A-T-G-C) [https://en.wikipedia.org/wiki/Genome]
- k-mer: Subsequences of length k of a genome [https://en.wikipedia.org/wiki/K-mer]
- Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design [https://www.nature.com/articles/s41598-020-72533-2]
- Latent Dirichlet Allocation (LDA) tutorial from the course
Challenges:
- How to encode genome sequence?
- Project solution :
- Represent genome as k-mers and use countVectorizer to convert k-mers into a matrix of token counts (term-frequency table)
- Extract features with Latent Dirichlet Allocation (LDA) by considering each genome sequence as a document and each 3-mer as a word. So, we have a collection of genomes consisting of 3-mers.
- Project solution :
- How to relate encoded features to the origins?
- Project solution: We used a Random Forest Classifier and tried both topic distributions, LDA output, and k-mer frequencies directly. One advantage is interpretability: we can understand the positive or negative relations a topic has on the origin.
- How to solve unbalanced class problem? E.g. North America has 26836 samples but South America has only 158
- Project solution: Use f1 measure as metric
Project steps:
- Get SARS-CoV-2 data from NCBI
- Process data:
- Extract 3-mers:
- Split train/test dataset with split ratio 0.7
- Extract topic features: We used Latent Dirichlet Allocation to extract patterns from k-mers features.
- Classify: We used Random Forest Classifier
- (Classification directly on k-mers features) To find a mapping from extracted k-mers features to labels (multiclass problem).
- (Classification on LDA features) To find a mapping from extracted topic distributions to labels (multiclass problem).
- Evaluation: We use (accuracy and f1) measure as our evaluation metrics. We compared Classification on LDA features vs Classification directly on k-mers features to see whether LDA is capable of summarizing the data (and thus reducing the feature dimensionality)
What we lack mainly:
- A biological interpretation of the results (whether found terms in topic distributions are significant/connected in a biological network).
// Paths to datasets of different regions.
val paths: List[String] = List("dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_oceania.fasta",
"dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_northamerica.fasta",
"dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_southamerica.fasta",
"dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_europe.fasta",
"dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_africa.fasta",
"dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_asia.fasta")
paths: List[String] = List(dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_oceania.fasta, dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_northamerica.fasta, dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_southamerica.fasta, dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_europe.fasta, dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_africa.fasta, dbfs:/FileStore/shared_uploads/hugower@kth.se/sequences_asia.fasta)
import scala.util.matching.Regex
// regex pattern to take region name, label, from complete path name (Must be changed accordingly if path follows a different structure)
val pattern: Regex = "/[a-zA-Z]+_([a-zA-Z]+)\\.".r
def read_datasets(paths:List[String]): List[RDD[(String,String)]] = {
if (paths.size < 1) { // return an empty RDD
return List.fill(0) (sc.emptyRDD)
}
else {
pattern.findFirstMatchIn(paths.head) match { // extract the label based on the pattern defined above
case Some(x) => {
val label:String = x.group(1) // create the label based on the path name
return (sc.textFile(paths.head).filter(_ != "").map(_.trim()).map(s => (s,label)))::read_datasets(paths.tail) // read the file in path and attach the data with its label to RDD list
}
case None => throw new RuntimeException("no label found")
}
}
}
import scala.util.matching.Regex
pattern: scala.util.matching.Regex = /[a-zA-Z]+_([a-zA-Z]+)\.
read_datasets: (paths: List[String])List[org.apache.spark.rdd.RDD[(String, String)]]
// read data and set the delimiter as ">" which seperates each sample in fasta format
sc.hadoopConfiguration.set("textinputformat.record.delimiter",">")
val datasets = read_datasets(paths)
datasets: List[org.apache.spark.rdd.RDD[(String, String)]] = List(MapPartitionsRDD[202189] at map at command-3103574048361361:13, MapPartitionsRDD[202196] at map at command-3103574048361361:13, MapPartitionsRDD[202205] at map at command-3103574048361361:13, MapPartitionsRDD[202210] at map at command-3103574048361361:13, MapPartitionsRDD[202215] at map at command-3103574048361361:13, MapPartitionsRDD[202220] at map at command-3103574048361361:13)
datasets.length
res0: Int = 6
datasets(0).take(1)
// combine the datasets into one and cache for optimization
val data = datasets.reduce( (a,b) => a++b).cache()
data: org.apache.spark.rdd.RDD[(String, String)] = UnionRDD[202273] at $plus$plus at command-3103574048361373:1
data.take(1)
// get the headers for each sample (the first line of each sample is a header)
val headers = data.map( {case (genome,label) => (genome.split("\n").head.split('|'),label)})
headers.count
headers: org.apache.spark.rdd.RDD[(Array[String], String)] = MapPartitionsRDD[35] at map at command-3103574048360661:1
res2: Long = 31550
headers.take(5)
res3: Array[(Array[String], String)] = Array((Array("MW320729.1 ", Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/AUS/VIC16982/2020, complete genome),oceania), (Array("MW320730.1 ", Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/AUS/VIC17307/2020, complete genome),oceania), (Array("MW320731.1 ", Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/AUS/VIC17193/2020, complete genome),oceania), (Array("MW320733.1 ", Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/AUS/VIC16732/2020, complete genome),oceania), (Array("MW320735.1 ", Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/AUS/VIC16821/2020, complete genome),oceania))
// remove the headers and only get genome sequences of samples.
val samples = data.map( {case (genome,label) => (genome.split("\n").tail.mkString(""), label)}).cache()
samples.count
samples: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[202309] at map at command-3103574048360662:2
res0: Long = 31550
// get the genome lengths per sample (this is just to check if there are extreme cases so we would remove those)
val genome_length_per_s = samples.map({case (genome,label) => genome.length()})
genome_length_per_s: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[14298] at map at command-3103574048360664:1
// check the statistics if there is any significant variation
genome_length_per_s.stats
res6: org.apache.spark.util.StatCounter = (count: 31550, mean: 29812.288621, stdev: 81.069114, max: 30018.000000, min: 28645.000000)
// A tail recursive overlapping subsequence function
// ex1: input: ("abcd", 2, true) -> output: "ab bc cd":
// ex2: input: ("abcd", 2, false) -> output: "ab cd"
def subsequence_str( sequence:String, k:Int, overlapping:Boolean ): String = {
def helper(seq:String, acc:String): String = {
if (seq.length < k ) {
return acc
}
else {
val sub = seq.substring(0,k)
if(overlapping) helper(seq.tail, acc + sub + " ")
else helper(seq.substring(k), acc + sub + " ")
}
}
return helper(sequence, "")
}
subsequence_str: (sequence: String, k: Int, overlapping: Boolean)String
// Extract the subsequences, kmers, for each sample
val k_mers = samples.map( {case (genome,label) => (subsequence_str(genome, 3, false),label)} ).cache()
k_mers: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[202801] at map at command-3103574048360668:1
k_mers.take(1)
// index kmers
val kmers_df = k_mers.zipWithIndex.map({case ((a,b),c) => (a,b,c)}).toDF("genome", "label", "id").cache()
kmers_df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
kmers_df.take(1)
// split train and test data
val split = kmers_df.randomSplit(Array(0.7, 0.3), seed=42)
split: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = Array([genome: string, label: string ... 1 more field], [genome: string, label: string ... 1 more field])
val train = split(0).cache()
train.take(1)
train.count
res6: Long = 22155
val test = split(1).cache()
test.take(1)
test.count
res9: Long = 9395
// save the results for the next notebook
dbutils.fs.rm("/FileStore/shared_uploads/caylak@kth.se/data_test_nonoverlapping", recurse=true) // remove existing folder
test.write.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_test_nonoverlapping")
dbutils.fs.rm("/FileStore/shared_uploads/caylak@kth.se/data_train_nonoverlapping", recurse=true) // remove existing folder
train.write.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_train_nonoverlapping")
val k_mers_df_train = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_train_nonoverlapping").cache()
val k_mers_df_test = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_test_nonoverlapping").cache()
k_mers_df_train: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
k_mers_df_test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
This part is adapted from the LDA course tutorial '034LDA20NewsGroupsSmall'.
import org.apache.spark.ml.feature.RegexTokenizer
// Set params for RegexTokenizer
val tokenizer = new RegexTokenizer()
.setPattern("[\\W_]+") // break by white space character(s)
.setInputCol("genome") // name of the input column
.setOutputCol("tokens") // name of the output column
// Tokenize train and test documents
val tokenized_df_train = tokenizer.transform(k_mers_df_train)
val tokenized_df_test = tokenizer.transform(k_mers_df_test)
import org.apache.spark.ml.feature.RegexTokenizer
tokenizer: org.apache.spark.ml.feature.RegexTokenizer = RegexTokenizer: uid=regexTok_b3a99fc4c607, minTokenLength=1, gaps=true, pattern=[\W_]+, toLowercase=true
tokenized_df_train: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 2 more fields]
tokenized_df_test: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 2 more fields]
display(tokenized_df_train.select("tokens"))
display(tokenized_df_test.select("tokens"))
Since there are 64 = 4*4*4 possible words (3-mers) for a genome (which consists of A-T-G-C, 4 letters), we initially planned to use a fixed vocabulary.
import org.apache.spark.ml.feature.CountVectorizerModel
// create a dictionary array from all possible k-mers
val k = 3
val fixed_vocab = List.fill((k))(List("a","t","g","c")).flatten.combinations(k).flatMap(_.permutations).toArray.map(_.mkString("")) // https://stackoverflow.com/questions/38406959/creating-all-permutations-of-a-list-with-a-limited-range-in-scala
val fixed_vectorizer = new CountVectorizerModel(fixed_vocab)
.setInputCol("tokens")
.setOutputCol("features")
import org.apache.spark.ml.feature.CountVectorizerModel
k: Int = 3
fixed_vocab: Array[String] = Array(aaa, aat, ata, taa, aag, aga, gaa, aac, aca, caa, att, tat, tta, atg, agt, tag, tga, gat, gta, atc, act, tac, tca, cat, cta, agg, gag, gga, agc, acg, gac, gca, cag, cga, acc, cac, cca, ttt, ttg, tgt, gtt, ttc, tct, ctt, tgg, gtg, ggt, tgc, tcg, gtc, gct, ctg, cgt, tcc, ctc, cct, ggg, ggc, gcg, cgg, gcc, cgc, ccg, ccc)
fixed_vectorizer: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVecModel_4bd2f56ddf2e, vocabularySize=64
However, we observed that there are some unexpected rare k-mers such as aay, ktg in the genome sequences. If they are really rare (less than 10), we have decided to eliminate them. But if they are more common, with the intuition that this sequencing error (could not find a document indicating what they refer to so we assumed they are errors) might indicate some pattern for that sample, we keep them. This approach provided us better topic diversity and results.
import org.apache.spark.ml.feature.CountVectorizer
// Create a dictionary of kmers
val vectorizer = new CountVectorizer()
.setInputCol("tokens")
.setOutputCol("features")
.setMinDF(10) // a term must appear at least in 10 documents to be included in the vocabulary.
.fit(tokenized_df_train) // create the vocabulary based on the train data
import org.apache.spark.ml.feature.CountVectorizer
vectorizer: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVec_cf83465b3abd, vocabularySize=241
// Vocabulary of k-mers which contains some weird nucleotides
val vocabList = vectorizer.vocabulary
vocabList: Array[String] = Array(ttt, tgt, aaa, tta, aca, ttg, taa, att, aat, ctt, caa, tga, gtt, atg, act, aga, tat, tac, aac, tgg, tgc, aag, tca, cta, ttc, tct, gtg, agt, gaa, cat, gct, ctg, cac, gta, ata, tag, gat, ggt, cag, acc, gca, cca, atc, agg, gac, cct, agc, gag, gga, ctc, gtc, ggc, tcc, gcc, acg, cgt, ggg, ccc, tcg, cgc, cga, gcg, cgg, ccg, nnn, nna, naa, ntt, tnn, cnn, gnn, ann, nnt, nng, nnc, agn, ttn, aan, acn, tan, nat, tcn, ngt, nct, can, gtn, ctn, nta, atn, ana, tgn, nca, ggn, nga, tna, nac, ntg, gcn, gan, tgk, ngc, ccn, ncc, ngg, tnt, ntc, nag, agk, yta, cnt, ktt, aya, gkt, kta, gnt, nan, ytt, ktg, gkc, tty, ayt, tay, yaa, acy, gsc, aay, tgy, ggk, ant, tyt, yac, yat, tya, ang, anc, cay, tkt, cng, cak, rcc, cna, cgn, aty, akt, ggw, gyt, tng, raa, cyt, acw, ytg, aak, yca, ntn, gna, gay, cty, kat, kct, tkg, gnc, ngn, yag, tnc, kca, ayc, tyg, gka, ygt, aka, cnc, cya, ayg, ttk, gng, tth, maa, ncn, yga, tka, ama, aar, ytc, gtk, kag, cch, ncg, ctk, kaa, gty, yct, ara, rtg, ckt, tar, gya, tkc, tak, tgr, ccy, akg, kac, crc, grt, ggr, trt, gcy, tyc, ygg, gak, wga, ygc, cgk, gcr, kgt, wtc, tck, cwt, waa, tcy, vcc, tma, atr, agy, rgc, rac, tgs, kgc, gam, atk, cyc, haa, agr, tha, rgt, gwg, tra, cra, gtr, gkg, nam)
vocabList.size
res4: Int = 241
// Create vector of token counts
val countVectors_train = vectorizer.transform(tokenized_df_train).select("id", "features")
val countVectors_test = vectorizer.transform(tokenized_df_test).select("id", "features")
countVectors_train: org.apache.spark.sql.DataFrame = [id: bigint, features: vector]
countVectors_test: org.apache.spark.sql.DataFrame = [id: bigint, features: vector]
tokenized_df_train.take(1)
countVectors_train.take(5)
countVectors_test.take(5)
Fix the incompatibility between mllib Vector and ml Vector, which causes conflict when LDA topic distribution is given as RandomForestClassifier input
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.{linalg => mllib}
import org.apache.spark.ml.{linalg => ml}
// convert each sample from ml to mllib vectors (because this causes problems in classifier step)
val lda_countVector_train = countVectors_train.map { case Row(id: Long, countVector: MLVector) => (id, mllib.Vectors.fromML(countVector)) }.cache()
val lda_countVector_test = countVectors_test.map { case Row(id: Long, countVector: MLVector) => (id, mllib.Vectors.fromML(countVector)) }.cache()
import org.apache.spark.ml.linalg.{Vector=>MLVector}
import org.apache.spark.mllib.{linalg=>mllib}
import org.apache.spark.ml.{linalg=>ml}
lda_countVector_train: org.apache.spark.sql.Dataset[(Long, org.apache.spark.mllib.linalg.Vector)] = [_1: bigint, _2: vector]
lda_countVector_test: org.apache.spark.sql.Dataset[(Long, org.apache.spark.mllib.linalg.Vector)] = [_1: bigint, _2: vector]
// format: Array(id, (VocabSize, Array(indexedTokens), Array(Token Frequency)))
lda_countVector_test.take(1)
res10: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array((13340,(241,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63],[334.0,211.0,327.0,282.0,288.0,277.0,95.0,278.0,315.0,259.0,245.0,70.0,310.0,311.0,291.0,129.0,213.0,181.0,189.0,99.0,87.0,221.0,189.0,183.0,136.0,217.0,181.0,152.0,251.0,136.0,265.0,150.0,108.0,174.0,183.0,89.0,213.0,245.0,163.0,99.0,158.0,138.0,107.0,78.0,142.0,146.0,53.0,116.0,98.0,93.0,101.0,90.0,56.0,73.0,42.0,67.0,34.0,31.0,39.0,29.0,28.0,37.0,20.0,19.0])))
// The number of topics
val num_topics = 20
num_topics: Int = 20
import org.apache.spark.mllib.clustering.{LDA, EMLDAOptimizer,DistributedLDAModel}
val lda = new LDA()
.setOptimizer(new EMLDAOptimizer())
.setK(num_topics)
.setMaxIterations(20000)
.setDocConcentration(-1) // use default values
.setTopicConcentration(-1) // use default values
import org.apache.spark.mllib.clustering.{LDA, EMLDAOptimizer, DistributedLDAModel}
lda: org.apache.spark.mllib.clustering.LDA = org.apache.spark.mllib.clustering.LDA@53a22046
// Run the LDA based on the model described
val lda_countVector_train_mllib = lda_countVector_train.rdd
val lda_countVector_test_mllib = lda_countVector_test.rdd
val ldaModel = lda.run(lda_countVector_train_mllib)
lda_countVector_train_mllib: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[399] at rdd at command-685894176420037:2
lda_countVector_test_mllib: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[404] at rdd at command-685894176420037:3
ldaModel: org.apache.spark.mllib.clustering.LDAModel = org.apache.spark.mllib.clustering.DistributedLDAModel@4e5ac90e
// Cast to distributed LDA model (which is possible through EMLDAOptimizer in the model) so we can get topic distributions
val distLDAModel = ldaModel.asInstanceOf[DistributedLDAModel]
distLDAModel: org.apache.spark.mllib.clustering.DistributedLDAModel = org.apache.spark.mllib.clustering.DistributedLDAModel@4e5ac90e
val topicIndices = distLDAModel.describeTopics(maxTermsPerTopic = 10)
// https://spark.apache.org/docs/1.5.0/api/scala/index.html#org.apache.spark.mllib.clustering.DistributedLDAModel
// Get the topic distributions for each train document which we will use as features in the classification step
val topicDistributions_train = distLDAModel.topicDistributions.cache()
topicDistributions_train: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[828598] at map at LDAModel.scala:768
lda_countVector_test_mllib.take(1)
res11: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array((13340,(241,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63],[334.0,211.0,327.0,282.0,288.0,277.0,95.0,278.0,315.0,259.0,245.0,70.0,310.0,311.0,291.0,129.0,213.0,181.0,189.0,99.0,87.0,221.0,189.0,183.0,136.0,217.0,181.0,152.0,251.0,136.0,265.0,150.0,108.0,174.0,183.0,89.0,213.0,245.0,163.0,99.0,158.0,138.0,107.0,78.0,142.0,146.0,53.0,116.0,98.0,93.0,101.0,90.0,56.0,73.0,42.0,67.0,34.0,31.0,39.0,29.0,28.0,37.0,20.0,19.0])))
// Get the topic distributions for each test document which we will use as features in the classification step
val topicDistributions_test = distLDAModel.toLocal.topicDistributions(lda_countVector_test_mllib).cache()
topicDistributions_test: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.linalg.Vector)] = MapPartitionsRDD[828874] at map at LDAModel.scala:373
assert (topicDistributions_train.take(1)(0)._2.size == num_topics)
topicDistributions_train.take(1)
res13: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array((31198,[0.050970660127433086,0.03854914539182694,0.04233208760127245,0.05520192993035042,0.04529229810049971,0.044746575004622195,0.04738680077580458,0.04917176116296172,0.028216072817023714,0.06235014298552372,0.07282634237929085,0.05367477019497316,0.02834755979614659,0.007634148695007966,0.0747900052332216,0.07432157320344387,0.05619372014685311,0.05917612984447815,0.059889692006826215,0.048928584602440005]))
topicDistributions_test.take(1)
res14: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array((13340,[0.05125119795748651,0.05590356021965471,0.057337790514388406,0.053942804029345516,0.03184697426952284,0.054473799789446706,0.055602712254395316,0.07875351104584705,0.05294681251741617,0.03326797507323466,0.04996448701691076,0.06303737755619679,0.07611049117795103,0.009242706964001621,0.017554379171811085,0.026326662949499827,0.040104268572631795,0.09709248658013904,0.03851877943786023,0.05672122290225994]))
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.ml.linalg.{Vectors => NewVectors}
val n_topicDistributions_train = topicDistributions_train.map({case (a,b) =>(a,b.asML)})
val n_topicDistributions_test = topicDistributions_test.map({case (a,b) =>(a,b.asML)})
import org.apache.spark.mllib.linalg.{Vectors=>OldVectors}
import org.apache.spark.ml.linalg.{Vectors=>NewVectors}
n_topicDistributions_train: org.apache.spark.rdd.RDD[(Long, org.apache.spark.ml.linalg.Vector)] = MapPartitionsRDD[828876] at map at command-685894176420046:4
n_topicDistributions_test: org.apache.spark.rdd.RDD[(Long, org.apache.spark.ml.linalg.Vector)] = MapPartitionsRDD[828877] at map at command-685894176420046:5
// save the topic distributions for train and test with partitioning for the next notebook
dbutils.fs.rm("/FileStore/shared_uploads/caylak@kth.se/topic_dist_train_t20_i20k_no_cv", recurse=true) // remove existing folder
n_topicDistributions_train.toDF.write.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/topic_dist_train_t20_i20k_no_cv")
dbutils.fs.rm("/FileStore/shared_uploads/caylak@kth.se/topic_dist_test_t20_i20k_no_cv", recurse=true) // remove existing folder
n_topicDistributions_test.toDF.write.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/topic_dist_test_t20_i20k_no_cv")
// Get the top word distributions for each topic
val topics = topicIndices.map { case (terms, termWeights) =>
terms.map(vocabList(_)).zip(termWeights)
}
println(s"$num_topics topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) => println(s"$term\t$weight") }
println(s"==========")
}
//Zip topic terms with topic IDs
val termArray = topics.zipWithIndex
// Transform data into the form (term, probability, topicId)
val termRDD = sc.parallelize(termArray)
val termRDD2 =termRDD.flatMap( (x: (Array[(String, Double)], Int)) => {
val arrayOfTuple = x._1
val topicId = x._2
arrayOfTuple.map(el => (el._1, el._2, topicId))
})
termRDD: org.apache.spark.rdd.RDD[(Array[(String, Double)], Int)] = ParallelCollectionRDD[829330] at parallelize at command-685894176420051:2
termRDD2: org.apache.spark.rdd.RDD[(String, Double, Int)] = MapPartitionsRDD[829331] at flatMap at command-685894176420051:3
// Create DF with proper column names
val termDF = termRDD2.toDF.withColumnRenamed("_1", "term").withColumnRenamed("_2", "probability").withColumnRenamed("_3", "topicId")
termDF: org.apache.spark.sql.DataFrame = [term: string, probability: double ... 1 more field]
Create JSON data
val rawJson = termDF.toJSON.collect().mkString(",\n")
displayHTML(s"""
<!DOCTYPE html>
<meta charset="utf-8">
<style>
circle {
fill: rgb(31, 119, 180);
fill-opacity: 0.5;
stroke: rgb(31, 119, 180);
stroke-width: 1px;
}
.leaf circle {
fill: #ff7f0e;
fill-opacity: 1;
}
text {
font: 14px sans-serif;
}
</style>
<body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
var json = {
"name": "data",
"children": [
{
"name": "topics",
"children": [
${rawJson}
]
}
]
};
var r = 1000,
format = d3.format(",d"),
fill = d3.scale.category20c();
var bubble = d3.layout.pack()
.sort(null)
.size([r, r])
.padding(1.5);
var vis = d3.select("body").append("svg")
.attr("width", r)
.attr("height", r)
.attr("class", "bubble");
var node = vis.selectAll("g.node")
.data(bubble.nodes(classes(json))
.filter(function(d) { return !d.children; }))
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; })
color = d3.scale.category20();
node.append("title")
.text(function(d) { return d.className + ": " + format(d.value); });
node.append("circle")
.attr("r", function(d) { return d.r; })
.style("fill", function(d) {return color(d.topicName);});
var text = node.append("text")
.attr("text-anchor", "middle")
.attr("dy", ".3em")
.text(function(d) { return d.className.substring(0, d.r / 3)});
text.append("tspan")
.attr("dy", "1.2em")
.attr("x", 0)
.text(function(d) {return Math.ceil(d.value * 10000) /10000; });
// Returns a flattened hierarchy containing all leaf nodes under the root.
function classes(root) {
var classes = [];
function recurse(term, node) {
if (node.children) node.children.forEach(function(child) { recurse(node.term, child); });
else classes.push({topicName: node.topicId, className: node.term, value: node.probability});
}
recurse(null, root);
return {children: classes};
}
</script>
""")
val k_mers_df_train = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_train").cache()
val k_mers_df_test = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_test").cache()
k_mers_df_train: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
k_mers_df_test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
val k_mers_df_train = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_train_nonoverlapping").cache()
val k_mers_df_test = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_test_nonoverlapping").cache()
k_mers_df_train: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
k_mers_df_test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [genome: string, label: string ... 1 more field]
Format data
Generate word count vectors
import org.apache.spark.ml.feature.RegexTokenizer
// Set params for RegexTokenizer
val tokenizer = new RegexTokenizer()
.setPattern("[\\W_]+") // break by white space character(s) - try to remove emails and other patterns
.setInputCol("genome") // name of the input column
.setOutputCol("tokens") // name of the output column
// Tokenize document
val tokenized_df_train = tokenizer.transform(k_mers_df_train)
val tokenized_df_test = tokenizer.transform(k_mers_df_test)
import org.apache.spark.ml.feature.RegexTokenizer
tokenizer: org.apache.spark.ml.feature.RegexTokenizer = RegexTokenizer: uid=regexTok_5df744efa843, minTokenLength=1, gaps=true, pattern=[\W_]+, toLowercase=true
tokenized_df_train: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 2 more fields]
tokenized_df_test: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 2 more fields]
display(tokenized_df_train.select("tokens"))
import org.apache.spark.ml.feature.CountVectorizer
val vectorizer = new CountVectorizer()
.setInputCol("tokens")
.setOutputCol("features")
.setMinDF(10)
.fit(tokenized_df_train)
import org.apache.spark.ml.feature.CountVectorizer
vectorizer: org.apache.spark.ml.feature.CountVectorizerModel = CountVectorizerModel: uid=cntVec_9226a16a835f, vocabularySize=241
val vocabList = vectorizer.vocabulary
vocabList: Array[String] = Array(ttt, tgt, aaa, tta, aca, ttg, taa, att, aat, ctt, caa, tga, gtt, atg, act, aga, tat, tac, aac, tgg, tgc, aag, tca, cta, ttc, tct, gtg, agt, gaa, cat, gct, ctg, cac, gta, ata, tag, gat, ggt, cag, acc, gca, cca, atc, agg, gac, cct, agc, gag, gga, ctc, gtc, ggc, tcc, gcc, acg, cgt, ggg, ccc, tcg, cgc, cga, gcg, cgg, ccg, nnn, nna, naa, ntt, tnn, cnn, gnn, ann, nnt, nng, nnc, agn, ttn, aan, acn, tan, nat, tcn, ngt, nct, can, gtn, ctn, nta, atn, tgn, ana, nca, ggn, nga, tna, nac, ntg, gcn, gan, tgk, ngc, ccn, ncc, ngg, tnt, ntc, nag, agk, yta, cnt, ktt, aya, gkt, kta, gnt, nan, ytt, ktg, gkc, tty, ayt, tay, yaa, acy, gsc, aay, tgy, ggk, ant, tyt, yac, tya, yat, anc, ang, cay, tkt, cak, cna, cng, rcc, akt, ggw, aty, cgn, gyt, tng, acw, aak, cyt, ytg, raa, yca, ntn, gay, gna, kat, kct, gnc, ngn, cty, tkg, tnc, yag, ayc, kca, aka, tyg, gka, ygt, cnc, cya, ttk, ayg, tka, gng, maa, tth, yga, ncn, ama, aar, kag, ytc, gtk, cch, ncg, kaa, ctk, gty, yct, ara, rtg, ckt, tar, gya, kac, tgr, crc, ccy, tkc, tak, akg, tyc, grt, gcy, trt, ggr, ygg, gak, gcr, kgt, ygc, cgk, wga, wtc, tma, tck, atr, waa, vcc, cwt, tcy, tgs, rgc, rac, agy, kgc, gam, haa, agr, rgt, tha, cyc, atk, gtr, tra, nam, gkg, gwg, cra)
vocabList.size
res17: Int = 241
// Create vector of token counts
val countVectors_train = vectorizer.transform(tokenized_df_train).select("id", "features")
val countVectors_test = vectorizer.transform(tokenized_df_test).select("id", "features")
countVectors_train: org.apache.spark.sql.DataFrame = [id: bigint, features: vector]
countVectors_test: org.apache.spark.sql.DataFrame = [id: bigint, features: vector]
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.{linalg => mllib}
import org.apache.spark.ml.{linalg => ml}
val lda_countVector_train = countVectors_train.map { case Row(id: Long, countVector: MLVector) => (id, mllib.Vectors.fromML(countVector)) }.cache()
val lda_countVector_test = countVectors_test.map { case Row(id: Long, countVector: MLVector) => (id, mllib.Vectors.fromML(countVector)) }.cache()
import org.apache.spark.ml.linalg.{Vector=>MLVector}
import org.apache.spark.mllib.{linalg=>mllib}
import org.apache.spark.ml.{linalg=>ml}
lda_countVector_train: org.apache.spark.sql.Dataset[(Long, org.apache.spark.mllib.linalg.Vector)] = [_1: bigint, _2: vector]
lda_countVector_test: org.apache.spark.sql.Dataset[(Long, org.apache.spark.mllib.linalg.Vector)] = [_1: bigint, _2: vector]
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.ml.linalg.{Vectors => NewVectors}
val lda_countVector_train_1 = lda_countVector_train.map({case (a,b) =>(a,b.asML)})
val lda_countVector_test_1 = lda_countVector_test.map({case (a,b) =>(a,b.asML)})
import org.apache.spark.mllib.linalg.{Vectors=>OldVectors}
import org.apache.spark.ml.linalg.{Vectors=>NewVectors}
lda_countVector_train_1: org.apache.spark.sql.Dataset[(Long, org.apache.spark.ml.linalg.Vector)] = [_1: bigint, _2: vector]
lda_countVector_test_1: org.apache.spark.sql.Dataset[(Long, org.apache.spark.ml.linalg.Vector)] = [_1: bigint, _2: vector]
val trainDF = lda_countVector_train_1.toDF()
val testDF = lda_countVector_test_1.toDF()
trainDF: org.apache.spark.sql.DataFrame = [_1: bigint, _2: vector]
testDF: org.apache.spark.sql.DataFrame = [_1: bigint, _2: vector]
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
val mergedTrainingData = trainDF.join(k_mers_df_train,trainDF("_1") === k_mers_df_train("id"),"inner").withColumnRenamed("_2","features").drop("_1")
val mergedTestData = testDF.join(k_mers_df_test,testDF("_1") === k_mers_df_test("id"),"inner").withColumnRenamed("_2","features").drop("_1")
mergedTrainingData: org.apache.spark.sql.DataFrame = [features: vector, genome: string ... 2 more fields]
mergedTestData: org.apache.spark.sql.DataFrame = [features: vector, genome: string ... 2 more fields]
Classification
The count vectors are used as features for classification
import org.apache.spark.ml.feature.{StringIndexer,VectorAssembler}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.linalg.Vector
val transformers = Array(
new StringIndexer().setInputCol("label").setOutputCol("label_id"))
// Train a RandomForest model.
val rf = new RandomForestClassifier()
.setLabelCol("label_id")
.setFeaturesCol("features")
.setNumTrees(500)
.setFeatureSubsetStrategy("auto")
.setImpurity("gini")
.setMaxDepth(20)
.setMaxBins(32)
.setSeed(12345)
val model = new Pipeline().setStages(transformers :+ rf).fit(mergedTrainingData)
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.linalg.Vector
transformers: Array[org.apache.spark.ml.feature.StringIndexer] = Array(strIdx_e8cf65204547)
rf: org.apache.spark.ml.classification.RandomForestClassifier = rfc_0a45a46b7366
model: org.apache.spark.ml.PipelineModel = pipeline_14ad91398432
import org.apache.spark.mllib.evaluation.MulticlassMetrics
def evaluateModel(model: org.apache.spark.ml.PipelineModel, df: org.apache.spark.sql.DataFrame){
val predictionsOnData = model.transform(df)
val predictionAndLabelsRdd = predictionsOnData.select("prediction", "label_id").as[(Double,Double)].rdd
val metricsMulti = new MulticlassMetrics(predictionAndLabelsRdd)
val accuracy = metricsMulti.accuracy
val fm0 = metricsMulti.fMeasure(0)
val fm1 = metricsMulti.fMeasure(1)
val fm2 = metricsMulti.fMeasure(2)
val fm3 = metricsMulti.fMeasure(3)
val fm4 = metricsMulti.fMeasure(4)
val fm5 = metricsMulti.fMeasure(5)
println("Confusion matrix:")
println(metricsMulti.confusionMatrix)
println("Summary Statistics")
println(s"Accuracy = $accuracy")
println(s"fm0 = $fm0")
println(s"fm1 = $fm1")
println(s"fm2 = $fm2")
println(s"fm3 = $fm3")
println(s"fm4 = $fm4")
println(s"fm5 = $fm5")
}
evaluateModel(model, mergedTrainingData)
Confusion matrix:
12776.0 0.0 0.0 0.0 0.0 0.0
70.0 6955.0 3.0 0.0 0.0 0.0
139.0 1.0 1002.0 1.0 0.0 0.0
133.0 0.0 4.0 756.0 0.0 0.0
36.0 0.0 0.0 0.0 175.0 0.0
33.0 0.0 0.0 0.0 0.0 71.0
Summary Statistics
Accuracy = 0.981042654028436
fm0 = 0.9841697800716405
fm1 = 0.99470823798627
fm2 = 0.9312267657992566
fm3 = 0.9163636363636364
fm4 = 0.9067357512953368
fm5 = 0.8114285714285714
evaluateModel(model, mergedTestData)
Confusion matrix:
5450.0 8.0 6.0 4.0 0.0 0.0
140.0 2743.0 8.0 0.0 0.0 0.0
189.0 7.0 314.0 6.0 0.0 0.0
116.0 1.0 7.0 269.0 0.0 0.0
44.0 2.0 1.0 3.0 46.0 0.0
9.0 0.0 0.0 0.0 0.0 22.0
Summary Statistics
Accuracy = 0.9413517828632251
fm0 = 0.9548002803083393
fm1 = 0.9706298655343242
fm2 = 0.7370892018779341
fm3 = 0.7970370370370371
fm4 = 0.647887323943662
fm5 = 0.8301886792452831
//Load LDA model or the topic distributions
// data format: org.apache.spark.sql.DataFrame = [genome:string, label:string, id:long]
val k_mers_df_train = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_train_nonoverlapping")
val k_mers_df_test = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/data_test_nonoverlapping")
// data format: org.apache.spark.sql.DataFrame = [_1: bigint, _2: vector] the vector part contains the topic distributions
val trainingData = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/topic_dist_train_t20_i20k_no_cv")
val testData = spark.read.parquet("dbfs:/FileStore/shared_uploads/caylak@kth.se/topic_dist_test_t20_i20k_no_cv")
k_mers_df_train: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 1 more field]
k_mers_df_test: org.apache.spark.sql.DataFrame = [genome: string, label: string ... 1 more field]
trainingData: org.apache.spark.sql.DataFrame = [_1: bigint, _2: vector]
testData: org.apache.spark.sql.DataFrame = [_1: bigint, _2: vector]
//Merge data sources to get labels
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
val mergedTrainingData = trainingData.join(k_mers_df_train,trainingData("_1") === k_mers_df_train("id"),"inner").withColumnRenamed("_2","features").drop("_1")
val mergedTestData = testData.join(k_mers_df_test,testData("_1") === k_mers_df_test("id"),"inner").withColumnRenamed("_2","features").drop("_1")
mergedTrainingData: org.apache.spark.sql.DataFrame = [features: vector, genome: string ... 2 more fields]
mergedTestData: org.apache.spark.sql.DataFrame = [features: vector, genome: string ... 2 more fields]
mergedTrainingData.show(5)
+--------------------+--------------------+-------+----+
| features| genome| label| id|
+--------------------+--------------------+-------+----+
|[0.05124403025197...|CTT GTA GAT CTG T...|oceania| 26|
|[0.04866065493877...|CTC TTG TAG ATC T...|oceania| 29|
|[0.04856023665158...|ACT TTC GAT CTC T...|oceania| 474|
|[0.05114514533282...|CTT GTA GAT CTG T...|oceania| 964|
|[0.04856846330546...|ACT TTC GAT CTC T...|oceania|1677|
+--------------------+--------------------+-------+----+
only showing top 5 rows
mergedTestData.show(5)
+--------------------+--------------------+-------+----+
| features| genome| label| id|
+--------------------+--------------------+-------+----+
|[0.04856691976914...|ACT TTC GAT CTC T...|oceania|2250|
|[0.04775129705622...|ACT TTC GAT CTC T...|oceania|3091|
|[0.04856692420144...|ACT TTC GAT CTC T...|oceania|7279|
|[0.04881282010425...|ACT TTC GAT CTC T...|oceania|8075|
|[0.05110516016513...|CTT GTA GAT CTG T...|oceania|9458|
+--------------------+--------------------+-------+----+
only showing top 5 rows
import org.apache.spark.sql.functions._
import org.apache.spark.ml._
//Split the feature vector into seprate columns
val vecToArray = udf( (xs: linalg.Vector) => xs.toArray )
val dfArr = mergedTrainingData.withColumn("featuresArr" , vecToArray($"features") )
val elements = Array("f1", "f2", "f3", "f4", "f5", "f6","f7", "f8", "f9","f10")
val sqlExpr = elements.zipWithIndex.map{ case (alias, idx) => col("featuresArr").getItem(idx).as(alias) }
val df_feats = dfArr.select((col("label") +: sqlExpr) : _*)
import org.apache.spark.sql.functions._
import org.apache.spark.ml._
vecToArray: org.apache.spark.sql.expressions.UserDefinedFunction = SparkUserDefinedFunction($Lambda$9301/1088827103@108f1ec1,ArrayType(DoubleType,false),List(Some(class[value[0]: vector])),None,true,true)
dfArr: org.apache.spark.sql.DataFrame = [features: vector, genome: string ... 3 more fields]
elements: Array[String] = Array(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)
sqlExpr: Array[org.apache.spark.sql.Column] = Array(featuresArr[0] AS `f1`, featuresArr[1] AS `f2`, featuresArr[2] AS `f3`, featuresArr[3] AS `f4`, featuresArr[4] AS `f5`, featuresArr[5] AS `f6`, featuresArr[6] AS `f7`, featuresArr[7] AS `f8`, featuresArr[8] AS `f9`, featuresArr[9] AS `f10`)
df_feats: org.apache.spark.sql.DataFrame = [label: string, f1: double ... 9 more fields]
df_feats.describe().show()
+-------+------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
|summary| label| f1| f2| f3| f4| f5| f6| f7| f8| f9| f10|
+-------+------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| count| 22155| 22155| 22155| 22155| 22155| 22155| 22155| 22155| 22155| 22155| 22155|
| mean| null| 0.04931437716125177| 0.05103219325119624| 0.05043777410343692| 0.04985720003755815| 0.05109828486193199|0.049969419011346175|0.049612622552246397| 0.05172608119915934| 0.05519918725594238|0.050902505322165705|
| stddev| null| 0.00376757883941906|0.012025788212709033|0.008575417672641356|0.007216341887817029| 0.017036551424972|0.006744772303600655|0.006141190111960429|0.015925101732795318|0.028248525286887288|0.011750518257958392|
| min| africa|7.597652484573448E-5|7.931226826328689E-5|7.472127009799751E-5|8.488001247712824E-5|5.737788781311747E-5|7.510235436716417E-5| 8.01478429209781E-5|1.102376409869290...|7.060888276954563E-5|5.730971677795215...|
| max|southamerica| 0.07096255125893133| 0.08483680076143339| 0.07401129608174387| 0.09129137902172121| 0.07569705042586143| 0.09892558758161725| 0.12033929830179531| 0.08811599095688616| 0.09753703174079206| 0.08152012057643862|
+-------+------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
import org.apache.spark.sql.functions.rand
display(df_feats.sample(true,0.5).orderBy(rand()))
import org.apache.spark.ml.feature.{StringIndexer,VectorAssembler}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.linalg.Vector
val transformers = Array(
new StringIndexer().setInputCol("label").setOutputCol("label_id"))
// Train a RandomForest model.
val rf = new RandomForestClassifier()
.setLabelCol("label_id")
.setFeaturesCol("features")
.setNumTrees(500)
.setFeatureSubsetStrategy("auto")
.setImpurity("gini")
.setMaxDepth(20)
.setMaxBins(32)
.setSeed(12345)
val model = new Pipeline().setStages(transformers :+ rf).fit(mergedTrainingData)
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.linalg.Vector
transformers: Array[org.apache.spark.ml.feature.StringIndexer] = Array(strIdx_5c4c8beb7d03)
rf: org.apache.spark.ml.classification.RandomForestClassifier = rfc_c92cc57e8554
model: org.apache.spark.ml.PipelineModel = pipeline_fd80c4a01f49
import org.apache.spark.mllib.evaluation.MulticlassMetrics
def evaluateModel(model: org.apache.spark.ml.PipelineModel, df: org.apache.spark.sql.DataFrame){
val predictionsOnData = model.transform(df)
val predictionAndLabelsRdd = predictionsOnData.select("prediction", "label_id").as[(Double,Double)].rdd
val metricsMulti = new MulticlassMetrics(predictionAndLabelsRdd)
val accuracy = metricsMulti.accuracy
val fm0 = metricsMulti.fMeasure(0)
val fm1 = metricsMulti.fMeasure(1)
val fm2 = metricsMulti.fMeasure(2)
val fm3 = metricsMulti.fMeasure(3)
val fm4 = metricsMulti.fMeasure(4)
val fm5 = metricsMulti.fMeasure(5)
println("Confusion matrix:")
println(metricsMulti.confusionMatrix)
println("Summary Statistics")
println(s"Accuracy = $accuracy")
println(s"fm0 = $fm0")
println(s"fm1 = $fm1")
println(s"fm2 = $fm2")
println(s"fm3 = $fm3")
println(s"fm4 = $fm4")
println(s"fm5 = $fm5")
}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
evaluateModel: (model: org.apache.spark.ml.PipelineModel, df: org.apache.spark.sql.DataFrame)Unit
Review fit of training dataset
evaluateModel(model, mergedTrainingData)
Confusion matrix:
12688.0 80.0 7.0 1.0 0.0 0.0
137.0 6891.0 0.0 0.0 0.0 0.0
53.0 18.0 1071.0 1.0 0.0 0.0
47.0 3.0 0.0 843.0 0.0 0.0
16.0 2.0 0.0 1.0 192.0 0.0
19.0 0.0 0.0 0.0 0.0 85.0
Summary Statistics
Accuracy = 0.9826224328593997
fm0 = 0.9860118122474355
fm1 = 0.9828840393667095
fm2 = 0.9644304367402071
fm3 = 0.9695227142035653
fm4 = 0.9528535980148882
fm5 = 0.8994708994708994
Performance on Test dataset
evaluateModel(model, mergedTestData)
Confusion matrix:
5373.0 89.0 3.0 3.0 0.0 0.0
368.0 2522.0 0.0 1.0 0.0 0.0
478.0 15.0 20.0 3.0 0.0 0.0
193.0 8.0 0.0 192.0 0.0 0.0
89.0 5.0 0.0 1.0 1.0 0.0
14.0 0.0 0.0 0.0 0.0 17.0
Summary Statistics
Accuracy = 0.8648217136774881
fm0 = 0.896770424768422
fm1 = 0.9121157323688969
fm2 = 0.07421150278293136
fm3 = 0.6475548060708264
fm4 = 0.020618556701030924
fm5 = 0.7083333333333333
Word count vectors as features for classification, overlapping k-mers
Confusion matrix | ||||
---|---|---|---|---|
5453.0 | 8.0 | 6.0 | 1.0 | 0.0 |
135.0 | 2754.0 | 1.0 | 1.0 | 0.0 |
211.0 | 4.0 | 297.0 | 4.0 | 0.0 |
115.0 | 0.0 | 3.0 | 275.0 | 0.0 |
42.0 | 1.0 | 2.0 | 3.0 | 48.0 |
7.0 | 0.0 | 0.0 | 2.0 | 0.0 |
Summary Statistics * Accuracy = 0.942
Word count vectors as features for classification, overlapping k-mers
Confusion matrix | ||||
---|---|---|---|---|
5446.0 | 8.0 | 10.0 | 4.0 | 0.0 |
137.0 | 2746.0 | 0.0 | 1.0 | 0.0 |
186.0 | 7.0 | 314.0 | 9.0 | 0.0 |
112.0 | 2.0 | 9.0 | 270.0 | 0.0 |
43.0 | 3.0 | 1.0 | 3.0 | 46.0 |
10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.941
Word count vectors as features for classification, overlapping k-mers
Confusion matrix | ||||
---|---|---|---|---|
5446.0 | 8.0 | 10.0 | 4.0 | 0.0 |
137.0 | 2746.0 | 0.0 | 1.0 | 0.0 |
186.0 | 7.0 | 314.0 | 9.0 | 0.0 |
112.0 | 2.0 | 9.0 | 270.0 | 0.0 |
43.0 | 3.0 | 1.0 | 3.0 | 46.0 |
10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.941
Number of topics:10 Number of iterations: 100 Nonoverlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
5167.0 | 288.0 | 0.0 | 11.0 | 0.0 |
2414.0 | 472.0 | 0.0 | 1.0 | 0.0 |
496.0 | 20.0 | 0.0 | 0.0 | 0.0 |
217.0 | 5.0 | 0.0 | 170.0 | 0.0 |
94.0 | 2.0 | 0.0 | 0.0 | 0.0 |
28.0 | 0.0 | 0.0 | 3.0 | 0.0 |
Summary Statistics * Accuracy = 0.618 * fm0 = 0.744 * fm1 = 0.257 * fm2 = 0.0 * fm3 = 0.588 * fm4 = 0.0
Number of topics:10 Number of iterations: 1000 Nonoverlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
5290.0 | 113.0 | 10.0 | 3.0 | 0.0 |
1012.0 | 1667.0 | 22.0 | 0.0 | 3.0 |
430.0 | 10.0 | 76.0 | 0.0 | 0.0 |
213.0 | 6.0 | 3.0 | 169.0 | 0.0 |
93.0 | 2.0 | 1.0 | 0.0 | 0.0 |
31.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.787 * fm0 = 0.847 * fm1 = 0.740 * fm2 = 0.242 * fm3 = 0.600 * fm4 = 0.0
Number of topics:20 Number of iterations: 100 Nonoverlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
4174.0 | 1286.0 | 0.0 | 8.0 | 0.0 |
829.0 | 2056.0 | 0.0 | 6.0 | 0.0 |
408.0 | 108.0 | 0.0 | 0.0 | 0.0 |
189.0 | 34.0 | 0.0 | 170.0 | 0.0 |
48.0 | 48.0 | 0.0 | 0.0 | 0.0 |
29.0 | 1.0 | 0.0 | 1.0 | 0.0 |
Summary Statistics * Accuracy = 0.681 * fm0 = 0.749 * fm1 = 0.640 * fm2 = 0.0 * fm3 = 0.588 * fm4 = 0.0
Number of topics:20 Number of iterations: 20000 Nonverlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
5373.0 | 89.0 | 3.0 | 3.0 | 0.0 |
368.0 | 2522.0 | 0.0 | 1.0 | 0.0 |
478.0 | 15.0 | 20.0 | 3.0 | 0.0 |
193.0 | 8.0 | 0.0 | 192.0 | 0.0 |
89.0 | 5.0 | 0.0 | 1.0 | 1.0 |
14.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.865 * fm0 = 0.897 * fm1 = 0.912 * fm2 = 0.074 * fm3 = 0.648 * fm4 = 0.021
Number of topics:20 Number of iterations: 15000 Overlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
5419.0 | 25.0 | 12.0 | 12.0 | 0.0 |
190.0 | 2687.0 | 7.0 | 7.0 | 0.0 |
398.0 | 13.0 | 89.0 | 15.0 | 0.0 |
193.0 | 2.0 | 2.0 | 196.0 | 0.0 |
89.0 | 2.0 | 3.0 | 1.0 | 1.0 |
11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.895 * fm0 = 0.921 * fm1 = 0.956 * fm2 = 0.283 * fm3 = 0.628 * fm4 = 0.021
Number of topics:50 Number of iterations: 100 Nonoverlapping accuracy table:
Confusion matrix | ||||
---|---|---|---|---|
5250.0 | 217.0 | 0.0 | 1.0 | 0.0 |
2667.0 | 224.0 | 0.0 | 0.0 | 0.0 |
503.0 | 13.0 | 0.0 | 0.0 | 0.0 |
220.0 | 3.0 | 0.0 | 170.0 | 0.0 |
94.0 | 2.0 | 0.0 | 0.0 | 0.0 |
30.0 | 1.0 | 0.0 | 0.0 | 0.0 |
Summary Statistics * Accuracy = 0.601 * fm0 = 0.738 * fm1 = 0.134 * fm2 = 0.0 * fm3 = 0.603 * fm4 = 0.0
Summary Tables for (LDA + Classification) and Classification
- (LDA + Classification) Varying number of topics and fixed number of iterations = 100:
# topics | Accuracy |
---|---|
10 | 0.618 |
20 | 0.681 |
50 | 0.601 |
Conclusion: 20, approximately the number of aminoacids, is a good candidate for the number of topics
- We tried both nonoverlapping and overlapping k-mer features directly on classifier:
Data type | Accuracy |
---|---|
Nonoverlapping k-mers | 0.941 |
Overlapping k-mers | 0.942 |
- Also, on (LDA + classification) for number of topics = 20. While for nonoverlapping the number of iterations are 20000, for overlapping the number of iterations are 15000. Due to 'unexpected shutdown' of clusters we couldn't run LDA on overlapping clusters for 20000 iterations. However results suggests that overlapping k-mers helps LDA to learn structure better in terms of prediction power (but not efficiently) :
Data type | Accuracy |
---|---|
Nonoverlapping k-mers | 0.865 |
Overlapping k-mers | 0.895 |
Conclusion: For classifier, there is not much difference on overlapping or nonoverlapping k-mer features; however for LDA having overlapping helps to learn structure more. But increased time complexity of overlapping k-mers requires LDA to have more iterations to learn.
- (LDA + Classification) Varying number of iterations and topics :
(# iterations, # topics, overlapping) | Accuracy |
---|---|
(100, 10, false) | 0.618 |
(1000, 10, false) | 0.787 |
(100, 20, false) | 0.681 |
(15000, 20, true) | 0.895 |
(20000, 20, false) | 0.865 |
Conclusion: Also considering the topic summaries, we can conclude that the number of iterations highly affect the topic diversity, and thus classifier performance. Although we can check convergence of EM algorithm to stop, this migh be problematic due to increasing computation time with the number of iterations.
- The best of (LDA + Classification) where the number of topics is 20 and the number of iterations is 15000 and vs direct Classification on k-mers performance comparision.
Method | Accuracy |
---|---|
(LDA + Classification) | 0.895 |
Direct Classification | 0.942 |
Conclusion: We couldn't perform higher number of iterations (due to limited time and cluster restarts); however, this result shows that LDA is capable of summarizing k-mer features. Once, we learn the mapping from k-mers to reduced topic distribution space via LDA, then we can use this reduced number of features to train classifier. This makes the data more scalable and may save computation time in the long run.
Our conclusions
- What we have tried and failed? What we have learned?
- Overlapping k-mers with low iteration led poor diversity in topics
- With expectation maximization LDA required iteration increases significantly. Where to stop the iteration becomes a problem due to computation time concerns.
- Changing doc or term concentration did not lead better results
- We tried several number of topics (10, 20, 50) and #topics = 20, which is almost equal to number of aminoacids, yields the best result (coincidence or the number of aminoacids is a good choice for topic number?)
- Using a fixed vocabulary of k-mers (using nucleotide alphabet A-T-G-C) yields poor topic diversity [since there are sequencing errors in genomes, there are different k-mers such as TAK, TAR. And, we concluded that these errors actually give some insight on the virus]
- The comparison between LDA-based classifier and directly-k-mers classifier demonstrates that with enough iterations LDA is capable of summarising the data.
- There is not much difference between overlapping and nonoverlapping k-mer features when we directly give them to classifier. However, for LDA overlapping features require much higher number of iterations for convergence [or topic divergence]
- Very final conclusion: Directly giving k-mers to classifier works better. However, once we learn from LDA with reduced number of features (from k-mers to topic distributions), we can have a good result on classification which can save computation time and make it scalable (by reducing the number of features to the number of topics chosen).
“Everything should be made as simple as possible, but no simpler.”
Twitter Streaming Using Geolocation and Emoji Based Sentiment Analysis
Georg Bökman & Rasmus Kjær Høier
In this project we have used Spark Streaming and the twitter4j library to perform filtered streaming of tweets. As we were interested in combining location and sentiment information, we filtered for location tagged tweets. This was necessary as only around 1% of tweets coming straight from the twitter hose has information on the country of origin.
In particular we hoped to explore the following ideas/questions: * Sentiment analysis of text can be difficult across different languages. However, the same emojis are used on twitter all over the world (although some emojis are more popular in some regions). Could this be used to compare sentiment across borders? * From the filtered stream we get tweets containing information on country of origin and timestamps. What insight can we get by visualizing tweets as a function of time and space?
We saw this project as an opportunity to learn more about twitter and streaming in general as none of us had any prior experience with this.
Contents
Our project consists of 8 notebooks. We recommend you read through the first four, and if you are curious about some of the functions we use or how the data was collected, then have a look in the appendix notebooks as well. The appendices are not quite as tidy as the first four notebooks.
- 01 Introduction
- 02 Clustering emoticons based on tweets
- 03 Dynamic Tweet Maps
- 04 Conclusion
- 05 Appendix get cc data
- 06 Appendix Tweet carto functions
- 07a Appendix ExtendedTwitterUtils2run
- 07b Appendix TTTDFfunctions
Notes on data collection
Tweets were collected using functions from the course notebooks 07_a_appendix_extendedTwitterUtils
and 07_b_appendix_TTTDFfunctions
(originally numbered 025). Some minor changes were made in order to perform filtered streaming only of countries with a known country of origin.
In notebook 05_appendix_get-cc-data
we run the function streamFuncWithProcessing()
. This function creates a new twitter stream by calling the createStream methods from the ExtendedTwitterUtils
object in notebook 07_a. One of the arguments to this method is a filterquery, which has been set to require that the tweet must have registered coordinates. Longitudes range from -180 to 180 degrees and latitudes range from -90 to 90 degrees, covering the entire globe.
// Create filter
val locationsQuery = new FilterQuery().locations(Array(-180.0, -90.0), Array(180.0, 90.0)) // all locations
// Create a Twitter Stream for the input source.
val twitterStream = ExtendedTwitterUtils.createStream(ssc, auth, Some(locationsQuery))
We used the databricks jobs feature to automatically run the data acquisition for 3 minutes every hour from December 22nd 2020 until January 2nd 2021. We also acquired data continuously on the 22nd. In total this yielded around 2 million tweets.
Clustering emoticons based on tweets
In this notebook we will look at the symbols in the Unicode block Emoticons, which contains 80 commonly used emojis. The goal is to find out which emoticons are related to each other and hopefully finding clusters that correspond vaguely to some sentiment of an emoticon. We will do this in a fairly naïve way since our focus was on learning streaming, spark and scala. First let's have a look at the emojis in question, they are presented in the table from Wikipedia below.
In the following two cells we create a list of these emoticons and load the previously collected dataset of tweets.
val emoticonsList = List(
"😀", "😁", "😂", "😃", "😄", "😅", "😆", "😇", "😈", "😉", "😊", "😋", "😌", "😍", "😎", "😏",
"😐", "😑", "😒", "😓", "😔", "😕", "😖", "😗", "😘", "😙", "😚", "😛", "😜", "😝", "😞", "😟",
"😠", "😡", "😢", "😣", "😤", "😥", "😦", "😧", "😨", "😩", "😪", "😫", "😬", "😭", "😮", "😯",
"😰", "😱", "😲", "😳", "😴", "😵", "😶", "😷", "😸", "😹", "😺", "😻", "😼", "😽", "😾", "😿",
"🙀", "🙁", "🙂", "🙃", "🙄", "🙅", "🙆", "🙇", "🙈", "🙉", "🙊", "🙋", "🙌", "🙍", "🙎", "🙏"
)
val emoticonsMap = emoticonsList.zipWithIndex.toMap
val nbrEmoticons = emoticonsList.length
val fullDF = sqlContext.read.parquet("/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/{2020,2021,continuous_22_12}/*/*/*/*/*")
println(fullDF.count)
2013137
fullDF: org.apache.spark.sql.DataFrame = [CurrentTweetDate: timestamp, CurrentTwID: bigint ... 7 more fields]
How to cluster emoticons
We could just look at the descriptions and appearances of the various emoticons and cluster them into broad categories based on that. However, instead we will try to use our collected tweet dataset to create a clustering. Then we will use the intuition based on the descriptions and appearances to judge how successful this approach was.
We will use the Jaccard distance between emoticons to try to cluster them. The Jaccard distance between emoticons \(e_1\) and \(e_2\) is given by
\[ d(e_1, e_2) = 1 - \frac{\# (e_1\wedge e_2)}{\# (e_1) + \# (e_2) - \# (e_1\wedge e_2)}, \]
where \(\#(e)\) is the number of tweets collected containing the emoticon \(e\), and \(\# (e_1\wedge e_2)\) is the number of tweets collected containing both \(e_1\) and \(e_2\).
In order to find the Jaccard distances between emoticons, we must create a matrix containing for each pair of emoticons how often they appear together in the dataset of tweets and also in how many tweets each emoticon appears individually. First we define a function to create such a matrix for an individual tweet. Then we will sum these matrices for all the tweets. The matrices will be represented by a 1D array following a certain indexing scheme and containing the entries of the upper triangular part of the matrix (there would be redundancy in finding the whole matrix since it will be symmetric).
def emoticonPairToIndex (a : Int, b : Int) : Int = { // helper function for indexing
val i = if (a < b) a else b // makes sure j >= i
val j = if (a < b) b else a
return i*nbrEmoticons - (i * (i+1))/2 + j
}
def createEmoticonIterator (s : String) : scala.util.matching.Regex.MatchIterator = { // helper function for iterating through the emoticons in a string s
return s"""[${emoticonsList.mkString}]""".r.findAllIn(s)
}
def createEmoticonMatrix (s : String) : Array[Int] = { // The pair (i, j) will be at location i*(nbrEmoticons - (i+1)/2) + j in this array (this is compatible with later scipy functions)
var m = Array.fill((nbrEmoticons*nbrEmoticons + nbrEmoticons)/2)(0) // there are 80 emoticons and thus 80^2 / 2 + 80 / 2 emoticon pairs including pairs of the same emoticon
val emoticonIterator = createEmoticonIterator(s)
// sets m to 1 for each index corresponding to a pair of emoticons present in the string s (very hacky code...)
emoticonIterator.zipWithIndex.foreach(em_pair => // iterate over emoticons in s
(createEmoticonIterator(s).drop(em_pair._2)).foreach( // iterate over remaining emoticons in s
second_em =>
(m(emoticonPairToIndex(
emoticonsMap(em_pair._1),
emoticonsMap(second_em))
)
= 1) // set m to 1 for each emoticon pair found in s
)
)
return m
}
emoticonPairToIndex: (a: Int, b: Int)Int
createEmoticonIterator: (s: String)util.matching.Regex.MatchIterator
createEmoticonMatrix: (s: String)Array[Int]
In the cell below we sum all the "occurence-matrices" and print the diagonal of the summed matrix, i.e. the number of tweets containing each individual emoticon. It is clear that some emoticons are used far more often than others.
val emoticonsMatrix = fullDF.select("CurrentTweet")
.filter($"CurrentTweet".rlike(emoticonsList.mkString("|"))) // filters tweets with emoticons
.map(row => createEmoticonMatrix(row.mkString)) // creates an "adjacency matrix" for each tweet
.reduce((_, _).zipped.map(_ + _)) // sums the matrices elementwise
emoticonsList.zipWithIndex.foreach({case (e, i) => println(e + ", " + Integer.toString(emoticonsMatrix(emoticonPairToIndex(i, i))) + " occurences")})
In the following two cells we create the Jaccard distance matrix which we want to use to cluster the emoticons.
def jaccardDistance (e1 : Int, e2 : Int) : Double = { // specify the emojis in terms of their indices in the list
return 1.0 - 1.0 * emoticonsMatrix(emoticonPairToIndex(e1, e2)) /
(emoticonsMatrix(emoticonPairToIndex(e1, e1)) + emoticonsMatrix(emoticonPairToIndex(e2, e2)) - emoticonsMatrix(emoticonPairToIndex(e1, e2)))
}
jaccardDistance: (e1: Int, e2: Int)Double
var jaccardMatrix = Array.fill(emoticonsMatrix.length)(1.0)
(0 until nbrEmoticons).foreach(i => (i until nbrEmoticons).foreach(j => (jaccardMatrix(emoticonPairToIndex(i, j)) = jaccardDistance(i, j))))
Finally we write the Jaccard distance matrix and the emoticon list to file so that we don't have to keep rerunning the above cells and so that we can load them into python cells next.
//scala.tools.nsc.io.File("/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/emoticonsList.txt").writeAll(emoticonsList.mkString("\n"))
//scala.tools.nsc.io.File("/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/jMatrix.txt").writeAll(jaccardMatrix.mkString("\n"))
Clustering using python
We now switch to python cells in order to use various clustering methods implemented in SciPy and scikit-learn. First we install and import some packages for later use, then we load the previously saved Jaccard matrix and emoticons list.
%pip install pycountry
Python interpreter will be restarted.
Collecting pycountry
Downloading pycountry-20.7.3.tar.gz (10.1 MB)
Building wheels for collected packages: pycountry
Building wheel for pycountry (setup.py): started
Building wheel for pycountry (setup.py): finished with status 'done'
Created wheel for pycountry: filename=pycountry-20.7.3-py2.py3-none-any.whl size=10746863 sha256=870cc02de7d6d11499effd59f2b73acdbffc04146079c4a4f9a841ca30f2b587
Stored in directory: /root/.cache/pip/wheels/57/e8/3f/120ccc1ff7541c108bc5d656e2a14c39da0d824653b62284c6
Successfully built pycountry
Installing collected packages: pycountry
Successfully installed pycountry-20.7.3
Python interpreter will be restarted.
import json
import os
from matplotlib import font_manager as fm, pyplot as plt, rcParams
import numpy as np
import pandas as pd
import pycountry
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.manifold import locally_linear_embedding, TSNE
from sklearn.neighbors import NearestNeighbors
jMatrix = np.loadtxt("/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/jMatrix.txt")
emoticonsList = []
with open("/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/emoticonsList.txt", 'r') as filehandle:
for line in filehandle:
e = line.strip() #remove line break
emoticonsList.append(e)
nbrEmoticons = len(emoticonsList)
print(emoticonsList)
['😀', '😁', '😂', '😃', '😄', '😅', '😆', '😇', '😈', '😉', '😊', '😋', '😌', '😍', '😎', '😏', '😐', '😑', '😒', '😓', '😔', '😕', '😖', '😗', '😘', '😙', '😚', '😛', '😜', '😝', '😞', '😟', '😠', '😡', '😢', '😣', '😤', '😥', '😦', '😧', '😨', '😩', '😪', '😫', '😬', '😭', '😮', '😯', '😰', '😱', '😲', '😳', '😴', '😵', '😶', '😷', '😸', '😹', '😺', '😻', '😼', '😽', '😾', '😿', '🙀', '🙁', '🙂', '🙃', '🙄', '🙅', '🙆', '🙇', '🙈', '🙉', '🙊', '🙋', '🙌', '🙍', '🙎', '🙏']
Some of the SciPy clustering implementations require a full distance matrix, rather than the condensed representation consisting of only the upper triangular part which we have been using thus far. So we create a full matrix in the cell below. In the cell after that we define a helper function for plotting 2D embeddings of emoticons, note that this function loads the unifont-upper font for emoticon rendering, which can be downloaded from http://unifoundry.com/unifont/index.html
.
def emoticonPairToIndex(a, b): # same helper function as already defined in scala previously
i = min(a, b) # makes sure j >= i
j = max(a, b)
return i * nbrEmoticons - (i * (i+1))//2 + j
fullDistanceMatrix = np.zeros([nbrEmoticons, nbrEmoticons])
for r in range(nbrEmoticons):
for c in range(nbrEmoticons):
fullDistanceMatrix[r, c] = jMatrix[emoticonPairToIndex(r, c)]
def scatterEmojis(emoticonsEmbedded):
# This function plots a scatter plot of emoticons.
# emoticonsEmbedded should be an 80x2 array
# containing 2D coordinates for each of the
# 80 emoticons in the unicode emoticon block (in the correct order).
# standardize the embedding for nicer plotting:
emoticonsEmbedded = emoticonsEmbedded - np.mean(emoticonsEmbedded)
emoticonsEmbedded = emoticonsEmbedded/np.std(emoticonsEmbedded)
# for proper emoji rendering change the font
fpath = os.path.join(rcParams["datapath"], "/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/unifont_upper-13.0.05.ttf")
prop = fm.FontProperties(fname=fpath, size=50)
fig = plt.figure(figsize=(14, 14))
for i, label in enumerate(emoticonsList):
plt.text(emoticonsEmbedded[i, 0], emoticonsEmbedded[i, 1], label, fontproperties=prop)
plt.setp(plt.gca(), frame_on=False, xticks=(), yticks=())
Locally linear embedding
First off we will look at embedding the emoticons into 2D in ways that respect the Jaccard distances at least to a degree.
Locally linear embedding (LLE) is one such method, which is focused on good presentation of local neighborhoods. You can read more about it in the scikit-learn documentation embedded below.
nbrNeighbors = 8
emoticonsNeighbors = NearestNeighbors(n_neighbors=nbrNeighbors, metric="precomputed").fit(fullDistanceMatrix)
emoticonsEmbedded, err = locally_linear_embedding(emoticonsNeighbors, n_neighbors=nbrNeighbors, n_components=2)
As we can see in the scatter plot below, LLE succeeds in separating the emoticons broadly into happy (down to the left), sad (up) and animal (down to the right) categories. Also some local clusters can be spotted, such as the three emoticons sticking out their tongues, close to the lower left corner.
scatterEmojis(emoticonsEmbedded)
t-distributed Stochastic Neighbor Embedding (t-SNE)
Another approach for embedding the distances into 2D is t-SNE. You can read more about this method in the sk-learn documentation below.
emoticonsEmbedded = TSNE(n_components=2, perplexity=20.0, early_exaggeration=12.0, learning_rate=2.0, n_iter=10000,
metric='precomputed', angle=0.01).fit_transform(fullDistanceMatrix)
t-SNE also does a good job at showing a separation between happy and sad emojis but the result is not as convincing as the LLE case. One could spend more time on optimizing the hyperparameters and probably find a better embedding here.
scatterEmojis(emoticonsEmbedded)
Hierarchical clustering
Instead of trying to embed the distances into 2D, we can also create a nice graphical representation in the form of a dendrogram or hierarchical clustering. For this we need to process the distance matrix somewhat again in the following cell.
# remove diagonal from jMatrix, as this is expected by the scipy linkage function:
diagonalIndices = [emoticonPairToIndex(i, i) for i in range(nbrEmoticons)]
jMatrixUpper = jMatrix[[i for i in range((nbrEmoticons**2 + nbrEmoticons)//2) if not i in diagonalIndices]]
assert len(jMatrixUpper) == len(jMatrix) - nbrEmoticons, "the upper matrix should have exactly 80 elements fewer than the upper+diagonal"
# creating a linkage matrix
Z = linkage(jMatrixUpper, 'complete', optimal_ordering=True)
Hierarchical clustering works by starting of with clusters of size one which are just the emoticons and then iteratively joining those clusters which are closest together. The distance between clusters can be defined in various ways, here we somewhat arbitrarily choose so called "complete linkage" which means that the distance between clusters \(a\) and \(b\) is given by the maximum Jaccard distance between some emoticon in \(a\) and some emoticon in \(b\).
We can use dendrograms to neatly represent hirearchical clusterings graphically. The closer two emoticons (or rather emoticon clusters) are to each other, the further down in the dendrogram their branches merge.
The interested WASP PhD student could consider taking the WASP Topological Data Analysis course to learn more about hierarchical clustering.
# plotting a dendrogram
fig = plt.figure(figsize=(40, 8))
dn = dendrogram(Z, labels=emoticonsList, leaf_rotation=0, color_threshold=1.)
ax = plt.gca()
# for proper emoji rendering change the font
fpath = os.path.join(rcParams["datapath"], "/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/unifont_upper-13.0.05.ttf")
prop = fm.FontProperties(fname=fpath, size=28)
x_labels = ax.get_xmajorticklabels()
for x in x_labels:
x.set_fontproperties(prop)
ax.set_ylim([.85, 1.01])
We identify six main clusters in the dendrogram above. From left to right:
- The green "prayer" cluster (🙌🙏😊🙇🙋😷) which also contains the mask emoji and a common smile emoji,
- the teal "happy" cluster (😝😛😜😎😉😏😈😌😋😍😘😇😀😃😄😁😆😅🙂🙃),
- the magenta "cat" cluster (😹😸😽😺😻😿😾🙀😼),
- the yellow "shocked and kisses" or "SK" cluster (😶😬😲😮😯😗😙😚),
- a combined "not happy" cluster consisting of the next black, green, red, teal and magenta clusters (😵😧😦😨😰😱😳😂😭😩😔😢😞😥😓😪😴😫😖😣😟🙁😕😐😑😒🙄😤😡😠),
- finally the yellow "monkey" cluster (🙈🙊🙉).
We proceed with these clusters as they appeal sufficiently to our intuition to seem worthwhile. The observant reader will however have noted some curiosities such as the fact that the "not happy" cluster contains the crying laughing emoji 😂 which is the most popular emoticon in our tweet dataset and which might be used in both happy and not so happy contexts.
Next, we finish the clustering part of this notebook by saving the clusters to file.
monkeyEmoticons = dn["leaves"][76:79]
prayerEmoticons = dn["leaves"][0:6]
shockedAndKissesEmoticons = dn["leaves"][38:46]
happyEmoticons = dn["leaves"][9:29]
notHappyEmoticons = dn["leaves"][46:76]
catEmoticons = dn["leaves"][29:38]
emoticonsDict = {"monkey" : monkeyEmoticons,
"prayer" : prayerEmoticons,
"SK" : shockedAndKissesEmoticons,
"happy" : happyEmoticons,
"notHappy" : notHappyEmoticons,
"cat" : catEmoticons}
print(emoticonsDict)
{'monkey': [72, 74, 73], 'prayer': [76, 79, 10, 71, 75, 55], 'SK': [54, 44, 50, 46, 47, 23, 25, 26], 'happy': [29, 27, 28, 14, 9, 15, 8, 12, 11, 13, 24, 7, 0, 3, 4, 1, 6, 5, 66, 67], 'notHappy': [53, 39, 38, 40, 48, 49, 51, 2, 45, 41, 20, 34, 30, 37, 19, 42, 52, 43, 22, 35, 31, 65, 21, 16, 17, 18, 68, 36, 33, 32], 'cat': [57, 56, 61, 58, 59, 63, 62, 64, 60]}
#with open('/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/emoticonClusters.json', 'w+') as f:
# json.dump(emoticonsDict, f)
Filtering the tweets by cluster
We return to scala cells to filter the original dataset by what emoticons are present in each tweet. First we load the clusters from the just created json-file.
import org.json4s.jackson.JsonMethods.parse
val jsonString = scala.io.Source.fromFile("/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/emoticonClusters.json").mkString
val emoticonClusters = parse(jsonString).values.asInstanceOf[Map[String, List[BigInt]]]
emoticonClusters.foreach({case (key, list) => println(key + ": " + list.map(i => emoticonsList(i.toInt)).mkString)})
prayer: 🙌🙏😊🙇🙋😷
monkey: 🙈🙊🙉
happy: 😝😛😜😎😉😏😈😌😋😍😘😇😀😃😄😁😆😅🙂🙃
SK: 😶😬😲😮😯😗😙😚
cat: 😹😸😽😺😻😿😾🙀😼
notHappy: 😵😧😦😨😰😱😳😂😭😩😔😢😞😥😓😪😴😫😖😣😟🙁😕😐😑😒🙄😤😡😠
import org.json4s.jackson.JsonMethods.parse
jsonString: String = {"monkey": [72, 74, 73], "prayer": [76, 79, 10, 71, 75, 55], "SK": [54, 44, 50, 46, 47, 23, 25, 26], "happy": [29, 27, 28, 14, 9, 15, 8, 12, 11, 13, 24, 7, 0, 3, 4, 1, 6, 5, 66, 67], "notHappy": [53, 39, 38, 40, 48, 49, 51, 2, 45, 41, 20, 34, 30, 37, 19, 42, 52, 43, 22, 35, 31, 65, 21, 16, 17, 18, 68, 36, 33, 32], "cat": [57, 56, 61, 58, 59, 63, 62, 64, 60]}
emoticonClusters: Map[String,List[BigInt]] = Map(prayer -> List(76, 79, 10, 71, 75, 55), monkey -> List(72, 74, 73), happy -> List(29, 27, 28, 14, 9, 15, 8, 12, 11, 13, 24, 7, 0, 3, 4, 1, 6, 5, 66, 67), SK -> List(54, 44, 50, 46, 47, 23, 25, 26), cat -> List(57, 56, 61, 58, 59, 63, 62, 64, 60), notHappy -> List(53, 39, 38, 40, 48, 49, 51, 2, 45, 41, 20, 34, 30, 37, 19, 42, 52, 43, 22, 35, 31, 65, 21, 16, 17, 18, 68, 36, 33, 32))
Next, we create a dataframe emoticonDF
with a row for each tweet containing at least one emoticon. We add a column for each cluster indicating if the cluster is represented by some emoticon in the tweet. This dataframe is saved to file to be used in the next notebook 03 which focuses more on data visualization. Here we will finish this notebook by using the databricks display
function to plot geopraphic information.
val emoticonDF = fullDF.filter($"CurrentTweet".rlike(emoticonsList.mkString("|"))) // filter tweets with emoticons
.select(($"countryCode" :: // select the countryCode column
$"CurrentTweetDate" :: // and the timestamp
(for {(name, cluster) <- emoticonClusters.toList} yield // also create a new column for each emoticon cluster indicating if the tweet contains an emoticon of that cluster
$"CurrentTweet".rlike(cluster.map(i => emoticonsList(i.toInt)).mkString("|"))
.alias(name))) // rename new column
: _*) // expand list
emoticonDF.show(3)
+-----------+-------------------+------+------+-----+-----+-----+--------+
|countryCode| CurrentTweetDate|prayer|monkey|happy| SK| cat|notHappy|
+-----------+-------------------+------+------+-----+-----+-----+--------+
| EG|2020-12-31 15:59:54| false| false|false|false|false| true|
| SA|2020-12-31 15:59:54| true| false|false|false|false| false|
| DO|2020-12-31 15:59:54| false| false| true|false|false| false|
+-----------+-------------------+------+------+-----+-----+-----+--------+
only showing top 3 rows
emoticonDF: org.apache.spark.sql.DataFrame = [countryCode: string, CurrentTweetDate: timestamp ... 6 more fields]
// save to file
// emoticonDF.write.format("parquet").mode("overwrite").save("/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/processedEmoticonClusterParquets/emoticonCluster.parquet")
The goal for the last part of this notebook will be to display for each country what proportion of its total tweets correspond to a certain cluster. First we create a dataframe emoticonCCDF
which contains the total number of tweets with some emoticon for each country. Using that dataframe we create dataframes containing the described proportions for each cluster and transfer these dataframes from scala to python by using the createOrReplaceTmpView
function.
val emoticonCCDF = emoticonDF.groupBy($"countryCode")
.count
emoticonCCDF.show(3)
+-----------+-----+
|countryCode|count|
+-----------+-----+
| DZ| 157|
| MM| 44|
| TC| 5|
+-----------+-----+
only showing top 3 rows
emoticonCCDF: org.apache.spark.sql.DataFrame = [countryCode: string, count: bigint]
def createPropClusterDF (cluster : org.apache.spark.sql.Column) : org.apache.spark.sql.DataFrame = {
// This function filters the emoticonDF by a cluster-column and then
// creates a dataframe with a row per country and columns for the countryCode and proportion
// of tweets from that country that fall into the cluster as well as the count of tweets
// falling into the cluster.
val nbrClusterTweets = emoticonDF.filter(cluster).count
val clusterDF = emoticonDF.filter(cluster)
.groupBy($"countryCode")
.count
val propDF = emoticonCCDF.alias("total")
.join(clusterDF.alias("cluster"), "countryCode")
.select($"countryCode", $"cluster.count".alias("count"), ($"cluster.count" / $"total.count").alias("proportion"))
return propDF
}
createPropClusterDF: (cluster: org.apache.spark.sql.Column)org.apache.spark.sql.DataFrame
Below we see an example of the dataframes generated by createPropClusterDF
.
val clusterColumn = $"notHappy"
val propClusterDF = createPropClusterDF(clusterColumn)
propClusterDF.show(3)
+-----------+-----+------------------+
|countryCode|count| proportion|
+-----------+-----+------------------+
| DZ| 80|0.5095541401273885|
| MM| 14|0.3181818181818182|
| CI| 164|0.6507936507936508|
+-----------+-----+------------------+
only showing top 3 rows
clusterColumn: org.apache.spark.sql.ColumnName = notHappy
propClusterDF: org.apache.spark.sql.DataFrame = [countryCode: string, count: bigint ... 1 more field]
def createPropClusterDFAndCreateTmpView (clusterName : String) = {
// function for creating proportion dataframes for each cluster and making them available for later python code
val propClusterDF = createPropClusterDF(org.apache.spark.sql.functions.col(clusterName))
// make df available to python/sql etc
propClusterDF.createOrReplaceTempView(clusterName)
}
createPropClusterDFAndCreateTmpView: (clusterName: String)Unit
// create proportion dataframes for each cluster and make them available for later python code
emoticonClusters.keys.foreach(createPropClusterDFAndCreateTmpView _)
Now we turn to python to use the pycountry
package in order to translate the country codes into another standard (three letters instead of two) which makes plotting with the built in databricks display
a breeze. The cell below contains some functions that read the dataframes from the temporary view created in scala and translate them to pandas dataframes with the three letter country codes. Also, we filter out countries for which there are fewer than 100 tweets.
def add_iso_a3_col(df_cc):
cc_dict = {}
for country in pycountry.countries:
cc_dict[country.alpha_2] = country.alpha_3
df_cc["iso_a3"] = df_cc["countryCode"].map(cc_dict)
return df_cc
def cc_df_from_spark_to_pandas_and_process(df_cc, columnOfInterest):
#df_cc should be a dataframe with a column "countryCode" and a column columnOfInterest which has some interesting numerical data
df_cc = df_cc.toPandas()
add_iso_a3_col(df_cc)
df_cc = df_cc[["iso_a3", columnOfInterest]] #reorder to have iso_a3 as first column (required in order to use the map view in display), and select the useful columns
return df_cc
from pyspark.sql.functions import col
def createProps(clusterName):
df = sql("select * from " + clusterName)
return cc_df_from_spark_to_pandas_and_process(df.filter(col("count")/col("proportion") >= 100), "proportion") # filter so that only countries with at least 100 tweets in a given country are used
Finally, we can show the proportion of tweets in each country that fall into each cluster. Make sure that the plot type is set to map
in the outputs from the cells below. It is possible to hover over the countries to see the precise values.
If anything interesting can actually be read from these plots we leave for the reader to decide.
display(createProps("happy"))
display(createProps("notHappy"))
display(createProps("monkey"))
display(createProps("cat"))
display(createProps("SK"))
display(createProps("prayer"))
Dynamic Tweet Maps
In this notebook we are going to make some maps depicting when and where tweets are sent.
We will also use the sentiment classes from the previous notebooks to illustrate which type of tweets are frequent at different times in different countries.
Dependencies:
In order to run this notebook you need to install some dependencies, via apt, pip and git. To install the dependencies run the following three cells (it might take a few minutes).
(We have used the cluster "small-2-8Ws-class-01-sp3-sc2-12" for our experiments.)
sudo apt-get -y install libproj-dev
sudo apt-get -y install libgeos++-dev
Reading package lists...
Building dependency tree...
Reading state information...
libproj-dev is already the newest version (4.9.3-2).
The following packages were automatically installed and are no longer required:
libcap2-bin libpam-cap zulu-repo
Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 17 not upgraded.
Reading package lists...
Building dependency tree...
Reading state information...
libgeos++-dev is already the newest version (3.6.2-1build2).
The following packages were automatically installed and are no longer required:
libcap2-bin libpam-cap zulu-repo
Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 17 not upgraded.
%pip install plotly
%pip install pycountry
%pip install geopandas
%pip install geoplot
%pip install imageio
Python interpreter will be restarted.
Collecting plotly
Downloading plotly-4.14.3-py2.py3-none-any.whl (13.2 MB)
Requirement already satisfied: six in /databricks/python3/lib/python3.7/site-packages (from plotly) (1.14.0)
Collecting retrying>=1.3.3
Downloading retrying-1.3.3.tar.gz (10 kB)
Building wheels for collected packages: retrying
Building wheel for retrying (setup.py): started
Building wheel for retrying (setup.py): finished with status 'done'
Created wheel for retrying: filename=retrying-1.3.3-py3-none-any.whl size=11430 sha256=d44981ab5b644b464561fdd8ffbda5b3b476a52efe985dab72bd1549d6a6d1f0
Stored in directory: /root/.cache/pip/wheels/f9/8d/8d/f6af3f7f9eea3553bc2fe6d53e4b287dad18b06a861ac56ddf
Successfully built retrying
Installing collected packages: retrying, plotly
Successfully installed plotly-4.14.3 retrying-1.3.3
Python interpreter will be restarted.
Python interpreter will be restarted.
Collecting pycountry
Downloading pycountry-20.7.3.tar.gz (10.1 MB)
Building wheels for collected packages: pycountry
Building wheel for pycountry (setup.py): started
Building wheel for pycountry (setup.py): finished with status 'done'
Created wheel for pycountry: filename=pycountry-20.7.3-py2.py3-none-any.whl size=10746863 sha256=2b60c51268a303df86bea421d372ba1ed4001f8ffa211a0d9e98601fa0ab1ed5
Stored in directory: /root/.cache/pip/wheels/57/e8/3f/120ccc1ff7541c108bc5d656e2a14c39da0d824653b62284c6
Successfully built pycountry
Installing collected packages: pycountry
Successfully installed pycountry-20.7.3
Python interpreter will be restarted.
Python interpreter will be restarted.
Collecting geopandas
Downloading geopandas-0.8.2-py2.py3-none-any.whl (962 kB)
Requirement already satisfied: pandas>=0.23.0 in /databricks/python3/lib/python3.7/site-packages (from geopandas) (1.0.1)
Collecting pyproj>=2.2.0
Downloading pyproj-3.0.0.post1-cp37-cp37m-manylinux2010_x86_64.whl (6.4 MB)
Collecting fiona
Downloading Fiona-1.8.18-cp37-cp37m-manylinux1_x86_64.whl (14.8 MB)
Collecting shapely
Downloading Shapely-1.7.1-cp37-cp37m-manylinux1_x86_64.whl (1.0 MB)
Requirement already satisfied: python-dateutil>=2.6.1 in /databricks/python3/lib/python3.7/site-packages (from pandas>=0.23.0->geopandas) (2.8.1)
Requirement already satisfied: numpy>=1.13.3 in /databricks/python3/lib/python3.7/site-packages (from pandas>=0.23.0->geopandas) (1.18.1)
Requirement already satisfied: pytz>=2017.2 in /databricks/python3/lib/python3.7/site-packages (from pandas>=0.23.0->geopandas) (2019.3)
Requirement already satisfied: certifi in /databricks/python3/lib/python3.7/site-packages (from pyproj>=2.2.0->geopandas) (2020.6.20)
Requirement already satisfied: six>=1.5 in /databricks/python3/lib/python3.7/site-packages (from python-dateutil>=2.6.1->pandas>=0.23.0->geopandas) (1.14.0)
Collecting munch
Downloading munch-2.5.0-py2.py3-none-any.whl (10 kB)
Collecting click-plugins>=1.0
Downloading click_plugins-1.1.1-py2.py3-none-any.whl (7.5 kB)
Collecting attrs>=17
Downloading attrs-20.3.0-py2.py3-none-any.whl (49 kB)
Collecting cligj>=0.5
Downloading cligj-0.7.1-py3-none-any.whl (7.1 kB)
Collecting click<8,>=4.0
Downloading click-7.1.2-py2.py3-none-any.whl (82 kB)
Installing collected packages: click, munch, cligj, click-plugins, attrs, shapely, pyproj, fiona, geopandas
Successfully installed attrs-20.3.0 click-7.1.2 click-plugins-1.1.1 cligj-0.7.1 fiona-1.8.18 geopandas-0.8.2 munch-2.5.0 pyproj-3.0.0.post1 shapely-1.7.1
Python interpreter will be restarted.
Python interpreter will be restarted.
Collecting geoplot
Downloading geoplot-0.4.1-py3-none-any.whl (28 kB)
Requirement already satisfied: seaborn in /databricks/python3/lib/python3.7/site-packages (from geoplot) (0.10.0)
Requirement already satisfied: matplotlib in /databricks/python3/lib/python3.7/site-packages (from geoplot) (3.1.3)
Collecting mapclassify>=2.1
Downloading mapclassify-2.4.2-py3-none-any.whl (38 kB)
Collecting contextily>=1.0.0
Downloading contextily-1.0.1-py3-none-any.whl (23 kB)
Collecting cartopy
Downloading Cartopy-0.18.0.tar.gz (14.4 MB)
Requirement already satisfied: pandas in /databricks/python3/lib/python3.7/site-packages (from geoplot) (1.0.1)
Requirement already satisfied: geopandas in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from geoplot) (0.8.2)
Collecting descartes
Downloading descartes-1.1.0-py3-none-any.whl (5.8 kB)
Collecting mercantile
Downloading mercantile-1.1.6-py3-none-any.whl (13 kB)
Collecting pillow
Downloading Pillow-8.1.0-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB)
Collecting geopy
Downloading geopy-2.1.0-py3-none-any.whl (112 kB)
Requirement already satisfied: joblib in /databricks/python3/lib/python3.7/site-packages (from contextily>=1.0.0->geoplot) (0.14.1)
Collecting rasterio
Downloading rasterio-1.2.0-cp37-cp37m-manylinux1_x86_64.whl (19.1 MB)
Requirement already satisfied: requests in /databricks/python3/lib/python3.7/site-packages (from contextily>=1.0.0->geoplot) (2.22.0)
Requirement already satisfied: scipy>=1.0 in /databricks/python3/lib/python3.7/site-packages (from mapclassify>=2.1->geoplot) (1.4.1)
Requirement already satisfied: numpy>=1.3 in /databricks/python3/lib/python3.7/site-packages (from mapclassify>=2.1->geoplot) (1.18.1)
Requirement already satisfied: scikit-learn in /databricks/python3/lib/python3.7/site-packages (from mapclassify>=2.1->geoplot) (0.22.1)
Collecting networkx
Downloading networkx-2.5-py3-none-any.whl (1.6 MB)
Requirement already satisfied: python-dateutil>=2.6.1 in /databricks/python3/lib/python3.7/site-packages (from pandas->geoplot) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in /databricks/python3/lib/python3.7/site-packages (from pandas->geoplot) (2019.3)
Requirement already satisfied: six>=1.5 in /databricks/python3/lib/python3.7/site-packages (from python-dateutil>=2.6.1->pandas->geoplot) (1.14.0)
Requirement already satisfied: shapely>=1.5.6 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from cartopy->geoplot) (1.7.1)
Collecting pyshp>=1.1.4
Downloading pyshp-2.1.3.tar.gz (219 kB)
Requirement already satisfied: setuptools>=0.7.2 in /usr/local/lib/python3.7/dist-packages (from cartopy->geoplot) (45.2.0)
Requirement already satisfied: pyproj>=2.2.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from geopandas->geoplot) (3.0.0.post1)
Requirement already satisfied: fiona in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from geopandas->geoplot) (1.8.18)
Requirement already satisfied: certifi in /databricks/python3/lib/python3.7/site-packages (from pyproj>=2.2.0->geopandas->geoplot) (2020.6.20)
Requirement already satisfied: munch in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from fiona->geopandas->geoplot) (2.5.0)
Requirement already satisfied: click-plugins>=1.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from fiona->geopandas->geoplot) (1.1.1)
Requirement already satisfied: attrs>=17 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from fiona->geopandas->geoplot) (20.3.0)
Requirement already satisfied: cligj>=0.5 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from fiona->geopandas->geoplot) (0.7.1)
Requirement already satisfied: click<8,>=4.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from fiona->geopandas->geoplot) (7.1.2)
Collecting geographiclib<2,>=1.49
Downloading geographiclib-1.50-py3-none-any.whl (38 kB)
Requirement already satisfied: cycler>=0.10 in /databricks/python3/lib/python3.7/site-packages (from matplotlib->geoplot) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /databricks/python3/lib/python3.7/site-packages (from matplotlib->geoplot) (2.4.6)
Requirement already satisfied: kiwisolver>=1.0.1 in /databricks/python3/lib/python3.7/site-packages (from matplotlib->geoplot) (1.1.0)
Requirement already satisfied: decorator>=4.3.0 in /databricks/python3/lib/python3.7/site-packages (from networkx->mapclassify>=2.1->geoplot) (4.4.1)
Collecting affine
Downloading affine-2.3.0-py2.py3-none-any.whl (15 kB)
Collecting snuggs>=1.4.1
Downloading snuggs-1.4.7-py3-none-any.whl (5.4 kB)
Requirement already satisfied: idna<2.9,>=2.5 in /databricks/python3/lib/python3.7/site-packages (from requests->contextily>=1.0.0->geoplot) (2.8)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /databricks/python3/lib/python3.7/site-packages (from requests->contextily>=1.0.0->geoplot) (1.25.8)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/lib/python3/dist-packages (from requests->contextily>=1.0.0->geoplot) (3.0.4)
Building wheels for collected packages: cartopy, pyshp
Building wheel for cartopy (setup.py): started
Building wheel for cartopy (setup.py): finished with status 'done'
Created wheel for cartopy: filename=Cartopy-0.18.0-cp37-cp37m-linux_x86_64.whl size=15127828 sha256=a7843bd96a5753ca15c4c1952b65a93a5ae9378f67d5c17cf1398436b77dfb80
Stored in directory: /root/.cache/pip/wheels/0b/a9/54/172056df34478378e0636d30cd4d1a868de00e37254649bf1a
Building wheel for pyshp (setup.py): started
Building wheel for pyshp (setup.py): finished with status 'done'
Created wheel for pyshp: filename=pyshp-2.1.3-py3-none-any.whl size=37262 sha256=f31c01d2d2d597d89e643a155abbf55b7de6db2c096a5aa21a9d267d548ed9b3
Stored in directory: /root/.cache/pip/wheels/43/f8/87/53c8cd41545ba20e536ea29a8fcb5431b5f477ca50d5dffbbe
Successfully built cartopy pyshp
Installing collected packages: snuggs, geographiclib, affine, rasterio, pyshp, pillow, networkx, mercantile, geopy, mapclassify, descartes, contextily, cartopy, geoplot
Successfully installed affine-2.3.0 cartopy-0.18.0 contextily-1.0.1 descartes-1.1.0 geographiclib-1.50 geoplot-0.4.1 geopy-2.1.0 mapclassify-2.4.2 mercantile-1.1.6 networkx-2.5 pillow-8.1.0 pyshp-2.1.3 rasterio-1.2.0 snuggs-1.4.7
Python interpreter will be restarted.
Python interpreter will be restarted.
Collecting imageio
Downloading imageio-2.9.0-py3-none-any.whl (3.3 MB)
Requirement already satisfied: numpy in /databricks/python3/lib/python3.7/site-packages (from imageio) (1.18.1)
Requirement already satisfied: pillow in /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages (from imageio) (8.1.0)
Installing collected packages: imageio
Successfully installed imageio-2.9.0
Python interpreter will be restarted.
git clone https://github.com/mthh/cartogram_geopandas.git
cd cartogram_geopandas/
python setup.py install
Cloning into 'cartogram_geopandas'...
Compiling cycartogram.pyx because it changed.
[1/1] Cythonizing cycartogram.pyx
running install
running build
running build_py
creating build
creating build/lib.linux-x86_64-3.7
copying cartogram_geopandas.py -> build/lib.linux-x86_64-3.7
running build_ext
building 'cycartogram' extension
creating build/temp.linux-x86_64-3.7
x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/python3.7m -I/local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/include/python3.7m -c cycartogram.c -o build/temp.linux-x86_64-3.7/cycartogram.o
cycartogram.c: In function ‘__pyx_f_11cycartogram_transform_geom’:
cycartogram.c:2084:39: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (__pyx_t_16 = 0; __pyx_t_16 < __pyx_t_15; __pyx_t_16+=1) {
^
cycartogram.c:2134:41: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) {
^
cycartogram.c: In function ‘__pyx_pf_11cycartogram_9Cartogram_4cartogram’:
cycartogram.c:3835:37: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (__pyx_t_13 = 0; __pyx_t_13 < __pyx_t_12; __pyx_t_13+=1) {
^
x86_64-linux-gnu-gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.7/cycartogram.o -o build/lib.linux-x86_64-3.7/cycartogram.cpython-37m-x86_64-linux-gnu.so
running install_lib
copying build/lib.linux-x86_64-3.7/cycartogram.cpython-37m-x86_64-linux-gnu.so -> /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages
copying build/lib.linux-x86_64-3.7/cartogram_geopandas.py -> /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages
byte-compiling /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages/cartogram_geopandas.py to cartogram_geopandas.cpython-37.pyc
running install_egg_info
Writing /local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages/cartogram_geopandas-0.0.0c.egg-info
/databricks/python/lib/python3.7/site-packages/Cython/Compiler/Main.py:369: FutureWarning: Cython directive 'language_level' not set, using 2 for now (Py2). This will change in a later release! File: /databricks/driver/cartogram_geopandas/cycartogram.pyx
tree = Parsing.p_module(s, pxd, full_module_name)
Defining some functions
We will process the collected data a bit before making any plots. To do this we will load some functions from notebook 06appendixtweetcartofunctions.
"./06_appendix_tweet_carto_functions"
Initial processing of dataframe
This step only needs to be run if you want to overwrite the existing preprocessed dataframea "processedDF.csv". Otherwise you can just skip to the next cell and load the already generated dataframe.
path = "/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/{2020,2021}/*/*/*/*/*"
df = load_twitter_geo_data(path)
#Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour.
df = df[(df['day'] != 22) & (df['day'] != 2 )].reset_index() #Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour. Data collection ended in the middle of Jan second so to only have full day we disregard Jan 2.
pre_proc_path = "/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/tmp/processedDF.csv"
df.to_csv(pre_proc_path)
Quick initial data exploration
Let's start by having a look at the first 5 elements.
For now we are only looking at country of origin and timestamp, so we have neither loaded the tweets or the derived sentiment classes from before.
# Load the data
pre_proc_path = "/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/tmp/processedDF.csv"
df = pd.read_csv(pre_proc_path)
display(df.head(5))
Unnamed: 0 | index | countryCode | CurrentTweetDate | date | year | month | day | dayofweek | hour | minute | second |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 3654.0 | ID | 2020-12-31 12:59:54 | 2020-12-31 | 2020.0 | 12.0 | 31.0 | 3.0 | 12.0 | 59.0 | 54.0 |
1.0 | 3655.0 | GB | 2020-12-31 12:59:54 | 2020-12-31 | 2020.0 | 12.0 | 31.0 | 3.0 | 12.0 | 59.0 | 54.0 |
2.0 | 3656.0 | TH | 2020-12-31 12:59:54 | 2020-12-31 | 2020.0 | 12.0 | 31.0 | 3.0 | 12.0 | 59.0 | 54.0 |
3.0 | 3657.0 | PK | 2020-12-31 12:59:54 | 2020-12-31 | 2020.0 | 12.0 | 31.0 | 3.0 | 12.0 | 59.0 | 54.0 |
4.0 | 3658.0 | ID | 2020-12-31 12:59:54 | 2020-12-31 | 2020.0 | 12.0 | 31.0 | 3.0 | 12.0 | 59.0 | 54.0 |
The tweets we have loaded were sent between Dec 23 and Jan 1, and the timestamps are given in Greenwich Mean Time (GMT). We can use the display function again to have a look at how tweets are distributed as a function of time of day. To get tweets from a single timezone we just have a look at tweets from the United Kingdom (which has the country code GB).
The histograms below show a clear dip in twitter activity from around eleven at night untill around eight in the morning. The night between the 24th and 25th of December shows a small spike right after midnight and new years shows a large spike after midnight. It seems that people like to tweet when celebrating!
There is an abnormal peak on December 27th at 21. We have not been able to determine what this is due to.
NOTE: The cell below has been configured (via the display user interface) to show histograms using date as key and hour as values.
display(df.query("countryCode=='GB'"))
If we look at Saudi Arabia it seems that something is happening on December 31rst and December 28th.
-
The timestamps are in GMT, so the smalller peak at 21:00 on December 31rst is actually located at midnight. Although Saudi Arabia follows the islamic calendar it looks like there are still people celebrating the gregorian new year. We do not know what could be the reason for the larger peak on December 31rst.
-
The largest spike is located on December 28th. It covers tweets send between 12:00 and 16:00 GMT, which would correspond to 15:00-18:00 local time. We have tried to find the cause of this peak, and we think it might be due to the conviction of female rights activist Loujain al-Hathloul who was sentenced to five years and 8 months of prison on this date. We could not find an exact timestamp for this event, but the report from france24 is timestamped to 12:20 (presumably Western European time), which corresponds to 14:20 in Saudi Arabia. It might be that there was a bit of lag time between media starting to report on the events and the case gaining traction on social media. Of course the spike could also be due to something else, but this sentencing seems like a likely cause.
Links: * https://www.thehindu.com/news/international/saudi-activist-loujain-al-hathloul-sentenced-to-5-years-8-months-in-prison/article33437467.ece Timestamp: 17:30 IST corresponding to 15:00 in Saudi Arabia * https://www.aljazeera.com/news/2020/12/28/saudi-court-hands-jail-sentence-to-womens-rights-activist No timestamp * https://www.france24.com/en/live-news/20201228-saudi-activist-loujain-al-hathloul-jailed-for-5-years-8-months Timestamp: 12:20 CET corresponding to 14:20 in Saudi Arabia
NOTE: The articles from thehindu.com and France24 are identical, as they both come from AFP.
display(df.query("countryCode=='SA'"))
The display function produces normalized histograms, so the below cell prints the daily number of tweets.
There is indeed a lot more tweets collected on the 28th and on the 31rst.
dateList = ["2020-12-23", "2020-12-24", "2020-12-25", "2020-12-26", "2020-12-27", "2020-12-28", "2020-12-29", "2020-12-30", "2020-12-31", "2021-01-01"]
for d in dateList:
N = len(df.query("(countryCode=='SA') and (date=='%s')"%d))
print("%d tweets were collected in Saudi Arabia on %s"%(N, d))
1519 tweets were collected in Saudi Arabia on 2020-12-23
1437 tweets were collected in Saudi Arabia on 2020-12-24
1556 tweets were collected in Saudi Arabia on 2020-12-25
1871 tweets were collected in Saudi Arabia on 2020-12-26
1529 tweets were collected in Saudi Arabia on 2020-12-27
3123 tweets were collected in Saudi Arabia on 2020-12-28
1700 tweets were collected in Saudi Arabia on 2020-12-29
1643 tweets were collected in Saudi Arabia on 2020-12-30
3127 tweets were collected in Saudi Arabia on 2020-12-31
1486 tweets were collected in Saudi Arabia on 2021-01-01
Mapping the tweets
To create maps using the tweets we will first group the tweets by country codes, producing a new dataframe with one row per country.
The map below is generated by selecting the map option in the display UI. This view only offers a simple discrete colorbar, but we can see that the most tweet producing countries are the United States and Brazil. Hovering above countries gives more detailed information, and shows that the Japan, the UK and India also produce a lot of tweets.
We also get tweets from a number of countries which have blocked access to twitter (China: 1825, North Korea: 5, Iran: 1590 and Turkmenistan: 7).
https://en.wikipedia.org/wiki/CensorshipofTwitter#GovernmentblockingofTwitteraccess
# Group by country code
df_cc = country_code_grouping(df)
df_cc = add_iso_a3_col(df_cc)
df_cc = df_cc[["iso_a3", "count"]] #reorder to have iso_a3 as first column (required in order to use the map view in display). Also we don't need countryCode and index columns.
# Inspect result
display(df_cc)
Right now we are dealing with a regular dataframe. But to make some more advanced plots we will need information about the shapes of the countries (in the form of polygons). We get the shapes via the function creategeodf(), which relies on the geopandas library. When calling display on a geopandas dataframe we just get the raw table, and none of the premade visualizations we get when displaying pandas dataframes.
# Create the geopandas dataframe
df_world = create_geo_df(df_cc)
# Inspect result
display(df_world.head())
pop_est | continent | name | iso_a3 | gdp_md_est | geometry | numTweets | |
---|---|---|---|---|---|---|---|
0 | 920938 | Oceania | Fiji | FJI | 8374.0 | MULTIPOLYGON (((180.00000 -16.06713, 180.00000... | 4.0 |
1 | 53950935 | Africa | Tanzania | TZA | 150600.0 | POLYGON ((33.90371 -0.95000, 34.07262 -1.05982... | 877.0 |
2 | 603253 | Africa | W. Sahara | ESH | 906.5 | POLYGON ((-8.66559 27.65643, -8.66512 27.58948... | 1.0 |
3 | 35623680 | North America | Canada | CAN | 1674000.0 | MULTIPOLYGON (((-122.84000 49.00000, -122.9742... | 12069.0 |
4 | 326625791 | North America | United States of America | USA | 18560000.0 | MULTIPOLYGON (((-122.84000 49.00000, -120.0000... | 205916.0 |
Choropleth maps
- A choropleth map is a map in which regions are assigned a color based on a numerical attribute. This could for example be each regions population, average life expectancy, or number of geo tagged tweets.
Cartograms
- A cartogram is a way to represent geograpic differences in some variable, by altering the size of regions. The areas and shapes of regions are distorted in order to create an approximately equal density of the selected variable across all regions. In our case there are a lot of tweets coming from brazil and the US so these regions will grow in order to produce a lower tweet density. There is a tradeoff between shape preservation and getting equal density. This is especially evident when the density you are trying to equalize differs by several orders of magnitude.
- The available python cartogram package cartogramgeopandas is based on Dougenik, J. A, N. R. Chrisman, and D. R. Niemeyer: 1985. "An algorithm to construct continuous cartograms". It is very sparsely documented and does not report error scores and tends to diverge if allowed to run for too many iterations. We found the Gui program Scapetoad to offer superior performance. Scapetoad is based on Mark Newman's C-code "Cart", which is based on his and Michael T. Gastner's paper "Diffusion-based method for producingdensity-equalizing maps" from 2004. Scapetoad is working on a Python API, but it has not been released yet. So inspite of its shortcomings we will be using cartogramgeopandas, since Scapetoad can not be called from a notebook.
- Due to the limitations of the cartogram_geopandas library, we choose to run for a modest number of iterations. This means we do not have direct proportionality between distorted area and number of tweets, rather the distortions give us a qualitative representation of where tweeting is frequent.
Links: * mthh, 2015: https://github.com/mthh/cartogram_geopandas * Dougenik, Chrisman and Niemeyer, 1985: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.0033-0124.1985.00075.x * Gastner and Newman: https://arxiv.org/abs/physics/0401102
To begin with we will plot all the tweets collected between 23:00:00 and 23:59:59 (GMT) on December 31rst. On the left side a world map with colors indicating number of tweets is shown, and on the right side a cartogram. It seems the United kingdom is tweeting a lot at this moment, which makes sense as they are about to enter 2021. Happy new year!
df = pd.read_csv(pre_proc_path)
df = df.query("(day==31) and (hour==23)")
# Group by country code
df_cc = country_code_grouping(df)
df_cc = add_iso_a3_col(df_cc)
df_cc = df_cc[["iso_a3", "count"]] #reorder to have iso_a3 as first column (required in order to use the map view in display). Also we don't need countryCode and index columns.
# Create the geopandas dataframe
df_world = create_geo_df(df_cc)
#fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(30,15))
# Make a choropleth plot
# df_world.plot(column='numTweets', cmap='viridis', ax=axes[0])
# The make_cartogram function can not handle a tweetcount of zero, so a not so elegant solution is to clip the tweet count at 1.
# The alternative (to remove countries without tweets) is not elegant either (and causes problems when we look at the time evolution, since countries will be popping in and out of existence).
df_world["numTweets"] = df_world["numTweets"].clip(1, max(df_world["numTweets"]))
df_cartogram = make_cartogram(df_world, 'numTweets', 5, inplace=False)
# df_cartogram.plot(column='numTweets', cmap='viridis', ax=axes[1])
# plt.show()
/local_disk0/.ephemeral_nfs/envs/pythonEnv-318e9509-84da-4944-ac59-77216123051e/lib/python3.7/site-packages/cartogram_geopandas.py:48: UserWarning: Geometry is in a geographic CRS. Results from 'area' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.
return crtgm.make()
Animating the time evolution of tweets
Rather than looking at a snapshot of the worlds twitter activity it would be interesting to look at how twitter activity looks across hours and days.
The following cell generates a number of png cartograms. One for every hour between December 23rd 2020 and January 2nd 2021.
It takes quite long to generate them all (around eight minutes) so you might want to just load the pregenerated pngs in the cell below.
NOTE: Geopandas prints some warnings related to using unprojected geometries (We work in longitude and latitude rather than some standard 2D map projection). This is not an issue since we are not using the area function.
pre_proc_path = "/dbfs/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/tmp/processedDF.csv"
df = pd.read_csv(pre_proc_path)
key = "hour"
timeOfDayList = list(range(0, 24))
nIter = 5
cartogram_key = "numTweets"
for day in range(23,32):
out_path = "/dbfs/FileStore/group10/cartogram/2020_Dec_%d_hour_"%day
legend = "2020 December %d: "%day
animate_cartogram(df.query("(day==%d) and (year==2020)"%day), key, timeOfDayList, out_path, nIter, cartogram_key, legend)
for day in range(1,2):
out_path = "/dbfs/FileStore/group10/cartogram/2021_Jan_%d_hour_"%day
legend = "2021 January %d: "%day
animate_cartogram(df.query("(day==%d) and (year==2021)"%day), key, timeOfDayList, out_path, nIter, cartogram_key, legend)
Now that we have generated the PNGs we can go ahead and combine them into a gif using the python imageIO library.
images=[] # array for storing the png frames for the gif
timeOfDayList = list(range(0, 24))
#Append images to image list
for day in range(23,32):
for hour in timeOfDayList:
out_path = "/dbfs/FileStore/group10/cartogram/2020_Dec_%d_hour_%d.png"%(day, hour)
images.append(imageio.imread(out_path))
for day in range(1,2):
for hour in timeOfDayList:
out_path = "/dbfs/FileStore/group10/cartogram/2021_Jan_%d_hour_%d.png"%(day, hour)
images.append(imageio.imread(out_path))
#create gif from the image list
imageio.mimsave("/dbfs/FileStore/group10/cartogram/many_days_cartogram.gif", images, duration=0.2)
The result is the following animation. The black vertical bar indicates where in the world it is midnight, the yellow vertical bar indicates where it is noon, and the time shown at the top is the current GMT time. The color/z-axis denotes the number of tweets produced in the given hour. Unsurprisingly we see countries inflate during the daytime and deflate close to midnight when people tend to sleep.
Sentiment mapping
This cartogram animation expresses the amount of tweets both through the size distortions and the z-axis (the color). In a way it is a bit redundant to illustrate the same things in two ways. The plot would be more informative if instead the z-axis is used to express some measure of sentiment.
We will load a dataframe containing sentiment cluster information extracted in the previous notebook. This dataframe only contains tweets which contained "Unicode block Emoticons", which is about 14% of the tweets we collected between December 23rd and January 1rst. The dataframe has boolean columns indicating if an emoji from a certain cluster is present. We will use the happy and not happy clusters found in the previous notebooks to express a single sentiment score:
df["sentiment"] = (1 + df["happy"] - df["notHappy"])/2 This is useful since it allows us to make a map containing information about both clusters. A caveat is that the although these clusters mostly contain what we would consider happy and unhappy emojis respectively, they do also contain some rather ambivalent emojis. The unhappy cluster for example contains a smiley that is both smiling and crying. On top of this emojis can take on different meanings in different contexts. Expressed in this way we get that: * A sentiment value of 0 means that the tweet contains unhappy emojis and no happy emojis. * A sentiment value of 0.5 means that the tweet either contain both happy and unhappy emojis or that it contains neither happy or unhappy emojis. * A sentiment value of 1 means that the tweet did not contain unhappy emojis but did contain happy emojis.
The pie chart below reveals that unhappy tweets are significantly more common than happy ones.
path = "/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/processedEmoticonClusterParquets/emoticonCluster.parquet"
cluster_names = ["all", "happy", "notHappy", "cat", "monkey", "SK", "prayer"]
df = load_twitter_geo_data_sentiment(path)
df = df[(df['day'] != 22) & (df['day'] != 2 )] #Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour. Data collection ended in the middle of Jan second so to only have full day we disregard Jan 2.
# Let's try combining the happy and sad columns to one "sentiment" column.
df["sentiment"] = (1 + df["happy"] - df["notHappy"])/2
display(df[["happy", "notHappy", "sentiment"]])
Next we will look at a choropleth world map using the "sentiment" score as z-axis. Countries with fewer than 100 tweets are not shown here.
It looks like the tweets from Africa, The US and the middle east are less happy than those from latin America, Europe, Asia and Oceania.
df_cc = country_code_grouping_sentiment(df)
df_cc = add_iso_a3_col(df_cc)
df_cc = df_cc[["iso_a3", "count", "sentiment"]] #reorder to have iso_a3 as first column (required in order to use the map view in display). Also we don't need countryCode and index columns.
df_cc
# Create the geopandas dataframe
df_world = create_geo_df_sentiment(df_cc)
vmin = min(df_world.query("numTweets>=20")["sentiment"])
vmax = max(df_world.query("numTweets>=20")["sentiment"])
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["red","yellow","green"])
cmap.set_under(color='gray', alpha=0.5)
#We filter out countries with very few emojii tweets
df_world.loc[df_world["numTweets"] < 100, 'sentiment'] = vmin -1
# df_world = df_world.query("numTweets>10").reset_index()
# Make a choropleth plot
# df_world.plot(column='sentiment', cmap=cmap, legend=True, vmin=vmin, vmax=vmax, figsize=(20,8))
# plt.title("Sentiment by country", fontsize=24)
# plt.xlabel("Longitude $^\circ$", fontsize=20)
# plt.ylabel("Latitude $^\circ$", fontsize=20)
# plt.show()
Let us have a look at how this sentiment score ranks the countries (with more than 100 emoji tweets) from happiest to unhappiest.
Japan, Sweden and Netherlands are in the lead.
display(df_world.query("numTweets>=100").sort_values("sentiment", ascending=False)[["name", "continent", "numTweets", "sentiment"]])
We are now ready to generate an animated cartogram using the number of tweets to determine the area distortions and using the sentiment score as the color dimension.
We do not have as many emoji tweets, so here we limit ourselves to only one frame per day. We color countries with less than 30 tweets per day grey, since their sentiment score will be extremely unreliable.
The following cell generates the animation, but as we already have produced it you can skip straight to the next cell where it is displayed.
#Load data
path = "/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/processedEmoticonClusterParquets/emoticonCluster.parquet"
cluster_names = ["all", "happy", "notHappy", "cat", "monkey", "SK", "prayer"]
df = load_twitter_geo_data_sentiment(path)
df = df[(df['day'] != 22) & (df['day'] != 2 )] #Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour. Data collection ended in the middle of Jan second so to only have full day we disregard Jan 2.
# Combine the happy and sad columns into one "sentiment" column.
df["sentiment"] = (1 + df["happy"] - df["notHappy"])/2
# Arguments for the function animate_cartogram_sentiment(...)
legendList = ["2020-12-23", "2020-12-24", "2020-12-25", "2020-12-26", "2020-12-27", "2020-12-28", "2020-12-29", "2020-12-30", "2020-12-31", "2021-01-01"]
key = "day"
nIter = 5
minSamples = 30
cartogram_key = "numTweets"
dayList = [23, 24, 25, 26, 27, 28, 29, 30, 31, 1]
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["red","yellow","green"])
cmap.set_under(color='gray', alpha=0.5)
cmap.set_bad(color='gray', alpha=0.5)
# Find upper and lower range for the color dimension.
# We want to utilize the full dynamic range of the z-axis.
vmin = 0.45
vmax = 0.55
for day in dayList:
df_filtered = df.query("day==%d"%day).reset_index()
df_cc = country_code_grouping_sentiment(df_filtered)
df_cc = df_cc.query("count>%d"%minSamples)
lower = min(df_cc["sentiment"])
upper = max(df_cc["sentiment"])
if lower<vmin:
vmin = lower
if upper>vmax:
vmax = upper
out_path = "/dbfs/FileStore/group10/cartogram/sentiment"
animate_cartogram_sentiment(df.reset_index(), key, dayList, out_path, nIter, cartogram_key, minSamples, cmap, vmin, vmax, legendList)
Unfortunately we do not have enough data to color all the countries, but some interesting things can still be observed. * Most countries tweet happier at Christmas and New Years. Take a look at Spain and Brazil for example. * Japan and most of Europe looks consistently happy, while Africa, Saudi Arabia and the US looks unhappy. * The UK looks comparatively less happy than the rest of Europe.
We keep in mind that these differences may be caused by or exaggerated by differences in how emojis are used differently in different countries.
Looking at trends in emoticon use over times of the day
Next we aggregate all of the tweet data into one set of 24 hours, i.e. we merge all the days into one to try to see trends in emoticon use depending on time of day.
We want to visualize the different clusters in cartogram animations. First we filter the tweets by cluster so that we get a dataframe per cluster containing only the tweets wherein there is an emoticon from that cluster. In the cartograms we scale each country by how large a proportion of the total tweets from that country pertaining to that cluster are tweeted in a given hour. So if the area (in the current projection...) of a particular country is \(A\), then its "mass" (recall that these plots aim for equal "density") at hour \(h\) in these plots will be \[A + \sigma p_h A,\] where \(p_h\) is the proportion of tweets in that country and cluster that is tweeted at hour \(h\) and \(\sigma\) is a scaling factor which we set to 2. In order to reduce noise, all countries which have fewer than 100 tweets of a given cluster are set to have constant "mass" corresponding to their area.
path = "/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus/processedEmoticonClusterParquets/emoticonCluster.parquet"
cluster_names = ["all", "happy", "notHappy", "cat", "monkey", "SK", "prayer"]
# # This cell might take 15-20 minutes to run
# for cluster_name in cluster_names:
# if cluster_name == "all":
# df = load_twitter_geo_data(path)
# else:
# df = load_twitter_geo_data_with_filter(path, cluster_name)
# df = df[df['day'] != 22].reset_index() #Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour.
# df = df[(df['day'] != 22) & (df['day'] != 2 )].reset_index() #Data collection was continuous during the 22nd December whereas for the remaining days we only streamed for 3 minutes per hour. Data collection ended in the middle of Jan second so to only have full day we disregard Jan 2.
# # add column in order to be able to display ratio of total tweets
# df['numTweets'] = df.groupby('countryCode')['countryCode'].transform('count')
# df["proportion"] = 1 / df["numTweets"]
# # filter out countries with very few tweets
# df = df[df.numTweets >= 100]
# # create cartogram
# key = "hour"
# timeOfDayList = list(range(0, 24))
# out_path = "/dbfs/FileStore/group10/cartogram_" + cluster_name
# nIter = 30
# cartogram_key = "proportion"
# animate_cartogram_extra(df[["index", "countryCode", "proportion", "hour"]], key, timeOfDayList, out_path, nIter, cartogram_key, default_value=0, scale_factor=3, vmin=0.0, vmax=0.15)
Below are the obtained plots for emoticon use by time of day in the different countries. The colorbar corresponds to the proportion of tweets from a country tweeted in a given hour and the areas are scaled as described above. The black line is again midnight and the yellow line noon.
For some of the clusters, for instance "cat" and "monkey", it is clear that we have too little data to be able to say anything interesting. Perhaps the one conclusion one can draw there is that the monkey emoticons are not used very often in the US or Japan (since those countries tweet a lot but did not have more than 100 total tweets with monkey emoticons).
The other plots mostly show that people tweet more during the day than at night. Perhaps the amount of emoticons in each of the "happy" and "notHappy" clusters is too large to be able to find some distinctiveness in the time of day that people use them.
The most interesting cluster to look at in this way might be the prayer cluster where it appears that we can see glimpses of the regular prayers in countries such Egypt and Saudi Arabia.
clusters_to_plot = ["happy", "notHappy", "SK", "cat", "monkey", "prayer"]
html_str = "\n".join([f"""
<figure>
<img src="/files/group10/cartogram_{cluster_name}.gif" style="width:60%">
<figcaption>The "{cluster_name}" cluster.</figcaption>
</figure>
<hr style="height:3px;border:none;color:#333;background-color:#333;" />
""" for cluster_name in clusters_to_plot])
displayHTML(html_str)
Conclusion
We identified 6 clusters of tweets. Interestingly the most common emoticon 😂 was placed in the not happy cluster. This emoji is supposed to mean "laughing with tears of joy". However it seems it oftentimes appear in tweets together with unhappy looking emojis. Perhaps it is often used to indicate a sense of humorous despair. Considering this one should be a bit skeptical about using our emoji clusters to estimate sentiment of individual tweets, since our model just assigns each emojis one of six meanings (or clusters).
By plotting the collected data as cartograms/choropleth maps across different time intervals we were able to visualize change in tweet frequency around the holidays. In particular we noticed an increase in happy tweets around Christmas and New Year's Eve, in many countries. So although our simple model has some issues it does seem to work to some extent.
We also identified a spike in twitter activity in Saudi Arabia on December 28th, which we speculate may have been caused by the jail sentence given to the activist Loujain al-Hathloul. To tell if this is the case it would be necessary to analyze the particular tweets and hashtags from Saudi Arabia in our dataset.
Mapping the sentiment clusters showed that in particular african countries had a large proportion of unhappy tweets. It also showed that the US, tweets significantly less happy tweets than other "western" countries, which may be related to the recent divisive political campaigns. However, both cases might also be caused by regional differences in use of for example the crying while laughing emoji.
We were probably a bit too cautious when only collecting data for three minutes per hour. We were afraid of spending too many of the courses resources. However, in the end both the size and processing time of our dataset was modest, so we could easily have been collecting data continuously, which would have allowed us to generate animations at a better time resolution. Due to the same concerns regarding computational resources we only collected data for around 10 days. This unfortunately meant that we didn't record the storming of the US congress or Donald Trumps ban from twitter, which would have been interesting to study. But we did learn that you can never have too much data 😂.
// parameter for number of minutes of streaming (can be used in Jobs feature)
dbutils.widgets.text("nbr_minutes", "3", label = "Minutes of streaming (int)")
val nbr_minutes = dbutils.widgets.get("nbr_minutes").toInt
nbr_minutes: Int = 2
If the cluster was shut down, then start a new cluster and install the following libraries on it (via maven).
- gson with maven coordinates
com.google.code.gson:gson:2.8.6
- twitter4j-examples with maven coordinates
org.twitter4j:twitter4j-examples:4.0.7
"./07_a_appendix_extendedTwitterUtils2run"
import twitter4j._
import twitter4j.auth.Authorization
import twitter4j.conf.ConfigurationBuilder
import twitter4j.auth.OAuthAuthorization
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver
defined class ExtendedTwitterReceiver
defined class ExtendedTwitterInputDStream
import twitter4j.Status
import twitter4j.auth.Authorization
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.{ReceiverInputDStream, DStream}
defined object ExtendedTwitterUtils
done running the extendedTwitterUtils2run notebook - ready to stream from twitter
"./07_b_appendix_TTTDFfunctions"
USAGE: val df = tweetsDF2TTTDF(tweetsJsonStringDF2TweetsDF(fromParquetFile2DF("parquetFileName")))
val df = tweetsDF2TTTDF(tweetsIDLong_JsonStringPairDF2TweetsDF(fromParquetFile2DF("parquetFileName")))
import org.apache.spark.sql.types.{StructType, StructField, StringType}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.ColumnName
import org.apache.spark.sql.DataFrame
fromParquetFile2DF: (InputDFAsParquetFilePatternString: String)org.apache.spark.sql.DataFrame
tweetsJsonStringDF2TweetsDF: (tweetsAsJsonStringInputDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
tweetsIDLong_JsonStringPairDF2TweetsDF: (tweetsAsIDLong_JsonStringInputDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
tweetsDF2TTTDF: (tweetsInputDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
tweetsDF2TTTDFWithURLsAndHashtags: (tweetsInputDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
tweetsDF2TTTDFLightWeight: (tweetsInputDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
Loading twitter credentials
You need to have a twitter developer account to run the data collection. Save your credentials in a notebook called KeysAndTokens
, in your user home directory.
// needs upgraded databricks subscription, works on project shard
var usr = dbutils.notebook.getContext.tags("user")
var keys_notebook_location = "/Users/" + usr + "/KeysAndTokens"
dbutils.notebook.run(keys_notebook_location, 100)
Warning: No value returned from the notebook run. To return a value from a notebook, use dbutils.notebook.exit(value)
usr: String = bokman@chalmers.se
keys_notebook_location: String = /Users/bokman@chalmers.se/KeysAndTokens
res18: String = null
import com.google.gson.Gson
import org.apache.spark.sql.functions._
//import org.apache.spark.sql.types._
val outputDirectoryRoot = "/datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus" // output directory
val batchInterval = 1 // in minutes
val timeoutJobLength = batchInterval * 5
var newContextCreated = false
var numTweetsCollected = 0L // track number of tweets collected
// This is the function that creates the SteamingContext and sets up the Spark Streaming job.
def streamFuncWithProcessing(): StreamingContext = {
// Create a Spark Streaming Context.
val ssc = new StreamingContext(sc, Minutes(batchInterval))
// Create the OAuth Twitter credentials
val auth = Some(new OAuthAuthorization(new ConfigurationBuilder().build()))
// Create filter
val locationsQuery = new FilterQuery().locations(Array(-180.0, -90.0), Array(180.0, 90.0)) // all locations
// Create a Twitter Stream for the input source.
val twitterStream = ExtendedTwitterUtils.createStream(ssc, auth, Some(locationsQuery))
// Transform the discrete RDDs into JSON
val twitterStreamJson = twitterStream.map(x => { val gson = new Gson();
val xJson = gson.toJson(x)
xJson
})
// take care
val partitionsEachInterval = 1 // This tells the number of partitions in each RDD of tweets in the DStream.
// get some time fields from current `.Date()`, use the same for each batch in the job
val year = (new java.text.SimpleDateFormat("yyyy")).format(new java.util.Date())
val month = (new java.text.SimpleDateFormat("MM")).format(new java.util.Date())
val day = (new java.text.SimpleDateFormat("dd")).format(new java.util.Date())
val hour = (new java.text.SimpleDateFormat("HH")).format(new java.util.Date())
// what we want done with each discrete RDD tuple: (rdd, time)
twitterStreamJson.foreachRDD((rdd, time) => { // for each filtered RDD in the DStream
val count = rdd.count() //We count because the following operations can only be applied to non-empty RDD's
if (count > 0) {
val outputRDD = rdd.repartition(partitionsEachInterval) // repartition as desired
// to write to parquet directly in append mode in one directory per 'time'------------
val outputDF = outputRDD.toDF("tweetAsJsonString")
val processedDF = tweetsDF2TTTDF(tweetsJsonStringDF2TweetsDF(outputDF)).filter($"countryCode" =!= lit(""))
// Writing the full processed df (We probably don't need it, but useful for exploring the data initially)
processedDF.write.mode(SaveMode.Append)
.parquet(outputDirectoryRoot + "/" + year + "/" + month + "/" + day + "/" + hour + "/" + time.milliseconds)
// end of writing as parquet file-------------------------------------
numTweetsCollected += count // update with the latest count
}
})
newContextCreated = true
ssc
}
import com.google.gson.Gson
import org.apache.spark.sql.functions._
outputDirectoryRoot: String = /datasets/ScaDaMaLe/twitter/student-project-10_group-Geosmus
batchInterval: Int = 1
timeoutJobLength: Int = 5
newContextCreated: Boolean = false
numTweetsCollected: Long = 0
streamFuncWithProcessing: ()org.apache.spark.streaming.StreamingContext
// Now just use the function to create a Spark Streaming Context
val ssc = StreamingContext.getActiveOrCreate(streamFuncWithProcessing)
ssc: org.apache.spark.streaming.StreamingContext = org.apache.spark.streaming.StreamingContext@212f8bef
// you only need one of these to start
ssc.start()
// ssc.awaitTerminationOrTimeout(30000) //time in milliseconds
// Note, this is not fool-proof...
Thread.sleep(nbr_minutes*60*1000) //time in milliseconds
ssc.stop(stopSparkContext = false)
numTweetsCollected // number of tweets collected so far
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pycountry
import geopandas
from cartogram_geopandas import make_cartogram
import imageio
def load_twitter_geo_data(path):
df = spark.read.parquet(path)
df = df.select('countryCode', "CurrentTweetDate")
df = df.toPandas()
# Add some new datetime derived columns.
df["date"] = df["CurrentTweetDate"].dt.date
df["year"] = df["CurrentTweetDate"].dt.year
df["month"] = df["CurrentTweetDate"].dt.month
df["day"] = df["CurrentTweetDate"].dt.day
df["dayofweek"] = df["CurrentTweetDate"].dt.dayofweek
df["hour"] = df["CurrentTweetDate"].dt.hour
df["minute"] = df["CurrentTweetDate"].dt.minute
df["second"] = df["CurrentTweetDate"].dt.second
return df
def load_twitter_geo_data_with_filter(path, filter_str):
df = spark.read.parquet(path)
df = df.filter(filter_str).select('countryCode', "CurrentTweetDate")
df = df.toPandas()
# Add some new datetime derived columns.
df["year"] = df["CurrentTweetDate"].dt.year
df["month"] = df["CurrentTweetDate"].dt.month
df["day"] = df["CurrentTweetDate"].dt.day
df["dayofweek"] = df["CurrentTweetDate"].dt.dayofweek
df["hour"] = df["CurrentTweetDate"].dt.hour
df["minute"] = df["CurrentTweetDate"].dt.minute
df["second"] = df["CurrentTweetDate"].dt.second
return df
def country_code_grouping(df):
df['count'] = df.groupby('countryCode')['countryCode'].transform('count') #The count inside the transform function calls pandas count function
df_cc = df.drop_duplicates(subset=['countryCode'])
df_cc = df_cc.filter(['countryCode', 'count']).reset_index()
return df_cc
def country_code_grouping_extra(df, key):
#df['count'] = df.groupby('countryCode')['countryCode'].transform('count') #The count inside the transform function calls pandas count function
df_cc = df[["countryCode", key]].groupby('countryCode').sum().reset_index() #df.drop_duplicates(subset=['countryCode'])
return df_cc
def add_iso_a3_col(df_cc):
cc_dict = {}
for country in pycountry.countries:
cc_dict[country.alpha_2] = country.alpha_3
df_cc["iso_a3"] = df_cc["countryCode"].map(cc_dict)
return df_cc
def create_geo_df(df_cc):
df_world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
# natural earth has missing iso_a3 names for France, Norway, Somalia, Kosovo and Northen Cypruys..
# See the following issue: https://github.com/geopandas/geopandas/issues/1041
# The following lines manually fixes it for all but Northern Cyprus, which does not have an iso_a3 code.
df_world.loc[df_world['name'] == 'France', 'iso_a3'] = 'FRA'
df_world.loc[df_world['name'] == 'Norway', 'iso_a3'] = 'NOR'
df_world.loc[df_world['name'] == 'Somaliland', 'iso_a3'] = 'SOM'
df_world.loc[df_world['name'] == 'Kosovo', 'iso_a3'] = 'RKS'
numTweetDict = {}
for countryCode in df_world["iso_a3"]:
numTweetDict[countryCode] = 0
for index, row in df_cc.iterrows():
numTweetDict[row["iso_a3"]] = row["count"]
df_world["numTweets"] = df_world["iso_a3"].map(numTweetDict)
# Could be useful to throw away antarctica and antarctic isles.
# df_world = df_world.query("(continent != 'Antarctica') or (continent != 'Seven seas (open ocean)')")
# Redundant
# df_world_proj = df_world.to_crs({'init': 'EPSG:4326'})
# df_world["area"] = df_world_proj['geometry'].area
# df_world["tweetDensity"] = df_world["numTweets"]/df_world["area"]
# df_world["tweetPerCapita"] = df_world["numTweets"]/df_world["pop_est"]
return df_world
def create_geo_df_extra(df_cc, data_of_interest="count", default_value=0):
df_world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
# natural earth has missing iso_a3 names for France, Norway, Somalia, Kosovo and Northen Cypruys..
# See the following issue: https://github.com/geopandas/geopandas/issues/1041
# The following lines manually fixes it for all but Northern Cyprus, which does not have an iso_a3 code.
df_world.loc[df_world['name'] == 'France', 'iso_a3'] = 'FRA'
df_world.loc[df_world['name'] == 'Norway', 'iso_a3'] = 'NOR'
df_world.loc[df_world['name'] == 'Somaliland', 'iso_a3'] = 'SOM'
df_world.loc[df_world['name'] == 'Kosovo', 'iso_a3'] = 'RKS'
dataTweetDict = {}
for countryCode in df_world["iso_a3"]:
dataTweetDict[countryCode] = default_value
for index, row in df_cc.iterrows():
dataTweetDict[row["iso_a3"]] = row[data_of_interest]
df_world[data_of_interest] = df_world["iso_a3"].map(dataTweetDict)
# Could be useful to throw away antarctica and antarctic isles.
# df_world = df_world.query("(continent != 'Antarctica') or (continent != 'Seven seas (open ocean)')")
# Redundant
# df_world_proj = df_world.to_crs({'init': 'EPSG:4326'})
# df_world["area"] = df_world_proj['geometry'].area
# df_world["tweetDensity"] = df_world["numTweets"]/df_world["area"]
# df_world["tweetPerCapita"] = df_world["numTweets"]/df_world["pop_est"]
return df_world
def animate_cartogram(df, filterKey, filterList, out_path, nIter, cartogram_key, legend=""):
vmax = max(df.groupby([filterKey, "countryCode"]).count()["index"]) # Get maximum count within a single country in a single hour. We will use this to fix the colorbar.
images=[] # array for storing the png frames for the gif
for i in filterList:
# Load the data and add ISOa3 codes.
df_filtered = df.query("%s==%d"%(filterKey, i)).reset_index()
df_cc = country_code_grouping(df_filtered)
df_cc = add_iso_a3_col(df_cc)
# Create the geopandas dataframe
df_world = create_geo_df(df_cc)
#Create cartogram
# The make_cartogram function can not handle a tweetcount of zero, so a not so elegant solution is to clip the tweet count at 1.
# The alternative (to remove countries without tweets) is not elegant either, and causes problems when we look at the time evolution, since countries will be popping in and out of existence.
df_world2 = df_world.copy(deep=True)
df_world2["numTweets"] = df_world2["numTweets"].clip(lower=1)
df_cartogram = make_cartogram(df_world2, cartogram_key, nIter, inplace=False)
plot = df_cartogram.plot(column=cartogram_key, cmap='viridis', figsize=(20, 8), legend=True, vmin=0, vmax=vmax)
# Plot a vertical line indicating midnight. 360degrees/24hours = 15 degrees/hour
if i<12:
t_midnight = -15*i #15deg per hour
t_noon = t_midnight + 180
else:
t_midnight = 180 - (i-12)*15
t_noon = t_midnight - 180
plt.axvline(x=t_midnight, ymin=-90, ymax=90, ls="--", c="black")
plt.axvline(x=t_noon, ymin=-90, ymax=90, ls="--", c="yellow")
plt.title(legend + "Time of day (GMT): %02d"%i, fontsize=24)
plt.xlabel("Longitude $^\circ$", fontsize=20)
plt.ylabel("Latitude $^\circ$", fontsize=20)
plt.ylim(-90,90)
plt.xlim(-180,180)
#Save cartogram as a png
fig = plot.get_figure()
fig.savefig(out_path + "%d.png"%i)
plt.close(fig)
#Append images to image list
images.append(imageio.imread(out_path + "%d.png"%i))
#create gif from the image list
imageio.mimsave(out_path + ".gif", images, duration=0.5)
def animate_cartogram_extra(df, filterKey, filterList, out_path, nIter, cartogram_key, default_value, scale_factor=2, vmin=0.0, vmax=1.0):
# uses scaling proportional to original area of country
images=[] # array for storing the png frames for the gif
for i in filterList:
# Load the data and add ISOa3 codes.
df_filtered = df.query("%s==%d"%(filterKey, i)).reset_index()
df_cc = country_code_grouping_extra(df_filtered, cartogram_key)
df_cc = add_iso_a3_col(df_cc)
# Create the geopandas dataframe
df_world = create_geo_df_extra(df_cc, cartogram_key, default_value)
# scale by area
df_world["__scaled"] = (scale_factor - 1) * df_world[cartogram_key] * pd.to_numeric(df_world['geometry'].area)
# make sure the quantity of interest > 0, add area to every value
df_world["__scaled"] = pd.to_numeric(df_world['geometry'].area) + df_world["__scaled"]
#Create cartogram
df_cartogram = make_cartogram(df_world, "__scaled", nIter, inplace=False)
plot = df_cartogram.plot(column=cartogram_key, cmap='viridis', figsize=(20, 8), legend=cartogram_key, vmin=vmin, vmax=vmax)
# Plot a vertical line indicating midnight and one indicating noon. 360degrees/24hours = 15 degrees/hour
if i<12:
t_midnight = -15*i #15deg per hour
t_noon = t_midnight + 180
else:
t_midnight = 180 - (i-12)*15
t_noon = t_midnight - 180
plt.axvline(x=t_midnight, ymin=-90, ymax=90, ls="--", c="black")
plt.axvline(x=t_noon, ymin=-90, ymax=90, ls="--", c="yellow")
plt.title("Time of day (GMT): %02d"%i, fontsize=24)
plt.xlabel("Longitude $^\circ$", fontsize=20)
plt.ylabel("Latitude $^\circ$", fontsize=20)
plt.ylim(-90,90)
plt.xlim(-180,180)
#Save cartogram as a png
fig = plot.get_figure()
fig.savefig(out_path + "%d.png"%i)
plt.close(fig)
#Append images to image list
images.append(imageio.imread(out_path + "%d.png"%i))
#create gif from the image list
imageio.mimsave(out_path + ".gif", images, duration=0.5)
def load_twitter_geo_data_sentiment(path):
df = spark.read.parquet(path)
df = df.select('countryCode', "CurrentTweetDate", "prayer", "monkey", "happy", "SK", "cat", "notHappy")
df = df.toPandas()
# Add some new datetime derived columns.
df["date"] = df["CurrentTweetDate"].dt.date
df["year"] = df["CurrentTweetDate"].dt.year
df["month"] = df["CurrentTweetDate"].dt.month
df["day"] = df["CurrentTweetDate"].dt.day
df["dayofweek"] = df["CurrentTweetDate"].dt.dayofweek
df["hour"] = df["CurrentTweetDate"].dt.hour
df["minute"] = df["CurrentTweetDate"].dt.minute
df["second"] = df["CurrentTweetDate"].dt.second
return df
def country_code_grouping_sentiment(df):
df['count'] = df.groupby(['countryCode', 'sentiment'])['countryCode'].transform('count') #The count inside the transform function calls pandas count function
df["sentiment"] = df.groupby(['countryCode'])["sentiment"].transform("mean")
df = df.drop_duplicates("countryCode")
df_cc = df.filter(['countryCode', 'count', "sentiment"]).reset_index()
return df_cc
def create_geo_df_sentiment(df_cc):
df_world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
# natural earth has missing iso_a3 names for France, Norway, Somalia, Kosovo and Northen Cypruys..
# See the following issue: https://github.com/geopandas/geopandas/issues/1041
# The following lines manually fixes it for all but Northern Cyprus, which does not have an iso_a3 code.
df_world.loc[df_world['name'] == 'France', 'iso_a3'] = 'FRA'
df_world.loc[df_world['name'] == 'Norway', 'iso_a3'] = 'NOR'
df_world.loc[df_world['name'] == 'Somaliland', 'iso_a3'] = 'SOM'
df_world.loc[df_world['name'] == 'Kosovo', 'iso_a3'] = 'RKS'
numTweetDict = {}
for countryCode in df_world["iso_a3"]:
numTweetDict[countryCode] = 0
for index, row in df_cc.iterrows():
numTweetDict[row["iso_a3"]] = row["count"]
df_world["numTweets"] = df_world["iso_a3"].map(numTweetDict)
sentimentDict = {}
for countryCode in df_world["iso_a3"]:
sentimentDict[countryCode] = 0
for index, row in df_cc.iterrows():
sentimentDict[row["iso_a3"]] = row["sentiment"]
df_world["sentiment"] = df_world["iso_a3"].map(sentimentDict)
# Could be useful to throw away antarctica and antarctic isles.
# df_world = df_world.query("(continent != 'Antarctica') or (continent != 'Seven seas (open ocean)')")
# Redundant
# df_world_proj = df_world.to_crs({'init': 'EPSG:4326'})
# df_world["area"] = df_world_proj['geometry'].area
# df_world["tweetDensity"] = df_world["numTweets"]/df_world["area"]
# df_world["tweetPerCapita"] = df_world["numTweets"]/df_world["pop_est"]
return df_world
def animate_cartogram_sentiment(df, filterKey, filterList, out_path, nIter, cartogram_key, minSamples, cmap, vmin, vmax, legendList):
images=[] # array for storing the png frames for the gif
frameCount = 0
for i in filterList:
# Load the data and add ISOa3 codes.
df_filtered = df.query("%s==%d"%(filterKey, i)).reset_index()
df_cc = country_code_grouping_sentiment(df_filtered)
df_cc = add_iso_a3_col(df_cc)
# Create the geopandas dataframe
df_world = create_geo_df_sentiment(df_cc)
#Create cartogram
# The make_cartogram function can not handle a tweetcount of zero, so a not so elegant solution is to clip the tweet count at 1.
# The alternative (to remove countries without tweets) is not elegant either, and causes problems when we look at the time evolution, since countries will be popping in and out of existence.
df_world2 = df_world.copy(deep=True)
df_world2["numTweets"] = df_world2["numTweets"].clip(lower=1)
# We want to color all countries with less than minSamples tweets grey.
# The colormap will do this if these countries sentiment score is below vmin.
df_world2.loc[df_world["numTweets"] < minSamples, 'sentiment'] = vmin -1
df_cartogram = make_cartogram(df_world2, cartogram_key, nIter, inplace=False)
plot = df_cartogram.plot(column="sentiment", cmap=cmap, figsize=(20, 8), legend=True, vmin=vmin, vmax=vmax)
plt.title(legendList[frameCount], fontsize=24)
plt.xlabel("Longitude $^\circ$", fontsize=20)
plt.ylabel("Latitude $^\circ$", fontsize=20)
plt.ylim(-90,90)
plt.xlim(-180,180)
frameCount += 1
#Save cartogram as a png
fig = plot.get_figure()
fig.savefig(out_path + "%d.png"%i)
plt.close(fig)
#Append images to image list
images.append(imageio.imread(out_path + "%d.png"%i))
#create gif from the image list
imageio.mimsave(out_path + ".gif", images, duration=1)
Note, this notebook has been edited slightly from the course notebook supplied by Raaz.
Extended spark.streaming.twitter.TwitterUtils
2016-2020 Ivan Sadikov and Raazesh Sainudiin
We extend twitter utils from Spark to allow for filtering by user-ids using .follow
and strings in the tweet using .track
method of twitter4j
.
This is part of Project MEP: Meme Evolution Programme and supported by databricks, AWS and a Swedish VR grant.
The analysis is available in the following databricks notebook: * http://lamastex.org/lmse/mep/src/extendedTwitterUtils.html
Copyright 2016-2020 Ivan Sadikov and Raazesh Sainudiin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import twitter4j._
import twitter4j.auth.Authorization
import twitter4j.conf.ConfigurationBuilder
import twitter4j.auth.OAuthAuthorization
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver
// modifications inspired by https://github.com/apache/bahir/blob/master/streaming-twitter/src/main/scala/org/apache/spark/streaming/twitter/TwitterInputDStream.scala
class ExtendedTwitterReceiver(
twitterAuth: Authorization,
query: Option[FilterQuery],
storageLevel: StorageLevel
) extends Receiver[Status](storageLevel) {
@volatile private var twitterStream: TwitterStream = _
@volatile private var stopped = false
def onStart() {
try {
val newTwitterStream = new TwitterStreamFactory().getInstance(twitterAuth)
newTwitterStream.addListener(new StatusListener {
def onStatus(status: Status): Unit = {
store(status)
}
// Unimplemented
def onDeletionNotice(statusDeletionNotice: StatusDeletionNotice) {}
def onTrackLimitationNotice(i: Int) {}
def onScrubGeo(l: Long, l1: Long) {}
def onStallWarning(stallWarning: StallWarning) {}
def onException(e: Exception) {
if (!stopped) {
restart("Error receiving tweets", e)
}
}
})
// do filtering only when filters are available
if (query.isDefined) {
newTwitterStream.filter(query.get)
} else {
newTwitterStream.sample()
}
setTwitterStream(newTwitterStream)
println("Twitter receiver started")
stopped = false
} catch {
case e: Exception => restart("Error starting Twitter stream", e)
}
}
def onStop() {
stopped = true
setTwitterStream(null)
println("Twitter receiver stopped")
}
private def setTwitterStream(newTwitterStream: TwitterStream) = synchronized {
if (twitterStream != null) {
twitterStream.shutdown()
}
twitterStream = newTwitterStream
}
}
class ExtendedTwitterInputDStream(
ssc_ : StreamingContext,
twitterAuth: Option[Authorization],
query: Option[FilterQuery],
storageLevel: StorageLevel
) extends ReceiverInputDStream[Status](ssc_) {
private def createOAuthAuthorization(): Authorization = {
new OAuthAuthorization(new ConfigurationBuilder().build())
}
private val authorization = twitterAuth.getOrElse(createOAuthAuthorization())
override def getReceiver(): Receiver[Status] = {
new ExtendedTwitterReceiver(authorization, query, storageLevel)
}
}
import twitter4j.Status
import twitter4j.auth.Authorization
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.{ReceiverInputDStream, DStream}
object ExtendedTwitterUtils {
def createStream(
ssc: StreamingContext,
twitterAuth: Option[Authorization],
query: Option[FilterQuery] = None,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[Status] = {
new ExtendedTwitterInputDStream(ssc, twitterAuth, query, storageLevel)
}
}
println("done running the extendedTwitterUtils2run notebook - ready to stream from twitter")
Note, this notebook has been edited slightly from the course notebook supplied by Raaz.
Tweet Transmission Tree Function
This is part of Project MEP: Meme Evolution Programme and supported by databricks, AWS and a Swedish VR grant.
Please see the following notebook to understand the rationale for the Tweet Transmission Tree Functions: * http://lamastex.org/lmse/mep/src/TweetAnatomyAndTransmissionTree.html
Copyright 2016-2020 Akinwande Atanda and Raazesh Sainudiin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import org.apache.spark.sql.types.{StructType, StructField, StringType};
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.ColumnName
import org.apache.spark.sql.DataFrame
spark.sql("set spark.sql.legacy.timeParserPolicy=LEGACY")
def fromParquetFile2DF(InputDFAsParquetFilePatternString: String): DataFrame = {
sqlContext.
read.parquet(InputDFAsParquetFilePatternString)
}
def tweetsJsonStringDF2TweetsDF(tweetsAsJsonStringInputDF: DataFrame): DataFrame = {
sqlContext
.read
.json(tweetsAsJsonStringInputDF.map({case Row(val1: String) => val1}))
}
def tweetsIDLong_JsonStringPairDF2TweetsDF(tweetsAsIDLong_JsonStringInputDF: DataFrame): DataFrame = {
sqlContext
.read
.json(tweetsAsIDLong_JsonStringInputDF.map({case Row(val0:Long, val1: String) => val1}))
}
def tweetsDF2TTTDF(tweetsInputDF: DataFrame): DataFrame = {
tweetsInputDF.select(
unix_timestamp($"createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CurrentTweetDate"),
$"id".as("CurrentTwID"),
$"lang".as("lang"),
$"place.countryCode".as("countryCode"),
//$"geo.coordinates".as("coordinates"),
//$"geoLocation.latitude".as("lat"),
//$"geoLocation.longitude".as("lon"),
//unix_timestamp($"retweetedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInRT"),
//$"retweetedStatus.id".as("OriginalTwIDinRT"),
//unix_timestamp($"quotedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInQT"),
//$"quotedStatus.id".as("OriginalTwIDinQT"),
//$"inReplyToStatusId".as("OriginalTwIDinReply"),
//$"user.id".as("CPostUserId"),
//unix_timestamp($"user.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("userCreatedAtDate"),
//$"retweetedStatus.user.id".as("OPostUserIdinRT"),
//$"quotedStatus.user.id".as("OPostUserIdinQT"),
//$"inReplyToUserId".as("OPostUserIdinReply"),
//$"user.name".as("CPostUserName"),
//$"retweetedStatus.user.name".as("OPostUserNameinRT"),
//$"quotedStatus.user.name".as("OPostUserNameinQT"),
//$"user.screenName".as("CPostUserSN"),
//$"retweetedStatus.user.screenName".as("OPostUserSNinRT"),
//$"quotedStatus.user.screenName".as("OPostUserSNinQT"),
//$"inReplyToScreenName".as("OPostUserSNinReply"),
$"user.favouritesCount",
$"user.followersCount",
$"user.friendsCount",
//$"user.isVerified",
$"user.isGeoEnabled",
$"text".as("CurrentTweet"),
//$"retweetedStatus.userMentionEntities.id".as("UMentionRTiD"),
//$"retweetedStatus.userMentionEntities.screenName".as("UMentionRTsN"),
//$"quotedStatus.userMentionEntities.id".as("UMentionQTiD"),
//$"quotedStatus.userMentionEntities.screenName".as("UMentionQTsN"),
//$"userMentionEntities.id".as("UMentionASiD"),
//$"userMentionEntities.screenName".as("UMentionASsN")
)//.withColumn("TweetType",
//when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
// "Original Tweet")
//.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
// "Reply Tweet")
// .when($"OriginalTwIDinRT".isNotNull &&$"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
// "ReTweet")
//.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
// "Quoted Tweet")
//.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
// "Retweet of Quoted Tweet")
//.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
// "Retweet of Reply Tweet")
//.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
// "Reply of Quoted Tweet")
//.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
// "Retweet of Quoted Rely Tweet")
// .otherwise("Unclassified"))
//.withColumn("MentionType",
// when($"UMentionRTid".isNotNull && $"UMentionQTid".isNotNull, "RetweetAndQuotedMention")
// .when($"UMentionRTid".isNotNull && $"UMentionQTid".isNull, "RetweetMention")
// .when($"UMentionRTid".isNull && $"UMentionQTid".isNotNull, "QuotedMention")
// .when($"UMentionRTid".isNull && $"UMentionQTid".isNull, "AuthoredMention")
// .otherwise("NoMention"))
//.withColumn("Weight", lit(1L))
}
def tweetsDF2TTTDFWithURLsAndHashtags(tweetsInputDF: DataFrame): DataFrame = {
tweetsInputDF.select(
unix_timestamp($"createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CurrentTweetDate"),
$"id".as("CurrentTwID"),
$"lang".as("lang"),
$"geoLocation.latitude".as("lat"),
$"geoLocation.longitude".as("lon"),
unix_timestamp($"retweetedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInRT"),
$"retweetedStatus.id".as("OriginalTwIDinRT"),
unix_timestamp($"quotedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInQT"),
$"quotedStatus.id".as("OriginalTwIDinQT"),
$"inReplyToStatusId".as("OriginalTwIDinReply"),
$"user.id".as("CPostUserId"),
unix_timestamp($"user.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("userCreatedAtDate"),
$"retweetedStatus.user.id".as("OPostUserIdinRT"),
$"quotedStatus.user.id".as("OPostUserIdinQT"),
$"inReplyToUserId".as("OPostUserIdinReply"),
$"user.name".as("CPostUserName"),
$"retweetedStatus.user.name".as("OPostUserNameinRT"),
$"quotedStatus.user.name".as("OPostUserNameinQT"),
$"user.screenName".as("CPostUserSN"),
$"retweetedStatus.user.screenName".as("OPostUserSNinRT"),
$"quotedStatus.user.screenName".as("OPostUserSNinQT"),
$"inReplyToScreenName".as("OPostUserSNinReply"),
$"user.favouritesCount",
$"user.followersCount",
$"user.friendsCount",
$"user.isVerified",
$"user.isGeoEnabled",
$"text".as("CurrentTweet"),
$"retweetedStatus.userMentionEntities.id".as("UMentionRTiD"),
$"retweetedStatus.userMentionEntities.screenName".as("UMentionRTsN"),
$"quotedStatus.userMentionEntities.id".as("UMentionQTiD"),
$"quotedStatus.userMentionEntities.screenName".as("UMentionQTsN"),
$"userMentionEntities.id".as("UMentionASiD"),
$"userMentionEntities.screenName".as("UMentionASsN"),
$"urlEntities.expandedURL".as("URLs"),
$"hashtagEntities.text".as("hashTags")
).withColumn("TweetType",
when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
"Original Tweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
"Reply Tweet")
.when($"OriginalTwIDinRT".isNotNull &&$"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
"ReTweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
"Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
"Retweet of Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
"Retweet of Reply Tweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
"Reply of Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
"Retweet of Quoted Rely Tweet")
.otherwise("Unclassified"))
.withColumn("MentionType",
when($"UMentionRTid".isNotNull && $"UMentionQTid".isNotNull, "RetweetAndQuotedMention")
.when($"UMentionRTid".isNotNull && $"UMentionQTid".isNull, "RetweetMention")
.when($"UMentionRTid".isNull && $"UMentionQTid".isNotNull, "QuotedMention")
.when($"UMentionRTid".isNull && $"UMentionQTid".isNull, "AuthoredMention")
.otherwise("NoMention"))
.withColumn("Weight", lit(1L))
}
println("""USAGE: val df = tweetsDF2TTTDF(tweetsJsonStringDF2TweetsDF(fromParquetFile2DF("parquetFileName")))
val df = tweetsDF2TTTDF(tweetsIDLong_JsonStringPairDF2TweetsDF(fromParquetFile2DF("parquetFileName")))
""")
// try to modify the function tweetsDF2TTTDF so some fields are not necessarily assumed to be available
// there are better ways - https://stackoverflow.com/questions/35904136/how-do-i-detect-if-a-spark-dataframe-has-a-column
def tweetsDF2TTTDFLightWeight(tweetsInputDF: DataFrame): DataFrame = {
tweetsInputDF.select(
unix_timestamp($"createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CurrentTweetDate"),
$"id".as("CurrentTwID"),
$"lang".as("lang"),
//$"geoLocation.latitude".as("lat"),
//$"geoLocation.longitude".as("lon"),
unix_timestamp($"retweetedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInRT"),
$"retweetedStatus.id".as("OriginalTwIDinRT"),
unix_timestamp($"quotedStatus.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("CreationDateOfOrgTwInQT"),
$"quotedStatus.id".as("OriginalTwIDinQT"),
$"inReplyToStatusId".as("OriginalTwIDinReply"),
$"user.id".as("CPostUserId"),
unix_timestamp($"user.createdAt", """MMM dd, yyyy hh:mm:ss a""").cast(TimestampType).as("userCreatedAtDate"),
$"retweetedStatus.user.id".as("OPostUserIdinRT"),
$"quotedStatus.user.id".as("OPostUserIdinQT"),
$"inReplyToUserId".as("OPostUserIdinReply"),
$"user.name".as("CPostUserName"),
$"retweetedStatus.user.name".as("OPostUserNameinRT"),
$"quotedStatus.user.name".as("OPostUserNameinQT"),
$"user.screenName".as("CPostUserSN"),
$"retweetedStatus.user.screenName".as("OPostUserSNinRT"),
$"quotedStatus.user.screenName".as("OPostUserSNinQT"),
$"inReplyToScreenName".as("OPostUserSNinReply"),
$"user.favouritesCount",
$"user.followersCount",
$"user.friendsCount",
$"user.isVerified",
$"user.isGeoEnabled",
$"text".as("CurrentTweet"),
$"retweetedStatus.userMentionEntities.id".as("UMentionRTiD"),
$"retweetedStatus.userMentionEntities.screenName".as("UMentionRTsN"),
$"quotedStatus.userMentionEntities.id".as("UMentionQTiD"),
$"quotedStatus.userMentionEntities.screenName".as("UMentionQTsN"),
$"userMentionEntities.id".as("UMentionASiD"),
$"userMentionEntities.screenName".as("UMentionASsN")
).withColumn("TweetType",
when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
"Original Tweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
"Reply Tweet")
.when($"OriginalTwIDinRT".isNotNull &&$"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" === -1,
"ReTweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
"Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" === -1,
"Retweet of Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNull && $"OriginalTwIDinReply" > -1,
"Retweet of Reply Tweet")
.when($"OriginalTwIDinRT".isNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
"Reply of Quoted Tweet")
.when($"OriginalTwIDinRT".isNotNull && $"OriginalTwIDinQT".isNotNull && $"OriginalTwIDinReply" > -1,
"Retweet of Quoted Rely Tweet")
.otherwise("Unclassified"))
.withColumn("MentionType",
when($"UMentionRTid".isNotNull && $"UMentionQTid".isNotNull, "RetweetAndQuotedMention")
.when($"UMentionRTid".isNotNull && $"UMentionQTid".isNull, "RetweetMention")
.when($"UMentionRTid".isNull && $"UMentionQTid".isNotNull, "QuotedMention")
.when($"UMentionRTid".isNull && $"UMentionQTid".isNull, "AuthoredMention")
.otherwise("NoMention"))
.withColumn("Weight", lit(1L))
}
Anomaly Detection with Iterative Quantile Estimation and T-digest
Project group 11
Alexander Karlsson, Alvin Jin and George Osipov
13 January 2021
Links to videos
Link: https://liuonline-my.sharepoint.com/:f:/g/personal/geoos58liuse/El8VTHoZPVpDqpkdkpmJK8IB0Bd-YZw0t5-WRKeTXsqckA?e=faazbx (expires 28/02/2020).
The folder contains both the original recording (1x, ~25min) and the recommended sped-up recording (1.25x, ~20min). The latter is shorter and more fun.
- Introduction
Anomaly detection is often implemented as a threshold detector where scalar valued scores (often computed from a higher dimensional sample) above a set threshold are classified as detections. It is often desired that the number of false alarms, i.e. non-anomalous samples that have higher score than the threshold, should be constant. This requires an adaptive threshold if the distribution of the scores varies with time. In this project we will look at two aspects of anomaly detection 1. How to calulate the threshold or quantile for a fixed distribution 2. How to apply this quantile to distributions that change over time using a simple filter
For quantile estimation (QE) we will use t-digest and compare it to a more naive approach which will be presented later. A problem for both these methods are data streams that arise from distributions that change over time. Assume that each sample received a time \(t\) can be written as
\[ x(t) = f(t) + w(t), \]
where \(f(t)\) is a trend value that varies with time and \(w(t)\) is a random variable with a distribution that may also vary with time. We are interested in finding anomalies in \(w(t)\). If we were to estimate a quantile from samples obtained from a time interval \(T_s\), the anomalies would depend on both \(f(t)\) and \(w(t)\), e.g. if \(f(t)\) is a linearly increasing function and \(w(t)\) is constant, most of the anomalous samples would be the more recent ones. This could be mitigated by taking samples from a small enough interval such that \(f(t)\) and \(w(t)\) can be considered constant during that time. This approach requires a continuous update of the estimated quantile, which we denote \(q[n]\), where \(n\) is the index of the time interval at time \(nT_s\). In some cases this may be a sufficently accurate solution. However, assume now that \(w(t)\) is constant but will occasionally change to a distribution with higher mean, i.e. this change is now the anomaly we are trying to detect. If we use the same target quantile in all time steps, these anomalies would go undetected. A compromise is to filter the stream of estimated quantiles \(q[1],q[2],...,q[n]\) in a manner that preserves scalability. The data stream we will look at will have the following form. Each time step yields \(N\) samples with Gaussian distribution with standard deviation \(\sigma\)=1 and mean \[ \mu[n]=\frac{n}{1000}, \] and with 5\(%\) probability, 1\(%\) of the data will have mean \[ \mu[n]=\frac{n}{1000} + 2. \]
- QE with t-digest
With t-digest the distribution is estimated using a set of clusters where each cluster is represented by a mean value and weight (the number of samples assigned to the cluster). Clusters at the tail ends of the distribution will have smaller weights. This is determined by a non-decreasing function referred to as a scale function and will result in an error in the QE that is relative to the quantile rather than an absolute error, which is the fundamental idea with t-digest. Any quantile can be estimated by interpolating between cluster points. The algorithm is explained in detail in [Dunning]. The clusters can be computed in a scalable manner which makes the algorithm suitable for large datasets.
- Naive QE
A simpler and perhaps more naive approach for empirical QE is to estimate the desired quantile as the the \(k\)'th ordered statistic, i.e. the value \(q=x_k\) for which \(k\) samples are smaller or equal to \(q\), e.g. the 95'th percentile from 1000 samples would then be estimated as the 950'th ordered statistic. If the data is i.i.d. the estimated quantile will then be a random variable with pdf [Rohling]
\[ p(x_k)= k {N\choose k} \left[ P(x) \right]^{k-1} \left[ 1-P(x) \right]^{N-k} p(x), \]
where \(x_k\) is the \(k\)'th ordered statistic, \(P(x)\) is the cdf of the random variable \(x\) and \(p(x)\) is the pdf.
However, if the data is distributed, sorting becomes problematic. We therefore present an iterative, and more scalable, method of finding the desired quantile (or rather, the ordered statistic). We start with a random guess \(\hat{q}\) (e.g. the mean) and count the number of samples that are larger than \(\hat{q}\). This can be done in a distributed fashion where each node reports on the number of samples greater than \(\hat{q}\) as well as the total number of samples in each node. These number are then aggregated at the master node and the ratio yields an estimate of a quantile for \(\hat{q}\). If this is larger than the desired quantile, \(\hat{q}\) should be decreased and vice versa. One then proceeds by iteratively changing \(\hat{q}\) until the desired quantile is found. The search can be made efficient using the following steps
-
Choose an integer \(k\) that correspends to the desired quantile, e.g. \(k\)=950 for \(N\)=1000 (95'th percentile).
-
Arbitrarily choose an initial guess of \(\hat{q}\).
-
Count the number of samples that are greater than \(\hat{q}\), call this \(M\). If \(M > N-k\) increase \(\hat{q}\) by 1, then by 2,4,8,16 etc. until \(M < N-k\) (or reverse this process if \(M\) is initially lower than \(N-k\) ). We now have an upper limit (U) and a lower limit (L) for the desired quantile, \(\hat{q}_U\) and \(\hat{q}_L\). Let \(d\) = \(\hat{q}_U\) - \(\hat{q}_L\).
-
Let \(\hat{q} = \hat{q}_L\). In each iteration update \(\hat{q} \leftarrow \hat{q} + ud/2\) and then \(d \leftarrow d/2\) where \(u\) is +1 if \(M > N-k\) and -1 otherwise. Stop iterating when \(M=N-k\).
This approach will converge to a solution in time proportional to log\(_2(N)\). For other types of iterative searches for finding an emperical quantile see [Möller].
- Filtering Time Varying Quantiles
An interesting problem with both the presented method for QE and t-digest is how to balance new and old estimates. One approach is to make one new estimate for each new batch. This will fail however if one batch suddenly contains a larger burst of "outliers" as these might then go undetected due to the temporary change of the statistics.
Another is to estimate the desired quantiles from one batch and then keep this estimate in the proceeding batches. This will also fail if the distribution varies slowly, i.e. with time the calculated parameters will correspond to different quantiles than what was originally desired. One could mitigate this effect by averaging or updating new estimates with older. However if we estimate the quantiles based on all samples from the beginning up until time \(n\) we need to weight them properly, otherwise we may still have large errors due to distributions that change with time.
A simple tradeoff is to introduce a filter with some forget rate \(T\), i.e. samples that are older than \(T\) no longer effect the current estimate while the more recent estimates are weighted together. A basic approach is an equally weighted sliding window of size \(T\) where
\[ \bar{q}[n]= \frac{1}{T}\sum_{i=0}^{T-1}q[n-i] \]
is the weighted estimate and \(q[n]\) is the quantile estimated from batch/time \(n\). This requires storing \(T\) samples in a memory and writing (i.e. replacing the oldest sample with the newest) in each time step, which may or may not be an issue. Another is to have a filter with exponential decay where each sample \(q[i]\) for \(i=0,...,n\) is weighted by a factor \(ce^{-(n-i)/\tau}\) for \(\tau>0\) and
\[ c= \left[\sum_{i=0}^{\infty}e^{-i/\tau}\right]^{-1} = 1 - e^{-1/\tau}. \]
The weights of previous samples at time \(n=100\) for two different values of \(\tau\) are shown below
This can be simply implemented with the filter
\[ \bar{q}[n]= \bar{q}[n-1]e^{-1/\tau} + cq[n] = \sum_{i=0}^{n}cq[i]e^{(i-n)/\tau}. \]
The sum of \(n\) weights is
\[ \sum_{i=0}^{n} ce^{-i/\tau} = c\frac{1 - e^{-n/\tau}}{1-e^{-1/\tau}} = 1 - e^{-n/\tau} \]
which can be approximated as one, e.g. if \(n=5\tau\) the weights mass is greater than 0.99. If we regard \(q[n]\) as a random variable with expected value \(\mu\) and variance \(\sigma^2\) that have been approximately constant for a duration of \(L\gg\tau\) samples the filter will be asymptotically unbiased
\[ \mathbf{E}\left[q[n] \right] = \mathbf{E}\left[\sum_{i=0}^{n}cq[i]e^{(i-n)/\tau} \right] = \mathbf{E}\left[q[i] \right] \sum_{i=0}^{n}ce^{-i/\tau} = \mu(1 - e^{-n/\tau})\approx \mu. \]
Assuming for the sake of analysis that \(\mu=0\) and that \(q[n]\) is uncorrelated, i.e. \(\mathbf{E}\left[q[j]q[i] \right]= \sigma^2\) if \(j=i\) and \(\mathbf{E}\left[q[j]q[i] \right]= 0\) otherwise, we get the variance as
\[ \text{var}\left[q[n] \right] = \mathbf{E}\left[\left(\sum_{i=0}^{n}cq[i]e^{(i-n)/\tau} \right)^2\right] = \mathbf{E}\left[q[i]^2 \right] \sum_{i=0}^{n}c^2e^{-2i/\tau} = \sigma^2c^2\frac{(1 - e^{-2n/\tau})}{(1 - e^{-2/\tau})} = \sigma^2\frac{(1 - e^{-1/\tau})^2(1 - e^{-2n/\tau})}{(1 - e^{-1/\tau})(1 + e^{-1/\tau})} \approx \sigma^2\frac{(1 - e^{-1/\tau})}{(1 + e^{-1/\tau})} = \gamma\sigma^2\]
i.e. a reduction by a factor \(\gamma\). This can be compared to the factor \(1/T\) which is the reduction in variance from a rectangular sliding window of length \(T\), e.g. if \(T=100\) we get the same steady state reduction in variance if \(\tau=50\). The value of \(\gamma\) as a function of \(\tau\) is shown below
The transfer function for this filter in \(z\)-domain is \[ H(z) = \frac{\bar{Q}(z)}{Q(z)} = \frac{1-e^{-1/\tau}}{1 - e^{-1/\tau}z^{-1}}. \] The frequency response, obtained by letting \(z=e^{j2\pi\nu}\) where the normalized frequency is \(\nu = T_sf\), \(f\) is the frequency and \(T_s\) is the time between samples, is shown below
The figure shows the tradeoff between supressing (in magnitude) higher frequencies and following changes (i.e. keeping phase). The trend that the filter should follow should be slow enough such that it can be approximated as constant for a duration of \(L\gg\tau\), i.e. depending of the frequency of the desired trend, the sampling rate, \(1/T_s\), needs to be high enough to satisfy this. If the flow of samples is constant this will in turn limit the number of samples in each batch and the smallest quantile that can be estimated.
- Implementation
// neccessary imports
import org.isarnproject.sketches.java.TDigest
import org.isarnproject.sketches.spark.tdigest._
import scala.util.Random
import scala.util.Random._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Dataset
import scala.math._
import org.apache.commons.math3.distribution.NormalDistribution
import org.isarnproject.sketches.java.TDigest
import org.isarnproject.sketches.spark.tdigest._
import scala.util.Random
import scala.util.Random._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Dataset
import scala.math._
import org.apache.commons.math3.distribution.NormalDistribution
// Define 2-Gaussian mixture model
// This code is taken from [041_SketchingWithTDigest]
def myMixtureOf2Normals( normalLocation: Double, abnormalLocation: Double, normalWeight: Double, r: Random) : Double = {
val sample = if (r.nextDouble <= normalWeight) {r.nextGaussian+normalLocation }
else {r.nextGaussian + abnormalLocation}
return sample
}
myMixtureOf2Normals: (normalLocation: Double, abnormalLocation: Double, normalWeight: Double, r: scala.util.Random)Double
// Define the naive QE function
def itrQuantEstimator[D](data:Dataset[D], target: Int): Double = {
// find an interval
var x = 0.0
var x_old = 0.0
var qfound=false
var step = 1.0
var Na_old = data.filter($"value">x).count()
var Na = Na_old
var scale=1.0
if (Na_old < 10){scale= (-1)}
step = step*scale
var Nitr = 0
while (qfound == false){
// updata iteretion count
Nitr = Nitr + 1
// update x
x = x + step
// update step
step = step*2
Na = data.filter($"value">x).count()
if (Na*scale < target*scale){
qfound = true}
else{
Na_old=Na
x_old=x
}
}
// set upper and lower limit
var UL = x_old
var LL=x
if (x_old < x){UL = x; LL=x_old }
// Find the quantile for current batch
var Int = UL - LL
qfound = false
x=LL
scale=1
while (qfound == false){
// updata iteretion count
Nitr = Nitr + 1
// update x
Int = Int/2
x = x + scale*Int
Na = data.filter($"value">x).count()
if (Na == target){
qfound = true}
else if (Na < target){
// decrease x
scale= -1
}
else if(Na > target){
// increase x
scale= 1
}
}
return x
}
itrQuantEstimator: [D](data: org.apache.spark.sql.Dataset[D], target: Int)Double
// Estimate quantiles in loop
val N = 100000 // samples per batch
// Naive QE parameters
val Nmk = 10 // integer "N - k"
// t-digest parameters
val targetQ = 1.0 - Nmk.toDouble/N.toDouble
val comp = 0.2 // Compression parameter
val Nc = 25 // Number of bins
val udf_tDigest = TDigestAggregator.udf[Double](comp,Nc)
// filter parameters
val tau = 20.0
val c = 1.0 - exp(-1.0/tau)
var q_tf = 0.0 //filterd t-digets quantile estimate
var q_nf = 0.0 //filterd naive quantile estimate
// loop parameters
val T = 500 // time or number of batches
var resMap = scala.collection.mutable.Map[Int,(Int,Double,Double,Double,Double,Double,Double,Double,Double,Double,Double)]() // create an empty map for storing results
var q_true = 0.0 // true quantile
var Na_true = 0.0 // true number of
var rr = 0.0 // realisation of anomalies
var Na_t1 = 0.0 // number of anomalies using t-digest estimate from first batch
var Na_tf = 0.0 // number of anomalies using filtered t-digest estimate from current batch
var Na_n1 = 0.0 // number of anomalies using naive estimate from first batch
var Na_nf = 0.0 // number of anomalies using filtered naive estimate from current batch
var q_t1 = 0.0 // first QE with t-digets
var q_n1 = 0.0 // first QE with naive QE
var q_t = 0.0 // t-digest quantile estimate
var q_n = 0.0 // naive quantile estimate
// data parameters
var mu1=0.0
var mu2=0.0
var wN=1.0
val seed = 10L
val r = new Random(seed) // create random instace with "seed"
// Start loop
for( t <- 1 to T){
//get batch of data
rr=r.nextFloat
if( rr < 0.95 )
{wN=1.0} // All data is normal
else
{wN=0.99} // 1% of data is anomalous
mu1=t.toDouble/1000.0
mu2=mu1 + 2
val data = sc.parallelize(Vector.fill(N){myMixtureOf2Normals(mu1, mu2, wN, r)}).toDF.as[Double]
//do t-digest
val agg = data.agg(udf_tDigest($"value"))
val td = agg.first.getAs[TDigest](0)
q_t = td.cdfInverse(targetQ)
if( t == 1 ){q_t1 = q_t} // save first quantile estimate
if( t == 1 ){q_tf = q_t}else{q_tf = q_t*c + exp(-1.0/tau)*resMap(t-1)._5} // if first batch use no filter weight
Na_t1 = data.filter($"value">q_t1).count()
Na_tf = data.filter($"value">q_tf).count()
//do naive QE
q_n = itrQuantEstimator(data,Nmk)
if( t == 1 ){q_n1 = q_n} // save first quantile estimate
if( t == 1 ){q_nf = q_n}else{q_nf = q_n*c + exp(-1.0/tau)*resMap(t-1)._9} // if first batch use no filter weight
Na_n1 = data.filter($"value">q_n1).count()
Na_nf = data.filter($"value">q_nf).count()
//get true quantile and true number of anomalies (ignoring anomalies)
val normalDataDistribution = new NormalDistribution(mu1, 1);
q_true = normalDataDistribution.inverseCumulativeProbability(targetQ)
val abnormalDataDistribution = new NormalDistribution(mu2, 1);
var cdf_N = normalDataDistribution.cumulativeProbability(q_true)
var cdf_A = abnormalDataDistribution.cumulativeProbability(q_true)
Na_true = N*wN*(1.0-cdf_N) + N*(1.0-wN)*(1.0-cdf_A)
// save results
resMap += (t -> (t,q_true,Na_true,q_t,q_tf,Na_t1,Na_tf,q_n,q_nf,Na_n1,Na_nf))
println("Batch Number: "+ t)
}
// Put results into dataframe for presentation
val resL = resMap.toList.map(_._2) // convert to list and extract data
val resS = resL.sortBy(x => x._1) // sort
val res_all = resS.toDF("Time index, n","true quantile","true number of anomalies","QE with t-digest","filtered QE with t-digest","number of anomalies with fix t-digest quantile","number of anomalies with filtered t-digest quantile","Naive QE","filtered naive QE","number of anomalies with fix naive QE","number of anomalies with filtered naive QE") // convert to DF
- Results
// Plot estimated and true quantiles
display(res_all)
We see that the filtered quantiles are not affected by the bursts of anomalies, seen as spikes in the instantaneous estimates. We also note that the difference between quantiles using the t-digest and naive method is small. The number of iterations in each time step for the naive method varied between 4 and 18 with a mean of 10 iterations. This can be reduced by using the estimated quantile in step \(n-1\) as the initial guess in step \(n\).
// Plot number of anomalies and true number of anomalies
display(res_all)
If a fixed quantile is used the number of anomalies will increase with time due to the changing statistics of the data distribution. By properly filtering the estimates, the number of anomalies are kept at a constant level (10 in this case) in time slots with the normal distribution while still detecting the bursts of outliers (seen as spikes with 52.7 calculated anomaleties) in time slots with the abnormal distribution. The emperical mean relative errors for the quantile defined as
\[ \varepsilon_q = \frac{1}{T}\sum_{n=1}^{T}\frac{|q[n] - \hat{q}[n]|}{q[n]}\]
was 0.0052 with the naive QE and 0.0054 with t-digest, using the filtered quantiles. The corresponding error for the number of anomalies (this is ideally \(N-k = 10\) in normal batches and 52.7 in abnormal batches), was 0.23 with naive QE and 0.24 with t-digest, i.e. both methods perform equally in this case.
- Discussion
7.1 Iterative method vs t-digest
One difference between the iterative method and t-digest is that the latter is updated with a single sample at a time, while the former must store the whole batch of \(N\) samples, and thus might require more space. On the other hand, the iterative method has a simple implementation that relies only on the basic arithmetic operations, while t-digest requires evaluations of scale functions which contain relatively expensive operations such as log and sin\(^{-1}\). This could suggest that iterative method can be implemented to work faster than t-digest. Developing an efficient implementation and comparing these methods in terms of time complexity would be an interesting future research direction.
7.2 Sketching with the iterative method
Another difference is that the t-digest outputs a sketch -- a compressed object that can be used to obtain estimates of different statistics of the original data stream, e.g. estimates of several different quantiles. On the other hand, the iterative method in the form presented above can only be used to estimate one quantile. A way to obtain a data sketch with the iterative method is to fix a step size \(\alpha\) and to maintain \(\frac{1}{\alpha}\) quantiles for \(\alpha\), \(2\alpha\), \(3\alpha\), ... If we want to get an estimate of a quantile that is not stored in the sketch, we can take two values from the sketch such that the desired quantile falls between them and then iterpolate (e.g. linearly). The space complexity of this sketch is \(O(\frac{1}{\alpha})\), i.e. it depends linearly on the desired level of accuracy. Having in mind that our target application is anomaly detection, one could modify this solution to better correspond to the task at hand: instead of evenly spacing the quantiles, one could be more fine-grained towards the endpoints of the interval [0,1] and have larger bins in the middle.
7.3 Alternative approaches
An alternative approach to quantile estimation is KLL (see https://arxiv.org/pdf/1603.05346.pdf). It is a data-agnostic method, i.e. no prior distribution is assumed on the data stream. The data points are only assumed to be pairwise comparable. In this model, KLL is provably optimal. The basic idea of the algorithm is the following. The data is processes by compactors, which are subroutines that have arrays of given capacity. A compactor collects elements until the maximum capacity is reached, then it sorts the elements and removes either the odd-indexed ones or the even-indexed ones (deciding randomly). Afterwards, the compactor passed the remaining elements to another compactor. The full algorithm is a chain of compactors. By choosing appropriate capacities for compactors at each level, KLL achieves provably optimal worst-case performance.
One might be interested in comparing KLL with t-digest and the iterative method empirically. It would also be interesting to mathematically analyze t-digest and the naive QE in the distribution-agnostic model of KLL.
- References
[Rohling] H. Rohling, "Radar CFAR Thresholding in Clutter and Multiple Target Situations," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-19, no. 4, pp. 608-621, July 1983, doi: 10.1109/TAES.1983.309350.
[Möller] Möller, E., Grieszbach, G., Shack, B., & Witte, H. (2000). Statistical properties and control algorithms of recursive quantile estimators. Biometrical Journal, 42(6), 729–746.
[Dunning] Dunning, T., & Ertl, O. (2019). Computing extremely accurate quantiles using t-digests. arXiv preprint arXiv:1902.04023.
[041SketchingWithTDigest] https://lamastex.github.io/scalable-data-science/sds/2/2/db/041SketchingWithTDigest/
Project Members:
Chi Zhang, zchi@chalmers.se;
Shuangshuang Chen, shuche@kth.se;
Magnus Tarle, tarle@kth.se
Project presentation video
The presentation record link is here: https://drive.google.com/drive/folders/13XwlItZqtOeBZ5TJfnCP1hqtQ9imRFq
The final complete 20 minutes presentation is: "Projectcomplete_video.mp4"
Because the cluster seems quite slow when we recording the video and there are too many things to run within 20 minutes, we recorded the video after we finish running all the codes. And some parts of the video are speeded up to meet the 20 minutes requirement. We also put the original raw video records in the folder, from 00 to 08 videos correspond to the script files from 00 to 08, in case you only want to know about a certain part.
Project Introduction - Analysis and Prediction of COVID-19 Data
In this project, we use both scala (data processing part) and python (algorithm part). We deal with scalable data, and use what we learned from the course.
1. Project Plan
In this project, we dealt with COVID-19 data, and do the following tasks:
- Introduction
- Struct stream data - to update our database once a day.
- Preprocessing - clean data.
- Visualization - visualize new cases on a world map, with different time scope.
- Statistics analysis - get the distributions, mean and std of different varables.
- Model 1: K-means - clustering of different countries
- Model 2: Linear Regression - predict new cases of some contries from other countries.
- Model 3: Autoregressive integrated moving average (ARIMA) - prediction for new cases and new deaths from past values.
- Model 4: Gaussian Procecces (GP) - apply Gaussian Procecces (GP) to predict mean and covariance of new cases and new deaths from past values.
- Ending
2. Tools and methods
For the method part, this particular task is not suitable to use deep learning methods. We choose 4 methods related to Machine leanring for our clustering and prediction task: 1. Clustering model - K-means 2. Time series model - Autoregressive integrated moving average (ARIMA) 3. Gaussian Procecces (GP) 4. Linear Regression (LR)
3. Data resources
We found the following data resources. And finally we chose the 3rd dataset because it has the most features for us to use.
-
WHO: https://covid19.who.int/WHO-COVID-19-global-data.csv
-
COVID Tracking Project API at Cambridge: https://api.covidtracking.com
-
Data on COVID-19 (coronavirus) by Our World in Data: git repo https://github.com/owid/covid-19-data/tree/master/public/data
-
Sweden (proceesed by apify) API: https://api.apify.com/v2/datasets/Nq3XwHX262iDwsFJS/items?format=json&clean=1
Note that the preprocessing, visualization and analysis within these notebooks were made on this 3rd dataset, downloaded December 2020 to Databricks. One dataset from December 2020, "owid-covid-data.csv", can also be found in the same google drive folder as the video presentation.
4. Useful links
- Description of each column in the "Our World in Data" dataset https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-codebook.csv
- If you want to have an intro to GP, you could look at: http://krasserm.github.io/2018/03/19/gaussian-processes/ and https://medium.com/@dan_90739/being-bayesian-and-thinking-deep-time-series-prediction-with-uncertainty-25ff581b056c
- ARIMA - Autoregressive Integrated Moving Average model. It's widely used in time series analysis. see defination here: https://en.wikipedia.org/wiki/Autoregressiveintegratedmoving_average
5. Meeting Records:
Weekly meetings for group discussion:
- 2020-12-01 Tuesday:
- Discussion about project topic
- Find data resources
- 2020-12-04 Friday:
- Understand dataset 3, and manage download data
- Set up processing pipeline into dataframe
- Prepared for statistics analysis
- Selected the column for analysis and machine learning
- Finished struct stream for updating data
- 2020-12-08 Tuesday:
- Exploited each chosen column, plot statistics
- Dealt with missing data
- Post-process for useful features from existed column (for statistics analysis and prediction/regression)
- 2020-12-16 Wednesday:
- Finished statistics analysis, which correlation would interesting to show
- Progress on visulization
- Progress on GP model
- Progress on LR model
- Progress on ARIMA model
- 2020-12-18 Friday:
- Progress on K-means model
- Finish visulization
- Finish other models
- Finish Evaluation
- 2021-01-07 Thursday:
- Finish all models
- Discussing about the final presentation
0. Introduction of the data
The columns we selected to analyze are: - continent - location - date - totalcases - newcases - totaldeaths - newdeaths - reproductionrate - icupatients - hosppatients - weeklyicuadmissions - weeklyhospadmissions - totaltests - newtests - stingencyindex - population - populationdensity - medianage - aged65older - aged70older - gdppercapita - extremepoverty - cardiovascdeathrate - diabetesprevalence - femalesmokers - malesmokers - hospitalbedsperthousand - lifeexpectancy - humandevelopmentindex
1. Streaming
This part has been moved to separate files: "DownloadFilesPeriodicallyScript" and "StreamToFile".
To Rerun Steps 1-5 done in the notebook at: * Workspace -> PATH_TO -> DataPreprocess]
just run
the following command as shown in the cell below:
%run "PATH_TO/DataPreprocess"
- Note: If you already evaluated the
%run ...
command above then:- first delete the cell by pressing on
x
on the top-right corner of the cell and - revaluate the
run
command above.
- first delete the cell by pressing on
"./02_DataPreprocess"
"./03_ExplosiveAnalysis"
"./04_DataVisualize"
Clustering of countries based on the dataset features of each country.
This part is in notebook 05Clustering.
The code can be run either in here or in the 05Clustering notebook (after data preprocessing). We run and show the results in the 05_Clustering notebook.
"./05_Clustering"
Prediction with constant values, predict new cases of some contries from other countries.
This part is in notebook 06DataPredictionLR.
The code can be run either in here or in the 06DataPredictionLR notebook (after data preprocessing). We run and show the results in the 06DataPredictionLR notebook.
"./06_DataPredicton_LR"
prediction for new cases and new deaths from past values.
This part is in notebook 07DataPredictionARIMA.
The code can be run either in here or in the 07DataPredictionARIMA notebook (after data preprocessing). We run and show the results in the 07DataPredictionARIMA notebook.
"./07_DataPredicton_ARIMA"
apply Gaussian Procecces (GP) to predict mean and covariance of new cases and new deaths from past values.
This part is in notebook 08DataPredictionGP.
The code can be run either in here or in the 08DataPredictionGP notebook (after data preprocessing). We run and show the results in the 08DataPredictionGP notebook.
path | name | size |
---|---|---|
dbfs:/datasets/group12/20_12_04_08_31_44.csv | 20_12_04_08_31_44.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_08_32_40.csv | 20_12_04_08_32_40.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_10_47_08.csv | 20_12_04_10_47_08.csv | 1.4190774e7 |
dbfs:/datasets/group12/21_01_07_08_50_05.csv | 21_01_07_08_50_05.csv | 1.4577033e7 |
dbfs:/datasets/group12/21_01_07_09_05_33.csv | 21_01_07_09_05_33.csv | 1.4577033e7 |
dbfs:/datasets/group12/analysis/ | analysis/ | 0.0 |
dbfs:/datasets/group12/analysis2021/ | analysis2021/ | 0.0 |
dbfs:/datasets/group12/chkpoint/ | chkpoint/ | 0.0 |
dbfs:/datasets/group12/chkpoint2021/ | chkpoint2021/ | 0.0 |
dbfs:/datasets/group12/csv/ | csv/ | 0.0 |
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FJI | Oceania | Fiji | 2020-11-16 | 35.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.0 | 39.043 | 0.0 | 0.159 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 120.0 | 0.134 | 1.0e-3 | 839.2 | null | 49.07 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-04-08 | 2487.0 | 179.0 | 148.714 | 40.0 | 6.0 | 3.286 | 448.859 | 32.306 | 26.84 | 7.219 | 1.083 | 0.593 | 1.24 | 82.0 | 14.8 | 239.0 | 43.135 | null | null | null | null | 41461.0 | 3295.0 | 7.483 | 0.595 | 2332.0 | 0.421 | 6.4e-2 | 15.7 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-11 | 8512.0 | 43.0 | 41.0 | 337.0 | 0.0 | 0.143 | 1536.263 | 7.761 | 7.4 | 60.822 | 0.0 | 2.6e-2 | 1.3 | 1.0 | 0.18 | 8.0 | 1.444 | null | null | null | null | 883388.0 | 14441.0 | 159.436 | 2.606 | 12099.0 | 2.184 | 3.0e-3 | 295.1 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GAB | Africa | Gabon | 2020-07-02 | 5513.0 | 0.0 | 60.857 | 42.0 | 0.0 | 0.286 | 2476.942 | 0.0 | 27.343 | 18.87 | 0.0 | 0.128 | 1.04 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 2225728.0 | 7.859 | 23.1 | 4.45 | 2.976 | 16562.413 | 3.4 | 259.967 | 7.2 | null | null | null | 6.3 | 66.47 | 0.702 |
GAB | Africa | Gabon | 2020-11-23 | 9150.0 | 19.0 | 9.429 | 59.0 | 0.0 | 0.143 | 4111.014 | 8.537 | 4.236 | 26.508 | 0.0 | 6.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 2225728.0 | 7.859 | 23.1 | 4.45 | 2.976 | 16562.413 | 3.4 | 259.967 | 7.2 | null | null | null | 6.3 | 66.47 | 0.702 |
GMB | Africa | Gambia | 2020-06-13 | 28.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 11.586 | 0.0 | 0.118 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-06-21 | 37.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.143 | 15.31 | 0.0 | 0.532 | 0.828 | 0.0 | 5.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-11-13 | 73154.0 | 3473.0 | 3023.0 | 636.0 | 37.0 | 30.429 | 18338.128 | 870.606 | 757.801 | 159.431 | 9.275 | 7.628 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-01-31 | 5.0 | 1.0 | 0.714 | null | 0.0 | 0.0 | 6.0e-2 | 1.2e-2 | 9.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-07-04 | 197198.0 | 418.0 | 391.429 | 9020.0 | 10.0 | 7.429 | 2353.649 | 4.989 | 4.672 | 107.658 | 0.119 | 8.9e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | 71702.0 | 0.856 | 5.0e-3 | 183.2 | null | 63.43 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-01 | 211005.0 | 606.0 | 675.286 | 9154.0 | 7.0 | 4.286 | 2518.442 | 7.233 | 8.06 | 109.257 | 8.4e-2 | 5.1e-2 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | 83563.0 | 0.997 | 8.0e-3 | 123.7 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-02 | 211220.0 | 215.0 | 650.429 | 9154.0 | 0.0 | 4.286 | 2521.008 | 2.566 | 7.763 | 109.257 | 0.0 | 5.1e-2 | 1.21 | null | null | null | null | null | null | 305.791 | 3.65 | 8549377.0 | null | 102.041 | null | 83803.0 | 1.0 | 8.0e-3 | 128.8 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-04-09 | 378.0 | 65.0 | 24.857 | 6.0 | 0.0 | 0.143 | 12.165 | 2.092 | 0.8 | 0.193 | 0.0 | 5.0e-3 | 1.28 | null | null | null | null | null | null | null | null | 14611.0 | null | 0.47 | null | 1008.0 | 3.2e-2 | 2.5e-2 | 40.6 | null | 86.11 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-03 | 8548.0 | 251.0 | 177.857 | 38.0 | 0.0 | 0.571 | 275.095 | 8.078 | 5.724 | 1.223 | 0.0 | 1.8e-2 | 1.21 | null | null | null | null | null | null | null | null | 226741.0 | 3676.0 | 7.297 | 0.118 | 2630.0 | 8.5e-2 | 6.8e-2 | 14.8 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-27 | 51225.0 | 0.0 | 84.857 | 323.0 | 0.0 | 0.0 | 1648.54 | 0.0 | 2.731 | 10.395 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 592285.0 | 1100.0 | 19.061 | 3.5e-2 | 1705.0 | 5.5e-2 | 5.0e-2 | 20.1 | null | null | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-03-14 | 228.0 | 38.0 | 26.0 | 3.0 | 2.0 | 0.429 | 21.875 | 3.646 | 2.494 | 0.288 | 0.192 | 4.1e-2 | 1.33 | null | null | null | null | null | null | null | null | 3400.0 | 700.0 | 0.326 | 6.7e-2 | 302.0 | 2.9e-2 | 8.6e-2 | 11.6 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-05-01 | 2612.0 | 21.0 | 17.429 | 140.0 | 0.0 | 1.429 | 250.598 | 2.015 | 1.672 | 13.432 | 0.0 | 0.137 | 0.81 | null | null | null | null | null | null | null | null | 77251.0 | 2081.0 | 7.412 | 0.2 | 2263.0 | 0.217 | 8.0e-3 | 129.8 | null | 84.26 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-07-25 | 4166.0 | 31.0 | 26.143 | 201.0 | 0.0 | 1.0 | 399.691 | 2.974 | 2.508 | 19.284 | 0.0 | 9.6e-2 | 1.28 | null | null | null | null | null | null | null | null | null | null | null | null | 5151.0 | 0.494 | 5.0e-3 | 197.0 | null | 57.41 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRD | North America | Grenada | 2020-05-17 | 22.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 195.523 | 0.0 | 1.27 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-07-23 | 23.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 204.41 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-02-08 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GTM | North America | Guatemala | 2020-05-07 | 832.0 | 34.0 | 33.286 | 23.0 | 2.0 | 1.0 | 46.44 | 1.898 | 1.858 | 1.284 | 0.112 | 5.6e-2 | 1.37 | null | null | null | null | null | null | null | null | 7428.0 | 470.0 | 0.415 | 2.6e-2 | 261.0 | 1.5e-2 | 0.128 | 7.8 | null | 96.3 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GIN | Africa | Guinea | 2020-02-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.3132792e7 | 51.755 | 19.0 | 3.135 | 1.733 | 1998.926 | 35.3 | 336.717 | 2.42 | null | null | 17.45 | 0.3 | 61.6 | 0.459 |
GNB | Africa | Guinea-Bissau | 2020-08-28 | 2205.0 | 0.0 | 8.0 | 34.0 | 0.0 | 0.143 | 1120.428 | 0.0 | 4.065 | 17.276 | 0.0 | 7.3e-2 | 0.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-01-24 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-01-25 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-08-18 | 737.0 | 28.0 | 19.286 | 25.0 | 2.0 | 0.429 | 936.993 | 35.598 | 24.519 | 31.784 | 2.543 | 0.545 | 1.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-09-13 | 8493.0 | 15.0 | 19.0 | 219.0 | 0.0 | 0.714 | 744.835 | 1.315 | 1.666 | 19.206 | 0.0 | 6.3e-2 | 0.93 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HTI | North America | Haiti | 2020-10-17 | 8956.0 | 31.0 | 13.714 | 231.0 | 0.0 | 0.143 | 785.44 | 2.719 | 1.203 | 20.259 | 0.0 | 1.3e-2 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HKG | Asia | Hong Kong | 2020-07-31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 729436.0 | null | 97.297 | null | null | null | null | null | null | 66.67 | 7496988.0 | 7039.714 | 44.8 | 16.303 | 10.158 | 56054.92 | null | null | 8.33 | null | null | null | null | 84.86 | 0.933 |
HKG | Asia | Hong Kong | 2020-09-12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 118882.0 | 15.857 | null | null | null | 62.96 | 7496988.0 | 7039.714 | 44.8 | 16.303 | 10.158 | 56054.92 | null | null | 8.33 | null | null | null | null | 84.86 | 0.933 |
HUN | Europe | Hungary | 2020-03-14 | 30.0 | 11.0 | 3.714 | null | 0.0 | 0.0 | 3.105 | 1.139 | 0.384 | null | 0.0 | 0.0 | null | null | null | 29.0 | 3.002 | null | null | null | null | 1014.0 | 156.0 | 0.105 | 1.6e-2 | 99.0 | 1.0e-2 | 3.8e-2 | 26.7 | null | 50.0 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-08-13 | 1976.0 | 4.0 | 6.286 | 10.0 | 0.0 | 0.0 | 5790.476 | 11.722 | 18.42 | 29.304 | 0.0 | 0.0 | 1.14 | 0.0 | 0.0 | 1.0 | 2.93 | null | null | null | null | 81052.0 | 328.0 | 237.515 | 0.961 | 544.0 | 1.594 | 1.2e-2 | 86.5 | null | 46.3 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-04-19 | 17615.0 | 1893.0 | 1201.429 | 559.0 | 38.0 | 32.571 | 12.764 | 1.372 | 0.871 | 0.405 | 2.8e-2 | 2.4e-2 | 1.54 | null | null | null | null | null | null | null | null | 401586.0 | 29463.0 | 0.291 | 2.1e-2 | 29405.0 | 2.1e-2 | 4.1e-2 | 24.5 | null | 100.0 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-10-18 | 7550273.0 | 55722.0 | 61390.714 | 114610.0 | 579.0 | 780.0 | 5471.195 | 40.378 | 44.486 | 83.05 | 0.42 | 0.565 | 0.89 | null | null | null | null | null | null | null | null | 9.422419e7 | 970173.0 | 68.278 | 0.703 | 1049564.0 | 0.761 | 5.8e-2 | 17.1 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
null | null | International | 2020-07-09 | 721.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | International | 2020-08-11 | 721.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
IRN | Asia | Iran | 2020-02-13 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-10-29 | 596941.0 | 8293.0 | 6597.714 | 34113.0 | 399.0 | 351.857 | 7107.037 | 98.734 | 78.551 | 406.141 | 4.75 | 4.189 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | 30096.0 | 0.358 | 0.219 | 4.6 | null | 70.83 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-10-01 | 367474.0 | 4493.0 | 4338.286 | 9231.0 | 50.0 | 61.714 | 9136.03 | 111.704 | 107.857 | 229.498 | 1.243 | 1.534 | 0.99 | null | null | null | null | null | null | null | null | 2289877.0 | 23522.0 | 56.93 | 0.585 | 21142.0 | 0.526 | 0.205 | 4.9 | null | 61.11 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRL | Europe | Ireland | 2020-02-18 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-08-14 | 26995.0 | 66.0 | 75.0 | 1774.0 | 0.0 | 0.286 | 5467.014 | 13.366 | 15.189 | 359.27 | 0.0 | 5.8e-2 | 1.37 | 8.0 | 1.62 | 11.0 | 2.228 | null | null | null | null | 699219.0 | 11337.0 | 141.605 | 2.296 | 5877.0 | 1.19 | 1.3e-2 | 78.4 | null | 59.72 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-16 | 47427.0 | 998.0 | 960.571 | 1841.0 | 3.0 | 2.857 | 9604.893 | 202.114 | 194.534 | 372.838 | 0.608 | 0.579 | 1.28 | 30.0 | 6.076 | 244.0 | 49.415 | null | null | null | null | 1404220.0 | 17758.0 | 284.382 | 3.596 | 14312.0 | 2.898 | 6.7e-2 | 14.9 | null | 61.57 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-02-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 293.0 | 35.0 | 3.4e-2 | 4.0e-3 | 21.0 | 2.0e-3 | 0.0 | null | null | 19.44 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-03 | 7428.0 | 571.0 | 627.571 | 40.0 | 4.0 | 4.0 | 858.179 | 65.969 | 72.505 | 4.621 | 0.462 | 0.462 | 1.28 | null | null | null | null | null | null | null | null | 107350.0 | 10328.0 | 12.402 | 1.193 | 8281.0 | 0.957 | 7.6e-2 | 13.2 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-04 | 7851.0 | 423.0 | 604.571 | 44.0 | 4.0 | 4.571 | 907.049 | 48.87 | 69.848 | 5.083 | 0.462 | 0.528 | 1.17 | null | null | null | null | null | null | null | null | 113705.0 | 6355.0 | 13.137 | 0.734 | 8369.0 | 0.967 | 7.2e-2 | 13.8 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-05-19 | 16659.0 | 16.0 | 18.571 | 278.0 | 2.0 | 2.571 | 1924.663 | 1.849 | 2.146 | 32.118 | 0.231 | 0.297 | 0.51 | null | null | null | null | null | null | null | null | 520606.0 | 7142.0 | 60.147 | 0.825 | 6193.0 | 0.715 | 3.0e-3 | 333.5 | null | 77.78 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-19 | 41035.0 | 5322.0 | 3703.143 | 3405.0 | 427.0 | 341.286 | 678.693 | 88.022 | 61.248 | 56.317 | 7.062 | 5.645 | 1.79 | 2498.0 | 41.315 | 18255.0 | 301.926 | null | null | null | null | 182777.0 | 17236.0 | 3.023 | 0.285 | 13824.0 | 0.229 | 0.268 | 3.7 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-07-14 | 243344.0 | 114.0 | 198.286 | 34984.0 | 17.0 | 12.143 | 4024.754 | 1.885 | 3.28 | 578.613 | 0.281 | 0.201 | 0.93 | 60.0 | 0.992 | 837.0 | 13.843 | null | null | null | null | 6004611.0 | 41867.0 | 99.312 | 0.692 | 42991.0 | 0.711 | 5.0e-3 | 216.8 | null | 58.33 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JPN | Asia | Japan | 2020-02-04 | 22.0 | 2.0 | 2.143 | null | 0.0 | 0.0 | 0.174 | 1.6e-2 | 1.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-20 | 79142.0 | 480.0 | 499.429 | 1508.0 | 4.0 | 8.571 | 625.745 | 3.795 | 3.949 | 11.923 | 3.2e-2 | 6.8e-2 | 0.89 | null | null | null | null | null | null | null | null | 1650837.0 | 6153.0 | 13.053 | 4.9e-2 | 17218.0 | 0.136 | 2.9e-2 | 34.5 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-27 | 82186.0 | 483.0 | 434.857 | 1549.0 | 2.0 | 5.857 | 649.813 | 3.819 | 3.438 | 12.247 | 1.6e-2 | 4.6e-2 | 1.01 | null | null | null | null | null | null | null | null | 1746545.0 | 4550.0 | 13.809 | 3.6e-2 | 13673.0 | 0.108 | 3.2e-2 | 31.4 | null | 33.33 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-01-27 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
JOR | Asia | Jordan | 2020-07-30 | 1191.0 | 4.0 | 8.571 | 11.0 | 0.0 | 0.0 | 116.729 | 0.392 | 0.84 | 1.078 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-06-20 | 17225.0 | 446.0 | 426.714 | 118.0 | 5.0 | 6.429 | 917.36 | 23.753 | 22.726 | 6.284 | 0.266 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | 1302094.0 | 32506.0 | 69.346 | 1.731 | 27596.0 | 1.47 | 1.5e-2 | 64.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-22 | 18231.0 | 499.0 | 434.143 | 127.0 | 7.0 | 6.571 | 970.937 | 26.575 | 23.121 | 6.764 | 0.373 | 0.35 | 1.15 | null | null | null | null | null | null | null | null | 1354456.0 | 23879.0 | 72.135 | 1.272 | 27669.0 | 1.474 | 1.6e-2 | 63.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-18 | 121973.0 | 334.0 | 1210.286 | 1635.0 | 148.0 | 28.857 | 6495.974 | 17.788 | 64.457 | 87.076 | 7.882 | 1.537 | 0.55 | null | null | null | null | null | null | null | null | 2342049.0 | 7942.0 | 124.732 | 0.423 | 15018.0 | 0.8 | 8.1e-2 | 12.4 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-25 | 127462.0 | 0.0 | 784.143 | 1781.0 | 0.0 | 20.857 | 6788.304 | 0.0 | 41.761 | 94.852 | 0.0 | 1.111 | 0.54 | null | null | null | null | null | null | null | null | 2434444.0 | 7257.0 | 129.652 | 0.386 | 13199.0 | 0.703 | 5.9e-2 | 16.8 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
OWID_KOS | Europe | Kosovo | 2020-04-18 | 480.0 | 31.0 | 32.857 | 12.0 | 1.0 | 0.714 | 248.348 | 16.039 | 17.0 | 6.209 | 0.517 | 0.37 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-06-07 | 1194.0 | 36.0 | 17.714 | 30.0 | 0.0 | 0.0 | 617.765 | 18.626 | 9.165 | 15.522 | 0.0 | 0.0 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-09-19 | 15002.0 | 63.0 | 62.286 | 614.0 | 3.0 | 3.571 | 7761.901 | 32.596 | 32.226 | 317.678 | 1.552 | 1.848 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KWT | Asia | Kuwait | 2020-11-28 | 142195.0 | 319.0 | 351.571 | 875.0 | 1.0 | 1.714 | 33296.547 | 74.697 | 82.324 | 204.891 | 0.234 | 0.401 | null | null | null | null | null | null | null | null | null | 1086669.0 | 4242.0 | 254.456 | 0.993 | 5538.0 | 1.297 | 6.3e-2 | 15.8 | null | 62.96 | 4270563.0 | 232.128 | 33.7 | 2.345 | 1.114 | 65530.537 | null | 132.235 | 15.84 | 2.7 | 37.0 | null | 2.0 | 75.49 | 0.803 |
KGZ | Asia | Kyrgyzstan | 2020-11-11 | 64360.0 | 0.0 | 435.857 | 1188.0 | 0.0 | 3.0 | 9864.825 | 0.0 | 66.806 | 182.092 | 0.0 | 0.46 | 1.04 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-26 | 71548.0 | 377.0 | 461.714 | 1256.0 | 5.0 | 5.571 | 10966.57 | 57.785 | 70.77 | 192.514 | 0.766 | 0.854 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-05-31 | 19.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-11-02 | 24.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 3.299 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-07-07 | 1134.0 | 7.0 | 2.286 | 30.0 | 0.0 | 0.0 | 601.208 | 3.711 | 1.212 | 15.905 | 0.0 | 0.0 | 1.35 | null | null | 5.0 | 2.651 | null | null | null | null | 160281.0 | 1763.0 | 84.976 | 0.935 | 1349.0 | 0.715 | 2.0e-3 | 590.1 | null | 50.0 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-11-22 | 13120.0 | 376.0 | 367.571 | 153.0 | 0.0 | 4.286 | 6955.777 | 199.342 | 194.874 | 81.115 | 0.0 | 2.272 | null | null | null | 416.0 | 220.549 | 40.279 | 21.355 | 322.232 | 170.836 | 576647.0 | 4079.0 | 305.719 | 2.163 | 5412.0 | 2.869 | 6.8e-2 | 14.7 | null | 57.41 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-09-17 | 26768.0 | 685.0 | 618.714 | 263.0 | 4.0 | 6.286 | 3921.797 | 100.36 | 90.648 | 38.532 | 0.586 | 0.921 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LSO | Africa | Lesotho | 2020-04-24 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-07-09 | 134.0 | 43.0 | 14.143 | 1.0 | 1.0 | 0.143 | 62.551 | 20.072 | 6.602 | 0.467 | 0.467 | 6.7e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LBR | Africa | Liberia | 2020-10-10 | 1363.0 | 3.0 | 2.286 | 82.0 | 0.0 | 0.0 | 269.491 | 0.593 | 0.452 | 16.213 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 5057677.0 | 49.127 | 19.2 | 3.057 | 1.756 | 752.788 | 38.6 | 272.509 | 2.42 | 1.5 | 18.1 | 1.188 | 0.8 | 64.1 | 0.435 |
LBY | Africa | Libya | 2020-02-09 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-07-13 | 84.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 2202.585 | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-21 | 1109.0 | 15.0 | 19.857 | 8.0 | 0.0 | 0.429 | 29079.372 | 393.319 | 520.679 | 209.77 | 0.0 | 11.238 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LUX | Europe | Luxembourg | 2020-02-29 | 1.0 | 1.0 | 0.143 | null | 0.0 | 0.0 | 1.598 | 1.598 | 0.228 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | 17.0 | 1.0 | 2.7e-2 | 2.0e-3 | null | null | null | null | null | 0.0 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-09 | 3877.0 | 6.0 | 9.286 | 101.0 | 1.0 | 1.286 | 6193.528 | 9.585 | 14.834 | 161.348 | 1.598 | 2.054 | 0.63 | 14.0 | 22.365 | 82.0 | 130.995 | null | null | null | null | 53114.0 | 737.0 | 84.85 | 1.177 | 1053.0 | 1.682 | 9.0e-3 | 113.4 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-10 | 3886.0 | 9.0 | 8.857 | 101.0 | 0.0 | 0.714 | 6207.906 | 14.378 | 14.149 | 161.348 | 0.0 | 1.141 | 0.64 | 18.0 | 28.755 | 77.0 | 123.008 | null | null | null | null | 53326.0 | 212.0 | 85.189 | 0.339 | 1050.0 | 1.677 | 8.0e-3 | 118.6 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-06-08 | 4040.0 | 1.0 | 3.0 | 110.0 | 0.0 | 0.0 | 6453.922 | 1.598 | 4.793 | 175.726 | 0.0 | 0.0 | 1.01 | 2.0 | 3.195 | 20.0 | 31.95 | null | null | null | null | 90406.0 | 2245.0 | 144.424 | 3.586 | 1782.0 | 2.847 | 2.0e-3 | 594.0 | null | 43.52 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MKD | Europe | Macedonia | 2020-02-03 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-09-21 | 16780.0 | 45.0 | 136.143 | 700.0 | 7.0 | 6.857 | 8054.22 | 21.6 | 65.347 | 335.992 | 3.36 | 3.291 | 1.1 | null | null | null | null | null | null | null | null | 175790.0 | 1618.0 | 84.377 | 0.777 | 1411.0 | 0.677 | 9.6e-2 | 10.4 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-10-10 | 20555.0 | 392.0 | 279.0 | 785.0 | 4.0 | 4.571 | 9866.179 | 188.156 | 133.917 | 376.792 | 1.92 | 2.194 | 1.4 | null | null | null | null | null | null | null | null | 206046.0 | 1648.0 | 98.9 | 0.791 | 1841.0 | 0.884 | 0.152 | 6.6 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MDG | Africa | Madagascar | 2020-06-05 | 975.0 | 18.0 | 39.571 | 7.0 | 0.0 | 0.286 | 35.21 | 0.65 | 1.429 | 0.253 | 0.0 | 1.0e-2 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | 385.0 | 1.4e-2 | 0.103 | 9.7 | null | 70.37 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MWI | Africa | Malawi | 2020-07-25 | 3453.0 | 0.0 | 91.857 | 87.0 | 0.0 | 4.571 | 180.502 | 0.0 | 4.802 | 4.548 | 0.0 | 0.239 | 1.02 | null | null | null | null | null | null | null | null | 26602.0 | 389.0 | 1.391 | 2.0e-2 | 410.0 | 2.1e-2 | 0.224 | 4.5 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MWI | Africa | Malawi | 2020-08-08 | 4624.0 | 49.0 | 62.571 | 143.0 | 6.0 | 3.286 | 241.715 | 2.561 | 3.271 | 7.475 | 0.314 | 0.172 | 0.94 | null | null | null | null | null | null | null | null | 34443.0 | 392.0 | 1.8 | 2.0e-2 | 502.0 | 2.6e-2 | 0.125 | 8.0 | null | 64.81 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-07-04 | 8658.0 | 10.0 | 6.0 | 121.0 | 0.0 | 0.0 | 267.503 | 0.309 | 0.185 | 3.738 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | 797796.0 | 6937.0 | 24.649 | 0.214 | 8334.0 | 0.257 | 1.0e-3 | 1389.0 | null | 50.93 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MDV | Asia | Maldives | 2020-02-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-07-04 | 2435.0 | 25.0 | 18.571 | 10.0 | 0.0 | 0.286 | 4504.738 | 46.25 | 34.357 | 18.5 | 0.0 | 0.529 | 1.13 | null | null | null | null | null | null | null | null | 55245.0 | 1378.0 | 102.203 | 2.549 | 1072.0 | 1.983 | 1.7e-2 | 57.7 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-08-03 | 4293.0 | 129.0 | 132.0 | 18.0 | 0.0 | 0.429 | 7942.029 | 238.649 | 244.199 | 33.3 | 0.0 | 0.793 | 1.26 | null | null | null | null | null | null | null | null | 82208.0 | 1209.0 | 152.084 | 2.237 | 1157.0 | 2.14 | 0.114 | 8.8 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MLI | Africa | Mali | 2020-03-03 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-08-02 | 860.0 | 15.0 | 22.857 | 9.0 | 0.0 | 0.0 | 1947.733 | 33.972 | 51.767 | 20.383 | 0.0 | 0.0 | 1.27 | null | null | null | null | 0.0 | 0.0 | 7.157 | 16.209 | 131600.0 | 1437.0 | 298.048 | 3.255 | 1515.0 | 3.431 | 1.5e-2 | 66.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-10-29 | 5866.0 | 106.0 | 104.143 | 59.0 | 3.0 | 1.429 | 13285.35 | 240.069 | 235.863 | 133.624 | 6.794 | 3.235 | 1.02 | null | null | null | null | null | null | null | null | 332583.0 | 3075.0 | 753.236 | 6.964 | 3019.0 | 6.837 | 3.4e-2 | 29.0 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-12-01 | 9975.0 | 102.0 | 119.714 | 141.0 | 4.0 | 3.429 | 22591.436 | 231.01 | 271.13 | 319.338 | 9.059 | 7.765 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MHL | Oceania | Marshall Islands | 2020-06-11 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59194.0 | 295.15 | null | null | null | 3819.202 | null | 557.793 | 30.53 | null | null | 82.502 | 2.7 | 73.7 | 0.708 |
MHL | Oceania | Marshall Islands | 2020-08-16 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59194.0 | 295.15 | null | null | null | 3819.202 | null | 557.793 | 30.53 | null | null | 82.502 | 2.7 | 73.7 | 0.708 |
MRT | Africa | Mauritania | 2020-06-22 | 3121.0 | 137.0 | 176.286 | 112.0 | 1.0 | 3.0 | 671.232 | 29.465 | 37.914 | 24.088 | 0.215 | 0.645 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | 1774.0 | 0.382 | 9.9e-2 | 10.1 | null | 77.78 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MRT | Africa | Mauritania | 2020-08-26 | 6977.0 | 17.0 | 21.143 | 158.0 | 0.0 | 0.0 | 1500.54 | 3.656 | 4.547 | 33.981 | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | 289.0 | 6.2e-2 | 7.3e-2 | 13.7 | null | 29.63 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MUS | Africa | Mauritius | 2020-07-07 | 342.0 | 0.0 | 0.143 | 10.0 | 0.0 | 0.0 | 268.917 | 0.0 | 0.112 | 7.863 | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MUS | Africa | Mauritius | 2020-10-09 | 395.0 | 0.0 | 1.429 | 10.0 | 0.0 | 0.0 | 310.591 | 0.0 | 1.123 | 7.863 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MDA | Europe | Moldova | 2020-08-31 | 36920.0 | 220.0 | 441.714 | 995.0 | 3.0 | 7.143 | 9152.29 | 54.537 | 109.499 | 246.656 | 0.744 | 1.771 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MDA | Europe | Moldova | 2020-10-10 | 61762.0 | 929.0 | 839.143 | 1458.0 | 16.0 | 15.0 | 15310.502 | 230.295 | 208.019 | 361.431 | 3.966 | 3.718 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-04-07 | 15.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 4.576 | 0.0 | 0.131 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
TLS | Asia | Timor | 2020-09-27 | 27.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 20.479 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-05-25 | 386.0 | 5.0 | 8.0 | 13.0 | 1.0 | 0.143 | 46.625 | 0.604 | 0.966 | 1.57 | 0.121 | 1.7e-2 | 1.04 | null | null | null | null | null | null | null | null | 17066.0 | 302.0 | 2.061 | 3.6e-2 | 514.0 | 6.2e-2 | 1.6e-2 | 64.2 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TTO | North America | Trinidad and Tobago | 2020-09-13 | 3042.0 | 49.0 | 113.143 | 53.0 | 2.0 | 2.714 | 2173.647 | 35.013 | 80.846 | 37.871 | 1.429 | 1.939 | 1.11 | null | null | null | null | null | null | null | null | 23681.0 | 173.0 | 16.921 | 0.124 | 252.0 | 0.18 | 0.449 | 2.2 | null | 80.56 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TTO | North America | Trinidad and Tobago | 2020-10-04 | 4763.0 | 48.0 | 57.286 | 81.0 | 2.0 | 1.429 | 3403.38 | 34.298 | 40.933 | 57.878 | 1.429 | 1.021 | 0.8 | null | null | null | null | null | null | null | null | 29209.0 | 192.0 | 20.871 | 0.137 | 233.0 | 0.166 | 0.246 | 4.1 | null | 80.56 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TTO | North America | Trinidad and Tobago | 2020-10-28 | 5594.0 | 26.0 | 28.857 | 107.0 | 1.0 | 0.857 | 3997.168 | 18.578 | 20.62 | 76.456 | 0.715 | 0.612 | 0.88 | null | null | null | null | null | null | null | null | 32692.0 | 162.0 | 23.36 | 0.116 | 121.0 | 8.6e-2 | 0.238 | 4.2 | null | 65.74 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TUN | Africa | Tunisia | 2020-04-10 | 671.0 | 28.0 | 25.143 | 25.0 | 0.0 | 1.0 | 56.775 | 2.369 | 2.127 | 2.115 | 0.0 | 8.5e-2 | 0.93 | null | null | null | null | null | null | null | null | 11238.0 | 562.0 | 0.951 | 4.8e-2 | 679.0 | 5.7e-2 | 3.7e-2 | 27.0 | null | 90.74 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-03-12 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 1.2e-2 | 0.0 | 2.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-10-23 | 357693.0 | 2165.0 | 1962.571 | 9658.0 | 74.0 | 72.143 | 4241.131 | 25.67 | 23.27 | 114.514 | 0.877 | 0.855 | 1.17 | null | null | null | null | null | null | null | null | 1.2992246e7 | 115979.0 | 154.048 | 1.375 | 113924.0 | 1.351 | 1.7e-2 | 58.0 | null | 68.06 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-01-30 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-08-01 | 1176.0 | 22.0 | 10.429 | 4.0 | 1.0 | 0.429 | 25.71 | 0.481 | 0.228 | 8.7e-2 | 2.2e-2 | 9.0e-3 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | 2512.0 | 5.5e-2 | 4.0e-3 | 240.9 | null | 76.85 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-10-21 | 10933.0 | 145.0 | 123.429 | 98.0 | 1.0 | 0.429 | 239.02 | 3.17 | 2.698 | 2.142 | 2.2e-2 | 9.0e-3 | 1.04 | null | null | null | null | null | null | null | null | 529236.0 | 1886.0 | 11.57 | 4.1e-2 | 2045.0 | 4.5e-2 | 6.0e-2 | 16.6 | null | 61.11 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-06-13 | 31177.0 | 762.0 | 582.286 | 890.0 | 10.0 | 15.0 | 712.882 | 17.424 | 13.314 | 20.35 | 0.229 | 0.343 | 1.2 | null | null | null | null | null | null | null | null | 479111.0 | 10939.0 | 10.955 | 0.25 | 9224.0 | 0.211 | 6.3e-2 | 15.8 | null | 76.39 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-09-04 | 134069.0 | 2769.0 | 2413.857 | 2812.0 | 53.0 | 44.714 | 3065.572 | 63.315 | 55.194 | 64.298 | 1.212 | 1.022 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | 21895.0 | 0.501 | 0.11 | 9.1 | null | 64.35 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-10-02 | 223376.0 | 4751.0 | 3820.714 | 4357.0 | 69.0 | 63.857 | 5107.633 | 108.635 | 87.363 | 99.626 | 1.578 | 1.46 | 1.18 | null | null | null | null | null | null | null | null | 2337942.0 | 29527.0 | 53.459 | 0.675 | 25898.0 | 0.592 | 0.148 | 6.8 | null | 58.8 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
ARE | Asia | United Arab Emirates | 2020-03-19 | 140.0 | 27.0 | 7.857 | null | 0.0 | 0.0 | 14.155 | 2.73 | 0.794 | null | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | 114569.0 | 13857.0 | 11.584 | 1.401 | 5863.0 | 0.593 | 1.0e-3 | 746.2 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-07-06 | 52068.0 | 528.0 | 546.0 | 324.0 | 1.0 | 1.429 | 5264.499 | 53.385 | 55.205 | 32.759 | 0.101 | 0.144 | 1.05 | null | null | null | null | null | null | null | null | 3890424.0 | 51430.0 | 393.354 | 5.2 | 50542.0 | 5.11 | 1.1e-2 | 92.6 | null | 43.52 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-10-21 | 119132.0 | 1538.0 | 1299.0 | 472.0 | 2.0 | 3.143 | 12045.216 | 155.504 | 131.339 | 47.723 | 0.202 | 0.318 | 1.08 | null | null | null | null | null | null | null | null | 1.1988391e7 | 105740.0 | 1212.124 | 10.691 | 110243.0 | 11.146 | 1.2e-2 | 84.9 | null | 50.93 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-11-19 | 155254.0 | 1153.0 | 1217.0 | 544.0 | 2.0 | 3.0 | 15697.444 | 116.578 | 123.049 | 55.003 | 0.202 | 0.303 | 1.01 | null | null | null | null | null | null | null | null | 1.5405022e7 | 120041.0 | 1557.573 | 12.137 | 114706.0 | 11.598 | 1.1e-2 | 94.3 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
GBR | Europe | United Kingdom | 2020-08-16 | 320343.0 | 1111.0 | 1109.857 | 41451.0 | 5.0 | 12.571 | 4718.837 | 16.366 | 16.349 | 610.597 | 7.4e-2 | 0.185 | 1.04 | 78.0 | 1.149 | 917.0 | 13.508 | null | null | 718.105 | 10.578 | 1.1978298e7 | 162256.0 | 176.447 | 2.39 | 160168.0 | 2.359 | 7.0e-3 | 144.3 | null | 66.2 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-08-12 | 5183020.0 | 56796.0 | 53010.714 | 166087.0 | 1506.0 | 1026.429 | 15658.545 | 171.588 | 160.152 | 501.769 | 4.55 | 3.101 | 0.93 | 9555.0 | 28.867 | 47949.0 | 144.86 | null | null | null | null | 7.4717483e7 | 985955.0 | 225.731 | 2.979 | 855780.0 | 2.585 | 6.0e-2 | 16.7 | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-03 | 1636.0 | 10.0 | 12.143 | 44.0 | 0.0 | 0.143 | 470.964 | 2.879 | 3.496 | 12.667 | 0.0 | 4.1e-2 | 1.11 | null | null | null | null | null | null | null | null | 178629.0 | null | 51.423 | null | 1787.0 | 0.514 | 7.0e-3 | 147.2 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-03-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-05-27 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-07-10 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VEN | South America | Venezuela | 2020-03-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
ESH | Africa | Western Sahara | 2020-06-07 | 9.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 15.067 | 0.0 | 0.0 | 1.674 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
OWID_WRL | null | World | 2020-03-30 | 799127.0 | 65288.0 | 58894.286 | 39636.0 | 4052.0 | 3262.714 | 102.521 | 8.376 | 7.556 | 5.085 | 0.52 | 0.419 | 1.58 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
YEM | Asia | Yemen | 2020-05-12 | 65.0 | 9.0 | 6.143 | 10.0 | 1.0 | 0.857 | 2.179 | 0.302 | 0.206 | 0.335 | 3.4e-2 | 2.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-08-29 | 1946.0 | 3.0 | 5.571 | 563.0 | 0.0 | 2.429 | 65.245 | 0.101 | 0.187 | 18.876 | 0.0 | 8.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-10-25 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 69.067 | 0.0 | 1.9e-2 | 20.083 | 0.0 | 1.0e-2 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-11-14 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 69.47 | 0.0 | 1.0e-2 | 20.284 | 0.0 | 1.4e-2 | 0.8 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
ZMB | Africa | Zambia | 2020-10-27 | 16243.0 | 43.0 | 37.286 | 348.0 | 0.0 | 0.286 | 883.542 | 2.339 | 2.028 | 18.93 | 0.0 | 1.6e-2 | 0.91 | null | null | null | null | null | null | null | null | 241276.0 | 3566.0 | 13.124 | 0.194 | 3790.0 | 0.206 | 1.0e-2 | 101.6 | null | 45.37 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-03-24 | 3.0 | 0.0 | 0.429 | 1.0 | 0.0 | 0.143 | 0.202 | 0.0 | 2.9e-2 | 6.7e-2 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-09-04 | 6837.0 | 159.0 | 64.143 | 206.0 | 0.0 | 1.571 | 460.004 | 10.698 | 4.316 | 13.86 | 0.0 | 0.106 | 1.02 | null | null | null | null | null | null | null | null | 103790.0 | 919.0 | 6.983 | 6.2e-2 | 931.0 | 6.3e-2 | 6.9e-2 | 14.5 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
AFG | Asia | Afghanistan | 2020-05-23 | 10001.0 | 782.0 | 514.0 | 217.0 | 11.0 | 7.0 | 256.908 | 20.088 | 13.204 | 5.574 | 0.283 | 0.18 | 1.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
AFG | Asia | Afghanistan | 2020-07-19 | 35453.0 | 174.0 | 144.571 | 1183.0 | 17.0 | 24.429 | 910.725 | 4.47 | 3.714 | 30.389 | 0.437 | 0.628 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.7 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-10-02 | 13965.0 | 159.0 | 131.429 | 389.0 | 1.0 | 2.286 | 4852.665 | 55.251 | 45.67 | 135.173 | 0.347 | 0.794 | 1.08 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-03-29 | 511.0 | 57.0 | 44.286 | 31.0 | 2.0 | 2.0 | 11.653 | 1.3 | 1.01 | 0.707 | 4.6e-2 | 4.6e-2 | 1.73 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-08-27 | 43016.0 | 397.0 | 394.0 | 1475.0 | 10.0 | 9.143 | 980.957 | 9.053 | 8.985 | 33.637 | 0.228 | 0.208 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AGO | Africa | Angola | 2020-03-20 | 1.0 | 1.0 | 0.143 | null | 0.0 | 0.0 | 3.0e-2 | 3.0e-2 | 4.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
AGO | Africa | Angola | 2020-05-22 | 60.0 | 2.0 | 1.714 | 3.0 | 0.0 | 0.143 | 1.826 | 6.1e-2 | 5.2e-2 | 9.1e-2 | 0.0 | 4.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.48 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-05-25 | 25.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 255.29 | 0.0 | 0.0 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-07-29 | 91.0 | 5.0 | 2.143 | 3.0 | 0.0 | 0.0 | 929.254 | 51.058 | 21.882 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-11-16 | 1318384.0 | 7893.0 | 9697.857 | 35727.0 | 291.0 | 260.0 | 29170.513 | 174.64 | 214.574 | 790.494 | 6.439 | 5.753 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
AUS | Oceania | Australia | 2020-04-09 | 6108.0 | 98.0 | 141.714 | 51.0 | 1.0 | 3.857 | 239.531 | 3.843 | 5.557 | 2.0 | 3.9e-2 | 0.151 | 0.58 | null | null | null | null | null | null | null | null | 330134.0 | 10766.0 | 12.946 | 0.422 | 9970.0 | 0.391 | 1.4e-2 | 70.4 | null | 73.15 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-04-24 | 6677.0 | 15.0 | 22.143 | 79.0 | 4.0 | 1.857 | 261.844 | 0.588 | 0.868 | 3.098 | 0.157 | 7.3e-2 | 0.41 | null | null | null | null | null | null | null | null | 482370.0 | 15711.0 | 18.917 | 0.616 | 12977.0 | 0.509 | 2.0e-3 | 586.1 | null | 69.44 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-10-10 | 27263.0 | 19.0 | 18.286 | 898.0 | 1.0 | 0.571 | 1069.142 | 0.745 | 0.717 | 35.216 | 3.9e-2 | 2.2e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 33551.0 | 1.316 | 1.0e-3 | 1834.8 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-03-19 | 2013.0 | 367.0 | 244.429 | 6.0 | 2.0 | 0.714 | 223.508 | 40.749 | 27.139 | 0.666 | 0.222 | 7.9e-2 | 2.43 | null | null | null | null | null | null | null | null | 13724.0 | 1747.0 | 1.524 | 0.194 | 1122.0 | 0.125 | 0.218 | 4.6 | null | 81.48 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-04 | 21481.0 | 96.0 | 114.857 | 719.0 | 1.0 | 0.857 | 2385.082 | 10.659 | 12.753 | 79.832 | 0.111 | 9.5e-2 | 0.99 | 23.0 | 2.554 | 84.0 | 9.327 | null | null | null | null | 923902.0 | 7124.0 | 102.583 | 0.791 | 7614.0 | 0.845 | 1.5e-2 | 66.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-26 | 26033.0 | 327.0 | 278.429 | 733.0 | 0.0 | 0.571 | 2890.5 | 36.308 | 30.915 | 81.387 | 0.0 | 6.3e-2 | 1.18 | 23.0 | 2.554 | 118.0 | 13.102 | null | null | null | null | 1119199.0 | 9110.0 | 124.267 | 1.012 | 10140.0 | 1.126 | 2.7e-2 | 36.4 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-06-26 | 15369.0 | 517.0 | 514.571 | 187.0 | 7.0 | 6.286 | 1515.804 | 50.99 | 50.751 | 18.443 | 0.69 | 0.62 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-07-08 | 21916.0 | 542.0 | 543.429 | 274.0 | 9.0 | 7.714 | 2161.517 | 53.456 | 53.597 | 27.024 | 0.888 | 0.761 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-09-29 | 3903.0 | 65.0 | 62.286 | 91.0 | 2.0 | 2.0 | 9925.035 | 165.29 | 158.388 | 231.406 | 5.086 | 5.086 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-10-13 | 5163.0 | 0.0 | 86.286 | 108.0 | 0.0 | 1.143 | 13129.12 | 0.0 | 219.418 | 274.636 | 0.0 | 2.906 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-03-07 | 85.0 | 25.0 | 6.286 | null | 0.0 | 0.0 | 49.953 | 14.692 | 3.694 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 6420.0 | null | 3.773 | null | null | null | null | null | null | 30.56 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-07-09 | 31528.0 | 597.0 | 527.286 | 103.0 | 5.0 | 1.286 | 18528.629 | 350.85 | 309.88 | 60.532 | 2.938 | 0.756 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | 10160.0 | 5.971 | 5.2e-2 | 19.3 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-21 | 78907.0 | 374.0 | 326.571 | 308.0 | 3.0 | 3.0 | 46372.701 | 219.795 | 191.922 | 181.008 | 1.763 | 1.763 | 0.89 | null | null | null | null | null | null | null | null | 1638436.0 | 10360.0 | 962.889 | 6.088 | 10057.0 | 5.91 | 3.2e-2 | 30.8 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-11-14 | 84523.0 | 174.0 | 179.857 | 333.0 | 1.0 | 0.571 | 49673.157 | 102.258 | 105.7 | 195.7 | 0.588 | 0.336 | 0.87 | null | null | null | null | null | null | null | null | 1885616.0 | 8435.0 | 1108.154 | 4.957 | 10218.0 | 6.005 | 1.8e-2 | 56.8 | null | 58.33 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-04-26 | 5416.0 | 418.0 | 422.857 | 145.0 | 5.0 | 7.714 | 32.886 | 2.538 | 2.568 | 0.88 | 3.0e-2 | 4.7e-2 | 1.44 | null | null | null | null | null | null | null | null | 50401.0 | 3812.0 | 0.306 | 2.3e-2 | 3400.0 | 2.1e-2 | 0.124 | 8.0 | null | 93.52 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BRB | North America | Barbados | 2020-08-07 | 138.0 | 5.0 | 4.0 | 7.0 | 0.0 | 0.0 | 480.215 | 17.399 | 13.919 | 24.359 | 0.0 | 0.0 | 0.62 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BLR | Europe | Belarus | 2020-02-16 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-07-01 | 62424.0 | 306.0 | 354.143 | 398.0 | 6.0 | 5.143 | 6606.189 | 32.383 | 37.478 | 42.119 | 0.635 | 0.544 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | 16577.0 | 1.754 | 2.1e-2 | 46.8 | null | 16.67 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-04-17 | 36138.0 | 1329.0 | 1353.0 | 5163.0 | 306.0 | 306.286 | 3118.136 | 114.672 | 116.742 | 445.485 | 26.403 | 26.428 | 1.02 | 1119.0 | 96.552 | 5088.0 | 439.014 | null | null | null | null | 198449.0 | 11300.0 | 17.123 | 0.975 | 9046.0 | 0.781 | 0.15 | 6.7 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-06-19 | 60476.0 | 128.0 | 93.857 | 9695.0 | 12.0 | 7.0 | 5218.119 | 11.044 | 8.098 | 836.525 | 1.035 | 0.604 | 0.87 | 50.0 | 4.314 | 308.0 | 26.576 | null | null | null | null | 1133205.0 | 13395.0 | 97.778 | 1.156 | 12647.0 | 1.091 | 7.0e-3 | 134.7 | null | 51.85 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-10-28 | 3261.0 | 61.0 | 46.286 | 52.0 | 1.0 | 0.857 | 8201.277 | 153.412 | 116.407 | 130.778 | 2.515 | 2.156 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-04-25 | 54.0 | 0.0 | 2.714 | 1.0 | 0.0 | 0.0 | 4.454 | 0.0 | 0.224 | 8.2e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-07-13 | 84.0 | 0.0 | 0.571 | null | 0.0 | 0.0 | 108.863 | 0.0 | 0.741 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-11-19 | 378.0 | 0.0 | 1.286 | null | 0.0 | 0.0 | 489.884 | 0.0 | 1.666 | null | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-12-02 | 415.0 | 1.0 | 4.143 | null | 0.0 | 0.0 | 537.835 | 1.296 | 5.369 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BIH | Europe | Bosnia and Herzegovina | 2020-05-26 | 2416.0 | 10.0 | 13.571 | 149.0 | 3.0 | 2.143 | 736.402 | 3.048 | 4.137 | 45.416 | 0.914 | 0.653 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-04-17 | 15.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 6.379 | 0.0 | 0.121 | 0.425 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-08-24 | 1562.0 | 254.0 | 36.286 | 3.0 | 0.0 | 0.0 | 664.222 | 108.01 | 15.43 | 1.276 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-06-15 | 888271.0 | 20647.0 | 25837.0 | 43959.0 | 627.0 | 975.0 | 4178.931 | 97.135 | 121.552 | 206.808 | 2.95 | 4.587 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-30 | 2610102.0 | 57837.0 | 46089.571 | 91263.0 | 1129.0 | 1025.857 | 12279.4 | 272.098 | 216.831 | 429.353 | 5.311 | 4.826 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | 67066.0 | 0.316 | null | null | null | 72.69 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-29 | 6314740.0 | 24468.0 | 34762.714 | 172833.0 | 272.0 | 521.429 | 29708.118 | 115.111 | 163.544 | 813.104 | 1.28 | 2.453 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-24 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-05-21 | 141.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 2.286 | 0.0 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-07-21 | 9254.0 | 325.0 | 229.857 | 313.0 | 5.0 | 4.286 | 1331.809 | 46.773 | 33.08 | 45.046 | 0.72 | 0.617 | 1.11 | 34.0 | 4.893 | 624.0 | 89.804 | null | null | null | null | 215572.0 | 9051.0 | 31.024 | 1.303 | 5128.0 | 0.738 | 4.5e-2 | 22.3 | null | 36.11 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-09 | 2254.0 | 13.0 | 18.714 | 60.0 | 0.0 | 0.143 | 107.83 | 0.622 | 0.895 | 2.87 | 0.0 | 7.0e-3 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-29 | 2856.0 | 40.0 | 17.286 | 68.0 | 0.0 | 0.0 | 136.629 | 1.914 | 0.827 | 3.253 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-11-28 | 681.0 | 0.0 | 3.571 | 1.0 | 0.0 | 0.0 | 57.271 | 0.0 | 0.3 | 8.4e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-04-12 | 122.0 | 2.0 | 1.143 | null | 0.0 | 0.0 | 7.297 | 0.12 | 6.8e-2 | null | 0.0 | 0.0 | 0.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-04-22 | 122.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-06-02 | 125.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 7.477 | 0.0 | 9.0e-3 | null | 0.0 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-08 | 281.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 16.807 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | 0.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.04 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-25 | 287.0 | 0.0 | 0.571 | null | 0.0 | 0.0 | 17.166 | 0.0 | 3.4e-2 | null | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-04-08 | 730.0 | 72.0 | 71.0 | 10.0 | 1.0 | 0.571 | 27.5 | 2.712 | 2.675 | 0.377 | 3.8e-2 | 2.2e-2 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-04-13 | 820.0 | 0.0 | 23.143 | 12.0 | 0.0 | 0.429 | 30.89 | 0.0 | 0.872 | 0.452 | 0.0 | 1.6e-2 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-06-18 | 9864.0 | 0.0 | 169.0 | 276.0 | 0.0 | 9.143 | 371.583 | 0.0 | 6.366 | 10.397 | 0.0 | 0.344 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-06 | 12592.0 | 0.0 | 0.0 | 313.0 | 0.0 | 0.0 | 474.349 | 0.0 | 0.0 | 11.791 | 0.0 | 0.0 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-25 | 16708.0 | 0.0 | 78.714 | 385.0 | 0.0 | 1.714 | 629.401 | 0.0 | 2.965 | 14.503 | 0.0 | 6.5e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-10-25 | 21570.0 | 0.0 | 18.429 | 425.0 | 0.0 | 0.286 | 812.556 | 0.0 | 0.694 | 16.01 | 0.0 | 1.1e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CPV | Africa | Cape Verde | 2020-08-22 | 3455.0 | 43.0 | 41.714 | 37.0 | 0.0 | 0.429 | 6214.163 | 77.34 | 75.027 | 66.548 | 0.0 | 0.771 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.28 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-02-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
CAF | Africa | Central African Republic | 2020-04-07 | 8.0 | 0.0 | 0.714 | null | 0.0 | 0.0 | 1.656 | 0.0 | 0.148 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
CHL | South America | Chile | 2020-10-25 | 502063.0 | 1521.0 | 1471.857 | 13944.0 | 52.0 | 44.143 | 26263.733 | 79.566 | 76.995 | 729.433 | 2.72 | 2.309 | 0.97 | null | null | null | null | null | null | null | null | 4111528.0 | 38473.0 | 215.081 | 2.013 | 32087.0 | 1.679 | 4.6e-2 | 21.8 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-10-31 | 510256.0 | 1685.0 | 1387.714 | 14207.0 | 49.0 | 45.0 | 26692.322 | 88.145 | 72.594 | 743.191 | 2.563 | 2.354 | 0.98 | null | null | null | null | null | null | null | null | 4300738.0 | 39258.0 | 224.979 | 2.054 | 32526.0 | 1.701 | 4.3e-2 | 23.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-08-16 | 89375.0 | 96.0 | 83.143 | 4703.0 | 0.0 | 2.429 | 62.095 | 6.7e-2 | 5.8e-2 | 3.268 | 0.0 | 2.0e-3 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-10-31 | 91366.0 | 27.0 | 34.0 | 4739.0 | 0.0 | 0.0 | 63.478 | 1.9e-2 | 2.4e-2 | 3.293 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-11-21 | 92037.0 | 60.0 | 29.857 | 4742.0 | 0.0 | 0.0 | 63.945 | 4.2e-2 | 2.1e-2 | 3.295 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-03-19 | 108.0 | 6.0 | 14.143 | null | 0.0 | 0.0 | 2.123 | 0.118 | 0.278 | null | 0.0 | 0.0 | 1.86 | null | null | null | null | null | null | null | null | 5363.0 | 673.0 | 0.105 | 1.3e-2 | 567.0 | 1.1e-2 | null | null | null | 50.93 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-05-01 | 7006.0 | 499.0 | 303.571 | 314.0 | 21.0 | 12.714 | 137.689 | 9.807 | 5.966 | 6.171 | 0.413 | 0.25 | 1.36 | null | null | null | null | null | null | null | null | 108950.0 | 4293.0 | 2.141 | 8.4e-2 | 4424.0 | 8.7e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-07-14 | 159898.0 | 5621.0 | 5057.714 | 5625.0 | 170.0 | 180.857 | 3142.471 | 110.469 | 99.399 | 110.548 | 3.341 | 3.554 | 1.25 | null | null | null | null | null | null | null | null | 1082415.0 | 25601.0 | 21.273 | 0.503 | 25730.0 | 0.506 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-10-07 | 877684.0 | 7876.0 | 6857.857 | 27180.0 | 163.0 | 168.857 | 17249.101 | 154.787 | 134.777 | 534.168 | 3.203 | 3.319 | 1.04 | null | null | null | null | null | null | null | null | 3526959.0 | 25357.0 | 69.315 | 0.498 | 25665.0 | 0.504 | null | null | null | 71.3 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-03-22 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-06-25 | 272.0 | 7.0 | 8.857 | 7.0 | 0.0 | 0.286 | 312.789 | 8.05 | 10.185 | 8.05 | 0.0 | 0.329 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-08-20 | 417.0 | 11.0 | 2.571 | 7.0 | 0.0 | 0.0 | 479.534 | 12.65 | 2.957 | 8.05 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-04 | 487.0 | 0.0 | 1.286 | 7.0 | 0.0 | 0.0 | 560.031 | 0.0 | 1.479 | 8.05 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-11-28 | 5774.0 | 0.0 | 20.286 | 94.0 | 0.0 | 0.143 | 1046.376 | 0.0 | 3.676 | 17.035 | 0.0 | 2.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 43.52 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CRI | North America | Costa Rica | 2020-03-31 | 347.0 | 17.0 | 24.286 | 2.0 | 0.0 | 0.0 | 68.118 | 3.337 | 4.767 | 0.393 | 0.0 | 0.0 | 1.01 | null | null | null | null | null | null | null | null | 3905.0 | 153.0 | 0.767 | 3.0e-2 | 293.0 | 5.8e-2 | null | null | null | 71.3 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CUB | North America | Cuba | 2020-03-30 | 170.0 | 31.0 | 18.571 | 4.0 | 1.0 | 0.429 | 15.009 | 2.737 | 1.64 | 0.353 | 8.8e-2 | 3.8e-2 | 1.34 | null | null | null | null | null | null | null | null | 2322.0 | 315.0 | 0.205 | 2.8e-2 | 242.0 | 2.1e-2 | 7.7e-2 | 13.0 | null | 66.67 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CUB | North America | Cuba | 2020-08-30 | 3973.0 | 48.0 | 41.571 | 94.0 | 0.0 | 0.429 | 350.767 | 4.238 | 3.67 | 8.299 | 0.0 | 3.8e-2 | 1.09 | null | null | null | null | null | null | null | null | 398223.0 | 5438.0 | 35.158 | 0.48 | 4696.0 | 0.415 | 9.0e-3 | 113.0 | null | 82.41 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CYP | Europe | Cyprus | 2020-04-10 | 595.0 | 31.0 | 28.429 | 10.0 | 0.0 | -0.143 | 679.302 | 35.392 | 32.456 | 11.417 | 0.0 | -0.163 | 0.98 | null | null | null | null | null | null | null | null | 16299.0 | 819.0 | 18.608 | 0.935 | 979.0 | 1.118 | 2.9e-2 | 34.4 | null | 92.59 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CYP | Europe | Cyprus | 2020-05-25 | 937.0 | 2.0 | 2.857 | 17.0 | 0.0 | 0.0 | 1069.758 | 2.283 | 3.262 | 19.409 | 0.0 | 0.0 | 0.86 | null | null | null | null | null | null | null | null | 103705.0 | 2128.0 | 118.398 | 2.43 | 2140.0 | 2.443 | 1.0e-3 | 749.0 | null | 76.85 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-11-08 | 414828.0 | 3608.0 | 10454.857 | 4858.0 | 177.0 | 204.143 | 38736.455 | 336.913 | 976.27 | 453.638 | 16.528 | 19.063 | 0.8 | 1199.0 | 111.962 | 7787.0 | 727.147 | 2035.248 | 190.051 | 12831.914 | 1198.238 | 2601451.0 | 13727.0 | 242.922 | 1.282 | 35009.0 | 3.269 | 0.299 | 3.3 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-02-09 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-08-16 | 9676.0 | 38.0 | 31.714 | 240.0 | 1.0 | 2.286 | 108.038 | 0.424 | 0.354 | 2.68 | 1.1e-2 | 2.6e-2 | 1.03 | null | null | null | null | null | null | null | null | null | 208.0 | null | 2.0e-3 | 375.0 | 4.0e-3 | 8.5e-2 | 11.8 | null | 37.04 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-08-19 | 9741.0 | 20.0 | 29.0 | 246.0 | 3.0 | 3.0 | 108.763 | 0.223 | 0.324 | 2.747 | 3.3e-2 | 3.3e-2 | 1.03 | null | null | null | null | null | null | null | null | null | 398.0 | null | 4.0e-3 | 354.0 | 4.0e-3 | 8.2e-2 | 12.2 | null | 37.04 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-06-29 | 12951.0 | 76.0 | 32.0 | 605.0 | 1.0 | 0.429 | 2235.937 | 13.121 | 5.525 | 104.451 | 0.173 | 7.4e-2 | 0.98 | null | null | null | null | null | null | null | null | 1046901.0 | 18718.0 | 180.743 | 3.232 | 15903.0 | 2.746 | 2.0e-3 | 497.0 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-07-05 | 13033.0 | 1.0 | 22.571 | 606.0 | 0.0 | 0.286 | 2250.094 | 0.173 | 3.897 | 104.623 | 0.0 | 4.9e-2 | 1.01 | 6.0 | 1.036 | 24.0 | 4.144 | null | null | 10.974 | 1.895 | 1131443.0 | 9737.0 | 195.339 | 1.681 | 14751.0 | 2.547 | 2.0e-3 | 653.5 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-09-02 | 17620.0 | 111.0 | 94.0 | 626.0 | 1.0 | 0.429 | 3042.02 | 19.164 | 16.229 | 108.076 | 0.173 | 7.4e-2 | 1.25 | 4.0 | 0.691 | 15.0 | 2.59 | null | null | null | null | 2561895.0 | 40022.0 | 442.301 | 6.91 | 34773.0 | 6.003 | 3.0e-3 | 369.9 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-04-04 | 50.0 | 1.0 | 5.143 | null | 0.0 | 0.0 | 50.607 | 1.012 | 5.205 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-05-31 | 3354.0 | 160.0 | 154.857 | 24.0 | 2.0 | 2.0 | 3394.73 | 161.943 | 156.738 | 24.291 | 2.024 | 2.024 | 1.27 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-07-20 | 5020.0 | 9.0 | 6.143 | 56.0 | 0.0 | 0.0 | 5080.961 | 9.109 | 6.217 | 56.68 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-08-14 | 5367.0 | 9.0 | 4.143 | 59.0 | 0.0 | 0.0 | 5432.175 | 9.109 | 4.193 | 59.716 | 0.0 | 0.0 | 0.44 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-11-19 | 5658.0 | 0.0 | 2.429 | 61.0 | 0.0 | 0.0 | 5726.709 | 0.0 | 2.458 | 61.741 | 0.0 | 0.0 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 43.52 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DMA | North America | Dominica | 2020-08-25 | 20.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 277.813 | 0.0 | 3.969 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DMA | North America | Dominica | 2020-10-11 | 32.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 444.5 | 0.0 | 1.984 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 28.7 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DMA | North America | Dominica | 2020-11-15 | 68.0 | 0.0 | 0.714 | null | 0.0 | 0.0 | 944.563 | 0.0 | 9.922 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
ECU | South America | Ecuador | 2020-08-13 | 98343.0 | 1233.0 | 1115.143 | 6010.0 | 26.0 | 19.0 | 5574.033 | 69.886 | 63.206 | 340.644 | 1.474 | 1.077 | 1.04 | null | null | null | null | null | null | null | null | 214477.0 | 3285.0 | 12.156 | 0.186 | 2875.0 | 0.163 | null | null | null | 76.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-09-16 | 121525.0 | 1972.0 | 1337.0 | 10996.0 | 33.0 | 42.143 | 6887.977 | 111.772 | 75.781 | 623.248 | 1.87 | 2.389 | 1.17 | null | null | null | null | null | null | null | null | 302597.0 | 5210.0 | 17.151 | 0.295 | 3380.0 | 0.192 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-10-07 | 143531.0 | 1475.0 | 926.286 | 11743.0 | 41.0 | 55.429 | 8135.267 | 83.602 | 52.501 | 665.587 | 2.324 | 3.142 | 0.98 | null | null | null | null | null | null | null | null | 384086.0 | 5215.0 | 21.77 | 0.296 | 3453.0 | 0.196 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-06-15 | 46289.0 | 1691.0 | 1549.286 | 1672.0 | 97.0 | 57.286 | 452.331 | 16.524 | 15.139 | 16.339 | 0.948 | 0.56 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-07-28 | 15446.0 | 411.0 | 409.143 | 417.0 | 9.0 | 9.286 | 2381.363 | 63.365 | 63.079 | 64.29 | 1.388 | 1.432 | 1.1 | null | null | null | null | null | null | null | null | 234086.0 | 2402.0 | 36.09 | 0.37 | 2453.0 | 0.378 | 0.167 | 6.0 | null | 89.81 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-11-09 | 491.0 | 0.0 | 1.571 | null | 0.0 | 0.0 | 138.449 | 0.0 | 0.443 | null | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-03-27 | 575.0 | 37.0 | 41.714 | 1.0 | 0.0 | 0.143 | 433.459 | 27.892 | 31.446 | 0.754 | 0.0 | 0.108 | 1.41 | 10.0 | 7.538 | 59.0 | 44.477 | null | null | null | null | 9652.0 | 1288.0 | 7.276 | 0.971 | 898.0 | 0.677 | 4.6e-2 | 21.5 | null | 72.22 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-04-27 | 124.0 | 1.0 | 1.857 | 3.0 | 0.0 | 0.0 | 1.079 | 9.0e-3 | 1.6e-2 | 2.6e-2 | 0.0 | 0.0 | 0.38 | null | null | null | null | null | null | null | null | 14588.0 | 943.0 | 0.127 | 8.0e-3 | 948.0 | 8.0e-3 | 2.0e-3 | 510.5 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-26 | 45221.0 | 1533.0 | 1594.714 | 725.0 | 16.0 | 17.857 | 393.351 | 13.335 | 13.871 | 6.306 | 0.139 | 0.155 | 1.09 | null | null | null | null | null | null | null | null | 813410.0 | 18724.0 | 7.075 | 0.163 | 20110.0 | 0.175 | 7.9e-2 | 12.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
MNE | Europe | Montenegro | 2020-02-28 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-27 | 10313.0 | 116.0 | 243.0 | 158.0 | 0.0 | 3.143 | 16420.353 | 184.695 | 386.904 | 251.568 | 0.0 | 5.004 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-10 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-05-29 | 7714.0 | 71.0 | 54.571 | 202.0 | 0.0 | 0.714 | 208.992 | 1.924 | 1.478 | 5.473 | 0.0 | 1.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 190061.0 | 9872.0 | 5.149 | 0.267 | 9523.0 | 0.258 | 6.0e-3 | 174.5 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MMR | Asia | Myanmar | 2020-11-08 | 61377.0 | 1029.0 | 1138.857 | 1420.0 | 24.0 | 23.143 | 1128.051 | 18.912 | 20.931 | 26.098 | 0.441 | 0.425 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-03-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-04-25 | 16.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 675.0 | 54.0 | 0.266 | 2.1e-2 | 25.0 | 1.0e-2 | 0.0 | null | null | 73.15 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-03-20 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 546.0 | 17.0 | 1.9e-2 | 1.0e-3 | 13.0 | 0.0 | 0.0 | null | null | 58.33 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-07-05 | 15784.0 | 293.0 | 430.286 | 34.0 | 0.0 | 0.857 | 541.72 | 10.056 | 14.768 | 1.167 | 0.0 | 2.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 251007.0 | 4710.0 | 8.615 | 0.162 | 5024.0 | 0.172 | 8.6e-2 | 11.7 | null | 92.59 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-10-25 | 158089.0 | 2856.0 | 3691.857 | 847.0 | 5.0 | 15.429 | 5425.749 | 98.02 | 126.708 | 29.07 | 0.172 | 0.53 | 0.96 | null | null | null | null | null | null | null | null | 1393173.0 | 12311.0 | 47.815 | 0.423 | 15688.0 | 0.538 | 0.235 | 4.2 | null | 63.89 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-04-26 | 38040.0 | 656.0 | 743.143 | 4491.0 | 67.0 | 113.429 | 2220.034 | 38.284 | 43.37 | 262.097 | 3.91 | 6.62 | 0.72 | 806.0 | 47.039 | null | null | 116.994 | 6.828 | 304.384 | 17.764 | 209718.0 | null | 12.239 | null | 5485.0 | 0.32 | 0.135 | 7.4 | null | 79.63 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-14 | 51362.0 | 54.0 | 65.0 | 6154.0 | -2.0 | 0.429 | 2997.513 | 3.151 | 3.793 | 359.151 | -0.117 | 2.5e-2 | 1.21 | 27.0 | 1.576 | null | null | null | null | null | null | null | null | null | null | 11757.0 | 0.686 | 6.0e-3 | 180.9 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-08-27 | 70984.0 | 602.0 | 591.571 | 6244.0 | 3.0 | 4.143 | 4142.663 | 35.133 | 34.524 | 364.403 | 0.175 | 0.242 | 1.04 | 45.0 | 2.626 | null | null | null | null | null | null | null | null | null | null | 24998.0 | 1.459 | 2.4e-2 | 42.3 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-09-18 | 94345.0 | 2083.0 | 1567.857 | 6318.0 | 8.0 | 4.0 | 5506.023 | 121.565 | 91.501 | 368.722 | 0.467 | 0.233 | 1.41 | 72.0 | 4.202 | null | null | null | null | null | null | null | null | null | null | 28832.0 | 1.683 | 5.4e-2 | 18.4 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-05 | 3.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 0.622 | 0.0 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 332.0 | 27.0 | 6.9e-2 | 6.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-04-29 | 13.0 | 0.0 | 0.429 | 3.0 | 0.0 | 0.143 | 1.962 | 0.0 | 6.5e-2 | 0.453 | 0.0 | 2.2e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-06-24 | 2170.0 | 0.0 | 49.571 | 74.0 | 0.0 | 1.429 | 327.569 | 0.0 | 7.483 | 11.171 | 0.0 | 0.216 | 0.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-10-07 | 5264.0 | 0.0 | 13.429 | 153.0 | 2.0 | 0.286 | 794.62 | 0.0 | 2.027 | 23.096 | 0.302 | 4.3e-2 | 0.41 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-10-18 | 5353.0 | 0.0 | 12.714 | 154.0 | 0.0 | 0.143 | 808.054 | 0.0 | 1.919 | 23.247 | 0.0 | 2.2e-2 | 0.41 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NER | Africa | Niger | 2020-07-26 | 1136.0 | 12.0 | 4.571 | 69.0 | 0.0 | 0.0 | 46.929 | 0.496 | 0.189 | 2.85 | 0.0 | 0.0 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.93 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-09-24 | 1194.0 | 1.0 | 1.571 | 69.0 | 0.0 | 0.0 | 49.325 | 4.1e-2 | 6.5e-2 | 2.85 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NGA | Africa | Nigeria | 2020-05-23 | 7526.0 | 265.0 | 272.143 | 221.0 | 0.0 | 6.429 | 36.509 | 1.286 | 1.32 | 1.072 | 0.0 | 3.1e-2 | 1.19 | null | null | null | null | null | null | null | null | 43328.0 | 1421.0 | 0.21 | 7.0e-3 | 1484.0 | 7.0e-3 | 0.183 | 5.5 | null | 84.26 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-04-08 | 6086.0 | 0.0 | 174.714 | 101.0 | 12.0 | 8.143 | 1122.621 | 0.0 | 32.228 | 18.63 | 2.214 | 1.502 | 0.81 | null | null | 250.0 | 46.115 | null | null | null | null | 105216.0 | 2276.0 | 19.408 | 0.42 | 2628.0 | 0.485 | 6.6e-2 | 15.0 | null | 79.63 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-06-03 | 13537.0 | 738.0 | 737.714 | 67.0 | 8.0 | 4.0 | 2650.872 | 144.518 | 144.462 | 13.12 | 1.567 | 0.783 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-08-26 | 294193.0 | 482.0 | 535.429 | 6267.0 | 12.0 | 9.429 | 1331.839 | 2.182 | 2.424 | 28.371 | 5.4e-2 | 4.3e-2 | 0.86 | null | null | null | null | null | null | null | null | 2512337.0 | 24593.0 | 11.374 | 0.111 | 24609.0 | 0.111 | 2.2e-2 | 46.0 | null | 47.69 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-03-20 | 47.0 | 3.0 | 2.286 | null | 0.0 | 0.0 | 9.213 | 0.588 | 0.448 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PSE | Asia | Palestine | 2020-04-27 | 342.0 | 0.0 | 1.857 | 2.0 | 0.0 | 0.0 | 67.04 | 0.0 | 0.364 | 0.392 | 0.0 | 0.0 | 0.33 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PSE | Asia | Palestine | 2020-11-01 | 54060.0 | 540.0 | 516.857 | 489.0 | 6.0 | 5.857 | 10597.058 | 105.853 | 101.316 | 95.856 | 1.176 | 1.148 | 1.15 | null | null | null | null | null | null | null | null | null | 4053.0 | null | 0.794 | 4168.0 | 0.817 | 0.124 | 8.1 | null | 40.74 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-02-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-08-01 | 66383.0 | 1127.0 | 1074.143 | 1449.0 | 28.0 | 24.857 | 15385.068 | 261.196 | 248.946 | 335.823 | 6.489 | 5.761 | 1.0 | null | null | null | null | null | null | null | null | 224089.0 | 3668.0 | 51.935 | 0.85 | 3308.0 | 0.767 | 0.325 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-04-09 | 2.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 0.224 | 0.0 | 1.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-11-30 | 656.0 | 11.0 | 3.714 | 7.0 | 0.0 | 0.0 | 73.32 | 1.229 | 0.415 | 0.782 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.96 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-06-10 | 1202.0 | 15.0 | 18.857 | 11.0 | 0.0 | 0.0 | 168.524 | 2.103 | 2.644 | 1.542 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 41702.0 | 1670.0 | 5.847 | 0.234 | 1232.0 | 0.173 | 1.5e-2 | 65.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-08-30 | 17105.0 | 631.0 | 553.143 | 308.0 | 14.0 | 14.714 | 2398.167 | 88.468 | 77.552 | 43.182 | 1.963 | 2.063 | 1.18 | null | null | null | null | null | null | null | null | 190169.0 | 1610.0 | 26.662 | 0.226 | 2404.0 | 0.337 | 0.23 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-10-02 | 42684.0 | 885.0 | 779.714 | 890.0 | 21.0 | 18.429 | 5984.412 | 124.079 | 109.318 | 124.78 | 2.944 | 2.584 | 1.09 | null | null | null | null | null | null | null | null | 283537.0 | 2628.0 | 39.753 | 0.368 | 2787.0 | 0.391 | 0.28 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRT | Europe | Portugal | 2020-06-02 | 32895.0 | 195.0 | 269.714 | 1436.0 | 12.0 | 13.429 | 3226.042 | 19.124 | 26.451 | 140.83 | 1.177 | 1.317 | 1.09 | 58.0 | 5.688 | 432.0 | 42.367 | null | null | null | null | 881524.0 | 15640.0 | 86.452 | 1.534 | 13827.0 | 1.356 | 2.0e-2 | 51.3 | null | 71.3 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-17 | 98055.0 | 2153.0 | 1783.0 | 2162.0 | 13.0 | 13.571 | 9616.34 | 211.147 | 174.86 | 212.029 | 1.275 | 1.331 | 1.42 | 148.0 | 14.514 | 1012.0 | 99.248 | null | null | null | null | 3059464.0 | 23723.0 | 300.044 | 2.327 | 26828.0 | 2.631 | 6.6e-2 | 15.0 | null | 56.94 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-04-30 | 13409.0 | 845.0 | 806.429 | 10.0 | 0.0 | 0.0 | 4654.19 | 293.295 | 279.907 | 3.471 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 94500.0 | 3085.0 | 32.8 | 1.071 | 3006.0 | 1.043 | 0.268 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-05-08 | 20201.0 | 1311.0 | 872.143 | 12.0 | 0.0 | 0.0 | 7011.655 | 455.041 | 302.716 | 4.165 | 0.0 | 0.0 | 1.44 | null | null | null | null | null | null | null | null | 120458.0 | 3963.0 | 41.81 | 1.376 | 3247.0 | 1.127 | 0.269 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-09-30 | 125760.0 | 227.0 | 226.429 | 214.0 | 0.0 | 0.286 | 43650.601 | 78.79 | 78.592 | 74.278 | 0.0 | 9.9e-2 | 0.93 | null | null | null | null | null | null | null | null | 775914.0 | 5701.0 | 269.315 | 1.979 | 5260.0 | 1.826 | 4.3e-2 | 23.2 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-04-11 | 5990.0 | 523.0 | 339.571 | 291.0 | 21.0 | 20.714 | 311.368 | 27.186 | 17.651 | 15.127 | 1.092 | 1.077 | 1.28 | 208.0 | 10.812 | null | null | null | null | null | null | 59272.0 | 3842.0 | 3.081 | 0.2 | 3311.0 | 0.172 | 0.103 | 9.8 | null | 87.04 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-09-07 | 95897.0 | 883.0 | 1193.857 | 3926.0 | 33.0 | 43.571 | 4984.852 | 45.9 | 62.058 | 204.079 | 1.715 | 2.265 | 1.01 | 465.0 | 24.171 | null | null | null | null | null | null | 1945738.0 | 7247.0 | 101.142 | 0.377 | 20399.0 | 1.06 | 5.9e-2 | 17.1 | null | 45.37 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-06-15 | 536484.0 | 8217.0 | 8634.429 | 7081.0 | 143.0 | 159.714 | 3676.198 | 56.306 | 59.166 | 48.522 | 0.98 | 1.094 | 0.96 | null | null | null | null | null | null | null | null | 1.5395417e7 | 234265.0 | 105.495 | 1.605 | 305820.0 | 2.096 | 2.8e-2 | 35.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RUS | Europe | Russia | 2020-06-28 | 633563.0 | 6784.0 | 7097.714 | 9060.0 | 102.0 | 137.0 | 4341.421 | 46.487 | 48.636 | 62.083 | 0.699 | 0.939 | 0.91 | null | null | null | null | null | null | null | null | 1.9334442e7 | 289488.0 | 132.487 | 1.984 | 292107.0 | 2.002 | 2.4e-2 | 41.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RWA | Africa | Rwanda | 2020-03-25 | 41.0 | 1.0 | 4.714 | null | 0.0 | 0.0 | 3.165 | 7.7e-2 | 0.364 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-05-11 | 285.0 | 1.0 | 3.429 | null | 0.0 | 0.0 | 22.004 | 7.7e-2 | 0.265 | null | 0.0 | 0.0 | 0.8 | null | null | null | null | null | null | null | null | 42805.0 | 380.0 | 3.305 | 2.9e-2 | 1101.0 | 8.5e-2 | 3.0e-3 | 321.1 | null | 73.15 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-06-04 | 410.0 | 13.0 | 8.714 | 2.0 | 0.0 | 0.286 | 31.655 | 1.004 | 0.673 | 0.154 | 0.0 | 2.2e-2 | 1.41 | null | null | null | null | null | null | null | null | 72510.0 | 1369.0 | 5.598 | 0.106 | 1177.0 | 9.1e-2 | 7.0e-3 | 135.1 | null | 75.93 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-07-06 | 1113.0 | 8.0 | 16.0 | 3.0 | 0.0 | 0.143 | 85.931 | 0.618 | 1.235 | 0.232 | 0.0 | 1.1e-2 | 1.13 | null | null | null | null | null | null | null | null | 163384.0 | 2834.0 | 12.614 | 0.219 | 3305.0 | 0.255 | 5.0e-3 | 206.6 | null | 77.78 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
KNA | North America | Saint Kitts and Nevis | 2020-10-29 | 19.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 357.197 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
LCA | North America | Saint Lucia | 2020-02-10 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-03-10 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-03-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
VCT | North America | Saint Vincent and the Grenadines | 2020-02-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
SMR | Europe | San Marino | 2020-05-29 | 671.0 | 1.0 | 1.429 | 42.0 | 0.0 | 0.143 | 19771.348 | 29.465 | 42.094 | 1237.551 | 0.0 | 4.209 | 0.61 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 33938.0 | 556.667 | null | null | null | 56861.47 | null | null | 5.64 | null | null | null | 3.8 | 84.97 | null |
SAU | Asia | Saudi Arabia | 2020-05-06 | 31938.0 | 1687.0 | 1505.143 | 209.0 | 9.0 | 7.429 | 917.393 | 48.458 | 43.234 | 6.003 | 0.259 | 0.213 | 1.29 | null | null | null | null | null | null | null | null | 446983.0 | 16026.0 | 12.839 | 0.46 | 12498.0 | 0.359 | 0.12 | 8.3 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-08-09 | 288690.0 | 1428.0 | 1407.857 | 3167.0 | 37.0 | 35.714 | 8292.385 | 41.018 | 40.44 | 90.969 | 1.063 | 1.026 | 0.86 | null | null | null | null | null | null | null | null | 3872599.0 | 59325.0 | 111.237 | 1.704 | 56983.0 | 1.637 | 2.5e-2 | 40.5 | null | 71.3 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SEN | Africa | Senegal | 2020-04-04 | 219.0 | 12.0 | 12.714 | 2.0 | 1.0 | 0.286 | 13.079 | 0.717 | 0.759 | 0.119 | 6.0e-2 | 1.7e-2 | 0.88 | null | null | null | null | null | null | null | null | 1952.0 | 177.0 | 0.117 | 1.1e-2 | 141.0 | 8.0e-3 | 9.0e-2 | 11.1 | null | 77.78 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-06-23 | 6034.0 | 64.0 | 112.429 | 89.0 | 3.0 | 2.714 | 360.369 | 3.822 | 6.715 | 5.315 | 0.179 | 0.162 | 1.0 | null | null | null | null | null | null | null | null | 72161.0 | 1045.0 | 4.31 | 6.2e-2 | 1186.0 | 7.1e-2 | 9.5e-2 | 10.5 | null | 61.11 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-09-05 | 13948.0 | 67.0 | 70.286 | 290.0 | 1.0 | 1.143 | 833.018 | 4.001 | 4.198 | 17.32 | 6.0e-2 | 6.8e-2 | 0.77 | null | null | null | null | null | null | null | null | 158152.0 | 1313.0 | 9.445 | 7.8e-2 | 1170.0 | 7.0e-2 | 6.0e-2 | 16.6 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-09-10 | 14150.0 | 48.0 | 46.286 | 293.0 | 0.0 | 0.857 | 845.082 | 2.867 | 2.764 | 17.499 | 0.0 | 5.1e-2 | 0.83 | null | null | null | null | null | null | null | null | 163438.0 | 933.0 | 9.761 | 5.6e-2 | 1135.0 | 6.8e-2 | 4.1e-2 | 24.5 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-11-25 | 15927.0 | 19.0 | 14.857 | 331.0 | 0.0 | 0.286 | 951.21 | 1.135 | 0.887 | 19.768 | 0.0 | 1.7e-2 | null | null | null | null | null | null | null | null | null | 234381.0 | 743.0 | 13.998 | 4.4e-2 | 773.0 | 4.6e-2 | 1.9e-2 | 52.0 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-02-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 16.0 | null | 2.0e-3 | null | null | null | null | null | null | 13.89 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-05-23 | 11092.0 | 68.0 | 85.143 | 238.0 | 1.0 | 1.429 | 1630.075 | 9.993 | 12.513 | 34.976 | 0.147 | 0.21 | 0.77 | null | null | null | null | null | null | null | null | 214212.0 | 4415.0 | 31.48 | 0.649 | 5638.0 | 0.829 | 1.5e-2 | 66.2 | null | 49.07 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-03-30 | 8.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 81.35 | 0.0 | 1.453 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-11-23 | 166.0 | 3.0 | 0.857 | null | 0.0 | 0.0 | 1688.021 | 30.506 | 8.716 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SLE | Africa | Sierra Leone | 2020-07-29 | 1803.0 | 17.0 | 10.286 | 67.0 | 1.0 | 0.143 | 226.025 | 2.131 | 1.289 | 8.399 | 0.125 | 1.8e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 32.41 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SGP | Asia | Singapore | 2020-02-19 | 84.0 | 3.0 | 4.857 | null | 0.0 | 0.0 | 14.358 | 0.513 | 0.83 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-04-17 | 5050.0 | 623.0 | 420.286 | 11.0 | 1.0 | 0.571 | 863.197 | 106.489 | 71.839 | 1.88 | 0.171 | 9.8e-2 | 2.16 | null | null | null | null | null | null | null | null | null | null | null | null | 3732.0 | 0.638 | 0.113 | 8.9 | null | 85.19 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-08-12 | 2690.0 | 75.0 | 39.0 | 31.0 | 0.0 | 0.286 | 492.706 | 13.737 | 7.143 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 39.0 | 7.143 | null | null | null | null | 286852.0 | 2741.0 | 52.54 | 0.502 | 2076.0 | 0.38 | 1.9e-2 | 53.2 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-10-18 | 29835.0 | 1567.0 | 1426.286 | 88.0 | 6.0 | 3.857 | 5464.643 | 287.015 | 261.242 | 16.118 | 1.099 | 0.706 | 1.35 | null | null | 481.0 | 88.101 | null | null | null | null | 622032.0 | 5025.0 | 113.933 | 0.92 | 9941.0 | 1.821 | 0.143 | 7.0 | null | 53.7 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-09-16 | 3954.0 | 123.0 | 91.714 | 135.0 | 0.0 | 0.0 | 1901.938 | 59.165 | 44.116 | 64.937 | 0.0 | 0.0 | 1.39 | 11.0 | 5.291 | 61.0 | 29.342 | null | null | null | null | 191413.0 | 3070.0 | 92.073 | 1.477 | 2470.0 | 1.188 | 3.7e-2 | 26.9 | null | 46.3 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-11-30 | 75814.0 | 433.0 | 1433.714 | 1435.0 | 51.0 | 48.286 | 36467.763 | 208.28 | 689.64 | 690.258 | 24.532 | 23.226 | null | null | null | null | null | null | null | null | null | 523620.0 | 5868.0 | 251.87 | 2.823 | 5767.0 | 2.774 | 0.249 | 4.0 | null | 68.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SLB | Oceania | Solomon Islands | 2020-08-31 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-09-21 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SOM | Africa | Somalia | 2020-10-05 | 3745.0 | 0.0 | 22.429 | 99.0 | 0.0 | 0.0 | 235.635 | 0.0 | 1.411 | 6.229 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
SOM | Africa | Somalia | 2020-11-08 | 4229.0 | 0.0 | 41.143 | 107.0 | 0.0 | 0.429 | 266.088 | 0.0 | 2.589 | 6.732 | 0.0 | 2.7e-2 | 0.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.96 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
ZAF | Africa | South Africa | 2020-05-05 | 7572.0 | 352.0 | 368.0 | 148.0 | 10.0 | 7.857 | 127.671 | 5.935 | 6.205 | 2.495 | 0.169 | 0.132 | 1.36 | null | null | null | null | null | null | null | null | 268064.0 | 10523.0 | 4.52 | 0.177 | 11795.0 | 0.199 | 3.1e-2 | 32.1 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-07-28 | 459761.0 | 7232.0 | 11137.571 | 7257.0 | 190.0 | 269.857 | 7752.001 | 121.938 | 187.79 | 122.36 | 3.204 | 4.55 | 0.86 | null | null | null | null | null | null | null | null | 2830635.0 | 28424.0 | 47.727 | 0.479 | 41959.0 | 0.707 | 0.265 | 3.8 | null | 80.56 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-02-03 | 15.0 | 0.0 | 1.571 | null | 0.0 | 0.0 | 0.293 | 0.0 | 3.1e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.0 | 1.0e-3 | 2.4e-2 | 42.0 | null | 23.15 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-05-23 | 655.0 | 92.0 | 59.857 | 8.0 | 2.0 | 0.571 | 58.515 | 8.219 | 5.347 | 0.715 | 0.179 | 5.1e-2 | 0.88 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-10-10 | 2761.0 | 0.0 | 6.571 | 54.0 | 0.0 | 0.571 | 246.656 | 0.0 | 0.587 | 4.824 | 0.0 | 5.1e-2 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | 423.0 | 3.8e-2 | 1.6e-2 | 64.4 | null | 35.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-11-21 | 3047.0 | 31.0 | 6.286 | 60.0 | 1.0 | 0.143 | 272.206 | 2.769 | 0.562 | 5.36 | 8.9e-2 | 1.3e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | 554.0 | 4.9e-2 | 1.1e-2 | 88.1 | null | 43.52 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
ESP | Europe | Spain | 2020-04-03 | 119199.0 | 7134.0 | 7640.0 | 11198.0 | 850.0 | 865.714 | 2549.45 | 152.583 | 163.406 | 239.505 | 18.18 | 18.516 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
ESP | Europe | Spain | 2020-11-07 | 1328832.0 | 0.0 | 20450.571 | 38833.0 | 0.0 | 422.143 | 28421.306 | 0.0 | 437.401 | 830.567 | 0.0 | 9.029 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | 166951.0 | 3.571 | 0.122 | 8.2 | null | 71.3 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-04-01 | 146.0 | 3.0 | 6.286 | 3.0 | 1.0 | 0.429 | 6.818 | 0.14 | 0.294 | 0.14 | 4.7e-2 | 2.0e-2 | 1.01 | null | null | null | null | null | null | null | null | 2785.0 | 219.0 | 0.13 | 1.0e-2 | 161.0 | 8.0e-3 | 3.9e-2 | 25.6 | null | 100.0 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
LKA | Asia | Sri Lanka | 2020-05-13 | 915.0 | 26.0 | 16.857 | 9.0 | 0.0 | 0.0 | 42.731 | 1.214 | 0.787 | 0.42 | 0.0 | 0.0 | 1.04 | null | null | null | null | null | null | null | null | 39629.0 | 889.0 | 1.851 | 4.2e-2 | 1301.0 | 6.1e-2 | 1.3e-2 | 77.2 | null | 82.41 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-02-27 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-02-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-02-17 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-06-13 | 196.0 | 9.0 | 13.714 | 3.0 | 0.0 | 0.286 | 334.11 | 15.342 | 23.378 | 5.114 | 0.0 | 0.487 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-02-29 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-05-16 | 202.0 | 12.0 | 5.571 | 2.0 | 0.0 | 0.0 | 174.113 | 10.343 | 4.802 | 1.724 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-10 | 26846.0 | 278.0 | 593.286 | 3678.0 | 64.0 | 70.286 | 2658.212 | 27.527 | 58.745 | 364.185 | 6.337 | 6.959 | 1.13 | null | null | null | null | 154.004 | 15.249 | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-10-29 | 121167.0 | 3254.0 | 1742.571 | 5966.0 | 3.0 | 5.143 | 11997.6 | 322.202 | 172.544 | 590.736 | 0.297 | 0.509 | 1.57 | null | null | null | null | null | null | null | null | null | 27613.0 | null | 2.734 | 26048.0 | 2.579 | 6.7e-2 | 14.9 | null | 55.56 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-11-21 | 208295.0 | 0.0 | 4420.0 | 6406.0 | 0.0 | 34.571 | 20624.758 | 0.0 | 437.655 | 634.303 | 0.0 | 3.423 | null | null | null | null | null | null | null | null | null | null | 38266.0 | null | 3.789 | 38119.0 | 3.774 | 0.116 | 8.6 | null | 50.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-01 | 17768.0 | 1163.0 | 981.571 | 488.0 | 55.0 | 47.857 | 2053.008 | 134.379 | 113.416 | 56.386 | 6.355 | 5.53 | 1.24 | null | null | null | null | null | null | null | null | 145277.0 | 6657.0 | 16.786 | 0.769 | 5978.0 | 0.691 | 0.164 | 6.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-06-02 | 30874.0 | 3.0 | 16.143 | 1920.0 | 0.0 | 0.714 | 3567.344 | 0.347 | 1.865 | 221.847 | 0.0 | 8.3e-2 | 0.79 | null | null | null | null | null | null | null | null | 405695.0 | 4282.0 | 46.876 | 0.495 | 3304.0 | 0.382 | 5.0e-3 | 204.7 | null | 55.56 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-08-06 | 36108.0 | 181.0 | 155.143 | 1985.0 | 1.0 | 0.714 | 4172.108 | 20.914 | 17.926 | 229.357 | 0.116 | 8.3e-2 | 1.17 | null | null | null | null | null | null | null | null | 831138.0 | 6619.0 | 96.034 | 0.765 | 5409.0 | 0.625 | 2.9e-2 | 34.9 | null | 43.06 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-11-15 | 257135.0 | 0.0 | 6460.286 | 3369.0 | 18.0 | 85.286 | 29710.728 | 0.0 | 746.455 | 389.272 | 2.08 | 9.854 | 1.04 | null | null | null | null | null | null | null | null | 2419601.0 | 9364.0 | 279.573 | 1.082 | 25659.0 | 2.965 | 0.252 | 4.0 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-03-15 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-03-25 | 5.0 | 4.0 | 0.714 | null | 0.0 | 0.0 | 0.286 | 0.229 | 4.1e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-04-08 | 19.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.0 | 1.086 | 0.0 | 7.3e-2 | 0.114 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-12-02 | 8059.0 | 86.0 | 85.714 | 426.0 | 4.0 | 5.0 | 460.497 | 4.914 | 4.898 | 24.342 | 0.229 | 0.286 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TJK | Asia | Tajikistan | 2020-10-06 | 10014.0 | 40.0 | 41.143 | 78.0 | 0.0 | 0.429 | 1049.945 | 4.194 | 4.314 | 8.178 | 0.0 | 4.5e-2 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TZA | Africa | Tanzania | 2020-09-11 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
THA | Asia | Thailand | 2020-01-09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.0 | 13.0 | 0.0 | 0.0 | null | null | null | null | null | 0.0 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
FJI | Oceania | Fiji | 2020-06-29 | 18.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 20.079 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 5015.0 | 162.0 | 5.594 | 0.181 | 69.0 | 7.7e-2 | 0.0 | null | null | 62.04 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FJI | Oceania | Fiji | 2020-09-25 | 32.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 35.697 | 0.0 | 0.0 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10280.0 | 64.0 | 11.468 | 7.1e-2 | 65.0 | 7.3e-2 | 0.0 | null | null | 51.85 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-05-04 | 5327.0 | 73.0 | 90.286 | 240.0 | 10.0 | 6.714 | 961.428 | 13.175 | 16.295 | 43.316 | 1.805 | 1.212 | 0.9 | 49.0 | 8.844 | 197.0 | 35.555 | null | null | null | null | 113479.0 | 1767.0 | 20.481 | 0.319 | 2956.0 | 0.534 | 3.1e-2 | 32.7 | null | 60.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-07 | 17385.0 | 0.0 | 181.714 | 362.0 | 0.0 | 0.571 | 3137.68 | 0.0 | 32.796 | 65.334 | 0.0 | 0.103 | 1.1 | null | null | null | null | null | null | null | null | 1650143.0 | 9833.0 | 297.821 | 1.775 | 12769.0 | 2.305 | 1.4e-2 | 70.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-15 | 19315.0 | 213.0 | 216.857 | 369.0 | 0.0 | 1.0 | 3486.01 | 38.443 | 39.139 | 66.598 | 0.0 | 0.18 | 1.14 | null | null | null | null | null | null | null | null | 1747491.0 | 6648.0 | 315.391 | 1.2 | 13080.0 | 2.361 | 1.7e-2 | 60.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-10-17 | 3649.0 | 0.0 | 3.0 | 118.0 | 0.0 | 0.143 | 1509.933 | 0.0 | 1.241 | 48.828 | 0.0 | 5.9e-2 | 0.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
DEU | Europe | Germany | 2020-10-25 | 437698.0 | 9890.0 | 9861.0 | 10062.0 | 27.0 | 37.714 | 5224.127 | 118.042 | 117.696 | 120.095 | 0.322 | 0.45 | 1.45 | null | null | null | null | null | null | 2028.515 | 24.211 | 2.1848094e7 | null | 260.767 | null | 201348.0 | 2.403 | 4.9e-2 | 20.4 | null | 60.65 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-14 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-05-20 | 6269.0 | 173.0 | 123.0 | 31.0 | 0.0 | 1.0 | 201.751 | 5.568 | 3.958 | 0.998 | 0.0 | 3.2e-2 | 1.23 | null | null | null | null | null | null | null | null | 192194.0 | 4265.0 | 6.185 | 0.137 | 3358.0 | 0.108 | 3.7e-2 | 27.3 | null | 62.04 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-07 | 9638.0 | 176.0 | 224.0 | 44.0 | 0.0 | 1.143 | 310.173 | 5.664 | 7.209 | 1.416 | 0.0 | 3.7e-2 | 1.2 | null | null | null | null | null | null | null | null | 239395.0 | 3952.0 | 7.704 | 0.127 | 2796.0 | 9.0e-2 | 8.0e-2 | 12.5 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-08-11 | 41404.0 | 192.0 | 513.143 | 215.0 | 0.0 | 3.429 | 1332.477 | 6.179 | 16.514 | 6.919 | 0.0 | 0.11 | 1.11 | null | null | null | null | null | null | null | null | 421588.0 | 1998.0 | 13.568 | 6.4e-2 | 1745.0 | 5.6e-2 | 0.294 | 3.4 | null | 52.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-19 | 50631.0 | 174.0 | 96.286 | 323.0 | 0.0 | 0.429 | 1629.424 | 5.6 | 3.099 | 10.395 | 0.0 | 1.4e-2 | 1.18 | null | null | null | null | null | null | null | null | 578117.0 | 2126.0 | 18.605 | 6.8e-2 | 2128.0 | 6.8e-2 | 4.5e-2 | 22.1 | null | 38.89 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRD | North America | Grenada | 2020-02-25 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-05-01 | 20.0 | 0.0 | 0.714 | null | 0.0 | 0.0 | 177.748 | 0.0 | 6.348 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-06-04 | 23.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 204.41 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-10-10 | 24.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 213.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-02-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GNB | Africa | Guinea-Bissau | 2020-03-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-08-28 | 1180.0 | 40.0 | 42.714 | 35.0 | 3.0 | 0.714 | 1500.205 | 50.854 | 54.305 | 44.498 | 3.814 | 0.908 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-02-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HND | North America | Honduras | 2020-02-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9904608.0 | 82.805 | 24.9 | 4.652 | 2.883 | 4541.795 | 16.0 | 240.208 | 7.21 | 2.0 | null | 84.169 | 0.7 | 75.27 | 0.617 |
HUN | Europe | Hungary | 2020-03-23 | 167.0 | 36.0 | 18.286 | 7.0 | 1.0 | 0.857 | 17.287 | 3.727 | 1.893 | 0.725 | 0.104 | 8.9e-2 | 1.7 | null | null | 144.0 | 14.906 | null | null | null | null | 5515.0 | 1072.0 | 0.571 | 0.111 | 578.0 | 6.0e-2 | 3.2e-2 | 31.6 | null | 67.59 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-04-17 | 1763.0 | 111.0 | 81.857 | 156.0 | 14.0 | 11.286 | 182.499 | 11.49 | 8.474 | 16.148 | 1.449 | 1.168 | 1.14 | null | null | 847.0 | 87.678 | null | null | null | null | 41590.0 | 3101.0 | 4.305 | 0.321 | 1663.0 | 0.172 | 4.9e-2 | 20.3 | null | 76.85 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-08-05 | 4564.0 | 11.0 | 14.143 | 599.0 | 1.0 | 0.429 | 472.447 | 1.139 | 1.464 | 62.006 | 0.104 | 4.4e-2 | 1.29 | null | null | 72.0 | 7.453 | null | null | null | null | 350108.0 | 1976.0 | 36.242 | 0.205 | 2380.0 | 0.246 | 6.0e-3 | 168.3 | null | 54.63 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-11-07 | 104943.0 | 5318.0 | 4231.714 | 2357.0 | 107.0 | 86.714 | 10863.271 | 550.498 | 438.05 | 243.987 | 11.076 | 8.976 | 1.32 | null | null | 5612.0 | 580.931 | null | null | null | null | 1189962.0 | 22321.0 | 123.18 | 2.311 | 17831.0 | 1.846 | 0.237 | 4.2 | null | 57.41 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-03-13 | 134.0 | 31.0 | 13.0 | null | 0.0 | 0.0 | 392.674 | 90.842 | 38.095 | null | 0.0 | 0.0 | 1.64 | 0.0 | 0.0 | 2.0 | 5.861 | null | null | null | null | 1504.0 | 357.0 | 4.407 | 1.046 | 160.0 | 0.469 | 8.1e-2 | 12.3 | null | 16.67 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-28 | 963.0 | 73.0 | 70.0 | 2.0 | 0.0 | 0.143 | 2821.978 | 213.919 | 205.128 | 5.861 | 0.0 | 0.419 | 1.27 | 7.0 | 20.513 | 26.0 | 76.19 | null | null | null | null | 15443.0 | 849.0 | 45.254 | 2.488 | 767.0 | 2.248 | 9.1e-2 | 11.0 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-18 | 1838.0 | 2.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5386.081 | 5.861 | 2.093 | 29.304 | 0.0 | 0.0 | 1.29 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68575.0 | 64.0 | 200.952 | 0.188 | 112.0 | 0.328 | 6.0e-3 | 156.9 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-23 | 1841.0 | 1.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5394.872 | 2.93 | 2.093 | 29.304 | 0.0 | 0.0 | 1.43 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68822.0 | 67.0 | 201.676 | 0.196 | 71.0 | 0.208 | 1.0e-2 | 99.4 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-10-26 | 7946429.0 | 36470.0 | 49909.429 | 119502.0 | 488.0 | 615.0 | 5758.264 | 26.427 | 36.166 | 86.595 | 0.354 | 0.446 | 0.89 | null | null | null | null | null | null | null | null | 1.03462778e8 | 939309.0 | 74.973 | 0.681 | 1196972.0 | 0.867 | 4.2e-2 | 24.0 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-02-03 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-08-13 | 132816.0 | 2098.0 | 2009.0 | 5968.0 | 65.0 | 63.857 | 485.574 | 7.67 | 7.345 | 21.819 | 0.238 | 0.233 | 1.06 | null | null | null | null | null | null | null | null | 1026954.0 | 14850.0 | 3.755 | 5.4e-2 | 12949.0 | 4.7e-2 | 0.155 | 6.4 | null | 59.72 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-10-05 | 307120.0 | 3622.0 | 4056.857 | 11253.0 | 102.0 | 111.429 | 1122.828 | 13.242 | 14.832 | 41.141 | 0.373 | 0.407 | 1.01 | null | null | null | null | null | null | null | null | 2119355.0 | 22771.0 | 7.748 | 8.3e-2 | 26356.0 | 9.6e-2 | 0.154 | 6.5 | null | 72.69 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
null | null | International | 2020-06-14 | 721.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
IRN | Asia | Iran | 2020-08-07 | 322567.0 | 2450.0 | 2623.286 | 18132.0 | 156.0 | 195.143 | 3840.406 | 29.169 | 31.232 | 215.875 | 1.857 | 2.323 | 0.93 | null | null | null | null | null | null | null | null | 2637575.0 | null | 31.402 | null | 25809.0 | 0.307 | 0.102 | 9.8 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-08-08 | 324692.0 | 2125.0 | 2562.857 | 18264.0 | 132.0 | 183.143 | 3865.705 | 25.3 | 30.513 | 217.447 | 1.572 | 2.18 | 0.86 | null | null | null | null | null | null | null | null | 2661965.0 | 24390.0 | 31.693 | 0.29 | 25630.0 | 0.305 | 0.1 | 10.0 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-07-08 | 67442.0 | 2741.0 | 2274.0 | 2779.0 | 94.0 | 104.143 | 1676.723 | 68.146 | 56.536 | 69.091 | 2.337 | 2.589 | 1.12 | null | null | null | null | null | null | null | null | 637227.0 | 12807.0 | 15.843 | 0.318 | 11615.0 | 0.289 | 0.196 | 5.1 | null | 92.59 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRQ | Asia | Iraq | 2020-10-25 | 451707.0 | 2554.0 | 3581.857 | 10623.0 | 55.0 | 52.714 | 11230.206 | 63.497 | 89.051 | 264.106 | 1.367 | 1.311 | 0.98 | null | null | null | null | null | null | null | null | 2756365.0 | 16687.0 | 68.528 | 0.415 | 18859.0 | 0.469 | 0.19 | 5.3 | null | 51.85 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRL | Europe | Ireland | 2020-10-26 | 58067.0 | 939.0 | 1010.571 | 1885.0 | 3.0 | 4.714 | 11759.7 | 190.166 | 204.66 | 381.749 | 0.608 | 0.955 | 0.96 | 38.0 | 7.696 | 344.0 | 69.667 | null | null | null | null | 1568768.0 | 14264.0 | 317.706 | 2.889 | 16425.0 | 3.326 | 6.2e-2 | 16.3 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-28 | 59434.0 | 667.0 | 858.857 | 1896.0 | 6.0 | 4.0 | 12036.544 | 135.081 | 173.935 | 383.977 | 1.215 | 0.81 | 0.91 | 40.0 | 8.101 | 327.0 | 66.224 | null | null | null | null | 1591370.0 | 11167.0 | 322.283 | 2.262 | 15161.0 | 3.07 | 5.7e-2 | 17.7 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-03-25 | 2369.0 | 1131.0 | 295.0 | 5.0 | 2.0 | 0.714 | 273.698 | 130.668 | 34.082 | 0.578 | 0.231 | 8.3e-2 | 1.94 | null | null | null | null | null | null | null | null | 37132.0 | 5936.0 | 4.29 | 0.686 | 3457.0 | 0.399 | 8.5e-2 | 11.7 | null | 81.48 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-17 | 31506.0 | 3526.0 | 3051.0 | 2503.0 | 345.0 | 267.429 | 521.089 | 58.318 | 50.462 | 41.398 | 5.706 | 4.423 | 1.84 | 2060.0 | 34.071 | 14954.0 | 247.33 | null | null | null | null | 148657.0 | 10695.0 | 2.459 | 0.177 | 12557.0 | 0.208 | 0.243 | 4.1 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-08-08 | 250103.0 | 347.0 | 324.429 | 35203.0 | 13.0 | 8.143 | 4136.544 | 5.739 | 5.366 | 582.235 | 0.215 | 0.135 | 1.29 | 43.0 | 0.711 | 814.0 | 13.463 | null | null | null | null | 7212207.0 | 53298.0 | 119.285 | 0.882 | 48387.0 | 0.8 | 7.0e-3 | 149.1 | null | 50.93 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-09-12 | 286297.0 | 1501.0 | 1422.714 | 35603.0 | 6.0 | 9.857 | 4735.169 | 24.826 | 23.531 | 588.851 | 9.9e-2 | 0.163 | 1.07 | 182.0 | 3.01 | 2133.0 | 35.278 | null | null | null | null | 9745975.0 | 92706.0 | 161.192 | 1.533 | 86225.0 | 1.426 | 1.7e-2 | 60.6 | null | 54.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-28 | 1564532.0 | 26315.0 | 26285.857 | 54363.0 | 686.0 | 728.857 | 25876.36 | 435.233 | 434.751 | 899.129 | 11.346 | 12.055 | null | 3762.0 | 62.221 | 37061.0 | 612.965 | null | null | null | null | 2.1637641e7 | 225940.0 | 357.873 | 3.737 | 205402.0 | 3.397 | 0.128 | 7.8 | null | null | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-02-11 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-10 | 753.0 | 0.0 | 4.571 | 10.0 | 0.0 | 0.0 | 254.292 | 0.0 | 1.544 | 3.377 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 27775.0 | 300.0 | 9.38 | 0.101 | 299.0 | 0.101 | 1.5e-2 | 65.4 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-11-03 | 9296.0 | 39.0 | 72.714 | 214.0 | 4.0 | 2.571 | 3139.309 | 13.171 | 24.556 | 72.269 | 1.351 | 0.868 | 0.91 | null | null | null | null | null | null | null | null | 98356.0 | 565.0 | 33.215 | 0.191 | 648.0 | 0.219 | 0.112 | 8.9 | null | 67.59 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-10-23 | 95868.0 | 734.0 | 546.286 | 1706.0 | 9.0 | 6.0 | 757.991 | 5.803 | 4.319 | 13.489 | 7.1e-2 | 4.7e-2 | 1.13 | null | null | null | null | null | null | null | null | 2295456.0 | 22880.0 | 18.149 | 0.181 | 17267.0 | 0.137 | 3.2e-2 | 31.6 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-05-02 | 460.0 | 1.0 | 2.286 | 9.0 | 1.0 | 0.286 | 45.084 | 9.8e-2 | 0.224 | 0.882 | 9.8e-2 | 2.8e-2 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-03-31 | 343.0 | 41.0 | 38.714 | 2.0 | 1.0 | 0.286 | 18.267 | 2.184 | 2.062 | 0.107 | 5.3e-2 | 1.5e-2 | 1.62 | null | null | null | null | null | null | null | null | 30905.0 | 9892.0 | 1.646 | 0.527 | 3003.0 | 0.16 | 1.3e-2 | 77.6 | null | 92.13 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-24 | 19285.0 | 520.0 | 486.857 | 136.0 | 2.0 | 5.571 | 1027.07 | 27.694 | 25.929 | 7.243 | 0.107 | 0.297 | 1.12 | null | null | null | null | null | null | null | null | 1401692.0 | 24830.0 | 74.651 | 1.322 | 27159.0 | 1.446 | 1.8e-2 | 55.8 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-10-01 | 140958.0 | 251.0 | 238.429 | 2080.0 | 2.0 | 5.0 | 7507.067 | 13.368 | 12.698 | 110.776 | 0.107 | 0.266 | 1.01 | null | null | null | null | null | null | null | null | 2973489.0 | 9208.0 | 158.361 | 0.49 | 13415.0 | 0.714 | 1.8e-2 | 56.3 | null | 78.7 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-14 | 159756.0 | 903.0 | 776.429 | 2315.0 | 1.0 | 7.143 | 8508.201 | 48.091 | 41.351 | 123.291 | 5.3e-2 | 0.38 | 1.31 | null | null | null | null | null | null | null | null | 4004270.0 | 39228.0 | 213.257 | 2.089 | 31215.0 | 1.662 | 2.5e-2 | 40.2 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-15 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-02-24 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-06-25 | 5384.0 | 178.0 | 161.0 | 132.0 | 2.0 | 2.143 | 100.128 | 3.31 | 2.994 | 2.455 | 3.7e-2 | 4.0e-2 | 1.24 | null | null | null | null | null | null | null | null | 155314.0 | 3918.0 | 2.888 | 7.3e-2 | 3545.0 | 6.6e-2 | 4.5e-2 | 22.0 | null | 84.26 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
OWID_KOS | Europe | Kosovo | 2020-08-22 | 12337.0 | 169.0 | 151.714 | 457.0 | 9.0 | 9.571 | 6383.054 | 87.439 | 78.496 | 236.448 | 4.657 | 4.952 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KGZ | Asia | Kyrgyzstan | 2020-06-07 | 2007.0 | 33.0 | 37.0 | 22.0 | 0.0 | 0.857 | 307.624 | 5.058 | 5.671 | 3.372 | 0.0 | 0.131 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-09-12 | 23.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 3.161 | 0.0 | 2.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LBN | Asia | Lebanon | 2020-03-28 | 412.0 | 21.0 | 32.143 | 8.0 | 0.0 | 0.571 | 60.362 | 3.077 | 4.709 | 1.172 | 0.0 | 8.4e-2 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBN | Asia | Lebanon | 2020-11-06 | 91328.0 | 2142.0 | 1685.571 | 700.0 | 17.0 | 10.714 | 13380.525 | 313.826 | 246.954 | 102.557 | 2.491 | 1.57 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBY | Africa | Libya | 2020-04-19 | 51.0 | 2.0 | 3.714 | 1.0 | 0.0 | 0.0 | 7.422 | 0.291 | 0.541 | 0.146 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | 25.0 | null | 4.0e-3 | 34.0 | 5.0e-3 | 0.109 | 9.2 | null | 100.0 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-03-12 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-03-16 | 4.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 104.885 | 0.0 | 11.238 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-06-24 | 82.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 2150.143 | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-09 | 801.0 | 13.0 | 29.0 | 4.0 | 1.0 | 0.143 | 21003.225 | 340.876 | 760.416 | 104.885 | 26.221 | 3.746 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LTU | Europe | Lithuania | 2020-05-27 | 1647.0 | 8.0 | 10.0 | 66.0 | 1.0 | 0.857 | 605.005 | 2.939 | 3.673 | 24.244 | 0.367 | 0.315 | 0.85 | null | null | null | null | null | null | null | null | 272538.0 | 6268.0 | 100.113 | 2.302 | 4739.0 | 1.741 | 2.0e-3 | 473.9 | null | 71.3 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-09-07 | 3100.0 | 17.0 | 27.714 | 86.0 | 0.0 | 0.0 | 1138.747 | 6.245 | 10.181 | 31.591 | 0.0 | 0.0 | 1.17 | null | null | null | null | null | null | null | null | 614767.0 | 3528.0 | 225.827 | 1.296 | 3650.0 | 1.341 | 8.0e-3 | 131.7 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-10-30 | 13823.0 | 735.0 | 674.143 | 157.0 | 7.0 | 4.429 | 5077.708 | 269.993 | 247.638 | 57.672 | 2.571 | 1.627 | 1.52 | null | null | 415.0 | 152.445 | null | null | null | null | 936692.0 | 10520.0 | 344.082 | 3.864 | 8860.0 | 3.255 | 7.6e-2 | 13.1 | null | 62.5 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-19 | 40492.0 | 1682.0 | 1525.714 | 341.0 | 18.0 | 13.857 | 14874.236 | 617.862 | 560.452 | 125.262 | 6.612 | 5.09 | 1.33 | null | null | 1.0 | 0.367 | null | null | null | null | 1145098.0 | 14052.0 | 420.638 | 5.162 | 11081.0 | 4.07 | 0.138 | 7.3 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LUX | Europe | Luxembourg | 2020-07-04 | 4476.0 | 29.0 | 37.0 | 110.0 | 0.0 | 0.0 | 7150.434 | 46.328 | 59.108 | 175.726 | 0.0 | 0.0 | 1.63 | 3.0 | 4.793 | 24.0 | 38.34 | null | null | null | null | 231408.0 | 7851.0 | 369.676 | 12.542 | 8169.0 | 13.05 | 5.0e-3 | 220.8 | null | 24.07 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-08-13 | 7368.0 | 68.0 | 42.143 | 122.0 | 0.0 | 0.429 | 11770.419 | 108.63 | 67.323 | 194.896 | 0.0 | 0.685 | 0.85 | 3.0 | 4.793 | 38.0 | 60.705 | null | null | null | null | 559389.0 | 4654.0 | 893.627 | 7.435 | 4972.0 | 7.943 | 8.0e-3 | 118.0 | null | 34.26 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MKD | Europe | Macedonia | 2020-08-21 | 13308.0 | 114.0 | 113.286 | 557.0 | 3.0 | 3.143 | 6387.697 | 54.719 | 54.376 | 267.354 | 1.44 | 1.509 | 0.97 | null | null | null | null | null | null | null | null | 134206.0 | 1733.0 | 64.417 | 0.832 | 1598.0 | 0.767 | 7.1e-2 | 14.1 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MDG | Africa | Madagascar | 2020-08-15 | 13724.0 | 81.0 | 114.571 | 166.0 | 2.0 | 3.571 | 495.612 | 2.925 | 4.137 | 5.995 | 7.2e-2 | 0.129 | 0.72 | null | null | null | null | null | null | null | null | 51559.0 | 590.0 | 1.862 | 2.1e-2 | 543.0 | 2.0e-2 | 0.211 | 4.7 | null | 65.74 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MDG | Africa | Madagascar | 2020-09-11 | 15669.0 | 45.0 | 68.857 | 209.0 | 1.0 | 1.571 | 565.851 | 1.625 | 2.487 | 7.548 | 3.6e-2 | 5.7e-2 | 0.82 | null | null | null | null | null | null | null | null | 63222.0 | null | 2.283 | null | 464.0 | 1.7e-2 | 0.148 | 6.7 | null | 56.48 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MWI | Africa | Malawi | 2020-10-03 | 5783.0 | 0.0 | 2.429 | 179.0 | 0.0 | 0.0 | 302.301 | 0.0 | 0.127 | 9.357 | 0.0 | 0.0 | 0.89 | null | null | null | null | null | null | null | null | 54246.0 | 231.0 | 2.836 | 1.2e-2 | 266.0 | 1.4e-2 | 9.0e-3 | 109.5 | null | 54.63 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MDV | Asia | Maldives | 2020-02-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-05-29 | 1591.0 | 78.0 | 45.286 | 5.0 | 0.0 | 0.143 | 2943.342 | 144.3 | 83.778 | 9.25 | 0.0 | 0.264 | 1.06 | null | null | null | null | null | null | null | null | 22319.0 | 680.0 | 41.29 | 1.258 | 735.0 | 1.36 | 6.2e-2 | 16.2 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MLI | Africa | Mali | 2020-03-19 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-03-22 | 90.0 | 17.0 | 9.857 | null | 0.0 | 0.0 | 203.833 | 38.502 | 22.325 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | 11.0 | 24.913 | 0.895 | 2.026 | 1.789 | 4.052 | 3216.0 | 309.0 | 7.284 | 0.7 | 249.0 | 0.564 | 4.0e-2 | 25.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-07-18 | 675.0 | 1.0 | 0.143 | 9.0 | 0.0 | 0.0 | 1528.744 | 2.265 | 0.324 | 20.383 | 0.0 | 0.0 | 0.37 | null | null | null | null | null | null | null | null | 113237.0 | 834.0 | 256.46 | 1.889 | 867.0 | 1.964 | 0.0 | 6062.9 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-09-28 | 3006.0 | 27.0 | 32.857 | 32.0 | 1.0 | 1.286 | 6808.006 | 61.15 | 74.415 | 72.474 | 2.265 | 2.912 | 0.93 | null | null | null | null | null | null | null | null | 251746.0 | 2116.0 | 570.156 | 4.792 | 2304.0 | 5.218 | 1.4e-2 | 70.1 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MRT | Africa | Mauritania | 2020-04-16 | 7.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.505 | 0.0 | 0.0 | 0.215 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.0 | 1.4e-2 | 0.0 | null | null | 77.78 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MRT | Africa | Mauritania | 2020-07-21 | 5985.0 | 62.0 | 66.714 | 155.0 | 0.0 | 1.143 | 1287.191 | 13.334 | 14.348 | 33.336 | 0.0 | 0.246 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | 739.0 | 0.159 | 9.0e-2 | 11.1 | null | 29.63 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MUS | Africa | Mauritius | 2020-03-20 | 12.0 | 9.0 | 1.714 | null | 0.0 | 0.0 | 9.436 | 7.077 | 1.348 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MEX | North America | Mexico | 2020-08-17 | 525733.0 | 3571.0 | 5699.571 | 57023.0 | 266.0 | 574.286 | 4077.575 | 27.697 | 44.206 | 442.269 | 2.063 | 4.454 | 0.96 | null | null | null | null | null | null | null | null | 1207328.0 | 14669.0 | 9.364 | 0.114 | 11905.0 | 9.2e-2 | 0.479 | 2.1 | null | 70.83 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MEX | North America | Mexico | 2020-10-13 | 825340.0 | 4295.0 | 4390.286 | 84420.0 | 475.0 | 296.0 | 6401.321 | 33.312 | 34.051 | 654.76 | 3.684 | 2.296 | 1.02 | null | null | null | null | null | null | null | null | 1880454.0 | 16473.0 | 14.585 | 0.128 | 11831.0 | 9.2e-2 | 0.371 | 2.7 | null | 71.76 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MDA | Europe | Moldova | 2020-05-14 | 5553.0 | 147.0 | 135.429 | 194.0 | 9.0 | 7.0 | 1376.562 | 36.441 | 33.572 | 48.092 | 2.231 | 1.735 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-02-13 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
AFG | Asia | Afghanistan | 2020-09-03 | 38288.0 | 45.0 | 24.143 | 1410.0 | 0.0 | 1.143 | 983.551 | 1.156 | 0.62 | 36.22 | 0.0 | 2.9e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
AFG | Asia | Afghanistan | 2020-11-26 | 45600.0 | 216.0 | 203.286 | 1737.0 | 9.0 | 12.0 | 1171.383 | 5.549 | 5.222 | 44.62 | 0.231 | 0.308 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-05-02 | 789.0 | 7.0 | 11.0 | 31.0 | 0.0 | 0.571 | 274.168 | 2.432 | 3.822 | 10.772 | 0.0 | 0.199 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-10 | 10860.0 | 156.0 | 145.143 | 324.0 | 2.0 | 3.286 | 3773.716 | 54.208 | 50.435 | 112.586 | 0.695 | 1.142 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-05-09 | 5558.0 | 189.0 | 180.429 | 494.0 | 6.0 | 5.0 | 126.747 | 4.31 | 4.115 | 11.265 | 0.137 | 0.114 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-15 | 48734.0 | 238.0 | 256.571 | 1632.0 | 12.0 | 8.714 | 1111.353 | 5.427 | 5.851 | 37.217 | 0.274 | 0.199 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AND | Europe | Andorra | 2020-06-27 | 855.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 | 11065.812 | 0.0 | 0.0 | 673.008 | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38.89 | 77265.0 | 163.755 | null | null | null | null | null | 109.135 | 7.97 | 29.0 | 37.8 | null | null | 83.73 | 0.858 |
AGO | Africa | Angola | 2020-10-18 | 7622.0 | 160.0 | 179.429 | 247.0 | 6.0 | 4.143 | 231.91 | 4.868 | 5.459 | 7.515 | 0.183 | 0.126 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-02-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-03-25 | 3.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 30.635 | 0.0 | 2.918 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-04-03 | 15.0 | 6.0 | 1.143 | null | 0.0 | 0.0 | 153.174 | 61.27 | 11.67 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-10-01 | 101.0 | 0.0 | 0.571 | 3.0 | 0.0 | 0.0 | 1031.37 | 0.0 | 5.835 | 30.635 | 0.0 | 0.0 | 0.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-08-14 | 282437.0 | 6365.0 | 6680.0 | 5527.0 | 165.0 | 159.429 | 6249.19 | 140.832 | 147.801 | 122.29 | 3.651 | 3.528 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-04-30 | 2066.0 | 134.0 | 77.571 | 32.0 | 2.0 | 1.143 | 697.211 | 45.221 | 26.178 | 10.799 | 0.675 | 0.386 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
ARM | Asia | Armenia | 2020-07-10 | 30903.0 | 557.0 | 511.857 | 546.0 | 11.0 | 11.0 | 10428.809 | 187.97 | 172.736 | 184.258 | 3.712 | 3.712 | 0.92 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUT | Europe | Austria | 2020-05-01 | 15531.0 | 79.0 | 65.714 | 589.0 | 5.0 | 8.429 | 1724.44 | 8.772 | 7.296 | 65.398 | 0.555 | 0.936 | 0.61 | 124.0 | 13.768 | 348.0 | 38.639 | null | null | null | null | 264079.0 | 7680.0 | 29.321 | 0.853 | 7342.0 | 0.815 | 9.0e-3 | 111.7 | null | 67.59 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-09-09 | 30583.0 | 502.0 | 373.429 | 747.0 | 0.0 | 1.857 | 3395.696 | 55.738 | 41.463 | 82.941 | 0.0 | 0.206 | 1.41 | 36.0 | 3.997 | 161.0 | 17.876 | null | null | null | null | 1288059.0 | 11582.0 | 143.016 | 1.286 | 11070.0 | 1.229 | 3.4e-2 | 29.6 | null | 36.11 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-02 | 46374.0 | 688.0 | 696.286 | 803.0 | 1.0 | 2.429 | 5149.005 | 76.39 | 77.31 | 89.159 | 0.111 | 0.27 | 1.15 | 100.0 | 11.103 | 372.0 | 41.304 | null | null | null | null | 1658412.0 | 21839.0 | 184.137 | 2.425 | 18815.0 | 2.089 | 3.7e-2 | 27.0 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-06 | 49819.0 | 923.0 | 825.429 | 822.0 | 4.0 | 3.714 | 5531.511 | 102.483 | 91.649 | 91.268 | 0.444 | 0.412 | 1.21 | 101.0 | 11.214 | 397.0 | 44.08 | null | null | null | null | 1716505.0 | 18237.0 | 190.587 | 2.025 | 18561.0 | 2.061 | 4.4e-2 | 22.5 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-20 | 44.0 | 0.0 | 4.143 | 1.0 | 0.0 | 0.0 | 4.34 | 0.0 | 0.409 | 9.9e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHR | Asia | Bahrain | 2020-05-23 | 8802.0 | 388.0 | 293.571 | 13.0 | 1.0 | 0.143 | 5172.83 | 228.023 | 172.528 | 7.64 | 0.588 | 8.4e-2 | 1.21 | null | null | null | null | null | null | null | null | 276552.0 | 7373.0 | 162.526 | 4.333 | 6623.0 | 3.892 | 4.4e-2 | 22.6 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-26 | 80533.0 | 278.0 | 329.857 | 316.0 | 4.0 | 2.0 | 47328.282 | 163.377 | 193.853 | 185.709 | 2.351 | 1.175 | 0.88 | null | null | null | null | null | null | null | null | 1698489.0 | 19642.0 | 998.182 | 11.543 | 11551.0 | 6.788 | 2.9e-2 | 35.0 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-11-07 | 418764.0 | 1289.0 | 1582.857 | 6049.0 | 13.0 | 18.0 | 2542.75 | 7.827 | 9.611 | 36.73 | 7.9e-2 | 0.109 | 1.02 | null | null | null | null | null | null | null | null | 2427669.0 | 11419.0 | 14.741 | 6.9e-2 | 13029.0 | 7.9e-2 | 0.121 | 8.2 | null | 80.09 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BEL | Europe | Belgium | 2020-02-26 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 8.6e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-03-05 | 50.0 | 27.0 | 7.0 | null | 0.0 | 0.0 | 4.314 | 2.33 | 0.604 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2411.0 | 773.0 | 0.208 | 6.7e-2 | null | null | null | null | null | 13.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-04-04 | 18431.0 | 1661.0 | 1328.143 | 1283.0 | 140.0 | 132.857 | 1590.303 | 143.318 | 114.598 | 110.703 | 12.08 | 11.463 | 1.45 | 1261.0 | 108.804 | 5531.0 | 477.238 | null | null | null | null | 93217.0 | 5368.0 | 8.043 | 0.463 | 5288.0 | 0.456 | 0.251 | 4.0 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-07-02 | 61598.0 | 89.0 | 84.429 | 9761.0 | 7.0 | 5.0 | 5314.93 | 7.679 | 7.285 | 842.219 | 0.604 | 0.431 | 1.04 | 35.0 | 3.02 | 187.0 | 16.135 | null | null | null | null | 1303042.0 | 13607.0 | 112.432 | 1.174 | 12646.0 | 1.091 | 7.0e-3 | 149.8 | null | 50.0 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-01-24 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-02-25 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-04-17 | 18.0 | 0.0 | 1.143 | 2.0 | 0.0 | 0.0 | 45.269 | 0.0 | 2.874 | 5.03 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-06-14 | 20.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.0 | 50.299 | 0.0 | 0.359 | 5.03 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-11-04 | 3905.0 | 115.0 | 92.0 | 64.0 | 3.0 | 1.714 | 9820.91 | 289.22 | 231.376 | 160.957 | 7.545 | 4.311 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-05-07 | 140.0 | 44.0 | 10.857 | 2.0 | 0.0 | 0.143 | 11.548 | 3.629 | 0.896 | 0.165 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-06-05 | 261.0 | 0.0 | 5.286 | 3.0 | 0.0 | 0.0 | 21.529 | 0.0 | 0.436 | 0.247 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-12-01 | 3015.0 | 0.0 | 14.143 | 43.0 | 0.0 | 0.0 | 248.697 | 0.0 | 1.167 | 3.547 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-03-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-08-19 | 147.0 | 0.0 | 4.857 | null | 0.0 | 0.0 | 190.51 | 0.0 | 6.295 | null | 0.0 | 0.0 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97.22 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-10-08 | 304.0 | 0.0 | 3.143 | null | 0.0 | 0.0 | 393.98 | 0.0 | 4.073 | null | 0.0 | 0.0 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BOL | South America | Bolivia | 2020-09-06 | 120769.0 | 528.0 | 685.857 | 5398.0 | 0.0 | 61.714 | 10345.986 | 45.232 | 58.756 | 462.434 | 0.0 | 5.287 | 0.86 | null | null | null | null | null | null | null | null | 251931.0 | 1625.0 | 21.582 | 0.139 | 2093.0 | 0.179 | 0.328 | 3.1 | null | 81.48 | 1.1673029e7 | 10.202 | 25.4 | 6.704 | 4.393 | 6885.829 | 7.1 | 204.299 | 6.89 | null | null | 25.383 | 1.1 | 71.51 | 0.693 |
BIH | Europe | Bosnia and Herzegovina | 2020-07-05 | 4962.0 | 0.0 | 146.714 | 191.0 | 0.0 | 1.857 | 1512.429 | 0.0 | 44.719 | 58.217 | 0.0 | 0.566 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-11-20 | 9594.0 | 0.0 | 195.571 | 31.0 | 0.0 | 0.571 | 4079.732 | 0.0 | 83.164 | 13.182 | 0.0 | 0.243 | 0.75 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-02-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-19 | 2098389.0 | 23529.0 | 33386.857 | 79488.0 | 716.0 | 1055.429 | 9872.012 | 110.694 | 157.071 | 373.957 | 3.368 | 4.965 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | 31275.0 | 0.147 | null | null | null | 81.02 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-31 | 5535605.0 | 18947.0 | 22138.571 | 159884.0 | 407.0 | 425.857 | 26042.625 | 89.137 | 104.152 | 752.185 | 1.915 | 2.003 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.87 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-12 | 5781582.0 | 33922.0 | 27365.286 | 164281.0 | 913.0 | 453.571 | 27199.84 | 159.588 | 128.742 | 772.871 | 4.295 | 2.134 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-03-17 | 56.0 | 2.0 | 7.857 | null | 0.0 | 0.0 | 128.005 | 4.572 | 17.96 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-11-20 | 148.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 338.299 | 0.0 | 0.0 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-04-23 | 1097.0 | 73.0 | 42.429 | 52.0 | 3.0 | 2.0 | 157.877 | 10.506 | 6.106 | 7.484 | 0.432 | 0.288 | 1.29 | 37.0 | 5.325 | 270.0 | 38.858 | null | null | null | null | null | null | null | null | 879.0 | 0.127 | 4.8e-2 | 20.7 | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-01-30 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-02-18 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-12 | 2586.0 | 0.0 | 5.143 | 67.0 | 0.0 | 0.0 | 123.713 | 0.0 | 0.246 | 3.205 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-02-20 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-03-21 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-08-26 | 430.0 | 0.0 | 1.143 | 1.0 | 0.0 | 0.0 | 36.162 | 0.0 | 9.6e-2 | 8.4e-2 | 0.0 | 0.0 | 0.73 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-11-20 | 649.0 | 8.0 | 3.571 | 1.0 | 0.0 | 0.0 | 54.58 | 0.673 | 0.3 | 8.4e-2 | 0.0 | 0.0 | 0.85 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-02-18 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.0e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-05-05 | 122.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 4.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-07-04 | 141.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 8.434 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-02-16 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-11 | 15173.0 | 257.0 | 368.714 | 359.0 | 0.0 | 6.571 | 571.577 | 9.681 | 13.89 | 13.524 | 0.0 | 0.248 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-29 | 17255.0 | 76.0 | 104.714 | 391.0 | 0.0 | 1.286 | 650.007 | 2.863 | 3.945 | 14.729 | 0.0 | 4.8e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CAN | North America | Canada | 2020-01-26 | 1.0 | 1.0 | null | null | 0.0 | null | 2.6e-2 | 2.6e-2 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-04-14 | 27035.0 | 1355.0 | 1309.0 | 901.0 | 120.0 | 75.143 | 716.308 | 35.901 | 34.683 | 23.873 | 3.179 | 1.991 | 1.3 | null | null | null | null | null | null | null | null | 454983.0 | 17508.0 | 12.055 | 0.464 | 15268.0 | 0.405 | 8.6e-2 | 11.7 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-26 | 104629.0 | 166.0 | 330.714 | 8571.0 | 4.0 | 23.286 | 2772.205 | 4.398 | 8.762 | 227.094 | 0.106 | 0.617 | 0.85 | null | null | null | null | null | null | null | null | 2598243.0 | 39880.0 | 68.842 | 1.057 | 36954.0 | 0.979 | 9.0e-3 | 111.7 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-06-14 | 750.0 | 24.0 | 28.0 | 6.0 | 0.0 | 0.143 | 1348.95 | 43.166 | 50.361 | 10.792 | 0.0 | 0.257 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-09-11 | 4749.0 | 2.0 | 2.857 | 62.0 | 0.0 | 0.0 | 983.278 | 0.414 | 0.592 | 12.837 | 0.0 | 0.0 | 0.61 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
TCD | Africa | Chad | 2020-05-18 | 519.0 | 16.0 | 28.143 | 53.0 | 0.0 | 3.143 | 31.597 | 0.974 | 1.713 | 3.227 | 0.0 | 0.191 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-05-20 | 565.0 | 20.0 | 27.571 | 57.0 | 1.0 | 2.143 | 34.397 | 1.218 | 1.679 | 3.47 | 6.1e-2 | 0.13 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-07-02 | 868.0 | 2.0 | 0.714 | 74.0 | 0.0 | 0.0 | 52.844 | 0.122 | 4.3e-2 | 4.505 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 67.59 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
CHL | South America | Chile | 2020-11-12 | 526438.0 | 1634.0 | 1408.0 | 14699.0 | 66.0 | 42.143 | 27538.828 | 85.477 | 73.655 | 768.929 | 3.453 | 2.205 | 0.99 | null | null | null | null | null | null | null | null | 4695035.0 | 35708.0 | 245.605 | 1.868 | 34425.0 | 1.801 | 4.1e-2 | 24.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-03-26 | 81782.0 | 121.0 | 89.429 | 3291.0 | 6.0 | 6.0 | 56.82 | 8.4e-2 | 6.2e-2 | 2.286 | 4.0e-3 | 4.0e-3 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.94 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-07-04 | 84857.0 | 19.0 | 16.286 | 4641.0 | 0.0 | 0.0 | 58.956 | 1.3e-2 | 1.1e-2 | 3.224 | 0.0 | 0.0 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-02-07 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-04-28 | 5949.0 | 352.0 | 257.143 | 269.0 | 16.0 | 10.429 | 116.916 | 6.918 | 5.054 | 5.287 | 0.314 | 0.205 | 1.34 | null | null | null | null | null | null | null | null | 95085.0 | 4186.0 | 1.869 | 8.2e-2 | 3818.0 | 7.5e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-11-22 | 1248417.0 | 7924.0 | 7095.857 | 35287.0 | 183.0 | 179.429 | 24535.107 | 155.73 | 139.455 | 693.494 | 3.596 | 3.526 | null | null | null | null | null | null | null | null | null | 4844144.0 | 26969.0 | 95.202 | 0.53 | 27587.0 | 0.542 | null | null | null | 65.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-25 | 87.0 | 0.0 | 10.857 | 1.0 | 0.0 | 0.0 | 100.047 | 0.0 | 12.485 | 1.15 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-17 | 502.0 | 0.0 | 1.0 | 7.0 | 0.0 | 0.0 | 577.28 | 0.0 | 1.15 | 8.05 | 0.0 | 0.0 | 0.64 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-01-25 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-07-24 | 3038.0 | 187.0 | 57.857 | 51.0 | 1.0 | 0.286 | 550.553 | 33.889 | 10.485 | 9.242 | 0.181 | 5.2e-2 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-08-31 | 3979.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 721.083 | 0.0 | 0.0 | 14.135 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CRI | North America | Costa Rica | 2020-02-20 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CRI | North America | Costa Rica | 2020-06-15 | 1744.0 | 29.0 | 57.429 | 12.0 | 0.0 | 0.143 | 342.356 | 5.693 | 11.274 | 2.356 | 0.0 | 2.8e-2 | 1.44 | null | null | null | null | null | null | null | null | 24411.0 | 237.0 | 4.792 | 4.7e-2 | 368.0 | 7.2e-2 | null | null | null | 72.22 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CIV | Africa | Cote d'Ivoire | 2020-07-22 | 14733.0 | 202.0 | 190.0 | 93.0 | 0.0 | 0.857 | 558.528 | 7.658 | 7.203 | 3.526 | 0.0 | 3.2e-2 | 0.94 | null | null | null | null | null | null | null | null | 87683.0 | 1131.0 | 3.324 | 4.3e-2 | 1113.0 | 4.2e-2 | 0.171 | 5.9 | null | 60.65 | 2.6378275e7 | 76.399 | 18.7 | 2.933 | 1.582 | 3601.006 | 28.2 | 303.74 | 2.42 | null | null | 19.351 | null | 57.78 | 0.492 |
CUB | North America | Cuba | 2020-08-20 | 3565.0 | 83.0 | 55.857 | 88.0 | 0.0 | -0.143 | 314.745 | 7.328 | 4.931 | 7.769 | 0.0 | -1.3e-2 | 1.11 | null | null | null | null | null | null | null | null | 351663.0 | 5224.0 | 31.047 | 0.461 | 4603.0 | 0.406 | 1.2e-2 | 82.4 | null | 82.41 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CYP | Europe | Cyprus | 2020-07-20 | 1038.0 | 0.0 | 2.286 | 19.0 | 0.0 | 0.0 | 1185.068 | 0.0 | 2.61 | 21.692 | 0.0 | 0.0 | 1.32 | null | null | null | null | null | null | null | null | 185489.0 | 1565.0 | 211.77 | 1.787 | 1532.0 | 1.749 | 1.0e-3 | 670.2 | null | 47.22 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-05-05 | 7896.0 | 77.0 | 56.0 | 257.0 | 5.0 | 4.286 | 737.325 | 7.19 | 5.229 | 23.999 | 0.467 | 0.4 | 0.78 | 47.0 | 4.389 | 223.0 | 20.824 | null | null | null | null | 283273.0 | 9383.0 | 26.452 | 0.876 | 6303.0 | 0.589 | 9.0e-3 | 112.6 | null | 57.41 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-03-13 | 2.0 | 1.0 | 0.286 | null | 0.0 | 0.0 | 2.2e-2 | 1.1e-2 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-02-18 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 14.0 | 2.0 | 2.0e-3 | 0.0 | 1.0 | 0.0 | 0.0 | null | null | 0.0 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-09-27 | 5409.0 | 0.0 | 0.857 | 61.0 | 0.0 | 0.0 | 5474.685 | 0.0 | 0.868 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-10-01 | 5417.0 | 1.0 | 1.429 | 61.0 | 0.0 | 0.0 | 5482.782 | 1.012 | 1.446 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DOM | North America | Dominican Republic | 2020-03-07 | 2.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 0.184 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-04-14 | 3286.0 | 119.0 | 190.0 | 183.0 | 6.0 | 12.143 | 302.916 | 10.97 | 17.515 | 16.87 | 0.553 | 1.119 | 1.37 | null | null | null | null | null | null | null | null | 11741.0 | 1293.0 | 1.082 | 0.119 | 769.0 | 7.1e-2 | 0.247 | 4.0 | null | 92.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-06 | 115371.0 | 317.0 | 495.857 | 2149.0 | 5.0 | 6.857 | 10635.326 | 29.222 | 45.71 | 198.103 | 0.461 | 0.632 | 1.0 | null | null | null | null | null | null | null | null | 502680.0 | 4599.0 | 46.339 | 0.424 | 3610.0 | 0.333 | 0.137 | 7.3 | null | 78.7 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-20 | 136784.0 | 601.0 | 604.286 | 2306.0 | 5.0 | 3.714 | 12609.256 | 55.402 | 55.705 | 212.576 | 0.461 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | 4378.0 | 0.404 | 0.138 | 7.2 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
EGY | Africa | Egypt | 2020-03-22 | 327.0 | 33.0 | 31.0 | 14.0 | 4.0 | 1.714 | 3.195 | 0.322 | 0.303 | 0.137 | 3.9e-2 | 1.7e-2 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-04-14 | 2350.0 | 160.0 | 128.571 | 178.0 | 14.0 | 12.0 | 22.964 | 1.564 | 1.256 | 1.739 | 0.137 | 0.117 | 1.36 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-12-03 | 39130.0 | 0.0 | 178.0 | 1134.0 | 5.0 | 5.143 | 6032.807 | 0.0 | 27.443 | 174.833 | 0.771 | 0.793 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
GNQ | Africa | Equatorial Guinea | 2020-05-15 | 594.0 | 11.0 | 22.143 | 7.0 | 0.0 | 0.429 | 423.383 | 7.84 | 15.783 | 4.989 | 0.0 | 0.305 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
EST | Europe | Estonia | 2020-04-22 | 1559.0 | 7.0 | 22.714 | 44.0 | 1.0 | 1.286 | 1175.239 | 5.277 | 17.123 | 33.169 | 0.754 | 0.969 | 0.72 | 12.0 | 9.046 | 110.0 | 82.923 | null | null | null | null | 48443.0 | 1732.0 | 36.518 | 1.306 | 1461.0 | 1.101 | 1.6e-2 | 64.3 | null | 77.78 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-07-10 | 2013.0 | 2.0 | 3.143 | 69.0 | 0.0 | 0.0 | 1517.483 | 1.508 | 2.369 | 52.015 | 0.0 | 0.0 | 0.94 | 2.0 | 1.508 | 4.0 | 3.015 | null | null | null | null | 129910.0 | 422.0 | 97.932 | 0.318 | 556.0 | 0.419 | 6.0e-3 | 176.9 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-09-14 | 2698.0 | 22.0 | 23.714 | 64.0 | 0.0 | 0.0 | 2033.864 | 16.585 | 17.877 | 48.246 | 0.0 | 0.0 | 1.25 | 1.0 | 0.754 | 19.0 | 14.323 | null | null | null | null | 208696.0 | 3059.0 | 157.324 | 2.306 | 2476.0 | 1.867 | 1.0e-2 | 104.4 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
TLS | Asia | Timor | 2020-04-09 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.758 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TLS | Asia | Timor | 2020-05-12 | 24.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 18.203 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-04-03 | 40.0 | 1.0 | 2.143 | 3.0 | 1.0 | 0.286 | 4.832 | 0.121 | 0.259 | 0.362 | 0.121 | 3.5e-2 | null | null | null | null | null | null | null | null | null | 1018.0 | 294.0 | 0.123 | 3.6e-2 | 100.0 | 1.2e-2 | 2.1e-2 | 46.7 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TTO | North America | Trinidad and Tobago | 2020-03-18 | 7.0 | 2.0 | 1.0 | null | 0.0 | 0.0 | 5.002 | 1.429 | 0.715 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TUN | Africa | Tunisia | 2020-03-21 | 60.0 | 6.0 | 6.0 | 1.0 | 0.0 | 0.143 | 5.077 | 0.508 | 0.508 | 8.5e-2 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | 955.0 | 135.0 | 8.1e-2 | 1.1e-2 | 85.0 | 7.0e-3 | 7.1e-2 | 14.2 | null | 77.78 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-11 | 1032.0 | 0.0 | 2.0 | 45.0 | 0.0 | 0.286 | 87.32 | 0.0 | 0.169 | 3.808 | 0.0 | 2.4e-2 | 0.59 | null | null | null | null | null | null | null | null | 34323.0 | 443.0 | 2.904 | 3.7e-2 | 1253.0 | 0.106 | 2.0e-3 | 626.5 | null | 87.04 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-31 | 1077.0 | 1.0 | 3.714 | 48.0 | 0.0 | 0.0 | 91.127 | 8.5e-2 | 0.314 | 4.061 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | 53161.0 | 287.0 | 4.498 | 2.4e-2 | 578.0 | 4.9e-2 | 6.0e-3 | 155.6 | null | 79.63 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-06-14 | 178239.0 | 1562.0 | 1158.143 | 4807.0 | 15.0 | 16.429 | 2113.362 | 18.52 | 13.732 | 56.996 | 0.178 | 0.195 | 1.44 | null | null | null | null | null | null | null | null | 2632171.0 | 45176.0 | 31.209 | 0.536 | 41940.0 | 0.497 | 2.8e-2 | 36.2 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-07-20 | 220572.0 | 931.0 | 938.714 | 5508.0 | 17.0 | 18.0 | 2615.3 | 11.039 | 11.13 | 65.308 | 0.202 | 0.213 | 0.93 | null | null | null | null | null | null | null | null | 4316781.0 | 43404.0 | 51.184 | 0.515 | 42119.0 | 0.499 | 2.2e-2 | 44.9 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-09-06 | 279806.0 | 1578.0 | 1608.571 | 6673.0 | 53.0 | 49.571 | 3317.632 | 18.71 | 19.073 | 79.121 | 0.628 | 0.588 | 1.05 | null | null | null | null | null | null | null | null | 7779539.0 | 96842.0 | 92.241 | 1.148 | 107307.0 | 1.272 | 1.5e-2 | 66.7 | null | 47.22 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-07-02 | 902.0 | 9.0 | 11.571 | null | 0.0 | 0.0 | 19.72 | 0.197 | 0.253 | null | 0.0 | 0.0 | 0.95 | null | null | null | null | null | null | null | null | 200179.0 | 3349.0 | 4.376 | 7.3e-2 | null | null | null | null | null | 87.04 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-11-28 | 19944.0 | 356.0 | 325.286 | 201.0 | 4.0 | 4.714 | 436.02 | 7.783 | 7.111 | 4.394 | 8.7e-2 | 0.103 | null | null | null | null | null | null | null | null | null | 623977.0 | 823.0 | 13.642 | 1.8e-2 | 2101.0 | 4.6e-2 | 0.155 | 6.5 | null | null | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-02-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-10-10 | 593565.0 | 15175.0 | 15844.429 | 42850.0 | 81.0 | 63.286 | 8743.555 | 223.537 | 233.398 | 631.205 | 1.193 | 0.932 | 1.22 | 470.0 | 6.923 | 4194.0 | 61.78 | null | null | null | null | 2.3471856e7 | 256190.0 | 345.754 | 3.774 | 251482.0 | 3.704 | 6.3e-2 | 15.9 | null | 67.59 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-03-22 | 34855.0 | 8830.0 | 4520.429 | 574.0 | 110.0 | 72.0 | 105.301 | 26.677 | 13.657 | 1.734 | 0.332 | 0.218 | 3.1 | null | null | 2173.0 | 6.565 | 0.0 | 0.0 | 2989.0 | 9.03 | 459727.0 | 72176.0 | 1.389 | 0.218 | 56551.0 | 0.171 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-05-25 | 1666505.0 | 18347.0 | 21812.714 | 101521.0 | 557.0 | 1115.286 | 5034.718 | 55.429 | 65.899 | 306.708 | 1.683 | 3.369 | 0.93 | 8467.0 | 25.58 | 37382.0 | 112.936 | null | null | null | null | 1.6179748e7 | 335387.0 | 48.881 | 1.013 | 413773.0 | 1.25 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-10-04 | 7402515.0 | 36092.0 | 42957.571 | 210006.0 | 349.0 | 711.714 | 22363.915 | 109.038 | 129.78 | 634.454 | 1.054 | 2.15 | 1.05 | 5974.0 | 18.048 | 29945.0 | 90.468 | 679.0 | 2.051 | 9423.0 | 28.468 | 1.20830414e8 | 626288.0 | 365.044 | 1.892 | 951162.0 | 2.874 | null | null | null | 62.5 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-15 | 1827.0 | 15.0 | 16.429 | 45.0 | 0.0 | 0.0 | 525.948 | 4.318 | 4.729 | 12.954 | 0.0 | 0.0 | 1.11 | null | null | null | null | null | null | null | null | 203232.0 | 1797.0 | 58.505 | 0.517 | 2085.0 | 0.6 | 8.0e-3 | 126.9 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
URY | South America | Uruguay | 2020-09-24 | 1959.0 | 13.0 | 11.857 | 47.0 | 0.0 | 0.143 | 563.948 | 3.742 | 3.413 | 13.53 | 0.0 | 4.1e-2 | 1.12 | null | null | null | null | null | null | null | null | 224322.0 | 3009.0 | 64.577 | 0.866 | 2290.0 | 0.659 | 5.0e-3 | 193.1 | null | 43.52 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-05-24 | 3164.0 | 49.0 | 58.714 | 13.0 | 0.0 | 0.143 | 94.535 | 1.464 | 1.754 | 0.388 | 0.0 | 4.0e-3 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-06-08 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-10-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VAT | Europe | Vatican | 2020-02-07 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VAT | Europe | Vatican | 2020-09-13 | 12.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 14833.127 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VAT | Europe | Vatican | 2020-10-23 | 27.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 33374.536 | 0.0 | 176.585 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VEN | South America | Venezuela | 2020-05-04 | 357.0 | 0.0 | 4.0 | 10.0 | 0.0 | 0.0 | 12.555 | 0.0 | 0.141 | 0.352 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
VEN | South America | Venezuela | 2020-07-05 | 7169.0 | 419.0 | 267.429 | 65.0 | 3.0 | 3.0 | 252.111 | 14.735 | 9.405 | 2.286 | 0.106 | 0.106 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
VNM | Asia | Vietnam | 2020-03-31 | 212.0 | 9.0 | 11.143 | null | 0.0 | 0.0 | 2.178 | 9.2e-2 | 0.114 | null | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | 4476.0 | 4.6e-2 | 2.0e-3 | 401.7 | null | 83.33 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
VNM | Asia | Vietnam | 2020-06-10 | 332.0 | 0.0 | 0.571 | null | 0.0 | 0.0 | 3.411 | 0.0 | 6.0e-3 | null | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
ESH | Africa | Western Sahara | 2020-04-24 | 6.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
ESH | Africa | Western Sahara | 2020-05-10 | 6.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
OWID_WRL | null | World | 2020-04-06 | 1342655.0 | 73233.0 | 77646.857 | 79519.0 | 5946.0 | 5697.571 | 172.25 | 9.395 | 9.961 | 10.202 | 0.763 | 0.731 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
OWID_WRL | null | World | 2020-05-13 | 4351182.0 | 84840.0 | 83759.286 | 300046.0 | 5077.0 | 4674.286 | 558.216 | 10.884 | 10.746 | 38.493 | 0.651 | 0.6 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
OWID_WRL | null | World | 2020-09-06 | 2.7123898e7 | 223342.0 | 270152.286 | 883806.0 | 3784.0 | 5300.143 | 3479.743 | 28.653 | 34.658 | 113.384 | 0.485 | 0.68 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
ZMB | Africa | Zambia | 2020-03-11 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-08-17 | 5308.0 | 47.0 | 80.0 | 135.0 | 3.0 | 4.429 | 357.13 | 3.162 | 5.383 | 9.083 | 0.202 | 0.298 | 1.05 | null | null | null | null | null | null | null | null | 83782.0 | 898.0 | 5.637 | 6.0e-2 | 1337.0 | 9.0e-2 | 6.0e-2 | 16.7 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-11-12 | 8696.0 | 29.0 | 36.0 | 255.0 | 0.0 | 1.0 | 585.08 | 1.951 | 2.422 | 17.157 | 0.0 | 6.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 150616.0 | 1086.0 | 10.134 | 7.3e-2 | 796.0 | 5.4e-2 | 4.5e-2 | 22.1 | null | 67.59 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
MNG | Asia | Mongolia | 2020-06-21 | 213.0 | 7.0 | 2.286 | null | 0.0 | 0.0 | 64.973 | 2.135 | 0.697 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-11-10 | 382.0 | 14.0 | 4.286 | null | 0.0 | 0.0 | 116.524 | 4.271 | 1.307 | null | 0.0 | 0.0 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNE | Europe | Montenegro | 2020-02-20 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-05-15 | 6652.0 | 45.0 | 134.429 | 190.0 | 0.0 | 0.571 | 180.219 | 1.219 | 3.642 | 5.148 | 0.0 | 1.5e-2 | 0.82 | null | null | null | null | null | null | null | null | 81616.0 | 3694.0 | 2.211 | 0.1 | 3106.0 | 8.4e-2 | 4.3e-2 | 23.1 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-08-01 | 25015.0 | 693.0 | 767.143 | 367.0 | 14.0 | 8.857 | 677.719 | 18.775 | 20.784 | 9.943 | 0.379 | 0.24 | 1.42 | null | null | null | null | null | null | null | null | 1273939.0 | 21574.0 | 34.514 | 0.584 | 21104.0 | 0.572 | 3.6e-2 | 27.5 | null | 64.81 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-09-16 | 5994.0 | 281.0 | 175.714 | 39.0 | 2.0 | 1.571 | 191.775 | 8.99 | 5.622 | 1.248 | 6.4e-2 | 5.0e-2 | 1.12 | null | null | null | null | null | null | null | null | 118657.0 | 1628.0 | 3.796 | 5.2e-2 | 1557.0 | 5.0e-2 | 0.113 | 8.9 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-10-04 | 9196.0 | 147.0 | 173.286 | 66.0 | 2.0 | 1.143 | 294.221 | 4.703 | 5.544 | 2.112 | 6.4e-2 | 3.7e-2 | 1.1 | null | null | null | null | null | null | null | null | 144618.0 | 1337.0 | 4.627 | 4.3e-2 | 1515.0 | 4.8e-2 | 0.114 | 8.7 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-06-27 | 296.0 | 3.0 | 1.286 | 6.0 | 0.0 | 0.0 | 5.44 | 5.5e-2 | 2.4e-2 | 0.11 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | 73218.0 | 1526.0 | 1.346 | 2.8e-2 | 1593.0 | 2.9e-2 | 1.0e-3 | 1238.7 | null | 80.56 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-03-21 | 3.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 1.181 | 0.0 | 5.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-08-08 | 2802.0 | 0.0 | 82.571 | 16.0 | 0.0 | 0.714 | 1102.752 | 0.0 | 32.497 | 6.297 | 0.0 | 0.281 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | 976.0 | 0.384 | 8.5e-2 | 11.8 | null | 48.61 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-10-21 | 12406.0 | 39.0 | 48.143 | 133.0 | 1.0 | 0.429 | 4882.491 | 15.349 | 18.947 | 52.343 | 0.394 | 0.169 | 0.91 | null | null | null | null | null | null | null | null | 118462.0 | 703.0 | 46.622 | 0.277 | 859.0 | 0.338 | 5.6e-2 | 17.8 | null | 34.26 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-07-23 | 18241.0 | 147.0 | 128.143 | 43.0 | 1.0 | 0.571 | 626.047 | 5.045 | 4.398 | 1.476 | 3.4e-2 | 2.0e-2 | 0.98 | null | null | null | null | null | null | null | null | 331095.0 | 3481.0 | 11.363 | 0.119 | 3898.0 | 0.134 | 3.3e-2 | 30.4 | null | 74.07 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-06-01 | 46749.0 | 104.0 | 157.429 | 5981.0 | 6.0 | 18.857 | 2728.296 | 6.069 | 9.188 | 349.054 | 0.35 | 1.101 | 0.87 | 151.0 | 8.812 | null | null | null | null | null | null | null | null | null | null | 5351.0 | 0.312 | 2.9e-2 | 34.0 | null | 62.96 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-06-19 | 49634.0 | 107.0 | 138.0 | 6100.0 | 3.0 | 4.0 | 2896.666 | 6.245 | 8.054 | 355.999 | 0.175 | 0.233 | 0.75 | 73.0 | 4.26 | null | null | null | null | null | null | null | null | null | null | 9291.0 | 0.542 | 1.5e-2 | 67.3 | null | 59.26 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-05 | 50834.0 | 73.0 | 68.429 | 6146.0 | 1.0 | 3.143 | 2966.698 | 4.26 | 3.994 | 358.684 | 5.8e-2 | 0.183 | 0.83 | 36.0 | 2.101 | null | null | 4.957 | 0.289 | 8.923 | 0.521 | 685145.0 | null | 39.985 | null | 9951.0 | 0.581 | 7.0e-3 | 145.4 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-11-30 | 531930.0 | 4594.0 | 4918.429 | 9453.0 | 27.0 | 61.714 | 31043.708 | 268.108 | 287.042 | 551.682 | 1.576 | 3.602 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-04-14 | 1366.0 | 17.0 | 29.429 | 9.0 | 4.0 | 1.143 | 283.271 | 3.525 | 6.103 | 1.866 | 0.829 | 0.237 | 0.55 | null | null | null | null | null | null | null | null | 67480.0 | 3123.0 | 13.994 | 0.648 | 2423.0 | 0.502 | 1.2e-2 | 82.3 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-06-02 | 1504.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.143 | 311.889 | 0.0 | 0.0 | 4.562 | 0.0 | 3.0e-2 | 0.1 | null | null | null | null | null | null | null | null | 278212.0 | 1149.0 | 57.694 | 0.238 | 1673.0 | 0.347 | 0.0 | null | null | 37.04 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-08-15 | 1622.0 | 13.0 | 7.571 | 22.0 | 0.0 | 0.0 | 336.359 | 2.696 | 1.57 | 4.562 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | 566096.0 | 23991.0 | 117.393 | 4.975 | 11027.0 | 2.287 | 1.0e-3 | 1456.5 | null | 68.98 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-03-14 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NGA | Africa | Nigeria | 2020-02-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-05-03 | 2558.0 | 170.0 | 183.571 | 87.0 | 2.0 | 6.714 | 12.409 | 0.825 | 0.891 | 0.422 | 1.0e-2 | 3.3e-2 | 1.5 | null | null | null | null | null | null | null | null | 16588.0 | null | 8.0e-2 | null | 758.0 | 4.0e-3 | 0.242 | 4.1 | null | 85.65 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-06-29 | 25133.0 | 566.0 | 602.0 | 573.0 | 8.0 | 6.857 | 121.922 | 2.746 | 2.92 | 2.78 | 3.9e-2 | 3.3e-2 | 1.06 | null | null | null | null | null | null | null | null | 132304.0 | 2140.0 | 0.642 | 1.0e-2 | 2363.0 | 1.1e-2 | 0.255 | 3.9 | null | 80.09 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-01-30 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-07 | 8547.0 | 16.0 | 15.286 | 238.0 | 0.0 | 0.286 | 1576.576 | 2.951 | 2.82 | 43.901 | 0.0 | 5.3e-2 | 0.96 | null | null | 21.0 | 3.874 | null | null | null | null | 266925.0 | 933.0 | 49.237 | 0.172 | 2206.0 | 0.407 | 7.0e-3 | 144.3 | null | 39.81 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-17 | 8692.0 | 32.0 | 14.0 | 243.0 | 1.0 | 0.571 | 1603.323 | 5.903 | 2.582 | 44.824 | 0.184 | 0.105 | 1.05 | null | null | 18.0 | 3.32 | null | null | null | null | 311041.0 | 4980.0 | 57.374 | 0.919 | 4021.0 | 0.742 | 3.0e-3 | 287.2 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-10-19 | 16603.0 | 146.0 | 137.714 | 278.0 | 0.0 | 0.286 | 3062.582 | 26.931 | 25.403 | 51.28 | 0.0 | 5.3e-2 | 1.24 | null | null | 28.0 | 5.165 | null | null | null | null | 1514984.0 | 20733.0 | 279.453 | 3.824 | 13044.0 | 2.406 | 1.1e-2 | 94.7 | null | 28.7 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-04-27 | 2049.0 | 51.0 | 91.286 | 10.0 | 0.0 | 0.429 | 401.244 | 9.987 | 17.876 | 1.958 | 0.0 | 8.4e-2 | 1.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
OMN | Asia | Oman | 2020-08-24 | 84509.0 | 740.0 | 183.286 | 637.0 | 28.0 | 7.0 | 16548.905 | 144.91 | 35.892 | 124.74 | 5.483 | 1.371 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-04-28 | 15525.0 | 913.0 | 778.429 | 343.0 | 31.0 | 18.714 | 70.283 | 4.133 | 3.524 | 1.553 | 0.14 | 8.5e-2 | 1.4 | null | null | null | null | null | null | null | null | 157223.0 | 6467.0 | 0.712 | 2.9e-2 | 6488.0 | 2.9e-2 | 0.12 | 8.3 | null | 89.81 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-01-27 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-04-07 | 2100.0 | 112.0 | 131.286 | 55.0 | 1.0 | 3.571 | 486.701 | 25.957 | 30.427 | 12.747 | 0.232 | 0.828 | 1.46 | null | null | null | null | null | null | null | null | 10681.0 | 384.0 | 2.475 | 8.9e-2 | 534.0 | 0.124 | 0.246 | 4.1 | null | 90.74 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-04-27 | 6021.0 | 242.0 | 222.0 | 167.0 | 2.0 | 5.857 | 1395.44 | 56.086 | 51.451 | 38.704 | 0.464 | 1.357 | 1.1 | null | null | null | null | null | null | null | null | 27221.0 | 1098.0 | 6.309 | 0.254 | 934.0 | 0.216 | 0.238 | 4.2 | null | 93.52 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-05-29 | 8.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.894 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.31 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-05-12 | 737.0 | 13.0 | 43.714 | 10.0 | 0.0 | 0.0 | 103.329 | 1.823 | 6.129 | 1.402 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 16917.0 | 762.0 | 2.372 | 0.107 | 715.0 | 0.1 | 6.1e-2 | 16.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-09-27 | 38684.0 | 762.0 | 737.714 | 803.0 | 21.0 | 20.571 | 5423.601 | 106.834 | 103.43 | 112.583 | 2.944 | 2.884 | 1.08 | null | null | null | null | null | null | null | null | 269710.0 | 2648.0 | 37.814 | 0.371 | 2690.0 | 0.377 | 0.274 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PER | South America | Peru | 2020-05-22 | 111698.0 | 2929.0 | 3886.143 | 3244.0 | 96.0 | 121.714 | 3387.678 | 88.833 | 117.862 | 98.387 | 2.912 | 3.691 | 1.22 | null | null | null | null | null | null | null | null | 135586.0 | 5230.0 | 4.112 | 0.159 | 3878.0 | 0.118 | null | null | null | 92.59 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-02 | 657129.0 | 5092.0 | 7106.714 | 29068.0 | 124.0 | 152.429 | 19930.003 | 154.435 | 215.539 | 881.601 | 3.761 | 4.623 | 0.99 | null | null | null | null | null | null | null | null | 680150.0 | 7875.0 | 20.628 | 0.239 | 7053.0 | 0.214 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-09 | 696190.0 | 4615.0 | 5580.143 | 30123.0 | 147.0 | 150.714 | 21114.681 | 139.968 | 169.24 | 913.598 | 4.458 | 4.571 | 0.96 | null | null | null | null | null | null | null | null | 728802.0 | 8243.0 | 22.104 | 0.25 | 6950.0 | 0.211 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-22 | 768895.0 | 0.0 | 5005.0 | 31369.0 | 0.0 | 79.571 | 23319.744 | 0.0 | 151.796 | 951.387 | 0.0 | 2.413 | 0.94 | null | null | null | null | null | null | null | null | 813013.0 | 7704.0 | 24.658 | 0.234 | 6558.0 | 0.199 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PHL | Asia | Philippines | 2020-02-01 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 9.0e-3 | 0.0 | 1.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-05-25 | 14319.0 | 284.0 | 228.714 | 873.0 | 5.0 | 6.0 | 130.67 | 2.592 | 2.087 | 7.967 | 4.6e-2 | 5.5e-2 | 1.31 | null | null | null | null | null | null | null | null | 285929.0 | 5421.0 | 2.609 | 4.9e-2 | 7459.0 | 6.8e-2 | 3.1e-2 | 32.6 | null | 96.3 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-04-07 | 4848.0 | 435.0 | 362.429 | 129.0 | 22.0 | 13.714 | 128.096 | 11.494 | 9.576 | 3.408 | 0.581 | 0.362 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.48 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-04-16 | 7918.0 | 336.0 | 334.714 | 314.0 | 28.0 | 20.0 | 209.213 | 8.878 | 8.844 | 8.297 | 0.74 | 0.528 | 1.11 | null | null | 2607.0 | 68.883 | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-07-22 | 41162.0 | 380.0 | 348.714 | 1642.0 | 6.0 | 6.857 | 1087.601 | 10.041 | 9.214 | 43.386 | 0.159 | 0.181 | 1.19 | null | null | 1644.0 | 43.439 | null | null | null | null | 1761265.0 | 19656.0 | 46.537 | 0.519 | 17054.0 | 0.451 | 2.0e-2 | 48.9 | null | 39.81 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-10-09 | 116338.0 | 4739.0 | 2937.857 | 2919.0 | 52.0 | 49.857 | 3073.935 | 125.216 | 77.625 | 77.127 | 1.374 | 1.317 | 1.69 | null | null | 4407.0 | 116.444 | null | null | null | null | 3455011.0 | 31036.0 | 91.29 | 0.82 | 28845.0 | 0.762 | 0.102 | 9.8 | null | 23.15 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-04-03 | 9886.0 | 852.0 | 802.571 | 246.0 | 37.0 | 24.286 | 969.529 | 83.556 | 78.709 | 24.125 | 3.629 | 2.382 | 1.44 | 245.0 | 24.027 | 1058.0 | 103.759 | null | null | null | null | 107234.0 | 9438.0 | 10.517 | 0.926 | 7878.0 | 0.773 | 0.102 | 9.8 | null | 82.41 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-01 | 76396.0 | 854.0 | 748.571 | 1977.0 | 6.0 | 6.571 | 7492.223 | 83.753 | 73.413 | 193.886 | 0.588 | 0.644 | 1.18 | 107.0 | 10.494 | 682.0 | 66.884 | null | null | null | null | 2675452.0 | 24530.0 | 262.384 | 2.406 | 21504.0 | 2.109 | 3.5e-2 | 28.7 | null | 58.8 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-11-19 | 136649.0 | 208.0 | 216.714 | 235.0 | 0.0 | 0.143 | 47430.113 | 72.196 | 75.22 | 81.567 | 0.0 | 5.0e-2 | 1.0 | null | null | null | null | null | null | null | null | 1067758.0 | 4703.0 | 370.613 | 1.632 | 4545.0 | 1.578 | 4.8e-2 | 21.0 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-02-19 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-08-26 | 81646.0 | 1256.0 | 1147.0 | 3421.0 | 54.0 | 45.0 | 4244.066 | 65.289 | 59.623 | 177.828 | 2.807 | 2.339 | 1.01 | 502.0 | 26.095 | null | null | null | null | null | null | 1705368.0 | 25754.0 | 88.647 | 1.339 | 19819.0 | 1.03 | 5.8e-2 | 17.3 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-11 | 155283.0 | 2880.0 | 2769.0 | 5411.0 | 53.0 | 58.286 | 8071.814 | 149.706 | 143.936 | 281.271 | 2.755 | 3.03 | 1.29 | 628.0 | 32.644 | null | null | null | null | 18152.199 | 943.575 | 2672537.0 | 15709.0 | 138.922 | 0.817 | 23190.0 | 1.205 | 0.119 | 8.4 | null | 44.44 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-31 | 241339.0 | 5753.0 | 5078.0 | 6968.0 | 101.0 | 92.857 | 12545.118 | 299.049 | 263.961 | 362.206 | 5.25 | 4.827 | 1.26 | 923.0 | 47.979 | null | null | null | null | null | null | 3242748.0 | 36181.0 | 168.562 | 1.881 | 30479.0 | 1.584 | 0.167 | 6.0 | null | 54.63 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-02-29 | 2.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 1.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RWA | Africa | Rwanda | 2020-04-04 | 102.0 | 13.0 | 6.0 | null | 0.0 | 0.0 | 7.875 | 1.004 | 0.463 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-11-12 | 5319.0 | 7.0 | 18.143 | 41.0 | 0.0 | 0.714 | 410.664 | 0.54 | 1.401 | 3.165 | 0.0 | 5.5e-2 | 1.43 | null | null | null | null | null | null | null | null | null | null | null | null | 2056.0 | 0.159 | 9.0e-3 | 113.3 | null | 58.33 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
KNA | North America | Saint Kitts and Nevis | 2020-03-27 | 2.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 37.6 | 0.0 | 5.371 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
KNA | North America | Saint Kitts and Nevis | 2020-10-25 | 19.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 357.197 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
LCA | North America | Saint Lucia | 2020-02-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-04-26 | 15.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 81.686 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-09-27 | 27.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 147.036 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-10-04 | 27.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 147.036 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
VCT | North America | Saint Vincent and the Grenadines | 2020-02-24 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-13 | 64.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 576.852 | 0.0 | 3.863 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-14 | 64.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 576.852 | 0.0 | 2.575 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
STP | Africa | Sao Tome and Principe | 2020-06-26 | 712.0 | 1.0 | 2.714 | 13.0 | 0.0 | 0.143 | 3248.753 | 4.563 | 12.385 | 59.317 | 0.0 | 0.652 | 0.53 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 219161.0 | 212.841 | 18.7 | 2.886 | 2.162 | 3052.714 | 32.3 | 270.113 | 2.42 | null | null | 41.34 | 2.9 | 70.39 | 0.589 |
SEN | Africa | Senegal | 2020-09-12 | 14237.0 | 44.0 | 41.286 | 295.0 | 2.0 | 0.714 | 850.278 | 2.628 | 2.466 | 17.618 | 0.119 | 4.3e-2 | 0.88 | null | null | null | null | null | null | null | null | 165792.0 | 1093.0 | 9.902 | 6.5e-2 | 1091.0 | 6.5e-2 | 3.8e-2 | 26.4 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-05-18 | 10699.0 | 89.0 | 74.714 | 231.0 | 1.0 | 1.857 | 1572.32 | 13.079 | 10.98 | 33.948 | 0.147 | 0.273 | 0.77 | null | null | null | null | null | null | null | null | 185385.0 | 4113.0 | 27.244 | 0.604 | 5683.0 | 0.835 | 1.3e-2 | 76.1 | null | 51.85 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-10-02 | 33735.0 | 73.0 | 71.0 | 751.0 | 1.0 | 0.714 | 4957.679 | 10.728 | 10.434 | 110.367 | 0.147 | 0.105 | 1.17 | null | null | null | null | null | null | null | null | 1147039.0 | 6661.0 | 168.568 | 0.979 | 5799.0 | 0.852 | 1.2e-2 | 81.7 | null | 54.63 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-09-16 | 140.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 1423.632 | 0.0 | 4.358 | null | 0.0 | 0.0 | 0.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SLE | Africa | Sierra Leone | 2020-04-10 | 8.0 | 1.0 | 0.857 | null | 0.0 | 0.0 | 1.003 | 0.125 | 0.107 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SLE | Africa | Sierra Leone | 2020-07-07 | 1572.0 | 25.0 | 15.714 | 63.0 | 1.0 | 0.429 | 197.067 | 3.134 | 1.97 | 7.898 | 0.125 | 5.4e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 46.3 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SGP | Asia | Singapore | 2020-09-21 | 57606.0 | 30.0 | 21.714 | 27.0 | 0.0 | 0.0 | 9846.602 | 5.128 | 3.712 | 4.615 | 0.0 | 0.0 | 0.61 | null | null | null | null | null | null | null | null | 2692047.0 | null | 460.152 | null | 31585.0 | 5.399 | 1.0e-3 | 1454.6 | null | 51.85 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-15 | 57892.0 | 3.0 | 6.143 | 28.0 | 0.0 | 0.143 | 9895.488 | 0.513 | 1.05 | 4.786 | 0.0 | 2.4e-2 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | 29788.0 | 5.092 | 0.0 | 4849.1 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-23 | 57951.0 | 10.0 | 7.143 | 28.0 | 0.0 | 0.0 | 9905.573 | 1.709 | 1.221 | 4.786 | 0.0 | 0.0 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | 27814.0 | 4.754 | 0.0 | 3893.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-06-16 | 1552.0 | 0.0 | 3.0 | 28.0 | 0.0 | 0.0 | 284.268 | 0.0 | 0.549 | 5.129 | 0.0 | 0.0 | 1.29 | null | null | 0.0 | 0.0 | null | null | null | null | 198780.0 | 1163.0 | 36.409 | 0.213 | 973.0 | 0.178 | 3.0e-3 | 324.3 | null | 40.74 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-08-13 | 2739.0 | 49.0 | 37.0 | 31.0 | 0.0 | 0.286 | 501.681 | 8.975 | 6.777 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 33.0 | 6.044 | null | null | null | null | 289590.0 | 2738.0 | 53.042 | 0.501 | 2114.0 | 0.387 | 1.8e-2 | 57.1 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SLB | Oceania | Solomon Islands | 2020-06-13 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
ZAF | Africa | South Africa | 2020-02-03 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-05-08 | 8895.0 | 663.0 | 420.571 | 178.0 | 17.0 | 8.857 | 149.978 | 11.179 | 7.091 | 3.001 | 0.287 | 0.149 | 1.53 | null | null | null | null | null | null | null | null | 307752.0 | 15599.0 | 5.189 | 0.263 | 12890.0 | 0.217 | 3.3e-2 | 30.6 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-08-25 | 613017.0 | 1567.0 | 2981.857 | 13308.0 | 149.0 | 149.143 | 10336.04 | 26.421 | 50.277 | 224.385 | 2.512 | 2.515 | 0.63 | null | null | null | null | null | null | null | null | 3578836.0 | 14771.0 | 60.343 | 0.249 | 21213.0 | 0.358 | 0.141 | 7.1 | null | 72.22 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-04-16 | 10613.0 | 22.0 | 27.143 | 229.0 | 4.0 | 3.571 | 207.005 | 0.429 | 0.529 | 4.467 | 7.8e-2 | 7.0e-2 | 0.48 | null | null | null | null | null | null | null | null | 524507.0 | 4981.0 | 10.23 | 9.7e-2 | 6472.0 | 0.126 | 4.0e-3 | 238.4 | null | 82.41 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-06-01 | 11541.0 | 38.0 | 45.143 | 272.0 | 1.0 | 0.429 | 225.106 | 0.741 | 0.881 | 5.305 | 2.0e-2 | 8.0e-3 | 1.14 | null | null | null | null | null | null | null | null | 897333.0 | 9805.0 | 17.502 | 0.191 | 12855.0 | 0.251 | 4.0e-3 | 284.8 | null | 55.09 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-03-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-03-09 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-06-10 | 1604.0 | 0.0 | 87.143 | 19.0 | 0.0 | 1.286 | 143.295 | 0.0 | 7.785 | 1.697 | 0.0 | 0.115 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-08-23 | 2499.0 | 2.0 | 1.429 | 47.0 | 0.0 | 0.0 | 223.25 | 0.179 | 0.128 | 4.199 | 0.0 | 0.0 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-10-18 | 2842.0 | 25.0 | 9.286 | 55.0 | 0.0 | 0.0 | 253.892 | 2.233 | 0.83 | 4.913 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | 36740.0 | 420.0 | 3.282 | 3.8e-2 | 438.0 | 3.9e-2 | 2.1e-2 | 47.2 | null | 35.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
LKA | Asia | Sri Lanka | 2020-11-22 | 20171.0 | 400.0 | 412.0 | 87.0 | 4.0 | 4.143 | 941.987 | 18.68 | 19.24 | 4.063 | 0.187 | 0.193 | null | null | null | null | null | null | null | null | null | 747638.0 | 10679.0 | 34.915 | 0.499 | 10791.0 | 0.504 | 3.8e-2 | 26.2 | null | 49.54 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-03-30 | 6.0 | 0.0 | 0.571 | 2.0 | 1.0 | 0.143 | 0.137 | 0.0 | 1.3e-2 | 4.6e-2 | 2.3e-2 | 3.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-06-28 | 9257.0 | 0.0 | 96.714 | 572.0 | 0.0 | 7.286 | 211.11 | 0.0 | 2.206 | 13.045 | 0.0 | 0.166 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-02-14 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-05-01 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 17.046 | 0.0 | 0.0 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-05-20 | 217.0 | 9.0 | 4.286 | 2.0 | 0.0 | 0.0 | 187.043 | 7.758 | 3.694 | 1.724 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-30 | 38396.0 | 432.0 | 603.571 | 4633.0 | 45.0 | 39.0 | 3801.859 | 42.775 | 59.764 | 458.746 | 4.456 | 3.862 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-11-24 | 304593.0 | 4241.0 | 4294.143 | 4308.0 | 86.0 | 92.0 | 35194.274 | 490.027 | 496.168 | 497.769 | 9.937 | 10.63 | null | null | null | null | null | null | null | null | null | 2633317.0 | 29537.0 | 304.267 | 3.413 | 22717.0 | 2.625 | 0.189 | 5.3 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-05-28 | 122.0 | 1.0 | 9.143 | 4.0 | 0.0 | 0.143 | 6.971 | 5.7e-2 | 0.522 | 0.229 | 0.0 | 8.0e-3 | 0.35 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-06-19 | 187.0 | 0.0 | 3.286 | 7.0 | 0.0 | 0.143 | 10.685 | 0.0 | 0.188 | 0.4 | 0.0 | 8.0e-3 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TWN | Asia | Taiwan | 2020-09-22 | 509.0 | 0.0 | 1.429 | 7.0 | 0.0 | 0.0 | 21.371 | 0.0 | 6.0e-2 | 0.294 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | 92108.0 | 175.0 | 3.867 | 7.0e-3 | 281.0 | 1.2e-2 | 5.0e-3 | 196.6 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-09-26 | 510.0 | 0.0 | 0.571 | 7.0 | 0.0 | 0.0 | 21.413 | 0.0 | 2.4e-2 | 0.294 | 0.0 | 0.0 | 1.14 | null | null | null | null | null | null | null | null | 92975.0 | 275.0 | 3.904 | 1.2e-2 | 203.0 | 9.0e-3 | 3.0e-3 | 355.5 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TJK | Asia | Tajikistan | 2020-03-06 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-05-22 | 2551.0 | 201.0 | 204.714 | 44.0 | 0.0 | 1.571 | 267.467 | 21.074 | 21.464 | 4.613 | 0.0 | 0.165 | 1.32 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 51.85 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-07-09 | 6410.0 | 46.0 | 50.286 | 54.0 | 0.0 | 0.286 | 672.074 | 4.823 | 5.272 | 5.662 | 0.0 | 3.0e-2 | 0.92 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.37 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
THA | Asia | Thailand | 2020-02-12 | 33.0 | 0.0 | 1.143 | null | 0.0 | 0.0 | 0.473 | 0.0 | 1.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2727.0 | 116.0 | 3.9e-2 | 2.0e-3 | 108.0 | 2.0e-3 | 1.1e-2 | 94.5 | null | 0.0 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-03-22 | 599.0 | 188.0 | 69.286 | 1.0 | 0.0 | 0.0 | 8.582 | 2.693 | 0.993 | 1.4e-2 | 0.0 | 0.0 | 1.55 | null | null | null | null | null | null | null | null | 39317.0 | 2058.0 | 0.563 | 2.9e-2 | 2397.0 | 3.4e-2 | 2.9e-2 | 34.6 | null | 52.31 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-08-11 | 3351.0 | 0.0 | 4.286 | 58.0 | 0.0 | 0.0 | 48.009 | 0.0 | 6.1e-2 | 0.831 | 0.0 | 0.0 | 1.02 | null | null | null | null | null | null | null | null | 836077.0 | 4136.0 | 11.978 | 5.9e-2 | 4105.0 | 5.9e-2 | 1.0e-3 | 957.8 | null | 52.78 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
TLS | Asia | Timor | 2020-08-19 | 25.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 18.962 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-02-09 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TGO | Africa | Togo | 2020-09-15 | 1595.0 | 17.0 | 11.714 | 40.0 | 0.0 | 0.857 | 192.662 | 2.053 | 1.415 | 4.832 | 0.0 | 0.104 | 1.06 | null | null | null | null | null | null | null | null | 78651.0 | 884.0 | 9.5 | 0.107 | 869.0 | 0.105 | 1.3e-2 | 74.2 | null | 49.07 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-09-13 | 6635.0 | 0.0 | 227.714 | 107.0 | 0.0 | 2.0 | 561.402 | 0.0 | 19.267 | 9.054 | 0.0 | 0.169 | 1.48 | null | null | null | null | null | null | null | null | 190241.0 | null | 16.097 | null | 3545.0 | 0.3 | 6.4e-2 | 15.6 | null | 26.85 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-10-21 | 45892.0 | 1442.0 | 1586.0 | 740.0 | 29.0 | 32.571 | 3883.026 | 122.011 | 134.195 | 62.613 | 2.454 | 2.756 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
UGA | Africa | Uganda | 2020-02-21 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-03-03 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-07-16 | 1051.0 | 8.0 | 7.286 | null | 0.0 | 0.0 | 22.977 | 0.175 | 0.159 | null | 0.0 | 0.0 | 0.88 | null | null | null | null | null | null | null | null | 238709.0 | 3696.0 | 5.219 | 8.1e-2 | 2433.0 | 5.3e-2 | 3.0e-3 | 333.9 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-09-17 | 5380.0 | 114.0 | 155.571 | 60.0 | 0.0 | 1.714 | 117.619 | 2.492 | 3.401 | 1.312 | 0.0 | 3.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 444346.0 | 2636.0 | 9.714 | 5.8e-2 | 3019.0 | 6.6e-2 | 5.2e-2 | 19.4 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-08-11 | 85023.0 | 1211.0 | 1306.143 | 1979.0 | 29.0 | 27.286 | 1944.105 | 27.69 | 29.866 | 45.251 | 0.663 | 0.624 | 1.16 | null | null | null | null | null | null | null | null | 1195561.0 | 16127.0 | 27.337 | 0.369 | 16104.0 | 0.368 | 8.1e-2 | 12.3 | null | 57.87 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-08-12 | 315581.0 | 1039.0 | 964.143 | 41414.0 | 20.0 | 12.714 | 4648.69 | 15.305 | 14.202 | 610.052 | 0.295 | 0.187 | 1.21 | 80.0 | 1.178 | 937.0 | 13.803 | null | null | null | null | 1.1310805e7 | 167983.0 | 166.615 | 2.474 | 153405.0 | 2.26 | 6.0e-3 | 159.1 | null | 69.91 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-09-07 | 6290964.0 | 23545.0 | 39247.714 | 189295.0 | 276.0 | 801.571 | 19005.782 | 71.132 | 118.572 | 571.884 | 0.834 | 2.422 | 0.88 | 6630.0 | 20.03 | 32009.0 | 96.703 | null | null | null | null | 9.5865802e7 | 408656.0 | 289.622 | 1.235 | 809989.0 | 2.447 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-09-10 | 6387822.0 | 36066.0 | 35026.143 | 191830.0 | 907.0 | 708.857 | 19298.402 | 108.96 | 105.818 | 579.542 | 2.74 | 2.142 | 0.96 | 6531.0 | 19.731 | 32438.0 | 97.999 | null | null | null | null | 9.8444261e7 | 1034528.0 | 297.412 | 3.125 | 769511.0 | 2.325 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
UZB | Asia | Uzbekistan | 2020-04-04 | 266.0 | 39.0 | 23.143 | 2.0 | 0.0 | 0.0 | 7.948 | 1.165 | 0.691 | 6.0e-2 | 0.0 | 0.0 | 1.71 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
UZB | Asia | Uzbekistan | 2020-05-29 | 3468.0 | 24.0 | 62.857 | 14.0 | 0.0 | 0.143 | 103.618 | 0.717 | 1.878 | 0.418 | 0.0 | 4.0e-3 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-02-15 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-06-17 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-07-07 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VAT | Europe | Vatican | 2020-11-05 | 27.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 33374.536 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VEN | South America | Venezuela | 2020-02-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
ESH | Africa | Western Sahara | 2020-04-29 | 6.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
ZMB | Africa | Zambia | 2020-04-11 | 40.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.143 | 2.176 | 0.0 | 8.0e-3 | 0.109 | 0.0 | 8.0e-3 | null | null | null | null | null | null | null | null | null | 1454.0 | 111.0 | 7.9e-2 | 6.0e-3 | 78.0 | 4.0e-3 | 2.0e-3 | 545.5 | null | 50.93 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZMB | Africa | Zambia | 2020-08-22 | 10831.0 | 204.0 | 235.0 | 279.0 | 2.0 | 2.714 | 589.155 | 11.097 | 12.783 | 15.176 | 0.109 | 0.148 | 0.9 | null | null | null | null | null | null | null | null | 106449.0 | 785.0 | 5.79 | 4.3e-2 | 1098.0 | 6.0e-2 | 0.214 | 4.7 | null | 49.07 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
MNE | Europe | Montenegro | 2020-06-20 | 359.0 | 4.0 | 5.0 | 9.0 | 0.0 | 0.0 | 571.6 | 6.369 | 7.961 | 14.33 | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-06-24 | 389.0 | 11.0 | 8.0 | 9.0 | 0.0 | 0.0 | 619.366 | 17.514 | 12.738 | 14.33 | 0.0 | 0.0 | 2.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-06 | 5553.0 | 131.0 | 109.0 | 108.0 | 1.0 | 1.429 | 8841.484 | 208.578 | 173.55 | 171.958 | 1.592 | 2.275 | 1.51 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-28 | 10441.0 | 128.0 | 228.429 | 163.0 | 5.0 | 3.571 | 16624.155 | 203.802 | 363.704 | 259.529 | 7.961 | 5.686 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-15 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10.0 | null | 0.0 | null | 0.0 | 0.0 | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-11-30 | 15701.0 | 88.0 | 84.571 | 131.0 | 1.0 | 0.714 | 502.345 | 2.816 | 2.706 | 4.191 | 3.2e-2 | 2.3e-2 | null | null | null | null | null | null | null | null | null | 231131.0 | 641.0 | 7.395 | 2.1e-2 | 1128.0 | 3.6e-2 | 7.5e-2 | 13.3 | null | null | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-04-05 | 21.0 | 0.0 | 1.571 | 1.0 | 0.0 | 0.143 | 0.386 | 0.0 | 2.9e-2 | 1.8e-2 | 0.0 | 3.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-10-30 | 12907.0 | 49.0 | 58.0 | 133.0 | 0.0 | 0.0 | 5079.664 | 19.284 | 22.826 | 52.343 | 0.0 | 0.0 | 0.92 | null | null | null | null | null | null | null | null | 126796.0 | 1714.0 | 49.902 | 0.675 | 891.0 | 0.351 | 6.5e-2 | 15.4 | null | 34.26 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-02-09 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-09-08 | 79792.0 | 1090.0 | 855.714 | 6279.0 | 1.0 | 2.714 | 4656.702 | 63.613 | 49.94 | 366.446 | 5.8e-2 | 0.158 | 1.32 | 49.0 | 2.86 | null | null | null | null | null | null | null | null | null | null | 26932.0 | 1.572 | 3.2e-2 | 31.5 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-04 | 3.0 | 2.0 | 0.429 | null | 0.0 | 0.0 | 0.622 | 0.415 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 305.0 | 25.0 | 6.3e-2 | 5.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-04-19 | 1431.0 | 9.0 | 14.429 | 12.0 | 1.0 | 1.143 | 296.75 | 1.866 | 2.992 | 2.488 | 0.207 | 0.237 | 0.42 | null | null | null | null | null | null | null | null | 86259.0 | 2306.0 | 17.888 | 0.478 | 3341.0 | 0.693 | 4.0e-3 | 231.5 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-10-10 | 1871.0 | 1.0 | 2.429 | 25.0 | 0.0 | 0.0 | 387.995 | 0.207 | 0.504 | 5.184 | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | 1000765.0 | 3809.0 | 207.531 | 0.79 | 4523.0 | 0.938 | 1.0e-3 | 1862.1 | null | 22.22 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-03-20 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 0.151 | 0.0 | 2.2e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NER | Africa | Niger | 2020-04-02 | 98.0 | 24.0 | 12.571 | 5.0 | 0.0 | 0.571 | 4.048 | 0.991 | 0.519 | 0.207 | 0.0 | 2.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-04-26 | 696.0 | 12.0 | 6.857 | 29.0 | 2.0 | 1.286 | 28.752 | 0.496 | 0.283 | 1.198 | 8.3e-2 | 5.3e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-11-28 | 1484.0 | 12.0 | 19.0 | 70.0 | 0.0 | 0.0 | 61.306 | 0.496 | 0.785 | 2.892 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NGA | Africa | Nigeria | 2020-03-02 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 5.0e-3 | 0.0 | 1.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-08-23 | 52227.0 | 322.0 | 451.286 | 1002.0 | 5.0 | 3.857 | 253.357 | 1.562 | 2.189 | 4.861 | 2.4e-2 | 1.9e-2 | 0.87 | null | null | null | null | null | null | null | null | 378023.0 | 3946.0 | 1.834 | 1.9e-2 | 3919.0 | 1.9e-2 | 0.115 | 8.7 | null | 65.74 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-09-14 | 56388.0 | 132.0 | 175.429 | 1083.0 | 1.0 | 3.143 | 273.543 | 0.64 | 0.851 | 5.254 | 5.0e-3 | 1.5e-2 | 0.86 | null | null | null | null | null | null | null | null | 442075.0 | 1827.0 | 2.145 | 9.0e-3 | 2556.0 | 1.2e-2 | 6.9e-2 | 14.6 | null | 60.19 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-07-05 | 8930.0 | 4.0 | 10.714 | 251.0 | 0.0 | 0.286 | 1647.224 | 0.738 | 1.976 | 46.299 | 0.0 | 5.3e-2 | 0.85 | null | null | null | null | null | null | null | null | 373972.0 | 1192.0 | 68.983 | 0.22 | 3996.0 | 0.737 | 3.0e-3 | 373.0 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
PAK | Asia | Pakistan | 2020-04-03 | 2818.0 | 132.0 | 189.0 | 41.0 | 1.0 | 4.143 | 12.757 | 0.598 | 0.856 | 0.186 | 5.0e-3 | 1.9e-2 | 1.61 | null | null | null | null | null | null | null | null | 32930.0 | 2622.0 | 0.149 | 1.2e-2 | 2814.0 | 1.3e-2 | 6.7e-2 | 14.9 | null | 96.3 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-09-28 | 311516.0 | 675.0 | 661.429 | 6474.0 | 8.0 | 7.143 | 1410.262 | 3.056 | 2.994 | 29.308 | 3.6e-2 | 3.2e-2 | 1.05 | null | null | null | null | null | null | null | null | 3449541.0 | 28887.0 | 15.616 | 0.131 | 36461.0 | 0.165 | 1.8e-2 | 55.1 | null | 41.2 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-07-05 | 4277.0 | 442.0 | 326.714 | 16.0 | 3.0 | 1.714 | 838.395 | 86.643 | 64.044 | 3.136 | 0.588 | 0.336 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-02-17 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-06-15 | 21422.0 | 4.0 | 652.571 | 448.0 | 11.0 | 7.143 | 4964.809 | 0.927 | 151.241 | 103.829 | 2.549 | 1.655 | 1.25 | null | null | null | null | null | null | null | null | 90950.0 | 1984.0 | 21.079 | 0.46 | 2034.0 | 0.471 | 0.321 | 3.1 | null | 83.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-07-27 | 61442.0 | 1146.0 | 1002.286 | 1322.0 | 28.0 | 27.857 | 14239.931 | 265.599 | 232.292 | 306.39 | 6.489 | 6.456 | 1.01 | null | null | null | null | null | null | null | null | 208659.0 | 3450.0 | 48.359 | 0.8 | 3096.0 | 0.718 | 0.324 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-06-26 | 11.0 | 1.0 | 0.429 | null | 0.0 | 0.0 | 1.229 | 0.112 | 4.8e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-07-21 | 27.0 | 8.0 | 2.286 | 1.0 | 0.0 | 0.143 | 3.018 | 0.894 | 0.255 | 0.112 | 0.0 | 1.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-10-27 | 60557.0 | 448.0 | 640.571 | 1347.0 | 14.0 | 16.571 | 8490.255 | 62.811 | 89.81 | 188.853 | 1.963 | 2.323 | 1.04 | null | null | null | null | null | null | null | null | 352711.0 | 2422.0 | 49.451 | 0.34 | 2689.0 | 0.377 | 0.238 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PER | South America | Peru | 2020-09-11 | 710067.0 | 7291.0 | 5703.143 | 30344.0 | 108.0 | 134.143 | 21535.555 | 221.128 | 172.97 | 920.3 | 3.276 | 4.068 | 0.96 | null | null | null | null | null | null | null | null | 742273.0 | 7018.0 | 22.512 | 0.213 | 6581.0 | 0.2 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PHL | Asia | Philippines | 2020-01-25 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-10 | 399749.0 | 1300.0 | 1798.286 | 7661.0 | 14.0 | 49.0 | 3647.974 | 11.863 | 16.411 | 69.912 | 0.128 | 0.447 | 0.92 | null | null | null | null | null | null | null | null | 4858722.0 | 29766.0 | 44.339 | 0.272 | 30904.0 | 0.282 | 5.8e-2 | 17.2 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-15 | 407838.0 | 1501.0 | 1634.714 | 7832.0 | 41.0 | 41.857 | 3721.792 | 13.698 | 14.918 | 71.472 | 0.374 | 0.382 | 0.9 | null | null | null | null | null | null | null | null | 5001441.0 | 24190.0 | 45.641 | 0.221 | 28245.0 | 0.258 | 5.8e-2 | 17.3 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-06-15 | 29788.0 | 396.0 | 375.429 | 1256.0 | 9.0 | 12.857 | 787.072 | 10.463 | 9.92 | 33.187 | 0.238 | 0.34 | 0.98 | null | null | 1736.0 | 45.869 | null | null | null | null | 1086927.0 | 10676.0 | 28.719 | 0.282 | 16196.0 | 0.428 | 2.3e-2 | 43.1 | null | 50.93 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-06-14 | 36690.0 | 227.0 | 285.286 | 1517.0 | 5.0 | 5.429 | 3598.22 | 22.262 | 27.978 | 148.774 | 0.49 | 0.532 | 1.04 | 73.0 | 7.159 | 419.0 | 41.092 | null | null | 113.114 | 11.093 | 1010163.0 | 4754.0 | 99.068 | 0.466 | 8692.0 | 0.852 | 3.3e-2 | 30.5 | null | 69.91 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-07-19 | 106648.0 | 340.0 | 435.714 | 157.0 | 3.0 | 1.429 | 37016.931 | 118.012 | 151.234 | 54.494 | 1.041 | 0.496 | 0.74 | null | null | null | null | null | null | null | null | 441700.0 | 2710.0 | 153.312 | 0.941 | 4145.0 | 1.439 | 0.105 | 9.5 | null | 80.56 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-11-24 | 137642.0 | 227.0 | 202.857 | 236.0 | 0.0 | 0.143 | 47774.777 | 78.79 | 70.411 | 81.914 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-08-31 | 87540.0 | 755.0 | 1172.857 | 3621.0 | 43.0 | 44.571 | 4550.444 | 39.246 | 60.967 | 188.224 | 2.235 | 2.317 | 0.99 | 506.0 | 26.303 | null | null | null | null | null | null | 1802946.0 | 7313.0 | 93.72 | 0.38 | 20544.0 | 1.068 | 5.7e-2 | 17.5 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-08-21 | 944671.0 | 4838.0 | 4841.857 | 16148.0 | 90.0 | 97.286 | 6473.255 | 33.152 | 33.178 | 110.652 | 0.617 | 0.667 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 272755.0 | 1.869 | 1.8e-2 | 56.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
KNA | North America | Saint Kitts and Nevis | 2020-08-22 | 17.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 319.597 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
VCT | North America | Saint Vincent and the Grenadines | 2020-01-28 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-03-31 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 9.013 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-05-04 | 17.0 | 1.0 | 0.286 | null | 0.0 | 0.0 | 153.226 | 9.013 | 2.575 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-06-02 | 26.0 | 0.0 | 1.143 | null | 0.0 | 0.0 | 234.346 | 0.0 | 10.301 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-09 | 62.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 558.825 | 0.0 | 1.288 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
SMR | Europe | San Marino | 2020-10-14 | 741.0 | 0.0 | 1.286 | 42.0 | 0.0 | 0.0 | 21833.932 | 0.0 | 37.884 | 1237.551 | 0.0 | 0.0 | 0.77 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.93 | 33938.0 | 556.667 | null | null | null | 56861.47 | null | null | 5.64 | null | null | null | 3.8 | 84.97 | null |
STP | Africa | Sao Tome and Principe | 2020-02-15 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 219161.0 | 212.841 | 18.7 | 2.886 | 2.162 | 3052.714 | 32.3 | 270.113 | 2.42 | null | null | 41.34 | 2.9 | 70.39 | 0.589 |
SAU | Asia | Saudi Arabia | 2020-02-23 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-05-25 | 74795.0 | 2235.0 | 2492.857 | 399.0 | 9.0 | 11.286 | 2148.426 | 64.199 | 71.605 | 11.461 | 0.259 | 0.324 | 1.09 | null | null | null | null | null | null | null | null | 780041.0 | 16664.0 | 22.406 | 0.479 | 17237.0 | 0.495 | 0.145 | 6.9 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-06-11 | 116021.0 | 3733.0 | 3266.286 | 857.0 | 38.0 | 35.143 | 3332.609 | 107.227 | 93.821 | 24.617 | 1.092 | 1.009 | 1.18 | null | null | null | null | null | null | null | null | 1110934.0 | 27324.0 | 31.911 | 0.785 | 22952.0 | 0.659 | 0.142 | 7.0 | null | 69.91 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SEN | Africa | Senegal | 2020-05-03 | 1182.0 | 67.0 | 73.0 | 9.0 | 0.0 | 0.0 | 70.593 | 4.001 | 4.36 | 0.538 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | 14770.0 | 810.0 | 0.882 | 4.8e-2 | 916.0 | 5.5e-2 | 8.0e-2 | 12.5 | null | 77.78 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-11-03 | 15640.0 | 3.0 | 9.857 | 326.0 | 1.0 | 0.571 | 934.07 | 0.179 | 0.589 | 19.47 | 6.0e-2 | 3.4e-2 | 0.82 | null | null | null | null | null | null | null | null | 217808.0 | 400.0 | 13.008 | 2.4e-2 | 751.0 | 4.5e-2 | 1.3e-2 | 76.2 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-01-29 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-10-15 | 35454.0 | 203.0 | 158.571 | 770.0 | 2.0 | 1.429 | 5210.302 | 29.833 | 23.304 | 113.159 | 0.294 | 0.21 | 1.55 | null | null | null | null | null | null | null | null | 1219908.0 | 6504.0 | 179.277 | 0.956 | 5741.0 | 0.844 | 2.8e-2 | 36.2 | null | 54.63 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-02-25 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-09-02 | 136.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 1382.957 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-06-05 | 37183.0 | 261.0 | 474.714 | 24.0 | 0.0 | 0.143 | 6355.696 | 44.613 | 81.143 | 4.102 | 0.0 | 2.4e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | 11066.0 | 1.892 | 4.3e-2 | 23.3 | null | 77.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-11-07 | 58054.0 | 7.0 | 5.571 | 28.0 | 0.0 | 0.0 | 9923.179 | 1.197 | 0.952 | 4.786 | 0.0 | 0.0 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | 27292.0 | 4.665 | 0.0 | 4898.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-07-26 | 2179.0 | 38.0 | 28.571 | 28.0 | 0.0 | 0.0 | 399.11 | 6.96 | 5.233 | 5.129 | 0.0 | 0.0 | 1.28 | null | null | 12.0 | 2.198 | null | null | null | null | 253691.0 | 216.0 | 46.467 | 4.0e-2 | 1923.0 | 0.352 | 1.5e-2 | 67.3 | null | 37.96 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-09-25 | 8048.0 | 419.0 | 256.0 | 41.0 | 0.0 | 0.286 | 1474.089 | 76.745 | 46.89 | 7.51 | 0.0 | 5.2e-2 | 1.47 | null | null | 143.0 | 26.192 | null | null | null | null | 440331.0 | 6483.0 | 80.652 | 1.187 | 4504.0 | 0.825 | 5.7e-2 | 17.6 | null | 31.48 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-01-23 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-10-05 | 6673.0 | 175.0 | 183.571 | 156.0 | 1.0 | 1.0 | 3209.821 | 84.178 | 88.301 | 75.039 | 0.481 | 0.481 | 1.45 | 21.0 | 10.101 | 107.0 | 51.469 | null | null | null | null | 238686.0 | 2509.0 | 114.812 | 1.207 | 2564.0 | 1.233 | 7.2e-2 | 14.0 | null | 43.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SLB | Oceania | Solomon Islands | 2020-02-21 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-04-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 44.44 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-09-01 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SOM | Africa | Somalia | 2020-02-13 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
ZAF | Africa | South Africa | 2020-11-23 | 769759.0 | 2080.0 | 2498.571 | 20968.0 | 65.0 | 93.429 | 12978.857 | 35.071 | 42.128 | 353.54 | 1.096 | 1.575 | null | null | null | null | null | null | null | null | null | 5305343.0 | 14377.0 | 89.453 | 0.242 | 23199.0 | 0.391 | 0.108 | 9.3 | null | 44.44 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-03-31 | 9786.0 | 125.0 | 107.0 | 162.0 | 4.0 | 6.0 | 190.875 | 2.438 | 2.087 | 3.16 | 7.8e-2 | 0.117 | 0.96 | null | null | null | null | null | null | null | null | 393672.0 | 12009.0 | 7.679 | 0.234 | 8647.0 | 0.169 | 1.2e-2 | 80.8 | null | 75.93 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-10-11 | 24703.0 | 97.0 | 77.0 | 433.0 | 1.0 | 1.571 | 481.829 | 1.892 | 1.502 | 8.446 | 2.0e-2 | 3.1e-2 | 1.15 | null | null | null | null | null | null | null | null | 2391180.0 | 5478.0 | 46.64 | 0.107 | 9564.0 | 0.187 | 8.0e-3 | 124.2 | null | 54.63 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-08-30 | 2519.0 | 0.0 | 2.857 | 47.0 | 0.0 | 0.0 | 225.037 | 0.0 | 0.255 | 4.199 | 0.0 | 0.0 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
ESP | Europe | Spain | 2020-08-15 | 342813.0 | 0.0 | 4064.429 | 28617.0 | 0.0 | 16.286 | 7332.148 | 0.0 | 86.931 | 612.066 | 0.0 | 0.348 | 1.41 | null | null | null | null | null | null | null | null | null | null | null | null | 58819.0 | 1.258 | 6.9e-2 | 14.5 | null | 62.5 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-06-14 | 1889.0 | 5.0 | 7.714 | 11.0 | 0.0 | 0.0 | 88.216 | 0.234 | 0.36 | 0.514 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | 87083.0 | 1116.0 | 4.067 | 5.2e-2 | 1447.0 | 6.8e-2 | 5.0e-3 | 187.6 | null | 55.56 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-02-29 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-03-07 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-06-01 | 5173.0 | 147.0 | 171.0 | 298.0 | 12.0 | 18.286 | 117.972 | 3.352 | 3.9 | 6.796 | 0.274 | 0.417 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 91.67 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-07-03 | 9663.0 | 90.0 | 58.0 | 604.0 | 2.0 | 4.571 | 220.369 | 2.052 | 1.323 | 13.774 | 4.6e-2 | 0.104 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-11-27 | 16864.0 | 0.0 | 190.571 | 1215.0 | 0.0 | 4.286 | 384.59 | 0.0 | 4.346 | 27.709 | 0.0 | 9.8e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-06-04 | 82.0 | 8.0 | 10.0 | 1.0 | 0.0 | 0.0 | 139.781 | 13.637 | 17.046 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-01-31 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-02-21 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-04-14 | 15.0 | 0.0 | 0.714 | null | 0.0 | 0.0 | 12.929 | 0.0 | 0.616 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-09-17 | 5191.0 | 36.0 | 28.143 | 103.0 | 2.0 | 0.714 | 4474.367 | 31.03 | 24.258 | 88.781 | 1.724 | 0.616 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-11-29 | 6410.0 | 4.0 | 27.286 | 121.0 | 0.0 | 0.143 | 5525.081 | 3.448 | 23.519 | 104.296 | 0.0 | 0.123 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-06-25 | 64009.0 | 1281.0 | 1046.714 | 5424.0 | 12.0 | 22.0 | 6337.983 | 126.841 | 103.643 | 537.069 | 1.188 | 2.178 | 1.01 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-25 | 28894.0 | 217.0 | 212.857 | 1599.0 | 10.0 | 33.0 | 3338.564 | 25.073 | 24.595 | 184.757 | 1.155 | 3.813 | 0.59 | null | null | null | null | null | null | null | null | 253431.0 | 4032.0 | 29.283 | 0.466 | 4071.0 | 0.47 | 5.2e-2 | 19.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-05-10 | 47.0 | 0.0 | 0.429 | 3.0 | 0.0 | 0.0 | 2.686 | 0.0 | 2.4e-2 | 0.171 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-08-15 | 1593.0 | 78.0 | 66.857 | 60.0 | 2.0 | 1.429 | 91.025 | 4.457 | 3.82 | 3.428 | 0.114 | 8.2e-2 | 1.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-11-04 | 5964.0 | 76.0 | 54.857 | 301.0 | 3.0 | 3.286 | 340.787 | 4.343 | 3.135 | 17.199 | 0.171 | 0.188 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TWN | Asia | Taiwan | 2020-03-03 | 42.0 | 1.0 | 1.571 | 1.0 | 0.0 | 0.0 | 1.763 | 4.2e-2 | 6.6e-2 | 4.2e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 12365.0 | 506.0 | 0.519 | 2.1e-2 | 494.0 | 2.1e-2 | 3.0e-3 | 314.4 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-05-01 | 429.0 | 0.0 | 0.143 | 6.0 | 0.0 | 0.0 | 18.013 | 0.0 | 6.0e-3 | 0.252 | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | 63711.0 | 374.0 | 2.675 | 1.6e-2 | 557.0 | 2.3e-2 | 0.0 | 3895.1 | null | 31.48 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-07-31 | 467.0 | 0.0 | 1.286 | 7.0 | 0.0 | 0.0 | 19.608 | 0.0 | 5.4e-2 | 0.294 | 0.0 | 0.0 | 0.58 | null | null | null | null | null | null | null | null | 81822.0 | 235.0 | 3.435 | 1.0e-2 | 203.0 | 9.0e-3 | 6.0e-3 | 157.9 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TJK | Asia | Tajikistan | 2020-07-17 | 6786.0 | 45.0 | 47.0 | 56.0 | 0.0 | 0.143 | 711.497 | 4.718 | 4.928 | 5.871 | 0.0 | 1.5e-2 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-11-15 | 11610.0 | 37.0 | 39.143 | 85.0 | 0.0 | 0.286 | 1217.282 | 3.879 | 4.104 | 8.912 | 0.0 | 3.0e-2 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.04 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TZA | Africa | Tanzania | 2020-04-23 | 284.0 | 0.0 | 27.143 | 10.0 | 0.0 | 0.857 | 4.754 | 0.0 | 0.454 | 0.167 | 0.0 | 1.4e-2 | 0.54 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
TZA | Africa | Tanzania | 2020-11-09 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
AFG | Asia | Afghanistan | 2020-10-18 | 40200.0 | 59.0 | 57.286 | 1494.0 | 4.0 | 2.143 | 1032.667 | 1.516 | 1.472 | 38.378 | 0.103 | 5.5e-2 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-02-07 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-20 | 12385.0 | 159.0 | 147.429 | 362.0 | 4.0 | 4.0 | 4303.635 | 55.251 | 51.23 | 125.791 | 1.39 | 1.39 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-01-27 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-03-09 | 20.0 | 1.0 | 2.429 | null | 0.0 | 0.0 | 0.456 | 2.3e-2 | 5.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-06 | 46364.0 | 293.0 | 316.857 | 1556.0 | 7.0 | 7.857 | 1057.307 | 6.682 | 7.226 | 35.484 | 0.16 | 0.179 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AND | Europe | Andorra | 2020-07-14 | 861.0 | 3.0 | 0.857 | 52.0 | 0.0 | 0.0 | 11143.467 | 38.827 | 11.094 | 673.008 | 0.0 | 0.0 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 77265.0 | 163.755 | null | null | null | null | null | 109.135 | 7.97 | 29.0 | 37.8 | null | null | 83.73 | 0.858 |
AGO | Africa | Angola | 2020-06-08 | 92.0 | 1.0 | 0.857 | 4.0 | 0.0 | 0.0 | 2.799 | 3.0e-2 | 2.6e-2 | 0.122 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
AGO | Africa | Angola | 2020-10-24 | 9026.0 | 197.0 | 223.429 | 267.0 | 2.0 | 3.714 | 274.628 | 5.994 | 6.798 | 8.124 | 6.1e-2 | 0.113 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-08-09 | 92.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 939.466 | 0.0 | 1.459 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-09-12 | 95.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 970.1 | 0.0 | 0.0 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-05-20 | 9283.0 | 474.0 | 343.429 | 403.0 | 10.0 | 10.571 | 205.395 | 10.488 | 7.599 | 8.917 | 0.221 | 0.234 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-08-10 | 253868.0 | 7369.0 | 6732.143 | 4764.0 | 158.0 | 135.857 | 5617.073 | 163.046 | 148.955 | 105.408 | 3.496 | 3.006 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-09-21 | 640147.0 | 8782.0 | 10671.571 | 13482.0 | 429.0 | 259.286 | 14163.868 | 194.31 | 236.119 | 298.302 | 9.492 | 5.737 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-10-04 | 52496.0 | 571.0 | 442.286 | 977.0 | 5.0 | 3.714 | 17715.779 | 192.695 | 149.258 | 329.707 | 1.687 | 1.253 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUS | Oceania | Australia | 2020-07-30 | 16903.0 | 605.0 | 472.571 | 196.0 | 7.0 | 8.143 | 662.866 | 23.726 | 18.532 | 7.686 | 0.275 | 0.319 | 1.23 | null | null | null | null | null | null | null | null | 4164454.0 | 66205.0 | 163.313 | 2.596 | 63517.0 | 2.491 | 7.0e-3 | 134.4 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-05-27 | 16591.0 | 34.0 | 34.0 | 645.0 | 2.0 | 1.714 | 1842.134 | 3.775 | 3.775 | 71.616 | 0.222 | 0.19 | 0.8 | 32.0 | 3.553 | 84.0 | 9.327 | null | null | null | null | 418706.0 | 7521.0 | 46.49 | 0.835 | 5588.0 | 0.62 | 6.0e-3 | 164.4 | null | 59.26 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-29 | 26985.0 | 395.0 | 274.714 | 733.0 | 0.0 | 0.143 | 2996.203 | 43.858 | 30.502 | 81.387 | 0.0 | 1.6e-2 | 1.15 | 30.0 | 3.331 | 114.0 | 12.658 | null | null | null | null | 1160743.0 | 12799.0 | 128.88 | 1.421 | 10513.0 | 1.167 | 2.6e-2 | 38.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-25 | 93.0 | 6.0 | 9.286 | 2.0 | 1.0 | 0.143 | 9.172 | 0.592 | 0.916 | 0.197 | 9.9e-2 | 1.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-05-01 | 1854.0 | 50.0 | 37.429 | 25.0 | 1.0 | 0.571 | 182.855 | 4.931 | 3.691 | 2.466 | 9.9e-2 | 5.6e-2 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-03-29 | 11.0 | 1.0 | 1.0 | null | 0.0 | 0.0 | 27.972 | 2.543 | 2.543 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-07-26 | 342.0 | 16.0 | 27.0 | 11.0 | 0.0 | 0.0 | 869.68 | 40.687 | 68.659 | 27.972 | 0.0 | 0.0 | 1.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-06-01 | 11871.0 | 473.0 | 385.714 | 19.0 | 0.0 | 0.714 | 6976.445 | 277.976 | 226.68 | 11.166 | 0.0 | 0.42 | 1.19 | null | null | null | null | null | null | null | null | 323162.0 | 6355.0 | 189.918 | 3.735 | 5611.0 | 3.298 | 6.9e-2 | 14.5 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-08-17 | 47185.0 | 350.0 | 398.286 | 173.0 | 3.0 | 1.429 | 27730.061 | 205.691 | 234.068 | 101.67 | 1.763 | 0.84 | 1.01 | null | null | null | null | null | null | null | null | 972003.0 | 9669.0 | 571.235 | 5.682 | 9992.0 | 5.872 | 4.0e-2 | 25.1 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-10 | 75287.0 | 427.0 | 425.286 | 273.0 | 2.0 | 2.143 | 44245.27 | 250.943 | 249.935 | 160.439 | 1.175 | 1.259 | 0.91 | null | null | null | null | null | null | null | null | 1530133.0 | 10537.0 | 899.241 | 6.192 | 10173.0 | 5.979 | 4.2e-2 | 23.9 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BLR | Europe | Belarus | 2020-03-08 | 6.0 | 0.0 | 0.714 | null | 0.0 | 0.0 | 0.635 | 0.0 | 7.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-11-20 | 120847.0 | 1457.0 | 1317.857 | 1081.0 | 7.0 | 6.857 | 12788.961 | 154.191 | 139.466 | 114.4 | 0.741 | 0.726 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | 27254.0 | 2.884 | 4.8e-2 | 20.7 | null | 22.22 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-03-22 | 3401.0 | 586.0 | 359.286 | 75.0 | 8.0 | 10.143 | 293.452 | 50.563 | 31.001 | 6.471 | 0.69 | 0.875 | 2.21 | 322.0 | 27.783 | 1646.0 | 142.024 | null | null | 1541.84 | 133.036 | 31478.0 | 1414.0 | 2.716 | 0.122 | 2438.0 | 0.21 | 0.147 | 6.8 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-05-01 | 49032.0 | 513.0 | 677.0 | 7703.0 | 109.0 | 146.286 | 4230.684 | 44.264 | 58.414 | 664.647 | 9.405 | 12.622 | 0.71 | 690.0 | 59.536 | 3109.0 | 268.257 | null | null | null | null | 430786.0 | 23551.0 | 37.17 | 2.032 | 19999.0 | 1.726 | 3.4e-2 | 29.5 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-11-20 | 553680.0 | 3416.0 | 4095.429 | 15352.0 | 156.0 | 178.0 | 47773.8 | 294.747 | 353.371 | 1324.634 | 13.46 | 15.359 | 0.68 | 1256.0 | 108.373 | 5418.0 | 467.487 | null | null | null | null | 5670902.0 | 34396.0 | 489.309 | 2.968 | 29760.0 | 2.568 | 0.138 | 7.3 | null | 63.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-03-28 | 2.0 | 0.0 | 0.286 | null | 0.0 | 0.0 | 5.03 | 0.0 | 0.719 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-03-02 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-03-23 | 5.0 | 3.0 | 0.571 | null | 0.0 | 0.0 | 0.412 | 0.247 | 4.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 27.78 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-04-20 | 5.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.48 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BOL | South America | Bolivia | 2020-08-30 | 115968.0 | 614.0 | 974.143 | 4966.0 | 28.0 | 65.286 | 9934.696 | 52.6 | 83.452 | 425.425 | 2.399 | 5.593 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | 2630.0 | 0.225 | 0.37 | 2.7 | null | 89.81 | 1.1673029e7 | 10.202 | 25.4 | 6.704 | 4.393 | 6885.829 | 7.1 | 204.299 | 6.89 | null | null | 25.383 | 1.1 | 71.51 | 0.693 |
BIH | Europe | Bosnia and Herzegovina | 2020-02-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-04-21 | 1342.0 | 33.0 | 37.0 | 51.0 | 2.0 | 1.571 | 409.045 | 10.058 | 11.278 | 15.545 | 0.61 | 0.479 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-11-06 | 59427.0 | 1921.0 | 1612.857 | 1457.0 | 55.0 | 35.0 | 18113.487 | 585.525 | 491.603 | 444.097 | 16.764 | 10.668 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-02-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-03-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-07-29 | 804.0 | 65.0 | 40.286 | 2.0 | 0.0 | 0.143 | 341.891 | 27.64 | 17.131 | 0.85 | 0.0 | 6.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.17 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-09-19 | 2567.0 | 0.0 | 45.0 | 13.0 | 0.0 | 0.429 | 1091.586 | 0.0 | 19.136 | 5.528 | 0.0 | 0.182 | 0.77 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-01-26 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-06-04 | 614941.0 | 30925.0 | 25243.286 | 34021.0 | 1473.0 | 1038.143 | 2893.031 | 145.489 | 118.759 | 160.054 | 6.93 | 4.884 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-13 | 5113628.0 | 10220.0 | 20641.0 | 150998.0 | 309.0 | 500.571 | 24057.406 | 48.081 | 97.107 | 710.38 | 1.454 | 2.355 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-04-23 | 138.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 315.441 | 0.0 | 0.653 | 2.286 | 0.0 | 0.0 | 0.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-06-06 | 141.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 4.572 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-08-21 | 143.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 326.87 | 0.0 | 0.327 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-03-29 | 346.0 | 15.0 | 22.714 | 8.0 | 1.0 | 0.714 | 49.795 | 2.159 | 3.269 | 1.151 | 0.144 | 0.103 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BGR | Europe | Bulgaria | 2020-05-29 | 2485.0 | 8.0 | 16.143 | 136.0 | 2.0 | 1.571 | 357.634 | 1.151 | 2.323 | 19.573 | 0.288 | 0.226 | 0.96 | 20.0 | 2.878 | 191.0 | 27.488 | null | null | null | null | 79389.0 | 1725.0 | 11.425 | 0.248 | 1112.0 | 0.16 | 1.5e-2 | 68.9 | null | 56.48 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-24 | 2444.0 | 11.0 | 14.429 | 65.0 | 0.0 | 0.0 | 116.919 | 0.526 | 0.69 | 3.11 | 0.0 | 0.0 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-03-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-07-21 | 328.0 | 6.0 | 8.429 | 1.0 | 0.0 | 0.0 | 27.584 | 0.505 | 0.709 | 8.4e-2 | 0.0 | 0.0 | 0.67 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-10-08 | 515.0 | 0.0 | 0.714 | 1.0 | 0.0 | 0.0 | 43.311 | 0.0 | 6.0e-2 | 8.4e-2 | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-11-16 | 303.0 | 1.0 | 0.429 | null | 0.0 | 0.0 | 18.123 | 6.0e-2 | 2.6e-2 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 42.59 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-11-29 | 323.0 | 8.0 | 2.429 | null | 0.0 | 0.0 | 19.319 | 0.478 | 0.145 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-06-17 | 9864.0 | 0.0 | 169.0 | 276.0 | 0.0 | 9.143 | 371.583 | 0.0 | 6.366 | 10.397 | 0.0 | 0.344 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-08-15 | 18469.0 | 0.0 | 61.0 | 401.0 | 0.0 | 0.857 | 695.739 | 0.0 | 2.298 | 15.106 | 0.0 | 3.2e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CAN | North America | Canada | 2020-03-04 | 33.0 | 3.0 | 3.143 | null | 0.0 | 0.0 | 0.874 | 7.9e-2 | 8.3e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-18 | 101877.0 | 386.0 | 388.286 | 8361.0 | 49.0 | 41.429 | 2699.289 | 10.227 | 10.288 | 221.529 | 1.298 | 1.098 | 0.79 | null | null | null | null | null | null | null | null | 2295440.0 | 40959.0 | 60.819 | 1.085 | 38135.0 | 1.01 | 1.0e-2 | 98.2 | null | 70.83 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-07-05 | 107394.0 | 209.0 | 314.429 | 8739.0 | 7.0 | 22.429 | 2845.465 | 5.538 | 8.331 | 231.545 | 0.185 | 0.594 | 0.94 | null | null | null | null | null | null | null | null | 2940925.0 | 25971.0 | 77.921 | 0.688 | 37746.0 | 1.0 | 8.0e-3 | 120.0 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-08-23 | 126817.0 | 257.0 | 401.857 | 9119.0 | 2.0 | 6.429 | 3360.089 | 6.809 | 10.647 | 241.613 | 5.3e-2 | 0.17 | 1.1 | null | null | null | null | null | null | null | null | 5115490.0 | 38756.0 | 135.538 | 1.027 | 48161.0 | 1.276 | 8.0e-3 | 119.8 | null | 64.35 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-03-11 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CPV | Africa | Cape Verde | 2020-05-10 | 246.0 | 10.0 | 11.571 | 2.0 | 0.0 | 0.0 | 442.456 | 17.986 | 20.812 | 3.597 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-06-03 | 1173.0 | 104.0 | 67.286 | 4.0 | 0.0 | 0.429 | 242.869 | 21.533 | 13.931 | 0.828 | 0.0 | 8.9e-2 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
TCD | Africa | Chad | 2020-01-27 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-05-17 | 503.0 | 29.0 | 25.857 | 53.0 | 3.0 | 3.143 | 30.622 | 1.766 | 1.574 | 3.227 | 0.183 | 0.191 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-07-29 | 926.0 | 0.0 | 5.286 | 75.0 | 0.0 | 0.0 | 56.375 | 0.0 | 0.322 | 4.566 | 0.0 | 0.0 | 0.85 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.37 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
CHL | South America | Chile | 2020-02-02 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-08-09 | 373056.0 | 2033.0 | 1903.571 | 10077.0 | 66.0 | 67.0 | 19515.166 | 106.35 | 99.579 | 527.144 | 3.453 | 3.505 | 0.94 | null | null | null | null | null | null | null | null | 1833332.0 | 28460.0 | 95.905 | 1.489 | 24009.0 | 1.256 | 7.9e-2 | 12.6 | null | 87.5 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-09-10 | 428669.0 | 1642.0 | 1738.286 | 11781.0 | 79.0 | 51.286 | 22424.373 | 85.896 | 90.933 | 616.283 | 4.133 | 2.683 | 0.99 | null | null | null | null | null | null | null | null | 2711664.0 | 28313.0 | 141.852 | 1.481 | 30134.0 | 1.576 | 5.8e-2 | 17.3 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-06-06 | 84186.0 | 9.0 | 8.286 | 4638.0 | 0.0 | 0.0 | 58.49 | 6.0e-3 | 6.0e-3 | 3.222 | 0.0 | 0.0 | 1.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-05-18 | 16295.0 | 721.0 | 668.857 | 592.0 | 18.0 | 16.143 | 320.245 | 14.17 | 13.145 | 11.635 | 0.354 | 0.317 | 1.29 | null | null | null | null | null | null | null | null | 201808.0 | 5391.0 | 3.966 | 0.106 | 6125.0 | 0.12 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-27 | 87.0 | 0.0 | 7.571 | 2.0 | 1.0 | 0.143 | 100.047 | 0.0 | 8.707 | 2.3 | 1.15 | 0.164 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-03-17 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 0.181 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-04-18 | 143.0 | 0.0 | 11.857 | 6.0 | 0.0 | 0.143 | 25.915 | 0.0 | 2.149 | 1.087 | 0.0 | 2.6e-2 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97.22 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CIV | Africa | Cote d'Ivoire | 2020-10-07 | 19935.0 | 32.0 | 30.143 | 120.0 | 0.0 | 0.0 | 755.736 | 1.213 | 1.143 | 4.549 | 0.0 | 0.0 | 0.93 | null | null | null | null | null | null | null | null | 168309.0 | 1226.0 | 6.381 | 4.6e-2 | 790.0 | 3.0e-2 | 3.8e-2 | 26.2 | null | 36.11 | 2.6378275e7 | 76.399 | 18.7 | 2.933 | 1.582 | 3601.006 | 28.2 | 303.74 | 2.42 | null | null | 19.351 | null | 57.78 | 0.492 |
CYP | Europe | Cyprus | 2020-07-05 | 1003.0 | 1.0 | 1.286 | 19.0 | 0.0 | 0.0 | 1145.109 | 1.142 | 1.468 | 21.692 | 0.0 | 0.0 | 1.24 | null | null | null | null | null | null | null | null | 164347.0 | 1445.0 | 187.632 | 1.65 | 1359.0 | 1.552 | 1.0e-3 | 1056.8 | null | 50.0 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-01-23 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-02-18 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-04-26 | 7404.0 | 52.0 | 94.0 | 220.0 | 2.0 | 4.857 | 691.382 | 4.856 | 8.778 | 20.544 | 0.187 | 0.454 | 0.65 | 72.0 | 6.723 | 310.0 | 28.948 | 118.656 | 11.08 | 480.656 | 44.883 | 222658.0 | 3381.0 | 20.792 | 0.316 | 6655.0 | 0.621 | 1.4e-2 | 70.8 | null | 60.19 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-01 | 341644.0 | 6542.0 | 11935.286 | 3429.0 | 178.0 | 175.429 | 31902.566 | 610.889 | 1114.512 | 320.199 | 16.622 | 16.381 | 1.01 | 1163.0 | 108.6 | 7486.0 | 699.039 | 1794.919 | 167.609 | 11793.174 | 1101.241 | 2356389.0 | 20643.0 | 220.039 | 1.928 | 38502.0 | 3.595 | 0.31 | 3.2 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-26 | 511520.0 | 6305.0 | 4252.143 | 7779.0 | 168.0 | 129.286 | 47765.511 | 588.758 | 397.063 | 726.4 | 15.688 | 12.073 | null | 743.0 | 69.381 | 5048.0 | 471.38 | null | null | null | null | 3023731.0 | 20489.0 | 282.355 | 1.913 | 19862.0 | 1.855 | 0.214 | 4.7 | null | 69.44 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-05-21 | 1835.0 | 104.0 | 84.714 | 61.0 | 0.0 | 1.571 | 20.489 | 1.161 | 0.946 | 0.681 | 0.0 | 1.8e-2 | 1.13 | null | null | null | null | null | null | null | null | null | 225.0 | null | 3.0e-3 | null | null | null | null | null | 80.56 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-07-07 | 7432.0 | 0.0 | 56.143 | 182.0 | 0.0 | 1.714 | 82.982 | 0.0 | 0.627 | 2.032 | 0.0 | 1.9e-2 | 1.04 | null | null | null | null | null | null | null | null | null | 919.0 | null | 1.0e-2 | 644.0 | 7.0e-3 | 8.7e-2 | 11.5 | null | 80.56 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-09-15 | 10401.0 | 11.0 | 15.571 | 267.0 | 3.0 | 1.0 | 116.133 | 0.123 | 0.174 | 2.981 | 3.3e-2 | 1.1e-2 | 1.05 | null | null | null | null | null | null | null | null | null | 272.0 | null | 3.0e-3 | 227.0 | 3.0e-3 | 6.9e-2 | 14.6 | null | 42.59 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-10-08 | 10822.0 | 18.0 | 19.571 | 276.0 | 0.0 | 0.571 | 120.833 | 0.201 | 0.219 | 3.082 | 0.0 | 6.0e-3 | 1.09 | null | null | null | null | null | null | null | null | null | 154.0 | null | 2.0e-3 | 174.0 | 2.0e-3 | 0.112 | 8.9 | null | 39.81 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-10-17 | 11000.0 | 1.0 | 22.714 | 302.0 | 1.0 | 3.714 | 122.821 | 1.1e-2 | 0.254 | 3.372 | 1.1e-2 | 4.1e-2 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-11-19 | 12008.0 | 90.0 | 45.143 | 323.0 | 0.0 | 0.714 | 134.076 | 1.005 | 0.504 | 3.606 | 0.0 | 8.0e-3 | 1.15 | null | null | null | null | null | null | null | null | null | 385.0 | null | 4.0e-3 | 293.0 | 3.0e-3 | 0.154 | 6.5 | null | 18.52 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-08-07 | 14747.0 | 161.0 | 102.714 | 617.0 | 0.0 | 0.286 | 2546.009 | 27.796 | 17.733 | 106.523 | 0.0 | 4.9e-2 | 1.37 | 2.0 | 0.345 | 25.0 | 4.316 | null | null | null | null | 1698747.0 | 27074.0 | 293.282 | 4.674 | 22516.0 | 3.887 | 5.0e-3 | 219.2 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-08-11 | 15291.0 | 156.0 | 139.571 | 621.0 | 1.0 | 0.714 | 2639.928 | 26.933 | 24.096 | 107.213 | 0.173 | 0.123 | 1.33 | 2.0 | 0.345 | 20.0 | 3.453 | null | null | null | null | 1804944.0 | 33524.0 | 311.616 | 5.788 | 26429.0 | 4.563 | 5.0e-3 | 189.4 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-05-08 | 1135.0 | 2.0 | 5.429 | 3.0 | 0.0 | 0.143 | 1148.783 | 2.024 | 5.494 | 3.036 | 0.0 | 0.145 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DMA | North America | Dominica | 2020-04-07 | 15.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 208.359 | 0.0 | 5.953 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DOM | North America | Dominican Republic | 2020-03-13 | 5.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 0.461 | 0.0 | 4.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-18 | 121347.0 | 422.0 | 410.0 | 2199.0 | 4.0 | 3.714 | 11186.216 | 38.902 | 37.795 | 202.712 | 0.369 | 0.342 | 0.96 | null | null | null | null | null | null | null | null | 545492.0 | 3265.0 | 50.285 | 0.301 | 3427.0 | 0.316 | 0.12 | 8.4 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-17 | 134697.0 | 494.0 | 509.429 | 2290.0 | 4.0 | 3.0 | 12416.869 | 45.539 | 46.961 | 211.101 | 0.369 | 0.277 | 1.16 | null | null | null | null | null | null | null | null | 659160.0 | 3869.0 | 60.764 | 0.357 | 3716.0 | 0.343 | 0.137 | 7.3 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
ECU | South America | Ecuador | 2020-05-31 | 39098.0 | 527.0 | 334.571 | 3358.0 | 24.0 | 35.714 | 2216.055 | 29.87 | 18.963 | 190.33 | 1.36 | 2.024 | 1.02 | null | null | null | null | null | null | null | null | 68988.0 | 757.0 | 3.91 | 4.3e-2 | 1009.0 | 5.7e-2 | null | null | null | 86.11 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-06-13 | 46356.0 | 578.0 | 518.286 | 3874.0 | 46.0 | 38.0 | 2627.435 | 32.761 | 29.376 | 219.576 | 2.607 | 2.154 | 1.13 | null | null | null | null | null | null | null | null | 88946.0 | 1385.0 | 5.041 | 7.9e-2 | 1403.0 | 8.0e-2 | null | null | null | 83.33 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-03-20 | 285.0 | 29.0 | 29.286 | 8.0 | 2.0 | 0.857 | 2.785 | 0.283 | 0.286 | 7.8e-2 | 2.0e-2 | 8.0e-3 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-07-06 | 76222.0 | 969.0 | 1352.571 | 3422.0 | 79.0 | 78.571 | 744.833 | 9.469 | 13.217 | 33.439 | 0.772 | 0.768 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-08-28 | 98285.0 | 223.0 | 162.429 | 5362.0 | 20.0 | 18.714 | 960.43 | 2.179 | 1.587 | 52.397 | 0.195 | 0.183 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-09-19 | 101900.0 | 128.0 | 149.143 | 5750.0 | 17.0 | 17.571 | 995.755 | 1.251 | 1.457 | 56.188 | 0.166 | 0.172 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-10-30 | 107376.0 | 167.0 | 163.714 | 6258.0 | 11.0 | 11.714 | 1049.266 | 1.632 | 1.6 | 61.152 | 0.107 | 0.114 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-05-30 | 2395.0 | 117.0 | 82.286 | 46.0 | 4.0 | 1.857 | 369.245 | 18.038 | 12.686 | 7.092 | 0.617 | 0.286 | 1.13 | null | null | null | null | null | null | null | null | 89358.0 | 2386.0 | 13.777 | 0.368 | 2392.0 | 0.369 | 3.4e-2 | 29.1 | null | 100.0 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
GNQ | Africa | Equatorial Guinea | 2020-10-06 | 5052.0 | 7.0 | 3.143 | 83.0 | 0.0 | 0.0 | 3600.894 | 4.989 | 2.24 | 59.16 | 0.0 | 0.0 | 0.58 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
GNQ | Africa | Equatorial Guinea | 2020-10-21 | 5074.0 | 0.0 | 0.857 | 83.0 | 0.0 | 0.0 | 3616.575 | 0.0 | 0.611 | 59.16 | 0.0 | 0.0 | 0.51 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
ERI | Africa | Eritrea | 2020-05-24 | 39.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-05-28 | 39.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-17 | 285.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 80.363 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-22 | 306.0 | 0.0 | 3.0 | null | 0.0 | 0.0 | 86.284 | 0.0 | 0.846 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-09-05 | 2491.0 | 35.0 | 18.286 | 64.0 | 0.0 | 0.0 | 1877.819 | 26.384 | 13.785 | 48.246 | 0.0 | 0.0 | 1.32 | 0.0 | 0.0 | 7.0 | 5.277 | null | null | null | null | 188267.0 | 1342.0 | 141.923 | 1.012 | 2061.0 | 1.554 | 9.0e-3 | 112.7 | null | 23.15 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-02-26 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-04-29 | 130.0 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 1.131 | 3.5e-2 | 1.7e-2 | 2.6e-2 | 0.0 | 0.0 | 0.56 | null | null | null | null | null | null | null | null | 16434.0 | 766.0 | 0.143 | 7.0e-3 | 952.0 | 8.0e-3 | 2.0e-3 | 476.0 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-07 | 21452.0 | 552.0 | 560.286 | 380.0 | 15.0 | 15.143 | 186.598 | 4.802 | 4.874 | 3.305 | 0.13 | 0.132 | 1.06 | null | null | null | null | null | null | null | null | 478017.0 | 9203.0 | 4.158 | 8.0e-2 | 7952.0 | 6.9e-2 | 7.0e-2 | 14.2 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-24 | 42143.0 | 1472.0 | 1543.857 | 692.0 | 14.0 | 21.143 | 366.577 | 12.804 | 13.429 | 6.019 | 0.122 | 0.184 | 1.17 | null | null | null | null | null | null | null | null | 775908.0 | 18851.0 | 6.749 | 0.164 | 20957.0 | 0.182 | 7.4e-2 | 13.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
FIN | Europe | Finland | 2020-04-02 | 1518.0 | 72.0 | 80.0 | 19.0 | 2.0 | 2.0 | 273.972 | 12.995 | 14.439 | 3.429 | 0.361 | 0.361 | 1.32 | 65.0 | 11.731 | 160.0 | 28.877 | null | null | null | null | 27466.0 | 2331.0 | 4.957 | 0.421 | 1422.0 | 0.257 | 5.6e-2 | 17.8 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-07 | 7554.0 | 22.0 | 17.429 | 331.0 | 0.0 | 0.286 | 1363.361 | 3.971 | 3.146 | 59.74 | 0.0 | 5.2e-2 | 1.29 | 0.0 | 0.0 | 3.0 | 0.541 | null | null | null | null | 428351.0 | 8815.0 | 77.31 | 1.591 | 6469.0 | 1.168 | 3.0e-3 | 371.2 | null | 35.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-14 | 7700.0 | 17.0 | 20.857 | 333.0 | 0.0 | 0.286 | 1389.712 | 3.068 | 3.764 | 60.101 | 0.0 | 5.2e-2 | 1.25 | 0.0 | 0.0 | 6.0 | 1.083 | null | null | null | null | 491843.0 | 9621.0 | 88.769 | 1.736 | 9070.0 | 1.637 | 2.0e-3 | 434.9 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-04 | 8225.0 | 25.0 | 26.143 | 336.0 | 0.0 | 0.143 | 1484.465 | 4.512 | 4.718 | 60.642 | 0.0 | 2.6e-2 | 1.25 | 1.0 | 0.18 | 14.0 | 2.527 | null | null | null | null | 798694.0 | 16079.0 | 144.15 | 2.902 | 15326.0 | 2.766 | 2.0e-3 | 586.2 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-02-24 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-03-18 | 1.0 | 0.0 | 0.143 | null | 0.0 | 0.0 | 0.414 | 0.0 | 5.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-04-28 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 4.138 | 0.0 | 0.0 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.7 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-10-06 | 3613.0 | 19.0 | 4.857 | 117.0 | 2.0 | 0.714 | 1495.036 | 7.862 | 2.01 | 48.414 | 0.828 | 0.296 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-01-30 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-03-06 | 4.0 | 0.0 | 0.429 | null | 0.0 | 0.0 | 1.003 | 0.0 | 0.107 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-06-04 | 801.0 | 1.0 | 9.0 | 13.0 | 0.0 | 0.143 | 200.793 | 0.251 | 2.256 | 3.259 | 0.0 | 3.6e-2 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-11-16 | 82835.0 | 3157.0 | 3165.0 | 733.0 | 30.0 | 33.429 | 20764.945 | 791.392 | 793.397 | 183.747 | 7.52 | 8.38 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-05-29 | 182922.0 | 726.0 | 458.857 | 8504.0 | 34.0 | 39.429 | 2183.258 | 8.665 | 5.477 | 101.499 | 0.406 | 0.471 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | 55781.0 | 0.666 | 8.0e-3 | 121.6 | null | 59.72 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-10-03 | 46803.0 | 109.0 | 83.0 | 303.0 | 2.0 | 0.571 | 1506.23 | 3.508 | 2.671 | 9.751 | 6.4e-2 | 1.8e-2 | 1.13 | null | null | null | null | null | null | null | null | 492768.0 | null | 15.858 | null | 1722.0 | 5.5e-2 | 4.8e-2 | 20.7 | null | 44.44 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-05-28 | 2906.0 | 3.0 | 7.571 | 175.0 | 2.0 | 1.0 | 278.805 | 0.288 | 0.726 | 16.79 | 0.192 | 9.6e-2 | 0.97 | null | null | null | null | null | null | null | null | 170467.0 | 4222.0 | 16.355 | 0.405 | 3770.0 | 0.362 | 2.0e-3 | 498.0 | null | 68.52 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-06-13 | 3112.0 | 4.0 | 18.857 | 183.0 | 0.0 | 0.429 | 298.569 | 0.384 | 1.809 | 17.557 | 0.0 | 4.1e-2 | 1.19 | null | null | null | null | null | null | null | null | 247452.0 | 3585.0 | 23.741 | 0.344 | 5104.0 | 0.49 | 4.0e-3 | 270.7 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-08-29 | 9977.0 | 177.0 | 228.0 | 260.0 | 1.0 | 2.857 | 957.205 | 16.982 | 21.875 | 24.945 | 9.6e-2 | 0.274 | 1.14 | null | null | null | null | null | null | null | null | 931002.0 | 13737.0 | 89.321 | 1.318 | 13324.0 | 1.278 | 1.7e-2 | 58.4 | null | 56.02 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-10-03 | 19613.0 | 267.0 | 340.714 | 405.0 | 7.0 | 4.143 | 1881.694 | 25.616 | 32.689 | 38.856 | 0.672 | 0.397 | 1.16 | null | null | null | null | null | null | null | null | 1339664.0 | 11622.0 | 128.529 | 1.115 | 10087.0 | 0.968 | 3.4e-2 | 29.6 | null | 50.46 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-11-07 | 54809.0 | 2555.0 | 2222.571 | 749.0 | 34.0 | 17.571 | 5258.439 | 245.13 | 213.236 | 71.86 | 3.262 | 1.686 | 1.34 | null | null | null | null | null | null | null | null | 1926544.0 | 24086.0 | 184.835 | 2.311 | 21317.0 | 2.045 | 0.104 | 9.6 | null | 78.7 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRD | North America | Grenada | 2020-02-02 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-01-25 | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GNB | Africa | Guinea-Bissau | 2020-05-18 | 1032.0 | 42.0 | 38.714 | 4.0 | 0.0 | 0.143 | 524.391 | 21.341 | 19.672 | 2.033 | 0.0 | 7.3e-2 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GNB | Africa | Guinea-Bissau | 2020-09-10 | 2275.0 | 30.0 | 10.0 | 39.0 | 1.0 | 0.714 | 1155.997 | 15.244 | 5.081 | 19.817 | 0.508 | 0.363 | 0.49 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-02-05 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-05-29 | 150.0 | 0.0 | 3.286 | 11.0 | 0.0 | 0.143 | 190.704 | 0.0 | 4.177 | 13.985 | 0.0 | 0.182 | 0.6 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-07-04 | 272.0 | 16.0 | 6.0 | 14.0 | 0.0 | 0.286 | 345.81 | 20.342 | 7.628 | 17.799 | 0.0 | 0.363 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-08-21 | 8016.0 | 19.0 | 29.429 | 196.0 | 0.0 | 0.571 | 703.002 | 1.666 | 2.581 | 17.189 | 0.0 | 5.0e-2 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HND | North America | Honduras | 2020-11-04 | 99124.0 | 436.0 | 560.714 | 2730.0 | 24.0 | 11.143 | 10007.867 | 44.02 | 56.611 | 275.629 | 2.423 | 1.125 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 9904608.0 | 82.805 | 24.9 | 4.652 | 2.883 | 4541.795 | 16.0 | 240.208 | 7.21 | 2.0 | null | 84.169 | 0.7 | 75.27 | 0.617 |
HUN | Europe | Hungary | 2020-03-11 | 13.0 | 4.0 | 1.571 | null | 0.0 | 0.0 | 1.346 | 0.414 | 0.163 | null | 0.0 | 0.0 | null | null | null | 13.0 | 1.346 | null | null | null | null | 609.0 | 78.0 | 6.3e-2 | 8.0e-3 | 54.0 | 6.0e-3 | 2.9e-2 | 34.4 | null | 46.3 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-06-05 | 3970.0 | 16.0 | 18.429 | 542.0 | 3.0 | 3.571 | 410.958 | 1.656 | 1.908 | 56.106 | 0.311 | 0.37 | 0.71 | null | null | 397.0 | 41.096 | null | null | null | null | 202606.0 | 6712.0 | 20.973 | 0.695 | 3208.0 | 0.332 | 6.0e-3 | 174.1 | null | 61.11 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
IND | Asia | India | 2020-03-07 | 34.0 | 3.0 | 4.429 | null | 0.0 | 0.0 | 2.5e-2 | 2.0e-3 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 26.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-06-15 | 343091.0 | 10667.0 | 11023.286 | 9900.0 | 380.0 | 346.714 | 248.616 | 7.73 | 7.988 | 7.174 | 0.275 | 0.251 | 1.21 | null | null | null | null | null | null | null | null | 5774133.0 | 115519.0 | 4.184 | 8.4e-2 | 142814.0 | 0.103 | 7.7e-2 | 13.0 | null | 76.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-05-24 | 22271.0 | 526.0 | 679.571 | 1372.0 | 21.0 | 32.0 | 81.423 | 1.923 | 2.485 | 5.016 | 7.7e-2 | 0.117 | 1.14 | null | null | null | null | null | null | null | null | 179864.0 | 3829.0 | 0.658 | 1.4e-2 | 5626.0 | 2.1e-2 | 0.121 | 8.3 | null | 71.76 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-07-13 | 76981.0 | 1282.0 | 1717.571 | 3656.0 | 50.0 | 59.286 | 281.442 | 4.687 | 6.279 | 13.366 | 0.183 | 0.217 | 1.07 | null | null | null | null | null | null | null | null | 630149.0 | 9062.0 | 2.304 | 3.3e-2 | 11152.0 | 4.1e-2 | 0.154 | 6.5 | null | 62.5 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
null | null | International | 2020-07-16 | 721.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
IRN | Asia | Iran | 2020-04-19 | 82211.0 | 1343.0 | 1503.571 | 5118.0 | 87.0 | 92.0 | 978.784 | 15.989 | 17.901 | 60.934 | 1.036 | 1.095 | 0.77 | null | null | null | null | null | null | null | null | 341662.0 | 11525.0 | 4.068 | 0.137 | 11182.0 | 0.133 | 0.134 | 7.4 | null | 53.7 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-06-27 | 220180.0 | 2456.0 | 2513.714 | 10364.0 | 125.0 | 122.429 | 2621.41 | 29.241 | 29.928 | 123.391 | 1.488 | 1.458 | 1.0 | null | null | null | null | null | null | null | null | 1583542.0 | 25670.0 | 18.853 | 0.306 | 26838.0 | 0.32 | 9.4e-2 | 10.7 | null | 41.67 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-09-01 | 376894.0 | 1682.0 | 1933.0 | 21672.0 | 101.0 | 110.143 | 4487.21 | 20.025 | 23.014 | 258.022 | 1.202 | 1.311 | 0.84 | null | null | null | null | null | null | null | null | 3256122.0 | 25012.0 | 38.767 | 0.298 | 23973.0 | 0.285 | 8.1e-2 | 12.4 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-10-12 | 405437.0 | 3107.0 | 3212.571 | 9912.0 | 60.0 | 64.0 | 10079.855 | 77.245 | 79.87 | 246.429 | 1.492 | 1.591 | 0.91 | null | null | null | null | null | null | null | null | 2507551.0 | 20368.0 | 62.342 | 0.506 | 19458.0 | 0.484 | 0.165 | 6.1 | null | 61.11 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRQ | Asia | Iraq | 2020-11-25 | 542187.0 | 2438.0 | 2190.714 | 12086.0 | 55.0 | 41.571 | 13479.693 | 60.613 | 54.465 | 300.479 | 1.367 | 1.034 | null | null | null | null | null | null | null | null | null | 3347344.0 | 27830.0 | 83.221 | 0.692 | 23504.0 | 0.584 | 9.3e-2 | 10.7 | null | null | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
ISR | Asia | Israel | 2020-11-03 | 316528.0 | 892.0 | 686.286 | 2592.0 | 12.0 | 15.571 | 36569.407 | 103.055 | 79.289 | 299.461 | 1.386 | 1.799 | 0.76 | null | null | null | null | null | null | null | null | 4959948.0 | 41557.0 | 573.037 | 4.801 | 30484.0 | 3.522 | 2.3e-2 | 44.4 | null | 40.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-11-12 | 322159.0 | 833.0 | 613.714 | 2706.0 | 6.0 | 9.571 | 37219.973 | 96.239 | 70.904 | 312.632 | 0.693 | 1.106 | 0.95 | null | null | null | null | null | null | null | null | 5254862.0 | 40338.0 | 607.11 | 4.66 | 31393.0 | 3.627 | 2.0e-2 | 51.2 | null | 65.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-09-17 | 293025.0 | 1583.0 | 1406.429 | 35658.0 | 13.0 | 10.143 | 4846.446 | 26.182 | 23.261 | 589.761 | 0.215 | 0.168 | 1.1 | 212.0 | 3.506 | 2560.0 | 42.341 | null | null | null | null | 1.0146324e7 | 101773.0 | 167.814 | 1.683 | 84562.0 | 1.399 | 1.7e-2 | 60.1 | null | 47.22 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-19 | 1308528.0 | 36176.0 | 34589.571 | 47870.0 | 653.0 | 611.571 | 21642.217 | 598.328 | 572.089 | 791.739 | 10.8 | 10.115 | 1.07 | 3712.0 | 61.394 | 37322.0 | 617.282 | null | null | null | null | 1.9724527e7 | 250186.0 | 326.231 | 4.138 | 217717.0 | 3.601 | 0.159 | 6.3 | null | 79.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-03-04 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-04-19 | 173.0 | 10.0 | 14.857 | 5.0 | 0.0 | 0.143 | 58.423 | 3.377 | 5.017 | 1.689 | 0.0 | 4.8e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 79.0 | 2.7e-2 | 0.188 | 5.3 | null | 80.56 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-02 | 715.0 | 8.0 | 4.429 | 10.0 | 0.0 | 0.0 | 241.459 | 2.702 | 1.496 | 3.377 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | 25172.0 | 285.0 | 8.501 | 9.6e-2 | 360.0 | 0.122 | 1.2e-2 | 81.3 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-10-04 | 6895.0 | 100.0 | 125.429 | 120.0 | 1.0 | 4.429 | 2328.479 | 33.771 | 42.358 | 40.525 | 0.338 | 1.496 | 0.96 | null | null | null | null | null | null | null | null | 81071.0 | 541.0 | 27.378 | 0.183 | 534.0 | 0.18 | 0.235 | 4.3 | null | 78.7 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-03-31 | 2255.0 | 254.0 | 148.286 | 67.0 | 2.0 | 3.571 | 17.829 | 2.008 | 1.172 | 0.53 | 1.6e-2 | 2.8e-2 | 1.97 | null | null | null | null | null | null | null | null | 31874.0 | 1914.0 | 0.252 | 1.5e-2 | 1354.0 | 1.1e-2 | 0.11 | 9.1 | null | 40.74 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-07-02 | 19055.0 | 217.0 | 142.857 | 977.0 | 1.0 | 0.857 | 150.66 | 1.716 | 1.13 | 7.725 | 8.0e-3 | 7.0e-3 | 1.68 | null | null | null | null | null | null | null | null | 402243.0 | 5460.0 | 3.18 | 4.3e-2 | 4570.0 | 3.6e-2 | 3.1e-2 | 32.0 | null | 25.93 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-10-14 | 90694.0 | 541.0 | 522.143 | 1646.0 | 11.0 | 4.571 | 717.082 | 4.277 | 4.128 | 13.014 | 8.7e-2 | 3.6e-2 | 1.06 | null | null | null | null | null | null | null | null | 2133151.0 | 21837.0 | 16.866 | 0.173 | 17411.0 | 0.138 | 3.0e-2 | 33.3 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-02-10 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
JOR | Asia | Jordan | 2020-06-26 | 1104.0 | 18.0 | 13.714 | 9.0 | 0.0 | 0.0 | 108.202 | 1.764 | 1.344 | 0.882 | 0.0 | 0.0 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-06-27 | 20319.0 | 0.0 | 442.0 | 166.0 | 16.0 | 6.857 | 1082.139 | 0.0 | 23.54 | 8.841 | 0.852 | 0.365 | 1.06 | null | null | null | null | null | null | null | null | 1467556.0 | 20390.0 | 78.158 | 1.086 | 23637.0 | 1.259 | 1.9e-2 | 53.5 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-12 | 115615.0 | 2114.0 | 1811.286 | 1433.0 | 0.0 | 46.286 | 6157.363 | 112.586 | 96.465 | 76.318 | 0.0 | 2.465 | 0.62 | null | null | null | null | null | null | null | null | 2252153.0 | 15229.0 | 119.944 | 0.811 | 15342.0 | 0.817 | 0.118 | 8.5 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-14 | 118514.0 | 1410.0 | 1512.0 | 1433.0 | 0.0 | 46.286 | 6311.756 | 75.093 | 80.525 | 76.318 | 0.0 | 2.465 | 0.59 | null | null | null | null | null | null | null | null | 2291327.0 | 19573.0 | 122.03 | 1.042 | 15431.0 | 0.822 | 9.8e-2 | 10.2 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-05 | 152725.0 | 703.0 | 606.571 | 2263.0 | 1.0 | 5.857 | 8133.748 | 37.44 | 32.304 | 120.522 | 5.3e-2 | 0.312 | 1.46 | null | null | null | null | null | null | null | null | 3723082.0 | 35064.0 | 198.282 | 1.867 | 27230.0 | 1.45 | 2.2e-2 | 44.9 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-12 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-05-13 | 737.0 | 22.0 | 22.143 | 40.0 | 4.0 | 2.0 | 13.706 | 0.409 | 0.412 | 0.744 | 7.4e-2 | 3.7e-2 | 1.3 | null | null | null | null | null | null | null | null | 35432.0 | 1516.0 | 0.659 | 2.8e-2 | 1197.0 | 2.2e-2 | 1.8e-2 | 54.1 | null | 88.89 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-09-29 | 38378.0 | 210.0 | 165.714 | 707.0 | 7.0 | 6.857 | 713.726 | 3.905 | 3.082 | 13.148 | 0.13 | 0.128 | 1.15 | null | null | null | null | null | null | null | null | 545019.0 | 3604.0 | 10.136 | 6.7e-2 | 3556.0 | 6.6e-2 | 4.7e-2 | 21.5 | null | 71.3 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-11-17 | 71729.0 | 925.0 | 1020.143 | 1302.0 | 15.0 | 21.143 | 1333.964 | 17.202 | 18.972 | 24.214 | 0.279 | 0.393 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | 6311.0 | 0.117 | 0.162 | 6.2 | null | 62.96 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
OWID_KOS | Europe | Kosovo | 2020-04-30 | 799.0 | 9.0 | 24.143 | 22.0 | 0.0 | 0.571 | 413.395 | 4.657 | 12.491 | 11.383 | 0.0 | 0.296 | 0.88 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-08-02 | 8799.0 | 245.0 | 237.429 | 249.0 | 13.0 | 10.286 | 4552.524 | 126.761 | 122.843 | 128.83 | 6.726 | 5.322 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-08-05 | 9492.0 | 218.0 | 235.143 | 284.0 | 15.0 | 12.571 | 4911.076 | 112.791 | 121.661 | 146.939 | 7.761 | 6.504 | 1.01 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KGZ | Asia | Kyrgyzstan | 2020-06-06 | 1974.0 | 38.0 | 36.0 | 22.0 | 0.0 | 0.857 | 302.566 | 5.824 | 5.518 | 3.372 | 0.0 | 0.131 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-19 | 68316.0 | 422.0 | 489.857 | 1217.0 | 5.0 | 3.429 | 10471.183 | 64.682 | 75.083 | 186.537 | 0.766 | 0.526 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-29 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-07-15 | 19.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 20.37 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-05-03 | 879.0 | 8.0 | 9.571 | 16.0 | 0.0 | 0.571 | 466.016 | 4.241 | 5.074 | 8.483 | 0.0 | 0.303 | 0.88 | null | null | 33.0 | 17.495 | 1.965 | 1.042 | 8.842 | 4.688 | 64245.0 | 1143.0 | 34.061 | 0.606 | 2375.0 | 1.259 | 4.0e-3 | 248.1 | null | 69.44 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-12-01 | 129455.0 | 1511.0 | 1535.714 | 1033.0 | 15.0 | 14.143 | 18966.537 | 221.378 | 224.999 | 151.346 | 2.198 | 2.072 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LSO | Africa | Lesotho | 2020-03-11 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-09-10 | 1164.0 | 0.0 | 11.286 | 31.0 | 0.0 | 0.0 | 543.353 | 0.0 | 5.268 | 14.471 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-11-18 | 2058.0 | 6.0 | 4.571 | 44.0 | 0.0 | 0.0 | 960.671 | 2.801 | 2.134 | 20.539 | 0.0 | 0.0 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LBY | Africa | Libya | 2020-07-25 | 2547.0 | 123.0 | 108.0 | 58.0 | 1.0 | 1.429 | 370.673 | 17.901 | 15.718 | 8.441 | 0.146 | 0.208 | 1.27 | null | null | null | null | null | null | null | null | null | 1074.0 | null | 0.156 | 1256.0 | 0.183 | 8.6e-2 | 11.6 | null | 90.74 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LBY | Africa | Libya | 2020-08-17 | 8579.0 | 407.0 | 378.571 | 157.0 | 4.0 | 4.571 | 1248.529 | 59.232 | 55.095 | 22.849 | 0.582 | 0.665 | 1.23 | null | null | null | null | null | null | null | null | null | 2995.0 | null | 0.436 | 2766.0 | 0.403 | 0.137 | 7.3 | null | 87.96 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-02-22 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-08-08 | 89.0 | 0.0 | 0.143 | 1.0 | 0.0 | 0.0 | 2333.692 | 0.0 | 3.746 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-16 | 989.0 | 4.0 | 26.857 | 7.0 | 2.0 | 0.429 | 25932.821 | 104.885 | 704.228 | 183.549 | 52.443 | 11.238 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LTU | Europe | Lithuania | 2020-03-07 | 1.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.367 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-06-17 | 1778.0 | 2.0 | 6.429 | 76.0 | 0.0 | 0.286 | 653.126 | 0.735 | 2.361 | 27.918 | 0.0 | 0.105 | 0.85 | null | null | null | null | null | null | null | null | 363718.0 | 5138.0 | 133.607 | 1.887 | 4080.0 | 1.499 | 2.0e-3 | 634.6 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-20 | 42757.0 | 2265.0 | 1554.143 | 357.0 | 16.0 | 14.857 | 15706.256 | 832.02 | 570.895 | 131.14 | 5.877 | 5.458 | 1.33 | null | null | null | null | null | null | null | null | 1159456.0 | 14358.0 | 425.912 | 5.274 | 11084.0 | 4.072 | 0.14 | 7.1 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
MKD | Europe | Macedonia | 2020-06-05 | 2790.0 | 179.0 | 94.429 | 149.0 | 2.0 | 3.286 | 1339.17 | 85.918 | 45.325 | 71.518 | 0.96 | 1.577 | 1.68 | null | null | null | null | null | null | null | null | 34386.0 | 1272.0 | 16.505 | 0.611 | 957.0 | 0.459 | 9.9e-2 | 10.1 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-07-05 | 7046.0 | 114.0 | 138.0 | 341.0 | 7.0 | 7.857 | 3382.004 | 54.719 | 66.239 | 163.676 | 3.36 | 3.771 | 1.0 | null | null | null | null | null | null | null | null | 67165.0 | 1032.0 | 32.238 | 0.495 | 1209.0 | 0.58 | 0.114 | 8.8 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRY | South America | Paraguay | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | 1.0 | 1.4020270507099166e-4 | 0.0 | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-08 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-09 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-10 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 9.0 | 8.0 | 1.2618243456389247e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-11 | 5.0 | 4.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 16.0 | 7.0 | 2.2432432811358666e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.7010135253549582 | 0.5608108202839666 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-12 | 5.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 22.0 | 6.0 | 3.0844595115618162e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.7010135253549582 | 0.0 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-13 | 6.0 | 1.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 39.0 | 17.0 | 5.467905497768674e-3 | 2.0e-3 | null | null | null | null | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.14020270507099164 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-14 | 6.0 | 0.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 54.0 | 15.0 | 7.570946073833549e-3 | 2.0e-3 | 8.0 | 1.0e-3 | 0.107 | 9.3 | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.0 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-15 | 6.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 87.0 | 33.0 | 1.2197635341176273e-2 | 5.0e-3 | 12.0 | 2.0e-3 | 6.0e-2 | 16.8 | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.0 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-16 | 8.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 114.0 | 27.0 | 1.5983108378093046e-2 | 4.0e-3 | 15.0 | 2.0e-3 | 6.7e-2 | 15.0 | null | 70.37 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.1216216405679331 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-17 | 9.0 | 1.0 | 1.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 140.0 | 26.0 | 1.962837870993883e-2 | 4.0e-3 | 19.0 | 3.0e-3 | 6.0e-2 | 16.6 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.2618243456389249 | 0.14020270507099164 | 0.16025169189614347 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-18 | 11.0 | 2.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 164.0 | 24.0 | 2.299324363164263e-2 | 3.0e-3 | 21.0 | 3.0e-3 | 4.1e-2 | 24.5 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.5422297557809082 | 0.2804054101419833 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-19 | 11.0 | 0.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 196.0 | 32.0 | 2.747973019391436e-2 | 4.0e-3 | 25.0 | 4.0e-3 | 3.4e-2 | 29.2 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.5422297557809082 | 0.0 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-20 | 13.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 240.0 | 44.0 | 3.3648649217037994e-2 | 6.0e-3 | 29.0 | 4.0e-3 | 3.4e-2 | 29.0 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.8226351659228912 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-21 | 18.0 | 5.0 | 1.714 | 1.0 | 1.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 308.0 | 68.0 | 4.318243316186543e-2 | 1.0e-2 | 36.0 | 5.0e-3 | 4.8e-2 | 21.0 | null | 85.19 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2.5236486912778497 | 0.7010135253549582 | 0.24030743649167968 | 0.14020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-22 | 22.0 | 4.0 | 2.286 | 1.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 345.0 | 37.0 | 4.836993324949211e-2 | 5.0e-3 | 37.0 | 5.0e-3 | 6.2e-2 | 16.2 | null | 85.19 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.0844595115618163 | 0.5608108202839666 | 0.32050338379228693 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-23 | 22.0 | 0.0 | 2.0 | 1.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 434.0 | 89.0 | 6.084797400081037e-2 | 1.2e-2 | 46.0 | 6.0e-3 | 4.3e-2 | 23.0 | null | 90.74 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.0844595115618163 | 0.0 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-24 | 27.0 | 5.0 | 2.571 | 2.0 | 1.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 525.0 | 91.0 | 7.360642016227062e-2 | 1.3e-2 | 55.0 | 8.0e-3 | 4.7e-2 | 21.4 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.785473036916774 | 0.7010135253549582 | 0.3604611547375195 | 0.2804054101419833 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-25 | 37.0 | 10.0 | 3.714 | 3.0 | 1.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 576.0 | 51.0 | 8.075675812089118e-2 | 7.0e-3 | 59.0 | 8.0e-3 | 6.3e-2 | 15.9 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5.187500087626691 | 1.4020270507099164 | 0.520712846633663 | 0.4206081152129749 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-26 | 41.0 | 4.0 | 4.286 | 3.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 654.0 | 78.0 | 9.169256911642854e-2 | 1.1e-2 | 65.0 | 9.0e-3 | 6.6e-2 | 15.2 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5.748310907910658 | 0.5608108202839666 | 0.6009087939342701 | 0.4206081152129749 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-27 | 52.0 | 11.0 | 5.571 | 3.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 755.0 | 101.0 | 0.1058530423285987 | 1.4e-2 | 74.0 | 1.0e-2 | 7.5e-2 | 13.3 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7.290540663691565 | 1.5422297557809082 | 0.7810692699504943 | 0.4206081152129749 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-28 | 56.0 | 4.0 | 5.429 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 815.0 | 60.0 | 0.11426520463285819 | 8.0e-3 | 72.0 | 1.0e-2 | 7.5e-2 | 13.3 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7.851351483975532 | 0.5608108202839666 | 0.7611604858304136 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-29 | 59.0 | 3.0 | 5.286 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 920.0 | 105.0 | 0.12898648866531232 | 1.5e-2 | 82.0 | 1.1e-2 | 6.4e-2 | 15.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8.271959599188508 | 0.4206081152129749 | 0.7411114990052617 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-30 | 64.0 | 5.0 | 6.0 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 988.0 | 68.0 | 0.13852027261013974 | 1.0e-2 | 79.0 | 1.1e-2 | 7.6e-2 | 13.2 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8.972973124543465 | 0.7010135253549582 | 0.8412162304259498 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-31 | 65.0 | 1.0 | 5.429 | 3.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 1078.0 | 90.0 | 0.15113851606652898 | 1.3e-2 | 79.0 | 1.1e-2 | 6.9e-2 | 14.6 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9.113175829614455 | 0.14020270507099164 | 0.7611604858304136 | 0.4206081152129749 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-01 | 69.0 | 4.0 | 4.571 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1173.0 | 95.0 | 0.1644577730482732 | 1.3e-2 | 85.0 | 1.2e-2 | 5.4e-2 | 18.6 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9.673986649898424 | 0.5608108202839666 | 0.6408665648795027 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-02 | 77.0 | 8.0 | 5.143 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1289.0 | 116.0 | 0.18072128683650823 | 1.6e-2 | 91.0 | 1.3e-2 | 5.7e-2 | 17.7 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10.795608290466356 | 1.1216216405679331 | 0.72106251218011 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-03 | 92.0 | 15.0 | 5.714 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1454.0 | 165.0 | 0.20385473317322184 | 2.3e-2 | 100.0 | 1.4e-2 | 5.7e-2 | 17.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 12.89864886653123 | 2.1030405760648745 | 0.8011182567756463 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-04 | 96.0 | 4.0 | 5.714 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1646.0 | 192.0 | 0.23077365254685223 | 2.7e-2 | 119.0 | 1.7e-2 | 4.8e-2 | 20.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 13.459459686815197 | 0.5608108202839666 | 0.8011182567756463 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-05 | 104.0 | 8.0 | 6.429 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1846.0 | 200.0 | 0.25881419356105057 | 2.8e-2 | 132.0 | 1.9e-2 | 4.9e-2 | 20.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 14.58108132738313 | 1.1216216405679331 | 0.9013631909014053 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-06 | 113.0 | 9.0 | 7.0 | 5.0 | 2.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2008.0 | 162.0 | 0.28152703178255123 | 2.3e-2 | 146.0 | 2.0e-2 | 4.8e-2 | 20.9 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 15.842905673022058 | 1.2618243456389249 | 0.9814189354969415 | 0.7010135253549582 | 0.2804054101419833 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-07 | 115.0 | 2.0 | 7.143 | 5.0 | 0.0 | 0.286 | 0.99 | null | null | null | null | null | null | null | null | 2220.0 | 212.0 | 0.31125000525760144 | 3.0e-2 | 163.0 | 2.3e-2 | 4.4e-2 | 22.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 16.123311083164037 | 0.2804054101419833 | 1.0014679223220933 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-08 | 119.0 | 4.0 | 7.143 | 5.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2462.0 | 242.0 | 0.3451790598847814 | 3.4e-2 | 184.0 | 2.6e-2 | 3.9e-2 | 25.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 16.684121903448005 | 0.5608108202839666 | 1.0014679223220933 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-09 | 124.0 | 5.0 | 6.714 | 5.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2685.0 | 223.0 | 0.3764442631156126 | 3.1e-2 | 199.0 | 2.8e-2 | 3.4e-2 | 29.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 17.38513542880296 | 0.7010135253549582 | 0.9413209618466379 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-10 | 129.0 | 5.0 | 5.286 | 6.0 | 1.0 | 0.429 | 1.01 | null | null | null | null | null | null | null | null | 2905.0 | 220.0 | 0.40728885823123073 | 3.1e-2 | 207.0 | 2.9e-2 | 2.6e-2 | 39.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.086148954157924 | 0.7010135253549582 | 0.7411114990052617 | 0.8412162304259498 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-11 | 133.0 | 4.0 | 5.286 | 6.0 | 0.0 | 0.429 | 1.03 | null | null | null | null | null | null | null | null | 3135.0 | 230.0 | 0.43953548039755874 | 3.2e-2 | 213.0 | 3.0e-2 | 2.5e-2 | 40.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.64695977444189 | 0.5608108202839666 | 0.7411114990052617 | 0.8412162304259498 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-12 | 134.0 | 1.0 | 4.286 | 6.0 | 0.0 | 0.429 | 1.05 | null | null | null | null | null | null | null | null | 3394.0 | 259.0 | 0.4758479810109456 | 3.6e-2 | 221.0 | 3.1e-2 | 1.9e-2 | 51.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.78716247951288 | 0.14020270507099164 | 0.6009087939342701 | 0.8412162304259498 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-13 | 147.0 | 13.0 | 4.857 | 6.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 3642.0 | 248.0 | 0.5106182518685515 | 3.5e-2 | 233.0 | 3.3e-2 | 2.1e-2 | 48.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 20.60979764543577 | 1.8226351659228912 | 0.6809645385298064 | 0.8412162304259498 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-14 | 159.0 | 12.0 | 6.286 | 7.0 | 1.0 | 0.286 | 1.09 | null | null | null | null | null | null | null | null | 3888.0 | 246.0 | 0.5451081173160155 | 3.4e-2 | 238.0 | 3.3e-2 | 2.6e-2 | 37.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 22.292230106287672 | 1.6824324608518997 | 0.8813142040762534 | 0.9814189354969415 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-15 | 161.0 | 2.0 | 6.0 | 8.0 | 1.0 | 0.429 | 1.1 | null | null | null | null | null | null | null | null | 4267.0 | 379.0 | 0.5982449425379214 | 5.3e-2 | 258.0 | 3.6e-2 | 2.3e-2 | 43.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 22.572635516429653 | 0.2804054101419833 | 0.8412162304259498 | 1.1216216405679331 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-16 | 174.0 | 13.0 | 7.143 | 8.0 | 0.0 | 0.429 | 1.12 | null | null | null | null | null | null | null | null | 4612.0 | 345.0 | 0.6466148757874134 | 4.8e-2 | 275.0 | 3.9e-2 | 2.6e-2 | 38.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 24.395270682352546 | 1.8226351659228912 | 1.0014679223220933 | 1.1216216405679331 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-17 | 199.0 | 25.0 | 10.0 | 8.0 | 0.0 | 0.286 | 1.13 | null | null | null | null | null | null | null | null | 4950.0 | 338.0 | 0.6940033901014087 | 4.7e-2 | 292.0 | 4.1e-2 | 3.4e-2 | 29.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 27.900338309127335 | 3.505067626774791 | 1.4020270507099164 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-18 | 202.0 | 3.0 | 9.857 | 8.0 | 0.0 | 0.286 | 1.1 | null | null | null | null | null | null | null | null | 5254.0 | 304.0 | 0.7366250124429901 | 4.3e-2 | 303.0 | 4.2e-2 | 3.3e-2 | 30.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 28.320946424340313 | 0.4206081152129749 | 1.3819780638847645 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-19 | 206.0 | 4.0 | 10.286 | 8.0 | 0.0 | 0.286 | 1.08 | null | null | null | null | null | null | null | null | 5501.0 | 247.0 | 0.771255080595525 | 3.5e-2 | 301.0 | 4.2e-2 | 3.4e-2 | 29.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 28.88175724462428 | 0.5608108202839666 | 1.44212502436022 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-20 | 208.0 | 2.0 | 8.714 | 8.0 | 0.0 | 0.286 | 1.08 | null | null | null | null | null | null | null | null | 5878.0 | 377.0 | 0.8241115004072889 | 5.3e-2 | 319.0 | 4.5e-2 | 2.7e-2 | 36.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.16216265476626 | 0.2804054101419833 | 1.221726371988621 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-21 | 208.0 | 0.0 | 7.0 | 8.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 6292.0 | 414.0 | 0.8821554203066794 | 5.8e-2 | 343.0 | 4.8e-2 | 2.0e-2 | 49.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.16216265476626 | 0.0 | 0.9814189354969415 | 1.1216216405679331 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-22 | 213.0 | 5.0 | 7.429 | 9.0 | 1.0 | 0.143 | 1.1 | null | null | null | null | null | null | null | null | 6598.0 | 306.0 | 0.9250574480584028 | 4.3e-2 | 333.0 | 4.7e-2 | 2.2e-2 | 44.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.863176180121222 | 0.7010135253549582 | 1.041565895972397 | 1.2618243456389249 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-23 | 213.0 | 0.0 | 5.571 | 9.0 | 0.0 | 0.143 | 1.12 | null | null | null | null | null | null | null | null | 6917.0 | 319.0 | 0.9697821109760492 | 4.5e-2 | 329.0 | 4.6e-2 | 1.7e-2 | 59.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.863176180121222 | 0.0 | 0.7810692699504943 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-24 | 223.0 | 10.0 | 3.429 | 9.0 | 0.0 | 0.143 | 1.16 | null | null | null | null | null | null | null | null | 7322.0 | 405.0 | 1.0265642065298008 | 5.7e-2 | 339.0 | 4.8e-2 | 1.0e-2 | 98.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.265203230831137 | 1.4020270507099164 | 0.4807550756884303 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-25 | 228.0 | 5.0 | 3.714 | 9.0 | 0.0 | 0.143 | 1.18 | null | null | null | null | null | null | null | null | 7630.0 | 308.0 | 1.0697466396916664 | 4.3e-2 | 339.0 | 4.8e-2 | 1.1e-2 | 91.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.7010135253549582 | 0.520712846633663 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-26 | 228.0 | 0.0 | 3.143 | 9.0 | 0.0 | 0.143 | 1.21 | null | null | null | null | null | null | null | null | 7925.0 | 295.0 | 1.1111064376876088 | 4.1e-2 | 346.0 | 4.9e-2 | 9.0e-3 | 110.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.0 | 0.4406571020381267 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-27 | 228.0 | 0.0 | 2.857 | 9.0 | 0.0 | 0.143 | 1.26 | null | null | null | null | null | null | null | null | 8444.0 | 519.0 | 1.1838716416194535 | 7.3e-2 | 367.0 | 5.1e-2 | 8.0e-3 | 128.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.0 | 0.40055912838782315 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-28 | 239.0 | 11.0 | 4.429 | 9.0 | 0.0 | 0.143 | 1.34 | null | null | null | null | null | null | null | null | 8891.0 | 447.0 | 1.2465422507861867 | 6.3e-2 | 371.0 | 5.2e-2 | 1.2e-2 | 83.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 33.508446511967 | 1.5422297557809082 | 0.620957780759422 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-29 | 239.0 | 0.0 | 3.714 | 9.0 | 0.0 | 0.0 | 1.41 | null | null | null | null | null | null | null | null | 9454.0 | 563.0 | 1.325476373741155 | 7.9e-2 | 408.0 | 5.7e-2 | 9.0e-3 | 109.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 33.508446511967 | 0.0 | 0.520712846633663 | 1.2618243456389249 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-30 | 266.0 | 27.0 | 7.571 | 10.0 | 1.0 | 0.143 | 1.53 | null | null | null | null | null | null | null | null | 9903.0 | 449.0 | 1.3884273883180303 | 6.3e-2 | 427.0 | 6.0e-2 | 1.8e-2 | 56.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 37.29391954888378 | 3.785473036916774 | 1.0614746800924777 | 1.4020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-01 | 333.0 | 67.0 | 15.714 | 10.0 | 0.0 | 0.143 | 1.57 | null | null | null | null | null | null | null | null | 10342.0 | 439.0 | 1.4499763758441955 | 6.2e-2 | 431.0 | 6.0e-2 | 3.6e-2 | 27.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 46.687500788640214 | 9.39358123975644 | 2.203145307485563 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-02 | 370.0 | 37.0 | 20.286 | 10.0 | 0.0 | 0.143 | 1.5 | null | null | null | null | null | null | null | null | 10766.0 | 424.0 | 1.509422322794296 | 5.9e-2 | 448.0 | 6.3e-2 | 4.5e-2 | 22.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 51.87500087626691 | 5.187500087626691 | 2.8441520750701366 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-03 | 396.0 | 26.0 | 24.0 | 10.0 | 0.0 | 0.143 | 1.43 | null | null | null | null | null | null | null | null | 11106.0 | 340.0 | 1.5570912425184331 | 4.8e-2 | 454.0 | 6.4e-2 | 5.3e-2 | 18.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 55.52027120811269 | 3.6452703318457824 | 3.3648649217037994 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-04 | 415.0 | 19.0 | 26.714 | 10.0 | 0.0 | 0.143 | 1.38 | null | null | null | null | null | null | null | null | 11455.0 | 349.0 | 1.606021986588209 | 4.9e-2 | 430.0 | 6.0e-2 | 6.2e-2 | 16.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 58.184122604461535 | 2.663851396348841 | 3.745375063266471 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-05 | 431.0 | 16.0 | 27.429 | 10.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 11913.0 | 458.0 | 1.6702348255107233 | 6.4e-2 | 432.0 | 6.1e-2 | 6.3e-2 | 15.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 60.427365885597396 | 2.2432432811358662 | 3.8456199973922294 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-06 | 440.0 | 9.0 | 28.714 | 10.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 12497.0 | 584.0 | 1.7521132052721826 | 8.2e-2 | 435.0 | 6.1e-2 | 6.6e-2 | 15.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 61.68919023123632 | 1.2618243456389249 | 4.025780473408454 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-07 | 462.0 | 22.0 | 28.0 | 10.0 | 0.0 | 0.0 | 1.36 | null | null | null | null | null | null | null | null | 13096.0 | 599.0 | 1.8360946256097066 | 8.4e-2 | 456.0 | 6.4e-2 | 6.1e-2 | 16.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 64.77364974279814 | 3.0844595115618163 | 3.925675741987766 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-08 | 563.0 | 101.0 | 32.857 | 10.0 | 0.0 | 0.0 | 1.4 | null | null | null | null | null | null | null | null | 13846.0 | 750.0 | 1.9412466544129503 | 0.105 | 501.0 | 7.0e-2 | 6.6e-2 | 15.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 78.9341229549683 | 14.160473212170157 | 4.606640280517572 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-09 | 689.0 | 126.0 | 45.571 | 10.0 | 0.0 | 0.0 | 1.36 | null | null | null | null | null | null | null | null | 14646.0 | 800.0 | 2.053408818469743 | 0.112 | 554.0 | 7.8e-2 | 8.2e-2 | 12.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 96.59966379391324 | 17.665540838944946 | 6.38917747279016 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-10 | 713.0 | 24.0 | 45.286 | 10.0 | 0.0 | 0.0 | 1.27 | null | null | null | null | null | null | null | null | 15446.0 | 800.0 | 2.1655709825265372 | 0.112 | 620.0 | 8.7e-2 | 7.3e-2 | 13.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 99.96452871561705 | 3.3648649217037994 | 6.349219701844928 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-11 | 724.0 | 11.0 | 44.143 | 10.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 16155.0 | 709.0 | 2.2649747004218703 | 9.9e-2 | 671.0 | 9.4e-2 | 6.6e-2 | 15.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 101.50675847139796 | 1.5422297557809082 | 6.188968009948784 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-12 | 737.0 | 13.0 | 43.714 | 10.0 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 16917.0 | 762.0 | 2.371809161685966 | 0.107 | 715.0 | 0.1 | 6.1e-2 | 16.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 103.32939363732085 | 1.8226351659228912 | 6.128821049473328 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-13 | 740.0 | 3.0 | 42.857 | 11.0 | 1.0 | 0.143 | 1.12 | null | null | null | null | null | null | null | null | 17589.0 | 672.0 | 2.4660253794936717 | 9.4e-2 | 727.0 | 0.102 | 5.9e-2 | 17.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 103.75000175253382 | 0.4206081152129749 | 6.008667331227488 | 1.5422297557809082 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-14 | 754.0 | 14.0 | 41.714 | 11.0 | 0.0 | 0.143 | 1.1 | null | null | null | null | null | null | null | null | 18184.0 | 595.0 | 2.549445989010912 | 8.3e-2 | 727.0 | 0.102 | 5.7e-2 | 17.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 105.7128396235277 | 1.962837870993883 | 5.848415639331345 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-15 | 759.0 | 5.0 | 28.0 | 11.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 18856.0 | 672.0 | 2.643662206818618 | 9.4e-2 | 716.0 | 0.1 | 3.9e-2 | 25.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 106.41385314888265 | 0.7010135253549582 | 3.925675741987766 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-16 | 778.0 | 19.0 | 12.714 | 11.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 19308.0 | 452.0 | 2.7070338295107064 | 6.3e-2 | 666.0 | 9.3e-2 | 1.9e-2 | 52.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 109.0777045452315 | 2.663851396348841 | 1.782537192272588 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-17 | 786.0 | 8.0 | 10.429 | 11.0 | 0.0 | 0.143 | 1.07 | null | null | null | null | null | null | null | null | 20124.0 | 816.0 | 2.8214392368486356 | 0.114 | 668.0 | 9.4e-2 | 1.6e-2 | 64.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 110.19932618579944 | 1.1216216405679331 | 1.4621740111853718 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-18 | 788.0 | 2.0 | 9.143 | 11.0 | 0.0 | 0.143 | 1.07 | null | null | null | null | null | null | null | null | 20429.0 | 305.0 | 2.864201061895288 | 4.3e-2 | 611.0 | 8.6e-2 | 1.5e-2 | 66.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 110.47973159594142 | 0.2804054101419833 | 1.2818733324640765 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-19 | 829.0 | 41.0 | 13.143 | 11.0 | 0.0 | 0.143 | 1.09 | null | null | null | null | null | null | null | null | 21121.0 | 692.0 | 2.9612213338044144 | 9.7e-2 | 601.0 | 8.4e-2 | 2.2e-2 | 45.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 116.22804250385207 | 5.748310907910658 | 1.8426841527480433 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-20 | 833.0 | 4.0 | 13.286 | 11.0 | 0.0 | 0.0 | 1.07 | null | null | null | null | null | null | null | null | 21542.0 | 421.0 | 3.020246672639302 | 5.9e-2 | 565.0 | 7.9e-2 | 2.4e-2 | 42.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 116.78885332413604 | 0.5608108202839666 | 1.8627331395731948 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-21 | 836.0 | 3.0 | 11.714 | 11.0 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | 21987.0 | 445.0 | 3.082636876395893 | 6.2e-2 | 543.0 | 7.6e-2 | 2.2e-2 | 46.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 117.20946143934901 | 0.4206081152129749 | 1.6423344872015961 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-22 | 838.0 | 2.0 | 11.286 | 11.0 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | 22868.0 | 881.0 | 3.206155459563437 | 0.124 | 573.0 | 8.0e-2 | 2.0e-2 | 50.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 117.489866849491 | 0.2804054101419833 | 1.5823277294312115 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-23 | 850.0 | 12.0 | 10.286 | 11.0 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 23805.0 | 937.0 | 3.3375253942149556 | 0.131 | 642.0 | 9.0e-2 | 1.6e-2 | 62.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 119.1722993103429 | 1.6824324608518997 | 1.44212502436022 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-24 | 862.0 | 12.0 | 10.857 | 11.0 | 0.0 | 0.0 | 1.09 | null | null | null | null | null | null | null | null | 24812.0 | 1007.0 | 3.4787095182214443 | 0.141 | 670.0 | 9.4e-2 | 1.6e-2 | 61.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 120.85473177119479 | 1.6824324608518997 | 1.522180768955756 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-25 | 865.0 | 3.0 | 11.0 | 11.0 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | 25216.0 | 404.0 | 3.5353514110701254 | 5.7e-2 | 684.0 | 9.6e-2 | 1.6e-2 | 62.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 121.27533988640776 | 0.4206081152129749 | 1.5422297557809082 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-26 | 877.0 | 12.0 | 6.857 | 11.0 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | 26169.0 | 953.0 | 3.66896458900278 | 0.134 | 721.0 | 0.101 | 1.0e-2 | 105.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 122.95777234725966 | 1.6824324608518997 | 0.9613699486717897 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-27 | 884.0 | 7.0 | 7.286 | 11.0 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 26760.0 | 591.0 | 3.7518243876997364 | 8.3e-2 | 745.0 | 0.104 | 1.0e-2 | 102.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 123.93919128275661 | 0.9814189354969415 | 1.021516909147245 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-28 | 900.0 | 16.0 | 9.143 | 11.0 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 27425.0 | 665.0 | 3.845059186571946 | 9.3e-2 | 777.0 | 0.109 | 1.2e-2 | 85.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 126.18243456389249 | 2.2432432811358662 | 1.2818733324640765 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-29 | 917.0 | 17.0 | 11.286 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 28337.0 | 912.0 | 3.9729240535966905 | 0.128 | 781.0 | 0.109 | 1.4e-2 | 69.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 128.56588055009934 | 2.383445986206858 | 1.5823277294312115 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-30 | 964.0 | 47.0 | 16.286 | 11.0 | 0.0 | 0.0 | 1.25 | null | null | null | null | null | null | null | null | 29153.0 | 816.0 | 4.087329460934619 | 0.114 | 764.0 | 0.107 | 2.1e-2 | 46.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 135.15540768843593 | 6.5895271383366065 | 2.28334125478617 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-31 | 986.0 | 22.0 | 17.714 | 11.0 | 0.0 | 0.0 | 1.23 | null | null | null | null | null | null | null | null | 30004.0 | 851.0 | 4.206641962950033 | 0.119 | 742.0 | 0.104 | 2.4e-2 | 41.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 138.23986719999775 | 3.0844595115618163 | 2.4835507176275455 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-01 | 995.0 | 9.0 | 18.571 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 30834.0 | 830.0 | 4.323010208158957 | 0.116 | 803.0 | 0.113 | 2.3e-2 | 43.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 139.5016915456367 | 1.2618243456389249 | 2.6037044358733863 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-02 | 1013.0 | 18.0 | 19.429 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 32106.0 | 1272.0 | 4.501348049009257 | 0.178 | 848.0 | 0.119 | 2.3e-2 | 43.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 142.02534023691453 | 2.5236486912778497 | 2.7239983568242967 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-03 | 1070.0 | 57.0 | 26.571 | 11.0 | 0.0 | 0.0 | 1.23 | null | null | null | null | null | null | null | null | 33081.0 | 975.0 | 4.6380456864534745 | 0.137 | 903.0 | 0.127 | 2.9e-2 | 34.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 150.01689442596106 | 7.991554189046523 | 3.7253260764413194 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-04 | 1086.0 | 16.0 | 26.571 | 11.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 34240.0 | 1159.0 | 4.800540621630754 | 0.162 | 974.0 | 0.137 | 2.7e-2 | 36.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.26013770709693 | 2.2432432811358662 | 3.7253260764413194 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-05 | 1087.0 | 1.0 | 24.286 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 35258.0 | 1018.0 | 4.943266975393024 | 0.143 | 989.0 | 0.139 | 2.5e-2 | 40.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.4003404121679 | 0.14020270507099164 | 3.404962895354103 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-06 | 1090.0 | 3.0 | 18.0 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 36373.0 | 1115.0 | 5.099592991547179 | 0.156 | 1031.0 | 0.145 | 1.7e-2 | 57.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.8209485273809 | 0.4206081152129749 | 2.5236486912778497 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-07 | 1135.0 | 45.0 | 21.286 | 11.0 | 0.0 | 0.0 | 1.21 | null | null | null | null | null | null | null | null | 37532.0 | 1159.0 | 5.262087926724458 | 0.162 | 1075.0 | 0.151 | 2.0e-2 | 50.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 159.1300702555755 | 6.309121728194624 | 2.9843547801411283 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-08 | 1145.0 | 10.0 | 21.429 | 11.0 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 38942.0 | 1410.0 | 5.459773740874557 | 0.198 | 1158.0 | 0.162 | 1.9e-2 | 54.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 160.53209730628544 | 1.4020270507099164 | 3.0044037669662798 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-09 | 1187.0 | 42.0 | 24.857 | 11.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 40032.0 | 1090.0 | 5.612594689401938 | 0.153 | 1132.0 | 0.159 | 2.2e-2 | 45.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 166.42061091926706 | 5.888513612981649 | 3.4850186399496392 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-10 | 1202.0 | 15.0 | 18.857 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 41702.0 | 1670.0 | 5.846733206870494 | 0.234 | 1232.0 | 0.173 | 1.5e-2 | 65.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 168.52365149533196 | 2.1030405760648745 | 2.643802409523689 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-11 | 1230.0 | 28.0 | 20.571 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 43292.0 | 1590.0 | 6.06965550793337 | 0.223 | 1293.0 | 0.181 | 1.6e-2 | 62.9 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 172.44932723731972 | 3.925675741987766 | 2.8841098460153693 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-12 | 1254.0 | 24.0 | 23.857 | 11.0 | 0.0 | 0.0 | 1.17 | null | null | null | null | null | null | null | null | 45132.0 | 1840.0 | 6.327628485263995 | 0.258 | 1411.0 | 0.198 | 1.7e-2 | 59.1 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 175.81419215902352 | 3.3648649217037994 | 3.3448159348786475 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-13 | 1261.0 | 7.0 | 24.429 | 11.0 | 0.0 | 0.0 | 1.16 | null | null | null | null | null | null | null | null | 46608.0 | 1476.0 | 6.534567677948779 | 0.207 | 1462.0 | 0.205 | 1.7e-2 | 59.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 176.79561109452047 | 0.9814189354969415 | 3.4250118821792546 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-14 | 1289.0 | 28.0 | 22.0 | 11.0 | 0.0 | 0.0 | 1.16 | null | null | null | null | null | null | null | null | 48081.0 | 1473.0 | 6.741086262518349 | 0.207 | 1507.0 | 0.211 | 1.5e-2 | 68.5 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 180.72128683650823 | 3.925675741987766 | 3.0844595115618163 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-15 | 1296.0 | 7.0 | 21.571 | 12.0 | 1.0 | 0.143 | 1.15 | null | null | null | null | null | null | null | null | 48729.0 | 648.0 | 6.831937615404351 | 9.1e-2 | 1398.0 | 0.196 | 1.5e-2 | 64.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 181.70270577200515 | 0.9814189354969415 | 3.0243125510863607 | 1.6824324608518997 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-06-16 | 1303.0 | 7.0 | 16.571 | 13.0 | 1.0 | 0.286 | 1.15 | null | null | null | null | null | null | null | null | 49978.0 | 1249.0 | 7.00705079403802 | 0.175 | 1421.0 | 0.199 | 1.2e-2 | 85.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 182.6841247075021 | 0.9814189354969415 | 2.323299025731403 | 1.8226351659228912 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-17 | 1308.0 | 5.0 | 15.143 | 13.0 | 0.0 | 0.286 | 1.17 | null | null | null | null | null | null | null | null | 51178.0 | 1200.0 | 7.17529404012321 | 0.168 | 1354.0 | 0.19 | 1.1e-2 | 89.4 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 183.38513823285706 | 0.7010135253549582 | 2.1230895628900264 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-18 | 1330.0 | 22.0 | 14.286 | 13.0 | 0.0 | 0.286 | 1.2 | null | null | null | null | null | null | null | null | 52649.0 | 1471.0 | 7.381532219282638 | 0.206 | 1337.0 | 0.187 | 1.1e-2 | 93.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 186.46959774441888 | 3.0844595115618163 | 2.0029358446441865 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-19 | 1336.0 | 6.0 | 11.714 | 13.0 | 0.0 | 0.286 | 1.23 | null | null | null | null | null | null | null | null | 54278.0 | 1629.0 | 7.609922425843284 | 0.228 | 1307.0 | 0.183 | 9.0e-3 | 111.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 187.31081397484482 | 0.8412162304259498 | 1.6423344872015961 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-20 | 1362.0 | 26.0 | 14.429 | 13.0 | 0.0 | 0.286 | 1.27 | null | null | null | null | null | null | null | null | 55827.0 | 1549.0 | 7.82709641599825 | 0.217 | 1317.0 | 0.185 | 1.1e-2 | 91.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 190.9560843066906 | 3.6452703318457824 | 2.0229848314693384 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-21 | 1379.0 | 17.0 | 12.857 | 13.0 | 0.0 | 0.286 | 1.31 | null | null | null | null | null | null | null | null | 56992.0 | 1165.0 | 7.990432567405956 | 0.163 | 1273.0 | 0.178 | 1.0e-2 | 99.0 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 193.33953029289748 | 2.383445986206858 | 1.8025861790977393 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-22 | 1392.0 | 13.0 | 13.714 | 13.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 57895.0 | 903.0 | 8.117035610085061 | 0.127 | 1309.0 | 0.184 | 1.0e-2 | 95.4 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 195.16216545882037 | 1.8226351659228912 | 1.9227398973435794 | 1.8226351659228912 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-06-23 | 1422.0 | 30.0 | 17.0 | 13.0 | 0.0 | 0.0 | 1.42 | null | null | null | null | null | null | null | null | 59454.0 | 1559.0 | 8.335611627290737 | 0.219 | 1354.0 | 0.19 | 1.3e-2 | 79.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 199.3682466109501 | 4.206081152129749 | 2.383445986206858 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-24 | 1528.0 | 106.0 | 31.429 | 13.0 | 0.0 | 0.0 | 1.49 | null | null | null | null | null | null | null | null | 60811.0 | 1357.0 | 8.525866698072072 | 0.19 | 1376.0 | 0.193 | 2.3e-2 | 43.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 214.22973334847524 | 14.861486737525114 | 4.4064308176761955 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-25 | 1569.0 | 41.0 | 34.143 | 13.0 | 0.0 | 0.0 | 1.49 | null | null | null | null | null | null | null | null | 62384.0 | 1573.0 | 8.746405553148742 | 0.221 | 1391.0 | 0.195 | 2.5e-2 | 40.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 219.97804425638589 | 5.748310907910658 | 4.786940959238867 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-26 | 1711.0 | 142.0 | 53.571 | 13.0 | 0.0 | 0.0 | 1.51 | null | null | null | null | null | null | null | null | 63974.0 | 1590.0 | 8.969327854211619 | 0.223 | 1385.0 | 0.194 | 3.9e-2 | 25.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 239.8868283764667 | 19.908784120080814 | 7.510799113358093 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-27 | 1942.0 | 231.0 | 82.857 | 15.0 | 2.0 | 0.286 | 1.49 | null | null | null | null | null | null | null | null | 65605.0 | 1631.0 | 9.197998466182407 | 0.229 | 1397.0 | 0.196 | 5.9e-2 | 16.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 272.27365324786575 | 32.38682487139907 | 11.616775534067154 | 2.1030405760648745 | 0.2804054101419833 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-28 | 2127.0 | 185.0 | 106.857 | 15.0 | 0.0 | 0.286 | 1.42 | null | null | null | null | null | null | null | null | 66966.0 | 1361.0 | 9.388814347784026 | 0.191 | 1425.0 | 0.2 | 7.5e-2 | 13.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 298.2111536859992 | 25.937500438133455 | 14.981640455770952 | 2.1030405760648745 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-29 | 2191.0 | 64.0 | 114.143 | 16.0 | 1.0 | 0.429 | 1.33 | null | null | null | null | null | null | null | null | 68027.0 | 1061.0 | 9.537569417864349 | 0.149 | 1447.0 | 0.203 | 7.9e-2 | 12.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 307.1841268105427 | 8.972973124543465 | 16.0031573649182 | 2.2432432811358662 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-06-30 | 2221.0 | 30.0 | 114.143 | 17.0 | 1.0 | 0.571 | 1.27 | null | null | null | null | null | null | null | null | 69343.0 | 1316.0 | 9.722076177737774 | 0.185 | 1413.0 | 0.198 | 8.1e-2 | 12.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 311.39020796267243 | 4.206081152129749 | 16.0031573649182 | 2.383445986206858 | 0.14020270507099164 | 8.005574459553623e-2 |
PRY | South America | Paraguay | 2020-07-01 | 2260.0 | 39.0 | 104.571 | 19.0 | 2.0 | 0.857 | 1.23 | null | null | null | null | null | null | null | null | 70690.0 | 1347.0 | 9.9109292214684 | 0.189 | 1411.0 | 0.198 | 7.4e-2 | 13.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 316.85811346044113 | 5.467905497768673 | 14.661137071978667 | 2.663851396348841 | 0.2804054101419833 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-02 | 2303.0 | 43.0 | 104.857 | 19.0 | 0.0 | 0.857 | 1.2 | null | null | null | null | null | null | null | null | 72319.0 | 1629.0 | 10.139319428029044 | 0.228 | 1419.0 | 0.199 | 7.4e-2 | 13.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 322.88682977849373 | 6.02871631805264 | 14.70123504562897 | 2.663851396348841 | 0.0 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-03 | 2349.0 | 46.0 | 91.143 | 19.0 | 0.0 | 0.857 | 1.19 | null | null | null | null | null | null | null | null | 74088.0 | 1769.0 | 10.387338013299628 | 0.248 | 1445.0 | 0.203 | 6.3e-2 | 15.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 329.3361542117594 | 6.449324433265615 | 12.77849514828539 | 2.663851396348841 | 0.0 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-04 | 2385.0 | 36.0 | 63.286 | 20.0 | 1.0 | 0.714 | 1.18 | null | null | null | null | null | null | null | null | 76077.0 | 1989.0 | 10.666201193685831 | 0.279 | 1496.0 | 0.21 | 4.2e-2 | 23.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 334.38345159431503 | 5.0472973825556995 | 8.872868393122777 | 2.804054101419833 | 0.14020270507099164 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-05 | 2427.0 | 42.0 | 42.857 | 20.0 | 0.0 | 0.714 | 1.17 | null | null | null | null | null | null | null | null | 77879.0 | 1802.0 | 10.918846468223757 | 0.253 | 1559.0 | 0.219 | 2.7e-2 | 36.4 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 340.2719652072967 | 5.888513612981649 | 6.008667331227488 | 2.804054101419833 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-06 | 2456.0 | 29.0 | 37.857 | 20.0 | 0.0 | 0.571 | 1.18 | null | null | null | null | null | null | null | null | 79365.0 | 1486.0 | 11.127187687959252 | 0.208 | 1620.0 | 0.227 | 2.3e-2 | 42.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 344.3378436543555 | 4.065878447058758 | 5.307653805872531 | 2.804054101419833 | 0.0 | 8.005574459553623e-2 |
PRY | South America | Paraguay | 2020-07-07 | 2502.0 | 46.0 | 40.143 | 20.0 | 0.0 | 0.429 | 1.19 | null | null | null | null | null | null | null | null | 81441.0 | 2076.0 | 11.41824850368663 | 0.291 | 1728.0 | 0.242 | 2.3e-2 | 43.0 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 350.7871680876211 | 6.449324433265615 | 5.628157189664818 | 2.804054101419833 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-07-08 | 2554.0 | 52.0 | 42.0 | 20.0 | 0.0 | 0.143 | 1.21 | null | null | null | null | null | null | null | null | 82974.0 | 1533.0 | 11.63317925056046 | 0.215 | 1755.0 | 0.246 | 2.4e-2 | 41.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 358.0777087513126 | 7.290540663691565 | 5.888513612981649 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-09 | 2638.0 | 84.0 | 47.857 | 20.0 | 0.0 | 0.143 | 1.23 | null | null | null | null | null | null | null | null | 84991.0 | 2017.0 | 11.91596810668865 | 0.283 | 1810.0 | 0.254 | 2.6e-2 | 37.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 369.85473597727594 | 11.777027225963298 | 6.709680856582446 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-10 | 2736.0 | 98.0 | 55.286 | 20.0 | 0.0 | 0.143 | 1.24 | null | null | null | null | null | null | null | null | 87203.0 | 2212.0 | 12.226096490305684 | 0.31 | 1874.0 | 0.263 | 3.0e-2 | 33.9 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 383.59460107423314 | 13.739865096957182 | 7.751246752554843 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-11 | 2820.0 | 84.0 | 62.143 | 21.0 | 1.0 | 0.143 | 1.24 | null | null | null | null | null | null | null | null | 89344.0 | 2141.0 | 12.526270481862678 | 0.3 | 1895.0 | 0.266 | 3.3e-2 | 30.5 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 395.37162830019645 | 11.777027225963298 | 8.712616701226635 | 2.9442568064908246 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-12 | 2948.0 | 128.0 | 74.429 | 22.0 | 1.0 | 0.286 | 1.24 | null | null | null | null | null | null | null | null | 91281.0 | 1937.0 | 12.797843121585188 | 0.272 | 1915.0 | 0.268 | 3.9e-2 | 25.7 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 413.3175745492834 | 17.94594624908693 | 10.435147135728837 | 3.0844595115618163 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-07-13 | 2980.0 | 32.0 | 74.857 | 25.0 | 3.0 | 0.714 | 1.23 | null | null | null | null | null | null | null | null | 92442.0 | 1161.0 | 12.96061846217261 | 0.163 | 1868.0 | 0.262 | 4.0e-2 | 25.0 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 417.8040611115551 | 4.4864865622717325 | 10.49515389349922 | 3.505067626774791 | 0.4206081152129749 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-14 | 3074.0 | 94.0 | 81.714 | 25.0 | 0.0 | 0.714 | 1.24 | null | null | null | null | null | null | null | null | 94328.0 | 1886.0 | 13.2250407639365 | 0.264 | 1841.0 | 0.258 | 4.4e-2 | 22.5 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 430.98311538822827 | 13.179054276673213 | 11.456523842171011 | 3.505067626774791 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-15 | 3198.0 | 124.0 | 92.0 | 25.0 | 0.0 | 0.714 | 1.25 | null | null | null | null | null | null | null | null | 96060.0 | 1732.0 | 13.467871849119456 | 0.243 | 1869.0 | 0.262 | 4.9e-2 | 20.3 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 448.36825081703125 | 17.38513542880296 | 12.89864886653123 | 3.505067626774791 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-16 | 3342.0 | 144.0 | 100.571 | 27.0 | 2.0 | 1.0 | 1.25 | null | null | null | null | null | null | null | null | 98088.0 | 2028.0 | 13.752202935003428 | 0.284 | 1871.0 | 0.262 | 5.4e-2 | 18.6 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 468.5574403472541 | 20.189189530222798 | 14.1003262516947 | 3.785473036916774 | 0.2804054101419833 | 0.14020270507099164 |
PRY | South America | Paraguay | 2020-07-17 | 3457.0 | 115.0 | 103.0 | 28.0 | 1.0 | 1.143 | 1.24 | null | null | null | null | null | null | null | null | 100315.0 | 2227.0 | 14.064434359196525 | 0.312 | 1873.0 | 0.263 | 5.5e-2 | 18.2 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 484.68075143041807 | 16.123311083164037 | 14.44087862231214 | 3.925675741987766 | 0.14020270507099164 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-18 | 3629.0 | 172.0 | 115.571 | 29.0 | 1.0 | 1.143 | 1.23 | null | null | null | null | null | null | null | null | 102784.0 | 2469.0 | 14.410594838016804 | 0.346 | 1920.0 | 0.269 | 6.0e-2 | 16.6 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 508.79561670262865 | 24.11486527221056 | 16.203366827759574 | 4.065878447058758 | 0.14020270507099164 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-19 | 3721.0 | 92.0 | 110.429 | 31.0 | 2.0 | 1.286 | 1.21 | null | null | null | null | null | null | null | null | 105122.0 | 2338.0 | 14.738388762472782 | 0.328 | 1977.0 | 0.277 | 5.6e-2 | 17.9 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 521.6942655691599 | 12.89864886653123 | 15.482444518284536 | 4.34628385720074 | 0.2804054101419833 | 0.18030067872129527 |
PRY | South America | Paraguay | 2020-07-20 | 3748.0 | 27.0 | 109.714 | 33.0 | 2.0 | 1.143 | 1.2 | null | null | null | null | null | null | null | null | 106345.0 | 1223.0 | 14.909856670774605 | 0.171 | 1986.0 | 0.278 | 5.5e-2 | 18.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 525.4797386060767 | 3.785473036916774 | 15.382199584158776 | 4.626689267342724 | 0.2804054101419833 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-21 | 3817.0 | 69.0 | 106.143 | 35.0 | 2.0 | 1.429 | 1.21 | null | null | null | null | null | null | null | null | 108033.0 | 1688.0 | 15.14651883693444 | 0.237 | 1958.0 | 0.275 | 5.4e-2 | 18.4 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 535.1537252559751 | 9.673986649898424 | 14.881535724350266 | 4.907094677484707 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-22 | 4000.0 | 183.0 | 114.571 | 36.0 | 1.0 | 1.571 | 1.22 | null | null | null | null | null | null | null | null | 109874.0 | 1841.0 | 15.404632016970135 | 0.258 | 1973.0 | 0.277 | 5.8e-2 | 17.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 560.8108202839666 | 25.65709502799147 | 16.063164122688583 | 5.0472973825556995 | 0.14020270507099164 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-23 | 4113.0 | 113.0 | 110.143 | 36.0 | 0.0 | 1.286 | 1.21 | null | null | null | null | null | null | null | null | 112039.0 | 2165.0 | 15.70817087344883 | 0.304 | 1993.0 | 0.279 | 5.5e-2 | 18.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 576.6537259569886 | 15.842905673022058 | 15.442346544634232 | 5.0472973825556995 | 0.0 | 0.18030067872129527 |
PRY | South America | Paraguay | 2020-07-24 | 4224.0 | 111.0 | 109.571 | 38.0 | 2.0 | 1.429 | 1.21 | null | null | null | null | null | null | null | null | 114045.0 | 2006.0 | 15.989417499821242 | 0.281 | 1961.0 | 0.275 | 5.6e-2 | 17.9 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 592.2162262198686 | 15.562500262880071 | 15.362150597333624 | 5.327702792697682 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-25 | 4328.0 | 104.0 | 99.857 | 40.0 | 2.0 | 1.571 | 1.21 | null | null | null | null | null | null | null | null | 115906.0 | 1861.0 | 16.250334733958358 | 0.261 | 1875.0 | 0.263 | 5.3e-2 | 18.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 606.7973075472519 | 14.58108132738313 | 14.000221520274012 | 5.608108202839666 | 0.2804054101419833 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-26 | 4444.0 | 116.0 | 103.286 | 41.0 | 1.0 | 1.429 | 1.22 | null | null | null | null | null | null | null | null | 117562.0 | 1656.0 | 16.482510413555918 | 0.232 | 1777.0 | 0.249 | 5.8e-2 | 17.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 623.0608213354868 | 16.26351378823503 | 14.480976595962442 | 5.748310907910658 | 0.14020270507099164 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-27 | 4548.0 | 104.0 | 114.286 | 43.0 | 2.0 | 1.429 | 1.23 | null | null | null | null | null | null | null | null | 119256.0 | 1694.0 | 16.72001379594618 | 0.238 | 1844.0 | 0.259 | 6.2e-2 | 16.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 637.64190266287 | 14.58108132738313 | 16.02320635174335 | 6.02871631805264 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-28 | 4674.0 | 126.0 | 122.429 | 45.0 | 2.0 | 1.429 | 1.24 | null | null | null | null | null | null | null | null | 120943.0 | 1687.0 | 16.956535759400943 | 0.237 | 1844.0 | 0.259 | 6.6e-2 | 15.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 655.307443501815 | 17.665540838944946 | 17.164876979136437 | 6.309121728194624 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-29 | 4866.0 | 192.0 | 123.714 | 46.0 | 1.0 | 1.429 | 1.25 | null | null | null | null | null | null | null | null | 122829.0 | 1886.0 | 17.220958061164833 | 0.264 | 1851.0 | 0.26 | 6.7e-2 | 15.0 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 682.2263628754453 | 26.918919373630395 | 17.345037455152656 | 6.449324433265615 | 0.14020270507099164 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-30 | 5207.0 | 341.0 | 156.286 | 47.0 | 1.0 | 1.571 | 1.26 | null | null | null | null | null | null | null | null | 125361.0 | 2532.0 | 17.575951310404584 | 0.355 | 1903.0 | 0.267 | 8.2e-2 | 12.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 730.0354853046534 | 47.80912242920815 | 21.911719964725 | 6.5895271383366065 | 0.14020270507099164 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-31 | 5338.0 | 131.0 | 159.143 | 49.0 | 2.0 | 1.571 | 1.24 | null | null | null | null | null | null | null | null | 127610.0 | 2249.0 | 17.89126719410924 | 0.315 | 1938.0 | 0.272 | 8.2e-2 | 12.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 748.4020396689533 | 18.366554364299905 | 22.312279093112824 | 6.869932548478591 | 0.2804054101419833 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-08-01 | 5485.0 | 147.0 | 165.286 | 52.0 | 3.0 | 1.714 | 1.22 | null | null | null | null | null | null | null | null | 128709.0 | 1099.0 | 18.045349966982265 | 0.154 | 1829.0 | 0.256 | 9.0e-2 | 11.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 769.0118373143891 | 20.60979764543577 | 23.173544310363926 | 7.290540663691565 | 0.4206081152129749 | 0.24030743649167968 |
PRY | South America | Paraguay | 2020-08-02 | 5644.0 | 159.0 | 171.429 | 52.0 | 0.0 | 1.571 | 1.22 | null | null | null | null | null | null | null | null | 129724.0 | 1015.0 | 18.187655712629322 | 0.142 | 1737.0 | 0.244 | 9.9e-2 | 10.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 791.3040674206768 | 22.292230106287672 | 24.034809527615028 | 7.290540663691565 | 0.0 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-08-03 | 5724.0 | 80.0 | 168.0 | 55.0 | 3.0 | 1.714 | 1.21 | null | null | null | null | null | null | null | null | 130786.0 | 1062.0 | 18.33655098541471 | 0.149 | 1647.0 | 0.231 | 0.102 | 9.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 802.5202838263561 | 11.216216405679331 | 23.554054451926596 | 7.71114877890454 | 0.4206081152129749 | 0.24030743649167968 |
PRY | South America | Paraguay | 2020-08-04 | 5852.0 | 128.0 | 168.286 | 59.0 | 4.0 | 2.0 | 1.22 | null | null | null | null | null | null | null | null | 132111.0 | 1325.0 | 18.522319569633776 | 0.186 | 1595.0 | 0.224 | 0.106 | 9.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 820.4662300754431 | 17.94594624908693 | 23.594152425576898 | 8.271959599188508 | 0.5608108202839666 | 0.2804054101419833 |
PRY | South America | Paraguay | 2020-08-05 | 6060.0 | 208.0 | 170.571 | 61.0 | 2.0 | 2.143 | 1.24 | null | null | null | null | null | null | null | null | 133822.0 | 1711.0 | 18.762206398010242 | 0.24 | 1570.0 | 0.22 | 0.109 | 9.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 849.6283927302093 | 29.16216265476626 | 23.914515606664114 | 8.55236500933049 | 0.2804054101419833 | 0.30045439696713505 |
PRY | South America | Paraguay | 2020-08-06 | 6375.0 | 315.0 | 166.857 | 66.0 | 5.0 | 2.714 | 1.25 | null | null | null | null | null | null | null | null | 135277.0 | 1455.0 | 18.966201333888538 | 0.204 | 1417.0 | 0.199 | 0.118 | 8.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 893.7922448275716 | 44.163852097362366 | 23.39380276003045 | 9.253378534685448 | 0.7010135253549582 | 0.3805101415626713 |
PRY | South America | Paraguay | 2020-08-07 | 6508.0 | 133.0 | 167.143 | 69.0 | 3.0 | 2.857 | 1.25 | null | null | null | null | null | null | null | null | 136279.0 | 1002.0 | 19.10668444436967 | 0.14 | 1238.0 | 0.174 | 0.135 | 7.4 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 912.4392046020137 | 18.64695977444189 | 23.433900733680755 | 9.673986649898424 | 0.4206081152129749 | 0.40055912838782315 |
PRY | South America | Paraguay | 2020-08-08 | 6705.0 | 197.0 | 174.286 | 72.0 | 3.0 | 2.857 | 1.25 | null | null | null | null | null | null | null | null | 137300.0 | 1021.0 | 19.249831406247154 | 0.143 | 1227.0 | 0.172 | 0.142 | 7.0 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 940.0591375009989 | 27.619932898985354 | 24.43536865600285 | 10.094594765111399 | 0.4206081152129749 | 0.40055912838782315 |
PRY | South America | Paraguay | 2020-08-09 | 6907.0 | 202.0 | 180.429 | 75.0 | 3.0 | 3.286 | 1.26 | null | null | null | null | null | null | null | null | 138415.0 | 1115.0 | 19.406157422401307 | 0.156 | 1242.0 | 0.174 | 0.145 | 6.9 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 968.3800839253392 | 28.320946424340313 | 25.296633873253953 | 10.515202880324374 | 0.4206081152129749 | 0.4607060888632785 |
PRY | South America | Paraguay | 2020-08-10 | 7234.0 | 327.0 | 215.714 | 82.0 | 7.0 | 3.857 | 1.28 | null | null | null | null | null | null | null | null | 140236.0 | 1821.0 | 19.661466548335586 | 0.255 | 1350.0 | 0.189 | 0.16 | 6.3 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1014.2263684835535 | 45.846284558214265 | 30.243686321683892 | 11.496621815821316 | 0.9814189354969415 | 0.5407618334588148 |
PRY | South America | Paraguay | 2020-08-11 | 7519.0 | 285.0 | 238.143 | 86.0 | 4.0 | 3.857 | 1.29 | null | null | null | null | null | null | null | null | 142394.0 | 2158.0 | 19.964023985878782 | 0.303 | 1469.0 | 0.206 | 0.162 | 6.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1054.184139428786 | 39.95777094523262 | 33.388292793721156 | 12.05743263610528 | 0.5608108202839666 | 0.5407618334588148 |
PRY | South America | Paraguay | 2020-08-12 | 8018.0 | 499.0 | 279.714 | 93.0 | 7.0 | 4.571 | 1.3 | null | null | null | null | null | null | null | null | 144517.0 | 2123.0 | 20.261674328744498 | 0.298 | 1528.0 | 0.214 | 0.183 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1124.145289259211 | 69.96114983042483 | 39.216659446227354 | 13.038851571602223 | 0.9814189354969415 | 0.6408665648795027 |
PRY | South America | Paraguay | 2020-08-13 | 8389.0 | 371.0 | 287.714 | 97.0 | 4.0 | 4.429 | 1.29 | null | null | null | null | null | null | null | null | 146284.0 | 1767.0 | 20.50941250860494 | 0.248 | 1572.0 | 0.22 | 0.183 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1176.1604928405488 | 52.0152035813379 | 40.33828108679529 | 13.59966239188619 | 0.5608108202839666 | 0.620957780759422 |
PRY | South America | Paraguay | 2020-08-14 | 9022.0 | 633.0 | 359.143 | 108.0 | 11.0 | 5.571 | 1.29 | null | null | null | null | null | null | null | null | 149349.0 | 3065.0 | 20.939133799647532 | 0.43 | 1867.0 | 0.262 | 0.192 | 5.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1264.9088051504866 | 88.7483123099377 | 50.352820107311146 | 15.141892147667097 | 1.5422297557809082 | 0.7810692699504943 |
PRY | South America | Paraguay | 2020-08-15 | 9381.0 | 359.0 | 382.286 | 127.0 | 19.0 | 7.857 | 1.27 | null | null | null | null | null | null | null | null | 151427.0 | 2078.0 | 21.23047502078505 | 0.291 | 2018.0 | 0.283 | 0.189 | 5.3 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1315.2415762709725 | 50.332771120486 | 53.597531310769114 | 17.80574354401594 | 2.663851396348841 | 1.1015726537427815 |
PRY | South America | Paraguay | 2020-08-16 | 9791.0 | 410.0 | 412.0 | 138.0 | 11.0 | 9.0 | 1.25 | null | null | null | null | null | null | null | null | 154392.0 | 2965.0 | 21.64617604132054 | 0.416 | 2282.0 | 0.32 | 0.181 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1372.724685350079 | 57.48310907910657 | 57.76351448924856 | 19.34797329979685 | 1.5422297557809082 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-08-17 | 10135.0 | 344.0 | 414.429 | 145.0 | 7.0 | 9.0 | 1.24 | null | null | null | null | null | null | null | null | 156611.0 | 2219.0 | 21.957285843873073 | 0.311 | 2339.0 | 0.328 | 0.177 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1420.9544158945005 | 48.22973054442112 | 58.10406685986599 | 20.329392235293785 | 0.9814189354969415 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-08-18 | 10606.0 | 471.0 | 441.0 | 161.0 | 16.0 | 10.714 | 1.24 | null | null | null | null | null | null | null | null | 159666.0 | 3055.0 | 22.38560510786495 | 0.428 | 2467.0 | 0.346 | 0.179 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1486.9898899829373 | 66.03547408843706 | 61.82939293630732 | 22.572635516429653 | 2.2432432811358662 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-08-19 | 11133.0 | 527.0 | 445.0 | 165.0 | 4.0 | 10.286 | 1.24 | null | null | null | null | null | null | null | null | 162323.0 | 2657.0 | 22.758123695238577 | 0.373 | 2544.0 | 0.357 | 0.175 | 5.7 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1560.8767155553498 | 73.88682557241259 | 62.390203756591276 | 23.13344633671362 | 0.5608108202839666 | 1.44212502436022 |
PRY | South America | Paraguay | 2020-08-20 | 11817.0 | 684.0 | 489.714 | 170.0 | 5.0 | 10.429 | 1.24 | null | null | null | null | null | null | null | null | 166110.0 | 3787.0 | 23.28907133934242 | 0.531 | 2832.0 | 0.397 | 0.173 | 5.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1656.7753658239083 | 95.89865026855828 | 68.6592275111356 | 23.83445986206858 | 0.7010135253549582 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-08-21 | 12536.0 | 719.0 | 502.0 | 182.0 | 12.0 | 10.571 | 1.22 | null | null | null | null | null | null | null | null | 169260.0 | 3150.0 | 23.730709860316043 | 0.442 | 2844.0 | 0.399 | 0.177 | 5.7 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1757.5811107699512 | 100.80574494604298 | 70.3817579456378 | 25.516892322920476 | 1.6824324608518997 | 1.4820827953054525 |
PRY | South America | Paraguay | 2020-08-22 | 12974.0 | 438.0 | 513.286 | 192.0 | 10.0 | 9.286 | 1.2 | null | null | null | null | null | null | null | null | 171552.0 | 2292.0 | 24.052054460338756 | 0.321 | 2875.0 | 0.403 | 0.179 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1818.9898955910455 | 61.408784821094336 | 71.96408567506901 | 26.918919373630395 | 1.4020270507099164 | 1.3019223192892282 |
PRY | South America | Paraguay | 2020-08-23 | 13233.0 | 259.0 | 491.714 | 205.0 | 13.0 | 9.571 | 1.19 | null | null | null | null | null | null | null | null | 173340.0 | 1788.0 | 24.30273689700569 | 0.251 | 2707.0 | 0.38 | 0.182 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1855.3023962044324 | 36.31250061338683 | 68.93963292127759 | 28.741554539553285 | 1.8226351659228912 | 1.3418800902344608 |
PRY | South America | Paraguay | 2020-08-24 | 13602.0 | 369.0 | 495.286 | 219.0 | 14.0 | 10.571 | 1.19 | null | null | null | null | null | null | null | null | 175652.0 | 2312.0 | 24.626885551129824 | 0.324 | 2720.0 | 0.381 | 0.182 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1907.0371943756284 | 51.73479817119591 | 69.44043698379116 | 30.704392410547168 | 1.962837870993883 | 1.4820827953054525 |
PRY | South America | Paraguay | 2020-08-25 | 14228.0 | 626.0 | 517.429 | 231.0 | 12.0 | 10.0 | 1.19 | null | null | null | null | null | null | null | null | 177771.0 | 2119.0 | 24.923975083175257 | 0.297 | 2586.0 | 0.363 | 0.2 | 5.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1994.8040877500691 | 87.76689337444077 | 72.54494548217814 | 32.38682487139907 | 1.6824324608518997 | 1.4020270507099164 |
PRY | South America | Paraguay | 2020-08-26 | 14872.0 | 644.0 | 534.143 | 247.0 | 16.0 | 11.714 | 1.19 | null | null | null | null | null | null | null | null | 180606.0 | 2835.0 | 25.321449752051517 | 0.397 | 2612.0 | 0.366 | 0.204 | 4.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2085.094629815788 | 90.29054206571861 | 74.8882934947347 | 34.63006815253494 | 2.2432432811358662 | 1.6423344872015961 |
PRY | South America | Paraguay | 2020-08-27 | 15290.0 | 418.0 | 496.143 | 265.0 | 18.0 | 13.571 | 1.18 | null | null | null | null | null | null | null | null | 182791.0 | 2185.0 | 25.627792662631634 | 0.306 | 2383.0 | 0.334 | 0.208 | 4.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2143.6993605354623 | 58.60473071967451 | 69.560590702037 | 37.15371684381279 | 2.5236486912778497 | 1.9026909105184275 |
PRY | South America | Paraguay | 2020-08-28 | 15873.0 | 583.0 | 476.714 | 280.0 | 15.0 | 14.0 | 1.18 | null | null | null | null | null | null | null | null | 185921.0 | 3130.0 | 26.066627129503836 | 0.439 | 2380.0 | 0.334 | 0.2 | 5.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2225.4375375918503 | 81.73817705638812 | 66.83659234521271 | 39.25675741987766 | 2.1030405760648745 | 1.962837870993883 |
PRY | South America | Paraguay | 2020-08-29 | 16474.0 | 601.0 | 500.0 | 294.0 | 14.0 | 14.571 | 1.18 | null | null | null | null | null | null | null | null | 188559.0 | 2638.0 | 26.436481865481113 | 0.37 | 2430.0 | 0.341 | 0.206 | 4.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2309.6993633395164 | 84.26182574766598 | 70.10135253549582 | 41.21959529087154 | 1.962837870993883 | 2.0428936155894193 |
PRY | South America | Paraguay | 2020-08-30 | 17105.0 | 631.0 | 553.143 | 308.0 | 14.0 | 14.714 | 1.18 | null | null | null | null | null | null | null | null | 190169.0 | 1610.0 | 26.662208220645407 | 0.226 | 2404.0 | 0.337 | 0.23 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2398.167270239312 | 88.46790689979574 | 77.55214489108354 | 43.182433161865426 | 1.962837870993883 | 2.0629426024145707 |
PRY | South America | Paraguay | 2020-08-31 | 17662.0 | 557.0 | 580.0 | 326.0 | 18.0 | 15.286 | 1.18 | null | null | null | null | null | null | null | null | 192465.0 | 2296.0 | 26.98411363148841 | 0.322 | 2402.0 | 0.337 | 0.241 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2476.260176963854 | 78.09290672454235 | 81.31756894117514 | 45.706081853143274 | 2.5236486912778497 | 2.1431385497151783 |
PRY | South America | Paraguay | 2020-09-01 | 18338.0 | 676.0 | 587.143 | 348.0 | 22.0 | 16.714 | 1.19 | null | null | null | null | null | null | null | null | 195554.0 | 3089.0 | 27.4171997874527 | 0.433 | 2540.0 | 0.356 | 0.231 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2571.0372055918447 | 94.77702862799035 | 82.31903686349725 | 48.79054136470509 | 3.0844595115618163 | 2.3433480125565542 |
PRY | South America | Paraguay | 2020-09-02 | 19138.0 | 800.0 | 609.429 | 358.0 | 10.0 | 15.857 | 1.19 | null | null | null | null | null | null | null | null | 198620.0 | 3066.0 | 27.84706128120036 | 0.43 | 2573.0 | 0.361 | 0.237 | 4.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2683.199369648638 | 112.16216405679332 | 85.44359434870935 | 50.19256841541501 | 1.4020270507099164 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-09-03 | 19959.0 | 821.0 | 667.0 | 373.0 | 15.0 | 15.429 | 1.19 | null | null | null | null | null | null | null | null | 201750.0 | 3130.0 | 28.285895748072566 | 0.439 | 2708.0 | 0.38 | 0.246 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2798.305790511922 | 115.10642086328414 | 93.51520428235142 | 52.29560899147988 | 2.1030405760648745 | 2.16318753654033 |
PRY | South America | Paraguay | 2020-09-04 | 20654.0 | 695.0 | 683.0 | 398.0 | 25.0 | 16.857 | 1.18 | null | null | null | null | null | null | null | null | 204220.0 | 2470.0 | 28.63219642959791 | 0.346 | 2614.0 | 0.366 | 0.261 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2895.7466705362613 | 97.4408800243392 | 95.7584475634873 | 55.80067661825467 | 3.505067626774791 | 2.363396999381706 |
PRY | South America | Paraguay | 2020-09-05 | 21871.0 | 1217.0 | 771.0 | 412.0 | 14.0 | 16.857 | 1.18 | null | null | null | null | null | null | null | null | 206483.0 | 2263.0 | 28.949475151173566 | 0.317 | 2561.0 | 0.359 | 0.301 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3066.3733626076582 | 170.62669207139683 | 108.09628560973455 | 57.76351448924856 | 1.962837870993883 | 2.363396999381706 |
PRY | South America | Paraguay | 2020-09-06 | 22486.0 | 615.0 | 768.714 | 435.0 | 23.0 | 18.143 | 1.17 | null | null | null | null | null | null | null | null | 209202.0 | 2719.0 | 29.330686306261594 | 0.381 | 2719.0 | 0.381 | 0.283 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3152.598026226318 | 86.22466361865986 | 107.77578222594228 | 60.988176705881365 | 3.2246622166328076 | 2.5436976781030016 |
PRY | South America | Paraguay | 2020-09-07 | 23353.0 | 867.0 | 813.0 | 449.0 | 14.0 | 17.571 | 1.16 | null | null | null | null | null | null | null | null | 211956.0 | 2754.0 | 29.716804556027103 | 0.386 | 2784.0 | 0.39 | 0.292 | 3.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3274.153771522868 | 121.55574529654974 | 113.9847992227162 | 62.951014576875245 | 1.962837870993883 | 2.463501730802394 |
PRY | South America | Paraguay | 2020-09-08 | 24214.0 | 861.0 | 839.429 | 463.0 | 14.0 | 16.429 | 1.15 | null | null | null | null | null | null | null | null | 214976.0 | 3020.0 | 30.1402167253415 | 0.423 | 2775.0 | 0.389 | 0.302 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3394.8683005889916 | 120.7145290661238 | 117.69021651503743 | 64.91385244786913 | 1.962837870993883 | 2.3033902416113214 |
PRY | South America | Paraguay | 2020-09-09 | 25026.0 | 812.0 | 841.143 | 474.0 | 11.0 | 16.571 | 1.14 | null | null | null | null | null | null | null | null | 217643.0 | 2667.0 | 30.514137339765835 | 0.374 | 2718.0 | 0.381 | 0.309 | 3.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3508.712897106637 | 113.8445965176452 | 117.93052395152912 | 66.45608220365003 | 1.5422297557809082 | 2.323299025731403 |
PRY | South America | Paraguay | 2020-09-10 | 25631.0 | 605.0 | 810.286 | 485.0 | 11.0 | 16.0 | 1.13 | null | null | null | null | null | null | null | null | 220293.0 | 2650.0 | 30.88567450820396 | 0.372 | 2649.0 | 0.371 | 0.306 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3593.535533674587 | 84.82263656794994 | 113.60428908115352 | 67.99831195943094 | 1.5422297557809082 | 2.2432432811358662 |
PRY | South America | Paraguay | 2020-09-11 | 26512.0 | 881.0 | 836.857 | 496.0 | 11.0 | 14.0 | 1.13 | null | null | null | null | null | null | null | null | 223303.0 | 3010.0 | 31.307684650467646 | 0.422 | 2726.0 | 0.382 | 0.307 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3717.05411684213 | 123.51858316754364 | 117.32961515759484 | 69.54054171521184 | 1.5422297557809082 | 1.962837870993883 |
PRY | South America | Paraguay | 2020-09-12 | 27324.0 | 812.0 | 779.0 | 514.0 | 18.0 | 14.571 | 1.12 | null | null | null | null | null | null | null | null | 227011.0 | 3708.0 | 31.827556280870883 | 0.52 | 2933.0 | 0.411 | 0.266 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3830.8987133597752 | 113.8445965176452 | 109.21790725030249 | 72.06419040648971 | 2.5236486912778497 | 2.0428936155894193 |
PRY | South America | Paraguay | 2020-09-13 | 27817.0 | 493.0 | 761.571 | 525.0 | 11.0 | 12.857 | 1.11 | null | null | null | null | null | null | null | null | 229992.0 | 2981.0 | 32.24550054468751 | 0.418 | 2970.0 | 0.416 | 0.256 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3900.0186469597743 | 69.11993359999887 | 106.77431430362017 | 73.60642016227062 | 1.5422297557809082 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-09-14 | 28367.0 | 550.0 | 716.286 | 539.0 | 14.0 | 12.857 | 1.11 | null | null | null | null | null | null | null | null | 232515.0 | 2523.0 | 32.59923196958162 | 0.354 | 2937.0 | 0.412 | 0.244 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3977.1301347488193 | 77.1114877890454 | 100.4252348044803 | 75.56925803326449 | 1.962837870993883 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-09-15 | 29298.0 | 931.0 | 726.286 | 552.0 | 13.0 | 12.714 | 1.12 | null | null | null | null | null | null | null | null | 235620.0 | 3105.0 | 33.03456136882705 | 0.435 | 2949.0 | 0.413 | 0.246 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4107.6588531699135 | 130.5287184210932 | 101.82726185519023 | 77.3918931991874 | 1.8226351659228912 | 1.782537192272588 |
PRY | South America | Paraguay | 2020-09-16 | 30419.0 | 1121.0 | 770.429 | 566.0 | 14.0 | 13.143 | 1.12 | null | null | null | null | null | null | null | null | 239172.0 | 3552.0 | 33.53256137723921 | 0.498 | 3076.0 | 0.431 | 0.25 | 4.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4264.826085554495 | 157.16723238458164 | 108.01622986513901 | 79.35473107018127 | 1.962837870993883 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-09-17 | 31113.0 | 694.0 | 783.143 | 584.0 | 18.0 | 14.143 | 1.11 | null | null | null | null | null | null | null | null | 241837.0 | 2665.0 | 33.9062015862534 | 0.374 | 3078.0 | 0.432 | 0.254 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4362.126762873763 | 97.3006773192682 | 109.79876705741161 | 81.87837976145912 | 2.5236486912778497 | 1.9828868578190348 |
PRY | South America | Paraguay | 2020-09-18 | 32127.0 | 1014.0 | 802.143 | 611.0 | 27.0 | 16.429 | 1.11 | null | null | null | null | null | null | null | null | 245271.0 | 3434.0 | 34.38765767546719 | 0.481 | 3138.0 | 0.44 | 0.256 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4504.2923058157485 | 142.1655429419855 | 112.46261845376044 | 85.66385279837588 | 3.785473036916774 | 2.3033902416113214 |
PRY | South America | Paraguay | 2020-09-19 | 33015.0 | 888.0 | 813.0 | 636.0 | 25.0 | 17.429 | 1.1 | null | null | null | null | null | null | null | null | 248376.0 | 3105.0 | 34.822987074712614 | 0.435 | 3052.0 | 0.428 | 0.266 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4628.792307918789 | 124.50000210304057 | 113.9847992227162 | 89.16892042515069 | 3.505067626774791 | 2.443592946682313 |
PRY | South America | Paraguay | 2020-09-20 | 33520.0 | 505.0 | 814.714 | 659.0 | 23.0 | 19.143 | 1.09 | null | null | null | null | null | null | null | null | 250882.0 | 2506.0 | 35.174335053620524 | 0.351 | 2984.0 | 0.418 | 0.273 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4699.59467397964 | 70.80236606085079 | 114.22510665920788 | 92.39358264178348 | 3.2246622166328076 | 2.683900383173993 |
PRY | South America | Paraguay | 2020-09-21 | 34260.0 | 740.0 | 841.857 | 676.0 | 17.0 | 19.571 | 1.09 | null | null | null | null | null | null | null | null | 252943.0 | 2061.0 | 35.463292828771834 | 0.289 | 2918.0 | 0.409 | 0.289 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4803.3446757321735 | 103.75000175253382 | 118.03062868294981 | 94.77702862799035 | 2.383445986206858 | 2.7439071409443776 |
PRY | South America | Paraguay | 2020-09-22 | 34828.0 | 568.0 | 790.0 | 705.0 | 29.0 | 21.857 | 1.08 | null | null | null | null | null | null | null | null | 255851.0 | 2908.0 | 35.87100229511828 | 0.408 | 2890.0 | 0.405 | 0.273 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4882.979812212497 | 79.63513648032325 | 110.76013700608338 | 98.84290707504911 | 4.065878447058758 | 3.064410524736664 |
PRY | South America | Paraguay | 2020-09-23 | 35571.0 | 743.0 | 736.0 | 727.0 | 22.0 | 23.0 | 1.09 | null | null | null | null | null | null | null | null | 258828.0 | 2977.0 | 36.28838574811463 | 0.417 | 2808.0 | 0.394 | 0.262 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4987.1504220802435 | 104.17060986774679 | 103.18919093224984 | 101.92736658661092 | 3.0844595115618163 | 3.2246622166328076 |
PRY | South America | Paraguay | 2020-09-24 | 36404.0 | 833.0 | 755.857 | 743.0 | 16.0 | 22.714 | 1.09 | null | null | null | null | null | null | null | null | 261563.0 | 2735.0 | 36.67184014648379 | 0.383 | 2818.0 | 0.395 | 0.268 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5103.93927540438 | 116.78885332413604 | 105.97319604684452 | 104.17060986774679 | 2.2432432811358662 | 3.1845642429825043 |
PRY | South America | Paraguay | 2020-09-25 | 37226.0 | 822.0 | 728.429 | 761.0 | 18.0 | 21.429 | 1.09 | null | null | null | null | null | null | null | null | 264031.0 | 2468.0 | 37.01786042259899 | 0.346 | 2680.0 | 0.376 | 0.272 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5219.185898972735 | 115.24662356835513 | 102.12771625215737 | 106.69425855902463 | 2.5236486912778497 | 3.0044037669662798 |
PRY | South America | Paraguay | 2020-09-26 | 37922.0 | 696.0 | 701.0 | 782.0 | 21.0 | 20.857 | 1.08 | null | null | null | null | null | null | null | null | 267062.0 | 3031.0 | 37.44281482166917 | 0.425 | 2669.0 | 0.374 | 0.263 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5316.766981702144 | 97.58108272941018 | 98.28209625476514 | 109.63851536551546 | 2.9442568064908246 | 2.9242078196656727 |
PRY | South America | Paraguay | 2020-09-27 | 38684.0 | 762.0 | 737.714 | 803.0 | 21.0 | 20.571 | 1.08 | null | null | null | null | null | null | null | null | 269710.0 | 2648.0 | 37.81407158469715 | 0.371 | 2690.0 | 0.377 | 0.274 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5423.60144296624 | 106.83446126409564 | 103.42949836874153 | 112.58277217200629 | 2.9442568064908246 | 2.8841098460153693 |
PRY | South America | Paraguay | 2020-09-28 | 39432.0 | 748.0 | 738.857 | 818.0 | 15.0 | 20.286 | 1.08 | null | null | null | null | null | null | null | null | 272494.0 | 2784.0 | 38.204395915614796 | 0.39 | 2793.0 | 0.392 | 0.265 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5528.473066359343 | 104.87162339310174 | 103.58975006063767 | 114.68581274807116 | 2.1030405760648745 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-09-29 | 40101.0 | 669.0 | 753.286 | 841.0 | 23.0 | 19.429 | 1.08 | null | null | null | null | null | null | null | null | 274555.0 | 2061.0 | 38.493353690766114 | 0.289 | 2672.0 | 0.375 | 0.282 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5622.268676051835 | 93.79560969249341 | 105.612734892107 | 117.91047496470398 | 3.2246622166328076 | 2.7239983568242967 |
PRY | South America | Paraguay | 2020-09-30 | 40758.0 | 657.0 | 741.0 | 857.0 | 16.0 | 18.571 | 1.08 | null | null | null | null | null | null | null | null | 277492.0 | 2937.0 | 38.90512903555961 | 0.412 | 2666.0 | 0.374 | 0.278 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5714.381853283477 | 92.1131772316415 | 103.8902044576048 | 120.15371824583984 | 2.2432432811358662 | 2.6037044358733863 |
PRY | South America | Paraguay | 2020-10-01 | 41799.0 | 1041.0 | 770.714 | 869.0 | 12.0 | 18.0 | 1.09 | null | null | null | null | null | null | null | null | 280909.0 | 3417.0 | 39.38420167878719 | 0.479 | 2764.0 | 0.388 | 0.279 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5860.332869262379 | 145.9510159789023 | 108.05618763608425 | 121.83615070669173 | 1.6824324608518997 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-02 | 42684.0 | 885.0 | 779.714 | 890.0 | 21.0 | 18.429 | 1.09 | null | null | null | null | null | null | null | null | 283537.0 | 2628.0 | 39.752654387713754 | 0.368 | 2787.0 | 0.391 | 0.28 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5984.412263250207 | 124.07939398782761 | 109.31801198172319 | 124.78040751318255 | 2.9442568064908246 | 2.5837956517533045 |
PRY | South America | Paraguay | 2020-10-03 | 43452.0 | 768.0 | 790.0 | 913.0 | 23.0 | 18.714 | 1.08 | null | null | null | null | null | null | null | null | 286262.0 | 2725.0 | 40.13470675903221 | 0.382 | 2743.0 | 0.385 | 0.288 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6092.087940744729 | 107.67567749452158 | 110.76013700608338 | 128.00506972981538 | 3.2246622166328076 | 2.6237534226985373 |
PRY | South America | Paraguay | 2020-10-04 | 44182.0 | 730.0 | 785.429 | 929.0 | 16.0 | 18.0 | 1.08 | null | null | null | null | null | null | null | null | 288502.0 | 2240.0 | 40.44876081839123 | 0.314 | 2685.0 | 0.376 | 0.293 | 3.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6194.435915446553 | 102.34797470182389 | 110.1192704412039 | 130.24831301095125 | 2.2432432811358662 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-05 | 44715.0 | 533.0 | 754.714 | 947.0 | 18.0 | 18.429 | 1.07 | null | null | null | null | null | null | null | null | 290507.0 | 2005.0 | 40.72986724205857 | 0.281 | 2573.0 | 0.361 | 0.293 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6269.163957249391 | 74.72804180283855 | 105.81294435494839 | 132.77196170222908 | 2.5236486912778497 | 2.5837956517533045 |
PRY | South America | Paraguay | 2020-10-06 | 45647.0 | 932.0 | 792.286 | 966.0 | 19.0 | 17.857 | 1.08 | null | null | null | null | null | null | null | null | 293374.0 | 2867.0 | 41.1318283974971 | 0.402 | 2688.0 | 0.377 | 0.295 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6399.832878375556 | 130.6689211261642 | 111.08064038987568 | 135.43581309857794 | 2.663851396348841 | 2.5035997044526974 |
PRY | South America | Paraguay | 2020-10-07 | 46435.0 | 788.0 | 811.0 | 989.0 | 23.0 | 18.857 | 1.08 | null | null | null | null | null | null | null | null | 296536.0 | 3162.0 | 41.575149350931575 | 0.443 | 2721.0 | 0.381 | 0.298 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6510.312609971496 | 110.47973159594142 | 113.70439381257422 | 138.66047531521073 | 3.2246622166328076 | 2.643802409523689 |
PRY | South America | Paraguay | 2020-10-08 | 47316.0 | 881.0 | 788.143 | 1012.0 | 23.0 | 20.429 | 1.08 | null | null | null | null | null | null | null | null | 299557.0 | 3021.0 | 41.99870172295105 | 0.424 | 2664.0 | 0.374 | 0.296 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6633.83119313904 | 123.51858316754364 | 110.49978058276658 | 141.88513753184353 | 3.2246622166328076 | 2.864201061895288 |
PRY | South America | Paraguay | 2020-10-09 | 48275.0 | 959.0 | 798.714 | 1045.0 | 33.0 | 22.143 | 1.07 | null | null | null | null | null | null | null | null | 302657.0 | 3100.0 | 42.43333010867112 | 0.435 | 2731.0 | 0.383 | 0.292 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6768.285587302122 | 134.45439416308096 | 111.98186337807202 | 146.51182679918625 | 4.626689267342724 | 3.104508498386968 |
PRY | South America | Paraguay | 2020-10-10 | 48978.0 | 703.0 | 789.429 | 1065.0 | 20.0 | 21.714 | 1.07 | null | null | null | null | null | null | null | null | 305552.0 | 2895.0 | 42.83921693985164 | 0.406 | 2756.0 | 0.386 | 0.286 | 3.5 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6866.848088967028 | 98.56250166490712 | 110.68008126148786 | 149.3158809006061 | 2.804054101419833 | 3.044361537911512 |
PRY | South America | Paraguay | 2020-10-11 | 49675.0 | 697.0 | 784.714 | 1077.0 | 12.0 | 21.143 | 1.06 | null | null | null | null | null | null | null | null | 308443.0 | 2891.0 | 43.244542960211874 | 0.405 | 2849.0 | 0.399 | 0.275 | 3.6 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6964.56937440151 | 97.72128543448116 | 110.01902550707814 | 150.998313361458 | 1.6824324608518997 | 2.964305793315976 |
PRY | South America | Paraguay | 2020-10-12 | 50344.0 | 669.0 | 804.143 | 1096.0 | 19.0 | 21.286 | 1.06 | null | null | null | null | null | null | null | null | 311326.0 | 2883.0 | 43.648747358931544 | 0.404 | 2974.0 | 0.417 | 0.27 | 3.7 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7058.364984094003 | 93.79560969249341 | 112.74302386390244 | 153.66216475780683 | 2.663851396348841 | 2.9843547801411283 |
PRY | South America | Paraguay | 2020-10-13 | 51197.0 | 853.0 | 792.857 | 1108.0 | 12.0 | 20.286 | 1.06 | null | null | null | null | null | null | null | null | 314053.0 | 2727.0 | 44.03108013566013 | 0.382 | 2954.0 | 0.414 | 0.268 | 3.7 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7177.957891519559 | 119.59290742555586 | 111.16069613447122 | 155.34459721865875 | 1.6824324608518997 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-10-14 | 51845.0 | 648.0 | 772.857 | 1131.0 | 23.0 | 20.286 | 1.06 | null | null | null | null | null | null | null | null | 317084.0 | 3031.0 | 44.456034534730314 | 0.425 | 2935.0 | 0.411 | 0.263 | 3.8 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7268.809244405562 | 90.85135288600257 | 108.35664203305137 | 158.56925943529154 | 3.2246622166328076 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-10-15 | 52596.0 | 751.0 | 754.286 | 1150.0 | 19.0 | 19.714 | 1.06 | null | null | null | null | null | null | null | null | 320006.0 | 2922.0 | 44.86570683894775 | 0.41 | 2921.0 | 0.41 | 0.258 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7374.101475913876 | 105.29223150831473 | 105.752937597178 | 161.23311083164037 | 2.663851396348841 | 2.763956127769529 |
PRY | South America | Paraguay | 2020-10-16 | 53482.0 | 886.0 | 743.857 | 1165.0 | 15.0 | 17.143 | 1.06 | null | null | null | null | null | null | null | null | 322978.0 | 2972.0 | 45.28238927841874 | 0.417 | 2903.0 | 0.407 | 0.256 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7498.3210726067755 | 124.21959669289858 | 104.29076358599262 | 163.33615140770524 | 2.1030405760648745 | 2.4034949730320094 |
PRY | South America | Paraguay | 2020-10-17 | 54015.0 | 533.0 | 719.571 | 1179.0 | 14.0 | 16.286 | 1.05 | null | null | null | null | null | null | null | null | 325909.0 | 2931.0 | 45.69332340698182 | 0.411 | 2908.0 | 0.408 | 0.247 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7573.049114409614 | 74.72804180283855 | 100.88580069063853 | 165.29898927869914 | 1.962837870993883 | 2.28334125478617 |
PRY | South America | Paraguay | 2020-10-18 | 54724.0 | 709.0 | 721.286 | 1188.0 | 9.0 | 15.857 | 1.05 | null | null | null | null | null | null | null | null | 328600.0 | 2691.0 | 46.070608886327854 | 0.377 | 2880.0 | 0.404 | 0.25 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7672.452832304946 | 99.40371789533307 | 101.12624832983528 | 166.56081362433807 | 1.2618243456389249 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-19 | 55452.0 | 728.0 | 729.714 | 1207.0 | 19.0 | 15.857 | 1.05 | null | null | null | null | null | null | null | null | 330854.0 | 2254.0 | 46.38662578355787 | 0.316 | 2790.0 | 0.391 | 0.262 | 3.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7774.520401596628 | 102.0675692916819 | 102.3078767281736 | 169.22466502068693 | 2.663851396348841 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-20 | 56073.0 | 621.0 | 696.571 | 1231.0 | 24.0 | 17.571 | 1.05 | null | null | null | null | null | null | null | null | 333885.0 | 3031.0 | 46.81158018262804 | 0.425 | 2833.0 | 0.397 | 0.246 | 4.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7861.586281445714 | 87.0658798490858 | 97.66113847400572 | 172.5895299423907 | 3.3648649217037994 | 2.463501730802394 |
PRY | South America | Paraguay | 2020-10-21 | 56819.0 | 746.0 | 710.571 | 1250.0 | 19.0 | 17.0 | 1.05 | null | null | null | null | null | null | null | null | 336639.0 | 2754.0 | 47.19769843239356 | 0.386 | 2794.0 | 0.392 | 0.254 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7966.177499428673 | 104.59121798295976 | 99.6239763449996 | 175.25338133873956 | 2.663851396348841 | 2.383445986206858 |
PRY | South America | Paraguay | 2020-10-22 | 57526.0 | 707.0 | 704.286 | 1262.0 | 12.0 | 16.0 | 1.05 | null | null | null | null | null | null | null | null | 339477.0 | 2838.0 | 47.59559370938503 | 0.398 | 2782.0 | 0.39 | 0.253 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8065.300811913865 | 99.1233124851911 | 98.74280234362841 | 176.93581379959147 | 1.6824324608518997 | 2.2432432811358662 |
PRY | South America | Paraguay | 2020-10-23 | 58259.0 | 733.0 | 682.429 | 1278.0 | 16.0 | 16.143 | 1.05 | null | null | null | null | null | null | null | null | 342331.0 | 2854.0 | 47.99573222965764 | 0.4 | 2765.0 | 0.388 | 0.247 | 4.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8168.069394730903 | 102.76858281703687 | 95.67839181889174 | 179.17905708072732 | 2.2432432811358662 | 2.263292267961018 |
PRY | South America | Paraguay | 2020-10-24 | 59043.0 | 784.0 | 718.286 | 1293.0 | 15.0 | 16.286 | 1.04 | null | null | null | null | null | null | null | null | 345336.0 | 3005.0 | 48.41704135839597 | 0.421 | 2775.0 | 0.389 | 0.259 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8277.98831550656 | 109.91892077565745 | 100.70564021462229 | 181.2820976567922 | 2.1030405760648745 | 2.28334125478617 |
PRY | South America | Paraguay | 2020-10-25 | 59594.0 | 551.0 | 695.714 | 1309.0 | 16.0 | 17.286 | 1.04 | null | null | null | null | null | null | null | null | 347863.0 | 2527.0 | 48.77133359411037 | 0.354 | 2752.0 | 0.386 | 0.253 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8355.240006000675 | 77.25169049411639 | 97.5409847557599 | 183.52534093792806 | 2.2432432811358662 | 2.4235439598571618 |
PRY | South America | Paraguay | 2020-10-26 | 60109.0 | 515.0 | 665.286 | 1333.0 | 24.0 | 18.0 | 1.04 | null | null | null | null | null | null | null | null | 350289.0 | 2426.0 | 49.11146535661259 | 0.34 | 2776.0 | 0.389 | 0.24 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8427.444399112237 | 72.20439311156069 | 93.27489684585973 | 186.89020585963186 | 3.3648649217037994 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-27 | 60557.0 | 448.0 | 640.571 | 1347.0 | 14.0 | 16.571 | 1.04 | null | null | null | null | null | null | null | null | 352711.0 | 2422.0 | 49.45103630829453 | 0.34 | 2689.0 | 0.377 | 0.238 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8490.255210984042 | 62.810811871804255 | 89.80978699003019 | 188.85304373062573 | 1.962837870993883 | 2.323299025731403 |
PRY | South America | Paraguay | 2020-10-28 | 61290.0 | 733.0 | 638.714 | 1359.0 | 12.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 355553.0 | 2842.0 | 49.84949239610629 | 0.398 | 2702.0 | 0.379 | 0.236 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8593.023793801078 | 102.76858281703687 | 89.54943056671337 | 190.53547619147764 | 1.6824324608518997 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-10-29 | 62050.0 | 760.0 | 646.286 | 1373.0 | 14.0 | 15.857 | 1.04 | null | null | null | null | null | null | null | null | 358694.0 | 3141.0 | 50.28986909273427 | 0.44 | 2745.0 | 0.385 | 0.235 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8699.577849655032 | 106.55405585395364 | 90.6110454495109 | 192.4983140624715 | 1.962837870993883 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-30 | 62596.0 | 546.0 | 619.571 | 1387.0 | 14.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 361696.0 | 3002.0 | 50.710757613357394 | 0.421 | 2766.0 | 0.388 | 0.224 | 4.5 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8776.128526623792 | 76.55067696876144 | 86.86553018353936 | 194.4611519334654 | 1.962837870993883 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-10-31 | 63185.0 | 589.0 | 591.714 | 1404.0 | 17.0 | 15.857 | 1.04 | null | null | null | null | null | null | null | null | 364557.0 | 2861.0 | 51.1118775525655 | 0.401 | 2746.0 | 0.385 | 0.215 | 4.6 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8858.707919910607 | 82.57939328681408 | 82.95990342837675 | 196.84459791967228 | 2.383445986206858 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-11-01 | 63731.0 | 546.0 | 591.0 | 1418.0 | 14.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 367224.0 | 2667.0 | 51.48579816698983 | 0.374 | 2766.0 | 0.388 | 0.214 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8935.258596879368 | 76.55067696876144 | 82.85979869695605 | 198.80743579066615 | 1.962837870993883 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-11-02 | 64156.0 | 425.0 | 578.143 | 1429.0 | 11.0 | 13.714 | 1.03 | null | null | null | null | null | null | null | null | 368759.0 | 1535.0 | 51.70100931927381 | 0.215 | 2639.0 | 0.37 | 0.219 | 4.6 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8994.84474653454 | 59.58614965517145 | 81.05721251785833 | 200.34966554644706 | 1.5422297557809082 | 1.9227398973435794 |
PRY | South America | Paraguay | 2020-11-03 | 64628.0 | 472.0 | 581.571 | 1441.0 | 12.0 | 13.429 | 1.04 | null | null | null | null | null | null | null | null | 371762.0 | 3003.0 | 52.12203804260199 | 0.421 | 2722.0 | 0.382 | 0.214 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9061.020423328047 | 66.17567679350806 | 81.53782739084168 | 202.03209800729897 | 1.6824324608518997 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-11-04 | 65258.0 | 630.0 | 566.857 | 1454.0 | 13.0 | 13.571 | 1.04 | null | null | null | null | null | null | null | null | 374486.0 | 2724.0 | 52.503950211215376 | 0.382 | 2705.0 | 0.379 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9149.348127522771 | 88.32770419472473 | 79.4748847884271 | 203.85473317322183 | 1.8226351659228912 | 1.9026909105184275 |
PRY | South America | Paraguay | 2020-11-05 | 65778.0 | 520.0 | 532.571 | 1462.0 | 8.0 | 12.714 | 1.05 | null | null | null | null | null | null | null | null | 377309.0 | 2823.0 | 52.899742447630786 | 0.396 | 2659.0 | 0.373 | 0.2 | 5.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9222.253534159689 | 72.90540663691564 | 74.66789484236308 | 204.97635481378978 | 1.1216216405679331 | 1.782537192272588 |
PRY | South America | Paraguay | 2020-11-06 | 66481.0 | 703.0 | 555.0 | 1472.0 | 10.0 | 12.143 | 1.05 | null | null | null | null | null | null | null | null | 380237.0 | 2928.0 | 53.31025596807864 | 0.411 | 2649.0 | 0.371 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9320.816035824595 | 98.56250166490712 | 77.81250131440036 | 206.3783818644997 | 1.4020270507099164 | 1.7024814476770516 |
PRY | South America | Paraguay | 2020-11-07 | 66941.0 | 460.0 | 536.571 | 1479.0 | 7.0 | 10.714 | 1.05 | null | null | null | null | null | null | null | null | 382872.0 | 2635.0 | 53.67969009594071 | 0.369 | 2616.0 | 0.367 | 0.205 | 4.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9385.309280157251 | 64.49324433265615 | 75.22870566264706 | 207.35980079999663 | 0.9814189354969415 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-11-08 | 67589.0 | 648.0 | 551.143 | 1490.0 | 11.0 | 10.286 | 1.05 | null | null | null | null | null | null | null | null | 385453.0 | 2581.0 | 54.041553277728944 | 0.362 | 2604.0 | 0.365 | 0.212 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9476.160633043253 | 90.85135288600257 | 77.27173948094155 | 208.90203055577754 | 1.5422297557809082 | 1.44212502436022 |
PRY | South America | Paraguay | 2020-11-09 | 67948.0 | 359.0 | 541.714 | 1502.0 | 12.0 | 10.429 | 1.05 | null | null | null | null | null | null | null | null | 387941.0 | 2488.0 | 54.39037760794557 | 0.349 | 2740.0 | 0.384 | 0.198 | 5.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9526.493404163739 | 50.332771120486 | 75.94976817482717 | 210.58446301662946 | 1.6824324608518997 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-11-10 | 68497.0 | 549.0 | 552.714 | 1516.0 | 14.0 | 10.714 | 1.06 | null | null | null | null | null | null | null | null | 390180.0 | 2239.0 | 54.70429146459952 | 0.314 | 2631.0 | 0.369 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9603.464689247714 | 76.97128508397441 | 77.49199793060808 | 212.54730088762332 | 1.962837870993883 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-11-11 | 69106.0 | 609.0 | 549.714 | 1532.0 | 16.0 | 11.143 | 1.07 | null | null | null | null | null | null | null | null | 392876.0 | 2696.0 | 55.082277957470914 | 0.378 | 2627.0 | 0.368 | 0.209 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9688.848136635948 | 85.38344738823392 | 77.0713898153951 | 214.7905441687592 | 2.2432432811358662 | 1.56227874260606 |
PRY | South America | Paraguay | 2020-11-12 | 69653.0 | 547.0 | 553.571 | 1543.0 | 11.0 | 11.571 | 1.07 | null | null | null | null | null | null | null | null | 395518.0 | 2642.0 | 55.452693504268474 | 0.37 | 2601.0 | 0.365 | 0.213 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9765.53901630978 | 76.69087967383243 | 77.61215164885391 | 216.3327739245401 | 1.5422297557809082 | 1.622285500376444 |
PRY | South America | Paraguay | 2020-11-13 | 70392.0 | 739.0 | 558.714 | 1556.0 | 13.0 | 12.0 | 1.08 | null | null | null | null | null | null | null | null | 398428.0 | 2910.0 | 55.86068337602506 | 0.408 | 2599.0 | 0.364 | 0.215 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9869.148815357243 | 103.60979904746281 | 78.33321416103404 | 218.155409090463 | 1.8226351659228912 | 1.6824324608518997 |
PRY | South America | Paraguay | 2020-11-14 | 71065.0 | 673.0 | 589.143 | 1569.0 | 13.0 | 12.857 | 1.08 | null | null | null | null | null | null | null | null | 401017.0 | 2589.0 | 56.22366817945385 | 0.363 | 2592.0 | 0.363 | 0.227 | 4.4 | null | 61.11 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9963.505235870021 | 94.35642051277738 | 82.59944227363924 | 219.97804425638589 | 1.8226351659228912 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-11-15 | 71574.0 | 509.0 | 569.286 | 1587.0 | 18.0 | 13.857 | 1.08 | null | null | null | null | null | null | null | null | 402564.0 | 1547.0 | 56.44056176419868 | 0.217 | 2444.0 | 0.343 | 0.233 | 4.3 | null | 61.11 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10034.868412751155 | 71.36317688113473 | 79.81543715904454 | 222.50169294766374 | 2.5236486912778497 | 1.9427888841687313 |
PRY | South America | Paraguay | 2020-11-16 | 72099.0 | 525.0 | 593.0 | 1602.0 | 15.0 | 14.286 | 1.08 | null | null | null | null | null | null | null | null | 405816.0 | 3252.0 | 56.896500961089544 | 0.456 | 2554.0 | 0.358 | 0.232 | 4.3 | null | 66.67 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10108.474832913427 | 73.60642016227062 | 83.14020410709804 | 224.60473352372858 | 2.1030405760648745 | 2.0029358446441865 |
PRY | South America | Paraguay | 2020-11-17 | 72857.0 | 758.0 | 622.857 | 1613.0 | 11.0 | 13.857 | 1.09 | null | null | null | null | null | null | null | null | 408717.0 | 2901.0 | 57.30322900850049 | 0.407 | 2648.0 | 0.371 | 0.235 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10214.748483357238 | 106.27365044381166 | 87.32623627240264 | 226.1469632795095 | 1.5422297557809082 | 1.9427888841687313 |
PRY | South America | Paraguay | 2020-11-18 | 73639.0 | 782.0 | 647.571 | 1624.0 | 11.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 411727.0 | 3010.0 | 57.725239150764175 | 0.422 | 2693.0 | 0.378 | 0.24 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10324.386998722754 | 109.63851536551546 | 90.79120592552714 | 227.6891930352904 | 1.5422297557809082 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-11-19 | 74495.0 | 856.0 | 691.714 | 1636.0 | 12.0 | 13.286 | 1.09 | null | null | null | null | null | null | null | null | 414988.0 | 3261.0 | 58.18244017200068 | 0.457 | 2781.0 | 0.39 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10444.400514263521 | 120.01351554076884 | 96.98017393547592 | 229.37162549614231 | 1.6824324608518997 | 1.8627331395731948 |
PRY | South America | Paraguay | 2020-11-20 | 75058.0 | 563.0 | 666.571 | 1647.0 | 11.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 417510.0 | 2522.0 | 58.53603139418972 | 0.354 | 2726.0 | 0.382 | 0.245 | 4.1 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10523.33463721849 | 78.9341229549683 | 93.45505732187597 | 230.91385525192322 | 1.5422297557809082 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-11-21 | 75857.0 | 799.0 | 684.571 | 1652.0 | 5.0 | 11.857 | 1.09 | null | null | null | null | null | null | null | null | 420258.0 | 2748.0 | 58.9213084277248 | 0.385 | 2749.0 | 0.385 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10635.356598570213 | 112.02196135172233 | 95.97870601315381 | 231.6148687772782 | 0.7010135253549582 | 1.6623834740267478 |
PRY | South America | Paraguay | 2020-11-22 | 76476.0 | 619.0 | 700.286 | 1657.0 | 5.0 | 10.0 | 1.09 | null | null | null | null | null | null | null | null | 423142.0 | 2884.0 | 59.32565302914954 | 0.404 | 2940.0 | 0.412 | 0.238 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10722.142073009156 | 86.78547443894382 | 98.18199152334444 | 232.31588230263313 | 0.7010135253549582 | 1.4020270507099164 |
PRY | South America | Paraguay | 2020-11-23 | 77072.0 | 596.0 | 710.429 | 1665.0 | 8.0 | 9.0 | 1.09 | null | null | null | null | null | null | null | null | 425902.0 | 2760.0 | 59.71261249514548 | 0.387 | 2869.0 | 0.402 | 0.248 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10805.702885231469 | 83.56081222231101 | 99.60406756087951 | 233.43750394320108 | 1.1216216405679331 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-11-24 | 77891.0 | 819.0 | 719.143 | 1677.0 | 12.0 | 9.143 | 1.09 | null | null | null | null | null | null | null | null | 428912.0 | 3010.0 | 60.134622637409166 | 0.422 | 2885.0 | 0.404 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10920.528900684609 | 114.82601545314216 | 100.82579393286815 | 235.119936404053 | 1.6824324608518997 | 1.2818733324640765 |
PRY | South America | Paraguay | 2020-11-25 | 78878.0 | 987.0 | 748.429 | 1691.0 | 14.0 | 9.571 | 1.09 | null | null | null | null | null | null | null | null | 432048.0 | 3136.0 | 60.574298320511794 | 0.44 | 2903.0 | 0.407 | 0.258 | 3.9 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11058.908970589679 | 138.38006990506875 | 104.93177035357719 | 237.08277427504686 | 1.962837870993883 | 1.3418800902344608 |
PRY | South America | Paraguay | 2020-11-26 | 79517.0 | 639.0 | 717.429 | 1704.0 | 13.0 | 9.714 | 1.09 | null | null | null | null | null | null | null | null | 435667.0 | 3619.0 | 61.08169191016371 | 0.507 | 2954.0 | 0.414 | 0.243 | 4.1 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11148.498499130043 | 89.58952854036366 | 100.58548649637646 | 238.90540944096978 | 1.8226351659228912 | 1.3619290770596129 |
PRY | South America | Paraguay | 2020-11-27 | 80436.0 | 919.0 | 768.286 | 1720.0 | 16.0 | 10.429 | 1.09 | null | null | null | null | null | null | null | null | 439175.0 | 3508.0 | 61.57352299955275 | 0.492 | 3095.0 | 0.434 | 0.248 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11277.344785090285 | 128.84628596024132 | 107.71577546817187 | 241.14865272210562 | 2.2432432811358662 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-11-28 | 81131.0 | 695.0 | 753.429 | 1731.0 | 11.0 | 11.286 | 1.09 | null | null | null | null | null | null | null | null | 442832.0 | 3657.0 | 62.08624429199737 | 0.513 | 3225.0 | 0.452 | 0.234 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11374.785665114623 | 97.4408800243392 | 105.63278387893214 | 242.69088247788653 | 1.5422297557809082 | 1.5823277294312115 |
PRY | South America | Paraguay | 2020-11-29 | 81906.0 | 775.0 | 775.714 | 1743.0 | 12.0 | 12.286 | 1.09 | null | null | null | null | null | null | null | null | 445986.0 | 3154.0 | 62.52844362379127 | 0.442 | 3263.0 | 0.457 | 0.238 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11483.442761544642 | 108.65709643001853 | 108.75720116143923 | 244.37331493873842 | 1.6824324608518997 | 1.7225304345022032 |
PRY | South America | Paraguay | 2020-11-30 | 82424.0 | 518.0 | 764.571 | 1756.0 | 13.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 445986.0 | null | 62.52844362379127 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11556.067762771416 | 72.62500122677366 | 107.19492241883314 | 246.19595010466134 | 1.8226351659228912 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-11-30 | 82424.0 | 518.0 | 764.571 | 1756.0 | 13.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 449057.0 | 3071.0 | 62.9590061310643 | 0.431 | 3308.0 | 0.464 | 0.231 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11556.067762771416 | 72.62500122677366 | 107.19492241883314 | 246.19595010466134 | 1.8226351659228912 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-12-01 | 83479.0 | 1055.0 | 798.286 | 1771.0 | 15.0 | 13.429 | 1.09 | null | null | null | null | null | null | null | null | 449057.0 | null | 62.9590061310643 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11703.981616621311 | 147.91385384989619 | 111.92185662030163 | 248.29899068072618 | 2.1030405760648745 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-12-01 | 83479.0 | 1055.0 | 798.286 | 1771.0 | 15.0 | 13.429 | 1.09 | null | null | null | null | null | null | null | null | 452851.0 | 3794.0 | 63.490935194103635 | 0.532 | 3420.0 | 0.479 | 0.233 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11703.981616621311 | 147.91385384989619 | 111.92185662030163 | 248.29899068072618 | 2.1030405760648745 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-12-02 | 84482.0 | 1003.0 | 800.571 | 1783.0 | 12.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | 4065.0 | 64.06085919021722 | 0.57 | 3553.0 | 0.498 | 0.225 | 4.4 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11844.604929807516 | 140.6233131862046 | 112.24221980138886 | 249.98142314157806 | 1.6824324608518997 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-12-02 | 84482.0 | 1003.0 | 800.571 | 1783.0 | 12.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | null | 64.06085919021722 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11844.604929807516 | 140.6233131862046 | 112.24221980138886 | 249.98142314157806 | 1.6824324608518997 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-12-03 | 85477.0 | 995.0 | 851.429 | 1796.0 | 13.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | null | 64.06085919021722 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11984.106621353152 | 139.5016915456367 | 119.37264897588933 | 251.80405830750098 | 1.8226351659228912 | 1.8426841527480433 |
RUS | Europe | Russia | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-31 | 2.0 | 2.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 1.3704782270068359e-2 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-01 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-02 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-03 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-04 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-05 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-06 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-07 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-08 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-09 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-10 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-11 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-12 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-13 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-14 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-15 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-16 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-17 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-18 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-19 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-20 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-21 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-22 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-23 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-24 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-25 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-26 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-27 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-28 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-29 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-01 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-02 | 3.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 6.852391135034179e-3 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-03 | 3.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 0.0 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-04 | 3.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 0.0 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-05 | 4.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 51366.0 | 4952.0 | 0.35197992304216563 | 3.4e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.7409564540136717e-2 | 6.852391135034179e-3 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-06 | 13.0 | 9.0 | 1.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 55688.0 | 4322.0 | 0.3815959575277834 | 3.0e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.908108475544432e-2 | 6.167152021530761e-2 | 1.0765106473138695e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-07 | 13.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 59960.0 | 4272.0 | 0.41086937245664934 | 2.9e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.908108475544432e-2 | 0.0 | 1.0765106473138695e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-08 | 17.0 | 4.0 | 2.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 63191.0 | 3231.0 | 0.43300944821394477 | 2.2e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.11649064929558105 | 2.7409564540136717e-2 | 1.4684674202378244e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-09 | 17.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 63191.0 | null | 0.43300944821394477 | null | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.11649064929558105 | 0.0 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-10 | 20.0 | 3.0 | 2.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 70601.0 | null | 0.4837856665245481 | null | null | null | null | null | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.13704782270068358 | 2.0557173405102536e-2 | 1.664445806699802e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-11 | 20.0 | 0.0 | 2.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 76963.0 | 6362.0 | 0.5273805789256355 | 4.4e-2 | 4364.0 | 3.0e-2 | 1.0e-3 | 1796.6 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.13704782270068358 | 0.0 | 1.664445806699802e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-12 | 28.0 | 8.0 | 3.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 76963.0 | null | 0.5273805789256355 | null | 4934.0 | 3.4e-2 | 1.0e-3 | 1438.9 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.191866951780957 | 5.4819129080273435e-2 | 2.3496849202032197e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-13 | 45.0 | 17.0 | 4.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 94852.0 | null | 0.649963003940262 | null | 5595.0 | 3.8e-2 | 1.0e-3 | 1224.0 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.3083576010765381 | 0.11649064929558105 | 3.132227987824123e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-14 | 59.0 | 14.0 | 6.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 104883.0 | 10031.0 | 0.7186993394157898 | 6.9e-2 | 6418.0 | 4.4e-2 | 1.0e-3 | 976.7 | null | 35.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.40429107696701655 | 9.59334758904785e-2 | 4.5027062148309586e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-15 | 63.0 | 4.0 | 6.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 109939.0 | 5056.0 | 0.7533450289945226 | 3.5e-2 | 6678.0 | 4.6e-2 | 1.0e-3 | 1016.3 | null | 35.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.43170064150715326 | 2.7409564540136717e-2 | 4.5027062148309586e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-16 | 90.0 | 27.0 | 10.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 116061.0 | 6122.0 | 0.7952953675232018 | 4.2e-2 | 7024.0 | 4.8e-2 | 1.0e-3 | 673.5 | null | 50.46 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.6167152021530762 | 0.18501456064592284 | 7.146358714727145e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-17 | 114.0 | 24.0 | 13.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 122854.0 | 6793.0 | 0.841843660503489 | 4.7e-2 | 7465.0 | 5.1e-2 | 2.0e-3 | 555.9 | null | 60.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.7811725893938963 | 0.1644573872408203 | 9.2020760552374e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-18 | 147.0 | 33.0 | 18.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 133101.0 | 10247.0 | 0.9120601124641843 | 7.0e-2 | 8020.0 | 5.5e-2 | 2.0e-3 | 442.0 | null | 60.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.0073014968500242 | 0.2261289074561279 | 0.12432293236292512 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-19 | 199.0 | 52.0 | 24.429 | 1.0 | 1.0 | 0.143 | 2.29 | null | null | null | null | null | null | null | null | 143519.0 | 10418.0 | 0.9834483233089704 | 7.1e-2 | 8230.0 | 5.6e-2 | 3.0e-3 | 336.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3636258358718016 | 0.3563243390217773 | 0.16739706303774995 | 6.852391135034179e-3 | 6.852391135034179e-3 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-20 | 253.0 | 54.0 | 29.714 | 1.0 | 0.0 | 0.143 | 2.26 | null | null | null | null | null | null | null | null | 156016.0 | 12497.0 | 1.0690826553234927 | 8.6e-2 | 8738.0 | 6.0e-2 | 3.0e-3 | 294.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.7336549571636475 | 0.3700291212918457 | 0.20361195018640557 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-21 | 306.0 | 53.0 | 35.286 | 1.0 | 0.0 | 0.143 | 2.23 | null | null | null | null | null | null | null | null | 163529.0 | 7513.0 | 1.1205646699210041 | 5.1e-2 | 8378.0 | 5.7e-2 | 4.0e-3 | 237.4 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0968316873204587 | 0.36317673015681146 | 0.24179347359081607 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-22 | 367.0 | 61.0 | 43.429 | 1.0 | 0.0 | 0.143 | 2.23 | null | null | null | null | null | null | null | null | 165772.0 | 2243.0 | 1.135934583236886 | 1.5e-2 | 7976.0 | 5.5e-2 | 5.0e-3 | 183.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.5148275465575436 | 0.41799585923708493 | 0.29759249460339937 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-23 | 438.0 | 71.0 | 49.714 | 1.0 | 0.0 | 0.143 | 2.27 | null | null | null | null | null | null | null | null | 185918.0 | 20146.0 | 1.2739828550432846 | 0.138 | 9980.0 | 6.8e-2 | 5.0e-3 | 200.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3.0013473171449707 | 0.48651977058742674 | 0.3406597728870892 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-24 | 495.0 | 57.0 | 54.429 | 1.0 | 0.0 | 0.143 | 2.33 | null | null | null | null | null | null | null | null | 192824.0 | 6906.0 | 1.3213054682218306 | 4.7e-2 | 9996.0 | 6.8e-2 | 5.0e-3 | 183.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3.3919336118419188 | 0.39058629469694817 | 0.3729687970887754 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-25 | 658.0 | 163.0 | 73.0 | 3.0 | 2.0 | 0.429 | 2.51 | null | null | null | null | null | null | null | null | 197251.0 | 4427.0 | 1.3516410037766269 | 3.0e-2 | 9164.0 | 6.3e-2 | 8.0e-3 | 125.5 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4.50887336685249 | 1.116939755010571 | 0.5002245528574951 | 2.0557173405102536e-2 | 1.3704782270068359e-2 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-26 | 840.0 | 182.0 | 91.571 | 3.0 | 0.0 | 0.286 | 2.54 | null | null | null | null | null | null | null | null | 223509.0 | 26258.0 | 1.5315710902003543 | 0.18 | 11427.0 | 7.8e-2 | 8.0e-3 | 124.8 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5.75600855342871 | 1.2471351865762206 | 0.6274803086262148 | 2.0557173405102536e-2 | 0.0 | 1.959783864619775e-3 |
RUS | Europe | Russia | 2020-03-27 | 1036.0 | 196.0 | 111.857 | 4.0 | 1.0 | 0.429 | 2.51 | null | null | null | null | null | null | null | null | 243377.0 | 19868.0 | 1.6677143972712134 | 0.136 | 12480.0 | 8.6e-2 | 9.0e-3 | 111.6 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7.099077215895409 | 1.343068662466699 | 0.7664879151915182 | 2.7409564540136717e-2 | 6.852391135034179e-3 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-28 | 1264.0 | 228.0 | 136.857 | 4.0 | 0.0 | 0.429 | 2.48 | null | null | null | null | null | null | null | null | 263888.0 | 20511.0 | 1.8082637918418993 | 0.141 | 14337.0 | 9.8e-2 | 1.0e-2 | 104.8 | null | 71.76 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.661422394683203 | 1.5623451787877927 | 0.9377976935673726 | 2.7409564540136717e-2 | 0.0 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-29 | 1534.0 | 270.0 | 166.714 | 8.0 | 4.0 | 1.0 | 2.45 | null | null | null | null | null | null | null | null | 343523.0 | 79635.0 | 2.3539539598803465 | 0.546 | 25393.0 | 0.174 | 7.0e-3 | 152.3 | null | 71.76 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10.51156800114243 | 1.8501456064592283 | 1.142389535686088 | 5.4819129080273435e-2 | 2.7409564540136717e-2 | 6.852391135034179e-3 |
RUS | Europe | Russia | 2020-03-30 | 1836.0 | 302.0 | 199.714 | 9.0 | 1.0 | 1.143 | 2.44 | null | null | null | null | null | null | null | null | 343523.0 | null | 2.3539539598803465 | null | 27013.0 | 0.185 | 7.0e-3 | 135.3 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12.580990123922753 | 2.069422122780322 | 1.368518443142216 | 6.167152021530761e-2 | 6.852391135034179e-3 | 7.832283067344067e-3 |
RUS | Europe | Russia | 2020-03-31 | 2337.0 | 501.0 | 263.143 | 17.0 | 8.0 | 2.286 | 2.45 | null | null | null | null | null | null | null | null | 406500.0 | null | 2.7854969963913936 | null | 30525.0 | 0.209 | 9.0e-3 | 116.0 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16.014038082574878 | 3.4330479586521236 | 1.8031587604462989 | 0.11649064929558105 | 5.4819129080273435e-2 | 1.5664566134688133e-2 |
RUS | Europe | Russia | 2020-04-01 | 2777.0 | 440.0 | 302.714 | 24.0 | 7.0 | 3.0 | 2.39 | null | null | null | null | null | null | null | null | 536000.0 | 129500.0 | 3.67288164837832 | 0.887 | 48393.0 | 0.332 | 6.0e-3 | 159.9 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 19.029090181989915 | 3.0150520994150387 | 2.0743147300507365 | 0.1644573872408203 | 4.796673794523925e-2 | 2.0557173405102536e-2 |
RUS | Europe | Russia | 2020-04-02 | 3548.0 | 771.0 | 386.857 | 30.0 | 6.0 | 3.857 | 2.36 | null | null | null | null | null | null | null | null | 575103.0 | 39103.0 | 3.940830698931561 | 0.268 | 50228.0 | 0.344 | 8.0e-3 | 129.8 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 24.31228374710127 | 5.283193565111351 | 2.6508954773259172 | 0.20557173405102536 | 4.111434681020507e-2 | 2.642967260782683e-2 |
RUS | Europe | Russia | 2020-04-03 | 4149.0 | 601.0 | 444.714 | 34.0 | 4.0 | 4.286 | 2.23 | null | null | null | null | null | null | null | null | 639606.0 | 64503.0 | 4.38283048431467 | 0.442 | 56604.0 | 0.388 | 8.0e-3 | 127.3 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 28.430570819256808 | 4.118287072155542 | 3.04735427122559 | 0.2329812985911621 | 2.7409564540136717e-2 | 2.936934840475649e-2 |
RUS | Europe | Russia | 2020-04-04 | 4731.0 | 582.0 | 495.286 | 43.0 | 9.0 | 5.571 | 2.13 | null | null | null | null | null | null | null | null | 697004.0 | 57398.0 | 4.776144030683363 | 0.393 | 61874.0 | 0.424 | 8.0e-3 | 124.9 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 32.4186624598467 | 3.9880916405898925 | 3.393893395706538 | 0.2946528188064697 | 6.167152021530761e-2 | 3.817467101327541e-2 |
RUS | Europe | Russia | 2020-04-05 | 5389.0 | 658.0 | 550.714 | 45.0 | 2.0 | 5.286 | 2.1 | null | null | null | null | null | null | null | null | 758401.0 | 61397.0 | 5.196860289201057 | 0.421 | 59268.0 | 0.406 | 9.0e-3 | 107.6 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 36.92753582669919 | 4.50887336685249 | 3.773707731539213 | 0.3083576010765381 | 1.3704782270068359e-2 | 3.6221739539790666e-2 |
RUS | Europe | Russia | 2020-04-06 | 6343.0 | 954.0 | 643.857 | 47.0 | 2.0 | 5.429 | 2.11 | null | null | null | null | null | null | null | null | 795523.0 | 37122.0 | 5.451234752915795 | 0.254 | 60073.0 | 0.412 | 1.1e-2 | 93.3 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 43.4647169695218 | 6.5371811428226065 | 4.411959999029701 | 0.3220623833466064 | 1.3704782270068359e-2 | 3.720163147210056e-2 |
RUS | Europe | Russia | 2020-04-07 | 7497.0 | 1154.0 | 737.143 | 58.0 | 11.0 | 5.857 | 2.12 | null | null | null | null | null | null | null | null | 910221.0 | 114698.0 | 6.237190311321946 | 0.786 | 71960.0 | 0.493 | 1.0e-2 | 97.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 51.37237633935124 | 7.9076593698294415 | 5.0511921584525 | 0.3974386858319824 | 7.537630248537597e-2 | 4.013445487789519e-2 |
RUS | Europe | Russia | 2020-04-08 | 8672.0 | 1175.0 | 842.143 | 63.0 | 5.0 | 5.571 | 2.1 | null | null | null | null | null | null | null | null | 1004719.0 | 94498.0 | 6.884727568800406 | 0.648 | 66960.0 | 0.459 | 1.3e-2 | 79.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 59.4239359230164 | 8.051559583665162 | 5.770693227631089 | 0.43170064150715326 | 3.4261955675170895e-2 | 3.817467101327541e-2 |
RUS | Europe | Russia | 2020-04-09 | 10131.0 | 1459.0 | 940.429 | 76.0 | 13.0 | 6.571 | 2.09 | null | null | null | null | null | null | null | null | 1092811.0 | 88092.0 | 7.488368408667836 | 0.604 | 73958.0 | 0.507 | 1.3e-2 | 78.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 69.42157458903128 | 9.997638666014867 | 6.444187342729057 | 0.5207817262625977 | 8.908108475544432e-2 | 4.5027062148309586e-2 |
RUS | Europe | Russia | 2020-04-10 | 11917.0 | 1786.0 | 1109.714 | 94.0 | 18.0 | 8.571 | 2.08 | null | null | null | null | null | null | null | null | 1184442.0 | 91631.0 | 8.116259860762153 | 0.628 | 77834.0 | 0.533 | 1.4e-2 | 70.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 81.65994515620231 | 12.238370567171042 | 7.604194376023319 | 0.6441247666932128 | 0.12334304043061523 | 5.873184441837794e-2 |
RUS | Europe | Russia | 2020-04-11 | 13584.0 | 1667.0 | 1264.714 | 106.0 | 12.0 | 9.0 | 2.04 | null | null | null | null | null | null | null | null | 1278747.0 | 94305.0 | 8.762474606751551 | 0.646 | 83106.0 | 0.569 | 1.5e-2 | 65.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 93.08288117830429 | 11.422936022101977 | 8.666315001953617 | 0.7263534603136229 | 8.222869362041015e-2 | 6.167152021530761e-2 |
RUS | Europe | Russia | 2020-04-12 | 15770.0 | 2186.0 | 1483.0 | 130.0 | 24.0 | 12.143 | 2.04 | null | null | null | null | null | null | null | null | 1359993.0 | 81246.0 | 9.319203976908538 | 0.557 | 85942.0 | 0.589 | 1.7e-2 | 58.0 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 108.062208199489 | 14.979327021184716 | 10.162096053255686 | 0.8908108475544433 | 0.1644573872408203 | 8.320858555272004e-2 |
RUS | Europe | Russia | 2020-04-13 | 18328.0 | 2558.0 | 1712.143 | 148.0 | 18.0 | 14.429 | 2.02 | null | null | null | null | null | null | null | null | 1426014.0 | 66021.0 | 9.77160569203463 | 0.452 | 90070.0 | 0.617 | 1.9e-2 | 52.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 125.59062472290643 | 17.52841652341743 | 11.732273515110824 | 1.0141538879850585 | 0.12334304043061523 | 9.887315168740816e-2 |
RUS | Europe | Russia | 2020-04-14 | 21102.0 | 2774.0 | 1943.571 | 170.0 | 22.0 | 16.0 | 2.0 | null | null | null | null | null | null | null | null | 1517992.0 | 91978.0 | 10.401874923852803 | 0.63 | 86824.0 | 0.595 | 2.2e-2 | 44.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 144.59915773149126 | 19.008533008584813 | 13.318108690709515 | 1.1649064929558106 | 0.15075260497075194 | 0.10963825816054687 |
RUS | Europe | Russia | 2020-04-15 | 24490.0 | 3388.0 | 2259.714 | 198.0 | 28.0 | 19.286 | 1.97 | null | null | null | null | null | null | null | null | 1613413.0 | 95421.0 | 11.0557369383489 | 0.654 | 86956.0 | 0.596 | 2.6e-2 | 38.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 167.81505889698704 | 23.2159011654958 | 15.484444181312623 | 1.3567734447367674 | 0.191866951780957 | 0.1321552154302692 |
RUS | Europe | Russia | 2020-04-16 | 27938.0 | 3448.0 | 2543.857 | 232.0 | 34.0 | 22.286 | 1.93 | null | null | null | null | null | null | null | null | 1718019.0 | 104606.0 | 11.772538165420286 | 0.717 | 89315.0 | 0.612 | 2.8e-2 | 35.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 191.44210353058492 | 23.627044633597848 | 17.43150315559464 | 1.5897547433279295 | 0.2329812985911621 | 0.15271238883537172 |
RUS | Europe | Russia | 2020-04-17 | 32008.0 | 4070.0 | 2870.143 | 273.0 | 41.0 | 25.571 | 1.9 | null | null | null | null | null | null | null | null | 1831892.0 | 113873.0 | 12.552840501140032 | 0.78 | 92493.0 | 0.634 | 3.1e-2 | 32.2 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 219.331335450174 | 27.889231919589108 | 19.667342449480405 | 1.8707027798643308 | 0.2809480365364014 | 0.175222493713959 |
RUS | Europe | Russia | 2020-04-18 | 36793.0 | 4785.0 | 3315.571 | 313.0 | 40.0 | 29.571 | 1.86 | null | null | null | null | null | null | null | null | 1949813.0 | 117921.0 | 13.360881316174398 | 0.808 | 95867.0 | 0.657 | 3.5e-2 | 28.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 252.12002703131256 | 32.78869158113854 | 22.719589327976408 | 2.144798425265698 | 0.27409564540136716 | 0.2026320582540957 |
RUS | Europe | Russia | 2020-04-19 | 42853.0 | 6060.0 | 3869.0 | 361.0 | 48.0 | 33.0 | 1.8 | null | null | null | null | null | null | null | null | 2053319.0 | 103506.0 | 14.070144912997245 | 0.709 | 99047.0 | 0.679 | 3.9e-2 | 25.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 293.64551730961966 | 41.525490278307124 | 26.51190130144724 | 2.4737131997473387 | 0.3289147744816406 | 0.2261289074561279 |
RUS | Europe | Russia | 2020-04-20 | 47121.0 | 4268.0 | 4113.286 | 405.0 | 44.0 | 36.714 | 1.69 | null | null | null | null | null | null | null | null | 2142604.0 | 89285.0 | 14.681960655488771 | 0.612 | 102370.0 | 0.701 | 4.0e-2 | 24.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 322.89152267394553 | 29.246005364325878 | 28.185844522260197 | 2.7752184096888426 | 0.30150520994150387 | 0.25157868813164486 |
RUS | Europe | Russia | 2020-04-21 | 52763.0 | 5642.0 | 4523.0 | 456.0 | 51.0 | 40.857 | 1.63 | null | null | null | null | null | null | null | null | 2252539.0 | 109935.0 | 15.435278274918755 | 0.753 | 104935.0 | 0.719 | 4.3e-2 | 23.2 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 361.5527134578084 | 38.661190783862835 | 30.99336510375959 | 3.1246903575755853 | 0.34947194788674313 | 0.2799681446040914 |
RUS | Europe | Russia | 2020-04-22 | 57999.0 | 5236.0 | 4787.0 | 513.0 | 57.0 | 45.0 | 1.55 | null | null | null | null | null | null | null | null | 2401616.0 | 149077.0 | 16.456812188156245 | 1.022 | 112600.0 | 0.772 | 4.3e-2 | 23.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 397.4318334408473 | 35.87911998303896 | 32.80239636340862 | 3.515276652272534 | 0.39058629469694817 | 0.3083576010765381 |
RUS | Europe | Russia | 2020-04-23 | 62773.0 | 4774.0 | 4976.429 | 555.0 | 42.0 | 46.143 | 1.49 | null | null | null | null | null | null | null | null | 2552000.0 | 150384.0 | 17.487302176607226 | 1.03 | 119140.0 | 0.816 | 4.2e-2 | 23.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 430.1451487195005 | 32.71331527865317 | 34.100437963727 | 3.8030770799439697 | 0.28780042767143554 | 0.3161898841438821 |
RUS | Europe | Russia | 2020-04-24 | 68622.0 | 5849.0 | 5230.571 | 615.0 | 60.0 | 48.857 | 1.46 | null | null | null | null | null | null | null | null | 2721500.0 | 169500.0 | 18.64878247399552 | 1.161 | 127087.0 | 0.871 | 4.1e-2 | 24.3 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 470.2247844683154 | 40.079635748814916 | 35.84191835156686 | 4.21422054804602 | 0.4111434681020507 | 0.3347872736843649 |
RUS | Europe | Russia | 2020-04-25 | 74588.0 | 5966.0 | 5399.286 | 681.0 | 66.0 | 52.571 | 1.43 | null | null | null | null | null | null | null | null | 2877699.0 | 156199.0 | 19.71911911689672 | 1.07 | 132555.0 | 0.908 | 4.1e-2 | 24.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 511.1061499799293 | 40.881365511613915 | 36.99801952191416 | 4.666478362958276 | 0.4522578149122558 | 0.3602370543598818 |
RUS | Europe | Russia | 2020-04-26 | 80949.0 | 6361.0 | 5442.286 | 747.0 | 66.0 | 55.143 | 1.41 | null | null | null | null | null | null | null | null | 3019434.0 | 141735.0 | 20.69034277442079 | 0.971 | 138016.0 | 0.946 | 3.9e-2 | 25.4 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 554.6942099898818 | 43.588060009952414 | 37.29267234072062 | 5.118736177870532 | 0.4522578149122558 | 0.37786140435918975 |
RUS | Europe | Russia | 2020-04-27 | 87147.0 | 6198.0 | 5718.0 | 794.0 | 47.0 | 55.571 | 1.38 | null | null | null | null | null | null | null | null | 3139258.0 | 119824.0 | 21.511423689785126 | 0.821 | 142379.0 | 0.976 | 4.0e-2 | 24.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 597.1653302448236 | 42.471120254941845 | 39.18197251012544 | 5.440798561217139 | 0.3220623833466064 | 0.38079422776498434 |
RUS | Europe | Russia | 2020-04-28 | 93558.0 | 6411.0 | 5827.857 | 867.0 | 73.0 | 58.714 | 1.37 | null | null | null | null | null | null | null | null | 3303717.0 | 164459.0 | 22.638361083461714 | 1.127 | 150168.0 | 1.029 | 3.9e-2 | 25.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 641.0960098115278 | 43.93067956670412 | 39.934755643046884 | 5.941023114074633 | 0.5002245528574951 | 0.40233129310239674 |
RUS | Europe | Russia | 2020-04-29 | 99399.0 | 5841.0 | 5914.286 | 972.0 | 105.0 | 65.571 | 1.36 | null | null | null | null | null | null | null | null | 3498308.0 | 194591.0 | 23.97177472681915 | 1.333 | 156670.0 | 1.074 | 3.8e-2 | 26.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 681.1208264312625 | 40.024816619734636 | 40.52700095645675 | 6.660524183253222 | 0.7195010691785888 | 0.44931813911532614 |
RUS | Europe | Russia | 2020-04-30 | 106498.0 | 7099.0 | 6246.429 | 1073.0 | 101.0 | 74.0 | 1.38 | null | null | null | null | null | null | null | null | 3723807.0 | 225499.0 | 25.516982075378223 | 1.545 | 167401.0 | 1.147 | 3.7e-2 | 26.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 729.76595109887 | 48.64512466760764 | 42.802974705220414 | 7.352615687891674 | 0.692091504638452 | 0.5070769439925292 |
RUS | Europe | Russia | 2020-05-01 | 114431.0 | 7933.0 | 6544.143 | 1169.0 | 96.0 | 79.143 | 1.41 | null | null | null | null | null | null | null | null | 3945518.0 | 221711.0 | 27.036232566317786 | 1.519 | 174860.0 | 1.198 | 3.7e-2 | 26.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 784.1259699730962 | 54.36001887422614 | 44.843027479595975 | 8.010445236854956 | 0.6578295489632812 | 0.5423187916000101 |
RUS | Europe | Russia | 2020-05-02 | 124054.0 | 9623.0 | 7066.571 | 1222.0 | 53.0 | 77.286 | 1.43 | null | null | null | null | null | null | null | null | 4099999.0 | 154481.0 | 28.094796801249 | 1.059 | 174614.0 | 1.197 | 4.0e-2 | 24.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 850.06652986553 | 65.94055989243391 | 48.42290847548961 | 8.373621967011767 | 0.36317673015681146 | 0.5295939012622516 |
RUS | Europe | Russia | 2020-05-03 | 134687.0 | 10633.0 | 7676.857 | 1280.0 | 58.0 | 76.143 | 1.43 | null | null | null | null | null | null | null | null | 4303243.0 | 203244.0 | 29.487504185097887 | 1.393 | 183401.0 | 1.257 | 4.2e-2 | 23.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 922.9280048043485 | 72.86147493881842 | 52.60482685172508 | 8.77106065284375 | 0.3974386858319824 | 0.5217616181949075 |
RUS | Europe | Russia | 2020-05-04 | 145268.0 | 10581.0 | 8303.0 | 1356.0 | 76.0 | 80.286 | 1.41 | null | null | null | null | null | null | null | null | 4460357.0 | 157114.0 | 30.564110765887648 | 1.077 | 188728.0 | 1.293 | 4.4e-2 | 22.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 995.433155404145 | 72.50515059979664 | 56.895403594188785 | 9.291842379106345 | 0.5207817262625977 | 0.5501510746673541 |
RUS | Europe | Russia | 2020-05-05 | 155370.0 | 10102.0 | 8830.286 | 1451.0 | 95.0 | 83.429 | 1.37 | null | null | null | null | null | null | null | null | 4633731.0 | 173374.0 | 31.752137226533062 | 1.188 | 190002.0 | 1.302 | 4.6e-2 | 21.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1064.6560106502604 | 69.22285524611529 | 60.50857350621642 | 9.942819536934595 | 0.650977157828247 | 0.5716881400047665 |
RUS | Europe | Russia | 2020-05-06 | 165929.0 | 10559.0 | 9504.286 | 1537.0 | 86.0 | 80.714 | 1.34 | null | null | null | null | null | null | null | null | 4803192.0 | 169461.0 | 32.91335028066709 | 1.161 | 186412.0 | 1.277 | 5.1e-2 | 19.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1137.0104086450863 | 72.35439799482589 | 65.12708513122946 | 10.532125174547533 | 0.5893056376129394 | 0.5530838980731487 |
RUS | Europe | Russia | 2020-05-07 | 177160.0 | 11231.0 | 10094.571 | 1625.0 | 88.0 | 78.857 | 1.3 | null | null | null | null | null | null | null | null | 4987468.0 | 184276.0 | 34.17608150946665 | 1.263 | 180523.0 | 1.237 | 5.6e-2 | 17.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1213.9696134826552 | 76.95920483756888 | 69.1719488323731 | 11.135135594430542 | 0.6030104198830077 | 0.5403590077353903 |
RUS | Europe | Russia | 2020-05-08 | 187859.0 | 10699.0 | 10489.714 | 1723.0 | 98.0 | 79.143 | 1.26 | null | null | null | null | null | null | null | null | 5221964.0 | 234496.0 | 35.78293982106762 | 1.607 | 182349.0 | 1.25 | 5.8e-2 | 17.4 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1287.2833462363858 | 73.31373275373068 | 71.87962322264393 | 11.80666992566389 | 0.6715343312333495 | 0.5423187916000101 |
RUS | Europe | Russia | 2020-05-09 | 198676.0 | 10817.0 | 10660.286 | 1827.0 | 104.0 | 86.429 | 1.23 | null | null | null | null | null | null | null | null | 5448463.0 | 226499.0 | 37.33499956076173 | 1.552 | 192638.0 | 1.32 | 5.5e-2 | 18.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1361.4056611440506 | 74.12231490766472 | 73.04844928332898 | 12.519318603707445 | 0.7126486780435546 | 0.5922453134098691 |
RUS | Europe | Russia | 2020-05-10 | 209688.0 | 11012.0 | 10714.429 | 1915.0 | 88.0 | 90.714 | 1.2 | null | null | null | null | null | null | null | null | 5636763.0 | 188300.0 | 38.62530481148867 | 1.29 | 190503.0 | 1.305 | 5.6e-2 | 17.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1436.864192323047 | 75.45853117899638 | 73.41945829655313 | 13.122329023590453 | 0.6030104198830077 | 0.6216078094234905 |
RUS | Europe | Russia | 2020-05-11 | 221344.0 | 11656.0 | 10868.0 | 2009.0 | 94.0 | 93.286 | 1.16 | null | null | null | null | null | null | null | null | 5805404.0 | 168641.0 | 39.78089890489196 | 1.156 | 192150.0 | 1.317 | 5.7e-2 | 17.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1516.7356633930053 | 79.87147106995839 | 74.47178685555146 | 13.766453790283665 | 0.6441247666932128 | 0.6392321594227984 |
RUS | Europe | Russia | 2020-05-12 | 232243.0 | 10899.0 | 10981.857 | 2116.0 | 107.0 | 95.0 | 1.12 | null | null | null | null | null | null | null | null | 5982558.0 | 177154.0 | 40.99482740402781 | 1.214 | 192690.0 | 1.32 | 5.7e-2 | 17.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1591.419874373743 | 74.6842109807375 | 75.25197955301304 | 14.499659641732322 | 0.7332058514486571 | 0.650977157828247 |
RUS | Europe | Russia | 2020-05-13 | 242271.0 | 10028.0 | 10906.0 | 2212.0 | 96.0 | 96.429 | 1.09 | null | null | null | null | null | null | null | null | 6188102.0 | 205544.0 | 42.40329528748727 | 1.408 | 197844.0 | 1.356 | 5.5e-2 | 18.1 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1660.1356526758657 | 68.71577830212276 | 74.73217771868276 | 15.157489190695603 | 0.6578295489632812 | 0.6607692247602108 |
RUS | Europe | Russia | 2020-05-14 | 252245.0 | 9974.0 | 10726.429 | 2305.0 | 93.0 | 97.143 | 1.06 | null | null | null | null | null | null | null | null | 6413948.0 | 225846.0 | 43.9508804157702 | 1.548 | 203783.0 | 1.396 | 5.3e-2 | 19.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1728.4814018566965 | 68.34574918083091 | 73.50168699017352 | 15.794761566253783 | 0.6372723755581787 | 0.6656618320306253 |
RUS | Europe | Russia | 2020-05-15 | 262843.0 | 10598.0 | 10712.0 | 2418.0 | 113.0 | 99.286 | 1.03 | null | null | null | null | null | null | null | null | 6656340.0 | 242392.0 | 45.611845207773406 | 1.661 | 204911.0 | 1.404 | 5.2e-2 | 19.1 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1801.1030431057889 | 72.62164124909224 | 73.40281383848613 | 16.569081764512646 | 0.7743201982588622 | 0.6803465062330035 |
RUS | Europe | Russia | 2020-05-16 | 272043.0 | 9200.0 | 10481.0 | 2537.0 | 119.0 | 101.429 | 1.0 | null | null | null | null | null | null | null | null | 6916088.0 | 259748.0 | 47.39174010031626 | 1.78 | 209661.0 | 1.437 | 5.0e-2 | 20.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1864.1450415481033 | 63.041998442314444 | 71.81991148629324 | 17.384516309581713 | 0.8154345450690673 | 0.6950311804353817 |
RUS | Europe | Russia | 2020-05-17 | 281752.0 | 9709.0 | 10294.857 | 2631.0 | 94.0 | 102.286 | 0.99 | null | null | null | null | null | null | null | null | 7147014.0 | 230926.0 | 48.97413537556517 | 1.582 | 215750.0 | 1.478 | 4.8e-2 | 21.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1930.67490707815 | 66.52986553004685 | 70.54438684324457 | 18.028641076274926 | 0.6441247666932128 | 0.7009036796381061 |
RUS | Europe | Russia | 2020-05-18 | 290678.0 | 8926.0 | 9904.857 | 2722.0 | 91.0 | 101.857 | 0.97 | null | null | null | null | null | null | null | null | 7352316.0 | 205302.0 | 50.380944980369954 | 1.407 | 220987.0 | 1.514 | 4.5e-2 | 22.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1991.8393503494651 | 61.16444327131508 | 67.87195430058124 | 18.652208669563034 | 0.6235675932881103 | 0.6979640038411763 |
RUS | Europe | Russia | 2020-05-19 | 299941.0 | 9263.0 | 9671.143 | 2837.0 | 115.0 | 103.0 | 0.96 | null | null | null | null | null | null | null | null | 7578029.0 | 225713.0 | 51.92761874063193 | 1.547 | 227924.0 | 1.562 | 4.2e-2 | 23.6 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2055.313049433287 | 63.4736990838216 | 66.27045455884785 | 19.44023365009197 | 0.7880249805289306 | 0.7057962869085204 |
RUS | Europe | Russia | 2020-05-20 | 308705.0 | 8764.0 | 9490.571 | 2972.0 | 135.0 | 108.571 | 0.96 | null | null | null | null | null | null | null | null | 7840880.0 | 262851.0 | 53.728776602866795 | 1.801 | 236111.0 | 1.618 | 4.0e-2 | 24.9 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2115.3674053407262 | 60.05435590743954 | 65.03310458681246 | 20.36530645332158 | 0.9250728032296142 | 0.7439709579217959 |
RUS | Europe | Russia | 2020-05-21 | 317554.0 | 8849.0 | 9329.857 | 3099.0 | 127.0 | 113.429 | 0.95 | null | null | null | null | null | null | null | null | 8126626.0 | 285746.0 | 55.68681996013827 | 1.958 | 244668.0 | 1.677 | 3.8e-2 | 26.2 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2176.0042144946437 | 60.636809153917454 | 63.93182939793658 | 21.235560127470922 | 0.8702536741493407 | 0.7772598740557919 |
RUS | Europe | Russia | 2020-05-22 | 326448.0 | 8894.0 | 9086.429 | 3249.0 | 150.0 | 118.714 | 0.95 | null | null | null | null | null | null | null | null | 8402747.0 | 276121.0 | 57.57890905273504 | 1.892 | 249487.0 | 1.71 | 3.6e-2 | 27.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2236.9493812496376 | 60.94516675499399 | 62.26376552871748 | 22.263418797726047 | 1.027858670255127 | 0.8134747612044475 |
RUS | Europe | Russia | 2020-05-23 | 335882.0 | 9434.0 | 9119.857 | 3388.0 | 139.0 | 121.571 | 0.96 | null | null | null | null | null | null | null | null | 8685305.0 | 282558.0 | 59.51510698706803 | 1.936 | 252745.0 | 1.732 | 3.6e-2 | 27.7 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2301.59483921755 | 64.64545796791244 | 62.4928272595794 | 23.2159011654958 | 0.9524823677697509 | 0.8330520426772401 |
RUS | Europe | Russia | 2020-05-24 | 344481.0 | 8599.0 | 8961.286 | 3541.0 | 153.0 | 130.0 | 0.95 | null | null | null | null | null | null | null | null | 8945384.0 | 260079.0 | 61.297270021076585 | 1.782 | 256910.0 | 1.76 | 3.5e-2 | 28.7 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2360.518550587709 | 58.923711370158905 | 61.4062367449059 | 24.264317009156027 | 1.0484158436602293 | 0.8908108475544433 |
RUS | Europe | Russia | 2020-05-25 | 353427.0 | 8946.0 | 8964.143 | 3633.0 | 92.0 | 130.143 | 0.96 | null | null | null | null | null | null | null | null | 9160590.0 | 215206.0 | 62.771945707682754 | 1.475 | 258325.0 | 1.77 | 3.5e-2 | 28.8 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2421.820041681725 | 61.301491094015766 | 61.425814026378696 | 24.894736993579173 | 0.6304199844231445 | 0.8917907394867531 |
RUS | Europe | Russia | 2020-05-26 | 362342.0 | 8915.0 | 8914.429 | 3807.0 | 174.0 | 138.571 | 0.96 | null | null | null | null | null | null | null | null | 9415992.0 | 255402.0 | 64.52206010835275 | 1.75 | 262566.0 | 1.799 | 3.4e-2 | 29.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2482.9091086505546 | 61.089066968829705 | 61.0851542534916 | 26.08705305107512 | 1.1923160574959473 | 0.9495426919728212 |
RUS | Europe | Russia | 2020-05-27 | 370680.0 | 8338.0 | 8853.571 | 3968.0 | 161.0 | 142.286 | 0.95 | null | null | null | null | null | null | null | null | 9701280.0 | 285288.0 | 66.47696507048438 | 1.955 | 265771.0 | 1.821 | 3.3e-2 | 30.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2540.044345934469 | 57.13523728391498 | 60.66813143379569 | 27.190288023815622 | 1.1032349727405029 | 0.9749993250394732 |
RUS | Europe | Russia | 2020-05-28 | 379051.0 | 8371.0 | 8785.286 | 4142.0 | 174.0 | 149.0 | 0.96 | null | null | null | null | null | null | null | null | 1.0000061e7 | 298781.0 | 68.52432934620101 | 2.047 | 267634.0 | 1.834 | 3.3e-2 | 30.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2597.4057121258406 | 57.36136619137111 | 60.200215905139885 | 28.38260408131157 | 1.1923160574959473 | 1.0210062791200927 |
RUS | Europe | Russia | 2020-05-29 | 387623.0 | 8572.0 | 8739.286 | 4374.0 | 232.0 | 160.714 | 0.97 | null | null | null | null | null | null | null | null | 1.03162e7 | 316139.0 | 70.6906374272396 | 2.166 | 273350.0 | 1.873 | 3.2e-2 | 31.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2656.1444089353536 | 58.73869680951298 | 59.88500591292831 | 29.9723588246395 | 1.5897547433279295 | 1.101275188875883 |
RUS | Europe | Russia | 2020-05-30 | 396575.0 | 8952.0 | 8670.429 | 4555.0 | 181.0 | 166.714 | 0.97 | null | null | null | null | null | null | null | null | 1.0643124e7 | 326924.0 | 72.93084854666951 | 2.24 | 279688.0 | 1.917 | 3.1e-2 | 32.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2717.4870143761796 | 61.34260544082597 | 59.413170816543264 | 31.212641620080685 | 1.2402827954411864 | 1.142389535686088 |
RUS | Europe | Russia | 2020-05-31 | 405843.0 | 9268.0 | 8766.0 | 4693.0 | 138.0 | 164.571 | 0.98 | null | null | null | null | null | null | null | null | 1.0923108e7 | 279984.0 | 74.84940842622093 | 1.919 | 282532.0 | 1.936 | 3.1e-2 | 32.2 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2780.9949754156764 | 63.50796103949678 | 60.06806068970961 | 32.1582715967154 | 0.9456299766347167 | 1.1277048614837097 |
RUS | Europe | Russia | 2020-06-01 | 414328.0 | 8485.0 | 8700.143 | 4849.0 | 156.0 | 173.714 | 0.98 | null | null | null | null | null | null | null | null | 1.1151622e7 | 228514.0 | 76.41527573405212 | 1.566 | 284433.0 | 1.949 | 3.1e-2 | 32.7 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2839.1375141964413 | 58.14253878076501 | 59.61678276672967 | 33.227244613780734 | 1.068973017065332 | 1.1903562736313273 |
RUS | Europe | Russia | 2020-06-02 | 423186.0 | 8858.0 | 8692.0 | 5031.0 | 182.0 | 174.857 | 0.98 | null | null | null | null | null | null | null | null | 1.1426045e7 | 274423.0 | 78.29572946650161 | 1.88 | 287150.0 | 1.968 | 3.0e-2 | 33.0 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2899.8359948705743 | 60.69848067413276 | 59.56098374571708 | 34.47437980035695 | 1.2471351865762206 | 1.1981885566986716 |
RUS | Europe | Russia | 2020-06-03 | 431715.0 | 8529.0 | 8719.286 | 5208.0 | 177.0 | 177.143 | 0.98 | null | null | null | null | null | null | null | null | 1.1733051e7 | 307006.0 | 80.39945465930391 | 2.104 | 290253.0 | 1.989 | 3.0e-2 | 33.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2958.280038861281 | 58.44404399070652 | 59.74795809022763 | 35.68725303125801 | 1.2128732309010497 | 1.2138531228333596 |
RUS | Europe | Russia | 2020-06-04 | 440538.0 | 8823.0 | 8783.857 | 5376.0 | 168.0 | 176.286 | 0.99 | null | null | null | null | null | null | null | null | 1.2053663e7 | 320612.0 | 82.59641348588949 | 2.197 | 293372.0 | 2.01 | 3.0e-2 | 33.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3018.738685845687 | 60.45864698440656 | 60.19042383820791 | 36.83845474194375 | 1.1512017106857422 | 1.2079806236306354 |
RUS | Europe | Russia | 2020-06-05 | 449256.0 | 8718.0 | 8804.714 | 5520.0 | 144.0 | 163.714 | 0.99 | null | null | null | null | null | null | null | null | 1.2388968e7 | 335305.0 | 84.89405449542211 | 2.298 | 296110.0 | 2.029 | 3.0e-2 | 33.6 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3078.477831760915 | 59.73914591522797 | 60.333344160111324 | 37.82519906538867 | 0.9867443234449218 | 1.1218323622809856 |
RUS | Europe | Russia | 2020-06-06 | 458102.0 | 8846.0 | 8789.571 | 5717.0 | 197.0 | 166.0 | 0.99 | null | null | null | null | null | null | null | null | 1.2721549e7 | 332581.0 | 87.17302959150292 | 2.279 | 296918.0 | 2.035 | 3.0e-2 | 33.8 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3139.0940837414278 | 60.616251980512345 | 60.2295784011535 | 39.1751201189904 | 1.3499210536017332 | 1.1374969284156737 |
RUS | Europe | Russia | 2020-06-07 | 467073.0 | 8971.0 | 8747.143 | 5851.0 | 134.0 | 165.429 | 0.99 | null | null | null | null | null | null | null | null | 1.3016023e7 | 294474.0 | 89.19088061860097 | 2.018 | 298988.0 | 2.049 | 2.9e-2 | 34.2 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3200.566884613819 | 61.47280087239162 | 59.938845150076276 | 40.09334053108498 | 0.91822041209458 | 1.1335842130775693 |
RUS | Europe | Russia | 2020-06-08 | 476043.0 | 8970.0 | 8816.429 | 5963.0 | 112.0 | 159.143 | 0.99 | null | null | null | null | null | null | null | null | 1.3254678e7 | 238655.0 | 90.82623802493256 | 1.635 | 300437.0 | 2.059 | 2.9e-2 | 34.1 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3262.0328330950756 | 61.46594848125658 | 60.413619922258256 | 40.86080833820881 | 0.767467807123828 | 1.0905100824027445 |
RUS | Europe | Russia | 2020-06-09 | 484630.0 | 8587.0 | 8777.714 | 6134.0 | 171.0 | 157.571 | 0.98 | null | null | null | null | null | null | null | null | 1.3545303e7 | 290625.0 | 92.81771419855187 | 1.991 | 302751.0 | 2.075 | 2.9e-2 | 34.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3320.8743157716144 | 58.8414826765385 | 60.148329599465406 | 42.032567222299654 | 1.1717588840908446 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-06-10 | 493023.0 | 8393.0 | 8758.286 | 6350.0 | 216.0 | 163.143 | 0.98 | null | null | null | null | null | null | null | null | 1.3875097e7 | 329794.0 | 95.07759168053934 | 2.26 | 306007.0 | 2.097 | 2.9e-2 | 34.9 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3378.386434567956 | 57.512118796341866 | 60.01520134449396 | 43.51268370746704 | 1.4801164851673827 | 1.1179196469428812 |
RUS | Europe | Russia | 2020-06-11 | 501800.0 | 8777.0 | 8751.714 | 6522.0 | 172.0 | 163.714 | 0.98 | null | null | null | null | null | null | null | null | 1.4218674e7 | 343577.0 | 97.43191566954097 | 2.354 | 309287.0 | 2.119 | 2.8e-2 | 35.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3438.529871560151 | 60.14343699219499 | 59.970167429954515 | 44.69129498269292 | 1.1786112752258788 | 1.1218323622809856 |
RUS | Europe | Russia | 2020-06-12 | 510761.0 | 8961.0 | 8786.429 | 6705.0 | 183.0 | 169.286 | 0.98 | null | null | null | null | null | null | null | null | 1.4574117e7 | 355443.0 | 99.86755013175093 | 2.436 | 312164.0 | 2.139 | 2.8e-2 | 35.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3499.9341485211926 | 61.40427696104128 | 60.20804818820723 | 45.94528256040417 | 1.2539875777112548 | 1.1600138856853959 |
RUS | Europe | Russia | 2020-06-13 | 519458.0 | 8697.0 | 8765.143 | 6819.0 | 114.0 | 157.429 | 0.98 | null | null | null | null | null | null | null | null | 1.4880172e7 | 306055.0 | 101.96475870058381 | 2.097 | 308375.0 | 2.113 | 2.8e-2 | 35.2 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3559.529394222585 | 59.59524570139226 | 60.06218819050689 | 46.72645514979806 | 0.7811725893938963 | 1.0787650839972958 |
RUS | Europe | Russia | 2020-06-14 | 528267.0 | 8809.0 | 8742.0 | 6938.0 | 119.0 | 155.286 | 0.97 | null | null | null | null | null | null | null | null | 1.5161152e7 | 280980.0 | 103.89014356170571 | 1.925 | 306447.0 | 2.1 | 2.9e-2 | 35.1 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3619.8921077311006 | 60.36271350851608 | 59.903603302468795 | 47.54188969486713 | 0.8154345450690673 | 1.0640804097949177 |
RUS | Europe | Russia | 2020-06-15 | 536484.0 | 8217.0 | 8634.429 | 7081.0 | 143.0 | 159.714 | 0.96 | null | null | null | null | null | null | null | null | 1.5395417e7 | 234265.0 | 105.49541897095449 | 1.605 | 305820.0 | 2.096 | 2.8e-2 | 35.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3676.1982056876764 | 56.30609795657585 | 59.166484735682026 | 48.52178162717702 | 0.9798919323098875 | 1.094422797740849 |
RUS | Europe | Russia | 2020-06-16 | 544725.0 | 8241.0 | 8585.0 | 7274.0 | 193.0 | 162.857 | 0.95 | null | null | null | null | null | null | null | null | 1.5679724e7 | 284307.0 | 107.44360173738265 | 1.948 | 304917.0 | 2.089 | 2.8e-2 | 35.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3732.6687610314934 | 56.47055534381667 | 58.82777789426843 | 49.84429311623862 | 1.3225114890615965 | 1.1159598630782614 |
RUS | Europe | Russia | 2020-06-17 | 552549.0 | 7824.0 | 8503.714 | 7468.0 | 194.0 | 159.714 | 0.94 | null | null | null | null | null | null | null | null | 1.5991697e7 | 311973.0 | 109.58136275695269 | 2.138 | 302371.0 | 2.072 | 2.8e-2 | 35.6 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3786.2818692720007 | 53.613108240507415 | 58.27077442846604 | 51.17365699643525 | 1.3293638801966305 | 1.094422797740849 |
RUS | Europe | Russia | 2020-06-18 | 560321.0 | 7772.0 | 8360.143 | 7650.0 | 182.0 | 161.143 | 0.94 | null | null | null | null | null | null | null | null | 1.6321964e7 | 330267.0 | 111.844481419947 | 2.263 | 300470.0 | 2.059 | 2.8e-2 | 35.9 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3839.538653173486 | 53.25678390148564 | 57.28696978081805 | 52.42079218301147 | 1.2471351865762206 | 1.1042148646728127 |
RUS | Europe | Russia | 2020-06-19 | 568292.0 | 7971.0 | 8218.714 | 7831.0 | 181.0 | 160.857 | 0.94 | null | null | null | null | null | null | null | null | 1.6661287e7 | 339323.0 | 114.1696553370602 | 2.325 | 298167.0 | 2.043 | 2.8e-2 | 36.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3894.1590629108437 | 54.62040973735744 | 56.3178429549813 | 53.66107497845266 | 1.2402827954411864 | 1.102255080808193 |
RUS | Europe | Russia | 2020-06-20 | 576162.0 | 7870.0 | 8100.571 | 7992.0 | 161.0 | 167.571 | 0.93 | null | null | null | null | null | null | null | null | 1.6998453e7 | 337166.0 | 116.48004864649515 | 2.31 | 302612.0 | 2.074 | 2.7e-2 | 37.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3948.087381143562 | 53.928318232718986 | 55.50828090911496 | 54.764309951193155 | 1.1032349727405029 | 1.1482620348888124 |
RUS | Europe | Russia | 2020-06-21 | 583879.0 | 7717.0 | 7944.571 | 8101.0 | 109.0 | 166.143 | 0.93 | null | null | null | null | null | null | null | null | 1.7289691e7 | 291238.0 | 118.47572533588023 | 1.996 | 304077.0 | 2.084 | 2.6e-2 | 38.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4000.9672835326214 | 52.87990238905876 | 54.43930789204962 | 55.51122058491189 | 0.7469106337187255 | 1.1384768203479836 |
RUS | Europe | Russia | 2020-06-22 | 591465.0 | 7586.0 | 7854.429 | 8196.0 | 95.0 | 159.286 | 0.92 | null | null | null | null | null | null | null | null | 1.7522752e7 | 233061.0 | 120.07275046620244 | 1.597 | 303905.0 | 2.082 | 2.6e-2 | 38.7 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4052.949522682991 | 51.98223915036929 | 53.82161965035537 | 56.16219774274013 | 0.650977157828247 | 1.0914899743350541 |
RUS | Europe | Russia | 2020-06-23 | 598878.0 | 7413.0 | 7736.143 | 8349.0 | 153.0 | 153.571 | 0.92 | null | null | null | null | null | null | null | null | 1.7803955e7 | 281203.0 | 121.99966341054746 | 1.927 | 303462.0 | 2.079 | 2.5e-2 | 39.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4103.746298166999 | 50.79677548400837 | 53.01107771255672 | 57.21061358640036 | 1.0484158436602293 | 1.052328558998334 |
RUS | Europe | Russia | 2020-06-24 | 606043.0 | 7165.0 | 7642.0 | 8503.0 | 154.0 | 147.857 | 0.91 | null | null | null | null | null | null | null | null | 1.811583e7 | 311875.0 | 124.13675289578623 | 2.137 | 303448.0 | 2.079 | 2.5e-2 | 39.7 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4152.843680649519 | 49.09738248251989 | 52.3659730539312 | 58.26588182119563 | 1.0552682347952635 | 1.0131739960527486 |
RUS | Europe | Russia | 2020-06-25 | 613148.0 | 7105.0 | 7546.714 | 8594.0 | 91.0 | 134.857 | 0.91 | null | null | null | null | null | null | null | null | 1.8402719e7 | 286889.0 | 126.10262853612505 | 1.966 | 297251.0 | 2.037 | 2.5e-2 | 39.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4201.529919663937 | 48.68623901441784 | 51.71303611223833 | 58.889449414483735 | 0.6235675932881103 | 0.9240929112973043 |
RUS | Europe | Russia | 2020-06-26 | 619936.0 | 6788.0 | 7377.714 | 8770.0 | 176.0 | 134.143 | 0.91 | null | null | null | null | null | null | null | null | 1.8707946e7 | 305227.0 | 128.19416332509815 | 2.092 | 292380.0 | 2.004 | 2.5e-2 | 39.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4248.043950688549 | 46.51403102461201 | 50.554982010417554 | 60.095470254249754 | 1.2060208397660155 | 0.9192003040268899 |
RUS | Europe | Russia | 2020-06-27 | 626779.0 | 6843.0 | 7231.0 | 8958.0 | 188.0 | 138.0 | 0.91 | null | null | null | null | null | null | null | null | 1.9044954e7 | 337008.0 | 130.50347395673373 | 2.309 | 292357.0 | 2.003 | 2.5e-2 | 40.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4294.934863225588 | 46.890912537038886 | 49.54964029743215 | 61.38371978763617 | 1.2882495333864257 | 0.9456299766347167 |
RUS | Europe | Russia | 2020-06-28 | 633563.0 | 6784.0 | 7097.714 | 9060.0 | 102.0 | 137.0 | 0.91 | null | null | null | null | null | null | null | null | 1.9334442e7 | 289488.0 | 132.4871589616325 | 1.984 | 292107.0 | 2.002 | 2.4e-2 | 41.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4341.421484685659 | 46.486621460071866 | 48.636312492607985 | 62.08266368340967 | 0.6989438957734863 | 0.9387775854996826 |
RUS | Europe | Russia | 2020-06-29 | 640246.0 | 6683.0 | 6968.714 | 9152.0 | 92.0 | 136.571 | 0.91 | null | null | null | null | null | null | null | null | 1.956244e7 | 227998.0 | 134.049490435638 | 1.562 | 291384.0 | 1.997 | 2.4e-2 | 41.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4387.216014641093 | 45.79452995543342 | 47.75235403618858 | 62.7130836678328 | 0.6304199844231445 | 0.9358379097027528 |
RUS | Europe | Russia | 2020-06-30 | 646929.0 | 6683.0 | 6864.429 | 9306.0 | 154.0 | 136.714 | 0.92 | null | null | null | null | null | null | null | null | 1.9852167e7 | 289727.0 | 136.03481316201808 | 1.985 | 292602.0 | 2.005 | 2.3e-2 | 42.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4433.010544596526 | 45.79452995543342 | 47.03775242667154 | 63.76835190262807 | 1.0552682347952635 | 0.9368178016350627 |
RUS | Europe | Russia | 2020-07-01 | 653479.0 | 6550.0 | 6776.571 | 9521.0 | 215.0 | 145.429 | 0.92 | null | null | null | null | null | null | null | null | 2.0168904e7 | 316737.0 | 138.2052189729554 | 2.17 | 293296.0 | 2.01 | 2.3e-2 | 43.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4477.893706531 | 44.88316193447387 | 46.435715046329705 | 65.24161599666041 | 1.4732640940323485 | 0.9965363903768856 |
RUS | Europe | Russia | 2020-07-02 | 660231.0 | 6752.0 | 6726.143 | 9668.0 | 147.0 | 153.429 | 0.93 | null | null | null | null | null | null | null | null | 2.045111e7 | 282206.0 | 140.13900486560885 | 1.934 | 292627.0 | 2.005 | 2.3e-2 | 43.5 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4524.161051474751 | 46.26734494375078 | 46.0901626661722 | 66.24891749351043 | 1.0073014968500242 | 1.051355519457159 |
RUS | Europe | Russia | 2020-07-03 | 666941.0 | 6710.0 | 6715.0 | 9844.0 | 176.0 | 153.429 | 0.94 | null | null | null | null | null | null | null | null | 2.0752406e7 | 301296.0 | 142.20360290503012 | 2.065 | 292066.0 | 2.001 | 2.3e-2 | 43.5 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4570.140595990831 | 45.97954451607934 | 46.01380647175451 | 67.45493833327646 | 1.2060208397660155 | 1.051355519457159 |
RUS | Europe | Russia | 2020-07-04 | 673564.0 | 6623.0 | 6683.571 | 10011.0 | 167.0 | 150.429 | 0.94 | null | null | null | null | null | null | null | null | 2.0752406e7 | null | 142.20360290503012 | null | 285564.0 | 1.957 | 2.3e-2 | 42.7 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4615.523982478162 | 45.383386487331364 | 45.79844267077152 | 68.59928765282716 | 1.144349319550708 | 1.0307983460520567 |
RUS | Europe | Russia | 2020-07-05 | 680283.0 | 6719.0 | 6674.286 | 10145.0 | 134.0 | 155.0 | 0.95 | null | null | null | null | null | null | null | null | 2.1335394e7 | null | 146.1984647080614 | null | 285850.0 | 1.959 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4661.565198514456 | 46.04121603629465 | 45.73481821908273 | 69.51750806492176 | 0.91822041209458 | 1.0621206259302978 |
RUS | Europe | Russia | 2020-07-06 | 686852.0 | 6569.0 | 6658.0 | 10280.0 | 135.0 | 161.143 | 0.95 | null | null | null | null | null | null | null | null | 2.1537771e7 | 202377.0 | 147.58523106879622 | 1.387 | 282190.0 | 1.934 | 2.4e-2 | 42.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4706.5785558804955 | 45.01335736603952 | 45.62322017705756 | 70.44258086815137 | 0.9250728032296142 | 1.1042148646728127 |
RUS | Europe | Russia | 2020-07-07 | 693215.0 | 6363.0 | 6612.286 | 10478.0 | 198.0 | 167.429 | 0.95 | null | null | null | null | null | null | null | null | 2.1790705e7 | 252934.0 | 149.31843376814496 | 1.733 | 276934.0 | 1.898 | 2.4e-2 | 41.9 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4750.180320672718 | 43.60176479222248 | 45.30996996871061 | 71.79935431288813 | 1.3567734447367674 | 1.1472889953476375 |
RUS | Europe | Russia | 2020-07-08 | 699749.0 | 6534.0 | 6610.0 | 10650.0 | 172.0 | 161.286 | 0.96 | null | null | null | null | null | null | null | null | 2.2079294e7 | 288589.0 | 151.29595847341335 | 1.978 | 272913.0 | 1.87 | 2.4e-2 | 41.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4794.953844349032 | 44.773523676313324 | 45.29430540257593 | 72.97796558811402 | 1.1786112752258788 | 1.1051947566051226 |
RUS | Europe | Russia | 2020-07-09 | 706240.0 | 6491.0 | 6572.714 | 10826.0 | 176.0 | 165.429 | 0.96 | null | null | null | null | null | null | null | null | 2.2388195e7 | 308901.0 | 153.41266894741653 | 2.117 | 276726.0 | 1.896 | 2.4e-2 | 42.1 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4839.432715206538 | 44.478870857506855 | 45.03880714671504 | 74.18398642788001 | 1.2060208397660155 | 1.1335842130775693 |
RUS | Europe | Russia | 2020-07-10 | 712863.0 | 6623.0 | 6560.286 | 11000.0 | 174.0 | 165.143 | 0.96 | null | null | null | null | null | null | null | null | 2.2708416e7 | 320221.0 | 155.60694848906832 | 2.194 | 279430.0 | 1.915 | 2.3e-2 | 42.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4884.816101693869 | 45.383386487331364 | 44.95364562968883 | 75.37630248537597 | 1.1923160574959473 | 1.1316244292129494 |
RUS | Europe | Russia | 2020-07-11 | 719449.0 | 6586.0 | 6555.0 | 11188.0 | 188.0 | 168.143 | 0.97 | null | null | null | null | null | null | null | null | 2.3031056e7 | 322640.0 | 157.81780396487574 | 2.211 | 283879.0 | 1.945 | 2.3e-2 | 43.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4929.945949709205 | 45.12984801533511 | 44.917423890149045 | 76.6645520187624 | 1.2882495333864257 | 1.1521816026180518 |
RUS | Europe | Russia | 2020-07-12 | 726036.0 | 6587.0 | 6536.143 | 11318.0 | 130.0 | 167.571 | 0.97 | null | null | null | null | null | null | null | null | 2.329263e7 | 261574.0 | 159.61021132363118 | 1.792 | 279605.0 | 1.916 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4975.082650115675 | 45.13670040647013 | 44.7882083505157 | 77.55536286631684 | 0.8908108475544433 | 1.1482620348888124 |
RUS | Europe | Russia | 2020-07-13 | 732547.0 | 6511.0 | 6527.857 | 11422.0 | 104.0 | 163.143 | 0.96 | null | null | null | null | null | null | null | null | 2.3495752e7 | 203122.0 | 161.0020827157616 | 1.392 | 279712.0 | 1.917 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5019.698568795883 | 44.61591868020754 | 44.73142943757081 | 78.26801154436039 | 0.7126486780435546 | 1.1179196469428812 |
RUS | Europe | Russia | 2020-07-14 | 738787.0 | 6240.0 | 6510.286 | 11597.0 | 175.0 | 159.857 | 0.96 | null | null | null | null | null | null | null | null | 2.3754645e7 | 258893.0 | 162.77611881388398 | 1.774 | 280563.0 | 1.923 | 2.3e-2 | 43.1 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5062.457489478496 | 42.75892068261328 | 44.61102607293713 | 79.46717999299138 | 1.1991684486309813 | 1.0954026896731588 |
RUS | Europe | Russia | 2020-07-15 | 745197.0 | 6410.0 | 6492.571 | 11753.0 | 156.0 | 157.571 | 0.96 | null | null | null | null | null | null | null | null | 2.4053516e7 | 298871.0 | 164.82409980480278 | 2.048 | 282032.0 | 1.933 | 2.3e-2 | 43.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5106.381316654065 | 43.92382717556909 | 44.48963596397999 | 80.53615301005671 | 1.068973017065332 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-07-16 | 751612.0 | 6415.0 | 6481.714 | 11920.0 | 167.0 | 156.286 | 0.96 | null | null | null | null | null | null | null | null | 2.4364568e7 | 311052.0 | 166.95554977213746 | 2.131 | 282339.0 | 1.935 | 2.3e-2 | 43.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5150.339405785309 | 43.95808913124426 | 44.41523955342693 | 81.6805023296074 | 1.144349319550708 | 1.0709328009299517 |
RUS | Europe | Russia | 2020-07-17 | 758001.0 | 6389.0 | 6448.286 | 12106.0 | 186.0 | 158.0 | 0.96 | null | null | null | null | null | null | null | null | 2.467693e7 | 312362.0 | 169.095976371859 | 2.14 | 281216.0 | 1.927 | 2.3e-2 | 43.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5194.119332747043 | 43.779926961733366 | 44.18617782256501 | 82.95504708072377 | 1.2745447511163575 | 1.0826777993354004 |
RUS | Europe | Russia | 2020-07-18 | 764215.0 | 6214.0 | 6395.143 | 12228.0 | 122.0 | 148.571 | 0.95 | null | null | null | null | null | null | null | null | 2.499174e7 | 314810.0 | 171.2531776250791 | 2.157 | 280098.0 | 1.919 | 2.3e-2 | 43.8 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5236.700091260145 | 42.58075851310239 | 43.82202120047589 | 83.79103879919795 | 0.8359917184741699 | 1.0180666033231631 |
RUS | Europe | Russia | 2020-07-19 | 770311.0 | 6096.0 | 6325.0 | 12323.0 | 95.0 | 143.571 | 0.95 | null | null | null | null | null | null | null | null | 2.5251614e7 | 259874.0 | 173.03393591890497 | 1.781 | 279855.0 | 1.918 | 2.3e-2 | 44.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5278.472267619313 | 41.772176359168355 | 43.341373929091176 | 84.44201595702619 | 0.650977157828247 | 0.9838046476479921 |
RUS | Europe | Russia | 2020-07-20 | 776212.0 | 5901.0 | 6237.857 | 12408.0 | 85.0 | 140.857 | 0.94 | null | null | null | null | null | null | null | null | 2.5449167e7 | 197553.0 | 174.38764634480438 | 1.354 | 279059.0 | 1.912 | 2.2e-2 | 44.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5318.90822770715 | 40.43596008783669 | 42.744236008410894 | 85.0244692035041 | 0.5824532464779053 | 0.9652072581075094 |
RUS | Europe | Russia | 2020-07-21 | 782040.0 | 5828.0 | 6179.0 | 12561.0 | 153.0 | 137.714 | 0.94 | null | null | null | null | null | null | null | null | 2.5704372e7 | 255205.0 | 176.13641082442078 | 1.749 | 278532.0 | 1.909 | 2.2e-2 | 45.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5358.84396324213 | 39.935735534979194 | 42.34092482337619 | 86.07288504716432 | 1.0484158436602293 | 0.9436701927700969 |
RUS | Europe | Russia | 2020-07-22 | 787890.0 | 5850.0 | 6099.0 | 12726.0 | 165.0 | 139.0 | 0.94 | null | null | null | null | null | null | null | null | 2.6000908e7 | 296536.0 | 178.16839148203928 | 2.032 | 278199.0 | 1.906 | 2.2e-2 | 45.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5398.930451382079 | 40.08648813994994 | 41.79273353257346 | 87.20352958444496 | 1.1306445372806395 | 0.9524823677697509 |
RUS | Europe | Russia | 2020-07-23 | 793720.0 | 5830.0 | 6015.429 | 12873.0 | 147.0 | 136.143 | 0.94 | null | null | null | null | null | null | null | null | 2.6300652e7 | 299744.0 | 180.22235461041893 | 2.054 | 276583.0 | 1.895 | 2.2e-2 | 46.0 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5438.879891699329 | 39.94944031724926 | 41.22007235302752 | 88.21083108129498 | 1.0073014968500242 | 0.9329050862969582 |
RUS | Europe | Russia | 2020-07-24 | 799499.0 | 5779.0 | 5928.286 | 13026.0 | 153.0 | 131.429 | 0.94 | null | null | null | null | null | null | null | null | 2.6610623e7 | 309971.0 | 182.34639714293664 | 2.124 | 276242.0 | 1.893 | 2.1e-2 | 46.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5478.479860068691 | 39.59996836936252 | 40.62293443234723 | 89.25924692495522 | 1.0484158436602293 | 0.9006029144864072 |
RUS | Europe | Russia | 2020-07-25 | 805332.0 | 5833.0 | 5873.857 | 13172.0 | 146.0 | 134.857 | 0.94 | null | null | null | null | null | null | null | null | 2.6902291e7 | 291668.0 | 184.34502036050978 | 1.999 | 272936.0 | 1.87 | 2.2e-2 | 46.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5518.449857559345 | 39.96999749065437 | 40.249965635258455 | 90.25969603067021 | 1.0004491057149902 | 0.9240929112973043 |
RUS | Europe | Russia | 2020-07-26 | 811073.0 | 5741.0 | 5823.143 | 13249.0 | 77.0 | 132.286 | 0.94 | null | null | null | null | null | null | null | null | 2.7141966e7 | 239675.0 | 185.98736720579907 | 1.642 | 270050.0 | 1.85 | 2.2e-2 | 46.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5557.789435065577 | 39.33957750623122 | 39.902453471236335 | 90.78733014806784 | 0.5276341173976318 | 0.9064754136891314 |
RUS | Europe | Russia | 2020-07-27 | 816680.0 | 5607.0 | 5781.143 | 13334.0 | 85.0 | 132.286 | 0.94 | null | null | null | null | null | null | null | null | 2.732757e7 | 185604.0 | 187.25919841002596 | 1.272 | 268343.0 | 1.839 | 2.2e-2 | 46.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5596.2107921597135 | 38.42135709413664 | 39.6146530435649 | 91.36978339454573 | 0.5824532464779053 | 0.9064754136891314 |
RUS | Europe | Russia | 2020-07-28 | 822060.0 | 5380.0 | 5717.143 | 13483.0 | 149.0 | 131.714 | 0.93 | null | null | null | null | null | null | null | null | 2.7569646e7 | 242076.0 | 188.91799784643052 | 1.659 | 266468.0 | 1.826 | 2.1e-2 | 46.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5633.076656466197 | 36.86586430648388 | 39.17610001092271 | 92.39078967366584 | 1.0210062791200927 | 0.9025558459598919 |
RUS | Europe | Russia | 2020-07-29 | 827509.0 | 5449.0 | 5659.857 | 13650.0 | 167.0 | 132.0 | 0.94 | null | null | null | null | null | null | null | null | 2.785785e7 | 288204.0 | 190.8928843811119 | 1.975 | 265277.0 | 1.818 | 2.1e-2 | 46.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5670.4153357609985 | 37.338679294801246 | 38.783553932361144 | 93.53513899321655 | 1.144349319550708 | 0.9045156298245116 |
RUS | Europe | Russia | 2020-07-30 | 832993.0 | 5484.0 | 5610.429 | 13778.0 | 128.0 | 129.286 | 0.94 | null | null | null | null | null | null | null | null | 2.8161461e7 | 303611.0 | 192.97334570601078 | 2.08 | 265830.0 | 1.822 | 2.1e-2 | 47.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5707.993848745526 | 37.57851298452744 | 38.44485394333868 | 94.41224505850091 | 0.877106065284375 | 0.8859182402840289 |
RUS | Europe | Russia | 2020-07-31 | 838461.0 | 5468.0 | 5566.0 | 13939.0 | 161.0 | 130.429 | 0.94 | null | null | null | null | null | null | null | null | 2.8478012e7 | 316551.0 | 195.14247697219696 | 2.169 | 266770.0 | 1.828 | 2.1e-2 | 47.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5745.462723471893 | 37.46887472636689 | 38.140409057600245 | 95.51548003124142 | 1.1032349727405029 | 0.893750523351373 |
RUS | Europe | Russia | 2020-08-01 | 843890.0 | 5429.0 | 5508.286 | 14034.0 | 95.0 | 123.143 | 0.94 | null | null | null | null | null | null | null | null | 2.879326e7 | 315248.0 | 197.30267957273423 | 2.16 | 270138.0 | 1.851 | 2.0e-2 | 49.0 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5782.664354943993 | 37.20163147210056 | 37.74493015563288 | 96.16645718906967 | 0.650977157828247 | 0.8438240015415139 |
RUS | Europe | Russia | 2020-08-02 | 849277.0 | 5387.0 | 5457.714 | 14104.0 | 70.0 | 122.143 | 0.94 | null | null | null | null | null | null | null | null | 2.90299e7 | 236640.0 | 198.92422941092872 | 1.622 | 269705.0 | 1.848 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5819.578185988422 | 36.91383104442912 | 37.398391031151924 | 96.64612456852207 | 0.4796673794523925 | 0.8369716104064797 |
RUS | Europe | Russia | 2020-08-03 | 854641.0 | 5364.0 | 5423.0 | 14183.0 | 79.0 | 121.286 | 0.94 | null | null | null | null | null | null | null | null | 2.9201862e7 | 171962.0 | 200.10258029529146 | 1.178 | 267756.0 | 1.835 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5856.3344120367465 | 36.756226048323335 | 37.160517125290355 | 97.18746346818976 | 0.5413388996677002 | 0.8310991112037555 |
RUS | Europe | Russia | 2020-08-04 | 859762.0 | 5121.0 | 5386.0 | 14327.0 | 144.0 | 120.571 | 0.94 | null | null | null | null | null | null | null | null | 2.943389e7 | 232028.0 | 201.69252690557119 | 1.59 | 266321.0 | 1.825 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5891.4255070392555 | 35.09109500251003 | 36.90697865329409 | 98.17420779163469 | 0.9867443234449218 | 0.826199651542206 |
RUS | Europe | Russia | 2020-08-05 | 864948.0 | 5186.0 | 5348.429 | 14465.0 | 138.0 | 116.429 | 0.94 | null | null | null | null | null | null | null | null | 2.9716907e7 | 283017.0 | 203.63187008743515 | 1.939 | 265580.0 | 1.82 | 2.0e-2 | 49.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5926.962007465543 | 35.536500426287255 | 36.64952746595972 | 99.1198377682694 | 0.9456299766347167 | 0.7978170474608944 |
RUS | Europe | Russia | 2020-08-06 | 870187.0 | 5239.0 | 5313.429 | 14579.0 | 114.0 | 114.429 | 0.95 | null | null | null | null | null | null | null | null | 3.0038123e7 | 321216.0 | 205.83296775826628 | 2.201 | 268095.0 | 1.837 | 2.0e-2 | 50.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5962.8616846219875 | 35.89967715644406 | 36.409693776233524 | 99.9010103576633 | 0.7811725893938963 | 0.7841122651908261 |
RUS | Europe | Russia | 2020-08-07 | 875378.0 | 5191.0 | 5273.857 | 14698.0 | 119.0 | 108.429 | 0.95 | null | null | null | null | null | null | null | null | 3.0341344e7 | 303221.0 | 207.9107566506225 | 2.078 | 266190.0 | 1.824 | 2.0e-2 | 50.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5998.432447003949 | 35.570762381962425 | 36.13853095423795 | 100.71644490273236 | 0.8154345450690673 | 0.742997918380621 |
RUS | Europe | Russia | 2020-08-08 | 880563.0 | 5185.0 | 5239.0 | 14827.0 | 129.0 | 113.286 | 0.95 | null | null | null | null | null | null | null | null | 3.064002e7 | 298676.0 | 209.95740142526995 | 2.047 | 263823.0 | 1.808 | 2.0e-2 | 50.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6033.962095039102 | 35.52964803515222 | 35.89967715644406 | 101.60040335915177 | 0.8839584564194091 | 0.776279982123482 |
RUS | Europe | Russia | 2020-08-09 | 885718.0 | 5155.0 | 5205.857 | 14903.0 | 76.0 | 114.143 | 0.95 | null | null | null | null | null | null | null | null | 3.088616e7 | 246140.0 | 211.64404897924726 | 1.687 | 265180.0 | 1.817 | 2.0e-2 | 50.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6069.286171340203 | 35.324076301101194 | 35.672568357055624 | 102.12118508541437 | 0.5207817262625977 | 0.7821524813262063 |
RUS | Europe | Russia | 2020-08-10 | 890799.0 | 5081.0 | 5165.429 | 14973.0 | 70.0 | 112.857 | 0.95 | null | null | null | null | null | null | null | null | 3.1063187e7 | 177027.0 | 212.85710722470895 | 1.213 | 265904.0 | 1.822 | 1.9e-2 | 51.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6104.103170697312 | 34.816999357108664 | 35.395539888248464 | 102.60085246486676 | 0.4796673794523925 | 0.7733403063265524 |
RUS | Europe | Russia | 2020-08-11 | 895691.0 | 4892.0 | 5132.714 | 15103.0 | 130.0 | 110.857 | 0.95 | null | null | null | null | null | null | null | null | 3.1307764e7 | 244577.0 | 214.53304449134222 | 1.676 | 267696.0 | 1.834 | 1.9e-2 | 52.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6137.625068129899 | 33.5218974325872 | 35.17136391226582 | 103.4916633124212 | 0.8908108475544433 | 0.7596355240564839 |
RUS | Europe | Russia | 2020-08-12 | 900745.0 | 5054.0 | 5113.857 | 15231.0 | 128.0 | 109.429 | 0.95 | null | null | null | null | null | null | null | null | 3.1598302e7 | 290538.0 | 216.5239245069328 | 1.991 | 268771.0 | 1.842 | 1.9e-2 | 52.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6172.257052926361 | 34.63198479646274 | 35.04214837263248 | 104.36876937770558 | 0.877106065284375 | 0.7498503095156552 |
RUS | Europe | Russia | 2020-08-13 | 905762.0 | 5017.0 | 5082.143 | 15353.0 | 122.0 | 110.571 | 0.96 | null | null | null | null | null | null | null | null | 3.1903055e7 | 304753.0 | 218.61221126250786 | 2.088 | 266419.0 | 1.826 | 1.9e-2 | 52.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6206.635499250829 | 34.37844632446647 | 34.82483164017601 | 105.20476109617975 | 0.8359917184741699 | 0.7576757401918642 |
RUS | Europe | Russia | 2020-08-14 | 910778.0 | 5016.0 | 5057.143 | 15467.0 | 114.0 | 109.857 | 0.96 | null | null | null | null | null | null | null | null | 3.2221546e7 | 318491.0 | 220.794636167496 | 2.182 | 268600.0 | 1.841 | 1.9e-2 | 53.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6241.00709318416 | 34.37159393333145 | 34.65352186180015 | 105.98593368557366 | 0.7811725893938963 | 0.7527831329214498 |
RUS | Europe | Russia | 2020-08-15 | 915808.0 | 5030.0 | 5035.0 | 15585.0 | 118.0 | 108.286 | 0.96 | null | null | null | null | null | null | null | null | 3.2533818e7 | 312272.0 | 222.9344460520154 | 2.14 | 270543.0 | 1.854 | 1.9e-2 | 53.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6275.474620593381 | 34.46752740922192 | 34.50178936489709 | 106.79451583950768 | 0.8085821539340331 | 0.7420180264483112 |
RUS | Europe | Russia | 2020-08-16 | 920719.0 | 4911.0 | 5000.143 | 15653.0 | 68.0 | 107.143 | 0.96 | null | null | null | null | null | null | null | null | 3.2784478e7 | 250660.0 | 224.65206641392308 | 1.718 | 271188.0 | 1.858 | 1.8e-2 | 54.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6309.126713457535 | 33.652092864152856 | 34.262935567103206 | 107.26047843669001 | 0.4659625971823242 | 0.7341857433809671 |
RUS | Europe | Russia | 2020-08-17 | 925558.0 | 4839.0 | 4965.571 | 15707.0 | 54.0 | 104.857 | 0.96 | null | null | null | null | null | null | null | null | 3.2968759e7 | 184281.0 | 225.91483190467832 | 1.263 | 272225.0 | 1.865 | 1.8e-2 | 54.8 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6342.285434159964 | 33.15872070243039 | 34.0260347007828 | 107.63050755798184 | 0.3700291212918457 | 0.7185211772462788 |
RUS | Europe | Russia | 2020-08-18 | 930276.0 | 4718.0 | 4940.714 | 15836.0 | 129.0 | 104.714 | 0.96 | null | null | null | null | null | null | null | null | 3.3217468e7 | 248709.0 | 227.61908325148153 | 1.704 | 272815.0 | 1.869 | 1.8e-2 | 55.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6374.615015535056 | 32.32958137509126 | 33.855704814339255 | 108.51446601440126 | 0.8839584564194091 | 0.717541285313969 |
RUS | Europe | Russia | 2020-08-19 | 935066.0 | 4790.0 | 4903.0 | 15951.0 | 115.0 | 102.857 | 0.96 | null | null | null | null | null | null | null | null | 3.3509273e7 | 291805.0 | 229.61864524664017 | 2.0 | 272996.0 | 1.871 | 1.8e-2 | 55.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6407.43796907187 | 32.82295353681371 | 33.59727373507258 | 109.30249099493018 | 0.7880249805289306 | 0.7048163949762105 |
RUS | Europe | Russia | 2020-08-20 | 939833.0 | 4767.0 | 4867.286 | 16058.0 | 107.0 | 100.714 | 0.96 | null | null | null | null | null | null | null | null | 3.3814105e7 | 304832.0 | 231.7074733411149 | 2.089 | 273007.0 | 1.871 | 1.8e-2 | 56.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6440.1033176125775 | 32.66534854070793 | 33.35254743807597 | 110.03569684637884 | 0.7332058514486571 | 0.6901317207738323 |
RUS | Europe | Russia | 2020-08-21 | 944671.0 | 4838.0 | 4841.857 | 16148.0 | 90.0 | 97.286 | 0.97 | null | null | null | null | null | null | null | null | 3.3814105e7 | null | 231.7074733411149 | null | 272755.0 | 1.869 | 1.8e-2 | 56.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6473.255185923873 | 33.15186831129536 | 33.178297983903185 | 110.65241204853193 | 0.6167152021530762 | 0.6666417239629352 |
RUS | Europe | Russia | 2020-08-22 | 949531.0 | 4860.0 | 4817.571 | 16268.0 | 120.0 | 97.571 | 0.97 | null | null | null | null | null | null | null | null | 3.444756e7 | null | 236.04815476755797 | null | 273392.0 | 1.873 | 1.8e-2 | 56.7 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6506.557806840139 | 33.30262091626611 | 33.01188081279775 | 111.47469898473602 | 0.8222869362041014 | 0.6685946554364199 |
RUS | Europe | Russia | 2020-08-23 | 954328.0 | 4797.0 | 4801.286 | 16341.0 | 73.0 | 98.286 | 0.97 | null | null | null | null | null | null | null | null | 3.4695406e7 | 247846.0 | 237.74649250081168 | 1.698 | 272990.0 | 1.871 | 1.8e-2 | 56.9 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6539.428727114898 | 32.87092027475895 | 32.900289623163715 | 111.97492353759353 | 0.5002245528574951 | 0.6734941150979693 |
RUS | Europe | Russia | 2020-08-24 | 959016.0 | 4688.0 | 4779.714 | 16406.0 | 65.0 | 99.857 | 0.97 | null | null | null | null | null | null | null | null | 3.488322e7 | 187814.0 | 239.033467489447 | 1.287 | 273494.0 | 1.874 | 1.7e-2 | 57.2 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6571.552736755938 | 32.12400964104023 | 32.75246984159875 | 112.42032896137074 | 0.44540542377722164 | 0.684259221571108 |
RUS | Europe | Russia | 2020-08-25 | 963655.0 | 4639.0 | 4768.429 | 16524.0 | 118.0 | 98.286 | 0.97 | null | null | null | null | null | null | null | null | 3.5128661e7 | 245441.0 | 240.7153252220209 | 1.682 | 273028.0 | 1.871 | 1.7e-2 | 57.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6603.340979231362 | 31.78824247542356 | 32.6751406076399 | 113.22891111530478 | 0.8085821539340331 | 0.6734941150979693 |
RUS | Europe | Russia | 2020-08-26 | 968297.0 | 4642.0 | 4747.286 | 16638.0 | 114.0 | 98.143 | 0.98 | null | null | null | null | null | null | null | null | 3.5423783e7 | 295122.0 | 242.73761659857445 | 2.022 | 273501.0 | 1.874 | 1.7e-2 | 57.6 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6635.14977888019 | 31.808799648828657 | 32.530260501871865 | 114.01008370469867 | 0.7811725893938963 | 0.6725142231656595 |
RUS | Europe | Russia | 2020-08-27 | 972972.0 | 4675.0 | 4734.143 | 16758.0 | 120.0 | 100.0 | 0.98 | null | null | null | null | null | null | null | null | 3.5751747e7 | 327964.0 | 244.9849542047848 | 2.247 | 276806.0 | 1.897 | 1.7e-2 | 58.5 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6667.184707436475 | 32.03492855628478 | 32.44019952518411 | 114.83237064090278 | 0.8222869362041014 | 0.6852391135034178 |
RUS | Europe | Russia | 2020-08-28 | 977730.0 | 4758.0 | 4722.714 | 16866.0 | 108.0 | 102.571 | 0.99 | null | null | null | null | null | null | null | null | 3.6086182e7 | 334435.0 | 247.27663363402996 | 2.292 | 279336.0 | 1.914 | 1.7e-2 | 59.1 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6699.788384456968 | 32.603677020492626 | 32.3618835469018 | 115.57242888348647 | 0.7400582425836914 | 0.7028566111115908 |
RUS | Europe | Russia | 2020-08-29 | 982573.0 | 4843.0 | 4720.286 | 16977.0 | 111.0 | 101.286 | 1.0 | null | null | null | null | null | null | null | null | 3.642685e7 | 340668.0 | 249.6110240172198 | 2.334 | 282756.0 | 1.938 | 1.7e-2 | 59.9 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6732.974514723938 | 33.18613026697053 | 32.34524594122595 | 116.33304429947526 | 0.7606154159887939 | 0.6940512885030719 |
RUS | Europe | Russia | 2020-08-30 | 987470.0 | 4897.0 | 4734.571 | 17045.0 | 68.0 | 100.571 | 1.0 | null | null | null | null | null | null | null | null | 3.6696382e7 | 269532.0 | 251.45796270462785 | 1.847 | 285854.0 | 1.959 | 1.7e-2 | 60.4 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6766.5306741122 | 33.55615938826238 | 32.443132348589906 | 116.79900689665757 | 0.4659625971823242 | 0.6891518288415225 |
RUS | Europe | Russia | 2020-08-31 | 992402.0 | 4932.0 | 4769.429 | 17128.0 | 83.0 | 103.143 | 1.01 | null | null | null | null | null | null | null | null | 3.6901215e7 | 204833.0 | 252.86155853799025 | 1.404 | 288285.0 | 1.975 | 1.7e-2 | 60.4 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6800.326667190189 | 33.79599307798858 | 32.68199299877493 | 117.36775536086542 | 0.5687484642078369 | 0.7067761788408303 |
RUS | Europe | Russia | 2020-09-01 | 997072.0 | 4670.0 | 4773.857 | 17250.0 | 122.0 | 103.714 | 1.01 | null | null | null | null | null | null | null | null | 3.7176827e7 | 275612.0 | 254.75015976349928 | 1.889 | 292595.0 | 2.005 | 1.6e-2 | 61.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6832.327333790799 | 32.00066660060962 | 32.71233538672086 | 118.20374707933959 | 0.8359917184741699 | 0.7106888941789349 |
RUS | Europe | Russia | 2020-09-02 | 1001965.0 | 4893.0 | 4809.714 | 17365.0 | 115.0 | 103.857 | 1.02 | null | null | null | null | null | null | null | null | 3.7484146e7 | 307319.0 | 256.8560297547269 | 2.106 | 294338.0 | 2.017 | 1.6e-2 | 61.2 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6865.856083614522 | 33.52874982372224 | 32.95804157564978 | 118.99177205986852 | 0.7880249805289306 | 0.7116687861112447 |
RUS | Europe | Russia | 2020-09-03 | 1006923.0 | 4958.0 | 4850.143 | 17479.0 | 114.0 | 103.0 | 1.02 | null | null | null | null | null | null | null | null | 3.7818366e7 | 334220.0 | 259.146235919878 | 2.29 | 295231.0 | 2.023 | 1.6e-2 | 60.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6899.83023886202 | 33.97415524749946 | 33.23507689684808 | 119.77294464926241 | 0.7811725893938963 | 0.7057962869085204 |
RUS | Europe | Russia | 2020-09-04 | 1011987.0 | 5064.0 | 4893.857 | 17598.0 | 119.0 | 104.571 | 1.03 | null | null | null | null | null | null | null | null | 3.8154556e7 | 336190.0 | 261.44994129556517 | 2.304 | 295482.0 | 2.025 | 1.7e-2 | 60.4 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6934.530747569834 | 34.70050870781308 | 33.53462232292497 | 120.58837919433148 | 0.8154345450690673 | 0.7165613933816591 |
RUS | Europe | Russia | 2020-09-05 | 1017131.0 | 5144.0 | 4936.857 | 17707.0 | 109.0 | 104.286 | 1.03 | null | null | null | null | null | null | null | null | 3.8488127e7 | 333571.0 | 263.7357002588696 | 2.286 | 294468.0 | 2.018 | 1.7e-2 | 59.6 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6969.7794475684495 | 35.24869999861582 | 33.82927514173143 | 121.33528982805021 | 0.7469106337187255 | 0.7146084619081744 |
RUS | Europe | Russia | 2020-09-06 | 1022228.0 | 5097.0 | 4965.429 | 17768.0 | 61.0 | 103.286 | 1.04 | null | null | null | null | null | null | null | null | 3.8758184e7 | 270057.0 | 265.58623645162356 | 1.851 | 294543.0 | 2.018 | 1.7e-2 | 59.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7004.706085183719 | 34.92663761526921 | 34.02506166124163 | 121.75328568728729 | 0.41799585923708493 | 0.7077560707731403 |
RUS | Europe | Russia | 2020-09-07 | 1027334.0 | 5106.0 | 4990.286 | 17818.0 | 50.0 | 98.571 | 1.04 | null | null | null | null | null | null | null | null | 3.8960761e7 | 202577.0 | 266.9743732905854 | 1.388 | 294221.0 | 2.016 | 1.7e-2 | 59.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7039.694394319203 | 34.98830913548451 | 34.19539154768517 | 122.095905244039 | 0.3426195567517089 | 0.675447046571454 |
RUS | Europe | Russia | 2020-09-08 | 1032354.0 | 5020.0 | 5040.286 | 17939.0 | 121.0 | 98.429 | 1.04 | null | null | null | null | null | null | null | null | 3.9289176e7 | 328415.0 | 269.22480132519763 | 2.25 | 301764.0 | 2.068 | 1.7e-2 | 59.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7074.093397817074 | 34.399003497871576 | 34.53801110443688 | 122.92504457137812 | 0.8291393273391356 | 0.6744740070302793 |
RUS | Europe | Russia | 2020-09-09 | 1037526.0 | 5172.0 | 5080.143 | 18080.0 | 141.0 | 102.143 | 1.05 | null | null | null | null | null | null | null | null | 3.9575311e7 | 286135.0 | 271.1855102626206 | 1.961 | 298738.0 | 2.047 | 1.7e-2 | 58.8 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7109.533964767472 | 35.44056695039677 | 34.81112685790594 | 123.89123172141795 | 0.9661871500398191 | 0.6999237877057962 |
RUS | Europe | Russia | 2020-09-10 | 1042836.0 | 5310.0 | 5130.429 | 18207.0 | 127.0 | 104.0 | 1.05 | null | null | null | null | null | null | null | null | 3.9912526e7 | 337215.0 | 273.4962393392212 | 2.311 | 299166.0 | 2.05 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7145.920161694503 | 36.38619692703149 | 35.15570619852227 | 124.7614853955673 | 0.8702536741493407 | 0.7126486780435546 |
RUS | Europe | Russia | 2020-09-11 | 1048257.0 | 5421.0 | 5181.429 | 18309.0 | 102.0 | 101.571 | 1.05 | null | null | null | null | null | null | null | null | 4.0268897e7 | 356371.0 | 275.9382328204045 | 2.442 | 302049.0 | 2.07 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7183.066974037523 | 37.14681234302029 | 35.505178146409015 | 125.46042929134079 | 0.6989438957734863 | 0.6960042199765566 |
RUS | Europe | Russia | 2020-09-12 | 1053663.0 | 5406.0 | 5218.857 | 18426.0 | 117.0 | 102.714 | 1.06 | null | null | null | null | null | null | null | null | 4.0624075e7 | 355178.0 | 278.3720513989636 | 2.434 | 305135.0 | 2.091 | 1.7e-2 | 58.5 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7220.111000513519 | 37.04402647599477 | 35.76164944181107 | 126.26215905413979 | 0.8017297627989989 | 0.7038365030439007 |
RUS | Europe | Russia | 2020-09-13 | 1059024.0 | 5361.0 | 5256.571 | 18517.0 | 91.0 | 107.0 | 1.06 | null | null | null | null | null | null | null | null | 4.0903551e7 | 279476.0 | 280.2871302638184 | 1.915 | 306481.0 | 2.1 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7256.846669388437 | 36.73566887491823 | 36.02008052107775 | 126.88572664742789 | 0.6235675932881103 | 0.7332058514486571 |
RUS | Europe | Russia | 2020-09-14 | 1064438.0 | 5414.0 | 5300.571 | 18573.0 | 56.0 | 107.857 | 1.06 | null | null | null | null | null | null | null | null | 4.1122307e7 | 218756.0 | 281.786131938954 | 1.499 | 308792.0 | 2.116 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7293.945514993512 | 37.09884560507505 | 36.321585731019255 | 127.26946055098982 | 0.383733903561914 | 0.7390783506513814 |
RUS | Europe | Russia | 2020-09-15 | 1069873.0 | 5435.0 | 5359.857 | 18723.0 | 150.0 | 112.0 | 1.07 | null | null | null | null | null | null | null | null | 4.1424006e7 | 301699.0 | 283.8534914920026 | 2.067 | 304976.0 | 2.09 | 1.8e-2 | 56.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7331.188260812422 | 37.24274581891076 | 36.72783659185089 | 128.29731922124492 | 1.027858670255127 | 0.767467807123828 |
RUS | Europe | Russia | 2020-09-16 | 1075485.0 | 5612.0 | 5422.714 | 18853.0 | 130.0 | 110.429 | 1.07 | null | null | null | null | null | null | null | null | 4.1748928e7 | 324922.0 | 286.07998412438025 | 2.226 | 310517.0 | 2.128 | 1.7e-2 | 57.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7369.643879862234 | 38.455619049811816 | 37.158557341425734 | 129.18813006879938 | 0.8908108475544433 | 0.7567027006506893 |
RUS | Europe | Russia | 2020-09-17 | 1081152.0 | 5667.0 | 5473.714 | 18996.0 | 143.0 | 112.714 | 1.08 | null | null | null | null | null | null | null | null | 4.2095246e7 | 346318.0 | 288.45309051748296 | 2.373 | 311817.0 | 2.137 | 1.8e-2 | 57.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7408.476380424473 | 38.83250056223869 | 37.50802928931248 | 130.16802200110928 | 0.9798919323098875 | 0.7723604143942425 |
RUS | Europe | Russia | 2020-09-18 | 1086955.0 | 5803.0 | 5528.286 | 19128.0 | 132.0 | 117.0 | 1.09 | null | null | null | null | null | null | null | null | 4.2457169e7 | 361923.0 | 290.93312847424795 | 2.48 | 312610.0 | 2.142 | 1.8e-2 | 56.5 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7448.240806181076 | 39.76442575660334 | 37.88197797833356 | 131.0725376309338 | 0.9045156298245116 | 0.8017297627989989 |
RUS | Europe | Russia | 2020-09-19 | 1092915.0 | 5960.0 | 5607.429 | 19270.0 | 142.0 | 120.571 | 1.1 | null | null | null | null | null | null | null | null | 4.2821891e7 | 364722.0 | 293.4323462737999 | 2.499 | 313974.0 | 2.151 | 1.8e-2 | 56.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7489.081057345879 | 40.8402511648037 | 38.42429676993358 | 132.04557717210864 | 0.9730395411748535 | 0.826199651542206 |
RUS | Europe | Russia | 2020-09-20 | 1098958.0 | 6043.0 | 5704.857 | 19349.0 | 79.0 | 118.857 | 1.1 | null | null | null | null | null | null | null | null | 4.3103912e7 | 282021.0 | 295.3648644740934 | 1.933 | 314337.0 | 2.154 | 1.8e-2 | 55.1 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7530.490056974892 | 41.40899962901155 | 39.09191153343768 | 132.58691607177633 | 0.5413388996677002 | 0.8144546531367575 |
RUS | Europe | Russia | 2020-09-21 | 1105048.0 | 6090.0 | 5801.429 | 19420.0 | 71.0 | 121.0 | 1.11 | null | null | null | null | null | null | null | null | 4.3341534e7 | 237622.0 | 296.9931433603825 | 1.628 | 317032.0 | 2.172 | 1.8e-2 | 54.6 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7572.22111898725 | 41.73106201235815 | 39.7536606501302 | 133.07343584236375 | 0.48651977058742674 | 0.8291393273391356 |
RUS | Europe | Russia | 2020-09-22 | 1111157.0 | 6109.0 | 5897.714 | 19575.0 | 155.0 | 121.714 | 1.12 | null | null | null | null | null | null | null | null | 4.3632541e7 | 291007.0 | 298.9872371474154 | 1.994 | 315505.0 | 2.162 | 1.9e-2 | 53.5 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7614.082376431173 | 41.861257443923805 | 40.41344313056697 | 134.13555646829406 | 1.0621206259302978 | 0.83403193460955 |
RUS | Europe | Russia | 2020-09-23 | 1117487.0 | 6330.0 | 6000.286 | 19720.0 | 145.0 | 123.857 | 1.13 | null | null | null | null | null | null | null | null | 4.3990409e7 | 357868.0 | 301.43948865812774 | 2.452 | 320212.0 | 2.194 | 1.9e-2 | 53.4 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7657.458012315939 | 43.37563588476635 | 41.1163065940697 | 135.129153182874 | 0.9935967145799559 | 0.8487166088119283 |
RUS | Europe | Russia | 2020-09-24 | 1123976.0 | 6489.0 | 6117.714 | 19867.0 | 147.0 | 124.429 | 1.15 | null | null | null | null | null | null | null | null | 4.4364566e7 | 374157.0 | 304.00335876803877 | 2.564 | 324189.0 | 2.221 | 1.9e-2 | 53.0 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7701.923178391176 | 44.46516607523679 | 41.92096918027448 | 136.13645467972404 | 1.0073014968500242 | 0.8526361765411679 |
RUS | Europe | Russia | 2020-09-25 | 1131088.0 | 7112.0 | 6304.714 | 19973.0 | 106.0 | 120.714 | 1.17 | null | null | null | null | null | null | null | null | 4.4755362e7 | 390796.0 | 306.68124581404555 | 2.678 | 328313.0 | 2.25 | 1.9e-2 | 52.1 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7750.657384143539 | 48.73420575236308 | 43.202366322525876 | 136.86280814003766 | 0.7263534603136229 | 0.8271795434745159 |
RUS | Europe | Russia | 2020-09-26 | 1138509.0 | 7421.0 | 6513.429 | 20140.0 | 167.0 | 124.286 | 1.19 | null | null | null | null | null | null | null | null | 4.5134435e7 | 379073.0 | 309.27880227877637 | 2.598 | 330363.0 | 2.264 | 2.0e-2 | 50.7 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7801.5089787566285 | 50.85159461308864 | 44.63256313827454 | 138.00715745958837 | 1.144349319550708 | 0.8516562846088579 |
RUS | Europe | Russia | 2020-09-27 | 1146273.0 | 7764.0 | 6759.286 | 20239.0 | 99.0 | 127.143 | 1.2 | null | null | null | null | null | null | null | null | 4.5442774e7 | 308339.0 | 311.39166170896164 | 2.113 | 334123.0 | 2.29 | 2.0e-2 | 49.4 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7854.710943529033 | 53.20196477240537 | 46.31727146556063 | 138.68554418195677 | 0.6783867223683837 | 0.8712335660816506 |
RUS | Europe | Russia | 2020-09-28 | 1154299.0 | 8026.0 | 7035.857 | 20299.0 | 60.0 | 125.571 | 1.21 | null | null | null | null | null | null | null | null | 4.5698673e7 | 255899.0 | 313.1451817480258 | 1.754 | 336734.0 | 2.307 | 2.1e-2 | 47.9 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7909.708234778817 | 54.997291249784325 | 48.21244413416817 | 139.0966876500588 | 0.4111434681020507 | 0.8604616072173769 |
RUS | Europe | Russia | 2020-09-29 | 1162428.0 | 8129.0 | 7324.429 | 20456.0 | 157.0 | 125.857 | 1.22 | null | null | null | null | null | null | null | null | 4.603766e7 | 338987.0 | 315.4680532617176 | 2.323 | 343588.0 | 2.354 | 2.1e-2 | 46.9 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7965.411322315512 | 55.70308753669284 | 50.189852348787255 | 140.17251305825917 | 1.075825408200366 | 0.8624213910819967 |
RUS | Europe | Russia | 2020-09-30 | 1170799.0 | 8371.0 | 7616.0 | 20630.0 | 174.0 | 130.0 | 1.23 | null | null | null | null | null | null | null | null | 4.6421834e7 | 384174.0 | 318.1005637736282 | 2.633 | 347346.0 | 2.38 | 2.2e-2 | 45.6 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8022.772688506882 | 57.36136619137111 | 52.18781088442031 | 141.3648291157551 | 1.1923160574959473 | 0.8908108475544433 |
RUS | Europe | Russia | 2020-10-01 | 1179634.0 | 8835.0 | 7951.143 | 20796.0 | 166.0 | 132.714 | 1.24 | null | null | null | null | null | null | null | null | 4.6823879e7 | 402045.0 | 320.85553336751303 | 2.755 | 351330.0 | 2.407 | 2.3e-2 | 44.2 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8083.3135641849085 | 60.54087567802697 | 54.48434180658907 | 142.5023260441708 | 1.1374969284156737 | 0.909408237094926 |
RUS | Europe | Russia | 2020-10-02 | 1188928.0 | 9294.0 | 8262.857 | 20981.0 | 185.0 | 144.0 | 1.25 | null | null | null | null | null | null | null | null | 4.6823879e7 | null | 320.85553336751303 | null | 356928.0 | 2.446 | 2.3e-2 | 43.2 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8146.999687393916 | 63.68612320900767 | 56.62032805685511 | 143.7700184041521 | 1.267692359981323 | 0.9867443234449218 |
RUS | Europe | Russia | 2020-10-03 | 1198663.0 | 9735.0 | 8593.429 | 21153.0 | 172.0 | 144.714 | 1.26 | null | null | null | null | null | null | null | null | 4.7683832e7 | null | 326.7482676812591 | null | 364200.0 | 2.496 | 2.4e-2 | 42.4 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8213.707715093475 | 66.70802769955773 | 58.88553669914563 | 144.948629679378 | 1.1786112752258788 | 0.9916369307153361 |
RUS | Europe | Russia | 2020-10-04 | 1209039.0 | 10376.0 | 8966.571 | 21260.0 | 107.0 | 145.857 | 1.26 | null | null | null | null | null | null | null | null | 4.8042343e7 | 358511.0 | 329.20492527947135 | 2.457 | 371367.0 | 2.545 | 2.4e-2 | 41.4 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8284.80812551059 | 71.10041041711465 | 61.44245163205455 | 145.68183553082665 | 0.7332058514486571 | 0.9994692137826802 |
RUS | Europe | Russia | 2020-10-05 | 1219796.0 | 10757.0 | 9356.714 | 21375.0 | 115.0 | 153.714 | 1.27 | null | null | null | null | null | null | null | null | 4.8337992e7 | 295649.0 | 331.23082786615305 | 2.026 | 377046.0 | 2.584 | 2.5e-2 | 40.3 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8358.519296950151 | 73.71117143956266 | 64.1158640666502 | 146.46986051135556 | 0.7880249805289306 | 1.0533084509306438 |
RUS | Europe | Russia | 2020-10-06 | 1231277.0 | 11481.0 | 9835.571 | 21559.0 | 184.0 | 157.571 | 1.26 | null | null | null | null | null | null | null | null | 4.8709857e7 | 371865.0 | 333.77899229558255 | 2.548 | 381742.0 | 2.616 | 2.6e-2 | 38.8 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8437.191599571479 | 78.6723026213274 | 67.39717952839926 | 147.73070048020188 | 1.260839968846289 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-10-07 | 1242258.0 | 10981.0 | 10208.429 | 21755.0 | 196.0 | 160.714 | 1.25 | null | null | null | null | null | null | null | null | 4.9148954e7 | 439097.0 | 336.78785668580264 | 3.009 | 389589.0 | 2.67 | 2.6e-2 | 38.2 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8512.43770662529 | 75.24610705381032 | 69.95214838222583 | 149.07376914266857 | 1.343068662466699 | 1.101275188875883 |
RUS | Europe | Russia | 2020-10-08 | 1253603.0 | 11345.0 | 10567.0 | 21939.0 | 184.0 | 163.286 | 1.25 | null | null | null | null | null | null | null | null | 4.9656873e7 | 507919.0 | 340.2683163387181 | 3.48 | 404713.0 | 2.773 | 2.6e-2 | 38.3 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8590.178084052252 | 77.74037742696275 | 72.40921712390616 | 150.33460911151485 | 1.260839968846289 | 1.1188995388751908 |
RUS | Europe | Russia | 2020-10-09 | 1265572.0 | 11969.0 | 10949.143 | 22137.0 | 198.0 | 165.143 | 1.25 | null | null | null | null | null | null | null | null | 5.0305243e7 | 648370.0 | 344.71120117894014 | 4.443 | 435912.0 | 2.987 | 2.5e-2 | 39.8 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8672.194353547475 | 82.0162694952241 | 75.02781042942154 | 151.69138255625163 | 1.3567734447367674 | 1.1316244292129494 |
RUS | Europe | Russia | 2020-10-10 | 1278245.0 | 12673.0 | 11368.857 | 22331.0 | 194.0 | 168.286 | 1.25 | null | null | null | null | null | null | null | null | 5.0781349e7 | 476106.0 | 347.9736657126768 | 3.262 | 442502.0 | 3.032 | 2.6e-2 | 38.9 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8759.034706401764 | 86.84035285428814 | 77.90385492227126 | 153.02074643644826 | 1.3293638801966305 | 1.1531614945503619 |
RUS | Europe | Russia | 2020-10-11 | 1291687.0 | 13442.0 | 11806.857 | 22471.0 | 140.0 | 173.0 | 1.24 | null | null | null | null | null | null | null | null | 5.1191309e7 | 409960.0 | 350.78287198239536 | 2.809 | 449852.0 | 3.083 | 2.6e-2 | 38.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8851.144548038894 | 92.10984163712943 | 80.90520223941624 | 153.98008119535302 | 0.959334758904785 | 1.185463666360913 |
RUS | Europe | Russia | 2020-10-12 | 1305093.0 | 13406.0 | 12185.286 | 22594.0 | 123.0 | 174.143 | 1.24 | null | null | null | null | null | null | null | null | 5.1364269e7 | 172960.0 | 351.9680615531109 | 1.185 | 432325.0 | 2.962 | 2.8e-2 | 35.5 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8943.007703595162 | 91.86315555626821 | 83.49834576425609 | 154.82292530496224 | 0.842844109609204 | 1.193295949428257 |
RUS | Europe | Russia | 2020-10-13 | 1318783.0 | 13690.0 | 12500.857 | 22834.0 | 240.0 | 182.143 | 1.22 | null | null | null | null | null | null | null | null | 5.1801245e7 | 436976.0 | 354.9623920217336 | 2.994 | 441627.0 | 3.026 | 2.8e-2 | 35.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9036.81693823378 | 93.80923463861791 | 85.66076168712996 | 156.46749917737046 | 1.6445738724082029 | 1.2481150785085304 |
RUS | Europe | Russia | 2020-10-14 | 1332824.0 | 14041.0 | 12938.0 | 23069.0 | 235.0 | 187.714 | 1.21 | null | null | null | null | null | null | null | null | 5.2279734e7 | 478489.0 | 358.24118580354497 | 3.279 | 447254.0 | 3.065 | 2.9e-2 | 34.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9133.031362160795 | 96.2144239270149 | 88.65623650507221 | 158.07781109410348 | 1.6103119167330322 | 1.2862897495218057 |
RUS | Europe | Russia | 2020-10-15 | 1346380.0 | 13556.0 | 13253.857 | 23350.0 | 281.0 | 201.571 | 1.2 | null | null | null | null | null | null | null | null | 5.2782097e7 | 502363.0 | 361.6835735713141 | 3.442 | 446461.0 | 3.059 | 3.0e-2 | 33.7 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9225.922376387318 | 92.89101422652334 | 90.8206122118107 | 160.00333300304808 | 1.9255219089446043 | 1.3812433334799745 |
RUS | Europe | Russia | 2020-10-16 | 1361317.0 | 14937.0 | 13677.857 | 23580.0 | 230.0 | 206.143 | 1.2 | null | null | null | null | null | null | null | null | 5.3305957e7 | 523860.0 | 365.27326719131315 | 3.59 | 428673.0 | 2.937 | 3.2e-2 | 31.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9328.276542771324 | 102.35416638400554 | 93.72602605306518 | 161.57938296410595 | 1.576049961057861 | 1.4125724657493508 |
RUS | Europe | Russia | 2020-10-17 | 1376020.0 | 14703.0 | 13967.857 | 23857.0 | 277.0 | 218.0 | 1.19 | null | null | null | null | null | null | null | null | 5.3850509e7 | 544552.0 | 369.00475048867827 | 3.731 | 438451.0 | 3.004 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9429.027249629731 | 100.75070685840754 | 95.7132194822251 | 163.4774953085104 | 1.8981123444044676 | 1.493821267437451 |
RUS | Europe | Russia | 2020-10-18 | 1390824.0 | 14804.0 | 14162.429 | 24039.0 | 182.0 | 224.0 | 1.18 | null | null | null | null | null | null | null | null | 5.4300208e7 | 449699.0 | 372.086263929712 | 3.082 | 444128.0 | 3.043 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9530.470047992778 | 101.44279836304598 | 97.04650293015096 | 164.72463049508664 | 1.2471351865762206 | 1.534935614247656 |
RUS | Europe | Russia | 2020-10-19 | 1406667.0 | 15843.0 | 14510.571 | 24205.0 | 166.0 | 230.143 | 1.17 | null | null | null | null | null | null | null | null | 5.4675096e7 | 374888.0 | 374.6551431375427 | 2.569 | 472975.0 | 3.241 | 3.1e-2 | 32.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9639.032480745123 | 108.5624327523465 | 99.43210808468405 | 165.8621274235023 | 1.1374969284156737 | 1.5770298529901712 |
RUS | Europe | Russia | 2020-10-20 | 1422775.0 | 16108.0 | 14856.0 | 24473.0 | 268.0 | 234.143 | 1.16 | null | null | null | null | null | null | null | null | 5.5171784e7 | 496688.0 | 378.0586435856206 | 3.404 | 481506.0 | 3.299 | 3.1e-2 | 32.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9749.410797148254 | 110.37831640313057 | 101.79912270206776 | 167.69856824769147 | 1.83644082418916 | 1.6044394175303078 |
RUS | Europe | Russia | 2020-10-21 | 1438219.0 | 15444.0 | 15056.429 | 24786.0 | 313.0 | 245.286 | 1.15 | null | null | null | null | null | null | null | null | 5.5683929e7 | 512145.0 | 381.5680614434727 | 3.509 | 486314.0 | 3.332 | 3.1e-2 | 32.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9855.239125837723 | 105.82832868946785 | 103.17254060487153 | 169.84336667295716 | 2.144798425265698 | 1.6807956119479937 |
RUS | Europe | Russia | 2020-10-22 | 1453923.0 | 15704.0 | 15363.286 | 25072.0 | 286.0 | 246.0 | 1.14 | null | null | null | null | null | null | null | null | 5.6230544e7 | 546615.0 | 385.31368122374937 | 3.746 | 492635.0 | 3.376 | 3.1e-2 | 32.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9962.8490762223 | 107.60995038457675 | 105.27524479139471 | 171.80315053757695 | 1.959783864619775 | 1.685688219218408 |
RUS | Europe | Russia | 2020-10-23 | 1471000.0 | 17077.0 | 15669.0 | 25353.0 | 281.0 | 253.286 | 1.14 | null | null | null | null | null | null | null | null | 5.6794639e7 | 564095.0 | 389.17908080106645 | 3.865 | 498383.0 | 3.415 | 3.1e-2 | 31.8 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10079.867359635278 | 117.01828341297868 | 107.37011669485055 | 173.72867244652153 | 1.9255219089446043 | 1.7356147410282672 |
RUS | Europe | Russia | 2020-10-24 | 1487260.0 | 16260.0 | 15891.429 | 25647.0 | 294.0 | 255.714 | 1.13 | null | null | null | null | null | null | null | null | 5.7344952e7 | 550313.0 | 392.9500407237605 | 3.771 | 499206.0 | 3.421 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10191.287239490932 | 111.41987985565575 | 108.89428720262507 | 175.7432754402216 | 2.0146029937000485 | 1.75225234670413 |
RUS | Europe | Russia | 2020-10-25 | 1503652.0 | 16392.0 | 16118.286 | 25875.0 | 228.0 | 262.286 | 1.12 | null | null | null | null | null | null | null | null | 5.782126e7 | 476308.0 | 396.2138894405064 | 3.264 | 503007.0 | 3.447 | 3.2e-2 | 31.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10303.611634976414 | 112.32439548548027 | 110.44880009834553 | 177.30562061900937 | 1.5623451787877927 | 1.7972862612435747 |
RUS | Europe | Russia | 2020-10-26 | 1520800.0 | 17148.0 | 16304.714 | 26092.0 | 217.0 | 269.571 | 1.11 | null | null | null | null | null | null | null | null | 5.8223852e7 | 402592.0 | 398.97260729234205 | 2.759 | 506965.0 | 3.474 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10421.11643815998 | 117.5048031835661 | 111.72627767286767 | 178.7925894953118 | 1.486968876302417 | 1.8472059306622988 |
RUS | Europe | Russia | 2020-10-27 | 1537142.0 | 16342.0 | 16338.143 | 26409.0 | 317.0 | 276.571 | 1.1 | null | null | null | null | null | null | null | null | 5.8730811e7 | 506959.0 | 402.44648864976784 | 3.474 | 508432.0 | 3.484 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10533.098214088708 | 111.98177592872855 | 111.95534625612072 | 180.96479748511763 | 2.172207989805835 | 1.895172668607538 |
RUS | Europe | Russia | 2020-10-28 | 1553028.0 | 15886.0 | 16401.286 | 26752.0 | 343.0 | 280.857 | 1.1 | null | null | null | null | null | null | null | null | 5.9284119e7 | 553308.0 | 406.23797148391134 | 3.791 | 514313.0 | 3.524 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10641.955299659861 | 108.85708557115296 | 112.38802678956019 | 183.31516764443435 | 2.350370159316723 | 1.9245420170122944 |
RUS | Europe | Russia | 2020-10-29 | 1570446.0 | 17418.0 | 16646.143 | 27111.0 | 359.0 | 291.286 | 1.1 | null | null | null | null | null | null | null | null | 5.9866561e7 | 582442.0 | 410.2290918813829 | 3.991 | 519431.0 | 3.559 | 3.2e-2 | 31.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10761.310248449887 | 119.35494879002533 | 114.06588272571125 | 185.77517606191162 | 2.4600084174772703 | 1.9960056041595657 |
RUS | Europe | Russia | 2020-10-30 | 1588433.0 | 17987.0 | 16776.143 | 27462.0 | 351.0 | 301.286 | 1.11 | null | null | null | null | null | null | null | null | 6.0441811e7 | 575250.0 | 414.17092988181133 | 3.942 | 521025.0 | 3.57 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10884.564207795747 | 123.25395934585978 | 114.9566935732657 | 188.18036535030862 | 2.4051892883969965 | 2.064529515509908 |
RUS | Europe | Russia | 2020-10-31 | 1606267.0 | 17834.0 | 17001.0 | 27787.0 | 325.0 | 305.714 | 1.11 | null | null | null | null | null | null | null | null | 6.1029746e7 | 587935.0 | 418.19969046378765 | 4.029 | 526399.0 | 3.607 | 3.2e-2 | 31.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11006.769751297945 | 122.20554350219956 | 116.49750168671608 | 190.40739246919472 | 2.227027118886108 | 2.094871903455839 |
RUS | Europe | Russia | 2020-11-01 | 1624648.0 | 18381.0 | 17285.143 | 28026.0 | 239.0 | 307.286 | 1.11 | null | null | null | null | null | null | null | null | 6.154197e7 | 512224.0 | 421.7096496605394 | 3.51 | 531530.0 | 3.642 | 3.3e-2 | 30.8 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11132.72355275101 | 125.95380145306325 | 118.44456066099809 | 192.0451139504679 | 1.6377214812731689 | 2.105643862320113 |
RUS | Europe | Russia | 2020-11-02 | 1642665.0 | 18017.0 | 17409.286 | 28264.0 | 238.0 | 310.286 | 1.11 | null | null | null | null | null | null | null | null | 6.1954566e7 | 412596.0 | 424.53691883329 | 2.827 | 532959.0 | 3.652 | 3.3e-2 | 30.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11256.18308383092 | 123.45953107991082 | 119.29523705367464 | 193.67598304060604 | 1.6308690901381346 | 2.1262010357252152 |
RUS | Europe | Russia | 2020-11-03 | 1661096.0 | 18431.0 | 17707.714 | 28611.0 | 347.0 | 314.571 | 1.11 | null | null | null | null | null | null | null | null | 6.2446013e7 | 491447.0 | 427.90450589942907 | 3.368 | 530743.0 | 3.637 | 3.3e-2 | 30.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11382.479504840734 | 126.29642100981495 | 121.34018243532063 | 196.0537627644629 | 2.37777972385686 | 2.155563531738837 |
RUS | Europe | Russia | 2020-11-04 | 1680579.0 | 19483.0 | 18221.571 | 28996.0 | 385.0 | 320.571 | 1.11 | null | null | null | null | null | null | null | null | 6.3016994e7 | 570981.0 | 431.81709104210205 | 3.913 | 533268.0 | 3.654 | 3.4e-2 | 29.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11515.984641324607 | 133.5051364838709 | 124.86133158679587 | 198.69193335145107 | 2.638170586988159 | 2.196677878549042 |
RUS | Europe | Russia | 2020-11-05 | 1699695.0 | 19116.0 | 18464.143 | 29285.0 | 289.0 | 310.571 | 1.11 | null | null | null | null | null | null | null | null | 6.3541298e7 | 524304.0 | 435.409827123765 | 3.593 | 524962.0 | 3.597 | 3.5e-2 | 28.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11646.974950261918 | 130.99030893731336 | 126.5235298092034 | 200.67227438947592 | 1.9803410380248776 | 2.1281539671987 |
RUS | Europe | Russia | 2020-11-06 | 1720063.0 | 20368.0 | 18804.286 | 29654.0 | 369.0 | 313.143 | 1.11 | null | null | null | null | null | null | null | null | 6.4092161e7 | 550863.0 | 439.18455586158336 | 3.775 | 521479.0 | 3.573 | 3.6e-2 | 27.7 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11786.544452900294 | 139.56950263837615 | 128.85432268704733 | 203.20080671830354 | 2.528532328827612 | 2.145778317198008 |
RUS | Europe | Russia | 2020-11-07 | 1740172.0 | 20109.0 | 19129.286 | 30010.0 | 356.0 | 317.571 | 1.11 | null | null | null | null | null | null | null | null | 6.4682511e7 | 590350.0 | 443.22986496815076 | 4.045 | 521824.0 | 3.576 | 3.7e-2 | 27.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11924.339186234696 | 137.79473333440228 | 131.08134980593343 | 205.6402579623757 | 2.439451244072168 | 2.1761207051439397 |
RUS | Europe | Russia | 2020-11-08 | 1760420.0 | 20248.0 | 19396.0 | 30292.0 | 282.0 | 323.714 | 1.11 | null | null | null | null | null | null | null | null | 6.5209357e7 | 526846.0 | 446.840019828079 | 3.61 | 523912.0 | 3.59 | 3.7e-2 | 27.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12063.08640193687 | 138.74721570217204 | 132.90897845512293 | 207.57263226245536 | 1.9323743000796383 | 2.218214943886454 |
RUS | Europe | Russia | 2020-11-09 | 1781997.0 | 21577.0 | 19904.571 | 30546.0 | 254.0 | 326.0 | 1.11 | null | null | null | null | null | null | null | null | 6.5606582e7 | 397225.0 | 449.56196089669294 | 2.722 | 521717.0 | 3.575 | 3.8e-2 | 26.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12210.940445457503 | 147.8540435206325 | 136.3939058670584 | 209.31313961075404 | 1.7405073482986815 | 2.233879510021142 |
RUS | Europe | Russia | 2020-11-10 | 1802762.0 | 20765.0 | 20238.0 | 30899.0 | 353.0 | 326.857 | 1.1 | null | null | null | null | null | null | null | null | 6.6118696e7 | 512114.0 | 453.0711663304198 | 3.509 | 524669.0 | 3.595 | 3.9e-2 | 25.9 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12353.230347376486 | 142.28990191898473 | 138.67869179082172 | 211.73203368142111 | 2.4188940706670654 | 2.239752009223867 |
RUS | Europe | Russia | 2020-11-11 | 1822345.0 | 19583.0 | 20252.286 | 31326.0 | 427.0 | 332.857 | 1.09 | null | null | null | null | null | null | null | null | 6.6710463e7 | 591767.0 | 457.12618527522557 | 4.055 | 527638.0 | 3.616 | 3.8e-2 | 26.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12487.42072297386 | 134.19037559737433 | 138.7765850505768 | 214.6580046960807 | 2.9259710146595945 | 2.280866356034072 |
RUS | Europe | Russia | 2020-11-12 | 1843678.0 | 21333.0 | 20569.0 | 31755.0 | 429.0 | 352.857 | 1.09 | null | null | null | null | null | null | null | null | 6.7347351e7 | 636888.0 | 461.49039096043526 | 4.364 | 543722.0 | 3.726 | 3.8e-2 | 26.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12633.602783057544 | 146.18206008368415 | 140.94683325651803 | 217.59768049301036 | 2.939675796929663 | 2.4179141787347556 |
RUS | Europe | Russia | 2020-11-13 | 1865395.0 | 21717.0 | 20761.714 | 32156.0 | 401.0 | 357.429 | 1.1 | null | null | null | null | null | null | null | null | 6.7949154e7 | 601803.0 | 465.61418050267224 | 4.124 | 550999.0 | 3.776 | 3.8e-2 | 26.5 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12782.416161337082 | 148.8133782795373 | 142.267384961715 | 220.34548933815907 | 2.7478088451487057 | 2.4492433110041314 |
RUS | Europe | Russia | 2020-11-14 | 1887836.0 | 22441.0 | 21094.857 | 32536.0 | 380.0 | 360.857 | 1.1 | null | null | null | null | null | null | null | null | 6.8577003e7 | 627849.0 | 469.9164474244123 | 4.302 | 556356.0 | 3.812 | 3.8e-2 | 26.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12936.190670798384 | 153.77450946130202 | 144.55021110161368 | 222.94939796947205 | 2.603908631312988 | 2.472733307815029 |
RUS | Europe | Russia | 2020-11-15 | 1910149.0 | 22313.0 | 21389.857 | 32885.0 | 349.0 | 370.429 | 1.09 | null | null | null | null | null | null | null | null | 6.9111898e7 | 534895.0 | 473.5817571805864 | 3.665 | 557506.0 | 3.82 | 3.8e-2 | 26.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13089.088074194402 | 152.89740339601764 | 146.57166648644878 | 225.340882475599 | 2.3914845061269285 | 2.538324395759576 |
RUS | Europe | Russia | 2020-11-16 | 1932711.0 | 22562.0 | 21530.571 | 33184.0 | 299.0 | 376.857 | 1.09 | null | null | null | null | null | null | null | null | 6.9550659e7 | 438761.0 | 476.5883191673851 | 3.007 | 563440.0 | 3.861 | 3.8e-2 | 26.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13243.691722983043 | 154.60364878864115 | 147.53589385262399 | 227.3897474249742 | 2.04886494937522 | 2.582371565975576 |
RUS | Europe | Russia | 2020-11-17 | 1954912.0 | 22201.0 | 21735.714 | 33619.0 | 435.0 | 388.571 | 1.08 | null | null | null | null | null | null | null | null | 7.0075886e7 | 525227.0 | 480.1873800060658 | 3.599 | 565313.0 | 3.874 | 3.8e-2 | 26.0 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13395.821658571936 | 152.1299355888938 | 148.94161392723828 | 230.37053756871407 | 2.980790143739868 | 2.662640475731366 |
RUS | Europe | Russia | 2020-11-18 | 1975629.0 | 20717.0 | 21897.714 | 34068.0 | 449.0 | 391.714 | 1.08 | null | null | null | null | null | null | null | null | 7.0653231e7 | 577345.0 | 484.14357376592204 | 3.956 | 563253.0 | 3.86 | 3.9e-2 | 25.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13537.782645716441 | 141.96098714450306 | 150.05170129111383 | 233.4472611883444 | 3.076723619630346 | 2.6841775410687783 |
RUS | Europe | Russia | 2020-11-19 | 1998966.0 | 23337.0 | 22184.0 | 34525.0 | 457.0 | 395.714 | 1.09 | null | null | null | null | null | null | null | null | 7.1249997e7 | 596766.0 | 488.23284781401185 | 4.089 | 557521.0 | 3.82 | 4.0e-2 | 25.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13697.696897634733 | 159.91425191829265 | 152.01344493959823 | 236.57880393705503 | 3.1315427487106198 | 2.711587105608915 |
RUS | Europe | Russia | 2020-11-20 | 2023025.0 | 24059.0 | 22518.571 | 34980.0 | 455.0 | 403.429 | 1.09 | null | null | null | null | null | null | null | null | 7.1838293e7 | 588296.0 | 492.26408210918794 | 4.031 | 555591.0 | 3.807 | 4.1e-2 | 24.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13862.55857595252 | 164.8616783177873 | 154.30605629403777 | 239.69664190349556 | 3.1178379664405513 | 2.7644533032157037 |
RUS | Europe | Russia | 2020-11-21 | 2047563.0 | 24538.0 | 22818.143 | 35442.0 | 462.0 | 415.143 | 1.09 | null | null | null | null | null | null | null | null | 7.2429063e7 | 590770.0 | 496.3122692200321 | 4.048 | 550294.0 | 3.771 | 4.1e-2 | 24.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14030.70254962399 | 168.1439736714687 | 156.3588408111422 | 242.86244660788137 | 3.1658047043857906 | 2.844722212971494 |
RUS | Europe | Russia | 2020-11-22 | 2071858.0 | 24295.0 | 23101.286 | 35838.0 | 396.0 | 421.857 | 1.09 | null | null | null | null | null | null | null | null | 7.2949596e7 | 520533.0 | 499.87916493472477 | 3.567 | 548243.0 | 3.757 | 4.2e-2 | 23.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14197.181392249644 | 166.47884262565537 | 158.29904739428918 | 245.57599349735492 | 2.713546889473535 | 2.890729167052114 |
RUS | Europe | Russia | 2020-11-23 | 2096749.0 | 24891.0 | 23434.0 | 36192.0 | 354.0 | 429.714 | 1.09 | null | null | null | null | null | null | null | null | 7.3312313e7 | 362717.0 | 502.36464369005097 | 2.485 | 537379.0 | 3.682 | 4.4e-2 | 22.9 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14367.74425999178 | 170.56286774213575 | 160.57893385839097 | 248.00173995915702 | 2.4257464618020994 | 2.9445684042000773 |
RUS | Europe | Russia | 2020-11-24 | 2120836.0 | 24087.0 | 23703.429 | 36675.0 | 483.0 | 436.571 | 1.09 | null | null | null | null | null | null | null | null | 7.376515e7 | 452837.0 | 505.4676599344665 | 3.103 | 527038.0 | 3.611 | 4.5e-2 | 22.2 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14532.797805261349 | 165.05354526956825 | 162.42516674951207 | 251.31144487737853 | 3.3097049182215086 | 2.9915552502130067 |
RUS | Europe | Russia | 2020-11-25 | 2144229.0 | 23393.0 | 24085.714 | 37173.0 | 498.0 | 443.571 | 1.09 | null | null | null | null | null | null | null | null | 7.427093e7 | 505780.0 | 508.93346232274405 | 3.466 | 516814.0 | 3.541 | 4.7e-2 | 21.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14693.095791083202 | 160.29798582185455 | 165.0447330945686 | 254.72393566262556 | 3.412490785247021 | 3.039521988158246 |
RUS | Europe | Russia | 2020-11-26 | 2169424.0 | 25195.0 | 24351.143 | 37688.0 | 515.0 | 451.857 | 1.09 | null | null | null | null | null | null | null | null | 7.4814909e7 | 543979.0 | 512.6610191999888 | 3.728 | 509273.0 | 3.49 | 4.8e-2 | 20.9 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14865.741785730388 | 172.64599464718614 | 166.8635564211496 | 258.25291709716817 | 3.5289814345426023 | 3.096300901103139 |
RUS | Europe | Russia | 2020-11-27 | 2196691.0 | 27267.0 | 24809.429 | 38175.0 | 487.0 | 456.429 | 1.09 | null | null | null | null | null | null | null | null | 7.5402616e7 | 587707.0 | 516.6882174367864 | 4.027 | 509189.0 | 3.489 | 4.9e-2 | 20.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15052.585934809365 | 186.84414907897695 | 170.0039113448599 | 261.59003157992976 | 3.3371144827616455 | 3.1276300333725153 |
RUS | Europe | Russia | 2020-11-28 | 2223500.0 | 26809.0 | 25133.857 | 38676.0 | 501.0 | 462.0 | 1.09 | null | null | null | null | null | null | null | null | 7.5948006e7 | 545390.0 | 520.4254430379226 | 3.737 | 502706.0 | 3.445 | 5.0e-2 | 20.0 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15236.291688748497 | 183.7057539391313 | 172.22701889601674 | 265.0230795385819 | 3.4330479586521236 | 3.1658047043857906 |
RUS | Europe | Russia | 2020-11-29 | 2249890.0 | 26390.0 | 25433.143 | 39127.0 | 451.0 | 469.857 | 1.09 | null | null | null | null | null | null | null | null | 7.6422849e7 | 474843.0 | 523.6792530016556 | 3.254 | 496179.0 | 3.4 | 5.1e-2 | 19.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15417.126290802049 | 180.83460205355198 | 174.27784362925658 | 268.1135079404823 | 3.090428401900415 | 3.2196439415337545 |
RUS | Europe | Russia | 2020-11-30 | 2275936.0 | 26046.0 | 25598.143 | 39491.0 | 364.0 | 471.286 | 1.09 | null | null | null | null | null | null | null | null | 7.6755901e7 | 333052.0 | 525.9614555739611 | 2.282 | 491941.0 | 3.371 | 5.2e-2 | 19.2 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15595.603670305149 | 178.47737950310022 | 175.4084881665372 | 270.60777831363475 | 2.494270373152441 | 3.229436008465718 |
RUS | Europe | Russia | 2020-12-01 | 2302062.0 | 26126.0 | 25889.429 | 40050.0 | 559.0 | 482.143 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | 444170.0 | 529.0050821444092 | 3.044 | 490703.0 | 3.362 | 5.3e-2 | 19.0 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15774.629241099052 | 179.02557079390294 | 177.40449377069677 | 274.43826495811885 | 3.8304866444841057 | 3.303832419018784 |
RUS | Europe | Russia | 2020-12-02 | 2327105.0 | 25043.0 | 26125.143 | 40630.0 | 580.0 | 493.857 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | null | 529.0050821444092 | null | 491830.0 | 3.37 | 5.3e-2 | 18.8 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15946.233672293714 | 171.60443119466095 | 179.01969829470025 | 278.41265181643865 | 3.9743868583198236 | 3.384101328774575 |
RUS | Europe | Russia | 2020-12-02 | 2327105.0 | 25043.0 | 26125.143 | 40630.0 | 580.0 | 493.857 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | null | 529.0050821444092 | null | null | null | null | null | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15946.233672293714 | 171.60443119466095 | 179.01969829470025 | 278.41265181643865 | 3.9743868583198236 | 3.384101328774575 |
RUS | Europe | Russia | 2020-12-03 | 2354934.0 | 27829.0 | 26501.429 | 41173.0 | 543.0 | 497.857 | 1.09 | null | null | null | null | null | null | null | null | 7.8227415e7 | null | 536.0448450626398 | null | 487501.0 | 3.341 | 5.4e-2 | 18.4 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16136.92886519058 | 190.6951928968662 | 181.5981571453377 | 282.13350020276226 | 3.7208483863235595 | 3.411510893314712 |
RUS | Europe | Russia | 2020-12-03 | 2354934.0 | 27829.0 | 26501.429 | 41173.0 | 543.0 | 497.857 | 1.09 | null | null | null | null | null | null | null | null | 7.8227415e7 | null | 536.0448450626398 | null | null | null | null | null | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16136.92886519058 | 190.6951928968662 | 181.5981571453377 | 282.13350020276226 | 3.7208483863235595 | 3.411510893314712 |
YEM | Asia | Yemen | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 22.22 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-10 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 3.352783051332986e-2 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-11 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-12 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-13 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-14 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-15 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-16 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-17 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-19 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-21 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-22 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-23 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-24 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-25 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-26 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-27 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-28 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-29 | 6.0 | 5.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.20116698307997916 | 0.1676391525666493 | 2.393887098651752e-2 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-30 | 6.0 | 0.0 | 0.714 | 2.0 | 2.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 52.78 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.20116698307997916 | 0.0 | 2.393887098651752e-2 | 6.705566102665972e-2 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-01 | 7.0 | 1.0 | 0.857 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.23469481359330902 | 3.352783051332986e-2 | 2.873335074992369e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-02 | 10.0 | 3.0 | 1.286 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.3352783051332986 | 0.10058349153998958 | 4.3116790040142204e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-03 | 10.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.3352783051332986 | 0.0 | 4.3116790040142204e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-04 | 12.0 | 2.0 | 1.571 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.4023339661599583 | 6.705566102665972e-2 | 5.2672221736441205e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-05 | 22.0 | 10.0 | 3.0 | 4.0 | 2.0 | 0.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.737612271293257 | 0.3352783051332986 | 0.10058349153998958 | 0.13411132205331944 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-05-06 | 25.0 | 3.0 | 2.714 | 5.0 | 1.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.8381957628332465 | 0.10058349153998958 | 9.099453201317724e-2 | 0.1676391525666493 | 3.352783051332986e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-07 | 25.0 | 0.0 | 2.714 | 5.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.8381957628332465 | 0.0 | 9.099453201317724e-2 | 0.1676391525666493 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-05-08 | 34.0 | 9.0 | 3.857 | 7.0 | 2.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.1399462374532154 | 0.30175047461996873 | 0.12931684228991328 | 0.23469481359330902 | 6.705566102665972e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-09 | 34.0 | 0.0 | 3.429 | 7.0 | 0.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.1399462374532154 | 0.0 | 0.11496693083020809 | 0.23469481359330902 | 0.0 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-10 | 51.0 | 17.0 | 5.857 | 8.0 | 1.0 | 0.857 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.7099193561798227 | 0.5699731187266077 | 0.19637250331657302 | 0.2682226441066389 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-05-11 | 56.0 | 5.0 | 6.286 | 9.0 | 1.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.8775585087464721 | 0.1676391525666493 | 0.21075594260679148 | 0.30175047461996873 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-12 | 65.0 | 9.0 | 6.143 | 10.0 | 1.0 | 0.857 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.179308983366441 | 0.30175047461996873 | 0.20596146284338532 | 0.3352783051332986 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-05-13 | 70.0 | 5.0 | 6.429 | 12.0 | 2.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.3469481359330904 | 0.1676391525666493 | 0.21555042237019767 | 0.4023339661599583 | 6.705566102665972e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-14 | 85.0 | 15.0 | 8.571 | 12.0 | 0.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.849865593633038 | 0.5029174576999479 | 0.2873670353297502 | 0.4023339661599583 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-15 | 106.0 | 21.0 | 10.286 | 15.0 | 3.0 | 1.143 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.5539500344129653 | 0.704084440779927 | 0.344867264660111 | 0.5029174576999479 | 0.10058349153998958 | 3.832231027673603e-2 |
YEM | Asia | Yemen | 2020-05-16 | 122.0 | 16.0 | 12.571 | 18.0 | 3.0 | 1.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.090395322626243 | 0.5364452882132777 | 0.42147835738306966 | 0.6035009492399375 | 0.10058349153998958 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-05-17 | 128.0 | 6.0 | 11.0 | 20.0 | 2.0 | 1.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.291562305706222 | 0.20116698307997916 | 0.3688061356466285 | 0.6705566102665972 | 6.705566102665972e-2 | 5.746670149984738e-2 |
YEM | Asia | Yemen | 2020-05-18 | 130.0 | 2.0 | 10.571 | 20.0 | 0.0 | 1.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.358617966732882 | 6.705566102665972e-2 | 0.35442269635640994 | 0.6705566102665972 | 0.0 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-05-19 | 167.0 | 37.0 | 14.571 | 28.0 | 8.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 5.599147695726087 | 1.240529728993205 | 0.48853401840972943 | 0.9387792543732361 | 0.2682226441066389 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-20 | 184.0 | 17.0 | 16.286 | 30.0 | 2.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 6.169120814452694 | 0.5699731187266077 | 0.5460342477400901 | 1.0058349153998958 | 6.705566102665972e-2 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-21 | 197.0 | 13.0 | 16.0 | 33.0 | 3.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 6.604982611125982 | 0.4358617966732882 | 0.5364452882132777 | 1.1064184069398852 | 0.10058349153998958 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-22 | 209.0 | 12.0 | 14.714 | 33.0 | 0.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.00731657728594 | 0.4023339661599583 | 0.49332849817313557 | 1.1064184069398852 | 0.0 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-23 | 212.0 | 3.0 | 12.857 | 39.0 | 6.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.107900068825931 | 0.10058349153998958 | 0.43106731690988204 | 1.3075853900198646 | 0.20116698307997916 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-24 | 222.0 | 10.0 | 13.429 | 42.0 | 3.0 | 3.143 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.4431783739592285 | 0.3352783051332986 | 0.45024523596350674 | 1.408168881559854 | 0.10058349153998958 | 0.10537797130339574 |
YEM | Asia | Yemen | 2020-05-25 | 233.0 | 11.0 | 14.714 | 44.0 | 2.0 | 3.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.811984509605857 | 0.3688061356466285 | 0.49332849817313557 | 1.475224542586514 | 6.705566102665972e-2 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-05-26 | 249.0 | 16.0 | 11.714 | 49.0 | 5.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 8.348429797819136 | 0.5364452882132777 | 0.39274500663314604 | 1.6428636951531632 | 0.1676391525666493 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-27 | 256.0 | 7.0 | 10.286 | 53.0 | 4.0 | 3.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 8.583124611412444 | 0.23469481359330902 | 0.344867264660111 | 1.7769750172064827 | 0.13411132205331944 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-05-28 | 278.0 | 22.0 | 11.571 | 57.0 | 4.0 | 3.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 9.3207368827057 | 0.737612271293257 | 0.3879505268697398 | 1.9110863392598023 | 0.13411132205331944 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-05-29 | 283.0 | 5.0 | 10.571 | 65.0 | 8.0 | 4.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 9.488376035272351 | 0.1676391525666493 | 0.35442269635640994 | 2.179308983366441 | 0.2682226441066389 | 0.15325571327643078 |
YEM | Asia | Yemen | 2020-05-30 | 310.0 | 27.0 | 14.0 | 77.0 | 12.0 | 5.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 10.393627459132256 | 0.9052514238599063 | 0.46938962718661803 | 2.5816429495263993 | 0.4023339661599583 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-05-31 | 323.0 | 13.0 | 14.429 | 80.0 | 3.0 | 5.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 10.829489255805544 | 0.4358617966732882 | 0.4837730664768366 | 2.6822264410663887 | 0.10058349153998958 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-06-01 | 354.0 | 31.0 | 17.286 | 84.0 | 4.0 | 5.714 | 1.02 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 11.86885200171877 | 1.0393627459132255 | 0.57956207825342 | 2.816337763119708 | 0.13411132205331944 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-02 | 399.0 | 45.0 | 21.429 | 87.0 | 3.0 | 5.429 | 1.02 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 13.377604374818615 | 1.5087523730998438 | 0.7184678800701455 | 2.9169212546596976 | 0.10058349153998958 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-06-03 | 419.0 | 20.0 | 23.286 | 95.0 | 8.0 | 6.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 14.048160985085213 | 0.6705566102665972 | 0.7807290613333993 | 3.185143898766337 | 0.2682226441066389 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-04 | 453.0 | 34.0 | 25.0 | 103.0 | 8.0 | 6.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 15.188107222538427 | 1.1399462374532154 | 0.8381957628332465 | 3.453366542872976 | 0.2682226441066389 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-05 | 469.0 | 16.0 | 26.571 | 111.0 | 8.0 | 6.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 15.724552510751707 | 0.5364452882132777 | 0.8908679845696879 | 3.7215891869796143 | 0.2682226441066389 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-06 | 482.0 | 13.0 | 24.571 | 111.0 | 0.0 | 4.857 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.160414307424993 | 0.4358617966732882 | 0.823812323543028 | 3.7215891869796143 | 0.0 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-06-07 | 484.0 | 2.0 | 23.0 | 112.0 | 1.0 | 4.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.227469968451654 | 6.705566102665972e-2 | 0.7711401018065868 | 3.7551170174929442 | 3.352783051332986e-2 | 0.15325571327643078 |
YEM | Asia | Yemen | 2020-06-08 | 496.0 | 12.0 | 20.286 | 112.0 | 0.0 | 4.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.62980393461161 | 0.4023339661599583 | 0.6801455697934096 | 3.7551170174929442 | 0.0 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-06-09 | 524.0 | 28.0 | 17.857 | 127.0 | 15.0 | 5.714 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 17.56858318898485 | 0.9387792543732361 | 0.5987064694765313 | 4.2580344751928925 | 0.5029174576999479 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-10 | 560.0 | 36.0 | 20.143 | 129.0 | 2.0 | 4.857 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 18.775585087464723 | 1.207001898479875 | 0.6753510900300035 | 4.3250901362195515 | 6.705566102665972e-2 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-06-11 | 591.0 | 31.0 | 19.714 | 136.0 | 7.0 | 4.714 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 19.814947833377946 | 1.0393627459132255 | 0.6609676507397848 | 4.559784949812862 | 0.23469481359330902 | 0.15805019303983697 |
YEM | Asia | Yemen | 2020-06-12 | 632.0 | 41.0 | 23.286 | 139.0 | 3.0 | 4.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 21.189588884424474 | 1.3746410510465241 | 0.7807290613333993 | 4.66036844135285 | 0.10058349153998958 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-06-13 | 705.0 | 73.0 | 31.857 | 160.0 | 21.0 | 7.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 23.63712051189755 | 2.44753162747308 | 1.0680960966631494 | 5.3644528821327775 | 0.704084440779927 | 0.23469481359330902 |
YEM | Asia | Yemen | 2020-06-14 | 728.0 | 23.0 | 34.857 | 164.0 | 4.0 | 7.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 24.408260613704137 | 0.7711401018065868 | 1.168679588203139 | 5.4985642041860965 | 0.13411132205331944 | 0.24907825288352753 |
YEM | Asia | Yemen | 2020-06-15 | 844.0 | 116.0 | 49.714 | 208.0 | 44.0 | 13.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 28.297488953250404 | 3.8892283395462637 | 1.6668025661396806 | 6.973788746772612 | 1.475224542586514 | 0.45980066765980576 |
YEM | Asia | Yemen | 2020-06-16 | 885.0 | 41.0 | 51.571 | 214.0 | 6.0 | 12.429 | 0.99 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 29.672130004296925 | 1.3746410510465241 | 1.7290637474029342 | 7.17495572985259 | 0.20116698307997916 | 0.4167174054501768 |
YEM | Asia | Yemen | 2020-06-17 | 902.0 | 17.0 | 48.857 | 244.0 | 30.0 | 16.429 | 0.98 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.242103123023533 | 0.5699731187266077 | 1.638069215389757 | 8.180790645252486 | 1.0058349153998958 | 0.5508287275034962 |
YEM | Asia | Yemen | 2020-06-18 | 909.0 | 7.0 | 45.429 | 248.0 | 4.0 | 16.0 | 0.98 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.476797936616844 | 0.23469481359330902 | 1.5231358123900622 | 8.314901967305804 | 0.13411132205331944 | 0.5364452882132777 |
YEM | Asia | Yemen | 2020-06-19 | 919.0 | 10.0 | 41.0 | 251.0 | 3.0 | 16.0 | 0.97 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.812076241750137 | 0.3352783051332986 | 1.3746410510465241 | 8.415485458845794 | 0.10058349153998958 | 0.5364452882132777 |
YEM | Asia | Yemen | 2020-06-20 | 922.0 | 3.0 | 31.0 | 254.0 | 3.0 | 13.429 | 0.97 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.91265973329013 | 0.10058349153998958 | 1.0393627459132255 | 8.516068950385785 | 0.10058349153998958 | 0.45024523596350674 |
YEM | Asia | Yemen | 2020-06-21 | 941.0 | 19.0 | 30.429 | 256.0 | 2.0 | 13.143 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 31.5496885130434 | 0.6370287797532673 | 1.0202183546901142 | 8.583124611412444 | 6.705566102665972e-2 | 0.44065627643669436 |
YEM | Asia | Yemen | 2020-06-22 | 967.0 | 26.0 | 17.571 | 257.0 | 1.0 | 7.0 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 32.42141210638997 | 0.8717235933465765 | 0.589117509949719 | 8.616652441925774 | 3.352783051332986e-2 | 0.23469481359330902 |
YEM | Asia | Yemen | 2020-06-23 | 992.0 | 25.0 | 15.286 | 261.0 | 4.0 | 6.714 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 33.25960786922322 | 0.8381957628332465 | 0.5125064172267602 | 8.750763763979093 | 0.13411132205331944 | 0.2251058540664967 |
YEM | Asia | Yemen | 2020-06-24 | 1015.0 | 23.0 | 16.143 | 274.0 | 13.0 | 4.286 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 34.03074797102981 | 0.7711401018065868 | 0.5412397679766839 | 9.18662556065238 | 0.4358617966732882 | 0.14370028158013176 |
YEM | Asia | Yemen | 2020-06-25 | 1076.0 | 61.0 | 23.857 | 288.0 | 14.0 | 5.714 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.07594563234293 | 2.0451976613131215 | 0.7998734525565105 | 9.656015187839 | 0.46938962718661803 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-26 | 1089.0 | 13.0 | 24.286 | 293.0 | 5.0 | 6.0 | 0.95 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.511807429016216 | 0.4358617966732882 | 0.8142568918467291 | 9.82365434040565 | 0.1676391525666493 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-27 | 1103.0 | 14.0 | 25.857 | 296.0 | 3.0 | 6.0 | 0.95 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.98119705620284 | 0.46938962718661803 | 0.8669291135831702 | 9.92423783194564 | 0.10058349153998958 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-28 | 1118.0 | 15.0 | 25.286 | 302.0 | 6.0 | 6.571 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 37.48411451390278 | 0.5029174576999479 | 0.8477847223600589 | 10.125404815025618 | 0.20116698307997916 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-29 | 1128.0 | 10.0 | 23.0 | 304.0 | 2.0 | 6.714 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 37.81939281903608 | 0.3352783051332986 | 0.7711401018065868 | 10.192460476052277 | 6.705566102665972e-2 | 0.2251058540664967 |
YEM | Asia | Yemen | 2020-06-30 | 1158.0 | 30.0 | 23.714 | 312.0 | 8.0 | 7.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 38.82522773443598 | 1.0058349153998958 | 0.7950789727931042 | 10.460683120158917 | 0.2682226441066389 | 0.24428377312012134 |
YEM | Asia | Yemen | 2020-07-01 | 1190.0 | 32.0 | 25.0 | 318.0 | 6.0 | 6.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 39.898118310862536 | 1.0728905764265555 | 0.8381957628332465 | 10.661850103238894 | 0.20116698307997916 | 0.21075594260679148 |
YEM | Asia | Yemen | 2020-07-02 | 1221.0 | 31.0 | 20.714 | 325.0 | 7.0 | 5.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 40.93748105677576 | 1.0393627459132255 | 0.6944954812531148 | 10.896544916832205 | 0.23469481359330902 | 0.17722811209346162 |
YEM | Asia | Yemen | 2020-07-03 | 1240.0 | 19.0 | 21.571 | 335.0 | 10.0 | 6.0 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 41.574509836529025 | 0.6370287797532673 | 0.7232288320030386 | 11.231823221965504 | 0.3352783051332986 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-07-04 | 1248.0 | 8.0 | 20.714 | 337.0 | 2.0 | 5.857 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 41.84273248063567 | 0.2682226441066389 | 0.6944954812531148 | 11.298878882992163 | 6.705566102665972e-2 | 0.19637250331657302 |
YEM | Asia | Yemen | 2020-07-05 | 1265.0 | 17.0 | 21.0 | 338.0 | 1.0 | 5.143 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 42.412705599362276 | 0.5699731187266077 | 0.704084440779927 | 11.332406713505492 | 3.352783051332986e-2 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-06 | 1284.0 | 19.0 | 22.286 | 345.0 | 7.0 | 5.857 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 43.04973437911554 | 0.6370287797532673 | 0.7472012308200693 | 11.567101527098803 | 0.23469481359330902 | 0.19637250331657302 |
YEM | Asia | Yemen | 2020-07-07 | 1297.0 | 13.0 | 19.857 | 348.0 | 3.0 | 5.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 43.485596175788835 | 0.4358617966732882 | 0.665762130503191 | 11.66768501863879 | 0.10058349153998958 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-08 | 1318.0 | 21.0 | 18.286 | 351.0 | 3.0 | 4.714 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 44.18968061656875 | 0.704084440779927 | 0.61308990876675 | 11.76826851017878 | 0.10058349153998958 | 0.15805019303983697 |
YEM | Asia | Yemen | 2020-07-09 | 1356.0 | 38.0 | 19.286 | 361.0 | 10.0 | 5.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 45.463738176075296 | 1.2740575595065347 | 0.6466177392800798 | 12.103546815312079 | 0.3352783051332986 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-10 | 1380.0 | 24.0 | 20.0 | 364.0 | 3.0 | 4.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 46.26840610839521 | 0.8046679323199166 | 0.6705566102665972 | 12.204130306852068 | 0.10058349153998958 | 0.1389058018167256 |
YEM | Asia | Yemen | 2020-07-11 | 1389.0 | 9.0 | 20.143 | 365.0 | 1.0 | 4.0 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 46.57015658301518 | 0.30175047461996873 | 0.6753510900300035 | 12.2376581373654 | 3.352783051332986e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-12 | 1465.0 | 76.0 | 28.571 | 417.0 | 52.0 | 11.286 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 49.118271702028245 | 2.5481151190130693 | 0.9579236455963475 | 13.981105324058552 | 1.743447186693153 | 0.3783950951734408 |
YEM | Asia | Yemen | 2020-07-13 | 1498.0 | 33.0 | 30.571 | 424.0 | 7.0 | 11.286 | 0.91 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 50.22469010896813 | 1.1064184069398852 | 1.024979306623007 | 14.215800137651861 | 0.23469481359330902 | 0.3783950951734408 |
YEM | Asia | Yemen | 2020-07-14 | 1516.0 | 18.0 | 31.286 | 429.0 | 5.0 | 11.571 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 50.82819105820807 | 0.6035009492399375 | 1.0489517054400381 | 14.383439290218512 | 0.1676391525666493 | 0.3879505268697398 |
YEM | Asia | Yemen | 2020-07-15 | 1526.0 | 10.0 | 29.714 | 433.0 | 4.0 | 11.714 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 51.16346936334137 | 0.3352783051332986 | 0.9962459558730835 | 14.51755061227183 | 0.13411132205331944 | 0.39274500663314604 |
YEM | Asia | Yemen | 2020-07-16 | 1552.0 | 26.0 | 28.0 | 438.0 | 5.0 | 11.0 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 52.03519295668794 | 0.8717235933465765 | 0.9387792543732361 | 14.685189764838478 | 0.1676391525666493 | 0.3688061356466285 |
YEM | Asia | Yemen | 2020-07-17 | 1576.0 | 24.0 | 28.0 | 440.0 | 2.0 | 10.857 | 0.89 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 52.83986088900786 | 0.8046679323199166 | 0.9387792543732361 | 14.752245425865139 | 6.705566102665972e-2 | 0.36401165588322226 |
YEM | Asia | Yemen | 2020-07-18 | 1581.0 | 5.0 | 27.429 | 443.0 | 3.0 | 11.143 | 0.89 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 53.00750004157451 | 0.1676391525666493 | 0.9196348631501248 | 14.852828917405128 | 0.10058349153998958 | 0.37360061541003464 |
YEM | Asia | Yemen | 2020-07-19 | 1606.0 | 25.0 | 20.143 | 445.0 | 2.0 | 4.0 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 53.845695804407754 | 0.8381957628332465 | 0.6753510900300035 | 14.91988457843179 | 6.705566102665972e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-20 | 1619.0 | 13.0 | 17.286 | 447.0 | 2.0 | 3.286 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.28155760108104 | 0.4358617966732882 | 0.57956207825342 | 14.986940239458448 | 6.705566102665972e-2 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-07-21 | 1629.0 | 10.0 | 16.143 | 456.0 | 9.0 | 3.857 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.61683590621434 | 0.3352783051332986 | 0.5412397679766839 | 15.288690714078419 | 0.30175047461996873 | 0.12931684228991328 |
YEM | Asia | Yemen | 2020-07-22 | 1640.0 | 11.0 | 16.286 | 458.0 | 2.0 | 3.571 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.98564204186097 | 0.3688061356466285 | 0.5460342477400901 | 15.355746375105076 | 6.705566102665972e-2 | 0.11972788276310095 |
YEM | Asia | Yemen | 2020-07-23 | 1654.0 | 14.0 | 14.571 | 461.0 | 3.0 | 3.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 55.45503166904759 | 0.46938962718661803 | 0.48853401840972943 | 15.456329866645065 | 0.10058349153998958 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-07-24 | 1674.0 | 20.0 | 14.0 | 469.0 | 8.0 | 4.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.12558827931419 | 0.6705566102665972 | 0.46938962718661803 | 15.724552510751707 | 0.2682226441066389 | 0.1389058018167256 |
YEM | Asia | Yemen | 2020-07-25 | 1674.0 | 0.0 | 13.286 | 474.0 | 5.0 | 4.429 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.12558827931419 | 0.0 | 0.4454507562001005 | 15.892191663318354 | 0.1676391525666493 | 0.14849476134353798 |
YEM | Asia | Yemen | 2020-07-26 | 1681.0 | 7.0 | 10.714 | 479.0 | 5.0 | 4.857 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.360283092907494 | 0.23469481359330902 | 0.35921717611981613 | 16.059830815885 | 0.1676391525666493 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-07-27 | 1691.0 | 10.0 | 10.286 | 483.0 | 4.0 | 5.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.695561398040795 | 0.3352783051332986 | 0.344867264660111 | 16.193942137938322 | 0.13411132205331944 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-28 | 1703.0 | 12.0 | 10.571 | 484.0 | 1.0 | 4.0 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.09789536420075 | 0.4023339661599583 | 0.35442269635640994 | 16.227469968451654 | 3.352783051332986e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-29 | 1711.0 | 8.0 | 10.143 | 485.0 | 1.0 | 3.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.36611800830739 | 0.2682226441066389 | 0.3400727848967048 | 16.260997798964983 | 3.352783051332986e-2 | 0.12931684228991328 |
YEM | Asia | Yemen | 2020-07-30 | 1726.0 | 15.0 | 10.286 | 487.0 | 2.0 | 3.714 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.86903546600734 | 0.5029174576999479 | 0.344867264660111 | 16.328053459991644 | 6.705566102665972e-2 | 0.1245223625265071 |
YEM | Asia | Yemen | 2020-07-31 | 1728.0 | 2.0 | 7.714 | 493.0 | 6.0 | 3.429 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.936091127034004 | 6.705566102665972e-2 | 0.25863368457982655 | 16.52922044307162 | 0.20116698307997916 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-08-01 | 1730.0 | 2.0 | 8.0 | 494.0 | 1.0 | 2.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.003146788060654 | 6.705566102665972e-2 | 0.2682226441066389 | 16.56274827358495 | 3.352783051332986e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-02 | 1734.0 | 4.0 | 7.571 | 497.0 | 3.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.13725811011398 | 0.13411132205331944 | 0.25383920481642036 | 16.66333176512494 | 0.10058349153998958 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-03 | 1734.0 | 0.0 | 6.143 | 499.0 | 2.0 | 2.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.13725811011398 | 0.0 | 0.20596146284338532 | 16.730387426151598 | 6.705566102665972e-2 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-04 | 1760.0 | 26.0 | 8.143 | 506.0 | 7.0 | 3.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.008981703460556 | 0.8717235933465765 | 0.27301712387004506 | 16.96508223974491 | 0.23469481359330902 | 0.10537797130339574 |
YEM | Asia | Yemen | 2020-08-05 | 1763.0 | 3.0 | 7.429 | 508.0 | 2.0 | 3.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.10956519500054 | 0.10058349153998958 | 0.24907825288352753 | 17.03213790077157 | 6.705566102665972e-2 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-08-06 | 1768.0 | 5.0 | 6.0 | 508.0 | 0.0 | 3.0 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.2772043475672 | 0.1676391525666493 | 0.20116698307997916 | 17.03213790077157 | 0.0 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-07 | 1796.0 | 28.0 | 9.714 | 512.0 | 4.0 | 2.714 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.21598360194043 | 0.9387792543732361 | 0.32568934560648627 | 17.166249222824888 | 0.13411132205331944 | 9.099453201317724e-2 |
YEM | Asia | Yemen | 2020-08-08 | 1797.0 | 1.0 | 9.571 | 512.0 | 0.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.24951143245376 | 3.352783051332986e-2 | 0.3208948658430801 | 17.166249222824888 | 0.0 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-09 | 1804.0 | 7.0 | 10.0 | 515.0 | 3.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.484206246047066 | 0.23469481359330902 | 0.3352783051332986 | 17.266832714364877 | 0.10058349153998958 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-10 | 1832.0 | 28.0 | 14.0 | 518.0 | 3.0 | 2.714 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.4229855004203 | 0.9387792543732361 | 0.46938962718661803 | 17.36741620590487 | 0.10058349153998958 | 9.099453201317724e-2 |
YEM | Asia | Yemen | 2020-08-11 | 1831.0 | -1.0 | 10.143 | 523.0 | 5.0 | 2.429 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.38945766990697 | -3.352783051332986e-2 | 0.3400727848967048 | 17.535055358471517 | 0.1676391525666493 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-12 | 1841.0 | 10.0 | 11.143 | 528.0 | 5.0 | 2.857 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.724735975040275 | 0.3352783051332986 | 0.37360061541003464 | 17.702694511038164 | 0.1676391525666493 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-13 | 1847.0 | 6.0 | 11.286 | 528.0 | 0.0 | 2.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.92590295812025 | 0.20116698307997916 | 0.3783950951734408 | 17.702694511038164 | 0.0 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-14 | 1858.0 | 11.0 | 8.857 | 528.0 | 0.0 | 2.286 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.29470909376688 | 0.3688061356466285 | 0.29695599485656254 | 17.702694511038164 | 0.0 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-15 | 1858.0 | 0.0 | 8.714 | 528.0 | 0.0 | 2.286 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.29470909376688 | 0.0 | 0.2921615150931564 | 17.702694511038164 | 0.0 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-16 | 1869.0 | 11.0 | 9.286 | 530.0 | 2.0 | 2.143 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.66351522941351 | 0.3688061356466285 | 0.31133943414678106 | 17.76975017206483 | 6.705566102665972e-2 | 7.185014079006588e-2 |
YEM | Asia | Yemen | 2020-08-17 | 1882.0 | 13.0 | 7.143 | 535.0 | 5.0 | 2.429 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.0993770260868 | 0.4358617966732882 | 0.23948929335671518 | 17.937389324631475 | 0.1676391525666493 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-18 | 1889.0 | 7.0 | 8.286 | 537.0 | 2.0 | 2.0 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.33407183968011 | 0.23469481359330902 | 0.2778116036334512 | 18.004444985658136 | 6.705566102665972e-2 | 6.705566102665972e-2 |
YEM | Asia | Yemen | 2020-08-19 | 1892.0 | 3.0 | 7.286 | 539.0 | 2.0 | 1.571 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.43465533122009 | 0.10058349153998958 | 0.24428377312012134 | 18.071500646684793 | 6.705566102665972e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-08-20 | 1899.0 | 7.0 | 7.429 | 541.0 | 2.0 | 1.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.6693501448134 | 0.23469481359330902 | 0.24907825288352753 | 18.138556307711458 | 6.705566102665972e-2 | 6.226118126325355e-2 |
YEM | Asia | Yemen | 2020-08-21 | 1906.0 | 7.0 | 6.857 | 542.0 | 1.0 | 2.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.904044958406715 | 0.23469481359330902 | 0.22990033382990288 | 18.172084138224783 | 3.352783051332986e-2 | 6.705566102665972e-2 |
YEM | Asia | Yemen | 2020-08-22 | 1907.0 | 1.0 | 7.0 | 546.0 | 4.0 | 2.571 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.93757278892005 | 3.352783051332986e-2 | 0.23469481359330902 | 18.306195460278104 | 0.13411132205331944 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-23 | 1911.0 | 4.0 | 6.0 | 553.0 | 7.0 | 3.286 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.07168411097337 | 0.13411132205331944 | 0.20116698307997916 | 18.540890273871412 | 0.23469481359330902 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-08-24 | 1916.0 | 5.0 | 4.857 | 555.0 | 2.0 | 2.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.23932326354 | 0.1676391525666493 | 0.16284467280324313 | 18.607945934898073 | 6.705566102665972e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-25 | 1924.0 | 8.0 | 5.0 | 557.0 | 2.0 | 2.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.50754590764666 | 0.2682226441066389 | 0.1676391525666493 | 18.675001595924734 | 6.705566102665972e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-26 | 1930.0 | 6.0 | 5.429 | 560.0 | 3.0 | 3.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.70871289072663 | 0.20116698307997916 | 0.18202259185686784 | 18.775585087464723 | 0.10058349153998958 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-27 | 1933.0 | 3.0 | 4.857 | 562.0 | 2.0 | 3.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.80929638226662 | 0.10058349153998958 | 0.16284467280324313 | 18.84264074849138 | 6.705566102665972e-2 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-28 | 1943.0 | 10.0 | 5.286 | 563.0 | 1.0 | 3.0 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.14457468739992 | 0.3352783051332986 | 0.17722811209346162 | 18.876168579004712 | 3.352783051332986e-2 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-29 | 1946.0 | 3.0 | 5.571 | 563.0 | 0.0 | 2.429 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.2451581789399 | 0.10058349153998958 | 0.18678354378976064 | 18.876168579004712 | 0.0 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-30 | 1953.0 | 7.0 | 6.0 | 564.0 | 1.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.47985299253321 | 0.23469481359330902 | 0.20116698307997916 | 18.90969640951804 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-08-31 | 1958.0 | 5.0 | 6.0 | 566.0 | 2.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.64749214509986 | 0.1676391525666493 | 0.20116698307997916 | 18.976752070544702 | 6.705566102665972e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-01 | 1962.0 | 4.0 | 5.429 | 570.0 | 4.0 | 1.857 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.78160346715319 | 0.13411132205331944 | 0.18202259185686784 | 19.110863392598024 | 0.13411132205331944 | 6.226118126325355e-2 |
YEM | Asia | Yemen | 2020-09-02 | 1976.0 | 14.0 | 6.571 | 571.0 | 1.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.2509930943398 | 0.46938962718661803 | 0.22031137430309053 | 19.14439122311135 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-03 | 1979.0 | 3.0 | 6.571 | 571.0 | 0.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.3515765858798 | 0.10058349153998958 | 0.22031137430309053 | 19.14439122311135 | 0.0 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-04 | 1983.0 | 4.0 | 5.714 | 572.0 | 1.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.48568790793311 | 0.13411132205331944 | 0.19157802355316683 | 19.17791905362468 | 3.352783051332986e-2 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-05 | 1983.0 | 0.0 | 5.286 | 572.0 | 0.0 | 1.286 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.48568790793311 | 0.0 | 0.17722811209346162 | 19.17791905362468 | 0.0 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-06 | 1987.0 | 4.0 | 4.857 | 572.0 | 0.0 | 1.143 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.61979922998644 | 0.13411132205331944 | 0.16284467280324313 | 19.17791905362468 | 0.0 | 3.832231027673603e-2 |
YEM | Asia | Yemen | 2020-09-07 | 1989.0 | 2.0 | 4.429 | 573.0 | 1.0 | 1.0 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.68685489101308 | 6.705566102665972e-2 | 0.14849476134353798 | 19.21144688413801 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-08 | 1994.0 | 5.0 | 4.571 | 576.0 | 3.0 | 0.857 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.85449404357975 | 0.1676391525666493 | 0.15325571327643078 | 19.312030375678 | 0.10058349153998958 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-09-09 | 1999.0 | 5.0 | 3.286 | 576.0 | 0.0 | 0.714 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.0221331961464 | 0.1676391525666493 | 0.11017245106680193 | 19.312030375678 | 0.0 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-09-10 | 2003.0 | 4.0 | 3.429 | 580.0 | 4.0 | 1.286 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.15624451819971 | 0.13411132205331944 | 0.11496693083020809 | 19.44614169773132 | 0.13411132205331944 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-11 | 2007.0 | 4.0 | 3.429 | 582.0 | 2.0 | 1.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.29035584025303 | 0.13411132205331944 | 0.11496693083020809 | 19.513197358757978 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-12 | 2009.0 | 2.0 | 3.714 | 582.0 | 0.0 | 1.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.35741150127969 | 6.705566102665972e-2 | 0.1245223625265071 | 19.513197358757978 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-13 | 2011.0 | 2.0 | 3.429 | 583.0 | 1.0 | 1.571 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.42446716230636 | 6.705566102665972e-2 | 0.11496693083020809 | 19.54672518927131 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-14 | 2013.0 | 2.0 | 3.429 | 583.0 | 0.0 | 1.429 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.49152282333301 | 6.705566102665972e-2 | 0.11496693083020809 | 19.54672518927131 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-15 | 2016.0 | 3.0 | 3.143 | 583.0 | 0.0 | 1.0 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.592106314873 | 0.10058349153998958 | 0.10537797130339574 | 19.54672518927131 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-16 | 2019.0 | 3.0 | 2.857 | 583.0 | 0.0 | 1.0 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.69268980641299 | 0.10058349153998958 | 9.578901177658342e-2 | 19.54672518927131 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-17 | 2022.0 | 3.0 | 2.714 | 585.0 | 2.0 | 0.714 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.79327329795298 | 0.10058349153998958 | 9.099453201317724e-2 | 19.613780850297967 | 6.705566102665972e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-09-18 | 2024.0 | 2.0 | 2.429 | 585.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.86032895897964 | 6.705566102665972e-2 | 8.143910031687823e-2 | 19.613780850297967 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-19 | 2026.0 | 2.0 | 2.429 | 585.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.9273846200063 | 6.705566102665972e-2 | 8.143910031687823e-2 | 19.613780850297967 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-20 | 2026.0 | 0.0 | 2.143 | 586.0 | 1.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.9273846200063 | 0.0 | 7.185014079006588e-2 | 19.6473086808113 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-21 | 2028.0 | 2.0 | 2.143 | 586.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.99444028103296 | 6.705566102665972e-2 | 7.185014079006588e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-22 | 2028.0 | 0.0 | 1.714 | 586.0 | 0.0 | 0.429 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.99444028103296 | 0.0 | 5.746670149984738e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-23 | 2029.0 | 1.0 | 1.429 | 586.0 | 0.0 | 0.429 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 3.352783051332986e-2 | 4.791126980354837e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-24 | 2029.0 | 0.0 | 1.0 | 586.0 | 0.0 | 0.143 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 0.0 | 3.352783051332986e-2 | 19.6473086808113 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-25 | 2029.0 | 0.0 | 0.714 | 587.0 | 1.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 0.0 | 2.393887098651752e-2 | 19.680836511324628 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-09-26 | 2030.0 | 1.0 | 0.571 | 587.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.06149594205962 | 3.352783051332986e-2 | 1.914439122311135e-2 | 19.680836511324628 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-09-27 | 2030.0 | 0.0 | 0.571 | 587.0 | 0.0 | 0.143 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.06149594205962 | 0.0 | 1.914439122311135e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-28 | 2031.0 | 1.0 | 0.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.09502377257294 | 3.352783051332986e-2 | 1.438343929021851e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-29 | 2031.0 | 0.0 | 0.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.09502377257294 | 0.0 | 1.438343929021851e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-30 | 2034.0 | 3.0 | 0.714 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.19560726411294 | 0.10058349153998958 | 2.393887098651752e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-01 | 2039.0 | 5.0 | 1.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.36324641667959 | 0.1676391525666493 | 4.791126980354837e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-02 | 2040.0 | 1.0 | 1.571 | 589.0 | 2.0 | 0.286 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.39677424719292 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.74789217235129 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-03 | 2041.0 | 1.0 | 1.571 | 589.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.74789217235129 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-04 | 2041.0 | 0.0 | 1.571 | 591.0 | 2.0 | 0.571 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 0.0 | 5.2672221736441205e-2 | 19.814947833377946 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-05 | 2041.0 | 0.0 | 1.429 | 592.0 | 1.0 | 0.714 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 0.0 | 4.791126980354837e-2 | 19.84847566389128 | 3.352783051332986e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-10-06 | 2047.0 | 6.0 | 2.286 | 593.0 | 1.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.63146906078623 | 0.20116698307997916 | 7.664462055347206e-2 | 19.882003494404607 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-07 | 2049.0 | 2.0 | 2.143 | 593.0 | 0.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.69852472181289 | 6.705566102665972e-2 | 7.185014079006588e-2 | 19.882003494404607 | 0.0 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-08 | 2050.0 | 1.0 | 1.571 | 593.0 | 0.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.73205255232621 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.882003494404607 | 0.0 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-09 | 2051.0 | 1.0 | 1.571 | 593.0 | 0.0 | 0.571 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.76558038283954 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.882003494404607 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-10 | 2051.0 | 0.0 | 1.429 | 595.0 | 2.0 | 0.857 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.76558038283954 | 0.0 | 4.791126980354837e-2 | 19.949059155431268 | 6.705566102665972e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-11 | 2052.0 | 1.0 | 1.571 | 595.0 | 0.0 | 0.571 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.79910821335287 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.949059155431268 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-12 | 2052.0 | 0.0 | 1.571 | 596.0 | 1.0 | 0.571 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.79910821335287 | 0.0 | 5.2672221736441205e-2 | 19.982586985944597 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-13 | 2053.0 | 1.0 | 0.857 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 3.352783051332986e-2 | 2.873335074992369e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-14 | 2053.0 | 0.0 | 0.571 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 0.0 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-15 | 2053.0 | 0.0 | 0.429 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 0.0 | 1.438343929021851e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-16 | 2055.0 | 2.0 | 0.571 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.89969170489286 | 6.705566102665972e-2 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-17 | 2055.0 | 0.0 | 0.571 | 596.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.89969170489286 | 0.0 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-18 | 2056.0 | 1.0 | 0.571 | 597.0 | 1.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.9332195354062 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.016114816457925 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-19 | 2056.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.9332195354062 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-20 | 2057.0 | 1.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-21 | 2057.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-22 | 2057.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-23 | 2060.0 | 3.0 | 0.714 | 599.0 | 2.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.10058349153998958 | 2.393887098651752e-2 | 20.083170477484586 | 6.705566102665972e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-24 | 2060.0 | 0.0 | 0.714 | 599.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 2.393887098651752e-2 | 20.083170477484586 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-25 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-26 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-27 | 2060.0 | 0.0 | 0.429 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.438343929021851e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-28 | 2061.0 | 1.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.10085868797285 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-29 | 2062.0 | 1.0 | 0.714 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.13438651848617 | 3.352783051332986e-2 | 2.393887098651752e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-30 | 2062.0 | 0.0 | 0.286 | 599.0 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.13438651848617 | 0.0 | 9.58895952681234e-3 | 20.083170477484586 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-10-31 | 2063.0 | 1.0 | 0.429 | 599.0 | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 3.352783051332986e-2 | 1.438343929021851e-2 | 20.083170477484586 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-11-01 | 2063.0 | 0.0 | 0.429 | 600.0 | 1.0 | 0.143 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.116698307997915 | 3.352783051332986e-2 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-11-02 | 2063.0 | 0.0 | 0.429 | 601.0 | 1.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.150226138511247 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-03 | 2063.0 | 0.0 | 0.429 | 601.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-04 | 2063.0 | 0.0 | 0.286 | 601.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 9.58895952681234e-3 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-05 | 2063.0 | 0.0 | 0.143 | 601.0 | 0.0 | 0.286 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 4.79447976340617e-3 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-06 | 2067.0 | 4.0 | 0.714 | 602.0 | 1.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.30202567105282 | 0.13411132205331944 | 2.393887098651752e-2 | 20.183753969024576 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-07 | 2070.0 | 3.0 | 1.0 | 602.0 | 0.0 | 0.429 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.40260916259281 | 0.10058349153998958 | 3.352783051332986e-2 | 20.183753969024576 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-08 | 2070.0 | 0.0 | 1.0 | 602.0 | 0.0 | 0.286 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.40260916259281 | 0.0 | 3.352783051332986e-2 | 20.183753969024576 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-09 | 2071.0 | 1.0 | 1.143 | 605.0 | 3.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 3.352783051332986e-2 | 3.832231027673603e-2 | 20.284337460564565 | 0.10058349153998958 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-10 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-11 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-12 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-13 | 2072.0 | 1.0 | 0.714 | 605.0 | 0.0 | 0.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 3.352783051332986e-2 | 2.393887098651752e-2 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-14 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 0.0 | 9.58895952681234e-3 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-15 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 0.0 | 9.58895952681234e-3 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-16 | 2078.0 | 6.0 | 1.0 | 605.0 | 0.0 | 0.0 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.67083180669945 | 0.20116698307997916 | 3.352783051332986e-2 | 20.284337460564565 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-11-17 | 2081.0 | 3.0 | 1.429 | 607.0 | 2.0 | 0.286 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.77141529823943 | 0.10058349153998958 | 4.791126980354837e-2 | 20.351393121591226 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-18 | 2083.0 | 2.0 | 1.714 | 607.0 | 0.0 | 0.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.8384709592661 | 6.705566102665972e-2 | 5.746670149984738e-2 | 20.351393121591226 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-19 | 2086.0 | 3.0 | 2.143 | 608.0 | 1.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.93905445080608 | 0.10058349153998958 | 7.185014079006588e-2 | 20.384920952104554 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-20 | 2090.0 | 4.0 | 2.571 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.07316577285941 | 0.13411132205331944 | 8.620005224977108e-2 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-21 | 2093.0 | 3.0 | 3.0 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.17374926439939 | 0.10058349153998958 | 0.10058349153998958 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-22 | 2099.0 | 6.0 | 3.857 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.37491624747938 | 0.20116698307997916 | 0.12931684228991328 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-23 | 2107.0 | 8.0 | 4.143 | 609.0 | 1.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.643138891586 | 0.2682226441066389 | 0.1389058018167256 | 20.418448782617887 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-24 | 2114.0 | 7.0 | 4.714 | 609.0 | 0.0 | 0.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.87783370517933 | 0.23469481359330902 | 0.15805019303983697 | 20.418448782617887 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-25 | 2124.0 | 10.0 | 5.857 | 611.0 | 2.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 71.21311201031263 | 0.3352783051332986 | 0.19637250331657302 | 20.485504443644544 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-26 | 2137.0 | 13.0 | 7.286 | 612.0 | 1.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 71.64897380698591 | 0.4358617966732882 | 0.24428377312012134 | 20.519032274157876 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-27 | 2148.0 | 11.0 | 8.286 | 614.0 | 2.0 | 0.857 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.01777994263254 | 0.3688061356466285 | 0.2778116036334512 | 20.586087935184533 | 6.705566102665972e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-11-28 | 2160.0 | 12.0 | 9.571 | 615.0 | 1.0 | 1.0 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.4201139087925 | 0.4023339661599583 | 0.3208948658430801 | 20.619615765697866 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-11-29 | 2177.0 | 17.0 | 11.143 | 617.0 | 2.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.99008702751911 | 0.5699731187266077 | 0.37360061541003464 | 20.686671426724523 | 6.705566102665972e-2 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-11-30 | 2191.0 | 14.0 | 12.0 | 619.0 | 2.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 73.45947665470572 | 0.46938962718661803 | 0.4023339661599583 | 20.753727087751184 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-01 | 2197.0 | 6.0 | 11.857 | 619.0 | 0.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 73.6606436377857 | 0.20116698307997916 | 0.3975394863965521 | 20.753727087751184 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-02 | 2217.0 | 20.0 | 13.286 | 621.0 | 2.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 74.3312002480523 | 0.6705566102665972 | 0.4454507562001005 | 20.820782748777845 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-03 | 2239.0 | 22.0 | 14.571 | 624.0 | 3.0 | 1.714 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 75.06881251934556 | 0.737612271293257 | 0.48853401840972943 | 20.921366240317834 | 0.10058349153998958 | 5.746670149984738e-2 |
SWE | Europe | Sweden | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-01 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 9.901705766852455e-2 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-02 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-03 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-04 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-05 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-06 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-07 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-08 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-11 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-12 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-13 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-14 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-15 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-16 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-17 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-19 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-21 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-22 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-23 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-24 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-25 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-26 | 2.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.1980341153370491 | 9.901705766852455e-2 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-27 | 3.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.2970511730055737 | 9.901705766852455e-2 | 2.831887849319802e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-28 | 11.0 | 8.0 | 1.429 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.0891876343537703 | 0.7921364613481964 | 0.1414953754083216 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-29 | 14.0 | 3.0 | 1.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.3862388073593437 | 0.2970511730055737 | 0.1838746760904501 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-01 | 14.0 | 0.0 | 1.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.3862388073593437 | 0.0 | 0.1838746760904501 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-02 | 19.0 | 5.0 | 2.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.8813240957019666 | 0.4950852883426227 | 0.25457285526577667 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-03 | 32.0 | 13.0 | 4.429 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 3.1685458453927855 | 1.2872217496908194 | 0.4385465484138953 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-04 | 62.0 | 30.0 | 8.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 6.139057575448523 | 2.9705117300557364 | 0.848675201276924 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-05 | 87.0 | 25.0 | 12.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 8.614484017161637 | 2.4754264417131138 | 1.1882046920222948 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-06 | 146.0 | 59.0 | 19.286 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 14.456490419604584 | 5.842006402442949 | 1.9096429741951646 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-07 | 179.0 | 33.0 | 23.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 17.724053322665895 | 3.2675629030613105 | 2.3339310663047925 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-08 | 225.0 | 46.0 | 30.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 2.962 | 0.293 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 22.278837975418025 | 4.554784652752129 | 2.984671169302336 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-09 | 326.0 | 101.0 | 43.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 32.279560799939006 | 10.000722824520981 | 4.342591098168481 | 0.0 | 0.0 | 0.0 |
res14: Long = 62500
root
|-- iso_code: string (nullable = true)
|-- continent: string (nullable = false)
|-- location: string (nullable = true)
|-- date: string (nullable = true)
|-- total_cases: double (nullable = false)
|-- new_cases: double (nullable = true)
|-- new_cases_smoothed: double (nullable = false)
|-- total_deaths: double (nullable = false)
|-- new_deaths: double (nullable = true)
|-- new_deaths_smoothed: double (nullable = false)
|-- reproduction_rate: double (nullable = false)
|-- icu_patients: double (nullable = true)
|-- icu_patients_per_million: double (nullable = true)
|-- hosp_patients: double (nullable = true)
|-- hosp_patients_per_million: double (nullable = true)
|-- weekly_icu_admissions: double (nullable = true)
|-- weekly_icu_admissions_per_million: double (nullable = true)
|-- weekly_hosp_admissions: double (nullable = true)
|-- weekly_hosp_admissions_per_million: double (nullable = true)
|-- total_tests: double (nullable = false)
|-- new_tests: double (nullable = true)
|-- total_tests_per_thousand: double (nullable = true)
|-- new_tests_per_thousand: double (nullable = true)
|-- new_tests_smoothed: double (nullable = true)
|-- new_tests_smoothed_per_thousand: double (nullable = true)
|-- tests_per_case: double (nullable = true)
|-- positive_rate: double (nullable = true)
|-- tests_units: double (nullable = true)
|-- stringency_index: double (nullable = false)
|-- population: double (nullable = true)
|-- population_density: double (nullable = true)
|-- median_age: double (nullable = true)
|-- aged_65_older: double (nullable = true)
|-- aged_70_older: double (nullable = true)
|-- gdp_per_capita: double (nullable = true)
|-- extreme_poverty: double (nullable = true)
|-- cardiovasc_death_rate: double (nullable = true)
|-- diabetes_prevalence: double (nullable = true)
|-- female_smokers: double (nullable = true)
|-- male_smokers: double (nullable = true)
|-- handwashing_facilities: double (nullable = true)
|-- hospital_beds_per_thousand: double (nullable = true)
|-- life_expectancy: double (nullable = true)
|-- human_development_index: double (nullable = true)
|-- total_cases_per_million: double (nullable = true)
|-- new_cases_per_million: double (nullable = true)
|-- new_cases_smoothed_per_million: double (nullable = true)
|-- total_deaths_per_million: double (nullable = true)
|-- new_deaths_per_million: double (nullable = true)
|-- new_deaths_smoothed_per_million: double (nullable = true)
iso_code: 0
continent: 0
location: 0
date: 0
total_cases: 0
new_cases: 0
new_cases_smoothed: 0
total_deaths: 0
new_deaths: 0
new_deaths_smoothed: 0
reproduction_rate: 0
icu_patients: 36018
icu_patients_per_million: 36018
hosp_patients: 34870
hosp_patients_per_million: 34870
weekly_icu_admissions: 41062
weekly_icu_admissions_per_million: 41062
weekly_hosp_admissions: 40715
weekly_hosp_admissions_per_million: 40715
total_tests: 0
new_tests: 20510
total_tests_per_thousand: 0
new_tests_per_thousand: 20510
new_tests_smoothed: 18176
new_tests_smoothed_per_thousand: 18176
tests_per_case: 19301
positive_rate: 19749
tests_units: 41600
stringency_index: 0
population: 0
population_density: 0
median_age: 0
aged_65_older: 0
aged_70_older: 0
gdp_per_capita: 0
extreme_poverty: 11168
cardiovasc_death_rate: 0
diabetes_prevalence: 0
female_smokers: 0
male_smokers: 0
handwashing_facilities: 24124
hospital_beds_per_thousand: 0
life_expectancy: 0
human_development_index: 0
total_cases_per_million: 0
new_cases_per_million: 0
new_cases_smoothed_per_million: 0
total_deaths_per_million: 0
new_deaths_per_million: 0
new_deaths_smoothed_per_million: 0
import org.apache.spark.sql.functions._
iso_code | stringency_index | population | population_density | gdp_per_capita | diabetes_prevalence | total_cases_per_million | total_cases |
---|---|---|---|---|---|---|---|
BEN | 40.74 | 1.2123198e7 | 99.11 | 2064.236 | 0.99 | 248.69675476718268 | 3015.0 |
DJI | 37.96 | 988002.0 | 41.285 | 2705.406 | 6.05 | 5748.976216647335 | 5680.0 |
ERI | 75.0 | 3546427.0 | 44.304 | 1510.459 | 6.05 | 162.69896433790967 | 577.0 |
SWZ | 48.15 | 1160164.0 | 79.492 | 7738.975 | 3.94 | 5552.663244162032 | 6442.0 |
LBR | 57.41 | 5057677.0 | 49.127 | 752.788 | 2.42 | 315.36217121022156 | 1595.0 |
TUN | 68.52 | 1.1818618e7 | 74.228 | 10849.297 | 8.52 | 8187.843959420637 | 96769.0 |
UGA | 45.37 | 4.5741e7 | 213.759 | 1697.707 | 2.5 | 459.8718873658206 | 21035.0 |
UGA | 45.37 | 4.5741e7 | 213.759 | 1697.707 | 2.5 | 459.8718873658206 | 21035.0 |
ETH | 51.85 | 1.14963583e8 | 104.957 | 1729.927 | 7.47 | 961.6436537124979 | 110554.0 |
MOZ | 56.48 | 3.1255435e7 | 37.728 | 1136.103 | 3.3 | 504.5522482729803 | 15770.0 |
MOZ | 56.48 | 3.1255435e7 | 37.728 | 1136.103 | 3.3 | 504.5522482729803 | 15770.0 |
MAR | 66.2 | 3.6910558e7 | 80.08 | 7485.013 | 7.14 | 9749.080466353285 | 359844.0 |
MAR | 66.2 | 3.6910558e7 | 80.08 | 7485.013 | 7.14 | 9749.080466353285 | 359844.0 |
GMB | 36.11 | 2416664.0 | 207.566 | 1561.767 | 1.91 | 1548.829295259912 | 3743.0 |
KEN | 62.96 | 5.37713e7 | 87.324 | 2993.028 | 2.92 | 1565.3145823143573 | 84169.0 |
DZA | 72.22 | 4.3851043e7 | 17.348 | 13913.839 | 6.73 | 1919.042153683779 | 84152.0 |
ZMB | 45.37 | 1.8383956e7 | 22.995 | 3689.251 | 3.94 | 960.8922040500967 | 17665.0 |
TGO | 49.07 | 8278737.0 | 143.366 | 1429.813 | 6.15 | 362.01174164609887 | 2997.0 |
CPV | 71.3 | 555988.0 | 135.58 | 6222.554 | 2.42 | 19453.65727317856 | 10816.0 |
TGO | 49.07 | 8278737.0 | 143.366 | 1429.813 | 6.15 | 362.01174164609887 | 2997.0 |
SYC | 31.48 | 98340.0 | 208.354 | 26382.287 | 10.55 | 1860.8907870652836 | 183.0 |
MWI | 50.93 | 1.9129955e7 | 197.519 | 1095.042 | 3.94 | 315.1079027629704 | 6028.0 |
BFA | 22.22 | 2.0903278e7 | 70.151 | 1703.102 | 2.42 | 140.21724248225564 | 2931.0 |
ZAF | 44.44 | 5.930869e7 | 46.754 | 12294.876 | 5.52 | 13358.902380072803 | 792299.0 |
TZA | 13.89 | 5.9734213e7 | 64.699 | 2683.304 | 5.75 | 8.52107987092757 | 509.0 |
BWA | 50.93 | 2351625.0 | 4.044 | 15807.374 | 4.81 | 4567.905171955563 | 10742.0 |
NER | 24.07 | 2.4206636e7 | 16.955 | 926.0 | 2.42 | 65.51922373682986 | 1586.0 |
GHA | 38.89 | 3.1072945e7 | 126.719 | 4227.63 | 4.97 | 1662.764826443068 | 51667.0 |
MUS | 16.67 | 1271767.0 | 622.962 | 20292.745 | 22.02 | 397.08531515599947 | 505.0 |
MLI | 34.26 | 2.0250834e7 | 15.196 | 2014.306 | 2.42 | 235.15080909754138 | 4762.0 |
EGY | 60.19 | 1.02334403e8 | 97.999 | 10550.206 | 17.31 | 1136.4995210848106 | 116303.0 |
ZWE | 69.44 | 1.4862927e7 | 42.729 | 1899.775 | 1.82 | 681.4942978593651 | 10129.0 |
COM | 0.0 | 869595.0 | 437.352 | 1413.89 | 11.88 | 704.9258562894221 | 613.0 |
ZWE | 69.44 | 1.4862927e7 | 42.729 | 1899.775 | 1.82 | 681.4942978593651 | 10129.0 |
IND | 68.98 | 1.380004385e9 | 450.419 | 6426.674 | 10.39 | 6883.6107357731335 | 9499413.0 |
IND | 68.98 | 1.380004385e9 | 450.419 | 6426.674 | 10.39 | 6883.6107357731335 | 9499413.0 |
LKA | 49.54 | 2.141325e7 | 341.955 | 11669.077 | 10.68 | 1145.6458034161094 | 24532.0 |
TLS | 27.78 | 1318442.0 | 87.176 | 6570.102 | 6.86 | 22.754129495267897 | 30.0 |
YEM | 24.07 | 2.9825968e7 | 53.508 | 1479.147 | 5.35 | 73.6606436377857 | 2197.0 |
IRN | 70.83 | 8.3992953e7 | 49.831 | 19082.62 | 9.59 | 11619.439073656573 | 975951.0 |
PHL | 71.76 | 1.09581085e8 | 351.873 | 7599.188 | 7.07 | 3950.7274453433274 | 432925.0 |
KAZ | 71.76 | 1.8776707e7 | 6.681 | 24055.588 | 7.11 | 9350.148564388846 | 175565.0 |
LAO | 33.33 | 7275556.0 | 29.715 | 6397.36 | 4.0 | 5.360415066559861 | 39.0 |
THA | 50.0 | 6.9799978e7 | 135.132 | 16277.671 | 7.04 | 57.6791012742153 | 4026.0 |
ARM | 0.0 | 2963234.0 | 102.931 | 8787.58 | 7.11 | 45884.665200250805 | 135967.0 |
ISR | 65.74 | 8655541.0 | 402.606 | 33132.32 | 6.74 | 39064.80253516216 | 338127.0 |
PHL | 71.76 | 1.09581085e8 | 351.873 | 7599.188 | 7.07 | 3950.7274453433274 | 432925.0 |
SAU | 50.0 | 3.4813867e7 | 15.322 | 49045.411 | 17.72 | 10272.429661433474 | 357623.0 |
SAU | 50.0 | 3.4813867e7 | 15.322 | 49045.411 | 17.72 | 10272.429661433474 | 357623.0 |
KOR | 45.83 | 5.1269183e7 | 527.967 | 35938.374 | 6.8 | 685.8506015202154 | 35163.0 |
CHN | 81.94 | 1.439323774e9 | 147.674 | 15308.712 | 9.74 | 64.60881261035851 | 92993.0 |
MYS | 80.09 | 3.2365998e7 | 96.254 | 26808.164 | 16.74 | 2075.2951909593517 | 67169.0 |
BRN | 35.19 | 437483.0 | 81.347 | 71809.251 | 12.79 | 345.156268929307 | 151.0 |
ARE | 45.37 | 9890400.0 | 112.442 | 67293.483 | 17.26 | 17203.44980991669 | 170149.0 |
MNG | 85.19 | 3278292.0 | 1.98 | 11840.846 | 4.82 | 247.6899556232331 | 812.0 |
MYS | 80.09 | 3.2365998e7 | 96.254 | 26808.164 | 16.74 | 2075.2951909593517 | 67169.0 |
SGP | 52.78 | 5850343.0 | 7915.731 | 85535.383 | 10.99 | 9952.920709093467 | 58228.0 |
AZE | 69.91 | 1.0139175e7 | 119.309 | 15847.419 | 7.11 | 12387.792892419748 | 125602.0 |
TUR | 62.5 | 8.4339067e7 | 104.914 | 25129.341 | 12.13 | 7931.75717725215 | 668957.0 |
OMN | 37.04 | 5106622.0 | 14.98 | 37960.709 | 12.61 | 24264.180900799 | 123908.0 |
KGZ | 56.02 | 6524191.0 | 32.333 | 3393.474 | 7.11 | 11216.409820006802 | 73178.0 |
UZB | 39.81 | 3.3469199e7 | 76.134 | 6253.104 | 7.57 | 2189.356249607288 | 73276.0 |
LBN | 87.04 | 6825442.0 | 594.561 | 13367.565 | 12.71 | 18966.537258685956 | 129455.0 |
BGD | 80.09 | 1.64689383e8 | 1265.036 | 3523.984 | 8.38 | 2837.007410489843 | 467225.0 |
QAT | 64.81 | 2881060.0 | 227.322 | 116935.6 | 16.52 | 48246.4787265798 | 139001.0 |
BHR | 58.33 | 1701583.0 | 1935.907 | 43290.705 | 16.52 | 51209.373859517866 | 87137.0 |
JPN | 40.74 | 1.26476458e8 | 347.778 | 39002.223 | 5.72 | 1193.7083184287148 | 150976.0 |
MMR | 79.63 | 5.4409794e7 | 81.721 | 5591.597 | 4.61 | 1694.3456907776567 | 92189.0 |
VNM | 43.06 | 9.7338583e7 | 308.127 | 6171.884 | 6.0 | 13.879388402438527 | 1351.0 |
IDN | 50.46 | 2.73523621e8 | 145.725 | 11188.744 | 6.32 | 1988.7679097374921 | 543975.0 |
NPL | 60.19 | 2.9136808e7 | 204.43 | 2442.804 | 7.26 | 8012.270939218874 | 233452.0 |
NPL | 60.19 | 2.9136808e7 | 204.43 | 2442.804 | 7.26 | 8012.270939218874 | 233452.0 |
KHM | 42.59 | 1.6718971e7 | 90.672 | 3645.07 | 4.0 | 19.678244552251453 | 329.0 |
KWT | 62.96 | 4270563.0 | 232.128 | 65530.537 | 15.84 | 33483.173061725116 | 142992.0 |
KAZ | 71.76 | 1.8776707e7 | 6.681 | 24055.588 | 7.11 | 9350.148564388846 | 175565.0 |
GEO | 84.26 | 3989175.0 | 65.032 | 9745.079 | 7.11 | 34930.280070440625 | 139343.0 |
PAK | 64.35 | 2.20892331e8 | 255.573 | 5034.708 | 8.35 | 1825.826175920974 | 403311.0 |
KWT | 62.96 | 4270563.0 | 232.128 | 65530.537 | 15.84 | 33483.173061725116 | 142992.0 |
SWE | 53.7 | 1.009927e7 | 24.718 | 46949.283 | 4.79 | 25819.489923529127 | 260758.0 |
FIN | 42.13 | 5540718.0 | 18.136 | 40585.721 | 5.76 | 4595.433299438809 | 25462.0 |
FRA | 75.0 | 6.5273512e7 | 122.578 | 38605.671 | 4.77 | 34978.53769535183 | 2283172.0 |
GRC | 78.7 | 1.0423056e7 | 83.479 | 24574.382 | 4.55 | 10310.795605434721 | 107470.0 |
CYP | 65.74 | 875899.0 | 127.657 | 32415.132 | 9.24 | 12424.94853858721 | 10883.0 |
BEL | 63.89 | 1.1589616e7 | 375.564 | 42658.576 | 4.29 | 49976.806824315834 | 579212.0 |
BEL | 63.89 | 1.1589616e7 | 375.564 | 42658.576 | 4.29 | 49976.806824315834 | 579212.0 |
ITA | 79.63 | 6.0461828e7 | 205.859 | 35220.084 | 4.78 | 26808.666783941764 | 1620901.0 |
ESP | 71.3 | 4.6754783e7 | 93.105 | 34272.36 | 7.17 | 35428.33254086539 | 1656444.0 |
LTU | 62.96 | 2722291.0 | 45.135 | 29524.265 | 3.67 | 22964.113682189007 | 62515.0 |
AUT | 82.41 | 9006400.0 | 106.749 | 45436.686 | 6.35 | 31698.458873689822 | 285489.0 |
MLT | 0.0 | 441539.0 | 1454.037 | 36513.323 | 8.83 | 22591.435864102605 | 9975.0 |
ALB | 65.74 | 2877800.0 | 104.871 | 11803.431 | 10.08 | 13556.883730627562 | 39014.0 |
IRL | 81.48 | 4937796.0 | 69.874 | 67335.293 | 3.28 | 14743.014899764996 | 72798.0 |
IRL | 81.48 | 4937796.0 | 69.874 | 67335.293 | 3.28 | 14743.014899764996 | 72798.0 |
FIN | 42.13 | 5540718.0 | 18.136 | 40585.721 | 5.76 | 4595.433299438809 | 25462.0 |
GRC | 78.7 | 1.0423056e7 | 83.479 | 24574.382 | 4.55 | 10310.795605434721 | 107470.0 |
ISL | 52.78 | 341250.0 | 3.404 | 46482.958 | 5.31 | 15862.27106227106 | 5413.0 |
RUS | 55.09 | 1.4593446e8 | 8.823 | 24765.954 | 6.18 | 15774.629241099052 | 2302062.0 |
NOR | 49.07 | 5421242.0 | 14.462 | 64800.057 | 5.31 | 6749.560340600918 | 36591.0 |
NOR | 49.07 | 5421242.0 | 14.462 | 64800.057 | 5.31 | 6749.560340600918 | 36591.0 |
CZE | 69.44 | 1.0708982e7 | 137.176 | 32605.906 | 6.82 | 49348.66824876538 | 528474.0 |
BLR | 22.22 | 9449321.0 | 46.858 | 17167.967 | 5.18 | 14627.400212142225 | 138219.0 |
HRV | 44.44 | 4105268.0 | 73.726 | 22669.797 | 5.59 | 31993.526366609924 | 131342.0 |
SVN | 68.52 | 2078932.0 | 102.619 | 31400.84 | 7.25 | 37103.18567418271 | 77135.0 |
SVN | 68.52 | 2078932.0 | 102.619 | 31400.84 | 7.25 | 37103.18567418271 | 77135.0 |
LUX | 60.19 | 625976.0 | 231.447 | 94277.965 | 4.42 | 56118.764936674896 | 35129.0 |
UKR | 61.57 | 4.3733759e7 | 77.39 | 7894.393 | 7.11 | 17494.883071907905 | 765117.0 |
PRT | 62.5 | 1.0196707e7 | 112.371 | 27936.896 | 9.85 | 29466.57190404706 | 300462.0 |
SVK | 58.33 | 5459643.0 | 113.128 | 30155.152 | 7.29 | 19631.869702835884 | 107183.0 |
ROU | 76.85 | 1.9237682e7 | 85.129 | 23313.199 | 9.74 | 24932.005841452206 | 479634.0 |
DEU | 64.81 | 8.3783945e7 | 237.016 | 45229.245 | 8.31 | 13065.486472378449 | 1094678.0 |
BIH | 48.15 | 3280815.0 | 68.496 | 11713.895 | 10.08 | 27153.31403934693 | 89085.0 |
DNK | 45.37 | 5792203.0 | 136.52 | 46682.515 | 6.41 | 14238.1059503612 | 82470.0 |
DNK | 45.37 | 5792203.0 | 136.52 | 46682.515 | 6.41 | 14238.1059503612 | 82470.0 |
NLD | 56.48 | 1.7134873e7 | 508.544 | 48472.545 | 5.29 | 31288.764147828817 | 536129.0 |
EST | 37.96 | 1326539.0 | 31.033 | 29481.252 | 4.02 | 9420.755816451683 | 12497.0 |
EST | 37.96 | 1326539.0 | 31.033 | 29481.252 | 4.02 | 9420.755816451683 | 12497.0 |
HUN | 72.22 | 9660350.0 | 108.043 | 26777.561 | 7.55 | 22884.574575455343 | 221073.0 |
MDA | 48.15 | 4033963.0 | 123.655 | 5189.972 | 5.72 | 26986.613412170613 | 108863.0 |
GBR | 63.89 | 6.7886004e7 | 272.898 | 39753.244 | 4.28 | 24264.648129826583 | 1647230.0 |
ISL | 52.78 | 341250.0 | 3.404 | 46482.958 | 5.31 | 15862.27106227106 | 5413.0 |
CHE | 49.07 | 8654618.0 | 214.243 | 57410.166 | 5.59 | 38230.91903074174 | 330874.0 |
CHE | 49.07 | 8654618.0 | 214.243 | 57410.166 | 5.59 | 38230.91903074174 | 330874.0 |
CZE | 69.44 | 1.0708982e7 | 137.176 | 32605.906 | 6.82 | 49348.66824876538 | 528474.0 |
LVA | 57.41 | 1886202.0 | 31.212 | 25063.846 | 4.91 | 9377.0444522909 | 17687.0 |
LUX | 60.19 | 625976.0 | 231.447 | 94277.965 | 4.42 | 56118.764936674896 | 35129.0 |
POL | 71.3 | 3.7846605e7 | 124.027 | 27216.445 | 5.91 | 26420.441146570476 | 999924.0 |
PRT | 62.5 | 1.0196707e7 | 112.371 | 27936.896 | 9.85 | 29466.57190404706 | 300462.0 |
LTU | 62.96 | 2722291.0 | 45.135 | 29524.265 | 3.67 | 22964.113682189007 | 62515.0 |
BGR | 57.41 | 6948445.0 | 65.18 | 18563.307 | 5.81 | 21411.26539822939 | 148775.0 |
MNE | 0.0 | 628062.0 | 46.28 | 16409.288 | 10.08 | 57078.75974028042 | 35849.0 |
GBR | 63.89 | 6.7886004e7 | 272.898 | 39753.244 | 4.28 | 24264.648129826583 | 1647230.0 |
BHS | 0.0 | 393248.0 | 39.497 | 27717.847 | 13.17 | 19181.28000650989 | 7543.0 |
USA | 75.46 | 3.31002647e8 | 35.608 | 54225.446 | 10.79 | 41455.43283223351 | 1.3721858e7 |
PAN | 58.33 | 4314768.0 | 55.133 | 22267.037 | 8.33 | 38776.360629354815 | 167311.0 |
DOM | 64.81 | 1.0847904e7 | 222.873 | 14600.861 | 8.2 | 13302.293235633353 | 144302.0 |
BRB | 40.74 | 287371.0 | 664.463 | 16978.068 | 13.57 | 967.390585688883 | 278.0 |
SLV | 47.22 | 6486201.0 | 307.811 | 7292.458 | 8.87 | 6032.807185592922 | 39130.0 |
CRI | 55.56 | 5094114.0 | 96.079 | 15524.995 | 8.78 | 27516.463118022093 | 140172.0 |
CAN | 64.35 | 3.7742157e7 | 4.037 | 44017.591 | 7.37 | 10255.163741701355 | 387052.0 |
PAN | 58.33 | 4314768.0 | 55.133 | 22267.037 | 8.33 | 38776.360629354815 | 167311.0 |
DOM | 64.81 | 1.0847904e7 | 222.873 | 14600.861 | 8.2 | 13302.293235633353 | 144302.0 |
MEX | 71.76 | 1.28932753e8 | 66.444 | 17336.469 | 13.06 | 8705.018499062066 | 1122362.0 |
HTI | 47.22 | 1.1402533e7 | 398.448 | 1653.173 | 6.65 | 815.2574520064971 | 9296.0 |
JAM | 67.59 | 2961161.0 | 266.879 | 8193.571 | 11.28 | 3650.5951550759987 | 10810.0 |
JAM | 67.59 | 2961161.0 | 266.879 | 8193.571 | 11.28 | 3650.5951550759987 | 10810.0 |
NZL | 22.22 | 4822233.0 | 18.206 | 36085.843 | 8.08 | 427.1879853171757 | 2060.0 |
FJI | 49.07 | 896444.0 | 49.562 | 8702.975 | 14.49 | 46.851783268112676 | 42.0 |
AUS | 47.22 | 2.5499881e7 | 3.202 | 44648.71 | 5.07 | 1095.0247179584878 | 27923.0 |
FJI | 49.07 | 896444.0 | 49.562 | 8702.975 | 14.49 | 46.851783268112676 | 42.0 |
PRY | 63.89 | 7132530.0 | 17.144 | 8827.01 | 8.27 | 11703.981616621311 | 83479.0 |
PRY | 63.89 | 7132530.0 | 17.144 | 8827.01 | 8.27 | 11703.981616621311 | 83479.0 |
ARG | 79.17 | 4.5195777e7 | 16.177 | 18933.907 | 5.5 | 31696.9879730135 | 1432570.0 |
ECU | 52.78 | 1.764306e7 | 66.939 | 10581.936 | 5.55 | 10977.290787425763 | 193673.0 |
SUR | 60.19 | 586634.0 | 3.612 | 13767.119 | 12.54 | 9066.982138778181 | 5319.0 |
ECU | 52.78 | 1.764306e7 | 66.939 | 10581.936 | 5.55 | 10977.290787425763 | 193673.0 |
COL | 65.74 | 5.0882884e7 | 44.223 | 13254.949 | 7.44 | 26036.10282781927 | 1324792.0 |
CHL | 76.39 | 1.9116209e7 | 24.282 | 22767.037 | 8.46 | 28921.215498323963 | 552864.0 |
BRA | 57.87 | 2.12559409e8 | 25.04 | 14103.452 | 8.11 | 30047.06792349051 | 6386787.0 |
URY | 43.52 | 3473727.0 | 19.751 | 20551.409 | 6.93 | 1734.1604564780134 | 6024.0 |
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
res32: Long = 159
df_filteredLocation: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
df_fillContinentNull: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
res15: df_filteredLocation.type = [iso_code: string, continent: string ... 48 more fields]
iso_code | stringency_index | population | population_density | gdp_per_capita | diabetes_prevalence | total_cases_per_million | total_cases | normal_stringency_index | normal_population | normal_population_density | normal_gdp_per_capita | normal_diabetes_prevalence | log_total_cases_per_million |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERI | 75.0 | 3546427.0 | 44.304 | 1510.459 | 6.05 | 162.69896433790967 | 577.0 | 0.861672794117647 | 2.3957935418198006e-3 | 5.3481591725592584e-3 | 6.5213690988990694e-3 | -0.7602089009990918 | 5.0919016487339865 |
ZWE | 69.44 | 1.4862927e7 | 42.729 | 1899.775 | 1.82 | 681.4942978593651 | 10129.0 | 0.7977941176470588 | 1.0258703502039418e-2 | 5.149138505874142e-3 | 9.872260623197862e-3 | -0.9523069936421436 | 6.524287884057365 |
COM | 0.0 | 869595.0 | 437.352 | 1413.89 | 11.88 | 704.9258562894221 | 613.0 | 0.0 | 5.358819972048937e-4 | 5.5014619489544205e-2 | 5.690187632917682e-3 | -0.4954495912806539 | 6.558092628897888 |
ZWE | 69.44 | 1.4862927e7 | 42.729 | 1899.775 | 1.82 | 681.4942978593651 | 10129.0 | 0.7977941176470588 | 1.0258703502039418e-2 | 5.149138505874142e-3 | 9.872260623197862e-3 | -0.9523069936421436 | 6.524287884057365 |
LBR | 57.41 | 5057677.0 | 49.127 | 752.788 | 2.42 | 315.36217121022156 | 1595.0 | 0.6595818014705882 | 3.445837519850278e-3 | 5.957604680763901e-3 | 0.0 | -0.9250590372388737 | 5.753721728243157 |
TUN | 68.52 | 1.1818618e7 | 74.228 | 10849.297 | 8.52 | 8187.843959420637 | 96769.0 | 0.7872242647058822 | 8.143462256240255e-3 | 9.129425477248399e-3 | 8.690191626623738e-2 | -0.6480381471389646 | 9.010405889372016 |
UGA | 45.37 | 4.5741e7 | 213.759 | 1697.707 | 2.5 | 459.8718873658206 | 21035.0 | 0.5212545955882353 | 3.1713350057430964e-2 | 2.6760887472956883e-2 | 8.133036063888693e-3 | -0.9214259763851045 | 6.130947944966741 |
UGA | 45.37 | 4.5741e7 | 213.759 | 1697.707 | 2.5 | 459.8718873658206 | 21035.0 | 0.5212545955882353 | 3.1713350057430964e-2 | 2.6760887472956883e-2 | 8.133036063888693e-3 | -0.9214259763851045 | 6.130947944966741 |
GHA | 38.89 | 3.1072945e7 | 126.719 | 4227.63 | 4.97 | 1662.764826443068 | 51667.0 | 0.44680606617647056 | 2.152171874416722e-2 | 1.5762310439133096e-2 | 2.990839987587837e-2 | -0.8092552225249773 | 7.416237053945145 |
DZA | 72.22 | 4.3851043e7 | 17.348 | 13913.839 | 6.73 | 1919.042153683779 | 84152.0 | 0.8297334558823529 | 3.040017357002878e-2 | 1.9419362575345115e-3 | 0.11327881270424062 | -0.7293278837420527 | 7.559581462250953 |
ZMB | 45.37 | 1.8383956e7 | 22.995 | 3689.251 | 3.94 | 960.8922040500967 | 17665.0 | 0.5212545955882353 | 1.2705178471713973e-2 | 2.655504324055685e-3 | 2.5274504459403168e-2 | -0.856030881017257 | 6.867862232075263 |
ETH | 51.85 | 1.14963583e8 | 104.957 | 1729.927 | 7.47 | 961.6436537124979 | 110554.0 | 0.595703125 | 7.981045935295776e-2 | 1.3012413456021043e-2 | 8.410357635344545e-3 | -0.6957220708446867 | 6.868643959706125 |
TGO | 49.07 | 8278737.0 | 143.366 | 1429.813 | 6.15 | 362.01174164609887 | 2997.0 | 0.5637637867647058 | 5.68388857419261e-3 | 1.7865864114248734e-2 | 5.827238886247649e-3 | -0.7556675749318801 | 5.891676646786213 |
TGO | 49.07 | 8278737.0 | 143.366 | 1429.813 | 6.15 | 362.01174164609887 | 2997.0 | 0.5637637867647058 | 5.68388857419261e-3 | 1.7865864114248734e-2 | 5.827238886247649e-3 | -0.7556675749318801 | 5.891676646786213 |
MOZ | 56.48 | 3.1255435e7 | 37.728 | 1136.103 | 3.3 | 504.5522482729803 | 15770.0 | 0.6488970588235293 | 2.164851611425872e-2 | 4.517200503275881e-3 | 3.2992401664370115e-3 | -0.8850953678474115 | 6.223671398897003 |
MOZ | 56.48 | 3.1255435e7 | 37.728 | 1136.103 | 3.3 | 504.5522482729803 | 15770.0 | 0.6488970588235293 | 2.164851611425872e-2 | 4.517200503275881e-3 | 3.2992401664370115e-3 | -0.8850953678474115 | 6.223671398897003 |
SYC | 31.48 | 98340.0 | 208.354 | 26382.287 | 10.55 | 1860.8907870652836 | 183.0 | 0.361672794117647 | 0.0 | 2.6077899089824788e-2 | 0.22059630472707098 | -0.5558492279745686 | 7.528810569839765 |
GMB | 36.11 | 2416664.0 | 207.566 | 1561.767 | 1.91 | 1548.829295259912 | 3743.0 | 0.41486672794117646 | 1.6108136677078762e-3 | 2.5978325575318203e-2 | 6.962983474698477e-3 | -0.9482198001816531 | 7.34525463115484 |
KEN | 62.96 | 5.37713e7 | 87.324 | 2993.028 | 2.92 | 1565.3145823143573 | 84169.0 | 0.723345588235294 | 3.729294850691195e-2 | 1.0784266525444128e-2 | 1.9282025985048457e-2 | -0.9023524069028156 | 7.355842093837723 |
NER | 24.07 | 2.4206636e7 | 16.955 | 926.0 | 2.42 | 65.51922373682986 | 1586.0 | 0.27653952205882354 | 1.675088240554259e-2 | 1.892275862609273e-3 | 1.4908573567663345e-3 | -0.9250590372388737 | 4.182343591746147 |
CPV | 71.3 | 555988.0 | 135.58 | 6222.554 | 2.42 | 19453.65727317856 | 10816.0 | 0.8191636029411764 | 3.1798215150219476e-4 | 1.6882007028019966e-2 | 4.707896035430782e-2 | -0.9250590372388737 | 9.875790365981024 |
MWI | 50.93 | 1.9129955e7 | 197.519 | 1095.042 | 3.94 | 315.1079027629704 | 6028.0 | 0.5851332720588235 | 1.3223512140906203e-2 | 2.4708763265359247e-2 | 2.9458230017706914e-3 | -0.856030881017257 | 5.75291512862318 |
MAR | 66.2 | 3.6910558e7 | 80.08 | 7485.013 | 7.14 | 9749.080466353285 | 359844.0 | 0.7605698529411764 | 2.5577798397912414e-2 | 9.86889782102065e-3 | 5.794510292968292e-2 | -0.710708446866485 | 9.184928248401064 |
TZA | 13.89 | 5.9734213e7 | 64.699 | 2683.304 | 5.75 | 8.52107987092757 | 509.0 | 0.15958180147058823 | 4.143608887890179e-2 | 7.925318853221437e-3 | 1.6616192763521682e-2 | -0.7738328792007266 | 2.142543078223737 |
BWA | 50.93 | 2351625.0 | 4.044 | 15807.374 | 4.81 | 4567.905171955563 | 10742.0 | 0.5851332720588235 | 1.5656233879479927e-3 | 2.6081184510354184e-4 | 0.1295767053735969 | -0.8165213442325159 | 8.426809991916247 |
MAR | 66.2 | 3.6910558e7 | 80.08 | 7485.013 | 7.14 | 9749.080466353285 | 359844.0 | 0.7605698529411764 | 2.5577798397912414e-2 | 9.86889782102065e-3 | 5.794510292968292e-2 | -0.710708446866485 | 9.184928248401064 |
BFA | 22.22 | 2.0903278e7 | 70.151 | 1703.102 | 2.42 | 140.21724248225564 | 2931.0 | 0.2552849264705882 | 1.4455649204431723e-2 | 8.61424626577207e-3 | 8.179471503926072e-3 | -0.9250590372388737 | 4.943192951933301 |
ZAF | 44.44 | 5.930869e7 | 46.754 | 12294.876 | 5.52 | 13358.902380072803 | 792299.0 | 0.5105698529411764 | 4.114042776150661e-2 | 5.65774687629166e-3 | 9.934419559409527e-2 | -0.7842779291553134 | 9.499938286535372 |
DJI | 37.96 | 988002.0 | 41.285 | 2705.406 | 6.05 | 5748.976216647335 | 5680.0 | 0.43612132352941174 | 6.181533337188092e-4 | 4.966671304164106e-3 | 1.6806427442985283e-2 | -0.7602089009990918 | 8.656777068660016 |
EGY | 60.19 | 1.02334403e8 | 97.999 | 10550.206 | 17.31 | 1136.4995210848106 | 116303.0 | 0.6915211397058822 | 7.103547546117088e-2 | 1.2133184377421022e-2 | 8.432760260614108e-2 | -0.2488555858310626 | 7.03570822189771 |
SWZ | 48.15 | 1160164.0 | 79.492 | 7738.975 | 3.94 | 5552.663244162032 | 6442.0 | 0.5531939338235293 | 7.377746216233141e-4 | 9.794596772124875e-3 | 6.013098564011344e-2 | -0.856030881017257 | 8.622032955455639 |
BEN | 40.74 | 1.2123198e7 | 99.11 | 2064.236 | 0.99 | 248.69675476718268 | 3015.0 | 0.4680606617647059 | 8.355089978211156e-3 | 1.2273572923889062e-2 | 1.1287797028014778e-2 | -0.99 | 5.516234301939272 |
MUS | 16.67 | 1271767.0 | 622.962 | 20292.745 | 22.02 | 397.08531515599947 | 505.0 | 0.19152113970588236 | 8.153184152247271e-4 | 7.846873119965488e-2 | 0.1681828547926693 | -3.495912806539503e-2 | 5.984151157236849 |
MLI | 34.26 | 2.0250834e7 | 15.196 | 2014.306 | 2.42 | 235.15080909754138 | 4762.0 | 0.3936121323529411 | 1.40023192502864e-2 | 1.670004527562214e-3 | 1.0858043270634558e-2 | -0.9250590372388737 | 5.460227049157162 |
GEO | 84.26 | 3989175.0 | 65.032 | 9745.079 | 7.11 | 34930.280070440625 | 139343.0 | 0.9680606617647058 | 2.703422902405434e-3 | 7.967397508463432e-3 | 7.739777377741554e-2 | -0.7120708446866485 | 10.46110935581742 |
IND | 68.98 | 1.380004385e9 | 450.419 | 6426.674 | 10.39 | 6883.6107357731335 | 9499413.0 | 0.7925091911764706 | 0.9587838099587115 | 5.666579603022637e-2 | 4.8835846734368936e-2 | -0.5631153496821071 | 8.836898609505603 |
MYS | 80.09 | 3.2365998e7 | 96.254 | 26808.164 | 16.74 | 2075.2951909593517 | 67169.0 | 0.9201516544117647 | 2.2420155479270107e-2 | 1.1912682114966721e-2 | 0.2242618813529836 | -0.27474114441416897 | 7.637858683250006 |
CHN | 81.94 | 1.439323774e9 | 147.674 | 15308.712 | 9.74 | 64.60881261035851 | 92993.0 | 0.9414062499999999 | 1.0 | 1.8410233023505543e-2 | 0.125284659145623 | -0.5926339691189828 | 4.168350819601456 |
MNG | 85.19 | 3278292.0 | 1.98 | 11840.846 | 4.82 | 247.6899556232331 | 812.0 | 0.9787454044117646 | 2.209488468503538e-3 | 0.0 | 9.543630257460113e-2 | -0.8160672116257948 | 5.512177785100784 |
LKA | 49.54 | 2.141325e7 | 341.955 | 11669.077 | 10.68 | 1145.6458034161094 | 24532.0 | 0.5691636029411764 | 1.4809987022505607e-2 | 4.29600324801728e-2 | 9.395786529938696e-2 | -0.5499455040871934 | 7.0437237774393395 |
PHL | 71.76 | 1.09581085e8 | 351.873 | 7599.188 | 7.07 | 3950.7274453433274 | 432925.0 | 0.8244485294117647 | 7.607060187625894e-2 | 4.4213294049812786e-2 | 5.89278214405759e-2 | -0.7138873751135331 | 8.281655004317232 |
BGD | 80.09 | 1.64689383e8 | 1265.036 | 3523.984 | 8.38 | 2837.007410489843 | 467225.0 | 0.9201516544117647 | 0.11436084932334513 | 0.1596026966226256 | 2.385203071173729e-2 | -0.6543960036330608 | 7.950505046892096 |
QAT | 64.81 | 2881060.0 | 227.322 | 116935.6 | 16.52 | 48246.4787265798 | 139001.0 | 0.7446001838235294 | 1.9334844523043635e-3 | 2.847473972835385e-2 | 1.0 | -0.28473206176203447 | 10.784078124343976 |
JPN | 40.74 | 1.26476458e8 | 347.778 | 39002.223 | 5.72 | 1193.7083184287148 | 150976.0 | 0.4680606617647059 | 8.78098142337304e-2 | 4.3695840316431485e-2 | 0.32921767292050047 | -0.7751952770208901 | 7.084819974685839 |
PHL | 71.76 | 1.09581085e8 | 351.873 | 7599.188 | 7.07 | 3950.7274453433274 | 432925.0 | 0.8244485294117647 | 7.607060187625894e-2 | 4.4213294049812786e-2 | 5.89278214405759e-2 | -0.7138873751135331 | 8.281655004317232 |
OMN | 37.04 | 5106622.0 | 14.98 | 37960.709 | 12.61 | 24264.180900799 | 123908.0 | 0.4255514705882353 | 3.47984539578391e-3 | 1.642710264702541e-3 | 0.3202532316053772 | -0.46229791099000905 | 10.09675650486317 |
KAZ | 71.76 | 1.8776707e7 | 6.681 | 24055.588 | 7.11 | 9350.148564388846 | 175565.0 | 0.8244485294117647 | 1.2978069007638173e-2 | 5.940293041820497e-4 | 0.2005701153110324 | -0.7120708446866485 | 9.143147511395949 |
YEM | 24.07 | 2.9825968e7 | 53.508 | 1479.147 | 5.35 | 73.6606436377857 | 2197.0 | 0.27653952205882354 | 2.0655296451632887e-2 | 6.511198039968658e-3 | 6.251862797054696e-3 | -0.7919981834695731 | 4.29946864893402 |
KWT | 62.96 | 4270563.0 | 232.128 | 65530.537 | 15.84 | 33483.173061725116 | 142992.0 | 0.723345588235294 | 2.8989364010919777e-3 | 2.9082037076981572e-2 | 0.5575501908147996 | -0.31561307901907354 | 10.418798294955007 |
MYS | 80.09 | 3.2365998e7 | 96.254 | 26808.164 | 16.74 | 2075.2951909593517 | 67169.0 | 0.9201516544117647 | 2.2420155479270107e-2 | 1.1912682114966721e-2 | 0.2242618813529836 | -0.27474114441416897 | 7.637858683250006 |
IDN | 50.46 | 2.73523621e8 | 145.725 | 11188.744 | 6.32 | 1988.7679097374921 | 543975.0 | 0.5797334558823529 | 0.18998085674464255 | 1.8163952846128213e-2 | 8.982357906778844e-2 | -0.7479473206176204 | 7.59527058513627 |
ARM | 0.0 | 2963234.0 | 102.931 | 8787.58 | 7.11 | 45884.665200250805 | 135967.0 | 0.0 | 1.9905804416182936e-3 | 1.2756403379383555e-2 | 6.915646007948231e-2 | -0.7120708446866485 | 10.733886248729835 |
IND | 68.98 | 1.380004385e9 | 450.419 | 6426.674 | 10.39 | 6883.6107357731335 | 9499413.0 | 0.7925091911764706 | 0.9587838099587115 | 5.666579603022637e-2 | 4.8835846734368936e-2 | -0.5631153496821071 | 8.836898609505603 |
KOR | 45.83 | 5.1269183e7 | 527.967 | 35938.374 | 6.8 | 685.8506015202154 | 35163.0 | 0.5265395220588235 | 3.555443212102101e-2 | 6.646494184616118e-2 | 0.3028467412202073 | -0.7261489554950045 | 6.530659821967431 |
MMR | 79.63 | 5.4409794e7 | 81.721 | 5591.597 | 4.61 | 1694.3456907776567 | 92189.0 | 0.9148667279411764 | 3.773658574741391e-2 | 1.0076258401357334e-2 | 4.164823450821623e-2 | -0.8256039963669392 | 7.435051922148413 |
SAU | 50.0 | 3.4813867e7 | 15.322 | 49045.411 | 17.72 | 10272.429661433474 | 357623.0 | 0.5744485294117647 | 2.4120979368406577e-2 | 1.6859261808970232e-3 | 0.4156606486680663 | -0.23023614895549493 | 9.237218853465539 |
SAU | 50.0 | 3.4813867e7 | 15.322 | 49045.411 | 17.72 | 10272.429661433474 | 357623.0 | 0.5744485294117647 | 2.4120979368406577e-2 | 1.6859261808970232e-3 | 0.4156606486680663 | -0.23023614895549493 | 9.237218853465539 |
AZE | 69.91 | 1.0139175e7 | 119.309 | 15847.419 | 7.11 | 12387.792892419748 | 125602.0 | 0.8031939338235293 | 6.9765547236708995e-3 | 1.482596558825265e-2 | 0.12992137769913847 | -0.7120708446866485 | 9.424466822550025 |
SGP | 52.78 | 5850343.0 | 7915.731 | 85535.383 | 10.99 | 9952.920709093467 | 58228.0 | 0.6063878676470588 | 3.9965962691568165e-3 | 1.0 | 0.7297344033986713 | -0.5358673932788374 | 9.205621325680971 |
BRN | 35.19 | 437483.0 | 81.347 | 71809.251 | 12.79 | 345.156268929307 | 151.0 | 0.40429687499999994 | 2.35642722806412e-4 | 1.002899889066512e-2 | 0.6115918678229272 | -0.45412352406902823 | 5.843997267897207 |
ARE | 45.37 | 9890400.0 | 112.442 | 67293.483 | 17.26 | 17203.44980991669 | 170149.0 | 0.5212545955882353 | 6.803701330364344e-3 | 1.3958235481505545e-2 | 0.5727240876214976 | -0.2511262488646683 | 9.752865213033996 |
TUR | 62.5 | 8.4339067e7 | 104.914 | 25129.341 | 12.13 | 7931.75717725215 | 668957.0 | 0.7180606617647058 | 5.853198881142063e-2 | 1.3006979875914721e-2 | 0.20981204173298887 | -0.48409627611262485 | 8.978629876116653 |
TLS | 27.78 | 1318442.0 | 87.176 | 6570.102 | 6.86 | 22.754129495267897 | 30.0 | 0.31916360294117646 | 8.477490538844938e-4 | 1.076556490089213e-2 | 5.00703494764785e-2 | -0.7234241598546776 | 3.1247466452003856 |
IRN | 70.83 | 8.3992953e7 | 49.831 | 19082.62 | 9.59 | 11619.439073656573 | 975951.0 | 0.8137637867647058 | 5.829150251106527e-2 | 6.046563759713947e-3 | 0.1577671575034696 | -0.5994459582198002 | 9.36043475674992 |
KGZ | 56.02 | 6524191.0 | 32.333 | 3393.474 | 7.11 | 11216.409820006802 | 73178.0 | 0.6436121323529411 | 4.4647981116765064e-3 | 3.8354757434243252e-3 | 2.2728714811963754e-2 | -0.7120708446866485 | 9.325133147480487 |
UZB | 39.81 | 3.3469199e7 | 76.134 | 6253.104 | 7.57 | 2189.356249607288 | 73276.0 | 0.4573759191176471 | 2.318667959282326e-2 | 9.370272074519402e-3 | 4.734190802680865e-2 | -0.6911807447774749 | 7.691362829647781 |
LBN | 87.04 | 6825442.0 | 594.561 | 13367.565 | 12.71 | 18966.537258685956 | 129455.0 | 1.0 | 4.674112783918464e-3 | 7.487991472059204e-2 | 0.1085769640349211 | -0.45775658492279736 | 9.850431508506654 |
KHM | 42.59 | 1.6718971e7 | 90.672 | 3645.07 | 4.0 | 19.678244552251453 | 329.0 | 0.4893152573529412 | 1.1548316620424595e-2 | 1.1207327599769059e-2 | 2.4894233064353788e-2 | -0.8533060853769301 | 2.9795136880648694 |
NPL | 60.19 | 2.9136808e7 | 204.43 | 2442.804 | 7.26 | 8012.270939218874 | 233452.0 | 0.6915211397058822 | 2.017645555310552e-2 | 2.558205331454073e-2 | 1.4546179171493973e-2 | -0.705258855585831 | 8.98872951289128 |
NPL | 60.19 | 2.9136808e7 | 204.43 | 2442.804 | 7.26 | 8012.270939218874 | 233452.0 | 0.6915211397058822 | 2.017645555310552e-2 | 2.558205331454073e-2 | 1.4546179171493973e-2 | -0.705258855585831 | 8.98872951289128 |
BHR | 58.33 | 1701583.0 | 1935.907 | 43290.705 | 16.52 | 51209.373859517866 | 87137.0 | 0.6701516544117646 | 1.113962387076603e-3 | 0.24437551800656854 | 0.3661291740812746 | -0.28473206176203447 | 10.843677877463625 |
LAO | 33.33 | 7275556.0 | 29.715 | 6397.36 | 4.0 | 5.360415066559861 | 39.0 | 0.3829273897058823 | 4.9868601752350635e-3 | 3.5046591685788443e-3 | 4.858353746851987e-2 | -0.8533060853769301 | 1.6790414098755786 |
KAZ | 71.76 | 1.8776707e7 | 6.681 | 24055.588 | 7.11 | 9350.148564388846 | 175565.0 | 0.8244485294117647 | 1.2978069007638173e-2 | 5.940293041820497e-4 | 0.2005701153110324 | -0.7120708446866485 | 9.143147511395949 |
THA | 50.0 | 6.9799978e7 | 135.132 | 16277.671 | 7.04 | 57.6791012742153 | 4026.0 | 0.5744485294117647 | 4.842996541985792e-2 | 1.6825396705051752e-2 | 0.13362461049746324 | -0.7152497729336966 | 4.054894911617706 |
VNM | 43.06 | 9.7338583e7 | 308.127 | 6171.884 | 6.0 | 13.879388402438527 | 1351.0 | 0.49471507352941174 | 6.756428888957502e-2 | 3.868544764676068e-2 | 4.6642837324336744e-2 | -0.7624795640326976 | 2.6304048908829563 |
PAK | 64.35 | 2.20892331e8 | 255.573 | 5034.708 | 8.35 | 1825.826175920974 | 403311.0 | 0.739315257352941 | 0.15341167949370746 | 3.204460185820858e-2 | 3.685502120571845e-2 | -0.6557584014532243 | 7.509787862714033 |
ISR | 65.74 | 8655541.0 | 402.606 | 33132.32 | 6.74 | 39064.80253516216 | 338127.0 | 0.7552849264705881 | 5.9456988445633595e-3 | 5.062403403897848e-2 | 0.2786946833409403 | -0.7288737511353315 | 10.572977149641726 |
KWT | 62.96 | 4270563.0 | 232.128 | 65530.537 | 15.84 | 33483.173061725116 | 142992.0 | 0.723345588235294 | 2.8989364010919777e-3 | 2.9082037076981572e-2 | 0.5575501908147996 | -0.31561307901907354 | 10.418798294955007 |
BLR | 22.22 | 9449321.0 | 46.858 | 17167.967 | 5.18 | 14627.400212142225 | 138219.0 | 0.2552849264705882 | 6.497231621325002e-3 | 5.67088855840928e-3 | 0.14128749956577052 | -0.7997184377838329 | 9.590651775703877 |
GRC | 78.7 | 1.0423056e7 | 83.479 | 24574.382 | 4.55 | 10310.795605434721 | 107470.0 | 0.9041819852941176 | 7.173800404085966e-3 | 1.0298403374076339e-2 | 0.20503544018197803 | -0.8283287920072662 | 9.24094674235907 |
DEU | 64.81 | 8.3783945e7 | 237.016 | 45229.245 | 8.31 | 13065.486472378449 | 1094678.0 | 0.7446001838235294 | 5.814627995241502e-2 | 2.9699696136509728e-2 | 0.3828144304167814 | -0.657574931880109 | 9.477729412039812 |
SWE | 53.7 | 1.009927e7 | 24.718 | 46949.283 | 4.79 | 25819.489923529127 | 260758.0 | 0.6169577205882353 | 6.948828004105436e-3 | 2.8732266152927985e-3 | 0.3976190126987114 | -0.8174296094459582 | 10.158884909113675 |
CYP | 65.74 | 875899.0 | 127.657 | 32415.132 | 9.24 | 12424.94853858721 | 10883.0 | 0.7552849264705881 | 5.402621310262364e-4 | 1.588083830284779e-2 | 0.2725217564883866 | -0.6153405994550409 | 9.427461709192647 |
FRA | 75.0 | 6.5273512e7 | 122.578 | 38605.671 | 4.77 | 34978.53769535183 | 2283172.0 | 0.861672794117647 | 4.52848945414065e-2 | 1.5239044038661312e-2 | 0.3258045002388133 | -0.8183378746594006 | 10.462489943677964 |
CHE | 49.07 | 8654618.0 | 214.243 | 57410.166 | 5.59 | 38230.91903074174 | 330874.0 | 0.5637637867647058 | 5.945057527381079e-3 | 2.6822046839735037e-2 | 0.48765714157443524 | -0.7810990009082652 | 10.551399865918693 |
HRV | 44.44 | 4105268.0 | 73.726 | 22669.797 | 5.59 | 31993.526366609924 | 131342.0 | 0.5105698529411764 | 2.784086429645462e-3 | 9.06599158856527e-3 | 0.18864243878001505 | -0.7810990009082652 | 10.373288860272808 |
DNK | 45.37 | 5792203.0 | 136.52 | 46682.515 | 6.41 | 14238.1059503612 | 82470.0 | 0.5212545955882353 | 3.956199540036755e-3 | 1.7000787616390765e-2 | 0.39532290714395857 | -0.7438601271571299 | 9.563677167015623 |
FIN | 42.13 | 5540718.0 | 18.136 | 40585.721 | 5.76 | 4595.433299438809 | 25462.0 | 0.4840303308823529 | 3.781463189456114e-3 | 2.0415097720410964e-3 | 0.34284703833816654 | -0.7733787465940054 | 8.43281832837204 |
GRC | 78.7 | 1.0423056e7 | 83.479 | 24574.382 | 4.55 | 10310.795605434721 | 107470.0 | 0.9041819852941176 | 7.173800404085966e-3 | 1.0298403374076339e-2 | 0.20503544018197803 | -0.8283287920072662 | 9.24094674235907 |
BEL | 63.89 | 1.1589616e7 | 375.564 | 42658.576 | 4.29 | 49976.806824315834 | 579212.0 | 0.7340303308823529 | 7.984347502852705e-3 | 4.720694396374109e-2 | 0.36068836068453913 | -0.8401362397820163 | 10.819314313278639 |
BEL | 63.89 | 1.1589616e7 | 375.564 | 42658.576 | 4.29 | 49976.806824315834 | 579212.0 | 0.7340303308823529 | 7.984347502852705e-3 | 4.720694396374109e-2 | 0.36068836068453913 | -0.8401362397820163 | 10.819314313278639 |
MLT | 0.0 | 441539.0 | 1454.037 | 36513.323 | 8.83 | 22591.435864102605 | 9975.0 | 0.0 | 2.3846090535390024e-4 | 0.18348530298716753 | 0.30779539920242244 | -0.6339600363306086 | 10.025326169376674 |
ISL | 52.78 | 341250.0 | 3.404 | 46482.958 | 5.31 | 15862.27106227106 | 5413.0 | 0.6063878676470588 | 1.687782846672511e-4 | 1.7993995514895526e-4 | 0.3936052950758327 | -0.7938147138964577 | 9.671698679279945 |
EST | 37.96 | 1326539.0 | 31.033 | 29481.252 | 4.02 | 9420.755816451683 | 12497.0 | 0.43612132352941174 | 8.533749967067355e-4 | 3.6712047169540716e-3 | 0.24726948423317555 | -0.8523978201634878 | 9.15067059964384 |
MNE | 0.0 | 628062.0 | 46.28 | 16409.288 | 10.08 | 57078.75974028042 | 35849.0 | 0.0 | 3.6806047717469675e-4 | 5.597851132794045e-3 | 0.1347574544847477 | -0.5771934604904632 | 10.952187342908323 |
SVK | 58.33 | 5459643.0 | 113.128 | 30155.152 | 7.29 | 19631.869702835884 | 107183.0 | 0.6701516544117646 | 3.7251308053245537e-3 | 1.4044920038550618e-2 | 0.2530698258534145 | -0.7038964577656676 | 9.884909529950056 |
CHE | 49.07 | 8654618.0 | 214.243 | 57410.166 | 5.59 | 38230.91903074174 | 330874.0 | 0.5637637867647058 | 5.945057527381079e-3 | 2.6822046839735037e-2 | 0.48765714157443524 | -0.7810990009082652 | 10.551399865918693 |
ITA | 79.63 | 6.0461828e7 | 205.859 | 35220.084 | 4.78 | 26808.666783941764 | 1620901.0 | 0.9148667279411764 | 4.194164901063026e-2 | 2.5762625081329954e-2 | 0.2966643293157683 | -0.8178837420526793 | 10.196480501681007 |
LTU | 62.96 | 2722291.0 | 45.135 | 29524.265 | 3.67 | 22964.113682189007 | 62515.0 | 0.723345588235294 | 1.823168864315665e-3 | 5.453166267172167e-3 | 0.24763970250608153 | -0.8682924613987284 | 10.041688001727678 |
LTU | 62.96 | 2722291.0 | 45.135 | 29524.265 | 3.67 | 22964.113682189007 | 62515.0 | 0.723345588235294 | 1.823168864315665e-3 | 5.453166267172167e-3 | 0.24763970250608153 | -0.8682924613987284 | 10.041688001727678 |
NOR | 49.07 | 5421242.0 | 14.462 | 64800.057 | 5.31 | 6749.560340600918 | 36591.0 | 0.5637637867647058 | 3.698449092305299e-3 | 1.5772545787705475e-3 | 0.551262858055114 | -0.7938147138964577 | 8.817232647019427 |
NOR | 49.07 | 5421242.0 | 14.462 | 64800.057 | 5.31 | 6749.560340600918 | 36591.0 | 0.5637637867647058 | 3.698449092305299e-3 | 1.5772545787705475e-3 | 0.551262858055114 | -0.7938147138964577 | 8.817232647019427 |
SVN | 68.52 | 2078932.0 | 102.619 | 31400.84 | 7.25 | 37103.18567418271 | 77135.0 | 0.7872242647058822 | 1.3761513333567172e-3 | 1.2716978333030695e-2 | 0.2637916183333555 | -0.7057129881925522 | 10.521458112137791 |
LUX | 60.19 | 625976.0 | 231.447 | 94277.965 | 4.42 | 56118.764936674896 | 35129.0 | 0.6915211397058822 | 3.666110864463781e-4 | 2.8995984331576772e-2 | 0.8049829005688035 | -0.8342325158946412 | 10.935225526431015 |
DNK | 45.37 | 5792203.0 | 136.52 | 46682.515 | 6.41 | 14238.1059503612 | 82470.0 | 0.5212545955882353 | 3.956199540036755e-3 | 1.7000787616390765e-2 | 0.39532290714395857 | -0.7438601271571299 | 9.563677167015623 |
PRT | 62.5 | 1.0196707e7 | 112.371 | 27936.896 | 9.85 | 29466.57190404706 | 300462.0 | 0.7180606617647058 | 7.01652900333611e-3 | 1.3949263756213708e-2 | 0.23397701890706518 | -0.5876385104450499 | 10.291011744026449 |
FIN | 42.13 | 5540718.0 | 18.136 | 40585.721 | 5.76 | 4595.433299438809 | 25462.0 | 0.4840303308823529 | 3.781463189456114e-3 | 2.0415097720410964e-3 | 0.34284703833816654 | -0.7733787465940054 | 8.43281832837204 |
BIH | 48.15 | 3280815.0 | 68.496 | 11713.895 | 10.08 | 27153.31403934693 | 89085.0 | 0.5531939338235293 | 2.2112414947775307e-3 | 8.405116612842631e-3 | 9.434361943313956e-2 | -0.5771934604904632 | 10.209254381977214 |
ESP | 71.3 | 4.6754783e7 | 93.105 | 34272.36 | 7.17 | 35428.33254086539 | 1656444.0 | 0.8191636029411764 | 3.241774491875746e-2 | 1.1514767143924543e-2 | 0.28850715026591023 | -0.7093460490463215 | 10.475267133270918 |
IRL | 81.48 | 4937796.0 | 69.874 | 67335.293 | 3.28 | 14743.014899764996 | 72798.0 | 0.9361213235294118 | 3.3625420213356234e-3 | 8.5792439009011e-3 | 0.573083951522881 | -0.8860036330608537 | 9.598524683482491 |
UKR | 61.57 | 4.3733759e7 | 77.39 | 7894.393 | 7.11 | 17494.883071907905 | 765117.0 | 0.707375919117647 | 3.031868251433361e-2 | 9.528983158555278e-3 | 6.146868781244509e-2 | -0.7120708446866485 | 9.769663721264616 |
ALB | 65.74 | 2877800.0 | 104.871 | 11803.431 | 10.08 | 13556.883730627562 | 39014.0 | 0.7552849264705881 | 1.9312193450300018e-3 | 1.3001546295808396e-2 | 9.511426698813245e-2 | -0.5771934604904632 | 9.514649721707698 |
HUN | 72.22 | 9660350.0 | 108.043 | 26777.561 | 7.55 | 22884.574575455343 | 221073.0 | 0.8297334558823529 | 6.643858407521723e-3 | 1.3402367600395816e-2 | 0.2239984775028513 | -0.6920890099909174 | 10.038218363247282 |
ISL | 52.78 | 341250.0 | 3.404 | 46482.958 | 5.31 | 15862.27106227106 | 5413.0 | 0.6063878676470588 | 1.687782846672511e-4 | 1.7993995514895526e-4 | 0.3936052950758327 | -0.7938147138964577 | 9.671698679279945 |
MDA | 48.15 | 4033963.0 | 123.655 | 5189.972 | 5.72 | 26986.613412170613 | 108863.0 | 0.5531939338235293 | 2.7345424191551632e-3 | 1.5375136265975515e-2 | 3.8191397880781186e-2 | -0.7751952770208901 | 10.203096222487993 |
GBR | 63.89 | 6.7886004e7 | 272.898 | 39753.244 | 4.28 | 24264.648129826583 | 1647230.0 | 0.7340303308823529 | 4.7100101484170966e-2 | 3.423382919174485e-2 | 0.33568180463733305 | -0.8405903723887375 | 10.096775760593708 |
EST | 37.96 | 1326539.0 | 31.033 | 29481.252 | 4.02 | 9420.755816451683 | 12497.0 | 0.43612132352941174 | 8.533749967067355e-4 | 3.6712047169540716e-3 | 0.24726948423317555 | -0.8523978201634878 | 9.15067059964384 |
LVA | 57.41 | 1886202.0 | 31.212 | 25063.846 | 4.91 | 9377.0444522909 | 17687.0 | 0.6595818014705882 | 1.242239025078263e-3 | 3.6938235736757447e-3 | 0.20924831807307262 | -0.8119800181653043 | 9.146019901974764 |
CZE | 69.44 | 1.0708982e7 | 137.176 | 32605.906 | 6.82 | 49348.66824876538 | 528474.0 | 0.7977941176470588 | 7.372466987683877e-3 | 1.7083681303594212e-2 | 0.27416377217655913 | -0.7252406902815622 | 10.806666058656884 |
CZE | 69.44 | 1.0708982e7 | 137.176 | 32605.906 | 6.82 | 49348.66824876538 | 528474.0 | 0.7977941176470588 | 7.372466987683877e-3 | 1.7083681303594212e-2 | 0.27416377217655913 | -0.7252406902815622 | 10.806666058656884 |
SVN | 68.52 | 2078932.0 | 102.619 | 31400.84 | 7.25 | 37103.18567418271 | 77135.0 | 0.7872242647058822 | 1.3761513333567172e-3 | 1.2716978333030695e-2 | 0.2637916183333555 | -0.7057129881925522 | 10.521458112137791 |
LUX | 60.19 | 625976.0 | 231.447 | 94277.965 | 4.42 | 56118.764936674896 | 35129.0 | 0.6915211397058822 | 3.666110864463781e-4 | 2.8995984331576772e-2 | 0.8049829005688035 | -0.8342325158946412 | 10.935225526431015 |
POL | 71.3 | 3.7846605e7 | 124.027 | 27216.445 | 5.91 | 26420.441146570476 | 999924.0 | 0.8191636029411764 | 2.622818087301812e-2 | 1.5422143052011618e-2 | 0.22777600700523584 | -0.766566757493188 | 10.1818932753847 |
RUS | 55.09 | 1.4593446e8 | 8.823 | 24765.954 | 6.18 | 15774.629241099052 | 2302062.0 | 0.6329273897058824 | 0.1013295878149413 | 8.646974108738069e-4 | 0.20668432435599854 | -0.7543051771117166 | 9.666158184191792 |
PRT | 62.5 | 1.0196707e7 | 112.371 | 27936.896 | 9.85 | 29466.57190404706 | 300462.0 | 0.7180606617647058 | 7.01652900333611e-3 | 1.3949263756213708e-2 | 0.23397701890706518 | -0.5876385104450499 | 10.291011744026449 |
ROU | 76.85 | 1.9237682e7 | 85.129 | 23313.199 | 9.74 | 24932.005841452206 | 479634.0 | 0.8829273897058822 | 1.3298362819232946e-2 | 1.0506901215365507e-2 | 0.1941802802982596 | -0.5926339691189828 | 10.123907632224086 |
IRL | 81.48 | 4937796.0 | 69.874 | 67335.293 | 3.28 | 14743.014899764996 | 72798.0 | 0.9361213235294118 | 3.3625420213356234e-3 | 8.5792439009011e-3 | 0.573083951522881 | -0.8860036330608537 | 9.598524683482491 |
BGR | 57.41 | 6948445.0 | 65.18 | 18563.307 | 5.81 | 21411.26539822939 | 148775.0 | 0.6595818014705882 | 4.75957750479832e-3 | 7.986099133015432e-3 | 0.15329736553458526 | -0.7711080835603996 | 9.971672482977299 |
AUT | 82.41 | 9006400.0 | 106.749 | 45436.686 | 6.35 | 31698.458873689822 | 285489.0 | 0.9468060661764705 | 6.189482057193828e-3 | 1.3238854747893885e-2 | 0.3845999010593753 | -0.7465849227974568 | 10.364023342711647 |
NLD | 56.48 | 1.7134873e7 | 508.544 | 48472.545 | 5.29 | 31288.764147828817 | 536129.0 | 0.6488970588235293 | 1.1837292892087676e-2 | 6.401060634836754e-2 | 0.4107299193274819 | -0.7947229791099001 | 10.351014339169227 |
GBR | 63.89 | 6.7886004e7 | 272.898 | 39753.244 | 4.28 | 24264.648129826583 | 1647230.0 | 0.7340303308823529 | 4.7100101484170966e-2 | 3.423382919174485e-2 | 0.33568180463733305 | -0.8405903723887375 | 10.096775760593708 |
USA | 75.46 | 3.31002647e8 | 35.608 | 54225.446 | 10.79 | 41455.43283223351 | 1.3721858e7 | 0.8669577205882352 | 0.22991832911146287 | 4.249312367801312e-3 | 0.46024585805342705 | -0.5449500454132608 | 10.632374221509767 |
BHS | 0.0 | 393248.0 | 39.497 | 27717.847 | 13.17 | 19181.28000650989 | 7543.0 | 0.0 | 2.0490744051150504e-4 | 4.74073546160348e-3 | 0.23209163675604616 | -0.436866485013624 | 9.861690082733581 |
JAM | 67.59 | 2961161.0 | 266.879 | 8193.571 | 11.28 | 3650.5951550759987 | 10810.0 | 0.7765395220588235 | 1.989140083526345e-3 | 3.3473254339187575e-2 | 6.404375029242707e-2 | -0.5226975476839237 | 8.202645489469527 |
PAN | 58.33 | 4314768.0 | 55.133 | 22267.037 | 8.33 | 38776.360629354815 | 167311.0 | 0.6701516544117646 | 2.9296508388414154e-3 | 6.716536823056475e-3 | 0.18517583306556565 | -0.6566666666666667 | 10.565566077805743 |
HTI | 47.22 | 1.1402533e7 | 398.448 | 1653.173 | 6.65 | 815.2574520064971 | 9296.0 | 0.5425091911764706 | 7.854358832849809e-3 | 5.009861947892977e-2 | 7.749726353670971e-3 | -0.732960944595822 | 6.7035039553899916 |
MEX | 71.76 | 1.28932753e8 | 66.444 | 17336.469 | 13.06 | 8705.018499062066 | 1122362.0 | 0.8244485294117647 | 8.951649266087108e-2 | 8.145821115675739e-3 | 0.1427378173632086 | -0.4418619436875567 | 9.071654977307679 |
JAM | 67.59 | 2961161.0 | 266.879 | 8193.571 | 11.28 | 3650.5951550759987 | 10810.0 | 0.7765395220588235 | 1.989140083526345e-3 | 3.3473254339187575e-2 | 6.404375029242707e-2 | -0.5226975476839237 | 8.202645489469527 |
CAN | 64.35 | 3.7742157e7 | 4.037 | 44017.591 | 7.37 | 10255.163741701355 | 387052.0 | 0.739315257352941 | 2.6155608503511202e-2 | 2.599273088071636e-4 | 0.372385572833269 | -0.7002633969118983 | 9.235536637390355 |
PAN | 58.33 | 4314768.0 | 55.133 | 22267.037 | 8.33 | 38776.360629354815 | 167311.0 | 0.6701516544117646 | 2.9296508388414154e-3 | 6.716536823056475e-3 | 0.18517583306556565 | -0.6566666666666667 | 10.565566077805743 |
SLV | 47.22 | 6486201.0 | 307.811 | 7292.458 | 8.87 | 6032.807185592922 | 39130.0 | 0.5425091911764706 | 4.438401968930185e-3 | 3.86455171510956e-2 | 5.628775795166672e-2 | -0.6321435059037239 | 8.70496771797527 |
CRI | 55.56 | 5094114.0 | 96.079 | 15524.995 | 8.78 | 27516.463118022093 | 140172.0 | 0.6383272058823529 | 3.471154609959457e-3 | 1.1890568707557262e-2 | 0.12714623398855246 | -0.6362306993642144 | 10.222539763367115 |
DOM | 64.81 | 1.0847904e7 | 222.873 | 14600.861 | 8.2 | 13302.293235633353 | 144302.0 | 0.7446001838235294 | 7.468992519208078e-3 | 2.791255373084142e-2 | 0.11919209702034067 | -0.6625703905540419 | 9.495691723078412 |
BRB | 40.74 | 287371.0 | 664.463 | 16978.068 | 13.57 | 967.390585688883 | 278.0 | 0.4680606617647059 | 1.3134217582205402e-4 | 8.371289417622566e-2 | 0.13965301511208042 | -0.41870118074477747 | 6.874602328781559 |
DOM | 64.81 | 1.0847904e7 | 222.873 | 14600.861 | 8.2 | 13302.293235633353 | 144302.0 | 0.7446001838235294 | 7.468992519208078e-3 | 2.791255373084142e-2 | 0.11919209702034067 | -0.6625703905540419 | 9.495691723078412 |
NZL | 22.22 | 4822233.0 | 18.206 | 36085.843 | 8.08 | 427.1879853171757 | 2060.0 | 0.2552849264705882 | 3.282246747732225e-3 | 2.0503551350048795e-3 | 0.30411602535493804 | -0.6680199818346957 | 6.057224162992943 |
AUS | 47.22 | 2.5499881e7 | 3.202 | 44648.71 | 5.07 | 1095.0247179584878 | 27923.0 | 0.5425091911764706 | 1.7649452545736487e-2 | 1.5441476488203885e-4 | 0.37781769303363044 | -0.8047138964577656 | 6.998532215473896 |
FJI | 49.07 | 896444.0 | 49.562 | 8702.975 | 14.49 | 46.851783268112676 | 42.0 | 0.5637637867647058 | 5.545371705819923e-4 | 6.012572293467409e-3 | 6.842825425846982e-2 | -0.37692098092643045 | 3.846989071313566 |
FJI | 49.07 | 896444.0 | 49.562 | 8702.975 | 14.49 | 46.851783268112676 | 42.0 | 0.5637637867647058 | 5.545371705819923e-4 | 6.012572293467409e-3 | 6.842825425846982e-2 | -0.37692098092643045 | 3.846989071313566 |
PRY | 63.89 | 7132530.0 | 17.144 | 8827.01 | 8.27 | 11703.981616621311 | 83479.0 | 0.7340303308823529 | 4.8874831098906215e-3 | 1.916158342611487e-3 | 6.94958390230734e-2 | -0.6593914623069936 | 9.367684372006767 |
PRY | 63.89 | 7132530.0 | 17.144 | 8827.01 | 8.27 | 11703.981616621311 | 83479.0 | 0.7340303308823529 | 4.8874831098906215e-3 | 1.916158342611487e-3 | 6.94958390230734e-2 | -0.6593914623069936 | 9.367684372006767 |
ARG | 79.17 | 4.5195777e7 | 16.177 | 18933.907 | 5.5 | 31696.9879730135 | 1432570.0 | 0.9095818014705882 | 3.1334519203612125e-2 | 1.7939659713832289e-3 | 0.15648716610508617 | -0.7851861943687557 | 10.363976938726827 |
COL | 65.74 | 5.0882884e7 | 44.223 | 13254.949 | 7.44 | 26036.10282781927 | 1324792.0 | 0.7552849264705881 | 3.528602455200913e-2 | 5.337923823986881e-3 | 0.10760766403209451 | -0.6970844686648501 | 10.16723942413214 |
URY | 43.52 | 3473727.0 | 19.751 | 20551.409 | 6.93 | 1734.1604564780134 | 6024.0 | 0.5 | 2.345280259965167e-3 | 2.2455849318483738e-3 | 0.17040920820542713 | -0.7202452316076294 | 7.458278688513794 |
CHL | 76.39 | 1.9116209e7 | 24.282 | 22767.037 | 8.46 | 28921.215498323963 | 552864.0 | 0.877642463235294 | 1.3213961170172038e-2 | 2.8181326402612365e-3 | 0.18947939562695382 | -0.6507629427792916 | 10.27233070506873 |
ECU | 52.78 | 1.764306e7 | 66.939 | 10581.936 | 5.55 | 10977.290787425763 | 193673.0 | 0.6063878676470588 | 1.219039045970612e-2 | 8.20837046806249e-3 | 8.460070668628678e-2 | -0.7829155313351499 | 9.303583943946428 |
SUR | 60.19 | 586634.0 | 3.612 | 13767.119 | 12.54 | 9066.982138778181 | 5319.0 | 0.6915211397058822 | 3.3927554951756084e-4 | 2.0622331938419594e-4 | 0.11201597530622688 | -0.4654768392370573 | 9.112394757728838 |
ECU | 52.78 | 1.764306e7 | 66.939 | 10581.936 | 5.55 | 10977.290787425763 | 193673.0 | 0.6063878676470588 | 1.219039045970612e-2 | 8.20837046806249e-3 | 8.460070668628678e-2 | -0.7829155313351499 | 9.303583943946428 |
BRA | 57.87 | 2.12559409e8 | 25.04 | 14103.452 | 8.11 | 30047.06792349051 | 6386787.0 | 0.6648667279411764 | 0.14762181377625655 | 2.9139152849262e-3 | 0.1149108355201456 | -0.6666575840145323 | 10.310520361941226 |
root
|-- iso_code: string (nullable = true)
|-- stringency_index: double (nullable = false)
|-- population: double (nullable = true)
|-- population_density: double (nullable = true)
|-- gdp_per_capita: double (nullable = true)
|-- diabetes_prevalence: double (nullable = true)
|-- total_cases_per_million: double (nullable = true)
|-- total_cases: double (nullable = false)
|-- normal_stringency_index: double (nullable = true)
|-- normal_population: double (nullable = true)
|-- normal_population_density: double (nullable = true)
|-- normal_gdp_per_capita: double (nullable = true)
|-- normal_diabetes_prevalence: double (nullable = true)
|-- log_total_cases_per_million: double (nullable = true)
df_by_location_normalized_selected: org.apache.spark.sql.DataFrame = [normal_stringency_index: double, normal_population: double ... 4 more fields]
normal_stringency_index | normal_population | normal_population_density | normal_gdp_per_capita | normal_diabetes_prevalence | log_total_cases_per_million |
---|---|---|---|---|---|
0.4680606617647059 | 8.355089978211156e-3 | 1.2273572923889062e-2 | 1.1287797028014778e-2 | -0.99 | 5.516234301939272 |
0.43612132352941174 | 6.181533337188092e-4 | 4.966671304164106e-3 | 1.6806427442985283e-2 | -0.7602089009990918 | 8.656777068660016 |
0.7605698529411764 | 2.5577798397912414e-2 | 9.86889782102065e-3 | 5.794510292968292e-2 | -0.710708446866485 | 9.184928248401064 |
0.7977941176470588 | 1.0258703502039418e-2 | 5.149138505874142e-3 | 9.872260623197862e-3 | -0.9523069936421436 | 6.524287884057365 |
0.7977941176470588 | 1.0258703502039418e-2 | 5.149138505874142e-3 | 9.872260623197862e-3 | -0.9523069936421436 | 6.524287884057365 |
0.6595818014705882 | 3.445837519850278e-3 | 5.957604680763901e-3 | 0.0 | -0.9250590372388737 | 5.753721728243157 |
0.7872242647058822 | 8.143462256240255e-3 | 9.129425477248399e-3 | 8.690191626623738e-2 | -0.6480381471389646 | 9.010405889372016 |
0.0 | 5.358819972048937e-4 | 5.5014619489544205e-2 | 5.690187632917682e-3 | -0.4954495912806539 | 6.558092628897888 |
0.5212545955882353 | 3.1713350057430964e-2 | 2.6760887472956883e-2 | 8.133036063888693e-3 | -0.9214259763851045 | 6.130947944966741 |
0.5212545955882353 | 3.1713350057430964e-2 | 2.6760887472956883e-2 | 8.133036063888693e-3 | -0.9214259763851045 | 6.130947944966741 |
0.8297334558823529 | 3.040017357002878e-2 | 1.9419362575345115e-3 | 0.11327881270424062 | -0.7293278837420527 | 7.559581462250953 |
0.5637637867647058 | 5.68388857419261e-3 | 1.7865864114248734e-2 | 5.827238886247649e-3 | -0.7556675749318801 | 5.891676646786213 |
0.595703125 | 7.981045935295776e-2 | 1.3012413456021043e-2 | 8.410357635344545e-3 | -0.6957220708446867 | 6.868643959706125 |
0.5637637867647058 | 5.68388857419261e-3 | 1.7865864114248734e-2 | 5.827238886247649e-3 | -0.7556675749318801 | 5.891676646786213 |
0.6488970588235293 | 2.164851611425872e-2 | 4.517200503275881e-3 | 3.2992401664370115e-3 | -0.8850953678474115 | 6.223671398897003 |
0.6488970588235293 | 2.164851611425872e-2 | 4.517200503275881e-3 | 3.2992401664370115e-3 | -0.8850953678474115 | 6.223671398897003 |
0.5212545955882353 | 1.2705178471713973e-2 | 2.655504324055685e-3 | 2.5274504459403168e-2 | -0.856030881017257 | 6.867862232075263 |
0.41486672794117646 | 1.6108136677078762e-3 | 2.5978325575318203e-2 | 6.962983474698477e-3 | -0.9482198001816531 | 7.34525463115484 |
0.723345588235294 | 3.729294850691195e-2 | 1.0784266525444128e-2 | 1.9282025985048457e-2 | -0.9023524069028156 | 7.355842093837723 |
0.8191636029411764 | 3.1798215150219476e-4 | 1.6882007028019966e-2 | 4.707896035430782e-2 | -0.9250590372388737 | 9.875790365981024 |
0.361672794117647 | 0.0 | 2.6077899089824788e-2 | 0.22059630472707098 | -0.5558492279745686 | 7.528810569839765 |
0.27653952205882354 | 1.675088240554259e-2 | 1.892275862609273e-3 | 1.4908573567663345e-3 | -0.9250590372388737 | 4.182343591746147 |
0.15958180147058823 | 4.143608887890179e-2 | 7.925318853221437e-3 | 1.6616192763521682e-2 | -0.7738328792007266 | 2.142543078223737 |
0.5851332720588235 | 1.5656233879479927e-3 | 2.6081184510354184e-4 | 0.1295767053735969 | -0.8165213442325159 | 8.426809991916247 |
0.7605698529411764 | 2.5577798397912414e-2 | 9.86889782102065e-3 | 5.794510292968292e-2 | -0.710708446866485 | 9.184928248401064 |
0.2552849264705882 | 1.4455649204431723e-2 | 8.61424626577207e-3 | 8.179471503926072e-3 | -0.9250590372388737 | 4.943192951933301 |
0.5105698529411764 | 4.114042776150661e-2 | 5.65774687629166e-3 | 9.934419559409527e-2 | -0.7842779291553134 | 9.499938286535372 |
0.44680606617647056 | 2.152171874416722e-2 | 1.5762310439133096e-2 | 2.990839987587837e-2 | -0.8092552225249773 | 7.416237053945145 |
0.5851332720588235 | 1.3223512140906203e-2 | 2.4708763265359247e-2 | 2.9458230017706914e-3 | -0.856030881017257 | 5.75291512862318 |
0.6915211397058822 | 7.103547546117088e-2 | 1.2133184377421022e-2 | 8.432760260614108e-2 | -0.2488555858310626 | 7.03570822189771 |
0.5531939338235293 | 7.377746216233141e-4 | 9.794596772124875e-3 | 6.013098564011344e-2 | -0.856030881017257 | 8.622032955455639 |
0.19152113970588236 | 8.153184152247271e-4 | 7.846873119965488e-2 | 0.1681828547926693 | -3.495912806539503e-2 | 5.984151157236849 |
0.861672794117647 | 2.3957935418198006e-3 | 5.3481591725592584e-3 | 6.5213690988990694e-3 | -0.7602089009990918 | 5.0919016487339865 |
0.3936121323529411 | 1.40023192502864e-2 | 1.670004527562214e-3 | 1.0858043270634558e-2 | -0.9250590372388737 | 5.460227049157162 |
0.8244485294117647 | 7.607060187625894e-2 | 4.4213294049812786e-2 | 5.89278214405759e-2 | -0.7138873751135331 | 8.281655004317232 |
0.723345588235294 | 2.8989364010919777e-3 | 2.9082037076981572e-2 | 0.5575501908147996 | -0.31561307901907354 | 10.418798294955007 |
0.723345588235294 | 2.8989364010919777e-3 | 2.9082037076981572e-2 | 0.5575501908147996 | -0.31561307901907354 | 10.418798294955007 |
0.5691636029411764 | 1.4809987022505607e-2 | 4.29600324801728e-2 | 9.395786529938696e-2 | -0.5499455040871934 | 7.0437237774393395 |
0.7925091911764706 | 0.9587838099587115 | 5.666579603022637e-2 | 4.8835846734368936e-2 | -0.5631153496821071 | 8.836898609505603 |
0.5212545955882353 | 6.803701330364344e-3 | 1.3958235481505545e-2 | 0.5727240876214976 | -0.2511262488646683 | 9.752865213033996 |
0.6063878676470588 | 3.9965962691568165e-3 | 1.0 | 0.7297344033986713 | -0.5358673932788374 | 9.205621325680971 |
0.9201516544117647 | 0.11436084932334513 | 0.1596026966226256 | 2.385203071173729e-2 | -0.6543960036330608 | 7.950505046892096 |
0.7180606617647058 | 5.853198881142063e-2 | 1.3006979875914721e-2 | 0.20981204173298887 | -0.48409627611262485 | 8.978629876116653 |
0.9148667279411764 | 3.773658574741391e-2 | 1.0076258401357334e-2 | 4.164823450821623e-2 | -0.8256039963669392 | 7.435051922148413 |
0.3829273897058823 | 4.9868601752350635e-3 | 3.5046591685788443e-3 | 4.858353746851987e-2 | -0.8533060853769301 | 1.6790414098755786 |
0.739315257352941 | 0.15341167949370746 | 3.204460185820858e-2 | 3.685502120571845e-2 | -0.6557584014532243 | 7.509787862714033 |
0.9680606617647058 | 2.703422902405434e-3 | 7.967397508463432e-3 | 7.739777377741554e-2 | -0.7120708446866485 | 10.46110935581742 |
0.0 | 1.9905804416182936e-3 | 1.2756403379383555e-2 | 6.915646007948231e-2 | -0.7120708446866485 | 10.733886248729835 |
0.5797334558823529 | 0.18998085674464255 | 1.8163952846128213e-2 | 8.982357906778844e-2 | -0.7479473206176204 | 7.59527058513627 |
0.9201516544117647 | 2.2420155479270107e-2 | 1.1912682114966721e-2 | 0.2242618813529836 | -0.27474114441416897 | 7.637858683250006 |
0.7552849264705881 | 5.9456988445633595e-3 | 5.062403403897848e-2 | 0.2786946833409403 | -0.7288737511353315 | 10.572977149641726 |
0.5744485294117647 | 2.4120979368406577e-2 | 1.6859261808970232e-3 | 0.4156606486680663 | -0.23023614895549493 | 9.237218853465539 |
0.5744485294117647 | 2.4120979368406577e-2 | 1.6859261808970232e-3 | 0.4156606486680663 | -0.23023614895549493 | 9.237218853465539 |
0.5265395220588235 | 3.555443212102101e-2 | 6.646494184616118e-2 | 0.3028467412202073 | -0.7261489554950045 | 6.530659821967431 |
0.7925091911764706 | 0.9587838099587115 | 5.666579603022637e-2 | 4.8835846734368936e-2 | -0.5631153496821071 | 8.836898609505603 |
0.9201516544117647 | 2.2420155479270107e-2 | 1.1912682114966721e-2 | 0.2242618813529836 | -0.27474114441416897 | 7.637858683250006 |
0.9414062499999999 | 1.0 | 1.8410233023505543e-2 | 0.125284659145623 | -0.5926339691189828 | 4.168350819601456 |
0.40429687499999994 | 2.35642722806412e-4 | 1.002899889066512e-2 | 0.6115918678229272 | -0.45412352406902823 | 5.843997267897207 |
0.9787454044117646 | 2.209488468503538e-3 | 0.0 | 9.543630257460113e-2 | -0.8160672116257948 | 5.512177785100784 |
0.8031939338235293 | 6.9765547236708995e-3 | 1.482596558825265e-2 | 0.12992137769913847 | -0.7120708446866485 | 9.424466822550025 |
0.31916360294117646 | 8.477490538844938e-4 | 1.076556490089213e-2 | 5.00703494764785e-2 | -0.7234241598546776 | 3.1247466452003856 |
0.4893152573529412 | 1.1548316620424595e-2 | 1.1207327599769059e-2 | 2.4894233064353788e-2 | -0.8533060853769301 | 2.9795136880648694 |
0.6436121323529411 | 4.4647981116765064e-3 | 3.8354757434243252e-3 | 2.2728714811963754e-2 | -0.7120708446866485 | 9.325133147480487 |
0.4573759191176471 | 2.318667959282326e-2 | 9.370272074519402e-3 | 4.734190802680865e-2 | -0.6911807447774749 | 7.691362829647781 |
1.0 | 4.674112783918464e-3 | 7.487991472059204e-2 | 0.1085769640349211 | -0.45775658492279736 | 9.850431508506654 |
0.7446001838235294 | 1.9334844523043635e-3 | 2.847473972835385e-2 | 1.0 | -0.28473206176203447 | 10.784078124343976 |
0.27653952205882354 | 2.0655296451632887e-2 | 6.511198039968658e-3 | 6.251862797054696e-3 | -0.7919981834695731 | 4.29946864893402 |
0.4680606617647059 | 8.78098142337304e-2 | 4.3695840316431485e-2 | 0.32921767292050047 | -0.7751952770208901 | 7.084819974685839 |
0.4255514705882353 | 3.47984539578391e-3 | 1.642710264702541e-3 | 0.3202532316053772 | -0.46229791099000905 | 10.09675650486317 |
0.6701516544117646 | 1.113962387076603e-3 | 0.24437551800656854 | 0.3661291740812746 | -0.28473206176203447 | 10.843677877463625 |
0.8244485294117647 | 7.607060187625894e-2 | 4.4213294049812786e-2 | 5.89278214405759e-2 | -0.7138873751135331 | 8.281655004317232 |
0.8137637867647058 | 5.829150251106527e-2 | 6.046563759713947e-3 | 0.1577671575034696 | -0.5994459582198002 | 9.36043475674992 |
0.6915211397058822 | 2.017645555310552e-2 | 2.558205331454073e-2 | 1.4546179171493973e-2 | -0.705258855585831 | 8.98872951289128 |
0.6915211397058822 | 2.017645555310552e-2 | 2.558205331454073e-2 | 1.4546179171493973e-2 | -0.705258855585831 | 8.98872951289128 |
0.8244485294117647 | 1.2978069007638173e-2 | 5.940293041820497e-4 | 0.2005701153110324 | -0.7120708446866485 | 9.143147511395949 |
0.8244485294117647 | 1.2978069007638173e-2 | 5.940293041820497e-4 | 0.2005701153110324 | -0.7120708446866485 | 9.143147511395949 |
0.5744485294117647 | 4.842996541985792e-2 | 1.6825396705051752e-2 | 0.13362461049746324 | -0.7152497729336966 | 4.054894911617706 |
0.49471507352941174 | 6.756428888957502e-2 | 3.868544764676068e-2 | 4.6642837324336744e-2 | -0.7624795640326976 | 2.6304048908829563 |
0.861672794117647 | 4.52848945414065e-2 | 1.5239044038661312e-2 | 0.3258045002388133 | -0.8183378746594006 | 10.462489943677964 |
0.4840303308823529 | 3.781463189456114e-3 | 2.0415097720410964e-3 | 0.34284703833816654 | -0.7733787465940054 | 8.43281832837204 |
0.2552849264705882 | 6.497231621325002e-3 | 5.67088855840928e-3 | 0.14128749956577052 | -0.7997184377838329 | 9.590651775703877 |
0.9041819852941176 | 7.173800404085966e-3 | 1.0298403374076339e-2 | 0.20503544018197803 | -0.8283287920072662 | 9.24094674235907 |
0.7552849264705881 | 5.402621310262364e-4 | 1.588083830284779e-2 | 0.2725217564883866 | -0.6153405994550409 | 9.427461709192647 |
0.6329273897058824 | 0.1013295878149413 | 8.646974108738069e-4 | 0.20668432435599854 | -0.7543051771117166 | 9.666158184191792 |
0.5105698529411764 | 2.784086429645462e-3 | 9.06599158856527e-3 | 0.18864243878001505 | -0.7810990009082652 | 10.373288860272808 |
0.6169577205882353 | 6.948828004105436e-3 | 2.8732266152927985e-3 | 0.3976190126987114 | -0.8174296094459582 | 10.158884909113675 |
0.5531939338235293 | 2.2112414947775307e-3 | 8.405116612842631e-3 | 9.434361943313956e-2 | -0.5771934604904632 | 10.209254381977214 |
0.9041819852941176 | 7.173800404085966e-3 | 1.0298403374076339e-2 | 0.20503544018197803 | -0.8283287920072662 | 9.24094674235907 |
0.43612132352941174 | 8.533749967067355e-4 | 3.6712047169540716e-3 | 0.24726948423317555 | -0.8523978201634878 | 9.15067059964384 |
0.0 | 2.3846090535390024e-4 | 0.18348530298716753 | 0.30779539920242244 | -0.6339600363306086 | 10.025326169376674 |
0.6063878676470588 | 1.687782846672511e-4 | 1.7993995514895526e-4 | 0.3936052950758327 | -0.7938147138964577 | 9.671698679279945 |
0.6063878676470588 | 1.687782846672511e-4 | 1.7993995514895526e-4 | 0.3936052950758327 | -0.7938147138964577 | 9.671698679279945 |
0.5637637867647058 | 5.945057527381079e-3 | 2.6822046839735037e-2 | 0.48765714157443524 | -0.7810990009082652 | 10.551399865918693 |
0.5637637867647058 | 5.945057527381079e-3 | 2.6822046839735037e-2 | 0.48765714157443524 | -0.7810990009082652 | 10.551399865918693 |
0.723345588235294 | 1.823168864315665e-3 | 5.453166267172167e-3 | 0.24763970250608153 | -0.8682924613987284 | 10.041688001727678 |
0.7977941176470588 | 7.372466987683877e-3 | 1.7083681303594212e-2 | 0.27416377217655913 | -0.7252406902815622 | 10.806666058656884 |
0.723345588235294 | 1.823168864315665e-3 | 5.453166267172167e-3 | 0.24763970250608153 | -0.8682924613987284 | 10.041688001727678 |
0.6701516544117646 | 3.7251308053245537e-3 | 1.4044920038550618e-2 | 0.2530698258534145 | -0.7038964577656676 | 9.884909529950056 |
0.9148667279411764 | 4.194164901063026e-2 | 2.5762625081329954e-2 | 0.2966643293157683 | -0.8178837420526793 | 10.196480501681007 |
0.7872242647058822 | 1.3761513333567172e-3 | 1.2716978333030695e-2 | 0.2637916183333555 | -0.7057129881925522 | 10.521458112137791 |
0.6915211397058822 | 3.666110864463781e-4 | 2.8995984331576772e-2 | 0.8049829005688035 | -0.8342325158946412 | 10.935225526431015 |
0.5212545955882353 | 3.956199540036755e-3 | 1.7000787616390765e-2 | 0.39532290714395857 | -0.7438601271571299 | 9.563677167015623 |
0.7180606617647058 | 7.01652900333611e-3 | 1.3949263756213708e-2 | 0.23397701890706518 | -0.5876385104450499 | 10.291011744026449 |
0.7340303308823529 | 7.984347502852705e-3 | 4.720694396374109e-2 | 0.36068836068453913 | -0.8401362397820163 | 10.819314313278639 |
0.707375919117647 | 3.031868251433361e-2 | 9.528983158555278e-3 | 6.146868781244509e-2 | -0.7120708446866485 | 9.769663721264616 |
0.7446001838235294 | 5.814627995241502e-2 | 2.9699696136509728e-2 | 0.3828144304167814 | -0.657574931880109 | 9.477729412039812 |
0.6595818014705882 | 4.75957750479832e-3 | 7.986099133015432e-3 | 0.15329736553458526 | -0.7711080835603996 | 9.971672482977299 |
0.9468060661764705 | 6.189482057193828e-3 | 1.3238854747893885e-2 | 0.3845999010593753 | -0.7465849227974568 | 10.364023342711647 |
0.9361213235294118 | 3.3625420213356234e-3 | 8.5792439009011e-3 | 0.573083951522881 | -0.8860036330608537 | 9.598524683482491 |
0.7552849264705881 | 1.9312193450300018e-3 | 1.3001546295808396e-2 | 9.511426698813245e-2 | -0.5771934604904632 | 9.514649721707698 |
0.4840303308823529 | 3.781463189456114e-3 | 2.0415097720410964e-3 | 0.34284703833816654 | -0.7733787465940054 | 8.43281832837204 |
0.5531939338235293 | 2.7345424191551632e-3 | 1.5375136265975515e-2 | 3.8191397880781186e-2 | -0.7751952770208901 | 10.203096222487993 |
0.43612132352941174 | 8.533749967067355e-4 | 3.6712047169540716e-3 | 0.24726948423317555 | -0.8523978201634878 | 9.15067059964384 |
0.0 | 3.6806047717469675e-4 | 5.597851132794045e-3 | 0.1347574544847477 | -0.5771934604904632 | 10.952187342908323 |
0.7977941176470588 | 7.372466987683877e-3 | 1.7083681303594212e-2 | 0.27416377217655913 | -0.7252406902815622 | 10.806666058656884 |
0.5637637867647058 | 3.698449092305299e-3 | 1.5772545787705475e-3 | 0.551262858055114 | -0.7938147138964577 | 8.817232647019427 |
0.5637637867647058 | 3.698449092305299e-3 | 1.5772545787705475e-3 | 0.551262858055114 | -0.7938147138964577 | 8.817232647019427 |
0.8191636029411764 | 3.241774491875746e-2 | 1.1514767143924543e-2 | 0.28850715026591023 | -0.7093460490463215 | 10.475267133270918 |
0.6595818014705882 | 1.242239025078263e-3 | 3.6938235736757447e-3 | 0.20924831807307262 | -0.8119800181653043 | 9.146019901974764 |
0.7340303308823529 | 7.984347502852705e-3 | 4.720694396374109e-2 | 0.36068836068453913 | -0.8401362397820163 | 10.819314313278639 |
0.7872242647058822 | 1.3761513333567172e-3 | 1.2716978333030695e-2 | 0.2637916183333555 | -0.7057129881925522 | 10.521458112137791 |
0.6915211397058822 | 3.666110864463781e-4 | 2.8995984331576772e-2 | 0.8049829005688035 | -0.8342325158946412 | 10.935225526431015 |
0.7180606617647058 | 7.01652900333611e-3 | 1.3949263756213708e-2 | 0.23397701890706518 | -0.5876385104450499 | 10.291011744026449 |
0.8191636029411764 | 2.622818087301812e-2 | 1.5422143052011618e-2 | 0.22777600700523584 | -0.766566757493188 | 10.1818932753847 |
0.5212545955882353 | 3.956199540036755e-3 | 1.7000787616390765e-2 | 0.39532290714395857 | -0.7438601271571299 | 9.563677167015623 |
0.8829273897058822 | 1.3298362819232946e-2 | 1.0506901215365507e-2 | 0.1941802802982596 | -0.5926339691189828 | 10.123907632224086 |
0.9361213235294118 | 3.3625420213356234e-3 | 8.5792439009011e-3 | 0.573083951522881 | -0.8860036330608537 | 9.598524683482491 |
0.8297334558823529 | 6.643858407521723e-3 | 1.3402367600395816e-2 | 0.2239984775028513 | -0.6920890099909174 | 10.038218363247282 |
0.7340303308823529 | 4.7100101484170966e-2 | 3.423382919174485e-2 | 0.33568180463733305 | -0.8405903723887375 | 10.096775760593708 |
0.7340303308823529 | 4.7100101484170966e-2 | 3.423382919174485e-2 | 0.33568180463733305 | -0.8405903723887375 | 10.096775760593708 |
0.6488970588235293 | 1.1837292892087676e-2 | 6.401060634836754e-2 | 0.4107299193274819 | -0.7947229791099001 | 10.351014339169227 |
0.0 | 2.0490744051150504e-4 | 4.74073546160348e-3 | 0.23209163675604616 | -0.436866485013624 | 9.861690082733581 |
0.8669577205882352 | 0.22991832911146287 | 4.249312367801312e-3 | 0.46024585805342705 | -0.5449500454132608 | 10.632374221509767 |
0.4680606617647059 | 1.3134217582205402e-4 | 8.371289417622566e-2 | 0.13965301511208042 | -0.41870118074477747 | 6.874602328781559 |
0.8244485294117647 | 8.951649266087108e-2 | 8.145821115675739e-3 | 0.1427378173632086 | -0.4418619436875567 | 9.071654977307679 |
0.6383272058823529 | 3.471154609959457e-3 | 1.1890568707557262e-2 | 0.12714623398855246 | -0.6362306993642144 | 10.222539763367115 |
0.7765395220588235 | 1.989140083526345e-3 | 3.3473254339187575e-2 | 6.404375029242707e-2 | -0.5226975476839237 | 8.202645489469527 |
0.6701516544117646 | 2.9296508388414154e-3 | 6.716536823056475e-3 | 0.18517583306556565 | -0.6566666666666667 | 10.565566077805743 |
0.6701516544117646 | 2.9296508388414154e-3 | 6.716536823056475e-3 | 0.18517583306556565 | -0.6566666666666667 | 10.565566077805743 |
0.7446001838235294 | 7.468992519208078e-3 | 2.791255373084142e-2 | 0.11919209702034067 | -0.6625703905540419 | 9.495691723078412 |
0.7446001838235294 | 7.468992519208078e-3 | 2.791255373084142e-2 | 0.11919209702034067 | -0.6625703905540419 | 9.495691723078412 |
0.5425091911764706 | 7.854358832849809e-3 | 5.009861947892977e-2 | 7.749726353670971e-3 | -0.732960944595822 | 6.7035039553899916 |
0.5425091911764706 | 4.438401968930185e-3 | 3.86455171510956e-2 | 5.628775795166672e-2 | -0.6321435059037239 | 8.70496771797527 |
0.739315257352941 | 2.6155608503511202e-2 | 2.599273088071636e-4 | 0.372385572833269 | -0.7002633969118983 | 9.235536637390355 |
0.7765395220588235 | 1.989140083526345e-3 | 3.3473254339187575e-2 | 6.404375029242707e-2 | -0.5226975476839237 | 8.202645489469527 |
0.2552849264705882 | 3.282246747732225e-3 | 2.0503551350048795e-3 | 0.30411602535493804 | -0.6680199818346957 | 6.057224162992943 |
0.5637637867647058 | 5.545371705819923e-4 | 6.012572293467409e-3 | 6.842825425846982e-2 | -0.37692098092643045 | 3.846989071313566 |
0.5637637867647058 | 5.545371705819923e-4 | 6.012572293467409e-3 | 6.842825425846982e-2 | -0.37692098092643045 | 3.846989071313566 |
0.5425091911764706 | 1.7649452545736487e-2 | 1.5441476488203885e-4 | 0.37781769303363044 | -0.8047138964577656 | 6.998532215473896 |
0.7340303308823529 | 4.8874831098906215e-3 | 1.916158342611487e-3 | 6.94958390230734e-2 | -0.6593914623069936 | 9.367684372006767 |
0.7340303308823529 | 4.8874831098906215e-3 | 1.916158342611487e-3 | 6.94958390230734e-2 | -0.6593914623069936 | 9.367684372006767 |
0.9095818014705882 | 3.1334519203612125e-2 | 1.7939659713832289e-3 | 0.15648716610508617 | -0.7851861943687557 | 10.363976938726827 |
0.6063878676470588 | 1.219039045970612e-2 | 8.20837046806249e-3 | 8.460070668628678e-2 | -0.7829155313351499 | 9.303583943946428 |
0.877642463235294 | 1.3213961170172038e-2 | 2.8181326402612365e-3 | 0.18947939562695382 | -0.6507629427792916 | 10.27233070506873 |
0.6063878676470588 | 1.219039045970612e-2 | 8.20837046806249e-3 | 8.460070668628678e-2 | -0.7829155313351499 | 9.303583943946428 |
0.7552849264705881 | 3.528602455200913e-2 | 5.337923823986881e-3 | 0.10760766403209451 | -0.6970844686648501 | 10.16723942413214 |
0.5 | 2.345280259965167e-3 | 2.2455849318483738e-3 | 0.17040920820542713 | -0.7202452316076294 | 7.458278688513794 |
0.6915211397058822 | 3.3927554951756084e-4 | 2.0622331938419594e-4 | 0.11201597530622688 | -0.4654768392370573 | 9.112394757728838 |
0.6648667279411764 | 0.14762181377625655 | 2.9139152849262e-3 | 0.1149108355201456 | -0.6666575840145323 | 10.310520361941226 |
df_filtered_date: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
res17: df_fillContinentNull.type = [iso_code: string, continent: string ... 48 more fields]
import org.apache.spark.ml.feature.VectorAssembler
vectorizer: org.apache.spark.ml.feature.VectorAssembler = VectorAssembler: uid=vecAssembler_d4f952d2fd6f, handleInvalid=error, numInputCols=5
dataset: org.apache.spark.sql.DataFrame = [features: vector, log_total_cases_per_million: double]
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FJI | Oceania | Fiji | 2020-11-16 | 35.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.0 | 39.043 | 0.0 | 0.159 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 120.0 | 0.134 | 1.0e-3 | 839.2 | null | 49.07 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-04-08 | 2487.0 | 179.0 | 148.714 | 40.0 | 6.0 | 3.286 | 448.859 | 32.306 | 26.84 | 7.219 | 1.083 | 0.593 | 1.24 | 82.0 | 14.8 | 239.0 | 43.135 | null | null | null | null | 41461.0 | 3295.0 | 7.483 | 0.595 | 2332.0 | 0.421 | 6.4e-2 | 15.7 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-11 | 8512.0 | 43.0 | 41.0 | 337.0 | 0.0 | 0.143 | 1536.263 | 7.761 | 7.4 | 60.822 | 0.0 | 2.6e-2 | 1.3 | 1.0 | 0.18 | 8.0 | 1.444 | null | null | null | null | 883388.0 | 14441.0 | 159.436 | 2.606 | 12099.0 | 2.184 | 3.0e-3 | 295.1 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GAB | Africa | Gabon | 2020-07-02 | 5513.0 | 0.0 | 60.857 | 42.0 | 0.0 | 0.286 | 2476.942 | 0.0 | 27.343 | 18.87 | 0.0 | 0.128 | 1.04 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 2225728.0 | 7.859 | 23.1 | 4.45 | 2.976 | 16562.413 | 3.4 | 259.967 | 7.2 | null | null | null | 6.3 | 66.47 | 0.702 |
GAB | Africa | Gabon | 2020-11-23 | 9150.0 | 19.0 | 9.429 | 59.0 | 0.0 | 0.143 | 4111.014 | 8.537 | 4.236 | 26.508 | 0.0 | 6.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 2225728.0 | 7.859 | 23.1 | 4.45 | 2.976 | 16562.413 | 3.4 | 259.967 | 7.2 | null | null | null | 6.3 | 66.47 | 0.702 |
GMB | Africa | Gambia | 2020-06-13 | 28.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 11.586 | 0.0 | 0.118 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-06-21 | 37.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.143 | 15.31 | 0.0 | 0.532 | 0.828 | 0.0 | 5.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-11-13 | 73154.0 | 3473.0 | 3023.0 | 636.0 | 37.0 | 30.429 | 18338.128 | 870.606 | 757.801 | 159.431 | 9.275 | 7.628 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-01-31 | 5.0 | 1.0 | 0.714 | 0.0 | 0.0 | 0.0 | 6.0e-2 | 1.2e-2 | 9.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-07-04 | 197198.0 | 418.0 | 391.429 | 9020.0 | 10.0 | 7.429 | 2353.649 | 4.989 | 4.672 | 107.658 | 0.119 | 8.9e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | 71702.0 | 0.856 | 5.0e-3 | 183.2 | null | 63.43 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-01 | 211005.0 | 606.0 | 675.286 | 9154.0 | 7.0 | 4.286 | 2518.442 | 7.233 | 8.06 | 109.257 | 8.4e-2 | 5.1e-2 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | 83563.0 | 0.997 | 8.0e-3 | 123.7 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-02 | 211220.0 | 215.0 | 650.429 | 9154.0 | 0.0 | 4.286 | 2521.008 | 2.566 | 7.763 | 109.257 | 0.0 | 5.1e-2 | 1.21 | null | null | null | null | null | null | 305.791 | 3.65 | 8549377.0 | null | 102.041 | null | 83803.0 | 1.0 | 8.0e-3 | 128.8 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-04-09 | 378.0 | 65.0 | 24.857 | 6.0 | 0.0 | 0.143 | 12.165 | 2.092 | 0.8 | 0.193 | 0.0 | 5.0e-3 | 1.28 | null | null | null | null | null | null | null | null | 14611.0 | null | 0.47 | null | 1008.0 | 3.2e-2 | 2.5e-2 | 40.6 | null | 86.11 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-03 | 8548.0 | 251.0 | 177.857 | 38.0 | 0.0 | 0.571 | 275.095 | 8.078 | 5.724 | 1.223 | 0.0 | 1.8e-2 | 1.21 | null | null | null | null | null | null | null | null | 226741.0 | 3676.0 | 7.297 | 0.118 | 2630.0 | 8.5e-2 | 6.8e-2 | 14.8 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-27 | 51225.0 | 0.0 | 84.857 | 323.0 | 0.0 | 0.0 | 1648.54 | 0.0 | 2.731 | 10.395 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 592285.0 | 1100.0 | 19.061 | 3.5e-2 | 1705.0 | 5.5e-2 | 5.0e-2 | 20.1 | null | null | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-03-14 | 228.0 | 38.0 | 26.0 | 3.0 | 2.0 | 0.429 | 21.875 | 3.646 | 2.494 | 0.288 | 0.192 | 4.1e-2 | 1.33 | null | null | null | null | null | null | null | null | 3400.0 | 700.0 | 0.326 | 6.7e-2 | 302.0 | 2.9e-2 | 8.6e-2 | 11.6 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-05-01 | 2612.0 | 21.0 | 17.429 | 140.0 | 0.0 | 1.429 | 250.598 | 2.015 | 1.672 | 13.432 | 0.0 | 0.137 | 0.81 | null | null | null | null | null | null | null | null | 77251.0 | 2081.0 | 7.412 | 0.2 | 2263.0 | 0.217 | 8.0e-3 | 129.8 | null | 84.26 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-07-25 | 4166.0 | 31.0 | 26.143 | 201.0 | 0.0 | 1.0 | 399.691 | 2.974 | 2.508 | 19.284 | 0.0 | 9.6e-2 | 1.28 | null | null | null | null | null | null | null | null | null | null | null | null | 5151.0 | 0.494 | 5.0e-3 | 197.0 | null | 57.41 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRD | North America | Grenada | 2020-05-17 | 22.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 195.523 | 0.0 | 1.27 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-07-23 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 204.41 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GTM | North America | Guatemala | 2020-05-07 | 832.0 | 34.0 | 33.286 | 23.0 | 2.0 | 1.0 | 46.44 | 1.898 | 1.858 | 1.284 | 0.112 | 5.6e-2 | 1.37 | null | null | null | null | null | null | null | null | 7428.0 | 470.0 | 0.415 | 2.6e-2 | 261.0 | 1.5e-2 | 0.128 | 7.8 | null | 96.3 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GIN | Africa | Guinea | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.3132792e7 | 51.755 | 19.0 | 3.135 | 1.733 | 1998.926 | 35.3 | 336.717 | 2.42 | null | null | 17.45 | 0.3 | 61.6 | 0.459 |
GNB | Africa | Guinea-Bissau | 2020-08-28 | 2205.0 | 0.0 | 8.0 | 34.0 | 0.0 | 0.143 | 1120.428 | 0.0 | 4.065 | 17.276 | 0.0 | 7.3e-2 | 0.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-08-18 | 737.0 | 28.0 | 19.286 | 25.0 | 2.0 | 0.429 | 936.993 | 35.598 | 24.519 | 31.784 | 2.543 | 0.545 | 1.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-09-13 | 8493.0 | 15.0 | 19.0 | 219.0 | 0.0 | 0.714 | 744.835 | 1.315 | 1.666 | 19.206 | 0.0 | 6.3e-2 | 0.93 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HTI | North America | Haiti | 2020-10-17 | 8956.0 | 31.0 | 13.714 | 231.0 | 0.0 | 0.143 | 785.44 | 2.719 | 1.203 | 20.259 | 0.0 | 1.3e-2 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HUN | Europe | Hungary | 2020-03-14 | 30.0 | 11.0 | 3.714 | 0.0 | 0.0 | 0.0 | 3.105 | 1.139 | 0.384 | null | 0.0 | 0.0 | null | null | null | 29.0 | 3.002 | null | null | null | null | 1014.0 | 156.0 | 0.105 | 1.6e-2 | 99.0 | 1.0e-2 | 3.8e-2 | 26.7 | null | 50.0 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-08-13 | 1976.0 | 4.0 | 6.286 | 10.0 | 0.0 | 0.0 | 5790.476 | 11.722 | 18.42 | 29.304 | 0.0 | 0.0 | 1.14 | 0.0 | 0.0 | 1.0 | 2.93 | null | null | null | null | 81052.0 | 328.0 | 237.515 | 0.961 | 544.0 | 1.594 | 1.2e-2 | 86.5 | null | 46.3 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-04-19 | 17615.0 | 1893.0 | 1201.429 | 559.0 | 38.0 | 32.571 | 12.764 | 1.372 | 0.871 | 0.405 | 2.8e-2 | 2.4e-2 | 1.54 | null | null | null | null | null | null | null | null | 401586.0 | 29463.0 | 0.291 | 2.1e-2 | 29405.0 | 2.1e-2 | 4.1e-2 | 24.5 | null | 100.0 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-10-18 | 7550273.0 | 55722.0 | 61390.714 | 114610.0 | 579.0 | 780.0 | 5471.195 | 40.378 | 44.486 | 83.05 | 0.42 | 0.565 | 0.89 | null | null | null | null | null | null | null | null | 9.422419e7 | 970173.0 | 68.278 | 0.703 | 1049564.0 | 0.761 | 5.8e-2 | 17.1 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IRN | Asia | Iran | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-10-29 | 596941.0 | 8293.0 | 6597.714 | 34113.0 | 399.0 | 351.857 | 7107.037 | 98.734 | 78.551 | 406.141 | 4.75 | 4.189 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | 30096.0 | 0.358 | 0.219 | 4.6 | null | 70.83 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-10-01 | 367474.0 | 4493.0 | 4338.286 | 9231.0 | 50.0 | 61.714 | 9136.03 | 111.704 | 107.857 | 229.498 | 1.243 | 1.534 | 0.99 | null | null | null | null | null | null | null | null | 2289877.0 | 23522.0 | 56.93 | 0.585 | 21142.0 | 0.526 | 0.205 | 4.9 | null | 61.11 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRL | Europe | Ireland | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-08-14 | 26995.0 | 66.0 | 75.0 | 1774.0 | 0.0 | 0.286 | 5467.014 | 13.366 | 15.189 | 359.27 | 0.0 | 5.8e-2 | 1.37 | 8.0 | 1.62 | 11.0 | 2.228 | null | null | null | null | 699219.0 | 11337.0 | 141.605 | 2.296 | 5877.0 | 1.19 | 1.3e-2 | 78.4 | null | 59.72 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-16 | 47427.0 | 998.0 | 960.571 | 1841.0 | 3.0 | 2.857 | 9604.893 | 202.114 | 194.534 | 372.838 | 0.608 | 0.579 | 1.28 | 30.0 | 6.076 | 244.0 | 49.415 | null | null | null | null | 1404220.0 | 17758.0 | 284.382 | 3.596 | 14312.0 | 2.898 | 6.7e-2 | 14.9 | null | 61.57 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 293.0 | 35.0 | 3.4e-2 | 4.0e-3 | 21.0 | 2.0e-3 | 0.0 | null | null | 19.44 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-03 | 7428.0 | 571.0 | 627.571 | 40.0 | 4.0 | 4.0 | 858.179 | 65.969 | 72.505 | 4.621 | 0.462 | 0.462 | 1.28 | null | null | null | null | null | null | null | null | 107350.0 | 10328.0 | 12.402 | 1.193 | 8281.0 | 0.957 | 7.6e-2 | 13.2 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-04 | 7851.0 | 423.0 | 604.571 | 44.0 | 4.0 | 4.571 | 907.049 | 48.87 | 69.848 | 5.083 | 0.462 | 0.528 | 1.17 | null | null | null | null | null | null | null | null | 113705.0 | 6355.0 | 13.137 | 0.734 | 8369.0 | 0.967 | 7.2e-2 | 13.8 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-05-19 | 16659.0 | 16.0 | 18.571 | 278.0 | 2.0 | 2.571 | 1924.663 | 1.849 | 2.146 | 32.118 | 0.231 | 0.297 | 0.51 | null | null | null | null | null | null | null | null | 520606.0 | 7142.0 | 60.147 | 0.825 | 6193.0 | 0.715 | 3.0e-3 | 333.5 | null | 77.78 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-19 | 41035.0 | 5322.0 | 3703.143 | 3405.0 | 427.0 | 341.286 | 678.693 | 88.022 | 61.248 | 56.317 | 7.062 | 5.645 | 1.79 | 2498.0 | 41.315 | 18255.0 | 301.926 | null | null | null | null | 182777.0 | 17236.0 | 3.023 | 0.285 | 13824.0 | 0.229 | 0.268 | 3.7 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-07-14 | 243344.0 | 114.0 | 198.286 | 34984.0 | 17.0 | 12.143 | 4024.754 | 1.885 | 3.28 | 578.613 | 0.281 | 0.201 | 0.93 | 60.0 | 0.992 | 837.0 | 13.843 | null | null | null | null | 6004611.0 | 41867.0 | 99.312 | 0.692 | 42991.0 | 0.711 | 5.0e-3 | 216.8 | null | 58.33 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JPN | Asia | Japan | 2020-02-04 | 22.0 | 2.0 | 2.143 | 0.0 | 0.0 | 0.0 | 0.174 | 1.6e-2 | 1.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-20 | 79142.0 | 480.0 | 499.429 | 1508.0 | 4.0 | 8.571 | 625.745 | 3.795 | 3.949 | 11.923 | 3.2e-2 | 6.8e-2 | 0.89 | null | null | null | null | null | null | null | null | 1650837.0 | 6153.0 | 13.053 | 4.9e-2 | 17218.0 | 0.136 | 2.9e-2 | 34.5 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-27 | 82186.0 | 483.0 | 434.857 | 1549.0 | 2.0 | 5.857 | 649.813 | 3.819 | 3.438 | 12.247 | 1.6e-2 | 4.6e-2 | 1.01 | null | null | null | null | null | null | null | null | 1746545.0 | 4550.0 | 13.809 | 3.6e-2 | 13673.0 | 0.108 | 3.2e-2 | 31.4 | null | 33.33 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
JOR | Asia | Jordan | 2020-07-30 | 1191.0 | 4.0 | 8.571 | 11.0 | 0.0 | 0.0 | 116.729 | 0.392 | 0.84 | 1.078 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-06-20 | 17225.0 | 446.0 | 426.714 | 118.0 | 5.0 | 6.429 | 917.36 | 23.753 | 22.726 | 6.284 | 0.266 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | 1302094.0 | 32506.0 | 69.346 | 1.731 | 27596.0 | 1.47 | 1.5e-2 | 64.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-22 | 18231.0 | 499.0 | 434.143 | 127.0 | 7.0 | 6.571 | 970.937 | 26.575 | 23.121 | 6.764 | 0.373 | 0.35 | 1.15 | null | null | null | null | null | null | null | null | 1354456.0 | 23879.0 | 72.135 | 1.272 | 27669.0 | 1.474 | 1.6e-2 | 63.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-18 | 121973.0 | 334.0 | 1210.286 | 1635.0 | 148.0 | 28.857 | 6495.974 | 17.788 | 64.457 | 87.076 | 7.882 | 1.537 | 0.55 | null | null | null | null | null | null | null | null | 2342049.0 | 7942.0 | 124.732 | 0.423 | 15018.0 | 0.8 | 8.1e-2 | 12.4 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-25 | 127462.0 | 0.0 | 784.143 | 1781.0 | 0.0 | 20.857 | 6788.304 | 0.0 | 41.761 | 94.852 | 0.0 | 1.111 | 0.54 | null | null | null | null | null | null | null | null | 2434444.0 | 7257.0 | 129.652 | 0.386 | 13199.0 | 0.703 | 5.9e-2 | 16.8 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
OWID_KOS | Europe | Kosovo | 2020-04-18 | 480.0 | 31.0 | 32.857 | 12.0 | 1.0 | 0.714 | 248.348 | 16.039 | 17.0 | 6.209 | 0.517 | 0.37 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-06-07 | 1194.0 | 36.0 | 17.714 | 30.0 | 0.0 | 0.0 | 617.765 | 18.626 | 9.165 | 15.522 | 0.0 | 0.0 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-09-19 | 15002.0 | 63.0 | 62.286 | 614.0 | 3.0 | 3.571 | 7761.901 | 32.596 | 32.226 | 317.678 | 1.552 | 1.848 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KWT | Asia | Kuwait | 2020-11-28 | 142195.0 | 319.0 | 351.571 | 875.0 | 1.0 | 1.714 | 33296.547 | 74.697 | 82.324 | 204.891 | 0.234 | 0.401 | null | null | null | null | null | null | null | null | null | 1086669.0 | 4242.0 | 254.456 | 0.993 | 5538.0 | 1.297 | 6.3e-2 | 15.8 | null | 62.96 | 4270563.0 | 232.128 | 33.7 | 2.345 | 1.114 | 65530.537 | null | 132.235 | 15.84 | 2.7 | 37.0 | null | 2.0 | 75.49 | 0.803 |
KGZ | Asia | Kyrgyzstan | 2020-11-11 | 64360.0 | 0.0 | 435.857 | 1188.0 | 0.0 | 3.0 | 9864.825 | 0.0 | 66.806 | 182.092 | 0.0 | 0.46 | 1.04 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-26 | 71548.0 | 377.0 | 461.714 | 1256.0 | 5.0 | 5.571 | 10966.57 | 57.785 | 70.77 | 192.514 | 0.766 | 0.854 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-05-31 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-11-02 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.299 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-07-07 | 1134.0 | 7.0 | 2.286 | 30.0 | 0.0 | 0.0 | 601.208 | 3.711 | 1.212 | 15.905 | 0.0 | 0.0 | 1.35 | null | null | 5.0 | 2.651 | null | null | null | null | 160281.0 | 1763.0 | 84.976 | 0.935 | 1349.0 | 0.715 | 2.0e-3 | 590.1 | null | 50.0 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-11-22 | 13120.0 | 376.0 | 367.571 | 153.0 | 0.0 | 4.286 | 6955.777 | 199.342 | 194.874 | 81.115 | 0.0 | 2.272 | null | null | null | 416.0 | 220.549 | 40.279 | 21.355 | 322.232 | 170.836 | 576647.0 | 4079.0 | 305.719 | 2.163 | 5412.0 | 2.869 | 6.8e-2 | 14.7 | null | 57.41 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-09-17 | 26768.0 | 685.0 | 618.714 | 263.0 | 4.0 | 6.286 | 3921.797 | 100.36 | 90.648 | 38.532 | 0.586 | 0.921 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LSO | Africa | Lesotho | 2020-04-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-07-09 | 134.0 | 43.0 | 14.143 | 1.0 | 1.0 | 0.143 | 62.551 | 20.072 | 6.602 | 0.467 | 0.467 | 6.7e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LBR | Africa | Liberia | 2020-10-10 | 1363.0 | 3.0 | 2.286 | 82.0 | 0.0 | 0.0 | 269.491 | 0.593 | 0.452 | 16.213 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 5057677.0 | 49.127 | 19.2 | 3.057 | 1.756 | 752.788 | 38.6 | 272.509 | 2.42 | 1.5 | 18.1 | 1.188 | 0.8 | 64.1 | 0.435 |
LBY | Africa | Libya | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-07-13 | 84.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 2202.585 | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-21 | 1109.0 | 15.0 | 19.857 | 8.0 | 0.0 | 0.429 | 29079.372 | 393.319 | 520.679 | 209.77 | 0.0 | 11.238 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LUX | Europe | Luxembourg | 2020-02-29 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.598 | 1.598 | 0.228 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | 17.0 | 1.0 | 2.7e-2 | 2.0e-3 | null | null | null | null | null | 0.0 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-09 | 3877.0 | 6.0 | 9.286 | 101.0 | 1.0 | 1.286 | 6193.528 | 9.585 | 14.834 | 161.348 | 1.598 | 2.054 | 0.63 | 14.0 | 22.365 | 82.0 | 130.995 | null | null | null | null | 53114.0 | 737.0 | 84.85 | 1.177 | 1053.0 | 1.682 | 9.0e-3 | 113.4 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-10 | 3886.0 | 9.0 | 8.857 | 101.0 | 0.0 | 0.714 | 6207.906 | 14.378 | 14.149 | 161.348 | 0.0 | 1.141 | 0.64 | 18.0 | 28.755 | 77.0 | 123.008 | null | null | null | null | 53326.0 | 212.0 | 85.189 | 0.339 | 1050.0 | 1.677 | 8.0e-3 | 118.6 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-06-08 | 4040.0 | 1.0 | 3.0 | 110.0 | 0.0 | 0.0 | 6453.922 | 1.598 | 4.793 | 175.726 | 0.0 | 0.0 | 1.01 | 2.0 | 3.195 | 20.0 | 31.95 | null | null | null | null | 90406.0 | 2245.0 | 144.424 | 3.586 | 1782.0 | 2.847 | 2.0e-3 | 594.0 | null | 43.52 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MKD | Europe | Macedonia | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-09-21 | 16780.0 | 45.0 | 136.143 | 700.0 | 7.0 | 6.857 | 8054.22 | 21.6 | 65.347 | 335.992 | 3.36 | 3.291 | 1.1 | null | null | null | null | null | null | null | null | 175790.0 | 1618.0 | 84.377 | 0.777 | 1411.0 | 0.677 | 9.6e-2 | 10.4 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-10-10 | 20555.0 | 392.0 | 279.0 | 785.0 | 4.0 | 4.571 | 9866.179 | 188.156 | 133.917 | 376.792 | 1.92 | 2.194 | 1.4 | null | null | null | null | null | null | null | null | 206046.0 | 1648.0 | 98.9 | 0.791 | 1841.0 | 0.884 | 0.152 | 6.6 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MDG | Africa | Madagascar | 2020-06-05 | 975.0 | 18.0 | 39.571 | 7.0 | 0.0 | 0.286 | 35.21 | 0.65 | 1.429 | 0.253 | 0.0 | 1.0e-2 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | 385.0 | 1.4e-2 | 0.103 | 9.7 | null | 70.37 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MWI | Africa | Malawi | 2020-07-25 | 3453.0 | 0.0 | 91.857 | 87.0 | 0.0 | 4.571 | 180.502 | 0.0 | 4.802 | 4.548 | 0.0 | 0.239 | 1.02 | null | null | null | null | null | null | null | null | 26602.0 | 389.0 | 1.391 | 2.0e-2 | 410.0 | 2.1e-2 | 0.224 | 4.5 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MWI | Africa | Malawi | 2020-08-08 | 4624.0 | 49.0 | 62.571 | 143.0 | 6.0 | 3.286 | 241.715 | 2.561 | 3.271 | 7.475 | 0.314 | 0.172 | 0.94 | null | null | null | null | null | null | null | null | 34443.0 | 392.0 | 1.8 | 2.0e-2 | 502.0 | 2.6e-2 | 0.125 | 8.0 | null | 64.81 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-07-04 | 8658.0 | 10.0 | 6.0 | 121.0 | 0.0 | 0.0 | 267.503 | 0.309 | 0.185 | 3.738 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | 797796.0 | 6937.0 | 24.649 | 0.214 | 8334.0 | 0.257 | 1.0e-3 | 1389.0 | null | 50.93 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MDV | Asia | Maldives | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-07-04 | 2435.0 | 25.0 | 18.571 | 10.0 | 0.0 | 0.286 | 4504.738 | 46.25 | 34.357 | 18.5 | 0.0 | 0.529 | 1.13 | null | null | null | null | null | null | null | null | 55245.0 | 1378.0 | 102.203 | 2.549 | 1072.0 | 1.983 | 1.7e-2 | 57.7 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-08-03 | 4293.0 | 129.0 | 132.0 | 18.0 | 0.0 | 0.429 | 7942.029 | 238.649 | 244.199 | 33.3 | 0.0 | 0.793 | 1.26 | null | null | null | null | null | null | null | null | 82208.0 | 1209.0 | 152.084 | 2.237 | 1157.0 | 2.14 | 0.114 | 8.8 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MLI | Africa | Mali | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-08-02 | 860.0 | 15.0 | 22.857 | 9.0 | 0.0 | 0.0 | 1947.733 | 33.972 | 51.767 | 20.383 | 0.0 | 0.0 | 1.27 | null | null | null | null | 0.0 | 0.0 | 7.157 | 16.209 | 131600.0 | 1437.0 | 298.048 | 3.255 | 1515.0 | 3.431 | 1.5e-2 | 66.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-10-29 | 5866.0 | 106.0 | 104.143 | 59.0 | 3.0 | 1.429 | 13285.35 | 240.069 | 235.863 | 133.624 | 6.794 | 3.235 | 1.02 | null | null | null | null | null | null | null | null | 332583.0 | 3075.0 | 753.236 | 6.964 | 3019.0 | 6.837 | 3.4e-2 | 29.0 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-12-01 | 9975.0 | 102.0 | 119.714 | 141.0 | 4.0 | 3.429 | 22591.436 | 231.01 | 271.13 | 319.338 | 9.059 | 7.765 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MHL | Oceania | Marshall Islands | 2020-06-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59194.0 | 295.15 | null | null | null | 3819.202 | null | 557.793 | 30.53 | null | null | 82.502 | 2.7 | 73.7 | 0.708 |
MHL | Oceania | Marshall Islands | 2020-08-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59194.0 | 295.15 | null | null | null | 3819.202 | null | 557.793 | 30.53 | null | null | 82.502 | 2.7 | 73.7 | 0.708 |
MRT | Africa | Mauritania | 2020-06-22 | 3121.0 | 137.0 | 176.286 | 112.0 | 1.0 | 3.0 | 671.232 | 29.465 | 37.914 | 24.088 | 0.215 | 0.645 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | 1774.0 | 0.382 | 9.9e-2 | 10.1 | null | 77.78 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MRT | Africa | Mauritania | 2020-08-26 | 6977.0 | 17.0 | 21.143 | 158.0 | 0.0 | 0.0 | 1500.54 | 3.656 | 4.547 | 33.981 | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | 289.0 | 6.2e-2 | 7.3e-2 | 13.7 | null | 29.63 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MUS | Africa | Mauritius | 2020-07-07 | 342.0 | 0.0 | 0.143 | 10.0 | 0.0 | 0.0 | 268.917 | 0.0 | 0.112 | 7.863 | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MUS | Africa | Mauritius | 2020-10-09 | 395.0 | 0.0 | 1.429 | 10.0 | 0.0 | 0.0 | 310.591 | 0.0 | 1.123 | 7.863 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MDA | Europe | Moldova | 2020-08-31 | 36920.0 | 220.0 | 441.714 | 995.0 | 3.0 | 7.143 | 9152.29 | 54.537 | 109.499 | 246.656 | 0.744 | 1.771 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MDA | Europe | Moldova | 2020-10-10 | 61762.0 | 929.0 | 839.143 | 1458.0 | 16.0 | 15.0 | 15310.502 | 230.295 | 208.019 | 361.431 | 3.966 | 3.718 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-04-07 | 15.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 4.576 | 0.0 | 0.131 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
TLS | Asia | Timor | 2020-09-27 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.479 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-05-25 | 386.0 | 5.0 | 8.0 | 13.0 | 1.0 | 0.143 | 46.625 | 0.604 | 0.966 | 1.57 | 0.121 | 1.7e-2 | 1.04 | null | null | null | null | null | null | null | null | 17066.0 | 302.0 | 2.061 | 3.6e-2 | 514.0 | 6.2e-2 | 1.6e-2 | 64.2 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TTO | North America | Trinidad and Tobago | 2020-09-13 | 3042.0 | 49.0 | 113.143 | 53.0 | 2.0 | 2.714 | 2173.647 | 35.013 | 80.846 | 37.871 | 1.429 | 1.939 | 1.11 | null | null | null | null | null | null | null | null | 23681.0 | 173.0 | 16.921 | 0.124 | 252.0 | 0.18 | 0.449 | 2.2 | null | 80.56 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TTO | North America | Trinidad and Tobago | 2020-10-04 | 4763.0 | 48.0 | 57.286 | 81.0 | 2.0 | 1.429 | 3403.38 | 34.298 | 40.933 | 57.878 | 1.429 | 1.021 | 0.8 | null | null | null | null | null | null | null | null | 29209.0 | 192.0 | 20.871 | 0.137 | 233.0 | 0.166 | 0.246 | 4.1 | null | 80.56 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TTO | North America | Trinidad and Tobago | 2020-10-28 | 5594.0 | 26.0 | 28.857 | 107.0 | 1.0 | 0.857 | 3997.168 | 18.578 | 20.62 | 76.456 | 0.715 | 0.612 | 0.88 | null | null | null | null | null | null | null | null | 32692.0 | 162.0 | 23.36 | 0.116 | 121.0 | 8.6e-2 | 0.238 | 4.2 | null | 65.74 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TUN | Africa | Tunisia | 2020-04-10 | 671.0 | 28.0 | 25.143 | 25.0 | 0.0 | 1.0 | 56.775 | 2.369 | 2.127 | 2.115 | 0.0 | 8.5e-2 | 0.93 | null | null | null | null | null | null | null | null | 11238.0 | 562.0 | 0.951 | 4.8e-2 | 679.0 | 5.7e-2 | 3.7e-2 | 27.0 | null | 90.74 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-03-12 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.2e-2 | 0.0 | 2.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-10-23 | 357693.0 | 2165.0 | 1962.571 | 9658.0 | 74.0 | 72.143 | 4241.131 | 25.67 | 23.27 | 114.514 | 0.877 | 0.855 | 1.17 | null | null | null | null | null | null | null | null | 1.2992246e7 | 115979.0 | 154.048 | 1.375 | 113924.0 | 1.351 | 1.7e-2 | 58.0 | null | 68.06 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-08-01 | 1176.0 | 22.0 | 10.429 | 4.0 | 1.0 | 0.429 | 25.71 | 0.481 | 0.228 | 8.7e-2 | 2.2e-2 | 9.0e-3 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | 2512.0 | 5.5e-2 | 4.0e-3 | 240.9 | null | 76.85 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-10-21 | 10933.0 | 145.0 | 123.429 | 98.0 | 1.0 | 0.429 | 239.02 | 3.17 | 2.698 | 2.142 | 2.2e-2 | 9.0e-3 | 1.04 | null | null | null | null | null | null | null | null | 529236.0 | 1886.0 | 11.57 | 4.1e-2 | 2045.0 | 4.5e-2 | 6.0e-2 | 16.6 | null | 61.11 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-06-13 | 31177.0 | 762.0 | 582.286 | 890.0 | 10.0 | 15.0 | 712.882 | 17.424 | 13.314 | 20.35 | 0.229 | 0.343 | 1.2 | null | null | null | null | null | null | null | null | 479111.0 | 10939.0 | 10.955 | 0.25 | 9224.0 | 0.211 | 6.3e-2 | 15.8 | null | 76.39 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-09-04 | 134069.0 | 2769.0 | 2413.857 | 2812.0 | 53.0 | 44.714 | 3065.572 | 63.315 | 55.194 | 64.298 | 1.212 | 1.022 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | 21895.0 | 0.501 | 0.11 | 9.1 | null | 64.35 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-10-02 | 223376.0 | 4751.0 | 3820.714 | 4357.0 | 69.0 | 63.857 | 5107.633 | 108.635 | 87.363 | 99.626 | 1.578 | 1.46 | 1.18 | null | null | null | null | null | null | null | null | 2337942.0 | 29527.0 | 53.459 | 0.675 | 25898.0 | 0.592 | 0.148 | 6.8 | null | 58.8 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
ARE | Asia | United Arab Emirates | 2020-03-19 | 140.0 | 27.0 | 7.857 | 0.0 | 0.0 | 0.0 | 14.155 | 2.73 | 0.794 | null | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | 114569.0 | 13857.0 | 11.584 | 1.401 | 5863.0 | 0.593 | 1.0e-3 | 746.2 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-07-06 | 52068.0 | 528.0 | 546.0 | 324.0 | 1.0 | 1.429 | 5264.499 | 53.385 | 55.205 | 32.759 | 0.101 | 0.144 | 1.05 | null | null | null | null | null | null | null | null | 3890424.0 | 51430.0 | 393.354 | 5.2 | 50542.0 | 5.11 | 1.1e-2 | 92.6 | null | 43.52 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-10-21 | 119132.0 | 1538.0 | 1299.0 | 472.0 | 2.0 | 3.143 | 12045.216 | 155.504 | 131.339 | 47.723 | 0.202 | 0.318 | 1.08 | null | null | null | null | null | null | null | null | 1.1988391e7 | 105740.0 | 1212.124 | 10.691 | 110243.0 | 11.146 | 1.2e-2 | 84.9 | null | 50.93 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-11-19 | 155254.0 | 1153.0 | 1217.0 | 544.0 | 2.0 | 3.0 | 15697.444 | 116.578 | 123.049 | 55.003 | 0.202 | 0.303 | 1.01 | null | null | null | null | null | null | null | null | 1.5405022e7 | 120041.0 | 1557.573 | 12.137 | 114706.0 | 11.598 | 1.1e-2 | 94.3 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
GBR | Europe | United Kingdom | 2020-08-16 | 320343.0 | 1111.0 | 1109.857 | 41451.0 | 5.0 | 12.571 | 4718.837 | 16.366 | 16.349 | 610.597 | 7.4e-2 | 0.185 | 1.04 | 78.0 | 1.149 | 917.0 | 13.508 | null | null | 718.105 | 10.578 | 1.1978298e7 | 162256.0 | 176.447 | 2.39 | 160168.0 | 2.359 | 7.0e-3 | 144.3 | null | 66.2 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-08-12 | 5183020.0 | 56796.0 | 53010.714 | 166087.0 | 1506.0 | 1026.429 | 15658.545 | 171.588 | 160.152 | 501.769 | 4.55 | 3.101 | 0.93 | 9555.0 | 28.867 | 47949.0 | 144.86 | null | null | null | null | 7.4717483e7 | 985955.0 | 225.731 | 2.979 | 855780.0 | 2.585 | 6.0e-2 | 16.7 | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-03 | 1636.0 | 10.0 | 12.143 | 44.0 | 0.0 | 0.143 | 470.964 | 2.879 | 3.496 | 12.667 | 0.0 | 4.1e-2 | 1.11 | null | null | null | null | null | null | null | null | 178629.0 | null | 51.423 | null | 1787.0 | 0.514 | 7.0e-3 | 147.2 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-05-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-07-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VEN | South America | Venezuela | 2020-03-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
ESH | Africa | Western Sahara | 2020-06-07 | 9.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 15.067 | 0.0 | 0.0 | 1.674 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
OWID_WRL | World | World | 2020-03-30 | 799127.0 | 65288.0 | 58894.286 | 39636.0 | 4052.0 | 3262.714 | 102.521 | 8.376 | 7.556 | 5.085 | 0.52 | 0.419 | 1.58 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
YEM | Asia | Yemen | 2020-05-12 | 65.0 | 9.0 | 6.143 | 10.0 | 1.0 | 0.857 | 2.179 | 0.302 | 0.206 | 0.335 | 3.4e-2 | 2.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-08-29 | 1946.0 | 3.0 | 5.571 | 563.0 | 0.0 | 2.429 | 65.245 | 0.101 | 0.187 | 18.876 | 0.0 | 8.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-10-25 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 69.067 | 0.0 | 1.9e-2 | 20.083 | 0.0 | 1.0e-2 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-11-14 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 69.47 | 0.0 | 1.0e-2 | 20.284 | 0.0 | 1.4e-2 | 0.8 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
ZMB | Africa | Zambia | 2020-10-27 | 16243.0 | 43.0 | 37.286 | 348.0 | 0.0 | 0.286 | 883.542 | 2.339 | 2.028 | 18.93 | 0.0 | 1.6e-2 | 0.91 | null | null | null | null | null | null | null | null | 241276.0 | 3566.0 | 13.124 | 0.194 | 3790.0 | 0.206 | 1.0e-2 | 101.6 | null | 45.37 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-03-24 | 3.0 | 0.0 | 0.429 | 1.0 | 0.0 | 0.143 | 0.202 | 0.0 | 2.9e-2 | 6.7e-2 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-09-04 | 6837.0 | 159.0 | 64.143 | 206.0 | 0.0 | 1.571 | 460.004 | 10.698 | 4.316 | 13.86 | 0.0 | 0.106 | 1.02 | null | null | null | null | null | null | null | null | 103790.0 | 919.0 | 6.983 | 6.2e-2 | 931.0 | 6.3e-2 | 6.9e-2 | 14.5 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
AFG | Asia | Afghanistan | 2020-05-23 | 10001.0 | 782.0 | 514.0 | 217.0 | 11.0 | 7.0 | 256.908 | 20.088 | 13.204 | 5.574 | 0.283 | 0.18 | 1.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
AFG | Asia | Afghanistan | 2020-07-19 | 35453.0 | 174.0 | 144.571 | 1183.0 | 17.0 | 24.429 | 910.725 | 4.47 | 3.714 | 30.389 | 0.437 | 0.628 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.7 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-10-02 | 13965.0 | 159.0 | 131.429 | 389.0 | 1.0 | 2.286 | 4852.665 | 55.251 | 45.67 | 135.173 | 0.347 | 0.794 | 1.08 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-03-29 | 511.0 | 57.0 | 44.286 | 31.0 | 2.0 | 2.0 | 11.653 | 1.3 | 1.01 | 0.707 | 4.6e-2 | 4.6e-2 | 1.73 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-08-27 | 43016.0 | 397.0 | 394.0 | 1475.0 | 10.0 | 9.143 | 980.957 | 9.053 | 8.985 | 33.637 | 0.228 | 0.208 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AGO | Africa | Angola | 2020-03-20 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 3.0e-2 | 3.0e-2 | 4.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
AGO | Africa | Angola | 2020-05-22 | 60.0 | 2.0 | 1.714 | 3.0 | 0.0 | 0.143 | 1.826 | 6.1e-2 | 5.2e-2 | 9.1e-2 | 0.0 | 4.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.48 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-05-25 | 25.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 255.29 | 0.0 | 0.0 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-07-29 | 91.0 | 5.0 | 2.143 | 3.0 | 0.0 | 0.0 | 929.254 | 51.058 | 21.882 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-11-16 | 1318384.0 | 7893.0 | 9697.857 | 35727.0 | 291.0 | 260.0 | 29170.513 | 174.64 | 214.574 | 790.494 | 6.439 | 5.753 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
AUS | Oceania | Australia | 2020-04-09 | 6108.0 | 98.0 | 141.714 | 51.0 | 1.0 | 3.857 | 239.531 | 3.843 | 5.557 | 2.0 | 3.9e-2 | 0.151 | 0.58 | null | null | null | null | null | null | null | null | 330134.0 | 10766.0 | 12.946 | 0.422 | 9970.0 | 0.391 | 1.4e-2 | 70.4 | null | 73.15 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-04-24 | 6677.0 | 15.0 | 22.143 | 79.0 | 4.0 | 1.857 | 261.844 | 0.588 | 0.868 | 3.098 | 0.157 | 7.3e-2 | 0.41 | null | null | null | null | null | null | null | null | 482370.0 | 15711.0 | 18.917 | 0.616 | 12977.0 | 0.509 | 2.0e-3 | 586.1 | null | 69.44 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-10-10 | 27263.0 | 19.0 | 18.286 | 898.0 | 1.0 | 0.571 | 1069.142 | 0.745 | 0.717 | 35.216 | 3.9e-2 | 2.2e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 33551.0 | 1.316 | 1.0e-3 | 1834.8 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-03-19 | 2013.0 | 367.0 | 244.429 | 6.0 | 2.0 | 0.714 | 223.508 | 40.749 | 27.139 | 0.666 | 0.222 | 7.9e-2 | 2.43 | null | null | null | null | null | null | null | null | 13724.0 | 1747.0 | 1.524 | 0.194 | 1122.0 | 0.125 | 0.218 | 4.6 | null | 81.48 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-04 | 21481.0 | 96.0 | 114.857 | 719.0 | 1.0 | 0.857 | 2385.082 | 10.659 | 12.753 | 79.832 | 0.111 | 9.5e-2 | 0.99 | 23.0 | 2.554 | 84.0 | 9.327 | null | null | null | null | 923902.0 | 7124.0 | 102.583 | 0.791 | 7614.0 | 0.845 | 1.5e-2 | 66.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-26 | 26033.0 | 327.0 | 278.429 | 733.0 | 0.0 | 0.571 | 2890.5 | 36.308 | 30.915 | 81.387 | 0.0 | 6.3e-2 | 1.18 | 23.0 | 2.554 | 118.0 | 13.102 | null | null | null | null | 1119199.0 | 9110.0 | 124.267 | 1.012 | 10140.0 | 1.126 | 2.7e-2 | 36.4 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-06-26 | 15369.0 | 517.0 | 514.571 | 187.0 | 7.0 | 6.286 | 1515.804 | 50.99 | 50.751 | 18.443 | 0.69 | 0.62 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-07-08 | 21916.0 | 542.0 | 543.429 | 274.0 | 9.0 | 7.714 | 2161.517 | 53.456 | 53.597 | 27.024 | 0.888 | 0.761 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-09-29 | 3903.0 | 65.0 | 62.286 | 91.0 | 2.0 | 2.0 | 9925.035 | 165.29 | 158.388 | 231.406 | 5.086 | 5.086 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-10-13 | 5163.0 | 0.0 | 86.286 | 108.0 | 0.0 | 1.143 | 13129.12 | 0.0 | 219.418 | 274.636 | 0.0 | 2.906 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-03-07 | 85.0 | 25.0 | 6.286 | 0.0 | 0.0 | 0.0 | 49.953 | 14.692 | 3.694 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 6420.0 | null | 3.773 | null | null | null | null | null | null | 30.56 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-07-09 | 31528.0 | 597.0 | 527.286 | 103.0 | 5.0 | 1.286 | 18528.629 | 350.85 | 309.88 | 60.532 | 2.938 | 0.756 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | 10160.0 | 5.971 | 5.2e-2 | 19.3 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-21 | 78907.0 | 374.0 | 326.571 | 308.0 | 3.0 | 3.0 | 46372.701 | 219.795 | 191.922 | 181.008 | 1.763 | 1.763 | 0.89 | null | null | null | null | null | null | null | null | 1638436.0 | 10360.0 | 962.889 | 6.088 | 10057.0 | 5.91 | 3.2e-2 | 30.8 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-11-14 | 84523.0 | 174.0 | 179.857 | 333.0 | 1.0 | 0.571 | 49673.157 | 102.258 | 105.7 | 195.7 | 0.588 | 0.336 | 0.87 | null | null | null | null | null | null | null | null | 1885616.0 | 8435.0 | 1108.154 | 4.957 | 10218.0 | 6.005 | 1.8e-2 | 56.8 | null | 58.33 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-04-26 | 5416.0 | 418.0 | 422.857 | 145.0 | 5.0 | 7.714 | 32.886 | 2.538 | 2.568 | 0.88 | 3.0e-2 | 4.7e-2 | 1.44 | null | null | null | null | null | null | null | null | 50401.0 | 3812.0 | 0.306 | 2.3e-2 | 3400.0 | 2.1e-2 | 0.124 | 8.0 | null | 93.52 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BRB | North America | Barbados | 2020-08-07 | 138.0 | 5.0 | 4.0 | 7.0 | 0.0 | 0.0 | 480.215 | 17.399 | 13.919 | 24.359 | 0.0 | 0.0 | 0.62 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BLR | Europe | Belarus | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-07-01 | 62424.0 | 306.0 | 354.143 | 398.0 | 6.0 | 5.143 | 6606.189 | 32.383 | 37.478 | 42.119 | 0.635 | 0.544 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | 16577.0 | 1.754 | 2.1e-2 | 46.8 | null | 16.67 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-04-17 | 36138.0 | 1329.0 | 1353.0 | 5163.0 | 306.0 | 306.286 | 3118.136 | 114.672 | 116.742 | 445.485 | 26.403 | 26.428 | 1.02 | 1119.0 | 96.552 | 5088.0 | 439.014 | null | null | null | null | 198449.0 | 11300.0 | 17.123 | 0.975 | 9046.0 | 0.781 | 0.15 | 6.7 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-06-19 | 60476.0 | 128.0 | 93.857 | 9695.0 | 12.0 | 7.0 | 5218.119 | 11.044 | 8.098 | 836.525 | 1.035 | 0.604 | 0.87 | 50.0 | 4.314 | 308.0 | 26.576 | null | null | null | null | 1133205.0 | 13395.0 | 97.778 | 1.156 | 12647.0 | 1.091 | 7.0e-3 | 134.7 | null | 51.85 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-10-28 | 3261.0 | 61.0 | 46.286 | 52.0 | 1.0 | 0.857 | 8201.277 | 153.412 | 116.407 | 130.778 | 2.515 | 2.156 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-04-25 | 54.0 | 0.0 | 2.714 | 1.0 | 0.0 | 0.0 | 4.454 | 0.0 | 0.224 | 8.2e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-07-13 | 84.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 108.863 | 0.0 | 0.741 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-11-19 | 378.0 | 0.0 | 1.286 | 0.0 | 0.0 | 0.0 | 489.884 | 0.0 | 1.666 | null | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-12-02 | 415.0 | 1.0 | 4.143 | 0.0 | 0.0 | 0.0 | 537.835 | 1.296 | 5.369 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BIH | Europe | Bosnia and Herzegovina | 2020-05-26 | 2416.0 | 10.0 | 13.571 | 149.0 | 3.0 | 2.143 | 736.402 | 3.048 | 4.137 | 45.416 | 0.914 | 0.653 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-04-17 | 15.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 6.379 | 0.0 | 0.121 | 0.425 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-08-24 | 1562.0 | 254.0 | 36.286 | 3.0 | 0.0 | 0.0 | 664.222 | 108.01 | 15.43 | 1.276 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-06-15 | 888271.0 | 20647.0 | 25837.0 | 43959.0 | 627.0 | 975.0 | 4178.931 | 97.135 | 121.552 | 206.808 | 2.95 | 4.587 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-30 | 2610102.0 | 57837.0 | 46089.571 | 91263.0 | 1129.0 | 1025.857 | 12279.4 | 272.098 | 216.831 | 429.353 | 5.311 | 4.826 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | 67066.0 | 0.316 | null | null | null | 72.69 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-29 | 6314740.0 | 24468.0 | 34762.714 | 172833.0 | 272.0 | 521.429 | 29708.118 | 115.111 | 163.544 | 813.104 | 1.28 | 2.453 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-05-21 | 141.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 2.286 | 0.0 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-07-21 | 9254.0 | 325.0 | 229.857 | 313.0 | 5.0 | 4.286 | 1331.809 | 46.773 | 33.08 | 45.046 | 0.72 | 0.617 | 1.11 | 34.0 | 4.893 | 624.0 | 89.804 | null | null | null | null | 215572.0 | 9051.0 | 31.024 | 1.303 | 5128.0 | 0.738 | 4.5e-2 | 22.3 | null | 36.11 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-09 | 2254.0 | 13.0 | 18.714 | 60.0 | 0.0 | 0.143 | 107.83 | 0.622 | 0.895 | 2.87 | 0.0 | 7.0e-3 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-29 | 2856.0 | 40.0 | 17.286 | 68.0 | 0.0 | 0.0 | 136.629 | 1.914 | 0.827 | 3.253 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-11-28 | 681.0 | 0.0 | 3.571 | 1.0 | 0.0 | 0.0 | 57.271 | 0.0 | 0.3 | 8.4e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-04-12 | 122.0 | 2.0 | 1.143 | 0.0 | 0.0 | 0.0 | 7.297 | 0.12 | 6.8e-2 | null | 0.0 | 0.0 | 0.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-04-22 | 122.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-06-02 | 125.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 7.477 | 0.0 | 9.0e-3 | null | 0.0 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-08 | 281.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 16.807 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | 0.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.04 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-25 | 287.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 17.166 | 0.0 | 3.4e-2 | null | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-04-08 | 730.0 | 72.0 | 71.0 | 10.0 | 1.0 | 0.571 | 27.5 | 2.712 | 2.675 | 0.377 | 3.8e-2 | 2.2e-2 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-04-13 | 820.0 | 0.0 | 23.143 | 12.0 | 0.0 | 0.429 | 30.89 | 0.0 | 0.872 | 0.452 | 0.0 | 1.6e-2 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-06-18 | 9864.0 | 0.0 | 169.0 | 276.0 | 0.0 | 9.143 | 371.583 | 0.0 | 6.366 | 10.397 | 0.0 | 0.344 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-06 | 12592.0 | 0.0 | 0.0 | 313.0 | 0.0 | 0.0 | 474.349 | 0.0 | 0.0 | 11.791 | 0.0 | 0.0 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-25 | 16708.0 | 0.0 | 78.714 | 385.0 | 0.0 | 1.714 | 629.401 | 0.0 | 2.965 | 14.503 | 0.0 | 6.5e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-10-25 | 21570.0 | 0.0 | 18.429 | 425.0 | 0.0 | 0.286 | 812.556 | 0.0 | 0.694 | 16.01 | 0.0 | 1.1e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CPV | Africa | Cape Verde | 2020-08-22 | 3455.0 | 43.0 | 41.714 | 37.0 | 0.0 | 0.429 | 6214.163 | 77.34 | 75.027 | 66.548 | 0.0 | 0.771 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.28 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
CAF | Africa | Central African Republic | 2020-04-07 | 8.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.656 | 0.0 | 0.148 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
CHL | South America | Chile | 2020-10-25 | 502063.0 | 1521.0 | 1471.857 | 13944.0 | 52.0 | 44.143 | 26263.733 | 79.566 | 76.995 | 729.433 | 2.72 | 2.309 | 0.97 | null | null | null | null | null | null | null | null | 4111528.0 | 38473.0 | 215.081 | 2.013 | 32087.0 | 1.679 | 4.6e-2 | 21.8 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-10-31 | 510256.0 | 1685.0 | 1387.714 | 14207.0 | 49.0 | 45.0 | 26692.322 | 88.145 | 72.594 | 743.191 | 2.563 | 2.354 | 0.98 | null | null | null | null | null | null | null | null | 4300738.0 | 39258.0 | 224.979 | 2.054 | 32526.0 | 1.701 | 4.3e-2 | 23.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-08-16 | 89375.0 | 96.0 | 83.143 | 4703.0 | 0.0 | 2.429 | 62.095 | 6.7e-2 | 5.8e-2 | 3.268 | 0.0 | 2.0e-3 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-10-31 | 91366.0 | 27.0 | 34.0 | 4739.0 | 0.0 | 0.0 | 63.478 | 1.9e-2 | 2.4e-2 | 3.293 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-11-21 | 92037.0 | 60.0 | 29.857 | 4742.0 | 0.0 | 0.0 | 63.945 | 4.2e-2 | 2.1e-2 | 3.295 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-03-19 | 108.0 | 6.0 | 14.143 | 0.0 | 0.0 | 0.0 | 2.123 | 0.118 | 0.278 | null | 0.0 | 0.0 | 1.86 | null | null | null | null | null | null | null | null | 5363.0 | 673.0 | 0.105 | 1.3e-2 | 567.0 | 1.1e-2 | null | null | null | 50.93 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-05-01 | 7006.0 | 499.0 | 303.571 | 314.0 | 21.0 | 12.714 | 137.689 | 9.807 | 5.966 | 6.171 | 0.413 | 0.25 | 1.36 | null | null | null | null | null | null | null | null | 108950.0 | 4293.0 | 2.141 | 8.4e-2 | 4424.0 | 8.7e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-07-14 | 159898.0 | 5621.0 | 5057.714 | 5625.0 | 170.0 | 180.857 | 3142.471 | 110.469 | 99.399 | 110.548 | 3.341 | 3.554 | 1.25 | null | null | null | null | null | null | null | null | 1082415.0 | 25601.0 | 21.273 | 0.503 | 25730.0 | 0.506 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-10-07 | 877684.0 | 7876.0 | 6857.857 | 27180.0 | 163.0 | 168.857 | 17249.101 | 154.787 | 134.777 | 534.168 | 3.203 | 3.319 | 1.04 | null | null | null | null | null | null | null | null | 3526959.0 | 25357.0 | 69.315 | 0.498 | 25665.0 | 0.504 | null | null | null | 71.3 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-03-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-06-25 | 272.0 | 7.0 | 8.857 | 7.0 | 0.0 | 0.286 | 312.789 | 8.05 | 10.185 | 8.05 | 0.0 | 0.329 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-08-20 | 417.0 | 11.0 | 2.571 | 7.0 | 0.0 | 0.0 | 479.534 | 12.65 | 2.957 | 8.05 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-04 | 487.0 | 0.0 | 1.286 | 7.0 | 0.0 | 0.0 | 560.031 | 0.0 | 1.479 | 8.05 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-11-28 | 5774.0 | 0.0 | 20.286 | 94.0 | 0.0 | 0.143 | 1046.376 | 0.0 | 3.676 | 17.035 | 0.0 | 2.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 43.52 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CRI | North America | Costa Rica | 2020-03-31 | 347.0 | 17.0 | 24.286 | 2.0 | 0.0 | 0.0 | 68.118 | 3.337 | 4.767 | 0.393 | 0.0 | 0.0 | 1.01 | null | null | null | null | null | null | null | null | 3905.0 | 153.0 | 0.767 | 3.0e-2 | 293.0 | 5.8e-2 | null | null | null | 71.3 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CUB | North America | Cuba | 2020-03-30 | 170.0 | 31.0 | 18.571 | 4.0 | 1.0 | 0.429 | 15.009 | 2.737 | 1.64 | 0.353 | 8.8e-2 | 3.8e-2 | 1.34 | null | null | null | null | null | null | null | null | 2322.0 | 315.0 | 0.205 | 2.8e-2 | 242.0 | 2.1e-2 | 7.7e-2 | 13.0 | null | 66.67 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CUB | North America | Cuba | 2020-08-30 | 3973.0 | 48.0 | 41.571 | 94.0 | 0.0 | 0.429 | 350.767 | 4.238 | 3.67 | 8.299 | 0.0 | 3.8e-2 | 1.09 | null | null | null | null | null | null | null | null | 398223.0 | 5438.0 | 35.158 | 0.48 | 4696.0 | 0.415 | 9.0e-3 | 113.0 | null | 82.41 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CYP | Europe | Cyprus | 2020-04-10 | 595.0 | 31.0 | 28.429 | 10.0 | 0.0 | -0.143 | 679.302 | 35.392 | 32.456 | 11.417 | 0.0 | -0.163 | 0.98 | null | null | null | null | null | null | null | null | 16299.0 | 819.0 | 18.608 | 0.935 | 979.0 | 1.118 | 2.9e-2 | 34.4 | null | 92.59 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CYP | Europe | Cyprus | 2020-05-25 | 937.0 | 2.0 | 2.857 | 17.0 | 0.0 | 0.0 | 1069.758 | 2.283 | 3.262 | 19.409 | 0.0 | 0.0 | 0.86 | null | null | null | null | null | null | null | null | 103705.0 | 2128.0 | 118.398 | 2.43 | 2140.0 | 2.443 | 1.0e-3 | 749.0 | null | 76.85 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-11-08 | 414828.0 | 3608.0 | 10454.857 | 4858.0 | 177.0 | 204.143 | 38736.455 | 336.913 | 976.27 | 453.638 | 16.528 | 19.063 | 0.8 | 1199.0 | 111.962 | 7787.0 | 727.147 | 2035.248 | 190.051 | 12831.914 | 1198.238 | 2601451.0 | 13727.0 | 242.922 | 1.282 | 35009.0 | 3.269 | 0.299 | 3.3 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-08-16 | 9676.0 | 38.0 | 31.714 | 240.0 | 1.0 | 2.286 | 108.038 | 0.424 | 0.354 | 2.68 | 1.1e-2 | 2.6e-2 | 1.03 | null | null | null | null | null | null | null | null | null | 208.0 | null | 2.0e-3 | 375.0 | 4.0e-3 | 8.5e-2 | 11.8 | null | 37.04 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-08-19 | 9741.0 | 20.0 | 29.0 | 246.0 | 3.0 | 3.0 | 108.763 | 0.223 | 0.324 | 2.747 | 3.3e-2 | 3.3e-2 | 1.03 | null | null | null | null | null | null | null | null | null | 398.0 | null | 4.0e-3 | 354.0 | 4.0e-3 | 8.2e-2 | 12.2 | null | 37.04 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-06-29 | 12951.0 | 76.0 | 32.0 | 605.0 | 1.0 | 0.429 | 2235.937 | 13.121 | 5.525 | 104.451 | 0.173 | 7.4e-2 | 0.98 | null | null | null | null | null | null | null | null | 1046901.0 | 18718.0 | 180.743 | 3.232 | 15903.0 | 2.746 | 2.0e-3 | 497.0 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-07-05 | 13033.0 | 1.0 | 22.571 | 606.0 | 0.0 | 0.286 | 2250.094 | 0.173 | 3.897 | 104.623 | 0.0 | 4.9e-2 | 1.01 | 6.0 | 1.036 | 24.0 | 4.144 | null | null | 10.974 | 1.895 | 1131443.0 | 9737.0 | 195.339 | 1.681 | 14751.0 | 2.547 | 2.0e-3 | 653.5 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-09-02 | 17620.0 | 111.0 | 94.0 | 626.0 | 1.0 | 0.429 | 3042.02 | 19.164 | 16.229 | 108.076 | 0.173 | 7.4e-2 | 1.25 | 4.0 | 0.691 | 15.0 | 2.59 | null | null | null | null | 2561895.0 | 40022.0 | 442.301 | 6.91 | 34773.0 | 6.003 | 3.0e-3 | 369.9 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-04-04 | 50.0 | 1.0 | 5.143 | 0.0 | 0.0 | 0.0 | 50.607 | 1.012 | 5.205 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-05-31 | 3354.0 | 160.0 | 154.857 | 24.0 | 2.0 | 2.0 | 3394.73 | 161.943 | 156.738 | 24.291 | 2.024 | 2.024 | 1.27 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-07-20 | 5020.0 | 9.0 | 6.143 | 56.0 | 0.0 | 0.0 | 5080.961 | 9.109 | 6.217 | 56.68 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-08-14 | 5367.0 | 9.0 | 4.143 | 59.0 | 0.0 | 0.0 | 5432.175 | 9.109 | 4.193 | 59.716 | 0.0 | 0.0 | 0.44 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-11-19 | 5658.0 | 0.0 | 2.429 | 61.0 | 0.0 | 0.0 | 5726.709 | 0.0 | 2.458 | 61.741 | 0.0 | 0.0 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 43.52 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DMA | North America | Dominica | 2020-08-25 | 20.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 277.813 | 0.0 | 3.969 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DMA | North America | Dominica | 2020-10-11 | 32.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 444.5 | 0.0 | 1.984 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 28.7 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DMA | North America | Dominica | 2020-11-15 | 68.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 944.563 | 0.0 | 9.922 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
ECU | South America | Ecuador | 2020-08-13 | 98343.0 | 1233.0 | 1115.143 | 6010.0 | 26.0 | 19.0 | 5574.033 | 69.886 | 63.206 | 340.644 | 1.474 | 1.077 | 1.04 | null | null | null | null | null | null | null | null | 214477.0 | 3285.0 | 12.156 | 0.186 | 2875.0 | 0.163 | null | null | null | 76.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-09-16 | 121525.0 | 1972.0 | 1337.0 | 10996.0 | 33.0 | 42.143 | 6887.977 | 111.772 | 75.781 | 623.248 | 1.87 | 2.389 | 1.17 | null | null | null | null | null | null | null | null | 302597.0 | 5210.0 | 17.151 | 0.295 | 3380.0 | 0.192 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-10-07 | 143531.0 | 1475.0 | 926.286 | 11743.0 | 41.0 | 55.429 | 8135.267 | 83.602 | 52.501 | 665.587 | 2.324 | 3.142 | 0.98 | null | null | null | null | null | null | null | null | 384086.0 | 5215.0 | 21.77 | 0.296 | 3453.0 | 0.196 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-06-15 | 46289.0 | 1691.0 | 1549.286 | 1672.0 | 97.0 | 57.286 | 452.331 | 16.524 | 15.139 | 16.339 | 0.948 | 0.56 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-07-28 | 15446.0 | 411.0 | 409.143 | 417.0 | 9.0 | 9.286 | 2381.363 | 63.365 | 63.079 | 64.29 | 1.388 | 1.432 | 1.1 | null | null | null | null | null | null | null | null | 234086.0 | 2402.0 | 36.09 | 0.37 | 2453.0 | 0.378 | 0.167 | 6.0 | null | 89.81 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-11-09 | 491.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 138.449 | 0.0 | 0.443 | null | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-03-27 | 575.0 | 37.0 | 41.714 | 1.0 | 0.0 | 0.143 | 433.459 | 27.892 | 31.446 | 0.754 | 0.0 | 0.108 | 1.41 | 10.0 | 7.538 | 59.0 | 44.477 | null | null | null | null | 9652.0 | 1288.0 | 7.276 | 0.971 | 898.0 | 0.677 | 4.6e-2 | 21.5 | null | 72.22 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-04-27 | 124.0 | 1.0 | 1.857 | 3.0 | 0.0 | 0.0 | 1.079 | 9.0e-3 | 1.6e-2 | 2.6e-2 | 0.0 | 0.0 | 0.38 | null | null | null | null | null | null | null | null | 14588.0 | 943.0 | 0.127 | 8.0e-3 | 948.0 | 8.0e-3 | 2.0e-3 | 510.5 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-26 | 45221.0 | 1533.0 | 1594.714 | 725.0 | 16.0 | 17.857 | 393.351 | 13.335 | 13.871 | 6.306 | 0.139 | 0.155 | 1.09 | null | null | null | null | null | null | null | null | 813410.0 | 18724.0 | 7.075 | 0.163 | 20110.0 | 0.175 | 7.9e-2 | 12.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
MNE | Europe | Montenegro | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-27 | 10313.0 | 116.0 | 243.0 | 158.0 | 0.0 | 3.143 | 16420.353 | 184.695 | 386.904 | 251.568 | 0.0 | 5.004 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-05-29 | 7714.0 | 71.0 | 54.571 | 202.0 | 0.0 | 0.714 | 208.992 | 1.924 | 1.478 | 5.473 | 0.0 | 1.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 190061.0 | 9872.0 | 5.149 | 0.267 | 9523.0 | 0.258 | 6.0e-3 | 174.5 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MMR | Asia | Myanmar | 2020-11-08 | 61377.0 | 1029.0 | 1138.857 | 1420.0 | 24.0 | 23.143 | 1128.051 | 18.912 | 20.931 | 26.098 | 0.441 | 0.425 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-04-25 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 675.0 | 54.0 | 0.266 | 2.1e-2 | 25.0 | 1.0e-2 | 0.0 | null | null | 73.15 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-03-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 546.0 | 17.0 | 1.9e-2 | 1.0e-3 | 13.0 | 0.0 | 0.0 | null | null | 58.33 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-07-05 | 15784.0 | 293.0 | 430.286 | 34.0 | 0.0 | 0.857 | 541.72 | 10.056 | 14.768 | 1.167 | 0.0 | 2.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 251007.0 | 4710.0 | 8.615 | 0.162 | 5024.0 | 0.172 | 8.6e-2 | 11.7 | null | 92.59 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-10-25 | 158089.0 | 2856.0 | 3691.857 | 847.0 | 5.0 | 15.429 | 5425.749 | 98.02 | 126.708 | 29.07 | 0.172 | 0.53 | 0.96 | null | null | null | null | null | null | null | null | 1393173.0 | 12311.0 | 47.815 | 0.423 | 15688.0 | 0.538 | 0.235 | 4.2 | null | 63.89 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-04-26 | 38040.0 | 656.0 | 743.143 | 4491.0 | 67.0 | 113.429 | 2220.034 | 38.284 | 43.37 | 262.097 | 3.91 | 6.62 | 0.72 | 806.0 | 47.039 | null | null | 116.994 | 6.828 | 304.384 | 17.764 | 209718.0 | null | 12.239 | null | 5485.0 | 0.32 | 0.135 | 7.4 | null | 79.63 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-14 | 51362.0 | 54.0 | 65.0 | 6154.0 | -2.0 | 0.429 | 2997.513 | 3.151 | 3.793 | 359.151 | -0.117 | 2.5e-2 | 1.21 | 27.0 | 1.576 | null | null | null | null | null | null | null | null | null | null | 11757.0 | 0.686 | 6.0e-3 | 180.9 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-08-27 | 70984.0 | 602.0 | 591.571 | 6244.0 | 3.0 | 4.143 | 4142.663 | 35.133 | 34.524 | 364.403 | 0.175 | 0.242 | 1.04 | 45.0 | 2.626 | null | null | null | null | null | null | null | null | null | null | 24998.0 | 1.459 | 2.4e-2 | 42.3 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-09-18 | 94345.0 | 2083.0 | 1567.857 | 6318.0 | 8.0 | 4.0 | 5506.023 | 121.565 | 91.501 | 368.722 | 0.467 | 0.233 | 1.41 | 72.0 | 4.202 | null | null | null | null | null | null | null | null | null | null | 28832.0 | 1.683 | 5.4e-2 | 18.4 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-05 | 3.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.622 | 0.0 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 332.0 | 27.0 | 6.9e-2 | 6.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-04-29 | 13.0 | 0.0 | 0.429 | 3.0 | 0.0 | 0.143 | 1.962 | 0.0 | 6.5e-2 | 0.453 | 0.0 | 2.2e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-06-24 | 2170.0 | 0.0 | 49.571 | 74.0 | 0.0 | 1.429 | 327.569 | 0.0 | 7.483 | 11.171 | 0.0 | 0.216 | 0.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-10-07 | 5264.0 | 0.0 | 13.429 | 153.0 | 2.0 | 0.286 | 794.62 | 0.0 | 2.027 | 23.096 | 0.302 | 4.3e-2 | 0.41 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NIC | North America | Nicaragua | 2020-10-18 | 5353.0 | 0.0 | 12.714 | 154.0 | 0.0 | 0.143 | 808.054 | 0.0 | 1.919 | 23.247 | 0.0 | 2.2e-2 | 0.41 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NER | Africa | Niger | 2020-07-26 | 1136.0 | 12.0 | 4.571 | 69.0 | 0.0 | 0.0 | 46.929 | 0.496 | 0.189 | 2.85 | 0.0 | 0.0 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.93 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-09-24 | 1194.0 | 1.0 | 1.571 | 69.0 | 0.0 | 0.0 | 49.325 | 4.1e-2 | 6.5e-2 | 2.85 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NGA | Africa | Nigeria | 2020-05-23 | 7526.0 | 265.0 | 272.143 | 221.0 | 0.0 | 6.429 | 36.509 | 1.286 | 1.32 | 1.072 | 0.0 | 3.1e-2 | 1.19 | null | null | null | null | null | null | null | null | 43328.0 | 1421.0 | 0.21 | 7.0e-3 | 1484.0 | 7.0e-3 | 0.183 | 5.5 | null | 84.26 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-04-08 | 6086.0 | 0.0 | 174.714 | 101.0 | 12.0 | 8.143 | 1122.621 | 0.0 | 32.228 | 18.63 | 2.214 | 1.502 | 0.81 | null | null | 250.0 | 46.115 | null | null | null | null | 105216.0 | 2276.0 | 19.408 | 0.42 | 2628.0 | 0.485 | 6.6e-2 | 15.0 | null | 79.63 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-06-03 | 13537.0 | 738.0 | 737.714 | 67.0 | 8.0 | 4.0 | 2650.872 | 144.518 | 144.462 | 13.12 | 1.567 | 0.783 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-08-26 | 294193.0 | 482.0 | 535.429 | 6267.0 | 12.0 | 9.429 | 1331.839 | 2.182 | 2.424 | 28.371 | 5.4e-2 | 4.3e-2 | 0.86 | null | null | null | null | null | null | null | null | 2512337.0 | 24593.0 | 11.374 | 0.111 | 24609.0 | 0.111 | 2.2e-2 | 46.0 | null | 47.69 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-03-20 | 47.0 | 3.0 | 2.286 | 0.0 | 0.0 | 0.0 | 9.213 | 0.588 | 0.448 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PSE | Asia | Palestine | 2020-04-27 | 342.0 | 0.0 | 1.857 | 2.0 | 0.0 | 0.0 | 67.04 | 0.0 | 0.364 | 0.392 | 0.0 | 0.0 | 0.33 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PSE | Asia | Palestine | 2020-11-01 | 54060.0 | 540.0 | 516.857 | 489.0 | 6.0 | 5.857 | 10597.058 | 105.853 | 101.316 | 95.856 | 1.176 | 1.148 | 1.15 | null | null | null | null | null | null | null | null | null | 4053.0 | null | 0.794 | 4168.0 | 0.817 | 0.124 | 8.1 | null | 40.74 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-08-01 | 66383.0 | 1127.0 | 1074.143 | 1449.0 | 28.0 | 24.857 | 15385.068 | 261.196 | 248.946 | 335.823 | 6.489 | 5.761 | 1.0 | null | null | null | null | null | null | null | null | 224089.0 | 3668.0 | 51.935 | 0.85 | 3308.0 | 0.767 | 0.325 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-04-09 | 2.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.224 | 0.0 | 1.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-11-30 | 656.0 | 11.0 | 3.714 | 7.0 | 0.0 | 0.0 | 73.32 | 1.229 | 0.415 | 0.782 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.96 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-06-10 | 1202.0 | 15.0 | 18.857 | 11.0 | 0.0 | 0.0 | 168.524 | 2.103 | 2.644 | 1.542 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 41702.0 | 1670.0 | 5.847 | 0.234 | 1232.0 | 0.173 | 1.5e-2 | 65.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-08-30 | 17105.0 | 631.0 | 553.143 | 308.0 | 14.0 | 14.714 | 2398.167 | 88.468 | 77.552 | 43.182 | 1.963 | 2.063 | 1.18 | null | null | null | null | null | null | null | null | 190169.0 | 1610.0 | 26.662 | 0.226 | 2404.0 | 0.337 | 0.23 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-10-02 | 42684.0 | 885.0 | 779.714 | 890.0 | 21.0 | 18.429 | 5984.412 | 124.079 | 109.318 | 124.78 | 2.944 | 2.584 | 1.09 | null | null | null | null | null | null | null | null | 283537.0 | 2628.0 | 39.753 | 0.368 | 2787.0 | 0.391 | 0.28 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRT | Europe | Portugal | 2020-06-02 | 32895.0 | 195.0 | 269.714 | 1436.0 | 12.0 | 13.429 | 3226.042 | 19.124 | 26.451 | 140.83 | 1.177 | 1.317 | 1.09 | 58.0 | 5.688 | 432.0 | 42.367 | null | null | null | null | 881524.0 | 15640.0 | 86.452 | 1.534 | 13827.0 | 1.356 | 2.0e-2 | 51.3 | null | 71.3 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-17 | 98055.0 | 2153.0 | 1783.0 | 2162.0 | 13.0 | 13.571 | 9616.34 | 211.147 | 174.86 | 212.029 | 1.275 | 1.331 | 1.42 | 148.0 | 14.514 | 1012.0 | 99.248 | null | null | null | null | 3059464.0 | 23723.0 | 300.044 | 2.327 | 26828.0 | 2.631 | 6.6e-2 | 15.0 | null | 56.94 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-04-30 | 13409.0 | 845.0 | 806.429 | 10.0 | 0.0 | 0.0 | 4654.19 | 293.295 | 279.907 | 3.471 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 94500.0 | 3085.0 | 32.8 | 1.071 | 3006.0 | 1.043 | 0.268 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-05-08 | 20201.0 | 1311.0 | 872.143 | 12.0 | 0.0 | 0.0 | 7011.655 | 455.041 | 302.716 | 4.165 | 0.0 | 0.0 | 1.44 | null | null | null | null | null | null | null | null | 120458.0 | 3963.0 | 41.81 | 1.376 | 3247.0 | 1.127 | 0.269 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-09-30 | 125760.0 | 227.0 | 226.429 | 214.0 | 0.0 | 0.286 | 43650.601 | 78.79 | 78.592 | 74.278 | 0.0 | 9.9e-2 | 0.93 | null | null | null | null | null | null | null | null | 775914.0 | 5701.0 | 269.315 | 1.979 | 5260.0 | 1.826 | 4.3e-2 | 23.2 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-04-11 | 5990.0 | 523.0 | 339.571 | 291.0 | 21.0 | 20.714 | 311.368 | 27.186 | 17.651 | 15.127 | 1.092 | 1.077 | 1.28 | 208.0 | 10.812 | null | null | null | null | null | null | 59272.0 | 3842.0 | 3.081 | 0.2 | 3311.0 | 0.172 | 0.103 | 9.8 | null | 87.04 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-09-07 | 95897.0 | 883.0 | 1193.857 | 3926.0 | 33.0 | 43.571 | 4984.852 | 45.9 | 62.058 | 204.079 | 1.715 | 2.265 | 1.01 | 465.0 | 24.171 | null | null | null | null | null | null | 1945738.0 | 7247.0 | 101.142 | 0.377 | 20399.0 | 1.06 | 5.9e-2 | 17.1 | null | 45.37 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-06-15 | 536484.0 | 8217.0 | 8634.429 | 7081.0 | 143.0 | 159.714 | 3676.198 | 56.306 | 59.166 | 48.522 | 0.98 | 1.094 | 0.96 | null | null | null | null | null | null | null | null | 1.5395417e7 | 234265.0 | 105.495 | 1.605 | 305820.0 | 2.096 | 2.8e-2 | 35.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RUS | Europe | Russia | 2020-06-28 | 633563.0 | 6784.0 | 7097.714 | 9060.0 | 102.0 | 137.0 | 4341.421 | 46.487 | 48.636 | 62.083 | 0.699 | 0.939 | 0.91 | null | null | null | null | null | null | null | null | 1.9334442e7 | 289488.0 | 132.487 | 1.984 | 292107.0 | 2.002 | 2.4e-2 | 41.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RWA | Africa | Rwanda | 2020-03-25 | 41.0 | 1.0 | 4.714 | 0.0 | 0.0 | 0.0 | 3.165 | 7.7e-2 | 0.364 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-05-11 | 285.0 | 1.0 | 3.429 | 0.0 | 0.0 | 0.0 | 22.004 | 7.7e-2 | 0.265 | null | 0.0 | 0.0 | 0.8 | null | null | null | null | null | null | null | null | 42805.0 | 380.0 | 3.305 | 2.9e-2 | 1101.0 | 8.5e-2 | 3.0e-3 | 321.1 | null | 73.15 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-06-04 | 410.0 | 13.0 | 8.714 | 2.0 | 0.0 | 0.286 | 31.655 | 1.004 | 0.673 | 0.154 | 0.0 | 2.2e-2 | 1.41 | null | null | null | null | null | null | null | null | 72510.0 | 1369.0 | 5.598 | 0.106 | 1177.0 | 9.1e-2 | 7.0e-3 | 135.1 | null | 75.93 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-07-06 | 1113.0 | 8.0 | 16.0 | 3.0 | 0.0 | 0.143 | 85.931 | 0.618 | 1.235 | 0.232 | 0.0 | 1.1e-2 | 1.13 | null | null | null | null | null | null | null | null | 163384.0 | 2834.0 | 12.614 | 0.219 | 3305.0 | 0.255 | 5.0e-3 | 206.6 | null | 77.78 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
KNA | North America | Saint Kitts and Nevis | 2020-10-29 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 357.197 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
LCA | North America | Saint Lucia | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-03-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-03-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
VCT | North America | Saint Vincent and the Grenadines | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
SMR | Europe | San Marino | 2020-05-29 | 671.0 | 1.0 | 1.429 | 42.0 | 0.0 | 0.143 | 19771.348 | 29.465 | 42.094 | 1237.551 | 0.0 | 4.209 | 0.61 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 33938.0 | 556.667 | null | null | null | 56861.47 | null | null | 5.64 | null | null | null | 3.8 | 84.97 | null |
SAU | Asia | Saudi Arabia | 2020-05-06 | 31938.0 | 1687.0 | 1505.143 | 209.0 | 9.0 | 7.429 | 917.393 | 48.458 | 43.234 | 6.003 | 0.259 | 0.213 | 1.29 | null | null | null | null | null | null | null | null | 446983.0 | 16026.0 | 12.839 | 0.46 | 12498.0 | 0.359 | 0.12 | 8.3 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-08-09 | 288690.0 | 1428.0 | 1407.857 | 3167.0 | 37.0 | 35.714 | 8292.385 | 41.018 | 40.44 | 90.969 | 1.063 | 1.026 | 0.86 | null | null | null | null | null | null | null | null | 3872599.0 | 59325.0 | 111.237 | 1.704 | 56983.0 | 1.637 | 2.5e-2 | 40.5 | null | 71.3 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SEN | Africa | Senegal | 2020-04-04 | 219.0 | 12.0 | 12.714 | 2.0 | 1.0 | 0.286 | 13.079 | 0.717 | 0.759 | 0.119 | 6.0e-2 | 1.7e-2 | 0.88 | null | null | null | null | null | null | null | null | 1952.0 | 177.0 | 0.117 | 1.1e-2 | 141.0 | 8.0e-3 | 9.0e-2 | 11.1 | null | 77.78 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-06-23 | 6034.0 | 64.0 | 112.429 | 89.0 | 3.0 | 2.714 | 360.369 | 3.822 | 6.715 | 5.315 | 0.179 | 0.162 | 1.0 | null | null | null | null | null | null | null | null | 72161.0 | 1045.0 | 4.31 | 6.2e-2 | 1186.0 | 7.1e-2 | 9.5e-2 | 10.5 | null | 61.11 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-09-05 | 13948.0 | 67.0 | 70.286 | 290.0 | 1.0 | 1.143 | 833.018 | 4.001 | 4.198 | 17.32 | 6.0e-2 | 6.8e-2 | 0.77 | null | null | null | null | null | null | null | null | 158152.0 | 1313.0 | 9.445 | 7.8e-2 | 1170.0 | 7.0e-2 | 6.0e-2 | 16.6 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-09-10 | 14150.0 | 48.0 | 46.286 | 293.0 | 0.0 | 0.857 | 845.082 | 2.867 | 2.764 | 17.499 | 0.0 | 5.1e-2 | 0.83 | null | null | null | null | null | null | null | null | 163438.0 | 933.0 | 9.761 | 5.6e-2 | 1135.0 | 6.8e-2 | 4.1e-2 | 24.5 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-11-25 | 15927.0 | 19.0 | 14.857 | 331.0 | 0.0 | 0.286 | 951.21 | 1.135 | 0.887 | 19.768 | 0.0 | 1.7e-2 | null | null | null | null | null | null | null | null | null | 234381.0 | 743.0 | 13.998 | 4.4e-2 | 773.0 | 4.6e-2 | 1.9e-2 | 52.0 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 16.0 | null | 2.0e-3 | null | null | null | null | null | null | 13.89 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-05-23 | 11092.0 | 68.0 | 85.143 | 238.0 | 1.0 | 1.429 | 1630.075 | 9.993 | 12.513 | 34.976 | 0.147 | 0.21 | 0.77 | null | null | null | null | null | null | null | null | 214212.0 | 4415.0 | 31.48 | 0.649 | 5638.0 | 0.829 | 1.5e-2 | 66.2 | null | 49.07 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-03-30 | 8.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 81.35 | 0.0 | 1.453 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-11-23 | 166.0 | 3.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1688.021 | 30.506 | 8.716 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SLE | Africa | Sierra Leone | 2020-07-29 | 1803.0 | 17.0 | 10.286 | 67.0 | 1.0 | 0.143 | 226.025 | 2.131 | 1.289 | 8.399 | 0.125 | 1.8e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 32.41 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SGP | Asia | Singapore | 2020-02-19 | 84.0 | 3.0 | 4.857 | 0.0 | 0.0 | 0.0 | 14.358 | 0.513 | 0.83 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-04-17 | 5050.0 | 623.0 | 420.286 | 11.0 | 1.0 | 0.571 | 863.197 | 106.489 | 71.839 | 1.88 | 0.171 | 9.8e-2 | 2.16 | null | null | null | null | null | null | null | null | null | null | null | null | 3732.0 | 0.638 | 0.113 | 8.9 | null | 85.19 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-08-12 | 2690.0 | 75.0 | 39.0 | 31.0 | 0.0 | 0.286 | 492.706 | 13.737 | 7.143 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 39.0 | 7.143 | null | null | null | null | 286852.0 | 2741.0 | 52.54 | 0.502 | 2076.0 | 0.38 | 1.9e-2 | 53.2 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-10-18 | 29835.0 | 1567.0 | 1426.286 | 88.0 | 6.0 | 3.857 | 5464.643 | 287.015 | 261.242 | 16.118 | 1.099 | 0.706 | 1.35 | null | null | 481.0 | 88.101 | null | null | null | null | 622032.0 | 5025.0 | 113.933 | 0.92 | 9941.0 | 1.821 | 0.143 | 7.0 | null | 53.7 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-09-16 | 3954.0 | 123.0 | 91.714 | 135.0 | 0.0 | 0.0 | 1901.938 | 59.165 | 44.116 | 64.937 | 0.0 | 0.0 | 1.39 | 11.0 | 5.291 | 61.0 | 29.342 | null | null | null | null | 191413.0 | 3070.0 | 92.073 | 1.477 | 2470.0 | 1.188 | 3.7e-2 | 26.9 | null | 46.3 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-11-30 | 75814.0 | 433.0 | 1433.714 | 1435.0 | 51.0 | 48.286 | 36467.763 | 208.28 | 689.64 | 690.258 | 24.532 | 23.226 | null | null | null | null | null | null | null | null | null | 523620.0 | 5868.0 | 251.87 | 2.823 | 5767.0 | 2.774 | 0.249 | 4.0 | null | 68.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SLB | Oceania | Solomon Islands | 2020-08-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-09-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SOM | Africa | Somalia | 2020-10-05 | 3745.0 | 0.0 | 22.429 | 99.0 | 0.0 | 0.0 | 235.635 | 0.0 | 1.411 | 6.229 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
SOM | Africa | Somalia | 2020-11-08 | 4229.0 | 0.0 | 41.143 | 107.0 | 0.0 | 0.429 | 266.088 | 0.0 | 2.589 | 6.732 | 0.0 | 2.7e-2 | 0.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.96 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
ZAF | Africa | South Africa | 2020-05-05 | 7572.0 | 352.0 | 368.0 | 148.0 | 10.0 | 7.857 | 127.671 | 5.935 | 6.205 | 2.495 | 0.169 | 0.132 | 1.36 | null | null | null | null | null | null | null | null | 268064.0 | 10523.0 | 4.52 | 0.177 | 11795.0 | 0.199 | 3.1e-2 | 32.1 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-07-28 | 459761.0 | 7232.0 | 11137.571 | 7257.0 | 190.0 | 269.857 | 7752.001 | 121.938 | 187.79 | 122.36 | 3.204 | 4.55 | 0.86 | null | null | null | null | null | null | null | null | 2830635.0 | 28424.0 | 47.727 | 0.479 | 41959.0 | 0.707 | 0.265 | 3.8 | null | 80.56 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-02-03 | 15.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 0.293 | 0.0 | 3.1e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.0 | 1.0e-3 | 2.4e-2 | 42.0 | null | 23.15 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-05-23 | 655.0 | 92.0 | 59.857 | 8.0 | 2.0 | 0.571 | 58.515 | 8.219 | 5.347 | 0.715 | 0.179 | 5.1e-2 | 0.88 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-10-10 | 2761.0 | 0.0 | 6.571 | 54.0 | 0.0 | 0.571 | 246.656 | 0.0 | 0.587 | 4.824 | 0.0 | 5.1e-2 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | 423.0 | 3.8e-2 | 1.6e-2 | 64.4 | null | 35.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-11-21 | 3047.0 | 31.0 | 6.286 | 60.0 | 1.0 | 0.143 | 272.206 | 2.769 | 0.562 | 5.36 | 8.9e-2 | 1.3e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | 554.0 | 4.9e-2 | 1.1e-2 | 88.1 | null | 43.52 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
ESP | Europe | Spain | 2020-04-03 | 119199.0 | 7134.0 | 7640.0 | 11198.0 | 850.0 | 865.714 | 2549.45 | 152.583 | 163.406 | 239.505 | 18.18 | 18.516 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
ESP | Europe | Spain | 2020-11-07 | 1328832.0 | 0.0 | 20450.571 | 38833.0 | 0.0 | 422.143 | 28421.306 | 0.0 | 437.401 | 830.567 | 0.0 | 9.029 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | 166951.0 | 3.571 | 0.122 | 8.2 | null | 71.3 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-04-01 | 146.0 | 3.0 | 6.286 | 3.0 | 1.0 | 0.429 | 6.818 | 0.14 | 0.294 | 0.14 | 4.7e-2 | 2.0e-2 | 1.01 | null | null | null | null | null | null | null | null | 2785.0 | 219.0 | 0.13 | 1.0e-2 | 161.0 | 8.0e-3 | 3.9e-2 | 25.6 | null | 100.0 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
LKA | Asia | Sri Lanka | 2020-05-13 | 915.0 | 26.0 | 16.857 | 9.0 | 0.0 | 0.0 | 42.731 | 1.214 | 0.787 | 0.42 | 0.0 | 0.0 | 1.04 | null | null | null | null | null | null | null | null | 39629.0 | 889.0 | 1.851 | 4.2e-2 | 1301.0 | 6.1e-2 | 1.3e-2 | 77.2 | null | 82.41 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-02-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-06-13 | 196.0 | 9.0 | 13.714 | 3.0 | 0.0 | 0.286 | 334.11 | 15.342 | 23.378 | 5.114 | 0.0 | 0.487 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-05-16 | 202.0 | 12.0 | 5.571 | 2.0 | 0.0 | 0.0 | 174.113 | 10.343 | 4.802 | 1.724 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-10 | 26846.0 | 278.0 | 593.286 | 3678.0 | 64.0 | 70.286 | 2658.212 | 27.527 | 58.745 | 364.185 | 6.337 | 6.959 | 1.13 | null | null | null | null | 154.004 | 15.249 | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-10-29 | 121167.0 | 3254.0 | 1742.571 | 5966.0 | 3.0 | 5.143 | 11997.6 | 322.202 | 172.544 | 590.736 | 0.297 | 0.509 | 1.57 | null | null | null | null | null | null | null | null | null | 27613.0 | null | 2.734 | 26048.0 | 2.579 | 6.7e-2 | 14.9 | null | 55.56 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-11-21 | 208295.0 | 0.0 | 4420.0 | 6406.0 | 0.0 | 34.571 | 20624.758 | 0.0 | 437.655 | 634.303 | 0.0 | 3.423 | null | null | null | null | null | null | null | null | null | null | 38266.0 | null | 3.789 | 38119.0 | 3.774 | 0.116 | 8.6 | null | 50.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-01 | 17768.0 | 1163.0 | 981.571 | 488.0 | 55.0 | 47.857 | 2053.008 | 134.379 | 113.416 | 56.386 | 6.355 | 5.53 | 1.24 | null | null | null | null | null | null | null | null | 145277.0 | 6657.0 | 16.786 | 0.769 | 5978.0 | 0.691 | 0.164 | 6.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-06-02 | 30874.0 | 3.0 | 16.143 | 1920.0 | 0.0 | 0.714 | 3567.344 | 0.347 | 1.865 | 221.847 | 0.0 | 8.3e-2 | 0.79 | null | null | null | null | null | null | null | null | 405695.0 | 4282.0 | 46.876 | 0.495 | 3304.0 | 0.382 | 5.0e-3 | 204.7 | null | 55.56 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-08-06 | 36108.0 | 181.0 | 155.143 | 1985.0 | 1.0 | 0.714 | 4172.108 | 20.914 | 17.926 | 229.357 | 0.116 | 8.3e-2 | 1.17 | null | null | null | null | null | null | null | null | 831138.0 | 6619.0 | 96.034 | 0.765 | 5409.0 | 0.625 | 2.9e-2 | 34.9 | null | 43.06 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-11-15 | 257135.0 | 0.0 | 6460.286 | 3369.0 | 18.0 | 85.286 | 29710.728 | 0.0 | 746.455 | 389.272 | 2.08 | 9.854 | 1.04 | null | null | null | null | null | null | null | null | 2419601.0 | 9364.0 | 279.573 | 1.082 | 25659.0 | 2.965 | 0.252 | 4.0 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-03-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-03-25 | 5.0 | 4.0 | 0.714 | 0.0 | 0.0 | 0.0 | 0.286 | 0.229 | 4.1e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-04-08 | 19.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.0 | 1.086 | 0.0 | 7.3e-2 | 0.114 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-12-02 | 8059.0 | 86.0 | 85.714 | 426.0 | 4.0 | 5.0 | 460.497 | 4.914 | 4.898 | 24.342 | 0.229 | 0.286 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TJK | Asia | Tajikistan | 2020-10-06 | 10014.0 | 40.0 | 41.143 | 78.0 | 0.0 | 0.429 | 1049.945 | 4.194 | 4.314 | 8.178 | 0.0 | 4.5e-2 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TZA | Africa | Tanzania | 2020-09-11 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
FJI | Oceania | Fiji | 2020-06-29 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.079 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 5015.0 | 162.0 | 5.594 | 0.181 | 69.0 | 7.7e-2 | 0.0 | null | null | 62.04 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FJI | Oceania | Fiji | 2020-09-25 | 32.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 35.697 | 0.0 | 0.0 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10280.0 | 64.0 | 11.468 | 7.1e-2 | 65.0 | 7.3e-2 | 0.0 | null | null | 51.85 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-05-04 | 5327.0 | 73.0 | 90.286 | 240.0 | 10.0 | 6.714 | 961.428 | 13.175 | 16.295 | 43.316 | 1.805 | 1.212 | 0.9 | 49.0 | 8.844 | 197.0 | 35.555 | null | null | null | null | 113479.0 | 1767.0 | 20.481 | 0.319 | 2956.0 | 0.534 | 3.1e-2 | 32.7 | null | 60.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-07 | 17385.0 | 0.0 | 181.714 | 362.0 | 0.0 | 0.571 | 3137.68 | 0.0 | 32.796 | 65.334 | 0.0 | 0.103 | 1.1 | null | null | null | null | null | null | null | null | 1650143.0 | 9833.0 | 297.821 | 1.775 | 12769.0 | 2.305 | 1.4e-2 | 70.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-15 | 19315.0 | 213.0 | 216.857 | 369.0 | 0.0 | 1.0 | 3486.01 | 38.443 | 39.139 | 66.598 | 0.0 | 0.18 | 1.14 | null | null | null | null | null | null | null | null | 1747491.0 | 6648.0 | 315.391 | 1.2 | 13080.0 | 2.361 | 1.7e-2 | 60.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-10-17 | 3649.0 | 0.0 | 3.0 | 118.0 | 0.0 | 0.143 | 1509.933 | 0.0 | 1.241 | 48.828 | 0.0 | 5.9e-2 | 0.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
DEU | Europe | Germany | 2020-10-25 | 437698.0 | 9890.0 | 9861.0 | 10062.0 | 27.0 | 37.714 | 5224.127 | 118.042 | 117.696 | 120.095 | 0.322 | 0.45 | 1.45 | null | null | null | null | null | null | 2028.515 | 24.211 | 2.1848094e7 | null | 260.767 | null | 201348.0 | 2.403 | 4.9e-2 | 20.4 | null | 60.65 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-05-20 | 6269.0 | 173.0 | 123.0 | 31.0 | 0.0 | 1.0 | 201.751 | 5.568 | 3.958 | 0.998 | 0.0 | 3.2e-2 | 1.23 | null | null | null | null | null | null | null | null | 192194.0 | 4265.0 | 6.185 | 0.137 | 3358.0 | 0.108 | 3.7e-2 | 27.3 | null | 62.04 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-07 | 9638.0 | 176.0 | 224.0 | 44.0 | 0.0 | 1.143 | 310.173 | 5.664 | 7.209 | 1.416 | 0.0 | 3.7e-2 | 1.2 | null | null | null | null | null | null | null | null | 239395.0 | 3952.0 | 7.704 | 0.127 | 2796.0 | 9.0e-2 | 8.0e-2 | 12.5 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-08-11 | 41404.0 | 192.0 | 513.143 | 215.0 | 0.0 | 3.429 | 1332.477 | 6.179 | 16.514 | 6.919 | 0.0 | 0.11 | 1.11 | null | null | null | null | null | null | null | null | 421588.0 | 1998.0 | 13.568 | 6.4e-2 | 1745.0 | 5.6e-2 | 0.294 | 3.4 | null | 52.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-19 | 50631.0 | 174.0 | 96.286 | 323.0 | 0.0 | 0.429 | 1629.424 | 5.6 | 3.099 | 10.395 | 0.0 | 1.4e-2 | 1.18 | null | null | null | null | null | null | null | null | 578117.0 | 2126.0 | 18.605 | 6.8e-2 | 2128.0 | 6.8e-2 | 4.5e-2 | 22.1 | null | 38.89 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRD | North America | Grenada | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-05-01 | 20.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 177.748 | 0.0 | 6.348 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-06-04 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 204.41 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GRD | North America | Grenada | 2020-10-10 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 213.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GNB | Africa | Guinea-Bissau | 2020-03-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-08-28 | 1180.0 | 40.0 | 42.714 | 35.0 | 3.0 | 0.714 | 1500.205 | 50.854 | 54.305 | 44.498 | 3.814 | 0.908 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HND | North America | Honduras | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9904608.0 | 82.805 | 24.9 | 4.652 | 2.883 | 4541.795 | 16.0 | 240.208 | 7.21 | 2.0 | null | 84.169 | 0.7 | 75.27 | 0.617 |
HUN | Europe | Hungary | 2020-03-23 | 167.0 | 36.0 | 18.286 | 7.0 | 1.0 | 0.857 | 17.287 | 3.727 | 1.893 | 0.725 | 0.104 | 8.9e-2 | 1.7 | null | null | 144.0 | 14.906 | null | null | null | null | 5515.0 | 1072.0 | 0.571 | 0.111 | 578.0 | 6.0e-2 | 3.2e-2 | 31.6 | null | 67.59 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-04-17 | 1763.0 | 111.0 | 81.857 | 156.0 | 14.0 | 11.286 | 182.499 | 11.49 | 8.474 | 16.148 | 1.449 | 1.168 | 1.14 | null | null | 847.0 | 87.678 | null | null | null | null | 41590.0 | 3101.0 | 4.305 | 0.321 | 1663.0 | 0.172 | 4.9e-2 | 20.3 | null | 76.85 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-08-05 | 4564.0 | 11.0 | 14.143 | 599.0 | 1.0 | 0.429 | 472.447 | 1.139 | 1.464 | 62.006 | 0.104 | 4.4e-2 | 1.29 | null | null | 72.0 | 7.453 | null | null | null | null | 350108.0 | 1976.0 | 36.242 | 0.205 | 2380.0 | 0.246 | 6.0e-3 | 168.3 | null | 54.63 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-11-07 | 104943.0 | 5318.0 | 4231.714 | 2357.0 | 107.0 | 86.714 | 10863.271 | 550.498 | 438.05 | 243.987 | 11.076 | 8.976 | 1.32 | null | null | 5612.0 | 580.931 | null | null | null | null | 1189962.0 | 22321.0 | 123.18 | 2.311 | 17831.0 | 1.846 | 0.237 | 4.2 | null | 57.41 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-03-13 | 134.0 | 31.0 | 13.0 | 0.0 | 0.0 | 0.0 | 392.674 | 90.842 | 38.095 | null | 0.0 | 0.0 | 1.64 | 0.0 | 0.0 | 2.0 | 5.861 | null | null | null | null | 1504.0 | 357.0 | 4.407 | 1.046 | 160.0 | 0.469 | 8.1e-2 | 12.3 | null | 16.67 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-28 | 963.0 | 73.0 | 70.0 | 2.0 | 0.0 | 0.143 | 2821.978 | 213.919 | 205.128 | 5.861 | 0.0 | 0.419 | 1.27 | 7.0 | 20.513 | 26.0 | 76.19 | null | null | null | null | 15443.0 | 849.0 | 45.254 | 2.488 | 767.0 | 2.248 | 9.1e-2 | 11.0 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-18 | 1838.0 | 2.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5386.081 | 5.861 | 2.093 | 29.304 | 0.0 | 0.0 | 1.29 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68575.0 | 64.0 | 200.952 | 0.188 | 112.0 | 0.328 | 6.0e-3 | 156.9 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-23 | 1841.0 | 1.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5394.872 | 2.93 | 2.093 | 29.304 | 0.0 | 0.0 | 1.43 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68822.0 | 67.0 | 201.676 | 0.196 | 71.0 | 0.208 | 1.0e-2 | 99.4 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-10-26 | 7946429.0 | 36470.0 | 49909.429 | 119502.0 | 488.0 | 615.0 | 5758.264 | 26.427 | 36.166 | 86.595 | 0.354 | 0.446 | 0.89 | null | null | null | null | null | null | null | null | 1.03462778e8 | 939309.0 | 74.973 | 0.681 | 1196972.0 | 0.867 | 4.2e-2 | 24.0 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-08-13 | 132816.0 | 2098.0 | 2009.0 | 5968.0 | 65.0 | 63.857 | 485.574 | 7.67 | 7.345 | 21.819 | 0.238 | 0.233 | 1.06 | null | null | null | null | null | null | null | null | 1026954.0 | 14850.0 | 3.755 | 5.4e-2 | 12949.0 | 4.7e-2 | 0.155 | 6.4 | null | 59.72 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-10-05 | 307120.0 | 3622.0 | 4056.857 | 11253.0 | 102.0 | 111.429 | 1122.828 | 13.242 | 14.832 | 41.141 | 0.373 | 0.407 | 1.01 | null | null | null | null | null | null | null | null | 2119355.0 | 22771.0 | 7.748 | 8.3e-2 | 26356.0 | 9.6e-2 | 0.154 | 6.5 | null | 72.69 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IRN | Asia | Iran | 2020-08-07 | 322567.0 | 2450.0 | 2623.286 | 18132.0 | 156.0 | 195.143 | 3840.406 | 29.169 | 31.232 | 215.875 | 1.857 | 2.323 | 0.93 | null | null | null | null | null | null | null | null | 2637575.0 | null | 31.402 | null | 25809.0 | 0.307 | 0.102 | 9.8 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-08-08 | 324692.0 | 2125.0 | 2562.857 | 18264.0 | 132.0 | 183.143 | 3865.705 | 25.3 | 30.513 | 217.447 | 1.572 | 2.18 | 0.86 | null | null | null | null | null | null | null | null | 2661965.0 | 24390.0 | 31.693 | 0.29 | 25630.0 | 0.305 | 0.1 | 10.0 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-07-08 | 67442.0 | 2741.0 | 2274.0 | 2779.0 | 94.0 | 104.143 | 1676.723 | 68.146 | 56.536 | 69.091 | 2.337 | 2.589 | 1.12 | null | null | null | null | null | null | null | null | 637227.0 | 12807.0 | 15.843 | 0.318 | 11615.0 | 0.289 | 0.196 | 5.1 | null | 92.59 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRQ | Asia | Iraq | 2020-10-25 | 451707.0 | 2554.0 | 3581.857 | 10623.0 | 55.0 | 52.714 | 11230.206 | 63.497 | 89.051 | 264.106 | 1.367 | 1.311 | 0.98 | null | null | null | null | null | null | null | null | 2756365.0 | 16687.0 | 68.528 | 0.415 | 18859.0 | 0.469 | 0.19 | 5.3 | null | 51.85 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRL | Europe | Ireland | 2020-10-26 | 58067.0 | 939.0 | 1010.571 | 1885.0 | 3.0 | 4.714 | 11759.7 | 190.166 | 204.66 | 381.749 | 0.608 | 0.955 | 0.96 | 38.0 | 7.696 | 344.0 | 69.667 | null | null | null | null | 1568768.0 | 14264.0 | 317.706 | 2.889 | 16425.0 | 3.326 | 6.2e-2 | 16.3 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-28 | 59434.0 | 667.0 | 858.857 | 1896.0 | 6.0 | 4.0 | 12036.544 | 135.081 | 173.935 | 383.977 | 1.215 | 0.81 | 0.91 | 40.0 | 8.101 | 327.0 | 66.224 | null | null | null | null | 1591370.0 | 11167.0 | 322.283 | 2.262 | 15161.0 | 3.07 | 5.7e-2 | 17.7 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-03-25 | 2369.0 | 1131.0 | 295.0 | 5.0 | 2.0 | 0.714 | 273.698 | 130.668 | 34.082 | 0.578 | 0.231 | 8.3e-2 | 1.94 | null | null | null | null | null | null | null | null | 37132.0 | 5936.0 | 4.29 | 0.686 | 3457.0 | 0.399 | 8.5e-2 | 11.7 | null | 81.48 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-17 | 31506.0 | 3526.0 | 3051.0 | 2503.0 | 345.0 | 267.429 | 521.089 | 58.318 | 50.462 | 41.398 | 5.706 | 4.423 | 1.84 | 2060.0 | 34.071 | 14954.0 | 247.33 | null | null | null | null | 148657.0 | 10695.0 | 2.459 | 0.177 | 12557.0 | 0.208 | 0.243 | 4.1 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-08-08 | 250103.0 | 347.0 | 324.429 | 35203.0 | 13.0 | 8.143 | 4136.544 | 5.739 | 5.366 | 582.235 | 0.215 | 0.135 | 1.29 | 43.0 | 0.711 | 814.0 | 13.463 | null | null | null | null | 7212207.0 | 53298.0 | 119.285 | 0.882 | 48387.0 | 0.8 | 7.0e-3 | 149.1 | null | 50.93 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-09-12 | 286297.0 | 1501.0 | 1422.714 | 35603.0 | 6.0 | 9.857 | 4735.169 | 24.826 | 23.531 | 588.851 | 9.9e-2 | 0.163 | 1.07 | 182.0 | 3.01 | 2133.0 | 35.278 | null | null | null | null | 9745975.0 | 92706.0 | 161.192 | 1.533 | 86225.0 | 1.426 | 1.7e-2 | 60.6 | null | 54.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-28 | 1564532.0 | 26315.0 | 26285.857 | 54363.0 | 686.0 | 728.857 | 25876.36 | 435.233 | 434.751 | 899.129 | 11.346 | 12.055 | null | 3762.0 | 62.221 | 37061.0 | 612.965 | null | null | null | null | 2.1637641e7 | 225940.0 | 357.873 | 3.737 | 205402.0 | 3.397 | 0.128 | 7.8 | null | null | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-10 | 753.0 | 0.0 | 4.571 | 10.0 | 0.0 | 0.0 | 254.292 | 0.0 | 1.544 | 3.377 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 27775.0 | 300.0 | 9.38 | 0.101 | 299.0 | 0.101 | 1.5e-2 | 65.4 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-11-03 | 9296.0 | 39.0 | 72.714 | 214.0 | 4.0 | 2.571 | 3139.309 | 13.171 | 24.556 | 72.269 | 1.351 | 0.868 | 0.91 | null | null | null | null | null | null | null | null | 98356.0 | 565.0 | 33.215 | 0.191 | 648.0 | 0.219 | 0.112 | 8.9 | null | 67.59 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-10-23 | 95868.0 | 734.0 | 546.286 | 1706.0 | 9.0 | 6.0 | 757.991 | 5.803 | 4.319 | 13.489 | 7.1e-2 | 4.7e-2 | 1.13 | null | null | null | null | null | null | null | null | 2295456.0 | 22880.0 | 18.149 | 0.181 | 17267.0 | 0.137 | 3.2e-2 | 31.6 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-05-02 | 460.0 | 1.0 | 2.286 | 9.0 | 1.0 | 0.286 | 45.084 | 9.8e-2 | 0.224 | 0.882 | 9.8e-2 | 2.8e-2 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-03-31 | 343.0 | 41.0 | 38.714 | 2.0 | 1.0 | 0.286 | 18.267 | 2.184 | 2.062 | 0.107 | 5.3e-2 | 1.5e-2 | 1.62 | null | null | null | null | null | null | null | null | 30905.0 | 9892.0 | 1.646 | 0.527 | 3003.0 | 0.16 | 1.3e-2 | 77.6 | null | 92.13 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-24 | 19285.0 | 520.0 | 486.857 | 136.0 | 2.0 | 5.571 | 1027.07 | 27.694 | 25.929 | 7.243 | 0.107 | 0.297 | 1.12 | null | null | null | null | null | null | null | null | 1401692.0 | 24830.0 | 74.651 | 1.322 | 27159.0 | 1.446 | 1.8e-2 | 55.8 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-10-01 | 140958.0 | 251.0 | 238.429 | 2080.0 | 2.0 | 5.0 | 7507.067 | 13.368 | 12.698 | 110.776 | 0.107 | 0.266 | 1.01 | null | null | null | null | null | null | null | null | 2973489.0 | 9208.0 | 158.361 | 0.49 | 13415.0 | 0.714 | 1.8e-2 | 56.3 | null | 78.7 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-14 | 159756.0 | 903.0 | 776.429 | 2315.0 | 1.0 | 7.143 | 8508.201 | 48.091 | 41.351 | 123.291 | 5.3e-2 | 0.38 | 1.31 | null | null | null | null | null | null | null | null | 4004270.0 | 39228.0 | 213.257 | 2.089 | 31215.0 | 1.662 | 2.5e-2 | 40.2 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-06-25 | 5384.0 | 178.0 | 161.0 | 132.0 | 2.0 | 2.143 | 100.128 | 3.31 | 2.994 | 2.455 | 3.7e-2 | 4.0e-2 | 1.24 | null | null | null | null | null | null | null | null | 155314.0 | 3918.0 | 2.888 | 7.3e-2 | 3545.0 | 6.6e-2 | 4.5e-2 | 22.0 | null | 84.26 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
OWID_KOS | Europe | Kosovo | 2020-08-22 | 12337.0 | 169.0 | 151.714 | 457.0 | 9.0 | 9.571 | 6383.054 | 87.439 | 78.496 | 236.448 | 4.657 | 4.952 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KGZ | Asia | Kyrgyzstan | 2020-06-07 | 2007.0 | 33.0 | 37.0 | 22.0 | 0.0 | 0.857 | 307.624 | 5.058 | 5.671 | 3.372 | 0.0 | 0.131 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-09-12 | 23.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 3.161 | 0.0 | 2.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LBN | Asia | Lebanon | 2020-03-28 | 412.0 | 21.0 | 32.143 | 8.0 | 0.0 | 0.571 | 60.362 | 3.077 | 4.709 | 1.172 | 0.0 | 8.4e-2 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBN | Asia | Lebanon | 2020-11-06 | 91328.0 | 2142.0 | 1685.571 | 700.0 | 17.0 | 10.714 | 13380.525 | 313.826 | 246.954 | 102.557 | 2.491 | 1.57 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBY | Africa | Libya | 2020-04-19 | 51.0 | 2.0 | 3.714 | 1.0 | 0.0 | 0.0 | 7.422 | 0.291 | 0.541 | 0.146 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | 25.0 | null | 4.0e-3 | 34.0 | 5.0e-3 | 0.109 | 9.2 | null | 100.0 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-03-12 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-03-16 | 4.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 104.885 | 0.0 | 11.238 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-06-24 | 82.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 2150.143 | 0.0 | 0.0 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-09 | 801.0 | 13.0 | 29.0 | 4.0 | 1.0 | 0.143 | 21003.225 | 340.876 | 760.416 | 104.885 | 26.221 | 3.746 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LTU | Europe | Lithuania | 2020-05-27 | 1647.0 | 8.0 | 10.0 | 66.0 | 1.0 | 0.857 | 605.005 | 2.939 | 3.673 | 24.244 | 0.367 | 0.315 | 0.85 | null | null | null | null | null | null | null | null | 272538.0 | 6268.0 | 100.113 | 2.302 | 4739.0 | 1.741 | 2.0e-3 | 473.9 | null | 71.3 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-09-07 | 3100.0 | 17.0 | 27.714 | 86.0 | 0.0 | 0.0 | 1138.747 | 6.245 | 10.181 | 31.591 | 0.0 | 0.0 | 1.17 | null | null | null | null | null | null | null | null | 614767.0 | 3528.0 | 225.827 | 1.296 | 3650.0 | 1.341 | 8.0e-3 | 131.7 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-10-30 | 13823.0 | 735.0 | 674.143 | 157.0 | 7.0 | 4.429 | 5077.708 | 269.993 | 247.638 | 57.672 | 2.571 | 1.627 | 1.52 | null | null | 415.0 | 152.445 | null | null | null | null | 936692.0 | 10520.0 | 344.082 | 3.864 | 8860.0 | 3.255 | 7.6e-2 | 13.1 | null | 62.5 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-19 | 40492.0 | 1682.0 | 1525.714 | 341.0 | 18.0 | 13.857 | 14874.236 | 617.862 | 560.452 | 125.262 | 6.612 | 5.09 | 1.33 | null | null | 1.0 | 0.367 | null | null | null | null | 1145098.0 | 14052.0 | 420.638 | 5.162 | 11081.0 | 4.07 | 0.138 | 7.3 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LUX | Europe | Luxembourg | 2020-07-04 | 4476.0 | 29.0 | 37.0 | 110.0 | 0.0 | 0.0 | 7150.434 | 46.328 | 59.108 | 175.726 | 0.0 | 0.0 | 1.63 | 3.0 | 4.793 | 24.0 | 38.34 | null | null | null | null | 231408.0 | 7851.0 | 369.676 | 12.542 | 8169.0 | 13.05 | 5.0e-3 | 220.8 | null | 24.07 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-08-13 | 7368.0 | 68.0 | 42.143 | 122.0 | 0.0 | 0.429 | 11770.419 | 108.63 | 67.323 | 194.896 | 0.0 | 0.685 | 0.85 | 3.0 | 4.793 | 38.0 | 60.705 | null | null | null | null | 559389.0 | 4654.0 | 893.627 | 7.435 | 4972.0 | 7.943 | 8.0e-3 | 118.0 | null | 34.26 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MKD | Europe | Macedonia | 2020-08-21 | 13308.0 | 114.0 | 113.286 | 557.0 | 3.0 | 3.143 | 6387.697 | 54.719 | 54.376 | 267.354 | 1.44 | 1.509 | 0.97 | null | null | null | null | null | null | null | null | 134206.0 | 1733.0 | 64.417 | 0.832 | 1598.0 | 0.767 | 7.1e-2 | 14.1 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MDG | Africa | Madagascar | 2020-08-15 | 13724.0 | 81.0 | 114.571 | 166.0 | 2.0 | 3.571 | 495.612 | 2.925 | 4.137 | 5.995 | 7.2e-2 | 0.129 | 0.72 | null | null | null | null | null | null | null | null | 51559.0 | 590.0 | 1.862 | 2.1e-2 | 543.0 | 2.0e-2 | 0.211 | 4.7 | null | 65.74 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MDG | Africa | Madagascar | 2020-09-11 | 15669.0 | 45.0 | 68.857 | 209.0 | 1.0 | 1.571 | 565.851 | 1.625 | 2.487 | 7.548 | 3.6e-2 | 5.7e-2 | 0.82 | null | null | null | null | null | null | null | null | 63222.0 | null | 2.283 | null | 464.0 | 1.7e-2 | 0.148 | 6.7 | null | 56.48 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MWI | Africa | Malawi | 2020-10-03 | 5783.0 | 0.0 | 2.429 | 179.0 | 0.0 | 0.0 | 302.301 | 0.0 | 0.127 | 9.357 | 0.0 | 0.0 | 0.89 | null | null | null | null | null | null | null | null | 54246.0 | 231.0 | 2.836 | 1.2e-2 | 266.0 | 1.4e-2 | 9.0e-3 | 109.5 | null | 54.63 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MDV | Asia | Maldives | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MDV | Asia | Maldives | 2020-05-29 | 1591.0 | 78.0 | 45.286 | 5.0 | 0.0 | 0.143 | 2943.342 | 144.3 | 83.778 | 9.25 | 0.0 | 0.264 | 1.06 | null | null | null | null | null | null | null | null | 22319.0 | 680.0 | 41.29 | 1.258 | 735.0 | 1.36 | 6.2e-2 | 16.2 | null | null | 540542.0 | 1454.433 | 30.6 | 4.12 | 2.875 | 15183.616 | null | 164.905 | 9.19 | 2.1 | 55.0 | 95.803 | null | 78.92 | 0.717 |
MLI | Africa | Mali | 2020-03-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-03-22 | 90.0 | 17.0 | 9.857 | 0.0 | 0.0 | 0.0 | 203.833 | 38.502 | 22.325 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | 11.0 | 24.913 | 0.895 | 2.026 | 1.789 | 4.052 | 3216.0 | 309.0 | 7.284 | 0.7 | 249.0 | 0.564 | 4.0e-2 | 25.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-07-18 | 675.0 | 1.0 | 0.143 | 9.0 | 0.0 | 0.0 | 1528.744 | 2.265 | 0.324 | 20.383 | 0.0 | 0.0 | 0.37 | null | null | null | null | null | null | null | null | 113237.0 | 834.0 | 256.46 | 1.889 | 867.0 | 1.964 | 0.0 | 6062.9 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-09-28 | 3006.0 | 27.0 | 32.857 | 32.0 | 1.0 | 1.286 | 6808.006 | 61.15 | 74.415 | 72.474 | 2.265 | 2.912 | 0.93 | null | null | null | null | null | null | null | null | 251746.0 | 2116.0 | 570.156 | 4.792 | 2304.0 | 5.218 | 1.4e-2 | 70.1 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MRT | Africa | Mauritania | 2020-04-16 | 7.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.505 | 0.0 | 0.0 | 0.215 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.0 | 1.4e-2 | 0.0 | null | null | 77.78 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MRT | Africa | Mauritania | 2020-07-21 | 5985.0 | 62.0 | 66.714 | 155.0 | 0.0 | 1.143 | 1287.191 | 13.334 | 14.348 | 33.336 | 0.0 | 0.246 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | 739.0 | 0.159 | 9.0e-2 | 11.1 | null | 29.63 | 4649660.0 | 4.289 | 20.3 | 3.138 | 1.792 | 3597.633 | 6.0 | 232.347 | 2.42 | null | null | 15.95 | null | 64.92 | 0.52 |
MUS | Africa | Mauritius | 2020-03-20 | 12.0 | 9.0 | 1.714 | 0.0 | 0.0 | 0.0 | 9.436 | 7.077 | 1.348 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MEX | North America | Mexico | 2020-08-17 | 525733.0 | 3571.0 | 5699.571 | 57023.0 | 266.0 | 574.286 | 4077.575 | 27.697 | 44.206 | 442.269 | 2.063 | 4.454 | 0.96 | null | null | null | null | null | null | null | null | 1207328.0 | 14669.0 | 9.364 | 0.114 | 11905.0 | 9.2e-2 | 0.479 | 2.1 | null | 70.83 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MEX | North America | Mexico | 2020-10-13 | 825340.0 | 4295.0 | 4390.286 | 84420.0 | 475.0 | 296.0 | 6401.321 | 33.312 | 34.051 | 654.76 | 3.684 | 2.296 | 1.02 | null | null | null | null | null | null | null | null | 1880454.0 | 16473.0 | 14.585 | 0.128 | 11831.0 | 9.2e-2 | 0.371 | 2.7 | null | 71.76 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MDA | Europe | Moldova | 2020-05-14 | 5553.0 | 147.0 | 135.429 | 194.0 | 9.0 | 7.0 | 1376.562 | 36.441 | 33.572 | 48.092 | 2.231 | 1.735 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
AFG | Asia | Afghanistan | 2020-09-03 | 38288.0 | 45.0 | 24.143 | 1410.0 | 0.0 | 1.143 | 983.551 | 1.156 | 0.62 | 36.22 | 0.0 | 2.9e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
AFG | Asia | Afghanistan | 2020-11-26 | 45600.0 | 216.0 | 203.286 | 1737.0 | 9.0 | 12.0 | 1171.383 | 5.549 | 5.222 | 44.62 | 0.231 | 0.308 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-05-02 | 789.0 | 7.0 | 11.0 | 31.0 | 0.0 | 0.571 | 274.168 | 2.432 | 3.822 | 10.772 | 0.0 | 0.199 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-10 | 10860.0 | 156.0 | 145.143 | 324.0 | 2.0 | 3.286 | 3773.716 | 54.208 | 50.435 | 112.586 | 0.695 | 1.142 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-05-09 | 5558.0 | 189.0 | 180.429 | 494.0 | 6.0 | 5.0 | 126.747 | 4.31 | 4.115 | 11.265 | 0.137 | 0.114 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-15 | 48734.0 | 238.0 | 256.571 | 1632.0 | 12.0 | 8.714 | 1111.353 | 5.427 | 5.851 | 37.217 | 0.274 | 0.199 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AND | Europe | Andorra | 2020-06-27 | 855.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 | 11065.812 | 0.0 | 0.0 | 673.008 | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38.89 | 77265.0 | 163.755 | null | null | null | null | null | 109.135 | 7.97 | 29.0 | 37.8 | null | null | 83.73 | 0.858 |
AGO | Africa | Angola | 2020-10-18 | 7622.0 | 160.0 | 179.429 | 247.0 | 6.0 | 4.143 | 231.91 | 4.868 | 5.459 | 7.515 | 0.183 | 0.126 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-03-25 | 3.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 30.635 | 0.0 | 2.918 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-04-03 | 15.0 | 6.0 | 1.143 | 0.0 | 0.0 | 0.0 | 153.174 | 61.27 | 11.67 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-10-01 | 101.0 | 0.0 | 0.571 | 3.0 | 0.0 | 0.0 | 1031.37 | 0.0 | 5.835 | 30.635 | 0.0 | 0.0 | 0.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-08-14 | 282437.0 | 6365.0 | 6680.0 | 5527.0 | 165.0 | 159.429 | 6249.19 | 140.832 | 147.801 | 122.29 | 3.651 | 3.528 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-04-30 | 2066.0 | 134.0 | 77.571 | 32.0 | 2.0 | 1.143 | 697.211 | 45.221 | 26.178 | 10.799 | 0.675 | 0.386 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
ARM | Asia | Armenia | 2020-07-10 | 30903.0 | 557.0 | 511.857 | 546.0 | 11.0 | 11.0 | 10428.809 | 187.97 | 172.736 | 184.258 | 3.712 | 3.712 | 0.92 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUT | Europe | Austria | 2020-05-01 | 15531.0 | 79.0 | 65.714 | 589.0 | 5.0 | 8.429 | 1724.44 | 8.772 | 7.296 | 65.398 | 0.555 | 0.936 | 0.61 | 124.0 | 13.768 | 348.0 | 38.639 | null | null | null | null | 264079.0 | 7680.0 | 29.321 | 0.853 | 7342.0 | 0.815 | 9.0e-3 | 111.7 | null | 67.59 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-09-09 | 30583.0 | 502.0 | 373.429 | 747.0 | 0.0 | 1.857 | 3395.696 | 55.738 | 41.463 | 82.941 | 0.0 | 0.206 | 1.41 | 36.0 | 3.997 | 161.0 | 17.876 | null | null | null | null | 1288059.0 | 11582.0 | 143.016 | 1.286 | 11070.0 | 1.229 | 3.4e-2 | 29.6 | null | 36.11 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-02 | 46374.0 | 688.0 | 696.286 | 803.0 | 1.0 | 2.429 | 5149.005 | 76.39 | 77.31 | 89.159 | 0.111 | 0.27 | 1.15 | 100.0 | 11.103 | 372.0 | 41.304 | null | null | null | null | 1658412.0 | 21839.0 | 184.137 | 2.425 | 18815.0 | 2.089 | 3.7e-2 | 27.0 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-06 | 49819.0 | 923.0 | 825.429 | 822.0 | 4.0 | 3.714 | 5531.511 | 102.483 | 91.649 | 91.268 | 0.444 | 0.412 | 1.21 | 101.0 | 11.214 | 397.0 | 44.08 | null | null | null | null | 1716505.0 | 18237.0 | 190.587 | 2.025 | 18561.0 | 2.061 | 4.4e-2 | 22.5 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-20 | 44.0 | 0.0 | 4.143 | 1.0 | 0.0 | 0.0 | 4.34 | 0.0 | 0.409 | 9.9e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHR | Asia | Bahrain | 2020-05-23 | 8802.0 | 388.0 | 293.571 | 13.0 | 1.0 | 0.143 | 5172.83 | 228.023 | 172.528 | 7.64 | 0.588 | 8.4e-2 | 1.21 | null | null | null | null | null | null | null | null | 276552.0 | 7373.0 | 162.526 | 4.333 | 6623.0 | 3.892 | 4.4e-2 | 22.6 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-26 | 80533.0 | 278.0 | 329.857 | 316.0 | 4.0 | 2.0 | 47328.282 | 163.377 | 193.853 | 185.709 | 2.351 | 1.175 | 0.88 | null | null | null | null | null | null | null | null | 1698489.0 | 19642.0 | 998.182 | 11.543 | 11551.0 | 6.788 | 2.9e-2 | 35.0 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-11-07 | 418764.0 | 1289.0 | 1582.857 | 6049.0 | 13.0 | 18.0 | 2542.75 | 7.827 | 9.611 | 36.73 | 7.9e-2 | 0.109 | 1.02 | null | null | null | null | null | null | null | null | 2427669.0 | 11419.0 | 14.741 | 6.9e-2 | 13029.0 | 7.9e-2 | 0.121 | 8.2 | null | 80.09 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BEL | Europe | Belgium | 2020-02-26 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.6e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-03-05 | 50.0 | 27.0 | 7.0 | 0.0 | 0.0 | 0.0 | 4.314 | 2.33 | 0.604 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2411.0 | 773.0 | 0.208 | 6.7e-2 | null | null | null | null | null | 13.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-04-04 | 18431.0 | 1661.0 | 1328.143 | 1283.0 | 140.0 | 132.857 | 1590.303 | 143.318 | 114.598 | 110.703 | 12.08 | 11.463 | 1.45 | 1261.0 | 108.804 | 5531.0 | 477.238 | null | null | null | null | 93217.0 | 5368.0 | 8.043 | 0.463 | 5288.0 | 0.456 | 0.251 | 4.0 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-07-02 | 61598.0 | 89.0 | 84.429 | 9761.0 | 7.0 | 5.0 | 5314.93 | 7.679 | 7.285 | 842.219 | 0.604 | 0.431 | 1.04 | 35.0 | 3.02 | 187.0 | 16.135 | null | null | null | null | 1303042.0 | 13607.0 | 112.432 | 1.174 | 12646.0 | 1.091 | 7.0e-3 | 149.8 | null | 50.0 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-04-17 | 18.0 | 0.0 | 1.143 | 2.0 | 0.0 | 0.0 | 45.269 | 0.0 | 2.874 | 5.03 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-06-14 | 20.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.0 | 50.299 | 0.0 | 0.359 | 5.03 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BLZ | North America | Belize | 2020-11-04 | 3905.0 | 115.0 | 92.0 | 64.0 | 3.0 | 1.714 | 9820.91 | 289.22 | 231.376 | 160.957 | 7.545 | 4.311 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-05-07 | 140.0 | 44.0 | 10.857 | 2.0 | 0.0 | 0.143 | 11.548 | 3.629 | 0.896 | 0.165 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-06-05 | 261.0 | 0.0 | 5.286 | 3.0 | 0.0 | 0.0 | 21.529 | 0.0 | 0.436 | 0.247 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-12-01 | 3015.0 | 0.0 | 14.143 | 43.0 | 0.0 | 0.0 | 248.697 | 0.0 | 1.167 | 3.547 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-08-19 | 147.0 | 0.0 | 4.857 | 0.0 | 0.0 | 0.0 | 190.51 | 0.0 | 6.295 | null | 0.0 | 0.0 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97.22 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BTN | Asia | Bhutan | 2020-10-08 | 304.0 | 0.0 | 3.143 | 0.0 | 0.0 | 0.0 | 393.98 | 0.0 | 4.073 | null | 0.0 | 0.0 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BOL | South America | Bolivia | 2020-09-06 | 120769.0 | 528.0 | 685.857 | 5398.0 | 0.0 | 61.714 | 10345.986 | 45.232 | 58.756 | 462.434 | 0.0 | 5.287 | 0.86 | null | null | null | null | null | null | null | null | 251931.0 | 1625.0 | 21.582 | 0.139 | 2093.0 | 0.179 | 0.328 | 3.1 | null | 81.48 | 1.1673029e7 | 10.202 | 25.4 | 6.704 | 4.393 | 6885.829 | 7.1 | 204.299 | 6.89 | null | null | 25.383 | 1.1 | 71.51 | 0.693 |
BIH | Europe | Bosnia and Herzegovina | 2020-07-05 | 4962.0 | 0.0 | 146.714 | 191.0 | 0.0 | 1.857 | 1512.429 | 0.0 | 44.719 | 58.217 | 0.0 | 0.566 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-11-20 | 9594.0 | 0.0 | 195.571 | 31.0 | 0.0 | 0.571 | 4079.732 | 0.0 | 83.164 | 13.182 | 0.0 | 0.243 | 0.75 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-19 | 2098389.0 | 23529.0 | 33386.857 | 79488.0 | 716.0 | 1055.429 | 9872.012 | 110.694 | 157.071 | 373.957 | 3.368 | 4.965 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | 31275.0 | 0.147 | null | null | null | 81.02 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-31 | 5535605.0 | 18947.0 | 22138.571 | 159884.0 | 407.0 | 425.857 | 26042.625 | 89.137 | 104.152 | 752.185 | 1.915 | 2.003 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.87 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-12 | 5781582.0 | 33922.0 | 27365.286 | 164281.0 | 913.0 | 453.571 | 27199.84 | 159.588 | 128.742 | 772.871 | 4.295 | 2.134 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-03-17 | 56.0 | 2.0 | 7.857 | 0.0 | 0.0 | 0.0 | 128.005 | 4.572 | 17.96 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-11-20 | 148.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 338.299 | 0.0 | 0.0 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-04-23 | 1097.0 | 73.0 | 42.429 | 52.0 | 3.0 | 2.0 | 157.877 | 10.506 | 6.106 | 7.484 | 0.432 | 0.288 | 1.29 | 37.0 | 5.325 | 270.0 | 38.858 | null | null | null | null | null | null | null | null | 879.0 | 0.127 | 4.8e-2 | 20.7 | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-12 | 2586.0 | 0.0 | 5.143 | 67.0 | 0.0 | 0.0 | 123.713 | 0.0 | 0.246 | 3.205 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-03-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-08-26 | 430.0 | 0.0 | 1.143 | 1.0 | 0.0 | 0.0 | 36.162 | 0.0 | 9.6e-2 | 8.4e-2 | 0.0 | 0.0 | 0.73 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-11-20 | 649.0 | 8.0 | 3.571 | 1.0 | 0.0 | 0.0 | 54.58 | 0.673 | 0.3 | 8.4e-2 | 0.0 | 0.0 | 0.85 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-02-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-05-05 | 122.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 4.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-07-04 | 141.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.434 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-11 | 15173.0 | 257.0 | 368.714 | 359.0 | 0.0 | 6.571 | 571.577 | 9.681 | 13.89 | 13.524 | 0.0 | 0.248 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-07-29 | 17255.0 | 76.0 | 104.714 | 391.0 | 0.0 | 1.286 | 650.007 | 2.863 | 3.945 | 14.729 | 0.0 | 4.8e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CAN | North America | Canada | 2020-01-26 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6e-2 | 2.6e-2 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-04-14 | 27035.0 | 1355.0 | 1309.0 | 901.0 | 120.0 | 75.143 | 716.308 | 35.901 | 34.683 | 23.873 | 3.179 | 1.991 | 1.3 | null | null | null | null | null | null | null | null | 454983.0 | 17508.0 | 12.055 | 0.464 | 15268.0 | 0.405 | 8.6e-2 | 11.7 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-26 | 104629.0 | 166.0 | 330.714 | 8571.0 | 4.0 | 23.286 | 2772.205 | 4.398 | 8.762 | 227.094 | 0.106 | 0.617 | 0.85 | null | null | null | null | null | null | null | null | 2598243.0 | 39880.0 | 68.842 | 1.057 | 36954.0 | 0.979 | 9.0e-3 | 111.7 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-06-14 | 750.0 | 24.0 | 28.0 | 6.0 | 0.0 | 0.143 | 1348.95 | 43.166 | 50.361 | 10.792 | 0.0 | 0.257 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-09-11 | 4749.0 | 2.0 | 2.857 | 62.0 | 0.0 | 0.0 | 983.278 | 0.414 | 0.592 | 12.837 | 0.0 | 0.0 | 0.61 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
TCD | Africa | Chad | 2020-05-18 | 519.0 | 16.0 | 28.143 | 53.0 | 0.0 | 3.143 | 31.597 | 0.974 | 1.713 | 3.227 | 0.0 | 0.191 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-05-20 | 565.0 | 20.0 | 27.571 | 57.0 | 1.0 | 2.143 | 34.397 | 1.218 | 1.679 | 3.47 | 6.1e-2 | 0.13 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-07-02 | 868.0 | 2.0 | 0.714 | 74.0 | 0.0 | 0.0 | 52.844 | 0.122 | 4.3e-2 | 4.505 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 67.59 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
CHL | South America | Chile | 2020-11-12 | 526438.0 | 1634.0 | 1408.0 | 14699.0 | 66.0 | 42.143 | 27538.828 | 85.477 | 73.655 | 768.929 | 3.453 | 2.205 | 0.99 | null | null | null | null | null | null | null | null | 4695035.0 | 35708.0 | 245.605 | 1.868 | 34425.0 | 1.801 | 4.1e-2 | 24.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-03-26 | 81782.0 | 121.0 | 89.429 | 3291.0 | 6.0 | 6.0 | 56.82 | 8.4e-2 | 6.2e-2 | 2.286 | 4.0e-3 | 4.0e-3 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.94 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-07-04 | 84857.0 | 19.0 | 16.286 | 4641.0 | 0.0 | 0.0 | 58.956 | 1.3e-2 | 1.1e-2 | 3.224 | 0.0 | 0.0 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-04-28 | 5949.0 | 352.0 | 257.143 | 269.0 | 16.0 | 10.429 | 116.916 | 6.918 | 5.054 | 5.287 | 0.314 | 0.205 | 1.34 | null | null | null | null | null | null | null | null | 95085.0 | 4186.0 | 1.869 | 8.2e-2 | 3818.0 | 7.5e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-11-22 | 1248417.0 | 7924.0 | 7095.857 | 35287.0 | 183.0 | 179.429 | 24535.107 | 155.73 | 139.455 | 693.494 | 3.596 | 3.526 | null | null | null | null | null | null | null | null | null | 4844144.0 | 26969.0 | 95.202 | 0.53 | 27587.0 | 0.542 | null | null | null | 65.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-25 | 87.0 | 0.0 | 10.857 | 1.0 | 0.0 | 0.0 | 100.047 | 0.0 | 12.485 | 1.15 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-17 | 502.0 | 0.0 | 1.0 | 7.0 | 0.0 | 0.0 | 577.28 | 0.0 | 1.15 | 8.05 | 0.0 | 0.0 | 0.64 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-07-24 | 3038.0 | 187.0 | 57.857 | 51.0 | 1.0 | 0.286 | 550.553 | 33.889 | 10.485 | 9.242 | 0.181 | 5.2e-2 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-08-31 | 3979.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | 721.083 | 0.0 | 0.0 | 14.135 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CRI | North America | Costa Rica | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CRI | North America | Costa Rica | 2020-06-15 | 1744.0 | 29.0 | 57.429 | 12.0 | 0.0 | 0.143 | 342.356 | 5.693 | 11.274 | 2.356 | 0.0 | 2.8e-2 | 1.44 | null | null | null | null | null | null | null | null | 24411.0 | 237.0 | 4.792 | 4.7e-2 | 368.0 | 7.2e-2 | null | null | null | 72.22 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CIV | Africa | Cote d'Ivoire | 2020-07-22 | 14733.0 | 202.0 | 190.0 | 93.0 | 0.0 | 0.857 | 558.528 | 7.658 | 7.203 | 3.526 | 0.0 | 3.2e-2 | 0.94 | null | null | null | null | null | null | null | null | 87683.0 | 1131.0 | 3.324 | 4.3e-2 | 1113.0 | 4.2e-2 | 0.171 | 5.9 | null | 60.65 | 2.6378275e7 | 76.399 | 18.7 | 2.933 | 1.582 | 3601.006 | 28.2 | 303.74 | 2.42 | null | null | 19.351 | null | 57.78 | 0.492 |
CUB | North America | Cuba | 2020-08-20 | 3565.0 | 83.0 | 55.857 | 88.0 | 0.0 | -0.143 | 314.745 | 7.328 | 4.931 | 7.769 | 0.0 | -1.3e-2 | 1.11 | null | null | null | null | null | null | null | null | 351663.0 | 5224.0 | 31.047 | 0.461 | 4603.0 | 0.406 | 1.2e-2 | 82.4 | null | 82.41 | 1.1326616e7 | 110.408 | 43.1 | 14.738 | 9.719 | null | null | 190.968 | 8.27 | 17.1 | 53.3 | 85.198 | 5.2 | 78.8 | 0.777 |
CYP | Europe | Cyprus | 2020-07-20 | 1038.0 | 0.0 | 2.286 | 19.0 | 0.0 | 0.0 | 1185.068 | 0.0 | 2.61 | 21.692 | 0.0 | 0.0 | 1.32 | null | null | null | null | null | null | null | null | 185489.0 | 1565.0 | 211.77 | 1.787 | 1532.0 | 1.749 | 1.0e-3 | 670.2 | null | 47.22 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-05-05 | 7896.0 | 77.0 | 56.0 | 257.0 | 5.0 | 4.286 | 737.325 | 7.19 | 5.229 | 23.999 | 0.467 | 0.4 | 0.78 | 47.0 | 4.389 | 223.0 | 20.824 | null | null | null | null | 283273.0 | 9383.0 | 26.452 | 0.876 | 6303.0 | 0.589 | 9.0e-3 | 112.6 | null | 57.41 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-03-13 | 2.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.2e-2 | 1.1e-2 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 14.0 | 2.0 | 2.0e-3 | 0.0 | 1.0 | 0.0 | 0.0 | null | null | 0.0 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-09-27 | 5409.0 | 0.0 | 0.857 | 61.0 | 0.0 | 0.0 | 5474.685 | 0.0 | 0.868 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-10-01 | 5417.0 | 1.0 | 1.429 | 61.0 | 0.0 | 0.0 | 5482.782 | 1.012 | 1.446 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DOM | North America | Dominican Republic | 2020-03-07 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 0.184 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-04-14 | 3286.0 | 119.0 | 190.0 | 183.0 | 6.0 | 12.143 | 302.916 | 10.97 | 17.515 | 16.87 | 0.553 | 1.119 | 1.37 | null | null | null | null | null | null | null | null | 11741.0 | 1293.0 | 1.082 | 0.119 | 769.0 | 7.1e-2 | 0.247 | 4.0 | null | 92.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-06 | 115371.0 | 317.0 | 495.857 | 2149.0 | 5.0 | 6.857 | 10635.326 | 29.222 | 45.71 | 198.103 | 0.461 | 0.632 | 1.0 | null | null | null | null | null | null | null | null | 502680.0 | 4599.0 | 46.339 | 0.424 | 3610.0 | 0.333 | 0.137 | 7.3 | null | 78.7 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-20 | 136784.0 | 601.0 | 604.286 | 2306.0 | 5.0 | 3.714 | 12609.256 | 55.402 | 55.705 | 212.576 | 0.461 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | 4378.0 | 0.404 | 0.138 | 7.2 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
EGY | Africa | Egypt | 2020-03-22 | 327.0 | 33.0 | 31.0 | 14.0 | 4.0 | 1.714 | 3.195 | 0.322 | 0.303 | 0.137 | 3.9e-2 | 1.7e-2 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-04-14 | 2350.0 | 160.0 | 128.571 | 178.0 | 14.0 | 12.0 | 22.964 | 1.564 | 1.256 | 1.739 | 0.137 | 0.117 | 1.36 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-12-03 | 39130.0 | 0.0 | 178.0 | 1134.0 | 5.0 | 5.143 | 6032.807 | 0.0 | 27.443 | 174.833 | 0.771 | 0.793 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
GNQ | Africa | Equatorial Guinea | 2020-05-15 | 594.0 | 11.0 | 22.143 | 7.0 | 0.0 | 0.429 | 423.383 | 7.84 | 15.783 | 4.989 | 0.0 | 0.305 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
EST | Europe | Estonia | 2020-04-22 | 1559.0 | 7.0 | 22.714 | 44.0 | 1.0 | 1.286 | 1175.239 | 5.277 | 17.123 | 33.169 | 0.754 | 0.969 | 0.72 | 12.0 | 9.046 | 110.0 | 82.923 | null | null | null | null | 48443.0 | 1732.0 | 36.518 | 1.306 | 1461.0 | 1.101 | 1.6e-2 | 64.3 | null | 77.78 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-07-10 | 2013.0 | 2.0 | 3.143 | 69.0 | 0.0 | 0.0 | 1517.483 | 1.508 | 2.369 | 52.015 | 0.0 | 0.0 | 0.94 | 2.0 | 1.508 | 4.0 | 3.015 | null | null | null | null | 129910.0 | 422.0 | 97.932 | 0.318 | 556.0 | 0.419 | 6.0e-3 | 176.9 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-09-14 | 2698.0 | 22.0 | 23.714 | 64.0 | 0.0 | 0.0 | 2033.864 | 16.585 | 17.877 | 48.246 | 0.0 | 0.0 | 1.25 | 1.0 | 0.754 | 19.0 | 14.323 | null | null | null | null | 208696.0 | 3059.0 | 157.324 | 2.306 | 2476.0 | 1.867 | 1.0e-2 | 104.4 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
TLS | Asia | Timor | 2020-04-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.758 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TLS | Asia | Timor | 2020-05-12 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.203 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-04-03 | 40.0 | 1.0 | 2.143 | 3.0 | 1.0 | 0.286 | 4.832 | 0.121 | 0.259 | 0.362 | 0.121 | 3.5e-2 | null | null | null | null | null | null | null | null | null | 1018.0 | 294.0 | 0.123 | 3.6e-2 | 100.0 | 1.2e-2 | 2.1e-2 | 46.7 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TTO | North America | Trinidad and Tobago | 2020-03-18 | 7.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 5.002 | 1.429 | 0.715 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 1399491.0 | 266.886 | 36.2 | 10.014 | 5.819 | 28763.071 | null | 228.467 | 10.97 | null | null | 89.443 | 3.0 | 73.51 | 0.784 |
TUN | Africa | Tunisia | 2020-03-21 | 60.0 | 6.0 | 6.0 | 1.0 | 0.0 | 0.143 | 5.077 | 0.508 | 0.508 | 8.5e-2 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | 955.0 | 135.0 | 8.1e-2 | 1.1e-2 | 85.0 | 7.0e-3 | 7.1e-2 | 14.2 | null | 77.78 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-11 | 1032.0 | 0.0 | 2.0 | 45.0 | 0.0 | 0.286 | 87.32 | 0.0 | 0.169 | 3.808 | 0.0 | 2.4e-2 | 0.59 | null | null | null | null | null | null | null | null | 34323.0 | 443.0 | 2.904 | 3.7e-2 | 1253.0 | 0.106 | 2.0e-3 | 626.5 | null | 87.04 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-31 | 1077.0 | 1.0 | 3.714 | 48.0 | 0.0 | 0.0 | 91.127 | 8.5e-2 | 0.314 | 4.061 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | 53161.0 | 287.0 | 4.498 | 2.4e-2 | 578.0 | 4.9e-2 | 6.0e-3 | 155.6 | null | 79.63 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-06-14 | 178239.0 | 1562.0 | 1158.143 | 4807.0 | 15.0 | 16.429 | 2113.362 | 18.52 | 13.732 | 56.996 | 0.178 | 0.195 | 1.44 | null | null | null | null | null | null | null | null | 2632171.0 | 45176.0 | 31.209 | 0.536 | 41940.0 | 0.497 | 2.8e-2 | 36.2 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-07-20 | 220572.0 | 931.0 | 938.714 | 5508.0 | 17.0 | 18.0 | 2615.3 | 11.039 | 11.13 | 65.308 | 0.202 | 0.213 | 0.93 | null | null | null | null | null | null | null | null | 4316781.0 | 43404.0 | 51.184 | 0.515 | 42119.0 | 0.499 | 2.2e-2 | 44.9 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-09-06 | 279806.0 | 1578.0 | 1608.571 | 6673.0 | 53.0 | 49.571 | 3317.632 | 18.71 | 19.073 | 79.121 | 0.628 | 0.588 | 1.05 | null | null | null | null | null | null | null | null | 7779539.0 | 96842.0 | 92.241 | 1.148 | 107307.0 | 1.272 | 1.5e-2 | 66.7 | null | 47.22 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-07-02 | 902.0 | 9.0 | 11.571 | 0.0 | 0.0 | 0.0 | 19.72 | 0.197 | 0.253 | null | 0.0 | 0.0 | 0.95 | null | null | null | null | null | null | null | null | 200179.0 | 3349.0 | 4.376 | 7.3e-2 | null | null | null | null | null | 87.04 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-11-28 | 19944.0 | 356.0 | 325.286 | 201.0 | 4.0 | 4.714 | 436.02 | 7.783 | 7.111 | 4.394 | 8.7e-2 | 0.103 | null | null | null | null | null | null | null | null | null | 623977.0 | 823.0 | 13.642 | 1.8e-2 | 2101.0 | 4.6e-2 | 0.155 | 6.5 | null | null | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-10-10 | 593565.0 | 15175.0 | 15844.429 | 42850.0 | 81.0 | 63.286 | 8743.555 | 223.537 | 233.398 | 631.205 | 1.193 | 0.932 | 1.22 | 470.0 | 6.923 | 4194.0 | 61.78 | null | null | null | null | 2.3471856e7 | 256190.0 | 345.754 | 3.774 | 251482.0 | 3.704 | 6.3e-2 | 15.9 | null | 67.59 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-03-22 | 34855.0 | 8830.0 | 4520.429 | 574.0 | 110.0 | 72.0 | 105.301 | 26.677 | 13.657 | 1.734 | 0.332 | 0.218 | 3.1 | null | null | 2173.0 | 6.565 | 0.0 | 0.0 | 2989.0 | 9.03 | 459727.0 | 72176.0 | 1.389 | 0.218 | 56551.0 | 0.171 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-05-25 | 1666505.0 | 18347.0 | 21812.714 | 101521.0 | 557.0 | 1115.286 | 5034.718 | 55.429 | 65.899 | 306.708 | 1.683 | 3.369 | 0.93 | 8467.0 | 25.58 | 37382.0 | 112.936 | null | null | null | null | 1.6179748e7 | 335387.0 | 48.881 | 1.013 | 413773.0 | 1.25 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-10-04 | 7402515.0 | 36092.0 | 42957.571 | 210006.0 | 349.0 | 711.714 | 22363.915 | 109.038 | 129.78 | 634.454 | 1.054 | 2.15 | 1.05 | 5974.0 | 18.048 | 29945.0 | 90.468 | 679.0 | 2.051 | 9423.0 | 28.468 | 1.20830414e8 | 626288.0 | 365.044 | 1.892 | 951162.0 | 2.874 | null | null | null | 62.5 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-15 | 1827.0 | 15.0 | 16.429 | 45.0 | 0.0 | 0.0 | 525.948 | 4.318 | 4.729 | 12.954 | 0.0 | 0.0 | 1.11 | null | null | null | null | null | null | null | null | 203232.0 | 1797.0 | 58.505 | 0.517 | 2085.0 | 0.6 | 8.0e-3 | 126.9 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
URY | South America | Uruguay | 2020-09-24 | 1959.0 | 13.0 | 11.857 | 47.0 | 0.0 | 0.143 | 563.948 | 3.742 | 3.413 | 13.53 | 0.0 | 4.1e-2 | 1.12 | null | null | null | null | null | null | null | null | 224322.0 | 3009.0 | 64.577 | 0.866 | 2290.0 | 0.659 | 5.0e-3 | 193.1 | null | 43.52 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-05-24 | 3164.0 | 49.0 | 58.714 | 13.0 | 0.0 | 0.143 | 94.535 | 1.464 | 1.754 | 0.388 | 0.0 | 4.0e-3 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-06-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-10-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VAT | Europe | Vatican | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VAT | Europe | Vatican | 2020-09-13 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14833.127 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VAT | Europe | Vatican | 2020-10-23 | 27.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 33374.536 | 0.0 | 176.585 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VEN | South America | Venezuela | 2020-05-04 | 357.0 | 0.0 | 4.0 | 10.0 | 0.0 | 0.0 | 12.555 | 0.0 | 0.141 | 0.352 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
VEN | South America | Venezuela | 2020-07-05 | 7169.0 | 419.0 | 267.429 | 65.0 | 3.0 | 3.0 | 252.111 | 14.735 | 9.405 | 2.286 | 0.106 | 0.106 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
VNM | Asia | Vietnam | 2020-03-31 | 212.0 | 9.0 | 11.143 | 0.0 | 0.0 | 0.0 | 2.178 | 9.2e-2 | 0.114 | null | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | 4476.0 | 4.6e-2 | 2.0e-3 | 401.7 | null | 83.33 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
VNM | Asia | Vietnam | 2020-06-10 | 332.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 3.411 | 0.0 | 6.0e-3 | null | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
ESH | Africa | Western Sahara | 2020-04-24 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
ESH | Africa | Western Sahara | 2020-05-10 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
OWID_WRL | World | World | 2020-04-06 | 1342655.0 | 73233.0 | 77646.857 | 79519.0 | 5946.0 | 5697.571 | 172.25 | 9.395 | 9.961 | 10.202 | 0.763 | 0.731 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
OWID_WRL | World | World | 2020-05-13 | 4351182.0 | 84840.0 | 83759.286 | 300046.0 | 5077.0 | 4674.286 | 558.216 | 10.884 | 10.746 | 38.493 | 0.651 | 0.6 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
OWID_WRL | World | World | 2020-09-06 | 2.7123898e7 | 223342.0 | 270152.286 | 883806.0 | 3784.0 | 5300.143 | 3479.743 | 28.653 | 34.658 | 113.384 | 0.485 | 0.68 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 7.794798729e9 | 58.045 | 30.9 | 8.696 | 5.355 | 15469.207 | 10.0 | 233.07 | 8.51 | 6.434 | 34.635 | 60.13 | 2.705 | 72.58 | null |
ZMB | Africa | Zambia | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-08-17 | 5308.0 | 47.0 | 80.0 | 135.0 | 3.0 | 4.429 | 357.13 | 3.162 | 5.383 | 9.083 | 0.202 | 0.298 | 1.05 | null | null | null | null | null | null | null | null | 83782.0 | 898.0 | 5.637 | 6.0e-2 | 1337.0 | 9.0e-2 | 6.0e-2 | 16.7 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-11-12 | 8696.0 | 29.0 | 36.0 | 255.0 | 0.0 | 1.0 | 585.08 | 1.951 | 2.422 | 17.157 | 0.0 | 6.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 150616.0 | 1086.0 | 10.134 | 7.3e-2 | 796.0 | 5.4e-2 | 4.5e-2 | 22.1 | null | 67.59 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
MNG | Asia | Mongolia | 2020-06-21 | 213.0 | 7.0 | 2.286 | 0.0 | 0.0 | 0.0 | 64.973 | 2.135 | 0.697 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-11-10 | 382.0 | 14.0 | 4.286 | 0.0 | 0.0 | 0.0 | 116.524 | 4.271 | 1.307 | null | 0.0 | 0.0 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNE | Europe | Montenegro | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-05-15 | 6652.0 | 45.0 | 134.429 | 190.0 | 0.0 | 0.571 | 180.219 | 1.219 | 3.642 | 5.148 | 0.0 | 1.5e-2 | 0.82 | null | null | null | null | null | null | null | null | 81616.0 | 3694.0 | 2.211 | 0.1 | 3106.0 | 8.4e-2 | 4.3e-2 | 23.1 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-08-01 | 25015.0 | 693.0 | 767.143 | 367.0 | 14.0 | 8.857 | 677.719 | 18.775 | 20.784 | 9.943 | 0.379 | 0.24 | 1.42 | null | null | null | null | null | null | null | null | 1273939.0 | 21574.0 | 34.514 | 0.584 | 21104.0 | 0.572 | 3.6e-2 | 27.5 | null | 64.81 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-09-16 | 5994.0 | 281.0 | 175.714 | 39.0 | 2.0 | 1.571 | 191.775 | 8.99 | 5.622 | 1.248 | 6.4e-2 | 5.0e-2 | 1.12 | null | null | null | null | null | null | null | null | 118657.0 | 1628.0 | 3.796 | 5.2e-2 | 1557.0 | 5.0e-2 | 0.113 | 8.9 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-10-04 | 9196.0 | 147.0 | 173.286 | 66.0 | 2.0 | 1.143 | 294.221 | 4.703 | 5.544 | 2.112 | 6.4e-2 | 3.7e-2 | 1.1 | null | null | null | null | null | null | null | null | 144618.0 | 1337.0 | 4.627 | 4.3e-2 | 1515.0 | 4.8e-2 | 0.114 | 8.7 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-06-27 | 296.0 | 3.0 | 1.286 | 6.0 | 0.0 | 0.0 | 5.44 | 5.5e-2 | 2.4e-2 | 0.11 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | 73218.0 | 1526.0 | 1.346 | 2.8e-2 | 1593.0 | 2.9e-2 | 1.0e-3 | 1238.7 | null | 80.56 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-03-21 | 3.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.181 | 0.0 | 5.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-08-08 | 2802.0 | 0.0 | 82.571 | 16.0 | 0.0 | 0.714 | 1102.752 | 0.0 | 32.497 | 6.297 | 0.0 | 0.281 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | 976.0 | 0.384 | 8.5e-2 | 11.8 | null | 48.61 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NAM | Africa | Namibia | 2020-10-21 | 12406.0 | 39.0 | 48.143 | 133.0 | 1.0 | 0.429 | 4882.491 | 15.349 | 18.947 | 52.343 | 0.394 | 0.169 | 0.91 | null | null | null | null | null | null | null | null | 118462.0 | 703.0 | 46.622 | 0.277 | 859.0 | 0.338 | 5.6e-2 | 17.8 | null | 34.26 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-07-23 | 18241.0 | 147.0 | 128.143 | 43.0 | 1.0 | 0.571 | 626.047 | 5.045 | 4.398 | 1.476 | 3.4e-2 | 2.0e-2 | 0.98 | null | null | null | null | null | null | null | null | 331095.0 | 3481.0 | 11.363 | 0.119 | 3898.0 | 0.134 | 3.3e-2 | 30.4 | null | 74.07 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-06-01 | 46749.0 | 104.0 | 157.429 | 5981.0 | 6.0 | 18.857 | 2728.296 | 6.069 | 9.188 | 349.054 | 0.35 | 1.101 | 0.87 | 151.0 | 8.812 | null | null | null | null | null | null | null | null | null | null | 5351.0 | 0.312 | 2.9e-2 | 34.0 | null | 62.96 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-06-19 | 49634.0 | 107.0 | 138.0 | 6100.0 | 3.0 | 4.0 | 2896.666 | 6.245 | 8.054 | 355.999 | 0.175 | 0.233 | 0.75 | 73.0 | 4.26 | null | null | null | null | null | null | null | null | null | null | 9291.0 | 0.542 | 1.5e-2 | 67.3 | null | 59.26 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-05 | 50834.0 | 73.0 | 68.429 | 6146.0 | 1.0 | 3.143 | 2966.698 | 4.26 | 3.994 | 358.684 | 5.8e-2 | 0.183 | 0.83 | 36.0 | 2.101 | null | null | 4.957 | 0.289 | 8.923 | 0.521 | 685145.0 | null | 39.985 | null | 9951.0 | 0.581 | 7.0e-3 | 145.4 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-11-30 | 531930.0 | 4594.0 | 4918.429 | 9453.0 | 27.0 | 61.714 | 31043.708 | 268.108 | 287.042 | 551.682 | 1.576 | 3.602 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-04-14 | 1366.0 | 17.0 | 29.429 | 9.0 | 4.0 | 1.143 | 283.271 | 3.525 | 6.103 | 1.866 | 0.829 | 0.237 | 0.55 | null | null | null | null | null | null | null | null | 67480.0 | 3123.0 | 13.994 | 0.648 | 2423.0 | 0.502 | 1.2e-2 | 82.3 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-06-02 | 1504.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.143 | 311.889 | 0.0 | 0.0 | 4.562 | 0.0 | 3.0e-2 | 0.1 | null | null | null | null | null | null | null | null | 278212.0 | 1149.0 | 57.694 | 0.238 | 1673.0 | 0.347 | 0.0 | null | null | 37.04 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-08-15 | 1622.0 | 13.0 | 7.571 | 22.0 | 0.0 | 0.0 | 336.359 | 2.696 | 1.57 | 4.562 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | 566096.0 | 23991.0 | 117.393 | 4.975 | 11027.0 | 2.287 | 1.0e-3 | 1456.5 | null | 68.98 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-03-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NGA | Africa | Nigeria | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-05-03 | 2558.0 | 170.0 | 183.571 | 87.0 | 2.0 | 6.714 | 12.409 | 0.825 | 0.891 | 0.422 | 1.0e-2 | 3.3e-2 | 1.5 | null | null | null | null | null | null | null | null | 16588.0 | null | 8.0e-2 | null | 758.0 | 4.0e-3 | 0.242 | 4.1 | null | 85.65 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-06-29 | 25133.0 | 566.0 | 602.0 | 573.0 | 8.0 | 6.857 | 121.922 | 2.746 | 2.92 | 2.78 | 3.9e-2 | 3.3e-2 | 1.06 | null | null | null | null | null | null | null | null | 132304.0 | 2140.0 | 0.642 | 1.0e-2 | 2363.0 | 1.1e-2 | 0.255 | 3.9 | null | 80.09 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-07 | 8547.0 | 16.0 | 15.286 | 238.0 | 0.0 | 0.286 | 1576.576 | 2.951 | 2.82 | 43.901 | 0.0 | 5.3e-2 | 0.96 | null | null | 21.0 | 3.874 | null | null | null | null | 266925.0 | 933.0 | 49.237 | 0.172 | 2206.0 | 0.407 | 7.0e-3 | 144.3 | null | 39.81 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-17 | 8692.0 | 32.0 | 14.0 | 243.0 | 1.0 | 0.571 | 1603.323 | 5.903 | 2.582 | 44.824 | 0.184 | 0.105 | 1.05 | null | null | 18.0 | 3.32 | null | null | null | null | 311041.0 | 4980.0 | 57.374 | 0.919 | 4021.0 | 0.742 | 3.0e-3 | 287.2 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-10-19 | 16603.0 | 146.0 | 137.714 | 278.0 | 0.0 | 0.286 | 3062.582 | 26.931 | 25.403 | 51.28 | 0.0 | 5.3e-2 | 1.24 | null | null | 28.0 | 5.165 | null | null | null | null | 1514984.0 | 20733.0 | 279.453 | 3.824 | 13044.0 | 2.406 | 1.1e-2 | 94.7 | null | 28.7 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-04-27 | 2049.0 | 51.0 | 91.286 | 10.0 | 0.0 | 0.429 | 401.244 | 9.987 | 17.876 | 1.958 | 0.0 | 8.4e-2 | 1.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
OMN | Asia | Oman | 2020-08-24 | 84509.0 | 740.0 | 183.286 | 637.0 | 28.0 | 7.0 | 16548.905 | 144.91 | 35.892 | 124.74 | 5.483 | 1.371 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-04-28 | 15525.0 | 913.0 | 778.429 | 343.0 | 31.0 | 18.714 | 70.283 | 4.133 | 3.524 | 1.553 | 0.14 | 8.5e-2 | 1.4 | null | null | null | null | null | null | null | null | 157223.0 | 6467.0 | 0.712 | 2.9e-2 | 6488.0 | 2.9e-2 | 0.12 | 8.3 | null | 89.81 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-04-07 | 2100.0 | 112.0 | 131.286 | 55.0 | 1.0 | 3.571 | 486.701 | 25.957 | 30.427 | 12.747 | 0.232 | 0.828 | 1.46 | null | null | null | null | null | null | null | null | 10681.0 | 384.0 | 2.475 | 8.9e-2 | 534.0 | 0.124 | 0.246 | 4.1 | null | 90.74 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-04-27 | 6021.0 | 242.0 | 222.0 | 167.0 | 2.0 | 5.857 | 1395.44 | 56.086 | 51.451 | 38.704 | 0.464 | 1.357 | 1.1 | null | null | null | null | null | null | null | null | 27221.0 | 1098.0 | 6.309 | 0.254 | 934.0 | 0.216 | 0.238 | 4.2 | null | 93.52 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-05-29 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.894 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.31 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-05-12 | 737.0 | 13.0 | 43.714 | 10.0 | 0.0 | 0.0 | 103.329 | 1.823 | 6.129 | 1.402 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 16917.0 | 762.0 | 2.372 | 0.107 | 715.0 | 0.1 | 6.1e-2 | 16.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-09-27 | 38684.0 | 762.0 | 737.714 | 803.0 | 21.0 | 20.571 | 5423.601 | 106.834 | 103.43 | 112.583 | 2.944 | 2.884 | 1.08 | null | null | null | null | null | null | null | null | 269710.0 | 2648.0 | 37.814 | 0.371 | 2690.0 | 0.377 | 0.274 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PER | South America | Peru | 2020-05-22 | 111698.0 | 2929.0 | 3886.143 | 3244.0 | 96.0 | 121.714 | 3387.678 | 88.833 | 117.862 | 98.387 | 2.912 | 3.691 | 1.22 | null | null | null | null | null | null | null | null | 135586.0 | 5230.0 | 4.112 | 0.159 | 3878.0 | 0.118 | null | null | null | 92.59 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-02 | 657129.0 | 5092.0 | 7106.714 | 29068.0 | 124.0 | 152.429 | 19930.003 | 154.435 | 215.539 | 881.601 | 3.761 | 4.623 | 0.99 | null | null | null | null | null | null | null | null | 680150.0 | 7875.0 | 20.628 | 0.239 | 7053.0 | 0.214 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-09 | 696190.0 | 4615.0 | 5580.143 | 30123.0 | 147.0 | 150.714 | 21114.681 | 139.968 | 169.24 | 913.598 | 4.458 | 4.571 | 0.96 | null | null | null | null | null | null | null | null | 728802.0 | 8243.0 | 22.104 | 0.25 | 6950.0 | 0.211 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PER | South America | Peru | 2020-09-22 | 768895.0 | 0.0 | 5005.0 | 31369.0 | 0.0 | 79.571 | 23319.744 | 0.0 | 151.796 | 951.387 | 0.0 | 2.413 | 0.94 | null | null | null | null | null | null | null | null | 813013.0 | 7704.0 | 24.658 | 0.234 | 6558.0 | 0.199 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PHL | Asia | Philippines | 2020-02-01 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 9.0e-3 | 0.0 | 1.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-05-25 | 14319.0 | 284.0 | 228.714 | 873.0 | 5.0 | 6.0 | 130.67 | 2.592 | 2.087 | 7.967 | 4.6e-2 | 5.5e-2 | 1.31 | null | null | null | null | null | null | null | null | 285929.0 | 5421.0 | 2.609 | 4.9e-2 | 7459.0 | 6.8e-2 | 3.1e-2 | 32.6 | null | 96.3 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-04-07 | 4848.0 | 435.0 | 362.429 | 129.0 | 22.0 | 13.714 | 128.096 | 11.494 | 9.576 | 3.408 | 0.581 | 0.362 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.48 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-04-16 | 7918.0 | 336.0 | 334.714 | 314.0 | 28.0 | 20.0 | 209.213 | 8.878 | 8.844 | 8.297 | 0.74 | 0.528 | 1.11 | null | null | 2607.0 | 68.883 | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-07-22 | 41162.0 | 380.0 | 348.714 | 1642.0 | 6.0 | 6.857 | 1087.601 | 10.041 | 9.214 | 43.386 | 0.159 | 0.181 | 1.19 | null | null | 1644.0 | 43.439 | null | null | null | null | 1761265.0 | 19656.0 | 46.537 | 0.519 | 17054.0 | 0.451 | 2.0e-2 | 48.9 | null | 39.81 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-10-09 | 116338.0 | 4739.0 | 2937.857 | 2919.0 | 52.0 | 49.857 | 3073.935 | 125.216 | 77.625 | 77.127 | 1.374 | 1.317 | 1.69 | null | null | 4407.0 | 116.444 | null | null | null | null | 3455011.0 | 31036.0 | 91.29 | 0.82 | 28845.0 | 0.762 | 0.102 | 9.8 | null | 23.15 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-04-03 | 9886.0 | 852.0 | 802.571 | 246.0 | 37.0 | 24.286 | 969.529 | 83.556 | 78.709 | 24.125 | 3.629 | 2.382 | 1.44 | 245.0 | 24.027 | 1058.0 | 103.759 | null | null | null | null | 107234.0 | 9438.0 | 10.517 | 0.926 | 7878.0 | 0.773 | 0.102 | 9.8 | null | 82.41 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-01 | 76396.0 | 854.0 | 748.571 | 1977.0 | 6.0 | 6.571 | 7492.223 | 83.753 | 73.413 | 193.886 | 0.588 | 0.644 | 1.18 | 107.0 | 10.494 | 682.0 | 66.884 | null | null | null | null | 2675452.0 | 24530.0 | 262.384 | 2.406 | 21504.0 | 2.109 | 3.5e-2 | 28.7 | null | 58.8 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-11-19 | 136649.0 | 208.0 | 216.714 | 235.0 | 0.0 | 0.143 | 47430.113 | 72.196 | 75.22 | 81.567 | 0.0 | 5.0e-2 | 1.0 | null | null | null | null | null | null | null | null | 1067758.0 | 4703.0 | 370.613 | 1.632 | 4545.0 | 1.578 | 4.8e-2 | 21.0 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-08-26 | 81646.0 | 1256.0 | 1147.0 | 3421.0 | 54.0 | 45.0 | 4244.066 | 65.289 | 59.623 | 177.828 | 2.807 | 2.339 | 1.01 | 502.0 | 26.095 | null | null | null | null | null | null | 1705368.0 | 25754.0 | 88.647 | 1.339 | 19819.0 | 1.03 | 5.8e-2 | 17.3 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-11 | 155283.0 | 2880.0 | 2769.0 | 5411.0 | 53.0 | 58.286 | 8071.814 | 149.706 | 143.936 | 281.271 | 2.755 | 3.03 | 1.29 | 628.0 | 32.644 | null | null | null | null | 18152.199 | 943.575 | 2672537.0 | 15709.0 | 138.922 | 0.817 | 23190.0 | 1.205 | 0.119 | 8.4 | null | 44.44 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-31 | 241339.0 | 5753.0 | 5078.0 | 6968.0 | 101.0 | 92.857 | 12545.118 | 299.049 | 263.961 | 362.206 | 5.25 | 4.827 | 1.26 | 923.0 | 47.979 | null | null | null | null | null | null | 3242748.0 | 36181.0 | 168.562 | 1.881 | 30479.0 | 1.584 | 0.167 | 6.0 | null | 54.63 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-02-29 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RWA | Africa | Rwanda | 2020-04-04 | 102.0 | 13.0 | 6.0 | 0.0 | 0.0 | 0.0 | 7.875 | 1.004 | 0.463 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
RWA | Africa | Rwanda | 2020-11-12 | 5319.0 | 7.0 | 18.143 | 41.0 | 0.0 | 0.714 | 410.664 | 0.54 | 1.401 | 3.165 | 0.0 | 5.5e-2 | 1.43 | null | null | null | null | null | null | null | null | null | null | null | null | 2056.0 | 0.159 | 9.0e-3 | 113.3 | null | 58.33 | 1.2952209e7 | 494.869 | 20.3 | 2.974 | 1.642 | 1854.211 | 56.0 | 191.375 | 4.28 | 4.7 | 21.0 | 4.617 | null | 69.02 | 0.524 |
KNA | North America | Saint Kitts and Nevis | 2020-03-27 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 37.6 | 0.0 | 5.371 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
KNA | North America | Saint Kitts and Nevis | 2020-10-25 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 357.197 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
LCA | North America | Saint Lucia | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-04-26 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 81.686 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-09-27 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147.036 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
LCA | North America | Saint Lucia | 2020-10-04 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147.036 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 183629.0 | 293.187 | 34.9 | 9.721 | 6.405 | 12951.839 | null | 204.62 | 11.62 | null | null | 87.202 | 1.3 | 76.2 | 0.747 |
VCT | North America | Saint Vincent and the Grenadines | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-13 | 64.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 576.852 | 0.0 | 3.863 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-14 | 64.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 576.852 | 0.0 | 2.575 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
STP | Africa | Sao Tome and Principe | 2020-06-26 | 712.0 | 1.0 | 2.714 | 13.0 | 0.0 | 0.143 | 3248.753 | 4.563 | 12.385 | 59.317 | 0.0 | 0.652 | 0.53 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 219161.0 | 212.841 | 18.7 | 2.886 | 2.162 | 3052.714 | 32.3 | 270.113 | 2.42 | null | null | 41.34 | 2.9 | 70.39 | 0.589 |
SEN | Africa | Senegal | 2020-09-12 | 14237.0 | 44.0 | 41.286 | 295.0 | 2.0 | 0.714 | 850.278 | 2.628 | 2.466 | 17.618 | 0.119 | 4.3e-2 | 0.88 | null | null | null | null | null | null | null | null | 165792.0 | 1093.0 | 9.902 | 6.5e-2 | 1091.0 | 6.5e-2 | 3.8e-2 | 26.4 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-05-18 | 10699.0 | 89.0 | 74.714 | 231.0 | 1.0 | 1.857 | 1572.32 | 13.079 | 10.98 | 33.948 | 0.147 | 0.273 | 0.77 | null | null | null | null | null | null | null | null | 185385.0 | 4113.0 | 27.244 | 0.604 | 5683.0 | 0.835 | 1.3e-2 | 76.1 | null | 51.85 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-10-02 | 33735.0 | 73.0 | 71.0 | 751.0 | 1.0 | 0.714 | 4957.679 | 10.728 | 10.434 | 110.367 | 0.147 | 0.105 | 1.17 | null | null | null | null | null | null | null | null | 1147039.0 | 6661.0 | 168.568 | 0.979 | 5799.0 | 0.852 | 1.2e-2 | 81.7 | null | 54.63 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-09-16 | 140.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1423.632 | 0.0 | 4.358 | null | 0.0 | 0.0 | 0.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SLE | Africa | Sierra Leone | 2020-04-10 | 8.0 | 1.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.003 | 0.125 | 0.107 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SLE | Africa | Sierra Leone | 2020-07-07 | 1572.0 | 25.0 | 15.714 | 63.0 | 1.0 | 0.429 | 197.067 | 3.134 | 1.97 | 7.898 | 0.125 | 5.4e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 46.3 | 7976985.0 | 104.7 | 19.1 | 2.538 | 1.285 | 1390.3 | 52.2 | 325.721 | 2.42 | 8.8 | 41.3 | 19.275 | null | 54.7 | 0.419 |
SGP | Asia | Singapore | 2020-09-21 | 57606.0 | 30.0 | 21.714 | 27.0 | 0.0 | 0.0 | 9846.602 | 5.128 | 3.712 | 4.615 | 0.0 | 0.0 | 0.61 | null | null | null | null | null | null | null | null | 2692047.0 | null | 460.152 | null | 31585.0 | 5.399 | 1.0e-3 | 1454.6 | null | 51.85 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-15 | 57892.0 | 3.0 | 6.143 | 28.0 | 0.0 | 0.143 | 9895.488 | 0.513 | 1.05 | 4.786 | 0.0 | 2.4e-2 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | 29788.0 | 5.092 | 0.0 | 4849.1 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-23 | 57951.0 | 10.0 | 7.143 | 28.0 | 0.0 | 0.0 | 9905.573 | 1.709 | 1.221 | 4.786 | 0.0 | 0.0 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | 27814.0 | 4.754 | 0.0 | 3893.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-06-16 | 1552.0 | 0.0 | 3.0 | 28.0 | 0.0 | 0.0 | 284.268 | 0.0 | 0.549 | 5.129 | 0.0 | 0.0 | 1.29 | null | null | 0.0 | 0.0 | null | null | null | null | 198780.0 | 1163.0 | 36.409 | 0.213 | 973.0 | 0.178 | 3.0e-3 | 324.3 | null | 40.74 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-08-13 | 2739.0 | 49.0 | 37.0 | 31.0 | 0.0 | 0.286 | 501.681 | 8.975 | 6.777 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 33.0 | 6.044 | null | null | null | null | 289590.0 | 2738.0 | 53.042 | 0.501 | 2114.0 | 0.387 | 1.8e-2 | 57.1 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SLB | Oceania | Solomon Islands | 2020-06-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
ZAF | Africa | South Africa | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-05-08 | 8895.0 | 663.0 | 420.571 | 178.0 | 17.0 | 8.857 | 149.978 | 11.179 | 7.091 | 3.001 | 0.287 | 0.149 | 1.53 | null | null | null | null | null | null | null | null | 307752.0 | 15599.0 | 5.189 | 0.263 | 12890.0 | 0.217 | 3.3e-2 | 30.6 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-08-25 | 613017.0 | 1567.0 | 2981.857 | 13308.0 | 149.0 | 149.143 | 10336.04 | 26.421 | 50.277 | 224.385 | 2.512 | 2.515 | 0.63 | null | null | null | null | null | null | null | null | 3578836.0 | 14771.0 | 60.343 | 0.249 | 21213.0 | 0.358 | 0.141 | 7.1 | null | 72.22 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-04-16 | 10613.0 | 22.0 | 27.143 | 229.0 | 4.0 | 3.571 | 207.005 | 0.429 | 0.529 | 4.467 | 7.8e-2 | 7.0e-2 | 0.48 | null | null | null | null | null | null | null | null | 524507.0 | 4981.0 | 10.23 | 9.7e-2 | 6472.0 | 0.126 | 4.0e-3 | 238.4 | null | 82.41 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-06-01 | 11541.0 | 38.0 | 45.143 | 272.0 | 1.0 | 0.429 | 225.106 | 0.741 | 0.881 | 5.305 | 2.0e-2 | 8.0e-3 | 1.14 | null | null | null | null | null | null | null | null | 897333.0 | 9805.0 | 17.502 | 0.191 | 12855.0 | 0.251 | 4.0e-3 | 284.8 | null | 55.09 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-03-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-06-10 | 1604.0 | 0.0 | 87.143 | 19.0 | 0.0 | 1.286 | 143.295 | 0.0 | 7.785 | 1.697 | 0.0 | 0.115 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-08-23 | 2499.0 | 2.0 | 1.429 | 47.0 | 0.0 | 0.0 | 223.25 | 0.179 | 0.128 | 4.199 | 0.0 | 0.0 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
SSD | Africa | South Sudan | 2020-10-18 | 2842.0 | 25.0 | 9.286 | 55.0 | 0.0 | 0.0 | 253.892 | 2.233 | 0.83 | 4.913 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | 36740.0 | 420.0 | 3.282 | 3.8e-2 | 438.0 | 3.9e-2 | 2.1e-2 | 47.2 | null | 35.19 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
LKA | Asia | Sri Lanka | 2020-11-22 | 20171.0 | 400.0 | 412.0 | 87.0 | 4.0 | 4.143 | 941.987 | 18.68 | 19.24 | 4.063 | 0.187 | 0.193 | null | null | null | null | null | null | null | null | null | 747638.0 | 10679.0 | 34.915 | 0.499 | 10791.0 | 0.504 | 3.8e-2 | 26.2 | null | 49.54 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-03-30 | 6.0 | 0.0 | 0.571 | 2.0 | 1.0 | 0.143 | 0.137 | 0.0 | 1.3e-2 | 4.6e-2 | 2.3e-2 | 3.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-06-28 | 9257.0 | 0.0 | 96.714 | 572.0 | 0.0 | 7.286 | 211.11 | 0.0 | 2.206 | 13.045 | 0.0 | 0.166 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-05-01 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 17.046 | 0.0 | 0.0 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-05-20 | 217.0 | 9.0 | 4.286 | 2.0 | 0.0 | 0.0 | 187.043 | 7.758 | 3.694 | 1.724 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-30 | 38396.0 | 432.0 | 603.571 | 4633.0 | 45.0 | 39.0 | 3801.859 | 42.775 | 59.764 | 458.746 | 4.456 | 3.862 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-11-24 | 304593.0 | 4241.0 | 4294.143 | 4308.0 | 86.0 | 92.0 | 35194.274 | 490.027 | 496.168 | 497.769 | 9.937 | 10.63 | null | null | null | null | null | null | null | null | null | 2633317.0 | 29537.0 | 304.267 | 3.413 | 22717.0 | 2.625 | 0.189 | 5.3 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-05-28 | 122.0 | 1.0 | 9.143 | 4.0 | 0.0 | 0.143 | 6.971 | 5.7e-2 | 0.522 | 0.229 | 0.0 | 8.0e-3 | 0.35 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-06-19 | 187.0 | 0.0 | 3.286 | 7.0 | 0.0 | 0.143 | 10.685 | 0.0 | 0.188 | 0.4 | 0.0 | 8.0e-3 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TWN | Asia | Taiwan | 2020-09-22 | 509.0 | 0.0 | 1.429 | 7.0 | 0.0 | 0.0 | 21.371 | 0.0 | 6.0e-2 | 0.294 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | 92108.0 | 175.0 | 3.867 | 7.0e-3 | 281.0 | 1.2e-2 | 5.0e-3 | 196.6 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-09-26 | 510.0 | 0.0 | 0.571 | 7.0 | 0.0 | 0.0 | 21.413 | 0.0 | 2.4e-2 | 0.294 | 0.0 | 0.0 | 1.14 | null | null | null | null | null | null | null | null | 92975.0 | 275.0 | 3.904 | 1.2e-2 | 203.0 | 9.0e-3 | 3.0e-3 | 355.5 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TJK | Asia | Tajikistan | 2020-03-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-05-22 | 2551.0 | 201.0 | 204.714 | 44.0 | 0.0 | 1.571 | 267.467 | 21.074 | 21.464 | 4.613 | 0.0 | 0.165 | 1.32 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 51.85 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-07-09 | 6410.0 | 46.0 | 50.286 | 54.0 | 0.0 | 0.286 | 672.074 | 4.823 | 5.272 | 5.662 | 0.0 | 3.0e-2 | 0.92 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.37 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
THA | Asia | Thailand | 2020-02-12 | 33.0 | 0.0 | 1.143 | 0.0 | 0.0 | 0.0 | 0.473 | 0.0 | 1.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2727.0 | 116.0 | 3.9e-2 | 2.0e-3 | 108.0 | 2.0e-3 | 1.1e-2 | 94.5 | null | 0.0 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-03-22 | 599.0 | 188.0 | 69.286 | 1.0 | 0.0 | 0.0 | 8.582 | 2.693 | 0.993 | 1.4e-2 | 0.0 | 0.0 | 1.55 | null | null | null | null | null | null | null | null | 39317.0 | 2058.0 | 0.563 | 2.9e-2 | 2397.0 | 3.4e-2 | 2.9e-2 | 34.6 | null | 52.31 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-08-11 | 3351.0 | 0.0 | 4.286 | 58.0 | 0.0 | 0.0 | 48.009 | 0.0 | 6.1e-2 | 0.831 | 0.0 | 0.0 | 1.02 | null | null | null | null | null | null | null | null | 836077.0 | 4136.0 | 11.978 | 5.9e-2 | 4105.0 | 5.9e-2 | 1.0e-3 | 957.8 | null | 52.78 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
TLS | Asia | Timor | 2020-08-19 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.962 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TGO | Africa | Togo | 2020-09-15 | 1595.0 | 17.0 | 11.714 | 40.0 | 0.0 | 0.857 | 192.662 | 2.053 | 1.415 | 4.832 | 0.0 | 0.104 | 1.06 | null | null | null | null | null | null | null | null | 78651.0 | 884.0 | 9.5 | 0.107 | 869.0 | 0.105 | 1.3e-2 | 74.2 | null | 49.07 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-09-13 | 6635.0 | 0.0 | 227.714 | 107.0 | 0.0 | 2.0 | 561.402 | 0.0 | 19.267 | 9.054 | 0.0 | 0.169 | 1.48 | null | null | null | null | null | null | null | null | 190241.0 | null | 16.097 | null | 3545.0 | 0.3 | 6.4e-2 | 15.6 | null | 26.85 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-10-21 | 45892.0 | 1442.0 | 1586.0 | 740.0 | 29.0 | 32.571 | 3883.026 | 122.011 | 134.195 | 62.613 | 2.454 | 2.756 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
UGA | Africa | Uganda | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-07-16 | 1051.0 | 8.0 | 7.286 | 0.0 | 0.0 | 0.0 | 22.977 | 0.175 | 0.159 | null | 0.0 | 0.0 | 0.88 | null | null | null | null | null | null | null | null | 238709.0 | 3696.0 | 5.219 | 8.1e-2 | 2433.0 | 5.3e-2 | 3.0e-3 | 333.9 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-09-17 | 5380.0 | 114.0 | 155.571 | 60.0 | 0.0 | 1.714 | 117.619 | 2.492 | 3.401 | 1.312 | 0.0 | 3.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 444346.0 | 2636.0 | 9.714 | 5.8e-2 | 3019.0 | 6.6e-2 | 5.2e-2 | 19.4 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-08-11 | 85023.0 | 1211.0 | 1306.143 | 1979.0 | 29.0 | 27.286 | 1944.105 | 27.69 | 29.866 | 45.251 | 0.663 | 0.624 | 1.16 | null | null | null | null | null | null | null | null | 1195561.0 | 16127.0 | 27.337 | 0.369 | 16104.0 | 0.368 | 8.1e-2 | 12.3 | null | 57.87 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-08-12 | 315581.0 | 1039.0 | 964.143 | 41414.0 | 20.0 | 12.714 | 4648.69 | 15.305 | 14.202 | 610.052 | 0.295 | 0.187 | 1.21 | 80.0 | 1.178 | 937.0 | 13.803 | null | null | null | null | 1.1310805e7 | 167983.0 | 166.615 | 2.474 | 153405.0 | 2.26 | 6.0e-3 | 159.1 | null | 69.91 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-09-07 | 6290964.0 | 23545.0 | 39247.714 | 189295.0 | 276.0 | 801.571 | 19005.782 | 71.132 | 118.572 | 571.884 | 0.834 | 2.422 | 0.88 | 6630.0 | 20.03 | 32009.0 | 96.703 | null | null | null | null | 9.5865802e7 | 408656.0 | 289.622 | 1.235 | 809989.0 | 2.447 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-09-10 | 6387822.0 | 36066.0 | 35026.143 | 191830.0 | 907.0 | 708.857 | 19298.402 | 108.96 | 105.818 | 579.542 | 2.74 | 2.142 | 0.96 | 6531.0 | 19.731 | 32438.0 | 97.999 | null | null | null | null | 9.8444261e7 | 1034528.0 | 297.412 | 3.125 | 769511.0 | 2.325 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
UZB | Asia | Uzbekistan | 2020-04-04 | 266.0 | 39.0 | 23.143 | 2.0 | 0.0 | 0.0 | 7.948 | 1.165 | 0.691 | 6.0e-2 | 0.0 | 0.0 | 1.71 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
UZB | Asia | Uzbekistan | 2020-05-29 | 3468.0 | 24.0 | 62.857 | 14.0 | 0.0 | 0.143 | 103.618 | 0.717 | 1.878 | 0.418 | 0.0 | 4.0e-3 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VUT | Oceania | Vanuatu | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-06-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VUT | Oceania | Vanuatu | 2020-07-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 307150.0 | 22.662 | 23.1 | 4.394 | 2.62 | 2921.909 | 13.2 | 546.3 | 12.02 | 2.8 | 34.5 | 25.209 | null | 70.47 | 0.603 |
VAT | Europe | Vatican | 2020-11-05 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33374.536 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 809.0 | null | null | null | null | null | null | null | null | null | null | null | null | 75.12 | null |
VEN | South America | Venezuela | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.8435943e7 | 36.253 | 29.0 | 6.614 | 3.915 | 16745.022 | null | 204.85 | 6.47 | null | null | null | 0.8 | 72.06 | 0.761 |
ESH | Africa | Western Sahara | 2020-04-29 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.045 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 597330.0 | null | 28.4 | null | 1.38 | null | null | null | null | null | null | null | null | 70.26 | null |
ZMB | Africa | Zambia | 2020-04-11 | 40.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.143 | 2.176 | 0.0 | 8.0e-3 | 0.109 | 0.0 | 8.0e-3 | null | null | null | null | null | null | null | null | null | 1454.0 | 111.0 | 7.9e-2 | 6.0e-3 | 78.0 | 4.0e-3 | 2.0e-3 | 545.5 | null | 50.93 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZMB | Africa | Zambia | 2020-08-22 | 10831.0 | 204.0 | 235.0 | 279.0 | 2.0 | 2.714 | 589.155 | 11.097 | 12.783 | 15.176 | 0.109 | 0.148 | 0.9 | null | null | null | null | null | null | null | null | 106449.0 | 785.0 | 5.79 | 4.3e-2 | 1098.0 | 6.0e-2 | 0.214 | 4.7 | null | 49.07 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
MNE | Europe | Montenegro | 2020-06-20 | 359.0 | 4.0 | 5.0 | 9.0 | 0.0 | 0.0 | 571.6 | 6.369 | 7.961 | 14.33 | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-06-24 | 389.0 | 11.0 | 8.0 | 9.0 | 0.0 | 0.0 | 619.366 | 17.514 | 12.738 | 14.33 | 0.0 | 0.0 | 2.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-06 | 5553.0 | 131.0 | 109.0 | 108.0 | 1.0 | 1.429 | 8841.484 | 208.578 | 173.55 | 171.958 | 1.592 | 2.275 | 1.51 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-28 | 10441.0 | 128.0 | 228.429 | 163.0 | 5.0 | 3.571 | 16624.155 | 203.802 | 363.704 | 259.529 | 7.961 | 5.686 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10.0 | null | 0.0 | null | 0.0 | 0.0 | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-11-30 | 15701.0 | 88.0 | 84.571 | 131.0 | 1.0 | 0.714 | 502.345 | 2.816 | 2.706 | 4.191 | 3.2e-2 | 2.3e-2 | null | null | null | null | null | null | null | null | null | 231131.0 | 641.0 | 7.395 | 2.1e-2 | 1128.0 | 3.6e-2 | 7.5e-2 | 13.3 | null | null | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-04-05 | 21.0 | 0.0 | 1.571 | 1.0 | 0.0 | 0.143 | 0.386 | 0.0 | 2.9e-2 | 1.8e-2 | 0.0 | 3.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NAM | Africa | Namibia | 2020-10-30 | 12907.0 | 49.0 | 58.0 | 133.0 | 0.0 | 0.0 | 5079.664 | 19.284 | 22.826 | 52.343 | 0.0 | 0.0 | 0.92 | null | null | null | null | null | null | null | null | 126796.0 | 1714.0 | 49.902 | 0.675 | 891.0 | 0.351 | 6.5e-2 | 15.4 | null | 34.26 | 2540916.0 | 3.078 | 22.0 | 3.552 | 2.085 | 9541.808 | 13.4 | 243.811 | 3.94 | 9.7 | 34.2 | 44.6 | null | 63.71 | 0.647 |
NPL | Asia | Nepal | 2020-02-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-09-08 | 79792.0 | 1090.0 | 855.714 | 6279.0 | 1.0 | 2.714 | 4656.702 | 63.613 | 49.94 | 366.446 | 5.8e-2 | 0.158 | 1.32 | 49.0 | 2.86 | null | null | null | null | null | null | null | null | null | null | 26932.0 | 1.572 | 3.2e-2 | 31.5 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-04 | 3.0 | 2.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.622 | 0.415 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 305.0 | 25.0 | 6.3e-2 | 5.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-04-19 | 1431.0 | 9.0 | 14.429 | 12.0 | 1.0 | 1.143 | 296.75 | 1.866 | 2.992 | 2.488 | 0.207 | 0.237 | 0.42 | null | null | null | null | null | null | null | null | 86259.0 | 2306.0 | 17.888 | 0.478 | 3341.0 | 0.693 | 4.0e-3 | 231.5 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-10-10 | 1871.0 | 1.0 | 2.429 | 25.0 | 0.0 | 0.0 | 387.995 | 0.207 | 0.504 | 5.184 | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | 1000765.0 | 3809.0 | 207.531 | 0.79 | 4523.0 | 0.938 | 1.0e-3 | 1862.1 | null | 22.22 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NIC | North America | Nicaragua | 2020-03-20 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.151 | 0.0 | 2.2e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 6624554.0 | 51.667 | 27.3 | 5.445 | 3.519 | 5321.444 | 3.2 | 137.016 | 11.47 | null | null | null | 0.9 | 74.48 | 0.658 |
NER | Africa | Niger | 2020-04-02 | 98.0 | 24.0 | 12.571 | 5.0 | 0.0 | 0.571 | 4.048 | 0.991 | 0.519 | 0.207 | 0.0 | 2.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-04-26 | 696.0 | 12.0 | 6.857 | 29.0 | 2.0 | 1.286 | 28.752 | 0.496 | 0.283 | 1.198 | 8.3e-2 | 5.3e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-11-28 | 1484.0 | 12.0 | 19.0 | 70.0 | 0.0 | 0.0 | 61.306 | 0.496 | 0.785 | 2.892 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NGA | Africa | Nigeria | 2020-03-02 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 5.0e-3 | 0.0 | 1.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-08-23 | 52227.0 | 322.0 | 451.286 | 1002.0 | 5.0 | 3.857 | 253.357 | 1.562 | 2.189 | 4.861 | 2.4e-2 | 1.9e-2 | 0.87 | null | null | null | null | null | null | null | null | 378023.0 | 3946.0 | 1.834 | 1.9e-2 | 3919.0 | 1.9e-2 | 0.115 | 8.7 | null | 65.74 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NGA | Africa | Nigeria | 2020-09-14 | 56388.0 | 132.0 | 175.429 | 1083.0 | 1.0 | 3.143 | 273.543 | 0.64 | 0.851 | 5.254 | 5.0e-3 | 1.5e-2 | 0.86 | null | null | null | null | null | null | null | null | 442075.0 | 1827.0 | 2.145 | 9.0e-3 | 2556.0 | 1.2e-2 | 6.9e-2 | 14.6 | null | 60.19 | 2.06139587e8 | 209.588 | 18.1 | 2.751 | 1.447 | 5338.454 | null | 181.013 | 2.42 | 0.6 | 10.8 | 41.949 | null | 54.69 | 0.532 |
NOR | Europe | Norway | 2020-07-05 | 8930.0 | 4.0 | 10.714 | 251.0 | 0.0 | 0.286 | 1647.224 | 0.738 | 1.976 | 46.299 | 0.0 | 5.3e-2 | 0.85 | null | null | null | null | null | null | null | null | 373972.0 | 1192.0 | 68.983 | 0.22 | 3996.0 | 0.737 | 3.0e-3 | 373.0 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
PAK | Asia | Pakistan | 2020-04-03 | 2818.0 | 132.0 | 189.0 | 41.0 | 1.0 | 4.143 | 12.757 | 0.598 | 0.856 | 0.186 | 5.0e-3 | 1.9e-2 | 1.61 | null | null | null | null | null | null | null | null | 32930.0 | 2622.0 | 0.149 | 1.2e-2 | 2814.0 | 1.3e-2 | 6.7e-2 | 14.9 | null | 96.3 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-09-28 | 311516.0 | 675.0 | 661.429 | 6474.0 | 8.0 | 7.143 | 1410.262 | 3.056 | 2.994 | 29.308 | 3.6e-2 | 3.2e-2 | 1.05 | null | null | null | null | null | null | null | null | 3449541.0 | 28887.0 | 15.616 | 0.131 | 36461.0 | 0.165 | 1.8e-2 | 55.1 | null | 41.2 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PSE | Asia | Palestine | 2020-07-05 | 4277.0 | 442.0 | 326.714 | 16.0 | 3.0 | 1.714 | 838.395 | 86.643 | 64.044 | 3.136 | 0.588 | 0.336 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 5101416.0 | 778.202 | 20.4 | 3.043 | 1.726 | 4449.898 | 1.0 | 265.91 | 10.59 | null | null | null | null | 74.05 | 0.686 |
PAN | North America | Panama | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-06-15 | 21422.0 | 4.0 | 652.571 | 448.0 | 11.0 | 7.143 | 4964.809 | 0.927 | 151.241 | 103.829 | 2.549 | 1.655 | 1.25 | null | null | null | null | null | null | null | null | 90950.0 | 1984.0 | 21.079 | 0.46 | 2034.0 | 0.471 | 0.321 | 3.1 | null | 83.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-07-27 | 61442.0 | 1146.0 | 1002.286 | 1322.0 | 28.0 | 27.857 | 14239.931 | 265.599 | 232.292 | 306.39 | 6.489 | 6.456 | 1.01 | null | null | null | null | null | null | null | null | 208659.0 | 3450.0 | 48.359 | 0.8 | 3096.0 | 0.718 | 0.324 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PNG | Oceania | Papua New Guinea | 2020-06-26 | 11.0 | 1.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1.229 | 0.112 | 4.8e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-07-21 | 27.0 | 8.0 | 2.286 | 0.0 | 0.0 | 0.0 | 3.018 | 0.894 | 0.255 | 0.112 | 0.0 | 1.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PRY | South America | Paraguay | 2020-10-27 | 60557.0 | 448.0 | 640.571 | 1347.0 | 14.0 | 16.571 | 8490.255 | 62.811 | 89.81 | 188.853 | 1.963 | 2.323 | 1.04 | null | null | null | null | null | null | null | null | 352711.0 | 2422.0 | 49.451 | 0.34 | 2689.0 | 0.377 | 0.238 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PER | South America | Peru | 2020-09-11 | 710067.0 | 7291.0 | 5703.143 | 30344.0 | 108.0 | 134.143 | 21535.555 | 221.128 | 172.97 | 920.3 | 3.276 | 4.068 | 0.96 | null | null | null | null | null | null | null | null | 742273.0 | 7018.0 | 22.512 | 0.213 | 6581.0 | 0.2 | null | null | null | 85.19 | 3.2971846e7 | 25.129 | 29.1 | 7.151 | 4.455 | 12236.706 | 3.5 | 85.755 | 5.95 | 4.8 | null | null | 1.6 | 76.74 | 0.75 |
PHL | Asia | Philippines | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-10 | 399749.0 | 1300.0 | 1798.286 | 7661.0 | 14.0 | 49.0 | 3647.974 | 11.863 | 16.411 | 69.912 | 0.128 | 0.447 | 0.92 | null | null | null | null | null | null | null | null | 4858722.0 | 29766.0 | 44.339 | 0.272 | 30904.0 | 0.282 | 5.8e-2 | 17.2 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-15 | 407838.0 | 1501.0 | 1634.714 | 7832.0 | 41.0 | 41.857 | 3721.792 | 13.698 | 14.918 | 71.472 | 0.374 | 0.382 | 0.9 | null | null | null | null | null | null | null | null | 5001441.0 | 24190.0 | 45.641 | 0.221 | 28245.0 | 0.258 | 5.8e-2 | 17.3 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-06-15 | 29788.0 | 396.0 | 375.429 | 1256.0 | 9.0 | 12.857 | 787.072 | 10.463 | 9.92 | 33.187 | 0.238 | 0.34 | 0.98 | null | null | 1736.0 | 45.869 | null | null | null | null | 1086927.0 | 10676.0 | 28.719 | 0.282 | 16196.0 | 0.428 | 2.3e-2 | 43.1 | null | 50.93 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-06-14 | 36690.0 | 227.0 | 285.286 | 1517.0 | 5.0 | 5.429 | 3598.22 | 22.262 | 27.978 | 148.774 | 0.49 | 0.532 | 1.04 | 73.0 | 7.159 | 419.0 | 41.092 | null | null | 113.114 | 11.093 | 1010163.0 | 4754.0 | 99.068 | 0.466 | 8692.0 | 0.852 | 3.3e-2 | 30.5 | null | 69.91 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-07-19 | 106648.0 | 340.0 | 435.714 | 157.0 | 3.0 | 1.429 | 37016.931 | 118.012 | 151.234 | 54.494 | 1.041 | 0.496 | 0.74 | null | null | null | null | null | null | null | null | 441700.0 | 2710.0 | 153.312 | 0.941 | 4145.0 | 1.439 | 0.105 | 9.5 | null | 80.56 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-11-24 | 137642.0 | 227.0 | 202.857 | 236.0 | 0.0 | 0.143 | 47774.777 | 78.79 | 70.411 | 81.914 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-08-31 | 87540.0 | 755.0 | 1172.857 | 3621.0 | 43.0 | 44.571 | 4550.444 | 39.246 | 60.967 | 188.224 | 2.235 | 2.317 | 0.99 | 506.0 | 26.303 | null | null | null | null | null | null | 1802946.0 | 7313.0 | 93.72 | 0.38 | 20544.0 | 1.068 | 5.7e-2 | 17.5 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-08-21 | 944671.0 | 4838.0 | 4841.857 | 16148.0 | 90.0 | 97.286 | 6473.255 | 33.152 | 33.178 | 110.652 | 0.617 | 0.667 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 272755.0 | 1.869 | 1.8e-2 | 56.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
KNA | North America | Saint Kitts and Nevis | 2020-08-22 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 319.597 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53192.0 | 212.865 | null | null | null | 24654.385 | null | null | 12.84 | null | null | null | 2.3 | 76.23 | 0.778 |
VCT | North America | Saint Vincent and the Grenadines | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-03-31 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.013 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-05-04 | 17.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 153.226 | 9.013 | 2.575 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-06-02 | 26.0 | 0.0 | 1.143 | 0.0 | 0.0 | 0.0 | 234.346 | 0.0 | 10.301 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
VCT | North America | Saint Vincent and the Grenadines | 2020-09-09 | 62.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 558.825 | 0.0 | 1.288 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 110947.0 | 281.787 | 31.8 | 7.724 | 4.832 | 10727.146 | null | 252.675 | 11.62 | null | null | null | 2.6 | 72.53 | 0.723 |
SMR | Europe | San Marino | 2020-10-14 | 741.0 | 0.0 | 1.286 | 42.0 | 0.0 | 0.0 | 21833.932 | 0.0 | 37.884 | 1237.551 | 0.0 | 0.0 | 0.77 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.93 | 33938.0 | 556.667 | null | null | null | 56861.47 | null | null | 5.64 | null | null | null | 3.8 | 84.97 | null |
STP | Africa | Sao Tome and Principe | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 219161.0 | 212.841 | 18.7 | 2.886 | 2.162 | 3052.714 | 32.3 | 270.113 | 2.42 | null | null | 41.34 | 2.9 | 70.39 | 0.589 |
SAU | Asia | Saudi Arabia | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-05-25 | 74795.0 | 2235.0 | 2492.857 | 399.0 | 9.0 | 11.286 | 2148.426 | 64.199 | 71.605 | 11.461 | 0.259 | 0.324 | 1.09 | null | null | null | null | null | null | null | null | 780041.0 | 16664.0 | 22.406 | 0.479 | 17237.0 | 0.495 | 0.145 | 6.9 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-06-11 | 116021.0 | 3733.0 | 3266.286 | 857.0 | 38.0 | 35.143 | 3332.609 | 107.227 | 93.821 | 24.617 | 1.092 | 1.009 | 1.18 | null | null | null | null | null | null | null | null | 1110934.0 | 27324.0 | 31.911 | 0.785 | 22952.0 | 0.659 | 0.142 | 7.0 | null | 69.91 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SEN | Africa | Senegal | 2020-05-03 | 1182.0 | 67.0 | 73.0 | 9.0 | 0.0 | 0.0 | 70.593 | 4.001 | 4.36 | 0.538 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | 14770.0 | 810.0 | 0.882 | 4.8e-2 | 916.0 | 5.5e-2 | 8.0e-2 | 12.5 | null | 77.78 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SEN | Africa | Senegal | 2020-11-03 | 15640.0 | 3.0 | 9.857 | 326.0 | 1.0 | 0.571 | 934.07 | 0.179 | 0.589 | 19.47 | 6.0e-2 | 3.4e-2 | 0.82 | null | null | null | null | null | null | null | null | 217808.0 | 400.0 | 13.008 | 2.4e-2 | 751.0 | 4.5e-2 | 1.3e-2 | 76.2 | null | 37.96 | 1.674393e7 | 82.328 | 18.7 | 3.008 | 1.796 | 2470.58 | 38.0 | 241.219 | 2.42 | 0.4 | 16.6 | 20.859 | null | 67.94 | 0.505 |
SRB | Europe | Serbia | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SRB | Europe | Serbia | 2020-10-15 | 35454.0 | 203.0 | 158.571 | 770.0 | 2.0 | 1.429 | 5210.302 | 29.833 | 23.304 | 113.159 | 0.294 | 0.21 | 1.55 | null | null | null | null | null | null | null | null | 1219908.0 | 6504.0 | 179.277 | 0.956 | 5741.0 | 0.844 | 2.8e-2 | 36.2 | null | 54.63 | 6804596.0 | 80.291 | 41.2 | 17.366 | null | 14048.881 | null | 439.415 | 10.08 | 37.7 | 40.2 | 97.719 | 5.609 | 76.0 | 0.787 |
SYC | Africa | Seychelles | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-09-02 | 136.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1382.957 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-06-05 | 37183.0 | 261.0 | 474.714 | 24.0 | 0.0 | 0.143 | 6355.696 | 44.613 | 81.143 | 4.102 | 0.0 | 2.4e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | 11066.0 | 1.892 | 4.3e-2 | 23.3 | null | 77.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-11-07 | 58054.0 | 7.0 | 5.571 | 28.0 | 0.0 | 0.0 | 9923.179 | 1.197 | 0.952 | 4.786 | 0.0 | 0.0 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | 27292.0 | 4.665 | 0.0 | 4898.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-07-26 | 2179.0 | 38.0 | 28.571 | 28.0 | 0.0 | 0.0 | 399.11 | 6.96 | 5.233 | 5.129 | 0.0 | 0.0 | 1.28 | null | null | 12.0 | 2.198 | null | null | null | null | 253691.0 | 216.0 | 46.467 | 4.0e-2 | 1923.0 | 0.352 | 1.5e-2 | 67.3 | null | 37.96 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-09-25 | 8048.0 | 419.0 | 256.0 | 41.0 | 0.0 | 0.286 | 1474.089 | 76.745 | 46.89 | 7.51 | 0.0 | 5.2e-2 | 1.47 | null | null | 143.0 | 26.192 | null | null | null | null | 440331.0 | 6483.0 | 80.652 | 1.187 | 4504.0 | 0.825 | 5.7e-2 | 17.6 | null | 31.48 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-10-05 | 6673.0 | 175.0 | 183.571 | 156.0 | 1.0 | 1.0 | 3209.821 | 84.178 | 88.301 | 75.039 | 0.481 | 0.481 | 1.45 | 21.0 | 10.101 | 107.0 | 51.469 | null | null | null | null | 238686.0 | 2509.0 | 114.812 | 1.207 | 2564.0 | 1.233 | 7.2e-2 | 14.0 | null | 43.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SLB | Oceania | Solomon Islands | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-04-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 44.44 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SLB | Oceania | Solomon Islands | 2020-09-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 686878.0 | 21.841 | 20.8 | 3.507 | 2.043 | 2205.923 | 25.1 | 459.78 | 18.68 | null | null | 35.89 | 1.4 | 73.0 | 0.546 |
SOM | Africa | Somalia | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.5893219e7 | 23.5 | 16.8 | 2.731 | 1.496 | null | null | 365.769 | 6.05 | null | null | 9.831 | 0.9 | 57.4 | null |
ZAF | Africa | South Africa | 2020-11-23 | 769759.0 | 2080.0 | 2498.571 | 20968.0 | 65.0 | 93.429 | 12978.857 | 35.071 | 42.128 | 353.54 | 1.096 | 1.575 | null | null | null | null | null | null | null | null | null | 5305343.0 | 14377.0 | 89.453 | 0.242 | 23199.0 | 0.391 | 0.108 | 9.3 | null | 44.44 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-03-31 | 9786.0 | 125.0 | 107.0 | 162.0 | 4.0 | 6.0 | 190.875 | 2.438 | 2.087 | 3.16 | 7.8e-2 | 0.117 | 0.96 | null | null | null | null | null | null | null | null | 393672.0 | 12009.0 | 7.679 | 0.234 | 8647.0 | 0.169 | 1.2e-2 | 80.8 | null | 75.93 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-10-11 | 24703.0 | 97.0 | 77.0 | 433.0 | 1.0 | 1.571 | 481.829 | 1.892 | 1.502 | 8.446 | 2.0e-2 | 3.1e-2 | 1.15 | null | null | null | null | null | null | null | null | 2391180.0 | 5478.0 | 46.64 | 0.107 | 9564.0 | 0.187 | 8.0e-3 | 124.2 | null | 54.63 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
SSD | Africa | South Sudan | 2020-08-30 | 2519.0 | 0.0 | 2.857 | 47.0 | 0.0 | 0.0 | 225.037 | 0.0 | 0.255 | 4.199 | 0.0 | 0.0 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.78 | 1.1193729e7 | null | 19.2 | 3.441 | 2.032 | 1569.888 | null | 280.775 | 10.43 | null | null | null | null | 57.85 | 0.388 |
ESP | Europe | Spain | 2020-08-15 | 342813.0 | 0.0 | 4064.429 | 28617.0 | 0.0 | 16.286 | 7332.148 | 0.0 | 86.931 | 612.066 | 0.0 | 0.348 | 1.41 | null | null | null | null | null | null | null | null | null | null | null | null | 58819.0 | 1.258 | 6.9e-2 | 14.5 | null | 62.5 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-06-14 | 1889.0 | 5.0 | 7.714 | 11.0 | 0.0 | 0.0 | 88.216 | 0.234 | 0.36 | 0.514 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | 87083.0 | 1116.0 | 4.067 | 5.2e-2 | 1447.0 | 6.8e-2 | 5.0e-3 | 187.6 | null | 55.56 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SDN | Africa | Sudan | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-06-01 | 5173.0 | 147.0 | 171.0 | 298.0 | 12.0 | 18.286 | 117.972 | 3.352 | 3.9 | 6.796 | 0.274 | 0.417 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 91.67 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-07-03 | 9663.0 | 90.0 | 58.0 | 604.0 | 2.0 | 4.571 | 220.369 | 2.052 | 1.323 | 13.774 | 4.6e-2 | 0.104 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SDN | Africa | Sudan | 2020-11-27 | 16864.0 | 0.0 | 190.571 | 1215.0 | 0.0 | 4.286 | 384.59 | 0.0 | 4.346 | 27.709 | 0.0 | 9.8e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 4.3849269e7 | 23.258 | 19.7 | 3.548 | 2.034 | 4466.507 | null | 431.388 | 15.67 | null | null | 23.437 | 0.8 | 65.31 | 0.502 |
SUR | South America | Suriname | 2020-06-04 | 82.0 | 8.0 | 10.0 | 1.0 | 0.0 | 0.0 | 139.781 | 13.637 | 17.046 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-04-14 | 15.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 12.929 | 0.0 | 0.616 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-09-17 | 5191.0 | 36.0 | 28.143 | 103.0 | 2.0 | 0.714 | 4474.367 | 31.03 | 24.258 | 88.781 | 1.724 | 0.616 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-11-29 | 6410.0 | 4.0 | 27.286 | 121.0 | 0.0 | 0.143 | 5525.081 | 3.448 | 23.519 | 104.296 | 0.0 | 0.123 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-06-25 | 64009.0 | 1281.0 | 1046.714 | 5424.0 | 12.0 | 22.0 | 6337.983 | 126.841 | 103.643 | 537.069 | 1.188 | 2.178 | 1.01 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-25 | 28894.0 | 217.0 | 212.857 | 1599.0 | 10.0 | 33.0 | 3338.564 | 25.073 | 24.595 | 184.757 | 1.155 | 3.813 | 0.59 | null | null | null | null | null | null | null | null | 253431.0 | 4032.0 | 29.283 | 0.466 | 4071.0 | 0.47 | 5.2e-2 | 19.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
SYR | Asia | Syria | 2020-05-10 | 47.0 | 0.0 | 0.429 | 3.0 | 0.0 | 0.0 | 2.686 | 0.0 | 2.4e-2 | 0.171 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-08-15 | 1593.0 | 78.0 | 66.857 | 60.0 | 2.0 | 1.429 | 91.025 | 4.457 | 3.82 | 3.428 | 0.114 | 8.2e-2 | 1.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
SYR | Asia | Syria | 2020-11-04 | 5964.0 | 76.0 | 54.857 | 301.0 | 3.0 | 3.286 | 340.787 | 4.343 | 3.135 | 17.199 | 0.171 | 0.188 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.7500657e7 | null | 21.7 | null | 2.577 | null | null | 376.264 | null | null | null | 70.598 | 1.5 | 72.7 | 0.536 |
TWN | Asia | Taiwan | 2020-03-03 | 42.0 | 1.0 | 1.571 | 1.0 | 0.0 | 0.0 | 1.763 | 4.2e-2 | 6.6e-2 | 4.2e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 12365.0 | 506.0 | 0.519 | 2.1e-2 | 494.0 | 2.1e-2 | 3.0e-3 | 314.4 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-05-01 | 429.0 | 0.0 | 0.143 | 6.0 | 0.0 | 0.0 | 18.013 | 0.0 | 6.0e-3 | 0.252 | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | 63711.0 | 374.0 | 2.675 | 1.6e-2 | 557.0 | 2.3e-2 | 0.0 | 3895.1 | null | 31.48 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TWN | Asia | Taiwan | 2020-07-31 | 467.0 | 0.0 | 1.286 | 7.0 | 0.0 | 0.0 | 19.608 | 0.0 | 5.4e-2 | 0.294 | 0.0 | 0.0 | 0.58 | null | null | null | null | null | null | null | null | 81822.0 | 235.0 | 3.435 | 1.0e-2 | 203.0 | 9.0e-3 | 6.0e-3 | 157.9 | null | 23.15 | 2.3816775e7 | null | 42.2 | null | 8.353 | null | null | 103.957 | null | null | null | null | null | 80.46 | null |
TJK | Asia | Tajikistan | 2020-07-17 | 6786.0 | 45.0 | 47.0 | 56.0 | 0.0 | 0.143 | 711.497 | 4.718 | 4.928 | 5.871 | 0.0 | 1.5e-2 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.04 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TJK | Asia | Tajikistan | 2020-11-15 | 11610.0 | 37.0 | 39.143 | 85.0 | 0.0 | 0.286 | 1217.282 | 3.879 | 4.104 | 8.912 | 0.0 | 3.0e-2 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.04 | 9537642.0 | 64.281 | 23.3 | 3.466 | 2.155 | 2896.913 | 4.8 | 427.698 | 7.11 | null | null | 72.704 | 4.8 | 71.1 | 0.65 |
TZA | Africa | Tanzania | 2020-04-23 | 284.0 | 0.0 | 27.143 | 10.0 | 0.0 | 0.857 | 4.754 | 0.0 | 0.454 | 0.167 | 0.0 | 1.4e-2 | 0.54 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
TZA | Africa | Tanzania | 2020-11-09 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
AFG | Asia | Afghanistan | 2020-10-18 | 40200.0 | 59.0 | 57.286 | 1494.0 | 4.0 | 2.143 | 1032.667 | 1.516 | 1.472 | 38.378 | 0.103 | 5.5e-2 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 3.8928341e7 | 54.422 | 18.6 | 2.581 | 1.337 | 1803.987 | null | 597.029 | 9.59 | null | null | 37.746 | 0.5 | 64.83 | 0.498 |
ALB | Europe | Albania | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-20 | 12385.0 | 159.0 | 147.429 | 362.0 | 4.0 | 4.0 | 4303.635 | 55.251 | 51.23 | 125.791 | 1.39 | 1.39 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-03-09 | 20.0 | 1.0 | 2.429 | 0.0 | 0.0 | 0.0 | 0.456 | 2.3e-2 | 5.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-06 | 46364.0 | 293.0 | 316.857 | 1556.0 | 7.0 | 7.857 | 1057.307 | 6.682 | 7.226 | 35.484 | 0.16 | 0.179 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
AND | Europe | Andorra | 2020-07-14 | 861.0 | 3.0 | 0.857 | 52.0 | 0.0 | 0.0 | 11143.467 | 38.827 | 11.094 | 673.008 | 0.0 | 0.0 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 77265.0 | 163.755 | null | null | null | null | null | 109.135 | 7.97 | 29.0 | 37.8 | null | null | 83.73 | 0.858 |
AGO | Africa | Angola | 2020-06-08 | 92.0 | 1.0 | 0.857 | 4.0 | 0.0 | 0.0 | 2.799 | 3.0e-2 | 2.6e-2 | 0.122 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
AGO | Africa | Angola | 2020-10-24 | 9026.0 | 197.0 | 223.429 | 267.0 | 2.0 | 3.714 | 274.628 | 5.994 | 6.798 | 8.124 | 6.1e-2 | 0.113 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3.2866268e7 | 23.89 | 16.8 | 2.405 | 1.362 | 5819.495 | null | 276.045 | 3.94 | null | null | 26.664 | null | 61.15 | 0.581 |
ATG | North America | Antigua and Barbuda | 2020-08-09 | 92.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 939.466 | 0.0 | 1.459 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ATG | North America | Antigua and Barbuda | 2020-09-12 | 95.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 970.1 | 0.0 | 0.0 | 30.635 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97928.0 | 231.845 | 32.1 | 6.933 | 4.631 | 21490.943 | null | 191.511 | 13.17 | null | null | null | 3.8 | 77.02 | 0.78 |
ARG | South America | Argentina | 2020-05-20 | 9283.0 | 474.0 | 343.429 | 403.0 | 10.0 | 10.571 | 205.395 | 10.488 | 7.599 | 8.917 | 0.221 | 0.234 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-08-10 | 253868.0 | 7369.0 | 6732.143 | 4764.0 | 158.0 | 135.857 | 5617.073 | 163.046 | 148.955 | 105.408 | 3.496 | 3.006 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-09-21 | 640147.0 | 8782.0 | 10671.571 | 13482.0 | 429.0 | 259.286 | 14163.868 | 194.31 | 236.119 | 298.302 | 9.492 | 5.737 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-10-04 | 52496.0 | 571.0 | 442.286 | 977.0 | 5.0 | 3.714 | 17715.779 | 192.695 | 149.258 | 329.707 | 1.687 | 1.253 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUS | Oceania | Australia | 2020-07-30 | 16903.0 | 605.0 | 472.571 | 196.0 | 7.0 | 8.143 | 662.866 | 23.726 | 18.532 | 7.686 | 0.275 | 0.319 | 1.23 | null | null | null | null | null | null | null | null | 4164454.0 | 66205.0 | 163.313 | 2.596 | 63517.0 | 2.491 | 7.0e-3 | 134.4 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-05-27 | 16591.0 | 34.0 | 34.0 | 645.0 | 2.0 | 1.714 | 1842.134 | 3.775 | 3.775 | 71.616 | 0.222 | 0.19 | 0.8 | 32.0 | 3.553 | 84.0 | 9.327 | null | null | null | null | 418706.0 | 7521.0 | 46.49 | 0.835 | 5588.0 | 0.62 | 6.0e-3 | 164.4 | null | 59.26 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-29 | 26985.0 | 395.0 | 274.714 | 733.0 | 0.0 | 0.143 | 2996.203 | 43.858 | 30.502 | 81.387 | 0.0 | 1.6e-2 | 1.15 | 30.0 | 3.331 | 114.0 | 12.658 | null | null | null | null | 1160743.0 | 12799.0 | 128.88 | 1.421 | 10513.0 | 1.167 | 2.6e-2 | 38.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-25 | 93.0 | 6.0 | 9.286 | 2.0 | 1.0 | 0.143 | 9.172 | 0.592 | 0.916 | 0.197 | 9.9e-2 | 1.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-05-01 | 1854.0 | 50.0 | 37.429 | 25.0 | 1.0 | 0.571 | 182.855 | 4.931 | 3.691 | 2.466 | 9.9e-2 | 5.6e-2 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-03-29 | 11.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 27.972 | 2.543 | 2.543 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-07-26 | 342.0 | 16.0 | 27.0 | 11.0 | 0.0 | 0.0 | 869.68 | 40.687 | 68.659 | 27.972 | 0.0 | 0.0 | 1.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-06-01 | 11871.0 | 473.0 | 385.714 | 19.0 | 0.0 | 0.714 | 6976.445 | 277.976 | 226.68 | 11.166 | 0.0 | 0.42 | 1.19 | null | null | null | null | null | null | null | null | 323162.0 | 6355.0 | 189.918 | 3.735 | 5611.0 | 3.298 | 6.9e-2 | 14.5 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-08-17 | 47185.0 | 350.0 | 398.286 | 173.0 | 3.0 | 1.429 | 27730.061 | 205.691 | 234.068 | 101.67 | 1.763 | 0.84 | 1.01 | null | null | null | null | null | null | null | null | 972003.0 | 9669.0 | 571.235 | 5.682 | 9992.0 | 5.872 | 4.0e-2 | 25.1 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-10 | 75287.0 | 427.0 | 425.286 | 273.0 | 2.0 | 2.143 | 44245.27 | 250.943 | 249.935 | 160.439 | 1.175 | 1.259 | 0.91 | null | null | null | null | null | null | null | null | 1530133.0 | 10537.0 | 899.241 | 6.192 | 10173.0 | 5.979 | 4.2e-2 | 23.9 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BLR | Europe | Belarus | 2020-03-08 | 6.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 0.635 | 0.0 | 7.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-11-20 | 120847.0 | 1457.0 | 1317.857 | 1081.0 | 7.0 | 6.857 | 12788.961 | 154.191 | 139.466 | 114.4 | 0.741 | 0.726 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | 27254.0 | 2.884 | 4.8e-2 | 20.7 | null | 22.22 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-03-22 | 3401.0 | 586.0 | 359.286 | 75.0 | 8.0 | 10.143 | 293.452 | 50.563 | 31.001 | 6.471 | 0.69 | 0.875 | 2.21 | 322.0 | 27.783 | 1646.0 | 142.024 | null | null | 1541.84 | 133.036 | 31478.0 | 1414.0 | 2.716 | 0.122 | 2438.0 | 0.21 | 0.147 | 6.8 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-05-01 | 49032.0 | 513.0 | 677.0 | 7703.0 | 109.0 | 146.286 | 4230.684 | 44.264 | 58.414 | 664.647 | 9.405 | 12.622 | 0.71 | 690.0 | 59.536 | 3109.0 | 268.257 | null | null | null | null | 430786.0 | 23551.0 | 37.17 | 2.032 | 19999.0 | 1.726 | 3.4e-2 | 29.5 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-11-20 | 553680.0 | 3416.0 | 4095.429 | 15352.0 | 156.0 | 178.0 | 47773.8 | 294.747 | 353.371 | 1324.634 | 13.46 | 15.359 | 0.68 | 1256.0 | 108.373 | 5418.0 | 467.487 | null | null | null | null | 5670902.0 | 34396.0 | 489.309 | 2.968 | 29760.0 | 2.568 | 0.138 | 7.3 | null | 63.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BLZ | North America | Belize | 2020-03-28 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 5.03 | 0.0 | 0.719 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 397621.0 | 16.426 | 25.0 | 3.853 | 2.279 | 7824.362 | null | 176.957 | 17.11 | null | null | 90.083 | 1.3 | 74.62 | 0.708 |
BEN | Africa | Benin | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-03-23 | 5.0 | 3.0 | 0.571 | 0.0 | 0.0 | 0.0 | 0.412 | 0.247 | 4.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 27.78 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BTN | Asia | Bhutan | 2020-04-20 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.48 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 771612.0 | 21.188 | 28.6 | 4.885 | 2.977 | 8708.597 | 1.5 | 217.066 | 9.75 | null | null | 79.807 | 1.7 | 71.78 | 0.612 |
BOL | South America | Bolivia | 2020-08-30 | 115968.0 | 614.0 | 974.143 | 4966.0 | 28.0 | 65.286 | 9934.696 | 52.6 | 83.452 | 425.425 | 2.399 | 5.593 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | 2630.0 | 0.225 | 0.37 | 2.7 | null | 89.81 | 1.1673029e7 | 10.202 | 25.4 | 6.704 | 4.393 | 6885.829 | 7.1 | 204.299 | 6.89 | null | null | 25.383 | 1.1 | 71.51 | 0.693 |
BIH | Europe | Bosnia and Herzegovina | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-04-21 | 1342.0 | 33.0 | 37.0 | 51.0 | 2.0 | 1.571 | 409.045 | 10.058 | 11.278 | 15.545 | 0.61 | 0.479 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-11-06 | 59427.0 | 1921.0 | 1612.857 | 1457.0 | 55.0 | 35.0 | 18113.487 | 585.525 | 491.603 | 444.097 | 16.764 | 10.668 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-03-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-07-29 | 804.0 | 65.0 | 40.286 | 2.0 | 0.0 | 0.143 | 341.891 | 27.64 | 17.131 | 0.85 | 0.0 | 6.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.17 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-09-19 | 2567.0 | 0.0 | 45.0 | 13.0 | 0.0 | 0.429 | 1091.586 | 0.0 | 19.136 | 5.528 | 0.0 | 0.182 | 0.77 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-06-04 | 614941.0 | 30925.0 | 25243.286 | 34021.0 | 1473.0 | 1038.143 | 2893.031 | 145.489 | 118.759 | 160.054 | 6.93 | 4.884 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-13 | 5113628.0 | 10220.0 | 20641.0 | 150998.0 | 309.0 | 500.571 | 24057.406 | 48.081 | 97.107 | 710.38 | 1.454 | 2.355 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-04-23 | 138.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 315.441 | 0.0 | 0.653 | 2.286 | 0.0 | 0.0 | 0.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-06-06 | 141.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 4.572 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-08-21 | 143.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 326.87 | 0.0 | 0.327 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-03-29 | 346.0 | 15.0 | 22.714 | 8.0 | 1.0 | 0.714 | 49.795 | 2.159 | 3.269 | 1.151 | 0.144 | 0.103 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BGR | Europe | Bulgaria | 2020-05-29 | 2485.0 | 8.0 | 16.143 | 136.0 | 2.0 | 1.571 | 357.634 | 1.151 | 2.323 | 19.573 | 0.288 | 0.226 | 0.96 | 20.0 | 2.878 | 191.0 | 27.488 | null | null | null | null | 79389.0 | 1725.0 | 11.425 | 0.248 | 1112.0 | 0.16 | 1.5e-2 | 68.9 | null | 56.48 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-24 | 2444.0 | 11.0 | 14.429 | 65.0 | 0.0 | 0.0 | 116.919 | 0.526 | 0.69 | 3.11 | 0.0 | 0.0 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BDI | Africa | Burundi | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-07-21 | 328.0 | 6.0 | 8.429 | 1.0 | 0.0 | 0.0 | 27.584 | 0.505 | 0.709 | 8.4e-2 | 0.0 | 0.0 | 0.67 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
BDI | Africa | Burundi | 2020-10-08 | 515.0 | 0.0 | 0.714 | 1.0 | 0.0 | 0.0 | 43.311 | 0.0 | 6.0e-2 | 8.4e-2 | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 1.1890781e7 | 423.062 | 17.5 | 2.562 | 1.504 | 702.225 | 71.7 | 293.068 | 6.05 | null | null | 6.144 | 0.8 | 61.58 | 0.417 |
KHM | Asia | Cambodia | 2020-11-16 | 303.0 | 1.0 | 0.429 | 0.0 | 0.0 | 0.0 | 18.123 | 6.0e-2 | 2.6e-2 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 42.59 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-11-29 | 323.0 | 8.0 | 2.429 | 0.0 | 0.0 | 0.0 | 19.319 | 0.478 | 0.145 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CMR | Africa | Cameroon | 2020-06-17 | 9864.0 | 0.0 | 169.0 | 276.0 | 0.0 | 9.143 | 371.583 | 0.0 | 6.366 | 10.397 | 0.0 | 0.344 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CMR | Africa | Cameroon | 2020-08-15 | 18469.0 | 0.0 | 61.0 | 401.0 | 0.0 | 0.857 | 695.739 | 0.0 | 2.298 | 15.106 | 0.0 | 3.2e-2 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.6545864e7 | 50.885 | 18.8 | 3.165 | 1.919 | 3364.926 | 23.8 | 244.661 | 7.2 | null | null | 2.735 | 1.3 | 59.29 | 0.556 |
CAN | North America | Canada | 2020-03-04 | 33.0 | 3.0 | 3.143 | 0.0 | 0.0 | 0.0 | 0.874 | 7.9e-2 | 8.3e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-18 | 101877.0 | 386.0 | 388.286 | 8361.0 | 49.0 | 41.429 | 2699.289 | 10.227 | 10.288 | 221.529 | 1.298 | 1.098 | 0.79 | null | null | null | null | null | null | null | null | 2295440.0 | 40959.0 | 60.819 | 1.085 | 38135.0 | 1.01 | 1.0e-2 | 98.2 | null | 70.83 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-07-05 | 107394.0 | 209.0 | 314.429 | 8739.0 | 7.0 | 22.429 | 2845.465 | 5.538 | 8.331 | 231.545 | 0.185 | 0.594 | 0.94 | null | null | null | null | null | null | null | null | 2940925.0 | 25971.0 | 77.921 | 0.688 | 37746.0 | 1.0 | 8.0e-3 | 120.0 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-08-23 | 126817.0 | 257.0 | 401.857 | 9119.0 | 2.0 | 6.429 | 3360.089 | 6.809 | 10.647 | 241.613 | 5.3e-2 | 0.17 | 1.1 | null | null | null | null | null | null | null | null | 5115490.0 | 38756.0 | 135.538 | 1.027 | 48161.0 | 1.276 | 8.0e-3 | 119.8 | null | 64.35 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CPV | Africa | Cape Verde | 2020-05-10 | 246.0 | 10.0 | 11.571 | 2.0 | 0.0 | 0.0 | 442.456 | 17.986 | 20.812 | 3.597 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CAF | Africa | Central African Republic | 2020-06-03 | 1173.0 | 104.0 | 67.286 | 4.0 | 0.0 | 0.429 | 242.869 | 21.533 | 13.931 | 0.828 | 0.0 | 8.9e-2 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4829764.0 | 7.479 | 18.3 | 3.655 | 2.251 | 661.24 | null | 435.727 | 6.1 | null | null | 16.603 | 1.0 | 53.28 | 0.367 |
TCD | Africa | Chad | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-05-17 | 503.0 | 29.0 | 25.857 | 53.0 | 3.0 | 3.143 | 30.622 | 1.766 | 1.574 | 3.227 | 0.183 | 0.191 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
TCD | Africa | Chad | 2020-07-29 | 926.0 | 0.0 | 5.286 | 75.0 | 0.0 | 0.0 | 56.375 | 0.0 | 0.322 | 4.566 | 0.0 | 0.0 | 0.85 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.37 | 1.6425859e7 | 11.833 | 16.7 | 2.486 | 1.446 | 1768.153 | 38.4 | 280.995 | 6.1 | null | null | 5.818 | null | 54.24 | 0.404 |
CHL | South America | Chile | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-08-09 | 373056.0 | 2033.0 | 1903.571 | 10077.0 | 66.0 | 67.0 | 19515.166 | 106.35 | 99.579 | 527.144 | 3.453 | 3.505 | 0.94 | null | null | null | null | null | null | null | null | 1833332.0 | 28460.0 | 95.905 | 1.489 | 24009.0 | 1.256 | 7.9e-2 | 12.6 | null | 87.5 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-09-10 | 428669.0 | 1642.0 | 1738.286 | 11781.0 | 79.0 | 51.286 | 22424.373 | 85.896 | 90.933 | 616.283 | 4.133 | 2.683 | 0.99 | null | null | null | null | null | null | null | null | 2711664.0 | 28313.0 | 141.852 | 1.481 | 30134.0 | 1.576 | 5.8e-2 | 17.3 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-06-06 | 84186.0 | 9.0 | 8.286 | 4638.0 | 0.0 | 0.0 | 58.49 | 6.0e-3 | 6.0e-3 | 3.222 | 0.0 | 0.0 | 1.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-05-18 | 16295.0 | 721.0 | 668.857 | 592.0 | 18.0 | 16.143 | 320.245 | 14.17 | 13.145 | 11.635 | 0.354 | 0.317 | 1.29 | null | null | null | null | null | null | null | null | 201808.0 | 5391.0 | 3.966 | 0.106 | 6125.0 | 0.12 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-27 | 87.0 | 0.0 | 7.571 | 2.0 | 1.0 | 0.143 | 100.047 | 0.0 | 8.707 | 2.3 | 1.15 | 0.164 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COG | Africa | Congo | 2020-03-17 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.181 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
COG | Africa | Congo | 2020-04-18 | 143.0 | 0.0 | 11.857 | 6.0 | 0.0 | 0.143 | 25.915 | 0.0 | 2.149 | 1.087 | 0.0 | 2.6e-2 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 97.22 | 5518092.0 | 15.405 | 19.0 | 3.402 | 2.063 | 4881.406 | 37.0 | 344.094 | 7.2 | 1.7 | 52.3 | 47.964 | null | 64.57 | 0.606 |
CIV | Africa | Cote d'Ivoire | 2020-10-07 | 19935.0 | 32.0 | 30.143 | 120.0 | 0.0 | 0.0 | 755.736 | 1.213 | 1.143 | 4.549 | 0.0 | 0.0 | 0.93 | null | null | null | null | null | null | null | null | 168309.0 | 1226.0 | 6.381 | 4.6e-2 | 790.0 | 3.0e-2 | 3.8e-2 | 26.2 | null | 36.11 | 2.6378275e7 | 76.399 | 18.7 | 2.933 | 1.582 | 3601.006 | 28.2 | 303.74 | 2.42 | null | null | 19.351 | null | 57.78 | 0.492 |
CYP | Europe | Cyprus | 2020-07-05 | 1003.0 | 1.0 | 1.286 | 19.0 | 0.0 | 0.0 | 1145.109 | 1.142 | 1.468 | 21.692 | 0.0 | 0.0 | 1.24 | null | null | null | null | null | null | null | null | 164347.0 | 1445.0 | 187.632 | 1.65 | 1359.0 | 1.552 | 1.0e-3 | 1056.8 | null | 50.0 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-04-26 | 7404.0 | 52.0 | 94.0 | 220.0 | 2.0 | 4.857 | 691.382 | 4.856 | 8.778 | 20.544 | 0.187 | 0.454 | 0.65 | 72.0 | 6.723 | 310.0 | 28.948 | 118.656 | 11.08 | 480.656 | 44.883 | 222658.0 | 3381.0 | 20.792 | 0.316 | 6655.0 | 0.621 | 1.4e-2 | 70.8 | null | 60.19 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-01 | 341644.0 | 6542.0 | 11935.286 | 3429.0 | 178.0 | 175.429 | 31902.566 | 610.889 | 1114.512 | 320.199 | 16.622 | 16.381 | 1.01 | 1163.0 | 108.6 | 7486.0 | 699.039 | 1794.919 | 167.609 | 11793.174 | 1101.241 | 2356389.0 | 20643.0 | 220.039 | 1.928 | 38502.0 | 3.595 | 0.31 | 3.2 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-26 | 511520.0 | 6305.0 | 4252.143 | 7779.0 | 168.0 | 129.286 | 47765.511 | 588.758 | 397.063 | 726.4 | 15.688 | 12.073 | null | 743.0 | 69.381 | 5048.0 | 471.38 | null | null | null | null | 3023731.0 | 20489.0 | 282.355 | 1.913 | 19862.0 | 1.855 | 0.214 | 4.7 | null | 69.44 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
COD | Africa | Democratic Republic of Congo | 2020-05-21 | 1835.0 | 104.0 | 84.714 | 61.0 | 0.0 | 1.571 | 20.489 | 1.161 | 0.946 | 0.681 | 0.0 | 1.8e-2 | 1.13 | null | null | null | null | null | null | null | null | null | 225.0 | null | 3.0e-3 | null | null | null | null | null | 80.56 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-07-07 | 7432.0 | 0.0 | 56.143 | 182.0 | 0.0 | 1.714 | 82.982 | 0.0 | 0.627 | 2.032 | 0.0 | 1.9e-2 | 1.04 | null | null | null | null | null | null | null | null | null | 919.0 | null | 1.0e-2 | 644.0 | 7.0e-3 | 8.7e-2 | 11.5 | null | 80.56 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-09-15 | 10401.0 | 11.0 | 15.571 | 267.0 | 3.0 | 1.0 | 116.133 | 0.123 | 0.174 | 2.981 | 3.3e-2 | 1.1e-2 | 1.05 | null | null | null | null | null | null | null | null | null | 272.0 | null | 3.0e-3 | 227.0 | 3.0e-3 | 6.9e-2 | 14.6 | null | 42.59 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-10-08 | 10822.0 | 18.0 | 19.571 | 276.0 | 0.0 | 0.571 | 120.833 | 0.201 | 0.219 | 3.082 | 0.0 | 6.0e-3 | 1.09 | null | null | null | null | null | null | null | null | null | 154.0 | null | 2.0e-3 | 174.0 | 2.0e-3 | 0.112 | 8.9 | null | 39.81 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-10-17 | 11000.0 | 1.0 | 22.714 | 302.0 | 1.0 | 3.714 | 122.821 | 1.1e-2 | 0.254 | 3.372 | 1.1e-2 | 4.1e-2 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
COD | Africa | Democratic Republic of Congo | 2020-11-19 | 12008.0 | 90.0 | 45.143 | 323.0 | 0.0 | 0.714 | 134.076 | 1.005 | 0.504 | 3.606 | 0.0 | 8.0e-3 | 1.15 | null | null | null | null | null | null | null | null | null | 385.0 | null | 4.0e-3 | 293.0 | 3.0e-3 | 0.154 | 6.5 | null | 18.52 | 8.9561404e7 | 35.879 | 17.0 | 3.02 | 1.745 | 808.133 | 77.1 | 318.949 | 6.1 | null | null | 4.472 | null | 60.68 | 0.457 |
DNK | Europe | Denmark | 2020-08-07 | 14747.0 | 161.0 | 102.714 | 617.0 | 0.0 | 0.286 | 2546.009 | 27.796 | 17.733 | 106.523 | 0.0 | 4.9e-2 | 1.37 | 2.0 | 0.345 | 25.0 | 4.316 | null | null | null | null | 1698747.0 | 27074.0 | 293.282 | 4.674 | 22516.0 | 3.887 | 5.0e-3 | 219.2 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-08-11 | 15291.0 | 156.0 | 139.571 | 621.0 | 1.0 | 0.714 | 2639.928 | 26.933 | 24.096 | 107.213 | 0.173 | 0.123 | 1.33 | 2.0 | 0.345 | 20.0 | 3.453 | null | null | null | null | 1804944.0 | 33524.0 | 311.616 | 5.788 | 26429.0 | 4.563 | 5.0e-3 | 189.4 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-05-08 | 1135.0 | 2.0 | 5.429 | 3.0 | 0.0 | 0.143 | 1148.783 | 2.024 | 5.494 | 3.036 | 0.0 | 0.145 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DMA | North America | Dominica | 2020-04-07 | 15.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 208.359 | 0.0 | 5.953 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 71991.0 | 98.567 | null | null | null | 9673.367 | null | 227.376 | 11.62 | null | null | null | 3.8 | 75.0 | 0.715 |
DOM | North America | Dominican Republic | 2020-03-13 | 5.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.461 | 0.0 | 4.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-18 | 121347.0 | 422.0 | 410.0 | 2199.0 | 4.0 | 3.714 | 11186.216 | 38.902 | 37.795 | 202.712 | 0.369 | 0.342 | 0.96 | null | null | null | null | null | null | null | null | 545492.0 | 3265.0 | 50.285 | 0.301 | 3427.0 | 0.316 | 0.12 | 8.4 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-17 | 134697.0 | 494.0 | 509.429 | 2290.0 | 4.0 | 3.0 | 12416.869 | 45.539 | 46.961 | 211.101 | 0.369 | 0.277 | 1.16 | null | null | null | null | null | null | null | null | 659160.0 | 3869.0 | 60.764 | 0.357 | 3716.0 | 0.343 | 0.137 | 7.3 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
ECU | South America | Ecuador | 2020-05-31 | 39098.0 | 527.0 | 334.571 | 3358.0 | 24.0 | 35.714 | 2216.055 | 29.87 | 18.963 | 190.33 | 1.36 | 2.024 | 1.02 | null | null | null | null | null | null | null | null | 68988.0 | 757.0 | 3.91 | 4.3e-2 | 1009.0 | 5.7e-2 | null | null | null | 86.11 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-06-13 | 46356.0 | 578.0 | 518.286 | 3874.0 | 46.0 | 38.0 | 2627.435 | 32.761 | 29.376 | 219.576 | 2.607 | 2.154 | 1.13 | null | null | null | null | null | null | null | null | 88946.0 | 1385.0 | 5.041 | 7.9e-2 | 1403.0 | 8.0e-2 | null | null | null | 83.33 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-03-20 | 285.0 | 29.0 | 29.286 | 8.0 | 2.0 | 0.857 | 2.785 | 0.283 | 0.286 | 7.8e-2 | 2.0e-2 | 8.0e-3 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-07-06 | 76222.0 | 969.0 | 1352.571 | 3422.0 | 79.0 | 78.571 | 744.833 | 9.469 | 13.217 | 33.439 | 0.772 | 0.768 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-08-28 | 98285.0 | 223.0 | 162.429 | 5362.0 | 20.0 | 18.714 | 960.43 | 2.179 | 1.587 | 52.397 | 0.195 | 0.183 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-09-19 | 101900.0 | 128.0 | 149.143 | 5750.0 | 17.0 | 17.571 | 995.755 | 1.251 | 1.457 | 56.188 | 0.166 | 0.172 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-10-30 | 107376.0 | 167.0 | 163.714 | 6258.0 | 11.0 | 11.714 | 1049.266 | 1.632 | 1.6 | 61.152 | 0.107 | 0.114 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-05-30 | 2395.0 | 117.0 | 82.286 | 46.0 | 4.0 | 1.857 | 369.245 | 18.038 | 12.686 | 7.092 | 0.617 | 0.286 | 1.13 | null | null | null | null | null | null | null | null | 89358.0 | 2386.0 | 13.777 | 0.368 | 2392.0 | 0.369 | 3.4e-2 | 29.1 | null | 100.0 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
GNQ | Africa | Equatorial Guinea | 2020-10-06 | 5052.0 | 7.0 | 3.143 | 83.0 | 0.0 | 0.0 | 3600.894 | 4.989 | 2.24 | 59.16 | 0.0 | 0.0 | 0.58 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
GNQ | Africa | Equatorial Guinea | 2020-10-21 | 5074.0 | 0.0 | 0.857 | 83.0 | 0.0 | 0.0 | 3616.575 | 0.0 | 0.611 | 59.16 | 0.0 | 0.0 | 0.51 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1402985.0 | 45.194 | 22.4 | 2.846 | 1.752 | 22604.873 | null | 202.812 | 7.78 | null | null | 24.64 | 2.1 | 58.74 | 0.591 |
ERI | Africa | Eritrea | 2020-05-24 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-05-28 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-17 | 285.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.363 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-22 | 306.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 86.284 | 0.0 | 0.846 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-09-05 | 2491.0 | 35.0 | 18.286 | 64.0 | 0.0 | 0.0 | 1877.819 | 26.384 | 13.785 | 48.246 | 0.0 | 0.0 | 1.32 | 0.0 | 0.0 | 7.0 | 5.277 | null | null | null | null | 188267.0 | 1342.0 | 141.923 | 1.012 | 2061.0 | 1.554 | 9.0e-3 | 112.7 | null | 23.15 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-04-29 | 130.0 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 1.131 | 3.5e-2 | 1.7e-2 | 2.6e-2 | 0.0 | 0.0 | 0.56 | null | null | null | null | null | null | null | null | 16434.0 | 766.0 | 0.143 | 7.0e-3 | 952.0 | 8.0e-3 | 2.0e-3 | 476.0 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-07 | 21452.0 | 552.0 | 560.286 | 380.0 | 15.0 | 15.143 | 186.598 | 4.802 | 4.874 | 3.305 | 0.13 | 0.132 | 1.06 | null | null | null | null | null | null | null | null | 478017.0 | 9203.0 | 4.158 | 8.0e-2 | 7952.0 | 6.9e-2 | 7.0e-2 | 14.2 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-24 | 42143.0 | 1472.0 | 1543.857 | 692.0 | 14.0 | 21.143 | 366.577 | 12.804 | 13.429 | 6.019 | 0.122 | 0.184 | 1.17 | null | null | null | null | null | null | null | null | 775908.0 | 18851.0 | 6.749 | 0.164 | 20957.0 | 0.182 | 7.4e-2 | 13.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
FIN | Europe | Finland | 2020-04-02 | 1518.0 | 72.0 | 80.0 | 19.0 | 2.0 | 2.0 | 273.972 | 12.995 | 14.439 | 3.429 | 0.361 | 0.361 | 1.32 | 65.0 | 11.731 | 160.0 | 28.877 | null | null | null | null | 27466.0 | 2331.0 | 4.957 | 0.421 | 1422.0 | 0.257 | 5.6e-2 | 17.8 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-07 | 7554.0 | 22.0 | 17.429 | 331.0 | 0.0 | 0.286 | 1363.361 | 3.971 | 3.146 | 59.74 | 0.0 | 5.2e-2 | 1.29 | 0.0 | 0.0 | 3.0 | 0.541 | null | null | null | null | 428351.0 | 8815.0 | 77.31 | 1.591 | 6469.0 | 1.168 | 3.0e-3 | 371.2 | null | 35.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-14 | 7700.0 | 17.0 | 20.857 | 333.0 | 0.0 | 0.286 | 1389.712 | 3.068 | 3.764 | 60.101 | 0.0 | 5.2e-2 | 1.25 | 0.0 | 0.0 | 6.0 | 1.083 | null | null | null | null | 491843.0 | 9621.0 | 88.769 | 1.736 | 9070.0 | 1.637 | 2.0e-3 | 434.9 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-04 | 8225.0 | 25.0 | 26.143 | 336.0 | 0.0 | 0.143 | 1484.465 | 4.512 | 4.718 | 60.642 | 0.0 | 2.6e-2 | 1.25 | 1.0 | 0.18 | 14.0 | 2.527 | null | null | null | null | 798694.0 | 16079.0 | 144.15 | 2.902 | 15326.0 | 2.766 | 2.0e-3 | 586.2 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-03-18 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.414 | 0.0 | 5.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-04-28 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 4.138 | 0.0 | 0.0 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.7 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-10-06 | 3613.0 | 19.0 | 4.857 | 117.0 | 2.0 | 0.714 | 1495.036 | 7.862 | 2.01 | 48.414 | 0.828 | 0.296 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-03-06 | 4.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1.003 | 0.0 | 0.107 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-06-04 | 801.0 | 1.0 | 9.0 | 13.0 | 0.0 | 0.143 | 200.793 | 0.251 | 2.256 | 3.259 | 0.0 | 3.6e-2 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-11-16 | 82835.0 | 3157.0 | 3165.0 | 733.0 | 30.0 | 33.429 | 20764.945 | 791.392 | 793.397 | 183.747 | 7.52 | 8.38 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-05-29 | 182922.0 | 726.0 | 458.857 | 8504.0 | 34.0 | 39.429 | 2183.258 | 8.665 | 5.477 | 101.499 | 0.406 | 0.471 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | 55781.0 | 0.666 | 8.0e-3 | 121.6 | null | 59.72 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-10-03 | 46803.0 | 109.0 | 83.0 | 303.0 | 2.0 | 0.571 | 1506.23 | 3.508 | 2.671 | 9.751 | 6.4e-2 | 1.8e-2 | 1.13 | null | null | null | null | null | null | null | null | 492768.0 | null | 15.858 | null | 1722.0 | 5.5e-2 | 4.8e-2 | 20.7 | null | 44.44 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-05-28 | 2906.0 | 3.0 | 7.571 | 175.0 | 2.0 | 1.0 | 278.805 | 0.288 | 0.726 | 16.79 | 0.192 | 9.6e-2 | 0.97 | null | null | null | null | null | null | null | null | 170467.0 | 4222.0 | 16.355 | 0.405 | 3770.0 | 0.362 | 2.0e-3 | 498.0 | null | 68.52 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-06-13 | 3112.0 | 4.0 | 18.857 | 183.0 | 0.0 | 0.429 | 298.569 | 0.384 | 1.809 | 17.557 | 0.0 | 4.1e-2 | 1.19 | null | null | null | null | null | null | null | null | 247452.0 | 3585.0 | 23.741 | 0.344 | 5104.0 | 0.49 | 4.0e-3 | 270.7 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-08-29 | 9977.0 | 177.0 | 228.0 | 260.0 | 1.0 | 2.857 | 957.205 | 16.982 | 21.875 | 24.945 | 9.6e-2 | 0.274 | 1.14 | null | null | null | null | null | null | null | null | 931002.0 | 13737.0 | 89.321 | 1.318 | 13324.0 | 1.278 | 1.7e-2 | 58.4 | null | 56.02 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-10-03 | 19613.0 | 267.0 | 340.714 | 405.0 | 7.0 | 4.143 | 1881.694 | 25.616 | 32.689 | 38.856 | 0.672 | 0.397 | 1.16 | null | null | null | null | null | null | null | null | 1339664.0 | 11622.0 | 128.529 | 1.115 | 10087.0 | 0.968 | 3.4e-2 | 29.6 | null | 50.46 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-11-07 | 54809.0 | 2555.0 | 2222.571 | 749.0 | 34.0 | 17.571 | 5258.439 | 245.13 | 213.236 | 71.86 | 3.262 | 1.686 | 1.34 | null | null | null | null | null | null | null | null | 1926544.0 | 24086.0 | 184.835 | 2.311 | 21317.0 | 2.045 | 0.104 | 9.6 | null | 78.7 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRD | North America | Grenada | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 112519.0 | 317.132 | 29.4 | 7.304 | 5.021 | 13593.877 | null | 243.964 | 10.71 | null | null | null | 3.7 | 72.4 | 0.772 |
GTM | North America | Guatemala | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.7915567e7 | 157.834 | 22.9 | 4.694 | 3.016 | 7423.808 | 8.7 | 155.898 | 10.18 | null | null | 76.665 | 0.6 | 74.3 | 0.65 |
GNB | Africa | Guinea-Bissau | 2020-05-18 | 1032.0 | 42.0 | 38.714 | 4.0 | 0.0 | 0.143 | 524.391 | 21.341 | 19.672 | 2.033 | 0.0 | 7.3e-2 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GNB | Africa | Guinea-Bissau | 2020-09-10 | 2275.0 | 30.0 | 10.0 | 39.0 | 1.0 | 0.714 | 1155.997 | 15.244 | 5.081 | 19.817 | 0.508 | 0.363 | 0.49 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1967998.0 | 66.191 | 19.4 | 3.002 | 1.565 | 1548.675 | 67.1 | 382.474 | 2.42 | null | null | 6.403 | null | 58.32 | 0.455 |
GUY | South America | Guyana | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-05-29 | 150.0 | 0.0 | 3.286 | 11.0 | 0.0 | 0.143 | 190.704 | 0.0 | 4.177 | 13.985 | 0.0 | 0.182 | 0.6 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
GUY | South America | Guyana | 2020-07-04 | 272.0 | 16.0 | 6.0 | 14.0 | 0.0 | 0.286 | 345.81 | 20.342 | 7.628 | 17.799 | 0.0 | 0.363 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 786559.0 | 3.952 | 26.3 | 5.305 | 2.837 | 7435.047 | null | 373.159 | 11.62 | null | null | 77.159 | 1.6 | 69.91 | 0.654 |
HTI | North America | Haiti | 2020-08-21 | 8016.0 | 19.0 | 29.429 | 196.0 | 0.0 | 0.571 | 703.002 | 1.666 | 2.581 | 17.189 | 0.0 | 5.0e-2 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HND | North America | Honduras | 2020-11-04 | 99124.0 | 436.0 | 560.714 | 2730.0 | 24.0 | 11.143 | 10007.867 | 44.02 | 56.611 | 275.629 | 2.423 | 1.125 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.04 | 9904608.0 | 82.805 | 24.9 | 4.652 | 2.883 | 4541.795 | 16.0 | 240.208 | 7.21 | 2.0 | null | 84.169 | 0.7 | 75.27 | 0.617 |
HUN | Europe | Hungary | 2020-03-11 | 13.0 | 4.0 | 1.571 | 0.0 | 0.0 | 0.0 | 1.346 | 0.414 | 0.163 | null | 0.0 | 0.0 | null | null | null | 13.0 | 1.346 | null | null | null | null | 609.0 | 78.0 | 6.3e-2 | 8.0e-3 | 54.0 | 6.0e-3 | 2.9e-2 | 34.4 | null | 46.3 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-06-05 | 3970.0 | 16.0 | 18.429 | 542.0 | 3.0 | 3.571 | 410.958 | 1.656 | 1.908 | 56.106 | 0.311 | 0.37 | 0.71 | null | null | 397.0 | 41.096 | null | null | null | null | 202606.0 | 6712.0 | 20.973 | 0.695 | 3208.0 | 0.332 | 6.0e-3 | 174.1 | null | 61.11 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
IND | Asia | India | 2020-03-07 | 34.0 | 3.0 | 4.429 | 0.0 | 0.0 | 0.0 | 2.5e-2 | 2.0e-3 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 26.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-06-15 | 343091.0 | 10667.0 | 11023.286 | 9900.0 | 380.0 | 346.714 | 248.616 | 7.73 | 7.988 | 7.174 | 0.275 | 0.251 | 1.21 | null | null | null | null | null | null | null | null | 5774133.0 | 115519.0 | 4.184 | 8.4e-2 | 142814.0 | 0.103 | 7.7e-2 | 13.0 | null | 76.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-05-24 | 22271.0 | 526.0 | 679.571 | 1372.0 | 21.0 | 32.0 | 81.423 | 1.923 | 2.485 | 5.016 | 7.7e-2 | 0.117 | 1.14 | null | null | null | null | null | null | null | null | 179864.0 | 3829.0 | 0.658 | 1.4e-2 | 5626.0 | 2.1e-2 | 0.121 | 8.3 | null | 71.76 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-07-13 | 76981.0 | 1282.0 | 1717.571 | 3656.0 | 50.0 | 59.286 | 281.442 | 4.687 | 6.279 | 13.366 | 0.183 | 0.217 | 1.07 | null | null | null | null | null | null | null | null | 630149.0 | 9062.0 | 2.304 | 3.3e-2 | 11152.0 | 4.1e-2 | 0.154 | 6.5 | null | 62.5 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IRN | Asia | Iran | 2020-04-19 | 82211.0 | 1343.0 | 1503.571 | 5118.0 | 87.0 | 92.0 | 978.784 | 15.989 | 17.901 | 60.934 | 1.036 | 1.095 | 0.77 | null | null | null | null | null | null | null | null | 341662.0 | 11525.0 | 4.068 | 0.137 | 11182.0 | 0.133 | 0.134 | 7.4 | null | 53.7 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-06-27 | 220180.0 | 2456.0 | 2513.714 | 10364.0 | 125.0 | 122.429 | 2621.41 | 29.241 | 29.928 | 123.391 | 1.488 | 1.458 | 1.0 | null | null | null | null | null | null | null | null | 1583542.0 | 25670.0 | 18.853 | 0.306 | 26838.0 | 0.32 | 9.4e-2 | 10.7 | null | 41.67 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-09-01 | 376894.0 | 1682.0 | 1933.0 | 21672.0 | 101.0 | 110.143 | 4487.21 | 20.025 | 23.014 | 258.022 | 1.202 | 1.311 | 0.84 | null | null | null | null | null | null | null | null | 3256122.0 | 25012.0 | 38.767 | 0.298 | 23973.0 | 0.285 | 8.1e-2 | 12.4 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRQ | Asia | Iraq | 2020-10-12 | 405437.0 | 3107.0 | 3212.571 | 9912.0 | 60.0 | 64.0 | 10079.855 | 77.245 | 79.87 | 246.429 | 1.492 | 1.591 | 0.91 | null | null | null | null | null | null | null | null | 2507551.0 | 20368.0 | 62.342 | 0.506 | 19458.0 | 0.484 | 0.165 | 6.1 | null | 61.11 | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
IRQ | Asia | Iraq | 2020-11-25 | 542187.0 | 2438.0 | 2190.714 | 12086.0 | 55.0 | 41.571 | 13479.693 | 60.613 | 54.465 | 300.479 | 1.367 | 1.034 | null | null | null | null | null | null | null | null | null | 3347344.0 | 27830.0 | 83.221 | 0.692 | 23504.0 | 0.584 | 9.3e-2 | 10.7 | null | null | 4.0222503e7 | 88.125 | 20.0 | 3.186 | 1.957 | 15663.986 | 2.5 | 218.612 | 8.83 | null | null | 94.576 | 1.4 | 70.6 | 0.685 |
ISR | Asia | Israel | 2020-11-03 | 316528.0 | 892.0 | 686.286 | 2592.0 | 12.0 | 15.571 | 36569.407 | 103.055 | 79.289 | 299.461 | 1.386 | 1.799 | 0.76 | null | null | null | null | null | null | null | null | 4959948.0 | 41557.0 | 573.037 | 4.801 | 30484.0 | 3.522 | 2.3e-2 | 44.4 | null | 40.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-11-12 | 322159.0 | 833.0 | 613.714 | 2706.0 | 6.0 | 9.571 | 37219.973 | 96.239 | 70.904 | 312.632 | 0.693 | 1.106 | 0.95 | null | null | null | null | null | null | null | null | 5254862.0 | 40338.0 | 607.11 | 4.66 | 31393.0 | 3.627 | 2.0e-2 | 51.2 | null | 65.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-09-17 | 293025.0 | 1583.0 | 1406.429 | 35658.0 | 13.0 | 10.143 | 4846.446 | 26.182 | 23.261 | 589.761 | 0.215 | 0.168 | 1.1 | 212.0 | 3.506 | 2560.0 | 42.341 | null | null | null | null | 1.0146324e7 | 101773.0 | 167.814 | 1.683 | 84562.0 | 1.399 | 1.7e-2 | 60.1 | null | 47.22 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-19 | 1308528.0 | 36176.0 | 34589.571 | 47870.0 | 653.0 | 611.571 | 21642.217 | 598.328 | 572.089 | 791.739 | 10.8 | 10.115 | 1.07 | 3712.0 | 61.394 | 37322.0 | 617.282 | null | null | null | null | 1.9724527e7 | 250186.0 | 326.231 | 4.138 | 217717.0 | 3.601 | 0.159 | 6.3 | null | 79.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-04-19 | 173.0 | 10.0 | 14.857 | 5.0 | 0.0 | 0.143 | 58.423 | 3.377 | 5.017 | 1.689 | 0.0 | 4.8e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 79.0 | 2.7e-2 | 0.188 | 5.3 | null | 80.56 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-02 | 715.0 | 8.0 | 4.429 | 10.0 | 0.0 | 0.0 | 241.459 | 2.702 | 1.496 | 3.377 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | 25172.0 | 285.0 | 8.501 | 9.6e-2 | 360.0 | 0.122 | 1.2e-2 | 81.3 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-10-04 | 6895.0 | 100.0 | 125.429 | 120.0 | 1.0 | 4.429 | 2328.479 | 33.771 | 42.358 | 40.525 | 0.338 | 1.496 | 0.96 | null | null | null | null | null | null | null | null | 81071.0 | 541.0 | 27.378 | 0.183 | 534.0 | 0.18 | 0.235 | 4.3 | null | 78.7 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-03-31 | 2255.0 | 254.0 | 148.286 | 67.0 | 2.0 | 3.571 | 17.829 | 2.008 | 1.172 | 0.53 | 1.6e-2 | 2.8e-2 | 1.97 | null | null | null | null | null | null | null | null | 31874.0 | 1914.0 | 0.252 | 1.5e-2 | 1354.0 | 1.1e-2 | 0.11 | 9.1 | null | 40.74 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-07-02 | 19055.0 | 217.0 | 142.857 | 977.0 | 1.0 | 0.857 | 150.66 | 1.716 | 1.13 | 7.725 | 8.0e-3 | 7.0e-3 | 1.68 | null | null | null | null | null | null | null | null | 402243.0 | 5460.0 | 3.18 | 4.3e-2 | 4570.0 | 3.6e-2 | 3.1e-2 | 32.0 | null | 25.93 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-10-14 | 90694.0 | 541.0 | 522.143 | 1646.0 | 11.0 | 4.571 | 717.082 | 4.277 | 4.128 | 13.014 | 8.7e-2 | 3.6e-2 | 1.06 | null | null | null | null | null | null | null | null | 2133151.0 | 21837.0 | 16.866 | 0.173 | 17411.0 | 0.138 | 3.0e-2 | 33.3 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JOR | Asia | Jordan | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
JOR | Asia | Jordan | 2020-06-26 | 1104.0 | 18.0 | 13.714 | 9.0 | 0.0 | 0.0 | 108.202 | 1.764 | 1.344 | 0.882 | 0.0 | 0.0 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 1.020314e7 | 109.285 | 23.2 | 3.81 | 2.361 | 8337.49 | 0.1 | 208.257 | 11.75 | null | null | null | 1.4 | 74.53 | 0.735 |
KAZ | Asia | Kazakhstan | 2020-06-27 | 20319.0 | 0.0 | 442.0 | 166.0 | 16.0 | 6.857 | 1082.139 | 0.0 | 23.54 | 8.841 | 0.852 | 0.365 | 1.06 | null | null | null | null | null | null | null | null | 1467556.0 | 20390.0 | 78.158 | 1.086 | 23637.0 | 1.259 | 1.9e-2 | 53.5 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-12 | 115615.0 | 2114.0 | 1811.286 | 1433.0 | 0.0 | 46.286 | 6157.363 | 112.586 | 96.465 | 76.318 | 0.0 | 2.465 | 0.62 | null | null | null | null | null | null | null | null | 2252153.0 | 15229.0 | 119.944 | 0.811 | 15342.0 | 0.817 | 0.118 | 8.5 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-14 | 118514.0 | 1410.0 | 1512.0 | 1433.0 | 0.0 | 46.286 | 6311.756 | 75.093 | 80.525 | 76.318 | 0.0 | 2.465 | 0.59 | null | null | null | null | null | null | null | null | 2291327.0 | 19573.0 | 122.03 | 1.042 | 15431.0 | 0.822 | 9.8e-2 | 10.2 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-05 | 152725.0 | 703.0 | 606.571 | 2263.0 | 1.0 | 5.857 | 8133.748 | 37.44 | 32.304 | 120.522 | 5.3e-2 | 0.312 | 1.46 | null | null | null | null | null | null | null | null | 3723082.0 | 35064.0 | 198.282 | 1.867 | 27230.0 | 1.45 | 2.2e-2 | 44.9 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-05-13 | 737.0 | 22.0 | 22.143 | 40.0 | 4.0 | 2.0 | 13.706 | 0.409 | 0.412 | 0.744 | 7.4e-2 | 3.7e-2 | 1.3 | null | null | null | null | null | null | null | null | 35432.0 | 1516.0 | 0.659 | 2.8e-2 | 1197.0 | 2.2e-2 | 1.8e-2 | 54.1 | null | 88.89 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-09-29 | 38378.0 | 210.0 | 165.714 | 707.0 | 7.0 | 6.857 | 713.726 | 3.905 | 3.082 | 13.148 | 0.13 | 0.128 | 1.15 | null | null | null | null | null | null | null | null | 545019.0 | 3604.0 | 10.136 | 6.7e-2 | 3556.0 | 6.6e-2 | 4.7e-2 | 21.5 | null | 71.3 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-11-17 | 71729.0 | 925.0 | 1020.143 | 1302.0 | 15.0 | 21.143 | 1333.964 | 17.202 | 18.972 | 24.214 | 0.279 | 0.393 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | 6311.0 | 0.117 | 0.162 | 6.2 | null | 62.96 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
OWID_KOS | Europe | Kosovo | 2020-04-30 | 799.0 | 9.0 | 24.143 | 22.0 | 0.0 | 0.571 | 413.395 | 4.657 | 12.491 | 11.383 | 0.0 | 0.296 | 0.88 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-08-02 | 8799.0 | 245.0 | 237.429 | 249.0 | 13.0 | 10.286 | 4552.524 | 126.761 | 122.843 | 128.83 | 6.726 | 5.322 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
OWID_KOS | Europe | Kosovo | 2020-08-05 | 9492.0 | 218.0 | 235.143 | 284.0 | 15.0 | 12.571 | 4911.076 | 112.791 | 121.661 | 146.939 | 7.761 | 6.504 | 1.01 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 1932774.0 | 168.155 | null | null | null | 9795.834 | 0.6 | null | null | null | null | null | null | null | null |
KGZ | Asia | Kyrgyzstan | 2020-06-06 | 1974.0 | 38.0 | 36.0 | 22.0 | 0.0 | 0.857 | 302.566 | 5.824 | 5.518 | 3.372 | 0.0 | 0.131 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-19 | 68316.0 | 422.0 | 489.857 | 1217.0 | 5.0 | 3.429 | 10471.183 | 64.682 | 75.083 | 186.537 | 0.766 | 0.526 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-07-15 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 20.37 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-05-03 | 879.0 | 8.0 | 9.571 | 16.0 | 0.0 | 0.571 | 466.016 | 4.241 | 5.074 | 8.483 | 0.0 | 0.303 | 0.88 | null | null | 33.0 | 17.495 | 1.965 | 1.042 | 8.842 | 4.688 | 64245.0 | 1143.0 | 34.061 | 0.606 | 2375.0 | 1.259 | 4.0e-3 | 248.1 | null | 69.44 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-12-01 | 129455.0 | 1511.0 | 1535.714 | 1033.0 | 15.0 | 14.143 | 18966.537 | 221.378 | 224.999 | 151.346 | 2.198 | 2.072 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LSO | Africa | Lesotho | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-09-10 | 1164.0 | 0.0 | 11.286 | 31.0 | 0.0 | 0.0 | 543.353 | 0.0 | 5.268 | 14.471 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LSO | Africa | Lesotho | 2020-11-18 | 2058.0 | 6.0 | 4.571 | 44.0 | 0.0 | 0.0 | 960.671 | 2.801 | 2.134 | 20.539 | 0.0 | 0.0 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 2142252.0 | 73.562 | 22.2 | 4.506 | 2.647 | 2851.153 | 59.6 | 405.126 | 3.94 | 0.4 | 53.9 | 2.117 | null | 54.33 | 0.52 |
LBY | Africa | Libya | 2020-07-25 | 2547.0 | 123.0 | 108.0 | 58.0 | 1.0 | 1.429 | 370.673 | 17.901 | 15.718 | 8.441 | 0.146 | 0.208 | 1.27 | null | null | null | null | null | null | null | null | null | 1074.0 | null | 0.156 | 1256.0 | 0.183 | 8.6e-2 | 11.6 | null | 90.74 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LBY | Africa | Libya | 2020-08-17 | 8579.0 | 407.0 | 378.571 | 157.0 | 4.0 | 4.571 | 1248.529 | 59.232 | 55.095 | 22.849 | 0.582 | 0.665 | 1.23 | null | null | null | null | null | null | null | null | null | 2995.0 | null | 0.436 | 2766.0 | 0.403 | 0.137 | 7.3 | null | 87.96 | 6871287.0 | 3.623 | 29.0 | 4.424 | 2.816 | 17881.509 | null | 341.862 | 10.43 | null | null | null | 3.7 | 72.91 | 0.706 |
LIE | Europe | Liechtenstein | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-08-08 | 89.0 | 0.0 | 0.143 | 1.0 | 0.0 | 0.0 | 2333.692 | 0.0 | 3.746 | 26.221 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LIE | Europe | Liechtenstein | 2020-11-16 | 989.0 | 4.0 | 26.857 | 7.0 | 2.0 | 0.429 | 25932.821 | 104.885 | 704.228 | 183.549 | 52.443 | 11.238 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38137.0 | 237.012 | null | null | null | null | null | null | 7.77 | null | null | null | 2.397 | 82.49 | 0.916 |
LTU | Europe | Lithuania | 2020-03-07 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.367 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-06-17 | 1778.0 | 2.0 | 6.429 | 76.0 | 0.0 | 0.286 | 653.126 | 0.735 | 2.361 | 27.918 | 0.0 | 0.105 | 0.85 | null | null | null | null | null | null | null | null | 363718.0 | 5138.0 | 133.607 | 1.887 | 4080.0 | 1.499 | 2.0e-3 | 634.6 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-20 | 42757.0 | 2265.0 | 1554.143 | 357.0 | 16.0 | 14.857 | 15706.256 | 832.02 | 570.895 | 131.14 | 5.877 | 5.458 | 1.33 | null | null | null | null | null | null | null | null | 1159456.0 | 14358.0 | 425.912 | 5.274 | 11084.0 | 4.072 | 0.14 | 7.1 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
MKD | Europe | Macedonia | 2020-06-05 | 2790.0 | 179.0 | 94.429 | 149.0 | 2.0 | 3.286 | 1339.17 | 85.918 | 45.325 | 71.518 | 0.96 | 1.577 | 1.68 | null | null | null | null | null | null | null | null | 34386.0 | 1272.0 | 16.505 | 0.611 | 957.0 | 0.459 | 9.9e-2 | 10.1 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-07-05 | 7046.0 | 114.0 | 138.0 | 341.0 | 7.0 | 7.857 | 3382.004 | 54.719 | 66.239 | 163.676 | 3.36 | 3.771 | 1.0 | null | null | null | null | null | null | null | null | 67165.0 | 1032.0 | 32.238 | 0.495 | 1209.0 | 0.58 | 0.114 | 8.8 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MKD | Europe | Macedonia | 2020-11-21 | 53631.0 | 1182.0 | 1081.286 | 1487.0 | 25.0 | 29.429 | 25742.303 | 567.347 | 519.006 | 713.744 | 12.0 | 14.125 | null | null | null | null | null | null | null | null | null | 312143.0 | 2553.0 | 149.825 | 1.225 | 2851.0 | 1.368 | 0.379 | 2.6 | null | null | 2083380.0 | 82.6 | 39.1 | 13.26 | 8.16 | 13111.214 | 5.0 | 322.688 | 10.08 | null | null | null | 4.28 | 75.8 | 0.757 |
MDG | Africa | Madagascar | 2020-10-01 | 16454.0 | 46.0 | 37.571 | 232.0 | 2.0 | 0.714 | 594.2 | 1.661 | 1.357 | 8.378 | 7.2e-2 | 2.6e-2 | 0.76 | null | null | null | null | null | null | null | null | 71089.0 | 139.0 | 2.567 | 5.0e-3 | 329.0 | 1.2e-2 | 0.114 | 8.8 | null | 48.15 | 2.7691019e7 | 43.951 | 19.6 | 2.929 | 1.686 | 1416.44 | 77.6 | 405.994 | 3.94 | null | null | 50.54 | 0.2 | 67.04 | 0.519 |
MWI | Africa | Malawi | 2020-04-29 | 36.0 | 0.0 | 1.857 | 3.0 | 0.0 | 0.0 | 1.882 | 0.0 | 9.7e-2 | 0.157 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 774.0 | 30.0 | 4.0e-2 | 2.0e-3 | 32.0 | 2.0e-3 | 5.8e-2 | 17.2 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MWI | Africa | Malawi | 2020-09-27 | 5768.0 | 2.0 | 5.286 | 179.0 | 0.0 | 0.0 | 301.517 | 0.105 | 0.276 | 9.357 | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | 52730.0 | null | 2.756 | null | 307.0 | 1.6e-2 | 1.7e-2 | 58.1 | null | 54.63 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-02-08 | 16.0 | 4.0 | 1.143 | 0.0 | 0.0 | 0.0 | 0.494 | 0.124 | 3.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-04-26 | 5780.0 | 38.0 | 55.857 | 98.0 | 0.0 | 1.286 | 178.582 | 1.174 | 1.726 | 3.028 | 0.0 | 4.0e-2 | 0.79 | null | null | null | null | null | null | null | null | 131491.0 | 4521.0 | 4.063 | 0.14 | 3943.0 | 0.122 | 1.4e-2 | 70.6 | null | 73.15 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-10-15 | 18129.0 | 589.0 | 537.286 | 170.0 | 3.0 | 3.429 | 560.125 | 18.198 | 16.6 | 5.252 | 9.3e-2 | 0.106 | 1.47 | null | null | null | null | null | null | null | null | 1810777.0 | 23948.0 | 55.947 | 0.74 | 18424.0 | 0.569 | 2.9e-2 | 34.3 | null | 65.74 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
split20: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
split80: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
testSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
trainingSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
res43: Long = 26
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FJI | Oceania | Fiji | 2020-11-16 | 35.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.0 | 39.043 | 0.0 | 0.159 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 120.0 | 0.134 | 1.0e-3 | 839.2 | null | 49.07 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-04-08 | 2487.0 | 179.0 | 148.714 | 40.0 | 6.0 | 3.286 | 448.859 | 32.306 | 26.84 | 7.219 | 1.083 | 0.593 | 1.24 | 82.0 | 14.8 | 239.0 | 43.135 | null | null | null | null | 41461.0 | 3295.0 | 7.483 | 0.595 | 2332.0 | 0.421 | 6.4e-2 | 15.7 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-11 | 8512.0 | 43.0 | 41.0 | 337.0 | 0.0 | 0.143 | 1536.263 | 7.761 | 7.4 | 60.822 | 0.0 | 2.6e-2 | 1.3 | 1.0 | 0.18 | 8.0 | 1.444 | null | null | null | null | 883388.0 | 14441.0 | 159.436 | 2.606 | 12099.0 | 2.184 | 3.0e-3 | 295.1 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-06-13 | 28.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 11.586 | 0.0 | 0.118 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-06-21 | 37.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.143 | 15.31 | 0.0 | 0.532 | 0.828 | 0.0 | 5.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 74.07 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-11-13 | 73154.0 | 3473.0 | 3023.0 | 636.0 | 37.0 | 30.429 | 18338.128 | 870.606 | 757.801 | 159.431 | 9.275 | 7.628 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-01-31 | 5.0 | 1.0 | 0.714 | 0.0 | 0.0 | 0.0 | 6.0e-2 | 1.2e-2 | 9.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-07-04 | 197198.0 | 418.0 | 391.429 | 9020.0 | 10.0 | 7.429 | 2353.649 | 4.989 | 4.672 | 107.658 | 0.119 | 8.9e-2 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | 71702.0 | 0.856 | 5.0e-3 | 183.2 | null | 63.43 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-01 | 211005.0 | 606.0 | 675.286 | 9154.0 | 7.0 | 4.286 | 2518.442 | 7.233 | 8.06 | 109.257 | 8.4e-2 | 5.1e-2 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | 83563.0 | 0.997 | 8.0e-3 | 123.7 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
DEU | Europe | Germany | 2020-08-02 | 211220.0 | 215.0 | 650.429 | 9154.0 | 0.0 | 4.286 | 2521.008 | 2.566 | 7.763 | 109.257 | 0.0 | 5.1e-2 | 1.21 | null | null | null | null | null | null | 305.791 | 3.65 | 8549377.0 | null | 102.041 | null | 83803.0 | 1.0 | 8.0e-3 | 128.8 | null | 57.87 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-04-09 | 378.0 | 65.0 | 24.857 | 6.0 | 0.0 | 0.143 | 12.165 | 2.092 | 0.8 | 0.193 | 0.0 | 5.0e-3 | 1.28 | null | null | null | null | null | null | null | null | 14611.0 | null | 0.47 | null | 1008.0 | 3.2e-2 | 2.5e-2 | 40.6 | null | 86.11 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-03 | 8548.0 | 251.0 | 177.857 | 38.0 | 0.0 | 0.571 | 275.095 | 8.078 | 5.724 | 1.223 | 0.0 | 1.8e-2 | 1.21 | null | null | null | null | null | null | null | null | 226741.0 | 3676.0 | 7.297 | 0.118 | 2630.0 | 8.5e-2 | 6.8e-2 | 14.8 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-27 | 51225.0 | 0.0 | 84.857 | 323.0 | 0.0 | 0.0 | 1648.54 | 0.0 | 2.731 | 10.395 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 592285.0 | 1100.0 | 19.061 | 3.5e-2 | 1705.0 | 5.5e-2 | 5.0e-2 | 20.1 | null | null | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-03-14 | 228.0 | 38.0 | 26.0 | 3.0 | 2.0 | 0.429 | 21.875 | 3.646 | 2.494 | 0.288 | 0.192 | 4.1e-2 | 1.33 | null | null | null | null | null | null | null | null | 3400.0 | 700.0 | 0.326 | 6.7e-2 | 302.0 | 2.9e-2 | 8.6e-2 | 11.6 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-05-01 | 2612.0 | 21.0 | 17.429 | 140.0 | 0.0 | 1.429 | 250.598 | 2.015 | 1.672 | 13.432 | 0.0 | 0.137 | 0.81 | null | null | null | null | null | null | null | null | 77251.0 | 2081.0 | 7.412 | 0.2 | 2263.0 | 0.217 | 8.0e-3 | 129.8 | null | 84.26 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-07-25 | 4166.0 | 31.0 | 26.143 | 201.0 | 0.0 | 1.0 | 399.691 | 2.974 | 2.508 | 19.284 | 0.0 | 9.6e-2 | 1.28 | null | null | null | null | null | null | null | null | null | null | null | null | 5151.0 | 0.494 | 5.0e-3 | 197.0 | null | 57.41 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
HTI | North America | Haiti | 2020-09-13 | 8493.0 | 15.0 | 19.0 | 219.0 | 0.0 | 0.714 | 744.835 | 1.315 | 1.666 | 19.206 | 0.0 | 6.3e-2 | 0.93 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HTI | North America | Haiti | 2020-10-17 | 8956.0 | 31.0 | 13.714 | 231.0 | 0.0 | 0.143 | 785.44 | 2.719 | 1.203 | 20.259 | 0.0 | 1.3e-2 | 0.89 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HUN | Europe | Hungary | 2020-03-14 | 30.0 | 11.0 | 3.714 | 0.0 | 0.0 | 0.0 | 3.105 | 1.139 | 0.384 | null | 0.0 | 0.0 | null | null | null | 29.0 | 3.002 | null | null | null | null | 1014.0 | 156.0 | 0.105 | 1.6e-2 | 99.0 | 1.0e-2 | 3.8e-2 | 26.7 | null | 50.0 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-08-13 | 1976.0 | 4.0 | 6.286 | 10.0 | 0.0 | 0.0 | 5790.476 | 11.722 | 18.42 | 29.304 | 0.0 | 0.0 | 1.14 | 0.0 | 0.0 | 1.0 | 2.93 | null | null | null | null | 81052.0 | 328.0 | 237.515 | 0.961 | 544.0 | 1.594 | 1.2e-2 | 86.5 | null | 46.3 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-04-19 | 17615.0 | 1893.0 | 1201.429 | 559.0 | 38.0 | 32.571 | 12.764 | 1.372 | 0.871 | 0.405 | 2.8e-2 | 2.4e-2 | 1.54 | null | null | null | null | null | null | null | null | 401586.0 | 29463.0 | 0.291 | 2.1e-2 | 29405.0 | 2.1e-2 | 4.1e-2 | 24.5 | null | 100.0 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-10-18 | 7550273.0 | 55722.0 | 61390.714 | 114610.0 | 579.0 | 780.0 | 5471.195 | 40.378 | 44.486 | 83.05 | 0.42 | 0.565 | 0.89 | null | null | null | null | null | null | null | null | 9.422419e7 | 970173.0 | 68.278 | 0.703 | 1049564.0 | 0.761 | 5.8e-2 | 17.1 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IRN | Asia | Iran | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-10-29 | 596941.0 | 8293.0 | 6597.714 | 34113.0 | 399.0 | 351.857 | 7107.037 | 98.734 | 78.551 | 406.141 | 4.75 | 4.189 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | 30096.0 | 0.358 | 0.219 | 4.6 | null | 70.83 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRL | Europe | Ireland | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-08-14 | 26995.0 | 66.0 | 75.0 | 1774.0 | 0.0 | 0.286 | 5467.014 | 13.366 | 15.189 | 359.27 | 0.0 | 5.8e-2 | 1.37 | 8.0 | 1.62 | 11.0 | 2.228 | null | null | null | null | 699219.0 | 11337.0 | 141.605 | 2.296 | 5877.0 | 1.19 | 1.3e-2 | 78.4 | null | 59.72 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-16 | 47427.0 | 998.0 | 960.571 | 1841.0 | 3.0 | 2.857 | 9604.893 | 202.114 | 194.534 | 372.838 | 0.608 | 0.579 | 1.28 | 30.0 | 6.076 | 244.0 | 49.415 | null | null | null | null | 1404220.0 | 17758.0 | 284.382 | 3.596 | 14312.0 | 2.898 | 6.7e-2 | 14.9 | null | 61.57 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 293.0 | 35.0 | 3.4e-2 | 4.0e-3 | 21.0 | 2.0e-3 | 0.0 | null | null | 19.44 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-03 | 7428.0 | 571.0 | 627.571 | 40.0 | 4.0 | 4.0 | 858.179 | 65.969 | 72.505 | 4.621 | 0.462 | 0.462 | 1.28 | null | null | null | null | null | null | null | null | 107350.0 | 10328.0 | 12.402 | 1.193 | 8281.0 | 0.957 | 7.6e-2 | 13.2 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-04-04 | 7851.0 | 423.0 | 604.571 | 44.0 | 4.0 | 4.571 | 907.049 | 48.87 | 69.848 | 5.083 | 0.462 | 0.528 | 1.17 | null | null | null | null | null | null | null | null | 113705.0 | 6355.0 | 13.137 | 0.734 | 8369.0 | 0.967 | 7.2e-2 | 13.8 | null | 87.96 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-05-19 | 16659.0 | 16.0 | 18.571 | 278.0 | 2.0 | 2.571 | 1924.663 | 1.849 | 2.146 | 32.118 | 0.231 | 0.297 | 0.51 | null | null | null | null | null | null | null | null | 520606.0 | 7142.0 | 60.147 | 0.825 | 6193.0 | 0.715 | 3.0e-3 | 333.5 | null | 77.78 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-19 | 41035.0 | 5322.0 | 3703.143 | 3405.0 | 427.0 | 341.286 | 678.693 | 88.022 | 61.248 | 56.317 | 7.062 | 5.645 | 1.79 | 2498.0 | 41.315 | 18255.0 | 301.926 | null | null | null | null | 182777.0 | 17236.0 | 3.023 | 0.285 | 13824.0 | 0.229 | 0.268 | 3.7 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-07-14 | 243344.0 | 114.0 | 198.286 | 34984.0 | 17.0 | 12.143 | 4024.754 | 1.885 | 3.28 | 578.613 | 0.281 | 0.201 | 0.93 | 60.0 | 0.992 | 837.0 | 13.843 | null | null | null | null | 6004611.0 | 41867.0 | 99.312 | 0.692 | 42991.0 | 0.711 | 5.0e-3 | 216.8 | null | 58.33 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JPN | Asia | Japan | 2020-02-04 | 22.0 | 2.0 | 2.143 | 0.0 | 0.0 | 0.0 | 0.174 | 1.6e-2 | 1.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-20 | 79142.0 | 480.0 | 499.429 | 1508.0 | 4.0 | 8.571 | 625.745 | 3.795 | 3.949 | 11.923 | 3.2e-2 | 6.8e-2 | 0.89 | null | null | null | null | null | null | null | null | 1650837.0 | 6153.0 | 13.053 | 4.9e-2 | 17218.0 | 0.136 | 2.9e-2 | 34.5 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-09-27 | 82186.0 | 483.0 | 434.857 | 1549.0 | 2.0 | 5.857 | 649.813 | 3.819 | 3.438 | 12.247 | 1.6e-2 | 4.6e-2 | 1.01 | null | null | null | null | null | null | null | null | 1746545.0 | 4550.0 | 13.809 | 3.6e-2 | 13673.0 | 0.108 | 3.2e-2 | 31.4 | null | 33.33 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
KAZ | Asia | Kazakhstan | 2020-06-20 | 17225.0 | 446.0 | 426.714 | 118.0 | 5.0 | 6.429 | 917.36 | 23.753 | 22.726 | 6.284 | 0.266 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | 1302094.0 | 32506.0 | 69.346 | 1.731 | 27596.0 | 1.47 | 1.5e-2 | 64.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-22 | 18231.0 | 499.0 | 434.143 | 127.0 | 7.0 | 6.571 | 970.937 | 26.575 | 23.121 | 6.764 | 0.373 | 0.35 | 1.15 | null | null | null | null | null | null | null | null | 1354456.0 | 23879.0 | 72.135 | 1.272 | 27669.0 | 1.474 | 1.6e-2 | 63.7 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-18 | 121973.0 | 334.0 | 1210.286 | 1635.0 | 148.0 | 28.857 | 6495.974 | 17.788 | 64.457 | 87.076 | 7.882 | 1.537 | 0.55 | null | null | null | null | null | null | null | null | 2342049.0 | 7942.0 | 124.732 | 0.423 | 15018.0 | 0.8 | 8.1e-2 | 12.4 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-25 | 127462.0 | 0.0 | 784.143 | 1781.0 | 0.0 | 20.857 | 6788.304 | 0.0 | 41.761 | 94.852 | 0.0 | 1.111 | 0.54 | null | null | null | null | null | null | null | null | 2434444.0 | 7257.0 | 129.652 | 0.386 | 13199.0 | 0.703 | 5.9e-2 | 16.8 | null | 79.63 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KWT | Asia | Kuwait | 2020-11-28 | 142195.0 | 319.0 | 351.571 | 875.0 | 1.0 | 1.714 | 33296.547 | 74.697 | 82.324 | 204.891 | 0.234 | 0.401 | null | null | null | null | null | null | null | null | null | 1086669.0 | 4242.0 | 254.456 | 0.993 | 5538.0 | 1.297 | 6.3e-2 | 15.8 | null | 62.96 | 4270563.0 | 232.128 | 33.7 | 2.345 | 1.114 | 65530.537 | null | 132.235 | 15.84 | 2.7 | 37.0 | null | 2.0 | 75.49 | 0.803 |
KGZ | Asia | Kyrgyzstan | 2020-11-11 | 64360.0 | 0.0 | 435.857 | 1188.0 | 0.0 | 3.0 | 9864.825 | 0.0 | 66.806 | 182.092 | 0.0 | 0.46 | 1.04 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-26 | 71548.0 | 377.0 | 461.714 | 1256.0 | 5.0 | 5.571 | 10966.57 | 57.785 | 70.77 | 192.514 | 0.766 | 0.854 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-05-31 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-11-02 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.299 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 33.33 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-07-07 | 1134.0 | 7.0 | 2.286 | 30.0 | 0.0 | 0.0 | 601.208 | 3.711 | 1.212 | 15.905 | 0.0 | 0.0 | 1.35 | null | null | 5.0 | 2.651 | null | null | null | null | 160281.0 | 1763.0 | 84.976 | 0.935 | 1349.0 | 0.715 | 2.0e-3 | 590.1 | null | 50.0 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-11-22 | 13120.0 | 376.0 | 367.571 | 153.0 | 0.0 | 4.286 | 6955.777 | 199.342 | 194.874 | 81.115 | 0.0 | 2.272 | null | null | null | 416.0 | 220.549 | 40.279 | 21.355 | 322.232 | 170.836 | 576647.0 | 4079.0 | 305.719 | 2.163 | 5412.0 | 2.869 | 6.8e-2 | 14.7 | null | 57.41 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-09-17 | 26768.0 | 685.0 | 618.714 | 263.0 | 4.0 | 6.286 | 3921.797 | 100.36 | 90.648 | 38.532 | 0.586 | 0.921 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBR | Africa | Liberia | 2020-10-10 | 1363.0 | 3.0 | 2.286 | 82.0 | 0.0 | 0.0 | 269.491 | 0.593 | 0.452 | 16.213 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 5057677.0 | 49.127 | 19.2 | 3.057 | 1.756 | 752.788 | 38.6 | 272.509 | 2.42 | 1.5 | 18.1 | 1.188 | 0.8 | 64.1 | 0.435 |
LUX | Europe | Luxembourg | 2020-02-29 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.598 | 1.598 | 0.228 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | 17.0 | 1.0 | 2.7e-2 | 2.0e-3 | null | null | null | null | null | 0.0 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-09 | 3877.0 | 6.0 | 9.286 | 101.0 | 1.0 | 1.286 | 6193.528 | 9.585 | 14.834 | 161.348 | 1.598 | 2.054 | 0.63 | 14.0 | 22.365 | 82.0 | 130.995 | null | null | null | null | 53114.0 | 737.0 | 84.85 | 1.177 | 1053.0 | 1.682 | 9.0e-3 | 113.4 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-10 | 3886.0 | 9.0 | 8.857 | 101.0 | 0.0 | 0.714 | 6207.906 | 14.378 | 14.149 | 161.348 | 0.0 | 1.141 | 0.64 | 18.0 | 28.755 | 77.0 | 123.008 | null | null | null | null | 53326.0 | 212.0 | 85.189 | 0.339 | 1050.0 | 1.677 | 8.0e-3 | 118.6 | null | 70.37 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-06-08 | 4040.0 | 1.0 | 3.0 | 110.0 | 0.0 | 0.0 | 6453.922 | 1.598 | 4.793 | 175.726 | 0.0 | 0.0 | 1.01 | 2.0 | 3.195 | 20.0 | 31.95 | null | null | null | null | 90406.0 | 2245.0 | 144.424 | 3.586 | 1782.0 | 2.847 | 2.0e-3 | 594.0 | null | 43.52 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MWI | Africa | Malawi | 2020-07-25 | 3453.0 | 0.0 | 91.857 | 87.0 | 0.0 | 4.571 | 180.502 | 0.0 | 4.802 | 4.548 | 0.0 | 0.239 | 1.02 | null | null | null | null | null | null | null | null | 26602.0 | 389.0 | 1.391 | 2.0e-2 | 410.0 | 2.1e-2 | 0.224 | 4.5 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MWI | Africa | Malawi | 2020-08-08 | 4624.0 | 49.0 | 62.571 | 143.0 | 6.0 | 3.286 | 241.715 | 2.561 | 3.271 | 7.475 | 0.314 | 0.172 | 0.94 | null | null | null | null | null | null | null | null | 34443.0 | 392.0 | 1.8 | 2.0e-2 | 502.0 | 2.6e-2 | 0.125 | 8.0 | null | 64.81 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-07-04 | 8658.0 | 10.0 | 6.0 | 121.0 | 0.0 | 0.0 | 267.503 | 0.309 | 0.185 | 3.738 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | 797796.0 | 6937.0 | 24.649 | 0.214 | 8334.0 | 0.257 | 1.0e-3 | 1389.0 | null | 50.93 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MLI | Africa | Mali | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-08-02 | 860.0 | 15.0 | 22.857 | 9.0 | 0.0 | 0.0 | 1947.733 | 33.972 | 51.767 | 20.383 | 0.0 | 0.0 | 1.27 | null | null | null | null | 0.0 | 0.0 | 7.157 | 16.209 | 131600.0 | 1437.0 | 298.048 | 3.255 | 1515.0 | 3.431 | 1.5e-2 | 66.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-10-29 | 5866.0 | 106.0 | 104.143 | 59.0 | 3.0 | 1.429 | 13285.35 | 240.069 | 235.863 | 133.624 | 6.794 | 3.235 | 1.02 | null | null | null | null | null | null | null | null | 332583.0 | 3075.0 | 753.236 | 6.964 | 3019.0 | 6.837 | 3.4e-2 | 29.0 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-12-01 | 9975.0 | 102.0 | 119.714 | 141.0 | 4.0 | 3.429 | 22591.436 | 231.01 | 271.13 | 319.338 | 9.059 | 7.765 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MUS | Africa | Mauritius | 2020-07-07 | 342.0 | 0.0 | 0.143 | 10.0 | 0.0 | 0.0 | 268.917 | 0.0 | 0.112 | 7.863 | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MUS | Africa | Mauritius | 2020-10-09 | 395.0 | 0.0 | 1.429 | 10.0 | 0.0 | 0.0 | 310.591 | 0.0 | 1.123 | 7.863 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MDA | Europe | Moldova | 2020-08-31 | 36920.0 | 220.0 | 441.714 | 995.0 | 3.0 | 7.143 | 9152.29 | 54.537 | 109.499 | 246.656 | 0.744 | 1.771 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MDA | Europe | Moldova | 2020-10-10 | 61762.0 | 929.0 | 839.143 | 1458.0 | 16.0 | 15.0 | 15310.502 | 230.295 | 208.019 | 361.431 | 3.966 | 3.718 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-04-07 | 15.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 4.576 | 0.0 | 0.131 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
TLS | Asia | Timor | 2020-09-27 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.479 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-05-25 | 386.0 | 5.0 | 8.0 | 13.0 | 1.0 | 0.143 | 46.625 | 0.604 | 0.966 | 1.57 | 0.121 | 1.7e-2 | 1.04 | null | null | null | null | null | null | null | null | 17066.0 | 302.0 | 2.061 | 3.6e-2 | 514.0 | 6.2e-2 | 1.6e-2 | 64.2 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-04-10 | 671.0 | 28.0 | 25.143 | 25.0 | 0.0 | 1.0 | 56.775 | 2.369 | 2.127 | 2.115 | 0.0 | 8.5e-2 | 0.93 | null | null | null | null | null | null | null | null | 11238.0 | 562.0 | 0.951 | 4.8e-2 | 679.0 | 5.7e-2 | 3.7e-2 | 27.0 | null | 90.74 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-03-12 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.2e-2 | 0.0 | 2.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-10-23 | 357693.0 | 2165.0 | 1962.571 | 9658.0 | 74.0 | 72.143 | 4241.131 | 25.67 | 23.27 | 114.514 | 0.877 | 0.855 | 1.17 | null | null | null | null | null | null | null | null | 1.2992246e7 | 115979.0 | 154.048 | 1.375 | 113924.0 | 1.351 | 1.7e-2 | 58.0 | null | 68.06 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-08-01 | 1176.0 | 22.0 | 10.429 | 4.0 | 1.0 | 0.429 | 25.71 | 0.481 | 0.228 | 8.7e-2 | 2.2e-2 | 9.0e-3 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | 2512.0 | 5.5e-2 | 4.0e-3 | 240.9 | null | 76.85 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-10-21 | 10933.0 | 145.0 | 123.429 | 98.0 | 1.0 | 0.429 | 239.02 | 3.17 | 2.698 | 2.142 | 2.2e-2 | 9.0e-3 | 1.04 | null | null | null | null | null | null | null | null | 529236.0 | 1886.0 | 11.57 | 4.1e-2 | 2045.0 | 4.5e-2 | 6.0e-2 | 16.6 | null | 61.11 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-06-13 | 31177.0 | 762.0 | 582.286 | 890.0 | 10.0 | 15.0 | 712.882 | 17.424 | 13.314 | 20.35 | 0.229 | 0.343 | 1.2 | null | null | null | null | null | null | null | null | 479111.0 | 10939.0 | 10.955 | 0.25 | 9224.0 | 0.211 | 6.3e-2 | 15.8 | null | 76.39 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-09-04 | 134069.0 | 2769.0 | 2413.857 | 2812.0 | 53.0 | 44.714 | 3065.572 | 63.315 | 55.194 | 64.298 | 1.212 | 1.022 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | 21895.0 | 0.501 | 0.11 | 9.1 | null | 64.35 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-10-02 | 223376.0 | 4751.0 | 3820.714 | 4357.0 | 69.0 | 63.857 | 5107.633 | 108.635 | 87.363 | 99.626 | 1.578 | 1.46 | 1.18 | null | null | null | null | null | null | null | null | 2337942.0 | 29527.0 | 53.459 | 0.675 | 25898.0 | 0.592 | 0.148 | 6.8 | null | 58.8 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
ARE | Asia | United Arab Emirates | 2020-03-19 | 140.0 | 27.0 | 7.857 | 0.0 | 0.0 | 0.0 | 14.155 | 2.73 | 0.794 | null | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | 114569.0 | 13857.0 | 11.584 | 1.401 | 5863.0 | 0.593 | 1.0e-3 | 746.2 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-07-06 | 52068.0 | 528.0 | 546.0 | 324.0 | 1.0 | 1.429 | 5264.499 | 53.385 | 55.205 | 32.759 | 0.101 | 0.144 | 1.05 | null | null | null | null | null | null | null | null | 3890424.0 | 51430.0 | 393.354 | 5.2 | 50542.0 | 5.11 | 1.1e-2 | 92.6 | null | 43.52 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-10-21 | 119132.0 | 1538.0 | 1299.0 | 472.0 | 2.0 | 3.143 | 12045.216 | 155.504 | 131.339 | 47.723 | 0.202 | 0.318 | 1.08 | null | null | null | null | null | null | null | null | 1.1988391e7 | 105740.0 | 1212.124 | 10.691 | 110243.0 | 11.146 | 1.2e-2 | 84.9 | null | 50.93 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-11-19 | 155254.0 | 1153.0 | 1217.0 | 544.0 | 2.0 | 3.0 | 15697.444 | 116.578 | 123.049 | 55.003 | 0.202 | 0.303 | 1.01 | null | null | null | null | null | null | null | null | 1.5405022e7 | 120041.0 | 1557.573 | 12.137 | 114706.0 | 11.598 | 1.1e-2 | 94.3 | null | 45.37 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
GBR | Europe | United Kingdom | 2020-08-16 | 320343.0 | 1111.0 | 1109.857 | 41451.0 | 5.0 | 12.571 | 4718.837 | 16.366 | 16.349 | 610.597 | 7.4e-2 | 0.185 | 1.04 | 78.0 | 1.149 | 917.0 | 13.508 | null | null | 718.105 | 10.578 | 1.1978298e7 | 162256.0 | 176.447 | 2.39 | 160168.0 | 2.359 | 7.0e-3 | 144.3 | null | 66.2 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-08-12 | 5183020.0 | 56796.0 | 53010.714 | 166087.0 | 1506.0 | 1026.429 | 15658.545 | 171.588 | 160.152 | 501.769 | 4.55 | 3.101 | 0.93 | 9555.0 | 28.867 | 47949.0 | 144.86 | null | null | null | null | 7.4717483e7 | 985955.0 | 225.731 | 2.979 | 855780.0 | 2.585 | 6.0e-2 | 16.7 | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-03 | 1636.0 | 10.0 | 12.143 | 44.0 | 0.0 | 0.143 | 470.964 | 2.879 | 3.496 | 12.667 | 0.0 | 4.1e-2 | 1.11 | null | null | null | null | null | null | null | null | 178629.0 | null | 51.423 | null | 1787.0 | 0.514 | 7.0e-3 | 147.2 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
YEM | Asia | Yemen | 2020-05-12 | 65.0 | 9.0 | 6.143 | 10.0 | 1.0 | 0.857 | 2.179 | 0.302 | 0.206 | 0.335 | 3.4e-2 | 2.9e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-08-29 | 1946.0 | 3.0 | 5.571 | 563.0 | 0.0 | 2.429 | 65.245 | 0.101 | 0.187 | 18.876 | 0.0 | 8.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-10-25 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 69.067 | 0.0 | 1.9e-2 | 20.083 | 0.0 | 1.0e-2 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-11-14 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 69.47 | 0.0 | 1.0e-2 | 20.284 | 0.0 | 1.4e-2 | 0.8 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
ZMB | Africa | Zambia | 2020-10-27 | 16243.0 | 43.0 | 37.286 | 348.0 | 0.0 | 0.286 | 883.542 | 2.339 | 2.028 | 18.93 | 0.0 | 1.6e-2 | 0.91 | null | null | null | null | null | null | null | null | 241276.0 | 3566.0 | 13.124 | 0.194 | 3790.0 | 0.206 | 1.0e-2 | 101.6 | null | 45.37 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-03-24 | 3.0 | 0.0 | 0.429 | 1.0 | 0.0 | 0.143 | 0.202 | 0.0 | 2.9e-2 | 6.7e-2 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-09-04 | 6837.0 | 159.0 | 64.143 | 206.0 | 0.0 | 1.571 | 460.004 | 10.698 | 4.316 | 13.86 | 0.0 | 0.106 | 1.02 | null | null | null | null | null | null | null | null | 103790.0 | 919.0 | 6.983 | 6.2e-2 | 931.0 | 6.3e-2 | 6.9e-2 | 14.5 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ALB | Europe | Albania | 2020-10-02 | 13965.0 | 159.0 | 131.429 | 389.0 | 1.0 | 2.286 | 4852.665 | 55.251 | 45.67 | 135.173 | 0.347 | 0.794 | 1.08 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-03-29 | 511.0 | 57.0 | 44.286 | 31.0 | 2.0 | 2.0 | 11.653 | 1.3 | 1.01 | 0.707 | 4.6e-2 | 4.6e-2 | 1.73 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-08-27 | 43016.0 | 397.0 | 394.0 | 1475.0 | 10.0 | 9.143 | 980.957 | 9.053 | 8.985 | 33.637 | 0.228 | 0.208 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
ARG | South America | Argentina | 2020-11-16 | 1318384.0 | 7893.0 | 9697.857 | 35727.0 | 291.0 | 260.0 | 29170.513 | 174.64 | 214.574 | 790.494 | 6.439 | 5.753 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
AUS | Oceania | Australia | 2020-04-09 | 6108.0 | 98.0 | 141.714 | 51.0 | 1.0 | 3.857 | 239.531 | 3.843 | 5.557 | 2.0 | 3.9e-2 | 0.151 | 0.58 | null | null | null | null | null | null | null | null | 330134.0 | 10766.0 | 12.946 | 0.422 | 9970.0 | 0.391 | 1.4e-2 | 70.4 | null | 73.15 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-04-24 | 6677.0 | 15.0 | 22.143 | 79.0 | 4.0 | 1.857 | 261.844 | 0.588 | 0.868 | 3.098 | 0.157 | 7.3e-2 | 0.41 | null | null | null | null | null | null | null | null | 482370.0 | 15711.0 | 18.917 | 0.616 | 12977.0 | 0.509 | 2.0e-3 | 586.1 | null | 69.44 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-10-10 | 27263.0 | 19.0 | 18.286 | 898.0 | 1.0 | 0.571 | 1069.142 | 0.745 | 0.717 | 35.216 | 3.9e-2 | 2.2e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 33551.0 | 1.316 | 1.0e-3 | 1834.8 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-03-19 | 2013.0 | 367.0 | 244.429 | 6.0 | 2.0 | 0.714 | 223.508 | 40.749 | 27.139 | 0.666 | 0.222 | 7.9e-2 | 2.43 | null | null | null | null | null | null | null | null | 13724.0 | 1747.0 | 1.524 | 0.194 | 1122.0 | 0.125 | 0.218 | 4.6 | null | 81.48 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-04 | 21481.0 | 96.0 | 114.857 | 719.0 | 1.0 | 0.857 | 2385.082 | 10.659 | 12.753 | 79.832 | 0.111 | 9.5e-2 | 0.99 | 23.0 | 2.554 | 84.0 | 9.327 | null | null | null | null | 923902.0 | 7124.0 | 102.583 | 0.791 | 7614.0 | 0.845 | 1.5e-2 | 66.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-26 | 26033.0 | 327.0 | 278.429 | 733.0 | 0.0 | 0.571 | 2890.5 | 36.308 | 30.915 | 81.387 | 0.0 | 6.3e-2 | 1.18 | 23.0 | 2.554 | 118.0 | 13.102 | null | null | null | null | 1119199.0 | 9110.0 | 124.267 | 1.012 | 10140.0 | 1.126 | 2.7e-2 | 36.4 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-06-26 | 15369.0 | 517.0 | 514.571 | 187.0 | 7.0 | 6.286 | 1515.804 | 50.99 | 50.751 | 18.443 | 0.69 | 0.62 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-07-08 | 21916.0 | 542.0 | 543.429 | 274.0 | 9.0 | 7.714 | 2161.517 | 53.456 | 53.597 | 27.024 | 0.888 | 0.761 | 1.02 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 96.3 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-09-29 | 3903.0 | 65.0 | 62.286 | 91.0 | 2.0 | 2.0 | 9925.035 | 165.29 | 158.388 | 231.406 | 5.086 | 5.086 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-10-13 | 5163.0 | 0.0 | 86.286 | 108.0 | 0.0 | 1.143 | 13129.12 | 0.0 | 219.418 | 274.636 | 0.0 | 2.906 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-03-07 | 85.0 | 25.0 | 6.286 | 0.0 | 0.0 | 0.0 | 49.953 | 14.692 | 3.694 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 6420.0 | null | 3.773 | null | null | null | null | null | null | 30.56 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-07-09 | 31528.0 | 597.0 | 527.286 | 103.0 | 5.0 | 1.286 | 18528.629 | 350.85 | 309.88 | 60.532 | 2.938 | 0.756 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | 10160.0 | 5.971 | 5.2e-2 | 19.3 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-21 | 78907.0 | 374.0 | 326.571 | 308.0 | 3.0 | 3.0 | 46372.701 | 219.795 | 191.922 | 181.008 | 1.763 | 1.763 | 0.89 | null | null | null | null | null | null | null | null | 1638436.0 | 10360.0 | 962.889 | 6.088 | 10057.0 | 5.91 | 3.2e-2 | 30.8 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-11-14 | 84523.0 | 174.0 | 179.857 | 333.0 | 1.0 | 0.571 | 49673.157 | 102.258 | 105.7 | 195.7 | 0.588 | 0.336 | 0.87 | null | null | null | null | null | null | null | null | 1885616.0 | 8435.0 | 1108.154 | 4.957 | 10218.0 | 6.005 | 1.8e-2 | 56.8 | null | 58.33 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-04-26 | 5416.0 | 418.0 | 422.857 | 145.0 | 5.0 | 7.714 | 32.886 | 2.538 | 2.568 | 0.88 | 3.0e-2 | 4.7e-2 | 1.44 | null | null | null | null | null | null | null | null | 50401.0 | 3812.0 | 0.306 | 2.3e-2 | 3400.0 | 2.1e-2 | 0.124 | 8.0 | null | 93.52 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BRB | North America | Barbados | 2020-08-07 | 138.0 | 5.0 | 4.0 | 7.0 | 0.0 | 0.0 | 480.215 | 17.399 | 13.919 | 24.359 | 0.0 | 0.0 | 0.62 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BLR | Europe | Belarus | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-07-01 | 62424.0 | 306.0 | 354.143 | 398.0 | 6.0 | 5.143 | 6606.189 | 32.383 | 37.478 | 42.119 | 0.635 | 0.544 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | 16577.0 | 1.754 | 2.1e-2 | 46.8 | null | 16.67 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-04-17 | 36138.0 | 1329.0 | 1353.0 | 5163.0 | 306.0 | 306.286 | 3118.136 | 114.672 | 116.742 | 445.485 | 26.403 | 26.428 | 1.02 | 1119.0 | 96.552 | 5088.0 | 439.014 | null | null | null | null | 198449.0 | 11300.0 | 17.123 | 0.975 | 9046.0 | 0.781 | 0.15 | 6.7 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-06-19 | 60476.0 | 128.0 | 93.857 | 9695.0 | 12.0 | 7.0 | 5218.119 | 11.044 | 8.098 | 836.525 | 1.035 | 0.604 | 0.87 | 50.0 | 4.314 | 308.0 | 26.576 | null | null | null | null | 1133205.0 | 13395.0 | 97.778 | 1.156 | 12647.0 | 1.091 | 7.0e-3 | 134.7 | null | 51.85 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEN | Africa | Benin | 2020-04-25 | 54.0 | 0.0 | 2.714 | 1.0 | 0.0 | 0.0 | 4.454 | 0.0 | 0.224 | 8.2e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BIH | Europe | Bosnia and Herzegovina | 2020-05-26 | 2416.0 | 10.0 | 13.571 | 149.0 | 3.0 | 2.143 | 736.402 | 3.048 | 4.137 | 45.416 | 0.914 | 0.653 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-04-17 | 15.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 6.379 | 0.0 | 0.121 | 0.425 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-08-24 | 1562.0 | 254.0 | 36.286 | 3.0 | 0.0 | 0.0 | 664.222 | 108.01 | 15.43 | 1.276 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-06-15 | 888271.0 | 20647.0 | 25837.0 | 43959.0 | 627.0 | 975.0 | 4178.931 | 97.135 | 121.552 | 206.808 | 2.95 | 4.587 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-30 | 2610102.0 | 57837.0 | 46089.571 | 91263.0 | 1129.0 | 1025.857 | 12279.4 | 272.098 | 216.831 | 429.353 | 5.311 | 4.826 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | 67066.0 | 0.316 | null | null | null | 72.69 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-29 | 6314740.0 | 24468.0 | 34762.714 | 172833.0 | 272.0 | 521.429 | 29708.118 | 115.111 | 163.544 | 813.104 | 1.28 | 2.453 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-05-21 | 141.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 2.286 | 0.0 | 0.0 | 1.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-07-21 | 9254.0 | 325.0 | 229.857 | 313.0 | 5.0 | 4.286 | 1331.809 | 46.773 | 33.08 | 45.046 | 0.72 | 0.617 | 1.11 | 34.0 | 4.893 | 624.0 | 89.804 | null | null | null | null | 215572.0 | 9051.0 | 31.024 | 1.303 | 5128.0 | 0.738 | 4.5e-2 | 22.3 | null | 36.11 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-09 | 2254.0 | 13.0 | 18.714 | 60.0 | 0.0 | 0.143 | 107.83 | 0.622 | 0.895 | 2.87 | 0.0 | 7.0e-3 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-29 | 2856.0 | 40.0 | 17.286 | 68.0 | 0.0 | 0.0 | 136.629 | 1.914 | 0.827 | 3.253 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
KHM | Asia | Cambodia | 2020-04-12 | 122.0 | 2.0 | 1.143 | 0.0 | 0.0 | 0.0 | 7.297 | 0.12 | 6.8e-2 | null | 0.0 | 0.0 | 0.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-04-22 | 122.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-06-02 | 125.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 7.477 | 0.0 | 9.0e-3 | null | 0.0 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-08 | 281.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 16.807 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | 0.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 37.04 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-10-25 | 287.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 17.166 | 0.0 | 3.4e-2 | null | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CPV | Africa | Cape Verde | 2020-08-22 | 3455.0 | 43.0 | 41.714 | 37.0 | 0.0 | 0.429 | 6214.163 | 77.34 | 75.027 | 66.548 | 0.0 | 0.771 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.28 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CHL | South America | Chile | 2020-10-25 | 502063.0 | 1521.0 | 1471.857 | 13944.0 | 52.0 | 44.143 | 26263.733 | 79.566 | 76.995 | 729.433 | 2.72 | 2.309 | 0.97 | null | null | null | null | null | null | null | null | 4111528.0 | 38473.0 | 215.081 | 2.013 | 32087.0 | 1.679 | 4.6e-2 | 21.8 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-10-31 | 510256.0 | 1685.0 | 1387.714 | 14207.0 | 49.0 | 45.0 | 26692.322 | 88.145 | 72.594 | 743.191 | 2.563 | 2.354 | 0.98 | null | null | null | null | null | null | null | null | 4300738.0 | 39258.0 | 224.979 | 2.054 | 32526.0 | 1.701 | 4.3e-2 | 23.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-08-16 | 89375.0 | 96.0 | 83.143 | 4703.0 | 0.0 | 2.429 | 62.095 | 6.7e-2 | 5.8e-2 | 3.268 | 0.0 | 2.0e-3 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-10-31 | 91366.0 | 27.0 | 34.0 | 4739.0 | 0.0 | 0.0 | 63.478 | 1.9e-2 | 2.4e-2 | 3.293 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-11-21 | 92037.0 | 60.0 | 29.857 | 4742.0 | 0.0 | 0.0 | 63.945 | 4.2e-2 | 2.1e-2 | 3.295 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-03-19 | 108.0 | 6.0 | 14.143 | 0.0 | 0.0 | 0.0 | 2.123 | 0.118 | 0.278 | null | 0.0 | 0.0 | 1.86 | null | null | null | null | null | null | null | null | 5363.0 | 673.0 | 0.105 | 1.3e-2 | 567.0 | 1.1e-2 | null | null | null | 50.93 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-05-01 | 7006.0 | 499.0 | 303.571 | 314.0 | 21.0 | 12.714 | 137.689 | 9.807 | 5.966 | 6.171 | 0.413 | 0.25 | 1.36 | null | null | null | null | null | null | null | null | 108950.0 | 4293.0 | 2.141 | 8.4e-2 | 4424.0 | 8.7e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-07-14 | 159898.0 | 5621.0 | 5057.714 | 5625.0 | 170.0 | 180.857 | 3142.471 | 110.469 | 99.399 | 110.548 | 3.341 | 3.554 | 1.25 | null | null | null | null | null | null | null | null | 1082415.0 | 25601.0 | 21.273 | 0.503 | 25730.0 | 0.506 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-10-07 | 877684.0 | 7876.0 | 6857.857 | 27180.0 | 163.0 | 168.857 | 17249.101 | 154.787 | 134.777 | 534.168 | 3.203 | 3.319 | 1.04 | null | null | null | null | null | null | null | null | 3526959.0 | 25357.0 | 69.315 | 0.498 | 25665.0 | 0.504 | null | null | null | 71.3 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-03-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-06-25 | 272.0 | 7.0 | 8.857 | 7.0 | 0.0 | 0.286 | 312.789 | 8.05 | 10.185 | 8.05 | 0.0 | 0.329 | 0.72 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-08-20 | 417.0 | 11.0 | 2.571 | 7.0 | 0.0 | 0.0 | 479.534 | 12.65 | 2.957 | 8.05 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-04 | 487.0 | 0.0 | 1.286 | 7.0 | 0.0 | 0.0 | 560.031 | 0.0 | 1.479 | 8.05 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
CRI | North America | Costa Rica | 2020-03-31 | 347.0 | 17.0 | 24.286 | 2.0 | 0.0 | 0.0 | 68.118 | 3.337 | 4.767 | 0.393 | 0.0 | 0.0 | 1.01 | null | null | null | null | null | null | null | null | 3905.0 | 153.0 | 0.767 | 3.0e-2 | 293.0 | 5.8e-2 | null | null | null | 71.3 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CYP | Europe | Cyprus | 2020-04-10 | 595.0 | 31.0 | 28.429 | 10.0 | 0.0 | -0.143 | 679.302 | 35.392 | 32.456 | 11.417 | 0.0 | -0.163 | 0.98 | null | null | null | null | null | null | null | null | 16299.0 | 819.0 | 18.608 | 0.935 | 979.0 | 1.118 | 2.9e-2 | 34.4 | null | 92.59 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CYP | Europe | Cyprus | 2020-05-25 | 937.0 | 2.0 | 2.857 | 17.0 | 0.0 | 0.0 | 1069.758 | 2.283 | 3.262 | 19.409 | 0.0 | 0.0 | 0.86 | null | null | null | null | null | null | null | null | 103705.0 | 2128.0 | 118.398 | 2.43 | 2140.0 | 2.443 | 1.0e-3 | 749.0 | null | 76.85 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-11-08 | 414828.0 | 3608.0 | 10454.857 | 4858.0 | 177.0 | 204.143 | 38736.455 | 336.913 | 976.27 | 453.638 | 16.528 | 19.063 | 0.8 | 1199.0 | 111.962 | 7787.0 | 727.147 | 2035.248 | 190.051 | 12831.914 | 1198.238 | 2601451.0 | 13727.0 | 242.922 | 1.282 | 35009.0 | 3.269 | 0.299 | 3.3 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
DNK | Europe | Denmark | 2020-06-29 | 12951.0 | 76.0 | 32.0 | 605.0 | 1.0 | 0.429 | 2235.937 | 13.121 | 5.525 | 104.451 | 0.173 | 7.4e-2 | 0.98 | null | null | null | null | null | null | null | null | 1046901.0 | 18718.0 | 180.743 | 3.232 | 15903.0 | 2.746 | 2.0e-3 | 497.0 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-07-05 | 13033.0 | 1.0 | 22.571 | 606.0 | 0.0 | 0.286 | 2250.094 | 0.173 | 3.897 | 104.623 | 0.0 | 4.9e-2 | 1.01 | 6.0 | 1.036 | 24.0 | 4.144 | null | null | 10.974 | 1.895 | 1131443.0 | 9737.0 | 195.339 | 1.681 | 14751.0 | 2.547 | 2.0e-3 | 653.5 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-09-02 | 17620.0 | 111.0 | 94.0 | 626.0 | 1.0 | 0.429 | 3042.02 | 19.164 | 16.229 | 108.076 | 0.173 | 7.4e-2 | 1.25 | 4.0 | 0.691 | 15.0 | 2.59 | null | null | null | null | 2561895.0 | 40022.0 | 442.301 | 6.91 | 34773.0 | 6.003 | 3.0e-3 | 369.9 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-04-04 | 50.0 | 1.0 | 5.143 | 0.0 | 0.0 | 0.0 | 50.607 | 1.012 | 5.205 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-05-31 | 3354.0 | 160.0 | 154.857 | 24.0 | 2.0 | 2.0 | 3394.73 | 161.943 | 156.738 | 24.291 | 2.024 | 2.024 | 1.27 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-07-20 | 5020.0 | 9.0 | 6.143 | 56.0 | 0.0 | 0.0 | 5080.961 | 9.109 | 6.217 | 56.68 | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-08-14 | 5367.0 | 9.0 | 4.143 | 59.0 | 0.0 | 0.0 | 5432.175 | 9.109 | 4.193 | 59.716 | 0.0 | 0.0 | 0.44 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-11-19 | 5658.0 | 0.0 | 2.429 | 61.0 | 0.0 | 0.0 | 5726.709 | 0.0 | 2.458 | 61.741 | 0.0 | 0.0 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 43.52 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
ECU | South America | Ecuador | 2020-08-13 | 98343.0 | 1233.0 | 1115.143 | 6010.0 | 26.0 | 19.0 | 5574.033 | 69.886 | 63.206 | 340.644 | 1.474 | 1.077 | 1.04 | null | null | null | null | null | null | null | null | 214477.0 | 3285.0 | 12.156 | 0.186 | 2875.0 | 0.163 | null | null | null | 76.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-09-16 | 121525.0 | 1972.0 | 1337.0 | 10996.0 | 33.0 | 42.143 | 6887.977 | 111.772 | 75.781 | 623.248 | 1.87 | 2.389 | 1.17 | null | null | null | null | null | null | null | null | 302597.0 | 5210.0 | 17.151 | 0.295 | 3380.0 | 0.192 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-10-07 | 143531.0 | 1475.0 | 926.286 | 11743.0 | 41.0 | 55.429 | 8135.267 | 83.602 | 52.501 | 665.587 | 2.324 | 3.142 | 0.98 | null | null | null | null | null | null | null | null | 384086.0 | 5215.0 | 21.77 | 0.296 | 3453.0 | 0.196 | null | null | null | 51.39 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-06-15 | 46289.0 | 1691.0 | 1549.286 | 1672.0 | 97.0 | 57.286 | 452.331 | 16.524 | 15.139 | 16.339 | 0.948 | 0.56 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-07-28 | 15446.0 | 411.0 | 409.143 | 417.0 | 9.0 | 9.286 | 2381.363 | 63.365 | 63.079 | 64.29 | 1.388 | 1.432 | 1.1 | null | null | null | null | null | null | null | null | 234086.0 | 2402.0 | 36.09 | 0.37 | 2453.0 | 0.378 | 0.167 | 6.0 | null | 89.81 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-11-09 | 491.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 138.449 | 0.0 | 0.443 | null | 0.0 | 0.0 | 0.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-03-27 | 575.0 | 37.0 | 41.714 | 1.0 | 0.0 | 0.143 | 433.459 | 27.892 | 31.446 | 0.754 | 0.0 | 0.108 | 1.41 | 10.0 | 7.538 | 59.0 | 44.477 | null | null | null | null | 9652.0 | 1288.0 | 7.276 | 0.971 | 898.0 | 0.677 | 4.6e-2 | 21.5 | null | 72.22 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-04-27 | 124.0 | 1.0 | 1.857 | 3.0 | 0.0 | 0.0 | 1.079 | 9.0e-3 | 1.6e-2 | 2.6e-2 | 0.0 | 0.0 | 0.38 | null | null | null | null | null | null | null | null | 14588.0 | 943.0 | 0.127 | 8.0e-3 | 948.0 | 8.0e-3 | 2.0e-3 | 510.5 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-26 | 45221.0 | 1533.0 | 1594.714 | 725.0 | 16.0 | 17.857 | 393.351 | 13.335 | 13.871 | 6.306 | 0.139 | 0.155 | 1.09 | null | null | null | null | null | null | null | null | 813410.0 | 18724.0 | 7.075 | 0.163 | 20110.0 | 0.175 | 7.9e-2 | 12.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
MNE | Europe | Montenegro | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-27 | 10313.0 | 116.0 | 243.0 | 158.0 | 0.0 | 3.143 | 16420.353 | 184.695 | 386.904 | 251.568 | 0.0 | 5.004 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-05-29 | 7714.0 | 71.0 | 54.571 | 202.0 | 0.0 | 0.714 | 208.992 | 1.924 | 1.478 | 5.473 | 0.0 | 1.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 190061.0 | 9872.0 | 5.149 | 0.267 | 9523.0 | 0.258 | 6.0e-3 | 174.5 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MMR | Asia | Myanmar | 2020-11-08 | 61377.0 | 1029.0 | 1138.857 | 1420.0 | 24.0 | 23.143 | 1128.051 | 18.912 | 20.931 | 26.098 | 0.441 | 0.425 | 1.03 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NPL | Asia | Nepal | 2020-03-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 546.0 | 17.0 | 1.9e-2 | 1.0e-3 | 13.0 | 0.0 | 0.0 | null | null | 58.33 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-07-05 | 15784.0 | 293.0 | 430.286 | 34.0 | 0.0 | 0.857 | 541.72 | 10.056 | 14.768 | 1.167 | 0.0 | 2.9e-2 | 0.82 | null | null | null | null | null | null | null | null | 251007.0 | 4710.0 | 8.615 | 0.162 | 5024.0 | 0.172 | 8.6e-2 | 11.7 | null | 92.59 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NPL | Asia | Nepal | 2020-10-25 | 158089.0 | 2856.0 | 3691.857 | 847.0 | 5.0 | 15.429 | 5425.749 | 98.02 | 126.708 | 29.07 | 0.172 | 0.53 | 0.96 | null | null | null | null | null | null | null | null | 1393173.0 | 12311.0 | 47.815 | 0.423 | 15688.0 | 0.538 | 0.235 | 4.2 | null | 63.89 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-04-26 | 38040.0 | 656.0 | 743.143 | 4491.0 | 67.0 | 113.429 | 2220.034 | 38.284 | 43.37 | 262.097 | 3.91 | 6.62 | 0.72 | 806.0 | 47.039 | null | null | 116.994 | 6.828 | 304.384 | 17.764 | 209718.0 | null | 12.239 | null | 5485.0 | 0.32 | 0.135 | 7.4 | null | 79.63 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-14 | 51362.0 | 54.0 | 65.0 | 6154.0 | -2.0 | 0.429 | 2997.513 | 3.151 | 3.793 | 359.151 | -0.117 | 2.5e-2 | 1.21 | 27.0 | 1.576 | null | null | null | null | null | null | null | null | null | null | 11757.0 | 0.686 | 6.0e-3 | 180.9 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-08-27 | 70984.0 | 602.0 | 591.571 | 6244.0 | 3.0 | 4.143 | 4142.663 | 35.133 | 34.524 | 364.403 | 0.175 | 0.242 | 1.04 | 45.0 | 2.626 | null | null | null | null | null | null | null | null | null | null | 24998.0 | 1.459 | 2.4e-2 | 42.3 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-09-18 | 94345.0 | 2083.0 | 1567.857 | 6318.0 | 8.0 | 4.0 | 5506.023 | 121.565 | 91.501 | 368.722 | 0.467 | 0.233 | 1.41 | 72.0 | 4.202 | null | null | null | null | null | null | null | null | null | null | 28832.0 | 1.683 | 5.4e-2 | 18.4 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-05 | 3.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.622 | 0.0 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 332.0 | 27.0 | 6.9e-2 | 6.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NER | Africa | Niger | 2020-07-26 | 1136.0 | 12.0 | 4.571 | 69.0 | 0.0 | 0.0 | 46.929 | 0.496 | 0.189 | 2.85 | 0.0 | 0.0 | 0.74 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.93 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-09-24 | 1194.0 | 1.0 | 1.571 | 69.0 | 0.0 | 0.0 | 49.325 | 4.1e-2 | 6.5e-2 | 2.85 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NOR | Europe | Norway | 2020-04-08 | 6086.0 | 0.0 | 174.714 | 101.0 | 12.0 | 8.143 | 1122.621 | 0.0 | 32.228 | 18.63 | 2.214 | 1.502 | 0.81 | null | null | 250.0 | 46.115 | null | null | null | null | 105216.0 | 2276.0 | 19.408 | 0.42 | 2628.0 | 0.485 | 6.6e-2 | 15.0 | null | 79.63 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-06-03 | 13537.0 | 738.0 | 737.714 | 67.0 | 8.0 | 4.0 | 2650.872 | 144.518 | 144.462 | 13.12 | 1.567 | 0.783 | 1.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-08-26 | 294193.0 | 482.0 | 535.429 | 6267.0 | 12.0 | 9.429 | 1331.839 | 2.182 | 2.424 | 28.371 | 5.4e-2 | 4.3e-2 | 0.86 | null | null | null | null | null | null | null | null | 2512337.0 | 24593.0 | 11.374 | 0.111 | 24609.0 | 0.111 | 2.2e-2 | 46.0 | null | 47.69 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAN | North America | Panama | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-08-01 | 66383.0 | 1127.0 | 1074.143 | 1449.0 | 28.0 | 24.857 | 15385.068 | 261.196 | 248.946 | 335.823 | 6.489 | 5.761 | 1.0 | null | null | null | null | null | null | null | null | 224089.0 | 3668.0 | 51.935 | 0.85 | 3308.0 | 0.767 | 0.325 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PRY | South America | Paraguay | 2020-06-10 | 1202.0 | 15.0 | 18.857 | 11.0 | 0.0 | 0.0 | 168.524 | 2.103 | 2.644 | 1.542 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 41702.0 | 1670.0 | 5.847 | 0.234 | 1232.0 | 0.173 | 1.5e-2 | 65.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-08-30 | 17105.0 | 631.0 | 553.143 | 308.0 | 14.0 | 14.714 | 2398.167 | 88.468 | 77.552 | 43.182 | 1.963 | 2.063 | 1.18 | null | null | null | null | null | null | null | null | 190169.0 | 1610.0 | 26.662 | 0.226 | 2404.0 | 0.337 | 0.23 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-10-02 | 42684.0 | 885.0 | 779.714 | 890.0 | 21.0 | 18.429 | 5984.412 | 124.079 | 109.318 | 124.78 | 2.944 | 2.584 | 1.09 | null | null | null | null | null | null | null | null | 283537.0 | 2628.0 | 39.753 | 0.368 | 2787.0 | 0.391 | 0.28 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRT | Europe | Portugal | 2020-06-02 | 32895.0 | 195.0 | 269.714 | 1436.0 | 12.0 | 13.429 | 3226.042 | 19.124 | 26.451 | 140.83 | 1.177 | 1.317 | 1.09 | 58.0 | 5.688 | 432.0 | 42.367 | null | null | null | null | 881524.0 | 15640.0 | 86.452 | 1.534 | 13827.0 | 1.356 | 2.0e-2 | 51.3 | null | 71.3 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-17 | 98055.0 | 2153.0 | 1783.0 | 2162.0 | 13.0 | 13.571 | 9616.34 | 211.147 | 174.86 | 212.029 | 1.275 | 1.331 | 1.42 | 148.0 | 14.514 | 1012.0 | 99.248 | null | null | null | null | 3059464.0 | 23723.0 | 300.044 | 2.327 | 26828.0 | 2.631 | 6.6e-2 | 15.0 | null | 56.94 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-04-30 | 13409.0 | 845.0 | 806.429 | 10.0 | 0.0 | 0.0 | 4654.19 | 293.295 | 279.907 | 3.471 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 94500.0 | 3085.0 | 32.8 | 1.071 | 3006.0 | 1.043 | 0.268 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-05-08 | 20201.0 | 1311.0 | 872.143 | 12.0 | 0.0 | 0.0 | 7011.655 | 455.041 | 302.716 | 4.165 | 0.0 | 0.0 | 1.44 | null | null | null | null | null | null | null | null | 120458.0 | 3963.0 | 41.81 | 1.376 | 3247.0 | 1.127 | 0.269 | 3.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-09-30 | 125760.0 | 227.0 | 226.429 | 214.0 | 0.0 | 0.286 | 43650.601 | 78.79 | 78.592 | 74.278 | 0.0 | 9.9e-2 | 0.93 | null | null | null | null | null | null | null | null | 775914.0 | 5701.0 | 269.315 | 1.979 | 5260.0 | 1.826 | 4.3e-2 | 23.2 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-04-11 | 5990.0 | 523.0 | 339.571 | 291.0 | 21.0 | 20.714 | 311.368 | 27.186 | 17.651 | 15.127 | 1.092 | 1.077 | 1.28 | 208.0 | 10.812 | null | null | null | null | null | null | 59272.0 | 3842.0 | 3.081 | 0.2 | 3311.0 | 0.172 | 0.103 | 9.8 | null | 87.04 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-09-07 | 95897.0 | 883.0 | 1193.857 | 3926.0 | 33.0 | 43.571 | 4984.852 | 45.9 | 62.058 | 204.079 | 1.715 | 2.265 | 1.01 | 465.0 | 24.171 | null | null | null | null | null | null | 1945738.0 | 7247.0 | 101.142 | 0.377 | 20399.0 | 1.06 | 5.9e-2 | 17.1 | null | 45.37 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-06-15 | 536484.0 | 8217.0 | 8634.429 | 7081.0 | 143.0 | 159.714 | 3676.198 | 56.306 | 59.166 | 48.522 | 0.98 | 1.094 | 0.96 | null | null | null | null | null | null | null | null | 1.5395417e7 | 234265.0 | 105.495 | 1.605 | 305820.0 | 2.096 | 2.8e-2 | 35.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RUS | Europe | Russia | 2020-06-28 | 633563.0 | 6784.0 | 7097.714 | 9060.0 | 102.0 | 137.0 | 4341.421 | 46.487 | 48.636 | 62.083 | 0.699 | 0.939 | 0.91 | null | null | null | null | null | null | null | null | 1.9334442e7 | 289488.0 | 132.487 | 1.984 | 292107.0 | 2.002 | 2.4e-2 | 41.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
SAU | Asia | Saudi Arabia | 2020-05-06 | 31938.0 | 1687.0 | 1505.143 | 209.0 | 9.0 | 7.429 | 917.393 | 48.458 | 43.234 | 6.003 | 0.259 | 0.213 | 1.29 | null | null | null | null | null | null | null | null | 446983.0 | 16026.0 | 12.839 | 0.46 | 12498.0 | 0.359 | 0.12 | 8.3 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-08-09 | 288690.0 | 1428.0 | 1407.857 | 3167.0 | 37.0 | 35.714 | 8292.385 | 41.018 | 40.44 | 90.969 | 1.063 | 1.026 | 0.86 | null | null | null | null | null | null | null | null | 3872599.0 | 59325.0 | 111.237 | 1.704 | 56983.0 | 1.637 | 2.5e-2 | 40.5 | null | 71.3 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SYC | Africa | Seychelles | 2020-03-30 | 8.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 81.35 | 0.0 | 1.453 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-11-23 | 166.0 | 3.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1688.021 | 30.506 | 8.716 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-02-19 | 84.0 | 3.0 | 4.857 | 0.0 | 0.0 | 0.0 | 14.358 | 0.513 | 0.83 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-04-17 | 5050.0 | 623.0 | 420.286 | 11.0 | 1.0 | 0.571 | 863.197 | 106.489 | 71.839 | 1.88 | 0.171 | 9.8e-2 | 2.16 | null | null | null | null | null | null | null | null | null | null | null | null | 3732.0 | 0.638 | 0.113 | 8.9 | null | 85.19 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-08-12 | 2690.0 | 75.0 | 39.0 | 31.0 | 0.0 | 0.286 | 492.706 | 13.737 | 7.143 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 39.0 | 7.143 | null | null | null | null | 286852.0 | 2741.0 | 52.54 | 0.502 | 2076.0 | 0.38 | 1.9e-2 | 53.2 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-10-18 | 29835.0 | 1567.0 | 1426.286 | 88.0 | 6.0 | 3.857 | 5464.643 | 287.015 | 261.242 | 16.118 | 1.099 | 0.706 | 1.35 | null | null | 481.0 | 88.101 | null | null | null | null | 622032.0 | 5025.0 | 113.933 | 0.92 | 9941.0 | 1.821 | 0.143 | 7.0 | null | 53.7 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-09-16 | 3954.0 | 123.0 | 91.714 | 135.0 | 0.0 | 0.0 | 1901.938 | 59.165 | 44.116 | 64.937 | 0.0 | 0.0 | 1.39 | 11.0 | 5.291 | 61.0 | 29.342 | null | null | null | null | 191413.0 | 3070.0 | 92.073 | 1.477 | 2470.0 | 1.188 | 3.7e-2 | 26.9 | null | 46.3 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-11-30 | 75814.0 | 433.0 | 1433.714 | 1435.0 | 51.0 | 48.286 | 36467.763 | 208.28 | 689.64 | 690.258 | 24.532 | 23.226 | null | null | null | null | null | null | null | null | null | 523620.0 | 5868.0 | 251.87 | 2.823 | 5767.0 | 2.774 | 0.249 | 4.0 | null | 68.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
ZAF | Africa | South Africa | 2020-05-05 | 7572.0 | 352.0 | 368.0 | 148.0 | 10.0 | 7.857 | 127.671 | 5.935 | 6.205 | 2.495 | 0.169 | 0.132 | 1.36 | null | null | null | null | null | null | null | null | 268064.0 | 10523.0 | 4.52 | 0.177 | 11795.0 | 0.199 | 3.1e-2 | 32.1 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-07-28 | 459761.0 | 7232.0 | 11137.571 | 7257.0 | 190.0 | 269.857 | 7752.001 | 121.938 | 187.79 | 122.36 | 3.204 | 4.55 | 0.86 | null | null | null | null | null | null | null | null | 2830635.0 | 28424.0 | 47.727 | 0.479 | 41959.0 | 0.707 | 0.265 | 3.8 | null | 80.56 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-02-03 | 15.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 0.293 | 0.0 | 3.1e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.0 | 1.0e-3 | 2.4e-2 | 42.0 | null | 23.15 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
ESP | Europe | Spain | 2020-04-03 | 119199.0 | 7134.0 | 7640.0 | 11198.0 | 850.0 | 865.714 | 2549.45 | 152.583 | 163.406 | 239.505 | 18.18 | 18.516 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
ESP | Europe | Spain | 2020-11-07 | 1328832.0 | 0.0 | 20450.571 | 38833.0 | 0.0 | 422.143 | 28421.306 | 0.0 | 437.401 | 830.567 | 0.0 | 9.029 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | 166951.0 | 3.571 | 0.122 | 8.2 | null | 71.3 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-04-01 | 146.0 | 3.0 | 6.286 | 3.0 | 1.0 | 0.429 | 6.818 | 0.14 | 0.294 | 0.14 | 4.7e-2 | 2.0e-2 | 1.01 | null | null | null | null | null | null | null | null | 2785.0 | 219.0 | 0.13 | 1.0e-2 | 161.0 | 8.0e-3 | 3.9e-2 | 25.6 | null | 100.0 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
LKA | Asia | Sri Lanka | 2020-05-13 | 915.0 | 26.0 | 16.857 | 9.0 | 0.0 | 0.0 | 42.731 | 1.214 | 0.787 | 0.42 | 0.0 | 0.0 | 1.04 | null | null | null | null | null | null | null | null | 39629.0 | 889.0 | 1.851 | 4.2e-2 | 1301.0 | 6.1e-2 | 1.3e-2 | 77.2 | null | 82.41 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SUR | South America | Suriname | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-06-13 | 196.0 | 9.0 | 13.714 | 3.0 | 0.0 | 0.286 | 334.11 | 15.342 | 23.378 | 5.114 | 0.0 | 0.487 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-05-16 | 202.0 | 12.0 | 5.571 | 2.0 | 0.0 | 0.0 | 174.113 | 10.343 | 4.802 | 1.724 | 0.0 | 0.0 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-10 | 26846.0 | 278.0 | 593.286 | 3678.0 | 64.0 | 70.286 | 2658.212 | 27.527 | 58.745 | 364.185 | 6.337 | 6.959 | 1.13 | null | null | null | null | 154.004 | 15.249 | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-10-29 | 121167.0 | 3254.0 | 1742.571 | 5966.0 | 3.0 | 5.143 | 11997.6 | 322.202 | 172.544 | 590.736 | 0.297 | 0.509 | 1.57 | null | null | null | null | null | null | null | null | null | 27613.0 | null | 2.734 | 26048.0 | 2.579 | 6.7e-2 | 14.9 | null | 55.56 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-11-21 | 208295.0 | 0.0 | 4420.0 | 6406.0 | 0.0 | 34.571 | 20624.758 | 0.0 | 437.655 | 634.303 | 0.0 | 3.423 | null | null | null | null | null | null | null | null | null | null | 38266.0 | null | 3.789 | 38119.0 | 3.774 | 0.116 | 8.6 | null | 50.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-01 | 17768.0 | 1163.0 | 981.571 | 488.0 | 55.0 | 47.857 | 2053.008 | 134.379 | 113.416 | 56.386 | 6.355 | 5.53 | 1.24 | null | null | null | null | null | null | null | null | 145277.0 | 6657.0 | 16.786 | 0.769 | 5978.0 | 0.691 | 0.164 | 6.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-06-02 | 30874.0 | 3.0 | 16.143 | 1920.0 | 0.0 | 0.714 | 3567.344 | 0.347 | 1.865 | 221.847 | 0.0 | 8.3e-2 | 0.79 | null | null | null | null | null | null | null | null | 405695.0 | 4282.0 | 46.876 | 0.495 | 3304.0 | 0.382 | 5.0e-3 | 204.7 | null | 55.56 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-08-06 | 36108.0 | 181.0 | 155.143 | 1985.0 | 1.0 | 0.714 | 4172.108 | 20.914 | 17.926 | 229.357 | 0.116 | 8.3e-2 | 1.17 | null | null | null | null | null | null | null | null | 831138.0 | 6619.0 | 96.034 | 0.765 | 5409.0 | 0.625 | 2.9e-2 | 34.9 | null | 43.06 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
CHE | Europe | Switzerland | 2020-11-15 | 257135.0 | 0.0 | 6460.286 | 3369.0 | 18.0 | 85.286 | 29710.728 | 0.0 | 746.455 | 389.272 | 2.08 | 9.854 | 1.04 | null | null | null | null | null | null | null | null | 2419601.0 | 9364.0 | 279.573 | 1.082 | 25659.0 | 2.965 | 0.252 | 4.0 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
TZA | Africa | Tanzania | 2020-09-11 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
FJI | Oceania | Fiji | 2020-06-29 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.079 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 5015.0 | 162.0 | 5.594 | 0.181 | 69.0 | 7.7e-2 | 0.0 | null | null | 62.04 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FJI | Oceania | Fiji | 2020-09-25 | 32.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 35.697 | 0.0 | 0.0 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10280.0 | 64.0 | 11.468 | 7.1e-2 | 65.0 | 7.3e-2 | 0.0 | null | null | 51.85 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-05-04 | 5327.0 | 73.0 | 90.286 | 240.0 | 10.0 | 6.714 | 961.428 | 13.175 | 16.295 | 43.316 | 1.805 | 1.212 | 0.9 | 49.0 | 8.844 | 197.0 | 35.555 | null | null | null | null | 113479.0 | 1767.0 | 20.481 | 0.319 | 2956.0 | 0.534 | 3.1e-2 | 32.7 | null | 60.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-07 | 17385.0 | 0.0 | 181.714 | 362.0 | 0.0 | 0.571 | 3137.68 | 0.0 | 32.796 | 65.334 | 0.0 | 0.103 | 1.1 | null | null | null | null | null | null | null | null | 1650143.0 | 9833.0 | 297.821 | 1.775 | 12769.0 | 2.305 | 1.4e-2 | 70.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-11-15 | 19315.0 | 213.0 | 216.857 | 369.0 | 0.0 | 1.0 | 3486.01 | 38.443 | 39.139 | 66.598 | 0.0 | 0.18 | 1.14 | null | null | null | null | null | null | null | null | 1747491.0 | 6648.0 | 315.391 | 1.2 | 13080.0 | 2.361 | 1.7e-2 | 60.3 | null | 40.74 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-10-17 | 3649.0 | 0.0 | 3.0 | 118.0 | 0.0 | 0.143 | 1509.933 | 0.0 | 1.241 | 48.828 | 0.0 | 5.9e-2 | 0.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
DEU | Europe | Germany | 2020-10-25 | 437698.0 | 9890.0 | 9861.0 | 10062.0 | 27.0 | 37.714 | 5224.127 | 118.042 | 117.696 | 120.095 | 0.322 | 0.45 | 1.45 | null | null | null | null | null | null | 2028.515 | 24.211 | 2.1848094e7 | null | 260.767 | null | 201348.0 | 2.403 | 4.9e-2 | 20.4 | null | 60.65 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-05-20 | 6269.0 | 173.0 | 123.0 | 31.0 | 0.0 | 1.0 | 201.751 | 5.568 | 3.958 | 0.998 | 0.0 | 3.2e-2 | 1.23 | null | null | null | null | null | null | null | null | 192194.0 | 4265.0 | 6.185 | 0.137 | 3358.0 | 0.108 | 3.7e-2 | 27.3 | null | 62.04 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-06-07 | 9638.0 | 176.0 | 224.0 | 44.0 | 0.0 | 1.143 | 310.173 | 5.664 | 7.209 | 1.416 | 0.0 | 3.7e-2 | 1.2 | null | null | null | null | null | null | null | null | 239395.0 | 3952.0 | 7.704 | 0.127 | 2796.0 | 9.0e-2 | 8.0e-2 | 12.5 | null | 56.48 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-08-11 | 41404.0 | 192.0 | 513.143 | 215.0 | 0.0 | 3.429 | 1332.477 | 6.179 | 16.514 | 6.919 | 0.0 | 0.11 | 1.11 | null | null | null | null | null | null | null | null | 421588.0 | 1998.0 | 13.568 | 6.4e-2 | 1745.0 | 5.6e-2 | 0.294 | 3.4 | null | 52.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-19 | 50631.0 | 174.0 | 96.286 | 323.0 | 0.0 | 0.429 | 1629.424 | 5.6 | 3.099 | 10.395 | 0.0 | 1.4e-2 | 1.18 | null | null | null | null | null | null | null | null | 578117.0 | 2126.0 | 18.605 | 6.8e-2 | 2128.0 | 6.8e-2 | 4.5e-2 | 22.1 | null | 38.89 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
HTI | North America | Haiti | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HUN | Europe | Hungary | 2020-03-23 | 167.0 | 36.0 | 18.286 | 7.0 | 1.0 | 0.857 | 17.287 | 3.727 | 1.893 | 0.725 | 0.104 | 8.9e-2 | 1.7 | null | null | 144.0 | 14.906 | null | null | null | null | 5515.0 | 1072.0 | 0.571 | 0.111 | 578.0 | 6.0e-2 | 3.2e-2 | 31.6 | null | 67.59 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-04-17 | 1763.0 | 111.0 | 81.857 | 156.0 | 14.0 | 11.286 | 182.499 | 11.49 | 8.474 | 16.148 | 1.449 | 1.168 | 1.14 | null | null | 847.0 | 87.678 | null | null | null | null | 41590.0 | 3101.0 | 4.305 | 0.321 | 1663.0 | 0.172 | 4.9e-2 | 20.3 | null | 76.85 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-08-05 | 4564.0 | 11.0 | 14.143 | 599.0 | 1.0 | 0.429 | 472.447 | 1.139 | 1.464 | 62.006 | 0.104 | 4.4e-2 | 1.29 | null | null | 72.0 | 7.453 | null | null | null | null | 350108.0 | 1976.0 | 36.242 | 0.205 | 2380.0 | 0.246 | 6.0e-3 | 168.3 | null | 54.63 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-11-07 | 104943.0 | 5318.0 | 4231.714 | 2357.0 | 107.0 | 86.714 | 10863.271 | 550.498 | 438.05 | 243.987 | 11.076 | 8.976 | 1.32 | null | null | 5612.0 | 580.931 | null | null | null | null | 1189962.0 | 22321.0 | 123.18 | 2.311 | 17831.0 | 1.846 | 0.237 | 4.2 | null | 57.41 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-03-13 | 134.0 | 31.0 | 13.0 | 0.0 | 0.0 | 0.0 | 392.674 | 90.842 | 38.095 | null | 0.0 | 0.0 | 1.64 | 0.0 | 0.0 | 2.0 | 5.861 | null | null | null | null | 1504.0 | 357.0 | 4.407 | 1.046 | 160.0 | 0.469 | 8.1e-2 | 12.3 | null | 16.67 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-28 | 963.0 | 73.0 | 70.0 | 2.0 | 0.0 | 0.143 | 2821.978 | 213.919 | 205.128 | 5.861 | 0.0 | 0.419 | 1.27 | 7.0 | 20.513 | 26.0 | 76.19 | null | null | null | null | 15443.0 | 849.0 | 45.254 | 2.488 | 767.0 | 2.248 | 9.1e-2 | 11.0 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-18 | 1838.0 | 2.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5386.081 | 5.861 | 2.093 | 29.304 | 0.0 | 0.0 | 1.29 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68575.0 | 64.0 | 200.952 | 0.188 | 112.0 | 0.328 | 6.0e-3 | 156.9 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-07-23 | 1841.0 | 1.0 | 0.714 | 10.0 | 0.0 | 0.0 | 5394.872 | 2.93 | 2.093 | 29.304 | 0.0 | 0.0 | 1.43 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 68822.0 | 67.0 | 201.676 | 0.196 | 71.0 | 0.208 | 1.0e-2 | 99.4 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-10-26 | 7946429.0 | 36470.0 | 49909.429 | 119502.0 | 488.0 | 615.0 | 5758.264 | 26.427 | 36.166 | 86.595 | 0.354 | 0.446 | 0.89 | null | null | null | null | null | null | null | null | 1.03462778e8 | 939309.0 | 74.973 | 0.681 | 1196972.0 | 0.867 | 4.2e-2 | 24.0 | null | 64.35 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 23.15 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-08-13 | 132816.0 | 2098.0 | 2009.0 | 5968.0 | 65.0 | 63.857 | 485.574 | 7.67 | 7.345 | 21.819 | 0.238 | 0.233 | 1.06 | null | null | null | null | null | null | null | null | 1026954.0 | 14850.0 | 3.755 | 5.4e-2 | 12949.0 | 4.7e-2 | 0.155 | 6.4 | null | 59.72 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-10-05 | 307120.0 | 3622.0 | 4056.857 | 11253.0 | 102.0 | 111.429 | 1122.828 | 13.242 | 14.832 | 41.141 | 0.373 | 0.407 | 1.01 | null | null | null | null | null | null | null | null | 2119355.0 | 22771.0 | 7.748 | 8.3e-2 | 26356.0 | 9.6e-2 | 0.154 | 6.5 | null | 72.69 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IRN | Asia | Iran | 2020-08-07 | 322567.0 | 2450.0 | 2623.286 | 18132.0 | 156.0 | 195.143 | 3840.406 | 29.169 | 31.232 | 215.875 | 1.857 | 2.323 | 0.93 | null | null | null | null | null | null | null | null | 2637575.0 | null | 31.402 | null | 25809.0 | 0.307 | 0.102 | 9.8 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-08-08 | 324692.0 | 2125.0 | 2562.857 | 18264.0 | 132.0 | 183.143 | 3865.705 | 25.3 | 30.513 | 217.447 | 1.572 | 2.18 | 0.86 | null | null | null | null | null | null | null | null | 2661965.0 | 24390.0 | 31.693 | 0.29 | 25630.0 | 0.305 | 0.1 | 10.0 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRL | Europe | Ireland | 2020-10-26 | 58067.0 | 939.0 | 1010.571 | 1885.0 | 3.0 | 4.714 | 11759.7 | 190.166 | 204.66 | 381.749 | 0.608 | 0.955 | 0.96 | 38.0 | 7.696 | 344.0 | 69.667 | null | null | null | null | 1568768.0 | 14264.0 | 317.706 | 2.889 | 16425.0 | 3.326 | 6.2e-2 | 16.3 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
IRL | Europe | Ireland | 2020-10-28 | 59434.0 | 667.0 | 858.857 | 1896.0 | 6.0 | 4.0 | 12036.544 | 135.081 | 173.935 | 383.977 | 1.215 | 0.81 | 0.91 | 40.0 | 8.101 | 327.0 | 66.224 | null | null | null | null | 1591370.0 | 11167.0 | 322.283 | 2.262 | 15161.0 | 3.07 | 5.7e-2 | 17.7 | null | 81.48 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-03-25 | 2369.0 | 1131.0 | 295.0 | 5.0 | 2.0 | 0.714 | 273.698 | 130.668 | 34.082 | 0.578 | 0.231 | 8.3e-2 | 1.94 | null | null | null | null | null | null | null | null | 37132.0 | 5936.0 | 4.29 | 0.686 | 3457.0 | 0.399 | 8.5e-2 | 11.7 | null | 81.48 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-03-17 | 31506.0 | 3526.0 | 3051.0 | 2503.0 | 345.0 | 267.429 | 521.089 | 58.318 | 50.462 | 41.398 | 5.706 | 4.423 | 1.84 | 2060.0 | 34.071 | 14954.0 | 247.33 | null | null | null | null | 148657.0 | 10695.0 | 2.459 | 0.177 | 12557.0 | 0.208 | 0.243 | 4.1 | null | 85.19 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-08-08 | 250103.0 | 347.0 | 324.429 | 35203.0 | 13.0 | 8.143 | 4136.544 | 5.739 | 5.366 | 582.235 | 0.215 | 0.135 | 1.29 | 43.0 | 0.711 | 814.0 | 13.463 | null | null | null | null | 7212207.0 | 53298.0 | 119.285 | 0.882 | 48387.0 | 0.8 | 7.0e-3 | 149.1 | null | 50.93 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-09-12 | 286297.0 | 1501.0 | 1422.714 | 35603.0 | 6.0 | 9.857 | 4735.169 | 24.826 | 23.531 | 588.851 | 9.9e-2 | 0.163 | 1.07 | 182.0 | 3.01 | 2133.0 | 35.278 | null | null | null | null | 9745975.0 | 92706.0 | 161.192 | 1.533 | 86225.0 | 1.426 | 1.7e-2 | 60.6 | null | 54.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-28 | 1564532.0 | 26315.0 | 26285.857 | 54363.0 | 686.0 | 728.857 | 25876.36 | 435.233 | 434.751 | 899.129 | 11.346 | 12.055 | null | 3762.0 | 62.221 | 37061.0 | 612.965 | null | null | null | null | 2.1637641e7 | 225940.0 | 357.873 | 3.737 | 205402.0 | 3.397 | 0.128 | 7.8 | null | null | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-10 | 753.0 | 0.0 | 4.571 | 10.0 | 0.0 | 0.0 | 254.292 | 0.0 | 1.544 | 3.377 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 27775.0 | 300.0 | 9.38 | 0.101 | 299.0 | 0.101 | 1.5e-2 | 65.4 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-11-03 | 9296.0 | 39.0 | 72.714 | 214.0 | 4.0 | 2.571 | 3139.309 | 13.171 | 24.556 | 72.269 | 1.351 | 0.868 | 0.91 | null | null | null | null | null | null | null | null | 98356.0 | 565.0 | 33.215 | 0.191 | 648.0 | 0.219 | 0.112 | 8.9 | null | 67.59 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-10-23 | 95868.0 | 734.0 | 546.286 | 1706.0 | 9.0 | 6.0 | 757.991 | 5.803 | 4.319 | 13.489 | 7.1e-2 | 4.7e-2 | 1.13 | null | null | null | null | null | null | null | null | 2295456.0 | 22880.0 | 18.149 | 0.181 | 17267.0 | 0.137 | 3.2e-2 | 31.6 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
KAZ | Asia | Kazakhstan | 2020-03-31 | 343.0 | 41.0 | 38.714 | 2.0 | 1.0 | 0.286 | 18.267 | 2.184 | 2.062 | 0.107 | 5.3e-2 | 1.5e-2 | 1.62 | null | null | null | null | null | null | null | null | 30905.0 | 9892.0 | 1.646 | 0.527 | 3003.0 | 0.16 | 1.3e-2 | 77.6 | null | 92.13 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-06-24 | 19285.0 | 520.0 | 486.857 | 136.0 | 2.0 | 5.571 | 1027.07 | 27.694 | 25.929 | 7.243 | 0.107 | 0.297 | 1.12 | null | null | null | null | null | null | null | null | 1401692.0 | 24830.0 | 74.651 | 1.322 | 27159.0 | 1.446 | 1.8e-2 | 55.8 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-10-01 | 140958.0 | 251.0 | 238.429 | 2080.0 | 2.0 | 5.0 | 7507.067 | 13.368 | 12.698 | 110.776 | 0.107 | 0.266 | 1.01 | null | null | null | null | null | null | null | null | 2973489.0 | 9208.0 | 158.361 | 0.49 | 13415.0 | 0.714 | 1.8e-2 | 56.3 | null | 78.7 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-14 | 159756.0 | 903.0 | 776.429 | 2315.0 | 1.0 | 7.143 | 8508.201 | 48.091 | 41.351 | 123.291 | 5.3e-2 | 0.38 | 1.31 | null | null | null | null | null | null | null | null | 4004270.0 | 39228.0 | 213.257 | 2.089 | 31215.0 | 1.662 | 2.5e-2 | 40.2 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-06-25 | 5384.0 | 178.0 | 161.0 | 132.0 | 2.0 | 2.143 | 100.128 | 3.31 | 2.994 | 2.455 | 3.7e-2 | 4.0e-2 | 1.24 | null | null | null | null | null | null | null | null | 155314.0 | 3918.0 | 2.888 | 7.3e-2 | 3545.0 | 6.6e-2 | 4.5e-2 | 22.0 | null | 84.26 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KGZ | Asia | Kyrgyzstan | 2020-06-07 | 2007.0 | 33.0 | 37.0 | 22.0 | 0.0 | 0.857 | 307.624 | 5.058 | 5.671 | 3.372 | 0.0 | 0.131 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-09-12 | 23.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 3.161 | 0.0 | 2.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LBN | Asia | Lebanon | 2020-03-28 | 412.0 | 21.0 | 32.143 | 8.0 | 0.0 | 0.571 | 60.362 | 3.077 | 4.709 | 1.172 | 0.0 | 8.4e-2 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LBN | Asia | Lebanon | 2020-11-06 | 91328.0 | 2142.0 | 1685.571 | 700.0 | 17.0 | 10.714 | 13380.525 | 313.826 | 246.954 | 102.557 | 2.491 | 1.57 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LTU | Europe | Lithuania | 2020-05-27 | 1647.0 | 8.0 | 10.0 | 66.0 | 1.0 | 0.857 | 605.005 | 2.939 | 3.673 | 24.244 | 0.367 | 0.315 | 0.85 | null | null | null | null | null | null | null | null | 272538.0 | 6268.0 | 100.113 | 2.302 | 4739.0 | 1.741 | 2.0e-3 | 473.9 | null | 71.3 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-09-07 | 3100.0 | 17.0 | 27.714 | 86.0 | 0.0 | 0.0 | 1138.747 | 6.245 | 10.181 | 31.591 | 0.0 | 0.0 | 1.17 | null | null | null | null | null | null | null | null | 614767.0 | 3528.0 | 225.827 | 1.296 | 3650.0 | 1.341 | 8.0e-3 | 131.7 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-10-30 | 13823.0 | 735.0 | 674.143 | 157.0 | 7.0 | 4.429 | 5077.708 | 269.993 | 247.638 | 57.672 | 2.571 | 1.627 | 1.52 | null | null | 415.0 | 152.445 | null | null | null | null | 936692.0 | 10520.0 | 344.082 | 3.864 | 8860.0 | 3.255 | 7.6e-2 | 13.1 | null | 62.5 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-19 | 40492.0 | 1682.0 | 1525.714 | 341.0 | 18.0 | 13.857 | 14874.236 | 617.862 | 560.452 | 125.262 | 6.612 | 5.09 | 1.33 | null | null | 1.0 | 0.367 | null | null | null | null | 1145098.0 | 14052.0 | 420.638 | 5.162 | 11081.0 | 4.07 | 0.138 | 7.3 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LUX | Europe | Luxembourg | 2020-07-04 | 4476.0 | 29.0 | 37.0 | 110.0 | 0.0 | 0.0 | 7150.434 | 46.328 | 59.108 | 175.726 | 0.0 | 0.0 | 1.63 | 3.0 | 4.793 | 24.0 | 38.34 | null | null | null | null | 231408.0 | 7851.0 | 369.676 | 12.542 | 8169.0 | 13.05 | 5.0e-3 | 220.8 | null | 24.07 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-08-13 | 7368.0 | 68.0 | 42.143 | 122.0 | 0.0 | 0.429 | 11770.419 | 108.63 | 67.323 | 194.896 | 0.0 | 0.685 | 0.85 | 3.0 | 4.793 | 38.0 | 60.705 | null | null | null | null | 559389.0 | 4654.0 | 893.627 | 7.435 | 4972.0 | 7.943 | 8.0e-3 | 118.0 | null | 34.26 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MWI | Africa | Malawi | 2020-10-03 | 5783.0 | 0.0 | 2.429 | 179.0 | 0.0 | 0.0 | 302.301 | 0.0 | 0.127 | 9.357 | 0.0 | 0.0 | 0.89 | null | null | null | null | null | null | null | null | 54246.0 | 231.0 | 2.836 | 1.2e-2 | 266.0 | 1.4e-2 | 9.0e-3 | 109.5 | null | 54.63 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MLI | Africa | Mali | 2020-03-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-03-22 | 90.0 | 17.0 | 9.857 | 0.0 | 0.0 | 0.0 | 203.833 | 38.502 | 22.325 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | 11.0 | 24.913 | 0.895 | 2.026 | 1.789 | 4.052 | 3216.0 | 309.0 | 7.284 | 0.7 | 249.0 | 0.564 | 4.0e-2 | 25.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-07-18 | 675.0 | 1.0 | 0.143 | 9.0 | 0.0 | 0.0 | 1528.744 | 2.265 | 0.324 | 20.383 | 0.0 | 0.0 | 0.37 | null | null | null | null | null | null | null | null | 113237.0 | 834.0 | 256.46 | 1.889 | 867.0 | 1.964 | 0.0 | 6062.9 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-09-28 | 3006.0 | 27.0 | 32.857 | 32.0 | 1.0 | 1.286 | 6808.006 | 61.15 | 74.415 | 72.474 | 2.265 | 2.912 | 0.93 | null | null | null | null | null | null | null | null | 251746.0 | 2116.0 | 570.156 | 4.792 | 2304.0 | 5.218 | 1.4e-2 | 70.1 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MUS | Africa | Mauritius | 2020-03-20 | 12.0 | 9.0 | 1.714 | 0.0 | 0.0 | 0.0 | 9.436 | 7.077 | 1.348 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MEX | North America | Mexico | 2020-08-17 | 525733.0 | 3571.0 | 5699.571 | 57023.0 | 266.0 | 574.286 | 4077.575 | 27.697 | 44.206 | 442.269 | 2.063 | 4.454 | 0.96 | null | null | null | null | null | null | null | null | 1207328.0 | 14669.0 | 9.364 | 0.114 | 11905.0 | 9.2e-2 | 0.479 | 2.1 | null | 70.83 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MEX | North America | Mexico | 2020-10-13 | 825340.0 | 4295.0 | 4390.286 | 84420.0 | 475.0 | 296.0 | 6401.321 | 33.312 | 34.051 | 654.76 | 3.684 | 2.296 | 1.02 | null | null | null | null | null | null | null | null | 1880454.0 | 16473.0 | 14.585 | 0.128 | 11831.0 | 9.2e-2 | 0.371 | 2.7 | null | 71.76 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MDA | Europe | Moldova | 2020-05-14 | 5553.0 | 147.0 | 135.429 | 194.0 | 9.0 | 7.0 | 1376.562 | 36.441 | 33.572 | 48.092 | 2.231 | 1.735 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
ALB | Europe | Albania | 2020-05-02 | 789.0 | 7.0 | 11.0 | 31.0 | 0.0 | 0.571 | 274.168 | 2.432 | 3.822 | 10.772 | 0.0 | 0.199 | 0.69 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-10 | 10860.0 | 156.0 | 145.143 | 324.0 | 2.0 | 3.286 | 3773.716 | 54.208 | 50.435 | 112.586 | 0.695 | 1.142 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-05-09 | 5558.0 | 189.0 | 180.429 | 494.0 | 6.0 | 5.0 | 126.747 | 4.31 | 4.115 | 11.265 | 0.137 | 0.114 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-15 | 48734.0 | 238.0 | 256.571 | 1632.0 | 12.0 | 8.714 | 1111.353 | 5.427 | 5.851 | 37.217 | 0.274 | 0.199 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
ARG | South America | Argentina | 2020-08-14 | 282437.0 | 6365.0 | 6680.0 | 5527.0 | 165.0 | 159.429 | 6249.19 | 140.832 | 147.801 | 122.29 | 3.651 | 3.528 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-04-30 | 2066.0 | 134.0 | 77.571 | 32.0 | 2.0 | 1.143 | 697.211 | 45.221 | 26.178 | 10.799 | 0.675 | 0.386 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
ARM | Asia | Armenia | 2020-07-10 | 30903.0 | 557.0 | 511.857 | 546.0 | 11.0 | 11.0 | 10428.809 | 187.97 | 172.736 | 184.258 | 3.712 | 3.712 | 0.92 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUT | Europe | Austria | 2020-05-01 | 15531.0 | 79.0 | 65.714 | 589.0 | 5.0 | 8.429 | 1724.44 | 8.772 | 7.296 | 65.398 | 0.555 | 0.936 | 0.61 | 124.0 | 13.768 | 348.0 | 38.639 | null | null | null | null | 264079.0 | 7680.0 | 29.321 | 0.853 | 7342.0 | 0.815 | 9.0e-3 | 111.7 | null | 67.59 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-09-09 | 30583.0 | 502.0 | 373.429 | 747.0 | 0.0 | 1.857 | 3395.696 | 55.738 | 41.463 | 82.941 | 0.0 | 0.206 | 1.41 | 36.0 | 3.997 | 161.0 | 17.876 | null | null | null | null | 1288059.0 | 11582.0 | 143.016 | 1.286 | 11070.0 | 1.229 | 3.4e-2 | 29.6 | null | 36.11 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-02 | 46374.0 | 688.0 | 696.286 | 803.0 | 1.0 | 2.429 | 5149.005 | 76.39 | 77.31 | 89.159 | 0.111 | 0.27 | 1.15 | 100.0 | 11.103 | 372.0 | 41.304 | null | null | null | null | 1658412.0 | 21839.0 | 184.137 | 2.425 | 18815.0 | 2.089 | 3.7e-2 | 27.0 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-10-06 | 49819.0 | 923.0 | 825.429 | 822.0 | 4.0 | 3.714 | 5531.511 | 102.483 | 91.649 | 91.268 | 0.444 | 0.412 | 1.21 | 101.0 | 11.214 | 397.0 | 44.08 | null | null | null | null | 1716505.0 | 18237.0 | 190.587 | 2.025 | 18561.0 | 2.061 | 4.4e-2 | 22.5 | null | 40.74 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-20 | 44.0 | 0.0 | 4.143 | 1.0 | 0.0 | 0.0 | 4.34 | 0.0 | 0.409 | 9.9e-2 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHR | Asia | Bahrain | 2020-05-23 | 8802.0 | 388.0 | 293.571 | 13.0 | 1.0 | 0.143 | 5172.83 | 228.023 | 172.528 | 7.64 | 0.588 | 8.4e-2 | 1.21 | null | null | null | null | null | null | null | null | 276552.0 | 7373.0 | 162.526 | 4.333 | 6623.0 | 3.892 | 4.4e-2 | 22.6 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-26 | 80533.0 | 278.0 | 329.857 | 316.0 | 4.0 | 2.0 | 47328.282 | 163.377 | 193.853 | 185.709 | 2.351 | 1.175 | 0.88 | null | null | null | null | null | null | null | null | 1698489.0 | 19642.0 | 998.182 | 11.543 | 11551.0 | 6.788 | 2.9e-2 | 35.0 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-11-07 | 418764.0 | 1289.0 | 1582.857 | 6049.0 | 13.0 | 18.0 | 2542.75 | 7.827 | 9.611 | 36.73 | 7.9e-2 | 0.109 | 1.02 | null | null | null | null | null | null | null | null | 2427669.0 | 11419.0 | 14.741 | 6.9e-2 | 13029.0 | 7.9e-2 | 0.121 | 8.2 | null | 80.09 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BEL | Europe | Belgium | 2020-02-26 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.6e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-03-05 | 50.0 | 27.0 | 7.0 | 0.0 | 0.0 | 0.0 | 4.314 | 2.33 | 0.604 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2411.0 | 773.0 | 0.208 | 6.7e-2 | null | null | null | null | null | 13.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-04-04 | 18431.0 | 1661.0 | 1328.143 | 1283.0 | 140.0 | 132.857 | 1590.303 | 143.318 | 114.598 | 110.703 | 12.08 | 11.463 | 1.45 | 1261.0 | 108.804 | 5531.0 | 477.238 | null | null | null | null | 93217.0 | 5368.0 | 8.043 | 0.463 | 5288.0 | 0.456 | 0.251 | 4.0 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-07-02 | 61598.0 | 89.0 | 84.429 | 9761.0 | 7.0 | 5.0 | 5314.93 | 7.679 | 7.285 | 842.219 | 0.604 | 0.431 | 1.04 | 35.0 | 3.02 | 187.0 | 16.135 | null | null | null | null | 1303042.0 | 13607.0 | 112.432 | 1.174 | 12646.0 | 1.091 | 7.0e-3 | 149.8 | null | 50.0 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEN | Africa | Benin | 2020-05-07 | 140.0 | 44.0 | 10.857 | 2.0 | 0.0 | 0.143 | 11.548 | 3.629 | 0.896 | 0.165 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 70.83 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-06-05 | 261.0 | 0.0 | 5.286 | 3.0 | 0.0 | 0.0 | 21.529 | 0.0 | 0.436 | 0.247 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-12-01 | 3015.0 | 0.0 | 14.143 | 43.0 | 0.0 | 0.0 | 248.697 | 0.0 | 1.167 | 3.547 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BIH | Europe | Bosnia and Herzegovina | 2020-07-05 | 4962.0 | 0.0 | 146.714 | 191.0 | 0.0 | 1.857 | 1512.429 | 0.0 | 44.719 | 58.217 | 0.0 | 0.566 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-11-20 | 9594.0 | 0.0 | 195.571 | 31.0 | 0.0 | 0.571 | 4079.732 | 0.0 | 83.164 | 13.182 | 0.0 | 0.243 | 0.75 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-07-19 | 2098389.0 | 23529.0 | 33386.857 | 79488.0 | 716.0 | 1055.429 | 9872.012 | 110.694 | 157.071 | 373.957 | 3.368 | 4.965 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | 31275.0 | 0.147 | null | null | null | 81.02 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-31 | 5535605.0 | 18947.0 | 22138.571 | 159884.0 | 407.0 | 425.857 | 26042.625 | 89.137 | 104.152 | 752.185 | 1.915 | 2.003 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.87 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-11-12 | 5781582.0 | 33922.0 | 27365.286 | 164281.0 | 913.0 | 453.571 | 27199.84 | 159.588 | 128.742 | 772.871 | 4.295 | 2.134 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-03-17 | 56.0 | 2.0 | 7.857 | 0.0 | 0.0 | 0.0 | 128.005 | 4.572 | 17.96 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-11-20 | 148.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 338.299 | 0.0 | 0.0 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-04-23 | 1097.0 | 73.0 | 42.429 | 52.0 | 3.0 | 2.0 | 157.877 | 10.506 | 6.106 | 7.484 | 0.432 | 0.288 | 1.29 | 37.0 | 5.325 | 270.0 | 38.858 | null | null | null | null | null | null | null | null | 879.0 | 0.127 | 4.8e-2 | 20.7 | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-11-12 | 2586.0 | 0.0 | 5.143 | 67.0 | 0.0 | 0.0 | 123.713 | 0.0 | 0.246 | 3.205 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
KHM | Asia | Cambodia | 2020-02-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-05-05 | 122.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 4.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-07-04 | 141.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.434 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.23 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CAN | North America | Canada | 2020-01-26 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6e-2 | 2.6e-2 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-04-14 | 27035.0 | 1355.0 | 1309.0 | 901.0 | 120.0 | 75.143 | 716.308 | 35.901 | 34.683 | 23.873 | 3.179 | 1.991 | 1.3 | null | null | null | null | null | null | null | null | 454983.0 | 17508.0 | 12.055 | 0.464 | 15268.0 | 0.405 | 8.6e-2 | 11.7 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-26 | 104629.0 | 166.0 | 330.714 | 8571.0 | 4.0 | 23.286 | 2772.205 | 4.398 | 8.762 | 227.094 | 0.106 | 0.617 | 0.85 | null | null | null | null | null | null | null | null | 2598243.0 | 39880.0 | 68.842 | 1.057 | 36954.0 | 0.979 | 9.0e-3 | 111.7 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-06-14 | 750.0 | 24.0 | 28.0 | 6.0 | 0.0 | 0.143 | 1348.95 | 43.166 | 50.361 | 10.792 | 0.0 | 0.257 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CHL | South America | Chile | 2020-11-12 | 526438.0 | 1634.0 | 1408.0 | 14699.0 | 66.0 | 42.143 | 27538.828 | 85.477 | 73.655 | 768.929 | 3.453 | 2.205 | 0.99 | null | null | null | null | null | null | null | null | 4695035.0 | 35708.0 | 245.605 | 1.868 | 34425.0 | 1.801 | 4.1e-2 | 24.4 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-03-26 | 81782.0 | 121.0 | 89.429 | 3291.0 | 6.0 | 6.0 | 56.82 | 8.4e-2 | 6.2e-2 | 2.286 | 4.0e-3 | 4.0e-3 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.94 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
CHN | Asia | China | 2020-07-04 | 84857.0 | 19.0 | 16.286 | 4641.0 | 0.0 | 0.0 | 58.956 | 1.3e-2 | 1.1e-2 | 3.224 | 0.0 | 0.0 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-04-28 | 5949.0 | 352.0 | 257.143 | 269.0 | 16.0 | 10.429 | 116.916 | 6.918 | 5.054 | 5.287 | 0.314 | 0.205 | 1.34 | null | null | null | null | null | null | null | null | 95085.0 | 4186.0 | 1.869 | 8.2e-2 | 3818.0 | 7.5e-2 | null | null | null | 90.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-11-22 | 1248417.0 | 7924.0 | 7095.857 | 35287.0 | 183.0 | 179.429 | 24535.107 | 155.73 | 139.455 | 693.494 | 3.596 | 3.526 | null | null | null | null | null | null | null | null | null | 4844144.0 | 26969.0 | 95.202 | 0.53 | 27587.0 | 0.542 | null | null | null | 65.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-25 | 87.0 | 0.0 | 10.857 | 1.0 | 0.0 | 0.0 | 100.047 | 0.0 | 12.485 | 1.15 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-10-17 | 502.0 | 0.0 | 1.0 | 7.0 | 0.0 | 0.0 | 577.28 | 0.0 | 1.15 | 8.05 | 0.0 | 0.0 | 0.64 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
CRI | North America | Costa Rica | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CRI | North America | Costa Rica | 2020-06-15 | 1744.0 | 29.0 | 57.429 | 12.0 | 0.0 | 0.143 | 342.356 | 5.693 | 11.274 | 2.356 | 0.0 | 2.8e-2 | 1.44 | null | null | null | null | null | null | null | null | 24411.0 | 237.0 | 4.792 | 4.7e-2 | 368.0 | 7.2e-2 | null | null | null | 72.22 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
CYP | Europe | Cyprus | 2020-07-20 | 1038.0 | 0.0 | 2.286 | 19.0 | 0.0 | 0.0 | 1185.068 | 0.0 | 2.61 | 21.692 | 0.0 | 0.0 | 1.32 | null | null | null | null | null | null | null | null | 185489.0 | 1565.0 | 211.77 | 1.787 | 1532.0 | 1.749 | 1.0e-3 | 670.2 | null | 47.22 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-05-05 | 7896.0 | 77.0 | 56.0 | 257.0 | 5.0 | 4.286 | 737.325 | 7.19 | 5.229 | 23.999 | 0.467 | 0.4 | 0.78 | 47.0 | 4.389 | 223.0 | 20.824 | null | null | null | null | 283273.0 | 9383.0 | 26.452 | 0.876 | 6303.0 | 0.589 | 9.0e-3 | 112.6 | null | 57.41 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
DNK | Europe | Denmark | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 14.0 | 2.0 | 2.0e-3 | 0.0 | 1.0 | 0.0 | 0.0 | null | null | 0.0 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-09-27 | 5409.0 | 0.0 | 0.857 | 61.0 | 0.0 | 0.0 | 5474.685 | 0.0 | 0.868 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.93 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DJI | Africa | Djibouti | 2020-10-01 | 5417.0 | 1.0 | 1.429 | 61.0 | 0.0 | 0.0 | 5482.782 | 1.012 | 1.446 | 61.741 | 0.0 | 0.0 | 0.82 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DOM | North America | Dominican Republic | 2020-03-07 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 0.184 | 0.0 | 2.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-04-14 | 3286.0 | 119.0 | 190.0 | 183.0 | 6.0 | 12.143 | 302.916 | 10.97 | 17.515 | 16.87 | 0.553 | 1.119 | 1.37 | null | null | null | null | null | null | null | null | 11741.0 | 1293.0 | 1.082 | 0.119 | 769.0 | 7.1e-2 | 0.247 | 4.0 | null | 92.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-06 | 115371.0 | 317.0 | 495.857 | 2149.0 | 5.0 | 6.857 | 10635.326 | 29.222 | 45.71 | 198.103 | 0.461 | 0.632 | 1.0 | null | null | null | null | null | null | null | null | 502680.0 | 4599.0 | 46.339 | 0.424 | 3610.0 | 0.333 | 0.137 | 7.3 | null | 78.7 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-20 | 136784.0 | 601.0 | 604.286 | 2306.0 | 5.0 | 3.714 | 12609.256 | 55.402 | 55.705 | 212.576 | 0.461 | 0.342 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | 4378.0 | 0.404 | 0.138 | 7.2 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
EGY | Africa | Egypt | 2020-03-22 | 327.0 | 33.0 | 31.0 | 14.0 | 4.0 | 1.714 | 3.195 | 0.322 | 0.303 | 0.137 | 3.9e-2 | 1.7e-2 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-04-14 | 2350.0 | 160.0 | 128.571 | 178.0 | 14.0 | 12.0 | 22.964 | 1.564 | 1.256 | 1.739 | 0.137 | 0.117 | 1.36 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-12-03 | 39130.0 | 0.0 | 178.0 | 1134.0 | 5.0 | 5.143 | 6032.807 | 0.0 | 27.443 | 174.833 | 0.771 | 0.793 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
EST | Europe | Estonia | 2020-04-22 | 1559.0 | 7.0 | 22.714 | 44.0 | 1.0 | 1.286 | 1175.239 | 5.277 | 17.123 | 33.169 | 0.754 | 0.969 | 0.72 | 12.0 | 9.046 | 110.0 | 82.923 | null | null | null | null | 48443.0 | 1732.0 | 36.518 | 1.306 | 1461.0 | 1.101 | 1.6e-2 | 64.3 | null | 77.78 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-07-10 | 2013.0 | 2.0 | 3.143 | 69.0 | 0.0 | 0.0 | 1517.483 | 1.508 | 2.369 | 52.015 | 0.0 | 0.0 | 0.94 | 2.0 | 1.508 | 4.0 | 3.015 | null | null | null | null | 129910.0 | 422.0 | 97.932 | 0.318 | 556.0 | 0.419 | 6.0e-3 | 176.9 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-09-14 | 2698.0 | 22.0 | 23.714 | 64.0 | 0.0 | 0.0 | 2033.864 | 16.585 | 17.877 | 48.246 | 0.0 | 0.0 | 1.25 | 1.0 | 0.754 | 19.0 | 14.323 | null | null | null | null | 208696.0 | 3059.0 | 157.324 | 2.306 | 2476.0 | 1.867 | 1.0e-2 | 104.4 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
TLS | Asia | Timor | 2020-04-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.758 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.0 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TLS | Asia | Timor | 2020-05-12 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.203 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.67 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-04-03 | 40.0 | 1.0 | 2.143 | 3.0 | 1.0 | 0.286 | 4.832 | 0.121 | 0.259 | 0.362 | 0.121 | 3.5e-2 | null | null | null | null | null | null | null | null | null | 1018.0 | 294.0 | 0.123 | 3.6e-2 | 100.0 | 1.2e-2 | 2.1e-2 | 46.7 | null | 73.15 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-03-21 | 60.0 | 6.0 | 6.0 | 1.0 | 0.0 | 0.143 | 5.077 | 0.508 | 0.508 | 8.5e-2 | 0.0 | 1.2e-2 | null | null | null | null | null | null | null | null | null | 955.0 | 135.0 | 8.1e-2 | 1.1e-2 | 85.0 | 7.0e-3 | 7.1e-2 | 14.2 | null | 77.78 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-11 | 1032.0 | 0.0 | 2.0 | 45.0 | 0.0 | 0.286 | 87.32 | 0.0 | 0.169 | 3.808 | 0.0 | 2.4e-2 | 0.59 | null | null | null | null | null | null | null | null | 34323.0 | 443.0 | 2.904 | 3.7e-2 | 1253.0 | 0.106 | 2.0e-3 | 626.5 | null | 87.04 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-05-31 | 1077.0 | 1.0 | 3.714 | 48.0 | 0.0 | 0.0 | 91.127 | 8.5e-2 | 0.314 | 4.061 | 0.0 | 0.0 | 0.69 | null | null | null | null | null | null | null | null | 53161.0 | 287.0 | 4.498 | 2.4e-2 | 578.0 | 4.9e-2 | 6.0e-3 | 155.6 | null | 79.63 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-06-14 | 178239.0 | 1562.0 | 1158.143 | 4807.0 | 15.0 | 16.429 | 2113.362 | 18.52 | 13.732 | 56.996 | 0.178 | 0.195 | 1.44 | null | null | null | null | null | null | null | null | 2632171.0 | 45176.0 | 31.209 | 0.536 | 41940.0 | 0.497 | 2.8e-2 | 36.2 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-07-20 | 220572.0 | 931.0 | 938.714 | 5508.0 | 17.0 | 18.0 | 2615.3 | 11.039 | 11.13 | 65.308 | 0.202 | 0.213 | 0.93 | null | null | null | null | null | null | null | null | 4316781.0 | 43404.0 | 51.184 | 0.515 | 42119.0 | 0.499 | 2.2e-2 | 44.9 | null | 63.89 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-09-06 | 279806.0 | 1578.0 | 1608.571 | 6673.0 | 53.0 | 49.571 | 3317.632 | 18.71 | 19.073 | 79.121 | 0.628 | 0.588 | 1.05 | null | null | null | null | null | null | null | null | 7779539.0 | 96842.0 | 92.241 | 1.148 | 107307.0 | 1.272 | 1.5e-2 | 66.7 | null | 47.22 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UGA | Africa | Uganda | 2020-07-02 | 902.0 | 9.0 | 11.571 | 0.0 | 0.0 | 0.0 | 19.72 | 0.197 | 0.253 | null | 0.0 | 0.0 | 0.95 | null | null | null | null | null | null | null | null | 200179.0 | 3349.0 | 4.376 | 7.3e-2 | null | null | null | null | null | 87.04 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-11-28 | 19944.0 | 356.0 | 325.286 | 201.0 | 4.0 | 4.714 | 436.02 | 7.783 | 7.111 | 4.394 | 8.7e-2 | 0.103 | null | null | null | null | null | null | null | null | null | 623977.0 | 823.0 | 13.642 | 1.8e-2 | 2101.0 | 4.6e-2 | 0.155 | 6.5 | null | null | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-10-10 | 593565.0 | 15175.0 | 15844.429 | 42850.0 | 81.0 | 63.286 | 8743.555 | 223.537 | 233.398 | 631.205 | 1.193 | 0.932 | 1.22 | 470.0 | 6.923 | 4194.0 | 61.78 | null | null | null | null | 2.3471856e7 | 256190.0 | 345.754 | 3.774 | 251482.0 | 3.704 | 6.3e-2 | 15.9 | null | 67.59 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-03-22 | 34855.0 | 8830.0 | 4520.429 | 574.0 | 110.0 | 72.0 | 105.301 | 26.677 | 13.657 | 1.734 | 0.332 | 0.218 | 3.1 | null | null | 2173.0 | 6.565 | 0.0 | 0.0 | 2989.0 | 9.03 | 459727.0 | 72176.0 | 1.389 | 0.218 | 56551.0 | 0.171 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-05-25 | 1666505.0 | 18347.0 | 21812.714 | 101521.0 | 557.0 | 1115.286 | 5034.718 | 55.429 | 65.899 | 306.708 | 1.683 | 3.369 | 0.93 | 8467.0 | 25.58 | 37382.0 | 112.936 | null | null | null | null | 1.6179748e7 | 335387.0 | 48.881 | 1.013 | 413773.0 | 1.25 | null | null | null | 72.69 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-10-04 | 7402515.0 | 36092.0 | 42957.571 | 210006.0 | 349.0 | 711.714 | 22363.915 | 109.038 | 129.78 | 634.454 | 1.054 | 2.15 | 1.05 | 5974.0 | 18.048 | 29945.0 | 90.468 | 679.0 | 2.051 | 9423.0 | 28.468 | 1.20830414e8 | 626288.0 | 365.044 | 1.892 | 951162.0 | 2.874 | null | null | null | 62.5 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-09-15 | 1827.0 | 15.0 | 16.429 | 45.0 | 0.0 | 0.0 | 525.948 | 4.318 | 4.729 | 12.954 | 0.0 | 0.0 | 1.11 | null | null | null | null | null | null | null | null | 203232.0 | 1797.0 | 58.505 | 0.517 | 2085.0 | 0.6 | 8.0e-3 | 126.9 | null | 32.41 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
URY | South America | Uruguay | 2020-09-24 | 1959.0 | 13.0 | 11.857 | 47.0 | 0.0 | 0.143 | 563.948 | 3.742 | 3.413 | 13.53 | 0.0 | 4.1e-2 | 1.12 | null | null | null | null | null | null | null | null | 224322.0 | 3009.0 | 64.577 | 0.866 | 2290.0 | 0.659 | 5.0e-3 | 193.1 | null | 43.52 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-05-24 | 3164.0 | 49.0 | 58.714 | 13.0 | 0.0 | 0.143 | 94.535 | 1.464 | 1.754 | 0.388 | 0.0 | 4.0e-3 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VNM | Asia | Vietnam | 2020-03-31 | 212.0 | 9.0 | 11.143 | 0.0 | 0.0 | 0.0 | 2.178 | 9.2e-2 | 0.114 | null | 0.0 | 0.0 | 0.66 | null | null | null | null | null | null | null | null | null | null | null | null | 4476.0 | 4.6e-2 | 2.0e-3 | 401.7 | null | 83.33 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
VNM | Asia | Vietnam | 2020-06-10 | 332.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 3.411 | 0.0 | 6.0e-3 | null | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
ZMB | Africa | Zambia | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-08-17 | 5308.0 | 47.0 | 80.0 | 135.0 | 3.0 | 4.429 | 357.13 | 3.162 | 5.383 | 9.083 | 0.202 | 0.298 | 1.05 | null | null | null | null | null | null | null | null | 83782.0 | 898.0 | 5.637 | 6.0e-2 | 1337.0 | 9.0e-2 | 6.0e-2 | 16.7 | null | 80.56 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-11-12 | 8696.0 | 29.0 | 36.0 | 255.0 | 0.0 | 1.0 | 585.08 | 1.951 | 2.422 | 17.157 | 0.0 | 6.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 150616.0 | 1086.0 | 10.134 | 7.3e-2 | 796.0 | 5.4e-2 | 4.5e-2 | 22.1 | null | 67.59 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
MNG | Asia | Mongolia | 2020-06-21 | 213.0 | 7.0 | 2.286 | 0.0 | 0.0 | 0.0 | 64.973 | 2.135 | 0.697 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-11-10 | 382.0 | 14.0 | 4.286 | 0.0 | 0.0 | 0.0 | 116.524 | 4.271 | 1.307 | null | 0.0 | 0.0 | 1.47 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNE | Europe | Montenegro | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-05-15 | 6652.0 | 45.0 | 134.429 | 190.0 | 0.0 | 0.571 | 180.219 | 1.219 | 3.642 | 5.148 | 0.0 | 1.5e-2 | 0.82 | null | null | null | null | null | null | null | null | 81616.0 | 3694.0 | 2.211 | 0.1 | 3106.0 | 8.4e-2 | 4.3e-2 | 23.1 | null | 93.52 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-08-01 | 25015.0 | 693.0 | 767.143 | 367.0 | 14.0 | 8.857 | 677.719 | 18.775 | 20.784 | 9.943 | 0.379 | 0.24 | 1.42 | null | null | null | null | null | null | null | null | 1273939.0 | 21574.0 | 34.514 | 0.584 | 21104.0 | 0.572 | 3.6e-2 | 27.5 | null | 64.81 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-09-16 | 5994.0 | 281.0 | 175.714 | 39.0 | 2.0 | 1.571 | 191.775 | 8.99 | 5.622 | 1.248 | 6.4e-2 | 5.0e-2 | 1.12 | null | null | null | null | null | null | null | null | 118657.0 | 1628.0 | 3.796 | 5.2e-2 | 1557.0 | 5.0e-2 | 0.113 | 8.9 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-10-04 | 9196.0 | 147.0 | 173.286 | 66.0 | 2.0 | 1.143 | 294.221 | 4.703 | 5.544 | 2.112 | 6.4e-2 | 3.7e-2 | 1.1 | null | null | null | null | null | null | null | null | 144618.0 | 1337.0 | 4.627 | 4.3e-2 | 1515.0 | 4.8e-2 | 0.114 | 8.7 | null | 62.04 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-06-27 | 296.0 | 3.0 | 1.286 | 6.0 | 0.0 | 0.0 | 5.44 | 5.5e-2 | 2.4e-2 | 0.11 | 0.0 | 0.0 | 0.78 | null | null | null | null | null | null | null | null | 73218.0 | 1526.0 | 1.346 | 2.8e-2 | 1593.0 | 2.9e-2 | 1.0e-3 | 1238.7 | null | 80.56 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NPL | Asia | Nepal | 2020-07-23 | 18241.0 | 147.0 | 128.143 | 43.0 | 1.0 | 0.571 | 626.047 | 5.045 | 4.398 | 1.476 | 3.4e-2 | 2.0e-2 | 0.98 | null | null | null | null | null | null | null | null | 331095.0 | 3481.0 | 11.363 | 0.119 | 3898.0 | 0.134 | 3.3e-2 | 30.4 | null | 74.07 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-06-01 | 46749.0 | 104.0 | 157.429 | 5981.0 | 6.0 | 18.857 | 2728.296 | 6.069 | 9.188 | 349.054 | 0.35 | 1.101 | 0.87 | 151.0 | 8.812 | null | null | null | null | null | null | null | null | null | null | 5351.0 | 0.312 | 2.9e-2 | 34.0 | null | 62.96 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-06-19 | 49634.0 | 107.0 | 138.0 | 6100.0 | 3.0 | 4.0 | 2896.666 | 6.245 | 8.054 | 355.999 | 0.175 | 0.233 | 0.75 | 73.0 | 4.26 | null | null | null | null | null | null | null | null | null | null | 9291.0 | 0.542 | 1.5e-2 | 67.3 | null | 59.26 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-07-05 | 50834.0 | 73.0 | 68.429 | 6146.0 | 1.0 | 3.143 | 2966.698 | 4.26 | 3.994 | 358.684 | 5.8e-2 | 0.183 | 0.83 | 36.0 | 2.101 | null | null | 4.957 | 0.289 | 8.923 | 0.521 | 685145.0 | null | 39.985 | null | 9951.0 | 0.581 | 7.0e-3 | 145.4 | null | 39.81 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-11-30 | 531930.0 | 4594.0 | 4918.429 | 9453.0 | 27.0 | 61.714 | 31043.708 | 268.108 | 287.042 | 551.682 | 1.576 | 3.602 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-04-14 | 1366.0 | 17.0 | 29.429 | 9.0 | 4.0 | 1.143 | 283.271 | 3.525 | 6.103 | 1.866 | 0.829 | 0.237 | 0.55 | null | null | null | null | null | null | null | null | 67480.0 | 3123.0 | 13.994 | 0.648 | 2423.0 | 0.502 | 1.2e-2 | 82.3 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-06-02 | 1504.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.143 | 311.889 | 0.0 | 0.0 | 4.562 | 0.0 | 3.0e-2 | 0.1 | null | null | null | null | null | null | null | null | 278212.0 | 1149.0 | 57.694 | 0.238 | 1673.0 | 0.347 | 0.0 | null | null | 37.04 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-08-15 | 1622.0 | 13.0 | 7.571 | 22.0 | 0.0 | 0.0 | 336.359 | 2.696 | 1.57 | 4.562 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | 566096.0 | 23991.0 | 117.393 | 4.975 | 11027.0 | 2.287 | 1.0e-3 | 1456.5 | null | 68.98 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NOR | Europe | Norway | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-07 | 8547.0 | 16.0 | 15.286 | 238.0 | 0.0 | 0.286 | 1576.576 | 2.951 | 2.82 | 43.901 | 0.0 | 5.3e-2 | 0.96 | null | null | 21.0 | 3.874 | null | null | null | null | 266925.0 | 933.0 | 49.237 | 0.172 | 2206.0 | 0.407 | 7.0e-3 | 144.3 | null | 39.81 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-06-17 | 8692.0 | 32.0 | 14.0 | 243.0 | 1.0 | 0.571 | 1603.323 | 5.903 | 2.582 | 44.824 | 0.184 | 0.105 | 1.05 | null | null | 18.0 | 3.32 | null | null | null | null | 311041.0 | 4980.0 | 57.374 | 0.919 | 4021.0 | 0.742 | 3.0e-3 | 287.2 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
NOR | Europe | Norway | 2020-10-19 | 16603.0 | 146.0 | 137.714 | 278.0 | 0.0 | 0.286 | 3062.582 | 26.931 | 25.403 | 51.28 | 0.0 | 5.3e-2 | 1.24 | null | null | 28.0 | 5.165 | null | null | null | null | 1514984.0 | 20733.0 | 279.453 | 3.824 | 13044.0 | 2.406 | 1.1e-2 | 94.7 | null | 28.7 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-04-27 | 2049.0 | 51.0 | 91.286 | 10.0 | 0.0 | 0.429 | 401.244 | 9.987 | 17.876 | 1.958 | 0.0 | 8.4e-2 | 1.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
OMN | Asia | Oman | 2020-08-24 | 84509.0 | 740.0 | 183.286 | 637.0 | 28.0 | 7.0 | 16548.905 | 144.91 | 35.892 | 124.74 | 5.483 | 1.371 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-04-28 | 15525.0 | 913.0 | 778.429 | 343.0 | 31.0 | 18.714 | 70.283 | 4.133 | 3.524 | 1.553 | 0.14 | 8.5e-2 | 1.4 | null | null | null | null | null | null | null | null | 157223.0 | 6467.0 | 0.712 | 2.9e-2 | 6488.0 | 2.9e-2 | 0.12 | 8.3 | null | 89.81 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAN | North America | Panama | 2020-04-07 | 2100.0 | 112.0 | 131.286 | 55.0 | 1.0 | 3.571 | 486.701 | 25.957 | 30.427 | 12.747 | 0.232 | 0.828 | 1.46 | null | null | null | null | null | null | null | null | 10681.0 | 384.0 | 2.475 | 8.9e-2 | 534.0 | 0.124 | 0.246 | 4.1 | null | 90.74 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-04-27 | 6021.0 | 242.0 | 222.0 | 167.0 | 2.0 | 5.857 | 1395.44 | 56.086 | 51.451 | 38.704 | 0.464 | 1.357 | 1.1 | null | null | null | null | null | null | null | null | 27221.0 | 1098.0 | 6.309 | 0.254 | 934.0 | 0.216 | 0.238 | 4.2 | null | 93.52 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PRY | South America | Paraguay | 2020-05-12 | 737.0 | 13.0 | 43.714 | 10.0 | 0.0 | 0.0 | 103.329 | 1.823 | 6.129 | 1.402 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 16917.0 | 762.0 | 2.372 | 0.107 | 715.0 | 0.1 | 6.1e-2 | 16.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PRY | South America | Paraguay | 2020-09-27 | 38684.0 | 762.0 | 737.714 | 803.0 | 21.0 | 20.571 | 5423.601 | 106.834 | 103.43 | 112.583 | 2.944 | 2.884 | 1.08 | null | null | null | null | null | null | null | null | 269710.0 | 2648.0 | 37.814 | 0.371 | 2690.0 | 0.377 | 0.274 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PHL | Asia | Philippines | 2020-02-01 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 9.0e-3 | 0.0 | 1.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-05-25 | 14319.0 | 284.0 | 228.714 | 873.0 | 5.0 | 6.0 | 130.67 | 2.592 | 2.087 | 7.967 | 4.6e-2 | 5.5e-2 | 1.31 | null | null | null | null | null | null | null | null | 285929.0 | 5421.0 | 2.609 | 4.9e-2 | 7459.0 | 6.8e-2 | 3.1e-2 | 32.6 | null | 96.3 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-04-07 | 4848.0 | 435.0 | 362.429 | 129.0 | 22.0 | 13.714 | 128.096 | 11.494 | 9.576 | 3.408 | 0.581 | 0.362 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.48 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-04-16 | 7918.0 | 336.0 | 334.714 | 314.0 | 28.0 | 20.0 | 209.213 | 8.878 | 8.844 | 8.297 | 0.74 | 0.528 | 1.11 | null | null | 2607.0 | 68.883 | null | null | null | null | null | null | null | null | null | null | null | null | null | 83.33 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-07-22 | 41162.0 | 380.0 | 348.714 | 1642.0 | 6.0 | 6.857 | 1087.601 | 10.041 | 9.214 | 43.386 | 0.159 | 0.181 | 1.19 | null | null | 1644.0 | 43.439 | null | null | null | null | 1761265.0 | 19656.0 | 46.537 | 0.519 | 17054.0 | 0.451 | 2.0e-2 | 48.9 | null | 39.81 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-10-09 | 116338.0 | 4739.0 | 2937.857 | 2919.0 | 52.0 | 49.857 | 3073.935 | 125.216 | 77.625 | 77.127 | 1.374 | 1.317 | 1.69 | null | null | 4407.0 | 116.444 | null | null | null | null | 3455011.0 | 31036.0 | 91.29 | 0.82 | 28845.0 | 0.762 | 0.102 | 9.8 | null | 23.15 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-04-03 | 9886.0 | 852.0 | 802.571 | 246.0 | 37.0 | 24.286 | 969.529 | 83.556 | 78.709 | 24.125 | 3.629 | 2.382 | 1.44 | 245.0 | 24.027 | 1058.0 | 103.759 | null | null | null | null | 107234.0 | 9438.0 | 10.517 | 0.926 | 7878.0 | 0.773 | 0.102 | 9.8 | null | 82.41 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-10-01 | 76396.0 | 854.0 | 748.571 | 1977.0 | 6.0 | 6.571 | 7492.223 | 83.753 | 73.413 | 193.886 | 0.588 | 0.644 | 1.18 | 107.0 | 10.494 | 682.0 | 66.884 | null | null | null | null | 2675452.0 | 24530.0 | 262.384 | 2.406 | 21504.0 | 2.109 | 3.5e-2 | 28.7 | null | 58.8 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-11-19 | 136649.0 | 208.0 | 216.714 | 235.0 | 0.0 | 0.143 | 47430.113 | 72.196 | 75.22 | 81.567 | 0.0 | 5.0e-2 | 1.0 | null | null | null | null | null | null | null | null | 1067758.0 | 4703.0 | 370.613 | 1.632 | 4545.0 | 1.578 | 4.8e-2 | 21.0 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-08-26 | 81646.0 | 1256.0 | 1147.0 | 3421.0 | 54.0 | 45.0 | 4244.066 | 65.289 | 59.623 | 177.828 | 2.807 | 2.339 | 1.01 | 502.0 | 26.095 | null | null | null | null | null | null | 1705368.0 | 25754.0 | 88.647 | 1.339 | 19819.0 | 1.03 | 5.8e-2 | 17.3 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-11 | 155283.0 | 2880.0 | 2769.0 | 5411.0 | 53.0 | 58.286 | 8071.814 | 149.706 | 143.936 | 281.271 | 2.755 | 3.03 | 1.29 | 628.0 | 32.644 | null | null | null | null | 18152.199 | 943.575 | 2672537.0 | 15709.0 | 138.922 | 0.817 | 23190.0 | 1.205 | 0.119 | 8.4 | null | 44.44 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-31 | 241339.0 | 5753.0 | 5078.0 | 6968.0 | 101.0 | 92.857 | 12545.118 | 299.049 | 263.961 | 362.206 | 5.25 | 4.827 | 1.26 | 923.0 | 47.979 | null | null | null | null | null | null | 3242748.0 | 36181.0 | 168.562 | 1.881 | 30479.0 | 1.584 | 0.167 | 6.0 | null | 54.63 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-02-29 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
SYC | Africa | Seychelles | 2020-09-16 | 140.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1423.632 | 0.0 | 4.358 | null | 0.0 | 0.0 | 0.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-09-21 | 57606.0 | 30.0 | 21.714 | 27.0 | 0.0 | 0.0 | 9846.602 | 5.128 | 3.712 | 4.615 | 0.0 | 0.0 | 0.61 | null | null | null | null | null | null | null | null | 2692047.0 | null | 460.152 | null | 31585.0 | 5.399 | 1.0e-3 | 1454.6 | null | 51.85 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-15 | 57892.0 | 3.0 | 6.143 | 28.0 | 0.0 | 0.143 | 9895.488 | 0.513 | 1.05 | 4.786 | 0.0 | 2.4e-2 | 0.63 | null | null | null | null | null | null | null | null | null | null | null | null | 29788.0 | 5.092 | 0.0 | 4849.1 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-10-23 | 57951.0 | 10.0 | 7.143 | 28.0 | 0.0 | 0.0 | 9905.573 | 1.709 | 1.221 | 4.786 | 0.0 | 0.0 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | 27814.0 | 4.754 | 0.0 | 3893.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-06-16 | 1552.0 | 0.0 | 3.0 | 28.0 | 0.0 | 0.0 | 284.268 | 0.0 | 0.549 | 5.129 | 0.0 | 0.0 | 1.29 | null | null | 0.0 | 0.0 | null | null | null | null | 198780.0 | 1163.0 | 36.409 | 0.213 | 973.0 | 0.178 | 3.0e-3 | 324.3 | null | 40.74 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-08-13 | 2739.0 | 49.0 | 37.0 | 31.0 | 0.0 | 0.286 | 501.681 | 8.975 | 6.777 | 5.678 | 0.0 | 5.2e-2 | 1.31 | null | null | 33.0 | 6.044 | null | null | null | null | 289590.0 | 2738.0 | 53.042 | 0.501 | 2114.0 | 0.387 | 1.8e-2 | 57.1 | null | 35.19 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
ZAF | Africa | South Africa | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-05-08 | 8895.0 | 663.0 | 420.571 | 178.0 | 17.0 | 8.857 | 149.978 | 11.179 | 7.091 | 3.001 | 0.287 | 0.149 | 1.53 | null | null | null | null | null | null | null | null | 307752.0 | 15599.0 | 5.189 | 0.263 | 12890.0 | 0.217 | 3.3e-2 | 30.6 | null | 84.26 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-08-25 | 613017.0 | 1567.0 | 2981.857 | 13308.0 | 149.0 | 149.143 | 10336.04 | 26.421 | 50.277 | 224.385 | 2.512 | 2.515 | 0.63 | null | null | null | null | null | null | null | null | 3578836.0 | 14771.0 | 60.343 | 0.249 | 21213.0 | 0.358 | 0.141 | 7.1 | null | 72.22 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-04-16 | 10613.0 | 22.0 | 27.143 | 229.0 | 4.0 | 3.571 | 207.005 | 0.429 | 0.529 | 4.467 | 7.8e-2 | 7.0e-2 | 0.48 | null | null | null | null | null | null | null | null | 524507.0 | 4981.0 | 10.23 | 9.7e-2 | 6472.0 | 0.126 | 4.0e-3 | 238.4 | null | 82.41 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-06-01 | 11541.0 | 38.0 | 45.143 | 272.0 | 1.0 | 0.429 | 225.106 | 0.741 | 0.881 | 5.305 | 2.0e-2 | 8.0e-3 | 1.14 | null | null | null | null | null | null | null | null | 897333.0 | 9805.0 | 17.502 | 0.191 | 12855.0 | 0.251 | 4.0e-3 | 284.8 | null | 55.09 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
LKA | Asia | Sri Lanka | 2020-11-22 | 20171.0 | 400.0 | 412.0 | 87.0 | 4.0 | 4.143 | 941.987 | 18.68 | 19.24 | 4.063 | 0.187 | 0.193 | null | null | null | null | null | null | null | null | null | 747638.0 | 10679.0 | 34.915 | 0.499 | 10791.0 | 0.504 | 3.8e-2 | 26.2 | null | 49.54 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SUR | South America | Suriname | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-05-01 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 17.046 | 0.0 | 0.0 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 82.41 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-05-20 | 217.0 | 9.0 | 4.286 | 2.0 | 0.0 | 0.0 | 187.043 | 7.758 | 3.694 | 1.724 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-05-30 | 38396.0 | 432.0 | 603.571 | 4633.0 | 45.0 | 39.0 | 3801.859 | 42.775 | 59.764 | 458.746 | 4.456 | 3.862 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-11-24 | 304593.0 | 4241.0 | 4294.143 | 4308.0 | 86.0 | 92.0 | 35194.274 | 490.027 | 496.168 | 497.769 | 9.937 | 10.63 | null | null | null | null | null | null | null | null | null | 2633317.0 | 29537.0 | 304.267 | 3.413 | 22717.0 | 2.625 | 0.189 | 5.3 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
THA | Asia | Thailand | 2020-02-12 | 33.0 | 0.0 | 1.143 | 0.0 | 0.0 | 0.0 | 0.473 | 0.0 | 1.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 2727.0 | 116.0 | 3.9e-2 | 2.0e-3 | 108.0 | 2.0e-3 | 1.1e-2 | 94.5 | null | 0.0 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-03-22 | 599.0 | 188.0 | 69.286 | 1.0 | 0.0 | 0.0 | 8.582 | 2.693 | 0.993 | 1.4e-2 | 0.0 | 0.0 | 1.55 | null | null | null | null | null | null | null | null | 39317.0 | 2058.0 | 0.563 | 2.9e-2 | 2397.0 | 3.4e-2 | 2.9e-2 | 34.6 | null | 52.31 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-08-11 | 3351.0 | 0.0 | 4.286 | 58.0 | 0.0 | 0.0 | 48.009 | 0.0 | 6.1e-2 | 0.831 | 0.0 | 0.0 | 1.02 | null | null | null | null | null | null | null | null | 836077.0 | 4136.0 | 11.978 | 5.9e-2 | 4105.0 | 5.9e-2 | 1.0e-3 | 957.8 | null | 52.78 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
TLS | Asia | Timor | 2020-08-19 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.962 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1318442.0 | 87.176 | 18.0 | 3.556 | 1.897 | 6570.102 | 30.3 | 335.346 | 6.86 | 6.3 | 78.1 | 28.178 | 5.9 | 69.5 | 0.625 |
TGO | Africa | Togo | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TGO | Africa | Togo | 2020-09-15 | 1595.0 | 17.0 | 11.714 | 40.0 | 0.0 | 0.857 | 192.662 | 2.053 | 1.415 | 4.832 | 0.0 | 0.104 | 1.06 | null | null | null | null | null | null | null | null | 78651.0 | 884.0 | 9.5 | 0.107 | 869.0 | 0.105 | 1.3e-2 | 74.2 | null | 49.07 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-09-13 | 6635.0 | 0.0 | 227.714 | 107.0 | 0.0 | 2.0 | 561.402 | 0.0 | 19.267 | 9.054 | 0.0 | 0.169 | 1.48 | null | null | null | null | null | null | null | null | 190241.0 | null | 16.097 | null | 3545.0 | 0.3 | 6.4e-2 | 15.6 | null | 26.85 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-10-21 | 45892.0 | 1442.0 | 1586.0 | 740.0 | 29.0 | 32.571 | 3883.026 | 122.011 | 134.195 | 62.613 | 2.454 | 2.756 | 1.24 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
UGA | Africa | Uganda | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-07-16 | 1051.0 | 8.0 | 7.286 | 0.0 | 0.0 | 0.0 | 22.977 | 0.175 | 0.159 | null | 0.0 | 0.0 | 0.88 | null | null | null | null | null | null | null | null | 238709.0 | 3696.0 | 5.219 | 8.1e-2 | 2433.0 | 5.3e-2 | 3.0e-3 | 333.9 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UGA | Africa | Uganda | 2020-09-17 | 5380.0 | 114.0 | 155.571 | 60.0 | 0.0 | 1.714 | 117.619 | 2.492 | 3.401 | 1.312 | 0.0 | 3.7e-2 | 1.21 | null | null | null | null | null | null | null | null | 444346.0 | 2636.0 | 9.714 | 5.8e-2 | 3019.0 | 6.6e-2 | 5.2e-2 | 19.4 | null | 81.48 | 4.5741e7 | 213.759 | 16.4 | 2.168 | 1.308 | 1697.707 | 41.6 | 213.333 | 2.5 | 3.4 | 16.7 | 21.222 | 0.5 | 63.37 | 0.516 |
UKR | Europe | Ukraine | 2020-08-11 | 85023.0 | 1211.0 | 1306.143 | 1979.0 | 29.0 | 27.286 | 1944.105 | 27.69 | 29.866 | 45.251 | 0.663 | 0.624 | 1.16 | null | null | null | null | null | null | null | null | 1195561.0 | 16127.0 | 27.337 | 0.369 | 16104.0 | 0.368 | 8.1e-2 | 12.3 | null | 57.87 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
GBR | Europe | United Kingdom | 2020-08-12 | 315581.0 | 1039.0 | 964.143 | 41414.0 | 20.0 | 12.714 | 4648.69 | 15.305 | 14.202 | 610.052 | 0.295 | 0.187 | 1.21 | 80.0 | 1.178 | 937.0 | 13.803 | null | null | null | null | 1.1310805e7 | 167983.0 | 166.615 | 2.474 | 153405.0 | 2.26 | 6.0e-3 | 159.1 | null | 69.91 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-09-07 | 6290964.0 | 23545.0 | 39247.714 | 189295.0 | 276.0 | 801.571 | 19005.782 | 71.132 | 118.572 | 571.884 | 0.834 | 2.422 | 0.88 | 6630.0 | 20.03 | 32009.0 | 96.703 | null | null | null | null | 9.5865802e7 | 408656.0 | 289.622 | 1.235 | 809989.0 | 2.447 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
USA | North America | United States | 2020-09-10 | 6387822.0 | 36066.0 | 35026.143 | 191830.0 | 907.0 | 708.857 | 19298.402 | 108.96 | 105.818 | 579.542 | 2.74 | 2.142 | 0.96 | 6531.0 | 19.731 | 32438.0 | 97.999 | null | null | null | null | 9.8444261e7 | 1034528.0 | 297.412 | 3.125 | 769511.0 | 2.325 | null | null | null | 67.13 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
UZB | Asia | Uzbekistan | 2020-04-04 | 266.0 | 39.0 | 23.143 | 2.0 | 0.0 | 0.0 | 7.948 | 1.165 | 0.691 | 6.0e-2 | 0.0 | 0.0 | 1.71 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
UZB | Asia | Uzbekistan | 2020-05-29 | 3468.0 | 24.0 | 62.857 | 14.0 | 0.0 | 0.143 | 103.618 | 0.717 | 1.878 | 0.418 | 0.0 | 4.0e-3 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 86.11 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
ZMB | Africa | Zambia | 2020-04-11 | 40.0 | 0.0 | 0.143 | 2.0 | 0.0 | 0.143 | 2.176 | 0.0 | 8.0e-3 | 0.109 | 0.0 | 8.0e-3 | null | null | null | null | null | null | null | null | null | 1454.0 | 111.0 | 7.9e-2 | 6.0e-3 | 78.0 | 4.0e-3 | 2.0e-3 | 545.5 | null | 50.93 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZMB | Africa | Zambia | 2020-08-22 | 10831.0 | 204.0 | 235.0 | 279.0 | 2.0 | 2.714 | 589.155 | 11.097 | 12.783 | 15.176 | 0.109 | 0.148 | 0.9 | null | null | null | null | null | null | null | null | 106449.0 | 785.0 | 5.79 | 4.3e-2 | 1098.0 | 6.0e-2 | 0.214 | 4.7 | null | 49.07 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
MNE | Europe | Montenegro | 2020-06-20 | 359.0 | 4.0 | 5.0 | 9.0 | 0.0 | 0.0 | 571.6 | 6.369 | 7.961 | 14.33 | 0.0 | 0.0 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-06-24 | 389.0 | 11.0 | 8.0 | 9.0 | 0.0 | 0.0 | 619.366 | 17.514 | 12.738 | 14.33 | 0.0 | 0.0 | 2.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-06 | 5553.0 | 131.0 | 109.0 | 108.0 | 1.0 | 1.429 | 8841.484 | 208.578 | 173.55 | 171.958 | 1.592 | 2.275 | 1.51 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-09-28 | 10441.0 | 128.0 | 228.429 | 163.0 | 5.0 | 3.571 | 16624.155 | 203.802 | 363.704 | 259.529 | 7.961 | 5.686 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 10.0 | null | 0.0 | null | 0.0 | 0.0 | null | null | null | 0.0 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-11-30 | 15701.0 | 88.0 | 84.571 | 131.0 | 1.0 | 0.714 | 502.345 | 2.816 | 2.706 | 4.191 | 3.2e-2 | 2.3e-2 | null | null | null | null | null | null | null | null | null | 231131.0 | 641.0 | 7.395 | 2.1e-2 | 1128.0 | 3.6e-2 | 7.5e-2 | 13.3 | null | null | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-04-05 | 21.0 | 0.0 | 1.571 | 1.0 | 0.0 | 0.143 | 0.386 | 0.0 | 2.9e-2 | 1.8e-2 | 0.0 | 3.0e-3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NPL | Asia | Nepal | 2020-02-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4e-2 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-09-08 | 79792.0 | 1090.0 | 855.714 | 6279.0 | 1.0 | 2.714 | 4656.702 | 63.613 | 49.94 | 366.446 | 5.8e-2 | 0.158 | 1.32 | 49.0 | 2.86 | null | null | null | null | null | null | null | null | null | null | 26932.0 | 1.572 | 3.2e-2 | 31.5 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-03-04 | 3.0 | 2.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.622 | 0.415 | 8.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 305.0 | 25.0 | 6.3e-2 | 5.0e-3 | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-04-19 | 1431.0 | 9.0 | 14.429 | 12.0 | 1.0 | 1.143 | 296.75 | 1.866 | 2.992 | 2.488 | 0.207 | 0.237 | 0.42 | null | null | null | null | null | null | null | null | 86259.0 | 2306.0 | 17.888 | 0.478 | 3341.0 | 0.693 | 4.0e-3 | 231.5 | null | 96.3 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-10-10 | 1871.0 | 1.0 | 2.429 | 25.0 | 0.0 | 0.0 | 387.995 | 0.207 | 0.504 | 5.184 | 0.0 | 0.0 | 0.79 | null | null | null | null | null | null | null | null | 1000765.0 | 3809.0 | 207.531 | 0.79 | 4523.0 | 0.938 | 1.0e-3 | 1862.1 | null | 22.22 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NER | Africa | Niger | 2020-04-02 | 98.0 | 24.0 | 12.571 | 5.0 | 0.0 | 0.571 | 4.048 | 0.991 | 0.519 | 0.207 | 0.0 | 2.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-04-26 | 696.0 | 12.0 | 6.857 | 29.0 | 2.0 | 1.286 | 28.752 | 0.496 | 0.283 | 1.198 | 8.3e-2 | 5.3e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-11-28 | 1484.0 | 12.0 | 19.0 | 70.0 | 0.0 | 0.0 | 61.306 | 0.496 | 0.785 | 2.892 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 24.07 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NOR | Europe | Norway | 2020-07-05 | 8930.0 | 4.0 | 10.714 | 251.0 | 0.0 | 0.286 | 1647.224 | 0.738 | 1.976 | 46.299 | 0.0 | 5.3e-2 | 0.85 | null | null | null | null | null | null | null | null | 373972.0 | 1192.0 | 68.983 | 0.22 | 3996.0 | 0.737 | 3.0e-3 | 373.0 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
PAK | Asia | Pakistan | 2020-04-03 | 2818.0 | 132.0 | 189.0 | 41.0 | 1.0 | 4.143 | 12.757 | 0.598 | 0.856 | 0.186 | 5.0e-3 | 1.9e-2 | 1.61 | null | null | null | null | null | null | null | null | 32930.0 | 2622.0 | 0.149 | 1.2e-2 | 2814.0 | 1.3e-2 | 6.7e-2 | 14.9 | null | 96.3 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-09-28 | 311516.0 | 675.0 | 661.429 | 6474.0 | 8.0 | 7.143 | 1410.262 | 3.056 | 2.994 | 29.308 | 3.6e-2 | 3.2e-2 | 1.05 | null | null | null | null | null | null | null | null | 3449541.0 | 28887.0 | 15.616 | 0.131 | 36461.0 | 0.165 | 1.8e-2 | 55.1 | null | 41.2 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAN | North America | Panama | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-06-15 | 21422.0 | 4.0 | 652.571 | 448.0 | 11.0 | 7.143 | 4964.809 | 0.927 | 151.241 | 103.829 | 2.549 | 1.655 | 1.25 | null | null | null | null | null | null | null | null | 90950.0 | 1984.0 | 21.079 | 0.46 | 2034.0 | 0.471 | 0.321 | 3.1 | null | 83.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-07-27 | 61442.0 | 1146.0 | 1002.286 | 1322.0 | 28.0 | 27.857 | 14239.931 | 265.599 | 232.292 | 306.39 | 6.489 | 6.456 | 1.01 | null | null | null | null | null | null | null | null | 208659.0 | 3450.0 | 48.359 | 0.8 | 3096.0 | 0.718 | 0.324 | 3.1 | null | 80.56 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PRY | South America | Paraguay | 2020-10-27 | 60557.0 | 448.0 | 640.571 | 1347.0 | 14.0 | 16.571 | 8490.255 | 62.811 | 89.81 | 188.853 | 1.963 | 2.323 | 1.04 | null | null | null | null | null | null | null | null | 352711.0 | 2422.0 | 49.451 | 0.34 | 2689.0 | 0.377 | 0.238 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PHL | Asia | Philippines | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-10 | 399749.0 | 1300.0 | 1798.286 | 7661.0 | 14.0 | 49.0 | 3647.974 | 11.863 | 16.411 | 69.912 | 0.128 | 0.447 | 0.92 | null | null | null | null | null | null | null | null | 4858722.0 | 29766.0 | 44.339 | 0.272 | 30904.0 | 0.282 | 5.8e-2 | 17.2 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-11-15 | 407838.0 | 1501.0 | 1634.714 | 7832.0 | 41.0 | 41.857 | 3721.792 | 13.698 | 14.918 | 71.472 | 0.374 | 0.382 | 0.9 | null | null | null | null | null | null | null | null | 5001441.0 | 24190.0 | 45.641 | 0.221 | 28245.0 | 0.258 | 5.8e-2 | 17.3 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-06-15 | 29788.0 | 396.0 | 375.429 | 1256.0 | 9.0 | 12.857 | 787.072 | 10.463 | 9.92 | 33.187 | 0.238 | 0.34 | 0.98 | null | null | 1736.0 | 45.869 | null | null | null | null | 1086927.0 | 10676.0 | 28.719 | 0.282 | 16196.0 | 0.428 | 2.3e-2 | 43.1 | null | 50.93 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-06-14 | 36690.0 | 227.0 | 285.286 | 1517.0 | 5.0 | 5.429 | 3598.22 | 22.262 | 27.978 | 148.774 | 0.49 | 0.532 | 1.04 | 73.0 | 7.159 | 419.0 | 41.092 | null | null | 113.114 | 11.093 | 1010163.0 | 4754.0 | 99.068 | 0.466 | 8692.0 | 0.852 | 3.3e-2 | 30.5 | null | 69.91 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-07-19 | 106648.0 | 340.0 | 435.714 | 157.0 | 3.0 | 1.429 | 37016.931 | 118.012 | 151.234 | 54.494 | 1.041 | 0.496 | 0.74 | null | null | null | null | null | null | null | null | 441700.0 | 2710.0 | 153.312 | 0.941 | 4145.0 | 1.439 | 0.105 | 9.5 | null | 80.56 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-11-24 | 137642.0 | 227.0 | 202.857 | 236.0 | 0.0 | 0.143 | 47774.777 | 78.79 | 70.411 | 81.914 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-08-31 | 87540.0 | 755.0 | 1172.857 | 3621.0 | 43.0 | 44.571 | 4550.444 | 39.246 | 60.967 | 188.224 | 2.235 | 2.317 | 0.99 | 506.0 | 26.303 | null | null | null | null | null | null | 1802946.0 | 7313.0 | 93.72 | 0.38 | 20544.0 | 1.068 | 5.7e-2 | 17.5 | null | 42.59 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-08-21 | 944671.0 | 4838.0 | 4841.857 | 16148.0 | 90.0 | 97.286 | 6473.255 | 33.152 | 33.178 | 110.652 | 0.617 | 0.667 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 272755.0 | 1.869 | 1.8e-2 | 56.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
SAU | Asia | Saudi Arabia | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-05-25 | 74795.0 | 2235.0 | 2492.857 | 399.0 | 9.0 | 11.286 | 2148.426 | 64.199 | 71.605 | 11.461 | 0.259 | 0.324 | 1.09 | null | null | null | null | null | null | null | null | 780041.0 | 16664.0 | 22.406 | 0.479 | 17237.0 | 0.495 | 0.145 | 6.9 | null | 91.67 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SAU | Asia | Saudi Arabia | 2020-06-11 | 116021.0 | 3733.0 | 3266.286 | 857.0 | 38.0 | 35.143 | 3332.609 | 107.227 | 93.821 | 24.617 | 1.092 | 1.009 | 1.18 | null | null | null | null | null | null | null | null | 1110934.0 | 27324.0 | 31.911 | 0.785 | 22952.0 | 0.659 | 0.142 | 7.0 | null | 69.91 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SYC | Africa | Seychelles | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-09-02 | 136.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1382.957 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-06-05 | 37183.0 | 261.0 | 474.714 | 24.0 | 0.0 | 0.143 | 6355.696 | 44.613 | 81.143 | 4.102 | 0.0 | 2.4e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | 11066.0 | 1.892 | 4.3e-2 | 23.3 | null | 77.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-11-07 | 58054.0 | 7.0 | 5.571 | 28.0 | 0.0 | 0.0 | 9923.179 | 1.197 | 0.952 | 4.786 | 0.0 | 0.0 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | 27292.0 | 4.665 | 0.0 | 4898.9 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVK | Europe | Slovakia | 2020-07-26 | 2179.0 | 38.0 | 28.571 | 28.0 | 0.0 | 0.0 | 399.11 | 6.96 | 5.233 | 5.129 | 0.0 | 0.0 | 1.28 | null | null | 12.0 | 2.198 | null | null | null | null | 253691.0 | 216.0 | 46.467 | 4.0e-2 | 1923.0 | 0.352 | 1.5e-2 | 67.3 | null | 37.96 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-09-25 | 8048.0 | 419.0 | 256.0 | 41.0 | 0.0 | 0.286 | 1474.089 | 76.745 | 46.89 | 7.51 | 0.0 | 5.2e-2 | 1.47 | null | null | 143.0 | 26.192 | null | null | null | null | 440331.0 | 6483.0 | 80.652 | 1.187 | 4504.0 | 0.825 | 5.7e-2 | 17.6 | null | 31.48 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVN | Europe | Slovenia | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-10-05 | 6673.0 | 175.0 | 183.571 | 156.0 | 1.0 | 1.0 | 3209.821 | 84.178 | 88.301 | 75.039 | 0.481 | 0.481 | 1.45 | 21.0 | 10.101 | 107.0 | 51.469 | null | null | null | null | 238686.0 | 2509.0 | 114.812 | 1.207 | 2564.0 | 1.233 | 7.2e-2 | 14.0 | null | 43.52 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
ZAF | Africa | South Africa | 2020-11-23 | 769759.0 | 2080.0 | 2498.571 | 20968.0 | 65.0 | 93.429 | 12978.857 | 35.071 | 42.128 | 353.54 | 1.096 | 1.575 | null | null | null | null | null | null | null | null | null | 5305343.0 | 14377.0 | 89.453 | 0.242 | 23199.0 | 0.391 | 0.108 | 9.3 | null | 44.44 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-03-31 | 9786.0 | 125.0 | 107.0 | 162.0 | 4.0 | 6.0 | 190.875 | 2.438 | 2.087 | 3.16 | 7.8e-2 | 0.117 | 0.96 | null | null | null | null | null | null | null | null | 393672.0 | 12009.0 | 7.679 | 0.234 | 8647.0 | 0.169 | 1.2e-2 | 80.8 | null | 75.93 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-10-11 | 24703.0 | 97.0 | 77.0 | 433.0 | 1.0 | 1.571 | 481.829 | 1.892 | 1.502 | 8.446 | 2.0e-2 | 3.1e-2 | 1.15 | null | null | null | null | null | null | null | null | 2391180.0 | 5478.0 | 46.64 | 0.107 | 9564.0 | 0.187 | 8.0e-3 | 124.2 | null | 54.63 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
ESP | Europe | Spain | 2020-08-15 | 342813.0 | 0.0 | 4064.429 | 28617.0 | 0.0 | 16.286 | 7332.148 | 0.0 | 86.931 | 612.066 | 0.0 | 0.348 | 1.41 | null | null | null | null | null | null | null | null | null | null | null | null | 58819.0 | 1.258 | 6.9e-2 | 14.5 | null | 62.5 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-06-14 | 1889.0 | 5.0 | 7.714 | 11.0 | 0.0 | 0.0 | 88.216 | 0.234 | 0.36 | 0.514 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | 87083.0 | 1116.0 | 4.067 | 5.2e-2 | 1447.0 | 6.8e-2 | 5.0e-3 | 187.6 | null | 55.56 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SUR | South America | Suriname | 2020-06-04 | 82.0 | 8.0 | 10.0 | 1.0 | 0.0 | 0.0 | 139.781 | 13.637 | 17.046 | 1.705 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-04-14 | 15.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 12.929 | 0.0 | 0.616 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-09-17 | 5191.0 | 36.0 | 28.143 | 103.0 | 2.0 | 0.714 | 4474.367 | 31.03 | 24.258 | 88.781 | 1.724 | 0.616 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWZ | Africa | Swaziland | 2020-11-29 | 6410.0 | 4.0 | 27.286 | 121.0 | 0.0 | 0.143 | 5525.081 | 3.448 | 23.519 | 104.296 | 0.0 | 0.123 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-06-25 | 64009.0 | 1281.0 | 1046.714 | 5424.0 | 12.0 | 22.0 | 6337.983 | 126.841 | 103.643 | 537.069 | 1.188 | 2.178 | 1.01 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-04-25 | 28894.0 | 217.0 | 212.857 | 1599.0 | 10.0 | 33.0 | 3338.564 | 25.073 | 24.595 | 184.757 | 1.155 | 3.813 | 0.59 | null | null | null | null | null | null | null | null | 253431.0 | 4032.0 | 29.283 | 0.466 | 4071.0 | 0.47 | 5.2e-2 | 19.1 | null | 73.15 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
TZA | Africa | Tanzania | 2020-04-23 | 284.0 | 0.0 | 27.143 | 10.0 | 0.0 | 0.857 | 4.754 | 0.0 | 0.454 | 0.167 | 0.0 | 1.4e-2 | 0.54 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
TZA | Africa | Tanzania | 2020-11-09 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
ALB | Europe | Albania | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-09-20 | 12385.0 | 159.0 | 147.429 | 362.0 | 4.0 | 4.0 | 4303.635 | 55.251 | 51.23 | 125.791 | 1.39 | 1.39 | 0.99 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-03-09 | 20.0 | 1.0 | 2.429 | 0.0 | 0.0 | 0.0 | 0.456 | 2.3e-2 | 5.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
DZA | Africa | Algeria | 2020-09-06 | 46364.0 | 293.0 | 316.857 | 1556.0 | 7.0 | 7.857 | 1057.307 | 6.682 | 7.226 | 35.484 | 0.16 | 0.179 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
ARG | South America | Argentina | 2020-05-20 | 9283.0 | 474.0 | 343.429 | 403.0 | 10.0 | 10.571 | 205.395 | 10.488 | 7.599 | 8.917 | 0.221 | 0.234 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 90.74 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-08-10 | 253868.0 | 7369.0 | 6732.143 | 4764.0 | 158.0 | 135.857 | 5617.073 | 163.046 | 148.955 | 105.408 | 3.496 | 3.006 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARG | South America | Argentina | 2020-09-21 | 640147.0 | 8782.0 | 10671.571 | 13482.0 | 429.0 | 259.286 | 14163.868 | 194.31 | 236.119 | 298.302 | 9.492 | 5.737 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-10-04 | 52496.0 | 571.0 | 442.286 | 977.0 | 5.0 | 3.714 | 17715.779 | 192.695 | 149.258 | 329.707 | 1.687 | 1.253 | 1.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUS | Oceania | Australia | 2020-07-30 | 16903.0 | 605.0 | 472.571 | 196.0 | 7.0 | 8.143 | 662.866 | 23.726 | 18.532 | 7.686 | 0.275 | 0.319 | 1.23 | null | null | null | null | null | null | null | null | 4164454.0 | 66205.0 | 163.313 | 2.596 | 63517.0 | 2.491 | 7.0e-3 | 134.4 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-05-27 | 16591.0 | 34.0 | 34.0 | 645.0 | 2.0 | 1.714 | 1842.134 | 3.775 | 3.775 | 71.616 | 0.222 | 0.19 | 0.8 | 32.0 | 3.553 | 84.0 | 9.327 | null | null | null | null | 418706.0 | 7521.0 | 46.49 | 0.835 | 5588.0 | 0.62 | 6.0e-3 | 164.4 | null | 59.26 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-08-29 | 26985.0 | 395.0 | 274.714 | 733.0 | 0.0 | 0.143 | 2996.203 | 43.858 | 30.502 | 81.387 | 0.0 | 1.6e-2 | 1.15 | 30.0 | 3.331 | 114.0 | 12.658 | null | null | null | null | 1160743.0 | 12799.0 | 128.88 | 1.421 | 10513.0 | 1.167 | 2.6e-2 | 38.3 | null | 35.19 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-03-25 | 93.0 | 6.0 | 9.286 | 2.0 | 1.0 | 0.143 | 9.172 | 0.592 | 0.916 | 0.197 | 9.9e-2 | 1.4e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 68.52 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
AZE | Asia | Azerbaijan | 2020-05-01 | 1854.0 | 50.0 | 37.429 | 25.0 | 1.0 | 0.571 | 182.855 | 4.931 | 3.691 | 2.466 | 9.9e-2 | 5.6e-2 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-03-29 | 11.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 27.972 | 2.543 | 2.543 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-07-26 | 342.0 | 16.0 | 27.0 | 11.0 | 0.0 | 0.0 | 869.68 | 40.687 | 68.659 | 27.972 | 0.0 | 0.0 | 1.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-06-01 | 11871.0 | 473.0 | 385.714 | 19.0 | 0.0 | 0.714 | 6976.445 | 277.976 | 226.68 | 11.166 | 0.0 | 0.42 | 1.19 | null | null | null | null | null | null | null | null | 323162.0 | 6355.0 | 189.918 | 3.735 | 5611.0 | 3.298 | 6.9e-2 | 14.5 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-08-17 | 47185.0 | 350.0 | 398.286 | 173.0 | 3.0 | 1.429 | 27730.061 | 205.691 | 234.068 | 101.67 | 1.763 | 0.84 | 1.01 | null | null | null | null | null | null | null | null | 972003.0 | 9669.0 | 571.235 | 5.682 | 9992.0 | 5.872 | 4.0e-2 | 25.1 | null | 69.44 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-10-10 | 75287.0 | 427.0 | 425.286 | 273.0 | 2.0 | 2.143 | 44245.27 | 250.943 | 249.935 | 160.439 | 1.175 | 1.259 | 0.91 | null | null | null | null | null | null | null | null | 1530133.0 | 10537.0 | 899.241 | 6.192 | 10173.0 | 5.979 | 4.2e-2 | 23.9 | null | 63.89 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BLR | Europe | Belarus | 2020-03-08 | 6.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 0.635 | 0.0 | 7.6e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BLR | Europe | Belarus | 2020-11-20 | 120847.0 | 1457.0 | 1317.857 | 1081.0 | 7.0 | 6.857 | 12788.961 | 154.191 | 139.466 | 114.4 | 0.741 | 0.726 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | 27254.0 | 2.884 | 4.8e-2 | 20.7 | null | 22.22 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BEL | Europe | Belgium | 2020-03-22 | 3401.0 | 586.0 | 359.286 | 75.0 | 8.0 | 10.143 | 293.452 | 50.563 | 31.001 | 6.471 | 0.69 | 0.875 | 2.21 | 322.0 | 27.783 | 1646.0 | 142.024 | null | null | 1541.84 | 133.036 | 31478.0 | 1414.0 | 2.716 | 0.122 | 2438.0 | 0.21 | 0.147 | 6.8 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-05-01 | 49032.0 | 513.0 | 677.0 | 7703.0 | 109.0 | 146.286 | 4230.684 | 44.264 | 58.414 | 664.647 | 9.405 | 12.622 | 0.71 | 690.0 | 59.536 | 3109.0 | 268.257 | null | null | null | null | 430786.0 | 23551.0 | 37.17 | 2.032 | 19999.0 | 1.726 | 3.4e-2 | 29.5 | null | 81.48 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-11-20 | 553680.0 | 3416.0 | 4095.429 | 15352.0 | 156.0 | 178.0 | 47773.8 | 294.747 | 353.371 | 1324.634 | 13.46 | 15.359 | 0.68 | 1256.0 | 108.373 | 5418.0 | 467.487 | null | null | null | null | 5670902.0 | 34396.0 | 489.309 | 2.968 | 29760.0 | 2.568 | 0.138 | 7.3 | null | 63.89 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEN | Africa | Benin | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-03-23 | 5.0 | 3.0 | 0.571 | 0.0 | 0.0 | 0.0 | 0.412 | 0.247 | 4.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 27.78 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BIH | Europe | Bosnia and Herzegovina | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-04-21 | 1342.0 | 33.0 | 37.0 | 51.0 | 2.0 | 1.571 | 409.045 | 10.058 | 11.278 | 15.545 | 0.61 | 0.479 | 1.16 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-11-06 | 59427.0 | 1921.0 | 1612.857 | 1457.0 | 55.0 | 35.0 | 18113.487 | 585.525 | 491.603 | 444.097 | 16.764 | 10.668 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-03-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-07-29 | 804.0 | 65.0 | 40.286 | 2.0 | 0.0 | 0.143 | 341.891 | 27.64 | 17.131 | 0.85 | 0.0 | 6.1e-2 | 0.83 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.17 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-09-19 | 2567.0 | 0.0 | 45.0 | 13.0 | 0.0 | 0.429 | 1091.586 | 0.0 | 19.136 | 5.528 | 0.0 | 0.182 | 0.77 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-06-04 | 614941.0 | 30925.0 | 25243.286 | 34021.0 | 1473.0 | 1038.143 | 2893.031 | 145.489 | 118.759 | 160.054 | 6.93 | 4.884 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 77.31 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-13 | 5113628.0 | 10220.0 | 20641.0 | 150998.0 | 309.0 | 500.571 | 24057.406 | 48.081 | 97.107 | 710.38 | 1.454 | 2.355 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 63.43 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-04-23 | 138.0 | 0.0 | 0.286 | 1.0 | 0.0 | 0.0 | 315.441 | 0.0 | 0.653 | 2.286 | 0.0 | 0.0 | 0.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-06-06 | 141.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 4.572 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-08-21 | 143.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 326.87 | 0.0 | 0.327 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-03-29 | 346.0 | 15.0 | 22.714 | 8.0 | 1.0 | 0.714 | 49.795 | 2.159 | 3.269 | 1.151 | 0.144 | 0.103 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BGR | Europe | Bulgaria | 2020-05-29 | 2485.0 | 8.0 | 16.143 | 136.0 | 2.0 | 1.571 | 357.634 | 1.151 | 2.323 | 19.573 | 0.288 | 0.226 | 0.96 | 20.0 | 2.878 | 191.0 | 27.488 | null | null | null | null | 79389.0 | 1725.0 | 11.425 | 0.248 | 1112.0 | 0.16 | 1.5e-2 | 68.9 | null | 56.48 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-10-24 | 2444.0 | 11.0 | 14.429 | 65.0 | 0.0 | 0.0 | 116.919 | 0.526 | 0.69 | 3.11 | 0.0 | 0.0 | 0.96 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
KHM | Asia | Cambodia | 2020-11-16 | 303.0 | 1.0 | 0.429 | 0.0 | 0.0 | 0.0 | 18.123 | 6.0e-2 | 2.6e-2 | null | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 42.59 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-11-29 | 323.0 | 8.0 | 2.429 | 0.0 | 0.0 | 0.0 | 19.319 | 0.478 | 0.145 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CAN | North America | Canada | 2020-03-04 | 33.0 | 3.0 | 3.143 | 0.0 | 0.0 | 0.0 | 0.874 | 7.9e-2 | 8.3e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-18 | 101877.0 | 386.0 | 388.286 | 8361.0 | 49.0 | 41.429 | 2699.289 | 10.227 | 10.288 | 221.529 | 1.298 | 1.098 | 0.79 | null | null | null | null | null | null | null | null | 2295440.0 | 40959.0 | 60.819 | 1.085 | 38135.0 | 1.01 | 1.0e-2 | 98.2 | null | 70.83 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-07-05 | 107394.0 | 209.0 | 314.429 | 8739.0 | 7.0 | 22.429 | 2845.465 | 5.538 | 8.331 | 231.545 | 0.185 | 0.594 | 0.94 | null | null | null | null | null | null | null | null | 2940925.0 | 25971.0 | 77.921 | 0.688 | 37746.0 | 1.0 | 8.0e-3 | 120.0 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-08-23 | 126817.0 | 257.0 | 401.857 | 9119.0 | 2.0 | 6.429 | 3360.089 | 6.809 | 10.647 | 241.613 | 5.3e-2 | 0.17 | 1.1 | null | null | null | null | null | null | null | null | 5115490.0 | 38756.0 | 135.538 | 1.027 | 48161.0 | 1.276 | 8.0e-3 | 119.8 | null | 64.35 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CPV | Africa | Cape Verde | 2020-05-10 | 246.0 | 10.0 | 11.571 | 2.0 | 0.0 | 0.0 | 442.456 | 17.986 | 20.812 | 3.597 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.63 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CHL | South America | Chile | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-08-09 | 373056.0 | 2033.0 | 1903.571 | 10077.0 | 66.0 | 67.0 | 19515.166 | 106.35 | 99.579 | 527.144 | 3.453 | 3.505 | 0.94 | null | null | null | null | null | null | null | null | 1833332.0 | 28460.0 | 95.905 | 1.489 | 24009.0 | 1.256 | 7.9e-2 | 12.6 | null | 87.5 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-09-10 | 428669.0 | 1642.0 | 1738.286 | 11781.0 | 79.0 | 51.286 | 22424.373 | 85.896 | 90.933 | 616.283 | 4.133 | 2.683 | 0.99 | null | null | null | null | null | null | null | null | 2711664.0 | 28313.0 | 141.852 | 1.481 | 30134.0 | 1.576 | 5.8e-2 | 17.3 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-06-06 | 84186.0 | 9.0 | 8.286 | 4638.0 | 0.0 | 0.0 | 58.49 | 6.0e-3 | 6.0e-3 | 3.222 | 0.0 | 0.0 | 1.3 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.24 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-05-18 | 16295.0 | 721.0 | 668.857 | 592.0 | 18.0 | 16.143 | 320.245 | 14.17 | 13.145 | 11.635 | 0.354 | 0.317 | 1.29 | null | null | null | null | null | null | null | null | 201808.0 | 5391.0 | 3.966 | 0.106 | 6125.0 | 0.12 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-05-27 | 87.0 | 0.0 | 7.571 | 2.0 | 1.0 | 0.143 | 100.047 | 0.0 | 8.707 | 2.3 | 1.15 | 0.164 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
CYP | Europe | Cyprus | 2020-07-05 | 1003.0 | 1.0 | 1.286 | 19.0 | 0.0 | 0.0 | 1145.109 | 1.142 | 1.468 | 21.692 | 0.0 | 0.0 | 1.24 | null | null | null | null | null | null | null | null | 164347.0 | 1445.0 | 187.632 | 1.65 | 1359.0 | 1.552 | 1.0e-3 | 1056.8 | null | 50.0 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0 | 0.0 | 0.0 | null | null | 16.67 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-04-26 | 7404.0 | 52.0 | 94.0 | 220.0 | 2.0 | 4.857 | 691.382 | 4.856 | 8.778 | 20.544 | 0.187 | 0.454 | 0.65 | 72.0 | 6.723 | 310.0 | 28.948 | 118.656 | 11.08 | 480.656 | 44.883 | 222658.0 | 3381.0 | 20.792 | 0.316 | 6655.0 | 0.621 | 1.4e-2 | 70.8 | null | 60.19 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-01 | 341644.0 | 6542.0 | 11935.286 | 3429.0 | 178.0 | 175.429 | 31902.566 | 610.889 | 1114.512 | 320.199 | 16.622 | 16.381 | 1.01 | 1163.0 | 108.6 | 7486.0 | 699.039 | 1794.919 | 167.609 | 11793.174 | 1101.241 | 2356389.0 | 20643.0 | 220.039 | 1.928 | 38502.0 | 3.595 | 0.31 | 3.2 | null | 73.15 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-11-26 | 511520.0 | 6305.0 | 4252.143 | 7779.0 | 168.0 | 129.286 | 47765.511 | 588.758 | 397.063 | 726.4 | 15.688 | 12.073 | null | 743.0 | 69.381 | 5048.0 | 471.38 | null | null | null | null | 3023731.0 | 20489.0 | 282.355 | 1.913 | 19862.0 | 1.855 | 0.214 | 4.7 | null | 69.44 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
DNK | Europe | Denmark | 2020-08-07 | 14747.0 | 161.0 | 102.714 | 617.0 | 0.0 | 0.286 | 2546.009 | 27.796 | 17.733 | 106.523 | 0.0 | 4.9e-2 | 1.37 | 2.0 | 0.345 | 25.0 | 4.316 | null | null | null | null | 1698747.0 | 27074.0 | 293.282 | 4.674 | 22516.0 | 3.887 | 5.0e-3 | 219.2 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-08-11 | 15291.0 | 156.0 | 139.571 | 621.0 | 1.0 | 0.714 | 2639.928 | 26.933 | 24.096 | 107.213 | 0.173 | 0.123 | 1.33 | 2.0 | 0.345 | 20.0 | 3.453 | null | null | null | null | 1804944.0 | 33524.0 | 311.616 | 5.788 | 26429.0 | 4.563 | 5.0e-3 | 189.4 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DJI | Africa | Djibouti | 2020-05-08 | 1135.0 | 2.0 | 5.429 | 3.0 | 0.0 | 0.143 | 1148.783 | 2.024 | 5.494 | 3.036 | 0.0 | 0.145 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 94.44 | 988002.0 | 41.285 | 25.4 | 4.213 | 2.38 | 2705.406 | 22.5 | 258.037 | 6.05 | 1.7 | 24.5 | null | 1.4 | 67.11 | 0.476 |
DOM | North America | Dominican Republic | 2020-03-13 | 5.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 0.461 | 0.0 | 4.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-18 | 121347.0 | 422.0 | 410.0 | 2199.0 | 4.0 | 3.714 | 11186.216 | 38.902 | 37.795 | 202.712 | 0.369 | 0.342 | 0.96 | null | null | null | null | null | null | null | null | 545492.0 | 3265.0 | 50.285 | 0.301 | 3427.0 | 0.316 | 0.12 | 8.4 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-11-17 | 134697.0 | 494.0 | 509.429 | 2290.0 | 4.0 | 3.0 | 12416.869 | 45.539 | 46.961 | 211.101 | 0.369 | 0.277 | 1.16 | null | null | null | null | null | null | null | null | 659160.0 | 3869.0 | 60.764 | 0.357 | 3716.0 | 0.343 | 0.137 | 7.3 | null | 64.81 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
ECU | South America | Ecuador | 2020-05-31 | 39098.0 | 527.0 | 334.571 | 3358.0 | 24.0 | 35.714 | 2216.055 | 29.87 | 18.963 | 190.33 | 1.36 | 2.024 | 1.02 | null | null | null | null | null | null | null | null | 68988.0 | 757.0 | 3.91 | 4.3e-2 | 1009.0 | 5.7e-2 | null | null | null | 86.11 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-06-13 | 46356.0 | 578.0 | 518.286 | 3874.0 | 46.0 | 38.0 | 2627.435 | 32.761 | 29.376 | 219.576 | 2.607 | 2.154 | 1.13 | null | null | null | null | null | null | null | null | 88946.0 | 1385.0 | 5.041 | 7.9e-2 | 1403.0 | 8.0e-2 | null | null | null | 83.33 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-03-20 | 285.0 | 29.0 | 29.286 | 8.0 | 2.0 | 0.857 | 2.785 | 0.283 | 0.286 | 7.8e-2 | 2.0e-2 | 8.0e-3 | 1.5 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-07-06 | 76222.0 | 969.0 | 1352.571 | 3422.0 | 79.0 | 78.571 | 744.833 | 9.469 | 13.217 | 33.439 | 0.772 | 0.768 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-08-28 | 98285.0 | 223.0 | 162.429 | 5362.0 | 20.0 | 18.714 | 960.43 | 2.179 | 1.587 | 52.397 | 0.195 | 0.183 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-09-19 | 101900.0 | 128.0 | 149.143 | 5750.0 | 17.0 | 17.571 | 995.755 | 1.251 | 1.457 | 56.188 | 0.166 | 0.172 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-10-30 | 107376.0 | 167.0 | 163.714 | 6258.0 | 11.0 | 11.714 | 1049.266 | 1.632 | 1.6 | 61.152 | 0.107 | 0.114 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-05-30 | 2395.0 | 117.0 | 82.286 | 46.0 | 4.0 | 1.857 | 369.245 | 18.038 | 12.686 | 7.092 | 0.617 | 0.286 | 1.13 | null | null | null | null | null | null | null | null | 89358.0 | 2386.0 | 13.777 | 0.368 | 2392.0 | 0.369 | 3.4e-2 | 29.1 | null | 100.0 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-05-24 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-05-28 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.997 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-17 | 285.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.363 | 0.0 | 0.0 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-08-22 | 306.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 86.284 | 0.0 | 0.846 | null | 0.0 | 0.0 | 0.28 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 89.81 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-09-05 | 2491.0 | 35.0 | 18.286 | 64.0 | 0.0 | 0.0 | 1877.819 | 26.384 | 13.785 | 48.246 | 0.0 | 0.0 | 1.32 | 0.0 | 0.0 | 7.0 | 5.277 | null | null | null | null | 188267.0 | 1342.0 | 141.923 | 1.012 | 2061.0 | 1.554 | 9.0e-3 | 112.7 | null | 23.15 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-04-29 | 130.0 | 4.0 | 2.0 | 3.0 | 0.0 | 0.0 | 1.131 | 3.5e-2 | 1.7e-2 | 2.6e-2 | 0.0 | 0.0 | 0.56 | null | null | null | null | null | null | null | null | 16434.0 | 766.0 | 0.143 | 7.0e-3 | 952.0 | 8.0e-3 | 2.0e-3 | 476.0 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-07 | 21452.0 | 552.0 | 560.286 | 380.0 | 15.0 | 15.143 | 186.598 | 4.802 | 4.874 | 3.305 | 0.13 | 0.132 | 1.06 | null | null | null | null | null | null | null | null | 478017.0 | 9203.0 | 4.158 | 8.0e-2 | 7952.0 | 6.9e-2 | 7.0e-2 | 14.2 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-24 | 42143.0 | 1472.0 | 1543.857 | 692.0 | 14.0 | 21.143 | 366.577 | 12.804 | 13.429 | 6.019 | 0.122 | 0.184 | 1.17 | null | null | null | null | null | null | null | null | 775908.0 | 18851.0 | 6.749 | 0.164 | 20957.0 | 0.182 | 7.4e-2 | 13.6 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
FIN | Europe | Finland | 2020-04-02 | 1518.0 | 72.0 | 80.0 | 19.0 | 2.0 | 2.0 | 273.972 | 12.995 | 14.439 | 3.429 | 0.361 | 0.361 | 1.32 | 65.0 | 11.731 | 160.0 | 28.877 | null | null | null | null | 27466.0 | 2331.0 | 4.957 | 0.421 | 1422.0 | 0.257 | 5.6e-2 | 17.8 | null | 67.59 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-07 | 7554.0 | 22.0 | 17.429 | 331.0 | 0.0 | 0.286 | 1363.361 | 3.971 | 3.146 | 59.74 | 0.0 | 5.2e-2 | 1.29 | 0.0 | 0.0 | 3.0 | 0.541 | null | null | null | null | 428351.0 | 8815.0 | 77.31 | 1.591 | 6469.0 | 1.168 | 3.0e-3 | 371.2 | null | 35.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-08-14 | 7700.0 | 17.0 | 20.857 | 333.0 | 0.0 | 0.286 | 1389.712 | 3.068 | 3.764 | 60.101 | 0.0 | 5.2e-2 | 1.25 | 0.0 | 0.0 | 6.0 | 1.083 | null | null | null | null | 491843.0 | 9621.0 | 88.769 | 1.736 | 9070.0 | 1.637 | 2.0e-3 | 434.9 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-04 | 8225.0 | 25.0 | 26.143 | 336.0 | 0.0 | 0.143 | 1484.465 | 4.512 | 4.718 | 60.642 | 0.0 | 2.6e-2 | 1.25 | 1.0 | 0.18 | 14.0 | 2.527 | null | null | null | null | 798694.0 | 16079.0 | 144.15 | 2.902 | 15326.0 | 2.766 | 2.0e-3 | 586.2 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
GMB | Africa | Gambia | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-03-18 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.414 | 0.0 | 5.9e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-04-28 | 10.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 4.138 | 0.0 | 0.0 | 0.414 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 78.7 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GMB | Africa | Gambia | 2020-10-06 | 3613.0 | 19.0 | 4.857 | 117.0 | 2.0 | 0.714 | 1495.036 | 7.862 | 2.01 | 48.414 | 0.828 | 0.296 | 0.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 75.93 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
GEO | Asia | Georgia | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-03-06 | 4.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1.003 | 0.0 | 0.107 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-06-04 | 801.0 | 1.0 | 9.0 | 13.0 | 0.0 | 0.143 | 200.793 | 0.251 | 2.256 | 3.259 | 0.0 | 3.6e-2 | 0.78 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 69.44 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
GEO | Asia | Georgia | 2020-11-16 | 82835.0 | 3157.0 | 3165.0 | 733.0 | 30.0 | 33.429 | 20764.945 | 791.392 | 793.397 | 183.747 | 7.52 | 8.38 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 3989175.0 | 65.032 | 38.7 | 14.864 | 10.244 | 9745.079 | 4.2 | 496.218 | 7.11 | 5.3 | 55.5 | null | 2.6 | 73.77 | 0.78 |
DEU | Europe | Germany | 2020-05-29 | 182922.0 | 726.0 | 458.857 | 8504.0 | 34.0 | 39.429 | 2183.258 | 8.665 | 5.477 | 101.499 | 0.406 | 0.471 | 0.79 | null | null | null | null | null | null | null | null | null | null | null | null | 55781.0 | 0.666 | 8.0e-3 | 121.6 | null | 59.72 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-10-03 | 46803.0 | 109.0 | 83.0 | 303.0 | 2.0 | 0.571 | 1506.23 | 3.508 | 2.671 | 9.751 | 6.4e-2 | 1.8e-2 | 1.13 | null | null | null | null | null | null | null | null | 492768.0 | null | 15.858 | null | 1722.0 | 5.5e-2 | 4.8e-2 | 20.7 | null | 44.44 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-05-28 | 2906.0 | 3.0 | 7.571 | 175.0 | 2.0 | 1.0 | 278.805 | 0.288 | 0.726 | 16.79 | 0.192 | 9.6e-2 | 0.97 | null | null | null | null | null | null | null | null | 170467.0 | 4222.0 | 16.355 | 0.405 | 3770.0 | 0.362 | 2.0e-3 | 498.0 | null | 68.52 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-06-13 | 3112.0 | 4.0 | 18.857 | 183.0 | 0.0 | 0.429 | 298.569 | 0.384 | 1.809 | 17.557 | 0.0 | 4.1e-2 | 1.19 | null | null | null | null | null | null | null | null | 247452.0 | 3585.0 | 23.741 | 0.344 | 5104.0 | 0.49 | 4.0e-3 | 270.7 | null | 54.63 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-08-29 | 9977.0 | 177.0 | 228.0 | 260.0 | 1.0 | 2.857 | 957.205 | 16.982 | 21.875 | 24.945 | 9.6e-2 | 0.274 | 1.14 | null | null | null | null | null | null | null | null | 931002.0 | 13737.0 | 89.321 | 1.318 | 13324.0 | 1.278 | 1.7e-2 | 58.4 | null | 56.02 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-10-03 | 19613.0 | 267.0 | 340.714 | 405.0 | 7.0 | 4.143 | 1881.694 | 25.616 | 32.689 | 38.856 | 0.672 | 0.397 | 1.16 | null | null | null | null | null | null | null | null | 1339664.0 | 11622.0 | 128.529 | 1.115 | 10087.0 | 0.968 | 3.4e-2 | 29.6 | null | 50.46 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
GRC | Europe | Greece | 2020-11-07 | 54809.0 | 2555.0 | 2222.571 | 749.0 | 34.0 | 17.571 | 5258.439 | 245.13 | 213.236 | 71.86 | 3.262 | 1.686 | 1.34 | null | null | null | null | null | null | null | null | 1926544.0 | 24086.0 | 184.835 | 2.311 | 21317.0 | 2.045 | 0.104 | 9.6 | null | 78.7 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
HTI | North America | Haiti | 2020-08-21 | 8016.0 | 19.0 | 29.429 | 196.0 | 0.0 | 0.571 | 703.002 | 1.666 | 2.581 | 17.189 | 0.0 | 5.0e-2 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 21.3 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HUN | Europe | Hungary | 2020-03-11 | 13.0 | 4.0 | 1.571 | 0.0 | 0.0 | 0.0 | 1.346 | 0.414 | 0.163 | null | 0.0 | 0.0 | null | null | null | 13.0 | 1.346 | null | null | null | null | 609.0 | 78.0 | 6.3e-2 | 8.0e-3 | 54.0 | 6.0e-3 | 2.9e-2 | 34.4 | null | 46.3 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
HUN | Europe | Hungary | 2020-06-05 | 3970.0 | 16.0 | 18.429 | 542.0 | 3.0 | 3.571 | 410.958 | 1.656 | 1.908 | 56.106 | 0.311 | 0.37 | 0.71 | null | null | 397.0 | 41.096 | null | null | null | null | 202606.0 | 6712.0 | 20.973 | 0.695 | 3208.0 | 0.332 | 6.0e-3 | 174.1 | null | 61.11 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
IND | Asia | India | 2020-03-07 | 34.0 | 3.0 | 4.429 | 0.0 | 0.0 | 0.0 | 2.5e-2 | 2.0e-3 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 26.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-06-15 | 343091.0 | 10667.0 | 11023.286 | 9900.0 | 380.0 | 346.714 | 248.616 | 7.73 | 7.988 | 7.174 | 0.275 | 0.251 | 1.21 | null | null | null | null | null | null | null | null | 5774133.0 | 115519.0 | 4.184 | 8.4e-2 | 142814.0 | 0.103 | 7.7e-2 | 13.0 | null | 76.85 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-05-24 | 22271.0 | 526.0 | 679.571 | 1372.0 | 21.0 | 32.0 | 81.423 | 1.923 | 2.485 | 5.016 | 7.7e-2 | 0.117 | 1.14 | null | null | null | null | null | null | null | null | 179864.0 | 3829.0 | 0.658 | 1.4e-2 | 5626.0 | 2.1e-2 | 0.121 | 8.3 | null | 71.76 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-07-13 | 76981.0 | 1282.0 | 1717.571 | 3656.0 | 50.0 | 59.286 | 281.442 | 4.687 | 6.279 | 13.366 | 0.183 | 0.217 | 1.07 | null | null | null | null | null | null | null | null | 630149.0 | 9062.0 | 2.304 | 3.3e-2 | 11152.0 | 4.1e-2 | 0.154 | 6.5 | null | 62.5 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IRN | Asia | Iran | 2020-04-19 | 82211.0 | 1343.0 | 1503.571 | 5118.0 | 87.0 | 92.0 | 978.784 | 15.989 | 17.901 | 60.934 | 1.036 | 1.095 | 0.77 | null | null | null | null | null | null | null | null | 341662.0 | 11525.0 | 4.068 | 0.137 | 11182.0 | 0.133 | 0.134 | 7.4 | null | 53.7 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-06-27 | 220180.0 | 2456.0 | 2513.714 | 10364.0 | 125.0 | 122.429 | 2621.41 | 29.241 | 29.928 | 123.391 | 1.488 | 1.458 | 1.0 | null | null | null | null | null | null | null | null | 1583542.0 | 25670.0 | 18.853 | 0.306 | 26838.0 | 0.32 | 9.4e-2 | 10.7 | null | 41.67 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRN | Asia | Iran | 2020-09-01 | 376894.0 | 1682.0 | 1933.0 | 21672.0 | 101.0 | 110.143 | 4487.21 | 20.025 | 23.014 | 258.022 | 1.202 | 1.311 | 0.84 | null | null | null | null | null | null | null | null | 3256122.0 | 25012.0 | 38.767 | 0.298 | 23973.0 | 0.285 | 8.1e-2 | 12.4 | null | 60.19 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
ISR | Asia | Israel | 2020-11-03 | 316528.0 | 892.0 | 686.286 | 2592.0 | 12.0 | 15.571 | 36569.407 | 103.055 | 79.289 | 299.461 | 1.386 | 1.799 | 0.76 | null | null | null | null | null | null | null | null | 4959948.0 | 41557.0 | 573.037 | 4.801 | 30484.0 | 3.522 | 2.3e-2 | 44.4 | null | 40.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-11-12 | 322159.0 | 833.0 | 613.714 | 2706.0 | 6.0 | 9.571 | 37219.973 | 96.239 | 70.904 | 312.632 | 0.693 | 1.106 | 0.95 | null | null | null | null | null | null | null | null | 5254862.0 | 40338.0 | 607.11 | 4.66 | 31393.0 | 3.627 | 2.0e-2 | 51.2 | null | 65.74 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-09-17 | 293025.0 | 1583.0 | 1406.429 | 35658.0 | 13.0 | 10.143 | 4846.446 | 26.182 | 23.261 | 589.761 | 0.215 | 0.168 | 1.1 | 212.0 | 3.506 | 2560.0 | 42.341 | null | null | null | null | 1.0146324e7 | 101773.0 | 167.814 | 1.683 | 84562.0 | 1.399 | 1.7e-2 | 60.1 | null | 47.22 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-19 | 1308528.0 | 36176.0 | 34589.571 | 47870.0 | 653.0 | 611.571 | 21642.217 | 598.328 | 572.089 | 791.739 | 10.8 | 10.115 | 1.07 | 3712.0 | 61.394 | 37322.0 | 617.282 | null | null | null | null | 1.9724527e7 | 250186.0 | 326.231 | 4.138 | 217717.0 | 3.601 | 0.159 | 6.3 | null | 79.63 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-04-19 | 173.0 | 10.0 | 14.857 | 5.0 | 0.0 | 0.143 | 58.423 | 3.377 | 5.017 | 1.689 | 0.0 | 4.8e-2 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 79.0 | 2.7e-2 | 0.188 | 5.3 | null | 80.56 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-07-02 | 715.0 | 8.0 | 4.429 | 10.0 | 0.0 | 0.0 | 241.459 | 2.702 | 1.496 | 3.377 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | 25172.0 | 285.0 | 8.501 | 9.6e-2 | 360.0 | 0.122 | 1.2e-2 | 81.3 | null | 64.81 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-10-04 | 6895.0 | 100.0 | 125.429 | 120.0 | 1.0 | 4.429 | 2328.479 | 33.771 | 42.358 | 40.525 | 0.338 | 1.496 | 0.96 | null | null | null | null | null | null | null | null | 81071.0 | 541.0 | 27.378 | 0.183 | 534.0 | 0.18 | 0.235 | 4.3 | null | 78.7 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-03-31 | 2255.0 | 254.0 | 148.286 | 67.0 | 2.0 | 3.571 | 17.829 | 2.008 | 1.172 | 0.53 | 1.6e-2 | 2.8e-2 | 1.97 | null | null | null | null | null | null | null | null | 31874.0 | 1914.0 | 0.252 | 1.5e-2 | 1354.0 | 1.1e-2 | 0.11 | 9.1 | null | 40.74 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-07-02 | 19055.0 | 217.0 | 142.857 | 977.0 | 1.0 | 0.857 | 150.66 | 1.716 | 1.13 | 7.725 | 8.0e-3 | 7.0e-3 | 1.68 | null | null | null | null | null | null | null | null | 402243.0 | 5460.0 | 3.18 | 4.3e-2 | 4570.0 | 3.6e-2 | 3.1e-2 | 32.0 | null | 25.93 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
JPN | Asia | Japan | 2020-10-14 | 90694.0 | 541.0 | 522.143 | 1646.0 | 11.0 | 4.571 | 717.082 | 4.277 | 4.128 | 13.014 | 8.7e-2 | 3.6e-2 | 1.06 | null | null | null | null | null | null | null | null | 2133151.0 | 21837.0 | 16.866 | 0.173 | 17411.0 | 0.138 | 3.0e-2 | 33.3 | null | 38.89 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
KAZ | Asia | Kazakhstan | 2020-06-27 | 20319.0 | 0.0 | 442.0 | 166.0 | 16.0 | 6.857 | 1082.139 | 0.0 | 23.54 | 8.841 | 0.852 | 0.365 | 1.06 | null | null | null | null | null | null | null | null | 1467556.0 | 20390.0 | 78.158 | 1.086 | 23637.0 | 1.259 | 1.9e-2 | 53.5 | null | 81.02 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-12 | 115615.0 | 2114.0 | 1811.286 | 1433.0 | 0.0 | 46.286 | 6157.363 | 112.586 | 96.465 | 76.318 | 0.0 | 2.465 | 0.62 | null | null | null | null | null | null | null | null | 2252153.0 | 15229.0 | 119.944 | 0.811 | 15342.0 | 0.817 | 0.118 | 8.5 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-08-14 | 118514.0 | 1410.0 | 1512.0 | 1433.0 | 0.0 | 46.286 | 6311.756 | 75.093 | 80.525 | 76.318 | 0.0 | 2.465 | 0.59 | null | null | null | null | null | null | null | null | 2291327.0 | 19573.0 | 122.03 | 1.042 | 15431.0 | 0.822 | 9.8e-2 | 10.2 | null | 80.56 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-11-05 | 152725.0 | 703.0 | 606.571 | 2263.0 | 1.0 | 5.857 | 8133.748 | 37.44 | 32.304 | 120.522 | 5.3e-2 | 0.312 | 1.46 | null | null | null | null | null | null | null | null | 3723082.0 | 35064.0 | 198.282 | 1.867 | 27230.0 | 1.45 | 2.2e-2 | 44.9 | null | 68.06 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-05-13 | 737.0 | 22.0 | 22.143 | 40.0 | 4.0 | 2.0 | 13.706 | 0.409 | 0.412 | 0.744 | 7.4e-2 | 3.7e-2 | 1.3 | null | null | null | null | null | null | null | null | 35432.0 | 1516.0 | 0.659 | 2.8e-2 | 1197.0 | 2.2e-2 | 1.8e-2 | 54.1 | null | 88.89 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-09-29 | 38378.0 | 210.0 | 165.714 | 707.0 | 7.0 | 6.857 | 713.726 | 3.905 | 3.082 | 13.148 | 0.13 | 0.128 | 1.15 | null | null | null | null | null | null | null | null | 545019.0 | 3604.0 | 10.136 | 6.7e-2 | 3556.0 | 6.6e-2 | 4.7e-2 | 21.5 | null | 71.3 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-11-17 | 71729.0 | 925.0 | 1020.143 | 1302.0 | 15.0 | 21.143 | 1333.964 | 17.202 | 18.972 | 24.214 | 0.279 | 0.393 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | 6311.0 | 0.117 | 0.162 | 6.2 | null | 62.96 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KGZ | Asia | Kyrgyzstan | 2020-06-06 | 1974.0 | 38.0 | 36.0 | 22.0 | 0.0 | 0.857 | 302.566 | 5.824 | 5.518 | 3.372 | 0.0 | 0.131 | 1.22 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.39 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-11-19 | 68316.0 | 422.0 | 489.857 | 1217.0 | 5.0 | 3.429 | 10471.183 | 64.682 | 75.083 | 186.537 | 0.766 | 0.526 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.02 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LAO | Asia | Laos | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LAO | Asia | Laos | 2020-07-15 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.611 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 20.37 | 7275556.0 | 29.715 | 24.4 | 4.029 | 2.322 | 6397.36 | 22.7 | 368.111 | 4.0 | 7.3 | 51.2 | 49.839 | 1.5 | 67.92 | 0.601 |
LVA | Europe | Latvia | 2020-05-03 | 879.0 | 8.0 | 9.571 | 16.0 | 0.0 | 0.571 | 466.016 | 4.241 | 5.074 | 8.483 | 0.0 | 0.303 | 0.88 | null | null | 33.0 | 17.495 | 1.965 | 1.042 | 8.842 | 4.688 | 64245.0 | 1143.0 | 34.061 | 0.606 | 2375.0 | 1.259 | 4.0e-3 | 248.1 | null | 69.44 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LBN | Asia | Lebanon | 2020-12-01 | 129455.0 | 1511.0 | 1535.714 | 1033.0 | 15.0 | 14.143 | 18966.537 | 221.378 | 224.999 | 151.346 | 2.198 | 2.072 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 6825442.0 | 594.561 | 31.1 | 8.514 | 5.43 | 13367.565 | null | 266.591 | 12.71 | 26.9 | 40.7 | null | 2.9 | 78.93 | 0.757 |
LTU | Europe | Lithuania | 2020-03-07 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.367 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-06-17 | 1778.0 | 2.0 | 6.429 | 76.0 | 0.0 | 0.286 | 653.126 | 0.735 | 2.361 | 27.918 | 0.0 | 0.105 | 0.85 | null | null | null | null | null | null | null | null | 363718.0 | 5138.0 | 133.607 | 1.887 | 4080.0 | 1.499 | 2.0e-3 | 634.6 | null | 34.26 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LTU | Europe | Lithuania | 2020-11-20 | 42757.0 | 2265.0 | 1554.143 | 357.0 | 16.0 | 14.857 | 15706.256 | 832.02 | 570.895 | 131.14 | 5.877 | 5.458 | 1.33 | null | null | null | null | null | null | null | null | 1159456.0 | 14358.0 | 425.912 | 5.274 | 11084.0 | 4.072 | 0.14 | 7.1 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
MWI | Africa | Malawi | 2020-04-29 | 36.0 | 0.0 | 1.857 | 3.0 | 0.0 | 0.0 | 1.882 | 0.0 | 9.7e-2 | 0.157 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 774.0 | 30.0 | 4.0e-2 | 2.0e-3 | 32.0 | 2.0e-3 | 5.8e-2 | 17.2 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MWI | Africa | Malawi | 2020-09-27 | 5768.0 | 2.0 | 5.286 | 179.0 | 0.0 | 0.0 | 301.517 | 0.105 | 0.276 | 9.357 | 0.0 | 0.0 | 0.87 | null | null | null | null | null | null | null | null | 52730.0 | null | 2.756 | null | 307.0 | 1.6e-2 | 1.7e-2 | 58.1 | null | 54.63 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-02-08 | 16.0 | 4.0 | 1.143 | 0.0 | 0.0 | 0.0 | 0.494 | 0.124 | 3.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-04-26 | 5780.0 | 38.0 | 55.857 | 98.0 | 0.0 | 1.286 | 178.582 | 1.174 | 1.726 | 3.028 | 0.0 | 4.0e-2 | 0.79 | null | null | null | null | null | null | null | null | 131491.0 | 4521.0 | 4.063 | 0.14 | 3943.0 | 0.122 | 1.4e-2 | 70.6 | null | 73.15 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-10-15 | 18129.0 | 589.0 | 537.286 | 170.0 | 3.0 | 3.429 | 560.125 | 18.198 | 16.6 | 5.252 | 9.3e-2 | 0.106 | 1.47 | null | null | null | null | null | null | null | null | 1810777.0 | 23948.0 | 55.947 | 0.74 | 18424.0 | 0.569 | 2.9e-2 | 34.3 | null | 65.74 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MLI | Africa | Mali | 2020-05-20 | 931.0 | 30.0 | 24.714 | 55.0 | 2.0 | 1.571 | 45.973 | 1.481 | 1.22 | 2.716 | 9.9e-2 | 7.8e-2 | 1.08 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-04-30 | 465.0 | 2.0 | 2.857 | 4.0 | 0.0 | 0.143 | 1053.135 | 4.53 | 6.471 | 9.059 | 0.0 | 0.324 | 0.74 | 2.0 | 4.53 | 4.0 | 9.059 | null | null | null | null | 34018.0 | 1181.0 | 77.044 | 2.675 | 938.0 | 2.124 | 3.0e-3 | 328.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-05-21 | 599.0 | 15.0 | 11.0 | 6.0 | 0.0 | 0.0 | 1356.619 | 33.972 | 24.913 | 13.589 | 0.0 | 0.0 | 1.09 | null | null | null | null | null | null | null | null | 59890.0 | 1546.0 | 135.639 | 3.501 | 1463.0 | 3.313 | 8.0e-3 | 133.0 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-06-20 | 664.0 | 1.0 | 2.571 | 9.0 | 0.0 | 0.0 | 1503.831 | 2.265 | 5.824 | 20.383 | 0.0 | 0.0 | 0.63 | null | null | null | null | null | null | null | null | 90270.0 | 768.0 | 204.444 | 1.739 | 852.0 | 1.93 | 3.0e-3 | 331.4 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-07-05 | 672.0 | 0.0 | 0.286 | 9.0 | 0.0 | 0.0 | 1521.949 | 0.0 | 0.647 | 20.383 | 0.0 | 0.0 | 0.45 | null | null | null | null | 0.0 | 0.0 | 0.0 | 0.0 | 102394.0 | 457.0 | 231.903 | 1.035 | 827.0 | 1.873 | 0.0 | 2891.6 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-10-19 | 4737.0 | 109.0 | 127.571 | 45.0 | 0.0 | 0.286 | 10728.384 | 246.864 | 288.924 | 101.916 | 0.0 | 0.647 | 1.29 | null | null | null | null | null | null | null | null | 302988.0 | 2689.0 | 686.209 | 6.09 | 2666.0 | 6.038 | 4.8e-2 | 20.9 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MUS | Africa | Mauritius | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MUS | Africa | Mauritius | 2020-07-25 | 344.0 | 0.0 | 0.143 | 10.0 | 0.0 | 0.0 | 270.49 | 0.0 | 0.112 | 7.863 | 0.0 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MUS | Africa | Mauritius | 2020-08-10 | 344.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 270.49 | 0.0 | 0.0 | 7.863 | 0.0 | 0.0 | 0.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1271767.0 | 622.962 | 37.4 | 10.945 | 5.884 | 20292.745 | 0.5 | 224.644 | 22.02 | 3.2 | 40.7 | null | 3.4 | 74.99 | 0.79 |
MEX | North America | Mexico | 2020-06-05 | 110026.0 | 4346.0 | 3628.429 | 13170.0 | 625.0 | 536.429 | 853.36 | 33.707 | 28.142 | 102.146 | 4.847 | 4.161 | 1.18 | null | null | null | null | null | null | null | null | 350901.0 | 10665.0 | 2.722 | 8.3e-2 | 8667.0 | 6.7e-2 | 0.419 | 2.4 | null | 72.69 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MDA | Europe | Moldova | 2020-07-08 | 18471.0 | 330.0 | 224.714 | 614.0 | 11.0 | 9.286 | 4578.872 | 81.805 | 55.706 | 152.208 | 2.727 | 2.302 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 80.56 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-04-10 | 16.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 4.881 | 0.0 | 8.7e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-09-14 | 311.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 94.866 | 0.0 | 4.4e-2 | null | 0.0 | 0.0 | 0.29 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNE | Europe | Montenegro | 2020-12-02 | 36351.0 | 502.0 | 506.143 | 510.0 | 6.0 | 7.286 | 57878.044 | 799.284 | 805.88 | 812.022 | 9.553 | 11.6 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-03-15 | 28.0 | 11.0 | 3.714 | 1.0 | 0.0 | 0.143 | 0.759 | 0.298 | 0.101 | 2.7e-2 | 0.0 | 4.0e-3 | null | null | null | null | null | null | null | null | null | 150.0 | 20.0 | 4.0e-3 | 1.0e-3 | 13.0 | 0.0 | 0.286 | 3.5 | null | 44.44 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-10-08 | 142953.0 | 2929.0 | 2415.571 | 2486.0 | 47.0 | 36.714 | 3872.957 | 79.354 | 65.444 | 67.352 | 1.273 | 0.995 | 1.12 | null | null | null | null | null | null | null | null | 2803491.0 | 25126.0 | 75.954 | 0.681 | 22804.0 | 0.618 | 0.106 | 9.4 | null | 60.19 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MMR | Asia | Myanmar | 2020-03-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NPL | Asia | Nepal | 2020-08-26 | 34418.0 | 885.0 | 782.857 | 175.0 | 11.0 | 7.857 | 1181.255 | 30.374 | 26.868 | 6.006 | 0.378 | 0.27 | 1.26 | null | null | null | null | null | null | null | null | 635252.0 | 13253.0 | 21.802 | 0.455 | 11552.0 | 0.396 | 6.8e-2 | 14.8 | null | 82.41 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-03-24 | 5580.0 | 816.0 | 552.714 | 277.0 | 63.0 | 33.429 | 325.652 | 47.622 | 32.257 | 16.166 | 3.677 | 1.951 | 1.95 | 660.0 | 38.518 | null | null | null | null | null | null | null | null | null | null | 3187.0 | 0.186 | 0.173 | 5.8 | null | 74.07 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-05-12 | 1497.0 | 0.0 | 1.286 | 21.0 | 0.0 | 0.0 | 310.437 | 0.0 | 0.267 | 4.355 | 0.0 | 0.0 | 0.35 | null | null | null | null | null | null | null | null | 205191.0 | 7495.0 | 42.551 | 1.554 | 5948.0 | 1.233 | 0.0 | 4625.2 | null | 83.33 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-08-09 | 1569.0 | 0.0 | 0.286 | 22.0 | 0.0 | 0.0 | 325.368 | 0.0 | 5.9e-2 | 4.562 | 0.0 | 0.0 | 0.94 | null | null | null | null | null | null | null | null | 491245.0 | 2338.0 | 101.871 | 0.485 | 3510.0 | 0.728 | 0.0 | 12272.7 | null | 22.22 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-12-03 | 2069.0 | 0.0 | 3.143 | 25.0 | 0.0 | 0.0 | 429.054 | 0.0 | 0.652 | 5.184 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 1291609.0 | 5843.0 | 267.845 | 1.212 | 5573.0 | 1.156 | 1.0e-3 | 1773.1 | null | null | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NER | Africa | Niger | 2020-05-03 | 750.0 | 14.0 | 7.714 | 36.0 | 1.0 | 1.0 | 30.983 | 0.578 | 0.319 | 1.487 | 4.1e-2 | 4.1e-2 | 0.84 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 61.11 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NOR | Europe | Norway | 2020-07-01 | 8896.0 | 17.0 | 15.429 | 251.0 | 1.0 | 0.286 | 1640.952 | 3.136 | 2.846 | 46.299 | 0.184 | 5.3e-2 | 0.92 | null | null | 17.0 | 3.136 | null | null | null | null | 362075.0 | 5119.0 | 66.788 | 0.944 | 3754.0 | 0.692 | 4.0e-3 | 243.3 | null | 37.04 | 5421242.0 | 14.462 | 39.7 | 16.821 | 10.813 | 64800.057 | 0.2 | 114.316 | 5.31 | 19.6 | 20.7 | null | 3.6 | 82.4 | 0.953 |
OMN | Asia | Oman | 2020-05-10 | 3399.0 | 175.0 | 118.714 | 17.0 | 0.0 | 0.714 | 665.606 | 34.269 | 23.247 | 3.329 | 0.0 | 0.14 | 1.26 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
OMN | Asia | Oman | 2020-06-26 | 36034.0 | 1132.0 | 1194.857 | 153.0 | 9.0 | 4.0 | 7056.328 | 221.673 | 233.982 | 29.961 | 1.762 | 0.783 | 1.14 | null | null | null | null | null | null | null | null | null | 4013.0 | null | 0.786 | 3596.0 | 0.704 | 0.332 | 3.0 | null | 87.96 | 5106622.0 | 14.98 | 30.7 | 2.355 | 1.53 | 37960.709 | null | 266.342 | 12.61 | 0.5 | 15.6 | 97.4 | 1.6 | 77.86 | 0.821 |
PAK | Asia | Pakistan | 2020-05-22 | 52437.0 | 1743.0 | 1948.286 | 1101.0 | 34.0 | 38.143 | 237.387 | 7.891 | 8.82 | 4.984 | 0.154 | 0.173 | 1.24 | null | null | null | null | null | null | null | null | 445987.0 | 16387.0 | 2.019 | 7.4e-2 | 14505.0 | 6.6e-2 | 0.134 | 7.4 | null | 82.41 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-10-03 | 314616.0 | 632.0 | 620.143 | 6513.0 | 6.0 | 8.0 | 1424.296 | 2.861 | 2.807 | 29.485 | 2.7e-2 | 3.6e-2 | 1.03 | null | null | null | null | null | null | null | null | 3615244.0 | 35071.0 | 16.367 | 0.159 | 33008.0 | 0.149 | 1.9e-2 | 53.2 | null | 67.13 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-10-21 | 325480.0 | 736.0 | 608.857 | 6702.0 | 10.0 | 12.571 | 1473.478 | 3.332 | 2.756 | 30.341 | 4.5e-2 | 5.7e-2 | 1.13 | null | null | null | null | null | null | null | null | 4148739.0 | 26670.0 | 18.782 | 0.121 | 29286.0 | 0.133 | 2.1e-2 | 48.1 | null | 53.24 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAN | North America | Panama | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PAN | North America | Panama | 2020-05-03 | 7090.0 | 0.0 | 187.286 | 197.0 | 0.0 | 4.571 | 1643.194 | 0.0 | 43.406 | 45.657 | 0.0 | 1.059 | 1.04 | null | null | null | null | null | null | null | null | 33540.0 | 996.0 | 7.773 | 0.231 | 1060.0 | 0.246 | 0.177 | 5.7 | null | 93.52 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
PRY | South America | Paraguay | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 |
PHL | Asia | Philippines | 2020-09-23 | 294591.0 | 2802.0 | 3093.857 | 5091.0 | 42.0 | 51.286 | 2688.338 | 25.57 | 28.233 | 46.459 | 0.383 | 0.468 | 0.87 | null | null | null | null | null | null | null | null | 3314732.0 | 38274.0 | 30.249 | 0.349 | 35221.0 | 0.321 | 8.8e-2 | 11.4 | null | 67.13 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
PHL | Asia | Philippines | 2020-10-05 | 324762.0 | 2265.0 | 2496.286 | 5840.0 | 64.0 | 65.571 | 2963.668 | 20.67 | 22.78 | 53.294 | 0.584 | 0.598 | 0.94 | null | null | null | null | null | null | null | null | 3727022.0 | 29702.0 | 34.012 | 0.271 | 34900.0 | 0.318 | 7.2e-2 | 14.0 | null | 68.98 | 1.09581085e8 | 351.873 | 25.2 | 4.803 | 2.661 | 7599.188 | null | 370.437 | 7.07 | 7.8 | 40.8 | 78.463 | 1.0 | 71.23 | 0.699 |
POL | Europe | Poland | 2020-08-18 | 57876.0 | 597.0 | 702.143 | 1896.0 | 11.0 | 10.714 | 1529.226 | 15.774 | 18.552 | 50.097 | 0.291 | 0.283 | 1.05 | null | null | 2057.0 | 54.351 | null | null | null | null | 2305392.0 | 19884.0 | 60.914 | 0.525 | 20980.0 | 0.554 | 3.3e-2 | 29.9 | null | 39.81 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
POL | Europe | Poland | 2020-09-07 | 71126.0 | 302.0 | 536.286 | 2124.0 | 4.0 | 12.143 | 1879.323 | 7.98 | 14.17 | 56.121 | 0.106 | 0.321 | 0.87 | null | null | 2113.0 | 55.831 | null | null | null | null | 2751413.0 | 10025.0 | 72.699 | 0.265 | 21692.0 | 0.573 | 2.5e-2 | 40.4 | null | 36.11 | 3.7846605e7 | 124.027 | 41.8 | 16.763 | 10.202 | 27216.445 | null | 227.331 | 5.91 | 23.3 | 33.1 | null | 6.62 | 78.73 | 0.865 |
PRT | Europe | Portugal | 2020-06-19 | 38464.0 | 375.0 | 326.286 | 1527.0 | 3.0 | 3.143 | 3772.198 | 36.777 | 31.999 | 149.754 | 0.294 | 0.308 | 1.07 | 67.0 | 6.571 | 422.0 | 41.386 | null | null | null | null | 1079642.0 | 14713.0 | 105.881 | 1.443 | 11744.0 | 1.152 | 2.8e-2 | 36.0 | null | 69.91 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-08-19 | 54701.0 | 253.0 | 211.143 | 1786.0 | 2.0 | 3.143 | 5364.575 | 24.812 | 20.707 | 175.155 | 0.196 | 0.308 | 1.09 | 35.0 | 3.432 | 329.0 | 32.265 | null | null | null | null | 1909654.0 | 16820.0 | 187.281 | 1.65 | 14209.0 | 1.393 | 1.5e-2 | 67.3 | null | 66.2 | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
PRT | Europe | Portugal | 2020-11-30 | 298061.0 | 3262.0 | 4751.286 | 4505.0 | 78.0 | 76.286 | 29231.104 | 319.907 | 465.963 | 441.809 | 7.65 | 7.481 | null | null | null | null | null | null | null | null | null | 4616871.0 | 31889.0 | 452.781 | 3.127 | 37661.0 | 3.693 | 0.126 | 7.9 | null | null | 1.0196707e7 | 112.371 | 46.2 | 21.502 | 14.924 | 27936.896 | 0.5 | 127.842 | 9.85 | 16.3 | 30.0 | null | 3.39 | 82.05 | 0.847 |
QAT | Asia | Qatar | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-06-03 | 62160.0 | 1901.0 | 1887.571 | 45.0 | 2.0 | 2.143 | 21575.392 | 659.827 | 655.166 | 15.619 | 0.694 | 0.744 | 1.02 | null | null | null | null | null | null | null | null | 236437.0 | 5339.0 | 82.066 | 1.853 | 5037.0 | 1.748 | 0.375 | 2.7 | null | 83.33 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
QAT | Asia | Qatar | 2020-11-05 | 133619.0 | 249.0 | 209.857 | 232.0 | 0.0 | 0.143 | 46378.416 | 86.427 | 72.84 | 80.526 | 0.0 | 5.0e-2 | 1.02 | null | null | null | null | null | null | null | null | 1001488.0 | 6029.0 | 347.611 | 2.093 | 5157.0 | 1.79 | 4.1e-2 | 24.6 | null | 64.81 | 2881060.0 | 227.322 | 31.9 | 1.307 | 0.617 | 116935.6 | null | 176.69 | 16.52 | 0.8 | 26.9 | null | 1.2 | 80.23 | 0.856 |
ROU | Europe | Romania | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
ROU | Europe | Romania | 2020-10-13 | 160461.0 | 3109.0 | 2978.429 | 5535.0 | 68.0 | 59.143 | 8340.974 | 161.61 | 154.823 | 287.717 | 3.535 | 3.074 | 1.28 | 651.0 | 33.84 | null | null | null | null | null | null | 2709306.0 | 26718.0 | 140.833 | 1.389 | 23842.0 | 1.239 | 0.125 | 8.0 | null | 44.44 | 1.9237682e7 | 85.129 | 43.0 | 17.85 | 11.69 | 23313.199 | 5.7 | 370.946 | 9.74 | 22.9 | 37.1 | null | 6.892 | 76.05 | 0.811 |
RUS | Europe | Russia | 2020-06-04 | 440538.0 | 8823.0 | 8783.857 | 5376.0 | 168.0 | 176.286 | 3018.739 | 60.459 | 60.19 | 36.838 | 1.151 | 1.208 | 0.99 | null | null | null | null | null | null | null | null | 1.2053663e7 | 320612.0 | 82.596 | 2.197 | 293372.0 | 2.01 | 3.0e-2 | 33.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RUS | Europe | Russia | 2020-09-25 | 1131088.0 | 7112.0 | 6304.714 | 19973.0 | 106.0 | 120.714 | 7750.657 | 48.734 | 43.202 | 136.863 | 0.726 | 0.827 | 1.17 | null | null | null | null | null | null | null | null | 4.4755362e7 | 390796.0 | 306.681 | 2.678 | 328313.0 | 2.25 | 1.9e-2 | 52.1 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
RUS | Europe | Russia | 2020-11-05 | 1699695.0 | 19116.0 | 18464.143 | 29285.0 | 289.0 | 310.571 | 11646.975 | 130.99 | 126.524 | 200.672 | 1.98 | 2.128 | 1.11 | null | null | null | null | null | null | null | null | 6.3541298e7 | 524304.0 | 435.41 | 3.593 | 524962.0 | 3.597 | 3.5e-2 | 28.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 |
SAU | Asia | Saudi Arabia | 2020-03-29 | 1299.0 | 96.0 | 112.571 | 8.0 | 4.0 | 1.143 | 37.313 | 2.758 | 3.234 | 0.23 | 0.115 | 3.3e-2 | 1.72 | null | null | null | null | null | null | null | null | 102069.0 | 6265.0 | 2.932 | 0.18 | 5986.0 | 0.172 | 1.9e-2 | 53.2 | null | 89.81 | 3.4813867e7 | 15.322 | 31.9 | 3.295 | 1.845 | 49045.411 | null | 259.538 | 17.72 | 1.8 | 25.4 | null | 2.7 | 75.13 | 0.853 |
SYC | Africa | Seychelles | 2020-04-04 | 10.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 101.688 | 0.0 | 2.905 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 52.78 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-04-20 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 111.857 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SYC | Africa | Seychelles | 2020-11-21 | 163.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 1657.515 | 0.0 | 4.358 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 98340.0 | 208.354 | 36.2 | 8.606 | 5.586 | 26382.287 | 1.1 | 242.648 | 10.55 | 7.1 | 35.7 | null | 3.6 | 73.4 | 0.797 |
SGP | Asia | Singapore | 2020-03-16 | 243.0 | 17.0 | 13.286 | 0.0 | 0.0 | 0.0 | 41.536 | 2.906 | 2.271 | null | 0.0 | 0.0 | 1.7 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 36.11 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SGP | Asia | Singapore | 2020-11-04 | 58036.0 | 7.0 | 7.0 | 28.0 | 0.0 | 0.0 | 9920.102 | 1.197 | 1.197 | 4.786 | 0.0 | 0.0 | 0.94 | null | null | null | null | null | null | null | null | null | null | null | null | 27979.0 | 4.782 | 0.0 | 3997.0 | null | 52.78 | 5850343.0 | 7915.731 | 42.4 | 12.922 | 7.049 | 85535.383 | null | 92.243 | 10.99 | 5.2 | 28.3 | null | 2.4 | 83.62 | 0.932 |
SVN | Europe | Slovenia | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
SVN | Europe | Slovenia | 2020-08-01 | 2171.0 | 15.0 | 15.0 | 119.0 | 0.0 | 0.429 | 1044.286 | 7.215 | 7.215 | 57.241 | 0.0 | 0.206 | 0.97 | 5.0 | 2.405 | 22.0 | 10.582 | null | null | null | null | 131427.0 | 374.0 | 63.219 | 0.18 | 741.0 | 0.356 | 2.0e-2 | 49.4 | null | 46.3 | 2078932.0 | 102.619 | 44.5 | 19.062 | 12.93 | 31400.84 | null | 153.493 | 7.25 | 20.1 | 25.0 | null | 4.5 | 81.32 | 0.896 |
ZAF | Africa | South Africa | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-07-30 | 482169.0 | 11046.0 | 10588.143 | 7812.0 | 315.0 | 245.571 | 8129.82 | 186.246 | 178.526 | 131.718 | 5.311 | 4.141 | 0.92 | null | null | null | null | null | null | null | null | 2918049.0 | 44886.0 | 49.201 | 0.757 | 40849.0 | 0.689 | 0.259 | 3.9 | null | 80.56 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
ZAF | Africa | South Africa | 2020-10-21 | 708359.0 | 2055.0 | 1706.429 | 18741.0 | 85.0 | 84.286 | 11943.595 | 34.649 | 28.772 | 315.991 | 1.433 | 1.421 | 1.07 | null | null | null | null | null | null | null | null | 4607883.0 | 26537.0 | 77.693 | 0.447 | 21305.0 | 0.359 | 8.0e-2 | 12.5 | null | 38.89 | 5.930869e7 | 46.754 | 27.3 | 5.344 | 3.053 | 12294.876 | 18.9 | 200.38 | 5.52 | 8.1 | 33.2 | 43.993 | 2.32 | 64.13 | 0.699 |
KOR | Asia | South Korea | 2020-10-05 | 24239.0 | 75.0 | 77.143 | 422.0 | 0.0 | 2.143 | 472.779 | 1.463 | 1.505 | 8.231 | 0.0 | 4.2e-2 | 0.98 | null | null | null | null | null | null | null | null | 2329931.0 | 5702.0 | 45.445 | 0.111 | 6745.0 | 0.132 | 1.1e-2 | 87.4 | null | 60.19 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
KOR | Asia | South Korea | 2020-11-29 | 34201.0 | 377.0 | 456.714 | 526.0 | 3.0 | 2.429 | 667.087 | 7.353 | 8.908 | 10.26 | 5.9e-2 | 4.7e-2 | null | null | null | null | null | null | null | null | null | 2984142.0 | 10932.0 | 58.205 | 0.213 | 18469.0 | 0.36 | 2.5e-2 | 40.4 | null | 45.83 | 5.1269183e7 | 527.967 | 43.4 | 13.914 | 8.622 | 35938.374 | 0.2 | 85.998 | 6.8 | 6.2 | 40.9 | null | 12.27 | 83.03 | 0.903 |
ESP | Europe | Spain | 2020-04-10 | 158273.0 | 5051.0 | 5582.0 | 16081.0 | 634.0 | 697.571 | 3385.172 | 108.032 | 119.389 | 343.943 | 13.56 | 14.92 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
ESP | Europe | Spain | 2020-05-10 | 224350.0 | 772.0 | 983.429 | 26621.0 | 143.0 | 193.857 | 4798.44 | 16.512 | 21.034 | 569.375 | 3.059 | 4.146 | 0.77 | null | null | null | null | 33.868 | 0.724 | 682.34 | 14.594 | null | null | null | null | 40386.0 | 0.864 | 2.4e-2 | 41.1 | null | 81.94 | 4.6754783e7 | 93.105 | 45.5 | 19.436 | 13.799 | 34272.36 | 1.0 | 99.403 | 7.17 | 27.4 | 31.4 | null | 2.97 | 83.56 | 0.891 |
LKA | Asia | Sri Lanka | 2020-05-14 | 925.0 | 10.0 | 14.429 | 9.0 | 0.0 | 0.0 | 43.198 | 0.467 | 0.674 | 0.42 | 0.0 | 0.0 | 1.04 | null | null | null | null | null | null | null | null | 41118.0 | 1489.0 | 1.92 | 7.0e-2 | 1291.0 | 6.0e-2 | 1.1e-2 | 89.5 | null | 82.41 | 2.141325e7 | 341.955 | 34.1 | 10.069 | 5.331 | 11669.077 | 0.7 | 197.093 | 10.68 | 0.3 | 27.0 | null | 3.6 | 76.98 | 0.77 |
SUR | South America | Suriname | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SUR | South America | Suriname | 2020-09-28 | 4836.0 | 1.0 | 13.714 | 102.0 | 0.0 | 0.714 | 8243.641 | 1.705 | 23.378 | 173.873 | 0.0 | 1.218 | 0.8 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 67.59 | 586634.0 | 3.612 | 29.6 | 6.933 | 4.229 | 13767.119 | null | 258.314 | 12.54 | 7.4 | 42.9 | 67.779 | 3.1 | 71.68 | 0.72 |
SWZ | Africa | Swaziland | 2020-07-28 | 2404.0 | 88.0 | 72.857 | 39.0 | 5.0 | 2.143 | 2072.121 | 75.851 | 62.799 | 33.616 | 4.31 | 1.847 | 1.14 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 80.56 | 1160164.0 | 79.492 | 21.5 | 3.163 | 1.845 | 7738.975 | null | 333.436 | 3.94 | 1.7 | 16.5 | 24.097 | 2.1 | 60.19 | 0.588 |
SWE | Europe | Sweden | 2020-02-27 | 3.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 0.297 | 9.9e-2 | 2.8e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
SWE | Europe | Sweden | 2020-04-25 | 18563.0 | 473.0 | 612.571 | 2559.0 | 75.0 | 78.0 | 1838.054 | 46.835 | 60.655 | 253.385 | 7.426 | 7.723 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.81 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 |
CHE | Europe | Switzerland | 2020-11-23 | 300352.0 | 9751.0 | 4339.714 | 4222.0 | 166.0 | 98.0 | 34704.247 | 1126.682 | 501.433 | 487.832 | 19.181 | 11.323 | null | null | null | null | null | null | null | null | null | 2603780.0 | 26399.0 | 300.854 | 3.05 | 22673.0 | 2.62 | 0.191 | 5.2 | null | 49.07 | 8654618.0 | 214.243 | 43.1 | 18.436 | 12.644 | 57410.166 | null | 99.739 | 5.59 | 22.6 | 28.9 | null | 4.53 | 83.78 | 0.944 |
TZA | Africa | Tanzania | 2020-08-31 | 509.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 8.521 | 0.0 | 0.0 | 0.352 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 25.0 | 5.9734213e7 | 64.699 | 17.7 | 3.108 | 1.874 | 2683.304 | 49.1 | 217.288 | 5.75 | 3.3 | 26.7 | 47.953 | 0.7 | 65.46 | 0.538 |
THA | Asia | Thailand | 2020-04-23 | 2839.0 | 13.0 | 23.857 | 50.0 | 1.0 | 0.571 | 40.673 | 0.186 | 0.342 | 0.716 | 1.4e-2 | 8.0e-3 | 0.71 | null | null | null | null | null | null | null | null | 164441.0 | 9222.0 | 2.356 | 0.132 | 5919.0 | 8.5e-2 | 4.0e-3 | 248.1 | null | 76.85 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
THA | Asia | Thailand | 2020-04-25 | 2907.0 | 0.0 | 24.857 | 51.0 | 0.0 | 0.571 | 41.648 | 0.0 | 0.356 | 0.731 | 0.0 | 8.0e-3 | 0.68 | null | null | null | null | null | null | null | null | 176587.0 | 5619.0 | 2.53 | 8.1e-2 | 6073.0 | 8.7e-2 | 4.0e-3 | 244.3 | null | 76.85 | 6.9799978e7 | 135.132 | 40.1 | 11.373 | 6.89 | 16277.671 | 0.1 | 109.861 | 7.04 | 1.9 | 38.8 | 90.67 | 2.1 | 77.15 | 0.755 |
ETH | Africa | Ethiopia | 2020-11-10 | 100327.0 | 345.0 | 403.571 | 1537.0 | 7.0 | 6.143 | 872.685 | 3.001 | 3.51 | 13.369 | 6.1e-2 | 5.3e-2 | 0.91 | null | null | null | null | null | null | null | null | 1534470.0 | 4360.0 | 13.347 | 3.8e-2 | 5159.0 | 4.5e-2 | 7.8e-2 | 12.8 | null | 51.85 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
FJI | Oceania | Fiji | 2020-11-29 | 38.0 | 0.0 | 0.429 | 2.0 | 0.0 | 0.0 | 42.39 | 0.0 | 0.478 | 2.231 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 16229.0 | 156.0 | 18.104 | 0.174 | 120.0 | 0.134 | 4.0e-3 | 279.7 | null | 49.07 | 896444.0 | 49.562 | 28.6 | 6.224 | 3.284 | 8702.975 | 1.4 | 412.82 | 14.49 | 10.2 | 34.8 | null | 2.3 | 67.44 | 0.741 |
FIN | Europe | Finland | 2020-06-22 | 7144.0 | 1.0 | 5.143 | 327.0 | 1.0 | 0.143 | 1289.364 | 0.18 | 0.928 | 59.018 | 0.18 | 2.6e-2 | 0.76 | 2.0 | 0.361 | 21.0 | 3.79 | null | null | null | null | 240179.0 | 1604.0 | 43.348 | 0.289 | 1753.0 | 0.316 | 3.0e-3 | 340.9 | null | 35.19 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-09-23 | 9288.0 | 93.0 | 76.857 | 343.0 | 2.0 | 0.571 | 1676.317 | 16.785 | 13.871 | 61.905 | 0.361 | 0.103 | 1.36 | 4.0 | 0.722 | 22.0 | 3.971 | null | null | null | null | 1036509.0 | 13652.0 | 187.071 | 2.464 | 13497.0 | 2.436 | 6.0e-3 | 175.6 | null | 32.41 | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FIN | Europe | Finland | 2020-12-01 | 25462.0 | 550.0 | 453.286 | 399.0 | 0.0 | 2.143 | 4595.433 | 99.265 | 81.81 | 72.012 | 0.0 | 0.387 | null | null | null | null | null | null | null | null | null | 1984595.0 | 12765.0 | 358.184 | 2.304 | 13875.0 | 2.504 | 3.3e-2 | 30.6 | null | null | 5540718.0 | 18.136 | 42.8 | 21.228 | 13.264 | 40585.721 | null | 153.507 | 5.76 | 18.3 | 22.6 | null | 3.28 | 81.91 | 0.92 |
FRA | Europe | France | 2020-03-27 | 33402.0 | 3851.0 | 2949.143 | 1997.0 | 299.0 | 220.857 | 511.724 | 58.998 | 45.181 | 30.594 | 4.581 | 3.384 | 1.84 | 3758.0 | 57.573 | 15701.0 | 240.542 | null | null | null | null | null | null | null | null | null | null | null | null | null | 87.96 | 6.5273512e7 | 122.578 | 42.0 | 19.718 | 13.079 | 38605.671 | null | 86.06 | 4.77 | 30.1 | 35.6 | null | 5.98 | 82.66 | 0.901 |
FRA | Europe | France | 2020-07-12 | 208015.0 | 0.0 | 541.857 | 30007.0 | 0.0 | 15.857 | 3186.821 | 0.0 | 8.301 | 459.712 | 0.0 | 0.243 | 1.17 | 473.0 | 7.246 | 6991.0 | 107.103 | 75.975 | 1.164 | 523.062 | 8.013 | null | 8629.0 | null | 0.132 | 55579.0 | 0.851 | 1.2e-2 | 83.3 | null | 46.3 | 6.5273512e7 | 122.578 | 42.0 | 19.718 | 13.079 | 38605.671 | null | 86.06 | 4.77 | 30.1 | 35.6 | null | 5.98 | 82.66 | 0.901 |
GMB | Africa | Gambia | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2416664.0 | 207.566 | 17.5 | 2.339 | 1.417 | 1561.767 | 10.1 | 331.43 | 1.91 | 0.7 | 31.2 | 7.876 | 1.1 | 62.05 | 0.46 |
DEU | Europe | Germany | 2020-07-30 | 209535.0 | 989.0 | 664.857 | 9144.0 | 9.0 | 4.857 | 2500.897 | 11.804 | 7.935 | 109.138 | 0.107 | 5.8e-2 | 1.25 | null | null | null | null | null | null | null | null | null | null | null | null | 83084.0 | 0.992 | 8.0e-3 | 125.0 | null | 55.09 | 8.3783945e7 | 237.016 | 46.6 | 21.453 | 15.957 | 45229.245 | null | 156.139 | 8.31 | 28.2 | 33.1 | null | 8.0 | 81.33 | 0.936 |
GHA | Africa | Ghana | 2020-03-18 | 7.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.225 | 0.0 | 3.2e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 50.0 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GHA | Africa | Ghana | 2020-11-01 | 48124.0 | 69.0 | 62.0 | 320.0 | 0.0 | 0.571 | 1548.743 | 2.221 | 1.995 | 10.298 | 0.0 | 1.8e-2 | 1.18 | null | null | null | null | null | null | null | null | 541153.0 | 2181.0 | 17.416 | 7.0e-2 | 2246.0 | 7.2e-2 | 2.8e-2 | 36.2 | null | 38.89 | 3.1072945e7 | 126.719 | 21.1 | 3.385 | 1.948 | 4227.63 | 12.0 | 298.245 | 4.97 | 0.3 | 7.7 | 41.047 | 0.9 | 64.07 | 0.592 |
GRC | Europe | Greece | 2020-06-16 | 3148.0 | 14.0 | 12.857 | 185.0 | 1.0 | 0.286 | 302.023 | 1.343 | 1.234 | 17.749 | 9.6e-2 | 2.7e-2 | 1.2 | null | null | null | null | null | null | null | null | 259736.0 | 4882.0 | 24.919 | 0.468 | 3997.0 | 0.383 | 3.0e-3 | 310.9 | null | 40.74 | 1.0423056e7 | 83.479 | 45.3 | 20.396 | 14.524 | 24574.382 | 1.5 | 175.695 | 4.55 | 35.3 | 52.0 | null | 4.21 | 82.24 | 0.87 |
HTI | North America | Haiti | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HTI | North America | Haiti | 2020-11-21 | 9214.0 | 3.0 | 6.571 | 232.0 | 0.0 | 0.0 | 808.066 | 0.263 | 0.576 | 20.346 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 1.1402533e7 | 398.448 | 24.3 | 4.8 | 2.954 | 1653.173 | 23.5 | 430.548 | 6.65 | 2.9 | 23.1 | 22.863 | 0.7 | 64.0 | 0.498 |
HUN | Europe | Hungary | 2020-03-28 | 343.0 | 43.0 | 34.286 | 11.0 | 1.0 | 1.0 | 35.506 | 4.451 | 3.549 | 1.139 | 0.104 | 0.104 | 1.59 | null | null | 298.0 | 30.848 | null | null | null | null | 10303.0 | 1028.0 | 1.067 | 0.106 | 975.0 | 0.101 | 3.5e-2 | 28.4 | null | 76.85 | 9660350.0 | 108.043 | 43.4 | 18.577 | 11.976 | 26777.561 | 0.5 | 278.296 | 7.55 | 26.8 | 34.8 | null | 7.02 | 76.88 | 0.838 |
ISL | Europe | Iceland | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 16.67 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-04-25 | 1790.0 | 1.0 | 4.286 | 10.0 | 0.0 | 0.143 | 5245.421 | 2.93 | 12.559 | 29.304 | 0.0 | 0.419 | 0.24 | 3.0 | 8.791 | 14.0 | 41.026 | null | null | null | null | 46311.0 | 381.0 | 135.71 | 1.116 | 513.0 | 1.503 | 8.0e-3 | 119.7 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-05-31 | 1806.0 | 0.0 | 0.286 | 10.0 | 0.0 | 0.0 | 5292.308 | 0.0 | 0.837 | 29.304 | 0.0 | 0.0 | 0.59 | 0.0 | 0.0 | 0.0 | 0.0 | null | null | null | null | 61097.0 | 16.0 | 179.039 | 4.7e-2 | 326.0 | 0.955 | 1.0e-3 | 1139.9 | null | 39.81 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-08-18 | 2027.0 | 13.0 | 8.429 | 10.0 | 0.0 | 0.0 | 5939.927 | 38.095 | 24.699 | 29.304 | 0.0 | 0.0 | 1.13 | 0.0 | 0.0 | 1.0 | 2.93 | null | null | null | null | 83006.0 | 504.0 | 243.241 | 1.477 | 429.0 | 1.257 | 2.0e-2 | 50.9 | null | 46.3 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
IND | Asia | India | 2020-05-17 | 95698.0 | 5050.0 | 4076.714 | 3025.0 | 154.0 | 116.143 | 69.346 | 3.659 | 2.954 | 2.192 | 0.112 | 8.4e-2 | 1.32 | null | null | null | null | null | null | null | null | 2227642.0 | 93365.0 | 1.614 | 6.8e-2 | 88372.0 | 6.4e-2 | 4.6e-2 | 21.7 | null | 81.94 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IND | Asia | India | 2020-07-13 | 906752.0 | 28498.0 | 26726.857 | 23727.0 | 553.0 | 509.714 | 657.065 | 20.651 | 19.367 | 17.193 | 0.401 | 0.369 | 1.23 | null | null | null | null | null | null | null | null | 1.1806256e7 | 219103.0 | 8.555 | 0.159 | 262371.0 | 0.19 | 0.102 | 9.8 | null | 77.78 | 1.380004385e9 | 450.419 | 28.2 | 5.989 | 3.414 | 6426.674 | 21.2 | 282.28 | 10.39 | 1.9 | 20.6 | 59.55 | 0.53 | 69.66 | 0.64 |
IDN | Asia | Indonesia | 2020-03-21 | 450.0 | 81.0 | 50.571 | 38.0 | 6.0 | 4.714 | 1.645 | 0.296 | 0.185 | 0.139 | 2.2e-2 | 1.7e-2 | 1.94 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-05-05 | 12071.0 | 484.0 | 365.714 | 872.0 | 8.0 | 14.143 | 44.131 | 1.769 | 1.337 | 3.188 | 2.9e-2 | 5.2e-2 | 1.13 | null | null | null | null | null | null | null | null | 88924.0 | 2863.0 | 0.325 | 1.0e-2 | 3769.0 | 1.4e-2 | 9.7e-2 | 10.3 | null | 74.54 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IDN | Asia | Indonesia | 2020-06-24 | 49009.0 | 1113.0 | 1082.571 | 2573.0 | 38.0 | 42.429 | 179.176 | 4.069 | 3.958 | 9.407 | 0.139 | 0.155 | 1.12 | null | null | null | null | null | null | null | null | 413919.0 | 12238.0 | 1.513 | 4.5e-2 | 9377.0 | 3.4e-2 | 0.115 | 8.7 | null | 59.72 | 2.73523621e8 | 145.725 | 29.3 | 5.319 | 3.053 | 11188.744 | 5.7 | 342.864 | 6.32 | 2.8 | 76.1 | 64.204 | 1.04 | 71.72 | 0.694 |
IRN | Asia | Iran | 2020-07-15 | 264561.0 | 2388.0 | 2311.714 | 13410.0 | 199.0 | 189.429 | 3149.8 | 28.431 | 27.523 | 159.656 | 2.369 | 2.255 | 1.0 | null | null | null | null | null | null | null | null | 2048049.0 | 24970.0 | 24.384 | 0.297 | 25094.0 | 0.299 | 9.2e-2 | 10.9 | null | 58.8 | 8.3992953e7 | 49.831 | 32.4 | 5.44 | 3.182 | 19082.62 | 0.2 | 270.308 | 9.59 | 0.8 | 21.1 | null | 1.5 | 76.68 | 0.798 |
IRL | Europe | Ireland | 2020-10-17 | 48678.0 | 1251.0 | 994.857 | 1849.0 | 8.0 | 3.571 | 9858.244 | 253.352 | 201.478 | 374.459 | 1.62 | 0.723 | 1.26 | 30.0 | 6.076 | 260.0 | 52.655 | null | null | null | null | 1423260.0 | 19040.0 | 288.238 | 3.856 | 14798.0 | 2.997 | 6.7e-2 | 14.9 | null | 61.57 | 4937796.0 | 69.874 | 38.7 | 13.928 | 8.678 | 67335.293 | 0.2 | 126.459 | 3.28 | 23.0 | 25.7 | null | 2.96 | 82.3 | 0.938 |
ISR | Asia | Israel | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ISR | Asia | Israel | 2020-03-12 | 100.0 | 21.0 | 11.429 | 0.0 | 0.0 | 0.0 | 11.553 | 2.426 | 1.32 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 5341.0 | 607.0 | 0.617 | 7.0e-2 | 440.0 | 5.1e-2 | 2.6e-2 | 38.5 | null | 41.67 | 8655541.0 | 402.606 | 30.6 | 11.733 | 7.359 | 33132.32 | 0.5 | 93.32 | 6.74 | 15.4 | 35.4 | null | 2.99 | 82.97 | 0.903 |
ITA | Europe | Italy | 2020-09-14 | 288761.0 | 1008.0 | 1425.286 | 35624.0 | 14.0 | 10.143 | 4775.922 | 16.672 | 23.573 | 589.198 | 0.232 | 0.168 | 1.03 | 197.0 | 3.258 | 2319.0 | 38.355 | null | null | null | null | 9863427.0 | 45309.0 | 163.135 | 0.749 | 84517.0 | 1.398 | 1.7e-2 | 59.3 | null | 47.22 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
ITA | Europe | Italy | 2020-11-05 | 824879.0 | 34502.0 | 29754.857 | 40192.0 | 428.0 | 295.714 | 13642.972 | 570.641 | 492.126 | 664.75 | 7.079 | 4.891 | 1.31 | 2391.0 | 39.546 | 25647.0 | 424.185 | null | null | null | null | 1.6717651e7 | 219884.0 | 276.499 | 3.637 | 194880.0 | 3.223 | 0.153 | 6.5 | null | 66.67 | 6.0461828e7 | 205.859 | 47.9 | 23.021 | 16.24 | 35220.084 | 2.0 | 113.151 | 4.78 | 19.8 | 27.8 | null | 3.18 | 83.51 | 0.88 |
JAM | North America | Jamaica | 2020-03-17 | 12.0 | 2.0 | 1.714 | 0.0 | 0.0 | 0.0 | 4.052 | 0.675 | 0.579 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JAM | North America | Jamaica | 2020-08-13 | 1071.0 | 6.0 | 16.143 | 14.0 | 0.0 | 0.286 | 361.682 | 2.026 | 5.452 | 4.728 | 0.0 | 9.6e-2 | 1.45 | null | null | null | null | null | null | null | null | 45195.0 | 354.0 | 15.263 | 0.12 | 486.0 | 0.164 | 3.3e-2 | 30.1 | null | 73.15 | 2961161.0 | 266.879 | 31.4 | 9.684 | 6.39 | 8193.571 | null | 206.537 | 11.28 | 5.3 | 28.6 | 66.425 | 1.7 | 74.47 | 0.732 |
JPN | Asia | Japan | 2020-06-04 | 16911.0 | 44.0 | 44.714 | 911.0 | 6.0 | 4.286 | 133.709 | 0.348 | 0.354 | 7.203 | 4.7e-2 | 3.4e-2 | 0.93 | null | null | null | null | null | null | null | null | 286118.0 | 4600.0 | 2.262 | 3.6e-2 | 3529.0 | 2.8e-2 | 1.3e-2 | 78.9 | null | 28.7 | 1.26476458e8 | 347.778 | 48.2 | 27.049 | 18.493 | 39002.223 | null | 79.37 | 5.72 | 11.2 | 33.7 | null | 13.05 | 84.63 | 0.909 |
KAZ | Asia | Kazakhstan | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KAZ | Asia | Kazakhstan | 2020-05-27 | 9304.0 | 335.0 | 333.571 | 37.0 | 0.0 | 0.286 | 495.508 | 17.841 | 17.765 | 1.971 | 0.0 | 1.5e-2 | 1.2 | null | null | null | null | null | null | null | null | 710352.0 | 23085.0 | 37.832 | 1.229 | 19829.0 | 1.056 | 1.7e-2 | 59.4 | null | 83.8 | 1.8776707e7 | 6.681 | 30.6 | 6.991 | 4.625 | 24055.588 | 0.1 | 466.792 | 7.11 | 7.0 | 43.1 | 98.999 | 6.7 | 73.6 | 0.8 |
KEN | Africa | Kenya | 2020-06-06 | 2600.0 | 126.0 | 101.714 | 83.0 | 4.0 | 2.857 | 48.353 | 2.343 | 1.892 | 1.544 | 7.4e-2 | 5.3e-2 | 1.29 | null | null | null | null | null | null | null | null | 94507.0 | 3632.0 | 1.758 | 6.8e-2 | 2605.0 | 4.8e-2 | 3.9e-2 | 25.6 | null | 88.89 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KEN | Africa | Kenya | 2020-06-18 | 4257.0 | 213.0 | 148.857 | 117.0 | 10.0 | 3.571 | 79.169 | 3.961 | 2.768 | 2.176 | 0.186 | 6.6e-2 | 1.23 | null | null | null | null | null | null | null | null | 130498.0 | null | 2.427 | null | 3464.0 | 6.4e-2 | 4.3e-2 | 23.3 | null | 88.89 | 5.37713e7 | 87.324 | 20.0 | 2.686 | 1.528 | 2993.028 | 36.8 | 218.637 | 2.92 | 1.2 | 20.4 | 24.651 | 1.4 | 66.7 | 0.59 |
KWT | Asia | Kuwait | 2020-04-17 | 1658.0 | 134.0 | 95.0 | 5.0 | 2.0 | 0.571 | 388.239 | 31.378 | 22.245 | 1.171 | 0.468 | 0.134 | 1.39 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 4270563.0 | 232.128 | 33.7 | 2.345 | 1.114 | 65530.537 | null | 132.235 | 15.84 | 2.7 | 37.0 | null | 2.0 | 75.49 | 0.803 |
KGZ | Asia | Kyrgyzstan | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-05-15 | 1111.0 | 29.0 | 29.286 | 14.0 | 2.0 | 0.286 | 170.289 | 4.445 | 4.489 | 2.146 | 0.307 | 4.4e-2 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.94 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
KGZ | Asia | Kyrgyzstan | 2020-08-17 | 41991.0 | 135.0 | 272.286 | 1496.0 | 1.0 | 3.143 | 6436.2 | 20.692 | 41.735 | 229.3 | 0.153 | 0.482 | 0.64 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 6524191.0 | 32.333 | 26.3 | 4.489 | 2.882 | 3393.474 | 1.4 | 436.362 | 7.11 | 3.6 | 50.5 | 89.22 | 4.5 | 71.45 | 0.672 |
LVA | Europe | Latvia | 2020-04-15 | 666.0 | 9.0 | 12.714 | 5.0 | 0.0 | 0.429 | 353.09 | 4.771 | 6.741 | 2.651 | 0.0 | 0.227 | 0.89 | null | null | 46.0 | 24.388 | null | null | null | null | 29896.0 | 878.0 | 15.85 | 0.465 | 837.0 | 0.444 | 1.5e-2 | 65.8 | null | 69.44 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-05-18 | 1009.0 | 1.0 | 9.0 | 19.0 | 0.0 | 0.143 | 534.937 | 0.53 | 4.771 | 10.073 | 0.0 | 7.6e-2 | 0.88 | null | null | 28.0 | 14.845 | null | null | null | null | 89123.0 | 718.0 | 47.25 | 0.381 | 1711.0 | 0.907 | 5.0e-3 | 190.1 | null | 61.11 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-09-18 | 1498.0 | 4.0 | 5.571 | 36.0 | 0.0 | 0.143 | 794.189 | 2.121 | 2.954 | 19.086 | 0.0 | 7.6e-2 | 1.4 | null | null | 7.0 | 3.711 | null | null | null | null | 290907.0 | 2264.0 | 154.229 | 1.2 | 2297.0 | 1.218 | 2.0e-3 | 412.3 | null | 41.67 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LVA | Europe | Latvia | 2020-10-07 | 2261.0 | 67.0 | 62.429 | 40.0 | 0.0 | 0.429 | 1198.705 | 35.521 | 33.098 | 21.207 | 0.0 | 0.227 | 1.5 | null | null | 34.0 | 18.026 | null | null | null | null | 344821.0 | 4426.0 | 182.812 | 2.347 | 3543.0 | 1.878 | 1.8e-2 | 56.8 | null | 32.41 | 1886202.0 | 31.212 | 43.9 | 19.754 | 14.136 | 25063.846 | 0.7 | 350.06 | 4.91 | 25.6 | 51.0 | null | 5.57 | 75.29 | 0.847 |
LTU | Europe | Lithuania | 2020-11-09 | 25755.0 | 1056.0 | 1314.143 | 210.0 | 3.0 | 5.714 | 9460.781 | 387.909 | 482.734 | 77.141 | 1.102 | 2.099 | 1.41 | null | null | null | null | null | null | null | null | 1028776.0 | 8979.0 | 377.908 | 3.298 | 10492.0 | 3.854 | 0.125 | 8.0 | null | 62.96 | 2722291.0 | 45.135 | 43.5 | 19.002 | 13.778 | 29524.265 | 0.7 | 342.989 | 3.67 | 21.3 | 38.0 | null | 6.56 | 75.93 | 0.858 |
LUX | Europe | Luxembourg | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
LUX | Europe | Luxembourg | 2020-05-28 | 4008.0 | 7.0 | 4.0 | 110.0 | 0.0 | 0.143 | 6402.801 | 11.183 | 6.39 | 175.726 | 0.0 | 0.228 | 0.74 | 4.0 | 6.39 | 29.0 | 46.328 | null | null | null | null | 73099.0 | 2003.0 | 116.776 | 3.2 | 1144.0 | 1.828 | 3.0e-3 | 286.0 | null | 43.52 | 625976.0 | 231.447 | 39.7 | 14.312 | 9.842 | 94277.965 | 0.2 | 128.275 | 4.42 | 20.9 | 26.0 | null | 4.51 | 82.25 | 0.904 |
MWI | Africa | Malawi | 2020-05-11 | 57.0 | 1.0 | 2.286 | 3.0 | 0.0 | 0.0 | 2.98 | 5.2e-2 | 0.119 | 0.157 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 1363.0 | 26.0 | 7.1e-2 | 1.0e-3 | 57.0 | 3.0e-3 | 4.0e-2 | 24.9 | null | 60.19 | 1.9129955e7 | 197.519 | 18.1 | 2.979 | 1.783 | 1095.042 | 71.4 | 227.349 | 3.94 | 4.4 | 24.7 | 8.704 | 1.3 | 64.26 | 0.477 |
MYS | Asia | Malaysia | 2020-03-08 | 99.0 | 6.0 | 10.0 | 0.0 | 0.0 | 0.0 | 3.059 | 0.185 | 0.309 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | 124.0 | 4.0e-3 | 8.1e-2 | 12.4 | null | 22.22 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-04-27 | 5820.0 | 40.0 | 56.429 | 99.0 | 1.0 | 1.429 | 179.818 | 1.236 | 1.743 | 3.059 | 3.1e-2 | 4.4e-2 | 0.81 | null | null | null | null | null | null | null | null | 138898.0 | 7407.0 | 4.291 | 0.229 | 4383.0 | 0.135 | 1.3e-2 | 77.7 | null | 73.15 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-05-08 | 6535.0 | 68.0 | 66.286 | 107.0 | 0.0 | 0.571 | 201.909 | 2.101 | 2.048 | 3.306 | 0.0 | 1.8e-2 | 0.87 | null | null | null | null | null | null | null | null | 239628.0 | 8609.0 | 7.404 | 0.266 | 10121.0 | 0.313 | 7.0e-3 | 152.7 | null | 69.44 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MYS | Asia | Malaysia | 2020-08-03 | 9001.0 | 2.0 | 13.857 | 125.0 | 0.0 | 0.143 | 278.1 | 6.2e-2 | 0.428 | 3.862 | 0.0 | 4.0e-3 | 1.0 | null | null | null | null | null | null | null | null | 983297.0 | 4119.0 | 30.381 | 0.127 | 5722.0 | 0.177 | 2.0e-3 | 412.9 | null | 57.41 | 3.2365998e7 | 96.254 | 29.9 | 6.293 | 3.407 | 26808.164 | 0.1 | 260.942 | 16.74 | 1.0 | 42.4 | null | 1.9 | 76.16 | 0.802 |
MLI | Africa | Mali | 2020-11-03 | 3584.0 | 11.0 | 9.857 | 136.0 | 0.0 | 0.0 | 176.98 | 0.543 | 0.487 | 6.716 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 34.26 | 2.0250834e7 | 15.196 | 16.4 | 2.519 | 1.486 | 2014.306 | null | 268.024 | 2.42 | 1.6 | 23.0 | 52.232 | 0.1 | 59.31 | 0.427 |
MLT | Europe | Malta | 2020-09-30 | 3058.0 | 23.0 | 28.857 | 35.0 | 1.0 | 1.429 | 6925.776 | 52.091 | 65.356 | 79.268 | 2.265 | 3.235 | 1.03 | null | null | null | null | null | null | null | null | 256523.0 | 2566.0 | 580.975 | 5.811 | 2309.0 | 5.229 | 1.2e-2 | 80.0 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MLT | Europe | Malta | 2020-10-28 | 5760.0 | 75.0 | 104.857 | 56.0 | 1.0 | 1.429 | 13045.28 | 169.86 | 237.481 | 126.829 | 2.265 | 3.235 | 1.0 | null | null | null | null | null | null | null | null | 329508.0 | 2964.0 | 746.272 | 6.713 | 2964.0 | 6.713 | 3.5e-2 | 28.3 | null | null | 441539.0 | 1454.037 | 42.4 | 19.426 | 11.324 | 36513.323 | 0.2 | 168.711 | 8.83 | 20.9 | 30.2 | null | 4.485 | 82.53 | 0.878 |
MEX | North America | Mexico | 2020-07-30 | 416179.0 | 7730.0 | 6495.286 | 46000.0 | 639.0 | 584.571 | 3227.876 | 59.954 | 50.377 | 356.775 | 4.956 | 4.534 | 1.02 | null | null | null | null | null | null | null | null | 997755.0 | 15249.0 | 7.739 | 0.118 | 12963.0 | 0.101 | 0.501 | 2.0 | null | 70.83 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MEX | North America | Mexico | 2020-10-18 | 851227.0 | 4119.0 | 4817.714 | 86167.0 | 108.0 | 340.857 | 6602.101 | 31.947 | 37.366 | 668.31 | 0.838 | 2.644 | 1.01 | null | null | null | null | null | null | null | null | 1936740.0 | 4338.0 | 15.021 | 3.4e-2 | 12538.0 | 9.7e-2 | 0.384 | 2.6 | null | 71.76 | 1.28932753e8 | 66.444 | 29.3 | 6.857 | 4.321 | 17336.469 | 2.5 | 152.783 | 13.06 | 6.9 | 21.4 | 87.847 | 1.38 | 75.05 | 0.774 |
MDA | Europe | Moldova | 2020-05-09 | 4867.0 | 139.0 | 116.429 | 161.0 | 11.0 | 5.286 | 1206.506 | 34.457 | 28.862 | 39.911 | 2.727 | 1.31 | 1.08 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MDA | Europe | Moldova | 2020-09-17 | 44983.0 | 622.0 | 468.429 | 1170.0 | 11.0 | 9.143 | 11151.069 | 154.191 | 116.121 | 290.037 | 2.727 | 2.266 | 1.11 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 47.22 | 4033963.0 | 123.655 | 37.6 | 10.864 | 6.955 | 5189.972 | 0.2 | 408.502 | 5.72 | 5.9 | 44.6 | 86.979 | 5.8 | 71.9 | 0.7 |
MNG | Asia | Mongolia | 2020-05-10 | 42.0 | 0.0 | 0.429 | 0.0 | 0.0 | 0.0 | 12.812 | 0.0 | 0.131 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
TGO | Africa | Togo | 2020-10-09 | 1921.0 | 14.0 | 14.714 | 49.0 | 0.0 | 0.143 | 232.04 | 1.691 | 1.777 | 5.919 | 0.0 | 1.7e-2 | 1.06 | null | null | null | null | null | null | null | null | 100361.0 | 966.0 | 12.123 | 0.117 | 866.0 | 0.105 | 1.7e-2 | 58.9 | null | 47.22 | 8278737.0 | 143.366 | 19.4 | 2.839 | 1.525 | 1429.813 | 49.2 | 280.033 | 6.15 | 0.9 | 14.2 | 10.475 | 0.7 | 61.04 | 0.503 |
TUN | Africa | Tunisia | 2020-03-07 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 8.5e-2 | 0.0 | 1.2e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-09-17 | 8570.0 | 470.0 | 384.0 | 133.0 | 4.0 | 4.857 | 725.127 | 39.768 | 32.491 | 11.253 | 0.338 | 0.411 | 1.48 | null | null | null | null | null | null | null | null | null | null | null | null | 3780.0 | 0.32 | 0.102 | 9.8 | null | 26.85 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-10-13 | 32556.0 | 0.0 | 1475.143 | 478.0 | 0.0 | 22.429 | 2754.637 | 0.0 | 124.815 | 40.445 | 0.0 | 1.898 | 1.32 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUN | Africa | Tunisia | 2020-10-27 | 52399.0 | 0.0 | 1135.571 | 983.0 | 0.0 | 38.857 | 4433.598 | 0.0 | 96.083 | 83.174 | 0.0 | 3.288 | 1.19 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 58.33 | 1.1818618e7 | 74.228 | 32.7 | 8.001 | 5.075 | 10849.297 | 2.0 | 318.991 | 8.52 | 1.1 | 65.8 | 78.687 | 2.3 | 76.7 | 0.735 |
TUR | Asia | Turkey | 2020-05-27 | 159797.0 | 1035.0 | 1030.0 | 4431.0 | 34.0 | 29.857 | 1894.697 | 12.272 | 12.213 | 52.538 | 0.403 | 0.354 | 0.87 | null | null | null | null | null | null | null | null | 1894650.0 | 21043.0 | 22.465 | 0.25 | 28328.0 | 0.336 | 3.6e-2 | 27.5 | null | 75.93 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-08-11 | 243180.0 | 1183.0 | 1178.0 | 5873.0 | 15.0 | 15.429 | 2883.361 | 14.027 | 13.967 | 69.636 | 0.178 | 0.183 | 1.08 | null | null | null | null | null | null | null | null | 5387751.0 | 61716.0 | 63.882 | 0.732 | 59184.0 | 0.702 | 2.0e-2 | 50.2 | null | 48.15 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-09-07 | 281509.0 | 1703.0 | 1625.143 | 6730.0 | 57.0 | 51.429 | 3337.824 | 20.192 | 19.269 | 79.797 | 0.676 | 0.61 | 1.1 | null | null | null | null | null | null | null | null | 7883464.0 | 103925.0 | 93.473 | 1.232 | 106425.0 | 1.262 | 1.5e-2 | 65.5 | null | 47.22 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
TUR | Asia | Turkey | 2020-09-09 | 284943.0 | 1673.0 | 1663.143 | 6837.0 | 55.0 | 53.571 | 3378.541 | 19.837 | 19.72 | 81.066 | 0.652 | 0.635 | 1.05 | null | null | null | null | null | null | null | null | 8105222.0 | 111193.0 | 96.103 | 1.318 | 107051.0 | 1.269 | 1.6e-2 | 64.4 | null | 52.78 | 8.4339067e7 | 104.914 | 31.6 | 8.153 | 5.061 | 25129.341 | 0.2 | 171.285 | 12.13 | 14.1 | 41.1 | null | 2.81 | 77.69 | 0.791 |
UKR | Europe | Ukraine | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
UKR | Europe | Ukraine | 2020-04-07 | 1462.0 | 143.0 | 116.714 | 45.0 | 7.0 | 4.0 | 33.43 | 3.27 | 2.669 | 1.029 | 0.16 | 9.1e-2 | 1.68 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 88.89 | 4.3733759e7 | 77.39 | 41.4 | 16.462 | 11.133 | 7894.393 | 0.1 | 539.849 | 7.11 | 13.5 | 47.4 | null | 8.8 | 72.06 | 0.751 |
ARE | Asia | United Arab Emirates | 2020-02-21 | 9.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.91 | 0.0 | 1.4e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 8894.0 | 2201.0 | 0.899 | 0.223 | 851.0 | 8.6e-2 | 0.0 | 5951.0 | null | 2.78 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
ARE | Asia | United Arab Emirates | 2020-07-24 | 58249.0 | 261.0 | 261.0 | 343.0 | 1.0 | 0.857 | 5889.448 | 26.389 | 26.389 | 34.68 | 0.101 | 8.7e-2 | 0.88 | null | null | null | null | null | null | null | null | 4724277.0 | 46965.0 | 477.663 | 4.749 | 44289.0 | 4.478 | 6.0e-3 | 169.7 | null | 43.52 | 9890400.0 | 112.442 | 34.0 | 1.144 | 0.526 | 67293.483 | null | 317.84 | 17.26 | 1.2 | 37.4 | null | 1.2 | 77.97 | 0.863 |
GBR | Europe | United Kingdom | 2020-04-04 | 57772.0 | 4073.0 | 4387.143 | 5281.0 | 757.0 | 545.0 | 851.015 | 59.998 | 64.625 | 77.792 | 11.151 | 8.028 | 1.22 | 2309.0 | 34.013 | 16589.0 | 244.366 | null | null | null | null | 238836.0 | 15899.0 | 3.518 | 0.234 | null | null | null | null | null | 79.63 | 6.7886004e7 | 272.898 | 40.8 | 18.517 | 12.527 | 39753.244 | 0.2 | 122.137 | 4.28 | 20.0 | 24.7 | null | 2.54 | 81.32 | 0.922 |
USA | North America | United States | 2020-11-15 | 1.1053304e7 | 135785.0 | 149131.143 | 246290.0 | 627.0 | 1105.143 | 33393.401 | 410.223 | 450.544 | 744.073 | 1.894 | 3.339 | 1.23 | 13693.0 | 41.368 | 70113.0 | 211.82 | 1450.0 | 4.381 | 22098.0 | 66.761 | 1.71371708e8 | 1145506.0 | 517.735 | 3.461 | 1454966.0 | 4.396 | null | null | null | 65.28 | 3.31002647e8 | 35.608 | 38.3 | 15.413 | 9.732 | 54225.446 | 1.2 | 151.089 | 10.79 | 19.1 | 24.6 | null | 2.77 | 78.86 | 0.924 |
URY | South America | Uruguay | 2020-08-07 | 1325.0 | 7.0 | 8.714 | 37.0 | 0.0 | 0.286 | 381.435 | 2.015 | 2.509 | 10.651 | 0.0 | 8.2e-2 | 1.08 | null | null | null | null | null | null | null | null | 128814.0 | null | 37.082 | null | 2182.0 | 0.628 | 4.0e-3 | 250.4 | null | 26.85 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
URY | South America | Uruguay | 2020-10-12 | 2313.0 | 19.0 | 22.571 | 51.0 | 1.0 | 0.429 | 665.855 | 5.47 | 6.498 | 14.682 | 0.288 | 0.123 | 1.16 | null | null | null | null | null | null | null | null | 266427.0 | 2340.0 | 76.698 | 0.674 | 2480.0 | 0.714 | 9.0e-3 | 109.9 | null | 43.52 | 3473727.0 | 19.751 | 35.6 | 14.655 | 10.361 | 20551.409 | 0.1 | 160.708 | 6.93 | 14.0 | 19.9 | null | 2.8 | 77.91 | 0.804 |
UZB | Asia | Uzbekistan | 2020-07-04 | 9708.0 | 312.0 | 289.429 | 31.0 | 2.0 | 1.571 | 290.058 | 9.322 | 8.648 | 0.926 | 6.0e-2 | 4.7e-2 | 1.29 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 66.2 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
UZB | Asia | Uzbekistan | 2020-08-04 | 27047.0 | 981.0 | 764.0 | 165.0 | 8.0 | 5.857 | 808.116 | 29.311 | 22.827 | 4.93 | 0.239 | 0.175 | 1.1 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
UZB | Asia | Uzbekistan | 2020-08-11 | 31747.0 | 443.0 | 671.429 | 204.0 | 4.0 | 5.571 | 948.544 | 13.236 | 20.061 | 6.095 | 0.12 | 0.166 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 73.15 | 3.3469199e7 | 76.134 | 28.2 | 4.469 | 2.873 | 6253.104 | null | 724.417 | 7.57 | 1.3 | 24.7 | null | 4.0 | 71.72 | 0.71 |
VNM | Asia | Vietnam | 2020-10-10 | 1107.0 | 2.0 | 1.571 | 35.0 | 0.0 | 0.0 | 11.373 | 2.1e-2 | 1.6e-2 | 0.36 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | null | null | null | null | 2621.0 | 2.7e-2 | 1.0e-3 | 1668.4 | null | 51.85 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
VNM | Asia | Vietnam | 2020-11-09 | 1215.0 | 2.0 | 3.286 | 35.0 | 0.0 | 0.0 | 12.482 | 2.1e-2 | 3.4e-2 | 0.36 | 0.0 | 0.0 | 1.38 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 39.35 | 9.7338583e7 | 308.127 | 32.6 | 7.15 | 4.718 | 6171.884 | 2.0 | 245.465 | 6.0 | 1.0 | 45.9 | 85.847 | 2.6 | 75.4 | 0.694 |
YEM | Asia | Yemen | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
YEM | Asia | Yemen | 2020-09-05 | 1983.0 | 0.0 | 5.286 | 572.0 | 0.0 | 1.286 | 66.486 | 0.0 | 0.177 | 19.178 | 0.0 | 4.3e-2 | 0.81 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 |
ZMB | Africa | Zambia | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.8383956e7 | 22.995 | 17.7 | 2.48 | 1.542 | 3689.251 | 57.5 | 234.499 | 3.94 | 3.1 | 24.7 | 13.938 | 2.0 | 63.89 | 0.588 |
ZWE | Africa | Zimbabwe | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ZWE | Africa | Zimbabwe | 2020-06-01 | 203.0 | 25.0 | 21.0 | 4.0 | 0.0 | 0.0 | 13.658 | 1.682 | 1.413 | 0.269 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 18709.0 | 637.0 | 1.259 | 4.3e-2 | 421.0 | 2.8e-2 | 5.0e-2 | 20.0 | null | 87.96 | 1.4862927e7 | 42.729 | 19.6 | 2.822 | 1.882 | 1899.775 | 21.4 | 307.846 | 1.82 | 1.6 | 30.7 | 36.791 | 1.7 | 61.49 | 0.535 |
ALB | Europe | Albania | 2020-10-18 | 17055.0 | 281.0 | 236.571 | 451.0 | 3.0 | 4.429 | 5926.402 | 97.644 | 82.206 | 156.717 | 1.042 | 1.539 | 1.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 54.63 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-04-17 | 2418.0 | 150.0 | 93.857 | 364.0 | 16.0 | 15.429 | 55.141 | 3.421 | 2.14 | 8.301 | 0.365 | 0.352 | 1.27 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.13 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
ARM | Asia | Armenia | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
ARM | Asia | Armenia | 2020-05-16 | 4283.0 | 239.0 | 158.286 | 55.0 | 3.0 | 1.571 | 1445.38 | 80.655 | 53.417 | 18.561 | 1.012 | 0.53 | 1.4 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUS | Oceania | Australia | 2020-02-02 | 12.0 | 0.0 | 1.143 | 0.0 | 0.0 | 0.0 | 0.471 | 0.0 | 4.5e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUS | Oceania | Australia | 2020-07-22 | 13302.0 | 408.0 | 356.0 | 133.0 | 5.0 | 2.857 | 521.649 | 16.0 | 13.961 | 5.216 | 0.196 | 0.112 | 1.34 | null | null | null | null | null | null | null | null | 3650529.0 | 59794.0 | 143.159 | 2.345 | 61198.0 | 2.4 | 6.0e-3 | 171.9 | null | 68.06 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AZE | Asia | Azerbaijan | 2020-05-09 | 2422.0 | 143.0 | 75.429 | 31.0 | 3.0 | 0.857 | 238.875 | 14.104 | 7.439 | 3.057 | 0.296 | 8.5e-2 | 1.54 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 85.19 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-04-22 | 65.0 | 0.0 | 2.286 | 9.0 | 0.0 | 0.143 | 165.29 | 0.0 | 5.812 | 22.886 | 0.0 | 0.363 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-11-28 | 86645.0 | 130.0 | 150.571 | 341.0 | 0.0 | 0.429 | 50920.231 | 76.399 | 88.489 | 200.402 | 0.0 | 0.252 | null | null | null | null | null | null | null | null | null | 2025774.0 | 10176.0 | 1190.523 | 5.98 | 10177.0 | 5.981 | 1.5e-2 | 67.6 | null | null | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-09-03 | 319686.0 | 2158.0 | 2157.571 | 4383.0 | 32.0 | 36.571 | 1941.145 | 13.103 | 13.101 | 26.614 | 0.194 | 0.222 | 0.91 | null | null | null | null | null | null | null | null | 1595001.0 | 14422.0 | 9.685 | 8.8e-2 | 13093.0 | 8.0e-2 | 0.165 | 6.1 | null | 80.09 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BRB | North America | Barbados | 2020-10-13 | 210.0 | 2.0 | 1.429 | 7.0 | 0.0 | 0.0 | 730.763 | 6.96 | 4.971 | 24.359 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 29.63 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BLR | Europe | Belarus | 2020-08-19 | 69801.0 | 128.0 | 99.857 | 622.0 | 5.0 | 3.857 | 7386.88 | 13.546 | 10.568 | 65.825 | 0.529 | 0.408 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | 8153.0 | 0.863 | 1.2e-2 | 81.6 | null | 16.67 | 9449321.0 | 46.858 | 40.3 | 14.799 | 9.788 | 17167.967 | null | 443.129 | 5.18 | 10.5 | 46.1 | null | 11.0 | 74.79 | 0.808 |
BIH | Europe | Bosnia and Herzegovina | 2020-07-27 | 10498.0 | 731.0 | 288.429 | 294.0 | 14.0 | 5.571 | 3199.815 | 222.81 | 87.914 | 89.612 | 4.267 | 1.698 | 1.18 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 59.26 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BWA | Africa | Botswana | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 13.89 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BWA | Africa | Botswana | 2020-07-09 | 314.0 | 0.0 | 12.429 | 1.0 | 0.0 | 0.0 | 133.525 | 0.0 | 5.285 | 0.425 | 0.0 | 0.0 | 0.86 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 2351625.0 | 4.044 | 25.8 | 3.941 | 2.242 | 15807.374 | null | 237.372 | 4.81 | 5.7 | 34.4 | null | 1.8 | 69.59 | 0.717 |
BRA | South America | Brazil | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 5.56 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRA | South America | Brazil | 2020-10-26 | 5409854.0 | 15726.0 | 22732.429 | 157397.0 | 263.0 | 460.143 | 25451.021 | 73.984 | 106.946 | 740.485 | 1.237 | 2.165 | 1.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.87 | 2.12559409e8 | 25.04 | 33.5 | 8.552 | 5.06 | 14103.452 | 3.4 | 177.961 | 8.11 | 10.1 | 17.9 | null | 2.2 | 75.88 | 0.759 |
BRN | Asia | Brunei | 2020-07-10 | 141.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 322.298 | 0.0 | 0.0 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 49.07 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BRN | Asia | Brunei | 2020-10-28 | 148.0 | 0.0 | 0.143 | 3.0 | 0.0 | 0.0 | 338.299 | 0.0 | 0.327 | 6.857 | 0.0 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 35.19 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BGR | Europe | Bulgaria | 2020-11-22 | 121820.0 | 1123.0 | 3367.0 | 2880.0 | 60.0 | 107.143 | 17531.98 | 161.619 | 484.569 | 414.481 | 8.635 | 15.42 | null | 408.0 | 58.718 | 6350.0 | 913.874 | null | null | null | null | 911936.0 | 5729.0 | 131.243 | 0.825 | 8291.0 | 1.193 | 0.406 | 2.5 | null | 48.15 | 6948445.0 | 65.18 | 44.7 | 20.801 | 13.272 | 18563.307 | 1.5 | 424.688 | 5.81 | 30.1 | 44.4 | null | 7.454 | 75.05 | 0.813 |
BFA | Africa | Burkina Faso | 2020-07-08 | 1003.0 | 0.0 | 5.857 | 53.0 | 0.0 | 0.0 | 47.983 | 0.0 | 0.28 | 2.535 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-07-21 | 1065.0 | 0.0 | 4.0 | 53.0 | 0.0 | 0.0 | 50.949 | 0.0 | 0.191 | 2.535 | 0.0 | 0.0 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
KHM | Asia | Cambodia | 2020-04-04 | 114.0 | 0.0 | 2.143 | 0.0 | 0.0 | 0.0 | 6.819 | 0.0 | 0.128 | null | 0.0 | 0.0 | 0.13 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-07-13 | 165.0 | 9.0 | 3.429 | 0.0 | 0.0 | 0.0 | 9.869 | 0.538 | 0.205 | null | 0.0 | 0.0 | 0.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38.89 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
KHM | Asia | Cambodia | 2020-07-14 | 165.0 | 0.0 | 3.429 | 0.0 | 0.0 | 0.0 | 9.869 | 0.0 | 0.205 | null | 0.0 | 0.0 | 0.37 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 38.89 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CAN | North America | Canada | 2020-03-07 | 54.0 | 5.0 | 4.857 | 0.0 | 0.0 | 0.0 | 1.431 | 0.132 | 0.129 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2.78 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-08-02 | 118768.0 | 245.0 | 425.571 | 8990.0 | 4.0 | 8.0 | 3146.826 | 6.491 | 11.276 | 238.195 | 0.106 | 0.212 | 0.99 | null | null | null | null | null | null | null | null | 4143459.0 | 44707.0 | 109.783 | 1.185 | 48787.0 | 1.293 | 9.0e-3 | 114.6 | null | 67.13 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | null | null | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CPV | Africa | Cape Verde | 2020-08-30 | 3852.0 | 74.0 | 49.0 | 40.0 | 1.0 | 0.429 | 6928.207 | 133.096 | 88.131 | 71.944 | 1.799 | 0.771 | 1.07 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.28 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
CHL | South America | Chile | 2020-05-06 | 25826.0 | 1032.0 | 1323.143 | 281.0 | 6.0 | 9.286 | 1351.0 | 53.986 | 69.216 | 14.7 | 0.314 | 0.486 | 1.47 | null | null | null | null | null | null | null | null | 224566.0 | 10013.0 | 11.747 | 0.524 | 8498.0 | 0.445 | 0.156 | 6.4 | null | 73.15 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-07-20 | 333029.0 | 2099.0 | 2196.0 | 8633.0 | 130.0 | 229.857 | 17421.289 | 109.802 | 114.876 | 451.606 | 6.801 | 12.024 | 0.86 | null | null | null | null | null | null | null | null | 1412367.0 | 16343.0 | 73.883 | 0.855 | 15732.0 | 0.823 | 0.14 | 7.2 | null | 84.72 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHL | South America | Chile | 2020-09-29 | 461300.0 | 1629.0 | 1825.286 | 12725.0 | 27.0 | 57.714 | 24131.354 | 85.216 | 95.484 | 665.665 | 1.412 | 3.019 | 1.0 | null | null | null | null | null | null | null | null | 3286783.0 | 28919.0 | 171.937 | 1.513 | 32323.0 | 1.691 | 5.6e-2 | 17.7 | null | 81.94 | 1.9116209e7 | 24.282 | 35.4 | 11.087 | 6.938 | 22767.037 | 1.3 | 127.993 | 8.46 | 34.2 | 41.5 | null | 2.11 | 80.18 | 0.843 |
CHN | Asia | China | 2020-09-20 | 90369.0 | 35.0 | 24.571 | 4737.0 | 0.0 | 0.429 | 62.786 | 2.4e-2 | 1.7e-2 | 3.291 | 0.0 | 0.0 | 0.93 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 81.94 | 1.439323774e9 | 147.674 | 38.7 | 10.641 | 5.929 | 15308.712 | 0.7 | 261.899 | 9.74 | 1.9 | 48.4 | null | 4.34 | 76.91 | 0.752 |
COL | South America | Colombia | 2020-04-10 | 2473.0 | 250.0 | 172.286 | 80.0 | 11.0 | 7.857 | 48.602 | 4.913 | 3.386 | 1.572 | 0.216 | 0.154 | 1.43 | null | null | null | null | null | null | null | null | 37876.0 | 2683.0 | 0.744 | 5.3e-2 | 2161.0 | 4.2e-2 | null | null | null | 87.96 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-06-29 | 95043.0 | 3274.0 | 3408.571 | 3274.0 | 96.0 | 137.714 | 1867.878 | 64.344 | 66.989 | 64.344 | 1.887 | 2.706 | 1.24 | null | null | null | null | null | null | null | null | 743437.0 | 17609.0 | 14.611 | 0.346 | 17593.0 | 0.346 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-09-05 | 658456.0 | 8393.0 | 8367.429 | 21156.0 | 268.0 | 299.0 | 12940.619 | 164.947 | 164.445 | 415.778 | 5.267 | 5.876 | 0.92 | null | null | null | null | null | null | null | null | 2753032.0 | 24609.0 | 54.105 | 0.484 | 25744.0 | 0.506 | null | null | null | 71.3 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-11-27 | 1290510.0 | 10023.0 | 8152.286 | 36214.0 | 195.0 | 183.571 | 25362.36 | 196.982 | 160.217 | 711.713 | 3.832 | 3.608 | null | null | null | null | null | null | null | null | null | 4994892.0 | 32292.0 | 98.164 | 0.635 | 29173.0 | 0.573 | null | null | null | 65.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
CRI | North America | Costa Rica | 2020-07-06 | 5241.0 | 245.0 | 281.714 | 23.0 | 4.0 | 1.143 | 1028.834 | 48.095 | 55.302 | 4.515 | 0.785 | 0.224 | 1.46 | null | null | null | null | null | null | null | null | 38920.0 | 1000.0 | 7.64 | 0.196 | 976.0 | 0.192 | null | null | null | 73.61 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
HRV | Europe | Croatia | 2020-04-26 | 2030.0 | 14.0 | 22.714 | 55.0 | 1.0 | 1.143 | 494.487 | 3.41 | 5.533 | 13.397 | 0.244 | 0.278 | 0.5 | null | null | 314.0 | 76.487 | null | null | 102.726 | 25.023 | 31622.0 | 709.0 | 7.703 | 0.173 | 1062.0 | 0.259 | 2.1e-2 | 46.8 | null | 96.3 | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
HRV | Europe | Croatia | 2020-12-01 | 131342.0 | 2900.0 | 3332.571 | 1861.0 | 75.0 | 59.429 | 31993.526 | 706.409 | 811.779 | 453.32 | 18.269 | 14.476 | null | null | null | null | null | null | null | null | null | 759014.0 | 9668.0 | 184.888 | 2.355 | 9567.0 | 2.33 | 0.348 | 2.9 | null | null | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
CYP | Europe | Cyprus | 2020-05-23 | 927.0 | 0.0 | 1.857 | 17.0 | 0.0 | 0.0 | 1058.341 | 0.0 | 2.12 | 19.409 | 0.0 | 0.0 | 0.84 | null | null | null | null | null | null | null | null | 99624.0 | 2414.0 | 113.739 | 2.756 | 2062.0 | 2.354 | 1.0e-3 | 1110.4 | null | 76.85 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-04-23 | 7187.0 | 55.0 | 107.714 | 210.0 | 2.0 | 5.857 | 671.119 | 5.136 | 10.058 | 19.61 | 0.187 | 0.547 | 0.69 | 78.0 | 7.284 | 336.0 | 31.376 | null | null | null | null | 207702.0 | 7901.0 | 19.395 | 0.738 | 7078.0 | 0.661 | 1.5e-2 | 65.7 | null | 60.19 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-05-09 | 8095.0 | 18.0 | 48.571 | 276.0 | 3.0 | 4.429 | 755.908 | 1.681 | 4.536 | 25.773 | 0.28 | 0.414 | 0.78 | 39.0 | 3.642 | 173.0 | 16.155 | null | null | null | null | 307222.0 | 3788.0 | 28.688 | 0.354 | 6424.0 | 0.6 | 8.0e-3 | 132.3 | null | 57.41 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-08-20 | 21045.0 | 247.0 | 234.857 | 406.0 | 2.0 | 2.143 | 1965.173 | 23.065 | 21.931 | 37.912 | 0.187 | 0.2 | 1.19 | 24.0 | 2.241 | 117.0 | 10.925 | null | null | null | null | 832270.0 | 8234.0 | 77.717 | 0.769 | 6668.0 | 0.623 | 3.5e-2 | 28.4 | null | 36.11 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
CZE | Europe | Czech Republic | 2020-10-22 | 223065.0 | 14150.0 | 10579.286 | 1845.0 | 106.0 | 87.857 | 20829.711 | 1321.321 | 987.889 | 172.285 | 9.898 | 8.204 | 1.4 | 751.0 | 70.128 | 5044.0 | 471.006 | null | null | null | null | 1980835.0 | 46425.0 | 184.969 | 4.335 | 35516.0 | 3.316 | 0.298 | 3.4 | null | 67.59 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
DNK | Europe | Denmark | 2020-05-04 | 9868.0 | 147.0 | 138.857 | 493.0 | 9.0 | 9.429 | 1703.67 | 25.379 | 23.973 | 85.114 | 1.554 | 1.628 | 0.88 | 57.0 | 9.841 | 252.0 | 43.507 | null | null | null | null | 304058.0 | 17780.0 | 52.494 | 3.07 | 14381.0 | 2.483 | 1.0e-2 | 103.6 | null | 68.52 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-05-29 | 11793.0 | 81.0 | 52.143 | 568.0 | 0.0 | 1.0 | 2036.013 | 13.984 | 9.002 | 98.063 | 0.0 | 0.173 | 0.84 | 18.0 | 3.108 | 106.0 | 18.3 | null | null | null | null | 615238.0 | 11781.0 | 106.218 | 2.034 | 13065.0 | 2.256 | 4.0e-3 | 250.6 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-06-16 | 12450.0 | 33.0 | 35.571 | 598.0 | 0.0 | 0.714 | 2149.441 | 5.697 | 6.141 | 103.242 | 0.0 | 0.123 | 0.96 | 8.0 | 1.381 | 43.0 | 7.424 | null | null | null | null | 836877.0 | 18201.0 | 144.483 | 3.142 | 14195.0 | 2.451 | 3.0e-3 | 399.1 | null | 57.41 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DOM | North America | Dominican Republic | 2020-10-20 | 121973.0 | 306.0 | 423.571 | 2204.0 | 1.0 | 3.0 | 11243.923 | 28.208 | 39.046 | 203.173 | 9.2e-2 | 0.277 | 0.97 | null | null | null | null | null | null | null | null | null | null | null | null | 3191.0 | 0.294 | 0.133 | 7.5 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-27 | 125008.0 | 165.0 | 433.571 | 2226.0 | 1.0 | 3.143 | 11523.701 | 15.21 | 39.968 | 205.201 | 9.2e-2 | 0.29 | 1.0 | null | null | null | null | null | null | null | null | 578567.0 | 6061.0 | 53.334 | 0.559 | 3891.0 | 0.359 | 0.111 | 9.0 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
DOM | North America | Dominican Republic | 2020-10-30 | 126332.0 | 419.0 | 494.143 | 2236.0 | 2.0 | 3.429 | 11645.752 | 38.625 | 45.552 | 206.123 | 0.184 | 0.316 | 1.01 | null | null | null | null | null | null | null | null | 594704.0 | null | 54.822 | null | 4588.0 | 0.423 | 0.108 | 9.3 | null | 67.59 | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
ECU | South America | Ecuador | 2020-05-03 | 29538.0 | 2074.0 | 974.143 | 1564.0 | 193.0 | 141.143 | 1674.199 | 117.553 | 55.214 | 88.647 | 10.939 | 8.0 | 0.93 | null | null | null | null | null | null | null | null | 43727.0 | 4803.0 | 2.478 | 0.272 | 2076.0 | 0.118 | null | null | null | 93.52 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
ECU | South America | Ecuador | 2020-07-12 | 67870.0 | 661.0 | 844.571 | 5047.0 | 16.0 | 38.0 | 3846.838 | 37.465 | 47.87 | 286.061 | 0.907 | 2.154 | 1.13 | null | null | null | null | null | null | null | null | 139271.0 | 1852.0 | 7.894 | 0.105 | 1934.0 | 0.11 | null | null | null | 79.63 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-04-16 | 2673.0 | 168.0 | 139.143 | 196.0 | 13.0 | 11.143 | 26.12 | 1.642 | 1.36 | 1.915 | 0.127 | 0.109 | 1.34 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-06-20 | 53758.0 | 1547.0 | 1539.714 | 2106.0 | 89.0 | 88.857 | 525.317 | 15.117 | 15.046 | 20.58 | 0.87 | 0.868 | 1.05 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 71.3 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
SLV | North America | El Salvador | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 41.67 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
SLV | North America | El Salvador | 2020-11-05 | 34782.0 | 767.0 | 191.0 | 997.0 | 5.0 | 4.286 | 5362.461 | 118.251 | 29.447 | 153.711 | 0.771 | 0.661 | 1.12 | null | null | null | null | null | null | null | null | null | null | null | null | 2406.0 | 0.371 | 7.9e-2 | 12.6 | null | 52.78 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-03-23 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 0.282 | 0.0 | 4.0e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 53.7 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-04-19 | 39.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 10.997 | 0.0 | 0.201 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-03-19 | 267.0 | 9.0 | 35.857 | 0.0 | 0.0 | 0.0 | 201.276 | 6.785 | 27.031 | null | 0.0 | 0.0 | 1.35 | 0.0 | 0.0 | 20.0 | 15.077 | null | null | null | null | 2955.0 | 378.0 | 2.228 | 0.285 | 330.0 | 0.249 | 0.109 | 9.2 | null | 50.0 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-05-26 | 1834.0 | 10.0 | 6.143 | 65.0 | 0.0 | 0.143 | 1382.545 | 7.538 | 4.631 | 49.0 | 0.0 | 0.108 | 0.98 | 1.0 | 0.754 | 31.0 | 23.369 | null | null | null | null | 89563.0 | 1841.0 | 67.516 | 1.388 | 1244.0 | 0.938 | 5.0e-3 | 202.5 | null | 50.0 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-11-07 | 5933.0 | 228.0 | 146.857 | 73.0 | 0.0 | 0.0 | 4472.541 | 171.876 | 110.707 | 55.03 | 0.0 | 0.0 | 1.51 | 6.0 | 4.523 | 62.0 | 46.738 | null | null | null | null | 366885.0 | 3507.0 | 276.573 | 2.644 | 3667.0 | 2.764 | 4.0e-2 | 25.0 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-11-11 | 6508.0 | 132.0 | 167.857 | 76.0 | 0.0 | 0.429 | 4906.0 | 99.507 | 126.538 | 57.292 | 0.0 | 0.323 | 1.46 | 9.0 | 6.785 | 77.0 | 58.046 | null | null | null | null | 385182.0 | 5232.0 | 290.366 | 3.944 | 4386.0 | 3.306 | 3.8e-2 | 26.1 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-11-20 | 9076.0 | 361.0 | 275.429 | 87.0 | 1.0 | 1.0 | 6841.864 | 272.137 | 207.629 | 65.584 | 0.754 | 0.754 | 1.45 | 16.0 | 12.061 | 154.0 | 116.092 | null | null | null | null | 434619.0 | 5428.0 | 327.634 | 4.092 | 5549.0 | 4.183 | 5.0e-2 | 20.1 | null | 37.96 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-08-01 | 17999.0 | 469.0 | 678.714 | 284.0 | 10.0 | 10.714 | 156.563 | 4.08 | 5.904 | 2.47 | 8.7e-2 | 9.3e-2 | 1.12 | null | null | null | null | null | null | null | null | 429712.0 | 7358.0 | 3.738 | 6.4e-2 | 8129.0 | 7.1e-2 | 8.3e-2 | 12.0 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ALB | Europe | Albania | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
ALB | Europe | Albania | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2877800.0 | 104.871 | 38.0 | 13.188 | 8.643 | 11803.431 | 1.1 | 304.195 | 10.08 | 7.1 | 51.2 | null | 2.89 | 78.57 | 0.785 |
DZA | Africa | Algeria | 2020-04-25 | 3256.0 | 129.0 | 103.143 | 419.0 | 4.0 | 7.429 | 74.251 | 2.942 | 2.352 | 9.555 | 9.1e-2 | 0.169 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 76.85 | 4.3851043e7 | 17.348 | 29.1 | 6.211 | 3.857 | 13913.839 | 0.5 | 278.364 | 6.73 | 0.7 | 30.4 | 83.741 | 1.9 | 76.88 | 0.754 |
ARG | South America | Argentina | 2020-07-11 | 97509.0 | 3449.0 | 3161.857 | 1810.0 | 36.0 | 47.0 | 2157.48 | 76.312 | 69.959 | 40.048 | 0.797 | 1.04 | 1.21 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 92.59 | 4.5195777e7 | 16.177 | 31.9 | 11.198 | 7.441 | 18933.907 | 0.6 | 191.032 | 5.5 | 16.2 | 27.7 | null | 5.0 | 76.67 | 0.825 |
ARM | Asia | Armenia | 2020-08-25 | 42936.0 | 111.0 | 155.714 | 858.0 | 4.0 | 3.714 | 14489.575 | 37.459 | 52.549 | 289.549 | 1.35 | 1.253 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
ARM | Asia | Armenia | 2020-10-19 | 65460.0 | 766.0 | 1234.143 | 1091.0 | 10.0 | 9.286 | 22090.729 | 258.501 | 416.485 | 368.179 | 3.375 | 3.134 | 1.45 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 2963234.0 | 102.931 | 35.7 | 11.232 | 7.571 | 8787.58 | 1.8 | 341.01 | 7.11 | 1.5 | 52.1 | 94.043 | 4.2 | 75.09 | 0.755 |
AUS | Oceania | Australia | 2020-11-14 | 27711.0 | 29.0 | 7.571 | 907.0 | 0.0 | 0.0 | 1086.711 | 1.137 | 0.297 | 35.569 | 0.0 | 0.0 | 1.43 | null | null | null | null | null | null | null | null | null | null | null | null | 40685.0 | 1.595 | 0.0 | 5373.8 | null | 52.31 | 2.5499881e7 | 3.202 | 37.9 | 15.504 | 10.129 | 44648.71 | 0.5 | 107.791 | 5.07 | 13.0 | 16.5 | null | 3.84 | 83.44 | 0.939 |
AUT | Europe | Austria | 2020-03-10 | 182.0 | 51.0 | 23.0 | 0.0 | 0.0 | 0.0 | 20.208 | 5.663 | 2.554 | null | 0.0 | 0.0 | 2.84 | null | null | null | null | null | null | null | null | 5026.0 | 292.0 | 0.558 | 3.2e-2 | 335.0 | 3.7e-2 | 6.9e-2 | 14.6 | null | 19.44 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-04-14 | 14226.0 | 185.0 | 226.714 | 384.0 | 16.0 | 20.143 | 1579.543 | 20.541 | 25.173 | 42.636 | 1.777 | 2.237 | 0.52 | 243.0 | 26.981 | 759.0 | 84.273 | null | null | null | null | 151796.0 | 3384.0 | 16.854 | 0.376 | 5223.0 | 0.58 | 4.3e-2 | 23.0 | null | 77.78 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AUT | Europe | Austria | 2020-11-06 | 138979.0 | 6464.0 | 5629.0 | 1340.0 | 72.0 | 36.857 | 15431.138 | 717.712 | 625.0 | 148.783 | 7.994 | 4.092 | 1.42 | 431.0 | 47.855 | 2504.0 | 278.025 | null | null | null | null | 2396015.0 | 33067.0 | 266.035 | 3.672 | 27432.0 | 3.046 | 0.205 | 4.9 | null | 75.0 | 9006400.0 | 106.749 | 44.4 | 19.202 | 13.748 | 45436.686 | 0.7 | 145.183 | 6.35 | 28.4 | 30.9 | null | 7.37 | 81.54 | 0.908 |
AZE | Asia | Azerbaijan | 2020-11-04 | 59509.0 | 1227.0 | 1053.143 | 780.0 | 12.0 | 11.571 | 5869.215 | 121.016 | 103.869 | 76.929 | 1.184 | 1.141 | 1.34 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 64.35 | 1.0139175e7 | 119.309 | 32.4 | 6.018 | 3.871 | 15847.419 | null | 559.812 | 7.11 | 0.3 | 42.5 | 83.241 | 4.7 | 73.0 | 0.757 |
BHS | North America | Bahamas | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-04-26 | 80.0 | 2.0 | 3.571 | 11.0 | 0.0 | 0.286 | 203.434 | 5.086 | 9.082 | 27.972 | 0.0 | 0.727 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-05-10 | 92.0 | 0.0 | 1.286 | 11.0 | 0.0 | 0.0 | 233.949 | 0.0 | 3.269 | 27.972 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHS | North America | Bahamas | 2020-06-21 | 104.0 | 0.0 | 0.143 | 11.0 | 0.0 | 0.0 | 264.464 | 0.0 | 0.363 | 27.972 | 0.0 | 0.0 | 9.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 393248.0 | 39.497 | 34.3 | 8.996 | 5.2 | 27717.847 | null | 235.954 | 13.17 | 3.1 | 20.4 | null | 2.9 | 73.92 | 0.807 |
BHR | Asia | Bahrain | 2020-04-15 | 1671.0 | 143.0 | 121.143 | 7.0 | 0.0 | 0.286 | 982.027 | 84.039 | 71.194 | 4.114 | 0.0 | 0.168 | 1.35 | null | null | null | null | null | null | null | null | 73272.0 | 2459.0 | 43.061 | 1.445 | 2924.0 | 1.718 | 4.1e-2 | 24.1 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-05-19 | 7532.0 | 348.0 | 285.857 | 12.0 | 0.0 | 0.429 | 4426.466 | 204.515 | 167.995 | 7.052 | 0.0 | 0.252 | 1.22 | null | null | null | null | null | null | null | null | 248205.0 | 5174.0 | 145.867 | 3.041 | 7187.0 | 4.224 | 4.0e-2 | 25.1 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BHR | Asia | Bahrain | 2020-07-02 | 27837.0 | 423.0 | 536.571 | 94.0 | 2.0 | 3.286 | 16359.472 | 248.592 | 315.337 | 55.243 | 1.175 | 1.931 | 1.05 | null | null | null | null | null | null | null | null | 564365.0 | 10126.0 | 331.671 | 5.951 | 8800.0 | 5.172 | 6.1e-2 | 16.4 | null | 75.0 | 1701583.0 | 1935.907 | 32.4 | 2.372 | 1.387 | 43290.705 | null | 151.689 | 16.52 | 5.8 | 37.6 | null | 2.0 | 77.29 | 0.846 |
BGD | Asia | Bangladesh | 2020-07-15 | 193590.0 | 3533.0 | 3065.143 | 2457.0 | 33.0 | 37.143 | 1175.486 | 21.453 | 18.612 | 14.919 | 0.2 | 0.226 | 0.95 | null | null | null | null | null | null | null | null | 983365.0 | 14002.0 | 5.971 | 8.5e-2 | 13036.0 | 7.9e-2 | 0.235 | 4.3 | null | 74.54 | 1.64689383e8 | 1265.036 | 27.5 | 5.098 | 3.262 | 3523.984 | 14.8 | 298.003 | 8.38 | 1.0 | 44.7 | 34.808 | 0.8 | 72.59 | 0.608 |
BRB | North America | Barbados | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BRB | North America | Barbados | 2020-04-11 | 68.0 | 1.0 | 2.286 | 4.0 | 0.0 | 0.571 | 236.628 | 3.48 | 7.954 | 13.919 | 0.0 | 1.988 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 88.89 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BRB | North America | Barbados | 2020-04-17 | 75.0 | 0.0 | 1.143 | 5.0 | 0.0 | 0.143 | 260.987 | 0.0 | 3.977 | 17.399 | 0.0 | 0.497 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 88.89 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BRB | North America | Barbados | 2020-04-30 | 81.0 | 1.0 | 0.714 | 7.0 | 0.0 | 0.143 | 281.866 | 3.48 | 2.486 | 24.359 | 0.0 | 0.497 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 88.89 | 287371.0 | 664.463 | 39.8 | 14.952 | 9.473 | 16978.068 | null | 170.05 | 13.57 | 1.9 | 14.5 | 88.469 | 5.8 | 79.19 | 0.8 |
BEL | Europe | Belgium | 2020-05-23 | 56810.0 | 299.0 | 260.143 | 9237.0 | 25.0 | 33.143 | 4901.802 | 25.799 | 22.446 | 797.007 | 2.157 | 2.86 | 0.73 | 256.0 | 22.089 | 1296.0 | 111.824 | null | null | null | null | 806344.0 | 9227.0 | 69.575 | 0.796 | 12665.0 | 1.093 | 2.1e-2 | 48.7 | null | 75.0 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEL | Europe | Belgium | 2020-08-10 | 74620.0 | 468.0 | 615.143 | 9879.0 | 7.0 | 4.143 | 6438.522 | 40.381 | 53.077 | 852.401 | 0.604 | 0.357 | 1.15 | 73.0 | 6.299 | 312.0 | 26.921 | null | null | null | null | 1899357.0 | 17036.0 | 163.884 | 1.47 | 20216.0 | 1.744 | 3.0e-2 | 32.9 | null | 64.81 | 1.1589616e7 | 375.564 | 41.8 | 18.571 | 12.849 | 42658.576 | 0.2 | 114.898 | 4.29 | 25.1 | 31.4 | null | 5.64 | 81.63 | 0.916 |
BEN | Africa | Benin | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-11-08 | 2745.0 | 0.0 | 8.857 | 43.0 | 0.0 | 0.286 | 226.425 | 0.0 | 0.731 | 3.547 | 0.0 | 2.4e-2 | 0.91 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 31.48 | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BEN | Africa | Benin | 2020-11-24 | 2916.0 | 0.0 | 4.571 | 43.0 | 0.0 | 0.0 | 240.531 | 0.0 | 0.377 | 3.547 | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.2123198e7 | 99.11 | 18.8 | 3.244 | 1.942 | 2064.236 | 49.6 | 235.848 | 0.99 | 0.6 | 12.3 | 11.035 | 0.5 | 61.77 | 0.515 |
BIH | Europe | Bosnia and Herzegovina | 2020-11-04 | 55598.0 | 1776.0 | 1551.571 | 1358.0 | 41.0 | 28.143 | 16946.399 | 541.329 | 472.923 | 413.922 | 12.497 | 8.578 | 1.17 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 40.74 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BIH | Europe | Bosnia and Herzegovina | 2020-11-25 | 83328.0 | 1589.0 | 1107.286 | 2429.0 | 35.0 | 48.571 | 25398.567 | 484.331 | 337.503 | 740.365 | 10.668 | 14.805 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 3280815.0 | 68.496 | 42.5 | 16.569 | 10.711 | 11713.895 | 0.2 | 329.635 | 10.08 | 30.2 | 47.7 | 97.164 | 3.5 | 77.4 | 0.768 |
BRN | Asia | Brunei | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 19.44 | 437483.0 | 81.347 | 32.4 | 4.591 | 2.382 | 71809.251 | null | 201.285 | 12.79 | 2.0 | 30.9 | null | 2.7 | 75.86 | 0.853 |
BFA | Africa | Burkina Faso | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-05-15 | 780.0 | 7.0 | 5.143 | 51.0 | 0.0 | 0.429 | 37.315 | 0.335 | 0.246 | 2.44 | 0.0 | 2.1e-2 | 0.95 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 60.19 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
BFA | Africa | Burkina Faso | 2020-08-20 | 1297.0 | 12.0 | 9.857 | 55.0 | 0.0 | 0.143 | 62.048 | 0.574 | 0.472 | 2.631 | 0.0 | 7.0e-3 | 0.98 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 48.15 | 2.0903278e7 | 70.151 | 17.6 | 2.409 | 1.358 | 1703.102 | 43.7 | 269.048 | 2.42 | 1.6 | 23.9 | 11.877 | 0.4 | 61.58 | 0.423 |
KHM | Asia | Cambodia | 2020-04-28 | 122.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.297 | 0.0 | 0.0 | null | 0.0 | 0.0 | 5.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 57.41 | 1.6718971e7 | 90.672 | 25.6 | 4.412 | 2.385 | 3645.07 | null | 270.892 | 4.0 | 2.0 | 33.7 | 66.229 | 0.8 | 69.82 | 0.582 |
CAN | North America | Canada | 2020-03-28 | 5576.0 | 894.0 | 614.143 | 61.0 | 7.0 | 6.0 | 147.739 | 23.687 | 16.272 | 1.616 | 0.185 | 0.159 | 2.11 | null | null | null | null | null | null | null | null | 187448.0 | 16804.0 | 4.967 | 0.445 | 14081.0 | 0.373 | 4.4e-2 | 22.9 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-04-20 | 37658.0 | 2025.0 | 1711.143 | 1727.0 | 162.0 | 135.143 | 997.77 | 53.654 | 45.338 | 45.758 | 4.292 | 3.581 | 1.19 | null | null | null | null | null | null | null | null | 559578.0 | 10229.0 | 14.826 | 0.271 | 17443.0 | 0.462 | 9.8e-2 | 10.2 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-04-29 | 52865.0 | 1715.0 | 1600.286 | 3155.0 | 172.0 | 153.857 | 1400.688 | 45.44 | 42.4 | 83.594 | 4.557 | 4.077 | 1.04 | null | null | null | null | null | null | null | null | 779613.0 | 24813.0 | 20.656 | 0.657 | 23917.0 | 0.634 | 6.7e-2 | 14.9 | null | 72.69 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-06-23 | 103767.0 | 349.0 | 382.857 | 8512.0 | 18.0 | 34.429 | 2749.366 | 9.247 | 10.144 | 225.53 | 0.477 | 0.912 | 0.82 | null | null | null | null | null | null | null | null | 2482869.0 | 38751.0 | 65.785 | 1.027 | 38020.0 | 1.007 | 1.0e-2 | 99.3 | null | 68.98 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-07-11 | 109150.0 | 166.0 | 280.714 | 8818.0 | 7.0 | 12.286 | 2891.992 | 4.398 | 7.438 | 233.638 | 0.185 | 0.326 | 1.03 | null | null | null | null | null | null | null | null | 3183516.0 | 40814.0 | 84.349 | 1.081 | 38366.0 | 1.017 | 7.0e-3 | 136.7 | null | 67.13 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-08-11 | 122389.0 | 336.0 | 390.0 | 9038.0 | 4.0 | 4.714 | 3242.766 | 8.903 | 10.333 | 239.467 | 0.106 | 0.125 | 1.01 | null | null | null | null | null | null | null | null | 4541747.0 | 36529.0 | 120.336 | 0.968 | 43604.0 | 1.155 | 9.0e-3 | 111.8 | null | 67.13 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CAN | North America | Canada | 2020-11-28 | 368279.0 | 5675.0 | 5584.0 | 11993.0 | 77.0 | 76.857 | 9757.762 | 150.362 | 147.951 | 317.761 | 2.04 | 2.036 | null | null | null | null | null | null | null | null | null | 1.1344925e7 | 82884.0 | 300.59 | 2.196 | 74577.0 | 1.976 | 7.5e-2 | 13.4 | null | 64.35 | 3.7742157e7 | 4.037 | 41.4 | 16.984 | 10.797 | 44017.591 | 0.5 | 105.599 | 7.37 | 12.0 | 16.6 | null | 2.5 | 82.43 | 0.926 |
CPV | Africa | Cape Verde | 2020-06-27 | 1091.0 | 64.0 | 32.571 | 12.0 | 2.0 | 0.571 | 1962.273 | 115.11 | 58.583 | 21.583 | 3.597 | 1.028 | 1.09 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 79.17 | 555988.0 | 135.58 | 25.7 | 4.46 | 3.437 | 6222.554 | null | 182.219 | 2.42 | 2.1 | 16.5 | null | 2.1 | 72.98 | 0.654 |
COL | South America | Colombia | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-07-27 | 257101.0 | 8125.0 | 7585.143 | 8777.0 | 252.0 | 264.0 | 5052.799 | 159.68 | 149.071 | 172.494 | 4.953 | 5.188 | 1.19 | null | null | null | null | null | null | null | null | 1439436.0 | 30312.0 | 28.289 | 0.596 | 28986.0 | 0.57 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-08-17 | 476660.0 | 8328.0 | 11291.0 | 15372.0 | 275.0 | 316.857 | 9367.787 | 163.67 | 221.902 | 302.106 | 5.405 | 6.227 | 1.03 | null | null | null | null | null | null | null | null | 2210712.0 | 32723.0 | 43.447 | 0.643 | 38283.0 | 0.752 | null | null | null | 87.04 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COL | South America | Colombia | 2020-11-07 | 1136447.0 | 8714.0 | 8894.714 | 32595.0 | 190.0 | 183.0 | 22334.563 | 171.256 | 174.808 | 640.589 | 3.734 | 3.596 | 0.98 | null | null | null | null | null | null | null | null | 4414177.0 | 27531.0 | 86.752 | 0.541 | 30210.0 | 0.594 | null | null | null | 65.74 | 5.0882884e7 | 44.223 | 32.2 | 7.646 | 4.312 | 13254.949 | 4.5 | 124.24 | 7.44 | 4.7 | 13.5 | 65.386 | 1.71 | 77.29 | 0.747 |
COM | Africa | Comoros | 2020-09-13 | 456.0 | 0.0 | 0.571 | 7.0 | 0.0 | 0.0 | 524.382 | 0.0 | 0.657 | 8.05 | 0.0 | 0.0 | 0.65 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
COM | Africa | Comoros | 2020-11-18 | 591.0 | 0.0 | 3.143 | 7.0 | 0.0 | 0.0 | 679.627 | 0.0 | 3.614 | 8.05 | 0.0 | 0.0 | 0.64 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 869595.0 | 437.352 | 20.4 | 2.963 | 1.726 | 1413.89 | 18.1 | 261.516 | 11.88 | 4.4 | 23.6 | 15.574 | 2.2 | 64.32 | 0.503 |
CRI | North America | Costa Rica | 2020-03-26 | 231.0 | 30.0 | 23.143 | 2.0 | 0.0 | 0.143 | 45.346 | 5.889 | 4.543 | 0.393 | 0.0 | 2.8e-2 | 1.09 | null | null | null | null | null | null | null | null | 2622.0 | 677.0 | 0.515 | 0.133 | 226.0 | 4.4e-2 | null | null | null | 71.3 | 5094114.0 | 96.079 | 33.6 | 9.468 | 5.694 | 15524.995 | 1.3 | 137.973 | 8.78 | 6.4 | 17.4 | 83.841 | 1.13 | 80.28 | 0.794 |
HRV | Europe | Croatia | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 11.11 | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
HRV | Europe | Croatia | 2020-03-03 | 9.0 | 2.0 | 1.143 | 0.0 | 0.0 | 0.0 | 2.192 | 0.487 | 0.278 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 247.0 | null | 6.0e-2 | null | null | null | null | null | null | 13.89 | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
HRV | Europe | Croatia | 2020-07-20 | 4370.0 | 25.0 | 85.0 | 122.0 | 2.0 | 0.429 | 1064.486 | 6.09 | 20.705 | 29.718 | 0.487 | 0.104 | 0.95 | null | null | 147.0 | 35.808 | null | null | null | null | 104132.0 | 1028.0 | 25.365 | 0.25 | 1422.0 | 0.346 | 6.0e-2 | 16.7 | null | 46.3 | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
HRV | Europe | Croatia | 2020-10-29 | 43775.0 | 2776.0 | 1989.286 | 511.0 | 18.0 | 15.0 | 10663.128 | 676.204 | 484.569 | 124.474 | 4.385 | 3.654 | 1.52 | null | null | 985.0 | 239.936 | null | null | null | null | 475994.0 | 9679.0 | 115.947 | 2.358 | 7764.0 | 1.891 | 0.256 | 3.9 | null | 31.48 | 4105268.0 | 73.726 | 44.0 | 19.724 | 13.053 | 22669.797 | 0.7 | 253.782 | 5.59 | 34.3 | 39.9 | null | 5.54 | 78.49 | 0.831 |
CYP | Europe | Cyprus | 2020-07-28 | 1067.0 | 7.0 | 3.857 | 19.0 | 0.0 | 0.0 | 1218.177 | 7.992 | 4.404 | 21.692 | 0.0 | 0.0 | 1.74 | null | null | null | null | null | null | null | null | 198446.0 | 1974.0 | 226.563 | 2.254 | 1652.0 | 1.886 | 2.0e-3 | 428.3 | null | 47.22 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CYP | Europe | Cyprus | 2020-08-23 | 1421.0 | 4.0 | 11.714 | 20.0 | 0.0 | 0.0 | 1622.333 | 4.567 | 13.374 | 22.834 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | 4.0 | 4.567 | 280418.0 | 3281.0 | 320.149 | 3.746 | 3486.0 | 3.98 | 3.0e-3 | 297.6 | null | 50.0 | 875899.0 | 127.657 | 37.3 | 13.416 | 8.563 | 32415.132 | null | 141.171 | 9.24 | 19.6 | 52.7 | null | 3.4 | 80.98 | 0.869 |
CZE | Europe | Czech Republic | 2020-08-15 | 19891.0 | 198.0 | 236.571 | 395.0 | 1.0 | 0.857 | 1857.413 | 18.489 | 22.091 | 36.885 | 9.3e-2 | 8.0e-2 | 1.09 | 27.0 | 2.521 | 104.0 | 9.711 | null | null | null | null | 798567.0 | 5033.0 | 74.57 | 0.47 | 6610.0 | 0.617 | 3.6e-2 | 27.9 | null | 36.11 | 1.0708982e7 | 137.176 | 43.3 | 19.027 | 11.58 | 32605.906 | null | 227.485 | 6.82 | 30.5 | 38.3 | null | 6.63 | 79.38 | 0.888 |
DNK | Europe | Denmark | 2020-09-10 | 19353.0 | 317.0 | 221.857 | 629.0 | 1.0 | 0.429 | 3341.216 | 54.729 | 38.303 | 108.594 | 0.173 | 7.4e-2 | 1.33 | 5.0 | 0.863 | 35.0 | 6.043 | null | null | null | null | 2896298.0 | 52153.0 | 500.034 | 9.004 | 42228.0 | 7.29 | 5.0e-3 | 190.3 | null | 47.69 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DNK | Europe | Denmark | 2020-10-04 | 30168.0 | 379.0 | 436.714 | 658.0 | 4.0 | 1.286 | 5208.381 | 65.433 | 75.397 | 113.601 | 0.691 | 0.222 | 1.12 | 18.0 | 3.108 | 105.0 | 18.128 | null | null | 128.692 | 22.218 | 4041501.0 | 33949.0 | 697.749 | 5.861 | 43922.0 | 7.583 | 1.0e-2 | 100.6 | null | 50.93 | 5792203.0 | 136.52 | 42.3 | 19.677 | 12.325 | 46682.515 | 0.2 | 114.767 | 6.41 | 19.3 | 18.8 | null | 2.5 | 80.9 | 0.929 |
DOM | North America | Dominican Republic | 2020-12-03 | 146009.0 | 812.0 | 726.714 | 2335.0 | 1.0 | 2.571 | 13459.651 | 74.853 | 66.991 | 215.249 | 9.2e-2 | 0.237 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 1.0847904e7 | 222.873 | 27.6 | 6.981 | 4.419 | 14600.861 | 1.6 | 266.653 | 8.2 | 8.5 | 19.1 | 55.182 | 1.6 | 74.08 | 0.736 |
ECU | South America | Ecuador | 2020-07-26 | 80694.0 | 658.0 | 954.429 | 5515.0 | 8.0 | 28.857 | 4573.696 | 37.295 | 54.097 | 312.587 | 0.453 | 1.636 | 1.02 | null | null | null | null | null | null | null | null | 169605.0 | 1823.0 | 9.613 | 0.103 | 2208.0 | 0.125 | null | null | null | 78.24 | 1.764306e7 | 66.939 | 28.1 | 7.104 | 4.458 | 10581.936 | 3.6 | 140.448 | 5.55 | 2.0 | 12.3 | 80.635 | 1.5 | 77.01 | 0.752 |
EGY | Africa | Egypt | 2020-03-05 | 3.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.9e-2 | 1.0e-2 | 3.0e-3 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-04-05 | 1173.0 | 103.0 | 80.571 | 78.0 | 7.0 | 5.429 | 11.462 | 1.007 | 0.787 | 0.762 | 6.8e-2 | 5.3e-2 | 1.55 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 84.26 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
EGY | Africa | Egypt | 2020-09-21 | 102141.0 | 126.0 | 137.714 | 5787.0 | 17.0 | 18.0 | 998.11 | 1.231 | 1.346 | 56.55 | 0.166 | 0.176 | 0.9 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 62.96 | 1.02334403e8 | 97.999 | 25.3 | 5.159 | 2.891 | 10550.206 | 1.3 | 525.432 | 17.31 | 0.2 | 50.1 | 89.827 | 1.6 | 71.99 | 0.696 |
SLV | North America | El Salvador | 2020-06-22 | 4808.0 | 182.0 | 140.286 | 107.0 | 9.0 | 4.714 | 741.266 | 28.06 | 21.628 | 16.497 | 1.388 | 0.727 | 1.12 | null | null | null | null | null | null | null | null | 145341.0 | 2455.0 | 22.408 | 0.378 | 2448.0 | 0.377 | 5.7e-2 | 17.5 | null | 90.74 | 6486201.0 | 307.811 | 27.6 | 8.273 | 5.417 | 7292.458 | 2.2 | 167.295 | 8.87 | 2.5 | 18.8 | 90.65 | 1.3 | 73.32 | 0.674 |
ERI | Africa | Eritrea | 2020-03-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 22.22 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
ERI | Africa | Eritrea | 2020-07-05 | 215.0 | 0.0 | 3.429 | 0.0 | 0.0 | 0.0 | 60.624 | 0.0 | 0.967 | null | 0.0 | 0.0 | 0.35 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 93.52 | 3546427.0 | 44.304 | 19.3 | 3.607 | 2.171 | 1510.459 | null | 311.11 | 6.05 | 0.2 | 11.4 | null | 0.7 | 66.32 | 0.44 |
EST | Europe | Estonia | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-04-15 | 1400.0 | 27.0 | 30.714 | 35.0 | 4.0 | 1.571 | 1055.378 | 20.354 | 23.154 | 26.384 | 3.015 | 1.185 | 0.83 | 10.0 | 7.538 | 132.0 | 99.507 | null | null | null | null | 38218.0 | 2263.0 | 28.81 | 1.706 | 1496.0 | 1.128 | 2.1e-2 | 48.7 | null | 77.78 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
EST | Europe | Estonia | 2020-10-03 | 3577.0 | 70.0 | 58.857 | 67.0 | 1.0 | 0.429 | 2696.491 | 52.769 | 44.369 | 50.507 | 0.754 | 0.323 | 1.11 | 4.0 | 3.015 | 41.0 | 30.907 | null | null | null | null | 271595.0 | 1854.0 | 204.74 | 1.398 | 3454.0 | 2.604 | 1.7e-2 | 58.7 | null | 25.93 | 1326539.0 | 31.033 | 42.7 | 19.452 | 13.491 | 29481.252 | 0.5 | 255.569 | 4.02 | 24.5 | 39.3 | null | 4.69 | 78.74 | 0.871 |
ETH | Africa | Ethiopia | 2020-06-03 | 1486.0 | 142.0 | 107.857 | 17.0 | 3.0 | 1.571 | 12.926 | 1.235 | 0.938 | 0.148 | 2.6e-2 | 1.4e-2 | 1.6 | null | null | null | null | null | null | null | null | 120429.0 | 4120.0 | 1.048 | 3.6e-2 | 4116.0 | 3.6e-2 | 2.6e-2 | 38.2 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
ETH | Africa | Ethiopia | 2020-08-16 | 29876.0 | 982.0 | 1008.286 | 528.0 | 19.0 | 17.286 | 259.874 | 8.542 | 8.77 | 4.593 | 0.165 | 0.15 | 1.45 | null | null | null | null | null | null | null | null | 609463.0 | 19769.0 | 5.301 | 0.172 | 15927.0 | 0.139 | 6.3e-2 | 15.8 | null | 80.56 | 1.14963583e8 | 104.957 | 19.8 | 3.526 | 2.063 | 1729.927 | 26.7 | 182.634 | 7.47 | 0.4 | 8.5 | 7.96 | 0.3 | 66.6 | 0.463 |
MNG | Asia | Mongolia | 2020-09-03 | 310.0 | 4.0 | 1.286 | 0.0 | 0.0 | 0.0 | 94.561 | 1.22 | 0.392 | null | 0.0 | 0.0 | 0.35 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNG | Asia | Mongolia | 2020-09-09 | 310.0 | 0.0 | 0.571 | 0.0 | 0.0 | 0.0 | 94.561 | 0.0 | 0.174 | null | 0.0 | 0.0 | 0.31 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 56.48 | 3278292.0 | 1.98 | 28.6 | 4.031 | 2.421 | 11840.846 | 0.5 | 460.043 | 4.82 | 5.5 | 46.5 | 71.18 | 7.0 | 69.87 | 0.741 |
MNE | Europe | Montenegro | 2020-03-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-04-03 | 174.0 | 30.0 | 13.143 | 2.0 | 0.0 | 0.143 | 277.043 | 47.766 | 20.926 | 3.184 | 0.0 | 0.227 | 1.15 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MNE | Europe | Montenegro | 2020-06-07 | 324.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 515.873 | 0.0 | 0.0 | 14.33 | 0.0 | 0.0 | 6.0e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 628062.0 | 46.28 | 39.1 | 14.762 | 9.395 | 16409.288 | 1.0 | 387.305 | 10.08 | 44.0 | 47.9 | null | 3.861 | 76.88 | 0.814 |
MAR | Africa | Morocco | 2020-06-19 | 9613.0 | 539.0 | 143.286 | 213.0 | 0.0 | 0.143 | 260.44 | 14.603 | 3.882 | 5.771 | 0.0 | 4.0e-3 | 1.72 | null | null | null | null | null | null | null | null | 505636.0 | 16689.0 | 13.699 | 0.452 | 16642.0 | 0.451 | 9.0e-3 | 116.1 | null | 76.85 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-07-20 | 17562.0 | 326.0 | 232.286 | 276.0 | 3.0 | 3.0 | 475.799 | 8.832 | 6.293 | 7.478 | 8.1e-2 | 8.1e-2 | 1.24 | null | null | null | null | null | null | null | null | 1027773.0 | 18447.0 | 27.845 | 0.5 | 18734.0 | 0.508 | 1.2e-2 | 80.7 | null | 64.81 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MAR | Africa | Morocco | 2020-08-16 | 42489.0 | 1472.0 | 1321.714 | 658.0 | 26.0 | 22.857 | 1151.134 | 39.88 | 35.809 | 17.827 | 0.704 | 0.619 | 1.21 | null | null | null | null | null | null | null | null | 1605613.0 | 22379.0 | 43.5 | 0.606 | 22235.0 | 0.602 | 5.9e-2 | 16.8 | null | 70.37 | 3.6910558e7 | 80.08 | 29.6 | 6.769 | 4.209 | 7485.013 | 1.0 | 419.146 | 7.14 | 0.8 | 47.1 | null | 1.1 | 76.68 | 0.667 |
MOZ | Africa | Mozambique | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 8.33 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-04-20 | 39.0 | 0.0 | 2.571 | 0.0 | 0.0 | 0.0 | 1.248 | 0.0 | 8.2e-2 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 1110.0 | 73.0 | 3.6e-2 | 2.0e-3 | 61.0 | 2.0e-3 | 4.2e-2 | 23.7 | null | 56.48 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-05-22 | 164.0 | 2.0 | 6.429 | 0.0 | 0.0 | 0.0 | 5.247 | 6.4e-2 | 0.206 | null | 0.0 | 0.0 | 1.11 | null | null | null | null | null | null | null | null | 7480.0 | 417.0 | 0.239 | 1.3e-2 | 303.0 | 1.0e-2 | 2.1e-2 | 47.1 | null | 56.48 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MOZ | Africa | Mozambique | 2020-06-30 | 889.0 | 6.0 | 18.857 | 6.0 | 0.0 | 0.143 | 28.443 | 0.192 | 0.603 | 0.192 | 0.0 | 5.0e-3 | 1.12 | null | null | null | null | null | null | null | null | 29577.0 | 173.0 | 0.946 | 6.0e-3 | 648.0 | 2.1e-2 | 2.9e-2 | 34.4 | null | 80.56 | 3.1255435e7 | 37.728 | 17.7 | 3.158 | 1.87 | 1136.103 | 62.9 | 329.942 | 3.3 | 5.1 | 29.1 | 12.227 | 0.7 | 60.85 | 0.437 |
MMR | Asia | Myanmar | 2020-08-12 | 361.0 | 1.0 | 0.571 | 6.0 | 0.0 | 0.0 | 6.635 | 1.8e-2 | 1.1e-2 | 0.11 | 0.0 | 0.0 | 1.28 | null | null | null | null | null | null | null | null | 130539.0 | 1738.0 | 2.399 | 3.2e-2 | 1178.0 | 2.2e-2 | 0.0 | 2063.0 | null | 74.07 | 5.4409794e7 | 81.721 | 29.1 | 5.732 | 3.12 | 5591.597 | 6.4 | 202.104 | 4.61 | 6.3 | 35.2 | 79.287 | 0.9 | 67.13 | 0.578 |
NPL | Asia | Nepal | 2020-08-19 | 28938.0 | 681.0 | 643.714 | 120.0 | 6.0 | 4.143 | 993.177 | 23.372 | 22.093 | 4.119 | 0.206 | 0.142 | 1.32 | null | null | null | null | null | null | null | null | 554388.0 | 11522.0 | 19.027 | 0.395 | 11601.0 | 0.398 | 5.5e-2 | 18.0 | null | 85.19 | 2.9136808e7 | 204.43 | 25.0 | 5.809 | 3.212 | 2442.804 | 15.0 | 260.797 | 7.26 | 9.5 | 37.8 | 47.782 | 0.3 | 70.78 | 0.574 |
NLD | Europe | Netherlands | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-08-18 | 65560.0 | 580.0 | 738.429 | 6197.0 | 3.0 | 5.0 | 3826.115 | 33.849 | 43.095 | 361.66 | 0.175 | 0.292 | 1.09 | 49.0 | 2.86 | null | null | null | null | null | null | null | null | null | null | 18972.0 | 1.107 | 3.9e-2 | 25.7 | null | 50.93 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-11-17 | 464205.0 | 4368.0 | 5425.429 | 8689.0 | 86.0 | 68.286 | 27091.243 | 254.919 | 316.631 | 507.095 | 5.019 | 3.985 | 0.85 | 608.0 | 35.483 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NLD | Europe | Netherlands | 2020-11-20 | 480649.0 | 6008.0 | 5302.286 | 8898.0 | 52.0 | 66.857 | 28050.923 | 350.63 | 309.444 | 519.292 | 3.035 | 3.902 | 0.89 | 588.0 | 34.316 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 65.74 | 1.7134873e7 | 508.544 | 43.2 | 18.779 | 11.881 | 48472.545 | null | 109.361 | 5.29 | 24.4 | 27.3 | null | 3.32 | 82.28 | 0.931 |
NZL | Oceania | New Zealand | 2020-08-30 | 1738.0 | 9.0 | 7.857 | 22.0 | 0.0 | 0.0 | 360.414 | 1.866 | 1.629 | 4.562 | 0.0 | 0.0 | 0.99 | null | null | null | null | null | null | null | null | 747385.0 | 6566.0 | 154.987 | 1.362 | 8447.0 | 1.752 | 1.0e-3 | 1075.1 | null | 68.98 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NZL | Oceania | New Zealand | 2020-09-04 | 1767.0 | 3.0 | 5.714 | 24.0 | 2.0 | 0.286 | 366.428 | 0.622 | 1.185 | 4.977 | 0.415 | 5.9e-2 | 0.78 | null | null | null | null | null | null | null | null | 796445.0 | 8860.0 | 165.161 | 1.837 | 9447.0 | 1.959 | 1.0e-3 | 1653.3 | null | 34.72 | 4822233.0 | 18.206 | 37.9 | 15.322 | 9.72 | 36085.843 | null | 128.797 | 8.08 | 14.8 | 17.2 | null | 2.61 | 82.29 | 0.917 |
NER | Africa | Niger | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | null | 0.0 | 0.0 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 0.0 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
NER | Africa | Niger | 2020-09-13 | 1180.0 | 2.0 | 0.429 | 69.0 | 0.0 | 0.0 | 48.747 | 8.3e-2 | 1.8e-2 | 2.85 | 0.0 | 0.0 | 0.85 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 14.81 | 2.4206636e7 | 16.955 | 15.1 | 2.553 | 1.378 | 926.0 | 44.5 | 238.339 | 2.42 | 0.1 | 15.4 | 8.978 | 0.3 | 62.42 | 0.354 |
PAK | Asia | Pakistan | 2020-05-21 | 50694.0 | 2603.0 | 1699.286 | 1067.0 | 50.0 | 33.286 | 229.496 | 11.784 | 7.693 | 4.83 | 0.226 | 0.151 | 1.25 | null | null | null | null | null | null | null | null | 429600.0 | 15346.0 | 1.945 | 6.9e-2 | 14121.0 | 6.4e-2 | 0.12 | 8.3 | null | 82.41 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-06-23 | 188926.0 | 3892.0 | 4880.857 | 3755.0 | 60.0 | 111.429 | 855.285 | 17.619 | 22.096 | 16.999 | 0.272 | 0.504 | 0.95 | null | null | null | null | null | null | null | null | 1126761.0 | 24599.0 | 5.101 | 0.111 | 29157.0 | 0.132 | 0.167 | 6.0 | null | 60.19 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAK | Asia | Pakistan | 2020-11-18 | 365927.0 | 2547.0 | 2276.429 | 7248.0 | 18.0 | 27.571 | 1656.585 | 11.531 | 10.306 | 32.812 | 8.1e-2 | 0.125 | 1.32 | null | null | null | null | null | null | null | null | 5018483.0 | 38544.0 | 22.719 | 0.174 | 34998.0 | 0.158 | 6.5e-2 | 15.4 | null | 47.69 | 2.20892331e8 | 255.573 | 23.5 | 4.495 | 2.78 | 5034.708 | 4.0 | 423.031 | 8.35 | 2.8 | 36.7 | 59.607 | 0.6 | 67.27 | 0.562 |
PAN | North America | Panama | 2020-05-28 | 12131.0 | 403.0 | 287.857 | 320.0 | 5.0 | 4.143 | 2811.507 | 93.4 | 66.714 | 74.164 | 1.159 | 0.96 | 1.32 | null | null | null | null | null | null | null | null | 60973.0 | 1253.0 | 14.131 | 0.29 | 1275.0 | 0.295 | 0.226 | 4.4 | null | 89.81 | 4314768.0 | 55.133 | 29.7 | 7.918 | 5.03 | 22267.037 | 2.2 | 128.346 | 8.33 | 2.4 | 9.9 | null | 2.3 | 78.51 | 0.789 |
res44: Long = 133
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.ml.Pipeline
lr: org.apache.spark.ml.regression.LinearRegression = linReg_1077c2744dad
lrModel: org.apache.spark.ml.regression.LinearRegressionModel = LinearRegressionModel: uid=linReg_1077c2744dad, numFeatures=5
Coefficients: [2.6214237261444726,-1.364306221013195,-1.3234981005291744,4.903123743799156,1.0283056897021905], Intercept: 6.69144939405342
RMSE: 1.6058962464052953
trainingSummary: org.apache.spark.ml.regression.LinearRegressionTrainingSummary = org.apache.spark.ml.regression.LinearRegressionTrainingSummary@7545e754
+------------------+---------------------------+--------------------+
| prediction|log_total_cases_per_million| features|
+------------------+---------------------------+--------------------+
| 6.32849475311866| 2.142543078223737|[0.15958180147058...|
| 8.115061043502047| 7.528810569839765|[0.36167279411764...|
|7.4629978084926085| 6.223671398897003|[0.64889705882352...|
| 7.831137150153837| 6.524287884057365|[0.79779411764705...|
|10.269420769779098| 5.843997267897207|[0.40429687499999...|
| 7.289562258542387| 2.6304048908829563|[0.49471507352941...|
| 9.963465130096221| 9.237218853465539|[0.57444852941176...|
|13.213369998258525| 10.784078124343976|[0.74460018382352...|
| 9.213228147281594| 10.572977149641726|[0.75528492647058...|
| 9.085379666714468| 9.143147511395949|[0.82444852941176...|
| 6.750739656770264| 10.952187342908323|[0.0,3.6806047717...|
| 8.135800825140635| 10.373288860272808|[0.51056985294117...|
| 7.507644816227433| 10.203096222487993|[0.55319393382352...|
|10.048805671611255| 8.817232647019427|[0.56376378676470...|
| 9.404481665413662| 10.158884909113675|[0.61695772058823...|
| 9.488257390217871| 10.351014339169227|[0.64889705882352...|
| 9.08870238448793| 10.291011744026449|[0.71806066176470...|
| 8.89927809231843| 10.041688001727678|[0.72334558823529...|
| 8.89927809231843| 10.041688001727678|[0.72334558823529...|
| 9.35306553340342| 9.427461709192647|[0.75528492647058...|
+------------------+---------------------------+--------------------+
only showing top 20 rows
Root Mean Squared Error (RMSE) on test data = 2.225906214656472
import org.apache.spark.ml.evaluation.RegressionEvaluator
predictions: org.apache.spark.sql.DataFrame = [features: vector, log_total_cases_per_million: double ... 1 more field]
evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = RegressionEvaluator: uid=regEval_4b8a404d0038, metricName=rmse, throughOrigin=false
rmse: Double = 2.225906214656472
df_cleaned_feature_permillion: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
Root Mean Squared Error (RMSE) on test data = $rmse
evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = RegressionEvaluator: uid=regEval_4bcd4d071608, metricName=rmse, throughOrigin=false
rmse: Double = 99893.56063834664
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRY | South America | Paraguay | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | 1.0 | 1.4020270507099166e-4 | 0.0 | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-08 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-09 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1.0 | null | 1.4020270507099166e-4 | null | null | null | null | null | null | 5.56 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-10 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 9.0 | 8.0 | 1.2618243456389247e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-11 | 5.0 | 4.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 16.0 | 7.0 | 2.2432432811358666e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.7010135253549582 | 0.5608108202839666 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-12 | 5.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 22.0 | 6.0 | 3.0844595115618162e-3 | 1.0e-3 | null | null | null | null | null | 39.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.7010135253549582 | 0.0 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-13 | 6.0 | 1.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 39.0 | 17.0 | 5.467905497768674e-3 | 2.0e-3 | null | null | null | null | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.14020270507099164 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-14 | 6.0 | 0.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 54.0 | 15.0 | 7.570946073833549e-3 | 2.0e-3 | 8.0 | 1.0e-3 | 0.107 | 9.3 | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.0 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-15 | 6.0 | 0.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 87.0 | 33.0 | 1.2197635341176273e-2 | 5.0e-3 | 12.0 | 2.0e-3 | 6.0e-2 | 16.8 | null | 50.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 0.8412162304259498 | 0.0 | 0.10010473142068803 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-16 | 8.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 114.0 | 27.0 | 1.5983108378093046e-2 | 4.0e-3 | 15.0 | 2.0e-3 | 6.7e-2 | 15.0 | null | 70.37 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.1216216405679331 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-17 | 9.0 | 1.0 | 1.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 140.0 | 26.0 | 1.962837870993883e-2 | 4.0e-3 | 19.0 | 3.0e-3 | 6.0e-2 | 16.6 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.2618243456389249 | 0.14020270507099164 | 0.16025169189614347 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-18 | 11.0 | 2.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 164.0 | 24.0 | 2.299324363164263e-2 | 3.0e-3 | 21.0 | 3.0e-3 | 4.1e-2 | 24.5 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.5422297557809082 | 0.2804054101419833 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-19 | 11.0 | 0.0 | 0.857 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 196.0 | 32.0 | 2.747973019391436e-2 | 4.0e-3 | 25.0 | 4.0e-3 | 3.4e-2 | 29.2 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.5422297557809082 | 0.0 | 0.12015371824583984 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-20 | 13.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 240.0 | 44.0 | 3.3648649217037994e-2 | 6.0e-3 | 29.0 | 4.0e-3 | 3.4e-2 | 29.0 | null | 74.07 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1.8226351659228912 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-03-21 | 18.0 | 5.0 | 1.714 | 1.0 | 1.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 308.0 | 68.0 | 4.318243316186543e-2 | 1.0e-2 | 36.0 | 5.0e-3 | 4.8e-2 | 21.0 | null | 85.19 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2.5236486912778497 | 0.7010135253549582 | 0.24030743649167968 | 0.14020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-22 | 22.0 | 4.0 | 2.286 | 1.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 345.0 | 37.0 | 4.836993324949211e-2 | 5.0e-3 | 37.0 | 5.0e-3 | 6.2e-2 | 16.2 | null | 85.19 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.0844595115618163 | 0.5608108202839666 | 0.32050338379228693 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-23 | 22.0 | 0.0 | 2.0 | 1.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 434.0 | 89.0 | 6.084797400081037e-2 | 1.2e-2 | 46.0 | 6.0e-3 | 4.3e-2 | 23.0 | null | 90.74 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.0844595115618163 | 0.0 | 0.2804054101419833 | 0.14020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-03-24 | 27.0 | 5.0 | 2.571 | 2.0 | 1.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 525.0 | 91.0 | 7.360642016227062e-2 | 1.3e-2 | 55.0 | 8.0e-3 | 4.7e-2 | 21.4 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3.785473036916774 | 0.7010135253549582 | 0.3604611547375195 | 0.2804054101419833 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-25 | 37.0 | 10.0 | 3.714 | 3.0 | 1.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 576.0 | 51.0 | 8.075675812089118e-2 | 7.0e-3 | 59.0 | 8.0e-3 | 6.3e-2 | 15.9 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5.187500087626691 | 1.4020270507099164 | 0.520712846633663 | 0.4206081152129749 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-26 | 41.0 | 4.0 | 4.286 | 3.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 654.0 | 78.0 | 9.169256911642854e-2 | 1.1e-2 | 65.0 | 9.0e-3 | 6.6e-2 | 15.2 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5.748310907910658 | 0.5608108202839666 | 0.6009087939342701 | 0.4206081152129749 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-27 | 52.0 | 11.0 | 5.571 | 3.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 755.0 | 101.0 | 0.1058530423285987 | 1.4e-2 | 74.0 | 1.0e-2 | 7.5e-2 | 13.3 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7.290540663691565 | 1.5422297557809082 | 0.7810692699504943 | 0.4206081152129749 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-03-28 | 56.0 | 4.0 | 5.429 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 815.0 | 60.0 | 0.11426520463285819 | 8.0e-3 | 72.0 | 1.0e-2 | 7.5e-2 | 13.3 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7.851351483975532 | 0.5608108202839666 | 0.7611604858304136 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-29 | 59.0 | 3.0 | 5.286 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 920.0 | 105.0 | 0.12898648866531232 | 1.5e-2 | 82.0 | 1.1e-2 | 6.4e-2 | 15.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8.271959599188508 | 0.4206081152129749 | 0.7411114990052617 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-30 | 64.0 | 5.0 | 6.0 | 3.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 988.0 | 68.0 | 0.13852027261013974 | 1.0e-2 | 79.0 | 1.1e-2 | 7.6e-2 | 13.2 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8.972973124543465 | 0.7010135253549582 | 0.8412162304259498 | 0.4206081152129749 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-03-31 | 65.0 | 1.0 | 5.429 | 3.0 | 0.0 | 0.143 | 1.0 | null | null | null | null | null | null | null | null | 1078.0 | 90.0 | 0.15113851606652898 | 1.3e-2 | 79.0 | 1.1e-2 | 6.9e-2 | 14.6 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9.113175829614455 | 0.14020270507099164 | 0.7611604858304136 | 0.4206081152129749 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-01 | 69.0 | 4.0 | 4.571 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1173.0 | 95.0 | 0.1644577730482732 | 1.3e-2 | 85.0 | 1.2e-2 | 5.4e-2 | 18.6 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9.673986649898424 | 0.5608108202839666 | 0.6408665648795027 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-02 | 77.0 | 8.0 | 5.143 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1289.0 | 116.0 | 0.18072128683650823 | 1.6e-2 | 91.0 | 1.3e-2 | 5.7e-2 | 17.7 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10.795608290466356 | 1.1216216405679331 | 0.72106251218011 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-03 | 92.0 | 15.0 | 5.714 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1454.0 | 165.0 | 0.20385473317322184 | 2.3e-2 | 100.0 | 1.4e-2 | 5.7e-2 | 17.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 12.89864886653123 | 2.1030405760648745 | 0.8011182567756463 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-04 | 96.0 | 4.0 | 5.714 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1646.0 | 192.0 | 0.23077365254685223 | 2.7e-2 | 119.0 | 1.7e-2 | 4.8e-2 | 20.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 13.459459686815197 | 0.5608108202839666 | 0.8011182567756463 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-05 | 104.0 | 8.0 | 6.429 | 3.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 1846.0 | 200.0 | 0.25881419356105057 | 2.8e-2 | 132.0 | 1.9e-2 | 4.9e-2 | 20.5 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 14.58108132738313 | 1.1216216405679331 | 0.9013631909014053 | 0.4206081152129749 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-06 | 113.0 | 9.0 | 7.0 | 5.0 | 2.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2008.0 | 162.0 | 0.28152703178255123 | 2.3e-2 | 146.0 | 2.0e-2 | 4.8e-2 | 20.9 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 15.842905673022058 | 1.2618243456389249 | 0.9814189354969415 | 0.7010135253549582 | 0.2804054101419833 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-07 | 115.0 | 2.0 | 7.143 | 5.0 | 0.0 | 0.286 | 0.99 | null | null | null | null | null | null | null | null | 2220.0 | 212.0 | 0.31125000525760144 | 3.0e-2 | 163.0 | 2.3e-2 | 4.4e-2 | 22.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 16.123311083164037 | 0.2804054101419833 | 1.0014679223220933 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-08 | 119.0 | 4.0 | 7.143 | 5.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2462.0 | 242.0 | 0.3451790598847814 | 3.4e-2 | 184.0 | 2.6e-2 | 3.9e-2 | 25.8 | null | 93.52 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 16.684121903448005 | 0.5608108202839666 | 1.0014679223220933 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-09 | 124.0 | 5.0 | 6.714 | 5.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 2685.0 | 223.0 | 0.3764442631156126 | 3.1e-2 | 199.0 | 2.8e-2 | 3.4e-2 | 29.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 17.38513542880296 | 0.7010135253549582 | 0.9413209618466379 | 0.7010135253549582 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-10 | 129.0 | 5.0 | 5.286 | 6.0 | 1.0 | 0.429 | 1.01 | null | null | null | null | null | null | null | null | 2905.0 | 220.0 | 0.40728885823123073 | 3.1e-2 | 207.0 | 2.9e-2 | 2.6e-2 | 39.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.086148954157924 | 0.7010135253549582 | 0.7411114990052617 | 0.8412162304259498 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-11 | 133.0 | 4.0 | 5.286 | 6.0 | 0.0 | 0.429 | 1.03 | null | null | null | null | null | null | null | null | 3135.0 | 230.0 | 0.43953548039755874 | 3.2e-2 | 213.0 | 3.0e-2 | 2.5e-2 | 40.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.64695977444189 | 0.5608108202839666 | 0.7411114990052617 | 0.8412162304259498 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-12 | 134.0 | 1.0 | 4.286 | 6.0 | 0.0 | 0.429 | 1.05 | null | null | null | null | null | null | null | null | 3394.0 | 259.0 | 0.4758479810109456 | 3.6e-2 | 221.0 | 3.1e-2 | 1.9e-2 | 51.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 18.78716247951288 | 0.14020270507099164 | 0.6009087939342701 | 0.8412162304259498 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-13 | 147.0 | 13.0 | 4.857 | 6.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 3642.0 | 248.0 | 0.5106182518685515 | 3.5e-2 | 233.0 | 3.3e-2 | 2.1e-2 | 48.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 20.60979764543577 | 1.8226351659228912 | 0.6809645385298064 | 0.8412162304259498 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-14 | 159.0 | 12.0 | 6.286 | 7.0 | 1.0 | 0.286 | 1.09 | null | null | null | null | null | null | null | null | 3888.0 | 246.0 | 0.5451081173160155 | 3.4e-2 | 238.0 | 3.3e-2 | 2.6e-2 | 37.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 22.292230106287672 | 1.6824324608518997 | 0.8813142040762534 | 0.9814189354969415 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-15 | 161.0 | 2.0 | 6.0 | 8.0 | 1.0 | 0.429 | 1.1 | null | null | null | null | null | null | null | null | 4267.0 | 379.0 | 0.5982449425379214 | 5.3e-2 | 258.0 | 3.6e-2 | 2.3e-2 | 43.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 22.572635516429653 | 0.2804054101419833 | 0.8412162304259498 | 1.1216216405679331 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-16 | 174.0 | 13.0 | 7.143 | 8.0 | 0.0 | 0.429 | 1.12 | null | null | null | null | null | null | null | null | 4612.0 | 345.0 | 0.6466148757874134 | 4.8e-2 | 275.0 | 3.9e-2 | 2.6e-2 | 38.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 24.395270682352546 | 1.8226351659228912 | 1.0014679223220933 | 1.1216216405679331 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-04-17 | 199.0 | 25.0 | 10.0 | 8.0 | 0.0 | 0.286 | 1.13 | null | null | null | null | null | null | null | null | 4950.0 | 338.0 | 0.6940033901014087 | 4.7e-2 | 292.0 | 4.1e-2 | 3.4e-2 | 29.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 27.900338309127335 | 3.505067626774791 | 1.4020270507099164 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-18 | 202.0 | 3.0 | 9.857 | 8.0 | 0.0 | 0.286 | 1.1 | null | null | null | null | null | null | null | null | 5254.0 | 304.0 | 0.7366250124429901 | 4.3e-2 | 303.0 | 4.2e-2 | 3.3e-2 | 30.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 28.320946424340313 | 0.4206081152129749 | 1.3819780638847645 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-19 | 206.0 | 4.0 | 10.286 | 8.0 | 0.0 | 0.286 | 1.08 | null | null | null | null | null | null | null | null | 5501.0 | 247.0 | 0.771255080595525 | 3.5e-2 | 301.0 | 4.2e-2 | 3.4e-2 | 29.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 28.88175724462428 | 0.5608108202839666 | 1.44212502436022 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-20 | 208.0 | 2.0 | 8.714 | 8.0 | 0.0 | 0.286 | 1.08 | null | null | null | null | null | null | null | null | 5878.0 | 377.0 | 0.8241115004072889 | 5.3e-2 | 319.0 | 4.5e-2 | 2.7e-2 | 36.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.16216265476626 | 0.2804054101419833 | 1.221726371988621 | 1.1216216405679331 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-04-21 | 208.0 | 0.0 | 7.0 | 8.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 6292.0 | 414.0 | 0.8821554203066794 | 5.8e-2 | 343.0 | 4.8e-2 | 2.0e-2 | 49.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.16216265476626 | 0.0 | 0.9814189354969415 | 1.1216216405679331 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-22 | 213.0 | 5.0 | 7.429 | 9.0 | 1.0 | 0.143 | 1.1 | null | null | null | null | null | null | null | null | 6598.0 | 306.0 | 0.9250574480584028 | 4.3e-2 | 333.0 | 4.7e-2 | 2.2e-2 | 44.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.863176180121222 | 0.7010135253549582 | 1.041565895972397 | 1.2618243456389249 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-23 | 213.0 | 0.0 | 5.571 | 9.0 | 0.0 | 0.143 | 1.12 | null | null | null | null | null | null | null | null | 6917.0 | 319.0 | 0.9697821109760492 | 4.5e-2 | 329.0 | 4.6e-2 | 1.7e-2 | 59.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 29.863176180121222 | 0.0 | 0.7810692699504943 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-24 | 223.0 | 10.0 | 3.429 | 9.0 | 0.0 | 0.143 | 1.16 | null | null | null | null | null | null | null | null | 7322.0 | 405.0 | 1.0265642065298008 | 5.7e-2 | 339.0 | 4.8e-2 | 1.0e-2 | 98.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.265203230831137 | 1.4020270507099164 | 0.4807550756884303 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-25 | 228.0 | 5.0 | 3.714 | 9.0 | 0.0 | 0.143 | 1.18 | null | null | null | null | null | null | null | null | 7630.0 | 308.0 | 1.0697466396916664 | 4.3e-2 | 339.0 | 4.8e-2 | 1.1e-2 | 91.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.7010135253549582 | 0.520712846633663 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-26 | 228.0 | 0.0 | 3.143 | 9.0 | 0.0 | 0.143 | 1.21 | null | null | null | null | null | null | null | null | 7925.0 | 295.0 | 1.1111064376876088 | 4.1e-2 | 346.0 | 4.9e-2 | 9.0e-3 | 110.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.0 | 0.4406571020381267 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-27 | 228.0 | 0.0 | 2.857 | 9.0 | 0.0 | 0.143 | 1.26 | null | null | null | null | null | null | null | null | 8444.0 | 519.0 | 1.1838716416194535 | 7.3e-2 | 367.0 | 5.1e-2 | 8.0e-3 | 128.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 31.966216756186093 | 0.0 | 0.40055912838782315 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-28 | 239.0 | 11.0 | 4.429 | 9.0 | 0.0 | 0.143 | 1.34 | null | null | null | null | null | null | null | null | 8891.0 | 447.0 | 1.2465422507861867 | 6.3e-2 | 371.0 | 5.2e-2 | 1.2e-2 | 83.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 33.508446511967 | 1.5422297557809082 | 0.620957780759422 | 1.2618243456389249 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-04-29 | 239.0 | 0.0 | 3.714 | 9.0 | 0.0 | 0.0 | 1.41 | null | null | null | null | null | null | null | null | 9454.0 | 563.0 | 1.325476373741155 | 7.9e-2 | 408.0 | 5.7e-2 | 9.0e-3 | 109.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 33.508446511967 | 0.0 | 0.520712846633663 | 1.2618243456389249 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-04-30 | 266.0 | 27.0 | 7.571 | 10.0 | 1.0 | 0.143 | 1.53 | null | null | null | null | null | null | null | null | 9903.0 | 449.0 | 1.3884273883180303 | 6.3e-2 | 427.0 | 6.0e-2 | 1.8e-2 | 56.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 37.29391954888378 | 3.785473036916774 | 1.0614746800924777 | 1.4020270507099164 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-01 | 333.0 | 67.0 | 15.714 | 10.0 | 0.0 | 0.143 | 1.57 | null | null | null | null | null | null | null | null | 10342.0 | 439.0 | 1.4499763758441955 | 6.2e-2 | 431.0 | 6.0e-2 | 3.6e-2 | 27.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 46.687500788640214 | 9.39358123975644 | 2.203145307485563 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-02 | 370.0 | 37.0 | 20.286 | 10.0 | 0.0 | 0.143 | 1.5 | null | null | null | null | null | null | null | null | 10766.0 | 424.0 | 1.509422322794296 | 5.9e-2 | 448.0 | 6.3e-2 | 4.5e-2 | 22.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 51.87500087626691 | 5.187500087626691 | 2.8441520750701366 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-03 | 396.0 | 26.0 | 24.0 | 10.0 | 0.0 | 0.143 | 1.43 | null | null | null | null | null | null | null | null | 11106.0 | 340.0 | 1.5570912425184331 | 4.8e-2 | 454.0 | 6.4e-2 | 5.3e-2 | 18.9 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 55.52027120811269 | 3.6452703318457824 | 3.3648649217037994 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-04 | 415.0 | 19.0 | 26.714 | 10.0 | 0.0 | 0.143 | 1.38 | null | null | null | null | null | null | null | null | 11455.0 | 349.0 | 1.606021986588209 | 4.9e-2 | 430.0 | 6.0e-2 | 6.2e-2 | 16.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 58.184122604461535 | 2.663851396348841 | 3.745375063266471 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-05 | 431.0 | 16.0 | 27.429 | 10.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 11913.0 | 458.0 | 1.6702348255107233 | 6.4e-2 | 432.0 | 6.1e-2 | 6.3e-2 | 15.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 60.427365885597396 | 2.2432432811358662 | 3.8456199973922294 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-06 | 440.0 | 9.0 | 28.714 | 10.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 12497.0 | 584.0 | 1.7521132052721826 | 8.2e-2 | 435.0 | 6.1e-2 | 6.6e-2 | 15.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 61.68919023123632 | 1.2618243456389249 | 4.025780473408454 | 1.4020270507099164 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-07 | 462.0 | 22.0 | 28.0 | 10.0 | 0.0 | 0.0 | 1.36 | null | null | null | null | null | null | null | null | 13096.0 | 599.0 | 1.8360946256097066 | 8.4e-2 | 456.0 | 6.4e-2 | 6.1e-2 | 16.3 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 64.77364974279814 | 3.0844595115618163 | 3.925675741987766 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-08 | 563.0 | 101.0 | 32.857 | 10.0 | 0.0 | 0.0 | 1.4 | null | null | null | null | null | null | null | null | 13846.0 | 750.0 | 1.9412466544129503 | 0.105 | 501.0 | 7.0e-2 | 6.6e-2 | 15.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 78.9341229549683 | 14.160473212170157 | 4.606640280517572 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-09 | 689.0 | 126.0 | 45.571 | 10.0 | 0.0 | 0.0 | 1.36 | null | null | null | null | null | null | null | null | 14646.0 | 800.0 | 2.053408818469743 | 0.112 | 554.0 | 7.8e-2 | 8.2e-2 | 12.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 96.59966379391324 | 17.665540838944946 | 6.38917747279016 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-10 | 713.0 | 24.0 | 45.286 | 10.0 | 0.0 | 0.0 | 1.27 | null | null | null | null | null | null | null | null | 15446.0 | 800.0 | 2.1655709825265372 | 0.112 | 620.0 | 8.7e-2 | 7.3e-2 | 13.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 99.96452871561705 | 3.3648649217037994 | 6.349219701844928 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-11 | 724.0 | 11.0 | 44.143 | 10.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 16155.0 | 709.0 | 2.2649747004218703 | 9.9e-2 | 671.0 | 9.4e-2 | 6.6e-2 | 15.2 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 101.50675847139796 | 1.5422297557809082 | 6.188968009948784 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-12 | 737.0 | 13.0 | 43.714 | 10.0 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 16917.0 | 762.0 | 2.371809161685966 | 0.107 | 715.0 | 0.1 | 6.1e-2 | 16.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 103.32939363732085 | 1.8226351659228912 | 6.128821049473328 | 1.4020270507099164 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-13 | 740.0 | 3.0 | 42.857 | 11.0 | 1.0 | 0.143 | 1.12 | null | null | null | null | null | null | null | null | 17589.0 | 672.0 | 2.4660253794936717 | 9.4e-2 | 727.0 | 0.102 | 5.9e-2 | 17.0 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 103.75000175253382 | 0.4206081152129749 | 6.008667331227488 | 1.5422297557809082 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-14 | 754.0 | 14.0 | 41.714 | 11.0 | 0.0 | 0.143 | 1.1 | null | null | null | null | null | null | null | null | 18184.0 | 595.0 | 2.549445989010912 | 8.3e-2 | 727.0 | 0.102 | 5.7e-2 | 17.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 105.7128396235277 | 1.962837870993883 | 5.848415639331345 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-15 | 759.0 | 5.0 | 28.0 | 11.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 18856.0 | 672.0 | 2.643662206818618 | 9.4e-2 | 716.0 | 0.1 | 3.9e-2 | 25.6 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 106.41385314888265 | 0.7010135253549582 | 3.925675741987766 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-16 | 778.0 | 19.0 | 12.714 | 11.0 | 0.0 | 0.143 | 1.08 | null | null | null | null | null | null | null | null | 19308.0 | 452.0 | 2.7070338295107064 | 6.3e-2 | 666.0 | 9.3e-2 | 1.9e-2 | 52.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 109.0777045452315 | 2.663851396348841 | 1.782537192272588 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-17 | 786.0 | 8.0 | 10.429 | 11.0 | 0.0 | 0.143 | 1.07 | null | null | null | null | null | null | null | null | 20124.0 | 816.0 | 2.8214392368486356 | 0.114 | 668.0 | 9.4e-2 | 1.6e-2 | 64.1 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 110.19932618579944 | 1.1216216405679331 | 1.4621740111853718 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-18 | 788.0 | 2.0 | 9.143 | 11.0 | 0.0 | 0.143 | 1.07 | null | null | null | null | null | null | null | null | 20429.0 | 305.0 | 2.864201061895288 | 4.3e-2 | 611.0 | 8.6e-2 | 1.5e-2 | 66.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 110.47973159594142 | 0.2804054101419833 | 1.2818733324640765 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-19 | 829.0 | 41.0 | 13.143 | 11.0 | 0.0 | 0.143 | 1.09 | null | null | null | null | null | null | null | null | 21121.0 | 692.0 | 2.9612213338044144 | 9.7e-2 | 601.0 | 8.4e-2 | 2.2e-2 | 45.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 116.22804250385207 | 5.748310907910658 | 1.8426841527480433 | 1.5422297557809082 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-05-20 | 833.0 | 4.0 | 13.286 | 11.0 | 0.0 | 0.0 | 1.07 | null | null | null | null | null | null | null | null | 21542.0 | 421.0 | 3.020246672639302 | 5.9e-2 | 565.0 | 7.9e-2 | 2.4e-2 | 42.5 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 116.78885332413604 | 0.5608108202839666 | 1.8627331395731948 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-21 | 836.0 | 3.0 | 11.714 | 11.0 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | 21987.0 | 445.0 | 3.082636876395893 | 6.2e-2 | 543.0 | 7.6e-2 | 2.2e-2 | 46.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 117.20946143934901 | 0.4206081152129749 | 1.6423344872015961 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-22 | 838.0 | 2.0 | 11.286 | 11.0 | 0.0 | 0.0 | 1.06 | null | null | null | null | null | null | null | null | 22868.0 | 881.0 | 3.206155459563437 | 0.124 | 573.0 | 8.0e-2 | 2.0e-2 | 50.8 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 117.489866849491 | 0.2804054101419833 | 1.5823277294312115 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-23 | 850.0 | 12.0 | 10.286 | 11.0 | 0.0 | 0.0 | 1.08 | null | null | null | null | null | null | null | null | 23805.0 | 937.0 | 3.3375253942149556 | 0.131 | 642.0 | 9.0e-2 | 1.6e-2 | 62.4 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 119.1722993103429 | 1.6824324608518997 | 1.44212502436022 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-24 | 862.0 | 12.0 | 10.857 | 11.0 | 0.0 | 0.0 | 1.09 | null | null | null | null | null | null | null | null | 24812.0 | 1007.0 | 3.4787095182214443 | 0.141 | 670.0 | 9.4e-2 | 1.6e-2 | 61.7 | null | 94.44 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 120.85473177119479 | 1.6824324608518997 | 1.522180768955756 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-25 | 865.0 | 3.0 | 11.0 | 11.0 | 0.0 | 0.0 | 1.1 | null | null | null | null | null | null | null | null | 25216.0 | 404.0 | 3.5353514110701254 | 5.7e-2 | 684.0 | 9.6e-2 | 1.6e-2 | 62.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 121.27533988640776 | 0.4206081152129749 | 1.5422297557809082 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-26 | 877.0 | 12.0 | 6.857 | 11.0 | 0.0 | 0.0 | 1.13 | null | null | null | null | null | null | null | null | 26169.0 | 953.0 | 3.66896458900278 | 0.134 | 721.0 | 0.101 | 1.0e-2 | 105.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 122.95777234725966 | 1.6824324608518997 | 0.9613699486717897 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-27 | 884.0 | 7.0 | 7.286 | 11.0 | 0.0 | 0.0 | 1.15 | null | null | null | null | null | null | null | null | 26760.0 | 591.0 | 3.7518243876997364 | 8.3e-2 | 745.0 | 0.104 | 1.0e-2 | 102.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 123.93919128275661 | 0.9814189354969415 | 1.021516909147245 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-28 | 900.0 | 16.0 | 9.143 | 11.0 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 27425.0 | 665.0 | 3.845059186571946 | 9.3e-2 | 777.0 | 0.109 | 1.2e-2 | 85.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 126.18243456389249 | 2.2432432811358662 | 1.2818733324640765 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-29 | 917.0 | 17.0 | 11.286 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 28337.0 | 912.0 | 3.9729240535966905 | 0.128 | 781.0 | 0.109 | 1.4e-2 | 69.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 128.56588055009934 | 2.383445986206858 | 1.5823277294312115 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-30 | 964.0 | 47.0 | 16.286 | 11.0 | 0.0 | 0.0 | 1.25 | null | null | null | null | null | null | null | null | 29153.0 | 816.0 | 4.087329460934619 | 0.114 | 764.0 | 0.107 | 2.1e-2 | 46.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 135.15540768843593 | 6.5895271383366065 | 2.28334125478617 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-05-31 | 986.0 | 22.0 | 17.714 | 11.0 | 0.0 | 0.0 | 1.23 | null | null | null | null | null | null | null | null | 30004.0 | 851.0 | 4.206641962950033 | 0.119 | 742.0 | 0.104 | 2.4e-2 | 41.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 138.23986719999775 | 3.0844595115618163 | 2.4835507176275455 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-01 | 995.0 | 9.0 | 18.571 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 30834.0 | 830.0 | 4.323010208158957 | 0.116 | 803.0 | 0.113 | 2.3e-2 | 43.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 139.5016915456367 | 1.2618243456389249 | 2.6037044358733863 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-02 | 1013.0 | 18.0 | 19.429 | 11.0 | 0.0 | 0.0 | 1.22 | null | null | null | null | null | null | null | null | 32106.0 | 1272.0 | 4.501348049009257 | 0.178 | 848.0 | 0.119 | 2.3e-2 | 43.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 142.02534023691453 | 2.5236486912778497 | 2.7239983568242967 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-03 | 1070.0 | 57.0 | 26.571 | 11.0 | 0.0 | 0.0 | 1.23 | null | null | null | null | null | null | null | null | 33081.0 | 975.0 | 4.6380456864534745 | 0.137 | 903.0 | 0.127 | 2.9e-2 | 34.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 150.01689442596106 | 7.991554189046523 | 3.7253260764413194 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-04 | 1086.0 | 16.0 | 26.571 | 11.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 34240.0 | 1159.0 | 4.800540621630754 | 0.162 | 974.0 | 0.137 | 2.7e-2 | 36.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.26013770709693 | 2.2432432811358662 | 3.7253260764413194 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-05 | 1087.0 | 1.0 | 24.286 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 35258.0 | 1018.0 | 4.943266975393024 | 0.143 | 989.0 | 0.139 | 2.5e-2 | 40.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.4003404121679 | 0.14020270507099164 | 3.404962895354103 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-06 | 1090.0 | 3.0 | 18.0 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 36373.0 | 1115.0 | 5.099592991547179 | 0.156 | 1031.0 | 0.145 | 1.7e-2 | 57.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 152.8209485273809 | 0.4206081152129749 | 2.5236486912778497 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-07 | 1135.0 | 45.0 | 21.286 | 11.0 | 0.0 | 0.0 | 1.21 | null | null | null | null | null | null | null | null | 37532.0 | 1159.0 | 5.262087926724458 | 0.162 | 1075.0 | 0.151 | 2.0e-2 | 50.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 159.1300702555755 | 6.309121728194624 | 2.9843547801411283 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-08 | 1145.0 | 10.0 | 21.429 | 11.0 | 0.0 | 0.0 | 1.19 | null | null | null | null | null | null | null | null | 38942.0 | 1410.0 | 5.459773740874557 | 0.198 | 1158.0 | 0.162 | 1.9e-2 | 54.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 160.53209730628544 | 1.4020270507099164 | 3.0044037669662798 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-09 | 1187.0 | 42.0 | 24.857 | 11.0 | 0.0 | 0.0 | 1.2 | null | null | null | null | null | null | null | null | 40032.0 | 1090.0 | 5.612594689401938 | 0.153 | 1132.0 | 0.159 | 2.2e-2 | 45.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 166.42061091926706 | 5.888513612981649 | 3.4850186399496392 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-10 | 1202.0 | 15.0 | 18.857 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 41702.0 | 1670.0 | 5.846733206870494 | 0.234 | 1232.0 | 0.173 | 1.5e-2 | 65.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 168.52365149533196 | 2.1030405760648745 | 2.643802409523689 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-11 | 1230.0 | 28.0 | 20.571 | 11.0 | 0.0 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 43292.0 | 1590.0 | 6.06965550793337 | 0.223 | 1293.0 | 0.181 | 1.6e-2 | 62.9 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 172.44932723731972 | 3.925675741987766 | 2.8841098460153693 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-12 | 1254.0 | 24.0 | 23.857 | 11.0 | 0.0 | 0.0 | 1.17 | null | null | null | null | null | null | null | null | 45132.0 | 1840.0 | 6.327628485263995 | 0.258 | 1411.0 | 0.198 | 1.7e-2 | 59.1 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 175.81419215902352 | 3.3648649217037994 | 3.3448159348786475 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-13 | 1261.0 | 7.0 | 24.429 | 11.0 | 0.0 | 0.0 | 1.16 | null | null | null | null | null | null | null | null | 46608.0 | 1476.0 | 6.534567677948779 | 0.207 | 1462.0 | 0.205 | 1.7e-2 | 59.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 176.79561109452047 | 0.9814189354969415 | 3.4250118821792546 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-14 | 1289.0 | 28.0 | 22.0 | 11.0 | 0.0 | 0.0 | 1.16 | null | null | null | null | null | null | null | null | 48081.0 | 1473.0 | 6.741086262518349 | 0.207 | 1507.0 | 0.211 | 1.5e-2 | 68.5 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 180.72128683650823 | 3.925675741987766 | 3.0844595115618163 | 1.5422297557809082 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-15 | 1296.0 | 7.0 | 21.571 | 12.0 | 1.0 | 0.143 | 1.15 | null | null | null | null | null | null | null | null | 48729.0 | 648.0 | 6.831937615404351 | 9.1e-2 | 1398.0 | 0.196 | 1.5e-2 | 64.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 181.70270577200515 | 0.9814189354969415 | 3.0243125510863607 | 1.6824324608518997 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-06-16 | 1303.0 | 7.0 | 16.571 | 13.0 | 1.0 | 0.286 | 1.15 | null | null | null | null | null | null | null | null | 49978.0 | 1249.0 | 7.00705079403802 | 0.175 | 1421.0 | 0.199 | 1.2e-2 | 85.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 182.6841247075021 | 0.9814189354969415 | 2.323299025731403 | 1.8226351659228912 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-17 | 1308.0 | 5.0 | 15.143 | 13.0 | 0.0 | 0.286 | 1.17 | null | null | null | null | null | null | null | null | 51178.0 | 1200.0 | 7.17529404012321 | 0.168 | 1354.0 | 0.19 | 1.1e-2 | 89.4 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 183.38513823285706 | 0.7010135253549582 | 2.1230895628900264 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-18 | 1330.0 | 22.0 | 14.286 | 13.0 | 0.0 | 0.286 | 1.2 | null | null | null | null | null | null | null | null | 52649.0 | 1471.0 | 7.381532219282638 | 0.206 | 1337.0 | 0.187 | 1.1e-2 | 93.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 186.46959774441888 | 3.0844595115618163 | 2.0029358446441865 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-19 | 1336.0 | 6.0 | 11.714 | 13.0 | 0.0 | 0.286 | 1.23 | null | null | null | null | null | null | null | null | 54278.0 | 1629.0 | 7.609922425843284 | 0.228 | 1307.0 | 0.183 | 9.0e-3 | 111.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 187.31081397484482 | 0.8412162304259498 | 1.6423344872015961 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-20 | 1362.0 | 26.0 | 14.429 | 13.0 | 0.0 | 0.286 | 1.27 | null | null | null | null | null | null | null | null | 55827.0 | 1549.0 | 7.82709641599825 | 0.217 | 1317.0 | 0.185 | 1.1e-2 | 91.3 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 190.9560843066906 | 3.6452703318457824 | 2.0229848314693384 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-21 | 1379.0 | 17.0 | 12.857 | 13.0 | 0.0 | 0.286 | 1.31 | null | null | null | null | null | null | null | null | 56992.0 | 1165.0 | 7.990432567405956 | 0.163 | 1273.0 | 0.178 | 1.0e-2 | 99.0 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 193.33953029289748 | 2.383445986206858 | 1.8025861790977393 | 1.8226351659228912 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-22 | 1392.0 | 13.0 | 13.714 | 13.0 | 0.0 | 0.143 | 1.35 | null | null | null | null | null | null | null | null | 57895.0 | 903.0 | 8.117035610085061 | 0.127 | 1309.0 | 0.184 | 1.0e-2 | 95.4 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 195.16216545882037 | 1.8226351659228912 | 1.9227398973435794 | 1.8226351659228912 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-06-23 | 1422.0 | 30.0 | 17.0 | 13.0 | 0.0 | 0.0 | 1.42 | null | null | null | null | null | null | null | null | 59454.0 | 1559.0 | 8.335611627290737 | 0.219 | 1354.0 | 0.19 | 1.3e-2 | 79.6 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 199.3682466109501 | 4.206081152129749 | 2.383445986206858 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-24 | 1528.0 | 106.0 | 31.429 | 13.0 | 0.0 | 0.0 | 1.49 | null | null | null | null | null | null | null | null | 60811.0 | 1357.0 | 8.525866698072072 | 0.19 | 1376.0 | 0.193 | 2.3e-2 | 43.8 | null | 83.33 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 214.22973334847524 | 14.861486737525114 | 4.4064308176761955 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-25 | 1569.0 | 41.0 | 34.143 | 13.0 | 0.0 | 0.0 | 1.49 | null | null | null | null | null | null | null | null | 62384.0 | 1573.0 | 8.746405553148742 | 0.221 | 1391.0 | 0.195 | 2.5e-2 | 40.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 219.97804425638589 | 5.748310907910658 | 4.786940959238867 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-26 | 1711.0 | 142.0 | 53.571 | 13.0 | 0.0 | 0.0 | 1.51 | null | null | null | null | null | null | null | null | 63974.0 | 1590.0 | 8.969327854211619 | 0.223 | 1385.0 | 0.194 | 3.9e-2 | 25.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 239.8868283764667 | 19.908784120080814 | 7.510799113358093 | 1.8226351659228912 | 0.0 | 0.0 |
PRY | South America | Paraguay | 2020-06-27 | 1942.0 | 231.0 | 82.857 | 15.0 | 2.0 | 0.286 | 1.49 | null | null | null | null | null | null | null | null | 65605.0 | 1631.0 | 9.197998466182407 | 0.229 | 1397.0 | 0.196 | 5.9e-2 | 16.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 272.27365324786575 | 32.38682487139907 | 11.616775534067154 | 2.1030405760648745 | 0.2804054101419833 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-28 | 2127.0 | 185.0 | 106.857 | 15.0 | 0.0 | 0.286 | 1.42 | null | null | null | null | null | null | null | null | 66966.0 | 1361.0 | 9.388814347784026 | 0.191 | 1425.0 | 0.2 | 7.5e-2 | 13.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 298.2111536859992 | 25.937500438133455 | 14.981640455770952 | 2.1030405760648745 | 0.0 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-06-29 | 2191.0 | 64.0 | 114.143 | 16.0 | 1.0 | 0.429 | 1.33 | null | null | null | null | null | null | null | null | 68027.0 | 1061.0 | 9.537569417864349 | 0.149 | 1447.0 | 0.203 | 7.9e-2 | 12.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 307.1841268105427 | 8.972973124543465 | 16.0031573649182 | 2.2432432811358662 | 0.14020270507099164 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-06-30 | 2221.0 | 30.0 | 114.143 | 17.0 | 1.0 | 0.571 | 1.27 | null | null | null | null | null | null | null | null | 69343.0 | 1316.0 | 9.722076177737774 | 0.185 | 1413.0 | 0.198 | 8.1e-2 | 12.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 311.39020796267243 | 4.206081152129749 | 16.0031573649182 | 2.383445986206858 | 0.14020270507099164 | 8.005574459553623e-2 |
PRY | South America | Paraguay | 2020-07-01 | 2260.0 | 39.0 | 104.571 | 19.0 | 2.0 | 0.857 | 1.23 | null | null | null | null | null | null | null | null | 70690.0 | 1347.0 | 9.9109292214684 | 0.189 | 1411.0 | 0.198 | 7.4e-2 | 13.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 316.85811346044113 | 5.467905497768673 | 14.661137071978667 | 2.663851396348841 | 0.2804054101419833 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-02 | 2303.0 | 43.0 | 104.857 | 19.0 | 0.0 | 0.857 | 1.2 | null | null | null | null | null | null | null | null | 72319.0 | 1629.0 | 10.139319428029044 | 0.228 | 1419.0 | 0.199 | 7.4e-2 | 13.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 322.88682977849373 | 6.02871631805264 | 14.70123504562897 | 2.663851396348841 | 0.0 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-03 | 2349.0 | 46.0 | 91.143 | 19.0 | 0.0 | 0.857 | 1.19 | null | null | null | null | null | null | null | null | 74088.0 | 1769.0 | 10.387338013299628 | 0.248 | 1445.0 | 0.203 | 6.3e-2 | 15.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 329.3361542117594 | 6.449324433265615 | 12.77849514828539 | 2.663851396348841 | 0.0 | 0.12015371824583984 |
PRY | South America | Paraguay | 2020-07-04 | 2385.0 | 36.0 | 63.286 | 20.0 | 1.0 | 0.714 | 1.18 | null | null | null | null | null | null | null | null | 76077.0 | 1989.0 | 10.666201193685831 | 0.279 | 1496.0 | 0.21 | 4.2e-2 | 23.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 334.38345159431503 | 5.0472973825556995 | 8.872868393122777 | 2.804054101419833 | 0.14020270507099164 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-05 | 2427.0 | 42.0 | 42.857 | 20.0 | 0.0 | 0.714 | 1.17 | null | null | null | null | null | null | null | null | 77879.0 | 1802.0 | 10.918846468223757 | 0.253 | 1559.0 | 0.219 | 2.7e-2 | 36.4 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 340.2719652072967 | 5.888513612981649 | 6.008667331227488 | 2.804054101419833 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-06 | 2456.0 | 29.0 | 37.857 | 20.0 | 0.0 | 0.571 | 1.18 | null | null | null | null | null | null | null | null | 79365.0 | 1486.0 | 11.127187687959252 | 0.208 | 1620.0 | 0.227 | 2.3e-2 | 42.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 344.3378436543555 | 4.065878447058758 | 5.307653805872531 | 2.804054101419833 | 0.0 | 8.005574459553623e-2 |
PRY | South America | Paraguay | 2020-07-07 | 2502.0 | 46.0 | 40.143 | 20.0 | 0.0 | 0.429 | 1.19 | null | null | null | null | null | null | null | null | 81441.0 | 2076.0 | 11.41824850368663 | 0.291 | 1728.0 | 0.242 | 2.3e-2 | 43.0 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 350.7871680876211 | 6.449324433265615 | 5.628157189664818 | 2.804054101419833 | 0.0 | 6.014696047545541e-2 |
PRY | South America | Paraguay | 2020-07-08 | 2554.0 | 52.0 | 42.0 | 20.0 | 0.0 | 0.143 | 1.21 | null | null | null | null | null | null | null | null | 82974.0 | 1533.0 | 11.63317925056046 | 0.215 | 1755.0 | 0.246 | 2.4e-2 | 41.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 358.0777087513126 | 7.290540663691565 | 5.888513612981649 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-09 | 2638.0 | 84.0 | 47.857 | 20.0 | 0.0 | 0.143 | 1.23 | null | null | null | null | null | null | null | null | 84991.0 | 2017.0 | 11.91596810668865 | 0.283 | 1810.0 | 0.254 | 2.6e-2 | 37.8 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 369.85473597727594 | 11.777027225963298 | 6.709680856582446 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-10 | 2736.0 | 98.0 | 55.286 | 20.0 | 0.0 | 0.143 | 1.24 | null | null | null | null | null | null | null | null | 87203.0 | 2212.0 | 12.226096490305684 | 0.31 | 1874.0 | 0.263 | 3.0e-2 | 33.9 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 383.59460107423314 | 13.739865096957182 | 7.751246752554843 | 2.804054101419833 | 0.0 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-11 | 2820.0 | 84.0 | 62.143 | 21.0 | 1.0 | 0.143 | 1.24 | null | null | null | null | null | null | null | null | 89344.0 | 2141.0 | 12.526270481862678 | 0.3 | 1895.0 | 0.266 | 3.3e-2 | 30.5 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 395.37162830019645 | 11.777027225963298 | 8.712616701226635 | 2.9442568064908246 | 0.14020270507099164 | 2.0048986825151802e-2 |
PRY | South America | Paraguay | 2020-07-12 | 2948.0 | 128.0 | 74.429 | 22.0 | 1.0 | 0.286 | 1.24 | null | null | null | null | null | null | null | null | 91281.0 | 1937.0 | 12.797843121585188 | 0.272 | 1915.0 | 0.268 | 3.9e-2 | 25.7 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 413.3175745492834 | 17.94594624908693 | 10.435147135728837 | 3.0844595115618163 | 0.14020270507099164 | 4.0097973650303605e-2 |
PRY | South America | Paraguay | 2020-07-13 | 2980.0 | 32.0 | 74.857 | 25.0 | 3.0 | 0.714 | 1.23 | null | null | null | null | null | null | null | null | 92442.0 | 1161.0 | 12.96061846217261 | 0.163 | 1868.0 | 0.262 | 4.0e-2 | 25.0 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 417.8040611115551 | 4.4864865622717325 | 10.49515389349922 | 3.505067626774791 | 0.4206081152129749 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-14 | 3074.0 | 94.0 | 81.714 | 25.0 | 0.0 | 0.714 | 1.24 | null | null | null | null | null | null | null | null | 94328.0 | 1886.0 | 13.2250407639365 | 0.264 | 1841.0 | 0.258 | 4.4e-2 | 22.5 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 430.98311538822827 | 13.179054276673213 | 11.456523842171011 | 3.505067626774791 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-15 | 3198.0 | 124.0 | 92.0 | 25.0 | 0.0 | 0.714 | 1.25 | null | null | null | null | null | null | null | null | 96060.0 | 1732.0 | 13.467871849119456 | 0.243 | 1869.0 | 0.262 | 4.9e-2 | 20.3 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 448.36825081703125 | 17.38513542880296 | 12.89864886653123 | 3.505067626774791 | 0.0 | 0.10010473142068803 |
PRY | South America | Paraguay | 2020-07-16 | 3342.0 | 144.0 | 100.571 | 27.0 | 2.0 | 1.0 | 1.25 | null | null | null | null | null | null | null | null | 98088.0 | 2028.0 | 13.752202935003428 | 0.284 | 1871.0 | 0.262 | 5.4e-2 | 18.6 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 468.5574403472541 | 20.189189530222798 | 14.1003262516947 | 3.785473036916774 | 0.2804054101419833 | 0.14020270507099164 |
PRY | South America | Paraguay | 2020-07-17 | 3457.0 | 115.0 | 103.0 | 28.0 | 1.0 | 1.143 | 1.24 | null | null | null | null | null | null | null | null | 100315.0 | 2227.0 | 14.064434359196525 | 0.312 | 1873.0 | 0.263 | 5.5e-2 | 18.2 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 484.68075143041807 | 16.123311083164037 | 14.44087862231214 | 3.925675741987766 | 0.14020270507099164 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-18 | 3629.0 | 172.0 | 115.571 | 29.0 | 1.0 | 1.143 | 1.23 | null | null | null | null | null | null | null | null | 102784.0 | 2469.0 | 14.410594838016804 | 0.346 | 1920.0 | 0.269 | 6.0e-2 | 16.6 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 508.79561670262865 | 24.11486527221056 | 16.203366827759574 | 4.065878447058758 | 0.14020270507099164 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-19 | 3721.0 | 92.0 | 110.429 | 31.0 | 2.0 | 1.286 | 1.21 | null | null | null | null | null | null | null | null | 105122.0 | 2338.0 | 14.738388762472782 | 0.328 | 1977.0 | 0.277 | 5.6e-2 | 17.9 | null | 75.93 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 521.6942655691599 | 12.89864886653123 | 15.482444518284536 | 4.34628385720074 | 0.2804054101419833 | 0.18030067872129527 |
PRY | South America | Paraguay | 2020-07-20 | 3748.0 | 27.0 | 109.714 | 33.0 | 2.0 | 1.143 | 1.2 | null | null | null | null | null | null | null | null | 106345.0 | 1223.0 | 14.909856670774605 | 0.171 | 1986.0 | 0.278 | 5.5e-2 | 18.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 525.4797386060767 | 3.785473036916774 | 15.382199584158776 | 4.626689267342724 | 0.2804054101419833 | 0.16025169189614347 |
PRY | South America | Paraguay | 2020-07-21 | 3817.0 | 69.0 | 106.143 | 35.0 | 2.0 | 1.429 | 1.21 | null | null | null | null | null | null | null | null | 108033.0 | 1688.0 | 15.14651883693444 | 0.237 | 1958.0 | 0.275 | 5.4e-2 | 18.4 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 535.1537252559751 | 9.673986649898424 | 14.881535724350266 | 4.907094677484707 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-22 | 4000.0 | 183.0 | 114.571 | 36.0 | 1.0 | 1.571 | 1.22 | null | null | null | null | null | null | null | null | 109874.0 | 1841.0 | 15.404632016970135 | 0.258 | 1973.0 | 0.277 | 5.8e-2 | 17.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 560.8108202839666 | 25.65709502799147 | 16.063164122688583 | 5.0472973825556995 | 0.14020270507099164 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-23 | 4113.0 | 113.0 | 110.143 | 36.0 | 0.0 | 1.286 | 1.21 | null | null | null | null | null | null | null | null | 112039.0 | 2165.0 | 15.70817087344883 | 0.304 | 1993.0 | 0.279 | 5.5e-2 | 18.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 576.6537259569886 | 15.842905673022058 | 15.442346544634232 | 5.0472973825556995 | 0.0 | 0.18030067872129527 |
PRY | South America | Paraguay | 2020-07-24 | 4224.0 | 111.0 | 109.571 | 38.0 | 2.0 | 1.429 | 1.21 | null | null | null | null | null | null | null | null | 114045.0 | 2006.0 | 15.989417499821242 | 0.281 | 1961.0 | 0.275 | 5.6e-2 | 17.9 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 592.2162262198686 | 15.562500262880071 | 15.362150597333624 | 5.327702792697682 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-25 | 4328.0 | 104.0 | 99.857 | 40.0 | 2.0 | 1.571 | 1.21 | null | null | null | null | null | null | null | null | 115906.0 | 1861.0 | 16.250334733958358 | 0.261 | 1875.0 | 0.263 | 5.3e-2 | 18.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 606.7973075472519 | 14.58108132738313 | 14.000221520274012 | 5.608108202839666 | 0.2804054101419833 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-26 | 4444.0 | 116.0 | 103.286 | 41.0 | 1.0 | 1.429 | 1.22 | null | null | null | null | null | null | null | null | 117562.0 | 1656.0 | 16.482510413555918 | 0.232 | 1777.0 | 0.249 | 5.8e-2 | 17.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 623.0608213354868 | 16.26351378823503 | 14.480976595962442 | 5.748310907910658 | 0.14020270507099164 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-27 | 4548.0 | 104.0 | 114.286 | 43.0 | 2.0 | 1.429 | 1.23 | null | null | null | null | null | null | null | null | 119256.0 | 1694.0 | 16.72001379594618 | 0.238 | 1844.0 | 0.259 | 6.2e-2 | 16.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 637.64190266287 | 14.58108132738313 | 16.02320635174335 | 6.02871631805264 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-28 | 4674.0 | 126.0 | 122.429 | 45.0 | 2.0 | 1.429 | 1.24 | null | null | null | null | null | null | null | null | 120943.0 | 1687.0 | 16.956535759400943 | 0.237 | 1844.0 | 0.259 | 6.6e-2 | 15.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 655.307443501815 | 17.665540838944946 | 17.164876979136437 | 6.309121728194624 | 0.2804054101419833 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-29 | 4866.0 | 192.0 | 123.714 | 46.0 | 1.0 | 1.429 | 1.25 | null | null | null | null | null | null | null | null | 122829.0 | 1886.0 | 17.220958061164833 | 0.264 | 1851.0 | 0.26 | 6.7e-2 | 15.0 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 682.2263628754453 | 26.918919373630395 | 17.345037455152656 | 6.449324433265615 | 0.14020270507099164 | 0.20034966554644704 |
PRY | South America | Paraguay | 2020-07-30 | 5207.0 | 341.0 | 156.286 | 47.0 | 1.0 | 1.571 | 1.26 | null | null | null | null | null | null | null | null | 125361.0 | 2532.0 | 17.575951310404584 | 0.355 | 1903.0 | 0.267 | 8.2e-2 | 12.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 730.0354853046534 | 47.80912242920815 | 21.911719964725 | 6.5895271383366065 | 0.14020270507099164 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-07-31 | 5338.0 | 131.0 | 159.143 | 49.0 | 2.0 | 1.571 | 1.24 | null | null | null | null | null | null | null | null | 127610.0 | 2249.0 | 17.89126719410924 | 0.315 | 1938.0 | 0.272 | 8.2e-2 | 12.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 748.4020396689533 | 18.366554364299905 | 22.312279093112824 | 6.869932548478591 | 0.2804054101419833 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-08-01 | 5485.0 | 147.0 | 165.286 | 52.0 | 3.0 | 1.714 | 1.22 | null | null | null | null | null | null | null | null | 128709.0 | 1099.0 | 18.045349966982265 | 0.154 | 1829.0 | 0.256 | 9.0e-2 | 11.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 769.0118373143891 | 20.60979764543577 | 23.173544310363926 | 7.290540663691565 | 0.4206081152129749 | 0.24030743649167968 |
PRY | South America | Paraguay | 2020-08-02 | 5644.0 | 159.0 | 171.429 | 52.0 | 0.0 | 1.571 | 1.22 | null | null | null | null | null | null | null | null | 129724.0 | 1015.0 | 18.187655712629322 | 0.142 | 1737.0 | 0.244 | 9.9e-2 | 10.1 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 791.3040674206768 | 22.292230106287672 | 24.034809527615028 | 7.290540663691565 | 0.0 | 0.22025844966652788 |
PRY | South America | Paraguay | 2020-08-03 | 5724.0 | 80.0 | 168.0 | 55.0 | 3.0 | 1.714 | 1.21 | null | null | null | null | null | null | null | null | 130786.0 | 1062.0 | 18.33655098541471 | 0.149 | 1647.0 | 0.231 | 0.102 | 9.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 802.5202838263561 | 11.216216405679331 | 23.554054451926596 | 7.71114877890454 | 0.4206081152129749 | 0.24030743649167968 |
PRY | South America | Paraguay | 2020-08-04 | 5852.0 | 128.0 | 168.286 | 59.0 | 4.0 | 2.0 | 1.22 | null | null | null | null | null | null | null | null | 132111.0 | 1325.0 | 18.522319569633776 | 0.186 | 1595.0 | 0.224 | 0.106 | 9.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 820.4662300754431 | 17.94594624908693 | 23.594152425576898 | 8.271959599188508 | 0.5608108202839666 | 0.2804054101419833 |
PRY | South America | Paraguay | 2020-08-05 | 6060.0 | 208.0 | 170.571 | 61.0 | 2.0 | 2.143 | 1.24 | null | null | null | null | null | null | null | null | 133822.0 | 1711.0 | 18.762206398010242 | 0.24 | 1570.0 | 0.22 | 0.109 | 9.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 849.6283927302093 | 29.16216265476626 | 23.914515606664114 | 8.55236500933049 | 0.2804054101419833 | 0.30045439696713505 |
PRY | South America | Paraguay | 2020-08-06 | 6375.0 | 315.0 | 166.857 | 66.0 | 5.0 | 2.714 | 1.25 | null | null | null | null | null | null | null | null | 135277.0 | 1455.0 | 18.966201333888538 | 0.204 | 1417.0 | 0.199 | 0.118 | 8.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 893.7922448275716 | 44.163852097362366 | 23.39380276003045 | 9.253378534685448 | 0.7010135253549582 | 0.3805101415626713 |
PRY | South America | Paraguay | 2020-08-07 | 6508.0 | 133.0 | 167.143 | 69.0 | 3.0 | 2.857 | 1.25 | null | null | null | null | null | null | null | null | 136279.0 | 1002.0 | 19.10668444436967 | 0.14 | 1238.0 | 0.174 | 0.135 | 7.4 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 912.4392046020137 | 18.64695977444189 | 23.433900733680755 | 9.673986649898424 | 0.4206081152129749 | 0.40055912838782315 |
PRY | South America | Paraguay | 2020-08-08 | 6705.0 | 197.0 | 174.286 | 72.0 | 3.0 | 2.857 | 1.25 | null | null | null | null | null | null | null | null | 137300.0 | 1021.0 | 19.249831406247154 | 0.143 | 1227.0 | 0.172 | 0.142 | 7.0 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 940.0591375009989 | 27.619932898985354 | 24.43536865600285 | 10.094594765111399 | 0.4206081152129749 | 0.40055912838782315 |
PRY | South America | Paraguay | 2020-08-09 | 6907.0 | 202.0 | 180.429 | 75.0 | 3.0 | 3.286 | 1.26 | null | null | null | null | null | null | null | null | 138415.0 | 1115.0 | 19.406157422401307 | 0.156 | 1242.0 | 0.174 | 0.145 | 6.9 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 968.3800839253392 | 28.320946424340313 | 25.296633873253953 | 10.515202880324374 | 0.4206081152129749 | 0.4607060888632785 |
PRY | South America | Paraguay | 2020-08-10 | 7234.0 | 327.0 | 215.714 | 82.0 | 7.0 | 3.857 | 1.28 | null | null | null | null | null | null | null | null | 140236.0 | 1821.0 | 19.661466548335586 | 0.255 | 1350.0 | 0.189 | 0.16 | 6.3 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1014.2263684835535 | 45.846284558214265 | 30.243686321683892 | 11.496621815821316 | 0.9814189354969415 | 0.5407618334588148 |
PRY | South America | Paraguay | 2020-08-11 | 7519.0 | 285.0 | 238.143 | 86.0 | 4.0 | 3.857 | 1.29 | null | null | null | null | null | null | null | null | 142394.0 | 2158.0 | 19.964023985878782 | 0.303 | 1469.0 | 0.206 | 0.162 | 6.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1054.184139428786 | 39.95777094523262 | 33.388292793721156 | 12.05743263610528 | 0.5608108202839666 | 0.5407618334588148 |
PRY | South America | Paraguay | 2020-08-12 | 8018.0 | 499.0 | 279.714 | 93.0 | 7.0 | 4.571 | 1.3 | null | null | null | null | null | null | null | null | 144517.0 | 2123.0 | 20.261674328744498 | 0.298 | 1528.0 | 0.214 | 0.183 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1124.145289259211 | 69.96114983042483 | 39.216659446227354 | 13.038851571602223 | 0.9814189354969415 | 0.6408665648795027 |
PRY | South America | Paraguay | 2020-08-13 | 8389.0 | 371.0 | 287.714 | 97.0 | 4.0 | 4.429 | 1.29 | null | null | null | null | null | null | null | null | 146284.0 | 1767.0 | 20.50941250860494 | 0.248 | 1572.0 | 0.22 | 0.183 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1176.1604928405488 | 52.0152035813379 | 40.33828108679529 | 13.59966239188619 | 0.5608108202839666 | 0.620957780759422 |
PRY | South America | Paraguay | 2020-08-14 | 9022.0 | 633.0 | 359.143 | 108.0 | 11.0 | 5.571 | 1.29 | null | null | null | null | null | null | null | null | 149349.0 | 3065.0 | 20.939133799647532 | 0.43 | 1867.0 | 0.262 | 0.192 | 5.2 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1264.9088051504866 | 88.7483123099377 | 50.352820107311146 | 15.141892147667097 | 1.5422297557809082 | 0.7810692699504943 |
PRY | South America | Paraguay | 2020-08-15 | 9381.0 | 359.0 | 382.286 | 127.0 | 19.0 | 7.857 | 1.27 | null | null | null | null | null | null | null | null | 151427.0 | 2078.0 | 21.23047502078505 | 0.291 | 2018.0 | 0.283 | 0.189 | 5.3 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1315.2415762709725 | 50.332771120486 | 53.597531310769114 | 17.80574354401594 | 2.663851396348841 | 1.1015726537427815 |
PRY | South America | Paraguay | 2020-08-16 | 9791.0 | 410.0 | 412.0 | 138.0 | 11.0 | 9.0 | 1.25 | null | null | null | null | null | null | null | null | 154392.0 | 2965.0 | 21.64617604132054 | 0.416 | 2282.0 | 0.32 | 0.181 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1372.724685350079 | 57.48310907910657 | 57.76351448924856 | 19.34797329979685 | 1.5422297557809082 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-08-17 | 10135.0 | 344.0 | 414.429 | 145.0 | 7.0 | 9.0 | 1.24 | null | null | null | null | null | null | null | null | 156611.0 | 2219.0 | 21.957285843873073 | 0.311 | 2339.0 | 0.328 | 0.177 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1420.9544158945005 | 48.22973054442112 | 58.10406685986599 | 20.329392235293785 | 0.9814189354969415 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-08-18 | 10606.0 | 471.0 | 441.0 | 161.0 | 16.0 | 10.714 | 1.24 | null | null | null | null | null | null | null | null | 159666.0 | 3055.0 | 22.38560510786495 | 0.428 | 2467.0 | 0.346 | 0.179 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1486.9898899829373 | 66.03547408843706 | 61.82939293630732 | 22.572635516429653 | 2.2432432811358662 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-08-19 | 11133.0 | 527.0 | 445.0 | 165.0 | 4.0 | 10.286 | 1.24 | null | null | null | null | null | null | null | null | 162323.0 | 2657.0 | 22.758123695238577 | 0.373 | 2544.0 | 0.357 | 0.175 | 5.7 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1560.8767155553498 | 73.88682557241259 | 62.390203756591276 | 23.13344633671362 | 0.5608108202839666 | 1.44212502436022 |
PRY | South America | Paraguay | 2020-08-20 | 11817.0 | 684.0 | 489.714 | 170.0 | 5.0 | 10.429 | 1.24 | null | null | null | null | null | null | null | null | 166110.0 | 3787.0 | 23.28907133934242 | 0.531 | 2832.0 | 0.397 | 0.173 | 5.8 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1656.7753658239083 | 95.89865026855828 | 68.6592275111356 | 23.83445986206858 | 0.7010135253549582 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-08-21 | 12536.0 | 719.0 | 502.0 | 182.0 | 12.0 | 10.571 | 1.22 | null | null | null | null | null | null | null | null | 169260.0 | 3150.0 | 23.730709860316043 | 0.442 | 2844.0 | 0.399 | 0.177 | 5.7 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1757.5811107699512 | 100.80574494604298 | 70.3817579456378 | 25.516892322920476 | 1.6824324608518997 | 1.4820827953054525 |
PRY | South America | Paraguay | 2020-08-22 | 12974.0 | 438.0 | 513.286 | 192.0 | 10.0 | 9.286 | 1.2 | null | null | null | null | null | null | null | null | 171552.0 | 2292.0 | 24.052054460338756 | 0.321 | 2875.0 | 0.403 | 0.179 | 5.6 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1818.9898955910455 | 61.408784821094336 | 71.96408567506901 | 26.918919373630395 | 1.4020270507099164 | 1.3019223192892282 |
PRY | South America | Paraguay | 2020-08-23 | 13233.0 | 259.0 | 491.714 | 205.0 | 13.0 | 9.571 | 1.19 | null | null | null | null | null | null | null | null | 173340.0 | 1788.0 | 24.30273689700569 | 0.251 | 2707.0 | 0.38 | 0.182 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1855.3023962044324 | 36.31250061338683 | 68.93963292127759 | 28.741554539553285 | 1.8226351659228912 | 1.3418800902344608 |
PRY | South America | Paraguay | 2020-08-24 | 13602.0 | 369.0 | 495.286 | 219.0 | 14.0 | 10.571 | 1.19 | null | null | null | null | null | null | null | null | 175652.0 | 2312.0 | 24.626885551129824 | 0.324 | 2720.0 | 0.381 | 0.182 | 5.5 | null | 78.7 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1907.0371943756284 | 51.73479817119591 | 69.44043698379116 | 30.704392410547168 | 1.962837870993883 | 1.4820827953054525 |
PRY | South America | Paraguay | 2020-08-25 | 14228.0 | 626.0 | 517.429 | 231.0 | 12.0 | 10.0 | 1.19 | null | null | null | null | null | null | null | null | 177771.0 | 2119.0 | 24.923975083175257 | 0.297 | 2586.0 | 0.363 | 0.2 | 5.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 1994.8040877500691 | 87.76689337444077 | 72.54494548217814 | 32.38682487139907 | 1.6824324608518997 | 1.4020270507099164 |
PRY | South America | Paraguay | 2020-08-26 | 14872.0 | 644.0 | 534.143 | 247.0 | 16.0 | 11.714 | 1.19 | null | null | null | null | null | null | null | null | 180606.0 | 2835.0 | 25.321449752051517 | 0.397 | 2612.0 | 0.366 | 0.204 | 4.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2085.094629815788 | 90.29054206571861 | 74.8882934947347 | 34.63006815253494 | 2.2432432811358662 | 1.6423344872015961 |
PRY | South America | Paraguay | 2020-08-27 | 15290.0 | 418.0 | 496.143 | 265.0 | 18.0 | 13.571 | 1.18 | null | null | null | null | null | null | null | null | 182791.0 | 2185.0 | 25.627792662631634 | 0.306 | 2383.0 | 0.334 | 0.208 | 4.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2143.6993605354623 | 58.60473071967451 | 69.560590702037 | 37.15371684381279 | 2.5236486912778497 | 1.9026909105184275 |
PRY | South America | Paraguay | 2020-08-28 | 15873.0 | 583.0 | 476.714 | 280.0 | 15.0 | 14.0 | 1.18 | null | null | null | null | null | null | null | null | 185921.0 | 3130.0 | 26.066627129503836 | 0.439 | 2380.0 | 0.334 | 0.2 | 5.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2225.4375375918503 | 81.73817705638812 | 66.83659234521271 | 39.25675741987766 | 2.1030405760648745 | 1.962837870993883 |
PRY | South America | Paraguay | 2020-08-29 | 16474.0 | 601.0 | 500.0 | 294.0 | 14.0 | 14.571 | 1.18 | null | null | null | null | null | null | null | null | 188559.0 | 2638.0 | 26.436481865481113 | 0.37 | 2430.0 | 0.341 | 0.206 | 4.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2309.6993633395164 | 84.26182574766598 | 70.10135253549582 | 41.21959529087154 | 1.962837870993883 | 2.0428936155894193 |
PRY | South America | Paraguay | 2020-08-30 | 17105.0 | 631.0 | 553.143 | 308.0 | 14.0 | 14.714 | 1.18 | null | null | null | null | null | null | null | null | 190169.0 | 1610.0 | 26.662208220645407 | 0.226 | 2404.0 | 0.337 | 0.23 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2398.167270239312 | 88.46790689979574 | 77.55214489108354 | 43.182433161865426 | 1.962837870993883 | 2.0629426024145707 |
PRY | South America | Paraguay | 2020-08-31 | 17662.0 | 557.0 | 580.0 | 326.0 | 18.0 | 15.286 | 1.18 | null | null | null | null | null | null | null | null | 192465.0 | 2296.0 | 26.98411363148841 | 0.322 | 2402.0 | 0.337 | 0.241 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2476.260176963854 | 78.09290672454235 | 81.31756894117514 | 45.706081853143274 | 2.5236486912778497 | 2.1431385497151783 |
PRY | South America | Paraguay | 2020-09-01 | 18338.0 | 676.0 | 587.143 | 348.0 | 22.0 | 16.714 | 1.19 | null | null | null | null | null | null | null | null | 195554.0 | 3089.0 | 27.4171997874527 | 0.433 | 2540.0 | 0.356 | 0.231 | 4.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2571.0372055918447 | 94.77702862799035 | 82.31903686349725 | 48.79054136470509 | 3.0844595115618163 | 2.3433480125565542 |
PRY | South America | Paraguay | 2020-09-02 | 19138.0 | 800.0 | 609.429 | 358.0 | 10.0 | 15.857 | 1.19 | null | null | null | null | null | null | null | null | 198620.0 | 3066.0 | 27.84706128120036 | 0.43 | 2573.0 | 0.361 | 0.237 | 4.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2683.199369648638 | 112.16216405679332 | 85.44359434870935 | 50.19256841541501 | 1.4020270507099164 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-09-03 | 19959.0 | 821.0 | 667.0 | 373.0 | 15.0 | 15.429 | 1.19 | null | null | null | null | null | null | null | null | 201750.0 | 3130.0 | 28.285895748072566 | 0.439 | 2708.0 | 0.38 | 0.246 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2798.305790511922 | 115.10642086328414 | 93.51520428235142 | 52.29560899147988 | 2.1030405760648745 | 2.16318753654033 |
PRY | South America | Paraguay | 2020-09-04 | 20654.0 | 695.0 | 683.0 | 398.0 | 25.0 | 16.857 | 1.18 | null | null | null | null | null | null | null | null | 204220.0 | 2470.0 | 28.63219642959791 | 0.346 | 2614.0 | 0.366 | 0.261 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 2895.7466705362613 | 97.4408800243392 | 95.7584475634873 | 55.80067661825467 | 3.505067626774791 | 2.363396999381706 |
PRY | South America | Paraguay | 2020-09-05 | 21871.0 | 1217.0 | 771.0 | 412.0 | 14.0 | 16.857 | 1.18 | null | null | null | null | null | null | null | null | 206483.0 | 2263.0 | 28.949475151173566 | 0.317 | 2561.0 | 0.359 | 0.301 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3066.3733626076582 | 170.62669207139683 | 108.09628560973455 | 57.76351448924856 | 1.962837870993883 | 2.363396999381706 |
PRY | South America | Paraguay | 2020-09-06 | 22486.0 | 615.0 | 768.714 | 435.0 | 23.0 | 18.143 | 1.17 | null | null | null | null | null | null | null | null | 209202.0 | 2719.0 | 29.330686306261594 | 0.381 | 2719.0 | 0.381 | 0.283 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3152.598026226318 | 86.22466361865986 | 107.77578222594228 | 60.988176705881365 | 3.2246622166328076 | 2.5436976781030016 |
PRY | South America | Paraguay | 2020-09-07 | 23353.0 | 867.0 | 813.0 | 449.0 | 14.0 | 17.571 | 1.16 | null | null | null | null | null | null | null | null | 211956.0 | 2754.0 | 29.716804556027103 | 0.386 | 2784.0 | 0.39 | 0.292 | 3.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3274.153771522868 | 121.55574529654974 | 113.9847992227162 | 62.951014576875245 | 1.962837870993883 | 2.463501730802394 |
PRY | South America | Paraguay | 2020-09-08 | 24214.0 | 861.0 | 839.429 | 463.0 | 14.0 | 16.429 | 1.15 | null | null | null | null | null | null | null | null | 214976.0 | 3020.0 | 30.1402167253415 | 0.423 | 2775.0 | 0.389 | 0.302 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3394.8683005889916 | 120.7145290661238 | 117.69021651503743 | 64.91385244786913 | 1.962837870993883 | 2.3033902416113214 |
PRY | South America | Paraguay | 2020-09-09 | 25026.0 | 812.0 | 841.143 | 474.0 | 11.0 | 16.571 | 1.14 | null | null | null | null | null | null | null | null | 217643.0 | 2667.0 | 30.514137339765835 | 0.374 | 2718.0 | 0.381 | 0.309 | 3.2 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3508.712897106637 | 113.8445965176452 | 117.93052395152912 | 66.45608220365003 | 1.5422297557809082 | 2.323299025731403 |
PRY | South America | Paraguay | 2020-09-10 | 25631.0 | 605.0 | 810.286 | 485.0 | 11.0 | 16.0 | 1.13 | null | null | null | null | null | null | null | null | 220293.0 | 2650.0 | 30.88567450820396 | 0.372 | 2649.0 | 0.371 | 0.306 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3593.535533674587 | 84.82263656794994 | 113.60428908115352 | 67.99831195943094 | 1.5422297557809082 | 2.2432432811358662 |
PRY | South America | Paraguay | 2020-09-11 | 26512.0 | 881.0 | 836.857 | 496.0 | 11.0 | 14.0 | 1.13 | null | null | null | null | null | null | null | null | 223303.0 | 3010.0 | 31.307684650467646 | 0.422 | 2726.0 | 0.382 | 0.307 | 3.3 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3717.05411684213 | 123.51858316754364 | 117.32961515759484 | 69.54054171521184 | 1.5422297557809082 | 1.962837870993883 |
PRY | South America | Paraguay | 2020-09-12 | 27324.0 | 812.0 | 779.0 | 514.0 | 18.0 | 14.571 | 1.12 | null | null | null | null | null | null | null | null | 227011.0 | 3708.0 | 31.827556280870883 | 0.52 | 2933.0 | 0.411 | 0.266 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3830.8987133597752 | 113.8445965176452 | 109.21790725030249 | 72.06419040648971 | 2.5236486912778497 | 2.0428936155894193 |
PRY | South America | Paraguay | 2020-09-13 | 27817.0 | 493.0 | 761.571 | 525.0 | 11.0 | 12.857 | 1.11 | null | null | null | null | null | null | null | null | 229992.0 | 2981.0 | 32.24550054468751 | 0.418 | 2970.0 | 0.416 | 0.256 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3900.0186469597743 | 69.11993359999887 | 106.77431430362017 | 73.60642016227062 | 1.5422297557809082 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-09-14 | 28367.0 | 550.0 | 716.286 | 539.0 | 14.0 | 12.857 | 1.11 | null | null | null | null | null | null | null | null | 232515.0 | 2523.0 | 32.59923196958162 | 0.354 | 2937.0 | 0.412 | 0.244 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 3977.1301347488193 | 77.1114877890454 | 100.4252348044803 | 75.56925803326449 | 1.962837870993883 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-09-15 | 29298.0 | 931.0 | 726.286 | 552.0 | 13.0 | 12.714 | 1.12 | null | null | null | null | null | null | null | null | 235620.0 | 3105.0 | 33.03456136882705 | 0.435 | 2949.0 | 0.413 | 0.246 | 4.1 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4107.6588531699135 | 130.5287184210932 | 101.82726185519023 | 77.3918931991874 | 1.8226351659228912 | 1.782537192272588 |
PRY | South America | Paraguay | 2020-09-16 | 30419.0 | 1121.0 | 770.429 | 566.0 | 14.0 | 13.143 | 1.12 | null | null | null | null | null | null | null | null | 239172.0 | 3552.0 | 33.53256137723921 | 0.498 | 3076.0 | 0.431 | 0.25 | 4.0 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4264.826085554495 | 157.16723238458164 | 108.01622986513901 | 79.35473107018127 | 1.962837870993883 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-09-17 | 31113.0 | 694.0 | 783.143 | 584.0 | 18.0 | 14.143 | 1.11 | null | null | null | null | null | null | null | null | 241837.0 | 2665.0 | 33.9062015862534 | 0.374 | 3078.0 | 0.432 | 0.254 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4362.126762873763 | 97.3006773192682 | 109.79876705741161 | 81.87837976145912 | 2.5236486912778497 | 1.9828868578190348 |
PRY | South America | Paraguay | 2020-09-18 | 32127.0 | 1014.0 | 802.143 | 611.0 | 27.0 | 16.429 | 1.11 | null | null | null | null | null | null | null | null | 245271.0 | 3434.0 | 34.38765767546719 | 0.481 | 3138.0 | 0.44 | 0.256 | 3.9 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4504.2923058157485 | 142.1655429419855 | 112.46261845376044 | 85.66385279837588 | 3.785473036916774 | 2.3033902416113214 |
PRY | South America | Paraguay | 2020-09-19 | 33015.0 | 888.0 | 813.0 | 636.0 | 25.0 | 17.429 | 1.1 | null | null | null | null | null | null | null | null | 248376.0 | 3105.0 | 34.822987074712614 | 0.435 | 3052.0 | 0.428 | 0.266 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4628.792307918789 | 124.50000210304057 | 113.9847992227162 | 89.16892042515069 | 3.505067626774791 | 2.443592946682313 |
PRY | South America | Paraguay | 2020-09-20 | 33520.0 | 505.0 | 814.714 | 659.0 | 23.0 | 19.143 | 1.09 | null | null | null | null | null | null | null | null | 250882.0 | 2506.0 | 35.174335053620524 | 0.351 | 2984.0 | 0.418 | 0.273 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4699.59467397964 | 70.80236606085079 | 114.22510665920788 | 92.39358264178348 | 3.2246622166328076 | 2.683900383173993 |
PRY | South America | Paraguay | 2020-09-21 | 34260.0 | 740.0 | 841.857 | 676.0 | 17.0 | 19.571 | 1.09 | null | null | null | null | null | null | null | null | 252943.0 | 2061.0 | 35.463292828771834 | 0.289 | 2918.0 | 0.409 | 0.289 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4803.3446757321735 | 103.75000175253382 | 118.03062868294981 | 94.77702862799035 | 2.383445986206858 | 2.7439071409443776 |
PRY | South America | Paraguay | 2020-09-22 | 34828.0 | 568.0 | 790.0 | 705.0 | 29.0 | 21.857 | 1.08 | null | null | null | null | null | null | null | null | 255851.0 | 2908.0 | 35.87100229511828 | 0.408 | 2890.0 | 0.405 | 0.273 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4882.979812212497 | 79.63513648032325 | 110.76013700608338 | 98.84290707504911 | 4.065878447058758 | 3.064410524736664 |
PRY | South America | Paraguay | 2020-09-23 | 35571.0 | 743.0 | 736.0 | 727.0 | 22.0 | 23.0 | 1.09 | null | null | null | null | null | null | null | null | 258828.0 | 2977.0 | 36.28838574811463 | 0.417 | 2808.0 | 0.394 | 0.262 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 4987.1504220802435 | 104.17060986774679 | 103.18919093224984 | 101.92736658661092 | 3.0844595115618163 | 3.2246622166328076 |
PRY | South America | Paraguay | 2020-09-24 | 36404.0 | 833.0 | 755.857 | 743.0 | 16.0 | 22.714 | 1.09 | null | null | null | null | null | null | null | null | 261563.0 | 2735.0 | 36.67184014648379 | 0.383 | 2818.0 | 0.395 | 0.268 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5103.93927540438 | 116.78885332413604 | 105.97319604684452 | 104.17060986774679 | 2.2432432811358662 | 3.1845642429825043 |
PRY | South America | Paraguay | 2020-09-25 | 37226.0 | 822.0 | 728.429 | 761.0 | 18.0 | 21.429 | 1.09 | null | null | null | null | null | null | null | null | 264031.0 | 2468.0 | 37.01786042259899 | 0.346 | 2680.0 | 0.376 | 0.272 | 3.7 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5219.185898972735 | 115.24662356835513 | 102.12771625215737 | 106.69425855902463 | 2.5236486912778497 | 3.0044037669662798 |
PRY | South America | Paraguay | 2020-09-26 | 37922.0 | 696.0 | 701.0 | 782.0 | 21.0 | 20.857 | 1.08 | null | null | null | null | null | null | null | null | 267062.0 | 3031.0 | 37.44281482166917 | 0.425 | 2669.0 | 0.374 | 0.263 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5316.766981702144 | 97.58108272941018 | 98.28209625476514 | 109.63851536551546 | 2.9442568064908246 | 2.9242078196656727 |
PRY | South America | Paraguay | 2020-09-27 | 38684.0 | 762.0 | 737.714 | 803.0 | 21.0 | 20.571 | 1.08 | null | null | null | null | null | null | null | null | 269710.0 | 2648.0 | 37.81407158469715 | 0.371 | 2690.0 | 0.377 | 0.274 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5423.60144296624 | 106.83446126409564 | 103.42949836874153 | 112.58277217200629 | 2.9442568064908246 | 2.8841098460153693 |
PRY | South America | Paraguay | 2020-09-28 | 39432.0 | 748.0 | 738.857 | 818.0 | 15.0 | 20.286 | 1.08 | null | null | null | null | null | null | null | null | 272494.0 | 2784.0 | 38.204395915614796 | 0.39 | 2793.0 | 0.392 | 0.265 | 3.8 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5528.473066359343 | 104.87162339310174 | 103.58975006063767 | 114.68581274807116 | 2.1030405760648745 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-09-29 | 40101.0 | 669.0 | 753.286 | 841.0 | 23.0 | 19.429 | 1.08 | null | null | null | null | null | null | null | null | 274555.0 | 2061.0 | 38.493353690766114 | 0.289 | 2672.0 | 0.375 | 0.282 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5622.268676051835 | 93.79560969249341 | 105.612734892107 | 117.91047496470398 | 3.2246622166328076 | 2.7239983568242967 |
PRY | South America | Paraguay | 2020-09-30 | 40758.0 | 657.0 | 741.0 | 857.0 | 16.0 | 18.571 | 1.08 | null | null | null | null | null | null | null | null | 277492.0 | 2937.0 | 38.90512903555961 | 0.412 | 2666.0 | 0.374 | 0.278 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5714.381853283477 | 92.1131772316415 | 103.8902044576048 | 120.15371824583984 | 2.2432432811358662 | 2.6037044358733863 |
PRY | South America | Paraguay | 2020-10-01 | 41799.0 | 1041.0 | 770.714 | 869.0 | 12.0 | 18.0 | 1.09 | null | null | null | null | null | null | null | null | 280909.0 | 3417.0 | 39.38420167878719 | 0.479 | 2764.0 | 0.388 | 0.279 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5860.332869262379 | 145.9510159789023 | 108.05618763608425 | 121.83615070669173 | 1.6824324608518997 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-02 | 42684.0 | 885.0 | 779.714 | 890.0 | 21.0 | 18.429 | 1.09 | null | null | null | null | null | null | null | null | 283537.0 | 2628.0 | 39.752654387713754 | 0.368 | 2787.0 | 0.391 | 0.28 | 3.6 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 5984.412263250207 | 124.07939398782761 | 109.31801198172319 | 124.78040751318255 | 2.9442568064908246 | 2.5837956517533045 |
PRY | South America | Paraguay | 2020-10-03 | 43452.0 | 768.0 | 790.0 | 913.0 | 23.0 | 18.714 | 1.08 | null | null | null | null | null | null | null | null | 286262.0 | 2725.0 | 40.13470675903221 | 0.382 | 2743.0 | 0.385 | 0.288 | 3.5 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6092.087940744729 | 107.67567749452158 | 110.76013700608338 | 128.00506972981538 | 3.2246622166328076 | 2.6237534226985373 |
PRY | South America | Paraguay | 2020-10-04 | 44182.0 | 730.0 | 785.429 | 929.0 | 16.0 | 18.0 | 1.08 | null | null | null | null | null | null | null | null | 288502.0 | 2240.0 | 40.44876081839123 | 0.314 | 2685.0 | 0.376 | 0.293 | 3.4 | null | 81.48 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6194.435915446553 | 102.34797470182389 | 110.1192704412039 | 130.24831301095125 | 2.2432432811358662 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-05 | 44715.0 | 533.0 | 754.714 | 947.0 | 18.0 | 18.429 | 1.07 | null | null | null | null | null | null | null | null | 290507.0 | 2005.0 | 40.72986724205857 | 0.281 | 2573.0 | 0.361 | 0.293 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6269.163957249391 | 74.72804180283855 | 105.81294435494839 | 132.77196170222908 | 2.5236486912778497 | 2.5837956517533045 |
PRY | South America | Paraguay | 2020-10-06 | 45647.0 | 932.0 | 792.286 | 966.0 | 19.0 | 17.857 | 1.08 | null | null | null | null | null | null | null | null | 293374.0 | 2867.0 | 41.1318283974971 | 0.402 | 2688.0 | 0.377 | 0.295 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6399.832878375556 | 130.6689211261642 | 111.08064038987568 | 135.43581309857794 | 2.663851396348841 | 2.5035997044526974 |
PRY | South America | Paraguay | 2020-10-07 | 46435.0 | 788.0 | 811.0 | 989.0 | 23.0 | 18.857 | 1.08 | null | null | null | null | null | null | null | null | 296536.0 | 3162.0 | 41.575149350931575 | 0.443 | 2721.0 | 0.381 | 0.298 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6510.312609971496 | 110.47973159594142 | 113.70439381257422 | 138.66047531521073 | 3.2246622166328076 | 2.643802409523689 |
PRY | South America | Paraguay | 2020-10-08 | 47316.0 | 881.0 | 788.143 | 1012.0 | 23.0 | 20.429 | 1.08 | null | null | null | null | null | null | null | null | 299557.0 | 3021.0 | 41.99870172295105 | 0.424 | 2664.0 | 0.374 | 0.296 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6633.83119313904 | 123.51858316754364 | 110.49978058276658 | 141.88513753184353 | 3.2246622166328076 | 2.864201061895288 |
PRY | South America | Paraguay | 2020-10-09 | 48275.0 | 959.0 | 798.714 | 1045.0 | 33.0 | 22.143 | 1.07 | null | null | null | null | null | null | null | null | 302657.0 | 3100.0 | 42.43333010867112 | 0.435 | 2731.0 | 0.383 | 0.292 | 3.4 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6768.285587302122 | 134.45439416308096 | 111.98186337807202 | 146.51182679918625 | 4.626689267342724 | 3.104508498386968 |
PRY | South America | Paraguay | 2020-10-10 | 48978.0 | 703.0 | 789.429 | 1065.0 | 20.0 | 21.714 | 1.07 | null | null | null | null | null | null | null | null | 305552.0 | 2895.0 | 42.83921693985164 | 0.406 | 2756.0 | 0.386 | 0.286 | 3.5 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6866.848088967028 | 98.56250166490712 | 110.68008126148786 | 149.3158809006061 | 2.804054101419833 | 3.044361537911512 |
PRY | South America | Paraguay | 2020-10-11 | 49675.0 | 697.0 | 784.714 | 1077.0 | 12.0 | 21.143 | 1.06 | null | null | null | null | null | null | null | null | 308443.0 | 2891.0 | 43.244542960211874 | 0.405 | 2849.0 | 0.399 | 0.275 | 3.6 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 6964.56937440151 | 97.72128543448116 | 110.01902550707814 | 150.998313361458 | 1.6824324608518997 | 2.964305793315976 |
PRY | South America | Paraguay | 2020-10-12 | 50344.0 | 669.0 | 804.143 | 1096.0 | 19.0 | 21.286 | 1.06 | null | null | null | null | null | null | null | null | 311326.0 | 2883.0 | 43.648747358931544 | 0.404 | 2974.0 | 0.417 | 0.27 | 3.7 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7058.364984094003 | 93.79560969249341 | 112.74302386390244 | 153.66216475780683 | 2.663851396348841 | 2.9843547801411283 |
PRY | South America | Paraguay | 2020-10-13 | 51197.0 | 853.0 | 792.857 | 1108.0 | 12.0 | 20.286 | 1.06 | null | null | null | null | null | null | null | null | 314053.0 | 2727.0 | 44.03108013566013 | 0.382 | 2954.0 | 0.414 | 0.268 | 3.7 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7177.957891519559 | 119.59290742555586 | 111.16069613447122 | 155.34459721865875 | 1.6824324608518997 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-10-14 | 51845.0 | 648.0 | 772.857 | 1131.0 | 23.0 | 20.286 | 1.06 | null | null | null | null | null | null | null | null | 317084.0 | 3031.0 | 44.456034534730314 | 0.425 | 2935.0 | 0.411 | 0.263 | 3.8 | null | 67.59 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7268.809244405562 | 90.85135288600257 | 108.35664203305137 | 158.56925943529154 | 3.2246622166328076 | 2.8441520750701366 |
PRY | South America | Paraguay | 2020-10-15 | 52596.0 | 751.0 | 754.286 | 1150.0 | 19.0 | 19.714 | 1.06 | null | null | null | null | null | null | null | null | 320006.0 | 2922.0 | 44.86570683894775 | 0.41 | 2921.0 | 0.41 | 0.258 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7374.101475913876 | 105.29223150831473 | 105.752937597178 | 161.23311083164037 | 2.663851396348841 | 2.763956127769529 |
PRY | South America | Paraguay | 2020-10-16 | 53482.0 | 886.0 | 743.857 | 1165.0 | 15.0 | 17.143 | 1.06 | null | null | null | null | null | null | null | null | 322978.0 | 2972.0 | 45.28238927841874 | 0.417 | 2903.0 | 0.407 | 0.256 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7498.3210726067755 | 124.21959669289858 | 104.29076358599262 | 163.33615140770524 | 2.1030405760648745 | 2.4034949730320094 |
PRY | South America | Paraguay | 2020-10-17 | 54015.0 | 533.0 | 719.571 | 1179.0 | 14.0 | 16.286 | 1.05 | null | null | null | null | null | null | null | null | 325909.0 | 2931.0 | 45.69332340698182 | 0.411 | 2908.0 | 0.408 | 0.247 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7573.049114409614 | 74.72804180283855 | 100.88580069063853 | 165.29898927869914 | 1.962837870993883 | 2.28334125478617 |
PRY | South America | Paraguay | 2020-10-18 | 54724.0 | 709.0 | 721.286 | 1188.0 | 9.0 | 15.857 | 1.05 | null | null | null | null | null | null | null | null | 328600.0 | 2691.0 | 46.070608886327854 | 0.377 | 2880.0 | 0.404 | 0.25 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7672.452832304946 | 99.40371789533307 | 101.12624832983528 | 166.56081362433807 | 1.2618243456389249 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-19 | 55452.0 | 728.0 | 729.714 | 1207.0 | 19.0 | 15.857 | 1.05 | null | null | null | null | null | null | null | null | 330854.0 | 2254.0 | 46.38662578355787 | 0.316 | 2790.0 | 0.391 | 0.262 | 3.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7774.520401596628 | 102.0675692916819 | 102.3078767281736 | 169.22466502068693 | 2.663851396348841 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-20 | 56073.0 | 621.0 | 696.571 | 1231.0 | 24.0 | 17.571 | 1.05 | null | null | null | null | null | null | null | null | 333885.0 | 3031.0 | 46.81158018262804 | 0.425 | 2833.0 | 0.397 | 0.246 | 4.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7861.586281445714 | 87.0658798490858 | 97.66113847400572 | 172.5895299423907 | 3.3648649217037994 | 2.463501730802394 |
PRY | South America | Paraguay | 2020-10-21 | 56819.0 | 746.0 | 710.571 | 1250.0 | 19.0 | 17.0 | 1.05 | null | null | null | null | null | null | null | null | 336639.0 | 2754.0 | 47.19769843239356 | 0.386 | 2794.0 | 0.392 | 0.254 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 7966.177499428673 | 104.59121798295976 | 99.6239763449996 | 175.25338133873956 | 2.663851396348841 | 2.383445986206858 |
PRY | South America | Paraguay | 2020-10-22 | 57526.0 | 707.0 | 704.286 | 1262.0 | 12.0 | 16.0 | 1.05 | null | null | null | null | null | null | null | null | 339477.0 | 2838.0 | 47.59559370938503 | 0.398 | 2782.0 | 0.39 | 0.253 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8065.300811913865 | 99.1233124851911 | 98.74280234362841 | 176.93581379959147 | 1.6824324608518997 | 2.2432432811358662 |
PRY | South America | Paraguay | 2020-10-23 | 58259.0 | 733.0 | 682.429 | 1278.0 | 16.0 | 16.143 | 1.05 | null | null | null | null | null | null | null | null | 342331.0 | 2854.0 | 47.99573222965764 | 0.4 | 2765.0 | 0.388 | 0.247 | 4.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8168.069394730903 | 102.76858281703687 | 95.67839181889174 | 179.17905708072732 | 2.2432432811358662 | 2.263292267961018 |
PRY | South America | Paraguay | 2020-10-24 | 59043.0 | 784.0 | 718.286 | 1293.0 | 15.0 | 16.286 | 1.04 | null | null | null | null | null | null | null | null | 345336.0 | 3005.0 | 48.41704135839597 | 0.421 | 2775.0 | 0.389 | 0.259 | 3.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8277.98831550656 | 109.91892077565745 | 100.70564021462229 | 181.2820976567922 | 2.1030405760648745 | 2.28334125478617 |
PRY | South America | Paraguay | 2020-10-25 | 59594.0 | 551.0 | 695.714 | 1309.0 | 16.0 | 17.286 | 1.04 | null | null | null | null | null | null | null | null | 347863.0 | 2527.0 | 48.77133359411037 | 0.354 | 2752.0 | 0.386 | 0.253 | 4.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8355.240006000675 | 77.25169049411639 | 97.5409847557599 | 183.52534093792806 | 2.2432432811358662 | 2.4235439598571618 |
PRY | South America | Paraguay | 2020-10-26 | 60109.0 | 515.0 | 665.286 | 1333.0 | 24.0 | 18.0 | 1.04 | null | null | null | null | null | null | null | null | 350289.0 | 2426.0 | 49.11146535661259 | 0.34 | 2776.0 | 0.389 | 0.24 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8427.444399112237 | 72.20439311156069 | 93.27489684585973 | 186.89020585963186 | 3.3648649217037994 | 2.5236486912778497 |
PRY | South America | Paraguay | 2020-10-27 | 60557.0 | 448.0 | 640.571 | 1347.0 | 14.0 | 16.571 | 1.04 | null | null | null | null | null | null | null | null | 352711.0 | 2422.0 | 49.45103630829453 | 0.34 | 2689.0 | 0.377 | 0.238 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8490.255210984042 | 62.810811871804255 | 89.80978699003019 | 188.85304373062573 | 1.962837870993883 | 2.323299025731403 |
PRY | South America | Paraguay | 2020-10-28 | 61290.0 | 733.0 | 638.714 | 1359.0 | 12.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 355553.0 | 2842.0 | 49.84949239610629 | 0.398 | 2702.0 | 0.379 | 0.236 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8593.023793801078 | 102.76858281703687 | 89.54943056671337 | 190.53547619147764 | 1.6824324608518997 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-10-29 | 62050.0 | 760.0 | 646.286 | 1373.0 | 14.0 | 15.857 | 1.04 | null | null | null | null | null | null | null | null | 358694.0 | 3141.0 | 50.28986909273427 | 0.44 | 2745.0 | 0.385 | 0.235 | 4.2 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8699.577849655032 | 106.55405585395364 | 90.6110454495109 | 192.4983140624715 | 1.962837870993883 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-10-30 | 62596.0 | 546.0 | 619.571 | 1387.0 | 14.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 361696.0 | 3002.0 | 50.710757613357394 | 0.421 | 2766.0 | 0.388 | 0.224 | 4.5 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8776.128526623792 | 76.55067696876144 | 86.86553018353936 | 194.4611519334654 | 1.962837870993883 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-10-31 | 63185.0 | 589.0 | 591.714 | 1404.0 | 17.0 | 15.857 | 1.04 | null | null | null | null | null | null | null | null | 364557.0 | 2861.0 | 51.1118775525655 | 0.401 | 2746.0 | 0.385 | 0.215 | 4.6 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8858.707919910607 | 82.57939328681408 | 82.95990342837675 | 196.84459791967228 | 2.383445986206858 | 2.223194294310714 |
PRY | South America | Paraguay | 2020-11-01 | 63731.0 | 546.0 | 591.0 | 1418.0 | 14.0 | 15.571 | 1.04 | null | null | null | null | null | null | null | null | 367224.0 | 2667.0 | 51.48579816698983 | 0.374 | 2766.0 | 0.388 | 0.214 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8935.258596879368 | 76.55067696876144 | 82.85979869695605 | 198.80743579066615 | 1.962837870993883 | 2.183096320660411 |
PRY | South America | Paraguay | 2020-11-02 | 64156.0 | 425.0 | 578.143 | 1429.0 | 11.0 | 13.714 | 1.03 | null | null | null | null | null | null | null | null | 368759.0 | 1535.0 | 51.70100931927381 | 0.215 | 2639.0 | 0.37 | 0.219 | 4.6 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 8994.84474653454 | 59.58614965517145 | 81.05721251785833 | 200.34966554644706 | 1.5422297557809082 | 1.9227398973435794 |
PRY | South America | Paraguay | 2020-11-03 | 64628.0 | 472.0 | 581.571 | 1441.0 | 12.0 | 13.429 | 1.04 | null | null | null | null | null | null | null | null | 371762.0 | 3003.0 | 52.12203804260199 | 0.421 | 2722.0 | 0.382 | 0.214 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9061.020423328047 | 66.17567679350806 | 81.53782739084168 | 202.03209800729897 | 1.6824324608518997 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-11-04 | 65258.0 | 630.0 | 566.857 | 1454.0 | 13.0 | 13.571 | 1.04 | null | null | null | null | null | null | null | null | 374486.0 | 2724.0 | 52.503950211215376 | 0.382 | 2705.0 | 0.379 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9149.348127522771 | 88.32770419472473 | 79.4748847884271 | 203.85473317322183 | 1.8226351659228912 | 1.9026909105184275 |
PRY | South America | Paraguay | 2020-11-05 | 65778.0 | 520.0 | 532.571 | 1462.0 | 8.0 | 12.714 | 1.05 | null | null | null | null | null | null | null | null | 377309.0 | 2823.0 | 52.899742447630786 | 0.396 | 2659.0 | 0.373 | 0.2 | 5.0 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9222.253534159689 | 72.90540663691564 | 74.66789484236308 | 204.97635481378978 | 1.1216216405679331 | 1.782537192272588 |
PRY | South America | Paraguay | 2020-11-06 | 66481.0 | 703.0 | 555.0 | 1472.0 | 10.0 | 12.143 | 1.05 | null | null | null | null | null | null | null | null | 380237.0 | 2928.0 | 53.31025596807864 | 0.411 | 2649.0 | 0.371 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9320.816035824595 | 98.56250166490712 | 77.81250131440036 | 206.3783818644997 | 1.4020270507099164 | 1.7024814476770516 |
PRY | South America | Paraguay | 2020-11-07 | 66941.0 | 460.0 | 536.571 | 1479.0 | 7.0 | 10.714 | 1.05 | null | null | null | null | null | null | null | null | 382872.0 | 2635.0 | 53.67969009594071 | 0.369 | 2616.0 | 0.367 | 0.205 | 4.9 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9385.309280157251 | 64.49324433265615 | 75.22870566264706 | 207.35980079999663 | 0.9814189354969415 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-11-08 | 67589.0 | 648.0 | 551.143 | 1490.0 | 11.0 | 10.286 | 1.05 | null | null | null | null | null | null | null | null | 385453.0 | 2581.0 | 54.041553277728944 | 0.362 | 2604.0 | 0.365 | 0.212 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9476.160633043253 | 90.85135288600257 | 77.27173948094155 | 208.90203055577754 | 1.5422297557809082 | 1.44212502436022 |
PRY | South America | Paraguay | 2020-11-09 | 67948.0 | 359.0 | 541.714 | 1502.0 | 12.0 | 10.429 | 1.05 | null | null | null | null | null | null | null | null | 387941.0 | 2488.0 | 54.39037760794557 | 0.349 | 2740.0 | 0.384 | 0.198 | 5.1 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9526.493404163739 | 50.332771120486 | 75.94976817482717 | 210.58446301662946 | 1.6824324608518997 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-11-10 | 68497.0 | 549.0 | 552.714 | 1516.0 | 14.0 | 10.714 | 1.06 | null | null | null | null | null | null | null | null | 390180.0 | 2239.0 | 54.70429146459952 | 0.314 | 2631.0 | 0.369 | 0.21 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9603.464689247714 | 76.97128508397441 | 77.49199793060808 | 212.54730088762332 | 1.962837870993883 | 1.5021317821306046 |
PRY | South America | Paraguay | 2020-11-11 | 69106.0 | 609.0 | 549.714 | 1532.0 | 16.0 | 11.143 | 1.07 | null | null | null | null | null | null | null | null | 392876.0 | 2696.0 | 55.082277957470914 | 0.378 | 2627.0 | 0.368 | 0.209 | 4.8 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9688.848136635948 | 85.38344738823392 | 77.0713898153951 | 214.7905441687592 | 2.2432432811358662 | 1.56227874260606 |
PRY | South America | Paraguay | 2020-11-12 | 69653.0 | 547.0 | 553.571 | 1543.0 | 11.0 | 11.571 | 1.07 | null | null | null | null | null | null | null | null | 395518.0 | 2642.0 | 55.452693504268474 | 0.37 | 2601.0 | 0.365 | 0.213 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9765.53901630978 | 76.69087967383243 | 77.61215164885391 | 216.3327739245401 | 1.5422297557809082 | 1.622285500376444 |
PRY | South America | Paraguay | 2020-11-13 | 70392.0 | 739.0 | 558.714 | 1556.0 | 13.0 | 12.0 | 1.08 | null | null | null | null | null | null | null | null | 398428.0 | 2910.0 | 55.86068337602506 | 0.408 | 2599.0 | 0.364 | 0.215 | 4.7 | null | 64.81 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9869.148815357243 | 103.60979904746281 | 78.33321416103404 | 218.155409090463 | 1.8226351659228912 | 1.6824324608518997 |
PRY | South America | Paraguay | 2020-11-14 | 71065.0 | 673.0 | 589.143 | 1569.0 | 13.0 | 12.857 | 1.08 | null | null | null | null | null | null | null | null | 401017.0 | 2589.0 | 56.22366817945385 | 0.363 | 2592.0 | 0.363 | 0.227 | 4.4 | null | 61.11 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 9963.505235870021 | 94.35642051277738 | 82.59944227363924 | 219.97804425638589 | 1.8226351659228912 | 1.8025861790977393 |
PRY | South America | Paraguay | 2020-11-15 | 71574.0 | 509.0 | 569.286 | 1587.0 | 18.0 | 13.857 | 1.08 | null | null | null | null | null | null | null | null | 402564.0 | 1547.0 | 56.44056176419868 | 0.217 | 2444.0 | 0.343 | 0.233 | 4.3 | null | 61.11 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10034.868412751155 | 71.36317688113473 | 79.81543715904454 | 222.50169294766374 | 2.5236486912778497 | 1.9427888841687313 |
PRY | South America | Paraguay | 2020-11-16 | 72099.0 | 525.0 | 593.0 | 1602.0 | 15.0 | 14.286 | 1.08 | null | null | null | null | null | null | null | null | 405816.0 | 3252.0 | 56.896500961089544 | 0.456 | 2554.0 | 0.358 | 0.232 | 4.3 | null | 66.67 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10108.474832913427 | 73.60642016227062 | 83.14020410709804 | 224.60473352372858 | 2.1030405760648745 | 2.0029358446441865 |
PRY | South America | Paraguay | 2020-11-17 | 72857.0 | 758.0 | 622.857 | 1613.0 | 11.0 | 13.857 | 1.09 | null | null | null | null | null | null | null | null | 408717.0 | 2901.0 | 57.30322900850049 | 0.407 | 2648.0 | 0.371 | 0.235 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10214.748483357238 | 106.27365044381166 | 87.32623627240264 | 226.1469632795095 | 1.5422297557809082 | 1.9427888841687313 |
PRY | South America | Paraguay | 2020-11-18 | 73639.0 | 782.0 | 647.571 | 1624.0 | 11.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 411727.0 | 3010.0 | 57.725239150764175 | 0.422 | 2693.0 | 0.378 | 0.24 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10324.386998722754 | 109.63851536551546 | 90.79120592552714 | 227.6891930352904 | 1.5422297557809082 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-11-19 | 74495.0 | 856.0 | 691.714 | 1636.0 | 12.0 | 13.286 | 1.09 | null | null | null | null | null | null | null | null | 414988.0 | 3261.0 | 58.18244017200068 | 0.457 | 2781.0 | 0.39 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10444.400514263521 | 120.01351554076884 | 96.98017393547592 | 229.37162549614231 | 1.6824324608518997 | 1.8627331395731948 |
PRY | South America | Paraguay | 2020-11-20 | 75058.0 | 563.0 | 666.571 | 1647.0 | 11.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 417510.0 | 2522.0 | 58.53603139418972 | 0.354 | 2726.0 | 0.382 | 0.245 | 4.1 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10523.33463721849 | 78.9341229549683 | 93.45505732187597 | 230.91385525192322 | 1.5422297557809082 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-11-21 | 75857.0 | 799.0 | 684.571 | 1652.0 | 5.0 | 11.857 | 1.09 | null | null | null | null | null | null | null | null | 420258.0 | 2748.0 | 58.9213084277248 | 0.385 | 2749.0 | 0.385 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10635.356598570213 | 112.02196135172233 | 95.97870601315381 | 231.6148687772782 | 0.7010135253549582 | 1.6623834740267478 |
PRY | South America | Paraguay | 2020-11-22 | 76476.0 | 619.0 | 700.286 | 1657.0 | 5.0 | 10.0 | 1.09 | null | null | null | null | null | null | null | null | 423142.0 | 2884.0 | 59.32565302914954 | 0.404 | 2940.0 | 0.412 | 0.238 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10722.142073009156 | 86.78547443894382 | 98.18199152334444 | 232.31588230263313 | 0.7010135253549582 | 1.4020270507099164 |
PRY | South America | Paraguay | 2020-11-23 | 77072.0 | 596.0 | 710.429 | 1665.0 | 8.0 | 9.0 | 1.09 | null | null | null | null | null | null | null | null | 425902.0 | 2760.0 | 59.71261249514548 | 0.387 | 2869.0 | 0.402 | 0.248 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10805.702885231469 | 83.56081222231101 | 99.60406756087951 | 233.43750394320108 | 1.1216216405679331 | 1.2618243456389249 |
PRY | South America | Paraguay | 2020-11-24 | 77891.0 | 819.0 | 719.143 | 1677.0 | 12.0 | 9.143 | 1.09 | null | null | null | null | null | null | null | null | 428912.0 | 3010.0 | 60.134622637409166 | 0.422 | 2885.0 | 0.404 | 0.249 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 10920.528900684609 | 114.82601545314216 | 100.82579393286815 | 235.119936404053 | 1.6824324608518997 | 1.2818733324640765 |
PRY | South America | Paraguay | 2020-11-25 | 78878.0 | 987.0 | 748.429 | 1691.0 | 14.0 | 9.571 | 1.09 | null | null | null | null | null | null | null | null | 432048.0 | 3136.0 | 60.574298320511794 | 0.44 | 2903.0 | 0.407 | 0.258 | 3.9 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11058.908970589679 | 138.38006990506875 | 104.93177035357719 | 237.08277427504686 | 1.962837870993883 | 1.3418800902344608 |
PRY | South America | Paraguay | 2020-11-26 | 79517.0 | 639.0 | 717.429 | 1704.0 | 13.0 | 9.714 | 1.09 | null | null | null | null | null | null | null | null | 435667.0 | 3619.0 | 61.08169191016371 | 0.507 | 2954.0 | 0.414 | 0.243 | 4.1 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11148.498499130043 | 89.58952854036366 | 100.58548649637646 | 238.90540944096978 | 1.8226351659228912 | 1.3619290770596129 |
PRY | South America | Paraguay | 2020-11-27 | 80436.0 | 919.0 | 768.286 | 1720.0 | 16.0 | 10.429 | 1.09 | null | null | null | null | null | null | null | null | 439175.0 | 3508.0 | 61.57352299955275 | 0.492 | 3095.0 | 0.434 | 0.248 | 4.0 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11277.344785090285 | 128.84628596024132 | 107.71577546817187 | 241.14865272210562 | 2.2432432811358662 | 1.4621740111853718 |
PRY | South America | Paraguay | 2020-11-28 | 81131.0 | 695.0 | 753.429 | 1731.0 | 11.0 | 11.286 | 1.09 | null | null | null | null | null | null | null | null | 442832.0 | 3657.0 | 62.08624429199737 | 0.513 | 3225.0 | 0.452 | 0.234 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11374.785665114623 | 97.4408800243392 | 105.63278387893214 | 242.69088247788653 | 1.5422297557809082 | 1.5823277294312115 |
PRY | South America | Paraguay | 2020-11-29 | 81906.0 | 775.0 | 775.714 | 1743.0 | 12.0 | 12.286 | 1.09 | null | null | null | null | null | null | null | null | 445986.0 | 3154.0 | 62.52844362379127 | 0.442 | 3263.0 | 0.457 | 0.238 | 4.2 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11483.442761544642 | 108.65709643001853 | 108.75720116143923 | 244.37331493873842 | 1.6824324608518997 | 1.7225304345022032 |
PRY | South America | Paraguay | 2020-11-30 | 82424.0 | 518.0 | 764.571 | 1756.0 | 13.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 445986.0 | null | 62.52844362379127 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11556.067762771416 | 72.62500122677366 | 107.19492241883314 | 246.19595010466134 | 1.8226351659228912 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-11-30 | 82424.0 | 518.0 | 764.571 | 1756.0 | 13.0 | 13.0 | 1.09 | null | null | null | null | null | null | null | null | 449057.0 | 3071.0 | 62.9590061310643 | 0.431 | 3308.0 | 0.464 | 0.231 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11556.067762771416 | 72.62500122677366 | 107.19492241883314 | 246.19595010466134 | 1.8226351659228912 | 1.8226351659228912 |
PRY | South America | Paraguay | 2020-12-01 | 83479.0 | 1055.0 | 798.286 | 1771.0 | 15.0 | 13.429 | 1.09 | null | null | null | null | null | null | null | null | 449057.0 | null | 62.9590061310643 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11703.981616621311 | 147.91385384989619 | 111.92185662030163 | 248.29899068072618 | 2.1030405760648745 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-12-01 | 83479.0 | 1055.0 | 798.286 | 1771.0 | 15.0 | 13.429 | 1.09 | null | null | null | null | null | null | null | null | 452851.0 | 3794.0 | 63.490935194103635 | 0.532 | 3420.0 | 0.479 | 0.233 | 4.3 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11703.981616621311 | 147.91385384989619 | 111.92185662030163 | 248.29899068072618 | 2.1030405760648745 | 1.8827821263983469 |
PRY | South America | Paraguay | 2020-12-02 | 84482.0 | 1003.0 | 800.571 | 1783.0 | 12.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | 4065.0 | 64.06085919021722 | 0.57 | 3553.0 | 0.498 | 0.225 | 4.4 | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11844.604929807516 | 140.6233131862046 | 112.24221980138886 | 249.98142314157806 | 1.6824324608518997 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-12-02 | 84482.0 | 1003.0 | 800.571 | 1783.0 | 12.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | null | 64.06085919021722 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11844.604929807516 | 140.6233131862046 | 112.24221980138886 | 249.98142314157806 | 1.6824324608518997 | 1.8426841527480433 |
PRY | South America | Paraguay | 2020-12-03 | 85477.0 | 995.0 | 851.429 | 1796.0 | 13.0 | 13.143 | 1.09 | null | null | null | null | null | null | null | null | 456916.0 | null | 64.06085919021722 | null | null | null | null | null | null | 63.89 | 7132530.0 | 17.144 | 26.5 | 6.378 | 3.833 | 8827.01 | 1.7 | 199.128 | 8.27 | 5.0 | 21.6 | 79.602 | 1.3 | 74.25 | 0.702 | 11984.106621353152 | 139.5016915456367 | 119.37264897588933 | 251.80405830750098 | 1.8226351659228912 | 1.8426841527480433 |
RUS | Europe | Russia | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 0.0 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-01-31 | 2.0 | 2.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 1.3704782270068359e-2 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-01 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-02 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-03 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-04 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-05 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-06 | 2.0 | 0.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-07 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-08 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-09 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-10 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-11 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-12 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-13 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-14 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-15 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-16 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-17 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-18 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-19 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-20 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-21 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-22 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-23 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-24 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-25 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-26 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-27 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-28 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-02-29 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-01 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-02 | 3.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 6.852391135034179e-3 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-03 | 3.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 0.0 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-04 | 3.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 46414.0 | null | 0.3180468821414764 | null | null | null | null | null | null | 8.33 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0557173405102536e-2 | 0.0 | 9.798919323098876e-4 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-05 | 4.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 51366.0 | 4952.0 | 0.35197992304216563 | 3.4e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.7409564540136717e-2 | 6.852391135034179e-3 | 1.959783864619775e-3 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-06 | 13.0 | 9.0 | 1.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 55688.0 | 4322.0 | 0.3815959575277834 | 3.0e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.908108475544432e-2 | 6.167152021530761e-2 | 1.0765106473138695e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-07 | 13.0 | 0.0 | 1.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 59960.0 | 4272.0 | 0.41086937245664934 | 2.9e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.908108475544432e-2 | 0.0 | 1.0765106473138695e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-08 | 17.0 | 4.0 | 2.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 63191.0 | 3231.0 | 0.43300944821394477 | 2.2e-2 | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.11649064929558105 | 2.7409564540136717e-2 | 1.4684674202378244e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-09 | 17.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 63191.0 | null | 0.43300944821394477 | null | null | null | null | null | null | 22.22 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.11649064929558105 | 0.0 | 1.3704782270068359e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-10 | 20.0 | 3.0 | 2.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 70601.0 | null | 0.4837856665245481 | null | null | null | null | null | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.13704782270068358 | 2.0557173405102536e-2 | 1.664445806699802e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-11 | 20.0 | 0.0 | 2.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 76963.0 | 6362.0 | 0.5273805789256355 | 4.4e-2 | 4364.0 | 3.0e-2 | 1.0e-3 | 1796.6 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.13704782270068358 | 0.0 | 1.664445806699802e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-12 | 28.0 | 8.0 | 3.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 76963.0 | null | 0.5273805789256355 | null | 4934.0 | 3.4e-2 | 1.0e-3 | 1438.9 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.191866951780957 | 5.4819129080273435e-2 | 2.3496849202032197e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-13 | 45.0 | 17.0 | 4.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 94852.0 | null | 0.649963003940262 | null | 5595.0 | 3.8e-2 | 1.0e-3 | 1224.0 | null | 31.94 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.3083576010765381 | 0.11649064929558105 | 3.132227987824123e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-14 | 59.0 | 14.0 | 6.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 104883.0 | 10031.0 | 0.7186993394157898 | 6.9e-2 | 6418.0 | 4.4e-2 | 1.0e-3 | 976.7 | null | 35.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.40429107696701655 | 9.59334758904785e-2 | 4.5027062148309586e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-15 | 63.0 | 4.0 | 6.571 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 109939.0 | 5056.0 | 0.7533450289945226 | 3.5e-2 | 6678.0 | 4.6e-2 | 1.0e-3 | 1016.3 | null | 35.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.43170064150715326 | 2.7409564540136717e-2 | 4.5027062148309586e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-16 | 90.0 | 27.0 | 10.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 116061.0 | 6122.0 | 0.7952953675232018 | 4.2e-2 | 7024.0 | 4.8e-2 | 1.0e-3 | 673.5 | null | 50.46 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.6167152021530762 | 0.18501456064592284 | 7.146358714727145e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-17 | 114.0 | 24.0 | 13.429 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 122854.0 | 6793.0 | 0.841843660503489 | 4.7e-2 | 7465.0 | 5.1e-2 | 2.0e-3 | 555.9 | null | 60.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 0.7811725893938963 | 0.1644573872408203 | 9.2020760552374e-2 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-18 | 147.0 | 33.0 | 18.143 | 0.0 | 0.0 | 0.0 | 2.27 | null | null | null | null | null | null | null | null | 133101.0 | 10247.0 | 0.9120601124641843 | 7.0e-2 | 8020.0 | 5.5e-2 | 2.0e-3 | 442.0 | null | 60.65 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.0073014968500242 | 0.2261289074561279 | 0.12432293236292512 | 0.0 | 0.0 | 0.0 |
RUS | Europe | Russia | 2020-03-19 | 199.0 | 52.0 | 24.429 | 1.0 | 1.0 | 0.143 | 2.29 | null | null | null | null | null | null | null | null | 143519.0 | 10418.0 | 0.9834483233089704 | 7.1e-2 | 8230.0 | 5.6e-2 | 3.0e-3 | 336.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.3636258358718016 | 0.3563243390217773 | 0.16739706303774995 | 6.852391135034179e-3 | 6.852391135034179e-3 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-20 | 253.0 | 54.0 | 29.714 | 1.0 | 0.0 | 0.143 | 2.26 | null | null | null | null | null | null | null | null | 156016.0 | 12497.0 | 1.0690826553234927 | 8.6e-2 | 8738.0 | 6.0e-2 | 3.0e-3 | 294.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1.7336549571636475 | 0.3700291212918457 | 0.20361195018640557 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-21 | 306.0 | 53.0 | 35.286 | 1.0 | 0.0 | 0.143 | 2.23 | null | null | null | null | null | null | null | null | 163529.0 | 7513.0 | 1.1205646699210041 | 5.1e-2 | 8378.0 | 5.7e-2 | 4.0e-3 | 237.4 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.0968316873204587 | 0.36317673015681146 | 0.24179347359081607 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-22 | 367.0 | 61.0 | 43.429 | 1.0 | 0.0 | 0.143 | 2.23 | null | null | null | null | null | null | null | null | 165772.0 | 2243.0 | 1.135934583236886 | 1.5e-2 | 7976.0 | 5.5e-2 | 5.0e-3 | 183.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2.5148275465575436 | 0.41799585923708493 | 0.29759249460339937 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-23 | 438.0 | 71.0 | 49.714 | 1.0 | 0.0 | 0.143 | 2.27 | null | null | null | null | null | null | null | null | 185918.0 | 20146.0 | 1.2739828550432846 | 0.138 | 9980.0 | 6.8e-2 | 5.0e-3 | 200.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3.0013473171449707 | 0.48651977058742674 | 0.3406597728870892 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-24 | 495.0 | 57.0 | 54.429 | 1.0 | 0.0 | 0.143 | 2.33 | null | null | null | null | null | null | null | null | 192824.0 | 6906.0 | 1.3213054682218306 | 4.7e-2 | 9996.0 | 6.8e-2 | 5.0e-3 | 183.7 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3.3919336118419188 | 0.39058629469694817 | 0.3729687970887754 | 6.852391135034179e-3 | 0.0 | 9.798919323098876e-4 |
RUS | Europe | Russia | 2020-03-25 | 658.0 | 163.0 | 73.0 | 3.0 | 2.0 | 0.429 | 2.51 | null | null | null | null | null | null | null | null | 197251.0 | 4427.0 | 1.3516410037766269 | 3.0e-2 | 9164.0 | 6.3e-2 | 8.0e-3 | 125.5 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4.50887336685249 | 1.116939755010571 | 0.5002245528574951 | 2.0557173405102536e-2 | 1.3704782270068359e-2 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-26 | 840.0 | 182.0 | 91.571 | 3.0 | 0.0 | 0.286 | 2.54 | null | null | null | null | null | null | null | null | 223509.0 | 26258.0 | 1.5315710902003543 | 0.18 | 11427.0 | 7.8e-2 | 8.0e-3 | 124.8 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5.75600855342871 | 1.2471351865762206 | 0.6274803086262148 | 2.0557173405102536e-2 | 0.0 | 1.959783864619775e-3 |
RUS | Europe | Russia | 2020-03-27 | 1036.0 | 196.0 | 111.857 | 4.0 | 1.0 | 0.429 | 2.51 | null | null | null | null | null | null | null | null | 243377.0 | 19868.0 | 1.6677143972712134 | 0.136 | 12480.0 | 8.6e-2 | 9.0e-3 | 111.6 | null | 69.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7.099077215895409 | 1.343068662466699 | 0.7664879151915182 | 2.7409564540136717e-2 | 6.852391135034179e-3 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-28 | 1264.0 | 228.0 | 136.857 | 4.0 | 0.0 | 0.429 | 2.48 | null | null | null | null | null | null | null | null | 263888.0 | 20511.0 | 1.8082637918418993 | 0.141 | 14337.0 | 9.8e-2 | 1.0e-2 | 104.8 | null | 71.76 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8.661422394683203 | 1.5623451787877927 | 0.9377976935673726 | 2.7409564540136717e-2 | 0.0 | 2.9396757969296626e-3 |
RUS | Europe | Russia | 2020-03-29 | 1534.0 | 270.0 | 166.714 | 8.0 | 4.0 | 1.0 | 2.45 | null | null | null | null | null | null | null | null | 343523.0 | 79635.0 | 2.3539539598803465 | 0.546 | 25393.0 | 0.174 | 7.0e-3 | 152.3 | null | 71.76 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10.51156800114243 | 1.8501456064592283 | 1.142389535686088 | 5.4819129080273435e-2 | 2.7409564540136717e-2 | 6.852391135034179e-3 |
RUS | Europe | Russia | 2020-03-30 | 1836.0 | 302.0 | 199.714 | 9.0 | 1.0 | 1.143 | 2.44 | null | null | null | null | null | null | null | null | 343523.0 | null | 2.3539539598803465 | null | 27013.0 | 0.185 | 7.0e-3 | 135.3 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12.580990123922753 | 2.069422122780322 | 1.368518443142216 | 6.167152021530761e-2 | 6.852391135034179e-3 | 7.832283067344067e-3 |
RUS | Europe | Russia | 2020-03-31 | 2337.0 | 501.0 | 263.143 | 17.0 | 8.0 | 2.286 | 2.45 | null | null | null | null | null | null | null | null | 406500.0 | null | 2.7854969963913936 | null | 30525.0 | 0.209 | 9.0e-3 | 116.0 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16.014038082574878 | 3.4330479586521236 | 1.8031587604462989 | 0.11649064929558105 | 5.4819129080273435e-2 | 1.5664566134688133e-2 |
RUS | Europe | Russia | 2020-04-01 | 2777.0 | 440.0 | 302.714 | 24.0 | 7.0 | 3.0 | 2.39 | null | null | null | null | null | null | null | null | 536000.0 | 129500.0 | 3.67288164837832 | 0.887 | 48393.0 | 0.332 | 6.0e-3 | 159.9 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 19.029090181989915 | 3.0150520994150387 | 2.0743147300507365 | 0.1644573872408203 | 4.796673794523925e-2 | 2.0557173405102536e-2 |
RUS | Europe | Russia | 2020-04-02 | 3548.0 | 771.0 | 386.857 | 30.0 | 6.0 | 3.857 | 2.36 | null | null | null | null | null | null | null | null | 575103.0 | 39103.0 | 3.940830698931561 | 0.268 | 50228.0 | 0.344 | 8.0e-3 | 129.8 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 24.31228374710127 | 5.283193565111351 | 2.6508954773259172 | 0.20557173405102536 | 4.111434681020507e-2 | 2.642967260782683e-2 |
RUS | Europe | Russia | 2020-04-03 | 4149.0 | 601.0 | 444.714 | 34.0 | 4.0 | 4.286 | 2.23 | null | null | null | null | null | null | null | null | 639606.0 | 64503.0 | 4.38283048431467 | 0.442 | 56604.0 | 0.388 | 8.0e-3 | 127.3 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 28.430570819256808 | 4.118287072155542 | 3.04735427122559 | 0.2329812985911621 | 2.7409564540136717e-2 | 2.936934840475649e-2 |
RUS | Europe | Russia | 2020-04-04 | 4731.0 | 582.0 | 495.286 | 43.0 | 9.0 | 5.571 | 2.13 | null | null | null | null | null | null | null | null | 697004.0 | 57398.0 | 4.776144030683363 | 0.393 | 61874.0 | 0.424 | 8.0e-3 | 124.9 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 32.4186624598467 | 3.9880916405898925 | 3.393893395706538 | 0.2946528188064697 | 6.167152021530761e-2 | 3.817467101327541e-2 |
RUS | Europe | Russia | 2020-04-05 | 5389.0 | 658.0 | 550.714 | 45.0 | 2.0 | 5.286 | 2.1 | null | null | null | null | null | null | null | null | 758401.0 | 61397.0 | 5.196860289201057 | 0.421 | 59268.0 | 0.406 | 9.0e-3 | 107.6 | null | 87.04 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 36.92753582669919 | 4.50887336685249 | 3.773707731539213 | 0.3083576010765381 | 1.3704782270068359e-2 | 3.6221739539790666e-2 |
RUS | Europe | Russia | 2020-04-06 | 6343.0 | 954.0 | 643.857 | 47.0 | 2.0 | 5.429 | 2.11 | null | null | null | null | null | null | null | null | 795523.0 | 37122.0 | 5.451234752915795 | 0.254 | 60073.0 | 0.412 | 1.1e-2 | 93.3 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 43.4647169695218 | 6.5371811428226065 | 4.411959999029701 | 0.3220623833466064 | 1.3704782270068359e-2 | 3.720163147210056e-2 |
RUS | Europe | Russia | 2020-04-07 | 7497.0 | 1154.0 | 737.143 | 58.0 | 11.0 | 5.857 | 2.12 | null | null | null | null | null | null | null | null | 910221.0 | 114698.0 | 6.237190311321946 | 0.786 | 71960.0 | 0.493 | 1.0e-2 | 97.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 51.37237633935124 | 7.9076593698294415 | 5.0511921584525 | 0.3974386858319824 | 7.537630248537597e-2 | 4.013445487789519e-2 |
RUS | Europe | Russia | 2020-04-08 | 8672.0 | 1175.0 | 842.143 | 63.0 | 5.0 | 5.571 | 2.1 | null | null | null | null | null | null | null | null | 1004719.0 | 94498.0 | 6.884727568800406 | 0.648 | 66960.0 | 0.459 | 1.3e-2 | 79.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 59.4239359230164 | 8.051559583665162 | 5.770693227631089 | 0.43170064150715326 | 3.4261955675170895e-2 | 3.817467101327541e-2 |
RUS | Europe | Russia | 2020-04-09 | 10131.0 | 1459.0 | 940.429 | 76.0 | 13.0 | 6.571 | 2.09 | null | null | null | null | null | null | null | null | 1092811.0 | 88092.0 | 7.488368408667836 | 0.604 | 73958.0 | 0.507 | 1.3e-2 | 78.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 69.42157458903128 | 9.997638666014867 | 6.444187342729057 | 0.5207817262625977 | 8.908108475544432e-2 | 4.5027062148309586e-2 |
RUS | Europe | Russia | 2020-04-10 | 11917.0 | 1786.0 | 1109.714 | 94.0 | 18.0 | 8.571 | 2.08 | null | null | null | null | null | null | null | null | 1184442.0 | 91631.0 | 8.116259860762153 | 0.628 | 77834.0 | 0.533 | 1.4e-2 | 70.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 81.65994515620231 | 12.238370567171042 | 7.604194376023319 | 0.6441247666932128 | 0.12334304043061523 | 5.873184441837794e-2 |
RUS | Europe | Russia | 2020-04-11 | 13584.0 | 1667.0 | 1264.714 | 106.0 | 12.0 | 9.0 | 2.04 | null | null | null | null | null | null | null | null | 1278747.0 | 94305.0 | 8.762474606751551 | 0.646 | 83106.0 | 0.569 | 1.5e-2 | 65.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 93.08288117830429 | 11.422936022101977 | 8.666315001953617 | 0.7263534603136229 | 8.222869362041015e-2 | 6.167152021530761e-2 |
RUS | Europe | Russia | 2020-04-12 | 15770.0 | 2186.0 | 1483.0 | 130.0 | 24.0 | 12.143 | 2.04 | null | null | null | null | null | null | null | null | 1359993.0 | 81246.0 | 9.319203976908538 | 0.557 | 85942.0 | 0.589 | 1.7e-2 | 58.0 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 108.062208199489 | 14.979327021184716 | 10.162096053255686 | 0.8908108475544433 | 0.1644573872408203 | 8.320858555272004e-2 |
RUS | Europe | Russia | 2020-04-13 | 18328.0 | 2558.0 | 1712.143 | 148.0 | 18.0 | 14.429 | 2.02 | null | null | null | null | null | null | null | null | 1426014.0 | 66021.0 | 9.77160569203463 | 0.452 | 90070.0 | 0.617 | 1.9e-2 | 52.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 125.59062472290643 | 17.52841652341743 | 11.732273515110824 | 1.0141538879850585 | 0.12334304043061523 | 9.887315168740816e-2 |
RUS | Europe | Russia | 2020-04-14 | 21102.0 | 2774.0 | 1943.571 | 170.0 | 22.0 | 16.0 | 2.0 | null | null | null | null | null | null | null | null | 1517992.0 | 91978.0 | 10.401874923852803 | 0.63 | 86824.0 | 0.595 | 2.2e-2 | 44.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 144.59915773149126 | 19.008533008584813 | 13.318108690709515 | 1.1649064929558106 | 0.15075260497075194 | 0.10963825816054687 |
RUS | Europe | Russia | 2020-04-15 | 24490.0 | 3388.0 | 2259.714 | 198.0 | 28.0 | 19.286 | 1.97 | null | null | null | null | null | null | null | null | 1613413.0 | 95421.0 | 11.0557369383489 | 0.654 | 86956.0 | 0.596 | 2.6e-2 | 38.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 167.81505889698704 | 23.2159011654958 | 15.484444181312623 | 1.3567734447367674 | 0.191866951780957 | 0.1321552154302692 |
RUS | Europe | Russia | 2020-04-16 | 27938.0 | 3448.0 | 2543.857 | 232.0 | 34.0 | 22.286 | 1.93 | null | null | null | null | null | null | null | null | 1718019.0 | 104606.0 | 11.772538165420286 | 0.717 | 89315.0 | 0.612 | 2.8e-2 | 35.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 191.44210353058492 | 23.627044633597848 | 17.43150315559464 | 1.5897547433279295 | 0.2329812985911621 | 0.15271238883537172 |
RUS | Europe | Russia | 2020-04-17 | 32008.0 | 4070.0 | 2870.143 | 273.0 | 41.0 | 25.571 | 1.9 | null | null | null | null | null | null | null | null | 1831892.0 | 113873.0 | 12.552840501140032 | 0.78 | 92493.0 | 0.634 | 3.1e-2 | 32.2 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 219.331335450174 | 27.889231919589108 | 19.667342449480405 | 1.8707027798643308 | 0.2809480365364014 | 0.175222493713959 |
RUS | Europe | Russia | 2020-04-18 | 36793.0 | 4785.0 | 3315.571 | 313.0 | 40.0 | 29.571 | 1.86 | null | null | null | null | null | null | null | null | 1949813.0 | 117921.0 | 13.360881316174398 | 0.808 | 95867.0 | 0.657 | 3.5e-2 | 28.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 252.12002703131256 | 32.78869158113854 | 22.719589327976408 | 2.144798425265698 | 0.27409564540136716 | 0.2026320582540957 |
RUS | Europe | Russia | 2020-04-19 | 42853.0 | 6060.0 | 3869.0 | 361.0 | 48.0 | 33.0 | 1.8 | null | null | null | null | null | null | null | null | 2053319.0 | 103506.0 | 14.070144912997245 | 0.709 | 99047.0 | 0.679 | 3.9e-2 | 25.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 293.64551730961966 | 41.525490278307124 | 26.51190130144724 | 2.4737131997473387 | 0.3289147744816406 | 0.2261289074561279 |
RUS | Europe | Russia | 2020-04-20 | 47121.0 | 4268.0 | 4113.286 | 405.0 | 44.0 | 36.714 | 1.69 | null | null | null | null | null | null | null | null | 2142604.0 | 89285.0 | 14.681960655488771 | 0.612 | 102370.0 | 0.701 | 4.0e-2 | 24.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 322.89152267394553 | 29.246005364325878 | 28.185844522260197 | 2.7752184096888426 | 0.30150520994150387 | 0.25157868813164486 |
RUS | Europe | Russia | 2020-04-21 | 52763.0 | 5642.0 | 4523.0 | 456.0 | 51.0 | 40.857 | 1.63 | null | null | null | null | null | null | null | null | 2252539.0 | 109935.0 | 15.435278274918755 | 0.753 | 104935.0 | 0.719 | 4.3e-2 | 23.2 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 361.5527134578084 | 38.661190783862835 | 30.99336510375959 | 3.1246903575755853 | 0.34947194788674313 | 0.2799681446040914 |
RUS | Europe | Russia | 2020-04-22 | 57999.0 | 5236.0 | 4787.0 | 513.0 | 57.0 | 45.0 | 1.55 | null | null | null | null | null | null | null | null | 2401616.0 | 149077.0 | 16.456812188156245 | 1.022 | 112600.0 | 0.772 | 4.3e-2 | 23.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 397.4318334408473 | 35.87911998303896 | 32.80239636340862 | 3.515276652272534 | 0.39058629469694817 | 0.3083576010765381 |
RUS | Europe | Russia | 2020-04-23 | 62773.0 | 4774.0 | 4976.429 | 555.0 | 42.0 | 46.143 | 1.49 | null | null | null | null | null | null | null | null | 2552000.0 | 150384.0 | 17.487302176607226 | 1.03 | 119140.0 | 0.816 | 4.2e-2 | 23.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 430.1451487195005 | 32.71331527865317 | 34.100437963727 | 3.8030770799439697 | 0.28780042767143554 | 0.3161898841438821 |
RUS | Europe | Russia | 2020-04-24 | 68622.0 | 5849.0 | 5230.571 | 615.0 | 60.0 | 48.857 | 1.46 | null | null | null | null | null | null | null | null | 2721500.0 | 169500.0 | 18.64878247399552 | 1.161 | 127087.0 | 0.871 | 4.1e-2 | 24.3 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 470.2247844683154 | 40.079635748814916 | 35.84191835156686 | 4.21422054804602 | 0.4111434681020507 | 0.3347872736843649 |
RUS | Europe | Russia | 2020-04-25 | 74588.0 | 5966.0 | 5399.286 | 681.0 | 66.0 | 52.571 | 1.43 | null | null | null | null | null | null | null | null | 2877699.0 | 156199.0 | 19.71911911689672 | 1.07 | 132555.0 | 0.908 | 4.1e-2 | 24.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 511.1061499799293 | 40.881365511613915 | 36.99801952191416 | 4.666478362958276 | 0.4522578149122558 | 0.3602370543598818 |
RUS | Europe | Russia | 2020-04-26 | 80949.0 | 6361.0 | 5442.286 | 747.0 | 66.0 | 55.143 | 1.41 | null | null | null | null | null | null | null | null | 3019434.0 | 141735.0 | 20.69034277442079 | 0.971 | 138016.0 | 0.946 | 3.9e-2 | 25.4 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 554.6942099898818 | 43.588060009952414 | 37.29267234072062 | 5.118736177870532 | 0.4522578149122558 | 0.37786140435918975 |
RUS | Europe | Russia | 2020-04-27 | 87147.0 | 6198.0 | 5718.0 | 794.0 | 47.0 | 55.571 | 1.38 | null | null | null | null | null | null | null | null | 3139258.0 | 119824.0 | 21.511423689785126 | 0.821 | 142379.0 | 0.976 | 4.0e-2 | 24.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 597.1653302448236 | 42.471120254941845 | 39.18197251012544 | 5.440798561217139 | 0.3220623833466064 | 0.38079422776498434 |
RUS | Europe | Russia | 2020-04-28 | 93558.0 | 6411.0 | 5827.857 | 867.0 | 73.0 | 58.714 | 1.37 | null | null | null | null | null | null | null | null | 3303717.0 | 164459.0 | 22.638361083461714 | 1.127 | 150168.0 | 1.029 | 3.9e-2 | 25.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 641.0960098115278 | 43.93067956670412 | 39.934755643046884 | 5.941023114074633 | 0.5002245528574951 | 0.40233129310239674 |
RUS | Europe | Russia | 2020-04-29 | 99399.0 | 5841.0 | 5914.286 | 972.0 | 105.0 | 65.571 | 1.36 | null | null | null | null | null | null | null | null | 3498308.0 | 194591.0 | 23.97177472681915 | 1.333 | 156670.0 | 1.074 | 3.8e-2 | 26.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 681.1208264312625 | 40.024816619734636 | 40.52700095645675 | 6.660524183253222 | 0.7195010691785888 | 0.44931813911532614 |
RUS | Europe | Russia | 2020-04-30 | 106498.0 | 7099.0 | 6246.429 | 1073.0 | 101.0 | 74.0 | 1.38 | null | null | null | null | null | null | null | null | 3723807.0 | 225499.0 | 25.516982075378223 | 1.545 | 167401.0 | 1.147 | 3.7e-2 | 26.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 729.76595109887 | 48.64512466760764 | 42.802974705220414 | 7.352615687891674 | 0.692091504638452 | 0.5070769439925292 |
RUS | Europe | Russia | 2020-05-01 | 114431.0 | 7933.0 | 6544.143 | 1169.0 | 96.0 | 79.143 | 1.41 | null | null | null | null | null | null | null | null | 3945518.0 | 221711.0 | 27.036232566317786 | 1.519 | 174860.0 | 1.198 | 3.7e-2 | 26.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 784.1259699730962 | 54.36001887422614 | 44.843027479595975 | 8.010445236854956 | 0.6578295489632812 | 0.5423187916000101 |
RUS | Europe | Russia | 2020-05-02 | 124054.0 | 9623.0 | 7066.571 | 1222.0 | 53.0 | 77.286 | 1.43 | null | null | null | null | null | null | null | null | 4099999.0 | 154481.0 | 28.094796801249 | 1.059 | 174614.0 | 1.197 | 4.0e-2 | 24.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 850.06652986553 | 65.94055989243391 | 48.42290847548961 | 8.373621967011767 | 0.36317673015681146 | 0.5295939012622516 |
RUS | Europe | Russia | 2020-05-03 | 134687.0 | 10633.0 | 7676.857 | 1280.0 | 58.0 | 76.143 | 1.43 | null | null | null | null | null | null | null | null | 4303243.0 | 203244.0 | 29.487504185097887 | 1.393 | 183401.0 | 1.257 | 4.2e-2 | 23.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 922.9280048043485 | 72.86147493881842 | 52.60482685172508 | 8.77106065284375 | 0.3974386858319824 | 0.5217616181949075 |
RUS | Europe | Russia | 2020-05-04 | 145268.0 | 10581.0 | 8303.0 | 1356.0 | 76.0 | 80.286 | 1.41 | null | null | null | null | null | null | null | null | 4460357.0 | 157114.0 | 30.564110765887648 | 1.077 | 188728.0 | 1.293 | 4.4e-2 | 22.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 995.433155404145 | 72.50515059979664 | 56.895403594188785 | 9.291842379106345 | 0.5207817262625977 | 0.5501510746673541 |
RUS | Europe | Russia | 2020-05-05 | 155370.0 | 10102.0 | 8830.286 | 1451.0 | 95.0 | 83.429 | 1.37 | null | null | null | null | null | null | null | null | 4633731.0 | 173374.0 | 31.752137226533062 | 1.188 | 190002.0 | 1.302 | 4.6e-2 | 21.5 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1064.6560106502604 | 69.22285524611529 | 60.50857350621642 | 9.942819536934595 | 0.650977157828247 | 0.5716881400047665 |
RUS | Europe | Russia | 2020-05-06 | 165929.0 | 10559.0 | 9504.286 | 1537.0 | 86.0 | 80.714 | 1.34 | null | null | null | null | null | null | null | null | 4803192.0 | 169461.0 | 32.91335028066709 | 1.161 | 186412.0 | 1.277 | 5.1e-2 | 19.6 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1137.0104086450863 | 72.35439799482589 | 65.12708513122946 | 10.532125174547533 | 0.5893056376129394 | 0.5530838980731487 |
RUS | Europe | Russia | 2020-05-07 | 177160.0 | 11231.0 | 10094.571 | 1625.0 | 88.0 | 78.857 | 1.3 | null | null | null | null | null | null | null | null | 4987468.0 | 184276.0 | 34.17608150946665 | 1.263 | 180523.0 | 1.237 | 5.6e-2 | 17.9 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1213.9696134826552 | 76.95920483756888 | 69.1719488323731 | 11.135135594430542 | 0.6030104198830077 | 0.5403590077353903 |
RUS | Europe | Russia | 2020-05-08 | 187859.0 | 10699.0 | 10489.714 | 1723.0 | 98.0 | 79.143 | 1.26 | null | null | null | null | null | null | null | null | 5221964.0 | 234496.0 | 35.78293982106762 | 1.607 | 182349.0 | 1.25 | 5.8e-2 | 17.4 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1287.2833462363858 | 73.31373275373068 | 71.87962322264393 | 11.80666992566389 | 0.6715343312333495 | 0.5423187916000101 |
RUS | Europe | Russia | 2020-05-09 | 198676.0 | 10817.0 | 10660.286 | 1827.0 | 104.0 | 86.429 | 1.23 | null | null | null | null | null | null | null | null | 5448463.0 | 226499.0 | 37.33499956076173 | 1.552 | 192638.0 | 1.32 | 5.5e-2 | 18.1 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1361.4056611440506 | 74.12231490766472 | 73.04844928332898 | 12.519318603707445 | 0.7126486780435546 | 0.5922453134098691 |
RUS | Europe | Russia | 2020-05-10 | 209688.0 | 11012.0 | 10714.429 | 1915.0 | 88.0 | 90.714 | 1.2 | null | null | null | null | null | null | null | null | 5636763.0 | 188300.0 | 38.62530481148867 | 1.29 | 190503.0 | 1.305 | 5.6e-2 | 17.8 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1436.864192323047 | 75.45853117899638 | 73.41945829655313 | 13.122329023590453 | 0.6030104198830077 | 0.6216078094234905 |
RUS | Europe | Russia | 2020-05-11 | 221344.0 | 11656.0 | 10868.0 | 2009.0 | 94.0 | 93.286 | 1.16 | null | null | null | null | null | null | null | null | 5805404.0 | 168641.0 | 39.78089890489196 | 1.156 | 192150.0 | 1.317 | 5.7e-2 | 17.7 | null | 85.19 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1516.7356633930053 | 79.87147106995839 | 74.47178685555146 | 13.766453790283665 | 0.6441247666932128 | 0.6392321594227984 |
RUS | Europe | Russia | 2020-05-12 | 232243.0 | 10899.0 | 10981.857 | 2116.0 | 107.0 | 95.0 | 1.12 | null | null | null | null | null | null | null | null | 5982558.0 | 177154.0 | 40.99482740402781 | 1.214 | 192690.0 | 1.32 | 5.7e-2 | 17.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1591.419874373743 | 74.6842109807375 | 75.25197955301304 | 14.499659641732322 | 0.7332058514486571 | 0.650977157828247 |
RUS | Europe | Russia | 2020-05-13 | 242271.0 | 10028.0 | 10906.0 | 2212.0 | 96.0 | 96.429 | 1.09 | null | null | null | null | null | null | null | null | 6188102.0 | 205544.0 | 42.40329528748727 | 1.408 | 197844.0 | 1.356 | 5.5e-2 | 18.1 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1660.1356526758657 | 68.71577830212276 | 74.73217771868276 | 15.157489190695603 | 0.6578295489632812 | 0.6607692247602108 |
RUS | Europe | Russia | 2020-05-14 | 252245.0 | 9974.0 | 10726.429 | 2305.0 | 93.0 | 97.143 | 1.06 | null | null | null | null | null | null | null | null | 6413948.0 | 225846.0 | 43.9508804157702 | 1.548 | 203783.0 | 1.396 | 5.3e-2 | 19.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1728.4814018566965 | 68.34574918083091 | 73.50168699017352 | 15.794761566253783 | 0.6372723755581787 | 0.6656618320306253 |
RUS | Europe | Russia | 2020-05-15 | 262843.0 | 10598.0 | 10712.0 | 2418.0 | 113.0 | 99.286 | 1.03 | null | null | null | null | null | null | null | null | 6656340.0 | 242392.0 | 45.611845207773406 | 1.661 | 204911.0 | 1.404 | 5.2e-2 | 19.1 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1801.1030431057889 | 72.62164124909224 | 73.40281383848613 | 16.569081764512646 | 0.7743201982588622 | 0.6803465062330035 |
RUS | Europe | Russia | 2020-05-16 | 272043.0 | 9200.0 | 10481.0 | 2537.0 | 119.0 | 101.429 | 1.0 | null | null | null | null | null | null | null | null | 6916088.0 | 259748.0 | 47.39174010031626 | 1.78 | 209661.0 | 1.437 | 5.0e-2 | 20.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1864.1450415481033 | 63.041998442314444 | 71.81991148629324 | 17.384516309581713 | 0.8154345450690673 | 0.6950311804353817 |
RUS | Europe | Russia | 2020-05-17 | 281752.0 | 9709.0 | 10294.857 | 2631.0 | 94.0 | 102.286 | 0.99 | null | null | null | null | null | null | null | null | 7147014.0 | 230926.0 | 48.97413537556517 | 1.582 | 215750.0 | 1.478 | 4.8e-2 | 21.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1930.67490707815 | 66.52986553004685 | 70.54438684324457 | 18.028641076274926 | 0.6441247666932128 | 0.7009036796381061 |
RUS | Europe | Russia | 2020-05-18 | 290678.0 | 8926.0 | 9904.857 | 2722.0 | 91.0 | 101.857 | 0.97 | null | null | null | null | null | null | null | null | 7352316.0 | 205302.0 | 50.380944980369954 | 1.407 | 220987.0 | 1.514 | 4.5e-2 | 22.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 1991.8393503494651 | 61.16444327131508 | 67.87195430058124 | 18.652208669563034 | 0.6235675932881103 | 0.6979640038411763 |
RUS | Europe | Russia | 2020-05-19 | 299941.0 | 9263.0 | 9671.143 | 2837.0 | 115.0 | 103.0 | 0.96 | null | null | null | null | null | null | null | null | 7578029.0 | 225713.0 | 51.92761874063193 | 1.547 | 227924.0 | 1.562 | 4.2e-2 | 23.6 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2055.313049433287 | 63.4736990838216 | 66.27045455884785 | 19.44023365009197 | 0.7880249805289306 | 0.7057962869085204 |
RUS | Europe | Russia | 2020-05-20 | 308705.0 | 8764.0 | 9490.571 | 2972.0 | 135.0 | 108.571 | 0.96 | null | null | null | null | null | null | null | null | 7840880.0 | 262851.0 | 53.728776602866795 | 1.801 | 236111.0 | 1.618 | 4.0e-2 | 24.9 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2115.3674053407262 | 60.05435590743954 | 65.03310458681246 | 20.36530645332158 | 0.9250728032296142 | 0.7439709579217959 |
RUS | Europe | Russia | 2020-05-21 | 317554.0 | 8849.0 | 9329.857 | 3099.0 | 127.0 | 113.429 | 0.95 | null | null | null | null | null | null | null | null | 8126626.0 | 285746.0 | 55.68681996013827 | 1.958 | 244668.0 | 1.677 | 3.8e-2 | 26.2 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2176.0042144946437 | 60.636809153917454 | 63.93182939793658 | 21.235560127470922 | 0.8702536741493407 | 0.7772598740557919 |
RUS | Europe | Russia | 2020-05-22 | 326448.0 | 8894.0 | 9086.429 | 3249.0 | 150.0 | 118.714 | 0.95 | null | null | null | null | null | null | null | null | 8402747.0 | 276121.0 | 57.57890905273504 | 1.892 | 249487.0 | 1.71 | 3.6e-2 | 27.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2236.9493812496376 | 60.94516675499399 | 62.26376552871748 | 22.263418797726047 | 1.027858670255127 | 0.8134747612044475 |
RUS | Europe | Russia | 2020-05-23 | 335882.0 | 9434.0 | 9119.857 | 3388.0 | 139.0 | 121.571 | 0.96 | null | null | null | null | null | null | null | null | 8685305.0 | 282558.0 | 59.51510698706803 | 1.936 | 252745.0 | 1.732 | 3.6e-2 | 27.7 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2301.59483921755 | 64.64545796791244 | 62.4928272595794 | 23.2159011654958 | 0.9524823677697509 | 0.8330520426772401 |
RUS | Europe | Russia | 2020-05-24 | 344481.0 | 8599.0 | 8961.286 | 3541.0 | 153.0 | 130.0 | 0.95 | null | null | null | null | null | null | null | null | 8945384.0 | 260079.0 | 61.297270021076585 | 1.782 | 256910.0 | 1.76 | 3.5e-2 | 28.7 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2360.518550587709 | 58.923711370158905 | 61.4062367449059 | 24.264317009156027 | 1.0484158436602293 | 0.8908108475544433 |
RUS | Europe | Russia | 2020-05-25 | 353427.0 | 8946.0 | 8964.143 | 3633.0 | 92.0 | 130.143 | 0.96 | null | null | null | null | null | null | null | null | 9160590.0 | 215206.0 | 62.771945707682754 | 1.475 | 258325.0 | 1.77 | 3.5e-2 | 28.8 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2421.820041681725 | 61.301491094015766 | 61.425814026378696 | 24.894736993579173 | 0.6304199844231445 | 0.8917907394867531 |
RUS | Europe | Russia | 2020-05-26 | 362342.0 | 8915.0 | 8914.429 | 3807.0 | 174.0 | 138.571 | 0.96 | null | null | null | null | null | null | null | null | 9415992.0 | 255402.0 | 64.52206010835275 | 1.75 | 262566.0 | 1.799 | 3.4e-2 | 29.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2482.9091086505546 | 61.089066968829705 | 61.0851542534916 | 26.08705305107512 | 1.1923160574959473 | 0.9495426919728212 |
RUS | Europe | Russia | 2020-05-27 | 370680.0 | 8338.0 | 8853.571 | 3968.0 | 161.0 | 142.286 | 0.95 | null | null | null | null | null | null | null | null | 9701280.0 | 285288.0 | 66.47696507048438 | 1.955 | 265771.0 | 1.821 | 3.3e-2 | 30.0 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2540.044345934469 | 57.13523728391498 | 60.66813143379569 | 27.190288023815622 | 1.1032349727405029 | 0.9749993250394732 |
RUS | Europe | Russia | 2020-05-28 | 379051.0 | 8371.0 | 8785.286 | 4142.0 | 174.0 | 149.0 | 0.96 | null | null | null | null | null | null | null | null | 1.0000061e7 | 298781.0 | 68.52432934620101 | 2.047 | 267634.0 | 1.834 | 3.3e-2 | 30.5 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2597.4057121258406 | 57.36136619137111 | 60.200215905139885 | 28.38260408131157 | 1.1923160574959473 | 1.0210062791200927 |
RUS | Europe | Russia | 2020-05-29 | 387623.0 | 8572.0 | 8739.286 | 4374.0 | 232.0 | 160.714 | 0.97 | null | null | null | null | null | null | null | null | 1.03162e7 | 316139.0 | 70.6906374272396 | 2.166 | 273350.0 | 1.873 | 3.2e-2 | 31.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2656.1444089353536 | 58.73869680951298 | 59.88500591292831 | 29.9723588246395 | 1.5897547433279295 | 1.101275188875883 |
RUS | Europe | Russia | 2020-05-30 | 396575.0 | 8952.0 | 8670.429 | 4555.0 | 181.0 | 166.714 | 0.97 | null | null | null | null | null | null | null | null | 1.0643124e7 | 326924.0 | 72.93084854666951 | 2.24 | 279688.0 | 1.917 | 3.1e-2 | 32.3 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2717.4870143761796 | 61.34260544082597 | 59.413170816543264 | 31.212641620080685 | 1.2402827954411864 | 1.142389535686088 |
RUS | Europe | Russia | 2020-05-31 | 405843.0 | 9268.0 | 8766.0 | 4693.0 | 138.0 | 164.571 | 0.98 | null | null | null | null | null | null | null | null | 1.0923108e7 | 279984.0 | 74.84940842622093 | 1.919 | 282532.0 | 1.936 | 3.1e-2 | 32.2 | null | 78.24 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2780.9949754156764 | 63.50796103949678 | 60.06806068970961 | 32.1582715967154 | 0.9456299766347167 | 1.1277048614837097 |
RUS | Europe | Russia | 2020-06-01 | 414328.0 | 8485.0 | 8700.143 | 4849.0 | 156.0 | 173.714 | 0.98 | null | null | null | null | null | null | null | null | 1.1151622e7 | 228514.0 | 76.41527573405212 | 1.566 | 284433.0 | 1.949 | 3.1e-2 | 32.7 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2839.1375141964413 | 58.14253878076501 | 59.61678276672967 | 33.227244613780734 | 1.068973017065332 | 1.1903562736313273 |
RUS | Europe | Russia | 2020-06-02 | 423186.0 | 8858.0 | 8692.0 | 5031.0 | 182.0 | 174.857 | 0.98 | null | null | null | null | null | null | null | null | 1.1426045e7 | 274423.0 | 78.29572946650161 | 1.88 | 287150.0 | 1.968 | 3.0e-2 | 33.0 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2899.8359948705743 | 60.69848067413276 | 59.56098374571708 | 34.47437980035695 | 1.2471351865762206 | 1.1981885566986716 |
RUS | Europe | Russia | 2020-06-03 | 431715.0 | 8529.0 | 8719.286 | 5208.0 | 177.0 | 177.143 | 0.98 | null | null | null | null | null | null | null | null | 1.1733051e7 | 307006.0 | 80.39945465930391 | 2.104 | 290253.0 | 1.989 | 3.0e-2 | 33.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 2958.280038861281 | 58.44404399070652 | 59.74795809022763 | 35.68725303125801 | 1.2128732309010497 | 1.2138531228333596 |
RUS | Europe | Russia | 2020-06-04 | 440538.0 | 8823.0 | 8783.857 | 5376.0 | 168.0 | 176.286 | 0.99 | null | null | null | null | null | null | null | null | 1.2053663e7 | 320612.0 | 82.59641348588949 | 2.197 | 293372.0 | 2.01 | 3.0e-2 | 33.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3018.738685845687 | 60.45864698440656 | 60.19042383820791 | 36.83845474194375 | 1.1512017106857422 | 1.2079806236306354 |
RUS | Europe | Russia | 2020-06-05 | 449256.0 | 8718.0 | 8804.714 | 5520.0 | 144.0 | 163.714 | 0.99 | null | null | null | null | null | null | null | null | 1.2388968e7 | 335305.0 | 84.89405449542211 | 2.298 | 296110.0 | 2.029 | 3.0e-2 | 33.6 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3078.477831760915 | 59.73914591522797 | 60.333344160111324 | 37.82519906538867 | 0.9867443234449218 | 1.1218323622809856 |
RUS | Europe | Russia | 2020-06-06 | 458102.0 | 8846.0 | 8789.571 | 5717.0 | 197.0 | 166.0 | 0.99 | null | null | null | null | null | null | null | null | 1.2721549e7 | 332581.0 | 87.17302959150292 | 2.279 | 296918.0 | 2.035 | 3.0e-2 | 33.8 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3139.0940837414278 | 60.616251980512345 | 60.2295784011535 | 39.1751201189904 | 1.3499210536017332 | 1.1374969284156737 |
RUS | Europe | Russia | 2020-06-07 | 467073.0 | 8971.0 | 8747.143 | 5851.0 | 134.0 | 165.429 | 0.99 | null | null | null | null | null | null | null | null | 1.3016023e7 | 294474.0 | 89.19088061860097 | 2.018 | 298988.0 | 2.049 | 2.9e-2 | 34.2 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3200.566884613819 | 61.47280087239162 | 59.938845150076276 | 40.09334053108498 | 0.91822041209458 | 1.1335842130775693 |
RUS | Europe | Russia | 2020-06-08 | 476043.0 | 8970.0 | 8816.429 | 5963.0 | 112.0 | 159.143 | 0.99 | null | null | null | null | null | null | null | null | 1.3254678e7 | 238655.0 | 90.82623802493256 | 1.635 | 300437.0 | 2.059 | 2.9e-2 | 34.1 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3262.0328330950756 | 61.46594848125658 | 60.413619922258256 | 40.86080833820881 | 0.767467807123828 | 1.0905100824027445 |
RUS | Europe | Russia | 2020-06-09 | 484630.0 | 8587.0 | 8777.714 | 6134.0 | 171.0 | 157.571 | 0.98 | null | null | null | null | null | null | null | null | 1.3545303e7 | 290625.0 | 92.81771419855187 | 1.991 | 302751.0 | 2.075 | 2.9e-2 | 34.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3320.8743157716144 | 58.8414826765385 | 60.148329599465406 | 42.032567222299654 | 1.1717588840908446 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-06-10 | 493023.0 | 8393.0 | 8758.286 | 6350.0 | 216.0 | 163.143 | 0.98 | null | null | null | null | null | null | null | null | 1.3875097e7 | 329794.0 | 95.07759168053934 | 2.26 | 306007.0 | 2.097 | 2.9e-2 | 34.9 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3378.386434567956 | 57.512118796341866 | 60.01520134449396 | 43.51268370746704 | 1.4801164851673827 | 1.1179196469428812 |
RUS | Europe | Russia | 2020-06-11 | 501800.0 | 8777.0 | 8751.714 | 6522.0 | 172.0 | 163.714 | 0.98 | null | null | null | null | null | null | null | null | 1.4218674e7 | 343577.0 | 97.43191566954097 | 2.354 | 309287.0 | 2.119 | 2.8e-2 | 35.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3438.529871560151 | 60.14343699219499 | 59.970167429954515 | 44.69129498269292 | 1.1786112752258788 | 1.1218323622809856 |
RUS | Europe | Russia | 2020-06-12 | 510761.0 | 8961.0 | 8786.429 | 6705.0 | 183.0 | 169.286 | 0.98 | null | null | null | null | null | null | null | null | 1.4574117e7 | 355443.0 | 99.86755013175093 | 2.436 | 312164.0 | 2.139 | 2.8e-2 | 35.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3499.9341485211926 | 61.40427696104128 | 60.20804818820723 | 45.94528256040417 | 1.2539875777112548 | 1.1600138856853959 |
RUS | Europe | Russia | 2020-06-13 | 519458.0 | 8697.0 | 8765.143 | 6819.0 | 114.0 | 157.429 | 0.98 | null | null | null | null | null | null | null | null | 1.4880172e7 | 306055.0 | 101.96475870058381 | 2.097 | 308375.0 | 2.113 | 2.8e-2 | 35.2 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3559.529394222585 | 59.59524570139226 | 60.06218819050689 | 46.72645514979806 | 0.7811725893938963 | 1.0787650839972958 |
RUS | Europe | Russia | 2020-06-14 | 528267.0 | 8809.0 | 8742.0 | 6938.0 | 119.0 | 155.286 | 0.97 | null | null | null | null | null | null | null | null | 1.5161152e7 | 280980.0 | 103.89014356170571 | 1.925 | 306447.0 | 2.1 | 2.9e-2 | 35.1 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3619.8921077311006 | 60.36271350851608 | 59.903603302468795 | 47.54188969486713 | 0.8154345450690673 | 1.0640804097949177 |
RUS | Europe | Russia | 2020-06-15 | 536484.0 | 8217.0 | 8634.429 | 7081.0 | 143.0 | 159.714 | 0.96 | null | null | null | null | null | null | null | null | 1.5395417e7 | 234265.0 | 105.49541897095449 | 1.605 | 305820.0 | 2.096 | 2.8e-2 | 35.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3676.1982056876764 | 56.30609795657585 | 59.166484735682026 | 48.52178162717702 | 0.9798919323098875 | 1.094422797740849 |
RUS | Europe | Russia | 2020-06-16 | 544725.0 | 8241.0 | 8585.0 | 7274.0 | 193.0 | 162.857 | 0.95 | null | null | null | null | null | null | null | null | 1.5679724e7 | 284307.0 | 107.44360173738265 | 1.948 | 304917.0 | 2.089 | 2.8e-2 | 35.5 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3732.6687610314934 | 56.47055534381667 | 58.82777789426843 | 49.84429311623862 | 1.3225114890615965 | 1.1159598630782614 |
RUS | Europe | Russia | 2020-06-17 | 552549.0 | 7824.0 | 8503.714 | 7468.0 | 194.0 | 159.714 | 0.94 | null | null | null | null | null | null | null | null | 1.5991697e7 | 311973.0 | 109.58136275695269 | 2.138 | 302371.0 | 2.072 | 2.8e-2 | 35.6 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3786.2818692720007 | 53.613108240507415 | 58.27077442846604 | 51.17365699643525 | 1.3293638801966305 | 1.094422797740849 |
RUS | Europe | Russia | 2020-06-18 | 560321.0 | 7772.0 | 8360.143 | 7650.0 | 182.0 | 161.143 | 0.94 | null | null | null | null | null | null | null | null | 1.6321964e7 | 330267.0 | 111.844481419947 | 2.263 | 300470.0 | 2.059 | 2.8e-2 | 35.9 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3839.538653173486 | 53.25678390148564 | 57.28696978081805 | 52.42079218301147 | 1.2471351865762206 | 1.1042148646728127 |
RUS | Europe | Russia | 2020-06-19 | 568292.0 | 7971.0 | 8218.714 | 7831.0 | 181.0 | 160.857 | 0.94 | null | null | null | null | null | null | null | null | 1.6661287e7 | 339323.0 | 114.1696553370602 | 2.325 | 298167.0 | 2.043 | 2.8e-2 | 36.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3894.1590629108437 | 54.62040973735744 | 56.3178429549813 | 53.66107497845266 | 1.2402827954411864 | 1.102255080808193 |
RUS | Europe | Russia | 2020-06-20 | 576162.0 | 7870.0 | 8100.571 | 7992.0 | 161.0 | 167.571 | 0.93 | null | null | null | null | null | null | null | null | 1.6998453e7 | 337166.0 | 116.48004864649515 | 2.31 | 302612.0 | 2.074 | 2.7e-2 | 37.4 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 3948.087381143562 | 53.928318232718986 | 55.50828090911496 | 54.764309951193155 | 1.1032349727405029 | 1.1482620348888124 |
RUS | Europe | Russia | 2020-06-21 | 583879.0 | 7717.0 | 7944.571 | 8101.0 | 109.0 | 166.143 | 0.93 | null | null | null | null | null | null | null | null | 1.7289691e7 | 291238.0 | 118.47572533588023 | 1.996 | 304077.0 | 2.084 | 2.6e-2 | 38.3 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4000.9672835326214 | 52.87990238905876 | 54.43930789204962 | 55.51122058491189 | 0.7469106337187255 | 1.1384768203479836 |
RUS | Europe | Russia | 2020-06-22 | 591465.0 | 7586.0 | 7854.429 | 8196.0 | 95.0 | 159.286 | 0.92 | null | null | null | null | null | null | null | null | 1.7522752e7 | 233061.0 | 120.07275046620244 | 1.597 | 303905.0 | 2.082 | 2.6e-2 | 38.7 | null | 74.54 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4052.949522682991 | 51.98223915036929 | 53.82161965035537 | 56.16219774274013 | 0.650977157828247 | 1.0914899743350541 |
RUS | Europe | Russia | 2020-06-23 | 598878.0 | 7413.0 | 7736.143 | 8349.0 | 153.0 | 153.571 | 0.92 | null | null | null | null | null | null | null | null | 1.7803955e7 | 281203.0 | 121.99966341054746 | 1.927 | 303462.0 | 2.079 | 2.5e-2 | 39.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4103.746298166999 | 50.79677548400837 | 53.01107771255672 | 57.21061358640036 | 1.0484158436602293 | 1.052328558998334 |
RUS | Europe | Russia | 2020-06-24 | 606043.0 | 7165.0 | 7642.0 | 8503.0 | 154.0 | 147.857 | 0.91 | null | null | null | null | null | null | null | null | 1.811583e7 | 311875.0 | 124.13675289578623 | 2.137 | 303448.0 | 2.079 | 2.5e-2 | 39.7 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4152.843680649519 | 49.09738248251989 | 52.3659730539312 | 58.26588182119563 | 1.0552682347952635 | 1.0131739960527486 |
RUS | Europe | Russia | 2020-06-25 | 613148.0 | 7105.0 | 7546.714 | 8594.0 | 91.0 | 134.857 | 0.91 | null | null | null | null | null | null | null | null | 1.8402719e7 | 286889.0 | 126.10262853612505 | 1.966 | 297251.0 | 2.037 | 2.5e-2 | 39.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4201.529919663937 | 48.68623901441784 | 51.71303611223833 | 58.889449414483735 | 0.6235675932881103 | 0.9240929112973043 |
RUS | Europe | Russia | 2020-06-26 | 619936.0 | 6788.0 | 7377.714 | 8770.0 | 176.0 | 134.143 | 0.91 | null | null | null | null | null | null | null | null | 1.8707946e7 | 305227.0 | 128.19416332509815 | 2.092 | 292380.0 | 2.004 | 2.5e-2 | 39.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4248.043950688549 | 46.51403102461201 | 50.554982010417554 | 60.095470254249754 | 1.2060208397660155 | 0.9192003040268899 |
RUS | Europe | Russia | 2020-06-27 | 626779.0 | 6843.0 | 7231.0 | 8958.0 | 188.0 | 138.0 | 0.91 | null | null | null | null | null | null | null | null | 1.9044954e7 | 337008.0 | 130.50347395673373 | 2.309 | 292357.0 | 2.003 | 2.5e-2 | 40.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4294.934863225588 | 46.890912537038886 | 49.54964029743215 | 61.38371978763617 | 1.2882495333864257 | 0.9456299766347167 |
RUS | Europe | Russia | 2020-06-28 | 633563.0 | 6784.0 | 7097.714 | 9060.0 | 102.0 | 137.0 | 0.91 | null | null | null | null | null | null | null | null | 1.9334442e7 | 289488.0 | 132.4871589616325 | 1.984 | 292107.0 | 2.002 | 2.4e-2 | 41.2 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4341.421484685659 | 46.486621460071866 | 48.636312492607985 | 62.08266368340967 | 0.6989438957734863 | 0.9387775854996826 |
RUS | Europe | Russia | 2020-06-29 | 640246.0 | 6683.0 | 6968.714 | 9152.0 | 92.0 | 136.571 | 0.91 | null | null | null | null | null | null | null | null | 1.956244e7 | 227998.0 | 134.049490435638 | 1.562 | 291384.0 | 1.997 | 2.4e-2 | 41.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4387.216014641093 | 45.79452995543342 | 47.75235403618858 | 62.7130836678328 | 0.6304199844231445 | 0.9358379097027528 |
RUS | Europe | Russia | 2020-06-30 | 646929.0 | 6683.0 | 6864.429 | 9306.0 | 154.0 | 136.714 | 0.92 | null | null | null | null | null | null | null | null | 1.9852167e7 | 289727.0 | 136.03481316201808 | 1.985 | 292602.0 | 2.005 | 2.3e-2 | 42.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4433.010544596526 | 45.79452995543342 | 47.03775242667154 | 63.76835190262807 | 1.0552682347952635 | 0.9368178016350627 |
RUS | Europe | Russia | 2020-07-01 | 653479.0 | 6550.0 | 6776.571 | 9521.0 | 215.0 | 145.429 | 0.92 | null | null | null | null | null | null | null | null | 2.0168904e7 | 316737.0 | 138.2052189729554 | 2.17 | 293296.0 | 2.01 | 2.3e-2 | 43.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4477.893706531 | 44.88316193447387 | 46.435715046329705 | 65.24161599666041 | 1.4732640940323485 | 0.9965363903768856 |
RUS | Europe | Russia | 2020-07-02 | 660231.0 | 6752.0 | 6726.143 | 9668.0 | 147.0 | 153.429 | 0.93 | null | null | null | null | null | null | null | null | 2.045111e7 | 282206.0 | 140.13900486560885 | 1.934 | 292627.0 | 2.005 | 2.3e-2 | 43.5 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4524.161051474751 | 46.26734494375078 | 46.0901626661722 | 66.24891749351043 | 1.0073014968500242 | 1.051355519457159 |
RUS | Europe | Russia | 2020-07-03 | 666941.0 | 6710.0 | 6715.0 | 9844.0 | 176.0 | 153.429 | 0.94 | null | null | null | null | null | null | null | null | 2.0752406e7 | 301296.0 | 142.20360290503012 | 2.065 | 292066.0 | 2.001 | 2.3e-2 | 43.5 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4570.140595990831 | 45.97954451607934 | 46.01380647175451 | 67.45493833327646 | 1.2060208397660155 | 1.051355519457159 |
RUS | Europe | Russia | 2020-07-04 | 673564.0 | 6623.0 | 6683.571 | 10011.0 | 167.0 | 150.429 | 0.94 | null | null | null | null | null | null | null | null | 2.0752406e7 | null | 142.20360290503012 | null | 285564.0 | 1.957 | 2.3e-2 | 42.7 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4615.523982478162 | 45.383386487331364 | 45.79844267077152 | 68.59928765282716 | 1.144349319550708 | 1.0307983460520567 |
RUS | Europe | Russia | 2020-07-05 | 680283.0 | 6719.0 | 6674.286 | 10145.0 | 134.0 | 155.0 | 0.95 | null | null | null | null | null | null | null | null | 2.1335394e7 | null | 146.1984647080614 | null | 285850.0 | 1.959 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4661.565198514456 | 46.04121603629465 | 45.73481821908273 | 69.51750806492176 | 0.91822041209458 | 1.0621206259302978 |
RUS | Europe | Russia | 2020-07-06 | 686852.0 | 6569.0 | 6658.0 | 10280.0 | 135.0 | 161.143 | 0.95 | null | null | null | null | null | null | null | null | 2.1537771e7 | 202377.0 | 147.58523106879622 | 1.387 | 282190.0 | 1.934 | 2.4e-2 | 42.4 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4706.5785558804955 | 45.01335736603952 | 45.62322017705756 | 70.44258086815137 | 0.9250728032296142 | 1.1042148646728127 |
RUS | Europe | Russia | 2020-07-07 | 693215.0 | 6363.0 | 6612.286 | 10478.0 | 198.0 | 167.429 | 0.95 | null | null | null | null | null | null | null | null | 2.1790705e7 | 252934.0 | 149.31843376814496 | 1.733 | 276934.0 | 1.898 | 2.4e-2 | 41.9 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4750.180320672718 | 43.60176479222248 | 45.30996996871061 | 71.79935431288813 | 1.3567734447367674 | 1.1472889953476375 |
RUS | Europe | Russia | 2020-07-08 | 699749.0 | 6534.0 | 6610.0 | 10650.0 | 172.0 | 161.286 | 0.96 | null | null | null | null | null | null | null | null | 2.2079294e7 | 288589.0 | 151.29595847341335 | 1.978 | 272913.0 | 1.87 | 2.4e-2 | 41.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4794.953844349032 | 44.773523676313324 | 45.29430540257593 | 72.97796558811402 | 1.1786112752258788 | 1.1051947566051226 |
RUS | Europe | Russia | 2020-07-09 | 706240.0 | 6491.0 | 6572.714 | 10826.0 | 176.0 | 165.429 | 0.96 | null | null | null | null | null | null | null | null | 2.2388195e7 | 308901.0 | 153.41266894741653 | 2.117 | 276726.0 | 1.896 | 2.4e-2 | 42.1 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4839.432715206538 | 44.478870857506855 | 45.03880714671504 | 74.18398642788001 | 1.2060208397660155 | 1.1335842130775693 |
RUS | Europe | Russia | 2020-07-10 | 712863.0 | 6623.0 | 6560.286 | 11000.0 | 174.0 | 165.143 | 0.96 | null | null | null | null | null | null | null | null | 2.2708416e7 | 320221.0 | 155.60694848906832 | 2.194 | 279430.0 | 1.915 | 2.3e-2 | 42.6 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4884.816101693869 | 45.383386487331364 | 44.95364562968883 | 75.37630248537597 | 1.1923160574959473 | 1.1316244292129494 |
RUS | Europe | Russia | 2020-07-11 | 719449.0 | 6586.0 | 6555.0 | 11188.0 | 188.0 | 168.143 | 0.97 | null | null | null | null | null | null | null | null | 2.3031056e7 | 322640.0 | 157.81780396487574 | 2.211 | 283879.0 | 1.945 | 2.3e-2 | 43.3 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4929.945949709205 | 45.12984801533511 | 44.917423890149045 | 76.6645520187624 | 1.2882495333864257 | 1.1521816026180518 |
RUS | Europe | Russia | 2020-07-12 | 726036.0 | 6587.0 | 6536.143 | 11318.0 | 130.0 | 167.571 | 0.97 | null | null | null | null | null | null | null | null | 2.329263e7 | 261574.0 | 159.61021132363118 | 1.792 | 279605.0 | 1.916 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 4975.082650115675 | 45.13670040647013 | 44.7882083505157 | 77.55536286631684 | 0.8908108475544433 | 1.1482620348888124 |
RUS | Europe | Russia | 2020-07-13 | 732547.0 | 6511.0 | 6527.857 | 11422.0 | 104.0 | 163.143 | 0.96 | null | null | null | null | null | null | null | null | 2.3495752e7 | 203122.0 | 161.0020827157616 | 1.392 | 279712.0 | 1.917 | 2.3e-2 | 42.8 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5019.698568795883 | 44.61591868020754 | 44.73142943757081 | 78.26801154436039 | 0.7126486780435546 | 1.1179196469428812 |
RUS | Europe | Russia | 2020-07-14 | 738787.0 | 6240.0 | 6510.286 | 11597.0 | 175.0 | 159.857 | 0.96 | null | null | null | null | null | null | null | null | 2.3754645e7 | 258893.0 | 162.77611881388398 | 1.774 | 280563.0 | 1.923 | 2.3e-2 | 43.1 | null | 70.83 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5062.457489478496 | 42.75892068261328 | 44.61102607293713 | 79.46717999299138 | 1.1991684486309813 | 1.0954026896731588 |
RUS | Europe | Russia | 2020-07-15 | 745197.0 | 6410.0 | 6492.571 | 11753.0 | 156.0 | 157.571 | 0.96 | null | null | null | null | null | null | null | null | 2.4053516e7 | 298871.0 | 164.82409980480278 | 2.048 | 282032.0 | 1.933 | 2.3e-2 | 43.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5106.381316654065 | 43.92382717556909 | 44.48963596397999 | 80.53615301005671 | 1.068973017065332 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-07-16 | 751612.0 | 6415.0 | 6481.714 | 11920.0 | 167.0 | 156.286 | 0.96 | null | null | null | null | null | null | null | null | 2.4364568e7 | 311052.0 | 166.95554977213746 | 2.131 | 282339.0 | 1.935 | 2.3e-2 | 43.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5150.339405785309 | 43.95808913124426 | 44.41523955342693 | 81.6805023296074 | 1.144349319550708 | 1.0709328009299517 |
RUS | Europe | Russia | 2020-07-17 | 758001.0 | 6389.0 | 6448.286 | 12106.0 | 186.0 | 158.0 | 0.96 | null | null | null | null | null | null | null | null | 2.467693e7 | 312362.0 | 169.095976371859 | 2.14 | 281216.0 | 1.927 | 2.3e-2 | 43.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5194.119332747043 | 43.779926961733366 | 44.18617782256501 | 82.95504708072377 | 1.2745447511163575 | 1.0826777993354004 |
RUS | Europe | Russia | 2020-07-18 | 764215.0 | 6214.0 | 6395.143 | 12228.0 | 122.0 | 148.571 | 0.95 | null | null | null | null | null | null | null | null | 2.499174e7 | 314810.0 | 171.2531776250791 | 2.157 | 280098.0 | 1.919 | 2.3e-2 | 43.8 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5236.700091260145 | 42.58075851310239 | 43.82202120047589 | 83.79103879919795 | 0.8359917184741699 | 1.0180666033231631 |
RUS | Europe | Russia | 2020-07-19 | 770311.0 | 6096.0 | 6325.0 | 12323.0 | 95.0 | 143.571 | 0.95 | null | null | null | null | null | null | null | null | 2.5251614e7 | 259874.0 | 173.03393591890497 | 1.781 | 279855.0 | 1.918 | 2.3e-2 | 44.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5278.472267619313 | 41.772176359168355 | 43.341373929091176 | 84.44201595702619 | 0.650977157828247 | 0.9838046476479921 |
RUS | Europe | Russia | 2020-07-20 | 776212.0 | 5901.0 | 6237.857 | 12408.0 | 85.0 | 140.857 | 0.94 | null | null | null | null | null | null | null | null | 2.5449167e7 | 197553.0 | 174.38764634480438 | 1.354 | 279059.0 | 1.912 | 2.2e-2 | 44.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5318.90822770715 | 40.43596008783669 | 42.744236008410894 | 85.0244692035041 | 0.5824532464779053 | 0.9652072581075094 |
RUS | Europe | Russia | 2020-07-21 | 782040.0 | 5828.0 | 6179.0 | 12561.0 | 153.0 | 137.714 | 0.94 | null | null | null | null | null | null | null | null | 2.5704372e7 | 255205.0 | 176.13641082442078 | 1.749 | 278532.0 | 1.909 | 2.2e-2 | 45.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5358.84396324213 | 39.935735534979194 | 42.34092482337619 | 86.07288504716432 | 1.0484158436602293 | 0.9436701927700969 |
RUS | Europe | Russia | 2020-07-22 | 787890.0 | 5850.0 | 6099.0 | 12726.0 | 165.0 | 139.0 | 0.94 | null | null | null | null | null | null | null | null | 2.6000908e7 | 296536.0 | 178.16839148203928 | 2.032 | 278199.0 | 1.906 | 2.2e-2 | 45.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5398.930451382079 | 40.08648813994994 | 41.79273353257346 | 87.20352958444496 | 1.1306445372806395 | 0.9524823677697509 |
RUS | Europe | Russia | 2020-07-23 | 793720.0 | 5830.0 | 6015.429 | 12873.0 | 147.0 | 136.143 | 0.94 | null | null | null | null | null | null | null | null | 2.6300652e7 | 299744.0 | 180.22235461041893 | 2.054 | 276583.0 | 1.895 | 2.2e-2 | 46.0 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5438.879891699329 | 39.94944031724926 | 41.22007235302752 | 88.21083108129498 | 1.0073014968500242 | 0.9329050862969582 |
RUS | Europe | Russia | 2020-07-24 | 799499.0 | 5779.0 | 5928.286 | 13026.0 | 153.0 | 131.429 | 0.94 | null | null | null | null | null | null | null | null | 2.6610623e7 | 309971.0 | 182.34639714293664 | 2.124 | 276242.0 | 1.893 | 2.1e-2 | 46.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5478.479860068691 | 39.59996836936252 | 40.62293443234723 | 89.25924692495522 | 1.0484158436602293 | 0.9006029144864072 |
RUS | Europe | Russia | 2020-07-25 | 805332.0 | 5833.0 | 5873.857 | 13172.0 | 146.0 | 134.857 | 0.94 | null | null | null | null | null | null | null | null | 2.6902291e7 | 291668.0 | 184.34502036050978 | 1.999 | 272936.0 | 1.87 | 2.2e-2 | 46.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5518.449857559345 | 39.96999749065437 | 40.249965635258455 | 90.25969603067021 | 1.0004491057149902 | 0.9240929112973043 |
RUS | Europe | Russia | 2020-07-26 | 811073.0 | 5741.0 | 5823.143 | 13249.0 | 77.0 | 132.286 | 0.94 | null | null | null | null | null | null | null | null | 2.7141966e7 | 239675.0 | 185.98736720579907 | 1.642 | 270050.0 | 1.85 | 2.2e-2 | 46.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5557.789435065577 | 39.33957750623122 | 39.902453471236335 | 90.78733014806784 | 0.5276341173976318 | 0.9064754136891314 |
RUS | Europe | Russia | 2020-07-27 | 816680.0 | 5607.0 | 5781.143 | 13334.0 | 85.0 | 132.286 | 0.94 | null | null | null | null | null | null | null | null | 2.732757e7 | 185604.0 | 187.25919841002596 | 1.272 | 268343.0 | 1.839 | 2.2e-2 | 46.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5596.2107921597135 | 38.42135709413664 | 39.6146530435649 | 91.36978339454573 | 0.5824532464779053 | 0.9064754136891314 |
RUS | Europe | Russia | 2020-07-28 | 822060.0 | 5380.0 | 5717.143 | 13483.0 | 149.0 | 131.714 | 0.93 | null | null | null | null | null | null | null | null | 2.7569646e7 | 242076.0 | 188.91799784643052 | 1.659 | 266468.0 | 1.826 | 2.1e-2 | 46.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5633.076656466197 | 36.86586430648388 | 39.17610001092271 | 92.39078967366584 | 1.0210062791200927 | 0.9025558459598919 |
RUS | Europe | Russia | 2020-07-29 | 827509.0 | 5449.0 | 5659.857 | 13650.0 | 167.0 | 132.0 | 0.94 | null | null | null | null | null | null | null | null | 2.785785e7 | 288204.0 | 190.8928843811119 | 1.975 | 265277.0 | 1.818 | 2.1e-2 | 46.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5670.4153357609985 | 37.338679294801246 | 38.783553932361144 | 93.53513899321655 | 1.144349319550708 | 0.9045156298245116 |
RUS | Europe | Russia | 2020-07-30 | 832993.0 | 5484.0 | 5610.429 | 13778.0 | 128.0 | 129.286 | 0.94 | null | null | null | null | null | null | null | null | 2.8161461e7 | 303611.0 | 192.97334570601078 | 2.08 | 265830.0 | 1.822 | 2.1e-2 | 47.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5707.993848745526 | 37.57851298452744 | 38.44485394333868 | 94.41224505850091 | 0.877106065284375 | 0.8859182402840289 |
RUS | Europe | Russia | 2020-07-31 | 838461.0 | 5468.0 | 5566.0 | 13939.0 | 161.0 | 130.429 | 0.94 | null | null | null | null | null | null | null | null | 2.8478012e7 | 316551.0 | 195.14247697219696 | 2.169 | 266770.0 | 1.828 | 2.1e-2 | 47.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5745.462723471893 | 37.46887472636689 | 38.140409057600245 | 95.51548003124142 | 1.1032349727405029 | 0.893750523351373 |
RUS | Europe | Russia | 2020-08-01 | 843890.0 | 5429.0 | 5508.286 | 14034.0 | 95.0 | 123.143 | 0.94 | null | null | null | null | null | null | null | null | 2.879326e7 | 315248.0 | 197.30267957273423 | 2.16 | 270138.0 | 1.851 | 2.0e-2 | 49.0 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5782.664354943993 | 37.20163147210056 | 37.74493015563288 | 96.16645718906967 | 0.650977157828247 | 0.8438240015415139 |
RUS | Europe | Russia | 2020-08-02 | 849277.0 | 5387.0 | 5457.714 | 14104.0 | 70.0 | 122.143 | 0.94 | null | null | null | null | null | null | null | null | 2.90299e7 | 236640.0 | 198.92422941092872 | 1.622 | 269705.0 | 1.848 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5819.578185988422 | 36.91383104442912 | 37.398391031151924 | 96.64612456852207 | 0.4796673794523925 | 0.8369716104064797 |
RUS | Europe | Russia | 2020-08-03 | 854641.0 | 5364.0 | 5423.0 | 14183.0 | 79.0 | 121.286 | 0.94 | null | null | null | null | null | null | null | null | 2.9201862e7 | 171962.0 | 200.10258029529146 | 1.178 | 267756.0 | 1.835 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5856.3344120367465 | 36.756226048323335 | 37.160517125290355 | 97.18746346818976 | 0.5413388996677002 | 0.8310991112037555 |
RUS | Europe | Russia | 2020-08-04 | 859762.0 | 5121.0 | 5386.0 | 14327.0 | 144.0 | 120.571 | 0.94 | null | null | null | null | null | null | null | null | 2.943389e7 | 232028.0 | 201.69252690557119 | 1.59 | 266321.0 | 1.825 | 2.0e-2 | 49.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5891.4255070392555 | 35.09109500251003 | 36.90697865329409 | 98.17420779163469 | 0.9867443234449218 | 0.826199651542206 |
RUS | Europe | Russia | 2020-08-05 | 864948.0 | 5186.0 | 5348.429 | 14465.0 | 138.0 | 116.429 | 0.94 | null | null | null | null | null | null | null | null | 2.9716907e7 | 283017.0 | 203.63187008743515 | 1.939 | 265580.0 | 1.82 | 2.0e-2 | 49.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5926.962007465543 | 35.536500426287255 | 36.64952746595972 | 99.1198377682694 | 0.9456299766347167 | 0.7978170474608944 |
RUS | Europe | Russia | 2020-08-06 | 870187.0 | 5239.0 | 5313.429 | 14579.0 | 114.0 | 114.429 | 0.95 | null | null | null | null | null | null | null | null | 3.0038123e7 | 321216.0 | 205.83296775826628 | 2.201 | 268095.0 | 1.837 | 2.0e-2 | 50.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5962.8616846219875 | 35.89967715644406 | 36.409693776233524 | 99.9010103576633 | 0.7811725893938963 | 0.7841122651908261 |
RUS | Europe | Russia | 2020-08-07 | 875378.0 | 5191.0 | 5273.857 | 14698.0 | 119.0 | 108.429 | 0.95 | null | null | null | null | null | null | null | null | 3.0341344e7 | 303221.0 | 207.9107566506225 | 2.078 | 266190.0 | 1.824 | 2.0e-2 | 50.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 5998.432447003949 | 35.570762381962425 | 36.13853095423795 | 100.71644490273236 | 0.8154345450690673 | 0.742997918380621 |
RUS | Europe | Russia | 2020-08-08 | 880563.0 | 5185.0 | 5239.0 | 14827.0 | 129.0 | 113.286 | 0.95 | null | null | null | null | null | null | null | null | 3.064002e7 | 298676.0 | 209.95740142526995 | 2.047 | 263823.0 | 1.808 | 2.0e-2 | 50.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6033.962095039102 | 35.52964803515222 | 35.89967715644406 | 101.60040335915177 | 0.8839584564194091 | 0.776279982123482 |
RUS | Europe | Russia | 2020-08-09 | 885718.0 | 5155.0 | 5205.857 | 14903.0 | 76.0 | 114.143 | 0.95 | null | null | null | null | null | null | null | null | 3.088616e7 | 246140.0 | 211.64404897924726 | 1.687 | 265180.0 | 1.817 | 2.0e-2 | 50.9 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6069.286171340203 | 35.324076301101194 | 35.672568357055624 | 102.12118508541437 | 0.5207817262625977 | 0.7821524813262063 |
RUS | Europe | Russia | 2020-08-10 | 890799.0 | 5081.0 | 5165.429 | 14973.0 | 70.0 | 112.857 | 0.95 | null | null | null | null | null | null | null | null | 3.1063187e7 | 177027.0 | 212.85710722470895 | 1.213 | 265904.0 | 1.822 | 1.9e-2 | 51.5 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6104.103170697312 | 34.816999357108664 | 35.395539888248464 | 102.60085246486676 | 0.4796673794523925 | 0.7733403063265524 |
RUS | Europe | Russia | 2020-08-11 | 895691.0 | 4892.0 | 5132.714 | 15103.0 | 130.0 | 110.857 | 0.95 | null | null | null | null | null | null | null | null | 3.1307764e7 | 244577.0 | 214.53304449134222 | 1.676 | 267696.0 | 1.834 | 1.9e-2 | 52.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6137.625068129899 | 33.5218974325872 | 35.17136391226582 | 103.4916633124212 | 0.8908108475544433 | 0.7596355240564839 |
RUS | Europe | Russia | 2020-08-12 | 900745.0 | 5054.0 | 5113.857 | 15231.0 | 128.0 | 109.429 | 0.95 | null | null | null | null | null | null | null | null | 3.1598302e7 | 290538.0 | 216.5239245069328 | 1.991 | 268771.0 | 1.842 | 1.9e-2 | 52.6 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6172.257052926361 | 34.63198479646274 | 35.04214837263248 | 104.36876937770558 | 0.877106065284375 | 0.7498503095156552 |
RUS | Europe | Russia | 2020-08-13 | 905762.0 | 5017.0 | 5082.143 | 15353.0 | 122.0 | 110.571 | 0.96 | null | null | null | null | null | null | null | null | 3.1903055e7 | 304753.0 | 218.61221126250786 | 2.088 | 266419.0 | 1.826 | 1.9e-2 | 52.4 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6206.635499250829 | 34.37844632446647 | 34.82483164017601 | 105.20476109617975 | 0.8359917184741699 | 0.7576757401918642 |
RUS | Europe | Russia | 2020-08-14 | 910778.0 | 5016.0 | 5057.143 | 15467.0 | 114.0 | 109.857 | 0.96 | null | null | null | null | null | null | null | null | 3.2221546e7 | 318491.0 | 220.794636167496 | 2.182 | 268600.0 | 1.841 | 1.9e-2 | 53.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6241.00709318416 | 34.37159393333145 | 34.65352186180015 | 105.98593368557366 | 0.7811725893938963 | 0.7527831329214498 |
RUS | Europe | Russia | 2020-08-15 | 915808.0 | 5030.0 | 5035.0 | 15585.0 | 118.0 | 108.286 | 0.96 | null | null | null | null | null | null | null | null | 3.2533818e7 | 312272.0 | 222.9344460520154 | 2.14 | 270543.0 | 1.854 | 1.9e-2 | 53.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6275.474620593381 | 34.46752740922192 | 34.50178936489709 | 106.79451583950768 | 0.8085821539340331 | 0.7420180264483112 |
RUS | Europe | Russia | 2020-08-16 | 920719.0 | 4911.0 | 5000.143 | 15653.0 | 68.0 | 107.143 | 0.96 | null | null | null | null | null | null | null | null | 3.2784478e7 | 250660.0 | 224.65206641392308 | 1.718 | 271188.0 | 1.858 | 1.8e-2 | 54.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6309.126713457535 | 33.652092864152856 | 34.262935567103206 | 107.26047843669001 | 0.4659625971823242 | 0.7341857433809671 |
RUS | Europe | Russia | 2020-08-17 | 925558.0 | 4839.0 | 4965.571 | 15707.0 | 54.0 | 104.857 | 0.96 | null | null | null | null | null | null | null | null | 3.2968759e7 | 184281.0 | 225.91483190467832 | 1.263 | 272225.0 | 1.865 | 1.8e-2 | 54.8 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6342.285434159964 | 33.15872070243039 | 34.0260347007828 | 107.63050755798184 | 0.3700291212918457 | 0.7185211772462788 |
RUS | Europe | Russia | 2020-08-18 | 930276.0 | 4718.0 | 4940.714 | 15836.0 | 129.0 | 104.714 | 0.96 | null | null | null | null | null | null | null | null | 3.3217468e7 | 248709.0 | 227.61908325148153 | 1.704 | 272815.0 | 1.869 | 1.8e-2 | 55.2 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6374.615015535056 | 32.32958137509126 | 33.855704814339255 | 108.51446601440126 | 0.8839584564194091 | 0.717541285313969 |
RUS | Europe | Russia | 2020-08-19 | 935066.0 | 4790.0 | 4903.0 | 15951.0 | 115.0 | 102.857 | 0.96 | null | null | null | null | null | null | null | null | 3.3509273e7 | 291805.0 | 229.61864524664017 | 2.0 | 272996.0 | 1.871 | 1.8e-2 | 55.7 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6407.43796907187 | 32.82295353681371 | 33.59727373507258 | 109.30249099493018 | 0.7880249805289306 | 0.7048163949762105 |
RUS | Europe | Russia | 2020-08-20 | 939833.0 | 4767.0 | 4867.286 | 16058.0 | 107.0 | 100.714 | 0.96 | null | null | null | null | null | null | null | null | 3.3814105e7 | 304832.0 | 231.7074733411149 | 2.089 | 273007.0 | 1.871 | 1.8e-2 | 56.1 | null | 68.06 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6440.1033176125775 | 32.66534854070793 | 33.35254743807597 | 110.03569684637884 | 0.7332058514486571 | 0.6901317207738323 |
RUS | Europe | Russia | 2020-08-21 | 944671.0 | 4838.0 | 4841.857 | 16148.0 | 90.0 | 97.286 | 0.97 | null | null | null | null | null | null | null | null | 3.3814105e7 | null | 231.7074733411149 | null | 272755.0 | 1.869 | 1.8e-2 | 56.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6473.255185923873 | 33.15186831129536 | 33.178297983903185 | 110.65241204853193 | 0.6167152021530762 | 0.6666417239629352 |
RUS | Europe | Russia | 2020-08-22 | 949531.0 | 4860.0 | 4817.571 | 16268.0 | 120.0 | 97.571 | 0.97 | null | null | null | null | null | null | null | null | 3.444756e7 | null | 236.04815476755797 | null | 273392.0 | 1.873 | 1.8e-2 | 56.7 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6506.557806840139 | 33.30262091626611 | 33.01188081279775 | 111.47469898473602 | 0.8222869362041014 | 0.6685946554364199 |
RUS | Europe | Russia | 2020-08-23 | 954328.0 | 4797.0 | 4801.286 | 16341.0 | 73.0 | 98.286 | 0.97 | null | null | null | null | null | null | null | null | 3.4695406e7 | 247846.0 | 237.74649250081168 | 1.698 | 272990.0 | 1.871 | 1.8e-2 | 56.9 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6539.428727114898 | 32.87092027475895 | 32.900289623163715 | 111.97492353759353 | 0.5002245528574951 | 0.6734941150979693 |
RUS | Europe | Russia | 2020-08-24 | 959016.0 | 4688.0 | 4779.714 | 16406.0 | 65.0 | 99.857 | 0.97 | null | null | null | null | null | null | null | null | 3.488322e7 | 187814.0 | 239.033467489447 | 1.287 | 273494.0 | 1.874 | 1.7e-2 | 57.2 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6571.552736755938 | 32.12400964104023 | 32.75246984159875 | 112.42032896137074 | 0.44540542377722164 | 0.684259221571108 |
RUS | Europe | Russia | 2020-08-25 | 963655.0 | 4639.0 | 4768.429 | 16524.0 | 118.0 | 98.286 | 0.97 | null | null | null | null | null | null | null | null | 3.5128661e7 | 245441.0 | 240.7153252220209 | 1.682 | 273028.0 | 1.871 | 1.7e-2 | 57.3 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6603.340979231362 | 31.78824247542356 | 32.6751406076399 | 113.22891111530478 | 0.8085821539340331 | 0.6734941150979693 |
RUS | Europe | Russia | 2020-08-26 | 968297.0 | 4642.0 | 4747.286 | 16638.0 | 114.0 | 98.143 | 0.98 | null | null | null | null | null | null | null | null | 3.5423783e7 | 295122.0 | 242.73761659857445 | 2.022 | 273501.0 | 1.874 | 1.7e-2 | 57.6 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6635.14977888019 | 31.808799648828657 | 32.530260501871865 | 114.01008370469867 | 0.7811725893938963 | 0.6725142231656595 |
RUS | Europe | Russia | 2020-08-27 | 972972.0 | 4675.0 | 4734.143 | 16758.0 | 120.0 | 100.0 | 0.98 | null | null | null | null | null | null | null | null | 3.5751747e7 | 327964.0 | 244.9849542047848 | 2.247 | 276806.0 | 1.897 | 1.7e-2 | 58.5 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6667.184707436475 | 32.03492855628478 | 32.44019952518411 | 114.83237064090278 | 0.8222869362041014 | 0.6852391135034178 |
RUS | Europe | Russia | 2020-08-28 | 977730.0 | 4758.0 | 4722.714 | 16866.0 | 108.0 | 102.571 | 0.99 | null | null | null | null | null | null | null | null | 3.6086182e7 | 334435.0 | 247.27663363402996 | 2.292 | 279336.0 | 1.914 | 1.7e-2 | 59.1 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6699.788384456968 | 32.603677020492626 | 32.3618835469018 | 115.57242888348647 | 0.7400582425836914 | 0.7028566111115908 |
RUS | Europe | Russia | 2020-08-29 | 982573.0 | 4843.0 | 4720.286 | 16977.0 | 111.0 | 101.286 | 1.0 | null | null | null | null | null | null | null | null | 3.642685e7 | 340668.0 | 249.6110240172198 | 2.334 | 282756.0 | 1.938 | 1.7e-2 | 59.9 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6732.974514723938 | 33.18613026697053 | 32.34524594122595 | 116.33304429947526 | 0.7606154159887939 | 0.6940512885030719 |
RUS | Europe | Russia | 2020-08-30 | 987470.0 | 4897.0 | 4734.571 | 17045.0 | 68.0 | 100.571 | 1.0 | null | null | null | null | null | null | null | null | 3.6696382e7 | 269532.0 | 251.45796270462785 | 1.847 | 285854.0 | 1.959 | 1.7e-2 | 60.4 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6766.5306741122 | 33.55615938826238 | 32.443132348589906 | 116.79900689665757 | 0.4659625971823242 | 0.6891518288415225 |
RUS | Europe | Russia | 2020-08-31 | 992402.0 | 4932.0 | 4769.429 | 17128.0 | 83.0 | 103.143 | 1.01 | null | null | null | null | null | null | null | null | 3.6901215e7 | 204833.0 | 252.86155853799025 | 1.404 | 288285.0 | 1.975 | 1.7e-2 | 60.4 | null | 54.17 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6800.326667190189 | 33.79599307798858 | 32.68199299877493 | 117.36775536086542 | 0.5687484642078369 | 0.7067761788408303 |
RUS | Europe | Russia | 2020-09-01 | 997072.0 | 4670.0 | 4773.857 | 17250.0 | 122.0 | 103.714 | 1.01 | null | null | null | null | null | null | null | null | 3.7176827e7 | 275612.0 | 254.75015976349928 | 1.889 | 292595.0 | 2.005 | 1.6e-2 | 61.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6832.327333790799 | 32.00066660060962 | 32.71233538672086 | 118.20374707933959 | 0.8359917184741699 | 0.7106888941789349 |
RUS | Europe | Russia | 2020-09-02 | 1001965.0 | 4893.0 | 4809.714 | 17365.0 | 115.0 | 103.857 | 1.02 | null | null | null | null | null | null | null | null | 3.7484146e7 | 307319.0 | 256.8560297547269 | 2.106 | 294338.0 | 2.017 | 1.6e-2 | 61.2 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6865.856083614522 | 33.52874982372224 | 32.95804157564978 | 118.99177205986852 | 0.7880249805289306 | 0.7116687861112447 |
RUS | Europe | Russia | 2020-09-03 | 1006923.0 | 4958.0 | 4850.143 | 17479.0 | 114.0 | 103.0 | 1.02 | null | null | null | null | null | null | null | null | 3.7818366e7 | 334220.0 | 259.146235919878 | 2.29 | 295231.0 | 2.023 | 1.6e-2 | 60.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6899.83023886202 | 33.97415524749946 | 33.23507689684808 | 119.77294464926241 | 0.7811725893938963 | 0.7057962869085204 |
RUS | Europe | Russia | 2020-09-04 | 1011987.0 | 5064.0 | 4893.857 | 17598.0 | 119.0 | 104.571 | 1.03 | null | null | null | null | null | null | null | null | 3.8154556e7 | 336190.0 | 261.44994129556517 | 2.304 | 295482.0 | 2.025 | 1.7e-2 | 60.4 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6934.530747569834 | 34.70050870781308 | 33.53462232292497 | 120.58837919433148 | 0.8154345450690673 | 0.7165613933816591 |
RUS | Europe | Russia | 2020-09-05 | 1017131.0 | 5144.0 | 4936.857 | 17707.0 | 109.0 | 104.286 | 1.03 | null | null | null | null | null | null | null | null | 3.8488127e7 | 333571.0 | 263.7357002588696 | 2.286 | 294468.0 | 2.018 | 1.7e-2 | 59.6 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 6969.7794475684495 | 35.24869999861582 | 33.82927514173143 | 121.33528982805021 | 0.7469106337187255 | 0.7146084619081744 |
RUS | Europe | Russia | 2020-09-06 | 1022228.0 | 5097.0 | 4965.429 | 17768.0 | 61.0 | 103.286 | 1.04 | null | null | null | null | null | null | null | null | 3.8758184e7 | 270057.0 | 265.58623645162356 | 1.851 | 294543.0 | 2.018 | 1.7e-2 | 59.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7004.706085183719 | 34.92663761526921 | 34.02506166124163 | 121.75328568728729 | 0.41799585923708493 | 0.7077560707731403 |
RUS | Europe | Russia | 2020-09-07 | 1027334.0 | 5106.0 | 4990.286 | 17818.0 | 50.0 | 98.571 | 1.04 | null | null | null | null | null | null | null | null | 3.8960761e7 | 202577.0 | 266.9743732905854 | 1.388 | 294221.0 | 2.016 | 1.7e-2 | 59.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7039.694394319203 | 34.98830913548451 | 34.19539154768517 | 122.095905244039 | 0.3426195567517089 | 0.675447046571454 |
RUS | Europe | Russia | 2020-09-08 | 1032354.0 | 5020.0 | 5040.286 | 17939.0 | 121.0 | 98.429 | 1.04 | null | null | null | null | null | null | null | null | 3.9289176e7 | 328415.0 | 269.22480132519763 | 2.25 | 301764.0 | 2.068 | 1.7e-2 | 59.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7074.093397817074 | 34.399003497871576 | 34.53801110443688 | 122.92504457137812 | 0.8291393273391356 | 0.6744740070302793 |
RUS | Europe | Russia | 2020-09-09 | 1037526.0 | 5172.0 | 5080.143 | 18080.0 | 141.0 | 102.143 | 1.05 | null | null | null | null | null | null | null | null | 3.9575311e7 | 286135.0 | 271.1855102626206 | 1.961 | 298738.0 | 2.047 | 1.7e-2 | 58.8 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7109.533964767472 | 35.44056695039677 | 34.81112685790594 | 123.89123172141795 | 0.9661871500398191 | 0.6999237877057962 |
RUS | Europe | Russia | 2020-09-10 | 1042836.0 | 5310.0 | 5130.429 | 18207.0 | 127.0 | 104.0 | 1.05 | null | null | null | null | null | null | null | null | 3.9912526e7 | 337215.0 | 273.4962393392212 | 2.311 | 299166.0 | 2.05 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7145.920161694503 | 36.38619692703149 | 35.15570619852227 | 124.7614853955673 | 0.8702536741493407 | 0.7126486780435546 |
RUS | Europe | Russia | 2020-09-11 | 1048257.0 | 5421.0 | 5181.429 | 18309.0 | 102.0 | 101.571 | 1.05 | null | null | null | null | null | null | null | null | 4.0268897e7 | 356371.0 | 275.9382328204045 | 2.442 | 302049.0 | 2.07 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7183.066974037523 | 37.14681234302029 | 35.505178146409015 | 125.46042929134079 | 0.6989438957734863 | 0.6960042199765566 |
RUS | Europe | Russia | 2020-09-12 | 1053663.0 | 5406.0 | 5218.857 | 18426.0 | 117.0 | 102.714 | 1.06 | null | null | null | null | null | null | null | null | 4.0624075e7 | 355178.0 | 278.3720513989636 | 2.434 | 305135.0 | 2.091 | 1.7e-2 | 58.5 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7220.111000513519 | 37.04402647599477 | 35.76164944181107 | 126.26215905413979 | 0.8017297627989989 | 0.7038365030439007 |
RUS | Europe | Russia | 2020-09-13 | 1059024.0 | 5361.0 | 5256.571 | 18517.0 | 91.0 | 107.0 | 1.06 | null | null | null | null | null | null | null | null | 4.0903551e7 | 279476.0 | 280.2871302638184 | 1.915 | 306481.0 | 2.1 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7256.846669388437 | 36.73566887491823 | 36.02008052107775 | 126.88572664742789 | 0.6235675932881103 | 0.7332058514486571 |
RUS | Europe | Russia | 2020-09-14 | 1064438.0 | 5414.0 | 5300.571 | 18573.0 | 56.0 | 107.857 | 1.06 | null | null | null | null | null | null | null | null | 4.1122307e7 | 218756.0 | 281.786131938954 | 1.499 | 308792.0 | 2.116 | 1.7e-2 | 58.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7293.945514993512 | 37.09884560507505 | 36.321585731019255 | 127.26946055098982 | 0.383733903561914 | 0.7390783506513814 |
RUS | Europe | Russia | 2020-09-15 | 1069873.0 | 5435.0 | 5359.857 | 18723.0 | 150.0 | 112.0 | 1.07 | null | null | null | null | null | null | null | null | 4.1424006e7 | 301699.0 | 283.8534914920026 | 2.067 | 304976.0 | 2.09 | 1.8e-2 | 56.9 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7331.188260812422 | 37.24274581891076 | 36.72783659185089 | 128.29731922124492 | 1.027858670255127 | 0.767467807123828 |
RUS | Europe | Russia | 2020-09-16 | 1075485.0 | 5612.0 | 5422.714 | 18853.0 | 130.0 | 110.429 | 1.07 | null | null | null | null | null | null | null | null | 4.1748928e7 | 324922.0 | 286.07998412438025 | 2.226 | 310517.0 | 2.128 | 1.7e-2 | 57.3 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7369.643879862234 | 38.455619049811816 | 37.158557341425734 | 129.18813006879938 | 0.8908108475544433 | 0.7567027006506893 |
RUS | Europe | Russia | 2020-09-17 | 1081152.0 | 5667.0 | 5473.714 | 18996.0 | 143.0 | 112.714 | 1.08 | null | null | null | null | null | null | null | null | 4.2095246e7 | 346318.0 | 288.45309051748296 | 2.373 | 311817.0 | 2.137 | 1.8e-2 | 57.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7408.476380424473 | 38.83250056223869 | 37.50802928931248 | 130.16802200110928 | 0.9798919323098875 | 0.7723604143942425 |
RUS | Europe | Russia | 2020-09-18 | 1086955.0 | 5803.0 | 5528.286 | 19128.0 | 132.0 | 117.0 | 1.09 | null | null | null | null | null | null | null | null | 4.2457169e7 | 361923.0 | 290.93312847424795 | 2.48 | 312610.0 | 2.142 | 1.8e-2 | 56.5 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7448.240806181076 | 39.76442575660334 | 37.88197797833356 | 131.0725376309338 | 0.9045156298245116 | 0.8017297627989989 |
RUS | Europe | Russia | 2020-09-19 | 1092915.0 | 5960.0 | 5607.429 | 19270.0 | 142.0 | 120.571 | 1.1 | null | null | null | null | null | null | null | null | 4.2821891e7 | 364722.0 | 293.4323462737999 | 2.499 | 313974.0 | 2.151 | 1.8e-2 | 56.0 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7489.081057345879 | 40.8402511648037 | 38.42429676993358 | 132.04557717210864 | 0.9730395411748535 | 0.826199651542206 |
RUS | Europe | Russia | 2020-09-20 | 1098958.0 | 6043.0 | 5704.857 | 19349.0 | 79.0 | 118.857 | 1.1 | null | null | null | null | null | null | null | null | 4.3103912e7 | 282021.0 | 295.3648644740934 | 1.933 | 314337.0 | 2.154 | 1.8e-2 | 55.1 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7530.490056974892 | 41.40899962901155 | 39.09191153343768 | 132.58691607177633 | 0.5413388996677002 | 0.8144546531367575 |
RUS | Europe | Russia | 2020-09-21 | 1105048.0 | 6090.0 | 5801.429 | 19420.0 | 71.0 | 121.0 | 1.11 | null | null | null | null | null | null | null | null | 4.3341534e7 | 237622.0 | 296.9931433603825 | 1.628 | 317032.0 | 2.172 | 1.8e-2 | 54.6 | null | 38.89 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7572.22111898725 | 41.73106201235815 | 39.7536606501302 | 133.07343584236375 | 0.48651977058742674 | 0.8291393273391356 |
RUS | Europe | Russia | 2020-09-22 | 1111157.0 | 6109.0 | 5897.714 | 19575.0 | 155.0 | 121.714 | 1.12 | null | null | null | null | null | null | null | null | 4.3632541e7 | 291007.0 | 298.9872371474154 | 1.994 | 315505.0 | 2.162 | 1.9e-2 | 53.5 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7614.082376431173 | 41.861257443923805 | 40.41344313056697 | 134.13555646829406 | 1.0621206259302978 | 0.83403193460955 |
RUS | Europe | Russia | 2020-09-23 | 1117487.0 | 6330.0 | 6000.286 | 19720.0 | 145.0 | 123.857 | 1.13 | null | null | null | null | null | null | null | null | 4.3990409e7 | 357868.0 | 301.43948865812774 | 2.452 | 320212.0 | 2.194 | 1.9e-2 | 53.4 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7657.458012315939 | 43.37563588476635 | 41.1163065940697 | 135.129153182874 | 0.9935967145799559 | 0.8487166088119283 |
RUS | Europe | Russia | 2020-09-24 | 1123976.0 | 6489.0 | 6117.714 | 19867.0 | 147.0 | 124.429 | 1.15 | null | null | null | null | null | null | null | null | 4.4364566e7 | 374157.0 | 304.00335876803877 | 2.564 | 324189.0 | 2.221 | 1.9e-2 | 53.0 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7701.923178391176 | 44.46516607523679 | 41.92096918027448 | 136.13645467972404 | 1.0073014968500242 | 0.8526361765411679 |
RUS | Europe | Russia | 2020-09-25 | 1131088.0 | 7112.0 | 6304.714 | 19973.0 | 106.0 | 120.714 | 1.17 | null | null | null | null | null | null | null | null | 4.4755362e7 | 390796.0 | 306.68124581404555 | 2.678 | 328313.0 | 2.25 | 1.9e-2 | 52.1 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7750.657384143539 | 48.73420575236308 | 43.202366322525876 | 136.86280814003766 | 0.7263534603136229 | 0.8271795434745159 |
RUS | Europe | Russia | 2020-09-26 | 1138509.0 | 7421.0 | 6513.429 | 20140.0 | 167.0 | 124.286 | 1.19 | null | null | null | null | null | null | null | null | 4.5134435e7 | 379073.0 | 309.27880227877637 | 2.598 | 330363.0 | 2.264 | 2.0e-2 | 50.7 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7801.5089787566285 | 50.85159461308864 | 44.63256313827454 | 138.00715745958837 | 1.144349319550708 | 0.8516562846088579 |
RUS | Europe | Russia | 2020-09-27 | 1146273.0 | 7764.0 | 6759.286 | 20239.0 | 99.0 | 127.143 | 1.2 | null | null | null | null | null | null | null | null | 4.5442774e7 | 308339.0 | 311.39166170896164 | 2.113 | 334123.0 | 2.29 | 2.0e-2 | 49.4 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7854.710943529033 | 53.20196477240537 | 46.31727146556063 | 138.68554418195677 | 0.6783867223683837 | 0.8712335660816506 |
RUS | Europe | Russia | 2020-09-28 | 1154299.0 | 8026.0 | 7035.857 | 20299.0 | 60.0 | 125.571 | 1.21 | null | null | null | null | null | null | null | null | 4.5698673e7 | 255899.0 | 313.1451817480258 | 1.754 | 336734.0 | 2.307 | 2.1e-2 | 47.9 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7909.708234778817 | 54.997291249784325 | 48.21244413416817 | 139.0966876500588 | 0.4111434681020507 | 0.8604616072173769 |
RUS | Europe | Russia | 2020-09-29 | 1162428.0 | 8129.0 | 7324.429 | 20456.0 | 157.0 | 125.857 | 1.22 | null | null | null | null | null | null | null | null | 4.603766e7 | 338987.0 | 315.4680532617176 | 2.323 | 343588.0 | 2.354 | 2.1e-2 | 46.9 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 7965.411322315512 | 55.70308753669284 | 50.189852348787255 | 140.17251305825917 | 1.075825408200366 | 0.8624213910819967 |
RUS | Europe | Russia | 2020-09-30 | 1170799.0 | 8371.0 | 7616.0 | 20630.0 | 174.0 | 130.0 | 1.23 | null | null | null | null | null | null | null | null | 4.6421834e7 | 384174.0 | 318.1005637736282 | 2.633 | 347346.0 | 2.38 | 2.2e-2 | 45.6 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8022.772688506882 | 57.36136619137111 | 52.18781088442031 | 141.3648291157551 | 1.1923160574959473 | 0.8908108475544433 |
RUS | Europe | Russia | 2020-10-01 | 1179634.0 | 8835.0 | 7951.143 | 20796.0 | 166.0 | 132.714 | 1.24 | null | null | null | null | null | null | null | null | 4.6823879e7 | 402045.0 | 320.85553336751303 | 2.755 | 351330.0 | 2.407 | 2.3e-2 | 44.2 | null | 40.74 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8083.3135641849085 | 60.54087567802697 | 54.48434180658907 | 142.5023260441708 | 1.1374969284156737 | 0.909408237094926 |
RUS | Europe | Russia | 2020-10-02 | 1188928.0 | 9294.0 | 8262.857 | 20981.0 | 185.0 | 144.0 | 1.25 | null | null | null | null | null | null | null | null | 4.6823879e7 | null | 320.85553336751303 | null | 356928.0 | 2.446 | 2.3e-2 | 43.2 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8146.999687393916 | 63.68612320900767 | 56.62032805685511 | 143.7700184041521 | 1.267692359981323 | 0.9867443234449218 |
RUS | Europe | Russia | 2020-10-03 | 1198663.0 | 9735.0 | 8593.429 | 21153.0 | 172.0 | 144.714 | 1.26 | null | null | null | null | null | null | null | null | 4.7683832e7 | null | 326.7482676812591 | null | 364200.0 | 2.496 | 2.4e-2 | 42.4 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8213.707715093475 | 66.70802769955773 | 58.88553669914563 | 144.948629679378 | 1.1786112752258788 | 0.9916369307153361 |
RUS | Europe | Russia | 2020-10-04 | 1209039.0 | 10376.0 | 8966.571 | 21260.0 | 107.0 | 145.857 | 1.26 | null | null | null | null | null | null | null | null | 4.8042343e7 | 358511.0 | 329.20492527947135 | 2.457 | 371367.0 | 2.545 | 2.4e-2 | 41.4 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8284.80812551059 | 71.10041041711465 | 61.44245163205455 | 145.68183553082665 | 0.7332058514486571 | 0.9994692137826802 |
RUS | Europe | Russia | 2020-10-05 | 1219796.0 | 10757.0 | 9356.714 | 21375.0 | 115.0 | 153.714 | 1.27 | null | null | null | null | null | null | null | null | 4.8337992e7 | 295649.0 | 331.23082786615305 | 2.026 | 377046.0 | 2.584 | 2.5e-2 | 40.3 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8358.519296950151 | 73.71117143956266 | 64.1158640666502 | 146.46986051135556 | 0.7880249805289306 | 1.0533084509306438 |
RUS | Europe | Russia | 2020-10-06 | 1231277.0 | 11481.0 | 9835.571 | 21559.0 | 184.0 | 157.571 | 1.26 | null | null | null | null | null | null | null | null | 4.8709857e7 | 371865.0 | 333.77899229558255 | 2.548 | 381742.0 | 2.616 | 2.6e-2 | 38.8 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8437.191599571479 | 78.6723026213274 | 67.39717952839926 | 147.73070048020188 | 1.260839968846289 | 1.0797381235384707 |
RUS | Europe | Russia | 2020-10-07 | 1242258.0 | 10981.0 | 10208.429 | 21755.0 | 196.0 | 160.714 | 1.25 | null | null | null | null | null | null | null | null | 4.9148954e7 | 439097.0 | 336.78785668580264 | 3.009 | 389589.0 | 2.67 | 2.6e-2 | 38.2 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8512.43770662529 | 75.24610705381032 | 69.95214838222583 | 149.07376914266857 | 1.343068662466699 | 1.101275188875883 |
RUS | Europe | Russia | 2020-10-08 | 1253603.0 | 11345.0 | 10567.0 | 21939.0 | 184.0 | 163.286 | 1.25 | null | null | null | null | null | null | null | null | 4.9656873e7 | 507919.0 | 340.2683163387181 | 3.48 | 404713.0 | 2.773 | 2.6e-2 | 38.3 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8590.178084052252 | 77.74037742696275 | 72.40921712390616 | 150.33460911151485 | 1.260839968846289 | 1.1188995388751908 |
RUS | Europe | Russia | 2020-10-09 | 1265572.0 | 11969.0 | 10949.143 | 22137.0 | 198.0 | 165.143 | 1.25 | null | null | null | null | null | null | null | null | 5.0305243e7 | 648370.0 | 344.71120117894014 | 4.443 | 435912.0 | 2.987 | 2.5e-2 | 39.8 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8672.194353547475 | 82.0162694952241 | 75.02781042942154 | 151.69138255625163 | 1.3567734447367674 | 1.1316244292129494 |
RUS | Europe | Russia | 2020-10-10 | 1278245.0 | 12673.0 | 11368.857 | 22331.0 | 194.0 | 168.286 | 1.25 | null | null | null | null | null | null | null | null | 5.0781349e7 | 476106.0 | 347.9736657126768 | 3.262 | 442502.0 | 3.032 | 2.6e-2 | 38.9 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8759.034706401764 | 86.84035285428814 | 77.90385492227126 | 153.02074643644826 | 1.3293638801966305 | 1.1531614945503619 |
RUS | Europe | Russia | 2020-10-11 | 1291687.0 | 13442.0 | 11806.857 | 22471.0 | 140.0 | 173.0 | 1.24 | null | null | null | null | null | null | null | null | 5.1191309e7 | 409960.0 | 350.78287198239536 | 2.809 | 449852.0 | 3.083 | 2.6e-2 | 38.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8851.144548038894 | 92.10984163712943 | 80.90520223941624 | 153.98008119535302 | 0.959334758904785 | 1.185463666360913 |
RUS | Europe | Russia | 2020-10-12 | 1305093.0 | 13406.0 | 12185.286 | 22594.0 | 123.0 | 174.143 | 1.24 | null | null | null | null | null | null | null | null | 5.1364269e7 | 172960.0 | 351.9680615531109 | 1.185 | 432325.0 | 2.962 | 2.8e-2 | 35.5 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 8943.007703595162 | 91.86315555626821 | 83.49834576425609 | 154.82292530496224 | 0.842844109609204 | 1.193295949428257 |
RUS | Europe | Russia | 2020-10-13 | 1318783.0 | 13690.0 | 12500.857 | 22834.0 | 240.0 | 182.143 | 1.22 | null | null | null | null | null | null | null | null | 5.1801245e7 | 436976.0 | 354.9623920217336 | 2.994 | 441627.0 | 3.026 | 2.8e-2 | 35.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9036.81693823378 | 93.80923463861791 | 85.66076168712996 | 156.46749917737046 | 1.6445738724082029 | 1.2481150785085304 |
RUS | Europe | Russia | 2020-10-14 | 1332824.0 | 14041.0 | 12938.0 | 23069.0 | 235.0 | 187.714 | 1.21 | null | null | null | null | null | null | null | null | 5.2279734e7 | 478489.0 | 358.24118580354497 | 3.279 | 447254.0 | 3.065 | 2.9e-2 | 34.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9133.031362160795 | 96.2144239270149 | 88.65623650507221 | 158.07781109410348 | 1.6103119167330322 | 1.2862897495218057 |
RUS | Europe | Russia | 2020-10-15 | 1346380.0 | 13556.0 | 13253.857 | 23350.0 | 281.0 | 201.571 | 1.2 | null | null | null | null | null | null | null | null | 5.2782097e7 | 502363.0 | 361.6835735713141 | 3.442 | 446461.0 | 3.059 | 3.0e-2 | 33.7 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9225.922376387318 | 92.89101422652334 | 90.8206122118107 | 160.00333300304808 | 1.9255219089446043 | 1.3812433334799745 |
RUS | Europe | Russia | 2020-10-16 | 1361317.0 | 14937.0 | 13677.857 | 23580.0 | 230.0 | 206.143 | 1.2 | null | null | null | null | null | null | null | null | 5.3305957e7 | 523860.0 | 365.27326719131315 | 3.59 | 428673.0 | 2.937 | 3.2e-2 | 31.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9328.276542771324 | 102.35416638400554 | 93.72602605306518 | 161.57938296410595 | 1.576049961057861 | 1.4125724657493508 |
RUS | Europe | Russia | 2020-10-17 | 1376020.0 | 14703.0 | 13967.857 | 23857.0 | 277.0 | 218.0 | 1.19 | null | null | null | null | null | null | null | null | 5.3850509e7 | 544552.0 | 369.00475048867827 | 3.731 | 438451.0 | 3.004 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9429.027249629731 | 100.75070685840754 | 95.7132194822251 | 163.4774953085104 | 1.8981123444044676 | 1.493821267437451 |
RUS | Europe | Russia | 2020-10-18 | 1390824.0 | 14804.0 | 14162.429 | 24039.0 | 182.0 | 224.0 | 1.18 | null | null | null | null | null | null | null | null | 5.4300208e7 | 449699.0 | 372.086263929712 | 3.082 | 444128.0 | 3.043 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9530.470047992778 | 101.44279836304598 | 97.04650293015096 | 164.72463049508664 | 1.2471351865762206 | 1.534935614247656 |
RUS | Europe | Russia | 2020-10-19 | 1406667.0 | 15843.0 | 14510.571 | 24205.0 | 166.0 | 230.143 | 1.17 | null | null | null | null | null | null | null | null | 5.4675096e7 | 374888.0 | 374.6551431375427 | 2.569 | 472975.0 | 3.241 | 3.1e-2 | 32.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9639.032480745123 | 108.5624327523465 | 99.43210808468405 | 165.8621274235023 | 1.1374969284156737 | 1.5770298529901712 |
RUS | Europe | Russia | 2020-10-20 | 1422775.0 | 16108.0 | 14856.0 | 24473.0 | 268.0 | 234.143 | 1.16 | null | null | null | null | null | null | null | null | 5.5171784e7 | 496688.0 | 378.0586435856206 | 3.404 | 481506.0 | 3.299 | 3.1e-2 | 32.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9749.410797148254 | 110.37831640313057 | 101.79912270206776 | 167.69856824769147 | 1.83644082418916 | 1.6044394175303078 |
RUS | Europe | Russia | 2020-10-21 | 1438219.0 | 15444.0 | 15056.429 | 24786.0 | 313.0 | 245.286 | 1.15 | null | null | null | null | null | null | null | null | 5.5683929e7 | 512145.0 | 381.5680614434727 | 3.509 | 486314.0 | 3.332 | 3.1e-2 | 32.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9855.239125837723 | 105.82832868946785 | 103.17254060487153 | 169.84336667295716 | 2.144798425265698 | 1.6807956119479937 |
RUS | Europe | Russia | 2020-10-22 | 1453923.0 | 15704.0 | 15363.286 | 25072.0 | 286.0 | 246.0 | 1.14 | null | null | null | null | null | null | null | null | 5.6230544e7 | 546615.0 | 385.31368122374937 | 3.746 | 492635.0 | 3.376 | 3.1e-2 | 32.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 9962.8490762223 | 107.60995038457675 | 105.27524479139471 | 171.80315053757695 | 1.959783864619775 | 1.685688219218408 |
RUS | Europe | Russia | 2020-10-23 | 1471000.0 | 17077.0 | 15669.0 | 25353.0 | 281.0 | 253.286 | 1.14 | null | null | null | null | null | null | null | null | 5.6794639e7 | 564095.0 | 389.17908080106645 | 3.865 | 498383.0 | 3.415 | 3.1e-2 | 31.8 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10079.867359635278 | 117.01828341297868 | 107.37011669485055 | 173.72867244652153 | 1.9255219089446043 | 1.7356147410282672 |
RUS | Europe | Russia | 2020-10-24 | 1487260.0 | 16260.0 | 15891.429 | 25647.0 | 294.0 | 255.714 | 1.13 | null | null | null | null | null | null | null | null | 5.7344952e7 | 550313.0 | 392.9500407237605 | 3.771 | 499206.0 | 3.421 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10191.287239490932 | 111.41987985565575 | 108.89428720262507 | 175.7432754402216 | 2.0146029937000485 | 1.75225234670413 |
RUS | Europe | Russia | 2020-10-25 | 1503652.0 | 16392.0 | 16118.286 | 25875.0 | 228.0 | 262.286 | 1.12 | null | null | null | null | null | null | null | null | 5.782126e7 | 476308.0 | 396.2138894405064 | 3.264 | 503007.0 | 3.447 | 3.2e-2 | 31.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10303.611634976414 | 112.32439548548027 | 110.44880009834553 | 177.30562061900937 | 1.5623451787877927 | 1.7972862612435747 |
RUS | Europe | Russia | 2020-10-26 | 1520800.0 | 17148.0 | 16304.714 | 26092.0 | 217.0 | 269.571 | 1.11 | null | null | null | null | null | null | null | null | 5.8223852e7 | 402592.0 | 398.97260729234205 | 2.759 | 506965.0 | 3.474 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10421.11643815998 | 117.5048031835661 | 111.72627767286767 | 178.7925894953118 | 1.486968876302417 | 1.8472059306622988 |
RUS | Europe | Russia | 2020-10-27 | 1537142.0 | 16342.0 | 16338.143 | 26409.0 | 317.0 | 276.571 | 1.1 | null | null | null | null | null | null | null | null | 5.8730811e7 | 506959.0 | 402.44648864976784 | 3.474 | 508432.0 | 3.484 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10533.098214088708 | 111.98177592872855 | 111.95534625612072 | 180.96479748511763 | 2.172207989805835 | 1.895172668607538 |
RUS | Europe | Russia | 2020-10-28 | 1553028.0 | 15886.0 | 16401.286 | 26752.0 | 343.0 | 280.857 | 1.1 | null | null | null | null | null | null | null | null | 5.9284119e7 | 553308.0 | 406.23797148391134 | 3.791 | 514313.0 | 3.524 | 3.2e-2 | 31.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10641.955299659861 | 108.85708557115296 | 112.38802678956019 | 183.31516764443435 | 2.350370159316723 | 1.9245420170122944 |
RUS | Europe | Russia | 2020-10-29 | 1570446.0 | 17418.0 | 16646.143 | 27111.0 | 359.0 | 291.286 | 1.1 | null | null | null | null | null | null | null | null | 5.9866561e7 | 582442.0 | 410.2290918813829 | 3.991 | 519431.0 | 3.559 | 3.2e-2 | 31.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10761.310248449887 | 119.35494879002533 | 114.06588272571125 | 185.77517606191162 | 2.4600084174772703 | 1.9960056041595657 |
RUS | Europe | Russia | 2020-10-30 | 1588433.0 | 17987.0 | 16776.143 | 27462.0 | 351.0 | 301.286 | 1.11 | null | null | null | null | null | null | null | null | 6.0441811e7 | 575250.0 | 414.17092988181133 | 3.942 | 521025.0 | 3.57 | 3.2e-2 | 31.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 10884.564207795747 | 123.25395934585978 | 114.9566935732657 | 188.18036535030862 | 2.4051892883969965 | 2.064529515509908 |
RUS | Europe | Russia | 2020-10-31 | 1606267.0 | 17834.0 | 17001.0 | 27787.0 | 325.0 | 305.714 | 1.11 | null | null | null | null | null | null | null | null | 6.1029746e7 | 587935.0 | 418.19969046378765 | 4.029 | 526399.0 | 3.607 | 3.2e-2 | 31.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11006.769751297945 | 122.20554350219956 | 116.49750168671608 | 190.40739246919472 | 2.227027118886108 | 2.094871903455839 |
RUS | Europe | Russia | 2020-11-01 | 1624648.0 | 18381.0 | 17285.143 | 28026.0 | 239.0 | 307.286 | 1.11 | null | null | null | null | null | null | null | null | 6.154197e7 | 512224.0 | 421.7096496605394 | 3.51 | 531530.0 | 3.642 | 3.3e-2 | 30.8 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11132.72355275101 | 125.95380145306325 | 118.44456066099809 | 192.0451139504679 | 1.6377214812731689 | 2.105643862320113 |
RUS | Europe | Russia | 2020-11-02 | 1642665.0 | 18017.0 | 17409.286 | 28264.0 | 238.0 | 310.286 | 1.11 | null | null | null | null | null | null | null | null | 6.1954566e7 | 412596.0 | 424.53691883329 | 2.827 | 532959.0 | 3.652 | 3.3e-2 | 30.6 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11256.18308383092 | 123.45953107991082 | 119.29523705367464 | 193.67598304060604 | 1.6308690901381346 | 2.1262010357252152 |
RUS | Europe | Russia | 2020-11-03 | 1661096.0 | 18431.0 | 17707.714 | 28611.0 | 347.0 | 314.571 | 1.11 | null | null | null | null | null | null | null | null | 6.2446013e7 | 491447.0 | 427.90450589942907 | 3.368 | 530743.0 | 3.637 | 3.3e-2 | 30.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11382.479504840734 | 126.29642100981495 | 121.34018243532063 | 196.0537627644629 | 2.37777972385686 | 2.155563531738837 |
RUS | Europe | Russia | 2020-11-04 | 1680579.0 | 19483.0 | 18221.571 | 28996.0 | 385.0 | 320.571 | 1.11 | null | null | null | null | null | null | null | null | 6.3016994e7 | 570981.0 | 431.81709104210205 | 3.913 | 533268.0 | 3.654 | 3.4e-2 | 29.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11515.984641324607 | 133.5051364838709 | 124.86133158679587 | 198.69193335145107 | 2.638170586988159 | 2.196677878549042 |
RUS | Europe | Russia | 2020-11-05 | 1699695.0 | 19116.0 | 18464.143 | 29285.0 | 289.0 | 310.571 | 1.11 | null | null | null | null | null | null | null | null | 6.3541298e7 | 524304.0 | 435.409827123765 | 3.593 | 524962.0 | 3.597 | 3.5e-2 | 28.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11646.974950261918 | 130.99030893731336 | 126.5235298092034 | 200.67227438947592 | 1.9803410380248776 | 2.1281539671987 |
RUS | Europe | Russia | 2020-11-06 | 1720063.0 | 20368.0 | 18804.286 | 29654.0 | 369.0 | 313.143 | 1.11 | null | null | null | null | null | null | null | null | 6.4092161e7 | 550863.0 | 439.18455586158336 | 3.775 | 521479.0 | 3.573 | 3.6e-2 | 27.7 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11786.544452900294 | 139.56950263837615 | 128.85432268704733 | 203.20080671830354 | 2.528532328827612 | 2.145778317198008 |
RUS | Europe | Russia | 2020-11-07 | 1740172.0 | 20109.0 | 19129.286 | 30010.0 | 356.0 | 317.571 | 1.11 | null | null | null | null | null | null | null | null | 6.4682511e7 | 590350.0 | 443.22986496815076 | 4.045 | 521824.0 | 3.576 | 3.7e-2 | 27.3 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 11924.339186234696 | 137.79473333440228 | 131.08134980593343 | 205.6402579623757 | 2.439451244072168 | 2.1761207051439397 |
RUS | Europe | Russia | 2020-11-08 | 1760420.0 | 20248.0 | 19396.0 | 30292.0 | 282.0 | 323.714 | 1.11 | null | null | null | null | null | null | null | null | 6.5209357e7 | 526846.0 | 446.840019828079 | 3.61 | 523912.0 | 3.59 | 3.7e-2 | 27.0 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12063.08640193687 | 138.74721570217204 | 132.90897845512293 | 207.57263226245536 | 1.9323743000796383 | 2.218214943886454 |
RUS | Europe | Russia | 2020-11-09 | 1781997.0 | 21577.0 | 19904.571 | 30546.0 | 254.0 | 326.0 | 1.11 | null | null | null | null | null | null | null | null | 6.5606582e7 | 397225.0 | 449.56196089669294 | 2.722 | 521717.0 | 3.575 | 3.8e-2 | 26.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12210.940445457503 | 147.8540435206325 | 136.3939058670584 | 209.31313961075404 | 1.7405073482986815 | 2.233879510021142 |
RUS | Europe | Russia | 2020-11-10 | 1802762.0 | 20765.0 | 20238.0 | 30899.0 | 353.0 | 326.857 | 1.1 | null | null | null | null | null | null | null | null | 6.6118696e7 | 512114.0 | 453.0711663304198 | 3.509 | 524669.0 | 3.595 | 3.9e-2 | 25.9 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12353.230347376486 | 142.28990191898473 | 138.67869179082172 | 211.73203368142111 | 2.4188940706670654 | 2.239752009223867 |
RUS | Europe | Russia | 2020-11-11 | 1822345.0 | 19583.0 | 20252.286 | 31326.0 | 427.0 | 332.857 | 1.09 | null | null | null | null | null | null | null | null | 6.6710463e7 | 591767.0 | 457.12618527522557 | 4.055 | 527638.0 | 3.616 | 3.8e-2 | 26.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12487.42072297386 | 134.19037559737433 | 138.7765850505768 | 214.6580046960807 | 2.9259710146595945 | 2.280866356034072 |
RUS | Europe | Russia | 2020-11-12 | 1843678.0 | 21333.0 | 20569.0 | 31755.0 | 429.0 | 352.857 | 1.09 | null | null | null | null | null | null | null | null | 6.7347351e7 | 636888.0 | 461.49039096043526 | 4.364 | 543722.0 | 3.726 | 3.8e-2 | 26.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12633.602783057544 | 146.18206008368415 | 140.94683325651803 | 217.59768049301036 | 2.939675796929663 | 2.4179141787347556 |
RUS | Europe | Russia | 2020-11-13 | 1865395.0 | 21717.0 | 20761.714 | 32156.0 | 401.0 | 357.429 | 1.1 | null | null | null | null | null | null | null | null | 6.7949154e7 | 601803.0 | 465.61418050267224 | 4.124 | 550999.0 | 3.776 | 3.8e-2 | 26.5 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12782.416161337082 | 148.8133782795373 | 142.267384961715 | 220.34548933815907 | 2.7478088451487057 | 2.4492433110041314 |
RUS | Europe | Russia | 2020-11-14 | 1887836.0 | 22441.0 | 21094.857 | 32536.0 | 380.0 | 360.857 | 1.1 | null | null | null | null | null | null | null | null | 6.8577003e7 | 627849.0 | 469.9164474244123 | 4.302 | 556356.0 | 3.812 | 3.8e-2 | 26.4 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 12936.190670798384 | 153.77450946130202 | 144.55021110161368 | 222.94939796947205 | 2.603908631312988 | 2.472733307815029 |
RUS | Europe | Russia | 2020-11-15 | 1910149.0 | 22313.0 | 21389.857 | 32885.0 | 349.0 | 370.429 | 1.09 | null | null | null | null | null | null | null | null | 6.9111898e7 | 534895.0 | 473.5817571805864 | 3.665 | 557506.0 | 3.82 | 3.8e-2 | 26.1 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13089.088074194402 | 152.89740339601764 | 146.57166648644878 | 225.340882475599 | 2.3914845061269285 | 2.538324395759576 |
RUS | Europe | Russia | 2020-11-16 | 1932711.0 | 22562.0 | 21530.571 | 33184.0 | 299.0 | 376.857 | 1.09 | null | null | null | null | null | null | null | null | 6.9550659e7 | 438761.0 | 476.5883191673851 | 3.007 | 563440.0 | 3.861 | 3.8e-2 | 26.2 | null | 44.91 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13243.691722983043 | 154.60364878864115 | 147.53589385262399 | 227.3897474249742 | 2.04886494937522 | 2.582371565975576 |
RUS | Europe | Russia | 2020-11-17 | 1954912.0 | 22201.0 | 21735.714 | 33619.0 | 435.0 | 388.571 | 1.08 | null | null | null | null | null | null | null | null | 7.0075886e7 | 525227.0 | 480.1873800060658 | 3.599 | 565313.0 | 3.874 | 3.8e-2 | 26.0 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13395.821658571936 | 152.1299355888938 | 148.94161392723828 | 230.37053756871407 | 2.980790143739868 | 2.662640475731366 |
RUS | Europe | Russia | 2020-11-18 | 1975629.0 | 20717.0 | 21897.714 | 34068.0 | 449.0 | 391.714 | 1.08 | null | null | null | null | null | null | null | null | 7.0653231e7 | 577345.0 | 484.14357376592204 | 3.956 | 563253.0 | 3.86 | 3.9e-2 | 25.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13537.782645716441 | 141.96098714450306 | 150.05170129111383 | 233.4472611883444 | 3.076723619630346 | 2.6841775410687783 |
RUS | Europe | Russia | 2020-11-19 | 1998966.0 | 23337.0 | 22184.0 | 34525.0 | 457.0 | 395.714 | 1.09 | null | null | null | null | null | null | null | null | 7.1249997e7 | 596766.0 | 488.23284781401185 | 4.089 | 557521.0 | 3.82 | 4.0e-2 | 25.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13697.696897634733 | 159.91425191829265 | 152.01344493959823 | 236.57880393705503 | 3.1315427487106198 | 2.711587105608915 |
RUS | Europe | Russia | 2020-11-20 | 2023025.0 | 24059.0 | 22518.571 | 34980.0 | 455.0 | 403.429 | 1.09 | null | null | null | null | null | null | null | null | 7.1838293e7 | 588296.0 | 492.26408210918794 | 4.031 | 555591.0 | 3.807 | 4.1e-2 | 24.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 13862.55857595252 | 164.8616783177873 | 154.30605629403777 | 239.69664190349556 | 3.1178379664405513 | 2.7644533032157037 |
RUS | Europe | Russia | 2020-11-21 | 2047563.0 | 24538.0 | 22818.143 | 35442.0 | 462.0 | 415.143 | 1.09 | null | null | null | null | null | null | null | null | 7.2429063e7 | 590770.0 | 496.3122692200321 | 4.048 | 550294.0 | 3.771 | 4.1e-2 | 24.1 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14030.70254962399 | 168.1439736714687 | 156.3588408111422 | 242.86244660788137 | 3.1658047043857906 | 2.844722212971494 |
RUS | Europe | Russia | 2020-11-22 | 2071858.0 | 24295.0 | 23101.286 | 35838.0 | 396.0 | 421.857 | 1.09 | null | null | null | null | null | null | null | null | 7.2949596e7 | 520533.0 | 499.87916493472477 | 3.567 | 548243.0 | 3.757 | 4.2e-2 | 23.7 | null | 47.69 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14197.181392249644 | 166.47884262565537 | 158.29904739428918 | 245.57599349735492 | 2.713546889473535 | 2.890729167052114 |
RUS | Europe | Russia | 2020-11-23 | 2096749.0 | 24891.0 | 23434.0 | 36192.0 | 354.0 | 429.714 | 1.09 | null | null | null | null | null | null | null | null | 7.3312313e7 | 362717.0 | 502.36464369005097 | 2.485 | 537379.0 | 3.682 | 4.4e-2 | 22.9 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14367.74425999178 | 170.56286774213575 | 160.57893385839097 | 248.00173995915702 | 2.4257464618020994 | 2.9445684042000773 |
RUS | Europe | Russia | 2020-11-24 | 2120836.0 | 24087.0 | 23703.429 | 36675.0 | 483.0 | 436.571 | 1.09 | null | null | null | null | null | null | null | null | 7.376515e7 | 452837.0 | 505.4676599344665 | 3.103 | 527038.0 | 3.611 | 4.5e-2 | 22.2 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14532.797805261349 | 165.05354526956825 | 162.42516674951207 | 251.31144487737853 | 3.3097049182215086 | 2.9915552502130067 |
RUS | Europe | Russia | 2020-11-25 | 2144229.0 | 23393.0 | 24085.714 | 37173.0 | 498.0 | 443.571 | 1.09 | null | null | null | null | null | null | null | null | 7.427093e7 | 505780.0 | 508.93346232274405 | 3.466 | 516814.0 | 3.541 | 4.7e-2 | 21.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14693.095791083202 | 160.29798582185455 | 165.0447330945686 | 254.72393566262556 | 3.412490785247021 | 3.039521988158246 |
RUS | Europe | Russia | 2020-11-26 | 2169424.0 | 25195.0 | 24351.143 | 37688.0 | 515.0 | 451.857 | 1.09 | null | null | null | null | null | null | null | null | 7.4814909e7 | 543979.0 | 512.6610191999888 | 3.728 | 509273.0 | 3.49 | 4.8e-2 | 20.9 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 14865.741785730388 | 172.64599464718614 | 166.8635564211496 | 258.25291709716817 | 3.5289814345426023 | 3.096300901103139 |
RUS | Europe | Russia | 2020-11-27 | 2196691.0 | 27267.0 | 24809.429 | 38175.0 | 487.0 | 456.429 | 1.09 | null | null | null | null | null | null | null | null | 7.5402616e7 | 587707.0 | 516.6882174367864 | 4.027 | 509189.0 | 3.489 | 4.9e-2 | 20.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15052.585934809365 | 186.84414907897695 | 170.0039113448599 | 261.59003157992976 | 3.3371144827616455 | 3.1276300333725153 |
RUS | Europe | Russia | 2020-11-28 | 2223500.0 | 26809.0 | 25133.857 | 38676.0 | 501.0 | 462.0 | 1.09 | null | null | null | null | null | null | null | null | 7.5948006e7 | 545390.0 | 520.4254430379226 | 3.737 | 502706.0 | 3.445 | 5.0e-2 | 20.0 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15236.291688748497 | 183.7057539391313 | 172.22701889601674 | 265.0230795385819 | 3.4330479586521236 | 3.1658047043857906 |
RUS | Europe | Russia | 2020-11-29 | 2249890.0 | 26390.0 | 25433.143 | 39127.0 | 451.0 | 469.857 | 1.09 | null | null | null | null | null | null | null | null | 7.6422849e7 | 474843.0 | 523.6792530016556 | 3.254 | 496179.0 | 3.4 | 5.1e-2 | 19.5 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15417.126290802049 | 180.83460205355198 | 174.27784362925658 | 268.1135079404823 | 3.090428401900415 | 3.2196439415337545 |
RUS | Europe | Russia | 2020-11-30 | 2275936.0 | 26046.0 | 25598.143 | 39491.0 | 364.0 | 471.286 | 1.09 | null | null | null | null | null | null | null | null | 7.6755901e7 | 333052.0 | 525.9614555739611 | 2.282 | 491941.0 | 3.371 | 5.2e-2 | 19.2 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15595.603670305149 | 178.47737950310022 | 175.4084881665372 | 270.60777831363475 | 2.494270373152441 | 3.229436008465718 |
RUS | Europe | Russia | 2020-12-01 | 2302062.0 | 26126.0 | 25889.429 | 40050.0 | 559.0 | 482.143 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | 444170.0 | 529.0050821444092 | 3.044 | 490703.0 | 3.362 | 5.3e-2 | 19.0 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15774.629241099052 | 179.02557079390294 | 177.40449377069677 | 274.43826495811885 | 3.8304866444841057 | 3.303832419018784 |
RUS | Europe | Russia | 2020-12-02 | 2327105.0 | 25043.0 | 26125.143 | 40630.0 | 580.0 | 493.857 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | null | 529.0050821444092 | null | 491830.0 | 3.37 | 5.3e-2 | 18.8 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15946.233672293714 | 171.60443119466095 | 179.01969829470025 | 278.41265181643865 | 3.9743868583198236 | 3.384101328774575 |
RUS | Europe | Russia | 2020-12-02 | 2327105.0 | 25043.0 | 26125.143 | 40630.0 | 580.0 | 493.857 | 1.09 | null | null | null | null | null | null | null | null | 7.7200071e7 | null | 529.0050821444092 | null | null | null | null | null | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 15946.233672293714 | 171.60443119466095 | 179.01969829470025 | 278.41265181643865 | 3.9743868583198236 | 3.384101328774575 |
RUS | Europe | Russia | 2020-12-03 | 2354934.0 | 27829.0 | 26501.429 | 41173.0 | 543.0 | 497.857 | 1.09 | null | null | null | null | null | null | null | null | 7.8227415e7 | null | 536.0448450626398 | null | 487501.0 | 3.341 | 5.4e-2 | 18.4 | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16136.92886519058 | 190.6951928968662 | 181.5981571453377 | 282.13350020276226 | 3.7208483863235595 | 3.411510893314712 |
RUS | Europe | Russia | 2020-12-03 | 2354934.0 | 27829.0 | 26501.429 | 41173.0 | 543.0 | 497.857 | 1.09 | null | null | null | null | null | null | null | null | 7.8227415e7 | null | 536.0448450626398 | null | null | null | null | null | null | 55.09 | 1.4593446e8 | 8.823 | 39.6 | 14.178 | 9.393 | 24765.954 | 0.1 | 431.297 | 6.18 | 23.4 | 58.3 | null | 8.05 | 72.58 | 0.816 | 16136.92886519058 | 190.6951928968662 | 181.5981571453377 | 282.13350020276226 | 3.7208483863235595 | 3.411510893314712 |
YEM | Asia | Yemen | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-02-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 22.22 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 33.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-03-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 38.89 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-10 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 3.352783051332986e-2 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-11 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-12 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-13 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-14 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-15 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-16 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 4.79447976340617e-3 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-17 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-19 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-21 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-22 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-23 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-24 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-25 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-26 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-27 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-28 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.352783051332986e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-29 | 6.0 | 5.0 | 0.714 | 0.0 | 0.0 | 0.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.20116698307997916 | 0.1676391525666493 | 2.393887098651752e-2 | 0.0 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-04-30 | 6.0 | 0.0 | 0.714 | 2.0 | 2.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 52.78 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.20116698307997916 | 0.0 | 2.393887098651752e-2 | 6.705566102665972e-2 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-01 | 7.0 | 1.0 | 0.857 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.23469481359330902 | 3.352783051332986e-2 | 2.873335074992369e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-02 | 10.0 | 3.0 | 1.286 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.3352783051332986 | 0.10058349153998958 | 4.3116790040142204e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-03 | 10.0 | 0.0 | 1.286 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.3352783051332986 | 0.0 | 4.3116790040142204e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-04 | 12.0 | 2.0 | 1.571 | 2.0 | 0.0 | 0.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.4023339661599583 | 6.705566102665972e-2 | 5.2672221736441205e-2 | 6.705566102665972e-2 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-05-05 | 22.0 | 10.0 | 3.0 | 4.0 | 2.0 | 0.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.737612271293257 | 0.3352783051332986 | 0.10058349153998958 | 0.13411132205331944 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-05-06 | 25.0 | 3.0 | 2.714 | 5.0 | 1.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.8381957628332465 | 0.10058349153998958 | 9.099453201317724e-2 | 0.1676391525666493 | 3.352783051332986e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-07 | 25.0 | 0.0 | 2.714 | 5.0 | 0.0 | 0.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 0.8381957628332465 | 0.0 | 9.099453201317724e-2 | 0.1676391525666493 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-05-08 | 34.0 | 9.0 | 3.857 | 7.0 | 2.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.1399462374532154 | 0.30175047461996873 | 0.12931684228991328 | 0.23469481359330902 | 6.705566102665972e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-09 | 34.0 | 0.0 | 3.429 | 7.0 | 0.0 | 0.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.1399462374532154 | 0.0 | 0.11496693083020809 | 0.23469481359330902 | 0.0 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-05-10 | 51.0 | 17.0 | 5.857 | 8.0 | 1.0 | 0.857 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.7099193561798227 | 0.5699731187266077 | 0.19637250331657302 | 0.2682226441066389 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-05-11 | 56.0 | 5.0 | 6.286 | 9.0 | 1.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 1.8775585087464721 | 0.1676391525666493 | 0.21075594260679148 | 0.30175047461996873 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-12 | 65.0 | 9.0 | 6.143 | 10.0 | 1.0 | 0.857 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.179308983366441 | 0.30175047461996873 | 0.20596146284338532 | 0.3352783051332986 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-05-13 | 70.0 | 5.0 | 6.429 | 12.0 | 2.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.3469481359330904 | 0.1676391525666493 | 0.21555042237019767 | 0.4023339661599583 | 6.705566102665972e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-14 | 85.0 | 15.0 | 8.571 | 12.0 | 0.0 | 1.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 2.849865593633038 | 0.5029174576999479 | 0.2873670353297502 | 0.4023339661599583 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-05-15 | 106.0 | 21.0 | 10.286 | 15.0 | 3.0 | 1.143 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 3.5539500344129653 | 0.704084440779927 | 0.344867264660111 | 0.5029174576999479 | 0.10058349153998958 | 3.832231027673603e-2 |
YEM | Asia | Yemen | 2020-05-16 | 122.0 | 16.0 | 12.571 | 18.0 | 3.0 | 1.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.090395322626243 | 0.5364452882132777 | 0.42147835738306966 | 0.6035009492399375 | 0.10058349153998958 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-05-17 | 128.0 | 6.0 | 11.0 | 20.0 | 2.0 | 1.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.291562305706222 | 0.20116698307997916 | 0.3688061356466285 | 0.6705566102665972 | 6.705566102665972e-2 | 5.746670149984738e-2 |
YEM | Asia | Yemen | 2020-05-18 | 130.0 | 2.0 | 10.571 | 20.0 | 0.0 | 1.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 4.358617966732882 | 6.705566102665972e-2 | 0.35442269635640994 | 0.6705566102665972 | 0.0 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-05-19 | 167.0 | 37.0 | 14.571 | 28.0 | 8.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 5.599147695726087 | 1.240529728993205 | 0.48853401840972943 | 0.9387792543732361 | 0.2682226441066389 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-20 | 184.0 | 17.0 | 16.286 | 30.0 | 2.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 6.169120814452694 | 0.5699731187266077 | 0.5460342477400901 | 1.0058349153998958 | 6.705566102665972e-2 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-21 | 197.0 | 13.0 | 16.0 | 33.0 | 3.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 6.604982611125982 | 0.4358617966732882 | 0.5364452882132777 | 1.1064184069398852 | 0.10058349153998958 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-22 | 209.0 | 12.0 | 14.714 | 33.0 | 0.0 | 2.571 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.00731657728594 | 0.4023339661599583 | 0.49332849817313557 | 1.1064184069398852 | 0.0 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-05-23 | 212.0 | 3.0 | 12.857 | 39.0 | 6.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.107900068825931 | 0.10058349153998958 | 0.43106731690988204 | 1.3075853900198646 | 0.20116698307997916 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-24 | 222.0 | 10.0 | 13.429 | 42.0 | 3.0 | 3.143 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.4431783739592285 | 0.3352783051332986 | 0.45024523596350674 | 1.408168881559854 | 0.10058349153998958 | 0.10537797130339574 |
YEM | Asia | Yemen | 2020-05-25 | 233.0 | 11.0 | 14.714 | 44.0 | 2.0 | 3.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 7.811984509605857 | 0.3688061356466285 | 0.49332849817313557 | 1.475224542586514 | 6.705566102665972e-2 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-05-26 | 249.0 | 16.0 | 11.714 | 49.0 | 5.0 | 3.0 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 8.348429797819136 | 0.5364452882132777 | 0.39274500663314604 | 1.6428636951531632 | 0.1676391525666493 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-05-27 | 256.0 | 7.0 | 10.286 | 53.0 | 4.0 | 3.286 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 56.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 8.583124611412444 | 0.23469481359330902 | 0.344867264660111 | 1.7769750172064827 | 0.13411132205331944 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-05-28 | 278.0 | 22.0 | 11.571 | 57.0 | 4.0 | 3.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 9.3207368827057 | 0.737612271293257 | 0.3879505268697398 | 1.9110863392598023 | 0.13411132205331944 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-05-29 | 283.0 | 5.0 | 10.571 | 65.0 | 8.0 | 4.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 9.488376035272351 | 0.1676391525666493 | 0.35442269635640994 | 2.179308983366441 | 0.2682226441066389 | 0.15325571327643078 |
YEM | Asia | Yemen | 2020-05-30 | 310.0 | 27.0 | 14.0 | 77.0 | 12.0 | 5.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 10.393627459132256 | 0.9052514238599063 | 0.46938962718661803 | 2.5816429495263993 | 0.4023339661599583 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-05-31 | 323.0 | 13.0 | 14.429 | 80.0 | 3.0 | 5.429 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 10.829489255805544 | 0.4358617966732882 | 0.4837730664768366 | 2.6822264410663887 | 0.10058349153998958 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-06-01 | 354.0 | 31.0 | 17.286 | 84.0 | 4.0 | 5.714 | 1.02 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 11.86885200171877 | 1.0393627459132255 | 0.57956207825342 | 2.816337763119708 | 0.13411132205331944 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-02 | 399.0 | 45.0 | 21.429 | 87.0 | 3.0 | 5.429 | 1.02 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 13.377604374818615 | 1.5087523730998438 | 0.7184678800701455 | 2.9169212546596976 | 0.10058349153998958 | 0.18202259185686784 |
YEM | Asia | Yemen | 2020-06-03 | 419.0 | 20.0 | 23.286 | 95.0 | 8.0 | 6.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 14.048160985085213 | 0.6705566102665972 | 0.7807290613333993 | 3.185143898766337 | 0.2682226441066389 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-04 | 453.0 | 34.0 | 25.0 | 103.0 | 8.0 | 6.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 15.188107222538427 | 1.1399462374532154 | 0.8381957628332465 | 3.453366542872976 | 0.2682226441066389 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-05 | 469.0 | 16.0 | 26.571 | 111.0 | 8.0 | 6.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 15.724552510751707 | 0.5364452882132777 | 0.8908679845696879 | 3.7215891869796143 | 0.2682226441066389 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-06 | 482.0 | 13.0 | 24.571 | 111.0 | 0.0 | 4.857 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.160414307424993 | 0.4358617966732882 | 0.823812323543028 | 3.7215891869796143 | 0.0 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-06-07 | 484.0 | 2.0 | 23.0 | 112.0 | 1.0 | 4.571 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.227469968451654 | 6.705566102665972e-2 | 0.7711401018065868 | 3.7551170174929442 | 3.352783051332986e-2 | 0.15325571327643078 |
YEM | Asia | Yemen | 2020-06-08 | 496.0 | 12.0 | 20.286 | 112.0 | 0.0 | 4.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 16.62980393461161 | 0.4023339661599583 | 0.6801455697934096 | 3.7551170174929442 | 0.0 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-06-09 | 524.0 | 28.0 | 17.857 | 127.0 | 15.0 | 5.714 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 17.56858318898485 | 0.9387792543732361 | 0.5987064694765313 | 4.2580344751928925 | 0.5029174576999479 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-10 | 560.0 | 36.0 | 20.143 | 129.0 | 2.0 | 4.857 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 18.775585087464723 | 1.207001898479875 | 0.6753510900300035 | 4.3250901362195515 | 6.705566102665972e-2 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-06-11 | 591.0 | 31.0 | 19.714 | 136.0 | 7.0 | 4.714 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 19.814947833377946 | 1.0393627459132255 | 0.6609676507397848 | 4.559784949812862 | 0.23469481359330902 | 0.15805019303983697 |
YEM | Asia | Yemen | 2020-06-12 | 632.0 | 41.0 | 23.286 | 139.0 | 3.0 | 4.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 21.189588884424474 | 1.3746410510465241 | 0.7807290613333993 | 4.66036844135285 | 0.10058349153998958 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-06-13 | 705.0 | 73.0 | 31.857 | 160.0 | 21.0 | 7.0 | 1.01 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 23.63712051189755 | 2.44753162747308 | 1.0680960966631494 | 5.3644528821327775 | 0.704084440779927 | 0.23469481359330902 |
YEM | Asia | Yemen | 2020-06-14 | 728.0 | 23.0 | 34.857 | 164.0 | 4.0 | 7.429 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 24.408260613704137 | 0.7711401018065868 | 1.168679588203139 | 5.4985642041860965 | 0.13411132205331944 | 0.24907825288352753 |
YEM | Asia | Yemen | 2020-06-15 | 844.0 | 116.0 | 49.714 | 208.0 | 44.0 | 13.714 | 1.0 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 28.297488953250404 | 3.8892283395462637 | 1.6668025661396806 | 6.973788746772612 | 1.475224542586514 | 0.45980066765980576 |
YEM | Asia | Yemen | 2020-06-16 | 885.0 | 41.0 | 51.571 | 214.0 | 6.0 | 12.429 | 0.99 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 29.672130004296925 | 1.3746410510465241 | 1.7290637474029342 | 7.17495572985259 | 0.20116698307997916 | 0.4167174054501768 |
YEM | Asia | Yemen | 2020-06-17 | 902.0 | 17.0 | 48.857 | 244.0 | 30.0 | 16.429 | 0.98 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.242103123023533 | 0.5699731187266077 | 1.638069215389757 | 8.180790645252486 | 1.0058349153998958 | 0.5508287275034962 |
YEM | Asia | Yemen | 2020-06-18 | 909.0 | 7.0 | 45.429 | 248.0 | 4.0 | 16.0 | 0.98 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.476797936616844 | 0.23469481359330902 | 1.5231358123900622 | 8.314901967305804 | 0.13411132205331944 | 0.5364452882132777 |
YEM | Asia | Yemen | 2020-06-19 | 919.0 | 10.0 | 41.0 | 251.0 | 3.0 | 16.0 | 0.97 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.812076241750137 | 0.3352783051332986 | 1.3746410510465241 | 8.415485458845794 | 0.10058349153998958 | 0.5364452882132777 |
YEM | Asia | Yemen | 2020-06-20 | 922.0 | 3.0 | 31.0 | 254.0 | 3.0 | 13.429 | 0.97 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 30.91265973329013 | 0.10058349153998958 | 1.0393627459132255 | 8.516068950385785 | 0.10058349153998958 | 0.45024523596350674 |
YEM | Asia | Yemen | 2020-06-21 | 941.0 | 19.0 | 30.429 | 256.0 | 2.0 | 13.143 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 31.5496885130434 | 0.6370287797532673 | 1.0202183546901142 | 8.583124611412444 | 6.705566102665972e-2 | 0.44065627643669436 |
YEM | Asia | Yemen | 2020-06-22 | 967.0 | 26.0 | 17.571 | 257.0 | 1.0 | 7.0 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 32.42141210638997 | 0.8717235933465765 | 0.589117509949719 | 8.616652441925774 | 3.352783051332986e-2 | 0.23469481359330902 |
YEM | Asia | Yemen | 2020-06-23 | 992.0 | 25.0 | 15.286 | 261.0 | 4.0 | 6.714 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 33.25960786922322 | 0.8381957628332465 | 0.5125064172267602 | 8.750763763979093 | 0.13411132205331944 | 0.2251058540664967 |
YEM | Asia | Yemen | 2020-06-24 | 1015.0 | 23.0 | 16.143 | 274.0 | 13.0 | 4.286 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 34.03074797102981 | 0.7711401018065868 | 0.5412397679766839 | 9.18662556065238 | 0.4358617966732882 | 0.14370028158013176 |
YEM | Asia | Yemen | 2020-06-25 | 1076.0 | 61.0 | 23.857 | 288.0 | 14.0 | 5.714 | 0.96 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.07594563234293 | 2.0451976613131215 | 0.7998734525565105 | 9.656015187839 | 0.46938962718661803 | 0.19157802355316683 |
YEM | Asia | Yemen | 2020-06-26 | 1089.0 | 13.0 | 24.286 | 293.0 | 5.0 | 6.0 | 0.95 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.511807429016216 | 0.4358617966732882 | 0.8142568918467291 | 9.82365434040565 | 0.1676391525666493 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-27 | 1103.0 | 14.0 | 25.857 | 296.0 | 3.0 | 6.0 | 0.95 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 36.98119705620284 | 0.46938962718661803 | 0.8669291135831702 | 9.92423783194564 | 0.10058349153998958 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-06-28 | 1118.0 | 15.0 | 25.286 | 302.0 | 6.0 | 6.571 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 37.48411451390278 | 0.5029174576999479 | 0.8477847223600589 | 10.125404815025618 | 0.20116698307997916 | 0.22031137430309053 |
YEM | Asia | Yemen | 2020-06-29 | 1128.0 | 10.0 | 23.0 | 304.0 | 2.0 | 6.714 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 37.81939281903608 | 0.3352783051332986 | 0.7711401018065868 | 10.192460476052277 | 6.705566102665972e-2 | 0.2251058540664967 |
YEM | Asia | Yemen | 2020-06-30 | 1158.0 | 30.0 | 23.714 | 312.0 | 8.0 | 7.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 38.82522773443598 | 1.0058349153998958 | 0.7950789727931042 | 10.460683120158917 | 0.2682226441066389 | 0.24428377312012134 |
YEM | Asia | Yemen | 2020-07-01 | 1190.0 | 32.0 | 25.0 | 318.0 | 6.0 | 6.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 39.898118310862536 | 1.0728905764265555 | 0.8381957628332465 | 10.661850103238894 | 0.20116698307997916 | 0.21075594260679148 |
YEM | Asia | Yemen | 2020-07-02 | 1221.0 | 31.0 | 20.714 | 325.0 | 7.0 | 5.286 | 0.94 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 40.93748105677576 | 1.0393627459132255 | 0.6944954812531148 | 10.896544916832205 | 0.23469481359330902 | 0.17722811209346162 |
YEM | Asia | Yemen | 2020-07-03 | 1240.0 | 19.0 | 21.571 | 335.0 | 10.0 | 6.0 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 41.574509836529025 | 0.6370287797532673 | 0.7232288320030386 | 11.231823221965504 | 0.3352783051332986 | 0.20116698307997916 |
YEM | Asia | Yemen | 2020-07-04 | 1248.0 | 8.0 | 20.714 | 337.0 | 2.0 | 5.857 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 41.84273248063567 | 0.2682226441066389 | 0.6944954812531148 | 11.298878882992163 | 6.705566102665972e-2 | 0.19637250331657302 |
YEM | Asia | Yemen | 2020-07-05 | 1265.0 | 17.0 | 21.0 | 338.0 | 1.0 | 5.143 | 0.93 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 42.412705599362276 | 0.5699731187266077 | 0.704084440779927 | 11.332406713505492 | 3.352783051332986e-2 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-06 | 1284.0 | 19.0 | 22.286 | 345.0 | 7.0 | 5.857 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 43.04973437911554 | 0.6370287797532673 | 0.7472012308200693 | 11.567101527098803 | 0.23469481359330902 | 0.19637250331657302 |
YEM | Asia | Yemen | 2020-07-07 | 1297.0 | 13.0 | 19.857 | 348.0 | 3.0 | 5.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 43.485596175788835 | 0.4358617966732882 | 0.665762130503191 | 11.66768501863879 | 0.10058349153998958 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-08 | 1318.0 | 21.0 | 18.286 | 351.0 | 3.0 | 4.714 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 44.18968061656875 | 0.704084440779927 | 0.61308990876675 | 11.76826851017878 | 0.10058349153998958 | 0.15805019303983697 |
YEM | Asia | Yemen | 2020-07-09 | 1356.0 | 38.0 | 19.286 | 361.0 | 10.0 | 5.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 45.463738176075296 | 1.2740575595065347 | 0.6466177392800798 | 12.103546815312079 | 0.3352783051332986 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-10 | 1380.0 | 24.0 | 20.0 | 364.0 | 3.0 | 4.143 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 46.26840610839521 | 0.8046679323199166 | 0.6705566102665972 | 12.204130306852068 | 0.10058349153998958 | 0.1389058018167256 |
YEM | Asia | Yemen | 2020-07-11 | 1389.0 | 9.0 | 20.143 | 365.0 | 1.0 | 4.0 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 46.57015658301518 | 0.30175047461996873 | 0.6753510900300035 | 12.2376581373654 | 3.352783051332986e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-12 | 1465.0 | 76.0 | 28.571 | 417.0 | 52.0 | 11.286 | 0.92 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 58.33 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 49.118271702028245 | 2.5481151190130693 | 0.9579236455963475 | 13.981105324058552 | 1.743447186693153 | 0.3783950951734408 |
YEM | Asia | Yemen | 2020-07-13 | 1498.0 | 33.0 | 30.571 | 424.0 | 7.0 | 11.286 | 0.91 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 50.22469010896813 | 1.1064184069398852 | 1.024979306623007 | 14.215800137651861 | 0.23469481359330902 | 0.3783950951734408 |
YEM | Asia | Yemen | 2020-07-14 | 1516.0 | 18.0 | 31.286 | 429.0 | 5.0 | 11.571 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 50.82819105820807 | 0.6035009492399375 | 1.0489517054400381 | 14.383439290218512 | 0.1676391525666493 | 0.3879505268697398 |
YEM | Asia | Yemen | 2020-07-15 | 1526.0 | 10.0 | 29.714 | 433.0 | 4.0 | 11.714 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 51.16346936334137 | 0.3352783051332986 | 0.9962459558730835 | 14.51755061227183 | 0.13411132205331944 | 0.39274500663314604 |
YEM | Asia | Yemen | 2020-07-16 | 1552.0 | 26.0 | 28.0 | 438.0 | 5.0 | 11.0 | 0.9 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 52.03519295668794 | 0.8717235933465765 | 0.9387792543732361 | 14.685189764838478 | 0.1676391525666493 | 0.3688061356466285 |
YEM | Asia | Yemen | 2020-07-17 | 1576.0 | 24.0 | 28.0 | 440.0 | 2.0 | 10.857 | 0.89 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 52.83986088900786 | 0.8046679323199166 | 0.9387792543732361 | 14.752245425865139 | 6.705566102665972e-2 | 0.36401165588322226 |
YEM | Asia | Yemen | 2020-07-18 | 1581.0 | 5.0 | 27.429 | 443.0 | 3.0 | 11.143 | 0.89 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 53.00750004157451 | 0.1676391525666493 | 0.9196348631501248 | 14.852828917405128 | 0.10058349153998958 | 0.37360061541003464 |
YEM | Asia | Yemen | 2020-07-19 | 1606.0 | 25.0 | 20.143 | 445.0 | 2.0 | 4.0 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 53.845695804407754 | 0.8381957628332465 | 0.6753510900300035 | 14.91988457843179 | 6.705566102665972e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-20 | 1619.0 | 13.0 | 17.286 | 447.0 | 2.0 | 3.286 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.28155760108104 | 0.4358617966732882 | 0.57956207825342 | 14.986940239458448 | 6.705566102665972e-2 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-07-21 | 1629.0 | 10.0 | 16.143 | 456.0 | 9.0 | 3.857 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.61683590621434 | 0.3352783051332986 | 0.5412397679766839 | 15.288690714078419 | 0.30175047461996873 | 0.12931684228991328 |
YEM | Asia | Yemen | 2020-07-22 | 1640.0 | 11.0 | 16.286 | 458.0 | 2.0 | 3.571 | 0.88 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 54.98564204186097 | 0.3688061356466285 | 0.5460342477400901 | 15.355746375105076 | 6.705566102665972e-2 | 0.11972788276310095 |
YEM | Asia | Yemen | 2020-07-23 | 1654.0 | 14.0 | 14.571 | 461.0 | 3.0 | 3.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 55.45503166904759 | 0.46938962718661803 | 0.48853401840972943 | 15.456329866645065 | 0.10058349153998958 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-07-24 | 1674.0 | 20.0 | 14.0 | 469.0 | 8.0 | 4.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.12558827931419 | 0.6705566102665972 | 0.46938962718661803 | 15.724552510751707 | 0.2682226441066389 | 0.1389058018167256 |
YEM | Asia | Yemen | 2020-07-25 | 1674.0 | 0.0 | 13.286 | 474.0 | 5.0 | 4.429 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.12558827931419 | 0.0 | 0.4454507562001005 | 15.892191663318354 | 0.1676391525666493 | 0.14849476134353798 |
YEM | Asia | Yemen | 2020-07-26 | 1681.0 | 7.0 | 10.714 | 479.0 | 5.0 | 4.857 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.360283092907494 | 0.23469481359330902 | 0.35921717611981613 | 16.059830815885 | 0.1676391525666493 | 0.16284467280324313 |
YEM | Asia | Yemen | 2020-07-27 | 1691.0 | 10.0 | 10.286 | 483.0 | 4.0 | 5.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 56.695561398040795 | 0.3352783051332986 | 0.344867264660111 | 16.193942137938322 | 0.13411132205331944 | 0.1724336323300555 |
YEM | Asia | Yemen | 2020-07-28 | 1703.0 | 12.0 | 10.571 | 484.0 | 1.0 | 4.0 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.09789536420075 | 0.4023339661599583 | 0.35442269635640994 | 16.227469968451654 | 3.352783051332986e-2 | 0.13411132205331944 |
YEM | Asia | Yemen | 2020-07-29 | 1711.0 | 8.0 | 10.143 | 485.0 | 1.0 | 3.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.36611800830739 | 0.2682226441066389 | 0.3400727848967048 | 16.260997798964983 | 3.352783051332986e-2 | 0.12931684228991328 |
YEM | Asia | Yemen | 2020-07-30 | 1726.0 | 15.0 | 10.286 | 487.0 | 2.0 | 3.714 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.86903546600734 | 0.5029174576999479 | 0.344867264660111 | 16.328053459991644 | 6.705566102665972e-2 | 0.1245223625265071 |
YEM | Asia | Yemen | 2020-07-31 | 1728.0 | 2.0 | 7.714 | 493.0 | 6.0 | 3.429 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 57.936091127034004 | 6.705566102665972e-2 | 0.25863368457982655 | 16.52922044307162 | 0.20116698307997916 | 0.11496693083020809 |
YEM | Asia | Yemen | 2020-08-01 | 1730.0 | 2.0 | 8.0 | 494.0 | 1.0 | 2.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.003146788060654 | 6.705566102665972e-2 | 0.2682226441066389 | 16.56274827358495 | 3.352783051332986e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-02 | 1734.0 | 4.0 | 7.571 | 497.0 | 3.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.13725811011398 | 0.13411132205331944 | 0.25383920481642036 | 16.66333176512494 | 0.10058349153998958 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-03 | 1734.0 | 0.0 | 6.143 | 499.0 | 2.0 | 2.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 58.13725811011398 | 0.0 | 0.20596146284338532 | 16.730387426151598 | 6.705566102665972e-2 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-04 | 1760.0 | 26.0 | 8.143 | 506.0 | 7.0 | 3.143 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.008981703460556 | 0.8717235933465765 | 0.27301712387004506 | 16.96508223974491 | 0.23469481359330902 | 0.10537797130339574 |
YEM | Asia | Yemen | 2020-08-05 | 1763.0 | 3.0 | 7.429 | 508.0 | 2.0 | 3.286 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.10956519500054 | 0.10058349153998958 | 0.24907825288352753 | 17.03213790077157 | 6.705566102665972e-2 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-08-06 | 1768.0 | 5.0 | 6.0 | 508.0 | 0.0 | 3.0 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 59.2772043475672 | 0.1676391525666493 | 0.20116698307997916 | 17.03213790077157 | 0.0 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-07 | 1796.0 | 28.0 | 9.714 | 512.0 | 4.0 | 2.714 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.21598360194043 | 0.9387792543732361 | 0.32568934560648627 | 17.166249222824888 | 0.13411132205331944 | 9.099453201317724e-2 |
YEM | Asia | Yemen | 2020-08-08 | 1797.0 | 1.0 | 9.571 | 512.0 | 0.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.24951143245376 | 3.352783051332986e-2 | 0.3208948658430801 | 17.166249222824888 | 0.0 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-09 | 1804.0 | 7.0 | 10.0 | 515.0 | 3.0 | 2.571 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 60.484206246047066 | 0.23469481359330902 | 0.3352783051332986 | 17.266832714364877 | 0.10058349153998958 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-10 | 1832.0 | 28.0 | 14.0 | 518.0 | 3.0 | 2.714 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.4229855004203 | 0.9387792543732361 | 0.46938962718661803 | 17.36741620590487 | 0.10058349153998958 | 9.099453201317724e-2 |
YEM | Asia | Yemen | 2020-08-11 | 1831.0 | -1.0 | 10.143 | 523.0 | 5.0 | 2.429 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.38945766990697 | -3.352783051332986e-2 | 0.3400727848967048 | 17.535055358471517 | 0.1676391525666493 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-12 | 1841.0 | 10.0 | 11.143 | 528.0 | 5.0 | 2.857 | 0.87 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.724735975040275 | 0.3352783051332986 | 0.37360061541003464 | 17.702694511038164 | 0.1676391525666493 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-13 | 1847.0 | 6.0 | 11.286 | 528.0 | 0.0 | 2.857 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 61.92590295812025 | 0.20116698307997916 | 0.3783950951734408 | 17.702694511038164 | 0.0 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-14 | 1858.0 | 11.0 | 8.857 | 528.0 | 0.0 | 2.286 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.29470909376688 | 0.3688061356466285 | 0.29695599485656254 | 17.702694511038164 | 0.0 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-15 | 1858.0 | 0.0 | 8.714 | 528.0 | 0.0 | 2.286 | 0.86 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.29470909376688 | 0.0 | 0.2921615150931564 | 17.702694511038164 | 0.0 | 7.664462055347206e-2 |
YEM | Asia | Yemen | 2020-08-16 | 1869.0 | 11.0 | 9.286 | 530.0 | 2.0 | 2.143 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 62.66351522941351 | 0.3688061356466285 | 0.31133943414678106 | 17.76975017206483 | 6.705566102665972e-2 | 7.185014079006588e-2 |
YEM | Asia | Yemen | 2020-08-17 | 1882.0 | 13.0 | 7.143 | 535.0 | 5.0 | 2.429 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.0993770260868 | 0.4358617966732882 | 0.23948929335671518 | 17.937389324631475 | 0.1676391525666493 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-18 | 1889.0 | 7.0 | 8.286 | 537.0 | 2.0 | 2.0 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.33407183968011 | 0.23469481359330902 | 0.2778116036334512 | 18.004444985658136 | 6.705566102665972e-2 | 6.705566102665972e-2 |
YEM | Asia | Yemen | 2020-08-19 | 1892.0 | 3.0 | 7.286 | 539.0 | 2.0 | 1.571 | 0.85 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.43465533122009 | 0.10058349153998958 | 0.24428377312012134 | 18.071500646684793 | 6.705566102665972e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-08-20 | 1899.0 | 7.0 | 7.429 | 541.0 | 2.0 | 1.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.6693501448134 | 0.23469481359330902 | 0.24907825288352753 | 18.138556307711458 | 6.705566102665972e-2 | 6.226118126325355e-2 |
YEM | Asia | Yemen | 2020-08-21 | 1906.0 | 7.0 | 6.857 | 542.0 | 1.0 | 2.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.904044958406715 | 0.23469481359330902 | 0.22990033382990288 | 18.172084138224783 | 3.352783051332986e-2 | 6.705566102665972e-2 |
YEM | Asia | Yemen | 2020-08-22 | 1907.0 | 1.0 | 7.0 | 546.0 | 4.0 | 2.571 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 63.93757278892005 | 3.352783051332986e-2 | 0.23469481359330902 | 18.306195460278104 | 0.13411132205331944 | 8.620005224977108e-2 |
YEM | Asia | Yemen | 2020-08-23 | 1911.0 | 4.0 | 6.0 | 553.0 | 7.0 | 3.286 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.07168411097337 | 0.13411132205331944 | 0.20116698307997916 | 18.540890273871412 | 0.23469481359330902 | 0.11017245106680193 |
YEM | Asia | Yemen | 2020-08-24 | 1916.0 | 5.0 | 4.857 | 555.0 | 2.0 | 2.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.23932326354 | 0.1676391525666493 | 0.16284467280324313 | 18.607945934898073 | 6.705566102665972e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-25 | 1924.0 | 8.0 | 5.0 | 557.0 | 2.0 | 2.857 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.50754590764666 | 0.2682226441066389 | 0.1676391525666493 | 18.675001595924734 | 6.705566102665972e-2 | 9.578901177658342e-2 |
YEM | Asia | Yemen | 2020-08-26 | 1930.0 | 6.0 | 5.429 | 560.0 | 3.0 | 3.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.70871289072663 | 0.20116698307997916 | 0.18202259185686784 | 18.775585087464723 | 0.10058349153998958 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-27 | 1933.0 | 3.0 | 4.857 | 562.0 | 2.0 | 3.0 | 0.84 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 64.80929638226662 | 0.10058349153998958 | 0.16284467280324313 | 18.84264074849138 | 6.705566102665972e-2 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-28 | 1943.0 | 10.0 | 5.286 | 563.0 | 1.0 | 3.0 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.14457468739992 | 0.3352783051332986 | 0.17722811209346162 | 18.876168579004712 | 3.352783051332986e-2 | 0.10058349153998958 |
YEM | Asia | Yemen | 2020-08-29 | 1946.0 | 3.0 | 5.571 | 563.0 | 0.0 | 2.429 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.2451581789399 | 0.10058349153998958 | 0.18678354378976064 | 18.876168579004712 | 0.0 | 8.143910031687823e-2 |
YEM | Asia | Yemen | 2020-08-30 | 1953.0 | 7.0 | 6.0 | 564.0 | 1.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.47985299253321 | 0.23469481359330902 | 0.20116698307997916 | 18.90969640951804 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-08-31 | 1958.0 | 5.0 | 6.0 | 566.0 | 2.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.64749214509986 | 0.1676391525666493 | 0.20116698307997916 | 18.976752070544702 | 6.705566102665972e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-01 | 1962.0 | 4.0 | 5.429 | 570.0 | 4.0 | 1.857 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 65.78160346715319 | 0.13411132205331944 | 0.18202259185686784 | 19.110863392598024 | 0.13411132205331944 | 6.226118126325355e-2 |
YEM | Asia | Yemen | 2020-09-02 | 1976.0 | 14.0 | 6.571 | 571.0 | 1.0 | 1.571 | 0.83 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.2509930943398 | 0.46938962718661803 | 0.22031137430309053 | 19.14439122311135 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-03 | 1979.0 | 3.0 | 6.571 | 571.0 | 0.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.3515765858798 | 0.10058349153998958 | 0.22031137430309053 | 19.14439122311135 | 0.0 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-04 | 1983.0 | 4.0 | 5.714 | 572.0 | 1.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.48568790793311 | 0.13411132205331944 | 0.19157802355316683 | 19.17791905362468 | 3.352783051332986e-2 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-05 | 1983.0 | 0.0 | 5.286 | 572.0 | 0.0 | 1.286 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.48568790793311 | 0.0 | 0.17722811209346162 | 19.17791905362468 | 0.0 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-06 | 1987.0 | 4.0 | 4.857 | 572.0 | 0.0 | 1.143 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.61979922998644 | 0.13411132205331944 | 0.16284467280324313 | 19.17791905362468 | 0.0 | 3.832231027673603e-2 |
YEM | Asia | Yemen | 2020-09-07 | 1989.0 | 2.0 | 4.429 | 573.0 | 1.0 | 1.0 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.68685489101308 | 6.705566102665972e-2 | 0.14849476134353798 | 19.21144688413801 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-08 | 1994.0 | 5.0 | 4.571 | 576.0 | 3.0 | 0.857 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 66.85449404357975 | 0.1676391525666493 | 0.15325571327643078 | 19.312030375678 | 0.10058349153998958 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-09-09 | 1999.0 | 5.0 | 3.286 | 576.0 | 0.0 | 0.714 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.0221331961464 | 0.1676391525666493 | 0.11017245106680193 | 19.312030375678 | 0.0 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-09-10 | 2003.0 | 4.0 | 3.429 | 580.0 | 4.0 | 1.286 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.15624451819971 | 0.13411132205331944 | 0.11496693083020809 | 19.44614169773132 | 0.13411132205331944 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-09-11 | 2007.0 | 4.0 | 3.429 | 582.0 | 2.0 | 1.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.29035584025303 | 0.13411132205331944 | 0.11496693083020809 | 19.513197358757978 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-12 | 2009.0 | 2.0 | 3.714 | 582.0 | 0.0 | 1.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.35741150127969 | 6.705566102665972e-2 | 0.1245223625265071 | 19.513197358757978 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-13 | 2011.0 | 2.0 | 3.429 | 583.0 | 1.0 | 1.571 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.42446716230636 | 6.705566102665972e-2 | 0.11496693083020809 | 19.54672518927131 | 3.352783051332986e-2 | 5.2672221736441205e-2 |
YEM | Asia | Yemen | 2020-09-14 | 2013.0 | 2.0 | 3.429 | 583.0 | 0.0 | 1.429 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.49152282333301 | 6.705566102665972e-2 | 0.11496693083020809 | 19.54672518927131 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-09-15 | 2016.0 | 3.0 | 3.143 | 583.0 | 0.0 | 1.0 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.592106314873 | 0.10058349153998958 | 0.10537797130339574 | 19.54672518927131 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-16 | 2019.0 | 3.0 | 2.857 | 583.0 | 0.0 | 1.0 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.69268980641299 | 0.10058349153998958 | 9.578901177658342e-2 | 19.54672518927131 | 0.0 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-09-17 | 2022.0 | 3.0 | 2.714 | 585.0 | 2.0 | 0.714 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.79327329795298 | 0.10058349153998958 | 9.099453201317724e-2 | 19.613780850297967 | 6.705566102665972e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-09-18 | 2024.0 | 2.0 | 2.429 | 585.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.86032895897964 | 6.705566102665972e-2 | 8.143910031687823e-2 | 19.613780850297967 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-19 | 2026.0 | 2.0 | 2.429 | 585.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.9273846200063 | 6.705566102665972e-2 | 8.143910031687823e-2 | 19.613780850297967 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-20 | 2026.0 | 0.0 | 2.143 | 586.0 | 1.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.9273846200063 | 0.0 | 7.185014079006588e-2 | 19.6473086808113 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-21 | 2028.0 | 2.0 | 2.143 | 586.0 | 0.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.99444028103296 | 6.705566102665972e-2 | 7.185014079006588e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-22 | 2028.0 | 0.0 | 1.714 | 586.0 | 0.0 | 0.429 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 67.99444028103296 | 0.0 | 5.746670149984738e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-23 | 2029.0 | 1.0 | 1.429 | 586.0 | 0.0 | 0.429 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 3.352783051332986e-2 | 4.791126980354837e-2 | 19.6473086808113 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-09-24 | 2029.0 | 0.0 | 1.0 | 586.0 | 0.0 | 0.143 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 0.0 | 3.352783051332986e-2 | 19.6473086808113 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-25 | 2029.0 | 0.0 | 0.714 | 587.0 | 1.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.02796811154629 | 0.0 | 2.393887098651752e-2 | 19.680836511324628 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-09-26 | 2030.0 | 1.0 | 0.571 | 587.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.06149594205962 | 3.352783051332986e-2 | 1.914439122311135e-2 | 19.680836511324628 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-09-27 | 2030.0 | 0.0 | 0.571 | 587.0 | 0.0 | 0.143 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.06149594205962 | 0.0 | 1.914439122311135e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-28 | 2031.0 | 1.0 | 0.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 31.48 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.09502377257294 | 3.352783051332986e-2 | 1.438343929021851e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-29 | 2031.0 | 0.0 | 0.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.09502377257294 | 0.0 | 1.438343929021851e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-09-30 | 2034.0 | 3.0 | 0.714 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.19560726411294 | 0.10058349153998958 | 2.393887098651752e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-01 | 2039.0 | 5.0 | 1.429 | 587.0 | 0.0 | 0.143 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.36324641667959 | 0.1676391525666493 | 4.791126980354837e-2 | 19.680836511324628 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-02 | 2040.0 | 1.0 | 1.571 | 589.0 | 2.0 | 0.286 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.39677424719292 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.74789217235129 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-03 | 2041.0 | 1.0 | 1.571 | 589.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.74789217235129 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-04 | 2041.0 | 0.0 | 1.571 | 591.0 | 2.0 | 0.571 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 0.0 | 5.2672221736441205e-2 | 19.814947833377946 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-05 | 2041.0 | 0.0 | 1.429 | 592.0 | 1.0 | 0.714 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.43030207770624 | 0.0 | 4.791126980354837e-2 | 19.84847566389128 | 3.352783051332986e-2 | 2.393887098651752e-2 |
YEM | Asia | Yemen | 2020-10-06 | 2047.0 | 6.0 | 2.286 | 593.0 | 1.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.63146906078623 | 0.20116698307997916 | 7.664462055347206e-2 | 19.882003494404607 | 3.352783051332986e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-07 | 2049.0 | 2.0 | 2.143 | 593.0 | 0.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.69852472181289 | 6.705566102665972e-2 | 7.185014079006588e-2 | 19.882003494404607 | 0.0 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-08 | 2050.0 | 1.0 | 1.571 | 593.0 | 0.0 | 0.857 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.73205255232621 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.882003494404607 | 0.0 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-09 | 2051.0 | 1.0 | 1.571 | 593.0 | 0.0 | 0.571 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.76558038283954 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.882003494404607 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-10 | 2051.0 | 0.0 | 1.429 | 595.0 | 2.0 | 0.857 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.76558038283954 | 0.0 | 4.791126980354837e-2 | 19.949059155431268 | 6.705566102665972e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-10-11 | 2052.0 | 1.0 | 1.571 | 595.0 | 0.0 | 0.571 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.79910821335287 | 3.352783051332986e-2 | 5.2672221736441205e-2 | 19.949059155431268 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-12 | 2052.0 | 0.0 | 1.571 | 596.0 | 1.0 | 0.571 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 45.37 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.79910821335287 | 0.0 | 5.2672221736441205e-2 | 19.982586985944597 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-10-13 | 2053.0 | 1.0 | 0.857 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 3.352783051332986e-2 | 2.873335074992369e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-14 | 2053.0 | 0.0 | 0.571 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 0.0 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-15 | 2053.0 | 0.0 | 0.429 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.83263604386622 | 0.0 | 1.438343929021851e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-16 | 2055.0 | 2.0 | 0.571 | 596.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.89969170489286 | 6.705566102665972e-2 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-17 | 2055.0 | 0.0 | 0.571 | 596.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.89969170489286 | 0.0 | 1.914439122311135e-2 | 19.982586985944597 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-18 | 2056.0 | 1.0 | 0.571 | 597.0 | 1.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.9332195354062 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.016114816457925 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-19 | 2056.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.9332195354062 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-20 | 2057.0 | 1.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-21 | 2057.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-22 | 2057.0 | 0.0 | 0.571 | 597.0 | 0.0 | 0.143 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 68.96674736591952 | 0.0 | 1.914439122311135e-2 | 20.016114816457925 | 0.0 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-10-23 | 2060.0 | 3.0 | 0.714 | 599.0 | 2.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.10058349153998958 | 2.393887098651752e-2 | 20.083170477484586 | 6.705566102665972e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-24 | 2060.0 | 0.0 | 0.714 | 599.0 | 0.0 | 0.429 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 2.393887098651752e-2 | 20.083170477484586 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-10-25 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-26 | 2060.0 | 0.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.74 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 40.74 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-27 | 2060.0 | 0.0 | 0.429 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.06733085745951 | 0.0 | 1.438343929021851e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-28 | 2061.0 | 1.0 | 0.571 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.10085868797285 | 3.352783051332986e-2 | 1.914439122311135e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-29 | 2062.0 | 1.0 | 0.714 | 599.0 | 0.0 | 0.286 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 29.63 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.13438651848617 | 3.352783051332986e-2 | 2.393887098651752e-2 | 20.083170477484586 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-10-30 | 2062.0 | 0.0 | 0.286 | 599.0 | 0.0 | 0.0 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.13438651848617 | 0.0 | 9.58895952681234e-3 | 20.083170477484586 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-10-31 | 2063.0 | 1.0 | 0.429 | 599.0 | 0.0 | 0.0 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 3.352783051332986e-2 | 1.438343929021851e-2 | 20.083170477484586 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-11-01 | 2063.0 | 0.0 | 0.429 | 600.0 | 1.0 | 0.143 | 0.75 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.116698307997915 | 3.352783051332986e-2 | 4.79447976340617e-3 |
YEM | Asia | Yemen | 2020-11-02 | 2063.0 | 0.0 | 0.429 | 601.0 | 1.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.150226138511247 | 3.352783051332986e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-03 | 2063.0 | 0.0 | 0.429 | 601.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 1.438343929021851e-2 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-04 | 2063.0 | 0.0 | 0.286 | 601.0 | 0.0 | 0.286 | 0.76 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 9.58895952681234e-3 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-05 | 2063.0 | 0.0 | 0.143 | 601.0 | 0.0 | 0.286 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.1679143489995 | 0.0 | 4.79447976340617e-3 | 20.150226138511247 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-06 | 2067.0 | 4.0 | 0.714 | 602.0 | 1.0 | 0.429 | 0.77 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.30202567105282 | 0.13411132205331944 | 2.393887098651752e-2 | 20.183753969024576 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-07 | 2070.0 | 3.0 | 1.0 | 602.0 | 0.0 | 0.429 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.40260916259281 | 0.10058349153998958 | 3.352783051332986e-2 | 20.183753969024576 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-08 | 2070.0 | 0.0 | 1.0 | 602.0 | 0.0 | 0.286 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.40260916259281 | 0.0 | 3.352783051332986e-2 | 20.183753969024576 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-09 | 2071.0 | 1.0 | 1.143 | 605.0 | 3.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 3.352783051332986e-2 | 3.832231027673603e-2 | 20.284337460564565 | 0.10058349153998958 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-10 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-11 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.78 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-12 | 2071.0 | 0.0 | 1.143 | 605.0 | 0.0 | 0.571 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.43613699310615 | 0.0 | 3.832231027673603e-2 | 20.284337460564565 | 0.0 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-13 | 2072.0 | 1.0 | 0.714 | 605.0 | 0.0 | 0.429 | 0.79 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 3.352783051332986e-2 | 2.393887098651752e-2 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-14 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 0.0 | 9.58895952681234e-3 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-15 | 2072.0 | 0.0 | 0.286 | 605.0 | 0.0 | 0.429 | 0.8 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.46966482361948 | 0.0 | 9.58895952681234e-3 | 20.284337460564565 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-16 | 2078.0 | 6.0 | 1.0 | 605.0 | 0.0 | 0.0 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.67083180669945 | 0.20116698307997916 | 3.352783051332986e-2 | 20.284337460564565 | 0.0 | 0.0 |
YEM | Asia | Yemen | 2020-11-17 | 2081.0 | 3.0 | 1.429 | 607.0 | 2.0 | 0.286 | 0.81 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.77141529823943 | 0.10058349153998958 | 4.791126980354837e-2 | 20.351393121591226 | 6.705566102665972e-2 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-18 | 2083.0 | 2.0 | 1.714 | 607.0 | 0.0 | 0.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.8384709592661 | 6.705566102665972e-2 | 5.746670149984738e-2 | 20.351393121591226 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-19 | 2086.0 | 3.0 | 2.143 | 608.0 | 1.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 69.93905445080608 | 0.10058349153998958 | 7.185014079006588e-2 | 20.384920952104554 | 3.352783051332986e-2 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-20 | 2090.0 | 4.0 | 2.571 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.07316577285941 | 0.13411132205331944 | 8.620005224977108e-2 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-21 | 2093.0 | 3.0 | 3.0 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.17374926439939 | 0.10058349153998958 | 0.10058349153998958 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-22 | 2099.0 | 6.0 | 3.857 | 608.0 | 0.0 | 0.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.37491624747938 | 0.20116698307997916 | 0.12931684228991328 | 20.384920952104554 | 0.0 | 1.438343929021851e-2 |
YEM | Asia | Yemen | 2020-11-23 | 2107.0 | 8.0 | 4.143 | 609.0 | 1.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.643138891586 | 0.2682226441066389 | 0.1389058018167256 | 20.418448782617887 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-24 | 2114.0 | 7.0 | 4.714 | 609.0 | 0.0 | 0.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 70.87783370517933 | 0.23469481359330902 | 0.15805019303983697 | 20.418448782617887 | 0.0 | 9.58895952681234e-3 |
YEM | Asia | Yemen | 2020-11-25 | 2124.0 | 10.0 | 5.857 | 611.0 | 2.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 71.21311201031263 | 0.3352783051332986 | 0.19637250331657302 | 20.485504443644544 | 6.705566102665972e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-26 | 2137.0 | 13.0 | 7.286 | 612.0 | 1.0 | 0.571 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 71.64897380698591 | 0.4358617966732882 | 0.24428377312012134 | 20.519032274157876 | 3.352783051332986e-2 | 1.914439122311135e-2 |
YEM | Asia | Yemen | 2020-11-27 | 2148.0 | 11.0 | 8.286 | 614.0 | 2.0 | 0.857 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.01777994263254 | 0.3688061356466285 | 0.2778116036334512 | 20.586087935184533 | 6.705566102665972e-2 | 2.873335074992369e-2 |
YEM | Asia | Yemen | 2020-11-28 | 2160.0 | 12.0 | 9.571 | 615.0 | 1.0 | 1.0 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.4201139087925 | 0.4023339661599583 | 0.3208948658430801 | 20.619615765697866 | 3.352783051332986e-2 | 3.352783051332986e-2 |
YEM | Asia | Yemen | 2020-11-29 | 2177.0 | 17.0 | 11.143 | 617.0 | 2.0 | 1.286 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 72.99008702751911 | 0.5699731187266077 | 0.37360061541003464 | 20.686671426724523 | 6.705566102665972e-2 | 4.3116790040142204e-2 |
YEM | Asia | Yemen | 2020-11-30 | 2191.0 | 14.0 | 12.0 | 619.0 | 2.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 73.45947665470572 | 0.46938962718661803 | 0.4023339661599583 | 20.753727087751184 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-01 | 2197.0 | 6.0 | 11.857 | 619.0 | 0.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 73.6606436377857 | 0.20116698307997916 | 0.3975394863965521 | 20.753727087751184 | 0.0 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-02 | 2217.0 | 20.0 | 13.286 | 621.0 | 2.0 | 1.429 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 74.3312002480523 | 0.6705566102665972 | 0.4454507562001005 | 20.820782748777845 | 6.705566102665972e-2 | 4.791126980354837e-2 |
YEM | Asia | Yemen | 2020-12-03 | 2239.0 | 22.0 | 14.571 | 624.0 | 3.0 | 1.714 | 0.82 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 24.07 | 2.9825968e7 | 53.508 | 20.3 | 2.922 | 1.583 | 1479.147 | 18.8 | 495.003 | 5.35 | 7.6 | 29.2 | 49.542 | 0.7 | 66.12 | 0.452 | 75.06881251934556 | 0.737612271293257 | 0.48853401840972943 | 20.921366240317834 | 0.10058349153998958 | 5.746670149984738e-2 |
SWE | Europe | Sweden | 2020-01-23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-01-31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-01 | 1.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 9.901705766852455e-2 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-02 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-03 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-04 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-05 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-06 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-07 | 1.0 | 0.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-08 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-09 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-11 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-12 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-13 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-14 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-15 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-16 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-17 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-19 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-20 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-21 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-22 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-23 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-24 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-25 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 9.901705766852455e-2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-26 | 2.0 | 1.0 | 0.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.1980341153370491 | 9.901705766852455e-2 | 1.415943924659901e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-27 | 3.0 | 1.0 | 0.286 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 0.2970511730055737 | 9.901705766852455e-2 | 2.831887849319802e-2 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-28 | 11.0 | 8.0 | 1.429 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.0891876343537703 | 0.7921364613481964 | 0.1414953754083216 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-02-29 | 14.0 | 3.0 | 1.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.3862388073593437 | 0.2970511730055737 | 0.1838746760904501 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-01 | 14.0 | 0.0 | 1.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 0.0 | 0.0 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.3862388073593437 | 0.0 | 0.1838746760904501 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-02 | 19.0 | 5.0 | 2.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 1.8813240957019666 | 0.4950852883426227 | 0.25457285526577667 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-03 | 32.0 | 13.0 | 4.429 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 3.1685458453927855 | 1.2872217496908194 | 0.4385465484138953 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-04 | 62.0 | 30.0 | 8.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 6.139057575448523 | 2.9705117300557364 | 0.848675201276924 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-05 | 87.0 | 25.0 | 12.0 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 8.614484017161637 | 2.4754264417131138 | 1.1882046920222948 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-06 | 146.0 | 59.0 | 19.286 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 14.456490419604584 | 5.842006402442949 | 1.9096429741951646 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-07 | 179.0 | 33.0 | 23.571 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 17.724053322665895 | 3.2675629030613105 | 2.3339310663047925 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-08 | 225.0 | 46.0 | 30.143 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | 2.962 | 0.293 | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 0.0 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 22.278837975418025 | 4.554784652752129 | 2.984671169302336 | 0.0 | 0.0 | 0.0 |
SWE | Europe | Sweden | 2020-03-09 | 326.0 | 101.0 | 43.857 | 0.0 | 0.0 | 0.0 | 1.6 | null | null | null | null | null | null | null | null | 0.0 | null | 0.0 | null | null | null | null | null | null | 11.11 | 1.009927e7 | 24.718 | 41.0 | 19.985 | 13.433 | 46949.283 | 0.5 | 133.982 | 4.79 | 18.8 | 18.9 | null | 2.22 | 82.8 | 0.933 | 32.279560799939006 | 10.000722824520981 | 4.342591098168481 | 0.0 | 0.0 | 0.0 |
"./08_DataPrediction_GP"
Download Files Periodically
This notebook allows for setup and execution of a script to periodically download files. In this case the "Our World in Data" dataset csv files which are updated daily.
Content is based on "037a_AnimalNamesStructStreamingFiles" by Raazesh Sainudiin.
To be able to later kill a .sh process, we need to make this installation
apt-get install -y psmisc
create a new directory for our files if needed
dbutils.fs.mkdirs("file:///databricks/driver/projects/group12")
res0: Boolean = true
create a shell script to periodically download the dataset (currently set to download once per day). 1. shell 2. remove the previous shell script 3. write to script: bash binaries 4. write to script: remove folder where previous downloaded files are located 5. write to script: make new directory to put downloaded files 6. write to script: while loop: 6.1) remove old downloaded csv dataset 6.2) download new csv dataset 6.3) copy the csv file to the newly created directory using the timestamp as name 7. print the contents of the shell script
rm -f projects/group12/group12downloadFiles.sh &&
echo "#!/bin/bash" >> projects/group12/group12downloadFiles.sh &&
echo "rm -rf projects/group12/logsEveryXSecs" >> projects/group12/group12downloadFiles.sh &&
echo "mkdir -p projects/group12/logsEveryXSecs" >> projects/group12/group12downloadFiles.sh &&
echo "while true; rm owid-covid-data.csv; wget https://covid.ourworldindata.org/data/owid-covid-data.csv; do echo \$( date --rfc-3339=second )\; | cp owid-covid-data.csv projects/group12/logsEveryXSecs/\$( date '+%y_%m_%d_%H_%M_%S.csv' ); sleep 216000; done" >> projects/group12/group12downloadFiles.sh &&
cat projects/group12/group12downloadFiles.sh
#!/bin/bash
rm -rf projects/group12/logsEveryXSecs
mkdir -p projects/group12/logsEveryXSecs
while true; rm owid-covid-data.csv; wget https://covid.ourworldindata.org/data/owid-covid-data.csv; do echo $( date --rfc-3339=second )\; | cp owid-covid-data.csv projects/group12/logsEveryXSecs/$( date '+%y_%m_%d_%H_%M_%S.csv' ); sleep 216000; done
make the shell script executable
chmod 744 projects/group12/group12downloadFiles.sh
execute the shell script
nohup projects/group12/group12downloadFiles.sh
look at the files
pwd
ls -al projects/group12/logsEveryXSecs
/databricks/driver
total 14244
drwxr-xr-x 2 root root 4096 Jan 7 09:05 .
drwxr-xr-x 3 root root 4096 Jan 7 09:05 ..
-rw-r--r-- 1 root root 14577033 Jan 7 09:05 21_01_07_09_05_33.csv
look at the file content
cat projects/group12/logsEveryXSecs/XXXX.csv
cat: projects/group12/logsEveryXSecs/XXXX.csv: No such file or directory
kill the .sh process
killall group12downloadFiles.sh
move downloaded files to another location to make sure we don't delete the datasets
// dbutils.fs.mkdirs("/datasets/group12/")
dbutils.fs.cp("file:///databricks/driver/projects/group12/logsEveryXSecs/","/datasets/group12/",true)
res5: Boolean = true
display(dbutils.fs.ls("/datasets/group12/"))
path | name | size |
---|---|---|
dbfs:/datasets/group12/20_12_04_08_31_44.csv | 20_12_04_08_31_44.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_08_32_40.csv | 20_12_04_08_32_40.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_10_47_08.csv | 20_12_04_10_47_08.csv | 1.4190774e7 |
dbfs:/datasets/group12/21_01_07_08_50_05.csv | 21_01_07_08_50_05.csv | 1.4577033e7 |
dbfs:/datasets/group12/21_01_07_09_05_33.csv | 21_01_07_09_05_33.csv | 1.4577033e7 |
Stream to parquet file
This notebook allows for setup and execution of the data streaming and querying into a parquet file. The idea is thereafter to perform analysis on the parquet file.
Note that this notebooks assumes one has already has downloaded several "Our World in Data" dataset csv files. This can be done by first running "DownloadFilesPeriodicallyScript" at least once.
Content is based on "038_StructuredStreamingProgGuide" by Raazesh Sainudiin.
start by copying latest downloaded csv data to data analysis folder
dbutils.fs.cp("file:///databricks/driver/projects/group12/logsEveryXSecs/","/datasets/group12/",true)
res0: Boolean = true
check that data is in the group12 folder
display(dbutils.fs.ls("/datasets/group12/"))
path | name | size |
---|---|---|
dbfs:/datasets/group12/20_12_04_08_31_44.csv | 20_12_04_08_31_44.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_08_32_40.csv | 20_12_04_08_32_40.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_10_47_08.csv | 20_12_04_10_47_08.csv | 1.4190774e7 |
dbfs:/datasets/group12/21_01_07_08_50_05.csv | 21_01_07_08_50_05.csv | 1.4577033e7 |
dbfs:/datasets/group12/21_01_07_09_05_33.csv | 21_01_07_09_05_33.csv | 1.4577033e7 |
dbfs:/datasets/group12/analysis/ | analysis/ | 0.0 |
dbfs:/datasets/group12/chkpoint/ | chkpoint/ | 0.0 |
check the schema for the csv files.
val df_csv = spark.read.format("csv").option("header", "true").option("inferSchema", "true").csv("/datasets/group12/21_01_07_09_05_33.csv")
df_csv: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 52 more fields]
df_csv.printSchema
The stream requires a user defined schema. Note that the January 2021 schema is different compared to the December 2020 schema. Below, the user defined schemas are created.
import org.apache.spark.sql.types._
val OurWorldinDataSchema2021 = new StructType()
.add("iso_code", "string")
.add("continent", "string")
.add("location", "string")
.add("date", "string")
.add("total_cases","double")
.add("new_cases","double")
.add("new_cases_smoothed","double")
.add("total_deaths","double")
.add("new_deaths","double")
.add("new_deaths_smoothed","double")
.add("total_cases_per_million","double")
.add("new_cases_per_million","double")
.add("new_cases_smoothed_per_million","double")
.add("total_deaths_per_million","double")
.add("new_deaths_per_million","double")
.add("new_deaths_smoothed_per_million","double")
.add("reproduction_rate", "double")
.add("icu_patients", "double")
.add("icu_patients_per_million", "double")
.add("hosp_patients", "double")
.add("hosp_patients_per_million", "double")
.add("weekly_icu_admissions", "double")
.add("weekly_icu_admissions_per_million", "double")
.add("weekly_hosp_admissions", "double")
.add("weekly_hosp_admissions_per_million", "double")
.add("new_tests", "double")
.add("total_tests", "double")
.add("total_tests_per_thousand", "double")
.add("new_tests_per_thousand", "double")
.add("new_tests_smoothed", "double")
.add("new_tests_smoothed_per_thousand", "double")
.add("positive_rate", "double")
.add("tests_per_case", "double")
.add("tests_units", "double")
.add("total_vaccinations", "double")
.add("new_vaccinations", "double")
.add("stringency_index","double")
.add("population","double")
.add("population_density","double")
.add("median_age", "double")
.add("aged_65_older", "double")
.add("aged_70_older", "double")
.add("gdp_per_capita","double")
.add("extreme_poverty","double")
.add("cardiovasc_death_rate","double")
.add("diabetes_prevalence","double")
.add("female_smokers", "double")
.add("male_smokers", "double")
.add("handwashing_facilities", "double")
.add("hospital_beds_per_thousand", "double")
.add("life_expectancy","double")
.add("human_development_index","double")
val OurWorldinDataSchema2020 = new StructType()
.add("iso_code", "string")
.add("continent", "string")
.add("location", "string")
.add("date", "string")
.add("total_cases","double")
.add("new_cases","double")
.add("new_cases_smoothed","double")
.add("total_deaths","double")
.add("new_deaths","double")
.add("new_deaths_smoothed","double")
.add("total_cases_per_million","double")
.add("new_cases_per_million","double")
.add("new_cases_smoothed_per_million","double")
.add("total_deaths_per_million","double")
.add("new_deaths_per_million","double")
.add("new_deaths_smoothed_per_million","double")
.add("reproduction_rate", "double")
.add("icu_patients", "double")
.add("icu_patients_per_million", "double")
.add("hosp_patients", "double")
.add("hosp_patients_per_million", "double")
.add("weekly_icu_admissions", "double")
.add("weekly_icu_admissions_per_million", "double")
.add("weekly_hosp_admissions", "double")
.add("weekly_hosp_admissions_per_million", "double")
.add("total_tests", "double")
.add("new_tests", "double")
.add("total_tests_per_thousand", "double")
.add("new_tests_per_thousand", "double")
.add("new_tests_smoothed", "double")
.add("new_tests_smoothed_per_thousand", "double")
.add("tests_per_case", "double")
.add("positive_rate", "double")
.add("tests_units", "double")
.add("stringency_index","double")
.add("population","double")
.add("population_density","double")
.add("median_age", "double")
.add("aged_65_older", "double")
.add("aged_70_older", "double")
.add("gdp_per_capita","double")
.add("extreme_poverty","double")
.add("cardiovasc_death_rate","double")
.add("diabetes_prevalence","double")
.add("female_smokers", "double")
.add("male_smokers", "double")
.add("handwashing_facilities", "double")
.add("hospital_beds_per_thousand", "double")
.add("life_expectancy","double")
.add("human_development_index","double")
Start stream
In January 2021, the schema was updated compared to the schema in December 2020. Below, one can choose which type of csv files to stream below.
Stream for 2020
import org.apache.spark.sql.types._
val OurWorldinDataStream = spark
.readStream
.schema(OurWorldinDataSchema2020)
.option("MaxFilesPerTrigger", 1)
.option("latestFirst", "true")
.format("csv")
.option("header", "true")
.load("/datasets/group12/20*.csv")
.dropDuplicates()
import org.apache.spark.sql.types._
OurWorldinDataStream: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
Stream for 2021
import org.apache.spark.sql.types._
val OurWorldinDataStream2021 = spark
.readStream
.schema(OurWorldinDataSchema2021)
.option("MaxFilesPerTrigger", 1)
.option("latestFirst", "true")
.format("csv")
.option("header", "true")
.load("/datasets/group12/21*.csv")
.dropDuplicates()
import org.apache.spark.sql.types._
OurWorldinDataStream2021: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 50 more fields]
display stream 2020
OurWorldinDataStream.isStreaming
res81: Boolean = true
display(OurWorldinDataStream)
Query to File (2020)
query that saves file into a parquet file at periodic intervalls. Analysis will thereafter be performed on the parquet file
create folders for parquet file and checkpoint data
// remove any previous folders if exists
dbutils.fs.rm("datasets/group12/chkpoint",recurse=true)
dbutils.fs.rm("datasets/group12/analysis",recurse=true)
res14: Boolean = true
dbutils.fs.mkdirs("datasets/group12/chkpoint")
res15: Boolean = true
dbutils.fs.mkdirs("/datasets/group12/analysis")
res16: Boolean = true
initialize query to store data in parquet files based on column selection
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.Trigger
val query = OurWorldinDataStream
.select($"iso_code", $"continent", $"location", $"date", $"total_cases", $"new_cases", $"new_cases_smoothed", $"total_deaths", $"new_deaths",$"new_deaths_smoothed", $"total_cases_per_million", $"new_cases_per_million", $"new_cases_smoothed_per_million", $"total_deaths_per_million", $"new_deaths_per_million", $"new_deaths_smoothed_per_million", $"reproduction_rate", $"icu_patients", $"icu_patients_per_million", $"hosp_patients", $"hosp_patients_per_million", $"weekly_icu_admissions", $"weekly_icu_admissions_per_million", $"weekly_hosp_admissions", $"weekly_hosp_admissions_per_million", $"total_tests",$"new_tests", $"total_tests_per_thousand", $"new_tests_per_thousand", $"new_tests_smoothed",$"new_tests_smoothed_per_thousand", $"tests_per_case", $"positive_rate", $"tests_units", $"stringency_index", $"population", $"population_density", $"median_age", $"aged_65_older", $"aged_70_older", $"gdp_per_capita", $"extreme_poverty", $"cardiovasc_death_rate", $"diabetes_prevalence", $"female_smokers", $"male_smokers", $"handwashing_facilities", $"hospital_beds_per_thousand", $"life_expectancy", $"human_development_index")
.writeStream
//.trigger(Trigger.ProcessingTime("20 seconds")) // debugging
.trigger(Trigger.ProcessingTime("216000 seconds")) // for each day
.option("checkpointLocation", "/datasets/group12/chkpoint")
.format("parquet")
.option("path", "/datasets/group12/analysis")
.start()
query.awaitTermination() // hit cancel to terminate
check saved parquet file contents
display(dbutils.fs.ls("/datasets/group12/analysis"))
val parquetFileDF = spark.read.parquet("dbfs:/datasets/group12/analysis/*.parquet")
parquetFileDF: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
display(parquetFileDF.describe())
summary | iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 62184 | 61867 | 62500 | 62500 | 53761 | 62377 | 61421 | 45901 | 62377 | 61421 | 53460 | 62061 | 61110 | 45613 | 62061 | 61110 | 41680 | 5582 | 5582 | 6730 | 6730 | 538 | 538 | 885 | 885 | 25647 | 25606 | 25647 | 25606 | 28408 | 28408 | 26927 | 26336 | 0 | 54546 | 62184 | 60592 | 59340 | 58383 | 59024 | 59329 | 40812 | 59902 | 60595 | 46712 | 46080 | 30696 | 54818 | 61868 | 59646 |
mean | null | null | null | null | 235416.1718904038 | 2397.8407425814003 | 2367.056380553872 | 8908.311256835363 | 55.19233050643667 | 54.80704391006325 | 3798.2407507482267 | 43.13754119334201 | 42.41964747177225 | 108.27332865630407 | 0.761575578865955 | 0.7475491572574053 | 1.049197216890596 | 1171.3697599426728 | 18.08625438910784 | 5656.88558692422 | 104.44401604754825 | 320.92 | 10.748325278810405 | 2961.1632870056505 | 81.23565310734462 | 3233707.097438297 | 37267.77532609545 | 103.08093254571695 | 1.1276385222213543 | 35891.313679245286 | 1.0969730005632223 | 0.07456953986704766 | 171.59424362089905 | null | 53.312537674623144 | 8.17052256214782E7 | 307.3537588625577 | 30.42868217054277 | 8.773048729938651 | 5.539936330984043 | 19213.552059313115 | 13.465191610310459 | 258.8075386297629 | 7.891889759881105 | 10.66726918136675 | 32.47178591579883 | 50.99304310007871 | 3.0230664197891057 | 73.0352230555375 | 0.7137129396774315 |
stddev | null | null | null | null | 2063317.939351184 | 20722.406766273503 | 20188.721091973344 | 62835.10460453239 | 420.0315418848828 | 404.7550597418351 | 7537.842859063191 | 144.63668342422923 | 115.82591210719889 | 201.80463357477137 | 3.003047037105768 | 2.17917077365699 | 0.38591731058680295 | 2792.1448587365685 | 24.026044243287902 | 13218.496002944645 | 149.63443300155708 | 596.5733008531096 | 25.857485153686934 | 6410.029575144745 | 233.24453357627317 | 1.45235647300503E7 | 144743.48405262225 | 209.81522035476976 | 2.1450449484564924 | 134865.99995119465 | 1.9561605087188363 | 0.09616514922644583 | 861.1206108534275 | null | 27.591030251926593 | 5.716608354719421E8 | 1525.663259783739 | 9.09237871864885 | 6.230404954288745 | 4.248965298848258 | 20089.06946024988 | 19.988201128228035 | 120.99438607360678 | 4.172554929946806 | 10.429062017422085 | 13.415141793587788 | 31.83056463184429 | 2.4310237026014865 | 7.529274919111957 | 0.15483301083721898 |
min | AFG | Africa | Afghanistan | 2020-01-01 | 1.0 | -10034.0 | -525.0 | 1.0 | -1918.0 | -232.143 | 0.001 | -2153.437 | -276.825 | 0.001 | -76.445 | -10.921 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | -3743.0 | 0.0 | -0.398 | 0.0 | 0.0 | 0.0 | 1.4 | null | 0.0 | 809.0 | 1.98 | 15.1 | 1.144 | 0.526 | 661.24 | 0.1 | 79.37 | 0.99 | 0.1 | 7.7 | 1.188 | 0.1 | 53.28 | 0.354 |
max | ZWE | South America | Zimbabwe | 2020-12-03 | 6.5220557E7 | 690127.0 | 600775.429 | 1506251.0 | 12825.0 | 10538.571 | 89354.818 | 8652.658 | 2648.773 | 1469.678 | 218.329 | 63.14 | 6.68 | 19396.0 | 127.183 | 100226.0 | 988.567 | 4375.407 | 190.051 | 50887.393 | 2645.194 | 1.92122147E8 | 1949384.0 | 2248.144 | 26.154 | 1703410.0 | 19.244 | 0.729 | 44258.7 | null | 100.0 | 7.794798729E9 | 19347.5 | 48.2 | 27.049 | 18.493 | 116935.6 | 77.6 | 724.417 | 30.53 | 44.0 | 78.1 | 98.999 | 13.8 | 86.75 | 0.953 |
display(parquetFileDF.orderBy($"date".desc))
parquetFileDF.count()
res5: Long = 62500
Query to File (2021)
query that saves file into a parquet file at periodic intervalls.
// remove any previous folders if exists
dbutils.fs.rm("datasets/group12/chkpoint2021",recurse=true)
dbutils.fs.rm("datasets/group12/analysis2021",recurse=true)
dbutils.fs.mkdirs("datasets/group12/chkpoint2021")
dbutils.fs.mkdirs("datasets/group12/analysis2021")
res18: Boolean = true
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.Trigger
val query = OurWorldinDataStream2021
.select($"iso_code", $"continent", $"location", $"date", $"total_cases", $"new_cases", $"new_cases_smoothed", $"total_deaths", $"new_deaths",$"new_deaths_smoothed", $"total_cases_per_million", $"new_cases_per_million", $"new_cases_smoothed_per_million", $"total_deaths_per_million", $"new_deaths_per_million", $"new_deaths_smoothed_per_million", $"reproduction_rate", $"icu_patients", $"icu_patients_per_million", $"hosp_patients", $"hosp_patients_per_million", $"weekly_icu_admissions", $"weekly_icu_admissions_per_million", $"weekly_hosp_admissions", $"weekly_hosp_admissions_per_million", $"total_tests",$"new_tests", $"total_tests_per_thousand", $"new_tests_per_thousand", $"new_tests_smoothed",$"new_tests_smoothed_per_thousand", $"tests_per_case", $"positive_rate", $"tests_units", $"stringency_index", $"population", $"population_density", $"median_age", $"aged_65_older", $"aged_70_older", $"gdp_per_capita", $"extreme_poverty", $"cardiovasc_death_rate", $"diabetes_prevalence", $"female_smokers", $"male_smokers", $"handwashing_facilities", $"hospital_beds_per_thousand", $"life_expectancy", $"human_development_index")
.writeStream
//.trigger(Trigger.ProcessingTime("20 seconds")) // debugging
.trigger(Trigger.ProcessingTime("216000 seconds")) // each day
.option("checkpointLocation", "/datasets/group12/chkpoint2021")
.format("parquet")
.option("path", "/datasets/group12/analysis2021")
.start()
query.awaitTermination() // hit cancel to terminate
val parquetFile2021DF = spark.read.parquet("dbfs:/datasets/group12/analysis2021/*.parquet")
parquetFile2021DF: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
display(parquetFile2021DF.describe())
summary | iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 58196 | 57845 | 58531 | 58531 | 58008 | 58001 | 57046 | 49657 | 49656 | 57046 | 57673 | 57666 | 56716 | 49335 | 49334 | 56716 | 44995 | 6086 | 6086 | 6845 | 6845 | 544 | 544 | 878 | 878 | 27006 | 27145 | 27006 | 27145 | 30478 | 30478 | 28331 | 28797 | 0 | 241 | 278 | 52358 | 58196 | 56964 | 55692 | 55044 | 55376 | 55710 | 38159 | 56294 | 56942 | 44455 | 43846 | 28176 | 51737 |
mean | null | null | null | null | 280856.96293614677 | 2977.974862502371 | 2957.9528833748072 | 9440.825059910989 | 75.87175769292735 | 64.76055386880755 | 4803.329924592101 | 55.43429124614151 | 54.92539389237602 | 123.92782108036903 | 1.1725306887744764 | 0.9930127300938001 | 1.0397301922435842 | 924.7643772592836 | 17.942194544857045 | 4767.396055514974 | 112.35477647918188 | 389.18459375 | 23.096417279411764 | 2770.236054669703 | 90.94211161731207 | 3296570.453047471 | 33334.96798673789 | 113.1671816263053 | 1.1168154724627004 | 32438.389395629634 | 1.0890064636787196 | 166.36620662878127 | 0.08254411917908085 | null | 0.9067634854771786 | 849.6284532374101 | 59.32707265365355 | 9.113860612012853E7 | 323.8082390457141 | 30.631115779645334 | 8.842210231814642 | 5.6059546915631415 | 19206.748390809662 | 13.14487276920222 | 256.0564316090542 | 7.763601383864184 | 10.57440184456196 | 32.64338559959862 | 51.16526313174358 | 3.042046311150612 |
stddev | null | null | null | null | 2748559.5139726754 | 26447.176041635634 | 25947.18346899017 | 74852.02463395565 | 554.179232738698 | 496.3241880037069 | 9770.196467368594 | 159.8367692227782 | 130.23859384700643 | 231.3831543436838 | 3.814136613643414 | 2.592627124113058 | 0.37314466501106797 | 2607.447792980141 | 23.096588581017723 | 13142.595210484165 | 162.19963589630862 | 1062.8669629409615 | 84.43280553001314 | 6258.389649510214 | 237.96388901304604 | 1.5192379103534836E7 | 135667.97569510888 | 232.08417747765577 | 2.101753078690164 | 126446.58519497044 | 1.9266264256088346 | 842.7776724543986 | 0.09966680167946733 | null | 2.447811842168661 | 2276.8853139301373 | 22.403193236864983 | 6.204846769231012E8 | 1577.4914969226447 | 9.117030300574706 | 6.256325795927324 | 4.27334121579429 | 19680.321466247937 | 19.8684806478708 | 117.99197986122954 | 3.878859778205247 | 10.419107338482048 | 13.45549336530331 | 31.775955000809844 | 2.473749904640983 |
min | AFG | Africa | Afghanistan | 2020-01-01 | 1.0 | -46076.0 | -1121.714 | 1.0 | -1918.0 | -232.143 | 0.001 | -2153.437 | -276.825 | 0.001 | -76.445 | -10.921 | -0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | -47510.0 | 0.0 | -0.786 | 0.0 | 0.0 | 1.6 | 0.0 | null | 0.0 | 1.57 | 0.0 | 809.0 | 1.98 | 15.1 | 1.144 | 0.526 | 661.24 | 0.1 | 79.37 | 0.99 | 0.1 | 7.7 | 1.188 | 0.1 |
max | ZWE | South America | Zimbabwe | 2021-01-06 | 8.718654E7 | 780613.0 | 646630.286 | 1883761.0 | 15525.0 | 11670.429 | 108043.746 | 8652.658 | 2648.773 | 1826.861 | 218.329 | 63.14 | 6.74 | 23707.0 | 127.183 | 132476.0 | 922.018 | 10301.189 | 888.829 | 50887.393 | 2645.194 | 2.4798603E8 | 2133928.0 | 2705.599 | 28.716 | 1840248.0 | 23.701 | 44258.7 | 0.636 | null | 17.14 | 14497.77 | 100.0 | 7.794798729E9 | 19347.5 | 48.2 | 27.049 | 18.493 | 116935.6 | 77.6 | 724.417 | 30.53 | 44.0 | 78.1 | 98.999 | 13.8 |
display(dbutils.fs.ls("/datasets/group12/"))
path | name | size |
---|---|---|
dbfs:/datasets/group12/20_12_04_08_31_44.csv | 20_12_04_08_31_44.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_08_32_40.csv | 20_12_04_08_32_40.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_10_47_08.csv | 20_12_04_10_47_08.csv | 1.4190774e7 |
dbfs:/datasets/group12/21_01_07_08_50_05.csv | 21_01_07_08_50_05.csv | 1.4577033e7 |
dbfs:/datasets/group12/21_01_07_09_05_33.csv | 21_01_07_09_05_33.csv | 1.4577033e7 |
dbfs:/datasets/group12/analysis/ | analysis/ | 0.0 |
dbfs:/datasets/group12/chkpoint/ | chkpoint/ | 0.0 |
val df = spark.read.parquet("dbfs:/datasets/group12/analysis/*.parquet")
display(df)
df.count()
res10: Long = 60544
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
// filter unknow and HK data
val df_filteredLocation = df.filter($"iso_code"=!="HKG").filter($"iso_code".isNotNull)
// fill missing continent value for World data
val df_fillContinentNull = df_filteredLocation.na.fill("World",Array("continent")).cache
df_filteredLocation.unpersist()
df_filteredLocation: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
df_fillContinentNull: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
res4: df_filteredLocation.type = [iso_code: string, continent: string ... 48 more fields]
// filter date before 2020-01-23
val df_filtered_date = df_fillContinentNull.filter($"date">"2020-01-22").cache
df_fillContinentNull.unpersist()
df_filtered_date: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
res6: df_fillContinentNull.type = [iso_code: string, continent: string ... 48 more fields]
// fill missing for new_cases_smoothed and new_deaths_smoothed
val df_fillNullForSmooth = df_filtered_date.na.fill(0,Array("new_cases_smoothed"))
.na.fill(0,Array("new_deaths_smoothed"))
.cache
df_filtered_date.unpersist()
// fill missing for total_cases
val df_fillNullForTotalCases = df_fillNullForSmooth.na.fill(0, Array("total_cases")).cache
df_fillNullForSmooth.unpersist()
// correct total_deaths, new_deaths, new_deaths_smoothed
val df_fillNullForTotalDeathsSpecial = df_fillNullForTotalCases.withColumn("total_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("total_deaths")))
.withColumn("new_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths")))
.withColumn("new_deaths_smoothed_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths_smoothed")))
.cache
df_fillNullForTotalCases.unpersist()
val df_cleaned = df_fillNullForTotalDeathsSpecial
.drop("new_deaths", "total_deaths", "new_deaths_smoothed") // drop old column to rename
.withColumnRenamed("new_deaths_correct","new_deaths")
.withColumnRenamed("total_deaths_correct","total_deaths")
.withColumnRenamed("new_deaths_smoothed_correct","new_deaths_smoothed")
.na.fill(0, Array("total_deaths"))
.select(df.columns.head, df.columns.tail: _*)
.cache
df_fillNullForTotalDeathsSpecial.unpersist()
display(df_cleaned)
3. Select invariant (during pandemic) features for clustering and filter out countries that have missing invariant features
Invariant feature list: - population - populationdensity - medianage - aged65older - aged70older - gdppercapita - cardiovascdeathrate - diabetesprevalence - femalesmokers - malesmokers - hospitalbedsperthousand - lifeexpectancy - humandevelopment_index
// select invariant features
val df_invariantFeatures = df_cleaned.select($"iso_code",$"location", $"population",$"population_density",
$"median_age", $"aged_65_older",
$"aged_70_older",$"gdp_per_capita",
$"cardiovasc_death_rate",$"diabetes_prevalence",
$"female_smokers",$"male_smokers",$"hospital_beds_per_thousand",
$"life_expectancy",$"human_development_index").cache
// Extract valid distrinct features RDD
val valid_distinct_features = df_invariantFeatures.distinct()
.filter($"population".isNotNull && $"population_density".isNotNull && $"median_age".isNotNull &&
$"aged_65_older".isNotNull && $"aged_70_older".isNotNull && $"gdp_per_capita".isNotNull &&
$"cardiovasc_death_rate".isNotNull && $"diabetes_prevalence".isNotNull && $"female_smokers".isNotNull &&
$"male_smokers".isNotNull && $"hospital_beds_per_thousand".isNotNull && $"life_expectancy".isNotNull &&
$"human_development_index".isNotNull)
// filter out NULL feature countries
val df_cleaned_feature = df_cleaned.filter($"location".isin(valid_distinct_features.select($"location").rdd.map(r => r(0)).collect().toSeq: _*)).cache
df_cleaned.unpersist()
display(df_cleaned_feature)
4. Imputing missing data for
- totalcasesper_million
- newcasesper_million
- newcasessmoothedpermillion
- totaldeathsper_million
- newdeathsper_million
- newdeathssmoothedpermillion
val df_cleaned_feature_permillion = df_cleaned_feature.withColumn("total_cases_per_million_correct", df_cleaned_feature("total_cases")/df_cleaned_feature("population")*1000000)
.withColumn("new_cases_per_million_correct", df_cleaned_feature("new_cases")/df_cleaned_feature("population")*1000000)
.withColumn("new_cases_smoothed_per_million_correct", df_cleaned_feature("new_cases_smoothed")/df_cleaned_feature("population")*1000000)
.withColumn("total_deaths_per_million_correct", df_cleaned_feature("total_deaths")/df_cleaned_feature("population")*1000000)
.withColumn("new_deaths_per_million_correct", df_cleaned_feature("new_deaths")/df_cleaned_feature("population")*1000000)
.withColumn("new_deaths_smoothed_per_million_correct", df_cleaned_feature("new_deaths_smoothed")/df_cleaned_feature("population")*1000000)
.drop("total_cases_per_million", "new_cases_per_million", "new_cases_smoothed_per_million",
"total_deaths_per_million", "new_deaths_per_million", "new_deaths_smoothed_per_million") // drop old column to rename
.withColumnRenamed("total_cases_per_million_correct","total_cases_per_million")
.withColumnRenamed("new_cases_per_million_correct","new_cases_per_million")
.withColumnRenamed("new_cases_smoothed_per_million_correct","new_cases_smoothed_per_million")
.withColumnRenamed("total_deaths_per_million_correct","total_deaths_per_million")
.withColumnRenamed("new_deaths_per_million_correct","new_deaths_per_million")
.withColumnRenamed("new_deaths_smoothed_per_million_correct","new_deaths_smoothed_per_million")
df_cleaned_feature_permillion: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
5. Impute time series data of
- reproduction_rate
- total_tests
- stringency_index
- totaltestsper_thousand
val df_cleaned_time_series = df_cleaned_feature_permillion
.withColumn("reproduction_rate", last("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("reproduction_rate", first("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("reproduction_rate"))
.withColumn("stringency_index", last("stringency_index", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.na.fill(0, Array("stringency_index"))
.withColumn("total_tests", last("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("total_tests", first("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("total_tests"))
.withColumn("total_tests_per_thousand", col("total_tests")/col("population")*1000)
.cache
df_cleaned_feature_permillion.unpersist()
display(df_cleaned_time_series)
display(dbutils.fs.ls("/datasets/group12/"))
path | name | size |
---|---|---|
dbfs:/datasets/group12/20_12_04_08_31_44.csv | 20_12_04_08_31_44.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_08_32_40.csv | 20_12_04_08_32_40.csv | 1.4181338e7 |
dbfs:/datasets/group12/20_12_04_10_47_08.csv | 20_12_04_10_47_08.csv | 1.4190774e7 |
dbfs:/datasets/group12/21_01_07_08_50_05.csv | 21_01_07_08_50_05.csv | 1.4577033e7 |
dbfs:/datasets/group12/21_01_07_09_05_33.csv | 21_01_07_09_05_33.csv | 1.4577033e7 |
dbfs:/datasets/group12/analysis/ | analysis/ | 0.0 |
dbfs:/datasets/group12/chkpoint/ | chkpoint/ | 0.0 |
Load parquet file
val df = spark.read.parquet("dbfs:/datasets/group12/analysis/*.parquet")
display(df)
Load csv file
-> %scala //if want to load csv
val filelocation = "/datasets/group12/201204104708.csv" val file_type = "csv"
// CSV options val inferschema = "true" val firstrowisheader = "true" val delimiter = ","
// The applied options are for CSV files. For other file types, these will be ignored. val df = spark.read.format(filetype) .option("inferSchema", inferschema) .option("header", firstrowisheader) .option("sep", delimiter) .load(filelocation)
display(df)
Number of data
df.count()
res19: Long = 60544
Missing Features in data due to multiple web resource
import org.apache.spark.sql.functions._
for (c <- df.columns) {
println(c + ": " + df.filter(col(c).isNull).count())
}
Here shows HK does not have meaningful value and there is one unknown international location in data.
display(df.filter($"location"==="Hong Kong" || $"iso_code".isNull)) //HK data iteself is not complete for all dates, and all available data is null! HAVE TO FILTER IT OUT COMPLETELY
190 valid countries data to continue
val df_filteredLocation = df.filter($"iso_code"=!="HKG").filter($"iso_code".isNotNull)
display(df_filteredLocation.select($"location").distinct()) // 190 valid countries
Fill missing continent value for World aggregate data NOTE: it will be filled as "World"
display(df_filteredLocation.where($"continent".isNull))
val df_fillContinentNull = df_filteredLocation.na.fill("World",Array("continent"))
display(df_fillContinentNull)
df_fillContinentNull.count()
res27: Long = 60158
import org.apache.spark.sql.functions._
for (c <- df_fillContinentNull.columns) {
println(c + ": " + df_fillContinentNull.filter(col(c).isNull).count())
}
display(df_fillContinentNull.select($"date",$"iso_code").groupBy($"iso_code").count()) // some country starts logging data earlier
val df_filtered_date = df_fillContinentNull.filter($"date">"2020-01-22")
df_filtered_date: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, continent: string ... 48 more fields]
display(df_filtered_date.select($"date",$"iso_code").groupBy($"iso_code").count()) // all countries have 316 days logging
display(df_filtered_date.select($"date",$"iso_code", $"total_cases", $"total_deaths", $"new_cases", $"new_deaths", $"new_cases_smoothed", $"new_deaths_smoothed").filter($"new_cases_smoothed".isNull || $"new_deaths_smoothed".isNull))
All missing data of newcasessmoothed and newdeathssmoothed from early, so just fill with 0
display(df_filtered_date.select($"date",$"iso_code", $"total_cases", $"total_deaths", $"new_cases", $"new_deaths", $"new_cases_smoothed", $"new_deaths_smoothed")
.filter($"new_cases_smoothed".isNull || $"new_deaths_smoothed".isNull).select($"date").distinct())
date |
---|
2020-01-23 |
2020-01-27 |
2020-01-24 |
2020-01-26 |
2020-01-25 |
val df_fillNullForSmooth = df_filtered_date.na.fill(0,Array("new_cases_smoothed"))
.na.fill(0,Array("new_deaths_smoothed"))
display(df_fillNullForSmooth)
Fill totaldeaths and totalcases null value
Strictly, when newcases is always 0, totalcases could be imputed as 0. The same apply to total_deaths
val df_NULL_total_cases = df_fillNullForSmooth.select($"date",$"iso_code", $"total_cases", $"total_deaths", $"new_cases", $"new_deaths", $"new_cases_smoothed", $"new_deaths_smoothed")
.filter($"total_cases".isNull)
display(df_NULL_total_cases.filter($"new_cases"===0).groupBy("iso_code").count())
When totalcase is Null, all previous newcases is always 0.
df_NULL_total_cases.filter($"total_cases".isNull).groupBy("iso_code").count().except(df_NULL_total_cases.filter($"new_cases"===0).groupBy("iso_code").count()).show() // When total_case is Null, all new_cases is always 0
+--------+-----+
|iso_code|count|
+--------+-----+
+--------+-----+
val df_fillNullForTotalCases = df_fillNullForSmooth.na.fill(0, Array("total_cases"))
display(df_fillNullForTotalCases)
val df_NULL_total_death = df_fillNullForTotalCases.select($"date",$"iso_code", $"total_cases", $"total_deaths", $"new_cases", $"new_deaths", $"new_cases_smoothed", $"new_deaths_smoothed")
.filter($"total_deaths".isNull)
display(df_NULL_total_death.filter($"new_deaths"===0).groupBy("iso_code").count().sort())
If totaldeaths is Null when all newdeaths is always 0, then we could simply assign 0 for NULL, otherwise need to investigate more.
Three countries (ISL, PNG, SVK) have abnormal correction on new_cases data.
val abnormal_countries = df_NULL_total_death.filter($"total_deaths".isNull).groupBy("iso_code").count().except(df_NULL_total_death.filter($"new_deaths"===0).groupBy("iso_code").count())
abnormal_countries.show()
df_NULL_total_death.filter($"new_deaths"===0).groupBy("iso_code").count().except(df_NULL_total_death.filter($"total_deaths".isNull).groupBy("iso_code").count()).show()
+--------+-----+
|iso_code|count|
+--------+-----+
| PNG| 186|
| SVK| 65|
| ISL| 54|
+--------+-----+
+--------+-----+
|iso_code|count|
+--------+-----+
| PNG| 185|
| SVK| 64|
| ISL| 52|
+--------+-----+
abnormal_countries: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [iso_code: string, count: bigint]
show abnormal death correction
display(df_fillNullForSmooth.filter($"iso_code"==="ISL").sort("date").filter($"date">"2020-03-13" && $"date"<"2020-03-22")) // death data correction between 2020-03-14 and 2020-03-21, total_deaths -> all 0, new_deaths -> all 0, new_deaths_smoothed -> all 0
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ISL | Europe | Iceland | 2020-03-14 | 156.0 | 22.0 | 15.143 | null | 0.0 | 0.0 | 457.143 | 64.469 | 44.375 | null | 0.0 | 0.0 | 1.62 | 1.0 | 2.93 | 3.0 | 8.791 | null | null | null | null | 1827.0 | 323.0 | 5.354 | 0.947 | 198.0 | 0.58 | 7.6e-2 | 13.1 | null | 16.67 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-15 | 171.0 | 15.0 | 17.286 | 5.0 | 5.0 | 0.714 | 501.099 | 43.956 | 50.654 | 14.652 | 14.652 | 2.093 | 1.61 | 2.0 | 5.861 | 3.0 | 8.791 | null | null | null | null | 2902.0 | 1075.0 | 8.504 | 3.15 | 346.0 | 1.014 | 5.0e-2 | 20.0 | null | 25.0 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-16 | 180.0 | 9.0 | 17.429 | null | -5.0 | 0.0 | 527.473 | 26.374 | 51.073 | null | -14.652 | 0.0 | 1.63 | 2.0 | 5.861 | 4.0 | 11.722 | null | null | null | null | 4609.0 | 1707.0 | 13.506 | 5.002 | 576.0 | 1.688 | 3.0e-2 | 33.0 | null | 50.93 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-17 | 220.0 | 40.0 | 21.571 | 1.0 | 1.0 | 0.143 | 644.689 | 117.216 | 63.213 | 2.93 | 2.93 | 0.419 | 1.7 | 2.0 | 5.861 | 5.0 | 14.652 | null | null | null | null | 6009.0 | 1400.0 | 17.609 | 4.103 | 752.0 | 2.204 | 2.9e-2 | 34.9 | null | 50.93 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-18 | 250.0 | 30.0 | 23.571 | 1.0 | 0.0 | 0.143 | 732.601 | 87.912 | 69.074 | 2.93 | 0.0 | 0.419 | 1.73 | 0.0 | 0.0 | 6.0 | 17.582 | null | null | null | null | 7837.0 | 1828.0 | 22.966 | 5.357 | 992.0 | 2.907 | 2.4e-2 | 42.1 | null | 50.93 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-19 | 330.0 | 80.0 | 32.429 | 1.0 | 0.0 | 0.143 | 967.033 | 234.432 | 95.029 | 2.93 | 0.0 | 0.419 | 1.78 | 1.0 | 2.93 | 6.0 | 17.582 | null | null | null | null | 9148.0 | 1311.0 | 26.807 | 3.842 | 1143.0 | 3.349 | 2.8e-2 | 35.2 | null | 50.93 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-20 | 409.0 | 79.0 | 39.286 | null | -1.0 | 0.0 | 1198.535 | 231.502 | 115.123 | null | -2.93 | 0.0 | 1.75 | 1.0 | 2.93 | 10.0 | 29.304 | null | null | null | null | 9727.0 | 579.0 | 28.504 | 1.697 | 1175.0 | 3.443 | 3.3e-2 | 29.9 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
ISL | Europe | Iceland | 2020-03-21 | 473.0 | 64.0 | 45.286 | 1.0 | 1.0 | 0.143 | 1386.081 | 187.546 | 132.705 | 2.93 | 2.93 | 0.419 | 1.68 | 1.0 | 2.93 | 12.0 | 35.165 | null | null | null | null | 10077.0 | 350.0 | 29.53 | 1.026 | 1179.0 | 3.455 | 3.8e-2 | 26.0 | null | 53.7 | 341250.0 | 3.404 | 37.3 | 14.431 | 9.207 | 46482.958 | 0.2 | 117.992 | 5.31 | 14.3 | 15.2 | null | 2.91 | 82.99 | 0.935 |
display(df_fillNullForSmooth.filter($"iso_code"==="PNG").sort("date").filter($"date">"2020-07-19" && $"date"<"2020-07-24" )) // death data correction between 2020-07-20 and 2020-07-22, total_deaths -> all 0, new_deaths -> all 0, new_deaths_smoothed -> all 0
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PNG | Oceania | Papua New Guinea | 2020-07-20 | 19.0 | 3.0 | 1.143 | 1.0 | 1.0 | 0.143 | 2.124 | 0.335 | 0.128 | 0.112 | 0.112 | 1.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-07-21 | 27.0 | 8.0 | 2.286 | 1.0 | 0.0 | 0.143 | 3.018 | 0.894 | 0.255 | 0.112 | 0.0 | 1.6e-2 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-07-22 | 30.0 | 3.0 | 2.714 | null | -1.0 | 0.0 | 3.353 | 0.335 | 0.303 | null | -0.112 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
PNG | Oceania | Papua New Guinea | 2020-07-23 | 31.0 | 1.0 | 2.857 | null | 0.0 | 0.0 | 3.465 | 0.112 | 0.319 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | 45.37 | 8947027.0 | 18.22 | 22.6 | 3.808 | 2.142 | 3823.194 | null | 561.494 | 17.65 | 23.5 | 48.8 | null | null | 64.5 | 0.544 |
display(df_fillNullForSmooth.filter($"iso_code"==="SVK").sort("date").filter($"date">"2020-03-16" && $"date"<"2020-03-23")) // death data correction between 2020-03-18 and 2020-03-22, total_deaths -> all 0, new_deaths -> all 0, new_deaths_smoothed -> all 0
iso_code | continent | location | date | total_cases | new_cases | new_cases_smoothed | total_deaths | new_deaths | new_deaths_smoothed | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | total_deaths_per_million | new_deaths_per_million | new_deaths_smoothed_per_million | reproduction_rate | icu_patients | icu_patients_per_million | hosp_patients | hosp_patients_per_million | weekly_icu_admissions | weekly_icu_admissions_per_million | weekly_hosp_admissions | weekly_hosp_admissions_per_million | total_tests | new_tests | total_tests_per_thousand | new_tests_per_thousand | new_tests_smoothed | new_tests_smoothed_per_thousand | tests_per_case | positive_rate | tests_units | stringency_index | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | extreme_poverty | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | handwashing_facilities | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVK | Europe | Slovakia | 2020-03-17 | 72.0 | 9.0 | 9.286 | null | 0.0 | 0.0 | 13.188 | 1.648 | 1.701 | null | 0.0 | 0.0 | null | null | null | null | null | null | null | null | null | 1913.0 | 318.0 | 0.35 | 5.8e-2 | 173.0 | 3.2e-2 | 5.4e-2 | 18.6 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-03-18 | 105.0 | 33.0 | 13.571 | 1.0 | 1.0 | 0.143 | 19.232 | 6.044 | 2.486 | 0.183 | 0.183 | 2.6e-2 | null | null | null | null | null | null | null | null | null | 2138.0 | 225.0 | 0.392 | 4.1e-2 | 192.0 | 3.5e-2 | 7.1e-2 | 14.1 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-03-19 | 123.0 | 18.0 | 15.286 | 1.0 | 0.0 | 0.143 | 22.529 | 3.297 | 2.8 | 0.183 | 0.0 | 2.6e-2 | 1.19 | null | null | null | null | null | null | null | null | 2439.0 | 301.0 | 0.447 | 5.5e-2 | 221.0 | 4.0e-2 | 6.9e-2 | 14.5 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-03-20 | 137.0 | 14.0 | 15.0 | 1.0 | 0.0 | 0.143 | 25.093 | 2.564 | 2.747 | 0.183 | 0.0 | 2.6e-2 | 1.19 | null | null | null | null | null | null | null | null | 2807.0 | 368.0 | 0.514 | 6.7e-2 | 265.0 | 4.9e-2 | 5.7e-2 | 17.7 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-03-21 | 178.0 | 41.0 | 19.143 | 1.0 | 0.0 | 0.143 | 32.603 | 7.51 | 3.506 | 0.183 | 0.0 | 2.6e-2 | 1.19 | null | null | null | null | null | null | null | null | 3247.0 | 440.0 | 0.595 | 8.1e-2 | 300.0 | 5.5e-2 | 6.4e-2 | 15.7 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
SVK | Europe | Slovakia | 2020-03-22 | 185.0 | 7.0 | 18.714 | null | -1.0 | 0.0 | 33.885 | 1.282 | 3.428 | null | -0.183 | 0.0 | 1.18 | null | null | null | null | null | null | null | null | 3489.0 | 242.0 | 0.639 | 4.4e-2 | 293.0 | 5.4e-2 | 6.4e-2 | 15.7 | null | 75.0 | 5459643.0 | 113.128 | 41.2 | 15.07 | 9.167 | 30155.152 | 0.7 | 287.959 | 7.29 | 23.1 | 37.7 | null | 5.82 | 77.54 | 0.855 |
Correct new_deaths correction back to 0
val df_fillNullForTotalDeathsSpecial = df_fillNullForTotalCases.withColumn("total_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("total_deaths")))
.withColumn("new_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths")))
.withColumn("new_deaths_smoothed_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths_smoothed")))
df_fillNullForTotalDeathsSpecial: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 51 more fields]
Expect to see an empty table, so correction is right
val df_NULL_total_death_ = df_fillNullForTotalDeathsSpecial.select($"date",$"iso_code", $"total_cases", $"total_deaths_correct", $"new_cases", $"new_deaths_correct", $"new_cases_smoothed", $"new_deaths_smoothed_correct")
.filter($"total_deaths_correct".isNull)
df_NULL_total_death_.filter($"total_deaths_correct".isNull).groupBy("iso_code").count().except(df_NULL_total_death_.filter($"new_deaths_correct"===0).groupBy("iso_code").count()).show()
+--------+-----+
|iso_code|count|
+--------+-----+
+--------+-----+
df_NULL_total_death_: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [date: string, iso_code: string ... 6 more fields]
fill rest NULL value for total_death.
val df_fillNullForTotalDeaths = df_fillNullForTotalDeathsSpecial
.drop("new_deaths", "total_deaths", "new_deaths_smoothed") // drop old column to rename
.withColumnRenamed("new_deaths_correct","new_deaths")
.withColumnRenamed("total_deaths_correct","total_deaths")
.withColumnRenamed("new_deaths_smoothed_correct","new_deaths_smoothed")
.na.fill(0, Array("total_deaths"))
.select(df.columns.head, df.columns.tail: _*)
display(df_fillNullForTotalDeaths)
All first 10 column is clean now!
(All code above is for illustration, for processing just run cell below )
// filter unknow and HK data
val df_filteredLocation = df.filter($"iso_code"=!="HKG").filter($"iso_code".isNotNull)
// fill missing continent value for World data
val df_fillContinentNull = df_filteredLocation.na.fill("World",Array("continent")).cache
df_filteredLocation.unpersist()
// filter date before 2020-01-23
val df_filtered_date = df_fillContinentNull.filter($"date">"2020-01-22").cache
df_fillContinentNull.unpersist()
// fill missing for new_cases_smoothed and new_deaths_smoothed
val df_fillNullForSmooth = df_filtered_date.na.fill(0,Array("new_cases_smoothed"))
.na.fill(0,Array("new_deaths_smoothed"))
.cache
df_filtered_date.unpersist()
// fill missing for total_cases
val df_fillNullForTotalCases = df_fillNullForSmooth.na.fill(0, Array("total_cases")).cache
df_fillNullForSmooth.unpersist()
// correct total_deaths, new_deaths, new_deaths_smoothed
val df_fillNullForTotalDeathsSpecial = df_fillNullForTotalCases.withColumn("total_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("total_deaths")))
.withColumn("new_deaths_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths")))
.withColumn("new_deaths_smoothed_correct",
when(col("iso_code").equalTo("ISL")&&(col("date")>"2020-03-13" && col("date")<"2020-03-22"),0)
.when(col("iso_code").equalTo("PNG")&&(col("date")>"2020-07-19" && col("date")<"2020-07-23"),0)
.when(col("iso_code").equalTo("SVK")&&(col("date")>"2020-03-17" && col("date")<"2020-03-23"),0).otherwise(col("new_deaths_smoothed")))
.cache
df_fillNullForTotalCases.unpersist()
val df_cleaned = df_fillNullForTotalDeathsSpecial
.drop("new_deaths", "total_deaths", "new_deaths_smoothed") // drop old column to rename
.withColumnRenamed("new_deaths_correct","new_deaths")
.withColumnRenamed("total_deaths_correct","total_deaths")
.withColumnRenamed("new_deaths_smoothed_correct","new_deaths_smoothed")
.na.fill(0, Array("total_deaths"))
.select(df.columns.head, df.columns.tail: _*)
.cache
df_fillNullForTotalDeathsSpecial.unpersist()
display(df_cleaned)
import org.apache.spark.sql.functions._
for (c <- df_cleaned.columns) {
println(c + ": " + df_cleaned.filter(col(c).isNull).count())
}
3. select invariant (during pandemic) features for clustering
double check whether they are constant for each country, and if not, change all the value to mean and filter out countries that have missing constant features
Candidate list: - population - populationdensity - medianage - aged65older - aged70older - gdppercapita
- cardiovascdeathrate
- diabetes_prevalence
- female_smokers
- male_smokers
- hospitalbedsper_thousand
- life_expectancy
- humandevelopmentindex
val df_invariantFeatures = df_cleaned.select($"location", $"population",$"population_density",
$"median_age", $"aged_65_older",
$"aged_70_older",$"gdp_per_capita",
$"cardiovasc_death_rate",$"diabetes_prevalence",
$"female_smokers",$"male_smokers",$"hospital_beds_per_thousand",
$"life_expectancy",$"human_development_index")
display(df_invariantFeatures)
display(df_invariantFeatures.describe())
summary | location | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 60104 | 60104 | 58524 | 57260 | 56312 | 56944 | 57260 | 57892 | 58524 | 44928 | 44296 | 52835 | 59788 | 57576 |
mean | null | 8.179034692057101E7 | 305.56040665368073 | 30.204722319245512 | 8.595353423781793 | 5.418455904046091 | 18397.155660565862 | 262.00796225730636 | 7.89011004032537 | 10.368771011396003 | 32.645260520137235 | 3.000101788587119 | 72.8302766441427 | 0.7086279005141026 |
stddev | null | 5.801702332960505E8 | 1534.259203474429 | 9.077112325166668 | 6.17972101589387 | 4.214972529727923 | 19409.896953039588 | 120.63832428074626 | 4.2077256136575105 | 10.396263307877218 | 13.558764723459655 | 2.438486660152889 | 7.538806415792373 | 0.15398160968293945 |
min | Afghanistan | 809.0 | 1.98 | 15.1 | 1.144 | 0.526 | 661.24 | 79.37 | 0.99 | 0.1 | 7.7 | 0.1 | 53.28 | 0.354 |
max | Zimbabwe | 7.794798729E9 | 19347.5 | 48.2 | 27.049 | 18.493 | 116935.6 | 724.417 | 30.53 | 44.0 | 78.1 | 13.8 | 86.75 | 0.953 |
for (c <- df_invariantFeatures.columns) {
println(c + ": " + df_invariantFeatures.filter(col(c).isNull).count())
}
location: 0
population: 0
population_density: 1580
median_age: 2844
aged_65_older: 3792
aged_70_older: 3160
gdp_per_capita: 2844
cardiovasc_death_rate: 2212
diabetes_prevalence: 1580
female_smokers: 15176
male_smokers: 15808
hospital_beds_per_thousand: 7269
life_expectancy: 316
human_development_index: 2528
Although some countries seems like an outlier, it does have constant femalesmokers and malesmokers
val constant_feature_checker = df_cleaned.groupBy("location")
.agg(
//stddev("stringency_index").as("std_si"),
stddev("population").as("std_pop"),
stddev("population_density").as("std_pd"),
stddev("median_age").as("std_ma"),
stddev("aged_65_older").as("std_a65"),
stddev("aged_70_older").as("std_a70"),
stddev("gdp_per_capita").as("std_gdp"),
stddev("cardiovasc_death_rate").as("std_cdr"),
stddev("diabetes_prevalence").as("std_dp"),
stddev("female_smokers").as("std_fs"),
stddev("male_smokers").as("std_ms"),
stddev("hospital_beds_per_thousand").as("std_hbpt"),
stddev("life_expectancy").as("std_le"),
stddev("human_development_index").as("std_hdi")
)
.where(
(col("std_pop") > 0) || (col("std_pd") > 1e-20) || (col("std_ma") > 0) || (col("std_a65") > 0) || (col("std_a70") > 0) || (col("std_gdp") > 0 ||
col("std_cdr") > 0) || (col("std_dp") > 0) || (col("std_fs") > 0) || (col("std_ms") > 0) || (col("std_hbpt") > 0) || (col("std_le") > 0) || (col("std_hdi") > 0))
display(constant_feature_checker)
Each country have some constant features always
val distinct_features = df_invariantFeatures.distinct()
display(distinct_features)
In total, 126 countries have complete features
val valid_distinct_features = distinct_features.filter($"population".isNotNull && $"population_density".isNotNull && $"median_age".isNotNull &&
$"aged_65_older".isNotNull && $"aged_70_older".isNotNull && $"gdp_per_capita".isNotNull &&
$"cardiovasc_death_rate".isNotNull && $"diabetes_prevalence".isNotNull && $"female_smokers".isNotNull &&
$"male_smokers".isNotNull && $"hospital_beds_per_thousand".isNotNull && $"life_expectancy".isNotNull &&
$"human_development_index".isNotNull)
display(valid_distinct_features)
country list
display(valid_distinct_features.select($"location"))
valid_distinct_features.select($"location").count()
res69: Long = 126
val df_cleaned_feature = df_cleaned.filter($"location".isin(valid_distinct_features.select($"location").rdd.map(r => r(0)).collect().toSeq: _*))
display(df_cleaned_feature)
All data contains complete list of invariant time feature
(All code above is for illustration, for processing just run cell below )
// select invariant features
val df_invariantFeatures = df_cleaned.select($"location", $"population",$"population_density",
$"median_age", $"aged_65_older",
$"aged_70_older",$"gdp_per_capita",
$"cardiovasc_death_rate",$"diabetes_prevalence",
$"female_smokers",$"male_smokers",$"hospital_beds_per_thousand",
$"life_expectancy",$"human_development_index").cache
// Extract valid distrinct features RDD
val valid_distinct_features = df_invariantFeatures.distinct()
.filter($"population".isNotNull && $"population_density".isNotNull && $"median_age".isNotNull &&
$"aged_65_older".isNotNull && $"aged_70_older".isNotNull && $"gdp_per_capita".isNotNull &&
$"cardiovasc_death_rate".isNotNull && $"diabetes_prevalence".isNotNull && $"female_smokers".isNotNull &&
$"male_smokers".isNotNull && $"hospital_beds_per_thousand".isNotNull && $"life_expectancy".isNotNull &&
$"human_development_index".isNotNull).cache
df_invariantFeatures.unpersist()
// filter out NULL feature countries
val df_cleaned_feature = df_cleaned.filter($"location".isin(valid_distinct_features.select($"location").rdd.map(r => r(0)).collect().toSeq: _*)).cache
df_cleaned.unpersist()
display(df_cleaned_feature)
import org.apache.spark.sql.functions._
for (c <- df_cleaned_feature.columns) {
println(c + ": " + df_cleaned_feature.filter(col(c).isNull).count())
}
4. Imputing missing time series data of
- totalcasesper_million
- newcasesper_million
- newcasessmoothedpermillion
- totaldeathsper_million
- newdeathsper_million
- newdeathssmoothedpermillion
val per_million_data = df_cleaned_feature.select($"location", $"date", $"iso_code", $"total_cases",
$"total_deaths", $"new_cases", $"new_deaths", $"new_cases_smoothed",
$"new_deaths_smoothed", $"population", $"population_density",
$"total_cases_per_million", $"new_cases_per_million", $"new_cases_smoothed_per_million",
$"total_deaths_per_million", $"new_deaths_per_million", $"new_deaths_smoothed_per_million")
display(per_million_data)
val per_million_data_corrected = per_million_data.withColumn("total_cases_per_million_correct", per_million_data("total_cases")/per_million_data("population")*1000000)
.withColumn("new_cases_per_million_correct", per_million_data("new_cases")/per_million_data("population")*1000000)
.withColumn("new_cases_smoothed_per_million_correct", per_million_data("new_cases_smoothed")/per_million_data("population")*1000000)
.withColumn("total_deaths_per_million_correct", per_million_data("total_deaths")/per_million_data("population")*1000000)
.withColumn("new_deaths_per_million_correct", per_million_data("new_deaths")/per_million_data("population")*1000000)
.withColumn("new_deaths_smoothed_per_million_correct", per_million_data("new_deaths_smoothed")/per_million_data("population")*1000000)
.drop("total_cases_per_million", "new_cases_per_million", "new_cases_smoothed_per_million",
"total_deaths_per_million", "new_deaths_per_million", "new_deaths_smoothed_per_million") // drop old column to rename
.withColumnRenamed("total_cases_per_million_correct","total_cases_per_million")
.withColumnRenamed("new_cases_per_million_correct","new_cases_per_million")
.withColumnRenamed("new_cases_smoothed_per_million_correct","new_cases_smoothed_per_million")
.withColumnRenamed("total_deaths_per_million_correct","total_deaths_per_million")
.withColumnRenamed("new_deaths_per_million_correct","new_deaths_per_million")
.withColumnRenamed("new_deaths_smoothed_per_million_correct","new_deaths_smoothed_per_million")
per_million_data_corrected: org.apache.spark.sql.DataFrame = [location: string, date: string ... 15 more fields]
val df_cleaned_feature_permillion = df_cleaned_feature.withColumn("total_cases_per_million_correct", df_cleaned_feature("total_cases")/df_cleaned_feature("population")*1000000)
.withColumn("new_cases_per_million_correct", df_cleaned_feature("new_cases")/df_cleaned_feature("population")*1000000)
.withColumn("new_cases_smoothed_per_million_correct", df_cleaned_feature("new_cases_smoothed")/df_cleaned_feature("population")*1000000)
.withColumn("total_deaths_per_million_correct", df_cleaned_feature("total_deaths")/df_cleaned_feature("population")*1000000)
.withColumn("new_deaths_per_million_correct", df_cleaned_feature("new_deaths")/df_cleaned_feature("population")*1000000)
.withColumn("new_deaths_smoothed_per_million_correct", df_cleaned_feature("new_deaths_smoothed")/df_cleaned_feature("population")*1000000)
.drop("total_cases_per_million", "new_cases_per_million", "new_cases_smoothed_per_million",
"total_deaths_per_million", "new_deaths_per_million", "new_deaths_smoothed_per_million") // drop old column to rename
.withColumnRenamed("total_cases_per_million_correct","total_cases_per_million")
.withColumnRenamed("new_cases_per_million_correct","new_cases_per_million")
.withColumnRenamed("new_cases_smoothed_per_million_correct","new_cases_smoothed_per_million")
.withColumnRenamed("total_deaths_per_million_correct","total_deaths_per_million")
.withColumnRenamed("new_deaths_per_million_correct","new_deaths_per_million")
.withColumnRenamed("new_deaths_smoothed_per_million_correct","new_deaths_smoothed_per_million")
df_cleaned_feature_permillion: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
5. Impute time series of
- reproduction_rate
- total_tests
- stringency_index
- totaltestsper_thousand
fill null in reproduction_rate by last available and next available value
All countries has missing data at beginning or in the end
display(df_cleaned_feature_permillion.select($"reproduction_rate", $"location", $"date").filter($"reproduction_rate".isNull).groupBy("location").count().sort("location"))
display(df_cleaned_feature_permillion.select($"reproduction_rate", $"location", $"date").filter($"reproduction_rate".isNull).groupBy("location").agg(max("date").as("max_date"), min("date").as("min_date")).sort("location"))
display(df_cleaned_feature_permillion.select($"reproduction_rate", $"location", $"date").filter($"location"==="Albania"))
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df_cleaned_reproduction_rate= df_cleaned_feature_permillion.select($"reproduction_rate", $"location", $"date")
.withColumn("reproduction_rate", last("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("reproduction_rate", first("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("reproduction_rate"))
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
df_cleaned_reproduction_rate: org.apache.spark.sql.DataFrame = [reproduction_rate: double, location: string ... 1 more field]
countries miss stringency_index value
display(df_cleaned_feature_permillion.select($"stringency_index", $"location", $"date").filter($"stringency_index".isNull).groupBy("location").count().sort("count"))
start and end date for null value of stringency_index for each country
display(df_cleaned_feature_permillion.select($"stringency_index", $"location", $"date").filter($"stringency_index".isNull).groupBy("location").agg(max("date").as("max_date"), min("date").as("min_date")))
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df_cleaned_stringency = df_cleaned_feature_permillion.select($"stringency_index", $"location", $"date")
.withColumn("stringency_index_corect", last("stringency_index", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
display(df_cleaned_stringency.filter($"stringency_index".isNull).filter($"stringency_index_corect".isNull).groupBy("location").count())
location | count |
---|---|
Comoros | 316.0 |
Bahamas | 316.0 |
Malta | 316.0 |
Montenegro | 316.0 |
Armenia | 316.0 |
total_tests, impute by last available or next available value
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df_cleaned_total_cases = df_cleaned_feature_permillion.select($"total_tests", $"location", $"date")
.withColumn("total_tests", last("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("total_tests", first("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("total_tests"))
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
df_cleaned_total_cases: org.apache.spark.sql.DataFrame = [total_tests: double, location: string ... 1 more field]
display(df_cleaned_feature_permillion.select($"total_tests", $"location", $"date").filter($"total_tests".isNull).groupBy("location").count())
val total_tests_date_maxmin = df_cleaned_feature_permillion.select($"total_tests", $"location", $"date").filter($"total_tests".isNull).groupBy("location").agg(max("date").as("max_date"), min("date").as("min_date"))
display(total_tests_date_maxmin)
process stringencyindex, reproductionrate, totaltests, totaltestsperthousand
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val df_cleaned_time_series = df_cleaned_feature_permillion
.withColumn("reproduction_rate", last("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("reproduction_rate", first("reproduction_rate", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("reproduction_rate"))
.withColumn("stringency_index", last("stringency_index", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.na.fill(0, Array("stringency_index"))
.withColumn("total_tests", last("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(-df_cleaned_feature_permillion.count(), 0)))
.withColumn("total_tests", first("total_tests", true)
.over(Window.partitionBy("location").orderBy("date").rowsBetween(0, df_cleaned_feature_permillion.count())))
.na.fill(0, Array("total_tests"))
.withColumn("total_tests_per_thousand", col("total_tests")/col("population")*1000)
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
df_cleaned_time_series: org.apache.spark.sql.DataFrame = [iso_code: string, continent: string ... 48 more fields]
display(df_cleaned_time_series)
import org.apache.spark.sql.functions._
for (c <- df_cleaned_time_series.columns) {
println(c + ": " + df_cleaned_time_series.filter(col(c).isNull).count())
}
"./DataPreprocess"
display(valid_distinct_features.describe())
summary | iso_code | location | population | population_density | median_age | aged_65_older | aged_70_older | gdp_per_capita | cardiovasc_death_rate | diabetes_prevalence | female_smokers | male_smokers | hospital_beds_per_thousand | life_expectancy | human_development_index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 |
mean | null | null | 5.448349223809524E7 | 227.40285714285716 | 32.72619047619046 | 10.100476190476186 | 6.477539682539681 | 22517.798674603175 | 249.51723809523807 | 7.5796031746031725 | 10.470634920634918 | 32.03650793650794 | 3.1610476190476198 | 74.50119047619042 | 0.7466904761904759 |
stddev | null | null | 1.8094803349108434E8 | 737.9315775155493 | 8.810413643605422 | 6.507230389299932 | 4.50202071901193 | 21194.388486506883 | 120.66734039269643 | 3.8247238647083845 | 10.346516843539705 | 13.459477571879843 | 2.4548683837864473 | 6.634961896757854 | 0.1496665875490299 |
min | ALB | Albania | 98340.0 | 1.98 | 15.1 | 1.144 | 0.526 | 752.788 | 79.37 | 0.99 | 0.1 | 7.7 | 0.1 | 59.31 | 0.354 |
max | ZWE | Zimbabwe | 1.439323774E9 | 7915.731 | 48.2 | 27.049 | 18.493 | 116935.6 | 724.417 | 22.02 | 44.0 | 78.1 | 13.05 | 84.63 | 0.953 |
display(valid_distinct_features.select($"iso_code", $"population"))
display(valid_distinct_features.select($"iso_code", $"population_density"))
display(valid_distinct_features.select($"iso_code", $"median_age"))
display(valid_distinct_features.select($"iso_code", $"aged_65_older"))
display(valid_distinct_features.select($"iso_code", $"aged_70_older"))
display(valid_distinct_features.select($"iso_code", $"gdp_per_capita"))
display(valid_distinct_features.select($"iso_code", $"cardiovasc_death_rate"))
display(valid_distinct_features.select($"iso_code", $"diabetes_prevalence"))
display(valid_distinct_features.select($"iso_code", $"female_smokers"))
display(valid_distinct_features.select($"iso_code", $"male_smokers"))
display(valid_distinct_features.select($"iso_code", $"hospital_beds_per_thousand"))
display(valid_distinct_features.select($"iso_code", $"life_expectancy"))
display(valid_distinct_features.select($"iso_code", $"human_development_index"))
Correlation between invariant features
There are some pairs of features are highly correlated i.e. 1. medianage, aged65older 2. medianage, humandevelopmentindex 3. medianage, lifeexpectancy 4. gdppercapita, humandevelopmentindex 5. gdppercapita, lifeexpectancy 6. humandevelopmentindex, lifeexpectancy
display(valid_distinct_features.drop("iso_code","location"))
display(df_cleaned_time_series.drop("iso_code", "continent", "location",
"date", "icu_patients", "icu_patients_per_million",
"hosp_patients", "hosp_patients_per_million", "weekly_icu_admissions",
"weekly_icu_admissions_per_million", "weekly_hosp_admissions", "weekly_hosp_admissions_per_million",
"total_tests", "new_tests", "total_tests_per_thousand",
"new_tests_per_thousand", "new_tests_smoothed", "new_tests_smoothed_per_thousand",
"positive_rate", "tests_per_case", "tests_units",
"extreme_poverty", "handwashing_facilities"))
pip install plotly
"./DataPreprocess"
display(df_cleaned_time_series.select($"reproduction_rate", $"location", $"date").filter($"reproduction_rate".isNotNull).filter(
$"location"==="Sweden" ||
$"location"==="Germany" ||
$"location"==="Danmark" ||
$"location"==="Finland" ||
$"location"==="Norway").sort("date"))
df_cleaned_time_series.createOrReplaceTempView("visual_rdd")
import pandas as pd
import numpy as np
import plotly.express as px
test_table = spark.table("visual_rdd")
country = np.array(test_table.select("iso_code").rdd.map(lambda l: l[0]).collect())
dates = np.array(test_table.select("date").rdd.map(lambda l: l[0]).collect())
total_cases = np.array(test_table.select("total_cases").rdd.map(lambda l: l[0]).collect())
total_deaths = np.array(test_table.select("total_deaths").rdd.map(lambda l: l[0]).collect())
new_cases = np.array(test_table.select("new_cases").rdd.map(lambda l: l[0]).collect())
new_deaths = np.array(test_table.select("new_deaths").rdd.map(lambda l: l[0]).collect())
visual_data = {'country':country.tolist(), 'total_cases':total_cases, 'date':dates,
'total_deaths': total_deaths, 'new_cases': new_cases, 'new_deaths': new_deaths}
visual_df = pd.DataFrame(data = visual_data).sort_values(by='date')
visual_df
Total Cases
fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country",
color="total_cases", # total_cases is a column of gapminder
hover_name="country", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame = 'date')
fig.show()
fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country",
color="total_deaths", # total_deaths is a column of gapminder
hover_name="country", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame = 'date')
fig.show()
fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country",
color="new_cases", # new_cases is a column of gapminder
hover_name="country", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame = 'date')
fig.show()
fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country",
color="new_deaths", # new_deaths is a column of gapminder
hover_name="country", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame = 'date')
fig.show()
Execute relevant notebooks to load and preprocess data
"./02_DataPreprocess"
display(valid_distinct_features)
// transform to features in order to perform kmeans
import org.apache.spark.ml.feature.VectorAssembler
// define input cols and output (add additional columns here...)
val va = new VectorAssembler().setInputCols(Array("population","population_density","median_age","aged_65_older","aged_70_older","gdp_per_capita","cardiovasc_death_rate","diabetes_prevalence","female_smokers","male_smokers","hospital_beds_per_thousand","life_expectancy","human_development_index")).setOutputCol("features")
// create features
val df_feats = va.transform(valid_distinct_features)
display(df_feats)
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.evaluation.ClusteringEvaluator
// number of clusters
val num_clusters: Int = 6
// fixed seed for initialization
val seed: Int = 2
// init kmeans method
val kmeans = new KMeans().setK(num_clusters).setSeed(seed).setFeaturesCol("features")
// train kmeans cluster
val model = kmeans.fit(df_feats)
// cluster predictions
val preds = model.transform(df_feats)
// evaluate clustering base on Silhouette metric
val cluster_evaluator = new ClusteringEvaluator()
val silhouette_metric = cluster_evaluator.evaluate(preds)
// show evaluation and results
println(s"Silhouette metric: $silhouette_metric")
// cluster centers
println("Cluster centers:")
model.clusterCenters.foreach(println)
Silhouette metric: 0.8522450614906474
Cluster centers:
[4.610053152E7,113.00692000000001,31.668000000000003,9.45524,6.029160000000001,17977.45664,247.31187999999995,6.65,9.020000000000001,29.740000000000002,2.9476000000000004,73.7436,0.7251200000000002]
[1.4096640795E9,299.0465,33.45,8.315,4.6715,10867.693,272.0895,10.065000000000001,1.9,34.5,2.435,73.285,0.696]
[3.02263134E8,90.6665,33.8,10.366,6.3925,32707.095,246.9765,8.555,10.950000000000001,50.349999999999994,1.905,75.28999999999999,0.8089999999999999]
[1.993803743333333E8,515.2163333333333,28.166666666666664,6.048333333333333,3.700666666666666,7554.047999999999,299.66499999999996,8.280000000000001,4.633333333333333,33.1,1.2,71.91333333333333,0.643]
[7294451.1190476185,259.81845238095224,33.12142857142858,10.440523809523814,6.707988095238093,24778.540952380958,246.83450000000002,7.545952380952383,11.430952380952382,31.786904761904758,3.2384761904761903,74.73202380952378,0.7552380952380952]
[1.07767729E8,167.7762,33.06,10.376800000000001,6.874000000000001,19659.705700000002,258.51500000000004,9.284,9.4,35.4,4.029000000000001,75.318,0.7576]
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.evaluation.ClusteringEvaluator
num_clusters: Int = 6
seed: Int = 2
kmeans: org.apache.spark.ml.clustering.KMeans = kmeans_46338dc75b58
model: org.apache.spark.ml.clustering.KMeansModel = KMeansModel: uid=kmeans_46338dc75b58, k=6, distanceMeasure=euclidean, numFeatures=13
preds: org.apache.spark.sql.DataFrame = [iso_code: string, location: string ... 15 more fields]
cluster_evaluator: org.apache.spark.ml.evaluation.ClusteringEvaluator = ClusteringEvaluator: uid=cluEval_2943e2a697af, metricName=silhouette, distanceMeasure=squaredEuclidean
silhouette_metric: Double = 0.8522450614906474
// check model parameters
model.extractParamMap
res20: org.apache.spark.ml.param.ParamMap =
{
kmeans_46338dc75b58-distanceMeasure: euclidean,
kmeans_46338dc75b58-featuresCol: features,
kmeans_46338dc75b58-initMode: k-means||,
kmeans_46338dc75b58-initSteps: 2,
kmeans_46338dc75b58-k: 6,
kmeans_46338dc75b58-maxIter: 20,
kmeans_46338dc75b58-predictionCol: prediction,
kmeans_46338dc75b58-seed: 2,
kmeans_46338dc75b58-tol: 1.0E-4
}
val df_clstr = preds.withColumnRenamed("prediction", "kmeans_class")
display(df_clstr)
Visualization
Based on each country's features, the countries can be clustered accordingly
val df_clstr_filtered = df_clstr.select($"iso_code",$"kmeans_class")
display(df_clstr_filtered)
In this model, we use scala to process the data and predict the total cases. In this data set, there are many features which are constant for each country and don’t change with time. So, we tried to predict the total cases on a selected date, from some countries to other countries, without considering the time series.
- Import data and preprocess
// You need to uncomment this line if you haven't preprocess data yet.
%run "./02_DataPreprocess"
- Data process
display(df_cleaned_time_series)
df_cleaned_time_series.printSchema
root
|-- iso_code: string (nullable = true)
|-- continent: string (nullable = false)
|-- location: string (nullable = true)
|-- date: string (nullable = true)
|-- total_cases: double (nullable = false)
|-- new_cases: double (nullable = true)
|-- new_cases_smoothed: double (nullable = false)
|-- total_deaths: double (nullable = false)
|-- new_deaths: double (nullable = true)
|-- new_deaths_smoothed: double (nullable = false)
|-- reproduction_rate: double (nullable = false)
|-- icu_patients: double (nullable = true)
|-- icu_patients_per_million: double (nullable = true)
|-- hosp_patients: double (nullable = true)
|-- hosp_patients_per_million: double (nullable = true)
|-- weekly_icu_admissions: double (nullable = true)
|-- weekly_icu_admissions_per_million: double (nullable = true)
|-- weekly_hosp_admissions: double (nullable = true)
|-- weekly_hosp_admissions_per_million: double (nullable = true)
|-- total_tests: double (nullable = false)
|-- new_tests: double (nullable = true)
|-- total_tests_per_thousand: double (nullable = true)
|-- new_tests_per_thousand: double (nullable = true)
|-- new_tests_smoothed: double (nullable = true)
|-- new_tests_smoothed_per_thousand: double (nullable = true)
|-- tests_per_case: double (nullable = true)
|-- positive_rate: double (nullable = true)
|-- tests_units: double (nullable = true)
|-- stringency_index: double (nullable = false)
|-- population: double (nullable = true)
|-- population_density: double (nullable = true)
|-- median_age: double (nullable = true)
|-- aged_65_older: double (nullable = true)
|-- aged_70_older: double (nullable = true)
|-- gdp_per_capita: double (nullable = true)
|-- extreme_poverty: double (nullable = true)
|-- cardiovasc_death_rate: double (nullable = true)
|-- diabetes_prevalence: double (nullable = true)
|-- female_smokers: double (nullable = true)
|-- male_smokers: double (nullable = true)
|-- handwashing_facilities: double (nullable = true)
|-- hospital_beds_per_thousand: double (nullable = true)
|-- life_expectancy: double (nullable = true)
|-- human_development_index: double (nullable = true)
|-- total_cases_per_million: double (nullable = true)
|-- new_cases_per_million: double (nullable = true)
|-- new_cases_smoothed_per_million: double (nullable = true)
|-- total_deaths_per_million: double (nullable = true)
|-- new_deaths_per_million: double (nullable = true)
|-- new_deaths_smoothed_per_million: double (nullable = true)
import org.apache.spark.sql.functions._
for (c <- df_cleaned_time_series.columns) {
println(c + ": " + df_cleaned_time_series.filter(col(c).isNull).count())
}
iso_code: 0
continent: 0
location: 0
date: 0
total_cases: 0
new_cases: 0
new_cases_smoothed: 0
total_deaths: 0
new_deaths: 0
new_deaths_smoothed: 0
reproduction_rate: 0
icu_patients: 36018
icu_patients_per_million: 36018
hosp_patients: 34870
hosp_patients_per_million: 34870
weekly_icu_admissions: 41062
weekly_icu_admissions_per_million: 41062
weekly_hosp_admissions: 40715
weekly_hosp_admissions_per_million: 40715
total_tests: 0
new_tests: 20510
total_tests_per_thousand: 0
new_tests_per_thousand: 20510
new_tests_smoothed: 18176
new_tests_smoothed_per_thousand: 18176
tests_per_case: 19301
positive_rate: 19749
tests_units: 41600
stringency_index: 0
population: 0
population_density: 0
median_age: 0
aged_65_older: 0
aged_70_older: 0
gdp_per_capita: 0
extreme_poverty: 11168
cardiovasc_death_rate: 0
diabetes_prevalence: 0
female_smokers: 0
male_smokers: 0
handwashing_facilities: 24124
hospital_beds_per_thousand: 0
life_expectancy: 0
human_development_index: 0
total_cases_per_million: 0
new_cases_per_million: 0
new_cases_smoothed_per_million: 0
total_deaths_per_million: 0
new_deaths_per_million: 0
new_deaths_smoothed_per_million: 0
import org.apache.spark.sql.functions._
Prepare the data for training. We choose a day we want to predict, and select the constant features, and select the target column for prediction.
val df_by_location = df_cleaned_time_series.filter($"date" === "2020-12-01").sort($"continent").select($"iso_code",$"stringency_index", $"population",$"population_density",$"gdp_per_capita",$"diabetes_prevalence",$"total_cases_per_million",$"total_cases")
display(df_by_location)
df_by_location.count()
res145: Long = 159
Rescale the feature values and the target value.
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Column
val min_str_index = df_by_location.select(min($"stringency_index")).first()(0)
val max_str_index = df_by_location.select(max($"stringency_index")).first()(0)
val min_population = df_by_location.select(min($"population")).first()(0)
val max_population = df_by_location.select(max($"population")).first()(0)
val min_population_density =
df_by_location.select(min($"population_density")).first()(0)
val max_population_density =
df_by_location.select(max($"population_density")).first()(0)
val min_gdp_per_capita = df_by_location.select(min($"gdp_per_capita")).first()(0)
val max_gdp_per_capita = df_by_location.select(max($"gdp_per_capita")).first()(0)
val min_diabetes_prevalence =
df_by_location.select(min($"diabetes_prevalence")).first()(0)
val max_diabetes_prevalence = df_by_location.select(max($"diabetes_prevalence")).first()(0)
val df_by_location_normalized = df_by_location
.withColumn("normal_stringency_index",($"stringency_index" -lit(min_str_index))/(lit(max_str_index)-lit(min_str_index)))
.withColumn("normal_population", ($"population" - lit(min_population))/(lit(max_population)-lit(min_population)))
.withColumn("normal_population_density",($"population_density" - lit(min_population_density))/(lit(max_population_density) - lit(min_population_density)))
.withColumn("normal_gdp_per_capita", ($"gdp_per_capita" - lit(min_gdp_per_capita))/(lit(max_gdp_per_capita)- lit(min_gdp_per_capita)))
.withColumn("normal_diabetes_prevalence", ($"diabetes_prevalence" - lit(min_diabetes_prevalence))/lit(max_diabetes_prevalence) - lit(min_diabetes_prevalence)).withColumn("log_total_cases_per_million", log($"total_cases_per_million")).toDF
display(df_by_location_normalized)
df_by_location_normalized.printSchema
root
|-- iso_code: string (nullable = true)
|-- stringency_index: double (nullable = false)
|-- population: double (nullable = true)
|-- population_density: double (nullable = true)
|-- gdp_per_capita: double (nullable = true)
|-- diabetes_prevalence: double (nullable = true)
|-- total_cases_per_million: double (nullable = true)
|-- total_cases: double (nullable = false)
|-- normal_stringency_index: double (nullable = true)
|-- normal_population: double (nullable = true)
|-- normal_population_density: double (nullable = true)
|-- normal_gdp_per_capita: double (nullable = true)
|-- normal_diabetes_prevalence: double (nullable = true)
|-- log_total_cases_per_million: double (nullable = true)
val df_by_location_normalized_selected = df_by_location_normalized.select($"normal_stringency_index",$"normal_population",$"normal_population_density",$"normal_gdp_per_capita", $"normal_diabetes_prevalence",$"log_total_cases_per_million")
df_by_location_normalized_selected: org.apache.spark.sql.DataFrame = [normal_stringency_index: double, normal_population: double ... 4 more fields]
display(df_by_location_normalized_selected)
- Linear Regression from selected value to new cases
These values are irrelevant to time, but relevant to country. So we try to predict the total case in some contries from the data in other contries.
df_by_location_normalized_selected.createOrReplaceTempView("covid_table")
import org.apache.spark.ml.feature.VectorAssembler
val vectorizer = new VectorAssembler()
.setInputCols(Array("normal_stringency_index", "normal_population", "normal_population_density", "normal_gdp_per_capita", "normal_diabetes_prevalence"))
.setOutputCol("features")
// make a DataFrame called dataset from the table
val dataset = vectorizer.transform(df_by_location_normalized_selected).select("features","log_total_cases_per_million")
import org.apache.spark.ml.feature.VectorAssembler
vectorizer: org.apache.spark.ml.feature.VectorAssembler = VectorAssembler: uid=vecAssembler_a8c5337c1334, handleInvalid=error, numInputCols=5
dataset: org.apache.spark.sql.DataFrame = [features: vector, log_total_cases_per_million: double]
display(dataset)
var Array(split20, split80) = dataset.randomSplit(Array(0.20, 0.80), 1800009193L)
split20: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
split80: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
val testSet = split20.cache()
val trainingSet = split80.cache()
testSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
trainingSet: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [features: vector, log_total_cases_per_million: double]
testSet.count() // action to actually cache
res156: Long = 26
trainingSet.count() // action to actually cache
res157: Long = 133
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.ml.Pipeline
// Let's initialize our linear regression learner
val lr = new LinearRegression()
// We use explain params to dump the parameters we can use
lr.explainParams()
// Now we set the parameters for the method
lr.setPredictionCol("prediction")
.setLabelCol("log_total_cases_per_million")
.setMaxIter(100)
.setRegParam(0.1)
val lrModel = lr.fit(trainingSet)
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.ml.Pipeline
lr: org.apache.spark.ml.regression.LinearRegression = linReg_04758f25dc55
lrModel: org.apache.spark.ml.regression.LinearRegressionModel = LinearRegressionModel: uid=linReg_04758f25dc55, numFeatures=5
val trainingSummary = lrModel.summary
println(s"Coefficients: ${lrModel.coefficients}, Intercept: ${lrModel.intercept}")
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
Coefficients: [2.6214237261445112,-1.3643062210132013,-1.3234981005291635,4.903123743799173,1.0283056897021852], Intercept: 6.691449394053385
RMSE: 1.605896246405295
trainingSummary: org.apache.spark.ml.regression.LinearRegressionTrainingSummary = org.apache.spark.ml.regression.LinearRegressionTrainingSummary@3c0bba63
import org.apache.spark.ml.evaluation.RegressionEvaluator
// make predictions on the test data
val predictions = lrModel.transform(testSet)
predictions.select("prediction", "log_total_cases_per_million", "features").show()
// select (prediction, true label) and compute test error.
val evaluator = new RegressionEvaluator()
.setLabelCol("log_total_cases_per_million")
.setPredictionCol("prediction")
.setMetricName("rmse")
val rmse = evaluator.evaluate(predictions)
println(s"Root Mean Squared Error (RMSE) on test data = $rmse")
+------------------+---------------------------+--------------------+
| prediction|log_total_cases_per_million| features|
+------------------+---------------------------+--------------------+
| 6.328494753118636| 2.142543078223737|[0.15958180147058...|
| 8.115061043502033| 7.528810569839765|[0.36167279411764...|
| 7.462997808492604| 6.223671398897003|[0.64889705882352...|
| 7.831137150153838| 6.524287884057365|[0.79779411764705...|
|10.269420769779092| 5.843997267897207|[0.40429687499999...|
| 7.289562258542376| 2.6304048908829563|[0.49471507352941...|
| 9.963465130096218| 9.237218853465539|[0.57444852941176...|
|13.213369998258539| 10.784078124343976|[0.74460018382352...|
| 9.213228147281598| 10.572977149641726|[0.75528492647058...|
| 9.085379666714474| 9.143147511395949|[0.82444852941176...|
| 6.750739656770235| 10.952187342908323|[0.0,3.6806047717...|
| 8.135800825140628| 10.373288860272808|[0.51056985294117...|
| 7.507644816227425| 10.203096222487993|[0.55319393382352...|
|10.048805671611257| 8.817232647019427|[0.56376378676470...|
| 9.404481665413662| 10.158884909113675|[0.61695772058823...|
| 9.488257390217875| 10.351014339169227|[0.64889705882352...|
| 9.08870238448793| 10.291011744026449|[0.71806066176470...|
| 8.899278092318433| 10.041688001727678|[0.72334558823529...|
| 8.899278092318433| 10.041688001727678|[0.72334558823529...|
| 9.353065533403424| 9.427461709192647|[0.75528492647058...|
+------------------+---------------------------+--------------------+
only showing top 20 rows
Root Mean Squared Error (RMSE) on test data = 2.2259062146564705
import org.apache.spark.ml.evaluation.RegressionEvaluator
predictions: org.apache.spark.sql.DataFrame = [features: vector, log_total_cases_per_million: double ... 1 more field]
evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = RegressionEvaluator: uid=regEval_575198e0fd5f, metricName=rmse, throughOrigin=false
rmse: Double = 2.2259062146564705
val predictions = lrModel.transform(testSet)
display(predictions)
val new_predictions = predictions.withColumn("new_prediction", exp($"prediction")).withColumn("total_cases_per_million",exp($"log_total_cases_per_million")).select("new_prediction", "total_cases_per_million", "features")
display(new_predictions)
// select (prediction, true label) and compute test error.
val evaluator = new RegressionEvaluator()
.setLabelCol("total_cases_per_million")
.setPredictionCol("new_prediction")
.setMetricName("rmse")
val rmse = evaluator.evaluate(new_predictions)
println("Root Mean Squared Error (RMSE) on test data = $rmse")
Root Mean Squared Error (RMSE) on test data = $rmse
evaluator: org.apache.spark.ml.evaluation.RegressionEvaluator = RegressionEvaluator: uid=regEval_dcf763c5af79, metricName=rmse, throughOrigin=false
rmse: Double = 99893.56063834814
- Conclusion and Reflections
We've tried several ways to preprocess the consant feature, but still didn't get a good result. We came to the conclusion that only predict the total cases of a country from other countries without considering the history time series values are not resonable. This is because the constant feature columns cannot reflect the total cases well. Therefore, we decided to use some time series methods to predict the value from the history value.
In this notebook, we do prediction with the time series method - Autoregressive integrated moving average (ARIMA). We preprocess the data and prepare for prediction. Then we predicted the new cases (smoothed) and new deaths (smoothed) for world and Sweden. We predict the future value from the history value. After the prediction part we evaluated our results.
- Import data and preprocess
// You need to uncomment this line if you haven't preprocess data yet.
%run "./02_DataPreprocess"
- Prepare for data
display(df_cleaned_time_series)
df_cleaned_time_series.printSchema
root
|-- iso_code: string (nullable = true)
|-- continent: string (nullable = false)
|-- location: string (nullable = true)
|-- date: string (nullable = true)
|-- total_cases: double (nullable = false)
|-- new_cases: double (nullable = true)
|-- new_cases_smoothed: double (nullable = false)
|-- total_deaths: double (nullable = false)
|-- new_deaths: double (nullable = true)
|-- new_deaths_smoothed: double (nullable = false)
|-- reproduction_rate: double (nullable = false)
|-- icu_patients: double (nullable = true)
|-- icu_patients_per_million: double (nullable = true)
|-- hosp_patients: double (nullable = true)
|-- hosp_patients_per_million: double (nullable = true)
|-- weekly_icu_admissions: double (nullable = true)
|-- weekly_icu_admissions_per_million: double (nullable = true)
|-- weekly_hosp_admissions: double (nullable = true)
|-- weekly_hosp_admissions_per_million: double (nullable = true)
|-- total_tests: double (nullable = false)
|-- new_tests: double (nullable = true)
|-- total_tests_per_thousand: double (nullable = true)
|-- new_tests_per_thousand: double (nullable = true)
|-- new_tests_smoothed: double (nullable = true)
|-- new_tests_smoothed_per_thousand: double (nullable = true)
|-- tests_per_case: double (nullable = true)
|-- positive_rate: double (nullable = true)
|-- tests_units: double (nullable = true)
|-- stringency_index: double (nullable = false)
|-- population: double (nullable = true)
|-- population_density: double (nullable = true)
|-- median_age: double (nullable = true)
|-- aged_65_older: double (nullable = true)
|-- aged_70_older: double (nullable = true)
|-- gdp_per_capita: double (nullable = true)
|-- extreme_poverty: double (nullable = true)
|-- cardiovasc_death_rate: double (nullable = true)
|-- diabetes_prevalence: double (nullable = true)
|-- female_smokers: double (nullable = true)
|-- male_smokers: double (nullable = true)
|-- handwashing_facilities: double (nullable = true)
|-- hospital_beds_per_thousand: double (nullable = true)
|-- life_expectancy: double (nullable = true)
|-- human_development_index: double (nullable = true)
|-- total_cases_per_million: double (nullable = true)
|-- new_cases_per_million: double (nullable = true)
|-- new_cases_smoothed_per_million: double (nullable = true)
|-- total_deaths_per_million: double (nullable = true)
|-- new_deaths_per_million: double (nullable = true)
|-- new_deaths_smoothed_per_million: double (nullable = true)
// There is no "World" in the 126 countries. we need to calculate it.
val countries = df_cleaned_time_series.groupBy("location").count().sort($"location")
display(countries)
2.1.1 The smoothed new cases of the world.
We use the smoothed new cases because the raw data fluctuates greatly by day - on workdays, there are more new cases than on weekends.
// prediction for all over the world
import org.apache.spark.sql.functions._
// val df_world = df_cleaned_time_series.withColumn("date", (col("date").cast("Timestamp"))).where("location == 'World'").select($"date",$"new_cases_smoothed")
val df_world = df_cleaned_time_series.groupBy("date").sum("new_cases_smoothed").sort(col("date")).withColumnRenamed("sum(new_cases_smoothed)","new_cases_smoothed")
display(df_world)
df_world.printSchema
root
|-- date: string (nullable = true)
|-- new_cases_smoothed: double (nullable = true)
df_world.createOrReplaceTempView("df_world")
// val df_world_deaths = df_cleaned_time_series.withColumn("date", (col("date").cast("Timestamp"))).where("location == 'World'").select($"date",$"new_deaths_smoothed")
val df_world_deaths = df_cleaned_time_series.groupBy("date").sum("new_deaths_smoothed").sort(col("date")).withColumnRenamed("sum(new_deaths_smoothed)","new_deaths_smoothed")
df_world_deaths.createOrReplaceTempView("df_world_deaths")
df_world_deaths: org.apache.spark.sql.DataFrame = [date: string, new_deaths_smoothed: double]
2.2.1 The smoothed new cases of Sweden
In addition to the new cases all over the world, we also care about the cases in Sweden. Here we deal with smoothed new cases of Sweden.
// Select one contry for prediction
import org.apache.spark.sql.functions._
val df_sw = df_cleaned_time_series.withColumn("date", (col("date").cast("Timestamp"))).where("location == 'Sweden'").select($"date",$"new_cases_smoothed")
display(df_sw)
df_sw.printSchema
root
|-- date: timestamp (nullable = true)
|-- new_cases_smoothed: double (nullable = false)
df_sw.createOrReplaceTempView("df_sw")
val df_sw_deaths = df_cleaned_time_series.withColumn("date", (col("date").cast("Timestamp"))).where("location == 'Sweden'").select($"date",$"new_deaths_smoothed")
df_sw_deaths.createOrReplaceTempView("df_sw_deaths")
df_sw_deaths: org.apache.spark.sql.DataFrame = [date: timestamp, new_deaths_smoothed: double]
- Time series regression with ARIMA
ARIMA - Autoregressive Integrated Moving Average model. It's widely used in time series analysis. see defination here: https://en.wikipedia.org/wiki/Autoregressiveintegratedmoving_average
# import some libraries
# dbutils.library.installPyPI('numpy','1.16.3')
# dbutils.library.installPyPI('pandas','1.1.5')
# dbutils.library.restartPython()
import pandas
from matplotlib import pyplot
print(pandas.__version__)
data = spark.table("df_world")
print(type(data))
1.0.1
<class 'pyspark.sql.dataframe.DataFrame'>
from pyspark.sql.functions import *
from datetime import datetime
from pyspark.sql.functions import to_date, to_timestamp
data_pd = data.toPandas()
import numpy as np
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
import sklearn
import statsmodels
from datetime import date
print(data_pd.columns)
data_pd['date'] = pd.to_datetime(data_pd['date'])
Index(['date', 'new_cases_smoothed'], dtype='object')
// # %python
// # data_pd.plot(x='date', y = 'new_cases_smoothed', figsize=(8,5))
import math
def Predict_by_ARIMA(data_pd, one_step = True, training_length = 0.9):
data_pd1 = data_pd.set_index('date')
X = data_pd1.values
train_size = int(len(X) * training_length) #the length you need for training.
train, test = X[0:train_size], X[train_size:len(X)]
test_date = data_pd1.index[train_size:len(X)]
history = [x for x in train]
predictions = list()
print("training_series_size: ", train_size)
print("test_series_size: ", len(test))
for t in range(len(test)):
model = ARIMA(history, order=(2,1,0))
model_fit = model.fit(disp=0)
output = model_fit.forecast()
yhat = output[0]
predictions.append(yhat)
if one_step:
obs = test[t] # use real value, only predict next step
else:
obs = yhat # use predicted value, predict all test data
history.append(obs)
current_date = test_date[t]
print(str(current_date.date()), 'pred=%f, gt=%f' % (yhat, obs))
return test, predictions
test_world, predictions_world = Predict_by_ARIMA(data_pd, True, 0.9)
print("test size: ", len(test_world))
print("predicted size: ", len(predictions_world))
# plot
fig_world = pyplot.figure()
pyplot.plot(test_world)
pyplot.plot(predictions_world, color='red')
pyplot.show()
print(data_pd)
_, predictions_world_multi = Predict_by_ARIMA(data_pd, False)
print("test size: ", len(test_world))
print("predicted size: ", len(predictions_world))
# plot
fig_world_multi = pyplot.figure()
pyplot.plot(test_world)
pyplot.plot(predictions_world_multi, color='red')
pyplot.show()
data_world_death = spark.table("df_world_deaths")
data_world_death_pd = data_world_death.toPandas()
print(data_world_death_pd.columns)
data_world_death_pd['date'] = pd.to_datetime(data_world_death_pd['date'])
Index(['date', 'new_deaths_smoothed'], dtype='object')
test_world_death, predictions_world_death = Predict_by_ARIMA(data_world_death_pd)
print("test size: ", len(test_world_death))
print("predicted size: ", len(predictions_world_death))
# plot
fig_world_death = pyplot.figure()
pyplot.plot(test_world_death)
pyplot.plot(predictions_world_death, color='red')
pyplot.show()
_, predictions_world_death_multi = Predict_by_ARIMA(data_world_death_pd, False)
print("test size: ", len(test_world_death))
print("predicted size: ", len(predictions_world_death_multi))
# plot
fig_world_death = pyplot.figure()
pyplot.plot(test_world_death)
pyplot.plot(predictions_world_death_multi, color='red')
pyplot.show()
from datetime import datetime
from datetime import date
from matplotlib import pyplot
import numpy as np
import pandas as pd
from pyspark.sql.functions import to_date, to_timestamp
from pyspark.sql.functions import *
from statsmodels.tsa.arima_model import ARIMA
import sklearn
import statsmodels
data_sw = spark.table("df_sw")
data_sw_pd = data_sw.toPandas()
print(data_sw_pd.columns)
data_sw_pd['date'] = pd.to_datetime(data_sw_pd['date'])
Index(['date', 'new_cases_smoothed'], dtype='object')
data_sw_pd.plot(x='date', y = 'new_cases_smoothed', figsize=(8,5))
test_sw, predictions_sw = Predict_by_ARIMA(data_sw_pd)
print("test size: ", len(test_sw))
print("predicted size: ", len(predictions_sw))
# plot
fig_sw = pyplot.figure()
pyplot.plot(test_sw)
pyplot.plot(predictions_sw, color='red')
pyplot.show()
_, predictions_sw_multi = Predict_by_ARIMA(data_sw_pd, False)
print("test size: ", len(test_sw))
print("predicted size: ", len(predictions_sw))
# plot
fig_sw = pyplot.figure()
pyplot.plot(test_sw)
pyplot.plot(predictions_sw_multi, color='red')
pyplot.show()
data_sw_death = spark.table("df_sw_deaths")
data_sw_death_pd = data_sw_death.toPandas()
print(data_sw_death_pd.columns)
data_sw_death_pd['date'] = pd.to_datetime(data_sw_death_pd['date'])
Index(['date', 'new_deaths_smoothed'], dtype='object')
test_sw_death, predictions_sw_death = Predict_by_ARIMA(data_sw_death_pd)
print("test size: ", len(test_sw_death))
print("predicted size: ", len(predictions_sw_death))
# plot
fig_sw_death = pyplot.figure()
pyplot.plot(test_sw_death)
pyplot.plot(predictions_sw_death, color='red')
pyplot.show()
_, predictions_sw_death_multi = Predict_by_ARIMA(data_sw_death_pd, False)
print("test size: ", len(test_sw_death))
print("predicted size: ", len(predictions_sw_death_multi))
# plot
fig_sw_death = pyplot.figure()
pyplot.plot(test_sw_death)
pyplot.plot(predictions_sw_death_multi, color='red')
pyplot.show()
- Evaluation
import math
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
def Evaluation(test, predictions):
error_mse = mean_squared_error(test, predictions)
error_rmse = math.sqrt(error_mse)
error_abs = mean_absolute_error(test, predictions)
avg_gt = test[:,0].sum() / len(test)
mse_percentage = error_rmse / avg_gt * 100
abs_percentage = error_abs / avg_gt * 100
print('Average of groundtruth: %.3f' % avg_gt)
print('Test MSE: %.3f' % error_mse)
print('Test RMSE: %.3f' % error_rmse)
print('RMSE percentage error: %.3f' % mse_percentage, '%')
print('Test ABS: %.3f' % error_abs)
print('ABS percentage error: %.3f' % abs_percentage, '%')
Evaluation(test_world, predictions_world)
Average of groundtruth: 763744.916
Test MSE: 1382104096.548
Test RMSE: 37176.661
RMSE percentage error: 4.868 %
Test ABS: 19644.392
ABS percentage error: 2.572 %
Evaluation(test_world, predictions_world_multi)
Average of groundtruth: 763744.916
Test MSE: 16372759781.212
Test RMSE: 127956.085
RMSE percentage error: 16.754 %
Test ABS: 114514.607
ABS percentage error: 14.994 %
Evaluation(test_world_death, predictions_world_death)
Average of groundtruth: 11412.091
Test MSE: 358938.532
Test RMSE: 599.115
RMSE percentage error: 5.250 %
Test ABS: 290.352
ABS percentage error: 2.544 %
Evaluation(test_world_death, predictions_world_death_multi)
Average of groundtruth: 11412.091
Test MSE: 5567620.973
Test RMSE: 2359.581
RMSE percentage error: 20.676 %
Test ABS: 2110.218
ABS percentage error: 18.491 %
Evaluation(test_sw, predictions_sw)
Average of groundtruth: 4564.277
Test MSE: 26457.989
Test RMSE: 162.659
RMSE percentage error: 3.564 %
Test ABS: 82.412
ABS percentage error: 1.806 %
Evaluation(test_sw, predictions_sw_multi)
Average of groundtruth: 4564.277
Test MSE: 1514028.102
Test RMSE: 1230.458
RMSE percentage error: 26.958 %
Test ABS: 1172.056
ABS percentage error: 25.679 %
Evaluation(test_sw_death, predictions_sw_death)
Average of groundtruth: 31.862
Test MSE: 24.933
Test RMSE: 4.993
RMSE percentage error: 15.672 %
Test ABS: 3.072
ABS percentage error: 9.643 %
Evaluation(test_sw_death, predictions_sw_death_multi)
Average of groundtruth: 31.862
Test MSE: 775.703
Test RMSE: 27.851
RMSE percentage error: 87.414 %
Test ABS: 25.094
ABS percentage error: 78.759 %
- Conclusion and Reflections
With this time series method - ARIMA, we can get quite resonable results. We predicted the new cases (smoothed) and new deaths (smoothed) for world and Sweden. The evaluation of one step shows that we can get good results with a small error. But the multi step results is not good when we want to predict long term results. The prediction model and evaluation function can also been used for other countries.
Prediction with time series model - Gaussian Processes
This notebook contains time series prediction with gaussian processes. The data used for prediction is new cases (smoothed) and new deaths (smoothed) for both an aggregated number of countries in the world and for Sweden. To implement the gaussian process model, the python package Gpytorch is used.
- Install, import, load and preprocess data
Install, import and execute the other relevant notebooks here to load and preprocess data...
pip install gpytorch
Python interpreter will be restarted.
Collecting gpytorch
Downloading gpytorch-1.3.0.tar.gz (283 kB)
Building wheels for collected packages: gpytorch
Building wheel for gpytorch (setup.py): started
Building wheel for gpytorch (setup.py): finished with status 'done'
Created wheel for gpytorch: filename=gpytorch-1.3.0-py2.py3-none-any.whl size=473796 sha256=5882e250a68a9042a1e51e11617837c2e922878bd22e515cf9459b217c96ba2b
Stored in directory: /root/.cache/pip/wheels/1d/f0/2c/2146864c1f7bd8a844c4143115c05c392da763fd8b249adb9d
Successfully built gpytorch
Installing collected packages: gpytorch
Successfully installed gpytorch-1.3.0
Python interpreter will be restarted.
# python imports
import gpytorch as gpth
import torch as th
import matplotlib.pyplot as plt
import numpy as np
"./02_DataPreprocess"
- Additional data preprocessing in Scala
// define dataframe summing up the new cases smoothed for each date
val df_ncworld = df_cleaned_time_series.groupBy("date").sum("new_cases_smoothed").sort(col("date")).withColumnRenamed("sum(new_cases_smoothed)","new_cases_smoothed")
display(df_ncworld)
// define dataframe summing up the new deaths smoothed for each date
val df_ndworld = df_cleaned_time_series.groupBy("date").sum("new_deaths_smoothed").sort(col("date")).withColumnRenamed("sum(new_deaths_smoothed)","new_deaths_smoothed")
display(df_ndworld)
// Add a time index for the date
import org.apache.spark.sql.expressions.Window
val window_spec = Window.orderBy($"date")
val df_ncworld_indexed = df_ncworld.withColumn("time_idx",row_number.over(window_spec))
val df_ndworld_indexed = df_ndworld.withColumn("time_idx",row_number.over(window_spec))
display(df_ncworld_indexed)
// Get max and min of time index
import org.apache.spark.sql.functions.{min, max}
import org.apache.spark.sql.Row
val id_maxmin = df_ncworld_indexed.agg(max("time_idx"), min("time_idx")).head()
val id_max: Int = id_maxmin.getInt(0)
val id_min: Int = id_maxmin.getInt(1)
import org.apache.spark.sql.functions.{min, max}
import org.apache.spark.sql.Row
id_maxmin: org.apache.spark.sql.Row = [316,1]
id_max: Int = 316
id_min: Int = 1
Extract a window for prediction
// define training and test data intervalls. test data is set to 10% of the total dataset time length.
val test_wnd: Int = (0.1*id_max).toInt
val train_wnd: Int = (0.9*id_max).toInt
val df_ncworld_train = df_ncworld_indexed.where($"time_idx" > id_max-train_wnd-test_wnd && $"time_idx" <= id_max-test_wnd)
val df_ncworld_test = df_ncworld_indexed.where($"time_idx" > id_max-test_wnd && $"time_idx" <= id_max)
val df_ndworld_train = df_ndworld_indexed.where($"time_idx" > id_max-train_wnd-test_wnd && $"time_idx" <= id_max-test_wnd)
val df_ndworld_test = df_ndworld_indexed.where($"time_idx" > id_max-test_wnd && $"time_idx" <= id_max)
display(df_ncworld_test)
Convert to python for further processing
df_ncworld_train.createOrReplaceTempView("df_ncworld_train")
df_ncworld_test.createOrReplaceTempView("df_ncworld_test")
df_ndworld_train.createOrReplaceTempView("df_ndworld_train")
df_ndworld_test.createOrReplaceTempView("df_ndworld_test")
df_ncworld_train = spark.table("df_ncworld_train")
df_ncworld_test = spark.table("df_ncworld_test")
df_ndworld_train = spark.table("df_ndworld_train")
df_ndworld_test = spark.table("df_ndworld_test")
val df_ncdenswe = df_cleaned_time_series.select($"location", $"date", $"new_cases_smoothed").where(expr("location = 'Sweden' or location = 'Denmark'"))
val df_nddenswe = df_cleaned_time_series.select($"location", $"date", $"new_deaths_smoothed").where(expr("location = 'Sweden' or location = 'Denmark'"))
df_ncdenswe: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [location: string, date: string ... 1 more field]
df_nddenswe: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [location: string, date: string ... 1 more field]
// Add a time index for the date
import org.apache.spark.sql.expressions.Window
val window_spec = Window.partitionBy("location").orderBy($"date")
val df_ncdenswe_indexed = df_ncdenswe.withColumn("time_idx",row_number.over(window_spec))
display(df_ncdenswe_indexed)
val df_nddenswe_indexed = df_nddenswe.withColumn("time_idx",row_number.over(window_spec))
display(df_nddenswe_indexed)
val test_wnd: Int = (0.1*id_max).toInt
val train_wnd: Int = (0.9*id_max).toInt
val df_ncdenswe_train = df_ncdenswe_indexed.where($"time_idx" > id_max-train_wnd-test_wnd && $"time_idx" <= id_max-test_wnd)
val df_ncdenswe_test = df_ncdenswe_indexed.where($"time_idx" > id_max-test_wnd && $"time_idx" <= id_max)
val df_nddenswe_train = df_nddenswe_indexed.where($"time_idx" > id_max-train_wnd-test_wnd && $"time_idx" <= id_max-test_wnd)
val df_nddenswe_test = df_nddenswe_indexed.where($"time_idx" > id_max-test_wnd && $"time_idx" <= id_max)
display(df_ncdenswe_test)
df_ncdenswe_train.createOrReplaceTempView("df_ncdenswe_train")
df_ncdenswe_test.createOrReplaceTempView("df_ncdenswe_test")
df_nddenswe_train.createOrReplaceTempView("df_nddenswe_train")
df_nddenswe_test.createOrReplaceTempView("df_nddenswe_test")
df_ncdenswe_train = spark.table("df_ncdenswe_train")
df_ncdenswe_test = spark.table("df_ncdenswe_test")
df_nddenswe_train = spark.table("df_nddenswe_train")
df_nddenswe_test = spark.table("df_nddenswe_test")
- Time series prediction with Gaussian Processes
In this section we perform predictions based on the input data. Some additional preprocessing in Python is done as well. The transition from Scala to Python is motivated by the use of the python package Gpytorch for implementing the gaussian process model.
3.1 World multistep prediction
As similar operations are performed for processing data, a class is first defined to enable code reuse
from pyspark.sql.functions import col
import matplotlib.pyplot as plt
class GPDataSet():
def __init__(self, df_train, df_test, datacol, filterloc = None, add_input = None):
"""
class for processing input data to GP. As similar code is reused, this class enables some code reuse.
param: 'df_train', training data dataframe
param: 'df_test', test data dataframe
param: 'datacol', data column in dataframe to perform predictions on, e.g. 'new_cases_smoothed'
param: 'filterloc', location column in dataframe to perform predictions on, e.g. 'Sweden'
param: 'add_input', additional location column in dataframe to use as input for predictions, e.g. 'Denmark'
"""
self.df_train = df_train
self.df_test = df_test
self.datacol = datacol
self.filterloc = filterloc
self.add_input = add_input
self.num_xdim = None
def convert_to_numpy(self):
"""
convert dataframe to numpy arrays. This process may takes a while.
"""
# if no filter for location is specified
if self.filterloc is None:
x_train_np = np.array(self.df_train.orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
x_test_np = np.array(self.df_test.orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
y_train_np = np.array(self.df_train.orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
y_test_np = np.array(self.df_test.orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
num_xdim = 1
# if a filter for location is specified
else:
if self.add_input is None:
x_train_np = np.array(self.df_train.filter(col("location") == self.filterloc).orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
x_test_np = np.array(self.df_test.filter(col("location") == self.filterloc).orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
num_xdim = 1
# if prediction should add additional input from e.g. a neighbouring country
else:
x_train_time = np.array(self.df_train.filter(col("location") == self.filterloc).orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
x_test_time = np.array(self.df_test.filter(col("location") == self.filterloc).orderBy("time_idx").select("time_idx").rdd.map(lambda x: x[0]).collect())
x_train_add = np.array(self.df_train.filter(col("location") == self.add_input).orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
x_test_add = np.array(self.df_test.filter(col("location") == self.add_input).orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
x_train = np.stack((x_train_time, x_train_add), axis=0)
x_test = np.stack((x_test_time, x_test_add), axis=0)
x_train_np = np.moveaxis(x_train, 1, 0)
x_test_np = np.moveaxis(x_test, 1, 0)
num_xdim = 2
# output data
y_train_np = np.array(self.df_train.filter(col("location") == self.filterloc).orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
y_test_np = np.array(self.df_test.filter(col("location") == self.filterloc).orderBy("time_idx").select(self.datacol).rdd.map(lambda x: x[0]).collect())
self.x_train_np = x_train_np
self.x_test_np = x_test_np
self.y_train_np = y_train_np
self.y_test_np = y_test_np
self.num_xdim = num_xdim
def plot_numpy_data(self):
"""
plot numpy arrays
"""
if self.num_xdim == 2:
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,6))
ax1.plot(self.x_train_np[:,0], self.y_train_np, 'k*')
ax1.legend(['train data'])
ax1.set_xlabel('time [days]')
ax1.set_ylabel('output')
ax1.set_title('training data')
ax1.grid()
ax2.plot(self.x_train_np[:,0], self.x_train_np[:,1], 'k*')
ax2.legend(['train data'])
ax2.set_xlabel('time [days]')
ax2.set_ylabel('additional input')
ax2.set_title('training data')
ax2.grid()
else:
fig, ax = plt.subplots(1,1, figsize=(12,6))
ax.plot(self.x_train_np, self.y_train_np, 'k*')
ax.legend(['train data'])
ax.set_xlabel('time [days]')
ax.set_ylabel('output')
ax.set_title('training data')
ax.grid()
def get_train_length(self):
if self.num_xdim == 2:
return len(self.x_train_np[:,0])
else:
return len(self.x_train_np)
def process_numpy_data(self, nth_subsample = 4, window_red = 0.8):
"""
reduction of data by subsampling data and reducing length of data window.
"""
assert window_red > 0 and window_red <= 1, "please adjust 'window_red' parameter to be between 0 and 1"
start_idx = int((self.get_train_length())*window_red)
self.x_train = th.tensor(self.x_train_np[start_idx::nth_subsample], dtype=th.float)
self.x_test = th.tensor(self.x_test_np, dtype=th.float)
self.y_train = th.tensor(self.y_train_np[start_idx::nth_subsample], dtype=th.float)
self.y_test = th.tensor(self.y_test_np, dtype=th.float)
self.normalize()
def set_time_to_zero(self):
"""
sets the time vector to start at time zero
"""
if self.num_xdim == 2:
self.x_train_min = self.x_train[:,0].min()
self.x_train[:,0] = self.x_train[:,0] - self.x_train_min
self.x_test[:,0] = self.x_test[:,0] - self.x_train_min
else:
self.x_train_min = self.x_train.min()
self.x_train = self.x_train - self.x_train_min
self.x_test = self.x_test - self.x_train_min
def normalize(self):
"""
normalize the data to improve predictions
"""
self.set_time_to_zero()
self.x_train_mean = self.x_train.mean()
self.x_train_std = self.x_train.std()
self.x_train = (self.x_train - self.x_train_mean) / self.x_train_std
self.x_test = (self.x_test - self.x_train_mean) / self.x_train_std
self.y_train_mean = self.y_train.mean()
self.y_train_std = self.y_train.std()
self.y_train = (self.y_train - self.y_train_mean) / self.y_train_std
self.y_test = (self.y_test - self.y_train_mean) / self.y_train_std
self.data_normalized = True
def plot_reduced_data(self):
"""
plots the reduced training data
"""
with th.no_grad():
if self.num_xdim == 2:
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,6))
ax1.plot(self.x_train[:,0], self.y_train, 'k*')
ax1.legend(['train data'])
ax1.set_xlabel('time [days]')
ax1.set_ylabel('output')
ax1.set_title('training data')
ax1.grid()
ax2.plot(self.x_train[:,0], self.x_train[:,1], 'k*')
ax2.legend(['train data'])
ax2.set_xlabel('time [days]')
ax2.set_ylabel('additional input')
ax2.set_title('training data')
ax2.grid()
else:
fig, ax = plt.subplots(1,1, figsize=(12,6))
ax.plot(self.x_train, self.y_train, 'k*')
ax.legend(['train data'])
ax.set_xlabel('time [days]')
ax.set_ylabel('output')
ax.set_title('training data')
ax.grid()
Use class to convert dataframes to numpy arrays for further processing. Note, the conversion may take a while.
ds_ncworld = GPDataSet(df_ncworld_train, df_ncworld_test, datacol = 'new_cases_smoothed', filterloc = None, add_input=None)
ds_ndworld = GPDataSet(df_ndworld_train, df_ndworld_test, datacol = 'new_deaths_smoothed', filterloc = None, add_input=None)
ds_ncworld.convert_to_numpy()
ds_ndworld.convert_to_numpy()
Plot
ds_ncworld.plot_numpy_data()
ds_ndworld.plot_numpy_data()
Process data by subsampling, reducing data window and normalize data. The gaussian process model is a so called non parametric model and will be mainly based on the data points. As such, to reduce the computation and the complexity of the model, we subsample and reduce the number of datapoints.
ds_ncworld.process_numpy_data(nth_subsample = 4, window_red = 0.8)
ds_ndworld.process_numpy_data(nth_subsample = 4, window_red = 0.8)
Plot processed data
ds_ncworld.plot_reduced_data()
ds_ndworld.plot_reduced_data()
Define gaussian process classes using Gpytorch and different kernels.
import gpytorch as gpth
class GPLinearRBF(gpth.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):
super(GPLinearRBF, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpth.means.ConstantMean()
self.covar_module = gpth.kernels.ScaleKernel(gpth.kernels.LinearKernel() + gpth.kernels.RBFKernel())
def forward(self, x):
x_mean = self.mean_module(x)
x_covar = self.covar_module(x)
return gpth.distributions.MultivariateNormal(x_mean, x_covar)
class GPLinearMatern(gpth.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):
super(GPLinearMatern, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpth.means.ConstantMean()
self.covar_module = gpth.kernels.ScaleKernel(gpth.kernels.LinearKernel() + gpth.kernels.MaternKernel())
def forward(self, x):
x_mean = self.mean_module(x)
x_covar = self.covar_module(x)
return gpth.distributions.MultivariateNormal(x_mean, x_covar)
Define a training class for the Gaussian Process models
import matplotlib.pyplot as plt
import math
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
class GPTrainer():
def __init__(self, gp_model, x_train, x_train_min, x_train_mean, x_train_std, x_test, y_train, y_test, y_train_mean, y_train_std, device='cpu', train_iter = 300, lr=0.1, verbose = True):
"""
class to manage training and prediction of data
param: 'gp_model', name of gaussian process model including kernel to use
param: 'x_train', pytorch tensor (sequence, dim), normalized input training data, starting at time zero
param: 'x_train_min', pytorch tensor, start time of input training data
param: 'x_train_mean', pytorch tensor, mean used when normalizing input training data
param: 'x_train_std', pytorch tensor, std deviation used when normalizing input training data
param: 'x_test', pytorch tensor, normalized input test data, starting at time zero
param: 'y_train', pytorch tensor, normalized output training data
param: 'y_train_mean', pytorch tensor, mean used when normalizing output training data
param: 'y_train_std', pytorch tensor, std deviation used when normalizing output training data
param: 'y_test', pytorch tensor, normalized output test data
param: 'device', cpu or cuda. currently only tested for cpu.
param: 'train_iter', number of training iterations to fit kernel parameters to data
param: 'lr', learning rate
param: 'verbose', print information such as loss during training
"""
# data
self.x_train = x_train.to(device)
self.x_train_min = x_train_min
self.x_train_mean = x_train_mean
self.x_train_std = x_train_std
self.x_test = x_test.to(device)
self.x_cat = th.cat((x_train,x_test),dim=0).to(device)
self.y_train = y_train.to(device)
self.y_train_mean = y_train_mean
self.y_train_std = y_train_std
self.y_test = y_test.to(device)
self.preds = None
# define GP likelihood
self.likelihood = gpth.likelihoods.GaussianLikelihood()
# GP model selection and init
assert gp_model == 'GPLinearRBF' or 'GPLinearMatern', "Error: GP model selected is not defined"
if gp_model == 'GPLinearRBF':
self.model = GPLinearRBF(self.x_train, self.y_train, self.likelihood).to(device)
if gp_model == 'GPLinearMatern':
self.model = GPLinearMatern(self.x_train, self.y_train, self.likelihood).to(device)
# training param
self.train_iter = train_iter
self.lr = lr
self.device = device
self.optimizer = th.optim.Adam(self.model.parameters(), lr=self.lr)
self.loss_fn = gpth.mlls.ExactMarginalLogLikelihood(self.likelihood, self.model)
self.verbose = verbose
# plots
self.fig = None
self.ax = None
def train(self):
"""
training of gaussian process model to fit kernel parameters to data
"""
self.model.train()
self.likelihood.train()
for iter_idx in range(1,self.train_iter+1):
self.optimizer.zero_grad()
out = self.model(self.x_train)
loss = -self.loss_fn(out, self.y_train).mean()
loss.backward()
self.optimizer.step()
if iter_idx % 10 == 0 and self.verbose is True:
print(f"Iter: {iter_idx}, train_loss: {loss.item()}")
def prediction(self):
"""
predict data
"""
self.model.eval()
self.likelihood.eval()
with th.no_grad(): #, gpth.settings.fast_pred_var():
self.preds = self.likelihood(self.model(self.x_cat))
def denormalize_y(self, data):
"""
denormalize the output data
"""
return data*self.y_train_std + self.y_train_mean
def denormalize_x(self, data):
"""
denormalize the input data
"""
return data*self.x_train_std + self.x_train_mean
def plot(self):
"""
plot the data
"""
with th.no_grad():
# extract time index dimension
xdim = None
try:
_, xdim = self.x_train.shape
except:
pass
if xdim == None or xdim == 1:
x_train = self.denormalize_x(self.x_train)
x_test = self.denormalize_x(self.x_test)
x_cat = self.denormalize_x(self.x_cat)
elif xdim > 1:
x_train = self.denormalize_x(self.x_train)[:,0]
x_test = self.denormalize_x(self.x_test)[:,0]
x_cat = self.denormalize_x(self.x_cat)[:,0]
# plot
self.fig, self.ax = plt.subplots(1,1, figsize=(12,6))
lower = self.denormalize_y(self.preds.mean - self.preds.variance.sqrt() * 1.96)
upper = self.denormalize_y(self.preds.mean + self.preds.variance.sqrt() * 1.96)
self.ax.plot(x_train.numpy()+self.x_train_min.numpy(), self.denormalize_y(self.y_train).numpy(), 'k*')
self.ax.plot(x_test.numpy()+self.x_train_min.numpy(), self.denormalize_y(self.y_test).numpy(), 'r*')
self.ax.plot(x_cat.numpy()+self.x_train_min.numpy(), self.denormalize_y(self.preds.mean).numpy(), 'b')
self.ax.fill_between(x_cat.numpy()+self.x_train_min.numpy(), lower.numpy(), upper.numpy(), alpha=0.3)
self.ax.legend(['train data', 'test data', 'predicted mean', 'predicted confidence 95%'])
self.ax.set_xlabel('time [days]')
self.ax.set_ylabel('prediction')
self.ax.set_title('prediction')
self.ax.grid()
def print_data_dim(self):
"""
print shapes for debug purpose
"""
print("data shapes:")
print(f'x_train: {self.x_train.shape}')
print(f'x_test: {self.x_test.shape}')
print(f'x_cat: {self.x_cat.shape}')
print(f'y_train: {self.y_train.shape}')
print(f'y_test: {self.y_test.shape}')
try:
print(f'preds mean: {self.preds.mean.shape}')
except:
pass
def evaluate(self):
"""
evaluation of predictions
"""
with th.no_grad():
# data to evaluate
test_data = self.denormalize_y(self.y_test)
predictions = self.denormalize_y(self.preds.mean[-len(self.y_test):])
# evaluate
error_mse = mean_squared_error(test_data, predictions)
error_rmse = math.sqrt(error_mse)
error_abs = mean_absolute_error(test_data, predictions)
avg_gt = test_data.sum() / len(test_data)
mse_percentage = error_rmse / avg_gt * 100
abs_percentage = error_abs / avg_gt * 100
# print
print('Average of groundtruth: %.3f' % avg_gt)
print('Test MSE: %.3f' % error_mse)
print('Test RMSE: %.3f' % error_rmse)
print('RMSE percentage error: %.3f' % mse_percentage, '%')
print('Test ABS: %.3f' % error_abs)
print('ABS percentage error: %.3f' % abs_percentage, '%')
Init the training class for the Gaussian Process models
pred_ncworld = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ncworld.x_train, x_train_min=ds_ncworld.x_train_min, x_train_mean=ds_ncworld.x_train_mean, x_train_std=ds_ncworld.x_train_std, x_test=ds_ncworld.x_test, y_train=ds_ncworld.y_train, y_test=ds_ncworld.y_test, y_train_mean=ds_ncworld.y_train_mean, y_train_std=ds_ncworld.y_train_std)
pred_ndworld = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ndworld.x_train, x_train_min=ds_ndworld.x_train_min, x_train_mean=ds_ndworld.x_train_mean, x_train_std=ds_ndworld.x_train_std, x_test=ds_ndworld.x_test, y_train=ds_ndworld.y_train, y_test=ds_ndworld.y_test, y_train_mean=ds_ndworld.y_train_mean, y_train_std=ds_ndworld.y_train_std)
Training
print('\ntraining new cases prediction model')
pred_ncworld.train()
print('\ntraining new deaths prediction model')
pred_ndworld.train()
Prediction and plot
pred_ncworld.prediction()
pred_ncworld.plot()
pred_ncworld.ax.set_ylabel('new cases smoothed')
pred_ncworld.ax.set_title('new cases smoothed')
pred_ndworld.prediction()
pred_ndworld.plot()
pred_ndworld.ax.set_ylabel('new deaths smoothed')
pred_ndworld.ax.set_title('new deaths smoothed')
To perform onestep ahead mean prediction, we define some additional functions
def onestep_prediction(dataset):
onestep = th.cat((dataset.y_train, dataset.y_test), dim=0) # output vector
for idx in range(len(dataset.y_test)):
# define training and test data. Training data is iteratively, step by step, expanded by the use of test data
x_train = th.cat((dataset.x_train, dataset.x_test[:idx]), dim=0)
x_test = dataset.x_test[idx:]
y_train = th.cat((dataset.y_train, dataset.y_test[:idx]), dim=0)
y_test = dataset.y_test[idx:]
# create a gaussian process model, train and make predictions
pred_model = GPTrainer(gp_model='GPLinearRBF', x_train=x_train, x_train_min=dataset.x_train_min, x_train_mean=dataset.x_train_mean, x_train_std=dataset.x_train_std, x_test=x_test, y_train=y_train, y_test=y_test, y_train_mean=dataset.y_train_mean, y_train_std=dataset.y_train_std, verbose=False)
pred_model.train()
pred_model.prediction()
# store one step predictions
onestep[len(dataset.y_train) + idx] = pred_model.preds.mean[len(dataset.x_train)+idx]
# plot results
fig, ax = plt.subplots(1,1, figsize=(12,6))
ax.plot(pred_model.x_train_min + pred_model.denormalize_x(dataset.x_test), pred_model.denormalize_y(dataset.y_test),'*r', pred_model.x_train_min + pred_model.denormalize_x(dataset.x_test), pred_model.denormalize_y(onestep[len(dataset.y_train):]),'k*')
ax.legend(['test data', 'prediction mean'])
ax.set_xlabel('time [days]')
ax.set_ylabel('prediction mean')
ax.set_title('one step ahead prediction')
ax.grid()
# return onestep prediction
return onestep
We iteratively predict the next one step ahead
onestep_pred_ncworld = onestep_prediction(ds_ncworld)
onestep_pred_ndworld = onestep_prediction(ds_ndworld)
3.3 Sweden multistep prediction
Use class to convert dataframes to numpy arrays for further processing. Note, the conversion may take a while.
ds_ncswe = GPDataSet(df_ncdenswe_train, df_ncdenswe_test, datacol = 'new_cases_smoothed', filterloc = 'Sweden', add_input=None)
ds_ndswe = GPDataSet(df_nddenswe_train, df_nddenswe_test, datacol = 'new_deaths_smoothed', filterloc = 'Sweden', add_input=None)
ds_ncswe.convert_to_numpy()
ds_ndswe.convert_to_numpy()
Plot data.
ds_ncswe.plot_numpy_data()
ds_ndswe.plot_numpy_data()
Process data by subsampling, reducing data window and normalize data. The gaussian process model is a so called non parametric model and will be mainly based on the data points. As such, to reduce the computation and the complexity of the model, we subsample and reduce the number of datapoints.
ds_ncswe.process_numpy_data(nth_subsample = 4, window_red = 0.8)
ds_ndswe.process_numpy_data(nth_subsample = 4, window_red = 0.8)
Plot processed data
ds_ncswe.plot_reduced_data()
ds_ndswe.plot_reduced_data()
Init the training class for the Gaussian Process models
pred_ncswe = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ncswe.x_train, x_train_min=ds_ncswe.x_train_min, x_train_mean=ds_ncswe.x_train_mean, x_train_std=ds_ncswe.x_train_std, x_test=ds_ncswe.x_test, y_train=ds_ncswe.y_train, y_test=ds_ncswe.y_test, y_train_mean=ds_ncswe.y_train_mean, y_train_std=ds_ncswe.y_train_std)
pred_ndswe = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ndswe.x_train, x_train_min=ds_ndswe.x_train_min, x_train_mean=ds_ncswe.x_train_mean, x_train_std=ds_ncswe.x_train_std, x_test=ds_ndswe.x_test, y_train=ds_ndswe.y_train, y_test=ds_ndswe.y_test, y_train_mean=ds_ndswe.y_train_mean, y_train_std=ds_ndswe.y_train_std)
Training
print('\ntraining new cases prediction model')
pred_ncswe.train()
print('\ntraining new deaths prediction model')
pred_ndswe.train()
Prediction and plot
pred_ncswe.prediction()
pred_ncswe.plot()
pred_ncswe.ax.set_ylabel('new cases smoothed')
pred_ncswe.ax.set_title('new cases smoothed')
pred_ndswe.prediction()
pred_ndswe.plot()
pred_ndswe.ax.set_ylabel('new deaths smoothed')
pred_ndswe.ax.set_title('new deaths smoothed')
onestep_pred_ncswe = onestep_prediction(ds_ncswe)
onestep_pred_ndswe = onestep_prediction(ds_ndswe)
3.5 Sweden multistep prediction with additional data input from neighbouring country
Assuming we knew the results from a neighbouring country and if data is correlated, we could presumably improve the prediction
Plot resulting data used for prediction. Both plots appears to follow a form of trend.
ds_ncswex = GPDataSet(df_ncdenswe_train, df_ncdenswe_test, datacol = 'new_cases_smoothed', filterloc = 'Sweden', add_input='Denmark')
ds_ndswex = GPDataSet(df_nddenswe_train, df_nddenswe_test, datacol = 'new_deaths_smoothed', filterloc = 'Sweden', add_input='Denmark')
ds_ncswex.convert_to_numpy()
ds_ndswex.convert_to_numpy()
Plot data.
ds_ncswex.plot_numpy_data()
ds_ndswex.plot_numpy_data()
Process data by subsampling, reducing data window and normalize data. The gaussian process model is a so called non parametric model and will be mainly based on the data points. As such, to reduce the computation and the complexity of the model, we subsample and reduce the number of datapoints.
ds_ncswex.process_numpy_data(nth_subsample = 4, window_red = 0.8)
ds_ndswex.process_numpy_data(nth_subsample = 4, window_red = 0.8)
Plot processed data
ds_ncswex.plot_reduced_data()
ds_ndswex.plot_reduced_data()
Init the training class for the Gaussian Process models
pred_ncswex = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ncswex.x_train, x_train_min=ds_ncswex.x_train_min, x_train_mean=ds_ncswex.x_train_mean, x_train_std=ds_ncswex.x_train_std, x_test=ds_ncswex.x_test, y_train=ds_ncswex.y_train, y_test=ds_ncswex.y_test, y_train_mean=ds_ncswex.y_train_mean, y_train_std=ds_ncswex.y_train_std)
pred_ndswex = GPTrainer(gp_model='GPLinearRBF', x_train=ds_ndswex.x_train, x_train_min=ds_ndswex.x_train_min, x_train_mean=ds_ndswex.x_train_mean, x_train_std=ds_ndswex.x_train_std, x_test=ds_ndswex.x_test, y_train=ds_ndswex.y_train, y_test=ds_ndswex.y_test, y_train_mean=ds_ndswex.y_train_mean, y_train_std=ds_ndswex.y_train_std)
Training
print('\ntraining new cases prediction model')
pred_ncswex.train()
print('\ntraining new deaths prediction model')
pred_ndswex.train()
pred_ncswex.prediction()
pred_ncswex.plot()
pred_ncswex.ax.set_ylabel('new cases smoothed')
pred_ncswex.ax.set_title('new cases smoothed')
pred_ndswex.prediction()
pred_ndswex.plot()
pred_ndswex.ax.set_ylabel('new deaths smoothed')
pred_ndswex.ax.set_title('new deaths smoothed')
- Evaluation
Evaluation of new cases smoothed
pred_ncworld.evaluate()
Average of groundtruth: 554788.000
Test MSE: 1850106112.000
Test RMSE: 43012.860
RMSE percentage error: 7.753 %
Test ABS: 33457.289
ABS percentage error: 6.031 %
Evaluation of new deaths smoothed
pred_ndworld.evaluate()
Average of groundtruth: 8842.582
Test MSE: 8629836.000
Test RMSE: 2937.658
RMSE percentage error: 33.222 %
Test ABS: 2727.578
ABS percentage error: 30.846 %
To evaluate the onestep ahead prediction, we define an additional function
def evaluate(test_data, prediction):
with th.no_grad():
# evaluate
error_mse = mean_squared_error(test_data, prediction)
error_rmse = math.sqrt(error_mse)
error_abs = mean_absolute_error(test_data, prediction)
avg_gt = test_data.sum() / len(test_data)
mse_percentage = error_rmse / avg_gt * 100
abs_percentage = error_abs / avg_gt * 100
# print
print('Average of groundtruth: %.3f' % avg_gt)
print('Test MSE: %.3f' % error_mse)
print('Test RMSE: %.3f' % error_rmse)
print('RMSE percentage error: %.3f' % mse_percentage, '%')
print('Test ABS: %.3f' % error_abs)
print('ABS percentage error: %.3f' % abs_percentage, '%')
Evaluation of new cases smoothed
# data to evaluate
test = pred_ncworld.denormalize_y(ds_ncworld.y_test)
preds = pred_ncworld.denormalize_y(onestep_pred_ncworld[-len(ds_ncworld.y_test):])
evaluate(test, preds)
Average of groundtruth: 554788.000
Test MSE: 38076252.000
Test RMSE: 6170.596
RMSE percentage error: 1.112 %
Test ABS: 4394.894
ABS percentage error: 0.792 %
Evaluation of new deaths smoothed
# data to evaluate
test = pred_ndworld.denormalize_y(ds_ndworld.y_test)
preds = pred_ndworld.denormalize_y(onestep_pred_ndworld[-len(ds_ndworld.y_test):])
evaluate(test, preds)
Average of groundtruth: 8842.582
Test MSE: 29195.436
Test RMSE: 170.867
RMSE percentage error: 1.932 %
Test ABS: 137.978
ABS percentage error: 1.560 %
Evaluation of new cases smoothed
pred_ncswe.evaluate()
Average of groundtruth: 4238.664
Test MSE: 4737463.500
Test RMSE: 2176.572
RMSE percentage error: 51.350 %
Test ABS: 2068.833
ABS percentage error: 48.809 %
Evaluation of new deaths smoothed
pred_ndswe.evaluate()
Average of groundtruth: 26.254
Test MSE: 755.362
Test RMSE: 27.484
RMSE percentage error: 104.686 %
Test ABS: 22.457
ABS percentage error: 85.540 %
Evaluation of new cases smoothed
# data to evaluate
test = pred_ncswe.denormalize_y(ds_ncswe.y_test)
preds = pred_ncswe.denormalize_y(onestep_pred_ncswe[-len(ds_ncswe.y_test):])
evaluate(test, preds)
Average of groundtruth: 4238.664
Test MSE: 77977.289
Test RMSE: 279.244
RMSE percentage error: 6.588 %
Test ABS: 235.829
ABS percentage error: 5.564 %
Evaluation of new deaths smoothed
# data to evaluate
test = pred_ndswe.denormalize_y(ds_ndswe.y_test)
preds = pred_ndswe.denormalize_y(onestep_pred_ndswe[-len(ds_ndswe.y_test):])
evaluate(test, preds)
Average of groundtruth: 26.254
Test MSE: 33.230
Test RMSE: 5.765
RMSE percentage error: 21.957 %
Test ABS: 3.928
ABS percentage error: 14.963 %
Evaluation of new cases smoothed
pred_ncswex.evaluate()
Average of groundtruth: 4238.664
Test MSE: 2658296.750
Test RMSE: 1630.428
RMSE percentage error: 38.466 %
Test ABS: 1537.534
ABS percentage error: 36.274 %
Evaluation of new deaths smoothed
pred_ndswex.evaluate()
Average of groundtruth: 26.254
Test MSE: 756.587
Test RMSE: 27.506
RMSE percentage error: 104.771 %
Test ABS: 22.476
ABS percentage error: 85.612 %
- Conclusions and reflections
Predictions using gaussian processes were made for both new cases smoothed and new deaths smoothed. This included an aggregation of many countries within the world as well as for Sweden. Making single step ahead predictions resulted naturally in smaller errors compared to the multistep predictions. The multistep prediction for Sweden could be improved for new cases smoothed using correlated data from a neighbouring country.
We believe the Gaussian process model is a valuable tool for making predictions. With this work, we would like to highlight that the data points and kernel chosen for the Gaussian process heavily biases the model and strongly influences the predictions. In this project, we selected a combination of a linear kernel and a radial basis function. The reason being that there is a trend in the data and that nearby data points should be more similar than data points further away. By inspecting the data carefully, a more optimal kernel could likely be selected. Also, the confidence intervall provided with the gaussian process model is based on that the kernel is correctly representing the underlying distribution of data.
In terms of scalability, the predictions are somewhat scalable as a user can define a window of data for making the predictions. Furthermore, GPU support could be included and approximations to the gaussian process model could be made.
Compared to the ARIMA model, the gaussian process model performed in most cases slightly worse. However, this may be due to the selection of data points and kernel considering that the gaussian process model is heavily biased by these choices. One reflection is that if one approximately knows the distribution of the underlying data, a gaussian process model with a proper selected kernel may be a good choice.
Genomics Analysis with Glow and Spark
Project Members - Karin Stacke - Milda Pocoviciute
Link to video: https://youtu.be/6VMeHixsJ3g
The aim of this notebook is to analyze genomic data in the form of SNPs, and see how different variations of SNPs correlated to ethnicity. This work is inspired by the paper from Huang et al., Genetic differences among ethnic groups (2015), and the notebook https://glow.readthedocs.io/en/latest/_static/notebooks/tertiary/gwas.html.
Problem background
Each person as a unique setup of DNA. The DNA consitst of necleotides, structured as a double helix, where each neucliotide binds to one other. The DNA is split between 23 pairs of chromosomes. There are four different neucliotides, commonly denoted as A, T, C, and G.
Single nucleotide polymorphisms (SNPs) are the most common genetic variation between individuals. Each SNP represents a variation of a specific neucleotide. For example, a SNP may replace the nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA. The recent sharp decrease in the cost of sequencing a human genome, made it possible to collect and make publically available such datasets for research.
Data
Genomic data is collected from the 1000 Genomes project, with corresponding sample annotations for all individuals in the dataset. For simiplicty, we are only analyzing SNPs assosiated to chromosome 1, however this study can easily be extended to include SNPs from all chromosomes.
The data consists of approximatly 6.5 million SNPs from 2504 subjects.
Method
After reading the data, we filter low quality SNPs. After this operation, we end up with approx. 400'000 SNPs.
By doing a correlation analysis using PCA, we see that different ethnicities cluster together. There is therfore a good reason to suppose that SNPs can be used to predict ethnicity. However, since not all SNPs are correlated to ethnicity, we want to only use the most relevant ones for linear regression analysis.
For each SNPs, we calculate the correlation between the values and ethnicity, and take the SNPs with a higher correlation than a threshold value of 0.6 (or maximum 2000 SNPs).
Using the selected SNPs as features, we do a linear regression analysis. We make some plots.
import matplotlib.pyplot as plt
import numpy as np
from pyspark.sql.functions import array_min, col, monotonically_increasing_id, when, log10
from pyspark.sql.types import StringType
from pyspark.ml.linalg import Vector, Vectors, SparseVector, DenseMatrix
from pyspark.ml.stat import Summarizer
from pyspark.mllib.linalg.distributed import RowMatrix
from pyspark.mllib.util import MLUtils
from pyspark.ml.feature import IndexToString, StringIndexer
from pyspark.ml.feature import OneHotEncoder
from pyspark.sql.functions import col,lit
from dataclasses import dataclass
import mlflow
import glow
glow.register(spark)
# Helper functions
def plot_layout(plot_title, plot_style, xlabel):
plt.style.use(plot_style) #e.g. ggplot, seaborn-colorblind, print(plt.style.available)
plt.title(plot_title)
plt.xlabel(r'${0}$'.format(xlabel))
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['top'].set_visible(False)
plt.gca().yaxis.set_ticks_position('left')
plt.gca().xaxis.set_ticks_position('bottom')
plt.tight_layout()
def plot_histogram(df, col, xlabel, xmin, xmax, nbins, plot_title, plot_style, color, vline, out_path):
plt.close()
plt.figure()
bins = np.linspace(xmin, xmax, nbins)
df = df.toPandas()
plt.hist(df[col], bins, alpha=1, color=color)
if vline:
plt.axvline(x=vline, linestyle='dashed', linewidth=2.0, color='black')
plot_layout(plot_title, plot_style, xlabel)
plt.savefig(out_path)
plt.show()
def calculate_pval_bonferroni_cutoff(df, cutoff=0.05):
bonferroni_p = cutoff / df.count()
return bonferroni_p
def get_sample_info(vcf_df, sample_metadata_df):
"""
get sample IDs from VCF dataframe, index them, then join to sample metadata dataframe
"""
sample_id_list = vcf_df.limit(1).select("genotypes.sampleId").collect()[0].__getitem__("sampleId")
sample_id_indexed = spark.createDataFrame(sample_id_list, StringType()). \
coalesce(1). \
withColumnRenamed("value", "Sample"). \
withColumn("index", monotonically_increasing_id())
sample_id_annotated = sample_id_indexed.join(sample_metadata_df, "Sample")
return sample_id_annotated
# Paths to store/find data.
# Since a lot of the processing takes a long time, we store intermediate results.
vcf_path = "dbfs:///datasets/sds/genomics/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz"
delta_silver_path = "/mnt/gwas_test/snps.delta"
gwas_results_path = "/mnt/gwas_test/gwas_results.delta"
phenotype_path = "/databricks-datasets/genomics/1000G/phenotypes.normalized"
sample_info_path = "/databricks-datasets/genomics/1000G/samples/populations_1000_genomes_samples.csv"
principal_components_path = "/dbfs/datasets/sds/genomics/pcs.delta"
hwe_path = "dbfs:///datasets/sds/genomics/hwe.delta"
vectorized_path = "dbfs:///datasets/sds/genomics/vectorized.delta"
delta_gold_path = "dbfs:///datasets/sds/genomics/snps.qced.delta.delta"
The data used was dowloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr1.phase3shapeit2mvncallintegratedv5a.20130502.genotypes.vcf.gz
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz
Read data
The data is read using the Glow, an open-source library for working with genomics data in a scallable way. It is inlcuded when enabling "Databricks Runtime for Genomics", allowing easy read of genomic-specific file formats, and other helper methods.
Load and view the vcf files. The info fields are combined to one column.
vcf_view_unsplit = spark.read.format("vcf"). \
option("flattenInfoFields", "false"). \
load(vcf_path)
display(vcf_view_unsplit.withColumn("genotypes", col("genotypes")[1]))
In the dataframe above, we see that we have columns named "referenceAllele" and "alternateAlleles". The data so called variations, i.e., genetic sequences which are different between two individuals. The difference may appear differently, and each difference is called an allele. In the data, we have reference genomes, and the alternate alleles are all the variations at a specific position which is found amoung the analyzed subjects.
We do not want multiple alternative allelels in one row, so we split them using the split_miltiallelics
function from Glow.
vcf_view = glow.transform("split_multiallelics", vcf_view_unsplit)
display(vcf_view.withColumn("genotypes", col("genotypes")[1]))
We now save our modified dataframe in the Delta format (which compared to VCF is more user friendly). At the same time, we calulcate som neccessary statistics, which we will use later, using the Glow functions call_summary_stats
and hardy_weinberg
.
# NOTE - this takes approx 2 hours
vcf_view.selectExpr("*", "expand_struct(call_summary_stats(genotypes))", "expand_struct(hardy_weinberg(genotypes))"). \
write. \
mode("overwrite"). \
format("delta"). \
save(delta_silver_path)
The statistics we calculated, as well as the Hardy-Weinberg equilibrium p-values (which basically denotes the probability of a given allele is probable to be true or may be a reading mistake), are used to filter out low quality SNPs.
We read the saved dataframe, and filter the dataframe.
# Hyper paramters
allele_freq_cutoff = 0.05
num_pcs = 5 #number of principal components
hwe = spark.read.format("delta"). \
load(delta_silver_path). \
where((col("alleleFrequencies").getItem(0) >= allele_freq_cutoff) &
(col("alleleFrequencies").getItem(0) <= (1.0 - allele_freq_cutoff))). \
withColumn("log10pValueHwe", when(col("pValueHwe") == 0, 26).otherwise(-log10(col("pValueHwe"))))
hwe.write. \
mode("overwrite"). \
format("delta").save(hwe_path)
hwe = spark.read.format('delta').load(hwe_path)
hwe_cutoff = calculate_pval_bonferroni_cutoff(hwe)
Filter and save new dataframe, only alleles with in the frequency band, and where the Hardy-Weiburg value is higher than cutoff.
spark.read.format("delta"). \
load(hwe_path). \
where((col("alleleFrequencies").getItem(0) >= allele_freq_cutoff) &
(col("alleleFrequencies").getItem(0) <= (1.0 - allele_freq_cutoff)) &
(col("pValueHwe") >= hwe_cutoff)). \
write. \
mode("overwrite"). \
format("delta"). \
save(delta_gold_path)
# We saved the results to disc and here we jus tload them as the above computation takes a lot of time
hwe_filtered = spark.read.format('delta').load(delta_gold_path)
PCA
We perform a PCA analysis for data exploration purposes.
vectorized = spark.read.format("delta"). \
load(delta_gold_path). \
selectExpr("array_to_sparse_vector(genotype_states(genotypes)) as features"). \
cache()
vectorized.write. \
mode("overwrite"). \
format("delta").save("dbfs:///datasets/sds/genomics/vectorized.delta")
# We saved the results to disc and here we jus tload them as the above computation takes a lot of time
vectorized = spark.read.format('delta').load(vectorized_path)
display(vectorized)
# Note - takes approx 30 min
matrix = RowMatrix(MLUtils.convertVectorColumnsFromML(vectorized, "features").rdd.map(lambda x: x.features))
pcs = matrix.computeSVD(num_pcs)
@dataclass()
class Covariates:
covariates: DenseMatrix
spark.createDataFrame([Covariates(pcs.V.asML())]). \
write. \
format("delta"). \
save(principal_components_path)
pcs_df = spark.createDataFrame(pcs.V.toArray().tolist(), ["pc" + str(i) for i in range(num_pcs)])
display(pcs_df)
pcs_df.coalesce(1).write.format("com.databricks.spark.csv").option("header", "true").save("dbfs:///datasets/sds/genomics/pcs_df.csv")
# Read already caluclated pca
pcs_df = spark.read.format('csv').load("dbfs:///datasets/sds/genomics/pcs_df.csv")
display(pcs_df)
**Read sample metadata and add to PCA components **
We load the subject meta data (which includes information about ethnicity).
sample_metadata = spark.read.option("header", True).csv(sample_info_path)
sample_info = get_sample_info(vcf_view, sample_metadata)
sample_count = sample_info.count()
pcs_indexed = pcs_df.coalesce(1).withColumn("index", monotonically_increasing_id())
pcs_with_samples = pcs_indexed.join(sample_info, "index")
View 1st and 2nd principal component
display(pcs_with_samples)
We see that there there are some clustering based on ethnicity, showing that it could be possible to tell ethnicity from the SNP information of a subject.
Replication of the paper "Genetic differences among ethnic groups", Huang et al. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2328-0
Originally, we had approx. 6.5 milj genetic variations, from 2500 individuals. We first did a quality control by filtering only alleles which occur frequently enough, and those above the Hardy-Weinberg P value cutoff.
Since we still have over 400 000 variations, we need to filter further and only keep the SNPs that have significant correlation to ethnicity. We experiment with several different sizes of the final data set.
Here we read the dataset that contains the population information and encode it for regression
# Read sample information
sample_metadata = spark.read.option("header", True).csv(sample_info_path)
sample_info = get_sample_info(vcf_view, sample_metadata)
sample_count = sample_info.count()
mlflow.log_param("number of samples", sample_count)
From the plot below we can see that our data set is not balanced as we have more samples from african ethnicity than any other. We decided not to balance the data and see if this would have obvious negative impact on our results.
display(sample_info)
# One hot encoding of the labels
from pyspark.ml.feature import IndexToString, StringIndexer
from pyspark.ml.feature import OneHotEncoder
# indexer = StringIndexer(inputCol="Population", outputCol="Population_index")
indexer = StringIndexer(inputCol="super_population", outputCol="Population_index")
model = indexer.fit(sample_info)
indexed = model.transform(sample_info)
# indexed.select("Population", "Population_index").distinct().show(30)
encoder = OneHotEncoder(inputCols=["Population_index"],
outputCols=["population_onehot"])
model = encoder.fit(indexed)
encoded = model.transform(indexed)
encoded.show()
Filtering of SNPs based on chi-squared test
According to Tao Huang et al. (2015), 85 % of SNPs are the same in all human populations, hence we will apply chi-squared based feature selection to try to identify the approximately 15 % of SNPs that are population-specific. We decided to test our classifiers with several sizes of the feature vectors: * all 416,005 available SNPs from Chromosome 1 * most relevant 200,000 SNPs * most relevant 20,000 SNPs * most relevant 2,000 SNPs * most relevant 1,000 SNPs * most relevant 100 SNPs * most relevant 50 SNPs
This would give us a better understanding if the ChiSqSelector is appropriate method for selecting the features in genomics. We aklowedge that Tao Huang et al. (2015) used different metric based on chi-squared distribution, but ChiSqSelector is the closest already implemented method in spark that we could find.
In order to use ChiSqSelector from pyspark.ml.feature, we first need to format the data into a sparce feature vectors and numeric corresponding label.
# Load earlier-filtered data
delta_gold_path = "dbfs:///datasets/sds/genomics/snps.qced.delta.delta"
hwe_filtered = spark.read.format('delta').load(delta_gold_path)
vectorized_2 = hwe_filtered.select(glow.genotype_states('genotypes').alias('states')).collect()
vectorized_df = spark.createDataFrame(vectorized_2)
display(vectorized_df)
We use monotonicallyincreasingid, poseexplode and collect_list methods to achieve the required format of the data:
# Add a column that indicates to which SNP the states belong and then explode SNPs
from pyspark.sql.functions import monotonically_increasing_id
from pyspark.sql.functions import explode, posexplode
from pyspark.sql.functions import col, concat, desc, first, lit, row_number, collect_list
vec_df_dummy = vectorized_df.withColumn("SNP", monotonically_increasing_id())
#vec_exploded_states = vec_df_dummy.withColumn("expanded_states", explode("states"))
vec_exploded_states = vec_df_dummy.select("SNP",posexplode("states"))
vec_exploded_states = vec_exploded_states.withColumnRenamed("pos", "subjectID")
vec_exploded_states = vec_exploded_states.withColumnRenamed("col", "expandedState")
features_df = vec_exploded_states.groupBy("subjectID").agg(collect_list("expandedState").alias("Features"))
features_df = features_df.join(encoded, features_df.subjectID == encoded.index).select("Features","Population_index", "population_onehot")
features_df.show()
Finally, Glow utility function arraytosparse_vector is used to convert the dense feature vectors into sparse vectors
features_df = features_df.selectExpr("array_to_sparse_vector(Features) as features_sparse","Population_index", "population_onehot")
features_df.show()
Fitting ChiSqSelector
As the computation time of ChiSqSelector takes roughly 3 hours for each subset of features, we are saving them to disc.
feature_selection_200_000 = "dbfs:///datasets/sds/genomics/selected_feat_200_000.delta"
from pyspark.ml.feature import ChiSqSelector
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 200000)
# selected_feat_200_000 = selector.fit(features_df).transform(features_df)
# selected_feat_200_000.write.format("delta").save(feature_selection_200_000)
selected_feat_200_000 = spark.read.format('delta').load(feature_selection_200_000)
feature_selection_20_000 = "dbfs:///datasets/sds/genomics/selected_feat_20_000.delta"
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 20000)
# selected_feat_20_000 = selector.fit(features_df).transform(features_df)
# selected_feat_20_000.write.format("delta").save(feature_selection_20_000)
selected_feat_20_000 = spark.read.format('delta').load(feature_selection_20_000)
feature_selection_2000 = "dbfs:///datasets/sds/genomics/selected_feat_2000.delta"
# from pyspark.ml.feature import ChiSqSelector
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 2000)
# selected_feat_2000 = selector.fit(features_df).transform(features_df)
# selected_feat_2000.write.format("delta").save(feature_selection_2000)
selected_feat_2000 = spark.read.format('delta').load(feature_selection_2000)
selected_feat_2000.show()
feature_selection_results_1000 = "dbfs:///datasets/sds/genomics/selected_feat_1000.delta"
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 1000)
# selected_feat_1000 = selector.fit(features_df).transform(features_df)
# selected_feat_1000.write.format("delta").save(feature_selection_results_1000)
#result = selector.fit(features_df).transform(features_df)
selected_feat_1000 = spark.read.format('delta').load(feature_selection_results_1000)
feature_selection_results_100 = "dbfs:///datasets/sds/genomics/selected_feat_100.delta"
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 100)
# selected_feat_100 = selector.fit(features_df).transform(features_df)
# selected_feat_100.write.format("delta").save(feature_selection_results_100)
#result = selector.fit(features_df).transform(features_df)
selected_feat_100 = spark.read.format('delta').load(feature_selection_results_100)
feature_selection_50 = "dbfs:///datasets/sds/genomics/selected_feat_50.delta"
# selector = ChiSqSelector(featuresCol='features_sparse', outputCol='ChiSq',labelCol='Population_index', numTopFeatures = 50)
# selected_feat_50 = selector.fit(features_df).transform(features_df)
# selected_feat_50.write.format("delta").save(feature_selection_50)
selected_feat_50 = spark.read.format('delta').load(feature_selection_50)
Train logistic regression and random forest models
The code below implements a loop over datasets with different number of SNPs, test-train split and fitting of logistic regression and random forest models. The performance is measured in accuracy.
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.classification import RandomForestClassifier
def fit_ML_model(trainSet,testSet, model_in):
# Train model.
model = model_in.fit(trainSet)
# Make predictions.
predictions = model.transform(testSet)
# Evaluate the classifier based on accuracy
evaluator = MulticlassClassificationEvaluator(
labelCol="Population_index", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
return accuracy
rf = RandomForestClassifier(labelCol="Population_index", featuresCol="final_features", numTrees=20)
lr = LogisticRegression(featuresCol="final_features", labelCol="Population_index", maxIter=100)
acc_rf = []
acc_lr = []
# Run the models on full features set (without ChiSqSelector)
features_ready = selected_feat_2000.selectExpr("features_sparse as final_features","Population_index")
trainSet, testSet = features_ready.randomSplit((0.8, 0.2), seed=123)
acc_rf.append(fit_ML_model(trainSet, testSet, rf))
acc_lr.append(fit_ML_model(trainSet, testSet, lr))
# Run the models on selected features by ChiSqSelector
for data_item in [selected_feat_200_000, selected_feat_20_000, selected_feat_2000, selected_feat_1000, selected_feat_100, selected_feat_50]:
# Work around for the bug in ChiSqSelector - otherwise does not work with the random forest model
#ChiSqSelector has a bug that it formats data in a way that RandomForest does not accept. We found this work around to work. Bug reported in https://stackoverflow.com/questions/46269275/spark-ml-issue-in-training-after-using-chisqselector-for-feature-selection
features_ready = data_item.select(glow.vector_to_array('ChiSq').alias('features_dense'), "Population_index", "ChiSq")
features_ready = features_ready.selectExpr("array_to_sparse_vector(features_dense) as final_features","Population_index")
trainSet, testSet = features_ready.randomSplit((0.8, 0.2), seed=123)
acc_rf.append(fit_ML_model(trainSet, testSet, rf))
acc_lr.append(fit_ML_model(trainSet, testSet, lr))
import matplotlib.pyplot as plt
rf_plot = plt.scatter(x=['all_feat', '200,000', '20,000', '2,000', '1,000', '100', '50'], y=acc_rf, c='r')
lf_plot = plt.scatter(x=['all_feat', '200,000', '20,000', '2,000', '1,000', '100', '50'], y=acc_lr, c='b')
plt.xlabel("Number of features")
plt.ylabel("Accuracy")
plt.legend((rf_plot, lf_plot),
('Random forest', 'Logistic regression'),
scatterpoints=1,
bbox_to_anchor=(1.5, 1),
ncol=1,
fontsize=12)
plt.show()
The plot above shows the accuracy of random forest and logistic regression classifiers on predicting the ethnicity from prepared SNPs. Both classifiers preformed much better than random guessing, hence the ethnicity information is clearly encoded in SNPs. The logistic regression consistently outperformed random forest and reached accuracy over 90 %. We can also see that random forest was sensitive to the feature selection and it's performance droped once fewer that the all available SNPs (416,005 SNPs) were used. In contrast, logistic regression performed equally well with half of the available features (200,000 SNPs). This indicates that having well-tuned classifier and an appropriate feature selector allows us to reduce the required number of features dramatically without compromising the performance.
The work could be improved by testing other ways of selecting the relevant SNPs, tuning the hyperparameters in a grid-search manner, building confidence intervals based on bootstrapping or cross-validation and testing other types of classifiers.
Distributed combinatorial bandits
Group Project Authors:
- Niklas Åkerblom
- Jonas Nordlöf
- Emilio Jorge
Link to video presentation: Video
Idea
We try to solve a routing problem, that is trying to tell a vechicle what the sportest path is to a destination. The problem is that the dispatcher knows the connections in the graph but not the length of each edge. The dispatcher learns how long it takes to traverse a path when a vehicle travels it. This makes the routing problem an online learning problem such that the dispatcher has to learn which paths to tell the vehicle to take in a way that finds the best path, both in terms of speed and gaining information about future good paths (more on this later). Additionally the edges are stochastic, such that one traversal is no enough to get perfect information.
This setting can be seen as a case of a combinatorial bandit where we have to select a set of edges that reach the destination from our start while balancing the need of getting a fast route with obtaining better estimates of edges such that future paths can be more efficient (this is known as exploration-explotation tradeoff).
Distributing this task could be an interesting idea, both since multiple dispatchers and vehicles could work in parallell (which we do not consider here) but also that large graphs can be sped up through distributed computations in the shortest path problems that arise.
Practicalities
To make our task more realistic we have used data from OpenStreetMap, a collection of real world map data to create a graph consisting of real world roads. We also generate some synthetic data to experiment with.
The graph network then goes into our contextual bandit algorithm which samples edge weights from a belief and then selects the shortest path from this sampled graph. This leads to an algorithm with very nice theoretical properties in terms of online learning. This method is well known in the online learning community, but as far as we know has not been done in a distributed fashion.
import org.apache.spark.sql._
import scala.sys.process._
import org.apache.spark.sql.functions.{col}
def toMap(tupesArray: Seq[Row]): Option[Map[String, String]] = {
if (tupesArray == null) {
None
} else {
val tuples = tupesArray.map(e => {
(
e.getAs[String]("key"),
e.getAs[String]("value")
)
})
Some(tuples.toMap)
}
}
def handleCommon()(df:DataFrame):DataFrame = {
val toMapUDF = udf(toMap _)
df.drop("uid", "user_sid", "changeset", "version", "timestamp")
.withColumn("tags", toMapUDF(col("tags")))
}
import org.apache.spark.sql._
import scala.sys.process._
import org.apache.spark.sql.functions.col
toMap: (tupesArray: Seq[org.apache.spark.sql.Row])Option[Map[String,String]]
handleCommon: ()(df: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
sqlContext.setConf("spark.sql.parquet.binaryAsString","true")
val nodeDF = sqlContext.read.parquet("dbfs:/FileStore/group14/sweden-latest_osm_pbf_node.parquet").transform(handleCommon())
val wayDF = sqlContext.read.parquet("dbfs:/FileStore/group14/sweden_latest_osm_pbf_way.parquet").transform(handleCommon())
nodeDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: bigint, tags: map<string,string> ... 2 more fields]
wayDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: bigint, tags: map<string,string> ... 1 more field]
import org.apache.spark.sql._
import org.apache.spark.sql.functions.{explode,arrays_zip, concat,array, lit}
val wayDF_exploded = wayDF.withColumn("exploded", explode(arrays_zip(concat($"nodes.nodeId",array(lit(-1L))), concat(array(lit(-1L)),$"nodes.nodeId"))))
val wayDF_filtered = wayDF_exploded.filter($"exploded.0" > 0 && $"exploded.1" > 0)
import org.apache.spark.sql._
import org.apache.spark.sql.functions.{explode, arrays_zip, concat, array, lit}
wayDF_exploded: org.apache.spark.sql.DataFrame = [id: bigint, tags: map<string,string> ... 2 more fields]
wayDF_filtered: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: bigint, tags: map<string,string> ... 2 more fields]
import org.apache.spark.sql.functions._
val wayNodeDF = wayDF_exploded.select($"exploded.0".as("start"), $"exploded.1".as("end"),$"tags.highway", $"tags.maxspeed")
.filter($"highway" isin ("motorway","trunk","primary","secondary", "tertiary", "unclassified", "residential","motorway_link", "trunk_link", "primary_link", "secondary_link", "tertiary_link"))
wayNodeDF.createOrReplaceTempView("wayHighway")
val wayNodeDF_nonull = wayNodeDF.withColumn("maxspeed", when($"maxspeed".isNull && col("highway") == "motorway", 110)
.when($"maxspeed".isNull && col("highway")=="primary", 50).when($"maxspeed".isNull && col("highway")=="secondary", 50).when($"maxspeed".isNull && col("highway")=="motorway_link", 50)
.when($"maxspeed".isNull && col("highway")=="residential", 15).when($"maxspeed".isNull, 50)
.otherwise($"maxspeed"))
wayNodeDF_nonull.createOrReplaceTempView("wayHighway")
import org.apache.spark.sql.functions._
wayNodeDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [start: bigint, end: bigint ... 2 more fields]
wayNodeDF_nonull: org.apache.spark.sql.DataFrame = [start: bigint, end: bigint ... 2 more fields]
import org.apache.spark.sql.functions._
val nodeLatLonDF = nodeDF
.select($"id".as("nodeId"), $"latitude".as("startLat"), $"longitude".as("startLong"))
val endnodeLatLonDF = nodeDF
.select($"id".as("nodeId2"), $"latitude".as("endLat"), $"longitude".as("endLong"))
val wayGeometryDF = wayNodeDF_nonull.join(nodeLatLonDF, $"start" === $"nodeId").join(endnodeLatLonDF, $"end" === $"nodeId2")
val wayGeometry_distDF = wayGeometryDF.withColumn("a", pow(sin(radians($"endLat" - $"startLat") / 2), 2) + cos(radians($"startLat")) * cos(radians($"endLat")) * pow(sin(radians($"endLong" - $"startLong") / 2), 2))
.withColumn("distance", atan2(org.apache.spark.sql.functions.sqrt($"a"), org.apache.spark.sql.functions.sqrt(-$"a" + 1)) * 2 * 6371)
.filter($"endLat"<55.4326186d && $"endLong">13.7d) //Small area south of sweden.
.withColumn("time", $"distance"/$"maxspeed").select("time", "start", "end", "distance", "maxspeed")
wayGeometry_distDF.createOrReplaceTempView("wayGeometry_distDF")
import org.apache.spark.sql.functions._
nodeLatLonDF: org.apache.spark.sql.DataFrame = [nodeId: bigint, startLat: double ... 1 more field]
endnodeLatLonDF: org.apache.spark.sql.DataFrame = [nodeId2: bigint, endLat: double ... 1 more field]
wayGeometryDF: org.apache.spark.sql.DataFrame = [start: bigint, end: bigint ... 8 more fields]
wayGeometry_distDF: org.apache.spark.sql.DataFrame = [time: double, start: bigint ... 3 more fields]
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
val eps = 0.000001
val edges: RDD[Edge[Double]] = wayGeometry_distDF
.select("start", "end", "time").rdd.map(line => Edge(line.getAs("start"), line.getAs("end"), line.getAs("time")))
val graph = Graph.fromEdges(edges, "defaultname")
graph.cache()
println("Num edges:")
println(graph.edges.toDF.count())
println("Num vertices:")
println(graph.vertices.toDF.count())
Num edges:
4667
Num vertices:
4488
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
eps: Double = 1.0E-6
edges: org.apache.spark.rdd.RDD[org.apache.spark.graphx.Edge[Double]] = MapPartitionsRDD[1075908] at map at command-2294440354339724:6
graph: org.apache.spark.graphx.Graph[String,Double] = org.apache.spark.graphx.impl.GraphImpl@7f4c143a
The shortest path algorithm
The implemented shorthest path alborithm uses the the distributed Pregel algorithm and is divided into two parts.
The first part is based on the code in http://lamastex.org/lmse/mep/src/GraphXShortestWeightedPaths.html. As the original code did not have have all functionality desiered functionality, the algorithm did find the shortest distance but didn't keep track of the path itself, the algorithm was extend with this functionality.
The first part takes a graph, where the edges are double values representing the cost of trevelling between its connected nodes, and an array of the ids of each goal node. As output, it provides a graph where each node containse a Map-object of the different landmarks/goal nodes. When a lookup is made in the map from a specific node, a tuple contaning the shortest distance, the id of the next node in the path and the id of the current node. The last element serves no pupose in the final results but is used as a form of stopping critera in the algorithm.
The second part transforms the output of the first part to a "path graph" where each edge is marked with either a 1 or a 0 depending on if it is used in a path between a starting node and a goal node. Altough this recursion can be performed on a single machine for small examples, this procedure is also implemented using the Pregel algorithm to handle situations of millions of edges.
The input of the second part is the graph created in the first part as well as the id of a single goal node and a start node. The goal node has to be in the set of goal nodes used in the first part. This part outputs a "path graph" where each edge is given the value 1 or 0 depending on if it is on the shortest path or not.
import scala.reflect.ClassTag
import org.apache.spark.graphx._
/**
* Computes shortest weighted paths to the given set of goal nodes, returning a graph where each
* vertex attribute is a map containing the shortest-path distance to each reachable landmark.
* Currently supports only Graph of [VD, Double], where VD is an arbitrary vertex type.
*
* The object also include a function which transforms the resulting graph into a path_graph between a
* specific starting node and goal node. Each edge in the path_grpah is either 1 or 0 depending if it is
* the shortest path or not.
*
*/
object ShortestPath extends Serializable {
// When finding the shortest path each node stores a map from the itself to each goal node.
// The map returns an array includeing the total distance to the goal node as well as the
// next node pn the shortest path to the goal node. The last value in the array is only
// populated with the nodes own id and is only used for computational convenience.
type SPMap = Map[VertexId, Tuple3[Double, VertexId, VertexId]]
// PN holds the information of the path nodes which are used for creating a path graph
// PN = ('Distance left to goal node', 'Next path node id', 'Goal node', 'Is on path')
type PN = Tuple4[Double, VertexId, VertexId, Boolean]
private val INITIAL_DIST = 0.0
private val DEFAULT_ID = -1L
private val INFINITY = Int.MaxValue.toDouble
private def makeMap(x: (VertexId, Tuple3[Double, VertexId, VertexId])*) = Map(x: _*)
//private def incrementMap(spmap: SPMap, delta: Double, id: VertexId): SPMap = {
// spmap.map { case (v, d) => v -> (Tuple3(d._1 + delta, d._3, id)) }
//}
private def incrementMap(spmap: SPMap, delta: Double, srcId: VertexId, dstId: VertexId): SPMap = {
spmap.map { case (v, d) => v -> (Tuple3(d._1 + delta, dstId, srcId)) }
}
private def addMaps(spmap1: SPMap, spmap2: SPMap): SPMap = {
(spmap1.keySet ++ spmap2.keySet).map {
k =>{
if (spmap1.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._1 < spmap2.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._1)
k -> (Tuple3(spmap1.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._1,
spmap1.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._2,
spmap1.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._3))
else
k -> (Tuple3(spmap2.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._1,
spmap2.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._2,
spmap2.getOrElse(k, Tuple3(INFINITY, DEFAULT_ID, DEFAULT_ID))._3))
}
}.toMap
}
// at this point it does not really matter what vertex type is
def run[VD](graph: Graph[VD, Double], landmarks: Seq[VertexId]): Graph[SPMap, Double] = {
val spGraph = graph.mapVertices { (vid, attr) =>
// initial value for itself is 0.0 as Double
if (landmarks.contains(vid)) makeMap(vid -> Tuple3(INITIAL_DIST, DEFAULT_ID, DEFAULT_ID)) else makeMap()
}
val initMaps = makeMap()
def vProg(id: VertexId, attr: SPMap, msg: SPMap): SPMap = {
addMaps(attr, msg)
}
def sendMsg(edge: EdgeTriplet[SPMap, Double]): Iterator[(VertexId, SPMap)] = {
val newAttr = incrementMap(edge.dstAttr, edge.attr, edge.srcId, edge.dstId)
if (edge.srcAttr != addMaps(newAttr, edge.srcAttr)) Iterator((edge.srcId, newAttr))
else Iterator.empty
}
Pregel(spGraph, initMaps)(vProg, sendMsg, addMaps)
}
def create_path_graph[VD](graph: Graph[SPMap, Double], goalId: VertexId, startId: VertexId): Graph[PN, Int] = {
// For a given goal node we remove the lookup map and extend the state to a Tuple5 with the goal id and a boolean
val path = graph.mapEdges(e => 0)
.mapVertices((vertixId, attr) => {
if (attr.contains(goalId)) {
val path_step = attr(goalId)
if (vertixId == path_step._3 && path_step._2 == -1L)
(path_step._1, goalId, goalId, false) // while we are at it, we clean up the state a bit
else
(path_step._1, path_step._2, goalId, false)
} else// If the vertice does not have a map to our goal we add a default value to it
(INFINITY, -1L, -1L, false)
})
def mergeMsg(msg1: VertexId, msg2: VertexId): VertexId = { // we should only get one msg
msg2
}
def vprog(id: VertexId, attr: PN, msg: VertexId): PN = {
// Check that the current node is the one adressed in the message
if (id == msg)
(attr._1, attr._2, attr._3, true)
else // If the message is not addressed to the current node (happens for inital message), use the old value
attr
}
def sendMsg(triplet: EdgeTriplet[PN, Int]): Iterator[(VertexId, VertexId)] = {
// If dstId is the next node on the path and has not yet been activated
if (triplet.srcAttr._2 == triplet.dstId && triplet.srcAttr._4 && !triplet.dstAttr._4)
Iterator((triplet.dstId, triplet.dstId))// Send next msg
else
Iterator.empty// Do nothing
}
Pregel(path, startId)(vprog, sendMsg, mergeMsg).mapTriplets(triplet => {
if(triplet.srcAttr._2 == triplet.dstId && triplet.srcAttr._4)
1
else
0
})
}
}
import scala.reflect.ClassTag
import org.apache.spark.graphx._
defined object ShortestPath
To make the code somewhat more accessible, we wrap the execution of the two parts above in a new function called shortestPath
. This new function takes the id of the start node and a single goal node as well as the input graph as input. The function then ouputs the path graph mentioned above.
import scala.util.Random
def shortestPath(srcId : Long, dstId : Long, graph : Graph[Long, Double], placeholder: Boolean) : Graph[Long, Double] = {
if (placeholder) {
return graph.mapEdges(e => Random.nextInt(2))
} else {
val distanceGraph = ShortestPath.run(graph, Seq(dstId))
val pathGraph = ShortestPath.create_path_graph(distanceGraph, dstId, srcId)
return pathGraph.mapVertices((vid, attr) => 0L).mapEdges(e => e.attr)
}
}
def shortestPath(srcId : Long, dstId : Long, graph : Graph[Long, Double]) : Graph[Long, Double] = {
return shortestPath(srcId, dstId, graph, false)
}
import scala.util.Random
shortestPath: (srcId: Long, dstId: Long, graph: org.apache.spark.graphx.Graph[Long,Double], placeholder: Boolean)org.apache.spark.graphx.Graph[Long,Double] <and> (srcId: Long, dstId: Long, graph: org.apache.spark.graphx.Graph[Long,Double])org.apache.spark.graphx.Graph[Long,Double]
shortestPath: (srcId: Long, dstId: Long, graph: org.apache.spark.graphx.Graph[Long,Double], placeholder: Boolean)org.apache.spark.graphx.Graph[Long,Double] <and> (srcId: Long, dstId: Long, graph: org.apache.spark.graphx.Graph[Long,Double])org.apache.spark.graphx.Graph[Long,Double]
Since we want to work with edge attributes rather than vertex attributes, we can't work directly with graph joins in GraphX, since they only join on vertices. This is a helper method to merge edge attributes of two graphs with identical structure, through an inner join on the respective edge RDDs and create a new graph with a tuple combining edge attributes from both graphs. This will only work if both graphs have identical partitioning strategies.
import scala.reflect.ClassTag
// # Merge edge attributes of two (identical in structure) graphs
def mergeEdgeAttributes[ED1 : ClassTag, ED2 : ClassTag](firstGraph : Graph[Long, ED1], secondGraph : Graph[Long, ED2]) : Graph[Long, (ED1, ED2)] = {
return Graph(firstGraph.vertices, firstGraph.edges.innerJoin(secondGraph.edges) {(id1, id2, first, second) => (first, second)})
}
import scala.reflect.ClassTag
mergeEdgeAttributes: [ED1, ED2](firstGraph: org.apache.spark.graphx.Graph[Long,ED1], secondGraph: org.apache.spark.graphx.Graph[Long,ED2])(implicit evidence$1: scala.reflect.ClassTag[ED1], implicit evidence$2: scala.reflect.ClassTag[ED2])org.apache.spark.graphx.Graph[Long,(ED1, ED2)]
In order to perform distributed sampling from Gaussian distributions in Spark in a reproducible way (specifically for stochastic edge weights in graphs), we want to be able to pass a seed to the random number generator. For this to work consistently, we use the Spark SQL randn
function on the edge RDDs and subsequently build a new graph from the sampled weights.
import scala.util.Random
def graphRandomGaussian(graph : Graph[Long, (Double, Double)], seed : Int, eps : Double, sparkSqlRandom : Boolean) : Graph[Long, Double] = {
if (sparkSqlRandom) {
return Graph(graph.vertices, graph.edges.toDF.select($"srcId", $"dstId", $"attr._1" + org.apache.spark.sql.functions.sqrt($"attr._2") * org.apache.spark.sql.functions.randn(seed)).rdd.map(r => Edge(r.getLong(0), r.getLong(1), r.getDouble(2)))).mapEdges(e => scala.math.max(eps, e.attr))
} else {
return graph.mapEdges(e => scala.math.max(eps, e.attr._1 + Random.nextGaussian() * scala.math.sqrt(e.attr._2)))
}
}
def graphRandomGaussian(graph : Graph[Long, (Double, Double)], seed : Int, eps : Double) : Graph[Long, Double] = {
return graphRandomGaussian(graph, seed, eps, true)
}
import scala.util.Random
graphRandomGaussian: (graph: org.apache.spark.graphx.Graph[Long,(Double, Double)], seed: Int, eps: Double, sparkSqlRandom: Boolean)org.apache.spark.graphx.Graph[Long,Double] <and> (graph: org.apache.spark.graphx.Graph[Long,(Double, Double)], seed: Int, eps: Double)org.apache.spark.graphx.Graph[Long,Double]
graphRandomGaussian: (graph: org.apache.spark.graphx.Graph[Long,(Double, Double)], seed: Int, eps: Double, sparkSqlRandom: Boolean)org.apache.spark.graphx.Graph[Long,Double] <and> (graph: org.apache.spark.graphx.Graph[Long,(Double, Double)], seed: Int, eps: Double)org.apache.spark.graphx.Graph[Long,Double]
RDDs in Spark contain lineage graphs with information about previous operations, for e.g. fault tolerance. These can increase significantly in size after many transformations which may result in reduced performance, especially in iterative algorithms (such as in GraphX). For this reason, we truncate the lineage graph by checkpointing the RDDs.
def locallyCheckpointedGraph[VD : ClassTag, ED : ClassTag](graph : Graph[VD, ED]) : Graph[VD, ED] = {
val mappedGraph = graph.mapEdges(e => e.attr)
val edgeRdd = mappedGraph.edges.map(x => x)
val vertexRdd = mappedGraph.vertices.map(x => x)
edgeRdd.cache()
edgeRdd.localCheckpoint()
edgeRdd.count() // We need this line to force the RDD to evaluate, otherwise the truncation is not performed
vertexRdd.cache()
vertexRdd.localCheckpoint()
vertexRdd.count() // We need this line to force the RDD to evaluate, otherwise the truncation is not performed
return Graph(vertexRdd, edgeRdd)
}
Distributed combinatorial bandit algorithm
The cell below contains the distributed combinatorial bandit algorithm, as well as the simulation framework. In a standard (stochastic) multi-armed bandit problem setting, there is a set of actions \(\mathcal{A}\) wherein each selected action \(a \in \mathcal{A}\) results in the agent receiving a random reward \(r(a)\) from the environment. The distributions of these rewards are unknown and it is the objective of an agent to select actions to learn enough information about the reward distributions such that the long-term rewards can be maximized.
Thompson Sampling is Bayesian bandit algorithm, where the assumption is that the parameters of the reward distributions are drawn from some known prior. By using observed rewards to compute a posterior distribution, the posterior can be used to let the agent explore actions which have a high probability of being optimal. In each iteration, parameters are sampled from the posterior for all actions. The action with the highest (sampled) expected reward is then selected. Thompson Sampling is straightforward to extend to a combinatorial setting, where instead of individual actions, subsets of actions subject to combinatorial constraints are selected in each iteration.
Under the assumption that the travel times individual edges in the road network graph are mutually independent, an online learning version of the shortest path problem can be cast into the combinatorial bandit setting. With the same assumption, the above operations can be performed using Spark and GraphX, in an iterative algorithm. With the exception of the step in which the distributed shortest path algorithm (through pregel) is used to find the path with the lowest (sampled from the posterior distribution) expected travel time, the rest of the steps can be performed almost exclusively by using mapEdges
transformations. In this way, expensive repartitioning can be avoided.
As we see it, the main benefit with this approach is that if the road network graph is very large, sub-graphs can be located on different worker nodes.
NOTE: We run this with a toy example instead of the actual road network graph, since we had performance issues keeping us from evaluating it in a meaningful way.
import scala.math.sqrt
import scala.math.max
println("Starting experiment!")
val startTime = System.currentTimeMillis()
val seed = 1000
val eps = 0.00001
// # Horizon N
var N = 10
// # Source and destination node IDs
//val srcId = 0L
var srcId = 2010606671L
//val dstId = numVertices - 1L
var dstId = 2869293096L
var baseGraph: Graph[Long, Double] = null
// # Toy example
val useToyExample = true
if (useToyExample) {
val numVertices = 10
N = 100
srcId = 0L
dstId = numVertices - 1
baseGraph = Graph.fromEdges(spark.sparkContext.parallelize(1 until numVertices-1).flatMap(vid => List(Edge(0L, vid.toLong, 100.0), Edge(vid.toLong, numVertices-1, 100.0))), 0L)
} else {
baseGraph = graph.mapVertices((vid, attr) => 0L)
}
// # Assumption: Gaussian rewards with known variance
// # Prior graph (map weight to prior mean and variance)
val varFactor = 0.01
val prior = baseGraph.mapVertices((vid, attr) => 0L).mapEdges(e => (e.attr, varFactor * (e.attr * e.attr)))
var posterior = prior
// # Environment (sample true environment from prior)
val env = mergeEdgeAttributes(prior, graphRandomGaussian(prior, seed, eps)).mapEdges(e => (e.attr._2, e.attr._1._2))
// # For regret calculations
val optimal = shortestPath(srcId, dstId, env.mapEdges(e => e.attr._1))
val optimalExpectedCost = mergeEdgeAttributes(optimal, env).edges.map(e => e.attr._1 * e.attr._2._1).reduce(_ + _)
val optimalPathEdges = optimal.edges.filter(e => e.attr == 1).map(e => (e.srcId, e.dstId)).collect()
printf("Optimal path edges: [%s]\n", optimalPathEdges.mkString(","))
// # Array with instant regret values
var lastAction = optimal
var allActions = env.mapEdges(e => Array[Double](0))
// # Run experiment for N iterations
for (t <- 0 until N) {
printf("Iteration %d, elapsed time: %d ms", t, System.currentTimeMillis() - startTime)
// # Checkpoint to break lineage graph
allActions = locallyCheckpointedGraph(allActions)
posterior = locallyCheckpointedGraph(posterior)
// # Find action (super arm) using posterior sampling
val sampledParameters = graphRandomGaussian(posterior, seed+t*2+1, eps)
val action = shortestPath(srcId, dstId, sampledParameters)
lastAction = action
// # Apply action on environments (assuming path is indicated by 1-valued edge attributes) and observe realized costs
val realizedEnv = graphRandomGaussian(env, seed+t*2+2, eps)
val observation = mergeEdgeAttributes(action, realizedEnv).mapEdges(e => e.attr._1 * e.attr._2)
// # Update posterior
posterior = mergeEdgeAttributes(env, mergeEdgeAttributes(action, mergeEdgeAttributes(observation, posterior))).mapEdges(e => {
val trueVar = e.attr._1._2
val act = e.attr._2._1
val obs = e.attr._2._2._1
val pMean = e.attr._2._2._2._1
val pVar = e.attr._2._2._2._2
if (act == 1) {
val newVar = (1/(1/trueVar + 1/pVar))
(newVar*(obs/trueVar + pMean/pVar), newVar)
} else {
(pMean, pVar)
}
})
// # Calculate regret
allActions = mergeEdgeAttributes(allActions, action).mapEdges(e => e.attr._1 :+ e.attr._2)
printf("\n")
}
printf("Starting aggregation of regret values, elapsed time: %d ms\n", System.currentTimeMillis() - startTime)
// # Aggregation of regret values
val countActions = allActions.mapEdges(e => e.attr.reduce(_ + _))
allActions = allActions.cache()
val instantRegretValues = new Array[Double](N)
for (t <- 0 until N) {
val action = allActions.mapEdges(e => e.attr(t+1))
val actionExpectedCost = mergeEdgeAttributes(action, env).edges.map(e => e.attr._1 * e.attr._2._1).reduce(_ + _)
val instantRegret = actionExpectedCost - optimalExpectedCost
instantRegretValues(t) = instantRegret
}
val endTime = System.currentTimeMillis()
printf("Finished experiment! Elapsed time:%d\n", endTime - startTime)
Graph visualization
In order to analys the data we visualize a graph which show the number times it has been visited by the exploration algorithm. When visualised, the edges with multiple visits are marked with a thicker line. Note that the graph will get very cluttered if more than 50 nodes are in the graph.
But first, we need to initialize the d3 package.
package d3
// We use a package object so that we can define top level classes like Edge that need to be used in other cells
// This was modified by Ivan Sadikov to make sure it is compatible the latest databricks notebook
import org.apache.spark.sql._
import com.databricks.backend.daemon.driver.EnhancedRDDFunctions.displayHTML
case class Edge(src: String, dest: String, count: Long)
case class Node(name: String)
case class Link(source: Int, target: Int, value: Long)
case class Graph(nodes: Seq[Node], links: Seq[Link])
object graphs {
// val sqlContext = SQLContext.getOrCreate(org.apache.spark.SparkContext.getOrCreate()) /// fix
val sqlContext = SparkSession.builder().getOrCreate().sqlContext
import sqlContext.implicits._
def force(clicks: Dataset[Edge], height: Int = 100, width: Int = 960): Unit = {
val data = clicks.collect()
val nodes = (data.map(_.src) ++ data.map(_.dest)).map(_.replaceAll("_", " ")).toSet.toSeq.map(Node)
val links = data.map { t =>
Link(nodes.indexWhere(_.name == t.src.replaceAll("_", " ")), nodes.indexWhere(_.name == t.dest.replaceAll("_", " ")), t.count / 20 + 1)
}
showGraph(height, width, Seq(Graph(nodes, links)).toDF().toJSON.first())
}
/**
* Displays a force directed graph using d3
* input: {"nodes": [{"name": "..."}], "links": [{"source": 1, "target": 2, "value": 0}]}
*/
def showGraph(height: Int, width: Int, graph: String): Unit = {
displayHTML(s"""
<style>
.node_circle {
stroke: #777;
stroke-width: 1.3px;
}
.node_label {
pointer-events: none;
}
.link {
stroke: #777;
stroke-opacity: .2;
}
.node_count {
stroke: #777;
stroke-width: 1.0px;
fill: #999;
}
text.legend {
font-family: Verdana;
font-size: 13px;
fill: #000;
}
.node text {
font-family: "Helvetica Neue","Helvetica","Arial",sans-serif;
font-size: 17px;
font-weight: 200;
}
</style>
<div id="clicks-graph">
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var graph = $graph;
var width = $width,
height = $height;
var color = d3.scale.category20();
var force = d3.layout.force()
.charge(-700)
.linkDistance(180)
.size([width, height]);
var svg = d3.select("#clicks-graph").append("svg")
.attr("width", width)
.attr("height", height);
force
.nodes(graph.nodes)
.links(graph.links)
.start();
var link = svg.selectAll(".link")
.data(graph.links)
.enter().append("line")
.attr("class", "link")
.style("stroke-width", function(d) { return Math.sqrt(d.value); });
var node = svg.selectAll(".node")
.data(graph.nodes)
.enter().append("g")
.attr("class", "node")
.call(force.drag);
node.append("circle")
.attr("r", 10)
.style("fill", function (d) {
if (d.name.startsWith("other")) { return color(1); } else { return color(2); };
})
node.append("text")
.attr("dx", 10)
.attr("dy", ".35em")
.text(function(d) { return d.name });
//Now we are giving the SVGs co-ordinates - the force layout is generating the co-ordinates which this code is using to update the attributes of the SVG elements
force.on("tick", function () {
link.attr("x1", function (d) {
return d.source.x;
})
.attr("y1", function (d) {
return d.source.y;
})
.attr("x2", function (d) {
return d.target.x;
})
.attr("y2", function (d) {
return d.target.y;
});
d3.selectAll("circle").attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
d3.selectAll("text").attr("x", function (d) {
return d.x;
})
.attr("y", function (d) {
return d.y;
});
});
</script>
</div>
""")
}
def help() = {
displayHTML("""
<p>
Produces a force-directed graph given a collection of edges of the following form:</br>
<tt><font color="#a71d5d">case class</font> <font color="#795da3">Edge</font>(<font color="#ed6a43">src</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">dest</font>: <font color="#a71d5d">String</font>, <font color="#ed6a43">count</font>: <font color="#a71d5d">Long</font>)</tt>
</p>
<p>Usage:<br/>
<tt><font color="#a71d5d">import</font> <font color="#ed6a43">d3._</font></tt><br/>
<tt><font color="#795da3">graphs.force</font>(</br>
<font color="#ed6a43">height</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">width</font> = <font color="#795da3">500</font>,<br/>
<font color="#ed6a43">clicks</font>: <font color="#795da3">Dataset</font>[<font color="#795da3">Edge</font>])</tt>
</p>""")
}
}
Warning: classes defined within packages cannot be redefined without a cluster restart.
Compilation successful.
import org.graphframes.GraphFrame
import org.apache.spark.sql.functions.lit // import the lit function in sql
val visitedEdges = GraphFrame.fromGraphX(countActions.mapEdges(e => e.attr.toInt))
val visits = visitedEdges.edges.select($"attr".as("count"))
val maxVisits = visits.agg(org.apache.spark.sql.functions.max(visits("count")))
d3.graphs.force(
height = 500,
width = 1000,
clicks = visitedEdges.edges.select($"src", $"dst".as("dest"), $"attr".divide(maxVisits.first().getInt(0)).multiply(500).cast("int").as("count")).as[d3.Edge])
We can also visualize the shortest path in the graph.
val posteriorShortestPath = GraphFrame.fromGraphX(lastAction.mapEdges(e => e.attr.toInt*10000))
d3.graphs.force(
height = 500,
width = 1000,
clicks = posteriorShortestPath.edges.select($"src", $"dst".as("dest"), $"attr".as("count")).as[d3.Edge])
Now we visualize the instant regret. We should see a lot ot spikes in the beginning of the graph but the general trend should be that the curve decrease to zero while having fewer spikes as the algorithm gets closer to the optimal solutions. Note that there will always be some spikes as these corresponds to "exploratory" actions.
val df = spark.sparkContext.parallelize((1 to N) zip instantRegretValues).toDF("Iteration (t)","Instant regret")
display(df)
We can also show the cumulative regret. As the algorithm reaches a final solution, the instantaneous regret should decrease and the cumulative regret should reach a plateau.
val cumulativeRegret = instantRegretValues.scanLeft(0.0)(_ + _)
val df = spark.sparkContext.parallelize((1 to N) zip cumulativeRegret).toDF("Iteration (t)","Cumulative regret")
display(df)
References
Sadikov, I., & Sainudiin, R.. (2016). Distributed Weighted Shortest Paths. http://lamastex.org/lmse/mep/src/GraphXShortestWeightedPaths.html.
Thompson, W. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3–4), 285-–294.
Wang, S., & Chen, W. (2018). Thompson sampling for combinatorial semi-bandits. In International Conference on Machine Learning (pp. 5114–5122).
Reinforcement Learning for Intraday Trading
Group members:
- Fabian Sinzinger
- Karl Bäckström
- Rita Laezza
Reinforcement Learning
In this project, our aim is to implement a Reinforcement Learning (RL) strategy for trading stocks. Adopting a learning-based approach, in particular using RL, entails several potential benefits over current approaches. Firstly, several ML methods allow learning-based pre-processing steps, such as convolutional layers which enable automatic feature extraction and detection, and may be used to focus the computation on the most relevant features. Secondly, constructing an end-to-end learning-based pipeline makes the prediction step implicit, and potentially reduces the problem complexity to predicting only certain aspects or features of the time series which are necessary for the control strategy, as opposed to attempting to predict the exact time series values. Thirdly, an end-to-end learning-based approach alleviates potential bounds of the step-wise modularization that a human-designed pipeline would entail, and allows the learning algorithm to automatically deduce the optimal strategy for utilizing any feature signal, in order to execute the most efficient control strategy.
The main idea behind RL algorithms is to learn by trial-and-error how to act optimally. An agent gathers experience by iteratively interacting with an environment. Starting in state St, the agent takes an action At and receives a reward Rt+1 as it moves to state St+1, as seen below (source). Using this experience, RL algorithms can learn either a value function or a policy directly. We learn the former, which can then be used to compute optimal actions, by chosing the action that maximizes the action value, Q. Specifically, we use the DQN -- Deep Q-Network -- algorithm to train an agent which trades Brent Crude Oil (BCOUSD) stocks, in order to maximize profit.
// Scala imports
import org.lamastex.spark.trendcalculus._
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import java.sql.Timestamp
import org.apache.spark.sql.expressions._
import org.lamastex.spark.trendcalculus._
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import java.sql.Timestamp
import org.apache.spark.sql.expressions._
Brent Crude Oil Dataset
The dataset consists of historical data starting from the 14th of October 2010 to the 21st of June 2019. Since the data in the first and last day is incomplete, we remove it from the dataset. The BCUSD data is sampled approximatly every minute with a specific timestamp and registered in US dollars.
To read the BCUSD dataset, we use the same parsers provided by the TrendCalculus library. This allows us to load the FX data into a Spark Dataset. The fx1m function returns the dataset as TickerPoint objects with values x and y, which are time and a close values respectively. The first consists of the name of the stock, the second is the timestamp of the data point and the latter consists of the value of the stock at the end of each 1 minute bin.
Finally we add the index column to facilitate retrieving values from the table, since there are gaps in the data meaning that not all minutes have an entry. Further a **diff_close** column was added, which consists of the relative difference between the close value at the current and the previous time. Note hat since ticker is always the same, we remove that column.
// Load dataset
val oilDS = spark.read.fx1m("dbfs:/FileStore/shared_uploads/fabiansi@kth.se/*csv.gz").toDF.withColumn("ticker", lit("BCOUSD")).select($"ticker", $"time" as "x", $"close" as "y").as[TickerPoint].orderBy("time")
// Add column with difference from previous close value (expected 'x', 'y' column names)
val windowSpec = Window.orderBy("x")
val oilDS1 = oilDS
.withColumn("diff_close", $"y" - when((lag("y", 1).over(windowSpec)).isNull, 0).otherwise(lag("y", 1).over(windowSpec)))
// Rename variables
val oilDS2 = oilDS1.withColumnRenamed("x","time").withColumnRenamed("y","close")
// Remove incomplete data from first day (2010-11-14) and last day (2019-06-21)
val oilDS3 = oilDS2.filter(to_date(oilDS2("time")) >= lit("2010-11-15") && to_date(oilDS2("time")) <= lit("2019-06-20"))
// Add index column
val windowSpec1 = Window.orderBy("time")
val oilDS4 = oilDS3
.withColumn("index", row_number().over(windowSpec1))
// Drop ticker column
val oilDS5 = oilDS4.drop("ticker")
// Store loaded data as temp view, to be accessible in Python
oilDS5.createOrReplaceTempView("temp")
oilDS: org.apache.spark.sql.Dataset[org.lamastex.spark.trendcalculus.TickerPoint] = [ticker: string, x: timestamp ... 1 more field]
windowSpec: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@347f9beb
oilDS1: org.apache.spark.sql.DataFrame = [ticker: string, x: timestamp ... 2 more fields]
oilDS2: org.apache.spark.sql.DataFrame = [ticker: string, time: timestamp ... 2 more fields]
oilDS3: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [ticker: string, time: timestamp ... 2 more fields]
windowSpec1: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@3c3c818a
oilDS4: org.apache.spark.sql.DataFrame = [ticker: string, time: timestamp ... 3 more fields]
oilDS5: org.apache.spark.sql.DataFrame = [time: timestamp, close: double ... 2 more fields]
Preparing the data in Python
Because the TrendCalculus library we use is implemented in Scala and we want to do our implementation in Python, we have to make sure that the data loaded in Scala is correctly read in Python, before moving on. To that end, we select the first 10 data points and show them in a table.
We can see that there are roughly 2.5 million data points in the BCUSD dataset.
#Python imports
import datetime
import gym
import math
import random
import json
import collections
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.layers import Conv1D, MaxPool1D, Flatten, BatchNormalization
from keras import optimizers
# Create Dataframe from temp data
oilDF_py = spark.table("temp")
# Select the 10 first Rows of data and print them
ten_oilDF_py = oilDF_py.limit(10)
ten_oilDF_py.show()
# Check number of data points
last_index = oilDF_py.count()
print("Number of data points: {}".format(last_index))
# Select the date of the last data point
print("Last data point: {}".format(np.array(oilDF_py.where(oilDF_py.index == last_index).select('time').collect()).item()))
+-------------------+-----+--------------------+-----+
| time|close| diff_close|index|
+-------------------+-----+--------------------+-----+
|2010-11-15 00:00:00| 86.6|-0.01000000000000...| 1|
|2010-11-15 00:01:00| 86.6| 0.0| 2|
|2010-11-15 00:02:00|86.63|0.030000000000001137| 3|
|2010-11-15 00:03:00|86.61|-0.01999999999999602| 4|
|2010-11-15 00:05:00|86.61| 0.0| 5|
|2010-11-15 00:07:00| 86.6|-0.01000000000000...| 6|
|2010-11-15 00:08:00|86.58|-0.01999999999999602| 7|
|2010-11-15 00:09:00|86.58| 0.0| 8|
|2010-11-15 00:10:00|86.58| 0.0| 9|
|2010-11-15 00:12:00|86.57|-0.01000000000000...| 10|
+-------------------+-----+--------------------+-----+
Number of data points: 2523078
Last data point: 2019-06-20 23:59:00
RL Environment
In order to train RL agents, we first need to create the environment with which the agent will interact to gather experience. In our case, that consist of a stock market simulation which plays out historical data from the BCUSD dataset. This is valid, under the assumption that the trading on the part of our agent has no affect on the stock market. An RL problem can be formally defined by a Markov Decision Process (MDP).
For our application, we have the following MDP: - State, s: a window of **diffclose** values for a given scope, i.e. the current value and history leading up to it. - Action, a: either LONG for buying stock, or SHORT for selling stock. Note that PASS is not required, since if stock is already owned, buying means holding and if stock is not owned then shorting means pass. - Reward, r: if at=**LONG** rt=st+1=**diff_close**; if at=SHORT rt=-s_t+1=-**diff_close**. Essentially, the reward is negative if we sell and the stock goes up or if we buy and the stock goes down in the next timestep. Conversely, the reward is positive if we buy and the stock goes up or if we sell and the stock goes down in the next timestep.
This environment is very simplified, with only binary actions. An alternative could be to use continuos actions to determine how much stock to buy or sell. However, since we aim to compare to TrendCalculus results which only predict reversals, these actions are more adequate. For the implementation, we used OpenAI Gym's formalism, which includes a done variable to indicate the end of an episode. In MarketEnv, by setting the **start_date** and **end_date** atttributes, we can select the part of the dataset we wish to use. Finally, the and **episode_size** parameter determines the episode size. An episode's starting point can be sampled at random or not, which is defined when calling reset.
# Adapted from: https://github.com/kh-kim/stock_market_reinforcement_learning/blob/master/market_env.py
class MarketEnv(gym.Env):
def __init__(self, full_data, start_date, end_date, episode_size=30*24*60, scope=60):
self.episode_size = episode_size
self.actions = ["LONG", "SHORT"]
self.action_space = gym.spaces.Discrete(len(self.actions))
self.state_space = gym.spaces.Box(np.ones(scope) * -1, np.ones(scope))
self.diff_close = np.array(full_data.filter(full_data["time"] > start_date).filter(full_data["time"] <= end_date).select('diff_close').collect())
max_diff_close = np.max(self.diff_close)
self.diff_close = self.diff_close*max_diff_close
self.close = np.array(full_data.filter(full_data["time"] > start_date).filter(full_data["time"] <= end_date).select('close').collect())
self.num_ticks_train = np.shape(self.diff_close)[0]
self.scope = scope # N values to be included in a state vector
self.time_index = self.scope # start N steps in, to ensure that we have enough past values for history
self.episode_init_time = self.time_index # initial time index of the episode
def step(self, action):
info = {'index': int(self.time_index), 'close': float(self.close[self.time_index])}
self.time_index += 1
self.state = self.diff_close[self.time_index - self.scope:self.time_index]
self.reward = float( - (2 * action - 1) * self.state[-1] )
# Check if done
if self.time_index - self.episode_init_time > self.episode_size:
self.done = True
if self.time_index > self.diff_close.shape[0] - self.scope -1:
self.done = True
return self.state, self.reward, self.done, info
def reset(self, random_starttime=True):
self.done = False
self.reward = 0.
self.time_index = self.scope
self.state = self.diff_close[self.time_index - self.scope:self.time_index]
if random_starttime:
self.time_index += random.randint(0, self.num_ticks_train - self.scope)
self.episode_init_time = self.time_index
return self.state
def seed(self):
pass
states = []
actions = []
rewards = []
reward_sum = 0.
# Verify environment for 1 hour
start = datetime.datetime(2010, 11, 15, 0, 0)
end = datetime.datetime(2010, 11, 15, 1, 0)
env = MarketEnv(oilDF_py, start, end, episode_size=np.inf, scope=1)
state = env.reset(random_starttime=False)
done = False
while not done:
states.append(state[-1])
# Take random actions
action = env.action_space.sample()
actions.append(action)
state, reward, done, info = env.step(action)
rewards.append(reward)
reward_sum += reward
print("Return = {}".format(reward_sum))
Return = 0.005
# Plot samples
timesteps = np.linspace(1,len(states),len(states))
longs = np.argwhere(np.asarray(actions) == 0)
shorts = np.argwhere(np.asarray(actions) == 1)
states = np.asarray(states)
fig, ax = plt.subplots(2, 1, figsize=(16, 8))
ax[0].grid(True)
ax[0].plot(timesteps, states, label='diff_close')
ax[0].plot(timesteps[longs], states[longs].flatten(), '*g', markersize=12, label='long')
ax[0].plot(timesteps[shorts], states[shorts].flatten(), '*r', markersize=12, label='short')
ax[0].set_ylabel("(s,a)")
ax[0].set_xlabel("Timestep")
ax[0].set_xlim(1,len(states))
ax[0].set_xticks(np.arange(1, len(states), 1.0))
ax[0].legend()
ax[1].grid(True)
ax[1].plot(timesteps, rewards, 'o-r')
ax[1].set_ylabel("r")
ax[1].set_xlabel("Timestep")
ax[1].set_xlim(1,len(states))
ax[1].set_xticks(np.arange(1, len(states), 1.0))
plt.tight_layout()
display(fig)
To illustarte how the reward works, we can look at timestep 9, where there is a large negative reward because the agent shorted (red) and at step 10 the stock went up. Conversely, at timestep 27 there is a large positive reward, since the agent decided to short and in the next timestep (28), the stock went down.
DQN Algorithm
Since we have discrete actions, we can use Q-learning to train our agent. Specifically we use the DQN algorithm with Experience Replay, which was first described in DeepMind's: Playing Atari with Deep Reinforcement Learning. The algorithm is described below, where equation [3], refers to the gradient:
# Adapted from: /scalable-data-science/000_6-sds-3-x-dl/063_DLbyABr_07-ReinforcementLearning
class ExperienceReplay:
def __init__(self, max_memory=100, discount=.9):
self.max_memory = max_memory
self.memory = list()
self.discount = discount
def remember(self, states, done):
self.memory.append([states, done])
if len(self.memory) > self.max_memory:
del self.memory[0]
def get_batch(self, model, batch_size=10):
len_memory = len(self.memory)
num_actions = model.output_shape[-1]
env_dim = self.memory[0][0][0].shape[1]
inputs = np.zeros((min(len_memory, batch_size), env_dim, 1))
targets = np.zeros((inputs.shape[0], num_actions))
for i, idx in enumerate(np.random.randint(0, len_memory, size=inputs.shape[0])):
state_t, action_t, reward_t, state_tp1 = self.memory[idx][0]
done = self.memory[idx][1]
inputs[i:i + 1] = state_t
# There should be no target values for actions not taken.
targets[i] = model.predict(state_t)[0]
Q_sa = np.max(model.predict(state_tp1)[0])
if done: # if done is True
targets[i, action_t] = reward_t
else:
# reward_t + gamma * max_a' Q(s', a')
targets[i, action_t] = reward_t + self.discount * Q_sa
return inputs, targets
Training RL agent
In order to train the RL agent, we use the data from 2014 to 2018, leaving the data from 2019 for testing. RL implementations are quite difficult to train, due to the large amount of parameters which need to be tuned. We have spent little time seraching for better hyperparameters as this was beyond the scope of the course. We have picked parameters based on a similar implementation of RL for trading, however we have designed an new Q-network, since the state is different in our implementation. Sine we are dealing wih sequential data, we could have opted for an RNN, however 1-dimensional CNNs are also a common choice which is less computationally heavy.
# Adapted from: https://dbc-635ca498-e5f1.cloud.databricks.com/?o=445287446643905#notebook/4201196137758409/command/4201196137758410
# RL parameters
epsilon = .5 # exploration
min_epsilon = 0.1
max_memory = 5000
batch_size = 512
discount = 0.8
# Environment parameters
num_actions = 2 # [long, short]
episodes = 500 # 100000
episode_size = 1 * 1 * 60 # roughly an hour worth of data in each training episode
# Define state sequence scope (approx. 1 hour)
sequence_scope = 60
input_shape = (batch_size, sequence_scope, 1)
# Create Q Network
hidden_size = 128
model = Sequential()
model.add(Conv1D(32, (5), strides=2, input_shape=input_shape[1:], activation='relu'))
model.add(MaxPool1D(pool_size=2, strides=1))
model.add(BatchNormalization())
model.add(Conv1D(32, (5), strides=1, activation='relu'))
model.add(MaxPool1D(pool_size=2, strides=1))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(hidden_size, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(num_actions))
opt = optimizers.Adam(lr=0.01)
model.compile(loss='mse', optimizer=opt)
# Define training interval
start = datetime.datetime(2010, 11, 15, 0, 0)
end = datetime.datetime(2018, 12, 31, 23, 59)
# Initialize Environment
env = MarketEnv(oilDF_py, start, end, episode_size=episode_size, scope=sequence_scope)
# Initialize experience replay object
exp_replay = ExperienceReplay(max_memory=max_memory, discount=discount)
# Train
returns = []
for e in range(1, episodes):
loss = 0.
counter = 0
reward_sum = 0.
done = False
state = env.reset()
input_t = state.reshape(1, sequence_scope, 1)
while not done:
counter += 1
input_tm1 = input_t
# get next action
if np.random.rand() <= epsilon:
action = np.random.randint(0, num_actions, size=1)
else:
q = model.predict(input_tm1)
action = np.argmax(q[0])
# apply action, get rewards and new state
state, reward, done, info = env.step(action)
reward_sum += reward
input_t = state.reshape(1, sequence_scope, 1)
# store experience
exp_replay.remember([input_tm1, action, reward, input_t], done)
# adapt model
inputs, targets = exp_replay.get_batch(model, batch_size=batch_size)
loss += model.train_on_batch(inputs, targets)
print("Episode {:03d}/{:d} | Average Loss {:.4f} | Cumulative Reward {:.4f}".format(e, episodes, loss / counter, reward_sum))
epsilon = max(min_epsilon, epsilon * 0.99)
returns.append(reward_sum)
# Plotting training results
fig, ax = plt.subplots(figsize=(16, 8))
ax.plot(returns)
ax.set_ylabel("Return")
ax.set_xlabel("Episode")
display(fig)
We have trained our model for 500 episodes and the returns are plotted above. Note that the loss was still quite high at the end of training, which indicates that the algorithm hasn't converged. A possible explanation for this is that RL algorithms typically require significantly more steps to converge. Further, considering the size of the tranining dataset, the neural network used is very small. Besides that, DQN is known to be quite unstable and prone to diverge, which is why several new versions of this algorithm have been proposed since it was first introduced. A very common implementation consists of the Double DQN, which introduced a target Q-network used to compute the actions, which is updated at a lower rate than the main Q-network. In our implementation, the max operator uses the same network both to select and to evaluate an action. This may lead to wrongly selecting overestimated values. Having a separate target network can help prevent this, by decoupling the selection from the evaluation.
Testing RL agent
In order to test our agent, we select the whole data from the 1st of January 2019, which wasn't included during training.
done = False
states = []
actions = []
rewards = []
reward_sum = 0.
# Define testing interval, January 2019
start = datetime.datetime(2019, 1, 1, 0, 0)
end = datetime.datetime(2019, 1, 1, 23, 59)
# Test learned model
env = MarketEnv(oilDF_py, start, end, episode_size=np.inf, scope=sequence_scope)
state = env.reset(random_starttime=False)
input_t = state.reshape(1, sequence_scope, 1)
while not done:
states.append(state[-1])
q = model.predict(input_t)
action = np.argmax(q[0])
actions.append(action)
state, reward, done, info = env.step(action)
rewards.append(reward)
reward_sum += reward
input_t = state.reshape(1, sequence_scope, 1)
print("Return = {}".format(reward_sum))
Return = 0.096
# Plotting testing results
timesteps = np.linspace(1,len(states),len(states))
longs = np.argwhere(np.asarray(actions) == 0)
shorts = np.argwhere(np.asarray(actions) == 1)
states = np.asarray(states)
fig, ax = plt.subplots(2, 1, figsize=(16, 8))
ax[0].grid(True)
ax[0].plot(timesteps, states, label='diff_close')
ax[0].plot(timesteps[longs], states[longs].flatten(), '*g', markersize=12, label='long')
ax[0].plot(timesteps[shorts], states[shorts].flatten(), '*r', markersize=12, label='short')
ax[0].set_ylabel("(s,a)")
ax[0].set_xlabel("Timestep")
ax[0].set_xlim(1,len(states))
ax[0].legend()
ax[1].grid(True)
ax[1].plot(timesteps, rewards, 'o-r')
ax[1].set_ylabel("r")
ax[1].set_xlabel("Timestep")
ax[1].set_xlim(1,len(states))
plt.tight_layout()
display(fig)
We can see that the policy converged to always shorting, meaning that the agent never buys any stock. While abstaining from investments in fossil fuels may be good advice, the result is not very useful for our intended application. Nevertherless, reaching a successful automatic intraday trading bot in the short time we spent implementing this project would be a high bar. After all, this is more or less the holy grail of computational economy.
Summary and Outlook
In this project we have trained and tested an RL agent, using DQN for intraday trading. We started by processing the data and adding a **diff_close** column which contains the differece of the closing stock value between two timesteps. We then implemented our own Gym environment MarketEnv, to be able to read data from the BCUSD dataset and feed it to an agents, as weel as compute the reward given the agent's action. We used a DQN implementation, to train a convolutional Q-Network. Since we are using TensorFlow in the background, the training is automatically scaled to use all cpu cores available (see here). Finally, we have tested our agent on new data, and concluded that more work needs to be put into making the algorithm convege.
As future work we believe we can still improve the state and reward definitions. For the state, used a window of **close_diff** values as our state definiion. However, augmenting the state with longer term trends computed by the TrendCalculus algorithm could yield significant improvements. The TrendCalculus algorithm provides an analytical framework effective for identifying trends in historical price data, including trend pattern analysis and prediction of trend changes. Below we present the idea behind TrendCalculus and how it relates to **close_diff**, as well as a few ideas on how it could be used for our application.
Trend Calculus
Taken from: https://github.com/lamastex/spark-trend-calculus-examples
Trend Calculus is an algorithm invented by Andrew Morgan that is used to find trend changes in a time series (see here). It works by grouping the observations in the time series into windows and defining a trend upwards as “higher highs and higher lows” compared to the previous window. A downwards trend is similarly defined as “lower highs and lower lows”.
If there is a higher high and lower low (or lower high and higher low), no trend is detected. This is solved by introducing intermediate windows that split the non-trend into two trends, ensuring that every point can be labeled with either an up or down trend.
When the trends have been calculated for all windows, the points where the trends change sign are labeled as reversals. If the reversal is from up to down, the previous high is the reversal point and if the reversal is from down to up, the previous low is the reversal. This means that the reversals always are the appropriate extrema (maximum for up to down, minimum for down to up).
The output of the algorithm is a time series consisting of all the labelled reversal points. It is therefore possible to use this as the input for another run of the Trend Calculus algorithm, finding more long term trends. This can be seen when TrendCalculus is applied to the BCUSD datset, shown in column reversal1 of the table below.
val windowSize = 2
val numReversals = 1 // we look at 1 iteration of the algorithm.
val dfWithReversals = new TrendCalculus2(oilDS, windowSize, spark).nReversalsJoinedWithMaxRev(numReversals)
display(dfWithReversals)
val windowSpec = Window.orderBy("x")
val dfWithReversalsDiff = dfWithReversals
.withColumn("diff_close", $"y" - when((lag("y", 1).over(windowSpec)).isNull, 0).otherwise(lag("y", 1).over(windowSpec)))
// Store loaded data as temp view, to be accessible in Python
dfWithReversalsDiff.createOrReplaceTempView("temp")
In conjunction with TrendCalculus, a complete automatic trading pipeline can be constructed, consisting of (i) trend analysis with TrendCalculus (ii) time series prediction and (iii) control, i.e. buy or sell. Implementing and evaluating a pipeline such as the one outlined in the aforementioned steps is left as a suggestion for future work, and it is of particular interest to compare the performance of such a method to a learning-based one.
Below we show that sign(**diff_close**) is equivalent to sign of the output of a single iteration of TrendCalculus with window size 2, over our **scope**. A possible improvement of our algorithm would be to use TrendCalculus to compute long term trends from historical data and include it on our state definition. This way, if for example the agent observes a long term downward trend, then it can be encouraged to buy stock since it is bound to bounce up again.
# Taken from: https://lamastex.github.io/spark-trend-calculus-examples/notebooks/db/01trend-calculus-showcase.html
# Create Dataframe from temp data
fullDS = spark.table("temp")
fullTS = fullDS.select("x", "y", "reversal1", "diff_close").collect()
startDate = datetime.datetime(2019, 1, 1, 1, 0) # first window used as scope
endDate = datetime.datetime(2019, 1, 1, 23, 59)
TS = [row for row in fullTS if startDate <= row['x'] and row['x'] <= endDate]
allData = {'x': [row['x'] for row in TS], 'close': [row['y'] for row in TS], 'diff_close': [row['diff_close'] for row in TS], 'reversal1': [row['reversal1'] for row in TS]}
# Plot reversals
close = np.asarray(allData['close'])
diff_close = np.asarray(allData['diff_close'])
timesteps = np.linspace(1,len(diff_close),len(diff_close))
revs = np.asarray(allData['reversal1'])
pos_rev_ind = np.argwhere(revs == 1)
neg_rev_ind = np.argwhere(revs == -1)
fig, ax = plt.subplots(2, 1, figsize=(16, 8))
ax[0].grid(True)
ax[0].plot(timesteps, close, label='close')
ax[0].plot(timesteps[pos_rev_ind], close[pos_rev_ind].flatten(), '*g', markersize=12, label='+ reversal')
ax[0].plot(timesteps[neg_rev_ind], close[neg_rev_ind].flatten(), '*r', markersize=12, label='- reversal')
ax[0].set_ylabel("close")
ax[0].set_xlabel("Timestep")
ax[0].set_xlim(1,len(close))
ax[0].legend()
ax[1].grid(True)
ax[1].plot(timesteps, diff_close, label='diff_close')
ax[1].plot(timesteps[pos_rev_ind], diff_close[pos_rev_ind].flatten(), '*g', markersize=12, label='+ reversal')
ax[1].plot(timesteps[neg_rev_ind], diff_close[neg_rev_ind].flatten(), '*r', markersize=12, label='- reversal')
ax[1].set_ylabel("diff_close")
ax[1].set_xlabel("Timestep")
ax[1].set_xlim(1,len(diff_close))
plt.tight_layout()
display(fig)
// Scala imports
import org.lamastex.spark.trendcalculus._
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import java.sql.Timestamp
import org.apache.spark.sql.expressions._
import org.lamastex.spark.trendcalculus._
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import java.sql.Timestamp
import org.apache.spark.sql.expressions._
// Load dataset
val oilDS = spark.read.fx1m("dbfs:/FileStore/shared_uploads/fabiansi@kth.se/*csv.gz").toDF.withColumn("ticker", lit("BCOUSD")).select($"ticker", $"time" as "x", $"close" as "y").as[TickerPoint].orderBy("time")
// Add column with difference from previous close value (expected 'x', 'y' column names)
val windowSpec = Window.orderBy("x")
val oilDS1 = oilDS
.withColumn("diff_close", $"y" - when((lag("y", 1).over(windowSpec)).isNull, 0).otherwise(lag("y", 1).over(windowSpec)))
// Rename variables
val oilDS2 = oilDS1.withColumnRenamed("x","time").withColumnRenamed("y","close")
// Remove incomplete data from first day (2010-11-14) and last day (2019-06-21)
val oilDS3 = oilDS2.filter(to_date(oilDS2("time")) >= lit("2010-11-15") && to_date(oilDS2("time")) <= lit("2019-06-20"))
// Add index column
val windowSpec1 = Window.orderBy("time")
val oilDS4 = oilDS3
.withColumn("index", row_number().over(windowSpec1))
// Drop ticker column
val oilDS5 = oilDS4.drop("ticker")
// Store loaded data as temp view, to be accessible in Python
oilDS5.createOrReplaceTempView("temp")
oilDS: org.apache.spark.sql.Dataset[org.lamastex.spark.trendcalculus.TickerPoint] = [ticker: string, x: timestamp ... 1 more field]
windowSpec: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@6dd55d65
oilDS1: org.apache.spark.sql.DataFrame = [ticker: string, x: timestamp ... 2 more fields]
oilDS2: org.apache.spark.sql.DataFrame = [ticker: string, time: timestamp ... 2 more fields]
oilDS3: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [ticker: string, time: timestamp ... 2 more fields]
windowSpec1: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@5be434ff
oilDS4: org.apache.spark.sql.DataFrame = [ticker: string, time: timestamp ... 3 more fields]
oilDS5: org.apache.spark.sql.DataFrame = [time: timestamp, close: double ... 2 more fields]
#Python imports
import datetime
import gym
import math
import random
import json
import collections
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.layers import Conv1D, MaxPool1D, Flatten, BatchNormalization
from keras import optimizers
from elephas.utils.rdd_utils import to_simple_rdd
from elephas.spark_model import SparkModel
Using TensorFlow backend.
WARNING
# Create Dataframe from temp data
oilDF_py = spark.table("temp")
# Select the 10 first Rows of data and print them
ten_oilDF_py = oilDF_py.limit(10)
ten_oilDF_py.show()
# Check number of data points
last_index = oilDF_py.count()
print("Number of data points: {}".format(last_index))
# Select the date of the last data point
print("Last data point: {}".format(np.array(oilDF_py.where(oilDF_py.index == last_index).select('time').collect()).item()))
+-------------------+-----+--------------------+-----+
| time|close| diff_close|index|
+-------------------+-----+--------------------+-----+
|2010-11-15 00:00:00| 86.6|-0.01000000000000...| 1|
|2010-11-15 00:01:00| 86.6| 0.0| 2|
|2010-11-15 00:02:00|86.63|0.030000000000001137| 3|
|2010-11-15 00:03:00|86.61|-0.01999999999999602| 4|
|2010-11-15 00:05:00|86.61| 0.0| 5|
|2010-11-15 00:07:00| 86.6|-0.01000000000000...| 6|
|2010-11-15 00:08:00|86.58|-0.01999999999999602| 7|
|2010-11-15 00:09:00|86.58| 0.0| 8|
|2010-11-15 00:10:00|86.58| 0.0| 9|
|2010-11-15 00:12:00|86.57|-0.01000000000000...| 10|
+-------------------+-----+--------------------+-----+
Number of data points: 2523078
Last data point: 2019-06-20 23:59:00
# Adapted from: https://github.com/kh-kim/stock_market_reinforcement_learning/blob/master/market_env.py
class MarketEnv(gym.Env):
def __init__(self, full_data, start_date, end_date, episode_size=30*24*60, scope=60):
self.episode_size = episode_size
self.actions = ["LONG", "SHORT"]
self.action_space = gym.spaces.Discrete(len(self.actions))
self.state_space = gym.spaces.Box(np.ones(scope) * -1, np.ones(scope))
self.diff_close = np.array(full_data.filter(full_data["time"] > start_date).filter(full_data["time"] <= end_date).select('diff_close').collect())
max_diff_close = np.max(self.diff_close)
self.diff_close = self.diff_close*max_diff_close
self.close = np.array(full_data.filter(full_data["time"] > start_date).filter(full_data["time"] <= end_date).select('close').collect())
self.num_ticks_train = np.shape(self.diff_close)[0]
self.scope = scope # N values to be included in a state vector
self.time_index = self.scope # start N steps in, to ensure that we have enough past values for history
self.episode_init_time = self.time_index # initial time index of the episode
def step(self, action):
info = {'index': int(self.time_index), 'close': float(self.close[self.time_index])}
self.time_index += 1
self.state = self.diff_close[self.time_index - self.scope:self.time_index]
self.reward = float( - (2 * action - 1) * self.state[-1] )
# Check if done
if self.time_index - self.episode_init_time > self.episode_size:
self.done = True
if self.time_index > self.diff_close.shape[0] - self.scope -1:
self.done = True
return self.state, self.reward, self.done, info
def reset(self, random_starttime=True):
self.done = False
self.reward = 0.
self.time_index = self.scope
self.state = self.diff_close[self.time_index - self.scope:self.time_index]
if random_starttime:
self.time_index += random.randint(0, self.num_ticks_train - self.scope)
self.episode_init_time = self.time_index
return self.state
def seed(self):
pass
# Adapted from: https://dbc-635ca498-e5f1.cloud.databricks.com/?o=445287446643905#notebook/4201196137758409/command/4201196137758410
class ExperienceReplay:
def __init__(self, max_memory=100, discount=.9):
self.max_memory = max_memory
self.memory = list()
self.discount = discount
def remember(self, states, done):
self.memory.append([states, done])
if len(self.memory) > self.max_memory:
del self.memory[0]
def get_batch(self, model, batch_size=10):
len_memory = len(self.memory)
num_actions = model.output_shape[-1]
env_dim = self.memory[0][0][0].shape[1]
inputs = np.zeros((min(len_memory, batch_size), env_dim, 1))
targets = np.zeros((inputs.shape[0], num_actions))
for i, idx in enumerate(np.random.randint(0, len_memory, size=inputs.shape[0])):
state_t, action_t, reward_t, state_tp1 = self.memory[idx][0]
done = self.memory[idx][1]
inputs[i:i + 1] = state_t
# There should be no target values for actions not taken.
targets[i] = model.predict(state_t)[0]
Q_sa = np.max(model.predict(state_tp1)[0])
if done: # if done is True
targets[i, action_t] = reward_t
else:
# reward_t + gamma * max_a' Q(s', a')
targets[i, action_t] = reward_t + self.discount * Q_sa
return inputs, targets
# Adapted from: https://dbc-635ca498-e5f1.cloud.databricks.com/?o=445287446643905#notebook/4201196137758409/command/4201196137758410
# RL parameters
epsilon = .5 # exploration
min_epsilon = 0.1
max_memory = 5000
batch_size = 512
discount = 0.8
# Environment parameters
num_actions = 2 # [long, short]
episodes = 500 # 100000
episode_size = 1 * 1 * 60 # roughly an hour worth of data in each training episode
# Define state sequence scope (approx. 1 hour)
sequence_scope = 60
input_shape = (batch_size, sequence_scope, 1)
# Create Q Network
hidden_size = 128
model = Sequential()
model.add(Conv1D(32, (5), strides=2, input_shape=input_shape[1:], activation='relu'))
model.add(MaxPool1D(pool_size=2, strides=1))
model.add(BatchNormalization())
model.add(Conv1D(32, (5), strides=1, activation='relu'))
model.add(MaxPool1D(pool_size=2, strides=1))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(hidden_size, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(num_actions))
opt = optimizers.Adam(lr=0.01)
model.compile(loss='mse', optimizer=opt)
# Define training interval
start = datetime.datetime(2010, 11, 15, 0, 0)
end = datetime.datetime(2018, 12, 31, 23, 59)
# Initialize Environment
env = MarketEnv(oilDF_py, start, end, episode_size=episode_size, scope=sequence_scope)
# Initialize experience replay object
exp_replay = ExperienceReplay(max_memory=max_memory, discount=discount)
WARNING:tensorflow:From /databricks/python/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
/databricks/python/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: <span class="ansi-yellow-fg">WARN: Box bound precision lowered by casting to float32</span>
warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))
Elephas
https://github.com/danielenricocahall/elephas
Elephas is a third party library that allows to train distributed Keras models on Spark. To run a distributed training session, a Keras model is first declared and compiled on one (singular) master node. Then, copies of the Master model are serialized and shipped to an arbitrary number of worker nodes. Elephas uses RDD's internally to make the data dynamically available to the workers when required. After gradient computating and the update of the weights, the updated model parameters are pushed to the master model.
For updating the parameters of the master_model, Elephas provides three modes, Synchronous, Asynchronous and HOGWILD (https://arxiv.org/abs/1106.5730).
Integrating Distributed model training in our RL-framework
Elephas supports in the current version only supervised model training. We therefore opt to distribute the supervised training step based on the experience replay buffer and keep the surrounding for loops from the previeous RL-implementation.
Training data conversion
Data must be provided as either RDD or pyspark dataframe (that will internally be converted to RDD's). A more elaborate pipeline might slice and evaluate replay buffer instances from the original dataframe, however, since most of our implementation expects numpy arrays, we convert the buffer to an RDD manually each step.
Elephas SparkModel for retraining in the RL-loop
When Elephas finished its training epochs (here, one Experiancereplay buffer training in one of the RL-loop sweeps), the used processes get terminated. This leads to a crash when trying to retrain a already trained model. As a workaround, we initialize theelephas in each training step newly by using the keras model from the previous training step.
# elephas variables
ele_epochs = 10
ele_batchsize = 32
ele_verbose = 0
ele_valsplit = 0.1
# Train
returns = []
for e in range(1, episodes):
loss = 0.
counter = 0
reward_sum = 0.
done = False
state = env.reset()
input_t = state.reshape(1, sequence_scope, 1)
while not done:
counter += 1
input_tm1 = input_t
# get next action
if np.random.rand() <= epsilon:
action = np.random.randint(0, num_actions, size=1)
else:
q = model.predict(input_tm1)
action = np.argmax(q[0])
# apply action, get rewards and new state
state, reward, done, info = env.step(action)
reward_sum += reward
input_t = state.reshape(1, sequence_scope, 1)
# store experience
exp_replay.remember([input_tm1, action, reward, input_t], done)
# adapt model
inputs, targets = exp_replay.get_batch(model, batch_size=batch_size)
# elephas calls for distributed gradient optimization
train_rdd = to_simple_rdd(sc, inputs, targets) # note that we provide the spark context sc (sc variable automatically set in databricks)
spark_model = SparkModel(model, frequency='epoch', mode='asynchronous') # 'asynchronous', 'hogwild' or 'synchronous'
spark_model.fit(train_rdd, epochs=ele_epochs, batch_size=ele_batchsize, verbose=ele_verbose, validation_split=ele_valsplit)
model = spark_model._master_network # hacky!
loss += model.train_on_batch(inputs, targets)
print("Episode {:03d}/{:d} | Average Loss {:.4f} | Cumulative Reward {:.4f}".format(e, episodes, loss / counter, reward_sum))
epsilon = max(min_epsilon, epsilon * 0.99)
returns.append(reward_sum)
Notes to the elephas training
The pipeline in this notebook serves as a proof of concept to demonstrate how RL-training can be distributed on a spark cluster. During testing, we observed that the experience replay is a bottleneck during distributed model training, when comparing to running keras out-of the box in parallel.
Error that sometimes appears when running on databricks
We notice occasional crashes in the distributed training at line 180 in https://github.com/danielenricocahall/elephas/blob/master/elephas/spark_model.py, more precisely at rdd.mapPartitions(worker.train).collect()
, with a Py4JJavaError
. Restarting the cluster does not resolve the issue, however sometimes it was possible to re-run a training succesfully after a bit of time. We assume that it is connected with the jvm, but lacking precise insight regarding the nature of this bug.
Resources
- FX1M data: see URL: https://github.com/lamastex/FX-1-Minute-Data
- Yahoo! finance data: https://help.yahoo.com/kb/download-historical-data-yahoo-finance-sln2311.html
- TrendCalculus: https://lamastex.github.io/spark-trend-calculus-examples/
- Example of Financial Gym env: https://github.com/kh-kim/stockmarketreinforcement_learning
- Auto-tuning Distributed Stream Processing Systems usingReinforcement Learning (paper): https://arxiv.org/pdf/1809.05495.pdf
- Scalable DL: https://pages.databricks.com/rs/094-YMS-629/images/keras-hvdrunner-mlflow-mnist-experiments.html
- Spark scalability monitoring: https://kb.databricks.com/clusters/multiple-executors-single-worker.html?_ga=2.12778558.849116589.1609928691-2055344563.1607504209
Intrusion Detection
Group Project Team:
- MohamedReza Faridghasemnia
- Javad Forough
- Quantao Yang
- Arman Rahbar
**Video **
https://chalmersuniversity.box.com/s/hbfurlolj3ax8aarxow0fdcuzjxeo206
**Dataset Source **
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
Problem Definition
With the evolution and pervasive usage of the computer networks and cloud environments, Cyber-attacks such as Distributed Denial of Service (DDoS) become major threads for such environments. For an example, DDoS attacks can prohibit normal usage of the web services through saturating their underlying system’s resources and even in most recent type of attacks namely Low-rate DDoS attacks, they drop the Quality of Service (QoS) of the cloud service providers significantly and bypass the detection systems by behaving similar to the normal users. Modern networked business environments require a high level of security to ensure safe and trusted communication of information between various organizations and to counter such attacks. An Intrusion Detection System is the foremost important step against such threads happening in the network and act as an adaptable safeguard technology for system security after traditional technologies fail. As the network attacks become more sophisticated, it is crucial to equip the system with the state-of-the-art intrusion detection systems. In this project, we investigate different types of learning-based Intrusion detection systems and evaluate them based on different metrics on a large benchmark dataset in a distributed manner using Apache Spark, which is an open-source distributed general-purpose cluster-computing framework.
Loading and Preprocessing Data
For detecting intrusion in the network, we use a dataset named UNSW-NB15, a collection of network traffic data collected by Australian Centre for Cyber Security (ACCS).
UNSW-NB15 Testbed. Image from UNSW-NB15 website
The raw data of UNSW-NB15 Dataset is a pcap file of network traffic with the size of 100gb, that 49 features (including labels) is extracted from the dataset using Argus, Bro-IDS tools and twelve other algorithms. The extracted features desription is given below.
No. | Name | Type | Description |
---|---|---|---|
0 | srcip | nominal | Source IP address |
1 | sport | integer | Source port number |
2 | dstip | nominal | Destination IP address |
3 | dsport | integer | Destination port number |
4 | proto | nominal | Transaction protocol |
5 | state | nominal | Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, REQ, RST, TST, TXD, URH, URN, and (-) (if not used state) |
6 | dur | Float | Record total duration |
7 | sbytes | Integer | Source to destination transaction bytes |
8 | dbytes | Integer | Destination to source transaction bytes |
9 | sttl | Integer | Source to destination time to live value |
10 | dttl | Integer | Destination to source time to live value |
11 | sloss | Integer | Source packets retransmitted or dropped |
12 | dloss | Integer | Destination packets retransmitted or dropped |
13 | service | nominal | http, ftp, smtp, ssh, dns, ftp-data ,irc and (-) if not much used service |
14 | Sload | Float | Source bits per second |
15 | Dload | Float | Destination bits per second |
16 | Spkts | integer | Source to destination packet count |
17 | Dpkts | integer | Destination to source packet count |
18 | swin | integer | Source TCP window advertisement value |
19 | dwin | integer | Destination TCP window advertisement value |
20 | stcpb | integer | Source TCP base sequence number |
21 | dtcpb | integer | Destination TCP base sequence number |
22 | smeansz | integer | Mean of the ?ow packet size transmitted by the src |
23 | dmeansz | integer | Mean of the ?ow packet size transmitted by the dst |
24 | trans_depth | integer | Represents the pipelined depth into the connection of http request/response transaction |
25 | resbdylen | integer | Actual uncompressed content size of the data transferred from the server’s http service. |
26 | Sjit | Float | Source jitter (mSec) |
27 | Djit | Float | Destination jitter (mSec) |
28 | Stime | Timestamp | record start time |
29 | Ltime | Timestamp | record last time |
30 | Sintpkt | Float | Source interpacket arrival time (mSec) |
31 | Dintpkt | Float | Destination interpacket arrival time (mSec) |
32 | tcprtt | Float | TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’. |
33 | synack | Float | TCP connection setup time, the time between the SYN and the SYN_ACK packets. |
34 | ackdat | Float | TCP connection setup time, the time between the SYN_ACK and the ACK packets. |
35 | issmips_ports | Binary | If source (1) and destination (3)IP addresses equal and port numbers (2)(4) equal then, this variable takes value 1 else 0 |
36 | ctstatettl | Integer | No. for each state (6) according to specific range of values for source/destination time to live (10) (11). |
37 | ctflwhttp_mthd | Integer | No. of flows that has methods such as Get and Post in http service. |
38 | isftplogin | Binary | If the ftp session is accessed by user and password then 1 else 0. |
39 | ctftpcmd | integer | No of flows that has a command in ftp session. |
40 | ctsrvsrc | integer | No. of connections that contain the same service (14) and source address (1) in 100 connections according to the last time (26). |
41 | ctsrvdst | integer | No. of connections that contain the same service (14) and destination address (3) in 100 connections according to the last time (26). |
42 | ctdstltm | integer | No. of connections of the same destination address (3) in 100 connections according to the last time (26). |
43 | ctsrc ltm | integer | No. of connections of the same source address (1) in 100 connections according to the last time (26). |
44 | ctsrcdport_ltm | integer | No of connections of the same source address (1) and the destination port (4) in 100 connections according to the last time (26). |
45 | ctdstsport_ltm | integer | No of connections of the same destination address (3) and the source port (2) in 100 connections according to the last time (26). |
46 | ctdstsrc_ltm | integer | No of connections of the same source (1) and the destination (3) address in in 100 connections according to the last time (26). |
47 | attack_cat | nominal | The name of each attack category. In this data set , nine categories e.g. Fuzzers, Analysis, Backdoors, DoS Exploits, Generic, Reconnaissance, Shellcode and Worms |
48 | Label | binary | 0 for normal and 1 for attack records |
The data is accessible from the dataset source.
We used Spark csv for reading the dataset. In the following cell a spark dataframe from csv is created. In this dataset, the last label is the label, indicating whether an attack happened or not. The problem is a binary classification problem, which the machine learning algorithm has to predict the attack record label.
# load csv with pyspark
# File location and type
file_location = "/FileStore/tables/IDdataset.csv"
file_type = "csv"
# CSV options
infer_schema = "false"
first_row_is_header = "false"
delimiter = ","
# The applied options are for CSV files. For other file types, these will be ignored.
df = spark.read.format(file_type) \
.option("inferSchema", infer_schema) \
.option("header", first_row_is_header) \
.option("sep", delimiter) \
.load(file_location)
display(df)
Removing unnecessary data
In the dataaset, ip and port of source and destination are not useful, so we drop those columns.
#dropping ip and port of source and destination
df= df.drop("_c0","_c1","_c2", "_c3", "_c47")
display(df)
Numerization
Now we have to change categorical data (that are columns 4,5,13) to number, that is called ordinal encoding, and we can do it by StringIndexer.
The next step is to convert all columns types to Double. It is neccesssary, as it seems pyspark returned a string dataframe from csv, and doesnot change data types for numbers.
#handling categorical data
from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCols=["_c4", "_c5", "_c13"], outputCols=["c4", "c5", "c13"])
dff = indexer.fit(df).transform(df)
dff = dff.drop("_c4", "_c5", "_c13")
#changing type to double
from pyspark.sql.types import DoubleType
for col in dff.columns:
dff = dff.withColumn(col, dff[col].cast(DoubleType()))
Handling null values
Check which cells have null values
One another step in preprocessing is to check if the data has null values. For this, we use .isNull() over rows of each column, and count null values in each column.
#check if it has missing data
#showing number of null data
from pyspark.sql.functions import isnan, when, count, col
for cl in dff.columns:
dff.select([count(when(col(cl).isNull(),True))]).show()
Filling null values
We noticed that column 37(ctflwhttpmthd) has 1348145, column 38(isftplogin) has 1429879, and column 39(ctftp_cmd) has 1429879 null values. So we fill them by using Imputer function of pyspark. This function fill the missing values with the mean of the column.
#handling null data
from pyspark.ml.feature import Imputer
dff= Imputer(inputCols= dff.columns, outputCols=dff.columns).fit(dff).transform(dff)
#for cl in dff.columns:
# dff.select([count(when(col(cl).isNull(),True))]).show()
Creating dataset
For creating dataset, we take the following steps:
Vectorizing
We firstly have to put all features into one big vector, using VectorAssembler. We take all the columns of data, except the first 4 columns(are irrelevant) an the last two (are the labels) into "features" column. Notice that VectorAssembler generates either Sparse, or Dense vectors, in favour of the memory.
Normalization
Next, we normalize data that is vectorized in one column. For this dataset, VEctorAssembler returned a sparse vector, and we chose a normalizer that is compatible with sparse vectors. So we used ml.feature.Normalizer for normalizing data.
Sparse to Dense
After normalization, we convert the sparse vectors of features to dense vectors. For this we defined a UDF function.
Selecting columns of features and labels
Finally, we select two columns in the dataframe to use in further steps, that are "labels", and "features".
from pyspark.ml.feature import StandardScaler, VectorAssembler
from pyspark.ml.feature import MinMaxScaler
from pyspark.sql import functions as F
from pyspark.ml.linalg import SparseVector, DenseVector,VectorUDT, Vector
from pyspark.sql import types as T
from pyspark.ml.feature import Normalizer
numCols = ['c4', 'c5', '_c6', '_c7', '_c8', '_c9', '_c10', '_c11', '_c12', 'c13', '_c14', '_c15', '_c16', '_c17', '_c18', '_c19', '_c20', '_c21', '_c22', '_c23', '_c24', '_c25', '_c26', '_c27', '_c28', '_c29', '_c30', '_c31', '_c32', '_c33', '_c34', '_c35', '_c36', '_c37', '_c38', '_c39', '_c40', '_c41', '_c42', '_c43', '_c44', '_c45', '_c46']
dfff = VectorAssembler(inputCols=numCols, outputCol="features").transform(dff)
nrm = Normalizer(inputCol="features", outputCol="features_norm", p=1).transform(dfff)
def sparse_to_array(v):
v = DenseVector(v)
new_array = list([float(x) for x in v])
return new_array
sparse_to_array_udf = F.udf(sparse_to_array, T.ArrayType(T.FloatType()))
featArr = nrm.withColumn('featuresArray', sparse_to_array_udf('features_norm'))
featArr=featArr.withColumnRenamed("_c48", "labels")
trainSet = featArr.select('labels', "featuresArray")
display(trainSet)
Preparing the DataFrame for training classifers
In order to use a dataframe for training the classifiers in the Spark ML Library, we should have a particular format. Specifically, we need to have a single columns for all features and another column for the labels. In this section we first create the the desired format and then use the resulting dataframe for training different classifiers.
Based on the DataFrame created in the preprocessing step (trainSet), we first create an rdd from all available columns (featurestoassemble). To this end, we map all rows in trainSet using the method "functionForRdd".
features_to_assemble = []
for f in range(2,45):
features_to_assemble.append('_'+str(f))
print(features_to_assemble)
['_2', '_3', '_4', '_5', '_6', '_7', '_8', '_9', '_10', '_11', '_12', '_13', '_14', '_15', '_16', '_17', '_18', '_19', '_20', '_21', '_22', '_23', '_24', '_25', '_26', '_27', '_28', '_29', '_30', '_31', '_32', '_33', '_34', '_35', '_36', '_37', '_38', '_39', '_40', '_41', '_42', '_43', '_44']
# random forest implementation
def functionForRdd(r):
l = []
l.append(r[0])
l = l+list(r[1])
return l
trainSetRdd = trainSet.rdd.map(functionForRdd)
randomForestDf = trainSetRdd.toDF()
Using VectorAssembler for creating the DataFrame
The best option to create the required format, is using VectorAssembler. Calling the transform function of the assembler object gives us a new DataFrame which includes a new columns called "features". This column together with the labels column ("_1") will be used for training. We also divide our data into train and test in the cell below.
assembler = VectorAssembler(
inputCols=features_to_assemble,
outputCol="features")
randomForestDf = assembler.transform(randomForestDf)
train, test = randomForestDf.randomSplit([0.7, 0.3], seed = 2018)
newtrainSet = train.sample(fraction=0.00001)
RandomForestClassifier
The first classifier we use is the RandomForestClassifier avaiable in Spark ML. As mentioned before this classifier requires a single columns for all attributes (features) and a label column (_1). We specify these columns before training and then we use the method fit to train the classifer.
from pyspark.ml.classification import RandomForestClassifier
rf = RandomForestClassifier(featuresCol = 'features', labelCol = '_1')
rfModel = rf.fit(train)
Evaluation
In this part we use the BinaryClassificationMetrics and MulticlassMetrics for evaluating our classifiers. First we need to use our trained model to predict the labels in the test DataFrame. To this aim, we use the transform method. This method add some columns to the test DataFrame. We use the prediction columns which is the predicted classes for data pionts in our test set. BinaryClassificationMetrics and MulticlassMetrics require an rdd of (prediction, truelabel) tuples. We create this rdd using the map function on prediction (rdd) and then calculate different metrics.
from pyspark.mllib.evaluation import BinaryClassificationMetrics
prediction = rfModel.transform(test)
predictionAndLabels = prediction.rdd.map(lambda r: (r.prediction, r._1))
metrics = BinaryClassificationMetrics(predictionAndLabels)
print("Area under ROC = %s" % metrics.areaUnderROC)
from pyspark.mllib.evaluation import MulticlassMetrics
metrics2 = MulticlassMetrics(predictionAndLabels)
print("Precions = %s" % metrics2.precision(1.0))
print("Recall = %s" % metrics2.recall(1.0))
Area under ROC = 0.9893749378235688
Precions = 0.921533690334014
Recall = 0.9909789543458447
print("Accuracy = %s" % metrics2.accuracy)
Accuracy = 0.9881770066509254
Logistic Regression classifier
We have trained and tested the Logistic Regression classifer on our training and testing set respectively as follows:
#Logistic Regression Classification
from pyspark.ml.classification import LogisticRegression
logr = LogisticRegression(featuresCol = 'features', labelCol = '_1')
logrmodel = logr.fit(train)
from pyspark.mllib.evaluation import BinaryClassificationMetrics
lr_prediction = logrmodel.transform(test)
Logistic Regression classifier evaluation
We have evaluated the Logistic Regression classifier using binary and also multi-class evaluation metrics as follows:
#Logistic Regression Evaluation
lr_predictionAndLabels = lr_prediction.rdd.map(lambda r: (r.prediction, r._1))
metrics = BinaryClassificationMetrics(lr_predictionAndLabels)
print("Area under ROC = %s" % metrics.areaUnderROC)
from pyspark.mllib.evaluation import MulticlassMetrics
metrics2 = MulticlassMetrics(lr_predictionAndLabels)
print("Precions = %s" % metrics2.precision(1.0))
print("Recall = %s" % metrics2.recall(1.0))
Area under ROC = 0.9814394501866226
Precions = 0.9305169153391484
Recall = 0.9734132902477421
Gradient-Boosted Trees (GBTs) classifier
We have trained and tested the GBTs classifer on our training and testing set respectively as follows:
from pyspark.ml.classification import GBTClassifier
gbt = GBTClassifier(featuresCol = 'features', labelCol = '_1', maxDepth=5)
gbtmodel = gbt.fit(train)
from pyspark.mllib.evaluation import BinaryClassificationMetrics
gbt_prediction = gbtmodel.transform(test)
Gradient-Boosted Trees (GBTs) classifier evaluation
We have evaluated the GBTs classifier using binary and also multi-class evaluation metrics as follows:
gbt_predictionAndLabels = gbt_prediction.rdd.map(lambda r: (r.prediction, r._1))
metrics = BinaryClassificationMetrics(gbt_predictionAndLabels)
print("Area under ROC = %s" % metrics.areaUnderROC)
from pyspark.mllib.evaluation import MulticlassMetrics
metrics2 = MulticlassMetrics(gbt_predictionAndLabels)
print("Precions = %s" % metrics2.precision(1.0))
print("Recall = %s" % metrics2.recall(1.0))
Area under ROC = 0.9801886786459773
Precions = 0.962630715074687
Recall = 0.9658111691109454
# import sys
# # !{sys.executable} -m pip install tensorflow
# # !{sys.executable} -m pip uninstall keras
# # !{sys.executable} -m pip install keras
# # !{sys.executable} -m pip install dist-keras
# # !{sys.executable} -m pip install elephas
# import keras
# from keras.optimizers import *
# from keras.models import Sequential
# from keras.layers import Dense, Dropout, Activation
# from distkeras.trainers import *
# from distkeras.predictors import *
# from distkeras.transformers import *
# from distkeras.evaluators import *
# from distkeras.utils import *
# from pyspark.ml.linalg import Vectors
# from elephas.utils.rdd_utils import to_simple_rdd
# from elephas.spark_model import SparkModel
# trainSett = trainSet.rdd.map(lambda row: Row(
# labels=row["labels"],
# featuresArray=Vectors.dense(row["featuresArray"])
# )).toDF()
# inpDim= len(trainSett.select("featuresArray").first()[0])
# inpDim= len(train.select("features").first()[0])
# model = Sequential()
# model.add(Dense(128, input_dim = inpDim,activation='relu',use_bias=True))
# model.add(Dropout(0.5))
# model.add(Dense(1,activation='sigmoid',use_bias=True))
# model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# print("compile done")
# # model.build()
# print(model.summary())
# trainer = SingleTrainer(keras_model=model, worker_optimizer='adam', loss='binary_crossentropy', num_epoch=1)
# print("trainer done")
# trained_model = trainer.train(train)#newtrainSet
# print("training done")
# predictor = ModelPredictor(keras_model=trained_model)
# ff=predictor.predict(test.take(50)[15].features)
Multilayer Perceptron Classifier
MLPC consists of multiple layers of nodes. Each layer is fully connected to the next layer in the network. Following code snippet is the implementation of such a model in pyspark. The input layer and the output layer have the size of 43 and 2, with two hidden layers of 5 and 4 neurons respectively.
# Multilayer Perceptron Classifier
from pyspark.ml.classification import MultilayerPerceptronClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# specify layers for the neural network:
# input layer of size 43 (features), two intermediate of size 5 and 4
# and output of size 2 (classes)
layers = [43, 5, 4, 2]
# create the trainer and set its parameters
mlpc = MultilayerPerceptronClassifier(maxIter=100, layers=layers, blockSize=128, seed=1234, featuresCol = 'features', labelCol = '_1')
# train the model
mlpcModel = mlpc.fit(train)
Finally, a trained MLPC model is returned that is ready to evaluate on the test data.
# compute accuracy on the test set
testLabeled = test.withColumnRenamed( '_1', "label")
mlpc_prediction = mlpcModel.transform(testLabeled)
The model is tested using MulticlassClassificationEvaluator with accuracy as an evaluation metric.
predictionAndLabels = mlpc_prediction.select("prediction", "label")
evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
print("Test set accuracy = " + str(evaluator.evaluate(predictionAndLabels)))
Test set accuracy = 0.9290082871081126
Decision Tree
The spark.ml implementation supports decision trees for binary and multiclass classification and for regression.
# Decision Tree
from pyspark.ml.classification import DecisionTreeClassifier
# Train a DecisionTree model.
dt = DecisionTreeClassifier(featuresCol = 'features', labelCol = '_1')
dtModel = dt.fit(train)
The decision tree model is tested for ROC, Precision, and recall. The area under ROC is 0.9738, Precision is 0.9626 and recall is 0.9531.
# Decision Tree Metrics
prediction = dtModel.transform(test)
predictionAndLabels = prediction.rdd.map(lambda r: (r.prediction, r._1))
from pyspark.mllib.evaluation import BinaryClassificationMetrics
metrics = BinaryClassificationMetrics(predictionAndLabels)
print("Area under ROC = %s" % metrics.areaUnderROC)
from pyspark.mllib.evaluation import MulticlassMetrics
metrics2 = MulticlassMetrics(predictionAndLabels)
print("Precisions = %s" % metrics2.precision(1.0))
print("Recall = %s" % metrics2.recall(1.0))
Area under ROC = 0.9738847246751252
Precisions = 0.9626855522893936
Recall = 0.9531237053608418
Robert Gieselmann and Vladislav Polianskii
Density estimation is a wide sub-area of statistics, tasked with understanding an underlying probability distribution of a given set of points, sampled from an unknown distribution. It can be used as a way of data investigation, like determining the location of low- and high-density regions in data, clusters and outliers, as well as for visualization purposes.
A histogram can be considered as a simple density estimator. Other well-known methods include: - a k-nearest-neighbor density estimator, which describes the density p() at a point x as \[p(x) \cong \frac{1}{d_k(x)}\] where d_k(x) is the distance to the kth nearest neighbor of x; - a kernel density estimator, which requires a selection of a kernel probability distribution K and a bandwidth h and essentially places the distributions at the data points, giving the density estimation \[p(x) \cong \sum_i K(\frac{x - x_i}{h})\]
All of the mentioned methods are sensitive to parameter selection, such as choosing the right number of neighbors or a fitting bandwidth.
Voronoi diagrams are widely used in many areas, including computer science, and provide a natural cell decomposition of space based on the nearest-neighbor rule. For a given data point x, its corresponding cell contains all the points of the metric space, for which x is the closest point among all in the dataset.
An example of a 2D Voronoi diagram built over a set of points sampled from a normal distribution can be seen below in the methodology part.
One of the biggest drawbacks of Voronoi diagrams is their geometric complexity, which grows exponentially with dimensionality and essentially prevents their exact computation in dimensions above 6 for a reasonable number of points. In the worst case, the number of geometric elements of the diagram (such as Voronoi vertices, edges and polyhedra of different dimensions that arise on the cell boundaries) grows as
\[O(n^{\lceil{d/2}\rceil})\]
Our method. In this work, we use some intuition about the Voronoi diagrams to develop a new method of density estimation. In addition, we apply a methodology from our previous work which allows one to work with Voronoi diagrams in high dimensions without their explicit construction.
Intuition: if we construct a Voronoi diagram over a set of points sampled from an unknown distribution then Voronoi cells in regions with higher density will be of a smaller size.
Consider the image below, which depicts a Voronoi diagram in a two-dimensional space built over points sampled from a Gaussian distribution. Voronoi cells in the center of the distribution appear naturally smaller in comparison with other cells, and the cell size increases when we move away from the center.
This intuition follows, in a way, a one-nearest-neighbor density estimator: the distance d to the nearest neighbor is inversly proportional to the estimated density of the point, and at the same time, a ball of radius d/2 centered at the query point always fits into (and touches the boundary of) the Voronoi cell.
On the discussed image, one of the cells is marked with a blue color. Assume that the point inside that cell is our query point, at which we want to understand the density, and all other points are the training (unlabeled) data that provides information about the density. Then, let us try to find a reasonable approximation of the density in a form of
\[p(x) = \frac{c}{size(Cell(x))}\]
where c is some constant, Cell denotes the Voronoi cell of x, and size is some measure of a cell.
Note: at any moment, the Voronoi diagram consists of only one query point and all dataset points.
Volume function
Let us assume for a while that cell's geometry is known to us. What would be a natural way to describe the size of the cell?
Perhaps, one of the first ideas that comes to mind is to use the cell's volume as a size measure. Here we run into an issue of infinite cells, whose volume would also be infinite. Potentially, this could be resolved by computing a weighted volume with an integrable weight function that rapidly decays at infinity.
However, instead, we propose a way to describe the size via volume functions, inspired by how alpha-complexes are motivated and constructed in the area of topological data analysis, where we consider a set of balls of an increasing radius with intersection with voronoi cells:
We define the volume function as follows:
\[\overline{Vol}_d(x)(r) = \frac{Vol_d(Cell(x) \cap B_r(x))}{Vol_d(B_r)}\]
Here, r is a positive radius, Vol() denotes the standard d-dimensional volume, and *B_r(x)* is a d-dimensional ball of radius r centered at x. The volume function of x returns a function that takes a radius r and returns a ratio of the volume of the intersection of the ball with the cell to the whole volume of the ball. Clearly, at the limit to zero, the ratio is equal to 1 (when the ball fully fits inside the cell), but starts to decrease as soon as parts of the ball start to leave the boundary.
Below are two images. On the left, a simple rectangular Voronoi cell with a point, generating it. On the right, a depiction of the volume function for this cell.
If we go into higher dimensions, we will not be able to see the steps that the function makes anymore. Below is an example, which we approximated (with a method described below) on MNIST data (784-dimensional) some time ago of volume functions for different data points:
On the picture above, we can guess that, for example, the point with the light-blue volume curve is located in a lower-density region than other given points, based on the fact that its volume function is greater than other functions at every radius.
A couple of things to consider here. 1. If a cell is infinite, then its volume function will not tend to 0 at infinity. Instead, it will tend to the angular size of this infinity. 2. If one cell can be placed inside another cell, identifying their generator points and rotating arbitrarily, the first volume function will be below the second volume function.
The second bullet point provides an idea that maybe we want to integrate this volume functions and compare them: a function with a larger integral would denote a lower-density region. At the same time, the first bullet point tells us that the functions are not always integrable. Thus, in this project we do the following modifications: we do not consider the directions of the balls which end up in infinity. To be more precise, we replace *B_r* with its sector where the voronoi cell is finite, in the formula for the volume function. This helps to mitigate the integrability issues.
Before we go into details about the computational aspects, we need to mention another modification to the formula. Instead of computing the d-dimensional volumes of balls, we decided to compute the (d-1)-dimensional volumes of spheres (or, the surface area of the balls). This modification makes the computation much easier. For example, the approximations of the volume functions become piecewise-constant.
Therefore, the formula for the size(x) becomes:
\[size(x) = \int_0^{inf}{\overline{Vol}{d-1}(x)(r) dr} = \int_0^{inf}{ \frac{Vol{d-1}(Cell(x) \cap \hat{S}r(x))}{Vol{d-1}( \hat{S}_r )} dr}\]
where *S_r(x)* denotes a hypersphere of radius r, and a "^" denotes that we only consider sections of a sphere where the cell is finite.
Integral computation.
We perform a Monte-Carlo sampling integration method to approximate the volume function, a motivation for which is described in detail in one of our earlier papers about Voronoi Boundary Classification (http://proceedings.mlr.press/v97/polianskii19a.html).
In short details, we sample random rays in uniform directions (equivalently, we sample points uniformly on the unit hypersphere), starting from the query point. For each ray, we record where it hits the boundary of the Voronoi cell. The length is computed by the following equation:
\[l(x, m) = \min_{i=1..N, \langle m, x - x_i \rangle > 0} \frac{\lVert x - x_i \rVert^2}{2\langle m, x - x_i \rangle }\]
Here, x is the origin of the ray (the generator/query point), m is the directional unit vector, *x_i* are other data points. The "infinite" directions are excluded. The condition in the minimum signifies, that we are only interested in the positive length, i.e. we can't find an intersection behind the ray.
After casting T rays from a point, we can approximate the volume function as:
\[\overline{Vol}{d-1}(x)(r) = \frac{1}{T}\sum{t=1}^{T} \mathbb{1}\left[l(x, m_t) \ge r \right]\]
The integral of the function can be easily computed as a sum of all lengths:
\[size(x) = \frac{1}{T}\sum_{t=1}^{T} l(x, m_t)\]
And, our (unnormalized) density:
\[\tilde{p}(x) = \frac{T}{\sum_{t=1}^{T} l(x, m_t)}\]
Overall, the method's compexity with some optimizations is:
\[O(NMT + NMD + NTD + MTD)\]
where N is the number of train points, M is the number of query points, T is the number of rays from each point and D is data dimensionality.
Ranking loss.
At the moment, we do not have any proofs that this indeed generates an unnormalized approximation for the density.
However, we are fairly certain (though also without a proof) that the approximation, when the dataset size tends to infinity, approximates the correct "ranking" of the estimates. Namely,
\[p(x_1) < p(x_2) \Leftrightarrow \tilde{p}(x_1) < \tilde{p}(x_2)\]
with probability 1 when data size is large enough. Here p is the real density used for point sampling, and \tilde{p} is the approximation.
This quality is meaningful in tasks when we need to sort points according to their density. For example, if we want to exclude noise (say, 5% of the all points with the lowest density), or use for density filtration in topological data analysis.
A measure that we use to estimate how well we approximate the correct density ranking works as following: 1. Sort available query points according to their true density. 2. Sort available query points according to the approximated density. 3. Find the number of inverses (swaps of two consecutive elements) required to obtain the first sequence of points from the second one.
The can easily be counted with a merge-sort algorithm in n log n time, but for simplicity and testing purposes (also because we use python for that) we do it in a simple quadratic time.
import org.apache.spark.mllib.random.RandomRDDs
import org.apache.spark.mllib.feature.Normalizer
import org.apache.spark.rdd.RDD
import breeze.linalg._
import breeze.numerics._
import org.apache.spark.mllib.random.RandomRDDs
import org.apache.spark.mllib.feature.Normalizer
import org.apache.spark.rdd.RDD
import breeze.linalg._
import breeze.numerics._
Constants required for the method.
// Constants
val N = 250 // train size
val M = 250 // test size
val D = 2 // dimensionality
val T = 500 // number of rays
val one_vs_all = true
assert((!one_vs_all) || N == M)
N: Int = 250
M: Int = 250
D: Int = 2
T: Int = 500
one_vs_all: Boolean = true
Generate points from standard Gaussian distribution.
val train_data = RandomRDDs.normalVectorRDD(sc, N, D).zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
val test_data = if(one_vs_all) train_data else RandomRDDs.normalVectorRDD(sc, M, D).zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
train_data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[10486] at map at command-1767923094595286:1
test_data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[10486] at map at command-1767923094595286:1
Generate T random rays
def get_uni_sphere() = {
var u = RandomRDDs.normalVectorRDD(sc, T, D)
u = new Normalizer().transform(u)
var t = u.zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
t
}
val rays = get_uni_sphere()
get_uni_sphere: ()org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])]
rays: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[10490] at map at command-685894176423986:4
Compute optimizations: all squared distances and all dot products of points with directions vectors.
def compute_dst_sq() = { // (N, M)
// dst[n, m] = |x_n - x'_m|^2
val dst = train_data.cartesian(test_data).map { case ((n, train_vec), (m, test_vec)) => ((n, m), sum(((train_vec - test_vec) *:* (train_vec - test_vec)) ^:^ 2.0) ) }
dst
}
def compute_pu(data: RDD[(Long, DenseVector[Double])]) = { // (data.N, T)
// pu[n, t] = <data_n, ray_t>
val pu = data.cartesian(rays).map { case ((n, data_vec), (t, ray_vec)) => ((n, t), data_vec dot ray_vec) }
pu
}
val dst = compute_dst_sq()
val pu_train = compute_pu(train_data)
val pu_test = compute_pu(test_data)
compute_dst_sq: ()org.apache.spark.rdd.RDD[((Long, Long), Double)]
compute_pu: (data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])])org.apache.spark.rdd.RDD[((Long, Long), Double)]
dst: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[10492] at map at command-685894176423990:3
pu_train: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[10494] at map at command-685894176423990:9
pu_test: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[10496] at map at command-685894176423990:9
Compute the lengths of all rays. The most expensive step.
def compute_ray_lengths() = { // (M, T)
// lengths[m, t, n] = dst[n, m] / (2 * (pu_train[n, t] - pu_test[m, t]))
def compute_length(n: Long, m: Long, dst_val: Double, pu_train_val: Double, pu_test_val: Double) = {
if (one_vs_all && n == m) {
Double.PositiveInfinity
} else {
val res = dst_val / (2 * (pu_train_val - pu_test_val))
if (res < 0) Double.PositiveInfinity else res
}
}
def my_min(a: Double, b: Double) = {min(a, b)}
val lengths = dst.cartesian(sc.range(0, T))
.map { case (((n, m), dst_val), t) => ((n, t), (m, dst_val)) }
.join(pu_train)
.map { case ((n, t), ((m, dst_val), pu_train_val)) => ((m, t), (n, dst_val, pu_train_val)) }
.join(pu_test)
.map { case ((m, t), ((n, dst_val, pu_train_val), pu_test_val)) => ((m, t), compute_length(n, m, dst_val, pu_train_val, pu_test_val)) }
.aggregateByKey(Double.PositiveInfinity)(my_min, my_min)
lengths
}
val lengths = compute_ray_lengths()
compute_ray_lengths: ()org.apache.spark.rdd.RDD[((Long, Long), Double)]
lengths: org.apache.spark.rdd.RDD[((Long, Long), Double)] = ShuffledRDD[10509] at aggregateByKey at command-685894176423991:20
Compute the approximated weights.
def compute_weights() = { // (M, )
def agg_f(a: (Double, Double), b: (Double, Double)) = { (a._1 + b._1, a._2 + b._2) }
val weights = lengths.map { case ((m, t), length) => (m, if (!length.isInfinity) (1.0, length) else (0.0, 0.0)) }
.aggregateByKey((0.0, 0.0))(agg_f, agg_f)
.map { case (m, (val1, val2)) => (m, if (val1 > 0) val1 / val2 else 0.0) }
weights
}
val weights = compute_weights()
compute_weights: ()org.apache.spark.rdd.RDD[(Long, Double)]
weights: org.apache.spark.rdd.RDD[(Long, Double)] = MapPartitionsRDD[10512] at map at command-685894176424002:6
Save obtained data in csv.
Note: we repartition the tables here to work with one csv only; this should be removed for larger data.
def save_data(name: String, data: RDD[(Long, DenseVector[Double])]) = {
data.map { case (k, v) => k.toString() + "," + v.toArray.mkString(",")}
.toDF.repartition(1).write.format("csv").mode(SaveMode.Overwrite).option("quote", " ").save("dbfs:/FileStore/group17/data/" + name)
}
def save_weights(name: String, data: RDD[(Long, Double)]) = {
data.map { case (k, v) => k.toString() + "," + v.toString}
.toDF.repartition(1).write.format("csv").mode(SaveMode.Overwrite).option("quote", " ").save("dbfs:/FileStore/group17/data/" + name)
}
save_data("gaussian_train", train_data)
save_data("gaussian_test", test_data)
save_weights("gaussian_weights", weights)
save_data: (name: String, data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])])Unit
save_weights: (name: String, data: org.apache.spark.rdd.RDD[(Long, Double)])Unit
Here we test the results for normally distributed points.
import numpy as np
import os
import shutil
import glob
import matplotlib.pyplot as plt
import scipy as sp
import scipy.stats as stats
os.listdir('/dbfs/FileStore/group17/data/')
Reading the files.
def read_csv(data_name):
results = glob.glob('/dbfs/FileStore/group17/data/' + data_name + '/*.csv')
assert(len(results) == 1)
filepath = results[0]
csv = np.loadtxt(filepath, delimiter=',')
csv = csv[csv[:, 0].argsort()]
return csv
train_data = read_csv('gaussian_train')
test_data = read_csv('gaussian_test')
weights = read_csv('gaussian_weights')
def display_density(data, weights):
fig = plt.figure(figsize=(10, 10))
plt.scatter(data[:, 0], data[:, 1], weights / np.max(weights) * 50)
display(fig)
True density visualization.
true_density = stats.multivariate_normal.pdf(test_data[:, 1:], mean=np.zeros(2))
display_density(test_data[:, 1:], true_density)
Density, obtained from our method.
display_density(test_data[:, 1:], weights[:, 1])
Density, obtained from kernel density estimation with tophat kernel.
from sklearn.neighbors.kde import KernelDensity
kde = KernelDensity(kernel='tophat', bandwidth=0.13).fit(train_data[:, 1:])
kde_weights = kde.score_samples(test_data[:, 1:])
kde_weights = np.exp(kde_weights)
display_density(test_data[:, 1:], kde_weights)
Density, obtained from kernel density estimation with gaussian kernel.
kde = KernelDensity(kernel='gaussian', bandwidth=0.13).fit(train_data[:, 1:])
gauss_weights = kde.score_samples(test_data[:, 1:])
gauss_weights = np.exp(kde_weights)
display_density(test_data[:, 1:], gauss_weights)
A simple computation of the number of inverses.
def rank_loss(a, b):
n = a.shape[0]
assert(n == b.shape[0])
ans = 0
for i in range(n):
for j in range(i + 1, n):
if (a[i] - a[j]) * (b[i] - b[j]) < 0:
ans += 1
return ans
Comparison of losses. On this one test, we get the smallest loss.
One of the immediate futher works: do a proper statistical comparison, also on different sizes of data.
rank_loss(weights[:, 1], true_density)
rank_loss(kde_weights, true_density)
rank_loss(gauss_weights, true_density)
Robotics Dataset
The estimation of probability density functions in a configuration space is of fundamental importance for many applications in probabilistic robotics and sampling-based robot motion planning.
Why is this application relevant? Standard sampling-based motion planners such as RRTConnect randomly explore the search space to iteratively build up a solution path. To speed up the planning it is common to use heuristics to explore the space in an informed way. The estimated densities are useful for designing such heurisitics. High-density regions might for example indicate narrow passages in the search space.
In the following we are going to apply the previously introduced algorithm to estimate densities of points in the configuration space of a multi-joint articulated robot arm. As shown in the figure below, the robot consists of 10 rotational joints and is placed in a 2-dim workspace. Several workspace obstacles are placed in the scene.
We ran RRT-Connect (a well-known shortest path motion planner) for different intial and goal configuration of the robot. The robot always starts in the right half of the workspace while the goal lies within one of the narrow passages as depicted in the figure.
To generate a dataset, we stitched all configurations from all planned paths together to one collection of joint configurations. Our goal is to estimate the density of robot configurations as generated by the RRTConnect motion planner. Originally, we used a dataset of ~125k points in 10 dimensions. Unfortunately, we observed that the current implementation does not scale well to such large dataset. For the scope of this project we instead run the method for 1000 points. Scaling up the implementation to larger dataset will be done in future work.
Here are some examples of paths found by the planner (red -> final configuration, black -> initial configuration, green-> intermediate confgurations along the path):
# # Read data from file
# joint_centers_all = spark.read.format("csv").load("dbfs:/FileStore/shared_uploads/robert.gieselmann@gmail.com/robotics_dataset_joint_centers.csv",inferSchema =True,header=False)
# joint_centers_to_plot = np.reshape(np.array(joint_centers_all.collect()), (-1, 2))
# # Plot 2d histogram of joint center positions
# f = plt.figure()
# plt.hist2d(joint_centers_to_plot[:,0], joint_centers_to_plot[:,1], bins=250)
# plt.xlabel("x")
# plt.ylabel("y")
# plt.title("Distribution of joint center coordinates")
# # Display figure
# display()
#import os
#os.remove("/dbfs/FileStore/group17/data/robotics_test/joint_configs_test.csv")
#os.remove("/dbfs/FileStore/group17/data/robotics_train/joint_configs_train.csv")
#os.listdir("/dbfs/FileStore/group17/data/robotics_train")
#os.rename("/dbfs/FileStore/group17/data/robotics", "/dbfs/FileStore/group17/data/robotics_train")
import org.apache.spark.mllib.random.RandomRDDs
import org.apache.spark.mllib.feature.Normalizer
import org.apache.spark.rdd.RDD
import breeze.linalg._
import breeze.numerics._
import org.apache.spark.mllib.random.RandomRDDs
import org.apache.spark.mllib.feature.Normalizer
import org.apache.spark.rdd.RDD
import breeze.linalg._
import breeze.numerics._
// Constants
val N = 1000 // train size
val M = 100 // test size
val D = 10 // dimensionality
val T = 100 // number of rays
val one_vs_all = true
N: Int = 1000
M: Int = 100
D: Int = 10
T: Int = 100
one_vs_all: Boolean = true
// Read the files from csv and convert to RDD
val df_train = spark.read.option("inferSchema", "true").option("header", "false").format("csv").load("/FileStore/group17/data/robotics_train/joint_configs_train.csv")
val df_test = spark.read.option("inferSchema", "true").option("header", "false").format("csv").load("/FileStore/group17/data/robotics_test/joint_configs_test.csv")
df_train: org.apache.spark.sql.DataFrame = [_c0: double, _c1: double ... 8 more fields]
df_test: org.apache.spark.sql.DataFrame = [_c0: double, _c1: double ... 8 more fields]
// Convert to RDD
val rdd_train = df_train.rdd.map(_.toSeq.toArray.map(_.toString.toDouble))
val rdd_test = df_train.rdd.map(_.toSeq.toArray.map(_.toString.toDouble))
// Convert to Array[(Long, DenseVector)]
val train_data = rdd_train.zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
val test_data = if(one_vs_all) train_data else rdd_test.zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
rdd_train: org.apache.spark.rdd.RDD[Array[Double]] = MapPartitionsRDD[2570] at map at command-3389902380791479:2
rdd_test: org.apache.spark.rdd.RDD[Array[Double]] = MapPartitionsRDD[2571] at map at command-3389902380791479:3
train_data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[2573] at map at command-3389902380791479:6
test_data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[2573] at map at command-3389902380791479:6
train_data.collect
def get_uni_sphere() = {
var u = RandomRDDs.normalVectorRDD(sc, T, D)
u = new Normalizer().transform(u)
var t = u.zipWithIndex().map { case (v, i) => (i, new DenseVector(v.toArray)) }
t
}
val rays = get_uni_sphere()
get_uni_sphere: ()org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])]
rays: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])] = MapPartitionsRDD[2577] at map at command-3389902380791431:4
def compute_dst_sq() = { // (N, M)
// dst[n, m] = |x_n - x'_m|^2
val dst = train_data.cartesian(test_data).map { case ((n, train_vec), (m, test_vec)) => ((n, m), sum(((train_vec - test_vec) *:* (train_vec - test_vec)) ^:^ 2.0) ) }
dst
}
def compute_pu(data: RDD[(Long, DenseVector[Double])]) = { // (data.N, T)
// pu[n, t] = <data_n, ray_t>
val pu = data.cartesian(rays).map { case ((n, data_vec), (t, ray_vec)) => ((n, t), data_vec dot ray_vec) }
pu
}
val dst = compute_dst_sq()
val pu_train = compute_pu(train_data)
val pu_test = compute_pu(test_data)
compute_dst_sq: ()org.apache.spark.rdd.RDD[((Long, Long), Double)]
compute_pu: (data: org.apache.spark.rdd.RDD[(Long, breeze.linalg.DenseVector[Double])])org.apache.spark.rdd.RDD[((Long, Long), Double)]
dst: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[2579] at map at command-3389902380791475:3
pu_train: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[2581] at map at command-3389902380791475:9
pu_test: org.apache.spark.rdd.RDD[((Long, Long), Double)] = MapPartitionsRDD[2583] at map at command-3389902380791475:9
def compute_ray_lengths() = { // (M, T)
// lengths[m, t, n] = dst[n, m] / (2 * (pu_train[n, t] - pu_test[m, t]))
def compute_length(n: Long, m: Long, dst_val: Double, pu_train_val: Double, pu_test_val: Double) = {
if (one_vs_all && n == m) {
Double.PositiveInfinity
} else {
val res = dst_val / (2 * (pu_train_val - pu_test_val))
if (res < 0) Double.PositiveInfinity else res
}
}
def my_min(a: Double, b: Double) = {min(a, b)}
val lengths = dst.cartesian(sc.range(0, T))
.map { case (((n, m), dst_val), t) => ((n, t), (m, dst_val)) }
.join(pu_train)
.map { case ((n, t), ((m, dst_val), pu_train_val)) => ((m, t), (n, dst_val, pu_train_val)) }
.join(pu_test)
.map { case ((m, t), ((n, dst_val, pu_train_val), pu_test_val)) => ((m, t), compute_length(n, m, dst_val, pu_train_val, pu_test_val)) }
.aggregateByKey(Double.PositiveInfinity)(my_min, my_min)
lengths
}
val lengths = compute_ray_lengths()
compute_ray_lengths: ()org.apache.spark.rdd.RDD[((Long, Long), Double)]
lengths: org.apache.spark.rdd.RDD[((Long, Long), Double)] = ShuffledRDD[2596] at aggregateByKey at command-3389902380791476:20
def compute_weights() = { // (M, )
def agg_f(a: (Double, Double), b: (Double, Double)) = { (a._1 + b._1, a._2 + b._2) }
val weights = lengths.map { case ((m, t), length) => (m, if (!length.isInfinity) (1.0, length) else (0.0, 0.0)) }
.aggregateByKey((0.0, 0.0))(agg_f, agg_f)
.map { case (m, (val1, val2)) => (m, if (val1 > 0) val1 / val2 else 0.0) }
weights
}
val weights = compute_weights()
compute_weights: ()org.apache.spark.rdd.RDD[(Long, Double)]
weights: org.apache.spark.rdd.RDD[(Long, Double)] = MapPartitionsRDD[2599] at map at command-3389902380791477:6
//def save_data(name: String, data: RDD[(Long, DenseVector[Double])]) = {
// data.map { case (k, v) => k.toString() + "," + v.toArray.mkString(",")}
// .toDF.repartition(1).write.format("csv").mode(SaveMode.Overwrite).option("quote", " ").save("dbfs:/FileStore/group17/data/" + name)
//}
def save_weights(name: String, data: RDD[(Long, Double)]) = {
data.map { case (k, v) => k.toString() + "," + v.toString}
.toDF.repartition(1).write.format("csv").mode(SaveMode.Overwrite).option("quote", " ").save("dbfs:/FileStore/group17/data/" + name)
}
save_weights("robotics_weights", weights)
save_weights: (name: String, data: org.apache.spark.rdd.RDD[(Long, Double)])Unit
weights.collect
Recommender System
Project members: - Ines De Miranda De Matos Lourenço - Yassir Jedra - Filippo Vannella
Introduction
In this project, we develop and analyse a Recommendation System.
We guide ourselves by the file 036ALSMovieRecommender, which provides an introduction to recommendation systems.
The goal of recommendation systems is to predict the preferences of users based on their similarity to other users.
Problem description
The recommender problem is the following: we have N users and M movies, and a rating matrix R where each component \(r_{ij}\) corresponds to the rating given by user i to the movie j. The problem is that some components of R are missing, meaning that not all users have rated all movies, and the objective is to estimate these ratings to know which movies to recommend to the users.
To do this we will use a method called Alternating Least Squares (ALS), which estimates a Ratings matrix based on a User and a Movies matrices.
Contents and contributions
We divide the work in the following parts, each of which in a different notebook:
-
00_Problem description: In this present notebook we introduce what is a recommendation system and which problems it tries to solve. We finally present the datasets used for this project, which include the original (small) data set, and a Netflix (large) dataset.
-
01_The solution: In the next notebook we present the theory behind Alternating Least Squares to solve recommendation systems, and the solutions for both small and large data sets.
- The main contribution of this part is a mathematical and algorithmic analysis to how the recommender works
-
02_Extensions and future ideas: In the final notebook we create specific functions to improve the original receommendation system and propose future ideas.
-
The main contributions of this part are the creation of a system that takes user info and outputs suggestions.
-
For first time users, create an algorithm that gives the top rated movies over all users.
-
Test the performance of the ALS algorithm for reccomendations based on movie's genres.
-
Data
To test the scalability of our approach we use two different datasets, that contain users' ratings to movies:
-
The original dataset stored in dbutils.fs.ls("/databricks-datasets/cs100/lab4/data-001/") and used in the original algorithm, consisting of 2999 users and 3615 movies, with a total of 487650 ratings.
-
A dataset from kaggle, used in a competition that Netflix held to improve recommendation systems. The dataset contains 480189 users and 17770 movies. Ratings are given on an integral scale from 1 to 5. The data is stored in dbutils.fs.ls("/FileStore/tables/Netflix").
Link to video
https://kth.box.com/s/tyccs648wusbxcgd3nr0s24gwo5lmc1x
The ALS algorithm
The ALS algorithm was proposed in 2008 by F. Zhang, E.Shang, Y. Xu and X. Wu in a paper titled : Large-scale Parallel Colaborative Filtering for the Netflix Prize (paper). We will briefly describe the main ideas behind the ALS algorithm.
What are we learning ?
In order to finding the missing values of the rating matrix R, the authors of the ALS algorithm considered approximating this matrix by a product of two tall matrices U and M of low rank. In other words, the goal is to find a low rank approximation of the ratings matrix R:
\[ R \approx U M^\top = \begin{bmatrix} u_1 & \dots & u_N \end{bmatrix}^\top \begin{bmatrix} m_1 & \dots & m_M \end{bmatrix} \qquad \text{where} \qquad U \in \mathbb{R}^{N \times K}, M \in \mathbb{R}^{M \times K} \]
Intuitively we think of U (resp. M) as a matrix of users' features (resp. movies features) and we may rewrite this approximation entrywise as
\[ \forall i,j \qquad r_{i,j} \approx u_i^\top m_j. \]
The loss function
If all entries of the rating matrix R were known, one may use an SVD decomposition to reconstruct U and M. However, not all ratings are known therefore one has to learn the matrices U and M. The authors of the paper proposed to minimize the following loss which corresponds to the sum of squares errors with a Thikonov rigularization that weighs the users matrix U (resp. the movies matrix M) using the GammaU (resp. GammaM)
\[ \mathcal{L}{U,M}^{wheighted}(R) = \sum{(i,j)\in S} (r_{i,j} - u_i^\top m_j)^2 + \lambda \Vert M \Gamma_m \Vert^2 + \lambda \Vert U \Gamma_u \Vert^2 \]
where S corresponds to the set of known ratings, \lambda is a regularaziation parameter. In fact this loss corresponds to the Alternating Least Squares with Weigted Regularization (ALS-WR). We will be using a variant of that algorithm a.k.a. the ALS algorithm which corresponds to minimizing the following slighltly similar loss without wheighing:
\[ \mathcal{L}{U,M}(R) = \sum{(i,j)\in S} (r_{i,j} - u_i^\top m_j)^2 + \lambda \Vert M \Vert^2 + \lambda \Vert U \Vert^2 \]
and the goal of the algorithm will be find a condidate (U,M) that
\[ \min_{U,M} \mathcal{L}_{U,M}(R) \]
The ALS algorithm
The authors approach to solve the aforementioned minimization problem as follows: - Step 1. Initialize matrix M, by assigning the average rating for that movie as the first row and small random numbers for the remaining entries. - Step 2. Fix M, Solve for U by minimizing the aformentioned loss. - Step 3. Fix U, solve for M by minimizing the aformentioned loss similarly. - Step 4. Repeat Steps 2 and 3 until a stopping criterion is satisfied.
Note that when one of the matrices is fixed, say M, the loss becomes quadratic in U and the solution corresponds to that of the least squares.
Key parameters of the algorithm
The key parameters of the lagorithm are the rank K, the regularization parameter lambda, and the number of iterations befor stopping the algorithm. Indeed, since we don not have full knowledge of the matrix R, we do not know its rank. To find the best rank we will use cross-validation and dedicate part of the data to that. There is no straight way to choosing the regularization parameter, we will base our choice on reported values that work for the considered datasets. As for the number of iterations, we will proceed similarly.
Practically speaking
We will use the following mllib library in scala wich contain classes dedicated to recommendation systems (See http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.recommendation.ALS). More specifically, it contains the ALS class which allows for using the ALS algorithm as described earlier.
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
On a small dataset
This part of the notebook is borrowed from the notebook on the ALS we had in the course.
display(dbutils.fs.ls("/databricks-datasets/cs100/lab4/data-001/")) // The data is already here
path | name | size |
---|---|---|
dbfs:/databricks-datasets/cs100/lab4/data-001/movies.dat | movies.dat | 171308.0 |
dbfs:/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz | ratings.dat.gz | 2837683.0 |
Loading the data
We read in each of the files and create an RDD consisting of parsed lines. Each line in the ratings dataset (ratings.dat.gz
) is formatted as: UserID::MovieID::Rating::Timestamp
Each line in the movies (movies.dat
) dataset is formatted as: MovieID::Title::Genres
The Genres
field has the format Genres1|Genres2|Genres3|...
The format of these files is uniform and simple, so we can use split()
.
Parsing the two files yields two RDDs
- For each line in the ratings dataset, we create a tuple of (UserID, MovieID, Rating). We drop the timestamp because we do not need it for this exercise.
- For each line in the movies dataset, we create a tuple of (MovieID, Title). We drop the Genres because we do not need them for this exercise.
// take a peek at what's in the rating file
sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line => line.split("::") }.take(5)
res33: Array[Array[String]] = Array(Array(1, 1193, 5, 978300760), Array(1, 661, 3, 978302109), Array(1, 914, 3, 978301968), Array(1, 3408, 4, 978300275), Array(1, 2355, 5, 978824291))
val timedRatingsRDD = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: (timestamp % 10, Rating(userId, movieId, rating))
(fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))
}
timedRatingsRDD.take(10).map(println)
(0,Rating(1,1193,5.0))
(9,Rating(1,661,3.0))
(8,Rating(1,914,3.0))
(5,Rating(1,3408,4.0))
(1,Rating(1,2355,5.0))
(8,Rating(1,1197,3.0))
(9,Rating(1,1287,5.0))
(9,Rating(1,2804,5.0))
(8,Rating(1,594,4.0))
(8,Rating(1,919,4.0))
timedRatingsRDD: org.apache.spark.rdd.RDD[(Long, org.apache.spark.mllib.recommendation.Rating)] = MapPartitionsRDD[9561] at map at command-3389902380791711:1
res34: Array[Unit] = Array((), (), (), (), (), (), (), (), (), ())
val ratingsRDD = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: Rating(userId, movieId, rating)
Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}
ratingsRDD.take(10).map(println)
Rating(1,1193,5.0)
Rating(1,661,3.0)
Rating(1,914,3.0)
Rating(1,3408,4.0)
Rating(1,2355,5.0)
Rating(1,1197,3.0)
Rating(1,1287,5.0)
Rating(1,2804,5.0)
Rating(1,594,4.0)
Rating(1,919,4.0)
ratingsRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[9564] at map at command-3389902380791714:1
res35: Array[Unit] = Array((), (), (), (), (), (), (), (), (), ())
val movies = sc.textFile("/databricks-datasets/cs100/lab4/data-001/movies.dat").map { line =>
val fields = line.split("::")
// format: (movieId, movieName)
(fields(0).toInt, fields(1))
}.collect.toMap
Let's make a data frame to visually explore the data next.
sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line => line.split("::") }.take(5)
res36: Array[Array[String]] = Array(Array(1, 1193, 5, 978300760), Array(1, 661, 3, 978302109), Array(1, 914, 3, 978301968), Array(1, 3408, 4, 978300275), Array(1, 2355, 5, 978824291))
val timedRatingsDF = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: (timestamp % 10, Rating(userId, movieId, rating))
(fields(3).toLong, fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}.toDF("timestamp", "userId", "movieId", "rating")
display(timedRatingsDF)
Here we simply check the size of the datasets we are using
val numRatings = ratingsRDD.count
val numUsers = ratingsRDD.map(_.user).distinct.count
val numMovies = ratingsRDD.map(_.product).distinct.count
println("Got " + numRatings + " ratings from "
+ numUsers + " users on " + numMovies + " movies.")
Got 487650 ratings from 2999 users on 3615 movies.
numRatings: Long = 487650
numUsers: Long = 2999
numMovies: Long = 3615
Now that we have the dataset we need, let's make a recommender system.
Creating a Training Set, test Set and Validation Set
Before we jump into using machine learning, we need to break up the ratingsRDD
dataset into three pieces:
- A training set (RDD), which we will use to train models
- A validation set (RDD), which we will use to choose the best model
- A test set (RDD), which we will use for our experiments
To randomly split the dataset into the multiple groups, we can use the randomSplit()
transformation. randomSplit()
takes a set of splits and seed and returns multiple RDDs.
val Array(trainingRDD, validationRDD, testRDD) = ratingsRDD.randomSplit(Array(0.60, 0.20, 0.20), 0L)
// let's find the exact sizes we have next
println(" training data size = " + trainingRDD.count() +
", validation data size = " + validationRDD.count() +
", test data size = " + testRDD.count() + ".")
training data size = 292318, validation data size = 97175, test data size = 98157.
trainingRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[9584] at randomSplit at command-3389902380791722:1
validationRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[9585] at randomSplit at command-3389902380791722:1
testRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[9586] at randomSplit at command-3389902380791722:1
After splitting the dataset, your training set has about 293,000 entries and the validation and test sets each have about 97,000 entries (the exact number of entries in each dataset varies slightly due to the random nature of the randomSplit()
transformation.
// let's find the exact sizes we have next
println(" training data size = " + trainingRDD.count() +
", validation data size = " + validationRDD.count() +
", test data size = " + testRDD.count() + ".")
training data size = 292318, validation data size = 97175, test data size = 98157.
// Build the recommendation model using ALS by fitting to the validation data
// just trying three different hyper-parameter (rank) values to optimise over
val ranks = List(4, 8, 12);
var rank=0;
for ( rank <- ranks ){
val numIterations = 10
val regularizationParameter = 0.01
val model = ALS.train(trainingRDD, rank, numIterations, regularizationParameter)
// Evaluate the model on test data
val usersProductsValidate = validationRDD.map { case Rating(user, product, rate) =>
(user, product)
}
// get the predictions on test data
val predictions = model.predict(usersProductsValidate)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
// find the actual ratings and join with predictions
val ratesAndPreds = validationRDD.map { case Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean()
println("rank and Mean Squared Error = " + rank + " and " + MSE)
} // end of loop over ranks
rank and Mean Squared Error = 4 and 0.8479974514693542
rank and Mean Squared Error = 8 and 0.9300503484148622
rank and Mean Squared Error = 12 and 1.02609274473932
ranks: List[Int] = List(4, 8, 12)
rank: Int = 0
Here we have the best model
val rank = 4
val numIterations = 10
val regularizationParameter = 0.01
val model = ALS.train(trainingRDD, rank, numIterations, regularizationParameter)
// Evaluate the model on test data
val usersProductsTest = testRDD.map { case Rating(user, product, rate) =>
(user, product)
}
// get the predictions on test data
val predictions = model.predict(usersProductsTest)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
// find the actual ratings and join with predictions
val ratesAndPreds = testRDD.map { case Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean()
println("rank and Mean Squared Error for test data = " + rank + " and " + MSE)
rank and Mean Squared Error for test data = 4 and 0.8339905882351633
rank: Int = 4
numIterations: Int = 10
regularizationParameter: Double = 0.01
model: org.apache.spark.mllib.recommendation.MatrixFactorizationModel = org.apache.spark.mllib.recommendation.MatrixFactorizationModel@4861c837
usersProductsTest: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[10463] at map at command-3389902380791728:7
predictions: org.apache.spark.rdd.RDD[((Int, Int), Double)] = MapPartitionsRDD[10472] at map at command-3389902380791728:13
ratesAndPreds: org.apache.spark.rdd.RDD[((Int, Int), (Double, Double))] = MapPartitionsRDD[10476] at join at command-3389902380791728:20
MSE: Double = 0.8339905882351633
On a large dataset - Netflix dataset
Loading the data
Netflix held a competition to improve recommendation systems. The dataset can be found in kaggle. Briefly speaking, the dataset contains users' ratings to movies, with 480189 users and 17770 movies. Ratings are given on an integral scale from 1 to 5. The first step is to download the data and store it in databricks. Originally, the dataset is plit into four files each with the following format:
MovieID:
UserID, rating, date
.
.
.
MovieID:
UserID, rating, date
.
.
.
We process these files so that each line has the format MovieID, UserID, rating, date
// Path where the data is stored
display(dbutils.fs.ls("/FileStore/tables/Netflix"))
path | name | size |
---|---|---|
dbfs:/FileStore/tables/Netflix/combined_data_1_tar.xz | combined_data_1_tar.xz | 1.19273784e8 |
dbfs:/FileStore/tables/Netflix/combined_data_2_tar.xz | combined_data_2_tar.xz | 1.33487548e8 |
dbfs:/FileStore/tables/Netflix/combined_data_3_tar.xz | combined_data_3_tar.xz | 1.11976904e8 |
dbfs:/FileStore/tables/Netflix/combined_data_4_tar.xz | combined_data_4_tar.xz | 1.32669964e8 |
dbfs:/FileStore/tables/Netflix/formatted_combined_data_1_txt.gz | formatted_combined_data_1_txt.gz | 1.66682858e8 |
dbfs:/FileStore/tables/Netflix/formatted_combined_data_2_txt.gz | formatted_combined_data_2_txt.gz | 1.87032103e8 |
dbfs:/FileStore/tables/Netflix/formatted_combined_data_3_txt.gz | formatted_combined_data_3_txt.gz | 1.56042358e8 |
dbfs:/FileStore/tables/Netflix/formatted_combined_data_4_txt.gz | formatted_combined_data_4_txt.gz | 1.85177843e8 |
dbfs:/FileStore/tables/Netflix/movie_titles.csv | movie_titles.csv | 577547.0 |
Let us load first the movie titles.
// Create a Movie class
case class Movie(movieID: Int, year: Int, tilte: String)
// Load the movie titles in an RDD
val moviesTitlesRDD: RDD[Movie] = sc.textFile("/FileStore/tables/Netflix/movie_titles.csv").map { line =>
val fields = line.split(",")
// format: Rating(movieId, year, title)
Movie(fields(0).toInt, fields(1).toInt, fields(2))
}
// Print the titles of the first 3 movies
moviesTitlesRDD.take(5).foreach(println)
Movie(1,2003,Dinosaur Planet)
Movie(2,2004,Isle of Man TT 2004 Review)
Movie(3,1997,Character)
Movie(4,1994,Paula Abdul's Get Up & Dance)
Movie(5,2004,The Rise and Fall of ECW)
defined class Movie
moviesTitlesRDD: org.apache.spark.rdd.RDD[Movie] = MapPartitionsRDD[129] at map at command-3389902380789882:3
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
val RatingsRDD_1 = sc.textFile("/FileStore/tables/Netflix/formatted_combined_data_1_txt.gz").map { line =>
val fields = line.split(",")
// format: Rating(userId, movieId, rating))
Rating(fields(1).toInt, fields(0).toInt, fields(2).toDouble)
}
val RatingsRDD_2 = sc.textFile("/FileStore/tables/Netflix/formatted_combined_data_2_txt.gz").map { line =>
val fields = line.split(",")
// format: Rating(userId, movieId, rating))
Rating(fields(1).toInt, fields(0).toInt, fields(2).toDouble)
}
val RatingsRDD_3 = sc.textFile("/FileStore/tables/Netflix/formatted_combined_data_3_txt.gz").map { line =>
val fields = line.split(",")
// format: Rating(userId, movieId, rating))
Rating(fields(1).toInt, fields(0).toInt, fields(2).toDouble)
}
val RatingsRDD_4 = sc.textFile("/FileStore/tables/Netflix/formatted_combined_data_4_txt.gz").map { line =>
val fields = line.split(",")
// format: Rating(userId, movieId, rating))
Rating(fields(1).toInt, fields(0).toInt, fields(2).toDouble)
}
RatingsRDD_4.take(5).foreach(println)
Rating(2385003,13368,4.0)
Rating(659432,13368,3.0)
Rating(751812,13368,2.0)
Rating(2625420,13368,2.0)
Rating(1650301,13368,1.0)
RatingsRDD_1: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[258] at map at command-3389902380789875:2
RatingsRDD_2: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[261] at map at command-3389902380789875:8
RatingsRDD_3: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[264] at map at command-3389902380789875:14
RatingsRDD_4: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[267] at map at command-3389902380789875:20
// Concatenating the ratings RDDs (could not find a nice way of doing this)
val r1 = RatingsRDD_1.union(RatingsRDD_2)
val r2 = r1.union(RatingsRDD_3)
val RatingsRDD = r2.union(RatingsRDD_4)
RatingsRDD.take(5).foreach(println)
r1: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = UnionRDD[278] at union at command-3389902380791426:2
r2: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = UnionRDD[279] at union at command-3389902380791426:3
RatingsRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = UnionRDD[280] at union at command-3389902380791426:4
Let us put our dataset in a dataframe to visulaize it more nicely
val RatingsDF = RatingsRDD.toDF
display(RatingsDF)
Training the movie recommender system
In the training process we will start by splitting the dataset into - a training set (60%) - a validation set (20%) - a test set (20%)
// Splitting the dataset
val Array(trainingRDD, validationRDD, testRDD) = RatingsRDD.randomSplit(Array(0.60, 0.20, 0.20), 0L)
training data size = 60288922, validation data size = 20097527, test data size = 20094058.
trainingRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[8350] at randomSplit at command-3389902380791433:1
validationRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[8351] at randomSplit at command-3389902380791433:1
testRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[8352] at randomSplit at command-3389902380791433:1
After splitting the dataset, your training set has about 60,288,922 entries and the validation and test sets each have about 20,097,527 entries (the exact number of entries in each dataset varies slightly due to the random nature of the randomSplit()
transformation.
// let's find the exact sizes we have next
println(" training data size = " + trainingRDD.count() +
", validation data size = " + validationRDD.count() +
", test data size = " + testRDD.count() + ".")
training data size = 60288922, validation data size = 20097527, test data size = 20094058.
// Build the recommendation model using ALS by fitting to the validation data
// just trying three different hyper-parameter (rank) values to optimise over
val ranks = List(50, 100, 150, 300, 400, 500);
var rank=0;
for ( rank <- ranks ){
val numIterations = 12
val regularizationParameter = 0.05
val model = ALS.train(trainingRDD, rank, numIterations, regularizationParameter)
// Evaluate the model on test data
val usersProductsValidate = validationRDD.map { case Rating(user, product, rate) =>
(user, product)
}
// get the predictions on test data
val predictions = model.predict(usersProductsValidate)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
// find the actual ratings and join with predictions
val ratesAndPreds = validationRDD.map { case Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean()
println("rank and Mean Squared Error = " + rank + " and " + MSE)
} // end of loop over ranks
rank and Mean Squared Error = 50 and 0.7060806826621556
rank and Mean Squared Error = 100 and 0.7059490573655225
rank and Mean Squared Error = 150 and 0.7056407494686934
Extensions
In this notebook, we introduce multiple improvements to the original algorithm, using the small dataset. We: - First, improve the original algorithm by creating a system that takes user info and outputs suggestions, which is the typical final role of a recommendation system. - Then, we add the functionality that for first time user, we output the top rated movies over all users. - Furthemore, we improve the existing model by including the movie's genres to give better recommendations.
// import the relevant libraries for `mllib`
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.sql.expressions.UserDefinedFunction
import scala.collection.mutable.WrappedArray
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.sql.expressions.UserDefinedFunction
import scala.collection.mutable.WrappedArray
// Get the small dataset and display information
display(dbutils.fs.ls("/databricks-datasets/cs100/lab4/data-001/")) // The data is already here
path | name | size |
---|---|---|
dbfs:/databricks-datasets/cs100/lab4/data-001/movies.dat | movies.dat | 171308.0 |
dbfs:/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz | ratings.dat.gz | 2837683.0 |
// Create the RDD containing the ratings
val ratingsRDD = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: Rating(userId, movieId, rating)
Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}
ratingsRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[21729] at map at command-3389902380791579:3
// We take a look at the first 10 entries in the Ratings RDD
ratingsRDD.take(10).map(println)
Rating(1,1193,5.0)
Rating(1,661,3.0)
Rating(1,914,3.0)
Rating(1,3408,4.0)
Rating(1,2355,5.0)
Rating(1,1197,3.0)
Rating(1,1287,5.0)
Rating(1,2804,5.0)
Rating(1,594,4.0)
Rating(1,919,4.0)
res86: Array[Unit] = Array((), (), (), (), (), (), (), (), (), ())
A similar command is used to format the movies. For this first part the genre field is ignored. They will considered in the second part of this notebook.
val movies = sc.textFile("/databricks-datasets/cs100/lab4/data-001/movies.dat").map { line =>
val fields = line.split("::")
// format: (movieId, movieName)
(fields(0).toInt, fields(1))
}.collect.toMap
// check the size of the small dataset
val numRatings = ratingsRDD.count
val numUsers = ratingsRDD.map(_.user).distinct.count
val numMovies = ratingsRDD.map(_.product).distinct.count
println("Got " + numRatings + " ratings from "
+ numUsers + " users on " + numMovies + " movies.")
Got 487650 ratings from 2999 users on 3615 movies.
numRatings: Long = 487650
numUsers: Long = 2999
numMovies: Long = 3615
// Creating a Training Set, test Set and Validation Set
val Array(trainingRDD, validationRDD, testRDD) = ratingsRDD.randomSplit(Array(0.60, 0.20, 0.20), 0L)
trainingRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[21741] at randomSplit at command-3389902380791584:3
validationRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[21742] at randomSplit at command-3389902380791584:3
testRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[21743] at randomSplit at command-3389902380791584:3
// let's find the exact sizes we have next
println(" training data size = " + trainingRDD.count() +
", validation data size = " + validationRDD.count() +
", test data size = " + testRDD.count() + ".")
training data size = 292318, validation data size = 97175, test data size = 98157.
Ratings distribution
For curiosity, we start by plotting the histogram of the ratings present in this dataset
// Create a DataFrame with the data
import org.apache.spark.sql.functions._
val ratingsDF = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: (timestamp % 10, Rating(userId, movieId, rating))
(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}.toDF("userID", "movieID", "rating")
display(ratingsDF)
val history = ratingsDF.groupBy("rating").count().orderBy(asc("rating"))
history.show()
+------+------+
|rating| count|
+------+------+
| 1.0| 27472|
| 2.0| 53838|
| 3.0|127216|
| 4.0|170579|
| 5.0|108545|
+------+------+
history: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [rating: double, count: bigint]
display(history)
Create a system that takes user info and outputs suggestions.
user info = ((movieID,rating),(movieID,rating)). It is basically an (incomplete) line in the ratings matrix.
- Choose an user
- Run the model and fill the columns - predict the ratings for the movies
- Output the ones with the best predicted score
// Train the model as usually
val rank = 4
val numIterations = 10
val regularizationParameter = 0.01
val model = ALS.train(trainingRDD, rank, numIterations, regularizationParameter)
rank: Int = 4
numIterations: Int = 10
regularizationParameter: Double = 0.01
model: org.apache.spark.mllib.recommendation.MatrixFactorizationModel = org.apache.spark.mllib.recommendation.MatrixFactorizationModel@570cf4b3
// Choose any random user,which is going to be our test user
val newUserID = 1000
// Create a list with the MovieIds we want to predict its rating to
val newUser = Array(Rating(newUserID, 1, 0),Rating(newUserID, 2, 0),Rating(newUserID.toInt, 3, 0),Rating(newUserID.toInt, 4, 0),Rating(newUserID.toInt, 5, 0))
newUser.map(println)
// Convert it to an RDD
val newTest = sc.parallelize(newUser)
newTest.map(println)
Rating(1000,1,0.0)
Rating(1000,2,0.0)
Rating(1000,3,0.0)
Rating(1000,4,0.0)
Rating(1000,5,0.0)
newUserID: Int = 1000
newUser: Array[org.apache.spark.mllib.recommendation.Rating] = Array(Rating(1000,1,0.0), Rating(1000,2,0.0), Rating(1000,3,0.0), Rating(1000,4,0.0), Rating(1000,5,0.0))
newTest: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = ParallelCollectionRDD[21968] at parallelize at command-3389902380791591:9
res94: org.apache.spark.rdd.RDD[Unit] = MapPartitionsRDD[21969] at map at command-3389902380791591:10
// Evaluate the model on this test user
val usersProductsTest = newTest.map { case Rating(user, product, rate) =>
(user, product)
}
usersProductsTest: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[21970] at map at command-3389902380791592:2
// get the predictions for this test user
val predictions = model.predict(usersProductsTest)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
val ratesAndPreds = newTest.map { case Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
predictions: org.apache.spark.rdd.RDD[((Int, Int), Double)] = MapPartitionsRDD[21979] at map at command-3389902380791593:3
ratesAndPreds: org.apache.spark.rdd.RDD[((Int, Int), (Double, Double))] = MapPartitionsRDD[21983] at join at command-3389902380791593:9
// Convert the RDD with the predictions to a DataFrame
val preds2 = ratesAndPreds.map { case ((user, product), (r1, r2)) => (user,product,r2) }
var predsDF = preds2.toDF("userID","movieID","pred")
predsDF.orderBy(asc("movieID"))show()
+------+-------+------------------+
|userID|movieID| pred|
+------+-------+------------------+
| 1000| 1|4.3134486083287396|
| 1000| 2| 3.561695001470941|
| 1000| 3| 3.251747295342854|
| 1000| 4|2.9727526635707116|
| 1000| 5|3.1890542732727987|
+------+-------+------------------+
preds2: org.apache.spark.rdd.RDD[(Int, Int, Double)] = MapPartitionsRDD[21984] at map at command-3389902380791594:2
predsDF: org.apache.spark.sql.DataFrame = [userID: int, movieID: int ... 1 more field]
// Order the movies according to the predictions
val orderedPreds = predsDF.orderBy(desc("pred"))
orderedPreds.show()
+------+-------+------------------+
|userID|movieID| pred|
+------+-------+------------------+
| 1000| 1|4.3134486083287396|
| 1000| 2| 3.561695001470941|
| 1000| 3| 3.251747295342854|
| 1000| 5|3.1890542732727987|
| 1000| 4|2.9727526635707116|
+------+-------+------------------+
orderedPreds: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [userID: int, movieID: int ... 1 more field]
// Return the ID of the highest recommended one
val t = orderedPreds.select("movieID").collect().map(_(0)).toList.take(1)
println("The movie highest recommended for this user is:")
println(movies(t(0).asInstanceOf[Int]))
The movie highest recommended for this user is:
Toy Story (1995)
t: List[Any] = List(1)
For first time users, the program gives the top rated movies over all users.
If newUser: - Check the ratings matrix - Compute the average rating of each column (of each movie) - Return the columns with the highest
// Note: This is only for the ones they said. Doesnt include the ones computed by our model...
import org.apache.spark.sql.functions._
val newUserID = 4000
// Compute the average of each movie
val averageRates = ratingsDF.groupBy("movieID").avg("rating")
averageRates.show()
+-------+------------------+
|movieID| avg(rating)|
+-------+------------------+
| 1580|3.7045454545454546|
| 2366| 3.71875|
| 1088| 3.29595015576324|
| 1959|3.6577181208053693|
| 3175|3.8145454545454545|
| 1645| 3.367021276595745|
| 496|3.3846153846153846|
| 2142|2.8256880733944953|
| 1591|2.5783132530120483|
| 2122|2.3434343434343434|
| 833| 2.130434782608696|
| 463|2.7222222222222223|
| 471| 3.665492957746479|
| 1342|2.8188976377952755|
| 148| 2.857142857142857|
| 3918| 2.806896551724138|
| 3794| 3.4|
| 1238|3.9526627218934913|
| 2866|3.7386363636363638|
| 3749| 4.0|
+-------+------------------+
only showing top 20 rows
import org.apache.spark.sql.functions._
newUserID: Int = 4000
averageRates: org.apache.spark.sql.DataFrame = [movieID: int, avg(rating): double]
// Order the movies by top ratings
val orderedRates = averageRates.orderBy(desc("avg(rating)")).withColumnRenamed("avg(rating)","avg_rate")
orderedRates.show()
+-------+-----------------+
|movieID| avg_rate|
+-------+-----------------+
| 854| 5.0|
| 853| 5.0|
| 787| 5.0|
| 1830| 5.0|
| 3881| 5.0|
| 557| 5.0|
| 3280| 5.0|
| 578| 5.0|
| 2444| 5.0|
| 3636| 5.0|
| 3443| 5.0|
| 3800| 5.0|
| 989| 5.0|
| 1002|4.666666666666667|
| 3232|4.666666666666667|
| 2839|4.666666666666667|
| 3245|4.666666666666667|
| 2905|4.609756097560975|
| 1743| 4.6|
| 2019|4.586330935251799|
+-------+-----------------+
only showing top 20 rows
orderedRates: org.apache.spark.sql.DataFrame = [movieID: int, avg_rate: double]
// Return the top 5 movies with highest ratings over all users
val topMovies = orderedRates.take(5)
//println(topMovies)
//topMovies.foreach(t => println(t(0)))
val moviesList = orderedRates.select("movieID").collect().map(_(0)).toList.take(5)
//println(moviesList)
println("The movies recommended for a new user based on the overall rating are:")
for (t <- moviesList )
println(movies(t.asInstanceOf[Int]))
// println(movies(t))
The movies recommended for a new user based on the overall rating are:
Dingo (1992)
Gate of Heavenly Peace, The (1995)
Hour of the Pig, The (1993)
Those Who Love Me Can Take the Train (Ceux qui m'aiment prendront le train) (1998)
Schlafes Bruder (Brother of Sleep) (1995)
topMovies: Array[org.apache.spark.sql.Row] = Array([989,5.0], [787,5.0], [853,5.0], [578,5.0], [3636,5.0])
moviesList: List[Any] = List(853, 787, 578, 3636, 989)
// In alternative, return the top movies with rating of 5 over all users
val topMovies5 = orderedRates.where("avg_rate == 5").select("movieID").collect().map(_(0)).toList
println("The movies recommended for a new user based on the overall rating are:")
for (t <- topMovies5 )
println(movies(t.asInstanceOf[Int]))
// println(movies(t))
The movies recommended for a new user based on the overall rating are:
Dingo (1992)
Gate of Heavenly Peace, The (1995)
Hour of the Pig, The (1993)
Those Who Love Me Can Take the Train (Ceux qui m'aiment prendront le train) (1998)
Schlafes Bruder (Brother of Sleep) (1995)
Ballad of Narayama, The (Narayama Bushiko) (1958)
Baby, The (1973)
24 7: Twenty Four Seven (1997)
Born American (1986)
Criminal Lovers (Les Amants Criminels) (1999)
Follow the Bitch (1998)
Bittersweet Motel (2000)
Mamma Roma (1962)
topMovies5: List[Any] = List(853, 787, 578, 3636, 989, 854, 3280, 2444, 3443, 3800, 1830, 3881, 557)
Genres analysis
we investigate whether suggestion based on genre can be more accurate. Imagine a scenario in which an user is interested in watching a movie of a particular genre, say an Animation movie, given this information, can we suggest a better film with respect to the film that we would have suggested by only knowing user’s previous ratings on such movie?
// Read the movies file as a dataframe and display it
val movies_df = sc.textFile("/databricks-datasets/cs100/lab4/data-001/movies.dat").map { line =>
val fields = line.split("::")
// format: (movieId, movieName,genre)
(fields(0).toInt, fields(1),fields(2).split("\\|"))
}.toDF("movieId", "movieName", "genre")
display(movies_df)
// Select a GENRE, or a set of GENREs and filter the movies dataset according to this genre
val GENRE = "Animation"
def array_contains_any(s:Seq[String]): UserDefinedFunction = {
udf((c: WrappedArray[String]) =>
c.toList.intersect(s).nonEmpty)}
val b: Array[String] = Array(GENRE)
val genre_df = movies_df.where(array_contains_any(b)($"genre"))
display(genre_df)
val movie_ID_genres = genre_df.select("movieId").rdd.map(r => r(0)).collect()
// We now read and display the ratings dataframe (without the timestamp field) as a dataframe.
val RatingsDF = sc.textFile("/databricks-datasets/cs100/lab4/data-001/ratings.dat.gz").map { line =>
val fields = line.split("::")
// format: (timestamp % 10, Rating(userId, movieId, rating))
(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}.toDF("userId", "movieId", "rating")
display(RatingsDF)
// Based on the movies id obtained by the filtering on the movie dataset we filter the ratings df and we convert it to rdd format
val Ratings_genre_df = RatingsDF.filter($"movieId".isin(movie_ID_genres:_*))
val genre_rdd = Ratings_genre_df.rdd
display(Ratings_genre_df)
// Print some dataset statistics
val numRatings = genre_rdd.count
println("Got " + numRatings + " ratings")
Got 22080 ratings
numRatings: Long = 22080
// Create train, test, and evaluation dataset and print some statistics
val Array(temp_trainingRDD, temp_validationRDD, temp_testRDD) = genre_rdd.randomSplit(Array(0.60, 0.20, 0.20), 0L)
// let's find the exact sizes we have next
println("training data size = " + temp_trainingRDD.count() +
", validation data size = " + temp_validationRDD.count() +
", test data size = " + temp_testRDD.count() + ".")
training data size = 13229, validation data size = 4411, test data size = 4440.
temp_trainingRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19929] at randomSplit at command-3389902380791621:2
temp_validationRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19930] at randomSplit at command-3389902380791621:2
temp_testRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19931] at randomSplit at command-3389902380791621:2
// Map the rdds to the Rating type
val maptrainingRDD = temp_trainingRDD.map(x=>Rating(x(0).asInstanceOf[Int], x(1).asInstanceOf[Int], x(2).asInstanceOf[Double]))
val mapvalidationRDD = temp_validationRDD.map(x=>Rating(x(0).asInstanceOf[Int], x(1).asInstanceOf[Int], x(2).asInstanceOf[Double]))
val maptestRDD = temp_testRDD.map(x=>Rating(x(0).asInstanceOf[Int], x(1).asInstanceOf[Int], x(2).asInstanceOf[Double]))
maptrainingRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[19932] at map at command-3389902380791624:2
mapvalidationRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[19933] at map at command-3389902380791624:3
maptestRDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.recommendation.Rating] = MapPartitionsRDD[19934] at map at command-3389902380791624:4
// Build the recommendation model using ALS by fitting to the training data (with Hyperparameter tuning)
// trying different hyper-parameter (rank) values to optimise over
val ranks = List(2, 4, 8, 16, 32, 64, 128, 256);
var rank=0;
for ( rank <- ranks ){
// using a fixed numIterations=10 and regularisation=0.01
val numIterations = 10
val regularizationParameter = 0.01
val model = ALS.train(maptrainingRDD, rank, numIterations, regularizationParameter)
// Evaluate the model on test data
val usersProductsValidate = mapvalidationRDD.map { case Rating(user, product, rate) =>
(user, product)
}
// get the predictions on test data
val predictions = model.predict(usersProductsValidate)
.map { case Rating(user, product, rate)
=> ((user, product), rate)
}
// find the actual ratings and join with predictions
val ratesAndPreds = mapvalidationRDD.map { case Rating(user, product, rate)
=> ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
val err = (r1 - r2)
err * err
}.mean()
println("rank and Mean Squared Error = " + rank + " and " + MSE)
} // end of loop over ranks
rank and Mean Squared Error = 2 and 1.0624116959469154
rank and Mean Squared Error = 4 and 1.3393495403657538
rank and Mean Squared Error = 8 and 1.6916511125697133
rank and Mean Squared Error = 16 and 1.63542207107039
rank and Mean Squared Error = 32 and 1.311227268934932
rank and Mean Squared Error = 64 and 0.9461947532838
rank and Mean Squared Error = 128 and 0.8859420827613572
rank and Mean Squared Error = 256 and 0.8845268169033572
numIterations: Int = 10
regularisation: Double = 0.01
ranks: List[Int] = List(2, 4, 8, 16, 32, 64, 128, 256)
rank: Int = 0
Group members: Linn Öström, Patrik Persson, Johan Oxenstierna, and Alexander Dürr
Link to our video explaining the 1) theory, 2) preprocessing the dataset, 3) algorithm and 4) results https://drive.google.com/drive/folders/1zEWj6JsJEUu9f8Q5Xy_avwxQ3yJ9oI7Z?usp=sharing
alternatively: https://youtu.be/eJ2LDtNad08
Problem formulation
A common problem in computer vision is estimating the fundamental matrix based on a image pair. The fundamental matrix relates corresponding points in stereo geometry, and is useful as a pre-processing step for example when one wants to perform reconstruction of a captured scene. In this small project we use a scalable distributed algorithm to compute fundamental matrices between a large set of images.
Short theory section
Assume that we want to link points in some image taken by camera to points in an image taken by another camera . Let and denote the projections of global point onto the cameras and , respectivly. Then the points are related as follows
where are scale factors. Since we always can apply a projective transformation to set one of the cameras to and the other to some we can parametrize the global point by . Thus the projected point onto camera is represented by the line . This line is called the epipolar line to the point in epipolar geomtry, and descirbes how the point in image 1 is related to points on in image 2. Since all scene points that can project to are on the viewing ray, all points in the second image that can correspond have to be on the epipolar line. This condition is called the epipolar constraint.
Taking two points on this line (one of them being using ), (add what is e_2) we can derive an expression of this line , as any point x on the line must fulfill . Thus the line is thus given by
Let , this is called the fundamental matrix. The fundamental matrix thus is a mathematical formulation which links points in image 1 to lines in image 2 (and vice versa). If corresponds to then the epipolar constraint can be written
F is a 3x 3 matrix with 9 entiers and has 7 degrees of freedom. It can be estimated using 7 points using the 7-point algorithm.
Before we have assumed the the correspndeces between points in the imagaes are known, however these are found by first extracting features in the images using some form of feature extractor (e.g. SIFT) and subsequently finding matches using some mathcing criterion/algorithm (e.g. using Lowes criterion or in our case FLANN based matcher)
SIFT
Scale-invariant feature transform (SIFT) is a feature detection algorithm which detect and describe local features in images, see examples of detected SIFT features in the two images (a) and (b). SIFT finds local features present in the image and compute desriptors and locations of these features. Next we need to link the features present in image 1 to the features in image 2, which can be done using e.g. a FLANN (Fast Library for Approximate Nearest Neighbors) based matcher. In short the features in the images are compared and the matches are found using a nearest neighbor search. After a matching algorithm is used we have correspandence between the detected points in image 1 and image 2, see example in image (c) below. Note that there is still a high probaility that some of these matches are incorrect.
RANSAC
Some matches found by the FLANN may be incorrect, and a common robust method used for reducing the influence of these outliers in the estimation of F is RANSAC (RANdom SAmpling Consensus). In short, it relies on the fact that the inliers will tend to a consesus regarding the correct estimation, whereas the outlier estimation will show greater variation. By sampling random sets of points with size corresponding to the degrees of freedom of the model, calculating their corresponding estimations, and grouping all estimations with a difference below a set threshold, the largest consesus group is found. This set is then lastly used for the final estimate of F.
OpenCV is an well-known open-source library for computer vision, machine learning, and image processing tasks. In this project we will use it for feature extraction (SIFT), feature matching (FLANN) and the estimation of the fundamental matrix (using the 7-point algorithm). Let us install opencv
install opencv-python
Also we need to download a dataset that we can work with, this dataset is collected by Carl Olsson from LTH. This is achieved by the bash shell script below. The dataset is placed in the /tmp folder using the -P "prefix"
rm -r /tmp/0019
rm -r /tmp/eglise_int1.zip
wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int1.zip
unzip /tmp/eglise_int1.zip -d /tmp/0019/
rm -r /tmp/eglise_int1.zip
rm -r /tmp/eglise_int2.zip
wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int2.zip
unzip /tmp/eglise_int2.zip -d /tmp/0019/
rm -r /tmp/eglise_int2.zip
rm -r /tmp/eglise_int3.zip
wget -P /tmp vision.maths.lth.se/calledataset/eglise_int/eglise_int3.zip
unzip /tmp/eglise_int3.zip -d /tmp/0019/
rm -r /tmp/eglise_int3.zip
cd /tmp/0019/
for f in *; do mv "$f" "eglise_$f"; done
cd /databricks/driver
# for an experiment to detect if images from an unrelated scene are not matched to pictures from another scene
%sh
rm -r /tmp/gbg.zip
wget -P /tmp vision.maths.lth.se/calledataset/gbg/gbg.zip
unzip /tmp/gbg.zip -d /tmp/0019/
rm -r /tmp/gbg.zip
import sys.process._
//"wget -P /tmp vision.maths.lth.se/calledataset/door/door.zip" !!
//"unzip /tmp/door.zip -d /tmp/door/"!!
//move downloaded dataset to dbfs
val localpath="file:/tmp/0019/"
dbutils.fs.rm("dbfs:/datasets/0019/mixedimages", true) // the boolean is for recursive rm
dbutils.fs.mkdirs("dbfs:/datasets/0019/mixedimages")
dbutils.fs.cp(localpath, "dbfs:/datasets/0019/mixedimages", true)
import sys.process._
localpath: String = file:/tmp/0019/
res5: Boolean = true
rm -r /tmp/0019
display(dbutils.fs.ls("dbfs:/datasets/0019/mixedimages"))
#Loading one image from the dataset for testing
import numpy as np
import cv2
import matplotlib.pyplot as plt
def plot_img(figtitle,img):
#create figure with std size
fig = plt.figure(figtitle, figsize=(10, 5))
plt.imshow(img)
display(plt.show())
img1 = cv2.imread("/dbfs/datasets/0019/mixedimages/eglise_DSC_0133.JPG")
#img2 = cv2.imread("/dbfs/datasets/0019/mixedimages/DSC_0133.JPG")
plot_img("eglise", img1)
#plot_img("gbg", img2)
ls /dbfs/datasets/0019/mixedimages/eglise_DSC_0133.JPG
Read Image Dataset
import glob
import numpy as np
import cv2
import os
dataset_path = "/dbfs/datasets/0019/mixedimages/"
#get all filenames in folder
files = glob.glob(os.path.join(dataset_path,"*.JPG"))
dataset = []
#load all images names
for i, file in enumerate(files): # Alex: changed
# Load an color image
#img = cv2.imread(file)
#add image and image name as a tupel to the list
dataset.append((file))
if i >= 150: # Alex: changed
break
Define maps
import glob
import numpy as np
import cv2
import matplotlib.pyplot as plt
max_features = 1000
def plot_img(figtitle,s):
img = cv2.imread(s)
#create figure with std size
fig = plt.figure(figtitle, figsize=(10, 5))
plt.imshow(img)
display(plt.show())
def extract_features(s):
"""
"""
# Here we load the images on the executor from dbfs into memory
img = cv2.imread(s)
#convert to gray scale
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create(max_features)
#extract sift features and descriptors
kp, des = sift.detectAndCompute(gray, None)
#convert keypoint class to list of feature locations (for serialization)
points=[]
for i in range(len(kp)):
points.append(kp[i].pt)
#return a tuple of image name, feature points, descriptors, called a feature tuple
return (s, points, des)
def estimate_fundamental_matrix(s):
"""
"""
# s[0] is a feature tuple for the first image, s[1] is the same for the second image
a = s[0]
b = s[1]
# unpacks the tuples
name1, kp1, desc1 = a
name2, kp2, desc2 = b
# Create FLANN matcher object
FLANN_INDEX_KDTREE = 0
indexParams = dict(algorithm=FLANN_INDEX_KDTREE,
trees=5)
searchParams = dict(checks=50)
flann = cv2.FlannBasedMatcher(indexParams,
searchParams)
# matches the descriptors, for each query descriptor it finds the two best matches among the train descriptors
matches = flann.knnMatch(desc1, desc2, k=2)
goodMatches = []
pts1 = []
pts2 = []
# compares the best with the second best match and only adds those where the best match is significantly better than the next best.
for i,(m,n) in enumerate(matches):
if m.distance < 0.8*n.distance:
goodMatches.append([m.queryIdx, m.trainIdx])
pts2.append(kp2[m.trainIdx])
pts1.append(kp1[m.queryIdx])
pts1 = np.array(pts1, dtype=np.float32)
pts2 = np.array(pts2, dtype=np.float32)
# finds the fundamental matrix using ransac:
# selects minimal sub-set of the matches,
# estimates the fundamental matrix,
# checks how many of the matches satisfy the epipolar geometry (the inlier set)
# iterates this for a number of iterations,
# returns the fundamental matrix and mask with the largest number of inliers.
F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_RANSAC)
inlier_matches = []
# removes all matches that are not inliers
if mask is not None:
for i, el in enumerate(mask):
if el == 1:
inlier_matches.append(goodMatches[i])
# returns a tuple containing the feature tuple of image one and image two, the fundamental matrix and the inlier matches
return (a, b, F, inlier_matches)
def display_data(data):
for el in data:
print(el[2])
print("#######################################################")
Perform Calculations
# creates an rdd from the loaded images (im_name)
rdd = sc.parallelize(dataset,20)
print("num partitions: ",rdd.getNumPartitions())
# applys the feature extraction to the images
rdd_features = rdd.map(extract_features) # Alex: we could leave the name but remove the image in a and b
print("num partitions: ",rdd_features.getNumPartitions())
# forms pairs of images by applying the cartisian product and filtering away the identity pair
rdd_pairs = rdd_features.cartesian(rdd_features).filter(lambda s: s[0][0] != s[1][0])
print("num partitions: ",rdd_pairs.getNumPartitions())
# applys the fundamental matrix estimation function on the pairs formed in the previous step and filters away all pairs with a low inlier set.
rdd_fundamental_matrix = rdd_pairs.map(estimate_fundamental_matrix).filter(lambda s: len(s[3]) > 50)
print("num partitions: ",rdd_fundamental_matrix.getNumPartitions())
# collects the result from the nodes
data = rdd_fundamental_matrix.collect()
# displays the fundamental matrices
display_data(data)
Results
- Time complexity of our algorithm
- Visualizing epipolar lines
- Visualizing matching points
Now we have computed the fundamental matrices, let us have a look at them by present the epipolar lines.
import random
def drawlines(img1,img2,lines,pts1,pts2):
#from opencv tutorial
''' img1 - image on which we draw the epilines for the points in img2
lines - corresponding epilines '''
r,c,_ = img1.shape
for r,pt1,pt2 in zip(lines,pts1,pts2):
color = tuple(np.random.randint(0,255,3).tolist())
x0,y0 = map(int, [0, -r[2]/r[1] ])
x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1] ])
img1 = cv2.line(img1, (x0,y0), (x1,y1), color,3)
img1 = cv2.circle(img1,tuple(pt1),10,color,-1)
img2 = cv2.circle(img2,tuple(pt2),10,color,-1)
return img1,img2
# draws a random subset of the data
sampling = random.choices(data, k=4)
#plotts the inlier features in the first image and the corresponding epipolar lines in the second image
i = 0
fig, axs = plt.subplots(1, 8, figsize=(25, 5))
for el in sampling:
a, b, F, matches = el;
if F is None:
continue
name1, kp1, desc1 = a
name2, kp2, desc2 = b
im1 = cv2.imread(name1)
im2 = cv2.imread(name2)
pts1 = []
pts2 = []
for m in matches:
pts1.append(kp1[m[0]]);
pts2.append(kp2[m[1]]);
pts1 = np.array(pts1, dtype=np.float32)
pts2 = np.array(pts2, dtype=np.float32)
lines1 = cv2.computeCorrespondEpilines(pts2.reshape(-1,1,2), 2, F)
lines1 = lines1.reshape(-1,3)
img1, img2 = drawlines(im1,im2,lines1,pts1,pts2)
axs[i].imshow(img2), axs[i].set_title('Image pair '+str(i+1)+': Features')
axs[i+1].imshow(img1), axs[i+1].set_title('Image pair '+str(i+1)+': Epipolar lines')
i += 2
#plt.subplot(121),plt.imshow(img1), plt.title('Epipolar lines')
#plt.subplot(122),plt.imshow(img2), plt.title('Points')
display(plt.show())
Present Matches
import random
# draws a random subset of the data
sampling = random.choices(data, k=4)
j = 0
fig, axs = plt.subplots(1, 4, figsize=(25, 5))
# draws lines between the matched feature in the two images (not epipolar lines!)
for el in sampling:
a, b, F, matches = el;
if F is None:
continue
name1, kp1, desc1 = a
name2, kp2, desc2 = b
im1 = cv2.imread(name1)
im2 = cv2.imread(name2)
kp1_vec = []
kp2_vec = []
matches_vec = []
for i,m in enumerate(matches):
kp1_vec.append(cv2.KeyPoint(kp1[m[0]][0], kp1[m[0]][1],1))
kp2_vec.append(cv2.KeyPoint(kp2[m[1]][0], kp2[m[1]][1],1))
matches_vec.append(cv2.DMatch(i, i, 1))
matched_image = im1.copy()
matched_image = cv2.drawMatches(im1, kp1_vec, im2, kp2_vec, matches_vec, matched_image)
axs[j].imshow(matched_image), axs[j].set_title('Image pair '+str(j+1)+': Matches')
j += 1
#plot_img("matches", matched_image)
display(plt.show())
MixUp and Generalization
Group Project Authors:
-
Olof Zetterqvist
-
Jimmy Aronsson
-
Fredrik Hellström
Video: https://chalmersuniversity.box.com/s/ubij9bjekg6lcov13kw16kjhk01uzsmy
Introduction
The goal of supervised machine learning is to predict labels given examples. Specifically, we want to choose some mapping f, referred to as a hypothesis, from a space of examples X to a space of labels Y. As a concrete example, X can be the set of pictures of cats and dogs of a given size, Y can be the set {cat, dog}, and f can be a neural network. To choose f, we rely on a set of labelled data. However, our true goal is to perform well on unseen data, i.e., test data. If an algorithm performs similarly well on unseen data as on the training data we used, we say that it generalizes.
A pertinent question, then, is to explain why a model generalizes and using the answer to improve learning algorithms. For overparameterized deep learning methods, this question has yet to be answered conclusively. Recently, a training procedure called MixUp was proposed to improve the generalization capabilities of neural networks [[1]]. The basic idea is that instead of feeding the raw training data to our supervised learning algorithm, we instead use convex combinations of two randomly selected data points. The benefit of this is two-fold. First, it plays the role of data augmentation: the network will never see two completely identical training samples, since we constantly produce new random combinations. Second, the network is encouraged to behave nicely in-between training samples, which has the potential to reduce overfitting. A connection between performance on MixUp data and generalization abilities of networks trained without the MixUp procedure was also studied in [[2]].
** Project description **
In this project, we will investigate the connection between MixUp and generalization at a large scale by performing a distributed hyperparameter search. We will look at both Random Forests and convolutional neural networks. First, we will the algorithms without MixUp, and study the connection between MixUp performance and test error. Then, we will train the networks on MixUp data, and see whether directly optimizing MixUp performance will yield more beneficial test errors.
To make the hyperparameter search distributed and scalable, we will use the Ray Tune package [[3]]. We also planned to use Horovod to enable the individual networks to handle data in a distributed fashion [[4]]. Scalability would then have entered our project in both the scope of the hyperparameter search and the size of the data set. However, we had unexpected GPU problems and were ultimately forced to skip Horovod due to lack of time.
Summary of findings
Our findings were as follows. For Random Forests, we did not find any significant improvement when using MixUp. This may be due to the fact that Random Forests, since they are not trained iteratively, cannot efficiently utilize MixUp. Furthermore, since Decision Trees are piecewise constant, it is unclear what it would mean to force them to behave nicely in-between training samples. When training a CNN to classify MNIST images, we found practically no difference between training on MixUp data and normal, untouched data. This may be due to MNIST being "too easy". However, for a CNN trained on CIFAR-10, the benefits of MixUp became noticable. First of all, training the same number of epochs on MixUp data as the normal training data gave a higher accuracy on the validation set. Secondly, while the network started to overfit on normal data, this did not occur to a significant degree when using MixUp data. This indicates that MixUp can be beneficial when the algorithm and data are sufficiently complex.
Random Forests and MixUp
First off, we will implement MixUp for a Random Forest applied to the Fashion-MNIST data set. Fashion-MNIST consists of black and white 28x28 images of clothing items [[6]]. We will use the scikit-learn package to implement the Random Forest algorithm, and then perform a distributed hyperparameter search with Ray tune. Thus, scalability enters this part of the project through the hyperparameter search.
First, we will just train the Random Forest using the basic training data and observe the performance. Next, we will do the same but utilizing MixUp. Typically, MixUp is used for iterative algorithms, where a new batch of MixUp data is created at each iteration. However, since a Random Forest is not trained iteratively, we use MixUp to augment our data set by adding a number of MixUp data points to our original data set.
First, we will load the data set.
# Loading Fashion-mnist
import tensorflow as tf
(X, y),(testX,testY) = tf.keras.datasets.fashion_mnist.load_data()
X = X.reshape(60000, 28*28)
from sklearn.preprocessing import LabelBinarizer
enc = LabelBinarizer()
y = enc.fit_transform(y)
Next, we define a function that can be used to generated new MixUp data.
# Function to create MixUp data
def create_mixup(X, y, beta_param):
n = np.shape(X)[0]
shuffled_indices = np.arange(n).tolist()
np.random.shuffle(shuffled_indices)
X_s = X[shuffled_indices]
y_s = y[shuffled_indices]
mixup_l = np.random.beta(beta_param,beta_param)
X_mixed = X*(1-mixup_l) + mixup_l*X_s
y_mixed = y*(1-mixup_l) + (mixup_l)*(y_s)
return X_mixed, y_mixed
Next, we split the data into training and validation sets.
# Fixes the issue "AttributeError: 'ConsoleBuffer has no attribute 'fileno'"
import sys
sys.stdout.fileno = lambda: False
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# Prepare the data
num_classes = 10
np.random.seed(1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 1, test_size=0.5)
X_train_base = X_train.copy()
y_train_base = y_train.copy()
We now define the training function that will be used by Ray Tune. For each set of hyperparameters, we initialize a Random Forest and train on the data, either with or without added folds of MixUp data. We then evaluate on some metrics of interest.
# Fixes the issue "AttributeError: 'ConsoleBuffer has no attribute 'fileno'"
import sys
sys.stdout.fileno = lambda: False
from sklearn import metrics
import numpy as np
from sklearn.ensemble import RandomForestRegressor
def training_function(config, checkpoint_dir=None):
# Hyperparameters
n_estimators, max_depth, mixup_folds = config["n_estimators"], config["max_depth"], config["mixup_folds"]
X_train_data = X_train_base.copy()
y_train_data = y_train_base.copy()
for i in range(mixup_folds):
X_mixed, y_mixed = create_mixup(X_train_base, y_train_base, 0.2)
X_train_data = np.concatenate([X_train_data, X_mixed])
y_train_data = np.concatenate([y_train_data, y_mixed])
# Instantiate model with n_estimators decision trees
rf = RandomForestRegressor(n_estimators = n_estimators, max_depth = max_depth, random_state = 1)
# Train the model on training data
rf.fit(X_train_data, y_train_data)
"""
Logg the results
"""
#x_mix, y_mix = mixup_data( x_val, y_val)
#mix_loss, mix_acc = model.evaluate( x_mix, y_mix )
y_pred_probs = rf.predict(X_test)
y_pred = np.zeros_like(y_pred_probs)
y_pred[np.arange(len(y_pred_probs)), y_pred_probs.argmax(1)] = 1
val_acc = np.mean(np.argmax(y_test,1) == np.argmax(y_pred,1))
y_pred_probs = rf.predict(X_train_base)
y_pred = np.zeros_like(y_pred_probs)
y_pred[np.arange(len(y_pred_probs)), y_pred_probs.argmax(1)] = 1
train_acc = np.mean(np.argmax(y_train_base,1) == np.argmax(y_pred,1))
mean_loss = 1
tune.report(mean_loss=mean_loss, train_accuracy = train_acc, val_accuracy = val_acc)
Finally, we run the actual hyperparameter search in a distributed fashion. Regarding the amount of MixUp data, we try using no MixUp, or we add 2 folds, effectively tripling the size of the data set.
from ray import tune
from ray.tune import CLIReporter
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
reporter.add_metric_column("val_accuracy")
reporter.add_metric_column("train_accuracy")
analysis = tune.run(
training_function,
config={
'n_estimators': tune.grid_search([10, 20]),
'max_depth': tune.grid_search([5, 10]),
'mixup_folds': tune.grid_search([0, 2])
},
local_dir='ray_results',
progress_reporter=reporter
)
print("Best config: ", analysis.get_best_config(
metric="val_accuracy", mode="max"))
#Get a dataframe for analyzing trial results.
df = analysis.results_df
Let's look at the data from the different trials to see if we can conclude anything about the efficacy of MixUp.
df[['config.n_estimators', 'config.max_depth', 'config.mixup_folds', 'train_accuracy', 'val_accuracy']]
config.n_estimators | config.max_depth | config.mixup_folds | train_accuracy | val_accuracy | |
---|---|---|---|---|---|
trial_id | |||||
7e269_00000 | 10 | 5 | 0 | 0.735533 | 0.728100 |
7e269_00001 | 10 | 10 | 0 | 0.887033 | 0.835733 |
7e269_00002 | 10 | 5 | 2 | 0.729433 | 0.720333 |
7e269_00003 | 10 | 10 | 2 | 0.888467 | 0.827867 |
7e269_00004 | 20 | 5 | 0 | 0.734367 | 0.729667 |
7e269_00005 | 20 | 10 | 0 | 0.888367 | 0.837833 |
7e269_00006 | 20 | 5 | 2 | 0.724567 | 0.715700 |
7e269_00007 | 20 | 10 | 2 | 0.865267 | 0.818967 |
Conclusions
Based on the results, MixUp does not seem to help in this context. The validation accuracy achieved with MixUp is actually slightly lower than without it. The reasons for this may be that the data is too simple, that Random Forests cannot fully utilize the power of MixUp augmentation due to not being iterative, or that the piecewise constant nature Decision Trees means that MixUp cannot help too much.
CNN for MNIST
Let us move to a classic machine learning task: Image classification with Convolutional Neural Networks (CNN). The general idea is as follows: 1. Train a CNN on normal training data. Evaluate its performance on a conventional ("unmixed") validation set and on a MixUp ("mixed") version of the same validation set. 2. Train a CNN on MixUp training data. Evaluate its performance on both unmixed and mixed validation data.
When training on MixUp training data, we compute a new MixUp of each batch in every epoch. As explained in the introduction, this effectively augments the training set and hopefully makes the network more robust. Evaluating the performance of both networks on unmixed and mixed validation data allows us to compare the generalization properties of both networks, the working hypothesis being that training on MixUp data enhances generalization. To reduce the dependence of our results on the specific choice of hyperparameters, we train several CNNs with varying numbers of convolutional and dense layers. This is done for both kinds of training data (unmixed, mixed) in a distributed fashion using Ray Tune.
In this notebook, we train a simple MNIST classifier. This notebook runs on a CPU, but with a hyperparameter search method that can be scaled up to different workers and be run in parallel.
Import the necessary packages.
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense,Conv2D,Flatten,BatchNormalization,Dropout
from ray import tune
from ray.tune import CLIReporter
from sklearn.metrics import confusion_matrix
#from sparkdl import HorovodRunner
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import shutil
import os
# Fixes the issue "AttributeError: 'ConsoleBuffer has no attribute 'fileno'"
import sys
sys.stdout.fileno = lambda: False
A data generator class that performs MixUp in the loaded data. This is done with two Tensorflow data generators that both load data from our dataset in a shuffled manner and then linearly combined in order to construct the mixed data. The time complexity of this loader is at least twice the time as a normal Tensorflow data loader.
class MixupImageDataGenerator_from_tensor(tf.keras.utils.Sequence):
"""
A datagenerator that performs mixup on the input data. The input to the generator is numpy arrays with data and labels.
"""
def __init__(self, X,Y, batch_size, alpha=0.2, subset=None):
self.batch_size = batch_size
self.batch_index = 0
self.alpha = alpha
self.X = X
self.Y = Y
# First iterator yielding tuples of (x, y)
ind = np.random.permutation(len(X))
self.generator1 = iter(tf.data.Dataset.from_tensor_slices((X[ind],Y[ind])).batch(self.batch_size))
# Second iterator yielding tuples of (x, y)
ind = np.random.permutation(len(X))
self.generator2 = iter(tf.data.Dataset.from_tensor_slices((X[ind],Y[ind])).batch(self.batch_size))
# Number of images across all classes in image directory.
self.n = len(X)
def __len__(self):
# returns the number of batches
return (self.n + self.batch_size - 1) // self.batch_size
def __getitem__(self, index):
if self.batch_index >= self.__len__()-1:
self.reset_index()
self.batch_index = 0
else:
self.batch_index += 1
# Get a pair of inputs and outputs from two iterators.
X1, y1 = self.generator1.next()
X2, y2 = self.generator2.next()
# random sample the lambda value from beta distribution.
l = np.random.beta(self.alpha, self.alpha, X1.shape[0])
X_l = l.reshape(X1.shape[0], 1, 1, 1)
y_l = l.reshape(X1.shape[0], 1)
# Perform the mixup.
X = X1 * X_l + X2 * (1 - X_l)
y = y1 * y_l + y2 * (1 - y_l)
return X, y
def reset_index(self):
"""Reset the generator indexes array.
"""
# First iterator yielding tuples of (x, y)
ind = np.random.permutation(len(self.X))
self.generator1 = iter(tf.data.Dataset.from_tensor_slices((self.X[ind],self.Y[ind])).batch(self.batch_size))
# Second iterator yielding tuples of (x, y)
ind = np.random.permutation(len(self.X))
self.generator2 = iter(tf.data.Dataset.from_tensor_slices((self.X[ind],self.Y[ind])).batch(self.batch_size))
def on_epoch_end(self):
return
#self.reset_index()
Two helping methods that create the model based on the hyperparameters "numberconv" and "numberdense" and create the dataloaders needed for training and validation.
"""
creates the CNN with number_conv convolutional layers followed by number_dense dense layers. THe model is compiled with a SGD optimizer and a categorical crossentropy loss.
"""
def create_model(number_conv,number_dense):
model = Sequential()
model.add(Conv2D(24,kernel_size = 3, activation='relu',padding="same", input_shape=(img_height, img_width,channels)))
model.add(BatchNormalization())
for s in range(1,number_conv):
model.add(Conv2D(24+12*s,kernel_size = 3,padding="same", activation = 'relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.4))
for s in range(number_dense):
model.add(Dense(units=num_classes, activation='relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(Dense(num_classes,activation= "softmax"))
model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'])
return model
"""
A method that gives us the different dataloaders that we need for training and validation.
train_mix_loader: A data loader that will give us mixes data for training
train_loader: A data loader that gives us the unmixed training data
val_mixed_loader: A data loader that gives us the mixed validation data
val_loader: A data loader with the unmixed validation data
"""
def get_mnist_dataloaders():
(trainX,trainY),(testX,testY) = tf.keras.datasets.mnist.load_data()
trainX,testX = tf.cast(trainX,tf.float32),tf.cast(testX,tf.float32)
trainX,testX = tf.expand_dims(trainX, 3),tf.expand_dims(testX, 3)
trainY_oh,testY_oh = tf.one_hot(trainY,10),tf.one_hot(testY,10)
trainY_oh,testY_oh = tf.cast(trainY_oh,tf.float32).numpy(),tf.cast(testY_oh,tf.float32).numpy()
trainX,testX = trainX.numpy()/255 * 2 - 2,testX.numpy()/255 * 2 - 2
train_loader_mix = MixupImageDataGenerator_from_tensor(trainX,trainY_oh,batch_size)
train_loader = tf.data.Dataset.from_tensor_slices((trainX,trainY_oh)).batch(batch_size)
test_loader_mix = MixupImageDataGenerator_from_tensor(testX,testY_oh,batch_size)
test_loader = tf.data.Dataset.from_tensor_slices((trainX,trainY_oh)).batch(batch_size)
return train_loader_mix,train_loader,test_loader_mix,test_loader
The method that describes how to construct and train the model.
The steps here are, loading the data and generate the different data loaders, train the model on the preprocessed data and validate the method on the different data sets and report back to the scheduler.
def training_function(config, checkpoint_dir=None):
# Hyperparameters
number_conv, number_dense,train_with_mixed_data = config["number_conv"], config["number_dense"],config["train_with_mixed_data"]
"""
Get the different dataloaders
One with training data using mixing
One with training without mixing
One with validation data with mixing
One with validation without mixing
"""
#train_mix_dataloader,train_dataloader,val_mix_dataloader,val_dataloader = get_data_loaders(train_dir,test_dir,for_training = True)
train_mix_dataloader,train_dataloader,val_mix_dataloader,val_dataloader = get_mnist_dataloaders()
"""
Construct the model based on hyperparameters
"""
model = create_model( number_conv,number_dense )
"""
Adds earlystopping to training. This is based on the performance accuracy on the validation dataset. Chould we have validation loss here?
"""
callbacks = [tf.keras.callbacks.EarlyStopping(patience=10,monitor="val_accuracy",min_delta=0.01,restore_best_weights=True)]
"""
Train the model and give the training history.
"""
if train_with_mixed_data:
history = model.fit_generator(train_mix_dataloader, validation_data = val_mix_dataloader,callbacks = callbacks,verbose = False,epochs = 200)
else:
history = model.fit_generator(train_dataloader, validation_data = val_mix_dataloader,callbacks = callbacks,verbose = False,epochs = 200)
"""
Logg the results
"""
#x_mix, y_mix = mixup_data( x_val, y_val)
#mix_loss, mix_acc = model.evaluate( x_mix, y_mix )
#test_loss, test_acc = model.evaluate( x_val, y_val )
ind_max = np.argmax(history.history['val_accuracy'])
train_acc = history.history['accuracy'][ind_max]
val_acc = history.history['val_accuracy'][ind_max]
tune.report(mean_loss=train_acc,val_mix_accuracy = val_acc)
The global hyperparameters that we need for training.
img_height,img_width,channels = 28,28,1
batch_size = 50
alpha = 0.2
num_classes = 10
The cell that runs the code. In order to train the different models in parallel, we use the ray.tune package that will schedule the training and split the available resources to the various workers.
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
# Add a custom metric column, in addition to the default metrics.
# Note that this must be a metric that is returned in your training results.
reporter.add_metric_column("val_mix_accuracy")
#reporter.add_metric_column("test_accuracy")
#config = {"number_conv" : 3,"number_dense" : 5}
#training_function(config)
#get_data_loaders()
analysis = tune.run(
training_function,
config={
"number_conv": tune.grid_search(np.arange(2,5,1).tolist()),
"number_dense": tune.grid_search(np.arange(0,3,1).tolist()),
"train_with_mixed_data": tune.grid_search([True,False])
},
local_dir='ray_results',
progress_reporter=reporter)
print("Best config: ", analysis.get_best_config(
metric="mean_loss", mode="max"))
#Get a dataframe for analyzing trial results.
df = analysis.results_df
#print(df)
df
Conclusion
From the dataframe of the results shown above, we can see the accuracy on the validation dataset for the different settings. If we compare the runs with mixup against those without mixup for the different network architectures, we can investigate how much of an effect the mixup implementation has. As we can see, one of the runs did not converge at all. By not including that run, we can see that the average difference off accuracy is 0.01 to the advantage of unmixed data. Without any statistical analysis, we assume this difference is practically zero. Our reasoning to why we don't see any impact of mixup in this simulation is that MNIST is such an easy task to train on that a mixup of the data will not affect the results much.
CNN for Intel Image Classification
We will now implement and test the MixUp preprocessing method for a slightly harder CNN example, the Intel Image Classification data set. Again, this notebook runs on CPUs, but the hyperparameter search is scalable.
# Imports
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras.layers import Dense,Conv2D,Flatten,BatchNormalization,Dropout
from tensorflow.keras import Sequential
from ray import tune
from ray.tune import CLIReporter
from sklearn.metrics import confusion_matrix
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from functools import partial
# Fixes the issue "AttributeError: 'ConsoleBuffer has no attribute 'fileno'"
import sys
sys.stdout.fileno = lambda: False
We will use the Intel Image Classification data set [[3]]. It consists of 25k 150x150 RBG images from 6 different classes: buildings, forest, glacier, mountain, sea, or street. However when we load the data to our model we will rescale the images to 32x32 RBG images.
"""
Global parameters for training.
"""
img_height,img_width,channels = 32,32,3
batch_size = 32
train_data_dir,test_data_dir = "/dbfs/FileStore/tables/Group20/seg_train/seg_train/", "dbfs/FileStore/tables/Group20/seg_test/seg_test/"
num_classes = 6
alpha = 0.2 # Degree of mixup is ~ Beta(alpha,alpha)
To create MixUp data, we will define a custom data generator. It takes an underlying image generator as argument, and outputs convex combinations of two randomly selected (example,label) pairs drawn according to the underlying generator.
Note that, in order to speed up the data generators, we need to make the data more accessible. We do this by copying the data from the dbfs to the working directory. This is done with our copy_data function.
import os, shutil
def copy_data():
src = "/dbfs/FileStore/tables/Group20/seg_train/seg_train"
dst = os.path.join(os.getcwd(), 'seg_train')
print("Copying data to working folder")
shutil.copytree(src, dst)
print("Done with copying!")
train_data_dir = dst
src = "/dbfs/FileStore/tables/Group20/seg_test/seg_test"
dst = os.path.join(os.getcwd(), 'seg_test')
print("Copying data to working folder")
shutil.copytree(src, dst)
print("Done with copying!")
test_data_dir = dst
return train_data_dir,test_data_dir
class MixupImageDataGenerator(tf.keras.utils.Sequence):
def __init__(self, generator, directory, batch_size, img_height, img_width, alpha=0.2, subset=None):
self.batch_size = batch_size
self.batch_index = 0
self.alpha = alpha
# First iterator yielding tuples of (x, y)
self.generator1 = generator.flow_from_directory(directory,
target_size=(
img_height, img_width),
class_mode="categorical",
batch_size=batch_size,
shuffle=True,
subset=subset)
# Second iterator yielding tuples of (x, y)
self.generator2 = generator.flow_from_directory(directory,
target_size=(
img_height, img_width),
class_mode="categorical",
batch_size=batch_size,
shuffle=True,
subset=subset)
# Number of images across all classes in image directory.
self.n = self.generator1.samples
def __len__(self):
# returns the number of batches
return (self.n + self.batch_size - 1) // self.batch_size
def __getitem__(self, index):
# Get a pair of inputs and outputs from two iterators.
X1, y1 = self.generator1.next()
X2, y2 = self.generator2.next()
# random sample the lambda value from beta distribution.
l = np.random.beta(self.alpha, self.alpha, X1.shape[0])
X_l = l.reshape(X1.shape[0], 1, 1, 1)
y_l = l.reshape(X1.shape[0], 1)
# Perform the mixup.
X = X1 * X_l + X2 * (1 - X_l)
y = y1 * y_l + y2 * (1 - y_l)
return X, y
def reset_index(self):
"""Reset the generator indexes array.
"""
self.generator1._set_index_array()
self.generator2._set_index_array()
def on_epoch_end(self):
self.reset_index()
"""
A method that gives us the different dataloaders that we need for training and validation.
With for_training set to True, the model gives us the dataloaders
* train_mix_loader: Gives us mixed data for training
* train_loader: Gives us the unmixed training data
* val_mix_loader: Gives us mixed validation data
* val_loader: Gives us unmixed validation data
By setting for_training to False, the method gives us the dataloader
* test_loader: Unmixed and unshuffled dataloader for the testing data. The reason for not shuffeling the data is in order to simplify the validation process.
"""
def get_data_loaders(train_data_dir,test_data_dir,for_training = True):
#For training data
if for_training:
datagen_train_val = ImageDataGenerator(rescale=1./255,
rotation_range=5,
width_shift_range=0.05,
height_shift_range=0,
shear_range=0.05,
zoom_range=0,
brightness_range=(1, 1.3),
horizontal_flip=True,
fill_mode='nearest',
validation_split=0.1)
train_mix_loader = MixupImageDataGenerator(generator = datagen_train_val,
directory = train_data_dir,
batch_size = batch_size,
img_height = img_height,
img_width = img_width,
alpha=alpha,
subset="training")
val_mix_loader = MixupImageDataGenerator(generator = datagen_train_val,
directory = train_data_dir,
batch_size = batch_size,
img_height = img_height,
img_width = img_width,
alpha=alpha,
subset="validation")
train_loader = datagen_train_val.flow_from_directory(train_data_dir,
target_size=(img_height, img_width),
class_mode="categorical",
batch_size=batch_size,
shuffle=True,
subset="training")
val_loader = datagen_train_val.flow_from_directory(train_data_dir,
target_size=(img_height, img_width),
class_mode="categorical",
batch_size=batch_size,
shuffle=True,
subset="validation")
return train_mix_loader,train_loader, val_mix_loader, val_loader
#For test data
else:
datagen_test = ImageDataGenerator(rescale=1./255,
rotation_range=0,
width_shift_range=0,
height_shift_range=0,
shear_range=0,
zoom_range=0,
brightness_range=(1, 1),
horizontal_flip=False,
fill_mode='nearest',
validation_split=0)
test_loader = datagen_test.flow_from_directory(test_data_dir,
target_size=(img_height, img_width),
class_mode="categorical",
batch_size=batch_size,
shuffle=False,
subset=None)
return test_loader
Next, we define the function for creating the CNN.
"""
creates the CNN with number_conv convolutional layers followed by number_dense dense layers. The model is compiled with a SGD optimizer and a categorical crossentropy loss.
"""
def create_model(number_conv,number_dense):
model = Sequential()
model.add(Conv2D(24,kernel_size = 3, activation='relu',padding="same", input_shape=(img_height, img_width,channels)))
model.add(BatchNormalization())
for s in range(1,number_conv):
model.add(Conv2D(24+12*s,kernel_size = 3,padding="same", activation = 'relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.4))
for s in range(number_dense):
model.add(Dense(units=num_classes, activation='relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(Dense(num_classes,activation= "softmax"))
model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'])
return model
This is the function that the ray.tune method will run. The steps in the function is to generate the dataloaders that will load the data from the working dictionary, create the model based on the hyperparameters given in the config dictionary, train the model and evaluate the model on the different datasets.
def training_function(config, checkpoint_dir=None):
# Hyperparameters
number_conv, number_dense = config["number_conv"], config["number_dense"]
train_with_mixed_data = config["train_with_mixed_data"]
"""
Get the different dataloaders
One with training data using mixing
One with training without mixing
One with validation data with mixing
One with validation without mixing
Set for_training to False to get testing data
"""
#train_data_dir,test_data_dir = "/dbfs/FileStore/tables/Group20/seg_train/seg_train","/dbfs/FileStore/tables/Group20/seg_test/seg_test"
#train_data_dir, test_data_dir = copy_data()
train_mix_dataloader,train_dataloader,val_mix_dataloader,val_dataloader = get_data_loaders(train_data_dir, test_data_dir, for_training = True)
"""
Construct the model based on hyperparameters
"""
model = create_model( number_conv,number_dense )
"""
Adds earlystopping to training. This is based on the performance accuracy on the validation dataset. Chould we have validation loss here?
"""
callbacks = [tf.keras.callbacks.EarlyStopping(patience=10,monitor="val_accuracy",min_delta=0.01,restore_best_weights=True)]
"""
Train the model and give the training history.
"""
if train_with_mixed_data:
history = model.fit_generator(train_mix_dataloader, validation_data = val_dataloader,callbacks = callbacks,verbose = True,epochs = 200)
else:
history = model.fit_generator(train_dataloader, validation_data = val_dataloader,callbacks = callbacks,verbose = True,epochs = 200)
"""
Logg the results
"""
#x_mix, y_mix = mixup_data( x_val, y_val)
#mix_loss, mix_acc = model.evaluate( x_mix, y_mix )
train_loss_unmix, train_acc_unmix = model.evaluate( train_dataloader )
val_mix_loss, val_mix_acc = model.evaluate( val_mix_dataloader )
ind_max = np.argmax(history.history['val_accuracy'])
train_mix_acc = history.history['accuracy'][ind_max]
train_mix_loss = history.history["loss"][ind_max]
train_loss = history.history['loss'][ind_max]
val_acc = history.history['val_accuracy'][ind_max]
val_loss = history.history['val_loss'][ind_max]
tune.report(mean_loss=train_mix_loss, train_mix_accuracy = train_mix_acc, train_accuracy = train_acc_unmix, val_mix_accuracy = val_mix_acc, val_accuracy = val_acc)
train_data_dir,test_data_dir = copy_data()
Copying data/files to local horovod folder...
Done with copying!
Copying data/files to local horovod folder...
Done with copying!
First, we will train our neural networks using a standard procedure, with normal training data. We then measure their performance on a validation set as well as on a MixUp version of the same validation set, the idea being to study the connection between these metrics.
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
# Add a custom metric column, in addition to the default metrics.
# Note that this must be a metric that is returned in your training results.
reporter.add_metric_column("val_mix_accuracy")
reporter.add_metric_column("val_accuracy")
reporter.add_metric_column("train_accuracy")
reporter.add_metric_column("train_mix_accuracy")
#config = {"number_conv" : 3,"number_dense" : 5}
#training_function(config)
#get_data_loaders()
analysis = tune.run(
training_function,
config={
"number_conv": tune.grid_search(np.arange(2,7,3).tolist()),
"number_dense": tune.grid_search(np.arange(0,3,2).tolist()),
"train_with_mixed_data": False
},
local_dir='ray_results',
progress_reporter=reporter
)
#resources_per_trial={'gpu': 1})
print("Best config: ", analysis.get_best_config(
metric="val_accuracy", mode="max"))
#Get a dataframe for analyzing trial results.
df = analysis.results_df
df
We now check whether directly training on MixUp data has a positive effect on network performance.
# Limit the number of rows.
reporter = CLIReporter(max_progress_rows=10)
# Add a custom metric column, in addition to the default metrics.
# Note that this must be a metric that is returned in your training results.
reporter.add_metric_column("val_mix_accuracy")
reporter.add_metric_column("val_accuracy")
reporter.add_metric_column("train_accuracy")
#config = {"number_conv" : 3,"number_dense" : 5}
#training_function(config)
#get_data_loaders()
analysis = tune.run(
training_function,
config={
"number_conv": tune.grid_search(np.arange(2,7,3).tolist()),
"number_dense": tune.grid_search(np.arange(0,3,2).tolist()),
"train_with_mixed_data": True
},
local_dir='ray_results',
progress_reporter=reporter)
#resources_per_trial={'gpu': 1})
print("Best config: ", analysis.get_best_config(
metric="val_accuracy", mode="max"))
#Get a dataframe for analyzing trial results.
df = analysis.results_df
df
Conclusions
We found that training a CNN using the Ray package was harder than we thought from the beginning. This is probably due to the GPU usage and that we had problems assigning the Keras model to the correct GPU. In other words, Ray requested GPU usage but the code only ever ran on CPU, which took an unfeasible amount of time.
CNNs and MixUp with Horovod
One of the arguments in favor for using MixUp is the data augmentation it provides. For iterative learning algorithms, such as CNNs trained with a variant of stochastic gradient descent, we can generate new MixUp data for each training batch. This effectively means that the network will never see any training example twice. To harness this positive aspect of MixUp to its fullest extent, we want our algorithm to be scalable in the data to use it efficiently. To train neural networks in a scalable way with respet to the data, one can use Horovod, which parallelizes the neural network training procedure.
In this notebook, we use Horovod to train a CNN on the CIFAR-10 data set, both without and with MixUp. While the notebook is executed with only one GPU, the code scales nicely if more GPUs are available.
First, we import packages and check what computational resources are available. In this case, we have one GPU.
import horovod.tensorflow.keras as hvd
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras.layers import Dense,Conv2D,Flatten,BatchNormalization,Dropout
from tensorflow.keras import Sequential
from sklearn.metrics import confusion_matrix
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from functools import partial
import os
import time
print(tf.__version__)
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
print(local_device_protos)
checkpoint_dir = '/dbfs/ml/Group_20/train/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
Next, we define the generator for our MixUp images.
class MixupImageDataGenerator_from_tensor(tf.keras.utils.Sequence):
"""
A datagenerator that performs mixup on the input data. The input to the generator is numpy arrays with data and labels.
"""
def __init__(self, X,Y, batch_size, alpha=0.2, subset=None):
self.batch_size = batch_size
self.batch_index = 0
self.alpha = alpha
self.X = X
self.Y = Y
# First iterator yielding tuples of (x, y)
ind = np.random.permutation(len(X))
self.generator1 = iter(tf.data.Dataset.from_tensor_slices((X[ind],Y[ind])).batch(self.batch_size))
# Second iterator yielding tuples of (x, y)
ind = np.random.permutation(len(X))
self.generator2 = iter(tf.data.Dataset.from_tensor_slices((X[ind],Y[ind])).batch(self.batch_size))
# Number of images across all classes in image directory.
self.n = len(X)
def __len__(self):
# returns the number of batches
return (self.n + self.batch_size - 1) // self.batch_size
def __getitem__(self, index):
if self.batch_index >= self.__len__()-1:
self.reset_index()
self.batch_index = 0
else:
self.batch_index += 1
# Get a pair of inputs and outputs from two iterators.
X1, y1 = self.generator1.next()
X2, y2 = self.generator2.next()
# random sample the lambda value from beta distribution.
l = np.random.beta(self.alpha, self.alpha, X1.shape[0])
X_l = l.reshape(X1.shape[0], 1, 1, 1)
y_l = l.reshape(X1.shape[0], 1)
# Perform the mixup.
X = X1 * X_l + X2 * (1 - X_l)
y = y1 * y_l + y2 * (1 - y_l)
return X, y
def reset_index(self):
"""Reset the generator indexes array.
"""
# First iterator yielding tuples of (x, y)
ind = np.random.permutation(len(self.X))
self.generator1 = iter(tf.data.Dataset.from_tensor_slices((self.X[ind],self.Y[ind])).batch(self.batch_size))
# Second iterator yielding tuples of (x, y)
ind = np.random.permutation(len(self.X))
self.generator2 = iter(tf.data.Dataset.from_tensor_slices((self.X[ind],self.Y[ind])).batch(self.batch_size))
def on_epoch_end(self):
return
#self.reset_index()
We now define functions for creating the neural network and initializing the dataloaders. We will use dataloaders both with and without MixUp for both training and validation.
"""
creates the CNN with number_conv convolutional layers followed by number_dense dense layers. THe model is compiled with a SGD optimizer and a categorical crossentropy loss.
"""
def create_model(number_conv,number_dense,optimizer = "adam"):
model = Sequential()
model.add(Conv2D(24,kernel_size = 3, activation='relu',padding="same", input_shape=(img_height, img_width,channels)))
model.add(BatchNormalization())
for s in range(1,number_conv):
model.add(Conv2D(24+12*s,kernel_size = 3,padding="same", activation = 'relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(0.4))
for s in range(number_dense):
model.add(Dense(units=num_classes, activation='relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(Dense(num_classes,activation= "softmax"))
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
return model
"""
A method that gives us the different dataloaders that we need for training and validation. with for_training set to True the model will give us the dataloades
train_mix_loader: A data loader that will give us mixes data for training
train_loader: A data loader that gives us the unmixed training data
val_mixed_loader: A data loader that gives us the mixed validation data
val_loader: A data loader with the unmixed validation data
By setting for_training to False the method will give us the dataloader
test_loader: Unmixed and unshuffled dataloader for the testing data. The reason for not shuffeling the data is in order to simplify the validation process.
"""
def get_cifar_dataloaders():
(trainX,trainY),(testX,testY) = tf.keras.datasets.cifar10.load_data()
trainX,testX = tf.cast(trainX,tf.float32),tf.cast(testX,tf.float32)
#trainX,testX = tf.expand_dims(trainX, 3),tf.expand_dims(testX, 3)
trainY_oh,testY_oh = tf.one_hot(trainY[:,0],10),tf.one_hot(testY[:,0],10)
trainY_oh,testY_oh = tf.cast(trainY_oh,tf.float32).numpy(),tf.cast(testY_oh,tf.float32).numpy()
trainX,testX = trainX.numpy()/255 * 2 - 2,testX.numpy()/255 * 2 - 2
train_loader_mix = MixupImageDataGenerator_from_tensor(trainX,trainY_oh,batch_size)
train_loader = tf.data.Dataset.from_tensor_slices((trainX,trainY_oh)).batch(batch_size)
test_loader_mix = MixupImageDataGenerator_from_tensor(testX,testY_oh,batch_size)
test_loader = tf.data.Dataset.from_tensor_slices((trainX,trainY_oh)).batch(batch_size)
return train_loader_mix,train_loader,test_loader_mix,test_loader
Next, we define the training function that will be used by Horovod. Each worker uses the datagenerator to load data.
def train_hvd(learning_rate=1.0, train_with_mix = False):
# Import tensorflow modules to each worker
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
import tensorflow as tf
from tensorflow import keras
import horovod.tensorflow.keras as hvd
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
# These steps are skipped on a CPU cluster
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
# Call the get_dataset function you created, this time with the Horovod rank and size
train_mix_dataloader,train_dataloader,val_mix_dataloader,val_dataloader = get_cifar_dataloaders()
model = create_model( number_conv,number_dense )
# Adjust learning rate based on number of GPUs
optimizer = keras.optimizers.Adadelta(lr=learning_rate * hvd.size())
# Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'])
# Create a callback to broadcast the initial variable states from rank 0 to all other processes.
# This is required to ensure consistent initialization of all workers when training is started with random weights or restored from a checkpoint.
callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
# Save checkpoints only on worker 0 to prevent conflicts between workers
if hvd.rank() == 0:
callbacks.append(keras.callbacks.ModelCheckpoint(checkpoint_dir + '/checkpoint-{epoch}.ckpt', save_weights_only = True))
if train_with_mix:
model.fit(train_mix_dataloader,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=2,
validation_data=val_dataloader)
else:
model.fit(train_dataloader,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=2,
validation_data=val_dataloader)
Below, we give the parameters that control the training procedure.
"""
The global parameters for training.
"""
img_height,img_width,channels = 32,32,3
batch_size = 32
#train_data_dir,test_data_dir = "/content/seg_train/seg_train","/content/seg_test/seg_test"
#train_data_dir,test_data_dir = "dbfs/FileStore/tables/Group20/seg_train/seg_train/", "dbfs/FileStore/tables/Group20/seg_test/seg_test/"
#train_data_dir,test_data_dir = copy_data()
num_classes = 10
number_conv = 4
number_dense = 2
epochs = 30
alpha = 0.2
#train_with_mixed_data = True
Now, let us run training with Horovod, first on MixUp data, then without MixUp.
from sparkdl import HorovodRunner
hr = HorovodRunner(np=2)
hr.run(train_hvd, learning_rate=0.1, train_with_mix = True)
from sparkdl import HorovodRunner
hr_nomix = HorovodRunner(np=2)
hr_nomix.run(train_hvd, learning_rate=0.1, train_with_mix = False)
Conclusion
From our simulations on CIFAR-10 with and without MixUp it seems that MixUp provides stability against overfitting and has a bit higher top validation accuracy during training. Specifically, when using MixUp, we reach a validation accuracy around 75%, while we peak at 70% without MixUp. Furthermore, when not using MixUp, the validation accuracy starts to decrease after 20 epochs, while it continues to improve with MixUp. Since this is based on only one simulation, we cannot be fully certain about these conclusions. When it comes to the scalability of the model, Horovod provides beneficial scaling with the data and makes the code very simular to a regular single-machine training notebook. Horovod can also be combined with Ray Tune to also perform a hyperparameter search, but this was not done in this project.
Graph Spectral Analysis
Project by Ciwan Ceylan and Hanna Hultin
Link to project video: "https://drive.google.com/file/d/1ctILEsMskFgpsVnu-6ucCMZqM1TLXfEB/view?usp=sharing"
Background on graphs
A graph can be represented by its incidence matrix B*0. Each row of B*0 corresponds to an edge in the graph and each column to a node. Say that row k corresponds to edge i -> j. Then element i of row k is -1 and element j is 1. All other elements are zero. See the figure below for an example of the indicence matrix with the corresponding graph.
Graph Laplacian
The Laplacian lies at the center of specral graph theory. Its spectrum (its eigenvalues) encodes the geometry of the graph and can be used in various applications ranging from computer graphics to machine learning. Therefore, one approximative approach for comparing graphs (a problem which is NP-hard) is to compare their spectra. Graphs with similar geometry are expected to have similar spectrum and vice-versa. Below is an example of the Laplacian for the graph seen in the cell above. The diagonal elements contain the degree of the corresponding node, while all other elements at index (i,j) are -1 if there is an edge between the nodes i and j and zero otherwise.
The Laplacian can be constructed from the indicence matrix as \[ \mathbf{L} = \mathbf{B}_0^T \mathbf{B}_0 \] Thus, we can compute the top eigenvalues of L by instead computing the top singular values of **B_0**. This follows from the following: \[ \mathbf{B}_0 = \mathbf{U} \mathbf{D}^{1/2} \mathbf{V}^T \] \[ \mathbf{L}= \mathbf{V} \mathbf{D}^{1/2} \mathbf{U}^T \mathbf{U} \mathbf{D}^{1/2} \mathbf{V}^T = \mathbf{V} \mathbf{D} \mathbf{V}^T \]
Scaling to large graphs using randomized SVD
In the new age of big data, it is often interesting to analyze very large graphs of for example financial transactions. Doing the spectral graph analysis for these large graphs is challenging, since the full singular value decomposition of an m x n matrix scales as O(m n min(m,n)). To handle this, we turn to low rank approximations and specifically we use Randomized SVD.
Randomized SVD was introduced in 2011 in the article "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions" (https://arxiv.org/abs/0909.4061), and is a smart way of finding a low-rank approximation for the singular value decomposition using Gaussian vectors.
The basic idea is that given the m x n matrix A, we can create a sampling matrix Y = AG where G is a n x k Gaussian random matrix and it turns out that Y is then a quite good approximate basis for the column space of A.
A nice summary of the methods and some variations written by one of the authors of the original article can be found in the following link: https://sinews.siam.org/Details-Page/randomized-projection-methods-in-linear-algebra-and-data-analysis
Methods for generating random graphs
Erdős–Rényi model
In "On the Evoluation of Random Graphs" (https://users.renyi.hu/~p_erdos/1960-10.pdf), Erdős and Rényi describes the random graph with n vertices and N edges where the N edges are chosen at random among all the undirected possible edges.
R-MAT model
The Recursive Matrix (R-MAT) model introduced in the article "R-MAT: A Recursive Model for Graph Mining" (https://kilthub.cmu.edu/articles/R-MATARecursiveModelforGraphMining/6609113/files/12101195.pdf) is described as follows by the authors:
"The basic idea behind R-MAT is to recursively subdivide the adjacency matrix into four equal-sized partitions, and distribute edges with in these partitions with unequal probabilities: starting off with an empty adjacency matrix, we "drop" edges into the matrix one at a time. Each edge chooses one of the four partitions with probabilities a; b; c; d respectively (see Figure1). Of course, a+b+c+d=1. The chosen partition is again subdivided into four smaller partitions, and the procedure is repeated until we reach a simplecell (=1 x 1 partition). This is the cell of the adjacency matrix occupied by the edge."
This is visualized in the following image.
Project specifications
The goal of the project is to compare spectra of the Laplacian for different graphs.
Data
- Ethereum transactions:
- Original data from google cloud (https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics)
- The dataset contains transactions from March 2018 to March 2020, aggregating per edge (same sender and receiver) and only keeping edges with at least 10 transactions with positive value
- Randomly generated graphs using the two different methods explained above
Notebooks
- 01preprocessdata: preprocesses the Ethereum data using Python and PySpark and saves the graph information as parquet file
- 02generategraphs: generates random graphs in Scala using Spark (SQL and GraphX) and saves the graph information as parquet files
- 03computersvd: computes RSVD for the different graphs in Scala using Spark and the library Spark-RSVD and saves the singular values as parquet files
- 04analyseeigenvalues: computes the eigenvalues from the singular values and plots these for different graphs
Preprocess the data
Here the raw Ethereum transaction data read from google big query is preprocessed. - Remove any rows with nulls - Drop all self-loops - Enumerate all the distict addresses - Make a canonical ordering for the edges - Each edge will point from lower to higher index - The sign of the transaction is changed for flipped edges - Aggregate transactions based on src, dst pair - Enumerate the edges with a unique edge id
import pyspark.sql.functions as F
from pyspark.sql.window import Window
Load data into DataFrame
And drop nans and self-loop
data_path = "FileStore/tables/ethereum_march_2018_2020"
df = spark.read.format('csv').option("header", "true").load(data_path)\
.select(F.col("from_address"), F.col("to_address"), F.col("value"))\
.na.drop()\
.where(F.col("from_address") != F.col("to_address"))
addresses = df.select(F.col("from_address").alias("address")).union(df.select(F.col("to_address").alias("address"))).distinct()
address_window = Window.orderBy("address")
addresses = addresses.withColumn("id", F.row_number().over(address_window))
Make the edges canonical
- Each edge will point from lower to higher index
- The sign of the transaction is changed for flipped edges
# Exchange string addresses for node ids
df_with_ids = df.join(addresses.withColumnRenamed("address", "to_address").withColumnRenamed("id", "dst__"), on="to_address")\
.join(addresses.withColumnRenamed("address", "from_address").withColumnRenamed("id", "src__"), on="from_address")
canonical_edges = df_with_ids.withColumn("src",
F.when(F.col("dst__") > F.col("src__"), F.col("src__")).otherwise(F.col("dst__"))
).withColumn("dst",
F.when(F.col("dst__") > F.col("src__"), F.col("dst__")).otherwise(F.col("src__"))
).withColumn("direction__",
F.when(F.col("dst__") > F.col("src__"), 1).otherwise(-1)
).withColumn("flow",
F.col("value") * F.col("direction__")
)
grouped_canonical_edges = canonical_edges.select(F.col("src"), F.col("dst"), F.col("flow")).groupBy(F.col("src"), F.col("dst")).agg(F.sum(F.col("flow")).alias("flow"))
edges_window = Window.orderBy(F.col("src"), F.col("dst"))
grouped_canonical_edges = grouped_canonical_edges.withColumn("id", F.row_number().over(edges_window))
preprocessed_edges_path = "/projects/group21/test_ethereum_canonical_edges"
preprocessed_addresses_path = "/projects/group21/test_ethereum_addresses"
grouped_canonical_edges.write.format('parquet').mode("overwrite").save(preprocessed_edges_path)
addresses.write.format('parquet').mode("overwrite").save(preprocessed_addresses_path)
Generate random graphs
Here random graphs are generated, first using Erdös-Renyi method and then using R-MAT.
import org.apache.spark.graphx.util.GraphGenerators
import scala.util.Random
import org.apache.spark.sql.{Row, DataFrame}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.{functions => F}
import org.apache.spark.sql.types.{IntegerType, LongType, DoubleType, StringType, StructField, StructType}
import org.apache.spark.graphx.util.GraphGenerators
import scala.util.Random
import org.apache.spark.sql.{Row, DataFrame}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.{functions=>F}
import org.apache.spark.sql.types.{IntegerType, LongType, DoubleType, StringType, StructField, StructType}
// Values taken from the Ethereum graph
val numNodes = 1520925
val numEdges = 2152835
numNodes: Int = 1520925
numEdges: Int = 2152835
Function for making a canonical ordering for the edges of a graph
- Input is a dataframe with rows of "src" and "dst" node numbers
- A new node id is computed such that the nodes have ids 0,1,2,...
- The canonical ordering is made such that each edge will point from lower to higher index
def makeEdgesCanonical (edgeDF : org.apache.spark.sql.DataFrame): org.apache.spark.sql.DataFrame = {
// Remove self-loops
val edgeDFClean = edgeDF.distinct().where(F.col("src") =!= F.col("dst"))
// Provide each node with an index id
val nodes = edgeDFClean.select(F.col("src").alias("node")).union(edgeDFClean.select(F.col("dst").alias("node"))).distinct()
val nodes_window = Window.orderBy("node")
val nodesWithids = nodes.withColumn("id", F.row_number().over(nodes_window))
// Add the canonical node ids to the edgeDF and drop the old ids
val dstNodes = nodesWithids.withColumnRenamed("node", "dst").withColumnRenamed("id", "dst__")
val srcNodes = nodesWithids.withColumnRenamed("node", "src").withColumnRenamed("id", "src__")
val edgesWithBothIds = edgeDFClean.join(dstNodes, dstNodes("dst") === edgeDFClean("dst"))
.join(srcNodes, srcNodes("src") === edgeDFClean("src"))
.drop("src").drop("dst")
val edgesWithCanonicalIds = edgesWithBothIds.withColumn("src",
F.when(F.col("dst__") > F.col("src__"), F.col("src__")).otherwise(F.col("dst__"))
).withColumn("dst",
F.when(F.col("dst__") > F.col("src__"), F.col("dst__")).otherwise(F.col("src__"))
).drop("src__").drop("dst__").distinct().where(F.col("src") =!= F.col("dst"))
val edges_window = Window.orderBy(F.col("src"), F.col("dst"))
val GroupedCanonicalEdges = edgesWithCanonicalIds.withColumn("id", F.row_number().over(edges_window))
return GroupedCanonicalEdges
}
makeEdgesCanonical: (edgeDF: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame
Function for sampling an Erdös-Renyi graph
The resulting graph will have at most the number of nodes given by numNodes and at most numEdges edges. The number of nodes is less than numNodes if some nodes did not have an edge to another node. The number of edges is less than numEdges if some edges are duplicates or if some edges are self-loops.
def sampleERGraph (numNodes : Int, numEdges : Int, iter : Int): org.apache.spark.sql.DataFrame = {
val randomEdges = sc.parallelize(0 until numEdges).map {
idx =>
val random = new Random(42 + iter * numEdges + idx)
val src = random.nextInt(numNodes)
val dst = random.nextInt(numNodes)
if (src > dst) Row(dst, src) else Row(src, dst)
}
val schema = new StructType()
.add(StructField("src", IntegerType, true))
.add(StructField("dst", IntegerType, true))
val groupedCanonicalEdges = makeEdgesCanonical(spark.createDataFrame(randomEdges, schema))
return groupedCanonicalEdges
}
sampleERGraph: (numNodes: Int, numEdges: Int, iter: Int)org.apache.spark.sql.DataFrame
for(i <- 0 to 9) {
val groupedCanonicalEdges = sampleERGraph(numNodes, numEdges, iter=i)
groupedCanonicalEdges.write.format("parquet").mode("overwrite").save("/projects/group21/uniform_random_graph" + i)
}
println("RMAT a: " + GraphGenerators.RMATa)
println("RMAT b: " + GraphGenerators.RMATb)
println("RMAT c: " + GraphGenerators.RMATc)
println("RMAT d: " + GraphGenerators.RMATd)
RMATa: 0.45
RMATb: 0.15
RMATc: 0.15
RMATd: 0.25
def sampleRMATGraph (numNodes : Int, numEdges : Int): org.apache.spark.sql.DataFrame = {
val rmatGraphraw = GraphGenerators.rmatGraph(sc=spark.sparkContext, requestedNumVertices=numNodes, numEdges=numEdges)
val rmatedges = rmatGraphraw.edges.map{
edge => Row(edge.srcId, edge.dstId)
}
val schema = new StructType()
.add(StructField("src", LongType, true))
.add(StructField("dst", LongType, true))
val rmatGroupedCanonicalEdges = makeEdgesCanonical(spark.createDataFrame(rmatedges, schema))
return rmatGroupedCanonicalEdges
}
sampleRMATGraph: (numNodes: Int, numEdges: Int)org.apache.spark.sql.DataFrame
for(i <- 0 to 9) {
val groupedCanonicalEdges = sampleRMATGraph(numNodes, numEdges)
groupedCanonicalEdges.write.format("parquet").mode("overwrite").save("/projects/group21/rmat_random_graph" + i)
}
Compute RSVD
Here we read the preprcessed data and compute the rSVD
import com.criteo.rsvd._
import scala.util.Random
import org.apache.spark.mllib.linalg.distributed.MatrixEntry
import org.apache.spark.sql.functions.{min, max}
import com.criteo.rsvd._
import scala.util.Random
import org.apache.spark.mllib.linalg.distributed.MatrixEntry
import org.apache.spark.sql.functions.{min, max}
// code snippet for saving config as json
val config_map = Map("embeddingDim" -> 100, "oversample" -> 30, "powerIter" -> 1, "seed" -> 0, "blockSize" -> 50000, "partitionWidthInBlocks" -> 35, "partitionHeightInBlocks" -> 10)
val config_spark_save = config_map.toSeq.toDF("key","value")
config_spark_save.write.mode("overwrite").json("/projects/group21/rsvd_config.json")
config_map: scala.collection.immutable.Map[String,Int] = Map(seed -> 0, oversample -> 30, blockSize -> 50000, partitionWidthInBlocks -> 35, partitionHeightInBlocks -> 10, powerIter -> 1, embeddingDim -> 100)
config_spark_save: org.apache.spark.sql.DataFrame = [key: string, value: int]
// load config from json (assuming only integer values)
val config_spark = spark.read.json("/projects/group21/rsvd_config.json").rdd.map(r => (r(0).toString -> r(1).toString.toInt)).collect.toMap
config_spark: scala.collection.immutable.Map[String,Int] = Map(seed -> 0, oversample -> 30, blockSize -> 50000, partitionWidthInBlocks -> 35, partitionHeightInBlocks -> 10, powerIter -> 1, embeddingDim -> 100)
// Create RSVD configuration
val config = RSVDConfig(
embeddingDim = config_spark("embeddingDim"),
oversample = config_spark("oversample"),
powerIter = config_spark("powerIter"),
seed = config_spark("seed"),
blockSize = config_spark("blockSize"),
partitionWidthInBlocks = config_spark("partitionWidthInBlocks"),
partitionHeightInBlocks = config_spark("partitionHeightInBlocks"),
computeLeftSingularVectors = false,
computeRightSingularVectors = false
)
config: com.criteo.rsvd.RSVDConfig = RSVDConfig(100,30,1,0,50000,35,10,false,false)
def computeRSVD (groupedCanonicalEdges : org.apache.spark.sql.DataFrame, config : RSVDConfig): RsvdResults = {
val matHeight = groupedCanonicalEdges.count()
val Row(maxValue: Int) = groupedCanonicalEdges.agg(max("dst")).head
val matWidth = maxValue
val incidenceMatrixEntries = groupedCanonicalEdges.rdd.flatMap{
case Row(src: Int, dst: Int, id: Int) => List(MatrixEntry(id-1, src-1, -1), MatrixEntry(id-1, dst-1, 1))
}
// Create block matrix and compute RSVD
val matrixToDecompose = BlockMatrix.fromMatrixEntries(incidenceMatrixEntries, matHeight = matHeight, matWidth = matWidth, config.blockSize, config.partitionHeightInBlocks, config.partitionWidthInBlocks)
return RSVD.run(matrixToDecompose, config, sc)
}
computeRSVD: (groupedCanonicalEdges: org.apache.spark.sql.DataFrame, config: com.criteo.rsvd.RSVDConfig)com.criteo.rsvd.RsvdResults
val groupedCanonicalEdges = spark.read.format("parquet").load("/projects/group21/test_ethereum_canonical_edges").drop("flow")
val rsvd_results_path: String = "/projects/group21/test_ethereum_"
val RsvdResults(leftSingularVectors, singularValues, rightSingularVectors) = computeRSVD(groupedCanonicalEdges, config)
val singularDF = sc.parallelize(singularValues.toArray).toDF()
singularDF.write.format("parquet").mode("overwrite").save(rsvd_results_path + "SingularValues")
for(i <- 0 to 9) {
val groupedCanonicalEdges = spark.read.format("parquet").load("/projects/group21/uniform_random_graph" + i)
val rsvd_results_path: String = "/projects/group21/uniform_random_graph_"
val RsvdResults(leftSingularVectors, singularValues, rightSingularVectors) = computeRSVD(groupedCanonicalEdges, config)
val singularDF = sc.parallelize(singularValues.toArray).toDF()
singularDF.write.format("parquet").mode("overwrite").save(rsvd_results_path + "SingularValues" + i)
}
for(i <- 0 to 9) {
val groupedCanonicalEdges = spark.read.format("parquet").load("/projects/group21/rmat_random_graph" + i)
val rsvd_results_path: String = "/projects/group21/rmat_random_graph_"
val RsvdResults(leftSingularVectors, singularValues, rightSingularVectors) = computeRSVD(groupedCanonicalEdges, config)
val singularDF = sc.parallelize(singularValues.toArray).toDF()
singularDF.write.format("parquet").mode("overwrite").save(rsvd_results_path + "SingularValues" + i)
}
- Load the singular values computed in 03computersvd, sort them and convert to eigenvalues taking the square
- Plot the spectrum for each graph in a semi-log plot for comparison
import pyspark.sql.functions as F
import numpy as np
import pandas as pd
import seaborn as sns
%matplotlib inline
import matplotlib.pyplot as plt
def to_eigen(singular_values):
singular_values = singular_values.sort_values(by='value', ascending=False)
eigen_values = np.power(singular_values, 2)
return eigen_values
data_path = "/projects/group21/test_ethereum_SingularValues"
singular_values_eth = spark.read.format('parquet').load(data_path).toPandas()
eigen_values_eth = to_eigen(singular_values_eth)
eigen_values_uniform = []
for i in range(10):
data_path = "/projects/group21/uniform_random_graph_SingularValues" + str(i)
singular_values = spark.read.format('parquet').load(data_path).toPandas()
eigen_values_uniform.append(to_eigen(singular_values))
eigen_values_rmat = []
for i in range(10):
data_path = "/projects/group21/rmat_random_graph_SingularValues" + str(i)
singular_values = spark.read.format('parquet').load(data_path).toPandas()
eigen_values_rmat.append(to_eigen(singular_values))
colors = sns.color_palette()
fig, ax = plt.subplots(figsize=(16, 9))
x = np.arange(len(eigen_values_eth))
ax = sns.lineplot(x=x, y=eigen_values_eth.to_numpy().ravel(), color=colors[0], label='ethereum')
for i in range(9):
ax = sns.lineplot(x=x, y=eigen_values_uniform[i].to_numpy().ravel(), color=colors[1], alpha=0.4)
ax = sns.lineplot(x=x, y=eigen_values_rmat[i].to_numpy().ravel(), color=colors[2], alpha=0.4)
ax = sns.lineplot(x=x, y=eigen_values_uniform[9].to_numpy().ravel(), color=colors[1], alpha=0.4, label='erdös-renyi')
ax = sns.lineplot(x=x, y=eigen_values_rmat[9].to_numpy().ravel(), color=colors[2], alpha=0.4, label='rmat')
ax.set_yscale('log')
ax.legend()
Conclusion
We observe a large descrepency in the spectrums between the Erdös-Renyi, R-MAT and Ethereum transaction graphs. As can be expected, the spectrum of the Erdös-Renyi graphs is almost constant due to the isotropy of the graph topology. The Ethereum transaction graph has very large eigenvalues compared to the random graphs. A likely explanation is the presence of nodes of very high degree in the graph.
We can see that the R-MAT graph lies in between uniform Erdös-Renyi and Ethereum graph. This is also as expected since the R-MAT model is designed to better mimic the behaviour of real graphs. In this project we used the default parameters for the R-MAT graph and it is likely that with further experimentation one could find a setting which better fit the spectum of the transaction graph.
SWAPWithDDP
-
Christos Matsoukas @ChrisMats
-
Emir Konuk @emirkonuk
-
Johan Fredin Haslum @cfredinh
-
Miquel Marti @miquelmarti
Stochastic Weight Averaging in Parallel (SWAP) in PyTorch
Everything related to the project can be found in this repository.
Install dependencies etc.
- Python 3.8+
- Pytorch 1.7+
Install using conda
-
Using comands\
conda create -n swap python=3.8 scikit-learn easydict matplotlib wandb tqdm -y
\conda install pytorch torchvision cudatoolkit=10.2 -c pytorch -y
-
Using the .yml file\
conda env create -f environment.yml
Docker setup
- Note that the Dockerfile is provided for single machine, multiGPU usage. For multi-machine setups, refer to the SLURM section.
- Dockerfile has its own comments. At the end of the file there are a few lines describing how to build/run the docker image. You can (and should) modify the port numbers depending on your setup.
- Recommended folder setup is to have /storage in the host machine and /storage in the docker image. Clone this repository to the /storage in the host machine, and work from there. You can change the WORKDIR (Line 107) in the Dockerfile if you desire a different folder setup.
- By default, the image will start with a jupyter notebook running, accessible at port 8855. If you want to login to bash directly, comment/uncomment the respective lines (109 & 111).
- Remember to add your WANDBAPIKEY to the respective line in the Dockerfile.
- You can change your image username (line 31). The default is swapuser.
- If you want to directly clone the repo to the image, you can just add the link and uncomment the respective line (line 103). This is not recommended as you will most likely connect to git from the host for secure access.
- If you need to set up rootless docker with nvidia GPU support, first install rootless docker. Then, install nvidia-docker. After installation, remember to edit /etc/nvidia-container-runtime/config.toml to have "no-cgroups = true" before restarting the docker daemon.
Usage
- All input options need to be modified in the params.json file.\
cd your_path/SWAP_with_DDP
\python classification.py --params_path params.json
- About the params, if you increase the num_workers and notice that it is slow, you should set it back to 0 or 1. This is a problem that occurs occasionally with pytorch DDP.
Distributed training using SLURM
- Before starting training, define necessary resources for each node in the
cluster_run.sbatch
file. - Train on multiple nodes on SLURM cluster using comand \
cd your_path/SWAP_with_DDP
\sbatch cluster_run.sbatch your_conda_env data_location
- (N-number of nodes)x(P-processes per node) are initiated each running
main.py
- All comunications between processes are handled over TCP and a master process adress is set using
--dist_url
- The code, conda environment and data location have to be available from all nodes with the same paths
Results
CIFAR10 - 8 GPUs - 512 per gpu - 150 epochs - Step 2 starts at step 1500 - without SWAP 94.3, with SWAP 95.7
Please refer to the project repository for the images.
We did not use databricks for this project
Please use this GITHUB LINK to access our project
SWAPWithDDP
-
Christos Matsoukas @ChrisMats
-
Emir Konuk @emirkonuk
-
Johan Fredin Haslum @cfredinh
-
Miquel Marti @miquelmarti
Stochastic Weight Averaging in Parallel (SWAP) in PyTorch
Everything related to the project can be found in this repository.
Install dependencies etc.
- Python 3.8+
- Pytorch 1.7+
Install using conda
-
Using comands\
conda create -n swap python=3.8 scikit-learn easydict matplotlib wandb tqdm -y
\conda install pytorch torchvision cudatoolkit=10.2 -c pytorch -y
-
Using the .yml file\
conda env create -f environment.yml
Docker setup
- Note that the Dockerfile is provided for single machine, multiGPU usage. For multi-machine setups, refer to the SLURM section.
- Dockerfile has its own comments. At the end of the file there are a few lines describing how to build/run the docker image. You can (and should) modify the port numbers depending on your setup.
- Recommended folder setup is to have /storage in the host machine and /storage in the docker image. Clone this repository to the /storage in the host machine, and work from there. You can change the WORKDIR (Line 107) in the Dockerfile if you desire a different folder setup.
- By default, the image will start with a jupyter notebook running, accessible at port 8855. If you want to login to bash directly, comment/uncomment the respective lines (109 & 111).
- Remember to add your WANDBAPIKEY to the respective line in the Dockerfile.
- You can change your image username (line 31). The default is swapuser.
- If you want to directly clone the repo to the image, you can just add the link and uncomment the respective line (line 103). This is not recommended as you will most likely connect to git from the host for secure access.
- If you need to set up rootless docker with nvidia GPU support, first install rootless docker. Then, install nvidia-docker. After installation, remember to edit /etc/nvidia-container-runtime/config.toml to have "no-cgroups = true" before restarting the docker daemon.
Usage
- All input options need to be modified in the params.json file.\
cd your_path/SWAP_with_DDP
\python classification.py --params_path params.json
- About the params, if you increase the num_workers and notice that it is slow, you should set it back to 0 or 1. This is a problem that occurs occasionally with pytorch DDP.
Distributed training using SLURM
- Before starting training, define necessary resources for each node in the
cluster_run.sbatch
file. - Train on multiple nodes on SLURM cluster using comand \
cd your_path/SWAP_with_DDP
\sbatch cluster_run.sbatch your_conda_env data_location
- (N-number of nodes)x(P-processes per node) are initiated each running
main.py
- All comunications between processes are handled over TCP and a master process adress is set using
--dist_url
- The code, conda environment and data location have to be available from all nodes with the same paths
Results
CIFAR10 - 8 GPUs - 512 per gpu - 150 epochs - Step 2 starts at step 1500 - without SWAP 94.3, with SWAP 95.7
Please refer to the project repository for the images.
Distributed Deep Learning
CNN's with horovod, MLFlow and hypertuning through SparkTrials
William Anzén (Linkedin), Christian von Koch (Linkedin)
2021, Stockholm, Sweden
This project was supported by Combient Mix AB through a Master Thesis project at ISY, Computer Vision Laboratory, Linköpings University.
** Resources: **
These notebooks were inspired by Tensorflow's tutorial on Image Segmentation.
01ImageSegmentationUNet
In this chapter a simple U-Net architecture is implemented and evaluated against the Oxford Pets Data set. The model achieves a validation accuracy of 88.6% and a validation loss of 0.655 after 20 epochs (11.74 min).
02ImageSegmenationPSPNet
In this chapter a PSPNet architecture is implemented and evaluated against the Oxford Pets Data set. The model achieves a validation accuracy of 89.8% and a validation loss of 0.332 after 20 epochs (14.25 min).
03ICNetFunction
In this chapter the ICNet architecture is implemented and evaluated against the Oxford Pets Data set. MLFlow is added to keep track of results and parameters. The model achieves a validation accuracy of 86.1% and a validation loss of 0.363 after 19/20 epochs (6.8 min).
04ICNetFunction_hvd
In this chapter we add horovod to the notebook, allowing distributed training of the model. MLFlow is also integrated to keep track of results and parameters. Achieving validation accuracy of 84.4% and validation loss of 0.454 after 16/20 epochs (13.19 min - 2 workers). (2 workers lead to a slower run because of the overhead being too large in comparison to computational gain)
05ICNetFunctionTuningparallel
In this chapter we run hyperparameter tuning with hyperopt & SparkTrials allowing the tuning runs to be made in parallel across multiple workers. MLFlow is added to keep track of the outcomes from the parallel hyperparameter tuning runs. Achieved 0.43 loss with parameters({'batchsize': 32, 'learningrate': 0.007874409614279713})
U-Net model for image segmentation
This is a modified version of Tensorflows tutorial regarding image segmentation which can be found here. Using a modified U-Net approach, with a VGG16 as the encoder and then using traditional Conv2DTranspose layers for upsampling the dimensions. After 1 epoch a validation accuracy of 84.5 % was achieved on the Oxford Pets Data Set.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from IPython.display import clear_output
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
@tf.function
def load_image_train(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
def load_image_test(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test = dataset['test'].map(load_image_test)
train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test.batch(BATCH_SIZE)
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
for image, mask in train.take(1):
sample_image, sample_mask = image, mask
display([sample_image, sample_mask])
Now that the dataset has been loaded into memory, the model can further be defined.
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.applications import VGG16
def encoder_VGG16(input_shape):
base_model=VGG16(include_top=False, weights='imagenet', input_shape=input_shape)
layers=[layer.output for layer in base_model.layers]
base_model = tf.keras.Model(inputs=base_model.input, outputs=layers[-2])
base_model.summary()
x = []
fourth_layer = base_model.get_layer('block1_conv1').output
x.append(fourth_layer)
third_layer = base_model.get_layer('block2_conv2').output
x.append(third_layer)
secondary_layer = base_model.get_layer('block3_conv3').output
x.append(secondary_layer)
last_layer = base_model.get_layer('block4_conv3').output
x.append(last_layer)
output_layer = base_model.get_layer('block5_conv3').output
x.append(output_layer)
return base_model, x
Here, the decoder part is defined where upsampling takes place to convert the encoded part to the same dimensions as the input image for height and width, with the same amount of channels as there are classes.
def unet(image_width: int,
image_heigth: int,
n_channels: int,
n_depth: int,
n_classes: int):
#if n_depth<1 or n_depth>5: #+ add more cases
# raise Exception("Unsupported number of layers/upsamples")
input_shape = [image_heigth, image_width, n_channels]
encoded_model, x = encoder_VGG16(input_shape)
encoded_model.trainable=False
intermediate_model = x[n_depth-1]
intermediate_model = tf.keras.layers.Dropout(0.5)(intermediate_model)
for i in reversed(range(0,n_depth-1)):
next_filters = x[i+1].shape[3]/2
intermediate_model = Conv2DTranspose(filters=next_filters ,kernel_size=3,strides=2,padding='same')(intermediate_model)
intermediate_model = tf.keras.layers.Concatenate()([intermediate_model,x[i]])
intermediate_model = tf.keras.layers.BatchNormalization()(intermediate_model)
intermediate_model = tf.keras.layers.ReLU()(intermediate_model)
intermediate_model = Conv2D(filters=next_filters, kernel_size=3, activation ='relu', padding='same')(intermediate_model)
intermediate_model = Conv2D(filters=next_filters, kernel_size=3, activation ='relu', padding='same')(intermediate_model)
outputs=Conv2D(filters=n_classes,kernel_size=(1,1),strides=(1),padding='same')(intermediate_model)
x = Reshape((image_heigth*image_width, n_classes))(outputs)
x = Activation(tf.nn.softmax)(x)
outputs = Reshape((image_heigth,image_width, n_classes))(x)
print(outputs.shape[2])
final_model=tf.keras.models.Model(inputs=encoded_model.input ,outputs=[outputs])
return(final_model)
shape=[128, 128, 3]
this_model = unet(shape[0],shape[1],shape[2],5,3)
this_model.summary()
this_model.outputs
The model is then compiled.
this_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
def show_predictions(dataset=None, num=1):
if dataset:
for image, mask in dataset.take(num):
pred_mask = this_model.predict(image)
display([image[0], mask[0], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(this_model.predict(sample_image[tf.newaxis, ...]))])
show_predictions()
Below, the model is fitted against the training data and validated on the validation set after each epoch. A validation accuracy of 84.5 % is achieved after one epoch.
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS
model_history = this_model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset)
#scores = model_history.evaluate(X_test, y_test, verbose=2)
show_predictions(test_dataset,num=10)
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
epochs = range(EPOCHS)
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'bo', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.ylim([0, 1])
plt.legend()
plt.show()
Implementation of PSPNet
In this notebook, an implementation of PSPNet is presented which is an architecture which uses scene parsing and evaluates the images at different scales and finally combines the different results to form a final prediction. The architecture is evaluated against the Oxford-IIIT Pet Dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow for loading the dataset and showing predictions.
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
import tensorflow_datasets as tfds
from tensorflow.keras.applications.resnet50 import ResNet50
Defining functions for normalizing and transforming the images.
# Function for normalizing image_size so that pixel intensity is between 0 and 1
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of 128x128 as well as augmenting the training images
@tf.function
def load_image_train(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation)
def load_image_test(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
Loading the datasets to memory and displaying an example of an image and an image mask.
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test = dataset['test'].map(load_image_test)
train_dataset = train.shuffle(BUFFER_SIZE).cache().batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test.batch(BATCH_SIZE)
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
for image, mask in train.take(1):
sample_image, sample_mask = image, mask
display([sample_image, sample_mask])
Defining the functions needed for the PSPNet.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
def PSPNet(num_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
#output=Dropout(rate=0.5)(resnet_output)
output=resnet_output
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=num_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
Creating the PSPModel with three classes, 16 filters, kernel size of (3,3), 'relu' as the activation function and with image height and width of 128 pixels.
PSP = PSPNet(3, 16, (3,3), 'relu', 128,128)
And here is the model summary.
PSP.summary()
Compiling the model.
PSP.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
Below, functions needed to show the model's predictions against the true mask are defined.
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
def show_predictions(dataset=None, num=1):
if dataset:
for image, mask in dataset.take(num):
print(image)
pred_mask = model.predict(image)
display([image[0], mask[0], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(PSP.predict(sample_image[tf.newaxis, ...]))])
show_predictions()
A custom callback function is defined for showing how the model learns to predict while training.
class DisplayCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
And finally the model is fitted against the training dataset and validated against the test dataset. .
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS
model_history = PSP.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset,
callbacks=[DisplayCallback()])
The losses and accuracies of each epoch is plotted to visualize the performance of the model.
loss = model_history.history['loss']
acc = model_history.history['accuracy']
val_loss = model_history.history['val_loss']
val_acc = model_history.history['val_accuracy']
epochs = range(EPOCHS)
plt.figure(figsize=(10,3))
plt.subplot(1,2,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.ylim(0,1)
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,2,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc, 'b', label="Validation accuracy")
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture which uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow for loading the dataset and showing predictions.
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow_addons as tfa
Loading and transforming the dataset.
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
Separating dataset into input and multiple outputs of different sizes.
def create_datasets(wanted_height:int, wanted_width:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3))
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1))
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1))
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1))
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1))
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3))
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1))
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1))
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1))
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1))
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img, {'CC_1': train16_mask, 'CC_2': train8_mask, 'CC_fin': train4_mask, 'final_output': train_original_mask}))
orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img, {'CC_1': test16_mask, 'CC_2': test8_mask, 'CC_fin': test4_mask, 'final_output': test_original_mask}))
train_dataset = train_dataset.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = orig_test_dataset.batch(BATCH_SIZE)
return train_dataset, test_dataset, train_original_mask[0], train_original_img[0], orig_test_dataset, n_train, n_test
Running and loading the functions to create and save the transformed data.
train_dataset, test_dataset, sample_mask, sample_image, orig_test_dataset, n_train, n_test = create_datasets(128,128,64, 1000)
Defining the function for displaying images and the model's predictions jointly.
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = sample_image, sample_mask
display([sample_image, sample_mask])
Defining the functions needed for the PSPNet module.
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False,
dropout: bool = True,
bn: bool = True
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
#model = PSPNet(3, 16, (3,3), 'relu', 128,128)
Defining the functions needed for the ICNet.
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(input_obj,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
# Function for creating the ICNet model. The inputs are the width and height of the images to be used by the model, number of classes, number of filters, kernel size and
# desired activation function.
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="CC_fin", activation='softmax')(upsample_2)
final_output = UpSampling2D(4, interpolation='bilinear', name='final_output')(output)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output, final_output])
return final_model
Let's call the ICNet function to create the model with input shape (128, 128, 3) and 3 classes with the standard values for number of filters, kernel size and activation function.
model=ICNet(128,128,3)
Here is the summary of the model.
model.summary()
Let's also plot the model architecture to verify that we got the ICNet architecture correctly. We first save the model in png
format on DBFS through the package tf.keras.utils.plot_model
and then load and display it through matplotlib.image
package.
tf.keras.utils.plot_model(model, to_file='/dbfs/FileStore/my_model.jpg', show_shapes=True)
img = mpimg.imread('/dbfs/FileStore/my_model.jpg')
plt.figure(figsize=(200,200))
imgplot = plt.imshow(img)
Compiling the model with optimizer AdamW (Adam with weight_decay
), loss function SparseCategoricalCrossentropy and metrics SparseCategoricalAccuracy. We also add loss weights 0.4, 0.4, 1 and 0 to the lower resolution output, medium resolution output and high resolution output and final output (only evaluated in testing phase) respectively.
model.compile(optimizer=tfa.optimizers.AdamW(learning_rate=0.001, weight_decay=0.0001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
Below, the functions for displaying the predictions from the model against the true image are defined.
# Function for creating the predicted image. It takes the max value between the classes and assigns the correct class label to the image, thus creating a predicted mask.
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
# Function for showing the model prediction. Output can be 0, 1 or 2 depending on if you want to see the low resolution, medium resolution or high resolution prediction respectively.
def show_predictions(dataset=None, num=1, output=3):
if dataset:
for image, mask in dataset.take(num):
pred_mask = model.predict(image[tf.newaxis,...])[output]
display([image, mask['final_output'], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(model.predict(sample_image[tf.newaxis, ...])[output])])
show_predictions()
Let's define the variables needed for training the model.
TRAIN_LENGTH = n_train
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//BATCH_SIZE//VAL_SUBSPLITS
Now we define the batch generator which will be passed to model.fit()
function.
#def batch_generator(X, Y16, Y8, Y4, batch_size = BATCH_SIZE):
# indices = np.arange(len(X))
# batch=[]
# while True:
# it might be a good idea to shuffle your data before each epoch
# np.random.shuffle(indices)
# for i in indices:
# batch.append(i)
# if len(batch)==batch_size:
# yield X[batch], {'ClassifierConv_1': Y16[batch], 'ClassifierConv_2': Y8[batch], 'ClassifierConv_final_prediction': Y4[batch]}
# batch=[]
And here we define the custom callback function for showing how the model improves its predictions.
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
We create a callback for early stopping to prevent overfitting.
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_final_output_loss', patience=4, verbose=0
)
MLFlow is initialized to keep track of the experiments.
import mlflow.tensorflow
mlflow.tensorflow.autolog(every_n_iter=1)
Finally, we fit the model to the Oxford dataset.
model_history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS, validation_data=test_dataset, callbacks=[MyCustomCallback(), early_stopping])
We visualize the accuracies and losses through the library matplotlib
. This can also be seen in the MLFlow experiment visible under Experiments in the top right corner of the notebook.
loss = model_history.history['loss']
acc = model_history.history['final_output_acc']
val_loss = model_history.history['val_loss']
val_loss1 = model_history.history['val_CC_1_loss']
val_loss2 = model_history.history['val_CC_2_loss']
val_loss3 = model_history.history['val_CC_fin_loss']
val_loss4 = model_history.history['val_final_output_loss']
val_acc1 = model_history.history['val_CC_1_acc']
val_acc2 = model_history.history['val_CC_2_acc']
val_acc3 = model_history.history['val_CC_fin_acc']
val_acc4 = model_history.history['val_final_output_acc']
epochs = range(19)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc4, 'b', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.plot(epochs, val_loss4, 'y', label="Loss output 4")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc3, 'y', label="Acc output 3")
plt.plot(epochs, val_acc4, 'y', label="Acc output 4")
plt.legend()
plt.show()
Finally, we visualize some predictions on the test dataset.
show_predictions(orig_test_dataset, 20, 3)
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture which uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow_addons as tfa
from tensorflow.keras import backend as K
import horovod.tensorflow.keras as hvd
Setting up checkpoint location... The next cell creates a directory for saved checkpoint models.
import os
import time
checkpoint_dir = '/dbfs/ml/OxfordDemo/train/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
# Including MLflow
import mlflow
import mlflow.tensorflow
import os
print("MLflow Version: %s" % mlflow.__version__)
# Configure Databricks MLflow environment
mlflow.set_tracking_uri("databricks")
DEMO_SCOPE_TOKEN_NAME = "databricksEducational"
databricks_host = 'https://dbc-635ca498-e5f1.cloud.databricks.com/'
databricks_token = dbutils.secrets.get(scope = DEMO_SCOPE_TOKEN_NAME, key = "databricksCLIToken")
os.environ['DATABRICKS_HOST'] = databricks_host
os.environ['DATABRICKS_TOKEN'] = databricks_token
# Configure output folder to store TF events
output_root = "/ml/OxfordDemo/logs/"
output_dir = "/dbfs" + output_root
os.environ['OUTPUT_DIR'] = output_dir
Loading and transforming the dataset.
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def create_datasets_hvd(wanted_height:int, wanted_width:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000, rank=0, size=1):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', data_dir='Oxford-%d' % rank, with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3))
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1))
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1))
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1))
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1))
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3))
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1))
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1))
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1))
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1))
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img[rank::size], {'CC_1': train16_mask[rank::size], 'CC_2': train8_mask[rank::size], 'CC_fin': train4_mask[rank::size], 'final_output': train_original_mask[rank::size]}))
orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img[rank::size], {'CC_1': test16_mask[rank::size], 'CC_2': test8_mask[rank::size], 'CC_fin': test4_mask[rank::size], 'final_output': test_original_mask[rank::size]}))
train_dataset = train_dataset.shuffle(BUFFER_SIZE).cache().batch(BATCH_SIZE).repeat()
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = orig_test_dataset.batch(BATCH_SIZE)
return train_dataset, test_dataset, train_original_mask[0], train_original_img[0], orig_test_dataset, n_train, n_test
Defining the functions needed for the PSPNet module.
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False,
dropout: bool = True,
bn: bool = True
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
#model = PSPNet(3, 16, (3,3), 'relu', 128,128)
Defining the functions needed for the ICNet.
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(input_obj,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
# Function for creating the ICNet model. The inputs are the width and height of the images to be used by the model, number of classes, number of filters, kernel size and
# desired activation function.
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="CC_fin", activation='softmax')(upsample_2)
final_output = UpSampling2D(4, interpolation='bilinear', name='final_output')(output)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output, final_output])
return final_model
Below we define a function to be called by the horovod instance which creates the dataset depending on the amount of workers as well as:
Compiling the model with optimizer adam, loss function SparseCategoricalCrossentropy and metrics SparseCategoricalAccuracy. We also add loss weights 0.1, 0.3 and 0.6 to the lower resolution output, medium resolution output and high resolution output respectively.
MLFlow is initialized to keep track of the experiments.
def train_hvd(learning_rate=1.0, batch_size:int =64, buffer_size:int=1000):
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
# These steps are skipped on a CPU cluster
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
# Including MLflow
import mlflow
import mlflow.tensorflow
import os
# Configure Databricks MLflow environment
# This is my (denny.lee) personal token so you will want to generate yours
mlflow.set_tracking_uri("databricks")
os.environ['DATABRICKS_HOST'] = databricks_host
os.environ['DATABRICKS_TOKEN'] = databricks_token
mlflow.set_experiment("/scalable-data-science/000_0-sds-3-x-projects/voluntary-student-project-01_group-DDLInMining/04_ICNet_Function_hvd")
# Call the get_dataset function you created, this time with the Horovod rank and size
train_dataset, test_dataset, sample_mask, sample_image, orig_test_dataset, n_train, n_test = create_datasets_hvd(128,128, batch_size, buffer_size, hvd.rank(), hvd.size())
model = ICNet(128,128,3)
STEPS_PER_EPOCH = n_train // batch_size
EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//batch_size//VAL_SUBSPLITS
# Adjust learning rate based on number of GPUs
optimizer = tfa.optimizers.AdamW(lr=learning_rate * hvd.size(), weight_decay=0.0001)
# Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
model.compile(optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
# Create a callback to broadcast the initial variable states from rank 0 to all other processes.
# This is required to ensure consistent initialization of all workers when training is started with random weights or restored from a checkpoint.
callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(0)
]
# Save checkpoints only on worker 0 to prevent conflicts between workers
if hvd.rank() == 0:
callbacks.append(tf.keras.callbacks.ModelCheckpoint(checkpoint_dir + '/checkpoint-{epoch}.ckpt', save_weights_only = True, monitor='val_final_output_loss', save_best_only=True))
mlflow.tensorflow.autolog(every_n_iter=1)
model_history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS, validation_data=test_dataset, callbacks=callbacks)
Finally, we fit the model to the Oxford dataset.
from sparkdl import HorovodRunner
hr = HorovodRunner(np=2)
hr.run(train_hvd, learning_rate=0.001)
loss = model_history.history['loss']
acc = model_history.history['final_output_acc']
val_loss = model_history.history['val_loss']
val_loss1 = model_history.history['val_CC_1_loss']
val_loss2 = model_history.history['val_CC_2_loss']
val_loss3 = model_history.history['val_CC_fin_loss']
val_loss4 = model_history.history['val_final_output_loss']
val_acc1 = model_history.history['val_CC_1_acc']
val_acc2 = model_history.history['val_CC_2_acc']
val_acc3 = model_history.history['val_CC_fin_acc']
val_acc4 = model_history.history['val_final_output_acc']
epochs = range(16)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc4, 'b', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.plot(epochs, val_loss4, 'y', label="Loss output 4")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc3, 'y', label="Acc output 3")
plt.plot(epochs, val_acc4, 'y', label="Acc output 4")
plt.legend()
plt.show()
Finally, we visualize some predictions on the test dataset.
show_predictions(orig_test_dataset, 20, 3)
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture which uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow_addons as tfa
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK, SparkTrials
Loading and transforming the dataset.
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def create_datasets(wanted_height:int, wanted_width:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000):
#Loading the dataset
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3), dtype=np.float32)
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1), dtype=np.float32)
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1), dtype=np.float32)
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1), dtype=np.float32)
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1), dtype=np.float32)
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3), dtype=np.float32)
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1), dtype=np.float32)
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1), dtype=np.float32)
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1), dtype=np.float32)
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1), dtype=np.float32)
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
count+=1
train_dataset = [train_original_img, train16_mask, train8_mask, train4_mask, train_original_mask]
orig_test_dataset = [test_original_img, test16_mask, test8_mask, test4_mask, test_original_mask]
return train_dataset, orig_test_dataset, train_original_mask[0], train_original_img[0], n_train, n_test
Running and loading the functions to create and save the transformed data.
train_dataset, orig_test_dataset, sample_mask, sample_image, n_train, n_test = create_datasets(128,128, 64, 1000)
Defining the function for displaying images and the model's predictions jointly.
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = sample_image, sample_mask
display([sample_image, sample_mask])
Defining the functions needed for the PSPNet module.
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False,
dropout: bool = True,
bn: bool = True
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
#model = PSPNet(3, 16, (3,3), 'relu', 128,128)
Defining the functions needed for the ICNet.
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(input_obj,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
# Function for creating the ICNet model. The inputs are the width and height of the images to be used by the model, number of classes, number of filters, kernel size and
# desired activation function.
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="CC_fin", activation='softmax')(upsample_2)
final_output = UpSampling2D(4, interpolation='bilinear', name='final_output')(output)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output, final_output])
return final_model
We create a callback for early stopping to prevent overfitting.
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_final_output_loss', patience=4, verbose=0
)
Finally, we fit the model to the Oxford dataset.
def batch_generator(batch_size):
indices = np.arange(len(train_dataset[0]))
batch=[]
while True:
# it might be a good idea to shuffle your data before each epoch
np.random.shuffle(indices)
for i in indices:
batch.append(i)
if len(batch)==batch_size:
yield train_dataset[0][batch], {'CC_1': train_dataset[1][batch], 'CC_2': train_dataset[2][batch], 'CC_fin': train_dataset[3][batch], 'final_output': train_dataset[4][batch]}
batch=[]
def batch_generator_eval(batch_size):
indices = np.arange(len(train_dataset[0]))
batch=[]
while True:
for i in indices:
batch.append(i)
if len(batch)==batch_size:
yield orig_test_dataset[0][batch], {'CC_1': orig_test_dataset[1][batch], 'CC_2': orig_test_dataset[2][batch], 'CC_fin': orig_test_dataset[3][batch], 'final_output': orig_test_dataset[4][batch]}
batch=[]
def train(params):
VAL_SUBSPLITS=5
EPOCHS=20
VALIDATION_STEPS = n_test//params['batch_size']//VAL_SUBSPLITS
STEPS_PER_EPOCH = n_train // params['batch_size']
BATCH_SIZE = params['batch_size']
"""
An example train method that calls into HorovodRunner.
This method is passed to hyperopt.fmin().
:param params: hyperparameters. Its structure is consistent with how search space is defined. See below.
:return: dict with fields 'loss' (scalar loss) and 'status' (success/failure status of run)
"""
model=ICNet(128,128,3)
model.compile(optimizer=tfa.optimizers.AdamW(learning_rate=params['learning_rate'], weight_decay=0.0001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
train_dataset_temp = batch_generator(BATCH_SIZE)
test_dataset = batch_generator_eval(BATCH_SIZE)
model_history = model.fit(train_dataset_temp, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, callbacks=[early_stopping])
loss = model.evaluate(test_dataset, steps=VALIDATION_STEPS)[4]
del model, train_dataset_temp, test_dataset, model_history
tf.keras.backend.clear_session()
return {'loss': loss, 'status': STATUS_OK}
import numpy as np
space = {
'learning_rate': hp.loguniform('learning_rate', np.log(1e-4), np.log(1e-1)),
'batch_size': hp.choice('batch_size', [32, 64, 128]),
}
import mlflow.tensorflow
algo=tpe.suggest
mlflow.tensorflow.autolog(every_n_iter=1)
spark_trials = SparkTrials(parallelism=2)
best_param = fmin(
fn=train,
space=space,
algo=algo,
max_evals=8,
return_argmin=False,
trials = spark_trials,
)
print(best_param)
Without Spark Trials: 1 hour
With Spark Trials: 33.18 min
We visualize the accuracies and losses through the library matplotlib
.
loss = model_history.history['loss']
acc = model_history.history['final_output_acc']
val_loss = model_history.history['val_loss']
val_loss1 = model_history.history['val_CC_1_loss']
val_loss2 = model_history.history['val_CC_2_loss']
val_loss3 = model_history.history['val_CC_fin_loss']
val_loss4 = model_history.history['val_final_output_loss']
val_acc1 = model_history.history['val_CC_1_acc']
val_acc2 = model_history.history['val_CC_2_acc']
val_acc3 = model_history.history['val_CC_fin_acc']
val_acc4 = model_history.history['val_final_output_acc']
epochs = range(16)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc4, 'b', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.plot(epochs, val_loss4, 'y', label="Loss output 4")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc3, 'y', label="Acc output 3")
plt.plot(epochs, val_acc4, 'y', label="Acc output 4")
plt.legend()
plt.show()
Finally, we visualize some predictions on the test dataset.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
@tf.function
def load_image_train(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def load_transform_data(input_height: int, input_width: int):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
return(dataset, n_train, n_test)
def create_datasets(wanted_height:int, wanted_width:int, n_train:int, n_test:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000):
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3))
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1))
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1))
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1))
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1))
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Saving all img / mask in separate lists
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3))
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1))
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1))
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1))
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
#Saving all img / mask in separate lists
#test_img = [test_original_img, test16_img, test8_img, test4_img]
#test_img = test_original_img
#test_mask = [test_original_mask, test16_mask, test8_mask, test4_mask]
#test_mask = [test16_mask, test8_mask, test4_mask]
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img, {'output_1': train16_mask, 'output_2': train8_mask, 'output_3': train4_mask, 'output_4': train_original_mask}))
test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img, {'output_1': test16_mask, 'output_2': test8_mask, 'output_3': test4_mask, 'output_4': test_original_mask}))
train_dataset = train_dataset.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test_dataset.batch(BATCH_SIZE)
return train_dataset, test_dataset, train_original_mask[0], train_original_img[0]
dataset, n_train, n_test = load_transform_data(128,128)
train_dataset, test_dataset, sample_mask, sample_image = create_datasets(128,128,n_train,n_test, 64, 1000)
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = sample_image, sample_mask
display([sample_image, sample_mask])
class ICNet_model(tf.keras.Model):
def __init__(self,
encoder: tf.keras.Model,
image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'
):
super(ICNet_model, self).__init__() #Skapar en input på self
self.encoder = encoder
self.n_classes = n_classes
self.n_filters = n_filters
self.kernel_size = kernel_size
self.activation = activation
self.image_width = image_width
self.image_height = image_height
# Defining the network
input_shape = (self.image_height, self.image_width, 3)
inputs = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
self.image_height//4, self.image_width//4, interpolation="bilinear", name="input_img_4")(inputs)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
self.image_height//2, self.image_width//2, interpolation="bilinear", name="input_img_2")(inputs)
ICNet_Model1=self.ICNet_1(inputs, self.n_filters, self.kernel_size, self.activation)
PSP_Model = self.PSPNet(self.encoder,self.n_classes, self.n_filters, self.kernel_size, self.activation, self.image_width//4, self.image_height//4, True)
last_layer = PSP_Model.get_layer('conv3_block4_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSP_Model.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = self.PSP_rest(ICNet_Model4)
out1, last_layer = self.CFF(1, ICNet_4_rest, ICNet_Model2, self.n_classes, self.image_width//32, self.image_height//32)
out2, last_layer = self.CFF(2, last_layer, ICNet_Model1, self.n_classes, self.image_width//16, self.image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(self.n_classes, 1, name="output_3", activation='softmax')(upsample_2)
self.network = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output])
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(self,
cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(self,
encoder: tf.keras.Model,
n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
dropout: bool = True,
bn: bool = True):
#encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
#encoder=self.modify_ResNet_Dilation(encoder)
#new_encoder = create_modified_encoder(encoder, dropout, bn)
#encoder.trainable=False
resnet_output=encoder.output
#print(encoder.output)
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = self.pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(self, input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(self, stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear",
name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
#y = ZeroPadding2D(padding=2, name='padding17')(F_up) ?? behövs denna?
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(self,
input_shape,
n_filters: int,
kernel_size: tuple,
activation: str):
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same', input_shape=input_shape)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
def call(self, inputs, training=False):
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
self.image_height//4, self.image_width//4, interpolation="bilinear", name="input_img_4")(inputs)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
self.image_height//2, self.image_width//2, interpolation="bilinear", name="input_img_2")(inputs)
ICNet_Model1=self.ICNet_1(inputs, self.n_filters, self.kernel_size, self.activation)
PSP_Model = self.PSPNet(self.encoder,self.n_classes, self.n_filters, self.kernel_size, self.activation, self.image_width//4, self.image_height//4, True)
last_layer = PSP_Model.get_layer('conv3_block4_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSP_Model.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = self.PSP_rest(ICNet_Model4)
out1, last_layer = self.CFF(1, ICNet_4_rest, ICNet_Model2, self.n_classes, self.image_width//32, self.image_height//32)
out2, last_layer = self.CFF(2, last_layer, ICNet_Model1, self.n_classes, self.image_width//16, self.image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(self.n_classes, 1, name="output_3", activation='softmax')(upsample_2)
return out1, out2, output
#Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
input_shape=(None, None, 3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
model = ICNet_model(encoder, 128,128,3)
model.build([64,128,128,3])
model.summary()
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.1,0.3,0.6],
metrics="acc")
TRAIN_LENGTH = n_train
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 100
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//BATCH_SIZE//VAL_SUBSPLITS
res_eval_1 = []
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
model_history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, callbacks=[MyCustomCallback()])
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture which uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow_addons as tfa
from tensorflow.keras import backend as K
import horovod.tensorflow.keras as hvd
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK, SparkTrials
Setting up checkpoint location... The next cell creates a directory for saved checkpoint models.
import os
import time
checkpoint_dir = '/dbfs/ml/OxfordDemo/train/{}/'.format(time.time())
os.makedirs(checkpoint_dir)
ls /ml
path | name | size |
---|---|---|
dbfs:/ml/Group_20/ | Group_20/ | 0.0 |
dbfs:/ml/MNISTDemo/ | MNISTDemo/ | 0.0 |
dbfs:/ml/OxfordDemo/ | OxfordDemo/ | 0.0 |
dbfs:/ml/horovod_pytorch/ | horovod_pytorch/ | 0.0 |
# Including MLflow
import mlflow
import mlflow.tensorflow
import os
print("MLflow Version: %s" % mlflow.__version__)
# Configure Databricks MLflow environment
mlflow.set_tracking_uri("databricks")
DEMO_SCOPE_TOKEN_NAME = "databricksEducational"
databricks_host = 'https://dbc-635ca498-e5f1.cloud.databricks.com/'
databricks_token = dbutils.secrets.get(scope = DEMO_SCOPE_TOKEN_NAME, key = "databricksCLIToken")
os.environ['DATABRICKS_HOST'] = databricks_host
os.environ['DATABRICKS_TOKEN'] = databricks_token
# Configure output folder to store TF events
output_root = "/ml/OxfordDemo/logs/"
output_dir = "/dbfs" + output_root
os.environ['OUTPUT_DIR'] = output_dir
experiment = mlflow.start_run()
mlflow.set_experiment("/scalable-data-science/000_0-sds-3-x-projects/voluntary-student-project-01_group-DDLInMining/05Z_ICNet_Function_hvd_tuning")
mlflow.end_run()
Loading and transforming the dataset.
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def create_datasets_hvd(wanted_height:int, wanted_width:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000, rank=0, size=1):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', data_dir='Oxford-%d' % rank, with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3))
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1))
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1))
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1))
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1))
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3))
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1))
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1))
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1))
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1))
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img[rank::size], {'CC_1': train16_mask[rank::size], 'CC_2': train8_mask[rank::size], 'CC_fin': train4_mask[rank::size], 'final_output': train_original_mask[rank::size]}))
orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img[rank::size], {'CC_1': test16_mask[rank::size], 'CC_2': test8_mask[rank::size], 'CC_fin': test4_mask[rank::size], 'final_output': test_original_mask[rank::size]}))
train_dataset = train_dataset.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = orig_test_dataset.batch(BATCH_SIZE)
return train_dataset, test_dataset, train_original_mask[0], train_original_img[0], orig_test_dataset, n_train, n_test
def create_datasets_hvd_test(wanted_height:int, wanted_width:int):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', data_dir='Oxford' , with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3))
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1))
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1))
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1))
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1))
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3))
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1))
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1))
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1))
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1))
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
#train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img[rank::size], {'CC_1': train16_mask[rank::size], 'CC_2': train8_mask[rank::size], 'CC_fin': train4_mask[rank::size], 'final_output': train_original_mask[rank::size]}))
#orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img[rank::size], {'CC_1': test16_mask[rank::size], 'CC_2': test8_mask[rank::size], 'CC_fin': test4_mask[rank::size], 'final_output': test_original_mask[rank::size]}))
return train_original_img, train16_mask, train8_mask, train4_mask, train_original_mask, test_original_img, test16_mask, test8_mask, test4_mask, test_original_mask, n_train, n_test
def splitDataset(train_original_img, train16_mask, train8_mask, train4_mask, train_original_mask, test_original_img, test16_mask, test8_mask, test4_mask, test_original_mask, rank, size, BATCH_SIZE, BUFFER_SIZE):
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img[rank::size], {'CC_1': train16_mask[rank::size], 'CC_2': train8_mask[rank::size], 'CC_fin': train4_mask[rank::size], 'final_output': train_original_mask[rank::size]}))
orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img[rank::size], {'CC_1': test16_mask[rank::size], 'CC_2': test8_mask[rank::size], 'CC_fin': test4_mask[rank::size], 'final_output': test_original_mask[rank::size]}))
train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = orig_test_dataset.batch(BATCH_SIZE)
return train_dataset, test_dataset
Running and loading the functions to create and save the transformed data.
#train_dataset, test_dataset, sample_mask, sample_image, orig_test_dataset = create_datasets(128,128,n_train,n_test, 64, 1000)
Defining the function for displaying images and the model's predictions jointly.
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = sample_image, sample_mask
display([sample_image, sample_mask])
Defining the functions needed for the PSPNet module.
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False,
dropout: bool = True,
bn: bool = True
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
#model = PSPNet(3, 16, (3,3), 'relu', 128,128)
Defining the functions needed for the ICNet.
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(input_obj,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
# Function for creating the ICNet model. The inputs are the width and height of the images to be used by the model, number of classes, number of filters, kernel size and
# desired activation function.
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="CC_fin", activation='softmax')(upsample_2)
final_output = UpSampling2D(4, interpolation='bilinear', name='final_output')(output)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output, final_output])
return final_model
Let's call the ICNet function to create the model with input shape (128, 128, 3) and 3 classes with the standard values for number of filters, kernel size and activation function.
#model=ICNet(128,128,3)
Here is the summary of the model.
model.summary()
Let's also plot the model architecture to verify that we got the ICNet architecture correctly. We first save the model in png
format on DBFS through the package tf.keras.utils.plot_model
and then load and display it through matplotlib.image
package.
tf.keras.utils.plot_model(model, to_file='/dbfs/FileStore/my_model.jpg', show_shapes=True)
img = mpimg.imread('/dbfs/FileStore/my_model.jpg')
plt.figure(figsize=(200,200))
imgplot = plt.imshow(img)
Compiling the model with optimizer adam, loss function SparseCategoricalCrossentropy and metrics SparseCategoricalAccuracy. We also add loss weights 0.1, 0.3 and 0.6 to the lower resolution output, medium resolution output and high resolution output respectively.
model.compile(optimizer=tfa.optimizers.AdamW(learning_rate=0.001, weight_decay=0.0001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
Below, the functions for displaying the predictions from the model against the true image are defined.
# Function for creating the predicted image. It takes the max value between the classes and assigns the correct class label to the image, thus creating a predicted mask.
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
# Function for showing the model prediction. Output can be 0, 1 or 2 depending on if you want to see the low resolution, medium resolution or high resolution prediction respectively.
def show_predictions(dataset=None, num=1, output=3):
if dataset:
for image, mask in dataset.take(num):
pred_mask = model.predict(image[tf.newaxis,...])[output]
display([image, mask['final_output'], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(model.predict(sample_image[tf.newaxis, ...])[output])])
show_predictions()
Let's define the variables needed for training the model.
TRAIN_LENGTH = n_train
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 100
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//BATCH_SIZE//VAL_SUBSPLITS
Now we define the batch generator which will be passed to model.fit()
function.
#def batch_generator(X, Y16, Y8, Y4, batch_size = BATCH_SIZE):
# indices = np.arange(len(X))
# batch=[]
# while True:
# it might be a good idea to shuffle your data before each epoch
# np.random.shuffle(indices)
# for i in indices:
# batch.append(i)
# if len(batch)==batch_size:
# yield X[batch], {'ClassifierConv_1': Y16[batch], 'ClassifierConv_2': Y8[batch], 'ClassifierConv_final_prediction': Y4[batch]}
# batch=[]
And here we define the custom callback function for showing how the model improves its predictions.
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
MLFlow is initialized to keep track of the experiments.
We create a callback for early stopping to prevent overfitting.
train_original_img, train16_mask, train8_mask, train4_mask, train_original_mask, test_original_img, test16_mask, test8_mask, test4_mask, test_original_mask, n_train, n_test = create_datasets_hvd_test(128,128)
train_original_img.cache()
train16_mask.cache()
train8_mask.cache()
train4_mask.cache()
train_original_mask.cache()
test_original_img.cache()
test16_mask.cache()
test8_mask.cache()
test4_mask.cache()
test_original_mask.cache()
def train_hvd(checkpoint_dir,learning_rate=1.0, batch_size:int =64, buffer_size:int=1000):
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
# These steps are skipped on a CPU cluster
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
# Including MLflow
import mlflow
import mlflow.tensorflow
import os
# Configure Databricks MLflow environment
# This is my (denny.lee) personal token so you will want to generate yours
mlflow.set_tracking_uri("databricks")
os.environ['DATABRICKS_HOST'] = databricks_host
os.environ['DATABRICKS_TOKEN'] = databricks_token
mlflow.set_experiment("/scalable-data-science/000_0-sds-3-x-projects/voluntary-student-project-01_group-DDLInMining/05Z_ICNet_Function_hvd_tuning")
# Call the get_dataset function you created, this time with the Horovod rank and size
#train_dataset, test_dataset, sample_mask, sample_image, orig_test_dataset = create_datasets(128,128,n_train,n_test, 64, 1000)
#train_dataset, test_dataset, sample_mask, sample_image, orig_test_dataset, n_train, n_test = create_datasets_hvd(128,128, batch_size, buffer_size, hvd.rank(), hvd.size())
train_dataset, test_dataset = splitDataset(train_original_img, train16_mask, train8_mask, train4_mask, train_original_mask, test_original_img, test16_mask, test8_mask, test4_mask, test_original_mask, hvd.rank(), hvd.size(), batch_size, buffer_size)
model = ICNet(128,128,3)
STEPS_PER_EPOCH = n_train // batch_size
EPOCHS = 15
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//batch_size//VAL_SUBSPLITS
# Adjust learning rate based on number of GPUs
optimizer = tfa.optimizers.AdamW(lr=learning_rate * hvd.size(), weight_decay=0.0001)
# Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
model.compile(optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
# Create a callback to broadcast the initial variable states from rank 0 to all other processes.
# This is required to ensure consistent initialization of all workers when training is started with random weights or restored from a checkpoint.
callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(0)
]
# Save checkpoints only on worker 0 to prevent conflicts between workers
if hvd.rank() == 0:
callbacks.append(tf.keras.callbacks.ModelCheckpoint(checkpoint_dir + '/checkpoint-{epoch}.ckpt', save_weights_only = True, monitor='val_final_output_loss', save_best_only=True))
with mlflow.start_run():
mlflow.tensorflow.autolog(every_n_iter=1)
model_history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS, validation_data=test_dataset, callbacks=callbacks)
return model.evaluate(test_dataset, steps=VALIDATION_STEPS)[4]
Finally, we fit the model to the Oxford dataset.
from sparkdl import HorovodRunner
def train(params):
"""
An example train method that calls into HorovodRunner.
This method is passed to hyperopt.fmin().
:param params: hyperparameters. Its structure is consistent with how search space is defined. See below.
:return: dict with fields 'loss' (scalar loss) and 'status' (success/failure status of run)
"""
hr = HorovodRunner(np=2)
loss = hr.run(train_hvd,checkpoint_dir=checkpoint_dir,
learning_rate=params['learning_rate'],
batch_size=params['batch_size']
)
return {'loss': loss, 'status': STATUS_OK}
import numpy as np
space = {
'learning_rate': hp.loguniform('learning_rate', np.log(1e-4), np.log(1e-1)),
'batch_size': hp.choice('batch_size', [32, 64, 128]),
}
algo=tpe.suggest
best_param = fmin(
fn=train,
space=space,
algo=algo,
max_evals=8,
return_argmin=False,
)
from sparkdl import HorovodRunner
hr = HorovodRunner(np=2)
hr.run(train_hvd, learning_rate=0.001)
mlflow.end_run()
with mlflow.start_run(experiment_id = experimentID) as run:
# Get active run_uuid
active_run_id = mlflow.active_run().info.run_id
print(active_run_id)
# Process Mode
process_mode = "hvd (4)"
# Parameters
lr = 0.001
# Run HorovodRunner
hr = HorovodRunner(np=2)
hr.run(train_hvd, learning_rate=lr)
mlflow.end_run()
model_history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS, validation_data=test_dataset, callbacks=[MyCustomCallback(), early_stopping])
We visualize the accuracies and losses through the library matplotlib
.
loss = model_history.history['loss']
acc = model_history.history['final_output_acc']
val_loss = model_history.history['val_loss']
val_loss1 = model_history.history['val_CC_1_loss']
val_loss2 = model_history.history['val_CC_2_loss']
val_loss3 = model_history.history['val_CC_fin_loss']
val_loss4 = model_history.history['val_final_output_loss']
val_acc1 = model_history.history['val_CC_1_acc']
val_acc2 = model_history.history['val_CC_2_acc']
val_acc3 = model_history.history['val_CC_fin_acc']
val_acc4 = model_history.history['val_final_output_acc']
epochs = range(16)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc4, 'b', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.plot(epochs, val_loss4, 'y', label="Loss output 4")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc3, 'y', label="Acc output 3")
plt.plot(epochs, val_acc4, 'y', label="Acc output 4")
plt.legend()
plt.show()
Finally, we visualize some predictions on the test dataset.
show_predictions(orig_test_dataset, 20, 3)
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture whitch uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset.
Below, functions for data manipulation are defined, ensuring that the images inputted to the model is of appropriate format.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
# Function for normalizing image_size so that pixel intensity is between 0 and 1
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of 128x128 as well as augmenting the training images
@tf.function
def load_image_train(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation)
def load_image_test(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
def load_image_train_noTf(datapoint):
input_image = tf.image.resize(datapoint['image'], (128, 128))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture
def resize_image16(img, mask):
input_image = tf.image.resize(img, (128//16, 128//16))
input_mask=tf.image.resize(mask, (128//16, 128//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask):
input_image = tf.image.resize(img, (128//8, 128//8))
input_mask=tf.image.resize(mask, (128//8, 128//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask):
input_image = tf.image.resize(img, (128//4, 128//4))
input_mask=tf.image.resize(mask, (128//4, 128//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
Here the data is loaded from Tensorflow datasets.
import tensorflow_datasets as tfds
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 114
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
#train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
#train16 = dataset['train'].map(resize_image16, num_parallel_calls=tf.data.experimental.AUTOTUNE)
#train8 = dataset['train'].map(resize_image8, num_parallel_calls=tf.data.experimental.AUTOTUNE)
#train4 = dataset['train'].map(resize_image4, num_parallel_calls=tf.data.experimental.AUTOTUNE)
#test = dataset['test'].map(load_image_test)
#train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
#train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
#test_dataset = test.batch(BATCH_SIZE)
train_orig = np.ndarray(shape=(3680,128,128,3))
train_orig_mask = np.ndarray(shape=(3680,128,128,1))
train16_mask = np.ndarray(shape=(3680,8,8,1))
train8_mask = np.ndarray(shape=(3680,16,16,1))
train4_mask = np.ndarray(shape=(3680,32,32,1))
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint)
train_orig[count]=img_orig
train_orig_mask[count]=(mask_orig)
img, mask = resize_image16(img_orig, mask_orig)
train16_mask[count]=(mask)
img, mask = resize_image8(img_orig, mask_orig)
train8_mask[count]=(mask)
img, mask = resize_image4(img_orig, mask_orig)
train4_mask[count]=(mask)
count+=1
test_orig = np.ndarray(shape=(3669,128,128,3))
test_orig_mask = np.ndarray(shape=(3669,128,128,1))
test_orig_img = np.ndarray(shape=(3669,128,128,3))
test16_mask = np.ndarray(shape=(3669,8,8,1))
test16_img = np.ndarray(shape=(3669,8,8,3))
test8_mask = np.ndarray(shape=(3669,16,16,1))
test8_img = np.ndarray(shape=(3669,16,16,3))
test4_mask = np.ndarray(shape=(3669,32,32,1))
test4_img = np.ndarray(shape=(3669,32,32,3))
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint)
test_orig[count]=(img_orig)
test_orig_mask[count]=(mask_orig)
img, mask = resize_image16(img_orig, mask_orig)
test16_mask[count]=(mask)
test16_img[count]=(img)
img, mask = resize_image8(img_orig, mask_orig)
test8_mask[count]=(mask)
test8_img[count]=(img)
img, mask = resize_image4(img_orig, mask_orig)
test4_mask[count]=(mask)
test4_img[count]=(img)
count+=1
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = train_orig[0], train_orig_mask[0]
display([sample_image, sample_mask])
#for image, mask in train.take(1):
# sample_image, sample_mask = image, mask
#display([sample_image, sample_mask])
#Keep shape with (Batch_SIZE, height,width, channels)
#in either np.array or try datasets.
#train = tfds.as_numpy(dataset['train']['image'])
#train16 = tfds.as_numpy(train16)
#train8 = tfds.as_numpy(train8)
#train4 = tfds.as_numpy(train4)
#truth16 = np.concatenate([y for x, y in train16], axis=0)
#truth8 = np.concatenate([y for x, y in train8], axis=0)
#truth4 = np.concatenate([y for x, y in train4], axis=0)
test_dataset = dataset['test'].map(load_image_test)
test_dataset = test.batch(BATCH_SIZE)
print(test8_mask)
train_orig = np.split(train_orig[0:3648], 114)
print("Finshed 1")
train16_mask = np.split(train16_mask[0:3648], 114)
train8_mask = np.split(train8_mask[0:3648], 114)
train4_mask = np.split(train4_mask[0:3648], 114)
test_orig = np.split(test_orig[0:3648], 114)
print("Finshed 1")
test16_mask = np.split(test16_mask[0:3648], 114)
test8_mask = np.split(test8_mask[0:3648], 114)
test4_mask = np.split(test4_mask[0:3648], 114)
test16_img = np.split(test16_img[0:3648], 114)
test8_img = np.split(test8_img[0:3648], 114)
test4_img = np.split(test4_img[0:3648], 114)
print(test16_mask)
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
new_model = model_from_json(model.to_json())
return new_model
def PSPNet(num_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=Dropout(rate=0.5)(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=num_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
PSP = PSPNet(3, 16, (3,3), 'relu', 128,128)
PSP.summary()
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
Method for performing cascade feature fusion. See https://arxiv.org/pdf/1704.08545.pdf
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="ClassifierConv_{}".format(stage), activation='softmax')(F_up)
#y = ZeroPadding2D(padding=2, name='padding17')(F_up) ?? behövs denna?
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
print(intermediate_f_small)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
#%sh sudo apt-get install -y graphviz
def ICNet_1(input_obj: tf.keras.Input,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
# Dropout layer on the hidden units, i.e. not on the input layer
if i == 2 or i == 3:
temp=Dropout(rate=0.5)(temp)
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="ClassifierConv_final_prediction", activation='softmax')(upsample_2)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output])
return final_model
model=ICNet(128,128,3)
model.summary()
#final_model=tf.keras.models.Model(inputs=input_obj ,outputs=model)
#final_model.summary()
from IPython.display import display as Display, Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
tf.keras.utils.plot_model(model, to_file='/dbfs/FileStore/my_model.jpg', show_shapes=True)
img = mpimg.imread('/dbfs/FileStore/my_model.jpg')
plt.figure(figsize=(200,200))
imgplot = plt.imshow(img)
ls /dbfs/FileStore
#import datetime
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.1,0.3,0.6],
metrics=tf.keras.metrics.SparseCategoricalAccuracy())
#log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
#tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
def show_predictions(dataset=None, num=1):
if dataset:
for image, mask in dataset.take(num):
print(image)
pred_mask = model.predict(image)[2]
display([image[0], mask[0], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(model.predict(sample_image[tf.newaxis, ...])[2])])
show_predictions()
ls
import mlflow.tensorflow
mlflow.tensorflow.autolog()
def batch_generator(X, Y16, Y8, Y4, batch_size = BATCH_SIZE):
indices = np.arange(len(X))
batch=[]
while True:
# it might be a good idea to shuffle your data before each epoch
np.random.shuffle(indices)
for i in indices:
batch.append(i)
if len(batch)==batch_size:
yield X[batch], {'ClassifierConv_1': Y16[batch], 'ClassifierConv_2': Y8[batch], 'ClassifierConv_final_prediction': Y4[batch]}
batch=[]
def batch_generator_eval(X, Y16, Y8, Y4, batch_size = BATCH_SIZE):
indices = np.arange(len(X))
batch=[]
while True:
for i in indices:
batch.append(i)
if len(batch)==batch_size:
yield X[batch], {'ClassifierConv_1': Y16[batch], 'ClassifierConv_2': Y8[batch], 'ClassifierConv_final_prediction': Y4[batch]}
batch=[]
class DisplayCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
res_eval_1 = []
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
res_eval_1.append(self.model.evaluate(test_orig, [test16_mask, test8_mask, test4_mask], batch_size=45, verbose=1))
show_predictions()
TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH//BATCH_SIZE
EPOCHS = 10
VAL_SUBSPLITS = 5
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE
train_generator = batch_generator(train_orig,train16_mask,train8_mask,train4_mask,batch_size=BATCH_SIZE)
eval_generator = batch_generator_eval(test_orig, test16_mask, test8_mask, test4_mask, batch_size=BATCH_SIZE)
model_history = model.fit(train_generator, epochs=EPOCHS,steps_per_epoch=STEPS_PER_EPOCH,
callbacks=[MyCustomCallback()],verbose=1)
#model_history = model.fit(x=train_orig, y=[train16_mask, train8_mask, train4_mask],
# epochs=EPOCHS,
# steps_per_epoch=STEPS_PER_EPOCH,
# callbacks=[MyCustomCallback()], verbose=1)
print(res_eval_1)
loss = model_history.history['loss']
acc = model_history.history['ClassifierConv_final_prediction_sparse_categorical_accuracy']
val_loss = []
val_acc = []
val_loss1 = []
val_loss2 = []
val_loss3 = []
val_acc1 = []
val_acc2 = []
for i in range(EPOCHS):
val_loss.append(res_eval_1[i][0])
val_loss1.append(res_eval_1[i][1])
val_loss2.append(res_eval_1[i][2])
val_loss3.append(res_eval_1[i][3])
val_acc.append(res_eval_1[i][6])
val_acc1.append(res_eval_1[i][4])
val_acc2.append(res_eval_1[i][5])
epochs = range(EPOCHS)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'bo', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc, 'bo', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc, 'y', label="Acc output 3")
plt.legend()
plt.show()
Implementation of ICNet
In this notebook, an implementation of ICNet is presented which is an architecture which uses a trade-off between complexity and inference time efficiently. The architecture is evaluated against the Oxford pets dataset. This notebook has reused material from the Image Segmentation Tutorial on Tensorflow
Importing the required packages.
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow_addons as tfa
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK, SparkTrials
Loading and transforming the dataset.
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
# Function for resizing the train images to the desired input shape of HxW as well as augmenting the training images.
def load_image_train_noTf(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
input_mask = tf.math.round(input_mask)
return input_image, input_mask
# Function for resizing the test images to the desired output shape (no augmenation).
def load_image_test(datapoint, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(datapoint['image'], (wanted_height, wanted_width))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (wanted_height, wanted_width))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
# Functions for resizing the image to the desired size of factor 2 or 4 to be inputted to the ICNet architecture.
def resize_image16(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//16, wanted_width//16))
input_mask=tf.image.resize(mask, (wanted_height//16, wanted_width//16))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image8(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//8, wanted_width//8))
input_mask=tf.image.resize(mask, (wanted_height//8, wanted_width//8))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def resize_image4(img, mask, wanted_height: int, wanted_width: int):
input_image = tf.image.resize(img, (wanted_height//4, wanted_width//4))
input_mask=tf.image.resize(mask, (wanted_height//4, wanted_width//4))
input_mask = tf.math.round(input_mask)
return input_image, input_mask
def create_datasets(wanted_height:int, wanted_width:int, BATCH_SIZE:int = 64, BUFFER_SIZE:int = 1000):
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
n_train = info.splits['train'].num_examples
n_test = info.splits['test'].num_examples
#Creating the ndarray in the correct shapes for training data
train_original_img = np.ndarray(shape=(n_train, wanted_height, wanted_width, 3), dtype=np.float32)
train_original_mask = np.ndarray(shape=(n_train, wanted_height, wanted_width, 1), dtype=np.float32)
train16_mask = np.ndarray(shape=(n_train, wanted_height//16, wanted_width//16, 1), dtype=np.float32)
train8_mask = np.ndarray(shape=(n_train, wanted_height//8, wanted_width//8, 1), dtype=np.float32)
train4_mask = np.ndarray(shape=(n_train, wanted_height//4, wanted_width//4, 1), dtype=np.float32)
#Loading the data into the arrays
count = 0
for datapoint in dataset['train']:
img_orig, mask_orig = load_image_train_noTf(datapoint, wanted_height, wanted_width)
train_original_img[count]=img_orig
train_original_mask[count]=mask_orig
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
train16_mask[count]=(mask16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
train8_mask[count]=(mask8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
train4_mask[count]=(mask4)
count+=1
#Creating the ndarrays in the correct shapes for test data
test_original_img = np.ndarray(shape=(n_test,wanted_height,wanted_width,3), dtype=np.float32)
test_original_mask = np.ndarray(shape=(n_test,wanted_height,wanted_width,1), dtype=np.float32)
test16_mask = np.ndarray(shape=(n_test,wanted_height//16,wanted_width//16,1), dtype=np.float32)
test8_mask = np.ndarray(shape=(n_test,wanted_height//8,wanted_width//8,1), dtype=np.float32)
test4_mask = np.ndarray(shape=(n_test,wanted_height//4,wanted_width//4,1), dtype=np.float32)
#Loading the data into the arrays
count=0
for datapoint in dataset['test']:
img_orig, mask_orig = load_image_test(datapoint, wanted_height, wanted_width)
test_original_img[count]=(img_orig)
test_original_mask[count]=(mask_orig)
img16, mask16 = resize_image16(img_orig, mask_orig, wanted_height, wanted_width)
test16_mask[count]=(mask16)
#test16_img[count]=(img16)
img8, mask8 = resize_image8(img_orig, mask_orig, wanted_height, wanted_width)
test8_mask[count]=(mask8)
#test8_img[count]=(img8)
img4, mask4 = resize_image4(img_orig, mask_orig, wanted_height, wanted_width)
test4_mask[count]=(mask4)
#test4_img[count]=(img4)
count+=1
print(train_original_img)
train_dataset = tf.data.Dataset.from_tensor_slices((train_original_img, {'CC_1': train16_mask, 'CC_2': train8_mask, 'CC_fin': train4_mask, 'final_output': train_original_mask}))
orig_test_dataset = tf.data.Dataset.from_tensor_slices((test_original_img, {'CC_1': test16_mask, 'CC_2': test8_mask, 'CC_fin': test4_mask, 'final_output': test_original_mask}))
#train_dataset = train_dataset.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
#train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
#test_dataset = orig_test_dataset.batch(BATCH_SIZE)
return train_dataset, orig_test_dataset, train_original_mask[0], train_original_img[0], n_train, n_test
Running and loading the functions to create and save the transformed data.
train_dataset, orig_test_dataset, sample_mask, sample_image ,n_train,n_test = create_datasets(128,128, 64, 1000)
train_dataset.cache()
Defining the function for displaying images and the model's predictions jointly.
def display(display_list):
plt.figure(figsize=(15, 15))
title = ['Input Image', 'True Mask', 'Predicted Mask']
for i in range(len(display_list)):
plt.subplot(1, len(display_list), i+1)
plt.title(title[i])
plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
plt.axis('off')
plt.show()
sample_image, sample_mask = sample_image, sample_mask
display([sample_image, sample_mask])
Defining the functions needed for the PSPNet module.
# Function for the pooling module which takes the output of ResNet50 as input as well as its width and height and pool it with a factor.
def pool_block(cur_tensor,
image_width,
image_height,
pooling_factor,
activation):
strides = [int(np.round(float(image_width)/pooling_factor)),
int(np.round(float(image_height)/pooling_factor))]
pooling_size = strides
x = AveragePooling2D(pooling_size, strides=strides, padding='same')(cur_tensor)
x = Conv2D(128,(1,1),padding='same')(x)
x = BatchNormalization()(x)
x = Activation(activation)(x)
x = tf.keras.layers.experimental.preprocessing.Resizing(
image_height, image_width, interpolation="bilinear")(x) # Resizing images to correct shape for future concat
return x
# Function for formatting the resnet model to a modified one which takes advantage of dilation rates instead of strides in the final blocks.
def modify_ResNet_Dilation(model):
for i in range(0,4):
model.get_layer('conv4_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv4_block1_{}_conv'.format(i)).dilation_rate = 2
model.get_layer('conv5_block1_{}_conv'.format(i)).strides = 1
model.get_layer('conv5_block1_{}_conv'.format(i)).dilation_rate = 4
model.save('/tmp/my_model')
new_model = tf.keras.models.load_model('/tmp/my_model')
return new_model
# Function for creating the PSPNet model. The inputs is the number of classes to classify, number of filters to use, kernel_size, activation function,
# input image width and height and a boolean for knowing if the module is part of the ICNet or not.
def PSPNet(n_classes: int,
n_filters: int,
kernel_size: tuple,
activation: str,
image_width: int,
image_height: int,
isICNet: bool = False,
dropout: bool = True,
bn: bool = True
):
if isICNet:
input_shape=(None, None, 3)
else:
input_shape=(image_height,image_width,3)
encoder=ResNet50(include_top=False, weights='imagenet', input_shape=input_shape)
encoder=modify_ResNet_Dilation(encoder)
#encoder.trainable=False
resnet_output=encoder.output
pooling_layer=[]
pooling_layer.append(resnet_output)
output=(resnet_output)
h = image_height//8
w = image_width//8
for i in [1,2,3,6]:
pool = pool_block(output, h, w, i, activation)
pooling_layer.append(pool)
concat=Concatenate()(pooling_layer)
output_layer=Conv2D(filters=n_classes, kernel_size=(1,1), padding='same')(concat)
final_layer=UpSampling2D(size=(8,8), data_format='channels_last', interpolation='bilinear')(output_layer)
final_model=tf.keras.models.Model(inputs=encoder.input, outputs=final_layer)
return final_model
#model = PSPNet(3, 16, (3,3), 'relu', 128,128)
Defining the functions needed for the ICNet.
# Function for adding stage 4 and 5 of ResNet50 to the 1/4 image size branch of the ICNet.
def PSP_rest(input_prev: tf.Tensor):
y_ = input_prev
#Stage 4
#Conv_Block
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block1_conv1')(y_)
y = BatchNormalization(name='C4_block1_bn1')(y)
y = Activation('relu', name='C4_block1_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block1_conv2')(y)
y = BatchNormalization(name='C4_block1_bn2')(y)
y = Activation('relu', name='C4_block1_act2')(y)
y_ = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv0')(y_)
y = Conv2D(1024, 1, dilation_rate=2, padding='same', name='C4_block1_conv3')(y)
y_ = BatchNormalization(name='C4_block1_bn0')(y_)
y = BatchNormalization(name='C4_block1_bn3')(y)
y = Add(name='C4_skip1')([y_,y])
y_ = Activation('relu', name='C4_block1_act3')(y)
#IDBLOCK1
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block2_conv1')(y_)
y = BatchNormalization(name='C4_block2_bn1')(y)
y = Activation('relu', name='C4_block2_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block2_conv2')(y)
y = BatchNormalization(name='C4_block2_bn2')(y)
y = Activation('relu', name='C4_block2_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block2_conv3')(y)
y = BatchNormalization(name='C4_block2_bn3')(y)
y = Add(name='C4_skip2')([y_,y])
y_ = Activation('relu', name='C4_block2_act3')(y)
#IDBLOCK2
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block3_conv1')(y_)
y = BatchNormalization(name='C4_block3_bn1')(y)
y = Activation('relu', name='C4_block3_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block3_conv2')(y)
y = BatchNormalization(name='C4_block3_bn2')(y)
y = Activation('relu', name='C4_block3_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block3_conv3')(y)
y = BatchNormalization(name='C4_block3_bn3')(y)
y = Add(name='C4_skip3')([y_,y])
y_ = Activation('relu', name='C4_block3_act3')(y)
#IDBlock3
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block4_conv1')(y_)
y = BatchNormalization(name='C4_block4_bn1')(y)
y = Activation('relu', name='C4_block4_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block4_conv2')(y)
y = BatchNormalization(name='C4_block4_bn2')(y)
y = Activation('relu', name='C4_block4_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block4_conv3')(y)
y = BatchNormalization(name='C4_block4_bn3')(y)
y = Add(name='C4_skip4')([y_,y])
y_ = Activation('relu', name='C4_block4_act3')(y)
#ID4
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block5_conv1')(y_)
y = BatchNormalization(name='C4_block5_bn1')(y)
y = Activation('relu', name='C4_block5_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block5_conv2')(y)
y = BatchNormalization(name='C4_block5_bn2')(y)
y = Activation('relu', name='C4_block5_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block5_conv3')(y)
y = BatchNormalization(name='C4_block5_bn3')(y)
y = Add(name='C4_skip5')([y_,y])
y_ = Activation('relu', name='C4_block5_act3')(y)
#ID5
y = Conv2D(256, 1, dilation_rate=2, padding='same', name='C4_block6_conv1')(y_)
y = BatchNormalization(name='C4_block6_bn1')(y)
y = Activation('relu', name='C4_block6_act1')(y)
y = Conv2D(256, 3, dilation_rate=2, padding='same', name='C4_block6_conv2')(y)
y = BatchNormalization(name='C4_block6_bn2')(y)
y = Activation('relu', name='C4_block6_act2')(y)
y = Conv2D(1024,1, dilation_rate=2, padding='same', name='C4_block6_conv3')(y)
y = BatchNormalization(name='C4_block6_bn3')(y)
y = Add(name='C4_skip6')([y_,y])
y_ = Activation('relu', name='C4_block6_act3')(y)
#Stage 5
#Conv
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block1_conv1')(y_)
y = BatchNormalization(name='C5_block1_bn1')(y)
y = Activation('relu', name='C5_block1_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block1_conv2')(y)
y = BatchNormalization(name='C5_block1_bn2')(y)
y = Activation('relu', name='C5_block1_act2')(y)
y_ = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv0')(y_)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block1_conv3')(y)
y_ = BatchNormalization(name='C5_block1_bn0')(y_)
y = BatchNormalization(name='C5_block1_bn3')(y)
y = Add(name='C5_skip1')([y_,y])
y_ = Activation('relu', name='C5_block1_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block2_conv1')(y_)
y = BatchNormalization(name='C5_block2_bn1')(y)
y = Activation('relu', name='C5_block2_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block2_conv2')(y)
y = BatchNormalization(name='C5_block2_bn2')(y)
y = Activation('relu', name='C5_block2_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block2_conv3')(y)
y = BatchNormalization(name='C5_block2_bn3')(y)
y = Add(name='C5_skip2')([y_,y])
y_ = Activation('relu', name='C5_block2_act3')(y)
#ID
y = Conv2D(512, 1, dilation_rate=4,padding='same', name='C5_block3_conv1')(y_)
y = BatchNormalization(name='C5_block3_bn1')(y)
y = Activation('relu', name='C5_block3_act1')(y)
y = Conv2D(512, 3, dilation_rate=4,padding='same', name='C5_block3_conv2')(y)
y = BatchNormalization(name='C5_block3_bn2')(y)
y = Activation('relu', name='C5_block3_act2')(y)
y = Conv2D(2048, 1, dilation_rate=4,padding='same', name='C5_block3_conv3')(y)
y = BatchNormalization(name='C5_block3_bn3')(y)
y = Add(name='C5_skip3')([y_,y])
y_ = Activation('relu', name='C5_block3_act3')(y)
return(y_)
# Function for the CFF module in the ICNet architecture. The inputs are which stage (1 or 2), the output from the smaller branch, the output from the
# larger branch, n_classes and the width and height of the output of the smaller branch.
def CFF(stage: int, F_small, F_large, n_classes: int, input_width_small: int, input_height_small: int):
F_up = tf.keras.layers.experimental.preprocessing.Resizing(int(input_width_small*2), int(input_height_small*2), interpolation="bilinear", name="Upsample_x2_small_{}".format(stage))(F_small)
F_aux = Conv2D(n_classes, 1, name="CC_{}".format(stage), activation='softmax')(F_up)
intermediate_f_small = Conv2D(128, 3, dilation_rate=2, padding='same', name="intermediate_f_small_{}".format(stage))(F_up)
intermediate_f_small_bn = BatchNormalization(name="intermediate_f_small_bn_{}".format(stage))(intermediate_f_small)
intermediate_f_large = Conv2D(128, 1, padding='same', name="intermediate_f_large_{}".format(stage))(F_large)
intermediate_f_large_bn = BatchNormalization(name="intermediate_f_large_bn_{}".format(stage))(intermediate_f_large)
intermediate_f_sum = Add(name="add_intermediates_{}".format(stage))([intermediate_f_small_bn,intermediate_f_large_bn])
intermediate_f_relu = Activation('relu', name="activation_CFF_{}".format(stage))(intermediate_f_sum)
return F_aux, intermediate_f_relu
# Function for the high-res branch of ICNet where image is in scale 1:1. The inputs are the input image, number of filters, kernel size and desired activation function.
def ICNet_1(input_obj,
n_filters: int,
kernel_size: tuple,
activation: str):
temp=input_obj
for i in range(1,4):
conv1=Conv2D(filters=n_filters*2*i, kernel_size=kernel_size, strides=(2,2), padding='same')(temp)
batch_norm1=BatchNormalization()(conv1)
temp=Activation(activation)(batch_norm1)
return temp
# Function for creating the ICNet model. The inputs are the width and height of the images to be used by the model, number of classes, number of filters, kernel size and
# desired activation function.
def ICNet(image_width: int,
image_height: int,
n_classes: int,
n_filters: int = 16,
kernel_size: tuple = (3,3),
activation: str = 'relu'):
input_shape=[image_width,image_height,3]
input_obj = tf.keras.Input(shape=input_shape, name="input_img_1")
input_obj_4 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//4, image_height//4, interpolation="bilinear", name="input_img_4")(input_obj)
input_obj_2 = tf.keras.layers.experimental.preprocessing.Resizing(
image_width//2, image_height//2, interpolation="bilinear", name="input_img_2")(input_obj)
ICNet_Model1=ICNet_1(input_obj, n_filters, kernel_size, activation)
PSPModel = PSPNet(n_classes, n_filters, kernel_size, activation, image_width//4, image_height//4, True)
last_layer = PSPModel.get_layer('conv4_block3_out').output
PSPModel_2_4 = tf.keras.models.Model(inputs=PSPModel.input, outputs=last_layer, name="JointResNet_2_4")
ICNet_Model4 = PSPModel_2_4(input_obj_4)
ICNet_Model2 = PSPModel_2_4(input_obj_2)
ICNet_4_rest = PSP_rest(ICNet_Model4)
out1, last_layer = CFF(1, ICNet_4_rest, ICNet_Model2, n_classes, image_width//32, image_height//32)
out2, last_layer = CFF(2, last_layer, ICNet_Model1, n_classes, image_width//16, image_height//16)
upsample_2 = UpSampling2D(2, interpolation='bilinear', name="Upsampling_final_prediction")(last_layer)
output = Conv2D(n_classes, 1, name="CC_fin", activation='softmax')(upsample_2)
final_output = UpSampling2D(4, interpolation='bilinear', name='final_output')(output)
final_model = tf.keras.models.Model(inputs=input_obj, outputs=[out1, out2, output, final_output])
return final_model
Let's call the ICNet function to create the model with input shape (128, 128, 3) and 3 classes with the standard values for number of filters, kernel size and activation function.
Below, the functions for displaying the predictions from the model against the true image are defined.
# Function for creating the predicted image. It takes the max value between the classes and assigns the correct class label to the image, thus creating a predicted mask.
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
# Function for showing the model prediction. Output can be 0, 1 or 2 depending on if you want to see the low resolution, medium resolution or high resolution prediction respectively.
def show_predictions(dataset=None, num=1, output=3):
if dataset:
for image, mask in dataset.take(num):
pred_mask = model.predict(image[tf.newaxis,...])[output]
display([image, mask['final_output'], create_mask(pred_mask)])
else:
display([sample_image, sample_mask,
create_mask(model.predict(sample_image[tf.newaxis, ...])[output])])
show_predictions()
Let's define the variables needed for training the model.
TRAIN_LENGTH = n_train
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
EPOCHS = 100
VAL_SUBSPLITS = 5
VALIDATION_STEPS = n_test//BATCH_SIZE//VAL_SUBSPLITS
MLFlow is initialized to keep track of the experiments.
mlflow.tensorflow.autolog(every_n_iter=1)
We create a callback for early stopping to prevent overfitting.
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_final_output_loss', patience=4, verbose=0
)
Finally, we fit the model to the Oxford dataset.
def create_batch_size(batch_size):
train_dataset_temp = train_dataset.shuffle(BUFFER_SIZE).batch(batch_size).repeat()
train_dataset_temp.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = orig_test_dataset.batch(params['batch_size'])
def train(params):
VALIDATION_STEPS = n_test//params['batch_size']//VAL_SUBSPLITS
STEPS_PER_EPOCH = TRAIN_LENGTH // params['batch_size']
"""
An example train method that calls into HorovodRunner.
This method is passed to hyperopt.fmin().
:param params: hyperparameters. Its structure is consistent with how search space is defined. See below.
:return: dict with fields 'loss' (scalar loss) and 'status' (success/failure status of run)
"""
model=ICNet(128,128,3)
model.compile(optimizer=tfa.optimizers.AdamW(learning_rate=params['learning_rate'], weight_decay=0.0001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(), loss_weights=[0.4,0.4,1,0],
metrics="acc")
train_dataset_temp = train_dataset
test_dataset = orig_test_dataset
model_history = model.fit(train_dataset_temp, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_steps=VALIDATION_STEPS, validation_data=test_dataset, callbacks=[early_stopping])
loss = model.evaluate(orig_test_dataset, steps=VALIDATION_STEPS)[4]
model, train_dataset_temp, test_dataset, model_history = None, None, None, None
tf.keras.backend.clear_session()
return {'loss': loss, 'status': STATUS_OK}
import numpy as np
space = {
'learning_rate': hp.loguniform('learning_rate', np.log(1e-4), np.log(1e-1)),
'batch_size': hp.choice('batch_size', [32, 64, 128]),
}
import mlflow.tensorflow
algo=tpe.suggest
mlflow.tensorflow.autolog(every_n_iter=1)
best_param = fmin(
fn=train,
space=space,
algo=algo,
max_evals=8,
return_argmin=False,
)
print(best_param)
Without Spark Trials: 1 hour
We visualize the accuracies and losses through the library matplotlib
.
loss = model_history.history['loss']
acc = model_history.history['final_output_acc']
val_loss = model_history.history['val_loss']
val_loss1 = model_history.history['val_CC_1_loss']
val_loss2 = model_history.history['val_CC_2_loss']
val_loss3 = model_history.history['val_CC_fin_loss']
val_loss4 = model_history.history['val_final_output_loss']
val_acc1 = model_history.history['val_CC_1_acc']
val_acc2 = model_history.history['val_CC_2_acc']
val_acc3 = model_history.history['val_CC_fin_acc']
val_acc4 = model_history.history['val_final_output_acc']
epochs = range(16)
plt.figure(figsize=(20,3))
plt.subplot(1,4,1)
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.legend()
plt.subplot(1,4,2)
plt.plot(epochs, acc, 'r', label="Training accuracy")
plt.plot(epochs, val_acc4, 'b', label="Validation accuracy")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1,4,3)
plt.plot(epochs, val_loss1, 'b', label="Loss output 1")
plt.plot(epochs, val_loss2, 'g', label="Loss output 2")
plt.plot(epochs, val_loss3, 'y', label="Loss output 3")
plt.plot(epochs, val_loss4, 'y', label="Loss output 4")
plt.legend()
plt.subplot(1,4,4)
plt.plot(epochs, val_acc1, 'b', label="Acc output 1")
plt.plot(epochs, val_acc2, 'g', label="Acc output 2")
plt.plot(epochs, val_acc3, 'y', label="Acc output 3")
plt.plot(epochs, val_acc4, 'y', label="Acc output 4")
plt.legend()
plt.show()
Finally, we visualize some predictions on the test dataset.