ScaDaMaLe Course site and book

pip install plotly
"./DataPreprocess"
display(df_cleaned_time_series.select($"reproduction_rate", $"location", $"date").filter($"reproduction_rate".isNotNull).filter( $"location"==="Sweden" || $"location"==="Germany" || $"location"==="Danmark" || $"location"==="Finland" || $"location"==="Norway").sort("date"))

df_cleaned_time_series.createOrReplaceTempView("visual_rdd")
import pandas as pd import numpy as np import plotly.express as px
test_table = spark.table("visual_rdd") country = np.array(test_table.select("iso_code").rdd.map(lambda l: l[0]).collect()) dates = np.array(test_table.select("date").rdd.map(lambda l: l[0]).collect()) total_cases = np.array(test_table.select("total_cases").rdd.map(lambda l: l[0]).collect()) total_deaths = np.array(test_table.select("total_deaths").rdd.map(lambda l: l[0]).collect()) new_cases = np.array(test_table.select("new_cases").rdd.map(lambda l: l[0]).collect()) new_deaths = np.array(test_table.select("new_deaths").rdd.map(lambda l: l[0]).collect()) visual_data = {'country':country.tolist(), 'total_cases':total_cases, 'date':dates, 'total_deaths': total_deaths, 'new_cases': new_cases, 'new_deaths': new_deaths} visual_df = pd.DataFrame(data = visual_data).sort_values(by='date') visual_df

Total Cases

fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country", color="total_cases", # total_cases is a column of gapminder hover_name="country", # column to add to hover information color_continuous_scale=px.colors.sequential.Plasma, animation_frame = 'date') fig.show()

fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country", color="total_deaths", # total_deaths is a column of gapminder hover_name="country", # column to add to hover information color_continuous_scale=px.colors.sequential.Plasma, animation_frame = 'date') fig.show()

fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country", color="new_cases", # new_cases is a column of gapminder hover_name="country", # column to add to hover information color_continuous_scale=px.colors.sequential.Plasma, animation_frame = 'date') fig.show()

fig = px.choropleth(visual_df[~visual_df.country.str.contains("WLD", na=False)], locations="country", color="new_deaths", # new_deaths is a column of gapminder hover_name="country", # column to add to hover information color_continuous_scale=px.colors.sequential.Plasma, animation_frame = 'date') fig.show()